XDE 6.0 UPDATE

Pilot Programmer’s Manual

R T R O R A I R
AT AT TR TR TN
e

R S R R R BT TSS9 TS 1 PRI RS RO 55 SR ST SR RO

To From
Customer/Colleague Holly Wanless

Technical Services and Support

Subject Date
Pilot Programmer’s Manual February 1989

The enclosed manual is a complete replacement for your existing version. Please remove the old version from the
binder, replace it with this new version, and discard the old version.

610E00161-U

[

Pilot Programmer’s Manual

XEROX

610E00161
September 1988

Xerox Corporation

XDE Technical Services

475 Oakmead Parkway
Sunnyvale, California 94086

Copyright © 1988, 1986, Xerox Corporation. All rights reserved.
XEROX @, 8010, 6085, and XDE are trademarks of XEROX CORPORATION.

Printed in the United States of America.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document was prepared for this purpose. Please send your comments to:

Xerox Corporation

XDE Technical Documentation, SVHQ403
475 Oakmead Parkway

Sunnyvale, California 94086

Table of contents

1.1
1.2
1.3

14

1.5
1.6
1.7

2.1

2.2

2.3

Introduction

General structure of systemsoftware i, 1-1
- P 1-2
General characteristics of Pilot i i i i, 1-2
1.3.1 Processes, monitors, and synchronization 1-4
1.3.2 Virtual memory, files,andvolumes, 1-5
1.3.3 Stream, device, and communication interfaces 1-6
Pilotconcepts i e 1-7
1.4.1 Stateless enumerators e 1-7
1.4.2 Synchronous and asynchronous operations 1-8
Notation and conventionsciiiiiiinitir ittt i 1-8
CommOn SO WAL i e e 1-9
What followWs ... e e e e e 1-10
Environment

Processor environment i i e et et e 2-1
2.1.1 Basictypesandconstants i i i i 2-1
2.1.2 Device numbers anddevicetypes 2-4
Processorinterface i e 2-8
2.2.1 Bitblock transfert 2-8
2.2.2 Textblock transer ...ttt 2-12
2.2.3 Checksumoperationc.iiiiiiiiin it 2-16
2.2.4 Byteblock transfer 00 2-16
2.2.5 Other Mesa machineoperationscooiviiiiiinnenenn.. 2-17
System timing and control facilities i 2-19
2.3.1 Universalidentifiers i 2-19
2.3.2 Network addressesttt 2-20
2.3.3 Timekeeping facilities P 2-21

Table of contents

2.4

2.5
2.6

2.7

3.1
3.2

3.3
3.4
3.5

3.6

4.1

2.3.4 Control of System pOWerottt 2-24
2.3.5 Pilot'sstateafterbootingl 2-25
Mesa run-time SUPPOTt ...ttt ittt ittt et et 2-34
2.4.1 Processes and MONIEOTSounneemnniee e, 2-34
2.4.2 Programsand configurationsccooiiiiiiiiiiiiiinnaaaan, 2-38
2.4.3 Trapsand signalsc.coiiiiiiiiiiririrnnnneneeernenneannn. 2-42
2.4.4 Calling the debugigerorbackstopciieiiiiniiininnneeennn. 2-43
Client StaItUD . ..ottt ittt e e s 2-44
Coordinating subsystems’ acquisitionofresources 2-44
2.6.1 Useofthe Supervisorccciiiiiiiiiiiiiiii i, 2-45
2.6.2 Supervisorfacilities i it e 2-46
2.6.3 Exceptionhandling i 2-49
Generalobjectallocation it e 2-49
271 Basictypes ... e e e 2-49
2.7.2 Basic proceduresanderrors i it 2-50
Streams

Semanticsof streams it i i 3-2
OperationsS 0N StreAMSttt e teeitiiiiiiieeeeeeeeanannannnaeenennn 3-3
3.2.1 Principal data transferoperations ool 3-4
3.2.2 Additional data transmissionoperations i 3-6
3.2.3 Subsequence types i e e e 3-8
3.24 Attentionflags it e e 3-8
3.2.5 Timeouts PP 3-9
3.2.6 Stream positioning i i i e 3-9
Creation of StreamSiiieriiiir ittt ettt 3-9
Control over physical record characteristics it 3-11
Transducers, filters,and pipelinesciiiriiiiiiiiiiinenennnn. 3-13
3.5.1 Filter and transducer representation 3-13
3.5.2 Stream component managersc..ciiiiieiiaairiiiii.. 3-18
U G5 000 o0 7 T o 3-19
3.6.1 BITOrS ..ot e e 3-19
3.6.2 Procedures 3-19

File Storage and Memory

Physical volumes i 4-1
4.1.1 Physical volumenameandsize i, 4-2
4.1.2 Physical volume errorsooiiiiiiiiii 4-2
4.1.3 Drivesanddisks 0 i 4-3
4.1.4 Disk access, Pilot volumes, and non-Pilot volumes 4-4
4.1.5 Physical volume creation 4-6

Pilot Programmer’s Manual

4.2

4.3

4.4

4.5

4.6

4.7

4.1.6 Scavengingoperation i i 4-6
4.1.7 Logical volume operations on physical volumes 4-8
4.1.8 Miscellaneous operations on physical volumes 4-9
Logical volumesciiiiiiiii i e 4-10
4.2.1 Volumenameandsizeciiiiiiiiininnnrennreennnnn. 4-10
422 Logical and physicalvolumes 4-11
4.2.3 Volume errorconditions i, 4-11
424 Logical volume creationanderasure 4-12
4.2.5 Volume status and enumerationcvviiiiii.. 4-13
4.2.6 Volume open and close operations L 4-14
4.2.7 Volume attributes 4-14
4.2.8 Volume root directoryc.iiiiiiiiiin ittt 4-15
Biles e e e 4-16
4.3.1 Filenaming it i e et e 4-17
4.3.2 File addressing (internal) iiiiiiiiiiii i, 4-17
4.3.3 Filetypes ... e e e 4-18
4.3.4 Fileerrorconditions i, 4-19
4.3.5 Filecreationanddeletion 000 iiiiiiiniiiiiianan.. 4-20
4.3.6 Fileattributes i i e 4-20
The scavenging operationc..uuuiiiineeiertiireerneeinnnnn, 4-21
4.4.1 Volume SCavengeciiinett i 4-22
442 Scavengerlogfile i i i 4-23
4.43 Operationsonlogfiles i, 4-25
4.4.4 Investigation and repair of damagedpages 4-25
Virtual memory managementc....iniiiiiii i 4-27
4.5.1 Fundamental concepts of virtualmemory 4-27
4.5.2 File mapping to virtual memoryintervals 4-30
45.3 Virtual memory explicit read and write operations 4-34
454 WA PINE ..ot e 4-35
4.5.5 Access control e 4-37
4.5.6 Explicit allocation of virtual memory and special intervals 4-37
4.5.7 Map unit and swap unit attributes, utility operations 4-40
Pilot memory managementiiiiiiiii e 4-41
4.6.1 /703 V- PP 4-42
4.6.2 Heaps ... 4-47
Logging facilities i 4-53
471 Logfilewriteoperations i i 4-53
472 Logfilereadoperations i 4-56

1ii

Table of contents

51

5.2
5.3

5.4

5.5

5.6

5.7

5.8

iv

I/0 Devices

Channel structure and initialization, 5-1
5.1.1 Datatransiert 5-2
5.1.2 Device-specificcommandsc.ccoiiiriiiiiiiiii i 5-5
5.1.3 Device statuscoiiiiiiiiiiii ittt i et i i 5-5
Keyset, keyboards, and mousec.coiiuiiiiiiiiiiin i i 5-6
Theuserterminal0 ittt ittt 5-11
5.3.1 Thedisplayimageuutiiiiiiiiiiiiiie i iiiiiiianannn. 5-11
5.3.2 Smoothscrolling i i e 5-13
5.3.3 The keyboardand keysetcciiiiiiiiiiii i, 5-14
5.3.4 TRe MOUSEottt e e e e e 5-15
5.3.5 Thesound generatoruiteittinniniainennennnnennn. 5-15
Floppydiskchannel ittt i i 5-15
5.4.1 Drivecharacteristicscoiiiiiiiiiiiieneivinerriiienennnn, 5-16
5.4.2 Diskette characteristicsccoiiiiiiiiii i, 5-16
5.4.3 S 71 T S 5-17
5.4.4 Transfer Operationsuuuereitirinererereereennnnnnns, 5-18
5.4.5 Non-transferoperationsccooiiiiiiiiiiniiniinnnaanenn. 5-18
Floppy flle Systemttt ittt ittt e ettt et i, 5-19
551 Accessingfileson thediskette L. 5-19
5.5.2 Snapshotting and replication of the floppy volume 5-22
5.5.3 Managingthefloppyvolume i, 5-23
TTY Portchannelo ittt 5-28
5.6.1 Creating and deleting the TTY Portchannel 5-28
5.6.2 Datatransferciiiiiiiiiiiiii e 5-29
5.6.3 Datatransfer statuscooiiiiiiiiiieiiiinnnnnnnenannns 5-29
564 TTY Portoperationsc.uuuuiiiiitiiiiiin e, 5-29
5.6.5 Device statusoiiietniiniiieiiiiiiiee e 5-31
TTY Input/Outputttt i et e 5-31
5.7.1 Starting and stoppingoiiiiiiiiii i e 5-32
5.7.2 Signals and errorSttt e e 5-33
5.7.3 Ut DU . o e 5-33
574 Utties ..o i e e 5-33
5.7.5 String inputoperations i it e 5-34
5.7.6 String output operations i e 5-35
5.7.7 Numericinputoperations it iiiinriiiierenn... 5-36
5.7.8 Numeric output operations, ittt 5-37
FloppyTape file systemo it 5-38
5.8.1 Accessing filesonthetape it 5-38
5.8.2 Managing the floppyTape volume 5-45
5.8.3 Bootingfromthetape it 5-47

Pilot Programmer’s Manual

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Communication

Wellknownsockets i iiiiiiiii it 6-2
Packet exchange i i i e 6-4
6.2.1 Typesandconstantsouuuumiiiiiiiiiiiii . 6-4
6.2.2 Signals and errorst e e 6-6
6.2.3 Procedures e e 6-7
Network streams ittt ittt ittt i, 6-9
6.3.1 Typesand constantsc.oouiriiieeiiiinreereinaneeeiienn. 6-10
6.3.2 Network streamcreation i, 6-11
6.3.3 Signalsand errors i e e 6-14
6.3.4 Utilties ..o i e e e 6-17
6.3.5 Attributes of Network streamsot 6-18
RoUtINg . e e 6-21
6.4.1 Typesandconstantsottt 6-22
6.4.2 Signalsand errors ...ttt e 6-23
6.4.3 Procedureso e 6-23
RS232C communicationfacilities i 6-25
6.5.1 Correspondentst e 6-25
6.5.2 Environment typesandconstantsoiiiiiiniiiineaaeann 6-27
6.5.3 RS232C channel ...ttt 6-30
6.5.4 Procedures for starting and stopping the channel 6-41
6.5.5 Auto-dialing e 6-41
(07030 o 15 P 6-46
6.6.1 Definitionof terms it i e 6-46
6.6.2 Bindingo e 6-47
6.6.3 Remote procedurecalling i 6-49
6.6.4 s oo o P 6-53
6.6.5 Bulkdata ... e 6-57
6.6.6 Descriptionroutines i 6-58
6.6.7 Miscellaneousfacilities i, 6-64
Network Bindingt i et e 6-65
6.7.1 Description ... i e e e e 6-65
6.7.2 Typesandconstantsciiniiiiiin i 6-65
6.7.3) 0) o< 6-68
6.7.4 Client proceduresiiiinntiieeit ettty 6-68
6.7.5 Server Proceduresc..iiititi e 6-70
X-Stream -bulk dataprotocol e 6-71
6.8.1 Interface definition i 6-71
6.8.2 Additional semantics e 6-73
PhoneNetdriver i e 6-74
6.9.1 PhoneNet e 6-74
6.9.2 PhoneAdoption i e 6-76

Table of contents

T.1.

7.2

7.3

7.4

7.5

8.1
8.2
8.3

8.4
8.5

9.1

i

Editing and Formatting

ASCII characterdefinitionsoiiiiiiiiirii it iiiaieeennnna, 7-1
Formatting ... e e e e e 7-2
7.2.1 Binding ... e e e 7-2
7.2.2 Specifying the destinationof theoutput 7-2
7.2.3 String editingttt e 7-2
7.2.4 Editingnumbers e 7-3
7.2.5 Editingdates e 7-4
7.2.6 Editing network addresses i il 7-4
1o 8o ¥ S 7-5
7.3.1 SUDB-SE LIS ... it e e e e 7-5
7.3.2 Overflowing stringbounds i 7-5
7.3.3 Stringoperations i i i e 7-6
I i i e e e e e e e 7-10
74.1 Bindingo e e e 7-10
7.4.2 OPeratiONS it e e e e e e 7-10
0 ot 5o - 7-12

System Generation and Initialization

SyStem COMPONENtS ittt ittt e e 8-1
Pilot initialization i ittt i i e e 8-2
Volume initialization 0 i it i e 8-3
8.3.1 Formatting physicalvolumes i it iiiiianin, 8-4
8.3.2 Checkingdrivesforbadpagesc.iiiiiiiiiiiineninnnnnnn, 8-5
8.3.3 Microcode and bootfilesttt i 8-6
8.3.4 Miscellaneous operationsc..coiieiiiiiiertinninneeniinneans 8-9
Communication initialization i it 8-11
Booting .. e e e 8-11
8.5.1 Creatingabootfileccoiiiiiiiiiirii i s, 8-12
8.5.2 Writing the contentsofabootfile 8-12
8.5.3 Makingahbootfilebootable 8-13
8.5.4 Installingabootfile i i, 8-13
8.5.5 Bootingabootfile i 8-13
8.5.6 Updatingabootfile i 8-14
8.5.7 Atomic saving and restoring of Pilot instances 8-14
The Backstop

Implementingabackstop i e 9-1
9.1.1 Initializing a backstoplogfile i 9-2

Pilot Programmer’s Manual

9.1.2 Control flow ... i e e 9-2
9.1.3 Logging errors i e 9-3
9.2 Readingbackstoplogfileso 9-4
10 Online Diagnostics
10.1 Communicationdiagnosticsc.iiiiiiiiiiiii i 10-1
10.1.1 Testing Ethernetecho i, 10-2
10.1.2 Gathering Ethernet statistics 10-6
10.1.3 Testing RO232C ... it i e i e 10-8
10.1.4 Testingthe Dialerot 10-13
10.2 Bitmap Display, keyboard, and mouse diagnostics 10-14
10.3 Lear Siegler diagnosticsiiiiiiiiiiiin ittt int e ieeiannanannn 10-16
10.4 Floppy diagnosticsoouitiniiiiii ittt 10-17
10.5 Floppy Tape diagnosticsottt 10-21
Appendices
A Performance Criteria
Al Physical memory requirementsof Pilot i, A-1
A2 Execution speed and client programprofile A-2
A21 Memory management e e e e e e A3
A22 Filemanagementcciiiiiiinirtiieenineeneenenennaeenans A-3
A23 Communicationviathe Ethernet A-4
A24 PrOCeSSES ..o i i e e e A-4
B Assigning and Managing File Types B-1
C Pilot's Interrupt Key Watcher C-1
D UtilityPilot D-1
E Multi-national Considerations .. E-1
F References
F.1 Mandatory referencesc.o. it e F-1
F.2 Informational referencesttt F-1
G Network Binding Example G-1
H TCP/IP Interfaces
1 ArpaConstantso i, B H-2
2 ArpaRouter H-4

vii

Table of contents

iy

W 00 N & Ut W

Glossary

ArpaRouterOps i e e H-10
ArpaSysParameters e H-9
ArpalUtility .. o i e e e H-12
ReSOLve ... e e H-15
N 1] Y o T H-138
ArpaTelnetStream e H-24
TelnetListener ittt it ie i, H-36
ArpaFilingCommon ...ttt H-37
TFTP (Trivial File Transfer Protocol) H-39
ArpaF TP e H-42
ArpaF TP S eIVEr ..ttt e e H-49
ArpaFileName i i i e H-54
ArpaSM T L e e e H-56
ArpaAM I P S erver ..ot e e H-60
ArpaMailParse i e et e H-62
ArPaV erSION ... it i e e H-66

Introduction
1.1 General structure of systemsoftware 1-1
1.2 Files 1-2
1.3 General characteristicsof Pilot 1-2
1.3.1 Processes, monitors, and synchronization 1-4
1.3.2 Virtual memory, files,andvolumes i, 1-5
1.3.3 Stream, device, and communication interfaces 1-6
1.4 Pilotconcepts 1-7
14.1 Statelessenumeratorsc.c.coiiiiiiiiareii i 1-7
1.4.2 Synchronous and asynchronousoperations 1-8
1.5 Notation and conventions i, 1-8
1.6 Common Software ...ttt 1-9
1.7 Whatfollows e 1-10

Introduction

The Pilot Programmer’s Manual defines and describes the external structure, appearance,
and interfaces of Pilot, the operating system for the Mesa processor, and the other
packages released with it. The description is primarily intended for the designers and
implementors of client programs of Pilot; that is, applications, certain development and
production tools, test programs, and so forth. The description provides sufficient
information to allow the programmer to understand the available facilities and to write
procedure calls in the Mesa language to invoke them. For each of the facilities of Pilot, the
manual lists the procedure names, parameters, results, the data types of each of the
arguments, and the possible signals which can be generated. These are captured in the
Mesa DEFINITIONS modules which are part of each release.

This manual is a reference manual for programmers, who are assumed to be familiar with
the Mesa programming language. It is not a tutorial on how to write programs which use
Pilot. The order of information presented tries to minimize, insofar as possible, the
number of forward references. Cross referencing within the text has been abandoned for a
more comprehensive referencing via the index. It is expected that the reader will use the
index to locate the description of terms or concepts encountered. References in the text of
the form §1.2.3 refer to section 1.2.3. Deviations from the descriptions given here and the
currently released version of Pilot are noted in the documentation which accompanies the
release.

The specification presented here is adequate for the majority of programs which need to
interface with Pilot and make use of its facilities. In some cases, however, supplementary
facilities will be required in order to permit certain applications to make effective use of
the Mesa hardware and processor. Such facilities, if made generally available, could lead
to degraded performance or degraded reliability of both Pilot and the whole Mesa system.
Therefore, they are not described here but are in supplementary documents which are
made available, along with the corresponding DEFINITIONS modules, only as required.

1.1 General structure of system software

It is important to understand the relationship of the various kinds of software found in a
Mesa processor. The major categories are as follows:

Faces, Heads, and Microcode: A face is a Mesa interface that embodies some aspects of
the processor, defined in the Mesa Processor Principles of Operation, and of its I/O
devices. Each face is implemented by a combination of Mesa code, called a head, lower

1-1

Introduction

1.2 Files

level machine code, called microcode, and the underlying hardware. The collection of
heads and microcode provides a machine-independent environment in which Pilot and
its clients execute. ‘

Pilot: Pilot is the operating system that manages the hardware resources of, and
provides the run-time support for, all Mesa programs on a machine. Pilot is written in
the Mesa language. Its facilities are explicitly invoked by means of procedure calls
from, or exceptions generated by, client programs.

Common Software: These programs are collections of modules and configurations
which provide services often useful to applications. They are written in Mesa and call
upon Pilot facilities. Some are released with Pilot while others are released
separately.

Applications: Application software actually performs the functions we are marketing.
These programs are written in Mesa and may call upon Pilot and Common Software
for support.

This document deals with Pilot and the Common Software released with it. However, it is
not possible to consider Pilot in isolation, and frequent reference must be made to
documents describing the other categories of software. In particular, the Pilot facilities
described here would be inadequate for supporting a modern software development project
in the absence of the Mesa facilities.

The basic facilities of Pilot are incorporated in the object file PilotKernel.bcd. In
addition, a special version of Pilot, contained in the object file
UtilityPilotKernel.bcd, supports small applications and utilities which must run in
real memory (see Appendix D for more details). Some of the facilities described in this
manual are implemented in their own object files. In those cases, the name of the object,
file is mentioned in the section that describes the facility.

No explicit mention is made in this document of the location of files. That information is
contained in the documentation issued in conjunction with each release of Pilot. Readers
should consult that documentation to ascertain where files are located.

1.3 General characteristics of Pilot

1-2

Pilot is not a general purpose operating system. Instead, it is a nucleus of software which
serves as an interface between a Mesa processor and all other software. In particular,
Pilot defines a “Basic Machine” which is an abstraction of the physical resources provided
by the hardware. The purpose of this Basic Machine is to define a standard interface
which is relatively independent of the size, speed, particular model, and configuration
upon which it is operating. It thus provides a uniform environment in which clients can be
designed and programmed. Furthermore, it insulates the clients as much as possible from
variations in hardware configuration from site to site and from time to time.

