
XEROX

XDE User Guide

610E00201
October 1988

---_ ...

----~'~~~~~---

Xerox Corporation
Technical Services. MS SVHQ403
475 Oakmead Parkway
Sunnyvale. California 94086

Copyright © 1985, 1988, Xerox Corporation. All rights reserved.
XEROX @, 8010,6085, ViewPoint,and xoe are trademarks of XEROX CORPORATION.

Pri nted in U.S. A.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document was prepared for this purpose. Please send your comments to:

Xerox Corporation
XDE Technical Documentation, SVHQ403
475 Oakmead Parkway
Sunnyvale, California 94086

Table of contents

I General tools

1.1 System overview [-1

L 1.1 G ser interface [-1

1.1.2 Development scenario I-I

1.1.3 Hardware 1-2

1.1.4 Software components 1-2

1.2 Definition of terms 1-3

1.3 User interface. [-5

1.3.1 Windows and subwindows [-6

1.3.2 Text manipulation. I-I0

1.3.3 Menus. 1-12

1.3.4 Keyboard commands I-17

I.4 The user command file 1-22

1.4.1 Format of the user command file 1-22

1.5 Documentation road map 1-25

1.5.1 XDE Concepts and Principles 1-25

1.5.2 The XDE User(s Guide. 1-25

1.5.3 Mesa Language Manual [-25

I.5.4 Pilot Programmer~s Manual 1-25

I.5.5 Mesa Programmer's Manual 1-26

I.5.6 Appendices 1-26

I.6 Typographical conventions 1-26

1.7 Other features, other tools 1-26

1 DMT

1.1 Files 1-1

1.2 User interface. 1-1

v

Table of' contents

2 Dictionary tool

2.1 Files 2-1

2.2 User interface. 2-1

2.3 Dictionary tool 2-1

2.3.1 Commands 2-2

:~.3.2 File format 2-2

2.4 User.cm 2-2

3 Editor Symbiote

3.1 Files 3-1

3.2 User Interface 3-1

:3.2.1 Editor menu 3-1

3.3 Search and pattern matching . 3-5

:3.3.1 Search. 3-5

:3.3.2 Replace 3-6

:3.3.3 Character classes and closure 3-6

:3.3.4 Examples 3-6

:3.3.5 Editor as programmer's tool 3-7

3.4 U ser.cm file entries 3-9

4 Executive

4.1 Files 4-1

4.2 User interface. 4-1

4.2.1 Editing functions 4-1

4.2.2 Command line expansion 4-2

4.2.3 Command line interpretation 4-:3

4.2.4 Built-in commands 4-:3

4.2.5 Cache Address operating instructions 4-1:3

4.2.6 Run comm'and usage 4-14

4.2.7 Exec Ops menu 4-15

4.3 U ser.cm processing 4-15

5 Herald Window

5.1 Files 5-1
5.2 User interface. 5-1

5.2.1 Boot From: menu 5-1
5.3 User.cm processing 5-2

VI

XD~~ User"s Guide

6 Profile tool

6.1 User interface. 0- 1

7 Tool Driver

7.1 l~iles 7 -1

7.2 L~ser interface. 7 -1

7.2.1 Message subwindow 7-2

7.2.2 Form subwindow 7-2

7.2.3 File subwindow 7-3

7.3 Script files 7-3

7.3.1 Script file format 7-3

7.3.2 Sample script 7-6

7.4 BNF for script files 7-7

7.5 The subwindows file 7-9

7.6 Running the Tool Driver 7-9

II File-related tools

11.1 File system conventions II-I

II.2 File names II-I

II.3 File-related tools . Il-2

8 Brownie

8.1 Files 8-1

8.2 User interface. 8-1

8.3 Scri pt file . 8-1

8.3.1 Parameters. 8-2

8.3.2 Commands 8-2

8.4 Example 8-3

9 FTP

9.1 Files 9-1

9.2 User interface. 9-1

9.2.1 Command line syntax 9-1

9.2.2 Command line switches 9-1

9.2.3 Commands and examples 9-3

9.2.4 Command line errors 9-6

9.3 Tutorial 9-7

vii

Table of con ten t8

10 File Tool

10.1 Files 10-1

10.2 User interface. 10-1

10.2.1 Form subwindow 10-2

10.2.2 Command subwindow 10-3

10.2.3 List Options window 10-4

10.3 User.cm 10-4

lOA Operational notes 10-5

11 Floppy commands

11.1 I"iles 11-1

11.2 User interface. 11-1

11.2.1 Common argument definitions 11-1

11.2.2 Commands 11-1

11.3 Partial files 11-3

11.4 J~xamples . 11-3

11.5 Error messages 11-4

12 Search Path Tool

12.1 User interface. 12-1

12.1.1 Form subwindow 12-1

12.1.2 Directories menu. 12-2

12.1.3 Search Path menu 12-2

13 Compare

13.1 Files 13-1

13.2 User interface. 13-1

13.2.1 The Compare Tool window . 13-1

13.2.2 Compare via the Executive window. 13-3

14 Find

14.1 Files 14-1

14.2 User interface. 14-1

14.2.1 Switches 14-1

14.2.2 Switches on file names. 14-2

14.2.3 Special characters 14-2

14.3 Examples. 14-3

VIll

III

XD~~ Uselofs Guide

15 File Window

lS.1 Files

lS.2 User interface.

15.2.1 Debugger Ops menu

15.2.2 File Window menu

15.3 User.cm

16 Print

16.1 Files

16.2 User interface.

16.2.1 Switches

16.2.2 Defaults

16.3 Formatting

16.4 U ser.cm entries

System-building tools

III. 1 Program-building tools

III. 2 Program analysis tools

17 Binder

17.1

17.2

17.3

17.4

17.S

Files

User interface.

17.2.1 Command line

17.2.2 Switches

17.2.3 Associating files with modules and configurations

Examples.

Error messages

Current limitations

18 Command Central

lS.l

lS.2

IS.3

IS.4

Files

User interface.

18.2.1

18.2.2

18.2.3

Message subwindow

Command sub window

Log subwindow .

Communication between client and development volumes

User.cm .

lS-l

15-1

15-1

15-2

15-3

U1-1

1 (j-l

16-2

16-3

16-..J,

16-4

III-l

III-l

17-1

17-2

17-2

17-3

17-4

17-4

17-S

17-7

18-1

18-1

lS-2

IS-2

IS-3

18-3

IS-4

lX

x

Table of contents

19 Compiler

19.1 «'iles

19.2 U ser)nterface.

19.2.1 Command line

19.2.2 Switches

19.3 Examples

19.4 Error messages

19.5 Compiler failures.

19.6 Current limitations

20 Formatter

20.1 Files

20.2 User interface.

20.2.1 Command line

20.2.2 Switches

20.3 formatting rules .

20.3.1 Spacing

20.3.2 Structure

20.4 User.cm

20.5 Examples

20.6 Formatter failures

21 MakeBoot

21.1 Files

21.2 User interface.

21.2.1 Commands.

21.2.2 Switches

21.2.3 Parameter files.

21.2.4 Examples

22 MakeDLionBootFloppyTool and MakeDoveBootFloppyTool

22.1

22.2

Files for Make Boot Floppy Tools .

User interfaces

22.2.1

22.2.2

22.2.3

Form subwindow for Make*BootFloppy Tool

Command subwindow for Make*BootFloppy Tool

MakeDoveBootFloppyTool notes

19-1

19-1

19-2

19-3

19-f;

19-7

19-8

19-8

20-1

20-1

20-2

20-2

20-:3

20-:3

20-4

20-5

20-5

20-6

21-1

21-2

21-3

21-3

21-3

21-6

22-1

22-1

22-2

22-2

22-2

XD~~ User's Guide

23 Packager

23.1

23.2

23.3

2:1.4

23.5

Files

User interface.

Information about modules

Packaging description language

23.4.1 Code segments.

23.4.2

23.4.3

23.4.4

23.4.5

23.4.6

'23.4.7

Discarded code packs

Frame packs

~lerging

Rules governing packaging descriptions

Placement of multiword read-only constants

~xample

Operation.

24 Debugger

24.1

24.2

24.3

24.4

Sty les of debugging

24.1.1 Local debugging

24.1.2 Outload debugging.

24.1.3 Remote debugging

24.1.4 Creating a debugging session

24.1.5 Local events.

Sword tool

24.2.1 Sword form subwindow

24.2.2 Sword file subwindow

24.2.3 Input conventions

24.2.4 Output conventions

Debugger commands

24.3.1 Breakpoints

24.3.2 Display runtime state

24.3.3-

24.3.4

24.3.5

Current context

Program control

Low-level facilities.

Mesa interpreter .

24.4.1 Statement syntax

24.4.2 Loopholes.

24.4.3

24.4.4

24.4.5

24.4.6

S ubscri pting

Explicit qualification vs. qualification in the current context

Type expressions

Radix conversion

23-2

23-2

23-4

23-5

23-5

23-8

23-9

23-9

23-10

23-11

23-11

23-12

24-1

24-1

24-2

24-2

24-3

24-3

24-4

24-4

24-7

24-8

24-9

24-12

24-12

24-16

24-19

24-20

24-21

24-22

24-22

24-22

24-23

24-23

24-23

24-24

Xl

xu

24.5

24.6

24.7

24.8

24.9

24.10

Table of' contents

24.4.7

~4.4.8

24.4.9

Arithmetic expressions.

Procedure calls.

Sample expressions

Signal and error messages

24.5.1

~~4.5.2

24.5.3

:~4.5.4

:~4.5.5

24.5.G

Entering the debugger .

Symbol lookup .

Unrecognized runtime structures.

Command execution error

Breakpoints

Displaying the stack

24.5.7 Mesa interpreter

YIesa interpreter grammar

Commands summary .

Example sessions.

24.8.1

24.8.2

Example: local debugging session

Example: two outload debugging sessions

24.8.3 Example: remote debugging session

Programmer's interface (DebugUsefulDefs)

User.cm .

24a IProcessControl

24a.1

24a.2

24a.3

25

25.1

25.2

25.3

26

26.1

26.2

26.3

ProcessControl Tool

Example: Freezing a Process.

User.cm .

DebugHeap

Files

User.cm

~~5.2.1 Form sub window

25.2.2 DebugHeap menu

Example

IncludeChecker

Files

User interface.

26.2.1 Tool interface

26.2.2 Command line

26.2.3 Operating switches.

Examples.

24-24

24-24

24-25

24-25

24-25

24-26

24-27

24-28

24-28

24-29

24-29

24-31

24-33

24-34

24-34

24-35

24-36

24-36

24-37

24a-1

24a-3

24a-3

25-1

25-2

25-2

25-3

25-4

26-1

26-1

26-2

26-4

26-4

26-5

XDE Userfs Guide

26.4 lJ ser.cm 26-7

27 Lister

27.1 Files 27-1

27.2 User interface. 27 -1

27.2.1 Commands useful to general Mesa users 27-2

27.2.2 Commands useful to wizards 27 -:3

28 Performance tools

28.1 Control Transfer counter tool. 28-2

28.l.1 Files 28-2

28.l.2 User interface . 28-2

28.1.3 Operation 28-4

28.l.4 Limitations 28-5

28.l.5 Getting started. 28-6

28.1.6 Sample session. 28-7

28.2 Performance Measurement Tool 28-10

28.2.1 Files 28-10

28.2.2 Concepts 28-10

28.2.3 Definition of terms. 28-10

28.2.4 User interface 28-11

28.2.5 Operation 28-14

28.2.6 Limitations 28-15

28.2.7 Getting started. 28-16

28.2.8 Sample session. 28-17

28.3 Spy 28-18

28.3.1 Files 28-19

28.3.2 User interface 28-19

28.3.3 Operation 28-20

28.3.4 Getting started. 28-21

28.3.5 Error messages. 28-21

28.3.6 Limitations 28-22

28.4 Ben 28-23

28.4.1 Files 28-23

28.4.2 Collecting the data 28-23

28.4.3 Reducing the data. 28-24

28.4.4 Report format .. 28-25

28.4.5 Error recovery .. 28-27

28.4.6 Messages 28-27

28.4.7 Cleaning up 28-28

xiii

Table of contents

29 Statistics

29.1 Files 29-1

29.2 User interface. 29-1

29.2.1 Switches 29- U

29.3 Types of statistics. 29-2

29.4 ~:xample 29-2

IV lVlesa Services

30 Mail tools

30.1 Mail Tool. 30-1

30.1.1 Files 30-1

30.l.2 User interface 30-1

30.l.3 The Mail Tool via the Executive window 30-7

30.l.4 Send Tool 30-7

30.2 MailFileSca venger 30-13

30.2.1 Files 30-13

30.2.2 C ser interface 30-13

30.3 Maintain 30-13

30.3.1 Files 30-14

30.3.2 User interface 30-14

31 MFileServer

31.1 Files 31-1

31.2 User interface. 31-1

31.2.1 Form subwindow . 31-2

31.2.2 Executi ve commands 31-2

31.3 User.cm entries 31-2

31.4 Operational notes 31-3

32 Network executive tools

32.1 Chat 32-1

32.1.1 Files 32-1

32.1.2 User interface 32-1

32.1.3 Special keys 32-3

32.1.4 Chat User.cm 32-4

32.2 NSTerminal 32-4

32.2.1 Files 32-4

32.2.2 Setting up 32-4

XIV

XD~~ User's Guide

32.2.3 User interface . 32-5

32.2.4 Opening a connection 32-9

32.2.5 NSTerminal User.em 32-10

:32.2.6 U ser.cm example 32-10

32.3 Remote Executive 32-11

32.3.1 Files 32-11

32.3.2 User interface 32-11

32.3.3 Commands 3211

32.3.4 Remote Executive User.cm. 32-12

32.4 TTY'rajo :32-1:3

32.4.1 Files and installation 32 13

32.4.2 C ser interface 32-13

32.4.3 Commands 32-14

32.4.4 User.cm 32-14

32.4.5 Program interface 32-14

V TCPIIP Related Tools and Applications

33 Getting Started with ARPA

33.1 Configuration requirements 33-1

33.2 Machine Registration. 33-1

33.3 Software available 33-2

33.4 Running the software . 33-3

34 ArpaCacheAddress

34.1 Files 34-1

34.2 User Interface 34-1

35 ArpaChat

35.1 Files 35-1

35.2 User Interface 35-1

35.2.1 Message subwindow 35-1

35.2.2 Form subwindow 35-1

35.2.3 TTY sub window 35-3

35.2.4 Special keys 35-3

35.2.5 ArpaChat User.cm entries. 35-3

36 ArpaRemoteExec

36.1 Files 36-1

36.2 User Interface 36-1

xv

Table of contents

36.2.1 Commands 36-2

:36.2.2 Remote Executi ve C ::;er.cm . 36-3

37 ArpaFileTool

37.1 Files 37-1

37.2 User Interface 37-1

37.2.1 Form subwindow 37 -1

37.2.2 Command subwindow 37-2

37.2.3 Options window 37-3

:37.2.4 Options command subwindow 37-3

:37.2.5 Options form subwindow 37-3

37.3 U ser.cmentries 37-5

37.4 References 37-5

38 .ArpaF'ileServer

38.1 Files 38-1

38.2 User Interface 38-1

38.2.1 Tool window interface 38-1

38.2.2 Executive interface. 38-1

38.2.3 Server activity log 38-2

38.3 User.cm Entries 38-2

39 ArpaMailTool

39.1 I?iles 39-1

39.2 User Interface 39-1

39.2.1 Text subwindow - Table of contents 39-2

39.2.2 Form subwindow 39-3

39.2.3 Options window 39-4

39.3 ArpaSendTool 39-5

39.3.1 Form subwindow 39-6

39.3.2 Text subwindow 39-7

39.3.2.1 Subject: field 39-7

39.3.2.2 To: field 39-7

39.3.2.3 Reply-To: field. 39-7

39.3.2.4 cc: field. 39-7

39.3.2.5 bce: field 39-8

39.3.2.6 Message body. 39-8

39.3.2.7 User.em entries 39-8

39.4 MailFileScavenger 39-10

39.4.1 Files 39-10

XVI

XDE User's Guide

39.4.2 User interface

40 ArpaTerm
40.1

40.2

ArpaTerm

40.1. 1 Fi les

40.1. 2 Setting up

User interface.

40.2.1

40.2.2

40.2.3

Opening a connection

ArpaTcrm C ser.cm.

User.cm example .

Appendices

A Installer

A.I Overview.

A.1.1 Background

A.1.2 Goals

A.2 Why you should use the Installer

A.3 Invoking the Installer

A.4 How to enter commands directly

A.5 Compatibility with Othello 12.0

A.6 Changed commands

A.7 New commands

A.7.I Script support

A.7.2 LISP specific

A.7.3 Generic

A.8 Script writer information .

A.8.l Background

A.8.2 Finding the scripts.

A.8.3 Initial command file

A.8.4 Creating floppy disks

A.8.5 Creating cartridge tapes

A.9 How to write script files

A.9.I Overview

A.9.2 Examples

A.9.3 Debugging information

A.IO Available bootfiles

A.II Summary of commands (functional listing)

A.Il.I Booting commands.

A.I1.2 Control commands .

39-10

40-1

40-1

40-1

40-1

40-6

40-6

40-6

A-I

A-I

A-2

A-2

A-2

A-3

A-3

A-4

A-4

A-4

A-5

A-5

A-6

A-6

A-7

A-8

A.-8

A-9

A-9

A-9

A-IO

A-II

A-13

A-14

A-I5

A-16

xvii

xviii

A.12

A.13

B

B.l

8.2

B.3

C

C.l

C.2

C.3

C.4

C.S

C.S

C.7

C.B

C.g

C.1O

D

0.1

Table of contents

A.ll.3

A.l1...1-

A.ll.5

A.ll.6

A.ll.7

A.ll.8

Fetch commands

Information commands

Volume commands

Recovery commands

Data Source commands.

Other commands

Alphabetical listing of commands.

l3uilding nationalized installers

A.13.1 Building the Installer

Getting started/Operations guide

Disk configuration

B.l.1 Physical and log1cal volumes

13.1.2 The Installer

Booting

B.2.1 General information

B.2.2 Methods of booting .

B.2.3 Boot switches

Troubleshooting

B.3.1 Recovering from system crashes

B.3.2 Scavenging.

B.3.3 MP error codes .

13.3.4 Special Pilot error messages sent to debugger

rrableCompiler

Mesa object file format

Using the output

ModuleMaker

StringCompactor .

C.4.1 Example

File format

Options

Command line syntax and switches

Examples

Switches on the input file name

Switches on auxiliary file names

Parser Generator System

U sing the Parser Generator

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-26

A-26

B-1

B-1

8-2

B-2

B-2

8-4

8-8

B-14

B-15

B-15

8-19

B-23

C-1

C-1

C-2

C-3

C-3

C-4

C-4

C-5

C-5

C-S

C-6

0-1

0.2

D.3

0.4

0.5

0.6

D.7

O.S

X()~~ Uset"s Guide

Format the input file .

Output of the Parser Generalor

D.3.1 The input record

D.3.2 The log file.

The module file

The binary file

0.5.1 Binary file format

D.5.2 The LR and first files.

The Preprocessor .

Operation

D.7.1 PGS operation

0.7.2 TableCompiler operation.

Example

Illustrations

Figure 1.1 : User interface

Figure 1.2: Scrollbar

Figure 1.3: Windows

Figure 1.4: Form subwindow

Figure 1.5: Menus .

Figure 1. 6: Text window

Figure 1.7: Keyboard .

Figure 3.1: Editor Symbiote subwindow

Figure 3.2: Editor property sheet .

Figure 7.1: Tool Driver executive window

Figure 10.1: File Tool window

Figure 12.1 : Search Path Tool window

Figure 13.1: Compare Tool window.

Figure lS.1: Command Central tool window

Figure 22.1: Make*BootFloppy tool

Figure 24.1: LocalWorld and the Options window

Figure 24a.1:Process Control

Figure 25.1: DebugHeap tool window

Figure 26.1: IncludeChecker tool window

Figure 28.1: Control Transfer Counter tool.

Figure 2S.2: PerfPackage window with mode commands.

Figure 2S.3: PerfPackage window with histogram commands

Figure 2S.4: Spy tool window .

Figure 30.1: The :v1ailTool

Figure 30.2: Maintain tool window (normal level)

Figure 30.3: Maintain tool window (owner level)

Figure 31.1: MFileServer .

0-2

0-3

0-4

D-4

D-9

0-9

0-9

0-11

0-12

D-l :3

0-13

0-16

D-17

1-5

1-7

£-8

£-9

£-12

1-16

I-IS

3-1

3-3

7-2

10-1

12-1

13-2

18-1

22-1

24-5

24a-l

25-2

26-2

2S-3

28-12

28-13

28-18

30-3

30-15

30-15

31-1

XIX

xx

Table of contents

Figure 32.1: Chat .

l"igure 32.2: NSTerminal

~'igure 39.1: Arpa\1ailTool

Figure 39.2: Arpa\1ailTool Options Window and SMTP Debugger

Figure 39.3: ArpaSendTool

Figure 40.1 :ArpaTerm

32-2

32-5

39-2

:39-5

39-6

40-2

Tajo

Errata

• On a 6085 keyboard, the CASE key has the same function as KEYBOARD-L on a 8010
keyboard. It will make the selection lower case, and if shifted it will make the selection
upper case.

• PROP'S-CR "unindents" one level. For example, you can type it instead of a CR when you
want to close a scope on the next line.

• KEYBOARD-B surrounds the selection with small field brackets (<<»).

• FileWindows. Save [] from the debugger saves the contents of files on your client
volume that you were editing. Also, the contents of Empty Windows are saved to a file
named "ScratchWindows. saved". You need FileWindows. bcd on your debugger
volume to use this command from the debugger. From Sword, type:

>Set Root configuration: Tajo
>Set Module context: FileWindows
> Save []

• ScratchSources. Save [] saves all scratch sources to a file named
"ScratchSources. saved". Unlike FileWindows. Save [], this one saves your mail
send windows as well as your Empty Windows, but doesn't save FileWindows that you
were editing. You need ScratchSources. bcd on your debugger volume to use this
command from the debugger. From Sword, type:

>Set Root configuration: Tajo
>Set Module context: ScratchSources
> Save []

• A Se tPos i t ionBalanceBeam affects the way text is displayed in your windows.
When you do a FIND or position in a window, the position in question is displayed at
the top of the window in "top" mode (the way Tajo has always worked), in the middle in
"middle" mode, or at either the top or bottom, which ever is more convenient, in
"topBottom" mode. TopBottom mode minimizes the repainting needed when you jump
between various positions in the window. Top mode only saves repainting when

fi:n"ata

2

jumping backwards. :vIiddlc mode doesn't save much at all, but it always positions
things 'of interest in the middle of your window. Top mode is the default. A sample
User. cm entry is:

[System]
SetPositionBalanceBeam: top I middlel topBottom

• A CaretShape switch selects between two different styles of carets. The default is
"triangle," which gives you the standard Tajo TextSW and TTYSW carets. With
caretShape IBeam, however, you get an I-Beam caret in TextSWs and a gray
rectangle in TTYSWs.. You can set this switch from the System section of your
User .cm:

[System]
CaretShape: tr iang le I iBeam

• MenuSymbiotes can have their own font. You can specify what font you want them to
ha ve in the F i leWi ndow section of your User. cm. The file name should have the
"s tr ike extension on it. The file should be on your root directory, < >, so the system
can find it even before your search path is set up. You can also specify how many lines
you would like your MEmuSymbiotes to be. The MenuSymbioteLines field in your
User. cm can be a real number, such as 2.37. It may take a few tries to get the
MenuSymb io tes looking just the way you want them to. A sample User. cm entry is:

[FileWindow]
MenuSymbioteFont: MenuSymbolsFont.strike
MenuSymbioteLines: 1

• When you hit Dol t in a F i leWi ndow, several default extensions are tried. These
defaults (. mesa • conf i9 . cm) can be changed by specifying a list of extensions in
the FileWindow sections of your User .cm. Any string starting with a '.' is allowed.
For Example:

[FileWindow]
Extensions: .mesa .eonfig .em .doe .df .log

• J. Las t positions the last line of the file in the middle of your window (even if you don't
have SetPos i tionBalaneeBeam = middle).

• If the No t if i e r is busy and is not taking any page faults, Shift-STOP won't take you to
the debugger. In this situation, use Shift-Shift-STOP to get to the debugger. If you must do
this, you can't execute Interpret-Calls from the debugger.

• When chording the mouse buttons to bring up a menu, release the POINT (= left = red)
button as soon as you have brought up the menu. The menu stays up as long as you
hold down the ADJUST button. Address faults may occur if you release the ADJUST button
before releasing the POiNT button when using menus.

• Avoid running Tajo with an extremely full volume. Tools can fail otherwise.

• NEXT and NEXT-DELETE search from the insertion point, not the selection.

Debugger

Tools

XDE User's Guide

• FileSystem: If some tool in Tajo gives the message that it could not close a volume, try
to figure out why the volumeAboutToClose was canceled. Fix the error, then close
the volume manually by using the Exec's CloseVolume command. If you still can't
close the volume, you must reboot your machine before proceeding to the client. If you
open your client volume, or any volume readable from your client volume, for write,
you must not proceed to your client.

• Do not usc the "Power Ofr' command from the Exec Ops menu.

• Changing the current selection while running a prQgram that takes its input from the
current selection (such as Print $$$) can cause an address fault.

• If you go to the debugger and you want to save liles on your client volume, retrieve
TajoTools. symbols from the release directory.

• If you fill up your disk on a development environment volume, it may not boot. There
are a couple of work arounds for this situation. The best solution is to booL Tajo on a
volume of the same or higher type, open the full volume for writing using the
"OpenVolume. - volumeHame/w" command, and delete the files. If necessary, you
can retrieve a boot file onto a Scavenger volume, delete the files from the full volume
and then restore the volume to its original boot file. If you can not do this, consult your
local support group. They can provide you with a smaller boot file for scavenging

• The "w" boot switch is no longer supported.

• In trying to re-execute a command to the Executive by selecting and stuffing a previous
command, you may accidentally select the prompt character '>'. If so, the command
that the Executive will try to run will start with the character' >' and will not match
any of the registered commands. However, it will match the corresponding file when
the Executive tries its autoload heuristic, causing the Executive to load another
instance of your bed.

• Sword supports multiple remote debuggers.

• Sword 14.0 is backward compatible. Thus, Sword can remote debug a 12.3 client.
However, since world swapping between 12.3 and 14.0 boot files is not supported.
Sword cannot outload debug a 12.3 client. Sword 12.3 can remote debug a 14.0 client.

• Do not invalidate caches (CONTROL-N command). Unloading and reloading the debugger
is the work around for such problems.

• Brownie will NOT transfer files reliably from NS file servers. In particular, long file
names, non-standard file types (such as ViewPoint file types), and multi-segmented
files (such as ViewPoint documents) are not supported.

3

El"rata

4

.. Brownie accepts the Iq switch on the command line indicating that Brownie should
query the Wier for log-in credentials. If I -q is specified, credentials will be taken from
the User Profile. I-q is the default.

Example:

>8rownie foo.brownie/-q

.. The List/f and List/b commands of F'I'P have a syntax different from that described
in the XD[~ Cser Guide. Only one of the If or Ib switches can be llsed and it must be
the last switch. After one of these switches is seen, the rest of the command line lS

assumed to be a list of files. The new syntax is:

>FTP List/f date-with-no-spaces <files>

>FTP List/f ·date with spaces· <files>

The date can be in any valid format for dates. The If switch lists the files that have a
create date after the date given. The Ib switch lists those tiles with a create date before
the date given. Exampl.e:

> FTP RamRod Dir/c AMesa List/dalf lO-Oct-84 '*

.. Command Central and the Run. - and Load. - commands of the Executive now
recognize the Iv switch, which causes version mismatches to be ignored.

4. Formatter: You can specify the font to use on the command line. For example:

>Formatter /-ti.kg Souvenir/f Def.mesa Impl.mesa

The 'f' switch says that this is a font. It should come after the global switches and
before any files to be formatted. Note that no size is given, just the name of the font.
The formatter picks 10 point for portrait and 8 point for landscape. There are also new
User. cm entries for the formatter:

[Forma t ter]
LandscapeFont: Souvenir
PortraitFont: Classic

.. The /k (Output Packager Command) switch writes PacKager commands in the output
file that make Packager source and object files consistent (default TRUE).

• There is a bug in MakeDLionBootFloopyTool when changing the installed boot file on a
floppy. The work around is to reformat the floppy and reinstall the germ as well as the
new boot file. This requires a germ to be supplied whenever a new boot file is put onto a
floppy.

.. While setting up the Perf Tool, newing or unnewing modules will cause a crash with an
address fault.

XDE User"s Guide

• Chat: Fi lename/F (read commands from a file) for Chat doesn't work. Chat stuffs
initial commands into its window when a connection is opened if the autologin feature
is enabled. The commands stuffed can be specified in the User. cm as follows:

[Cha t]
machine: quotedStringWithCarriageReturns

• The Protect. - command isn't in TTYTajo.

5

Er'rata

6

I

General tools

This chapter is an overview of the Xerox Development Environment (XDE) and its use. It
describes the types of features in the environment and how they interact. The final sections
of this chapter discuss other XDE documentation, the organization of this manual, and its
typographical conventions.

This chapter also introduces a number of helpful tools found on the XDE system. These
tools are discussed in chapters 1 through 7.

1.1 System overview

The Xerox Development Environment provides development tools for programmers
writing tools and applications, including tools to aid in editing, compiling, binding,
running, and debugging Mesa programs.

1.1.1 User interface

A tool communicates with the user via windows, which are rectangular regions of the
display screen in which text, icons, and graphics are displayed. User input to a window is
colle.cted using menus or form subwindows. A menu is a list of options or commands
associated with a window. Tajo, the XDE runtime environment, allows programmers to
define specific menus meaningful to a particular tool. Another way to collect user input is
through a form subwindow, which is a horizontally ruled section of a window used for
displaying commands and argument names.

In addition to window-oriented facilities, XDE provides a simple executive facility for
invoking the same tools using a less sophisticated teletype-style interface. TO,ols of this
type are invoked through the Executive window by typing the tool name and the
appropriate parameter syntax.

1.1.2 Development scenario

A complete development scenario includes design, implementation, testing, and release of
systems. During implementation, the programmer produces code using pre-existing
modules consistent with the design. After writing or retrieving the necessary modules,
they are separately compiled and then bound together. Once bound, the entire system,
referred to as a configuration, can be debugged. Each time an error is corrected, the process

1-1

I

1-2

General tools

of compiling and binding is repeated unLiI the system is free of bugs. After debugging,
modules are stored on file servers, the entire system is tested, and then it is released to the
user community.

For more general information about the X DI': system, see XDF:: Concepts and Principles.

1.1.3 Hardware

The XDE programming environment is desig'ned for a personal computer. It runs on a
powerful microcoded processor with a large virtual address space. The user interface uses a
high-resolution bitmap display, with a keyboard and a pointing device called a mouse.
Secondary storage is provided by a rigid disk and an optional f10ppy disk. The Ethernet, a
local area network, provides a high-bandwidth connection to other personal computers and
to network services, such as print and file servers. (XDE: Concepts and Principles provides
general information about networking concepts used in Xerox products.)

1.1.4 Software components

To illustrate the interaction between the various systems, it is he I pful to en VlSlOn a
hierarchy with Pilot, the operating system kernel, at the lowest level. Above Pilot is Tajo, a
specialized collection of interfaces designed to facilitate the implementation of software
development tools. XDE includes Pilot, Tajo, and a collection of software development tools
which were written using the Tajo interfaces. One of the most critical of these tools is
Sword, the debugger. Although Tajo and the Xerox Development Environment may seem
similar since they both support programming activities, the distinguishing factor is that
the development environment includes programs specific to the Mesa language, whereas
Tajo is language independent.

The Installer is a Mesa program that manages Pilot physical and logical disk volumes.
Since it does not provide any programming facilities, it is not considered part of the
hierarchy. Appendix A describes the Installer.

1.1.4.1 Pilot

Pilot provides Mesa runtime support, including processes, monitors, and synchronization
facilities. Pilot supports a collection of cooperating user-defined processes, some of which
are the tools. Since allocation of major system resources is generally on a cooperative
rather than a competitive basis, Pilot does not contain elaborate resource allocation
functions. Instead, resources and resource management are typically planned statically
when systems are configured. In instances requiring dynamic resource control, such as the
sharing of physical memory, Pilot provides facilities that allow the applications to state
their current requirements. Consistent with the notion of clients as cooperating processes,
Pilot provides only limited protection against malicious programs, thereby shifting the
responsibility of ensuring smooth operation to Pilot clients. The Pilot operating system is
implemented entirely in the Mesa language. (Pilot is discussed briefly in Appendix Band
described in detail in the Pilot Programmer's Manual.)

XDE User's Guide I

1.1.4.2 Tajo

Tajo is a unified set of facilities supporting the implementation and execution of software
development tools. "Using" Tajo can be viewed in two ways; a user is a person who interacts
with 'rajo via the mouse and keyboard; a client is a program that uses the Tajo software
interfaces. Tools are the Client programs that call upon Tajo.

1.1.4.3 Sword

Sword supports source-level debugging. [t allows users to interpret Mesa statements, set
breakpoints, trace program execution, and display the runtime state. Pilot provides the
code necessary for a program to communicate with Sword; it resides with the user program.
Sword can reside in the same address space or logical volume as the client program, or it
can reside in a different memory image (on a separate logical volume) that is loaded when
called for. This protects the client and the debugger from each other. In addition, Sword can
reside on a remote machine, and can debug machines across networks.

There are several ways of invoking Sword, some under programmer control and others not.
Those under programmer control include setting breakpoints and interrupting a program
during execution. These techniques are used when a programmer anticipates some
problems and wishes to halt execution temporarily to examine (and possibly change) the
program state before proceeding. Sword may also be invoked automatically when a
program generates runtime errors, such as address faults or uncaught signals. If the
debugger is invoked because of a runtime error, you can often change the state of the
program by using the appropriate debugger commands and continue executing from the
new program state. However, some errors, such as memory overwrites, cause irreparable
damage. When this happens, you must end the debugging session and re-boot the client.

1.1.4.4 Installer

The Installer is a utility for managing Pilot physical and logical volumes. It is used to
initialize physical and logical volumes, to install boot files on logical volumes, to invoke a
boot file on a particular logical volume, and to scavenge volumes. The Installer can be
booted from the rigid disk, from"the Ethernet, or from a bootable floppy disk. For more
information about the Installer ,see Appendix A.

1.2 Definition of terms

Accelerator

Argument

An accelerator is an easier or faster way of doing a common operation.
Clicking Adjust in the center third of the name stripe, for example, is
an accelerator for sizing a window (rather than bringing up the window
menu and selecting "s i ze").

An argument to a procedure or command is a piece of data upon which
the operation is performed. For example, the argument to a MOVE

command is the video-inverted text to be moved.

I-3

I

1-4

General tools

Chord To chord keys or buttons is to push them down at the same time, as
when chording the mouse buttons.

Clich To clicll a mouse hutton is to press down on it and let it up.

Current selection The curnynl sel(Jction is text, icons, or graphics you have chosen by
using the mOllse (current tool::; do not implement selection of icons or
graphic':)). It is visually highlighted on the screen and is generally used
as the argument to a command.

Cursor

[can

Input Focus

Interface

Menus

lvlouse

The cursor is an icon that tracks the mouse position: moving the mouse
moves the CUI·SOr. The system may change the cursor shape to provide
feedback about what it is doing.

An icon is a small picture on the display representing some entity.

The input focus is the window to which keyboard commands and typed
characters are sent. The input focus contains the type-in point.

An interface is a formal contract between pieces of a system that
describes the services to be provided. A provider of these services is
said to implement the interface; a consumer of them is called a client of
the interface.

A menu is a list of available commands or data chos~n by mouse
selection. :Vlore than one menu may be associated with a tool window or
subwindow or with the unused portion of the display

The mouse is a pointing device that allows you to direct the attention of
the machine to a particular point on the display. A mouse usually has
two buttons, Point and Adjust. (See Point, Adjust.)

Movable boundary A movable boundary is a horizontal line with a small box on its right
end that divides a window into subwindows or splits a text subwindow.
A movable boundary is used to change the relative heights of adjacent
subwindows.

Name frame

Subsystem

Subwindow

Tool

The window name frame is a rectangular region at the top of a window.
It is usually black, with the window's name and other identifying
information displayed in white.

A subsystem is a program that runs in the Xerox Development
Environment Executive window. Some subsystems and tools
accomplish the same task.

A window is often composed of one or more rectangular subwindows.
The Xerox Development Environment provides several standard
subwindow types, each providing different functions. (See Window).

A tool is a Xerox Development Environment applications program. A
tool can run in parallel with other tools, including other instances of
the same tool. Tools react to prompting and seldom carry out operations

XDE User's Guide I

when not in use. A tool usually, but not always, has an associated
window.

Type-in point The type-in poittt is the text location where typed characters are to be
inserted. The type-in point is indicated by a flashing caret or box.

Video-invert To video-invert a region is to cause black areas of the region to become
white and white arcas to become black.

Window 1\ window is a rectangular region of the display in which text and
graphics can be displayed. Most tools communicate via windows.

I.3 User interface

The user interface for tools provides the unifying framework for the development
environment. Tools portray their capabilities through windows and menus. Windows and
menus rely on XDf: features such as text handling and keyboard or mouse commands.

This section describes text manipulation, keyboard commands, symbiotes, windows,
subwindows, and menus. It discusses some important menus and their commands. (The
definition of a particular window or menu is always found in the chapter on the related
tool.)

Window name frame Menus

Move
Grow
Drag
Size
Top
Bottom

1------------------------1 Zoom
Command!

Deactivate
Vani lIa :'--------'

Password:

ReadOnly: Read Only String Cardinal = 0

boolean(trueFalse): {~II:I, FALSE} ~~llq!Ii.:n.I¥!lil)
enumerated(one): {A} enumerated(all}: {X,.

The . in this subwindow is the current
sele

The box at the end f this sentence is the type-in point.

Insertion point

Figure I.1 : User interface

1-5

I

I-6

General tools

1.3.1 Windows and su bwindows

1\ window is a rectangular region of the display screen that offers a view of a potentially
infinite plane. Most tools have one or more windows.

Each window is composed of one or more subwindows. Subwindows are regions of the
window, each with individual characteristics. Subwindows are usually arranged vertically,
with horizontal black lines dividing them. 1\ window allows you to communicate with the
tool to which it belongs and allows a tool to create a representation of a world owned and
managed by that tool. The tool displays text and graphics, some of which may be lying out
of sight.

One tool can create multiple windows, but each window is owned by a single tool. There
may be multiple windows on the screen, and they may overlap and partially or fully
obscure other windows. There may be stacks of windows lying on top of each other, each
with its status and context intact, as if they were pieces of paper lying on a desk.

1\ tool window has three states: active, tiny, and inactive. An active tool window appears
ready for communication. Like a hammer or wrench, an acti ve tool can be picked up, used,
and put down again; it remains exactly as it was left. When an active tool window is made
tiny, it is represented on the display by a small box (an iconic representation) containing
only its name. Making a tool tiny is like putting a tool in a tool belt: it will probably be used
soon, but the tool user wants to get it out of the way for a while. When a tiny tool is
returned to normal size, the contents of its window reappears. When a tool is made
inactive, any information it keeps while active or tiny is discarded. When the tool window
is subsequently activated, it appears as if it had just been created. Making a tool inacti ve is
similar to cleaning off a wrench and placing it into the tool box. It will probably not be used
for a while, and the tool user wants to make room for other tools.

An exception to this general behavior of windows is the root window. You can think of it as
a window the size of your display screen that lies at the bottom of any stack of windows.
The root window can never be at the "top" of the stack of menus on your screen, or all the
rest would be covered! Certain menus are attached to the root window as to any other
window: the Exec Ops menu, the Inactive menu, and the Symbiote menu. (See the section
on menus below for more specific information about these menus.)

1.3.1.1 Communicating via subwilndows

A tool accepts input via the keyboard and mouse buttons. Each subwindow may have
different interface characteristics, and the meaning of the keyboard keys and mouse
buttons may change when they are accepted by a different subwindow.

In general, all keystrokes are sent to the subwindow that has the input focus. The following
keystrokes are exceptions: they are sent to the subwindow that contains the cursor: MENU.

FIND. J.FIRST. ABORT, and the mouse buttons (Point and Adjust). If no window has the input
focus, the screen blinks when keys are pressed. If the tool is busy when keystrokes are sent
to it, the system queues the keystrokes and delivers them to the tool as soon as it is ready to
accept input.

A subwindow keeps the input focus unless it is deactivated or the input focus is explicitly
moved to a different window. For instance, it keeps the input focus if it has been made tiny
or if it is completely obscured by other windows. You can set the input focus by depressing

XD~: User's Guide I

one of the mouse buttons in the subwindow you would like to take the input focus. If the
subwindow is unwilling to accept the input focus, the screen will blink.

If you set the input focus by pressing the Point button, the type-in point is set to the
location under the mouse button (except in TTY windows, which insist that the type-in
point always be at the end of the text), If you set the input focus by pressing the Adjust
button, the type-in point is the last location that was the type-in point in the subwindow.
Thus the Adjust button can be used to recover the type-in point in a subwindow after it has
lost the input focus. While MOVE or COpy is depressed, using the mouse buttons wi II not
change the input focus. If a subwindow does not want type-in itself, it may redirect it to
another subwindow.

1.3.1.2 Scrolling

Scrollbar

Translucent gray region

Cursor

Dark gray region

: Command!

: Password:

! ReadOnly: Read Only String

: boolean{trueFalse}: {TRUE, FALSE}

j enumerated{one): {A} enum

text

Figure I.2: Scrollbar

A sub window may contain more information than can be displayed on the screen at one
time. The development environment provides scroll bars (Figure 1.2) to facilitate access to
information lying out of view. Vertical scrollbars are long thin rectangles near the left
border of sub windows. Some subwindows have horizontal scrollbars near the bottom border
of a subwindow.

When the cursor is not in the scrollbar region, the scrollbar is a narrow transparent strip
bordered by a gray stripe. When the cursor is in the scrollbar region, the scrollbar looks
like a translucent gray region with a dark gray region within it (much like a
thermometer). The transparent gray region represents' the entire length of the contents of
the subwindow. The dark gray region represents the text currently displayed; its size and
position correspond to the position of the displayed text in the file.

When the cursor is in the scrollbar region, it changes to a double-headed arrow and the
meaning of the mouse buttons change: they now direct the scrolling operation. The cursor
changes again when one of the buttons is depressed~ Point scrolls up and Adjust scrolls

1-7

I

1-8

Genet-al tools

down. Pressing both keys together (a "chord") is used for thumbing. Thumbing is analogous
to opening a book by placing your thumb at the approximate position of the section you
want to start reading and pulling the book open at that point. Releasing the chord while
the cursor is positioned in the scrollbar invokes the scrolling operation; releasing the chord
while the cursor is outside the scrollbar aborts scrolling.

1.3.1.3 Adjusting boundaries

You can change the movab le boundaries of a subwindow by pressing Point while the cursor
is positioned over the small box at the right end of the black boundary line, moving the
cursor to the desired position, and releasing Point. Subwindows adjusted this way cannot be
smaller than the height of the font being used.

Figure 1.3 illustrates a stack of three windows belonging to two lools and the Executive.
The Profile Tool is in tiny form in the upper right of the display.

~ Command! Vanilla:

: Password:

~ ReadOnly: Read Only String Cardinal = 0

: boolean(trueFalse): {~BII, FALSE} l:§9.,iJ.i@:f:lf.¥~§@w.)
~ enumerated(one): {A} enumerated(all): {X,· I Z}

Executive
window

~Iessage
subwindow

Form
subwindow

Subwindow
t-~--------------------------=---rH-r boundary

Figure L 3: Windows

1.3.1.4 Subwindow types

File
subwindow

Subwindow
split

The two most important subwindow types for most purposes in XDE are form subwindows
and text subwindows. They are described in the next sections.

1.3.1.4.1 Form subwindows

Form subwindows, which belong to specific tools, have two primary uses: First, they are
used to display and alter the current values of the internal state of tool-specific data.
Current values can be altered at any time in any order. Second, most form subwindows are

XDIi~ User's Guide I

eq\}ipped with tool-specific command form items that act as accelerators for menu
command::;. A form subwindow is illustrated in Figure 1.4.

: Command!

~ Password:

: ReadOnly: Read Only String

: boolean(trueFalse): {TRUE, FALSE}

: enumerated(one): {A} enum

~ text

Figure 1.4: Form subwindow

Tools normally display the arguments, and a single command in vokes them. When an
operation requires several arguments, they must be specified before invoking the
operation. (Specific form subwindows are described in later chapters with the tools that
own them.)

A form can have a variety of types of fields:

A command item performs the same function as a menu command. Command items
are distinguished from other items by the ! appended to them. You can activate a
command item by positioning the cursor over the keyword and depressing Poi nt.
Releasing Point over the keyword after the keyword is video-inverted invokes the
operation. Releasing Point when the cursor is no longer positioned over the keyword
cancels selecting that command.

An enumerated item is one of a lists of text items. These items may be displayed in
two ways: keyword: {a, b, c, ••• } or keyword: {a}. In either cases, choosing
may be done via menu prompts (see below). In the first form, a choice in the list may
also be chosen by positioning the cursor over it and clicking Point. The highlighted
item is the current value. In the latter form, only the currently active enumerated­
list element is displayed.

A boolean item is a form item that takes on the two values TRUE or FALSE. The feedback
is a display of the keyword with the Boolean state video-inverted. The video­
inverted Boolean means TRUE.

1-9

I

1-10

General tools

1\ text item is a display string that you may modify using the editing functions (see
the section in this chapter on Text manipulation). A text item is distinguished from
other form items by the": "(note the space after the colon) appended to a text form
item keyword. Several accelerators are available for text form items. Clicking Point

over the keyword selects all of the text in the i'ormitem and moves the. type-in point
to the end of the text. For example, clicking Point over Password: in the Protlle
Tool causes the type-in point to be positioned after the colon, ready for you to type in
your password. Generally, clicking the Adjust button over the keyword deletes the
text and sets the type-in point.

Fine point: Wlwl1 a pussv,:ord is f.'l1tl'red. an a::;lerisk is displayed for each character typed.

1\ numeric item is like a text form item, except that only strings representing
numbers may be moditled. A numeric item is distinguished from other form items by
the ": "(note the spaee after the equal sign) appended to the keyword.

1\ tag items is a text string used to annotate a form. A tag item labels something thst
appears either elsewhere on the screen or entirely off the screen.

Nlenu prompts are always available for enumerated form fields and are optional in
some textual form tlelds. When you chord the mouse buttons with the cursor over
the keyword for an enumerated field, a menu of allowed values for the form item is
displayed. Choosing one of the values from the menu sets the form item to that
value. Similarly, when you chord with the cursor over the keyword for a textual
field, a menu of character strings is isplayed. Choosing one of the items (strings)
from the menu will cause the menu string to be appended at the current position of
the type-in point.

Specific form items are des(:ribed in later chapters with the tools to which they belong.

1.3.1.4.2 Text subwindows

Most text display, other than in form subwindows, occurs within text subwindows. Text
sub windows may be associated with a file that contains the text. A TextOps menu is
supplied with a text subwindow. The Text Ops menu contains commands specific to text
manipulation (see next section).

1.3.2 Text manipulation

Text may be entered, edited, moved, and deleted in certain subwindows, which are
appropriately called text subwindows. Selections may also be moved between subwindows.

1.3.2.1 Selecting text

The concept of a current se)ection is global. There is only one current selection at any time
(not on~ per window); it is generally used as the argument to commands.

Fine point: Although a current selection is always video-inverted, not all video-inverted entities are considered

current selections (such as when a menu command is invoked>.

XDE User's Guide I

You select text by clicking Point within the selection. If you click Point in the same place
several times within a brief period (within roughly a second), successive units of text are
selected: clicking once selects a character, twice selectH a word, three times a line, four
times the whole body of text, and five times back to a single character. You can extend a
selection to the left or right either by holding down Adjust while moving the mouse or by
pointing to where the end point is to appear and pressing and releasing Adjust. The
selection is extended in the same units used to make the original selection: a character
selection is extended by characters, a word selection by words, and so on. A selection is
extended by characters if you start over the first or last character of the selection and move
the mouse while pressing Adjust. You can contract selections as well as expand them by
using Adjust. [I' you Adjust to a place within the current selection, the seleclion shrinks by
the units of the selection. Ilowever, if you begin the adjust action over either the lirst or
last character of the selection, character mode is used instead. There will al ways be at least
one unit left in any selection after contracting.

1.3.2.2 Entering text

Any characters typed into the window are inserted before the current type-in point. You
can set the type-in point by moving the cursor to the desired place and clicking Point. The
type-in point will be set as close as possible to the cursor's position. For example, when you
select a single character, the type-in point precedes the character if you select the left half
of the character and follows the character if you selected its right half. (Setting the
Balance Beam in the use r . cm file, described below, changes the positioning of the type­
in point relative to the selection.)

The type-in point can also be set by holding down the CONTROL key and clicking the Point
button over the desired location. This is useful with the STUFF command (see the section on
Keyboard functions).

1.3.2.3 Deleting text

Text may be deleted by selecting it and pressing the DELETE key. Many tools place such
deleted text into a global "trash bin." The B~ (backspace) and BW (backword) keys delete
text to the left of the current type-in point. Text deleted this way is not entered into the
trash bin. The BW key deletes any white space or punctuation between the type-in point
and the closest preceding word (alphanumeric string) and then deletes the word itself.

1.3.2.4 Current selection and trash bin

The trash bin is a conceptual container of the most recently deleted selection. In a
subwindow that supports editing, the current selection may be deleted and d~posited in the
trash bin, where it is held for potential retrieval and placement. This allows text to be
either moved from one position to another within a window or sent to subwindows other
than the point of origin.

Any of the following steps copies text from one place in a window to another:

• Select the text, move the type-in point with CONTROL-Point, and press the STUFF key.

1-11

I

1-12

General tools

• Select the text, press DELETE, PASTE to move a copy into the trash bin, put the selection
back where it was, move the selection to the desired location, and press PASTE.

• Set the type-in point to the desired target location, hold down COPY, select the text to be
copied, and release COpy when finished selecting text.

1.3.3 Melllus

/\ menu is a set of options or commands associated with a window or subwindow. :\lost
windows have multiple menus. When the menus associated with a subwindow are
displayed, the menus associated with its tool window are also displayed.

A menu contains either commands or data items. A menu command often takes the current
selection as its argument. Sometimes, as with Window :Vlanager commands, the semantics
of the command implies its argument.

1.3.3.1 Invoking menus

In Figure 1.5, the Window Manager menu is shown on top of the TextOps and File Window
menus. This grouping of menus would probably be associated with a file window or text
subwindow. Each type of window has specific types of menus associated with it. These
menus are used to give commands to the process that owns the window.

Move
Grow
Drag
Size
Top
Bottom
Zoom
Deactivate

Figure 1.5: Menus

Menus are invoked either by chording the mouse buttons or by pressing the MENU key (in
the explanations below, the term "chording" will also stand for using the MENU key).
Available menus appear in the vicinity of the cursor whenever (and as long as) you are
,chording. The position of the cursor determines which menus are available. If the cursor is
in a subwindow, the menus associated with that subwindow and the menus associated with
the tool to which the subwindow belongs are available. Some menus are available when the
eursor is in any portion of the screen not covered by any window.

1.3.3.1.1 Choosing a menu

There are usually at least two menus for a window: the Window Manager menu (explained
below), whose commands modify the window rectangle, and a menu that lists the

XDE User"s Guide I

commands available for that tool. More menus are possibl~; subsequent menus underlie
the others.

You can choose menus from the stack by positioning the cursor over the visible portion of
the desired menu (the menu name frame) and chording again. When you chord again, the
chosen menu appears on top of the others. Alternatively, as an accelerator, you may click
Point over the title of the desired menu while continuing to hold down Adjust. The chosen
menu immediately appears on top of the stack.

£.3.3.1.2 Invoking a command

Once a menu is displayed, choosing a menu item requires you to position the cursor over
the list until it rests over the desired item, while you continue to chord. The selected menu
item is video-inverted; when you release the chord, the command is invoked. If you release
the chord when the cursor is not over a menu, the displayed menu disappears.

A quick method (called an accelerator), is to click Point over the desired menu item while
continuing to hold down the Adjust key. The command is invoked; after it is executed the
menu usually reappears.

Fine point: A menu does not reappear (1) if it is destroyed by the command invocation (such as by activating the

only file in the Inactive menu), (2) if the source from which the command was invoked is no longer visible (as when

invoking Bo t tom sends a window to the bottom of a stack, where it is completely obscured from view), or (3) if

the window is tiny.

1.3.3.1.3 Confirming or aborting a command

Some menu commands require you to confirm or abort a command. In these cases the
cursor changes to a tiny picture of a mouse with Point highlighted; this informs you that
clicking Point will confirm the command. Clicking Adjust aborts a command.

1.3.3.2 Specific menus

There are several generally important menus: the Window Manager menu, the Inactive
menu, the TextOps menu, and the Symbiotes menu.

I.3.3.2.1 Window Manager menu and accelerators

All tool windows allow you to manipulate window size, location, and state by using
commands found in the Window Manager menu. For example, a window may be made to
cover the entire available display space, change position, become smaller, turn into its
iconic form, or disappear from the screen. The commands available in the Window
Manager menu are:

Move allows the window to be moved around the display area but does not
change its size. When you invoke this command, the cursor changes into
the shape of a corner bracket. As you move the cursor from one corner of
the display area to another, .it changes shape to indicate which corner of
the window the operation will affect. When you position the cursor over

1-13

I

1-14

Genet"al tools

Grow

Draq

Size

Top

:Bottom

Zoom

Deactivate

the desired location and click Point, the window moves to the area that
beg'ins in that corner.

allows you to pull a corner of the window in any direction, growing or
shrinking the window along its width or height. This command acquires
position information in the same way as Move.

allows you to elongate a window by pulling an edge of the window in any
direction; it also requires position information.

turns the window from a normal size into its tiny form, usually a small
iconic rectangle showing an abbreviation of the window's name. If the
window is already tiny, invoking Size changes it back to its normal size.

displays the window on top of all the other windows in its stack.

places the window at the bottom of all the windows in its stack.

causes the window to grow, taking up all available display space and
appearing on top of all other windows. Clicking Zoom again puts the
window back to its previous size.

causes the tool window, and all other windows associated with a tool, to be
removed from the display and become inactive. An abbreviation of the
window's name is entered in the Inactive menu; the tool is re-activated by
choosing the window name on the Inactive menu.

Window Manager operations may also be invoked more quickly by positioning the cursor
in the left, middle, or right regions of the window name frame (or in the top half of a tiny
window) and clicking one of the mouse buttons. The region of the window name frame in
which the cursor is positioned video-inverts to provide feedback. The name-frame
operations are:

Mouse Button

IPoint
Adjust

Left Region

Top/Bottom
Move

Middle Region

Zoom
Size

Right Region

Top/Bottom
Move

The operations available are as described above, with the exception of Top/Bo t tom.
Top/Bo t tom specifies that if the window is not on top, move it to the top. If it is already on
top, move it to the bottom. Pressing Adjust in the left or right portion of the name stripe
brings up the Move cursor. Clicking Point while Adjust is still down cycles the cursor
through the three shapes (!4ove, Grow, and Drag.)

These name-frame operations are also available on the upper half of a tiny window. In
some tools, menu commands are available in the lower half of the window even when it is
tiny.

X()~: User's Guide I

1.3.:1.2.2 Inactive menu

The Inactive menu contains a list of the tools that have been installed but are currently
inactive. The Inactive menu is available in any part of the screen not covered by a window.

1.3.3.2.3 Text Ops menu

A text subwindow generally has a Text Ops menu that provides commands for
manipulating text placement:

Find

Split

position

J. First

J. Insert

J. Select

J. Last

Wrap

Gnds the next occurrence of the current selection in the subwindow. If the
current selection is in the subwindow, the search begins at the end of the
selection; otherwise, it begins at the first character visible in the
subwindow. If the search is successful, the next occurrence of the text
becomes the new selection. The search continues into text not visible on
the screen; if the selection is found past the text displayed, the text is
scrolled to the top of the split region. If no further instances of the text are
found, the display blinks.

If the SHIFT key is down, FINO works backward from the current selection, if
any, or from the last character visible in the window.

divides a region of the subwindow into two subregions separated by a
dashed line, with a small box at the right end of the line. This line can be
moved by depressing Point over the small box, moving the cursor, and
releasing the button. The subregions can be scrolled independently from
each other. To remove the line, move it off the top or bottom of a region.

positions the text in the subwindow so that the character specified by the
current selection, which must be a positive number, is at the top. For
example, if you select 275 and invoke Pas i t ion, the 275th character in
the text is scrolled to the top of the subwindow.

positions text in a window so that the first line of text is at the top of the
window.

positions the text in the subwindow so that the typ~-in point is at the top.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

positions text in a window so that the last line of text is at the top of the
window.

reverses the current state of line wraparound in all the subwindows.
When wrapping is on, a line that has not been terminated by a carriage
return by the time it reaches the right edge of a subwindow is continued
onto the next line. When wrapping is off, the same line disappears off the
right edge of the subwindow.

1-15

I

I-16

General tools

1.;1.:1.2.4 Symhiotes and the Symbiote menu

A symbiote provides extra functionality for a tool window without requiring changes to the
code of the tool 01' to Tajo itself. Using the Symhiote menu on the root window, you can
attach a symbiote to any text window (Figure I.G). Symhiotes appear as suhwi·ndows that
you can add to an existing tool dynamically, without disturbing its current processes or
facilities. Symbiotes can be attached to any text or Corm window or subwindow.

In particular, the XDE provides a symbiote that adds editing capahilities to any text or
form subwindow. (See the Editor Symbiote chapter for details.)

: Create Edit Find Load Position Reset Save Split Store Time Wrap

: RF! Find! ~: Replace! all! ~:

Figure 1.6: Text window

The following commands are in the Symbiote menu, which is available in any part of the
screen not covered by a window.

Attach Menu

Detach Menu

Attach Edit

IDetach Edi t

adds a one-line menu symbiote above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the menu symbiote above a host subwindow after you have
selected that symbiote with the cursor and pressed the Point mouse
button to confirm the choice.

Adds a one-line editor form above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the editor form from above that host subwindow after you
have sl~lected that symbiote with the cursor and pressed the Point
mouse button to confirm the choice.

XDE User"'s Guide I

User.em causes the system to reprocess the [FileWindow] section of the
User. em file to determine the default symbiote values.

[,3.4 Keyboard commands

The keyboard is made up of alphanumeric keys, special symbol keys, and special function
keys. The function keys are referred to in this document by the names of their XDE
functions, not their keycap names. The keycap name is also given below if it differs from
the keyboard function namc. The layout of the keyboard and the mapping [rom their
keyboard names to their interface functions is shown in Figure 1. 7 (next pagc l.

1-17

MENU

COMP- ! @

LETE 1 2

TAB Q

eservec

LOCK A

SHIFT

AGAIN
REPLAce

DELETE

FIND COpy

PASTE MOVE

STUFF CONTROL

Left function group

XOE Keyhoard Mapping for the 8010

SCROLL- J.INSERT J.LAST
client1 client2 DEFAULTS reserved

BA'R J.FIRST J.SELECT

$ % - & .,
3 4 5 6 7 8

W E R ,- y U
move expand replace define undo

S D F G H J

stuff delete find ~.select

Z X C V B N

doit copy paste next

SPACE

COMMAND +

C ":> COpy

D

E

F

I

J

K

N

Q

R

S

T

U

=>

=:>

;:>

=>

=:>

=>

"':>

,,>

=>

=>

=>

"'>

DELETE

EXPAND

FIND

SCREEN INVERT

J.SELECT

NEXT-DEL

NEXT

RESERVED

REPLACE

STUFF

DEFINE

UNDO

() + BW

9 0 - = BS

I 0 P
()

RET
invert [1

K L :
..

f

rext-de ...

M < > ? SHIFT
/

NEXT HELP

UNDO
NEXT-
DEL DOlT

DEF'N I CALL , DEBUG

~OMMAND
ABORT

EXP'D

V => PASTE Right function group

W

X

1

5

9

ABORT

COMPLETE

,,>

=>

=>

=>

=>

=>

=>

MOVE

DOlT

J.FIRST

J.INSERT

J.LAST

CLEAR USER ACTION BUFFER (ASYNCHRONOUS)

AGAIN

Keyboard configuration using Level IV hardware

Double inscription on function keys Indicates use of Shift (i,e" SHIFT + BS = > BW)

client 1,2 reserved for client definition

r:lr:l
Ul:J

Mouse buttons

f
+-

LOCK

SHIFT

XOE Keyboard Mapping for the 6085

DOlT

DEFINE
EXPAND

Left Function Group Some Alternative Commands: Right Function Group

DeBUG REPLACE
ABORT DELETE

UNDO AGAIN

FIND COpy

PASTE MOVE

STUFF CONTROL

Mouse Buttons

BB

COMMAND +

C = > COpy

0

E

F

K

N

Q

R

S

T

U

V

W

X

1

5

9

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

DELETE

EXPAND

FIND

SCREEN INVERT

J.SELECT

NEXT-DEL

NEXT

RESERVED

REPLACE

STUFF

DEFINE

UNDO

PASTE

MOVE

DOlT

J.FIRST

J.INSERT

J.LAST

+

CLEAR

NEXTZZ

NEXT-Z
DEL

0

ABORT => CLEAR USER ACTION BUFFER (ASYNCHRONOUS)

These commands work in text subwindows:
COMMAND +

L = > Converts current selection to LOWER CASE

SHIFT L = > Converts current selection to UPPER CASE

< = > Brackets current selection with < >
[= > Brackets current selection with []

{ = > Brackets current selection with { }

(= > Brackets current selection with ()

CONTROL +

< = > Left "field" delimiter «()

> = > Right "field" delimiter (»)

-

7

4

1

Double inscription on function keys indicates use of SHIFT (i.e. SHIFT + BS = > BW)

client1 reserved for client definition

X

8 9

5 6

2 3

I

1-20

General Tools

1.3.4.1 Keyboard functions

The keyboard functions are:

J~BORT

AGAIN

CAll DEBUG

COMMAND

COMPLETE

CONTROL

COpy

DEFINITION

DelETE

DOlT

EXPAND

HelP

sets an abort "flag" in the window containing the cursor. A running tool
checks periodically to see whether an abort flag has been set. If it has, the
tool aborts itself. If you press ABORT a second time before the flag in a
window is reset (i.e., turned orD, a global abort flag is set and all tools
abort. The window's abort flag is reset when anything is typed into the
window except SHIFT or ABORT. The global abort flag is reset whenever the
abort nag is reset in any window.

replaces the selection with the last text that was typed or stuffed.

(SHIFT-ABOIH) calls the debugger. If both shift keys are held down when
invoking ilt, a panic call is made to the debugger. Panic calls should only
be made in dire emergency, since calling procedures out of the debugger
interpreter may not work.

is a shift key used with other keys to invoke various functions.

treats the token to the left of the type-in point as the beginning of a file
name and attempts to complete the name. This function is currently
implemented only by the Executive.

is a shift key used with other keys. Used with Point, it moves the type-in
point without changing the current selection.

clears the current selection and maintains the type-in point while the key
is held down, thus allowing a new selection to be made. When the key is
released, that new selection is stuffed into the window at the type-in
point.

(SHIFT-EXPAND) puts the current selection into the expansion field of the
Dictionary Tool. (See the Dictionary Tool chapter.)

deletes the selected text, replacing the contents of the trash bin with the
deleted text.

is a client-specific function. In a file window, it causes the window to be
loaded from the token in the window, using the token as a file name. (If
there is no such file, it tries to append each of the extensions • me 5 a,
. conf ig" and. em until it finds a match.)

replaces the alphanumeric token to the left of the type-in point by its
expansion, as defined by the current dictionary (see the Dictionary Tool
chapter).

invokes the subwindow Help function, if there is one.

XDE User-'s Guide I

FIND

J.FIRST

J.lNSERT

J.LAST

J.SELECT

MENU

MOVE

NEXT

NEXT-Del

PASTE

REPLACE

STUFF

UNDO

1.3.4.2 Global functions

finds the current selection in the window containing the cursor. SHIFT-FIND

looks backward, either from the current selection, if the current selection
is in that window, or from the bottom of the window, otherwise.

positions the text in a subwindow so that its first line at the top of the
subwindow.

(SHIFT-SELECT) positions the text in the subwindow so that the type-in point
is at the top.

(SHIFT-J.FIRST) positions the text in a subwindow so that its last line is at the
top of the subwindow.

positions the text in the subwindow so that the line containing the
leftmosLcharacter of the current selection is at the top.

brings up the menus in the subwindow containing the cursor: it 15 the
same as chording the mouse buttons.

is like COPY, except that the selection is deleted after it has been stuffed
into the window containing the input focus.

advances the cursor either to the next field in a form subwindow or to the
next bracketed field in a text subwindow, setting the type-in point to that
field.

like NEXT, only it deletes the contents of the field before setting the type-in
point.

takes the contents of the trash bin and inserts it at the type-in point. It is
like STUFF, only it operates on the contents of the trash bin.

(SHIFT-DELETE) is like DELETE, but it changes the type-in point to the point
from which the text was deleted.

takes the current selection and copies it to the type-in point of the
subwindow that is currently taking type-in. If no window conains the
input focus, this action fails and the display blinks.

swaps the selection with the trash bin.

Various keys invoke functions that affect the development environment globally or affect
the tool that is in the process of performing a user-initiated action. These functions are
a vailable regardless of where the cursor is positioned:

COMMAND-ABORT causes the development environment to forget all buffered user
actions that have not yet been processed, such as type-ahead.

I 21

I General Tools

CONTROL - STOP creates a new notifier, freeing a machine that has "hung" with an
hourglass cursor.

These commands work only in text subwindows:

COMMAND-L

COMMAND-<

COMMAND-[

COMMAND-{

COMMAND-(

COMMAND-"

COMMAND--

sets the case of the characters in the cu'rrent selection to upper case if
the SHIFT key is down, or to lower case if it is up.

brackets the selection on the left by < and on the right by >.

brackets the selection on the left by [and on the right with I.

brackl~ts the selection on the left by {and on the right with }.

brackets the selection on the left by (and on the right with).

_ surrounds the selection with quotes.

surrounds the selection by the "--" comment delimiter.

1.4 The user command file

1-22

The user command file, U:ser. em, is a file on the current volume used to set defaults for a
user. Many subsytems and tools pick up the information from the User. em file to initialize
various options, such as font information, window placement and size, and where to send
:tiles to be printed. Some User. em values are used at user login; others when a tool is
activated.

To create a User. em file for yourself, retrieve SampleUser. em from Doe>, edit it to
contain such information as your name and domain by replacing the fields all currently
delimited by angle brackets, and rename it to be User. em.

1.4.1 Format of the user command file

A User. em section consists of a section title in brackets, followed by a carriage return, and
the entries for that section. Each entry is on a separate line. Entries consist of Name:
followed by the value. Any line that begins with -- is ignored.(Here, as in several other
types of files, text preceded by -- is treated as comments and not processed,)

It is possible to have volUJpe-specific entries for the values in a section when, for example,
you need different defaults in different volumes to determine which tools get loaded at
initialization time. This is specified by putting [Volume: SectionName] as a title. The
section entries in the volume-specific sections override those of the generic sections when
the volumes are booted.

Note: There are no spaces before or after the colon in a section title name, but all entries
must have a value after the colon.

In the example below, [F:Llewindow] is the generic section title. The menu line in the
FileWindow section in the CoPilot volume has Break in the menu line, but it is not needed
in the Tajo volume.

XDE User's Guide

[FileWindow]
SymbioteSetUp: Always Menu Edit

[CoPilot:FileWindo~]

Menu: Break Edit Load Reset

[Tajo:FileWindow]
Menu: Edit Load Reset

I

The development environment processes the [System], [Librarian], and
[F i leWi ndow] sections of the Use r . em at start-up time: all other sections are processed
when the corresponding tool is run. You should ensure that your User. em file, as well as
any files needed in the processing of these sections, are in your top-leve I directory, since the
initial search path may not be set while these sections are processed. This is most likely to
be a problem when processing the Ini t ialCommand: entry.

Below are examples of [System] entries. You can edit many of these values with the
Profile tool while the system is running (see the Profile Tool chapter).

User: CSmythe

This is your user name.

Domain: Bayhill

This is the default domain section of your clearinghouse name, used in authenticating
who you are, for accessing network services like printing.

Organization: Xerox

This is the default organization section of your clearinghouse name, similar to the
default domain section.

InitialCommand: Run.- Editor.bed

This is ~n executive command line to be executed as part of the boot sequence. You
cannot have any carriage returns in the command line. The log file for this command is
Initial.log. Feedback will appear in the Herald window as a result of executing
commands in this line. Multiple tool names are separated by semi-colons.

Font: LaurelFont.str~ke

A font is built in; provide this entry only if you want to override the default.

MenuFont: Helvetiea7.strike

This is the font used for menus; a default font is built in.

Debug: FALSE

[-23

I

I-24

Genel"al Tools

This sets the debugging variable for the system. The default value is FALSE. Certain
bugs call the debugger if this is· TRUE. Otherwise, the system ignores the error and
attempts to work around it.

Screen: White

This determines the background color of the display. The default is Whi te: Black lS

the alternative.

SwapControlAndCommand: FALSE

This swaps the functions of the control and the command keys, which is especially
useful on a microswitch keyboard because the command key is awkward to use.

SearchPath: <Tajo>'remp <Tajo>

This is the intitial value of the file system sea..rch path.

BalanceBeam: Always

This sets the value of the variable that controls positioning of the type-in point relati ve
to a selection. It has three possible values:

Always:

Never:

NotForCharacter:

the type-in point is as close as possible to the cursor position.

the type-in point is at the end of the selection.

the type-in point is after a single character selection, but it
will be as close as possible to the cursor posisiton for
multiple character selections.

FileWindow: [x: 512, y: 30, w: 512, h: 439] [x: 900, y: 778] Calendar/t

An arbitrary number of File Window entries is permitted in the System section. Each
specifies a file window to· be created. The first set of bracketed values indicates the
position of the window when it is active. x and yare the horizontal and vertical
bitscreen coordinates of the upper-left corner of the window. wand h are the width and
height of the window in bitscreen coordinates. Any or all of these fields may be omitted,
in which case they have the following default values: [x: 0, y: 0, w: 512, h: 400]. The
second set ofbracketecl values indicates the position of window when it is tiny. x and y
are the horizontal and vertical bitscreen coordiniJ,tes of the upper-left corner of the
window. Any or all of these fields may be omitted, in which case they have the
following default values: [x: 0, y: 0]. The next item in the line, which is optional, is the
name of the file to be loaded into the window. If there is a switch on the file name, it
specifies the initial state of the window (a for active, t for tiny, and i for inactive). You
must always specify the active box and tiny box position, even if they are defaulted, by
specifying [].

XDE User's Guide I

1.5 Documentation roadmap

This section describes how the XDE documentation is structured and where to look to find
information about a particular suhject. The documentation for this system, written for
system developers who are familiar with the Mesa programming language, consists of five
separate manuals: XDE: Concppts and Principles, the XDE User's Guicip, the ,WesCl

[.language Manual, the Pilot Programmed; Manual, and the Mesa Programmpr:c; :Wanual.
This manual, the XDE User:c; Guide, descrihes the tools that make up the programming
environment. [ts introductory chapters contain general information on getting started and
how to use the environment. The Mpsa Language LWanllaL is a reference manual for the
programming language. The Pilot Programmer:c; iWanual and the iWesa Program mer's
Manual are reference manuals that describe Pilot and Mesa client interfaces. The Pilot
Programmed; Manual describes operating system facilities, while the A1esa Pro.gram mer:.,
Manual documents the software interfaces that implement user-interface functions.

1.5.1 XD E: Concepts and Principles

The XDE Concepts and Principles guide introduces the Xerox Development Environment.
rt describes the organization of the system broadly, focusing on the metaphors and theories
the developers had in mind when they built the system. It discusses each of the parts of the
system and explains their interaction.

1.5.2 The XDE Usel"s Guide

If the development environment is new to you, read the XnE Concepts and Facilities
manual. Along with this introductory chapter of the XDE User's Guide, it tells you how to
get started, gives information about programming in the development environment, and
describes the user interface.

Most of the remaining chapters of the XDE User's Guide (this document) describe the tools,
which are utility programs that run in the development environment. The tools are
grouped according to their function. Each one is described in a separate chapter containing
information about the user interface for the tool, examples of how to use it, an explanation
of error messages, and background information necessary to understand how the tool
operates. This XnE User's Guide is best used to develop the "hands-on" knowledge you
need for accomplishing programming tasks. It is also a reference manual for using tools.

1.5.3 Mesa Language Manual

The Mesa Language Manual is a reference manual defining the Mesa programming
language. It explains how to use the Mesa language, with examples, and describes the
grammar that defines Mesa.

1.5.4 Pilot Programmer's Manual

The Pilot Programmer's Manual is intended for designers and implementors of client
programs of Pilot. It describes the external structure and interfaces of Pilot, the operating
system, and the. other packages released with it, providing sufficient information for
programmers to understand the facilities available and to write procedure calls in the
.Mesa language to invoke them. Similar to the Mesa Programmer's Manual, the Pilot

1-25

I General Tools

Programmer~'i Alanllal documents procedures, parameters, results, data types, and signals
for each Pilot software interface.

1.5.5 Mesa Programmer·'s Manual

The Mesa Programmer~'i Manual describes the collection of interfaces that provide a
framework and runtime system for writing Mesa programs in the development
environment. ~'or each interface, the Mesa Programmer ~') Manual lists all procedure
names, parameters, results, arguments, data types, and signals. The interfaces
documented in the Mesa Programmer's Manual implement and support the window­
oriented user interface available for use in tool writing.

1.5.6 Appendices

Appendix A of this document describes the Installer. Appendix B describes procedures for
getting started in the Xerox Development [·:nvironment.

In the Mesa Programmer',; flrfanual, Appendix A discusses the Example Tool, a tool that
helps you learn about tools. Appendix B contains information about interfaces.

I.6 Typographical conventions

The typographical convent.ions in this document are as follows:

Keycap and mouse button names are MODERN 8 BOLO CAPS.

Commands are Ti tan 10 bold; file names, menu items, and switches are Titan 10.

Interaction with the system is represented in Ti tan 10. When an example is given, what
you are required to type is underlined (with the exception of the special symbol for the
carriage return key). A iii indicates that you should press the carriage return key.

1.7 Other features, other tools

1-26

Some of the other useful features of the Xerox Development Environment are within the
General tools described in the rest of the chapters in this section. These tools affect
processes system-wide, so they can help you to work more efficiently in many situations.

1.1 Files

1

DMT

DMT is a tool whose purpose is to keep the phosphor on the display screen from wearing
out. It should be run whenever you leave your workstation unattended.

Retrieve DMT. bed from the Release directory.

1.2 User interface

DMT is activated when you type DMT to the Executive. DMT then puts a solid black
window on top of all of the existing windows. Embedded in this black window is a small
white moving rectangle that shows the current date and time. Making DMT active does
not affect any other processing already in progress; it merely covers up the display screen.

IfDMT is running and you wish to resume work, you can deactivate it by pressing ABORT or
by using the Deactivate or Size commands in the Window Manager menu.

DMT fails to achieve its purpose if your display is white-on-black; when run, it will display
a solid white window covering the screen. Change it to black by pressing the COMMAND-I

keys.

1-1

1 DMT

1-2

2.1 Files

2

Dictionary Tool

The Dictionary Tool allows you to expand abbreviations according to a user-defined
dictionary, called the Edit Dictionary, and to add abbreviation-expansion pairs to the
dictionary.

The Dictionary Tool is built in; no additional files are needed. The default name for the
Edit Dictionary on your system is defaul t. d ic t.

2.2 User interface

The Dictionary Tool implements the EXPAND and DEFINITION function keys in text and form
subwindows. (See the section on keyboard functions in the User Environment chapter for
descriptions of the EXPAND and DEFINITION keys.)

The EXPAND function treats the word to the left of the insertion point as an abbreviation
and looks it up in the dictionary, ignoring case. If an entry is found, the abbreviation is
replaced by the definition. If the definition contains fields, the field is selected. The
abbreviation may be a unique prefix of the abbreviation-expansion pair.

The DEFINITION function invokes the Dictionary Tool. If the Dictionary Tool is already
active, it deactivates it.

2.3 Dictionary Tool

The Edit Dictionary is maintained by the Dictionary Tool. It contains one or more files,
each of which is a list of abbreviation-expansion pairs. The Dictionary Tool is invoked by
the DEFINITION key or by standard window manager methods.

The Dictionary Tool interacts through a message subwindow, a.form subwindow., and a log
subwindow. The message subwindow is used to post error messages. The form sub window
is used to invoke commands and provide parameters. The log subwindow is used to record
the results of commands.

2-1

2 Dictionary Tool

The Dictionary Tool maintains its dictionary in memory in a format that allows fast
lookup of expansion strings, given the abbreviation. There is no limit to the number of
entries in this dictionary. The dictionary may be initialized by loading. d ie t files that
contain abbreviation-expansion pairs in human-readable and -editable form.

2.3.1 Commands

The form subwindow has the following layout:

Record! LookUp! Li~t! Load! Store! Dictionary:
Abbreviation:
Ezpansion:

Record!

LookUp!

List!

Load!

Store!

enters a pair in the dictionary with abbreviation Abbrev ia t ion: and
expansion Ezpans ion:. [f Expans ion: is empty, the current
abbreviation-expansion pair is deleted.

fills in Expans ion: with the expansion of the abbreviation
Abbrev iii t ion:.

writes all the pairs in the dictionary to the log subwindow.

reads the pairs in the .diet file specified by Diction~ry: and loads
them into the dictionary.

stores the pairs in the dictionary onto the . die t file specified by
Dictioncary: .

If the dictionary is modified by recording new entries or by loading a new . die t file, the
modifications are not stored in the .diet file unless the Store! command is invoked
or the StoreOnDeaetivate User. em entry is included (see below).

2.3.2 File format

An entry in the . die t file has the following format:

abbrev: <TAB> "e)tpansion string" <CR>.

The double quotes around the expansion string are optional if it does not contain any
,embedded returns. The expansion string should not contain any double quotes.

2,,4 Us.er.cm

Two entries are implement.ed:

[DietionaryTool]

Dictionary: My.diet

2-2

Initializes the dictionary from the specified. die t file.
Default .diet is used if there is no User. em entry.

XDE User's Guide

StoreOnDeactivate: TRUE

2

Automatically stores the dictionary when the tool is
deacti va ted to the specified . die t file if the dictionary
has changed.

2-3

2 Dictionary Tool

2-4

3.1 Files

3

Editor Symbiote

The XDE 3.0 Editor provides a way to edit files stored on disk as well as to create new files.
This screen-oriented editor, which includes an extensive and powerful pattern-matching
facility, can be associated with any text or file window (or subwindow).

The Editor Symbiote is included in the boot files.

3.2 User interface

The editor interfaces with users as a symbiote that attaches to any text subwindow or form
subwindow. The Editor Symbiote can be invoked via the Editor menu associated with the
Root subwindow. The editor is loaded with the boot files when CoPilot is booted.

The Editor Symbiote's user interface is described below.

3.2.1 Editor men u

To use the Editor Symbiote, chord on the mouse to get the Symbiote menu from the root
window. Attach edit will attach an Editor Symbiote subwindow to a host text or form
subwindow, and Detach edi t will remove it. (Note that the Editor Symbiote commands
will work on form subwindows.)

3.2.1.1 Editor Symbiote subwindow

AlII S! RSI +: SRI R! +:
~---ID

Figure 3.1: Editor Symbiote subwindow

3-1

3

3-2

Editor Symbiote

The Editor Symbiote is a form subwindow with the following items. (The behavior of the
Editor Symbiote menu items is affected by the Editor property sheet, as explained in the
next section.)

.-: The search field--the text that will be searched for (the .-: following
RS I).This field may contain expressions specifying variable patterns
to be matched.

S! Searches for text matching the search field. The search starts
immediately following the current selection if it is visible in any split of
the window; otherwise, the search starts from the first character
visible in the top split of the window .

.-: The replace field--the text that will replace the selection (the .-:
following RI). This field may also contain variables denoting elements
of the search field.

R! Replaces the current selection with the text specified by the replace
field. If the current selection was set as the result of S! or RS!, the
expression in the search field is available for replace-field variables. If
the selection was set some other way, the replace field may only have
literal text and may not contain any variables.

RS! Does an R! followed by an S!, thus replacing the current selection and
searching for the next matching text.

SRI Does an S! followed by an R!, thus searching for the next matching
text and replacing it.

All! Repeatedly does an SR!, thus replacing all text instances that match
the search field. The repetition stops when the search fails to find a
match.

For more information about the Editor Symbiote's search and pattern-matching facilities,
see the section on Search and pattern matching.

If you press the DOlT key (MARGINS) when an Editor Symbiote has the input focus, the Editor
Symbiote subwindow grows to two lines, with All!, S! and RS! on the top line and SRI

and RI on the second line, giving more space to enter text. This two-line format is also
useful for comparing search and replace strings, which may be quite simple or very
complicated. Pressing the DOlT key again returns the symbiote subwindow to its original
one-line configuration.

If the search field is empty when you invoke S!, the Editor Symbiote copies the current
selection into the search fiHld before starting the search.

XDE User's Guide 3

3.2.1.2 Editor property sheet

Scope: {1m rest, selection}
Interpret match as: literal}
Context of match: { words}

I IgnoreCase I
Level

GetDefaul t!

ICOnfirmRePlaCe

SetDefaul t!

Figure 3.2: Editor property sheet

The Editor property sheet is a separate window named Editor. Its fields, which affect the
Editor Symbiote's operation, are:

Scope: {all, rest, selection} specifies the scope of the All! command.
all means the entire file, rest means "the rest of the
file"--just like the S! command (q.v.)--and selection
means "within the current selection."

Interpret match as: {pattern, literal} specifies the interpretation of
the text in search field. pattern means to interpret the
search field as a regular expression; Ii teral means to use
the search field as simple literal text.

Context of match: {anywhere, words} further limits the acceptable con-
text in which a search may find a match. anywhere means
that the pattern can match within a larger word. words
only matches patterns that are surrounded by non­
alphanumeric characters.

Ignore Case is a Boolean that will cause upper-I lower-case differences to
be ignored during a search.

Confirm Replace is a Boolean that will cause the Editor Symbiote to request
explicit user confirmation for each text replacement. A
confirm cursor appears when confirmation is requested; use
Point to confirm, Adjust to deny.

Level: is the number of space characters by which the indenting
should be adjusted. This is used by the Hes t and UnHes t
commands in the Edit Ops menu.

3-3

3

3-4

Editor Symbiote

The property sheet also has a command subwindow with these commands:

GetOefault!

SetDefault!

sets the editor properties to the built-in default state.

sets the default editor properties to be those currently set in
the property sheet. GetDefaul t! may then be used to
return the properties to that state.

3.2.1.2.1 Editor property sheet aecelerator

You can associate the Editor property sheet with any key on your keyboard for faster
access to the editor's parameters. If the text subwindow TIP Interpreter sees the atom
"Editor," it will make the Editor property sheet appear (become active if it is inactive, or
normal if it is tiny). To associate the Editor property sheet with the HELP key, you would
use the following entry in the <>TIP>TextSW.TIP file:

SELECT TRIGGER FROM

HELP Down => Editor; --specifies which key to attach to

ENDCASE ...

To get the TextSW.TIP file, look on the <Hacks>lx. O>Source>Editor> directory. It
can be copied to the local f:ile <>TIP>Tex tSW. TIP. After installing the file and rebooting,
pressing the HELP key causes the Editor property sheet to appear.

3.2.1.3 EditOps menu

When an Editor Symbiote is attached to a subwindow, an EditOps menu is also placed on
the window. The All, Sea,rch, SearchReplace, ReplaceSearch, and Replace menu
items ~nvoke the same commands as the Editor Symbiote's All!, S!, SR!, as! and R!
commands. Other menu co"mmands, which only operate on text subwindows, are specific to
formatting of Mesa source code. They are:

Best

UnRest

Match

shifts the lines that contain the current selection level
characters to the right, where level is specified in the
Editor property sheet.

shifts the lines that contain the current selection level
characters to the left, where level is specified by the Editor
property sheet.

identifies matching parentheses (), square brackets [],
angle brackets < >, and braces { }. If one of these grouping
characters is selected, Match extends the selection to the
matching character. -If a character that is not one of these is
selected, Match extends the selection in both directions

XDE User's Guide 3

Count

until it contains a match. Successively using Match will
match larger scopes.

gives a count of how many occurrences of a pattern are
found in the text. The search expression and scope are
specified in the Editor property sheet. The result is given in
the message subwindow of the Editor property sheet.

3.3 Search and pattern matching

3.3.1 Search

The search operation accepts expressions in the search field. You can search for patterns
or families of strings, as well as for simple literal strings. The syntax of a search
expression is given below. First, some preliminary definitions:

< char> a single literal character. Since the characters *, %, [,], -,
*, and \ have special meaning within a search expression,
you must prefix these characters with a backslash
character. For example, * means a literal asterisk
character. Following Mesa conventions, you may also use \n
for carriage return, \t for tab, \ddd for the character whose
code is octal ddd, where d is an octal digit and ddd S 377B.
Escaping an ordinary character is harmless.

<charI >-<char2> character range. For example, A-Z means all the capital
letters.

< character class> a set of characters, defined by naming the characters to be
included. A character class specification consists of a
sequence of characters and character ranges.

A search expression is an arbitrary sequence of the following five elements. Each element
counts as one ((variable" in replace expressions.

<string> matches the given literal characters of the string.

* matches any single character.

% matches the beginning of a line (for use when one is the first
element in the pattern).

[< character class>] matches any character in the character class.

[- < character class>] matches any character except those in the character class.

In addition, any of the above five constructs can be qualified by appending either of the
following closures, which are explained in the section on Character classes and closure.
When a closure is applied to a < string> , it applies only to the last character of the string.

3-5

3

3-6

Editor Symbiote

*

**

3.3.2 Replace

short closure. Matches the least possible number, including
zero, of occurrences of the previous construct.

long closure. Matches the greatest possible number,
incl uding zero, of occurrences of the previous construct.

The replace field specifies the text that will replace the selection in a replace operation.
This field may also contain an expression with variables denoting elements of the search
field.

A replacement expression is an arbitrary sequence of the following elements.

<string> replaces with the given literal characters of the string. Since the
character @ has special meaning within a replacement expression, you
must prefix this character with a backslash character; e.g., \@.

@& replaces with the complete text found by the search.

@n@ replaces with the text that matched the nth element of the search
expression. The first element of the search expression is ul," etc.

3.3.3 Character classes and closure

Character classes provide a way to match different characters as part of a pattern. For
instance, either [a-c] or [abc] is a proper character class declaration that will match
any of the letters a, b, or c. Usually, however, you will not want to match just a single
character in a character class, but a word or a list of them. The short closure * and the long
closure * * are used for this. * and * * match with zero or more members of the search
expression element that immediately precedes the closure. * matches the shortest possible
string of the pattern type, and ** matches the longest possible string. So an expression
like [a-c) * will match strings of arbitrary length whose component letters are a, b, and
c.

For example, given the text "Hello.bed Goodbye.bed":

H#* .bed will match "Hello. bed"

H#** .bed will match "Hello.bed Goodbye.bed"

Caution: Be careful about using tt * and tt * * if you are editing a large file,. Since tt
matches any character, I'· and tt** will be slow. Since 1** matches the longest run of
characters, it will be very slow.

3.3.4 Ex,aIJ.lples

1. To find words that start with an upper-case letter:

Find: [A-Z][a-z]**
Result: 'I', 'Hello', 'Prince' will all match, 'warthog' will not.

