
To

Customer/Collea'gue,

Subject

Pilot Programme,r,/s Manual

XDE 6.0 UPDATE
Pilot Programmer's Manual

From

Holly Wanless

Technical Services and Support

Date

February 1989

The enclosed manual is a complete replacement for your existing version. Please remove the old version from the
binder, replace itwith this new version, and discard the old version.

610 EOO 161-U

XEROX

Pilot Programmer's Manual

610E00161
September 1988

Xerox Corporation
XOE Technical Services
475 Oakmead Parkway
Sunnyvale, California 94086

Copyright ~ 1988, 1986, Xerox Corporation. All rights reserved.
XEROX @, 8010,6085, and XOE are trademarks I)f XEROX CORPORATION.

Printed in the United States of America.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document was prepared for this purpose. Please send your comments to:

Xerox Corporation
XDE Technical Documentation, SVHQ403
475 Oakmead Parkway
Sunnyvale, California 94086

Table of contents

1 Introduction

1.1 General structure of system software .. 1-1

1.2 Files .. 1-2

1.3 General characteristics of Pilot .. 1-2

1.3.1 Processes, monitors, and synchronization 1-4

1.3.2 Virtual memory, files, and volumes 1-5

1.3.3 Stream, device, and communication inte'rfaces 1-6

1.4 Pilot concepts'................................... 1-7

1.4.1 Stateless enumerators .. 1-7

1.4.2 Synchronous and asynchronous operations.. 1-8

1.5 Notation and conventions ... 1-8

1.6 Common Software ... 1-9

1.7 What follows ... 1-10

2 Environment

2.1 Processor environment ... 2-1

2.1.1 Basic types and constants ... 2-1

2.1.2 Device numbers and device types 2-4

2.2 Processor interface ... 2-8

2.2.1 Bit block transfer , ,.. 2-8

2.2.2 Text block transer ... 2-12

2.2.3 Checksum operation ... 2-16

2.2.4 Byte block transfer .. 2-16

2.2.5 Other Mesa machine operations 2-17

2.3 System timing and control facilities ,.......... 2-19

2.3.1 Universal identifiers ,.......... 2-19

2.3.2 Network addresses ... , ,.... 2-20

2.3.3 Timekeeping facilities 2-21

ii

Table of contents

2.3.4 Control ofsysterIl power. .. 2-24

2.3.5 Pilot's state after booting .. 2-25

2.4 Mesa run-time support .. 2-34

2.4.1

2.4.2

2.4.3

2.4.4

Processes and monitors ... ,.. 2-34

Programs and configurations ,..... 2-38

Traps and signaln ... 2-42

Calling the debu~~ger or backstop ... ,.,............................. 2-43

2.5 Client startup .. 2-44

2.6 Coordinating subsystems' a'::quisition of resources 2-44

2. 6.1 Use of the Supervisor .. 2-45

2.6.2 Supervisor facilities ... 2-46

2.6.3 Exception handling .. 2-49

2.7 General object allocation .. 2-49

2.7.1 Basic types ... 2-49

2.7.2 Basic procedures and errors 2-50

3 Streams

3.1

3.2

3.3

3.4

3.5

Semantics of streams

O]>erations on streams

3.2.1 Principal data transfer operations

3.2.2 Additional data transmission operations

3.2.3 Subsequence types .. .

3-2

3-3

3-4

3-6

3-8

3.2.4 Attention flags ."... 3-8

3.2.5 Timeouts. 3-9

3.2.6 Stream positioning ... 3-9

Creation of streams .. .

Control over physical record characteristics

Transducers, filters, and piptelines

3.5.1 Filter and transdlllcer representation

3-9

3-11

3-13

3-13

3.5.2 Stream component managers 3-18

3.6 Memory stream ... 3-19

3.6.1 Errors .. 3-19

3.6.2 Procedures. .. 3-19

4 File Storage and Memory

4.1 Physical vol urnes .. 4-1

4.1.1 Physical volume name and size 4-2

4.1.2 Physical volume elrrors ... 4-2

4.1.3 Drives and disks ... 4-3

4.1.4 Disk access, Pilot 'rolumes, and non-Pilot volumes 4-4

4.1.5 Physical volume creation ... 4-6

Pilot Programmer's Manual

4.1.6

4.1.7

Scavenging operation .. .

Logical volume operations on physical volumes

4-6

4-8

4.1.8 Miscellaneous operations on physical volumes 4-9

4.2 Logical volumes .. 4-10

4.2.1 Volume name and size ... 4-10

4.2.2 Logical and physical volumes 4-11

4.2.3 Volume error conditions ... 4-11

4.2.4 Logical volume creation and erasure 4-12

4.2.5 Volume status and enumeration 4-13

4.2.6 Volume open and close operations 4-14

4.2.7 Volume attributes ... 4-14

4.2.8 Volume root directory ... 4-15

4.3 Files .. 4-16

4.3.1 File naming .. 4-17

4.3.2 File addressing (internal) .. 4-17

4.3.3 File types ... 4-18

4.3.4 File error conditions ... 4-19

4.3.5 File creation and deletion .. 4-20

4.3.6 File attributes .. 4-20

4.4 The scavenging operation .. 4-21

4.5

4.4.1 Volume scavenge ... 4-22

4.4.2 Scavenger log file ... 4-23

4.4.3 Operations on log files ... 4-25

4.4.4 Investigation and repair of damaged pages

Virtual memory management

4.5.1 Fundamental concepts of virtual memory

4-25

4-27

4-27

4.5.2 File mapping to virtual memory intervals 4-30

4.5.3 Virtual memory explicit read and write operations 4-34

4.5.4 Swapping. .. 4-35

4.5.5 Access control ... 4-37

4.5.6 Explicit allocation of virtual memory and special intervals 4-37

4.5.7 Map unit and swap unit attributes, utility operations 4-40

4.6 Pilot memory management .. 4-41

4.6.1 Zones. .. 4-42

4.6.2 Heaps .. 4-47

4.7 Logging facilities ... 4-53

4.7.1 Log file write operations ... 4-53

4.7.2 Log file read operations .. 4-56

iii

IV

Table of contents

5 1/0 Devices

5.1 Channel structure a.'ld initialization

5.1.1 Data transfer

5.1.2 Device-specific cl()mmands .. .

5.1.3 Device status .. .

5-1

5-2

5·5

5·-5

5.2 Keyset, keyboards, and mouse ... 5-6

5.3 The user terminal... 5-11

5.3.1 Thedisplayimag:e .. 5-11

5,,3.2 Smooth scrolling .. 5-13

5.3.3 The keyboard and keyset ... 5-14

5.3.4 The mouse..... 5-1.5

5.3.5 The sound generator. 5-15

5.4 Floppy disk channel ... 5-15

5.5

5.6

5.4.1 Drive characterisltics .. 5-16

5.4.2 Diskette charactElristics .. 5-16

5.4.3 Status ... 5-17

5.4.4 Transfer operations .. .

5.4.5 Non-transfer operations .. .

Floppy file system .. .

5.5.1 Accessing files on the diskette

5.5.2 Snapshotting and replication of the floppy volume

5.5.3 Managing the floppy volume

TrY Port channel .. .

5-18

5-18

5-19

5-19

5-22

5-23

5-28

5.6.1 Creating and deleting the TTY Port channel 5-28

5.6.2 Data transfer ... 5-29

5.6.3 Data transfer status 5-29

5.6.4 TTY Port operations ... 5-29

5.6.5 Device status .. 5-31

5.7 TI'Y Input/Output ... 5-31

5.8

5.7.1 Starting and stopping. 5-32

5.7.2 Signals and errorSi ... 5-33

5.7.3 Output. .. 5-33

5.7.4 Utilities. .. 5-33

5.7.5 String input operations .. 5-34

5.7.6 String output operations ... 5-35

5.7.7 Numeric input opE!rations .. 5-36

5.7.8 ~umeric output operations .. .

FloppyTape file system

5.8.1 Accessing files on the tape

5.8.2 Managing the floppyTape volume

5-37

5-38

5-38

5-45

5.8.3 Booting from the tape .. 5-47

Pilot Programmer's Manual

6 Communication

6.1 Well known sockets .. 6-2

6.2 Packet exchange ... 6-4

6.2.1 Types and constants .. 6-4

6.2.2 Signals and errors .. 6-6

6.2.3 Procedures. 6-7

6.3 Network streams .. 6-9

6.4

6.3.1 Types and constants ... 6-10

6.3.2 Network stream creation .. 6-11

6.3.3 Signals and errors ... 6-14

6.3.4 Utilities .. 6-17

6.3.5 Attributes of Network streams 6-18

Routing

6.4.1 Types and constants .. .

6-21

6-22

6.4.2 Signals and errors ... 6-23

6.4.3 Procedures. .. 6-23

6.5 RS232C communication facilities .. 6-25

6.5.1 Correspondents ... 6-25

6.5.2 Environment types and constants 6-27

6.5.3 RS232C channel .. 6-30

6.5.4 Procedures for starting and stopping the channel 6-41

6.5.5 Auto-dialing .. 6-41

6.6 Courier .. 6-46

6.6.1 Definition of terms .. 6-46

6.6.2 Binding .. 6-47

6.6.3 Remote procedure calling .. 6-49

6.6.4 Errors .. 6-53

6.6.5 Bulk data .. 6-57

6.6.6 Description routines ... 6-58

6.6.7 Miscellaneous facilities .. 6-64

6.7 Network Binding ... 6-65

6.7.1 Description. .. 6-65

6.7.2 Types and constants ... 6-65

6.7.3 Errors. .. 6-68

6.7.4 Client procedures ... 6-68

6.7.5 Server procedures ... 6-70

6.8 X-Stream - bulk data protocol .. 6-71

6.8.1 Interface definition .. 6-71

6.8.2 Additional semantics .. 6-73

6.9 PhoneNetdriver .. 6-74

6.9.1 PhoneNet. 6-74

6.9.2 PhoneAdoption. .. 6-76

v

vi

Table of contents

7 Editing and Formatting

7.1. ASCII character definitions ... 7-1.

7.2 Formatting. 7-2

7.3

7.4

7.5

7.2.1 Binding. 7-2

7.2.2 Specifying the destination of the output 7-2

7.2.3 String editing ... '... 7-2

7.2.4 Editing numbers ... 7-3

7.2.5 Editing dates .. 7-4

7.2.6

Strings

7.3.1

7.3.2

7.3.3

Time

Editing network addresses 7-4

7-5

Sub-strings .. 7 -5

Overflowing strin;g bounds .. 7 -5

String operations ... 7-6

7-10

7.4.1 Binding. .. 7-10

7.4.2

Sorting

Operations .. . 7-10

7-12

8 System Generation al1ld Initialization

8.1 System components .. 8-1

8.2 Pilot initialization ... 8-2

8.3 Volume initialization .. 8-3

8.4

8.5

8.3.1 Formatting physical volumes .. 8-4

8.3.2 Checking drives for bad pages 8-5

8.3.3 Microcode and boot files ... 8-6

8.3.4 Miscellaneous operations ... 8-9

Communication initialization

Booting

8.5.1 Creating a boot fille

8-11

8-11

8-12

8.5.2 Writing the contents of a boot file 8-12

8.5.3 Making a boot file bootable ... 8-13

8.5.4 Installing a boot file ... 8-13

8.5.5 Booting a boot file ... 8-13

8.5.6 Updating a boot file ... 8-14

8.5.7 Atomic saving and: restoring of Pilot instances 8-14

9 The Backstop

9.1 Implementing a backstop ... 9-1

9.1.1 Initializing a backstop log file 9-2

Pilot Programmer's Manual

9.1.2 Control flow .. .

9.1.3 Logging errors .. .

9.2 Reading backstop log files

9-2

9-3

9-4

10 Online Diagnostics

10.1 Communication diagnostics .. 10-1

10.1.1 Testing Ethernet echo ... 10-2

10.1.2

10.1.3

10.1.4

Gathering Ethernet statistics 10-6

Testing RS232C ... 10-8

Testing the Dialer .. 10-13

10.2 Bitmap Display, keyboard, and mouse diagnostics. 10-14

10.3 Lear Siegler diagnostics .. 10-16

10.4 Floppy diagnostics ... 10-17

10.5 Floppy Tape diagnostics 10-21

Appendices

. A Performance Criteria

A.l Physical memory requirements of Pilot .. A-I

A.2 Execution speed and client program profile A-2

A.2.1 Memory management ... A-3

A.2.2 File management .. A-3

A.2.3 Communication via the Ethernet A-4

A.2.4 Processes. .. A-4

B Assigning and Managing File Types B-1

C Pilot's Interrupt Key Watcher .. C-l

D Utility Pilot ... D-1

E Multi-national Considerations E-l

F References

F.l Mandatory references F-1

F.2 Informational references ... F-1

G Network Binding Example 0-1

H TCP/IP Interfaces

1 ArpaConstants ... H-2

2 ArpaRouter .. H-4

Yll

Table of contents

3 ArpaRouterOps ... H-IO

4 ArpaSysParameters .. H-9

5 ArpaUtility ... H-12

6 Resolve .. H-15

7 TcpStream .. H-138

8 ArpaTelnetStream ... H-24

9 TelnetListener .. H-36

10 ArpaFilingComnlOn ... H-37

11 TFTP (Trivial File Transfer Protocol) H-39

12 ArpaFTP ... H-42

13 ArpaFTPServer ... H-49

14 ArpaFileName .. H-54

15 ArpaSMTP ... H-56

16 ArpaAMTPServer ... H-60

17 ArpaMailParse ... H-62

18 ArpaVersion .. H-66

Glossary

1.

Introduction

1.1 General structure of system software 1-1

1.2 Files .. 1-2

1.3 General characteristics of Pilot 1-2

1.3.1 Processes, monitors, and synchronization 1-4

1.3.2 Virtual memory, files, and volumes 1-5

1.3.3 Stream, device, and communication interfaces. .. 1-6

1.4 Pilot concepts ... 1-7

1.4.1 Stateless enumerators .. 1-7

1.4.2 Synchronous and asynchronous operations 1-8

1.5 Notation and conventions ... 1-8

1.6 Common Software .. 1-9

1.7 What follows 1-10

1

Introduction

The Pilot Programmer's Manual defines and describes the external structure, appearance,
and interfaces of Pilot, the operating system for the Mesa processor, and the other
packages released with it. The description is primarily intended for the designers and
implementors of client programs of Pilot; that is, applications, certain development and
production tools, test programs, and so forth. The description provides sufficient
information to allow the programmer to understand the available facilities and to write
procedure calls in the Mesa language to invoke them. For each of the facilities of Pilot, the
manual lists the procedure names, parameters, results, the data types of each of the
arguments, and the possible signals which can be generated. These are captured in the
Mesa DEFINITIONS modules which are part of each release.

Trus manual is a reference manual for programmers, who are assumed to be familiar with
the Mesa programming language. It is not a tutorial on how to write programs which use
Pilot. The order of information presented tries to minimize, insofar as possible, the
number of forward references. Cross referencing within the text has been abandoned for a
more comprehensive referencing via the index. It is expected that the reader will use the
index to locate the description of terms or concepts encountered. References in the text of
the form §1.2.3 refer to section 1.2.3. Deviations from the descriptions given here and the
currently released version of Pilot are noted in the documentation which accompanies the
release.

The specification presented here is adequate for the majority of programs which need to
interface with Pilot and make use of its facilities. In some eases, however, supplementary
facilities will be required in order to permit certain applications to make effective use of
the Mesa hardware and processor. Such facilities, if made generally available, could lead
to degraded performance or degraded reliability of both Pilot and the whole Mesa system.
Therefore, they are not described here but are in supplementary documents which are
made available, along with the corresponding DEFINITIONS modules, only as required.

1.1 General structure of system software

It is important to understand the relationship of the various kinds of software found in a
Mesa processor. The major categories are as follows:

Faces, Heads, and Microcode: A face is a Mesa interface that embodies some aspects of
the processor, defined in the Mesa Processor Principles of Operation, and of its I/O
devices. Each face is implemented by a combination of Mesa code, called a head, lower

1-1

1

1.2 Files

Introduction

level machine code, called microcode, and the underlying hardware. The collection of
heads and microcode provides a machine-independent environment in which Pilot and
its clients execute.

Pilot: Pilot is the operating system that manages the hardware resources of, and
provides the run-time support for, all Mesa programs on a machine. Pilot is written in
the Mesa language. Its facilities are explicitly invoked by means of procedure calls
from, or exceptions generated by, client programs.

Common Software: The~)e programs are collections of modules and configurations
which provide services often useful to applications. They are written in Mesa and call
upon Pilot facilities. Some are released with Pilot while others are released
separately.

Applications: Application software actually performs the functions we are marketing.
These programs are written in Mesa and may call upon Pilot and Common Software
for support.

This document deals with Pilot and the Common Software released with it. However, it is
not possible to consider PHot in isolation, and frequent reference must be made to
documents describing the other categories of software. In particular, the Pilot facilities
described here would be inad1equate for supporting a modem software development project
in the absence of the Mesa fa<:ilities.

The basic facilities of Pilot are incorporated in the object file PilotKernel.'bcd. In
addition, a special vursion of Pilot, contained in the object file
Utili tyPilotKernel. bcd, supports small applications and utilities which must run in
real memory (see Appendix D for more details). Some of the facilities described in this
manual are implemented in their own object files. In those cases, the name of the object:
file is mentioned in the section that describes the facility.

No explicit mention is made in this document of the location of files. That information is
contained in the documentation issued in conjunction with each release of Pilot. Readers
should consult that dOcumentation to ascertain where files are located.

1.3 General characteristics of Pilot

1-2

Pilot is not a general purpoSE! operating system. Instead, it is a nucleus of software which
serves as an interface betwE!en a Mesa processor and all other software. In particular,
Pilot defines a "Basic Machine" which is an abstraction of the physical resources provided
by the hardware. The purpose of this Basic Machine is to define a standard interface
which is relatively independent of the size, speed, particular model, and configuration
upon which it is operating. It, thus provides a uniform environment in which clients can be
designed and programmed. I~urthermore, it insulates the clients as much as possible from
variations in hardware confi~~ation from site to site and from time to time.

In general, Pilot is designed around the notion that its clients are a cooperative system of
programs all serving a common purpose. Thus, it is far more tolerant and permissive than
most operating systems. It delegates much more control of system resources to its users.
It permits programs and subsystems to recover gracefully from errors, but it also places

Pllot Programmer's Manual 1

more responsibility on them to ensure the overall well-being of the machine and of the
networks to which it is connected.

Some facilities and concepts normally associated with operating systems have been
deliberately omitted from Pilot. For example,

Master Mode and Protection: No "ironclad" mechanism protects Pilot from errant or
malicious client programs, or even protects client programs from each other. Instead,
Pilot consists simply of a group of Mesa modules and relies on such facilities as Mesa
type-checking to provide the redundancy necessary to detect errors. The protection
relationship between Pilot and its clients is the same as that between any two systems
built in Mesa.

Job Control: Since product systems have no explicit concept of "job," Pilot provides no
job control facilities. Instead, groups of related processes which support a particular
application control themselves and their use of resources in response to external
stimuli from the human user, or from other system elements via the Network Services
(NS) Communication System.

Billing and Accounting Functions: Since the product architecture is designed around
the concept of a distributed network of low cost system elements, neither detailed
billing nor accounting for the use of resources within a single system element is
needed. In the few applications where economic management of resources is required
or desired, such as in central file servers, this function is performed at a higher level,
not within Pilot.

Competitive Allocation of Resources: The allocation of major system resources will
generally be on a cooperative rather than a competitive basis. Thus, Pilot does not
contain elaborate resource· allocation functions. Instead, resources and resource
management can often be planned statically when systems are configured. Where
dynamic resource control is required, such as in sharing physical memory, Pilot
provides facilities which allow the applications to state their current requirements.

Complex Services: Pilot does not provide very complex services or facilities such as
directories, display and keyboard management routines, command languages, or
human-engineered interfaces. These services are provided by client programs and are
likely to vary across the product lines.

The major facilities of the Basic Machine can be regarded as falling roughly into three
main categories:

Mesa run-time support including processes, monitors, and synchronization facilities

Virtual memory, files, and volumes

Stream, device, and communication interfaces

Each of these categories is described below in some detail.

1-3

1

1-4

Introduction

1.3.1 Processes, monitors, and synchronization

Within a system element, several activities will almost always be occurring concurrently.
For example, the display will be updated at the same time as the human user is typing on
the keyboard, and perhaps both of these will take place at the same time files are being
read, text is being edited, or documents are being transferred to other system elements. To
support this kind of concurrent activity, Mesa (with the help of the Mesa processor and
Pilot) provides the following facilities:

Processes, which represent asynchronous activities,

Monitors, which arbitrate access to shared resources, and

Condition variables, whi,ch provide flexible interprocess synchronization.

These facilities are actually features of the Mesa language, but are described here fOll"
completeness.

The concept of process is a f,mdamental architectural concept in all Mesa software. Mesa
processes are intentionally lightweight. They are much more like Mesa procedures than,
say, entire application programs. A process is instantiated in much the same way that a
Mesa procedure is called. The result is a separate, independently executing thread of
control, with its own local data (if any). A process has the same status as a procedure. A
process may call procedures, access local or global data, and spawn new instances of
processes, subject to the sta:ndard Mesa name scoping constraints. A typical application
may utiliz~ many processes-, and the whole processor may contain hundreds of process
instances at one time. These- instances can be created and deleted frequently (tens, or even
hundreds of times per second if this proves useful).

The general philosophy of programming with processes in Mesa is that one or a collection
of modules manages a partic:ular resource or common data structure. Each process which

. needs to access that resow'ce or data structure calls the procedures defined in thos4~
modules. To impose order I)n the possible chaos which could result from asynchronous
manipulation of the data, th(3 concept of monitor lock is provided. A monitor lock is a data
structure which contains tho interlocks sufficient to guarantee that only one process at a
time may gain access to the data. It serves as an orderly meeting ground through which
otherwise asynchronous processes may synchronize their acti vities and ensure the
consistency of the data or res.ource which they are sharing.

In many cases, the exclusivEt access guarantee of the monitor mechanism is not sufficient
to express the desired pattern of coordination among cooperating processes. The condition
variable facility provides additional flexibility in synchronizing such interactions, by
allowing one process to wait for some event, and another process to notify it when the
event occurs. Condition variables also provide the basic means in Pilot and Mesa by which
a process may wait for an ev(~nt and time out after a specified period of elapsed time if that
event does not occur.

In Pilot, the interfaces to shareable system resources are presented as procedures which
client programs may call. These procedures almost always define synchronous operations,
even when they involve the operation of an asynchronously operating device connected to
the Mesa processor. Thus, some procedures may take a long time to complete. In general,
if an application program cannot tolerate such a long wait, or could make better use of its
time, it should fork a new process instance to call the Pilot procedure and do the waiting

Pilot Programmer's Manual 1

for it. Later, when the results are actually required, the two process instances can be
synchronized and one of them deleted. This is the general mechanism by which
asynchronous activity is managed by both Pilot and client programs. The single exception
to this is in the area of direct control of physical devices, in which Pilot provides a more
primitive means of implementing overlapped, concurrent activity. Very few clients are
directly involved with this interface to Pilot.

1.3.2 Virtual memory, files, and volumes

Pilot provides an integrated system for managing main memory and file storage. In
particular, it implements a single, monolithic, page-oriented, virt~l memory shared by
all Mesa software, including Pilot itself. This virtual memory consists of 220 to 232 16-bit
words, depending upon the hardware processor. The memory is organized into 256-word
pages. To complement the virtual memory, Pilot provides a system of files, each of which
may contain up to 223 pages (i.e., 232 bytes). Files are aggregated into volumes each of
which also may contain up to 223 pages. Files are accessed via the virtual memory
swapping mechanism, as described below.

Traditionally, virtual memories are implemented in operating systems by swapping the
contents of virtual pages between real memory and some form of backing store. In Pilot,
the files serve the role of backing store. Any page of virtual memory which contains
information must have associated with it a page from a file to and from which it can be
swapped. In the case of pages containing Mesa object code (which are always read-only),
the backing file is just the object code file output by the Mesa system. In the case of virtual
memory which "buffers" the contents of files containing long-term data, the files
themselves act as the backing store. Finally, for pages containing temporary data which
is purely internal to the current execution of the program, Pilot provides private,
temporary, anonymous files for backing storage. In UtilityPilot based systems, pages for
temporary data are only supplied from the processor's real memory.

Files are associated with virtual memory by mapping a file or portion of a file to virtual
memory. The interval of virtual memory used is normally allocated as part of the mapping
operation. Each map unit, or mapped interval, is typically subdivided into swap units, for
swapping, as described in the next paragraph. Pilot also provides operations to remove the
mapping when it is no longer required.

Whenever a process attempts to reference (Le., fetch or store) a virtual memory location
within a map unit, the page containing that location may not be present in real memory.
If it is not, Pilot must read it into real memory. Execution of the process is suspended until
the swapping is completed. Pilot provides swapping in two ways:

under the control of the client program, in the form of swapping commands. These are
commands by which the client program informs Pilot about the following: certain
intervals of virtual memory will be needed in the immediate future and that swapping
should be initiated as soon as possible; an interval is no longer needed and should be
swapped out; an interval is not likely to be referenced soon, so Pilot should write it out
and release the real memory allocated to it.

on demand. If the page referenced is neither in real memory nor the subject of a recent
swapping command to bring it in, Pilot will itself initiate a swapping action to bring in
the page and any adjoining swapped-out pages of the containing swap unit.

1-5

1

1-6

Introduction

Typically, intervals containing code, and intervals containing local and global frames will
be swapped on demand, while those which contain the major client data structures and
data from files will be swapped under client program control. Swapping performance can
be improved by organizing the Mesa code file(s) so that related procedures are located in
the same interval of virtual memory, typically by use of the packager. Pilot further
improves performance by attempting to allocate the pages of a file contiguously on the file
storage medium so that an interval can be swapped in a single I/O operation.

A client wishing to read fronl a file will map that file into a virtual memory interval and
then use explicit or demand swapping to cause it to be swapped into real memory. If the
file is being updated in plaCE!, then the client will simply store into the relevant locations
of virtual memory. Subsequ.ently, when the interval is unmapped or otherwise swapped
out of real memory, the file will reflect the new contents. If, on the other hand, the file is
not being updated in place, then the client program can copy the contents of a virtual
memory interval to a portion of a file, and copy a portion of a file to a virtual memory
interval, without altering th.~ mapping of the interval.

Pilot supports access to files on local volumes. Each existing file is uniquely defined
within that volume. If the volume is implemented on a removable medium, then it (and
all of its files) may be removE!d and remounted on another system element.

Files are identified by file ids. When a new file is created, a new file id is issued. The file
is uniquely identified to Pilot by presenting Pilot with its id and the id of the containing
volume. Clients may not generate file ids, but they may store them, copy them, and pass
them to other programs.

An important interval of vir·tual memory recognized by the Mesa processor and the Mesa
system is the main data space (MDS). The MDS is a contiguous subset of virtual memory
consisting of 216 words (256 pages), any part of which may be addressed by a 16-bit Mesa
POINTER.

An MDS contains the low-level data structures and mechanisms, such as local frames and
trap handlers, necessary for executing Mesa processes. Global frames may also reside in
the MDS if modules were com.piled to run with pre-Pilot 14.0 ("old") versions or if they are
packaged with pre-Pilot 14.0 ("old") versions. "Old" means that the modules either were
not recompiled since the 12.0 compiler or were compiled with the 14.0 compiler /0 switch.

Each process is associated with one and only one MDS. Although the Mesa processor
supports multiple coexisting MDSs, Pilot does not. Thus, any Pilot-based system has only
one MDS, which is shared by all of the system's processes.

1.3.3 Stream, device, and communi.cation interfaces

Pilot supports a sophisticated, packet-switched, communication system. The heart of this
system is a software package called the router.

Information received from one Pilot client for transmission to another Pilot client (on the
same or another system eIE!ment) is broken into packets for delivery. These packets,
encapsulated in the Xerox Internet Transport Protocols and including both source and
destination addresses, are passed to the router. If the destination client is on the local
machine, then the packet is passed to that client.

For remote destination clients, the router determines if there is a communication path
from the local machine to the final destination machine. If no path exists, the packet
cannot be transmitted, and an appropiate status is set. Otherwise the best available path

Pilot Programmer's Manual 1

is selected, and the packet is transmitted via the in-st communication link of the path on
route to its final destination. This physical transmission may take place on anyone of a
number of communication devices, including the Ethernet or telephone lines.

The router sends and receives packets via Ethernet device drivers and by other
communication device drivers which may be added in the future. On the Pilot client side,
the router is accessed by the NetworkStream and Packet Exchange interfaces (see Chapter 6).

Pilot establishes a style and some standards for the construction of I/O device drivers by
deiming the notion of channel. This definition makes the style of usage of the various I/O
drivers similar enough to be somewhat predictable and standard enough that a client­
constructed I/O device driver can be included in Pilot without a formal integration. All of
the Pilot-supplied and Pilot-required device drivers conform to this style and these
standards.

One such Pilot-supplied device driver is the Ethernet device driver. The Ethernet device
driver not only may be used to transmit Internet Transport Protocol packets through the
router as described above, but may also be used as an ordinary device driver for non-NS
communication with non-NS stations.

When sequential data is to be transported between a Pilot client and an I/O device or
another Pilot client, it is usually possible to do this in a device- and format-independent
way. The Pilot Stream Package accomplishes this. The mechanism for transcribing a
sequential stream of data on or off an I/O device is provided by a client-written or Pilot­
supplied transducer. Modifications to the data stream (e.g., code conversion) are
accomplished by a client or Pilot filter. The stream package provides a basic set of
transducers and filters and, more important, a way of assembling them sequentially into
processing and transmitting pipelines.

One kind of stream supported directly by Pilot is the Network stream referred to above.
This kind of stream is capable of receiving data from a Pilot client on one machine and
transmitting it to another client on a different machine.

1.4 Pilot concepts

The methodologies which are used repeatedly in the design of the Pilot functions are
described here.

1.4.1 Stateless enumerators

Many Pilot functions return information to the client of the form of a list of items whose
length cannot be a priori known. Consequently, Pilot functions that supply this type of
information do so by passing back an item of the list for each call for the information.
These functions are created in a very stylized way.

The basic idea is that the client, on its in-st call to such a function, supplies a value which
no item of the list can have. This item usually has a name of the form nullobject, for
whatever object is being enumerated. The function returns a member of the list. If the
client, on its next call on the list function, supplies the previously returned value, Pilot
will return another member of the list. This goes on until the list is exhausted whereupon
~i1ot returns nullobject, indicating the end of the list.

1-7

1 Introduction

These types of functions 8.lre called stateless enumerators. A reference to a stateless
enumerator will always be accompanied by the beginning and ending values. Usually the
items of the list are not returned in any particular order. If some order is imposed, this
will be pointed out in the description of the function.

1.4.2 Synchronous and asynchronous operations

When a Pilot function is called, it mayor may not return before the requested operation
has been completed. If Pilot waits until the operation is done (the usual case), the
operation is called synchronous. If the operation queues the operation and returns before
it has completed, it is called asynchronous. If no mention is made of the type of a
particular operation, the operation is synchronous. Almost all Pilot operations are
synchronous.

1.5 Notation and conventions

1-8

At the beginning of each secltion are listed the names of the DEFINITIONS modules containing
the Pilot facilities described in that section. The procedure and type definitions contained
in each of the interface lnodules are presented in this document as pseudo-Mesa
declarations of the form:

ModuleName.variable:ModuleName.TypeName •••• ;

ModuleName.TypeName: TYPE •••• ;

ModuleName.ProcedureName:: PROCEDURE [ParameterList] RETURNS [ResultsList];

ModuleName.SignaIName: SIGI~AL [ParameterList] RETURNS [ResultsList];

ModuleName.Error[error:ModuleName.ErrorType];

ModuleName.ErrorType: TYPE :. { ••• }

That is, each dermition is listed with its own name qualified by the DEFINITIONS module
name. Any Mesa program which invokes the facilities of Pilot must list the names of the
relevant DEFINITIONS modules in its DIRECTORY clause. It may then refer to one of these
variables, procedures, types., or signals by its fully qualified name. This style of explicit
qualification is strongly recommended; that is, as opposed to opening the scope of the
DEFINITIONS module by an OPEiN clause, and using the unqualified name.

Accompanying these Mesa declarations is the explanation of the function of each
procedure, the conditions under which it may be invoked, and the SIGNALS and ERRORS it can
raise. In this explanatory text, the explicit interface qualification is usually dropped,
since it is clear from the context.

The following rules apply to all the operations discussed in this manual. Exceptions to the
rules will be mentioned explicitly.

1) If the explanatory tE!xt of an operation does not explicitly say that a specific error
is raised, then the operation does not raise the error.

2) If an operation returns by raising an error, then the operation will appear to have
only raised the error.

Pilot Programmer's Manual 1

3) If an operation is to operate on a object already operated on (e.g.,
Space.MakeReadOnly on a read-only object), then the operation will return
successfully. That is, most operations are idempotent.

4) All operations that may be performed outside the body of a catch phrase may be
performed within the body of the catch phrase; for example, Pilot holds no monitor
locks while raising a signal or error.

5) Invoking an operation with a count parameter of zero is equivalent to invoking
the operation with a count of one minus one; that is, zero is not a special case.

Note: A paragraph in this form headed by the word "Note" contains additional
information about how the operations are intended to be used. These notes are included to
help programmers design their programs to take best advantage of the Pilot facilities.
Ignoring the notes will not produce incorrect programs, but it may produce programs that
execute slowly or require excessive amounts of system resources.

Caution: Paragraphs labeled with "Caution" are intended as warnings to programmers.
In general, cautions apply to features or aspects of Pilot which can be easily misused, and
which will result in incorrect or inconsistent operation if they are misused. In particular,
Pilot is not likely to be able to detect errors cautioned against in these paragraphs. It is the
programmers responsibility to avoid making these mistakes.

For example, an error which Pilot cannot detect is the "dangling reference" problem. In
many cases, Pilot defines a class of abstract objects and provides client programs handles
for accessing such objects. If one client program should request Pilot to destroy a
particular object and later another client program requests Pilot to create a new one of the
same type, then Pilot may reuse the handle of the old, destroyed one. If the first client
program inadvertently retains and uses copies of the old handle, these will now look like
legitimate handles for the new object. Pilot may not be able to detect the condition and
chaos is likely to ensue.

Metasymbols are indicated with italics. It is expected that some specific instance will be
filled in for the metasymbol, such as in the case of nullobject in the preceding section. A
possible instance of a nullobject might be null Handle.

1.6 Common Software

This manual also includes descriptions of the Common Software. Common Software is
not included in PilotKernel.bcd, but is made available as separate object files. Clients
which make no use of Common Software need not be burdened with its presence. Common
Software comes in two varieties: Product and Development. Common Software packages
denoted as Product Common Software are intended to be used in products. Development
Common Software consists of packages that are used internally, in the development
environment; they should not be used in product systems. Only Product Common
Software is described in this manual.

Because the Common Software packages are not included in PilotKernel.bcd, the name of
the implementing object file, how to bind, and so forth is presented at the beginning of
each section describing a Common Software package.

1-9

1 Introduction

1.7 Whatfollows

1-10

The rest of the manual d.escribes the interfaces to Pilot and the Common Software
packages in terms of the MHsa data types and procedures used by clients. These types and
procedures are embodied in one or more Mesa interfaces (DEFINITIONS modules) made
available to programmers of client software. The description is organized according to the
major resources managed by Pilot.

Chapter 2 describes the interface provided by Pilot to various Mesa processor features.
Described are the various I:onstants and types associated with the processor. Chapter 2
also describes the run-time support needed to execute Mesa programs. The chapter
includes the descriptions of'facilities to support the Mesa concepts of process, monitor, and
condition uariable and the various traps, procedures, and signals dermed by the Mesa
language. It describes SODle basic, low-level system facilities provided by Pilot. These
include: uniuersal identifiers, by which volumes and other objects are named; network
addresses, which control <:ommunication via the Xerox Internet Transport Protocols;
several forms of timekeeping facilities; and facilities for controlling system electrical
power.

Chapter 3 introduces the general concept of a stream. Streams may be superimposed upon
files, communication facilities, and devices in order to achieve a high level, medium
independent means of accessing and distributing information.

Chapter 4 describes the file management and virtual memory facilities of Pilot.

Chapter 5 describes the facilities by which client software exercises control over hardware
devices. These facilities are meant primarily for situations in which streams are not
suitable. This chapter is a model for individual device interfaces, some of which are
described in this manual, and others of which are implemented by clients.

Chapter 6 describes the cOIr.Lmunication facilities of Pilot.

Chapter 7 describes miscellaneous editing and formatting packages.

Chapter 8 describes how to initialize the system, and how to get a client to start execution.

Chapter 9 describes facilities for automatically handling system errors and signals. The
processing of error conditions is done by a separate program referred to generically as a
backstop.

Chapter 10 describes online diagnostics for communication and 110 devices.

Appendices provide suppleInentary information, including performance criteria, file type
management, Pilot intE!rrupt key, UtilityPilot considerations, multi-national
considerations, references, and a N etworkBinding example. Appendix H provides
information about the TCPf[P interfaces (not Pilot-related).

2.

Environment

2.1 Processor environment .. 2-1

2.1.1 Basic types and constants ... 2-1

2.1.2 Device numbers and device types 2-4

2.2 Processor interface 0 •••••••••••••••••••••• 0 • • • • • • • • • • • • • • •• 2-8

2.2.1 Bit block transfer ... 2-8

2.2.2 Text block transfer .. 2-12

2.2.3 Checksum operation .-.... :,' .' .. :. .. 2-16

2.2.4 Byte bloCk transfer 0 •••••••••••••••••••••••••••••••• 0 ••••••••• 0 •••• 2-16

2.2.5 Other Mesa machine operations 0........................... 2-17

2.2.5.1 Accessingpartsofa word or double word 2-17

2.2.5.2 Copying blocks of words 2-17

2.2.5.3 Special divide instructions 2-18

2.2.5.4 Special multipy instruction 2-18

2.2.5.5 Operations on bits ... 2-18

2.3 System timing and control facilities 2-19

2.3.1 Universal identifiers ... 2-19

2.3.2 Network addresses .. 2-20

2.3.3 Timekeeping facilities ... 2-21

2.3.3.1 Time-of-day and date 2-21

2.3.3.2 Local time parameters 2-22

2.3.3.3 Interval timing ... 2-23

2.3.3.4 Alarm clocks .. 2-24

2.3.4 Control of system power .. 2-24

2.3.5 Pilot's state after booting ... 2-25

2.4 Mesa run-time SUppOJ~t .. 2-34

2.4.1 Processes and monitors 2-34

2.4.1.1 Initializing monitors and condition variables 2-34

2.4.1.2 Timeoutl~ ... 2-36

2.4.1.3 Forkingprocesses ... 2-36

2.4.1.4 Prioritie:s of processes 2-37

2.4.1.5 Aborting: a process ... 2-37

2.4.2 Programs and configurations 2-38

2.4.3 Traps and signals .. 2-42

2.4.4 Calling the debugger or backstop 2-43

2.5 Client startup ... 2-44

2.6 Coordinating subsystems' acquisition of resoucrces 2-44

2.6.1 Use of the Supervisor .. 2-45

2.6.2 Supervisor facilities ... 2-46

2.6.3 Exception handlir.tg .. 2-49

2.7 General object allocation ... 2-49

2.7.1 Basic types .. 2-49

2.7.2 Basic procedures and errors .. 2-50

2

Environment

Pilot programmers have available to them the constants, types, and procedures which
describe the system elements and make. available, at the client level, certain features of
the abstract machine. This chapter describes these constants, types, and procedures and
contains the basic levels of the system.

2.1 Processor environment

Environment: DEFINITIONS ••• ;

This section defines all of the basic constants describing the processor and peripherals.
Section 2.1.1 describes the processor; section 2.1.2 defmes the constants pertinent to the
peripheral devices attached to the processor.

2.1.1 Basic types and constants

Pilot is specifically designed to execute on system elements defmed by the Mesa Processor
Principles of Operation. For convenience, the basic types and constants of that
architecture are captured symbolically in the DEFINITIONS module Environment.

The following defmitions defme the basic word, byte, and character sizes of the Mesa
processor.

Environment.Byte: TYPE. [0 .• 255);

Environment.Word: TYPE. [0 .. 65535);

Environment.bitsPerWord: CARDINAL. 16;

Environment.bitsPerByte, Envlronment.bitsPerCharacter: CARDINAL. 8;

Environment.logBitsPerWord: CARDINAL. 4;

Environment.bytesPerWord, Environment.charsPerWord: CARDINAL •
bitsPerWord I bitsPerCharacter;

Environment.logBitsPerByte, Environment.logBitsPerChar: CARDINAL=- 3;

Environment.logBytesPerWord, Environment.logCharsPerWord: CARDINAL • 1;

2-1

2

2-2

Environment

All constants of the form lo'g ... are base 2 logarithms of their respective quantities. The
following type is a general purpose descriptor for a sequence of bytes in virtual memory
(see section §4.5 for a description of virtual memory).

Environment.Block: TYPE - REC:ORD[
blockPointer: LONG POINTEIRTO PACKED ARRAY [0 .. 0) OF Environment.Byte,
startlndex. stoplndexPlus,One: CARDINAL];

The following constant detln,es an empty block.

Environment.nuIiBlock: Environlment.Block - [NIL, 0,0];

The following detlnitions characterize the basic page size of the Mesa processor.

Environment.wordsPerPage: CARDINAL. 256;

Environment.bytesPerPage, Environment.charsPerPage: CARDINAL - wordsPerPage
bytesPerWord;

Environment.logWordsPerPage: CARDINAL • 8;

Environment.logBytesPerPage., Environment.logCharsPerPage: CARDINAL •
logWordsPerPage + logB,ytesPerWord;

The following defInitions c:haracterize the maximum virtual memory address space
available to Pilot clients.

Environment.maxPageslnVM: CARDINAL - Environment.lastPageCount;

The maximum is one less than the number of VM pages provided by' the hardware. The
highest numbered VM page is reserved for system purposes.

Environment.maxPageslnMDS: CARDINAL - 256;

Environment.PageNumber: TYIIE - LONG CARDINAL; •• [0 .. 224.1) ••

Environment.firstPageNumber': Environment.PageNumber - 0;

Environment.lastPageNumber: Environment.PageNumber - 16777214;

Note: Because LONG subranl~e types are not implemented in the current version of Mesa,
the current version of Pilo,t detlnes PageNumber as a LONG CARDINAL and detlnes the
constants firstPageNumber' and lastPageNumber to specify FIRsT[P.ageNumber] and
LAsT(PageNumber). PageColJnt and PageOffset (below) are similar.

Environment.PageCount: TYPE • LONG CARDINAL •• (0 .. 224.1] •• ;

Environment. fi rstPageCount: E:nvironment.PageCount • 0;
"

Environment.JastPageCount: Environment.PageCount • lastPageNumber + 1; •• 224.';1

Environment.PageOffset: TYPE • Environment.PageNumber;

Environment. fi rstPageOffset: l:nvironment.PageOffset • 0;

Environment.lastPageOffset: Environment.PageOffset • lastPageNumber;

Caution: Substituting LAST[Environment.PageNumber] or LAST[Environment.PageCount] for
the above constants will yield incorrect results.

Pilot Programmer's Manual

Environment.Base: TYPE. LONG BASE POINTER;

Environment.first64K: Environment.Base •••• ;

first64K is the base pointer to the trrst 64K oivirtual memory.

Environment.maXINTEGER: INTEGER • LAST(INTEGER);

Environment.minINTEGER: INTEGER. FIRST(INTEGER);

Env'ronment.maXCAROINAL: INTEGER • LAST(CARDINAL);

Environment.maXLONGINTEGER: INTEGER • LAST(LONG INTEGER) ;

Environment.minLONGINTEGER: INTEGER • FIRST(LONG INTEGER) ;

Environment.maXLONGCARDINAL: INTEGER • LAST(LONG CARDINAL) ;

The following types allow direct manipulation of long values.

Environment.Long, Environment.LongNumber: TYPE. MACHINE DEPENDENT

RECORD [SELECT OVERLAID'" FROM

Ie • > [Ie: LONG CARDINAL],

Ii • > [Ii: LONG INTEGER),

Ip • > [Ip: LONG POINTER],

lu • > [Iu: LONG UNSPECIFIED),

num • > [Iowbits, highbits: CARDINAL],

any. > [low, high: UNSPECIFIED],

ENDCASE];

The following structure is used to address bits. BitBlt is the principal user.

Environment.BitAddress: TYPE • MACHINE DEPENDENT RECORD [

word: LONG POINTER,

reserved: [O •• LAST[WORD]/Environment.bitsPerWord) +- 0,
bit: [O •• Environment.bitsPerWord)];

Note that the reserved field must be zero.

The following operation returns a LONG POINTER to the trrst word of a page.

Environment.LongPoi nterFromPage: PROCEDURE [page: Environment.PageNu mber]

RETURNS [LONG POINTER);

2

The following operation returns the number of the page containing pointer. If pointer is
NIL, then the value returned is undetmed; no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]

RETURNS [Environment.PageNumber)i

2-3

2

2-4

Environment

2.1.2 Device numbers and device types

Device: DEFINITIONS ••• ;

DeviceTypes: DEFINITIONS ••• ;

DeviceTypesExtras: DEFINITICINS ••• ;

DeviceTypesExtraExtras: DEI:INITIONS ••• ;

DeviceTypesExtras3: DEFINITIONS ••• ;

DeviceTypesExtras4: DEFINITIONS ••• ;

DeviceTypesExtras5: DEFINITIONS ••• ;

Definitions are provided for devices and classes of devices attached to the system element.
These constants are definE!d in the interfaces Device, DevieeTypes, and DevieeTypesExtras.
DefInitions in the following Device interface serve to identify the individual devices
attached to the system elemEmt.

Deviee.Type: TYPE. RECORD [CARDINAL];

Device.nuIiType: Deviee.Type I. [0];

Device.Ethernet: TYPE. CARDINAL [5 •• 16);

Device.PilotDisk: TYPE • CARDIINAL [64 •• 1024);

DevieeTypesExtras.Floppy:TYPE • [17 •• 24);

DeviceTypesExtras4.ExtendedFloppy: TYPE :I CARDINAL [17 •• 64);

DeviceTypesExtras4.FloppyTapEt: TYPE :I ExtendedFloppy [50 •• 64);

DeviceTypesExtras4.ScSIDisk: n'PE :I Device .. PilotDisk [896 .. 1024);

DeviceTypesExtras4.0pticaIDeviice: TYPE :I CARDINAL [1024 •• 2048);

DeviceTypesExtras4.SingleBox: 'NPE • DeviceTypesExtras4.0pticaIDevice [1024 •• 1040);

DeviceTypesExtras4JukeBox: TYPE :I DevieeTypesExtras4.0ptical Device [1040 .. 1048);

DevieeTypesExtras4.SCSITape: TYPE • CARDINAL [2048 .. 2560);

DevieeTypesExtras4.SCSIProcess,or: TYPE • CARDINAL [2560 .. 2816);

DeviceTypesExtras4.ScSIReadO",y: TYPE. CARDINAL [2816 .. 3072);

All Ethernet type devices have a value in the range defined by Ethernet.

All devices capable of containing a Pilot physical volume are in the range defined by
PilotDisk.

All floppy drives and floppy tape drives have values deimed in the range ExtendedFloppy.
A specific subrange for floppies only is deimed by Floppy; a specific subrange for floppy
tapes is deimed in FloppyTape.

High capability disks have their own subrange in PiiotDisk, called SCSI Disk.

All optical devices have a value in the range defined by OpticalDevice. Subranges, deimed
by SingleBox and JukeBox, i:t1 the OpticalDevice category exist for single box and jukebox
devices.

Pilot Programmer's Manual 2

High capability tapes, processors, and read-only devices have values in the ranges dermed
by ScSITape, SCSI Processor, and ScSIReadOnly, respectively.

Device types provide a means of classifying the different devices attachable to the system
element.

Device types for Ethernet devices are listed below. The italicized column on the right
indicates the specified device.

DevieeTypes.anyEthernet: Device.Type •••• ;

DevieeTypes.ethernet: Device. Type • • •• ;

DeviceTypes.ethernetOne: Device. Type ••.• ;

An Ethernet of unspecified type

10MB Ethernet

3 MB Ethernet

The following specific device types are assigned to Pilot disks. The italicized column on
the right indicates the specified device.

DevleeTypes.anyPiiotDisk: Device. Type •••• ;

DavleeTypes.saSOO: Device.Type •••• ;

DevieeTypes.sa1000: Devlee.Type •••• ;

DevieeTypes.sa1004: Deviee.Type •••• ;

DevieeTypes.sa4000: Deviee.Type •••• ;

DavieeTypes.sa400S: Device. Type • • •• ;

DeviceTypes.t300: Daviee.Type •••• ;

DevieeTypes.t80: Deviee.Type •••• ;

DevieeTypes.cdc9730: Device.Type •••• ;

DevieeTypes.q2000: Deviee.Type •••• ;

DeviceTypes.q201 0: Device. Type • . •• ;

DeviceTypes.q2020: Device.Type •••• ;

DeviceTypes.q2030: Device. Type •.•• ;

DeviceTypes.q2040: Device.Type •.•• ;

A Pilot disk of unspecified type

Unspecified disk of the Shugart
Associates SA800 family

Unspecified disk of the Shugart
Associates SAl 000 family

SAl 004 disk

Unspecified disk of the Shugart
Associates SA4000 family

SA4008disk

Century Data Systems T -300 disk

Century Data Systems T -80 disk

Control Data Corporation CDC-
9730 disk .

Unspecified disk of the Quantum
2000 family

Quantum disk 2010

Quantum disk 2020

Quantum disk 2030

Quantum disk 2040

DevieeTypes~q2080: Device.Type •..• ; Quantum disk 2080

When indicating devices capable of holding a Pilot volume, Pilot will report a correct
device type, although it may not be as specific as possible; for example, a Shugart SA4008
disk might be reported as DeviceTy.pes.anyPiiotDisk, DeviceTypes.sa4000, or
DevieeTypes.sa4008.

Another device type included in the interface is

DevieeTypes.null: Deviee.Type • Device.nuIiType;

The following Device Types interfaces contain various floppy and rigid disk drive types.
In addition, DevieeTypesExtras4 defines types for floppy tapes, high capability devices, and

2-5

2

2-6

Environment

optical devices. Floppy tape:3 are streaming tape drives that are being incorporated in the
current environment to appear much like floppy devices.

In the following list, the italicized column on the right indicates the device specified.