In general, Pilot is designed around the notion that its clients are a cooperative system of
programs all serving a common purpose. Thus, it is far more tolerant and permissive than
most operating systems. It delegates much more control of system resources to its users.
It permits programs and subsystems to recover gracefully from errors, but it also places

Pilot Programmer’s Manual 1

more responsibility on them to ensure the overall well-being of the machine and of the
networks to which it is connected.

Some facilities and concepts normally associated with operating systems have been
deliberately omitted from Pilot. For example,

Master Mode and Protection: No “ironclad” mechanism protects Pilot from errant or
malicious client programs, or even protects client programs from each other. Instead,
Pilot consists simply of a group of Mesa modules and relies on such facilities as Mesa
type-checking to provide the redundancy necessary to detect errors. The protection
relationship between Pilot and its clients is the same as that between any two systems
built in Mesa,

Job Control: Since product systems have no explicit concept of “job,” Pilot provides no
job control facilities. Instead, groups of related processes which support a particular
application control themselves and their use of resources in response to external
stimuli from the human user, or from other system elements via the Network Services
(NS) Communication System.

Billing and Accounting Functions: Since the product architecture is designed around
the concept of a distributed network of low cost system elements, neither detailed
billing nor accounting for the use of resources within a single system element is
needed. In the few applications where economic management of resources is required
or desired, such as in central file servers, this function is performed at a higher level,
not within Pilot.

Competitive Allocation of Resources: The allocation of major system resources will
generally be on a cooperative rather than a competitive basis. Thus, Pilot does not
contain elaborate resource allocation functions. Instead, resources and resource
management can often be planned statically when systems are configured. Where
dynamic resource control is required, such as in sharing physical memory, Pilot
provides facilities which allow the applications to state their current requirements.

Complex Services: Pilot does not provide very complex services or facilities such as
directories, display and keyboard management routines, command languages, or
human-engineered interfaces. These services are provided by client programs and are
likely to vary across the product lines.

The major facilities of the Basic Machine can be regarded as falling roughly into three
main categories: -
Mesa run-time support including processes, monitors, and synchronization facilities
Virtual memory, files, and volumes
Stream, device, and communication interfaces

Each of these categories is described below in some detail.

1-3

Introduction

1-4

1.3.1 Processes, monitors, and synchronization

Within a system element, several activities will almost always be occurring concurrently.
For example, the display will be updated at the same time as the human user is typing on
the keyboard, and perhaps both of these will take place at the same time files are being
read, text is being edited, or documents are being transferred to other system elements. To
support this kind of concurrent activity, Mesa (with the help of the Mesa processor and
Pilot) provides the following facilities:

Processes, which represent asynchronous activities,
Monitors, which arbitrate access to shared resources, and

Condition variables, which provide flexible interprocess synchronization.

These facilities are actually features of the Mesa language, but are described here for
completeness.

The concept of process is a fundamental architectural concept in all Mesa software. Mesa
processes are intentionally lightweight. They are much more like Mesa procedures than,
say, entire application programs. A process is instantiated in much the same way that a
Mesa procedure is called. The result is a separate, independently executing thread of
control, with its own local data (if any). A process has the same status as a procedure. A
process may call procedures, access local or global data, and spawn new instances of
processes, subject to the standard Mesa name scoping constraints. A typical application
may utilize many processes, and the whole processor may contain hundreds of process
instances at one time. These instances can be created and deleted frequently (tens, or even
hundreds of times per second if this proves useful).

The general philosophy of programming with processes in Mesa is that one or a collection
of modules manages a particular resource or common data structure. Each process which

‘'needs to access that resource or data structure calls the procedures defined in those

modules. To impose order on the possible chaos which could result from asynchronous
manipulation of the data, the concept of monitor lock is provided. A monitor lock is a data
structure which contains the interlocks sufficient to guarantee that only one process at a
time may gain access to the data. It serves as an orderly meeting ground through which
otherwise asynchronous processes may synchronize their activities and ensure the
consistency of the data or resource which they are sharing.

In many cases, the exclusive access guarantee of the monitor mechanism is not sufficient
to express the desired pattern of coordination among cooperating processes. The condition
variable facility provides additional flexibility in synchronizing such interactions, by
allowing one process to wait for some event, and another process to notify it when the
event occurs. Condition variables also provide the basic means in Pilot and Mesa by which
a process may wait for an event and time out after a specified period of elapsed time if that
event does not occur.

In Pilot, the interfaces to shareable system resources are presented as procedures which
client programs may call. These procedures almost always define synchronous operations,
even when they involve the operation of an asynchronously operating device connected to
the Mesa processor. Thus, some procedures may take a long time to complete. In general,
if an application program cannot tolerate such a long wait, or could make better use of its
time, it should fork a new process instance to call the Pilot procedure and do the waiting

Pilot Programmer’s Manual | 1

for it. Later, when the results are actually required, the two process instances can be
synchronized and one of them deleted. This is the general mechanism by which
asynchronous activity is managed by both Pilot and client programs. The single exception
to this is in the area of direct control of physical devices, in which Pilot provides a more
primitive means of implementing overlapped, concurrent activity. Very few clients are
directly involved with this interface to Pilot.

1.3.2 Virtual memory, files, and volumes

Pilot provides an integrated system for managing main memory and file storage. In
particular, it implements a single, monolithic, page-oriented, virtual memory shared by
all Mesa software, including Pilot itself. This virtual memory consists of 220 ¢4 232 16.bit
words, depending upon the hardware processor. The memory is organized into 256-word
pages. To complement the virtual memory, Pilot provides a system of files, each of which
may contain up to 223 pages (i.e., 232 bytes). Files are aggregated into volumes each of
which also may contain up to 223 pages. Files are accessed via the virtual memory
swapping mechanism, as described below.

Traditionally, virtual memories are implemented in operating systems by swapping the
contents of virtual pages between real memory and some form of backing store. In Pilot,
the files serve the role of backing store. Any page of virtual memory which contains
information must have associated with it a page from a file to and from which it can be
swapped. In the case of pages containing Mesa object code (which are always read-only),
the backing file is just the object code file output by the Mesa system. In the case of virtual
memory which “buffers” the contents of files containing long-term data, the files
themselves act as the backing store. Finally, for pages containing temporary data which
is purely internal to the current execution of the program, Pilot provides private,
temporary, anonymous files for backing storage. In UtilityPilot based systems, pages for
temporary data are only supplied from the processor’s real memory.

Files are associated with virtual memory by mapping a file or portion of a file to virtual
memory. The interval of virtual memory used is normally allocated as part of the mapping
operation. Each map unit, or mapped interval, is typically subdivided into swap units, for
swapping, as described in the next paragraph. Pilot also provides operations to remove the
mapping when it is no longer required.

Whenever a process attempts to reference (i.e., fetch or store) a virtual memory location
within a map unit, the page containing that location may not be present in real memory.
If it is not, Pilot must read it into real memory. Execution of the process is suspended until
the swapping is completed. Pilot provides swapping in two ways:

under the conirol of the client program, in the form of swapping commands. These are
commands by which the client program informs Pilot about the following: certain
intervals of virtual memory will be needed in the immediate future and that swapping
should be initiated as soon as possible; an interval is no longer needed and should be
swapped out; an interval is not likely to be referenced soon, so Pilot should write it out
and release the real memory allocated to it.

on demand. If the page referenced is neither in real memory nor the subject of a recent
swapping command to bring it in, Pilot will itself initiate a swapping action to bring in
the page and any adjoining swapped-out pages of the containing swap unit.

1-5

Introduction

Typically, intervals containing code, and intervals containing local and global frames will
be swapped on demand, while those which contain the major client data structures and
data from files will be swapped under client program control. Swapping performance can
be improved by organizing the Mesa code file(s) so that related procedures are located in
the same interval of virtual memory, typically by use of the packager. Pilot further
improves performance by attempting to allocate the pages of a file contiguously on the file
storage medium so that an interval can be swapped in a single I/O operation.

A client wishing to read from a file will map that file into a virtual memory interval and
then use explicit or demand swapping to cause it to be swapped into real memory. If the
file is being updated in place, then the client will simply store into the relevant locations
of virtual memory. Subsequently, when the interval is unmapped or otherwise swapped
out of real memory, the file will reflect the new contents. If, on the other hand, the file is
not being updated in place, then the client program can copy the contents of a virtual
memory interval to a portion of a file, and copy a portion of a file to a virtual memory
interval, without altering the mapping of the interval.

Pilot supports access to files on local volumes. Each existing file is uniquely defined
within that volume. If the volume is implemented on a removable medium, then it (and
all of its files) may be removed and remounted on another system element.

Files are identified by file ids. When a new file is created, a new file id is issued. The file
is uniquely identified to Pilot by presenting Pilot with its id and the id of the containing
volume. Clients may not generate file ids, but they may store them, copy them, and pass
them to other programs.

An important interval of virtual memory recognized by the Mesa processor and the Mesa
system is the main data space (MDS). The MDS is a contiguous subset of virtual memory
consisting of 216 words (256 pages), any part of which may be addressed by a 16-bit Mesa
POINTER.

An MDS contains the low-level data structures and mechanisms, such as local frames and
trap handlers, necessary for executing Mesa processes. Global frames may also reside in
the MDS if modules were compiled to run with pre-Pilot 14.0 (*old”) versions or if they are
packaged with pre-Pilot 14.0 (“old”) versions. “Old” means that the modules either were
not. recompiled since the 12.0 compiler or were compiled with the 14.0 compiler /o switch.

Each process is associated with one and only one MDS. Although the Mesa processor
supports multiple coexisting MDSs, Pilot does not. Thus, any Pilot-based system has only
one MDS, which is shared by all of the system’s processes.

1.3.3 Stream, device, and communication interfaces

Pilot supports a sophisticated, packet-switched, communication system. The heart of this
system is a software package called the router.

Information received from one Pilot client for transmission to another Pilot client (on the
same or another system element) is broken into packets for delivery. These packets,
encapsulated in the Xerox Internet Transport Protocols and including both source and
destination addresses, are passed to the router. If the destination client is on the local
machine, then the packet is passed to that client.

For remote destination clients, the router determines if there is a communication path
from the local machine to the final destination machine. If no path exists, the packet
cannot be transmitted, and an appropiate status is set. Otherwise the best available path

Pilot Programmer’s Manual 1

is selected, and the packet is transmitted via the first communication link of the path on
route to its final destination. This physical transmission may take place on any one of a
number of communication devices, including the Ethernet or telephone lines.

The router sends and receives packets via Ethernet device drivers and by other
communication device drivers which may be added in the future. On the Pilot client side,
the router is accessed by the NetworkStream and PacketExchange interfaces (see Chapter 6).

Pilot establishes a style and some standards for the construction of I/O device drivers by
defining the notion of channel. This definition makes the style of usage of the various /O
drivers similar enough to be somewhat predictable and standard enough that a client-
constructed I/0 device driver can be included in Pilot without a formal integration. All of
the Pilot-supplied and Pilot-required device drivers conform to this style and these
standards.

One such Pilot-supplied device driver is the Ethernet device driver. The Ethernet device
driver not only may be used to transmit Internet Transport Protocol packets through the
router as described above, but may also be used as an ordinary device driver for non-N§
communication with non-NS stations.

When sequential data is to be transported between a Pilot client and an /O device or
another Pilot client, it is usually possible to do this in a device- and format-independent
way. The Pilot Stream Package accomplishes this. The mechanism for transcribing a
sequential stream of data on or off an I/O device is provided by a client-written or Pilot-
supplied transducer. Modifications to the data stream (e.g., code conversion) are
accomplished by a client or Pilot filter. The stream package provides a basic set of
transducers and filters and, more important, a way of assembling them sequentially into
processing and transmitting pipelines.

One kind of stream supported directly by Pilot is the Network stream referred to above.
This kind of stream is capable of receiving data from a Pilot client on one machine and
transmitting it to another client on a different machine.

1.4 Pilot concepts

The methodologies which are used repeatedly in the design of the Pilot functions are
described here.

1.4.1 Stateless enumerators

Many Pilot functions return information to the client of the form of a list of items whose
length cannot be a priori known. Consequently, Pilot functions that supply this type of
information do so by passing back an item of the list for each call for the information.
These functions are created in a very stylized way.

The basic idea is that the client, on its first call to such a function, supplies a value which
no item of the list can have. This item usually has a name of the form nullobject, for
whatever object is being enumerated. The function returns a member of the list. If the
client, on its next call on the list function, supplies the previously returned value, Pilot
will return another member of the list. This goes on until the list is exhausted whereupon
Pilot returns nulloject, indicating the end of the list.

Introduction

These types of functions are called stateless enumerators. A reference to a stateless
enumerator will always be accompanied by the beginning and ending values. Usually the
items of the list are not returned in any particular order. If some order is imposed, this
will be pointed out in the description of the function.

1.4.2 Synchronous and asynchronous operations

When a Pilot function is called, it may or may not return before the requested operation
has been completed. If Pilot waits until the operation is done (the usual case), the
operation is called synchronous. If the operation queues the operation and returns before
it has completed, it is called asynchronous. If no mention is made of the type of a
particular operation, the operation is synchronous. Almost all Pilot operations are
synchronous.

1.5 Notation and conventions

1-8

At the beginning of each section are listed the names of the DEFINITIONS modules containing
the Pilot facilities described in that section. The procedure and type definitions contained
in each of the interface modules are presented in this document as pseudo-Mesa
declarations of the form:

ModuleName.variable:ModuleName.TypeName =. . .;

ModuleName.TypeName: TYPE = ..., ;

ModuleName.ProcedureName: PROCEDURE [ParameterList] RETURNS [ResultsList];
ModuleName.SignalName: siGNAL [ParameterList] RETURNS [ResultsList];
ModuleName.Error{error:ModuleName.ErrorType];

ModuleName.ErrorType: TYPE = {...}

That is, each definition is listed with its own name qualified by the DEFINITIONS module
name. Any Mesa program which invokes the facilities of Pilot must list the names of the
relevant DEFINITIONS modules in its DIRECTORY clause. It may then refer to one of these
variables, procedures, types, or signals by its fully qualified name. This style of explicit
qualification is strongly recommended; that is, as opposed to opening the scope of the
DEFINITIONS module by an OPEN clause, and using the unqualified name.

Accompanying these Mesa declarations is the explanation of the function of each
procedure, the conditions under which it may be invoked, and the SIGNALS and ERRORS it can
raise. In this explanatory text, the explicit interface qualification is usually dropped,
since it is clear from the context.

The following rules apply to all the operations discussed in this manual. Exceptions to the
rules will be mentioned explicitly.

1) If the explanatory text of an operation does not explicitly say that a specific error
is raised, then the operation does not raise the error.

2) Ifan operation returns by raising an error, then the operation will appear to have
only raised the error.

Pilot Programmer’s Manual 1

3) If an operation is to operate on a object already operated on (e.g.,
Space.MakeReadOnly on a read-only object), then the operation will return
successfully. That is, most operations are idempotent.

4) All operations that may be performed outside the body of a catch phrase may be
performed within the body of the catch phrase; for example, Pilot holds no monitor
locks while raising a signal or error.

5) Invoking an operation with a count parameter of zero is equivalent to invoking
the operation with a count of one minus one; that is, zero is not a special case.

Note: A paragraph in this form headed by the word “Note” contains additional
information about how the operations are intended to be used. These notes are included to
help programmers design their programs to take best advantage of the Pilot facilities.
Ignoring the notes will not produce incorrect programs, but it may produce programs that
execute slowly or require excessive amounts of system resources.

Caution: Paragraphs labeled with “Caution” are intended as warnings to programmers.
In general, cautions apply to features or aspects of Pilot which can be easily misused, and
which will result in incorrect or inconsistent operation if they are misused. In particular,
Pilot is not likely to be able to detect errors cautioned against in these paragraphs. It is the
programmer's responsibility to avoid making these mistakes.

For example, an error which Pilot cannot detect is the “dangling reference” problem. In
many cases, Pilot defines a class of abstract objects and provides client programs handles
for accessing such objects. If one client program should request Pilot to destroy a
particular object and later another client program requests Pilot to create a new one of the
same type, then Pilot may reuse the handle of the old, destroyed one. If the first client
program inadvertently retains and uses copies of the old handle, these will now look like
legitimate handles for the new object. Pilot may not be able to detect the condition and
chaos is likely to ensue.

Metasymbols are indicated with italics. It is expected that some specific instance will be
filled in for the metasymbol, such as in the case of nullobject in the preceding section. A
possible instance of a nullobject might be nullHandle.

1.6 Common Software

This manual also includes descriptions of the Common Software. Common Software is
not included in PilotKernel.bed, but is made available as separate object files. Clients
which make no use of Common Software need not be burdened with its presence. Common
Software comes in two varieties: Product and Development. Common Software packages
denoted as Product Common Software are intended to be used in products. Development
Common Software consists of packages that are used internally, in the development
environment; they should not be used in product systems. Only Product Common
Software is described in this manual.

Because the Common Software packages are not included in PilotKernel.bed, the name of
the implementing object file, how to bind, and so forth is presented at the beginning of
each section describing a Common Software package.

1-9

Introduction

1.7 What follows

1-10

The rest of the manual describes the interfaces to Pilot and the Common Software
packages in terms of the Mesa data types and procedures used by clients. These types and
procedures are embodied in one or more Mesa interfaces (DEFINITIONS modules) made
available to programmers of client software. The description is organized according to the
major resources managed by Pilot.

Chapter 2 describes the interface provided by Pilot to various Mesa processor features.
Described are the various constants and types associated with the processor. Chapter 2
also describes the run-time support needed to execute Mesa programs. The chapter
includes the descriptions of facilities to support the Mesa concepts of process, monitor, and
condition variable and the various traps, procedures, and signals defined by the Mesa
language. It describes some basic, low-level system facilities provided by Pilot. These
include: universal identifiers, by which volumes and other objects are named; network
addresses, which control communication via the Xerox Internet Transport Protocols;
several forms of timekeeping facilities; and facilities for controlling system electrical
power.

Chapter 3 introduces the general concept of a stream. Streams may be superimposed upon
files, communication facilities, and devices in order to achieve a high level, medium
independent means of accessing and distributing information.

Chapter 4 describes the file management and virtual memory facilities of Pilot.

Chapter 5 describes the facilities by which client software exercises control over hardware
devices. These facilities are meant primarily for situations in which streams are not
suitable. This chapter is a model for individual device interfaces, some of which are
described in this manual, and others of which are implemented by clients.

Chapter 6 describes the communication facilities of Pilot.
Chapter 7 describes miscellaneous editing and formatting packages.
Chapter 8 describes how to initialize the system, and how to get a client to start execution.

Chapter 9 describes facilities for automatically handling system errors and signals. The
processing of error conditions is done by a separate program referred to generically as a
backstop.

Chapter 10 describes online diagnostics for communication and I/O devices.

Appendices provide supplementary information, including performance criteria, file type
management, Pilot interrupt key, UtilityPilot considerations, multi-national
considerations, references, and a NetworkBinding example. Appendix H provides
information about the TCP/IP interfaces (not Pilot-related).

Environment

2.1 Processorenvironmentl 2-1
2.1.1 Basictypesandconstants i it it 2-1

2.1.2 Device numbers anddevicetypesciiiiiiiiiiii i 2-4

2.2 Processorinterface 2-8
2.2.1 Bitblocktransfero il 2-8

2.2.2 Textblock transfer oottt 2-12

2.2.3 Checksum operationc.coooiiiiiiiiiinniiniiniiiiienenn. 2-16

2.2.4 Byte blocKk transferccviviiiiiiiii i e 2-16

2.2.5 Other Mesa machineoperationscociiiiiiiniiiinan, 2-17

2.2.5.1 Accessingpartsofawordordoubleword 2-17

2.2.5.2 Copyingblocksofwordscciiiiiiiiiiiiiaenne, 2-17

2.2.5.3 Specialdivideinstructions il 2-18

2.2.5.4 Special multipyinstruetion ool 2-18

2.2.5.5 Operationsonbits i 2-18

2.3 System timing and control facilities 2-19
2.3.1 Universalidentifiers i 2-19

2.3.2 Network addresses oottt 2-20

2.3.3 Timekeeping facilitiesttt 2-21

2.3.3.1 Time-of-dayanddate iiiiiiiiieiiiiennen, 2-21

2.3.3.2 Localtimeparameters, 2-22

2.3.3.3 Intervaltiming i 2-23

2.3.3.4 Alarmelocks i e 2-24

2.3.4 Control of SyStem POWeTttt it 2-24

2.3.5 Pilot’s stateafterbooting il 2-25

24

2.5
2.6

2.7

Mesarun-time supportt 2-34

2.4.1 Processesandmonitors i 2-34
2.4.1.1 Initializing monitors and condition variables 2-34
2.41.2 TimMeoUtScouniiiinretinaee e ianeetinearaeaaaas 2-36
2.4.1.3 Forking processesccooiiiriiinennreninnierennans 2-36
2.4.1.4 Prioritiesof processesc.vtiiiii ittt 2-37
2.4.1.5 Abortingaprocessccoviiriiiiiiiiiia i, 2-37
2.4.2 Programs and configurationscciiiiiiiiiiiien.... 2-38
2.4.3 Trapsandsignalsc.. i ittt 2-42
2.4.4 Calling the debuggerorbackstop oL, 2-43
Clientstartup ...t e 2-44
Coordinating subsystems’ acquisition of resoucrces 2-44
2.6.1 UseoftheSupervisorcc ittt 2-45
2.6.2 Supervisor facilitiesc.ciiiiiiii e e 2-46
2.6.3 Exceptionhandlingciiiiiiiiiiiiiiiiiiiiiiieniiennnnn. 2-49
General objectallocationl 2-49
2.7.1 BasiCtyPeS ... i e i et e 2-49

2.7.2 Basicprocedures and errorsot it i e 2-50

Environment

Pilot programmers have available to them the constants, types, and procedures which
describe the system elements and make available, at the client level, certain features of
the abstract machine. This chapter describes these constants, types, and procedures and
contains the basic levels of the system.