XDE User's Guide

2. To find a word whose

first character is either a, b, c, d, s, x,y , z
second character is either a, e, i, 0, u
third character is g, p, 4, 5, 6
and reverse the order of the letters found:

Find: [a-dsx-z][aeiou][gp4-6]
Replace: @3@@2@@1@
Result: dog = > god

3. To delete the leading zeroes from numbers

Fi nd: [-0-9][0] * * [0-9]
Replace: @1@@3@
Result: OOOOOOB = > OB, 00343B = > 343B

3

4. To generate exec commands from a list of files (also see the example given in the
next section):

Input: "Access.archivebcd Adobe.archivebcd Binder.archivebcd "
Find: #*
Replace: Copy < >Temp>@1@ @1@@n
Result:

Copy < >Temp>Access.archivebcd Access.archivebcd
Copy < >Temp>Adobe.archivebcd Adobe.archivebcd
Copy < >Temp>Binder.archivebcd Binder.archivebcd

3.3.5 Editor as programmer's tool

The searching and pattern matching facilities of the editor can be used as a macro to
generate sizeable chunks of code in a very short time, as in the following example:

Suppose you want to create a function that sends out simple error messages if there is an
error while attempting to access a file. Because Mesa has such unique type-definition
capabilities, you are likely to find an enumerated type such as MFile.ErrorCode lying
around, a type that enumerates the different possible file access errors. Using the
members of this type as a list of selection keys, you can trivially generate code that will
send the name of the file access error message to your terminal. What follows is a dialog
for doing just that.

First, you will want to get a list of all the error codes. Type the following command to the
Executive window:

>Show type: MFile.ErrorCode

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile, conflictingAccess,
insufficientAccess, directoryFull, directoryNotEmpty, illegal Name,
nOSuchDirectory, noRootDirectory, nuliAccess, protection Fault,
directoryOnSearchPath, illegalSearchPath, volumeNotOpen, volumeReadOnly,
noRoomOnVolume, noSuchVolume, crossingVolumes, fileAlreadyExists,

3-7

3

3-8

Editor Symbiote

filelsRemote, filelsDirectory, invalidHandle, courierError, addressTranslationError,
connectionSuspended, other(255)};

The list below was simply copied from the Executive window into an empty File window
(using the copy key) :

noSuchFile, conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, iliegalName, nOSuchDirectory, noRootDirectory, nuliAccess,
protectionFault, directoryOnSearchPath, iliegalSearchPath, vol umeNotOpen,
volumeReadOnly, nORoomOnVolume, noSuchVolume, crossingVolumes,
fi leAlreadyExists, fi lelsRemote, filelsDirectory, i nval i d Ha ndle, cou ri erError,
addressTranslationl:rror, connectionSuspended

Now attach an Editor Symbiote subwindow to the File window and make the following
entries into the find and replace fields (+-:):

Find: #*,
Replace: @1@ => ~lrite["@l@"L] ;\n

Running that Replace function (R!) over the list above and adding the Pri ntError
subroutine name and the SELECT statement yields the finished function below:

PrintError: PRoc[code: MFile.ErrorCode) =- {
SELECT code FROM

noSuchFile • > Write["noSuchFileIlL);
conflictingAccess :I > Write[lIconflictingAccess"L];
insufficientAccess = > Write[linsufficientAccess"L);
directctryFull • > Write["directoryFull"L);
directoryNotEmpty :I > Write[ldirectoryNotEmpty"L);
iIIegall'Jame = > Write["iliegaIName"L];
nOSuchDirectory = > Write[lnoSuchDirectory"L);
noRootDirectory = > Write["noRootDirectory"L);
nullAc·cess =- > Write["nuIiAccess"L);
protectionFault :I > Write["protectionFault"L];
directc)ryOnSearchPath :I > Write["directoryOnSearchPath"L);
iliegalSearchPath • > Write["iliegaISearchPath"L];
volum·eNotOpen • > Write["volumeNotOpen"L);
volum,eReadOnly :I > Write["volumeReadOnly"L];
nORoomOnVolume • > Write["noRoomOnVolume"L];
noSuchVolume • > Write[lnoSuchVolume"L];
crossingVolumes • > Write["crossingVolumes"L];
fileAlr'eadyExists • > Write["fileAlreadyExists"L];
filelsRemote • > Write[lfilelsRemote"L];
filelsDirectory :I > Write["filelsDirectory"L];
invaliclHandle =- > Write["invalidHandle"L];
courierError· =- > Write[lcourierError"L];
addre!iSTranslationError • > Write["addressTranslationError"L];
conne·ctionSuspended • > Write["connectionSuspended"L];

ENDCASE;

};

XDE User's Guide 3

3.4 U ser.cm file entries

The typical Tajo tool parameters can be set for the Editor property sheet under [Editor] in
the User. em (i.e., WindowBox, InitialState, TinyPlace).

[Editor]
WindowBox:
InitialState:
TinyPlace:

< put here the size of window box you prefer>
< put here the initial state you want, particularly Tiny or Active>
< put here the coordinates of the desired location of the Tiny window on
your screen>

In particular, fix the User. em entry for [FileWindow] to "Setup: Always Menu Edit" to
get the Editor Symbiotes to attach themselves by default to text windows.

[FileWindow]
Setup:Always Menu Edit

3-9

3 Editor Symbiote

3-10

4

4-2

Executive

TAB

?(question mark)

!RET (carriage return)

; (semicolon)

4.2.2 Command line expansion

treats the last token on the command line as the beginning
character string of a tile name and list all files or registered
commands it starts. The token is deleted from the command line
and the command line is retyped.

treats the last token on the command line as the beginning
character string of a tile name and lists all files or registered
commands it starts. The token is not deleted from the command
line and the command line is retyped.

terminates the command and causes it to be interpreted.

terminates the command and permits more commands to be typed
before interpretation begins.

The Executive expands a command line using the following for these special interpretation
characters:

. (single quote)

f (UpArrow)

* (asterisk)

(pound sign)

@ (at-sign)

quotes the following character so that the Executive does not
interpret it. The following character, but not the quote, becomes
part of the expanded command line. For example, use a single
quote to pass a semicolon in a command line to the Compiler.

quotes the following character 80- that the Executive will not
interpret it. :'-J" either the e pArrow nor the following character is
part of the expanded command line. i is typically used to insert
carriage returns into long command lines to make them more
readable.

interprets the token containing the star as a pattern; replaces this
token by the list of files and registered commands that match the
pattern. The * in the pattern may match zero or more instances of
a eharacter. A single star only matches within one level of
subdirectory, that is, it will not match the character > in a file
name. Multiple stars will cross subdirectories. Hence, the pattern
* matches all the files in the current subdirectory, while the
pattern * * matches all the files in or below the curren t
subdirectory.

same as *, but matches only one char.acter.

interprets the following token as a command file. The token may
be terminated by another at-sign, by a space, a RET, or a semicolon.
The token is interpreted as the name of a file, and the token is
replaced by the contents of that file. If the token is not a file name,
the Executive tries to complete it by appending. em. If that does
not match a file, it appends *. em, and if. that does not· match
exactly one file, it prompts you for the contents of the file.

XDE User's Guide 4

II (slash) or -- (hyphen) denotes the characters that follow as a comment. The com,ment
can be terminated by a matching pair of delimiters (II or --) or by

the command terminators (RET or ;).

4.2.3 Command line interpl'etation

The Executive checks to see if the first token in a command line is one of its registered
commands. Registered commands have a . - . suffix and are either built into the Executive
or registered by programs. Commands may be abbreviated to any unique initial substring.
If the first token is a registered command or the abbreviation of one, the command is
executed.

[fthe first token is the abbreviation of more than one command, the Executive reports that
it cannot find the subsystem and prompts for a new command, discarding all queued input.
For example, if both Cha t. - and Cha tOr i ve r. - are registered programs, you must
enter Cha t. - because Cha t is ambiguous.

[f the first token is not a registered command or the abbreviation of one, the Executive
assumes that there is a program that would register that command if it were run (see the
built-in Run. - command described below). The Executive attempts to find and run a likely
program. First, it checks to see if the token is the name of a file. [f not, it strips any
extensions from the token and tries appending the suffixes: . archivebcd,
* . arch i vebcd, • bcd, * . bcd in that order. [f any of these patterns match exactly one file,
the Executive runs that program. After running the program, the Executive checks to see
whether the program has registered the command that corresponds to the first token on the
command line. If so, the command is executed~ otherwise, the executive skips the current
command line and starts processing the next command line.

Warning: Often when trying to re-execute an Executive command, users accidentally
select and stuff the entire line including the prompt character" >". This will tickle a bug in
the Executive and it will load another instance of your program. Avoid selecting the
prompt character when stuffing to the Executive.

4.2.4 Built-in commands

The commands listed below are built into the Executive and are automatically loaded and
started when the Executive is created. Many of these commands take arguments and
possibly have switches. Depending on the command, switches can be used either locally or
globally or both. When used globally, a switch applies to all subsequent arguments of the
command and is placed before the arguments it applies to. A local switch applies to only
one argument; it follows the argument that it affects.

AliasCommand. - <oldName> <newName>

provides a mechanism for giving a particular command
more than one name. Subsequent invocations of the
command by its original name or any of its aliases will
always invoke the same procedure that was registered with
the original command. This is useful for commands which
have identical beginning letters, such as Compare and
Compi ler, since the user must enter at least five letters

4-3

4 Executive

of either command in order for command completion to
work.

CacheAddress. - <comll1andList>

allows you to create, list, load, store, and manage the
network address cache. CacheAdd res s maintains the
network address cache that is used with the
AddressTranslation interface.

There are eight CacheAddress commands. They may be
abbreviated to any unique initial substring.

Certify

Cer t i fy / <hostName >

Flush

GetSize

List

Load/<fileName>

validates all entries in the
address cache with the
clearinghouse. All invalid
entries are corrected.

validates the entry for
<hostName> with the
clearinghouse. If the domain and
organization are not specified,
the default domain and
organization are used. If the
entry is invalid, it is corrected.
<hostName> may contain ,* or
'#.

flushes the contents of the cache.
The size remains the same.

gives the maximum number of
entries in the cache.

lists the contents of the cache.

loads the contents of
< fileName> into the cache.
The fi 1 e s h 0 u I d h a v e bee n
created using the Store
command.

SetSize/<entries>sets the maximum number of
entries in the address cache to < en tr ies > .

Statistics

S tore/ <fileName>

gives information about the
cache.

stores the contents of the cache
into <fileName>.

4

Executive

The Executive is a tool for loading and running Mesa programs.

4.1 Files

The Executive is built into Tajo; no extra files are needed.

4.2 User interface

The Executive runs as a TTY window, so the standard editing functions are not available.
The insertion point is always at the end of the text and cannot be moved elsewhere in the
Executive window. In the following descriptions, word refers to a sequence of
alphanumeric characters; token refers to a sequence of non-blank characters.

4.2.1 Editing functions

The Executive interprets certain characters as editing characters on the current command
line, as follows:

BS

BW

CONTROL-X

CONTROL-C, DELETE

COMPLETE

deletes the last character.

deletes the previous word: any non-alphanumeric characters to
the right of the previous word are also deleted.

expands the command line (defined below) and prints the
expanded command line.

aborts the current command line and prompts for a new
command.

treats the last token on the command line as the beginning
character string of a file name or registered command and
attempts to complete it. If the token starts more than one file
name or command, the screen flashes. The Executive extends the
command line with as many unambiguous characters as it can.

XDE User's Guide 4

As an example, the following commands wi II set the
maximum number of entries in the cache to 20, list the
contents of the cache, and store the current contents of the
cache into the file foo. cache

CacheAddress SetSize/20 List Store/foo.cache

or

CacheAddress set/20 1 store/foo.cache

See section 4.2.5 for CacheAddress operating instructions.

ChangeCommandName. - < oldName > <newName>

Clearinghouse.-

ClientRun. - <fileList>

is used for renaming commands registered with the
Executive (not to be confused with Rename, which renames
files). After executing ChangeCommandName. the
operations previously invoked by typing < oldName > to
the Executive can only be started by typing <newName> ;
< oldName > will no longer be registered.

sets the default domain and organization. The current
default domain and organization are provided in the
prompt. If the provided value is correct, press RET;

otherwise, type the new value. The default value is erased
as soon as you enter the first character. An example of the
use of the Clearinghouse command is:

Clearinghouse
Domain: OSBU North
Organization: Xerox

performs the same function as the Run! command in the
CommandCentral tool. It has the same semantics as the
Run! command, except that its arguments come from the
command line instead of the Run: input field of
CommandCentral. (Also see SetClientVolume.) For
example, the following command runs the program
Tes tl. bcd on the current client volume:

ClientRun Testl.bcd

CloseVolume. - <volumeList>

closes the specified volumes. The volume to be closed
should not be on the current search path (see the Search

4-5

4

4-6

"~xecutive

Path Tool chapter). The following command closes the
logical volume~ named Tajo and User.

CloseVolume Tajo User

Copy. - <targetFile> ~ <fileList>

copies the source files to a target file. If the left arrow is
omitted, the Executive asks the you to confirm that the
first file is the target tile. After the Copy command, the
target file will contain the concatenation of the contents of
the source files. If there is only one source file, the target
file will have the same creation date as the source file;
otherwise, it has the current time as its creation date. As
an example, the following command copies the file
My F i 1 e 1 . me s a and My F i 1 e 2 . me s a in tot he fi Ie
Temp.mesa:

Copy Temp.mesa ~ MyFilel.mesa MyFile2.mesa

CreateOir. - <directoI'yName>

cwo. - <directoryName>

creates the specified directory. A directory name should not
end in a ">" character. If you supply one, it will be ignored.
As an example, the following command creates the
directory TempOi r on the CoPi 10 t volume:

CreateOir.- <CoPilot>TempOir

substitutes the specified directory for the directory in the
front of the current search path. The facility for changing
the current working directory also exists -in the
SearchPathTool. As an example:

cwo <CoPilot>TempOir

Dele te. - < fileOrDirectoryList >

deletes the specified files and directories. If the specified
directory is not empty, or if it is on the current search path,
the Executive will abort the deletion and print an error
message. As an example, the following command deletes
the file MyFi Ie. me sa and the directory
<CoPilot>TempOir:

Oele~e MyFile.mesa <CoPilot>TempOir

XDE User's Guide 4

Filestat. - <fileOrDirectoryList>

Filestat. - /5 <volumeName> <fileIDList>

gives information about the specified files, directories, and
file lOs. It prints out the name of the file or directory, the
file ID, the number of bytes in the file, the number of pages
in the file, the file type, the times at which the file was
created, last read, and last written, and whether the file is
delete-protected, read-protected or write-protected. As an
example, the following command requests file information
on file MyFi le. mesa. Typical output is listed below the
command.

Filestat MyFile.mesa
<Copilot>MyFile.mesa FileID: 476B, 0
10413 bytes 22 pages type: text
create: 5-Jan-82 15:30:25 write: 11-Jan-82
17:42:06 read: 14-Jan-82 19:41:41

The following command requests file information for the
file ID 4 76B, o. Notice that the file ID is the same as the
file [D in the previous example.The output is the same
regardless of whether you specify a file name or a file [D.

Filestat /5 Copilot 476B, 0
<Copilot>MyFile.mesa FileID: 476B, 0
10413 bytes 22 pages type: text
create: 5-Jan-82 15:30:25 write: 11-Jan-82
17:42:06 read: 14-Jan-82 19:41:41

Floppy. - <command> <arguments>

Help. - <commandName>

Load. - <fileList>

recognizes commands that allow you to store and retrieve
files on floppy disks using the floppy disk drive in your
workstation. For a detailed discussion of the commands,
arguments and switches recognized by Floppy, see the
chapter on floppy commands.

prints out the help information associated with the
specified command. He 1 p usually gives the possible
parameters and switches for the command.

loads the specified programs into memory and prints the
load handle of each program loaded. You can specify the
following switch, either locally or globally:

4-7

4

4-8

Executive

LogIn. -

II usc code links when loading

[f the Ii switch is not used, the User. cm specification for
code links is used. As an example, the following command
will load the programs MyProgram. bcd and
MyOtherProgram.bcd

Load MyProgram.bcd MyOtherProgram.bcd

The Load command is useful for debugging. You might
load a program, set a breakpoint using the debugger, and
then start the program using the S ta r t command.

prompts you for your name and password. An example of
the use of Log I n is:

LogIn
User: YourName Password: YourPassword

OpenVolume. - <volumel~ist>

PopWorkingDirectory.-

opens the specified volumes. You can specify the following
switch, either locally or globally:

Iw open the volume for read-write instead of read Only

As an example, the following command opens the logical
volume Tajo for reading and the logical volume User for
read-write.

OpenVolume Tajo User/w

pops the working directory, eliminating it from the current
search path, and leaves the next directory in the search
path as the working directory.

Protect. - <fileName>/<switches>

changes tne file protection. You can specify the following
switches:

R set readProtected (file cannot be read)

- R clear readProtected

W set writeProtected (file cannot be written)

-W clear write Protected

XDE User's Guide 4

D set delete Protected (file cannot be deleted)

-D clear deleteProtected

When a' file is created, it is readable, writable. and
deletable. As an example, the following command protects
MyF i Ie. mesa so that it can not be read, written, or
deleted.

Protect MyFiIe.mesa/RWD

To find out how a file is currently protected, enter the
command followed by a file name only. For example:

Protect MyFiIe.mesa

PushWorkingDirectory.- <directorgName>

ProcesslnBackground. -

pushes the specified directory onto the front of the current
search path, making it the current working directory.

causes the compiler and binder to run at background
priority when run from CommandCentral. The default
priority is no rmal.

ProcesslnNormalPriority.-

Registry.-

causes the compiler and binder to run at normal priority
when run from CommandCentral. The default priority is
normal.

sets the default registry. The current default registry is
provided in the prompt. If the provided value is correct,
press RET; otherwise, type the new value. The default value
is erased as soon as you enter the first character.

Rename. - <targetFile> +- <sourceFile>

Rename. - <sourceFile> < targetFile>

is used to change the name of a file. If the target file
already exists, the command will fail. Otherwise, the
source file will be renamed to the target file. As an
example, either of the following commands will rename the
file MyF i Ie. mesa to be called NewF i Ie. mesa:

Rename NewFiIe.mesa +- MyFiIe.mesa
Rename MyFiIe.mesa NewFiIe.mesa

4-9

4

4-10

Executive

Run. - < fileList > .

runs the specified programs. The Run command is
equi valent to executing the Load command followed by the
Star t command. ~ote that even if the program registers a
command with the Executive, that command will not be
executed.

You c~n specify the following switches, either locally or
globally:

11 use code links when loading

Id call the debugger after loading but before starting the
program

la start any tools created by the program in the active
tool state

I i start any tools created by the program in the inactive
tool state

It start any tools created by the program in the tiny tool
state

As an example, the following command will run the
programs MyProg ram. bed and MyOtherProg ram. bed.
After MyProgram. bed has been loaded, but before it has
been started, the system will break to the debugger.

Run MyProgram.bed/d MyOtherProgram.bed

Section 4.2.6 describes considerations for using the Run
command.

SetC1ientVo1ume. - <volumeName>

sets the client volume that will be used by the Run!
command in the ComrnandCentra1 tool (and by
C1 ientRun). As an example, the following command sets
the client volume to the logical volume named Taj 0:

SetC1ientV01ume Tajo

SetErrorLeve1. - <outcomeList>

allows you to indicate whether processing should proceed,
wait, or abort following an error or warning. An outcome in
the <outcomeList> can be either warning or error.
The outcome can be followed by a switch which can be
either Ip for proceed, 1101 for wait or /a for abort. The
default is to abort whenever a warning or error occurs.

XDE User's Guide 4

If you decide to wait following a particular outcome,
processing will continue only after you type any character,
except "q," which will halt rather than continue processing.
The switches can be ordered according to their severity as
follows: p < w < a. The switch chosen for errors must be
greater than or equal to that for warnings; that is,
warning/a error/p is not a legal combination since it
violates the ordering constraint.

SetErrorLevel warning/p error/a

SetPr ior i ty. - < levelNumber>

sets the priority at which the Executive will run. The
priority must be specified in terms of a number: 1 is the
lowest priority and stands for background; 2 is for normal
priority; and 3 is the highest, meaning foreground priority.
Default is 2, normal priority. The priority may be
initialized by adding the appropriate a User. em entry (see
below).

SetPriority 2

SetSearehPath.- <directoryList>

ShowSearehPath.-

Snarf. - <fileList>

sets the search path to the list of directories in the
command line. The user can specify the following local
switch:

/r readOnly search path entry.

As an example, the following command sets the search path
so it contains the directories < Taj 0 > Temp,
< Ta j 0 > De f s, and < Ta j 0 > .

SetSearehPath <Tajo>Temp <Tajo>Defs <Tajo>

displays the current search path in the Executive window.

copies files from an arbitrary directory on a closed volume
onto your current file system. This command is commonly
used to transfer files between debugger and client worlds
when doing world-swap program development.

Two optional subcommands may be used to specify the
source and destination:

4-11

4

4-12

Executive

SoureeDi r /e < sourceVol umeAndDirList >

specifies the source volume and optionally the subdirectory
on that volume. The source volume name must be enclosed
in angle brackets, e.g. < Taj 0>. If a source volume is not
specified, <CoPilot> is used.

Des tDi r /e < destinationDirectoryN arne>

specifies the destination directory. If this subcommand is
not given, the top directory on the current search path is
used.

The user can specify the following local switches on
individual file names:

/s rename this file when copying it~ the target name is
the next name on the line.

lu copy the file only if the source file is newer than the
target file, or if the target file does not exist.

As an example, the following command copies the file
MyFi Ie. mesa from the volume Taj 0 to the current file
system. MyFile.mesa will be copied only if the source files
is newer than the target file or the target file does not exist.

Snarf SoureeDir/e <Tajo> MyFile.mesa/u

The following command copies the file
MyOtherFi Ie. mesa from the volume CoPi lot, renaming"
MyOtherFi le. mesa to Temp. mesa.

Snarf MyOtherFile.mesa!s Temp.mesa

Star t. - < loadHandleLJst >

i~terprets each token on the command line as the load
handle of a loaded program and starts that program. You
can specify the following switches, either locally or
globally:

/a start any tools created by the program in the active
tool state

/i start any tools created by the program in the inactive
tool state

/t start any tools created by the program in the tiny tool
state

XDE User's Guide

Type. - < fileList >

4

As an example, the following command starts the program
with load handle 4063 700B in the tiny state:

Start 4063700B/t

The Star t command is useful for debugging. You might
load a program using the Load command, set a breakpoint
using the debugger, and then start the program.

displays the contents of the specified files in the Executive
window. As an example, the following command types the
files MyFile. mesa and MyOtherFi Ie. mesa:

Type MyFile.mesa MyOtherFile.mesa

Unload. - <registeredCommandList>

Zap. - <fileList>

unloads the specified commands and the module or
configuration implementing them, provided they ha ve been
previously registered with the Executive. Unload will also
unload commands that have been aliased using
Al iasCommand, or renamed using ChangeCommandName.

Since the Executive keeps track of all original command
names as well as those that have been renamed, both the
original and alias or rename may be supplied to Unload.

effectively deletes the files by removing the files from the
file system data structures and deleting the file data as
soon as no program is using it.It is usually used to permit
the retrieval of copies of programs that are already loaded,
or to delete files that have accidentally been left locked by
another program. As an example, the following command
zaps the files MyProg ram. bed and
MyOtherProgram.bed.

Zap MyProgram.bed MyOtherprogram.bed

The file name always disappears immediately from the file
system, so a new file of that name may be created right
away.

4.2.5 CacheAddress operating instructions

To set up your machine to use CaeheAddress, do the fonowing:

1. Type into the Executive:

4-13

4

4-14

Executive

CacheAddress SetSize/20

This will set the maximum number of entries in the cache to 20.

2. Run for a day with this cache. The first time you look up a machine address, it will be
placed into the cache. To list the contents of the cache at any point, type into the
Executive:

CacheAddress List

3. After running CacheAcldress for a while. create a cache file with the command:

CacheAddress Store!/< >Address .cache

.1. At this point, place the following into your User. cm In it ialCommand: section:

[System]
InitialCommand: ..• ;CacheAddress SetSize/20 load/Address.cache;

At some point your address cache may become invalid because an address in the
clearinghouse has changed. To validate and correct all entries in your cache, type into the
Executive:

CacheAddress Certify

If you wish only to certify a single entry (Huey, for example), use:

CacheAddress Certify/"Huey:OSBU North:Xerox"

or

CacheAddress Certify/Huey

Patterns can also be used to certify entries. '* will match zero or more of any letter, and '#
will match any single character. Remember that * and # must be quoted to avoid being
expanded by the Executive. As an example, the following command will certify all names
starting with the letter G

CacheAddress Certify/G'*

If you keep your address cache stored in a file, you will want to update you cache file after
certifying any entries. For example:

CacheAddress Store/Address.cache

4.2.6 Run command usage

There are three reasons why you may want to explicitly use the Run. - command to run a
program instead of just invoking the program as an Executive command:

XDE User's Guide 4

• You want to install a command but do not want to invoke (execute) it. For example,
your Background command line might include the following command to load and
start the BrushDMT hack:

Run. - BrushDMT.bcd;

[f instead, you used the command

BrushDMT;

the BrushDMT hack would be loaded, started, and invoked which would bring up a
DMT window.

Even when the command is a no-op when given without arguments (e. g., Pr int. -), it
is more efficient to run the program explicitly without invoking the command (e.g.
Run. - Print).

• You know that the command is not yet registered and you want to save the Executive
the trouble of searching your entire search path for several different file name
patterns. Since you know the exact name of the file to be run, you can simply Run. - it.
This is very likely to be the case during an Ini tialCommand. This presumably speeds
up booting.

• You deliberately want to run a second copy of a program rather than invoke the
existing command.

4.2.7 Exec Ops menu

The Exec Ops menu is available outside all windows and contains the following commands:

FileWindow creates a new Source window.

Run runs the file that is the current selection.

Load loads the file that is the current selection.

Start starts the load handle that is the current selection.

New Exec creates a new Executive window.

Quit does a physical volume boot.

Power Off shuts off the power.

CallDebug boots your debugger volume.

4.3 U ser.cm processing

The Executive section of a Use r . em file can contain the following entries:

CompilerSwitches: the default switches to be used by the compiler.

4-15

4 Executive

BinderSwitches:

ClientSwitches:

ClientVolume:

Priority:

UseBackground:

Code links:

WindowBox:

TinyPlace:

InitialState:

4-16

the default switches to be used by the binder.

the default boot switches to be used by the Executive's
built-in Run command as well as the Run! command in
CommandCentral.

the volume to be used by the Executive's built in Run
command as well as the Run! command ln
CommandCentral.

the priority that the Executive should run in. Choices are 1
for background priority, 2 for normal priority, or 3 for
foreground priority. The default is 2, normal priority.

if TRUE, then the compiler and binder will be run at
background priority from CommandCentral.

if TRUE, code links will be used by default when loading
programs.

location of the Executive's window box.

location of the Executive's tiny box.

initial state of the Executive (Active, Tiny, or Inactive).

5.1 Files

5

HeraldWindow

CoPilot and Tajo have a banner called the HeraldWindow appearing at the top of the
screen. It displays the name and version of the boot file, the date on which it was built, the
current user, the current time and date, a logical volume name, and the number of free
pages on that volume. It allows other tools to display messages in its window and has a
menu that allows you to boot any of the bootable volumes.

The HeraldWindow is built into CoPilot and Tajo.

5.2 User interface

A Boot from: menu is available through the HeraldWindow. It is invoked by positioning
the cursor in the window and pressing MENU.

5.2.1 Boot from: menu

Besides containing the names. of the volumes on your workstation, the Boot from: menu
lists the following options:

Pile Kame:

Set Switches:

uses the current selection as the name of a boot file on the current
logical volume to be booted.

uses the current selection as a string of Pilot booting switches for
a subsequent booting command. The scanner recognizes the
following syntax: The characters - and - change the sense of the
immediately following switch. Each character of the selection is
the character representation of a switch. \ is an escape character.
If it is followed by a three-digit octal number, the switch is the
character with that octal representation. If \ is followed by ~he
characters N, n, or R, or r, the switch is the Ascii CR character. If\
is followed by B or b, the switch is the Ascii BS character. If \ is
followed by F or f, the switch is the Ascii FF character. If \ is

5-1

5 HeraldWindow

Reset Switches

Boot Button

Set Priority Up

Reset Priority

followed by L or 1, the switch is the Ascii LF character. If \ is
fonowed by', ", -, or-, the switch is that character.

uses default switches for a subsequent booting command.

automatically pushes the boot button.

sets the priority of the clock process to foreground, making it a
good stopwatch.

resets the priority of the clock process to normal.

There may be other volume names in the menu. Invoking any of these causes the volume
to be booted after confirming with a mouse click.

When the HeraldWindow is made tiny, it can display the current date and time, the Pilot
logical volumes, and their free page counts. Move the cursor into the tiny HeraldWindow
and it will display the date and time. Each successive click with POINT will display the
name and free page count ofa Pilot logical volume, starting with the system volume. If the
information about all the volumes has been displayed, the HeraldWindow will redisplay
the date and time. The HeraldWindow will stop displaying this information when you
move the cursor out of its window. If you wish to have the HeraldWindow continue to
display after the cursor is moved out of the window, click ADJUST. To cause the
HeraldWindow to revert to its normal state, click the right button in the window again.

The name and free page eounts of volumes other than the system volume may also be
obtained when the Herald'Window is active, by clicking the mouse over the volume name
in the right side of the window. Each successive click with POINT will display the name
and free page count of a Pilot logical volume, starting with the system volume. If the
volume is not the system volume, it will have an asterisk appended to its name. Clicking
ADJUST over the volume name will cause the HeraldWindow to continue displaying
information for that volume after the cursor has moved out of that region of the window.

5.3 User .em processing

5-2

The HeraldWindow initializes its window box, tiny position, and its initial state from
lentries in the [Hera1dWindow] section of the User. cm:

windowBox: [x: 362, y: 628, w: 662, h: 150] location of tool's
window box

TinyP1ace: [x: 720, y:: 778] location of tool's
tiny box

Initia1State: Active initial state of tool

6

Profile Tool

The Profile Tool, which is built in, allows you to edit information used by other tools
running in the development environment.

6.1 User interface

The Profile Tool interacts with you through a form subwindow, which contains the
following fields:

j Apply!
! Abort!

User:
Domain:
Librarian:

Password:
Organization:
Prefix:

Registry:
Debugging
Suffix:

User is a text form item for your login name. This field is normally initialized
by a value specified in the User. em.

Password is your password.

Registry contains the mail registry to which you belong. This field is normally
initialized by a value specified in the User. em.

Domain contains the clearinghouse domain you wish to use. It is needed when
communicati.q.g with NS servers, such as printers and file servers. This
field is normally initialized by a value specified in the User. em.

Organization contains the clearinghouse organization you wish to use. It is needed
when communicating with NS servers, such as printers and file servers.
This field is normally initialized by a value specified in the User. em.

Debugging is a Boolean form item that some tools read. When a tool detects an error
situation, it may go to the debugger if Debugging is TRUE and print out a
message to the user if FALSE. If you are not prepared to go to the

6-1

6

6-2

Profile Tool

Librarian

Prefi:.::

Suffi:.::

debugger, you should set the Boolean to FALSE. This field is normally
initialized by a value specified in the User. em.

contains the network address or name of the default Librarian service.
This field is normally initialized by a value specified in the User. em.

is used to expand libject names into full libject names. Pre fix: is a
string of one or more tokens, each of which represents a project identity
(e.g., Tools> <Pilot>, etc.) This field is normally initialized by a
value specified in the User. em.

is used to expand the libject name you supply into a full libject name
(e.g., mesa, config, etc.). This field is normally initialized by a value
specified in the Use r . em.

The Profile Tool displays the following commands only when the values of one or more of
the data items have been edited so that the values displayed in the window are
(potentially) different from the values of the underlying system variables. When the
values are the same, these commands will not be displayed:

Apply!

Abort!

is a command form item that enters the information in the Profile Tool's
subwind.ow into the system, making the information available to other
tools. Note that no changes take effect until you invoke Apply!

is a command form item that resets the information in the Profile Tool's
subwindow from the system variables.

7.1 Files

7

Tool Driver

The Tool Driver extends the facilities of the Xerox Development Environment by
providing a mechanism for automatically performing repetitive, routine batch tasks. It
does this by acting as a simulated user that interprets simple command sequences. The
Tool Driver uses only the functions available through the XDE's user interface, rather
than accessing special hooks in various low levels of the Development Environment and
the attendant common collection of tools.

The power of the Tool Driver is constrained only by the power of the set of tools that are
loaded and accessible to it. However, the flexibility and sophistication of the commands
understood by the Tool Driver is low. It is not intended to meet all your non-interactive
needs, but instead tries to provide simple catalogued procedures.

The Tool Driver has the potential to completely destroy large, permanent user data
structures such as Action Request databases. For this reason, certain tools may place
extra restrictions on the operations that they will allow while under the control of the Tool
Driver. Any such restrictions will be discussed in the documentation for the individual
tools.

Three files are required to use the Tool Driver. The first is the Tool Driver's code,
Tools>ToolDrivers.bcd; the second is a list of the tools that you might want the Tool
Driver to manipulate, Tool. sws; and the last is a set of instructions for the Tool Driver (a
script for the simulated user).

If you wish to make tools available for use through the Tool Driver or are interested in
extending the Tool Driver, retrieve <Mesa>Doc >ToolDr iverClient. memo.

7.2 User interface

The Tool Driver communicates via the Tool Driver Executive window. This tool allows you
to specify the name of the script files and the options to be used by the Tool Driver during
execution of the scripts.

7-1

7

7-2

Tool Driver

Go! SingleStep Debug Script: Test.tds

F'igure 7.1: Tool Driver executive window

The Tool Driver executes scripts until it either runs out of input, is aborted, or encounters
an error. A script can cause the Tool Driver to temporarily interrupt its execution and
return to the user; except for these breaks, the Development Environment's N otifier is
completely tied up by the execution of the Tool Driver.

7.2.1 Message subwindow

Messages that are a result of calls on the function pause are displayed in the message
subwindow.

7.2.2 Form subwindow

The form subwindow contains the following items:

Go! causes the Tool Driver to execute using the specified file as the input
script. Use ABORT to abort the execution.

SingleStep is a Booll~an which, if TRUE, causes the Tool Driver to pause after it
executes nach statement in the script. Otherwise, execution does not halt
unless either the script is finished, the user or a tool aborts, or an error
occurs.

Debug

Script:

is used for debugging the Tool Driver itself. Its value should normally be
FALSE.

is a string item that lists names of the input script files. It is defaulted to
Tes t. tds (the extension • tds for script files is an acronym for tool
Driver script). If a script is aborted, either by the user or by one of the
tools being driven, the rest of the scripts will not be executed (see the
Script files section).

XDE User's Guide 7

7.2.3 File subwindow

The file subwindow is used to log messages of more than transient interest, such as the
name of the script file currently being executed, Done or Abo r t, or other status messages
indicating how or why the script file finished. The root l~g name for this tool is TOE.log.

7.3 Script files

A script file is a text file containing a series of statements. A statement is either an
assignment to a variable, a command, a loop or exit loop, a simple conditional, or a
function call.

7.3.1 Script file format

There is no inter-statement separator, optional or otherwise. White space is not
significant, except that it delimits atoms in the script. The commenting conventions are
those used in Mesa. Occasionally it may be necessary to quote an arbitrary character in
the script by preceding the character by a ' character. The \ is treated as an end-of- file
signal, and should not appear unquoted in a script unless you want the Tool Driver to
ignore the following part of the script.

7.3.1.1 Constants and variables

Delimited strings (must be preceded and followed with double quotes), unsigned numbers,
or one of the set of reserved words NIL, TRUE, and FALSE, are constants. Whether a constant is
semantically valid depends on the context in which it is used.

Variables reference items in form subwindows. The format of a variable reference is
Too/Name.SubwindowName. Tag; e.g., AREditTooI.CommandSW.UseQL. If Too/Name is
omitted, then the value of the reserved variable TOOL is used. If SubwindowName is also
omitted, then the value of the reserved variable SUBWINDOW is used. The tag trailer
provided by the FormSW package must not be present in Tag.

All other available facilities are invoked by function calls.

7.3.1.2 Assignment to variables

A variable is assigned to by

Form item Eo- Expression

where Expression is either a constant, a variable, or a function call.

7.3.1.3 Function calls

Function calls are positional and do not allow defaulting. Provision has been made for the
Tool Driver's set of functions to be dynamically increased. A function call must always
ha ve the form:

Function[ExpressionList]

7-3

7

7-4

Tool Driver

where an ExpressionList is one or more Expressions, separated by commas.

These are the function calls currently allowed:

ActivateTool[Expression).

The Expression must specify the name of an entry in the Tajo Inactive Tools menu. This
entry might not match the tool's herald, its tiny name, or its name as known to the Tool
Driver for variable referencing purposes. If the name is found in the menu, then the Ttool
is activat;d, otherwise this call is a no-op.

AppendCommand[TooIName.SubwindowName, Expression].

This calls UserInput. Stuff string with the subwindow handle and string value.

AppendStri ng [Tool Name. SubwindowName, Expression].

This calls Put. Text with t.he subwindow handle and string value.

Call Debugger[Expression].

This calls the debugger with the Expression as the message to be printed by the debugger.

Fi leCreated [Expression, Expression].

The first Expression is the name of the file to check on. TRUE is returned if the file exists and
was created within the nunlber of seconds specified by the second Expression.

InvokeMCR[TooIName.SubwindowName, Constant, Constant].

The ToolName may be omitted, in which case the default will be used. The first constant is
the name of the menu; the second is the keyword in that menu.

IsVisible[Form item].

TRUE is returned if the specified form subwindow item's invisible flag is FALSE.

LastMessage[TooIName.SubwindowName].

This returns the last message posted in the message subwindow specified. The ToolName
may be omitted, in which case the default will be used.

Modifyltem[Form item, Expression, Expression, Expression].

This allows you to insert, delete, or replace characters in the specified form subwindow
item. The first Expression specifies the position at which to start the modification,
he ginning with 0 at the left edge of the body of the item (Le., the item's tag and tag trailer
are not accessible): The second Expression specifies the number of characters to be affected,
and the last Expression is the new characters (if any). Thus pos, length, NIL for the three
Expressions specifies a deletion beginning at pos of length characters. pos, 0, "new string"
specifies the insertion ofthl3 nine characters "new string" atpos. pos, length, exp specifies a
replacement. For convenience, all starting positions off the right edge of the item are
trimmed back to the right edge, so appending new text to the item can be achieved by

XDE User's Guide 7

using the expression (1 OOOOOB, 0, newText). For further details, see the description of the
Tajo procedure FormSW.ModifyEdi table in the Mesa Programmer's Manual.

Pause [Expression, Expression] •

This allows you to intervene and interrogate while a script is being executed. It prints the
first argument in the Tool Driver exec's message subwindow and then enables the
Notifier, allowing you to interact with the development environment again. The second
argument indicates whether the Pause is simply trying to ask a question. It must be
either TRUE or FALSE. If TRUE, the Tool Driver Exec adds two new items to its command
subwindow, named Yes and No. If you invoke Yes, Pause returns TRUE; if you invoke No,

Pause returns FALSE. If the second argument is FALSE, the Tool Driver exec adds a new item
to its command subwindow named Proceed, and Pause returns an undefined value when
you invoke Proceed.

SetSelection[Expression] .

This sets the current selection. There is no feedback to show what the selection has been
set to.

SetWindowBox[ToolName, Expression, Expression, Expression, Expression].

This sets the tool's window to the size specified. The order of the arguments (from the left)
is x, y, W, and h.

SubString[Expression, Expression, Expression].

This returns the value of the the subportion of the first expression that begins at the
second expression and has a length specified by the third expression.

Wait[Expression].

This causes the Tool Driver to relinquish the processor for the specified number of seconds.
During the wait, the N otifier is still disabled, but periodic notifications occur (although
perhaps not as quickly as they normally would).

WindowOnTop[Too/Name].

This brings the specified tool window to the top of the window stack.

7-5

7

7-6

Tool Driver

7.3.1.4 Control structure

The Tool Driver allows for some forms of control structure. They are:

1) DO

IF BooleanExpression THEN EXITLOOP Label;

EXITLOOP Label;
ENDLOOP Label;

The Label after the EXITLOOP specifies the label on the ENDLOOP to which you are exiting and
is optional. However, the semicolon after the Label is mandatory in both places. These are
the only places in a script file where a semicolon appears.

2) IF BooleanExpression THEN Statement

3) IF BooleanExpression THEN

BEGIN

END

4) IF BooleanExpression THEN

BEGIN

END

ELSE Statement

5) IF BooleanExpression THEN

BEGIN

END

ELSE

BEGIN

END

'rhe BooleanExpression has one of two forms:

Expression
or Expression Relational Expression

The Relational is one of the set {=, #}.

7.3.2 Sample script

The following sample script would produce a qu·ery list of all the AR's submitted against
the Ether subsyst~m of MHsa that has been marked Fixed in 6. Oz. Then, by using this
query list, it would edit each of the AR's so that their In/By field now reads 6. Om.

XDE User's Guide

TOOL +- "AdobeQuery"
SUBWINDOW +- "formSW"
Number +-
System +- "Mesa"
Subsystem +- "Ether"
Status +- "Fixed"
In'/By +- "HAS 6.0z"
cmdsw.Query

TOOL +- "AdobeEdit"
SUBWINDOW +- "cmdSW"
UseQL +- TRUE

Next
Checkout
DO

formSW.ln'/By +- "6.0m"
Next
IF LastMessage[msgSW] = "Query List exhausted!" THEN EXITLOOP;

Checkin' &out
IF LastMessage[msgSW] = "Can't check out AR: must do update before

further editing!" THEN

BEGIN

ARUpdateTool.CommandSW.Update
Checkout -- Remember we are here because "out" part of ";n&out" failed
END

ENDLOOP;

Checkin -- don't forget to put the last guy back

7.4 BNF for script files

goal

statements

statement

assignment

formCmd

formSWltem

idList

:: =- statements \

:: = statements statement
I statement

:: = assignment
I formCmd
I loop semi Suffix
I if Statement
I EXITLOOP loopLabel ; semi Suffix
I functionCall

:: • formSWltem +- expression

:: • formSWltem

:: • idList

:: = idList. id
lid

7

7-7

7 Tool Driver

expression List :: = expressionList , expression
I expression

expression :: = variable
I constant

expressionTail :: ::I variable
I constant

variable :: = formSWltem
I functionCall

constant :: ::I delimStr
I num
I NIL

I TRUE

I FALSE

functionCall :: . id [expressionList]
I function Name [expressionList]

function Name :: :I ActivateTool
AppendCommand
AppendString
Call Debugger
FileCreated
InvokeMCR
IsVisible
LastMessage
Modifyltem
Pause
SetDispState
SetSelection
SetWi ndowBox
SubString
Wait
WindowOnTop

loop :: . do statements ENDLOOP loopLabel ;

do :: :I DO

if Statement :: ::I ifExp block
lifExp blockElse block

ifExp :: . IF boolExp THEN

block :: . statement
I BEGIN statements END

iblockElse :: :I BEGIN statements END ELSE

IboolExp :: :I expression relational expression
I expression

7-8

XDE User's Guide 7

looplabel .. - id .. -
1

semiSuffix :: =
relational :: = =

1#

Note: The Form/tem must be a command item in the Form subwindow.

Note: The semantic restrictions on the ExpressionList depend on the /d.

7.5 The subwindows file

The Tool Driver will not function unless the subwindows file, Tool. sws, is present on the
local disk. The format of this file is:

[Too/Name,)
SubwindowName" ... , SubwindowNamen

[Too/Name2)
SubwindowName7, ... , SubwindowNamen

The opening [must be the first character on the line. Everything after the closing 1 on that
line is simply ignored. If a tool that is not in the subwindows file attempts to publicize
subwindows (Le., calls TooIDriver.NoteSWs), it is ignored, as are all subwindows not
present in the list of subwindows for that tool. The individual documentation for each tool
should list the tool and subwindow names that the tool publicizes. There must be no extra
sub windows declared by the user. If there are, the Tool Driver will halt with an error.

7.6 Running the Tool Driver

The procedure for running the Tool Driver is as follows:

• Start the Tool Driver.

• Start other tools.

• Run the script.

Note: Tools started before starting the Tool Driver are not accessible to the Tool Driver.
Tools that are inactive are also inaccessible to the Tool Driver. However, inactive tools can
be accessed indirectly via the InvokeMCR function applied to the Executive menu.

7-9

7 Tool Driver

7-10

II

File-related tools

This chapter discusses the XDE tools for manipulating files. The first part explains file
naming conventions, since file names are used by many of the tools as field values. The
rest of the chapter briefly describes each tool's function.

ILl File system conventions

Once you have written your text onto a file window or text subwindow, you will probably
want to save it as a file. This section describes the XDE local file system's structure and
naming conventions, which are used for searching for files as well as for creating new files.

Many of the tools in the development environment have parameters that are file names,
such as the File Tool and the Executive. Some tools are prepared to deal with either local
or remote file names. The syntax of remote file names is determined by the remote file
system. Consult the documentation for your remote file system for the definition of legal
remote file names.

11.2 File names

The local file system provides a tree-structured directory. The top-level directory, the root
of the tree, has the same name as the logical volume. All directories can contain
directories and non-directory files. A file has a simple name (that is, its name within a
directory) and a fully qualified name (its name within the directory structure). The legal
characters that can be used in the simple name of a file are the alphabetics (a - z, A -

z), digits (0 - 9), period (.), dollar sign ($), plus (+), and minus (-).

The fully qualified name of a file, whether directory or non-directory, describes the path
from the top-level directory of the volume containing that file to the file. The name starts
with the character <, and all subdirectories on the path are separated by the character> .
No file names end with the character> with the exception of the top-level directory,
which always ends with>. Some examples of fully qualified file names are:

<CoPilot>

<CoPilot>MyFile .mesa

II-I

II File-related tools

<CoPilot>SubDirectctry >MyFile .mesa

<Copilot >SubDirectory

Certain operations, such as the File Tool's and the Executive's list commands may print
the names of directory filE~s followed by a > to distinguish them from non-directory files.
This is an output convention; don't confuse it with the name of the directory file.

The top-level directory of the current volume can also be specified by < >; that is, if the
name of the top-level directory is omitted in a fully qualified name, the top-level directory
of the current volume is used. Hence, the following names are equivalent to the above
examples to a user on the volume CoPilot:

<>

< >MyFile.mesa

< >SubDirectory >MyFile. mesa

< > SubDi rec tory

A file name can also be specified relative to the current search path. If a file name does not
start with the character <:, it is a relative name. In this case, a fully qualified name is
formed by appending the relative name to each entry of the search path until a match is
found (refer to the chapter on the SearchPath Tool). If the search path contained the single
entry <CoPilot>, the n~lative file name MyFile.mesa would be resolved to the fully
qualified name <CoPilot:>MyFile.mesa

Directories on the search path may be write-protected, in which case it is not possible to
change any of the files in the directory or add or delete files from it. If a file name is
relative to the search path and it is to be created or written into, two problems can occur:
no match could be found on the search path, or the first match might occur in a directory
that is write-protected. In either case, the file will be created in the first directory that is
not write-protected in the! search path. This directory acts somewhat like a working
directory. If the first directory in the search path is write-protected, anomalies may result;
for example, if you write into the file MyF i le, and then subsequently try to read file
MyFile, you may not read the information that you just wrote. This could happen if the
first directory in the sear,ch path is write-protected but contains a file named MyFile.
When you write into file UyFile, the system notices it is in a write-protected directory
and creates a new file MyF:i..le in the first writeable directory. When you later read the file
MyFile, the system returns the first file named MyFile on the search path, which was the
file MyFi le in the write-protected directory.

11.3 File-related tools

II-2

Brownie helps distribute software and maintain consistent copies of archive directories on
file servers.

Compare examines two pairs of source files and summarizes the differences between each.
The files can be either local or remote.

XDE User's Guide II

A File window is used to view and edit a text file.

The File Tool provides a means for you to work with the files on your local disk as well as
on remote file systems. It allows you to retrieve, delete, list, rename, and copy files. It is
like FTP except that it has a window interface instead of an Executive command.

Find searches for a pattern in a list of files and displays the lines in which the pattern
occurs.

Floppy commands allow you to store and retrieve files on floppy disks using the floppy disk
drive in your workstation. .

FTP is a file transfer program that runs in the Executive. It is used for moving files to and
from a file system, which can be on a file server or on another workstation.

Print generates press format files and sends them to a printer on the network.

The SearchPath Tool is used to inspect and change the file system search path.

II-3

II File-related tools

II-4

8.1 Files

8

Brownie

Brownie aids in the problem of how to distribute software and maintain consistent copies
of master or archive directories on several file servers. It may also be helpful in moving
files among private directories during the software development process.

Retrieve Brownie. bcd from the Release directory.

8.2 User interface

Brownie is invoked by typing a command of the following form to the Executive:

>Brownie file

where file. brownie is a Brownie script file with the format described below. Brownie
will prompt for login and connect names and passwords for the hosts and directories
involved in the transfer. It will also log messages to the Executive, informing the user of
its progress.

8.3 Scri pt file

The script file describes the operations Brownie is to perform. It consists of a parameter
section and a command section separated by a comment line. The comment is ignored, but
the 1/ must appear. In the script below, the first Qual ifi edFi 1 en arne is the target and the
second QualifiedFilenarne is the source.

[level]
start: [time]
stop: [time]
II comment
copy/switches QualifiedFilenarnel+-QualifiedFilenarne/

8-1

8

8-2

Brownie

rename/swi tches QuatlifiedFilename ~ QualifiedFilename

dele te/swi tches Qua.lifiedFilename

8.3.1 Parameters

All parameters are optional, and if present their order is not important.

The amount of information logged is controlled by the level parameter. The choices are
verbose and terse. vlerbose mode will post the name of each source and destination
file as it is being copied (or deleted), along with their creation dates. terse mode will post
directory names only, and a dot for each file as it is copied. terse mode is normally
recommended for large copies, to keep the Execu t i ve. log file from getting too large.
level defaults to terse.

The star t parameter allows you to specify a start-up time. This allows lengthy transfers
that tie up a lot of network resources to be delayed until nighttime. Brownie processes the
script file before doing a.ny transfers so that any syntax errors may be discovered
immediately. The s top parameter allows you to specify a stopping time. Brownie
periodically glances at the stop time and aborts processing if the current time becomes
larger than this value. time may be in any of the formats: HH:MM, HHMM, H:MM, or HMM.
time defaults to start immediately for star t and when finished for stop.

8.3.2 Commands

A QualifiedFilename (QFN) of a Brownie command has the general form:

[host] < directory> filename

Where filename is optional. The Profile domain and organization are appended to host
ifnone are specified. If a QualifiedFilename contains spaces, it must be surrounded by
double quotes.

8.3.2.1 Copy

The copy command transfers the files described by the source QFN to the target QFN
according to the constraints of swi tches. If filename appears in both the source and the
target, the single file is transferred. If filename is omitted from the source QFN, it must
also be omitted from the target QFN, meaning copy all files from the source directory to the
target directory. If filename is not omitted from the target in this case, all files from the source will be copied

to the single target file.

ft*" wildcards may appear within the source QFN. (See the FileTool section:
Wildcard/expansion characters for an explanation of wildcards.) A n*" may also appear as
the only character of the final subdirectory, instructing Brownie to recursively search
through the specified direetory. All files matching the QFNwill be copied. If a ft*" appears,
the target QFN as in the previous case must be a directory. A u*" may not appear in the
targetQFN.

XDE User's Guide 8

8.3.2.2 Copy switches

Ie Connect to target directory; prompt for credentials. Default is FALSE. (Not
implemented)

Is Connect to source directory; prompt for credentials. Default is FALSE. (Not
implemented)

The Update (fu) and Always (fa) switches have identical meaning to those ofFTP.

lu Copy the files specified by the source QFN only when the creation date of the source
file is greater than the creation date of the target file and the target file exists.
Default is FALSE.

la Copy the files even if those files of the target QFNdon't exist. Default is TRUE.

8.3.2.3 Rename (Unimplemented)

The rename command renames single files or complete directories on a single file server.
Only the latest versions of files are renamed, unless the la switch is specified. If
filename is omitted from both QFNs, the entire source directory is renamed to the target
directory; otherwise, the single file is renamed. A •• *" may not appear in either QFN.

8.3.2.4 Rename switches

Ie Connect to (source) directory; prompt for credentials. Default is FALSE.

la Rename all versions of the source QFN. Default is FALSE.

lu Update (Unimplemented).

8.3.2.5 Delete

The delete command deletes one or more files on a file server. Only the oldest versions
offiles are deleted, unless the la switch is specified. A H*" may appear in a QFN. (See the
FileTool section: Wildcard/expansion characters for an explanation of wildcards.)

8.3.2.6 Delete switches

Ie Connect to directory: prompt for credentials. Default is FALSE. (Not implemented)

la Delete all versions of the source QFN·. Default is FALSE.

8.4 Example

This is an example of a script file:

[terse]
start: [20:30]
II Start at 8:30PM; commands follow
eopy/ua "[RatTail:OSBU North] <emerson>doe>" E-

8-3

8

8-4

Brownie

[Rasp] <emerson>doc >* >*! *
copy/u [Igor] <emerson>defs> +- [Idun] <int>tajo>public>*.mesa
copy [Sun] <newInt>brownie>Brownie.bcd +-

[Igor] <emerson>blC'ownie >Brownie. bcd
copy [Sun] <newInt>brownie>Brownie.doc +­

[Igor] <emerson>bJ:'ownie >Brownie. doc
dele te/ca [Bad] <Mov ies > *
delete [Mediocre'] <Movies>*

To execute Brownie with t.he above example script, Example. brownie, type the following
command to the executive:

>Brownie Example

and log in according to the prompts for each host and directory.

9.1 Files

9

FTP

FTP is a file transfer program used for moving files to and from a file server.

The File Tool serves the same purpose as FTP. (For more information, see the File Tool
chapter.)

Transferring a file from one host to another over a network requires the active cooperation
of programs on both machines. In a typical scenario, a human user (or program acting on
the human's behalf) directs FTP (or the File Tool) to establish contact with a file server.

Retrieve FTP. bed from the Release directory.

9.2 User interface

FTP runs in the Executive.

9.2.1 Command line syntax

The two basic file transfer operations are Retrieve and Store. The Retr ieve command
causes a file to move from server to user, whereas Store causes a file to move from user to
server.

Other commands are often used in conjunction with the basic Retrieve and Store
commands. Commands are of the form:

<Keyword>/<SwitehList> <argo> ••• <argo>

Unambiguous abbreviations of command keywords (which in most cases amount to the
first letter) are legal. A command is distinguished from arguments to the previous
command by having a switch on it, so every command must have at least one switch.

9.2.2 Command line switches

In the descriptions that follow, the terms local and remote are relative to the machine on
which the FTP user program is active (that is, you type commands to your local user

9-1

9

9-2

FTP

program and direct it to establish contact with a file server.) A Retr ieve command
copies a file from the remote file system to the local file system, whereas a S to r e
command copies a file from the local file system to the remote file system.

Local and remote also refer to file names. Files on your workstation are local, and files on a
server are remote.

Most commands take local switches. These switches have default values used if the switch
is not mentioned. The switches are listed below with their defaults and functions:

IC [Command] a null switch that tells the command line parser that this token is a
command (no default),

IS [Selective] used if the remote and local file names differ; for example, if you
retrieve a file listed under one name but want to bring it to your
workstation under a different name (FALSE),

IV [Verify] requests confirmation from the keyboard before the file transfer takes
place. Confirm with Y (not CR); deny with N. S (for STOP), DELETE, or
CONTROL·C will terminate all further commands (FALSE).

IQ [Query] specifies that a password be requested interactively from the user
instead of being read from the command line (FALSE).

If FTP can unambiguously decide that a token is a command, you do not need to append
any switches to the command word. Otherwise, you must append some switch; use the IC
switch if there are no other switches desired. This means that if a command (such as
Retr ieve) takes a list of files and the list is followed by another command, that command
must have some switch appended.

Some switches affect transfers conditioned upon comparison of the creation dates of
eorresponding local and remote files. The comparison is < source file>
<operator> <destin.ation file>. For Store, the source file is the local file; for
Re t r i eve, the source file is the remote file:

II [NotEqual]

1= [Equal]

I> [Greater]

1< [Less]

IU [Update]

fA [All]

transfE~rs the file if the destination file exists and the creation dates
are not equal. This must be quoted (/'1) to keep it out of the clutches
of the I~xecutive.

transfHrs the file if the destination file exists and the creation dates
are equal.

transfE~r the file if the destination file exists and the source's creation
date is greater than the destination's.

transfE~rs the file if the destination file exists and the source's creation
date is less than the destination's.

same as I> (for backward compatibility).

modific~s the action of I, =, >, <, IU to transfer the file even if no
corresponding file exists in the destination file system.

XDE User's Guide 9

If more than one switch is present, they are ORed together, so, for example, "/ > =" means
"transfer the file if the source's creation date is greater than or equal to the destination's."

The sense of a switch is inverted if it is preceded by a minus sign; the minus sign inverts
the sense of the immediately following character, not the entire operator expression.

9.2.3 Commands and examples

In the examples below, the /C switch has been included, even though it may not be
necessary.

Open/C <HostName>

opens a connection with the host. The first token after FTP in the command line is
assumed to be a host name, so no subsequent Open command is required. The Profile
domain and organization are appended to <HostName> if none are specified.

Close/C

closes the currently open FTP connection.

Login/C <UserName> <password>

supplies any login parameters required by the remote server before it permits file
transfers. FTP will use the user name and password in your Profile (see the Profile Tool
chapter), if they are there. Logging into FTP will set the user name and password in your
Profile, if they have not already been set.

When you issue the Log in command, FTP will first display the existing user name in
your Profile. If you now type a space, FTP will prompt you for a password. If you want to
provide a different user name, you should first type that name (which will replace the
previous one) followed by a space. The command may be terminated by a carriage return
after entering the user name, to avoid entering the password. The parameters are not
immediately checked for legality, but rather are sent to the server f<?r checking when the
next file transfer command is issued. If a command is refused by the server because the
name or password is incorrect, FTP will prompt you as if you nad issued the Log in
command and then retry the transfer request. Typing CONTROL-C aborts both the request
for login information and the rest of the FTP command line.

Log i n/a < UserName>

causes FTP to prompt you for the password. This form of Log i n should be used in
command files, because including passwords in command files is bad practice.

Directory/C <DefaultDirectory>

causes < Defaul tDirectory > to be used as the default remote directory in data transfer
commands (essentially it prefixes the directory name to remote file names that do not
explicitly mention a directory). The default directory can be overridden at any time by
fully specifying a file name within a particular command ([Host] <Dir>filename). Do

9-3

9

9-4

FTP

not include punctuation that separates the directory name from other parts of the remote
file name; thus, typeDir€'ctory Mesa, not Directory <Mesa>.

LoealDi ree tory /C < Defaul tDirectory >

causes the default directory to be used as the default local directory in the transfer. For
example, if you want to rf!trieve files onto a local directory in your Tajo volume without
having to specify the destination name each time, you can specify a default local directory
and it will be prepended to all file names.

Retr ieve/C <RemoteF.ilename> ... <RemoteFilename>

retrieves each < RemoteFilename >, constructing a local file name from the actual
remote file name as received from the server. FTP will overwrite an existing file. If the
remote host allows "*" (or some equivalent) in a file name, a single remote file name may
result in the retrieval of several files. You must quote the "*" to get it past the Executive's
command scanner.

Retr ieve/S <RemoteF.ilename> <LocalFilename>

retrieves <RemoteFiler.lame> and names it <LocalFilename> in the local file
system. This version of R.etr ieve must have exactly two arguments. The remote file
name should not cause the server to send multiple files.

Retr ieve/> <RemoteF'ilename> ... <RemoteFilename>

retrieves < RemoteFilename > if its creation date is greater than that of the local file. If
the corresponding local fil,e doesn't exist, the remote file is not retrieved. This option can
be combined with Retr ie .. ,e/S to rename the file as it is transferred.

Retrieve/>A <Remote'Filename> ... <RemoteFilename>

is the same as Retr ieve/> except that if the corresponding local file does not exist, the
remote file is retrieved anyway.

Retrieve/V

requests confirmation from the keyboard before retrieving a file. This option is useful in
combination with the Update option (/U) , because the creation date is not a foolproof
criterion for updating a filEl.

Store/C <LocalFilencrme> ... <LocalFilename>

stores each < LocalFi1 ename > on the remote host, constructing a remote file name from
the name body of the local file name. A local file name may contain "*", because it will be
expanded by the ExecutivH into the actual list of file names before the FTP subsystem is
invoked.

XDE User's Guide 9

Store/S <LocalFilename> <RemoteFilename>

stores <LocalFilename> on the remote host as < RemoteFi1 ename > . The remote file
name must conform to the file name conventions of the remote host. This version of S to re
must have exactly two arguments.

Store/> <LocalFilename> <LocalFilename>

stores each <LocalFilename> on the remote host if the local file's creation date is later
than the remote file's. If the corresponding remote file does not exist, the local file is not
stored. This option can be combined with Store/S to rename the file as it is transferred.

Store/>A <LocalFilename> ... <LocalFilename>

is the same as Store/> except that if the corresponding remote file does not exist, the
local file is stored anyway.

Store/V

requests confirmation from the keyboard before storing a file. This option is useful in
combination with the Upda te option when creation date is not a foolproof criterion for
updating a file.

List/e <RemoteFileDesignator> ... <RemoteFilename>

lists all files in the remote file system that correspond to < RemoteFileDesignator >.
The remote file designator must conform to file-naming conventions on the remote host.
The following subcommands request printout of additonal information about each file.
They are specified by local switches:

It type,

11 length in bytes,

Id creation date

/w write date,

Ir read date,

/a author (creator),

f<date> - from<dat~>. Lists only files with write date greater than <date>.
This must be the last entry on the command line before the file name. Example:
1ist/f10-Dec-79-11:00:04 *.mesa.

b<date> - before<date>. Lists only files with read· or write date less than
<date>. This must be the last entry on the command line before the file name.

Note: The file system keeps creation, read, and write dates with each file. FTP treats the
read and write dates as properties describing the local copy of a file; i.e., when the file was
last read and written in the local file system. FTP treats the creation date as a property of
the file contents; i.e., when the file contents were originally c.reated, not when the local

9-5

9

9-6

FTP

copy was created. Thus, when FTP makes a file on the local disk, the creation date is set to
the Creation date supplied by the remote FTP, the Write date is set to 'now' and the Read
date is set to 'never read. '

Delete/C <RemoteFilE~name>

deletes <RemoteFilena.me> from the remote file system. The syntax of the remote file
name must conform to the remote host's file system name conventions. This Delete is an
irreversible act. It is therefore unwise to use the n*n in the RemoteFilename to specify
deletion of multiple files.

Delete/V <RemoteFil€~name>

asks you to verify that you want to delete <RemoteFilename> from the remote file
system. If the remote file name designates multiple files (the remote host permits n*n or
some equivalent in file names), FTP asks you to confirm the deletion of each file. Type y to
delete the file; N if you don't want to delete it.

Compare/C < RemoteFi1 ename > ... <RemoteFilename>

compares the contents of <remote filename> with the file by the same name in the
local file system. It tells you how long the files are if they are identical, or the byte position
of the first mismatch if they are not.

Compare/S < RemoteFilename > <LocalFilename>

compares < RemoteFilename > with <LocalFilename>. The remote file name must
conform to the file name conventions of the remote host. This version of Compare must
ha ve exactly two arguments.

Rename/C <OldFilenarr.re> <NewFilename>

renames <OldFilename> in the remote file system to be <NewFilename> in the new
file system. The syntax of the two file names must conform to the remote host's file systenl
name conventions, and each file name must specify exactly one file.

9.2.4 Command line errors

Command line errors fall into three groups: syntax errors, file errors, and connection
errors. FTP can recover from some of these.

Syntax errors, such as unrecognized commands or the wrong number of arguments to a
command, cause FTP's co:mmand interpreter to lose its place the command file. FTP
recovers from syntax errors by ignoring text until it encounters another command (i.e.,
another token with a switch).

File errors, such as trying to retrieve a file that does not exist, are relatively harmless.
FTP recovers from file errors by skipping the offending file.

Connection errors, such as executing a Store command when there is no open
connection, could terminate the command.

XDE User's Guide 9

When FTP ~etects an error, it displays an error message and aborts the rest of the
command.

9.3 Tutorial

The following are examples of how to use FTP:

• To transfer files FTP. bcd and FTP. symbols from the Dandelion called Chocolate to
the Dandelion called Vanilla, you might start up the STP server on Chocolate, then
walk over to Vanilla and type:

FTP Chocolate:OSBU' NORTH Retrieve/C FTP.bcd FTP.symbols

Alternatively, you could start an FTP server on Vanilla~ then issue the following
command to Chocolate:

FTP Vanilla Store/C FTP.bcd FTP.symbols

The latter approach is recommended for transferring large groups of files such as
n*. bcd" (since expansion of the "*" will be performed by the Executive).

• To retrieve <System>Network. txt from the server and store it on your disk as
Directory.bravo, and'store RTP.mesa, lb.mesa, and BSPStreams.mesa on
< ORB > with their names unchanged:

FTP server Connect/C drb MyPassword Retrieve/S <System> Network. txt
Directory.docStore/C RTP.mesa lb.mesa BSPStreams.mesa

• To retrieve the latest copy of all • bcd files from the < Me sa> De f s > directory,
overwriting copies on your disk:

FTP server Retrieve/C <Mesa>Defs> '*.bcd

(The single quote is necessary to prevent the Executive from expanding the n*n)

• To update your disk with new copies of all <Mesa> files whose names are contained
in file UpdateFiles. cm, requesting confirmation before each retrieval:

FTP server Directory/C Mesa Ret/>V @UpdateFiles.cm@

• To store all files with extension .mesa from your local disk to <my directory> on
the file server (the Executive will expand "* .me sa" before invoking FTP):

FTP server dir/c <my directory>Store/C * .mesa

9-7

9 FTP

9-8

10.1 Files

10

File Tool

The File Tool provides a means for you to manipulate files on your local disk as well as on
remote file systems. It allows you to retrieve, delete, list, and copy files.

The File Tool is built in. You will find it in your Inactive menu, unless specified elsewhere
in your User. em.

10.2 User interface

The File Tool communicates through a form subwindow, a command subwindow, and a
List Options window. Below is an illustration of a File Tool with the List Options window
displayed:

Host:
Source:
Destin:
Connect:

Retrieve!
Store!

Directory:

local Dir:
Password:

< = •
._verify III

local-list! Copy! local-Delete! list-Options!
Remote-list! Close! Remote-Delete!

Figure 10.1: File Tool window

10-1

10

10-2

File Tool

10.2.1 Form subwindow

The fields that can be used as arguments to a command are listed in the form subwindow:

Bost: is the name of the host to be used for remote files and operations.
The Profile domain and organization are appended to Bos t if
none are specified.

Directory: is the default remote directory.

Source: is a list of files (separated by spaces or returns) for the next
'command to act upon. File names may include
wildcard/expansion characters (see the Wildcard/expansion
jcharacters section). Any files appearing in this field should
jwnform to the syntax of file names for the file system that is the
source of the transfer.

Dest In: is the file name for the destination of a transfer. It should
eonform to the syntax of file names for the file system that is the
destination of the transfer.

LocalDi r: means that all references to the local disk will only occur within
this directory. If the directory is not a complete path name (Le.,
if it does not begin with <), it is assumed to have a < >
prepended.

Connect: , Password: this feature is not implemented.

'. means that in remote commands (Retrieve, RemoteList,
]~emoteDelete), * characters in Source should be treated as if
they were quoted (Le., they should be expanded remotely
i.nstead oflocally). The default is TRUE.

> means uonly store or retrieve the file if the destination exists
and the source is newer than the destination (comparing
<:reation dates)." The default is FALSE.

< means Ofonly store or retrieve the file if the destination exists
and the source is older than the destination (comparing creation
dates)." The default is FALSE.

= means Ofonly store or retrieve the file if the source is the same as
the destination (comparing creation dates)." The default is
F'ALSE. "Not equal" can be specified by turning on both < and
>.

Always

verify

c:ondi tions the above three commands (>, <, =) to also act if
the destination file does not already exist.

requests confirmation for each file transfer. The default is FALSE.

XDE User's Guide 10

10.2.1.1 Wildcard/expansion characters

The File Tool interprets some of the characters in Source as wildcard or other expansion
characters. It uses the same mechanism as the Executive in expanding these characters.
(See the Executive: Command line expansion section for a further explanation of local
wildcard/expansion characters.)

• (single quote):

@ (at-sign):

t (up-arrow):

treats the character following the single quote as if it were not a
file name expansion character. The single quote is removed
from the file list.

takes the file to be an indirect file and uses its contents as a list
of files if @ is the first character of the file name. This list of files
replaces the indirect file in the list of files. Indirect files may
nest.

removes the up-arrow character and the character following it
from the file list.

The wildcard * matches zero or more characters in a file name. For example, *. mesa
matches all file names ending with the extension. mesa in the specified local or remote
directory. I matches any single character in a file name.

The * can also be used to expand across directory boundaries. In the remote case, a * as
the only character of the final subdirectory in the Directory field directs the search down
through all subdirectories. For example, Directory: <Mesa>* and Source: *. bed
matches all .bcd files in or below <Mesa>. In the local case, ** in the Source name
achieves this. For example, LocalDir: < >Tools > and Source: **. arehiveBed
finds all • arehiveBcd files in or below the < >Tools > directory.

10.2.2 Command sub window

The fields in the command subwindow are as follows:

Retrieve!

Store!

Local-List!

Local-Delete!

transfers the file name specified in Source from the remote file
system to the local disk. You may designate multiple files by the
use of '* only to the extent that the remote server supports it. If
Des t • n is blank, the file -name of the copy made on the local
disk is the source file name stripped of all host and directory
qualifiers.

transfers the file name specified in Source from the local disk
to the remote host. Development environment file name
conventions apply to the local file.

lists all files on the local disk corresponding to the name in
Source.

deletes the files specified in Source from the local disk. If for
any reason a file cannot be deleted, that file is skipped and
processing continues with the rest of the files in the list.

10-3

10 File Tool

Remote-List!

Remote-Delete!

Copy!

Close!

List-Options!

lists all files on the remote file system corresponding to the
name in Source. This must conform to the file-naming
,conventions on the remote host. You may designate multiple
files by the use of '* only to the extent that the remote server
:supports it.

deletes the file name specified in Source from the remote file
:system. You may designate multiple files by the use of'* only to
the extent that the remote server supports it.

4::opies the local file in the Source: field to the local file in the
:Dest' n: field. The Copy! command operates only on the local
disk. Ony single files can be specified.

closes any currently open connection, freeing any resources
needed to maintain it.

ereates a List Options window if one does not already exist.

IfVerify is TRUE, then for each file that might be transferred, the following commands are
displayed:

Confirm!

Deny!

Stop!

10.2.3 List Options window

do the operation.

don't do the operation.

don't do the operation and terminate the command. This may
take some time while the termination is negotiated with the
server.

The List Options window is created by the List-Options! command. The properties that
will be displayed, in addition to the file name, by a Local-List! or Remote-List! are
governed by the Booleans in this window. After changing the options, invoke Apply! to
effect those changes. The Abor t! command will restore the options to what they were
before the List-Options;! command was invoked. Both Apply! and Abort! perform
the apporpriate actions and then destroy the List-Options window.

10.3 User .em

10-4

The User. cm, in addition to the standard Ini tialState, TinyPlace, and windowBox
entries, includes:

[FileTool]

SetOptions: A list of the Boolean options to be initialized to TRUE. Any option
not appearing will initially be FALSE. The following desired
options must be separated by one or more spaces and may
appear in any order: QuotedStar Greater Less Equal
J\lways Verify Type Create Bytes Wri te Author Read

XDE User's Guide 10

10.4 Operational notes

The actual file transfer takes place in a background process, so you are free to issue other
commands or even change the values in the parameter subwindow without affecting the
command currently executing. The command subwindow is cleared so that a second
command cannot be invoked while one is under way. Changing a field while the File Tool
is waiting for Conf i rill! will not affect the name of the Des t • n: file; you should abort the
transfer and re-issue the command with the desired field already set. It is important to
remember that the commands are postfix; for example, fill in the Bost: and Source:
fields before invoking the Retr ieve! command.

10-5

10 File Tool

10-6

11.1 Files

11

Floppy commands

The Floppy commands allow you to store and retrieve files on floppy disks using your
workstation's floppy disk drive .. Files larger than a single floppy disk may be written as
several pieces on several disks and later put back together.

The Floppy commands are built in; no additional files are needed.

11.2 User interface

The Floppy commands run in the Executive. The Executive command Floppy. - has several
subcommands, each of which takes arguments. The command line format is

Floppy.- <command> <arguments>.

11.2.1 Common argument definitions

Several of the commands take lists of files as arguments. The following definitions will
simplify the explanations of these commands:

<fileList>consists ofa list of file names to be operated upon, separated by spaces. If a
file name is followed by the /s switch, the next name is used as the destination of the file
transfer.

<wildList > consists ofa list of file names separated by spaces. The names may contain *
and # characters to match multiple files. Remember that * and i must be quoted to avoid
being expanded by the Executive.

11.2.2 Commands

There are eight Floppy commands. They may be abbreviated to any ll1uque initial
substring.

11-1

11

11-2

f'loppy commands

Delete < wildList >

deletes the specified files from the floppy disk.

Erase

removes the entire contents of the floppy disk.

Format <name>/n <number>/f

prepares a new disk for storing data. This command must be used on new disks before any
data can be stored on them. It may abo be used to erase all the data on a disk. The name
and number arguments are optional and may be specified in either order. <name>
specifies the name to be assigned to the floppy; you may include special characters (such as
a space) in a name by enclosing it in double quotes. <number> specifies the maximum
number of files that you may store on the floppy; the default value is 64. The Forma t

command will ask for confirmation if there appears to be valid data on the floppy.

Info

gives information about the floppy. This consists of the name of the floppy, the number of
free pages, and the size of the largest contiguous group of free pages. Since files on the
floppy must be written on contiguous pages, this last number is the size of the largest file
that may be written on the floppy. One extra page is added to each file to hold system information, such as

the creation date.

List/<switches> <wildList>

displays the names of the specified files on the floppy. If the < wildList > is omitted, all
files on the floppy are displayed. The < swi tches > specify additional information to be
included for each file as follows:

Id displays the creation date of each file.

11 displays the length of each file in bytes.

It displays the File.Type of each file as a decimal number.

Iw displays the write date of each file.

Iv (verbose) displays all of the above information.

Read <names>

copies files from the floppy to your rigid disk. <names> may be either a fileList or a
wildList.

Scavenge

checks to see if the floppy disk is in a consistent state and resets a flag if it is. If the floppy
disk is not in a consistent state, the scavenge fails and no repairs are made.

XDE Usel"s Guide 11

Wr i te <number> It <fileList>

copies files from your rigid disk to the floppy. You can get the effect of a <: wildList >
using the Executive's file name expansion. If <number> It is present, subsequent files
will be written on the floppy with File.Type equal to <number> (see the Pilot
Programmer's Manual for a discussion of File.Type). You cannot overwrite an existing tile
on the floppy; you must delete the old copy before writing a new one.

11.3 Partial files

A double-sided, double-density, eight-inch floppy can store about 2200 pages (512 bytes
each) of data. Larger files must be broken into several pieces and written on several disks
and then put back together later. To specify partial files, the Wr i te, Lis t, and Read
commands use an interval notation similar to that of the Mesa language and debugger.
These intervals are appended to the names of files for a Wr i te command and are shown by
the Li stand Read commands. The Read command automatically writes data into the
correct pages of the destination file on the rigid disk. Three forms of the interval are
allowed:

[firstPage .. lastPage] gives the inclusive range of pages.

[firstPage!count1 is equivalent to [firstPage . . firstPage+count-l]

[firstPage] defaults lastPage to be the end of the file.

11.4 Examples

Floppy Format nBackup Disk"ln 100/f

Floppy Write User.cm *.mail *.mesa

Floppy Write HugeFile[O!2000]

Floppy Write HugeFile[2000]

name of disk and number
of files specified.

write files
Executive to
<fileList> .

using
expand

write the first 2000
pages.

write the rest of the
file.

Floppy Write 4290/t Gacha/s Xerox.XC82-0-0.Gacha

Floppy Read Foo.mesa/s OldFoo.mesa

-- prepare a font for a
print server.

retrieve and rename
file.

11-3

11 F'loppy commands

Floppy List/dl I*.mesa list all ".mesa" files
w.ith creation date and
length.

11.5 Error tnessages

11-4

Most of the error messages from the Floppy commands are self-explanatory; however, two
messages need further explanation:

unexpected Floppy.Error[code]

means that the floppy software raised Floppy.Error. See the description of the Floppy

interface in the Pilot Programmer's Manual for the meaning of code; most of the values are
self-expl anatory.

unexpected AccessFloppy.Error[code]

means that the floppy software raised AccessFloppy.Error. The AccessFloppy interface is not
documented, but the valueB of code are self-explanatory.

12

Search Path Tool

The Search Path Tool, which is built into CoPilot and Tajo, is used to inspect and change
the file system search path. The introduction of this section explains how to construct
legal file names. The Mesa Programmer's Manual documents the XDE file system.

~Current Search Path: <Tajo> <Othello>Archive
~ Directories:
~ Pop! Push! Change Working Dir!
j Set! Create Dir! Destroy Dir!

<Othello>
<Othe11o>Archive> -------------11 <Othe 11 o>defs>
<Ta~o>
<TaJo>TIP>

Figure 12.1: Search Path Tool window

12.1 User interface

The Search Path Tool consists of two subwindows: a form subwindow and a log
subwindow.

12.1.1 Form subwindow

Arguments to Search Path Tool commands are either stngle directories or an entire search
path. In either case, it is not necessary to qualify subd~rectories fully if the corresponding
root directory is on the current search path. If subdirebtory names are not fully qualified,
they will be interpreted in the context of the current search path.

12-1

12

12-2

Search Path Tool

CurrentSearchPath:

Directories:

Set!

Create!

Destroy!

Pop!

Push!

Change Working Dir!

is the field where the current search path is displayed.

is the argument field for search path commands. Create!;
Destroy!, Pop! and Push! expect a single directory; Set!
expects a search path, which is specified by on~ or more
directories.

sets the search path to the list of directories appearing in the
Directories: field.

creates the directory appearing in the Directories: field.

deletes the directory appearing in the Director ies: field.

pops the working directory, eliminating it from the current
search path, and leaving the next directory in the search
path as the working directory.

pushes the directory in the Director ies: field to the front
of the current search path.

substitutes the directory in the Directories: field for the
directory in front of the current search path.

Note: Commands for manipulating the search path are also registered by the Executive
(see the chapter on the Executive).

12.1.2 Directories menu

The Directories menu is a list of all existing directories on currently open volumes. It is
automatically maintained and reflects the creation and deletion of new directories, as well
as opening and closing of volumes. When an item is selected from this menu, its value is
pushed onto the current search path.

12.1.3 Search Path menu

The Search Path menu is a list of the directories that make up the current search path.
Selecting an item from this menu removes it from the current search path.

13.1 Files

13

Compare

Compare examines a pair of text files and summarizes the differences between them. The
files can be either local or remote.

Retrieve >Compare. bed from the Release directory.

13.2 User interface

Interaction with Compare is available via the Compp.re Tool window or the Executive
window.

13.2.1 The Compare tool window

The Compare Tool communicates through a message ,subwindow, where information and
error messages are posted; a form subwindow, where tpe Compare! command and options
are listed; and a file subwindow, where the results of tljte comparison are displayed. Figure
13.1 is an illustration of the Compare Tool with the switches set to the default values.

13-1

13

13-2

Compare

~---~D

: File 1: [Igor]<Elliott>User.Cm>User.em
: F i 1 e 2: User. em
: File Size: (small} Delimiter: (CR}
~ Lines For Context= 1 Lines for Match= 3
: Compare!

~---~D

: [Igor]<Elliott>User.em>User.em, User.em
:****************.**
: File 1: Positions 118 - 197

: Clearinghouse: "OSBU North@Xerox"
: FirstSouree: [x: 512, y: 30, w: 512, h: 418]

~**************************************
~File 2: Positions 187 - 302

: Doma in: II OSBU North II
:Organization: Xerox
: FitstSouree: [x: 512, y: 30, w: 512, h: 418]

Figure 13.1: Compare Tool window

13.2.1.1 Form subwindow

The Compare! command and the fields that can be used as arguments are listed in the
form subwindow.

Compare!

lrilel • Pile2:

Jrile Size =

Delimiter:

compares the source files specified in the PileI and Pile2
fields and displays the difference summary in the file
subwindow.

files to be compared.

approximate size in pages of the source files to be compared.
Pile Size is an enumerated type: {small (10 pages),
medium(30 pages), large(50 pages)}o Medium is the
default file size.

Note: Compare currently ignores more than 5120 lines of a
file.

determines whether a statement will be defined to terminate
with a carriage return (CR) or a semicolon (:). For example,
if Del imi ter is set to semicolon, then

index E- index + 1; GOTOexit; (CR)

XDE User's Guide

Lines For Match =

Lines For Context

13.2.1.2 File subwindow

13

will match

index ~ index + I; ~ CR)

GOTOexit; (CR)

Del imi tee is an enumerated type: {CR, semicolon}. CR
is the default delimiter.

minimum number oflines to define a malch. Default = 3.

number of trailing lines to output for context. Default = 1.

The File subwindow displays the differences between the text files specified in the Filel
and File2 fields. The difference file contains the narjnes of the two files being compared
and a list of lines in which they differ. The differing lilnes are reported in context and are
preceded by a character position range that encompdsses the character positions of the
differing line(s) and the adjacent contextual line(s). Nlote that blank and empty lines are
ignored during the comparison. The file associated witH this window is Compare .log.

13.2.2 Compare via the Executive window

Compare also runs in the Executive. Here, a list of !text file pairs may be given. The
differences between each pair of text files are record~d in files created by Compare. The
name of each difference file is obtained by appending I. d if to the name of the first file in
the pair, excluding its extension. If the two files of a Ptir are identical, or if one of them is
empty, no difference file is generated. If the first file ofllU pair is an editor back up file, the $
will be incorporated into the name of the difference file before the . d i f extension.

The difference file contains the names of the two files ~eing compared and a list of lines in
which they differ. The differing lines are reported ~n context and are preceded by a
character position range that encompasses the charadter positions of the differing line(s)
and the adjacent contextualline(s). Note that-blank ana empty lines are ignored during the
comparison.

13.2.2.1 Command line

Compare is invoked by typing a command of the follow~ng form to the Executive:

>Compare /FilePairSwitches filel file2oio ./FilePairSwitches filen-l
filen

13.2.2.2 File pair switches

The optional switches are a sequence of zero or morel letters preceded by a slash(l). Each
letter is interpreted as a separate switch designator ~nd each may optionally be preceded
by - or -- to invert the sense of the switch. # denotes a qecimal number. The switches are:

#m minimum number oflines to define a match) Default = 3.

13-3

13

13-4

Compat'e

#e number of trailing lines to output for context. Default = l.

#b approximate size in pages of the source files to be compared. Default = 30 pages.

5 determines whether a statement will be defined to terminate with a carriage
return (CR) or a semicolon (; 1. CR (/5) is the default delimiter. li'or example, if
Del imi tee is set to semicolon (/ -5), then

index ~ index + 1; GOTO exit; (CR)

will match

index ~index + 1; (CR)

GOTO exi t; (CR)

13.2.2.3 {4~xamples

>Compare filel file2 file3 file4

Compare filel to file2 and file3 to file4 using default switches.

Compare /Sm3e filel file2

Compare filel to file2 using five lines as the criterion for a match and
output three trailing lines for context.

Compare /ISb filel file2

Compare f i leI to f i le2; both files are approximately 15 pages in length.

14.1 Files

14

Find

Find is a program that looks for a pattern in a list of ~les and prints the position within
the file and the line in which the pattern occurs. R~mote files are specified using the
standard [server] <directory> filename notatiOJll.

Retrieve Find. bed from the Release directory.

14.2 User interface

Find is invoked by typing a command of the following fdrm to the Executive:

>Find pattern/global-switch filel/local-'witch ... filen/local-switch
i

where each pattern is a string of characters not con~aining a blank, tab, or slash (/). If
any of these special characters is to appear within a p~ttern, the pattern must be enclosed
within double quotes. Certain other characters have s~ecial meanings within a pattern, as
described below.

Note: Because the Executive recognizes *, #, ?, TAB,l CR, t, @, ; and' to have special
meaning, any of these characters within patterns or remote file names must be preceded
by a single quote (see the Executive chapter).

14.2.1 Switches

If there is more than one pattern, each but the first must be given a switch (either /c or
I-c), since filel is taken to be the first string, follo~ing the first pattern, that has none
of the pattern switches listed below. The pattern switches are:

c Ignore upper- and lower-case distinction when pattern matching (default FALSE).

This is the only switch that may be negated.

i Interpret the string not as a pattern, but as a set of characters to be ignored
throughout the input file{s). For example, -Ii would cause' all hyphens to be

14-1

14

14-2

Find

ignored, thereby letting you search for one or more words that mayor may not be
hyphenated within the files. The default is that no characters are ignored.

o Interpret the string not as a pattern, but as the name of a file in which to write the
matches. The test of the command line-up through the first file name is included at
the beginning of the output file. If the file already exists, overwrite it. The file
named must be local.

14.2.2 Switches on file names

h Use this name as a default host name for all subsequent file names, until either
the end of the command is reached or another default host is specified. If this
switch appears without a host string, no default is applied to subsequent names.

d Use this name as a default directory name for all subsequent file names, until
either the end of the command is reached or another default directory is specified.

14.2.3 Special characters

Within a pattern, the following special interpretations apply. All but the last also apply
within the text accompanying a I i switch.

[xyz] Matches any characters x, y, and z (or X or Y or z, if contained within a pattern
that has the Ie switch).

• Matches any singh~ character.

Matches any uwhite space" character (CR, LF, TAB, SP, or FF).

-x Matches any character except x, where x can in turn be one of the special forms.
For example, - [0123456789] matches any non-digit, and -I matches anything
except a white spa<:e character.

=x Matches the character x, even if x is one of these special characters. Thus = [
matches a left bracket, and == matches a single equals sign. Also, =Q matches (Q'
but not (q', even if the pattern is given a Ie switch.

\n,ete. Matches a single character as defined for Mesa strings. Thus, \n matches a CR, \t
matches a TAB, and so forth. If the character following the \ is not one of the
recognized forms, the \ has the same effect as an =.

x* Matches any number (including zero) of repetitions of x. Again, x can be one of
these special constructs; thus, - [0123456789] * matches zero or more non-digits.
Note that only sin~~le-character patterns can be repeated; there is no way to match
uzero or more iterations of the string (abc'."

Mesa User's Guide 14

14.3 Examples

>Find systemuser.cm [server] <doc>spiffy.cm

Print the lines containing "system" (ignoring case distinction) and the
corresponding character positions within the local files user. cm and within the
remote files [server] <doc> spiffy.cmand [s:erver] <doc> crufty.cm.

>Find OPEN/-C HackOpens/o Oldhack .mesa Newhack .mesa

Determine the lines and positions within Oldhack. mesa and Newhack. mesa that
contain the pattern "OPEN" (all capitalized) and write them to the file HackOpens.

>Find": CARDINAL" DudleyDriver .mesa

Print all declarations oflong and short cardinals within DudleyDr i ver. mesa.

>Find Allocate'*NodeStorage*.mesa [server] <defs> I*.mesa

Print the lines and character positions matching the pattern Allocate-any thing­
Node from the local files matching Storage* • me$a and the remote files matching
[server) <defs > 1*. mesa. Note that this pattern would in fact produce a match
against something of the form

AllocateStuff[zone: myZone, node: myNode);

or even

AllocateBins[•••];

< <several lines of stuff> >
FreeNode [•••]

The position and line containing the end of the match are printed. If what you really
wanted was to see calls to procedures named AllocateN ode, you could use the
pattern Allocate-= [I *Node.

>Find .NEW/-C .FREE/-C MakeNode/-c FreeNode/-c Garbagelmpl.mesa

Show all heap allocations and de allocations with Garbagelmpl. mesa

>FindRECORD-';'*FooType MumbleDefs.mesa Mumblelmpl*.mesa

Show all record declarations that contain an element of type FooType. (You might
miss some ifa record declaration includes a comment containing a semicolon.)

