I
XDE User Guide

XEROX

610£00201
October 1988

Xerox Corporation

Technical Services, MS SVHQ403
475 Oakmead Parkway
Sunnyvale, California 94086

Copyright © 1985, 1988, Xerox Corporation. All rights reserved.
XEROX @, 8010, 6085, ViewPoint,and XDE are trademarks of XEROX CORPORATION.

Printed in U.S. A.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document was prepared for this purpose. Please send your comments to:

Xerox Corporation

XDE Technical Documentation, SVHQ403
475 Oakmead Parkway

Sunnyvale, California 94086

Table of contents

General tools

[.1

[.2
[.3

[.4

[.5

L6
[.7

1.1
1.2

System overview .

[.1.1 User interface .

[.1.2 Development scenario .
[.1.3 Hardware .

[.1.4 Software components

Definition of terms
User interface.

3.1 Windows and subwindows .
[.3.2 Text manipulation .

[.3.3 Menus .

[.3.4 Keyboard commands

The user command file

[4.1 Format of the user command file
Documentation roadmap
I.5.1 XDE Concepts and Principles .

[.5.2 The XDE User's Guide .
[.5.3 Mesa Language Manual
[.5.4 Pilot Programmer's Manual
[.5.5 Mesa Programmer’s Manual
[.5.6 Appendices

Typographical conventions
Other features, other tools

DMT

Files
User interface.

[-1
[-1
[-1
[-2
[-2
[-3
-5
[-6
[-10
I-12
[-17
[-22
[-22
[-25
1-25
[-25
[-25
[-25
I-26
[-26
1-26
[-26

1-1
1-1

Table of contents

S
-

2.2
2.3

2.4

3.1
3.2

3.3

3.4

4.1
4.2

4.3

5.1
52

5.3

vi

Dictionary tool

Files

User interface.

Dictionary tool

2,31
2.3.2

User.cm

Commands

File format

Editor Symbiote

Files

User Interface

3.2.1

Editor menu

Search and pattern matching .

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Search .

Replace o
Character classes and closure
Fxamples

Editor as programmer's tool

User.cm file entries

Executive

Files

User interface.

4.2.1 Editing functions

422 Command line expansion

4.2.3 Command line interpretation

424 Built-in commands

425 CacheAddress operating instructions
4.2.6 Run command usage

4.2.7 Exec Ops menu

User.cm processing

HeraldWindow

Files

User interface.

5.2.1

Boot From: menu

User.cm processing

3-1
3-1
3-1
3-5
3-5
3-6
3-6
3-6
3-7
3-9

4-1

4-1
4-2
4-3
4-3

4-13

4-14

4-15

4-15

5-1
5-1
5-2

XDE User's Guide

I

6.1

7.1
7.2

7.3

7.4
7.5
7.6

Profile tool

User interface.

Tool Driver

Files

User interface.

7.2.1 Message subwindow
7.2.2 Form subwindow
7.2.3 File subwindow
Script files .
7.3.1 Script file format

7.3.2 Sample script
BNF for script files

The subwindows file
Running the Tool Driver .

File-related tools

1.1
1.2
1.3

8.1
8.2
8.3

8.4

9.1
9.2

9.3

File system conventions
File names

File-related tools .

Brownie

Files

User interface.

Script file .

8.3.1 Parameters.

8.3.2 Commands

Example .

FTP

Files

User interface.

9.2.1 Command line syntax .
9.2.2 Command line switches
9.2.3 Commands and examples
9.2.4 Command line errors

Tutorial

6-1

-]

A3 ke N N o~ —

T] T] -1 =1 -1 =1 =

o O

~1 =1 =]

II-1
-1
II-2

8-1
8-1
3-1
8-2
8-2
8-3

9-1
9-1
9-1
9-1
9-3
9-6
9-7

vil

Table of contents

10 File Tool

10.1 Files L 10-1
10.2 User interface.0 10-1
10.2.1 Form subwindow 10-2
10.2.2 Command subwindow 10-3
10.2.3 List Options window 10-4
10.3 User.em 10-4
10.4 Operational notes L 10-5

11 Floppy commands

11.1 Files e 11-1
11.2 User interface. 11-1

11.2.1 Common argument definitions e 11-1

11.2.2 Commands C e 11-1
11.3 Partialfiles 11-3
11.4 Examples. 11-3
11.5 Error messages 11-4

12 Search Path Tool

12.1 User interface. 12-1
12.1.1 Form subwindow . .) 12-1
12.1.2 Directoriesmenu) . 12-2
12.1.3 Search Pathmenu 12-2

13 Compare

13.1 Files e 13-1

13.2 User interface. 13-1
13.2.1 The Compare Tool window . . .- 13-1
13.2.2 Compare via the Executive window. 13-3

14 Find

14.1 Files e 14-1

14.2 Userinterface. 14-1
14.2.1 Switches 14-1
14.2.2 Switcheson filenames 14-2
14.2.3 Special characters 14-2

14.3 Examples. 14-3

viii

XDE User's Guide

1

15

15.1
15.2

15.3

16

16.1
16.2

16.3
16.4

File Window

Files

User interface. .
15.2.1 Débugger Ops menu
15.2.2 File Window menu

User.cm

Print

Files

User interface.
16.2.1 Switches
16.2.2 Defaults
Formatting

User.cm entries

System-building tools

II.1
[11.2

17

17.1
17.2

17.3
17.4
17.5

18

18.1
18.2

18.3
18.4

Program-building tools

Program analysis tools

Binder

Files

User interface.

17.2.1 Command line .
17.2.2 Switches

17.2.3 Associating files with modules and configurations .

Examples .
Error messages
Current limitations

Command Central

Files

User interface. .

18.2.1 Message subwindow

18.2.2 Command subwindow .

18.2.3 Log subwindow.

Communication between client and development volumes

User.ecm

15-1
15-1
15-1
15-2
15-3

16-1
16-1
16-2
16-3
16-4
16-4

ITI-1
II-1

17-1
17-2
17-2
17-3
17-4
17-4
17-5
17-7

18-1
18-1
18-2
18-2
18-3
18-3
18-4

Table of contents

19

19.1
19.2

19.3
19.4
19.5
19.6
20

20.1
20.2

20.3

20.4
20.5
20.6
21

21.1
21.2

22

22.1
22.2

Compiler

Files

User interface.

19.2.1 Command line .

19.2.2 Switches
Examples

Error messages
Compiler failures .

Current limitations

Formatter

Files

User interface.

20.2.1 Command line .

20.2.2 Switches
Formatting rules .
20.3.1 Spacing
20.3.2 Structure
User.cm

Examples

Formatter failures

MakeBoot

Files

User interface.

21.2.1 Commands .
21.2.2 Switches

21.2.3 Parameter files.

21.2.4 Examples

MakeDLionBootFloppyTool and MakeDoveBootFloppyTool

Files for Make Boot Floppy Tools .

User interfaces

22.2.1 Form subwindow for Make*BootFloppy Tool
22.2.2 Command subwindow for Make*BootFloppy Tool
22.2.3 MakeDoveBootFloppyTool notes

19-1
19-1
19-2
19-3
19-6
19-7
19-8
19-8

20-1
20-1
20-2
20-2
20-3
20-3
20-4
20-5
20-5
20-6

21-1
21-2
21-3
21-3
21-3
21-6

22-1
22-1
22-2
22-2
22-2

XDE User's Guide

23

23.1
23.2
23.3
23.4

23.5

24

24.1

24.2

24.3

24.4

Packager

Files

User interface.

Information about modules

Packaging description language

23.4.1 Code segments .

23.4.2 Discarded code packs

23.4.3 Frame packs

23.4.4 Merging

23.4.5 Rules governing packaging descriptions
23.4.6 Placement of multiword read-only constants
23.4.7 Example

Operation.

Debugger

Styles of debugging

24.1.1 Local debugging

24.1.2 Outload debugging .

24.1.3 Remote debugging

24.1.4 Creating a debugging session

24.1.5 Local events .

Sword tool

24.2.1 Sword form subwindow

24.2.2 Sword file subwindow

24.2.3 Input conventions .

24.2.4 Output conventions

Debugger commands

24.3.1 Breakpoints

24.3.2 Display runtime state

24.3.3. Current context

24.3.4 Program control

24.3.5 Low-level facilities .

Mesa interpreter .

24.4.1 Statement syntax

24.4.2 Loopholes

24.4.3 Subscripting e
24.4.4 Explicit qualification vs. qualification in the current context
24 4.5 Type expressions

24.4.6 Radix conversion

23-2
23-2
23-4
23-5
23-5
23-8
23-9
23-9
23-10
23-11
23-11
23-12

24-1
24-1
24.2
242
24-3
24-3
24-4
24-4
24-7
24-8
24-9

24-12

24-12

24-16

24-19

24-20

24-21

2422

24-22

24-22

24-23

24.23

24-23

24-24

X1

Table of contents

x11

24.5

24.6
24.7
24.8

24.9
24.10

24a

24a.1
24a.2
24a.3

25

25.1
25.2

25.3

26

26.1
26.2

26.3

24.4.7
2448
24.4.9

Arithmetic expressions.
Procedure calls.

Sample expressions

Signal and error messages

24.5.1
24.5.2
24.5.3
24.5.4
24.5.5
24.5.6
24.5.7

Entering the debugger .

Symbol lookup .

Unrecognized runtime structures. .

Command execution error .
Breakpoints
Displaying the stack

Mesa interpreter

Mesa interpreter grammar

Commands summary .

Example sessions .

24.8.1
24.8.2
24.8.3

Example: local debugging session .
Example: two outload debugging sessions .

Example: remote debugging session

Programmer’s interface (DebugUseful Defs)

User.cm

ProcessControl

ProcessControl Tool

Example: Freezing a Process .

User.cm

DebugHeap

Files

User.cm

25.2.1
25.2.2

Form subwindow

DebugHeap menu .

Example .

IncludeChecker

Files

User interface.

26.2.1
26.2.2
26.2.3

Tool interface
Command line .

Operating switches.

Examples .

24-24
24-24
24-25
24-25
24-25
24-26
24-27
24-28
24-28
24-29
24-29
24-31
24-33
24-34
24-34
24-35
24-36
24-36
24-37

24a-1
24a-3
24a-3

25-1
25-2
25-2
25-3
25-4

26-1
26-1
26-2
26-4
26-4
26-5

XDE User's Guide

26.4

27

27.1
27.2

28

28.1

28.2

28.3

28.4

User.cm

Lister

Files

User interface.

27.2.1
27.2.2

Commands useful to gencral Mesa users

Commands useful to wizards

Performance tools

Control Transfer counter tool .

28.1.1
28.1.2
28.1.3
28.1.4
28.1.5
28.1.6

Performance Measurement Tool

28.2.1
28.2.2
28.2.3
28.2.4
28.2.5
28.2.6
28.2.7
28.2.8
Spy

28.3.1
28.3.2
28.3.3
28.3.4
28.3.5
28.3.6
Ben

28.4.1

28.4.2
28.4.3
28.4.4
28.4.5
28.4.6
28.4.7

Files

User interface .-
Operation .
Limitations
Getting started .

Sample session .

Files

Concepts

Definition of terms.

User interface .
Operation .
Limitations
Getting started.
Sample session .

Files

User interface .
Operation .
Getting started.
Error messages.
Limitations

Files

Collecting the data
Reducing the data. .

Report format. .
Error recovery..
Messages
Cleaning up

27-1
27-1
27-2
27-3

28-2

28-2

28-2

28-4

28-5

28-6

28-7
28-10
28-10
28-10
28-10
28-11
28-14
28-15
28-16
28-17
28-18
28-19
28-19
28-20
28-21
28-21
28-22
28-23
28-23
28-23
28-24
28-25
28-27
28-27
28-28

xl1ii

Table of contents

v

Xiv

29

29.1
29.2

29.3
29.4

Statistics

Files

User interface.
29.2.1 Switches
Types of statistics .

Example .

Mesa Services

30

30.1

30.2

30.3

31

31.1
31.2

31.3
31.4

32

32.1

32.2

Mail tools

Mail Tool .

30.1.1 Files

30.1.2 User interface . e
30.1.3 The Mail Tool via the Executive window
30.1.4 Send Tool

MailFileScavenger

30.2.1 Files

30.2.2 User interface .

Maintain .

30.3.1 Files .

30.3.2 User interface .

MFileServer

Files

User interface.

31.2.1 Form subwindow. .
31.2.2 Executive commands
User.cm entries

Operational notes

Network executive tools

Chat

32.1.1 Files .
32.1.2 User interface .
32.1.3 Special keys
32.1.4 Chat User.cm
NSTerminal

32.2.1 Files

3222 Setting up .

29-1
29-1
29-1
29-2
29-2

30-1
30-1
30-1
30-7
30-7
30-13
30-13
30-13
30-13
30-14
30-14

31-1
31-1
31-2
31-2
31-2
31-3

32-1
32-1
32-1
32-3
32-4
32-4
32-4
32-4

XDE User's Guide

32.2.3 User interface 32-5
32.2.4 Opening a connection 32-9
32.2.5 NSTerminal Userem 32-10
32.2.6 User.cmexample 3210
32.3 Remote Executive T 25
32.3.1 Files 00321
32.3.2 Userinterface 321
32.3.3 Commands T A |
32.3.4 Remote Executive User.em. 3212
32.4 TTY Tajo 321
32.4.1 Files and installation 3213
32.4.2 Userinterface 3213
32.4.3 Commands S 3214
32.4.4 User.em T ... 3214
32.4.5 Program interface 32-14

TCP/IP Related Tools and Applications
33 Getting Started with ARPA

33.1 Configuration requirements 33-1
33.2 Machine Registration. L. 33-1
33.3 Software available 33-2
33.4 Running the software 33-3

34 ArpaCacheAddress

341 Files 34
34.2 User Interface 341

35 ArpaChat

35.1 Files e e e 35-1
35.2 User Interface L. 35-1
35.2.1 Message subwindow L 35-1
35.2.2 Form subwindow 35-1
35.2.3 TTY subwindow 35-3
35.2.4 Specialkeys L. 35-3
35.2.5 ArpaChat User.ecmentries 35-3

36 ArpaRemoteExec

36.1 Files s 36-1
36.2 User Interface s 36-1

XV

Table of contents

36.2.1 Commands L 36-2
36.2.2 Remote EKxecutive User.cm . . .) 36-3

37 ArpaFileTool

371 Files L 37-1
37.2 User Interface s 37-1
37.2.1 Form subwindow 37-1
37.2.2 Command subwindow 37-2
37.2.3 Options window 37-3
37.2.4 Options command subwindow | 37-3
37.2.5 Options form subwindow 37-3
37.3 User.cmentries 37-5
37.4 References 37-5

38 ArpaFileServer

38.1 Files C s 38-1
38.2 User Interface .- L 38-1
38.2.1 Tool window interface 38-1
38.2.2 Executive interface. 38-1
38.2.3 Server activitylog 38-2
38.3 User.cm Entries 38-2

39 ArpaMailTool

39.1 Files e 39-1
39.2 User Interface 39-1
39.2.1 Text subwindow - Table of contents 39-2
39.2.2 Form subwindow - . 39-3
39.2.3 Options window 39-4
39.3 ArpaSendTool C s 39-5

39.3.1 Form subwindow 39-6
39.3.2 Text subwindow 39-7
39.3.2.1 Subject: field 39-7
39.3.22 To:ifield 39-7

39.3.2.3 Reply-To:fietd. 39-7

39324 ccfield.00 39-7

39.3.25 bee:field 398

39.3.2.6 Messagebody. 39-8

39.3.27 User.ementries 39-8

39.4 MailFileScavenger 3910
39.4.1 Files 3910

xvi

XDE User's Guide

39.4.2 User interface .

40 ArpaTerm
40.1 ArpaTerm
40.1.1 Files
40.1.2 Setting up .
40.2 User interface.
40.2.1 Opening a connection
40.2.2 ArpaTerm User.cm.,
40.2.3 User.cm example
Appendices
A Installer
Al Overview . o
Al Background
A.1.2 Goals .
A2 Why you should use the Installer .
A3 Invoking the Installer
A4 How to enter commands directly
A5 Compatibility with Othello 12.0
A.6 Changed commands
AT New commands
A71 Script support .
A7.2 LISP specific
A7.3 Generic
A8 Script writer information .
A81 Background .
A.8.2 Finding the scripts .
A.83 [nitial command file
A84 Creating floppy disks
A.85 Creating cartridge tapes
A9 How to write script files
A9.1 Overview
A9.2 Examples .
A9.3 Debugging information
A.10 Available bootfiles
A1l Summary of commands (functional listing)

All1l Booting commands.
A11.2 Control commands .

39-10

40-1
40-1
40-1
40-1
40-6
40-6
10-6

A-1
A-1
A-2
A-2
A2
A-3
A-3
A-4
A-4

A-5
A-5
A-6

A-7
A-8
A8

A-9

A-9
A-10
A-11
A-13
A-14
A-15
A-16

XVii

Table of contents

Al1L3 Fetch commands L A-18
All.4 Information commands L A-19
All5 Volume commands L A-20
A 116 Recovery commands A-21
A 117 Data Source commands. A-22
A.11.8 Other commands AZ23
A2 Alphabetical listing of commands A24
A3 Building nationalized installers A-26
A13.1 Building the Installer A-26
B Getting started/Operations guide
B.1 Disk configuration B-1
B.1.1 Physical and logical volumes B-1
B.1.2 The Installer L. B-2
B.2 Booting e B-2
B.2.1 General information B-2
B.2.2 Methods of booting B-4
B.2.3 Boot switches B-8
B.3 Troubleshooting B-14
B.3.1 Recovering from system crashes B-15
B.3.2 Scavenging. B-15
B.3.3 MPerrorcodes. B-19
B.3.4 Special Pilot error messages sent todebugger B-23

C TableCompiler

C.1 Mesa object file format C-1
C2 Using the output e oS |
C.3 ModuleMaker e C-2
C4 StringCompactor L. C-3
C.4.1 Example L. C-3
C5 Fileformat C-4
C6 Options C-4
C1 Command line syntax and switches | C-5
Cs8 Examples e e C-5
C9 Switches on the input filename C-6
C.10 Switches on auxiliary filenames ‘ C-6
D Parser Generator System
D.1 Using the Parser Generator D-1

xviii

XDE User's Guide

D.2 Format the input file .

D.3 Output of the Parser Generator
D.3.1 The input record
D.3.2 The log file .

D.4 The module file

D.5 The binary file

D.5.1 Binary file format .
D52 The LR and first files.
D.6 The Preprocessor .

D7 Operation e
D.7.1 PGS operation . .
D.7.2 TableCompiler operation.
D.8 Example .

[1lustrations

FigureI.1:
Figure [.2:
Figure [.3:
Figure [.4:
Figure [.5:
Figure [.6:
Figure [.7:
Figure 3.1:
Figure 3.2:
Figure 7.1:

Figure 22.1:

User interface .

Scrollbar

Windows

Form subwindow

Menus .

Text window

Keyboard

Editor Symbiote subwindow
Editor property sheet

Tool Driver executive window .
Figure 10.1:
Figure 12.1:
Figure 13.1:
Figure 18.1:

File Tool window

Search Path Tool window
Compare Tool window.
Command Central tool window
Make*BootFloppy tool

Figure 24.1: LocalWorld and the Options window

Figure 24a.1:Process Control

Figure 25.1:
Figure 26.1:
Figure 28.1:
Figure 28.2:
Figure 28.3:
Figure 28.4:
Figure 30.1:
Figure 30.2:
Figure 30.3:
Figure 31.1:

DebugHeap tool window
IncludeChecker tool window
Control Transfer Counter tool.

PerfPackage window with mode commands.
PerfPackage window with histogram commands

Spy tool window
The MailTool

Maintain tool window (normal level) .

Maintain tool window (owner level)
MFileServer .

D-2
D-3
D-4
D-4
D-9
D-9
D-9
D-11
D-12
D-13
D-13
D-16
D-17

[-5
-7
[-8
[-9

[-12
I-16
1-18
3-1
3-3
7-2
10-1
12-1
13-2
18-1
22-1
24-5
24a-1
25-2
26-2
28-3

28-12

28-13

28-18

30-3
30-15
30-15

31-1

Xix

Table of contents

XX

Figure 32.1: Chat .