2.1 Processor environment
Environment: DEFINITIONS . .. ;

This section defines all of the basic constants describing the processor and peripherals.
Section 2.1.1 describes the processor; section 2.1.2 defines the constants pertinent to the
peripheral devices attached to the processor.

2.1.1 Basic types and constants

Pilot is specifically designed to execute on system elements defined by the Mesa Processor
Principles of Operation. For convenience, the basic types and constants of that
architecture are captured symbolically in the DEFINITIONS module Environment.

The following definitions define the basic word, byte, and character sizes of the Mesa
processor.

Environment.Byte: TYPE = [0..255];

Environment.Word: TYPe = [0..65535];

Environment.bitsPerWord: CARDINAL = 16;

Environment.bitsPerByte, Environment.bitsPerCharacter: CARDINAL = 8;
Environment.logBitsPerWord: CARDINAL = 4;

Environment.bytesPerWord, Environment.charsPerWord: CARDINAL =
bitsPerWord / bitsPerCharacter;

| Environment.|ogBitsPerByte, Environment.logBitsPerChar: CARDINAL = 3;

£nvironment.|0gBytesPerWord, Environment./JogCharsPerWord: CARDINAL = 1;

2-1

Environment

2-2

All constants of the form log... are base 2 logarithms of their respective quantities. The
following type is a general purpose descriptor for a sequence of bytes in virtual memory
(see section §4.5 for a description of virtual memory).

Environment.Block: TYPE = RECORD{
blockPointer: LONG POINTER TO PACKED ARRAY [0..0) OF Environment.Byte,
startindex, stopindexPiusOne: CARDINAL];

The following constant defines an empty block.

Environment.nullBlock: environment.Block = [niL, 0, 0];

The following definitions characterize the basic page size of the Mesa processor.
Environment.wordsPerPage: CARDINAL = 256;

Environment.bytesPerPage, Environment.charsPerPage: CARDINAL = wordsPerPage *
bytesPerWord;

Environment.|logWordsPerPage: CARDINAL = 8;

Environment.logBytesPerPage, environment.logCharsPerPage: CARDINAL =
logWordsPerPage + logBytesPerWord;

The following definitions characterize the maximum virtual memory address space
available to Pilot clients.

Environment.maxPagesinVM: CARDINAL = Environment.lastPageCount;

The maximum is one less than the number of VM pages provided by the hardware. The
highest numbered VM page is reserved for system purposes.

Environment.maxPagesinMDS: CARDINAL = 256;

Environment.PageNumber: TYPE = LONG CARDINAL; =-[0..224-1)--
Environment.firstPageNumber: environment.PageNumber = 0;
Environment.lastPageNumber: environment.PageNumber = 16777214; = --2%.2..

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines the
constants firstPageNumber and lastPageNumber to specify FiRsT[PageNumber] and
LasT[PageNumber]. PageCount and PageOffset (below) are similar. ‘

Environment.PageCount: TYPE = LONG CARDINAL --[0..2%4-1]--;
Environment.firstPageCount: Environment.PageCount = 0;
Environment.lastPageCount: Environment.PageCount = lastPageNumber + 1; -- 5“‘41
Environment.PageOffset: TYPE = Environment.PageNumber;
Environment.firstPageOffset: Environment.PageOffset = 0;
Environment.lastPageOffset: environment.PageOffset = lastPageNumber;

Caution: Substituting LAST[Environment.PageNumber] or LAST[Environment.PageCount] for
the above constants will yield incorrect results.

Pilot Programmer’s Manual 2

Environment.Base: TYPE = LONG BASE POINTER;
Environment.first64K: Environment.Base = ...;

first64K is the base pointer to the first 64K of virtual memory.
Environment. MaxXINTEGER: INTEGER = LAST[INTEGER];
Environment.MININTEGER: INTEGER = FIRST{INTEGER] ;
Environment.MaXCARDINAL: INTEGER = LAST[CARDINAL];
Environment.MaXLONGINTEGER: INTEGER = LAST[LONG INTEGER] ;
Environment.MiNLONGINTEGER: INTEGER a FIRST{LONG INTEGER] ;

Environment.MaxLONGCARDINAL: INTEGER = LAST{LONG CARDINAL];

The following types allow direct manipulation of long values.

Environment.LONg, Environment.LOngNumber: TYPE = MACHINE DEPENDENT
RECORD [SELECT OVERLAID * FROM
lc = > [lc: LONG CARDINAL],
li = > [li: LONG INTEGER],
Ip = > [Ip: LONG POINTER],
lu = > [lu: LONG UNSPECIFIED],
num = > [lowbits, highbits: cArRDINAL],
any = > [low, high: UNSPECIFIED],
ENDCASE];

The following structure is used to address bits. BitBlt is the principal user.

Environment.BitAddress: TYPE = MACHINE DEPENDENT RECORD [
word: LONG POINTER,
reserved: [0..LAST[WORD])/Environment.bitsPerWord) « 0,
bit: [0..Environment.bitsPerWord)];

Note that the reserved field must be zero.

The following operation returns a LONG POINTER to the first word of a page.

Environment.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]
RETURNS [LONG POINTER];

The following operation returns the number of the page containing pointer. If pointer is
NiL, then the value returned is undefined; no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber];

Environment

2.1.2 Device numbers and device types

Device: DEFINITIONS . . . ;

DeviceTypes: DEFINITIONS ... ;

DeviceTypesExtras: DEFINITIONS . .. ;

DeviceTypesExtraExtras: DEFINITIONS. .. ;

DeviceTypesExtras3: DEFINITIONS. .. ;

DeviceTypesExtras4: DEFINITIONS . . . ;

DeviceTypesExtras5: DEFINITIONS. .. ;

Definitions are provided for devices and classes of devices attached to the system element.
These constants are defined in the interfaces Device, DeviceTypes, and DeviceTypesExtras.

Definitions in the following Device interface serve to identify the individual devices
attached to the system element.

Device.Type: TYPE = RECORD [CARDINAL];

Device.nullType: Device.Type = [0];

Device.Ethernet: TYPE = CARDINAL [5..16);

Device.PilotDisk: TYPE = CARDINAL [64..1024);

DeviceTypesExtras.Floppy:TYPE = [17..24);

DeviceTypesExtrasd.ExtendedFloppy: TYPE = CARDINAL [17..64);
DeviceTypesExtrasa.FloppyTape: TYPE = ExtendedFloppy [50..64);
DeviceTypesExtrasd.SCSIDisk: TYPE = Device..PilotDisk [896..1024);
DeviceTypesExtrasd.OpticalDevice: TYPE = CARDINAL [1024..2048);
DeviceTypesExtrasa.SingleBox: TYPE = DeviceTypesExtras4.OpticalDevice [1024..1040);
DeviceTypesExtrasa.JukeBOX: TYPE = DevicaTypesExtras4.OpticalDevice [1040..1048);
DeviceTypesextrasa.SCSITape: TYPE = CARDINAL [2048..2560);
DeviceTypesExtrasa.SCSIProcessor: TYPE = CARDINAL [2560..2816);
DeviceTypesExtrasd. SCSIReadOnly: TYPE = CARDINAL [2816..3072);

All Ethernet type devices have a value in the range defined by Ethernet.

All devices capable of containing a Pilot physical volume are in the range defined by
PilotDisk.

All floppy drives and floppy tape drives have values defined in the range ExtendedFioppy.
A specific subrange for floppies only is defined by Floppy; a specific subrange for floppy
tapes is defined in FloppyTape.

High capability disks have their own subrange in PilotDisk, called SCSIDisk.

All optical devices have a value in the range defined by OpticalDevice. Subranges, defined
by SingleBox and JukeBox, in the OpticalDevice category exist for single box and jukebox
devices.

2-4

Pilot Programmer’s Manual 2

High capability tapes, processors, and read-only devices have values in the ranges defined
by SCSITape, SCSIProcessor, and SCSIReadOnly, respectively.

Device types provide a means of classifying the different devices attachable to the system
element. '

Device types for Ethernet devices are listed below. The italicized column on the right
indicates the specified device.

DeviceTypes.anyEthernet: Device.Type = ...; An Ethernet of unspecified type
DeviceTypes.ethernet: Device.Type = ... ; 10 MB Ethernet
DeviceTypes.ethernetOne: Device.Type = ... ; 3 MB Ethernet

The following specific device types are assigned to Pilot disks. The italicized column on
the right indicates the specified device.

DeviceTypes.anyPilotDisk: Device.Type = ...; A Pilot disk of unspecified type

DeviceTypes.sa800: Device.Type = ...;) Unspecified disk of the Shugart
Associates SA800 family

DeviceTypes.sa1000: Device.Type = ... ; Unspecified disk of the Shugart
Associates SA1000 family

DeviceTypes.sa1004: Device.Type = ...; SA1004 disk

DeviceTypes.sa4000: Device.Type = ... ; Unspecified disk of the Shugart
Associates SA4000 family

DeviceTypes.sa4008: Device.Type = ...; SA4008 disk

DeviceTypes.t300: Device.Type = ...; Century Data Systems T-300 disk

DeviceTypes.t80: Device.Type = ...; Century Data Systems T-80 disk

DeviceTypes.cdc9730: Device.Type = ...; Control Data Corporation CDC-
9730 disk

DeviceTypes.qq2000: Device.Type = ; Unspecified disk of the Quantum
2000 family

DeviceTypes.q2010: Device.Type = : Quantum disk 2010

DeviceTypes.q2020: Device.Type = : Quantum disk 2020

DeviceTypes.q2030: Device.Type = ; Quantum disk 2030

DeviceTypes.q2040: Device.Type = , .. ; Quantum disk 2040

DevicaTypes.j2080: Device.Type = ..., Quantum disk 2080

When indicating devices capable of holding a Pilot volume, Pilot will report a correct
device type, although it may not be as specific as possible; for example, a Shugart SA4008
disk might be reported as DeviceTypes.anyPilotDisk, DeviceTypes.sa4000, or
DeviceTypes.sa4008.

Another device type included in the interface is

DeviceTypes.null: Device.Type = Device.nullType;

The following Device Types interfaces contain various floppy and rigid disk drive types.
In addition, DeviceTypeséxtrasa defines types for floppy tapes, high capability devices, and

2-5

Environment

2-6

optical devices. Floppy tapes are streaming tape drives that are being incorporated in the
current environment to appear much like floppy devices.

In the following list, the italicized column on the right indicates the device specified.

DeviceTypesExtras.anyFloppy: Device.Type = ...; a floppy drive of unspecified type
DeviceTypesExtras.5a850: Device.Type = ... ; Shugart SA850 floppy drive
DeviceTypesExtras.Sa455: Device.Type = ... ; Shugart SA455 floppy drive
DeviceTypesExtras.sa456: Device.Type = ... ; Shugart SA456 floppy drive
DeviceTypesExtraExtras.m2235: Device.Type = ... ; Fujitsu 26 MB rigid disk drive
DeviceTypesExtraExtras.m2242: Device.Type = ...; Fujitsu 50 MB rigid disk drive
DeviceTypesExtraExtras.m2243: Device.Type = ...; Fujitsu 80 MB rigid disk drive
DeviceTypesExtras3.5a475: Device.Type = ... ; Shugart SA4751.2Mb
DeviceTypesExtras3.5t212: Device.Type = ...; Seagate 10 Mb rigid disk
DeviceTypesExtras3.5t4026: Device.Type = ... ; Seagate 20 Mb rigid disk
DeviceTypesExtras3.tm702: Device.Type = ... ; Tandon 20 Mb rigid disk
DeviceTypesExtras3.tm703: Device.Type = ..., Tandon 40 Mb rigid disk
DeviceTypesExtras3.mc1303: Device.Type = ... Micropolis 80 Mb rigid disk
' DeviceTypesExtras3.mc1325: Device.Type = ,..; Micropolis 80 Mb rigid disk
DeviceTypesExtras3.q530: Device.Type = ...; Quantum 37 Mb rigid disk
DaviceTypesExtras3.q540: Device.Type = ...; Quantum 40Mb rigid disk
DeviceTypesExtrasd.anyFloppyTape: Device.Type = ...; Floppy tape drive of unspecified
type
DeviceTypesExtrasd.fad5000: Device.Type = ... ; Wangtek floppy tape drive
DeviceTypesExtrasd.mr322: Device.Type = ... ; Mitsubishi 26 MB rigid disk
DeviceTypesExtrasd.mr535: Device.Type = ... ; Mitsubishi 51 MB rigid disk
DeviceTypesExtras4.mk56fbx:Device.Type = ...; Toshiba 80 MB
DeviceTypesExtrasd.mk56fb: Device.Type = ...; Toshiba 86 MB rigid disk
DeviceTypesExtrasd.d3126: Device.Type = ...; NEC 26 MB rigid disk
DeviceTypesExtrasd.d5146h: Device.Type = ...; NEC 51 MB rigid disk
DeviceTypesExtrasd.m2243asx:Device.Type = ...; Fujitsu 80 MB
DeviceTypesExtrasd.m2243tx:Device.Type = ... ; Fujitsu 80 MB
DeviceTypesExtrasd.m2243t:Device.Type = ...; Fujitsu 80 MB
DeviceTypesExtrasd.m2243as: Davice.Type = ... ; Fujitsu 86 MB rigid disk
DeviceTypesExtrasd.m2243x4: Device.Type = ... ; 344 MB rigid disk
DeviceTypesExtrasd.tm702x:Device.Type = ...; Tandon 20 MB
DeviceTypesExtrasd.tm703x:Device.Type =...; Tandon 2 0OMB
DeviceTypesExtrasd.q530x:Devica.Type = ... ; Quantum 20 MB
DeviceTypesExtras4.514026x:Device.Type = ... ; Seagate 20 MB
DeviceTypesExtrasd.5t225x :Device.Type a ... ; Seagate 20 MB

Pilot Programmer’s Manual

DeviceTypesExtrasd.st251X:Device.Type = ... ;
DeviceTypesExtrasd.st4051x:Device.Type = ... ;
DeviceTypesExtrasd.m2225ad:Device.Type = ... ;
DeviceTypesExtrasd.m2227d:Device.Type = ... ;
DeviceTypesExtrasd.m2227dx:Device.Type = ...;
DeviceTypesExtrasd.d5146hx:Device.Type = ... ;
DeviceTypesExtrasd.st4096:Device.Type = ... ;
DeviceTypesExtrasd.st225:Device.Type = ...;
DeviceTypesExtrasa.st4051 :Device.Type = ... ;
DeviceTypesExtras4.51251:Device.Type = ... ;
DeviceTypesExtrasd.$t213:Device.Type = ... ;
DeviceTypesExtrasd.Maxtor1:Device.Type = ... ;
DeviceTypesExtrasd. Maxtor2:Device.Type = ...;
DeviceTypesExtrasd.Maxtor3:Device.Type = ...;
DeviceTypesExtras4.Sms2300:Device.Type = ... ;
DeviceTypesExtrasd.microp1578:Device.Type = ...;
DeviceTypesExtrasd.cdcWrenlV:Device.Type = ... ;
DeviceTypesExtrasd.priam728:Device.Type = ...;
DeviceTypesExtrasd.priam738:Device.Type = ...;
DeviceTypesExtrasd.max3380:Device.Type = ... ;
DeviceTypesExtras4.mO85:Device.Type = ... ;
DeviceTypesExtrasd.m2249s:Device.Type = ... ;
DeviceTypesExtrasd.m2452E:Device.Type = ... ;
DeviceTypesExtrasd.m2451A :Device.Type = ...;

DeviceTypesExtrasd.anritsu2150C:Device.Type = ...;

DeviceTypesExtrasd.LD1200JB:Device.Type = ... ;

DeviceTypesExtrasd.LD1200JBR1:Device.Type = ...;
DeviceTypesExtrasd.LD1200JBR2:Device.Type = ... ;
DeviceTypesExtrasa.LD1200JBR3:Device.Type = ... ;

DeviceTypesExtrasd.Any12inchDisk1:Device.Type

DeviceTypesExtrasd.Any12InchDisk2:Device.Type

DevicaTypesExtrasd.Any12lnchDisk3:Device.Type = ... ;

DeviceTypesExtrasd. Any12InchDisk4:Devica. Type
DeviceTypesExtras4.LD500:Device.Type = ... ;

DeviceTypesExtrasd.LDSO0R1 :Device.Type = ... ;
DeviceTypesExtras4d.LDS00R2:Device.Type = ... ;
DeviceTypesExtrasd.LDS00R3:Device.Type = ... ;

Seagate 40 MB

Seagate 40 MB

Fujitsu 20 MB

Fujitsu 40 MB

Fujitsu 40 MB
NEC40MB

Seagate 80 MB

Seagate 20 MB

Seagate 40 MB

Seagate 40 MB

Seagate 10 MB

Maxtor 192 MB

Maxtor drive (placeholder)
Maxtor drive (placeholder)
Siemens 2300 310 MB
Micropolis 1578 380 MB
Control Data Wren IV 30 0MB
Priam 728 28 OMB

Priam 738 380 MB
Maxtor 3380 380 MB

12” Nikon optical 7.2 GB
Fujitsu 300 MB

Fujitsu 219 MB

Fujitsu 130 MB (w/m1008)
Anritsu Open reel MT

12”7 OSI Single Drive
Released OSI-Drive 2 GB
Released OSI-Drive 4 GB
Released OSI-Drive WORM/ROM
12" Hitachi Single Drive
Hitachi Released Drive
Toshiba Single Drive
Toshiba Released Drive

5 1/4” OSI Single Drive
Release of the OSI-Drive
Release of the OSI-Drive
Release of the OSI-Drive

2-7

Environment

DeviceTypesExtrasa.Any5inchDisk1:Device.Type = ...; Hitachi Single Drive
DeviceTypesExtrasd. Any5SinchDisk2:Device.Type = ...; Hitachi Released Drive
DeviceTypesExtrasd. Any5SinchDisk3:Device.Type = ...; Toshiba Single Drive
DeviceTypesExtrasd.Any5SinchDisk4:Device.Type = ...; Toshiba Released Drive
DeviceTypesExtrasd. ODSR1:Device.Type = ... ; OSI jukebox 1 127 unit
DeviceTypesExtrasd.ODSR2:Device.Type = ... ; OSI jukebox 2 12” units
DeviceTypesExtrasa.AnyJukeBox3:Device.Type = ...; Jukebox with 12” units
DeviceTypesExtrasa. AnyJukeBox4:Device.Type = ...; Jukebox with 12” units
DeviceTypesExtrasa. AnyJukeBox5:Device.Type = ; Jukebox with 5 1/4” units
DeviceTypasExtrasd. AnyJukeBox6:Device.Type = ... ; Jukebox with 5 1/4” units
DeviceTypesExtrasa.AnyJukeBox7:Device.Type = ...; Jukebox with 5 1/4” units
DeviceTypesExtrasa.AnyJukeBox8:Device.Type = ...; Jukebox with 5 1/4” units
DeviceTypesExtrasd.daylight:Device.Type = ...; Daylight
DeviceTypesExtrasa.|oopBack:Davice.Type = ... ; Loop Back Tool
DeviceTypesExtrasd.xm2000a:Davice.Type = ... ; Toshiba CD-ROM
DeviceTypesExtras5.mr533:Device.Type = ... ; Mitsubishi 26 MB
DeviceTypesExtras5.m2225d:Device.Type = ... ; Fujitsu 26MB

2.2 Processor interface

2-8

Pilot provides interfaces that permit access to features provided by the underlying Mesa
processor which are not provided by the Mesa language, as described in this section. These
interfaces define pseudo-faces; that is, types defined by the hardware and operations
directly implemented by the hardware. Pilot merely exports the definitions for the use of
its clients. The types and operations are defined below.

2.2.1 Bit block transfer

BitBlt: DEFINITIONS...;

The Bit Block Transfer operation in this interface is 8iT8LT, which operates on rectangular
arrays of bits in memory. The instruction accesses source bits and destination bits,
performs a function on them, and stores the result in the destination bits.

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction operates successively on lines of bits called items; it processes
width bits from a pair of lines, and then moves down to the next item by adding srcBpl (bits
per line) to the source address and dstBpl to the destination address. It continues until it
has processed height lines.