14-3

14

14-4

Find

>Find IIi -[=[==,+-] "-: e BadGuys/o [server] <StarSouree> I·.mesa

Produce a file containing all instances of non-local string literals in a set of remote
files, assuming that all string literals are preceded by a left bracket, an equals sign,
a comma, left arrow, or a colon, possibly with some intervening white space. The
pattern says to seareh for a quote character not preceded by any of those characters,
and ignoring white space, thereby matching only closing quotes. Thus, the result is
to find closing quotes that are not followed by (L' or T. (The Ie switch is used to save
having to remember whether lower-case T is accepted by the compiler.) Note that
this pattern will overlook strings in which the last non-white space character is a
left bracket, equals sign, etc. (The syntax has its limits.)

15

File window

A File window is used to view and edit a text file.

15.1 Files

The ability to create File windows is built into the Xerox Development Environment.

15.2 User interface

The File window interacts through a text subwindow. It can be opened by choosing
FileWindow in the ExecOps menu. The ExecOps menu is available from the root window,
outside all other windows. The window name frame contains useful information about the
state of the File window. For example, when the File window comes to the screen, the
window name frame says Empty Window. When a file is retrieved into the empty window,
the text in the window name frame changes to display the name of the file.

15.2.1 DebuggerOps menu

The DebuggerOps menu belongs to a File window. The DebuggerOps menu contains the
following commands. (For more information, refer to the Debugger chapter.)

Attach

Break

Clear

Trace

tells the debugger to ignore the time stamp in the source file when setting
breaks.

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC,

a breakpoint is set on the entry to the procedure; if you select RETURN, a
breakpoint is set on the exit of the procedure; otherwise a breakpoint is set at
the closest statement enclosing the selection.

clears the breakpoint or tracepoint at the specified location.

sets a tracepoint at a specified location. Confirmation is given by moving the
selection to the place at which the tracepoint is actually set.

15-1

15

15-2

File window

15.2.2 FUeWindow menu

The FileWindow menu belongs to a File window. The commands available in the menu
depend on the state of the File window. The File window may be in one of three states:
empty, non-editable, and editable. The menu commands available for each state and a
description of each command are:

Empty: Create Destroy Load Store Time

lion-Editable: Crleate Destroy Edit Reset Load Store

Editable:

Create

Destroy

Edit

Load

Reset

Save

Store

Crleate Destroy Reset Load Store Time Save

makes a new File window at the place selected by clicking POINT. There is no
explicit maximum number of File windows.

removes the File window in which the command was invoked. When you
invoke DestJ~oy, a symbol of a mouse appears. Clicking POINT confirms the
command; ADJUST aborts it. Invoking Destroy will not remove a File window
when a file is being edited.

enables editing of the currently loaded file. The Ed i t command is available
only if a file has been loaded into the window. The window name frame
changes to rHad Editing: filename. A scratch file, filename$$, is
created during the editing as the edit log; this file is not automatically
deleted when the editing has been completed.

displays a fih~ in the window, using the current selection as a file name. An
accelerator for loading files is provided: typing the DOlT key in an empty
window caus€!s the file named by the contents of the window to be loaded. If a
file name ext,ension is not provided, the system first looks for the file name
without the Hxtension; if this is not found, it looks for filename.Mesa,
filename.Config, then filename. em. The Load command fails if the file is
not found, and the display blinks. Load will not work while you are editing,
as you would lose your edits.

resets the window back to a previous state; confirmation is required only if
you are editing. If you have been editing, all edits to the file are discarded
and the original file is left in the window. If the file loaded in the window is
not editable, then the File window is set back to an empty window.

stores the contents of the window that is being edited to its current file;
confirmation is required. A backup "$" file is created that is a copy of the
'unedited version. After the Save command completes, the File window is no
longer editable. This command is available only when the file loaded in the
window is editable.

creates a file whose name is the current selection and stores the contents of
the window to it; confirmation is required. After the file has been stored, the
file is not editable.

XDE User's Guide 15

Time replaces the current selection with the current date and time.

Note: An empty File window can only contain up to 60,000 characters.

15.3 User.em

The following User. em entries are available to create initial File windows and for
symbiote initialization. Typical entries for the System and File Window sections are:

[System]

FileWindow: [x: 0, y: 457, w: 512, h: 321] []

FileWindow: [x: 512, y: 60, w: 512, h: 448] [x: 300, y: 778]

FileWindow: [x: 512, y: 30, w: 512, h: 247] [x:904, y: 778] Calendar/t

[FileWindow]

Menu: Create Edit Load position Reset Save Split Store Time Wrap

SetUp: Always Menu Edit

F i leWi ndow: An arbitrary number of File window entries is permitted in the System
section. Each specifies a file window to be created. The first set of
bracketed values indicates the position of the window when it is active. x
and yare the horizontal and vertical bitscreen coordinates of the upper
left corner of the window. wand h are the width and height of the window
in bitscreen coordinates. Any or all of these fields may be omitted, in
which case they have the following default values: [x: 0, y: 0, w: 512,
h: 400]. The second set of bracketed values indicates the position of the
window when it is tiny. x and yare the horizontal and vertical bitscreen
coordinates of the upper left corner of the window. Any or all of these
fields may be omitted, in which case they have the following default
values: [x: 0, y: 0]. The next item in the line, which is optional, is the
name of the file to be loaded into the window. If there is a switch on the
file name, it specifies the initial state of the window (a for active, t for
tiny, and i for inactive). Note that you must always specify the active box
and tiny box position, even if they are defaulted by specifying [] .

Menu: specifies the commands that will be available in an editable menu
symbiote.

15-3

15 File window

SetUp:

15-4

specifies when symbiotes are to be applied and which are desired. The
entry can contain either the keywords Always or Initial, Edit and
Menu. The meanings of the keywords are:

Initial

Always

Edit

Menu

Add specified symbiotes to all existing File windows.

Initial plus add specified symbiotes whenever a File window
is created.

User wants an edit symbiote.

User wants an editable menu symbiote.

16.1 Files

16

Print

Print converts text files to Interpress masters for printing and sends the result to a
printer, such as an 8044 printer. Switches in the Print program allow you to specify how
the output will look or to produce a master file without sending it to a printer.

Retrieve Pr int. bed from the Release directory. You will also need Fonts. wid ths from
the Fon ts directory.

16.2 User interface

Print runs in the Executive. The command line format is Print
<filenamel>/switch <filename2>/switch <filename3>/switch The
special filename $$$ instructs Print to print the current selection rather than a file. This
is useful for printing parts of your debugger log or other small pieces of text.

Files are converted and sent to the printer; multiple files are batched and sent together to
the printer. The Interpress master is written on the file Print.serateh$. If the
transmission to the printer fails or is aborted, you may save this file and send it later to
the same or a different printer. You may specify remote files using normal remote
filename syntax ([Host] <Directory>File.ext). BQth local and remote file names
may contain asterisks (*) to permit expansion to all file names that match the string
provided. An * must be preceded by a quote if you are printing remote files instead of local .
ones.

If a local file specified in the command line is already an Interpress master, it will be sent
to the printer without further conversion. Remote files are not checked for being
Interpress masters, so instructing Print to print a remote Interpress master will not
produce what you want.

16-1

16

16-2

Print

16.2.1 Switches

Lo<;al switches (Le., those appended to an input file name) affect the printing of that file
only. Global switches affect all subsequent input files.

/a prints headings on each page (default true; -a disables).

/z prints footings on each page (default true; -z disables),

<host> /h directs the output to the print server named <host> for the files that
follow. The server name is qualified by your default domain and
organization (from the ProfileTool), if necessary.

<output> /0 creates an Interpress master in < output> (extension defaults to
. interprl!ss) and disables transmission to the printer.

 /f changes the font to for the files that follow. The default fonts are
Gacha8 in portrait mode and Gacha6 in landscape mode. (See the next
section on Naming fonts.)

/e <n > sets number of copies to be printed to <n > (default 1).

/t <n> changes the tab stops to <n> spaces (default 8).

/1 <n> specifies landscape orientation (long edge of paper horizontal). <n> is the
number of eolumns (default 2).

/p <n > specifies portrait orientation (long edge of paper vertical). <n> is the
number of eolumns (default 1).

/s <n> specifies number of sides. <n> can be 0, 1, or 2; 1 and 2 request single­
and double-sided printing respectively; 0 means let the printer decide how
to print the! document.

Examples:

Print filename -- produce a master for filename in
the default mode and send it to the
default printer.

Print filename/l print filename in landscape mode~

/1 is a local switch.

Print /1 filenamel f.ilename2 print two files in landscape mode.
/1 is a global switch.

Print filenamel filename2/13e3 C1assie10BI/f filename3/1
-- print filenamel in the default
mode; then three copies of filename2
in three-column landscape; then one
copy of filename3 in two?column
landscape using font ClassiclOBI.

XD E User's Guide 16

Print $$$/p -- print the current selection in
portrait mode.

16.2.1.1 Naming fonts

Font names consist of three parts: family, point size, and face. Families are spelled out,
point sizes use digits, and faces are encoded. Print has no knowledge of which fonts are
available; contact your System Administrator to find out what fonts are available on your
printers.

Examples:

Families: Classic, Modern, Gacha, Titan

Point size: 10

Face: B (bold), I (italic), B I (bold italic)

Thus Class iclOBI specifies the 10 point size of the Classic font with bold italic face.

16.2.2 Defaults

The following defaults may be overridden by switches or User. cm entries:

I-column portrait

Font = Gacha8

1 copy

Headings and footings printed on each page

TAB stops set at multiples of8 spaces (Note: space width is a function of the font)

Use printer's default for number of sides

Some settings that cannot be changed are:

Portrait mode margins = t inch on all sides

Landscape mode margins = t inch top, t inch others

Space between columns = t inch

Heading and footing text = file name, creation date, and page number

Page number location = at right margin when heading or footing specified.

16-3

16 Print

16.3 Formatting

Print automatically determines line, column, and page breaks (only St X 11 inch paper is
supported). Long lines are broken at whit~ space, and the continuation line is indented the
same as the original line up to a maximum of half the column width. To force a new
column, put a form feed character (CONTROL-L) in your text. Print will begin each file on a
new sheet of paper. Note that files formatted for single-sided printing and later printed on
both sides may not start on new sheets.

16.4 U ser.cm entries

16-4

Print initializes several of its parameters from the [Hardcopy] section of your User. em.

[Hardcopy]

Interpress: "My Printer" -- name of your Interpress
printer; quotes are necessary if
the name contains spaces.

PrintedBy: Deliver to $, room 123 -- This string is sent to the
printer to appear on the banner
page. The "$" is replaced by
your name (from the
ProfileTool); the remainder of
the text is literal.

LandscapeFont: Gacha5

PortraitFont: Gacha8

Orientation: Portrait

Columns: 1

-- default font for landscape
printing.

-- default font for portrait
printing.

or Landscape

number of columns in your
default orientation.

Your default domain and organization from the ProfileTool will be used to qualify the
name of your printer, ifne<:essary.

III

System-building tools

The chapters that follow describe each of the system-building tools in detail.

[11.1 Program-building tools

The Binder combines modules and previously bound configurations to produce a new
configuration. The output of the Binder is a binary configuration description (object file)
that may be loaded into a running system or later be input to the Binder.

CommandCentral is a tool that supports the compilelbindlrun program development loop.
It permits you to compile and bind programs on a development volume and run them on a
client volume.

The Compiler translates Mesa source files into corresponding object files. An object file
contains the executable code for the module, tables for use by the Binder and Loader, and
symbols for use by the Debugger.

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program text to reflect its logical structure.

MakeBoot transforms an object file containing Pilot and its client into a memory image
that can be run on any machine conforming to the Mesa Processor Principles of Operation.
The resulting boot file is later boot-loaded to get it started.

The MakeDLionBootFloppyTool creates Dandelion-bootable floppies. The
MakeDoveBootFloppyTool creates 60S5-bootable floppies.

The Packager explicitly groups procedures together into swap units.

111.2 Program analysis tools

The Debugger is Sword, the interactive Mesa debugger. ProcessControl is a companion
tool used to freeze processes for inspection.

The DebugHeap aids debugging by showing the layout of memory.

I II -1

III

III-2

System- building tools

The IncludeChecller examines a collection of local or remote source and object files for
consistency. It produces an output listing that gives a compile and bind order for the files
and the dependencies among them. Inconsistencies are flagged. ~he IncludeChecker will
also generates compile and bind commands to correct any inconsistencies.

The Lister produces listings of information in object files, such as dates of the definitions
tiles used by an object ti Ie and cross-reference listings of procedure calls within the object
file.

Performance Tools are four tools that aid in the study of the behavior of :vIesa programs:
the CountPackag'e, Perfl)ackage, Spy and Ben.

Spy can measure the amount of time spent executing in a module, certain procedures,
or even source statements within a procedure. It is especially useful for top-down
analysis of a program; thus, Spy can be used to first identify the hottest modules, then
the hottest procedures within those modules, and so forth.

The CountPackage gathers information on the flow of control between groups of
modules.

The PerfPackage allows you to collect timing and frequency statistics of program
execution.

Ben produces a list of the page faults that occur during some interval of client activity
and tells what caused the fault to occur.

The Statistics tool gathers statistics about Mesa source and object files, such as number of
characters and frame size.

17.1 Files

17

Binder

This chapter discusses the operation of the Binder, including its switches and error
messages. The Mesa Binder combines modules and previously bound configurations to
produce a new configuration. The output of the binder is a binary configuration
description (object file) that may be loaded into a running system or processed by a later
invocation of the Binder. The configuration description language C/Mesa is used to
describe desired configurations to the Binder. It is documented in the Mesa Language
Manual.

To understand the Binder options described below, it is necessary to understand
something about how configurations exist in files. The object file produced by the Binder
contains a compiled description of the configuration; it may also contain copied code or
symbols. For each module instance in the configuration, the object file specifies the
location of the code and symbols by file name (and version stamp), starting page, and
number of pages. Thus the code and symbols for a configuration may be scattered over a
large number of files. The default is for the configuration's code to be copied to the object
file, while its symbols are left in the original compiler object files. It is also possible to put
the object file, the code, and the symbols in the same file (this is the way object files are
generated by the Mesa compiler).

Copying the code or symbols for a configuration's modules is controlled by switches and
parameters on the Binder's command line. Code is usually copied into the same file
containing the object file. It is also possible to copy code into a file other than the object
file, but this is not very useful. Symbols may be copied into the object file, but they are
usually written to a separate file.

It is a good idea to package the symbols of a released subsystem into a separate file, so that
they will not take up disk space when they are not in use. This also makes it easier to keep
track of a consistent set of symbols for all of the modules. Because the Binder and Loader
deal only with interfaces, symbol tables are not required for binding or loading. Of course,
they are required for meaningful debugging.

Retrieve Binder. bed from the Release directory.

17-1

17 Binder

17.2 User interface

17-2

The Binder runs in the Executive and in Command Central. A summary of the Binder's
commands is written on the file Binder .log. The error and warning messages from
binding, say Foo.eonfig, are found on Foo.errlog (unless the Ie switch is in effect;
see the Command line section below).

17.2.1 Command line

The Binder accepts a seqU(~nce of one or more commands, each of which usually has one of
the following forms:

inputFile/switehes

outputFile <E- inplltFile/swi tehes

[keYI: filel, .•. keYm: filem] <E- inputFile/switehes

In the third form the valid names for keYI are code, symbols, and bed. The string
i npu tF i I e names the file containing the text of the configuration description, and its
default extension is • eonf ig. There is a principal output file, the name of which is
determined as follows:

If you use the first command form, it is i npu tRoo t. bcd, where i npu tRoo t is the
string obtained by deleting any extension from i npu tF i Ie.

If you use the second form, it is outputFile, with default extension. bed.

If you use the third form and keYI is bcd, it is f i leI, with default extension. bed;
otherwise, it is obtained as described for the first form.

If the Binder detects any errors, the principal output file is not written, and any existing
file with the same name is deleted. You may also request that the code or symbols of the
constituent modules be copied to an output file by specifying the Ie switch or by using the
third command form with keyword code. Code is copied to the principal output file unless
you use the third form and keYI is code, in which case the code is copied to a file named
filel, with default extension. code.

You may request copying of symbols by specifying the Is or by using the third command
form with keyword symbols. Symbols are copied to the file named as follows:

If you use the first command form, it is i npu tRoo t • s ymbo 1 s.

If you use the second form, it is outputFile, with default extension. symbols.

If you use the third form and keYl is symbols, it is filel, with default extension
• symbols; otherwise, it is obtained as described for the first form.

Unless the Ie switch is in effect, any warning or error messages are written on the file
outputRoot.errlog, where outputRoot is the string obtained by deleting any

XDE User's Guide 17

extension from the name of the principal output file. If there are no errors or warnings,
any existing error log with the same name is deleted at the end of the bind.

When more than one Binder command is given on the command line, the commands are
separated by semicolons. Usually the semicolon can be omitted. It cannot be omitted,
however, if the second of the two successive commands is a global switch. For example:

>Binder /cs MySystem ' ; /c AnotherSystem

The semicolon can be left out between two successive identifiers (file names or switches),
or between a] and an identifier. Any required semicolon in an Executive command must
be quoted.

17.2.2 Switches

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or - to invert the
sense of the switch.

The Binder recognizes these switches:

c copy code (default)

e merge the. er r log file into the Binder. log file

p pause if there are errors, or if there are warnings and the /w switch is specified

s copy symbols

w also pause on warnings if /p is specified (default)

Global switches are set by a command with an empty file name. Each of the switches listed
above can be specified as a global switch. Note that unless a command to change the global
switch settings comes first in the sequence of commands, it must be separated from the
preceding command by an explicit semicolon (see Examples section).

The /p switch is unusual in that its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means report (p) or don't report (-p)
errors or warnings to the calling Executive. The Exe¢utive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local switch,
it specifies pausing just after compiling the specified file if that file or any preceding file
contained errors; moreover, any remaining commands are ignored. The local default is not
to pause but to continue with the next input file.

17-3

17 Binder

17.2.3 Ass'ociating files with modules and configurations

The Binder lets you cOl\trol the association between file names and the modules or
configurations included in a configuration when you call it. This is done by specifying a
list of component identifier-file name pairs inside brackets after the input file name. Such
a list can be thought of as augmenting or replacing a DIRECTORY clause in the configuration
description. For example, the command line

>Binder MySystern[Test: UnpackedTest]

will bind MySys tern. conf ig using the previously bound configuration Te s t that is
stored on the file UnpackedTest. bed.

A command that includes one of these optional component-file name lists will have one of
the forms:

inputFile[idl: filel, ••. id n : filen]/switches

outputFile ~ inputFile[idl: filel, ••• idn : filen]/switches

[keYI: filel,
filen1/switches

keYrn: filern1 ~ inputFile[idl: filel, .•. idn :

The module or configuration named by idl in the configuration description will be read
from the file f i leI. The extension. bed is assumed for the file names.

17.3 Examples

17-4

>Binder MySystern

Read MySystern. eonfig and write the resulting object file on MySystern. bed. Copy
all code segments to lflySys tern. bed. Symbol segments are not copied, but are left in
the original input files. This is the normal mode because the loader will only load
object files that have code copied into them.

>Binder MySystern/-e

Read MySys tern. eonf ig; write MySys tern. bed. Leave all code and symbol segments
as they were in the input files. This might be done if an intermediate level
configuration were being bound, and code or symbols were going to be copied later
when a higher-level configuration was bound.

>Binder MySystern/s

Read MySystem. eonfig and write the resulting object file on MySystern. bcd. Copy
all code segments into MySys tern. bcd, and copy all symbol segments into
MySystern. symbols: By packaging all of the symbols in a single file, you minimize
the risk of getting an incorrect version of some symbol table. This is a possible
distribution mode, if debugging will be required.

XDE User's Guide 17

>Binder MySystem[SubSystem: ExperimentalSubSystem]

Read MySys tern. conf ig; write MySys tern. bcd. Read the included subconfiguration
SubSystem from the file ExperimentalSubSystem. bcd.

>Binder MySystem +- NewSystem.config/s

Read NewSystem.config; write MySystem.bcd. Copy all code segments into
MySystem. bcd and all symbol segments into MySystem. symbols. Commands with
"left-hand sides" allow renaming of the output (bcd, symbol, and code) files.

>Binder [bcd: MySystem.bcd, symbols: MySystem.bcd] +- NewSystem/c

Read NewSys tern. conf ig; write MySys tern. bcd. Copy all code and all symbol
segments into MySys tern. bcd.

>Binder SubSys +-MySystem/cs

Read SubSys tern. conf ig; write SubSys. bcd. Then read MySys tern. con fig; write
MySystem.bcd; copy code into MySystem.bcd and symbols into
MySystem.symbols.

>Binder /-c SubSystemA ':/c SubSystemB MySystem

Bind SubSystemA, SubSystemB, and MySystem, but only copy code for the last two
configurations. Note that a semicolon is required before the second global switch.

17.4 Error messages

Ifpossible, the Binder will indicate the offending source line and configuration name with
each error. Some of the common error messages are:

Errors detected, Bcd not written

The Binder has produced no output.

Exported type clash

Only one implementation of an opaque type may appear in a configuration. This is
true even if the interface defining the opaque type is uhidden" in a nested
subconfiguration by not being exported by that subconfiguration.

Fatal Binder Error

Fatal errors are reported in a fashion similar to the Compiler; the signal and message
are given in octal, and should be included in any change request reporting a fatal
Binder error.

file could not be opened to copy symbols

Warning: When copying symbols, the file containing the symbol segments for a module
could not be opened. The copied symbols file will still be produced, but will not

17-5

17

17-6

Binder

contain symbols for the module; thus limited debugging will still be possible using the
symbols file.

file is referenced in two versions: (versionl) and (version2)

Warning: Two different versions of the named file are referenced by the modules
being bound. This will produce an error if you attempt to match the two versions as
import and export.

id does not match the module or configuration name in the object
file

The identifier used to name a module or configuration in a configuration description
must exactly match (including capitalization) the name used inside that module or
configura tion.

id is not valid as a CONTROL

A control list item must be a module or subconfiguration in the configuration.

item from interface is unbindable (imported by module)
(item nnn) from interface is unbindable (imported by module)

Warning: An item from interface has no implementation. If symbols for the
importer or the interface can be found, the item's name is printed. Otherwise, the
item's interface numbc~r is printed, and you can count (from 0) the interface items in
interface or use the Lister's Interface command to get more information.

interface is not imported by any modules
interface is not exported by any modules

A configuration must tell the truth about what it IMPORTS and EXPORTS; i.e., everything
imported or exported by a configuration must actually be imported or exported by a
contained module or configuration.

interface is undeclared

An attempt is being made to import the interface (or program) interface, but
interface is neither imported from a higher-level configuration nor exported by any
module or configuration at the same level.

interfacel (versionl) is required for import, but only interface2
(version2) is available

interface2 is available for import (or being passed as a parameter), but the importer
requires interfacel. The source line shows the importer.

XDE User's Guide 17

interfacel (versionl) is being exported, but interface2 (version2)
is required

The source line shows an exporter of interfacel who is trying to assign the interface
(implicitly or ~xplicit1y) to interface2. This may be a version problem (if the
interface names are the same) or an error in an assignment.

The right hand side exports more interfaces than required by the
left hand side.
The left hand side requires more interfaces than exported by the
right hand side.

An explicit list of interfaces or module instances was given as a result or argument
list, and either too few or too many were given.

17.5 Current limitations

The DIRECTORY clause in a configuration description should be used only when the name of a
module or configuration differs from the name of its file. Do not make DIRECTORY entries for
interface (DEFINITIONS) files.

The output object file can be renamed; the symbols file cannot (since the object file
contains the name of this file in its internal tables).

Multiple instantiations of nested configurations are not implemented. You can get around
this by binding the nested configuration in a separate step.

17-7

17 Binder

17-8

18.1 Files

18

CommandCentral

CommandCentral is a tool that supports the compileibindJ/run program development loop.
It permits you to compile and bind programs on a development volume and run them on a
client volume. Because the functions provided by CommandCentral overlap with those of
the Executive, also see the chapter on the Executive.

CommandCentral is built into Tajo, so no files need be retrieved ..

18.2 User interface

CommandCentral interacts through a message subwindow, a command subwindow, and a
log subwindow.

Compile! Bind!

-;b;' .'

~ Abort!

Run! Go! Options!

Compiler Switches: e
Bi!nder Switches: e
Client Volume: Taja
Client Switches: S

Figure 18.1: Command Central tool window

18-1

18

18-2

Command Central

18.2.1 Message subwindow

The message subwindow is used to display error and status messages.

18.2.2 Command su bwindow

The command subwindow contains the following fields and commands:

Expand!

Compile!

Bind!

Run!

Go!

Options!

Compile:

Bind:

Run:

expands any file names listed containing #, *, or @ in the usual way (i.e.,
matching one character, * matching zero or more, and @ f i 1e@

expanded to the contents of f i 1e).

invokes the compiler, taking its arguments from the Compile: field.

invokes the binder, taking its arguments from the Bind: field.

takes a list of file names with switches from the Run: field, transfers the
corresponding files to the client volume, and (possibly) runs them.

Fine point: The commands Compile! Bind! and Run! each run in a separate process.

This means that for example, invoking Compile! immediately followed by Bind! will

run the compiler and binder simultaneously, which is probably not what is intended. The

Go! command should be used to sequence through compilation, then binding, then

execution.

executes the Compile!, Bind!, and Run! commands, in that order. If a
command fails, the subsequent commands are not executed.

Fine point: The command line to a subsystem is copied when the subsystem starts. The

contents of the command lines can be changed until the corresponding system starts

running, e.g .. , the Binder line can be edited while the compiler is running.

allows switches to be specified for the Compile!, Bind!, and Run!
commands (see the chapters on the Binder and Compiler). The client
volume may also be specified in the Options window. Each of these items
override those taken from the User. em or the default if no User. em

exists. The Boolean item UseBaekground, if set to TRUE, runs the
Compiler and Binder at background priority.

contains a list of file names and optional compiler switches. The file
names and switches are passed directly to the compiler as if they had come
from the command line of the Executive.

contains a. list of the file names and optional switches that are passed as
input to the binder.

is the input field used to list the files to be run on the client volume. The
following switches are recognized by the Run! command:

a ~tart with active initialToolStateDefault rather than inactive .
. Default FALSE.

e Qopy from development volume, default TRUE

e ,m.xecutable (I.e., load the object file), default TRUE

XDE User's Guide 18

LogO

18.2.3 Log su bwindow

S Qtart after loading, default TRUE

1 10ad with code links, default FALSE

d Qebug; call debugger after loading, default FALSE

The default is to copy, load, and start :each file named. (The default
extension is .bcd; files without extensiorts may not be used.) To copy but
not load a file, use /-e (Le., don't execute). To run a file already on the
client volume, use /-c (Le., don't copy).

allows you to explicitly load the desired . log file into the bottom
message subwindow. The' .log file is salected by depressing the menu
button over the tag and selecting either c(i)mpi ler or binder.

After completion of a Compile or Bind, the bottom subwindow is loaded with the
corresponding .log file. Any time Compiler .log or Binder .log is changed (e.g., if you
edit one of them and save it), it will be loaded into the window. Also, if the current search
path changes to one not containing Compiler .log or Binder. log, the log subwindow
will automatically be cleared if it contains one of the log files.

18.3 Communication between client and development volumes

When the Run I command is invoked, CommandCentral creates a file in the root directory
of the client volume that consists of a list of the file names (converted to file ids), and
switches that were on the Run line. When the client volume is booted, a check is made in
its root directory, and if CommandCentral's run file is found, the listed object files will be
executed. Once CommandCentral's run file has been read, the client volume destroys it, so
that subsequent booting of the client volume will not cause a re-run of the same programs.

Since the run file created by CommandCentral is not a development environment file, it
cannot be accessed, deleted, or read from the development environment, but instead is
fully maintained by the client volume and CommandCentral. If for some reason a boot
initiated from CommandCentral were aborted or interrupted, the client volume may be in
an inconsistent state in relation to the existence of CommandCentral's run file. The next
time the client volume is booted, it mayor may not produce the desired results, depending
on whether the file actually got created. For example, if the file were created before the
interrupt, and the client volume is subsequently booted from the HeraldWindow menu, an
attempt will be made to execute the object files in the run file most recently created by
CommandCentral. This is not what one expects when booting from the HeraldWindow. If
the client volume is rebooted from CommandCentral, a check will be made to see if the file
already exists. Since it does in this example, no attempt will be made to create a new one,
so the old one will be used. If the list of files in the Run line did not change and at least one
file in the list was re-compiled, the results will be particularly confusing since the file id
recorded in the previous run file on the client volume will not match the id for the latest
object file on the development volume.

18-3

18 CommandCentral

18.4 User.em

18-4

The User. cm fields used by CommandCentral are:

[Executive]

Compiler:

Binder:

CompilerSwitches:

BinderSwitches:

ClientVolume:

ClientSwitehes:

CodeLinks:

UseBaekground:

Name Of Compiler (default extension is . bcd)~
default is Compi ler . bed.

NameOfBinder (default extension is • bed); default is
Binder. bed.

default global switches for compiler.

default global switches for binder.

VolumeLabelString; default is first volume of type
below CommandCentral's system volume.

Pilot switches used for booting client volume.

TRUE I FALSE for compilerlbinder loading~ default TRUE.

TRUE I FALSE if TRUE, the compiler and binder run at
background priority. Otherwise, they run at normal
priority. Default FALSE.

The name of the development volume is set in the client volume User. em:

[System]

CommandVolumeName: VolumeName

If no development volume is specified, the volume is defaulted to CoCoPilot if the client
volume is of type debugger, and to Copi lot otherwise.

CommandCentral's window size, tiny place, and initial state can be set as for any other
tool:

[CommandCentral]

WindowBox:

TinyPlaee:

InitialState:

19.1 Files

19

Compiler

The .\tIesa compiler translates .\tIesa source files into corresponding object files. An object
file contains the executable code for the module (if any), a binary configuration description
(for use by the binder or loader), and a symbol table (for inclusion by other programs or for
use by the debugger). By convention, an object file has a name with extension .bed. .

The Mesa Language Alanual describes the syntax and semantics of the Mesa source
language. This chapter describes the operation of the Compiler, including the compile-time
options and messages.

Retrieve Campi ler. bed from the Release directory.

19.2 User interface'

The Compiler runs in the Executive and takes commands from the command line. The
simplest form of command is a list of file names, such as

>Compiler sourcefilel sourcefile2 ... sourcefilen

If you supply the command sourcefile with no period and no extension, the Compiler
assumes you mean sourcefile. mesa.

During compilation, the Compiler gives feedback by giving the name of the file, any non­
default switches, and a dot at the beginning of each major pass (six dots in all). It also
shows code size if successful, or number of errors/warnings if not.

The Compiler reports the result of each command on the file Campi ler. log with a
message having one of the following forms (each * is replaced by an appropriate number;
bracketed items appear only when relevant):

Command: Iswitches

19-1

19

19-2

Compiler'

Command: file
file. mesa
[lines: *, code: * links: *, frame: *, time: *]

Compilation was sllccessful. The object tile is file.bed. For a DEFINITIONS module, the code
and links are not meanin~~ful and are omitted. Otherwise, "links" is the number of items
imported by the module, and "frame size" is the size of the global frame (in words),
exclusive of the links. A third line appears only if warning messages were logged. The
Compiler issues warnings for certain constructs that are technically correct but
nonsensical or likely to be unintended. Warnings do not prevent writing a val id object tile,
but you should usually investigate them.

file. mesa -- aborted, * errors [and * warnings] on file. err log

Compilation was unsuccessful. You will find the error messages (and warning messages, if
any) in the indicated file. If the errors were detected during the early phases of
compilation, no object file was written (and any existing object file with the same name was
deleted),

File error

The Compiler could not find the specified file.

Fine point: ABORT will cause th·e Compiler to return at the end of the current pass, ignoring any other files to

compile.

19.2.1 Command line

The Compiler allows you to control the association between modules and file names at the
time you invoke the Compiler. The Compiler accepts a series of commands, each of which
has the form

outputFile inputFile [idl: filel, ... , id n : filen] /swi tches

Only inputFile is mandatory; it names the file containing the source text of the module
to be compiled, and its 'default extension is • mesa. Any warning or error messages are
written on the file outputRoot. er r log, where outputRoot is the string obtained by
deleting any extension from outputFile, if given, otherwise from inputFile. If there
are no errors or warnings, any existing error log with the same name is deleted at the end
of the compilation.

If a list of keyword arguments appears between brackets, each item establishes a
correspondence between the name id i of an included module,.as it appears in the DIRECTORY

of the source program, and a file with name filei; the default extension for such file
names is .bcd. (If the name of an included module is not mentioned on the command line,
its file name is computed from information in the DIRECTORY statement).

XDE User's Guide 19

The optional switches are a sequence of zero or more letters. Each letter is interpt'eted as a
separate switch designator, and each may optionally be preceded by - or - to invert its sense.

If outputFile and ~ are omitted, the object code and symbol tables are written on the file
inputRoot. bcd, where inputRoot is inputFile with any extension deleted. Otherwise
code and symbols are written on outputFile, for which a default extension of .bed is
supplied. If the Compiler detects any errors, the output file is not written and any existing
file with the same name is deleted

The Compiler accepts a sequence of one or more commands from the Executive's command
line. Commands are separated by semicolons, but you may omit a semicolon between any
two successive identifiers (file names or switches), or between a I and an identifier (but not
between an identifier and a I). Note that any required semicolon in an Executive command
must be preceded by a single quote n.

You can set global switches by a command with an empty file name. In the form
/swi tches, each letter designates a different switch. Unless a command to chang'e the
global switch settings comes first in the sequence of commands, you must separate it from
the preceding command by an explicit semicolon.

19.2.1.1 Examples

>Compiler ReadOldFormat ~ ReadData[DataFormat: OldFormat]

Compile the program ReadDa ta. mesa that has the included interface DataFormat in
its DIRECTORY statement. Use the file OldFo rma t. bed (which contains the declaration
DataFormat: DEFINITIONS = ...) as the source of this interface. Put the object
program in the file ReadOldFormat. bed.

>Compiler/-j SymStuff[Table: LongTable]/n SymExtra[Table: LongTable]

Compile the files SymStuff.mesa and SymExtra.mesa, getting the definition of
Table from LongTable. bed. Produce object files SymS tuf f . bed and SymEx t r a. bed.
Don't cross-jump either module and generate Nil checks for SymS tuff only (switches
explained below).

19.2.2 Switches

Switches allow you to modify command input. A command has the general form

file[/s1

where [] indicates an optional 'part and s is a sequence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a ,_, or I_' to reverse
the sense of that switch. The valid switches are

b Qounds checking
e .~r r log file is merged into Compi ler . log
j cross-iumping optimization .(default)
n ~Il pointer checking

19-3

19

19-4

Compile.'

o generate Q,ld code
p Qause after compiling file if there are errors or warnings
s 20rt global variables and entry indices (default)
u !lninitialized variable checking
w report ~arning messages (default)
y warning on runtime calls

[~ach switch has a default setting. The command sourcefile is equivalent to
sourcef i le/-b-ej -n-o-ps -uw-y if you use the standard defaults (i.e., iftheCompilercross­
jumps the code, does not pause after compiling file, sorts variables, and logs warning
messages). It does not do bounds, NIL pointer, or uninitialized variable checking, and does
not warn about runtime calls.

You can change the default setting of the switches by ha ving an entry

compilerSwitches: <your defaults>

in the [Executive] section of the tile User. cm

You can also change the default setting of any switch by using a global switch. Any switch
given with no file name (i.e., just a slash and switches) establishes the default setting for
that switch. Unless overridden or reset, that default applies to all subsequent commands.

Fine point: Any global switches given at other than the beginning of the command line must be preceded by a

semicolon (quoted to the Executive), or the command parser will assume that they are local switches on the

previous file. The command parser only allows a single slash after a given file, so some cases of missing semicolon

are flagged.

Here is some information about the options:

b[ounds]

If bounds checking is specified, the Compiler inserts code to check that values are
within range for all assignments to subrange variables and all indexing operations.
Checking is also inserted for all assignments of si~ned values to unsigned variables
and vice versa. If the value is out of range, the signal BoundsFault is raised (see the
Pilot Programmer s Manual). The Compiler performs some bounds checking during
compilation and does so independently of the setting of the /b switch. If it can deduce
that no bounds failure is possible, the runtime check is omitted; if a bounds failure is
unavoidable, it reports the error during compilation. Compile-time bounds checking
assumes that all variables are initialized before use.

Fine point: Bounds checking in indexing operations is suppressed if the declared index type is empty, e.g.,

[0 .. 0>.

e[rror to log]

Errors are appended to Compiler .log rather than onto a separate file. errlog.

XDE User's Guide 19

j[umped]

Cross-jumping is a peephole uptimization technique that potentially shortens the
object code. The reduction in code size ranges from negligible to 20%, depending upon
coding style. If cross-jumping is specified, the correspondence of source to object is no
longer one-la-one. This affects the debugger's ability to set breakpoints and identify
code locations (see the Debugger chapter.) However, you can still set entry and exit
breaks on all procedures. This switch also enables tail recursion elimination. If the last
operation in a procedure is a call of itself, the call can often be turned into a jump and
the old frame reused.

n [i 1)

If NIL checking is specified, the Compiler inserts code to check for a null value prior to
any operation that dereferences a pointer. Note that indexing operations using an
array descriptor or a string also imply dereferencing and are checked. If the pointer
value is NIL, the signal PointerFault from interface Runtime is raised.)J"o compile-time
checks for NIL are performed.

Fine point: ~o NIL checks are provided in the dereferencing of relative pointers.

Depending' upon coding style, these runtime checks can increase the size of the
compiled code substantially. The first page of the address space is typically unmapped,
so most dereferences of NIL generate an Address Fault.

a[ld code]

If the /0 switch is specified, the module created by the Compiler will have its global
frame allocated from the MDS. If you do not understand this switch, you may safely
ignore it.

p[ause]

This switch is unusual because its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means to report (p) or not report (-p)

errors or warnings to. the calling Executive. The Executive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local
switch, it specifies pausing just after compiling the specified file if that file or any
preceding file contained errors; moreover, any remaining commands are ignored. The
local default is not to pause but to continue with the next input file.

5 [art]

Normally, the Compiler sorts certain items by frequency of use before assigning
addresses. This helps to keep the object code compact. If sorting is suppressed (-5), the
assignments of global frame offsets and entry indices depend only upon order of
declaration in the source text. This switch was added in anticipation of tools allowing
inexpensive correction and replacement of modules in a configuration. These tools are
not yet available.

19-5

19 Compiler

u[ninitialized variabies]

If the lu switch is given, the Compiler issues warning messages for uses of apparently
uninitialized variables (but not fields of records). The algorithm used to detect
suspicious usage is based upon the following assumption'S:

• The entire body of a procedure is executed before the bodies of any procedures
declared within it.

• \Vithin any procedure, the order uf execution is equivalent to the order of
appearance of source text (for the purposes of variable initialization).

• The bodies of the contained procedures are executed in order of appearance.

The algorithm works fairly well for detecting certain common errors, but it is obviously
not foolproof. There is no guarantee that all uses of potentially uninitialized variables
are reported; conversely, properly initialized variables are sometimes flagged when the
initialization depends upon the order of execution of sub procedures. (Performance with
respect to global variables is improved by putting the initialization code for a module
either in the main body or the lexically first procedure.)

w[arnings]

Report (w) or don't report (-w) certain legal but SUSpICIOUS constructs that can be
detected by the Compiler. Warnings are written to the error log, but are not reported to
the calling Executive.

y[ell about runtime calls]

This switch is intended for use by programmers writing such things as bootstrap
loaders where the standard Mesa runtime machinery is unavailable. It flags
operations, such as certain division, that generate calls to system functions.

,19.3 Examples

19-6

>Compi ler foo

Compile foo using all the default switch settings.

>Compiler foo/-w-j

As above, but suppress warning messages and do not cross-jump.

>Compiler I-p filel file2 file3

Use this form if you want the Compiler to press on no matter what. If it is part of a
command file, the next (Executive) command 'will be executed whether or not there
were errors.

XU..: User's Guide 19

>Compiler filel file2/p file3

Use this form if you want the Compiler to pause before compiling file 3 if ei ther
f i leI or f i le2 does not compile successfully. If f i le3 depends upon the others (by

including them), this can save a lot of wasted time and effort.

>Compiler filel/p '; /-p file2 file3

Use this form if you want the Compiler to pause before compiling file2 if filel does
not compile successfully. Press on to the next Executive command even if file2 or
f i le3 docs not compile.

19.4 Error messages

The Compiler writes error and warning messages for sourcefile. mesa on either
sourcefile. er r log or Campi ler . log, depending on the setting of the /e switch. Each
pass detects certain classes of errors. Error messages are logged in (approximate) source
order by each pass. Within a single pass, the Compiler does its best to complete its analysis
in spite of any errors. Detection of an error by one pass causes all following passes to be
skipped. Thus you will sometimes get a new set of error messages after correcting all those
reported by a previous run of the Compiler. The Compiler never writes a bindable or
loadable object file if it detects any errors.

The Compiler also logs warning messages. These are advisory only and are intended to
draw your attention to suspicious usage. They do not abort compilation or invalidate the
object file (but they should be checked).

Here is a trivial and nonsensical program that illustrates the form of the Compiler's error
messages.

Sample: PROGRAM =
BEGIN

i: INTEGER,

i Eo- j + TRUE;

END.

i: INTEGER,

i Syntax Error [46]
Text deleted is: ,
Text inserted is: ;

jis undeclared, at Sample[52]:
i +- j+TRUE:

TRUE has incorrect type, at Sample[52]:
i +- j+TRUE;

The first message is generated by the first pass and shows how syntactic and lexical errors
are reported. The arrow points to the first symbol that is necessarily invalid (or one symbol
before it), and the decimal number is a character index in the source file. Of course, the
Compiler cannot know what you intended, and the "real" error might have occurred quite a
bit earlier. The Compiler tries to fix these errors as best it can by local deletion and

19-7

19 Compiler

insertion of symbols. These symbols are not written into the source file but are reported to
fielp you interpret subsequent messages. If the Compiler cannot find a way to continue
parsing, or if too many of these errors accumulate, it gives up.

Fine point: In order ti)r the arrow to line up under the syntax error. you need to be viewing the tile with a fixed,

pitch font.

Fine point: If you are viewing the program and its error log in separate windows, you can use the Po 5 i t ion
command on one of the menLlS nfthe source window to locate the errors, given the character indices in the error

log.

The other error messages report semantic errors. Errors are located by displaying a line of
source text (the second line in each message) as well as the character index (a decimal
number) and the enclosing procedure or program name (the identifier preceding the
number). The text of the error message is intended to be reasonably self-explanatory.
Sometimes it refers to an identifier or expression. The Compiler reconstructs these
expressions from the parse tree; in later passes, the reconstruction often reflects
rearrangement or constant folding so it may not exactly duplicate the source code. As
sUbexpressions, ? indicates an undeclared identifier and ... indicates either a cutoff
because of depth of nesting or an expression form the Compiler cannot reconstruct from the
parse tree.

19.5 Compiler failures

The message reporting a Compiler failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)

Pass = n, signal = s, message = m

Such a message indicates that the Compiler has noticed some internal inconsistency. The
Compiler will skip the remainder of the command line if this happens.

19.6 Current limitations

19-8

The following limits are built into the current implementation of Mesa and are enforced by
the Compiler:

The number of interface items declared in a single DEFINITIONS module cannot exceed
128.

N either the number of procedure bodies nor the number of signal codes defined in a
single PROGRAM module can exceed 128.

The size of the frame or record required by a procedure or program cannot exceed 4096
words.

Procedure declarations cannot be nested more than five levels deep, counting catch
phrases as procedure levels.

XDE User's Guide 19

The Compiler allocates its in'ternal tables dynamically and tries to adjust their relative
sizes to accommodate the program being compiled. When it is unsuccessful, it reports
failure with a message of the form:

Storage Overflow in Pass n

Usually, the best thing to do is split your program into two or more smaller modules. If the
Pass is 5, you can often get your program compiled by breaking the largest procedure into
two or more smaller ones. This is because Pass 5 generates code for the module one
procedure at a time, and needs enough table space to hold the code representation of the
largest procedure.

19-9

19 Compiler

19-10

20.1 Files

20

Formatter

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program in a way that reflects its logical structure.
Since the Formatter uses the scanner and parser of the compiler to determine structure,
only syntactically correct programs may be formatted.

This chapter describes the formatting rules and the operation of the Formatter, including
the runtime options and messages.

Retrieve Format ter. bed from the Release directory.

20.2 User interface

The Formatter runs in the Executive and accepts the same command syntax as the
Compiler. The simplest form of command is just the name of a source file to be formatted.
If you supply the command sourcefile with no period and no extension, the Formatter
assumes you mean source file. mesa.

The Formatter reports the result of each command in Formatter .log with a message
having one of the following forms (each * is replaced by an appropriate number; bracketed
items appear only when relevant):

file.mesa -- lines: *, time: *

Formatting was successful. The source file has been rewritten.

file. mesa -- aborted, * errors [and * warnings] on file.errlog

Formatting was unsuccessful. The output of the Formatter is undefined if syntax
errors exist in the input file. The original file is undisturbed.

File error

The Formatter could not find the specified file.

20-1

20

20-2

Formatter

20.2.1 Command line

The Formatter takes commands of the form

[outputl ~] inputl [/5] ... [outputn ~] inputn[/s]

where [) indicates an optional part and s is a sequence of switch specifications. Only
inputFile is mandatory; it names the file containing the source text of the module to be
formatted, and its default extension is .mesa. Any warning or error messages are written
on the file outputRoot. E~ r r log, where outputRoot is the string obtain~d by deleting
any extension from outputFile, if given, otherwise from inputFile. If there are no
errors or warnings, any existing error log with the same name is deleted at the end of the
formatting.

20.2.2 Switches

Switches allow you to modify command input. A switch specification is a letter,
identifying the switch, optionally preceded by a I - I or I - I to reverse its sense. The
syntax is the same as for the Compiler (chapter 14). The valid switches are:

e append errors to Format ter .log rather than onto a separate file. errlog

9 don't close print file at end of input file

h generate a print file (does not force - t)

k generate a two-column landscape print file (does not force - t)

o take specified string and include it in the header of the print output of all following
files

p pause after formatting if there are errors

t overwrite input filf~ with plain text formatted version (default)

Each switch has a default setting, The command sourcef i Ie is equivalent to
sourcefile ~ sourcefile/-e-g-h-i k-p-rt-v-z if you use the standard
defaults; i.e., the Formatter only generates a plain text file to replace the original source.

You can redefine the default settings by having an entry

compilerSwitches: <your defaults>

in the [Execu t i ve] section of the file User. cm. (compi lerSwi tches because the
switch processing code is shared with the compiler).

You can change the default setting of any switch by using a global switch. Switches given
with no source file are gl.obal. Unless overridden or reset, that default applies to all
subsequent commands. (See the multiple program print output example below.)

XDE User's Guide 20

Some additional information about the options:

9 If a print file is being generated, it is not closed at the end of the current input file.
It is expected that another file in the command list will also be generating print
file output and a single print file will contain multiple input files. The name of the
print file will be that of the first to which print output is being generated. If the
type of print file (landscape vs. portrait or print vs. interpress) changes, the first
will be closed and another print file will be started. Be careful not to generate a
print file larger than will be accepted by your printer.

p The p (pause) switch has semantics identical to that of the Compiler's p switch.

20.3 Formatting rules

As a general rule, the Formatter changes only the white space in the program. It does not
insert or delete any printing characters. On the other hand, it may insert white space
where there previously was none.

20.3.1 Spacing

Indentation is done by a combination of tabs and spaces in plain-text mode (assuming that
a tab equals eight spaces).

The decision as to where to break lines is made independently of the output mode (print
file or plain text).

A logical unit will be placed on a single line if it fits.

A simple carriage return in the input file is treated as a space. The occurrence of
consecutive carriage returns (up to six blank lines) are preserved in the output file. Page
breaks indicated by CTRL L'S in source programs are also preserved. Since all Bravo looks
are discarded by the scanner, paragraph leading done with looks is not preserved.

For output files that contain fonts and faces, the~e additional rules apply:

• Comments are set in italics.

• The names of PROCEDURES, SIGNALS, ERRORS, and PORTs (but not user-defined transfer
types) are bold where they are defined.

. • Reserved words and predeclared identifiers are in a smaller font than other symbols.
For portrait listings, Helvetica 10 and 8 are used; for landscape listings, Helvetica 8
and 6 are used.

In general there are no spaces before or after atoms containing only special characters.
Exceptions to this rule are as follows:

• A space or carriage return follows (but does not precede) a comma, semicolon, or colon.

• A space precede.s a left square bracket when the bracket follows any of the keywords
RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, and PROGRAM.

20-3

20

20-4

Formatter

• Spaces surround the left-arrow operator.

• ~he exclamation point (enabling) and equal-greater (chooses) operators are always
surrounded by spaces. This is also true for equal signs used in initialization and for
asterisks used in plac(~ of variant record tags.

• Some arithmetic operators, depending on their precedence, are surrounded by spaces.

20.3.2 Structure

The Formatter determines the indenting structure of the program by the brackets that
surround the bodies of compounds. The brackets include {}, 0, [], BEGIN-END, DO-ENDlOOP,

and FROM-ENDCASE. An attempt is made to maximize the amount of information on a page.
For example, consider:

Record: TYPE = RECORD> [

field: Type,
field: Type];

Record: TYPE = RECORD

[
field: Type,
field: Type,
];

In both cases, the structure is clear; it is indicated by the indenting, not the placement of
the brackets. The Formatter generates the form on the left.

The body of each compound, assuming it does not fit on a single line, is indented one
nesting level. The placement of the brackets depends on the bracket and on its prefix and
its suffix. For example, a loop statement has the following possible prefixes, brackets, and
suffixes:

Prefixes
FOR, WHilE

UNTil, (empty)

Brackets
DO

ENDlOOP

Suffixes
OPEN

ENABLE

The following paragraphs contain a number of examples. They observe the following rules
for the placement of opening and closing brackets:

The opening brackets L [, FROM, and DO appear on the same line as their prefixes; BEGIN

starts on a new line.

If the remainder of the statement fits on a single line (with its closing bracket), it is
placed there, indented one level. Otherwise, all closing brackets except] and} appear
on lines by themselves. If} is preceded by a semicolon, then it is also placed on a line
by itself.

XDE User's Guide 20

The statement following a THEN or ELSE is indented one level, unless it fits on the same line.
THEN is on the same line as its matching IF and ELSE is indented the same amount as IF.

IF bool THEN

BEGIN

body
END

ELSE

BEGIN

body
END

IF bool THEN statement
ELSE {body}

IF bool THEN {

statement;
statement}

The labels of a SELECT (and its terminating ENDCASE) are indented one level, and the
statements a second level, unless they fit on the same line with the label.

SELECT tag FROM

case = > statement;
case = >
long statement;
ENDCASE

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair is indented one level. When the
rules for IF and SELECT call for indenting a statement, a BEGIN is not indented an extra level.

These rules are not exhaustive, but are intended to give the flavor of the Formatter
output.

20.4 User.em

Entries currently implemented are

[Formatter]

CharsPerLevel:n

CharsPerLine:n

20.5 Examples

>Formatter faa

Specifies the number of spaces to be used for each
indenting level. Default value is 2

Specifies the number of characters to be used for line
breakiPlg. Default value is 82

Format faa using all the default switch settings (standard or established by a global
switch).

>Formatter foo/-tk

Formats faa into a two-column landscape print file, leaving the original source
unchanged.

20-5

20 Formatter

>Formatter /-tkg ProgA ProgB ProgC ProgD

Produces a two-columltllandscape print file ProgA. interpress that contains listing
of all four programs, each starting on a new page.

>Formatter /g-tk "Trinity Release"/o *Defs.mesa

Produces a two-column landscape print file that contains listing of all files * • me sa
with the heading "Tr ini ty Release".

20.6 Formatter failures

20-6

The message reporting a Formatter failure has the following form:

FATAL COMPILER ERROR, at id[index]:

(source text)

Pass = 1, signal = s, mes sage = m

Such a message indicates that the Formatter has noticed some internal inconsistency (the
above message is not a typo; the message comes from a module shared with the compiler).
The Formatter will skip the remainder of the command line if this happens.

Note: The Formatter uses routines exported by Pr int. bed to produce print files. If the
proper package is not already loaded, the Formatter attempts to load it; if this fails, it
complains about the lack of available print software. The file Fon ts. wid ths must also be
present on the local disk.

21..1 Files

21

MakeBoot

MakeBoot is a program that constructs a boot tile suitable for installation on a Pilot logical
volume. A boot file is essentially a "virtual execution environment"; it consists of a
memory image containing a number of object tiles that have been loaded but not started.
The memory image built by MakeBoot is loaded into memory by a simple loader called the
germ, which transfers control to Pilot initialization code.

The simple view of MakeBoot is that it takes a collection of object files, constructs a
memory image, and writes it out as a boot file. In practice, however, MakeBoot requires
more information than just the names of the object files; this information is contained in a
text file (or files) called the parameter file. The parameter file contains two types of
information. The first type of information describes sizes of data structures such as the
length of the global frame table or the number of processes. The second type of information
describes what portions of memory must be resident or initially resident, since they are
needed before Pilot's swapping machinery has been set up.

While the loader in MakeBoot is essentially the same as the runtime loader in Pilot, there
are some differences. Modules that were bound with code links are always loaded with
code links by MakeBoot; you cannot override the link type that was given to the Binder.
This has important ramifications. If a configuration in the boot file imports an item that
will be supplied at runtime by a dynamically loaded module or configuration, that
configuration in the boot file must be bound with LINKS: FRAME (which is the default). If this
rule is violated, then a dynamically loaded module or configuration will leave dangling
pointers in the boot file; thus on a subsequent boot, attempting to (say) call a procedure in
such a module when it has not yet been loaded in the new session would cause transfer of
control into garbage, leading to unpredictable behavior.

Note: All object files input to MakeBoot must be bound with their code included.

Retrieye MakeBoot. bed from the Release directory. It requires one or more parameter
files that specify various data structure sizes and initial memory configurations.

21-1

21 MakeBoot

21.2 User interface

21-2

MakeBoot runs in the Executive.

21.2.1 Commands

Commands are of the form:

>MakeBoot command command ... commandft

where each command speci ties the creation of one boot tile. The commands have the form:

outputfilename +- inputfilename [arguments] /swi tches

where the outputfilename and" +-" are optional, and the arguments are a list of "key:
arg" pairs separated by commas. inputfilename is a bound configuration. Output is
written to rootName. boo t and rootName. loadmap, where rootName is obtained by
removing any extension from either the output file name (if one is given) or the input file
name.

The possible arguments are given below. If no key is given for an argument, "parm" IS

assumed.

parm: parameterFile

ParameterFile names a file that supplies MakeBoot with information about the
initial memory configuration and sizes of various data structures. If no extension is
given, .boo tmesa is assumed. These parameter files are released with Pilot. With the
exception of the GFT and PROCESSes entries, ordinary clients will not change any entries
in the parameter file. The various parameters are described in the section below.

Several parameter files may be specified; the effect is to concatenate them. With
multiple parameter files, the last file takes precedence for all parameters except
lsModules, lsBcds, and processes, in which cases the first parameter file takes
precedence. Parameters on the command line override those in a parameter file.

:nProcesses: number

(Optional) sets the number of processes that can exist. This guarantees that enough
space is set aside for number processes, but since the table is rounded up to a page
boundary, it may be possible to have more than the specified number. A default is
normally given in the parameter file.

gftLength: number

(Optional) sets the length of the global frame table. This determines the maximum
number of module instances that can exist. The maximum l~ngth is 16384, with the
last entry being used to mark the end of the table.

Note: There is one entry in the global frame table for every module.

XD[;~ User's Guide 21

bcd: file

(Optional) names an additional object file to load.

lsModules: number

lsBcds: number

These items override the numbers in the parameter file given by LOADSTATEMODULES
and LOADSTATEBCDS, respectively. They have the same meaning as LOADSTATEMODULES
and LOADSTATEBCDS, respectively. Since Pilot will automatically expand the loadstate as
necessary, these numbers are optional and need not be particularly accurate. The /u
switch may be added to the ~IakeBoot command for Utility Pilot-based bootfiles. This
switch has no effect on program execution but makes the bootfile smaller by
eliminating unnecessary data.

switches: string

(Optional) sets the default boot switches in the boot file.

MakeBoot will take n\nnnn boot switches in its command line if they are enclosed in double
quotes, such as:

MakeBoot OthelloTriDLion[parm: UtilityPilot, parm: CtilityCommunication,
switches: n\372"lIdhu

21.2.2 Switches

MakeBoot's switches are:

/9 Germ: build a germ rather than a boot file.

/h Hex: print numbers in hexadecimal in the loadmap. The default is octal.

/d Prints debugging information in the loadmap.

/u Utility Pilot bootfile: the resulting bootfile is a Utility Pilot client.

/e Code Links: use code links when possible when the object files are loaded. The
default is FALSE, and frame links are used. Frame links are preferable for modules
that have global frames outside the MOS.

21.2.3 Parameter files

Some parameters require entries that are not numbers. The syntax for these non-numeric
entries is given here.

list

listltem

listltem I list listltem

module I configPart I CODE PACK [nameList] I FRAMEPACK [nameList]
IGLOBALFRAME [configPartList] I CODE [configPartList] I BCD[nameList]

21-3

21

21-4

MakeBoot

configPa rtLi st .. - configPart I configPartList , configPart

configPart .. - Alli module I configName [moduleList]

moduleList .. - module I moduleList, module

module .. - name I name. instance

nameList .. - ALL I moduleList

The specifications CODE [configPartList I, configPart, and module identify unpackaged code
segments. The specification GlOBAlFRAME [configPartListl identifies unpackaged global
frames. Unpackaged global frames of a configuration are treated as a unit and are
swappable by default. If any of these global frames are made IN or RESIDENT, all of these
frames are made to be so. The specification CODE PACK [nameListl identifies packaged code,
using names of the code packs in the packaging specifications. The specification
FRAMEPAcK[nameListl identifies packaged global frames, using names of the frame packs in
the packaging specifications. (See the chapter on the Packager for more information on
packaging specifications.) The specification BCD [nameListl identifys the descriptive portion
of the input BCDs. Specifications with the keyword ALL apply to all items. For example,
GLOBAlFRAME[All] identifies all unpackaged global frames, CODEPACK[AlL] identifies all code
packs, and BCD(AlL] identifies the descriptive portions of all the input BCDs. For backward
compability, SPACE is a synonym for CODE PACK and FRAME is a synonym for FRAMEPACK.

Ordinary Parameter File E.ntries:

GFT: number;

allow number of entries in the global frame table. GFT is the maximum number of
modules that can be loaded with the resulting bootfile. This number include the
MakeBoot loaded modules and the runtime loaded modules.

GFTBASE: number;

set the base of the global frame table at page number.

Special Parameter File Entries:

LOCAlFRAMEPAGES: numlber;

sets the size of the the local frame heap to number pages. The default value for
lOCALFRAMEPAGES is 50.

LOADSTATEMODULES: number

LOADSTA TEBCDS: number

are now available. These items set the number of empty module and bcd slots you
would like to have in the initial LoadState. Such entries are used when, for
instance, modules are loaded or NEW'ed. This number does not include the
modules and bcds in the boot file.

XDE User's Guide 21

PROCESSES: number;

allows at least number processes.

FRAMEPAGES: number;

allows at least number pages for the initial local frame heap. The frame heap will
contain more pages if the FRAMEWEIGHT entries define more space.

FRAMEWEIGHT: frameSizelndex, weight (listEnd);

makes the frame heap contain at least weight frames with index frameSizelndex.
This entry can occur for each frame size index. listEnd controls how the lists in the
frame heap chain to larger sizes; it can be either empty, INDIRECT [index], or
END. If the space available for local frames is not exhausted by the requested
counts, additional frames of all sizes will be generated in proportion to the weights
given.

IN: list;

specifies a list of modules, code packs, frame packs, etc., to be initially resident.
This can occur multiple times.

PDAPAGES: number;

allows number pages for the Process Data Area. The number of pages allocated is
the larger of number and that required to allow the number of processes specified.

RESIDENT: list;

specifies a list of modules, code packs, frame packs, etc., to be resident. This can
occur multiple times.

The following entries should not be changed without first consulting a member of the Pilot
group:

CODEBASE: number;

starts allocating code at page number.

MDSBASE: number;

sets the MDS to be page number.

NOTRAP: modulelist ;

specifies which modules should not be start-trapped.

RESIDENTDESCRIPTOR: list;

specifies a list of modules, code packs, frame packs, etc., to have descriptors pinned
in Pilot's caches. This can occur multiple times.

21-5

21

21-6

MakeBoot

STATEVECTORCOUNT: priority, count;

allocates count state vectors for that priority in the process data area. There can be
one entry for each priority le,\el.

STATEVECTORSIZE: numbE~r:

specifies size of state vectors.

WART: module;

specifies which module initially gets control.

21.2.4 Examples

For example,

>MakeBoot TajoDLion[Pilot]6: will make TajoDLion.boot from TajoDLion.bed
using Pilot. bootmesa as the parameter file.

>MakeBoot Test ~ CoPilotDLion[parm: Pilot/h(il makes Test.boot from
CoPilotDLion. bed using Pilot. bootmesa as the parameter file and produces a
hexadecimal loadmap.

>MakeBoot TajoPlusCompiler ~ TajoDLion[parm: PilotDLion, bed:
Compi ler] ~ writes Taj oPlusCompi ler . boo t, which has both Taj oDL ion. bed and
Compiler.bedloaded.

22

Make*BootFloppyTool

MakeDLionBootFloppyTool runs under Tajo and creates Dandelion-bootable floppies.
MakeDoveBootFloppyTool also runs under Tajo, but creates 6085-bootable floppies.
Bootable floppies are double-density floppies, either single- or double-sided. Your boot file
must be a Utility Pilot client; regular Pilot needs to swap its own code, and it cannot swap
it off a floppy. Bootable floppies contain a floppy file system.

22.1 Files for Make Boot Floppy Tools

From the Release directory, retrieve either MakeDLionBootFloppyTool. bed or
MakeDoveBootFloppyTool. bcd, as appropriate.

22.2 User interface for Make*BootFloppyTool

The user interface is similar for both versions of the tool. Figure 22.1 illustrates the user
interface. In reality, the fields will be filled in with the default files, as given in Table 22.1.

--0
~Drive=

~Initial uCode:
~Pilot uCode:
~Boot Fi le:

Floppy Name:
Diagnostic uCode:
Germ File:

r=========~======================~==========,_-----O
)1 Format Floppy II Reserve Last Cylinder For Diagnostics II Install Boot Files I·start!

o

Figure 22.1: Make*BootFloppyToolU ser Interface

22-1

22 Make* BootFloppyTool

22.2.1 Form subwindow for Make*BootFloppyTool

Table 22.1 lists the tool's form subwindow fields and the files usually used for DLion (8010)
and Oove (6085) machines.

Table 22.1: ~Iake*RootFloppyTool Fields and Input (Defaults)

Field MakeDLionBootFloppyTool MakeDoveBootFloppyTool

Drive= YourDriveNumber YourDriveNumber
(typically 0) (typically 0)

Floppy Harne: FJ:oppyName FloppyName

Initial uCode: Floppylnitial.db (or FloppylnitialDove.db
TridentFloppylnitial.db)

(DLion)

Diagnostic uCode: Moonboot. db (optional)

(Dove)
Daybreak DiagnosticuCode: MoonRi se. db (optional)*
Daisy Diagnostic uCode: Reserved.

pilot uCode: Me~sa.db MesaDoveCnfigOnly.db
(or Tr iden tMesa. db) (notMesaDove.db)*

Boot File: yourBootFile.boo t yourBootFile.boot (e.g.,
(e.g., OthelloDl ion. boot) InstallerFloppyDove.boot}

Germ File: DI.ion.germ DiskDove.germ
(or Tr iDL ion. germ) (not Dove. germ) *

* Please refer to §22.2.3 for detaIls about recommended files.

22-2

22.2.2 Command subwindow for Make*BootFloppyTool

Select the preferred options by moving the cursor to the desired option and pressing a
mouse button. Deselect in the same manner. Options are highlighted when selected and
will be executed when the Start! command is selected.

Format Floppy
If highlighted when Start! is selected, formats the floppy and creates a Pilot
floppy file system.

Reserve Last Cylinder for Diagnostics
If highlighted when Start! is selected, reserves the last cylinder for floppy
diagnostics; 18 pages will be reserved. This option must be selected if floppy
diagnostics are to be run using this floppy.

Install Boot Files!
If highlighted when Start! is selected, installs the files specified by the fields of
the form sub window on an already existing floppy file system.

XDE User's Guide 22

In all cases, the process is accompanied by feedback, as it takes a few minutes to write the
floppy. If you wish a disk that only has diagnostic microcode, then names for Pilot
microcode, germ, and boot file are not required.

22.2.3 MakeDoveBootFloppyTool notes

Because of the size of Dove floppies, installation error "insufficient space" may arise during
the "install boot files" command. Depending on the size of the bootfile and its features, the
insufficent space problem may be avoided by using a smaller microcode and germ file. For
example, the field entries listed in Table 22.1 are the recommended smaller files.

MesaDoveCnf igOnly. db is a subset of MesaDove. db. It does not support RS232C, peE,
TextBlt, printing on a 4045 other than in Draft Mode, and CP umbilical debugging.

DiskDove.germ is a subset of Dove.germ. It does not support etherbooting or remote
debugging.

If the insufficient space errors persist after the above recommendations have been
followed, then do not install diagnostic microcode and do not reserve the last cylinder for
diagnostics.

Note: If diagnostics have already been loaded or the last cylinder was already reserved,
then you must execute the Format Floppy option (reformat the floppy) to recover
the space.

22-3

22 Make* BootFloppyTool

22-4

23

Packager

The Mesa Packager is a tool that allows you to alter the swapping characteristics of
programs. U npackaged code is swapped in the units of compilation. That is, all the code in
a particular module is either all swapped in or all swapped out together. However,
efficient use of virtual memory often requires the programmer to be mindful of swapping
behavior, lest thrashing occur. The Packager allows the programmer to explicitly group
components of modules together into swapping units. For example, a code pack can be
defined that includes the code for a several procedures from several different modules; a
frame pack can be defined that groups the global frames of a number of modules into a
single swapping unit.

In an unpackaged program, all code for a module is swapped as a unit, but some parts of a
module are typically "colder" (less frequently referenced) than others; an example is
initialization code. A program's performance would be improved if the code for colder
procedures were not swapped along with that for warmer procedures. You can split the
module to get this improvement, but then logically related procedures and data would no
longer be contained in a single source unit.

The Packager gives you fine control over the placement of procedures in code packs. You
can, for example, define a code pack that contains just the "cold" procedures from several
modules. It is your responsibility, however, to split the code and global frames into
reasonable packs, since the Packager simply does what you tell it. It attaches no
particular semantics to a pack, except that the pack is swapped as a unit. The order in
which you define code packs is significant, as is discussed below (in the section on
Packaging description language.)

Conceptually, the Packager loads all modules into a single space and then shuffles the
procedures around into appropriate subspaces. The packaged code is then written onto a
single file. (If the code is more than 32K words, it must be packaged into multiple code
segments, each requiring less than 32K. Code segments are described below along with
the packaging descrip~ion language.)

The Pac1:tager also supports the definition of swap units for global frames, called frame
packs. In an unpackaged program, Makeboot (or the Loader) allocates the global frames
for all of a configuration's modules in a single space. Using the Packager, you can define
multiple frame packs, each containing the global frames for a set of modules. Makeboot (or

23-1

23

23.1 Files

Packager

the Loader) will assign these frame packs later to separate spaces that will be swapped
independently.

The Packager is a post-processor that is separate from the Compiler and Binder, and no
changes to Mesa source files or configuration descriptions are needed in order to do
packaging. Its operation resembles that of the Binder.

Fine points: The code rearrangement done by the Packager should not be confused with the Binder's code

packing, which was is described in the Mesa Language Manual. Code packing allows the code for several modules

to be packed into a single segment, and is intended to reduce the breakage caused by the allocation of an integral

number of pages to each code segment. While packing is still supported by the Binder, the same results can easily

be obtained with the Packager.

Retrieve Tools> Packager. bcd from the Release directory.

23.2 User interface

23-2

Like the Binder and Compiler, the Packager runs in the Executive and accepts a sequence
of commands on the command line. A Packager command usually has one of the forms:

> Packager outputBcdFile • packFile [inputBcdFile] Iswi tches

>Packager packFi.le[inputBcdFile] Iswitches

(There is also an extractor-like notation for specifying the output files, which is described
at the end of this section.)

The default extension for packFile, which contains the packaging description, is .pack;
for inputBcdFile and outputBcdFile it is .bcd. The second form defaults
outputBcdFile to be the root name ofpackFile with extension .bcd.

The switches are a sequen(!e of zero or more letters. Each letter is interpreted as a separate
switch designator and can be preceded by a - or - to reverse its sense. The switches
include Ic (constants shared between code packs), Ip (pause after processing the
command if there were any errors), 11 (list), andlm (map).

The code segment contains multiword constants referenced by the code. The compiler
keeps a literal table so that if the same constant is referenced by two different procedures
within the same module, they share a single copy of the constant. If the two procedures end
up in different code pack::;, this can lead to undesirable swapping characteristics. If,
however, one of the packs:is very "hot," and is likely to be swapped in whenever the other
is running, then it is reasonable to have only a single copy of the constant. If the switch Ic
is specified, the packager will share multiword constants between code packs; Qtherwise
the constants will be repHcated for each pack referencing them. In actual practice, this
replication is often ufree" since code packs occupy an integral number of pages.

[f the switch 11 is specified, a listing is produced of the procedures that were actually
placed in each code pack, a.s well as the module instances placed in each frame pack. T.his
listing is in the form of a valid packaging description and can be used in place of the

XDE User's Guide 23

original packaging description. The listing is output to the file with the root name of
packFile but the extension .1 i 5 t.

If the switch 1m is specified, the Packager produces a map of the code and frame packs on
the file with the root name of packFile and extension .map. For a code pack, the map
indicates for each procedure:

• its length in bytes,

• its entry vector index,

• the byte offset of its code from the beginning of the segment,

• its initial byte PC (byte offset of the code from the module's entry vector),

• its module, and

• its name (if a top-level procedure).

Procedures that are not at the top level (i.e., that are nested inside another) are listed
below the procedure containing them. The map also includes for each module, the offset
and length of its entry vector, and the read-only data shared by its procedures.

In addition to the procedure bodies, the code pack also contains other information. The
entry vector (EV) is the mechanism used at runtime to find the initial PC of each
procedure in the module. If the module is bound with code links (see Appendix D of the
Mesa Language Manual) the packager will reserve space ahead of the entry vector to hold
the links (LNKS). As the entry vector must lie on a quadword boundary, the size of the
links space may not exactly correspond to the number of links reported in the compiler log.
The pack also contains multiword constants «data» referenced by procedures in the
code pack. As a rule of thumb, a constant follows the first procedure in the pack that
references it.

For a frame pack, the map indicates for each global frame

• its length in words,

• its word offset if loaded with code links,

• its word offset if loaded with frame links, and

• the module name corresponding to this global frame.

The map also notes for each frame pack its length in pages as well as the number of
unused words in the last page. Global frames are aligned on quad word boundaries, so the
offset of a given frame is not exactly the offset of the previous frame plus its size.

The Packager writes a summary of the commands on the file Packager .10g. Any errors
are logged on a file with the same root name as the packFile, but with the extension
.err10g.

23-3

23 Packager

An extractor-like notation can also be used on the Packager's command line. Commands
in this format allow morle control over the names of the output files produced by the
Packager. One of these commands has the form:

>Packager [keyl: filel, ... , keyn: filen] +­

packFile[inputBcdFile]/switches

Each keyi can be one of output, list, or map. The corresponding filei names,
respectively, the output object file, the code and frame pack listing file, and the map file;
the default extensions are' in turn .bcd, .1 i s t, and .map. [f the keyword 1 i s t or map is
specified, the Packager will generate the associated output file and it is not necessary to
also specify the 11 or 1m switch.

23.3 Information about modules

23-4

Any particular module is made of the following:

• Namedprocedures. A module consists of zero or more named procedures.

• Mainline code. A module always contains mainline code, which is automatically
executed as part of the invocation of the first procedure called in any particular
module. Because the mainline code of a module almost always contains only
initialization code, the packaging language contains some special constructs for both
excluding it from and. including it in code packs. (Because the mainline code is
implemented as an anonymous procedure, it is often called the main procedure of a
module.) The main pro,eedure is named using the keyword MAIN.

• Entry vectors. The entry vector is a map to the starting location of each procedure in a
module, and is refereneed in order to call any procedure within that module. The entry
vector is not referenced during a procedure's BEGINS; the entry vector of a procedure is
not referenced when a procedure calls another procedure (the entry vector of the
destination procedure is referenced, and it may be the same as the entry vector of the
calling procedure); the entry vector of a procedure is not referenced when the
procedure returns.

'. Catch code. Catch code is implementation of the catching of signals either by ENABLE or
by !. Since catch code is usually executed only in exceptional situations, it is placed in
a separate unit that may be packaged separately from all procedures in a module.

• Global frames. Global frames are storage and overhead required for the execution of
any procedure or the catch code within a module. Global frames are swapped in
whenever any procedure, main, or catch code of a module is executing. They contain a
small amount of information needed by the Mesa environment in order to locate
procedures and any variables the programmer has declared having the scope of the
entire module. Depending upon coding style, global frames vary in size from a few
words to being quite large.

• Multiword read-only constants. A module contains zero or more multiword read-only
constants that are used during the execution of the procedures within the module.
These constants are shared by several procedures whenever possible (that is,
whenever they are equal).

XDE User's Guide 23

Every module has a global frame, entry vector, and mainline procedure. A module can be
written that has no procedures; a module has no catch code if it does not use the constructs
ENABLE or!; modules often have no multiword constants.

23.4 Packaging description language

A packaging description consists of a sequence of code segment, frame pack, and merge
specifications (merging is used to combine previously defined code segments, and is
discussed later).

Packag i ng Desc ::.. DescSeries.1 DescSeries ;

DescSeries :: = Descltem 1 DescSeries ; Descltem 1 DescSeries . Descltem

Descltem :: = CodeSegment 1 FramePack 1 Merge

23.4.1 Code segments

A code segment contains the code for a number of code packs and must be less than 32K
words in length. As noted previously, the effect of the Packager is to combine the code for a
set of modules into a single segment and then shuffle the procedures around into swap
units according to your code pack descriptions. >

If the total amount of code exceeds 32K, then you must define several segments. However,
each module must be assigned to only one segment. Although the procedures of a module
can be contained in several different code packs of a segment, all such code packs must be
defined in the same segment. It is not possible to split a module across segments.

CodeSegment :: = identifier: SEGMENT .. SegmentBody

SegmentBody ::.. {CodePackSeries} I BEGIN CodePackSeries END

CodePackSeries ::. CodePack I CodePackSeries ; CodePack I CodePackSeries;

If you use the Ie switch, you should define the code packs in order from the "hottest"
(containing the most frequently referenced procedures) to the "coldest," with the hottest
code packs defined first. This order determines the placement of multiword read-only
constants that are shared by several procedures and are thus not strictly a part of any
procedure. In any case, the entry vector for a module must precede any procedures from
that module (the EV is an array of unsigned byte offsets of the beginnings of the
procedures).

CodePack

CodePackBody

Excepting

:: • identifier: CODE PACK • CodePackBody I
ComponentDesc I DiscardCodePack -- defined later

:::1 {Excepting ComponentSeries} I
BEGIN Excepting ComponentSeries END

:: • -- defined later

23-5

23

23-6

Packager

ComponentSeries :: = ClomponentDesc I
ClomponentSeries ; ComponentDesc
ClomponentSeries ;

Each ComponentDesc describes a collection of procedures that are to be included in the
code pack. Conceptually, this is just a list of the procedures names, qualified when
necessary by the names of containing configurations and modules. However, since long
lists of procedure names can be awkward, the packaging language contains several
constructs for abbreviating the description. Specifically, you describe each code pack as a
list of components (configurations, subconfigurations, or modules), optionally listing the
items from the component that are to be included in or excluded from the pack.

Com ponentDesc

Component

ItemList

Item

PackList

:: = Component I
Component [Item List]
Component EXCEPT [ItemList]
Component EXCEPT PackList I
Component [ItemList] EXCEPT PackList I
Component EXCEPT PackList, [ltemList] I
MainOF I -- defined later
CatchOF I -- defined later
EntryOF defined later

:: = identifier I Component. identifier

:: = Item IltemList , Item

:: = identifier I MAIN I ENTRY VECTOR I CATCH CODE

:: = identifier I PackList , identifier

Each ComponentDesc describes procedures from the configuration or module named by
Component. In order to uniquely specify a configuration or module, you can qualify its
name by the names of enclosing configurations (and you only have to give the qualifying
names necessary to uniquely specify it).

Because code is being rearranged, Component must refer to a module or configuration
prototype, not to an instance. As described in the Mesa Language Manual, configurations
can include both instances of modules and configurations, and their prototypes (the object
files) from which such instances are made. Since different instances of the same prototype
in a configuration share the same code, the Packager requires that a Component in a code
pack name a prototype. However, because each module instance has its own global frame,
a Component in a frame pack may name an instance.

Some forms of ComponentDesc include a list of items, either preceding or following the
EXCEPT keyword. These must be directly contained in the module or configuration named
by its Component. If Component refers to a module, then each item must name one of the
module's procedures; if it names a configuration, the items must be modules or
subconfigurations that thEl configuration directly contains. Most of the different forms of
ComponentDesc apply to both modules and configurations. The six different forms are
interpreted as follows:

XDE User's Guide 23

Component

All procedures in the module or configuration are included in the code pack, except
possibly main procedures, catch code, or entry vectors (see below).

Component [ItemList]

Only the named items of the component are included. If the component is a module, the
items must be procedures contained within it (at the outermost level, not nested
procedures; nested procedures are included along with the enclosing procedures). If the
component is a configuration, the items must be directly contained subconfigurations or
modules.

Component EXCEPT [Item List]

All of the component is included except for the listed items. The items bear the same
relationship to the component as in the form above.

Component EXCEPT PackList

The included procedures are those contained in the component that are not included in
any of the code packs in the PackList. The PackList may name only code packs contained in
the current segment. This applies to the next two forms as well.

Component [Item List] EXCEPT PackList

Component must name a configuration. The items must be modules or configurations that
it directly contains; their procedures that are not contained in any of the code packs in the
PackList are included.

Component EXCEPT PackList. [ItemList]

If Component names a module, the included procedures are those not named in the
ItemList and not included in any of the code packs in the PackList. If Component names a
configuration, the included procedures are those not contained in any item and not
included in any of the code packs in the PackList.

The first three forms of a component description are called explicit. The last three are
implicit, since they defil1;e some of a code pack's procedures implicitly in terms of other
code packs. Implicit ComponentDescs are convenient because they let you abbreviate the
specification of procedures. However, you may abbreviate the specification of a
component's procedures only once.

Fine point: The restriction on implicit component descriptions may be stated more precisely as follows: in each

code pack ofa PackList in an EXCEPT clause, any ComponentDesc with a Component that contains or is

contained in the Component of the implicit ComponentDesc must be explicit.

There is one more option for defining a CodePack. You may use an unnamed
ComponentDesc when the code pack contains procedures from only a single module or
configuration. In this case, the code pack takes its name from that module or
configuration. Although the syntax allows it, the MainOF, CatchOF, and EntryOF forms of
component descriptions cannot be used to specify an unnamed code pack.

23-7

23

23-8

Packager

23.4.1.1 Placement of entry vectors, main procedures, catch code

Often the entry vectors, main code, and catch code of modules are treated quite differently
from the procedures in the modules. The Packager has special syntax to allow the
programmer to place thesf! items more easily.

The Excepting clause may appear optionally in a CodePack header:

Excepting :: = empty I EXCEPT [ExceptingSeries] ;

ExceptingSeries :: = Exceptingltem I Exceptingltem, ExceptingSeries;

Exceptingltem :: = MAIN I ENTRY VECTOR I CATCH CODE;

This Excepting clause lets you exclude from a code pack any mainline code and/or entry
vectors and/or catch code contained in the modules of the pack. Since main procedures are
executed just once when a module is started, they are often placed in the coldest code pack.
Entry vectors are usually i.ncluded in the hottest code pack. They might be placed together
in a separate code pack, or they might be mixed in with code from a logically disjoint pack
when the programmer knows that this pack will be the only caller into a particular
module. Catch code placement must be carefully weighed by the programmer so that
fielding expected signals does not induce unwanted swapping behavior.

You can use the last variants of ComponentDesc to include the main procedures, catch
code, or entry vectors that were excluded in other code packs of a segment.

MainOF :: = MAIN OF PackList

CatchOF :::1 CATCH CODE OF PackList

EntryOF :: :I UITRY VECTOR OF PackList

The main procedures (or catch code or entry vectors) of all of the modules contained in the
code packs of the PackList are included in the current code pack. The PackList must name
code packs in the current segment. Each code pack in the list will normally have an
Excepting clause specified in its header.

23.4.2 Discarded code packs

Discarded code packs allow you to throwaway the code for procedures that are not needed.
The procedures included in one of these code packs are marked as being unbound, and
their code is not copied to the output file.

A discarded code pack is declared much like an ordinary code pack, except for the
additional keyword DISCAR[) preceding the usual keywords CODE PACK.

DiscardCodePack :::1 identifier: DISCARD CODE PACK • CodePackBody

XDE User's Guide 23

23.4.3 Frame packs

A frame pack contains the global frames for a collection of modules. Because global frames
have no finer structure (the storage for each procedure's variables is already allocated
separately in local frames), you cannot split a global frame into more than one swap unit.

FramePack

FramePackBody

:: = identifier: FRAME PACK = FramePackBody I
FrameMerge -- defined later

:: = {ComponentSeries} I BEGIN ComponentSeries END

Only the following two ComponentDesc variants are allowed in frame pack descriptions.
The second form is valid only if the Component names a configuration:

ComponentDesc :: = Component I Component [ItemList]

Unlike code packs, a Component for a frame pack may name a module or configuration
instance. If Component refers to a module, that module's frame is included in the swap
unit (and only the first form may be used). If it names a configuration, the frame for each
module in the configuration is included (in the first form), or the frames of the modules
named in ItemList are included (in the second form).

Fine point: Future versions of the Packager may support EXCEPT clauses for frame packs.

23.4.4 Merging

A Merge construct lets you combine existing or previously merged code segments as well
as two or more existing or previously merged frame packs. Each code pack of the merged
segment consists of the procedures from one or more code packs from the original
segments. The original segments (and their code packs) are superseded by the merging.

Merging is useful in the packaging of very large programs that are themselves comprised
of large programs with separate packaging descriptions. Merging allows related code
packs from different segments to be swapped as a unit and reduces the breakage in code
packs and code segments. For example, it may make sense to merge the resident or the
initialization code packs of several segments, even though the segments are not otherwise
logically related.

Merge ::. identifier: SEGMENT MERGES SegUst =- SegmentBody

SegList ::. identifier I SegList , identifier

As before, the segment contains a series of named or unnamed code pack descriptions.
However, the specification of these code packs is in terms of previously defined code packs,
not in terms of modules and configurations. (Although the syntax allows it, a
Code Pack Body in a merged segment can not contain an ExceptMain clause.)

CodePack :::1 identifier: CODE PACK :I CodePackBody I ComponentDesc

23-9

23

23-10

Packager

In a merged segment, a ComponentDesc must name a code pack of a previously defined
segment. The name can be qualified by the containing segment when it would otherwise
be ambiguous.

ComponentDesc :: = Cllmponent

The named CodePack variant can be used to combine two or more existing code packs,
while the unnamed CompcmentDesc variant is used to copy an existing code pack into the
new code segment

As in unmerged code segments, the order in which you specify the code packs of the merge
is important. They should be declared in order from "hottest" to "coldest."

Merged code segments, like unmerged code segments, may not be longer than 32K words
in length. Thus, it may not be possible to combine the resident parts of all segments of a
large system into a single swap unit.

Previously merged or existing frame packs may also be merged into a single swap unit:

FrameMerge :: = identifier: FRAME PACK MERGES FramePackList ;

FramePackList :: =- FramePack I FramePack, FramePackList

23.4.5 Rules governing packagin,~ descriptions

For a packaging description to make sense, the following rules must be observed:

• You have to account for every procedure (including main), catch code, entry vector,
and global frame. Each procedure must be placed in some code pack. Likewise, each
global frame must be placed in some frame pack.

I. A procedure can be placed in only one code pack. Likewise, a global frame can be
placed in only one frame pack.

'. The entry vector as well as all procedures and catch code of a module must appear in a
single code segment (since the module's entry vector is required to reference the
procedures and entry vlector.)

II The entry vector of a m.odule must be placed before any of its other code, including the
catch code.

• The code pack identifiHrs within a code segment must be distinct, but code packs in
different segments ma.y have the same name. All frame pack identifiers must be
distinct.

• A component of a code pack cannot name a module or configuration instance.
However, a component of a frame pack may name an instance.

Fine point: If a module has been table-compiled, its code can be included in a code pack, but only as a unit.

XDE User's Guide 23

23.4.6 Placement of multiword read-only constants

The Packager replicates multiword constants that are referenced in multiple code packs
unless the Ie switch is specified on the command line. If Ie is given, the order in which
code packs are specified is used to make the assignments of multiword read-only constants
within a module. The Packager stores a multiword constant in the first code pack that
contains a procedure using it. Specifying the "hot" code packs first will thus help to ensure
that the additional data needed by a procedure is already in memory.

Fine point: Previous versions of the packager did not replicate constants; they behaved as if the Ie switch were

always present.

23.4.7 Example

This section presents a simple packaging description. For further examples you might
want to look at the packaging description for something real.

The packaging description for Lex distributes its procedures into three code packs
(LexicaIStringManagement, ColiectAndDispatchCommands, and InitAndSeldomUsed),
depending upon logical function and frequency of use. It also places the global frames for
Lex's two modules into separate frame packs, UtilityFrames and DriverFrames.

Lex: SEGMENT =
BEGIN
LexicalStringManagement: CODE PACK =

BEGIN
Lexicon EXCEPT ColiectAndDispatchCommands, [MAIN, CATCH CODE];
LexiconClient [ENTRY VECTOR];
END;

ColiectAndDispatchCommands: CODE PACK.
BEGIN
Lexicon [Pri ntLexicon];
LexiconClient EXCEPT [ENTRY VECTOR, CATCH CODE];
END;

InitAndSeldomUsed: CODE PACK.
BEGIN
LexiconClient [CATCH CODE];
Lexicon[MAIN, CATCH CODE];
END;

END;

-- Frame packs

UtilityFrames: FRAME PACK. {Lexicon};

DriverFrame: FRAME PACK. {LexiconClient}.

LexiconClient is placed in ColiectAndDispatchCommands, a less frequently used code
pack, while its entry vector and the procedures that it calls frequently (most of Lexicon's
procedures) are placed in LexicalStringManagement, the most frequently used code pack.

23-11

23 Packager

The remaining code (mainline code and catch code), which is seldom called, is placed in
InitAndSeldom used, a code pack that is seldom used.

The global frame of Lexiecm, which contains the hottest procedures, is placed in the frame
pack UtilityFrames. The remaining global frame (for LexieonClient) is placed in
DriverFrames.

23.5 Operation

23-12

The Packager is run as a post-processor that reads a single object file and a packaging
description, and writes a new output object file with a different name. Its operation
resembles that of the Binder, except that all symbols for the input object file must be on
the disk. The Packager needs these to identify procedures and frame packs, and to locate
the code for procedures. The output object file contains the reorganized code of the input
object file, but not symbols (Le., code is copied, symbols are not). The output object file also
contains information about the global frame packs for later use by Makeboot and the Pilot
Loader.

A packaged object file can be loaded and executed, or bound with other object files using
the Binder. However, a paekaged object file cannot be further repackaged, since this would
require that symbol tables be modified, which would, in turn, cause considerable
operational problems. It is possible to combine separate packaging descriptions in a single
run with code segment merging, in the sense that code packs from the original
descriptions can be merg€!d together into new, larger code packs without modifying the
original descriptions.