DeviceTypesExtras.anyFloppy: [)avice.Type - ••• ; a floppy drive of unspecified type

OeviceTypesExtras.sa850: Oevlce.Type - ••• ; Shugart SA850 floppy drive

DeviceTypesExtras.sa455: Device. Type - ••• ; Shugart SA455 floppy drive

DeviceTypesExtras.sa456: Devica. Type - G •• ; Shugart SA456 floppy drive

DeviceTypesExtraExtras.m2235: Device.Type - ••• ; Fujitsu 26 MB rigid disk drive

DeviceTypesExtraExtras.m2242: Device.Type - ••• ;

DeviceTypesExtraExtras.m2243:Device.Type - ••• ;

DeviceTypesExtras3.sa475: Devie:e. Type - ••• ;

DeviceTypesExtrasl.st212: Devie, •• Type - ••• ;

DevieeTypesExtrasl.st4026: Devi:ce. Type - ••• ;

DeviceTypesExtras3.tm702: Devi,ce.Type •••• ;

DeviceTypesExtras3.tm703: Devi'ce.Type • D D D ;

DeviceTypesExtras3.mc1303: De'lIice.Type - ••• ;

DeviceTypesExtras3.mc132S: De'llice. Type •••• ;

DeviceTypesExtras3.q530: Device'. Type • • •• ;

DeviceTypesExtras3.qS40: Device,.Type •••• ;

DeviceTypesExtras4.anyFloppyT'ape: Devica. Type - ••• ;

DeviceTypesExtras4.fadSOOO: Device.Type - ••• ;

DeviceTypesExtras4.mr322: Devilce. Type - ••• ;

DeviceTypesExtras4.mrS35: Devilce. Type •••• ;

DevlceTypesExtras4.mk56fbx:DElvice.Type •••• ;

DeviceTypesExtras4.mk56fb: De"ic •• Type - ••• ;

DeviceTypesExtras4.d3126: Devie: •• Type - ••• ;

DeviceTypesExtras4.d5146h: [)e"'ice.Type - ••• ;

DeviceTypesExtras4.m2243asx:[)evice.Type - ••• ;

DeviceTypesExtras4.m2243tx:oa'vice. Type •••• ;

DeviceTypesExtras4.m2243t:Device.Type •••• ;

DeviceTypesExtras4.m2243as: Dlviee.Type - .•• ;

DevieeTypesExtras4.m2243x4: D,evice. Type •••. ;

DeviceTypesExtras4.tm702x:Deviee.Type •••• ;

DeviceTypesExtras4.tm703x:oeviee.Type •.•• ;

DeviceTypesExtras4.qS30x:Oevicll. Type •••• ;

DeviceTypesExtras4.st4026x:De"ice. Type - •.• ;

Device TypesExtras4.st225x: Oevic:e. Type • . .• ;

Fujitsu 50 MB rigid disk drive

Fujitsu 80 MB rigid disk drive

Shugart SA475 1.2Mb

Seagate 10Mb rigid disk

Seagate 20 Mb rigid disk

Tandon20 Mb rigid disk

Tandon 40 Mb rigid disk

Micropolis 80 Mb rigid disk

Micropolis 80 Mb rigid disk

Quantum 37 Mb rigid disk

Quantum 40Mb rigid disk

Floppy tape drive of unspecified
type

Wangtek floppy tape drive

Mitsubishi 26 MB rigid disk

Mitsubishi 51" MB rigid disk

Toshiba 80 MB

Toshiba 86 MB rigid disk

NEC 26 MB rigid disk

NEC 51 MB rigid disk

Fujitsu 80 MB

Fujitsu 80 MB

Fujitsu 80 MB

Fujitsu 86 MB rigid disk

344 MB rigid disk

Tandon20MB

Tandon20MB

Quantum 20 MB

Seagate 20 MB

Seagate 20 MB

Pilot Programmer's Manual

DeviceTypesExtras4.st251 x: Oevice. Type • • •• ;

DeviceTypeSExtras4.st4051x:oevice.Type •••• ;

DeviceTypesExtras4.m2225ad:Device. Type •••• ;

DeviceTypeSExtras4.m2227d:oevice.Type •••• ;

DeviceTypesExtras4.m2227dx:Device. Type •••• ;

DeviceTypesExtras4.d5146hx:Oevice. Type •••• ;

DevlceTypesExtras4.st4096: Device. Type • • •• ;

DeviceTypesExtras4.st225:Devlce.Type •••• ;

DevlceTypesExtras4.st4051 : Oevice. Type •••• ;

DeviceTypesExtras4.st251 :Oevlce.Type •.•• ;

DeviceTypesExtras4.st213: Device. Type • • •• ;

DeviceTypesExtras4.Maxtor1 :Oevice.Type •••• ;

DeviceTypeSExtras4.Maxtor2:Device.Type •••• ;

DeviceTypesExtras4.Maxtor3:Device. Type •••• ;

DevlceTypesExtras4.sms2300:Device. Type •••• ;

DeviceTypesExtras4.microp1578:o.vice. Type •••• ;

DeviceTypeSExtras4.cdcWrenIV: Device. Type • • •• ;

DeviceTypeSExtras4.priam728:Device.Type •••• ;

DeviceTypesExtras4.priam738:Device. Type •••• ;

DeviceTypeSExtras4.max3380:Device.Type •••• ;

DeviceTypesExtras4.mo85:Device. Type •••• ;

DeviceTypesExtras4.m2249s:Device.Type •.•• ;

DeviceTypesExtras4.m2452E: Device. Type • • •• ;

DevlceTypesExtras4.m2451A:Device.Type •••• ;

DeviceTypesExtras4.anritsu2150C:Device. Type • • •• ;

DeviceTypesExtras4.LD1200JB:Device. Type •••• ;

DeviceTypesExtras4.LD1200JBR1 :Device.Type •••• ;

DeviceTypesExtras4.LD1200JBR2:Device.Type •••. ;

DeviceTypesExtras4.LD1200JBR3:Device.Type •.•• ;

DeviceTypesExtras4.Any12InchDisk1 :Oevice.Type •••• ;

OeviceTypesExtras4.Any12InchDisk2:Device.Type •••• ;

DevicaTypesExtras4.AnY12InchDisk3:Device.Type •••• ;

DeviceTypesExtras4.Any12InchDisk4:Device. Type •.•• ;

OaviceTypesExtras4.LD500:Device. Type •••• ;

DeviceTypesExtras4.LD500R1 : Device. Type •.•• ;

OeviceTypesExtras4.LD500R2:0evica.Type •... ;

DeviceTypesExtras4.LD500R3:oevice. Type •.•• ;

Seagate 40 MB

Seagate 40 MB

Fujitsu 20 MB

Fujitsu 40 MB

Fujitsu 40 MB

NEC40MB

Seagate 80 MB

Seagate 20 MB

Seagate 40 MB

Seagate 40 MB

Seagate 10MB

Maxtor 192 MB

Maxtor drive (placeholder)

Maxtor drive (placeholder)

Siemens 2300 310 MB

Micropolis 1578380 MB

Control Data Wren IV 300MB

Priam 72828 OMB

Priam 738380 MB

Maxtor 3380380 MB

12" Nikon optical 7.2 GB

Fujitsu 300 MB

Fujitsu 219 MB

Fujitsu 130 MB (w/ml008)

Anritsu Open reel MT

12" OSI Single Drive

2

Released OSI-Drive 2 GB

Released OSI-Drive 4 GB

Released OSI-Drive WORM/ROM

12" Hitachi Single Drive

Hitachi Released Drive

Toshiba Single Drive

Toshiba Released Drive

5 114 H OSI Single Drive

Release of the OSI-Drive

Release of the OSI-Drive

Release of the OSI-Drive

2-7

2 Environment

DeviceTypeSExtras4.AnySlnchDisk1 : Device. Type •••• ;

DevlceTypesExtras4.AnySlnchDisk2:oevice. Type •••• ;

DeviceTypesExtras4.AnySlnchDisk3:Device.Type •••• ;

DeviceTypesExtras4.AnySlnchDisk4:0evice. Type •••• ;

DeviceTypesExtras4.0DSR1 : Device. Type •••• ;

DevlceTypesExtras4.0DSR2:Device.Type • '.0 ;

DeviceTypesExtras4.AnyJukeBo;K3:oavlce.Type •••• ;

DevlceTypesExtras4.AnyJukeBo;K4:oavice. Type •••• ;

DeviceTypesExtras4.AnyJukeBo;KS:Device. Type •••• ;

DeviceTypesExtras4.AnyJukeBo;K6:Device.Type •••• ;

DeviceTypesExtras4.AnyJukeBo;K7:Device. Type •.•• ;

DeviceTypesExtras4.AnyJukeBo;K8:oevice. Type •••• ;

DeviceTypesExtras4.daylight:Device.Type •••• ;

DeviceTypesExtras4.1oopBack:Dlvice.Type •••• ;

DeviceTypesExtras4.xm2000a: Ollvice. Type • . •• ;

OeviceTypesExtrass.mrS33:Devic:e.Type •.•• ;

DeviceTypesExtrass.m222Sd:oe"ice.Type •••• ;

Hitachi Single Drive

Hitachi Released Drive

Toshiba Single Drive

Toshiba Released Drive

OSljukebox 112" unit

OSI jukebox 2 12" units

Jukebox with 12" units

Jukebox with 12" units

Jukebox with 5 114" units

Jukebox with 5 114" units

Jukebox with 5 114" units

Jukebox with5114" units

Daylight

Loop Back Tool

Toshiba CD-ROM

Mitsubishi 26MB

Fujitsu 26MB

2.2 Processor interface

2-8

Pilot provides interfaces tha.t permit access to features provided by the under lying Mesa
processor which are not provided by the Mesa language, as described in this section. These
interfaces define pseudo-fac:es; that is, types· dermed by the hardware and operations
directly implemented by the hardware. Pilot merely exports the definitions for the use of
its clients. The types and opEtrations are defined below.

2.2.1 Bit block transfer

BitBlt: DEFINITIONS ... ;

The Bit Block Transfer operation in this interface is BITBlT, which operates on rectangular
arrays of bits in memory. The instruction accesses source bits and destination bits,
performs a function on them, and stores the result in the destination bits.

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction op1erates successively on lines of bits called items; it processes
width bits from a pair of lines, and then moves down to the next item by adding srcBpl (bits
per line) to the source addre~,s and dstBpl to the destination address. It continues until it
has processed height lines.

Figure 2.1 illustrates a possi.ble configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

Pilot Programmer's Manual 2

Destination Bitma
Source Bitma

dst
~-- width _I

T
height

1 ----

src -t T 1-------..

item
height

1
width

I t------- dstBpl -------jJll.,1 I t------ srcBpl -----1 ... 1

Figure 2.1. Bit Bit Source and Destination

BitBlt.BITBLT: PROCEDURE [ptr: BBptr]

The argument to Bit Block Transfer is a short pointer to a record containing the source
and destination bit addresses and bits per line, the width and height (in bits) of the
rectangle to be operated on, and a word of flags that indicate the operation to be
performed. The width and height of the rectangle are restricted to a maximum of 32,767.
The argument record must be aligned on a sixteen word boundary.

BitBIt.AlignedBBTable: PROCEDURE lip: POINTER TO BBTableSpace] RETURNS [b: BBptr] ;

BitBlt.BBTableSpace: TYPE. ARRAY [1 •• SIZE[BBTable] + BBTableAlignment) OF UNSPECIFIED;

BitBIt.BBTableAlignment: CARDINAL. 16;

AlignedBBTable ensures that the BBTabie will be on a sixteen word boundary.

BitBIt.BBptr, BitBIt.BitBltTablePtr: TYPE. POINTER TO BBTable;

BitBIt.BBTable, BltBIt.BitBltTable: TYPE. MACHINE DEPENDENT RECORD [
dst: BitAddress,
dstBpl: INTEGER,
sre: BitAddress,
srcDesc: SreDesc,
width: CARDINAL,
height: CARDINAL,
flags: BitBltFlags,
reserved: UNSPECIFIED +- 0];

This table contains all the arguments for specifying the resultant bit pattern. The
following types are used to make up a BitBltTable (BBTable).

8itBIt.BitAddress: TYPE. Environment.BitAddress;

BitAddress is used to address bits.

BItBlt.SrcDese: TYPE • MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
gray • > [gray: GrayParm],

2-9

2

(

2-10

Environment

srcBpl • > [srcBpl: INTEGEI~],
ENDCASE];

The description of the SOurCE! may be a pattern to be repeated or may be particular bits. In
the case of a pattern, the gr'ay field would be selected. This is described in detail under
Gray Flag following.

BitBlt.BitBltFlags: TYPE • MACHINE DEPENDENT RECORD[
direction: Direction +-forward.
disjoint: BOOLEAN +- FALSE.
disjointltems: BOOLEAN +- FALSE.
gray: BOOLEAN +- FALSE,
srcFunc: SrcFunc +- null.
dstFunc: DstFunc +- null,
reserved: [0 511 0];

Direction F/ag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory ad.dresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBtts, as in
scrolling.

BitBIt.Direction: TYPE. {foMrard, backward};

If the direction is backward, then the source and destination addresses point to the
beginning of the last item of the blocks to be processed, and the source and destination bits
per line must be negative. This restricts the width of the bitmaps involved to a maximunt
of 32,767 bits.

Disjoint Flag

If the operation's source alld destination are completely disjoint, the implementation
performs the operation from left to right, top to bottom.

Both the direction and the clisjointltems flags in the argument record are ignored in the
case that disjoint is set.

Disjoint/tems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, then the disjointltems flag should be set (and the disjoint flag should be
clear); this allows the implelnentation to perform the operation so that, within each item,
the bits are processed in the ltnost efficient horizontal direction. The items are processed in
the order indicated by direction.

If neither disjoint nor disjointltems is set, then the implementation processes the items
and the bits within items in the direction indicated by the direction flag.

Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual application is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

Pilot Programmer's Manual 2

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows: Note also that the gray case is always forward and completely disjoint
(disjointltems is ignored).

BltBlt.GrayParm: TYPE • MACHINE DEPENDENT RECORD [

reserved: [0 •• 15] +- 0,
yOffset: [0 .. 15],
widthMinusOne: [0 •• 15],
heightMinusOne: [0 •• 15]];

The fields grayparm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at
arg.src. (see figure 2.2). Note that the term "brick" refers to a rectangular area containing
the gray pattern to be copied. Conceptually, this brick is replicated horizontally and
vertically to tile a plane of dimensions arg.width and arg.height that becomes the source
rectangle of the operation. This brick is a maximum of sixteen words wide and sixteen
lines high. Patterns, therefore, are also limited to a repetition rate of sixteen in each
direction. To guarantee correct repeatability of the pattern in the horizontal direction, it
is usually the case that the width of the gray brick (in bits) is a multiple of the repetition
rate; the height of the gray brick is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x
and y offsets into the brick in addition to its width and height. The initial x offset is
derived from arg.src as follows: arg.src.word always points to the beginning of the first
line to be transferred (not to the origin of the gray brick). The x offset of the first bit to be
transferred is supplied by arg.src.bit; this bit is always in the lust word of the line. The
initial y offset is the number of lines down from the origin of the brick and is specified by
grayParm.yOffset; subtracting the y offset times the brick width from arg.src.word gives
the origin of the gray brick.

Destination Bitmap

arg.src.word _
Gray Brick

r arg.src.bit

I 't(~-- width --~"~I

Figure 2.2 Gray Brick

t
yOffset

~
height

1

2-11

2

2-12

Environment

Source and Destination Functions

BitBIt.SrcFunc: TYPE. {null, complement};

BitBlt.DstFunc: TYPE • {null .. and, or, xor};

The functions available fol' combining the source and destination rectangles are shown in
Figure 2.3.

dst

n a 0 x

src n 5 s·d s+d sed

c -5 -s'd -s+d -sed

Figure 2.3 Source and Destination Functions

The src field has two options: the null selection indicates using the source rectangle as is
for the destination function; the complement selection inverts the source bits in the
destination function.

The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be "replaced" with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits
leaves only those bits in CCl~mmon in the destination. "Painting" the destination requires
Oring, which leaves the union of the two sets of bits in the destination. The last function is
the XOR, which essentially masks out the matching bits leaving the union but not the
intersection of the bits in the destination rectangle.

2 .. 2.2 Text block transfer

TextBlt:DEFINITIONS ... ;

The Text Block Transfer Ullterface operates on an array of characters; it implements three
functions useful in generating the font representation of the text in a bitmap. It may
calculate the number of characters on a line, convert characters to their font
representation, or widen 01' narrow select characters for justification. These functions are
discussed in more detail later in this section.

TextBlt. TextBlt: PROCEDURE [
index: CARDINAL, bitPos: ,CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBltArg]
RETURNS [
newlndex: CARDINAL, ne\jvBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result) ;

TextBlt proceeds through the text until either there is no more text or a stop character is
encountered; it maintains the bitPos and the micaPos of the origin of each character, and

Pilot Programmer's Manual 2

increments the count of the number of pad characters processed. The new character
positions are returned along with the result of what caused the completion.

TextBIt. TextBltArgAlignment: CARDINAL. 16;

TextBIt.TextBltArgSpace: TYPE. ARRAY [1 .. SIZE[TextBltArg] + TextBltArgAlignment) OF
UNSPEOFIED;

TextBItAlignedTextBltArg: PROCEDURE lip: POINTER TO TextBltArgSpace)
RETURNS [p: POINTER TO TextBltArg]

TextBlfs static arguments are passed via a short pointer to a record; the argument record
must be aligned on a sixteen word boundary.

TextBIt.TextBltArg: TYPE. MACHINE DEPENDENT RECORD [
reserved: [0 .. 37777B] 0,
function: Function, _. display, format or resolve
last: CARDINAL, - index of last character to process
text: LONG POINTER TO PACKED ARRAY CARDINAL OF CHARACTER,
font: FontHandle, - Long Pointer to font information
dst: LONG POINTER, - destination bitmap (display only)
dstBpl: CARDINAL, - Bits per line (display only)
margin: CARDINAL, - mica value of right margin (format only)
space: INTEGER, - width adjustment to pad characters (display, resolve)
coord: LONG POINTER TO ARRAY CARDINAL [0 .. 0) OF CARDINAL - widths array for resolve
];

The limits of the text that TextBlt operates on are argo text to arg.last. Depending on the
function specified (explained below) specific args will be pertinent. During the format
function, the scan is terminated before the right arg.margin (in micas) is passed. The
display function Ors the character's font bits into the destination bitmap specified by
arg.dst and arg.dstBpl (bits per line). The resolve function saves the bitPos of the origin of
each character in the array arg.coord.

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out of) pad characters is rarely an even multiple of the
number of pad characters, pad characters encountered have arg.space + 1 added to their
widths as long as count is negative. Thus, if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, then arg.space
would be set to one, and count would be initialized to negative three; this will result in
widening the first three pad characters by two bits, and the remaining ten pad characters
by one bit each.

T.xtBlt.function: TYPE. {display, format, resolve};

The TextBlockTransfer implements three functions useful in generating the font
representation of the text in a bitmap. The display function converts characters to their
font representation in the destination bitmap, optionally widening or narrowing pad
characters to perform line justification. The format function is used to calculate the
number of characters that will fit on a line, given its right margin (in micas). The resolve

2-13

2

2-14

Environment

function is used to record the horizontal bit position of the origin of each character in the
bitmap; it also handles justification.

Caution: Because of kerning, the display function may place bits into the destination
bitmap to the left of the bitPos of the leftmost character and to the right of the right
margin. The programmer is responsibile for initializing the bitPos to allow for the left
kerning of the first character and for supplying a bitmap wide enough to allow for the
maximum possible right ke.rning. Kerning is further explained below.

TextBIt.FontHandle: TYPE • tONG POINTER TO Font;

TextBIt.Font: TYPE;

TextBIt.FontHandle points tCl~ the font information TextBlt needs. The interface item Font
describes the TextBlt font type. TextBttfontFormat.FontRecord is the concrete type of a
TextBIt.Font. TextBltFontformat.FontRecord must be aligned on a sixteen-word boundary.

TextBltfontformat.fontRecordAlignment: NATURAL. 16;

TextBltFontFormat.FontRecordl: TYPE • MACHINE DEPENDENT RECORD [
fontbits(O): FontBitsPtr,
fontwidths(2): FontWid1hsPtr,
fontchar(4): FontCharPtr,
rgflags(6): RgFlagsPtr,
height(8): CARDINAL];

The following types make up FontRecord:

TextBttFontformat:FontBitsPtr: TYPE. LONG BASE POINTER TO ARRAY [0 .. 0) OF UNSPECifiED;

The data at TextBttFontFormat.FontBitsPtr is a base pointer for the character raster data. For
a particular character, TextBltFontformat.CharEntry.offset (defined below) is added to this
base to get the address of the character's raster. The raster format includes the scan lines
within the dimensions given by fontwidths and fontchar. The height of the raster is
constant for all characters.

The memory order of the bits in the raster correspond to the memory order that TextBlt
will paint them into the df~stination bitmap. Said another way, TextBlt paints the first
scan line of the raster into the appropriate place in the first scan line of the destination
bitmap, and so on. Similarly, the Ill"st bit of a raster's scan line is painted into the
appropriate first bit of the scan line in the destination bitmap, and so on.

In conventional Xerox bitnlap displays, the IlIst scan line in memory corresponds to the
top line on the screen, and the IlIst bit of a scan line corresponds to the left pixel of the line.
For this case, the first sean line in the raster will be the topmost row of the character, and
the first pixel (most signific:ant bit) of a scan line will be the leftmost pixel of its row.

TextBltfontformat.FontWidth:5Ptr: TYPE • LONG POINTER TO FontWidths;

TextBltfontformat.FontWidth~5: TYPE. PACKED ARRAY CHARACTER OF PixelWidth;

TextBItFontformat.PixeIWidth: TYPE. CARDINAL [0 .. 377B];

The width of the font is depc~ndent on the width of the pixel.

Pilot Programmer's Manual

TextBItFontFormat.FontCharPtr: TYPE • LONG POINTER TO FontChar;

TextBItFontFormat.FontChar: TYPE • ARRAY CHARACTER OF CharEntry;

CharEntry must be aligned on a two-word boundary.

TextBltFontFormat.charEntryAlignment: NATURAL. 2;

TextBItFontFormat.CharEntry: TYPE • MACHINE DEPENDENT RECORD [
leftKern(O:O •• O): BOOLEAN,
rightKern(O:1 •• 1): BOOLEAN,
offset(0:2 •• 15): RasterOffset,
mica(1): CARDINAL];

2

If CharEntry.leftKern = TRUE, the charaeter's raster has one column preceding the char's
origin, and is to be written into the destination bitmap one column preceding the current
position (bitPos). If CharEntry.rightKern = TRUE, then the raster extends one column past
the spacing width into the space for the next char; that char's raster should begin
coincident with the current char's last column (one column preceding where it would
normally go).

CharEntry.offset is the offset for the address of the character's raster.

TextBltFontFormat.RasterOffset: TYPE. CARDINAL [O •• 37777B];

mica indicates the Hphysical" width of the char (typically in micas).

TextBItFontFormat.RgFlagsPtr, RgflagsPtr: TYPE ." LONG POINTER TO RgFlags;

TextBltFontFormat.RgFlags: TYPE. PACKED ARRAY CHARACTER OF Flags;

TextBItFontFormat.Flags: TYPE • MACHINE DEPENDENT RECORD [
pad(O:O •• O): BOOLEAN,
stop(0:1 •• 1): BOOLEAN];

The pad flag allows the character to have its width increased "or decreased (in bits) for line
justification. The stop flag specifies a stop character to terminate a TextBlt operation.

TextBItFontFormat.maxLeftKern: CARDINAL. 1;

TextBItFontFormat.maxRightKern: CARDINAL. 1;

maxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

TextBlt.Result: TYPE • {normal. margin. stop. notlnFont};

TextBlt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reaehed (format only), and stop if a terminating character was detected.

notlnFont is returned if the printer width for the character is a distinguished value
(177777B). This allows the flags to be independent of the font and yet provides a way for
information in the font to cause TextBlt to terminate.

2-15

2

2-16

Environment

TextBIt.SoftwareTextBlt: PROCEDURE [
index: CARDINAL, bitPos: CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBltAlrg]
RETURNS [
newlndex: CARDINAL, nE!wBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result];

SoftwareTextBlt is a softw~3Lre version of TextBlt. It is useful on processors that do not have
microcode support for the T·extBlt operation described in this section.

2.2.3 Checksum operation

Checksum :DEFINITIONS ... ;

The Checksum interface produces a checksum for nWords starting at p. Changing the
initial value cs is useful iffc)rming a single checksum for discontinuous areas of memory.

Checksum.ComputeChecksu",,: PROC [cs: CARDINAL +- 0, nWords: CARDINAL, p: LONG POINTER]
RETURNS [checksum: CA~tDINAL] ;

Checksum.nuIiChecksum: CAlltDINAL • 1777778;

This is a one's-complement add-and-Ieft-cycle algorithm.

2.2e4 Byte block transfer

ByteBlt: DEFINITIONS ... ;

The only operation in this interface is Byte Bit, which provides a Mesa definition of a byte
boundary block transfer operation. ByteBlt takes descriptions of two byte blocks as
arguments, transfers as mSLllY bytes as possible (the MIN of the two lengths), and returns a
count of how many bytes WE!re actually moved.

ByteBIt.ByteBIt: PROCEDURE [tel, from: Environment.Block,
overlap: ByteBIt.OVerLaplOption]
RETURNS [nBytes: CARDINAl.];

ByteBlt.OverlapOption: TYPE. {ripple, move};

ByteBlt.StartlndexGreaterThianStoplndexPlusOne: ERROR;

A length of zero in either te) or from is acceptable, resulting in no transfer. If a negative
length (startlndex > stopllndexPlusOne) is present in either to or from, then ByteBlt
signals ByteBlt.Startl ndexGreaterThanStopl ndexPI usOne.

The overlap argument defines the effect of ByteBlt when the source and destination fields
overlap. If overlap is mO\fe, then the contents of the source field are preserved by the
move. It acts as if the two fields did not overlap. If overlap is ripple, then a low address to
high address move takes place with no notice taken of overlapping fields. This mode is
useful for propagating a value throughout a block of storage.

Pilot Programmer's Manual 2

2.2.5 Other Mesa machine operations

Inli.,e: DEFINITIONS ••• ;

This interface defines a set of instructions not directly accessible from Mesa. It includes
some logical instructions and some extended-precision arithmetic instructions.

2.2.5.1 Accessing parts of a word or double word

The type Envlronment.LongNumber allows direct access to the high-order and low-order
words of LONG values. For convenience, a copy of this type is available in the Inline

interface.

Inllne.LongNumber: TYPE. Environment.LongNumber;

Alternatively, the following operations may be used:

Inllne.LowHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.HighHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

LowHalf and HighHalf return, respectively, the least and most significant words of its
argument.

Note: A LONG CARDINAL or LONG INTEGER whose value is in CARDINAL or INTEGER, respectively,
may be directly converted to a short value using a Mesa range assertion.

The following procedures return the least and most significant bytes of a word,
respectively.

Inllne.LowByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

Inllne.HighByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

2.2.5.2 Copying blocks of words

The following operations copy blocks of words.

Inline.COPV: PROCEDURE [from: POINTER, nwords: CARDINAL, to: POINTER]

Inline.Longcopv: PROCEDURE [from: LONG POINTER, nwords: CARDINAL,

to: LONG POINTER]

Inline.LongcopvReverse: PROCEDURE [from: LONG POINTER, nwords: CARDINAL,

to: LONG POINTER]

COpy and Longcopv copy nwords and are equivalent to the following Mesa code fragment:
FOR i IN [O •• nwords} DO (to + i) f ~ (from + i) f ENDLOOP;

LongCOPYReverse copies nwords and is equivalent to the following Mesa code fragment:
FOR i DECREASING IN [O •• nwords} DO (to + i) f ~ (from + i) f ENDLOOP;

An upper limit of 65,535 words can be copied in anyone call on Copy, LongCopy, or
LongCopyReverse.

Caution: Many errors in COPY, Longcopv, and LongcopvReverse are the result of an
incorrect order of parameters. The keyword constructor call is recommended.

2-17

2

2-18

Environment

2.2.5.3 Special divide instructions

All of the divide opersLtions described in this section will raise the error
Runtime.ZeroDivisor if the de"nominator is zero. All except UDDivMod and SDDivMod raise
Runtime.DivideCheck if the q1Jotient is greater than 216_1. (See §2.4.3 for more information
on these errors.)

The quotient and remainder of two cardinals or long cardinals can be obtained with the
following procedures:

InUne.DIVMOD: PROCEDURE [nurn, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

Inline.UDDivMod: PROCEDURE [num, den: LONG CARDINAL]
RETURNS [quotient, remain,der: LONG CARDINAL];

where num is the numerator and den is the denominator.

Inline.LDIVMOD: PROCEDURE [numlow: WORD, numhigh: CARDINAL, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

LDIVMOD i!~he same as DI"MOD except that the numerator is the double length number
numhigh*2 + numlow.

Inline.LongDiv: PROCEDURE [nUim: LONG CARDINAL. den: CARDINAL]
RETURNS [CARDINAL]

LongDiv returns the single precision quotient of nurn by den.

If both the quotient and reIlrlainder of nurn and den are desired, the following operation
can be used.

Inline.LongDivMod: PROCEDUR:E [num: LONG CARDINAL, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

The quotient and remaindE!r of two long integers can be obtained with the following
procedure:

Inline.SDDivMod: PROCEDURE [num, den: LONG INTEGER]
RETURNS [quotient, remainder: LONG INTEGER];

2.2.5.4 Special multiply inStruCtiOll

The double precision produc1; of two cardinals is obtained with the following procedure:

Inline.LongMult: PROCEDURE [CARDINAL, CARDINAL]
RETURNS [product: LONG cAltPINAL]

2.2.5.5 Operations on bits

The following operations perform the indicated bitwise logical operations on their
operand(s):

Inline.BitOp: TYPE. PROCEDUR:E.[UNSPECIFIED, UNSPECIFIED) RETURNS [UNSPECIFIED);

Inline.BITAND, BITOR, BITXO~:: Inline.BitOp;

Pilot Programmer's Manual

Inline.DBitOp: TYPE • PROCEDURE [LONG UNSPECIFIED, LONG UNSPECIFIED)
RETURNS [LONG UNSPECIFIED);

Inllne.DBITAND, DBITOR, DBITXOR: Inline.DBitOp;

Inline.BITNOT: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.DBITNOT: PROCEDURE [LONG UNSPECIFIED] RETURNS [LONG UNSPECIFIED];

A word or double word can be shifted by the operations

Inline.BITSHIFT: PROCEDURE [value: UNSPECIFIED, count: INTEGER]
RETURNS [UNSPECIFIED]

Inllne.DBITSHIFT: PROCEDURE [value: LONG UNSPECIFIED, count: INTEGER]
RETURNS [LONG UNSPECIFIED];

Inline.BITROTATE: PROCEDURE [value: UNSPECIFIED, count: INTEGER)
RETURNS [UNSPECIFIED];

2

These operations return value shifted by ABs[count] bits. The shift is left if count> 0, and
right if count < O. In both cases, zeros are supplied to vacated bit positions. In the case of
BITROT ATE, the bits are shifted circularly.

Note: A left shift is a multiply by two ignoring overflow; a right shift is an unsigned divide
by two with truncation.

2.3 System timing and control facilities

System: DEfiNITIONS ... ;

NSConstants: DEFINITIONS ... ;

This section describes some basic system and control facilities provided by Pilot. It
introduces and discusses the following: universal'identifiers; by which all network
resources and other permanent objects in a network may be named; the means by which
communicating processes are identified; the various forms of timekeeping provided by
Pilot; the Pilot facilities for turning system power on and off; and how a client gets started.

2.3.1 Universal identifiers

A universal identifier may be used for naming all permanent or potentially permanent
objects in the network. Every object and every resource may be assigned a separate,
unique, universal identifier which is different from any other assigned for any other
purpose. Thus, a particular universal identifier can be interpreted unambiguously in any
context or on any processor, and it always refers to the same thing.

Universal identifiers are 5-word Mesa objects of the following type.

System.UniversaIlD: TYPE [5];

Pilot issues a new universal identifier, distinct from all others on all other processors at all
times, as a result of the' operation

System.GetUniversaIlD: PROCEDURE RETURNS [uid: System.UniversaIlD];

A UniversaliD has no internal structure perceivable by client programs, and no properties
must be attributed to values of this type except the property of uniqueness. Pilot takes
extreme measures to ensure with a very high probability that UniversaliDs are not

2-19

2

2·20

E.nvironment

duplicated. The supply of new universal identifiers is limited to an overall processor
average of approximately l()ne or a few per second, though the instantaneous rate of
creating them can exceed this at times. If Pilot detects any danger of compromising the
reliability of the uniquenesl3 property, then the process calling GetUniver-saliD is delayed
until a new UniversaliD can be safely issued.

The following are some particular uses of U niversall Os:

System.PhysicaIVolumeID: TYPE = RECORD [System.UniversaIlD];

System. VolumelD: TYPE = RE(:ORD [Systein.UniversaIlD];

System.nuIllD: System.Univer~;aIlD •••• ;

Note: nulllD is never returned by GetUniversaliD.

2.3.2 Network addresses

The Internet Transport Protocols are the principal means of communication among
processes which reside on different machines (see §6.2, Network streams). A source or
destination of such communication is identified by its NetworkAddress.

System.NetworkAddress: TVF·e • MACHINE DEPENDENT RECORD[

net: System.NetworkNumloer,
host: System.HostNumber,
socket: System.SocketNumberl ;

System.NetworkNumber: TVP'E [2];

System.HostNumber: TYPE [3];

System.SocketNumber: TVPE 1:1];

System.nuIiNetworkAddress:· System.NetworkAddress •... ;

System.nuIiNetworkNumber: System.NetworkNumber •.•. ;

System.nuIiHostNumber: SYS1tem.HostNumber •••• ;

System.broadcastHostNumbEtr: System.HostNumber •.•• ;

System.nuIiSocketNumber: System.SocketNumber •.•• ;

System.localHostNumber: RE,ADONLY System.HostNumber ;

nuliNetworkAddress is neVE,r used as a source or destination and so may be used when no
valid address exists.

nuliNetworkNumber is norlnally not used as a source or destination. However, it can be
used on networks that are unable to obtain a network number.

localHostNumber is the Hos,1Number of the local machine.

Within a processor, sockets are used to separate and identify communication meant for
different purposes or destined for different processes. Sockets are associated with network
addresses and are considered to be a reusable resource which is allocated as required.

A NetworkAddress is nornlally retrieved from a Clearinghouse server. The network
address of the local system element can be discovered with
NetworkStream.AssignNetworkAddress. Network addresses are guaranteed to np unique

Pilot Programmer's Manual 2

between system restarts, but not across system restarts; that is, they are reused each time
the system is restarted (see section 6).

The case of network addresses of processors which are connected to more than one network
is still to be determined.

2.3.3 Timekeeping facilities

Pilot has three forms of timekeeping facilities: the date and time-of-day, the "stopwatch"
or interval timing function, and the "alarm clock" facility.

2.3.3.1 Time-of-day and date

The time and date are maintained by Pilot and the system hardware, typically in the form
of an accurate, crystal-controlled clock. The following operations are used to access the
clock.

System.GetGreenwichMeanTime: PROCEDURE
RETURNS [gmt: System.GreenwichMeanTime];

System.GreenwichMeanTime: TYPE. RECORD [LONG CARDINAL];

System.gmtEpoch: System. Greenwich MeanTime • [2114294400];

System.SecondsSinceEpoch: PROCEDURE [gmt: System.GreenwichMeanTime]
RETURNS [LONG CARDINAL];

The gmtEpoch is equivalent to the followiJlg:

(67 years * 365 days + 16 leap days) * 24 hours * 60 minutes *60 seconds

The GetGreenwichMeanTime operation returns the time as a count of seconds since a
ilXed, arbitrary base time. In particular,

gmt • t corresponds to the time t-System.gmtEpoch seconds after midnight, 1
January 1968. That is, the time System.gmtEpoch + 1 corresponds to 00:00:01,
January 1, 1968 (i.e., one second after midnight, ten years prior to the first
publication of the Pilot Functional S peci/ication).

The "end of time" occurs 232 seconds after 00:00:01 January 1, 1968. After the nend of
time," new clock readings will not be valid. Two GreenwichMeanTimes can be compared
directly for equality. To imd which of two GreenwichMeanTimes comes ill"st, apply
SecondsSinceEpoch to each. This gives the number of seconds that each is after 00:00:00
January 1, 1968. Finally, compare the results to determine which is the later time. That
is, compare SecondsSinceEpoch [t1] to SecondsSinceEpoch [t2] and not t1 to t2.

SystemExtras.ClockFailed: SIGNAL;

PiiotSwitchesExtraExtraExtraExtras.ignoreClockFailures:

PiiotSwitches.PilotDomainA. '.;

Pilot periodically checks to see if the time-of-day clock is running correctly by
GetGreenwichMeanTime. If it appears that the time-of-day clock is not correct, then the
signal SystemExtras.ClockFailed is raised. However, if the switch
PiiotSwitchesExtraExtraExtraExtras.ignoreClockFailures is down, then the signal will not be
raised.

2-21

2

2-22

Environment

This signal is resumable, but unless the client sets ignoreClockFailures, the signal will
probably be raised again.

SystemAdjustGreenwichMeclnTime: PROCEDURE [
gmt: System.GreenwichM«!anTime, delta: LONG INTEGER]
RETURNS [System.GreenwichMeanTime];

AdjustGreenwichMeanTimEI has the result gmt + delta. If t is a GreenwichMeanTime,
then [t + delta] is the GreenwichMeanTime that is delta seconds after t.

Within the range that they overlap, the times deimed here and the Alto time standard
assign identical bit pattern:s to a particular time. However, the Pilot standard runs an
additional 67 years before overflowing.

Client programs are responl3ible for converting between Greenwich Mean Time and local
time, taking into account Da.ylight Saving Time, etc., (see the next section).

The time and date are ke:pt accurately (to within a few seconds per month) by the
hardware and are adjusted BlS part of system maintenance. In addition, Pilot ensures that
all interconnected system el,ements on an NS network agree about the current time within
a few seconds of each other, and that they agree with an externally supplied timekeeping
standard if one is available. Prior to calling the client during booting, Pilot ensures that
the processor clock is set correctly. UtilityPilot clients, however, must set the processor
clock prior to calling any Pilot operation. This setting is done by using the operations in
the OthelloOps interface. If this is not done, the results of Pilot operations are unspecified.

2.3.3.2 Local time parameters

Client programs may obtain the parameters of the local time zone. In normal network
configurations, Pilot imds the parameters from a server and remembers them in
nonvolatile storage. (CurrEmtly it stores them in the root page of the system physical
volume.) An operation alsQI allows a client to set the parameters (typically on a stand­
alone or server machine).

The time zone parameters are represented as a record:

System.LocaITimeParameters: TYPE. MACHINE DEPENDENT RECORD [
direction(o:o .. O): System.WE!stEast,
zOne(o:1 .. 4): [0 •• 12],
zoneMinuteS(1 :0 .. 6): [0 .• 59],
beginDST(o:S .. 1S): [0 .• 366].
endDST(1 :7 .. 15): [0 .. 366]];

System.WestEast: TYPE. MAC:HINE DEPENDENT {west(o), east(1)};

The fields zone, zoneMinu1es, and direction together define the time zone as so many
hours and minutes west or e'ast of Greenwich. Normally, zoneMinutes is zero, but there
are a few places in the world whose local time is not an integer number of hours froIll
Greenwich. beginDST gives the last day of the year on or before which Daylight Savings
Time could take effect, where 1 is January 1st and 366 is December 31st (the
correspondence between nUlnbers and days is based on a leap year). Similarly, endDST
gives the last day of the year on or before which Daylight Saving Time could end. Note
that in any given year, DayHght Saving Time actually begins and ends at 2 A.~. on the

Pilot Programmer's Manual 2

last Sunday not following the specified date. If Daylight Saving Time is not observed
locally, both beginDST and endDST are zero.

To imd the local time zone parameters, a client calls

System. GetLocalTi meParameters: PROCEDURE [
pvlD: System.PhysicalVolumelD +- [nulllD]]
RETURNS [params: System.LOcaITimeParameters];

System.LocalTimeParametersU nknown: ERROR;

GetLocalTimeParameters returns the local time zone parameters provided that Pilot could
determine them either by consulting a network time server during initialization or
because they had been previously saved on the system physical volume by a call to
SetLocalTimeParameters (see below). If the parameters cannot be determined in either of
these ways, then the error LocalTimeParametersUnknown is raised.

A normal Pilot client should always default pvlD. A UtilityPilot client, on the other hand,
must specify the ID of the physical volume of the normal system drive, if the local time
parameters are to be saved on the disk.

While it is normally unnecessary for a client to do so, the time zone parameters saved in
nonvolatile storage on an individual workstation can be set by calling

System.SetLocaITimeParameters: PROCEDURE [params: System.LocaITimeParameters,
pvlD: System.PhysicalVolumelD +- [nuIllD]];

The main use for this procedure would be in a server, where a system administrator could
set the time zone parameters at system initialization time, in response to an act of
Congress, etc. Pilot guarantees the local time parameters are set from the network or
from the physical volume on the local disk. In UtilityPilot, however, the client must set
the parameters prior to-the call on GetLocalTimeParameters.

As with GetLocalTimeParameters, pvlD should always be defaulted by a normal client.

2.3.3 .. 3 Interval timing

It is frequently desired to measure elapsed time at the resolution of microseconds during
the execution of programs. Such measurements can be used in controlling system
behavior, analyzing program or system performance, and stimulating various other
activities. In many cases, the processor underlying Pilot will not provide a timer with a
resolution of one microsecond. As a result, Pilot would have to convert between processor
dependent units and microseconds to provide a timing facility that measured in
microseconds. In many cases, the overhead inherent in this conversion would be large
enough to inhibit the timing of functions. For this reason, Pulses are provided.

System.Pulses: TYPE • RECORD [pulses: LONG CARDINAL];

A Pulse is a processor dependent unit of time. The actual resolution and accuracy of Pulses
is determined by the accuracy and resolution of the internal clocks of the processor.
Typically, resolution of Pulses will be in the range 1 - 1000 microseconds and it will be
accurate to within 10% or better.

The current value of the processor interval timer may be read by

System.GetClockPulses: PROCEDURE RETURNS [System.Pulses];

2-23

2

2-24

Environment

A client may convert betwee:n pulses and microseconds with the operations:

System.PulsesToMicroseconds: PROCEDURE [p:System.Pulses)
RETURNS [m: System.MicrOsleconds);

System.MicrosecondsToPulsE!S: PROCEDURE Im:System.Microseconds)
RETURNS [p:System.Pulses];

System.Microseconds: TYPE .; LONG CARDINAL;

System.Overflow: ERROR;

To perform accurate timingl:l, the user should measure events in terms of Pulses and only
convert to and from microsoconds when it is absolutely necessary. In particular, Pulses
should be the time units used in the inner loops of programs or in any place where time is
critical.

Conversion in one direction 'I>r the other may cause an overflow. When this happens, Pilot
will raise the error OverfloV\,.

Caution: The error Overflo'w is not implemented in Pilot 14.0.

The processor interval timE!r wraps around after a processor dependent period of time,
typically greater than one hour. Thus, Pulses cannot be used to measure events with a
duration in excess of the wrap around period.

2.3.3.4 Alarm clocks

An alarm clock facility is provided by the Mesa process mechanism. A timeout value may
be assigned to any conditioll variable by means of the operation Process.SetTimeout (see
§2.4.1.2). A process may theJn "go to sleep" for that period by executing a WAIT operation on
that condition variable. Wh4!n the timeout expires (or when a NOTIFY operation is executed
on that condition variable, whichever comes rlrSt), the process awakens and continues
execution. One convenient way for a process to wait when there ,is no requirement for a
NOTIFY wakeup is to call Procesls.Pause (§2.4.1.6).

The resolution of the process timer is on the order of 15-50 milliseconds. It has no accuracy
whatsoever. Thus, a client process must check either the time of day, an interval timer Ol~
the processor timer if it must; know the time accurately.

2.3.4 Control of system power

The following operations allow the processor to be turned on and off under prograIIl
control.

Sy~.m.PowerOff: PROCEDURE;

PowerOff causes the machine to be turned otT. It does not return. Pilot causes aU
input/output activity to be :suspended, purges all of its internal caches, forces out an
mapped spaces to their file windows, stops all processes from further execution, and causes
the display to be turned off. The only way to recover from this operation is to turn the
system power on and press the restart button. If there is no power relay, the system
element remains turned on but executing no programs; a unique code is displayed in the
maintenance panel in this situation.

Pilot Programmer's Manual 2

System.SetAutomaticPowerOn: PROCEDURE [
time: System.GreenwichMeanTime, external Event: BOOLEAN];

SetAutomaticPowerOn sets the internal clock of the processor to automatically turn on
the system power at or after time. If external Event is FALSE, then power is turned on at the
specified time. If external Event is TRUE, then power is turned on in response to the first
external event occurring after the time specified by time. An external event is an
electrical signal made available to the processor; for example, the ringing signal of a data
telephone.

If power is already on when this operation would turn it on, then the operation has no
effect. The automatic power on facility may be reset by calling

System. ResetAutomaticPowerOn : PROCEDURE;

2.3.5 Pilot's state after booting

The device from which the system was booted (loaded) may be ascertained by referencing

System.systemBootDevice: READONLY system.BootDevice;

System.BootDevice: TYPE. RECORD [device: Device.Type, index: CARDINAL];

Client programs can determine if they are running upon UtilityPilot with

System.isUtilityPilot: READONLY BOOLEAN;

Boot switches are used to transmit operational information from the booting agent (e.g.,
the Installer) to the running boot file (see client documentation for dermitions of
applicable boot switches). The boot switches are made available as

System.Switches: TYPE • PACKED ARRAY CHARACTER OF System.UpDown;

System.UpDown: TYPE. MACHINE DEPENDENT {up(O)~ down(1)};

System.switches: READONLY System.Switches;

System.defaultSwitches: System.Switches • ALL[Up];

If a switch is down, then it is active; if a switch is up, thenit is inactive. The value of
switches is determined as follows. If the booting agent provides switches other than
defaultSwitches, then that value is used. If the boot file was constructed (by MakeBoot) to
contain other than defaultSwitches, then that value is used. Otherwise, defaultSwitches
is used.

Switch assignments are made by the Operating Systems group. Ranges of switches are
allocated for Pilot, for the Xerox Development Environment, and for product systems.

The following interfaces provide the Pilot switches:

PiiotSwitches: DEFINITIONS ... ;
PilotSwitchesExtras: DEFINITIONS ... ;
PiiotSwitchesExtraExtras: DEFINITIONS ... ;
PiiotSwitchesExtraExtraExtras: DEFINITIONS ... ;
PiiotSwitchesExtraExtraExtraExtras: DEFINITIONS ... ;
PilotSwitchesExtrasS: DEFINITIONS ... ;
PiiotSwitchesExtras6: DEFINITIONS ... ;
PiiotSwitchesExtras7: DEFINITIONS ... ;
PiiotSwitchesExtras8: DEFINITIONS ... ;

2-25

2

Value

&

0

1

2

3

4

5

6

7

8

9

,

<

=

>

{

I
}
..

?

[

%

]

2-26

Environment

Table 2.1 lists the Pilot switches, names, and meanings. Switches of special interest are
described in detail followin~r Tables 2.1 and 2.2.

Table 2.1. Pilot Switches: Value, Name, and Meaning

Name Meaning

Pilotswitches.hang Hang with maintenance panel code 936 in
lieu of going to the debugger.

Pilotswitches.break Go to debugger as early as possible in Pilot
initialization.

Pilotswitches.brea k1 Go to debugger as soon as all code is map-
logged.

PilotS witches. brea k2 Go to debugger just before calling
PiiotClient.Run.

Piiotswitches.tinyDandelionMemorySize Simulate 192K memorr size for a
Dandelion with nodisp ay,

Piiotswitches.zeroScratchMem Initialize scratch memory pages to zero,

Pilotswitches.remoteDebug Go to the Ethernet for a debugger

Pliotswitches.heapO~nerChecki ng Turn owner checking on for the system
zones.

Piiotswitches.disableMa pLog Disable map logging.

Pilotswitches.i nterruptWatcher Create a Pilot interrupt key watcher.

Pilotswitches.std Dandel ionMemol1,Size Simulate 256K memory size for a
Dandelion with display.

Piiotswitches.breakFileMgr (No longer supported)

Piiotswitches.breakVMMgr (No longer supported)

Piiotswitches.noEthernetOne Pretend that no Ethernet 1 is attached to
the system element.

PilotSwitches.noStartCommunicatictn Do not initialize the Communication
package at system start-up.

Piiotswitches.noEthernet Pretend that no Ethernet is attached to the
system element.

PiiotSwitches.smallAnonymousBacki ngFi Ie Set the VM backing file size to 550 pages.

Pilotswitches.medi umAnonymousBacki ngFile Set the VM backing file size to 1200 pages.

Piiotswitches.largeAnonymousBack:i ng Fi Ie Set the VM backing file size to 1800 pages.

Pllotswitches.hea pChecki ng Turn checking on for the system zones .

PiiotSwitches.debuggi ngOnUti I ityPi lot (No longer supported)

PliotSwitchesExtras.useTi nyHeap Create a tiny system heap, with tiny
increment values.

PiiotswitchesExtras.useStd H ea p Create a medium-size system heap, with
medium-size increment values.
(This is the default.)

PiiotSwitchesExtras. uselargeH ea p Create a large system heap with large
increment values.

- more-

Pilot Programmer's Manual 2

Table 2.1. Pilot Switches: Value, Name, and Meaning - continued

Value Name Meaning

PiiotSwitchesExtraExtraExtraExtras.ignoreClockFailures Inhibit ClockFailed signal from
being raised.

\200 PliotSwitchesExtra Extra Extras.conti nueBooti nglfNo Ti me Inhibit 937 MP hang during booting
Server if invalid clock and no time server

available.

\330 .. PilotSwitchesExtra8.CommunicationsSwitches
\337

\330 Data link layer control selector for
Ethernet medium.

\331 Enable rate controlled transmit in
Sequenced Packet Protocol.

\332 (Rate controlled transmit) Primary
routes off local net are Tl speed
links.

\333 (Rate controlled transmit) Primary
routes offlocal net are 64k bit links.

\334 Enable Sequenced Packet Protocol
parameter negotiation.

\335 Disable XNS protocol.

\336 Enable ISO 8073 Transport class
negotiation.

\337 Reserved for Communications
current and future use.

\350 PliotSwitchesExtra6.useHeapForSmall Global Frames Allocate small global frames as
nodes from a heap.

\351 PiiotSwitchesExtra6.pcEmulationBank Control allocation of real memory
for PC Emulation.

\352 PiiotSwitchesExtra5. tinyDoveMemSizeTi nyVMTi nyDisplay Simulate 640k bytes Dove memory
with 64 page VM Map, 15" display

\353 PiiotSwitchesExtra5.tinyDoveMemSizeTinyVMBigDisplay Simulate 640k bytes Dove memory
with 64 page VM Map, 19" display

\354 PiiotSwitchesExtra5. tinyDoveMemSizeMedVMTi nyDisplay Simulate 640k blies Dove memory
with 128 page V Map, 15" display

\355 PiiotSwitchesExtra5. tinyDoveMemSizeMedVMBigDisplay Simulate 640k bytes Dove memory
with 128 page VM Map, 19" display

\356 PiiotSwitchesExtra5. ti nyDoveMemSizeBigVMTinyDisplay Simulate 640k bytes Dove memory
with 256 page VM ~ap, 15" display

\357 PiiotSwitchesExtras.tinyDoveMemS;zeBigVMBigDisplay Simulate 640k bytes Dove memory
with 256 page VM Map, 19" display

\360 PiiotSwitches.germExtendedErrorReports Display error code, global frame, and
pc on boot loader errors.

- more-

2-27

2

Value

\361

\362

\363

\364

\365

\366

\367

\370

\371

\372

\373

\374

\375

\376

2-28

Environment

Table 2.1. Pilot Switches: Value, Name, and Meaning - continued

Name Meaning

PilotSwitchesExtras.ieeeLeveIZeroP;~cketFormat (Not supported)

PiiotSwitchesExtras.bilingualReception (Not supported)

PllotSwitchesExtraS. bi I i ngualTransn1ission (N ot supported)

PliotSwitchesExtraS. remote(a I I Debugger Remote call debugger.

PiiotSwitchesExtra7. verySmaIlAnon~~mousBacki ngFi Ie Set the VM backing file size to 325
pages.

PiiotSwitchesExtraExtras.saveDispla),PageslndexA Save 48 pages of display memory.
U sed in conjunction with \367, \372,
and \373.

PiiotSwitchesExtraExtras.saveDispla),PageslndexB Save 64 pages of display memory.
U sed in conjunction with \366, \372,
and \373.

PiiotSwitchesExtras.bypassDebuggerSubstitute Bypass the debugger substitute by
going to the real debugger.

PiiotSwitchesExtras.makeCodeOnePageSwapU nits Tile code with one-page swap units.

PiiotSwitchesExtras. useSpecial Mem40ry Give display memory to Pilot for
client use.

PiiotSwitchesExtras.useSpecialMemlorylfNoDisplay Gi ve displ~ memory to Pilot for
client use· no bitmap display.

PiiotSwitches.heapParamsFromClient (N 0 longer supported)

PiiotSwitches. fi II MapLog (No longer supported)

PiiotSwitches.eatGerm Delete boot loader so the memory
that it· uses can be recycled.

-end-

In addition to retaining the above semantics, VM Backing File switches work in
combination, as shown in Table 2.2.

Table 2.2. VM Backing File Switch Combinations

Switch Meaning

{ } (dn = down)
dn Set the VM backing file size to 550 pages

dn Set the VM backing file size to 1200 pages
dn Set the VM backing file size to 1800 pages

dn dn Set the VM backing file size to 2500 pages
dn dn Set the VM backing file size to 3500 pages

dn dn Set the VM backing file size to 5000 pages
dn dn dn Set the VM backing file size to 7000 pages
\365 Set the VM backing file size to 325 pages

Pilot Programmer's Manual 2

Many Pilot boot switches are of interest only to the Pilot implementors themselves. Three
such switches are listed below.

& Hang with a maintenance panel code 936 in lieu of going to the debugger.

o Go to debugger as early as possible in Pilot initialization.

To use the 0 switch, you must have set debugger pointers in the boot file or be using an
Ethernet debugger. In some cases, the boot file may have to be built with
Debu9Pilot.bootmesaorDebu9~tilitYPilot.bootmesa

1 Go to debugger as soon as all code is map-logged. ('~Key Stop 1").

The debugger usually will not be able to set breakpoints in code until it has been map­
logged. Also, note that from the time the boot button is pushed until shortly after key stop
1 in the system being invoked by the boot button, only an Ethernet debugger may be used;
an attempt to use a local debugger will result in an MP code of 902.

The Pilot boot switches that are normally of interest to users are described below.

2 Go to debugger just before calling PilotClient.Run (ttKey Stop 2tt).

This switch may be used to place breakpoints just before client code begins executing.

3 Simulate 192K memory size for a Dandelion with no display.

This switch is used for performance testing product software on large memory machines.
See also the tt9" switch.

4 Initialize scratch memory pages to zero.

This switch puts zeros in all the scratch real memory that is provided behind "dead"
intervals, when they are page-faulted in or otherwise assumed to be read in. ('Dead"
means virtual memory mapped ttdead" or had space.KiII applied on it.

5 Go the the Ethernet for a debugger.

This switch instructs Pilot to go to the Ethernet when it needs a debugger. This
instruction supersedes the presence of an installed debugger on the attached disk and/or
debugger pointers which may have been set in the boot file.

6 Turn owner checking on for the system zones.

This switch causes Error[invalidNode] or [invalidOwner] to be called if the heap pointer is
NILor if the creator of heap is not the caller of the heap operation, Heap.CheckOwner.

7 Disable map logging.

In order for the debugger to access the Pilot virtual memory, it must be aware of the
current mappings between virtual memory and backing storage. It does this by consulting
the virtual memory map log normally produced by Pilot.

Full map logging is the default case when Pilot is booted if there is a debugger present.
Full map logging includes occasionally going to the debugger to clean up the log. A
debugger is considered present if a debugger is installed on a volume of type one higher

2-29

2

2-30

Environment

than that of the boot file, or if debugger pointers have been set in the boot file, or if a
remote debugger is specified (boot switch "5").

Boot switch t'7" will cause Pilot to stop map logging when PiiotClient.Run is called (at key
stop 2), thus increasing per:formance but seriously limiting the ability of the debugger to
diagnose problems.

8 Create a Pilot. interrupt key watcher.

This switch instructs Pilot to call the debugger when the LOCK and both SHIFT keys are held
down and then the STOP kHY is pressed. The debugger will report npilot Emergency
Interrupt." Since the Pilot process doing the job runs at the highest priority, this feature
is useful for debugging Pilot itself and user input handlers. Do not attempt to Interpret
Call from the debugger back into the debuggee because of the high priority level involved.
The key top name STOP is for the American Level IV keyboard; consult the keyboard
mapping documentation for the equivalent key on other keyboards. Since the keys used
are on the standard keyboard, a system having only a character terminal attached cannot
access this feature.

9 Simulate 256K memory size for a Dandelion with display.

This switch is useful for performance testing product software on large memory machines.
See also the tt3" switch.

< Pretend that no Ethernet 1 is attached to the system element.
= Do not initialize the Communication package at system start-up.
> Pretend that no Ethernet is attached to the system element.

The above three switches ar(~ of interest to Pilot communication implementors.

\365 Use a tiny data space backing storage cache.
{ Use a small dnta space backing storage cache.
I Use a mediuml data space backing storage cache.
} Use a large da.ta space backing storage cache.

Pilot allocates a cache of file space to be used for backing storage for data spaces. (The file
space is allocated on the system volume.) If the size of this cache is too small for an
application's needs, poor pe:rformance may result. The use of these switches allows the
explicit specification of the ~Jize of this cache. If no switches are given, then Pilot uses an
amount based on the size of the volume booted from. In the current version of Pilot, the
switches "{", "I", and fT' can be used singly or in conjunction to allocate various sizes of
backing file. See Table 2.2 for actual sizes.

Turn checking on for the system zones.

If this switch is set, then checking is turned on for system and system MDS heaps. This
switch aids in debugging he:ap errors, since Heap.Error(invalidNode] will be raised when
attempting to free a node fro:m the wrong heap or to free random memory, and so forth.