Figure 2.1 illustrates a possible configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

Pilot Programmer’s Manual 2

Destination Bitmap

Source Bitmap

dst \I*— width ——] “‘T‘"

height

hilgjt o e o ‘L

item

[width —>

dstBpl :{ l - srcBpl -}

Figure 2.1. BitBlt Source and Destination

A

BitBIt.BITBLT: PROCEDURE [ptr: BBptr]

The argument to Bit Block Transfer is a short pointer to a record containing the source
and destination bit addresses and bits per line, the width and height (in bits) of the
rectangle to be operated on, and a word of flags that indicate the operation to be
performed. The width and height of the rectangle are restricted to a maximum of 32,767.
The argument record must be aligned on a sixteen word boundary.

BitBit. AlignedBBTable: PROCEDURE [ip: POINTER TO BBTableSpace] RETURNS [b: BBptr] ;
sitatt.BBTableSpace: TYPE = ARRAY [1..5ize[BBTable] + BBTableAlignment) OF UNSPECIFIED;
sitBit.BBTableAlignment: CARDINAL = 16;

AlignedBBTable ensures that the BBTable will be on a sixteen word boundary.

BitBit.BBptr, Bitsit.BitBltTablePtr: TYPE = POINTER TO BBTable;

sitBit.BBTable, sitsit.BitBitTable: TYPE = MACHINE DEPENDENT RECORD {
dst: BitAddress,
dstBpl: INTEGER,
src: BitAddress,
srcDesc: SrcDesc¢,
width: CARDINAL,
height: CARDINAL,
flags: BitBltFlags,
reserved: UNSPECIFIED « 0];

This table contains all the arguments for specifying the resultant bit pattern. The
following types are used to make up a BitBltTable (BBTable).

sitBit.BitAddress: TYrPe = Environment.BitAddress;
BitAddress is used to address bits.

BitBit.SrcDesc: TYPE a MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
gray = > [gray: GrayParm],

2-9

Environment

2-10

srcBpl = > [srcBpl: INTEGER],
ENDCASE];

The description of the source may be a pattern to be repeated or may be particular bits. In
the case of a pattern, the gray field would be selected. This is described in detail under
Gray Flag following.

sitait.BitBItFlags: TYPE = MACHINE DEPENDENT RECORD(
direction: Direction « forward,
disjoint: BOOLEAN ¢ FALSE,
disjointitems: BOOLEAN « FALSE,
gray: BOOLEAN & FALSE,
srcFunc: SrcFunc « null,
dstFunc: DstFunc «null,
reserved: [0 511 0];

Direction Flag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory addresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBlts, as in
scrolling,)

gitgit.Direction: Tyre = {forward, backward};

If the direction is backward, then the source and destination addresses point to the
beginning of the last item of the blocks to be processed, and the source and destination bits
per line must be negative. This restricts the width of the bitmaps involved to a maximum
of 32,767 bits.

Disjoint Flag

If the operation’s source and destination are completely disjoint, the implementation
performs the operation from left to right, top to bottom.

Both the direction and the disjointitems flags in the argument record are ignored in the
case that disjoint is set.

Disjointitems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, then the disjointitems flag should be set (and the disjoint flag should be
clear); this allows the implementation to perform the operation so that, within each item,
the bits are processed in the most efficient horizontal direction. The items are processed in
the order indicated by direction.

If neither disjoint nor disjointitems is set, then the implementation processes the items
and the bits within items in the direction indicated by the direction flag.
Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual application is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

Pilot Programmer’s Manual 2

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows: Note also that the gray case is always forward and completely disjoint
(disjointltems is ignored).

BitBit.GrayParm: TYPE = MACHINE DEPENDENT RECORD [
reserved: [0..15] « 0,
yOffset: [0..15],
widthMinusOne: [0..15],
heightMinusOne: [0..15]];

The fields grayparm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at
arg.src. (see figure 2.2). Note that the term “brick” refers to a rectangular area containing
the gray pattern to be copied. Conceptually, this brick is replicated horizontally and
vertically to tile a plane of dimensions arg.width and arg.height that becomes the source
rectangle of the operation. This brick is a maximum of sixteen words wide and sixteen
lines high. Patterns, therefore, are also limited to a repetition rate of sixteen in each
direction. To guarantee correct repeatability of the pattern in the horizontal direction, it
is usually the case that the width of the gray brick (in bits) is a multiple of the repetition
rate; the height of the gray brick is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x
and y offsets into the brick in addition to its width and height. The initial x offset is
derived from arg.src as follows: arg.src.word always points to the beginning of the first
line to be transferred (not to the origin of the gray brick). The x offset of the first bit to be
transferred is supplied by arg.src.bit; this bit is always in the first word of the line. The
initial y offset is the number of lines down from the origin of the brick and is specified by
grayParm.yOffset; subtracting the y offset times the brick width from arg.src.word gives
the origin of the gray brick.

Gray Brick
arg.src.word
S I |<_ arg.src.bit
T A
yOffset
- height
Destination Bitmap | dth
- widt -

]
| |
Figure 2.2 Gray Brick

2-11

Environment

2-12

Source and Destination Functions
gitBit.SrcFunc: TYpe = {null, compiement};
BitBit.DstFunc: TyPe = {null, and, or, xor};

The functions available for combining the source and destination rectangles are shown in
Figure 2.3.

dst
n a 0 X
sr¢ n s s-d s+d s®d
(4 -~s ~sd ~s+d ~s®d

Figure 2.3 Source and Destination Functions

The src field has two options: the null_ selection indicates using the source rectangle as is
for the destination function; the complement selection inverts the source bits in the
destination function.

The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be “replaced” with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits
leaves only those bits in common in the destination. “Painting” the destination requires
Oring, which leaves the union of the two sets of bits in the destination. The last function is
the XOR, which essentially masks out the matching bits leaving the union but not the
intersection of the bits in the destination rectangle.

2.2.2 Text block transfer

TextBIt:DEFINITIONS...;

The Text Block Transfer interface operates on an array of characters; it implements three
functions useful in generating the font representation of the text in a bitmap. It may
calculate the number of characters on a line, convert characters to their font
representation, or widen or narrow select characters for justification. These functions are
discussed in more detail later in this section.

TextBit.TextBlt: PROCEDURE [
index: CARDINAL, bitPOs: CARDINAL, MicaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBItArg]
RETURNS [
newindex: CARDINAL, newBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result] ;

TextBlt proceeds through the text until either there is no more text or a stop character is
encountered; it maintains the bitPos and the micaPos of the origin of each character, and

Pilot Programmer’s Manual 2

increments the count of the number of pad characters processed. The new character
positions are returned along with the result of what caused the completion.

Textsit.TextBltArgAlignment: CARDINAL = 16;

- TextBit.TextBltArgSpace: TYPE = ARRAY [1..51ze[TextBltArg] + TextBltArgAlignment) orF
UNSPECIFIED;

TextBit. AlignedTextBItArg: PROCEDURE [ip: POINTER TO TextBItArgSpace]
RETURNS [p: POINTER TO TextBltArg]

TextBIt's static arguments are passed via a short pointer to a record; the argument record
must be aligned on a sixteen word boundary.

TextBit.TextBItArg: TYPE = MACHINE DEPENDENT RECORD [
reserved: [0..377778] « 0,
function: Function, -- display, format or resolve
last: CARDINAL, -- index of last character to process
text: LONG POINTER TO PACKED ARRAY CARDINAL OF CHARACTER,
font: FontHandle, -- Long Pointer to font information
dst: LONG POINTER, -- destination bitmap (display only)
dstBpl: CARDINAL, -- Bits per line (display only)
margin: CARDINAL, — mica value of right margin (format only)
space: INTEGER, -~ width adjustment to pad characters (display, resoive)
coord: LONG POINTER TO ARRAY CARDINAL [0..0) OF CARDINAL -- widths array for resolve

The limits of the text that TextBlt operates on are arg.text to arg.last. Depending on the
function specified (explained below) specific args will be pertinent. During the format
function, the scan is terminated before the right arg.margin (in micas) is passed. The
display function Ors the character’s font bits into the destination bitmap specified by
arg.dst and arg.dstBpl (bits per line). The resolve function saves the bitPos of the origin of
each character in the array arg.coord.

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out of) pad characters is rarely an even multiple of the
number of pad characters, pad characters encountered have arg.space+1 added to their
widths as long as count is negative. Thus, if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, then arg.space
would be set to one, and count would be initialized to negative three; this will result in
widening the first three pad characters by two bits, and the remaining ten pad characters
by one bit each.

TextBit.Function: Tyre = {display, format, resolve};

The TextBlockTransfer implements three functions useful in generating the font
representation of the text in a bitmap. The display function converts characters to their
font representation in the destination bitmap, optionally widening or narrowing pad
characters to perform line justification. The format function is used to calculate the
number of characters that will fit on a line, given its right margin (in micas). The resolve

2-13

Environment

2-14

function is used to record the horizontal bit position of the origin of each character in the
bitmap; it also handles justification.

Caution: Because of kerning, the display function may place bits into the destination
bitmap to the left of the bitPos of the leftmost character and to the right of the right
margin. The programmer is responsibile for initializing the bitPos to allow for the left
kerning of the first character and for supplying a bitmap wide enough to allow for the
maximum possible right kerning. Kerning is further explained below.

Textsit.FontHandle: TYPE = LONG POINTER TO Font;
TextBit.FOnt: TYPE;

Text8it.FontHandle points to the font information TextBlt needs. The interface item Font
describes the TextBIt font type. TextBitFontFormat.FontRecord is the concrete type of a
TextBit.Font. TextBitFontFormat.FontRecord must be aligned on a sixteen-word boundary.

TextBItFontFormat.fontRecordAlignment: NATURAL = 16;

TextBitFontFormat.FontRecord: TYPE = MACHINE DEPENDENT RECORD [
fontbits(0): FontBitsPtr,
fontwidths(2): FontWidthsPtr,
fontchar(4): FontCharPtr,
rgflags(6): RgFlagsPtr,
height(8): CARDINAL];

The following types make up FontRecord:
TextBitFontFormat: FONtBitsPtr: TYPE = LONG BASE POINTER TO ARRAY [0..0) OF UNSPECIFIED;

The data at TextBitFontFormat.FontBitsPtr is a base pointer for the character raster data. For
a particular character, TextBitFontFormat.CharEntry.offset (defined below) is added to this
base to get the address of the character's raster. The raster format includes the scan lines
within the dimensions given by fontwidths and fontchar. The height of the raster is
constant for all characters.

The memory order of the bits in the raster correspond to the memory order that TextBlt
will paint them into the destination bitmap. Said another way, TextBlt paints the first
scan line of the raster into the appropriate place in the first scan line of the destination
bitmap, and so on. Similarly, the first bit of a raster’s scan line is painted into the
appropriate first bit of the scan line in the destination bitmap, and so on.

In conventional Xerox bitmap displays, the first scan line in memory corresponds to the
top line on the screen, and the first bit of a scan line corresponds to the left pixel of the line.
For this case, the first scan line in the raster will be the topmost row of the character, and
the first pixel (most significant bit) of a scan line will be the leftmost pixel of its row.

TextBitFontFormat.FOntWidthsPtr: TYPE = LONG POINTER TO FontWidths;
TextBltFontFormat.FOntWidths: TYPE = PACKED ARRAY CHARACTER OF PixelWidth;
TextBitFontFormat.PixelWidth: TYPE = CARDINAL [0..3778B];

The width of the font is dependent on the width of the pixel.

Pilot Programmer’s Manual 2

TextBitFontFarmat. FontCharPtr: TYPE = LONG POINTER TO FontChar;
TextBitFontFormat.FOntChar: TYPE = ARRAY CHARACTER OF CharEntry;

CharEntry must be aligned on a two-word boundary.
TextBItFontFormat.charEntryAlignment: NATURAL = 2;

TextBitFontFormat.CharEntry: TYPE = MACHINE DEPENDENT RECORD [
leftKern(0:0..0): BOOLEAN,
rightKern(0:1..1): BOOLEAN,
offset(0:2..15): RasterOffset,
mica(1): CARDINAL];

If CharEntry.leftKern = TRUE, the character’s raster has one column preceding the char’s
origin, and is to be written into the destination bitmap one column preceding the current
position (bitPos). If CharEntry.rightKern = TRUE, then the raster extends one column past
the spacing width into the space for the next char; that char’s raster should begin
coincident with the current char’s last column (one column preceding where it would
normally go).

CharEntry.offset is the offset for the address of the character’s raster.
TextBitFontFormat.RasterOffset: TYPe = CARDINAL [0..377778];

mica indicates the “physical” width of the char (typically in micas).

TextBitFontFormat.RgFlagsPtr, RgflagsPtr: TYPE = LONG POINTER TO RgFlags;
TextBitFontFormat.RgFlags: TYPE = PACKED ARRAY CHARACTER OF Flags;

TextBitFontFormat.Flags: TYPE = MACHINE DEPENDENT RECORD [
pad(0:0..0): BOOLEAN,
stop(0:1..1): BOOLEAN];

The pad flag allows the character to have its width increased or decreased (in bits) for line
justification. The stop flag specifies a stop character to terminate a TextBlt operation.

TextBItFontFormat.maxLeftKern: CARDINAL = 1;
TextBltFontFormat.maxRightKern: CARDINAL = 1;

maxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

TextBit.Result: TYPE = {normal, margin, stop, notinFont};

TextBlt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reached (format only), and stop if a terminating character was detected.

notinFont is returned if the printer width for the character is a distinguished value
(177777B). This allows the flags to be independent of the font and yet provides a way for
information in the font to cause TextBIt to terminate.

2-15

Environment

2-16

TextBit.SoftwareTextBlt: PROCEDURE [
index: CARDINAL, bitPos: CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBItArg]
RETURNS [
newindex: CARDINAL, NnewBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Resuit];

SoftwareTextBlt is a software version of TextBlt. It is useful on processors that do not have
microcode support for the TextBIt operation described in this section.

2.2.3 Checksum operation

Checksum:DEFINITIONS...;

The Checksum interface produces a checksum for nWords starting at p. Changing the
initial value ¢s is useful if forming a single checksum for discontinuous areas of memory.

Checksum.ComputeChecksurn: PROC [cs: CARDINAL « 0, nWords: CARDINAL, p: LONG POINTER]
RETURNS [checksum: carDINAL] ;

Checksum.nullChecksum: carDINAL = 1777778;

This is a one’s-complement add-and-left-cycle algorithm.

2.2.4 Byte block transfer

ByteBit: DEFINITIONS...;

The only operation in this interface is ByteBlt, which provides a Mesa definition of a byte
boundary block transfer operation. ByteBlt takes descriptions of two byte blocks as
arguments, transfers as many bytes as possible (the MIN of the two lengths), and returns a
count of how many bytes were actually moved.

Bytesit.ByteBlt: PROCEDURE [t0, from: Environment.Block,
overlLap: Bytesit.OverLapOption]
RETURNS [nBytes: CARDINALJ;

Bytesit.OverLapOption: Tyre = {ripple, move};
ByteBit.StartindexGreaterThanStopindexPlusOne: ERROR;

A length of zero in either t0 or from is acceptable, resulting in no transfer. If a negative
length (startindex > stopindexPlusOne) is present in either to or from, then ByteBIt
signals Bytesit.StartindexGreaterThanStopindexPlusOne.

The overLap argument defines the effect of ByteBlt when the source and destination fields
overlap. If overLap is move, then the contents of the source field are preserved by the
move. It acts as if the two fields did not overlap. If overLap is ripple, then a low address to
high address move takes place with no notice taken of overlapping fields. This mode is
useful for propagating a value throughout a block of storage.

Pilot Programmer’s Manual 2

2.2.5 Other Mesa machine operations
Inline: DEFINITIONS ... ;

This interface defines a set of instructions not directly accessible from Mesa. It includes
some logical instructions and some extended-precision arithmetic instructions.

2.2.5.1 Accessing parts of a word or double word

The type Environment.LongNumber allows direct access to the high-order and low-order
words of LONG values. For convenience, a copy of this type is available in the Inline
interface.

inline.LongNumber: TYPE = Environment.LongNumber;

Alternatively, the following operations may be used:
inline.LowHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]
inline.HighHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

LowHalf and HighHalf return, respectively, the least and most significant words of its
argument.

Note: A LONG CARDINAL or LONG INTEGER whose value is in CARDINAL or INTEGER, respectively,
may be directly converted to a short value using a Mesa range assertion.

The following procedures return the least and most significant bytes of a word,
respectively.

inline.LowBYyte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

inline.HighByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

2.2.5.2 Copying blocks of words

The following operations copy blocks of words.
Inline.COPY: PROCEDURE [from: POINTER, nwords: CARDINAL, tO: POINTER]

Inline.LONGCOPY: PROCEDURE [from: LONG POINTER, Nwords: CARDINAL,
10: LONG POINTER]

inline.LONgCOPYReverse: PROCEDURE [from: LONG POINTER, nwoOrds: CARDINAL,
10: LONG POINTER]

copy and LongcopY copy nwords and are equivalent to the following Mesa code fragment:
FORi IN [0..nwords) DO(to +i) T « (from +i) T enpLOOP;

LongCOPYReverse copies nwords and is equivalent to the following Mesa code fragment:
FORi DECREASING IN [0..nwords) Do (to +i) T «(from+i)1 EnDLOOP;

An upper limit of 65,535 words can be copied in any one call on Copy, LongCopy, or
LongCopyReverse.

Caution: Many errors in copy, Longcory, and LongcopYReverse are the result of an
incorrect order of parameters. The keyword constructor call is recommended.

2-17

Environment

2-18

2.2.3.3 Special divide instructions

All of the divide operations described in this section will raise the error
Runtime.ZeroDivisor if the denominator is zero. All except UDDivMod and SDDivMod raise
Runtime.DivideCheck if the quotient is greater than 216-1. (See §2.4.3 for more information
on these errors.)

The quotient and remainder of two cardinals or long cardinals can be obtained with the
following procedures:

inline.DIVMOD: PROCEDURE [num, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

inline.UDDivMod: PROCEDURE [num, den: LONG CARDINAL]
RETURNS [quotient, remainder: LONG CARDINAL];

where num is the numerator and den is the denominator;
Inline.LDIVMOD: PROCEDURE [numlow: WORD, numhigh: CARDINAL, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

LDIVMOD ii ghe same as DIVMOD except that the numerator is the double length number
numhigh*2""~ + numiow.

Inline.LongDiv: PROCEDURE [num: LONG CARDINAL, den: CARDINAL]
RETURNS [CARDINAL]

LongDiv returns the single precision quotient of num by den.
If both the quotient and remainder of num and den are desired, the following operation
can be used.
inline.LongDiviMod: PROCEDURE [num: LONG CARDINAL, den: CARDINAL]

RETURNS [quotient, remainder: CARDINAL]
The quotient and remainder of two long integers can be obtained with the following
procedure:

inline.SDDivMod: PROCEDURE [num, den: LONG INTEGER]
RETURNS [quotient, remainder: LONG INTEGER];

2.2.5.4 Special multiply instruction

The double precision product; of two cardinals is obtained with the following procedure:

Inline.LongMult: PROCEDURE [CARDINAL, CARDINAL]
RETURNS [product: LONG CARDINAL]

2.2.5.5 Operations on hits

The following operations perform the indicated bitwise logical operations on their
operand(s):

inline.BitOp: TYPE = PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];
inline.BITAND, BITOR, BITXOR: Iniine.BitOp;

Pilot Programmer’s Manual 2

inline.DBitOpP: TYPE = PROCEDURE [LONG UNSPECIFIED, LONG UNSPECIFIED]
RETURNS [LONG UNSPECIFIED];

inline.DBITAND, DBITOR, DBITXOR: Inline.DBitOp;
inline.BITNOT: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.DBITNOT: PROCEDURE [LONG UNSPECIFIED] RETURNS [LONG UNSPECIFIED];

A word or double word can be shifted by the operations

Inline.BITSHIFT: PROCEDURE [value: UNSPECIFIED, count: INTEGER]
RETURNS [UNSPECIFIED]

inline.DBITSHIFT: PROCEDURE [value: LONG UNSPECIFIED, count: INTEGER]
RETURNS [LONG UNSPECIFIED];

Inline.BITROTATE: PROCEDURE [value: UNSPECIFIED, count: INTEGER]
RETURNS [UNSPECIFIED];

These operations return value shifted by ABs[count] bits. The shift is left if count > 0, and
right if count < 0. In both cases, zeros are supplied to vacated bit positions. In the case of
BITROTATE, the bits are shifted circularly.

Note: A left shift is a multiply by two ignoring overflow; a right shift is an unsigned divide
by two with truncation.

2.3 System timing and control facilities

System: DEFINITIONS . . . ;

NSConstants: DEFINITIONS . . . ;

This section describes some basic system and control facilities provided by Pilot. It
introduces and discusses the following: universal identifiers, by which all network
resources and other permanent objects in a network may be named; the means by which
communicating processes are identified; the various forms of timekeeping provided by
Pilot; the Pilot facilities for turning system power on and off; and how a client gets started.