Although the Packager does not read multiple packaging descriptions, the syntax is
designed to allow easy merging of separate descriptions using the Executive's Cop.y

command. For example, if B igAppl ica t ion were made up of descriptions for
FirstPiece and Second:Piece, plus a MergePieces that specified how to merge the two
segments, then the following command would combine the three separate descriptions:

>Copy Big.pack +-. First.pack Second.pack MergePieces.pack

Because the Packager must access the code of every procedure and the symbol table of
every module of the system it is packaging, and must also copy the code for each procedure
to the output file in random order (in the worst case), it is not very fast. It is roughly an
order of magnitude slower than the Binder.

24

Debugger

This chapter describes the Pilot-based multilanguage debugger, Sword. Sword supports
source-level debugging; it allows users to set breakpoints, monitor program execution,
display the runtime state, and interpret Mesa statements. The debugger is intended for use
by experienced programmers familiar with Mesa and XDE; the debugger may be used for
Mesa, C and FORTRAN programs. To use the debugger, run Sword. bed on a Tajo bootfile.
The installation instructions for the Mesa release you are running may contain important
notes about installing and using Sword.

Some of the terms used in this chapter may not be familiar. Terms associated with the
Mesa or C/Mesa language can be looked up in the Mesa Language Manual. Terms
associated with the runtime environment can be looked up in the Mesa Processor
Principles of Operation or the Pilot Programmer's Manual.

24.1 Styles of debugging

There are three styles of debugging: local debugging, outload debugging, and remote
debugging. In local debugging, the debugger shares the same address space as the
debuggee (hereafter known as the client), and is located on the same logical volume. In
outload debugging, the debugger resides in a different address space than the client, and on
a different logical volume. In remote debugging, the debugger and the client are different
hosts on the network.

24.1.1 Local debugging

Many Tajo applications can be debugged locally. However, since the debugger and the
client share the same address space, local debugging is not feasible when the debugger
depends on the application being debugged. For instance, it is not possible to local debug
the operating system because the debugger depends on it. In such cases, outload debugging
or remote debugging is used. Crashes or breakpoints which occur in Tajo boot file code may
leave system monitors locked, and the debugger will hang if it needs to acquire such a lock.
For instance, deadlock can occur after crashes in the window system, the file system, or the
operating system.

24-1

24

24-2

Debugger

24.1.2 Outload debugging

[n outload debugging, a world-swap transfers control between the client and the debugger
by swapping their reaL memory images. This mechanism protects the client and the
debugger from each other. A world-swap may take from 30 seconds to a few minutes, and
the time is proportional to the amount of real memory in the machine.

When the client volume is booted, the debugger creates outload files to hold the client's
memory image and its own memory image. The outload files are large, since they must
hold copies of real memory. When the client volume needs to call the debugger, the
operating system on the client searches for an installed outload debugger to use, looKing on
all volumes of type one higher than its own volume. The three volume types are normal,
debugger, and debuggerOebugger. For example, if the boot file is on a volume of type
normal, Pilot searches volumes of type debugger. Rarely, it is desirable to use an installed
debugger other than the one that Pilot would normally choose. In these cases, the Set
Debugger Pointers command from the Installer allows you to have a client and a debugger
on volumes of the same type. However, to do outload debugging, Sword must be run on a
volume of type debugger or debuggerDebugger. More details about outload files are in the
Pilot Programmer's Manual.

24.1.3 Remote debugging

It is possible to debug clients over the Ethernet with a remote machine. A client must use a
remote debugger if there is not an outload debugger available, or the client volume was
booted with the "5" switch (that causes the client to always wait for a remote debugger).
While waiting for a remote debugger, the client displays Maintenance Panel code 915, and
while communicating with a remote debugger, the client displays Maintenance Panel code
917.

A host is the name of a machine that is registered in the clearinghouse, or a processor
number of the form netNumber.processorNumber •. If a Domain and Organization
have been specified in the user profile, they are used to qualify a partially qualified host
name. Otherwise you will have to supply a fully qualified host name.

Before communications have been established, and whenever the debugger is waiting for
the remote machine, it displays: "Waiting for client ... ". This is followed by the
message "el ien t responds" when communications are established. If you are waiting
for the client, pressing the ABORT key (with the cursor in the same window as "Wa i t i ng
for cl ient ..• ") will abort communication with the client.

Many packets are sent over the network while remote debugging. When a remote
debugging session is started, a cursor is created in the herald window. The cursor usually
appears as a pair of boxes, and each time a packet is sent over the network by the debugger,
the boxes flip. When a packet transmission fails, the debugger tries to resend the packet,
and the cursor says RETRY. Each time the transmission fails the RETRY cursor is inverted. The
RETRY cursor will normally show when "Wa it i ng for eli e n t .•• ". The cursor is
destroyed when the debugging session ends.

XDE User's Guide 24

24.1.4 Creating a debugging session

Sword is a multiple instance tool, so the user may be debugging several clients at once. i\
debugging session can be started by the user from the f~xecutive or from a Sword tool. A
debugging session may also be started automatically with the occurrence of certain events.

Sword registers the Executive command "Sword. -", which has the syntax:

Sword. - < client/switches>

If the client is omitted, then a local debugging session is started. The switches can be:

o start an outload debugging session

r start a remote debugging session

s set DebugUsefulDefs client (abbreviated setDCDL This switch is usually relevant
only when using the performance tools. See the Programmer's Interface section.

Sample debugging sessions are shown in the Examples section of this chapter.

24.1.5 Local events

Local debugging sessions are created automatically to handle certain types of abnormal
events:

1. An uncaught signal is raised (Le. some statement raises a SIGNAL or ERROR which is not
caught).

2. An address fault or write protect fault occurs (i.e. some statement accesses a virtual
address which is not mapped, or tries to write a virtual address which is write
protected).

3. A breakpoint is hit (i.e. the user sets a breakpoint and the break instruction is later
executed).

4. A client invokes the debugger through an interface, such as Runtime. This type of
event is known as a calldebug.

Sword will not handle an event locally if:

1. The user specifies in the Options window that a particular type of event should not be
handled locally. The four boo leans uncaught, fault, break, and calldebug in the
Options window control whether local events of those types are handled locally or
cause a world swap (or 915). If an event boolean is TRUE and a event of that type occurs,
it is handled locally.

2. The event is an uncaught signal, fault, or call debug and there is already a local
debugging session for one of those events (in other words, only one uncaught signaL
fault, or calldebug can be locally debugged at a time). Multiple local debugging
sessions are allowed for breakpoints.

24-3

24 Debugger

3. The user entered the name of the module in which the event occurred in the filter,
either through the Options wi ndow or the User .cm. The user may specify
configurations and modules which are put in the filter, and thereafter events which
occur in a filtered module are not handled locally. The filter is an important
protection mechanism which helps avoid deadlocks caused by the debugger
attempting to local debug crashes in system code, and the user should carefully
consider which configurations belong in the filter. SampleUser.cm contains a filter
which provides adequate safety for most XDE users.

4. The user types SHIFT-STOP (in other words. SHIFT-STOP always causes a world-swap or
915),

5. The event is not an uncaught signal, fault, breakpoint, or calldebug. Events other
than these cannot safely be locally debugged.

6. A client (usually the operating system) has disallowed procedure calls because it
believes that system data is seriously corrupted. Local debugging, like any
application, requires procedure calls. If procedure calls are not allowed, the event
cannot be handled locally.

Note: If you are debugging boot file code, then turn off the boo leans "fault" and "uncaught" in your Options

window. so that you will world SWlp when a crash occurs. If you crash unintentionally in boot file code. and Sword

hangs. shift stop to another debugger. Do a "Find Module: RuntimeErrorImpl". A couple of frames above

RuntimeErrorImpl on the stack is the frame that initially crashed. If the crasher is Signals. then above Signals

will be the frame that raised the uncaught signal. If the crasher is PageFaultlmpl, then get the symbols for

PageFaultImpl and look at the variable "process". That process is the one that faulted.

24.2 Sword tool

24-4

A Sword tool may contain one debugging session or it may be dormant, as indicated in the
namestripe of the tool. WhHn a debugging session is requested, an existing dormant Sword
tool is used if one exists, otherwise a tool is automatically created. Debugging sessions are
closed by making the tool dormant. Tools that are not dormant cannot be destroyed.

24.2.1 Sword form subwindow

The form subwindow has items for the debugger commands used most often. Commands
available in the form subwindow are described in this section; commands available in the
file subwindow are described in later sections. Most form subwindow commands are also
available in the file subwindow.

go

This enumerated item is used for program control. The choices are described in the
Program Control section.

client

This enumerated item is used to open and close debugging sessions. If the Sword tool is
dormant, selecting "local" will create a local debugging session. Selecting "outlaad" or
"remote" will create an outload or remote session; you will be prompted for the name of the

XDE User's Guide 24

LocalWorlcl Debu .10 . " . : . , .-' -'-
go , '"t·t-,--·---J .-L--t ... t 1."'11 ·::-,-·t-,--t ... ·::-·t'-t-·t l 1,' t '"1---1 1 , I_I"I I_"_·,=el_~, ·::I.~JU -', r·,. , . ..:.1_. '='= I, '..:. -"::1. -'.r c en : "I. 1_11_:;::1. .r

configs processes read: -fl- write: {} attach: {}

SOlr"Ce I fil'dloWl e ! clear! date! rep'? ! shotrType !
br'-e:ak.: {:;:et, clear, clear'all, li::;:t, attachConcj, attachKe.y} watch

destroy!
another!

type&bits!
options!

~--~D
31

.... or·d
>O~splay St~ck ___ ---
No symbols tor L: b~/~~~B~. PC: 5777B (in ITlnstall~ G: 15227754B~) ~n
No p·t ... e· ... ' iou::;: frame! >- '.

CARDIHAl: -:tiSQL dec~m;ll ~ he::.::} si~
Apply! POINTER: -ItiSDL dec ima 1 ~ he::.::}

Abort! RElA~: {octal, GMlJa.
N'-r1ly e 1 e.ents = ~3 :15 35
filter: Tajo :3 1 or,d

he:;.::}

INTEGER: {oct;ll ~ Gt:t .. a. hex} - ~

P'R1l:ESS: ~mn'. decimal ~ he::.::}
lIfSPECH"IED: -: Gf'I. dec i mal. he>::}
String 1 ength = 2~:::U:::1

tmI]. Lj ,:ti;\')m ~. GO'G:tWI processes configs

Figure 24-1: Sword Tool in Local World mode, and the Options window

outload file or remote host. To end a debugging session, change this enumerated to
"dormant". "setDUD" will set this session's client to be the DebugUsefulDefs client.

destroy

If the tool is dormant, it is destroyed. Otherwise the screen flashes.

processes

Turning the processes boolean on creates the process subwindow in the tool. This
subwindow contains processes, callstacks, and local variables. You can zoom or close a
particular line by selecting the cross (X) at the head of the line (the state is toggled).
Zooming displays more detail; for instance, zooming a stack frame line displays the local
variables of the stack frame. Closing the line erases the local variables. The window is
automatically initialized to the process context of the crash if the autoOpen boolean in the
User.cm is TRUE. It takes about 10 seconds from the time of the crash until the processes
subwindow is displayed.

24-5

24

24-6

Debuggel"

configs

Turning the configs boolean on creates a configuration subwindow in the tool. This
subwindow contains configurations, modules, and global variables. You can zoom or close a
particular line by selecting the cross (X) at the head of the line (the state is toggled),
Zooming displays more detail; for instance, zooming a configuration line displays the
nested configurations and modules. Zooming a module line displays the global variables of
the module. Closing the line erases the global variables. The window is automatically
initialized to the module context of the crash if the au toOpen boolean in the C ser.cm is
TRUE.

read

This item gives access to the Ascii Read, Octal Read, and Display Eval-stack commands
(see the Low-level facilities section).

write

This item gives access to the Octal Write command (see the Low-level facilities section).

attach

This item gives access to Attach Source (see the Breakpoints section) and Attach Symbols
(see the Low-level facilities section).

source

If the current selection is on a local frame line in the process subwindow, then source!
loads a filewindow with the source for that local frame. If the current selection is on a
global frame line in the config subwindow, then source! loads a filewindow with the source
for that global frame.

findModule

This command tries to interpret the current selection as a module, then marks (with a
black box) all places in the process and config subwindows where the module is found. If
you select on a local frame line in the process subwindow, the module searched for is the
one that the local frame is executing in. If you select on a module line in the config
subwindow, that module is the one searched for. You can also select a module name outside
the debugger tool. All processes that have stack frames executing in the module are
marked in the process subwindow, and the configuration containing the module is marked
in the config subwindow.

clear

Clears any marks in the process and config subwindows.

dlate

If the selection is on a line in the config subwindow, the date of the module or configuration
is displayed on that line.

XDE User's Guide 24

l'ep?

The value of the selected number is printed in several formats, including octal, decimal,
and hexadecimal (see the Output Conventions section).

showType

The type of the selected expression is printed. The syntax of the expression must be either
File.Type or File$Type, where File is the name of an interface or program. If just a
filename is selected, then all of the types in that file are printed.

type&bits

The type and bit layout of the selected expression is printed. This is particularly useful for
finding the positions of fields within records. The syntax of the expression must be either
File. Type or File$Type, where File is the name of an interface or program.

break

This enumerated item gives access to the common breakpoint commands (see the
Breakpoints section).

watch

This command halts execution of a program when the contents of a particular address
changes. When this boolean is turned on, you are prompted for an address to watch. Later,
if the contents of that address changes, the debugger is called with a swap reason of
"TraceTrap". The user should then turn the boolean off to discontinue watching. To use
watch for an outload or remote session, the module Tracelmpl (in Sword.dD must first be
run in the client.

options

This command creates the Options window (see the Output conventions section).

24.2.2 Sword file subwindow

The file subwindow is recorded in a log file (usually Debug .log) which is named in the
tool's namestripe. The file subwindow is a command processor, and the prompt character is
>. The standard input editing characters (BS to delete a character and BW to delete a word)
are allowed. Whenever a valid command is recognized, the command parser prompts for
the parameters associated with that command (if any are required). Pressing DELETE

terminates the command; 7 gives a list of valid commands. Pressing ABORT at any point
during command execution aborts the command. The command processor operates in
command completion mode. That is, the user only needs to type as few characters as needed
to identify a unique command string, and the debugger fills in the rest. Whenever an
invalid character is typed, a ? is displayed and you are returned to command level. Typing
? at any point during command selection prompts you with the collection of valid
characters (in upper case) and their associated maximal strings (in lower case) and returns
you to command level.

24-7

24

24-8

Debugger

Current Context

Interpreting symbols (including displaying variables, setting breakpoints, and calling
procedures) occurs in the current context; it consists of the current stack frame and its
corresponding module, configuration, and process. The symbol lookup algorithm used by
the debugger is to search the runtime stack of procedure frames in Last-In-First-Out order.
First the local frame of the current procedure is examined, next its associated global frame.
The search continues by following the return link to the next local frame. This continues
until either the symbol is found or the root of the process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is
currently running. Certain commands make it simple to enumerate contexts (L i s t
Processes, List C()nfigurations), to change between contexts (SEt Root
configuration, SEt Module context), to display the current context (CUrrent
context), and to examine the current dynamic state (Display Stack).

Looking up Symbols

Whenever the debugger needs symbols to display information, it first searches for symbols
where they were last copied by the Binder, then for the original compiler-output object file.
Types used, but not declared, within a module are looked up using the same algorithm as in
the Compiler. If the interface module containing the original declaration is unavailable,
the debugger uses whatever information has been copied into the symbol table of the
module using that type.

Leaving the Debugger

In the debugger, you may execute any number of commands to examine (and change) the
state of your program. When you are finished, you may decide either to continue execution
of your program (Proceed), terminate execution of your program by raising the ABORTED

signal (Qui t), or end the debugging session completely and boot the client's physical
volume (Kill).

24.2.3 In pu t con yen tions

String Input

[dentifiers are sequences of characters beginning with an upper- or lower-case letter and
terminating with a space (SPACE) or a carriage return (RETURN); identifiers must be typed
with correct capitalization.

Numeric Input

A numeric parameter is a sequence of characters terminated by SPACE or RETURN. If the
parameter is not a numeric constant, it is processed by the interpreter; any expression that
evaluates to a number is IE!gal. The default radix is octal for addresses (and input to octal
commands) and decimal fot everything else, unless otherwise specified with the Opt ions
window. The D or d suffix forces decimal interpretation; B or b forces octal; H or h forces
hexadecimal. Numeric com;tants with a leading zero are considered LONG.

X D E U serfs Guide 24

Default Values

The debugger saves the last used command parameters for each command; these values
may be recalled by the COMPLETE key (aka. -+). The following parameters have default
values that may be recalled with COMPLETE: octal read address, octal write address, ascii
read address, root configuration, con/'iguration, module, procedure, condition, expression,
process, address, and frame. After the default parameter is displayed by the debugger, the
standard input editing characters may be used to modify it. Striking the COMPLETE key to
the command processor uses the last command as the default command.

24.2.4 Output conventions

A "?" in any variable display uniformly means that the value is out of range. An ellipsis
(" •.• ") indicates that there are additional fields present in a record that cannot be
displayed due to lack of symbol table information. This can happen either in OVERLAID
records or because a DEFINITIONS file is not present on the disk. In display stack mode,
variables declared in nested blocks are shown indented according to their nesting level.

The Options window allows you to change the default format the debugger uses in
displaying values of variables. This window is created by selecting the Options!
command in the form subwindow, then bugging Apply! to keep the changes made, or
Abort! to restore the previous options.

In the Options window, the CARDINAL, INTEGER, POINTER, LONG POINTER, and RELATIVE (POINTER)
items are used to set the default output radix for that type. For CARDINAL and INTEGER, the
default representation is signed or unsigned, depending on whether the boolean item
signed is turned on or off. The UNSPECIFIED item is used to set the default type for displaying
UNSPECIFIED variables. Array elements sets the number of ARRAY elements displayed to be
the given value and String length sets the number of STRING characters displayed to the
given value.

The debugger uses these default values along with the types of variables to decide on an
appropriate output format. Listed below are the built-in types that the debugger
distinguishes and the convention used to display instances of each type.

ARRAY

displayselementsofanarray;e.g.,a=(3)[[x: 0, y:O], [x: 1, y: 1], [x: 3,
y: 3]]. The parenthesized value to the right of the "=" is the length of the array. Pressing
ABORT will abort the display of long arrays. The default is to display the entire array; the
Array elements item of the Options window may be used to change this.

ARRAY DESCRIPTOR

displays the descriptor followed by the contents of the array; e.g., a =
DESCRIPTOR(l46013Bj,3]{3) [[x: 0, y:O], [x: 1, y: 1], [x: 3, y:3]].Fora
RELATIVE ARRAY DESCRIPTOR, the word RELATIVE is displayed first. Pressing ABORT will abort the
display of long array descriptors. The Array elements item in the Options window also
controls this.

24-9

24

24-10

Debugger

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values outside
this range are indicated by a ? (probably an uninitialized variable).

CARDINAL

displays an oct<.ll number terminated by a "8" as the default. This may also be altered with
the Opt ions window. Cardinals may be displayed as decimal, octal, or hex; signed or
unsigned.

CHARACTER

displays a printing character (c) as I c. A control character (X) other than BLANK, RUBOUT,

NUL, TAB, LF, FF, CR, or ESC is displayed as i X. Values greater than 1778 are displayed in octal.

CONDITION

displays a record containing an UNSPECIFIED and t imeou t, a CARDINAL.

ENUMERATED

displays the identifier constant used in the enumerated type declaration. For example, an
instance c of the type ChclnnelState: TYPE = {disconnected, busy, available} might be
displayed as c = busy. Va.lues outside the range of the enumerated type are preceded by a
question mark.

EXPORTED TYPES

displays the name of the type followed by an octal display of the contents if the length of the
t.ype is known. For example, an instance of the type Handle: TYPE [1] is displayed as
Handle(1) 12348.

INTEGER

displays a decimal number. Uniformly, numeric output is decimal unless terminated by
IUS" (octal). Integer output may be changed with the Opt ions window.

LONG

displays numbers following the same conventions as short numbers; i.e., LONG CARDINAL and
LONG UNSPECIFIED are displayed in octal, LONG INTEGER in decimal.

MONITORLOCK

displays a record containin~~ an UNSPECIFIED.

POINTER

displays a number terminated with an "i n; for instance p = 1073628 i. RelATIVE POINTERs

are terminated with n i R"; for instance r = 123 i R. These defaults may be changed for
LONG POINTERS, RelATIVE POINTERS, and POINTERS with the Opt ions window.

XDE User's Guide 24

PORT

displays two octal numbers; for instance p PORT [0, 172520B].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global frame); for instance GetMyChar, L: 165064B
(in ColleetParams, G: 166514B).

PROCESS

displays a PROCESS (pointer to a ProcessStateBlock); for instance p PROCESS [l11B1.

REAL

displays a floating-point number; for instance r = -1.45.

RECORD

displays a bracketed list of each field name and its value. For example, an instance v of the
record Vector: RECORD [x,y: INTEGER] is displayed as v = [x: 9, y: -1].

SEQUENCE

displays as an array. For example, an instance s of the record Sequence: RECORD [length:
Unsignedlnt, text: PACKED SEQUENCE maxLength: Unsignedlnt OF CHARACTER] is displayed as
s=[length:3, text:(3)['a, 'b, 'c)).

STRING

displays the name of the string, followed by its current length, its maximum length, and
the string body; for instance s = (3, lO) "f 00". If the string is NIL, s = NIL is displayed.
Pressin~ ABORT will abort the display of long strings. The default is to display the entire
string; the Str ing length item in the Options window can change this.

UNSPECIFIED

defaults to being displayed as if they were CARDINALS; this may be changed with the
Opt ions window.

ZONE

An UNCOUNTED ZONE displays as a LONG POINTER. An MDSZone displays as a POINTER.

Listed below are the conventions used to display context information throughout the
debugger:

A local context is displayed as the procedure name with its local frame, followed by the
module name and its global frame:

ProcedureName, L: nnnnB, PC: nnnB (in ModuleName, G: nnnnnB)

24-11

24 Debugger

A global context is displayed as the module name and its global frame. If the global
frame has not been started, it is followed by a -. If the global frame is followed by * (as
nnnnnB *) it is a copy created by the NEW construct.

ModuleName, G: nnnnnB

In response to an expression followed by a 7, the interpeter will show the value of the
expression in the following formats:

Octal = Hexadecimal = Unsigned Decimal = Signed Decimal
Byte"Byte = Octal Byte"Octal Byte = CHAR"CHAR =
Nibble:Nibble"Nibble:Nibble

[fany of the values are zero or out of range, they will not be shown. For LONG values the
interpreter will show the value of the expression in these formats:

Octal = Hexadecimal = Decimal = OctalWord OctalWord
Byte"Byte Byte"Byte

For example, in response to 6l141B? the debugger displays

6l141B = 62618 = 25185 = 98,,97 = 142B,,141B = 'b,,'a = 6:2,,6:1

and for 1234567B? it shows

1234567B = 53977H = 342391 = 34567B 5 57,,119 0,,5

24.3 Debugger commands

24-12

The command tree structure for the command parser appears at the end of this chapter.
Capitalized letters are typed by the user (in either upper or lower case); commands are
automatically extended with lower-case strings by the command processor. Each command
(and its parameters) is described below.

24.3.1 Breakpoints

All breakpoints may be eonditional (see ATtach Cond it i on, below). An optional
command string which is executed when the breakpoint is taken can be attached to each
breakpoint (see ATtach Keys trokes, below). The system currently allows up to 50
breakpoints, and up to 4 conditional breakpoints. A tracepoint is an augmented breakpoint;
when a tracepoint is encountered, display stack mode is entered and the local variables of
the current procedure are displayed.

Breakpoints may be set at the following locations in a program: entry (to a procedure), exit
(from a procedure), and at the closest statement boundary preceding a specific text location
within a procedure or module' body. Breaks on a specific text location can be set only with
the Set Break command in the form subwindow. Note that breakpoints are set in all
instances of a module. When the source line of the breakpoint is displayed, the indicator
< > appears to the left of the source where the breakpoint has actually been set (for
instance IF faa THEN < > some statement;). Before the debugger permits any breakpoints

XDE User's Guide 24

to be set from a FileWindow, the creation date of the source file is checked against the
corresponding date recorded by the compiler in the bcd.

Fine point: Since there is only one exit from a procedure. the debugger shows the heginning of the procedure tilt·

exit breaks instead of indicating a potentially incorrect RETURN statement. Local variables may be invisible if

this RETURN has a PC that is not in the block with their declarations; use source breaks on the RETURN statements

instead of an exit break.

If you compile a module with the cross-jumping switch turned on (the default), be warned
that when setting source breakpoints, the actual breakpoint may not end up where you
expect (for instance you may break in the code of an ELSE clause when you really want the
THEN clause if they share some common code). The message Cross jumped! will appear
before the source of a cross-jumped module is displayed. Entry and exit breakpoints are not
affected by cross jumping.

At tach Source (only in form subwindow)

tells the debugger to ignore the time stamp in the source file where the current selection is
when setting breaks. You should do this only when the correct version of the source cannot
be found, but you need to set a source breakpoint. Attaching the wrong version of a source
file may result in breakpoint locations being set and reported incorrectly. How far off the
breakpoints are depends on how much the attached source differs from the correct version
of the source.

ATtach Condition [number, condition]

changes a normal breakpoint into a conditional one. Arguments are a breakpoint number
and a condition, which is evaluated in the context of the breakpoint. The breakpoint
number is displayed when the breakitracepoint is set, and may also be obtained using the
List Breaks command. The two valid formats ofa Condition are: exp relation exp, and
number. A relations is in the set {<, >, =, #, < =, > =}. A number means "execute the break
number times before invoking the debugger." The exp are interpreted expressions that are
looked up in the context of the breakpoint. The exp may only evaluate to a value that is 32
bits long, 16 bits long, or less than 16 bits long. The expression can involve at most one
dereference when the expression is evaluated at run time.

ATtach Keystrokes [number, command]

adds an arbitrary command string to breakpoints/tracepoints; the characters from this
string are executed by the debugger when the breakpointltracepoint is taken. Arguments
are a breakpoint number and a command string terminated with a RETURN. A RETURN can be
embedded in the command string with \n.

Set Break (only in form sub window)

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC, a breakpoint
is set on the entry to the procedure; if you select RETURN, a breakpoint is set on the exit of the
procedure; otherwise, a breakpoint is set at the closest statement to the beginning of the
selection. Note: If the module was compiled with cross jumping, breaks may be set in
unpredictable places. The debugger gives confirmation by moving the selection to the place
at which the breakpoint is actually set.

24-13

24

24-14

Debugger

For the following code fragments, a breakpoint set on anyError will invoke the debugger
after the catch frame is entered. If a breakpoint is set on MFile.Error, the debugger 1S

invoked for all signals and errors before any decision is made to catch the signal.

BEGIN ENABLE MFile.Error = > {anyError ~ TRUE; CONTINUE};

! MFile.Error = > {anyErrror ~ TRUE; CONTINUE};

:Break All Entries [module/frame]

sets a break on the entry point to each procedure in module or frame, not including nested
procedures and catch code.

Break All Kits [module/frame]

sets a break on the exit point of each procedure in module or frame.

Break Entry [proc]

inserts a breakpoint at the first instruction in the procedure proc. Note: You can place a

breakpoint on the entry to the mainline code. by doing Break En tr y [module nameJ.

Break Kit [proc]

inserts a breakpoint at the last instruction of the procedure body for proc. The breakpoint
catches all RETURN statements in the procedure. Note: You can place a breakpoint on the exit from the

mainline code. by doing Break Kit [module nameJ.

CLear All Breaks

removes all breakpoints/tracepoints.

CLear All Entries [module/frame]

removes all entry breakpoints/tracepoints in module or frame.

CLear All Kits [module/frame]

r,emoves all exit breakpoints/tracepoints in module or frame.

CLear All Traces

removes all tracepoints.

CLear Break (only in form subwindow)

clears the breakpoint or tracepoint at a location specified as in Set Break.

CLear Break [number]

removes a breakpoint by number. Pressing RETURN in place of a number clears the current
breakpoint, the one that put you into the debugger.

XDE User's Guide 24

CLear Condition [number]

changes a conditional breakpoint into an unconditional one. Pressing RETURN in place of a
. number clears the current breakpoint.

CLear Keystrokes [number]

clears any command string associated with the breakpoint. Pressing RETURN in place of a
number clears the current breakpoint.

CLear Entry Break [proc]

converse of Break Entry.

CLear Entry Trace [proc]

converse of Trace Entry.

CLear Xit Break [proc]

converse of Break Xi t.

CLear Xit Trace [proc]

converse of Trace xit.

Display Break [number]

displays a breakpoint by number. Its type (entry, exit, source), and the procedure and/or
module name in which it is found are displayed~ for source breakpoints, the source text is
also displayed~ any attached conditions or keystrokes are also shown. Pressing RETURN in
place of a number displays the current breakpoint.

List Breaks [confirm]

lists all breakpoints, displaying the same information as Di splay Break.

Trace All Entries [module/frame]

sets a trace on the entry point to each procedure in module or frame.

Trace All Xits [module/frame]

sets a trace on the exit point of each procedure in module or frame.

Trace Entry [proc]

sets a trace on the entry of the procedure proc. When an entry tracepoint is encountered,
display stack mode is entered and the parameters are displayed.

24-15

24

24-16

Debugger

Trace Xit [proc]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
display stack mode is entered and the return values are displayed.

24.3.2 Display runtime state

The scope of variable lookup is limited to the current context (unless otherwise specified
below to be the current configuration). This means that if the current context is a local
frame, the debugger examines the local frame of each procedure in the call stack (and its
associated global frame) following return links until the root of the call stack is reached. If
the current context is a module (global) context, just the global frame is searched. Global
frames are searched in the order: declarations, imports, directory. [f the variable you wish
to examine is not within the current context, change contexts.

AScii Read [address, n]

displays n (decimal) charaeters as text starting at address (octal).

Display Configuration

displays the name of the current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of each module in the
current configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module or examining a specific local frame). Display stack
mode is entered.

Display GlobalFrameTable

displays the module name and corresponding global frame address of all entries in the
global frame table.

Display Module [moduj~e]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

displays the frame and the state of process, which may be a variable of type PROCESS

(returned as the result of a fORK) or an octal PROCESS. The state of process can be:

ready (ready to run and has a state vector)

wai ting SV (ready to run but needs a state vector)

wai ting ML (waiting on a monitor)

XDE User's Guide 24

wai ting cv (waiting on a condition variable)

frame faul t, fs i: nn (needs a frame whose size index is nn)

page faul t, address: nnnnnB (waiting for page whose address is nnnnnB; this
is an address fault if location nnnnnB isn't mapped)

wr i te faul t, address: nnnnnB (waiting to write into location nnnnnB, which
is write-protected)

faul ted (unknown fault has occurred)

A * marks the current process. A process can be on one and only one queue (associated with
a condition, monitor, ReadyList, etc.). After the process is displayed, you enter process
subcommand mode. A response of N displays the next process; S displays the source text
and loads and positions the source file in a window; L just displays the source text; R

displays the root frame of the process; P displays the priority of the process; space (SPACE)

enters the interpreter; -- starts a comment; and Q or DELETE terminates process
subcommand mode and returns you to the command processor.

Display Queue [idl

displays all the processes waiting on the queue associated with id. If id is simply an octal
number, you are asked whether it is a condition variable Condi tion? [Y or Nl. For
each process, you enter process subcommand mode. The commands are the same as in
Display Process, with the exception of N, which in this case follows the link in the
process. This command accepts either a condition variable, a monitor lock, a monitored
record, a monitored program, or an octal pointer.

Display ReadyList

displays all the processes waiting on the queue associated with the ReadyList, the list of
processes ready to run. For each process, you enter process subcommand mode; the
commands are the same as in Display Queue.

Display Stack

displays the procedure call stack of the current process. At each frame, the corresponding
procedure name and frame address are displayed. The commands are:

v displays all the frame's variables.

G displays the global variables of the module containing the current frame.

P displays the input parameters.

R displays the return values. (anon) appears as the name of unnamed return ,
values.

N moves to the next frame on the call stack.

B moves to the previous frame on the call stack (backs up)

24-17

24

24-18

Debugger

J, n(lO)
jumps up or down the stack n levels (if n is greater than the number of levels that
can be advanced, the debugger tells you how far it was able to go). A positive n
moves down the stack, and a negative n moves back up the stack

S displays the souree text and loads and positions the source file in a window.

L displays the souree text.

o displays the compilation date of the module.

SPACE enters the Mesa interpreter.

starts a comment which ends with a RETURN.

Q or DELETE

terminates display stack mode and returns you to the command processor.

When the current context is a global frame, the Di splay Stack subcommands G, J,

and N are disabled. When the debugger cannot find the symbol table for a frame on the
call stack, only the 0, ,J, N, Q, •• and SPACE subcommands are allowed.

Find Exporter [interrace. item]

finds the exporters of an interface procedure, variable, signal, or opaque type. If the
interface is not exported by the outermost config of the bcd containing the exporting
module, the export is not found.

Find Exporter: Window.Slide WindowImplA
Find Exporter: Window.rootWindow WindowImplD
Find Exporter: Window.Error WindowImplA
Find Exporter: Window.Object WindowOps.bcd

Find Importer [interface. item]

finds the importers of an interface procedure, variable, or signal.

Find Importer: Window.SlideAndSize MailSendToolImpl
Find Importer: Window.Error RightsNotice

Find Module [module]

displays the proces~es and local frames which are in module, searching through all of the
processes. The information is printed out in a form that can be copied directly to the file
subwindow. For instance:

Find Module: Foolmpl
SEPl30B
DSJIO

If the characters are copied directly into the file subwindow, context will be set to process
130B, at the tenth frame on the the call stack.

XDE User's Guide 24

Find Variable [variable]

displays thc contcnts and module location of variable, searching through the
GlobalFrames of all the modules in the current configuration ..

24.3.3 Current context

The current context is used to determine the domain for symbol lookup. There are
commands to display the current context, to display all the configurations and processes, to
restore the starting context, and to change contexts.

Every time the debugger is entered, the current context is automatically set to (1) the
process that caused the debugger to be called; (2) some significant frame in the calling
process, not necessarily top of the call stack of the process (for example, for an uncaught
signal, the significant frame is the one in which the signal was raised); and (3) the module
and configuration of the local frame set in (2).

CUrrent context

displays the name and corresponding global frame address (and instance name if one
exists) of the current module, the name of the current configuration, and the current
process.

List Configurations

lists the name of each configuration that is loaded, beginning with the last configuration
loaded. If you wish to see more information about a particular configuration, use the
Display Conf iguration command.

List Processes

lists all processes. Each process is displayed as in the Display Process command.

ReSet context

restores the context that this instance of the debugger set upon entry (see the introduction
to this section).

SEt Configuration [config]

sets the current configuration to be config, where config is nested within the root
configuration that is current. This command is useful for "jumping" further into the nested
block structure of a configuration.

SEt Module context [module/frame]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does not change the context. Using a frame address has the
same effect as SEt Octal context.

24-19

24

24-20

Debugger

SEt Octal context [address]

changes the current context to the frame at address. This is useful when there are several
instances of the same module or in setting the current context to a specific local frame.

SEt Process context [process]

sets the current process context to be process and sets the corresponding frame context to
be the top frame on the c:all stack of that process. Upon entering the debugger, the
process context is set to the currently running process. The process may be either a
variable of type PROCESS (returned as the result of a FORK) or an octal PROCESS.

SEt Root configuration [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration>. This command is sufficient for simple configurations of only one level. It is
also useful in getting you ltD the outermost level of nested configurations, from which you
may move "in" to more deeply nested configurations using SEt Conf igura t ion.

24.3.4 Program control

Kill session [confirm]

ends the debugging session, and executes TemporaryBooting.BootButton in the client.

Proceed [confirm]

eontinues execution of the program.

Quit [confirm]

raises the signal ABORTED in the process that entered the debugger. If the process was
already processing an uncaught ABORTED signal (perhaps from a previous Qui t command),
this command passes the signal UNWIND to each frame of the process and then simulates a
I~ETURN with no results by the root frame of the process, causing the process to be deleted. If
this process is supposed to return any results, a stack error will result.

STart [global frame] [Confirm]

starts execution of the module whose frame is address. If the module has already been
started, a RESTART will be done. Unlike the START statement in the Mesa language, no
parameters may be passed.

Userscreen [confirm]

swaps to the user world for a look at the screen. Control is returned to the debugger
automatically after 20 seconds or by typing the ABORT key earlier; it does not return until
the ABORT key is let up.

XDE User's Guide 24

24.3.5 Low-level facilities

ATtach Symbols [globalframe, filename]

attaches the globalframe to filename. ATtach Symbols is useful for allowing you to
bring in additional symbols for debugging purposes when you do not have the correct object
file. The default extension for filename is . bcd. Neither interfaces nor. symbo 1 s files
can be attached.

Wat·ning: This command overrides version checking of symbol tables and should be used
with caution; it may cause the debugger to display incorrect values.

ATtach Opaque [defname.type, implname]·

attaches the opaque type in the definitions file defname to the concrete type defined in the
program implname. The concrete type must have the same name as the opaque type.
Whenever a variable of the opaque type is printed, it is printed as if it were of the concrete
type.

Warning: This command overrides type checking of symbols and should be used with
caution~ it may cause the debugger to display incorrect values.

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octan, which is useful for low-level
debugging or for displaying the (un-named) return values of a procedure that has been
broken at its exit point. This command is most useful at octal breakpoints because the eval
stack is empty between most source level statements.

Invalidate Caches (PROPS N)

The debugger caches various information about symbols and program state for efficiency.
Occasionally, bugs cause these caches to become invalid and the debugger becomes
confused. For instance, the debugger may report that a particular version of a file is not on
the search path when it is. The Invalidate Caches command clears the caches, and may
unconfuse the debugger. This command is invoked by hitting the PROPS and N keys at the
same time.

Octal Clear break [globalframe, bytepc]

is the converse of Octal Set break.

Octal Read [address, n]

displays the n (decimal) locations starting at address. An address in the first 64K is
interpreted as an absolute virtual address if it has a leading zero~ it is treated as :\IIDS­
relative otherwise.

Octal Set break [globalframe, bytepc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame globalframe.

24-21

24 Debugger

Octal Write [address, rhs]

stores rhs (octal) into the location address.

-- [comment]

starts a comment which ends with a RETURN.

24.4 Mesa interpreter

24-22

The ~esa interpreter handles a subset of the Mesa language; it is useful for common
operations such as assignments, dereferencing, procedure calls, indexing, field access of
records, addressing, displaying variables and TYPES, and simple type conversion.

Only a specific subset of the Mesa language is acceptable to the interpreter (see the end of
this chapter for grammar details), Several specialized notations (abbreviations) have been
introduced in the interpreter grammar; these are valid only for debugging purposes and
are not part of the Mesa language. The interpreter operates much like the Compiler in that
strict type checking is performed on assignments and procedure calls.

24.4.1 Statement syntax

Typing SPACE to the command processor enables interpreter mode; the limited command
processors of Display Stack and Display Process also permit interpreting.
Multiple statements are separated by semicolons. If the statement is a simple expression
(not an assignment), the result is displayed after evaluation.

24.4.2 Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character % may be used instead of LOOPHOLE [exp, type], with
the expression on the left of the % and the type on the right. However, % is not a valid
LeftS ide; all type expressions involving % must be enclosed in parentheses.

The following expressions are equivalent to the interpreter:

foG % (short red f'oo) and LOOPHOLE [foo, short red Fao]

(p % (L.ONG POINTER TO Object» i and LOOPHOLE [p, LONG POINTER TO Object] i

The first pair of expressions loopholes the type of the variable faa to be a short red Foo and
displays its value. The sBcond pair loopholes p to be a LONG POINTER TO Object and
dereferences it. foo % is a shorthand notation for faa % UNSPECIFIED.

A number may be loopholed into a PROCEDURE, SIGNAL, or an ERROR. If it is valid, the debugger
will display the procedure (or signal) name, module and global frame.

24.4.3 Subscripting

There are two types of interval notation acceptable to the interpreter; the closed, open, and
half-open interval notation accepted by the Compiler and a shorthand version that uses !.

XDE User's Guide 24

The notation [a . . b] means start at index a and end at index b. The notation [a
b] means start at index a and end at index (a+b-l).

The following expressions all display the contents of MDS-relative memory locations
1104B through 1107B:

MEMORY [1104 . . 1107]
MEMORY [1104 . . 1108)
MEMORY(1103 .. 1107]
MEMORY(1103 .. 1108)
MEMORY[1104 4]

~ote that the interval notation is only valid for display purposes and therefore is not
allowed as a LeftSide or inside other expressions.

24.4.4 Explicit qualification vs qualification in the current context

The $ notation has been introduced to distinguish between qualification in the current
context and explicit qualification. The character $ indicates that the name on the left is a
module name or frame in which to look up the identifier or TYPE on the right. If a module
cannot be found, it uses the name as a file (usually a definitions file).

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record
before the record name itself (e.g., foo % (short red FooDefs$Foo), not foo %

(FooDefs$short red Foo»).

24.4.5 Type expressions

The notation @ type may be used as shorthand to construct a POINTER TO type. This notation
is used for constructing types in LOOPHOLES (ie., @foo will give you the type POINTER TO

foo). There is no special shorthand to construct LONG POINTER TO type; however, LONG

@type is legal.

24.4.6 Radix con version

The notation expression? prints the value of the expression in several formats, including
octal, decimal, and hex. Output radix may be controlled through the Options window. See
the Output Conventions section.

24.4.7 Arithmetic expressions

Target typing is applied to some arithmetic expressions. In complex expressions, atoms
that change the target type should occur first. For example:

(POINTER + offset) t -- correct
(offset + POINTER) t -- error message

24.4.8 Procedure calls

24-23

24

24-24

Debugger

It is often useful to call procedures: this is generally done in the interpreter with the same
syntax as in Mesa. The interpreter is able to invoke any procedure that is imported into the
current module context; the $ notation may be used to call procedures that are not
imported.

The interpreter can only call procedures in modules for which it has complete symbols; this
can be somewhat confusing since the interpreter "knows" a little about the procedures
imported into a module it has symbols for. To determine whether the interpreter has
symbols for a procedure and where it is implemented (a more useful feature), simply type
the procedure name to the interpreter. For example, typing either
Process.SetPriority or SetPriority to the interpreter (while inside a module that
imports it) will cause the debugger to display something like:

SetPriority = PROCEDURE [5461B] (in module Processes, G:11644B)

when symbols for PrOCeSSE!S are not CJ.vailable. Reinterpreting SetPriority after retrieving
the object file fot Processes gi ves the following result:

SetPriority = PROCEDURESetPriority (in module Processes, G:11644B)

The notation Process.SetPriority means the same to the interpreter as to the Mesa
compiler; SetPr ior i ty is a procedure imported through the Process interface.

Since SetPr ior i ty is imported in this example, you could, for example, call it (nicknamed
interpret call for historical reasons) by typing Se tPr ior i ty [1] . To call Process.Abort,
which is not imported, the notation Processes$Abort [processld] or
nnnnnB$Abor t [process Id] (where nnnnnB is the global frame of Processes) works. If
you are lacking a variable of type PROCESS, Processes$Abor t [20B%] works; it loopholes
the process IO number 2013 into an UNSPECIFIED. (The trailing % notation is a very easy
method for constructing pointers; e.g., 123456B% is easier to type in a procedure call than
LOOPHOLE [1234568, POINTER].)

24.4.9 Sample expression~

Here are some sample expressions that combine several of the rules into useful
combinations:

If you were interested in seeing which procedure is associated with the third keyword of the
menu belonging to a particular window called myWindow, you would type:

> myWindow.menu.array[3] .proc

which might produce the following output:

PROCEDURECreateWindow (in module WEWindows, G: 1201348).

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

> 3+4 MOD 2

XDE User's Guide 24

would give the answer 3. A typical sequence of expressions one might use to initialize a
record containing a pointer to an array of Fees and display some of them would be:

> rec.array ~ FSP$AllocateHeapNode[n*SIZE[FooDefs$Foo]];
> InitArray[rec.array]; rec.arrayrfirst .. last]

The following command would display rec in octal:

>Octal Read: @rec, n: SIZE [Rec]

To find out what type a HeapImpl. Handle pointed to:

> HeapImpl$Handle
Handle: PRIVATE TYPE

24.5 Signal and er~or messages

LONG POINTER TO Oa ta

The following messages are generated by the debugger. This is not a complete list.

24.5.1 Entering the debugger

The following messages from the debugger tell why the debugger was entered. If the
situation permits, you may proceed execution of the program with a Proceed command.
Proceeding from an ERROR causes a ResumeError. Programs often allow themselves to be
aborted by the debugger's Qu it command; it raises the ERROR ABORTED in the client process.
Ifno client catches this error, the debugger will be called again.

*** Interrupt ***

An interrupt occurred, meaning SHIFT-STOP (aka CALLDEBUG) was typed.

*** uncaught SIGNAL signal (in module) ***

The program has raised a SIGNAL or ERROR which no one dynamically nested above the
SIGNAL invocation was prepared to catch. At this point you might display the call stack
to see who raised the uncaught SIGNAL.

*** Address Fault at address (in module) ***

The program has tried to access address, which is not mapped. At this point you
might display the call stack to see who tried to reference address.

Eval stack not empty!

This warning is printed if the debugger is entered with values still on the evaluation
stack; this indicates that the current value of some variables may not be in main
memory, where the interpreter normally looks, and so incorrect values may be given.
Exceptions to this are entry and exit breaks; the debugger has enough information to
decode the argument records that are on the stack in this case.

24-25

24

24-26

Debugger

*** Invalid Load State ***

The debugger has been entered without the client's load state available, probably
because a client program smashed the load state. The load state is used by the
debugger to translate numbers, such as global frames, into English for the user;
without the load state only octal debugging features are available.

Bad World!

This message can occur when trying to create a debugging session, and indicates that
the session cannot be created for some reason. For outload debugging, the outload files
may not exist, or they may be invalid or corrupted. For remote debugging, the host may
not exist or may be inaccessible; if there are authentication or network problems, a
more detailed error message is usually provided.

You called?

A program was run with the 'd switch, causing the debugger to be called after the
program was loaded, or some tool has made a call to Runtime. Debugger. In most cases,
Proceed is the appropriate action to take.

24.5.2 Symbol. lookup

xxx cannot be acquired with read access!

The file named xxx exists, but cannot be read.

xxx not found!

The variable or file named xxx cannot be found.

!File: xxx

The file named xxx cannot be found.

nnnnnB not started!

The global frame nnnnnB has not yet been started. Any variables in the frame are
unini tialized.

xxx not bound!

The imported variable ,exx is not exported by anyone.

xxx has incorrect version!

The symbol file has an incorrect version stamp.

!Tree for xxx not in symbol table

A multiword constant in your code wasn't copied into the symbol table. Look in the
source file to find the value.

XDE User's Guide 24

Use Interface. importedVariable, not Interface$importedVariable

The debugger cannot find imported variables from an interface file (the "$" notation).
The "." notation will tell it to use the interface record (if found) available in the current
context.

(in (bad module), G: xxx)
(in [null name], G: xxx)

The debugger cannot read the part of the loadstate which contains the name of the
module being displayed. Only octal debugging of the module is possible. If you are
outload debugging, you might have booted with the '7 switch, which can cause this
problem.

24.5.3 Unrecognized runtime structures

!Can't find links from frame: nnnnnB
!Invalid global frame
xxx not a frame!
xxx has a NULL returnlink!
xxx has a clobbered accesslink!
xxx is a clobbered frame!
xxx is an invalid PROCESS!
xxx is an invalid global frame!
xxx is an invalid image file!
xxx is not a valid frame!

The structure in question appears to be clobbered (invalid in some way).

24.5.4 Command execution errors

Can't use module of time instead of time

This message is printed if the creation date in the source, object, or symbols file on your
disk is different than the corresponding date recorded by the Compiler or Binder. The
requested version of the file should be retrieved.

!Number

An invalid number has been typed.

xxx is a definitions file!

You have tried to set a break in a definitions file.

xxx not a REAL!

xxx is not a valid representation of a real number.

24-27

24

24-28

Debugger

!Invalid Address [address]

During the execution of a command, the debugger attempted to read or write location
nnnnB, which was not mapped. Note: I/O pages and pages belonging to the germ appear unmapped to

the debugger.

!Write protected [address]

During the execution of a command, the debugger attempted to write location nnnnB,
which was write-proteeted.

24.5.5 Breakpoints

Multiple instances; Use Display Stack, Source to load window.

You have tried to set a break when multiple instances of the module exist; explicitly
setting the context for the source window will permit the break to be set. .

too many conditional breaks!

You have tried to set more conditional breaks than the system allows (4).

invalid relation!

You have specified an illegal relation expression for a condition.

symboltable missing!

The debugger is trying to manipulate a breakpoint for which there is no symbol table
and it is not prepared to handle the situation.

not allowed iri INLINE!

You have tried to set a breakpoint in an INLINE procedure.

already set!

You have already set a breakpoint there.

Patch table full

The maximum number of breakpoints (50) allowed by Pilot has been reached.

24.5.6 Displaying the stack

No previous frame!

The end of the call stack has been reached.

XDE User's Guide 24

No symbol table for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail.

Cross jumped!

The bcd was compiled with the cross-jumping switch turned on. The source line
displayed may not be what you expect.

Pc not in any procedure!

The debugger was unable to find a procedure or mainline code that matched the
current pc. This is probably due to a clobbered frame.

24.5.7 Mesa interpreter

x is an invalid character

The character x typed to the interpreter is illegal.

Syntax error at [n]

There was a syntax error at position n in the expression given the interpreter.

Parse error at [n]

There was a error at position n parsing the expression given the interpreter.

can't call an INLlNE!

You tried to call a INLINE PROCEDURE.

can't lengthen!

The interpreter needed to lengthen a part of an expression while trying to evaluate it.

double word array index!

. The index for an array must be a single word.

has an invalid address!

The expression to the right of the @ is not word-aligned.

is an invalid number!

This is probably a type mismatch.

is an invalid pointer!

This is probably a type mismatch.

24-29

24

24-30

Debugger

invalid subrange!

This is probably a type mismatch.

pointer fault!

You tried to dereference NIl.

xxx is a constant array. Look at source code for value.

An operation on a constant array is too complicated to perform. The operation can be
done by hand, however, by looking at the constant value in the source.

xxx is not an array!

You have tried to use)OCX as an array.

is not a valid control link!

The procedure or signal in your expression has an illegal value.

is not a relative pointer!

In the expression base [rel], rel wasn't a RELATIVE POINTER.

is not a type!

The identifier used in a type expression was not a type.

is not a unique field selector!

The field selector occurs more than once in the computed or overlaid variant.

is not a valid field selector!

The identifier given for a field selector is not in the record. You may lack the symbols
for the record declaration on your disk.

overflow!

Overflow occurred while doing arithmetic. Perhaps you need a LONG in the expression.

size mismatch!

You tried to assign or loophole two things of different sizes. Loopholing pointers is a
useful trick for records of different sizes.

has incorrect type!

Type mismatch.

XDE User's Guide 24

unknown variant!

The interpreter found a garbage tag field.

is the wrong base!

In the expression base [rel] , the type of base is not what rel expects.

has the wrong number of arguments!

The arguments to a procedure call are wrong.

used incorrectly with []!

You probably tried to use [] as a type constuctor.

illegal indexing operation

You tried to index something that wasn't an array or sequence.

XXK is ambiguous; use frame $!

There is either more than one instance of KKK instantiated, or the code for xxx 1S

packed with another module.

24.6 Mesa interpreter grammar

StatementList

Statement

LeftSide

Qualifier

Interval

Bounds

Expression

Sum

AddOp

;: = Statement I StatementList; I StatementList; Statement

:: = LeftSide Interval I LeftSide f- Expression I
MEMORY Interval I Expression I Expression?

:: = identifier 1 (Expression) I LeftSide Qualifier 1

identifier $ identifier 1 number $ identifier 1

MEMORY [Expression] 1 LOOPHOLE [Expression] 1

LOOPHOLE [Expression, TypeExpression]

:: = .identifier I [ExpressionList 1

:: = [Bounds] I [Bounds) I { Bounds 1 I (Bounds) I
[Expression! Expression]

:: = Expression .. Expression

::= Sum

:: = Product 1 Sum AddOp Product

:: = + I·

24-31

24 Debugger

Product

MultOp

Factor

Primary

Literal

BuiltinCall

PrefixOp

ExpressionList

TypeOp

TypeExpression

Typeldentifier

TypeConstructor

... -.- ...

.... .. . -

.. -.. _.

.. -' .. _.

., -., -

., -., -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Factor I Product MultOp Factor

* 1/1 MOD

Primary I Primary

Literal I LeftSide I @ LeftSide I BuiltinCali1
Primary % I Primary % (TypeExpression)

number I character I string

NIL I NIL [TypeExpression] I PrefixOp [ExpressionList] I
TypeOp [TypeExpression]

ABS IBASE I LENGTH I LONG I MAX I MIN

empty I Expression I ExpressionList. Expression

SIZE

identifier I Typeldentifier I TypeConstructor

BOOLEAN I INTEGER I CARDINAL I WORD I REAL I CHARACTER I

STRING I UNSPECIFIED I PROC I PROCEDURE I SIGNAL I ERROR I
identifier identifier I identifier Typeldentifier I
identifier. identifier I identifier $ identifier

LONG TypeExpression I @ TypeExpression I
POINTER TO TypeExpression

24.7 Commands summary

24-32

AScii
Read [address, count]
Qisplay [address,.fQ1ll1tl

ATtach
~ondi t ion [number, condition]
~eys trokes [number, command]
Qpaque[interface . type,lilename]
~mbols [globalframe,Jllenamel

~reak

~ll

~ntr ies [module/frame]
~ its [module/frame]

~n try [procedure]
~ i t [procedure]

XOE User"s Guide

~Lear

All
!!reaks
gn t r i e s [module! frame]

!races
~ its [module! frame]

!!reak [number]

~ond it ion [number)

gntry
!!reak [procedure)

!race [procedure1

~eystrokes [number)

~it

CUr rent context

Qisplay
!!reak [number]

~onfiguration

gval-stack
frame [address] (g,i.l.n,p,Q,r,s,v)
§lobalFrameTable
Module [module]

~rocess [process] (l,n,p,Q,r,s)
Queue [identifier] (l.n,p,Q,r,s)

BeadyList (l,n,O,Q,r,s)
~tack (g,j.l,n,p,Q,r,s,v)

find
gxporter [interface. identifier)

importer [interface. identifier)
Module [identifier]

~ar iable [identifier)

~ill session [confirm]

l:ist
~reaks

~onfigurations

~rocesses

Qctal
~lear break [globalframe, bytepc] •

Bead [address, number]
~et break [globalframe, bytepc]
VVrite [address, value]

~roceed [conf i rm]

Qui t [confirm]

BeQisplay swap reason

Be~et context [confirm]

SEt
~onfiguration [config]
Module context [module/frame]

24

24-33

24 Debugger

Qctalcontext [address]
~rocess context [process]
Bootconfiguration [config]

SHow type

STart [address] [confirm]

Trace
~ll

.sntries [module/frame]
~its [module/frame]

.sntry [procedure]
~ i t [procedure]

!!serscreen

24.8 Example sessions

24-34

These examples are templates that show the general sequence of events performed when using
Sword. For detailed lessons and examples of debugging with Sword, please refer to the XDE Online
Tutorials.

24.8.1 :Example: local debugging session

L. Run Sword.

2. Type "Sword.-" in the Executive. An Sword tool is created, and its names tripe is
"LocalWorld (Debug.log)".

:3. Bug "proceed" in the "go" item of the form subwindow. The namestripe changes to
"Dormant (Debug.log}".

4. Select "local" in thE! "client" item. The namestripe changes to' "LocalWorld
(Debug.log)".

5. Bug "proceed". The namestripe changes to "Dormant (Debug. log)".

6. Bug "destroy". The tool is destroyed.

24.8.2 Example: two outload debugging sessions

This example assumes that you are running Sword on a volume of type debugger, and that
you have two volumes of type normal. Let us call the two volumes "User" and "Test". Let us
assume you have enough room on your debugger volume for three outload files:
IVDebugger.outload", "User.outload", and "Test.outload".

1. In the [Debugger] section of your User.cm put
User: < > User.outload
Test: < > Test.outload

This tells Sword the names of outload files to use for particular volumes.

XDE User's Guide 24

2. Run Sword.

3. Boot User from the HeraldWindow.

4. SHIFT·STOP. You will world-swap to the debugger volume.

S. Type "Sword. - User.outloadlo" in the Executive. A Sword tool is created, and its
namestripe is "Outload: User.outload, volume: User (Debug. log)". In the file
subwindow is the swap reason, "Interrupt".

G. Bug "proceed" in the "go" item of the form subwindow. The namestripe changes to
"Dormant (Debug.log)", and you world-swap to User.

7. SHIFT-STOP. You will world-swap to the debugger volume. In the file subwindow is the
swap reason, "Interrupt".

8. Boot Test from the HeraldWindow.

9. SHIFT-STOP. You will world-swap to the debugger volume.

10. Type "Sword. --- Test.outloadlo". Another Sword tool is created, and its namestripe is
"Outload: Test.outload, volume: Test (Debug.logl)". In the file subwindow is the swap

. reason, "Interrupt".

From this point, you can bug proceed in either of the tools, and you will swap to the
respective volume. To end the session in either tool, select "dormant" in the client item of
the form subwindow.

Fine point: when you world swap from a client the outload file that gets written is the one that the debugger set up

when you last booted or proceeded a client. For instance, say that you have separate outload files for User and

Test, as above. If you herald boot Test, then from Test herald boot User, then SHIFT-STOP to the debugger, the

memory image of User will be stored in Test.outload.

24.8.3 Example: remote debugging session

This example assumes that "Host" is the network name of a machine which has a
maintenance panel code of91S, waiting to be remote debugged.

1. Login. Run Sword.

2. Type "Sword.- Host/rlt in the Executive. Status messages are printed in the Executive
as the debugger tries to open a connection to Host. If the connection is made, a Sword
is created, and its names tripe is "Remote: Host (Debug.log)". The MP code of Host
changes from 915 to 917. In the HeraldWindow, a pair of boxes appear, and they
twiddle once for each page of data that is fetched from Host.

3. Bug "proceed" in the "go" item of the form subwindow. The namestripe changes to
"Dormant (Debug. log)". The Host is now running and its MP code is 990.

4. Click the mouse in the tool and press ABORT. The twiddling boxes disappear,
indicating that the connection to Host is closed.

24-35

24 Debugger

24.9 Programmer's interface (OebugU sefulDefs)

24-36

The debugger exports an interface called DebugU sefulDefs (see the Mesa Programmer's
Manual) which makes available some debugger functions to other applications, such as the
performance tools. An application can read and write the memory of a client through
DebugUsefulDefs, if there is an existing debugging session with that client. Because a user
can be debugging many clients at once, the DebugUsefulDefs interface needs to know
which client it should access. The "/s" switch (default TRUE) may be appended to a remote or
outload client name when creating a debugging session to tell the debugger to use that
client for DebugUsefulDefs operations. The "/s" switch may be used when creating a
debugging session from either the Executive or a Sword tool. After the user ends the
debugging session, Debugl; sefulDefs will return undefined results from its functions until
another session is specified as the DebugUsefulDefs session. "/_s" may be used to create a
debugging session without setting the DebugU sefulDefs client.

Example Executi ve comma.nds:
Sword. -... Debuggee.outloadlo-s
Sword. - SomeMachine/r

-- starts out load session but does not setDeD
-- starts remote session and does setDUD

XDE Uset"s Guide

24.10 U ser.cm

The User.cm entries are read when Sword is loaded.

[Debugger]
llncaugh t: TRUE I FALSE -- handle uncaught signals locally, default true
faul t: TRUE I FALSE -- handle faults locally, default true
break: TRUE I FALSE -- handle breakpoints locally, default true
calldebllg: TRUE I FALSE -- handle calldebugs locally, default true
proces ses: TRUE I FALSE -- create a process subwindow, default false
conf igs: TRUE I FALSE -- create a config subwindow, default false
au toOpen: TRUE I FALSE

-- zooms current context when creating process or config subwindow, default false
menu: TRUE I FALSE -- create a debugger menu in the root window, default false
resetLog: TRUE I FALSE -- reset debug log length on new session, default false
cRad i x: oc tal I dec imal I hex -- radix for cardinals
cS igned: TRUE I FALSE -- print cardinals as signed
iRadix: octal I decimal I hex --radixforintegers
is igned: TRUE I FALSE -- print integers as signed
pRadix: octal I decimal I hex --radixforpointers
processRad i x: oc tal I dec imal I hex -- radix for processes
relRadix: octal I decimal I hex --radixforrelativepointers
unspec: oc tal I dec imal I hex -- how to print UNSPECIFIED
elements: number -- number of array elements to display
char s: number -- number of characters of a string to display
volumel: outloadFilel -- outloadFilel will be used when booting volumel
volume2: outloadFile2 -- outloadFile2 will be used when booting volume2

24

Note: If there is no "volume: outloadFile" entry for a particular volume, the default
outloadFile "Debuggee.outload" will be used when booting that volume. A default
other than Debuggee.outload can be specified as follows:

defaul tOutload: outloadFile3 -- outloadFile3 will be the default
maxF i 1 te r s: -- maximum number of global frames that can be put in the filter
fi 1 ters: Modulel Configuration2

-- list of configuration and module names to be put in the filter

24-37

24 Debugger

24-38

24a

ProcessControl

The ProcessControl tool is a debugging tool used to freeze and thaw processes, and examine
the load state (the set of loaded programs). It is useful for debugging programs in infinite
loops, or examining transient states of executing programs. The ProcessControl tool is
single instance. The debugger must be loaded for ProcessControl to run (see the Debugger
chapter).

~ World: {None, :;lg9~ljm\,

~ Freeze: (All, Ready,
j Thaw: {All}

Out load, Remote} Client:
Process, Context} Context: Faa

PsbIndex= 0
List: {Loadstate, Context} Destroy!

~~============~r---1J
Frozen Processes I
PSB 130B frame= 7140B state= unknown priority=l

Preparing to LocalDebug done

. Freeze processes inside Foo
~ Additional frozen processes:
~ 130B

Context: Faa
Foo, G:110654B
End of Context

24a.l ProcessControl Tool

Figure 24a-1: ProcessControl

{Adjust, etc.} 1

The tool has a form subwindow for commands and a file subwindow for output. ~ 0

commands will work until a client has been specified with the World item. For outload or
remote clients, the user should enter the name of the client in the "Client" field, then bug
"Outload" or "Remote" in the "World" item. For local debugging, the user can just bug

24a-1

24a

.. 24a-2

ProcessControl

"Local" in the "World" item. At the bottom right corner of the form subwindow IS the
"Destroy" command, which destroys the tool.

IJoadstate facilities

At the bottom left of the form subwindow are "List LoadState" and "List Context". "List
LoadState" enumerates the currently loaded configurations in the client. If you type the
name of a configuration in the "Context" string item, then click "List Context,"
ProcessControl enumerates the modules in that con1iguration.

Process (acilities

The process facilities are based on the concept of freezing a Mesa process at a particular
frame on its callstack. When a process is frozen, the process continues execution normally,
but when it returns to the frozen point on its callstack, the process stops executing until it
is thawed. If the freeze point is the current frame, the process stops executing immediately.
Stack frames allocated earlier than a frame are colder than than the frame. Stack frames
allocated later than a frame are hotter than the frame.

Freezing Options

ProcessControl allows you to freeze and thaw a process, and to look at the frozen frames of a
process (even while the frames of the process hotter than the freezing point are still
executing). There is no way to look at a process (or part of a process) that isn't frozen. There
are four "Freeze" buttons. "All" freezes all processes at their current frame. "Ready"
freezes all ready processes (processes that aren't suspended for a monitor lock, condition
variable wait or fault) at their current frame. "Process" freezes the process whose number
(PSB index) is given in octal in the "PsbIndex" string item. Finally, "Context" freezes all
processes associated with a particular configuration or module, freezing them at the
boundary of the context. More precisely, "Context" enumerates all processes, and
determines every process that has on its callstack a frame within the specified module or
configuration; each such process is frozen at the point where control would return to within
the module or configuration.; any process currently executing (or waiting or faulted) within
the module or configuration stops executing immediately.

Be careful

If you resume the client while some processes are frozen, they really are frozen when the
client resumes. This can be important when debugging parallel computations, but it can be
dangerous. In particular, heware of resuming the client while critical system processes are
frozen! You cannot freeze the ready processes of the local world. You should not freeze
"Process" unless you need to, because you don't know where the process will freeze (it
might freeze inside the op(~rating system). You should use the freeze "Context" command
instead, so that you don't freeze anything unexpectedly.

Examining frozen processes

For each process that is frozen the tool displays a description of the process's current state
and three buttons: "Adjust", "Thaw", and "Debug". The state says things like "ready" or
"waitingCV" or "pageFault",' followed by the name of the frame at which the process is
frozen and the priority of the process. There is no way to look at non-frozen frames of the
process. The state is wrapped in parentheses if the process's current frame is not frozen

XDE User's Guide 24a

(that is, if the process is still executing. This can happen when you freeze a context.l. If you
click the "Debug" button, a debugger is created for that process, so you can look at the
frozen parts of the callstack in more detail. If you click the "Thaw" button, the process is
unfrozen and continues execution. If you click the tt Adjust" button, the entire callstack of
the process is refrozen (you might want to refreeze a process after thawing itL You can't
thaw or adjust a process while it has a debugger: proceed or abort the debugger first (as
described below).

24a.2 Example: Freezing a Process

Say we are running the following program and we wish to stop it and examine its state.
This program is a small example of an infinite loop. It doesn't matter whether we have run
this program first or ProcessControl first.

Foo: PROGRAM = {
var: CARDINAL +- 0;
DO

Process.Pause[Process.SecondsToTicks[1]];
var+-var + 1;
ENDlOOP; }.

1. In the tool, bug "Local" in the "World" item.

2. In the "Context" item, type "Foo".

3. In the "List" item, bug "Context". The global frame handle for Foo is printed.

4. In the "Freeze" item, bug "Context". ProcessControl freezes the process running Foo
and creates an entry in the Frozen Processes subwindow.

5. In the Frozen Processes entry, bug "Debug". A debugger is created (see the Debugger
chapter). List the value of the variable "var".

6. Type "Proceed" in the debugger.

7. In the Frozen Processes entry, bug "Thaw". The process continues running.

8. In the Frozen Processes entry, bug "Adjust". The process is frozen again.

9. In the Frozen Processes entry, bug "Debug". In the debugger, see that the value of
"var" has changed.

10. Type "Quit" in the debugger.

11. In the Frozen Processes entry, bug "Thaw". The process is aborted.

24a.3 U ser.cm

[ProcessControl]
cardinalRadix: octal I decimal I hex --radixforcardinals
processRad ix: oc tal I dec imal I hex -- radix for processes

24a-3

24a ProcessControl

24a-4

25.1 Files

25

DebugHeap

The DebugHeap Tool allows you to interrogate and analyze Pilot node storage usage and
find storage leaks. It understands the structure of Pilot heaps and zones. See the Pilot
Programmer's Manual for a complete definition of heaps and zones.

Heaps are used to allocate small objects. They can be thought of as retail storage
allocators, while the space machinery can be thought of as a wholesale storage allocator.
Heaps allocate nodes from segments, which are multi-page blocks of memory allocated
from the space machinery. Heaps can allocate either variable-length objects or fixed­
length objects. Heaps that allocate variable-length objects use zones to keep track of
allocation within a segment but allocate rather large objects directly from the space
machinery.

Pilot heaps optionally allow owner checking. When owner checking is enabled, an extra
word is allocated with each node; this word contains the global frame address of the
module that requested the allocation. Other heaps may allocate additional information for
debugging purposes. DebugHeaps allow you to specify how many such additional "client
words" were allocated with each object and use them to filter which nodes are displayed.

Retrieve DebugHeap. bed from Release directory.

25-1

25 DebugHeap

25.2 User inlterface

25-2

The DebugHeap tool interacts through a form subwindow, a file subwindow, and a menu:

~zone: {system} address= 51014168
~ swapped: {inOrOut}laBlI •• Delt_a-'s----_
~clientWords= 18 clientValue:

~*** Debugging systemlone, address: 51
:ShowNodes Used: 3592, Free: 841

: 1'91t~ 4111Il5(lil~~6(fIJ,~7(lilll8(~~g:~~~::nts
~ 34 1)J'38(1)~'41(1)!'44(£)!'53(~)!' ~~~~~g~~{~~ts
: 30 (1~. Octal Contents
: NodesOf~lze 12: . ClientWords
~ 5101525, 51016J04, 5565217, 5566400 Nodes+Totals
:5501600 Totals
~51016061 (-31871,~O) STR!NG.lengt~ su FreeNodes
~55652211 (15,15) Set Prlorlty Up Set Heap GFH
: SaveState
~ ClearState

Figure 25.1: DebugHeap tool window

25.2.1 Form subwindow

The fields in the DebugHeap Tool form subwindow are as follows:

zone:

address=

swapped:

"a1 ida teRodes

is an enumerated item that specifies whether to look at one of the
Pilot built-in heaps or a private heap or zone. The zone options are
as follows:

syst,emMDS processes the built-in MDS heap.

syst,emprocesses the built-in heap.

zone' processes a private zone specified by address.

heap' processes a private heap specified by address.

heapMDS processes a private MDS heap specified by address.

is a long number used to specify the address of the heap or zone of
interest.

is an enumerated item that specifies whether to restrict DebugHeap
to examining nodes that are swapped in, swapped out, or either.

is a Boolean telling DebugHeap to check that values. supplied as
node addresses are really nodes. This Boolean is also used by the
strinl~ printing routines to check for invalid or suspicious strings.

XDE User's Guide 25

del ta' s is a Boolean used to indicate processing of the heap or zone relative
to the saved state (see the SaveS tate and ClearS tate menu
commands below).

clientwords=

clientvalue:

mask

25.2.2 DebugHeap menu

indicates the number of words in each node that are being used for
debugging purposes (e.g., one word is used for normal Pilot owner
checking).

is a string form item used to specify a filtering value for processing
nodes. If the heap has Pilot owner checking, specifying a global
frame will cause DebugHeap to display only those nodes that were
allocated by the module. Multiple values can be supplied, separated
by commas and/or spaces, and a range may be specified by two
values separated by" .. ".

is a number (usually specified in octal). If clientWords=l and any
client values are specifed in the clientValue field, the value of
mask (if any) is bit-anded with the client words in each node before
comparing with the specified client values.

The DebugHeap menu is attached to the DebugHeap Tool window. The commands are
listed below:

ShowRodes

ShowSegments

RodesOfSize

AsciiContents

OctalContents

tabulates and displays the current state of the selected heap or zone.
The number of free and used words in the entire heap or zone are
displayed, as are the size and number of all used nodes.

displays all segments that make up the selected heap or zone, and
notes their sizes.

displays the address of nodes of the specified size within the selected
heap or zone. The current selection is used to indicate the size. The
heap manager's overhead (currently one word) is included in the
size.

displays the contents of the specified node as an Ascii string. The
current selection is used to indicate the the node address. The
Boolean validateRodes indicates whether to check that the
address is really a node and to perform a check of valid strings.
Multiple nodes may be printed by selecting multiple node addresses
separated by spaces and/or commas. (e.g., the output of
RodesOfSize is valid input to this command).

displays the contents of the specified node as n octal words. The
current selection is used to indicate the the node address. The
Boolean validateRodes indicates whether to check that the
address is really a node. Multiple nodes may be printed by selecting
multiple node addresses separated by spaces and/or commas. (e.g.,
the output ofRodesOfSize is valid input to this command).

25-3

25 DebugHeap

ClientWords

Rodes&Totals

Totals

:Freellodes

SetBeap GFB

SaveState

ClearS tate

displays the contents of the client-words' portion of the specifed node
in octal. The current selection is used to indicate the the node
addrtess ..

displays the node address, length, and module for each node in use
in the current heap or zone. If the clientValue field is empty, free
nodes are also displayed; otherwise only nodes whose client words
matc:h cl ientValue are displayed. The totals by module are
displayed following the display of all nodes. This command only
works if clientWords=l.

acts like lIodes&Totals, but displays only the totals by module.

displays the address and size of each free node in the current heap or
zone.

manlLlally sets the global frame for the built-in Pilot heaps.
DebugHeap always attempts to find this value automatically. This
command allows you to override the default.

processes the current zone and saves the size and addresses of all
allocated nodes. Setting the Boolean del ta' s tells DebugHeap to
display only the differences between the saved state and the current
zone.

takes all of the state saved as a result of the last SaveS ta te and
discards it.

25.3 Example

25-4

To find a suspected leak:

1. Boot the client with the heapOwnerCheck inCJ switch (see pilotSwi tches interface
in the XDE User's Guide for the current value).

2. Get the client to a stable state (e.g., deactivate all tools i'n Tajo); then go to the
debugger.

3. Run DebuCJBeap in the S impleExec.

4. Set the zone: and possibly the address: fields so that you are investigating the
particular zone of intElrest. You will either be interested in the system zone or a
private heap. To examine a private heap, for example, select the heap parameter in
the zone: field and put the value of your UNCOUNTED ZONE variable in the address:
field.

5. Do a SaveS ta te and proceed to the client.

6. Repeat the suspicious action that might have resulted in a space leak; then try to get
the client back to the state that you had originally (e.g., deactivate tools in Tajo).

XDE User's Guide 25

7. Interrupt to the debugger and turn Del tas on. While Del tas is on, most commands
show the difference between the new state and the saved state.

If you invoke Totals, anything that shows up is suspicious (see Totals). Totals will
tell yoU: what the modules were that allocated the suspicious nodes.

8. Now that you have a list of modules that are suspect, put the global frame handles of
the modules in the clientValue: field.

9. Invoke Rodes&Totals. Investigate each node or a list of nodes using the
OctalContents or AsciiContents commands. The,size of the node is also a good
hint as to what was allocated. Subtract one (two, if you booted with the
heapOwnerCheck inC) switch) from the size of the node and try to figure out where in
the module you allocated such a node.

Repeat the above steps for every heap and zone where you suspect a leak.

25-5

25 DebugHeap

25-6

26.1 Files

26

IncludeChecker

The IncludeChecker is a program that examines a collection of local or remote text and
object files for consistency and produces an output listing that gives a compile, bind, and
package order for the files in the collection. For each object file, a list of all the object files
that it includes and a list of the object files that include it is also produced. Any
inconsistencies (described below) are flagged in this listing by an asterisk. As an option,
the IncludeChecker will also generate a compile, bind, and package command in Line. em
that is its best guess as to the way to make the files consistent.

The IncludeChecker determines that an inconsistency exists among the input files if
either:

1. An object file includes another object file with a version that is different from any
version of the included file that was found. This might happen, for example, if the
included file had been recompiled.

2. A text file is newer than the corresponding object file. This could happen if the text
had been edited, or if the text had been retrieved from a remote file server. The
IncludeChecker compares the creation date of the text file agail1st the creation date
recorded in the corresponding object file.

When determining consistency, the IncludeChecker tries to deal gracefully with files
found in multiple locations and versions. It attempts to match these files with the
corresponding object and text files (possibly on other directories). It also tries to match
included files against versions of those files that it has found.

Retrieve IneludeCheeker. bed from the Release directory.

26.2 User interface

The IncludeChecker runs either as a tool or in the Executive. It lists file names in the
compilation order, and the consistent compilation command, by inclusion depth, with the
deepest files included first. Within that constraint, definitions modules are printed before

26-1

26

26-2

IncludeChecker

program modules. In general, then, the lowest-level definition modules appear first, while
the highest-level program modules appear last.

~ Listing:

~ Check!

IneludeCheeker.list
Host:: Dir:

FileSi:

Commands: Line.em Options!

Comm

ielil

•• ".118[(_1 source w/o Bcd OK Tables to Disk
~.R1_Ufi Miltiple Output Files Limit File Length

Apply! Abort!

Figure 26.1: IneludeChecker tool window

The Ineludes list indicates the host and directory for both text and object files. It also
notes, when multiple copies of a file are found, the different versions and their locations. If
an object file was derived from a version of the text that was never found, there will be one
entry for the object file and one entry for each version of the text that was found (since in
general, these can be iltl different locations). Obtaining this list (with the Ii
OperatingSwitch, which is the default) is strongly recommended because it can explain,
for example, why the IneludeChecker wanted to recompile some file. This means that the
/s OperatingSwitch should not be used.

Note: It is also a good idea to inspect Line. em before executing it, since the
IneludeChecker's idea of what should be recompiled and rebound may not be the same as
yours. Because the compiler does not give enough information to completely construct the
packaging command, the packaging command is incomplete and must be edited by hand.

26.2.1 Tool interface

The IneludeChecker comrnunicates through a message subwindow, a form subwindow,
and a file subwindow. The fields in the form subwindow are·as follows:

Check! starts the IncludeChecker.

Ilost: is the name of the host to be used for remote files.

Dir: is the default remote directory.

Piles: are the files to be checked by the Inel udeChecker.

XDE User's Guide 26

Listing: is the name of the outputfile the IncludeChecker generates that
shows the dependencies of the files. The c;>utputfile requires a
substantial amount of disk space. The default extension is
.list.

Commands:

Options!

Command:

Pause

List

Order

is the file where the IncludeChecker writes the rebuild commands.
The default extension is .cm.

brings up a separate Options window.

causes a command file to be written to the file named by the
Commands: field.

causes a /p to be appended to the compile command in rebuild
command.

prints the includes and included-by relationships in the Listing:
file. Default = TRUE.

prints compilation order in the Listing: file. Default = TRUE.

The following switches are in the Opt ions! window:

Indirect Local
Includes

causes analysis of both directly and indirectly included files. Thus
only the top-level bcd need be specified in the Files: item.
Default = TRUE.

Source v/o Bcd OK If there is a text file without the corresponding bcd, no error will be
raised. Default = FALSE.

Tables To Disk

Verbose Output

Multiple Output
Files

causes the IncludeChecker's internal data structure to be written
to outputfile.data. This option is intended for future use. It is
not needed by standard users of Mesa 11.0. Default = FALSE.

gives complete file list. Default = TRUE.

writes output to outputfile. includes and outputfile.
includedBy. Default = FALSE.

Limi t File Length limits file lengths to 100,000 bytes. Successive file names are
outputfile.list2, outputfile.list3, etc. Default = FALSE.

Apply! invokes options.

Abort! resets to previous options.

26-3

26

26-4

IncludeChecker

26.2.2 Command line

The syntax for the command line is:

CommandLine :: = IncludeChecker [<OperationParameters >]
[<FileList >]

<OperationParameters> :: = <OutputFile>I<OperatingSwi tches >
[<CommandList >]

<OperatingSwi tches > :: = a I c Ii 11 I min 10 I pis I v I x
(See the section on Operating switches)

<CommandList> ::= {<Command>/c <Name>}+

<Command> ::= open I dir I commandFile

<FileList> <FileNamel FileName2 ... >}+

The <OperationParameters> and <FileList> components of the CommandLine
are optional. In < CommandL i s t > , the Ic switch indicates to the IncludeChecker that the
token before the Ic is a command (e.g., open, dir, commandFile), not a FileName.

The Ou tpu tF i le is the name of the file written. If no extension is given, • 1 is t is
assumed. If no OutputFile is given at all, IncludeChecker.list is assumed.
< F i 1 eLi s t > is the list of file names specifying the text and • bcd files to be checked. It is
not necessary to give an extension, since the IncludeChecker will look for any. mesa,
.bcd, .config or .pack file with the specified name. (Consequently, don't specify both
Foo. bed and Foo. mesa on the command line, since Foo would be checked twice.)

In general, a FileName can be fully qualified by giving a host and directory; e.g.,
[server] <Int>Pilot>Public>Heap.mesa. It is possible to intermix remote and
local files on the command line since the host name ME is interpreted to mean the machine
running the IncludeChecke!r, so that [ME] Spaee. bed refers to a file on the local disk. The
initial setting for the globall host name is ME and the global directory name is empty.

26.2.3 Operating switches

Each operating switch can be preceded by a - or - to reverse its meaning. The switches
are:

a Check all directly and indirectly included files on the local disk (the default).

c "Consistency command": write a compile and bind command in Line. cm (-c is the
default). In addition, list as comments any object files and text files not found that
are needed for the compilation or binding.

i Print both the includes and included-by relationships in the output file (the
default).

1 Limit output file size to 100,000 bytes per output file. Successive file names are
outputfile.list,2, outputfile.list3, etc.

XDE User's Guide 26

mUse multiple output files (-m is default). The compilation order is written on
source. ou tpu t file. The includes and included-by relations are written onto
outpu tf i le. includes and outpu tf i le. includedBy, respectively.

n Don't list text files for compilation or rebinding that have no object file on the disk
(-n is the default).

o Print a compilation order in the output file (the default); -0 suppresses this
listing.

p Place a /p after every change of inclusion depth (see below) in the consistency
command (-p is the default). This will cause the Compiler or Binder to stop if
errors are found while processing the files of that depth.

s Same as /c - i -0. This is used when only a consistent compilation command is
needed. This switch is not recommended, since the includes/included-by list
(produced by Ii) is very helpful in determining why the IncludeChecker asked that
particular files be recompiled or rebound (-s is the default).

v Verbose listing. This switch will produce feedback about all files checked even if
errors are detected. I-v will produce feedback only on files that generate errors. (v
is the default.)

x Just activate the tool and don't run in the Executive.

26.3 Examples

To check files on the local disk, just list them, e.g.:

>IncludeChecker Lex.list/cio LexiconDefs Lexicon LexiconClient

inspects the text and object files for the modules LexiconDefs, Lexicon, and
LexiconClient for consistency. It also checks that these files are consistent with their
included object files. Lex. 1 i st is the output file.

If you have a list of the text files for a program in a file, say, ListOfFiles. cm, you can
check these files with a command line of:

>IncludeChecker MyStuff.list/cio @ListOfFiles.cm@

MyStuff .list is the output file. Note: The Executive replaces @File@ with the
contents of File (see the Executive chapter).

To check all files on the current sear~h path, use the following command line:

>IncludeChecker AIIFiles.list/c

processes all .bcd, .mesa, .config, and .pack files on the current search path.
AllFi les.l i s t is the output file.

Remote files are checked by using a command line syntax much like that for FTP (see the
FTP chapter). The open and dir commands specify a remote host and directory. The /c

26-5

26

26-6

Incl udeChecker

switch associated with opl!n and d i r indicate to the IncludeChecker that the previous
token is a command. The Ie operating switch associated with the output file,
MyProgram.list, instructs the IncludeChecker to write a compile and bind command
in Line. em (see the Operating switches section).

>IneludeCheeker MyProgram.list/e open/e server dir/e
WorkingDir>MyProgram @Souree.MyProgram@

To check all files on the remote directory [server] <WholeDir>, use the following
command line:

>IneludeCheeker WholeDir.list/e open/e server dir/e WholeDir

To run the IncludeChecker on a local directory named Temp and create a rebuild
command:

>IneludeCheeker AllOfTemp.list/e dir/e Temp

Note that giving the IncludeChecker an explicit local directory to check is somewhat
faster than setting the search path to that local directory and using the command line:

>IneludeCheeker AIlOfTemp.list/e *.mesa

Specifying an explicit local directory avoids the Executive expansion of *.mesa, the
parsing of a potentially very long command line, and the lookups for each FileName F
(F. mesa, F. bed, F. eonf i9, F. pack). Instead, the entire directory is enumerated;
no unnecessary probes are done to determine if files exist.

"£0 bring up the tool only, type either of the following commands to the Executive:

> IncludeChecker/x

> Run IneludeChecker. bed

The output file by default is written on IncludeCheeker .list and the command file is
f .. i ne. em. To direct the output file to MyF i 1 e • lis t and the command file to
MyCommand • cm in the first example, type:

>IneludeChecker M:yFile/c dir/c Temp eommandFile/c MyCommand

XDE User's Guide 26

26.4 User.em

The following is a list of the User. cm fields used by the IncludeChecker:

[IncludeChecker]

CommandNameFromRoot:

DefaultSwitches

Boolean item that, if TRUE, will cause the IncludeChecker to
use < root> .cm instead of Line. cm as the name of the
compile, bind, and package command produced by
running the IncludeChecker with Ie. < roo t > is the output
file name minus any extension.

Operating switches to be used by the IncludeChecker. (See
the Operating switches section.)

26-7

26 IncludeChecker

26-8

27.1 Files

27

Lister

The Lister produces various listings of information in object files, such as dates of the
definitions files used by an object file and a cross-reference listing of procedure calls
within the object file.

Retrieve Lister 0 bcd from the Release directory.

27.2 User interface

The Lister runs in the Executive. Commands look like procedure calls with constant
(string, numeric, character, boolean) arguments. Arguments are type-checked by the
command interpreter. To run the Lister, type to the Executive:

>Lister <commandl[argl, arg2, 0 ••] > <switches> <command2[argl,
.00] > <switches>

You actually type the square brackets, as in a Mesa procedure call. For parameters of
string type, quote marks are optional; the scanner will take any characters up to the next
comma or right bracket if the first character is not a quote. The optional local switches are
a sequence of zero or more letters preceded by a slash (I). -Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or - to invert the
sense of the switch. The switches that apply to each command are documented in the
description of the command.

Almost all of the Lister commands read one or more object files and extract information
from them. The files can be the output of either the Compiler, the Binder, or the Packager,
although some commands require one or the other specifically. In the case of a single file,
the parameter is the name of the file; if no extension is given, 0 bcd is assumed. Some
commands take a list of files. In this case, the parameter specifies a file (such as
object 0 defs) that contains a list of object files separated by blanks.

The commands are divided into two sections below: those of general use, and those used
internally by the Mesa implementors. Quote marks are shown for command parameters
that are of string type; it is usually not necessary to type them to the Lister.

27-1

27

27-2

Lister

27.2.1 Commands useful to general Mesa users

Compress [" FileList"]

li'ileList is the name of a ltile that contains a list of compiler output object files. The USING

lists of the directory statement are generated for each module in the list; they are then
sorted to show for each interface, and for each item in the interface, which modules
reference that item. The same caveat about implicitly included symbols applies as for the
Us ing command. The output is written to FileList. ul.

Help [], Help ["ConunanclName"]

Help [] will list the set of Lister commands and the command syntax for each. This can
also be done by calling the Lister with no command, or by calling the Lister with a
command it does not recognize. Help[ICommandname"] will print the syntax for a
particular command.

Implementors ["FileList"]

FileList is the name of a file that contains a list of compiler output object files
(interfaces and program modules). This command creates a file, FileList. iml, showing
where the various interfaee items are implemented for each interface exported by any
program in the list. If the list also includes the object file for a particular interface, the
interface items not implemented by any program are also shown. In order to run this
eommand, you need not only the object files in the list, but also the object files for the
interfaces exported by the programs therein. Missing object files are reported and the
eommand attempts to forge on.

Interface ["FileName"]

Given the object file for an interface (DEFINITIONS file), this command produces a list of the
interface items and numbers (on FileName. il). These numbers are the ones reported by
the Binder for unbindable items in the absence of the proper symbols.

Stamps ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command generates
a file, Filename. bl, that :shows the version stamps of any modules bound in the file, and
of all imports and exports of the top-level configuration in the file.

UnboundExpor ts [" FileJfame"]

FileName is a Compiler, Binder, or Packager output object file. This command examines
all of the exported interfaces and generates a file, Fi leName. xl, which lists the items in
those interfaces that are not exported by this module or configuration.

Using ["FileName"]

FileName is a Compiler output object file. This command generates a directory statement
with its included identifier lists (on FileName. ul). Since there is not enough information
in the symbol table to tell reliably which symbols were implicitly included, the US"ING

clauses may contain a superset of those items actually needed.

XDE User's Guide 27

UsingList ["FileList"]

FileList is the name 'of a file that contains a list of Compiler output object files. This
command creates a ".ul" file for each file named in the list.

Vers ion ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command shows, on
SimpleExec .log, the object, source, and creator version stamps of the file.