FFigure 32.2: NSTerminal S
Figure 39.1: ArpaMailTool .
Figure 39.2: ArpaMailTool Options Win
Figure 39.3: ArpaSendTool

[igure 40.1:ArpaTerm

dow and SMTP Debugger

32-2
32-5
39-2
39-5
39-6
40-2

Errata

Tajo

On a 6085 keyboard, the CASE key has the same function as KEYBOARD-L on a 8010
keyboard. It will make the selection lower case, and if shifted it will make the selection
upper case.

PROP'S-CR "unindents" one level. For example, you can type it instead of a ¢CR when you
want to close a scope on the next line.

KEYBOARD-8 surrounds the selection with small field brackets (<>).

FileWindows.Save[] from the debugger saves the contents of files on your client
volume that you were editing. Also, the contents of Empty Windows are saved to a file
named "ScratchWindows.saved"”. You need PileWindows.bcd on your debugger
volume to use this command from the debugger. From Sword, type:

>Set Root configuration: Tajo
>Set Module context: FileWindows
> Savel]

ScratchSources.Save[] saves all scratch sources to a file named
"ScratchSources.saved". Unlike FileWindows.Save[], this one saves your mail
send windows as well as your Empty Windows, but doesn't save FileWindows that you
were editing. You need ScratchSources.bcd on your debugger volume to use this
command from the debugger. From Sword, type:

>Set Root configuration: Tajo
>Set Module context: ScratchSources
> Savel]

A SetPositionBalanceBeam affects the way text is displayed in your windows.
When you do a FIND or Position in a window, the position in question is displayed at
the top of the window in "top" mode (the way Tajo has always worked), in the middle in
"middle" mode, or at either the top or bottom, which ever is more convenient, in
"topBottom" mode. TopBottom mode minimizes the repainting needed when you jump
between various positions in the window. Top mode only saves repainting when

Errata

jumping backwards. Middle mode doesn’t save much at all, but it always positions
things-of interest in the middle of your window. Top mode is the default. A sample
User.cmentry is:

[System]
SetPositionBalanceBeam: top | middle| topBottom

A CaretShape switch selects between two different styles of carets. The default is
"triangle," which gives you the standard Tajo TextSW and TTYSW carets. With
caretShape = IBeam, however, you get an I-Beam caret in TextSWs and a gray
rectangle in TTYSWs. You can set this switch from the System section of your
User.cm:

[System]
CaretShape: triangle | iBeam

MenuSymbiotes can have their own font. You can specify what font you want them to
have in the FileWindow section of your User.cm. The file name should have the
.strike extension on it. The file should be on your root directory, < >, so the system
can find it even before your search path is set up. You can also specify how many lines
vou would like your MenuSymbiotes to be. The MenuSymbioteLines field in your
User.cm can be a real number, such as 2.37. It may take a few tries to get the
MenuSymbiotes looking just the way you want them to. A sample User.cmentry is:

(FileWindow]
MenuSymbioteFont: MenuSymbolsFont.strike
MenuSymbioteLines: 1

When you hit DoIt in a FileWindow, several default extensions are tried. These
defaults (.mesa .config .cm)can be changed by specifying a list of extensions in
the FileWindow sections of your User.cm. Any string starting with a '.' is allowed.
For Example:

[FileWindow]
Extensions: .mesa .config .cm .doc .df .log

J.Last positions the last line of the file in the middle of your window (even if you don't
have SetPositionBalanceBeam = middle).

If the Notifier is busy and is not taking any page faults, Shift-STOP won't take you to
the debugger. In this situation, use shift-Shift-STOP to get to the debugger. If you must do
this, you can’t execute Interpret-Calls from the debugger.

When chording the mouse buttons to bring up a menu, release the POINT (=left =red)
button as soon as you have brought up the menu. The menu stays up as long as you
hold down the ADJUST button. Address faults may occur if you release the ADJUST button
before releasing the POINT button when using menus.

Avoid running Tajo with an extremely full volume. Tools can fail otherwise.

NEXT and NEXT-DELETE search from the insertion point, not the selection.

XDE User's Guide

Debugger

Tools

FileSystem: If some tool in Tajo gives the message that it could not close a volume, try
to figure out why the volumeAboutToClose was canceled. Fix the error, then close
the volume manually by using the Exec's CLoseVolume command. If you still can’t
close the volume, you must reboot your machine before proceeding to the client. If you
open your client volume, or any volume readable from your client volume, for write,
you must not proceed to your client.

Do not use the "Power Off” command from the Exec Ops menu.

Changing the current selection while running a program that takes its input from the
current selection (such as Print $$$) can cause an address fault.

If you go to the debugger and you want to save files on your client volume, retrieve
TajoTools.symbols from the release directory.

If you fill up your disk on a development environment volume, it may not boot. There
are a couple of work arounds for this situation. The best solution is to boot Tajo on a
volume of the same or higher type, open the full volume for writing using the
"OpenVolume.~ volumeName/w” command, and delete the files. If necessary, you
can retrieve a boot file onto a Scavenger volume, delete the files from the full volume
and then restore the volume to its original boot file. If you can not do this, consult your
local support group. They can provide you with a smaller boot file for scavenging

The "W” boot switch is no longer supported.

In trying to re-execute a command to the Executive by selecting and stuffing a previous
command, you may accidentally select the prompt character '>’. If so, the command
that the Executive will try to run will start with the character '>" and will not match
any of the registered commands. However, it will match the corresponding file when
the Executive tries its autoload heuristic, causing the Executive to load another
instance of your bed.

Sword supports multiple remote debuggers.

Sword 14.0 is backward compatible. Thus, Sword can remote debug a 12.3 client.
However, since world swapping between 12.3 and 14.0 boot files is not supported.
Sword cannot outload debug a 12.3 client. Sword 12.3 can remote debug a 14.0 client.

Do not invalidate caches (CONTROL-N command). Unloading and reloading the debugger
is the work around for such problems.

Brownie will NOT transfer files reliably from NS file servers. In particular, long file
names, non-standard file types (such as ViewPoint file types), and multi-segmented
files (such as ViewPoint documents) are not supported.

Errata

Brownie accepts the /q switch on the command line indicating that Brownie should
query the user for login credentials. If /-q is specified, credentials will be taken from
the User Profile. /-qis the default.

Example:
>Brownie foo.brownie/-q

The List/f and List/b commands of F'I'P have a syntax different from that described
in the XDE User Guide. Only one of the /£ or /b switches can be used and it must be
the last switch. After one of these switches is seen, the rest of the command line is
assumed to be a list of files. The new syntax is:

>FTP List/f date-with-no-spaces <files>
>PTP List/f "date with spaces"™ <files>

The date can be in any valid format for dates. The /£ switch lists the files that have a
create date after the date given. The /b switch lists those tiles with a create date before
the date given. Example:

> FTP RamRod Dir/c AMesa List/dalf 10-Oct-84 '*

Command Central and the Run.”~ and Load.~ commands of the Executive now
recognize the /v switch, which causes version mismatches to be ignored.

Formatter: You can specify the font to use on the command line. For example:
>Formatter /-tikg Souvenir/f Def.mesa Impl.mesa

The '£' switch says that this is a font. [t should come after the global switches and
before any files to be formatted. Note that no size is given, just the name of the font.
The formatter picks 10 point for portrait and 8 point for landscape. There are also new
User.cmentries for the formatter:

[Formatter]
LandscapeFont: Souvenir
PortraitFont: Classic

The /k (Output Packager Command) switch writes Packager commands in the output
file that make Packager source and object files consistent (default TRUE).

There is a bug in MakeDLionBootFloopyTool when changing the installed boot file on a
floppy. The work around is to reformat the floppy and reinstall the germ as well as the
new boot file. This requires a germ to be supplied whenever a new boot file is put onto a

floppy.

While setting up the Perf Tool, newing or unnewing modules will cause a crash with an
address fault.

XDE User's Guide

Chat: Filename/F (read commands from a file) for Chat doesn't work. Chat stuffs
initial commands into its window when a connection is opened if the autologin feature
is enabled. The commands stuffed can be specified in the User.cmas follows:

[Chat]"
machine: quotedStringWithCarriageReturns

® TheProtect.” command isn't in TTYTajo.

Errata

General tools

This chapter is an overview of the Xerox Development Environment (XDE) and its use. It
describes the types of features in the environment and how they interact. The final sections
of this chapter discuss other XDE documentation, the organization of this manual, and its
typographical conventions.

This chapter also introduces a number of helpful tools found on the XDE system. These
tools are discussed in chapters 1 through 7.

[.L1 System overview

The Xerox Development Environment provides development tools for programmers
writing tools and applications, including tools to aid in editing, compiling, binding,
running, and debugging Mesa programs.

I.1.1 User interface

A tool communicates with the user via windows, which are rectangular regions of the
display screen in which text, icons, and graphics are displayed. User input to a window is
collected using menus or form subwindows. A menu is a list of options or commands
associated with a window. Tajo, the XDE runtime environment, allows programmers to
define specific menus meaningful to a particular tool. Another way to collect user input is
through a form subwindow, which is a horizontally ruled section of a window used for
displaying commands and argument names.

In addition to window-oriented facilities, XDE provides a simple executive facility for
invoking the same tools using a less sophisticated teletype-style interface. Tools of this
type are invoked through the Executive window by typing the tool name and the
appropriate parameter syntax.

I.1.2 Development scenario

A complete development scenario includes design, implementation, testing, and release of
systems. During implementation, the programmer produces code using pre-existing
modules consistent with the design. After writing or retrieving the necessary modules,
they are separately compiled and then bound together. Once bound, the entire system,
referred to as a configuration, can be debugged. Each time an error is corrected, the process

[-1

General tools

of compiling and binding is repeated until the system is free of bugs. After debugging,
modules are stored on file servers, the entire system is tested, and then it is released to the
user community.

For more general information about the XDE system, see XDFE: Concepts and Principles.

[.1.3 Hardware

The XDE programming environment is designed for a personal computer. It runs on a
powertul microcoded processor with a large virtual address space. The user interface uses a
high-resolution bitmap display, with a keyboard and a pointing device called a mouse.
Secondary storage is provided by a rigid disk and an optional floppy disk. The Ethernet, a
local area network, provides a high-bandwidth connection to other personal computers and
to network services, such as print and file servers. (XDE: Concepts and Principles provides
general information about networking concepts used in Xerox products.)

[.1.4 Software components

To illustrate the interaction between the various systems, it is helpful to envision a
hierarchy with Pilot, the operating system kernel, at the lowest level. Above Pilot is Tajo, a
specialized collection of interfaces designed to facilitate the implementation of software
development tools. XDE includes Pilot, Tajo, and a collection of software development tools
which were written using the Tajo interfaces. One of the most critical of these tools is
Sword, the debugger. Although Tajo and the Xerox Development Environment may seem
similar since they both support programming activities, the distinguishing factor is that
the development environment includes programs specific to the Mesa language, whereas
Tajo is language independent,

The Installer is a Mesa program that manages Pilot physical and logical disk volumes.
Since it does not provide any programming facilities, it is not considered part of the
hierarchy. Appendix A describes the Installer.

I.1.4.1 Pilot

Pilot provides Mesa runtime support, including processes, monitors, and synchronization
facilities. Pilot supports a collection of cooperating user-defined processes, some of which
are the tools. Since allocation of major system resources is generally on a cooperative
rather than a competitive basis, Pilot does not contain elaborate resource allocation
functions. Instead, resources and resource management are typically planned statically
when systems are configured. In instances requiring dynamic resource control, such as the
sharing of physical memory, Pilot provides facilities that allow the applications to state
their current requirements. Consistent with the notion of clients as cooperating processes,
Pilot provides only limited protection against malicious programs, thereby shifting the
responsibility of ensuring smooth operation to Pilot clients. The Pilot operating system is
implemented entirely in the Mesa language. (Pilot is discussed briefly in Appendix B and
described in detail in the Pilot Programmer’s Manual.)

XDE User’s Guide I

I.1.4.2 Tajo

- Tajo is a unified set of facilities supporting the implementation and execution of software
development tools. "Using"” Tajo can be viewed in two ways; a user is a person who interacts
with Tajo via the mouse and keyboard; a client is a program that uses the Tajo software
interfaces. Tools are the Client programs that call upon Tajo.

1.1.4.3 Sword

Sword supports source-level debugging. [t allows users to interpret Mesa statecments, set
breakpoints, trace program execution, and display the runtime state. Pilot provides the
code necessary for a program to communicate with Sword, it resides with the user program.
Sword can reside in the same address space or logical volume as the client program, or it
can reside in a different memory image (on a separate logical volume) that is loaded when
called for. This protects the client and the debugger from each other. In addition, Sword can
reside on a remote machine, and can debug machines across networks.

There are several ways of invoking Sword, some under programmer control and others not.
Those under programmer control include setting breakpoints and interrupting a program
during execution. These techniques are used when a programmer anticipates some
problems and wishes to halt execution temporarily to examine (and possibly change) the
program state before proceeding. Sword may also be invoked automatically when a
program generates runtime errors, such as address faults or uncaught signals. If the
debugger is invoked because of a runtime error, you can often change the state of the
program by using the appropriate debugger commands and continue executing from the
new program state. However, some errors, such as memory overwrites, cause irreparable
damage. When this happens, you must end the debugging session and re-boot the client.

I.1.4.4 Installer

The Installer is a utility for managing Pilot physical and logical volumes. It is used to
initialize physical and logical volumes, to install boot files on logical volumes, to invoke a
boot file on a particular logical volume, and to scavenge volumes. The Installer can be
booted from the rigid disk, from the Ethernet, or from a bootable floppy disk. For more
information about the Installer,-see Appendix A.

I[.2 Definition of terms

Accelerator An accelerator is an easier or faster way of doing a common operation.
Clicking Adjust in the center third of the name stripe, for example, is
an accelerator for sizing a window (rather than bringing up the window
menu and selecting “Size”).

Argument An argument to a procedure or command is a piece of data upon which
the operation is performed. For example, the argument to a MOVE
command is the video-inverted text to be moved.

[-3

General tools

I-4

Chord

Click

Current selection

Cursor

feon

fnput Focus

[nterface

Menus

Mouse

Movable boundary

Name frame

Subsystem

Subwindow

Tool

To chord keys or buttons is to push them down at the same time, as
when chording the mouse buttons.

To click 2 mouse button is to press down on it and let it up.

The current selection is text, icons, or graphics you have chosen by
using the mouse (current tools do not implement selection of icons or
graphics). It is visually highlighted on the screen and is generally used
as the argument to a command.

The cursor is an icon that tracks the mouse position: moving the mouse
moves the cursor. The system may change the cursor shape to provide
feedback about what it is doing.

An icon is a small picture on the display representing some entity.

The input focus is the window to which keyboard commands and typed
characters are sent. The input focus contains the type-in point.

An interface is a formal contract between pieces of a system that
describes the services to be provided. A provider of these services is
said to implement the interface; a consumer of them is called a client of
the interface.

A menu is a list of available commands or data chosen by mouse
selection. More than one menu may be associated with a tool window or
subwindow or with the unused portion of the display

The mouse is a pointing device that allows you to direct the attention of
the machine to a particular point on the display. A mouse usually has
two buttons, Point and Adjust. (See Point, Adjust.)

A movable boundary is a horizontal line with a small box on its right
end that divides a window into subwindows or splits a text subwindow.
A movable boundary is used to change the relative heights of adjacent
subwindows.

The window name frame is a rectangular region at the top of a window.
It is usually black, with the window's name and other identifying
information displayed in white.

A subsystem is a program that runs in the Xerox Development
Environment Executive window. Some subsystems and tools
accomplish the same task.

A window is often composed of one or more rectangular subwindows.
The Xerox Development Environment provides several standard
subwindow types, each providing different functions. (See Window).

A tool is a Xerox Development Environment applications program. A
tool can run in parallel with other tools, including other instances of
the same tool. Tools react to prompting and seldom carry out operations

XDE User’s Guide I

when not in use. A tool usually, but not always, has an associated
window.

Type-in point The type-in point is the text location where typed characters are to be
inserted. The type-in point is indicated by a flashing caret or box.

Video-invert To video-invert a region is to cause black areas of the region to become
white and white areas to become black.

Window A window is a rectangular region of the display in which text and
graphics can be displayed. Most tools communicate via windows.

[.3 Userinterface

The user interface for tools provides the unifying framework for the development
environment. Tools portray their capabilities through windows and menus. Windows and
menus rely on XDE features such as text handling and keyboard or mouse commands.

This section describes text manipulation, keyboard commands, symbiotes, windows,
subwindows, and menus. It discusses some important menus and their commands. (The
definition of a particular window or menu is always found in the chapter on the related
tool.)

Window name frame Menus

i >sampletool
: Loading sampletool.bcd...54773658B...

Move
Grow

Dra
Sizé
Tog
Bottom
: Zoom . @ ielD
: Command! Vanilla: cac-lvare
: Password: |
:ReadOnly: Read Only String Cardinal= 0

=
L in this subwindow is the current
' The box at the end pf this sentence is the type-in point. i
|
Current selflaction Insertion point

Figure [.1: User interface

[-5

General tools

[.3.1 Windows and subwindows

A window is a rectangular region of the display screen that offers a view of a potentially
infinite plane. Most tools have onc or more windows.

Each window is composed of one or more subwindows. Subwindows are regions of the
window, each with individual characteristics. Subwindows are usually arranged vertically,
with horizontal black lines dividing them. A window allows you to communicate with the
tool to which it belongs and allows a tool to create a representation of a world owned and
managed by thal tool. The tool displays text and graphics, some of which may be lying out
of sight.

One tool can create multiple windows, but each window is owned by a single tool. There
may be multiple windows on the screen, and they may overlap and partially or fully
obscure other windows. There may be stacks of windows lying on top of each other, each
with its status and context intact, as if they were pieces of paper lying on a desk.

A tool window has three states: active, tiny, and inactive. An active tool window appears
ready for communication. Like a hammer or wrench, an active tool can be picked up, used,
and put down again; it remains exactly as it was left. When an active tool window is made
tiny, it is represented on the display by a small box (an iconic representation) containing
only its name. Making a tool tiny is like putting a tool in a tool belt: it will probably be used
soon, but the tool user wants to get it out of the way for a while. When a tiny tool is
returned to normal size, the contents of its window reappears. When a tool is made
inactive, any information it keeps while active or tiny is discarded. When the tool window
is subsequently activated, it appears as if it had just been created. Making a tool inactive is
similar to cleaning off a wrench and placing it into the tool box. [t will probably not be used
for a while, and the tool user wants to make room for other tools.

An exception to this general behavior of windows is the root window. You can think of it as
a window the size of your display screen that lies at the bottom of any stack of windows.
The root window can never be at the “top” of the stack of menus on your screen, or all the
rest would be covered! Certain menus are attached to the root window as to any other
window: the Exec Ops menu, the Inactive menu, and the Symbiote menu. (See the section
on menus below for more specific information about these menus.)

[.3.1.1 Communicating via subwindows

A tool accepts input via the keyboard and mouse buttons. Each subwindow may have
different interface characteristics, and the meaning of the keyboard keys and mouse
buttons may change when they are accepted by a different subwindow.

In general, all keystrokes are sent to the subwindow that has the input focus. The following
keystrokes are exceptions: they are sent to the subwindow that contains the cursor: MENu,
FIND, J.FIRST, ABORT, and the mouse buttons (Point and Adjust). If no window has the input
focus, the screen blinks when keys are pressed. If the tool is busy when keystrokes are sent
to it, the system queues the keystrokes and delivers them to the tool as soon as it is ready to
accept input.

A subwindow keeps the input focus unless it is deactivated or the input focus is explicitly
moved to a different window. For instance, it keeps the input focus if it has been made tiny
or if it is completely obscured by other windows. You can set the input focus by depressing

XDE User’s Guide I

one of the mouse buttons in the subwindow you would like to take the input focus. [f the
subwindow is unwilling to accept the input focus, the sereen will blink.