2.3.1 Universal identifiers

A universal identifier may be used for naming all permanent or potentially permanent
objects in the network. Every object and every resource may be assigned a separate,
unique, universal identifier which is different from any other assigned for any other
purpose. Thus, a particular universal identifier can be interpreted unambiguously in any
context or on any processor, and it always refers to the same thing.

Universal identifiers are 5-word Mesa objects of the following type.

system.UniversallD: type [5];

Pilot issues a new universal identifier, distinct from all others on all other processors at all
times, as a result of the operation

system.GetUniversallD: PROCEDURE RETURNS [uid: System.UniversallD];

A UniversallD has no internal structure perceivable by client programs, and no properties
must be attributed to values of this type except the property of uniqueness. Pilot takes
extreme measures to ensure with a very high probability that UniversailDs are not

2-19

Environment

(3]
(V]

duplicated. The supply of new universal identifiers is limited to an overall processor
average of approximately one or a few per second, though the instantaneous rate of
creating them can exceed this at times. If Pilot detects any danger of compromising the
reliability of the uniqueness property, then the process calling GetUniversallD is delayed
until a new UniversallD can be safely issued.

The following are some particular uses of UniversaliDs:
system.PhysicalVolumelD: TYPe = RECORD [System.UniversallD];
System.VolumelD: TYPE = RECORD [System.UniversallD];
System.nulllD: system.UniversallD = .. .;

Note: nulllD is never returned by GetUniversaliD.

2.3.2 Network addresses -

The Internet Transport Protocols are the principal means of communication among
processes which reside on different machines (see §6.2, Network streams). A source or
destination of such communication is identified by its NetworkAddress.

System.NetworkAddress: TYPE = MACHINE DEPENDENT RECORD(
net: system.NetworkNumber,
host: system.HostNumber,
socket: System.SocketNumber] ;

system.NetworkNumber: Tyre [2];

system.HostNumber: Type [3];

system.SocketNumber: Type [1];

system.nullNetworkAddress: system.NetworkAddress = ...;
system.nuilNetworkNumber: system.NetworkNumber = ...; ,
system.nullHostNumber: system.HostNumber = .. .;
System.broadcastHostNumber: System.HostNumber = .. .;
system.nullSocketNumber: system.SocketNumber = .. .;
system.localHostNumber: READONLY System.HostNumber ;

nullNetworkAddress is never used as a source or destination and so may be used when no
valid address exists.

nuilNetworkNumber is normally not used as a source or destination. However, it can be
used on networks that are unable to obtain a network number.

localHostNumber is the HostNumber of the local machine.

Within a processor, sockets are used to separate and identify communication meant for
different purposes or destined for different processes. Sockets are associated with network
addresses and are considered to be a reusable resource which is allocated as required.

A NetworkAddress is normally retrieved from a Clearinghouse server. The network
address of the local system element can be discovered with
NetworkStream.AssignNetworkAddress. Network addresses are guaranteed to be unique

Pilot Programmer’s Manual 2

between system restarts, but not across system restarts; that is, they are reused each time
the system is restarted (see section 6).

The case of network addresses of processors which are connected to more than one network
is still to be determined.

2.3.3 Timekeeping facilities

Pilot has three forms of timekeeping facilities: the date and time-of-day, the “stopwatch”
or interval timing function, and the “alarm clock” facility.

2.3.3.1 Time-of-day and date

The time and date are maintained by Pilot and the system hardware, typically in the form
of an accurate, crystal-controlled clock. The following operations are used to access the
clock.

System.GetGreenwichMeanTime: PROCEDURE
RETURNS [gmt: System.GreenwichMeanTime];

System.GreenwichMeanTime: TYPE = RECORD [LONG CARDINAL];
System.gmtEpoch: system.GreenwichMeanTime = [2114294400];

System.SecondsSinceEpoch: PROCEDURE [gmt: System.GreenwichMeanTime]
RETURNS [LONG CARDINAL];

The gmtEpoch is equivalent to the following:
(67 years * 365 days + 16 leap days) * 24 hours * 60 minutes *60 seconds

The GetGreenwichMeanTime operation returns the time as a count of seconds since a
fixed, arbitrary base time. In particular,

gmt = t corresponds to the time t-System.gmtEpoch seconds after midnight, 1
January 1968. That is, the time System.gmtEpoch+1 corresponds to 00:00:01,
January 1, 1968 (i.e., one second after midnight, ten years prior to the first
publication of the Pilot Functional Specification).

The “end of time” occurs 232 seconds after 00:00:01 January 1, 1968. After the “end of
time,” new clock readings will not be valid. Two GreenwichMeanTimes can be compared
directly for equality. To find which of two GreenwichMeanTimes comes first, apply
SecondsSinceEpoch to each. This gives the number of seconds that each is after 00:00:00
January 1, 1968. Finally, compare the results to determine which is the later time. That
is, compare SecondsSinceEpoch [t1] to SecondsSinceEpoch [t2] and not t1 to t2.

systeméExtras.ClockFailed: siGNAL;
PilotSwitchesExtraExtraExtraExtras.ignoreClockFailures:
PilotSwitches.PilotDomainA = '.;

Pilot periodically checks to see if the time-of-day clock is running correctly by
GetGreenwichMeanTime. If it appears that the time-of-day clock is not correct, then the

signal SystemExtras.ClockFailed is raised. However, if the switch
PilotSwitchesExtraExtraExtraéxtras.ignoreClockFailures is down, then the signal will not be
raised.

2-21

Environment

2-22

This signal is resumable, but unless the client sets ignoreClockFailures, the signal will
probably be raised again.

system.AdjustGreenwichMeanTime: PROCEDURE [
gmt: system.GreenwichMeanTime, delta: LONG INTEGER]
RETURNS [System.GreenwichMeanTime];

AdjustGreenwichMeanTime has the result gmt +delta. If t is a GreenwichMeanTime,
then [t + delta] is the GreenwichMeanTime that is delta seconds after t.

Within the range that they overlap, the times defined here and the Alto time standard
assign identical bit patterns to a particular time. However, the Pilot standard runs an
additional 67 years before overflowing.

Client programs are responsible for converting between Greenwich Mean Time and local
time, taking into account Daylight Saving Time, etc., (see the next section).

The time and date are kept accurately (to within a few seconds per month) by the
hardware and are adjusted as part of system maintenance. In addition, Pilot ensures that
all interconnected system elements on an NS network agree about the current time within
a few seconds of each other, and that they agree with an externally supplied timekeeping
standard if one is available. Prior to calling the client during booting, Pilot ensures that
the processor clock is set correctly. UtilityPilot clients, however, must set the processor
clock prior to calling any Pilot operation. This setting is done by using the operations in
the OthelloOps interface. If this is not done, the results of Pilot operations are unspecified.

2.3.3.2 Local time parameters

Client programs may obtain the parameters of the local time zone. In normal network
configurations, Pilot finds the parameters from a server and remembers them in
nonvolatile storage. (Currently it stores them in the root page of the system physical
volume.) An operation alsc allows a client to set the parameters (typically on a stand-
alone or server machine).

The time zone parameters are represented as a record:

system.LocalTimeParameters: TYPE = MACHINE DEPENDENT RECORD [
direction(0:0..0): System.WestEast,
zone(0:1..4): [0..12],
zoneMinutes(1:0..6): [0..59],
beginDST(0:5..15): [0..366],
endDST(1:7..15): [0..366]];

System.WestEast: TYPE = MACHINE DEPENDENT {west(0), east(1)};

The fields zone, zoneMinutes, and direction together define the time zone as so many
hours and minutes west or east of Greenwich. Normally, zoneMinutes is zero, but there
are a few places in the world whose local time is not an integer number of hours from
Greenwich. beginDST gives the last day of the year on or before which Daylight Savings
Time could take effect, where 1 is January 1% and 366 is December 31% (the
correspondence between numbers and days is based on a leap year). Similarly, endDST
gives the last day of the year on or before which Daylight Saving Time could end. Note
that in any given year, Daylight Saving Time actually begins and ends at 2 A.M. on the

Pilot Programmer’s Manual 2

last Sunday not following the specified date. If Daylight Saving Time is not observed
locally, both beginDST and endDST are zero.

To find the local time zone parameters, a client calls

system.GetLocalTimeParameters: PROCEDURE [
pviD: system.PhysicalVolumelD « [nulliD]]
RETURNS [params: System.LocalTimeParameters];

system.LocalTimeParametersUnknown: ERROR;

GetLocalTimeParameters returns the local time zone parameters provided that Pilot could
determine them either by consulting a network time server during initialization or
because they had been previously saved on the system physical volume by a call to
SetLocalTimeParameters (see below). If the parameters cannot be determined in either of
these ways, then the error LocalTimeParametersUnknown is raised.

A normal Pilot client should always default pviD. A UtilityPilot client, on the other hand,
must specify the ID of the physical volume of the normal system drive, if the local time
parameters are to be saved on the disk.

While it is normally unnecessary for a client to do so, the time zone parameters saved in
nonvolatile storage on an individual workstation can be set by calling

system.SetLocalTimeParameters: PROCEDURE [params: System.LocalTimeParameters,
pviD: system.PhysicalVolumelD « [nullID]];

The main use for this procedure would be in a server, where a system administrator could
set the time zone parameters at system initialization time, in response to an act of
Congress, etc. Pilot guarantees the local time parameters are set from the network or
from the physical volume on the local disk. In UtilityPilot, however, the client must set
the parameters prior tothe call on GetLocalTimeParameters.

As with GetLocalTimeParameters, pviD should always be defaulted by a normal client.

2.3.3.3 Interval timing

It is frequently desired to measure elapsed time at the resolution of microseconds during
the execution of programs. Such measurements can be used in controlling system
behavior, analyzing program or system performance, and stimulating various other
activities. In many cases, the processor underlying Pilot will not provide a timer with a
resolution of one microsecond. As a result, Pilot would have to convert between processor
dependent units and microseconds to provide a timing facility that measured in
microseconds. In many cases, the overhead inherent in this conversion would be large
enough to inhibit the timing of functions. For this reason, Pulses are provided.

System.Pulses: TYPE = RECORD [pulses: LONG CARDINAL];

A Pulse is a processor dependent unit of time. The actual resolution and accuracy of Pulses
is determined by the accuracy and resolution of the internal clocks of the processor.
Typically, resolution of Pulses will be in the range 1 - 1000 microseconds and it will be
accurate to within 10% or better.

The current value of the processor interval timer may be read by

system.GetClockPulses: PROCEDURE RETURNS [System.Pulses];

2-23

2 Environment

A client may convert between pulses and microseconds with the operations:

System.PulsesToMicroseconds: PROCEDURE [p:System.Pulses]
RETURNS [m: System.Microsaconds];

system.MicrosecondsToPulses: PROCEDURE [m:System.Microseconds]
RETURNS [p:System.Pulses];

System.Microseconds: TYPE = LONG CARDINAL;
System.Overflow: ERROR;

To perform accurate timings, the user should measure events in terms of Pulses and only
convert to and from microseconds when it is absolutely necessary. In particular, Pulses
should be the time units used in the inner loops of programs or in any place where time is
critical.

Conversion in one direction or the other may cause an overflow. When this happens, Pilot
will raise the error Overflow.

Caution: The error Overfiow is not implemented in Pilot 14.0.

The processor interval timer wraps around after a processor dependent period of time,
typically greater than one hour. Thus, Pulses cannot be used to measure events with a
duration in excess of the wrap around period. '

2.3.3.4 Alarm clocks

An alarm clock facility is provided by the Mesa process mechanism. A timeout value may
be assigned to any condition variable by means of the operation Process.SetTimeout (see
§2.4.1.2). A process may then "go to sleep” for that period by executing a WAIT operation on
that condition variable. When the timeout expires (or when a NOTIFY operation is executed
on that condition variable, whichever comes first), the process awakens and continues
execution. One convenient way for a process to wait when there is no requirement for a
NOTIFY wakeup is to call Process.Pause (§2.4.1.6).

The resolution of the process timer is on the order of 15-50 milliseconds. It has no accuracy
whatsoever. Thus, a client process must check either the time of day, an interval timer or
the processor timer if it must know the time accurately.

2.3.4 Control of system power

The following operations allow the processor to be turned on and off under program
control.

System.PowerOff: PROCEDURE;

PowerOff causes the machine to be turned off. It does not return. Pilot causes all
input/output activity to be suspended, purges all of its internal caches, forces out all
mapped spaces to their file windows, stops all processes from further execution, and causes
the display to be turned off. The only way to recover from this operation is to turn the
system power on and press the restart button. If there is no power relay, the system
element remains turned on but executing no programs; a unique code is displayed in the
maintenance panel in this situation.

2-24

Pilot Programmer’s Manual 2

System.SetAutomaticPowerOn: PROCEDURE |
time: systam.GreenwichMeanTime, externalEvent: BOOLEAN];

SetAutomaticPowerOn sets the internal clock of the processor to automatically turn on
the system power at or after time. If externalEvent is FALSE, then power is turned on at the
specified time. If externalEvent is TRUE, then power is turned on in response to the first
external event occurring after the time specified by time. An external event is an
electrical signal made available to the processor; for example, the ringing signal of a data
telephone.

If power is already on when this operation would turn it on, then the operation has no
effect. The automatic power on facility may be reset by calling

System.ResetAutomaticPowerOn: PROCEDURE;

2.3.5 Pilot’s state after booting

The device from which the system was booted (loaded) may be ascertained by referencing
System.systemBootDevice: READONLY System.BootDevice;

System.BootDevice: TYPE = RECORD [device: Device.Type, index: CARDINAL];

Client programs can determine if they are running upon UtilityPilot with

system.isUtilityPilot: READONLY BOOLEAN;

Boot switches are used to transmit operational information from the booting agent (e.g.,
the Installer) to the running boot file (see client documentation for definitions of
applicable boot switches). The boot switches are made available as

System.Switches: TYPE = PACKED ARRAY CHARACTER OF System.UpDown;
System.UpDown: TYPE = MACHINE DEPENDENT {up(0), down(1)};
System.switches: READONLY System.Switches;
system.defaultSwitches: System.Switches = aLL[up];

If a switch is down, then it is active; if a switch is up, then it is inactive. The value of
switches is determined as follows. If the booting agent provides switches other than
defaultSwitches, then that value is used. If the boot file was constructed (by MakeBoot) to
contain other than defaultSwitches, then that value is used. Otherwise, defaultSwitches
is used.

Switch assignments are made by the Operating Systems group. Ranges of switches are
allocated for Pilot, for the Xerox Development Environment, and for product systems.

The following interfaces provide the Pilot switches:

PilotSwitches: DEFINITIONS ... ;

PilotSwitchesExtras: DEFINITIONS ... ;
PilotSwitchesExtraExtras: DEFINITIONS... ;
PilotSwitchesExtraExtraExtras: DEFINITIONS ... ;
PilotSwitchesExtraExtraExtraExtras: DEFINITIONS... ;
PilotSwitchesExtras5: DEFINITIONS ... ;
PilotSwitchesExtras6: DEFINITIONS ... ;
PilotSwitchesExtras7: DEFINITIONS ... ;
PilotSwitchesExtras8: DEFINITIONS... ;

2-25

2 Environment

Table 2.1 lists the Pilot switches, names, and meanings. Switches of special interest are
described in detail following Tables 2.1 and 2.2.

Table 2.1. Pilot Switches: Value, Name, and Meaning

Value Name Meaning
& PilotSwitches.hang Hang with maintenance panel code 936 in
lieu of going to the debugger.
0 PilotSwitches.break Go to debugger as early as possible in Pilot
initialization.
1 PilotSwitches.break1 Go to debugger as soon as all code is map-
logged.
2 PilotSwitches.break2 Go to debugger just before calling
pilotClient.Run.
3 pilotSwitches.tinyDandelionMemorySize Simulate 192K memory size for a
Dandelion with no display.
PilotSwitches.zeroScratchMem Initialize scratch memory pages to zero.
PilotSwitches.remateDebug Go to the Ethernet for a debugger
pilotSwitches.heapOwnerChecking Turn owner checking on for the system
zones.
pilotSwitches.disableMaplLog Disable map logging.
8 PilotSwitches.interruptWatcher Create a Pilot interrupt key watcher.
pilotSwitches.stdDandelionMemaorySize Simulate 256K memory size for a
Dandelion with display.
pilotSwitches.breakFileMgr (No longer supported)
; PilotSwitches.breakVMMgr (No longer supported)
< pilotswitches.noEthernetOne Pretend that no Ethernet 1 is attached to
the system element. .
= PilotSwitches.noStartCommunication Do not initialize the Communication
package at system start-up.
> Pllotswitches.noEthernet Pretend that no Ethernet is attached to the
system element.
{ pilotSwitches.smallAnonymousBackingFile Set the VM backing file size to 550 pages.
| PilotSwitches.mediumAnonymousBackingFile Set the VM backing file size to 1200 pages.
} Pilotswitches.|argeAnonymousBackingFile Set the VM backing file size to 1800 pages.
) PilotSwitches.heapChecking Turn checking on for the system zones.
? pilotswitches.debuggingOnUtilityPilot (No longer supported)
[PilotSwitchesExtras.useTinyHeap Create a tiny system heap, with tiny
increment values.
% PilotSwitchesExtras.useStdHeap Create a medium-size system heap, with
medium-size increment values.
(This is the default.)
] PilotSwitchesExtras.uselLargeHeap Create a large system heap with large

increment values.

- more -

2-26

Pilot Programmer’s Manual

Table 2.1. Pilot Switches: Value, Name, and Meaning - continued

Value

Name

Meaning

PilotSwitchesExtraExtraExtraExtras.ignoreClockFailures

Inhibit ClockFailed signal from
being raised.

\200 | PilotSwitchesExtraExtraExtras.continueBootingifNoTime Inhibit 937 MP hang during booting
Server if invalid clock and no time server
available.
\330.. | PrilotswitchesExtras.CommunicationsSwitches

\337

\330 Data link layer control selector for
Ethernet medium.

\331 Enable rate controlled transmit in
Sequenced Packet Protocol.

\332 (Rate controlled transmit) Primary
routes off local net are T1 speed
links.

\333 (Rate controlled transmit) Primary
routes off local net are 64k bit links.

\334 Enable Sequenced Packet Protocol
parameter negotiation.

\335 Disable XNS protocol.

\336 Enable ISO 8073 Transport class
negotiation.

\337 Reserved for Communications
current and future use.

\350 | PilotSwitchesExtraé.useHeapForSmallGlobalFrames Allocate small global frames as
nodes from a heap.

\351 | PilotSwitchesExtra6.pcEmulationBank Control allocation of real memory
for PC Emulation.

\352 | pPilotSwitchesExtras.tinyDoveMemSizeTinyVMTinyDisplay | Simulate 640k bytes Dove memory
with 64 page VM Map, 15" display

\353 | pilotSwitchesExtras.tinyDoveMemSizeTinyVMBigDisplay | Simulate 640k bytes Dove memory
with 64 page VM Map, 19" display

\354 | pilotswitchesExtras.tinyDoveMemSizeMedVMTinyDisplay | Simulate 640k bytes Dove memory

{ with 128 page VM Map, 15" display

\355 | PilotSwitchesExtras.tinyDoveMemSizeMedVMBigDisplay | Simulate 640k bytes Dove memory
with 128 page VM Map, 19" display

\356 | pilotSwitchesExtras.tinyDoveMemSizeBigVMTinyDisplay | Simulate 640k bytes Dove memory
with 256 page VM Map, 15" display

\357 | pilotSwitchesExtras.tinyDoveMemSizeBigVMBigDisplay Simulate 640k bytes Dove memory
with 256 page VM Map, 19" display

\360 | pilotswitches.germExtendedErrorReports Display error code, global frame, and

pc on boot loader errors.

- more -

2-27

Environment

Table 2.1. Pilot Switches: Value, Name, and Meaning - continued

Value Name Meaning
\361 | PilotSwitchesExtras.ieeeLevelZeroPacketFormat (Not supported)
\362 | pilotSwitchesExtra5.bilingualReception (Not supported)
\363 | pilotSwitchesExtra5.bilingualTransmission (Not supported)

\364

pilotSwitchesExtras.remoteCallDebugger

Remote call debugger.

\365

pilotswitchesExtra7.verySmallAnonymousBackingFile

Set the VM backing file size to 325
pages.

\366

PilotSwitchesExtraExtras.saveDisplayPagesindexA

Save 48 pages of display memory.
Used in conjunction with \367,\372,
and \373.

\367

PilotSwitchesExtraExtras.saveDisplayPagesindexB

Save 64 pages of display memory.
Used in conjunction with \366,\372,
and \373.

\370

PilotSwitchesExtras.bypassDebuggerSubstitute

Bypass the debugger substitute by
going to the real debugger.

\371 | pilotSwitchesExtras.makeCodeOnePageSwapUnits Tile code with one-page swap units.

\372 | pilotSwitchesExtras.useSpecialMemory Give display memory to Pilot for
client use.