Xref ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates one or more files, filenamel.xref, filename2.xref, etc. that contain
a sorted list of all public declarations in the collection of modules and interfaces. A few
dummy lines are inserted to make this file a Mesa program syntactically. You should run
it through the Formatter (see the Formatter chapter) to make it more readable. If the /p
switch is specified, the output file will also show the private declarations.

XrefFi leS i ze[ByteCount]

This command tells the Xref command to limit the size of the output files to BtjteCount.

XrefByCaller ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates a single file, FileList.xlr, that shows for each procedure of each
module in the list, what other procedures it calls. It does this by scanning the code for the
modules. It does an imperfect job in that it cannot tell who is being called via a procedure
variable. However, if there are any procedure variables called, it makes an entry for "*" in
the list of called procedures. You can check these procedures by hand. It does not report
calls to procedures nested within the given procedure.

XrefByCallee ["FileList"]

This is similar to XRefByCaller, except that the results are shown sorted by callee, and
the output file is named FileList. xle. Thus, the entry for "*" is the set of procedures in
the list of modules that contain calls to procedure variables.

27.2.2 Commands useful to wizards

Bcd ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command produces a
listing of the internal tables of the binary configuration description (on Filename. bl).

BcdLinks ["FileName"]

This is the same as the Bcd command, except that the control links of imported and
exported items are included. '

27-3

27

27-4

Lister

BedSegment["FileName", Base, Pages, Links]

This is the most general form of the Bcd command, which allows you to specify the location
of the configuration description by file name, starting page number, number of pages, and
whether you want the links (specify TRUE or FALSE).

Code [" FileName"]

FileName is a Compiler output object file. This command produces a listing of the object
code (on Filename. ell. If the source file is available on your disk, the source for each
statement is listed just before the object code.

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

Warning: This command produces a large amount of output.

Warning: If the module is subsequently packaged, the code offsets will change (although
the sequence of operations will be the same). If you are making listings for low-level octal
debugging, be sure to make new listings of code for packaged modules using the
CodelnConfig command.

CodelnConf ig ["Config", "Module"]

This command produces a listing of the object code of a module that has subsequently been
packaged. The listing reflects the new code offsets produced by the Packager. Config
should be the bcd produced by the packager, or one including it. Module is a module
within the packaged configuration. This command may also be applied to unpackaged
configurations; in this casc3 it produces the same output as the Code command. If the
module is in a configuration that was bound with symbol copying, the symbols file must be
available on the local file system.

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

Oe talCode [" FileName"]

This is the same as the Code command, except that opcodes are given in octal as w~ll as by
name.

XDE User's Guide 27

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

Warning: This command produces a very large amount of output.

OctalCodelnConfig ["Config", "Module"]

This command is the combination of the Code I nConf ig and Oc talCode commands.

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

Symbols ["FileName"]

Given a Compiler output object file, this command lists the internal symbol table (on
FileName. sl).

SymbolSegment[tlFileName", Base, Pages]

This is a more general form of the Symbols command, which allows complete specification
of the location of the symbols (e.g., in a • symbols file).

There are several other commands that are either self-documenting or uninteresting to all
but the most hardcore Compiler debuggers.

27-5

27 Lister

27-6

28

Performance tools

This chapter documents four tools that aid in the study of the behavior of Mesa programs:
the CountPackage, PerfPackage, Spy, and Ben.

The CountPackage is based on trapping control transfers (XFERS). An XFER is the general
control transfer mechanism in Mesa. The following are all XFERS: procedure call, return
from a procedure, traps, and process switches. The CountPackage counts the number of
control transfers (XFERS) to a module and records the time spent executing in a module. It
can also be used to gather information on the flow of control between groups of modules.

The PerfPackage allows you to identify places in your programs and then collect timing
and frequency statistics of program execution between these places.

Spy can measure the amount of time spent executing in a module, certain procedures, or
even source statements within a procedure; it can optionally charge the caller for this time.
The Spy operates by waking up periodically and sampling the Pc. Spy is probably the
simplest tool to use; it is especially useful for top-down analysis of a program (i.e., the Spy
can be used to identify the hottest modules, then the hottest procedures within those
modules, and so forth). It also has less effect on the execution of the client than the
CountPackage or PerfPackage. However, the Spy is not as useful as the PerfPackage for
studying very short or infrequent actions. The PerfPackage is best for studying the precise
time spent in a module by various paths.

Ben is a package that is used to produce a list of the backing-store transfers that occur
during some interval of client activity. The output report also contains other information,
such as what caused the transfer to occur. This package is useful in determining why code
and data is in the working set for a user action, and may be u.sed to debug code packaging
specifications.

All four tools come in two pieces: a client part that is loaded on the client volume and a tool
that runs on the debugger volume. The client part must always be loaded and started
before any measurements can be made. For the CountPackage and PerfPackage the client
part is Run t imePer f . bed~ for the Spy it is SpyNub . bed; for Ben it is Ben. bed. The tools
for the CountPackage and PerfPackage are bound together in Perf. bed; the Spy tool is
contained in Spy. bed; the data reduction program for Ben is contained in
RedueeBen. bed.

28-1

28 PerfOl'mance tools

A note on Same-world perfol'mance testing:

The steps given in the following sections explain how to operate the performance tools in
both same-world and world··swap mode. In general, to operate a performance tool in same­
world mode (that is, the client and the debugger run on the same volume), the following
steps should be performed:

l.
2.
3.

Load the program to be monitored for performance.
Start the performance nub.
Run Sword and create a local debugging session.

4. Start the performance tool and set parameters as desired.
5. Proceed the local debugging session.
6. Perform the user action to be monitored.
7. Create a local debugging session, either manually or with an unconditional

breakpoint.
8.
9.

Disable performance nub if necessary.
Look at performance results.

If another outload or remote debugging session is started after the performance tool is run,
it should be started with the -5 switch (see the section on DebugU sefulDefs in the Debugger
chapter). If the debugging session ends, the performance tool should be deactivated. Or to
avoid confusion, do not outload or remote debug while operating performance tools in
same-world mode. Also, only use a single Sword instance.

28.1 Control Transfer counter tool

28-2

The CountPackage is implemented as a set of commands that can be executed from the
debugger, a routine that intercepts all XFERs and collects statistics about them, and a
routine that intercepts conditional breakpoints for turning the XFER monitoring on and off.
Existing Sword commandEi are used to specify where XFER monitoring is enabled, and
additional commands are provided for controlling the counting of XFERS and outputting the
results.

This tool is intended to provide a global view of the behavior of a system. With it, you can
identify modules that w.arrant closer study with other tools such as the PerfPackage and
Spy. .

28.1.1 Files

Retrieve RuntimePerf.bc::d onto the client volume. Retrieve RuntimePerf.symbols
and Per f . bed onto the debugger volume.

28.1.2 User in terface

Intera~tion with the CoumtPackage is done through its window. There are three
subwindows: the messa·ge subwindow, the form subwindow, and the log subwindow. Error
messages and warnings ar'B displayed in the message subwindow. Commands are invoked
in the form subwindow. All output is displayed in the log subwindow and written on
Count .log.

XDE User's Guide 28

~--u

: Monitor: {off~~:m~} Zero Tables! Condition Breaks!

: Print Tables! Print Sorted! Sort by: {(Ou:If:~i~~le}
[Print Module! I Module: I Set Process! I Process:

i Mode: {~~!~[m~:)matrix} Load Matrix! Show G'-r-o-u-p-! _____ ...J

Available commands are:

Monitor: {off, on}

Zero Tables!

Condition Breaks!

Print Tables!

28.1 Control Transfer Counter tool

turns off/on the tool's breakpoint handler. All conditional
breakpoints will effect the state of XFER monitoring when
the monitor is on and will behave as normal conditional
breakpoints when it is off.

zeroes out all counts and times.

makes all non-conditional breakpoints conditional by
adding the condition "1" to them.

displays all the statistics for each module in order of
increasing global frame table index (gf i) for plain mode.
In matrix mode, it displays the statistics for each nonzero
element of the matrix. The output format of times is
sec. msec: usec. This command may be aborted by typing
ABORT.

Pr int Sorted! displays all the statistics for each module in order of
decreasing time or decreasing number of XFERS, depending
on the value of the Sort by parameter. This command
may be aborted by typing ABORT. This is not allowed in
matrix mode.

Sort by: {count, time} when set to count, the Print Sorted command displays
table entries in order of decreasing number of XFERS;

otherwise it displays them in order of decreasing time.

Print Module! displays the statistics for the module specified by Module.
This is not allowed in matrix mode.

Module: specifies the module to the Print Module command. It is
either the module's global frame table index (gf i), its

28-3

28

28-4

Performance tools

Set Process!

Process:

Mode: {plain, matrix}

Load Matrix!

Show Group!

28.1.3 Operation

global frame address (g), or its module name (if the current
configuration contains the desired module).

specifies that only those XFERs executed by the specified
process are to be counted. The default case is to track all
processes.

used by the Set Process command. It contains an octal
ProcessBandle as obtained from the Sword Li s t
Processes command. [f Process is empty when Set
Process is invoked, all processes are tracked.

when set to plain (default), the Xfer Counter records
transfers between modules. When set to matrix, the
Counter records transfers from one group of modules to
another.

reads the file to collect group information treating the
current selection as a file name.

using the current selection as a group number, prints the
names of the modules belonging to that group. This
command may be aborted by typing ABORT.

There are two modes of operation: plain and matrix. Plain mode (the default) simply
records the time spent in a module and the number of XFERs to that module. Matrix mode is
used to gather information on the flow of control between groups of modules. Each module
is a member of one of as many as 16 groups. A 16-by-16 matrix of counts and times is
maintained by the Xfer Counter. The rows of the matrix are the groups of the source of the
XFER, the from group. The columns of the matrix are the groups of the destination of the
XFER, the to group.

In plain mode when XFER monitoring is enabled and an XFER occurs, the trap handler
calculates the time since the last XFER and adds that to the cumulative time for the current
module. It then calculates which module is the destination of the XFER and makes that the
current module, incrementing its count. In matrix mode when XFER monitoring is enabled
and a XFER occurs, the trap handler updates the appropriate element of the matrix. In both
modes, the XFER handler then completes the XFER, and the client program continues.

The state of XFER monitoring can be controlled by two methods. The first is by setting a
conditional break to be handled by the tool's breakpoint handler. The second is by calling
the procedures xferCountDefs.StartCounting and XferCountDefs.StopCounting.

When the break handler intercepts ~ breakpoint, it checks to see if the breakpoint is
conditional. Ifnot, the break handler just proceeds to the debugger. If it is, the state of XFER
monitoring is changed and program execution is resumed. A condition of 0 turns on XFER
monitoring; a condition of 1 toggles the state of XFER monitoring; a condition of 2 turns off
XFER monitoring. Any other condition has no effect.

XOE User's Guide 28

The procedures xferCountDefs.StartCounting and XferCountDefs.StopCounting provide an
alternative method of enabling XFER monitoring. These procedures may be called from
statements in the client program, or they may be called from the debugger's interpreter.
Note: If they are to be called from the Sword interpreter. you should 6et module context to PilotCounter and

interpret call StartCounting and StopCounting.

Since multiple processes may interact with each other, there is the concept of the tracked
process. If the tracked process is not NIL, only those XFERS that are encountered during
execution of the tracked process are counted; all others are simply resumed. If the tracked
process is NIL, then all processes are tracked.

The group information for matrix mode is entered into the Xfer Counter by reading an
edited version of the output from the debugger's Display GlobalFrameTable command.
Appending the group number to the line for a module will assign the module to that group.
If no group number is specified, the module is assigned to the group of the previous line.
Modules not assigned to any group arc members of group O. For example:

BcdOperations G:400Bl group 1
pilotLoadState G:430B2 group 2 the Loader proper
PilotLoaderSupport G:404B
PilotLoaderCore G:444B
STLeaflmpl G:17554B 3 -- group 3 Pilot
SpacelmplB G:17524B
SpacelmplA G:17504B
STreelmpl G:17324B
Projectionlmpl G:17370B
STreelmpl G:17124B
Hierarchylmpl G:17150B
VolFileMaplmpl G:20060B
Filelmpl G:17020B
CachedSpacelmpl G:14644B
CachedRegionlmplB G:14400B
CachedRegionlmplA G:14314B
FileCachelmpl G:13204B
Zonelmpl GO: 14 304B
Utilitieslmpl G:14300B
Heaplmpl G:20334B
Processes G:14120B

The significant part of each line in this matrix specification is the part that begins with
HG:". This must be followed by a number, the actual global frame handle number. To
assign that module to a group, the global frame handle must be followed by a space
and the group number it is to go into. The rest of the line is ignored.

28.1.4 Limitations

Execution speed: XFER monitoring slows down the execution of a program considerably,
since extra processing is done on every XFER. As a result, interrupt processes that are
triggered by real-time events (e.g., the keyboard process) will run relatively more
frequently.

28-5

28

28-6

Pel'for'rnance tools

[dle loop accounting: When no process is running, the Mesa emulator runs in its idle loop
waiting for a process to become ready. This idle time is charged to the process that was last
running.

Time base: The time base is a 32 bit counter, where the basic unit of time is a System.Pulse

whose resolution varies between 1 and 1000 microseconds. The counter typically turns over
about once an hour; no indi vidual time greater than an hour is meaningful. Total times are
32-bit numbers and will overflow after 340 minutes.

Overhead calculation: Due to implementation restrictions and timer granularity, some of
the overhead of processing an XFER trap is incorrectly assigned to the client program instead
of the Xfer Counter. As a result, times must be interpreted as only a relative measure of
the time spent in a module.

Counter sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295 XFERs.

Memory requirements: The Xfer Counter requires 16 pages of the client's resident memory.

Worry mode: The Xfer Counter operates in worry mode; see the Debugger chapter for more
information about worry mode.

28.1.5.1 Getting started (world-swap)

The steps required for using the Xfer Counter in world-swap mode are outlined in the
following steps:

1. Retrieve RuntimePerf. bed onto the client volume. Retrieve
RuntimePerf. symbols and CPPerf. bed onto the debugger volume.

2. Run Perf in the debugger.

3. Start your program with Runt imePer f included. This can be done by running
Run t imePer f in the Executive of the client volume.

4. Enter the debugger and set conditional breakpoints to enable monitoring as desired.

5. Turn the break handler on by setting the Moni tor parameter to on.

6. Proceed with program execution.

7. Return to the debugger via an interrupt or an unconditional breakpoint.

8. Display results with the Pr int commands.

XDE User's Guide 28

28.1.5.2 Getting started (same-world)

The steps required for using the Xfer Counter in same-world mode are outlined below:

1. Run the program to be monitored.

2. Retrieve RuntimePerf. bed and' RuntimePerf. symbols from the release
directory. Run RuntimePerf. bed.

3. Run Sword and create a local debugging session. (If Sword is already in a local
debugging session, make the session dormant and reinitiate a local session.)

4. Run Per f. bed.

5. Set breakpoints in the modules to be monitored.

6. Condition the breakpoints with the Xfer Counter's Condi tion Breaks command.

7. Turn the break handler on by setting the Moni tor parameter to on.

8. Proceed the local debugging session in Sword.

9. Perform the user actions to be monitored.

10. Create a local debugging session, either manually or with an unconditional
breakpoint.

11. Display results with the PrintTables and Pr intHodes commands.

28.1.6 Sample session

The following annotated listing of Debug .log and Count .log should give a fair idea of
the use of the count tool. It counts the XFERs executed when loading a module.

3-Feb-82 11:57

*** interrupt ***
-- set breakpoints to count XFERS involved with loading
>SEt Root configuration: Tajo
>SEt Module context: pilotLoaderCore
>Break Entry procedure: Breakpoint II.
>Break Xit procedure: Breakpoint 12.
>ATtach Condition I: 1, condition: 0
>ATtach Condition I: 2, condition: 2
-- condition l turns XFER counting on; condition 2 turns it off
>LIst Breaks
1 -- Break at entry to New (in PilotLoaderCo~e, G: 444B). Condition:
o
2 Break at exit· from New (in pilotLoaderCore, G: 444B).
Condition: 2
>Proceed [Confirm]

*** interrupt ***
-- look at the XFER count results

28-7

28

28-8

Performance tools

>--Test.map -- file containing group information
-'- set mode to matrix and load group information using Load Matrix
command
>Proceed [Confirm]

*** interrupt ***
-- look at the matrix

From Count .log:

Xfer Counter 8.0 of 2-Feb-82 17:32
3-Feb-82 12:10

Track process: 100B ignore processes not involved in loading

-- Output of Print Tables command with mode = plain
Total Xfers
Total Time

Frame Module

5,150
600:638

ItXfers %Xfers

---------------------- ---------
137508 FrameImpl 20
141208 Process,es 45
203348 HeapImpl 64
143008 UtilitiesImpl 39
143048 ZoneImpl 22
13204B FileCac:heImpl 28
13440B SubVolumeImpl 2
143148 CachedRegionlmp1A 172
14400B CachedRegionImp18 100
146448 CachedSpaceImpl 87
16460B MStorelmpl 1
165708 PageFaultImpl 20
17020B FileImpl 32
200608 Vo1F i lE!MapImpl 39
201648 VolumeJ:mpl 20
17150B Hierarc:hy Impl 95
171248 STreeImpl 120
173708 ProjectionImpl 73
173248 STreeImpl 276
173108 MapLogImpl 5
17504B SpaceIrnplA 189
175248 SpaceIrnplB 34
175548 STLeafImpl 72
125708 DiskChannellmpl 16

4448 PilotLc)aderCore 2,483
4048 PilotLoaderSupport 176
4308 Pi 10tLI)adS ta te 52

Time %Time
------- -----------

.38 805

.87 3:539
1.24 4:115

.75 9:900

.42 5:266

.54 2:734

.03 633
3.33 60:754
1.94 8:259
1.68 17:584

.01 115

.38 1:496

.62 2:331

.75 3:482

.38 1:323
1.84 5:698
2.33 20:433
1.41 5:266
5.35 55:861

.09 805
3.66 11:051

.66 2:273
1.39 6:792

.31 1:064
48.21 168:017

3.41 10:418
1.00 127:955

-- Output of Print Sorted command with Sorted by = count
Total Xfers 5,150
Total Time 600:638
Frame Module iXfers %Xfers Time %Time

.13
.58
.68

1.64
.87
.45
.10

10.11
1.37
2.92

.01

.24

.38

.57

.22

.94
3.40

.87
9.30

.13
1.83

.37
1.13

.17
27.97
1.73

21.30

XD"~ User"s Guide 28

--------------------- --------- ------- ----------- ------
444B pilotLoaderCore 2,483 48.21 168:017 27.97
400B BcdOperations 868 6.85 62:654 10.43

17324B STreelmpl 276 5.35 55:861 9.30
17504B SpacelmplA 189 3.66 11:051 1.83
4 04B PilotLoaderSupport 176 3.41 10:418 1.73
14314B
17124B
14400B
17150B
14644B
17370B
17554B
20334B
4 30B
14120B
14300B
20060B
17524B
17020B
132048
14304B
13750B
201648
16570B
12570B
17310B
13440B
164608
Ignored Xfers
Ignored Time

Tables zeroed
Matrix loaded

CachedRegionlmplA
STreelmpl
CachedRegionlmplB
Hierarchylmpl
CachedSpacelmpl
Projectionlmpl
STLeaflmpl
Heaplmpl
pi10tLoadState
Processes
Utilitieslmpl
VolFileMaplmpl
SpacelmplB
Filelmpl
FileCachelmpl
Zonelmpl
FrameImpl
VolumeImpl
PageFaultImpl
DiskChannellmpl
MapLoglmpl
SubVo1umeImpl
MStoreImpl

973
86:829

Track process: 100B

172 3.33 60:754 10.11
120 2.33 20:433 3.40
100 1.94 8:259 1.37

95 1.84 5:698 .94
87 1.68 17:584 2.92
73 1.41 5:266 .87
72 1.39 6:792 1.13
64 1.24 4:115 .68
52 1.00 127:955 21.30
45 .87 3:539 .58
39 .75 9:900 1.64
39 .75 3:482 .57
34 .66 2:273 .37
32 .62 2:331 .38
28 .54 2:734 .45
22 .42 5:266 .87
20 .38 805 .13
20 .38 1:323 .22
20 .38 1:496 .24
16 .31 1:064 .17

5 .09 805 .13
2 .03 633 .10
1 .01 115 .01

XFERs not in the tracked process
time spent outside tracked process

-- Output of Print Tablescommand withmode matrix

Total Xfers 4,919
Total Time 523:623
From -> To #Xfer.s %Xfers Time %Time

-------- ------- ------- -------
1 ~> 2 854 17.36 70:482 13.46
2 -> 1 861 17.50 62:596 11.95
2 -> 2 1,759 35.75 194:121 37.07
2 -> 3 30 .60 2:244 .42

Ignored Xfers 973
Ignored Time 86:829

28-9

28 PerfOt"mance tools

28.2 Performance l\'leasurement Tool

28-10

The Performance Measurement Tool (PerfVackage) uses Sword's breakpoint mechanism to
collect timing and frequency statistics of program execution between breakpoints. The
client part of the PertPackage, Run t imePe r f " bcd, contains a routine that intercepts all
conditional breakpoints and collects statistics about them. Existing Sword commands are
used to specify what points are to be monitored, and the tool provides commands for
controlling the measurements and outputting the results.

28.2.1 Files

Retrieve Run t imePer f . bed onto the client volume. Retrieve Per f. bed onto the debugger
volume from the Release directory.

28.2.2 Concepts

A node is defined to be a point in a program where a breakpoint can be set by Sword. In
fact, nodes are implemented via conditional breakpoints, so that while monitoring is
turned on, the functioning of all conditional breakpoints is different. In particular,
conditional breakpoints cause performance data to be gathered rather than a breakpoint to
be taken. The number of times a node is encountered is tallied by the Perf Package.

A leg is defined by a pair of nodes, one called the from node and the other the to node. A leg
is the code executed between these nodes. Interesting items measured about a leg include
the number of times this leg was executed and the time required to execute the leg.

~acilities are also provided for associating a histogram with any node or leg, thereby
providing more detailed distribution information about the entry than is provided by
counts, sums, and averages.

Since processor time or tas.k time is not available, the measure of computing is simply the
elapsed time between the time the from node is executed and the time the to node is
executed.

28.2.3 Definition of terms

iVode Table

NodeID

Leg Table

A node table is a table tylaintained by the measurement module that
contains information about each node. A node for each conditional
breakpoint is entered into this table by the Collect nodes command
or by the measurement module when it encounters a conditional
breakpoint that is not already in the table. The node table has 20
entries.

A NodelD is the name of a node in the node table, used in commands to
identify a particular node. This is the same as the breakpoint number
assigned by Sword.

A leg table is a table maintained by the measurement module
containing various information about each leg. Legs are entered into
this table by the command Add Legs or by the measurement module

XDE User's Guide 28

LeglD

when it encounters a new leg and automatic insertion is enabled. The
leg table has 41 entries, one of which is reserved.

A LegID is the name of a leg in the leg table. The LeglD for a particular
leg does not change during a measurement session and is used in
commands to identify a particular leg.

Histogram A histogram is an optional table that may be associated with either a
node or leg that records the distribution of a variable associated with
the node or leg by incrementing counters in a number of buckets. The
distribution may be either linear or logarithmic. In a linear
distribution, a base may be specified which will be used as the offset for
the first bucket. In a logarithmic distribution, the buckets are indexed
by the number of leading binary zeros in the value. A scale is used to
adjust the value for an optimal fit into the number of buckets. There is
a storage pool of 256 words that is shared among all histograms to hold
buckets and histogram information.

Node Histogram A node histogram is a histogram associated with a node. The histogram
variable of the node is the first variable in the conditional expression
attached to the breakpoint that defines the node. The value is treated
as a 32-bit unsigned quantity. For a simple node histogram, the value
is adjusted by subtracting the base (if any) and dividing by the scale
factor; the resulting quotient is recorded. A logarithmic node
histogram has a maximum of 32 buckets because the value is a 32-bit
quantity.

Leg Histogram A leg histogram is a histogram associated with a leg. The histogram
variable of the leg is the 32-bit leg time in units of pulses. The value is
adjusted by shifting the value to the right by the scale. A logarithmic
leg histogram has a maximum of 32 buckets because the value is a
32-bit quantity.

28.2.4 User in terface

Interaction with the PerfPackage is done through its window. There are four subwindows:
the message subwindow, the common commands subwindow, the specific commands
subwindow, and the file subwindow. The commands available in the specific commands
subwindow depend on whether you are using the PerfPackage's histogram facilities. They
are either the Mode Commands or the Histogram Commands. You may change the
commands available in this sub window by using the Commands pop-up menu.

Common Commands

Monitor: {off, on}

Condition Breaks!

turns off/on performance monitoring. All conditional
breakpoints will be monitored when the monitor is on, and
will behave as normal conditional breakpoints when it is off.

makes all non-conditional breakpoints into conditional
breakpoints by adding the condition "1" to them.

28-11

28

28-12

Performance tools

Collect Hodes!

Add Leg!

From Hade:

To Hade:

Delete Leg!

Leg:

Print Tables!

Print Hodes!

Print Legs!

Zero Tables!

Reini tialize Tables!

Mode Commands

enters all currently existing conditional breakpoints as nodes
in the node table.

adds the leg specified by From Hade and To Hade to the leg
table. If a designated leg entry is already in the leg table, the
leg is not affected.

contains the Node I D of the from node for the Add Leg
command. The character "*,, may be used as a wild card
meaning "all nodes."

contains the Node ID of the to node for the Add Leg

command. The character "*" may be used as a wild card
meaning "all nodes."

deletes the spccified leg from the leg tablc.

contains the LegID used by the Delete Leg command.

displays all the summary statistics gathered so far and the
complete contents of the node table and the leg table. This
command may be aborted by pressing ABORT.

displays the contents of the node table. A NodeID followed by
an asterisk has a histogram associated with it. This command
may be aborted by pressing ABORT.

displays the contents of the leg table. A Leg ID followed by an
asterisk has a histogram associated with it. This command
may be aborted by pressing ABORT.

zeroes out all counts and sums from the tables (including the
total time spent measuring) but leaves all other information
in the tables unchanged. This command is useful for
preserving the measurement environment while zeroing out
the counts and sums collected so far.

completely reinitializes all tables and counters. The node
table, the leg table, and all histograms are cleared.

Add: {aone, successor} if set to none, prevents the PerfPackage from adding legs that
are not in the table as it encounters pairs of nodes during the
execution of the client program that have not been specified as
legs already. This is the default mode for automatically
adding legs. If set to successor, the PerfPackage adds legs
that are not in the table. These legs may be deleted if there is
no room in the leg table when legs are added by the Add Legs

command.

Track: {none, successor, all} ifset to none, the PerfPackage disables
tracking of legs. If set to successor, the PerfPackage tracks

XDE User's Guide 28

~---~

~ Add Leg!

~ Print Tables!

: Zero Tables!

From:

I Common Command~

Condition Breaks! Collect Nodes!

To: Delete Leg! Leg:

Pri nt Nodes!

Reinitialize Tables!

Print Legs!

~---~

Mode Commands I

: Add: {~ib~~::Successor}
: Set Process! Process:

Track: {none, successor, all}

~~---4J

Figure 28.2: PerfPackage window with mode commands

Set Process!

Process:

Histogram Commands

Add!

Delete!

Print!

Type: {node, leg}

only the leg defined by the last node encountered and the
current node. If set to all, the PerfPackage tracks all legs in
the table. This is the default mode for tracking legs.

tells the PerfPackage to track only those legs that are
executed by the process specified by Process. ~ odes
encountered by other processes will not be recorded. An octal
ProcessHandle as obtained from Sword's List Processes
command is acceptable as input to this command. The default
case is to track all processes.

used by the Set Process command. It contains an octal
ProcessHandle as obtained from Sword's List Processes
command. If Process is empty, all processes are tracked.

adds a histogram and associates it with either Histogram
Node or Histogram Leg, depending on the value of Type.
The command gets its parameters from the Class, Buckets,
Scale, and Base fields.

deletes the histogram associated with the specified node or
leg.

displays the histogram associated with the specified node or
leg. This command may be aborted by typing ABORT.

if set to node, the above histogram commands operate on the
histogram associated with the node specified by Hi s togram
Hode. If set to leg, the above commands operate on the

28-13

28

28-14

Performance tools

: Add Leg!

: Print Tables!

: Zero Tables!

From::

I Common Command~

Condition Breaks! Collect Nodes!

To: Delete Leg! Leg:

Print Nodes!

Reinitialize Tables!

I Histogram Commands

Print Legs!

: Add! Delete! J)rint! Type: {nli~tjg} Class: {linlt;,~Jlili
~ Histogram Node: Histogram Leg:

Figure 28.3: PerfPackage window with histogram commands

histogram associated with the leg specified by Histogram

Leg.

Class: {l inear, log} used to specify the kind of distribution of the histogram to the
Add command.

Histogram Hode: contains a NodeID for specifying a node to the Add, Delete,

and Print commands.

lBistogram Leg: contains a LegID for specifying a leg to the Add, Delete, and
Print commands.

Buckets: used to specify the number of buckets to the Add command.

Scale: used to specify the scale of the histogram to the Add command.
Note that since scaling of a leg histogram is done by shifting
instead of dividing, the scale is entered as a power of two.

Base: used to specify to the Add command the base of the
distribution of values for linear histograms.

28.2.5 Operation

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is
conditional. If so, it finds the node corresponding to the breakpoint, increments its
counters, and processes its histogram if one exists. If tracking of legs is enabled, the leg
table is searched for the legs of which this node is a part. Otherwise, the breakpoint is
resumed.

In the simple case, a leg is tracked as follows: The break handler intercepts a conditional
breakpoint that is the from node of the leg from, and some time later it intercepts a

XDE User's Guide 28

conditional breakpoint that is the to node of the leg to,. At this point, the leg's time IS

recorded, its count is incremented, and its histogram (if any) is processed.

This simple model of tracking a leg is complicated by recursion, signals, and multiple
processes. With recursion, from may be encountered several times before to is
encountered. With signals, a process may be unwound after it encounters from but before
it encounters to. With multiple processes, one process may encounter from and then
another immediately encounter to.

To deal with these complications, there is a leg owner. A leg owner is the process that last
encountered from. When to is encountered and the current process is its owner, then the
leg is recorded and the leg owner is cleared. If the current process is not the owner, the leg
is ignored. As a result of ignoring legs, from and to may be counted more times than the
leg between them is counted.

To deal with the complication of multiple processes, there is the concept of the tracked
process. If the tracked process is not NIL, then only those conditional breakpoints that are
encountered by the tracked process are treated as nodes. All others are simply resumed as
if they did not exist. If the tracked process is NIL, then all processes are tracked.

Normally, when a node is encountered, all legs of which it is a part are tracked.
Alternatively, only the leg defined by the last node encountered and the current node is
tracked.

28.2.6 Limitations

Time base: The time base is a 26-bit counter, where the basic unit of time is a System.Pulse

whose resolution varies between 1 and 1000 microseconds. The counter typically turns over
about once an hour; no individual time greater than an hour is meaningful. Total times are
32-bit numbers and will overflow after 340 minutes.

Overhead calculation: Due to implementation restrictions and timer granularity, some of
the overhead of processing a breakpoint is incorrectly assigned to the client program
instead of the Perfrool. As a result, leg times will be about 10 microseconds high for each
node that was enountered while processing that leg. Elapsed time is similarly affected.
This effect is particularly noticeable with short legs. Comparing relative times of different
legs may give better information about program performance.

Counter sizes: In a long measurement session, the node, leg, or histogram counters may
overflow . Node and leg counters are 22 bits, while histogram counters are 16 bits. If a node
or leg counter overflows, a .. *" follows the count when the field is listed.

Recursive procedure calls, UNWINDs, multiple processes: These interfere with the simple
start-to-end concept of a leg. With recursion and multiple processes, the start node of a leg
may be tripped several times before the end node is tripped. With unwinding, the start
node of a leg may be tripped and the end node never reached. If any of these cause a leg to
be ignored, the referenced field in the Leg Table has a "-..." following it when the table is
listed.

Breakpoints taken twice: Nodes are implemented as conditional breakpoints. If for some
reason the broken instruction is interrupted (e.g., it takes a page fault), the breakpoint is
taken again, and that node will get an extra count. This can cause node counts to be greater

28-15

28

28-16

Performance tools

than leg counts for corresjponding legs, and is another cause of" -" appearing in the Leg
Table.

Table sizes: The node table contains 20 -entries. (Note that the PerfTlackage automatically
extends the number of conditional breakpoints that can be set in the debugger from 5 to
20.) The leg table currently has 40 entries. Note that this number is small when compared
to the 20*20 possible legs. For this reason, there are a number of commands that give you
control over exactly what l-egs are in the table.

j\1emory requirements: The Perf Tool requires seven pages of the client's resident memory;
three for PerfPackage's code and four for PerITool's frames. This may affect the
performance of systems that use a lot of memory.

Worry mode: The PedPackage operates in worry mode: see the Debugger chapter for more
information about worry mode.

28.2.7.1 Getting started (world-swap)

The steps required for using the measurement tool in world-swap mode are outlined below:

1. Retrieve Run t imeP'e r f . bed onto the client volume. Retrieve Pe r f . bed onto the
debugger volume from the Release directory.

2. Run Per f in the debugger.

3. Start your program with Run t imePe r f included. This can be done by running
RuntimePerf in the Executive of the client volume.

4. Enter the debugger and set breakpoints as desired; then condition them with the
Condi tion Break:; command.

5. Turn measurements on by setting the Moni tor parameter to on.

6. Collect nodes and manipulate the leg table as desired.

7. Proceed with program execution.

8. Return to the debug~~er via an interrupt or an unconditional breakpoint.

9. Display results with the Pr int commands.

28.2.7.2 Getting started (same-world)

The steps required for using the measurement tool in same-world mode are outlined below:

1. Run the program to be performance tested.

Retrieve RuntimePerf.bed and
RuntimePerf. bed.

RuntimePerf. symbols. Run

XD~: User's Guide 28

3. Run Sword and create a local debugg'ing session. (If Swor'd is already in a local
debugging session, make the session dormant and reinitiate a local session.)

4. Run. Per f. bed.

5. Set breakpoints in the modules to be monitored.

6. Condition the breakpoints with the Perf Tool's Condi tion Breaks command.

7. Turn the Perf Tool's Moni tor paramter to on.

8. Collect Hodes and manipulate the leg table as desired in the Perf Tool.

9. Proceed the local debugging session in Sword.

10. Perform the user actions to be monitored.

11. Create a local debugging session either manually or with an unconditional
breakpoint.

12. Display the results with the PrintTables and PrintHodes commands.

28.2.8 Sample session

The following annotated listing of Debug. log and Pe r f . log should give a fair idea of the
use of the measurement tool. It monitors the time required for the swapper to allocate real
memory pages.

10-Feb-82 12:42
*** interrupt ***
Performance Tool 8.0 of 2-Feb-82 11:32
10-Feb-82 12:46
>SEt Root configuration: Tajo
>SEt Module context: PilotLoaderCore
-- set breakpoints to time the ProcessLinks procedure inside the
Loader
>Break Entry procedure: ProcessLinks Breakpoint i1.
>Break Xit procedure: ProcessLinks Breakpoint i2.
-- Condition breaks wth the Perf Tool, turn on Perf Tool
>Break Xit procedure: New Breakpoint i3.
>LIst Breaks
1 -- Break at entry to ProcessLinks (in PilotLoaderCore, G: 444B).
Condition: 1
2 -- Break at exit from ProcessLinks (in PilotLoaderCore, G: 444B).
Co nd i t ion: 1
3 -- Break at exit from New (in PilotLoaderCore, G: 444B).
>Proceed [Confirm]
Break *3 at exit from New, L: 4410B, PC: 1231B (in PilotLoaderCore,
G: 444B)

28-17

28

28.3 Spy

28-18

Performance tools

F'rom Per f . log:

Performance Tool 8.0 of 2-Feb-82 17:32
10-Feb-82 12:46

Collecting nodes 1 2 done
Leg from 1 to 2 added

Proceed from the debugger to collect information
unconditional break. returned control to Sword after loading

Total Elapsed Time of Measurements =
Elapsed Time less Perf Monitor Overhead
Total Overhead of Perf Monitor Breaks =

Total number of Perf Breaks handled =
Average Overhead per Perf Break =
% of Total Time spent in Perf Monitor

- - - - N 0 0 E T A B L E C 0

Node Global Program Number of Config
Id Frame Counter References Name

N T E N T

205:517
204:366

1:151
4

287
.56

S - - -

Module
Name

- - - - - -

------ ------- ---------- ---------------- ------------------
1 444 3032 2 Tajo PilotLoaderCore

2 444 3115 2 Tajo PilotLoaderCore

L E G T A B L E C 0 N T E N T S - - - -

Leg From To I of Times Total Time Longest Time

Id Node Node RefEHenced sec. msee: usee sec. msee: usee

o 1 -> 2 2

Shortest Time Average Time
sec.msec:usee see.msee:usee

25:668 26:751

% of
Time

26.17

53:502 27:834

-

Spy is a performance measurement tool for determining where a program spends its time.
The SpyNub is the client part; Spy is the tool executing in the debugger that interprets the
data recorded by the SpyNub. The SpyNub works by waking up on every display vertical
field and incrementing a t:!ount in a bucket for the current pc. Spy's default mode is to
collect information on a nlOdule level only; i.e., it has one bucket for every module. In
addition, it can be instructed to create buckets for procedures or all the statements within a
procedure. Spy also allows control over which processes to watch. The major advantages of
Spy over the CountPackage and PerfPackage are that it is easy to use and has little impact
on the client. However, because Spy samples on the vertical retrace, it is a poor choice to
study actions of short duration; the PerfPackage is recommended for that use.

XDE User's Guide 28

28.3.1 Files

Retrieve SpyNub. bed onto the client volume and Spy. bed onto the debugger volume.

28.3.2 User interface

Interaction with the Spy is done through its window.

Spy: {off~~er} DisplayData! ilftU,i!\!!lili1
Priority: {clientLow, client, c,l~lllll!I~, pageFault~~:::::::;::::~:::~:ault
{illnt1gnore} processes:
Watch procedures:

Ignore procedures:

Figure 28.4: Spy tool window

Available commands are listed below:

Spy: {on, off}

DisplayData!

ZeroData

Priority:

Spy must be turned on to start spying. The interface
SpyClient contains the procedures StartCounting and
StopCounting if you want to do this from a program.

causes the Spy to display its tables: ABORT aborts this
display.

is a Boolean that determines, in part, whether the
buckets will be zeroed when execution of the client
proceeds. If anything is changed in the Priority,
Processes, or Procedures specifications, the
buckets will be zeroed regardless of the setting of
ZeroData. If, when you proceed, none of these
specifications has changed, the buckets will be zeroed
only if ZeroData is TRUE. Thus, if you happen to hit a
breakpoint or press CALL DEBUG to enter the debugger
while the Spy is on, you can proceed wi thou t
disturbing the counts just by setting ZeroData to
FALSE.

{clientLow, client, clientBigh,
pagePaultLow, pagePaultBigh, IOLow, All} specifies the priority of the

on: clientLow IS processes to Spy

28-19

28

28-20

Pet"formance tools

Pro c e s s . prj a r i t Y B a c k 9 r a u n d; c 1 i e, n tIS

Process.priorityNormal; clientHigh 1S

Process. pri ority Foreg rou nd.

{Watch, Ignore} processes: [f a list of processes is specified, ({ Watch, Ignore}
p roc e sse s: PI, P 2 , " . . , etc "), 0 n I y those
processes will be watched (ignored): all others will be
ignored (watched). If no list appears, the default is that
all processes of the indicated priority will be watched
(or ignored, but this isn't very useful). Processes are
specified in the same way you would to Sword, with
the additional feature that you may write Pl..P2 to
specify all processes in the inclusive range PI to P2.
The default radix is octal.

Watch procedures:
Ignore procedures:

28.3.3 Operation

Watch procedures: MI; M2: pI, p2/s; etc";
Ignore procedures: M3: p4; M4; etc. means:
"watch all procedures in module MI, watch only
procedures pI and p2 in module M2, but watch p2 at
the individual statement level; watch all procedures in
M3 except p4, and ignore M4 entirely". /5 means to
make a source level accounting. If the module being
watched was compiled with the j switch, use of the /5
option in Spy may produce invalid information.Note
that it's an error to mention the same module name
more than once in these lines, and that the /5 option
is useless on the Ignore line. There is an accelerator
in the form of a pop-up menu for setting watched and
ignored procedures.

The most common way to use the Spy is to simply turn it on and perform some client
operation. After doing a [)isplayData to see where the client is spending time, it is a
simple matter to use procedure level or source level Spying to track the problem down
further. If no hot spots are immediately apparent, the Spy can be instructed to ignore some
set of modules that provide a function (e.g., swapping). When an ignored module is found,
Spy will continue up the call stack until it finds a valid module that will be charged
instead. This has the effed of charging the caller of that function for the service rather
than charging the procedure or module itself. When a hot spot does appear, you know who
is using that function excessively.

Before a Proceed is done by Sword, Spy zeroes its tables and interprets the contents of the
fields of processes and procedures to watch. If the number of buckets needed by the SpyNub
to handle the data is great1er than the amount already allocated, the Spy calls to the client
world (after printing the message Allocating extra buckets) to allocate more before letting
the Proceed finish.

The Spy looks up module names within the configuration currently set in Sword. If the
module is not found, the Spy enumerates the global frame table, which can be slow.

XDE User's Guide 28

Because of this, a global frame handle may be used instead of a module name, which is
much faster. '

28.3.4.1 Getting started (world-swap)

The steps required for using Spy in world-swap mode are:

1. Retrieve Spy. bed onto the debugger volume and SpyNub. bed onto the client volume.

2. Run Spy on the debugger volume.

3. Start your program with Spy~ub included. This can be done by running Spy~ub in the
Executive of the client volume.

4. Enter the debugger and turn on Spy.

5. Proceed with program execution.

6. Return to the debugger via an interrupt or an unconditional breakpoint.

7. Display results with the DisplayData commands.

8. Repeat steps 5-7 with modules ignored or watching procedures to find hot spots.

28.3.4.2 Getting started (same-world)

The steps required for using Spy in same-world mode are:

1. Run Sword with a local session.

2. Load and run the tool to be monitored.

3. Load and run SpyNub. bed from the Exec.

4. Load and run Spy. bed.

5. Set Spy parameter to on.

6. Proceed from Sword's local debug session.

7. Perform user actions to be monitored.

8. Initiate a new local debug session.

9. Display results with the DisplayData commands in Spy.

28.3.5 Error messages

SpyHub not found!

You forgot to load the SpyNub.

28-21

28

28-22

Perfol'mance tools

SpyNub not started!

Spy N ub is loaded, but i.t hasn't been started.

More than one instance of SpyNub found!

Multiple instances of Spy Nub have been loaded.

xxx is ambiguous!

There is more than one instance of xxx.

xxx is crossjumped!

xxx was compiled with the j switch. Beware of source level data.

Symbol table for module containing xxx is missing!

Adequate symbols for the procedure xxx are not available. You should fetch the correct
object or symbols files.

lfO symbols for xxx!

No symbols have been found for xxx .

. xxx is an invalid global frame!

Invalid global frame specified in Watch or Ignore Procedures section .

. x-xx is not a module!

xxx is neither a module name nor a valid global frame address.

Jrxx is not a number!

In valid number.

:crx begins an illegal process range!

In valid process range.

/ ••• is illegal after: xxx!

Invalid use of switch.

lDOdulename is mentioned more than once!

A module name may appear only once in the Wa tch or Ignore list.

28.3.6 Limitations

Sampling technique: Because Spy does its sampling based on the vertical retrace, no
process with a priority lower than background can be watched. In addition, processes that

28.4 Ben

XDE User's Guide 28

do a UserTerminal.WaitForScanLine will look as if they are taking more time than they
actually do.

Counter sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295.

Memory requirements: The SpyNub requires 12 pages of the client's resident memory:
three for its code, eight for module buckets, and one spare for extra buckets. One extra page
is allocated for about every additional 50 buckets. This may affect the performance of
systems that use a lot of memory.

Frame faults: Note that if a procedure call causes a frame fault (e.g., the procedure called
has a large local frame), the time that Pilot takes to allocate the frame is charged to the
caller, not to the called procedure.

Backing-store transfer tracing, of which page faults are a special case, is accomplished
with two programs. The data is generated by the program Ben. bcd, which runs in the
environment to be monitored. The other program, ReduceBen. bcd, is used to process the
raw data generated by Ben, and produces a human-readable text file as output. It runs on
the debugger volume. These programs are described below.

28.4.1 Files

Retrieve Ben. bcd onto the client volume. Retrieve Ben. symbols and ReduceBen. bcd

onto the debugger volume.

28.4.2 Collecting the data

To collect the data, load and start Ben. bcd in the environment to be investigated.

To start tracing transfers, enter the debugger and tell Ben to begin tracing. Proceed as
follows:

>SEt Module context: Benlmpl
> StartTracing[] --(note the leading space)

or

> Benlmpl$StartTrac ing [] -- (note the leading space)

You must have Ben. symbols on your debugger volume to do this.

When the Star tTrac ing operation completes, you will be back in the debugger. Proceed
back to the client world.

>
>Proceed [Confirm]

Now perform the sequence of user operations that you wish to monitor. When done, get
back to the debugger, and finish the tracing by doing

28-23

28

28-24

Per·formance tools

or

>SEt Module context: Benlmpl
> S topTr ac i ng [] -- (note the leading space)

> Benlmpl $S tar t'rrac i ng [] -- (note the leading space)

logFileLength -- (printed by Copilot)
>

Backing-store transfer dat.a will have been recorded in a file in the root directory of the
dient system volume. When S topTrac i ng returns to the debugger, it reports the number
of disk pages used by the trace log file.

When tracing is started, Ben creates the log file to hold the trace data. Tracing terminates
I~ither when the log file fills up or the user instructs Ben to stop. It is possible to adjust the
maximum amount of data to be captured by setting a variable in Benlmpl. The variable
nBuffers (default value: 10) times the variable bufferPages determines the maximum size
of the log file. Adjust nBuffers if you need a larger log file. This variable must be set before
StartTracing is called. The requested size of the log file will be trimmed as necessary to
fit on the client volume.

28.4.3 Reducing the data

The data reduction program RedueeBen. bed runs in the Executive on the debugger
volume. The simplest way to use it is to collect the data with Ben and then immediately
analyze it.

If transfer data is to be analyzed at a later time, ReduceBen requires that the volume that
Sword is currently debugging have the same load state as when the tracing data was
generated. This means it must have the same boot file and loaded configs as were present
during the test, and that all loaded configs must be currently loaded in the same order that
they were during the test.

The debugger volume shouJ:d have all of the symbols for the client environment that might
be referred to in the data file. If they are not, ReduceBen will report the symbols needed.

To analyze the transfer data, give the Executive the command:

>RedueeBen clientVolumeLvfi

HeduceBen will read the log file from the client volume and produce a file with the default
name Swapping .log on the debugger volume containing the output report.

The full form of the command, with all of the default names explicitly specified, is

>RedueeBen Lsd Swapping.log/o Swapping.data/i StarLvfi

Filename/o specifies the name of the output file name. FilenameLi specifies the name of
the input file name. This makes sense only if you have used some utility program to copy
the log file from the client root directory into a file on the debugger volume. If an input
filename is not specified, the log file in the root directory of the specified vol ume is used.

XDE User's Guide 28

The global switch 5 tells ReduceBen to print the source line of the program that caused the
transfer, if the source file is available.

The global switch d sets the Debug mode. The dictionary contents are displayed in the
Executi ve along with the output file contents.

ReduceBen registers a help command with the Executive. Typing "Help ReduceBen" will
produce a short explanation of the command line format.

28.4.4 Repol't fOt'mat

The output is a sequence of text lines, two or three per transfer. The format of the first line
is

dT: number; Page: octal-number; location

where a loca tion is either

File: file. file - type: tgpe

or

swap-unit-tgpe: name

or

volume root page: type

or

unknown backing store: data

The meaning of each of these fields is as follows:

dT: number is the number of microseconds that elapsed since the last backing-store
transfer. This is real time, and will be slightly distorted because Ben is running.

Page: octal-number is the virtual page number of the transferred page.

location is an attempt to determine what the transferred page represents. It may
be swapped from the disk or from some other backing store. In the former case, the
page may represent either a specific file or otherwise. If otherwise, the rest of the
line is reported as if the transferred page were backed by a file, thus the line Fi le:.
Ifit was a specific file, the rest of the line is reported as swap-unit-type. In the case of
non-disk backing store, the volume root page and file type may be found, or Ben may
not even be able to get that much information, thereby resulting in an unknown.

File: file. file occurs if it could be found in Pilot's caches. The file ID is
reported as seven octal numbers. If the ID could not be found, NIL is inserted in the
line.

28-25

28

28-26

Performance tools

type: type is either file if the page is backed by a file, or da ta if it is backed by
the default backing file.

swap-uni t-type ean be one of four values: Pack - indicates that the page is a
packaged swap unit; Frame - the page is in a swappable frame; Module - the page is
in an unpackaged module; ? - the type of page is unknown but it points to code or
frames.

name is the name of the module, code pack, or frame, or "anonymous", if it cannot be
determined.

volume root paqe is the physical volume page numher of the transferred page
for a non-disk backing store.

type is an octal number indicating the file type for whatever kind of non-disk
backing store the page is on.

unknown backing store indicates the transferred page is not backed by the disk
but by some other unknown source.

data consists of seven octal numhers giving the transfer data from Pilot's backing
store. You would need to interpret this data according to the backing store used.

The second line for each item gives information about where the program was executing
when the transfer occurred. It has the format

where

Called f rom module: module-name; Proc: proc-name; Type: proc­
type

Called from module: module-name indicates the module that was executing.

Proc: proc-nam{~ indicates the name of the procedure or number of the catch
phrase that was exe,~uting.

Type: proc-typ€1 is the type of procedure: no rmal - a normal procedure; MAIN -

mainline code in the module; nested - a procedure nested in another; catch - a
catch phrase in the module.

If the name for either a module or a procedure cannot be found, an annotation will be made
in the output and the field left blank. This usually occurs because the (correct) symbols
could not be found.

If you have specified the global switch s, a third line may appear for each item. This will be
the source line corresponding to the place in the program that caused the transfer. This
line will be output in the same format that Sword uses for showing source locations within
a program. If there were no symbols for the module or if the source file was not found, this
third line will not appear in the output.

The output file call become quite large. In a test case of 2000 transfers, a 500-page output
file was generated. In Gacha 8, 10 disk pages roughly correspond to a printed page.

XDE User's Guide 28

28.4.5 ErrOI'loecovery

ReduceBen must sort all of the configurations by page number. To do t.his, it creates a data
file whose initial size is 500 pages. lfthe data won't fit in the file, the file is dumped, its size
is increased by 100 pages, and the sorting is attempted again. This will continue until
either there is no space left on the debugger volume or the sort completes. The sorted
information is called the dictionary. When the sorting starts, the message B u i ld i ng
dictionary is displayed. If the sort restarts, the message Dictionary space
exhausted at number words and Trying again is displayed. When the dictionary
is built, the message is dictionary built.

28.4.6 Messages

The following is the alphabetized list of the output written by ReduceBen to the Executive
window. Most of the messages describe the state of the computation; some are error
messages.

Building dictionary . . .

The swap units in the boot file are being sorted by virtual page number.

Data file and client do not match!

Sword has discovered a disparity between the client being debugged and the input
data file.

dictionary built

The dictionary of correspondences between virtual page number and swap unit
name has been built.

Dictionary space exhausted at number words. Trying again

The space for the dictionary was not large enough. The space is made larger and
another attempt is made. number indicates the old size of the space in pages, not
words, as the message indicates.

Empty input file

The input file contained no data. ~ 0 data is written into the output file.

End of input file

The end of the input file has been encountered.

** File has wrong version number

The input file was written by a version of Ben that is incompatible with the current
version of ReduceBen. Two lines follow that show what the two version numbers were.
ReduceBen will terminate after cleaning up.

!Input file not found in root directory

28-27

28

28-28

Performance tools

The specified input file does not exist on the designated volume.

!Input not available: filename !Output file not available: filename

ReduceBen encountered problems acquiring the specified file.

!Input file too long: file-name

The input file is too large to be processed.

Insufficient space on volume

There was no more space to construct the dictionary, or write the output file on the
volume. Program execution terminates.

No symbols for module-name

Sword couldn't find the symbols for the designated module.

Number of input items: number

Indicates the number of input items read.

Reading input data . . .

Indicates the program has finished initialization and is starting to read the input file.

!Volume not found: volume-name

The specified or assumed volume does not exist.

28.4.7 Cleaning up

After you have analyzed the log data, you can delete the log file from the client volume by
doing

or

>SEt Module context: BenImpl
> DeleteLogFi le [] .- (note the leading space)

> BenImpl$DeleteLlJgF i le [] -- (note the leading space)
>

29.1 Files

29

Statistics

The Statistics tool gathers statistics about Mesa source and object files, such as number of
characters, frame size, etc., and writes them to a file.

Retrieve Statistics. bcd from the Tools> subdirectory of the Release directory.

29.2 User interface

Statistics runs in the Executive. Its command line format is

>Statistics filenamel/switches filenamen/switches

Output from Statistics is sent to' Statistics. stats by default, but can be directed to
another file with the /0 switch.

29.2.1 Switches

Statistics recognizes the following switches:

b produce bcd statistics, that is, code bytes, frame size, ngfi, nlinks, code pages, and
symbol pages (default).

c command: use filenamei not as the name of a file, but as a sequence of switches
(e.g., sIc prints a subtotal of all statistics gathered up to this point).

h print heading (default).

m produce source statistics, that is, chars and lines (default).

o direct output to rootname. stats, where rootname is the specified file name
(filenamei) with any extension removed.

s print subtotal.

29-1

29 Statistics

t print total.

x "Management" statistics (i.e., chars, lines, code bytes, and frame sizes).

29.3 Types of statistics

Statistics generates the foHowing information:

chars

lines

code bytes

frame size

ngfi

nlinks

code pages

symbol pages

the number of characters in the source file.

the number of lines in the source file.

the number of bytes of code in the object file.

the size of the global frame of the module (in words).

thEl number of global frame table slots needed by the module (one
slot for every 32 procedures or signals).

the number of items imported into the module.

the number of pages of code in the object file (one page is 256
wo:rds),

the number of pages of symbol table in the object file (one page is
25() words),

29.4 Example

The following command line will generate the output shown below:

Statistics CPSyms Actions ComData sIc CPSwap DIHot DIMath tIc

Mesa Statistics Package 11.1 of3-0ct-8417:13
Statistics as of 4-0ct-84 14:18

chars lines code frame ngfi nlinks code symbol
bytes size pages pages

CPSyms 1731 62 7
Actions 1025 37 6
ComData 1242 57 10 43 1 0 1 8

SUBTOTAL 3998 156 10 43 1 0 1 21

CPSwap 8343 236 1084 16 1 49 3 26
DIHot 24023 779 '3234 11 2 81 7 51
DIMath 16339 543 2202 15 2 26 5 27

TOTAL 52703 1714 6530 85 6 156 16 125

29-2

XDE User's Guide 29

Note: Sometimes the program puts an asterisk after the number of code pages for a
module. This means that the "number of code bytes is very close to a page boundary, and
the number of links is such that binding with code links will cause the code to "spill over"
into another page.

29-3

29 Statistics

29-4

IV

Mesa Services

Mesa Services help users communicate with remote machines and other users. They
comprise the Mail tools, the MFileServer, and the Network executive tools.

IV.l Mail tools

The mail tools include the MailTool itself, for sending and receiving mail messages; the
Mail File Scavenger, for repairing damaged mail files; and Maintain, a tool for
maintaining mail distribution lists.

IV.2 MFileServer

The MFileServer allows a workstation to serve as a file server for other workstations.
Using MFileServer, any file on a workstation can be retrieved to any other machine. If a
host with needed files on it is running MFileServer, other hosts can use the File Tool or
FTP to retrieve whatever they need.

IV.3 Network executive tools

The Network executive tools are Chat, Remote Executive, NSTerminal, and TTYTajo.
Chat provides TTY emulation a~ well as interactive communication between
workstations. A user can chat with other users running Chat elsewhere on the network.
Remote Executive allows remote users to connect to a machine and type commands to it as
though they were typing commands to their local Executive. NSTerminal allows users to
connect to remote computers using RS232 ports and modems.

TTYTajo is a version of the Tajo environment that runs on a teletype-style terminal
without windows for tools.

IV-l

IV Mesa Services

IV-2

30

Mail tools

The MailTool is the NS-protocol-based mail reading and sending interface to the mail
system. The MailTool allows you to retrieve, read, send, forward, save, move, delete, and
answer mail.

If your mail file becomes damaged, you may be able to save it by running the
MailFileScavenger. The MailFileScavenger can restore the internal structure of your
mail file to a consistent state. It copies the damaged mail file into a scratch file as it
operates; therefore, you must have enough free disk pages available for this scratch file in
addition to the number of disk pages that your damaged mail file already occupies. The
MailFileScavenger will warn you if there is not enough room.

Maintain is the NS-based interface to the Clearinghouse database. Using Maintain, you
can inspect and modify information in the database about message system users and
distribution lists.

30.1 Mail Tool

30.1.1 Files

Retrieve MailTool. bed from the Release directory.

30.1.2 User interface

The MailTool has its own window consisting of a message subwindow, two text
subwindows and a form subwindow, as shown in figure 30.1. Information and error
messages are posted in the message subwindow. The table of contents for the currently
active mail file is displayed in the text subwindow directly below the message subwindow.
The form subwindow lists commands for manipulating your mail. The lower text
subwindow displays individual mail messages. The name stripe of this window indicates

. whether there is new mail for the user.

30-1

30

30-2

Mail tools

30.1.2.1 Text subwindow-Table of contents

An index of all messages in this mail file, called the Table of contents (or TOC), appears in
the upper text subwindow of the MailTool window. Each entry contains header
information, which includes the message number, the date it was sent, the name of the
sender, and the subject of the message.

The user can have more than one mail file to facilitate the organization of his messages.
The current mail file is the one whose TOC is displayed and the one to which new
messages will be retrieved. Its name is displayed in the File: field described below. When
the MailTool starts up, it reads the mail file specified by the Use r . em or Ae t i ve • n sMa i 1

if none is specified. The user can change the current mail file by chording and selecting
from the File: field.

The currently displayed message is indicated by a ,. character after the date column.
Deleted messages are indicated by having a line through their entries in the TOC.
Unexamined messages are indicated by the character * in the entry. Messages that are
not entirely readable by the MailTool, such as Star documents, are left on the Mail service
so that the user may read them using another mail tool (such as Star mail). In this case,
the message is marked with an "a" in the TOC to show that an unreadable Uattachment"
to this message is still on the server.

If a one character selection is made for the first character in a TOC line, then the next
character typed will become the "flag" character for that entry. This flag has no semantic
meaning to the MailTool, but may be used for whatever purpose the user wishes. For
instance, you might mark all those messages you need to answer with the charalCter ~'A",
or you might mark those that are urgent with the character ~·U".

30.1.2.2 Form subwindow

By making a text selection that spans a number of lines in the Table of Contents, it is
possible to select a range of messages. Those messages are said to be the current messages.
The MailTool uses the current messages as an argument for most commands. If there is no
selection in the TOC, the current message is the displayed message.

XDE User's Guide 30

35 »Apr 9 Riggle Requisitions!
36 Apr 11
37 Apr 12
38 Apr 12

Manes
Collins
shapiro

Debug Log for MailTool
Reminder: 12.0 Documentation due
And Good Day 2 U

~Display! Delete! Answer!

Forard!

Append! File: {Active.nsMail}

Options! Sort! ~Hardcopy! Undelete!
~Rev Mail! Expunge! Rew Form! Move!To:

~sender: David William Riggle:SOBU North:Xerox
:Date: 9 Apr 85 13:49:02 PST (Tuesday)
~Subject: Requisitions!
~From: Riggle
:To: Elliott
: cc: Simpson

~One

~will
;new v

Display I

Hardcopy!

Rev Mail!

Apply! Abort! :~Jajj Rt.~_ j.i_i.~11
MailFile:<CoPilot>Active.nsMail

--- Hardcopy Options ---

__ Output To File

Sides: {DoubleSided} Orientation: {Portrait}

Landscape Font: Gatcha12 Portrait Font: Gatcha10
Printer: Nevermore
pile:

Figure 30.1: The MailTool

displays the first of the current messages if there is a selection in
the TOe; otherwise, it displays the next message. If the last
command to the MailTool was a Rev Mail!, then the next message
is the first message retrieved. If not, the next message is the first
undeleted message following the displayed message.

formats the current messages for printing and either spools them
to a printer or writes them into a local file. Pr int will be loaded as
needed.

retrieves new mail (if any exists) from the user's mailbox to a local
mail file. If the DisplayOnRewMail option has been set in the
User.cm, the fir~t of the retrieved messages will automatically be
displayed upon retrieval. Messages that are not entirely readable
by the MailTool such as Star Documents, are left on the Mail
Service so that the user may read them with another mail tool

30-3

30 Mail tools

Delete!

Undelete!

Expunge!

Append!

30-4

(such as Star mail). The readable parts of the message (for
example, the header information and MailNote) are copied to t~e
local mail file. If the Flush Remote option is set, the message is
marked on the server so that it will no longer show up as new mail.
It is also marked in the TOC with an u a" to indicate that an
unreadable "attachment" to this message is still on the server.

marks the current messages for deletion, indicating this by
drawing a line through their entries in the TOC. Messages are not
removed from the message file immediately, but only when
expunged (see Expunge! below), after which there is no way to
restore them. If a message has an attachment, deleting has no
immediate effect on the attachment; the local part in the mail file
is marked for deletion, but the attachment remains on the server
intact. Before deleted messages are expunged, they may be
restored by the Undelete! command. Messages without
attachments are permanently deleted whenever you either
deactivate the MailTool, change the current mail file, or invoke
Expunge!. An Expunge! of a message with an attachment will
first delete the attachment from the mailbox. If this is suecessful,
the message will then be expunged from the mail file.
Deactivating the MailTool or changing mail files does not affect
messages with attachments; they remain in the mail file, marked
as deleted.

restores the current messages marked for deletion.

permanently removes messages marked for delete from the mail
file and destroys attachments for those messages. Any messages
with attachments that are marked for deletion will be deleted from
the user's mailbox. Once a message has been expunged, it cannot
be restored. The logged in identity of the user must be the same at
expunge time as at retrieve time. Attachments have associated with
them the name of the logged in user at retrieve time. If this
identity is different at expunge time, the MailTool will not allow
the message to be removed. For instance, if two people retrieve
mail to the same mail file, neither of the~ will be able to 4~xpunge
the other's messages which have attachments because their own
logged in identities do not match the identity stamped on the
other's attchments. If you get two copies of a message with an
attachment, do not delete one of the copies and expunge before you
retrieve the attachment. Expunging will delete your only copy of
the attachment.

inserts the current selection at the end of the mail file and. creates
a TOC entry for it. The result looks as if the new message we.re
retrieved using nWew Mail!". This can be used to extract a
forwarded message so that it may be answered with the ~'Al1lswer !"

command, or to insert a comment into the mail file at an arbitrary
location by setting the "Date:" field of the comment

XDE User's Guide

Forward!

Rew Form!

File:

Options!

Sort!

Move!

To:

ExpandPvtDLs:

30

appropriately, and following the "Append!" command with th
"Sor t ! " command.

produces a SendTool form containing a message body that is a copy
of the current message and header fields that can be filled in by
hitting the ttRext" key

produces a blank SendTool form with header fields that can be
filled in by hitting the "Rext" key.

{Active. nsMail, ••• } is an enumerated item which indicates
the current mail file (i.e. the file where new messages will be
retrieved to and whose TOe will be displayed). You may choose a
different message file to be current by selecting from the menu
under this item. Only .nsMail files will be shown, and if there are
duplicates in the search path, only the first will be found. The
default mail file can be set from the User.cm or from the Options
window.

activates the Options window.

sorts the mail file by the date and time each message was sent.

moves the current messages to the mail file named in the To:
item. This feature allows you to better organize your messages for
easy reference. The extension. nsMa i 1 will be assumed if there is
no period in the name.

Warning: Any selection in the TOe will be cleared if you edit the
To: field; you must fill in that field before selecting the messages
to be moved. If you are merely moving a displayed message, this
problem does not occur.

Warning: You cannot move messages with attachments from one
mail file to another unless you confirm the delete of those
attachments. Messages with attachments are intended to be read
by some other mail reading tool (such as Star mail). If you want the
message bodies after you have read them with another tool, remail
the mail notes to yourself. You will then be able to move them to
another mail file.

contains the name of the mail file that is the destination for Move I
The extension is defaulted to • nSMail. You can also fill in this
field by pressing MENU and selecting a name from the currently
existing. nsMail.

(expand private distribution lists) -is a Boolean that is currently
unimplemented. It will eventually enumerate the members of
private mailing lists in the message header so that the message
may be answered more easily.

30-5

30

30-6

Mail tools

30.1.2.3 Options window

The Options window contains the following items. For most
op~ions default initial values may be specified in the lMailTool
section in User. em.

Apply! causes the fields in the Options window to take effect and closes
the Options window.

Abort! closes the Options window without making any changes.

Plush Remote is a Boolean that allows you to retain a copy of your new mail on
your mail server. Normally, when you get your new mail, it is
completely removed from the mail server, with no copy left.
Sometimes you wish to keep a copy on the server, such as when you
are reading your mail while using someone else's workstation. To
keep a copy on the mail server, turn off the Plush Remote
Boolean. This must be done before you invoke Hew Mail! Flush
Remote defaults to TRUE.

AutoDisplay is a Boolean that, if TRUE, causes the next message to be displayed
when the current message is deleted or moved. The default is FALSE.

DisplayOnlfewMail is a Boolean that, if TRUE, causes the first retrieved message to be
displayed after a Hew Mail! command completes. The default is
FALSE.

Mail pile: names the mail file you wish to work with. This file becomes the
current mail file when you invoke Apply! The extension is
defaulted to . nsMa i 1. You can also fill in this field by pressing
MENU and choosing the name from the currently existing rna i 1
files. If you invoke Apply! when the Mail pile field is blank, the
value defaults to Ae t i ve. nsHa i 1.

-- Hardcopy Options --

One Per Page

Output To Pile

is a Boolean that, if TRUE, will cause each message to start on a
separate page. The default is TRUE.

is a Boolean that, if TRUE, will cause the output from Bardc:opy! to
be written to a file instead of being spooled to a printer. The default
is FALSE.

Sides: {PrinterDefault, SingleSided, DoubleSided} is an enumerated item
that tells the printer whether to do two-sided printing or not. If the
printer does not support two-sided printing, this option is ignored.
The default is SingleSided.

Orientation: {portrai t, Landscape} is an numerated item that specificies the
orientation of the output. Landscape output is two columns per
page~ Portrai t is one. Default is Portrai t.

XDE User's Guide 30

Landscape Font: Portrai t Font: are two fields to indicate which fonts to use when
messages are printed. The default font when printing in Portrai t
orientation is Gacha6; for Portrai t, Gacha8. .

Printer: is a tag specifying the name of the interpress printer where
hardcopy will be sent.

30.1.3 The MailTool via the Executive window

The MailTool. - command can change the current mail file, start a retrieval of new mail or
change the state of the MailTool window. The general form is:

> MailTool. - filename/switches

filename should identify an existing message file. Legal switches are:

a activate MailTooi.
n retrieves new mail

inactivates MailTool (causes an expunge).
t makes MailTool tiny.

30.1.4 Send Tool

The Send Tool is used to send messages. A blank mail form is created by either invoking
Rew Form!, Answer!, or Forward! in the MailTool window or invoking Another! in an
open Send Tool window. The Send Tool has a message subwindow, a form subwindow, and
a text subwindow. SendTool. bed is also available independently from the Tools
subdirectory of the Release directory.

30.1.4.1 Form subwindow

Five items are always available in the form sub window. A sixth, Deliver!, appears
after the message has been edited.

Another!

Destroy!

Reset!

Put!

creates another instance of the Send Tool.

destroys this instance of the Send Tool. If the form has been edited
but not sent, this command requires confirmation. If there are no
instances of a SendTool on the inactive list, this command will
merely deactivate the current instance.

leaves the SendTool window open but clears it of inserted text. If
the form has been edited but not sent, this command requires
confirmation.

writes the contents of the SendTool window to the file named in the
File: field.

30-7

30

30-B

Mail tools

Get! replaces the contents of the SendTool window with the contents of
the file named in the File: field. If the form has been edited but
not sent, this command will require confirmation.

File: is a string item used to hold the name of the file used in the Put!
and Get! commands.

Invalid Olt is a Boolean that allows you to send a message containing invalid
recipients. The default is FALSE.

I f Heed Reply-To is an enumerated item that allows you to control what happens if
the message should have a Reply-To field, but does not. A
message should have a Reply-To field if it includes a public
distribution list in the To: or cc: fields in order to limit those who
automatically receive answers to the message. When you press
MENU over I f Heed Reply-To, the following choices will appear:

don't send

add to form

send anyway

Deliver!

SendAs:

prevents the message from being sent and puts in the
message subwindow the line Add Field to message
header: Reply-To: value.

adds the necessary field to the message and sends it.

allows the message to be sent, even if the Reply-to: field is
needed.

This field is defaulted to don't send unless HeedReplyTo:
value is specified in the User. em (where vcilue is
Don'tSend, SendAnyway, or AddToForm).

sends the mail to the recipients indicated in the To: and cc: lines
of the message. This command is available only when the body of
the message has been edited. After the delivery has taken place,
the Deliver! command is replaced by the message Del.ivered.
To send a message, you must be logged in.

is an enumerated item that provides three ways of sending a
message: MailNote, Text, or MailNote with an attachlnent. A
MailN ote is the simplest way to exchange mail between
environments. A Text message requires the user in another
environment to convert the message before reading it, and its
delivery incurs a little more overhead than the MailNote, but it
does allow for long messagess (a MailNote is currently lilnited to
BODO characters). A Mail Note with an attachment includes
material not entirely readable (such as Star documents) by the
MailTool. Presently, there are no facilities provided by the
MailTool either to convert XDE files to other formats or to forward
attachments.

XDE User's Guide 30

30.1.4.2 Text subwindow

The text subwindow contains the text of the message, including a header part and a
message body part. The hea;der part includes Subject: To:, Reply-To:, and cc: fields
that are used by the message system to direct the message when it is sent.

30.1.4.3 Subject: field

The topic of your message goes in the Subject: field. The topic should express the content
of your message so that interested people will take the time to read the message, but
uninterested people can delete it without reading it. For example, if your message
contains ideas for improving the MailTool, the topic might be "Suggestions: improving
MailTool," not "Suggestions. "

30.1.4.4 To: field

The To: specifies who is to recieve your message. A recipient entry has three parts (name,
domain, and organization) separated by colons. It may be the name of an individual or an
NS-based distribution list (for example, Secretaries:OSBU North:Xerox). Only those
groups and entities with mailboxes are valid recipients. A domain is simply a device for
grouping related names and most messages are sent within a single domain. The MailTool
allows you to omit the domain name for recipients who are in your same domain. For
example, someone in the domain for the Palo Alto area, say Someone: OSBU
Nor th: Xerox, could send a message with the following acceptable message header:

Subject: Demonstration of recipient naming
To: Personl, Person2
cc: Person3, FarAwayPersonl:OSBU South

The MailTool assumes that names lacking domains are in the sender's domain, which in
this case is OSBU Horth. Since ParAwal'Personl :OSBU South explicitly includes the
domain, OSBU South is used by the MailTool. In this case, the message will go to
Personnel:OSBU Horth:Xerox, Person2:0SBU Horth:Xerox, Person3:0SBU
Horth: Xerox and ParAwal'Personl :OSBU South:Xerox.

Public Distrib"ution Lists:

NS·based public distribution lists are groups in the Clearinghouse consisting of mailbox
names. No special delimiter is needed to tell the MailTool you're mailing to a distribution
list rather than an individual. Using such a name as the recipient of a message causes the
message to go to all the individuals included in the group. For example, the line

To: Secretaries:OSBU North:Xerox

will cause the message to be delivered to all the Xerox secretaries in Palo Alto.

The public distribution lists for each domain are stored in the Clearinghouse. They are
typically maintained by the individuals who "own" the lists. You can have yourself added
to appropriate lists by contacting the owner (in the case of closed distribution lists) or by
using the Maintain program. While you are able to use any public distribution list from
any domain in delivering any message, you should think very carefully about your choice of

30-9

30

30-10

Mail tools

message and list so as not to bother recipients. Check with experienced users to find out
which lists should be used for which kinds of messages.

Private Distribution Lists:

A private distribution list is a file which resides on your local work station and contains
legal (in the Clearinghouse sense of the word) recipient names separated by carriage
returns < CR>. Private distribution lists may be indicated in the To: field by suffixing
the name of the file with an asterisk (*). The basic form is:

Filename. extension *

If you fail to include the extension in the filename, the MailTool will assume a .dl
extension and look for the corresponding file. It is also possible to use files stored on
remote file servers as private distribution lists. The syntax for naming them is:

[host] <directory > subdirectory> .. >filename. extension *

Remotely stored private distribution lists are appropriate if a small group of people want
to share the use of the list.

30.1.4.4.1 Reply-To: field

The Reply-To: field works in conjunction with the Answer! command. I~nswer!
initializes a message form so as to reply to the message selected in the Table of Contents. If
the message being answered contains a Reply-To: field in its header, then only those
recipients in the Reply-To: field will be included in the To: field constructed by
Answer! The Reply-To: field thus limits those who automatically receive answers to
messages. A recipient of such a message can change the recipient fields constructed by
Answer! .

30.1.4.4.2 cc: field

The cc: field identifies others who are to recieve your message. Names should be
separated from each other by commas. When you send your message, these people will
automatically receive it along with the person(s) specified in the To: field.

30.1.4.4.3 Message body

The message body (the actual content of the message) follows the header. There must be
an empty line between the last field in the header and the message body.

30.1.4.5 SendTool via the Executive window

The Se nd Too 1 • - command is used to bring up an instance oftheSendTool.

> SendTool. -recipient/switch

XDE User's Guide 30

The name < recipient> will be placed into the To: field of the new SendTool. If the swtich
'f is supplied then the name will be treated as a file from which a form will be loaded in
place of the standard empty mail form.

30.1.4.6 User.em entries

Some MailTool parameters can be set from the User.cm. These are listed below with
sample val ues.

[MailTool]

TOCLines: 6

MailFile: Aetive.nsMail

DisplayOnNewMail: FALSE

FlushRemote: TRUE

MessageFont: LaurelFont.strike

TOCFont: Gaeha8.strike

AutoDisplay: FALSE

NeedReplyTo: AddToForm

number of initial lines
displayed in the table of
contents (TOC)

name of initial mail file

do an automatic Display!
after mail is retrieved.

flush remote mail after
retrieval

if omitted, the built-in
Tajo font is used

if omitted, the built-in
Tajo font is used

if TRUE, next message is
displayed when current
message deleted

choose from
SendAnyway,
(section 26.4.1)

DontSend,
AddToForm

You can also specify the printing characteristics to be used by the Hardcopy! command. If
no printing entries are made in your MailTool User. em section, the values from the
[Hardcopy] section will be used. Refer to the Print chapter for further information about
the different entries.

OutputToFile: FALSE

OutputFile: MailTooi".interpress

if TRUE, output is written to
a file instead of the
appropriate printer

name of output file to be
used when OutputToFile is
TRUE

30-11

30

30-12

Mail tools

SeparatePages: FALSE

Sides: SingleSided

InterPress: Nevermore

LandscapeFont: Gacha6

PortraitFont: Gacha8

Orientation: Landscape

PrintedBy: $

if TRUE, each messagE~ will
start at the top of a new
page

controls whether the
pr inter should do two-sided
printing or not

name of the default
InterPress printer to use

name of the default t~nt to
use when in landscape mode

name of the defaul t t~ont to
use when in portrai t mode

default output orientcition

name to place on the banner
sheet when output is
printed. The special token
n$n indicates that the
current login name should
be used

Several SendTool parameters may also be set from the User. cm. These are listed below
with sample values.

[SendTool]

Font: LaurelFont.strike

NeedReplyTo: DontSend

30.1.4.7 Trou ble shooting

if omitted, the built-in
Tajo font is used

choose from DontSend,
SendAnyway, AddToForm. This
is used by those instances
not brought up throu1gh the
Mail Tool

If you find that the MailTool has trouble distinguishing your password (for examlple, you
receive the message "Invalid password" upon invoking Rew Mail !), check to see that your
workstation has the correct time. You may need to reset your clock.

XDE User's Guide 30

30.2 MailFileScavenger

30.2.1 Files

Retrieve MailFileScavenger. bed from the Release directory.

30.2.2 User in terface

MailFileScavenger runs in the Executive window. To invoke it, type
MailFileScavenger MailFile. nsMail, where MailFile. nsMail is the name of the
mail file to be scavenged (if you type a name without a period, . nsMail will be added to
the name automatically). Terminate the name with RETURN. MailFileScavenger will
proceed to copy your mail into its scratch file, printing out the number of every fifth
message as it is processed.

When anomalies are detected in your mail file, MailFileScavenger will print out a short
messagesuchasMessage 53: existing count was 231 bytes too small. This
message indicates that the formatting information present in the mail file used to
distinguish individual messages was inconsistent with what MailFileScavenger believes
to be distinct messages.

When MailFileSca venger is finished, it is a good idea to check any messages it complained
about. These messages may be missing several characters or be malformed in other ways.
You should also check neighboring messages-some of the characters in those messages
might really be part of other messages.

After MailFileScavenger has finished copying and reformatting your mail into its scratch
file, it will pause and ask ifit should copy that file back into the original mail file. If there
are not many error reports, type Y to confirm. MailFileScavenger will copy the scavenged
mail file back into the original mail file, delete the scratch file, and quit. You may then
invoke the scavenged mail file in your MailTool Options window. However, if there have
been many error reports, you might want to copy the original file before allowing the
MailFileScavenger to scavenge your file. To do this, abort the command with N, copy the
file, then run MailFileScavenger on the copy.

The mail file that MailFileScavenger produces should give you a readable mailfile, i.e.,
one that the Mail Tool will not complain about. However, this mail file may have messages
that are fragments of messages in the original file and/or duplicate messages. If you copied
the original file before running the MailFileScavenger, you can compare the scavenged
version to the original in order to determine if any text was lost. If you edit the scavenged
mail file, you will have to run the scavenger again.

30.3 Maintain

Maintain is the NS-based administrativ'e interface for the Clearinghouse database. Using
Maintain, you can inspect and modify information in the data base about message system
users and distribution lists: This data base is described in this section.

30-13

30

30-14

Mail tools

30.3.1 Files

To run the Maintain program, retrieve Ma i n ta in. bed from the Re lease directory.

30.3.2 User in terface

Maintain interacts through a message subwindow, a form subwindow, and a log
maintained in a file subwindow. By executing commands you can manipulate items in the
Clearinghouse database.

30.3.2.1 Message subwindow

The message sub window is used for feedback and to show progress in the completing of the
command invoked by the user.

30.3.2.2 Form subwindow

The form subwindow contains the fields and commands used to invoke the various
functions that are available through Maintain. In general the top half of the form contains
those items used to manipulate Clearinghouse groups, and the bottom half contains items
used for changing parameters associated with a particular individual.

Level is an enumerated item that governs which commands are
available to you. The value may be normal, ow'ner, or
administrative. The following subsections discu.ss what
is available at each level.

XDE User's Guide 30

30.3.2.2.1 Group commands: normal level

Group: Mesa

: Summary!
: Add Self!

Matches! Members!
Remove Self!

Aliases!

Individual: Nannette:OSBU North:Xerox

~ Summary!
: Set!

~ Another!

Matches!
{both}

Destroy!

Aliases!
Password:

: Members of: Mesa:OSBU North:Xerox
~ Member: Mesa i : PA: Xerox

Group:

Members I

Summary!

Aliases!

Add Self!

Remove Self!

Figure 30.2: Maintain tool window (normal level)

contains a list of Clearinghouse distinguished names and
patterns that is the argument to each of the commands that
acts on groups. If the domain or organization is not specified,
the defaults from the Profile are used. (See Profile tool.) 0

lists the members of the group in the Group: field in the file
subwindow.

shows the user-visible components (the distinguished name,
remark field and number of members) of the group in the
Group: field.

shows the distinguished name and any aliases for that
entry.

adds the currently logged in user to the group in the Group:
field.

Removes the currently logged in user from the group in the
Group: field.

30-15

30

30-16

Mail tools

Individual:

Password:

Summary!

contains a Clearinghouse name that is the argument to each
of the commands that acts on individuals. This field is
initialized to the currently logged in user's distinguished
name.

contains the new password for the individual in the
Individual: field.

shows in the file subwindow the user-visible components
(the distinguished name, user remark, and file service) of
the individual in the Individual: field.

Set! Password: sets the password of the individual in the Indiv'idual:
field to be the value in the Password: field.

30.3.2.2.2 Group commands: owner Level

Group:

: Summary!
, Add Self!
lIame List:

Level: {normal, __ administrative}

Matches! Members!
Remove Self!

Aliases!

, Add! Remove!
: Set! Remark:

Which: {~I, friends, owners}

Individual: Nannette:OSBU North:Xerox

~ Summary I
: Setl

Matches!
{both}

: Set! Remark:

~ Another! Destroy!

Aliases!
Password:

: Members of: Mesa:OSBU North:Xerox
; Member: Jane Smith:OSBU North:Xerox

Figure 30.3: Maintain tool window (owner level)

All the commands available at the normal level are also available at the owner level. The
following additional group-related commands and field are available.

lIameList: contains a list of Clearinghouse patterns that are to be
added to or removed from the group in Group:. Aliases in

XDE User's Guide

Which:

Addl

Remove!

Set! Remark:

30

this list are resolved to the corresponding distinguished
name.

determines whether the elements in NameList: refer to
members, friends, or owners of the list (see 30.3.3.1 Rules for
accessing the data base).

adds the elements in NameList: to the group specified in by
Which:. You should set the friends before setting the
owners if you will not be an owner. Once the owner's list is
set, the members', friends', and owners' lists cannot be
changed except by an owner. Also note that the friends' and
owners' lists both default to the list of domain
administrators for the group's domain.

removes the elements in the Name List: field from the
group in the Which: field.

sets the group remark to the test in Remark: which IS

typically a description of the group.

30.3.2.2.3 Group commands: administrative level

Alias:

Add!

Remove!

Details!

Create!

Delete!

contains a list of aliases to be added or removed from the
aliases of a group.

adds the aliases to the database.

removes the aliases from the database.

gives the distinguished name, the aliases, the group
remark, and the lists of members, owners, and friends.

create sa group. The remark is initialized to the text in
Remark:. If Which: is members, the members for the group
is initialized to the names in Name List: For a long list of
members, this is much faster than adding the members after
the group has been created.

deletes a group.

30.3.2.2.4 Individual commands: normal level

Individual:

Summary!

is a list of Clearinghouse distinguished names and patterns
which is the argument to each of the commands that act on
individuals. If the domain or organization is not specified,
the defaults from the Profile are used.

gives the distinguished name, user remark and file service.

30-17

30

30-18

Mail tools

Matches!

Aliases!

Set! Password:

list each individual whose name contains a match of the
pattern (which may contain wild cards) in Individual:.

gi ves the the distinguished name and aliases.

sets the password for the individual. The enumerated type
determines whether strong, simple, or both passwords are
set.

30.3.2.2.5 Individual commands: owner level

Set! Remark: set the remark to be the text in Remark:

30.3.2.2.6 Individual commands: administrative level

Add! Remove! Mailbox:: not implemented.

Al ias : contains a list of aliases to add or remove from the aliases of
an individual.

Add!

Remove!

Detail!

Create!

Delete!

30.3.2.2.7 Tool commands

Level

Anyentry

CheckBames

Another!

Destroy!

adds aliases for an individual

removes aliases for an individual

gives detailed information on individuals including the
distinguished name, the aliases, the user remark and the
file service.

creates an entry in the Clearinghouse for an individual. The
remark is initialized to the text in Remark:.

deletes an entry in the Clearinghouse for an individual.

is an enumerated item that governs which commands are
available at any given time.

is a Boolean which determines which ClearinghousE~ entries
are available using Maintain. If it is false, then only entries
with the primary properties userGroup and user are
available. If it is true, all Clearinghouse entries are
available.

is a Boolean which when true maps aliases to distinguished
names and expands patterns.

creates another instance of Maintain.

destroys current instance of Maintain. Maintain can also be
unloaded.

XDE User's Guide

UseBackground

30.3.2.3 File subwindow

30

is a Boolean which when true runs commands in the
background. If false, it holds the notifier and runs
commands sychronously in the foreground.

The result of executing the command is logged to the file subwindow.

30.3.3 The Clearinghouse data base

All items in the Clearinghouse data base are identified by a fully-qualified name. A
Clearinghouse name has three components, Name:Domain:Organization. For example,
Randall:OSBU North:Xerox and Secretaries:OSBU North:Xerox, are fully-qualified
names for an individual and a public distribution list, respectively.

See the Services 8.0 Programmer's Guide for a more complete discription of the
Clearinghouse.

30.3.3.1 Rules for accessing the data base

Any logged-in user of Maintain can invoke any command that reads information out of the
data base. Changes to the data base are controlled by the owners and friends lists for a
group. The rules for controlling the data base are as follows:

Individuals can set the password and set the connect site of their own entries.

Friends of a group can add and remove their own names from the membership list of
that group.

Owners of a group can add and remove owners, friends, and members for the group.
An owner also can set the remark.

30-19

30 Mail tools

30-20

31.1 Files

31

MFileServer

The MFileServer provides the server side of communication using the XNS Filing
protocol. The XNS Filing protocol involves two parties: a user who makes requests and a
server who honors (or rejects) them. The MFileServer allows other machines (using the
FileTool or FTP) to connect to your machine and store, delete, list, or retrieve files.

Retrieve MFileServer. bed from the Release directory.

31.2 User interface

The MFileServer window has a form window containing variables that can be used to
control its actions:

LogActivity StoreAllowed OverWriteAllowed DeleteAllowed

Figure 31.1: MFileServer window

31-1

31 MFileServer

31.2.1 Form subwindow

Running is a Boolean that controls whether the server will accept
connections at all. Changing it to FALSE will disallow future
connections, but will not terminate current connections (default =
TRUE).

LogActivity is a Boolean that controls whether MFileServer logs its aetivity in
its subwindow. When it is FALSE, no log is kept (default = TftUE).

StoreAllowed is a Boolean that controls whether store operations are allowed.
When it is FALSE, files may be retrieved, but may not be stored
(default = FALSE).

DeleteAllowed is a Boolean that controls whether delete operations are allowed.
When it is FALSE, files may not be deleted (default = FALSE).

Overwr i teAllowed is a Boolean that controls whether existing files may be modified.
When it is FALSE, new files may be stored, but old files may not be
overwritten, deleted, or renamed (default = FALse).

Making the tool tiny does not affect the state of the server (in particular, it does not disable
the server). Making the tool inactive aborts all its current connections and turns the
server off so that it will not accept any new connections.

31.2.2 Executive commands

The MFileServer registers the command MFileServer. - with the Executive. If the
command is invoked with no arguments, it prints out the current state of the
MFileServer's variables. The command can be used to change the variables of the
MFileServer by taking a series of arguments of the form variable/value. All values must be
either on or off. Hence the following command line sets the value of StoreAllowed,
OverWri teAllowed, and LogActivi ty.

>MFileServer StoreAllowed/on OverWriteallowed/on LogAetivity/off

31.3 User.em entries

31-2

The MFileServer initializes the variables in its form window from the [MFileServer]
section of your User. em. The window box of the tool, its tiny position, and its initial state
are also controlled by entries in this section:

Running: TRUE default value of Running

LogActivi ty: TRUE default value of LogActivity

StoreAllowed: FALSE default value of StoreAllowed

DeleteAllowed: FALSE default value of DeleteAllowed

Overwr i teAllowed: FALSE default value of OverwriteAllow~~d

XDE User's Guide 31

WindowBox: [x: 362, y: 628, w: 662, h: 150]
location of tool's window box

Ti~yP1ace: [x: 720, y: 778] location of tool's tiny box

InitialState: Active initial state of tool

31.4 Operational notes

When the remote directory is specified as empty angle brackets, "<>", MFileServer uses
the search path. (The remote directory refers to the directory field of the FileTool or the
directory specified in the FTP command line.) For files not on the search path, the
directory must be explicitly stated.