If you set the input focus by pressing the Point button, the type-in point is set to the
location under the mouse button (except in TTY windows, which insist that the type-in
point always be at the end of the text). If you set the input focus by pressing the Adjust
button, the type-in point is the last location that was the type-in point in the subwindow.
Thus the Adjust button can be used to recover the type-in point in a subwindow after it has
lost the input focus. While MOVE or cOpy is depressed, using the mouse buttons will not
change the input focus. [f a subwindow does not want type-in itself, it may redirect it to
another subwindow.

[.3.1.2 Scrolling

yd

' i1
:Command!

. Password:

: ReadOnly: Read Only String

Scrollbar —| | :boolean(trueFalse): {TRUE, FALSE}
genumerated(one): {A} enum
: s
Translucent gray region itext
Cursor

Dark gray region

Figure [.2: Scrollbar

A subwindow may contain more information than can be displayed on the screen at one
time. The development environment provides scrollbars (Figure 1.2) to facilitate access to
information lying out of view. Vertical scrollbars are long thin rectangles near the left
border of subwindows. Some subwindows have horizontal scrollbars near the bottom border
of a subwindow.

When the cursor is not in the scrollbar region, the scrollbar is a narrow transparent strip
bordered by a gray stripe. When the cursor is in the scrollbar region, the scrollbar looks
like a translucent gray region with a dark gray region within it (much like a
thermometer). The transparent gray region represents the entire length of the contents of
the subwindow. The dark gray region represents the text currently displayed; its size and
position correspond to the position of the displayed text in the file.

When the cursor is in the scrollbar region, it changes to a double-headed arrow and the
meaning of the mouse buttons change: they now direct the scrolling operation. The cursor
changes again when one of the buttons is depressed: Point scrolls up and Adjust scrolls

[-7

I General tools

down. Pressing both keys together (a "chord") is used for thumbing. Thumbing is analogous
to opening a book by placing your thumb at the approximate position of the section you
want to start reading and pulling the book open at that point. Releasing the chord while
the cursor is positioned in the scrollbar invokes the scrolling operation; releasing the chord

while the cursor is outside the scrollbar aborts serolling.

[.3.1.3 Adjusting boundaries

You can change the movable boundaries of a subwindow by pressing Point while the cursor
is positioned over the small box at the right end of the black boundary line, moving the
cursor Lo the desired position, and releasing Point. Subwindows adjusted this way cannot be

smaller than the height of the font being used.

Figure 1.3 illustrates a stack of three windows belonging to two tools and the Executive.

The Profile Tool is in tiny form in the upper right of the display.

Window na}me frame Profile

>sampletool

Command! Vanilla:
: Password:
“ReadOnly: Read Only String Cardinal

;boolean(trueFalse): {IRUE FALSE} Baol
‘enumerated(one): {A} enumerated(all):

— Tiny window

| Executive
window

Message
subwindow

Form
subwindow

Subwindow

fHT boundary

- File
subwindow

1H— Subwindow

split

Figure [.3: Windows

L.3.1.4 Subwindow types

The two most important subwindow types for most purposes in XDE are form subwindows

and text subwindows. They are described in the next sections.

[.3.1.4.1 Form subwindows

Form subwindows, which helong to specific tools, have two primary uses: First, they are
used to display and alter the current values of the internal state of tool-specific data.
Current values can be altered at any time in any order. Second, most form subwindows are

[-8

XDE User’s Guide |

equipped with tool-specific command form items that act as accelerators for menu
commands. A form subwindow is illustrated in Figure [.4.

iCommand!
- Password:
'ReadOnly: Read Only String
- boolean(trueFalse): {TRUE, FALSE}

“enumerated(one): {A} enum
: 0

text

Figure [.4: Form subwindow

Tools normally display the arguments, and a single command invokes them. When an
operation requires several arguments, they must be specified before invoking the
operation. (Specific form subwindows are described in later chapters with the tools that
own them.)

A form can have a variety of types of fields:

A command item performs the same function as a menu command. Command items
are distinguished from other items by the ! appended to them. You can activate a
command item by positioning the cursor over the keyword and depressing Point.
Releasing Point over the keyword after the keyword is video-inverted invokes the
operation. Releasing Point when the cursor is no longer positioned over the keyword
cancels selecting that command.

An enumerated item is one of a lists of text items. These items may be displayed in
two ways: keyword: {a, b, c,...} orkeyword: {a}.In either cases, choosing
may be done via menu prompts (see below). In the first form, a choice in the list may
also be chosen by positioning the cursor over it and clicking Point. The highlighted
item is the current value. In the latter form, only the currently active enumerated-
list element is displayed.

A boolean item is a form item that takes on the two values TRUE or FALSE. The feedback
is a display of the keyword with the Boolean state video-inverted. The video-
inverted Boolean means TRUE.

[-9

General tools

[-10

A text item is a display string that you may modify using the editing functions (see
the section in this chapter on Text manipulation). A text item is distinguished from
other form items by the ": " (note the space after the colon) appended to a text form
item keyword. Several accelerators are available for text form items. Clicking Point
over the keyword seclects all of the text in the form item and moves the, type-in point
to the end of the text. For example, clicking Point over Password: in the Profile
Tool causes the type-in point to be positioned after the colon, ready for you to type in
your password. Generally, clicking the Adjust button over the keyword deletes the
text and sets the type-in point.

Fine point: When a password is entered, an asterisk is displayed for each character typed.

A numeric item is like a text form item, except that only strings representing
numbers may be modified. A numeric item is distinguished from other form items by
the "=" (note the space after the equal sign) appended to the keyword.

A tag items is a text string used to annotate a form. A tag item labels something thst
appears either elsewhere on the screen or entirely off the screen.

Menu prompts are always available for enumerated form fields and are optional in
some textual form fields. When you chord the mouse buttons with the cursor over
the keyword for an enumerated field, a menu of allowed values for the form item is
displayed. Choosing one of the values from the menu sets the form item to that
value. Similarly, when you chord with the cursor over the keyword for a textual
field, a menu of character strings is isplayed. Choosing one of the items (strings)
from the menu will cause the menu string to be appended at the current position of
the type-in point.

Specific form items are described in later chapters with the tools to which they belong.

[.3.1.4.2 Text subwindows
Most text display, other than in form subwindows, occurs within text subwindows. Text
subwindows may be associated with a file that contains the text. A TextOps menu is

supplied with a text subwindow. The Text Ops menu contains commands specific to text
manipulation (see next section).

[.3.2 Text manipulation

Text may be entered, edited, moved, and deleted in certain subwindows, which are
appropriately called text subwindows. Selections may also be moved between subwindows.

1.3.2.1 Selecting text

The concept of a current selection is global. There is only one current selection at any time
(not one per window); it is generally used as the argument to commands.

Fine point: Although a current selection is always video-inverted, not all video-inverted entities are considered

current selections (such as when a menu command is invoked).

XDE User’s Guide |

You select text by clicking Point within the selection. If you click Point in the same place
several times within a brief period (within roughly a second), successive units of text are
selected: clicking once selects a character, twice selects a word, three times a line, four
times the whole body of text, and five times back to a single character. You can extend a
selection to the left or right either by holding down Adjust while moving the mouse or by
pointing to where the end point is to appear and pressing and releasing Adjust. The
selection is extended in the same units used to make the original selection: a character
selection is extended by characters, a word selection by words, and so on. A selection is
extended by characters if you start over the first or last character of the selection and move
the mouse while pressing Adjust. You can contract selections as well as expand them by
using Adjust. If you Adjust to a place within the current selection, the selection shrinks by
the units of the selection. However, if vou begin the adjust action over either the [irst or
last character of the selection, character mode is used instead. There will always be at least
one unit left in any selection after contracting.

[.3.2.2 Entering text

Any characters typed into the window are inserted before the current type-in point. You
can set the type-in point by moving the cursor to the desired place and clicking Point. The
type-in point will be set as close as possible to the cursor’s position. For example, when you
select a single character, the type-in point precedes the character if you select the left half
of the character and follows the character if you selected its right half. (Setting the
Balance Beaminthe user.cm file, described below, changes the positioning of the type-
in point relative to the selection.)

The type-in point can also be set by holding down the cONTROL key and clicking the Point
button over the desired location. This is useful with the STUFF command (see the section on
Keyboard functions).

1.3.2.3 Deleting text

Text may be deleted by selecting it and pressing the DELETE key. Many tools place such
deleted text into a global "trash bin." The Bs (backspace) and Bw (backword) keys delete
text to the left of the current type-in point. Text deleted this way is not entered into the
trash bin. The Bw key deletes any white space or punctuation between the type-in point
and the closest preceding word (alphanumeric string) and then deletes the word itself.

1.3.2.4 Current selection and trash bin

The trash bin is a conceptual container of the most recently deleted selection. In a
subwindow that supports editing, the current selection may be deleted and deposited in the
trash bin, where it is held for potential retrieval and placement. This allows text to be
either moved from one position to another within a window or sent to subwindows other
than the point of origin.

Any of the following steps copies text from one place in a window to another:

® Select the text, move the type-in point with CONTROL-Point, and press the STUFF key.

I-11

General tools

[-12

® Select the text, press DELETE, PASTE to move a copy into the trash bin, put the selection
back where it was, move the selection to the desired location, and press PASTE.

® Set the type-in point to the desired target location, hold down copy, select the text to be
copied, and release COPY when finished selecting text.

[.3.3 Menus

A menu is a set of options or commands associated with a window or subwindow. Most
windows have multiple menus. When the menus associated with a subwindow are
displayed, the menus associated with its tool window are also displayed.

A menu contains either commands or data items. A menu command often takes the current
selection as its argument. Sometimes, as with Window Manager commands, the semantics
of the command implies its argument.

[.3.3.1 Invoking menus

1.3.3.1.1

In Figure 1.5, the Window Manager menu is shown on top of the TextOps and File Window
menus. This grouping of menus would probably be associated with a file window or text
subwindow. Each type of window has specific types of menus associated with it. These
menus are used to give commands to the process that owns the window.

AlIextOps

File Window

Move
Grow
Drag
Size
Top
Bottom =
Zoom
Deactivate

Figure [.5: Menus

Menus are invoked either by chording the mouse buttons or by pressing the Menu key (in
the explanations below, the term "chording” will also stand for using the MENU key).
Available menus appear in the vicinity of the cursor whenever (and as long as) you are
chording. The position of the cursor determines which menus are available. If the cursor is
in a subwindow, the menus associated with that subwindow and the menus associated with
the tool to which the subwindow belongs are available. Some menus are available when the
cursor is in any portion of the screen not covered by any window.

Choosing a menu

There are usually at least two menus for a window: the Window Manager menu (explained
below), whose commands modify the window rectangle, and a menu that lists the

XDE User’s Guide I

[.3.3.1.2

[.3.3.1.3

commands available for that tool. More menus are possible; subsequent menus underlie
the others.

You can choose menus from the stack by positioning the cursor over the visible portion of
the desired menu (the menu name frame) and chording again. When you chord again, the
chosen menu appears on top of the others. Alternatively, as an accelerator, you may click
Point over the title of the desired menu while continuing to hold down Adjust. The chosen
menu immediately appears on top of the stack.

Invoking a command

Once a menu is displayed, choosing a menu item requires you to position the cursor over
the list until it rests over the desired item, while you continue to chord. The selected menu
item is video-inverted; when you release the chord, the command is invoked. If you release
the chord when the cursor is not over a menu, the displayed menu disappears.

A quick method (called an accelerator), is to click Point over the desired menu item while
continuing to hold down the Adjust key. The command is invoked; after it is executed the
menu usually reappears.

Fine point: A menu does not reappear (1) if it is destroyed by the commmand invocation (such as by activating the
only file in the Inactive menu), (2) if the source from which the command was invoked is no longer visible (as when
invoking Bot tom sends a window to the bottom of a stack, where it is completely obscured from view), or (31 if
the window is tiny.

Confirming or aborting a command

Some menu commands require you to confirm or abort a command. In these cases the
cursor changes to a tiny picture of a mouse with Point highlighted; this informs you that
clicking Point will confirm the command. Clicking Adjust aborts a command.

1.3.3.2 Specific menus

1.3.3.2.1

There are several generally important menus: the Window Manager menu, the Inactive
menu, the TextOps menu, and the Symbiotes menu.

Window Manager menu and accelerators

All tool windows allow you to manipulate window size, location, and state by using
commands found in the Window Manager menu. For example, a window may be made to
cover the entire available display space, change position, become smaller, turn into its
iconic form, or disappear from the screen. The commands available in the Window
Manager menu are:

Move allows the window to be moved around the display area but does not
change its size. When you invoke this command, the cursor changes into
the shape of a corner bracket. As you move the cursor from one corner of
the display area to another, it changes shape to indicate which corner of
the window the operation will affect. When you position the cursor over

General tools

[-14

the desired location and click Point, the window moves to the arca that
begins in that corner.

Grow allows you to pull a corner of the window in any direction, growing or
shrinking the window along its width or height. This command acquires
position information in the same way as Move.

Drag allows you to elongate a window by pulling an edge of the window in any
direction; it also requires position information.

Size turns the window from a normal size into its tiny form, usually a small
iconic rectangle showing an abbreviation of the window's name. If the
window is already tiny, invoking Size changes it back to its normal size.

Top displays the window on top of all the other windows in its stack.
Bottom places the window at the bottom of all the windows in its stack.
Zoom causes the window to grow, taking up all available display space and

appearing on top of all other windows. Clicking Zoom again puts the
window back to its previous size.

Deactivate causes the tool window, and all other windows associated with a tool, to be
removed from the display and become inactive. An abbreviation of the
window's name is entered in the Inactive menu; the tool is re-activated by
choosing the window name on the Inactive menu.

Window Manager operations may also be invoked more quickly by positioning the cursor
in the left, middle, or right regions of the window name frame (or in the top half of a tiny
window) and clicking one of the mouse buttons. The region of the window name frame in
which the cursor is positioned video-inverts to provide feedback. The name-frame
operations are:

Mouse Button Left Region Middle Region Right Region
Point Top/Bottom Zoom Top/Bottom
Adjust Move Size Move

The operations available are as described above, with the exception of Top/Bottom.
Top/Bottom specifies that if the window is not on top, move it to the top. If it is already on
top, move it to the bottom. Pressing Adjust in the left or right portion of the name stripe
brings up the Move cursor. Clicking Point while Adjust is still down cycles the cursor
through the three shapes (Move, Grow, and Drag.)

These name-frame operations are also available on the upper half of a tiny window. In
some tools, menu commands are available in the lower half of the window even when it is
tiny. '

XDE User’s Guide I

1.3.3.2.2 Inactive menu

The Inactive menu contains a list of the tools that have been installed but are currently
inactive. The Inactive menu is available in any part of the screen not covered by a window.

[.3.3.2.3 Text Ops menu

A text subwindow generally has a Text Ops menu that provides commands for
manipulating text placement:

Find

Split

Position

J. First

J. Insert

J. Select

J. Last

Wrap

finds the next ocecurrence of the current selection in the subwindow. If the
current selection is in the subwindow, the search begins at the end of the
selection; otherwise, it begins at the first character visible in the
subwindow. If the search is successful, the next occurrence of the text
becomes the new selection. The search continues into text not visible on
the screen; if the selection is found past the text displayed, the text is
scrolled to the top of the split region. If no further instances of the text are
found, the display blinks.

If the SHIFT key is down, FIND works backward from the current selection, if
any, or from the last character visible in the window.

divides a region of the subwindow into two subregions separated by a
dashed line, with a small box at the right end of the line. This line can be
moved by depressing Point over the small box, moving the cursor, and
releasing the button. The subregions can be scrolled independently from
each other. To remove the line, move it off the top or bottom of a region.

positions the text in the subwindow so that the character specified by the
current selection, which must be a positive number, is at the top. For
example, if you select 275 and invoke Position, the 275th character in
the text is scrolled to the top of the subwindow.

positions text in a window so that the first line of text is at the top of the
window.

positions the text in the subwindow so that the type-in point is at the top.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

positions text in a window so that the last line of text is at the top of the
window.

reverses the current state of line wraparound in all the subwindows.
When wrapping is on, a line that has not been terminated by a carriage
return by the time it reaches the right edge of a subwindow is continued
onto the next line. When wrapping is off, the same line disappears off the
right edge of the subwindow.

General tools

[-16

1.3.3.2.4 Symbiotes and the Symbiote menu

A symbiote provides extra functionality for a tool window without requiring changes to the
code of the tool or to Tajo itself. Using the Symbiote menu on the root window, you can
attach a symbiote to any text window (Figure 1.6). Symbiotes appear as subwindows that
you can add to an existing tool dynamically, without disturbing its current processes or
facilities. Symbiotes can be attached to any text or form window or subwindow.

In particular, the XDE provides a symbiote that adds editing capabilities to any text or
form subwindow. (See the Editor Symbiote chapter for details.)

- Create Edit Find Load Position Reset Save Split Store Time Wrap

.RF! Find! «: Replace! all! <

|

|

Figure [.6: Text window

The following commands are in the Symbiote menu, which is available in any part of the
screen not covered by a window.

Attach Menu

Detach Menu

Attach Edit

Detach Edit

adds a one-line menu symbiote above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the menu symbiote above a host subwindow after you have
selected that symbiote with the cursor and pressed the Point mouse
button to confirm the choice.

Adds a one-line editor form above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the editor form from above that host subwindow after you
have selected that symbiote with the cursor and pressed the Point
mouse button to confirm the choice.

XDE User’s Guide I

User.cm causes the system to reprocess the [FileWindow] section of the
User.cmfile to determine the default symbiote values.

[.3.4 Keyboard commands

The keyboard is made up of alphanumeric keys, special symbol keys, and special function
keys. The function keys are referred to in this document by the names of their XDE
functions, not their keycap names. The keycap name is also given below if it differs from
the keyboard function name. The layout of the keyboard and the mapping from their
keyboard names to their interface functions is shown in Figure 1.7 (next page).

XDE Keyboard Mapping for the 8010

SCROLL- J.LAST J.INSERT) .
MENU) reserved client1 client2 DEFAULTS
BAR J.FIRST J.SELECT
comp- ! @ # $ % ~ & (BW
LETE 1 2 3 5 6 7 9 —_ BS
TAB Q w E R T Y U | o P {) RET
eserved move |expand|replace] define undo | invert (1
LOCK A s D F G H J K *
stuff |delete | find j.select jnext-de -
SHIFT z X C Vv 8 N M < > ? SHIFT
doit copy | paste next . /
SPACE
COMMAND +
c => COoPY
D => DELETE
AGAIN R;:::::EE E => EXPAND NEXT HELP
F => FIND
I => SCREEN INVERT NEXT- UNDO
FIND | copy J => J.SELECT DEL poIT
K => NEXT-DEL -
pasTe | Move N => NEXT DEF'N I LALL
Q => RESERVED N\ uG
R => REPLACE
STUFF | CONTROL S => STUFF EXP'D COMMAND ABORT
T => DEFINE
U => UNDO
Left function group V => PASTE Right function group
W => MOVE
X => DOIT
1 => J.FIRST
5 => JIUNSERT
9 => JLAST Point Ad-
ABORT => CLEARUSERACTION BUFFER(ASYNCHRONOUS) just
COMPLETE => AGAIN

Keyboard configuration using Level IV hardware

Double inscription on function keys indicates use of Shift (i.e., SHIFT + BS = > BW)
client 1,2 reserved for client definition

Mouse huttons

XDE Keyboard Mapping for the 6085

SCROLL-] J.LAST UP. CASE J.INSERT .
MENU BAR SERST | Low. case reserve J.SELEC client1 DEFAULTS DOIT N
0§
1 vl @ # $ %) & * (+ BW
— 1 2 3 a 5 6 7 8 9 0 = 8S
COMPLETE Q w E R T Y u I o] PZ. } RET
TAB resarve move expand | replace | define undo invert
LOCK A S D F G H J K L
stuff delete find j.select § next-del case v "
SHIFT z X C v 8 N M > SHIFT
doit copy paste next .
DEFINE
COMMAND SPACE EXPAND
Left Function Group Some Alternative Commands: Right Function Group
COMMAND +
DeBuG | REPLACE c = copPyY . x .
ABORT DELETE D => DELETE
UNDO | AGAIN E => EXPAND CLEAR 8 9
F => FIND
FIND coPY 1 = SCREEN INVERT NEXTZZ 5 6
] = J.SELECT
PASTE| MOVE K => NEXT-DEL N 2 3
N => NEXT
STUFF | CONTROL Q => RESERVED ,
R = REPLACE
S = STUFF
Mouse Buttons T => DEFINE
U = UNDO
V => PASTE
W => MOVE
[point Ldiusﬂ X => Dolv
1 => JFIRST
5 = JUNSERT
9 = J.LAST
ABORT = CLEAR USER ACTION BUFFER (ASYNCHRONOUS)

Double inscription on function keys indicates use of SHIFT (i.e. SHIFT + BS = > BW)

These commands work in text subwindows:

COMMAND +
L =>
SHIFTL =>
< =2
[=>
(=2
(=>
CONTROL +
< =>
> =2

Converts current selection to LOWER CASE
Converts current selection to UPPER CASE

Brackets current selection with < >

Brackets current selection with []
Brackets current selection with { }
Brackets current selection with ()

Left “field” delimiter («)
Right “field” delimiter (»)

client1 reserved for client definition

I General Tools

[.3.4.1 Keyboard functions

The keyboard functions are:

ABORT

AGAIN

CALL DEBUG

COMMAND

COMPLETE

CONTROL

corPy

DEFINITION

DELETE

DOIT

EXPAND

HELP

[-20

sets an abort "flag" in the window containing the cursor. A running tool
checks periodicully to sce whether an abort flag has been set. If it has, the
tool aborts itself. If you press ABORT a second time before the flag in a
window is reset (i.e., turned off), a global abort flag is set and all tools
abort. The window's abort flag is reset when anything is typed into the
window except SHIFT or ABORT. The global abort flag is reset whenever the
abort flag is reset in any window.

replaces the selection with the last text that was typed or stuffed.