\373 | pilotswitchesExtras.useSpecialMemorylfNoDisplay Give displﬁy memory to Pilot for
client use if no bitmap display.

\374 | pilotswitches.heapParamsFromClient (No longer supported)

\375 | rilotswitches.fillMaplLog (No longer supported)

\376 | pilotSwitches.eatGerm Delete boot loader so the memory

that it-uses can be recycled.

2-28

-end -

In addition to retaining the above semantics, VM Backing File switches work in

combination, as shown in Table 2.2.

Table 2.2. VM Backing File Switch Combinations

Switch Meanin

{ | } (dn = down)

dn - - Set the VM backing file size to 550 pages
- dn - Set the VM backing file size to 1200 pages
- - dn Set the VM backing file size to 1800 pages
dn dn - Set the VM backing file size to 2500 pages
dn - dn Set the VM backing file size to 3500 pages
- dn dn Set the VM backing file size to 5000 pages
dn dn dn Set the VM backing file size to 7000 pages
\365 Set the VM backing file size to 325 pages

Pilot Programmer’s Manual 2

Many Pilot boot switches are of interest only to the Pilot implementors themselves. Three
such switches are listed below.

& Hang with a maintenance panel code 936 in lieu of going to the debugger.

0 Go to debugger as early as possible in Pilot initialization.

To use the 0 switch, you must have set debugger pointers in the boot file or be using an
Ethernet debugger. In some cases, the boot file may have to be built with
DebugPilot.bootmesaor Debugl{t‘i lityPilot.bootmesa.

1 Go to debugger as soon as all code is map-logged. (“"Key Stop 1”).

The debugger usually will not be able to set breakpoints in code until it has been map-
logged. Also, note that from the time the boot button is pushed until shortly after key stop
1 in the system being invoked by the boot button, only an Ethernet debugger may be used;
an attempt to use a local debugger will result in an MP code of 902.

The Pilot boot switches that are normally of interest to users are described below.

2 Go to debugger just before calling PilotClient.Run (*Key Stop 2).

This switch may be used to place breakpoints just before client code begins executing.

3 Simulate 192K memory size for a Dandelion with no display.
This switch is used for performance testing product software on large memory machines.
See also the “9” switch.

4 Initialize scratch memory pages to zero.

This switch puts zeros in all the scratch real memory that is provided behind “dead”
intervals, when they are page-faulted in or otherwise assumed to be read in. “Dead”
means virtual memory mapped “dead” or had space.Kill applied on it.

5 Go the the Ethernet for a debugger.

This switch instructs Pilot to go to the Ethernet when it needs a debugger. This
instruction supersedes the presence of an installed debugger on the attached disk and/or
debugger pointers which may have been set in the boot file.

6 Turn owner checking on for the system zones.
This switch causes Error{invalidNode] or [invalidOwner] to be called if the heap pointer is
NIL or if the creator of heap is not the caller of the heap operation, Heap.CheckOwner.

7 Disable map logging.

In order for the debugger to access the Pilot virtual memory, it must be aware of the
current mappings between virtual memory and backing storage. It does this by consulting
the virtual memory map log normally produced by Pilot.

Full map logging is the default case when Pilot is booted if there is a debugger present.
Full map logging includes occasionally going to the debugger to clean up the log. A
debugger is considered present if a debugger is installed on a volume of type one higher

2-29

Environment

2-30

than that of the boot file, or if debugger pointers have been set in the boot file, or if a
remote debugger is specified (boot switch “5”).

Boot switch “7” will cause Pilot to stop map logging when PilotClient.Run is called (at key
stop 2), thus increasing performance but seriously limiting the ability of the debugger to
diagnose problems.

8 Create a Pilot interrupt key watcher.

This switch instructs Pilot to call the debugger when the LOCK and both SHIFT keys are held
down and then the sTOP key is pressed. The debugger will report “Pilot Emergency
Interrupt.” Since the Pilot process doing the job runs at the highest priority, this feature
is useful for debugging Pilot itself and user input handlers. Do not attempt to Interpret
Call from the debugger back into the debuggee because of the high priority level involved.
The keytop name sTOP is for the American Level IV keyboard; consult the keyboard
mapping documentation for the equivalent key on other keyboards. Since the keys used
are on the standard keyboard, a system having only a character terminal attached cannot
access this feature.

9 Simulate 256K memory size for a Dandelion with display.

This switch is useful for performance testing product software on large memory machines.
See also the “3” switch.

< Pretend that no Ethernet 1 is attached to the system element.
= Do not initialize the Communication package at system start-up.
> Pretend that no Ethernet is attached to the system element.

The above three switches are of interest to Pilot communication implementors.

\365 Use a tiny data space backing storage cache.

{ Use a small data space backing storage cache.
| Use a medium data space backing storage cache.
} Use a large data space backing storage cache.

Pilot allocates a cache of file space to be used for backing storage for data spaces. (The file
space is allocated on the system volume.) If the size of this cache is too small for an
application’s needs, poor performance may result. The use of these switches allows the
explicit specification of the size of this cache. If no switches are given, then Pilot uses an
amount based on the size of the volume booted from. In the current version of Pilot, the
switches “{”, “|”, and “}” can be used singly or in conjunction to allocate various sizes of
backing file. See Table 2.2 for actual sizes.

A

Turn checking on for the system zones.

If this switch is set, then checking is turned on for system and system MDS heaps. This
switch aids in debugging heap errors, since Heap.Error{invalidNode] will be raised when
attempting to free a node from the wrong heap or to free random memory, and so forth.

[Create a tiny system heap, with tiny increment values.
% Create a medium-size system heap, with medium-size increment values.
1 Create a large system heap, with large increment values.

These switches control the size of the initial system heap. They are provided for those
clients that want to alter the standard setting. If “[” is set, then the system heap has an
initial value of 40, increment value of 4, and largeNodeThreshold value of 128. If “%” is

Pilot Programmer’s Manual 2

set, then the system heap has an initial value of 40, increment value of 20, and
largeNodeThreshold value of 260. Lastly, if “]” is set, then the system heap has an initial
value of 100, increment value of 50, and largeNodeThreshold value of 260. If no switches
are set, then the values for “%” are assumed.

Inhibit ClockFailed signal from being raised.

Pilot periodically checks to see if the time of day clock is running correctly. If it appears
that it is not, then the signal Systemextras.ClockFailed is raised. However, if the switch“.” is
down, then the signal is not raised.

\200 Inhibit 937 MP hang during booting .

This switch allows Pilot clients to bypass a 937 maintenance panel hang if the clock is
invalid and no time server is available. This switch can be dangerous. Any Pilot client
booted with \200 should verify the validity of the time. Pilot will set the clock to a value
near gmtEpoch if it could not reach a server and the clock was apparently invalid.

Switches \330 through \337 are communication switches. Descriptions of each follow.

\330 Data link layer control selector for Ethernet medium

If \330 is set, the Pup Protocol will use the “old style” packet type numbers which are
incompatible with standard IEEE 802.2 data link encapsulation. If this switch is set, the
OSI Protocol will use Ethernet encapsulation instead of IEEE 802.2 data link
encapsulation to avoid conflict. If the switch is not set (i.e., up), then the Pup Protocol will
use newly allocated Ethernet packet type values and the OSI Protocol will use 802.2 data
link encapsulation. This switch should never be used outside of Xerox.

\331 Enable rate controlled transmit in Sequenced Packet Protocol

If\331 is set, the transmission rate of SPP data packets will be moderated for all non-local
connections (at least one hop away). The intent is to avoid swamping the first router
which, in turn, may allow that router to support additional active streams. Unless one
of \332 or \333 is set, the assumption is made that the primary routes off the local net are
9.6k bit links.

\332 (Rate controlled transmit) Primary routes off local net are T1 speed links

This switch is meaningful only if the \331 switch is set. The \332 switch should be set if the
primary routes off the local net are T1 speed links. If this switch is set, the \333 switch
must not be set.

\333 (Rate controlled transmit) Primary routes off local net are 64k bit links

This switch is meaningful only if the \331 switch is set. The \333 switch should be set if the
primary routes off the local net are 64k bit links. If this switch is set, the \332 switch must
not be set.

\334 Enable Sequenced Packet Protocol parameter negotiation

Normally, the Sequenced Packet Protocol does not request parameter negotiation for the
underlying network stream. If \334 is set, SPP will request parameter negotiation at
connection establishment time.

2-31

Environment

2-32

\335 Disable XNS protocol

The XNS Protocol is autornatically started during Pilot Communication initialization.
If\335 is set, then the XN'S Protocol will not be started.

\336 Enable ISO 8073 Transport class negotiation

Normally, class negotiation is disabled and the preferred class is the lowest acceptable
class for the underlying network service. If\336 is set, the class will be negotiated and the
preferred class will be the highest class implemented.

\337 Reserved for Communications current and future use.

\350 Allocate small global frames as nodes from a heap.

If \350 is set, then packaged global frames will be allocated from a heap, resulting in
significant savings of MDS space for “old” style ‘non-mds-relieved’ modules or modules
packaged with the ‘old’ modules. Otherwise MDS space is lost in the overhead of “page
breakage” when allocating the global frames as a swapUnit (i.e., an integral number of
pages) as guaranteed by the packager.

\351 Control allocation of real memory for PC Emulation.

If\351 is set, and if the type of Pilot being run is UtilityPilot, then real memory is provided
for PC Emulation. If the switch is down and the type of Pilot being run is Pilot, then no
real memory is provided for PC Emulation. If the switch is up, and if the type of Pilot being
run is UtilityPilot, then real memory is not provided for PC Emulation. If the switch is up
and the type of Pilot being run is Pilot, then real memory is provided for PC Emulation.
This switch is defined in this way so that in the default case (no switches set), PC
emulation is available in Pilot (assuming that the hardware supports it) and not available
in UtilityPilot.

\352 Simulate 640k bytes Dove memory with 64 page VM Map, 15” display
\353 Simulate 640k bytes Dove memory with 64 page VM Map, 19” display
\354 Simulate 640k bytes Dove memory with 128 page VM Map, 15” display
\355 Simulate 640k bytes Dove memory with 128 page VM Map, 19” display
\356 Simulate 640k bytes Dove memory with 256 page VM Map, 15” display
\357 Simulate 640k bytes Dove memory with 256 page VM Map, 19” display

These switches simulate a Dove machine with 640k bytes of real memory, a 15" or 19"
display, a 22-bit, 23-bit, or 24-bit virtual address space. If\352 is set, then a 64 page VM
Map with a 15" display is sirnulated. If\353 is set, a 64 page VM Map with a 19" display is
simulated. If\354 is set, then a 128 page VM Map with a 15" display is simulated. If \355
is set, a 128 page VM Map with a 19" display is simulated. If \356 is set, a 256 page VM
Map with a 15" display is simulated. If\357 is set, a 256 page VM Map with a 19" display
is simulated.

\360 Display error code, global frame, and pc on boot loader errors.

If this switch is set, then upon boot loader errors the maintenance panel will cycle
numbers representing the error code, global frames,and pcs of the error stack.

\361 Use IEEE 802.2 Logical Link Layer protocol.
\362 Use bilingual reception.

Pilot Programmer’s Manual 2

\363 Use bilingual transmission.

If\361 is set, then Ethernet packets will be transmitted using IEEE 802.2 Logical Link
Layer protocol. If\362 is set, packets will be accepted from the Ethernet in either IEEE
802.2 Logical Link Layer or Ethernet version 1.0 format. If \363 is set, the machine will
transmit packets to hosts in the format that the receiver desires. \363 overrides the
setting of \361.

Note: None of the switches described in the previous paragraph have been implemented.

\364 Remote call debugger.

If\364 is set, then the machine can be forced into the debugger by a suitable message from
a remote machine. This facility is intended to allow forcing machines into the debugger
that have no convenient means of doing so from their user interface; for example, server
machines or machines whose user interface is otherwise “locked up.”

\365 Set the VM backing file size to 325 pages.

Pilot allocates a cache of file space to be used for backing storage for data spaces. This
switch sets the size of this cache to the minimum size. See Table 2.2 for other backing file
switch settings.

\366 Save 48 pages of display memory. Used in conjunction with \367, \372,
and \373.

\367 Save 64 pages of display memory. Used in conjunction with \366, \372,
and \373.

When boot switches \372 or \373 are set, the amount of reserved display memory to give
back to Pilot for client use is selected by switches \366 and \367. If neither \366 or \367 is
down, but either \372 or \373 is down, then all display memory is given to Pilot for client
use. \366 will reserve 48 pages; \367 will reserve 64 pages, and both reserve 128 pages of
display bank reserved memory.

\370 Bypass the debugger substitute by going to the real debugger.

This switch setting will expect a real debugger (rather than a debugger substitute) after
displaying MP codes.

\371 Tile code with one-page swap units.

This switch maps all swappable spaces that were created by MakeBoot (so are part of the
bootfile) with one page swap units.

\372 Give display memory to Pilot for client use.
\373 Give display memory to Pilot for client use if no bitmap display.

When booting with either \372 or \373, the entire real memory reserved for bitmap
displays is made available to Pilot for client use. (On Dandelions, the size of reserved
display memory is 256 pages). The only difference between using the two switches is
that \373 first checks if a bitmap display is enabled before giving up the reserved
memory; \372 performs no such checking. Either of these switches used in conjunction
with \368, \367, or both, makes available to Pilot different ratios of reserved display
memory. See explanations for \366 and \367 for more details. (Note: these switches
should be used only with configurations that have no display or no bitmap display (i.e.,
Lear Siegler ttys).

2-33

Environment

\376 Delete boot loader so that the memory that it uses can be recycled.

If this switch is used, then the debugger will be inaccessible. In addition, the system will
be unable to perform software-initiated boots of logical volumes. The only booting action
available will be a boot-button boot (which may be initiated by software).

2.4 Mesa run-time support

2-34

This section describes low-level facilities used to support the execution of Mesa programs:
operations to support the Mesa process mechanism; facilities relating to Mesa program
modules; traps, signals, and errors which may be generated by a Mesa program during
execution; and finally, some miscellaneous interfaces.

2.4.1 Processes and monitors

Process: DEFINITIONS .. . ;

Most aspects of processes and monitors are made available via constructs in the Mesa
language and are described in the Mesa Language Manual. Some operations whose
frequency of use does not justify such treatment are cast as procedures.

When a process is FORKed, it is called a live process. When it has been 0INed or when it has
been detached and its root procedure has returned, it is called a dead process. Programs
must take care not to use or retain copies of the PROCESS of a dead process. Since Pilot may
reuse PROCESSes, any operation performed on the PROCESS of a dead process may mistakenly
operate on a different process than the one intended, with unpredictable results.

Most of the operations which take a PROCESS as an argument (JOIN, Process.Abort, and
Process.Detach) may generate the following signal:

Process.InvalidProcess: ERROR [process: PROCESS];

This signal indicates that the argument is not a live process.

The argument of InvalidProcess is actually of type UNSPECIFIED. This type is necessary since
no generic type includes all PROCESS types, independent of their result types. The same is
true of all arguments and results discussed in this section that would otherwise be of type
PROCESS.

A PROCESS can be checked for validity by the operation

Process.ValidateProcess: PROCEDURE [UNSPECIFIED]

If the argument does not represent a live process, then Process.InvalidProcess is raised.
Otherwise, this operation just returns.

Caution: Since Pilot may reuse PROCESSes, ValidateProcess applied to the PROCESS of a
dead process may not raise InvalidProcess. Such a dangling reference will appear
legitimate to ValidateProcess, but is almost certain to cause trouble for any client program
that makes use of it.

2.4.1.1 Initializing monitors and condition variables

Every monitor lock and every condition variable must be initialized before it can be used.
There are three cases:

Pilot Programmer’s Manual ‘ 2

e Any monitor lock or condition variable residing in a global frame will be initialized
automatically when the program is sTARTed. Any monitor lock or condition variable
residing in a local frame will be initialized automatically when the procedure is
entered.

e Any monitor lock or condition variable allocated dynamically by the NEw operator
(from an uncounted zone or MDS zone) will be initialized automatically upon
allocation.

e Any monitor lock or condition variable allocated dynamically by other than the New
operator must be initialized by the programmer using the facilities described below.

Caution: Using uninitialized monitor locks or condition variables, or reinitializing
monitor locks or condition variables once they are in use, will lead to totally unpredictable
behavior.

The following operations are provided for initializing monitor locks and condition
variables which are allocated dynamically by other than the NEw operator.

Process.InitializeMonitor: PROCEDURE [monitor: LONG POINTER TO MONITORLOCK];

InitializeMonitor sets the monitor unlocked and the queue of waiting processes to empty.
It may be called before or after the monitor data is initialized, but must be called before
any entry procedure is invoked., Once use of the monitor has begun, the monitor must
never be initialized again.

pProcess.nitializeCondition: PROCEDURE[cOoNdition: LONG POINTER TO CONDITION,
ticks: Process.Ticks];

Process.Ticks: TYPE = CARDINAL;

InitializeCondition sets the queue of waiting processes to empty and the timeout interval
of the condition variable to the specified value, in units of “ticks” of the process timer
clock. It may be called before or after the other monitor data is initialized, but must be
called before any WAIT or NOTIFY operations are performed on the condition variable. Once
use of the condition variable has begun, the condition variable must never be initialized
again.

Clients may convert process timer ticks to or from milliseconds using the following
operations.

Process.Milliseconds: TYPE = CARDINAL;
Process.MsecToTicks: PROCEDURE [Process.Milliseconds] RETURNS [Process. Ticks];
Process. TicksToMsec: PROCEDURE [ticks: Process.Ticks]
RETURNS [Process.Milliseconds];
Long timeout intervals may be set by the operation
Process.Seconds: TYPE = CARDINAL;

Process.SecondsToTicks: PROCEDURE [Process.Seconds]
RETURNS [Process.Ticks];

2-35

Environment

2-36

Caution: Because of the limited range of the process timer, the maximum timeout that
may be set is about 980 seconds (16 minutes).

2.4.1.2 Timeouts

Condition variables that are initialized automatically do not time out. The timeout of any
condition variable may be changed by the operation

Process.SetTimeout: PROCEDURE
[condition: LONG POINTER TO CONDITION, ticks: Process.Ticks];

The given timeout interval will be effective for all subsequent WAIT operations applied to
the condition variable. This operation will not affect the timeout interval of any processes
currently waiting on the condition variable.

Process.DisableTimeout: PROCEDURE [LONG POINTER TO CONDITION];

DisableTimeout sets the timeout interval for the condition variable to infinity. That is, a
process waiting on the condition variable will never time out. This will be effective for all
subsequent WAIT operations applied to that condition variable. This operation will not
affect the timeout interval of any processes currently waiting on the condition variable.

SetTimeout and DisableTimeout are the only operations that may be used to adjust the
timeout interval of a condition variable once it has been used. In particular,
InitializeCondition must not, be used for this purpose.

Caution: Since the Mesa processor reserves some distinguished values of Ticks for special
purposes, the timeout interval of a condition variable should not be set via the Mesa
construct:

condition.timeout - ticks. --WRONG!

2.4.1.3 Forking processes

The number of co-existing processes allowed by Pilot is limited. Attempts to fork too many
processes will result in the error

Process. TooManyProcesses: ERROR;
This error may be caught by a catch phrase on the FORK or by a catch phrase in some

enclosing context.

The maximum number of coexisting processes is specified to MakeBoot when building a
boot file. See the Mesa User's Guide for details.

A process which is FORKed but will never be JoINed should be detached using the operation
Pracess.Detach: PROCEDURE [PROCESS];

This operation conditions the process such that when it returns from its root procedure, it
will be deleted immediately.

Caution: Note that a variable of type PROCESS does not return results. If the root
procedure of a process does return results, then it will be necessary to loophole the
parameter to Detach. In those cases, care should be exercised because if the results
returned take more than 12 words of storage, then the storage that contains the results (a

Pilot Programmer’s Manual 2

local frame) will be discarded and the space will never be recovered. If there are 12 or less
words of results, then the results will be discarded and the storage recovered.

A process may determine its own identity by invoking

Process.GetCurrent: PROCEDURE RETURNS [PROCESS];

2.4.1.4 Priorities of processes
When a process is created with FORK, it inherits the priority of the forking process. A
process may change its own priority with the SetPriority operation.
Pracess.SetPriority: PROCEDURE [Process.Priority];

Process.priorityBackground: READONLY Process.Priority;
Process.priorityNormal: READONLY Process.Priority;
Process.priorityForeground: READONLY Process.Priority;

Process.Priority: TYPE = [0..7];

Larger values of Priority correspond to higher priorities. Implementation restrictions
make it necessary to limit ordinary client processes to three priority levels, defined via
exported variables, which are listed above in order of increasing priority. SetPriority
should only be given one of these three constants (or a value previously obtained from
GetPriority, which will be equal to one of these constants).

If it is desired to fork a process which runs immediately at a higher priority than the
parent process, the parent can set its own priority to the higher level, fork the new process,
and then restore its own priority.