Storing and retrieving files require a non-empty remote directory.

The workstation running MFileServer must be registered in the Clearinghouse.

31-3

31 MFileServer

31-4

32.1 Chat

32

Network executive tools

The network executive tools provide ways to communicate with other workstations and
terminals on your network. These tools are Chat, NSTerminal, Remote Executive, and
TTYTajo.

Chat lets you talk to other machines via a teletype style user interface. NSTerminal lets
you communicate with other machines using terminal emulation (VT100). NSTerminal
also allows communication with dialup facilities available on your network (CIU and ECS
facilities). The Remote Executive allows remote workstations to use the facilities of an
XDE via Chat. TTYTajo is a server which has the Remote Executive function built into
the bootfile.

Chat provides a simple TTY-emulation capability in the development environment,
similar to Telnet in the DARPA realm. It runs on a standard Tajo or CoPilot bootfile.

Chat has three modes of operation. First, with a Remote Executive on the other end, Chat
allows one-way communication with other XDE machines. The second mode allows
communications with the Interactive Terminal Service (ITS). The ITS is a network service
that allows you to read and send mail or to create and store files. Finally, Chat's Remote
System Administration mode allows monitoring and administration of servers such as the
Clearinghouse, file, and print servers.

32.1.1 Files

Retrieve Chat. bed from the Release directory.

32.1.2 User interface

Chat registers the command "Chat. _It with the executive. The simplest form of the
command is:

>C1at.-

32-1

32

32-2

Network executive tools

This command either activates an inactive Chat if there is one, or it creates a new one if
not. The full form of the Chat command is:

>Chat. - [hos t] / [swi tch]

host tries to open a connection to that host (see the Connect! command below). swi tch
tells what type of host host is. The values of switch are:

s Remote System Administration
i ITS
e Remote Executive

After you type this command to the Executive, a Chat tool window will appear. Chat's
tool-style interface has a message subwindow, a form subwindow, and a TTY subwindow.

: Connect! Disconect! BreakKey! Another! Destroy! Options,!

Apply! Abort! ,,"C(i] BostType: {exec}

Figure 32.1: Chat

32.1.2.1 Message subwindow

The message subwindow is used for one-line messages. Chat tries to make sure that the
last message in this window agrees with the present state of the Chat world.

32.1.2.2 Form subwindow

The form subwindow contains several commands:

Connect! using the current selection as a host name or address, Connect! tries to
open a connection to that host. Mter a connection has been established, a
message to that effect is posted in the message subwindow so you ean start
typing. As a shorthand for this, typing a host name in the file subwindow
followed by DOlT takes the last word typed as the host name and invokes
the Connect! command. Note that the Connect! command behaves

XDE User's Guide 32

slightly differently depending on the values of some of the fields described
below.

Disconnect! if there is a connection open, Disconnect! dele.tes the connection for the
network stream, collects and throws away the tool's various processes for
managing the data stream, and returns the tool to a quiescent state.

BreakKey!

Another!

Destroy!

Options!

simulates a terminal's break character.

starts up another Chat window, using the same options as the current
Chat window.

destroys the Chat window. No confirmation is required, since you can get
another tool window using the exec Cha t • - command.

creates a Chat options window. The options are:

Apply!

Abort!

LogIn

BostType:

sets your chosen options and destroys the options window.

cancels any changed options and destroys the options
window.

If this Boolean is TRUE and both Profile.User and
Profile.Password are non-null, Chat will try to log
you in on the reIllote host using these values. If the
Boolean is false, Chat will not try to log you in. The
default value is TRUE. (You can set this value in the [Chat]

section of your User. em file. Or, if the LogIn Boolean in
the Options window is selected, you will be logged in
automatically.)

selects the desired host type (any, sa, exec, or its) from
the BostType: menu. Then select Apply!

32.1.2.3 TTY su bwindow

Chat also has a TTY subwindow in which the dialogue with the remote system takes
place. When a connection is established, characters sent from one machine to another
appear in the TTY subwindow.

An alternate way to connect to a host (rather than using the Connect! command) is to
type the host name into this subwindow, and hit the DOlT key (the one labelled MARGINS on
the Dandelion keyboard).

32.1.3 Special keys

Chat makes use of the following special keys:

COMPLETE: sends an Ascii ESC.

DELETE: sends an Ascii DEL.

32-3

32 Network executive tools

BS:

BW:

ABORT:

32.1.4 Chat User .em

sends an Ascii BS (CONTROL-H).

sends an Ascii ETB (CONTROL-W).

does a Stream.SendAttention on the current con.nection,
in an attempt to simulate the Break key found on some
terminals. Note: The RemoteExec uses Break to simulate
the ABORT key; to abort an action in a Chat conneetion to a
RemoteExec, you press ABORT.

Chat will read the following User. em options:

[Chat]
LogIn: TRUE FALSE
HostType: sa any exee its

32.2 NSTerminal

32-4

NSTerminal allows you to connect to any service exporting the Gateway Access Protocol
(GAP). Services that export GAP include the Communications Interface Unit (CIU), the
External Communication Service (ECS), the network executive used for remote system
administration on all network services, the Interactive Terminal Service (ITS), and the
XDE Remote Executive.

NSTerminal provides a capability that is basically the same as VT100 terminal emulation
in Star. NSTerminal is more flexible in that it allows you to communicate with any GAP
service on the network via the same window. NSTerminal provides terminal emulation for
a number of terminal (given below in the User Interface section) including DEC's VT100.

For more information about the services mentioned above, please refer to the Services 8.0
Programmer's Guide and the OS 5.0 System Adminisration Library.

32.2.1 Files

Retrieve NSTerminal. bed from the Release directory.

32.2 .. 2 Setting up

Before running NSTerminal, you should be logged in. Mter doing some initiali~~ation, a
Chat-style window will appear. NSTerminal will create a file NSTerminal. cache the
first time it is executed. This file caches clearinghouse entries for ports on the network
that you can communicate with. Should new ports be added or changed, the
NSTerminal. cac'he file should be deleted (via the FileTool or the Executive) and will be

~ re-created automatically the next time NSTerminal is executed.

XDE User's Guide 32

32.2.3 User in terface

NSTerminal registers the command "NSTerminal. _It with the executive. To create a new
instance of the tool, type into the Executive:

>NSTerminal

Connect!
Apply! Abort!
TerminalOptions!
CharLength: {7}
Parity: {even}
XOn= 21B
Login

DATA ONLINE LOCAL

x
X o

LineHo= 68

:111iii1
Refresh: {always}
Stopaits: {1}
Duplexity: {full}
XOff= 213B
Authenticate

L1 L2 L3

o o o

PhoneHumber: 85826050000
Bost: 1200Bps Venteller
Terminal: {vt100}
LineSpeed: {bps1200}
PlowControl: {XOnXOff}
DataPile:

L4

o
Figure 32.2: NSTerminal

The NSTerminal window has three subwindows, a message subwindow, a form
subwindow, and a terminal emulation subwindow.

The message subwindow is used for various one lined messages.

The form subwindow contains the following commands:

Connect I takes the current selection as a host name or address and attempts to open
a connection to that host. This command has the same sematics as the
Connect! command on the NSTerminal Options window (see Options!
below). The Connect! command on this form should only be used if the
options are properly set.

32-5

32

32-6

Network executive tools

Di sconnec t! will close the connection if there is one open. Closing the connection will
collect and throwaway the connection's various processes for managing
the data stream, and return the tool to a quiescent state.

BreakKey!

Another!

Destroy!

Options!

~imulates a terminal's break key.

creates a new NSTerminal window. The new window will use the User.cm
default values for it's option window.

will destroy the NSTerminal window.

creates a NSTerminal Options window. Using the Options window is the
standard way to open a connection to a host. The options that affect only
the parent NSTerminal window are:

Connect!

LineHo=

Phonelfumber:

Apply!

Abort!

Pilter

Bast:

will open a connection to the host specified in the
Host: field. This command will also cause the Options
window to be destroyed.

takes a numeric value, the line number of the service
you want to talk to. Line numbers can be thought of
as virtual sockets, and on a given host, a different line
number corresponds to a different service. Some well
known line numbers include:

32001
32002
32003

Remote System Adminstration flllnction
XDE Remote Executive function
Interactive Terminal Service (ITS)

this field is used when the service that you are
connecting to has a dial out function. Th,e phone
numbers are entered without any punctuation, ie the
number (415) 555-5555 would be entered as
4155555555.

will set the tool's options to what is displayed in the
Options window. The Options window will then be
destroyed.

will reset the tool's options to it's state before the
Options window was opened. The Options window
will then be destroyed.

will cause NSTerminal to mask out the high bit of
every byte before printing the character. This
function is useful if the remote host uses seven bit
characters with some parity, and your receIvIng
communications unit uses an eight bit no parity
option.

is the host name or network address of the service you
wish to open a connection to.

XDE User's Guide 32

TerminalOptions! will create an Options window which will allow you
to change the terminal emulator subwindows
properties.

Refresh:{}

Terminal:{}

this enumerated allows the user to specify the way
the emulator subwindow will display the incoming
characters. The user can specify (via a pop up menu)
display modes from display each character has it is
received to deferring the painting to a later time. The
refresh options are:

always
never

half

full

update screen on every character
update only if nothing else is
happening
force an update when the screen is
half invalid
force an update when the screen is
all invalid

The recommend options is always, although when
using the never options, NSTerminal can handle data
tranfer rates of 9600 baud continuous. The never
mode can be used to tranfer files to the your
workstation since all characters received are stored
in NSTerminal.log.

this item has a pop up menu with the various
terminals that can be emulated. The enumerated
items represent the following terminals:

addrinfo General Terminal
adm3 Lear Siegler Adm3
adm3a Lear Siegler Adm3A
cdc456 Control Data 456
dm1520 Data Median 1520, 1521
gt100 General Terminal 100A
h1000 Hazeltine 1000
h1420 Hazeltine 1420
h1500 Hazeltine 1500
h1510 Hazeltine 1510
h1520 Hazeltine 1520
h2000 Hazeltine 2000
isc8001 Interactive Systems
soroc Soroc 120
teletec Teletec Datascreen
trs80 Radio Shack
vc303 Volker-Craig 303
vt100 DEC VT100
vt50 DEC VT50
vt50h DECVT50H
vt52 DEC VT52

32-7

32

32-8

Network executive tools

x820
other

Xerox 820
use the DataFile: terminal

The next eight items on the NSTerminal.Options window are only applicable to
connections to the local port of an External Communications Service. The
Communications Interface Units have these options hard-wired and their values are
reflected when a RS232C port is selected from the RS232C Ports pop up menu of the
Options window.

CharLength: {} this item has a pop menu with the different c:haracter
lengths you can request your host to use.

StopBi ts: {} this item has a pop menu with the number of stop bits
you can request your host to use.

LineSpeed: {} this item has a pop menu with the baud rates you can
request your host to use.

Par i ty: { } this item has a pop menu with the parity options you
can request your host to use.

Duplex i ty: { } this item has a pop menu with the duplexity options
you can request your host to use.

FlowControl: {} this item has a pop menu with the flow control
options you can request your host to use.

XOn= is the character used to initiate the flow control.

XOff= is the character used to terminate the flow control.

DataFile: is a user provided terminal that NSTerminal will
emulate when the other option is chosen in the
Terminal: {} field. This file contains a finite state
automata that represents the character sequence
necessary to invoke a terminal action. Further
explanation of this file is beyond the SCOpEl of this
document.

LogIn if this Boolean is selected, NSTerminal will
automatically log you in when you conn4~ct to a
service.

Authenticate if this Boolean is selected, NSTerminal will gather
credentials to be used in the opening of a ccmection.
This is only necessary when a particular service has
an access group associated with the service:

,
The third subwindow in the NSTerminal window is the terminal emulator subwindow.
The emulator subwindow is not a standard Tajo TextSW or TTYSW. Selections can be
made using Point and Select to define the boundaries of the selection. There is no selection
tracking as in regular text subwindows, and the selection disappears once new text is
written to the screen. Selection can be stuffed into other windows using the STUFF (labeled
OPEN on the Dandelion) button, and text from other windows can be stuffed into the

XDE User's Guide 32

emulator subwindow. There are no scrollbars on the emulator subwindow, to see the full
context of the window one must grow the window to be large enough. Hitting Adjust in
the emulator subwindow will cause the window to become the input focus if it does not
already contain a ~election. A log is kept in the file NSTerminal.log.

At the bottom of the emulator subwindow are some bells and whistles. The DATA one is a
set of flippers that are inverted every time some data is sent to the emulator subwindow.
The ONLINE and LOCAL buttons tell you if you have a connection opened. The Ll, L2, L3,

and L4 buttons are settable by the host in the VT100 mode.

Special keys for the terminal emulator subwindow are:

The CNTL key is CONTROL (PROPS)

The ESC key is COMPLETE (right arrow)
The DEL key is DELETE

Cursor motion keys: Up, Down, Left, and Right are HELP, DOIT(MARGINS), NEXT,

and UNDO

If you are in the VT100 mode, there are several KeyPad and Programmable Functions
Keys available to you. With the built in Emulator. TIP file, you have the following:

The VT100 KeyPad functions are invoked by:

0-9 are 0-9 with COMMAND held down
Enter is COMMAND-RETURN

- (period) and, (comma) are. and, with COMMAND held down

The VT100 Programable Function Keys are invoked by:

PF1-PF4 are MENU (CENTER), SCROLLBAR (BOLD), JFIRST (ITALICS), and JSElECT

(UNDERLINE)

By changing the <>TIP>Emulator.TIP file and rebooting, you can assign these
function to any key or key combination. See the Mesa Programmer's Manual for more on
TIP tables.

32.2.4 Opening a connection

To open a connection to a CIU, open the options window by hitting Options!. If you bring
up a menu over the option sheet, a menu called "RS232C Ports" appears. Selecting one of
the RS232 ports causes the option sheet to change values. If you are talking to a CIU, fill
in the PhoneRumber: field; if there is no dialer on the other end, keep the PhoneRumber:
field empty. With the CIU, the communication parameters (such as, CharLength=.
StopBits: {}, etc.) are ignored because the CIU uses the clearinghouse to get them. Hit
Connect! on the option sheet to start a connection, after which the option sheet should
disappear. If it does not disappear, you have hit the wrong Connect! button (on the
NSTerminal window).

To open a connection to the local port of an ECS, fill in the 80S t : , PhoneRumbe r: (if there
is a dialer connected to the local port), and all the communication parameters

32-9

32

32-10

Network executive tools

(i.e., CharLength=, StopBi ts: {}, etc) and set the LineHo: field to 0 (zero). Hit
Connect! and a connection will be opened.

To open a connection to the GAP services that Chat talks to (such as, re.mote system
administration, the XDE remote executive, and the interactive terminal service) till in the
Bost: and LineHo= fields. All other parameters are ignored. The line number for remote
system adminstration is 32001, the XDE remote executive is 32002 1 and ITS is 32003.

32.2.5 NSTerminal User.cm

NSTerminal does extensive User. cm parsing. In addition to the standard entries,
User. cm entries include:

[NSTerminal]
Authenticate: <TRUE FALSE>
Host: <string using quote if name contains spaces. For €~xample,
"Dialer: OSB U North: Xerox" >
PhoneNumber: <string without punctuation. For example: (415)

123-4567 becomes 4151234567>
CharLength: < 5 6 7 8 >
DataFile: < name of terminal file. Used only by wizards>
Duplexity: <full half>
Filter: <TRUE FALSE>
FlowContro1: <none xOnXOff>
LineNo: <number, 0-65535, decimal format>
LineSpeed: <bps50 bps75 bps110 bps134p5 bps150 bps300 bps600 bps1200

bps2400 bps3600 bps4800 bps7200 bps9600 bps19200 bps28800
bps38400 bps48000 bps56000 bps57600>

LogIn: < TRUE FALSE>
Par i ty: < none odd even one zero>
Refresh: <always never half full>
Stop8its: <1 2>
Terminal: <addrinfo adm3 adm3a cdc456 dm1520 gt100 h1000 h1420

h1500 h1510 h1520 h2000 isc8001 soroc teletec trs80 vc303
vt100 vt50 vt50h vt52 x820 xvt52>

XOn: <number, 08 - 17777788, octal>
XOff: <number, 08 - 17777788, octal>

32.2.6 U ser.cm example

Here is an example [NSTerminal] User. cm section:

[NSTerminal]
PhoneNumber: 2324343
Host: "12008ps Venteller Port 81"
LineNo: 68
Terminal: vt100
Refresh: always
FlowControl: XOnXOff

XDE User's Guide

XOn: 21B
XOff: 23B

32.3 Remote Executive

32

The Remote Executive is an executive service that permits users to connect to a remote
machine and issue commands as if they were typing into an Executive. The Remote
Executive supports an arbitrary number of connections from an arbitrary number of
users. The Remote Executive is typically used to access integration machines, but it may
also be run in the XDE to permit remote access to other workstations.

32.3.1 Files

Retrieve RemoteExee. bed from the Release directory.

32.3.2 User interface

The Remote Executive is accessed from Chat on your local machine. For example, to
connect to a machine named Yamamoto, running Remote Executive via Chat, you would
type:

>Chat Yamamoto/e

Once connected, you are asked to log in to the Remote Executive for authorization
purposes or to quit. You must log in with a legal user name and password. The list of
authorized users is controlled by the AccessGroups entry in the User. em for the Remote
Executive; see the Remote Executive User. em section in this chapter.

An authorization log-in may not log you in to a machine. Since a machine can maintain
one logged-in name at a time, you will be logged in to the machine only if there is no other
user already logged in. If there is another user logged in, the system will print a message
telling you the name of that user.

After connecting to the Remote Executive, only three commands are available: LogIn.-,
Quit.-, and ShowAccessList.-(explained below). This initial LogIn.- command is
different from the standard Executive LogIn. - command in that it will accept a fully
qualified user name. After the initial log in, the Log In. - command reverts to the standard
Executive LogIn."'" command. Forexample:

Login
Name: Yamamoto:OSBU North:Xerox
Password: *****

After the initial log in, more commands are made available (explained in the next section).

32.3.3 Commands

In addition to all the standard Executive commands (see the Executive chapter), the
Remote Executive has the following additional commands:

32-11

32

32-12

Network executive tools

BootFromFile.--

BootVolume.--

CallDebugger.-

ListRemoteBosts.--

Online.-

Offline.-

Quit.--

RemoteExec.-[arg]

ShowAccessList.-

Time.-

VolumeStatus.-

32.3.4 Remote Executive User.cm

allows you to boot a bootfile that is resident on the local file
system. It takes one argument, the name of the bootfile.

is the the Boot from menu of the Herald Window. It takes
the name of a logical volume (plus optional switchE~s) as its
argument; if no argument if given, it acts like the boot
button and boots the entire physical volume.

call the debugger (equivalent to pressing SHIFT-STOP).

lists all currently connected users.

takes a physical volume or volumes as it arguments and
brings the specified volume(s) on line.

brings the specified physical volume(s) off line.

causes the remote user to be disconnected.

sets the Remote Executive on or off, based on the value of
arg (which can have values Hon" or Hoff"). If there is no
argument, this command tells whether Remote Exelcutive is
on or off.

shows the list of groups that can connect to your maehine, as
given in the User. em file. (See the section below')

gives the current time.

provides information about the logical vol urnes of the
machine. It lists the following data: type (normal, debugger,
or debuggerDebugger), state of the volume (open or closed),
and the number of disk pages occupied out of the total
available. If no argument is given, it provides the
information for each of the logical volumes on the disk. If
given the name(s) of a specific logical volume as an
argument, it provides the above information for only the
specified volume(s) alone.

The Remote Executive searches the [Sys tern] section of the User .em file for the entry
AeeessGroups; this entry is a list of the names of individuals or groups permitted to use
the machine through the Remote Executive. An entry looks like:

[System]
AeeessGroups: "AnyGroup:OSBU North:Xerox" Smith Jones Johnson

If the domain and organization are left out, the defaults are used from the Profile Tool. If
there are spaces in a name, the name must be quoted. If the entry "*: * : *" is used,

XDE User's Guide 32

anyone may have acess to the Remote Executive. To allow anyone to have access to your
workstation, your U ser.cm entry would look like:

[System]
AeeessGroups: *:*:*

Note: The access list is processed from left to right, so it is most efficient to put the most frequent users or user

groups on the left side and those users who access the machine less often on the right side.

32.4 TTYTajo

An integration machine is a workstation configured with a very large disk. The design of
the Dandelion makes it impossible to run both a very large disk and a large-format display
at the same time. As a result, an integration machine is connected to a glass terminal
rather than to a large-format display.

You cannot run the standard XDE boot files on an integration machine, since they depend
upon the large-format display. TTYTajo is a boot file that runs on a machine (typically an
integration machine) and provides the basic facilities of the development environment. It
supports only a TTY-style interaction with the user, either through a simple terminal or
through the Remote Executive.

32.4.1 Files and installation

Retrieve TTYTajoTriDlion. boot from the Release directory if your machine has a
Trident disk, otherwise retrieve TTYTajoDLion. boot if your machine has a Shugart or
Quantum disk.

A sample User. em file is on the Release directory. Retrieve TTYTajoUser.cm and rename
it to User. em.

The recommended boot switches (which you can set via Othello) for TTYTajo are: }]

32.4.2 User in terface

You can communicate with TTYTajo either by typing into the simple keyboard attached to
the· integration machine or by using the Remote Executive (see the Remote Executive
section). Characters typed into the keyboard are sent to the local Executive. The
Executive, the Remote Executive, and FTPare built into TTYTajo.

The Remote Executive recognizes the following character codes (defined in the interface
Ascii.mesa) as special editing characters: Ascii.BS, Ascii.ControIC, AsciLControlW,
AsciLControlX, AsciLDEL, Ascii.ESC, and AsciLTab. The Remote Executive's interpretation
of these characters is described in the Executive chapter. You should consult this manual
for your simple terminal to see how to generate these characters from that terminal. The
abort function, provided by the STOP key for a local executive, is provided by the Break key
on most simple terminals.

32-13

32

32-14

Network executive tools

32.4.3 Commands

In addtion to the standard Executive commands (see the Executive chapter) and Remote
Executive commands, TTYTajo ~as the following command:

FTP.-

32.4.4 User.cm

is built into TTYTajo. This command allows you to transfer
files between the workstation and remote file servers. The
documentation for this command can be found in this
manual.

A sample User.cm is given below. (TTYTajoUser.cm from the Release directory).

[User.cm]

[System]
AccessGroups: *:*:*
Debug: No
Domain: OSBU North
InitialCommand: MFileServer;
Organization: Xerox
User: TTYTajo

[Executive]
CodeLinks: FALSE
Priority: 1
UseBackground: TRUE

[HardCopy]
Columns: 2
Interpress: Nevermore
Orientation: Landscape
PreferredFormat: Interpress

[MFileServer]
Running: TRUE
StoreAllowed: TRUE
OverWriteAllowed: TRUE
DeleteAllowed: TRUE

32.4.5 Program interface

The following interfaces are exported by TTYTajo. Programs that use only these interfaces
can run in the TTYTajo environment:

Common software interfaces:

Format
Real
RealFns

XDE User's Guide

String
Time
TIV

Tajo interfaces:

Address Tra ns lati on
Atom
BlockSource
BodyDefs
BTree
CmFile
Date
DiskSource
Event
EventTypes
Exec
Expand
FileTransfer
HeraldWindow
MFile
MFileProperty
MLoader
MSegment
MStream
MVolume
PieceSource
Profile
ScratchSource
StringLookUp
StringSource
TajoMisc
TextSource
Token
Version

Pilot interfaces: all.

32

32-15

32 Network executive tools

32-16

v

TCP/IP Related Tools and Applications

V-I

v TCP/IP Related Tools and Applications

V-2

33

Getting Started With ARPA

This chapter explains the installation of the ARPA (TCP/IP) network protocol package in
XDE.

33.1. Configuration requirements

The following are recommended configuration guides. Other configurations may work but
ha ve not been fully tested and will not be supported.

• An environment based on Pilot 13.0/14.0 or newer (e.g., XDE 6.0).

• Any of the 8000 or 6085 family of processors. 6085s must have the latest boot proms if
the protocols are going to be used in an environment that includes machines other than
8000s and 6085s.

• At least 1 lVIByte of real memory. Less memory will suffice but may suffer from severe
performance problems.

• A large format display. Most of the user interfaces available are XDE tool window based.
There are a limited number of tools, such as ArpaRemoteExec, ArpaFileServer, that will
run without a large format display, are intended for integration machine configurations
and are supported.

• At present the only data link interface configuration supported is a single Ethernet.

33.2. lVlachine registration

Every machine running the Arpa networking protocols must have a unique Internet
Address. Internet Addresses are available from your network administrator. That
assignment must be edited into the User.em of the machine affected. The User.em slice is of
the following format:

33-1

33 TCP/IP

[Arpa]
HostAddress: < internet address>
GatewayAddress: < internet address>
SubnetMask: < internet address>
NameServer: < internet address>

--specification of the host maehi ne
--address of default gateway
--subnet mask for entire network
--address of Domain server

The field labeled < internet address> must be of the form of four decimal octets. A null
address is specified as "0:0:0:0" and is equivalent to omitting the specification. Comments
may be appended to the lines provided they are separated from the address by one or more
spaces or tabs.

The HostAddress field's entry is the internet address for the machine on which the software
is running. Host addresses must be obtained from the network administrator. If this field is
not specified or is specified in error, XdeArpaConfig will load but refuse to start.

The field GatewayAddress is to specify the internet address of the local gateway if there is
one. This is a required entry if any type of routing between network or subnets is to occur.
It is not required that this be the only gateway on the local network. ICl\fP redirects as well
as RIP will be processed to refine the information in real time. The gateway address
specified will be used as the default until better information is available. The internet
address of the gateway is available from the local network administrator.

If the network uses subnetting, the field SubnetMask in the User.em must be non-null to
give the subnet masking bits. Within a network (as defined by the network number proper)
it is required that only a single subnetting strategy (i.e., subnet mask) be used. The subnet
mask for the network should be obtained from the network administrator.

XdeArpaConfig will use either a local static file called HOSTS. TXT or the Domain naming
system or both. If the net your machine is on uses the Domain naming system then specify
the internet address of the default local name server in the field NameServer. Other servers
may be located using the Domain protocol.

Currently the information from the HOSTS. TXT is searched first when trying to resolve
names to internet addresses. Should that translation fail, the system will attempt to call
Domain. There are also Domain explicit calls available through the programming
interfaces.

A master copy of HOSTS.TXT is available from your network administrator. Then~ should
be no need to modify the contents of that file for application on particular machines.
Contact your network administrator for changes and updates to the HOSTS. TXT file. A
sample HOSTS. TXT is included in the XDE release.

33.3. Software available

33-2

The following ARPA software is available.

XdeArpaConfig. bed This implements the Arpa transport protocols (IP, UDP, and
TCP), address resolution protocols, the Telnet application
level protocol, the ARPA FTP (File Transfer Protocol) and
TFTP (Trivial File Transfer Protocol) file transfer protocols,
and the ARPA SMTP (Simple Mail Transfer Protocol) mail
protocol. XdeArpaConfig must be run before starting any

Getting started 33

other pieces of the ARPA software. XdeArpaConfig will create
a log file (XdeArpaConfig.log) describing its startup process
on the current working directory.

The following tools are documented in the XDE User's Guide.

ArpaCaeheAdd ress. bed

ArpaChat. bed

ArpaFileServer.bed

ArpaFileTool.bed

ArpaMailTool.bed

Arpa RemoteExee. bed

ArpaTerm.bed

33.4. Running the software

This provides a Mesa executive interface to various address
caches maintained by the ARPA system.

This implements a TTY window interface to the telnet
processes of remote hosts.

This implements a user interface for the ARPA file server. It
will operate in either a windowed or non-windowed mode,
depending on User.cm options.

This implements a window interface much like the XDE
FileTool which allows the user to retrieve, store, list, etc., on
an ARP A file server.

This implements a window interface much like the NS based
XDE MailTool. It allows the user to send and receive mail
using SMTP as the underlying protocol.It loads. ".arpaMail"
files into its window.

This provides an executive to remote users who connect to the
local workstation using the Telnet protocol.

This implements an emulation window interface to remote
hosts telnet processes.

XdeArpaConfig must be run before any other tools needing ARPA protocol support. It may
be run from the executive (i.e., >Run.- XdeArpaConfig) or executed directly (by typing
> XdeArpaConfig). In either case a log file named XdeArpaConfig.log will be created on
the current working directory recording the operations performed during initialization. If
XdeArpaConfig is executed directly from the executive, then the log will be printed after
loading has completed. The log may be displayed at any time by simply typing
XdeArpaConfig into the executive.

After XdeArpaConfig has been successfully loaded and started, the tools may be loaded and
unloaded as needed. XdeArpaConfig, as well as most of the included tools, can be unloaded
any time the subsystem is quiescent.

33-3

33 TCP/IP

33-4

34.1 Files

34

ArpaCacheAddress

The ArpaCacheAddress provides a user interface to various address caches used by the
TCP/IP subsystem.

Retrieve XdeArpaConfig. bed and ArpaCaeheAddress. bed from the Release
directory.

34.2 User Interface

ArpaCacheAddress registers the command "ArpaCaeheAddress. -" with the XDE
executive. The help proc for ArpaCacheAddress will display the following information:

>Belp ArpaCaeheAddress

ArpaCaeheAddress.- eommand/arg eommand/arg ...

Command/Arg
Flush
List
Load/file
AddEntry name/address
Arp/format
Route

format:: = oct I dec I hex

flush the contents of the cache.
list contents of the cache.
load contents of file into cache.
add the name and address to the cache.
enumerate contents of address resolution cache.
enumerate current routing table.

Example: ArpaCaeheAddress.- AddEntry TestMaeh/O.O.l.20 List

Flush This command will cause the all the caches currently in use by the name
to address translation facility to be deleted. Those caches include those
built by processing the BOSTS. TXT file, augmentations that may have
occurred by use of the AddEntry or Load commands, and caches that
may have been built up doing remote queries to a Domain server.

34-1

34

34-2

ArpaCacheAddress

List

Load/file

This command enumerates all entries in the address cache that may have
been built by processing the BOSTS. TXT file or augmentations to that
cache made via the AddEntry or Load commands. At present there is no
facility to enumerate the information cached as a result of Domain
queries.

Load parses the local file specified in the file field and loads all entries
into the cache. The format of file must be that defined in RFC 952:.

AddEntry name/address

Arp/format

Route

This command takes the name, address pair and adds it to the address
cache. The name field must be a legal host name. The address field
must be in standard internet address notation, i.e., four decim.al digits
separated by periods.

Example:
>ArpaCacheAddress.- AddEntry TestMach/0.0.1.20 List
Contents of address cache:

0.0.1.20 TestMach

The Arp command will enumerate the current Address Resolution
Protocol caches for each data link controller supporting TCPIP protocols.
This cache always includes entries for the host machine and a broadcast
address. It also includes entries for any other machines directly attached
to the data link controller that have recently been the object of some
transmission. The default format is oct (octal).

Example:
>ArpaCacheAddress.- Arp/hex
Translations for ethernet(O)

13.2.233.33 => .OAA4104D8B. (Dud)
13.2.235.255 => .*. (multicast)

Route will enumerate the current IP routing table. For each route the
remote network will be displayed as well as the gateway that will be used
to route the packet along the way.

Example:
>ArpaCacheAddress.- Route
Routing table at 24-Aug-88 12:58:44
[subnet: 13.2.232.0, delay: 0] via gateway: 0.0.0.0
(local)
[subnet: 13.0.68.0, delay: 1] via gateway 13.2.233.99
(miranda)

35.1 Files

35

ArpaChat

ArpaChat provides simple TTY-emulation in the development environment. It is based
upon the Telnet protocol of the TCP/IP family of protocols.

Retrieve XDEArpaConfig. bed and ArpaChat. bcd from the Release directory.

35.2 User Interface

ArpaChat registers the command "ArpaChat. -It with the executive. The simplest form of
the command is:

>ArpaCha t • -

This command either activates an inactive ArpaChat if there is one, or it creates a new
one. The full form of the ArpaChat command is:

>ArpaChat.- [host]

host tries to open a connection to that host (see the Connect! command below).

After you type this command to the Executive, an ArpaChat tool window appears.
ArpaChat's tool-style interface has a message subwindow, a form subwindow, and a TTY
subwindow.

35.2.1 Message subwindow

The message subwindow is used for one-line messages about the current state of the Telnet
connection.

35.2.2 Form subwindow

The form sub window contains several commands:

:35-1

35

35-2

ArpaChat

Connect! using the current selection as a host name or address, Connect! opens a
connection to that host. After a connection is established, a message is
posted in the message subwindow so you can start typing. A faster way is
to type a host name in the file subwindow followed by pressing DOlT. It
takes the last word typed as the host name and invokes the Connect!
command. The Connect! command behaves slightly differently
depending on the values of some of the fields described below.

Disconnect! if there is a connection open, Disconnect! deletes the connection for the
network stream, collects and throws away the tool's various processes for
managing the data stream, and returns the tool to a quiescent state.

BreakKey! simulates a terminal's break character.

Another! starts up another ArpaChat window, using the same options as the
current ArpaChat window.

Destroy! destroys the ArpaChat window. ~o confirmation is required.

Options! creates an ArpaChat options window. The options are:

Interrupt!

Abort!

Apply!

Abort!

LogIn

sets your chosen options and destroys the options window.

cancels any changed options and destroys the options
window.

If this Boolean is TRUE and both Profile.User and
Profile.Password are non-null, ArpaChat logs you in on
the remote host using these values. If the Boolean is FALSE,

ArpaChat won't log you in. The default value is TRIUE. (You
can set this value in the [ArpaChat] section of your User. cm
file. Or, if the LogIn Boolean in the Options window is
selected, you are logged in automatically.)

sends the Telnet Interrupt character to the connected host.

sends the Telnet Abort character to the connected host.

Are¥ouThere! sends the Telnet Are YouThere character to the connected host. A
responce is expected from connected host.

EraseChar!

EraseLine!

GoAhead!

Echo

sends the Telnet erase character character to the connected host.

sends the Telnet erase line character to the connected host.

sends the Telnet go ahead character to the connected host.

this enumerated type has two items: local and remote. Before a
connection is made with the remote host, the local echo mode is always
used. Once connected to a remote host, echoing is done by the remote host
unless it is changed by the user.

XDE User's Guide 35

PortType

Port

35.2.3 TTY subwindow

gives the type of port that ArpaChat connects to. The defualt is Telnet
and the other options are FTP, SMTP and other. If the other option is
selected, the port connected to is taken from the Par t field of the tool.

gives the decimal value of the port to connect to. The default is decimal
23, the Telnet port.

ArpaChat also has a TTY subwindow in which the dialogue with the remote system takes
place. When a connection is established, characters sent from one machine to another
appear in the TTY subwindow.

An alternate way to connect to a host (rather than using the Connect! command) is to
type the host name into this subwindow, and hit the DOlT key (the one labeled MARGINS on
the 6085 keyboard).

35.2.4 Special keys

ArpaChat makes use of the following special keys:

COMPLETE: sends an Ascii ESC.

DELETE: sends an Ascii DEL.

BS: sends an Ascii BS (CONTROL-H).

BW: sends an Ascii ETB (CONTROL-W).

ABORT: does a Telnet abort on the current connection.

35.2.5 ArpaChat User.cm entries

ArpaChat reads the following User. cm options:

[ArpaChat]

LogIn: TRUEIFALSE

35-3

35 ArpaChat

35-4

36.1 Files

36

ArpaRemoteExec

The Remote Executive is an executive service that permits users to connect to a remote
machine and issue commands as if they were typing into an Executive. The Remote
Executive supports an arbitrary number of connections from an arbitrary number of users.
The Remote Executive is typically used to access integration machines, but it may also be
run in XDE to permit remote access to other workstations.

Retrieve XDEArpaConfig. bed and ArpaRemoteExee. bed from the Release directory.

36.2 User Interface

The Remote Executive is accessed from ArpaChat on your local machine. For example, to
connect to a machine named Inferno, running Remote Executive through ArpaChat, you
would type:

>ArpaChat Inferno

Once connected, you are asked to log in to the Remote Executive for authorization purposes
or to quit. You must log in with a legal user name and password. The list of authorized
users is controlled by the AccessGroups entry in the User. em for the Remote Executive;
see the Remote Executive User. em section in this chapter.

An authorization log-in may not log you in to a machine. Since a machine can maintain one
logged-in name at a time, you will be logged in to the machine only if there is no other user
already logged in. If there is another user logged in, the system prints a message telling
you the name of that user.

After connecting to the Remote Executive, only three commands are available: LogIn. --,
Quit.-, and ShowAeeessList.- (explained below). This initial LogIn.- command is
different from the standard Executive LogIn. - command in that it accepts a fully qualified
user name. Mter the initial log in, the LogIn. -- command reverts to the standard Executive
LogIn.-command. Forexample:

36-1

36

36-2

ArpaRemoteExec

Login
Harne: Joe:Accouting:UCB

Password: *****

After the initial log in, more commands are made available (explained in the next section).

36.2.1 Commands

In addition to all the standard Executive commands (see the Executive chapter), the
Remote Executive has the following additional commands:

BootFromFile.-

BootVolume.-

CallDebugger.-

allows you to boot a bootfile that is resident on the local file system.
It takes one argument, the name of the bootfile.

is the Boot from menu of the Herald Window. It takes the name of
a logical volume (plus optional switches) as its argument; if no
argument if given, it acts like the boot button and boots the entire
physical volume.

calls the debugger (equivalent to pressing SHifT-STOP).

ListRemoteBosts. - lists all currently connected users.

Online.-

Offline.--

Quit.-

takes a physical volume or volumes as it arguments and brings the
specified volume(s) on line.

brings the specified physical volume(s) offline.

disconnects the remote user.

RemoteExec. -- [arg] sets the Remote Executive on or off, based on the valUle of arg
(which can have values "on" or "off'). If there is no argument, this
command tells whether Remote Executive is on or off.

ShowAccessList.- shows the list of groups that can connect to your machine, as given
in the User.cm file. (See the section below.)

Time. - gives the current time.

VolumeStatus. - provides information about the logical volumes of the machine. It
lists the following data: type (normal, debugger, or
debugger Debugger) , state of the volume (open or closed), and the
number of disk pages occupied out of the total available. If no
argument is given, it provides the information for each of the
logical volumes on the disk. If given the name(s) of a specific logical
volume as an argument, it provides the above information for only
the specified volume(s) alone.

XDE Userts Guide 36

36.2.2 Remote Executive User.cm

The Remote Executive searches the [System] section of the User. em file for the entry
AccessGroups; this entry is a list of the names of individuals or groups permitted to use the
machine through the Remote Executive. An entry looks like:

[System]
AccessGroups: "AnyGroup:Aceounting:UCB" Smith Jones Johnson

If the domain and organization are left out, the defaults are used from the Profile Tool. If
there are spaces in a name, the name must be quoted. If the entry H*: *: *" is used, anyone
may have acess to the Remote Executive. To allow anyone to have access to your
workstation, your U ser.cm entry woul~ look like:

[System]
AccessGroups: *:*:*

Note: The access list is processed from left to right, so it is most efficient to put the most
frequent users or user groups on the left side and those users who access the machine less
often on the right side.

36-3

36 ArpaRemoteExec

36-4

37.1 Files

37

ArpaFileTool

The ArpaFileTool provides a user interface to the Arpanet based file transfer mechanisms
commonly called FTP (File Transfer Protocol) and TFTP (Trivial File Transfer Protocol).

Retrieve XDEArpaConfig. bcd and ArpaFileTool. bcd from the Release directory.

37.2 User Interface

The ArpaFileTool communicates through a form subwindow, a command subwindow, a log
subwindow and an options window.

37.2.1 Form subwindow

The fields used as arguments to a command are listed in the form subwindow:

Bast:

Directory:

Source:

Destin:

LocalDir:

Hame:

is the name of the host to be used for remote files and operations.

is the remote directory relative to the default directory.

is a list of files for the next command to act upon. File names may include
wildcard/expansion characters. Any files appearing in this field should
conform to the syntax of file names for the file system that is the source of
the transfer

is the file name for the destination of a transfer. It should conform to the
syntax of the file system that is the destination of the transfer.

means that all references to the local disk will only occur within this
directory. If the directory is not a complete path name (if it does not begin
with <), it is assumed to have a < > prefixed.

is the user's login name on the remote machine.

37-1

37

37-2

ArpaFileTool

Password:

Account:

Protocol:

is the password of the user on the remote machine. This is echoed with
asterisks.

is the account number of the user on the remote machine.

is an enumerated type giving the filing protocol to be used with the
remote machine. The protocols supported are:

TFTP uses the Trivial File Transfer ProtocoL

FTP uses the File Transfer ProtocoL

37.2.2 Command subwindow

The following commands are available for either the FTP or TFTP protocols:

Retrieve!

Store!

Options!

transfers the file name or names specifed in Source from the
remote file system to the local disk. If Des t • n is blank, the file
name of the copy made on the local disk is the source file name
stripped of all host and directory qualifiers.

transfers the file name specifed in Source from the local disk to
the remote host. Development environment file name- con ventions
apply to the local file.

creates an Options window if one does not already exist.

The following commands are only available to the FTP protocol:

Remote-List!

Remote-Delete!

Close!

Remote-Rename!

Relnitialize!

Abort!

lists all files on the remote file system corresponding to the name or
names in Source. These names must conform to the file-naming
conventions on the remote host. You may designate multiple files
by the use of '* only to the extent that the remote server supports
it.

deletes the file name or names specified in Source from the
remote file system. You may designate multiple files by the use of
'* only to the extent that the remote server supports it.

closes any currently open connection, freeing any resources needed
to maintain it.

renames the file name specified in Source to the file name
specifed in Des t 'n on the remote file system.

allows the user to start the current session over again without
breaking the connection to the remote host. (not implemented)

stops the current filing transaction. This can also be done by using
the STOP key over the ArpaFileTool window.

XD E U sert s Guide 37

37.2.3 Options window

The Options window is created by the Options! command. The options window uses two
subwindows, a command subwindow and a form subwindow.

37.2.4 Options command subwindow

The following are the commands of the options command subwindow:

Apply!

Abort!

Reset!

applies the currently set options and closes the window.

closes the options window without applying the set options,
maintaining the initial options settings.

resets the options to their initial values.

37.2.5 Options form subwindow

The options form subwindow sets options that effect the commands in the ArpaFileTool
command subwindow. These options are dependent upon the protocol selected in the
ArpaFileTool form subwindow. The following are the options for the FTP protocol:

FileDelimiter:

FileType

is the character prefixed to the directory file name boundery if it
does not currently have this separator.

defines the way a file is stored. The following are the acceptable
types:

Ascii

Image

Loca18

Other

for plain text.

for binary files.

for files that have a logical byte size of eight.

for· files that have some byte representation other
than what can be accommodated by the above.

When the Asc i i type is selected, an additional field appears:

FileFormat is an enumerated type formatting schema that is used in the stored
or retrieved file. The following are the format types that are
acceptable:

Han Print a file which contains no specific formatting
information.

Telnet a file which contains vertical format controls (such as
<CR>, <LF>, <NL>, <VT>, <FF».

37-3

37

37-4

ArpaFileTool

ASA a file which has ASA (FORTRAN) formatting. (See
RFC740 or Communications of the ACM Vol. 7, No.
10,p. 606, October 1964).

When the file type Other is chosen, the following field appears:

ByteSize is the logical byte size of the file being transferred"

FileStructure gives the structure of the file to be transferred. The following is the
list of values:

File is the XDE file structure.

TransmissionMode is an enumerated type giving the method of transfer. The following
is a list of possible transfer options:

Stream is a stream of data bytes.

ListOutput gives the amount of information desired as a result of the Remote­
List command. The following options are available:

Debug

CheckDate

verbose gives as much information about the file as possible.

terse gives just the file name.

allows debugging information to be printed during filing
operations when set to TRUE.

checks for creation time information. The file server must support
the following format to the response of the remote list command in
verbose mode:

<file information> created: <date in RFC822
format> <file information> <CRLF>.

When the protocol is set to TFTP, in addition to the fields FileDelimi ter and Debug
described above, the following fields are also provided:

FileType is the type of file to be transfered. The following is a list of the
available file types:

HetAsc i i eight bit Ascii code.

Octet eight bit binary data.

Mail netascii characters to be sent to a user rather than a
file.

Retransmission Timeout (per-packet, in seconds)
gives the time interval between TFTP data packets.

XDE Userts Guide 37

Total retransmission interval (in-seconds)
gives the total timeout interval for a TFTP connection attempt.

Both the above values should be experimented with when the defaults do not work.

37.3 U ser.cm entries

The standard User. em entries Ini tialState, TinyPlace and WindowBox are
supported.

37.4 References

RFC740 NETRJS Protocol- Appendix C, Braden, November, 1977.

RFC822 Standard for the Format of ARPA -Internet Text Messages, Crocker, August, 1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

37-5

37 ArpaFileTool

37-6

38.1 Files

38

ArpaFileServer

The ArpaFileServer provides a means of turning a workstation or integration machine into
a FTP (File Transfer Protocol) and TFTP (Trivial File Transfer Protocol) file server.

Retrieve XDEArpaConfig. bed and ArpaFileServer. bed from the Release directory.

38.2 User Interface

The ArpaFileServer can be run as an Executive based tool or as a window based tool
according to your User. em entries. Running the ArpaFileServer on a machine that does
not support a large format display will cause it to register commands with the executive.

38.2.1 Tool window interface

If the window mode is used, the ArpaFileServer communicates through a file subwindow
and a command sub window

The fields in the command subwindow are:

LogAetivi ty Enables the activity and debug logs for TFTP and FTP.

StoreAllowed Enables file storing.

RetrieveAllowed Enables file retrieval.

DeleteAllowed Allows file deletion.

OverWr i teAllowed Allows the overwriting of a file.

38-1

38 ArpaFileServer

38.2.2 Executive interface

When run as an Executive tool, the ArpaFi1eSerer c - command is registered with the
Executive:

ArpaFi1eServer.-command command

The following is a list of commands:

1 used to log server activity

s allows you to store files

d allows you to delete files

r allows you to retrieve files

o allows you to overwrite files on storing

state displays the current setting of all the above.

A "-" in front of any ofa command disables it.

For example, ArpaFi1eServer. -.. -1 -s d r, stops logging disallows storing, but allows
retrieving and deleting offiles.

38.2.3 Server activity log

Three kinds of messages are printed in the ArpaFileserver activity log. Messages ofTFTP
and FTP connections are printed with the originating host ID and for TFTP the file name of
the transaction. Messages sent be the FTP session are displayed with the symbols
"> > >" appended to them and messages received by the FTP server are displayed as they
are received. Messages are printed only if the log server activity boolean is set to true. If
the window version of the tool is used, then messages are printed in the tool window,
otherwise they are printed in the default log window, either the herald or the Executive
window.

38e3 U ser.cm Entries

38-2

The User. em, in addition to the standard Ini tia1State, TinyPlace and WilldowBox
entries, includes:

[ArpaFi1eServer]

Window:

LoqActivi ty:

TRUEIFALSE This boolean determines if the tool is initialized as a
window interface or an Executive command line interfaee. The
default is FALSE.

TRUEIFALSE This boolean determines if the tool displays a log of
connection activity. If the tool is in a window mode, the log is

XDE Userts Guide

DeleteAllowed:

38

displayed in the FileSW, otherwise log messages are displayed in
the default subwindow, either the herald or the screen.

TRUEIFALSE This boolean enables deletion of files by any connected
user if set to TRUE.

QverWri teAllowed: TRUEIFALSE This boolean enables overwriting of a file upon storage
byany connected user if set to TRUE.

StoreAllowed: TRUEIFALSE This boolean enables storing of files by any connected
user ifset to TRUE.

RetrieveAllowed: TRUEIFALSE This boolean enables retrieving of files by any connected
user if set to TRUE.

38-3

38 ArpaFileServer

38-4

39.1 Files

39

ArpaMailTool

The ArpaMailTool is a SMTP (Simple Mail Transport Protocol)-based mail reading and
sending tool. The ArpaMailTool allows you to retrieve, read, send, forward, save, move,
delete, and answer mail. In order to receive mail at your local host, you must include your
name in the valid recipient list (See HWillAcceptMailFor" entry under User. em in
39.3.2.7) of the User. em.

If your mail file becomes damaged, you may be able to save it by running
MailFileSeavenger. MailFileSeavenger restores the internal structure of your mail
file to a consistent state. It copies the damaged mail file into a scratch file as it operates, so
you must have enough free disk pages available for this scratch file in addition to the
number of disk pages that your damaged mail file already occupies. MailFileScavenger
warns you if there is not enough room.

Retrieve xDEArpaConfig.bed and ArpaMailTool.bed from the Arpa Release
directory.

39.2 User Interface

The ArpaMailTool has its own window consisting of a message subwindow, two text
sub windows and a form subwindow, as shown in Figure 1. Information and error messages
are posted in the message subwindow. The table of contents for the currently active mail
file is displayed in the text subwindow directly below the message subwindow. The form
subwindow lists commands for manipulating your mail. The lower text subwindow
displays individual mail messages. The name stripe of this window indicates when the last
mail was received for this host.

39-1

39

39-2

ArpaMailTool

ew mall osted: 15-Jul-86 9:23:08 _

~--·--------~o
1 " Jul 15 D;~.'·l"id
" " JI..ll 15 J1..Jl ie

~JOJment.at.ion chanqes
mail looping -., ';.::- Jul It, Robert. -' rneet. ing ;;.t. 6: 00

"".,·.w · "'· ... ,,·""·'",· ...

~--,--------~o
Display! Delete!
Hardcopy! lklde 1 ete!
E.xp.nge! New Forti!

Answer!

Forrard!
1IIove!

Sort! File: {Flxl. m:i i1::-

~tionsl

To: Meet. ing. m;i i 1

Dace: 15 Jul :3609:2:3:04 POT (Tue:::d;:t .. ~,,·)
Return-path: <Robert@Xebra>
f::eceived: From >::ebt"';;,.(10. 00.490. 2:3E:0) by >~ebra(10. 00.490.2:3130) I,Jit.h Tep ; 15-Jul-136
'3: 23: 04
:3ubject: meet inl1 ;n. 6: 00
From: Robert
T(): N:~.nnet te

Ther'e , il1 be ;;,. :3y:stem :)oftware meet ing Thur:~day, Jul~l 17 in the h.r conference
room. The meeting is expected to last 1 hour and an agenda follows.

Figure 39.1: ArpaMailTool

39.2.1 Text subwindow - Table of contents

An index of all messages in this mail file, called the Table of contents (0 r TOe), appears
in the upper text subwindow of the ArpaMailTool window. Each entry contains header
information, which includes the message number, the date it was sent, the name of the
sender, and the subject of the message.

You can have more than one mail file to store and organize your messages in. The current
mail file is the one whose TOe is displayed and the one to which new messages are
retrieved. Its name is displayed in the Fi Ie: field described below. When the
ArpaMailTool starts up, it reads the mail file specified by the User. em or Ac t i ve • rna i I if
none is specified. You can change the current mail file by chording and selecting from the
F i Ie: fie ld.

The currently displayed message is marked by a » character in front of the date column.
Deleted messages have a line through their entries in the TOe. Unexamined messages are
marked with an asterisk (*).

If a one character selection is made for the first character in a TOe line, then the next
character typed becomes the "flag" character for that entry. This flag has no semantic
meaning to the ArpaMailTool, but may be used for whatever purpose you want. For
instance, you might mark all those messages you need to answer with the character 'fA," or
you might mark those that are urgent with the character "u."

XDE User~s Guide 39

39.2.2 l~orm subwindow

By making a text selection that spans a number of lines in the Table of Contents, it is
possible to select a range of messages. Those messages are said to be the current messages.
The ArpaMailTool uses the current messages as an argument for most commands. If there
is no selection in the TOe, the current message is the displayed message.

Display!

Hardcopy!

Delete!

Undelete!

Expunge!

Forward!

Hew Form!

File:

Options!

Sort!

Move!

displays the first of the current messages if there is a selection in the
TOe; otherwise, it displays the next message. The next message is the
first undeleted message following the displayed message.

formats the current messages for printing and either spools them to a
printer or writes them into a local file. Pr int is loaded as needed. Note:
An NS-based printer is required to hardcopy mail messages.

marks the current messages for deletion by drawing a line through their
entries in the TOe. Messages are not removed from the message file
immediately, but only when expunged (see Expunge! below), after which
there is no way to restore them. Before deleted messages are expunged,
they may be restored by the Undelete! command.

restores the current messages marked for deletion.

permanently removes messages marked for deletion from the mail file.

produces a form containing a message body that is a copy of the current
message and header fields that can be filled in by hitting the NEXT key.

produces a blank form with header fields that can be filled in by hitting
the NEXT key.

{Ac t i ve . rna i 1, •.. } is an enumerated item which indicates the
current mail file (the file where new messages are stored and whose Toe
is displayed). You may choose a different message file as the current file
by selecting from the menu under this item. Only . rna i 1 files are shown,
and if there are duplicates in the search path, only the first is found. The
default mail file can be set from the User. em or from the Options window.

activates the Options window.

sorts the messages in a mail file by the date and time each was sent.

moves the current messages to the mail file named in the To: item. This
feature allows you to organize your messages for easy reference. The
extension. rna i 1 is assumed if there is no period in the name.

Note: Any selection in the TOe is cleared if you edit the To: field. You must fill in that
field before selecting the messages to be moved. If you are merely moving a displayed
message, this problem does not occur.

39

39-4

ArpaMailTool

'1'0:

39.2.3 Options window

contains the name of the mail file that is the destination for Mlove! The
extension is defa ul ted to • rna i 1. You can also fill in this fie ld by pressing
MENU and selecting a name from the currently existing. rna i 1.

The Options window contains the following items. For most options default initial values
can be specified in the ArpaMailTool section in User e em.

Apply! causes the fields in the Options window to take effect and closes the
Options window.

Abort! closes the Options window without making any changes.

Debug! activates a window used primarily for debugging the SMTP protocol. The
protocol exchange is visible through this window. (See Figure 2.)

ArpaHame: specifies the user name used by the ArpaSendTool in determining return
fields.

AutoDi splay is a Boolean that, if TRUE, causes the next message to be display1ed when
the current message is deleted or moved. The default is FALSE ..

Mail File: names the mail file you wish to work with. This file becomes the current
mail file when you invoke Apply! The extension defaults to .rnail. You
can also fill in this field by pressing MENU and choosing the name from the
currently existing mail files. If you invoke Apply! when the Mail File
field is blank, the value defaul ts to Ac t i ve . rna i 1.

- - Hardcopy Options --

OnePerPage is a Boolean that, if TRUE, causes each message to start on a separate page.
The default is TRUE.

OutputToFile is a Boolean that, if TRUE, causes the output from Hardcopy! to be written
to a file instead of being spooled to a printer. The default is FALSE.

Sides: {PrinterDefault, SingleSided, DoubleSided} tells the printer whether
to do two-sided printing or not. If the printer does not support two-sided printing, this
option is ignored. The default is SingleSided.

Orientation: {Portrait, Landscape} specifies the orientation of the output.
Landscape output is two columns per page. Portrait is one column per
page. The default is Portrait.

Landscape Font: Portrai t Font: are two fields to indicate which fonts to use

XDE Userts Guide 39

Printer: specifies the name of the interpress printer where the hardcopy is sent.

r aMall 0 lOns.
: Apply!

:~'
Abort.!
»ailFile:
<T;:t.]o>Ma il >Foo. ma;l

Debug!
~: 3u:s:;:t.n

--- Hardcopy ~ ions --­
jSides: {Single:3ided}

: landscape Font.: ::iouven i r'ij
1 Printer: Never'mor-e

:file: MailMessages.ip

Il"ientat. ion: {Por·tt";:t. it}

Portr8. it. Font: ::;ou',,.,en i t"i:;

[In In ifm!
Wft1 rt W

MTP-Oebu . -..

r--~O
j Rece i '.led connect i on fr'om
: 10,00, 490 , 23;30
j HELO ::<ebr'::t.,
i.
! 250 Requested ma i, act ion ok;:t.'y, comp' eted
;.
i MAIL FROM: <: RIJbet"tl~::<ebt"::t.>
i.
! 250 Requested m;1 i, ::t.ct i on O~:;ly, completed :.
j RePT TO: < Nannet te>
i.
i 250 Reque:~ted ma i, ::t.ct i on ok;1.)", comp' eted
1.
i DATA
;.
! 354 Stat"t mail input; end with <CRLF>.<CRLF>
!I
1 250 Reque:~ted ma i, ::t.ct i on okay, completed
11
: QUIT
jl

39.3 ArpaSendTool

Figure 39.2: ArpaMailTool Options Window and SMTP Debugger

The ArpaSendTool is used to send messages. A blank mail form is created by either
invoking Hew Form!, Answer!, or Forward! in the ArpaMailTool window or invoking
Another! in an open ArpaSendTool window. The ArpaSendTool has a message
subwindow, a form subwindow, and a text subwindow.

39

39-6

ArpaMailTool

Ar aSendTool I

-0
Another! Destroy! Reset! Send!

File: demo, m$9 Put! Get!
o.:.a in: >::ebt~a

:3ubject: meet in'3 ,it f3: ~3l3
Fr(,m: F=!obert
To: 3u:sanlg1/iemJ8

There ' i11 be ;1 :3.''tst.em 30ftware meet inq n-ll.lr$dav, Jl.ll y 17 in t.he f;lr confer-ence
room. The meetin~ is expected to last-1 hour a~~ an agenda follow$,

At:iENDA:

1: Agenda ,iadit ions/ch;ifli~e::; (5 min,)

2: Introductions (5 min,)

3: Stat~s reports fr-om team leader-s (15 min,)

4' Project plan reports from area managers (15 min,)

Figure 39.3: ArpaSendTool

39.3.1 Form subwindow

These items are always available in the form subwindow:

Another!

Destroy!

Reset!

Put!

Get!

File:

Domain:

Send!

creates another instance of the tool.

destroys this instance of the tool.

lea ves the tool window open but clears it of text.

writes the contents of the tool window to the file named in the File: field.

replaces the contents of the tool window with the contents of t.he file
named in the Fi Ie: field. If the form has been edited but not sent, this
command requires confirmation.

is used to hold the name of the file used in the Put! and Get! commands.

contains the name of the local host. If any recipient names in the To:,
ee:, or bee: fields lack host fields, this value is automatically appended
before delivery. (See below.)

sends the mail totherecipientsindicatedintheTo:.ee : ,and bee: lines
of the message. A list of invalid recipients is posted to the m~~ssage
subwindow.

39

39.3.2 Text subwindow

The text subwindow contains the text of the message, including a header part and a
message body part. The header part includes Subj ec t: To:, bee:, Reply-To:, and ce:
fields that are used to send the message.

39.3.2.1 Subject: field

The topic of your message goes in the Subj ec t : field. The topic should express the content
of your message so that interested people take the time to read the message, but
uninterested people can delete it without reading it. For example, if your message contains
ideas for improving the ArpaMailTool, the topic might be "Suggestions: improving
ArpaMailTool ," not "Suggestions. "

39.3.2.2 To: field

The To: specifies who is to receive your message. A recipient is specified by a name@host
entry. The ArpaMailTool allows you to omit the host name for recipients who are at your
same host. For example, Somebody@LocaIHost, can send the following

Subject: Meeting at 2:00 Wednesday
To: Personl, Person2
ec: Person3, Person4@AnotherHost

The ArpaMailTool assumes that names lacking host fields are at the sender's host, which
in this case is LocalHost. Since Person4@AnotherBost includes the host, AnotherHost
is used by the ArpaMailTool. In this case, the message goes to Personl@LocalHost,
Person2@LocalBost,Person3@LocalBostandPerson4@AnotherHost.

Distribution Lists:

Distribution lists are currently not implemented.

39.3.2.3 Reply·To: field

The Reply-To: field works with the Answer! command. Answer! initializes a message
form to reply to the message selected in the Table of Contents. If the message being
answered contains a Reply-To: field in its header, then only those recipients in the
Reply-To: field are included in the To: field constructed by Answer!. The Reply-To:
field limits those who automatically receive answers to messages. A recipient of such a
message can change the recipient fields constructed by Answer!.

39.3.2.4 cc: field

The ec: (carbon copy) field identifies others who are to recieve your message. Names
should be separated by commas. When you send your message, these people automatically
receive it along with the person or persons specified in the To: field.

39 ArpaMailTool

39.3.2.5 bee: field

The bcc: (blind carbon copy) field identifies others who are to rec:ieve your message, but
whose names do not appear in the recipient list of the header.

39.3.2.6 Message body

The message body (the actual content of the message) follows the header. There must be an
empty line between the last field in the header and the message body.

39.3.2.7 User.em entries

Some ArpaMailTool parameters can be set from the User. cm. These are listed below with
sample values.

[ArpaMailTool

ArpaName:

TOCLines:

MailFile:

MessageFont:

TOCFont:

AutoDisplay:

WillAcceptMailFor:

NewForm:

name of the user

number of initial lines displayed in the table. of contents
(TOe)

name of initial mail file

if omitted, the built-in Tajo font is used

if omitted, the built-in Tajo font is used

if TRUE, next message is displayed when current message
deleted

list of valid recipients for mail delivered to this local host
["John" "Mary" "Bill"]

the quoted text is used by NewForm! to customize the
send window

"Subject: «»

From: Bill
To: «})

Reply-To: Bill@Clover

«Message»

-- Bill"

You can also specify the printing characteristics used by the Hardcopy! command. If no
printing entries are made in your ArpaMailTool User. cm section, the values from the
[Hardcopy] section are used. Refer to the Print chapter for further information about the
different entries.

XDE Userts Guide

OutputToFile:

OutputFile:

OnePerPage:

Sides:

InterPress:

LandscapeFont:

PortraitFont:

orientation:

PrintedBy:

39.4 MailFi.leSca venger

39.4.1 Files

39

if TRUE, output is written to a file
instead of a printer

name of output file used when
OutputToFile is TRUE

if TRUE, each message starts at the top of
a newpage

controls whether the printer does two­
sided printing or not
ex. SingleSided

name of the default InterPress printer to
use

name of the default font to use when in
landscape mode

name of the default font to use when in
portrait mode

default output orientation
ex. Landscape

name to place on the banner sheet when
output is printed. A dollar sign ($) means
the current login name is used

Retrieve MailFileScavenger. bed from the Mesa Release directory.

39.4.2 User interface

MailFileScavenger runs in the Executive window. To invoke it, type MailFileScavenger
MaiIFile.mail, where MailFile.mail is the name of the mail file to be scavenged.
Terminate the name with RETURN. MailFileScavenger copies your mail into its scratch file,
printing out the number of every fifth message as it is processed.

When anomalies are detected in your mail file, MailFileScavenger prints out a short
message such as Message 5: existing count was 21 bytes too small. This
message means that the formatting information in the mail file used to distinguish
individual messages was inconsistent with what MailFileScavenger believes to be distinct
messages.

When lVlailFileScavenger is finished, it is a good idea to check any messages it complained
about. These messages may be missing several characters or be malformed in other ways.

39

39-10

ArpaMailTool

You should also check neighboring messages-some of the characters in those messages
might really be part of other messages.

Mter MailFileSca venger has finished copying and reformatting your mail into its scratch
file, it pauses and asks ifit should copy that file back into the original mail file. If there are
not many error reports, type y to confirm. MailFileScavenger copies the scavenged mail file
back into the original mail file, deletes the scratch file, and quits. You may then invoke
the scavenged mail file in your ArpaMailTool Options window. However, if there have
been many error reports, you might want to copy the original file before allowing the
MailFileScavenger to scavenge your file. To do this, cancel the command with N:. copy the
file, then run MailFileScavenger on the copy.

The mail file that MailFileScavenger produces should give you a readable mailfile.
However, this mail file may have messages that are fragments of messages in the original
file and/or duplicate messages. If you copied the original file before runn.ing the
MailFileScavenger, you can compare the scavenged version to the original in order to
determine if any text was lost. If you edit the scavenged mail file, you must run scavenger
again.

40

ArpaTerm

40.1 ArpaTerm

ArpaTerm is a terminal emulator that uses the TCP/IP protocols to communicate with
other machines. It is functionally very similar to NSTerminal, which does terminal
emulation using the XNS protocols.

40.1.1 Files

Retrieve ArpaTerm. bed from the Release directory.

40.1.2 Setting up

Before running ArpaTerm, you should be logged in. After doing some initialization, a
NSTerminal-style window will appear. ArpaTerm will create one file,
ArpaTerminal.log, the first time it is executed.

4002 User iuterface

ArpaTerm registers the command "ArpaTerm.-" with the executive. To create a new
instance of the tool, type into the Executive:

> ArpaTerm <CR>

An alternate method of making a connection is to enter the name of the host after
ArpaTerm:

>ArpaTerm host <CR>

The ArpaTerm window has three subwindows, a message subwindow, a form subwindow,
and a terminal emulation subwindow.

The message subwindow is used for various one- line messages.

LHL 1

40

40-2

ArpaTerm

: Connect! Disconect! BreakKey! Another! Destroy! Options!

: Interrupt! Abort!

: Echo Host:

AreYouThere! EraseChar! EraseLine! GoAhead!

Portype: {Other} Port= 23

~--o

Terminal: Refresh: {always}
TerminalOptions!

~---D
Scroll: {off} Margin Bell: {off} Wrap: {on}

AutoRepeat: {off} KeyClick: {off} NewLine: {newline}

Columns: {80} Screen: {dark} Emulate: {ANSI}

Cursor: {block} Auto XOH: {off}

Apply! Abort!

~---D

123456789012345678901234567890123456789012345678901234567890123

DATA ONLINE LOCAL L1 L2 L3 L4

x
X o o o o o

Figure 40.1: ArpaTerm

The form subwindow contains the following commands:

Connect! takes the current selection as a host name or address and attempts to
open a connection to that host. This command has the same semantics
as the Connec t! command on the ArpaTerm Options window (see
Options! below). The Connect! command on this form should only be
used if the options are properly set.

Di sconnec t! will close the connection if there is one open. Closing the connection will
collect the connection's various processes for managing the data stream,
and return the tool to a q~iescent state.

BreakKey!

Another!

Destroy!

simulates a terminal's break key.

creates a new ArpaTerm window. The new window will use the User.cm
default values for its option window.

will destroy the ArpaTerm window.

XDE User's Guide 40

Options! creates a ArpaTerm Options window. Using the Options window is the
standard way to open a connection to a host. The options that affect only
the parent ArpaTerm window are:

Apply!

Abort!

LogIn

Terminal:{}

Refresh:{}

will set the tool's options to what is displayed in the
Options window. The Options window will then be
destroyed.

will reset the tool's options to its state before the
Options window was opened. The Options window will
then be destroyed.

if this Boolean is selected, ArpaTerm will
automatically log you in when you connect to a remote
exec.

this item has a pop up menu with the various
terminals that can be emulated. The enumerated
items represent the following terminals:

addrinfo General Terminal
adm3 Lear Siegler Adm3
adm3a Lear Siegler Adm3A
cdc456 Control Data 456
dm1520 Data Median 1520, 1521
gtlOO General TerminallOOA
hlOOO Hazeltine 1000
hI420 Hazeltine 1420
hI500 Hazeltine 1500
hI510 Hazeltine 1510
h1520 Hazeltine 1520
h2000 Hazeltine 2000
isc8001 Interactive Systems
soroc Soroc 120
teletec Teletec Datascreen
trs80 Radio Shack
vc303 Volker-Craig 303
vt100 DEC VT100
vt50 DEC VT50
vt50h DEC VT50H
vt52 DEC VT52
x820 Xerox 820
other use the DataFile: terminal

this enumerated allows the user to specify the way the
emulator subwindow will display the incoming
characters. The user can specify (via a pop up menu)
display modes from display each character as it is
received to deferring the painting to a later time. The
refresh options are:

.1(L':!

40

40-4

ArpaTerm

Interrupt!

Abort!

always
never

half

full

update screen on every character
update only if nothing else is
happening
force an update when the screen is
half in valid
force an update when the screen is
all invalid

The recommended option is always.

TerminalOptions! will create an Options window which will allow
you to change the terminal emulator subwindow
properties.

sends the Telnet Interrupt character to the connected host.

sends the Telnet Abort Character to the connected host.

AreYouThere! sends the Telnet Are YouThere character to the connected host. If a
response is returned by the connected host, "[yes]" will be displayed in the
window.

EraseChar!

EraseLine!

GoAbead!

Echo

Host:

PortType:

sends the Telnet erase character to the connected host.

sends the Telnet erase line character to the connected host.

sends the Telnet go ahead character to the connected host.

when this boolean is set to TRUE, the connected host echoes characters to
the user rather than the local terminal emulator.

is the host name or Internet Address of the machine you wish to open a
connection to.

gives the type of port that ArpaTerm connects. to. The default is Telnet
and the other options are FTP, SMTP and other. If the other option is
selected, the port connected to is taken from the Par t field of the tool.

The Options window created by TerminalOptions! contains the following terminal
emulator subwindow property options:

Scroll: {off/on} smooth scrolling is not implemented

Margin Bell: {off/on} bell chimes when right margin is reached (not
implemented)

Wrap: {off/on} determines whether a line is truncated or wraps
around to the next line

AutoRepeat: {off/on} if on,when a key is depressed and held down, the
character is printed repeatedly until key is released

XDE User's Guide

KeyClick:

NewLine:

Screen:

Emulate:

Columns:

Cursor:

Auto ION:

Apply!

Abort!

40

{off/on} when this is on, a click sound is emitted at each
keystroke and mouse click or when the mouse is moved
across the window boundary.

{newline/linefeed} indicates whether, in addition to a
newline, a linefeed is to be inserted at the end of a line or
only a newline.

{dark/light} not implemented

{vt521 ANSI} vt52 is not implemented

{80/132} 132 characters per line is not implemented

{underline/block} cursor shape is black square or
underline character

{off/on} is used to initiate the flow control.

will set the tool's options to what is displayed in the
Options window. The Options window will then be
destroyed.

will reset the tool's options to its state before the Options
window was opened. The Options window will then be
destroyed.

The third subwindow in the ArpaTerm window is the terminal emulator subwindow. The
emulator subwindow is not a standard Tajo TextSW or TTYSW. Selections can be made
using Point and Select to define the boundaries of the selection. There is no selection
tracking as in regular text subwindows, and the selection disappears once new text is
written to the screen. Selection can be stuffed into other windows using the STUFF key, and
text from other windows can be stuffed into the emulator subwindow. There are no
scrollbars on the emulator subwindow; to see the full context of the window, you must grow
the window to be large enough. Hitting Adjust in the emulator subwindow will cause the
window to become the input focus if it does not already contain a selection. A log is kept in
the file ArpaTerminal. log.

At the bottom of the emulator subwindow are some bells and whistles. The DATA one is a
set of flippers that are inverted every time data is sent to the emulator subwindow. The
ONLINE and LOCAL buttons tell you if you have a connection opened. The Ll, L2, L3, and
L4 buttons are settable by the host in the VT100 mode.

Special keys for the terminal emulator subwindow are:

The CNTL key is CONTROL (PROPS)

The ESC key is COMPLETE (right arrow)
The DEL key is DELETE

Cursor motion keys: Up, Down, Left, and Right are HELP, DOIT(MARGINS), NEXT,

and UNDO

40

40-6

ArpaTerm

If you are in the VT100 mode, there are several KeyPad and Programmable Functions
Keys available to you. With the built in Emula tor. TIP file, you have the following:

The VT100 KeyPad functions are invoked by:

0-9 are 0-9 with COMMAND held down
Enter is COMMAND-RETURN

- (period) and, (comma) are. and, with COMMAND held down

The VT100 Programable Function Keys are invoked by:

PF1-PF4 are MENU (CENTER), SCROLLBAR (BOLD), JFIRST (ITALICS), and JSElECT

(UNDERLINE)

By changing the <>TIP>Emulator.TIP file and rebooting, you can assi~~n these
function to any key or key combination. See the Mesa Programmer's ,,"'Manual for mbre on
TIP tables.

40.2.1 Opening a connection

To open a connection to another machine, open the options window by hitting Options!.
Fill in the Bos t: field and the communication parameters. Hit Connect! on the option
sheet to start a connection, after which the option sheet should disappear. If it does not
disappear, you have hit the wrong Connect! button (on the ArpaTerm window).

40.2.2 ArpaTerm User.cm

In addition to the standard entries, User. cm entries include:

[ArpaTerm]
Host: <string using quote if name contains spaces. For example,
"Dialer:OSBU North:Xerox">
Refresh: <always never half full>
Terminal: <addrinfo adm3 adm3a cdc456 dm1520 gtlOO hIOOO h1420

h1500 hlSlO h1S20 h2000 isc8001 soroc teletec trs80 vc303
vt100 vtSO vtSOh vtS2 x820 xvtS2>

PortType: <Telnet FTP SMTP Other>

40.2.3 U ser.cm example

Here is an example [ArpaTerm] User. cm section:

[ArpaTerm]
Host: "BigVax"
Terminal: vt100
Refresh: always
PortType:Telnet

A

Installer

This is a revision of a document first published on March 26, 1986 that described the 1.0
release of the Installer. This document includes all of the content of that earlier document,
with additions to cover changes made for the 2.0 (never released) 2.1 (Viewpoint 2.0) and
2.2 (8090 Server support) releases. Features that are only available in the 2.2 release will
be noted in the text.

This document is intended for two groups of users-users who formerly used Othello to
install software on non-standard configurations, and users who need to provide support for
customers (system administrators and support groups).

This document is NOT intended to explain how to use the Installer to install product
software. Documents that address this topic are supplied by other organizations.

This document contains the following information:

• Overview and background information

• How to invoke and use the Installer

• How the Installer has changed from Othello

• Information for use by sophisticated users

The information presented in the "Overview" through ~tChanged Commands" sections will
be of interest to all users. The remaining sections will likely be of interest primarily to
system administrators and support group members.

A.I Overview

A.i.1 Background

Xerox has provided two different utility programs for installing software. In-house
developers used Othello while customers were given Prometheus to install Star and
Services. Both have positive and negative points.

A-I

A Installer

A1.2 Goals

The Installer was designed to merge these two utilities, keeping the positive and removing
the negative points. The basic requirements were:

• Ease of use

• Support installation of several different systems of software (Currently this includes
XDE, Viewpoint, Services and LISP. Additional commands have been added to provide
the needed functionality.)

• Support installation from a floppy disk, cartridge tape or a network. (All methods must
be supported because of the network and hardware configurations that Xerox sells.)

• Ability to accept Othello-like commands. (This is to allow the user to fix unforeseen
problems and to customize development systems.)

A.2 Why you should use the Installer

The Installer is a superset of Othello with minor exceptions. Our customers use it and
therefore the documentation describing installation of product software assumes llse of the
Installer. It is also easier for most users to use. It is smaller than the current Othello
bootfile and when installed on an Othello volume it will behave like Othello, with the
exceptions noted below.

A.3 Invoking the Installer

A-2

The Installer is usually invoked either by booting a floppy disk, by booting a cartridge tape
or by requesting that the network downline load the bootfile. Developers may also have it
installed on their local disks as an Othello replacement. (This is described in detail later.)

Since there are essentially two different types of hardware, 8010 and 6085, there are
different methods of booting the Installer from the network and from the floppy.

Fine point: The 8090 is essentially an 8010 with a cartridge tape drive instead of the floppy disk drive. It is booted

in the same manner as an 8010.

To boot 8010 hardware from the network, press the Reset and Alt B buttons on the front
panel. Release the Alt B button, but hold the Reset button until "0003" is see!n. Then
release the Reset button. Depending on how your network is configured, either the
Installer or the Network Executive will appear. If you get the ~etwork Executive select
the Installer from the menu. With 6085 hardware you should press the Boot button and
hold down the F3 function key when the display shows icons. Again, you may get either the
Installer or the Network Executive. Simply select the Installer from the menu.

To boot 8010 hardware from the floppy, press the Reset and Alt B buttons on the front
panel. Release the Alt B button, but hold the Reset button until "0002" is seen. Then
relea;:5e the Reset button. With 6085 hardware you should press the Boot button and hold
down the F2 function key when the display shows icons.

The user will be prompted to logon if the Installer was booted from the network. This step
is skipped when booting from the floppy. Next, a menu of operations will be displayed.

XDE User's Guide A

This menu is called the "MAIN MENU". The user may select one of the the menu entries
by typing the number corresponding to the desired entry followed by a carriage return.

Each menu entry may have one or more options. The Installer will present these in a
second menu. If the user selects one of these options, then execution will begin. If however,
the user decides that this is not the correct menu entry, then the option "Return to MAl N
MENU" should be selected.

A.4 How to enter commands directly

The majority of our customers will interact with the Installer via the menu interface. This
mode of interaction is named MENU MODE. Another mode of interaction which allows
the user to enter commands directly is named COMMAND MODE. This mode is very
similar to the Othello interaction style, and is intended for use by developers and other
sophisticated users.

To ensure ease of use for our customers, the Installer defaults to MENU MODE. This
means that users must request access to COMMAND MODE. Two opportunities to do this
are provided. The first is at the logon prompt if booted from the network. The user should
enter a CONTROl-C or PROP·s-C. A reminder that this mode is for experienced users will
be displayed. The user will then be asked to enter a password. The password is
"IAcceptTheRisk." (Capitalization does not matter.) The second opportunity occurs at the
prompt following display of the MAIN MENU. At this point enter "911" followed by a
carriage return. The same warning will appear and the password must be entered.

Fine point: If some error occurs that the Installer believes the user is not able to deal with it will hang.

COMMAND MODE may be entered at this point by entering 911. Any other input is ignored.

MENU MODE may be entered from COMMAND MODE by executing the "Menu Mode"
command.

Othello also had a concept of commands contained within a file. This mode is also
supported by the Installer. These COMMAND FilES may not be executed from within
MENU MODE.

A.5 Compatibility with Othello 12.0

The Installer is upward compatible from Othello 12.0 with the following exceptions:

• Pup file transfer is not supported.

• The user interface has changed slightly. The DELETE key on the Large Format Display
keyboard generates a RUBOUT that now means delete the last character, NOT abort
the command. CONTROL-C is used to abort the command and CONTROL-X is used to
delete the entire line. This follows the pseudo-standard convention for these keys.

• Wizard mode has been removed. Some of the commands in this mode are available in
other utilities (such as EIDisk diagnostic) and have been removed from the Installer.
Any remaining Wizard mode commands now have a warning.

• Space may no longer be reserved for an Alto volume.

• The last cylinder of a disk is now always reserved for diagnostics.

A-3

A Installer

• The Installer requires "@CmdFile" where the file exists on the currently open file
drawer or floppy. A pathname is not accepted. That is, "@[Sky]<Fnx>Test>CmdFile"
is not accepted.

Fine point: Othello accepts this form for Pup file servers only.

• The file name extension ".Othello" is no longer accepted. The new extension is
". Scri pt".

A.6 Changed commands

The following Othello commands have been changed:

• LOGON now requires a fully qualified name, i.e., User:Domain:Org

• The "ECHO USER" command has been renamed "NS ECHO TEST"

• The "DELETE BOOT FILES" command has been removed and its functionality broken
into several new commands.

A.7 New commands

A-4

Several new commands were added. Some of these are specifically to support scripts for
customer installation. Some were added specifically to support installation of iNTERLlSP-O.
Finally, a few commands were added which may be useful either in scripts or command
mode. A summary of all available commands, sorted alphabetically and by function, is
provided in chapters 12 and 13.

Several of these new commands refer to script files. These files provide the information
used to create the menus presented in MENU MODE. The format of these files is
explained more fully in the section "How to write script files."

A.7.1 Script support

DELETE LISP MICROCODE FILE is a synonym for DELETE PILOT MICROCODE FILE command.

DELETE LISP SYSOUT FILE will delete a Virtual Memory file.

DISBlE ECHO is a synonym for the DONT ECHO command.

ENABLE ECHO is a synonym for the ECHO command.

ENABLE PAGE BREAK allows the user to watch what is happening without missing any
information. Following any user input, the Installer will display only as many lines as can
be displayed without loosing the first line following the input until the user signals that
slhe is ready to read more. Thus, during execution of a script it is possible that the user will
have to enter a Carriage Return in order to continue execution. However, since few scripts
output more than a few lines of commentary this is unlikely. During execution of a script
with ECHO enabled (during debugging) it is likely that the user will have to enter a CR
several times. In COMMAND MODE only the longest displays will be halted (for example
HELP).

XDE User's Guide A

DISABLE PAGE BREAK is the inverse of ENABLE PAGE BREAK.

IF·THEN·ElSE·ENDIF compound command allows limited decisions to be made which
determine commands to be executed.

REQUIRE FREE PAGES determines if the specified logical volume contains at least the
specified number of free pages. This is useful in scripts to decide if it will be possible to
install without running out of space.

A.7.2 LISP specific

COPY LISP FROM ANOTHER VOLUME copies the active part of a LISP Virtual Memory file
from one logical volume to another.

EXPAND LISP VIRTUAL MEMORY FILE grows the Virtual Memory file to a user specified
size.

LISP MICROCODE FETCH is a synonym for PILOT MICROCODE FETCH.

LISP SYSOUT FETCH fetches a Virtual Memory file.

START LISP sets the physical volume boot pointers to the specified volume, then "pushes"
the boot button.

A.7.3 Generic

ADD SWITCHES adds the specified switches to the set currently associated with the bootfile
on the specified logical volume.

DELETE BOOT FILE deletes the bootfile from the specified logical volume

DELETE DIAGNOSTIC MICROCODE FILE deletes the diagnostic microcode file from the
specified logical volume.

DELETE GERM FILE deletes the germ file from the specified logical volume

DELETE PILOT MICROCODE FILE deletes the Pilot microcode file from the specified logical
volume.

LIST SWITCHES lists the switches currently associated with the bootfile on the specified
logical volume.

SUBTRACT SWITCHES subtracts the specified switches from the set currently associated
with the bootfile on the specified logical volume.

TAPE OPEN instructs the Installer to prepare to read from the cartridge tape.

TAPE REQUEST causes the Installer to ensure that the specified tape volume is loaded and
opened.

Fine point: The TAPE OPEN and TAPE REQUEST commands are available in version 2.2, but not earlier versions.

A-5

A Installer

A.8 Script writer information

A-6

Sections 8 through 10 are intended for creators of scripts. Users who do not create scripts
will probably not find these sections to be useful.

This section will answer the following questions:

• What is a script file?

• How are script files found?

• What is the "Initial" command file?

Section 9 will provide:

• Example scripts

• Debugging information

Section 10 will describe:

• Available bootfiles

A.8.1 Background

Script Files are the backing for the MAIN MENU. That is, information from eaeh file is
used to construct the MAIN MENU. When one of the entries in the MAIN LVlENU is
selected, the corresponding script file will be processed. Each file contains one or more
named sections that the Installer will display in a second level menu. When the user
selects one of these, the commands that make up this section will be executed.

Script files are distinguished by their name. They may be stored on either a floppy disk,
cartridge tape or a file drawer. They have an extension of ".Script", ".DlightScript,"
".DlionScript", ·'.DoveScript", ".TriDlionScript" or ".KikuScript." When the Installer is in
MENU MODE it will search for all available script files. To do this, it first determines what
kind of hardware it is running on. The Installer then finds all files with" . script'" and the
extension appropriate to the hardware. For example, on Dove (6085) hardware it would
find all files ending with ".Script" and ".DoveScript". The file names, minus the extension,
make up the entries in the MAIN MENU. The entries are presented in the order they are
found on the file drawer, floppy disk or cartridge tape.

Fine point: Dlion, TriDlion, Dove and Kiku are internal names for hardware. Dlion describes 8010 workstations

and servers. TriDlion describes the large capacity Dlion servers. Kiku describes the a modified version of the Dlion

hardware built by our Fuji Xerox partner. Dove describes the 6085 workstation and Dlight describes the 8090

server.

A.8.2 Finding the scripts

The rules the Installer follows for finding script files also varies depending on where the
Installer is booted from. It may be booted from: the network, a floppy, a cartridge tape, or
the rigid disk. The rules are explained in detail below.

XD E User's Guide A

A.8.2.1 Booting from the network

When the Installer is downline loaded from a Boot Service it looks for the script files on a
file drawer. This drawer must be located on the file service that has an alias of
"Installation Server" registered in the Clearinghouse. The file drawer must be named
"Installation Drawer". This permits a separate Installation Drawer for each domain, or
several domains may point to the same one.

After the Installation Drawer is successfully found and opened, the Installer will search for
script files to use to construct the MAIN MENU. When the Installer is executing a script
script all files retrieved will be from the Installation Drawer. Thus no OPEN or DIRECTORY
commands are required in the scripts. The file drawer will remain open unless explicitly
closed using the CLOSE command or implicitly closed when a BOOT or QUIT command is
issued.

Fine point: The Installer keeps a file service connection open for 60 minutes after the last action, rather than the
default specified at the file service. This is because some operations may require more to complete than the file
service timeout period allows. If the connection is broken, for example by booting the system, the file service will
time out the connection after a few minutes.

If ME:NU MODE is reentered, or "Return to MAIN MENU" is selected in a second level
menu, then the current file drawer will be closed and the original file drawer will be
reopened. The Change Script Location command may be used to modify this behavior.
This command will cause the Installer to remember and use the currently open file drawer
as the location of the script files.

A.8.2.2 Booting from the floppy disk

When the Installer is booted from the floppy it opens the floppy disk currently in the drive.
The Installer will search for script files to use to construct the MAIN MENU. When the
Installer is executing a script all files will be retrieved from the currently open floppy. The
script file may request that a different floppy be loaded and subsequent files retrieved from
this new floppy. The command REQUEST FLOPPY is used for this purpose.

Fine point: The file service OPEN CONNECTION and DIRECTORY commands are not available when booting from
the floppy disk.

Any file written on the floppy using the AccessFloppy standard may be read by the
Installer. This standard supports files spanning multiple floppy disks. The file pieces must
be retrieved in order by the Installer. That is, once the first piece is retrieved from a floppy,
the next piece retrieved must be the second piece in the sequence. Normally the pieces are
on separate floppy disks.

Currently, XDE, Viewpoint and Network Services support AccessFloppy. In addition, the
Viewpoint Floppy Tool will also write an entire directory, for example an Application
Folder,onto a floppy. A superset of AccessFloppy is used in this case. The Installer also
handles this extension.

Whenever you select "Return to MAIN MENU" or reenter MENU MODE, the Installer will
request that the original floppy be reloaded. The CHANGE SCRIPT LOCATION command
may be used to cause the Installer to remember and use the current floppy disk as the
location of the script files. This is very useful when you need to use an alternate location

A-7

A

A-8

Installer

for storing scripts and / or data files. The primary use is in the Initial Command File
(described in Section 8.3),

A.8.2.3 Booting from the cartridge tape

When the Installer is booted from the cartridge tape it opens the tape currently in the
drive. The Installer will search for script files to use to construct the MAINMENlJ.
Whenthe Installer is executing a script all files will be retrieved from the currently open
tape. The script file may request that a different tape be loaded and subsequent files
retrieved from this new tape. The command TAPE REQUEST is used for this purpose.

Any file written on the tape using the AccessFloppyTape standard may be read by the
Installer. Currently, XDE and Network Services support AccessFloppyTape.

Whenever you select "Return to MAIN MENU" or reenter MENU MODE, the Installer will
request that the original tape be reloaded.

A.8.2.4 Booting from the local disk

If the Installer is booted from the rigid disk it will ask if the user if they would like to use
the scripts stored on the Installation Drawer. If the user answers yes then the Installer will
behave as though booted from the network. Otherwise, it will come up in. COMMAND
MODE and behave as Othello.

A.8.3 Initial command file

When the Installer begins to search for script files, if it finds a file named "lnitiaI.Script" it
will execute it and then resume searching for the data files with which to construct the
MAIN MENU. The user is not given any indication that the Installer is executing this file.
The Initial Command File is a command file, rather than a script file. That is, the file is
not parsed and a submenu constructed for presentation to the user. Rather all the
commands in the file are executed immediately.