Create a tiny slystem heap, with tiny increment values.
% Create a medium-size system heap, with medium-size increment values.
] Create a large system heap, with large increment values.

These switches control the ~;ize of the initial system heap. They are provided for those
clients that want to alter thl3 standard setting. If .. [" is set, then the system heap has an
initial value of 40, increment value of 4, and largeNodeThreshold value of 128. If n%" is

Pilot Programmer's Manual 2

set, then the system heap has an initial value of 40, increment value of 20, and
largeNodeThreshold value of 260. Lastly, ifU]" is set, then the system heap has an initial
value of 100, increment value of 50, and largeNodeThreshold value of 260. If no switches
are set, then the values for U%" are assumed.

Inhibit ClockFailed signal from being raised.

Pilot periodically checks to see if the time of day clock is running correctly. If it appears
that it is not, then the signal SystemExtras.ClockFailed is raised. However, if the switch "." is
down, then the signal is not raised.

\200 Inhibit 937 MP hang during booting.

This switch allows Pilot clients to bypass a 937 maintenance panel hang if the clock is
invalid and no time server is available. This switch can be dangerous. Any Pilot client
booted with \200 should verify the validity of the time. Pilot will set the clock to a value
near gmtEpoch if it could not reach a server and the clock was apparently invalid.

Switches \330 through \337 are communication switches. Descriptions of each follow.

\330 Data link layer control selector for Ethernet medium

If \330 is set, the Pup Protocol will use the «told style" packet type numbers which are
incompatible with standard IEEE 802.2 data link encapsulation. If this switch is set, the
OSI Protocol will use Ethernet encapsulation instead of IEEE 802.2 data link
encapsulation to avoid conflict. If the switch is not set (i.e., up), then the Pup Protocol will
use newly allocated Ethernet packet type values and the OSI Prot~olwill use 802.2 data
link encapsulation. This switch should never be used outside of Xerox.

\331 Enable rate controlled transmit in Sequenced Packet Protocol

If\331 is set, the transmission rate ofSPP data packets will be moderated for all non-local
connections (at least one hop away). The intent is to avoid swamping the ilrst router
which, in turn, may allow that router to support additional active streams. Unless one
of \332 or \333 is set, the assumption is made that the primary routes off the local net are
9.6k bit links.

\332 (Rate controlled transmit) Primary routes off local net are T1 speed links

This switch is meaningful only if the \331 switch is set. The \332 switch should be set if the
primary routes off the local net are T1 speed links. If this switch is set, the \333 switch
must not be set.

\333 (Rate controlled transmit) Primary routes off local net are 64k bit links

This switch is meaningful only if the \331 switch is set. The \333 switch should be set if the
primary routes off the local net are 64k bit links. If this switch is set, the \332 switch must
not be set.

\334 Enable Sequenced Packet Protocol parameter negotiation

Normally, the Sequenced Packet Protocol does not request parameter negotiation for the
underlying network stream. If \334 is set, SPP will request parameter negotiation at
connection establishment time.

2-31

2

2-32

Environment

\335 Disable XNS protocol

The XNS Protocol is autornatically started during Pilot Communication initialization.
If\335 is set, then the XNS Protocol will not be started.

\336 Enable ISO 8073 Transport class negotiation

Normally, class negotiation is disabled and the preferred class is the lowest acceptable
class for the underlying network service. 1f\336 is set, the class will be negotiated and the
preferred class will be the highest class implemented.

\337 Reserved for Communications current and future use.

\350 Allocate small global frames as nodes from a heap.

If \350 is set, then packagE~d global frames will be allocated from a heap, resulting in
significant savings of MDS space for "old" style ~non-mds-relieved' modules or modules
packaged with the told' modules. Otherwise MDS space is lost in the overhead of "page
breakage" when allocating the global frames as a swapUnit (i.e., an integral number of
pages) as guaranteed by the packager.

\351 Control allocB~tion of real memory for PC Emulation.

If\351 is set, and if the type of Pilot being run is UtilityPilot, then real memory is provided
for PC Emulation. If the switch is down and the type of Pilot being run is Pilot, then no
real memory is provided for PC Emulation. If the switch is up, and if the type of Pilot being
run is Utility Pilot, then real memory is not providedfor PC Emulation. If the switch is up
and the type of Pilot being run is Pilot, then real memory is provided for PC Emulation.
This switch is defined in this way so that in the default case (no switches set), PC
emulation is available in Pilot (assuming that the hardware supports it) and not available
in Utility Pilot.

\352 Simulate 640k bytes Dove memory with 64 page VM Map, 15" display
\353 Simulate 640k bytes Dove memory with 64 page VM Map, 19" display
\354 Simulate 640k bytes Dove memory with 128 page VM Map, 15" display
\355 Simulate 640k bytes Dove memory with 128 page VM Map, 19" display
\356 Simulate 640k bytes Dove memory with 256 page VM Map, 15" display
\357 Simulate 640k bytes Dove memory with 256 page VM Map, 19" display

These switches simulate a Dove machine with 640k bytes of real memory, a 15" or 19"
display, a 22-bit, 23-bit, or 2:4-bit virtual address space. If\352 is set, then a 64 page VM
Map with a 15" display is sir.nulated. If\353 is set, a 64 page VM Map with a 19" display is
simulated. If\354 is set, then a 128 page VM Map with a 15" display is simulated. If \355
is set, a 128 page VM Map with a 19" display is simulated. If\356 is set, a 256 page VM
Map with a 15" display is silnulated. If\357 is set, a 256 page VM Map with a 19" display
is simulated.

\360 Display error ,r:ode, global frame, and pc on boot loader errors.

If this switch is set, then upon boot loader errors the maintenance panel will cycle
numbers representing the error code, global frames,and pes of the error stack.

\361 Use IEEE 802.2 Logical Link Layer protocol.
\362 Use bilingual reception.

Pilot Programmer's Manual 2

\363 Use bilingual transmission.

If\361 is set, then Ethernet packets will be transmitted using IEEE 802.2 Logical Link
Layer protocol. If \362 is set, packets will be accepted from the Ethernet in either IEEE
802.2 Logical Link Layer or Ethernet version 1.0 format. If \363 is set, the machine will
transmit packets to hosts in the format that the receiver desires. \363 overrides the
setting of\361.

Note: None of the switches described in the previous paragraph have been implemented.

\364 Remote call debugger.

If\364 is set, then the machine can be forced into the debugger by a suitable message from
a remote machine. This facility is intended to allow forcing machines into the debugger
that have no convenient means of doing so from their user interface; for example, server
machines or machines whose user interface is otherwise "locked up."

\365 Set the VM backing file size to 325 pages.

Pilot allocates a cache of file space to be used for backing storage for data spaces. This
switch sets the size of this cache to the minimum size. See Table 2.2 for other backing file
switch settings.

\366 Save 48 pages of display memory. Used in conjunction with \367, \372,
and \373.

\367 Save 64 pages of display memory. Used in conjunction with \366, \372,
and \373.

When boot switches \372 or \373 are set, the amount of reserved display memory to give
back to Pilot for client use is selected by switches \366 and \367. If neither \366 or \367 is
down, but either \372 or \373 is down, then all display memory is given to Pilot for client
use. \366 will reserve 48 pages; \367 will reserve 64 pages, and both reserve 128 pages of
display bank reserved memory.

\370 Bypass the debugger substitute by going to the real debugger.

This switch setting will expect a real debugger (rather than a debugger substitute) after
displaying MP codes.

\371 Tile code with one-page swap units.

This switch maps all swappable spaces that were created by MakeBoo t (so are part of the
bootfile) with one page swap units.

\372 Give display memory to Pilot for client use.
\373 Give display memory to Pilot for client use if no bitmap display.

When booting with either \372 or \373, the entire real memory reserved for bitmap
displays is made available to Pilot for client use. (On Dandelions, the size of reserved
display memory is 256 pages). The only difference between using the two switches is
that \373 first checks if a bitmap display is enabled before giving up the reserved
memory; \372 performs no such checking. Either of these switches used in conjunction
with \366, \367, or both, makes available to Pilot different ratios of reserved display
memory. See explanations for \366 and \367 for more details. (Note: these switches
should be used only with configurations that have no display or no bitmap display (Le.,
Lear Siegler ttys).

2-33

2 Environment

\376 Delete boot loader so that the memory that it uses can be recycled.

If this switch is used, then j~he debugger will be inaccessible. In addition, the system will
be unable to perform software-initiated boots of logical volumes. The only booting action
available will be a boot-button boot (which may be initiated by software).

2.4 Mesa run .. time support

2-34

This section describes low-level facilities used to support the execution of Mesa programs:
operations to support the ~,fesa process mechanism; facilities relating to Mesa program
modules; traps, signals, and errors which may be generated by a Mesa program during
execution; and tlnally, somei miscellaneous interfaces.

2.4.1 Processes and monitors

Process: DEFINITIONS .•. ;

Most aspects of processes nnd monitors are made available via constructs in the Mesa
language and are described in the Mesa Language Manual. Some operations whose
frequency of use does notjuSltify such treatment are cast as procedures.

When a process is FORKed, it is called a live process. When it has been JOINed or when it has
been detached and its root procedure has returned, it is called a dead process. Programs
must take care not to use or retain copies of the PROCESS of a dead process. Since Pilot may
reuse PROCESSes, any operation performed on the PROCESS of a dead process may mistakenly
operate on a different proces~s than the one intended, with unpredictable results.

Most of the operations which take a PROCESS as an argument (JOIN, Process.Abort, and
Process. Detach) may generat4~ the following signal:

Process.JnvalidProcess: ERROR [process: PROCESS];

This signal indicates that the argument is not a live process.

The argument oflnvalidProc:ess is actually of type UNSPECIFIED. This type is necessary since
no generic type includes all PROCESS types, independent of their result types. The same is
true of all arguments and results discussed in this section that would otherwise be of type
PROCESS.

A PROCESS can be che.cked for validity by the operation

Process.ValidateProcess: PROC:EDURE [UNSPECIFIED]

If the argument does not rtepresent a live process, then Process.JnvaHdProcess is raised.
Otherwise, this operationju:,t returns.

Caution: Since Pilot may reuse PROCESSes, ValidateProcess applied to the PROCESS of a
dead process may not rais~e InvalidProcess. Such a dangling reference will appear
legitimate to ValidateProcess, but is almost certain to cause trouble for any client progranl
that makes use of it.

2.4.1.1 Initializing monitors and c(tndition variables

Every monitor lock and every condition variable must be initialized before it can be used.
There are three cases:

Pilot Programmer's Manual 2

• Any monitor lock or condition variable residing in a global frame will be initialized
automatically when the program is sTARTed. Any monitor lock or condition variable
residing in a local frame will be initialized automatically when the procedure is
entered.

• Any monitor lock or condition variable allocated dynamically by the NEW operator
(from an uncounted zone or MDS zone) will be initialized automatically upon
allocation.

• Any monitor lock or condition variable allocated dynamically by other than the NEW
operator must be initialized by the programmer using the facilities described below.

Caution: Using uninitialized monitor locks or condition variables, or reinitializing
monitor locks or condition variables once they are in use, will lead to totally unpredictable
behavior.

The following operations are provided for initializing monitor locks and condition
variables which are allocated dynamically by other than the NEW operator.

Process.lnitializeMonitor: PROCEDURE [monitor: LONG POINTER TO MONITORLOCK];

InitializeMonitor sets the monitor unlocked and the queue of waiting processes to empty.
It may be called before or after the monitor data is initialized, but must be called before
any entry procedure is invoked., Once use of the monitor has begun, the monitor must
never be initialized again.

Process.lnitializeCondition: PROCEDURE[condition: LONG POINTER TO CONDITION,
ticks: Process. Ti cks];

Process. Ticks: TYPE • CARDINAL;

InitializeCondition sets the queue of waiting processes to empty and the timeout interval
of the condition variable to the specified value, in units of "ticks" of the process timer
clock. It may be called before or after the other monitor data is initialized, but must be
called before any WAIT or NOTIFY operations are performed on the condition variable. Once
use of the condition variable has begun, the condition variable must never be initialized
again.

Clients may convert process timer ticks to or from milliseconds using the following
operations.

Process.Milliseconds: TYPE. CARDINAL;

Process.MsecToTicks: PROCEDURE [Process.Miliiseconds] RETURNS [Process. Ticks];

Process. TicksToMsec: PROCEDURE (ticks: Process. Ticks]
RETURNS (Process.Milliseconds];

Long timeout intervals may be set by the operation

Process.Seconds: TYPE=- CARDINAL;

Process. Seconds To Ticks: PROCEDURE [Process. Seconds]
RETURNS [Process. Ticks];

2-35

2

2-36

Environment

Caution: Because of the limited range of the process timer, the maximum timeout that
may be set is about 980 sect:>nds (16 minutes).

2.4.1.2 Timeouts

Condition variables that are initialized automatically do not time out. The timeout of any
condition variable may be changed by the operation

Process.SetTimeout: PROCEDURE
[condition: LONG POINTER 1rO CONDITION. ticks: Process. Ticks];

The given timeout interval will be effective for all subsequent WAIT operations applied to
the condition variable. Thil; operation will not affect the timeout interval of any processes
currently waiting on the condition variable.

Process.DisableTimeout: PROtCEDURE [LONG POINTER TO CONDITION];

DisableTimeout sets the tiDrleout interval for the condition variable to infinity. That is, a
process waiting on the condition variable will never time out. This will be effective for all
subsequent WAIT operationn applied to that condition variable. This operation will not
affect the timeout interval of any processes currently waiting on the condition variable.

SetTimeout and DisableTinleout are the only operations that may be used to adjust the
timeout interval of a co:ndition variable once it has been used. In particular,
InitializeCondition must not be used for this purpose.

Caution: Since the Mesa processor reserves some distinguished values of Ticks for special
purposes, the timeout interval of a condition variable should not be set via the Mesa
construct:

condition.timeout .-ticks. -WRONG!!

2.4.1.3 Forking processes

The number of co-existing processes allowed by Pilot is limited. Attempts to fork too many
processes will result in the E!rror

Process. TooManyProcesses: E:RROR;

This error may be caught loy a catch phrase on the FORK or by a catch phrase in som.e
enclosing context.

The maximum number of coexisting processes is specified to MakeBoot when building a
boot file. See the Mesa User's Guide for details.

A process which is FORKed but will never be JOINed should be detached using the operation

Process. Detach : PROCEDURE [PROCESS);

This operation conditions the process such that when it returns from its root procedure, it
will be deleted immediately.

Caution: Note that a variable of type PROCESS does not return results. If the root
procedure of a process does return results, then it will be necessary to loophole the
parameter to Detach. In those cases, care should be exercised because if the results
returned take more than 12 words of storage, then the storage that contains the results (a

Pilot Programmer's Manual 2

local frame) will be discarded and the space will never be recovered. If there are 12 or less
words of results, then the results will be discarded and the storage recovered.

A process may determine its own identity by invoking

Process.GetCurrent: PROCEDURE RETURNS [PROCESS];

2.4.1.4 Priorities of processes

When a process is created with FORK, it inherits the priority of the forking process. A
process may change its own priority with the SetPriority operation.

Process.SetPriority: PROCEDURE [Process.Priority];

Process. priorityBackg round : READONl Y Process. Priority;
Process.priorityNormal: READONlY Process.Priority;
Process.priorityForeground: READONl Y Process.Priority;

Process.Priority: TYPE • [0 .• 71;

Larger values of Priority correspond to higher priorities. Implementation restrictions
make it necessary to limit ordinary client processes to three priority levels, deimed via
exported variables, which are listed above in order of increasing priority. SetPriority
should only be given one of these three constants (or a value previously obtained from
GetPriority, which will be equal to one of these constants).

If it is desired to fork a process which runs immediately at a higher priority than the
parent process, the parent can set its own priority to the higher level, fork the new process,
and then restore its own priority.

A process may determine its own priority by calling

Process.GetPriority: PROCEDURE RETURNS [Process.Priority);

2.4.1.5 Aborting a process

A process can be aborted by calling the operation

Process.Abort: PROCEDURE [process: UNSPECIFIED];

The effect of this operation is to generate the error ABORTED the next time the process WAITs
on any condition variable which has aborts enabled. If the process is already waiting, then
the error is generated immediately.

ABORTED may be caught by a catch phrase on the WAIT, or by a catch phrase in an enclosing
context. The catch phrase is executed with the corresponding monitor locked.

Abort provides a means whereby one process may request of another that the latter should
stop what it is doing. An ABORTED signal may occur on any condition variable which has
aborts enabled, and thus every monitor should either be protected by some catch phrase for
it, or contain no condition variables which have aborts enabled.

A pending abort may be canceled by calling the operation

Process.CanceIAbort: PROCEDURE [process: UNSPECIFIED];

2-37

2

2-38

Environment

A process may discover if there is an abort pending for it by the operation

Process.AbortPending: PROCI:DURE () RETURNS [abortPending: BOOLEAN);

When a condition variable is initialized, it has aborts disabled. A condition variable may
be set to allow aborts by the: operation

Process.EnableAborts: PROCEDURE [LONG POINTER TO CONDITION];

If a process with an abort pending is currently waiting on the condition variable, then
EnableAborts will have no immediate effect on it. However, if the process times out or is
NOTIFved, it will be aborted at that time.

It is sometimes desirable to avoid aborts while waiting on a given condition variable. This
may be effected by using

Process.DisableAborts: PROCI:DURE [LONG POINTER TO CONDITION];

Condition variables are initialized to have aborts disabled. If a process with an abort
pending waits or is waitin~~ on a condition variable, then the abort will be delayed until
the process WAITS on some other condition variable which has aborts enabled.

A process can be suspended for a specified number of ticks with the operation

Process.Pause: PROCEDURE [tic,ks: Process.Ticks];

Pause waits with aborts eniabled, and so may raise the error ABORTED. Note that monitor
locks of the caller are not released during the pause.

The Mesa process mechanism does not attempt to allocate processor time fairly among
processes of equal priority. A process itself will yield the processor to other processes of
equal priority whenever it faults, Pauses or WAITS. If a process does these things only
rarely, it may be desirable f.or it to occasionally yield control of the processor by calling

Process. Yield: PROCEDURE;

This operation places the cs.lling process at the rear of the queue of ready-to-run processes
of the same priority. Thus, all other ready processes of the same priority will run before
the calling process next runs. Note, however, that these other processes may make
arbitrarily little progress due to page faults, etc.

The logical correctness of client programs must not depend on the presence or absence of
calls to Yield. Priorities a.nd yielding are not intended as a process-synchronization
mechanism. They are only provided to assist in meeting performance requirements.

2.4.2 Programs and configurations

Runtime: DEFINITIONS ... ;

Programs may be validated by

Runtime. ValidateGlobaIFram·e: PROCEDURE [frame: Runtime.GenericProgram];

Runtime.GenericProgram: TY,tE • LONG UNSPEClFIED;

Pilot Programmer's Manual 2

Runtime.lnvalidGlobaIFrame: ERROR [frame: Runtime.GenericProgram];

Ifframe is not valid, then InvalidGlobalFrame is raised. frame may be either a PROGRAM or
a LONG POINTER TO FRAME[< program>]. Normal usage requires a LOOPHOLE.

Pointers to procedure activation records (local frames) may be validated by

Runtime.ValidateFrame: PROCEDURE [frame: UNSPECIFIED];

Runtlme.lnvalidFrame: ERROR [frame: UNSPECIFIED];

Ifframe is defInitely not valid, then InvalidFrame is raised. frame should be a POINTER TO

FRAME[< procedure> D. The checking done by ValidateFrame only verifies that frame
looks like a valid local frame; it cannot verify that it actually is a valid local frame.

Runtime.nuIiProgram: PROGRAM. NIL;

For backwards compatiblity, a null PROGRAM constant is provided. New client code should
just use NIL.

The PROGRAM containing a PROCEDURE can be obtained using

Runtime.GlobaIFrame: PROCEDURE [link: Runtime.ControlLink] RETURNS [PROGRAM];

Runtime.ControILink: TYPE • LONG UNSPECIFIED;

ControlLink may be any PROCEDURE. Normal usage requires a LOOPHOLE. If link is an
unbound procedure, Runtime.UnboundProcedure is raised. Runtime.lnvalidGlobalFrame
may also be raised.

A program which was created by NEW < program> may be deleted using

Runtime.UnNew: PROCEDURE [frame: PROGRAM];

UnNew deletes the program and reclaims its storage. All items which were exported by
the program (procedures, variables, signals, and the program itself') become dangling
references and should not be retained or used by any programs which imported them. If
frame is not valid, then Runtime.lnvalidGlobalFrame is raised. If the program was not
created by NEW < program>, then the debugger is called.

Caution: When a program is UnNewed, no processes can be executing procedures in the
program or expecting to return to procedures in it. Failure to observe this rule will lead to
unpredictable behavior.

Since UnNew may not be used while any processes are using a program, it is not possible
for a process to UnNew the program in which it is currently executing. Since this is
occasionally desirable, a special operation is provided.

Runtime.SelfDestruct: PROCEDURE;

Self Destruct deletes the program that invokes it and then returns, with no results, to the
first enclosing context which is not in the deleted program. All items which were exported
by the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them. If
the program was not created by NEW < program> , then the debugger is called.

2-39

2

2-40

Environ~ent

Caution: Since Self Destruct effects a RETURN without results to the rust enclosing context
which is not in the deleted program, the procedure which was called from that context
must be declared as having no results; otherwise a stack error will occur.

Caution: When a progra.m is Self Destructed, no other processes can be executing
procedures in the program or expecting to return to procedures in it. Failure to observe
this rule will lead to unpredictable behavior.

The following operations are used to load configurations and programs. They are
iInplemented by the object file Loader. bcd.

Runtime.RunConfig: PROCEDURE [
file: File.File, offset: File.PiilgeCount, codeLinks: BOOLEAN +- FALSE);

Runtime.LoadConfig: PROCEDURE [
file: File.File, offset: File.PiilgeCount, codeLinks: BOOLEAN +- FALSE]
RETURNS [PROGRAM];

Runtime.NewConfig: PROCEDURE [
file: File.File, offset: File.PiilgeCount, codeLinks: BOOLEAN +- fALSE];

Runtlme.ConfigError: ERROR [type: Runtime.ConfigErrorType);

Runtime.ConfigErrorType: TV'PE • {
badCode, exportedTypeClash, invalidConfig, missingCode, unknown};

Runtime. VersionMismatch: SIGNAL [module: LONG STRING];

These operations load a configuration or program from the object file contained in file
starting at page offset of the file. offset enables one to skip leader pages, pack many object
files into one, etc. Each program in the object file will be loaded with code links if (1)

codeLinks • TRUE, and (2) the object file is a configuration, and (3) the program or a
configuration containing the program specified LINKS: CODE, and (4) a configuration
containing that configuration or program was packaged, or bound specifying code copying.
If a program is loaded with 4=ode links, its links are written into the object file.

The three operations differ as follows. LoadConfig loads the object file and returns a
PROGRAM. The PROGRAM is used to start the object file. If the object file is a configuration,
PROGRAM is one of the configuration's control programs (= NIL if the configuration has no
control programs); if the object file is not a configuration, then PROGRAM is the program
itself. A subsequent START' <program> will initialize the loaded programs (note that
START NIL is a no-operation). RunConfig both loads and starts the object file. N~wConfig

loads the object file and throws a way the PROGRAM, thus preventing it from being explicitly
started. Using NewConfilg is only appropriate if the configuration does not require
initialization; its use is not recommended.

If an object file being loaded imports an interface item and several instances of that
interface item are being exported by already-loaded objects files, then the import is bound
to the most-recently loaded instance of the interface item. If an object file being loaded
imports an interface item which it itself exp~rts, the import is bound to the one it exports.

If the object file being loaded imports or exports a version of a program which differs from
a version exported or imported by already-loaded files, then Runtime.VersionMismatch is
raised, passing the name of the offending program. Resuming this signal allows loading to
proceed; the imported items with mismatched versions remain unbound. The signal is
raised once for each mismatch encountered.

Pilot Programmer's Manual 2

Note: IfVersionMismatch is resumed, the system will be exporting two different versions
of various programs. Object files loaded subsequently which import these programs may
get VersionMismatch against the t1lad" version; however, if the signal is resumed and the
correct version is found, the desired binding will be done.

If the code for any of the programs is not contained in the object file (typically because a
configuration was not bound with cotte copying), then Runtime.ConfigError[missingCode] is
raised. If the object file exports a TYPE that differs from that exported by an already loaded
program, then Runtime.ConfigError[exportedTypeClash] is raised. If any program in the
object file is loaded with code links but the volume containing file is read-only, then
volume.ReadOnly is raised. If the object file contains a definitions module, is not
compatible with the current version of Mesa, or is not an object file at all, then
Runtime.ConfigError[invalidConfig] is raised. If the object file is not completely contained
in the file, then Space.Error[noWindow] is raised. Any of the errors raised by Space.Map
may also be raised. ConfigErrorTypes of bad Code and unknown are not used at present.

Caution: If a program in the boot file imports an item which is satisfied by a
configuration which is loaded at run-time, the importing program must have frame links.
If this rule is not followed, then the link to the imported item will be written into the boot
file and will be a dangling reference when the boot file is invoked at later times.

A object fue which was loaded at run-time may be unloaded by

Runtime.UnNewConfig: PROCEDURE [link: Runtime.ControILink];

UnNewConfig unloads the dynamically-loaded object file associated with link. link may
be any PROCEDURE or PROGRAM in the object file. UnNewConfig frees the storage of all
PROGRAMS of the object file, and unmaps and deallocates the virtual memory containing its
code. All items that were bound to the object file are reset to unbound.

Caution: When an object file is UnNewConfiged, no processes can be executing
procedures in programs of the object file or expecting to return to procedures in them.
Failure to observe this rule will lead to unpredictable behavior.

The time at which the currently running boot file was built by MakeBoot is returned by

Runtime.GetBuildTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

The time at which a configuration was bound is returned by

Runtime.GetBcdTime: PROCEDURE RETURNS [System.GreenwichMeanTime];

This operation returns the bind or compile time of the outermost configuration containing
the caller of GetBcdTime. If there are no containing configurations, GetBcdTime returns
the compile time of the caller.

The next two operations are useful for debugging and determining what has been loaded.

Runtime.GetCaller: PROCEDURE RETURNS [PROGRAM);

GetCalier returns the PROGRAM that called the client's PROGRAM . .More precisely, it returns
the PROGRAM of the innermost enclosing context which is outside the PROGRAM that
contains the procedure called GetCaller.

2-41

2

2-42

Environment

Runtime.lsBound: PROCEDURE [link: Runtime.ControILink] RETURNS [BOOLEAN];

IsBound returns TRUE if the imported procedure link is bound (i.e., if link is being exported.
Normal usage requires a LOOPHOLE. link may also be a pointer to an imported variable or
an imported PROGRAM.

Caution: Unexpected resu.lts can be experienced using code links, run-time loading and
IsBound. In particular, if l:L program in the boot file is loaded with code links and imports
an item which is satisfied. by a configuration which is loaded at run-time, then the
program will have links which appear to be bound but are actually left over from a
previous boot session. BO(J~t file importers of unbound items should be bound with frame
links.

A pointer to the data porti4,n of a program compiled with the Table Compiler is returned
by

Runtlme.GetTableBase: PROCEDURE [frame: PROGRAM] RETURNS [LONG POINTER];

GetTableBase may raise RUI1time.JnvaJidGlobaIFrame.

2.4.3 Traps and signals

Programming errors and o,ther errors encountered by Mesa programs result in signals or
errors. The rust five errors described below are related to specific language features and
are described in more detail in the Mesa Language Manual.

Runtime.StartFault: ERROR [dt!st: PROGRAM];

StartFault is raised if dest was STARTed but it had been started previously (perhaps by a
start trap), or if dest was RE:5TARTed but it had not STopped.

Note: If a program does START <program> but program is not valid, then
Runtime.lnvalidGlobalFrame is raised. This error occurs when program is an unbound
import.

Runtime.ControIFault: ERROR [source: Runtime.ControlLink] ;

ControlFault is raised if a program attempts to transfer to a null control link while
executing in the local frame! denoted by source. This error passes the control link that was
used. In the current versiolCl of Mesa, Control Fault may be raised on an attempt to call an
unbound PROCEDURE (instead of Unbound Procedure).

Runtime.UnboundProcedure:: ERROR [dest: Runtime.ControILink);

UnboundProcedure is raised if a program attempts to call an unbound PROCEDURE. This
error passes the PROCEDURE that was called.

Caution: In the current version of Mesa, ControlFault may be raised instead of
UnboundProcedure.

Runtime.LinkageFault: ERROR;:

A transfer has been attempted through a port that has not been connected to some other
port or procedure (the link fIeld of the port was NIL).

Pilot Programmer's Manual 2

Runtime.PortFault: ERROR;

A transfer has been attempted to a port which is not pending (the frame field of the
destination port is NIL). This error is used to handle the transients normally occurring
while initializing coroutines.

BoundsFault: SIGNAL;

A value being assigned to a subrange variable or being used in an indexing operation was
out of range. This signal may also be raised if an attempt is made to assign a signed value
to an unsigned variable and vice versa. This signal is only raised by programs which have
been compiled speeifying bounds checking. RESUMEing this signal will allow the program
to use the illegal value, with unpredictable results.

NarrowFault: ERROR:

An attempt was made to use the NARROW operator on a value x to make it of TYPE T, but the
type of the value of x was some other. For example, an attempt was made to narrow a
(pointer to a) variant record to a (pointer to a) specifie variant, but the value of x was some
other variant.

PointerFault: SIGNAL:

An attempt has been made to dereference a NIL pointer. This signal is only raised by
programs which have been compiled specifying nil checking. REsuMEing this signal will
use the NIL value, almost invariably causing an immediate address fault.

Note: Pilot leaves virtual address NIL t and LONG NIL t unmapped. Attempts to
dereferenee a NIL pointer will usually cause an address fault.

Runtime.ZeroDivisor: SIGNAL;

An attempt was made to divide by zero. If this signal is RESUMEd, the result of the divide
operation is undeimed.

Runtime.DivideCheck: SIGNAL;

An attempt was made to perform a division involving LONG operand(s) whose result could
not be expressed in a single word. If this signal is RESUMEd, the result of the divide
operation is undeimed.

2.4.4 Calling the debugger or backstop

A program can explieitly invoke the debugger or backstop by calling

Runtime.CaIiDebugger: PROCEDURE [LONG STRING];

Client program execution is suspended. The debugger prints the string provided and
awaits user commands. A Proceed command resumes client program execution after the
call to Call Debugger. (If continuing execution at this point is not reasonable, the call to
Call Debugger should be placed inside a non-terminating loop.)

2-43

2 Environment

A program may also invokle the debugger or backstop by calling

Runtime.lnterrupt: PROCEDU~tE;

The debugger prints "*** Interrupt ***" and awaits user commands. Interrupt is typically
called by a user input handling process in response to some user action such as typing a
special keyboard key.

2.5 Client startup

PiiotClient: DEFINITIONS ... ;

Pilot imports precisely Ont! client interface, called PiiotClient. The PilotClient interface is
defmed as follows:

PiiotClient: DEFINITIONS •
BEGIN
Run: PROCEDURE [];
END.

The client configuration Dlust export a PROCEDURE called PiiotClient.Run. Pilot initializes
itself and without expliciUy STARTing any client programs calls Run, the first client
procedure, as follows:

Process.SetPriority[Process.priorityNormal] ;
Process.Detach[FORK PiiotClieflt.Run[)];

This procedure causes a start trap within the program containing Run, and thus starts the
control module(s) of the containing configuration, if any. Run is responsible for loadil1g
and starting all client programs, creating spaces, forking processes, etc. It may freely use
the Mesa NEW statement, refer to any known file, and use any facility of Pilot. It mayor
may not have a user interface, depending upon the application it implements.

2.6 Coordinating subsystems' acquisition of resources

2-44

Supervisor: DEFINITIONS ... ;

SupervisorEventlndex: DEFliNITIONS ... ;

The Supervisor interface provides a facility for notifying interested clients of events which
typically have a fairly widE!spread impact. The Supervisor can be used for managing the
orderly acquisition and relE~ase of shared resources such as a file, a removable volume, or,
in the case of restarting the machine from a restart file, the entire processor. The
Supervisor facility has some similarities to the Ethernet, in that it provides a way to
broadcast information (within a single processor) to an expandable collection of interested
client software.

The Supervisor accommodates a model of the entire client system as a collection of
subsystems which depend on some basic resource. To handle this model, the Supervisor
maintains a database which describes dependency relationships and provides a way to
invoke the subsystems in a dients-first or implementors-first order.

Consider the event where a user indicates that he wants to withdraw a removable volume
from a system element. The;! subsystems which are using the volume must release it in an

Pilot Programmer's Manual 2

orderly manner. Since the volume typically will be used by lower-level subsystems to
build higher-level abstractions for its clients, the higher-level abstractions must also be
released, and indeed must be released before the lower-level subsystem may release the
volume. Thus, the releasing of a volume should normally proceed in a clients-first order.
Similarly, when a volume is added to a system, the subsystems which would like to use it
should acquire it in an orderly manner, typically implementing subsystems rust.

Events for which the Supervisor may be useful include:

• Making a restart file.

• Restarting the system element from a restart file.

• Removing or adding a physical or logical volume.

• Turning power off'(possibly with Automatic Power On enabled).

• The appearance/disappearance of some service or resource on this or another system
element.

The implementation module is Supervisorlmpl. bcd.

2.6.1 Use of the Supervisor

Each subsystem should obtain a subsystem handle from the Supervisor and export it to its
clients. The handles are used by clients to declare to the Supervisor which subsystems
they depend on. Each subsystem also registers an agent procedure. When an interesting
event happens, the Supervisor is invoked to notify, in proper order, the agent procedures of
all subsystems, informing them of the event. Upon return from this enumeration, all
subsystems will have been notified of the event.

Since several lowest-level subsystems may use the same basic resource, the event of
releasing a resource might be organized- as follows: the enumeration would have each
subsystem release its use of the resource, and then the caller of the enumeration would
actually release the basic resource.

On the other hand, acquisition of a new resource is slightly different. The enumeration
would declare the availability of a new resource. The lowest level subsystems might
implement some higher-level resource on it, and then that subsystem's clients could
interrogate it for the new resources when their agent procedures were called.

For example, in the event of removing a physical volume from the system element, the
agent procedure for a subsystem might perform the following actions:

1. Put the subsystem:'s processes to sleep or into some quiescent state;

2. Browse through the subsystem's database and locate any objects which were built
upon files residing on the physical volume to be removed; this step may well involve
calls to some lower-level subsystems to determine the physical location of their
objects;

3. Delete or otherwise make inactive any objects based on these files and update the
database accordingly;

4. Reawaken its processes;

5. Return.

2-45

2

2-46

Environment

The enumeration of subsystems is typically invoked from a very high level, not from
within a monitor implementing a resource which is acquired or released.

2.8.2 Supervisor facilities

An Event is a value that names a particular event in which some subsystems may be
interested.

Supervisor. Event: TYPE. RECORD [eventlndex: Supervisor.Eventlndex];

Supervlsor.Eventlndex: TYPE. CARDINAL;

supervisor.null Event: SupervislOr .Event • Supervisor .Event[LAST[Supervisor .Eventl ndex]];

The domain of Event is shared by all of the Supervisor's clients, who therefore must agree
on the meaning of the values. If some software that uses events runs in several disparate
systems (e.g., ViewPoint and XDE), then those systems must agree on the values of the
events which are common to both systems. In this case, a common definitions module,
SupervisorEventlndex, defllnes subdomains for those events common to each system and
subdomains for those events unique to each system. Also disallowed is the deiming of one
element of Event to correspond to more than one event. That is, catch-all Events are not
allowed.

The basic structure of the SupervisorEventlndex interface is a set of subrange deimitions. The
following ranges are deimed.

SupervisorEventlndex.Eventindlex: TYPE. Supervisor.Eventlndex;

SupervisorEventlndex.MesaEvE!ntlndex: TYPE. CARDINAL [0 •• 1024];

SupervlsorEventindex.CommoI'1lSoftwareEventlndex: TYPE • CARDINAL [1024 .. 1280];

Mesa Eventl ndexes are used by Mesa source and object files.
CommonSoftwareEventindexes are used by product common software.

Note: Each client of Supel'VisorEventlndex interface should maintain an interface which
defines the Events in its subrange.

Each software component or subsystem which is interested in events should register an
AgentProcedure, which will be called when events occur.

supervlsor.AgentProcedure: 'NPE • PROCEDURE [event: Supervisor. Event.
eventData: LONG POINTER ero UNSPECIFIED, instanceData: LONG POINTER TO UNSPECIFIED];

Supervisor.nuIiAgentProcedure: Supervisor.AgentProcedure • NIL;

When an agent procedure ilJ called, it should ill'st examine event, and ignore those which
it does not recognize or carc~ about. The agent procedure may use facilities upon which it
depends (see DependsOn bc~low). eventData is supplied by the software that caused the
notification of the event, and its interpretation depends on event. eventData might be
declared as

eventData: LONG POINTER TO ItECORD [SELECT COMPUTED event.eventlndex FROM ... ENDCASE];

instanceData is supplied when the agent procedure is declared to the Supervisor, and may
be used to convey to the agent procedure any data necessary for a particular instance of its
parent program. An Agentl)rocedure of NIL may be used for subsystems which do not wish

Pilot Programmer's Manual 2

to have an associated agent procedure. For backwards compatiblity, a null
AgentProcedure constant is provided. New client code should just use NIL.

The client's AgentProcedure must not call back into the Supervisor, either directly or
indirectly, as this will cause the containing process to hang on a monitor lock.

To participate in the event mechanism, each implementing subsystem must register itself
with the Supervisor. When it does, the Supervisor returns a SubsystemHandle, which is
used to identify the subsystem to the Supervisor and to the subsystem's clients.

Supervisor.SubsystemHandle: TYPE [1];

Supervisor .nuIiSubsystem: READONLY Supervisor.SubsystemHandle;

Supervisor.CreateSubsystem: PROCEDURE [agent: Supervisor.AgentProcedure ~ NIL.
instanceData: LONG POINTER TO UNSPECIFIED ~ NIL]
RETURNS [handle: supervisor.SubsystemHandle);

CreateSubsystem creates a new subsystem object and causes an agent procedure and a set
of instance data to be associated with it. The returned subsystem handle typically is made
available to the subsystem's clients. The agent procedure for the subsystem will be called
when events happen, passing instanceData to it at that time.

A subsystem is deleted by

Supervisor. DeleteSubsystem: PROCEDURE [handle: Supervisor .SubsystemHandle];

Supervisor.lnvalidSubsystem: ERROR;

InvalidSubsystem is raised if handle does not describe a valid subsystem. Clients must
take care not to retain or use the SubsystemHandle of a deleted subsystem.

Operations are provided for declaring the dependency relationships between subsystems,
and for inquiring about current dependencies.

Supervisor.AddDependency: PROCEDURE [client, implementor: supervisor.SubsystemHandle];

Supervisor.CyclicDependency: ERROR;

Supervisor.RemoveDependency: PROCEDURE [client. implementor:
Supervisor .SubsystemHand Ie);

Supervisor.NoSuchDependency: ERROR;

AddDependency declares that client is directly dependent on implementor and directly
uses its services. Typically, this declaration is made because a client subsystem needs to
act on some event either before or after the subsystems on which the client depends act on
it. Duplicate direct dependencies are ignored. If implementor is already registered as
being directly or indirectly dependent on client, then CyclicDependency is raised. If client
or implementor do not describe a valid subsystem, then Supervisor.lnvalidSubsystem is
raised.

RemoveDependency declares that client is no longer directly dependent on implementor.
If client was not directly dependent on implementor, then NoSuchDependency is raised.
If client or implementor does not describe a valid subsystem, then
Supervisor.lnvalidSubsystem is raised.

2

2-48

Environment

Supervisor.DependsOn: PROIt:EDURE [client, implementor: Supervisor.SubsystemHandle]
RETURNS [aOOLEAN];

DependsOn returns TRUE if and only if client is directly or indirectly dependent on
implementor. If either cHent or implementor does not describe a valid subsystem, then
supervisor.JnvalidSubsystel1r1 is raised.

When an event occurs, the client program that caused the event notifies the registered
subsystems with the following operation.

Supervisor.NotifyAIiSubsystems: PROCEDURE [event: Supervisor.Event,
eventData: LONG POINTER: TO UNSPECIFIED, whichFirst: supervisor.Clientslmpls];

supervisor.Clientslmpls: TYPIE • {clients, implementors};

NotifyAIiSubsystems calls the agent procedures of all subsystems. IfwhkhFirst is clients,
then a subsystem is notified only after all of its clients have been notified. IfwhichFirst is
implementors, then a subnystem is notified only after all of its implementors have been
notified. See the dermiti.on of AgentProcedure for a description of eventData. If a
subsystem handle does not describe a valid subsystem, then supervisor.lnvalidSubsystem is
raised.

Caution: No client of Tajo, CoPilot, or the Development Environment, versions 14.0,
should call NotifyAIiSubsy!stems. Doing so will cause these systems to crash or hang.

For events which are only of interest to a separable set of subsystems and for which it is
desired to avoid swapping in the code of all agent procedures, NotifyRelatedSubsystems
maybe used.

Supervisor.NotifyRelatedSubsystems: PROCEDURE [event: Supervisor.Eventr

eventData: LONG POINTER TO UNSPECIFIED, which, whichFirst: Supervisor.CJientslmpls,
subsystem: supervisor.SubsystemHandle);

NotifyRelatedSubsystems (!alls the agent procedures of all subsystems which are directly
or indirectly clients or iDlplementors of subsystem. For which equal to clients, the
operation calls all agent procedures that are direct or indirect clients of subsystem. For
which equal to implementf)rs, it calls all agent procedures that are the direct or indirect
implementors of subsystem. For whichFirst equal to clients, the operation visits a
subsystem only after all of its clients have been visited. For whichFirst equal to
implementors, it visits a subsystem only after all of its implementors have been visited.
See the definition of AgentProcedure for a description of eventData. If subsystem does
not describe a valid subsystem, then supervisor.JnvalidSubsystem is raised.

Caution: NotifyRelatedSulbsystems is not implemented in Pilot 14.0.

For events which are only of interest to the immediate clients or implementors of a
subsystem and for which it is desired to avoid swapping in the code of all agent procedures,
NotifyDiredSubsystems may be used. .

Supervisor.NotifyDirectSubs)'stems: PROCEDURE [event: Supervisor.Event~
eventData: LONG POINTER TO UNSPECIFIED ~ NIL, which: supervisor.Clientslmpls,
subsystem: supervisor.SubsystemHandle];

NotifyDirectSubsystems calls the agent procedures of all subsystems which are directly
related to subsystem. For \jvhich equal to clients, the operation calls the agent procedures

Pilot Programmer·s Manual 2

of all subsystems which are direct clients of subsystem. For which equal to implementors,
it calls the agent procedures of all subsystems which are direct implementors of
subsystem. See the definition of AgentProcedure for a description of eventData. If
subsystem does not describe a valid subsystem, then Supervisor.lnvalidSubsystem is raised.

2.6.3 Exception handling

Handling recoverable error conditions encountered during an enumeration of subsystems
requires some special consideration. Exceptions in Mesa are usually handled by signals.
In the context of the Supervisor, these signals are not appropriate, since the subsystems
are enumerated sequentially, not recursively, and therefore the previously-invoked agent
procedures are not in a position to catch a signal or an UNWIND.

Thus, the following procedure is suggested: The agent detecting an error condition would
signal an error to. the caller of NotifyxSubsystems. That caller would catch the signal,
unwind, and then call NotifyxSubsystems for an inverse event to the one being aborted.
Thus, each agent would then be given the chance to back out of any actions he had taken.
If there is no naturally-occurring inverse event, an artificial one can be dermed
specifically for backing out of particular kinds of aborted events. In some cases, a two­
phase protocol may be necessary to handle an event properly.

If no special information needs to be communicated while aborting an enumeration, the
following signal may be used:

Supervisor.EnumerationAborted: ERROR;

The caller of the enumeration should catch it.

2.7 General object allocation

ObjAlloc: DEFINITIONS •.. ;

This section describes the facility used to control the allocated/free state of a collection of
objects. A typical application of this facility would be a storage allocator using ObjAlioc to
manage its underlying database.

2.7.1 Basic types

ObjAlloc has the following types.

ObjAlloc.AllocFree: TYPE :I MACHINE DEPENDENT {free(O), alloc(1)};

ObjAlloc.AllocationPool: TYPE :I PACKED ARRAY [0 •. 0) OF ObjAlloc.AllocFree;

ObjAlloc.AllocPooIDesc: TYPE. RECORD [allocPool: LONG POINTER TO ObjAlloc.AllocationPool,
poolSize: ObjAlloc.ltemCount];

ObjAlloc.lnterval: TYPE. RECORD [first: ObjAlloc.ltemlndex, count: ObjAlloc.ltemCount];

ObjAlloc.ltemlndex: TYPE • LONG CARDINAL;

ObjAlloc.ltemCount: TYPE • LONG CARDINAL;

An ObjAlloc.AllocationPool describes the allocated/free state of an ordered set of objects.
Each object is identified by a name, called an ObjAlloc.ltemlndex. The location and size of
an ObjAlIoc.AllocationPool is given by an ObjAlloc.AllocPooIDesc.

2-49

2

2-50

Environment

Note: The location must be word aligned, and the size is given in terms of the number of
objects in the pool.

An ObjAlloc.lnterval describc!s a range of objects by giving the ObjAlloc.Jtemlndex of the first
object, and the number of objects in the range.

2.7.2 Basic procedures and errors

ObjAliocAliocate: PROCEDURE [pool: ObjAlloc.AllocPooIDesc, count: ObjAlloc.JtemCount,
wiliTakeSmaller: BOOLEAN +- FALSE] RETURNS [interval.objAlloc.lnterval];

ObjAIIoc.Error: ERROR [error: tObjAlloc.ErrorType);

ObjAIIoc.ErrorType: TYPE. {insufficientSpace, invalidParameters};

Allocate imds, and marks a.s allocated, a range of count objects. IfwiliTakeSmalier is FAL.SE
and count contiguous objec:ts cannot be found, then Error[insufficientSpace] is raised. If
wiliTakeSmalier is TRUE, th.en. Allocate allocates the largest range of objects whose size
does not exceed count. In thls case, Error[insufficientSpace] is raised only if no free objects
can be found. In either Cal:le, the returned range is guaranteed to be the range with the
smallest interval.first that meets the needs inferred by count and willTakeSmalier.

ObjAlloc.ExPi1lndAliocation: ItROCEDURE [pool: ObjAlloc.AllocPooIDesc,
where: ObjAlloc.lteml nde:lC, count: ObjAlloc.ltemCount,
wiliTakeSmaller: BOOLEAN +-FALSE] RETURNS [extendedly.ObjAlloc.ltemCount];

An allocated range carl be expanded usingExpandAliocation. If the objects
[where .. where + count) arei all free, then they are marked as allocated, and extended By is
set to count. If only the objects [where .. where + countFree) are free, where
0< • countFree<count, then the result depends upon the value of willTakeSmalier. If
wiliTakeSmalier is FALSE, then extendedly is returned as zero and no objects are marked
allocated. If wiliTakeSmalier is TRUE, then the objects [where .. where + countFree) are
marked as allocated and extendedly is returned as countFree.

ObjAlloc.Free: PROCEDURE [pool: ObjAlloc.AllocPooIDesc, interval: ObjAlloc.lnterval,
validate:BooLEAN +-TRUE]; ,

ObjAlloc.AlreadyFreed: ERRon [item: ObjAlloc.ltemlndex];

A range of objects is freed by calling Free. If not all of the named objects are contained in
pool, then ObjAlloc.Error[invalidParameters] is raised and no objects are marked free. If
validate is TRUE, then an attempt to free an already free object results in the signal
AlreadyFreed(item] being raised, with item as the smallest index of a free object in the
interval. No objects are frf!ed in this case. If validate is FALSE, then the specified objects
are marked as free with no (:hecking performed.

ObjAlloc.lnitializePool: PROCEDURE [pool: ObjAlloc.AllocPooIDesc, initialState:

ObjAlloc.AllocFree] ;

An AliocationPool may be initialized by calling InitializePool, which sets the initial state
of all of the objects in the pool to the specified state.

Pilot Programmer's Manual 2

Note: In any call to Allocate, ExpandAliocation, Free, or InitializePool, an ADDRESS FAULT

may result if any part of the allocation pool is unmapped. Additionally, ObjAlioc provides
no serialization; the client is responsible for serializing access to the database.

2-51

2 Environm.ent

2-52

3.

Streams

3.1 Semantics of streams ... 3-2

3.2 Operations on streams ... 3-3

3.2.1 Principal data transfer operations 3-4

3.2.1.1 Block input: GetBlock 3-4

3.2.1.2 Block output: PutBlock 3-6

3.2.2 Additional data transmission operations 3-6

3.2.3 Subsequence types .. 3-8

3.2.4 Attention flags ... 3-8

3.2.5 Timeouts. .. 3-9

3.2.6 Stream positioning ... 3-9

3.3 Creation ~f streams ; : 3-9

3.4 Control over physical record characteristics 3-11

3.5 Transducers, iuter, and pipelines 3-13

3.5.1 Filter and transducer representation 3-13

3.5.2 Stream component managers 3-18

3.6 Memory stream .. 3-19

3.6.1 Errors .. 3-19

3.6.2 Procedures .. 3-19

3

Streams

Stream: DEFINITIONS ••• ;

The Stream Facility described in this section provides to Pilot clients a convenient,
efficient, device- and format-independent interface for sequential access to a stream of
data. In particular, the Stream Facility

• provides a vehicle by which processes or subsystems can communicate with each
other, whether they reside on the same system element or on different system
elements.

• permits processes or subsystems to transmit arbitrary data to or from storage media
in a device-independent way.

• defines a standard way for transforming the detailed interface for a device into a
uniform, high level interface which can be used by other client software.

• provides an environment for implementing simple transformations to be performed
on the data as it is being transmitted.

• provides optional access to and control over the mapping of data onto the physical
format of the storage or transmission medium being used.

The stream package provides several facilities, not all of which may be important to an
individual client.

First, the stream interface is the set of procedures and data types by which a client actually
controls the transmission of a stream of information. Each operation of the stream
interface takes as a parameter a Stream.Handle which identifies the particular stream
being accessed.

Second, the stream package dermes the concepts of transducer and filter. A transducer is a
software entity (e.g., module or configuration) which implements a stream connected to a
specific device or medium. A filter also implements a stream, but only for the purpose of
transforming, buffering, or otherwise manipulating the data before passing it on to
another stream. Transducers and filters may be provided either by Pilot or by clients.

Third, the stream package provides a standard way of concatenating a sequence of filters
(usually terminated with a transducer) to form a compound stream called a pipeline. A
pipeline is accessed by means of the normal stream operations and causes a sequence of

3-1

3 Streams

separate transformations to be applied to data flowing between the client program at one
end and the physical storagE! (or transmission) medium at the other.

Pipelines permit clients to interpose new stream manipulation programs (filters and
transducers) between clients (producers and consumers of data) without modifying the
interfaces seen by the clients. For example, a data format conversion program can obtain
its data either from a magnetic cassette or from a floppy disk, using the same stream
interface, and hence the sallle program logic, for both. Similarly, filters performing such
functions as code conversioIll, buffering, data conversion, and encryption, may be inserted
into a pipeline without affe(:ting the way the client sends and receives data through the
stream interface.

The stream facility transmits arbitrary data, regardless offormat and without prejudice to
its type or characteristics. '{'he data may comprise a sequence of bytes, words, or arbitrary
Mesa data structures. The stream facility does not presume or require the encoding of
information according to any particular protocol or convention. Instead, it permits clients
to define their own protocols and standards according to their own needs.

In this chapter, §3.1, §3.2, and §3.3 will be of interest to all clients. §3.4 will be of interest
only to those clients wishin~~ to control the physical record characteristics of a particular
stream; §3.5 will be of interest only to those clients wishing to implement their own filters
or transducers. In addition, the clients of a particular stream type (e.g., disk, tape) will
normally have to consult SE!parate documentation regarding the details of that kind of
stream.

3.1 Semantics of streams

3-2

The stream facility supports transmission of a sequence of 8-bit bytes. This sequence may
be divided into identifiable sl:l.bsequences, each of which has its own subsequence type.

Stream.Byte: TYPE. Environment.Byte;

Environment.Byte: TYPE. [0 •• 2!i6);

Stream.SubSequenceType: TYI'E • [0 •• 256);

A subsequence may be null; lchat is, it may be of zero length and contain no bytes but still
contain the SubSequenceTYFte information. This information allows all subsequences to
be easily identified and separated from each other while shielding clients from the
bothersome problems of con1:rol-codes; that is, embedding control codes into the stream,
making them transparent, arld building a parser to implement such transparency.

Additionally, an attention fll:lg may be inserted into a stream sequence. Attention flags
are transmitted through the stream as quickly as possible, possibly bypassing bytes and
changes in SubSequenceTYf)e which were transmitted earlier but which are still in
transit. This provides a si:mple mechanism for implementing breaks (similar to the
"attention-key" of many tin:le-sharing systems). A byte of data is associated with an
attention flag for the use of client protocols. Note that the attention flag and the data byte
occupy a byte in the stream sE~quence.

Streams have no intrinsic notion of the bytes passing through them being grouped into
physical records. The client program can completely ignore physical record structure and
is thus relieved of the burden of dealing with the associated packing and unpacking
problems. If, however, it bt!comes necessary to control or determine the underlying

Pilot Programmer's Manual 3

physical record structure, as determined by the particular storage (or transmission)
medium, then the interface provides extended facilities which allow this.

All of the procedures described here are synchronous. That is, an input operation does not
return until the data is actually available to the client, and an output operation does not
return until the data has been accepted by the stream and client buffers may be reused.
Note, however, that a stream component may do internal buffering and that the
acceptance of data means only that the stream component itself has a correct copy and is in
a position to proceed asynchronously to write or send it.

Streams in Pilot are inherently full duplex. Separate processes may be transmitting and
receiving simultaneously. The stream interface does not guarantee mutual exclusion
among different processes attempting to access the same stream. However, individual
transducers or filters may restrict themselves to half duplex operation and may
implement such mutual exclusion or more elaborate forms of synchronization as is
appropriate. Documentation for such filters and transducers should be consulted on a
case-by-case basis for details.

3.2 Operations on streams

The stream interface provides operations for sending and receiving data, for sending state
information, and for dealing with stream positions. In addition, a Delete operation is
provided to delete a stream. A create operation is not provided. Streams are only created
by individual stream components; namely, pipelines, transducers and filters.