A process may determine its own priority by calling

Process.GetPriority: PROCEDURE RETURNS [Process.Priority];

2.4.1.5 Aborting a process

A process can be aborted by calling the operation
Process.Abort: PROCEDURE [process: UNSPECIFIED];

The effect of this operation is to generate the error ABORTED the next time the process WAITs
on any condition variable which has aborts enabled. If the process is already waiting, then
the error is generated immediately.

ABORTED may be caught by a catch phrase on the waiT, or by a catch phrase in an enclosing
context. The catch phrase is executed with the corresponding monitor locked.

Abort provides a means whereby one process may request of another that the latter should
stop what it is doing. An ABORTED signal may oceur on any condition variable which has
aborts enabled, and thus every monitor should either be protected by some catch phrase for
it, or contain no condition variables which have aborts enabled.

A pending abort may be canceled by calling the operation

Process.Cancel Abort: PROCEDURE [process: UNSPECIFIED];

2-37

Environment

2-38

A process may discover if there is an abort pending for it by the operation

Process.AbortPending: PROCEDURE (] RETURNS [abortPending: BOOLEAN];

When a condition variable is initialized, it has aborts disabled. A condition variable may
be set to allow aborts by the operation

Process.EnableAborts: PROCEDURE [LONG POINTER TO CONDITION];

If a process with an abort pending is currently waiting on the condition variable, then
EnableAborts will have no immediate effect on it. However, if the process times out or is
NOTIFYed, it will be aborted at that time.

It is sometimes desirable to avoid aborts while waiting on a given condition variable. This
may be effected by using

Process.DisableAborts: PROCEDURE [LONG POINTER TO CONDITION];

Condition variables are initialized to have aborts disabled. If a process with an abort
pending waits or is waiting on a condition variable, then the abort will be delayed until
the process WAITs on some other condition variable which has aborts enabled.

A process can be suspended for a specified number of ticks with the operation
Process.Pause: PROCEDURE [ticks: Process.Ticks];

Pause waits with aborts enabled, and so may raise the error ABORTED. Note that monitor
locks of the caller are not released during the pause.

The Mesa process mechanism does not attempt to allocate processor time fairly among
processes of equal priority. A process itself will yield the processor to other processes of
equal priority whenever it faults, Pauses or WAITs. If a process does these things only
rarely, it may be desirable for it to occasionally yield control of the processor by calling

Process.Yield: PROCEDURE;

This operation places the calling process at the rear of the queue of ready-to-run processes
of the same priority. Thus, all other ready processes of the same priority will run before
the calling process next runs. Note, however, that these other processes may make
arbitrarily little progress due to page faults, etc.

The logical correctness of client programs must not depend on the presence or absence of
calls to Yield. Priorities and yielding are not intended as a process-synchronization
mechanism. They are only provided to assist in meeting performance requirements.

2.4.2 Programs and configurations

Runtime: DEFINITIONS . . . ;

Programs may be validated by
Runtime.ValidateGlobalFrame: PROCEDURE [frame: Runtime.GenericProgram];

Runtime.GenericProgram: TYPE = LONG UNSPECIFIED;

Pilot Programmer’s Manual 2

Runtime.InvalidGlobalFrame: eRROR [frame: Runtime.GenericProgram];

If frame is not valid, then InvalidGlobalFrame is raised. frame may be either a PROGRAM or
a LONG POINTER TO FRAME[< program >]. Normal usage requires a LOOPHOLE.

Pointers to procedure activation records (local frames) may be validated by
Runtime.ValidateFrame: PROCEDURE [frame: UNSPECIFIED];
Runtime.invalidFrame: ERROR [frame: UNSPECIFIED];

If frame is definitely not valid, then InvalidFrame is raised. frame should be a POINTER TO
FRAME[< procedure>]). The checking done by ValidateFrame only verifies that frame
looks like a valid local frame; it cannot verify that it actually is a valid local frame.

Runtime.nullProgram: PROGRAM = NIL;

For backwards compatiblity, a null PROGRAM constant is provided. New client code should
just use NIL.

The PROGRAM containing a PROCEDURE can be obtained using
Runtime.GlobalFrame: PROCEDURE [link: Runtime.ControiLink] RETURNS [PROGRAM];
Runtime.ControlLink: TYPE = LONG UNSPECIFIED;

ControiLink may be any PROCEDURE. Normal usage requires a LOOPHOLE. If link is an
unbound procedure, Runtime.UnboundProcedure is raised. Runtime.lnvalidGlobalFrame
may also be raised.

A program which was created by NEw < program> may be deleted using
Runtime.UnNew: PROCEDURE [frame: PROGRAM];

UnNew deletes the program and reclaims its storage. All items which were exported by
the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them. If
frame is not valid, then Runtime.InvalidGlobalFrame is raised. If the program was not
created by NEW < program >, then the debugger is called.

Caution: When a program is UnNewed, no processes can be executing procedures in the
program or expecting to return to procedures in it. Failure to observe this rule will lead to
unpredictable behavior.

Since UnNew may not be used while any processes are using a program, it is not possible
for a process to UnNew the program in which it is currently executing. Since this is
occasionally desirable, a special operation is provided.

Runtime.SelfDestruct: PROCEDURE;

SelfDestruct deletes the program that invokes it and then returns, with no resuits, to the
first enclosing context which is not in the deleted program. All items which were exported
by the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them. If
the program was not created by NEw <program >, then the debugger is called.

2-39

Environment

2-40

Caution: Since SelfDestruct effects a RETURN without results to the first enclosing context
which is not in the deleted program, the procedure which was called from that context
must be declared as having no results; otherwise a stack error will occur.

Caution: When a program is SelfDestructed, no other processes can be executing
procedures in the program or expecting to return to procedures in it. Failure to observe
this rule will lead to unpredictable behavior.

The following operations are used to load configurations and programs. They are
implemented by the object file Loader . bed.

Runtime.RunConfig: PROCEDURE [
file: rile.File, offset: File.PageCount, codeLinks: BOOLEAN « FALSE];

Runtime.LoadConfig: PROCEDURE [
file: rile.File, offset: File.PageCount, codeLinks: BOOLEAN « FALSE]
RETURNS [PROGRAM];

Runtime.NewConfig: PROCEDURE [
file: rile.File, offset: rile.PageCount, codeLinks: BOOLEAN « FALSE];

Runtime.ConfigError: ERROR [type: Runtime.ConfigErrorTypel;

Runtime.ConfigErrorType: TYPE = { _
badCode, exportedTypeClash, invalidConfig, missingCode, unknown};

Runtime.VersionMismatch: siGNAL [module: LONG STRING];

These operations load a configuration or program from the object file contained in file
starting at page offset of the file. offset enables one to skip leader pages, pack many object
files into one, etc. Each program in the object file will be loaded with code links if (1)
codeLinks = TRUE, and (2) the object file is a configuration, and (3) the program or a
configuration containing the program specified LINKS: CODE, and (4) a configuration
containing that configuration or program was packaged, or bound specifying code copying.
If a program is loaded with code links, its links are written into the object file.

The three operations differ as follows. LoadConfig loads the object file and returns a
PROGRAM. The PROGRAM is used to start the object file. If the object file is a configuration,
PROGRAM is one of the configuration’s control programs (= NiL if the configuration has no
control programs); if the object file is not a configuration, then PROGRAM is the program
itself. A subsequent START <program> will initialize the loaded programs (note that
START NIL is a no-operation). RunConfig both loads and starts the object file. NewConfig
loads the object file and throws away the PROGRAM, thus preventing it from being explicitly
started. Using NewConfig is only appropriate if the configuration does not require
initialization; its use is not recommended.

If an object file being loacded imports an interface item and several instances of that
interface item are being exported by already-loaded objects files, then the import is bound
to the most-recently loaded instance of the interface item. If an object file being loaded
imports an interface item which it itself exports, the import is bound to the one it exports.

If the object file being loaded imports or exports a version of a program which differs from
a version exported or imported by already-loaded files, then Runtime.VersionMismatch is
raised, passing the name of the offending program. Resuming this signal allows loading to
proceed; the imported items with mismatched versions remain unbound. The signal is
raised once for each mismatch encountered.

Pilot Programmer’s Manual 2

Note: If VersionMismatch is resumed, the system will be exporting two different versions
of various programs. Object files loaded subsequently which import these programs may
get VersionMismatch against the “bad” version; however, if the signal is resumed and the
correct version is found, the desired binding will be done.

If the code for any of the programs is not contained in the object file (typically because a
configuration was not bound with code copying), then Runtime.ConfigError[missingCode] is
raised. If the object file exports a Tyre that differs from that exported by an already loaded
program, then Runtime.ConfigError[exportedTypeClash] is raised. If any program in the
object file is loaded with code links but the volume containing file is read-only, then
volume.ReadOnly is raised. If the object file contains a definitions module, is not
compatible with the current version of Mesa, or is not an object file at all, then
Runtime.ConfigError[invalidConfig] is raised. If the object file is not completely contained
in the file, then Space.Error[noWindow] is raised. Any of the errors raised by Space.Map
may also be raised. ConfigErrorTypes of badCode and unknown are not used at present.

Caution: If a program in the boot file imports an item which is satisfied by a
configuration which is loaded at run-time, the importing program must have frame links.
If this rule is not followed, then the link to the imported item will be written into the boot
file and will be a dangling reference when the boot file is invoked at later times.

A object file which was loaded at run-time may be unloaded by
Runtime.UnNewConfig: PROCEDURE [link: Runtime.ControlLink};

UnNewConfig unloads the dynamically-loaded object file associated with link. link may
be any PROCEDURE or PROGRAM in the object file. UnNewConfig frees the storage of all
PROGRAMS of the object file, and unmaps and deallocates the virtual memory containing its
code. All items that were bound to the object file are reset to unbound.

Caution: When an object file is UnNewConfiged, no processes can be executing
procedures in programs of the object file or expecting to return to procedures in them.
Failure to observe this rule will lead to unpredictable behavior.

The time at which the currently running boot file was built by MakeBoot is returned by

Runtime.GetBuildTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

The time at which a configuration was bound is returned by
Runtime.GetBcdTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

This operation returns the bind or compile time of the outermost configuration containing
the caller of GetBcdTime. If there are no containing configurations, GetBcdTime returns
the compile time of the caller.

The next two operations are useful for debugging and determining what has been loaded.
Runtime.GetCaller: PROCEDURE RETURNS [PROGRAM];

GetCaller returns the PROGRAM that called the client’s PROGRAM. More precisely, it returns
the PROGRAM of the innermost enclosing context which is outside the PROGRAM that
contains the procedure called GetCaller.

2-41

Environment

2-42

RuntimeJsBound: PROCEDURE [link: Runtime.ControiLink] RETURNS [BOOLEAN];

IsBound returns TRUE if the imported procedure link is bound (i.e., if link is being exported.
Normal usage requires a LOOPHOLE. link may also be a pointer to an imported variable or
an imported PROGRAM.

Caution: Unexpected results can be experienced using code links, run-time loading and
IsBound. In particular, if a program in the boot file is loaded with code links and imports
an item which is satisfied by a configuration which is loaded at run-time, then the
program will have links which appear to be bound but are actually left over from a
previous boot session. Boot file importers of unbound items should be bound with frarme
links.

A pointer to the data portion of a program compiled with the Table Compiler is returned
by
Runtime.GetTableBase: PROCEDURE [frame: PROGRAM] RETURNS [LONG POINTER];

GetTableBase may raise Runtime.InvalidGlobaiFrame.

2.4.3 Traps and signals

Programming errors and other errors encountered by Mesa programs result in signals or
errors. The first five errors described below are related to specific language features and
are described in more detail in the Mesa Language Manual.

Runtime.StartFault: ERROR [dast: PROGRAM];

StartFault is raised if dest was STARTed but it had been started previously (perhaps by a
start trap), or if dest was RESTARTed but it had not sTOPped.

Note: If a program does START <program> but program is not valid, then
Runtime.lnvalidGlobalFrame is raised. This error occurs when program is an unbound
import.

Runtime.ControlFault: ERROR [source: Runtime.Controilink] ;

ControlFault is raised if a program attempts to transfer to a null control link while
executing in the local frame denoted by source. This error passes the control link that was
used. In the current version of Mesa, ControlFault may be raised on an attempt to call an
unbound PROCEDURE (instead of UnboundProcedure).

Runtime.UnboundProcedure: ERROR [dest: Runtime.Controilink];

UnboundProcedure is raised if a program attempts to call an unbound PROCEDURE. This
error passes the PROCEDURE that was called.

Caution: In the current version of Mesa, ControlFault may be raised instead of
UnboundProcedure. '

Runtime.LinkageFault: ERROR;

A transfer has been attempted through a port that has not been connected to some other
port or procedure (the link field of the port was NiL).

Pilot Programmer’s Manual 2

Runtime.POrtFault: ERROR;

A transfer has been attempted to a port which is not pending (the frame field of the
destination port is NiL). This error is used to handle the transients normally occurring
while initializing coroutines.

BoundsFault: SIGNAL;

A value being assigned to a subrange variable or being used in an indexing operation was
out of range. This signal may also be raised if an attempt is made to assign a signed value
to an unsigned variable and vice versa. This signal is only raised by programs which have
been compiled specifying bounds checking. RESUMEing this signal will allow the program
to use the illegal value, with unpredictable results.

NarrowFault: ERROR;

An attempt was made to use the NARROW operator on a value x to make it of TYPE T, but the
type of the value of x was some other. For example, an attempt was made to narrow a
(pointer to a) variant record to a (pointer to a) specific variant, but the value of x was some
other variant.

PointerFauit: SIGNAL;

An attempt has been made to dereference a NiL pointer. This signal is only raised by
programs which have been compiled specifying nil checking. RESUMEing this signal will
use the NIL value, almost invariably causing an immediate address fault.

Note: Pilot leaves virtual address NiwLT and LONG NiLT unmapped. Attempts to
dereference a NiL pointer will usually cause an address fault.

Runtime.ZeroDivisor: SIGNAL;

An attempt was made to divide by zero. If this signal is RESUMEd, the result of the divide
operation is undefined. '

Runtime.DivideCheck: SIGNAL;

An attempt was made to perform a division involving LONG operand(s) whose result could
not be expressed in a single word. If this signal is RESUMEd, the result of the divide
operation is undefined.

2.4.4 Calling the debugger or backstop

A program can explicitly invoke the debugger or backstop by calling
Runtime.CallDebugger: PROCEDURE [LONG STRING];

Client program execution is suspended. The debugger prints the string provided and
awaits user commands. A Proceed command resumes client program execution after the
call to CallDebugger. (If continuing execution at this point is not reasonable, the call to
CallDebugger should be placed inside a non-terminating loop.)

2-43

Environment

A program may also invoke the debugger or backstop by calling
Runtime.lnterrupt: PROCEDURE;
The debugger prints “*** Interrupt ***” and awaits user commands. Interrupt is typically

called by a user input handling process in response to some user action such as typing a
special keyboard key.

2.5 Client startup

PilotClient: DEFINITIONS ;

Pilot imports precisely one client interface, called PilotClient. The PilotClient interface is
defined as follows:

PilotClient: DEFINITIONS =
BEGIN
Run: PROCEDURE {];
END.

The client configuration must export a PROCEDURE called PilotClient.Run. Pilot initializes
itself and without explicitly STARTing any client programs calls Run, the first client
procedure, as follows:

Process.SetPriority[Process.priorityNormal];
Process.Detach(FORK pilotClient.Run(]];

This procedure causes a start trap within the program containing Run, and thus starts the
control module(s) of the containing configuration, if any. Run is responsible for loading
and starting all client programs, creating spaces, forking processes, etc. It may freely use
the Mesa NEW statement, refer to any known file, and use any facility of Pilot. It may or
may not have a user interface, depending upon the application it implements.

2.6 Coordinating subsystems’ acquisition of resources

2-44

Supervisor: DEFINITIONS . . . ;
SupervisorEventindex: DEFINITIONS . . . ;

The Supervisor interface provides a facility for notifying interested clients of events which
typically have a fairly widespread impact. The Supervisor can be used for managing the
orderly acquisition and release of shared resources such as a file, a removable volume, or,
in the case of restarting the machine from a restart file, the entire processor. The
Supervisor facility has some similarities to the Ethernet, in that it provides a way to
broadcast information (within a single processor) to an expandable collection of interested
client software.

The Supervisor accommodates a model of the entire client system as a collection of
subsystems which depend on some basic resource. To handle this model, the Supervisor
maintains a database which describes dependency relationships and provides a way to
invoke the subsystems in a clients-first or implementors-first order.

Consider the event where a user indicates that he wants to withdraw a removable volume
from a system element. The subsystems which are using the volume must release it in an

Pilot Programmer’s Manual 2

orderly manner. Since the volume typically will be used by lower-level subsystems to
build higher-level abstractions for its clients, the higher-level abstractions must also be
released, and indeed must be released before the lower-level subsystem may release the
volume. Thus, the releasing of a volume should normally proceed in a clients-first order.
Similarly, when a volume is added to a system, the subsystems which would like to use it
should acquire it in an orderly manner, typically implementing subsystems first.

Events for which the Supervisor may be useful include:
® Making a restart file.

Restarting the system element from a restart file.
Removing or adding a physical or logical volume.

Turning power off (possibly with Automatic Power On enabled).

The appearance/disappearance of some service or resource on this or another system
element.

The implementation module is SupervisorImpl.bcd.

2.6.1 Use of the Supervisor

Each subsystem should obtain a subsystem handle from the Supervisor and export it to its
clients. The handles are used by clients to declare to the Supervisor which subsystems
they depend on. Each subsystem also registers an agent procedure. When an interesting
event happens, the Supervisor is invoked to notify, in proper order, the agent procedures of
all subsystems, informing them of the event. Upon return from this enumeration, all
subsystems will have been notified of the event.

Since several lowest-level subsystems may use the same basic resource, the event of
releasing a resource might be organized as follows: the enumeration would have each
subsystem release its use of the resource, and then the caller of the enumeration would
actually release the basic resource.

On the other hand, acquisition of a new resource is slightly different. The enumeration
would declare the availability of a new resource. The lowest level subsystems might
implement some higher-level resource on it, and then that subsystem’s clients could
interrogate it for the new resources when their agent procedures were called.

For example, in the event of removing a physical volume from the system element, the
agent procedure for a subsystem might perform the following actions:

1. Put the subsystem’s processes to sleep or into some quiescent state;

2. Browse through the subsystem’s database and locate any objects which were built
upon files residing on the physical volume to be removed; this step may well involve
calls to some lower-level subsystems to determine the physical location of their
objects;

3. Delete or otherwise make inactive any objects based on these files and update the
database accordingly;

4. Reawaken its processes;

5. Return.

2-45

Environment

2-46

The enumeration of subsystems is typically invoked from a very high level, not from
within a monitor implementing a resource which is acquired or released.

2.6.2 Supervisor facilities

An Event is a value that names a particular event in which some subsystems may be
interested.

Supervisor.Event: TYPE = RECORD [eventindex: Supervisor.Eventindex];
Supervisor.Eventindex: TYPE = CARDINAL;
Supervisor.nullEvent: Supervisor.Event s Supervisor.Event[LAST[Supervisor.Eventindex]];

The domain of Event is shared by all of the Supervisor’s clients, who therefore must agree
on the meaning of the values. If some software that uses events runs in several disparate
systems (e.g., ViewPoint and XDE), then those systems must agree on the values of the
events which are common to both systems. In this case, a common definitions module,
SupervisorEventindex, defines subdomains for those events common to each system and
subdomains for those events unique to each system. Also disallowed is the defining of one
element of Event to correspond to more than one event. That is, catch-all Events are not
allowed.

The basic structure of the SupervisorEventindex interface is a set of subrange definitions. The
following ranges are defined.

SupervisorEventindex.Eventindex: TYPE s Supervisor.Eventindex;
SupervisorEventindex.MesaEventindex: TYPE = CARDINAL[0..1024];
SupervisorEventindex.CommonSoftwareEventindex: TYPE = CARDINAL [1024..1280];

MesaEventindexes are used by Mesa source and object files.
CommonSoftwareEventindexes are used by product common software.

Note: Each client of SupervisorEventindex interface should maintain an interface which
defines the Events in its subrange.

Each software component or subsystem which is interested in events should register an
AgentProcedure, which will be called when events occur.

Supervisor.AgentProcedure: TYPE = PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, instanceData: LONG POINTER TO UNSPECIFIED];

supervisor.nullAgentProcedure: supervisor.AgentProcedure = NiL;

When an agent procedure is called, it should first examine event, and ignore those which
it does not recognize or care about. The agent procedure may use facilities upon which it
depends (see DependsOn below). eventData is supplied by the software that caused the
notification of the event, and its interpretation depends on event. eventData might be
declared as

eventData: LONG POINTER TO RECORD [SELECT COMPUTED event.eventindex FROM . . . ENDCASE];
instanceData is supplied when the agent procedure is declared to the Supervisor, and may

be used to convey to the agent procedure any data necessary for a particular instance of its
parent program. An AgentProcedure of NIL may be used for subsystems which do not wish

Pilot Programmer’s Manual 2

to have an associated agent procedure. For backwards compatiblity, a null
AgentProcedure constant is provided. New client code should just use NiL.