It recommended that yo':! NOT use this facility.

A.8.4 Creating floppy disks

There are two types of floppy disks supported-8 inch and 5t inch. The 8 inch is used on the
8010 Workstation and Server, and the 5t inch is used on the 6085 Workstation.

• The bootable floppy containing the Installer and required microcode and Ger"m files is
created using the MakeDlionBootableFloppy or MakeDoveBootableFloppy tools. The
Diagnostic microcode is unnecessary and may be omitted. Because the Installer
bootfile is too large to fit on the 5t inch floppy for the 6085, it is split across two floppy
disks. Instead of the Installer bootfile, the SpanFloppys bootfile is placed on the first
floppy. The remainder of the Installer and the scripts are placed on the second floppy.

• All bootfiles, microcode, germ and script files must be written using the XDE
FloppyTape commands or the Viewpoint Floppy Tool with the "Output File Format" set
to "XDE". ViewPoint applications must be written by the Viewpoint Floppy Tool with
the "Output File Format" set to "ViewPoint".

XDE User's Guide A

• Script files must be contained on one floppy disk. They should be on the bootable floppy
if possible. If this is not possible, then an Initial Command File should be on the
bootable floppy which requests that the floppy containing the scripts be loaded.

A.8.5 Creating cartridge tapes

Cartridge tapes are used on the 8090 Server and the 6085 workstation. There is a
difference between tapes for these two versions-tapes for the 8090 contain an Installer
bootfile, microcode and Germ while the 6085 version does not. This is because the 8090
Installer is booted from the tape while the 6085 tape is read by an Installer booted from
floppy disks. When you are creating a tape for a 6085 skip the first bullet below. Instead,
build a SpanFloppy set (described in Section 8.4) and proceeed with the second bullet
below.

• A bootable tape for the 8090 containing is made using the XDE FloppyTape
MakeBootTape command. It contains the Installer and required microcode and Germ
files, but the Diagnostic microcode is unnecessary and may be omitted.

• All bootfiles, microcode, germ and script files must be written using the XDE
FloppyTape commands or the Viewpoint Floppy Tool with the "Output File Format" set
to "XDE". Any ViewPoint applications must be written by the Viewpoint Floppy Tool
with the ~'Output File Format" set to /·ViewPoint".

Fine point: Cartridge tapes are not supported by version 2.0 of the Installer.

A.9 How to write script files

A.9.l Overview

Script files now allow non-ASCII characters to be used for any text string that would be
seen by the user. This means that script files which contain non-ASCII characters must be
created in Viewpoint as a SimpleTextDocument. The file must be written onto the floppy
disk (or tape) using the FloppyTool with the "Output File Format" (on Floppy Icon property
sheet) set to XDE. Script files that do not contain any non-ASCII characters can be created
and written onto the floppy disk (or tape) from XDE.

Any argument to a command can be separated from the command name by carriage
returns as well as blanks. Actually, because some arguments (strings) may themselves
contain blanks, it is usually safer to use cariage returns in a script file. The carriage
return does not terminate the command, all arguments must be present for the command
to be terminated. This may be misleading so that you try to insert a comment following
any carriage return. This will cause an error.

When translating a script file, be careful to only change text strings that the user will see -
and not command names. That is, menu names (preceeded by the "\" delimiter) and the
argument to the following commands MAYbe translated: COMMENT, CONFIRM and
REQUIRE FREE PAGES. The script file name itself may also be translated, however, be
careful to retain the extension untranslated (i.e., "DlionScript", "DoveScript", etc.)

A.9.2 Examples

A-9

A

A-iO

Installer

The main difference between COMMAND and MENU mode is that any confirmations will
be automatically confirmed in MENU MODE. For example, ERASE requires confirmation
before proceeding. However, any questions that require a YES/NO response must still be
answered. The first example script file contains one of these.

Defaults may be taken by inserting a space, Carriage Return or "$" (dollar sign). If a dollar
sign is used it may have trailing spaces. For clarity, it is recommended that the dollar sign
be used.

The first sample script contains three options and several lines of description. The options,
f'lnstall Germ", fflnstall New Message File" and "Start System with Remote Debugging", all
begin with the delimiter "\". The end of the file is marked by the 'f\" followed by a Carriage
Return.

Code comments which describe the action of the script begin with "--". Also, commands are
capitalized to make reading easier.

-- Sample Script #1

-- First option within this script
\Install Germ
COMMENT Ready to Install Germ
CON FI RM Ready?
-- Make sure that the user really wants to do this.

PHYSICAL ROO Y
-- Do a Physical Volume scavenge to be sure it is in good
-- shape. Note the "Yes" response. It is not a confirmation
-- but rather an answer to "Repair?".

ONLINE RDO
-- Bring the drive online. The scavenge leaves it offline.

COMMENT Installing Germ ...
-- Give the user some feedback.

GERM User Dove.germ Y
-- Install the germ file on user. The "Yes" is in answer to
-- "Shall I also use this for the Physical Volume?"

COMMENT Completed successfully
-- Let the user know that this step completed ok.
-- Second option within this script

\Install New Message file

COMMENT Ready to install new message file.
CONFIRM Ready?

PHYSICAL ROO Y
-- Do a Physical Volume Scavenge to be sure it is in good shape.

XDE User's Guide

ONLINE ROO
-- Bring ROO online.

DATA User NewMessageFile
-- Fetch the data file "NewMessageFile" to the "User" logical volume.

COMMENT Completed succesfully
-- Let user know that this step completed ok.
-- Third option within this script

\Start System with Remote Debugging

COMMENT Ready to start with remote debugging enabled.
CONFIRM Ready?

SET BOOT User Oy5\365\350
-- Set the switches to be used when the User volume is booted.

A

--These switches will be remembered until changed by another SET BOOT SWITCHES
cmd.

QUIT
-- Physical volume boot \

A.9.3 Debugging information

Normally when the Installer is executing a script file it does not show the user what is
actually happening. This would confuse the user. However, when you are debugging a
script it is necessary that the commands, their results and any messages be displayed. The
ENABLE ECHO command enables and the DISABLE ECHO command disables this display.
These commands are normally used while the user is in COMMAND MODE. The ENABLE
PAGE BREAK and DISABLE PAGE BREAK may also be useful.

A-II

A

A-12

Installer

Below is another sample script. This one demonstrates how to create a physical volume
containing several logical volumes whose sizes depend upon the size of the disk.

-- Sample Script #2

\Partition for ViewPoint and a Small CoPilot Volume
COMMENT
COMMENT This option should not be used to partition disks smaller than 20mb.
COMMENT (They are too small for both ViewPoint and XDE.)
COMMENT
COMMENT This option partitions as follows:
COMMENT 20mb: Scavenger 2100 CoPilot 15000 User 14200 +
COMMENT 29mb: Scavenger 2600 CoPilot 15000 User 25596
COMMENT 40mb: Scavenger 3300 CoPilot 15000 User 44400 +
COMMENT 42mb: Scavenger 3400 CoPilot 15000 User 45376
COMMENT
COMMENT WARNING - PARTITIONING A SYSTEM DISK DESTROYS ALL CONTENT
CONFIRM Continue?
PAUSE 4
-- Now wait a few seconds to give the user a chance to think about what s/he has
done
-- before requesting a second confirmation. If still yes, then the disk will be wiped
and
-- reparti~ned. User had better be sure.

COMMENT SECOND CONFIRMATION REQUIRED

CONFIRM Continue?

PHYSICAL RDO Y
-- Scavenge the Physical Volume. The "Y" says it is OK to repair the volume.

ONLINE ROO
-- Bring the drive online.

-- Olion 10mb
DEFINE 160002
Scavenger
2100
CoPilot
50

-- On a 10MB disk, the requirements of ViewPoint do not leave enough spacE~
-- for a usable Copilot volume. Therefore, the smallest possible volume is reserved
for
-- Copilot. (You can not create a volume smaller than 50 pages.) If you attempt to
store too
-- much information on the Copilot volume then an error will be reported to the
user.

-- Dove 20mb
DEFINE 30000 2

XDE User's Guide

Scavenger
2100
CoPilot
15000

-- Dove 40mb
DEFI N E 60000 2
Scavenger
3300
CoPilot
15000
-- Dlion 42mb
DEFINE 65500 2
Scavenger
3400
Copilot
15000

CREATE RDO XOE 3
Scavenger $ normal
Copilot $ debugger
User $ normal

A

-- We have just created a physical volume named "XOE" on the disk 'mounted on
drive ROO.
-- It contains three logical volumes named "Scavenger", "Copilot" and "User".
-- They are of types, "Normal", "Debugger" and Normal" I respectively.

-- The sizes of the "Scavenger" and "Copilot" volumes were defined via the earlier
-- DEFINE VOLUME SIZE commands.
-- The "User" volume will be allocated all remaining pages.
-- NOTE: Dollar signs were used to cause the default value defined earlier to be
used.

CHECK ROO Y
-- Now check the disk for bad pages. If any are found, add them to the Bad Page
Table.
-- CAUTION: You should add bad pages only if the disk has just been partioned or
erased.

COMMENT Disk partitioned
-- We have finished partioning the disk. Tell the user

A.IO Available bootfiles

There are several bootfiles available. Different versions exist for Dove, DLight, Dlion and
Dlion hardware with large capacity disks. Due to memory and floppy disk capacity
limitations, a version is provided which does not include support for accessing NS File
Services. Therefore, there is a requirement that all hardware must have a floppy disk or

A-13

A Installer

cartridge tape drive or must support Ethernet and have sufficient memory for the larger
bootfile.

The naming conventions are:

InstallerFloppy* .boot - Floppy retrieval is supported. NS File Service retrieval is not
supported.
InstallerNS* .boot - Floppy and NS File Service retrieval are supported
InstallerTape* .boot - Tape and Floppy retrieval are supported.
Installer*Dove.boot - This bootfile is for 6085 (Dove) hardware.
Installer*Dlight.boot - This bootfile is for 8090 (DLight) hardware
Installer*Dlion.boot - This bootfile is for 8010 (Dlion) hardware.
Installer*TriDlion.boot - This bootfile is for 8010 (Dlion) hardware with large eapacity
drives
Installer*Kiku.boot - This bootfile is for 8080 (Kiku) hardware. (Provided by Fuji
Xerox)

Thus, some of the bootfiles available are:

InstallerFloppyDlion.boot
Installer NSDove. boot
InstallerNSTriD lion. boot
InstallerTapeDlight.boot

A.II Summary of commands (functional listing)

A-14

In this command summary BNF is used to describe the syntax. Several nonterminals are
used-some of which are intuitive to users familiar with Othello, while the less familiar
ones are defined here.

<bootfile number> : = <octal integer>
< octal integer> : = ...

<drive name> : = RD <integer>
<integer> : = ...

This refers to a drive and the pack physically mounted on it. Valid names consist of "RD"
followed by a numeral.

<file name> : = <string> I <directory> <string>
< directory> : = < directory> < stri ng > / I < stri ng > /

<logical volume name> : = <drive name> : <string> I <string>

This refers to a subdivision of a physical volume. The name consists of the name of the
logical volume preceded by an optional drive name. If a drive name is specified then the
logical volume must reside on the physical volume on named drive. If no drive name is
specified then the first drive, "RDO" is assumed.

<pattern> : = <pattern> <pattern chars> I EMPTY
< pattern chars> : = < al phanumeric chars> I # I *

XDE User's Guide A

A pattern is useful when it is necessary specify zero or more files. This definition of a
pattern is drawn from NSFiling, which is very similiar to the wildcarding mechanism in
the Tajo Executive.

<physical volume name> : = <drive name> : <string> I <string>
<string> : = ...

This refers to the physical volume contained on a disk pack currently mounted on a drive.
The name consists of the physical volume name preceded by an optional drive name. The
drive name and the physical volume name are separated by a colon. If a drive name is
specified then the physical volume must reside on the named drive. If no drive name is
specified then the first drive, "RDO" is assumed.

<switches> : = <switches> <switch chars> I EMPTY
<switch chars> : = <alphanumeric chars> I <octal 'switch chars>
<alphanumeric chars> : =
<octal switch chars> : = \ <octal integer>

Each switch may be represented by a single character, or as a set of 3 octal characters
preceeded by a '\ character. Multiple switches may be specified by simply stringing them
together until delimited by a space or carriage return.

A.Il.I Booting commands

ADD SWITCHES <logical volume name> <switches>

This adds the specified switches to the default switches for boot file on the specified
logical volume.

BOOT <logical volume name>

This will invoke the boot file on the specified Logical Volume using the initial
microcode, microcode and germ files currently running under the Installer.

ETHER BOOT < bootfile number>

Request that the boot file corresponding to the bootfile number be downline loaded

QUIT

This will cause the Installer to clean up after itself, and then (programmatically) press
the boot button. This will cause the system to begin using the initial microcode,
microcode, germ and physicai volume boot file currently installed.

SET BOOT FilE DEFAULT SWITCHES <logical volume name> <switches>

This sets the default switches for boot file on the specified logical volume.

START LISP < logical volume name>

This will set the physical volume boot pointers to the specified logical volume and then
execute the QUIT command.

A-15

A

A-16

Installer

SUBTRACT SWITCHES <logical volume name> <switches>

This removes the specified switches from the default switches for boot file on the
specified logical volume.

SET DEBUGGER POINTERS <debuggee logical volume name> <debugger logicall volume
name>

This command takes the information necessary for Pilot to find the debugger and
writes it into the debuggee boot file.

When this command has been given, the debuggee boot file will continue to use the
specified debugger until the debuggee boot file is erased or overwritten or the
information is cleared.

The pointers that were written remain valid until you next erase the debugger volume
, or fetch a boot file other than one which supports world swap debugging into the

debugger volume.

If these pointers have not been set up or are invalid, an early debugger call stops with
an error in the Maintenance Codes.

Fine point: The SeT OEBUGGER POINT~RS command allows one to have a client and a debugger on volumes of
the same type. However, if any other systems are rooted on volumes of the same type 'as an installed
debugger, it is necessary to always boot them (and a good practice to boot the debugger itself) with the open­
system-volume-only "%» boot switch. Otherwise, running one of the other boot files will delete the temporary
files out from the installed debugger. leading to a Disk Label Check when the debugger is next used.

SET PHYSICAL VOLUME BOOT FILES < logical volume name>

This command is used to designate the boot, diagnostic microcode, microcode, and germ
files to be associated with a physical volume. The Installer will ask questions to
confirm which of the files located on the volume should be designated to be used when a
boot-button boot occurs. Whenever any of these files are replaced this command should
be reexecuted.

A.l1.2 Control commands

@ <file name>

This will cause the text specified command file to be processed as if it were input to the
Installer. During execution all confirmation is suppressed, therefore command files
should not contain any answers to "Are you sure?"

CHANGE SCRIPT LOCATION

Allows the user to change where the script files come from. The Installer will
remember the currently open floppy disk or file drawer location and search it for script
files. The Installer will then display any files found in the MAIN MENU. Subsequently,
when the Installer needs to search for the script files it will examine the remembered
location. This command allows the user to use an alternate set of scripts.

COMMENT <string>

XDE User's Guide A

This command displays the argument string. This is the ONLY feedback the Installer
gives to the user while executing an option unless echoing has been enabled.

CONFIRM <string>

This command displays the argument string to the user, and then asks the user to
answer "Y" or ·'N". If tty" is entered, then the script will continue to be processed. IfHN"
is entered, then the script will be terminated. This command is not useful except in
script or command files.

DEFINE VOLUME SIZE <size of disk> <number of volumes> <name of volume> <size
of volume>

This command is used to define the default size of a logical volume, based upon disk
size, during a CREATE PHYSICAL VOLUME command. This command is used to create a
matrix of predefined volume sizes. It is indexed by drive size and volume name. This
matrix is examined whenever the CREATE PHYSICAL VOLUME command is executed. If
a logical volume name is specified which has been defined in the matrix, then the value
associated with the disk size (rather than disk type) is used as the default volume size.
The first argument is the size of the disk in pages. The next argument is the number of
logical volumes which will be defined. The third and fourth arguments are repeated for
each logical volume. They specify the name of the logical volume and the desired size.

This command may be used multiple times to define sizes for multiple disk sizes.

DISABLE ECHO

This command disables echoing of commands in a script or command file.

DISABLE PAGE BREAK

This command disables the practice of stopping when the display has filled with output
since the last user input and requiring user acknowledgement to continue.

DONTECHO

This is a synonym for the DISABLE ECHO command.

ENABLE ECHO

This command enables echoing of commands. That is, the Installer will display each
command, its arguments and any results messages as the command is executed. Only
commands found in Script or Command files are echoed.

ENABLE PAGE BREAK

This command enables the practice of stopping when the display has filled with output
since the last user input and requiring user acknowledgement to continue.

ECHO

This is a synonym for the ENABLE ECHO command.

A-17

A

A-18

Installer

MENU MODE

This causes the Installer to enter Menu mode and present the MAIN MENU to the user.

PAUSE <number of seconds>

This command will cause a pause of the specified number of seconds before continuing
execution. This command is usuallyused between two CONFIRM commands to give the
user time to reflect on a major action.

REQUIRE FREE PAGES <logical volume name> <size> <error message text>

This command examines the specified logical volume and determines if the number of
free pages requested are available. If so then execution continues. Otherwise, the
error message text will be printed and execution terminated.

A.l1.3 Fetch commands

DIAGNOSTIC MICROCODE FETCH <logical volume name> <file name>

The specified diagnostic microcode file will be retrieved and installed on the specified
logical vo I ume.

DATA FETCH <logical volume name> <file name>

The specified data file will be retrieved and written to the specified logical volume. The
data file will be picked up by the boot file on this volume and processed.

FETCH BOOT FILE <logical volume name> <file name>

This command will retrieve a boot file onto the logical volume and make it the boot file
for the logical volume. The boot file can then be invoked using the BOOT comm,and.

GERM FETCH <logical volume name> <file name>

This command will retrieve and install the Germ file onto the logical volume.

INITIAL MICROCODE FETCH <drive name> <file name>

This command will fetch and install the Initial microcode onto the physical volume
mounted on the drive specified. ~ote: The drive must be brought ONLINE before this
command can be used.

LISP MICROCODE FETCH <logical volume name> <file name>

This is a synonym for the PILOT MICROCODE FETCH and is only available on Dove
hardware.

LISP SYSOUT FETCH <logical volume name> <file name>

This command fetches a VirtuallVlemory File. On Dlion hardware this file is installed
as Diagnostic Microcode, but on Dove hardware it is installed as a Germ.

XDE User's Guide A

PILOT MICROCODE FETCH <logical volume name> <file name>

This command will retrieve the microcode file onto the logical volume.

RENAME FETCH <logical volume name> <source file name> <destination file name>

This command is a variant of the DATA FETCH command. It is identical, except the file
retrieved is renamed to the destination name.

ROOT FETCH <logical volume name> <file name>

This command is similar to DATA and RENAME FETCH. It installs the data file directly
into the Volume Root Directory on the specified logical volume. The file type used
when entering the file into the directory is derived from the type of the data file being
retrieved.

A.l1.4 Information commands

DESCRIBE PHYSICAL VOLUME

This command will list the contents of all physical volumes currently online. This
includes all the logical volumes, and their starting disk page and size. It also includes
all boot, germ and microcode files installed on each logical vol ume.

LIST BAD PAGES

This command describes the pages that have been entered into the BAD PAGE TABLE.
The pages listed are decimal page numbers. By using the DESCRIBE PHYSICAL
VOLUME command, it is possible to determine within which logical volume the bad
page occurs.

LIST BOOT FILES <logical volume name>

This command lists all boot, germ and microcode files installed on the specified logical
volume.

LIST DRIVES

This command lists the drives currently connected to this system.

LIST FILES < pattern>

This command will list the files on the currently open file drawer or floppy which
match the pattern. The pattern may contain wild card characters.

LIST LOGICAL VOLUMES

This command will list all the logical volumes on all physical volumes currently online.

LIST PHYSICAL VOLUMES

This command will list all the physical volumes currently online.

A-19

A

A-20

Installer

LIST SWITCHES < logical vol ume name>

This command will list the default switches set on the bootfile on the specified logical
volume.

NS ECHO TEST <host number> I <fully qualified name>

This test is used to inquire about the state of the local Ethernet. During the test, ''1'',
"#" and "7" are printed; 'T' indicates a successful echo, "7" indicates timeout waiting
for the echo, and "#" indicates reception of an unexpected packet. When a packet is
returned late you will often see "7#", The test is run until you press the STOP key.

ROUTI NG TABLES

This command will show the NS network routing tables. The table will show the
network numbers for all networks reachable from the network to which the
worksationlserver is connected. This table also shows how many hops are required to
reach each network.

TIME

This command displays the time of day.

A.I L5 Volume commands

CHECK DRIVE <drive name> < Record bad pages yes/no question>

This will read every page on the disk and report any bad pages found. These bad pages
may optionally be added to the BAD PAGE TABLE. This should not be done lightly,
because they cannot be removed without using a Disk Diagnostic tool. If the pages are
put into the BAD PAGE TABLE, then any data contained on them will be lost. Also, the
bad page may be part of the file system and may cause massive errors. We recommend
that bad pages only be added to the BAD PAGE TABLE if there is no data worth saving.

Fine Point: In scripts, it is recommended that a "$" be used instead of the drive name. For example, "CHECK
$" instead of"CHECK RDO".

CREATE PHYSICAL VOLUME <drive name> <physical volume name> <number of
volumes> <volume name> <size> <type = normal, debugger, debuggerDebugger,
nonPilot>

This command is used to configure the disk. A physical volume is first created, and is
then divided into logical volumes. You may specify the name, size in pages, and type
for each logical volume. The size may be derived from information built up using the
DEFINE VOLUME SIZE command.

Fine Point: In scripts. it is recommended that a "$" be used instead of the drive name. For example,
"PHYSICAL $" instead of " PHYSICAL ROO".

OFFLINE <drive name:physical volume name>

XDE User's Guide A

When processing of a pack is complete, the volume may be taken offline by using this
command.

Fine Point: In scripts, it is recommended that the volume name be used rather than the drive name. For
example. "OFFLINE Services" instead of "OFFLINE RDO".

ONLINE < drive name>

This command will bring the physical volume mounted on the specified drive online.
Certain types of checks will be performed on the drive during this process. If any
problems are noted, they will be reported to and the process aborted. This must be done
before the Installer can use the volume.

Fine Point: In scripts, it is recommended that a "$" be used instead of the drive name. For example,
"ONLINE $" instead of "ONLINE RDO".

SET HARDWARE CLOCK UPPER LIMIT <date>

Set last believable hardware clock date for boot file on logical volume

A.l1.6 Recovery commands

DELETE BOOT FILE <logical volume name>

This command will delete the boot file on the specified logical volume.

DELETE DATA FILES <logical volume name>

This will delete all the data files installed using DATA FETCH or RENAME FETCH.

DELETE DIAGNOSTIC MICROCODE FILE <logical volume name>

This command will delete the diagnostic microcode file on the specified logical volume.

DELETE GERM FILE <logical volume name>

This command will delete the germ file on the specified logical volume.

DELETE LISP MICROCODE FILE <logical volume name>

This is a synonym for DELETE PILOT MICROCODE FILE. It is only available on Dove
hardware.

DELETE LISP SYSOUT FILE < logical vol ume name>

This command will delete the Virtual Memory (SYSOUT) file from the specified logical
volume.

DELETE PILOT MICROCODE FILE < logical volume name>

This command will delete the Pilot microcode file on the specified logical volume.

DELETE TEMPORARY FILES < logical volume name>

A-21

A

A-22

Installer

This will delete all the temporary files on the specified logical volume.

ERASE <logical volume name>

This command will erase the contents of the specified logical volume. All of its pages
(except pages in the Bad Page Table) will be marked free.

PHYSICAL VOLUME SCAVENGE <drive name>

This command puts the physical volume back in shape so it can be brought online. This
has two modes of operation: check and repair.

SCAVENGE <logical volume name>

This rebuilds the Pilot data structures on the volume and marks all known bad pages
busy. Scavenging a volume may take a long time. The physical volume will be left
omine.

A.II.7 Data Source commands

CLEARINGHOUSE <domain> <organization>

This command is used to define the default domain and organization to be used for the
LOGON and OPEN CONNECTION commands.

CLOSE

This will close any currently open file service connection, floppy disk or tape.

DIRECTORY < path name>

This command is used to define the default directory to be used when listing or
retrieving files from a file service.

FLOPPY OPEN

This command will close any file service connection or cartridge tape currently open
and prepare to read from the floppy disk.

LOGON < fully qual ified user name> < password>

This command will acquire credentials to be used in accessing any file services. The
required arguments to this command may not be included in a script or command file.

OPEN CONNECTION <file service name>

This will open a connection to the specified file service or workstation running
MFileServer. If any other connection or floppy disk or tape is currently open, it will be
closed first.

REQUEST FLOPPY < floppy name>

XDE User's Guide A

This command is used when it is necessary to have a specific floppy disk loaded. The
installer will examine any floppy disk currently in the drive and determine if its name
matches the name specified. If so, then execution will continue. Otherwise, the
Installer will ask that thecurrent disk be replaced with the proper one. When using
this command the CLOSE and FLOPPY OPEN commands are not necessary.

TAPE OPEN

This command will close any file service connection or floppy disk currently open and
prepare to read from the cartridge tape.

TAPE REQUEST <tape name>

This command is used when it is necessary to have a specific cartridge tape loaded. The
installer will examine any tape currently in the drive and determine if its name
matches the name specified. If so, then execution will continue. Otherwise, the
Installer will ask that the current tape be replaced with the proper one. When using
this command the CLOSE and TAPE OPEN commands are not necessary.

A.l1.8 Other commands

?

This command will cause the Installer to list all the tokens which can be matched. This
may be used anytime the Installer prompts for input .

• - <string>

This command)s used to add descriptive comments to a script or command file. When
this command is executed, nothing happens.

HELP

This command is used to get a one line description of all available commands.

COPY LISP FROM ANOTHER VOLUME <destination logical volume name> <source
logical volume name> <size>

This command will copy the LISP Virtual Memory File (SYSOUT) from the source
logical volume and store it on the destination logical volume. It will expand the
Virtual Memory File to the size specified.

EXPAND LISP VIRTUAL MEMORY FILE <logical volume name> <size>

This command will expand the LISP Virtual Memory FIle (SYSOUT) to the specified
size.

IF <expression> THEN <commands> ENDIF

IF <expression> THEN <commands> ELSE <commands> ENDIF

A-23

A Installer

This compound command allows the script writer to query several builtin variables
concerning the state of the machine and perform commands appropriate to the. state.

The IF command accepts an expression of the form:

Expression:: = VariableName Relation Integer

VariableName :: = Booted From Net. Booted From Floppy, Control StoreSi ze,
DlionHardware, DoveHardware, DaisyHardware,
DaylightHardware, KikuHardware, TriDlionHardwClre,
TRUE, FALSE

Relation:: = #, =, <, >, < =, > =

Integer:: =

If the result of the expression is TRUE then all commands following the THEN command
will be executed until either an ELSE or ENDIF command is found. If an ELSE command
is found then all commands until the ENDIF command will be skipped. Should the
result be FALSE then the ELSE branch commands will be executed. The ENDIF command
terminates this compound command.

All variables, except ControlStoreSize, return 0 or 1 (False or True). ControlStoreSize
actually returns the size (in Kbytes) of the control store bank. Thus, a ControlStore of
4KB would be returned as 4, 8KB as 8, etc.

Fine point: Do not include THEN, ELSE or ENDIF in comments following an IF command orthe Installer's parser

can become confused and terminate execution.

Fine point: Daisy hardware is no longer supported, but "Daisy Hardware" remains for backwards

compatibility.

POWER OFF

This will execute System.PowerOff This mayor may not actually power down the
system depending upon the hardware.

A.12 Alphabetical listing of commands

A-24

The Installer does not require the complete command name be entered before it is able to
identify the command. That is, if a multipart command can be identified from the first
word/token then it is unnecessary to enter the remainder. In the summary below, the
tokens needed to identify the command are in BOLD.

@- Run command file
? - Tell which tokens are valid at this point.
Add Switches - Adds to the default switches for boot file on volume
Boot- Boot From Logical Volume
Change Script Location - Invalidates the location of script files and displays 'Scripts at
the current location.
Check Drive - Scan drive for unreadable pages
Clearinghouse - Set defaults for Clearinghouse

XDE User's Guide

Close - Close currently open connection or floppy
Comment - Displays commentary text to the user
Confirm - Requires the user to confirm further action
Copy Lisp From Another Volume - what else can be said?
Create Physical Volume - Write new physical and logical volumes (old contents lost)
Data Fetch - Fetch data from source and store it on the rigid disk
Delete Boot File - Delete the boot file from volume

A

Delete Data Files - Delete files installed using DATA FETCH or RENAME FETCH cmds
Delete Diagnostic Microcode File - Delete the diagnostic microcode file from volume.
Delete Germ File - Delete the Germ file from volume.
Delete Lisp Microcode File - Delete the Lisp microcode file from volume.
Delete Lisp Sysout File - Delete the Lisp sysout file from volume
Delete Pilot Microcode File - Delete the Pilot microcode file from volume.
Delete Temporary Files - Delete Temporary Files
Describe Physical Volumes - Describe online physical volumes
Define Volume Size - Used to define the default size of logical volumes, based upon
disk size.
Diagnostic Microcode Fetch - Fetch and Install Diagnostic Microcode
Directory - Set Default FTP directory
Disable Echo - Turns off echo for scripts
Disable Page Break - Turns off page break
Dont Echo - Turns off echo for scripts
Echo - Turns on echo for scripts
Enable Echo - Turns on echo for scripts
Enable Page Break - Turns on page break
Erase - Erase Logical Volume
Ether Boot - Load another program over the Ethernet
Expand Lisp Virtual Memory File - grows the file to a user specified size.
Fetch Boot File - Fetch and Install Boot File .
Floppy Open - Prepare to read files from floppy
Germ Fetch - Fetch and Install Germ File
Help - Give a one line description of all commands available.
Initial Microcode Fetch - Fetch and install initial microcode
List Bad Pages - List known bad pages on Pilot volume
List Boot Files - List boot files on Pilot volume
List Drives - List Drives
List Files - List files matching pattern on open floppy or file drawer.
List Logical Volumes - List Logical Volumes
List Physical Volumes - List Physical Volumes.
List Switches - List boot switches set on specified logical volume.
Logon - Enter user name & password
Menu Mode - Returns to Menu mode from Command mode
NS Echo Test - Test the net by echoing to a specific host
Offline - Bring physical volume offline
Online - Bring drive online
Open Connection - Open connection to file service
Pause - Wait before continuing processing of the script
Physical Volume Scavenge - Scavenge physical volume
Pilot Microcode Fetch - Fetch and Install Pilot Microcode
Power Off - Execute System.PowerOff
Quit - Push the boot button
Rename Fetch - Data Fetch with rename of destination

A-25

A Installer

Request Floppy - Request a specified floppy disk be loaded. Also opens the floppy.
Require Free Pages - If specified number of pages are not free on the volume then
aborts script.
Root Fetch - Install data file in Volume Root Directory
Routing Tables - Show NS network routing tables
Scavenge - Scavenge Logical Volume
Set Boot File Default Switches - Set default switches for boot file on volume
Set Debugger Poi nters - Set up poi nters to debugger for vol ume
Set Hardware Clock Upper Limit - Set last believable hardware clock date for boot file
on logical volume
Set Physical Volume Boot Files - Set Physical Volume Boot Files
Start Lisp - Sets the physical volume boot pointers to the volume and pushes the boot
button.
Subtract Switches - Subtracts from default switches for boot file on volume
Tape Open - opens the currently loaded cartridge tape
Tape Request - Request a specified cartridge tape be loaded. Also opens the tape.
Time - Display time of day

A.13 Building nationalized installers

A-26

The Installer release contains several other utilities in addition to the Installer itself.
Each is a UtilityPilot client, is Multinational, shares data files with and is organized along
the lines of the Installer. Because of this, only the Installer will be described. Consult
SimpleNetExecTop.df, SetTimeTop.df and SpanFloppys.df files for more details.

A.13.1 Building the Installer

The Installer consists of Installer code, a PilotKernel, Services Stubs, misc. support code
and several data files. Anyone piece may change and require you to rebuild the Installer
bootfile or floppy or tape containing the piece. For this reason the process of building the
Installer is divided into three levels-designed to minimize the amount of rebuilding effort.

A.13.1.1 Top level

When creating a new nationality Installer, you may need to build new message, keyboard
or font files. To do this, you will need to bringover InstallerTop.df. You will use the same
tools as are used when building message, keyboard or font files for Viewpoint, however,
different options may be used. Detailed instructions are given in InstallerTop.cm.

XDE User's Guide A

Depending upon the type of Installer bootfile that these files are to be part of, different
approaches will be taken. These are summarized in the table below.

Boot Device Data File Packaging Bootfile to be Used

Network Bou nd into bootfi I e InstallerNS* .boot

8in. Floppy Bound into bootfile InstallerFloppy* .boot

Siin. Floppy Disk Written onto floppy disk SpanFloppy* .boot

Cartridge Tape Bound into bootfile InstallerTape*. boot

When building 5i" floppies, the SpanFloppy bootfile is placed on the bootable floppy and an
Installer BCD and data files are written onto a second floppy. To do this, Bringover
SpanFloppys.df and follow the instructions in SpanFloppylnstaller.doc and
SpanFloppys.cm.

A.13.1.2 Middle level

When the PilotKernel changes you will need to bringover and rebuild InstallerMiddle.df.
InstallerMiddle.cm contains detailed information on what actions to take. Next, you will
need to rebuild InstallerTop.df (Top Level above).

This step must also be done if the Services stubs or BWS support pieces change. These
pieces rarely change and usually results in a major release by development. This step
should never need to be performed by Rank Xerox or Fuji Xerox.

A.la.1.3 Bottom level

When Installer code must be changed, or new messages added to the messages files, then
you should bringover and rebuild InstallerBottom.df. InstallerBottom.df contains all the
sources for the Installer. It also contains the implementations for the message files that
will be brought over by InstallerTop.df for rebuilding.

InstallerBottom.cm describes the interfaces and implementations. The various
configuration files describe how the pieces are assembled. In general, there is a core of
control and support modules which command and FTP implementation modules are
plugged into. It is very easy to add new command or FTP implementations - the
conventions are described in great detail in the various interfaces.

There should never be a need for this step to be performed by anyone except a Xerox
developer.

A-27

A Installer

A-28

B

Getting started/Operations guide

This appendix discusses some general information about the configuration of a workstation
into several distinct environments, the booting process for these environments and
recovery procedures to follow when problems occur. It is assumed that you already have a
workstation configured with at least one XDE volume and Viewpoint. All the requisite
Viewpoint and XDE environment software is installed and initialized. Pressing the boot
button should take you to the XDE environment. If this is not the case, you should refer to
the Release Document or Installation Guide instructions for partitioning and installing
your workstation.

B.l Disk configuration

B.1.1 Physical and logical volumes

A good place to begin is with a brief description of how your workstation is configured.
Briefly, a volume is an array of disk pages. The local storage device, usually a rigid disk, is
known as a physical volume. A physical volume can be divided into one or more logical
volumes which are partitions of storage for client files and the data structures necessary to
manipulate them. There is a certain degree of protection of data between logical vol urnes.
Different logical volumes may be used to contain different systems, such as Viewpoint,
XDE, and Lisp. Separate logical volumes may also be used to segregate the data of a
system into useful subsets. By convention, the volume that contains the Viewpoint
environment is called User, while the XDE system runs in a volume called XDE.

Each logical volume has a volume type. This type is used to keep the working storage of the
debugger separate from the system that it is debugging. Logical volumes have the
following types:

Type

normal
debugger
~ebuggerDebugger

nonPilot

Example

User, Scavenger, Test
XDE

Description

normal client volume
debugger for normal volumes
debugger for debugger volumes
volume does not contain Pilot files

8-1

B Getting started/Operations guide

A normal volume is used to run client programs. A debugger volume contains a debugger
tool used in investigating normal volume crashes. Likewise, a debugger Debugger volume
is used to debug crashes from a debugger volume. Most configurations do not include a
debuggerDebugger volume, forcing the crashed debugger volume to go to the Ethernet to
be remote debugged. For more information on debugging refer to the Debugger chapter.

B.1.2 The Installer

A utility called the Installer is used to format a physical volume, configuring it into a
number of logical volumes. By invoking Installer commands, system software, including
microcode and bootfiles, can be installed onto the logical volumes. Most installations are
performed in the Installer's menu mode by executing pre-existing scripts residing on a
network boot service or floppy disks. For a more detailed explanation of the options
available through the Installer, see Appendix A. For installation using scripts refer to the
Release Document or Installation Guide.

B.2 Booting

8-2

B.2.1 General information

B.2.1.1 Bootfiles, germ, microcode

Several kinds of files are needed to prepare a hard disk for booting: the initial microcode,
the Pilot microcode, the germ, and the bootfile. The initial microcode, which is invoked by
the hardware booting logic of the machine, reads the Pilot microcode and germ from the
disk. The Pilot microcode is the main microcode for the operation of the machine and
resides in a file on a logical volume with the germ and bootfile. The germ is a bootstrap
loader which can load a bootfile into a Mesa processor and place it in execution. A bootfile
is a complete software system that is bound into a runnable package.

The Installer provides commands for installing and setting pointers to the microcode, germ
and bootfiles. These pointers are necessary so that the initial microcode can find the Pilot
microcode and germ and the germ can find the bootfiles.

Booting is the process of invoking a boot file and passing it control. Pilot associates a
bootfile with each logical and physical volume so that booting from that volume means
loading the associated bootfile. It is recommended that the bootfile for a physical volume be
the bootfile for one of the logical volumes, though this is not required. Bootfiles may be
stored on a rigid disk attached to the processor, on a floppy disk, or on an Ethernet boot
server.

Often you will want to update your bootfiles. For example, when a new version of a system
is released, you may want to convert to that new version. To do so, you will need to know
how to fetch and install bootfiles. Appendix A contains full instructions and exanlples for
installing bootfiles with the Installer.

B.2.1.2 The maintenance panel

The Mesa processor displays status and error codes via a three- or four-digit numerical
display called the maintenance panel, or MP. These codes are known as MP codes. The

Getting started/Operations guide B

maintenance panel for an 8010 workstation is located on the front of the processor (behind
the flap under the floppy driveL Next to the lighted numerical display, you will find two
buttons, marked B RESET and AL T B. These two buttons are more commonly known as the boot
buttons. They are referred to several times below. For the 6085 workstation, the MP codes
are displayed via the mouse cursor on the display and the boot button is red and labeled B

RESET.

Fine point: MP codes are displayed by the microcode and microcode diagnostics during booting; by Pilot's boot

loader when it is running; and by Pilot during its initialization. The MP codes displayed by Pilot and its boot

loader are the same on all Mesa processors. MP codes occurring normally during Pilot operation are described in

the next section; codes displayed by Pilot to indicate unusual conditions and errors are listed elsewher~ in this

chapter. MP codes displayed by microcode and microcode diagnostics are specific to the processor being used and

are described in other documents.

B.2.1.3 Initialization of volumes

XDE debugger volumes are initialized by booting them. If you want your XDE volume to
end installation by automatically booting some other volume, such as User, you should
make the following entries to your User.cm file:

[XDE:System]
InitialCommand: Sword; ClientRun;
Boot: User

In this case, when the XDE volume is booted, the debugger will run and then User will
automatically boot and remain executing.

B.2.1.4 Maintenance panel codes during initialization

When a boot file is invoked, Pilot displays a sequence of maintenance panel codes to
indicate progress during its initialization. The maintenance panel codes will sequence
through the following numbers although you may not see all of them go by:

900 boot loader entered and started loading bootfile
910 boot loader action running (such as inLoad, outLoad)
920 boot loader device driver running (disk, Ethernet, floppy)
930 pilot Control and MesaRuntime components being initialized
940 pilot Store component being initialized
947 waiting for disk drive to become ready
950 logical volume being scavenged (If a logical volume being booted is in an

inconsistent state, Pilot will display 950 while it verifies the contents of the logical
volume. The amount of time required depends on the size, number of resident files,
and fragmentation of the logical volume.)

960 temporary files from previous run being deleted
970 client and other non-boat-loaded code being mapped
980 pilot Communication component being initialized
990 pilotClient.Run called

8-3

B

B-4

Getting started/Operations guide

B.2.1.5 Maintenance panel codes during XDE initialization

The Xerox Development Environment may also display maintenance panel codes.

9950 Mesa file system being verified. (If a logical volume being booted or
opened is in an inconsistent state or a Pilot scavenge has been run, the Mesa file
system will display 9950 while it scavenges; that is, verifies the contents of the
Mesa file system on the Pilot logical volume. As with Pilot scavenging, the amount
of time required depends on the size, number of resident files, and fragmentation of
the logical volume.

B.2.2 Methods of booting

B.2.2.1 Hard vs. soft boots

Boot files may be invoked by the machine's boot button, the Installer, the Boot LVlenu in
XDE or by another software system. A boot initiated by boot buttons is known as a hard
boot. One important side-effect of a hard boot is that Mesa microcode and the Pilot boot
loader (germ) are loaded into the machine from the source of boot data (rigid dis.k, floppy
disk, Ethernet). This is the only time that they are loaded; thus, those files loaded by the
boot button will remain in use until the next hard boot. Software may initiate a hard boot;
a "Quit" command in the Installer does this.

A soft boot, initiated by software either using the "Boot" command in the Installer, or
through the herald window in XDE, uses the microcode and germ from the latest hard boot.

B.2.2.2 Boot Options

A normal boot runs diagnostics for about a minute and then boots the rigid disk. There are
a number of alternate boot options available including diagnostic and non-diagnostic
versions of floppy, rigid disk and Ethernet boots.

Booting procedures vary somewhat on different Mesa processors. Below are tables
summarizing the boot options for both 6085 and 8010 workstations accompanied by a
description of how to invoke them. The rest of this chapter refers to the various boot options
by both the 8010 and 6085 naming conventions (i.e. Alt-Boot-l and Fl-Boot, respelCtively).

To boot a 6085, press and release the B RESET button. A series of small rectangular icons will
appear on the bottom of the display, representing the various boot options. These icons map
directly to the function keys at the top of the keyboard. The alternate boots are invoked by
striking the appropriate function key. You can invoke both short and long versions of
diagnostics by pressing the appropriate function key once or twice, respectively.

Getting started/Operations guide B

6085 Boot Option

F1-Boot N on-diagnostic rigid disk boot

F2-Boot N on-diagnostic floppy boot

F3-Boot Network Help menu boot (Installer or Offline
Diagnostics options)

F4-Boot RS232 port boot

FS-Boot Short-version diagnostic rigid disk boot

FS-Boot (Twice) Long-version diagnostic rigid disk boot

F6-Boot Short-version diagnostic floppy boot

F6-Boot (Twice) Long-version diagnostic floppy boot

F7-Boot Short-version diagnostic network boot

F7-Boot (Twice) Long-version diagnostic network boot

F8-Boot Unimplemented

F9-Boot Eliminates Function Key 1 - 5 options if pressed
after Keyboard light goes off and before screen
comes up

F10-Boot Overrides default screen configuration to adapt to a
15" display

Table B.1: Boot Options for 6085

To boot your 8010, press the left boot button (B RESET) on the maintenance panel and release
it. This causes a diagnostic rigid boot or a Zero-Boot. An alternate boot is invoked by
holding down both boot buttons and then releasing the left button (ALT B). The lighted digits
will cycle from 0 to 10 until you let go of the right button; these numbers correspond to the
boot options listed below. To boot from the hard disk without diagnostics, an Alt-Boot-l or
One-Boot, release the right button when 0001 is displayed by the maintenance panel
lights. You may find the timing a bit tricky at first. The other boot options are invoked
similarly.

8-5

B

8-6

Getting started/Operations guide

8010 Boot Option

Zero-Boot Short-version diagnostic rigid disk boot (normal
or Power On boot)

Alt-Boot-1 N on-diagnostic rigid disk boot

Alt-Boot-2 Short-version diagnostic floppy boot

Alt-Boot-3 Non-diagnostic Ethernet boot of the Installer

Alt-Boot-4 Long-version diagnostic Ethernet boot of the
Installer

Alt-Boot-S Long-version diagnostic floppy boot

Alt-Boot-6 Reserved for Ethernet boot of experimental
microcode/ software

Alt-Boot-7 Trident drive 1 diagnostic boot

Alt-Boot-8 Trident dri ve 2 diagnostic boot

Alt-Boot-9 Trident drive 3 diagnostic boot

Alt-Boot-10 Floppy head cleaning function

Table B.2: Boot Options for 8010

B.2.2.3 Disk Booting

You can boot the rigid disk with or without diagnostics. An Alt-Boot-l on an 8010 and an
FI-Boot on a 6085 will boot the disk without running diagnostics. To run short-version
diagnostics before booting, a Zero-Boot on the 8010 or an F5-Boot on the 6085 should be
invoked. You can invoke long-version diagnostics on a 6085 by pressing the F5 key two
times within a second.

B.2.2.4 Floppy Booting

To boot from a floppy, insert a bootable floppy disk in the floppy drive (label side up) until it
locks in, close the drive panel, and perform an Alt-Boot-5 (F6-Boot) for long-version
diagnostics or an Alt-Boot-2 (F2-Boot) for short-version diagnostics.

To clean the floppy disk drive of an 8010, do the following: Insert a floppy cleanin§r diskette
in the drive and do an Alt-Boot-lO. When the MP displays 0076, press the ALT B button.
0077 will be displayed for about 15 seconds while the drive is being cleaned~ then 0076 will
be displayed once again. Remove the cleaning diskette from the drive.

Note: It is important to remove floppy disks from the drive when not in use to lengthen the
life of both the disk and the drive.

Getting started/Operations guide B

B.2.:2.5 Booting logical volumes from the Installer

Once the Installer has been started, you can soft boot any of the other logical volumes while
in command mode. To boot another volume such as XDE or User from within the Installer,
you need to give the boot command followed by the name of the logical volume. For
example, to boot your XDE volume, you would say:

>Boot(i
Logical Volume Name: XDE(i
S wit c he s : (i --a carriage return gets the default switches for the volume

The Mesa microcode and Pilot boot loader that is used in invoking the bootfiles are those
that were used in the hard booting of the Installer, either from the boot service on the
Ethernet or floppy.

A hard boot of the physical volume can be initiated from the Installer by using the "Quit"
command.

B.2.2.5.1 Booting the Installer

To boot the Installer from the Ethernet (without running diagnostics), perform an Alt­
Boot-3 or F3-Boot as described above. An Alt-Boot-4 or F7-Boot will perform.a diagnostic
Ethernet boot. The Mesa microcode and Pilot boot loader that is stored on the boot service
are used in invoking the bootfile.

If you have an Installer-bootable floppy available, you may use these to boot the Installer.
See the section on floppy booting for details. If you are unable to boot the Installer either
from the Ethernet or from a floppy, consult your local system administrator.

You may also install an Installer bootfile on a logical volume, and by booting that volume,
invoke the Installer. This is usually done with standalone workstations that need to have
the time manually set. See the section on time setting requirements below for details.

B.2.2.6 Booting volumes from other volumes

It is also possible to soft boot from other logical volumes. If you are in XDE, you can boot
another volume by moving the mouse until the cursor is in the Herald window and holding
down both mouse buttons to get the Boot From: menu (If you have a three-button mouse,
holding down the middle button performs this function). While you hold down the buttons,
move your mouse until the name of the volume you want to boot is highlighted, and then
release the buttons. You will see your cursor transformed into the image of a mouse. This is
the system's way of asking you to confirm or abort the boot request. To confirm, click the
left mouse button. Clicking the right mouse button causes the boot request to be aborted.

B.2.2.7 Time setting requirements

If an 8010 or 6085 is not connected to an Ethernet with an operational NS time service on it,
the boot process will hang at a 937 MP code. In this case it is required that you use the
Installer to set the date, time, and local time zone parameters before proceeding. The
Installer can be loaded by either booting the Installer floppy disk or by installing an
Installer bootfile on a Scavenger volume and booting that volume. Once the bootfile is

B-7

B

B-8

Getting started/Operations guide

installed, OnstallerNSDove.boot for 6085s or InstallerNSDLion.boot for 8010s), set the
physical bootfile pointer to Scavenger. Each time you boot the physical volume, the
Scavenger volume's Installer bootfile will be invoked and you can set the time manually
and then boot any other logical volume. When setting the time parameters, you should be
careful to give accurate information because other users and programs depend on it.

B.2.3 Boot switches

Boot switches are eight-bit characters that control the initialization of a software system.
Various ranges of the switches are allocated for Pilot, for the Xerox Development
Environment, and for other product systems like Viewpoint. Some of the more common
assignments for Pilot, XDE and Viewpoint are given below.

The boot switches are passed to Pilot by the agent that invoked the bootfile, such as the
Installer, or XDE. A default set of switches may be written into a bootfile. The agent
invoking a bootfile normally has a mechanism for the user to specify switches to override
these defaults for the current boot session if desired. If the invoking agent is the boot
button, the default switches are always used.

While listing a series of boot switches, those using the backs lash symbol and an octal
number (e.g. \365) must be at the end of the series.

B.2.3.1 Setting switches

The user can set the default switches for any bootfile on a logical volume through the
Installer's "Set Boot Switches" command as shown here:

>Set Boot Switches~
Logical Volume Name: User~

Swi tches :Ody\350\365~

The user is given a chance to override these default switches during the boot command. If
none are specified here, the defaults are used:

>Boot~

Logical Volume Name: User~

Switches:~

When soft booting a logical volume from the Herald window of the XDE environment, the
default boot switches can be overridden by typing the desired switches in a file window,
selecting them, and invoking the "Set Switches" command from the Herald's BClot From
menu. These switches apply only to the immediately following boot session.

B.2.3.2 Pilot Switches

A complete listing of the available Pilot boot switches can be found in the Pilot
Programmer's Manual. Below is a summary of the most common boot switches and their
meaning:

2 Go to debugger just before calling PilotClient.Run ("Key Stop 2").

This can be used to place breakpoints just before client code begins executing.

Getting started/Operations g~ide B

5 Go to the Ethernet for a debugger.

This switch instructs Pilot to go to the Ethernet when it needs a debugger. This instruction
supercedes the presence of an installed debugger on the attached disk and/or debugger
pointers that may have been set in the boot file.

6 Turn owner checking on for Heap.SystemZone and Heap.systemMDSZone.

This switch aids in debugging heap errors. See the Heap chapter in the Pilot Programmer's
manual for details.

7 Disable map logging.

For the debugger to access Pilot's virtual memory, it must be aware of the current
mappings between virtual memory and backing storage. It does this by consulting the
virtual memory map log normally produced by Pilot. Map logging is disabled by this
switch, thus increasing performance, but seriously limiting the ability of the debugger to
diagnose problems.

8 Create a keyboard interrupt key watcher.

This switch instructs Pilot to call the debugger when the LOCK and both SHIFT keys are held
down and the STOP key is pressed. The debugger will report "Pilot Emergency Interrupt."
Since the Pilot process doing the job runs at the highest priority, this feature is useful for
debugging Pilot itself and user input handlers. You should not attempt to Interpret call
from the debugger back into the debuggee because of the high priority level involved.

NOTE: The key top name STOP is for the American Level IV keyboard; consult the keyboard
mapping documentation for the equivalent key on other keyboards. Since the keys used are
on the standard keyboard, a system with only a character terminal attached cannot access
this feature.

9 Simulate a 256K memory size.

This switch is useful for doing performance testing of product software on large-memory
machines and for saving inload and outload file space.

\365
{ or\l73
lor\l74
}or\175

Use a tiny data space backing storage cache
Use a small data space backing storage cache
Use a medium data space backing storage cache
Use a large data space backing storage cache

Pilot allocates a cache of file space to be used for VM backing file storage for data spaces.
The file space is allocated on the system volume at boot time. Poor performance may result
if this cache is too small for an application's needs. These switches allow you to specify the
size of this cache. If no switches are given, Pilot will use an amount based on the size of the
volume that initiated the boot. The default backing store is 1I16th of the pages of the
logical volume, with a minimum of 250 and a maximum of 1000. These switches can be
used in combinations to allocate even larger files, as shown in Table B.3.

8-9

B

8-10

Getting started/Operations guide

} Definition

set Set the VlVI backing file size to 550 pages

set Set the VM backing file size to 1200 pages

set Set the VM backing file size to 1800 pages

set set Set the VM backing file size to 2500 pages

set set Set the VM backing file size to 3500 pages

set set Set the VM backing file size to 5000 pages

set set set Set the VM backing file size to 7000 pages

\365 Set the VM backing file size to 325 pages

Table B.3: Backing Store Boot Switch Settings

A or \136 Turn checking on for the system zones.

If this switch is set, then checking is turned on for system and system MDS heaps. This
switch aids in debugging heap errors, since Heap.Error[invalidNode] will be raised when
attempting to free a node from the wrong heap or free random memory and so forth. See the
Heap chapter in the Pilot Programmer's manual for more information.

Create a tiny system heap, with tiny increment values.
% Create a medium-sized system heap, with medium-sized increment values.
] Create a large system heap, with large increment values.

These switches control the size of the initial system heap. They are provided for those
clients that wish to alter the standard setting. The default switch is %.

%

System heap initial
value

40

40

100

Increment value

4

20

50

LargeNode
Threshold value

128

260

260

Table B.4: System Heap Initial Size Boot Switch Settings

\200 Inhibit 937 MP hang during booting.

This switch allows Pilot clients to bypass a 937 maintenance panel hang if the clock is
invalid and no time server is available. The users of this switch should be warned that it
can be dangerous. Any Pilot client booted with \200 should verify the validity of the time.

Getting started/Operations guide B

Pilot will set the clock to a value near gmtEpoch, the beginning of time, if it could not reach
a server and the clock was apparently invalid.

Inhibit ClockFailed signal from being raised.

Pilot periodically checks if the time of day clock is running correctly. If it is not, then the
signal SystemExtras.ClockFailed is raised. If this switch is set, then this signal is never raised.

\330 Data link layer control selector for Ethernet medium.

If \330 is set, the Pup Protocol will use the 'fold style" packet type numbers which are
incompatible with standard IEEE 802.2 data link encapsulation. If this switch is set, the
OSI Protocol will use Ethernet encapsulation instead of IEEE 802.2 data encapsulation to
avoid conflict. If this switch is not set, then the Pup Protocol will use newly allocated
Ethernet packet type values and the OSI Protocol will use IEEE 802.2 data link
encapsulation. This switch should never be used outside of Xerox.

\350 Allocate small global frames as nodes from heap.

If \350 is set, then the packaged global frames will be allocated from a heap, resulting in
significant savings of MDS space for non-MDS-relieved modules or modules packaged with
non-MDS-relieved modules. Otherwise MDS space is lost in the overhead of page breakage
when allocating the global frames as a swapUnit (i.e., an integral number ·of pages) as
guaranteed by the packager.

NOTE: non-MDS-relieved modules refer to those modules compiled and bound in pre-13.0
and pre-14.0 releases of Pilot.

\360 Display error code, global frame, and pc on boot loader errors.

If this switch is set, then upon boot loader errors the maintenance panel will cycle numbers
representing the error code, global frames and pes of the error stack.

\364 Remote call debugger.

If this switch is set, then the machine can be forced into the debugger by a suitable message
from a remote machine. This facility is intended to allow forced debugging of machines
that have no convenient mechanism in their user interface to do so themselves (i.e.,
servers, Lear Siegler 'dumb' terminals).

\370 Bypass the debugger substitute by going to the real debugger.

U sing this switch, Pilot will expect a real debugger instead of the debugger substitute after
displaying MP codes.

\376 Delete Pilot boot loader (germ) and reclaim the memory it occupies.

Normally upon hard booting, the germ is loaded into its assigned section of virtual memory
and remains loaded, available for world-swapping or soft booting. However, if the \376
switch is set, Pilot will unmap the germ's space in memory, freeing that space for the
system. After booting with this switch, the system will be unable to perform world-swaps

8-11

B

8-12

Getting started/Operations guide

and soft boots of logical volumes. Hard boots will still be possible since they reload the
germ into memory.

Many Pilot boot switches are normally of interest only to the Pilot implelnentors
themselves:

& Hang with a maintenance panel code of936 in lieu of going to the debugger.

o Go to debugger as soon as possible in Pilot initialization ("Key Stop 0").

To use the '0 switch, you must have "Set Debugger Pointers" in the bootfile or be using an
Ethernet debugger.

1 Go to debugger as soon as all code is map-logged ("Key Stop 119
),

The debugger usually will not be able to set breakpoints in code until it has heen map
logged. Also, note that from the time that the boot button is pushed until shortly after "Key
Stop 1" in the system being invoked by the boot button, only an Ethernet debugger may be
used. An attempt to use a local debugger will result in an MP code of902 (see MP code listL

< Act as if there is no Ethernet-l attached to the system element.

= Do not initialize the Communication package at system start-up.

> Act as if there is no Ethernet attached to the system element.

B.2.3.3 Xerox Development Environment boot switches

The Xerox Development Environment boot switches are listed below. Unless otherwise
stated, they apply to volumes with Tajo bootfiles. The switches must be upper-case letters,
as shown.

I Reinitialize all TIP tables. All existing .TIPC files to be ignored and new ones
written as they are needed.

N Do not process User.cm.

V Force a scavenge of the XDE file system. The file system scavenger produces a log
file that describes the problems found and the recovery action taken. The file is
named MScavenger .10g on the root directory of the system volume.

If the development environment knows that its file system may be inconsistent, it
automatically verifies the contents of its file system during initialization, This switch can
be used in exceptional circumstances to force it to scavenge even though it believes that the
file system is consistent.

B.2.3.4 Viewpoint boot switches

d Disable the debugger substitute.

Setting this switch allows crashes from the booted volume to search for a debugger volume
instead of cycling MP codes.

Getting started/Operations guide B

Empty the prototypes folder.

This switch needs to be set only once and-results in the flushing of the prototype folder that
holds all of the tfBlank" icons in Viewpoint.

N Do not run the auto run applications.

Setting this switch will prevent the starting of all autorun applications. However, invisible
applications and .autorun files are still run. If the WorkstationProfile has a TRUE
Developer entry in the [Application Loader] section, then nothing is run; not autorun
applications, not invisible applications and not .autorun files.

o Use. TIPC files only.

Setting this switch results in the search for .TIPC files instead of .TIP files. upon system
start-up. Using this switch saves time during booting because the creation of .TIPC files
from .TIP files is unnecessary.

p Copy, load and start CommandCentral files in parallel.

When the BWS is booted with the 'P switch, the files handed to it by the CommandCentral
tool are processed in parallel. One process copies the files to the system folder, one process
loads them, and one starts them. This speeds up system start time. This overlapped loading
and starting is appropriate only if all of the program's imports are satisfied by the BWS
boot file or previously loaded programs. Note that the 'P switch should never be used when
installing data files needed by the BWS bootfile itself or .autorun files.

S Delete contents of the System catalog.

Booting with this switch will delete everything in the system catalog of the User volume,
including data files and applications. This is useful when upgrading to a newer version of
Viewpoint software. If this switch is used in conjunction with the 'd switch, an attempt to
boot the User volume will result in a return to the debugger with the message, "'s switch
detected. Proceeding will delete all system files" before it performs the deletions. After
deleting the system catalog, control will return to the debugger and a message will be
posted: ttDone deleting system files. Reinstall and reboot or proceed if already installed." If
BWS was booted from CommandCentral and all necessary data files were listed on the Run
line, then proceeding from this message will install all of these files on the User volume.
This is posssible because BWS deletes the system catalog contents before downloading the
files listed in CommandCentral. If BWS was booted with the'S switch but no 'd switch,
then the MP code 7604 will be displayed.

B-13

B Getting started/Operations guide

u Use a volume named ~User' as the data volume.

This switch is useful if you install a BWS boot file on a volume other than User, and you
want Viewpoint to use the User volume for desktops. if this switch is not set, then t'llf
booted volume will be used as the data volume.

y Allocate Pilot backing store from available space on the Scavenger volume.

Setting this switch allows you to allocate as little space as possible on the User volume for
Pilot file backing storage. This switch is used in conjunction with the \175 or \365 switch.

B.2.3.5 Recommended boot switches

ForXDE:
When booting an XDE volume, we recommend using the '8 switch to enable the Pilot panic
interrupt.

ForViewpoint:
For a typical configuration, with XDE and Viewpoint, we recommend the following boot
switches: Ody\175\350. To force your Viewpoint volume to crash to cycling MP codes
instead of to the debugger volume, use Oy\175\350. To disable map logging but still allow
Viewpoint to crash to the debugger use 70dy\175\350.

NOTE: The \175 switch should be replaced by the \365 switch for versions of Viewpoint
before 2.0.

B.3 Troubleshooting

8-14

B.3.1 Recovering from system crashes

When your 8010 workstation is running and your system is healthy, the lighted
maintenance panel will reflect this by displaying a 990 if an XDE volume is booted or 8000
if a Viewpoint volume is booted. These are normal. Sometimes you will encounter a
situation that may appear to be abnormal. You may be stuck at an unfamiliar
maintenance panel code displayed in the 6085's cursor or the 80l0's light panel; your
system may be frozen (for example, your mouse has stopped tracking or the system is not
responding to your keystrokes and mouse actions); or you may find that the volume you
had been working in has disappeared and you have unintentionally landed in the
debugger.

In the first two cases, the first reasonable thing to do is to reboot. If the situation recurs
when you try to return to what you were doing, contact your local support person.

If you have suddenly landed in the debugger, the Herald window at the top of the screen
will tell you that you are in XDE, and a Debug log window will have become active. The
Debugger chapter explains in greater detail how to extract significant information from
your crash and determine its cause. If you are a novice to the debugger tool and the XDE
environment, it is often useful to consult with someone more experienced to help you
investigate the problem. If you determine that the fault lies within the system software,
you should submit an AR (Action Request) to the appropriate database if you are a Xerox
internal user or contact the XDE support group if you are a commercial customer. To

Getting started/Operations guide B

recover from the situation, you should abort from the debugging session and then in some
cases reboot the volume.

B.3.2 Scavenging

Sometimes after the system has crashed or you have terminated abnormally, the next time
you reboot that volume the process may take a few extra minutes. This is because the
system needs to verify and repair the contents of the volume before proceeding. The act of
repairing an inconsistent or damaged Pilot logical volume is called scavenging. When
scavenging occurs there will be an MP code displayed to notify the user (950,9950, or 7500
depending on the type of scavenge running). Scavenging is a normal occurrence and can he
initiated by the running software itself or by you, the user.

Basically, there are three types of scavenges that can be performed on the volumes of a
disk: a physical volume scavenge, a Pilot-level scavenge and a client-level scavenge. A client
refers to a software system that runs on top of the Pilot operating system. The differences
between these scavenges are described below with instructions on how to invoke them.

B.3.2.1 Physical volume scavenge

The physical volume scavenge repairs the critical pages of a physical volume that describe
the layout of the physical volume and the logical volumes that reside on it. This scavenge
can be invoked via the Installer in command mode or by Diagnostics and results in taking
the physical volume offline.

>Online@
Drive name: ROO@
>Physical Volume Scavenge@
Drive Name: ROO@
Repair? {Y/N):!@
Are you sure? (Y/N):!@
Scavenging ... Done

B.3.2.2 Pilot-level sea venge

A Pilot-level scavenge is invoked on a logical volume in order to repair the Pilot file system
on a given logical volume and to report damaged client files. A Pilot logical volume may
become damaged for any number of reasons. A machine that is using the volume may stop
abnormally due to hardware or software failure. The drive containing the volume may fail
and damage the volume, or the physical medium containing the volume may fail. A
damaged volume may not be accessed until it is repaired. When damage is detected during
the boot process, a Pilot-level logical volume scavenge will occur automatically. When the
scavenge is running, a maintenance panel code of 950 is generated and displayed in the
lighted panel of an 8010 or the mouse cursor of a 6085. If damage is undetected during
booting, a Disk Label Check may occur later.

B-15

B

B-16

Getting started/Operations guide

The user may also force a Pilot scavenge on a specified logical volume by invoking the
('Scavenge" command in the Installer as shown below:

>Online6l
Drive name: RD06l
> Scavenge6l

Logical Volume Name: User6l

Are you sure? (YIN): X6l

Scavenging •..

The results of a Pilot-level logical volume scavenge are consistent Pilot data structures
and a log file describing the state of the volume. The log file is intended to be used by the
client-level scavengers to reconstruct client data structures and contains information
about damaged file pages.

There are four types of problem pages that the Pilot logical volume scavenger reports:
duplicate, orphan, unreadable, and missing. Duplicate pages are caused when multiple
disk pages have the same file id and file page number. Data is not comparHd when
duplicates are reported. Unreadable pages are reported when the data portion of the page
can not be read. Orphan pages are reported when the page's label is unreadable or
unreliable. Missing pages occur when it is discovered that a file has a hole in it. At the end
of the scavenge, all the page groups of files are enumerated. If a gap between pag1e groups
occur, the gap is reported as missing pages. Though it may seem that a one-to-one
correspondence should exist between the number of orphan pages and the number of
missing pages, it doesn't always. For example, if a page were placed in the bad page table
by the local system adminstrators using disk diagnostics, a hole in a file could occur
(missing page), but an orphan page would not be reported. In this case, Pilot and its
scavenger carefully skips over pages in the bad page table.

B.3.2.3 Client-level scavenge

Files on client volumes are built on top of the Pilot file system. The XDE and Viewpoint
environments use different file data structures to describe local files; XDE uses MFiles and
Viewpoint uses NSFiles. These file types are defined and discussed in greater depth in the
Mesa Programmer's Manual and the Services Programmer's Guide, respectively. The 8000
series servers also use the NSFiling system.

Whenever a Pilot-level scavenge has been performed on a logical volume, a client-level
scavenge should be invoked. Further, if a client-level scavenge is to be invoked, always
perform a physical and Pilot-level scavenge first, in that order. Since there are two
different types of file systems that the volume may use, there are two different client-level
scavengers as well.

B.3.2.3.1 MFile scavenge for XD E

An MFile scavenge is frequently invoked immediately following a Pilot scavenge that was
performed upon booting XDE. 9950 will show on the maintenance panel or mouse cursor
while the XDE file system is scavenged to make sure all of its data structures are correct.
This may take a while if you have a large number of files on that volume.

You may force an MFile scavenge by booting the XDE volume with the 'V switch.

Getting started/Operations guide B

B.3.2.3.2 NSFile scavenge for Viewpoint

An NSFile scavenge, also known as a File Check, is performed on a volume that is running
the Viewpoint environment. Scavenging is required when the system crashes at an
inopportune moment and the file system is not consistent.

The following instructions for running a File Check assume that a normal logical volume
called Scavenger exists on the physical volume. Viewpoint will exhibit a 7500 maintenance
panel code while the File Check is running, reconciling its own data structures and file
system. A File Check can be initiated by the user by executing a pre-existing script stored
on a boot service or floppy via the menu mode in the Installer, or by installing a special
bootfile on the Scavenger volume and booting that volume.

B.3.2.3.2.1 Initiating a File Check from the network or floppy

If your site has a boot service which has a File Check script on it, you can most easily
perform a File Check by using this method. This script mayor may not be available at your
site; consult your local system support group. If your workstation is an 8010, substitute
'~8010" for "6085" in the following instructions:

1.Boot the Installer from floppy or the network
2. Logon using your fully qualified name
3. Type #[return] where # is the script number for "60S5 Special
Installation & Error Recovery Commands (from net)"
4.Type #[return] where # is the script number for "Install File Check
Software on 6085 workstation" (confirmation required)
5. Type # [return] where # is the script number for "Run 6085 File
Check" (confirmation required)

If you cannot boot the Installer from the net, use Installer floppies and their corresponding
scripts.

B.3.2.3.2.2 Initiating a File Check from Scavenger volume

When the data volume needs scavenging, Viewpoint will world swap to XDE with the
debugger message "Proceed to scavenge data volume". Proceeding will automatically boot
another volume, named Scavenger. This allows you to install a special Scavenger bootfile
called BWSScavengerDLion.boot or BWSScavengerDove.boot (for 8010s and 6085s
respectively) on the Scavenger volume. The Scavenger bootfile is much smaller than the
full BWS bootfile:

I.Boot the Installer from floppy or the network.
2.Enter command mode
3.Use the "Fetch Bootfile" command to install the Scavenger boot file
onto the Scavenger volume.
4.Boot the Scavenger volume.

Booting the Scavenger volume will initiate the File Check. When the File Check is
complete, the Viewpoint volume will be booted automatically.

8-17

B

B-18

Getting started/Operations guide

B.3.3 MP error codes

Sometimes booting a logical or physical volume will be unsuccessful and a maintenance
panel code will be displayed as a means of communicating at what stage of the boot process
the problem occurred. Below are listings of maintenance panel error codes that are
displayed by the boot microcode and Pilot.

B.3.3.1 Boot microcode MP error codes

Following is a list of the most common maintenance panel codes displayed by the boot
microcode. A full listing of MP codes is available in the system administrator's manual. In
general, MP codes reporting fatal errors blink; codes reporting status or progress through a
sequence of actions are steady_ Each panel code listed below is followed by an indieation of
what action you might take to remedy the situation:

149 Wait for boot file to be read from boot device.

This code normally is displayed for only a few seconds. Persistent 149's should be
reported to your hardware support representative. If you can successfully boot this
volume from the Installer but get the 149 code when booting from the disk, verify
that the correct initial microcode is installed on your disk.

151 CP error in reading from boot device.

This can occur when booting after turning power on. Try rebooting. If that fails,
report it as a hardware error.

206 No diagnostic microcode on rigid disk.

Refetch the diagnostic microcode using the Installer's "Diagnostic Microcode Fetch"
command and be sure to answer "Yes" when queried about making this the physical
volume diagnostic microcode.

207 No pilot microcode on rigid disk.

Refetch the Pilot microcode using the Installer's "Pilot Microcode Fetch" command
and be sure to answer "Yes" when queried about making this the physical volume
Pilot microcode.

208 No boot loader (germ) installed on rigid disk.

Refetch the germ using .the Installer's "Germ Fetch" command and be sure to answer
"Yes" when queried about making this the physical volume germ.

323 Internal clock not set.

Diagnostic microcode will wait displaying 323 if the internal clock has not been set
(for example, just after turning power on). On an 8010, depress the ALT B button and
hold it until the :YIP advances to 324.

Getting started/Operations guide B

When other errors within the range 149 - 287 occur, reinstall the diagnostic microcode, the
Pilot microcode and the bootfile. If this does not remedy the situation contact your local
support representative.

B.3.3.2 Pilot MP error codes

Pilot and its boot loader, the germ, display maintenance panel codes when it is not possible
to get to the debugger to report an error (typically during booting). These codes are the
same on all Mesa processors. Codes displayed by Pilot during normal operation are
described in a previous section.

901 Boot loader out of frames

902 Unexpected trap or kernel function call

903 Attempt to start an already started module

904 Page or write protect fault

905 Boot loader not compatible with initial microcode

906 Boot loader not compatible with Pilot in bootfile

909 Boot loader SIGNAL or ERROR

911 Boot loader not compatible with physical volume

Errors 901 - 911 can be caused by hardware, by client code overwriting the boot loader, or
by a boot loader software bug .. Make sure that you have only one version of germ and
microcode on the physical volume. Try reinstalling the germ and rebooting. If this does not
solve the problem, contact your local support representative.

912 Boot loader not compatible with MakeBoot used to produce
bootfile

A bootfile is structured with a header page and trailer pages at various points in the
file to communicate to the germ what it should do with the bootfile's contents. A 912
results if the contents of what the germ thought should be one of those pages doesn't
look like one. A 912 can reflect hardware problems or a damaged bootfile. Try
reinstalling the bootfile and rebooting. If this fails, call your hardware support
representative. A 912 while floppy booting can mean that something is wrong with
the diskette or floppy drive. In this case have your hardware support representative
check it out.

913 No physical bootfile installed

Reinstall boot file.

914 Boot file contains invalid data

Reinstall boot file.

B-19

B

B-20

Getting started/Operations guide

915 Ethernet debuggee server in control

Either the '5 boot switch has been used, XDE was not correctly installed, or it is too
early in initialization to find the local debugger. See the chapter on the Debugger for
instructions on remote debugging.

916 Boot file won't fit in real memory
Reinstall a smaller bootfile and retry boot operation.

917 Machine is being remote dubugged

The workstation has crashed to a 915 MP code and is now being remote debugged
across the network. See the Debugger chapter for details on remote debugging.

919 Boot loader has transferred control back to Pilot, which has
hung

This code may be caused by an incompatibility between the germ and boot file. This
can occur when one attempts to boot a logical volume from the Installer, after the
Installer had been hard-booted using an incompatible version of the germ.

921 Hard error on device being booted

This error code occurs when the germ receives some error during its processing of the
bootfile or outload files. This error may be caused by a disk problem (hardware),
world-swapping from a Disk Label Check, having debugger pointers set, or a bad
outload file, germ file, or bootfile.

If 921 occurs while booting XDE, refetch the bootfile, germ and Pilot microeode and
hard boot the disk. If 921 occurs during a world swap to XDE, delete the out load files
for the debugger and client volumes, verify that the debugger pointers for the client
volume are cleared, reboot XDE and reboot the client volume to recreate the outload
files. If the cause of the 921 was world-swapping from a Disk Label Check, see the
recovery procedures in the Disk Label Check section below. If this code persists,
contact your hardware support representative.

922 Operation on boot device not completed in expected time

Retry boot operation. If code persists, see your network administrator.

923 Broken link in chained bootfile

Reinstall XDE bootfile and retry boot operation.

924 Ethernetbootserver not responding

See your network administrator.

925 Unexpected packet sequence number or size

See your network administrator.

Getting started/Operations guide B

926 Ethernet debug gee server trying to find a Pup / EthernetOne 8
bit address

See your network administrator.

931 Pilot not compatible with MakeBoot used to produce bootfile

A Pilot bootfile has received control, but discovered that the software it contains is
incompatible with the version of Makeboot used to create the bootfile. Recreate the
bootfile using the proper version of Make boot.

932 Trap before trap handler initialized

Verify that the versions of of microcode, germ, and bootfiles are consistent.

933 pilot not compatible with boot loader

The germ is not compatible with the bootfile. Reinstall correct version of boot file.

934 Bootfile's StartList contains bad data

Reinstall XDE bootfile and retry boot operation.

935 Need Ethernet debuggee server but boot loader used does not have
that capability

Install smarter boot loader and reboot.

936 Waiting for microcode debugger

This error code most often occurs when the client volume is booted with the' & switch
or the \376 switch and a world swap to XDE is attempted. The \376 switch deletes the
boot loader which is instrumental in loading the outload files during a world swap.

937 Trying to get the time from either hardware clock or Ethernet

Verify that the processor is correctly connected to the Ethernet. If this code persists
for more than a few seconds, see your Time Server administrator.

938 Running clean up procedures

This code is displayed while Pilot is running clean-up procedures before proceeding
to the debugger. If this code persists for more than a few seconds, the wrong version
of the germ or microcode is loaded. Reinstall the germ and microcode and reboot. A
938 also occurs when trying to Shift-Stop to XDE from Viewpoint on a standalone
6085 workstation due to a bug that prevents swapping when the RS232C port is
active.

8-21

B

B-22

Getting started/Operations guide

939 System.PowerOff called but no power control relay

See your network administrator.

948 System physical volume needs scavenging

Use the Installer's "Physical Volume Scavenge" command.

953 Debugger pointers are invalid

Use the Installer's "Set Debugger Pointers" command to reset pointers.

965 Insufficient file space for data space backing storage

Specify smaller backing store size with boot switches.

981 Trying to find a Pup/Ethernet-l 8 bit address

This code occurs when attempting to run Pup protocol-based tools without 1)
running PupConfig.bcd before any Pup tools, 2) having your workstation registered
in the local Pup-Network.txt table, 3) booting XDE with the \330 switch or 4) having
a Pup gateway on your local network. To register your workstation in the Pup­
Network.txt file, contact your network administrator.

982 Trying to find a TCP/IP 48 bit address

This code occurs when attempting to run the ArpaTools in XDE without having a
local copy of your network's HOSTS. TXT file. Contact your local network
adminstrator to find a copy of this file.

B.3.4 Special Pilot error messages sent to debugger

For some serious errors, Pilot goes to the debugger to report errors. Some of the error
messages are listed below:

Address Fault
Address Fault (address past end of processor VM)

An address in virtual memory has been referenced that is neither mapped (such as
Space.Map), nor implemented by the processor hardware. Oftentimes, Address Fa1lllts are
the result of attempting to dereference a NIL pointer. See the Debugger chapter or
Appendix D of the Mesa Course manual for more details on debugging Address Faults.

Disk Label Check

A Disk Label Check occurs when the identity of a disk page does not match what Pilot
thinks it should be. Pilot attempted to read or write a page on the disk and found that the
label on the page described a file and page number other than the one Pilot thought it was
accessing.

There are a number of causes for Disk Label Checks. The major cause is attempting to
swap to a logical volume using an outload file that is no longer consistent with the state of

Getting started/Operations guide B

that volume. Also a Disk Label Check can occur if a page has been marked as bad on a
logical volume and a client scavenge was not performed on that volume to correct the file
structure.

A debugger volume can generate a Disk Label Check if the debugger volume is opened for
writing while a client volume's environment is running, causing all temporary files on the
debugger volume to be deleted. When the debugger is next invoked, through a world swap,
the outload file will not accurately" reflect the state of the debugger volume.

A client volume most commonly generates Disk Itabel Checks during an attempt to
~fProceed" from an outload debugging session to the client. There are several possible
causes for out-dated client outload files: the user inadvertently shuts down the workstation
prior to swapping back to the debugger from the client; the state of the client volume has
somehow been altered since the outload file was written; a crash has occured in the client
volume; the Viewpoint volume has been booted with the 'y switch, designating the
Scavenger volume for temporary backing files. In this last case, if the Scavenger volume is
booted (to run a File Check for instance), these temporary files are deleted. An attempt to
use the old outload file for Viewpoint will result in a Disk Label Check.

To remedy a Disk Label Check, perform both Pilot and client-level scavenges to restore
consistency to the filing system, then reboot the client. If you are not sure which volume is
inconsistent, do a Describe Physical Volume from Command mode in the Installer. The
appropriate volume will be annotated with **N eeds Scavenging**. If you consistently get
a Disk Label Check on the same page, it may be a bad page (hardware) and you'll need to
enter it in the Bad Page Table. But this is a very rare case indeed and a last resort. Check
with your local system support representative.

Mapped off file - Helper

A file has been deleted or shortened when there was a space mapped to it, which is neither
permitted nor explicitly checked for by Pilot.

Out of VM for resident memory

Pilot has a pool of virtual memory that is used to contain resident data. This message
indicates that that pool has been exhausted. Items that are allocated in this pool are: (a)
dynamically created local frames, (b) global frames of dynamically loaded configurations
that consist of a single module, and (c) Pilot internal data. One possible cause of this error
is a procedure recursively calling itself forever, thus requiring an infinite supply of local
frames. Another possible cause is the simultaneous use of several procedures that require
large local frames; these can exhaust the pool fairly quickly. It is also possible for the Pilot
virtual memory system to malfunction, generating this message.

Uncaught Signal

An Uncaught Signal occurs when no module in the call stack handles a signal that has
been raised. If a signal is uncaught, control transfers to the debugger. Each time the
debugger is called with an Uncaught Signal, it immediately tries to translate the signal's
value into its name. This can only be done if the debugger can locate a symbol table that
includes the signal's symbol. Symbol tables can be found in three files: the implementation
module where the signal is declared, the .symbols file generated when the implementation
module was bound into a configuration file, and the object file produced from binding this

B-23

B

B-24

Getting started/Operations guide

configuration file. To have the debugger translate the name of an Uncaught Signal, one of
these files needs to be resident on the debugger volume. See the chapter on the Debugger or
Appendix C of the lVIesa Course manual for more information on debugging Uncaught
Signals.

Unrecoverable disk error on page pageNumber

This error message appears when a disk page could not be read. Running the Pilot and
client-level scavengers on the logical volume will usually fix the problem. If this is
unsuccessful, it is sometimes possible to fix this page by rewriting it so that it can be read.
This may result in the loss of data.

The tool PageScavengerTool. bcd is available for rewriting the page. You can enter a
list of page numbers that need repair. Usually these should be pages reported by the
debugger. If the ReWri te switch is left on, then the tool is permitted to rewrite the
designated pages. Otherwise, the tool will not permit the pages to be rewrittlen with
potentially incorrect data. The tool reports the results of the page scavenge, as well as a
recommendation for your next action.

The indicated action is self-explanatory. For example, pvScavenge means to run a physical
volume scavenge. If the tool reports no problems, then run a Pilot and client-level seavenge
on the affiicted logical volume.

Unrecoverable disk error: labelError

A disk page could not be read because of hardware errors. Contact your local support group.

Volume vanished between Descriptor and PageGroup (Helper)

A volume has been put off-line when there was a space mapped to it, which Pilot neither
permits nor explicitly checks for. Contact your local support

WriteProtect Fault

An attempt was made to store into an address in virtual memory that is currently read­
only. See the Debugger chapter for instructions on further investigation.

Getting started/Operations guide B

B-25

C

TableCompiler

The TableCompiler is a utility for creating files in the format of Mesa object files (whose
filename usually ends in u.bcd"). This allows you to bind information other than programs
into a Mesa configuration (fonts or microcode files, for example). The TableCompiler was
produced by providing a single user interface to two programs: the ModuleMaker and the
StringCompactor. The ModuleMaker takes a file with arbitrary contents, such as a font,
and prefixes it with the proper header. The StringCompactor reads stylized Mesa
programs consisting of arrays of string constants, squeezes the characters together into an
array of characters, and produces auxiliary arrays of offsets and lengths.

C.l Mesa object file format

In order to understand the operation of the TableCompiler, it is necessary to have some
understanding of the format of Mesa object files.

Mesa object files all begin with a data structure
called a binary configuration description (whence
the default file extenxion ff.bcd"). It contains the
information need by the binder to resolve external
references (imports and exports) and to find the
code and symbols for any modules contained in the
object file. The compiler creates a file that contains
a configuration description for the degenerate
configuration (a single module), and which also
contains both the code and symbols for that
module. Further binding and packaging usually
places only the code in the same file with the
configuration description, leaving the symbols in
their original file, or copying them to a ~~.symbols"
file.

C.2 Using the output

configuration description

code
(module table above

shows start and length of
code for each module in

the file)

symbols
(optional, not used by
binder or loader, but

needed for debugging)

The output of the TableCompiler is an object file whose configuration description names a
single module whose ucode" is the table compiled information. The EXPORTS portion of the
description says that a single PROGRAM is exported, either to SELF, or to a named interface.

C-l

c TableCompiler

The client program imports this PROGRAM and calls a runtime procedure that re~turns the
address of the data. For example:

Let TableData. bcd be a table compiled module that exports SELF:

DIRECTORY
Runtime,
TableData;

Foo: PROGRAM IMPORTS Runtime, TableData •
BEGIN
base: LONG POINTER. Runtime.GetTableBase[TableData];
... -- base now points to the data part of the table compiled information

Similarly, let TableData.bcd export TableData to the interface TableDefs:

DIRECTORY
Runtime,
TableDefs USING [TableData];

Foo: PROGRAM IMPORTS Runtime, TableDefs •
BEGIN
base: LONG POINTER. Runtime.GetTableBase[TableDefs.TableData];
... -- base now points to the data part of the table compiled information

The second example, exporting to an interface, allows new data to be table compiled
without having to recompile Foo. On the other hand, if the data changes slowly, llsing the
first method means one less interface to keep track of.

C.3 ModuleMaker

C-2

The input to the ModuleMaker is a file with arbitrary contents. The only restriction is that
it be less than 64K bytes long, as the length of the file must be contained in the body table
of the configuration description.

Suppose TableDa ta. da ta is a file to be table compiled. The executive command line

>TableCompiler.-TableData.data/m

will create the file TableDa tao bcd, which is a PROGRAM exporting only itself.

The executive command line

>TableCompiler. - TableData. data/m TableDefs/i

will create the file TableData. bcd, which is a PROGRAM exporting TableDatiCJ to the
interface TableDefs.

The name of the PROGRAM exported will be the same as the name of the input file. The
extension on the input file name (.data in the example) is stripped off, and the root of the
file name is used as the module name. N.B. the name given on the command line must be
properly capitalized. See section 4 for further operational details.

XDE User's Guide c
C.4 StringCompactor

The input to the StringCompactor is a stylized Mesa program. It is most easily understood
by looking first at an example.

C.4.1 Example

Consider the Mesa program ErrorTab, where most of the ErrrorMessage entries are
omitted for the purpose of this example:

DIRECTORY
log USING [ErrorCode].
Tree USING [NodeName];

ErrorTab: PROGRAM=­
BEGIN
FnName: ARRAY Tree.NodeName[assignx •. uparrow] OF STRING=- [

"MIN". "MAX", "LONG", "ABS", "ALL", "SIZE", "FIRST", "LAST",
"DESCRIPTOR", "LENGTH", "BASE", "LOOPHOLE", "NIL"];

ErrorMessage: ARRAY Log.ErrorCode OF STRING=- [
"FATAL COMPILER ERROR", -- compilerError
"unimplemented construct", -- unimplemented
"unspecified error", -- other
... -- and many more (all possible compiler error messages)
"will use unsigned comparison"1; -- unsignedCompare

END.

The executive command line

>TableCompiler.-ErrorTab.mesa/-a

will create the file Er rorTab. bcd, which is a PROGRAM exporting only itself, and will also
produce the file ErrorTabFormat, containing the following text that can be inserted into a
program or interface:

CSRptr: TYPE =- LONG BASE POINTER TO CompStrRecord;
CompStrDesc: TYPE. RECORD [offset, length: CARDINAL];
CompStrRecord: TYPE=- RECORD [

stringOffset: CSRptr RELATIVE POINTER TO StringBody,
FnName: ARRAY Tree.NodeName[assignx .. uparrow] OF CompStrDesc,
ErrorMessage: ARRAY Log.ErrorCode OF CompStrDesc];

Suppose now that you want to print the error message associated with some value, say
code, of the enumerated type Log.ErrorCode. The program fragment below shows how to
obtain a String.SubStringDescriptor for the message.

et: CSRptr =- Runtime.GetTableBase[ErrorTab1;

ss: String.SubStringDescriptor +- [
base: et[et.stringOffset].
offset: et. ErrorMessage[code].offset,
length: et. ErrorMessage[code].1 ength];

C-3

c TableCompiler

You can now pass @ss to any output routine that takes a String.SubString.

C.5 File format

The output of the StringCompactor has a
ttbcd" header that describes a single module.
The ttcode" for this module is in the format
illustrated here.

• The first word is a self-relative pointer to
the StringBody where all of the string
characters have been placed.

• Next comes one or more arrays of offset,
length pairs (CompStrDesc) that a client
program can use to generate a SubString
that describes the literal.

• Finally, the file contains a StringBody,
whose text contains the characters from
the entire collection of literals.

The format file output by the TableCompiler
contains a declaration (CompStrRecord) that
describes the beginning of the data. The
standard mode of operation is to copy the
contents of this file into either the program
using the strings or into a definitions file, if
several programs are using them. Since the
format changes only when the length of the
arrays change, you usually ignore the format
file when you have simply edited one or more
of the string literals. In the case of the
example, things are defined in terms of named
constants to the extent that the format almost
never changes.

stringOffset: ---..... -.
FnName: offset -- ---length .-----

offset -----Iengtfi .-----

ErrorMessage: offset
-----iengtfi ~.----

offset -- ---iengtfi-·----

-----~~~~~----- I~
maxlength -------.-------

__ Jt/.t __ ": ___ l __ _

· N • 1M -------,-------
A · X --------'-------·

· -------.-------
o · •

n

C.6 Options

C-4

Like the ModuleMaker, the StringCompactor can export its PROGRAM either as SEI.F or to a
named interface. See section 4 for details.