A client program identifies a particular instance of the stream interface by means of a
Stream.Handle.

- .
Stream.Handle: TYPE •••• ;

A Stream.Handle identifies an object (see §3.S.1) which embodies all of the information
concerning the transfer of data to or from the client program via stream operations. It is
passed as a parameter to each of the data transmission operations of the following sections
to specify the stream to which the operations apply.

When the client no longer wishes to transmit data to or from a stream, the stream is
deleted. Deleting a stream indicates the end of an output stream and frees any resources
associated with the stream. A stream may be deleted by the operation

Stream.Delete: PROCEDURE [sH:Stream.Handle];

For a stream used as output, the client will delete the stream when it has sent all of the
data. For a stream used as input, the client will delete the stream when it no longer
wishes to fetch data, either when the end of the input data is reached or earlier. For
streams used both as input and output, the client will delete the streams when both of the
above conditions are true. The client must ensure that there are no outstanding
references to the stream being deleted. Failure to observe this caution will result in
unpredictable effects.

3-3

3

3-4

Streams

3.2.1 Principal data transfer oper:a.tions

The principal operations for transferring blocks of data are Stream.GetBlock and
Stream.PutBlock. Both are uLline procedures. Each takes a parameter specifying the block
of virtual memory to or fromL which bytes are to be transmitted.

Stream.Block: TYPE. Environmclnt.Block;

Environment.Block: TYPE. RECllRD [
blockPointer: LONG POINTE:R TO PACKED ARRAY [0 .. 0) OF Environment.Byte.
startlndex, stoplndexPlusOne: CARDINAL);

A Block describes a section of memory which will be the source or sink of the bytes
transmitted. The section of memory described is a sequence of bytes (not necessarily word
aligned) which must lie entirely within a mapped space. blockPointer selects a word such
that a startlndex of zero would select the left byte of that word (i.e., bits 0 -7). The selected
block consists of the bytes blockPointer[i] for i in [startlndex .. stoplndexPlusOne). Notice
that a Block cannot describe more than 216_1 bytes or 215_1 words. A Stream.Block can
describe any part of virtual rnemory.

Some of the operations des4:ribed in this and the next section may cause signals to be
ge.nerated. If such a signal is resumed, transmission continues from where it left off, so
that any changes made by the catch phrase to the Block record or to the input options (see
below) are ignored. If, however, such a signal is RETRYed, then the next byte of the streanl
sequence is transmitted to I)r from the byte specified by the current value of the Block
record or input options, eithter of which might have been updated by the catch phrase. In
no case is the stream sequence itself'1>acked up." Bytes previously received from input
are not re-received, and byte:s previously transmitted on output are not withdrawn.

3.2.1.1. Block input: GetBlock

The primary block input operation is Stream.GetBlock.

Stream.GetBlock: PROCEDURE [s.H: Stream.Handle, block: Stream.Block]
RETURNS [bytesTransferred: CARDINAL, why: Stream.CompletionCode,
sst: Stream.SubSequenceTl,pe];

Stream.CompletionCode: TYPE • {normal, endRecord, sstChange, endOfStream,
attention, timeout};

The parameter block describes the virtual memory area into which the bytes will be
placed. GetBlock does not return until the input is terminated. Its exact behavior,
however, is controlled by a s,et of input options which may be set by the client using the
operation

Stream.SetinputOptions: PROCEDURE [sH: Stream.Handle, options: Stream.lnputOptions);

Stream.lnputOptions: TYPE. IUCORD (
terminateOnEndRecord +- FALSE, signal Long Block +- FALSE, signalShortBlock +- FALSE.
signalSSTChange +- FALSE, signalEndOfStream +- FALSE, signalAttention +- FALSE.
signalTimeout +-TRUE, signalEndRecord: BOOLEAN +-FALSE];

Stream.defaultlnputOptions: Stream.JnputOptions • [];

SetlnputOptions controls exa.ctly how GetBlock terminates and what signals it generates.
Ordinarily (i.e., with the parameter options set to defaultlnputOptions), the transmission

Pilot Programmer's Manual 3

does not terminate until the entire block of bytes is filled unless a timeout occurs.
However, under the exceptional conditions described in §3.4, the transmission may
terminate before the block is filled and may also result in a signal. In all cases, the
procedure returns the actual number of bytes transferred, a CompletionCode indicating
the reason for termination, and the latest SubSequence Type encountered. The input
operation may conveniently be restarted where it left off by first adding the result
bytesTransferred to block.startlndex to update the record describing the block of bytes.

In general, any status that may be returned from GetBlock may also be signalled, and the
option to do so is available through InputOptions. A catch phrase for these signals must
not attempt any other stream operations using the same Stream.Handle, for this will
corrupt the internal state information maintained for the stream.

Three circumstances which always suspend the transmission of data before the block is
filled are the detection of a change in SubSequenceType, the detection of an attention,
and the detection of the end of the stream.

In the fll'St case, if the input option signalSSTChange is FALSE (the default), then the
procedure GetBlock terminates immediately and returns the number of bytes transferred,
with why = sstChange, and sst set to the new value of the SubSequenceType.

If the input option signalSSTChange is TRUE, then the following signal is generated:

Stream.SSTChange: SIGNAL [sst: Stream.SubSequenceType. nextlndex: CARDINAL);

The parameter sst specifies the new SubSequenceType, and the parameter nextlndex
specifies the byte index within the block where the fll"st byte of the new subsequence will
be placed. This signal may be resumed, and the effect is to continue the data transmission
as if the change in SubSequenceType had not occurred; that is, in the same block of bytes.

If an attention is detected in the byte stream, then GetBlock terminates immediately and
returns immediately with the number of bytes transferred and with why = attention.

If the input option signalAttention is TRUE, then the following signal is generated:

Stream.Attention: SIGNAL [nextlndex: CARDINAL);

The parameter nextlndex specifies the byte index within the block where the position
within the block where the next byte, the attention byte, would be placed. This signal may
be resumed, and the effect is to continue the data transmission as if the Attention had not
occurred; that is, in the same block of bytes.

A catch phrase for these signals must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for the
stream.

Implementation of the end-of-stream feature is strictly transducer- and filter-specific, and
optional. Transducer and filter implementors may implement an end-or-stream
mechanism using any protocol they desire. For example, the N etworkStream
implementation described in Chapter 6 does not provide the end-or-stream feature.
However, other stream implementations abide by the end-of-stream semantics described
in the following paragraphs. Clients should consult the individual stream documentation
for actual end-or-stream usage.

3-5

3

3-6

Streams

If the input option signalElndOfStream is FALSE (the default) and the stream component
detects that the end-of-stream has occurred, then the procedure GetBlock terminates
immediately and returns the number of bytes transferred, with why = endOfStream.

If the input option signalEndOfStream is TRUE and the stream component detects that the
end-of-stream has occurred" then the signal

Stream.EndOfStream: SIGNAL [nextlndex: CARDINAL];

is generated. The parameter nextlndex specifies the byte index immediately following the
last byte of the stream sequc~nce filled i:n a client's block.

Stream component implem.~ntors may provide special procedure calls in order to actively
cause a stream to be termin~ated.

Semantics of the end-record. feature are also transducer- and filter-specific. Furthermore,
all transducers may not pre'serve the same semantics across the transmision medium. In
any case, all notion of end-record processing may be suppressed by setting
terminateOnEndRecord FALSE (the default).

If the input option terminateOnEndRecord is TRUE and signalEndRecord is FALSE (the
default) and the stream component detects that the end-record has occurred, then the
procedure GetBlock termina3Ltes immediately and returns the number of bytes transferred,
with why = endRecord.

If the input option signalEr1dRecord is TRUE and the stream component detects that the
end-record has occurred, thE~n the signal

Stream.EndRecord: SIGNAL [nE!xtl ndex: CARDINAL];

is generated. The parameter nextlndex specifies the byte index immediately following the
last byte of the stream sequEtnCe filled in a client's block.

Note: Stream. GetBlock raises specialSystem.Unimplemented if the default
DefaultGetBlock is used in conjunction with the default DefaultGetByte or
DefaultGetWord. However, implementing GetByte and using DefaultGetBlock will work.

3.2.1.2. Block output: PutBlock

The principal block output operation is Stream.PutBlock.

Stream.PutBlock: PROCEDURE [~;H: Stream.Handle, block: Stream.Block,
endRecord: BOOLEAN FALSE];

PutBlock is analogous to Stream.GetBlock. The parameter block describes the area of
virtual memory from which information is transmitted. This procedure returns only after
the data has been accepted by the stream, at which time the client may reuse block. If the
client is ignoring record boundaries (the default), then end Record should be set to FALSE.
Otherwise, see the section OIL controlling physical record characteristics, §3.4.

Stream operations have thE! right to discard empty blocks, hence a PutBlock operation
specifying a block of length zero may be a no-op even if end Record is TRUE.

3.2.2 Additional data transmission~ operations

In addition to GetBlock and lI'utBlock, the following operations are provided to permit the
sending and receiving of individual bytes, characters and words. All but SendNow are

Pilot Programmer's Manual 3

inline procedures. They are supplied so that some streams can provide byte or character or
word operations in a more efficient manner than is possible with GetBlock or PutBlock.
Consult the documentation for individual streams for detailed performance information.

Stream.GetByte: PROCEDURE [sH: Stream.Handle] RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE [sH: Stream.Handle] RETURNS [char: CHARACTER];

Stream.GetWord: PROCEDURE [sH: Stream.Handle] RETURNS [word: Stream.Word];

Stream.Word: TYPE. Environment.Word;

Get Byte and GetChar operations get the next Byte or CHARACTER from the stream sequence
and return it just as a call upon Stream.GetBlock specifying a Block containing one byte
would. The GetWord operation gets the next Word from the stream sequence and returns
it just as a call upon GetBlock specifying a Block containing Environment. bytesPerWord
bytes would. In all three cases, the effect is as if the input options to GetBlock had been
signalShortBtock, signalLongBlock, signalAttention, signalEndRecord and
terminateOnEndRecord = FALSE, and signalEndOfStream, signalTimeout and
signalSSTChange = TRUE. Thus, these operations may result in the signal SSTChange,
EndOfStream or Stream.TimeOut (see §3.2.41 and §3.2.5).

Note: When any of the signals are generated when processing a GetWord and nextlndex
is an odd value, the two communicating processes are responsible for the outcome.

Stream.PutByte: PROCEDURE [sH: Stream.Handle. byte: Stream.Byte];

Stream.PutChar: PROCEDURE [sH: Stream.Handle. char: CHARACTER];

Stream.PutWord: PROCEDURE [sH: Stream.Handle. word: Stream.Word];

Stream.PutString: PROCEDURE [sH: Stream.Handle, string: LONG STRING. endRecord FALSE];

The Put Byte and PutChar operations transmit the Byte or CHARACTER to the medium just as
a call on Stream.PutBlock specifying a Block containing one byte would. The PutWord
operation transmits the next Word to the medium just as a call on PutBlock specifying a
Block containing Environment. bytesPerWord bytes would. In the rust three cases, the effect
is as if endRecord is set to FALSE in the call to PutBlock. PutString transmits the bytes
described by string to the medium.

Stream.SendNow: PROCEDURE [sH: Stream.Handle, endRecord FALSE);

SendNow flushes the stream sequence. It guarantees that all information previously
output (by means of PutBlock, PutByte, PutChar, PutWord, PutString, or SetSST) will
actually be transmitted to the medium (perhaps asynchronously). The default
implementation of this procedure is equivalent to a call on Stream.PutBlock specifying a
Block containing no bytes and end Record set to TRUE (see §3.4). Client programs should
call Send Now at appropriate times to ensure that the bytes and changes in
SubSequenceType have actually been sent and are pot buffered internally within the
stream, awaiting additional output operations.

Through use of the end Record parameter, SendNow may apply transducer- or filter­
specific semantics to the transmission of the data, such as the idea of a logical record. A
logical record may be a collection of one or more physical records. The logical record
boundaries can be detected by the receiving client by proper setting of
terminateOnEndOfRecord and perhaps signalEndRecord in the streams's InputOptions.

3-7

3

3-8

Streams

3.2.3 Subsequence types

The subsequence type of a stream may be changed by

Stream.SetSST: PROCEDURE [s~l: Stream.Handle, sst: Stream.SubSequenceType);

All subsequent bytes transmitted on the stream have the indicated SubSequenceType.
Even if the subsequent seq,uence of bytes is null (i.e., a call on SetSST is immediately
followed by another), the SubSequenceType change demanded by this call will still be
available to the receiver of the stream sequence.

SubSequenceTypes are intf!nded to be used to delineate different kinds of information
flowing over the same stream; for example, to identify control information, indicate end­
of-file. The interpretation of a SubSequenceType value is a function of the particular
stream.

A SetSST operation spe4:ifying a SubSequenceType identical to the previous
SubSequenceType is a no-op. Otherwise, SetSST always has the side effect of completing
the current physical record, as explained in §3.4.

3.2.4 Attention flags

The following operation causes an attention flag and an associated byte of data to be
transmitted via the stream fa.cility.

Stream.SendAttention: PROCE'CURE [sH: Stream.Handle, byte: Stream.Byte];

Note that the attention flag and the data byte occupy a byte in the stream sequence. The
attention is sent as both an in-band and out-of-band signal. The out-of-band attention is
not necessarily transmitted in sequence, but may bypass bytes and changes in
SubSequenceType which were transmitted before it. byte is used by the client protocol to
transmit other information regarding this attention.

The following operation awa:its the arrival of an attention flag.

Stream.WaitForAttention: PROCEDURE [sH: Stream.Handle] RETURNS [Stream.Byte];

When the out-of-band attention is received on stream sH, WaitForAttention returns the
byte of data associated with the attention. The client program is responsible for
determining the appropriate action to take. If more than one attention flag has been sent,
these will be queued by the stream. Each return from a call on WaitForAttentiorl
corresponds to precisely one .attention sent by SendAttention.

When the in-band attention is received on stream sH, the effect depends upon the setting
of the InputOptions. If signalAttention is FALSE, then the operation terminates with a
completion code of attentic)n. The next byte in the stream is the byte passed to
SendAttention. If the input options specify signalAttention as TRUE, then the signal
Attention is raised with thE~ index pointing in the current block to the byte passed to
SendAttention.

WaitForAttention is usually executed by a different process from that operating upon the
stream. It returns as soon as the attention is received, whether or not all of the bytes
preceding it in the stream have been transferred.

Pilot Programmer's Manual 3

3.2.5 Timeouts

Any of the operations of this section (except SendAttention and WaitForAttention) may
fail to complete within a reasonable amount of time due to external conditions. In such a
case the following signal is generated:

Stream. TimeOut: SIGNAL [nextlndex: CARDINAL];

The parameter of this signal indicates the position within the block of bytes where the
next byte would be placed. This signal may be resumed.

If this signal is RETRYed all previously received data may be lost. This is because it is likely
that a stream component is performing internal buffering (transferring data from its
buffer into the client's block), and the action of RETRying the signal may not tell the
component that it must refill the client's block. Even if the component was informed of this
fact, it may have discarded data already transferred into the client's block from its
internal buffer.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream. Handle, for this will corrupt the internal state information maintained for the
stream.

The timeout value for the stream may be read and altered by using the getTimeout and
setTimeout procedures in the Stream.Object (section 3.5.1).

msecs +- sH.getTimeout[sH];

sH.setTimeout[sH, msecs];

3.2.8 Stream positioning

For those streams which may be accessed randomly, the position of a stream may be
determined with the procedure

Stream.GetPosition: PROCEDURE [sH: Stream.Handle]
RETURNS [position: Strea~.Position];

Stream.Position: TYPE=- LONG CARDINAL;

The value returned is the byte index of the next byte to be read from or written in the file.

The position of a stream may be set with the procedure

Stream.SetPosition: PROCEDURE [sH: Stream.Handle, position: Stream.Position];

3.3 Creation of streams

Pilot provides no general operations for creating streams. The main reason for this is that
the components of a stream (pipelines, transducers, and filters) must be able to take
arbitrary parameters at the time they are created. It is not possible for Pilot to specify a
general interface for their creation without either compromising the basic type-safeness of
Mesa or constraining the flexibility and power of client-provided streams. Thus, the
create function is implemented on a case-by-case basis, and clients must therefore refer to
documentation for individual stream components for the correct interface for this

3-9

3

3-10

Streams

operation. Specifications for Pilot-provided transducers and filters are included in § 3.6.
In this section, the general style is illustrated by means of hypothetical examples.

For example, if a utility pa,ekage implements a transducer to a magnetic cassette reader, it
is obligated to provide a means by which other clients can create instances of that
transducer, use them, and later delete them. Suppose the name of the interface module
providing this function is C'assetteStream. Then it would provide the following operation:

G1sseUeStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle, ··-optional other results--];

A client wishing to use the stream interface to access this device would thus call
G1sseueStream.Create, then use the Stream.Handle returned from it as parameter to the
stream operations of this c:hapter. When the stream was no longer needed, it would be
deleted by calling Stream.DEtlete.

Similarly. a security packs~ge providing, say, an encryption facility might implement this
by means of a filter for a stream. In this case, the interface module might be called
EncryptlonFi/ter, and it would provide the following operation:

EncryptionFilter.Create: PROCEDURE [Stream.Handle, --optional other parameters--]
RETURNS [Stream.Handle, ··-optional other resul ts--];

The client could easily couple an instance of this filter with the transducer above. This is
done by calling EncryptionFilter.Create, passing as a parameter the Stream.Handle returned
from G1sseueStream.Create. Then the Stream.Handle returned from EncryptionFilte,.Create

would be the one used in CietBlock, PutBlock, and the other operations of §3.2. The net
effect would be stream cOIIlponents which, on input, read bytes from the cassette reader,
decrypt them, and pass the1D to the client and which, on output, encrypt the bytes supplied
by the client and write thenl on the cassette.

In general, a procedure cr1eating a filter accepts one Stream.Handle as a parameter and
returns another as its rE~sult. Thus, several filters, each implementing a simple
transformation, may be concatenated to implement a more interesting transformation on
the stream sequence. The parameter passed to each one is the result returned from the
adjacent one. Such a concatenation, called a pipeline, is illustrated in Figure 3.1.

~ ~ ~
h,

~

Client Filter A Filter B Transducer

Figure 3.1

Figure 3.1 illustrates how each Stream.Handle returned from a transducer or filter is
passed as a parameter to the next adjacent filter, and how the last one is used directly by
the client. In particular, h1 is returned from the procedure which creates Transducer. It is
passed to the procedure which creates Filter 8, returning h2. This is passed, in turn, to the
next filter, and so on, until j"n is returned and passed to Filter A. Filter A is the last one in
the pipeline, and its StreamJ'landle, h, is returned to the client.

Figure 3.2 illustrates the flow of data through the pipeline and the use of the various
Stream.Handles as a result of a client call on Stream.GetBlock; calls on other data
transmission operations are analogous.

Pilot Programmer's Manual 3

GetBlock[h, ...] GetBlock[hnl •••] GetBlock[h1 I •••] device operation

~ ~- h,

Client Filter A Filter B Transducer

Figure 3.2

Here, the elient ealls Stream.GetBlock[h, •.•), whieh is transformed by the stream interface
into an appropriate eall on Filter A. Filter A, in turn, ealls Stream.GetBlock[hn ••••], which
is passed to the next filter in the pipeline, and so on, until eventually a eall is made on
Stream.GetBlock(h2 ••••]. This is transformed into a eall on Filter 8, which then calls
Stream.GetBlock(h1.' ..], to invoke Transducer, which actually operates the deviee.

Note that the only difference between a transdueer and a filter is that a transdueer
interfaees to some device or ehannel, while a filter interfaees to another stream and, thus,
indireetly to another filter or transdueer.

Note also that the elient ean eonstruet a pipeline "manually," by tediously assembling the
various eomponents, instantiating eaeh of them, and binding them together. However, a
pipeline ean also be presented as an integrated paekage, already assembled. For example,
the two eomponents described above may have been assembled into a pipeline ealled
EncryptingcassetteStream. This pipeline might then provide the following operation,
whieh elients ean eall to ereate an procedure an instanee of this pipeline:

EnctyptingCassetteStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle. --optional other resul ts--];

The elient of sueh a stream would merely invoke this procedure to ereate the stream
without having to bother about finding and putting together the individual eomponents.

3.4 Control over physical record characteristics

Most of the time, the elient will not wish to know about how the data in a stream-sequence
is divided into physieal reeords for recording or transmission. For some applications,
however, this information is of vital importanee. The stream faeility has been designed so
that the details of the physieal eneoding ean be ignored when desired, or eompletely
known and eontrolled when neeessary. On output, eomplete eontrol of the plaeement of
bytes in physieal records ean be aehieved for most media. On input, eomplete information
is available about how the bytes were arranged in physieal records.

These faeilities to eontrol the placement of bytes on physieal reeords are not meant to be
used as a means of transmitting information. In partieular, a transdueer might suppress
or generate empty physical reeords and will necessarily partition oversize tfphysical"
reeords into smaller ones. Any filter may rearrange (or eompletely obliterate) physical
reeord boundaries. Documentation for the individual transducer or filter and for the
individual transmission or storage medium should be eonsulted for full details.

The output and input cases are diseussed separately below.

On output, bytes are plaeed in turn into the same physical record until one of the following
events occurs:

3-11

3

3-12

Streams

1. The Send Now procedure is called. The call has the side effect of causing the current
record to be sent. The llext byte output will begin a new physical record. This is the
main mechanism for controlling physical record size on output.

A sendNow with endRecord TRUE may apply further transducer or filter dependent
semantics, such as end of logical record.

2. A PutBlock procedure is called with an end Record parameter of TRUE (this is equivalent
to a sendNow with endl~ecord TRUE). After the transmission of this block of bytes, the
current physical record is ended. If, at this point, the physical record is at its
maximum size (see 5. below), then an empty record will not be transferred.

3. A setssT procedure has been called. The rust byte of a new subsequence always
begins a new record and has the new SubSequence Type. This may cause the previous
record to be sent.

4. Enough bytes have been output to fill the physically maximal record. At this point the
record will be written alld a new record started. This maximum number is a function
of the medium being written, hence documentation concerning the medium must be
consulted to determine this value.

5. Some other device-depe;ndent event, such as a timeout, occurs. In this case, a buffer
may be flushed automatically. Details are documented with individual transducers.

On input, bytes are placed ilL turn into the record until one of the following events occurs:

1. The end of the logical rE:cord is reached, and the input option terminateOnEndRecord
is TRUE.

The end of the logical :record is reached at the same time that the block of bytes
described in the Block record is exhausted. In this case, neither of the signals
shortBlock and LongBlo,ck is generated. If the input option terminateOnEndRecord is
TRUE, then why is set to e'ndRecord; otherwise, it is set to normal.

In any case, if the input option signalEndRecord is TRUE and the logical record has just
been exhausted, then thEI following signal is generated.

Stream.EndRecord: SIGNAL[nextlndex: CARDINAL];

This signal indicates by nextlndex the position within the block of bytes where the
next byte will be placed. If it is resumed, transmission continues as if it had not been
generated.

A catch phrase for this sjlgnal must not attempt any other stream operations using the
same Stream. Handle, for this will corrupt the internal state information maintained for
the stream.

2. The end of a physical rec:ord is reached, the block of bytes described in the Block record
is not exhausted, and siglnalLongBlock is TRUE.

IfsignalLongBlock is TRUE, then the following signal is generated:

Stream.LongBlock: SIGNAL [nextlndex: CARDINAL];

This signal indicates by nextlndex the position within the block of bytes where the
next byte will be placed. If it is resumed, transmission continues as if it had not been
generated.

Pilot Programmer's Manual 3

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

3. The block of bytes described in the Block record is exhausted, the end of the physical
record has not been reached, and the input option signalShortBlock has the value TRUE.
At this time the input is terminated (without losing the subsequent bytes of the
physical record, which are still available for reading by subsequent GetBlock
operations), and the signal Stream.ShortBlock is generated.

Stream.ShortBlock: ERROR;

This signal may not be resumed.

The easiest approach is usually to establish a Block longer than the longest expected
physical record and specify input options signalLongBlock as FALSE, signalShortBlock as
TRUE, and terminateOnEndRecord as TRUE. At this point the transmission ceases with the
entire contents of the physical record in the block of bytes, and the number of bytes
transmitted is returned as the result of the GetBlock procedure. In this way a signal will
be generated only under unusual circumstances.

3.5 Transducers, filters, and pipelines

The stream package is designed so that clients can implement their own stream
components (transducers, filters, and pipelines). The implementor of one of these has
three different obligations to fulfill.

First, he must design an interface (i.e., Mesa DEFINITIONS module) in the style described in
the section about creating streams, §3.3, by which his clients create instances of that
stream component. Such an interface (together with its accompanying implementation
modules) is called a stream component manager.

Second, he must provide a functional specification describing this interface and the
detailed behavior of the stream component, including any specific signals, errors,
parameters, etc., which it defines.

Third, he must implement the actual component, if it is a filter or transducer. (Pipelines
are assumed to be composed of previously implemented components which already have
their own component managers and documentation.)

This section describes the standards, data types, and operations to be used in defining a
new stream component. It discusses the precise interface which each instance of each
filter or transducer must provide, and outlines a typical method for implementing a filter
or transducer manager.

3.5.1 Filter and transducer representation

At run time, a filter or transducer is represented by sixteen procedures, a set of options
and an instance data field so that clients may associate other data with a stream instance.
The procedures execute in a common context to provide the data transmission operations
of that filter or transducer. Descriptors for these procedures are stored in a record defined
by the stream package and pointed to by a Stream.Handle.

The procedures stored in Object must implement the semantics of the corresponding
procedures (GetByte, Put, etc.) described in §3.2 on the stream sH. In particular, they
must terminate according to the specifications of those sections and must generate the

3-13

3

3-14

Streams

appropriate signals (SSTC:hange, LongBlock, ShortBlock, EndOfStream, TimeOut,
End Record) as required.

Stream.Handle: TYPE. LONG f·OINTER TO Stream.Object;

Stream.Object: TYPE • RECORC. [
options: Stream.lnputOpti,ons,
getByte: Stream.GetBytePf'ocedure,
putByte: Stream.PutByteProcedure,
getWord: Stream.GetWorcIProcedure,
putWord: Stream.PutWordProcedure,
get: Stream.GetProcedure,
put: Stream.PutProcedure,
set55T: Stream.Set5STProcedure.
sendAttention: Stream.SerldAttentionProcedure,
waitAttention: Stream.WaitAttentionProcedure,
delete: Stream.DeleteProc.!dure
getPosition: Stream.GetPo!SitionProcedure
setPosition: Stream.SetPositionProcedure
sendNow: Stream.SendNo'NProcedure,
clientData: LONG POINTER,
getS5T: Stream.GetSSTProc:edure,
getTimeout: Stream.GetTi I'1neoutProcedure,
setTi meout: Stream.SetTi mleoutProcedure];

A client call on a Pilot streaIn operation is normally converted by the stream package into
a call on the appropriate procedure named in the Stream. Object pointed to by the
Stream. Handle parameter o:f that operation. Thus, it is the responsibility of the
implementor of each filter and transducer to satisfy exactly the specifications of the
stream package. Pilot assists in this task by utilizing the Mesa type checking machinery
and by deiming the uniform interface encapsulated by Stream.Object.

In this section, the meanings of the fields of Stream.Object are enumerated and a default
Stream. Object described.

The options field specifies the currently valid input options for the stream.

options: Stream.lnputOptions:;

This field is set by Stream.SetlnputOptions and its current value is passed as a parameter
to the get procedure describE~d below. Implementors offilters and transducers need not be
concerned with maintaining or inspecting this field.

The get field specifies the block input procedure of the stream.

get: Stream.GetProcedure;

Stream.GetProcedure: TYPE •
PROCEDURE [sH:Stream.Handle, block: Stream.Block.options: Stream.lnputOptions]
RETURNS (bytesTransferred:: CARDINAL.why: Stream.CompietionCode,

sst: Stream.SubSequencI!Type];

In a filter, the body of a Getll'rocedure typically contains one or more calls on GetBlock,
GetByte, GetChar, or GetWord with a Stream.Handle parameter pointing to the next

Pilot Programmer's Manual 3

stream component in the pipeline; that is, the parameter passed at the time this filter was
created. In a transducer, the body of a GetProcedure typically has calls on input
operations for the specific device being supported.

The get Byte field specifies the byte input procedure of the stream.

getByte: Stream.GetByteProcedure:

Stream.GetByteProcedure: TYPE. PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte]:

The getWord procedure specifies the word input procedure of the stream.

getWord: Stream.GetWordProcedure;

Stream.GetWordProcedure: TYPE. PROCEDURE [sH: Stream.Handle]
RETURNS[Word:Stream.Word];

The put field specifies the block output procedure provided by the filter or transducer.

put:Stream.PutProcedure;

Stream.PutProcedure: TYPE -
PROCEDURE [sH: Stream.handle, block: Stream.Block, endRecord: BOOLEAN];

PutProcedure must regard the parameter endRecord - TRUE as an indication to flush any
output buffers and actually initiate the physical transmission of information. It may
suppress output requests specifying a block of no bytes provided that no previous output,
change in SubSequenceType, or attention flag is still waiting to be sent. This procedure
may generate the signal TimeOut if necessary.

In a filter, the body of a PutProcedure typically contains one or more calls on PutBlock,
PutByte, PutChar, PutWord, or SendNow with a Stream.Handle parameter pointing to the
next stream component in the pipeline; that is, the parameter passed at the time this filter
was created. In. a transducer, the body of a PutProcedure typically has calls on output
operations for the specific device being supported.

The put Byte field specifies the byte output procedure provided by the transducer or filter.

putByte: Stream.PutByteProcedure;

Stream.PutByteProcedure - PROCEDURE [sH: Stream.Handle, byte:Stream.Byte];

PutByteProcedure may generate the signal TimeOut if necessary.

The putWord field specifies the word output procedure provided by the transducer or
filter.

putWord: Stream.PutWordProcedure;

Stream.PutWordProcedure - PROCEDURE [sH: Stream.Handle, word:Stream.Word];

PutWordProcedure may generate the signal TimeOut if necessary.

3-15

3

3-16

Streams

The setSST field specifies the procedure to change the current SubSequeneeType of the
output side of the filter or transducer.

setSST: Stream. SetSSTProeedure;

Stream.SetSSTProeedure: TYPE. PROCEDURE [sH: Stream.Handle,
. sst: Stream.SubSequeneeType];

SetSSTProeedure should be ·a no-op if the new SubSequeneeType of sH is the same as the
old one. Otherwise, it should have the effect of completing the current physical record,as if
a call on Stream. Send Now had been made immediately before.

A call on setSST may have the effect of changing the internal state of the stream
component, or in the case of a filter, it may result in a call to SetSST to the next stream
component in the pipeline, Oll' both.

The getSST field specifies IGhe procedure to find the current SubSequeneeType of the
output side of the filter or transducer (the SST set by SetSsn. The input SST can be found
by doing a get of 0 bytes.

getSST: Stream.GetSSTProceciure;

Stream.GetSSTProeedure: TYPE. PROCEDURE [sH: Stream.Handle]
RETURNS [sst: Stream.SubSe'CluenceType];

The sendAttention and waitAttention fields specify the two procedures implementing the
sending of and waiting for attention flags in the transducer or filter.

sendAttention: Stream.Send~~ttentionProeedure;

waitAttention: Stream.WaitAttentionProcedure;

Stream.SendAttentionProeedIJre: TYPE • PROCEDURE [sH: Stream.Handle,
byte: Stream.Byte];

Stream.WaitAttentionProcedure: TYPE • PROCEDURE (sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

These two procedures are called by Stream.SendAttention and Stream.WaitForAttention 9

respectively.

The getTimeout field specific!s the procedure to rmd the current timeout field of the filter
or transducer.

getTi meout: Stream.GetTi mectutProeedure;

Stream.GetTimeoutProeedure:: TYPE. PROCEDURE [sH:Stream.Handle]
RETURNS [waitTime:LONG CARDINAL - msecs-];

The setrimeout field specifies the procedure to set the current timeout field of the filter or
transducer.

setTi meout: Stream.SetTi meoutProeedure;

Stream.SetTimeoutProeedure: TYPE. PROCEDURE [sH :Stream.Handle,
waitTime:LONG CARDINAL - jrrJsecs-];

Pilot Programmer's Manual 3

The delete field specifies a procedure implementing the deletion of a filter or transducer.

delete: Stream.DeleteProcedure;

Stream.DeleteProcedure: TYPE • PROCEDURE [sH: Stream.Handle];

The procedure is called by the Stream.Delete operation.

The getPosition and setPosition fields specify procedures implementing the setting and
recovering of a stream position.

getPosition: Stream.GetPositionProcedure;

Stream.GetPositionProcedure: TYPE. PROCEDURE [sH: Stream.Handle]
RETURNS [position: Stream.Position];

setPosition: Stream.5etPositionProcedure;

Stream.5etPositionProcedure: TYPE. PROCEDURE [sH: Stream. Handle,
position: Stream.Position];

The' sendNow field specifies a procedure to force data to be transmitted.

sendNow: Stream.5endNowProcedure;

Stream.SendNowProcedure: TYPE. PROCEDURE [sH: Stream.Handle,
endRecord: BOOLEAN FALSE];

The procedure is called by the Stream.5endNow operation.

The following object is provided to supply default values for a Stream.Object. It is an
exported variable. ·The implem~ntor of a stream can use it to ease the burden of
initializing all of the fields in a Stream. Object although the implementor must still
initialize some of the fields.

Stream.defaultObject: READONLY Stream. Object • [
options: Stream.defau ItlnputOptions,
getByte: •• 0, -- requires sHe get to be defined
putByte: ••• , -- requires sH.put to be defined
getWord: ••• , -- requires ei ther sH. getByte or sH. get to be defined
putWord: ••• , -- requires either sH.putByte or sH.put to be defined
get: •• 0, -- requires sHe getByte to be defined
put: 0 0 0, -- requires sH.putByte to be defined
setS5T, sendAttention, waitAttention, delete: • 0 0,]

In this description, the phrase "to be defined" means that the supplied default procedure
assumes that the user has supplied the indicated procedure as opposed to using the default
procedure. Thus, the implementor of the stream must supply either getByte or get -- both
cannot be defaulted. Similarly, the implementor must supply either putByte or put -- both
cannot be defaulted. The default entries for set55T, get55T, setTimeout, getTimeout
sendAttention, waitAttention and delete simply raise the exception
Stream.lnvalidOperation. Thus, the implementor must supply these procedures.

Stream.lnvalidOperation: ERROR;

3-17

3

3-18

Streams

Individual default procedulres may be extracted for client use by the standard Mesa
extractor expression. For example, the default get procedure is defaultObject.get.

Caution: The effect of [lot providing at least one of getByte/get (putByte/put) is
unspecified by Pilot. Thus the stream implementor must be sure to provide at least one of
each of these pairs of procedures.

3.5.2 Stream component manager~1

Implementors of stream cODlponents may create instances of them by whatever means is
most appropriate to their requirements. A particular filter or transducer may, for
example, consist of one module, a collection of modules, a local frame used in conjunction
with the Mesa PORT facility, or some other construct. Moreover, it may be allowed to exist
on a given machine in only one or a limited number of copies which are regarded as
"serially reusable" resource's (for example, a transducer to a particular device, of which
there is only one or a limitEld number on a machine), or it may be allowed to exist in as
many copies as appropriatl~ (for example, the Network stream of §6.3). The stream
component manager is responsible for creating (or controlling access to) instances of that
stream component, as appropriate. When access is granted, the component manager mus't
also provide a pointer to a Stream. Object containing procedure descriptors for that
component.

One way of implementing a I:omponent is as a single module which is instantiated at run­
time by the Mesa NEW stateDlent. Declared within this module would be the procedures of
the component plus a Stream. Object which would contain their procedure descriptors. The
component manager executf!s NEW to create a new instance of one of these, follo~ed by
START to initialize it, pass any parameters to it, and get back a pointer to the Stream.Object.

The . component manager deletes instances of stream components by calling
Runtime. UnNew or Runtime. Self Destruct.

Runtime. Self Destruct sets the internal state of the process so that the module in which the
calling procedure is declared will be un-NEwed after the calling procedure returns to its
own caller. This operation has the effect of placing a "self-destruct" mechanism in the
module which takes effect after the calling process exits from it. Thus, it is a means of
deleting the stream component from within that component.

The typical use of Runtime.Sel·fDestruct is from a procedure named in the delete entry of the
Stream. Object. The componont manager calls h.delete(h] (where h is a Stream.Handle).
This procedure performs the necessary finalization, such as flushing buffers, closing files
or connections, releasing storage and resources, etc. It then calls Runtime. Self Destruct and
finally returns to the component manager. After this return, the module representing this
instance of the stream component is automatically deleted and space occupied by the
component's global frame is freed.

Caution: The client must: ensure that there are no outstanding references to the
component module being del~!ted; that is, no procedure descriptors or pointers which might
be used. In addition, any process waiting for attentions (i.e., a process which has called
but not returned from Waitl:orAttention) must be aborted and allowed to exit from the
module. Failure to observe this caution will result in unpredictable effects. In particular,
Runtime.UnNew must be called. from outside the mOdule being deleted.

Pilot Programmer's Manual 3

3.6 Memory stream

MemoryStream: DEPINlnONS ••• ;

MemoryStream is a Pilot byte stream implementation that sources or sinks its bytes from
a client-specified block of virtual memory. A primary application is to support clients of
Courier.SerializeParameters and DeserializeParameters.

3.6.1 Errors

IndexOutOfRange: ERROR;

Attempting to set the position of the stream, either explicitly with MemoryStream.Setindex
or implicitly with put operation, beyond the limits of the Environment.Block specified in the
Create raises IndexOutOfRange.

3.6.2 Procedures

MemoryStream.Create: PROCEDURE [b: Environment.Block] RETURNS [sH: Stream.Handle];

Create defines the block of virtual memory upon which subsequent stream operations
may operate. MemoryStream makes no assertions about the content of that block of
memory.

The Environment.Block specified in Create limits the acceptable values for positioning
operations as well as the amount of data that may be put to the stream (see §1.1).

MemoryStream.Destroy: PROCEDURE [sH: Stream.Handle];

Destroy deletes the state used to support the stream instance. It does not affect the
content or existence of the block of virtual memory specified in Create.

Note: Destroy may also be accessed via the stream object's delete procedure.

MemoryStream.Setindex: PROCEDURE [sH: Stream.Handle, position: Stream.Position];

Setlndex sets the position of stream for the next data operation. Attempting to set a
position beyond the limits of the block specified in Create raises the error
IndexOutOfRange (see §1.1)

Note: Setlndex may also be accessed via the stream object's setPosition procedure.

MemoryStream.Getlndex: PROCEDURE [sH: Stream.Handle] RETURNS [position: Stream.Position];

Getlndex returns the current position of the stream. The usual application for this
information is again in conjunction with Courier.SerializeParameters and is used to flnd the
length of serialized data.

Note: Getlndex may also be accessed via the stream object's getPosition procedure.

3-19

3 Streams

3-20

4.

File Storage and Memory

4.1 Physical volumes ... 4-1

4.1.1 Physical volume name and size 4-2

4.1.2 Physical volume errors .. 4-2

4.1.3 Drivesanddisks .. 4-3

4.1.4 Disk access, Pilot volumes, and non-Pilot volumes 4-4

4.1.5 Physical volume creation .. 4-6

4.1.6 SCavengingoperation ... 4-6

4.1. 7 Logical volume operations on physical volumes 4-8

4.1.8 Miscellaneous operations on physical volumes 4-9

4.2 Logical volumes .. 4-10

4.2.1 Volume name and size .. I •• 4-10

4.2.2 Logical and physical volumes 4-11

4.2.3 Volume error conditions .. 4-11

4.2.4 Logical volume creation and erasure 4-12

4.2.5 Volume status and enumeration 4-13

4.2.6 Volume open and close operations 4-14

4.2.7 Volume attributes ... 4-14

4.2.8 Volume root directory .. 4-15

4.3 Files 4-16

4.3.1 File naming ... 4-17

4.3.2 File addressing (internal) .. 4-17

4.3.3 File types ... 4-18

4.3.4 File error conditions ... 4-19

4.3.5 File creation and deletion .. 4-20

4.3.6 File attributes ... 4-20

4.4 The scavenging operation .. 4-21

4.4.1 Volume scavenge .. 4-22

4.4.2 Scavenger log file .. 4-23

4.4.3 Operations on log files ... 4-25

4.4.4 Investigation and repair of damaged pages 4-25

4.5 Virtual memory man~!gement .. 4-27

4.5.1 Fundamental con1eepts of virtual memory 4-27

4.5.2 File mapping to virtual memory intervals 4-30

4.5.3 Virtual memory explicit read and write operations 4-34

4.5.4 Swapping ... 4-35

4.5.4.1 Demand swapping ... 4-35

4.5.4.2 ControUed swapping 4-35

4.5.5 Access control ... 4-31"',

4.5.6 Explicit allocation of virtual memory and special intervals 4-37

4.5.6.1 Special intervals ofVM, main data spaces, and pointers 4-38

4.5.6.2 Explicit allocation of virtual memory.•. 4-38

4.5.6.3 Mappin@: explicitly allocated virtual memory to files 4-39

4.5.7 Map unit and swap unit attributes, utility operations 4-40

4.6 Pilot memory manag4!ment ... 4-41

4.6.1 Zones ... 4-42

4.6.1.1 Zone management ... 4-42

4.6.1.2 Segment; management ~ 4-45

4.6.1.3 Node aUl>Cation anddeallocation 4-46

4.6.2 Heaps 4-47

4.6.2.1 Heap maLnagement .. 4-47

4.6.2.2 Node aU()cation and deallocation 4-50

4.6.2.3 Miscellaneous operations 4-51

4.7 Logging facilities .. 4-53

4.7.1 Log file write operations .. 4-53

4.7.1.1 Installing, opening, and closing the log file 4-54

4.7.1.2 Writing -entries in the log file 4-54

4.7.1.3 Logging control ... 4-55

4.7.1.4 Properti'es of the current log file 4-56

4.7.2 Log file read operations .. 4-56

4

File Storage and Memory

A file is the basic unit of long-term information storage (see §4.3). A file consists of a
sequence of pages, the contents of which can be preserved across system restarts. Files are
stored on volumes (see §4.1, 4.2) and are identified by the containing volume and a file
identifier which is unique within that volume.

Pilot stores files on logical volumes, which are contained in physical volumes of storage
devices (typically disks). A physical volume is the basic unit of physical availability for
random access file storage. It represents the notion of a storage medium whose
availability is intrinsically independent of that of other instances of such media (e.g., one
physical disk pack). A logical volume is either a physical volume or a subset of a physical
volume or a collection of subsets of physical volumes. A logical volume is the unit of
storage for client files and the system data structures for manipulating them. It becomes
logically available or unavailable as a unit and contains only complete files; that is, files
cannot span logical volumes. Volumes which have been damaged may be restored by
scavenging (see §4.4).

Client programs access data in files by mapping them into spaces in virtual memory (see
§4.5). Pilot provides client programs with facilities for associating areas of virtual
memory with portions of files, for allocating sections of virtual memory independent of
mapping, and for influencing swapping between virtual and real memory.

Pilot provides free storage management through zones and heaps (see §4.6). Zones are
segments of storage in client-designated areas of virtual memory. Heaps are available for
managing arbitrarily sized nodes; they support the Mesa language facilities for dynamic
storage allocation.

A general purpose log file facility (see §4.7) allows recording of information in a client­
supplied log file.

4.1 Physical volumes

PhysicalVolume: DEFINITIONS •.• ;

This section describes the interfaces provided by Pilot which permit clients to initialize
and manage physical volumes. Pilot brings the system physical volume online during
Pilot initialization, repairing it if necessary. Thus, most clients will not need to use the

4-1

4

4-2

File Storage and Memory

facilities in this section. However, Utility Pilot-based clients do not have a system
physical volume; these clien.ts must manage physical volumes them'selves. Clients which
might use the PhysicalVolume facilities include volume management utility programs,
system elements with several physical volumes, and UtilityPilot-based systems. Sections
4.1.1 through 4.1.4, 4.1.7, ,and 4.1.8 deal with general physical volume management,
§4.1.5 with initializing a physical volume, and §4.1.6 with scavenging. See also Chapter 8
for facilities to format physi(:al volumes and install boot files on them.

4.1.1 Physical volume name and s:i2e

The fundamental name for a physical volume is its 10.

PhysicaIVolume.JO: TYPE. System.PhysicaIVolumeIO;

System.PhysicaIVolumeIO: TYIItE • RECORD [System.UniversaIlO)i

PhysicaIVolume.nuIllO: Physical'J'olume.IO • [System.nuIllO); - "nuIlID"

Pilot ensures with a very hi~rh probability that each distinct physical volume is assigned a
distinct 10. No 10 is reused for any purpose by any copy of Pilot on any machine at any
time. Thus, a physical volume may be unambiguously identified by its 10, even if it is
moved to another machine or environment, or ifit is stored ofT-line for a long time. nuUlD
is never assigned as an 10 and is used to indicate the absence of a physical volume.

The error PhysicaIVolume.Errc)r[physicaIVolumeUnknown) may be raised by any of the
operations that take an 10 as an argument.

A physical volume is organized as a sequence of up to 282 pages, each containing
Environment.wordsPerPage wlords. Pages are numbered starting from zero. The actual
volume size is accounted fhr by Pilot and does not result in the redefinition of the
maximum page number.

Physicalvolume.PageCount: TYF'E • LONG CARDINAL;

Physicalvolume.firstPageCount: J:»hysicaIVolume.PageCount • 0;

PhysicaIVolume.JastPageCount:: PhysicalVolume.PageCount • LAST[LONG CARDINAL);

PhysicaIVolume.PageNumber: lYPE • LONG CARDINAL;

Physicalvolume.firstPageNumber: PhysicalVolume.PageNumber • 0;

PhyslcaIVolume.JastPageNumb4!r: PhysicalVolume.PageNumber • LAST(LONG CARDINAL] - 1;

Pilot's maximum values for F'ageCount and PageNumber do not, for all practical purposes,
limit the size ofa physical volume.

4.1.2 Physical volume errors

PhysicalVolume operations may raise the following signals:

PhysicaIVolume.Error: ERROR [erl'or: PhysicaIVolume.ErrorType];

Pilot Programmer's Manual

PhysicaIVolume.ErrorType: TYPE • {badDisk, badSpotTableFull, containsOpenVolumes,
diskReadError, hardwareError, hasPilotVolume, alreadyAsserted, insufficientSpace.
invalidHandle, nameRequired, notReady, noSuchDrive, noSuchLogicalVolume,
physicalVolumeUnknown, writeProtected, wrong Format, needsConversion};

PhysicalVolume. NeedsScavengi ng: ERROR;

4

The conditions causing each error are described as the error appears in the text. The
errors raised by each operation are indicated with the operation's description.

4.1.3 Drives and disks

A drive is an 110 device capable of containing a Pilot physical volume. Such devices have a
Device.Type which is in the range defined by Device.PilotDisk. The storage medium on a
drive is the physical object which holds the stored information, typically a fixed disk or a
removable disk pack. It will be called a disk in the description which follows. A drive is
uniquely named by its device index. A drive may be in two states: if a drive is ready then it
contains a storage device, e.g., a disk pack, that may be accessed by Pilot; if the drive is not
ready, then it does not contain an accessible storage device.

PhysicaIVoIume.ErrorType: TYPE. { ••• , nOSuchDrive, ••• };

All operations which take a device index will raise PhysicaIVolume.Error[noSuchDrive] if
provided a device index which does not denote a drive.

The set of drives on a machine may be enumerated with the operation

PhysicaIVolume.GetNextDrive: PROCEDURE [index: CARDINAL] RETURNS [nextlndex: CARDINAL];

PhysicaIVolume.nuIIDevicelndex: CARDINAL. LAST(CARDINAL);

GetNextDrive is a stateless enumerator. Enumeration begins and ends with the value
null Devicelndex. GetNextDrive may raise Error[noSuchDrive] .

For every drive, Pilot maintains a monotonically increasing change count of the number of
times that the drive has changed state between ready and not ready. If a drive changes
state, the change count for that drive will increase by at least one. Thus, while the change
count remains the same, the client can be sure that the same disk is mounted on the drive.

The client may wait for one or more drives to change state by invoking

PhysicaIVolume.AwaitStateChange: PROCEDURE [changeCount: CARDINAL.
index: CARDINAL Physicalvolume.nuIiDevicelndex]
RETURNS [currentChangeCount: CARDINAL];

The AwaitStateChange operation waits until the change count of the drive equals or
exceeds changeCount, then returns the new change count. If index. nuliDevicelndex,
then the operation waits until the sum of the change counts of all drives equals or exceeds
changeCount, then returns the sum. AwaitStateChange may raise Error[noSuchDrive] .

4-3

4

4-4

File Storage and Memory

A unique instance of a disk mounted on a drive is represented by a PhysicaIVolume.Handle.
A Handle denotes both a drive and the change count at the time at which the Handle was
obtained. A Handle is valid until the drive that it denotes changes state. After that time,
the error Error[invalidHanclle] is raised by any operation that takes a Handle as an
argument.

PhyslcaIVolume.Handle: TYPE [3];

PhysicaIVolume.ErrorType: TVPI: • { .•• , invalidHandle, ••• };

Physicalvolume.GetHandle: PRCtCEDURE [index: CARDINAL] RETURNS [PhysicaIVolume.Handle];

PhysicaIVolume.lnterpretHandle: PROCEDURE [instance: Physicalvolume.Handle)
RETURNS [type: Device.Type, index: CARDINAL];

A Handle is obtained for a dlrive using GetHandle. The change count of the drive at the
time GetHandle is invoked defmes the valid change count for the disk mounted on the
drive represented by the rE,turned Handle. GetHandle may raise Error[noSuchDrive).
InterpretHandle returns the drive denoted by a given Handle. The returned type may be
general rather than precise; that is, a type naming a device family rather than a specific
member of the family, Inter~tretHandle may raise Error[invalidHandle].

Information about the ready state of a drive can be obtained with

Physicalvolume.lsReady: PROCEI)URE [instance: PhysicaIVolume.Handle]
,RETURNS [ready: BOOLEAN];

IsReady may raise Error[invalidHandle).

4.1.4 Disk access, Pilot volumes, aUld non-Pilot volumes

The disk on a ready drive mlay be in one of three states: inactive, Pilot access, and non··
Pilot access. An inactive disk may be accessed only in stylized ways that permit clients to
determine in which of the other two states to place the device. A disk with Pilot access
contains a Pilot physical volume and may be accessed only through the Pilot File?

PhysicalVolume, Space and Volume interfaces. Non-Pilot access indicates that the the disk may
be accessed only through special interfaces which permit direct access (that isp

unembellished with Pilot spa.ce, mapping and file structures) to the storage device.

Whenever a drive becomes r l3ady, Pilot places its disk in the inactive state. Once a client
has obtained a Handle for a drive and ascertained that the disk is ready, the client must
inform Pilot what type of a(:cess to the disk is desired. The following operations allow
clients to determine and change the state of a drive.

To aid the client in determining how to access a disk, Pilot provides two facilities.

The fIrst facility is an oper:ation which examines the disk and determines whether it
contains a Pilot volume.

PhysicaIVolume.GetHints: PROCEDURE [
instance: Physicalvolume.Hal,dle, label: LONG STRING NIL]
RETURNS [pvID: Physicalvolume.lD, volumeType: Physicalvolume.VolumeType];

PhysicalVolume.VolumeType: TYPE. {notPilot, probablyNotPilot, probablyPilot, isPilot};

The returned volumeType gives Pilot's best guess as to the nature of the disk on instance
in volumeType: notPilot indicates that the disk is definitely not a Pilot physical volume;

Pilot Programmer's Manual 4

probablyNotPilot indicates that the disk mayor may not be a Pilot volume but attempting
to use the disk as a Pilot physical volume is likely to fail; probablyPiiot indicates that the
disk may not actually contain a Pilot volume, but that an attempt to use it as a Pilot
physical volume is very likely to succeed; isPiiot indicates that the disk almost certainly is
a Pilot physical volume. In all four cases, pvlD is the identifier that the disk appears to
have and label is the apparent label of the disk. (See Physicalvolume.CreatePhysicalVolume
below for more information about physical volume labels.)

It does not matter whether the access state of the disk has already been asserted. GetHints
does not change the access state of the disk. GetHints may raise Error[notReady] or
Error[invalidHandle] .

As a second facility to aid the client in determining how to access a disk, Pilot permits the
client read-only, direct access to the device. This access allows the client to examine the
disk safely to determine if it contains a known, but non-Pilot, volume. Such access is
provided by special Pilot interfaces.

Given the result of the GetHints operation and of reading the disk, the client can declare
the access desired to the disk. The following operations inform Pilot of the desired access.
Upon return from these operations, the client has the indicated access to the disk.

PhysicaIVolume.AssertPilotVolume: PROCEDURE [instance: Physlcalvolume.Handle)
RETURNS [PhysicaIVolume.lD);

PhysicaIVolume.ErrorType: TYPE • { ••• , alreadyAsserted, ••• };

AssertPilotVolume asserts to Pilot that the disk contains a Pilot volume. On return, the
disk is in the Pilot-access sta~~ and the physical volume named by the returned value may
be accessed. The returned physical volume is said to be online.

If instance is not in the inactive state, then Error[alreadyAsserted) is raised. If Pilot's data
structures are not in order, then NeedsScavenging is raised (see §4.1.6 on scavenging).
Error[notReady) and Error[invalidHandle] may also be raised.

PhyslcaIVolume.Offline: PROCEDURE [pvID: PhysicaIVolume.ID];

PhysicaIVolum~.ErrorType: TYPE.
{ ••• , containsOpenVolumes, physicalVolumeUnknown, ••• };

Offline terminates access to an online Pilot physical volume, returning the drive
containing that volume to the inactive state. All logical volumes contained on the
physical volume must be closed.

Error(physicaIVolumeUnknown] or Error(containsOpenVolumes] may be raised by this
operation.

Caution: In the current version of Pilot, if a disk goes not ready while in the Pilot access
state, the results are unspecified.

Non-Pilot access tq a disk is initiated and terminated with the following operations.