(SHIFT-ABORT) calls the debugger. If both shift keys are held down when
invoking it, a panic call is made to the debugger. Panic calls should only
be made in dire emergency, since calling procedures out of the debugger
interpreter may not work.

is a shift key used with other keys to invoke various functions.

treats the token to the left of the type-in point as the beginning of a file
name and attempts to complete the name. This function is currently
implemented only by the Executive.

is a shift key used with other keys. Used with Point, it moves the type-in
point without changing the current selection.

clears the current selection and maintains the type-in point while the key
is held down, thus allowing a new selection to be made. When the key is
released, that new selection is stuffed into the window at the type-in
point.

(SHIFT-EXPAND) puts the current selection into the expansion field of the
Dictionary Tool. (See the Dictionary Tool chapter.)

deletes the selected text, replacing the contents of the trash bin with the
deleted text.

is a client-specific function. In a file window, it causes the window to be
loaded from the token in the window, using the token as a file name. (If
there is no such file, it tries to append each of the extensions .mesa,
.config, and .cmuntil it finds a match.)

replaces the alphanumeric token to the left of the type-in point by its
expansion, as defined by the current dictionary (see the Dictionary Tool

chapter).

invokes the subwindow Help function, if there is one.

XDE User’s Guide I

FIND

J.FIRST

J.INSERT

J.LAST

J.SELECT

MENU

MOVE

NEXT

NEXT-DEL

PASTE

REPLACE

STUFF

UNDO

1.3.4.2 Global functions

finds the current selection in the window containing the cursor. SHIFT-FIND
looks backward, either from the current selection, if the current selection
is in that window, or from the bottom of the window, otherwise.

positions the text in a subwindow so that its first lineé at the top of the
subwindow.

(SHIFT-SELECT) positions the text in Lthe subwindow so that the type-in point
is at the top.

(SHIFT-J.FIRST) positions the text in a subwindow so that its last line is at the
top of the subwindow.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

brings up the menus in the subwindow containing the cursor; it is the
same as chording the mouse buttons.

is like copy, except that the selection is deleted after it has been stuffed
into the window containing the input focus.

advances the cursor either to the next field in a form subwindow or to the
next bracketed field in a text subwindow, setting the type-in point to that
field.

like NEXT, only it deletes the contents of the field before setting the type-in
point.

takes the contents of the trash bin and inserts it at the type-in point. It is
like STUFF, only it operates on the contents of the trash bin.

(SHIFT-DELETE) is like DELETE, but it changes the type-in point to the point
from which the text was deleted.

takes the current selection and copies it to the type-in point of the
subwindow that is currently taking type-in. If no window conains the

input focus, this action fails and the display blinks.

swaps the selection with the trash bin.

Various keys invoke functions that affect the development environment globally or affect
the tool that is in the process of performing a user-initiated action. These functions are
available regardless of where the cursor is positioned:

COMMAND-ABORT

causes the development environment to forget all buffered user
actions that have not yet been processed, such as type-ahead.

I 21

General Tools

»

CONTROL - STOP creates a new notifier, freeing a machine that has "hung” with an
hourglass cursor.

These commands work only in text subwindows:

COMMAND-L sets the case of the characters in the current selection to upper case if
the sHIFT key is down, or to lower case if it is up.

COMMAND- < brackets the selection on the left by < and on the right by >.
COMMAND-[brackets the selection on the left by { and on the right with |.
COMMAND-{ brackets the selection on the left by { and on the right with }.
COMMAND - brackets the selection on the left by (and on the right with).
COMMAND -" _surrounds the selection with quotes.

COMMAND -- surrounds the selection by the "--” comment delimiter.

[.4 The user command file

[-22

The user command file, User.cm, is a file on the current volume used to set defaults for a
user. Many subsytems and tools pick up the information from the User.cm file to initialize
various options, such as font information, window placement and size, and where to send
files to be printed. Some User.cm values are used at user login; others when a tool is
activated.

To create a User.cm file for yourself, retrieve SampleUser.cm from Doc>, edit it to
contain such information as your name and domain by replacing the fields all currently
delimited by angle brackets, and rename it to be User.cm.

I.4.1 Format of the user command file

A User.cm section consists of a section title in brackets, followed by a carriage return, and
the entries for that section. Each entry is on a separate line. Entries consist of Name:
followed by the value. Any line that begins with == is ignored.(Here, as in several other
types of files, text preceded by -- is treated as comments and not processed.)

It is possible to have volume-specific entries for the values in a section when, for example,
you need different defaults in different volumes to determine which tools get loaded at
initialization time. This is specified by putting [Volume:SectionName] as a title. The
section entries in the volume-specific sections override those of the generic sections when
the volumes are booted.

Note: There are no spaces before or after the colon in a section title name, but all entries
must have a value after the colon.

In the example below, [FileWindow] is the generic section title. The menu line in the
FileWindow section in the CoPilot volume has Break in the menu line, but it is not needed
in the Tajo volume.

XDE User’s Guide I

[FileWindow]
SymbioteSetUp: Always Menu Edit

[CoPilot:Filewindovg]
Menu: Break Edit Load Reset

[Tajo:FileWindow]

Menu: Edit Load Reset

The development environment processes the [System], [Librarian], and
[FileWindow] sections of the User.cm at start-up time; all other sections are processed
when the corresponding tool is run. You should ensure that your User.cm file, as well as
any files necded in the processing of these sections, are in your top-level directory, since the
initial search path may not be set while these sections are processed. This is most likely to
be a problem when processing the InitialCommand: entry.

Below are examples of [System] entries. You can edit many of these values with the
Profile tool while the system is running (see the Profile Tool chapter).

User: CSmythe
This is your user name.
Domain: Bayhill

This is the default domain section of your clearinghouse name, used in authenticating
who you are, for accessing network services like printing.

Organization: Xerox

This is the default organization section of your clearinghouse name, similar to the
default domain section.

InitialCommand: Run.,~ Editor.bcd
This is an executive command line to be executed as part of the boot sequence. You
cannot have any carriage returns in the command line. The log file for this command is

Initial.log. Feedback will appear in the Herald window as a result of executing
commands in this line. Multiple tool names are separated by semi-colons.

Font: LaurelFont.strike

A font is built in; provide this entry only if you want to override the default.
MenuFont: Helvetica7.strike

This is the font used for menus; a default font is built in.

Debug: FALSE

[-23

General Tools

[-24

This sets the debugging variable for the system. The default value is FALSE. Certain
bugs call the debugger if this is TRUE. Otherwise, the system ignores the error and
attempts to work around it.

Screen: White

This determines the background color of the display. The default is White; Black is
the alternative.

SwapControlAndCommand: FALSE

This swaps the functions of the control and the command keys, which is especially
useful on a microswitch keyboard because the command key is awkward to use.

SearchPath: <Tajo>Temp <Tajo>
This is the intitial value of the file system search path.
BalanceBeam: Always

This sets the value of the variable that controls positioning of the type-in point relative
to a selection. It has three possible values:

Always: the type-in point is as close as possible to the cursor position.
Never: the type-in point is at the end of the selection.
NotForCharacter: the type-in point is after a single character selection, but it

will be as close as possible to the cursor posisiton for
multiple character selections.

FileWindow: [x: 512, y: 30, w:512, h: 439] [x:900, y: 778] Calendar/t

An arbitrary number of FileWindow entries is permitted in the System section. Each
specifies a file window to-be created. The first set of bracketed values indicates the
position of the window when it is active. x and y are the horizontal and vertical
bitscreen coordinates of the upper-left corner of the window. w and h are the width and
height of the window in bitscreen coordinates. Any or all of these fields may be omitted,
in which case they have the following default values: [x: 0, y: 0, w: 512, h: 400]. The
second set of bracketed values indicates the position of window when it is tiny. x and y
are the horizontal and vertical bitscreen coordinates of the upper-left corner of the
window. Any or all of these fields may be omitted, in which case they have the
following default values: [x: 0, y: 0]. The next item in the line, which is optional, is the
name of the file to be loaded into the window. If there is a switch on the file name, it
specifies the initial state of the window (a for active, t for tiny, and i for inactive). You
must always specify the active box and tiny box position, even if they are defaulted, by
specifying [].

XDE User’s Guide I

[.5

Documentation roadmap

This section describes how the XDE documentation is structured and where to look to find
information about a particular subject. The documentation for this system, written for
system developers who are familiar with the Mesa prdgrumming language, consists of five
separate manuals: XDE: Concepts and Principles, the XDE User's Guide, the Mesa
Language Manual, the Pilot Programmer’s Manual, and the Mesa Programmer's Manual.
This manual, the XDE User's Guide, describes the tools that make up the programming
environment, [ts introductory chapters contain general information on getting started and
how to use the environment, The Mesa Language Manual is a reference manual for the
programming language. The Pilot Programmer's Manual and the Mesa Programmer's
Manual are reference manuals that describe Pilot and Mesa client interfaces. The Pilot
Programmer's Manual describes operating system facilities, while the Mesa Programmer's
Manual documents the software interfaces that implement user-interface functions.

[.5.1 XDE: Concepts and Principles

The XDE Concepts and Principles guide introduces the Xerox Development Environment.
It describes the organization of the system broadly, focusing on the metaphors and theories
the developers had in mind when they built the system. It discusses each of the parts of the
system and explains their interaction.

[.5.2 The XDE User's Guide

If the development environment is new to you, read the XDE Concepts and Facilities
manual. Along with this introductory chapter of the XDE User's Guide, it tells you how to
get started, gives information about programming in the development environment, and
describes the user interface.

Most of the remaining chapters of the XDE User’s Guide (this document) describe the tools,
which are utility programs that run in the development environment. The tools are
grouped according to their function. Each one is described in a separate chapter containing
information about the user interface for the tool, examples of how to use it, an explanation
of error messages, and background information necessary to understand how the tool
operates. This XDE User’s Guide is best used to develop the "hands-on" knowledge you
need for accomplishing programming tasks. It is also a reference manual for using tools.

I.5.3 Mesa Language Manual

The Mesa Language Manual is a reference manual defining the Mesa programming
language. It explains how to use the Mesa language, with examples, and describes the
grammar that defines Mesa.

I.5.4 Pilot Programmer's Manual

The Pilot Programmer’s Manual is intended for designers and implementors of client
programs of Pilot. It describes the external structure and interfaces of Pilot, the operating
system, and the other packages released with it, providing sufficient information for
programmers to understand the facilities available and to write procedure calls in the
Mesa language to invoke them. Similar to the Mesa Programmer's Manual, the Pilot

I-25

General Tools

Programmer’s Manual documents procedures, parameters, results, data types, and signals
for each Pilot software interface.

[.5.5 Mesa Programmer's Manual

The Mesa Programmer's Manual describes the collection of interfaces that provide a
framework and runtime system for writing Mesa programs in the development
environment. For each interface, the Mesa Programmer's Manual lists all procedure
names, parameters, results, arguments, data types, and signals. The interfaces
documented in the Mesa Programmer's Manual implement and support the window-
oriented user interface available for use in tool writing.

[.5.6 Appendices

Appendix A of this document describes the Installer. Appendix B describes procedures for
getting started in the Xerox Development [invironment.

In the Mesa Programmer's Manual, Appendix A discusses the Example Tool, a tool that
helps you learn about tools. Appendix B contains information about interfaces.

[.6 Typographical conventions

The typographical conventions in this document are as follows:
Keycap and mouse button names are MODERN 8 BOLD CAPS.

Commands are Titan 10 bold; file names, menu items, and switches are Titan 10.

[nteraction with the system is represented in Titan 10. When an example is given, what
you are required to type is underlined (with the exception of the special symbol for the
carriage return key). A ¢indicates that you should press the carriage return key.

[.7 Other features, other tools

[-26

Some of the other useful features of the Xerox Development Environment are within the
General tools described in the rest of the chapters in this section. These tools affect
processes system-wide, so they can help you to work more efficiently in many situations.

DMT

DMT is a tool whose purpose is to keep the phosphor on the display screen from wearing
out. It should be run whenever you leave your workstation unattended.

1.1 Files

Retrieve DMT.bcd from the Release directory.

1.2 Userinterface

DMT is activated when you type DMT to the Executive. DMT then puts a solid black
window on top of all of the existing windows. Embedded in this black window is a small
white moving rectangle that shows the current date and time. Making DMT active does
not affect any other processing already in progress; it merely covers up the display screen.

If DMT is running and you wish to resume work, you can deactivate it by pressing ABORT or
by using the Deactivate or Size commands in the Window Manager menu.

DMT fails to achieve its purpose if your display is white-on-black; when run, it will display
a solid white window covering the screen. Change it to black by pressing the COMMAND-i
keys.)

1-1

DMT

1-2

Dictionary Tool

The Dictionary Tool allows you to expand abbreviations according to a user-defined
dictionary, called the Edit Dictionary, and to add abbreviation-expansion pairs to the
dictionary.

2.1 Files

The Dictionary Tool is built in; no additional files are needed. The default name for the
Edit Dictionary on your system is default.dict.

2.2 Userinterface

The Dictionary Tool implements the EXPAND and DEFINITION function keys in text and form
subwindows. (See the section on keyboard functions in the User Environment chapter for
descriptions of the EXPAND and DEFINITION keys.)

The EXPAND function treats the word to the left of the insertion point as an abbreviation
and looks it up in the dictionary, ignoring case. If an entry is found, the abbreviation is
replaced by the definition. If the definition contains fields, the field is selected. The
abbreviation may be a unique prefix of the abbreviation-expansion pair.

The DeFNITION function invokes the Dictionary Tool. If the Dictionary Tool is already
active, it deactivates it.

2.3 Dictionary Tool

The Edit Dictionary is maintained by the Dictionary Tool. It contains one or more files,
each of which is a list of abbreviation-expansion pairs. The Dictionary Tool is invoked by
the DEFINITION key or by standard window manager methods.

The Dictionary Tool interacts through a message subwindow, a form subwindow, and a log
subwindow. The message subwindow is used to post error messages. The form subwindow
is used to invoke commands and provide parameters. The log subwindow is used to record
the results of commands.

2-1

2

Dictionary Tool

The Dictionary Tool maintains its dictionary in memory in a format that allows fast
lookup of expansion strings, given the abbreviation. There is no limit to the number of
entries in this dictionary. The dictionary may be initialized by loading .dict files that
contain abbreviation-expansion pairs in human-readable and -editable form.

2.3.1 Commands

The form subwindow has the following layout:

Record! LookUp! List! Load! Store! Dictionary:
Abbreviation:
Expansion:

Record! enters a pair in the dictionary with abbreviation Abbreviation: and
expansion Expansion:. If Expansion: is empty, the current
abbreviation-expansion pair is deleted.

LookUp! fills in Expansion: with the expansion of the abbreviation
Abbreviation:.

List! writes all the pairs in the dictionary to the log subwindow.

Load! reads the pairs in the .dict file specified by Dictionary: and loads

them into the dictionary.

Store! stores the pairs in the dictionary onto the .dict file specified by
Dictionary:.

If the dictionary is modified by recording new entries or by loading a new .dict file, the
modifications are not stored in the .dict f£ile unless the Store! command is invoked
or the StoreOnDeactivate User.cm entry isincluded (see below).

2.3.2 File format

Anentry in the .dict file has the following format:
abbrev:<TAB> "expansion string" <CR>.

The double quotes around the expansion string are optional if it does not contain any
embedded returns. The expansion string should not contain any double quotes.

2.4 User.cm

2-2

Two entries are implemented:
[DictionaryTool]

Dictionary: My.dict Initializes the dictionary from the specified .dict file.
Default.dict is used if there is no User.cmentry.

XDE User’s Guide 2

StoreOnDeactivate: TRUE Automatically stores the dictionary when the tool is
deactivated to the specified .dict file if the dictionary
has changed.

2-3

2 Dictionary Tool

Editor Symbiote

The XDE 3.0 Editor provides a way to edit files stored on disk as well as to create new files.
This screen-oriented editor, which includes an extensive and powerful pattern-matching
facility, can be associated with any text or file window (or subwindow).

3.1 Files

The Editor Symbiote is included in the boot files.

3.2 Userinterface
The editor interfaces with users as a symbiote that attaches to any text subwindow or form
subwindow. The Editor Symbiote can be invoked via the Editor menu associated with the
Root subwindow. The editor is loaded with the boot files when CoPilot is booted.

The Editor Symbiote's user interface is described below.

3.2.1 Editor menu

To use the Editor Symbiote, chord on the mouse to get the Symbiote menu from the root
window. Attach edit will attach an Editor Symbiote subwindow to a host text or form
subwindow, and Detach edit will remove it. (Note that the Editor Symbiote commands
will work on form subwindows.)

3.2.1.1 Editor Symbiote subwindow

All} S! RS1 «: SR! R! «:

Figure 3.1: Editor Symbiote subwindow

Editor Symbiote

The Editor Symbiote is a form subwindow with the following items. (The behavior of the
Editor Symbiote menu items is affected by the Editor property sheet, as explained in the
next section.)

-2 The search field--the text that will be searched for (the «: following
RS!).This field may contain expressions specifying variable patterns
to be matched.

S! Searches for text matching the search field. The search starts

immediately following the current selection if it is visible in any split of
the window; otherwise, the search starts from the first character
visible in the top split of the window.

3 The replace field--the text that will replace the selection (the «:
following R!). This field may also contain variables denoting elements
of the search field.

R! Replaces the current selection with the text specified by the replace

field. If the current selection was set as the result of $! or RS!, the
expression in the search field is available for replace-field variables. If
the selection was set some other way, the replace field may only have
literal text and may not contain any variables.

RS! Does an R! followed by an S, thus replacing the current selection and
searching for the next matching text.

SR! Does an S! followed by an R, thus searching for the next matching
text and replacing it.

All! Repeatedly does an SR!, thus replacing all text instances that match
the search field. The repetition stops when the search fails to find a
match.

For more information about the Editor Symbiote’s search and pattern-matching facilities,
see the section on Search and pattern matching.