The client's AgentProcedure must not call back into the Supervisor, either directly or
indirectly, as this will cause the containing process to hang on a monitor lock.

To participate in the event mechanism, each implementing subsystem must register itself
with the Supervisor. When it does, the Supervisor returns a SubsystemHandle, which is
used to identify the subsystem to the Supervisor and to the subsystem’s clients.

Supervisor.SubsystemHandle: Tvpe [1];
Supervisor.nullSubsystem: READONLY Supervisor.SubsystemHandle;

Supervisor.CreateSubsystem: PROCEDURE [agent: Supervisor.AgentProcedure « NiL,
instanceData: LONG POINTER TO UNSPECIFIED < NiL]
RETURNS [handle: supervisor.SubsystemHandle];

CreateSubsystem creates a new subsystem object and causes an agent procedure and a set
of instance data to be associated with it. The returned subsystem handle typically is made
available to the subsystem’s clients. The agent procedure for the subsystem will be called
when events happen, passing instanceData to it at that time.

A subsystem is deleted by _
Supervisor.DeleteSubsystem: PROCEDURE [handle: Supervisor.SubsystemHandle];
Supervisor.InvalidSubsystem: ERROR;

InvalidSubsystem is raised if handle does not describe a valid subsystem. Clients must
take care not to retain or use the SubsystemHandle of a deleted subsystem.

Operations are provided for declaring the dependency relationships between subsystems,
and for inquiring about current dependencies.

Supervisor.AddDependency: PROCEDURE [client, implementor: Supervisor.SubsystemHandle];
Supervisor.CyclicDependency: ERROR;

Supervisor.RemoveDependency: PROCEDURE [client, implerﬁentor:
Supervisor.SubsystemHandle];

Supervisor.NoSuchDependency: ERROR;

AddDependency declares that client is directly dependent on implementor and directly
uses its services. Typically, this declaration is made because a client subsystem needs to
act on some event either before or after the subsystems on which the client depends act on
it. Duplicate direct dependencies are ignored. If implementor is already registered as
being directly or indirectly dependent on client, then CyclicDependency is raised. If client
or implementor do not describe a valid subsystem, then Supervisor.invalidSubsystem is
raised.

RemoveDependency declares that client is no longer directly dependent on implementor.
If client was not directly dependent on implementor, then NoSuchDependency is raised.
If client or implementor does not describe a valid subsystem, then
Supervisor.JnvalidSubsystem is raised.

2-47

Environment

2-48

Supervisor.DependsOn: PROCEDURE [client, implementor: Supervisor.SubsystemHandle]
RETURNS [BOOLEAN];

DependsOn returns TRUE if and only if client is directly or indirectly dependent on
implementor. If either client or implementor does not describe a valid subsystem, then
Supervisor.InvalidSubsystem is raised.

When an event occurs, the client program that caused the event notifies the registered
subsystems with the following operation.

Supervisor.NotifyAllSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, whichFirst: supervisor.Clientsimpls];

Supervisor.Clientsimpls: Tvyp: = {clients, implementors};

NotifyAllSubsystems calls the agent procedures of all subsystems. If whichFirst is clients,
then a subsystem is notified only after all of its clients have been notified. If whichFirst is
implementors, then a subsystem is notified only after all of its implementors have been
notified. See the definition of AgentProcedure for a description of eventData. If a
subsystem handle does not describe a valid subsystem, then Supervisor.InvalidSubsystem is
raised.

Caution: No client of Tajo, CoPilot, or the Development Environment, versions 14.0,
should call NotifyAllSubsystems. Doing so will cause these systems to crash or hang.

For events which are only of interest to a separable set of subsystems and for which it is
desired to avoid swapping in the code of all agent procedures, NotifyRelatedSubsystems
may be used.

supervisor.NotifyRelatedSubisystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED, which, whichFirst: supervisor.Clientsimpls,
subsystem: Supervisor.SubsystemHandle};

NotifyRelatedSubsystems calls the agent procedures of all subsystems which are directly
or indirectly clients or implementors of subsystem. For which equal to clients, the
operation calls all agent procedures that are direct or indirect clients of subsystem. For
which equal to implementaors, it calls all agent procedures that are the direct or indirect
implementors of subsystem. For whichFirst equal to clients, the operation visits a
subsystem only after all of its clients have been visited. For whichFirst equal to
implementors, it visits a subsystem only after all of its implementors have been visited.
See the definition of AgentProcedure for a description of eventData. If subsystem does
not describe a valid subsystem, then supervisor.InvalidSubsystem is raised.

Caution: NotifyRelatedSubsystems is not implemented in Pilot 14.0.

For events which are only of interest to the immediate clients or implementors of a
subsystem and for which it is desired to avoid swapping in the code of all agent procedures,
NotifyDirectSubsystems may be used. '

Supervisor.NotifyDirectSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER TO UNSPECIFIED « NIL, which: Supervisor.Clientsimpls,
subsystem: supervisor.SubisystemHandle];

NotifyDirectSubsystems calls the agent procedures of all subsystems which are directly
related to subsystem. For which equal to clients, the operation calls the agent procedures

Pilot Programmer’s Manual 2

of all subsystems which are direct clients of subsystem. For which equal to implementors,
it calls the agent procedures of all subsystems which are direct implementors of
subsystem. See the definition of AgentProcedure for a description of eventData. If
subsystem does not describe a valid subsystem, then Supervisor.InvalidSubsystem is raised.

2.6.3 Exception handling

Handling recoverable error conditions encountered during an enumeration of subsystems
requires some special consideration. Exceptions in Mesa are usually handled by signals.
In the context of the Supervisor, these signals are not appropriate, since the subsystems
are enumerated sequentially, not recursively, and therefore the previously-invoked agent
procedures are not in a position to catch a signal or an UNWIND.

Thus, the following procedure is suggested: The agent detecting an error condition would
signal an error to the caller of NotifyxSubsystems. That caller would catch the signal,
unwind, and then call NotifyxSubsystems for an inverse event to the one being aborted.
Thus, each agent would then be given the chance to back out of any actions he had taken.
If there is no naturally-occurring inverse event, an artificial one can be defined
specifically for backing out of particular kinds of aborted events. In some cases, a two-
phase protocol may be necessary to handle an event properly.

If no special information needs to be communicated while aborting an enumeration, the
following signal may be used:
Supervisor.EnumerationAborted: ERROR;

The caller of the enumeration should catch it.
2.7 General object allocation
~ ObjAlloc: DEFINITIONS ... ;

This section describes the facility used to control the allocated/free state of a collection of
objects. A typical application of this facility would be a storage allocator using ObjAlloc to
manage its underlying database.

2.7.1 Basic types
Objalloc has the following types.

ObjAlloc. AllocFree: TYPE = MACHINE DEPENDENT {free(0), alloc(1)};
objalioc. AllocationPool: TYPE = PACKED ARRAY [0..0) OF ObjAlloc.AllocFree;

objalloc. AllocPooiDesc: TYre a RECORD [allocPool: LONG POINTER TO Objalloc.AllocationPool,
poolSize: objalloc.ltemCount];

ObjAlloc.Interval: TYPE = RECORD [first: Objalloc.itemindex, count: Objalloc.ltemCount];
ObjAlloc.Itemindex: TYPE = LONG CARDINAL;
ObjAlloc.itemCount: TYPE = LONG CARDINAL;

An objailloc.AllocationPool describes the allocated/free state of an ordered set of objects.
Each object is identified by a name, called an objailocIltemindex. The location and size of
an Objalloc.AllocationPool is given by an objalloc.AllocPoolDesc.

2-49

Environment

2-50

Note: The location must be word aligned, and the size is given in terms of the number of
objects in the pool.

An objallec.Interval describes a range of objects by giving the ObjAlloc.Itemindex of the first
object, and the number of objects in the range.

2.7.2 Basic procedures and errors

objalloc.Allocate: PROCEDURE [pool: Objallec.AllocPooiDesc, count: objalioc.ltemCount,
willTakeSmaller: BOOLEAN «FALSE] RETURNS [interval.objAlloc.Interval];

ObjAlloc.Error: ERROR [error: ObjAlloc.ErrorType];
Objalloc.ErrorType: TYPe = {insufficientSpace, invalidParameters};

Allocate finds, and marks as allocated, a range of count objects. If willTakeSmaller is FaLSE
and count contiguous objects cannot be found, then Error{insufficientSpace] is raised. If
willTakeSmaller is TRUE, then. Allocate allocates the largest range of objects whose size
does not exceed count. In this case, Error{insufficientSpace] is raised only if no free objects
can be found. In either case, the returned range is guaranteed to be the range with the
smallest interval.first that meets the needs inferred by count and willTakeSmailer.

objalloc.ExpandAllocation: PROCEDURE [pool: Objalioc.AliocPoolDesc,
where: objalloc.Itemindex, count: Objailec.itemCount,
willTakeSmaller: BOOLEAN ¢ FALSE] RETURNS [extendedBy.Objalloc.itemCount];

An allocated range can be expanded usingExpandAllocation. If the objects
[where..where + count) are all free, then they are marked as allocated, and extendedBy is
set to count. If only the objects [where..where + countFree) are free, where
0< = countFree<count, then the result depends upon the value of willTakeSmaller. If
willTakeSmaller is FALSE, then extendedBy is returned as zero and no objects are marked
allocated. If willTakeSmaller is TRUE, then the objects [where..where + countfree) are
marked as allocated and extendedBy is returned as countFree.

ObjAlloc.Free: PROCEDURE [pool: objalloc.AllocPoolDesc, interval: objalloc.Interval,
validate:BOOLEAN «TRUE]; '

Objalloc.AlreadyFreed: ERROR [item: Objalloc.ltemindex];

A range of objects is freed by calling Free. If not all of the named objects are contained in
pool, then Objalloc.Error[invalidParameters] is raised and no objects are marked free. If
validate is TRUE, then an attempt to free an already free object results in the signal
AlreadyFreed[item] being raised, with item as the smallest index of a free object in the
interval. No objects are freed in this case. If validate is FALSE, then the specified objects
are marked as free with no checking performed.

objalloc.InitializePool: PROCEDURE [pool: ObjAlloc.AllocPoolDesc, initialState:
objalloc.AllocFree];

An AllocationPool may be initialized by calling InitializePool, which sets the initial state
of all of the objects in the pool to the specified state.

Pilot Programmer’s Manual 2

Note: In any call to Allocate, ExpandAllocation, Free, or InitializePool, an ADDRESS FAULT
may result if any part of the allocation pool is unmapped. Additionally, ObjAlloc provides
no serialization; the client is responsible for serializing access to the database.

2-51

2 Environment

2-52

Streams

3.1 Semanticsofstreams 3-2
3.2 Operationsonstreamsiiiiiiiiiiiiiiiiiiinnn.. 3-3
3.2.1 Principal data transferoperationso il 3-4

3.2.1.1 Blockinput:GetBlockcciiiiiiiiii i 3-4

3.2.1.2 Blockoutput: PutBlock il 3-6

3.2.2 Additional data transmissionoperations 3-6

3.2.3 SUbSEQUENC LY PeS . oivi ittt e e e 3-8

324 Attentionflagscoiiiiii i e 3-8

3.2.5 TImMEOULS ...ttt ittt e ettt s 3-9

3.2.6 Streampositioning i i i e 3-9

33 Creationofstreams 39
3.4 Control over physical record characteristics 3-11
3.5 Transducers, filter, and pipelines 3-13
3.5.1 Filter and transducer representationcccoiviinninn.. 3-13

3.5.2 Stream component MANAZerSuoveeiunrrrennnncennneenaeenn 3-18

3.6 Memory Streamo.viuiiiitiiniiiii i 3-19
3.6.1 O o 3 - T 3-19

3.6.2 Procedurescoii i e e e 3-19

Streams

Stream: DEFINITIONS ... ;

The Stream Facility described in this section provides to Pilot clients a convenient,
efficient, device- and format-independent interface for sequential access to a stream of
data. In particular, the Stream Facility

e provides a vehicle by which processes or subsystems can communicate with each
other, whether they reside on the same system element or on different system
elements.

e permits processes or subsystems to transmit arbitrary data to or from storage media
in a device-independent way.

e defines a standard way for transforming the detailed interface for a device into a
uniform, high level interface which can be used by other client software.

e provides an environment for implementing simple transformations to be performed
on the data as it is being transmitted.

e provides optional access to and control over the mapping of data onto the physical
format of the storage or transmission medium being used.

The stream package provides several facilities, not all of which may be important to an
individual client.

First, the stream interface is the set of procedures and data types by which a client actually
controls the transmission of a stream of information. Each operation of the stream
interface takes as a parameter a Stream.Handle which identifies the particular stream
being accessed.

Second, the stream package defines the concepts of transducer and filter. A transducerisa
software entity (e.g., module or configuration) which implements a stream connected to a
specific device or medium. A filter also implements a stream, but only for the purpose of
transforming, buffering, or otherwise manipulating the data before passing it on to
another stream. Transducers and filters may be provided either by Pilot or by clients.

Third, the stream package provides a standard way of concatenating a sequence of filters
(usually terminated with a transducer) to form a compound stream called a pipeline. A
pipeline is accessed by means of the normal stream operations and causes a sequence of

3-1

Streams

separate transformations to be applied to data flowing between the client program at one
end and the physical storage (or transmission) medium at the other.

Pipelines permit clients to interpose new stream manipulation programs (filters and
transducers) between clients (producers and consumers of data) without modifying the
interfaces seen by the clients. For example, a data format conversion program can obtain
its data either from a magnetic cassette or from a floppy disk, using the same stream
interface, and hence the same program logic, for both. Similarly, filters performing such
functions as code conversiori, buffering, data conversion, and encryption, may be inserted
into a pipeline without affecting the way the client sends and receives data through the
stream interface.

The stream facility transmits arbitrary data, regardless of format and without prejudice to
its type or characteristics. The data may comprise a sequence of bytes, words, or arbitrary
Mesa data structures. The stream facility does not presume or require the encoding of
information according to any particular protocol or convention. Instead, it permits clients
to define their own protocols and standards according to their own needs.

In this chapter, §3.1, §3.2, and §3.3 will be of interest to all clients. §3.4 will be of interest
only to those clients wishing to control the physical record characteristics of a particular
stream; §3.5 will be of interest only to those clients wishing to implement their own filters
or transducers. In addition, the clients of a particular stream type (e.g., disk, tape) will
normally have to consult separate documentation regarding the details of that kind of
stream.

3.1 Semantics of streams

3-2

The stream facility supports transmission of a sequence of 8-bit bytes. This sequence may
be divided into identifiable subsequences, each of which has its own subsequence type.

Stream.Byte: TYPE = Environment.Byte;
Environment.Byte: TYPE = [0..256);
stream.SubSequenceType: TYPE = [0..256);

A subsequence may be null; that is, it may be of zero length and contain no bytes but still
contain the SubSequenceType information. This information allows all subsequences to
be easily identified and separated from each other while shielding clients from the
bothersome problems of control-codes; that is, embedding control codes into the stream,
making them transparent, and building a parser to implement such transparency.

Additionally, an attention flag may be inserted into a stream sequence. Attention flags
are transmitted through the stream as quickly as possible, possibly bypassing bytes and
changes in SubSequenceType which were transmitted earlier but which are still in
transit. This provides a simple mechanism for implementing breaks (similar to the
“attention-key” of many time-sharing systems). A byte of data is associated with an
attention flag for the use of client protocols. Note that the attention flag and the data byte
occupy a byte in the stream sequence.

Streams have no intrinsic notion of the bytes passing through them being grouped into
physical records. The client program can completely ignore physical record structure and
is thus relieved of the burden of dealing with the associated packing and unpacking
problems. If, however, it becomes necessary to control or determine the underlying

Pilot Programmer’s Manual 3

physical record structure, as determined by the particular storage (or transmission)
medium, then the interface provides extended facilities which allow this.

All of the procedures described here are synchronous. That is, an input operation does not
return until the data is actually available to the client, and an output operation does not
return until the data has been accepted by the stream and client buffers may be reused.
Note, however, that a stream component may do internal buffering and that the
acceptance of data means only that the stream component itself has a correct copy and is in
a position to proceed asynchronously to write or send it.

Streams in Pilot are inherently full duplex. Separate processes may be transmitting and
receiving simultaneously. The stream interface does not guarantee mutual exclusion
among different processes attempting to access the same stream. However, individual
transducers or filters may restrict themselves to half duplex operation and may
implement such mutual exclusion or more elaborate forms of synchronization as is
appropriate. Documentation for such filters and transducers should be consulted on a
case-by-case basis for details.

3.2 Operations on streams

The stream interface provides operations for sending and receiving data, for sending state
information, and for dealing with stream positions. In addition, a Delete operation is
provided to delete a stream. A create operation is not provided. Streams are only created
by individual stream components; namely, pipelines, transducers and filters.

A client program identifies a particular instance of the stream interface by means of a
stream.Handle.

stream.Handle: TYPE = ...;

A stream.Handle identifies an object (see §3.5.1) which embodies all of the information
concerning the transfer of data to or from the client program via stream operations. It is
passed as a parameter to each of the data transmission operations of the following sections
to specify the stream to which the operations apply.

When the client no longer wishes to transmit data to or from a stream, the stream is
deleted. Deleting a stream indicates the end of an output stream and frees any resources
associated with the stream. A stream may be deleted by the operation

stream.Delete: PROCEDURE [sH:Stream.Handle];

For a stream used as output, the client will delete the stream when it has sent all of the
data. For a stream used as input, the client will delete the stream when it no longer
wishes to fetch data, either when the end of the input data is reached or earlier. For
streams used both as input and output, the client will delete the streams when both of the
above conditions are true. The client must ensure that there are no outstanding
references to the stream being deleted. Failure to observe this caution will result in
unpredictable effects.

3-3

Streams

3.2.1 Principal data transfer operations

The principal operations for transferring blocks of data are Stream.GetBlock and
stream.PutBlock. Both are inline procedures. Each takes a parameter specifying the block
of virtual memory to or from which bytes are to be transmitted.

stream.Block: TYPE = Environmaent.Block;

Environment.Block: TYPE = RECORD [
blockPointer: LONG POINTER TO PACKED ARRAY [0..0) OF Environment.Byte,
startindex, stopindexPlusOne: CARDINAL];

A Block describes a section of memory which will be the source or sink of the bytes
transmitted. The section of memory described is a sequence of bytes (not necessarily word
aligned) which must lie entirely within a mapped space. blockPointer selects a word such
that a startindex of zero would select the left byte of that word (i.e., bits 0 - 7). The selected
block consists of the bytes blockPointer[i] for i in [startindex..stopindexPlusOne). Notice
that a Block cannot describe more than 2!6-1 bytes or 215.1 words. A stream.Block can
describe any part of virtual memory.

Some of the operations described in this and the next section may cause signals to be
generated. If such a signal is resumed, transmission continues from where it left off, so
that any changes made by the catch phrase to the Block record or to the input options (see
below) are ignored. If, however, such a signal is RETRYed, then the next byte of the stream
sequence is transmitted to or from the byte specified by the current value of the Block
record or input options, either of which might have been updated by the catch phrase. In
no case is the stream sequence itself “backed up.” Bytes previously received from input
are not re-received, and bytes previously transmitted on output are not withdrawn.

3.2.1.1. Block input: GetBlock
The primary block input operation is Stream.GetBlock.

stream.GetBlock: PROCEDURE [sH: Stream.Handle, block: stream.Block]
RETURNS [bytesTransferred: CARDINAL, why: stream.CompletionCode,
sst: stream.SubSequenceType];

stream.CompletionCode: Tyre = {normal, endRecord, sstChange, endOfStream,
attention, timeout};

The parameter block describes the virtual memory area into which the bytes will be
placed. GetBlock does not return until the input is terminated. Its exact behavior,
however, is controlled by a set of input options which may be set by the client using the
operation

stream.SetinputOptions: PROCEDURE [sH: stream.Handle, options: stream.InputOptions];

Stream.InputOptions: TYPE = RECORD {
terminateOnEndRecord « FALSE, signalLongBlock « FALSE, signalShortBlock «FALSE,
signalSSTChange « FALSE, signalEndOfStream «fFALSE, signalAttention «FALSE,
signalTimeout « TRUE, signalEndRecord: BOOLEAN ¢« FALSE];

stream.defauitinputOptions: stream.InputOptions = [];

SetinputOptions controls exactly how GetBlock terminates and what signals it generates.
Ordinarily (i.e., with the parameter options set to defaultinputOptions), the transmission

Pilot Programmer’s Manual 3

does not terminate until the entire block of bytes is filled unless a timeout occurs.
However, under the exceptional conditions described in §3.4, the transmission may
terminate before the block is filled and may also result in a signal. In all cases, the
procedure returns the actual number of bytes transferred, a CompletionCode indicating
the reason for termination, and the latest SubSequenceType encountered. The input
operation may conveniently be restarted where it left off by first addin