PhysicaIVolume.AssertNotAPilotVolume: PROCEDURE [instance: PhysicaIVolume.Handle];

4-5

4

4-6

File Storage and Memory

PhyslcaIVolume.FinishWithNolnPilotVolume: PROCEDURE [instance: PhysicaIVolume.Handle];

PhysicaIVolume.ErrorType: TVP'E • { ••• , hasPilotVolume, ••• };

AssertNotAPilotVolume initiates direct access to a storage device. On return, unlimited
access to the device is perrnitted by Pilot through special direct access facilities. If the
drive is not currently in the inactive state, then Error[alreadyAsserted] is raised.
Error[invalidHandle] may also be raised.

FinishWithNonPilotVolume returns a disk being accessed with non-Pilot access to the
inactive state. It raises E:rror[hasPilotVolume] if instance currently is in Pilot-access
mode. It may also raise Erro,r[invalidHandle] .

4.1.5 Physical volume creation

Pilot disks are created by fIrst creating a physical volume and then creating logical
volumes upon that physical volume. All storage devices require formatting before their
fIrst use. (See §8.3.1 for formatting, §4.2.4 for logical volume creation.) A physical
volume is created by invoking

PhysicaIVolume.CreatePhysicaIVolume: PROCEDURE [
instance: Physicalvolume.Hclndle, name: LONG STRING]
RETURNS [PhysicaIVolume.IO);;

PhysicaIVolume.maxNameLen~lth: CARDINAL. 40;

PhyslcaIVolume.ErrorType: TVPI! • { ••• , badOisk, diskReadError, nameRequired, .•• };

CreatePhysicalVolume creates a physical volume upon instance. The label of the newly
created physical volume is name. The name must contain at least one character or
Error[nameRequired) is raisc3d.

If the name contains mOJ~e than maxNameLength characters, then only the first
maxNameLength characters will be used as the label. The newly created volume is placed
online (i.e., just as if AssertPilotVolume had been calledland its 10 is returned.

If the specified drive is in either the Pilot access state (Le., online) or in the non-Pilot
access state, then Error[alreiidyAsserted) is raised. If Pilot cannot do the necessary disk
access required to create a physical volume on the disk, then Error[badDisk] or
Error[diskReadError] is raif~ed. This operation may also raise Error[notReady] and
Error[invalidHandle).

4.1.6 Scavenging operation

Scavenging is the process of'returning a physical or logical volume to a consistent state.
The process is necessary if the volume was damaged by software errors, pages on the disk
went bad, the volume is nll)t of the current version, or the like. Section 4.4 covers
scavenging logical volumes.

A physical volume can be sca.venged by invoking

PhysicaIVolume.Scavenge: PROC:EDURE (instance: PhysicaIVolume.Handle,
repai r: PhysicalVolume.Repaii rType, okayToConvert: BOOLEAN]
RETURNS (status: PhysicaIVolume.ScavengerStatus);

Physica'Vo'ume.RepairType: TYI)E • {checkOnly, safeRepair, riskyRepair};

Pilot Programmer's Manual

PhysicaIVolume.ScavengerStatus: TYPE • RECORD [
badPageList. bootFile. germ. softMicrocode. hardMicrocode:

PhysicaIVolume.DamageStatus.
internalStructures: PhysicalVolume.Repai rStatus];

PhysicaIVolume.DamageStatus: TYPE. {okay. damaged. lost};

PhysicaIVolume.RepairStatus: TYPE. {okay. damaged. repaired};

Physicalvolume.noProblems: READONLY PhysicalVolume.ScavengerStatus •••• ;

4

The purpose of Scavenge is two-fold. First, it allows Pilot to place its internal physical
volume data structures in order so that client access to the physical volume may be
permitted. Second, it returns a ScavengerStatus describing any damage found for which
the client has repair responsibility. PhysicalVolume.Scavenge is responsible for the integrity
of the physical volume only. To repair any logical volume damage, the client must call
Scavenger .Scavenge.

If the volume is not of the current volume version, i.e., not compatible with the volume
version expected by the Pilot boot file which is running, then it must be made so before any
access is allowed. Invoking Scavenge with okayToConvert • TRUE causes the volume's
version to be increased to the current version. This is the only way to cause volume
conversion. Scavenging to a previous version is not supported, nor is scavenging a volume
forward more than one version.

Note: okayToConvert is ignored in Pilot 14.0, and physical volume conversion is not
supported.

The physical volume to be scavenged must be omine. Error[aireadyAsserted1 is raised if
the specified. disk drive is online. If the volume version is incorrect and okayToConvert is
FALSE, then Error(needsConversion] is raised. Error[badDisk] is raised if the damage to the
physical volume data structures is so great that the physical volume cannot be
reconstructed. Error[invalidHandle] may also be raised.

If repair is set to safeRepair or riskyRepair, then the scavenger will attempt to repair the
damage that it finds on the physical volume. The safeRepair mode is limited to repairs
that are expected to be low risk. The riskyRepair mode imposes no such limits and should
be used only as a last resort. In particular, it should be used only when the hardware is
known to be functioning correctly. If repair is set to checkOnly, then no repair is
attempted but a ScavengerStatus indicating any damage is returned.

The individual status fields have the following meanings:

badPageList
okay is returned if the bad page list is intact. A status of damaged is returned if
damage is found an~ the parameter repair was set to checkOnly. A status of lost
indicates that damage was found and repair was set to safeRepair or
riskyRepair. If badPageList • lost, then the physical volume scavenger resets
the bad page list to empty and marks all logical volumes on this physical
volume to be scavenged. Bad pages must be marked bad again using a disk
utility from the Installer or disk diagnostics.

bootFile, germ, softMicrocode, hardMicrocode
okay is returned if the indicated file, and the reference to it in the physical
volume's data structures, are intact. If the status returned is damaged, then
the indicated file has been found to be damaged; that is, there are unreadable
pages, missing pages, or the file is otherwise not in valid boot file format. The

4-7

4

4-8

File Storage and Memory

physical volume scavenger will mark the containing logical volume to be
scavenged. The client should either delete the boot file and reinstall it, or
scavenge that Iog~cal volume to discover and repair any unreadable or missing
pages before replacing its contents. If the status returned is lost, then the
reference to the indicated file contained in the physical volume's data structures
appears to be darnaged, either because the data structures have been damaged
or because the boot file has been deleted. If the file has a unique file type and
has not been deleted, the client should be able to find it and restore it via
OthelloOps.SetPhy!;icaIVolumeBootFile as the appropriate physical volume boot,
germ, or microcode fi Ie.

internalStructures
okay is returned if no damage is discovered in the internal data structures of
the physical volu:me. The status returned is damaged if damage was found and
the parameter rellair was set to checkOnly, or if repair was set to safeRepair and
damage was found that can be repaired only in riskyRepair mode. The status is
repaired if repair' was set to riskyRepair, or if repair was set to safeRepair and
damage was found which could be repaired safely.

The constant nOProblems is provided to allow the client to determine with a single
comparison whether it has any work to do after the physical volume scavenger finishes.

Caution: The local time parameters may be lost any time the physical volume scavenger
repairs internal volume structures. This will be the case when internalStructures is not
reported as okay and repiiir is set to safeRepair or riskyRepair. It is the clientis
responsibility to reset loca11~ime parameters correctly if they have been lost.

Caution: Currently, tho only significant fields of status are badPageList and
internalStructures, The othl:!r fields are always returned as okay, and for them none of the
validity checking implied is performed.

4.1.7 Logical volume operations 0111 physical volumes

The logical volumes on an online physical volume may be enumerated by invoking

PhysicaIVolume.GetNextLogiccIIVolume: PROCEDURE [
pvlD: PhysicaIVolume.ID, IvID: System.VolumeID]
RETURNS [System.VolumeID);

GetNextLogicalVolume is a stateless enumerator. The enumeration begins and ends with
Volume.nuIliD. This opf!ration may raise Error(physicaIVolumeUnknown] and
Error[noSuchLogicaIVolume,).

The physical volume that contains a given logical volume is returned by

PhysicaIVolume.GetContainingPhysicaIVQlume: PROCEDURE [lvID: System.VolumeID]
RETURNS (pvlD: PhysicaIVolulne.JD];

If IvlD is unknown to Pilot, then VOlume.Unknown is returned. Note that IvlD need not be
open to invoke this operation. However, it must be in an online physical volume.

Pilot Programmer's Manual

4.1.8 Miscellaneous operations on physical volumes

The set of online physical volumes is enumerated by

PhysicaIVolume.GetNext: PROCEDURE [pvID: PhysicaIVolume.ID]
RETURNS [PhysicaIVolume.ID];

4

GetNext is a stateless enumerator. . The enumeration begins and ends with
PhyslcalVolume.nuIII D. If pvlD is not known to Pilot, then Error[physicaIVolumeUnknown]
is raised.

The attributes of an online physical volume may be ascertained by invoking

PhysicaIVolume.GetAttributes: PROCEDURE [pvID: Physicalvolume.ID, label: LONG STRING +- NIL]
RETURNS [instance: PhysicaIVolume.Handle, layout: Physicalvolume.Layout];

PhysicalVolumeGLayout: TYPE •
{partiaILogicaIVolume, singleLogicalVolume, multipleLogicalVolumes, empty};

A handle to the drive containing the physical volume is returned in'instance, the label
name string is returned in label, and the nature of the logical volumes that exist upon
pvlD is returned in layout. If the volume label is longer than the string label, then only
the characters which will fit into the string are returned.

A layout value of singleLogicalVolume indicates that one entire logical volume is on pvlD;
multipleLogicalVolumes indicates that more than one logical volume is on pvlD. A value
of empty indicates that no logical volumes have been created upon pvlD. GetAttributes
may raise Error[physicaIVolumeUnknown].

The physical volume name (label) may be changed by invoking

PhysicaIVolume.ChangeName: PROCEDURE [pvID: PhysicaIVolume.ID, newName: LONG STRING];

If the length of newName exceeds PhyslcaIVolume.maxNameLength, then only the rust
maxNameLength characters are used. If newName does not contain at least one
character, then Error[nameRequired] is raised. ChangeName may also raise
Error[physicaIVolumeUnknown].

A physical volume may have pages upon it that are unusable (e.g., some sector of the disk
has failed). Such pages are called bad pages. A page is marked as bad by the operation

Physicalvolume.MarkPageBad: PROCEDURE
[pvID:PhyslcaIVolume.ID, badPage: PhysicaIVolume.PageNumber];

After a page has been marked bad, Pilot no longer attempts to access it. If a page is to be
marked as bad, then close the logical volume containing that page before invoking
MarkPageBad. This closing is not checked by Pilot. Moreover, after the operation returns,
that logical volume should be scavenged before being opened.

Pilot will remember only a limited number of bad pages for a given physical volume. See
§8.3 for a description of Pilot facilities for identifying bad pages. If Pilot's table of bad
pages is full, then Error[badSpotTableFull] is raised and bad Page is not remembered as
being bad. MarkPageBad may also raise Error[physicaIVolumeUnknown].

4-9

4 File Storage and Memory

The set of bad pages on a physical volume may be enumerated by invoking

Physicalvolume.GetNextBadPage: PROCEDURE [
pvlD: PhysicaIVolume.ID, thisBadPageNumber: PhyslcaIVolume.PageNumber]
RETURNS [nextBadPageNurnber: PhysicaIVolume.PageNumber];

PhysicaIVolume.nuIiBadPage: F'ageNumber • LAST[PageNumber];

GetNextBadPage is a sta1;eless enumerator. Enumeration begins and ends with
null BadPage. This operation may raise Error[physicaIVolumeUnknown].

4.2 Logical volumes

4-10

Volume: DEfiNITIONS ... ;

In this section the term volume, where not specified as logical or physical, refers to a
logical volume.

Before being presented to Pilot for the rlrst time, a volume must be initialized, and it may
require scavenging or re-initialization after system crashes. Such operations are
performed using the Installer (see XnE User's Guide) or by a user-written volumt~
initializer (see Chapter 8).

The current version of Pilo1; supports a maximum of ten logical volumes on a physical
volume.

4.2.1 Volume name and size

The fundamental name for a volume is its 10:

volume.iD: TYPE. System.VolumeID;

System.VolumeID: TYPE. RECC)RD [System.UniversaIlD);

Volume.nuIllD:volume.lD. [System.nuIIlD];

Pilot ensures with a very high probability that each distinct volume is assigned a distinct
10. No 10 is reused for any p1.lrpose by any copy of Pilot on any machine at any time. Thus
a volume may be unambiguously identified by its 10, even if it is moved to another
machine, or if it is stored oltlline for a long time. Volume.nulllO is never the name of a
volume and is used to denote the absence of a volume.

The maximum size of a logic;;ll volume is 232 bytes, or 223 pages.

volume.maxPagesPerVolume: LONG CARDINAL=- 8388608; __ ~3

VOlume.PageCount: TYPE • LOIMG CARDINAL; -- simulates [0 .. volume.maxPagesPerVolume]

volume.firstPageCount: Volum4il.PageCount • 0;

Volum.e.lastPageCount: Volume!.PageCount • Volume.maxPagesPerVolume;

volume.minPagesPerVolume: READONLY volume.PageCount;

Pilot Programmer's Manual 4

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defmes Volume.PageCount as a LONG CARDINAL, and defines
constants firstPageCount and lastPageCount to specify flRsT[PageCount] and
LAST[PageCount]. These constants should be used rather than the fiRST and LAST operators,
which cannot supply the correct value in the case of a simulated subrange. Minimum and
maximum values are similarly defined for Volume.PageNumber below.

Volume.PageNumber: TYPE • LONG CARDINAL; -- simulates [0 .. Volume.maxPagesPerVolume)

Volume. firstPageNumber: Volume.PageNumber • 0;

volume.lastPageNumber: volume.PageNumber • Volume.maxPagesPerVolume· 1;

4.2.2 Logical and physical volumes

The correspondence between logical and physical volumes is not dynamic but is
established at volume initialization time. When a logical volume exists on several
physical volumes, all of the physical volumes must be available before the logical volume
is available. Logical volumes permit the simulation of volume sizes not present in
hardware. For example, several smaller disks can be combined to look like a larger disk.

Clients should contemplate combining physical volumes into logical volumes only if file
sizes are likely to exceed the size of an individual physical volume. Pilot offers no recovery
if one of the physical volumes comprising a logical volume is lost or destroyed. The
contents of the remaining physical volumes are, in general, irretrievable.

Note: No mechanism exists to create a logical volume which spans multiple physical
volumes.

The volume known as the system volume is intended to be used as the default volume by
Pilot and its clients. The system volume is the logical volume which contains the boot file
of the system being executed. The 10 of this volume is contained in

volume.systemID: READONLY volume.iD;

Note: UtilityPilot-based systems have no system volume. volume.systemlD will have the
value Volume.nuIIiD.

4.2.3 Volume error conditions

, The following errors may be raised during many Volume operations. The description of
each operation indicates which errors it can raise.

Volume.Unknown: ERROR [volume: volume.ID];

Unknown is raised when a volume is not known to Pilot. No part of the volume is online.
Unknown is raised if Volume.nulliD is used for any operation except those which start an
enumeration.

VOlume.NotOnline: ERROR [volume: volume.iD];

NotOnline indicates that a volume is only partially online; that is, not all of the physical
volumes comprising the volume are online.

4-11

4

4-12

File Storage and Memory

Volume.NotOpen: ERROR [volume: Volume.ID];

Operations which require the volume to be open raise NotOpen if the volume is partially
online or online but closed.

Volume.ReadOnly: ERROR [vollume: VolumeJD];

Attempting to change the contents of a volume which is open for reading but not writing,
causes ReadOnly to be raised.

Volume.NeedsScavenging: EltROR [volume: volume.lD);

NeedsScavenging indicates: that Pilot data structures on the volume are inconsistent or
incorrect. This situation ca.n occur as a result of a system crash, or the volume may have
the format of an incompatible version of Pilot, or the volume may not, in fact, be a Pilot
volume.

Volume.lnsufficientSpace: ERROR [
currentFreeSpace: VOlume.PageCount, volume: Volume.ID];

The error InsufficientSpace is raised when not enough space is left in the volume for the
requested operation to com:plete. The number of pages actually available is returned in
currentFreeSpace.

Volume.Error: ERROR [error: V'olume.ErrorType];

Volume.ErrorType: TYPE. { •.• };

The specific values for Error aredefmed below as they occur in the text.

4.2.4 Logical volume creation and erasure

A logical volume can be crea.ted on a physical volume by invoking

volume.Create: PROCEDURE [
pvlD: System.PhysicaIVolumeID, size: VOlume.PageCount, name: LONG STRING,
type: Volume.Type, minPVPageNumber: PhysicalVolume.PageNumber +-1]
RETURNS [volume: Volume.lID];

PhysicaIVolume.maxSubvolumesOnPhysicaIVolume: READONL Y CARDINAL;

volume.maxNameLength: CAIRDINAL • 40;

Volume. Type: TYPE • MACHINE: DEPENDENT
{normal(O), debugger(1), debuggerDebugger(2), nonPilot(3)};

volume.ErrorType: TYPE. {niilmeRequired, pageCountTooSmaliForVolume,
subvolumeHasTooManyB:adPages, tooManySubvol umes};

Create creates a new logical volume on pvlD of type type and containing size pages. (See
§4.2.6, Volume open and close operations, for a discussion of the significance of volume
types.) The volume label, which can be used to identify the logical volume, is name. The
label is not used by Pilot. Only the first volume.maxNameLength characters of name are
used.' The newly created volume will not overlap any other logical volumes upon pvlD.
Logical volumes occupy one or more contiguous, disjoint regions of physical volumes. The
volume will start at a page number at least as large as page minPVPageNumber of pvlO; it
may start later.

Pilot Programmer's Manual 4

If this new volume will cause the number of subvolumes to exceed
maxSubvolumesOnPhysicalVolume, then Error(tooManySubvolumes] is raised. If pvlD is
not a valid physical volume, then PhysicaIVolume.Error(physicaIVolumeUnknown] is raised.
If size is not enough pages to make a volume, then Error(pageCountTooSmaliForVolume]
is raised. If there is insufficient unused space on pvlD to create the logical volume~ then
Physlcalvolume.Error(insufficientSpace] is raised. If name is NIL or its length is zero, then
Error(nameRequired] is raised. If there are too many bad pages on the area of the disk to
be used for the proposed logical volume, then Error[subvolumeHasTooManyBadPages] is
raised. Hardware errors encountered in creating the volume cause
Physicalvolume.Error[hardwareError) to be raised.

volume.Erase: PROCEDURE [volume: Volume.ID];

Erase erases a logical volume, destroying its previous contents.

Volume volume may be online or open when this operation is invoked, and Erase does not
affect this status. Erase may raise the errors Unknown, NotOnline, ReadOnly, or
PhyslcaIVolume.Error[hardwareError).

4.2.5 Volume status and enumeration

The logical volumes of an online physical volume may be enumerated by
Physicalvolume.GetNextLogicalVolume (see §4.1.7).

A client may determine the status of a logical volume by calling

Volume.GetStatus: PROCEDURE [volume: Volume.ID) RETURNS [Volume.Status);

Volume.Status: TYPE • {unknown, partiallyOnLine, closedAndlnconsistent,
closedAndConsistent, openRead, openReadWrite};

The meaning of each Status is as follows. unknown indicates that no part of volume is
contained in an online physical volume. partiallyOnLine indicates that the volume spans
multiple physical volumes and at least one of those physical volumes is omine.
closedAndlnconsistent means that all parts of volume are online but it needs scavenging
before it can be opened. closedAndConsistent means all parts of volume are online, and it
is closed and does not need scavenging. openReadWrite indicates that volume is open and
accessible for both reading and writing. open Read indicates that the volume is open only
for reading.

Clients can discover the identities of online or open logical volumes by calling

Volume.GetNext: PROCEDURE [volume: Volume.ID,
inciudeWhichVolumes: Volume. TypeSet +- onlyEnumerateCurrentType)
RETURNS [nextVolume: Volume.ID];

Volume. TypeSet: TYPE • PACKED ARRAY Volume.Type OF Volume.BOoleanDefaultFalse;

Volume.BOoleanDefaultFalse: TYPE • BOOLEAN +- FALSE;

Volume.onlyEnumerateCurrentType: volume.TypeSet • [];

GetNext is a stateless enumerator with a starting and ending value of VOlume.nuIllD. It
enumerates the logical volumes of the type(s) specified by inciudeWhichVolumes which
are currently online or open. GetNext may raise the error Unknown.

4-13

4

4-14

File Storage and Memory

4.2.6 Volume open and close operntioDs

When a Pilot boot file is inv(J,ked, the system physical volume and system logical volume are
the physical and logical volumes containing the boot file. During its initialization, Pilot
brings the system physicnl volume online and opens the system logical volume,
scavenging it if necessary. If the logical volume version is not current (compatible with
the Pilot boot file which is running), then initialization scavenging will cause it to be
converted to the current venlion.

Note: For UtilityPilot-based systems there is no system physical or logical volume, and
no physical or logical volumE~s are brought online.

A client may open an online '~olume, making its files accessible, by calling

Volume.Open: PROCEDURE [volume: Volum • .iD];

Once a volume is open, the c:lient may create, read, write, and delete files on the volume.
Opening an already open volume is a no-op. A volume will be opened read-only if the
volume being opened is of a higher Volume. Type than the system volume. This will be the
case if, (a) the system volu.me is of type normal, and volume is of type debugger or
debuggerDebugger, or (b) the system volume is of type debugger and volume is of type
debuggerDebugger.

Note: For UtilityPilot-basedl systems, volumes are always opened read-write.

An attempt to write on or otherwise change the state of a read-only volume causes
ReadOnly to be raised. Open may also raise Unknown, NotOnline, and NeedsScavenging.

Caution: If a debugger opens (for read-write) any volume which its debuggee currently
has open, that debuggee shotLld not be allowed to continue execution. Opening the volume
changes its state, and the debuggee's Pilot will have out-of-date information about the
volume. Continuing its exec:ution in this case will have unpredictable (and undesirable)
results. This is true for any dient whose open volume is opened for read-write by another
client.

The client may close an open volume by calling

Volume.Close: PROCEDURE [voh,lIme: Volume.ID];

Close ensures that the volumte is in a physically consistent state. The data on the volume
will no longer be accessible. Closing a closed volume is a no-op. Close may raise errors
Unknown and NotOnline.

4.2.7 Volume attributes

Volumes have attributes whil(:h can be examined; some attributes can be set.

Volume.GetAttributes: PROCEDIURE [volume: Volume.ID]
RETURNS [volumeSize, freeptageCount: Volume.PageCount, readOnly: BOOLEAN);

GetAttributes may be applied to any online or open volume. The attributes volumeSize
and freePageCount indicate the number of pages and free pages, respectively, of the
volume. freePageCount is the maximum length file that can be created, or the maximum,
by which the size of a file m,ay be grown, at that time. Because the space reflected by
freePageCount must also be used for Pilot internal data structures, it may not be possible

Pilot Programmer's Manual 4

to create or extend a file by precisely this much. In general, the amount of free space left
after creating or extending a file cannot be predicted exactly. readOnly is TRUE if the
volume is open for reading but not writing; that is, if it is of a higher Volume. Type than the
system volume. GetAttributes may raise Unknown, NotOnline, and NeedsScavenging.

The ID of the volume that contains the debugger is kept in

Volume.debuggerVolumeID: READONLY volumeJD;

If the ID is equal to vOlume.nuIllD, then no debugger is present on a local volume. In
Utility Pilot-based systems, debuggerVolumelD is always nulliD.

The type of an online or open volume may be ascertained with the procedure

Volume.GetType: PROCEDURE [volume: volumeJD] RETURNS [type: Volume. Type];

GetType may raise errors Unknown, NotOnline, and NeedsScavenging.

The volume label is set when a volume is created. The label can be used by the client to
identify the logical volume, but it is not significant to Pilot. The label of an online or open
volume may be changed by the operation

volume.ChangeLabeIString: PROCEDURE [volume: VOlume.lD, newLabel: LONG STRING];

Only the flrSt Volume.maxNameLength characters of newLabel are used. If newLabel is NIL
or its length is zero, Error[nameRequired] is raised. ChangeLabelString may raise
Unknown, NotOnline, ReadOnly, and NeedsScavenging.

The label of an online or open volume may be retrieved by the operation

volume.GetLabeIString: PROCEDURE [volume: Volume.iD, 5: LONG STRING];

If the length of the volume label exceeds that of s, then the returned label will contain only
as many characters as will fit. The length will not exceed maxNameLength.
GetLabelString may raise Unknown, NotOnline, and NeedsScavenging.

4.2.8 Volume root directory

The volume root directory provides a mechanism for client file systems to retain a File.File
for the root of their file system. It provides a mapping from a File.Type into a File.File. For
any given File.Type there can be at most one root file. A File.Type of FileTypes.tUntypedFile
functions as a null value for the root directory operations. The operations in this section
allow manipulation of an open volume's root directory.

Volume.RootDirectoryError: ERROR [type: Volume.RootDirectoryErrorType];

Volume.RootDirectoryErrorType: TYPE.
{directoryFull, duplicateRootFile, invalidRootFileType, rootFileUnknown};

Root directory operations may raise the error RootDirectoryError. Individual errors are
described with the operations that raise them. All of the root directory operations may
also raise Unknown, NotOnline, and NotOpen, and NeedsScavenging.

4-15

4

4.3 Files

4-16

File Storage and Memory

Inserting a file into the volume root directory is accomplished by

voIume.lnsertRootFile: PROCEiDURE [type: File.Type, file: File.File];

VoIume.maxEntrieslnRootDiliectory: READONLY CARDINAL;

If the root directory already has an entry for type, RootDirectoryError[duplicateRootFile]
is raised. The root directory is of fixed size. If the insertion would result in more than
maxEntrieslnRootDirectory entries, RootDirectoryError[directoryFull] is raised. An
attempt to insert a file with type FileTypes.tUntypedFile into the root directory results in
the error RootDirectoryError[invalidRootFileType]. ReadOnly may also be raised.

Volume.RemoveRootFile: PRCICEDURE [
type: File.Type, volume: Volume.ID +-volume.systemID);

The entry for a given File.Type may be removed from the root directory by
RemoveRootFile. It may raise RootDirectoryError[rootFileUnknown] and ReadOnly.

Volume.LookUpRootFile: PROIC:EDURE [
type: File.Type, volume: volume.ID+-volume.systemID]
RETURNS [file: File.File];

The file previously stored fOlr a given file type may be retrieved by calling LookUpRootFile.
If the root directory has no entry in for that type, RootDirectoryError[rootFileUnknown] is
raised.

Volume.GetNextRootFile: PROICEDURE [
lastType: File.Type, volume: Volume.ID +-volume.systemID]
RETURNS [file: File.File, tyPE!: File. Type];

The set of root files in the root directory may be enumerated by calling the stateless
enumerator GetNextRootFile. The enumeration begins and ends with
FileTypes.tUntypedFile. It may raise RootDirectoryError[rootFileUnknown].

File: DEFINITIONS ... ;

FileTypes: DEFINITIONS ••• ;

FileTypesExtrasExtras: DEFINI;TIONS •.• ;

CommonSoftwareFileTypes: DEFINITIONS ..• ;

A file is the basic unit of long-term information storage. A file consists of a sequence of
pages, the contents of which can be preserved across system restarts. Files are named by
specifying the containing volume, and by a file identifier which is unique within that
volume. The operations desc::ribed in this section enable clients to create and destroy files,
and to examine and set their attributes.

Pilot Programmer's Manual 4

4.3.1 File naming

A file is named by giving the identifier of the volume on which it resides and the 10 of the
file:

File.IO: TYPE [2];

File.File: TYPE • RECORD [filelO: File.IO, volumelO: System. VolumeIO];

Flle.nuIllO: File.IO •... ; -- -null ID-

File.nuIiFile: File.File • [File.nuIllO, [System.nuIllO]];

File.IOs are unique within any single volume. Because Pilot ensures with a very high
probability that each distinct volume is assigned a distinct volume identifier, the
combination of a volume identifier and a File.IO in a File.File is similarly unique. Pilot will
normally create files with File.IOs which have never appeared on the containing volume.
However, Pilot may reuse the File.IOs of deleted files under some circumstances. FUe.nulllO
is never allocated as the 10 of a file, and will cause the error File.Unknown to be raised if
used for any operation except those that start an enumeration. File.nuliFile may be used to
denote the absence of a file.

All File operations require the volume containing the file to be open.

4.3.2 File addressing (internal)

Pilot files may hold up to 232 bytes (223 pages) and may be randomly accessed on a page­
by-page basis. All addresses within a file are in terms of page numbers, representing
offsets (in pages) from the beginning of the file. The tirst page of a' tile is page number
zero.

File.PageNumber: TYPE. LONG CARDINAL; - simulates [O .. File.maxPagesPerFile)

File.maxPagesPerFile: LONG CARDINAL • 8388607; -- r 3-1

File.firstPageNumber: File.PageNumber • 0;

File.lastPageNumber: FUe.PageNumber • File.maxPagesPerFile· 1;

N ate: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and dermes constants
firstPageNumber and lastPageNumber to specify FIRsT[PageNumber] and
LAST[PageNumber]. These constants should be used rather than the FIRST and LAST
operators, which cannot supply the correct value in the case of a simulated subrange.
Minimum and maximum values are similarly defined below for File.PageCount.

File.PageCount: TYPE=- LONG CARDINAL; - simulates [O .. File.maxPagesPerFile]

File.firstPageCount: File.PageCount • 0;

File.lastPageCount: File.PageCount • File.maxPagesPerFile;

4.3.3 File types

In Pilot, every file must be assigned a file type at the time it is created. A file type is of type
File. Type and is constant for the life of the file. The file type provides a means for Pilot,
various scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to

4-17

4

4-18

File Storage and Memory

recognize which file is whi(:h. To make this principle work effectively, each different kind
of file should be assigned its own unique type. See Appendix B for an explanation of how
file types are assigned and lmanaged.

File types are intended to be used by Pilot clients in distinguishing the types of objects
represented by Pilot files. Each specific application may assign its own type to its own
files, either for redundancy or for control of the processing of those files.

File types are allocated by the Manager of System Development and are defined as follows:

File.Type: TYPE. RECORD [CARDINAL];

The center of this scheme i:s the FUeTypes interface, maintained by the Pilot group. In this
file are deimed all subranges of File.Type assigned to individual client and application
groups. This module is dE!signed so that it.can be recompiled whenever a new type is
assigned without invalidating any old version. Thus, within certain limits, a program
may include any version of' FiteTypes which contains the file types of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of FlleTY,Hs is a set of subrange and constant definitions. The following
ranges are defined. The itaJliczed text lists the user of the file type.

Note: Consult the documentation of the appropriate system to see how the specific file
types have been deimed.

FileTypes.MesaFileType: TYPE. CARDINAL[•••];

FileTypes.DCSFileType: TYPE •• CARDINAL[••• J;
FileTypes.TestFileType: TYPE •• CARDINAL [••• J;
FileTypes.SBSOFileType: TYPE. CARDINAL [••• J;

Mesa source and object files

development common software

test tools

OPD Small Business Systems
Operation

FileTypes.CommonSoftwareFileType: TYPE. CARDINAL [••• J; product common software

FileTypes.DocProcFileType: TVPE :I CARDINAL [••• J;
FileTypes.FileServiceFileType:: TYPE :I CARDINAL [••• J;
FileTypes.ServicesFileType: TVPE • CARDINAL [••• J;
FileTypes.MesaDEFileType: n'PE • CARDINAL [••• J;

file server

print server

Mesa development environment

FileTypes.PerformanceTooIFileType: TYPE. CARDINAL [•••]; storage of binary data typically
generated by performance tools

FileTypes~DiagnosticsFileTypE!: TYPE :I CARDINAL [•••];

FileTypes.CADFileType: TYPE ~: CARDINAL [••• J;

FileTypes.CedarFileType: TYPE. CARDINAL [••• J;
FlleTypes.VersatecFileType: T'fPE :I CARDINAL [••• J;
FileTypesExtras.lnterlispFileTYJJe: TYPE. CARDINAL[••• J;
FileTypesExtrasExtras.BWSFileType: TYPE. CARDINAL[••• 1;
FileTypesExtrasExtras.FSFileTYP4a: TYPE. CARDINAL[••• J;

diagnostics software

computer aided design
software.

P ARC Cedar project

Versatec

InterLisp products

Basic Workstation products

file services products

Pilot Programmer's Manual 4

The Extras and ExtrasExtras interfaces will be merged with their parent interface in
future releases.

FileTypes.tUntypedFile: File.Type • [LAST(CARDINAL]];

The type tUntypedFile may be used as a null value, denoting the absence of a type. This
use is not enforced by Pilot, however ..

The following common software file types are defmed in the range
CommonSoftwareFileType:

CommonSoftwareFileTypes.tUnassigned: File.Type • [•••];

CommonSoftwareFileTypes.tDirectory: File.Type • (•••];

CommonSoftwareFileTypes.tBackstopLog: File.Type • [•••];

CommonSoftwareFileTypes.tCarryVolumeDirectory: Flle.Type • [•••];

CommonSoftwareFileTypes.tClearingHouseBackupFile: File. Type • [•••];

CommonSoftwareFileTypes.tFileList: Flle.Type • [•••];

CommonSoftwareFileTypes. tBackstopDebugger: File. Type • [•••];

CommonSoftwareFlleTypes.tBackstopDebuggee: File.Type • [•••];

These file types are mostly self-explanatory. tDirectory is obsolete. tFileList is the file type
of the file list used by the Floppy file system (see §5.5).

4.3.4 Fne error conditions

The following errors may arise during file operations:

File.Error: ERROR [type: File.ErrorType];

File.ErrorType: TYPE • {invalidParameters, reservedType};

Most file operations raise Error. Error[invalidParameters] is raised by operations
when the parameters specify an illegal condition.· Error(reservedType] is raised
when one of Pilot's reserved file types is used improperly.

File.Unknown: ERROR [file: File.File];

Unknown indicates that the file does not exist on the given volume. It is also raised if
Flle.nuliFile is supplied to any operation except a stateless enumerator.

File. MissingPages: ERROR [
file: File.File, firstMissing: File.PageCount, countMissing: File.PageCount] ;

MissingPages indicates that the specified pages are missing from the file because of an
exceptional condition, usually a disk hardware error. This error is not raised by any File
operation, but is raised by other Pilot operations.

File operations may raise the errors Volume.Unknown, Volume.NotOnline, Volume.NotOpen,
Volume.lnsufficientSpace, and volume.ReadOnly.

4-19

4

4-20

File Storage and Memory

4.3.5 File creation and deletion

To create a new file on a volu.me, call the procedure

File.Create: PROCEDURE(
volume: System.VolumeID" initialSize: File.PageCount, type: File.Type]
RETURNS [file: File.File]

A FIIe.File for the new file is r'eturned. Files are created as temporary files. The file initially
contains the number of pagels specified by initialSize (filled with zeros). Pilot attempts to
allocate contiguous space 011 the volume, if such is available. Significant performance
penalties are associated with increasing the size of a file. Programmers should make
every attempt to create the file with the size it will eventually be. If initialSize is zero or
greater than File.maxPagesPfuFile, then Error(invalidParameters] is raised. If the volume
does not have enough space to contain the file, then VOlume.lnsufficientSpace is raised.
volume.ReadOnly is raised if the volume is open for reading only.

The type attribute of the file is a tag provided by Pilot for the use of higher level software.
If type is one of a set of val ues reserved by Pilot, then Error(reservedType] is raised.

By creating a file on an empty volume, creating a second file, and so on, a client program
can construct a set of files all of whose space is guaranteed to be contiguous.

A file is deleted by the operation

File.Delete: PROCEDURE [file: File.File];

The file is deleted permanently; no "undelete" operation exists. Flle.Unknown is raised if
no such file is on the volume.. Volume.ReadOnly is raised if the volume is open for reading
only.

Caution: The file being deleted must not contain any file windows for mapped spaces (see
§4.S.2); the behavior of Pilot in such circumstances is undefined.

4.3.6 File attributes

Aside from its name and contents, a file has three other attributes: size, type, and
temporary/permanent statuEI. These attributes can be examined using the operations
defmed below. All of these operations may raise File.Unknown.

The size of a file may be ascertained by calling

File.GetSize: PROCEDURE [file: File.File] RETURNS [size: File.PageCount];

The size of a file may be al ter,~d by calling

File.SetSize: PROCEDURE [file: File.File, size: File.PageCount];

If the size is increased, then Pilot attempts to allocate disk space physically adjacent to the
end of the file. Pilot also attempts to allocate a contiguous sequence of pages, if such is
available. Any new pages of the file are filled with zeros. Attempting to set the size to zero
or greater than File.maxPafgesPerFile causes Error[invalidParameters] to be raised.
Volume.ReadOnly will result if the volume is read-only, and vOlume.lnsufficientSpace will
be raised is not enough free pnges are on the volume for the new file size.

Extending a file is a fairly e,,~pensive operation. It is better for a client to determine the
ultimate amount by which a file is to be extended, and do it all at once rather than to

Pilot Programmer's Manual 4

increase its size a page or two at a time. This method both reduces the amount of disk
traffic and increases the likelihood that Pilot will be able to allocate a contiguous sequence
of pages for the extension. There are also continuing performance penalties for accessing
a fragmented file, which may result from growing the file one or more times.

Caution: For a file which is being shrunk, the pages being deleted must not be mapped
into virtual memory. The behavior of Pilot in such circumstances is undefined.

The rest of the attributes ofa file can be inspected collectively by calling

File.GetAttributes: PROCEDURE [file: File.File]
RETURNS [type: File.Type. temporary: BOOLEAN];

The temporary attribute indicates whether the file is temporary or permanent. Pilot
deletes temporary files when the volume is next booted, scavenged, or opened for writing.
Permanent files are preserved across system restarts. A file is always created as
temporary.

A file may be made permanent by calling the operation

Flle.MakePermanent: PROCEDURE [file: File.File];

A file should not be made permanent before the client has safely stored the Flle.File for that
file in some client-level directory or other permanent data structure. The scavenger (§ 4.4)
provides means for recovering a permanent file for which the Flle.File has been lost.

The intended sequence for making a permanent file is as follows: When a cl,ient creates a
file, it is temporary. The client then stores the File.File for that file in a safe place, doing
Space.ForceOut on the safe place to guarantee that it is written into the backing file. The
client then makes the file permanent using File.MakePermanent.

4.4 The scavenging operation

Scavenger: DEFINITIONS ••• ;

The act of repairing an inconsistent or damaged Pilot logical volume is known as
scavenging. A Pilot logical volume may become damaged for any number of reasons. A
machine that is using the volume may stop abnormally due to hardware or software
failure. The drive containing the volume may fail and damage the volume, or the physical
medium containing (part of) the volume might fail. A damaged volume may not be
accessed until it has been repaired. This requirement is enforced at the time that
Volume.Open is called. If the volume is detected as damaged by Pilot, then
Volume.NeedsScavenging is raised. A volume is repaired using the Scavenger interface.

4.4.1 Volume scavenge

The purpose of the Scavenge operation is two-fold. First, it allows Pilot to place in order
its own data structures so that client access to the volume may be permitted. Second, it
produces a log file (described below) describing the state of the volume. The log file is
intended to be used by client-level scavengers to reconstruct client data structures.

4-21

4

4-22

File Storage and Memory

A damaged volume is repaired by the operation

Scavenger.SCavenge: PROCEDURE [volume, logDestination: volume.lD,
repair: Scavenger.RepairT~'pe, okayToConvert: BOOLEAN]
RETURNS [logFile: File.File];

Scavenger.RepairType: TYPE :. MACHINE DEPENDENT {checkOnly(O),
safeRepair(1), riskyRepai r(2)};

Scavenger.Error: ERROR [error: Scavenger.ErrorType];

Scavenger.ErrorType: TYPE. { ••• , volumeOpen, cannotWriteLog,
needsRiskyRepair, needsIConversion, ••. };

The volume to be scaveng1ed is given by volume. If volume is open, then the error
Error[volumeOpen] is raised. The log file is created on the volume logDestination. If
logDestination equals voluille, then the created log file is permanent; otherwise, the log
file is temporary. Volume 14lgDestination must be open if it is not the same as the volume
to be scavenged. Scavenge Inay also raise Volume.NotOnline and Volume.Unknown.

The level of repair attempted by the scavenger is governed by the value of repair. A value
of checkOnly causes a log file to be produced but no repair is done. In this case, it is
advisable to specify logDestination to be a volume different from the scavengee, because it
may not be possible to build. a log file on a damaged volume. If repair is safeRepair, then
the scavenger will attempt to repair the damage that it fmds upon the volume. This is the
normal usage. If Pilot is unable to repair the volume satisfactorily in this mode, then
Error[needsRiskyRepair] is ,returned. Certain forms of repair are performed only if repair
is equal to riskyRepair. ScsLvenging in riskyRepair mode should be attempted only after
the hardware has been verified to be working correctly.

Caution: In the current version of Pilot, repair equal to checkOnly is not implemented.

okayToConvert determines whether conversion of a volume of an incompatible volume
version will occur. A volume is of an incompatible version if its format is not compatible
with the Pilot boot file which is running. If okayToConvert is TRUE, then scavenging
converts a volume from the previous version to the current one. If the volume version is
incompatible but okayTo<:onvert is FALSE, then Error[needsConversion] is raised.
Scavenging to a previous vc~rsion is not supported, nor is scavenging a volume forward
more than one version. oka~fToConvert is set to FALSE during Pilot initialization, causing
the system logical volume n(.t to be converted forward.

If a previous log file for this volume exists, then Pilot attempts to delete it after Pilot data
structures have been repairl3d, but before a new log is written. This delete is comparable
to a call on the DeleteLog operation (see below). If Pilot is unable to write the log for any
reason, then Error[cannotWl'iteLog] is returned and no scavenging is done.

Caution: In the current version of Pilot, the volume is repaired even if cannotWriteLog is
raised.

During Pilot initialization, the system logical volume is scavenged as necessary with
repair • safeRepair and ok,ayToConvert • TRUE. The resulting log file is placed on the
system volume.

Pilot Programmer's Manual 4

4.4.2 Scavenger log file

A log file describes the state of a volume after the Scavenge operation has been invoked. It
contains information about the volume and the outcome of the Scavenge as well as a list of
all files on the volume and the problems, if any, with each file. A log file contains a data
structure of type Log Format.

Scavenger. Log Format: TYpe = MACHINE DEPENDENT RECORD [
header: Scavenger .Header,
files: ARRAY [0 •• 0) OF FiteEntry];

Scavenger.Header: TYPE = MACHINE PEPENDENT RECORD [
seal: CARDINAL +- Scavenger.LogSeal,
version: CARDINAL +- scavenger.currentLogVersion,
volume: VoIume.lO,
date: System.GreenwichMeanTime,
repairMode: Scavenger.RepairType,
incomplete: BOOLEAN,
repaired: BOOLEAN,
bootFi lesOeleted : Scavenger. BootFileArray,
pad: [0 •• 0) +- 0,
numberOfFiles: LONG CARDINAL];

Scavenger.LogSeal: CARDINAL • 130725B:

Scavenger.currentLogVersion: CARDINAL • 1;

Scavenger.BootFileArray: TYPE =
PACKED ARRAY Scavenger.BootFileType OF BOOLEAN;

Scavenger.BootFileType: TYPE = MACHINE DEPENDENT {
hardMicrocode(O), softMicrocode(1), germ(2), pilot(3), debugger(4), debuggee(5)};

Scavenger.noneDeleted: Scavenger.BootFileArray = AU[fALSE);

Scavenger.FiteEntry: TYPE = MACHINE DEPENDENT RECORD [
file: flle.lD,
sortKey: LONG CARDINAL,
numberOfProblems: CARDINAL,
problems: ARRAY [0 .. 0) OF Scavenger.Problem):

Scavenger.Problem: TYPE = MACHINE DEPENDENT RECORD [
trouble: SELECT entryType: Scavenger • EntryType FROM

unreadable, missing = > [first: File.PageNumber, count: File.PageCount),
duplicate, orphan = > lid: Scavenger.OrphanHandle1
ENDCASE1;

Scavenger.EntryType: TYPE = MACHINE DEPENDENT {
unreadable(O), missing(1), duplicate(2), orphan(3)};

Scavenger.OrphanHandle: TYPE [2];

Scavenger.tScavengerlog: READONLY File.Type;

Scavenger. tScavengerlogOtherVol ume: READONL Y File. Type;

The log consists of a Header followed by zero or more FileEntrys. The Header describes the
scavenged volume and the outcome of scavenging. The seal field is used to verify that a

4-23

4

4-24

Flle Storage and Memory

file is in fact a scavenger log; its value should be LogSeal. The version is the log file
format version; its value should be currentLogVersion. The scavenge occurred on volume
volume at time date with the value of the repair argument which was passed to the
Scavenge operation equal tl:) repairMode. If incomplete is TRUE, then the file list may not
include all files or problelIls due to insufficient space on the log destination volume or
overflow of the internal tables used when scavenging. The header is always complete. A
value of TRUE for repaired indicates that all volume structures are in order and the volume
may be accessed. If it was :necessary to delete one or more boot files in order to complete
the scavenge, then the elem,ents of bootFilesOeleted corresponding to the deleted boot files
will be TRUE. Boot files are deleted only in very unusual situations; the client must replace
any deleted boot files. The count of files on the scavenged volume is given by
numberOfFi les.

Following the header are Header .numberOfFiles contiguous entries of type FileEntry. In
each entry, file identifies the file, sortKey is a sort accelerator for client scavengers, and
numberOfProblems is th,e number of problems associated with the file. If
numberOfProblems is not zero, then problems contains one Problem entry for each
problem encountered. Note that some files will be absent from the list :if
header.incomplete is TRUE.

There are four categories of problem: unreadable pages, missing pages, duplicate pages,
and orphan pages. If the data portion of a sequence of file pages is unreadable or the label
can be read correctly, but is either self-inconsistent or is inconsistent with the rest of the
file, an unreadable Problem entry is entered in the log. IT a sequence of file pages is
missing, then a missing Problem entry is created. If a page has an unreadable label, then
it cannot be associated with any file and is reported as an orphan Problem of a FileEntry
which has file equal to File.nuUlO. Finally, if two or more pages claim to be the same page
of a file, one is arbitrarily chosen as the actual file page; the rest are reported as duplicate
Problem entries. A pSLge identified as orphan or duplicate is provided a
Scavenger.OrphanHandle in the problem entry so that the page may be accessed. The size of
a Problem entry in the log is always slzE(Problem).

The scavenger cannot detect the absence of one or more pages from the very end of a file. It
is the client's responsibility to deal with failures of this nature. If only the lust page of a
file is missing, then Pilot 8.ssumes that the file is permanent. Missing or unreadable
pages should be accessed only via operations provided by the Scavenger interface for dealing
with such pages and not by 01~her operations; for example, Space.Map.

A scavenger log file built upon the volume being scavenged will be of file type
tScavengerLog. A log file written to a different volume will have typ.!
tScavengerLogOtherVol ume.

A log file may also be generated by the operation

Scavenger.MakeFileList: PROCEDURE [volume.logDestination: Volume.tO]
RETURNS [logFile: File.File];

MakeFileList generates a Log for the volume volume without the overhead of actually
scavenging the volume. If either of the specified volumes is not open, then
Volume.NotOpen is raised. Volume.Unknown is raised if either volume is unknown. The
resulting log will be the sa.me form as a log generated by Scavenge, except that no
problems are reported. The log file is not an ('official" log file; that is, it is not affected by

Pilot Programmer's Manual 4

Scavenge, GetLog, or DeleteLog. The returned file is a temporary file; it is the client's
responsibility to make it permanent if that is appropriate.

Caution: The client should not create or delete files from volume while MakeFileList is in
process or the log may be incomplete or incorrect.

4.4.3 Operations on log tiles

The current log file for an open volume, as produced by the most recent invocation of
Scavenger.Scavenge[volume, ••• J, is returned by

Scavenger.GetLog: PROCEDURE [volume: Volume.ID)
RETURNS [logFile: FUe.File);

If no log file exists, then File.nuliFile is returned. Even if the returned logFile is not
Flle.nuIiFile, the log file will not exist if it has been deleted by some means other than a
Scavenger. DeleteLog. Thus, the client must be prepared to catch the signal File.Unknown
while accessing logFile. GetLog may also raise Volume.NotOpen, Volume.NotOnline, or
Volume.Unknown.

The current log file for an open volume may be deleted by

Scavenger.DeleteLog: PROCEDURE [volume: Volume.IO);

volume is the volume which was scavenged to produce the log file. The log file may be on
volume or it may be on another volume, depending on the log destination chosen for the
Scavenge. If the volume containing the log file is not open for writing, then the file is not
deleted. Subsequent GetLog operations on volume return Flle.nuliFile until
Scavenge[volume, ••• J is called again. DeleteLog does not affect log files generated by
MakeFileList. DeleteLog may also raise Volume.NotOpen, volume.NotOnline,
volume.Unknown, or volume.ReadOnly.

4.4.4 Investigation and repair of damaged pages

The damage reported in the log file may be investigated and repaired through the
following operations. All of these operations require the volume to be open. All of the
operations raise File.Unknown if the specified file cannot be found, and volume.NotOpen,
volume.NotOnline, or vOlume.Unknown for the specified problem with the volume.
Operations that change volume contents may raise Volume.ReadOnly.

An unreadable page, as described by an unreadable Problem entry, may be read by

Scavenger.ReadBadPage: PROCEDURE [
file: File.File. page: File.PageNumber. destination: space.PageNumber]
RETURNS [readErrors: BOOLEAN];

Scavenger.ErrorType: TYPE. { •••• diskHardwareError. diskNotReady,
noSuchPage ••.• };

The contents of page page of file are read into virtual memory page destination which
must be mapped and writeable; an address fault or write protect fault is indicated if it is
not. The effect is to overwrite the previous contents of destination with the contents of the
specified file page. The returned value read Errors indicates whether an error was
encountered while accessing the specified file page. Read errors that occur while reading
page affect only the value of read Errors and are otherwise ignored. If the read operation
encountered errors, then the data is not guaranteed to be reliable. If page does not exist or

4-25

4

4-26

File Storage and Memory

lies beyond the end of filEt, then Error[noSuchPage] is raised. If the target disk is not
ready, then Error[diskNotFteady] is raised. If the target disk reports a drive-level failure
(as opposed to a page-level failure such as a read error), then Error[diskHardwareError] is
raised.

An unreadable page may be rewritten or a missing page may be replaced by

Scavenger.RewritePage: PROCEDURE [
file: File.File, page: File.PugeNumber, source: Space.PageNumber]
RETURNS [writeErrors: BOOLEAN];

The current contentsofpal~e page of file are overwritten by virtual memory page source,
which must be mapped. The original disk page is reused if it is present (to replace a file
page, use ReplaceBadPage below); if the original page is missing, Pilot will allocate a new
page for that file page. ~rhe return value write Errors indicates whether errors were
encountered while trying tl> rewrite the specified page. IfwriteErrors returns FALSE, then
the page should be considelC'ed to be rehabilitated. Clients should first attempt to rewrite
bad file pages using Rewri'tePage. If the attempt fails repeatedly, the client should use
ReplaceBadPage to rewrite the file page in a different backing page.

If page is beyond the end of file, then Error[noSuchPage] is raised. If no page can be
allocated to replace a missing page, then Volume.lnsufficientSpace is raised. If the target
disk is not ready, then Errctr[diskNotReady] is raised. If the target disk reports a drive­
level failure, then Error(diskHardwareError] is raised. An address fault will result if
source is not mapped.

The following procedure aIsIG rewrites a bad page in a file, but to a new page. In addition,
it frees or discards the disk lpage that the file currently occupies.

Scavenger.ReplaceBadPage: F·ROCEDURE (
file: File.File, page: File.Pa,geNumber, source: space.PageNumber]
RETURNS (writeErrors: BOO'LEAN];

ReplaceBadPage allocates a new page for the specified file page. If it can rehabilitate the
original page, then it mark~i the page free; otherwise the page is left marked in use. The
page is not added to the phynical volume's bad page list.

The returned value writEtErrors indicates whether errors were encountered while
replacing the file page. 1~his operation always allocates a single new page even if
writeErrors is returned as TiltUE. ReplaceBadPage is subject to the same error conditions as
RewritePage.

An orphan page may be read. by the operation

Scavenger.ReadOrphanPage: PROCEDURE [
volume: Volume.ID, id: Sca"enger.OrphanHandle, destination: Space.PageNumber]
RETURNS (file: File.File, tyPE!: File. Type, pageNumber: File.PageNumber,
readErrors: BOOLEAN];

Scavenger.ErrorType: TYPE. { ... , orphanNotFound, •.. };

The contents of virtual menlory page destination are overwritten by the contents of the
orphan page designated by ide The destination page must be mapped and writeable or an
address fault or write protect fault occurs. The operation returns the information that
Pilot knows about ide The file to which it appears to belong is given by file, the apparent

Pilot Programmer's Manual 4

page number within that file by pageNumber, and the type of file by type. If errors were
encountered in reading the orphan page, then read Errors is returned TRUE and the
returned data is not guaranteed to be accurate.

Caution: No validity check is made to ensure that the page referred to by id is actually an
orphan. It is the client's responsibility to pass only a currently valid OrphanHandle.

Ifid does not refer to a valid page on volume, then Error[orphanNotFound) is returned. If
the target disk is not ready, then Error[diskNotReady] is raised. If the target disk reports
a drive-level hardware failure, then Error[diskHardwareError) is raised.

The client should delete an orphan page when finished with it.

Scavenger.DeleteOrphanPage: PROCEDURE [volume: Volume.IO, id: Scavenger.OrphanHandle);

The specified orphan p~ge is deleted, making invalid all outstanding references to it. If
the page is usable, it will be returned to volume's free page pool. If the page is
incorrigible, then it is left marked in use. It is not added to the bad page list for the
physical volume containing vC)lume.

Ifid does not refer to a valid page on volume, then Error(orphanNotFound] is raised.

Caution: No validity check is made to ensure that the page referred to by id is actually an
orphan. It is the client's responsibility to pass only currently valid OrphanHandles. In
partiCUlar, it is possible for a client to delete a random page from a random file by
supplying a random, but valid, value for id.

4.5 Virtual memory management

Space: DEFINITIONS •.•

SpaceUsage: DEFINITIONS •.•

The Mesa Processor provides a large, linearly addressed, word-organized virtual memory
common to all PROCESSes and devices. All software, including Pilot, Common Software, and
applications, resides in this single, uniformly addressable resource. Pilot both manages
and implements it using the system element's physical resources. In particular, client
programs can associate areas of virtual memory with portions of files and manage system
performance and reliability by controlling swapping between virtual and real memory.