The StringCompactor has another, little used mode where it doesn't actually ttcompact"
the strings. In this mode, the output file (data portion) consists of one or more arrays of
relative pointers to StringBody, followed by the StringBodys. The output in this format
can be used to obtain a file of string literals where the client program can produce a (LONG)
STRING (Le., (LONG) POINTER TO StringBody) for each of the literals, instead of havin~~ to deal
with SubStrings. The disadvantage of this format is that there is an extra word of
overhead (maxlength) associated with each literal.

The input files to the StringCompactor are valid Mesa programs, and can in fact be
compiled (unless they overflow the compiler's string literal table), In fact, it is a good idea

XDE User's Guide c
to compile them occasionally-the StringCompactor doesn't actually check the number of
literals against the declared length of the arrays.

C.7 Command line syntax and switches

The TableCompiler runs in the executive window; when loaded, it registers a command
TableCompiler. -. It reads a series of identifiers with optional switches.

A single command to the TableCompiler consists of an input file name, with optional
switches, possibly followed by auxiliary file names with mandatory switches. The end of
the command is denoted either by the end of the line, or by the presence of a /g switch on
the last file name of the command.

If the file extension of the input file is n. mesa" (or omitted), the StringCompactor will be
run; otherwise the ModuleMaker will be run. This decision can be overridden by switches
on the input file name (m,s, or t).

The name of the program exported by the output file is the root name of the input file
(exactly as capitalized on "the command line). It will be exported to SELF unless there is an
interface file specified (with a /i switch) in the command. If you export to an interface, the
input file must be named the same as the PROGRAM declaration in the interface.

The TableCompiler used to generate object files for the Alto world as well. The only
observable difference between /a and I-a in this version is whether then declarations in
the format file output of the StringCompactor are LONG or not. The next version of the
TableCompiler will have this feature removed.

C.s Examples

To run the StringCompactor on Foo.mesa, to make Foo. bed exporting SELF:

>TableCompiler.- Foo/-a

To run the ModuleMaker on Foo.binary, to make Foo. bed exporting Foo to FooDefs:

>TableCompiler.- Foo/-a FooDefs/i

To run the ModuleMaker on Foo.binary, to make Foo. bed exporting SELF:

>TableCompiler.- Foo.binary/m

To run the ModuleMaker on Foo.binary, to make Foo. bed exporting Foo to FooDefs:

>TableCompiler.- Foo.binary/m FooDefs/i

To run the StringCompactor on Foo.mesa, to make Foo. bed exporting SELF, and then run
MakeModule on Baz.binary, exporting SELF to Baz. bed:

>TableCompiler.- Foo/-ag Baz.binary/m

C-5

c TableCompiler

e.9 Switches on the input file name

Switches are optional on the input file name-the program looks at the input file name
extension and chooses (It if the extension is n.mesa", 1m otherwise).

switch default

a TRUE

c TRUE

9

m

s

t

meaning

Alto output-affects the declarations in the format file. This
switch should go away, and should be specified as FAL.SE if you
are planning to use the format file output.

Compact strings-puts the StringCompactor into conlpacting
mode; you should probably use the It switch instead.

Go-there are not auxiliary file names in this command.

Run the ModuleMake regardless of the decision based on file
extension.

Run the StringCompactor (in non-compacting mode) regardless
of the decision based on file extension.

Run the StringCompactor (in compacting mode) regardless of
the decision based on file extension.

C.I0 Switches on auxiliary file names

C-6

Every auxiliary file name must have at least one switch. The last file name in the
command also has a 19 switch (unless it is the last thing on the command line) .. For the
purposes of discussion, let root be the root of the input file name.

switch

f

9

i

meaning

Format file-tells the StringCompactor where to write the format
declarations. The default is rootFormat.

Go-there are not auxiliary file names in this command.

Interface-export to this interface. It must contain a declaration root:
PROGRAM.

o Output file-you can change the name of the output file, but bear in mind
that the PROGRAM it exports will still be named root.

D

Parser Generator System

The parser generator system (PGS) is a tool that translates a LALR(I) grammar into a
parse table. More specifically, it analyzes a context-free grammar specified in Backus­
Naur form as input to see whether it is LALR(I), and if so, outputs compacted binary
tables that can be used in conjunction with the Mesa parser. It also produces ancillary
tables that simplify writing lexical routines to recognize the terminal symbols of the
grammar. Since one of the main uses of the PGS is in building the Mesa compiler, there is
a preprocessor that aids this (see section D.6).

The LALR(I) parsing algorithm has good space and time performance, handles a larger
subset of the context-free grammars than other methods in common use, and allows a good
syntax error repair capability to be added. Since the LALR(1) condition can be less than
intuitively obvious, however, checking that the condition holds requires substantial
computation; if the grammar is not, a fair knowledge of the underlying theory may be
needed to change the grammar to make it meet the condition.

The most accessible description of LALR(I) parsing is the tutorial article uLR Parsing" by
Aho and Johnson in Computing Surveys, 6 (1974) 74. The most comprehensive account
readily available is in The Theory of Parsing, Translating and Compiling Volume 1,
Prentice-Hall (1972), by Aho and Ullman. The algorithms used in the PGS are from
Anderson, Eve, and Horning, !tEfiicient LR(I) Parsers," Acta Informatica 2 (1973) 12, so
the terminology here follows this paper, referred to below as AEH.

D.I Using the Parser Generator

Mter PGS. bcd has been retrieved, issuing the command pgs in the Executive invokes it.
The PGS prompts for an input file name. The input file name implicitly defines the names
of the various output files. The main part of the input file name is extended by . echo,
.log, • binary and. module to form the names of the primary output files. However,
input files with extension . me s a or • Me s a are an exception, as discussed in section D. 5.
Sections D.3 and D.4.discuss the PGS 's input and output. Installing the system and
assembling it from its components are described in section D.7. An example input file and
the resulting. module, • echo and. log files, are given in section D.S.

D-l

D Parser Generator System

D.2 Format of the input file

D-2

The input file is treated as a sequence of tokens, where a token is defined to be a sequence
of characters none of which are in the range [OC.:]. Tokens are delimited by sequences of
characters in this range. In addition to the tokens :: ., /,?,C, and the integers that have
special roles, there are a number of tokens starting with the character pair II that control
the PGS.

The input consists of five subsequences: directives, terminals, nonterminals, aliases, and
productions, which must appear in that order.

1. The principal directives and their functions are:

IIINPUT - causes the input to be echoed to the .echo file.

I/CHAIN - causes an optimization to be performed that speeds up parsing by
eliminating all references to productions marked as chain productions

IILISTS - causes the LALR(l) tables to be compacted and output to the. binary and
• module files

I/PRINTLALR - causes a readable form of the LALR(l) tables to be output to the .log
file. (A table for a grammar of about 300 productions contains roughtly 400,000
characters. Generating this readable form noticeably slows the PGS.) .

2. IITABLE1 introduces tokens representing the terminal symbols of the gramlmar. The
last token denotes a unique sentence endmarker used only to delimit sentences
supplied to the resulting parser; this token should not appear in any production.
(The scanner invoked by the parser using the tables generated by the PGS is
required to map the end-of-input signal onto this token.)

3. I/TABLE2 similarly introduces the nonterminal symbols of the gramnlar. The
nonterminal symbol appearing first after I/TABLE2 is taken to be the goal symbol of
the grammar. The way that the Mesa parsing algorithm terlninates entails a weak
constraint that neither should the goal symbol appear in the right part of any
production nor should any of its productions be designated chain productions.

4. The optional alias sequence, if included, is introduced by I/TABLE3. The terminal
symbols of a grammar do not necessarily have the form of identifiers, but lexical or
error recovery routines may need to reference them. The alias sequence consists of
pairs of tokens, the first of which is a terminal symbol (that is, it appears in the
sequence following I/TABLE1), and the second is an alias in the form of an identifier
by which it can be referenced. Appropriate constant definitions are constructed for
these identifiers and included in the. module file.

5. Finally, the productions are listed in Backus-Naur notation following I/TABLE4. The
tokens :: = and / play their usual role; there is no symbol terminating or separating
productions. Likewise a production deriving the empty string is specified by the
absence of any token after ::. or I and the succeeding /, end of input, or token
followed by :: • sequence.

Immediately preceeding the Its or to the left of a token followed by ::. there willl usually
be an integer, the rule number, which may itself be preceded by the token C (upper case

XDE User's Guide D

only). The rule number associates the production with a semantic routine (an arm of a
SELECT statement) to be invoked by the parsing algorithm whenever a string derived from
the associated production is recognized. Some productions, of the form nonterminal :: •
nonterminal, have no semantic significance and serve merely to assert which members of
one syntactic class are also members of some larger class. Chains of such productions
appear in expression grammars (such as, expr ::. term, term ::. factor, factor ::.
primary) and can significantly reduce the speed of parsing. The appearance of the token C
is an assertion that the following production is of the specified form and has no semantic
processing associated; this allows the PGS to eliminate all references to it with an increase
in speed of parsing.

The input phase of the PGS uses the Mesa parsing routine and parsing tables of its own
construction so there is clearly a grammar specifying the form of the input. The
description given above was preferred as an introduction to the input format since it
covers only the essentials. The PGS will, on request, echo its input interspersed with other
information in a formatted form. As there was a requirement that this output should also
be acceptable as input, the grammar allows a rather wider class of input forms but
information other than that described is simply discarded during re-input. The grammar
appears in the appendix.

It should be clear that the terminal symbols of the PGS grammar cannot be used as tokens
in a client grammar; a syntax error would result. This is not likely to be a problem to most
clients insofar as the symbols starting with II are concerned (that is why ·this curious
system was adopted) but there are also:: • , I, 1, C and GOAL some of which may well appear
in a client grammar. Finally of course the PGS grammar contains all of them. The
standard solution is used; ifl, 1, or C are required as tokens in a client grammar they must
be specified as 1, '1 and 'C. Multi-character symbols such as ::. must be specified as
":: • n. The only special treatment that these quoted symbols receive at the hands of the
PGS is in building the tables for use by the scanner; any two character token beginning
with a single quote has the quote removed; similarly any token of three or more symbols
where the first and last are double quotes has these bracketing quotes stripped.

Occasionally, it is convenient to be able to flag certain productions in the input text. The
PGS will ignore 1 when looking for C or a rule number; the 1 should precede C when a rule
number is also present.

D.3 Output of the Parser Generator

Four output files are normally constructed: a record of the input, a log, a binary output file
containing the parser and lexical tables, and a module file that contains definitions of
aliased terminal symbols and some ranges defining the sizes of the various arrays
constituting the binary file. The module file is a Mesa module named ParseTable. It must
be compiled and bound with the Mesa parser, a suitably modified version of the Mesa
scanner, and the definitions module that describes the invariant parts of the binary parse
tables.

Examples of these latter modules exist in the PGS. The files pgsptabdefs. mesa,
pgs scan. mesa, pgspar se. mesa and pgs 1. mesa contain respectively ParseTable, the
scanner and semantic processing routines for the PGS, the Mesa parser and, finally,
definitions of the invariant part of the binary t~bles. For operational reasons, the low­
level routines interfacing with 110, storage management, etc. have been removed from
pgsparse.mesa and pgsscan.mesa to the control module of the PGS in the file

D-3

D

D-4

Parser Generator System

pgscon. mesa. Nonetheless these modules should provide a model for anyone meeding it.
In particular, the .code for loading and unloading the binary tables and invoking the
parser can be found in the main line code of the module PGScon.

D.3.1 The input record file

This file is produced if the directives in the input stream contain IIINPUT. The na:me of the
file is obtained by appending .echo to the main part of the input file name.

The record of the input differs from the true input in that the directives may be displayed
in a different order and the terminal and nonterminal symbols are displayed one to a line
each preceded by an integer. (The integers are allocated sequentially starting at one for
the first terminal symbol. Each production is displayed starting on a new line'; each is
preceded by two integers, the second being the rule number from the input. If a C was
specified on the input it appears between the two integers. the first integer is simply a
unique label for the production. The first production is labelled one and again the PGS
simply labels the productions with ascending integers. These labels are used in some of
the diagnostic messages output by the PGS. A production with the implicit labHI zero is
constructed and output before the others, it has the form,

GOAL:: = goal eof

where goal stands for the goal symbol and eof for the end of sentence marker. A check
during input ensures that these symbols occur to the right of :: = in no other production.

D.3.2 The Log file

This file contains error messages and various items of supplementary information output
during the generation of the parsing tables. If error or warning messages are log~,ed then,
immediately prior to the end of execution, the message, "Errors or warnings IOlgged" is
displayed followed by the usual invitation to type any character to terminate proc€!ssing.

D.3.2.1 Error messages

Most error messages occur during input of the grammar. Those messages prefixed by the
word ERROR cause the program to terminate after completing input and checking for
further errors. WARNING messages allow processing to continue. Each message is
accompanied by a fragment of input text with a pointer to the current input token.

The warning messages are:

1. Overlength symbol (increase TOKENSIZE7) truncated to -

2. Not a chain production -

3. Unused(U) or undefined(D) symbols (refer to TABLE1 and 2)

These messages illustrate some general points; messages ending with a dash are followed
by further information. For message 1, it is the truncated form of the token, for message 2

XDE User's Guide D

it is the integer label appended to the offending production in the echoed input. Mter
message 2, processing continues as though no chain indication had been specified.

Messages such as the first that indicate that an internal field size is too small also specify
the compile time constant (in pgscondefs .mesa) that controls the field size. Currently
tokensize constrains tokens to 14 characters.

The third message occurs at the end of input if there are symbols in the TABLE1 and 2
sequences that do not appear in any production (unused symbols) or if a symbol in the
TABLE2 sequence does not appear to the left of:: • in the productions (undefined symbols).
This message is followed by a list of integers that designate symbols in TABLE1 and 2
using the numeric labels appended in the echoed input. Each integer is tagged with U
and/or 0 to indicate whether the corresponding symbol is unused or undefined or both.

The ERROR messages are:

4. Nonterminal with too many rules (increase ALTERNATELlM?)-

Only 31 productions are allowed for any nonterminal; if this is not enough it
would be better to introduce a new nonterminal and split them into two
groups rather than increase the limit of 31.

5. Multiple definitions of symbol -

This message occurs either because the same symbol appears more than once
in TABLE1 and 2 or because the same symbol occurs to the left of ::. more
than once. The offending symbol is printed after the message.

6. Symbol not defined -

This message also appears in two contexts, either a symbol appears in a
production that does not appear in TABLE1 or 2 or alternatively message 3
was issued with undefined symbols. in the first case the message is followed
by the symbol in question, in the second by "see previous message".

7 . Terminal precedes :: • -

The terminal symbol follows the message.

8. Too many rhs symbols in production (increase RHSLlM?)-

Fifteen symbols in the right part of a production is unlikely to be exceeded; if
it is, change the grammar, increasing rhslim would involve consequential
changes in the binary table formats.

9. Internal field will overflow - increase PSSLIM

This one is unlikely, it would involve a grammar with 1024 symbols or
productions. An increase up to 2047 would be possible without changing the
binary table formats.

D-5

D

D-6

Parser Generator System

10. Aliased symbol not a terminal symbol-

The symbol follows the message.

11. Aliases must not be terminal symbols -

The symbol follows the message.

12. Goal symbols used in rhs

The goal symbol or end of sentence marker appear in a production right part.
(See the paragraphs numbered 1 and 2 in section D.3).

13. Number greater than MAXRULE

Currently the PGS allows for 255 rule numbers. A relatively minor
reformatting of the binary tables would permit it to be incr4~ased to
LAST[CARDINAL].

D.3.2.2 Output during table construction

During the construction of the parsing tables there is a reasonably remote cha.nce that
error message 9 will occur and terminate any further processing, though in this case it
implies that more than 1023 parsing states are necessary for the grammar. Much more
likely are messages indicating that the grammar is not LALR(1).

In the event of conflicting parsing actions arising for some terminal symbol in a parsing
state, all data appertaining to that state is listed. The first heading line specifies,

1. an integer naming the state,

2. a symbol of the grammar (recognition of this symbol causes this state to be
entered),

3. a set ofpJ pairs defining the state (see AEH), each pair being followed by t.

Below the heading in a four col umn format is the list of symbols of the grammar that may
be encountered in this state. Each symbol is preceded by an encoding of its associated
parsing action:

1. unsigned integers denote scan (or shift) entries to the state named by the
integer,

2. integers preceded by an asterisk signify reduce operations using the
production with the integer as its label,

3. an integer preceded by a minus sign also indicates a production nunlber but
implies that the symbol associated with this action must be stacked before
the reduce operation; a so-called scanreduce operation. (These nlarking
conventions differ from those used in AEH though they use the same
symbols.)

XDE User's Guide D

During construction of the tables scan entries are computed before reduce entries, so when
conflicting actions arise they are reduce actions that either conflict with an existing scan
entry or with a previously computed reduce entry. (It is an inherent property of
scanreduce entries that they cannot conflict with another entry.) Conflicts are indicated
by lines of the form,

Reduce with n conflicts with **********

where n is a production number. Each such line is followed by a list of items of the form,
symbol action I, where action is either SCAN if a scan action for this (terminal) symbol has
already been constructed or is an integer naming the production for that a reduce action
has already been constructed.

If the directive IIPRINTLALR is specified, the output just described occurs for every state
whether or not it contains conflicts. The heading, LALR(l) Tables, precedes such output.
This output is rarely worth having, it is occasionally of value in tracking down a conflict.
Its primary function was in debugging the PGS.

The PGS discards conflicting entries after printing them and it will not form either the
binary tables or the module output if there are reduce~reduce conflicts. In the case of
reduce~scan conflicts the decision to process scan entries first implies that the scan entry
takes precedence. This is occasionally useful. For example it solves the dangling else
problem in the preferred way. However, the scan-reduce conflict message is a.warning and
as such triggers the displayed message directing attention to the .log file.

Mter generating the tables a heading, LALR(l) Statistics, is output and a few counts are
printed. Only the first three may be of any general interest, they indicate the number of
parsing states and the total number of actions in the tables for both terminal and
nonterminal symbols.

D.3.2.3 Output during table compaction

Table compaction and output of the binary tables only occur if the directive IIUSTS is
specified in that case the output described here appears on the .10g file.

The earlier stages of the PGS are written in a general way, data structures will expand to
accomodate very large grammars; at the cost of recompiling the system and changing
compile time constants, the limits on field sizes mentioned previously can be increased. At
this stage the objective is to pack information economically into l6-bit words and it is here
that the size of fields is an absolute constraint. Final checks are made that could
conceivably produce one or more of the self explanatory messages:

FAIL - more than 255 terminal symbols

F AIL ~ more than 254 nonterminal symbols

FAIL - more than 2047 states or productions

FAIL - more than 15 symbols in a production right part

D-7

D

D-8

Parser Generator System

These are rather unlikely, the tightest constraint is likely to be the limit of 256 on rule
numbers. If any of these checks fail, processing terminates.

Assuming no error messages, the only unsolicited output here is a heading, Parse Table
Data, and one table. A hash-accessed look-up table, for the terminal symbols of the
grammar, is created for use by the scanner. As hash functions are notoriously unreliable,
the following is printed so that a visual check can be done to avoid problems. The
subheading,

Scanner hashtable probe counts (terminal symbol, probe count, hashcode)

followed by a four column layout of triples that, as the heading indicates ,show for each
symbol the number of probes needed to locate it in the hash table and its hashcode. The
technique used is Algorithm C, page 514, Volume 3 of Knuth's The Art of Computer
Programming, Addison-Wesley (1973). If there are n terminal symbols, they arH hashed
into a table of using MIN[m,251] buckets; m is always an odd integer, either 3*nl2 or
3*nl2+ 1. The hash function uses the ASCII values of the first and last charact,er of the
symbol and is

«127*first character + last character) MOD buckets) + 1.

The performance of this hash function deteriorates as the number of terminal symbols
approaches 255.

If both the directives IIPRINTLALR and IIL1STS are specified, a record of the table compaction

transformations is produced. This record is typically of interest only for maintaining a system, and

familiarity with the compaction techniques described in AEH is assumed in its description.

First, a set of default actions for the nonterminal symbols of the grammar are determined, a.nd a table

headed Nonterminal Default Actions is printed. Each nonterminal symbol appears preceded by its

associated default action encoded in the form already described: unsigned integers repreisent scan

entries, and negative integers represent scan-reduce actions. (Reduce actions never takEl place on

nonterminal symbols.)

After removing all occurrences of these defaulted entries from the LALR(1) tables, the PGS determines

those states that have identical symbol-action pairs, first, over the set of terminal symbols and then,

independently, over the set of nonterminal symbols. All states reference one copy of the list of symbol­

action pairs stored in the binary tables. The table Table Overlays has three columns headed row, ttab and

ntab; if a row of this table contains (integer) entries a, band c respectively, then it impliels that the

terminal entries of state a are the same as those of state b, while the nonterminal entries of state a are the

same as those of state c. It is exceptional for both the terminal and nonterminal entries of a state to match

those of other states so usually one of the entries b or c is blank. If neither the terminal nor nonterminal

entries of a state match those of another state, then it does not appear in this table.

The final transformation is to renumber the states so that all of those states containing (nondefaulted)

actions on nonterminal symbols are labelled by integers contiguous to eachother and to 1. This is

acheived by swapping the highest numbered state with nonterminal actions with the lowest numbered

state without nonterminal actions until no more swaps are possible. The table headed, Renumbered

States, simply records this with entries ofthe form, a swapped with b.

XDE User's Guide D

D.4 The module file

The module file is most readily described with an example. Consider the module file
generated by the PGS for its own grammar.

ParseTable: DEFINITIONS=- {
Symbol: TYPE=- [0 •. 255];
TSymbol: TYPE=- Symbol[O .. 19];
NTSymbol: TYPE=- Symbol[O .. 13];

•• token indices for the scanner and parser
tokenlD: TSymbol = 1;
tokenNUM: TSymbol II 2;
tokenQUERY: TSymbol =- 3;
tokenTAB3: TSymbol II 9;
tokenTAB4: TSymbol II 10;
initialSymbol: TSymbol =- 3;

defaultMarker: TSymbol II TSymbol.FIRsT;
endMarker: TSymbol II TSymbol.LAsT;

Hashlndex: TYPE II [0 .• 29];
Vlndex: TYPE II [0 .. 106];

State: TYPE II [0 .• 26];
NTState: TYPE. State[O .. 6];
Tlndex: TYPE II [0 .. 64];
NTlndex: TYPE II [0 .. 3];
Production: TYPE II [0 •. 37];
};

The module defines aliases in the aliases segment of the input. For example, the token
ITABLE3, that is a terminal symbol of the PGS grammar was given th~ alias tokenTAB3. It
is the ninth token in the sequence of terminal symbols in the input file and so internally is
encoded within both the PGS and the binary tables as 9.

The ranges Hashlndex, TSymbol, NTSymbol, State, NTState, Tlndex, NTlndex, Production
and Vlndex prescribe the dimensions of arrays in the binary tables.

D.S The binary file

D.5.1 Binary file format

The format of the binary file is captured by a set of Mesa definitions that, since they are of
interest to both scanner and parser, can conveniently be specified in the definitions
module that constitutes the scanner-parser interface. These definitions are reproduced
below:

ActionTag: TYPE = MACHINE DEPENDENT RECORD [
reduce(O: 0 .. 0): BOOL, •• TRUE if reduce entry
pLength(O: 1 .. 4): [0 .. 15]]; •• number of symbols in production rhs

D-9

D

D-IO

Parser Generator System

ActionEntry: TYPE = MACHINE DEPENDENT RECORD [
tag(O: 0 •• 4): ActionTag, _. [FALSE,O] if a shift entry
transition(O: 5 •• 15): [0 •. 2047]]; -. production number / next state

Productionlnfo: TYPE = MACHINE DEPENDENT RECORD [
rule(O: 0 •• 7): [0 .. 256), -. reduction rule
Ihs(O: 8 .. 15): NTSymbol]; -. production Ihs symbol

VocabHashEntry: TYPE = MACHINE DEPENDENT RECORD [
symbol(O: 0 .. 7): TSymbol, _. symbol index
link(O: 8 .. 15): Hashlndex]; -.. link to next entry

ScanTable: TYPE = ARRAY CHAR['\040.:\177] OF TSymbol;
HashTable: TYPE = ARRAY Hashlndex OF VocabHashEntry;
IndexTable: TYPE = ARRAY TSymbol OF CARDINAL;
Vocabulary: TYPE = MACHINE DEPENDENT RECORD [_. a string body

length(O), maxlength(1): CARDINAL,
text(2): PACKED ARRAY Vlndex OF CHAR];

ProdData: TYPE = ARRAY Production OF Productionlnfo;
NStarts: TYPE = ARRAY NTState OF NTlndex;
NLengths: TYPE = ARRAY NTState OF CARDINAL;
NSymbols: TYPE = ARRAY NTlndex OF NTSymbol;
NActions: TYPE = ARRAY NTIndex OF ActionEntry;
NTDefaults: TYPE = ARRAY NTSymbol OF ActionEntry;
TStarts: TYPE = ARRAY State OF Tlndex;
TLengths: TYPE = ARRAY State OF CARDINAL;
TSymbols: TYPE = ARRAY TIndex OF TSymbol;
TActions: TYPE = ARRAY Tlndex OF ActionEntry;

initialState: State. 1;
finalState: State=- 0;

Table: TYPE = MACHINE DEPENDENT RECORD [
scanTable: RECORD [

scanTab: TableRef RELATIVE POINTER TO ScanTable,
hashTab: TableRef RELATIVE POINTER TO HashTable,
vocablndex: TableRef RELATIVE POINTER TolndexTable,
vocabBody: TableRef RELATIVE POINTER TO Vocabulary
],

parseTable: RECORD [
prodData: TableRef RELATIVE POINTER TO ProdData,
nStart: TableRef RELATIVE POINTER TO NStarts,
nLength: TableRef RELATIVE POINTER TO NLengths,
nSymbol: TableRef RELATIVE POINTER TO NSymbols,
nAction: TableRef RELATIVE POINTER TO NActions,
ntDefaults: TableRef RELATIVE POINTER TO NTDefaults,
tStart: TableRef RELATIVE POINTER TO TStarts,
tLength: TableRef RELATIVE POINTER TO TLengths,
tSymbol: TableRef RELATIVE POINTER TO TSymbols,
tAction: TableRef RELATIVE POINTER TO TActions
]

XDE User's Guide D

];

TableRef: TYPE = LONG BASE POINTER TO Table;

The purpose and content of the arrays in parseTable are explained in AEH; only the
definitions relevant to the scanner are discussed here. Terminal symbols of the grammar
represented by a single ASCII character are treated separately from those requiring a
string of characters. In scanTable there is an array scanTab, that can be indexed by
characters not in the range [OC .. ' 1; any single character symbol used to extract an element
of this array will extract a non zero integer only if it represents a terminal symbol and the
integer is its numeric encoding.

The string vocabBody contains the character strings representing all other valid
terminals stored head to tail. Element i-I of vocablndex indexes the first character of the
string in vocabBody that represents the terminal symbol with the encoding i. The hash
value of a string that purports to be a terminal symbol can be computed using the hash
function given in section 0.3.2.3 (identifying buckets there with LAsT[Hashlndex]). The
hash value can be used to select an element from the array hashTab; the elements of
hashTab are records, one field of that is used to select an entry of vocablndex (to find the
substring in vocabBody to compare with the given string), the other field is an index to
another element in hashTab to be tried when·the string comparison fails; hashTab[O] is
void, a zero index terminates the search indicating that the given string does not represent
a terminal.

D.S.l The LR and first files

As part of the debugging facilities built into the PGS, two other output files can be created.

The first step in building the LALR(1) tables is to construct LR(O) tables. (This is done
using the SLR(1) algorithm in section 0.3.1 of the AEH paper by omitting the
computation of the sets specified in relation (5b).) The LR(O) tables may be output to a file
with the extension .Ir by specifying the directive IIPRINTLR in the input. The form of the
output is similar to that used in the LALR(I) tables, except that, of course, the terminal
symbols triggering reduce actions are not known.

Reduce with p

follows the state heading if the production with label p has reduce actions in the state.

The next stage is to compute lookahead symbols for all these incompletely determined
reduce actions according to the LALR(1) rules. This is done using Anderson's
bewilderingly succinctly stated algorithm on pages 21 and 22 in AEH. It is convenient, as
a preliminary to this, to compute, for each nonterminal symbol, the set of terminal
symbols that can appear as the first symbol in a string derived from the nonterminal. This
transitive closure calculation provides the initial data for computing Anderson's exact
right contexts, which is in turn, a transitive closure calculation.

If the directive IIFIRST appears among the input directives in addition to either of the
directives IIPRINTLALR or \lUSTS, a file with extension name .first is created that contains a
list of all nonterminal symbols each being followed by an (offset) list of the terminals that
can start a string derived from it.

0-11

D Parser Generator System

D.6 The Preprocessor

D-12

The preprocessor is invoked if the input file name has the extension. mesa. Each arm of
the SELECT statement implementing the semantic processing routines in the Mesa compiler
has comments displaying those productions associated with this arm. The test preceding
the :II > symbol in the arm is the rule number for these productions. As Mesa evolves,
changes are made to the grammar, productions associated with one arm must be moved to
another, new productions and new arms are introduced, and periodically the rules must be
renumbered in a systematic fashion to find things (there being being over 200 arms). The
bookkeeping necessary to ensure that the story told by the SELECT statement is consistent
with that told to the PGS in the input file is tiresome and error prone. Most of the data
needed by the PGS is present in the SELECT statement and by adding the rest only one copy
of the grammar need be maintained and the reassignment of rule numbers can be
mechanised.

The preprocessor expects a Mesa program module as input and it scans for the sequence

digits :II > .-

after that it expects to find data relevent to it. On encountering a carriage return, it checks
whether the next printing characters open a Mesa comment or not; if they do then more
data is expected otherwise the end of the data associated with a particular seleet arm is
presumed and a search is instituted for the next.

Supposing the input file name given was semroutine. mesa, then during the scan the
preprocessor copies the input file to semroutine.mesa$ and makes a modified c:opy in a
scratch file. The change is a trivial one; as the sequences,

digits :II > .-

are encountered, the next non-negative integer (starting with 0) is substituted bE~fore the
:II > symbol. At the end of the input scan, the scratch file is written back to
semroutine .mesa.

Clearly the rather crude procedure used to locate the grammatical information in the
program text places constraints on the program module containing it. In particular it
precludes comments in a fairly natural place in any other SELECT statements that may
appear in the module that also use integer tests. On the other hand anything approaching
parsing the text is out since it merely replaces one updating problem with another.

Since the PGS constructs tables using the new rule numbers just assigned, arrrlS of the
select statement can be reordered to group logically related arms together without making
the search for an arm with a given rule number tedious.

In the comments associated with arms SELECT (other than the first encounter'ed), the
preprocessor expects to find only productions. Here each production is specified in full, its
left part token followed by either:: = or (to designate a chain production) :: = C followed by
the right part tokens.

Comments preceding the first production contain the additional information needed. This
information in order of occurrence is,

XDE User's Guide D

1. Optionally, and in either order, the tokens MODULE: or BINARY: may appear
each followed only by a token naming the file to contain the corresponding
output.

2. N ext must appear GOAL: followed by the token naming the nonterminal that
is the goal symbol of the grammar.

3. Optionally there may appear TERMINALS: followed by the tokens representing
the terminals. The end of sentence marker should not be included, eof is
supplied.

4. Optionally there may appear ALIASES: followed by the alias sequence as
described in section D.3.

5. Finally PRODUCTIONS: must appear before the first production.

When the preprocessor is selected, the output file names are formed by appending the
various extensions to pgs rather than the main part of the input file name thus pgs. module
and pgs.binary are the default names if the MODULE: and BINARY: options are not used in the
input.

N onterminal symbols are deduced from the tokens to the left of ::. tokens. If the
TERMINALS: sequence appears only these symbols are taken to be terminals. Ip its absence
any token in a production that is not a nonterminal according to the previous definition is
a terminal. Omitting this sequence means that typing errors define terminal symbols!

From a file of this form (see the example at the end of the appendix), the preprocessor
constructs a scratch file in the format specified in section D.3, with the directives IIINPUT,
IICHAIN and !lUSTS, which it passes to the input phase of the PGS.

The preprocessor only generates one error message, "Directives incorrect or out of
sequence". No further processing occurs in this situation so the message is displayed,
followed by the request to type a character to terminate execution.

When inserting new arms in the SELECT statement there is no need (so far as the
preprocessor is concerned) to use an integer distinct from those on other arms but it is
probably not a good idea. The preprocessor will recognize? as an alternative to a digit
sequence.

D.7 Operation

D.7.1 PGS operation

PGS command line parsing has been revised to handle module identifiers and file names,
in the currently approved way and to allow easier parameterization with respect to long or
short pointers. The basic idea was to make PGS more like the compiler and binder in these
areas (to avoid the current file name hassles and to make PGS more usable by the system
modeller).

D-13

D

D-14

Parser Generator System

D.7.1.1 Processing modes

Input: Mesa vs. grammar. PGS can extract the information needed to build parsing tables
from comments embedded within standard Mesa source files. Although the above
documents this input mode almost as an afterthought, it has become the standard one. The
conventional name for the input file in this mode is <name>. pgs. The grammar Inode has
been retained for its occasional utility in experimenting with grammars. See the
Appendix.

Output: BCD vs. binary. The usual output mode is BCD; this facilitates packa.ging the
parsing tables with the code that uses them (in a BCD, boot or image file). The binary
mode has been retained primarily for situations in that the parsing tables are to be used
by non-Mesa programs.

D. 7.1.2 Mesa programs as PGS source files

The list of keywords that optionally precede the first production has been revised and
expanded as follows:

TABLE:

TYPE:

EXPORTS:

GOAL:

TERMINALS:

ALIASES:

PRODUCTIONS:

The first three must precede all the others but may occur in any order; the next section
explains their significance. The last four must appear in the specified order; all but the
last may be omitted.

Output Identification

In the source text, the old keywords dealing with file and module names are replac,ed by

TABLE: tableld TYPE: typeld EXPORTS: interfaceld -- or EXPORTS: SELF

This is supposed to remind you of

programld: < ProgramType > EXPORTS interfaceld

(sorry about the different treatment of colons, etc.). The names tableld, typ4!Id and
interfaceld are module identifiers (capitalization counts) and get put into BeDs and
symbol tables.

Examples

The following examples are taken from the current system. The compiler and binder
specify the same type name because they use the same parsing module, in which that
interface is a (compile-time) parameter. On the other hand, they export different
interfaces because loading of the corresponding tables is handled differently (see below).

TABLE: BCDParseData TYPE: ParseTable EXPORTS: SELF -- binder

XDE User's Guide

TABLE: MesaTab TYPE: ParseTable EXPORTS: CBinary
TABLE: PGSParseData TYPE: PGSParseTable EXPORTS: SELF

D.7.1.3 Invoking PGS

File Naming

compiler
PGS

D

When you invoke PGS, you can arbitrarily associate files and module identifiers using the
same command-line conventions that the compiler and binder use. The most general form
is:

[defs: defsFile, bed: bedFile, grammar: grammarFile] Eo­

soureeFi le[i nterfaeeld: interfaeeFi le]/switehes

that puts

the source for the interface typeId on defsFile. mesa,
the BCD for the tableld (or binary, if you say "binary:") on bedFile. bed (or
. binary),
a summary of the grammar on grammar File. grammar (only if input was a Mesa

source file)

and finds the BCD for interfaceId on interfaeeFile. bed. Capitalization is ignored. By
default

de&File: typeld.mesa
bcdFile: tableld. mesa
grammarFile: tableld. grammar (inhibit with I-g)

error messages: tableld. pgslog

(There are further defaults for the cases in which the input is just a grammar file or you
omit keyword items for the module identifiers in the source).

Command line examples

The following commands build parsers for the Compiler, Binder, and PGS:

PGS [grammar:Mesa] Eo- Pass1T.pgs

needs CB i nary. bed
producesPasslT.mesa,MesaTab.bed,ParseTable.mesa
exports MesaTab as a PROGRAM in the interface CBinary
puts grammar summary inMesa.grammar

PGS [defs: BedParseTable, grammar: CMesa] Eo- BedTreeBuild.pgs

produces BedTreeBuild.mesa, BedParseData.bed,
BedParseTable.mesa

exports BcdParseData directly (no interface)
puts grammar summary in CMesa. grammar

D-15

D

D-16

Parser Generator System

PGS [defs: PGSParseTable, grammar: PGS] +- PGSSean.pgs

produces PGSSean. mesa, PGSParseData. bed, PGSParseTable. mesa
exports PGSParseData directly (no interface)
puts grammar summary in PGS. grammar

Do 7.2 TableCompiler operation

TableCompiler command line parsing has been similarly revised to resemble that of the
compiler and binder.

D.7.2.1 Processing modes

TableCompiler is a program to convert assorted inputs to Mesa <, bed files tha.t can be
bound into configurations and managed as code segments. If the source file name has
extension .mesa, it extracts string literals from string array declarations and gives the
skeleton of a DEFINITIONS file describing the resulting structure; otherwise, it just wraps a
bcd header around a collection of bits.

D.7.2.2 Invoking TableCompiler

File Naming

When you invoke TableCompiler, you can specify an arbitrary association between files
and module identifiers using the same command-line conventions that the compiler and
binder do. The most general form is:

[bed: bedFile, format: formatFile] +-
soureeFi le[i nterface: i nterfaeeFi le]/switehes

that puts

the BCD output on bcdFile. bcd,
the record format on formatFile. format (only if input was a Mesa source file)

and finds the interface BCD on interfaeeFile.bcd. Capitalization is ignored here. By
default

bcdFile: source. bed
formatFile: source. forma t
grammarFile: tableld. grammar (inhibit with /-g)
error messages: TableCompiler .log

where source is the root of the sourceFile name. Note that the new use of keywords is not
compatible with previous use.

Command line example

The following command builds components of the compiler:

TableCompiler ErrorTab[interfaee: CBinary] DebugTab[interiaee: CBinary]

XDE User's Guide

D.S Example

needsCBinary.bcd
produces ErrorTab. format, ErrorTab.bcd, DebugTab. format,

DebugTab. bcd
exports ErrorTab and DebugTab as PROGRAMS in the interface CBinary

An Input File

I\INPUT I\CHAIN IILISTS IIPRINTLALR
ITABLE1
id + () * IF THEN OR ELSE: = EOF
ITABLE2
gsaietpbl
ITABLE3
+ tokenPLUS
ITABLE4
1 g:: =- s
Cs::. a
C Ii
2 a:: =- id: =- e
3i::=-IFbTHENal
Ce:: =- t
4 Ie + t
Ct:: .. p
5 It * p
6p::=- (e)

7 lid
8b:: =- bORid
9 lid
10 I:: ..
11 I ELSE s

The Resulting Module File

ParseTable: DEFINITIONS ..
BEGIN •• types for data structures used by the Mesa parser and scanner

Symbol: TYPE. [0 •. 255];

.- token indices for the scanner and parser

tokenPLUS: TSymbol • 2;

Hashlndex: TYPE .. [0 .. 17];
Vlndex: TYPE .. [0 .. 22];

TSymbol: TYPE" Symbol [0 •• 11];
NTSymbol: TYPE .. Symbol [0 .• 10];
State: TYPE" [0 .. 17];
NTState: TYPE .. State [0.. 5];
Tlndex: TYPE. [0 .. 23];

D

D-17

D

D-18

Parser Generator System

NTlndex: TYPE. [0 .. 9];
Production: TYPE. [0 .. 15];
END.

The Resulting Echo File

IIINPUT I/CHAIN lIuSTS I/PRINTLALR

ITABLE1
1 id

2 +
3 (
4)
5 *
6 IF
7 THEN

8 OR

9 ELSE

10 :.
11 EOF

ITABLE2
12 9
13 5

14 a
15 i
16 e
17 t
18 P
19 b
20 I

ITABLE3

+

ITABLE4

1

2C
C

4

tokenPLUS

GOAL :: = 9 EOF

1 :: = 5

2 5 ::. a
3 Ii

2 a :::1 id: = e

XDE User's Guide D

5 3 :: - IF bTHENa I

6C 6 e :::1 t
7 4 Ie + t

8e 8 t ::. p
9 5 It * P

10 6 :: =- (e)
11 7 lid

12 8 b ::. bORid
13 9 lid

14 10 :: .
15 11 I ELSE S

The Resulting Log File

LALR(1) Tables

1 o 01

2id 31F Og -1 s

·1 a ·1 i

id 4 11 4:.

31F 5 11 ·13 id 5b

4:- 421

·11 id 6(7e 8t

8p

5b 5 21 12 11
9THEN 100R

6(10 11

·11 id 6(11 e 12 t

12 P

7e 4 31 7 11
13 + *4 ELSE *4EOF

8e 4 31 7 11 9 11

D-19

D Parser Generator System

13 + 14 * *4 ELSE *4EOF

9THEN 5 31
2id 15a

100R 12 21
·12 id

11 e 7 11 10 21
13 + ·10)

12e 7 11 9 11 10 21
13 + ·10) 14 *

13 + 7 21

.. 11 id 6{ 16 t 16 P

14 * 9 2/
·11 id 6{ ·9 P

15 a 5 41
17 ELSE *14 EOF ·51

16 t 7 31 9 11

*7 + *7) 14 * *7 ELSE

*7 EOF

17 ELSE 15 11

2id 31F ·15 s -15a

·15 i

LALR(l) Statistics
States = 17
Terminal entries = 37
Nonterminal entries = 19
First OR operation count = 5
Total OR operation count = 33
Maximum number of contexts = 9,

Parse Table Data

Nonterminal Default Actions

Og ·1 s 15a ·1 i

7e 8t 8p 5b

D-20

XDE User's Guide D

-51

Entries removed = 0

Table Overlays
row ttab ntab
6 4
13 4
14 4
17 1

Scanner hashtable probe counts <terminal symbol, probecount, hashcode)

id 1 6 IF 1 9 THEN 1 3 OR 1 1

ELSE 10 :- 1 16

Renumbered States
2 swapped with 17
3 swapped with 14
4 swapped with 13
5 swapped with 6

The PGS Grammar

IICHAIN IILISTS IIINPUT

ITABLE1
1 symbol
2 num
3 11

4 II

5 "::."
6 IC

7 "ITABLE1"
8 "ITABLE2"
9 "ITABLE3"

10 "ITABLE4"
11 "!lINPUT"
12 "I\CHAIN"
13 "!lUSTS"
14 "IIPRINTLR"
15 "!lPRINTLALR"
16 "IIFIRST"
17 "IIIOS"
18 "GOAL"
19 eof

ITABLE2
20 grammar
21 head
22 ruleset

D-21

D

D-22

Parser Generator System

23 directives
24 terminals
25 nonterminals
26 aliases
27 directive
28 discard
29 rulegroup
30 prefix
31 goalrule

ITABLE3
symbol
num
'7
"ITABLE3"
"ITABLE4"
'7

tokenlO
tokenNUM
tokenQUERY
tokenTAB3
tokenTAB4
InitialSymbol

GOAL :::11 grammar eof

1 o grammar

2 head

3 1
"ITABLE4"

4 2 directives
5 28

6 3 directive
7 4
8 5
9 6

10 7
11 8
12 9

13 10 terminals
14 11

15 11 nonterminals
16 12

17 13 aliases
18 14

19 15 discard
20 28
21 28

:: :II '7 head ruleset

:: :II directives terminals nonterminals "ITABLE4"

I directives terminals nonterminals aliases

:: III

I directives directive

:: III ""INPUT"
I ""CHAIN"
I ""USTS"
I ""PRINTLR"
I ""PRINTLALR"
I ""FIRST"
I .. "IDS"

:::11 "IT ABLE1"
I terminals discard symbol

:::11 nonterminals discard symbol
I ""TABLE2"

:::11 "ITABLE3 II
I aliases symbol symbol

:: :I

Inum
I'?

XDE User's Guide D

22 16 rulegroup :: =- symbol":: =-"
23 17 , prefix symbol":: =- "
24 18 , rulegroup symbol":: = II
2S 19 , rulegroup prefix symbol ":: =- "
26 20 , rulegroup 'I
27 21 I rulegroup prefix 'I
28 22 I rulegroup symbol

29 23 prefix :: =- num
30 24 I num num

31 24 1'1num
32 2S I discard 'c

33 26 I discard' C num
34 27 1'1

5C 28 ruleset :: =- rulegroup
36 28 I goalrule rulegroup

37 28 goalrule :: = "GOAL" ":: = II symbol symbol

An Input File For the Preprocessor

Program text has been stripped from within and around the SELECT statement
implementing the semantic routines of the POS to expose the grammatical information.

SELECT prodData[q[qj]. transition]. rule FROM

o • > _. MODULE: pgsptabdefsnew.mesa BINARY: pgsnew.binary
_. GOAL: grammar
··TERMINALS: symbol num '1',"::." 'c "ITABLE1" "ITABLE2" "ITABLE3"
-. "ITABLE4" "IIINPUT" "IICHAIN" "!lUSTS" "!lPRINTLR"
_. "IIPRINTLALR" "IIFIRST" "1I10S" "GOAL"
•• ALIASES: symbol tokenlO num tokenNUM '1 tokenQUERY
_. ",TABLE3" tokenTAB3 "ITABLE4" tokenTAB4 '1lnitialSymbol
_. PRODUCTIONS:

_. grammar
BEGIN

END;

1 • > _. head
_. head

BEGIN

END;

:: • '1 head ruleset

:: = directives terminals nonterminals nITABLE4"
:: = directives terminals nonterminals aliases "ITABLE4"

2 • > -·directives :: =
BEGIN

END;

D-23

D

D-24

Parser Generator System

3 • > .• directive
BEGIN

END;

:: • "1iINPUT"

4 :II > .. directive :: = "IICHAIN"
flags[chain] ~TRUE;

5 :II > ... directive :: = "IIUSTS"
flags[lists] ~ TRUE;

6 :II > .. directive :: :II "IIPRINTLR"
flags[printlr] ~TRUE;

7 :II > •• directive :: :II "lIpRINTLALR"
flags[printlalr] ~ TRUE;

8 :II > ... directive :: :II "IIFIRST"
flags[first] ~ TRUE;

9 :II > ... directive :::11 "1I10S"
flags[ids] ~TRUE;

10 :II> ··terminals :::11 "ITABLEr'
BEGIN

END;

11 :II > .. terminals :: = terminals discard symbol
•• nonterminals :: :II nonterminals discard symbol

BEGIN

END;

12 • > •• nonterminals :: :II "'TABLE2"
BEGIN

END;

13 • > .. aliases
BEGIN

END;

14 • > .. aliases
BEGIN

END;

:::11 IITABLE3"

:: • aliases symbol symbol

15 • > .. discard :: 11/

I[top] ~ InputLoc[]; •• keep the parser error recovery happy

16 :II > •• rulegroup :: = symbol ":: = II
BEGIN

END;

17 = > .- rulegroup :: :II prefix symbol ":: :II II

Ihssymbol[v[top + 1]];

XDE User's Guide

18 == > -- rulegroup . ::. rulegroup symbol II:: == "

BEGIN

END;

19 == > -- rulegroup :: == rulegroup prefix symbol ":: :II "

Ihssymbol[v[top + 2]];

20 == > -- rulegroup :::11 rulegroup II
BEGIN

END;

21 • > -- rulegroup ::. rulegroup prefix II
prod header[FALsE];

22 • > -- rulegroup :: • rulegroup symbol
BEGIN

END;

23 • > -- prefix ::. num
setrulechain[v[top], FALSE];

24 :II > -- prefix :: • num num
-- prefix ::. 11 num

setrulechain[v[top + 1], FALSE];

25 == > -- prefix :: • discard Ie
setrulechain[prix, TRUE];

26 :II > -- prefix :: • discard Ie num
setrulechain[v[top + 2], TRUE];

27 == > -- prefix :: • '1
setru lechai n [prix, FALSE];

28 • > -- directives
-- discard
-- discard
-- ruleset
-- ruleset
-- goalrule

NULL;
ENDCASE = > ERROR;

::. directives directive
::. num
:: == 11
:: == e rulegroup
:: == goalrule rulegroup
:: == "GOAL" ":: == II symbol symbol

D

D-25

#,4-2
',4-2, 10-2
--,4-3, A-23
;,4-2

Index

?, 4-2, A-23, 24-7
@, 4-2, 10-3, A-4, A-16
\\,4-3
abbreviation-expansion pair, 2-1
accelerator, 1-3

window accelerator, 1-13
Add Switches, A-15
Address Fault, 24-2, B-22
Administrative Level

Normal Level, 30-17
AliasCommand, 4-3, 4-9
ALL, 21-3
ALTB, B-3
archive. bcd, 4-3
Arpa Getting Started, 33-1
Arpa network protocols, 33-1

HOSTS.TXT, 33-1
MY-HOST:, 33-1
MY-GATEWAY:, 33-1
SUBNET-MASK, 33-1

Arpa
Getting Started, 33-1

ArpaCacheAddress, 34-1
ArpaChat, 35-1
ArpaFileServer, 38-1
ArpaFileTool, 37-1
ArpaMailTool, 39-1

ArpaSendTool, 39-5, 39-6
MailFileScavenger, 39-10

ArpaRemoteExec, 36-1
ArpaTerm, 40-1
AsciLBS, 32-13
AsciLControle, 32-13
Ascii.ControIW, 32-~3
AsciLControlX, 32-13
AsciLDEL, 32-13

AsciLESC, 32-13
AsciLTab, 32-13
asterisk, 4-2, 10-3
at sign, 4-2,10-3, A-4, A-16
Attach, 15-1
automated tool execution, 7-1
B RESET, B-2
background priority, 4-6, 4-10
backs lash, 4-3 .
Balance Beam, 1-11, 1-24
BCD, 21-3
Ben, 28-1, 28-21

cleaning up, 28-27
collecting data, 28-21
error recovery, 28-25
messages, 28-25
reducing data, 28-22
report format, 28-23

binary configuration description,
17-1, 19-1, C-l

Binder,4-15,17-1,23-2,23-12,27-1,
III-1
command line, 17-2
error messages, 17-5
examples, 17-3
limitations, 17-7
switches, 4-10, 17-3

boolean item, 1-9
Boot, 5-1, A-2, A-7, A-15, B-4, B-7, B-8
Boot Button, 5-2
boot buttons, B-2, A-7
boot file, 21-1, A-13, B-2
Boot from: menu, 5-1, B-7

Boot Button, 5-2
File Name, 5-1
Reset Priority, 5-2
Reset Switches, 5-2
Set Priority Up, 5-2
Set Switches, 5-1, B-8

boot options, B-4

1

2

Index

normal, B-4
alternate, B-4

boot switches, B-8
recommended, B-14
setting, B-8
Pilot, B-8
ViewPoint, B-13
XDE, B-12

bootable floppy, 22·1
booting methods, B-4

from boot buttons, B-4
from disk, B-6
from ethernet, B-7
from floppy, B-6
from the Installer, B-7
from other volumes, B-7
hard, B-4
soft, B-4

Booting other volumes from XDE,
B-6

bootmesa, 21-2
bounds checking, 19-4
Break, 15-1
breakpoint, 24-2, 24-8
breakpoints, 15-1

conditional, 28-2, 28-8
Brownie, Sst

command line, 8-1
commands, 8-2
example, 8-3
parameters, 8-2
script file, 8-1

Bs,4-1
Bw,4-1
BWSScavenger* .boot, B-17
ClMesa, 17-1
CacheAddress, 4-4, 4-13
CA TCH CODE, 23-8
catch code, 23-4, 23-8
ChangeCommandName, 4-5, 4-9
Change Script Location, A-16
changing user information, 6-1
character class, 3-5
character patterns

finding, 14-1
Chat

form subwindow, 32-2
special keys, 32-3
TTY subwindow, 32-2
user interface, 32-1

Chat User. em, 32-4
Check Drive, A-20
chording, 1-4, 1-12
Clear, 15-1
clearing debugger pointers, A-16
Clearinghouse, 4-5, 30-1, A-22

client, 1-3
ClientRun, 4-5, B-3
Close, A-22
CloseVolume, 4-5
closure, 3-6
CODE, 21-3
code links, 19-2,21-1,23-3
CodePack, 21-3, 23-5, 23-7, 23-8, 23;-11
code pack, 23-1, 23-2, 23-3, 23-5, 23-10
code packing, 23-2
code segment, 23-1,23-2,23-5, 2a-10
code links, 4-5, 4-7, 4-10
command files

passwords in, 9-3
command item, 1-9
command line

expansion, 4-2
interpretation, 4-3

CommandCentral, 4-3, 4-6, 4-7, llS-1
command subwindow, 18-1
User.cm, 18-2

comment, 4-3
Comment, A-17
Compare, 13-1

command line, 13-3
examples, 13-4
file pair switches, 13-3
form subwindow, 13-2
via a window interface, 13-1
via the Executive window, 13-3

Compiler, 4-6,19-1,20-1,23-2,27-1
command line, 19-2
error messages, 19-6
examples, 19-3, 19-6
failures, 19-8
limitations, 19-8
switches, 4-10,19-3

COMPLETE, 4-1
concatenation, 4-4
configuration, I-I
configuration description language,

17-1
Confirm, A-17
control transfer, 28-1, 28-2
CONTROL-C, 4-1, A-3
CONTROL-X, 4-1
Copy

Executive command, 4-6
Copy Lisp From Another Volume, A-23
CountPackage, 2S-1, 28-1

getting started, 28-6
limitations, 28-5
operation, 28-4
sample session, 28-6
user interface, 28-2

Create, 15-2

XDE User's Guide

Create Physical Volume, A·20
CreateDi r, 4-6
creation date, 9-4, 9-5
cross jumping, 24-10
cross reference, 27-1, 27-3

by callee, 27-3
by caller, 27-3

cross-jumping, 19·4
current selection, 1·10
CWO, 4-6
Dandelion, B-1
Data Fetch, A-18
Debug Ops menu, 15-1,24-9

Attach, 15-1,24-9
Break, 15-1,24-10
Clear, 15-1,24-11
Trace, 15-1,24-12

Debug.log,24·7
Debuggee.outload, 24-37
Debugger (Sword), 24-1

breakpoints, 24-12
client, 24-1
commands, 24-12
commands summary, 24-33
cross jumping, 24-13
current context, 24-8, 24-19
Debuggee.outload, 24-37
error messages, 24-25
events, 24-3
input conventions,8
interpreter, 24-22
interpreter grammar, 24-31
kill debugger session, 24-20
local debugging, 24-1, 24-3, 24-34
log file, 24-7
logical volume, 24-1
low-level facilities, 24-21
low-level facilities, octal read, 24-22
low-level facilities, octal write, 24-22
low-level facilities, octal set break, 24-22
outload debugging, 24-2, 24-35
output conventions, 24-9
procedure calls, 24-24
proceed from debugger, 24-8
quit from debugger, 24-8
remote debugging, 24-2, 24-36
runtime state, 24-16
stack display, 24-17, 24-19
styles of debugging, 24-1
symbols, 24-8, 24-21
user interface, 24-5
user.cm, 24-37
userscreen,24-21

Debugger Pointer, 24-2
Debugger.outload, 24-2
debuggerDebugger, 24-2, B-1

debugging
Profile Tool option, 6-1
storage leaks, 25-1

DebugHeap, 25-1
client words, 25'-1, 25-3
example, 25-4
heap OwnerChecking switch, 25-4,

25-4, B-9
node storage usage, 25-1
nodes, examining, 25-2
private heaps, 25-2
storage leaks, 25-1
system heaps, 25-2
zone, 25-2

Define Volume Size, A-17, A-21
DEFINITION, 2-1, 27-2
Definition of terms, 1-3
DELETE, 4-1
Delete

Executive command, 4-6
Delete Boot File, A-21
Delete Data Files, A-21
Delete Diagnostic Microcode File,

A-21
Delete Germ File, A-21
Delete Lisp Microcode File, A-21
Delete Lisp Sysout File, A-22
Delete Pilot Microcode File, A-22
Delete Temporary Files, A-22
Describe Physical Volumes, A-19
DestDir, 4-8
Destroy, 15-2
diagnostic boots, B-5, 8-6
diagnostic microcode, A-6, B-5, 8-6
Diagnostic Microcode Fetch, A-18
dictionary, 2-1
Dictionary Tool, 2-1

commands, 2-2
Dictionary Tool, 2-1
EXPAND, 2-1
file format, 2-2
User.cm, 2-2

DIRECTORY, 17-7
Directory, A-22
Disable Echo, A-17
Disable Page Break, A-17
DISCARD CODE PACK, 23-8
Disk booting, B-6
Disk Label Check, 24-2, A-12, B-22
display screen

inverting, 1-1
preservation, 1-1

DMT.bcd,I-1
domain, 6-1

setting, 6-1
duplicate pages, 8-16

3

4

Index

Echo, A-18
Edit, 15-2
Edit Dictionary, 2-1
Edit Ops menu, 3-3
editable window, 15-2
editing characters, 4-1
EditOps menu, 3-4
Editor property sheet, 3-3
Editor property sheet accelerator, 3-4
Editor Symbiote, 1-16
editor symbiote

use, 3-1
empty window, 15-2
ENABLE, 23-4
Enable Echo, A-17
Enable Page Break, A-17
Ending a session, B-16
ENTRY VECTOR, 23-8
entry vector, 23-3, 23-4
enumerated item, 1-9
Erase, A-22
error recovery, B-14
errors, 1-3
escaped character, 3-5
Ether Boot, A-15
Ethernet, I-2
Ethernet booting, B-7
example volume configurations, B-1
EXCEPT, 23-6, 23-9
Exec Ops menu, 4-15

CallDebug, 4-10
File Window, 4-10
Load, 4-10
New Exec, 4-10
Power Off, 4-10
Quit, 4-10
Run, 4-10
Start, 4-10

ExecOps menu
File Window, 15-1

Executive, 4-1, 9-4, 20-2
built-in commands, 4-3
command line expansion, 4-2
command line interpretation, 4-3
editing functions, 4-1
Exec Ops menu, 4-10
loading programs, 4-5, 4-7
pattern matching, 4-2
running programs, 4-7, 4-9
User.cm, 4-10

EXPAND, 2-1
Expand Lisp Virtual Memory File, A-24
expansion, 4-2
EXPORTS, 17-6
extension

.brownie, 8-1

.list, 23-3

.map, 23-3

.pack, 23-2

.scratch$,16-1

.tds, 7-2
External, 32-4
Fetch Boot File, A-18
file

ArpaFileServer, 38-1
ArpaFileTool, 37-1
code, 17-1
comparing, 9-6
copy, 4-4, 4-8
copying local, 10-4
creation date, 9-2, 9-4, 9-5
dates, 4-5
deleting local, 10-3
deleting remote, 9-6
ID,4-5
listing local, 10-3
listing remote, 9-5
local, 9-2
name completion, 4-1
object, 17-1, 19-1, 27-1
object, version stamp, 27.,2, 27-3
options for listing local, 10-4
partial, 11-3
protection, 4-5
read date, 9-5
remote, 9-2
renaming, 9-6
retrieving, 4-9, 9-1, 9-4, 10-3
size, 4-5
storing, 9-1, 9-4, 10-3
symbols, 17-1
text, 15-1
times, 4-5
transfer, 10-2
write date, 9-5

File Check, B-17
from floppy, B-17
from net, B-17
from Scavenger, B-17

File Name, 5-1
File Tool, 9-1, 10-1

command sub window , 10-3
form subwindow, 10-2
operational notes, 10-5
options window, 10-4
User.em, 10-4

file transfer, 9-1,10-2
ArpaFileServer, 38-1
ArpaFileTool, 37-1

File window, 4-10,15-1
Create, 15-2
Debug Ops menu, 15-1

XDE User's Guide

Destroy, 15-2
Edit, 15-2
editable, 15-2
empty, 15-2
Exec Ops menu, 15-1
Load, 15-2
menu, 15-2
non-editable, 15-2
Reset, 15-2
Save, 15-2
Store, 15-2
Time, 15-3
U ser.cm, 15-3

file-related tools, II-2
filename

fully-qualified, II-I
simple, II-I

Filestat, 4-6
FileTool, 31-1, 31-3
Find, 14-1

command line, 14-1
examples, 14-3
switches, 14-1

floppy, 11-1
bootable,22·1
disk drive, 11-1

Floppy
Executive command, 4-7

Floppy booting, B-6
Floppy commands, 11·1

command line, 11-1
error messages, 11-4
examples, 11-3
partial files, 11-3
switches, 11-2

Floppy Open, A-22
font

face, 16-3
family, 16-3
names, 16-3
point size, 16-3

form subwindow commands, 1·8
form subwindows, I-I
Formatter, 20-1

command line, 20-1
examples, 20-5
failures, 20-6
rules, 20-3
switches, 20-2
U ser.cm, 20-2, 20-5

FRAME, 21-3
FRAME PACK, 21-3,23-9,23-11
frame pack, 23-1, 23-3, 23-11
FRAME PACK MERGES, 23-10
frequency statistics, 28-1, 28-8

FTP (File Transfer Protocol), 9·1, 31-1,
31-3
ArpaMailServer, 38-1
ArpaFileToo 1, 37-1
command abbreviation, 9-1
command line, 9-1
examples, 9-7
switches, 9-1

FTP protocol, 9-1
functions

global, 1-21
keyboard, 1-20

General Tools, 1·1
germ, 21-1, B-2
Germ Fetch, A-18
GLOBAL FRAME, 21-3
global frame, 21-3, 23-1, 23-3, 23·4

debugger display, 24-12, E-17
packaged, 21-3
unpackaged, 21-3

global replace, 3-2
hard boot, 8-4
heap debugging, 25-1
Help, 4-7, A-23
HeraldWindow, 5-1

Boot from: menu commands, 5-1
User .cm, 5-2

If-Then-Endif, A-24
IMPORTS, 17-6
Inactive menu, 1-15
IncludeChecker, 26-1

command line, 26-4
examples, 26-5
form subwindow, 26-2
option window, 26-3
switches, 26-4
User.cm,26-7

initial microcode, B-2
Initial Microcode Fetch, A-18
initialization code, 23-1, 23-4
initializing debugger volumes, B-3
input focus, 1-6
Installer, B-2, A-I
integration machine, 32-13
Interactive Terminal Service, 32-1
internal scavenger, A-22, B-15
Interpress, 16-1
Interrupt, 24-2
kill

debugger session, 24-17
libject

setting prefix, 6-2
setting suffix, 6-2

Librarian, 6-2
setting, 6-2

links, 23-3

5

6

Index

Lisp Microcode Fetch, A-18
Lisp Sysout Fetch, A-19
List Bad Pages, A-19
List Boot Files, A-19
List Drives, A-19
List Files, A-19
List Logical Volumes, A-20
List Physical Volumes, A-20
List Switches. A-20
Lister, 27-1

command line, 27-1
switches, 27-4, 27-5

ListRemoteHosts, 32-12
Load, 4-7,4-10, 15-2
load handle, 4-5, 4-9
Loader, 23-1
loader

MakeBoot, 21-1
loading programs, 4-5, 4-7
loadmap, 21-2, 21-3
local file, 9-2
local file system, II-I
local frame

debugger display, 24-12
logical volume, B-1

debugger, 24-2, B-1
debuggerDebugger, 24-2, B-1
non-pilot, B-1

logical volume initialization, B-1, B-3
Login, 4-7
login name, 6-1

setting, 6-1
login password, 6-1

setting, 6-1
Logon (Installer), A-22
logout, 1-1
mail

answering, 30-1
ArpaMailTool, 39-1
changing mail files, 30-4
deleting, 30-1
forwarding, 30-1
moving, 30-1
reading, 30-1
retrieving, 30-1
saving, 30-1
sending, 30-1

mail registry, 6-1
setting, 6-1

MailFileSca venger, 30-1
MailTool, 30-1

Abort!,30-6
Active.nsMail, 30-2
Append!,30-4
Apply!, 30-6
AutoDisplay, 30-6

attachments, 30-2
current mail file, 30-2
current messages, 30-2
Delete!, 30-4
Display!, 30-3
DisplayOnNewMail, 30-3, 30-6
ExpandPvtDLs:,30-5
Expunge!,30-4
File:, 30-5
Flush Remote, 30-4
Forward!, 30-5
Hardcopy!, 30-3
Landscape Font:, 30-7
Mail File:, 30-6
Move!,30-5
New Form!, 30-5
New Mail!, 30-3
One Per Page, 30-6
Options!, 30-5
Orientation:, 30-6
Output To File, 30-6
Portrait Font:, 30-7
Printer:, 30-7
Sides:, 30-6
Sort!,30-5
table of contents, 30-2
To:, 30-5
Undelete!,30-4
User.cm, 30-2, 30-11
via the Executive, 30-7

MAIN, 23-4, 23-8
mainline code, 23-4
Maintain, 30-1

Add!,30-18
Add! Remove! Mailbox:, 30-18
Add: Selfl, 30-15
Alias:, 30-17, 30-18
Aliases!, 30-15, 30-18
Another!. 30-18
Anyentry, 30-18
Argument:, 30-16
CheckN ames, 30-18
Create!, 30-17, 30-18
Delete!, 30-17, 30-18
Destroy!,30-18
Details!, 30-17, 30-18
friends of a group, 30-19
Group:, 30-15
Individual:, 30-16, 3017
Level, 30-18
Matches!,30-18
Members!, 30-15
NameList:,30-17
Normal Level, 30-15
Owner Level, 30-16

XDE User's Guide

owners of a group, 30-19
Password:, 30-16
Remove!, 30-17, 30-18
Remove: Self!, 30-15
Set! Password, 30-16, 30-18
Set! Remark:, 30-17, 30-18
Summary!, 30-15, 30-16, 30-17
Use Background, 30-19
Which:, 30-17

maintenance panel, B-2
maintenance panel error codes, B-2

boot microcode, B-18
Pilot, B-19

maintenance panel initialization
codes, B-3

MakeBoot, 21-1, III-l
Makeboot, 23-1
MakeBoot

commands, 21-2
examples, 21-5
loader, 21-1
parameter files, 21-1, 21-2, 21-3,

21-4
switches, 21-3

MakeDLionBootFloppyTool, 22m 1
MakeDoveBootFloppyTool, 22-1
menu

Boot from:, 5-1
current search path directories, 12-2
Debug Ops, 15-1
Exec Ops, 4-10,15-1
existing search path directories, 12-2
File Window, 15-2

MENU key, 1-12
Menu Mode, A-18
menu prompts, 1-10
menus, I-I
MFileServer, 31-1

executive commands, 31-2
form subwindow, 31-2
User.cm, 31-2

microcode
diagnostic, A-18, B-5, B-6
initial, A-18, B-2
Pilot, A-19, B-2

missing pages, B-16
ModuleMaker, C-l
modules, 23-2, 23-4
mouse, 1-2
moving files, 10-2
MP codes, B-18
mul tilingual debugger, 24-1
multiword read-only constants, 23-4
name

login, 6-1
setting, 6-1

user, 6-1
name frame, 1-14
name frame operations, 1-14
naming conventions, II-I
New Exec, 4-10
nil checking, 19-5
non-diagnostic boot, B-5, B-6
non-editable window, 15-2
normal boot, B-4
NS,30-1
NS Echo Test, A-20
NSTerminal

terminal types, 32-7
NSTerminal user.cm, 32-10
numeric item, 1-10
object file, 19-1,27-1, C-1

version stamp, 27-2, 27-3
Offline, A-21
Online, A-21
Open, A-23
OpenVolume, 4-"8
organization, 6-1

setting, 6-1
orphan pages, B-16
Out ofVM, B-23
Packager, 23-1, 27-1, III-1

command line, 23-2
example, 23-11
information about modules, 23-4
operation, 23-12
packaging description language,

23-5
switches, 23-2

packaging, 28-1
page fault

tracing, 28-21
password, 4-5, 6-1, 30-18

setting, 6-1
Pause, A-18
Performance Measurement Tool, 28-1,

28-2
concepts, 28-9
getting started, 28-15
limitations, 28-14
operation, 28-13
sample session, 28-15
terms, 28-9
user interface, 28-10

performance monitoring, 28-10, 28-17
Performance Tools, 28-1

Ben, 28-1, 28-21
CountPackage, 28-1
Measurement Tool, 28-1, 28-8
PerfPackage, 28-1, 28-8, 28-12
Spy, 28-1, 28-17

PerfPackage, 28-1, 28-8

7

8

Index

concepts, 28-9
getting started, 28-15

"limitations, 28-14
operation, 28-13
sample session, 28-15
terms, 28-9
user interface, 28-10

physical volume, B-1
Physical Volume Scavenge, A-22, 8-15
Physical Volume Scavenger, B-15
Pilot, 1-2
Pilot internal scavenger, B-15
Pilot microcode, B-2
Pilot error messages, B-22
Pilot file backing cache, B-9
Pilot Microcode Fetch, A-19
PopWorkingOirectory, 4-8
pound sign, 4-2
Power Off, 4-10, A-24
Print, 16-1

command line, 16-1
defaults, 16-3
examples, 16-2
font names, 16-3
formatting, 16-4
switches, 16-2
User. em, 16-4

private heap
debugging, 25-2

proceed .
from debugger, 24-17

process
. debugger display, 24-12

ProcessControl tool, 24a-l
Freezing a process, 24a-2, 24a-3
Loadstate facilities, 24a-2
Process facilities, 24a-2
Thawing a process, 24a-2, 24a-3

ProcesslnBackground, 4-9
ProcesslnNormalPriority, 4-9
Profile Tool, 6-1, 9-3

form subwindow, 6-1
Protect, 4-8
PushWorkingOirectory, 4-8
question mark, 4-2, 24-7, A-23
Quit, 4-10, A-15, B-4, B-7
quit

from de bugger, 24-17
read date, 9-5
recompile, 26-1
registered commands, 4-3
registry, 6-1

setting, 6-1
remote connection, 9-3
remote debuggee, 24- 18
Remote Executive

additional commands, 32-11, 32-14
character codes, 32-13

Remote executive
user interface, 32-11

Remote Executive User.cm, 32-12
remote filename conventions, Ir.·1
Remote System Administration" 32-1
RemoteExec, 32-12
Rename, 4-9
Rename Fetch, A-19
repetitive tool execution, 7-1
replace field, 3-2
replacement expression, 3-6
Request Floppy, A-23
Require Free Pages, A··18

. Reset, 15-2
Reset Priority, 5-2
Reset Switches, 5-2
RET, 4-2
Root Fetch, A-19
rootwindow, 1-6
Rou~ing Tables, A-20
RS 232C, 32-8, 32-9
Run, 4-9, 4-14
Run! .

Command Central c:ommand, 18-2
running·programs, 4-7, 4-9, -10
Save, 15-2
Scavenge, A-22, B-16
scavenger, A-6, B-15

MFile, B-4, B-16
NSFile, B-17
physical volume, B-15
Pilot, B-3, B-15

script file
Tool Driver, 7-1, 7-3

scroll bars, I-7
search and pattern matching-facilities,

3-2
search context, 3-3
search expression, 3-5
search field, 3-2
search path, 4-6, 4-8, 1 :2-1
Search Path Tool, 12-1

commands, 12-1
current directories menu, 12-~~
existing directories menu, 12-:2
form subwindow, 12-1

searching
character patterns, 14-1

SEGMENT MERGES, 23-9
semicolon, 4-2
SendTool, 30-5,30-7

Answer!, 30-7
CC:, 30-8
Deliver!,30-7

XDE User's Guide

Destroy!,30-7
Get!,30-8
If Need Reply-To, 30-8
Invalid OK, 30-8
MailNote, 30-8
MailN ote with attachment, 30-8
New For~r, 30-7
private,d;i\?;~ribution lists, 30-10
public dis~ribution lists, 30-9
Put!, 30~7 -,
recipients, 30-9
Reply-To:, 30-10
Reset!, 30-7
SendAs:, 30-8
SendTool Yi4..the Executive, 30-10
Subject, 3n-9'-!
Text, 30-8' .
User.cm, 30,--12

session
endin:g,{l

Set Boot Fne default Switches, A-15, B-8
Set Oebugger'Pointers, A-16
Set Hardware Clock Upper Limit, A-21, B-7
Set Physical Vo'lume Boot Files, A-16
Set Priority Up, 5-2
Set Switches, 5-1
SetClientVolume, 4-10
SetErrorLevel, 4-10
SetPriority, 4-11
SetSearth~ath,4-11
setting time manually, B-7
setting user information, 6-1
ShowAccessList, 32-12
ShowSearchPath, 4-11
single quote, 4-2, 10-3
SMTP (Simple Mail Transport Protocol)

ArpaMailTool, 39-1
ArpaSendTool, 39-5, 39-6
MailFilScavenger, 39-10

Snarl, 4-11
soft boot, B-4
SourceDir, 4-8
SPACE, 21-3
Spy, 28-1, 28~17

error messages, 28-20
getting started, 28-19
limitations, 28-21
operation, 28-19
user interface, 28-17

stack
debugger display, 24-17

Start, 4-9, 4-12
Start Lisp, A-5, A-15
Statistics, 29-1

command line, 29-1
example, 29-2

switches, 29-1
statistics

frequency, 28-1, 2'8;8
timing, 28-1, 28-8
types,29-2 f,'

storage
debugging leaks, 25-1

Store, 15-2 .
StringCompactor, C-l
Subtract Switches, A-5,.t\-16
subwindow boundaries, r·8
swap units, 23-1
swapping, 23-1
Sword(see Debugger), :24-1
symbiote, 1-16 "

", ',q
Symbiote menu, I~ t~ . ' ,
symbol table, 17:i;i9-1,~'27-2
system heap . .

debugging, 25:-=~ :' "
setting initial sizs;'B~'io

SysteniOverv'iew,'I-l'
TAB, 4-2 ' ,
table-compiled, 23-1'0'
TableCompiler, C-1

command line, C-2, C-5
Examples, C-5
Switches, C-6

tag item, 1-10
tail recursion, 19-4
Tajo, 1-2
Tape Open, A-23
Tape Request, A-23
TCP/IP Related Tools an~
Applications,

V-I
Arpa Getting Started, 33-1
ArpaCacheAddress, 34-1
ArpaChat, 35-1
ArpaFileServer, 38-1,
ArpaFileTool,37-1 '
ArpaMailTool, 39-1
ArpaRemoteExec, 36-1
ArpaTerm, 40-1

TOE.log, 7-3
teledebug, 24-2, 24-18
Telnet Protocol, 35-1
text item, 1-10
Text Ops menu, 1-15
text subwindow commands, 1-22
text subwindows, 1-10
TFTP (Trivial File Transfer Protocol)

ArpaFileTool, 37-1
ArpaMailServer, 38-1

thrashing, 23-1
thumbing, 1-8
Time, 15-3, A-I0

9

Index

timing statistics, 28-1, 28-8
token, 4·1
Tool Driver, 7-1

BNF for script files, 7-7
example script, 7-6
file requirements, 7-1
form subwindow, 7-2
operation, 7-9
script file, 7-1, 7-3
subwindows file, 7-9

tool execution
automated, 7-1

Tool.sws, 7-1
tools, B-I0, 1-4
Trace, 15-1
tracepoint, 15-1
tracepoints, debugger, 24-14
trash bin, 1-11
TTY-emulation capability, 32-1
TTYTajo, 32-13

interfaces exported, 32-14
program interface, 32-14
user interface, 32-13

Type
Executive command, 4-13

Uncaught Signal, 24-2
uninitialized variable checking, 19-5
unreadable pages, B-16
Unrecoverable Disk Error, B-24
Unload, 4-13
upArrow, 4-2, 10-3
user, 1-2
user command file, 1-22
user information, 6-1
user name, 6-1,9-3

setting, 6-1
user password, 9-3

in command files, 9-3
user profile, 6-1, 9-3
User.cm, 1-22

AccessGroups entry, 32-12
ArpaChat, 35-3
ArpaFileServer, 38-2
ArpaFileTool, 37-5
ArpaMailTool, 39-8
ArpaRemoteExec, 36-3
CommandCentral, 18-2
debugger, 24-4, 24-37
Dictionary Tool, 2-2
Executive, 4-15
File Tool, 10-4
File Window, 15-3
Formatter, 20-2, 20-5
Hardcopy, 16-4
HeraldWindow, 5-2
Incl udeChecker, 26-7

MFileServer, 31-2
Print, 16-4
user profile, 6-1

User.em entry, 3-9
Userscreen, 24-21
USING, 27-2
Utility Pilot client, 22-1
version stamp, 27 -2, 27-3
Virtual Terminal

ArpaChat, 35-1
ArpaRemoteExec, 36-1

volume, B-1
logical, B-1
physical, B·l

window
editable; 15-2
empty, 15-1, 15-2
non-editable, 15-2

Window Manager menu, 1-12
windows, 1-1
windowstates, 1-6
word, 4-1
working directory, 4-4, 4-6, 12-2
world-swap, 24-2
write date, 9-5
Write Protect Fault, 24-2, 8-24
write-protected directories, II-2
XDE boot switches, B-12
XFER, 28-1, 28-2
XNS Filing protocol, 31-1
Zap, 4-13
zone

debugging, 25-1, 25-2

XDE User's Guide

'. t 1

GENERAL TOOLS

4 Executive

4.2.2 Command interface

MESA 14.0 CHANGE SUMMARY

XDE USER'S GUIDE -
CHANGED CHAPTERS

CacheAddress mai ntai ns the network address cache that is used
with the AddressTranslation interface. CacheAddress allows
one to create, list, load, store, and manage the network address
cache.

The command syntax is:

>CacheAddress command/arg command/arg

Command/Arg
SetSize/n
GetSize
Flush

List
Certify/entry

Load/file
Storelfile
Statistics

address cache size is set to n.
returns address cache size.
fl ushes the content of the cache,
size remains the same.
lists contents of the cache.
certifies entry in clearinghouse,
entry may contain '*
loads contents of file into cache.
stores contents of cache into file.
I ists local statistics.

CacheAddress SetSize/20 List Store/foo.cache

Creati ng cache fi les

To set up your machine to use CacheAddress, do the following:

1. Type into the Executive:

>CacheAddress SetSize/20

This will set the size of the cache to 20.

2. Run for a day with this cache. The first time you lookup a
machine address, it will be placed into the cache. To see the
cache at any point, type into the Executive:

>CacheAddress List

3. After running CacheAddress for awhile, create a cache file
by the command:

3 - 1

XDE USER'S GUIDE - CHANGED CHAPTERS

13 Compare

3-2

>CacheAddress Store/< >Address.cache

This will place the current contents of the cache into the file
Address.cache.

4. At this point, place into your user.cm InitialCommand:
section:

[System]
InitialCommand: ... ; CacheAddress SetSize/20
load/Address.cache; ...

Certifying your address cache

At some point your address cache may become invalid because
an address in the clearinghouse has changed. To validate your
entire current address cache, type:

>CacheAddress Certify

This will cause all entries in your cache to be validated. If you
wish only to certify a single entry (Goofy), use:

>CacheAddress Certifyl"Goofy:OSBU North:Xerox"

OR

>CacheAddress Certify/Goofy

Patterns can also be used to certify entries. '* will match zero or
more of any letter, and '# will match any single character.
Make sure to quote the asterisk in the Executive, otherwise it
will match files on your disk.

>CacheAddress Certify/G' *
starting with 'G')

(this will certify all name

If you keep your address cache stored in a file, you will want to
update you cache file after doing a Certify. Example:

>CacheAddress Store/address.cache

Compare will now correctly compare files on a remote NS File
Server.

MESA 14.0 CHANGE SUMMARY

XDE USER'S GUIDE - CHANGED CHAPTERS

III SYSTEM BUILDING TOOLS

19 Compiler

19.2.2 Switches

21 MakeBoot

21.2.2 New switches

MESA 14.0 CHANGE SUMMARY

With Pilot 14.0, global frames are not allocated from the main
data space (MDS). This architectural change causes some small
semantic changes to the Mesa language. These language
changes are documented in the Mesa Language Manual
Change Summary.

The Mesa 14.0 compiler now has an 10 switch, which causes the
compiler to generate code for pre-Mesa 14.0. When this
switch is used, the compiler will create a module with a global
frame in the MDS. The restrictions noted in the Mesa Language
Change Summary for Mesa 14.0 do not apply if this switch is
used.

The default for the /0 switch is false.

With Pilot 14.0, MakeBoot changed to reflect the new
architecture. In addition, MakeBoot now uses the runtime
loader in Pilot to load the input object files. Because of the
differences in the Pilot runtime loader and the old MakeBoot
loader, there are some new restrictions.

The new restriction with MakeBoot is all input object files must
be bound with thei r code. With the pre 14.0 MakeBoot, the
object files could be bound without code (the I-c switch in the
Binder), and MakeBoot would search the disk for the object file
that contains the code. Since the Pilot runtime loader does not
have this feature, it is necessary to bind object files with the
code included.

A previously undocumented switch for MakeBoot:

lu Utility Pilot bootfile: the resulting bootfile is a Utility
Pilot client.

A new switch for MakeBoot:

Ic Code Links: use code links when possible when the object
files are loaded. The default is FALSE, and frame

3-3

XDE USER'S GUIDE - CHANGED CHAPTERS

21.2.3 Parameter file

24 Debugger

28 Performance tools

28.1.5 Getting started

3-4

links are used. Frame links are preferable for modules
that have global frames outside the MOS.

The parameter file can contain the following new entries:

GFT: number;

allow number of entries in the global frame table. GFT is the
maximum number of modules that can be loaded with the
resulting bootfile. This number include the MakeBoot loaded
modules and the runtime loaded modules.

GFTBASE: number;

set the base of the global frame table at page number.

lOCAlFRAMEPAGES: number;

sets the size of the the local frame heap to number pages. The
default value for lOCAlFRAMEPAGES is 50.

See the XDE User's Guide - New chapter - Debugger portion
of this change summary.

The performance tools have changed to use Sword interfaces
instead of CoPilot interfaces. The performance tools may only
be used with an outload or remote debugging session; "same
world" performance tools are not available.

The debugging session must be created before runni ng the
performance tool. If another outload or remote debuggi ng
session is started after the performance tool is run, it should be
started with the -s switch (see the section on DebugUseful Defs
in the new XUG Debugger chapter). If the debugging session
ends, the performance tool should be deactivated.

MESA 14.0 CHANGE SUMMARY

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	0E01
	0E02
	0E03
	0E04
	0E05
	0E06
	1_0001
	1_0002
	1_0003
	1_0004
	1_0005
	1_0006
	1_0007
	1_0008
	1_0009
	1_0010
	1_0011
	1_0012
	1_0013
	1_0014
	1_0015
	1_0016
	1_0017
	1_0018
	1_0019
	1_0020
	1_0021
	1_0022
	1_0023
	1_0024
	1_0025
	1_0026
	1_01-01_DMT
	1_01-02
	1_02-01_Dictionary
	1_02-02
	1_02-03
	1_02-04
	1_03-01_Editor
	1_03-02
	1_03-03
	1_03-04
	1_03-05
	1_03-06
	1_03-07
	1_03-08
	1_03-09
	1_03-10
	1_04-02
	1_04-03
	1_04-04
	1_04-04_Executive
	1_04-05
	1_04-06
	1_04-07
	1_04-08
	1_04-09
	1_04-10
	1_04-11
	1_04-12
	1_04-13
	1_04-14
	1_04-15
	1_04-16
	1_05-01_HeraldWindow
	1_05-02
	1_06-01_Profile
	1_06-02
	1_07-01_ToolDriver
	1_07-02
	1_07-03
	1_07-04
	1_07-05
	1_07-06
	1_07-07
	1_07-08
	1_07-09
	1_07-10
	2_001
	2_002
	2_003
	2_004
	2_08-01_Brownie
	2_08-02
	2_08-03
	2_08-04
	2_09-01_FTP
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_09-07
	2_09-08
	2_10-01_FileTool
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_11-01_FloppyCmds
	2_11-02
	2_11-03
	2_11-04
	2_12-01_SearchPath
	2_12-02
	2_13-01_Compare
	2_13-02
	2_13-03
	2_13-04
	2_14-01_Find
	2_14-02
	2_14-03
	2_14-04
	2_15-01_FileWindow
	2_15-02
	2_15-03
	2_15-04
	2_16-01_Print
	2_16-02
	2_16-03
	2_16-04
	3_001
	3_002
	3_17-01_Binder
	3_17-02
	3_17-03
	3_17-04
	3_17-05
	3_17-06
	3_17-07
	3_17-08
	3_18-01_CommandCentral
	3_18-02
	3_18-03
	3_18-04
	3_19-01_Compiler
	3_19-02
	3_19-03
	3_19-04
	3_19-05
	3_19-06
	3_19-07
	3_19-08
	3_19-09
	3_19-10
	3_20-01_Formatter
	3_20-02
	3_20-03
	3_20-04
	3_20-05
	3_20-06
	3_21-01_MakeBoot
	3_21-02
	3_21-03
	3_21-04
	3_21-05
	3_21-06
	3_22-01_Make*BootFloppyTool
	3_22-02
	3_22-03
	3_22-04
	3_23-01_Packager
	3_23-02
	3_23-03
	3_23-04
	3_23-05
	3_23-06
	3_23-07
	3_23-08
	3_23-09
	3_23-10
	3_23-11
	3_23-12
	3_24-01_Debugger
	3_24-02
	3_24-03
	3_24-04
	3_24-05
	3_24-06
	3_24-07
	3_24-08
	3_24-09
	3_24-10
	3_24-11
	3_24-12
	3_24-13
	3_24-14
	3_24-15
	3_24-16
	3_24-17
	3_24-18
	3_24-19
	3_24-20
	3_24-21
	3_24-22
	3_24-23
	3_24-24
	3_24-25
	3_24-26
	3_24-27
	3_24-28
	3_24-29
	3_24-30
	3_24-31
	3_24-32
	3_24-33
	3_24-34
	3_24-35
	3_24-36
	3_24-37
	3_24-38
	3_24a-01_ProcessCtlTool
	3_24a-02
	3_24a-03
	3_24a-04
	3_25-01_DebugHeap
	3_25-02
	3_25-03
	3_25-04
	3_25-05
	3_25-06
	3_26-01_IncludeChecker
	3_26-02
	3_26-03
	3_26-04
	3_26-05
	3_26-06
	3_26-07
	3_26-08
	3_27-01_Lister
	3_27-02
	3_27-03
	3_27-04
	3_27-05
	3_27-06
	3_28-01_Performance
	3_28-02
	3_28-03
	3_28-04
	3_28-05
	3_28-06
	3_28-07
	3_28-08
	3_28-09
	3_28-10
	3_28-11
	3_28-12
	3_28-13
	3_28-14
	3_28-15
	3_28-16
	3_28-17
	3_28-18
	3_28-19
	3_28-20
	3_28-21
	3_28-22
	3_28-23
	3_28-24
	3_28-25
	3_28-26
	3_28-27
	3_28-28
	3_29-01_Statistics
	3_29-02
	3_29-03
	3_29-04
	4_001
	4_002
	4_30-01_Mail
	4_30-02
	4_30-03
	4_30-04
	4_30-05
	4_30-06
	4_30-07
	4_30-08
	4_30-09
	4_30-10
	4_30-11
	4_30-12
	4_30-13
	4_30-14
	4_30-15
	4_30-16
	4_30-17
	4_30-18
	4_30-19
	4_30-20
	4_31-01_MFileServer
	4_31-02
	4_31-03
	4_31-04
	4_32-01_NetExec
	4_32-02
	4_32-03
	4_32-04
	4_32-05
	4_32-06
	4_32-07
	4_32-08
	4_32-09
	4_32-10
	4_32-11
	4_32-12
	4_32-13
	4_32-14
	4_32-15
	4_32-16
	5_001
	5_002
	5_33-01
	5_33-02
	5_33-03
	5_33-04
	5_34-01_ArpaCacheAdr
	5_34-02
	5_35-01_ArpaChat
	5_35-02
	5_35-03
	5_35-04
	5_36-01_ArpaRemoteExec
	5_36-02
	5_36-03
	5_36-04
	5_37-01_ArpaFileTool
	5_37-02
	5_37-03
	5_37-04
	5_37-05
	5_37-06
	5_38-01_ArpaFileServer
	5_38-02
	5_38-03
	5_38-04
	5_39-01_ArpaMailTool
	5_39-02
	5_39-03
	5_39-04
	5_39-05
	5_39-06
	5_39-07
	5_39-08
	5_39-09
	5_39-10
	5_40-01_ArpaTerm
	5_40-02
	5_40-03
	5_40-04
	5_40-05
	5_40-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	U-01
	U-02
	U-03
	U-04