If you press the DOIT key (MARGINS) when an Editor Symbiote has the input focus, the Editor
Symbiote subwindow grows to two lines, with A11}, S! and RS! on the top line and SR!
and R! on the second line, giving more space to enter text. This two-line format is also
useful for comparing search and replace strings, which may be quite simple or very
complicated. Pressing the DOIT key again returns the symbiote subwindow to its original
one-line configuration.

If the search field is empty when you invoke S!, the Editor Symbiote copies the current
selection into the search field before starting the search.

XDE User’s Guide

3.2.1.2 Editor property sheet

a
Scope: {#§}, rest, selection}
Interpret match as: FHEEGHENT literal}
Context of match: {aw words
IgnoreCase ConfirmReplace
Level

T
GetDefault! SetDefault!

Figure 3.2: Editor property sheet

The Editor property sheet is a separate window named Editor. Its fields, which affect the
Editor Symbiote’s operation, are:

Scope: {all, rest, selection}

Interpret match as: {pattern, literal}

Context of match:

Ignore Case

Confirm Replace

Level:

specifies the scope of the A11! command.
all means the entire file, rest means “the rest of the
file”--just like the 8! command (q.v.)--and selection
means “within the current selection.”

specifies the interpretation of
the text in search field. pattern means to interpret the
search field as a regular expression; l1iteral means to use
the search field as simple literal text.

{anywhere, words} further limits the acceptable con-
text in which a search may find a match. anywhere means
that the pattern can match within a larger word. words
only matches patterns that are surrounded by non-
alphanumeric characters.

is a Boolean that will cause upper-/ lower-case differences to
be ignored during a search.

is a Boolean that will cause the Editor Symbiote to request
explicit user confirmation for each text replacement. A
confirm cursor appears when confirmation is requested; use
Point to confirm, Adjust to deny.

is the number of space characters by which the indenting

should be adjusted. This is used by the Nest and UnNest
commands in the Edit Ops menu.

3-3

Editor Symbiote

The property sheet also has a command subwindow with these commands:

GetDefault!

SetDefault!

sets the editor properties to the built-in default state.

sets the default editor properties to be those currently set in
the property sheet. GetDefault! may then be used to
return the properties to that state.

3.2.1.2.1 Editor property sheet accelerator

You can associate the Editor property sheet with any key on your keyboard for faster
access to the editor's parameters. If the text subwindow TIP Interpreter sees the atom
"Editor," it will make the Editor property sheet appear (become active if it is inactive, or
normal if it is tiny). To associate the Editor property sheet with the HELP key, you would
use the following entry in the <>TIP>TextSW.TIP file:

SELECT TRIGGER FROM

HELP Down => Editor; --specifies which key to attach to

.

.

ENDCASE. ..

To get the TextSW. TIP file, look on the <Hacks>1x.0>Source>Editor > directory. It
can be copied to the local file <>TIP>TextSW. TIP. After installing the file and rebooting,
pressing the HELP key causes the Editor property sheet to appear.

3.2.1.3 EditOps menu

When an Editor Symbiote is attached to a subwindow, an EditOps menu is also placed on
the window. The Al1l, Search, SearchReplace, ReplaceSearch, and Replace menu
items invoke the same commands as the Editor Symbiote's A11!, S!, SR!, RS! and R!
commands. Other menu commands, which only operate on text subwindows, are specific to
formatting of Mesa source code. They are:

Nest

UnNest

Match

3-4

shifts the lines that contain the current selection level
characters to the right, where level is specified in the
Editor property sheet.

shifts the lines that contain the current selection level
characters to the left, where level is specified by the Editor
property sheet.

identifies matching parentheses (), square brackets [],
angle brackets < >, and braces { }. If one of these grouping
characters is selected, Match extends the selection to the
matching character.’If a character that is not one of these is
selected, Match extends the selection in both directions

XDE User’s Guide 3

until it contains a match. Successively using Match will
match larger scopes.

Count gives a count of how many occurrences of a pattern are
found in the text. The search expression and scope are
specified in the Editor property sheet. The result is given in
the message subwindow of the Editor property sheet.

3.3 Search and pattern matching

3.3.1 Search

The search operation accepts expressions in the search field. You can search for patterns
or families of strings, as well as for simple literal strings. The syntax of a search
expression is given below. First, some preliminary definitions:

<char> a single literal character. Since the characters %, 8, [, 1, 7,
* and \ have special meaning within a search expression,
you must prefix these characters with a backslash
character. For example, * means a literal asterisk
character. Following Mesa conventions, you may also use \n
for carriage return, \t for tab,\ddd for the character whose
code is octal ddd, where d is an octal digit and ddd < 377B.
Escaping an ordinary character is harmless.

<charl>-<char2> character range. For example, A-Z means all the capital
letters.

<character class> a set of characters, defined by naming the characters to be
included. A character class specification consists of a
sequence of characters and character ranges.

A search expression is an arbitrary sequence of the following five elements. Each element
counts as one “variable” in replace expressions.

<string> matches the given literal characters of the string.

matches any single character.

$ matches the beginning of a line (for use when one is the first
element in the pattern).

[<character class>] matches any character in the character class.
[~ <character class>] matches any character except those in the character class.
In addition, any of the above five constructs can be qualified by appending either of the

following closures, which are explained in the section on Character classes and closure.
When a closure is applied to a <string>, it applies only to the last character of the string.

3-5

Editor Symbiote

* short closure. Matches the least possible number, including
zero, of occurrences of the previous construct.

** long closure. Matches the greatest possible number,
including zero, of occurrences of the previous construct.

3.3.2 Replace

The replace field specifies the text that will replace the selection in a replace operation.
This field may also contain an expression with variables denoting elements of the search
field.

A replacement expression is an arbitrary sequence of the following elements.

<string> replaces with the given literal characters of the string. Since the
character @ has special meaning within a replacement expression, you
must prefix this character with a backslash character; e.g., \@.

1 replaces with the complete text found by the search.

én@ replaces with the text that matched the nth element of the search
expression. The first element of the search expression is “1,” etc.

3.3.3 Character classes and closure

Character classes provide a way to match different characters as part of a pattern. For
instance, either [a-c] or [abc] is a proper character class declaration that will match
any of the letters a, b, or c¢. Usually, however, you will not want to match just a single
character in a character class, but a word or a list of them. The short closure * and the long
closure ** are used for this. * and ** match with zero or more members of the search
expression element that immediately precedes the closure. * matches the shortest possible
string of the pattern type, and ** matches the longest possible string. So an expression
like [a~c]* will match strings of arbitrary length whose component letters are a, b, and
c.

For example, given the text "Hello.bcd Goodbye.bed™:
H#*.bcd will match "Hello.bcd"
H#**.bcd will match "Hello.bcd Goodbye.bed"
Caution: Be careful about using #* and #** if you are editing a large file,. Since #

matches any character, $* and #** will be slow. Since #** matches the longest run of
characters, it will be very slow. '

3.3.4 Examples
1. To find words that start with an upper-case letter:

Find: [A-Z][a-z]**
Result: I, 'Hello', 'Prince’ will all match, 'warthog' will not.

XDE User’s Guide 3

2. To find a word whose

first character is either a, b, ¢, d, s, x,y , z
second character is either a, e, i,0,u
third characteris g, p, 4,5, 6

and reverse the order of the letters found:

Find: [a-dsx-z][aeiou][gp4-6]
Replace: @3@@2@@1@
Result: dog = > god

3. To delete the leading zeroes from numbers

Find: [0-9][0]**[0-9]
Replace: @1@Q@3@
Result: 0000008 = > 0B, 00343B = > 343B

4, To generate exec commands from a list of files (also see the example given in the
next section):

Input: "Access.archivebecd Adobe.archivebced Binder.archivebed ™

Find: #*

Replace: Copy < >Temp>@1@ « @1@@n

Result:
Copy < >Temp>Access.archivebcd « Access.archivebed
Copy < >Temp>Adobe.archivebcd « Adobe.archivebed
Copy < >Temp>Binder.archivebcd « Binder.archivebcd

3.3.5 Editor as programmer's tool

The searching and pattern matching facilities of the editor can be used as a macro to
generate sizeable chunks of code in a very short time, as in the following example:

Suppose you want to create a function that sends out simple error messages if there is an
error while attempting to access a file. Because Mesa has such unique type-definition
capabilities, you are likely to find an enumerated type such as MFile.ErrorCode lying
around, a type that enumerates the different possible file access errors. Using the
members of this type as a list of selection keys, you can trivially generate code that will
send the name of the file access error message to your terminal. What follows is a dialog
for doing just that.

First, you will want to get a list of all the error codes. Type the following command to the
Executive window:

>Show type: MFile.ErrorCode

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile, conflictingAccess,
insufficientAccess, directoryFull, directoryNotEmpty, illegalName,
noSuchDirectory, noRootDirectory, nullAccess, protectionFault,
directoryOnSearchPath, illegalSearchPath, volumeNotOpen, volumeReadOnly,
noRoomOnVolume, noSuchVolume, crossingVolumes, fileAlreadyExists,

3-7

Editor Symbiote

filelsRemote, filelsDirectory, invalidHandle, courierError, addressTranslationError,
connectionSuspended, other(255)};

The list below was simply copied from the Executive window into an empty File window
(using the copy key) :

noSuchFile, conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, illegalName, noSuchDirectory, noRootDirectory, nullAccess,
protectionFault, directoryOnSearchPath, illegalSearchPath, volumeNotOpen,
volumeReadOnly, noRoomOnVolume, noSuchVolume, crossingVolumes,
fileAlreadyExists, filelsRemote, filelsDirectory, invalidHandle, courierError,
addressTranslationError, connectionSuspended

Now attach an Editor Symbiote subwindow to the File window and make the following
entries into the find and replace fields («):

Find: #*,
Replace: @1@ => Write["@l@"L];\n

Running that Replace function (R!) over the list above and adding the PrintError
subroutine name and the SELECT statement yields the finished function below:

PrintError: pPROC[code: MFile.ErrorCode] = {
SELECT cocle FROM
noSuchFile = > Write["noSuchFile"L];
conflictingAccess = > Write["conflictingAccess"L];
insufficientAccess = > Write["insufficientAccess"L];
directoryFull = > Write["directoryFull”L];
directoryNotEmpty = > Write["directoryNotEmpty"L];
illegalName = > Write["illegalName"L];
noSuchDirectory = > Write["noSuchDirectory"L];
noRootDirectory = > Write["noRootDirectory"L];
nullAccess = > Write["nullAccess"L];
protectionfFault = > Write["protectionFault"L];
directoryOnSearchPath = > Write["directoryOnSearchPath"L];
illegalSearchPath = > Write["illegalSearchPath"L];
volumeNotOpen = > Write["volumeNotOpen"L];
volumeReadOnly = > Write["volumeReadOnly"L];
noRoomOnVolume a > Write["noRoomOnVolume"L];
noSuchVolume = > Write["noSuchVolume"L];
crossingVolumes = > Write["crossingVolumes"L];
fileAlreadyExists = > Write["fileAlreadyExists"L];
filelsRemote = > Write["filelsRemote"L];
filelsDirectory = > Write["filelsDirectory”L];
invalidHandle = > Write["invalidHandle"L];
courierError-= > Write["courierError"L];
addressTranslationError = > Write["addressTranslationError"L];
connectionSuspended = > Write["connectionSuspended"L];
ENDCASE;

)

XDE User’s Guide 3

3.4 User.cmfile entries

The typical Tajo tool parameters can be set for the Editor property sheet under [Editor] in
the User.cm(i.e., WindowBox, InitialState, TinyPlace).

[Editor]

WindowBox: <put here the size of window box you prefer>

InitialState: < put here the initial state you want, particularly Tiny or Active >
TinyPlace: < put here the coordinates of the desired location of the Tiny window on

your screen >

In particular, fix the User.cm entry for [FileWindow] to "Setup: Always Menu Edit" to
get the Editor Symbiotes to attach themselves by default to text windows.

[FileWindow]
Setup:Always Menu Edit

3-9

3 Editor Symbiote

3-10

4 Executive

TAB

?(question mark)

RET (carriage return)

; (semicolon)

4.2.2 Command line expansion

treats the last token on the command line as the beginning
character string of a file name and list all files or registered
commands it starts. The token is deleted from the command line
and the command line is retyped.

treats the last token on the command line as the beginning
character string of a file name and lists all files or registered
commands it starts. The token is not deleted from the command
line and the command line is retyped.

terminates the command and causes it to be interpreted.

terminates the command and permits more commands to be typed
before interpretation begins.

The Executive expands a command line using the following for these special interpretation

characters:

' (single quote)

4 (UpArrow)

* (asterisk)

quotes the following character so that the Executive does not
interpret it. The following character, but not the quote, becomes
part of the expanded command line. For example, use a single
quote to pass a semicolon in a command line to the Compiler.

quotes the following character so that the Executive will not
interpret it. Neither the UpArrow nor the following character is
part of the expanded command line. 1 is typically used to insert
carriage returns into long command lines to make them more
readable.

interprets the token containing the star as a pattern; replaces this
token by the list of files and registered commands that match the

pattern. The * in the pattern may match zero or more instances of

- a character. A single star only matches within one level of

(pound sign)

@ (at-sign)

4-2

subdirectory, that is, it will not match the character > in a file
name. Multiple stars will cross subdirectories. Hence, the pattern
* matches all the files in the current subdirectory, while the
pattern ** matches all the files in or below the current
subdirectory.

sarne as *, but matches only one character.

interprets the following token as a command file. The token may
be terminated by another at-sign, by a space, a RET, or a semicolon.
The token is interpreted as the name of a file, and the token is
replaced by the contents of that file. If the token is not a file name,
the Executive tries to complete it by appending .cm. If that does
not match a file, it appends *.cm, and if that does not-match
exactly one file, it prompts you for the contents of the file.

XDE User’s Guide 4

/ (slash) or -- (hyphen) denotes the characters that follow as a comment. The comment
can be terminated by a matching pair of delimiters (// or --) or by
the command terminators (RET or ;).

4.2.3 Command line interpretation

The Executive checks to see if the first token in a command line is one of its registered
commands. Registered commands have a .~ suffix and are either built into the Executive
or registered by programs. Commands may be abbreviated to any unique initial substring.
If the first token is a registered command or the abbreviation of one, the command is
executed.

If the first token is the abbreviation of more than one command, the Executive reports that
it cannot find the subsystem and prompts for a new command, discarding all queued input.
For example, if both Chat.™ and ChatDriver.” are registered programs, you must
enter Chat .~ because Chat is ambiguous.

If the first token is not a registered command or the abbreviation of one, the Executive
assumes that there is a program that would register that command if it were run (see the
built-in Run. ~ command described below). The Executive attempts to find and run a likely
program. First, it checks to see if the token is the name of a file. If not, it strips any
extensions from the token and tries appending the suffixes: .archivebcd,
* archivebed, .bcd, *.bed in that order. If any of these patterns match exactly one file,
the Executive runs that program. After running the program, the Executive checks to see
whether the program has registered the command that corresponds to the first token on the
command line. If so, the command is executed; otherwise, the executive skips the current
command line and starts processing the next command line.

Warning: Often when trying to re-execute an Executive command, users accidentally
select and stuff the entire line including the prompt character ”>”. This will tickle a bug in
the Executive and it will load another instance of your program. Avoid selecting the
prompt character when stuffing to the Executive.

4.2.4 Built-in commands

The commands listed below are built into the Executive and are automatically loaded and
started when the Executive is created. Many of these commands take arguments and
possibly have switches. Depending on the command, switches can be used either locally or
globally or both. When used globally, a switch applies to all subsequent arguments of the
command and is placed before the arguments it applies to. A local switch applies to only
one argument,; it follows the argument that it affects.

AliasCommand.” <oldName> <newName>

provides a mechanism for giving a particular command
more than one name. Subsequent invocations of the
command by its original name or any of its aliases will
always invoke the same procedure that was registered with
the original command. This is useful for commands which
have identical beginning letters, such as Compare and
Compiler, since the user must enter at least five letters

4-3

Executive

*|

of either command in order for command completion to
work.

CacheAddress.” <commandList>

allows you to create, list, load, store, and manage the
network address cache. CacheAddress maintains the
network address cache that is used with the
AddressTranslation interface.

There are eight CacheAddress commands. They may be
abbreviated to any unique initial substring.

Certify validates all entries in the
address cache with the
clearinghouse. All invalid
entries are corrected.

Certify/<hostName>

validates the entry for
<hostName> with the
clearinghouse. If the domain and
organization are not specified,
the default domain and
organization are used. If the
entry is invalid, it is corrected.
<hostName > may contain ™* or
#.

Flush flushes the contents of the cache.
The size remains the same.

GetSize gives the maximum number of
entries in the cache.

List lists the contents of the cache.

Load/<fileName > loads the contents of
<fileName> into the cache.
The file should have been
created using the Store
command.

SetSize/<entries>sets the maximum number of
entries in the address cache to <entries>.

Statistics gives information about the
cache.

Store/<fileName > stores the contents of the cache
into < fileName >

Executive

The Executive is a tool for loading and running Mesa programs.

4.1 Files

The Executive is built into Tajo; no extra files are needed.

4.2 Userinterface

The Executive runs as a TTY window, so the standard editing functions are not available.
The insertion point is always at the end of the text and cannot be moved elsewhere in the
Executive window. In the following descriptions, word refers to a sequence of
alphanumeric characters; token refers to a sequence of non-blank characters.

4.2.1 Editing functions

The Executive interprets certain characters as editing characters on the current command

line, as follows:
BS

BW

CONTROL-X

CONTROL-C, DELETE

COMPLETE

deletes the last character.

deletes the previous word; any non-alphanumeric characters to
the right of the previous word are also deleted.

expands the command line (defined below) and prints the
expanded command line.

aborts the current command line and prompts for a new
command.

treats the last token on the command line as the beginning
character string of a file name or registered command and
attempts to complete it. If the token starts more than one file
name or command, the screen flashes. The Executive extends the
command line with as many unambiguous characters as it can.

4-1

XDE User’s Guide

4

ChangeCommandName. ~

Clearinghouse.”

ClientRun.”

CloseVolume. "~

<fileList>

As an example, the following commands will set the
maximum number of entries in the cache to 20, list the
contents of the cache, and store the current contents of the
cache into the file foo.cache

CacheAddress SetSize/20 List Store/foo.cache
or
CacheAddress set/20 1 store/foo.cache

See section 4.2.5 for CacheAddress operating instructions.

<oldName> <newName >

is used for renaming commands registered with the
Executive (not to be confused with Rename, which renames
files). After executing ChangeCommandName, the
operations previously invoked by typing <oldName> to
the Executive can only be started by typing <newName> ;
<oldName> will no longer be registered.

sets the default domain and organization. The current
default domain and organization are provided in the
prompt. If the provided value is correct, press RET:
otherwise, type the new value. The default value is erased
as soon as you enter the first character. An example of the
use of the Clearinghouse command is:

Clearinghouse
Domain: OSBU North
Organization: Xerox

performs the same function as the Run! command in the
CommandCentral tool. It has the same semantics as the
Run! command, except that its arguments come from the
command line instead of the Run: input field of
CommandCentral. (Also see SetClientVolume.) For
example, the following command runs the program
Testl.bcd on the current client volume:

ClientRun Testl.bcd

<volumeList>

closes the specified volumes. The volume to be closed
should not be on the current search path (see the Search

4-5

4 Executive

Copy. <targetFile> «

Path Tool chapter). The following command closes the
logical volumes named Tajo and User.

CloseVolume Tajo User
<fileList>

copies the source files to a target file. If the left arrow is
omitted, the Executive asks the you to confirm that the
first file is the target file. After the Copy command, the
target file will contain the concatenation of the contents of
the source files. If there is only one source file, the target
file will have the same creation date as the source file;
otherwise, it has the current time as its creation date. As
an example, the following command copies the file
MyFilel.mesa and MyFile2.mesa into the file
Temp.mesa:

Copy Temp.mesa « MyFilel.mesa MyFile2.mesa

CreateDir.” <directoryName>

CWD. ~ <directoryName>

Delete.