4.5.1 Fundamental concepts olvirtual memory

The Mesa Processor' virtual memory is organized as a sequence of 224 pages, each
containing Environment. wordsPerPage words. Pages are" numbered starting from zero.
Clients can use one fewer page than provided by the Mesa Processor because the last page
is reserved for system use. A specific implementation of the processor may provide a
smaller virtual address space, which does not require redefming the maximum page
number but is accounted for in Pilot's internal data structures. A client program can
determine the size of its virtual address space, as described in §4.5.6.1 below.

4-27

4

4-28

File Storage and Memory

Environment. wordsPerPage: CARDINAL • 256;

Environment.PageNumber: TYPE - LONG CARDINAL; -[O .. P4-1)

Environment.firstPageNumber: Environment.PageNumber • 0;

Environment.lastPageNumbElr: Environment.PageNumber - 16777214; _224_2

Note: Because LONG sub range types are not implemented in the current version of Mesa,
the current version of Pilot dermes PageNumber as a LONG CARDINAL and defines the
constants firstPageNumbc!r and lastPageNumber to specify FIRsT[PageNumber] and
LAsT[PageNumber]. Similarly for PageCount and Page Offset below.

Environment.PageCount: TYPI! - LONG CARDINAL; -[0 .. 224-1]

Environment.firstPageCount: Environment.PageCount • 0;

Environment.lastPageCount: Environment.PageCount - lastPageNumber + 1; -- 224_1

Environment.PageOffset: TYPE - Environment.PageNumber;

Environment. fi rsWageOffset:: Envlronment.PageOffset • 0:

Environment.lastPageOffset: Environment.PageOffset - lastPageNumber;

Environment.LongPointerFroI11Page: PROCEDURE [page: Environment.PageNum ber]
RETURNS [LONG POINTER) II INLINE ••• ;

LongPointerFromPage returns a LONG POINTER to the rust word of a page.

EnvironmentaPageFromLongP1oi nter: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber] - INUNE ••• ;

PageFromLongPointer retUlms the number oithe page containing pointer. If pointer is Nil.,

then the value returned is undermed; no signal is raised.

For convenience, copies elf the types wordsPerPage, PageNumber, PageCount, and
PageOffset, and the procedures LongPointerFromPage and PageFromLongPointer are
available in the Space interface.

Space. wordsPerPage: CARDIN,~L - Environment. wordsPerPage;

space.PageNumber: TYPE - Environment.PageNumber;

Space.PageCount: TYPE • Environment.PageCount;

Space.PageOffset: TYPE - En~rironment.PageOffset:

Space.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber1
RETURNS [LONG POINTER] - INLlNE ..• ;

Space.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.Pagel~umber] - INLlNE .•. ;

The Interval is a basic concept used to describe parts o£virtual memory.

Space.lnterval: TYPE. RECORt) [pointer: LONG POINTER, count: Environment.PageCount1;

space.nulllnterval: Space.Jntel'val • [pointer: NIL, count: 0];

Pilot Programmer's Manual 4

An Interval is a sequence of pages in the virtual address space and is described by a
pointer to the fIrst page and a count of the number of pages. When Pilot returns an
Interval to the client, the pointer points to the first word of the fIrst page of the Interval.
When Intervals are passed to Pilot, the pointer may point to any word in the first page.
Clients should be careful not to misconstrue the pointer passed to Pilot as defining the
first address affected by an operation; Space operations always start at page boundaries.
nulllnterval may be used to denote the absence of an interval. It is returned by a few Space
operations.

Pilot implements virtual memory using the resources of real memory and files. In
particular, any part of virtual memory which contains information must be associated
with backing storage consisting of a sequence of pages from some file. This sequence of file
pages is called a window. The act of associating an area of virtual memory with a window
is known as mapping; the resulting interval is called a map unit. Any attempt by a
program to reference or store into a virtual memory location which is not contained in a
mapped interval causes an address fault. Any attempt by a program to store into a virtual
memory location which has read-only access causes a write protect fault. Both faults cause
the debugger to be called with an appropriate message. "

When an interval is mapped, it is typically subdivided into modest-sized swap units to
allow more efficient management of swapping. When a PROCESS references a page not
present in real memory, Pilot reads in the page and any adjacent swapped-out pages of the
containing swap unit. Thus the size of a swap unit limits how many pages will be swapped
in when one of its pages is referenced. When inactive pages are moved from real memory
to backing storage, Pilot ignores swap unit boundaries. That is, it will swap out a run of
consecutive inactive pages even if the run crosses one or more swap unit boundaries. As
described below, some attributes of mapped intervals are maintained as properties of the
individual swap units.

Note: In unusual circumstances (described below), Pilot may break a client-specified
swap unit into smaller swap units.

When an interval is mapped, its swap units are given initial access permissions.

Space.Access: TYPE. {readWrite. readOnly};

Each swap unit has its own Access status. readWrite specifies that clients are allowed to
read and write in the swap units. readOnly specifies that only reading is allowed. Any
attempt to write into a page of a swap unit which is readOnly results in a write protect
fault. Operations are also provided for changing the access of existing swap units.

When an interval is mapped, its swap units are given an initial life, which specifies
whether or not the initial contents of the backing file are useful.

Space.Life: TYPE. {alive, dead};

Each swap unit has its own Life status. alive specifies that a swap unit initially contains
useful data; dead specifies that it does not. Pilot uses this information to avoid reading
pages of the interval from backing storage and writing pages containing no useful data.
When a swap unit is marked dead, the contents of each page are unpredictable until that
page is written into by the client. Until that time, the client c.an make no assumption
about the contents of the pages or their consistency with the corresponding pages of the
window. Pilot insists that readOnly swap units be alive; any attempt to make a readOnly
swap unit be dead will be ignored; it will remain alive. A swap unit becomes alive when
(a) one of its pages has been written into, or (b) it is made readOnly. A page can be

.4-29

4

4-30

File Storage and Memory

swapped out either explicitly by the client or implicitly by Pilot in managing memory.
The operation Space.KiII is provided to make existing swap units dead.

Any Space operation may raise the signal

space.Error: ERROR [type: Spctce.ErrorType);

space.ErrorType: TYPE • { ..• };

Specific values of ErrorTy~.e are deimed below. In addition, some operations may raise
other signals as deimed below.

If any Space operation is given an Interval whose pages are not completely contained
within the implemented virtual memory of the system element, then
Space.Error[poi nterPastEndlOfVi rtual Memory] is raised.

Space.ErrorType: TYPE. { .. ,., pointerPastEndOfVirtualMemory, ..• };

Any Space operation thllt transfers data to backing storage" may 'encounter an
unrecoverable error in reaciling or writing the data. If so, it raises the signal

Space.lOError: ERROR [page : Environment.PageNumber] ;

page is the flrst page of the data being transferred which is in error.

4.5 .. 2 File mapping to virtual memlory intervals

As described above, Pilot iInplements virtual memory by associating intervals of memory
with backing storage consisting ofa sequence of pages from some file. This sequence offile
pages is called a window. Associating an area of virtual memory with a window is known
as mapping; the resulting interval is called a map unit. Virtual memory is normally
allocated when an interval is mapped.

A Window is a contiguous g;roup of pages in a file starting at a specified base.

Space.Window: TYPE. RECOIID [
file: File.File,
base: File.PageNumber,
count: Environment.PageCc)unt];

The window within the file starts at base, the first page relative to the beginning of the
file, and extends for count pages or to the end of the file, whichever comes first. The actual
window length is the lesser of count and the file size minus base. If count is set to
Environment.JastPageCount, then the window will extend to the end of the file.

When an interval is maPPE!d, it is typically subdivided into modest-sized swap units to
allow more efficient mana,~ement of swapping. If there is no known grouping of the
references to the pages of a map unit, then uniform-sized swap units should be specified;
this case is the default. If there is no knowledge of the proper size for the uniform swap
unit size, then the client may request a default swap unit size. If there is some known
grouping of the references to the pages ofa map unit, then the map unit may be subdivided
into swap units with specific! sizes and locations. In some circumstances, Pilot may break
a client-specified swap unit into smaller swap units, as shown in Figure 4.1.

Pilot Programmer's Manual 4

I Mapped Virtual Memory I
..... 1'---- map unit ---i'-.

file pages

Figure 4.1. Break-down of client-specified swap unit

System performance can be severely degraded if a swap unit is a substantial fraction of the
size of real memory. Clients sp.ould ensure that map units are divided into swap units of
manageable size. As a general rule, a swap unit should not exceed one-tenth the size of
real memory.

The operations for controlling the allocation of intervals and mapping them to windows
are Map, ScratchMap, and Unmap.

space.Map: PROCEDURE [
window: space.Window,
usage: Space. Usage +- space.unknownUsage,
class: space.Class +- file,
access: space.Access +- readWrite,
life: Space. Life +-alive,
swa"pUnits: Space.SwapUnitOption +- space.defaultSwapUnitOption]
RETURNS [mapUnit: Space.lnterval];

Space.Usage: TYPE. [0 •• 2048);

space.unknownUsage: space.Usage • 0;

Space.Class: TYPE • MACHINE DEPENDENT {
unknown(O), code(1), globaIFrame(2), locaIFrame(3),
zone(4), file(S), data(6), spareA(7), spareS(a), piiotResident(31)};

Space.SwapUnitOption: TYPE. RECORD[
body: SELECT swapUnitType: space.SwapUnitType FROM

unitary • > NULL,
uniform. > [size: space.SwapUnitSize +- space.defaultSwapUnitSize].
irregular • > [

sizes: LONG DESCRIPTOR fOR ARRAY [0 •• 0) OF Space.SwapUnitSize]
ENDCASE];

Space.SwapUnitType: TYPE. {unitary. uniform, irregular};

space.defaultSwapUnitOption: Space.SwapUnitOption •
[uniform[space.defaultSwapUnitSize]];

Space.SwapUnitSize: TYPE • CARDINAL;

Space.defaultSwapUnitSize: Space.SwapUnitSize • 0;

Space.ErrorType: TYPE. {
... incompleteSwapUnits,invalidSwapUnitSize, invalidWindow, noWindow •... };

4-31

4

4-32

FUe Storage and Memory

Space.lnsufficientSpace: ERIIOR [available: Environment.PageCount);

Map allocates an interval clf virtual memory and associates it with a window of a file. The
allocated interval is called a map unit. The window is then the backing store for the map
unit. The length of the Delap unit is the actual window length, which is the lesser of
window.count and the size of the file minus window.base. The allocated map unit is
returned.

Caution: Clients must not delete the backing storage for any mapped interval or close the
volume containing it. The behavior of Pilot in such circumstances is undermed.

Caution: Clients should ensure that different map units are not mapped to overlapping
windows of a file if any of them are writeable. The contents of the windows and the map
units in such circumstance~1 are unpredictable.

If window.file is FIIe.nuIiFile, then window.volume, window.base, life, and access are
ignored and Pilot supplieu anonymous backing .tile storage for the interval. Such a
window is called a data window (a window mapped to a file is called a file window). The
length of the allocated window and map unit is window.count. The interval is mapped
with access. readWrite 8Jld life. dead. Backing storage for data windows is allocated
on the system volume. Information in data windows is discarded when the client Unmaps
the interval or, if the systeID crashes, when the system volume is next opened for writing.
For UtilityPilot-based systElms, data windows are backed only by resident memory.

Map may encounter various conditions which will cause errors to be raised, as
summarized in Table 4.1.

Table 4.1. Conditions Causing Map To Raise Errors

Condition

Actual window length is 0
Not enough contiguous free virtual memory
window.base not in File.PagtsNumber range
window.base > file size
Required element of SwapUnits.sizes = 0
Sum ofswapUnits.sizes < window.count
Volume cannot be located
Volume partially online
Volume online and closed
File does not exist on the volume
Any of the pages of window do not exist
Cannot supply backing file fhr a data window
Volume is read-only, but access. readWrite

ERROR

Space.Error[noWindow)
space.lnsufficientSpace1

space.Error[invalidWindow)
space.Error[noWindow)
space.Error[invalidSwapUnitSize]
Space.Error[incompleteSwapU nits]
VoIume.Unknown
volume.NotOnline
Volume.NotOpen
File.Unknown
Flle.MissingPages
volume.lnsufficientSpace
Volume.ReadOnly

1 Space.lnsufficientSpace passes back the maximum amount that could have been allocated.

The interval is mapped with the access given. If access = readOnly, then life is ignored
and the interval is mapped u,ith life • alive. If access = readWrite but window.volume
is read-only, then Volume.ReadOnly is raised.

usage identifies the data in the map unit. The usage of map units will be available to the
debugger and performance Dlonitoring tools. The interface SpaceUsage defines subranges of
Space.Usage for various clients and applications. Clients are encouraged to have their own

Pilot Programmer's Manual 4

private defmitions file which further suballocates the Space. Usages assigned to them by
the SpaceUsage interface.

class indicates the class of the data in the map unit. Pilot uses this data in its swapping
decisions. Clients will normally specify only file for file windows and data for data
windows.

If swapUnits.swapUnitType = uniform, then the map unit is subdivided into equal-sized
swap units of the indicated size. If size equals defaultSwapUnitSize or 0, then Pilot will
choose an appropriate size. If size equals or exceeds the size of the map unit, then the swap
unit serves no purpose; in this case specifying unitary swap units is more efficient.

If swapUnits.swapUnitType = irregular, then the map unit is subdivided into irregular­
sized swap units of the sizes given in swapUnits.sizes. Each element of swapUnits.sizes is
the size of the corresponding swap unit. If the size of any irregular swap unit is greater
than an implementation-dependent upper limit, then it will be subdivided into smaller
swap units. Excess elements of swapUnits.sizes are ignored. If the window does not
completely cover the last swap unit, then this swap unit will be shorter than requested. If
any required element of swapUnits.sizes is 0, then space.Error[invalidSwapUnitSize] is
raised. If any required element of swapUnits.sizes is unmapped storage, then an address
fault results. If the sum of the elements of swap Units. sizes is less than the size of the map
unit, then space.Error[incompleteSwapUnits] is raised.

If swapUnits.swapUnitType = unitary, then the map unit is not subdivided into smaller
swap units. This indicates the client's desire to have the map unit swap as a single entity.

Scratch Map is more convenient than Map for allocating temporary storage.

Space. Scratch Map: PROC~DURE (
count: PageCount, usage: Space. Usage +-Space.unknownUsage]
RETURNS [poi nter:· LONG POINTER];

Space.Unmap: PROCEDURE [
pointer: LONG POINTER, returnWait: Space.ReturnWait +- wait)
RETURNS [nil: LONG POINTER);

Space.ReturnWait: TYPE • {return. wait};

Space.ErrorType: TYPE. { •..• notMapped •... };

Unmap removes the association between the map unit containing pointer and the map
unit's window, freeing the map unit's virtual memory for other uses. If returnWait =
wait, then the operation does not return until the contents of the window reflect the
contents of the interval. If returnWait = return, then the operation returns immediately
without waiting for any required output to complete. Pilot ensures, however, that client
actions on the backing window have the same effect as if returnWait = wait had been
specified. lIthe interval is mapped to a data window, then the information in the window
is discarded. If pointer is not contained in a map unit, then space.Error[notMapped] is
raised. If the data in the interval cannot be written to the window, then Space.lOError is
raised.

Note: For the current release, returnWait = return is equivalent to returnWait = wait.

4-33

4

4-34

File Storage and Memory

Ofcourse, pointers into a mlap unit should not be retained after unmapping. To encourage
this, Unmap returns a NIL pointer. The intended usage is

myPointer +- space.Unmap(lmyPointer);

References to an interval formerly occupied by the map unit can result in an address fault,
or worse, may access or overwrite other data if the virtual memory is reused.

4 .. 5.3 Virtual memory explicit read and write operations

Copyln and CopyOut are !:.imilar to read and write operations in a conventional file
system. However, since thl~ interval involved must already be mapped to a backing file,
each can also be thought of as a file-to-rlle copy. Neither operation returns until the data
has been transferred and neither changes the mapping of the interval.

SpaceeCOpy'n: PROCEDURE [polinter: LONG POINTER, window: space.Window)
RETURNS [(ountRead: Envir,tJnment.PageCount];

space.ErrorType: TYPE. {o •. , readOnly, •.. };

Copy'n reads the contents of window into virtual memory starting at the page that
contains pointer. IfwindovlI.count is 0, then Copyln is a no-op. countRead is the amount
readp which is the lesser of VII in dow. count and the size of the file minus window.base. AU
virtual memory pages into which data will be read must be mapped. The contents of
window are not changed by this operation.

Note: The virtual memory lnodified may start before pointer f since reading starts at the
first word of the page conta.i.Jling pointer.

Caution: Clients should Illot Copy.n from any part of a window currently mapped in
virtual memory with write a.ccess. The data read in such circumstances is unpredictable.

If any portion of the virtual memory involved is read-only, then space.Error[readOnly] is
raised. If any portion of the virtual memory involved is unmapped, then
Space.Error(notMapped] is raised. If the data cannot be read from the window, then
space •• OError is raised. In all of these cases, the pages preceding the offending page may
have been overwritten by the corresponding portion of window. See also the list of errors
raised by both Copy'n and Cc»pyOut, below.

SpaceaCopyOut: PROCEDURE [p,ointer: LONG POINTER, window: Space.Window)
RETURNS [countWritten: En'lfironment.PageCount);

CopyOut writes the current I~ontents of virtual memory, starting at the page that contains
pointer, out to window. Ifvllindow.count is 0, then CopyOut is a no-op. countWritten is
the amount written, which lis the lesser of window.count and the size of the file minus
window.base. All of the vi.rtual memory pages from which data will be read must be
mapped. The contents of virtual memory are not changed by this operation.

Note: The virtual memory being read may start before pointer f since reading starts at a
page boundary.

Caution: Clients should not: CopyOut to any part of a window which is currently mapped
in virtual memory. The contents of those map units in such circumstances is
unpredictable.

If any portion of the virtual memory involved is unmapped, then space.Error(notMapped]
is raised. If the data in the interval cannot be read from backing storage or if it can not be
written to the given window., then Space.JOError is raised. In both cases, the pages of the

Pilot Programmer's Manual 4

window corresponding to those preceding· the offending virtual memory page may have
been overwritten by the corresponding portion of virtual memory. If window. vol ume is
read-only, then votume.ReadOnly is raised.

Copyln and CopyOut both raise the following exceptions. If window.base >
File.lastPageNumber, then space.Error{invalidWindow] is raised. If the volume cannot be
located, then Volume.Unknown is raised. volume.NotOnline is raised if any part of the
volume is not online. If the volume is closed, then Volume.NotOpen is raised. If the file
does not exist on the volume, then Fila.Unknown is raised. If any of the required pages of
window do not exist, then Flle.MissingPages is raised.

4.5.4 Swapping

Before a virtual memory location can be accessed, the page containing that location must
be in real memory. If it is not, Pilot must read the contents of that page from its window
into a real-memory page. If no real memory page is available, Pilot makes room by
writing pages to their backing window(s). Since Pilot keeps track of which pages match
the contents of their window, it need not write unchanged pages.

In Pilot, swapping is caused in two ways: demand swapping and controlled swapping.

4.5.4.1 Demand swapping

When a PROCESS attempts to reference. a virtual page not currently in real memory, it
causes a page fault. When a page fault occurs, execution of that PROCESS is suspended.
Pilot reads in the page referenced and any adjoining swapped-out pages of the containing
swap unit. This action is known as demand swapping. The suspended PROCESS is blocked
until the read operation is complete. Of course, any other ready PROCESSes are allowed to
proceed concurrently with the handling of the page fault.

4.5.4.2 Controlled swapping

Pilot also swaps in response to advice given by the client indicating its intentions with
respect to particular intervals. The operations provided allow the client to advise Pilot
about

• an interval that will be referenced soon

• a recently referenced interval that will not be referenced for a while

• an interval whose current contents are not wanted anymore; that is, will be
written before being read

This advice enables Pilot to manage memory better than with simple demand
swapping.

An operation is also provided to ensure that the current contents of an interval are
accurately reflected in its backing window. This operation is useful for transactional
systems.

The operations Activate, Deactivate, and Kill allow the client to advise Pilot so it can
better manage swapping. ForceOut allows the client to ensure that the information in an
interval will survive a system crash. Each of these operations can be applied to any

4-35

4

4-36

line Storage and Memory

interval of virtual memory J independent of map unit boundaries. The operations apply
only to mapped portions of 1the specified interval, ignoring unmapped regions.

space.Activate: PROCEDURE [interval: Space.Jnterval];

space.Deactivate: PROCEDURIE [interval: space.lnterval];

Activate indicates to Pilot 1;hat interval is expected to be referenced in the near future and
that Pilot should begin reading it in. This operation returns without waiting for any input
to complete. Deactivate indicates to Pilot that interval is not likely to be referenced soon,
and that Pilot should wri1ce it out and release the real memory allocated to it. This
operation also returns without waiting for any output to complete.

The following procedures a.llow the activation and d.eactivation of swap units containing
Mesa code.

space.ActivateProc: PROCEDlJlRE [proc: -GENERIC- PROCEDURE];

space.DeactivateProc: PROCEDURE [proc: a.GENERIC- PROCEDURE];

Space.ErrorType: TYPE. {Q •• , invalidProcedure" ••• };

ActivateProc causes the swap unit (code pack) containing the code for the procedure proc
to be activated, and DeactivateProc deactivates it. If proc has arguments or results, then
normal usage is ActivatePrltlC(LOOPHOLE[proc, PROCEDURE]]. If proc is not a valid procedure,
then space.Error(invalidProcedure] is raised.

A common technique for wling A(tivateProc and DeactivateProc is to package a vacuous
procedure with the code of interest. This procedure serves as a Hhandle" on a code pack,
decoupling the function implemented by the code pack and the explicit procedures which
compose it.

Space.KiII: PROCEDURE [intervi:ll: space.lnterval];

Kill asserts to Pilot that the current contents of interval are of no further value. The
operation may be used in two ways: to avoid reading a page about to be overwritten and to
avoid writin, a page which is no longer useful.

Pilot uses this information to avoid input/output activity on the interval. When Kill is
applied to an interval, an~y real memory in the interval is immediately reclaimed;
furthermore, any writeable swap units wholly contained in the interval are marked dead.
Pilot may supply arbitrary values for the contents of any page of a dead swap unit until
the page is next written int~1) by the client. The client should not make any assumptions
about the contents of these pages or their consistency with the corresponding pages of the
window (see also the previous discussion of the Life attribute).

Space.ForceOut: PROCEDURE [interval: Space.lnterval];

ForceOut causes the window(s) of the interval to agree with the current contents of virtual
memory. The operation does not return until all required writing is complete. Any pages
of the interval in real memory will remain there. Since Pilot keeps track of which pages
match the contents of their window, ForceOut can bypass writing unchanged pages. If the
data in the interval cannot he written to the given window, then Space.JOError is raised. If
ForceOut causes pages to be! written to backing storage, then the swap units containing
those pages are marked aIiV4!.

Pilot Programmer's Manual 4

Any temporary disagreement between an interval and its window should be invisible
during normal operation of the system. ForceOut is intended to guarantee that the
information in an interval will survive a system crash, by forcing it out to a non-volatile
backing storage.

Calls on Activate and Deactivate may be added or deleted anywhere in a program without
affecting its correctness. Calls on Kill may be deleted from, but not necessarily added to, a
program without affecting its correctness. Calls on ForceOut may be added to, but not
necessarily deleted from, a program without affecting its correctness.

4.5.5 Access control

The following operations allow portions of virtual memory to be made read-only or read­
write.

Space.SetAccess: PROCEDURE [interval: Space.lnterval. access: Space.Access];

This operation makes all swap units which include any portion of interval to be readOnly
or readWrite. If the swap units were made readOnly, then subsequent attempts to store
into a page of any of these swap units will cause a write protect fault. If access =
readWrite but the volume to which the interval is mapped is read-only, then
voIume.ReadOnly is raised.

When an interval is made readOnly, Pilot also does a ForceOut on the swap units and
marks them alive. While doing this, if the data in the interval cannot be written to its
window, then Space.IOError is raised; in this case, the swap units preceding the offending
page may have been made readOnly and alive.

If an arbitrary interval within a map unit is given, then this operation may affect less
virtual memory than that implied by the client-specified swap unit structure, because
Pilot may occasionally break a client-specified swap unit into smaller swap units. A client
can precisely specify which swap units are affected by having interval begin and end on
the boundaries of the client-specified swap units.

Note: The virtual memory affected may start before interval.pointer f since this
operation starts at the rust page of the swap unit containing intervai.pointer f .
Similarly, the virtual memory affected may extend past (interval.pointer + count *
wordsPerPage) f .

Two convenience operations are also provided.

Space.MakeReadOnly: PROCEDURE [interval: space.lnterval] -
INLINE {space.SetAccess(interval. readOnly] };

Space.MakeWritable: PROCEDURE [interval: space.lnterval] -
INLINE {space.SetAccess[interval, readWrite] };

4.5.6 ExpHcit allocation of virtual memory and special intervals

Virtual memory is normally allocated when a window is mapped. However, facilities are
provided to allocate virtual memory explicitly, independent of the act of mapping.

4-37

4

4-38

FDe Storage and Memory

4.5.8~1 Special intervals of virtual memory, main data spaces, and pointers

When virtual memory is bE~ing explicitly allocated, some intervals are of special interest.

Space.virtuaIMemory: READIONLY space.lnterval;

virtualMemory describes t;he entirety of the virtual memory address space as actually
implemented on the systelll element on which Pilot is running. The actual size of the
virtual memory of a particular system element is given by virtual Memory.count.

A special kind of interval which is recognized by the Mesa processor and by Pilot is the
Main Data Space (MOS). This interval consists of 256 pages (216 words) and holds the Mesa
run-time data structures needed to support the execution of a collection of PROCESses.
Every PROCESS is associated with some MOS.

Space.MDS: PROCEDURE RETU'tNS (Space.lnterval] ;

MDS returns the interval <tf the MOS of the PROCESS calling it. One MOS may be shared by
many PROCESSes. A PROCESS may allocate virtual memory either inside or outside its own
MOS. Information inside the;, MOS can be accessed by a POINTER, which is interpreted relative
to the beginning of the MOS, Information outside the MOS is accessed by a LONG POINTER or a
POINTER RELATIVE to a LONG BJ'SE POINTER. Since space in the MOS is typically in short supply,
clients should normally allocate virtual memory outside the MOS. Executable code is not
contained within any MOS and is shared by all PROCESSes in all Moses.

Note: Although the Me:sa Processor allows multiple MOSes, only a single MDS is
implemented by the curren'~ version of Pilot.

4.5.6 .. 2 Explicit allocation of virtual memory

Operations are provided f,[)r the explicit allocation and deallocation of an interval of
virtual memory independent of the act of mapping.

Space.Allocate: PROCEDURE (
count: Environment.PageCount, within: space.lnterval tlE-space.virtuaIMemory,
base: Environment.PageOffset tIE- space.defaultSase]
RETURNS (interval: space.lnterval];

space.defaultSase: Environm41'nt.PageOffset •... ;

space.ErrorType: TYPE. { ... , alreadyAliocated. invalidParameters •... };

Allocate allocates an interval of unmapped virtual memory within an arbitrary
containing interval. If COUl'1lt is zero, then space.Error(invalidParameters) is raised.

Managing an allocated interval is the responsibility of the client. Part or all of the
interval may used for mapping windows using Space.MapAt.

The client may either specify exactly the location of the interval to be allocated or have
Pilot choose a suitable interval. To have Pilot choose a suitable starting location within
the containing interval, the client passes defaultSase. If within does not have enough
contiguous unallocated pagt~S, then Space.lnsufficientSpace is raised; this signal passes the
maximum amount that could have been allocated. To specify the location of the interval
exactly, the client gives a base other than defaultSase. The interval to be allocated will
start at the specified offset base from the start of the containing interval.

Pilot Programmer's Manual 4

If the requested interval would overlap an already allocated interval, then
space.Error(alreadyAliocated) is raised. If the end of the interval would exceed the end of
the containing interval, then space.Error(invalidParameters1 is raised.

Note: When Pilot chooses the location of the interval, any special properly-contained
subintervals of within (e.g., the MOS) may be skipped over. Thus, Pilot may raise
space.lnsufficientSpace when within = space.virtualMemory even though space is still
available in the MOS.

space.Dealiocate: PROCEDURE [interval: space.lnterval];

Space.ErrorType: TYPE Ii { ..• , notAllocated, stiliMapped, ... };

Deallocate deallocates interval, making it available for other uses. interval should only
contain virtual memory obtained from space.Allocate or space.UnmapAt.

If any portion of interval is mapped, then Space. Error[still Mapped1 is raised. If any portion
of interval is already deallocated, then space.Error(alreadyDealiocated] is raised. If
interval exceeds the limits of implemented virtual memory, then
space.Error[invalidParameters] is raised.

4.5.8.3 Mapping explicitly allocated virtual memory to files

The operation~ for controlling the mapping of explicitly allocated intervals are MapAt and
UnmapAt.

space.MapAt: PROCEDURE [

at: space.lnterval,
window: space.Window,
usage: Space. Usage +-space.unknownUsage,
class: space.Class +- file,
access: space.Access +- readWrite,
life: space.Life +- alive,
swapUnits: space.SwapUnitOption +- space~defaultSwapUnitOption]
RETURNS [mapUnit: space.lnterval];

MapAt maps a window of a file to virtual memory starting at at.pointer. The interval at
must have been previously obtained from Allocate or UnmapAt or be a subinterval of one.
The resulting interval is a map unit. The length of the map unit is the actual window
length. If at contains unallocated pages, then Space.Error[notAllocated] is raised. If the
end of the map unit would exceed the end of at, then space.Error[invalidParameters] is
raised. The operation is otherwise analogous to space.Map (q.v.).

Space.UnmapAt: PROCEDURE [

pointer: LONG POINTER, returnWait: space.ReturnWait +- wait]
RETURNS [i nterval: Space.1 nterval);

UnmapAt removes the association between the map unit which contains pointer and its
window. interval describes the map unit being unmapped. If the virtual memory of the
map unit was originally obtained from Allocate, then the associated interval remains the
property of the client. If the virtual memory of the map unit was originally obtained from
Map, then the client acquires the associated interval. The client retains this interval until
it is Deallocated. The operation is otherwise identical to Space.Unmap (q.v.). ~ote that a

4-39

4

4-40

FDe Storage and Memory

client can Unmap an interval originally obtained from Allocate and subsequently mapped
with MapAt; the associated: interval becomes the property of Pilot.

4elS .. 7 Map unit and swap unit attributes, utility operations

space.GetMapUnitAttributeiS: PROCEDURE [pointer: LONG POINTER]
RETURNS [mapUnit: space.lnterval. window: space.Window,
usage: Space. Usage. class:: space.Class. swapUnits: Space.SwapUnitOption);

GetMapUnitAttributes re~llrns the location and length of the map unit which contains
pointer, the window to which it is mapped, the use of the map unit, its swapping class,
and the swap unit structure!.

If the map unit is mapped to a data window, then the returned window is [[File.nuIllD,
Volume.nuIllD]. 0, count). window.count (which equals the returned interval.count)
reflects the actual size of the map unit. It may be less than the window.count given to
Map or MapAt if the file was not long enough to supply the requested count.

If swapUnits.swapUnitType • uniform, then the returned swapUnits.size is the actual
size of the swap units; defaultSwapUnitSize is never returned. If
swapUnits.swapUnitType • irregular, then the returned swapUnits.sizes is NIL;
GetSwapUnitAttributes mny be used to discover the sizes of irregular swap units. If
pointer is not in any map utnit, then this operation returns mapUnit • Space.nulllnterval

-and window.count • O. Thus, a pointer p points to unmapped storage if
GetMapUnitAttributes[p].nlapUnit.count • O.

If the map unit containing pointer was mapped by some facility other than Space, then
space.Error[invalidParameters] is raised.

Space.GetSwapUnitAttributfIS: PROCEDURE [pointer: LONG POINTER]
RETURNS [swapUnit: Space.lnterval, access: space.Access, life: space.Life];

GetSwapUnitAttributes returns the location, length, current access, and current life of the
swap unit which contains p.)inter. The returned count reflects the actual size of the swap
unit. In the case oluniform or irregular swap units, the size will differ from the size given
to Map or MapAt if the req[uested size was zero or larger than Pilot implements. Also,
Pilot may occasionally bre:ak a client-specified swap unit into smaller swap units. If
pointer is not in any swap writ, then the operation returns swapUnit = space.nulllnterval.

space.PagesFromWords: PRO'CEDURE [wordCount: LONG CARDINAL]
RETURNS [pageCount: Envirl:»nment.PageCount] •••• ;

PagesFromWords returns the number of pages required to contain a specified number of
words.

Space.Pointer: PROCEDURE [poi nter: LONG POINTER) RETURNS [POINTER];

Pointer converts a LONG POIN'rER to an equivalent POINTER. If the argument is not in the MDS

olthe calling PROCESS, then sIJace.Error(invalidParameters] is raised.

Pilot Programmer's Manual 4

Space.PointerFromPage: PROCEDURE [page: Environment.PageNumber] RETURNS [POINTER];

PointerFromPage returns a POINTER which points to the first word of the argument page. If
the argument is not in the MDS of the calling PROCESS, then space.Error[invalidParameters]
is raised.

Space.LongPoi nterFromPage: PROCEDURE [page: Environment.PageNum ber]
RETURNS [LONG POINTER];

LongPointerFromPage returns a LONG POINTER which points to the first word of the
argument page.

Space.PageFromLongPoi nter: PROCEDURE[poi nter: LONG POINTER]
RETURNS [Environment.PageNumber];

PageFromLongPointer returns the page in which pointer lies.

4.6 Pilot memory management

Four different facilities are available for acquiring and managing storage areas:

• Global frame space, which may reside in the .~DS, is considered a precious resource,
but may be used for small (a few dozen words) storage that needs to be shared by
multiple procedures and processes. See § 1.3.2 for conditions under which global
frames reside in the MDS.

• Local frames, existing only as long as their procedure instance, may be used for
storage items that are less than a few hundred words in length and are not shared
among procedures and processes. Local frames reside in the MDS.

• The Space machinery, described in detail in §4.5, provides contiguous groups of pages
(256 word blocks) in the virtual memory and is most suitable for obtaining large
blocks of storage.

• A Pilot free storage package manages arbitrarily sized nodes within client-designated
areas of virtual memory called zones.

All state information pertaining to a zone is recorded within the zone itself, and, as a
consequence, each zone can be managed independently of all others through the same
interface, Zone. The Heap facility provides further assistance in managing arbitrary sized
nodes. The following properties distinguish a heap from a zone:

Heaps are more automatic, occupying system-designated (rather than client­
designated) virtual memory, and expanding automatically (rather than requiring a
client call).

Heaps are designed to support the Mesa language facilities for dynamic storage
allocation (UNCOUNTED ZONES, NEW, FREE).

Some care is taken to treat large nodes (e.g., larger than 128 words) efficiently.

No mechanism exists for filing away a heap and re-creating it later.

4-41

4

4-42

File Storage and Memory

It is expected that most Pilot clients will want to use the heap facilities. The zone facilities
provide extra fme-grain COlltrol which may ~ useful for certain critical applications. Like
the zone facility, the heap performs best when the sizes of nodes are small compared to the
size of the entire heap.

4.6.,1 Zones

Zone: DEFINITIONS ••• ;

The Pilot zone management facility is based upon a suggestion by Donald Knuth (The Art
of Computer Programming" Volume 1, p. 453, #19). Within a zone, free nodes are kept as a
linked list. One hidden word containing bookkeeping information is stored with each
allocated node, and additiOllal bookkeeping information is kept in the header of each zone.
Allocation and release of nodes are usually very fast. Adjacent free nodes are always able
to be coalesced. It is also possible to add new areas of virtual memory to enlarge a zone.
These new areas, called segments, are linked together so that they may be deleted if all the
nodes in a segment become free. In addition, an entire zone may be deleted. A zone may
be saved in a file, and later recreated in memory at a different address.

The zone facility performs 'best when the sizes of nodes are small compared to the sizes of
the block(s) making up th4! zone. A typical use for a zone is for small, transient data
structures, such as the nodes of a temporary list structure or the bodies of (short) strings
when the maximum length must be computed dynamically or the structure must outlive
the frame that creates it. Use of a zone for large (Le., multi-page) nodes decreases
flexibility in storage management and is not recommended.

The allocator in the Pilot free storage package returns 16 bit pointers relative to a LONG
BASE POINTER supplied at the time the zone is created. Note that these values are free
pointers (type RELAnVE POIN1'ER TO UNSPECIFIED) which must be cast appropriately (usually by
assignment) before being used. Allocated nodes are not reloeatable within the zone, and
there is no garbage collectic~n or automatic deallocation.

Because of its use for managing private, internal zones of Pilot, the zone facility raises no
signals or errors. Instead, the various operations return a status from the enumerated
type:

Zone.Status: TYPE • { ••• };

4.6.1.1 Zone management

A zone can be created frOltl1 a block of client supplied virtual memory by calling the
procedure Create.

zone.Create: PROCEDURE [
storage: LONG POINTER,leF1lgth: zone.BlockSize, zoneBase: zone.Base,
threshold: zone.BlockSize' +- zone.minimumNodeSize, checking: BOOLEAN +- FALse]
RETURNS [zH: zone.Handle" S: Zone.Status];

zone.BlockSize: TYPE • CARDINAL;

zone.Base: TYPE. Environment.Base;

zone.minimumNodeSize: REJ'DONLY zone.BlockSize;

zone.Handle: TYPE [21 ;

Pilot Programmer's Manual 4

zone.nuIiHandle: zone.Handle •••• ;

Zone.Status: TYPE. { •••• okay. storageOutOfRange. zoneTooSmall •... };

A zone is created to occupy the number words of virtual memory specified by length and
beginning at the word pointed to by storage. The argument zone Base is a LONG BASE

POINTER which supplies the base address for all relative pointer calculations in this zone.
The argument threshold indicates the minimum size node that will be maintained by this
zone. All allocation requests will be rounded up to this size and no unallocated fragments
smaller than this will be left in the zone.

The argument checking indicates whether some iD.ternal checking of the consistency of
the zone is turned on. The checki ng option'is useful for helping debug client programs
which are improperly': using or freeing nodes in the zone. Because it causes each node to be
checked on each zone operation, checking degrades performance somewhat.

The virtual memory must be mapped and have write permission. If it does not, an address
fault or write protection fault will be generated as if the client program had attempted to
write directly into that area. of virtual memory. If length is too small to support a zone
with at least one node of size threshold, then a status of zoneTooSmall is returned. All
segments of a zone must lie entirely within a single 64K word address space; that is, all of
the zone must be addressable by 16 bit relative ~inters based on base. If such is not the
case, or if the zone size is not in the range [0 .. 21), then a status of storageOutOfRange is
returned.

Caution: In this version of Pilot, zone sizes are restricted to the range [0 .. 215).

If a zone is successfully created, the Create operation returns a status of okay and a
Zone. Handle which is used to identify the zone for all other. zone operations.

null Handle is never the Handle to an actual zone and is provided as a reference to the null
zone.

A client may save a zone in a file for later use. Since the implementation of a zone may
change from release to release, client code using filed zones must be prepared to cooperate
in recovering from a ttwrong version" condition detected by Pilot, as explained below.

A client may request Pilot to resurrect an old zone, presumably one previously saved in a
permanent file, with the procedure

zone.Recreate: PROCEDURE [storage: LONG POINTER, zoneBase: Zone. Base]
RETURNS [zH: zone.Handle. rootNode: zone.Base RELATIVE POINTER, s: Zone.Status];

Zone.Status: TYPE • { ••• , wrongSeal, wrongVersion};

The storage parameter to Recreate should point to a place in virtual memory which is
mapped to a file window containing the contents of a zone created (or recreated) earlier in
the same or an earlier run. While the storage and corresponding zoneBase need not
remain luted each time a zone is recreated, the arithmetic difference between them must
be kept invariant. Note also that the relative positions of any segments added to the zone
must stay invariant.

Normally Recreate returns a status of okay, together with an ordinary zone handle for the
zone and the value of the root node of the zone. However, it is possible that an
incompatible implementation change in Pilot has been made since the zone was created,
in which case Recreate returns a status of wrongVersion, an invalid zone handle, and the
correct value of the root node of the old zone. In this case it is the client's responsibility to

4-43

4

4-44

File Storage and Memory

rebuild a new version of the· zone, perhaps by enumerating the nodes reachable from the root
node via fields defined within the client node format(s). Finally, a status of wrongSeal
indicates a client programming error: the storage passed to Pilot does not begin with a
fIxed ftseal" value and probably never contained a valid zone. In this case, the returned
handle and root node are both undefmed.

Zone .. GetRootNode: PROCEDURE [zH: Zone.,Handle]
RETURNS [node: Zone.BaSE' RELATIVE POINTER];

Zone.SetRootNode: PROCEDlJlRE [zH: Handle, node: zone.Base RELATIVE POINTER];

zone.nil: READONL Y Zone.BaSE! RELATIVE POINTER;

To support the notion of a filed zone, Pilot allows a root node to be associated with every
zone. This value, initially set to zone.nil, is just a short relative pointer which the client
may use to point to a dislcinguished node within the zone, thus providing a "point of
purchase" on the data structures contained within the zone. As discussed above, the
entire set of nodes in a filed zone should be enumerable from the root (unless the entire
data structure can be reconl~tructed from some other source).

The Mesa construct NIL doe:s not apply to RELA TtVE POINTERS such as those used to reference
nodes. For this reason, thEt constant zone.nil is provided for representing the nil RELATIVE

POINTER.

There is no explicit operation for destroying a zone. The client program merely recovers
the storage it had provided ~md ceases to use the zone.

Zone.GetAttributes: PROCEDlJlRE [zH: Zone.Handle]
RETURNS [zoneBase: zone.llase, threshold: zone.BlockSize,
checking: BOOLEAN, stora~~e: LONG POINTER, length: zone.BlockSize.
next: Zone.SegmentHandile];

zone.SegmentHandle: TYPE [1J;

zone.nuIiSegment: READONL~' Zone.SegmentHandle;

GetAttributes returns the a·ttributes ofa zone. The results zoneBase, threshold, storage,
and length are exactly as specified when the zone was created. The result checking
indicates whether or not consistency checking is currently enabled for this zone (see
below). The result next is a handle for an additional segment of this zone (see §4.6.1.2);
zone.nuliSegment is returned if there are no additional segments in this zone. No validity
check is made ofzH, the Zone.Handle, prior to returning these results.

Zone.SetChecking: PROCEDURI: [zH: zone.Handle, checking: BOOLEAN]

RETURNS [s: Zone.Status);

Zone.Status: TYPE • { ••• , in·validZone. invalidSegment, invalidNode, nodeLoop, ... };

SetChecking is used to enable or disable consistency checking of the zone. If checking is
TRUE, then a consistency check is made that all of the nodes in the zone, and the data
structures of the zone, are wc~ll-formed.

Pilot Programmer's Manual

Status meanings are defmed below.

invalidZone
The basic data structures of the zone identified by zH are malformed.

invalidSegment

4

Although the primary block of virtual memory in the zone is okay, one of its
segments (see §4.6.1.2) is malformed.

invalidNode
Within the zone, some node is malformed or invalid. This could mean that the
overhead word of the node has been overwritten, that a (node' has been freed
which does not lie within the virtual memory constituting the zone, or that a
(free' node is not properly linked on the free list in the zone.

nodeLoop
The free list has a loop within it.

Except as otherwise indicated, any of these status results can be returned if consistency
checking is enabled and the corresponding condition is detected during the execution of
any of the operations in the Zone interface.

4.6 .. 1.2 Segment management

The virtual memory provided to the zone at the time it is created is the primary storage of
the zone. It is of flXed size and cannot be reclaimed by the client so long as the zone is of
any value.

Additional blocks of storage can be added to the zone by the following procedure:

zone.AddSegment: PROCEDURE [zH: Zone. Handle, storage: LONG POINTER,

length: zone.BlockSizel
RETURNS [sH: zone.SegmentHandle, s: Zone.StatuS];

Zone.Status: TYPE • { ••• , segmentTooSmall, ••• };

AddSegment creates a new segment of the zone containing the number of words indicated
by length and beginning at the virtual memory word pointed to by storage. The virtual
memory of the segment must be mapped and have write permission. If it does not, then an
address fault or write-protect condition will be generated as if the client had written or
referenced that part of virtual memory directly.

This area of virtual memory must also be addressable by l6-bit pointers relative to the
zone Base of the zone, and length must be in the range [0 .. 216). If it is not, a status of
storageOutOfRange is returned. If length does not specify enough virtual memory to
implement a segment and to contain at least one node of size threshold, then a status of
segmentTooSmal1 is returned.

Caution: In this version of Pilot, segment sizes are restricted to the range [0 .. 215).

All segments of a zone are linked in a list pointed to by the nextSegment attribute of the
zone. The attributes of any segment, including the next member of the list are returned by

Zone.GetSegmentAttributes: PROCEDURE [zH: Zone.Handle,sH: zone.SegmentHandle]
RETURNS [storage: LONG POINTER, length: zone.BlockSize, next: zone.SegmentHandle];

4-45

4

4-46

File Storage and Memory

A segment may be removed from a zone if it contains no allocated nodes. This is
accomplished by the procedure

zone.RemoveSegment: PROI:EDURE [zH: zone.Handlew sH: Zone.SegmentHandle]
RETURNS [storage: LONG P4)INTER, s: Zone.Status];

Zone.Status: TYPE. { ... , nonEmptySegment, ... };

A status of okay indicates that the segment was successfully removed. A status of
nonEmptySegment indicat,es that the segment still contains allocated nodes and therefore
could not be removed. A status of invalidZone or invalidSegment is returned if the data
structures of the zone are n4()t well-formed enough to permit removal of the segment.

4 .. 8 .. 1.3 Node allocation and deall(tcation

The operations described in this section provide the facilities for allocating and
deallocating nodes in a ZOnE!.

Zone.MakeNode: PROCEDURE [zH: zone.Handle, n: zone.BlockSize,
alignment: zone.Alignment +- a1]
RETURNS [node: Zone. Base RELATIVE POINTERw 5: Zone.Status];

zone.Alignment: TYPE. {a1, a2, a4, a8p a16};

Zone.Status: TYPE. { ••• , nc)RoomlnZonew ••• };

MakeNode allocates a node of n words in the zone identified by zH. An optional alignment
may be specified for this n·ode, in which case the node is aligned in virtual memory as
follows:

ifalignment is set to a1, then the node is word aligned

if alignment is set to a2, then the node is double word aligned

if alignment is set to a4, then the node is quad word aligned

if alignment is set to a8, then the node is eight word aligned

ifalignment is set to a1Ei, then the node is sixteen word aligned

If a node of at least n words I)f the desired alignment can be allocated, then a 16-bit pointer
relative to the zoneBase of the zone is returned pointing to the node, along with a status of
okay. More than the reque~lted number of words will be allocated to avoid fragmentation
of the free space remaining in the 'zone into pieces of size less than the threshold of the
zone. If a contiguous bloc:k of space is not available in the zone, then a status of
noRoomlnZone is returned. The value zone.nil, is returned by MakeNode if it is unable to
allocate a node.

If B is the zone Base of the zone and node is the relative pointer returned by MakeNode,
then a Mesa LONG POINTER to the node is represented by the expression @B[node]. If B :II

Space.MDS[].pointer, then the expression LOOPHOLE(node, POINTER) is a Mesa short pointer
to the node.

zone.FreeNode: PROCEDURE [zH: zone.Handle, p: LONG POINTER]
RETURNS (s: Zone. Status] ;

FreeNode deallocates the node pointed to by p in the zone indicated by zH. If the node does
not lie within that part of virtual memory addressable by 16-bit relative pointers based on
the zoneSase of the zone, or if the node is not marked in use, then a status of invalidNode

Pilot Programmer's Manual 4

is returned. Otherwise, a status of okay is returned. More detailed checking, including
that the node actually lies within the zone (or one of its segments), is only done if
consistency checking is enabled.

Zone.SplitNode: PROCEDURE [zH: zone.Handle, p: LONG POINTER, n: zone.BIOckSize]

RETURNS [s: Zone.Status];

SplitNode splits the node pointed to by p, retaining the first n words and freeing the
remainder. No split occurs if the remainder would be smaller than the threshold of the
zone.

zone.NodeSize: PROCEDURE [p: LONG POINTER] RETURNS [n: Zone.BlockSize];

NodeSize returns the actual size of the node pointed to by p (this may exceed the allocated
size to avoid fragmentation). No check is made to determine the validity of the node.

4 .. 8.2 Heaps

Heap: DEFINITIONS ••• ;

HeapExtras: DEFINITIONS ••• ;

The heap facility consists of the Pilot interfaces Heap and HeapExtras, together with some
language features built into Mesa. The operations in Heap and HeapExtras are primarily
concerned with creating and deleting heaps. Almost all node allocation and deallocation
may be performed using Mesa NEW and FREE constructs, which also allow initialization and
pointer management. The reader is assumed to be familiar with these Mesa features.

HeapExtras includes the capability to provide backing storage for heaps on open volumes
other than the system volume. If this capability is not needed, then the Heap interface
should be used.

There are two difierent underlying heap implementations: Heaplmpl (or UnpackedHeaplmpl),

which is based on the Zone interface; and SOSP83Heaplmpl, which manages allocation using
its own internal structures. Both implementations provide both the Heap and HeapExtras

interfaces. Both implementations are discussed in this section.

4.8.2.1 Heap management

Heaps are of three types: normal, uniform, and MOS. Normal heaps allow allocation of
arbitrary sized objects. Uniform heaps allow allocation of objects whose size is equal to or
less than a fIXed size. MOS heaps allow allocation of arbitrary-sized objects from within the
MOS.

Normal and uniform heaps are identified by a value of type UNCOUNTED ZONE, MDS heaps by
a value of type MDSZone. Pilot provides a standard normal heap and a standard MDS heap:

Heap.systemZone: READONLY UNCOUNTED ZONE;

Heap.systemMDSZone: READONLY MDSZone;

Note that the READO"NLY attribute applies not to the contents but to the reference to the
particular heap.

The system-provided heaps can be used to share information between subsystems. When
a subsystem requires a lot of private storage, it is often more efficient to create a private

4-47

4

4-48

File Storage and Memory

heap than to use the systE~m-provided heaps. If objects being allocated are all the same
size, then uniform heaps are more efficient, since less overhead is required for each node.

To create additional normal heaps, call Heap.Create or HeapExtras.NewCreate.

Heap.Create: PROC [
initial: Environment.Page(:ount,
maxSize: Environment.Pa~leCount +- Heap.unlimitedSize,
increment: Environment.PIClgeCount +- 4,
swapUnitSize: Space.Sw«lpUnitSize +- space.defaultSwapUnitSize,
threshold: Heap.NWords +- Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords +- Environment. wordsPerPage/2,
ownerChecking: BOOLEAI~ +- FALSE,
checking: BOOLEAN +- FALSE]
RETURNS [UNCOUNTED ZONEJ;

HeapExtras.NewCreate: PROC [
initial: Environment.PageCount,
maxSize: Environment.PageCount +- Heap.unlimitedSize,
increment: Environment.PCllgeCount +- 4,
swapUnitSize: Space.Swa:pUnitSize space.defaultSwapUnitSize,
threshold: Heap.NWords ~ Heap.minimumNodeSize,
largeNode Threshold: Healp.NWords +- Environment. wordsPerPage/2,
ownerChecking: BOOLEA~I +-FALSE,
checking: BOOLEAN +-FALSE,
volumelO: System. Vol umt!1O+-Volume.systeml0]
RETURNS [UNCOUNTED ZONE];

To create additional uniform heaps,
HeapExtras.NewCreateUniform.

Heap.CreateUniform: PROC [
initial: Environment.PageCC)Unt,

call

maxSize: Environment.PagttCOunt +- Heap.unlimitedSize,
increment: Environment.PalgeCount +- 4,

Heap. CreateU niform

swapUnitSize: Space.SwallUnitSize +- Space.defaultSwapUnitSize,
objectSize: Heap.NWords,
ownerChecking: BOOLEAN +- FALSE,
checking: BOOLEAN +- FALSE]
RETURNS [UNCOUNTED ZONE]~:

HeapExtras.NewCreateUniform: PROC [
initial: Environment.PageCount.
maxSize: Environment.PageCount +- Heap.unlimitedSize.
increment: Environment.Pa~leCount +- 4,
swapUnitSize: Space.Swa~IUnitS;ze +- Space.defaultSwapUnitSize,
objectSize: Heap.NWords.
ownerChecking: BOOLEAN ''-FALSE,
checking: BOOLEAN +- FALSE:.
volu"meID: System. VolumeID+-volume.systemID]
RETURNS [UNCOUNTED ZONE];

or

Pilot Programmer's Manual

To create additional MDS heaps, call Heap.CreateMOS or HeapExtras.NewCreateMOS.

Heap.CreateMOS: PROC [
initial: Environment.PageCount,
maxSize: Environment.PageCount +- Heap.unlimitedSize,
increment: Environment.PageCount +- 4,
swapUnitSize: Space.SwapUnitSize +- space.defaultSwapUnitSize,
threshold: Heap.NWords +- Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords +- Environment.wordsPerPage/2,
ownerChecking: BOOLEAN +- FALSE,
checking: BOOLEAN +-FALSE]
RETURNS [MOSZone];

HeapExtras.NewCreateMOS: PROC [
initial: Environment.PageCount,
maxSize: Environment.PageCount +- Heap.unlimitedSize,
increment: Environment.PageCount +- 4,
swapUnitSize: Space.SwapUnitSize +- space.defaultSwapUnitSize,
threshold: Heap.NWords +- Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords +- Environment. wordsPerPage/2,
ownerChecking: BOOLEAN +- FALSE,
checking: BOOLEAN +-FALSE,
volumelO: System. Vol umel O+-volume.systeml 01
RETURNS [MOSZone];

Heap.NWords: TYPE • [0 •• 32766);

Heap.unlimitedSize: Environment.PageCount •••• ;

Heap.minimumNodeSize: READONLY Heap.NWords;

Heap.Error: ERROR [type: Heap.ErrorType];

Heap.ErrorType: TYPE. { •• , maxSizeExceeded, invalidParameters, invalidSize,
insufficientSpace, otherError, ••• };

4

When an allocation request would exceed the current size of a heap, the heap is
automatically expanded by increment pages. It is still a good idea to specify a reasonable
value for initial to minimize fragmentation. (The expansions to a heap are not, in general,
contiguous in virtual memory.)

If a nondefault maxSize is specified, then the signal Heap.Error{maxSizeExceededl is
raised when a heap is being created or expanded, or a large node is being allocated, and the
total number of pages allocated for the heap exceeds maxSize. The signal
Heap.Error{insufficientSpace] is raised when there is not enough contiguous memory for
the Heap allocation request. volume.lnsufficientSpace may be raised if there is not enough
file space on the volume backing the heap.

