pyspark.sql.protobuf.functions.from_protobuf¶
-
pyspark.sql.protobuf.functions.
from_protobuf
(data: ColumnOrName, messageName: str, descFilePath: Optional[str] = None, options: Optional[Dict[str, str]] = None) → pyspark.sql.column.Column[source]¶ Converts a binary column of Protobuf format into its corresponding catalyst value. The Protobuf definition is provided in one of these two ways:
- Protobuf descriptor file: E.g. a descriptor file created with
protoc –include_imports –descriptor_set_out=abc.desc abc.proto
Jar containing Protobuf Java class: The jar containing Java class should be shaded. Specifically, com.google.protobuf.* should be shaded to org.sparkproject.spark_protobuf.protobuf.*. https://github.com/rangadi/shaded-protobuf-classes is useful to create shaded jar from Protobuf files. The jar file can be added with spark-submit option –jars.
New in version 3.4.0.
- Parameters
- data
Column
or str the binary column.
- messageName: str, optional
the protobuf message name to look for in descriptor file, or The Protobuf class name when descFilePath parameter is not set. E.g. com.example.protos.ExampleEvent.
- descFilePathstr, optional
The protobuf descriptor file.
- optionsdict, optional
options to control how the protobuf record is parsed.
- data
Notes
Protobuf functionality is provided as an pluggable external module.
Examples
>>> import tempfile >>> data = [("1", (2, "Alice", 109200))] >>> ddl_schema = "key STRING, value STRUCT<age: INTEGER, name: STRING, score: LONG>" >>> df = spark.createDataFrame(data, ddl_schema) >>> desc_hex = str('0ACE010A41636F6E6E6563746F722F70726F746F6275662F7372632F746573742F726' ... '5736F75726365732F70726F746F6275662F7079737061726B5F746573742E70726F746F121D6F72672E61' ... '70616368652E737061726B2E73716C2E70726F746F627566224B0A0D53696D706C654D657373616765121' ... '00A03616765180120012805520361676512120A046E616D6518022001280952046E616D6512140A057363' ... '6F7265180320012803520573636F72654215421353696D706C654D65737361676550726F746F736206707' ... '26F746F33') >>> # Writing a protobuf description into a file, generated by using >>> # connector/protobuf/src/test/resources/protobuf/pyspark_test.proto file >>> with tempfile.TemporaryDirectory() as tmp_dir: ... desc_file_path = "%s/pyspark_test.desc" % tmp_dir ... with open(desc_file_path, "wb") as f: ... _ = f.write(bytearray.fromhex(desc_hex)) ... f.flush() ... message_name = 'SimpleMessage' ... proto_df = df.select( ... to_protobuf(df.value, message_name, desc_file_path).alias("value")) ... proto_df.show(truncate=False) ... proto_df = proto_df.select( ... from_protobuf(proto_df.value, message_name, desc_file_path).alias("value")) ... proto_df.show(truncate=False) +----------------------------------------+ |value | +----------------------------------------+ |[08 02 12 05 41 6C 69 63 65 18 90 D5 06]| +----------------------------------------+ +------------------+ |value | +------------------+ |{2, Alice, 109200}| +------------------+ >>> data = [([(1668035962, 2020)])] >>> ddl_schema = "value struct<seconds: LONG, nanos: INT>" >>> df = spark.createDataFrame(data, ddl_schema) >>> message_class_name = "org.sparkproject.spark_protobuf.protobuf.Timestamp" >>> to_proto_df = df.select(to_protobuf(df.value, message_class_name).alias("value")) >>> from_proto_df = to_proto_df.select( ... from_protobuf(to_proto_df.value, message_class_name).alias("value")) >>> from_proto_df.show(truncate=False) +------------------+ |value | +------------------+ |{1668035962, 2020}| +------------------+