4-6

creates the specified directory. A directory name should not
end in a ”>" character. If you supply one, it will be ignored.
As an example, the following command creates the
directory TempDir on the CoPilot volume:

CreateDir.” <CoPilot>TempDir

substitutes the specified directory for the directory in the
front of the current search path. The facility for changing
the current working directory also exists-in the
SearchPathTool. As an example:

CWD <CoPilot>TempDir

<fileOrDirectoryList>

deletes the specified files and directories. If the specified
directory is not empty, or if it is on the current search path,
the Executive will abort the deletion and print an error
message. As an example, the following coimnmand deletes
the file MyFile.mesa and the directory
<CoPilot>TempDir:

Delete MyFile.mesa <CoPilot>TempDir

XDE User’s Guide

Filestat.™ <fileOrDirectoryList>

Filestat.~ /s <volumeName> <fileIDList>

gives information about the specified files, directories, and
file IDs. [t prints out the name of the file or directory, the
file ID, the number of bytes in the file, the number of pages
in the file, the file type, the times at which the file was
created, last read, and last written, and whether the file is
delete-protected, read-protected or write-protected. As an
example, the following command requests file information
on file MyFile.mesa. Typical output is listed below the
command.

Filestat MyFile.mesa

<Copilot>MyFile.mesa FileID: 476B, 0
10413 bytes 22 pages type: text

create: 5-Jan-82 15:30:25 write: 11-Jan-82
17:42:06 read: 14-Jan-82 19:41:41

The following command requests file information for the
file ID 476B, 0. Notice that the file ID is the same as the
file ID in the previous example.The output is the same
regardless of whether you specify a file name or a file ID.

Filestat /s Copilot 476B, 0
<Copilot>MyFile.mesa FileID: 476B, 0
10413 bytes 22 pages type: text

create: 5-Jan-82 15:30:25 write: 1ll1-Jan-82
17:42:06 read: 14-Jan-82 19:41:41

Floppy. <command> <arguments>

Help. <commandName >

Load.”

<fileList>

recognizes commands that allow you to store and retrieve
files on floppy disks using the floppy disk drive in your
workstation. For a detailed discussion of the commands,
arguments and switches recognized by Floppy, see the
chapter on floppy commands.

prints out the help information associated with the
specified command. Help usually gives the possible
parameters and switches for the command.

loads the specified programs into memory and prints the
load handle of each program loaded. You can specify the
following switch, either locally or globally:

4-7

4 Executive

LogIn.”

/1 use code links when loading

[f the /1 switch is not used, the User.cm specification for
code links is used. As an example, the following command
will load the programs MyProgram.bcd and
MyOtherProgram.bcd

Load MyProgram.bcd MyOtherProgram.bcd
The Load command is useful for debugging. You might

load a program, set a breakpoint using the debugger, and
then start the program using the Start command.

prompts you for your name and password. An example of
the use of LogInis:

LogIn
User: YourName Password: YourPassword

OpenVolume. <volumelList>

PopWorkingDirectory.”

opens the specified volumes. You can specify the following
switch, either locally or globally:

/w open the volume for read-write instead of readOnly
As an example, the following command opens the logical
volume Tajo for reading and the logical volume User for

read-write.

OpenVolume Tajo User/w

pops the working directory, eliminating it from the current
search path, and leaves the next directory in the search
path as the working directory.

Protect.” <fileName>/<switches>

48

changes the file protection. You can specify the following
switches:

R setreadProtected (file cannot be read)
"R clear readProtected
W set writeProtected (file cannot be written)

"W clear writeProtected

XDE User’s Guide

D set deleteProtected (file cannot be deleted)

"D clear deleteProtected

When a’ file is created, it is readable, writable. and
deletable. As an example, the following command protects
MyFile.mesa so that it can not be read, written, or
deleted.

Protect MyFile.mesa/RWD

To find out how a file is currently protected, enter the
command followed by a file name only. For example:

Protect MyFile.mesa

PushWorkingDirectory.~ <directoryName>

ProcessInBackground.”

pushes the specified directory onto the front of the current
search path, making it the current working directory.

causes the compiler and binder to run at background
priority when run from CommandCentral. The default
priority is normal.

ProcessInNormalPriority.~

Registry.”

Rename.

causes the compiler and binder to run at normal priority
when run from CommandCentral. The default priority is
normal.

sets the default registry. The current default registry is
provided in the prompt. If the provided value is correct,
press RET; otherwise, type the new value. The default value
is erased as soon as you enter the first character.

<targetFile> <« <sourcefile>

Rename. <sourceFile> <targetFile>

is used to change the name of a file. If the target file
already exists, the command will fail. Otherwise, the
source file will be renamed to the target file. As an
example, either of the following commands will rename the
fileMyFile.mesa tobe called NewFile.mesa:

Rename NewFile.mesa <« MyFile.mesa
Rename MyFile.mesa NewFile.mesa

4-9

4 Executive

Run.”

SetClientVolume.

SetErrorLevel.”

4-10

<fileList>"

runs the specified programs. The Run command is

equivalent to executing the Load command followed by the

Start command. Note that even if the program registers a

command with the Executive, that command will not be

executed.

You can specify the following switches, either locally or

globally:

/1 usecode links when loading

/d call the debugger after loading but before starting the
program

/a start any tools created by the program in the active
tool state

/i start any tools created by the program in the inactive
tool state

/t start any tools created by the program in the tiny tool
state

As an example, the following command will run the

programs MyProgram.bcd and MyOtherProgram.bcd.

After MyProgram.bcd has been loaded, but before it has

been started, the system will break to the debugger.

Run MyProgram.bcd/d MyOtherProgram.bcd

Section 4.2.6 describes considerations for using the Run

command.

<volumeName>

gsets the client volume that will be used by the Run!
command in the CommandCentral tool (and by
ClientRun). As an example, the following command sets
the client volume to the logical volume named Tajo:

SetClientVolume Tajo

<outcomeList>

allows you to indicate whether processing should proceed,
wait, or abort following an error or warning. An outcome in
the <outcomeList> can be either warning or error.
The outcome can be followed by a switch which can be
either /p for proceed, /w for wait or /a for abort. The
default is to abort whenever a warning or error occurs.

XDE User’s Guide

4

If you decide to wait following a particular outcome,
processing will continue only after you type any character,
except “q,” which will halt rather than continue processing.
The switches can be ordered according to their severity as
follows: p < w < a. The switch chosen for errors must be
greater than or equal to that for warnings; that is,
warning/a error/p is not a legal combination since it
violates the ordering constraint.

SetErrorLevel warning/p error/a

SetPriority.” <levelNumber>

sets the priority at which the Executive will run. The
priority must be specified in terms of a number: 1 is the
lowest priority and stands for background; 2 is for normal
priority; and 3 is the highest, meaning foreground priority.
Default is 2, normal priority. The priority may be
initialized by adding the appropriate a User.cm entry (see
below).

SetPriority 2

SetSearchPath.”™ <directoryList>

ShowSearchPath.”

Snarf.” <fileList>

sets the search path to the list of directories in the
command line. The user can specify the following local
switch:

/r readOnly search path entry.
As an example, the following command sets the search path
so it contains the directories <Tajo>Temp,

<Tajo>Defs,and <Tajo>.

SetSearchPath <Tajo>Temp <Tajo>Defs <Tajo>

displays the current search path in the Executive window.

copies files from an arbitrary directory on a closed volume
onto your current file system. This command is commonly
used to transfer files between debugger and client worlds
when doing world-swap program development.

Two optional subcommands may be used to specify the
source and destination:

4-11

Executive

4-12

Start.”

SourceDir/c <sourceVolumeAndDirList>

specifies the source volume and optionally the subdirectory
on that volume. The source volume name must be enclosed
in angle brackets, e.g. <Tajo>. If a source volume is not
specified, <CoPilot> is used.

DestDir/c <destinationDirectoryName >

specifies the destination directory. If this subcommand is
not given, the top directory on the current search path is
used.

The user can specify the following local switches on
individual file names:

/s rename this file when copying it; the target name is
the next name on the line.

/u copy the file only if the source file is newer than the
target file, or if the target file does not exist.

As an example, the following command copies the file
MyFile.mesa from the volume Tajo to the current file
system. MyFile.mesa will be copied only if the source files
is newer than the target file or the target file does not exist.

Snarf SourceDir/c <Tajo> MyFile.mesa/u
The following command copies the file
MyOtherFile.mesa from the volume CoPilot, renaming

MyOtherFile.mesa to Temp.mesa.

Snarf MyOtherFile.mesa/s Temp.mesa

<loadHandleList>

interprets each token on the command line as the load
handle of a loaded program and starts that program. You
can specify the following switches, either locally or
globally:

/a start any tools created by the program in the active
tool state

/i start any tools created by the program in the inactive
tool state

/t start any tools created by the program in the tiny tool
state

XDE User’s Guide 4

As an example, the following command starts the program
with load handle 4063700B in the tiny state:

Start 4063700B/t

The Start command is useful for debugging. You might
load a program using the Load command, set a breakpoint
using the debugger, and then start the program.

Type. <fileList>

displays the contents of the specified files in the Executive
window. As an example, the following command types the
filesMyFile .mesa and MyOtherFile.mesa:

Type MyFile.mesa MyOtherFile.mesa
Unload.~ <registeredCommandList>

unloads the specified commands and the module or
configuration implementing them, provided they have been
previously registered with the Executive. Unload will also
unload commands that have been aliased using
AliasCommand, or renamed using ChangeCommandName.
Since the Executive keeps track of all original command
names as well as those that have been renamed, both the
original and alias or rename may be supplied to Unload.

Zap. <fileList>

effectively deletes the files by removing the files from the
file system data structures and deleting the file data as
soon as no program is using it.It is usually used to permit
the retrieval of copies of programs that are already loaded,
or to delete files that have accidentally been left locked by
another program. As an example, the following command
zaps the files MyProgram.bcd and
MyOtherProgram. bcd.

Zap MyProgram.bcd MyOtherProgram.bcd
The file name always disappears immediately from the file
system, so a new file of that name may be created right
away.

4.2.5 CacheAddress operating instructions

To set up your machine to use CacheAddress, do the following:

1. Type into the Executive:

4-13

4 Executive

CacheAddress SetSize/20
This will set the maximum number of entries in the cache to 20.

2. Run for a day with this cache. The first time you look up a machine address, it will be
placed into the cache. To list the contents of the cache at any point, type into the
Executive:

CacheAddress List

3. After running CacheAddress (or a while, create a cache file with the command:

CacheAddress Store/< >Address.cache

4. At this point, place the following into your User.cm InitialCommand: section:

[System]
InitialCommand: ...; CacheAddress SetSize/20 load/Address.cache;

At some point your address cache may become invalid because an address in the
clearinghouse has changed. To validate and correct all entries in your cache, type into the
Executive:

CacheAddress Certify

If you wish only to certify a single entry (Huey, for example), use :

CacheAddress Certify/"Huey:0SBU North:Xerox"

or

CacheAddress Certify/Huey

Patterns can also be used to certify entries. "™ will match zero or more of any letter, and '#
will match any single character. Remember that * and # must be quoted to avoid being
expanded by the Executive. As an example, the following command will certify all names
starting with the letter G

CacheAddress Certify/G'*

If you keep your address cache stored in a file, you will want to update you cache file after
certifying any entries. For example:

CacheAddress Store/Address.cache
4.2.6 Run command usage

There are three reasons why you may want to explicitly use the Run. ™ command to run a
program instead of just invoking the program as an Executive command:

4-14

XDE User’s Guide 4

s You want to install a command but do not want to invoke (execute) it. For example,
your Background command line might include the following command to load and
start the BrushDMT hack:

Run.” BrushDMT.bcd;
[f instead, you used the command
BrushDMT;

the BrushDMT hack would be loaded, started, and invoked which would bring up a
DMT window.

Even when the command is a no-op when given without arguments (e. g., Print.), it
is more efficient to run the program explicitly without invoking the command (e.g.
Run.” Print).

o You know that the command is not yet registered and you want to save the Executive
the trouble of searching your entire search path for several different file name
patterns. Since you know the exact name of the file to be run, you can simply Run. ~ it.
This is very likely to be the case during an InitialCommand. This presumably speeds
up booting.

e You deliberately want to run a second copy of a program rather than invoke the
existing command.

4.2.7 Exec Ops menu

The Exec Ops menu is available outside all windows and contains the following commands:

FileWindow creates a new Source window.

Run runs the file that is the current selection.

Load loads the file that is the current selection.

Start starts the load handle that is the current selection.
New Exec creates a new Executive window.

Quit does a physical volume boot.

Power Off shuts off the power.

CallDebug boots your debugger volume.

4.3 User.cm processing

The Executive section of a User.cm file can contain the following entries:

CompilerSwitches: the default switches to be used by the compiler.

4-15

Executive

4-16

BinderSwitches:

ClientSwitches:

ClientVolume:

Priority:

UseBackground:

Code links:

WindowBox:
TinyPlace:

InitialState:

the default switches to be used by the binder.

the default boot switches to be used by the Executive's
built-in Run command as well as the Run! command in
CommandCentral.

the volume to be used by the Executive’s built in Run
command as well as the Run! command in
CommandCentral.

the priority that the Executive should run in. Choices are 1
for background priority, 2 for normal priority, or 3 for

foreground priority. The default is 2, normal priority.

if TRUE, then the compiler and binder will be run at
background priority from CommandCentral.

if TRUE, code links will be used by default when loading
programs.

location of the Executive’s window box.
location of the Executive’s tiny box.

initial state of the Executive (Active, Tiny, or Inactive).

HeraldWindow

CoPilot and Tajo have a banner called the HeraldWindow appearing at the top of the
screen. It displays the name and version of the boot file, the date on which it was built, the
current user, the current time and date, a logical volume name, and the number of free
pages on that volume. It allows other tools to display messages in its window and has a
menu that allows you to boot any of the bootable volumes.

5.1 Files

The HeraldWindow is built into CoPilot and Tajo.

5.2 Userinterface

A Boot from: menu is available through the HeraldWindow. It is invoked by positioning
the cursor in the window and pressing MENU.

5.2.1 Boot from: menu

Besides containing the names of the volumes on your workstation, the Boot from: menu
lists the following options:

File Name:

Set Switches:

uses the current selection as the name of a boot file on the current
logical volume to be booted.

uses the current selection as a string of Pilot booting switches for
a subsequent booting command. The scanner recognizes the
following syntax: The characters ~ and - change the sense of the
immediately following switch. Each character of the selection is
the character representation of a switch. \ is an escape character.
If it is followed by a three-digit octal number, the switch is the
character with that octal representation. If \ is followed by the
characters N, n, or R, or r, the switch is the Ascii CR character. If\
is followed by B or b, the switch is the Ascii BS character. If\ is
followed by F or f, the switch is the Ascii FF character. If\ is

5 HeraldWindow
followed by L or I, the switch is the Ascii LF character. If\ is
followed by ', ", ~, or —, the switch is that character.
Reset Switches uses default switches for a subsequent booting command.
Boot Button automatically pushes the boot button,

Set Priority Up sets the priority of the clock process to foreground, making it a
good stopwatch.

Reset Priority resets the priority of the clock process to normal.

There may be other volume names in the menu. Invoking any of these causes the volume
to be booted after confirming with a mouse click.

When the HeraldWindow is made tiny, it can display the current date and time, the Pilot
logical volumes, and their free page counts. Move the cursor into the tiny HeraldWindow
and it will display the date and time. Each successive click with pOINT will display the
name and free page count of a Pilot logical volume, starting with the system volume. If the
information about all the volumes has been displayed, the HeraldWindow will redisplay
the date and time. The HeraldWindow will stop displaying this information when you
move the cursor out of its window. If you wish to have the HeraldWindow continue to
display after the cursor is moved out of the window, click ApjusT. To cause the
HeraldWindow to revert to its normal state, click the right button in the window again.

The name and free page counts of volumes other than the system volume may also be
obtained when the HeraldWindow is active, by clicking the mouse over the volume name
in the right side of the window. Each successive click with POINT will display the name
and free page count of a Pilot logical volume, starting with the system volume. If the
volume is not the system volume, it will have an asterisk appended to its name. Clicking
ADJUST over the volume name will cause the HeraldWindow to continue displaying
information for that volume after the cursor has moved out of that region of the window.

5.3 User.cm processing

5-2

The HeraldWindow initializes its window box, tiny position, and its initial state from
entries in the [HeraldWindow] section of the User.cm:

location of tool's
window box

WindowBox: [x: 362, y: 628, w: 662, h: 150]

TinyPlace: [x: 720, y: 778] -- location of tool's
' tiny box
InitialState: Active -- initial state of tool

Profile Tool

The Profile Tool, which is built in, allows you to edit information used by other tools
running in the development environment.

6.1 Userinterface

The Profile Tool interacts with you through a form subwindow, which contains the

following fields:

gAbort!

s
R K

3 334 E i}
R R B ERSE A

- User: Paésword: Registry:

Domain: Organization: Debugging
Librarian: Prefix: Suffix:

User

Password

Registry

Domain

Organization

Debugging

is a text form item for your login name. This field is normally initialized
by a value specified in the User.cm.

is your password.

contains the mail registry to which you belong. This field is normally
initialized by a value specified in the User.cm.

contains the clearinghouse domain you wish to use. It is needed when
communicating with NS servers, such as printers and file servers. This
field is normally initialized by a value specified in the User.cm.

contains the clearinghouse organization you wish to use. It is needed
when communicating with NS servers, such as printers and file servers.
This field is normally initialized by a value specified in the User.cm.

is a Boolean form item that some tools read. When a tool detects an error
situation, it may go to the debugger if Debugging is TRUE and print out a
message to the user if FALSE. If you are not prepared to go to the

6-1

Profile Tool

6-2

Librarian

Prefix:

Suffix:

debugger, you should set the Boolean to FaLse. This field is normally
initialized by a value specified in the User . cm.

contains the network address or name of the default Librarian service.
This field is normally initialized by a value specified in the User.cm.

is used to expand libject names into full libject names. Prefix: is a
string of one or more tokens, each of which represents a project identity
(e.g., Tools> <Pilot>, etc.) This field is normally initialized by a
value specified in the User.cm.

is used to expand the libject name you supply into a full libject name
(e.g., mesa, config, ete.). This field is normally initialized by a value
specified in the User . cm.

The Profile Tool displays the following commands only when the values of one or more of
the data items have been edited so that the values displayed in the window are
(potentially) different from the values of the underlying system variables. When the
values are the same, these commands will not be displayed:

Apply!

Abort!

is a command form item that enters the information in the Profile Tool's
subwindow into the system, making the information available to other
tools. Note that no changes take effect until you invoke Apply!

is a command form item that resets the information in the Profile Tool's
subwindow from the system variables.

Tool Driver

7.1 Files

The Tool Driver extends the facilities of the Xerox Development Environment by
providing a mechanism for automatically performing repetitive, routine batch tasks. It
does this by acting as a simulated user that interprets simple command sequences. The
Tool Driver uses only the functions available through the XDE's user interface, rather
than accessing special hooks in various low levels of the Development Environment and
the attendant common collection of tools.

The power of the Tool Driver is constrained only by the power of the set of tools that are
loaded and accessible to it. However, the flexibility and sophistication of the commands
understood by the Tool Driver is low. It is not intended to meet all your non-interactive
needs, but instead tries to provide simple catalogued procedures.

The Tool Driver has the potential to completely destroy large, permanent user data
structures such as Action Request databases. For this reason, certain tools may place
extra restrictions on the operations that they will allow while under the control of the Tool
Driver. Any such restrictions will be discussed in the documentation for the individual
tools.

Three files are required to use the Tool Driver. The first is the Tool Driver's code,
Tools>ToolDrivers.bcd; the second is a list of the tools that you might want the Tool
Driver to manipulate, Tool. sws; and the last is a set of instructions for the Tool Driver (a
script for the simulated user).

If you wish to make tools available for use through the Tool Driver or are interested in
extending the Tool Driver, retrieve <Mesa>>Doc>ToolDriverClient.memo.

7.2 Userinterface

The Tool Driver communicates via the Tool Driver Executive window. This tool allows you
to specify the name of the script files and the options to be used by the Tool Driver during
execution of the scripts.