If a nondefault swapUnitSize is specified, then the spaces created to hold the heap and its
extensions will have uniform swap units of size swapUnitSize. If it is defaulted, no swap
units will be created.

For normal or MDS heaps, the argument threshold indicates the minimum size node that
will be maintained by this heap. All allocation requests will be rounded up to this size and
no unallocated fragments smaller than this will be left in the heap. The argument
largeNodeThreshold indicates the size of node which will not be allocated in the normal

4-49

4

4-50

File Storage and Memory

fashion. Allocation requests of this size or larger will be handled by creating a separate
space for each, which is dteleted when the node is deallocated. The space for these large
nodes is not included in thE! initial size of the heap. Large nodes are included in maxSize.

j4"or uniform heaps, the argument objectSize indicates the size node that will be
maintained by this heap. All allocation requests greater than this size will result in the
signal Heap.Error(invalidSize] being raised.

If ownerChecking is TRUE, then owner checking is enabled (see the description in §4.6.2.3
below of the operation CheckOwner). The argument checking indicates whether some
internal checking of the COllsistency of the heap is turned on.

The checking option is us,eful for helping debug client programs which are improperly
using or freeing nodes in the heap. However, because it checks each node on each heap
operation, use of the option noticeably degrades performance.

A heap may be deleted with one of the following operations, as appropriate,

HeapoDelete: PROCEDURE [z: IJNCOUNTED Zo,NE. checkEmpty: BOOLEAN FALSE];

HeapoDeleteMDS: PROCEDURIE [z: MDSZone. checkEmpty: BOOLEAN FALSE];

If checkEmpty is TRUE, thelll Heap.Error[invalidHeap] is raised if there are still nodes in the
heap which have not been deallocated.

4.6.2 .. 2 Node allocation and deall(tcation

Nodes are allocated from a, heap using the Mesa NEW operator and are deallocated using
the Mesa FREE statement. The maximum node size is 32766. Heap.Error(invalidSize] is
raised if an attempt is madEI to create a node with a size which is too large.

For the remainder of this section, assume that z and mz have been declared as an
UNCOUNTED ZONE and an MDSZone, respectively, and have been initialized.

For example,

z: UNCOUNTED ZONE • Heap.s~fstemZone;

mz: MDSZone • Heap.systemMDSZone;

or

Z: UNCOUNTED ZONE • Heap.C,reate[initial: ••• J;
mz: MDSZone • Heap.CreateMDS[initial: ••• J;
(It is also possible to initiali:~e z and mz by assignment subsequent to their declaration.)

1fT is a type and t is an exprc!ssion of type T, then

Z.NEW[T tJ
allocates a node of size at le'ast SIZE[T], sets its contents to t, and returns a long pointer to
the node.

mz.NEw[T t]

is similar, except that a shott pointer is returned.

Pilot Programmer's Manual

If p is a LONG POINTER TO T pointing to a node previously allocated from z, then

Z.FREE[@p];

sets p to NIL and frees the node that p had pointed to (in that order).

Similarly, if mp is a POINTER TO T pointing to a node previously allocated from mz, then

mZ.FREE[@mp);

4

sets mp to NIL and frees the node mp had pointed to (in that order). In both cases of FREE, if
p is NIL, then the operation is a no-op.

A special construct is provided for allocating a string body from a heap.

Z.NEw[Stri ng Body[n]]

allocates a node large enough to hold a string body of n characters, initializes its length
field to 0 and its maxlength field to n (but leaves its text field uninitialized), and returns a
LONG STRING pointing to the node.

mZ.NEw[StringBody[n])

is similar, except that a short STRING is returned.

4.6.2.3 Miscellaneous operations

The initial parameters and current statistics of a heap can be determined by calling the
appropriate one of the following operations:

HeapoGetAttributes: PROC [z: UNCOUNTED ZONE]
RETURNS [

heapPages, maxSize, increment: Environment.PageCount,
swapUnitSize: Space.SwapUnitSize,
ownerChecking, checking: BOOLEAN, attributes: Heap.Attributes];

Heap.Attributes: TYPE. RECORD [
SELECT tag : Type FROM

normal. > [
largeNodePages: Environment.PageCount,
threshold, largeNodeThreshold: Heap.NWords],

uniform • > [objectSize: Heap.NWords], .
ENDCASE];

Heap.GetAttributesMOS: PROC [z: MOSZone]
RETURNS [

heapPages, largeNodePages, maxSize, increment: Environment.PageCount,
swapUnitSize: Space.SwapUnitSize,
threshold, largeNodeThreshold: Heap.NWords,
ownerChecking, checking: BOOLEAN];

Heapextras.NewGetAttributes: PROC [z: UNCOUNTED ZONE]
RETURNS [

heapPages, maxSize, increment: Environment.PageCount,
swapUnitSize: Space.SwapUnitSize,
ownerChecking, checking: BOOLEAN,
volumelO: System.VolumeIO,
attri butes: Heap.Attri butes 1;

4-51

4

4-52

File Storage and Memory

HeapExtras.NewGetAttribut,esMOS: PROC [z: MOSZone]
RETURNS [

heapPages, largeNod,ePages, maxSize,
increment: Environmen1t.PageCount,
swapUnitSize: Space.SwapUnitSize,
threshold, largeNode'Threshold: Heap.NWords,
ownerChecking, checking: BOOLEAN,
volumelO: System. VolumeIO];

If a heap is created throu;gh Heap.Create, Heap.CreateUniform, or Heap.CreateMOS, then
HeapExtras. NewGetAttri butf!S and HeapExtras. NewGetAttributesMOS will return
volumelO • volume.systemllO (or Volume.NulllO if there is no system volume).

If a heap is created through HeapExtras.NewCreate, HeapExtras~NewCreateUniform, or
HeapExtras. NewCreateM OS, then HeapExtras. NewGetAttri butes and
HeapExtras.NewGetAttributE!sMOS will return the volume ID of the volume on which the
heap was created.

If a client is about to create a large number of nodes which together would cause a heap to
expand by more than increment (the parameter to Create) pages, then some fragmentation
may be avoided by rust calling

Heap.Expand: PROCEDURE [z: UNCOUNTED ZONE, pages: Environment.PageCount];

Heap.ExpandMOS: PROCEDURE [z: MOSZone, pages: Environment.PageCount);

These operations may raise Heap. Error[i nsufficientSpace) or volume.lnsufficientSpace.

The client can return the heap to the state it had when it was created by calling

Heap.Flush: PROCEDURE [z: UNCOUNTED ZONE];

Heap.FlushMOS: PROCEDURE [z: MOSZone];

All nodes that were allocated are freed and all extensions to the heap are freed.
f

If many nodes have been deallocated from a heap, for example at the end of some
intermediate phase of acti,rity, then it may be possible to release some of the virtual
memory occupied by that heap. The following operations examine each of the spaces
containing expansions to thft heap z, releasing any containing no nodes.

Heap.Prune: PROCEDURE [z: UNCOUNTED ZONE];

Heap.PruneMOS: PROCEDURE [z: MOSZone);

If a heap was created with o,wnerChecking • TRUE, then the following procedures may be
called to determine whether a node was allocated by the same module (global frame) as the
caller of the CheckOwner pr4Jcedure.

Heap.CheckOwner: PROCEDURE [p: LONG POINTER, Z: UNCOUNTED ZONE];

Heap.CheckOwnerMOS: PROC:EDURE [p: LONG POINTER, z: MOSZone];

Heap.ErrorType: TYPE. { ...• invalidOwner, ... };

If the node was not allocated by the same module, then Heap.Error[invalidOwner} is raised.

Pilot Programmer's Manual

It may be determined whether ownerChecking • TRUE by calling

Heap.OwnerChecking: PROCEDURE [z: UNCOUNTED ZONE] RETURNS [BOOLEAN];

Heap.OwnerCheckingMDS: PROCEDURE [z: MDSZone] .RETURNS [BOOLEAN];

The checking feature, described in §4.6.2.1 above, may be turned on and offby

Heap.SetChecking: PROCEDURE [z: UNCOUNTED ZONE, checking: BOOLEAN];

Heap.SetCheckingMDS: PROCEDU.RE [z: MDSZone, checking: BOOLEAN];

Heap.ErrorType: TYPE. { ••• , invalidHeap, invalidNode, invalidZone, ••• };

4

At times it may be convenient to allocate untyped storage; for example, for a variable­
length structure not defmed as a Mesa SEQUENCE. Several procedures are provided for
these cases. Wherever possible, it is preferable to use NEW and FREE instead, redefming
types in terms of SEQUENCE where necessary.

The following two p'rocedures allocate a node of the specified size, returning a pointer to
the new node. .

Heap.MakeNode: PROCEDURE [

Z: UNCOUNTED ZONE 4-systemZone, n: NWords] RETURNS [LONG POINTER];

Heap.MakeMDSNode: PROCEDURE [

Z: MDSZone +-systemMDSZone, n: NWords] RETURNS [POINTER];

These operations may return Heap.Error[insufficientSpace), Heap.Error[invalidSize], or
Volume.lnsufficientSpace.

The following two procedures deallocate the specified node. If p is NIL, then the operation is
ano-op.

Heap.FreeNode: PROCEDURE [z: UNCOUNTED ZONE 4- systemZone, p: LONG POINTER];

Heap.FreeMDSNode: PROCEDURE [z: MDSZone 4- systemMDSZone, P: POINTER];

4.7 Logging Facilities

Log: DEFINITIONS ••• ;

LogFile: DEFINITIONS ••• ;

The Log and LogFile interfaces supply a general purpose facility for recording information
in a client-supplied log file. These facilities allow logging words, blocks of words, and
strings, turning the log on and off, limiting the entries placed in the log based on a
severity level, initializing and resetting the log file, and controlling the action taken when
it fills up. Additional facilities are provided for subsequently examining the contents of a
log file. The implementation modules for the logging facility are Log Impl . bed and
LogFileImpl. bed.

4.7.1 Log tile write operations

The procedures in the Log interface are used to write into the log file, to install the log file,
to start and stop logging, and to manage other control functions. The file used for the log is
supplied by the client. Its properties (length, type, etc.) are not changed by the logging

4-53

4

4-54

File Storage and Memory

package; only its content is modified. This feature allows the client to retain control of the
log file in order to examinE! it, copy it, show it to field service personnel, and so forth.

4.7.1.1 Installing, opening, and closing the log file

Install is used to initialize a log file. It is normally called only during system generation
when a file system is beins: built.

Log.lnstall: PROCEDURE [file: File. File, firstPageNumber: File.PageNumber +-1];

Log.logCap: READONLY File.Fiile;

Log.Error: ERROR [reason: LClI9.ErrorType];

Log.ErrorType: TYPE. MACHINE DEPENDENT {illegal Log, tooSmaIlFile, ••• };

Install formats the file sta,rting at firstPageNumber. Pages preceding firstPageNumber
are not used by the logging package. Log.Error[illegaILog] is raised if a current log file
already exists. Log.Error[tc.oSmall File] is raised if the usable size of file is too small. Install
also automatically perforuls an Open (see below). The currently installed log file is kept
in the variable logCap.

Caution: In the current vl3rsion of Pi1ot~ the minimum usable size of a log file is 4 pages.
Also, the logging package will not use more than 256 pages of a log file.

Log.Open: PROCEDURE [file: F:ile.File, firstPageNumber: File.PageNumber+-1];

Log.ErrorType: TYPE • { ••• " invalidFile •••• };

Open prepares the logging package to write log entries into file, which becomes the
currently installed log file. This operation must be done before any entries may be written
into the log. Open is typi(:ally used after a system restart to re-establish logging on an
existing log file (one that has already been formatted as a log). The procedure does not
reset the contents of the 10ir, new entries will be added to the end. Log.Error(invaHdFile] is
raised if file has not been formatted as a log file, or if logging is currently open on a
different file. Opening the c::urrent log file is a no-op.

Log.Close: PROCEDURE [];

Log.ErrorType: TYPE • { •••• logNotOpened •••• };

Close causes all current log entries to be forced out to the log file and the logging facility to
stop accessing it. It ceases to be the current log file. Log.Error[logNotOpened] is raised if
there is no current log file.

4.7.1.2 Writing entries in the log file

Procedures are provided for' logging three data types: a single word, a block of words, or a
string.

Log.PutWord: PROCEDURE [le"el: Log.Level. data: UNSPECIFIED. forceOut: BOOLEAN +- FALSE);

Log.PutBlock: PROCEDURE [
level: Log.Level, pointer: I.ONG POINTER, size: CARDINAL. forceOut: BOOLEAN +- FALSE];

Log.PutString: PROCEDURE [
level: Log.Level. string: LCING STRING. forceOut: BOOLEAN +- FALSE];

Pilot Programmer's Manual 4

Log.Level: TYPE. Log.State[error •. remark];

Log.State: TYPE. MACHINE DEPENDENT {off, error, warning. remark};

An entry is only written to the log if its level is less than or equal to the cw-rent state (see
§4.7.1.3). IfforceOut is true, then the buffer containing the entry is forced out to the file.
The length of a log entry is restricted to a maximum of 255 words; PutBlock and PutString
will truncate an entry if necessary. Log.Error[logNotOpened] is raised if no current log file
exists. Except for their order, the logging package attaches no particular semantics to the
levels; the names used are meant only to be suggestive of the ordering.

Log.SetRestart: PROCEDURE [message: UNSPECIFIED];

SetRestart allows the client to write a special entry in a log file. This ttmessage" entry is
the only entry in a log file that may be overwritten. The entry could be used by a backstop
(see Chapter 9) to communicate to its client when and why the client last crashed. The
client could obtain this information by reading the restart entry of its backstop's log file.
Log.Error[logNotOpenedl is raised if there is no current log file.

4.7.1 .. 3 Logging control

The following procedures can be used to control what information is recorded in the log
file.

Log.SetState: PROCEDURE [state: Log.State];

Log.GetState: PROCEDURE RETURNS [state: Log.State];

Log.Disable: PROCEDURE RETURNS [Log.State];

Log. Reset: PROCEDURE 0;

SetState specifies what levels of log entries are to be written into the log file.
Subsequently, any call that specifies a level less than or equal to the current state will
make an entry in the log. The current state is initially set to error. Note that if the state is
off, all logging calls are ignored, since level is never less than or equal to off. GetState
returns the current value of the state. Disable sets the current state to off, with the side
effect of forcing out any internal buffering to backing storage. It also returns the previous
value of the state. Reset resets the log file to the beginning, thereby completely emptying
it; this also flushes buffers. Log.Error[logNotOpened] is raised if there is no current log
file.

Log.SetOverflow: PROCEDURE [option: Log.Overflow];

Log.Overflow: TYPE. MACHINE DEPENDENT {reset, disable, wrap};

SetOverflow allows the client to specify what is to be done when the log file becomes full.
If reset is specified, then the log starts over at the beginning (thus invalidating all
previous entries). If disable is specified, then logging is turned off; log entries will
continue to be accepted, but their contents will be discarded. If wrap is specified, then the
log behaves like a ring buffer, with a new entry overwriting the oldest. one. Logging is
initially set for wrap mode. Log.Error[logNotOpened] is raised if no current log file exists.

4-55

4

4-56

File Storage and ~Iemo~~

4.7.1.4 Properties of the current log tile

The following procedures can be used to determine the properties of the current log file.

Log.GetCount: PROCEDURE RETURNS [count: CARDINAL];

Log.Getlndex: PROCEDURE RE'rURNS [index: Log.lndex];

Log.GetLost: PROCEDURE RETURNS [lost: CARDINAL];

Log.GetUpdate: PROCEDURE A:ETURNS [time: System.GreenwichMeanTime];

Log.lndex: TYPE. CARDINAL;

Log.nulllndex: Index • 0;

Log.ErrorType: TYPE. { ••• , logNoEntry, ••• };

GetCount returns the currt!nt number of entries, counting from the beginning of the log
file. Getlndex returns the ,[:urrent index into the log file. GetLost returns the number of
entries that have been lost due to log overflow (for overflow mode of disable). GetUpdate
returns the time of the las1e log entry or raises Log.Error[logNoEntry] if the log is empty ..
Log.Error[logNotOpened] is raised if' no current log file exists.

4" 7 .. 2 Log file read operation

The procedures dermed in LogFile interface are used to examine a log file. They should not
be applied to the current 101{ file. If the current log file must be read, then the client must
Log.Close it fIrst.

LogFile.lnvaUdFile: ERROR;

LogFile.lllegaIEnumerate: ERROR;

If the file supplied to any L~IFile operation does not appear to be formatted as a log file, then
the error InvalidFile is raised. If the file is the current log file, then the error
Illegal Enumerate is raised.

LogFile.GetCount: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber ~ 1]
RETURNS [count: CARDINAL];

LogFile.GetLost: PROCEDURE [fHe: File.File, firstPageNumber: File.PageNumber ~ 1]
RETURNS [count: CARDINAL];

GetCount and GetLost can be used to determine the properties of a log file. They parallel
those of the same name in the Log interface.

LogFile.GetNext: PROCEDURE
[file: File.File, current: Log.Jndex, firstPageNumber: File.PageNumber ~ 1]
RETURNS [next: Log.Jndex];

LogFile.Jnconsistent: ERROR;

GetNext enumerates the entries of a log file. The procedure is a stateless enumerator with
a starting and ending valute of nulllndex. If current appears to contain garbage, thell
GetNext raises Inconsistent. This situation could arise if the system crashed before thf!

PilotProgrammer's Manual 4

last page of the log was written to the log file. Therefore, this error can be used to detect
the last entry before the system crashed.

LogFile. GetA ttri butes: PROCEDURE
[file: File.File, current: Log.lndex, firstPageNumber:File.PageNumber +-1]

RETURNS [time: System.GreenwichMeanTime, type: LogFile.Type,
level: Log.Level, size: CARDINAL];

LogFile.GetBlock: PROCEDURE [file: file.File, current: Log.lndex,
place: LONG POINTER, firstPageNumber: file.PageNumber +-1];

LogFile.GetString: PROCEDURE [file: File.File, current: Log.lndex,
place: LONG STRING, firstPageNumber: File.PageNumber +-1];

Log File. Type: TYPE. MACHINE DEPENDENT {null (O), block (1), string (2), (63)};

LogFile.DifferentType: ERROR;

GetAttributes returns the type, level and size of an entry, as well as the time at which it
was written. Only two types of entries are returned: Iftypeis set to block, then size is the
number of words in the block. If type is set to string, then size is the number of characters
in the string. A single word log entry is treated as a block of size one. Once the type and
size of an entry are determined, GetBlock or GetString can be used to copy the entry into
storage supplied by the client. If GetBlock is called to copy a string entry or GetStri ng is
called to copy a block e~try, then the error LogFile.DifferentType is raised.

LogFile.Reset: PROCEDURE [file: flle.File, firstPageNumber: file.PageNumber +-1];

Reset resets a log file to be empty. The file could then be reestablished as the current log
file using Open.

LogFile.GetRestart: PROCEDURE [file: flle.File, firstPageNumber: File.PageNumber +-1]
RETURNS [restart: LogFile.Restart];

LogFile.Restart: TYPE • MACHINE DEPENDENT RECORD [
message(O): UNSPEOFIED, time(1): System.GreenwichMeanTime];

GetRestart allows the client to read a special entry from a log file and to obtain the time
that entry was last written. This "restart" entry is the only entry in a log file that may be
read without enumerating the entries. The message returned is the restart supplied to
Log.SetRestart. If SetRestart was never called for that log file, then time will have the
value System.gmtEpoch and the value of message will be undefined. The restart entry
might be used by a client to examine his backstop's log file to determine when and why he
last crashed. For the client to interpret message, he must have independent knowledge of
the values given to message by the system that wrote it.

4-57

4 File Storage and Memory

4-58

5.

1/0 Devices

5.1 Channel structure and initialization 5-1

5.,1.1 Data transfer .. 5-2

5.1.1.1 Data transfer types ... 5-3

5.1.1.2 Data transCer procedures 5-4

5.1.1.3 Data transfer status .. 5-4

5.1.2 Device-specific commands ... 5-5

5.1.3 Device status .. 5-5

5.2 Keyset, keyboards, and mouse .. 5-6'

5.3 The user terminal .. 5-11

5.3.1 The display image ... 5-11

5.3.2 Smooth scrolling .. 5-13

5.3.3 The keyboardandkeyset ... 5-14

5.3.4 The mouse .. 5-15

5.3.5 The sound generator ... 5-15

504 Floppy disk channel ... 5-15

5.4.1 Drive characteristics ... 5-16

5.4.2 Diskette characteristics .. 5-16

5.4.3 Status .. 5-17

5.4.4 Transfer operations .. 5-18

5.4.5 Non-transCer operations .. 5-18

5.5 Floppy tile system ... 5-19

5.5.1 Accessing files on the diskette 5-19

5.5.2 Snapshotting and replication oCthe floppy volume 5-22

5.5.3 Managingthefloppyvolume .. 5-23

5.6 TrY Port channel .. 5-28

5.6.1 Creating and del1eting the TTY Port channel 5-28

5.6.2 Data transfer ... 5-29

5.6.3 Data transfer status ... 5-29

5.6.4 TTY Port operations 5-29

5.6.5 Device status .. 5-31

5.,7 TTY Input/Output .. 5-31

5.7.1 Starting and stopping .. 5-32

5.7.2 Signals and errors ... 5-33

5.7.3 Output ... 5-33

5.7.4 Utilities. .. 5-33

5.7.5 String input oper;ations .. 5-34

5.7.6 String output operations ... 5-35

5.7.7 Numericinputoperations .. 5-36

5.7.8 Numeric output operations ... 5-37

5.8 FloppyTape file systEtm ... 5-38

5.8.1 Accessing files on the tape .. o. 5~38

5.8.1.1 Opening, closing, and changing volume 0 • • • • • • •• 5-40

5.8.1.2 Data transfer procedures 0 : •••• 0 •• 5-41

5.8.1.3 Miscellaneous facilities 5-44

5.8.2 Managing the floppyTape volume 5-45

5.8.3 Booting from the tape .. 5-47

5

1/0 Devices

The facilities described in this section provide the lowest level standard access to
inputJoutput devices through Pilot. Two concepts are deimed: software channel and
device driver. A software channel is a Mesa interface to a device. It specifies all of the
device-specific data and control information which a client needs to operate the device. A
device driver is a set of programs which actually implement and export a software channel.
It includes all of the necessary "interrupt" routines, interfaces with microprograms,
control of hardware registers, etc., to service the device. It may be part of Pilot or it may be
supplied by another organization for a special purpose device.

Initializing a software channel binds the client to a physical resource and device driver.
Each channel represents a single device. Shared resources, such as common controllers,
are normally hidden from view so that, for example, each drive unit connected to a
common controller is treated as a distinct device. The device drivers hold the decision­
making power over the allocation of these shared resources. In the case that this does not
provide the proper control, it will be necessary to construct a new device driver.

The concept of software channel is common to all devices and all channels have a common
style. However, Pilot does not provide a central, common interface to all of them. Instead,
each channel is represented by its own Mesa DEFINITIONS module. The common style is
presented in this section in the form of the specification of a hypothetical device called
ExampleDevice. The channel interfaces for specific devices exported by Pilot are given
later in this section. In addition, client development groups may add additional channels
to Pilot for specialized or private devices.

5.1 Channel structure and initialization

To create and initialize a software channel for ExampleDevice, the client calls

ExampIeOev;ce.Create: PROCEDURE [assign: Examp/eDevice. Which Device,
drive: CARDINAL1

RETURNS [Examp/eOev;ce.ChanneIHandle];

Examp/eDev;ce.WhichDevice: TYPE. {any, specified};

Examp/eDev;ce.ChanneIHandle: TYPE • PRIVATE ••• ;

Examp/eDev;ce.DeviceNotAvailable: ... ;

5-1

5

5-2

110 Devices

The assign parameter indicates how to choose among multiple instances of a device. If any
is specified, then the device driver allocates any instance of that device. If specified is
passed, then the device driver selects the drive indicated by drive. If the channel cannot be
initialized for any reason, tl1en the routine signals Examp/eDevice.DeviceNotAvaiiable.

Device drivers which support multiple instances of a device also define the operation

ExampieDevice.GetDrive: PROC:EDURE [channel: Examp/eDevice.Channel Handle]
RETURNS [drive: CARDINAL];:

This operation is used to ide!ntify the specific device associated with the Channel Handle.

Deleting a channel and relelasing the associated-device are accomplished by

ExampIeDevice.Delete: PROCEDURE [channel: ExampIeDevice.ChanneIHandle];

This operation calls Example.Device.Abort before returning. If the client wishes to complete
all pending transfers, then he should fust call ExampleDevice.Suspend.

The following operations allow a client to control the data transfer activity on a specific
device.

ExampieDeVice.Suspend: PROCI:DURE [channel: ExampIeDev;ce.ChanneIHandle);

This operation waits for all :pending transfers (i.e., as a result of previously executed calls
on ExampleDevice.Get and Ex pIeDevk •• Put) to complete before returning. Subsequent calls
on Get, Put, or any control operations are ignored. However, calls on TransferWait for
previously outstanding tran:~fers will return normally.

ExampleDev;c •• Restart: PROCEDURE [channel: ExampIeDevice.ChanneIHandle);

This operation restarts a sUI~pended channel. A channel may become suspended (with no
pending operations) as a l'esult of the Suspend operation or (with some operations
pending) as the result of the 4)Ccurrence ofa sufficiently serious error.

ExampIeDev;ce.Abort: PROCEDUIRE [channel: Exampl.Device.ChanneIHandle);

This operation aborts all activity on the indicated channel. Any outstanding data transfer
operations will be immediately terminated with a TransferStatus = [TRUE, aborted] (see
§5.1.1.3 for TransferStatus).

5.1.1 Data transfer

The operations described bEllow transmit information to and from a device. The data
transfer is asynchronous so that many input and output operations can be simultaneously
pending.

Each device may impose its own constraints on the alignment of data in memory. This is
specified by three con~tants declared (statically) in the interface to the software channel.

ExampIeDev;ce.alignment: CARCllNAl •••• ;

Examp/eDev;ce.granularity: CARDINAL • • •• ;

ExampIeDev;ce.truncation: CAR[UNAL •••• ;

Pilot Programmers Manual 5

These three values must be specified and clients of devices must adhere to them. These
requirements are normally imposed by certain high-performance devices to maintain
physical memory bandwidth, satisfy physical constraints in the implementation of the
controllers, etc. In particular, the device may constrain:

each 110 buffer to be aligned on a virtual memory address which is a multiple of
alignment;

each I/O buffer in virtual memory to have a length which is an integral multiple of
granularity; and

each physical record on the device to have a length which is a multiple of truncation.

Each of these constants must be a power of two in the range [0 .. 256]. A value of zero is
interpreted to represent byte alignment, granularity, and truncation; a value of one
represents word alignment, granularity, and truncation; a value of four represents
quadword alignment, granularity, and truncation; a value of sixteen represents 16-word
alignment, granularity, and truncation; and a value of 256 represents page alignment,
granularity, and truncation.

Normally, granularity is' greater than or equal to truncation. On output, the buffer must
be a mUltiple of granularity, but the physical record may be truncated to a mUltiple of
truncation. On input, the buffer must also be a multiple of granularity. If a shorter (Le.,
truncated) record is read, the remainder.ofthe buffer may be filled with garbage.

5.1.1.1 Data transfer types

The following data structures are the most general form for describing the source or
destination of the data being transferred. Specific software channels may define simpler
versions of these which, for example, omit the header or trailer, startlndex, and so forth.

ExampIeDevice.PhysicaIRecordHandle: TYPE. LONG POINTER TO ExampleDevke.PhysicaIRecord;

ExampleDevke.PhyslcaIRecord: TYPE. RECORD [header: ExampIeDev;ce.BlockDesc.
body: ExampIeDev;ce.BlockDesc. trailer: ExampIeDevlce.BlockDesc1;

ExampleDevke.BlockDesc: TYPE. RECORD [blockPointer: LONG POINTER TO UNSPEOFIED,
startindex,stoplndexPlusOne: CARDINAL1;

The Physical Record specifies control information for the transfer operation in the header
and trailer. The body specifies the buffer to or from which data is transferred. Quantities
such as disk addresses and communication packet routing information are placed in the
header and trailer blocks in a device dependent way.

If necessary, the 'alignment, granularity, and truncation may be specified separately for
the header, body, and trailer.

ExampleDev;ce.CompletionHandle: TYPE. PRIVATE ••• ;

The CompletionHandle identifies the 110 transaction initiated by a Get or a Put operation.
It is passed as a parameter to the TransferWait operation, which does not return until that
particular 110 operation is completed. Get and Put are asynchronous and return to the
caller as soon as the request has been queued and made pending. TransferWait completes
the operation and returns the number of bytes transferred and the resulting
TransferStatus.

5-3

5 I/O Devices

5.1.1.2 Data transfer procedures

ExampIeDevkcp.Get: PROCEDURr: [channel: ExampleDCPvice.ChannelHandle,
rec: ExampleDCPvice.PhysicaIRecordHandle)
RETURNS [ExampleDflv;ce.COl11pletionHandle);

This operation queues the PhysicalRecord for input transfer and returns to the client with
the input transfer pending. The CompletionHandle must be submitted to the
TransferWait operation in order to complete the transfer and before any of the input
information can be used.

ExampIeDflvke.Put: PROCEDURE [channel: Examp/cpDCPvke.ChanneIHandle,

rec: ExampleDCPv;ce.Physica~ Record Handle]
RE~RNS [Examp/cpDflvice.CornpletionHandle);

This operation queues the Il»hysicalRecord for output transfer and returns to the client
with the output transfer pending. The Completion Handle must be submitted to the
TransferWait operation in o]~der to complete the transfer and before the output record can
be reused.

For both Get and Put, the I/OI buffers described by the Physical Record must not be released,
altered, or reused until after the TransferWait operation for this transfer completes. In
particular, any control inforJrnation contained, for example, in the header or trailer buffers
will be read or processed in place by the device rather than stored internally.

ExampleDevkCPe TransferWait: F'ROCEDURE (channel: ExampleDCPvke.ChannelHandle,
event: ExampIeDevice.Comp,letionHandle]
RETURNS (byteCount: CARDIINAL, status: ExampleDflv;ccp.TransferStatus);

This operation completes the processing of the I/O and returns the number of bytes
transferred and the status to the client. The CompletionHandle specifies the particular
pending transfer to await. If'the channel has been aborted, status = (TRUE, aborted).

001.1.3 Data transfer status

Transferring data can provoke a number of errors. When a serious error occurs, the
channel is suspended. In any case, Pilot returns the TransferStatus as the result of the
TransferWait procedure. The client can then examine this status and take corrective
action. If the status indicates that the channel has been suspended, then it must be
restarted after corrective a4ction is taken and before any further data transfers are
possible. A Restart allowsI/O transactions to continue over the channel.

Examp/cpDflvkcp. TransferStatus: TYPE • RECORD [error: BOOLEAN,

type: EXllmplcpDflv;ccp. TransferErrors);

Examp/cpDflv;ccp.TransferErrors: 'ryPE • {aborted, ..• };

If no errors were encountered, then error is FALSE. If errors were encountered, then error is
TRUE and the particular error i.s identified in type.

Pilot Programmer's Manual 5

5.1.2 Device-specific commands

Most devices need a number of device-specific auxiliary operations which are not specified
by the common channel style. Rewind for a magnetic tape is an example.

Some of these operations are for direct and simple communication with the device driver
and involve no physical 110; for example,

ExampIeDevke.SetNumberOfRetries: PROCEDURE [channel: Examp/eDev;ce.ChanneIHandle,
numberOfRetries: CARDINAL];

Others might invoke an I/O operation which is not a data transfer; for example,

ExampleDevice.Rewind: PROCEDURE [channel: Examp/eDev;ce.ChanneIHandle];

Completion of this kind of operation is detected via StatusWait described below.

Yet others might initiate I/O operations which are similar to data transfers and may
choose to use the CompletionHandle and TransferWait mechanisms to detect" completion;
for example,

fxampIeDevice.VerifyData: PROCEDURE [channel: ExampIeDevke.ChanneIHandle,
rec: ExampIeDevke.PhysicaIRecordHandle]
RETURNS [Examp/eDevice.CompletionHandle);

5.1.3 Device status

In addition to the status information returned for each data transfer operation, Pilot
maintains global information about the device itself in the DeviceStatus record. This
record contains state information about the static and long term state of the device. It is
accessed via the GetStatus and StatusWait procedures.

ExampIeDevke.DeviceStatus: TYPE. RECORD [•••];

ExampIeDevke.GetStatus: PROCEDURE [channel: ExampIeDev;ce.ChanneIHandle]
RETURNS [ExampIeDevke.DeviceStatus];

ExampIeDevke.StatusWait: PROCEDURE [channel: fxamp/eDevke.ChanneIHandle.
stat: ExampIeDevke.DeviceStatus]
RETURNS [Examp/eDevice.DeviceStatus];

StatusWait waits until the current DeviceStatus differs from the supplied parameter stat.
The client must examine the device status to determine what action to take.

5-5

5 I/O Devices

5~2 Keyset, keyboards, and mOlllse

5-6

Keys: DEFINITIONS ••• ;

KeyStations: DEFINITIONS ••• ;

LevellVKeys: DEFINITIONS ••• ;

LevelVKeys: DEFINITIONS ••• ;

JLevellVKeys: DEFINlnONS ••• ;

The state of the keys on the keyboard is described by an array of bits. These bits are
p_acked into an array of wl)rds maintained by Pilot but readable by the client. The
following exported variable lprovides access to the array.

userTerminal.keyboard: READONLY LONG POINTER TO READONLY ARRAY OF WORD;

The mouse buttons and the keyset are considered keys and therefore occupy positions ill
this array.

The interpretation of the bits of this array is not specified by Pilot, but is instead specified
by one or more separate DEFINlnONS modules associated with each particular keyboard.
This plan permits Pilot to support more than one kind of keyboard layout. The current
version of Pilot has three such DEFINITIONS modules: LavallVKays deimes-the bits for the U.S.
Dandelion keyboard; JLeveUVllCeys dermes the Japanese Dandelion keyboard; and LavalVKeys

defmes a superset of the other two DEFINITIONS modules (Dandelion and Japanese
Dandelion) and that of the Dove keyboard. LevelVKeys may be used in place of any or aU
keyboards; a program need not know what type of keyboard it actually has ..

Note: The Keys and KayStations modules are obsolete and are included only for backward
compatibility.

Figures 5.2a, 5.2b, and 5.2c SLt the end of this section show the assignments of keys on the
keyboards to bits in the userT4trminal.keyboard array.

Table 5.1 lists the names given to each bit in the UserTarminal.keyboard array by the
LavelVKeys interface. For hist4()rical reasons, the key names are not always the same as the
names printed on the keybo81~ds. The columns in the table have the following meaning.

Bit:

Name:

the nth element in the UHrTerminal.keyboard bit array.

the key n~lme used to refer to this bit.

. Pilot Programmer's Manual 5

Table 3.1. Keyboard Bit Assignment

Bit Name Bit Name

0 56 Z
1 Bullet 51 LeftShift
2 SuperSub 58 Period
3 Case 59 SemiColon
4 Strikeout 60 NewPara
5 KeypadTwo 61 OpenQuote
6 KeypadThree 62 Delete
7' Single Quote 63 Next
8 KeypadAdd 64 R
9 KeypadSubtract 65 T

10 KeypadMultiply 66 G
11 KeypadDivide 67 Y
12 KeypadClear 68 H
13 Point 69 Eight
14 " Adjust 70 N
15 Menu 71 M
16 Five 72 Lock
17 Four 73 Space
18 Six 74 LeftBracket
19 E 75 Equal
22 U 78 Move
23 V 79 Undo
24 Zero 80 Margins
25 K 81 KeypadSeven
26 Dash 82 KeypadEight
27 P 83 KeypadNine
28 Slash 84 KeypadFour
29 Font 85 KeypadFive
30 Same 86 English
31 BS 87 KeypadSix
32 Three 88 Katakana
33 Two 89 Copy
34 W 90 Find
35 Q 91 Again
36 S 92 Help
37 A 93 Expand
38 Nine 94 KeypadOne
39 I 95 DiagnosticBitTwo
40 X 96 DiagnosticBitOne
41 0 97 Center
42 L 98 KeypadZero
43 Comma 99 Bold
44 Quote 100 Italic
45 RightBracket 101 Underline
46 Open 102 Superscript
47 Special 103 Subscript
48 One 104 Smaller
49 Tab 105 KeypadPeriod
50 ParaTab 106 KeypadComma
51 F 107 LeftShiftAl t
52 Props 108 DoubleQuote
53 C 109 Defaults
54 J 110 Hiragana
55 B 111 RightShiftAlt

5-7

Dandelion US Key Assignments

91 62 49 48

90 89 50

30 78 72

46 52 57

Dandelion US Key Numbering

@ II $ % (j, &
234 567

W E R T Y U

S 0 F G H

*
8

J K

(
9

)
o

o p

l . ,
z x C V B N M < > ?

I

97 99 100 101 102 103 104

33 32 17 16 18 20 69 38 24 26

109

75 31

35 34 19 64 65 67 22 39 41 27 74 45

37 36 21 51 66 68 54 25 42 59 44 61

56 40 53 23 55 70 71 43 58 28 76

73

Figs S.2.a - level IV Keyboard

92

63 79
80

60

29
93 77

47

Super larger
Center Bold Italic Case Strikeout Underline Sub Smaller

~! @#$%t/. & * ()
• 1 234 5 6 7 890

W E R T Y U o p

S 0 F G H J K L

x C V B N M < >

Dove US Key Assignments

. . .. ,

~9_7 ___ 9_9~_1_00~ __ 3~1 '~_4 ____ 1_01~ __ 2~ __ 10_4~

Margins Font

80 29

77 62 1 48 33 32 17 16 18 20 69 38 24 26 75 31

79 91 50 35 34 19 64 65 67 22 39 41 27 74 45
60

90 89 72 37 36 21 51 66 68 . 54 25 42 59 7 108

30 78 57 56 40 53 23 55 70 71 43 58 28 76

46 52 47 73 93

Dove US Key Numbering

Fig. 5.2.b - Level V Keyboard

8 9 10 11

12 81 82 83

63 84 85 87
/

94 5 6

98 105 106

Super larger
Center Bold Italic Case Strikeout Underline Sub Smaller Margins Font

~ ! @ :# $ % f/. & * ()

• 1 2 3 4 5 6 1 8 9 0

Q w E R T Y U 0 P

A S 0 F G H J K L
0 ,

Z X C V B N M < >

Katakana Hiragana Space English

Dove Total Key Assignments

97 99 100 3 I I 4 101 2 104 80 29

77 62 1 48 33 32 17 16 18 20 69 38 24 26 75 31 8 9 10 11

79 91 50 35 34 19 64 65 67 22 39 41 27 74 45 12 81 82 83
60

90 89 72 37 36 21 51 66 68 54 25 42 59 7 108 63 84 85 87

30 78 57 107 56 40 53 23 55 70 71 43 58 28 111 76 94 5 6

46 52 47 88 110 73 86 93 98 105 106

Dove Total Key Numbering

Fig. 5.2.(.. Level V Keyboard

Pilot Programmer's Manual

5.3 The user terminal

UserTerminal: DEFINITIONS ••• ;

UserTer.minaIExtras: DEFINITIONS ••• :

UserTerminalExtras2: DEFINITIONS ••• ;

5

UserTerminal describes the state of th~ user input/output devices-the display image (as
represented by a one-bit-per-pixel bitmap), the display cursor, the keyboard, the mouse,
and the keyset-and allows the client to manipulate them. The interface assumes the
configuration of the user terminal is as is given above, but does allow the client to deal
with variations such as the number of keys or the size and resolution of the display. The
interface deals with many of the lowest level attributes of the terminal. Within a typical
client system, only a small user interface component will call UserTerminal directly.
Defmitions and operations of general interest are presented rust, followed by more
specialized ones.

UserTerminalExtras provides interim support for smooth scrolling. UserTerminalExtras2
gives the type of keyboard attached to the workstation. The Extras interfaces will become
part of User Terminal in a future version of Pilot.

5.3.1 The display image

UserTerminal.screenWidth: READONL Y CARDINAL (0 •• 32767];

UserT.rminal.screenHeight: READONL Y CARDINAL [0 •• 32767];

UserTerminal.pixelsPerl nch: READONL Y CARDINAL;

The attributes of the image are defined by the above exported variables. screenWidth and
screenHeight specify the number of usable, visible picture elements in a row or column of
the screen.

UserT.rminal.COordinate: TYPE. MACHINE DEPENDENT RECORD [x, y: INTEGER];

The bitmap image is addressed by ·x-y coordinates. The coordinate origin (0, 0) is the
uppermost, leftmost pixel of the display; x increases to the right, and y increases
downward.

The state of the display is defined as

UserTerminal.State: TYPE. {on, off, disconnected};

on indicates the display is physically on and visible to the user (and a bitmap is allocated);
off indicates the display is physically off and not visible to the user (but a bitmap is
allocated); disconnected indicates the same as off but with no bitmap allocated.

Clients may determine the current state of the bitmap display by calling

UserTerminal.GetState: PROCEDURE RETURNS [state: UserTerminal.State];

5-11

5

5-12

I/O Devices

The bitmap display is capable of displaying black-on-white or white-an-black. Clients
may determine or alter the current state of the background by using the following
procedures. In the image, a pixel whose value is one is considered the figure; a pixel of
zero, background.

UserTerminal. GetBackground: PROCEDURE
RETURNS [background: U~HtrTerminal.Background];

UserTerminal.SetBackground: PROCEDURE [new: UserTerminal.Background]
RETURNS [old: UserTerminal.Background];

UserTerminal.Background: 'rfPE • {white, black};

Clients may momentarily blink (video reverse) the display by calling

UserTerminal.BI i nkDisplay: PROCEDURE;

Some displays have the capability to display a border around the outside of the active
display region. Clients can determine if the display has this capability by interrogating
the exported variable

hasBorder: READONLY BOOLEAN;

If the display has a border I' then clients may set the pattern to be displayed in the border
by calling

UserTer~inal.SetBorder: PRO(:EDURE [oddPairs, evenPairs: [0 .. 377B]];

The bit pattern for an individual scan line is dermed by displaying a single byte repeatedly
along the entire scan line. ~rhe same pattern is shown on alternating pairs of lines.

Thus, evenPairs is the byte used on lines -4, -3, 0, 1, 4, 5, etc.; oddPairs is the byte used on
lines -2, -1, 2, 3, 6, 7, etc.

Calling SetBorder when ha!;Border is FALSE will lead to unpredictable results.

UserTerrftinal.WaitForScanLine: PROCEDURE [scanline: INTEGER];

WaitForScanLine is providted for clients who must synchronize bitmap alteration with
display refresh. Waiting for scan line zero is also a common way for a user input handlE~r
to wait between polls of the keyboard and mouse buttons.

UserTerminal.GetBitBltTable: PROCEDURE RETURNS [bbt: BitBIt.BBTable);

GetBitBltTable returns a ElitBlt table with the bitmap fields filled in for the current
bitmap.

The bitmap parameters arEl returned in bbt in such a fashion that a BitBlt using it win
copy the bitmap from itself to itself. For a complete description of a BBTabie see the
description of BitBlt in the klesa Processor Principles of Operation. The bits-per-line in the
returned bbt may be differE!nt from screenWidth if the display implementation has non­
visible padding bits appended to each line.

Pilot Programmer's Manual 5

WaitForScanLine and GetBitBltTable raise the following error if the display is
disconnected (deallocated).

UserTerminal.BitmaplsDisconnected: ERROR;

Clients may alter the state of the bitmap and display by calling

UserTerminal.SetState: PROCEDURE [new: UserTerminal.State]
RETURNS [old: UserTerminal.State];

Setting the state to disconnected invalidates any SSTables previously returned by
GetBitBltTable, but setting the state to off does not. The bitmap is zeroed (Le., set to all
background) when the state is changed from disconnected to on. Disconnecting destroys
any information that may have been contained in the bitmap.

UserTerminal.CursorArray: TYPE. ARRAY [0 •• 16) OF WORD;

The display cursor is defmed by a 16x16 bit array, whose bits are ORed with the bitmap.
The top row is contained in CursorArray[O); the bottom row in CursorArray[15]. The most
significant bits of each entry in the array correspond to the left portion of the cursor
image: the least significant bits correspond to the right portion.

Clients can determine the current bit pattern for the cursor by calling

UserTerminal. GetCursorPattern: PROCEDURE
RETURNS [cursorPattern: UserTerminal.CursorArray);

The cursor pattern is set by calling

UserTerminal.SetCursorPattern: PROCEDURE [cursorPattern: UserTerminal.CursorArray];

The coordinates of the cursor can be found by the following exported variable.

UserTerminal.cursor: READONLY LONG POINTER TO READONLY UserTerminal.Coordinate;

The position otthe cursor on the display may be altered by calling the procedure

UserTerminal.SetCursorPosition: PROCEDURE [newCursorPosition: userTerminal.Coordinate];

5.3.2 Smooth scrolling

The smooth scrolling interface allows a client to create a window within the display area
that can be scrolled up or down. Clients may create a scroll window by calling

UserTerminaIExtras.CreateScroIiWindow: PROCEDURE [Iocn: UserTerminal.Coordi nate,
width: CARDINAL, height: CARDINAL];

UserTerminalExtras.scrollXQua ntum: READONL Y CARDINAL;

UserTerminaIExtras.scroIlYQuantum: READONLY CARDINAL;

UserTerminaIExtras.Error: ERROR [type: UserTerminaIExtras.ErrorType];

userTerminaIExtras.ErrorType: TYPE • {multipleWindows, ... , yQuantumError,
xQuantumError};

5-13

5

5-14

110 Devices

The horizontal bit-position of the scroll window within the bitmap (Iocn.x) and the width
of the scroll window (width) must be multiples of scrollXQuantum. The vertical bit
position of the scroll window (Iocn.y) and the height of the scroll window (height) must be
multiples of scrollVQuantum. Thus, a value of 16 for scrollXQuantum indicates that left
and right edges are word a.ligned within the bitmap.

If the constraints on locn, height, and width are not observed, then Error[xQuantumError]
or Error[yQuantumError] is raised. If a scroll window already exists, then
Error[multipleWindows) i::I raised.

UserTerminalExtras.scrolli ngllnhi bitsCursor: READONL Y BOOLEAN;

On some processors, the jpresence of a smooth scrolling window inhibits display of the
cursor, in which case scrolilinglnhibitsCursor is TRUE.

Clients cause the display til be scrolled up or down by calling

UserTerminaIExtras.Scroll: PRCtCEDURE [I i ne: LONG POINTER TO UNSPECIFIED, Ii neCount: CARDINAL,
increment: INTEGER);

UserTerminaIExtras.ErrorType: TYPE. {o •• , noScroIiWindow"lineCountError, ... };

Scroll adds scan lines to the top or bottom of the scroll window, causing the window to
scroll up or down. line points to the first bit within the first scan line to be moved into the
scroll window. IineCount indicates how many scan lines are to be moved into the scroll
window. IineCount must be a multiple of scrollVQuantum. The number of lines moved
into the scroll window each time controls the speed of the scrolling. As each scan line is
moved into the scroll wind~[)w, increment is added to line to produce the bit address of the
next scan line. The direl::tion of the scroll is specified by the sign of incr~ment. If
increment is positive, lines, are added to the bottom of the window, causing it to scroll up.
Ifincrement is negative, lines are added to the top of the window, causing it to scroll down.

During scrolling, the scan lines in the scroll window portion of the bitmap may not be in
the same order in memory ns they appear on the display.

If no scroll window exists, then the error Error[noScroIiWindow) is raised. If IineCount is
not a multiple ofscrollVQucmtum, then Error[lineCountError) is raised.

The scroll window may be deleted by calling

UserTerminaIExtras.DeleteScrClIIIWindow: PROCEDURE;

IfscrollinglnhibitsCursor is TRUE, then the cursor's reappearance may be delayed while the
scan lines in the scroll window are being sorted into their proper order.

The error Error[noScroliWirldow] is raised uno scroll window exists.

5.3.3 The keyboard and keyset

The keyboard and keyset de:rmed in this interface are uninterpre~ed. That is, up/down key
transitions are noted by the state of the bits in the following unencoded array:

UserTermina •. keyboard: READCtNL Y LONG POINTER TO READONLY ARRA Y OF WORD;

Pilot Programmer's Manual

UserTerminaIExtras2.keyboardType: READONLY KeyBoardType;

UserTerminaIExtras2.KeyBoardType: TYPE • MACHINE DEPENDENT {
learSiegler{O),level4(1), jLeveIS(2),leveIS(3), eLevelS(4), other(LAST[CARDINALJ)};

5

keyboardType gives the type of the keyboard attached to the system element. learSiegler
implies that a Le'ar Siegler CRT is attached. level4 implies that a Level 4 keyboard is
attached; this is the keyboard usually attached to Dandelion processors. jlevelS is a Level
5 keyboard for JStar. levelS is the American version of the Level 5 keyboard; elevelS is a
European version of the Level 5 keyboard.

The Extras interface is interim for this release and will be merged with its parent interface
in future releases.

5.3.4 The mouse

The coordinates of the mouse can be found by the following exported variable.

UserTerminal.mouse: READONLY LONG POINTER TO READONLY UserTerminal.Coordinate;

Clients can alter the coordinates of the current mouse position by calling

UserTerminal.SetMousePosition: PROCEDURE [newMousePosition: UserTerminal.Coordinate);

5.3.5 The sound-generator

This following procedure generates simple tones on processors equipped with suitable
hardware.

UserTerminal.Beep: PROCEDURE [frequency: CARDINAL 1000,
duration: CARDINAL 500];

Beep sounds a tone of the given frequency (specified in hertz) for the specified duration,
specified in milliseconds. The procedure is synchronous; it does not return until the beep
has been generated. A Beep may be prematurely terminated using ProcessAbort.

On the Dandelion, frequencies lower than 29 Hz are rounded up to 29 Hz. The practical
upper limit is human audibility. The granularity of the duration is one process timeout
tick (about 50 ms.). The specified frequency is actually rounded up to the next frequency
which exactly divides 1.8432 MHz.

5.4 Floppy disk channel

FloppyChannel: DEFINITIONS •••

The floppy disk and floppy tape are supported in Pilot in two modes: as a Pilot floppy or
floppy tape file system and as a direct software channel. The two forms of access are
mutually exclusive. This section addresses the second form, channel access.

The FloppyChannel interface to the floppy disk and tape provides the client direct sector-level
access to the floppy disk and floppy tape. This interface allows the client to check and set
drive and diskette-specific characteristics, to check drive status, and to read and write
sectors or groups of sectors. Logical formatting of the disk is the responsibility of the
client.

5-15

5

5-16

110 Devices

Each drive is accessed by a Handle.

FloppyChannel.Handle: TVPE [:n;
FloppyChannel.null Handle: RE."DONL Y Handle;

FloppyChannel.Error: ERROR [t),pe: FloppyChanneI.ErrorType];

FloppyChannel.ErrorType: TYPIE • { •.• , invalidHandle, ••• };

For all of the floppy chanrlel operations that take a Handle as an argument, the error
FloppyChannel.Error[invalidHclndle] is raised if the Handle is not valid. A Handle is invalid if
the drive that it refers to has changed state (i.e., gone from not-ready to ready or from
ready to not-ready) since thlt! Handle was acquired.

The following frequently Uf~ed types are available for the convenience of FloppyChannel
clients.

FloppyChannel.Density: TYPE .1 {single, double};

FloppyChannel.Format: TYPE. {IBM, Troy};

FloppyChannel.HeadCount: TVIJE • [0 •. 256);

FloppyChannel.SectorCount: Y,"E • [0 .. 256);

5.4 .. 1 Drive characteristics

The Attributes record conUlUns the characteristics of the specific drive connected to the
floppy disk controller and of the diskette or floppy tape currently installed.

FloppyChannel.A ttri butes: TVPE: • RECORD [
deviceType: Devlce.Type, numberOfCylinders: CARDINAL,numberOfHeads: HeadCount,
maxSectorsPerTrack: Sect:orCount. formatLength: CARDINAL. ready: BOOLEAN.
diskChange: BOOLEAN, twolSided: BOOLEAN]

deviceType indicates the tY1~ of drive connected to the controller; numberOfCylinders is
the number of cylinders available for recording on that drive; numberOfHeads is the
number of read/write heads .available on that drive; maxSectorsPerTrack is the maximum
number of sectors per track 4)fthe diskette (based on context setting); formatLength is the
size of the buffer, in words, needed in order to format the diskette; ready indicates whether
the drive contains a diskette:; diskChange indicates whether the drive has gone from ready
to not-ready (door open), or from not-ready to ready, one or more times since the last
operation was performed; and twoSided indicates whether the diskette currently installed
has data on both sides.

5.4.2 Diskette characteristics

FloppyChannel.Context: TYPE • RECORD [protect: BOOLEAN, format: Format,
density: Density, sectorl.ength: CARDINAL [0 .• 1024)];

The values of format, densiity, and sectorLength are determined when the diskette is
formatted. Software write-protect can be selected by the client software by setting the
protect flag~ The actual write fault status is a logical OR of this variable and the physical
signal being returned from the drive. The Troy format is the Xerox 850 format. Note that
track 00 on IBM format diskettes and all tracks of Troy format diskettes will be single
density. sectorLength is the llength in words of the sectors on the current track. The value

Pilot Programmer's Manual 5

must come from a valid set defined as {64, 128,256, 512} for IBM format and {1022} for
Troy format.

The context must be set, via SetContext, before any drive access procedures are called.
GetContext returns the current context settings.

FloppyChannel.GetContext: PROCEDURE [handle: FloppyChannel.Handle]
RETURNS [context: FloppyChannel.Context];

FloppyChannel.SetContext: PROCEDURE (handle: FloppyChannel.Handle,
context: FloppyChannel.Context]
RETURNS (ok: BOOLEAN);

The client must provide the context setting which matches the actual format of the
diskette. SetContext does not cause the diskette to be reformatted.

3.4.3 Status

The Status of the drive and operation is returned by any drive access operation.

FloppyChannel.StatuS: TYPE • MACHINE DEPENDENT{
goodCompletion, diskChange, notReady, cylinderError,
deleted Data, recordNotFound, headerErroF, data Error ,
data Lost, writeFault, otherError(LAST[CARDINALJ)};

The meanings assigned to the fields in the status record are:

goodCompletion The operation has completed normally.

diskChange The disk drive has gone from a ready to a not ready state (door open),
or vice versa, one or more times since the last operation was
performed.

notReady

cyl i nderError

deletedData

recordNotFound

headerError

dataError

data Lost

writeFault

otherError

The drive is not ready (does not contain a diskette).