7-1

Tool Driver

7-2

Go! SingleStep Debug Script: Test.tds

Figure 7.1: Tool Driver executive window

The Tool Driver executes scripts until it either runs out of input, is aborted, or encounters
an error. A script can cause the Tool Driver to temporarily interrupt its execution and
return to the user; except for these breaks, the Development Environment's Notifier is
completely tied up by the execution of the Tool Driver.

7.2.1 Message subwindow

Messages that are a result of calls on the function pause are displayed in the message

subwindow.

7.2.2 Form subwindow

The form subwindow contains the following items:

Go!

SingleStep

Debug

Script:

causes the Tool Driver to execute using the specified file as the input
script. Use ABORT to abort the execution.

is a Boolean which, if TRUE, causes the Tool Driver to pause after it
executes each statement in the script. Otherwise, execution does not halt
unless either the script is finished, the user or a tool aborts, or an error
occurs.

is used for debugging the Tool Driver itself. Its value should normally; be
FALSE.

is a string item that lists names of the input script files. It is defaulted to
Test.tds (the extension .tds for seript files is an acronym for tool
Driver script). If a seript is aborted, either by the user or by one of the
tools being driven, the rest of the scripts will not be executed (see the
Script files section).

XDE User’s Guide 7

7.2.3 File subwindow

The file subwindow is used to log messages of more than transient interest, such as the
name of the script file currently being executed, Done or Abort, or other status messages
indicating how or why the script file finished. The root log name for this tool is TDE.log.

7.3 Script files

A script file is a text file containing a series of statements. A statement is either an
assignment to a variable, a command, a loop or exit loop, a simple conditional, or a
function call.

7.3.1 Script file format

There is no inter-statement separator, optional or otherwise. White space is not
significant, except that it delimits atoms in the script. The commenting conventions are
those used in Mesa. Occasionally it may be necessary to quote an arbitrary character in
the script by preceding the character by a ' character. The \ is treated as an end-of- file
signal, and should not appear unquoted in a script unless you want the Tool Driver to
ignore the following part of the script.

7.3.1.1 Constants and variables
Delimited strings (must be preceded and followed with double quotes), unsigned numbers,
or one of the set of reserved words NiL, TRUE, and FALSE, are constants. Whether a constant is
semantically valid depends on the context in which it is used.
Variables reference items in form subwindows. The format of a variable reference is
ToolName.SubwindowName.Tag, e.g., AREditTool.CommandSW.UseQL. If Too/Name is
omitted, then the value of the reserved variable TooL is used. If SubwindowName is also
omitted, then the value of the reserved variable suBwiNDOW is used. The tag trailer
provided by the FormSW package must not be present in Tag.

All other available facilities are invoked by function calls.

7.3.1.2 Assignment to variables
A variable is assigned to by
Form item « Expression

where Expression is either a constant, a variable, or a function call.

7.3.1.3 Function calls
Function calls are positional and do not allow defaulting. Provision has been made for the
Tool Driver's set of functions to be dynamically increased. A function call must always

have the form:

Function[ExpressionList]

7-3

Tool Driver

7-4

where an ExpressionList is one or more Expressions, separated by commas.

These are the function calls currently allowed:

ActivateTool[Expression].

The Expression must specify the name of an entry in the Tajo Inactive Tools menu. This
entry might not match the tool's herald, its tiny name, or its name as known to the Tool
Driver for variable referencing purposes. If the name is found in the menu, then the Ttool
is activat;d, otherwise this call is a no-op.

AppendCommand([Too/Name.SubwindowName, Expression].

This calls User Input.Stuf £ string with the subwindow handle and string value.
AppendString[Too/Name.SubwindowName, Expression].

This calls Put . Text with the subwindow handle and string value.
CallDebugger[Expression).

This calls the debugger with the Expression as the message to be printed by the debugger.

FileCreated[Expression, Expression].

The first Expression is the name of the file to check on. TRUE is returned if the file exists and
was created within the number of seconds specified by the second Expression.

InvokeMCR[Too/Name.SubwindowName, Constant, Constant].

The Too/Name may be omitted, in which case the default will be used. The first constant is
the name of the menu; the second is the keyword in that menu.

IsVisible[Form item].
TRUE is returned if the specified form subwindow item's invisible flag is FALSE.
L.astMessage[Too/Name.SubwindowName}].

This returns the last message posted in the message subwindow specified. The Too/Name
may be omitted, in which case the default will be used.

Modifyltem[Form item, Expression, Expression, Expression].

This allows you to insert, delete, or replace characters in the specified form subwindow
item. The first Expression specifies the position at which to start the modification,
beginning with 0 at the left edge of the body of the item (i.e., the item's tag and tag trailer
are not accessible). The second Expression specifies the number of characters to be affected,
and the last Expression is the new characters (if any). Thus pos, length, NIL for the three
Expressions specifies a deletion beginning at pos of length characters. pos, 0, "new string"
specifies the insertion of the nine characters "new string" at pos. pos, length, exp specifies a
replacement. For convenience, all starting positions off the right edge of the item are
trimmed back to the right edge, so appending new text to the item can be achieved by

XDE User’s Guide 7

using the expression (100000B, 0, newText). For further details, see the description of the
Tajo procedure FormSW.ModifyEditable in the Mesa Programmer’s Manual.

Pause [Expression, Expression] .

This allows you to intervene and interrogate while a script is being executed. It prints the
first argument in the Tool Driver exec's message subwindow and then enables the
Notifier, allowing you to interact with the development environment again. The second
argument indicates whether the Pause is simply trying to ask a question. It must be
either TRUE or FALSE. If TRUE, the Tool Driver Exec adds two new items to its command
subwindow, named Yes and No. If you invoke Yes, Pause returns TRUE; if you invoke No,
Pause returns FALSE. If the second argument is FALSE, the Tool Driver exec adds a new item
to its command subwindow named Proceed, and Pause returns an undefined value when
you invoke Proceed.

SetSelection[Expression].

This sets the current selection. There is no feedback to show what the selection has been
set to.

SetWindowBox[ToolName, Expression, Expression, Expression, Expression].

This sets the tool's window to the size specified. The order of the arguments (from the left)
is x,y,w,andh,

SubString[Expression, Expression, Expression].

This returns the value of the the subportion of the first expression that begins at the
second expression and has a length specified by the third expression.

Wait{Expression].

This causes the Tool Driver to relinquish the processor for the specified number of seconds.
During the wait, the Notifier is still disabled, but periodic notifications occur (although
perhaps not as quickly as they normally would).

WindowOnTop[ToolNamel.

This brings the specified tool window to the top of the window stack.

7-5

Tool Driver

7.3.1.4 Control structure
The Tool Driver allows for some forms of control structure. They are:
1) oo
;;BooleanExpression THEN EXITLOOP Label,

EXITLOOP Label,
ENDLOOP Label;

The Label after the exiTLOOP specifies the label on the ENDLOOP to which you are exiting and
is optional. However, the semicolon after the Label is mandatory in both places. These are
the only places in a script file where a semicolon appears.

2) IF BooleanExpression THEN Statement

3) IF BooleanExpression THEN
BEGIN

END
4) If BooleanExpression THEN
BEGIN
END
ELSE Statement

5) IF BooleanExpression THEN
BEGIN

END
ELSE
BEGIN
END
The BooleanExpression has one of two forms:

Expression
or Expression Relational Expression

The Relational is one of the set {=, #}.

7.3.2 Sample script

The following sample script would produce a query list of all the AR's submitted against
the Ether subsystem of Mesa that has been marked Fixed in 6.0z. Then, by using this
query list, it would edit each of the AR's so that their In/By field now reads 6.0m.

7-6

XDE User’s Guide 7

TooL « "AdobeQuery"
SUBWINDOW « “formSwW*"
Number """

System « "Mesa"
Subsystem & "Ether”
Status « “Fixed"

In'/By « "HAS 6.02"
cmdsw.Query

TOOL & "AdobeEdit"
SUBWINDOW « "cmdSW"
UseQL &« TRUE

Next

Checkout

DO

formSW.In'/By « "6.0m"

Next

IF LastMessage[msgSW] = "Query List exhausted!"” THEN EXITLOOP;

Checkin'&out

IF LastMessage[msgSW] = "Can't check out AR: must do update before
further editing!" THEN
BEGIN
ARUpdateTool.CommandSW.Update
Checkout -- Remember we are here because "out” part of "in&out” failed
END

ENDLOOP;

Checkin -- don't forget to put the last guy back

7.4 BNF for script files

goal 1= statements\
statements ‘= statements statement
| statement
statement 1= assignment
| formCmd
| loop semiSuffix
| ifStatement
| exitLoor loopLabel ; semiSuffix
| functionCall
assignment := formSWitem « expression.
formCmd := formSWitem
formSWitem im idList
idList it= idList.id

| id

1-7

Tool Driver

7-8

expressionList

expression

expressionTail

variable

constant

functionCall

functionName

loop
do

ifStatement

ifExp

block

blockEise

boolExp

expressionList, expression
| expression

variable
| constant

variable
| constant

formSWitem
| functioncCall

delimStr
| num
| N
| TRUE
| FALSE

id [expressionList]
| functionName [expressionList]

ActivateTool
| AppendCommand
| AppendString
| CallDebugger
| FileCreated
| iInvokeMCR
IsVisible
LastMessage
Modifyltem
Pause
SetDispState
SetSelection
SetWindowBox
SubString
Wait
WindowOnTop

do statements eNpLOOP loopLabel ;
DO

ifExp block
|ifExp blockElse block

iF boOIExp THEN

statement
| BEGIN statements END

BEGIN statements END ELSE

expression relational expression
| expression

XDE User’s Guide 7

loopLabel = id
I
semiSuffix =
relational lm =
| #

Note: The Formitem must be a command item in the Form subwindow.

Note: The semantic restrictions on the ExpressionlList depend on the Id.

7.5 The subwindows file

The Tool Driver will not function unless the subwindows file, Tool . sws, is present on the
local disk. The format of this file is:

{ToolName;)
SubwindowName;, ..., SubwindowName,,

[ToolName;] .
SubwindowName;, ..., SubwindowName,,

The opening [must be the first character on the line. Everything after the closing] on that
line is simply ignored. If a tool that is not in the subwindows file attempts to publicize
subwindows (i.e., calls ToolDriver.NoteSWs), it is ignored, as are all subwindows not
present in the list of subwindows for that tool. The individual documentation for each tool
should list the tool and subwindow names that the tool publicizes. There must be no extra
subwindows declared by the user. If there are, the Tool Driver will halt with an error.

7.6 Running the Tool Driver
The procedure for running the Tool Driver is as follows:
® Start the Tool Driver.
® Start other tools.
® Run the seript.
Note: Tools started before starting the Tool Driver are not accessible to the Tool Driver.

Tools that are inactive are also inaccessible to the Tool Driver. However, inactive tools can
be accessed indirectly via the InvokeMCR function applied to the Executive menu.

7-9

7 Tool Driver

7-10

II

File-related tools

This chapter discusses the XDE tools for manipulating files. The first part explains file
naming conventions, since file names are used by many of the tools as field values. The
rest of the chapter briefly describes each tool’s function.

II.1 File system conventions

Once you have written your text onto a file window or text subwindow, you will probably
want to save it as a file. This section describes the XDE local file system’s structure and
naming conventions, which are used for searching for files as well as for creating new files.

Many of the tools in the development environment have parameters that are file names,
such as the File Tool and the Executive. Some tools are prepared to deal with either local
or remote file names. The syntax of remote file names is determined by the remote file
system. Consult the documentation for your remote file system for the definition of legal
remote file names.

II.2 File names

The local file system provides a tree-structured directory. The top-level directory, the root
of the tree, has the same name as the logical volume. All directories can contain
directories and non-directory files. A file has a simple name (that is, its name within a
directory) and a fully qualified name (its name within the directory structure). The legal
characters that can be used in the simple name of a file are the alphabetics(a - z, A -
z), digits (0 - 9), period (.), dollar sign ($), plus (+), and minus (-).

The fully qualified name of a file, whether directory or non-directory, describes the path
from the top-level directory of the volume containing that file to the file. The name starts
with the character <, and all subdirectories on the path are separated by the character >.
No file names end with the character > with the exception of the top-level directory,
which always ends with >. Some examples of fully qualified file names are:

<CoPilot>

<CoPilot>MyFile.mesa

1I-1

I1

File-related tools

<CoPilot>SubDirectory>MyFile.mesa
<CoPilot>SubDirectory

Certain operations, such as the File Tool's and the Executive's list commands may print
the names of directory files followed by a > to distinguish them from non-directory files.
This is an output convention; don't confuse it with the name of the directory file.

The top-level directory of the current volume can also be specified by < >; that is, if the
name of the top-level directory is omitted in a fully qualified name, the top-level directory
of the current volume is used. Hence, the following names are equivalent to the above
examples to a user on the volume CoPilot:

<>

< >MyFile.mesa

< >SubDirectory>MyFile.mesa
< >SubDirectory

A file name can also be specified relative to the current search path. If a file name does not
start with the character <, it is a relative name. In this case, a fully qualified name is
formed by appending the relative name to each entry of the search path until a match is
found (refer to the chapter on the SearchPath Tool). If the search path contained the single
entry <CoPilot>, the relative file name MyFile.mesa would be resolved to the fully
qualified name <CoPilot>MyFile.mesa

Directories on the search path may be write-protected, in which case it is not possible to
change any of the files in the directory or add or delete files from it. If a file name is
relative to the search path and it is to be created or written into, two problems can occur:
no match could be found on the search path, or the first match might occur in a directory
that is write-protected. In either case, the file will be created in the first directory that is
not write-protected in the search path . This directory acts somewhat like a working
directory. If the first directory in the search path is write-protected, anomalies may result;
for example, if you write into the file MyFile, and then subsequently try to read file
MyFile, you may not read the information that you just wrote. This could happen if the
first directory in the search path is write-protected but contains a file named MyFile.
When you write into file MyFile, the system notices it is in a write-protected directory
and creates a new file MyFile in the first writeable directory. When you later read the file
MyFile, the system returns the first file named MyFile on the search path, which was the
file MyFile in the write-protected directory.

I1.3 File-related tools

I1-2

Brownie helps distribute software and maintain consistent copies of archive directories on
file servers.

Compare examines two pairs of source files and summarizes the differences between each.
The files can be either local or remote.

XDE User’s Guide II

A File window is used to view and edit a text file.
The File Tool provides a means for you to work with the files on your local disk as well as
on remote file systems. It allows you to retrieve, delete, list, rename, and copy files. It is

like FTP except that it has a window interface instead of an Executive command.

Find searches for a pattern in a list of files and displays the lines in which the pattern
occurs.

Floppy commands allow you to store and retrieve files on floppy disks using the floppy disk
drive in your workstation.

FTP is a file transfer program that runs in the Executive. It is used for moving files to and
from a file system, which can be on a file server or on another workstation.

Print generates press format files and sends them to a printer on the network.

The SearchPath Tool is used to inspect and change the file system search path.

II-3

II File-related tools

II-4

Brownie

Brownie aids in the problem of how to distribute software and maintain consistent copies
of master or archive directories on several file servers. It may also be helpful in moving
files among private directories during the software development process.

8.1 Files

Retrieve Brownie.bcd from the Release directory.

8.2 Userinterface

Brownie is invoked by typing a command of the following form to the Executive:

>Brownie file

where file.brownie is a Brownie script file with the format described below. Brownie
will prompt for login and connect names and passwords for the hosts and directories
involved in the transfer. It will also log messages to the Executive, informing the user of
its progress.

8.3 Script file

The script file describes the operations Brownie is to perform. It consists of a parameter
section and a command section separated by a comment line. The comment is ignored, but
the // must appear. In the script below, the first QualifiedFilename is the target and the
second QualifiedFilename is the source.

[level]

start: [time]

stop: [time]

// comment

copy/switches QualifiedFilename/« QualifiedFilename/

8-1

Brownie

rename/switches QualifiedFilename « QualifiedFilename

delete/switches QualifiedFilename

8.3.1 Parameters
All parameters are optional, and if present their order is not important.

The amount of information logged is controlled by the level parameter. The choices are
verbose and terse. verbose mode will post the name of each source and destination
file as it is being copied (or deleted), along with their creation dates. terse mode will post
directory names only, and a dot for each file as it is copied. terse mode is normally
recommended for large copies, to keep the Executive.logq file from getting too large.
level defaultstoterse.

The start parameter allows you to specify a start-up time. This allows lengthy transfers
that tie up a lot of network resources to be delayed until nighttime. Brownie processes the
script file before doing any transfers so that any syntax errors may be discovered
immediately. The stop parameter allows you to specify a stopping time. Brownie
periodically glances at the stop time and aborts processing if the current time becomes
larger than this value. time may be in any of the formats: HH:MM, HHMM, H:MM, or HMM.
time defaults to start immediatelyfor startand when finished for stop.

8.3.2 Commands
AQualifiedFilename (QFN) of a Brownie command has the general form:
[host]<directory>filename

Where filename is optional. The Profile domain and organization are appended to host
if none are specified. If a QualifiedFilename contains spaces, it must be surrounded by
double quotes.

8.3.2.1 Copy

The copy command transfers the files described by the source QFN to the target QFN
according to the constraints of switches. If £ilename appears in both the source and the
target, the single file is transferred. If filename is omitted from the source QFN, it must -
also be omitted from the target QFN, meaning copy all files from the source directory to the
target directory. If filename is not omitted from the target in this case, all files from the source will be copied
to the single target file.

“*” wildcards may appear within the source QFN. (See the FileTool section:
Wildcard/expansion characters for an explanation of wildcards.) A **” may also appear as
the only character of the final subdirectory, instructing Brownie to recursively search
through the specified directory. All files matching the QFN will be copied. If a “*” appears,
the target QFN as in the previous case must be a directory. A “*” may not appear in the
target QFN.

XDE User’s Guide 8

8.3.2.2 Copy switches

/c Connect to target directory; prompt for credentials. Default is FALSE. (Not
implemented)

/s Connect to source directory; prompt for credentials. Default is FALSE. (Not
implemented)

The Update (/u) and Always (/a) switches have identical meaning to those of FTP.
/u Copy the files specified by the source QFNonly when the creation date of the source
file is greater than the creation date of the target file and the target file exists.

Default is FALSE.

/a Copy the files even if those files of the target QFNdon’t exist. Default is TRUE.

8.3.2.3 Rename (Unimplemented)
The rename command renames single files or complete directories on a single file server.
Only the latest versions of files are renamed, unless the /a switch is specified. If

filename is omitted from both QFNs, the entire source directory is renamed to the target
directory; otherwise, the single file is renamed. A “*” may not appear in either QFN.

8.3.2.4 Rename switches
/c Connect to (source) directory; prompt for credentials. Default isFALSE.
/a Rename all versions of the source QFN. Default is FALSE.

/u Update (Unimplemented).

8.3.2.5 Delete
The delete command deletes one or more files on a file server. Only the oldest versions

of files are deleted, unless the /a switch is specified. A “*” may appear in a QFN. (See the
FileTool section: Wildcard/expansion characters for an explanation of wildeards.)

8.3.2.6 Delete switches
/c Connect to directory: prompt for credentials. Default is FALSE. (Not implemented)

/a Delete all versions of the source QFN. Default isfALSE.

8.4 Example
This is an example of a script file:

[terse]

start: [20:30]

// Start at 8:30PM; commands follow

copy/ua "[RatTail:0SBU North] <emerson>doc>" ¢

8-3

Brownie

8-4

[Rasp] <emerson>doc>*>*1x
copy/u [Igor] <emerson>defs> ¢
copy [Sun]<newInt>>brownie>Brownie.bcd ¢
[Igor] <emerson>brownie>Brownie.bcd
copy [Sun] <newInt>brownie>Brownie.doc &
[Igor] <emerson>brownie>Brownie.doc
delete/ca [Bad] <<Movies>*
delete [Mediocre] <Movies>*

[Idun] <int>tajo>public>*.mesa

To execute Brownie with the above example script, Example.brownie, type the following

command to the executive:

>Brownie Example

and log in according to the prompts for each host and directory.

FTP

FTP is a file transfer program used for moving files to and from a file server.

The File Tool serves the same purpose as FTP. (For more information, see the File Tool
chapter.)

Transferring a file from one host to another over a network requires the active cooperation

of programs on both machines. In a typical scenario, a human user (or program acting on
the human's behalf) directs FTP (or the File Tool) to establish contact with a file server .

9.1 Files

Retrieve FTP.bcd from the Release directory.

9.2 Userinterface
FTP runs in the Executive.
9.2.1 Command line syntax
The two basic file transfer operation's are Retrieve and Store. The Retrieve command
causes a file to move from server to user, whereas Store causes a file to move from user to

server.

Other commands are often used in conjunction with the basic Retrieve and Store
commands. Commands are of the form:

<Keyword>/<SwitchList> <arg> ... <arg>
Unambiguous abbreviations of command keywords (which in most cases amount to the

first letter) are legal. A command is distinguished from arguments to the previous
command by having a switch on it, so every command must have at least one switch.

9.2.2 Command line switches

In the descriptions that follow, the terms local and remote are relative to the machine on
which the FTP user program is active (that is, you type commands to your local user

9-1

FTP

9-2

program and direct it to establish contact with a file server.) A Retrieve command
copies a file from the remote file system to the local file system, whereas a Store
command copies a file from the local file system to the remote file system.

Local and remote also refer to file names. Files on your workstation are local, and files on a
server are remote.

Most commands take local switches. These switches have default values used if the switch
is not mentioned. The switches are listed below with their defaults and functions:

/C [Command] a null switch that tells the command line parser that this token is a
command (no default).

/S [Selective] used if the remote and local file names differ; for example, if you
retrieve a file listed under one name but want to bring it to your
workstation under a different name (FALSE).

/V [Verify] requests confirmation from the keyboard before the file transfer takes
place. Confirm with ¥ (not CR); deny with N. § (for STOP), DELETE, or
CONTROL-C will terminate all further commands (FALSE).

/Q[Query] specifies that a password be requested interactively from the user
instead of being read from the command line (FALSE).

If FTP can unambiguously decide that a token is a command, you do not need to append
any switches to the command word. Otherwise, you must append some switch; use the /C
switch if there are no other switches desired. This means that if a command (such as
Retrieve) takes a list of files and the list is followed by another command, that command
must have some switch appended.

Some switches affect transfers conditioned upon comparison of the creation dates of
corresponding local and remote files. The comparison is <source file>
<operator> <destination file>.For Store, the source file is the local file; for
Retrieve, the source file is the remote file:

/4% [NotEqual] transfers the file if the destination file exists and the creation dates
are not equal. This must be quoted (/' #) to keep it out of the clutches
of the Executive.

/=[Equal] transfers the file if the destination file exists and the creation dates
are equal.
/> [Greater] transfer the file if the destination file exists and the source's creation

date is greater than the destination's.

/< [Less] transfers the file if the destination file exists and the source's creation
date is less than the destination's.

/U [Update] same as /> (for backward compatibility).

/A[All] modifies the action of #, =, >, <, /U to transfer the file even if no
corresponding file exists in the destination file system.

XDE User’s Guide 9

If more than one switch is present, they are ORed together, so, for example, "/> =" means
“transfer the file if the source's creation date is greater than or equal to the destination's.”

The sense of a switch is inverted if it is preceded by a minus sign; the minus sign inverts
the sense of the immediately following character, not the entire operator expression.

9.2.3 Commands and examples

In the examples below, the /C switch has been included, even though it may not be
necessary. '

Open/C <HostName>

opens a connection with the host. The first token after FTP in the command line is
assumed to be a host name, so no subsequent Open command is required. The Profile
domain and organization are appended to < HostName > if none are specified.

Close/C
closes the currently open FTP connection.
Login/C <UserName> < password>

supplies any login parameters required by the remote server before it permits file
transfers. FTP will use the user name and password in your Profile (see the Profile Tool
chapter), if they are there. Logging into FTP will set the user name and password in your
Profile, if they have not already been set.

When you issue the Login command, FTP will first display the existing user name in
your Profile. If you now type a space, FTP will prompt you for a password. If you want to
provide a different user name, you should first type that name (which will replace the
previous one) followed by a space. The command may be terminated by a carriage return
after entering the user name, to avoid entering the password. The parameters are not
immediately checked for legality, but rather are sent to the server for checking when the
next file transfer command is issued. If a command is refused by the server because the
name or password is incorrect, FTP will prompt you as if you had issued the Login
command and then retry the transfer request. Typing CONTROL-C aborts both the request
for login information and the rest of the FTP command line.

Login/Q <UserName>

causes FTP to prompt you for the password. This form of Login should be used in
" command files, because including passwords in command files is bad practice.

Directory/C <DefaultDirectory>

causes <DefaultDirectory> to be used as the default remote directory in data transfer
commands (essentially it prefixes the directory name to remote file names that do not
explicitly mention a directory). The default directory can be overridden at any time by
fully specifying a file name within a particular command ([Host]<Dir>filename). Do

9-3

FTP

9-4

not include punctuation that separates the directory name from other parts of the remote
file name; thus, type Directory Mesa, not Directory <Mesa>.

LocalDirectory/C <DefaultDirectory>

causes the default directory to be used as the default local directory in the transfer. For
example, if you want to retrieve files onto a local directory in your Tajo volume without
having to specify the destination name each time, you can specify a default local directory
and it will be prepended to all file names.

Retrieve/C <RemoteFilename> ... <RemoteFilename>

retrieves each <RemoteFilename >, constructing a local file name from the actual
remote file name as received from the server. FTP will overwrite an existing file. If the
remote host allows "*" (or some equivalent) in a file name, a single remote file name may
result in the retrieval of several files. You must quote the "*" to get it past the Executive's
command scanner.

Retrieve/S <RemoteF.ilename> <LocalFilename>

retrieves <RemoteFilename> and names it <LocalFilename> in the local file
system. This version of Retrieve must have exactly two arguments. The remote file
name should not cause the server to send multiple files.

Retrieve/> <RemoteFilename> ... <RemoteFilename>

retrieves <RemoteFilename> if its creation date is greater than that of the local file. If
the corresponding local file doesn't exist, the remote file is not retrieved. This option can
be combined with Retrieve/S to rename the file as it is transferred.

Retrieve/>A <RemoteFilename> ... <RemoteFilename>

is the same as Retrieve/> except that if the corresponding local file does not exist, the
remote file is retrieved anyway.

Retrieve/V

requests confirmation frora the keyboard before retrieving a file. This option is useful in
combination with the Update option (/U), because the creation date is not a foolproof
criterion for updating a file.

Store/C <LocalFilename> ... <LocalFilename>

stores each <LocalFilename> on the remote host, constructing a remote file name from
the name body of the local file name. A local file name may contain "*", because it will be
expanded by the Executive into the actual list of file names before the FTP subsystem is
invoked.

XDE User’s Guide 9

Store/S <LocalFilename> <RemoteFilename>

stores <LocalFilename> on the remote host as <RemoteFilename>. The remote file
name must conform to the file name conventions of the remote host. This versionof Store
must have exactly two arguments.

Store/> <LocalFilename> ... <LocalFilename>

stores each <LocalFilename> on the remote host if the local file's creation date is later
than the remote file's. If the corresponding remote file does not exist, the local file is not
stored. This option can be combined with Store/s to rename the file as it is transferred.

Store/>A <LocalFilename> ... <LocalFilename>

is the same as Store/> except that if the corresponding remote file does not exist, the
local file is stored anyway.

Store/V

requests confirmation from the keyboard before storing a file. This option is useful in
combination with the Update option when creation date is not a foolproof criterion for
updating a file.

List/C <RemoteFileDesignator> ... <RemoteFilename>

lists all files in the remote file system that correspond to <RemoteFileDesignator>.
The remote file designator must conform to file-naming conventions on the remote host.
The following subcommands request printout of additonal information about each file.
They are specified by local switches:

/t type,

/1 length in bytes,
/d creation date

/v write date,

/r read date,

/a author (creator),

f <date> - from<date>. Lists only files with write date greater than <date>.
This must be the last entry on the command line before the file name. Example:
list/f10-Dec-79-11:00:04 *.mesa.

b<date> - before<date>. Lists only files with read. or write date less than
<date>. This must be the last entry on the command line before the file name.

Note: The file system keeps creation, read, and write dates with each file. FTP treats the
read and write dates as properties describing the local copy of a file; i.e., when the file was
last read and written in the local file system. FTP treats the creation date as a property of
the file contents; i.e., when the file contents were originally created, not when the local

9-5

FTP

copy was created. Thus, when FTP makes a file on the local disk, the creation date is set to
the Creation date supplied by the remote FTP, the Write date is set to 'now' and the Read
date is set to 'never read.'

Delete/C <RemoteFilename>

deletes <RemoteFilename> from the remote file system. The syntax of the remote file
name must conform to the remote host's file system name conventions. This Delete is an
irreversible act. It is therefore unwise to use the "*" in the RemoteFilename to specify
deletion of multiple files.

Delete/V <RemoteFilename>

asks you to verify that you want to delete <RemoteFilename>> from the remote file
system. If the remote file name designates multiple files (the remote host permits "*" or
some equivalent in file names), FTP asks you to confirm the deletion of each file. Type v to
delete the file; N if you don't want to delete it.

Compare/C <RemoteFilename>>...<RemoteFilename>

compares the contents of <remote filename> with the file by the same name in the
local file system. It tells you how long the files are if they are identical, or the byte position
of the first mismatch if they are not.

Compare/S <RemoteFilename> <LocalFilename>

compares <RemoteFilename> with <LocalFilename>. The remote file name must
conform to the file name conventions of the remote host. This version of Compare must
have exactly two arguments.

Rename/C <OldFilename> < NewFilename>

renames <OldFilename:>> in the remote file system to be <NewFilename> in the new
file system. The syntax of the two file names must conform to the remote host's file system
name conventions, and each file name must specify exactly one file.

9.2.4 Command line errors

Command line errors fall into three groups: syntax errors, file errors, and connection
errors. FTP can recover from some of these.

Syntax errors, such as unrecognized commands or the wrong number of arguments to a
command, cause FTP's command interpreter to lose its place the command file. FTP
recovers from syntax errors by ignoring text until it encounters another command (i.e.,
another token with a switch).

File errors, such as trying to retrieve a file that does not exist, are relatively harmless.
FTP recovers from file errors by skipping the offending file.

Connection errors, such as executing a Store command when there is no open
connection, could terminate the command.

XDE User’s Guide 9

When FTP detects an error, it displays an error message and aborts the rest of the
command.

9.3 Tutorial

The following are examples of how to use FTP:

To transfer files FTP.bcd and FTP.symbols from the Dandelion called Chocolate to
the Dandelion called Vanilla, you might start up the STP server on Chocolate, then
walk over to Vanilla and type:

FTP Chocolate:0SBU' NORTH Retrieve/C FTP.bcd FTP.symbols

Alternatively, you could start an FTP server on Vanilla; then issue the following
command to Chocolate:

FTP Vanilla Store/C FTP.bcd FTP.symbols

The latter approach is recommended for transferring large groups of files such as
"%, bcd" (since expansion of the "*" will be performed by the Executive).

To retrieve <System>Network.txt from the server and store it on your disk as
Directory.bravo, and store RTP.mesa, lb.mesa, and BSPStreams.mesa on
< DRB > with their names unchanged:

FTP server Connect/C drb MyPassword Retrieve/S <System> Network.txt
Directory.docStore/C RTP.mesa lb.mesa BSPStreams.mesa

To retrieve the latest copy of all .bcd files from the <Mesa>Defs> directory,
overwriting copies on your disk:

FTP server Retrieve/C <Mesa>Defs>'*.,bcd
(The single quote is necessary to prevent the Executive from expanding the "*")

To update your disk with new copies of all <Mesa> files whose names are contained
in file UpdateFiles. cm, requesting confirmation before each retrieval.

FTP server Directory/C Mesa Ret/>V @UpdateFiles.cm@

To store all files with extension .mesa from your local disk to <my directory> on
the file server (the Executive will expand "*.mesa" before invoking FTP):

FTP server dir/c <my directory>Store/C *.mesa

9-7

FTP

9-8

10

File Tool

The File Tool provides a means for you to manipulate files on your local disk as well as on
remote file systems. It allows you to retrieve, delete, list, and copy files.

10.1 Files

The File Tool is built in. You will find it in your Inactive menu, unless specified elsewhere
in your User.cm.

10.2 User interface

The File Tool communicates through a form subwindow, a command subwindow, and a
List Options window. Below is an illustration of a File Tool with the List Options window
displayed:

; g
i Host: Directory:

: Source:

iDest'n: . Local Dir:

éConnect: Password:

SRetrieve! Local-List! Copy! Local-Delete! List-Options!
 Store! Remote-List! Close! Remote-Delete!

— ’

Figure 10.1: File Tool window

10-1

10

File Tool

10-2

10.2.1 Form subwindow

The fields that can be used as arguments to a command are listed in the form subwindow:

Host:

Directory:

Source:

Dest'n:

LocalDir:

Connect:, Password:

Always

Verify

is the name of the host to be used for remote files and operations.
The Profile domain and organization are appended to Bost if
none are specified.

is the default remote directory.

is a list of files (separated by spaces or returns) for the next
command to act upon. File names may include
wildcard/expansion characters (see the Wildcard/expansion
characters section). Any files appearing in this field should
conform to the syntax of file names for the file system that is the
source of the transfer.

is the file name for the destination of a transfer. It should
conform to the syntax of file names for the file system that is the
destination of the transfer.

means that all references to the local disk will only occur within
this directory. If the directory is not a complete path name (i.e.,
if it does not begin with <), it is assumed to have a <>
prepended.

this feature is not implemented.

means that in remote commands (Retrieve, RemoteList,
RemoteDelete), * characters in Source should be treated as if
they were quoted (i.e., they should be expanded remotely
instead of locally). The default is TRUE.

means “only store or retrieve the file if the destination exists
and the source is newer than the destination (comparing
creation dates).” The default is FALSE.

means “only store or retrieve the file if the destination exists
and the source is older than the destination (comparing creation
dates).” The default is FALSE.

means “only store or retrieve the file if the source is the same as
the destination (comparing creation dates).” The default is
FALSE. "Not equal" can be specified by turning on both < and
>.

conditions the above three commands (>, <, =) to also act if
the destination file does not already exist.

requests confirmation for each file transfer. The default is FALSE.

XDE User’s Guide 10

10.2.1.1 Wildcard/expansion characters

The File Tool interprets some of the characters in Source as wildcard or other expansion
characters. It uses the same mechanism as the Executive in expanding these characters.
(See the Executive: Command line expansion section for a further explanation of local
wildcard/expansion characters.)

' (single quote): treats the character following the single quote as if it were not a
file name expansion character. The single quote is removed
from the file list.

@ (at-sign): takes the file to be an indirect file and uses its contents as a list

of files if @ is the first character of the file name. This list of files
replaces the indirect file in the list of files. Indirect files may
nest.

T (up-arrow): removes the up-arrow character and the character following it
from the file list.

The wildcard * matches zero or more characters in a file name. For example, * .mesa
matches all file names ending with the extension .mesa in the specified local or remote
directory. # matches any single character in a file name.

The * can also be used to expand across directory boundaries. In the remote case, a * as
the only character of the final subdirectory in the Directory field directs the search down
through all subdirectories. For example, Directory: <Mesa>* and Source: *,bcd
matches all .bed files in or below <Mesa>. In the local case, ** in the Source name
achieves this. For example, LocalDir: <>Tools> and Source: **,archiveBcd
finds all .archiveBcd files in or below the < >Tools > directory.

10.2.2 Command subwindow
The fields in the command subwindow are as follows:

Retrieve! transfers the file name specified in Source from the remote file
system to the local disk. You may designate multiple files by the
use of "* only to the extent that the remote server supports it. If
Dest'n is blank, the file‘name of the copy made on the local
disk is the source file name stripped of all host and directory
qualifiers.

Store! transfers the file name specified in Source from the local disk
to the remote host. Development environment file name
conventions apply to the local file.

Local-List! lists all files on the local disk corresponding to the name in
Source.
Local-Delete! deletes the files specified in Source from the local disk. If for

any reason a file cannot be deleted, that file is skipped and
processing continues with the rest of the files in the list.

10-3

10

File Tool

Remote-List! lists all files on the remote file system corresponding to the
name in Source. This must conform to the file-naming
conventions on the remote host. You may designate multiple
files by the use of "™ only to the extent that the remote server
supports it. :

Remote-Delete! deletes the file name specified in Source from the remote file
system. You may designate multiple files by the use of ** only to
the extent that the remote server supports it.

Copy! copies the local file in the Source: field to the local file in the
Dest 'n: field. The Copy! command operates only on the local
disk. Ony single files can be specified.

Close! closes any currently open connection, freeing any resources
needed to maintain it.

List-Options! creates a List Options window if one does not already exist.

If verify is TRUE, then for each file that might be transferred, the following commands are
displayed:

Confirm! do the operation.

Deny! don't do the operation.

Stop! don't do the operation and terminate the command. This may
take some time while the termination is negotiated with the
server.

10.2.3 List Options window

The List Options window is created by the List-Options! command. The properties that
will be displayed, in addition to the file name, by a Local-List! or Remote-List! are
governed by the Booleans in this window. After changing the options, invoke Apply! to
effect those changes. The Abort! command will restore the options to what they were
before the List-Options! command was invoked. Both Apply! and Abort! perform
the apporpriate actions and then destroy the List-Options window.

10.3 User.cm

10-4

The User.cm, in addition to the standard InitialState, TinyPlace, and WindowBox
entries, includes:

[FileTool]

SetOptions: A list of the Boolean options to be initialized to TRUE. Any option
not appearing will initially be FALSE. The following desired
options must be separated by one or more spaces and may
appear in any order: QuotedStar Greater Less Equal
Always Verify TypeCreate Bytes Write Author Read

XDE User’s Guide 10

10.4 Operational notes

The actual file transfer takes place in a background process, so you are free to issue other
commands or even change the values in the parameter subwindow without affecting the
command currently executing. The command subwindow is cleared so that a second
command cannot be invoked while one is under way. Changing a field while the File Tool
is waiting for Confirm! will not affect the name of the Dest *n: file; you should abort the
transfer and re-issue the command with the desired field already set. It is important to
remember that the commands are postfix; for example, fill in the Host: and Source:
fields before invoking the Retrieve! command.

10-5

10 File Tool

10-6

11

Floppy commands

The Floppy commands allow you to store and retrieve files on floppy disks using your
workstation’s floppy disk drive. . Files larger than a single floppy disk may be written as
several pieces on several disks and later put back together.

11.1 Files

The Floppy commands are built in; no additional files are needed.

11.2 Userinterface

The Floppy commands run in the Executive. The Executive command Floppy . ~ has several
subcommands, each of which takes arguments. The command line format is

Floppy.~ <command> <arguments>.

11.2.1 Common argument definitions

Several of the commands take lists of files as arguments. The following definitions will
simplify the explanations of these commands:

<fileList>consists of a list of file names to be operated upon, separated by spaces. If a
file name is followed by the /s switch, the next name is used as the destination of the file
transfer.

<wildList>consists of a list of file names separated by spaces. The names may contain *

and # characters to match multiple files. Remember that * and # must be quoted to avoid
being expanded by the Executive.

11.2.2 Commands

There are eight Floppy commands. They may be abbreviated to any unique initial
substring.

11-1

11

Floppy commands

11-2

Delete <wildList>

deletes the specified files from the floppy disk.

Erase

removes the entire contents of the floppy disk.

Format <name>/n <number>/f

prepares a new disk for storing data. This command must be used on new disks before any
data can be stored on them. [t may also be used to erase all the data on a disk. The name
and number arguments are optional and may be specified in either order. <name>
specifies the name to be assigned to the floppy; you may include special characters (such as
a space) in a name by enclosing it in double quotes. <number > specifies the maximum
number of