The cylinder specified by the disk address can not be located

The record ID for the sector contained a deleted data address mark in
the header.

The record defmed by the disk address could not be found.

A bad checksum was encountered on the header field.

A bad checksum was encountered on the data field.

A sector has been found on the diskette that is larger than that of the
current context.

Logical OR of the. context setting of protect, and the physical signal
being returned from the drive.

An unexpected software or hardware problem has occurred. For
floppy tapes, this status means that a retention is required;
otherError will continue to be returned until the tape is retentioned.

5-17

5

5-18

110 Devices

5 .. 4.4 Transfer operations

Transfer procedures move 1Ghe specified number of sectors to or from the diskette or floppy
tape.. Seek, error recovery" and wait for completion or error are included.

FloppyChannel.OiskAddress: 1'YPE = MACHINE DEPENDENT RECORD [cylinder: CARDINAL,
head: HeadCount, sectol': SectorCount);

·The cylinder and head fields must reference a valid cylinder and head as defined by the
Attributes record. The value of sector must be in the range defined by
Context.sectorLength.

FloppyChannel.ReadSectors: P!ROCEDURE [handle: FloppyChannel.Handle,
address: FloppyChannel.OiskAddress, buffer: lONG POINTER, count: CARDINAL ~ 1,
incrementDataPtr: BOOlE.AN +-TRUE)
RETURNS [status: FloppyChalnnel.Status, countDone: CARDINAL);

FloppyChannel.WriteSectors: FIROCEDURE [handle: FloppyChannetHandle,
address: FloppyChannel.DiskAddress, buffer: lONG POINTER, count: CARDINAL +-1,
incrementDataPtr: BOOlEI'N TRUE)
RETURNS [status: FloppyChannel.Status, countDone: CARDINAL);

FloppyChannel.WriteDeletedSc!ctors: PROCEDURE [handle: FloppyChannel.Handle,
address: DiskAddress, buffer: lONG POINTER, count: CARDINAL +-1, incrementDataPtr:
BOOLE~N +-TRUE)
RETURNS [status: FloppyCha.nnel.Status, countDone: CARDINAL);

FloppyChannel.ReadID: PROCEDIURE [handle: FloppyChannel.Handle,
address: FloppyChannel.DislcAddress, buffer: lONG POINTER)
RETURNS [status: FloppyChalr'lnel.Status);

The count parameter in the above calls indicates the number of sectors to be transferred.
The incrementDataPtr para.meter determines if buffer is advanced on mUltiple sector
transfers. II incrementDataPtr is TRUE, then succeeding sectors are read and written
advancing through the buffer. II it is FALSE, then all transfers occur using the same sector
buffer. The latter might be used to write the same data into a number of sectors or to read
in order to verify the readability of sectors.

WriteSectors and WriteDelE!tedSectors do a read-after-write to verify that the data is
readable.

ReadlD reads three words o,f device dependent data into the buffer. This operation is
provided primarily for diagn4~stics.

Multiple sector transfers which begin on track 0 of an IBM-formatted diskette and
continue on to subsequent tracks will produce an error if the format of the remainder of
the diskette is different from the track 0 format (single density, 64-word sectors).

5.4.5 Non-transfer operations

The non-transfer operation:o access the drive in the same manner as the transfer
operations, but no data is lnoved. Nop returns a status. FormatTracks formats the
specified tracks.

Pilot Programmer's Manual

FloppyChannel.Nop: PROCEDURE [handle: FloppyChannel.Handle]
RETURNS [status: FloppyChannel.Status];

FloppyChannel.FormatTracks: PROCEDURE [handle: FloppyChannel.Handle,
start: FloppyChannel.DiskAddress, trackCount: CARDINAL]
RETURNS [status: FloppyChannel.Status, countDone: CARDINAL];

5

Analogous to the PhyslcalVolume interface, FloppyChannel provides the following operations:

FloppyChannel.Drive~ TYPE. CARDINAL;

FloppyChannel.GetNextDrive: PROCEDURE [lastDrive: FloppyChannel.Drive]
RETURNS [nextDrive: FloppyChannel.Drive];

FloppyChannel.nutiDrive: FloppyChannel.Drive •••• ;

FloppyChannel.GetHandle: PROCEDURE [drive: FloppyChannel.Drive]
RETURNS [handle: FloppyChannel.Handle];

FloppyChanneUnterpretHandle: PROCEDURE [handle: FloppyChannel.Handle]
RETURNS [drive: FloppyChannel.Drive];

FloppyChannel.ErrorTyp.: TYPE. {invalidDrive,o •• };

GetNextDrive is a stateless enumerator of the floppy drives attached to the system
element. It begins with nullD.rive as an argument and terminates with nuliDrive as its
result. A Handle is obtained by calling GetHandle. The Drive corresponding to a Handle
may be obtained by calling InterpretHandle. Error[invalidDrivel is raised by GetHandle
and GetNextDrive if they are passed an invalid Drive.

5.5 Floppy file system

Floppy: DEFINlnONS ••• ;

FloppyExtras: DEFINITIONS ..• ;

FloppyExtrasExtras: DEFINITIONS ... ;

FloppyExtras3: DEFINITIONS .•. ;

FloppyExtras4: DEFINITIONS ••• ;

Floppy is the interface for the Floppy file system. Floppy provides a read/write file system
only. Direct mapping of floppy files to Pilot spaces is not supported by Floppy.

The implementation module is named Ploppy Impl. bcd.

The FloppyExtras4 interface allows multiple floppies or a floppyTape and one or more floppy
devices to be supported on a single machine.

5.5.1 Accessing files on the diskette

The floppy diskette contains a collection of files. As with Pilot volumes on rigid disks,
each file is a sequence of 256-word blocks called pages. A page corresponds to a sector on
the diskette. Diskette space management and the directory of extant files is kept in a
structure called the file list. Under most circumstances, users will not need to manipulate
the contents offile lists.

5-19

5

5-20

I/O Devices

Floppy.File.D: TYPE [2];

Floppy.PageNumber: TYPE. [0 .• -- max pages per diskette --);

Floppy.PageCount: TYPE. [0 .. -- max pages per diskette --I;

Files are identified by valuE~s of the type FileiD. These are uninterpreted 32-bit quantities
assigned uniquely within a given floppy diskette. File'Ds are not unique from one diskette
to another. In particular, if'a diskette is copied, the new diskette will have the same files
with the same File'Ds as the old. Although it is the intention of the implementation not to
reuse ,File' Os, they are not guaranteed to be unique in time for a given diskette; that is, it is
possible for a FilelD to be assigned to a file and later for that file to be deleted and the FilelD
to be subsequently reused.

Note: PageNumber and F'ageCount are actually defined as LONG CARDINAL since the
current version of Mesa doesl not permit subranges of LONG CARDINAL.

In order to access a floppy dil;kette, the client must specify a handle of type:

Floppy. VolumeHandle: TYPE [:2];

Floppy.nuIiVolumeHandle: READONLY Floppy. VolumeHandle;

Floppy.Error: ERROR [type: Floppy.ErrorType);

Floppy.ErrorType: TYPE. { ••• , invalidVolumeHandle, ... };

A VolumeHandle is assigJled, when the floppy is opened (using Floppy.Open). A
VolumeHandle becomes invnlid if the floppy drive door is opened, or if the drive is closed
and reopened f even if the diflkette remains the same. Values of type VolumeHandle are
not reused within a given instantiation of Pilot; that is, from one boot to the next.

All of the operations thllt take a VolumeHandle as an argument will raise
Floppy.Error[invalidVolumeHctndle] ifpresented with an invalid VolumeHandle.

A complete specification of a :t1oppy file is given by

Floppy.FileHandle: TYPE. RECIJRD [volume: Floppy.VolumeHandle, file: Floppy.FileID];

All operations in this intena,ce are synchronous. That is, they do not return to the client
until they are complete. If B. diskette is withdrawn between operations, the Pilot floppy
file system will not require scavenging; however, the client files may not be well-formed.

In order to access the floppy at all, the volume must be opened.

Fioppy.Open: PROCEDURE [drive: CARDINAL +-0] RETURNS [vol: Fioppy.VolumeHandle);

Floppy.ErrorType: TYPE. { ••• ., notReady, noSuchDrive, invafidFormat, needsScavenging,
invalidVolumeHandle ... };:

Open opens the floppy volurr.te and prepares it for all subsequent operations. The drive
argument indicates which flollPY drive is intended if there is more than one present.

If no diskette is in the drive or if for some other reason the drive is not ready, then the
error Floppy. Error[notReady] is raised. If drive specifies an unknown device, then
Floppy.Error[noSuchDrive] is raised. If the diskette is not formatted according to the
standard supported by Pilot floppies, then Floppy.Error[invalidFormat] is raised. Finally, if
Pilot cannot properly read in -the file list or if the volume otherwise appears to not be well

Pilot Programmer's Manual 5

formed, then Floppy.Error[needsScavenging] is raised. In any of these cases, the volume is
not opened.

FloppyExtrasExtras.GetDrive: PROCEDURE [volumeHandle: Floppy. VolumeHandle]
RETURNS [drive: CARDINAL);

GetDrive returns the floppy drive associated with the given VolumeHandle.
Floppy.Error[invalidHandle] may be raised.

Floppy.Close: PROCEDURE [vol: Floppy.VolumeHandle);

Floppy.ErrorType: TYPE • { ••• , volumeNotOpen, ••. };

If the user withdraws the diskette from the drive, or for some other reason it becomes not­
ready, then the next operation on the floppy will implicitly close the volume and will raise
Floppy.Error[volumeNotOpen). Alternatively, an open vol~me may be closed by calling
Close. Close, whether called implicitly or explicitly, merely causes Pilot to forget about the
floppy. It does not flush buffers, write out data from its caches or tables, etc. Thus, closing
a closed V'olume is a no-op.

The principal operations on floppy files are to read from or write to them sequences of
pages.

Floppy.Read, Write: PROCEDURE [file: Floppy.FileHandle, first: Floppy.PageNumber,
count: Floppy.PageCount, vm: LONG POINTER]; .

Floppy.ErrorType: TYPE. { ••• , fileNotFound, endOfFile, writelnhibited,
hardwareError ••• };

Floppy.DataError: ERROR [file: Floppy.FileHandle, page: Floppy.PageNumber,
vm: LONG POINTER);

The Read and Write operations are analogous to Space.Copyln and Space.CopyOut; that is,
they cause a sequence of pages to be copied to or from the area in virtual memory
designated by vm (this pointer must point to the beginning of a page). The sequence is
selected from the floppy file designated by file, starts with the page numbered first within
that file and continues for count pages. Both operations are synchronous; control does not
return to the client until the read or write is complete.

The area to or from which data is copied must be in mapped virtual memory, page aligned,
and, if necessary, writable; otherwise, an address fault or write protect fault will result. If
an attempt is made to read or write beyond the end of the floppy file, the error
Error[endOfFile1 is raised. If the file argument does not specify a known file on that floppy
diskette, Error[fileNotFound] is raised. If an attempt to ~ite to the floppy fails because
the write enable sticker has been removed, the error Error(writelnhibited] is raised. The
error Error(hardwareError] is raised if the drive appears to be broken or has temporarily
failed in an unexpected manner.

If a read or write error occurs during transmission of the data (and the sector is not
already recorded in badSedorTable), then the signal DataError is raised and data
transmission stops. This signal is raised after the data transmission occurs. The values
returned with this signal indicate the offending file and page number and a pointer to the
buffer in virtual memory containing the data read or written. The signal may not be
resumed. Instead, the client should decide what to do with the bad data and bad sector,
then continue its read or write operation.

5-21

5

5-22

110 Devices

Floppy.CopyFromPiiotFile: PROCEDURE [piiotFile: File.File, floppyFile: Floppy.FileHandle,
firstPiiotPage: File.PageNumber, firstFloppyPage: Floppy.PageNumber,
count: Floppy.PageCoun't +- Floppy.defaultPageCount];

Floppy.CopyToPiiotFile: PRCtCEDURE [floppyFile: Floppy.FileHandle, piiotFile: File.File,
firstFloppyPage: Floppy.lr»ageNumber, firstPiiotPage: File.PageNumber,
count: Floppy.PageCoun1t +- Floppy.defaultPageCount);

Floppy.defaultPageCount: ,:loppy.PageNumber - ••• ;

Floppy.ErrorType: TYPE - { ••• , incompatibleSizes, ••• J;
CopyFromPiiotFile and C:opyToPiiotFile are simple extensions of Floppy.Read and
Floppy. Write. The operations copy the specified file pages between a floppy disk file and a
Pilot file. The specified p.ages must exist in both files or Floppy.Error[incompatibleSizes]
will be raised. If count UJ specified as defaultPageCount, then the entire file is copied
starting from the specified page. Any of the errors mentioned above for the Read and
Write functions may also be raised. Both operations are synchronous.

A bad sector on the floppy diskette may be replaced by an alternate sector somewhere else
on the diskette by calling the following operation.

Floppy.ReplaceBadSeetor: P"OCEDURE [file: Floppy.FiteHandle, page: Floppy.PageNumber]
RETURNS [read Error: BOOLEAN];

ReplaceBadSeetor identifiEIS a sector in terms of a page within a file and causes it to be
marked bad. An alternatE~ copy of the sector is placed somewhere else on the diskette.
Pilot will do. its best to copy the information from the bad sector to the alternate one. If
data errors-occur during this copy, then the readError result of this procedure is TRUE. If,
however, Pilot believes that it has made an exact copy, then the result is FALSE. After this
operation completes, the client may overwrite the sector with any data via the operation
Write. Bad sectors which have been replaced are invisible to client programs except for
the performance of Pilot in accessing them (extra disk seeks are required and an access to
a sequence of pages must bel broken up).

Caution: ReplaceBadSeetCl,r is not implemented in Pilot 14.0.

FloppyExtras4.nuIiDrive: CARDINAL - ••• ;

FloppyExtras4.GetNextFloppyDrive: PROCEDURE [drive: CARDINAL]
RETURNS [nextDrive: CARDINAL];

GetNextFloppyDrive is a ~Jtateless enumerator which enumerates all existing floppy
devices attached to the mB~chine, beginning and ending with FfoppyExtras4.nuIiDrive. If
drive does not exist, then Flolppy.Error[noSuchDrive] is raised.

5.5.2 Snapshotting and replicatioll of the floppy volume

To facilitate easy snapshotting and replicating of floppies, the following procedures may
be used.

Floppy.PagesForlmage: PROCEDURE [floppyDrive: CARDINAL +- 0] RETURNS [File.pageCount];

Floppy.Make'mage: PROCEDURE [
floppyDrive: CARDINAL Or imageFile: File.File,
first. magePage: File.Page'~umber];

Pilot Programmer's Manual

Floppy.CreateFloppyFromlmage: PROCEDURE [

floppyDrive: CARDINAL +- 0, imageFile: File.File,
firstlmagePage: File.PageNumber, reformatFloppy: BOOLEAN,

floppyDensity: Floppy.Density +- default, floppySides: Floppy.Sides +- default,
numberOfFiles: CARDINAL +- 0, newLabelString: LONG STRING +- NIL);

Floppy.GetlmageAttributes: PROCEDURE [

imageFile: File.File, firstlmagePage: File.PageNumber!
name: LONG STRING +- NIL)

RETURNS [

maxNumberOfFiles: CARDINAL, currentNumber,OfFiles: CARDINAL,

density: Floppy.Density, sides: Floppy.Sides);

Floppy.ErrorType: TYPE.

{ ••• , fileListLengthTooShort, floppylmagelnvalid, floppySpaceTooSmall .•• };

5

PagesForlmage is used to determine the number of pages needed to copy the contents of a
floppy to a file.

The client calls Makelmage to snapshot a floppy. The call specifies the destination image
file and the page of the destination file at which the image should begin.

To create a floppy from an image file, the client calls CreateFloppyFromlmage specifying
the drive to copy to, the image file to' copy from, and various other parameters about the
floppy. The newLabelString parameter permits changing the floppy's name from that in
the image file. If reformatFloppy is TRUE, then the floppy is formatted.

If the numberOfFiles is not zero, and the CWTentnumber of files on the image file is
greater than numberofFiles, then' Error(fileListLengthTooShort) is' raised.
Error[floppylmagelnvalid] is raised if the version, seal, or any of the file IDs on the image
file is invalid. If the size of the image file is greater than the available space on the floppy,
then Error[floppySpaceTooSmal1] is raised.

Note:, In Pilot 14.0, CreateFloppyFromlmage may raise the error Floppy.AlreadyFormatted
even though reformatFloppy is set to TRUE. A work-around is to ensure that the floppy is
closed.

Note: DataError may be raised by Makelmage or CreateFloppyFromlmage if a read or
write error occurs during transmission of the data.

Finally, the interface provides GetlmageAttributes so that the client can obtain
information about the image stored in an image file.

5.5.3 Managing the floppy volume

The floppy diskette may be formatted using the following operation. The volume must not
be open.

Floppy.Format: PROCEDURE [drive: CARDINAL, maxNumberOfFileListEntries: CARDINAL,

labelString: LONG STRING, density: Floppy.Density +- default,
sides: Floppy.Sides +- default];

Floppy.maxCharacterslnLabel: CARDINAL a 40;

Floppy.Density: TYPE • {si~gle. double. default};

Floppy.Sides: TYPE • {one. two. default};

Fioppy.ErrorType: TYPE • { ••• , oniySingieDensity, onlyOneSide. badDisk •... };

5-23

5

5-24

110 Devices

Floppy.AlreadyFormatted: !;IGNAL [labeIString: LONG STRING];

The Format operation erases the diskette, writes all information according to the standard
supported by Pilot, and clt"eates an empty file list large enough to hold the number of
entries specified. A label string is also written on the diskette, in the same way as label
strings are written on Pilot rigid disk volumes.

If the floppy is already formatted to be a Pilot floppy volume, then the resumable signal
AI ready Formatted is raiSEd. This notice gives the client a last chance to recover from
accidentally formatting au already valuable floppy. The density and sides arguments
give the client optional control over these attributes of the diskette when necessary for
information interchange.

The errors Error[onlySin~lleDensity] and Error[onlyOneSide] are raised if either the
diskette or the drive imposes these limitations. The defaults of these cause Pilot to choose
appropriate values for the drive and the diskette. If the disk cannot be formatted because
of problems with either the diskette or the drive, then Error[badDisk] is raised.

Note: In Pilot 14.0, Floppy.)~lreadyFormatted is raised only if the floppy is open.

Floppy.GetAttributes: PROCEDURE [volume: Floppy. VolumeHandle,
labelString: LONG STRING]

RETURNS [freeSpace.l~rgttstBlock:Floppy.PageCount, fileList. rootFile: Floppy.FileHandle.
density: Floppy.Density, s:ides: Floppy.Sides, maxFileListEntries: CARDINAL];

Floppy.ErrorType: TYPE • {."., stringTooShort •... };

GetAttributes gets relevarlt attributes about a floppy volume. The value of the label
string is stored in the labeliString argument, except that a NIL argument causes this to be
bypassed, rather than raiSUtlg an error. Other attributes are returned in the result list.

The result freeS pace indicl!tes the total number of free pages on the diskette, while the
result largestBlock indicates the largest file that could be created without having to
compact the diskette (see below). The density and sides attributes describe the diskette,
independent of what the drive can support. The rootFile is a distinguished file identified
by the client (see below). 11he fileList attribute describes the file list maintained by Pilot
on the diskette. It is returned for completeness only; clients are strongly discouraged from
using it. The maxFileListElntries attribute describes the length of the list. It is IlXed at
format time and does not ch.ange over the life of a floppy file system instance.

A file may be created on the diskette with the following operation.

Floppy.CreateFile: PROCEDURE [volume: Floppy.VolumeHandle, size:Floppy.PageCount.
fileType: File. Type]
RETURNS [file: Floppy.FileHiindle];

Floppy.ErrorType: TYPE • { ••• , insufficientSpace. zeroSizeFiler fileListFull ... };

CreateFile creates a file of the specified size on the diskette. As with files on the Pilot rigid
disk, each file is created with a File. Type to allow the client program to distinguish what
kind offile it is. All files are allocated contiguously on the diskette.

If no block of free space hi large enough, then Error(insufficientSpace] is raised. An
attempt to create a zero-sizE~d file fails with the error Error(zeroSizeFile]. If the file list is
full, then the file is not created and Error[fileListFull] is raised.

'_·Pilot Programmer's Manual 5

CreateFile, including the updating of the file list, is synchronous and does not return to the
client until the file is created and the diskette is well-formed in the new state.

Floppy.DeleteFile: PROCEDURE [file: Floppy.FileHandle];

DeleteFile deletes the specified file and makes the space available for other files. This
operation, including the updating of the file list, is synchronous and does not return to the
client until the file is deleted and the diskette is well-formed in the new state.

Floppy.GetFileAttributes: PROCEDURE [file: Floppy.FileHandle]
RETURNS [size: Floppy.PageCount. type: File. Type];

This operation gets the attributes of a file.

Floppy.GetNextFile: PROCEDURE [previousFile: Floppy.FileHandle]
RETURNS [nextFile: Floppy.FileHandle];

Floppy.nuIiFileID: Floppy.FilelD •••• ;

GetNextFile enumerates the files on a floppy volume in the standard style of a Pilot
stateless enumerator. Files are enumerated in the order of their occw-rence on the
diskette. The enumeration is started by supplying the nullFilelD and the appropriate
volume and it ends with the same value. The file list is not included in this enumeration.

Floppy.SetRootFile: PROCEDURE [file: Floppy.FileHandle];

SetRootFile allows the client to 'record the FilelD of a file in the volume data structures for
later use. This might be the pointer to a client level directory or to some other data
structure. If the file does not exist, then Error[fileNotFound] is raised.

Floppy.Compact: PROCEDURE [volume: Floppy.Volume];

Compact rearranges the files on the diskette so that all of the free space occurs in one
block at the end of the volume. This is necessary to recover fragmented space in those
(rare) cases where a lot offile creation and deletion occurs.

Caution: Compact is not implemented in Pilot 14.0.

Fioppy.Scavenge: PROCEDURE [volume: Floppy.volume]
RETURNS [numberOfBadSectors: Floppy.PageCount];

Floppy.GetNextBadSector: PROCEDURE [volume: Floppy.VolumeHandle, oldlndex: CARDINAL]
RETURNS [newlndex: CARDINAL. file: Floppy.FileHandle, page: Floppy.PageNumber];

Scavenge recovers the contents of a malformed floppy by restoring the file list, repairing
bad marker pages, and recovering other data specified by the Pilot floppy standard. The
operation returns the number of new bad pages it encountered in client files while
scavenging (others can be handled by Pilot automatically). The operation
GetNextBadSector allows the client to enumerate the new bad sectors, starting and
ending with an index of zero.

Caution: Scavenge and GetNextBadSector are not implemented in Pilot 14.0. (However,
see FloppyExtras. NewScavenge.)

5-25

5

5-26

I/O Devices

FloppyExtras.Erase: PROCEDlJlRE [
drive: CARDINAL, maxNumberOfFileListEntries: CARDINAL"
labelString: LONG STRINIG ... NIL];

FloppyExtras.ExtrasErrorTyp,e: TYPE. { ..•• notFormatted, ... };

Erase resets all the floppy :file system data structures, writes a new clean file list, re-marks
bad pages, and resets all file and microcode pointers. It does not erase any data sectors
(only Format will actually erase all sectors on the diskette). If a labelString is specified,
then the current label is replaced; otherwise the current label remains unchanged. The
volume will be closed ifit is open.

If drive does not describe a dr~ve currently in the system, then Floppy.Error(noSuchDrive] is
raised. If the length of labelString exceeds Floppy.maxCharacterslnLabel, then the label is
truncated to the maximuIn length. Floppy.Error(badDisk] is raised if the disk cannot be
accessed. Floppy.Error[not~leadyl is raised if there is no diskette in the drive or the drive is
not ready. If the diskeUe is write protected, Floppy.Error[writelnhibited] is raised.
floppyExtras.ExtrasError[no1:Formatted] is raised if the diskette has invalid formatting
information.

FloppyExtrasoNewScavenge: PUBUC PROCEDURE (drive: CARDINAL)
RETURNS [okay: BOOLEAP41];

FloppyExtras.ExtrasErrorTYp4I: TYPE. { .••• volumeOpen, ..• }:

FloppyExtras4.problem :FIOPP)'Extras4.ScavengerProblemType;

FloppyExtras4.ScavengeProblemType: TYPE.
{allocMaplnconsistent, badPageTable. bootFile. duplicateFilel0, duplicateFileList,
fileList. fileListEntry. freeSpaceConflict, ioError. none. sectorNine};

NewScavenge recovers the contents of a malformed floppy by restoring the file list,
repairing bad marker pa~res, and recovering other data specified by the Pilot floppy
standard. The volume must not be open. The return value okay indicates whether the
scavenge was successful: if okay returns TRUE, then the floppy was, or was made,
consistent. problem provides information to allow knowledgeable clients to understand
the error which caused NewScavenge to fail; none is the value of problem if okay
returned TRUE.

If drive does not describe a drive currently in the system, then Floppy.Error[noSuchDrive] is
raised. If the diskette is write protected, then Floppy.Error[writelnhibitedj is raised.
FloppyExtras.ExtrasError[voh.JlmeOpen] is raised if the floppy volume on the diskette is open.
Other Floppy.Errors which result from reading or writing the floppy may also be raised.

Note: The 14.0 floppy scavnnger does not repair damage. After validating the file systern
and internal data structurc:!s, it resets the "needs-scavenging" indicator if the floppy is
consistent.

Note: In a future release, Flf:JppyExtras, FloppyExtrasExtras, FloppyExtras3, and FloppyExtras4 will be
merged into Floppy. At thai; time, the names of some interface items may change.

Pilot Programmer's Manual

Several special operations are necessary to support Pilot-bootable floppies.

Floppy.CreatelnitiaIMicrocodeFile: PROCEDURE [volume: Floppy. VolumeHandle,
size: Floppy.pageCount, type: File. Type,
startingPageNumber: Floppy.PageNumber +-1]
RETURNS [file: Floppy.FileHandle];

5

Floppy.ErrorType: TYPE • { ••• , initialMicrocodeSpaceNotAvailable, badSectors, •.• };

CreatelnitialMicrocodeFile is like CreateFile except that it creates the initial microcode
file at the exact location demanded by the hardware boot facility. In particular, the page
of the file numbered startingPageNumber will appear where the hardware expects to read
the rust block from the floppy diskette at boot time. The hardware of our current
machines demands that the initial microcode file must be contiguous and' contain no bad
sectors. Thus, CreatelnitialMicrocodeFile should normally be applied only to a clean,
newly formatted diskette.

If it is not possible to create such a file, either because a file is already there or because
some sector is bad, then Floppy.Error[initiaIMicrocodeSpaceNotAvaiiable] or
Floppy.Error[badSectors] is raised.

Floppy.nuIiBootFilePointer: Floppy.BootFilePointer • [nuIiFileID,O];

Floppy.SetBootFiles: PROCEDURE [vol: Floppy.VolumeHandle,
piiotMicrocode, diagnosticMicrocode, germ,
piiotBootFile: Floppy.BootFilePointer +- Floppy.nuIiBootFilePointer];

Floppy.GetBootFiles: PROCEDURE [volume: Floppy. VolumeHandle]
RETURNS [initial Microcode, piiotMicrocode, diagnosticMicrocode, germ,
piiotBootFile: Floppy.BootFilePointer];

Floppy.BootFilePointer: TYPE. RECORD [Floppy.FileID, page: Floppy.pageNumber];

Floppy.ErrorType: TYPE • { ••• , invalidPageNumber, ••• };

SetBootFiles sets the pointers to the relevant boot files in the volume data structures. This
track is read by the initial microcode at boot time in order to properly initialize the
microcode and Pilot. Both a FilelD and a page number are specified so that leader pages
may be included in floppy boot files if'desired. SetBootFiles will set the pointer in track
zero for any of its arguments with a non-~ull FileiD. Boot file pointers with nuliFilelD are
cleared. SetBootFiles is synchronous.

If the specified file page(s) do not exist, then Error[invalidPageNumber] is raised.

The remaining boot files on the diskette, apart from the initial microcode boot file, are all
read by the initial microcode file. Thus, they can be located anywhere and can have bad
sectors in them, and the initial microcode can interpret the bad sector table if necessary.

The operation GetBootFiles gets the pointers to all of the boot files, including the initial
microcode boot file.

It is recommended that clients assign distinguished Pilot file types to boot files to allow
the boot file pointers to be reset, if necessary, after scavenging.

Note: Booting in the manner described here is not supported on Dandelions by Pilot 14.0.
Clients must use MakeDLionBootFloppy tool to create bootable floppies in Pilot 14.0.

Note: In the current release of Pilot, bad sectors are not allowed in boot files. The results
are undefined if this occurs.

5-27

5 I/O Devices

5.6 TTY Port channel

5-28

TrYPort: DEFINITIONS ... ;

rrYPortEnvironment: DEFINIITIONS ... ;

The TrY Port channel is ~L Product Common Software package which provides a Pilot
client with access to the ~rrY Port controller and the connected device. It contains
procedures for sending and lreceiving bytes to and from the device, and for receiving status
back. Examples of devices that use the TTY Port include the Diablo 630 character printer
and the Lear Siegler ADM-3: display terminal.

4

The rryPort interface is iml)lemented by TTYPortChannel. bed.

The Diablo 630 character printer is an ASCII output device containing a daisy wheel
printer of the HyType II genre. The Lear Siegler ADM-3 display terminal is an ASCII I/O
device of the "glass teletype" type.

5 .. 6 .. 1 Creating and deleting the TrY Port channel

TTYPort.Create: PROCEDURE [IineNumber: CARDINAL]
RETURNS [TTY Port. Channel Handle];

TTYPort.ChanneIHandle: PRIV~'TE .•• ;

TTYPort.nuIiChanneIHandle: TTYPort.ChannelHandle ••• ;

TTYPort.ChanneIAlreadyExist:s: ERROR;

TTYPort.NorrYPortHardware: ERROR;

TTYPort.lnvalidLineNumber: ERROR;

Create creates the channel to the TTY Port. If the channel already exists, Create
generates the error TTYPort.C:hanneIAlreadyExists. If no TTY Port hardware is installed,
Create generates the error T1"YPort.NoTIYPortHardware. IflineNumber does not represent
a line present on the TTY Port controller, Create generates the errol'
TTYPort.lnvalidLineNumber.

TTYPort.Delete: PROCEDURE [channel: TTYPort.ChanneIHandle);

Delete deletes the channel and releases the associated device. This operation has the
effect of calling Quiesce, aborting all pending activity on the channel. Any uncompleted
Gets or Puts will be terminatl~d with status = abortedByDelete.

TTYPort.Quiesce: PR'OCEDURE [channel: TTYPort.ChanneIHandle];

Quiesce aborts all pending a.ctivity. All uncompleted asynchronous activities (Le., those
initiated by Get or Put) will he terminated with status equal to aborted. Any additional
operations on the channel, other than Delete, cause the error ChannelQuiesced.

Pilot Programmer's Manual 5

5.6.2 Data transfer

TTYPort.Put: PROCEDURE [channel: TTYPort.ChanneIHandle, data: CHARACTER)
RETURNS (status: TTYPort. TransferStatus);

Put transmits data to the TTY Port. status will be set to success if the character is
successfully transmitted. Aborts are disabled for this operation.

TTYPort. Get: PROCEDURE [channel: TTY Port. Channel Handle)
RETURNS [data: CHARACTER, status: TTY Port. TransferStatus);

TTYPort.Get waits until a byte of data is received from the TTY Port. status equals success
if a character is successfully received. Aborts are disabled for this operation.

The procedure

TTYPort. Send Break: PROCEDURE [channel: TTYPort. Channel Handle];

causes a break to be sent on the specified TrY channel.

5.6.3 Data transfer status

The status of an individual data transfer (Le., Get or Put) is indicated by a variable of type
TransferStatus.

TTYPort.TransferStatus: TYPE. {success, parityError, asynchFramingError, dataLost,
breakDetected, aborted, abortedByDelete};

The meanings of these status codes are:

success

parityError

asynchFramingError

data Lost

breakDetected

aborted

abortedByDelete

5.6.4 TTY Port operations

Normal completion.

Data has not been transferred faithfully.

Data has not been transferred faithfully (Le., stop bits
were missing).

Data has been lost due to lack of any data buffers to hold
received characters.

A break has occurred on the line. This bit is latched and
can be cleared using the SetParameter operation (see
below).

TTYPort. Quiesce has been called while the transfer is
outstanding.

TTYPort.Delete has been called while the transfer is
outstanding.

The TTY Port Channel will buffer up to 16 characters of input from its device along with
their associated transfer status. To see if and how much data has been received from the
device by the TTY Port, call the procedure

5-29

5

5-30

I/O Devices

TTYPort.CharsAvaiiable: PR()CEDURE [channel: TTYPort.ChannelHandle]
RETURNS [number: CARDII'IAL);

number indicates the number of input buffers containing data.

The various parameters associated with a TTY port are set with the procedure

TTYPort.SetParameter: PROCEDURE [channel: TTYPort.ChanneIHandle,
parameter: TTYPort.Pararneter]; .

The parameters are contauled in records of the following type:

TTYPort.Parameter: TYPE • RIECORD [SELECT parameter: * FROM
breakOetectedClear • :>. [breakOetectedCJear: BOOLEAN],
characterLength • > [characterLength: TTYPort.CharacterLength],
clearToSend • > [ciearT'oSend: BOOLEAN],
dataSetReady • > [dataiSetReady: BOOLEAN],
IineSpeed • > [lineSpeed: TTYPort.LineSpeed],
parity • > [parity: TTYPort.Parity],
stopBits • > [stopBits: lTYPort.StopBits],
ENDCASE]i

TTYPort.CharacterLength: TV'PE • TTYPortEnvironment.CharacterLength;

TTYPort.LineSpeed: TYPE. 'nYPortEnvironment.LineSpeed;

TTYPort.Parity: TYPE. TTYPor1:Envlronment.Parity;

nvPort.StopBits: TYPE. TTYF'ortEnvlronment.StopBits;

TTYPortEnvironment.LineSpeed: TVPE • {bpsSO, bps7S, bps110, bps134pS, bps1S0, bps300,
bps600,bps1200,bps1S00,bps2000,bps2400,bps3600,bps4800,bps7200,bps9600,
bps19200};

TTYPortEnvironment.Parity: TV,tE • {none, odd, even};

TTYPortEnvlronment.CharacterLength: TVPE • {lengthlsSbits.lengthls6bits,lengthls7bits,
lengthlsSbits};

nvPortEnvironment.StopBits: 'NPE • {none, one, oneAndHalf, two};

breakOetectedClear is used to dear the latch bit breakOetected in TTYPort.OeviceStatu5.

characterLength selects the character length and is defaulted to lengthlsSbits.

The boolean clearToSend governs the state of the corresponding circuit to the TTY Port. It
is defaulted to FALSE. After the TTY Port channel is created, clearToSend should remain
TRUE at all times since the communication line is full-duplex.

The boolean dataSetReady ~~overns the state of the corresponding circuit to the TTY Port.
It is defaulted to FALSE. datclSetReady should be set TRUE when the communication line is
to be connected, FALSE when i.t is to be disconnected.

IineSpeed selects the timer constant for the baud rate generator which provides the
clocking for transmissions to and from the TTY Port. The default is bps1200,

parity selects the parity of the transmissions. The default is none.

stopBits is the number of stop bits. The default is two.

Pilot Programmer's' Manual 5

5.6.5 Device status

In addition to the status information returned for each data transfer operation, state
information about the TTY Port itself is kept in the DevieeStatus record. It is accessed via
the GetStatus procedure.

TTYPort.GetStatus: PROCEDURE [channel: TTYPort.ChanneIHandle]
RETURNS [stat: TTYPort.DevieeStatus];

The procedure

TTYPort.StatusWait: PROCEDURE [channel: TTYPort.ChanneIHandle,
stat: TTYPort. DevieeStatus 1
RETURNS [newstat: TTYPort.DevieeStatus];

waits until the current DevieeStatus differs from the supplied parameter stat. The client
must examine newstat to determine what action to take.

TTYPort.DevieeStatus: TYPE. RECORD [aborted, breakDetected, dataTerminalReady,
readyToGet, readyToPut, requestToSend: BOOLEAN];

The boolean aborted indicates that the TTYPort.StatusWait was aborted by either a
TTYPort.Delete or TTY Port. Quiesce.

The boolean breakDeteeted indicates that a "break" was received on the communication
line, where break is defmed to be the absence of a "stop" bit for more than 190
milliseconds. This boolean is called a latch bit ~ that it is set by the channel when the
associated condition occurs, but is not cleared by the channel when the condition clears. It
remains set to guarantee that the client has an opportunity to observe it. To clear it (in
order to detect its subsequent setting), breakDetectedClear is specified as a parameter to
the TTYPort.SetParameter procedure.

The boolean dataTerminalReady is TRUE when the associated device is powered on.

The boolean readyToGet is TRUE when the hardware input buffer (for data sent from the
device) is not empty.

The boolean readyToPut is TRUE when the hardware output buffer (for data sent to the
device) is not full.

The boolean requestToSend is held TRUE by the device (as in a 103-type modem) to enable
transmission to the device.

5.7 TTY InputJOutput

TTY: DEFINlnONS 0 •• ;

The TTY interface provides a simple character-oriented input and output facility. It
admits many implementations on character-oriented terminal devices. In this way it is a
lot like the Stream interface. This interface is Product Common Software.

Note: For most clients, the default TTY implementation will be supplied as part of this
release: TTYLearS i e91e r • bed or that provided by the Xerox Development Environment.

5-31

5

5-32

I/O Devices

Note: The Lear Siegler ':rry implementation has the following default settings for the
TTY Port channel: 8 bit characters, 9600 baud, 2 stop bits, no parity, CTS set to ON, and
DSR set to ON.

5.7.1 Starting and stopping

TTY.Create: PROCEDURE [narne: LONG STRING +- NIL"
backingStream, ttylmpl: Stream.Handle +- NIL]

RETURNS [h: TTY.Handle];:

1TY.CreateTTYlnstance[nalme: LONG STRING.
backingStream:Stream.l~andle. tty:TTY .Handle]

RETURNS [ttylmpl, backin,g:Stream.Handle)

TTY.Handle: TYPE [2];

TTY.nuIiHandle: TTY.Handl«:t • LOOPHOLE[LAST[LONG CARDINAL];

TTY.NoDefaultlnstance: ERnOR;

TTY. OutOfI nstances: ERROR;

Create creates a Handle, which is returned to the caller. This handle is then passed as an
argument to the other TrY input/output operations. The arguments name and
backingStream are used by the underlying TTY implementation in an implementation~
dependent fashion to impl,ement the backing file for the TTY. If ttylmpl is not NIL, it is
used as the stream implelnenting the'rI'Ystream. If ttylmpl is NIL, an instance of the
default TrY implementation is created. The parameter h is the nv .Handle that will
correspond to the stream underlying this TTY channel when the call to TTY .Create
completes.

If ttylmpl is NIL and there is no default TTY implementation, then the error
NoDefaultlnstance is raised. If another Handle cannot be created, then OutOfinstances is
raised.

CreateTTYlnstance is the l)rocedure interface through which an instance of the default
TTY implementation is Eixported. Create calls this procedure when ttylmpl is NUL.
Parameter use is at the dis<!retion of the implementation.

ttylmpl and backing are returned to be used in an implementation-dependent fashion to
implement the backing file for the TTY.

Note: The Lear Sie;gler TTY implementation ignores the parameters of
CreateTTYlnstance.

TTY .SetBackingS;ze: PROCEDIURE [h: TTY.Handle, size: LONG CARDINAL];

SetBackingSize sets an upper limit on the number of bytes in the backing file and forces
the backing file to be used in a Wl"ap-around mode. It has no effect if the implementation
does not support a backing file.

TTY .Destroy: PROCEDURE [h: TTY .Handler deleteBackingFile: BOOLEAN +- FALSE];

Destroy invalidates TTY.Handle. If deleteBackingFile is TRUE and the backing file was
created by Create then the backing file is deleted.

Pilot Programmer's Manual

TTY.UserAbort: PROCEDURE(h: TTY.Handle] RETURNS [yes: BOOLEAN];

TTY.ResetUserAbort: PROCEDURE[h: TTY .Handle];

TTV.SetUserAbort: PROCEDURE[h: TTY.Handle];

5

UserAbort returns the value of the user abort flag. TRUE indicates that that user has typed
some "abort" key. TTY.ResetUserAbort clears the user abort flag. TTY.SetUserAbort sets
the user abort flag,just as if the user had typed the "abort" key.

Note: The Lear Siegler TrY implementation allows users to abort processes by
depressing the Break key or by depressing the Control and Stop keys simultaneously.

5.7.2 Signals and errors

TTY.LineOverflow: SIGNAL [5: LONG STRING] RETURNS [ns: LONG STRING];

LineOverflow indicates that input has filled the string s. The current contents of the
string are passed as a parameter. The catch phrase should return a string ns with more
room.

TTY.Rubout: SIGNAL;

Rubout indicates that the DEL key was typed during TTY.GetEditedString (or procedures
which call GetEdi~edString).

5.7.3 Output

To output a block of characters call

TTY.PutBlock: PROCEDURE[h: nv.Handle, block: Environment.Block];

5.7.4 Utilities

TTY.BackingStream: PROCEDURE [h: nv.Handle] RETURNS [stream: Stream. Handle];

TTY. NoBackingFile: ERROR;

If a backing stream was created by TTY.Create, then this operation returns the
Stream.Handle for it. Ifnone was created, then the error TTY.NoBackingFile is raised.

TTY.CharsAvaiiable: PROCEDURE [h: TTY.Handle] RETURNS [number: CARDINAL];

CharsAvaiiable returns the number of input characters available (but not yet delivered to
the client).

TTY.NewLine: PROCEDURE [h: TTY.Handle] RETURNS [yes: BOOLEAN];

Newline returns TRUE when at the beginning of an output line. This procedure is mainly
used when formatting output.

TTY.PutBackChar: PROCEDURE [h: TTY.Handle, C: CHARACTER];

PutBackChar places c at the front of the list of characters to be input to the client.

5-33

5

5-34

110 Devices

TTY.SetEeho: PROCEDURE [h: TTY.Handle. new: TTY.EehoClass)
RETURNS [old: TTV.EehoClass);

TTY.GetEeho: PROCEDURE [h.: TTY.Handle RETURNS [old: TTV.EehoClass);

TTY.EehoClass: TYPE. {nolne. plain, stars};

SetEeho sets how input characters are to be echoed back to the output. It returns the
previous state of the echoing mode. If the mode is none, then no characters are echoed; ifit
is stars, then the charactEtr ft." is echoed for each input character. The default echoing
mode is plain.

Automatic echoing is done only for the procedure TTY.GetEditedString and the procedw'es
implemented using TTY .GetEditedString.

TTY.BlinkDisplay: PROCEDURE.[h: TTY.Handle];

This procedure causes the display to be blinked if the device is capable of it.

TTY.PushAlternatelnputStrleam: PROCEDURE [h: TTY. Handle. stream: Stream.Handle];

TTY.PopAlternatelnputStre,ams: PROCEDURE [h: nv.Handle. howMany: CARDINAL+-1];

PushAlternatelnputStream adds an alternate input stream to the Handle. Characters will
be taken from the most recently pushed alternate input stream until it is exhausted, at
which point characters will be taken from the previous input stream.

PopAlternatelnputStreams removes howMany alternate input streams from the Handle.
If howMany is greater than the number of existing alternate. input streams, then all
existing are removed beforo PopAlternatelnputStreams returns.

5 .. 7.5 String input operations

nv.GetChar: PROCEDURE [h: 'TTY. Handle) RETURNS [e: CHARACTER);

GetChar returns the next character of input when it becomes available.

TTY .CharStatus: TYPE. {ok. ~stoP. ignore};

TTY.GetEditedString: PROCEt)URE [h: nY.Handle. s: LONG STRING.
t: PROCEDURE [e: CHARACTElt) RETURNS [status: TTY.CharStatus])
RETURNS [e: CHARACTER);

GetEditedString appends input character(s) to the strings. The user-supplied procedure t
determines which character terminates the string. If t returns stop, then the character e
passed to it should terminate the string. If t returns ok, then the character e should be
appended to the string. 1ft :retums ignore, then the character e should not be appended to
the string, but the string should not yet be terminated. Note that the client must initialize
s.length, typically to zero.

The signal TTY.LineOverflovll is raised ifs.maxlengthis reached.

Pilot Programmer's Manual 5

The following special characters are recognized on input and are not appended to s:

DEL raises the signal TTY.Rubout

SOH, BS j A, j H (backspace) - delete the last character

ETB, DCl j W, j Q (backword) - delete the last word

CAN jX delete everything

DC2 jR retype the line

SYN tv quote the next character, used to input
special characters

Echoing of characters other than the special characters and the terminating character is
determined by the echoing mode set by TTY.SetEcho; the default is plain. The returned
character c is the character which terminated the string. c is not echoed nor included in
the string.

The following three string input procedures use TTY. GetEditedStri ng to read a string.

TTY.GetString: PROCEDURE [h: TTY. Handle, s: LONG STRING,

t: PROCEDURE [c: CHARACTER) RETURNS [status: TTY .CharStatus]];

TTY.GetID: PROCEDURE [h: TTY.Handle. s: LONG STRING);

TTY.GetLine: PROCEDURE [h: TTY.Handle.s: LONG STRING);

GetString reads a string into s. The user-supplied procedure t determines which character
terminates the string. 1ft returns stop, then the character c passed to it terminates the
string. If t returns ok, then the character c will be appended to the string. If t returns
ignore, then the character c will not be appended to the string. but the string will not yet
be terminated. The terminating character (the character returned by TTY.GetEditedString)
is echoed regardless of the echoing mode.

GetlD reads a s~ring terminated with a space or a carriage return into s. The terminating
character (space or carriage return) is not echoed regardless of the echoing mode.

GetLine reads a string terminated with a carriage return into s. The carriage return is not
appended to s. A carriage return is output regardless of the echoing mode.

TTY.GetPassword: PROCEDURE [h: TTY.Handle. s: LONG STRING];

GetPassword calls GetEditedString with echoing set to stars, then restores the previous
echoing mode.

5.7.6 String output operations

TTY.PutChar: PROCEDURE [h: TTY. Handle. c: CHARACTER];

PutChar outputs the character c. If c is a carriage return, the next character that is output
will be in the iIrSt position of the next line. Note that control characters other than a
carriage return being output are not interpreted by PutChar, but rather translated into a
two character printable sequence (e.g., f A). If c is Ascii.SS, a representation of the

5-35

5

5-36

110 Devices

backspace will be displayed in the window. To backspace over previously output
characters, see RemoveCha racter below.

TTY.PutCR: PROCEDURE [h: mr.Handle];

PutCR outputs a carriage return. The next character that is output will be in the first
position of the next line.

TTY.PutBlank. PutBlanks: PROCEDURE [h: TTY.Handle. n: CARDINAL +-1];

PutBlank(s) outputs n spaces.

TTY .PutDate: PROCEDURE [h: irTY .Handle. gmt: Tlme.Packed,
format: TTY. DateForma't +- noSeconds];

TTY. DateFormat: TYPE • Fornlat. DateFormat;

Format.DateFormat: TYPE. {dateOnly, noSeconds, dateTime, full, mail Date};

Put Date outputs the Greenwich mean time, packed in the Time format, according to the
format specified.

The different formats have the following interpretation:
maildate: 27 Jul ~18 09:23:29 PDT (Wednesday)
full: 27-Jul-;88 9:23:29 PDT
dateTime: 27-Jul-:88 9:23:29
nOSeconds: 27-Jul-:88 9: 23
dateOnly: 27-Jula 88

TTY.PutString. PutText: PROC:EDURE [h: TTY.Handle, S: LONG STRING];

TTY.PutLine: PROCEDURE [h: Trv.Handle. s: LONG STRING];

TTY.PutSubString. PutLongSubString: PROCEDURE [h: TTY.Handle.
5S: String.SubString];

PutStri ng outputs the strin~~ s. Whenever a carriage return is output, the next character
that is output will be in thu rust position of the next line. PutLine outputs the string s
followed by a carriage returlr1. The other procedures output their string parameter.

TTY.RemoveCharacter, Rem()veCharacters: PROCEDURE [h: TTY.Handle.
n: CARDINAL +- 1];

RemoveCharacter(s) backsp.aces over the last n characters output, erasing the character:s
from the display. In implelILentations lacking an actual hardware backspace facility, this
is often simulated by outputting the backed-over text surrounded by backslashes.

5.7.7 Numeric input operations

The following six numeric input procedures use TTY.GetEditedString to read a string
terminated with a space or a carriage return. The terminating character is not echoed
(regardless of the echoing mode), An implementation of TTY might use the numeric
conversion facilities offerf~d by the String interface. If it did, it would raise
String.lnvalidNumber when :presented with an input string that did not conform to the
syntax for a number.

Pilot Programmer's Manual

TTY. GetNumber: PROCEDURE [h: TTY. Handle. default: UNSPECIFIED,
radix: CARDINAL. showDefault: BOOLEAN]
RETURNS [n: UNSPECIFIED];

5

TTY.GetLongNumber: PROCEDURE [h: TTY.Handle, default: LONG UNSPECIFIED, radix: CARDINAL.
showDefault: BOOLEAN)
RETURNS [n: LONG UNSPECIFIED];

These operations read in a string and convert it to base radix. If an ESC is the first
character typed and showDefault is TRUE, a string rep~esenting the value of default
converted to base radix is displayed. If radix is 10 and default is negative, a minus sign
will be preflXed, or if radix is 8, the character B will be postfIxed.

TTY.GetOctal: PROCEDURE [h: TTY.Handle] RETURNS [n: UNSPECIFIED];

TTV.GetLongOctal: PROCEDURE [h: TTY.Handle] RETURNS [n: LONG UNSPECIFIED];

TTY.GetDecimal: PROCEDURE [h: TTY.Handle] RETURNS [n: INTEGER];

TTY,GetLongDecimal: PROCEDURE [h: TTY,Handle1 RETURNS [n: LONG INTEGER];

GetOctal and GetLongOctal read in a string, then convert it to octal. GetDecimal and
GetLongDecimal read in a string, then convert it to decimal.

5 .. 7.8 Numeric output operations

TTY.PutNumber: PROCEDURE [h: TTY.Handle, n: UNSPECIFIED.
format: TTY.NumberFormat];

TTY.PutLongNumber: PROCEDURE [h: TTY. Handle, n: LONG UNSPECIFIED.
format: TTY.NumberFormat];

TTY.NumberFormat: TYPE. Format.NumberFormat;

Format.NumberFormat: TYPE. RECORD [base: [2 •• 36] 1f-10, zerofill: BOOLEAN If-FALSE.
unsigned: BOOLEAN If-TRUE, columns: [0 •. 255] If- 0] ;

PutNumber and PutLongNumber convert n to a string representing it~ value according to
the format specffied, and then output the string. NumberFormat refers to a number whose
base is base. The fIeld is columns wide (if columns is 0, it means use as many as needed).
If zerofill is TRUE, the extra columns are filled with zeros, otherwise spaces are used. If
unsigned is TRUE, the number is treated as unsigned. Output strings representing
negative numbers begin with a minus sign.

TTY.PutOctal: PROCEDURE [h: TTY.Handle. n: UNSPECIFIED];

TTY.PutLongOctal: PROCEDURE [h: TTY.Handle. n: LONG UNSPECIFIED];

TTY.PutDecimal: PROCEDURE [h: TTY. Handle. n: INTEGER];

TTY.PutLongDecimal: PROCEDURE [h: TTY.Handle. n: LONG INTEGER];

PutOctal and PutLongOctal convert n to a string representing the octal value (when n is
greater than 7, the character B is appended), and then output the string. PutDecimal and
PutLongDecimal convert n to a string representing the signed decimal value, and then
output the string.

5-37

5 IJO Devices

5.8 FloppyTape file system

5-38

FloppyTape: DEFINlnONS ... ,;

FloppyTapeExtras: DEFINITlClNS ... ;

SpecialFloppyTape: DEFINITIONS ... ;

50801 Accessing files on the tape

1'he floppyTape contains a collection of files. As with Pilot volumes on rigid disks, each
file is a sequence of 512-byte blocks called pages. A page corresponds to a sector on the
floppyTape.

FloppyTape.FileID: TYPE [2];

FloppyTape.nuIiFileID: READONLY FloppyTape.FileID;

Files are identified by valu.es of the type FileiD. These are uninterpreted 32-bit quantities
assigned uniquely within a given floppyTape. FilelDs are not unique from one tape to
another. In particular, ita, tape is copied, the new tape may have the same files with the
same FitelDs as the old. Although it is the intention of the implementation not to reuse
File~Ds, they are not guaranteed to be unique in time for a given tape; that is, it is possible
for a FilelD to be assigned to a file and later the tape Erased and the FilelD to be
subsequently reused.

In order to access the floppyTape, the client must specify a handle of type

FloppyTape.VolumeHandle: 1-YPE (2);

FloppyTape.nuIiVolumeHandle: READONLY FloppyTape. VolumeHandle;

A VolumeHandle is assigned when the floppyTape is opened (using
FloppyTape.OpenVolume). A VolumeHandle becomes invalid if the floppyTape is removed,
or removed and reinserted, even if the floppyTape remains the same. Values of type
VolumeHandle are not reuned within a given instantiation of Pilot; that is, from one boot
to the next.

A complete specification of II floppyTape file is given by

FloppyTape.FileHandle: TYPE :. RECORD [
volume: FloppyTape. Volun,eHandle, file: FloppyTape.FileID);

FileHandleFromFilelD is pr4)vided to construct a FileHandle from a VolumeHandle and a
FileiD.

FloppyTape.FileHandleFromFiileID: PROCEDURE [
fileld: FloppyTape.FileID, vtolume:.FloppyTape.VolumeHandle] RETURNS [file: FileHandle];

Errors raised by the implerrlentation are listed below.

FloppyTape.JOErrdr: ERROR [
file: FloppyTape.FileHandIEI, byte: FloppyTape.ByteOffset,
fimHole: FloppyTape.Sectc)rNumber, howManyHoles: CARDINAL];

FloppyTape.Error: ERROR [errol': FloppyTape.ErrorType];

Pilot Programmer's Manual

FloppyTape.ErrorType: TYPE = {
badTape. badSectors. fileNotFound, hardwareError. inUse.
invalidByteOffset. invalidVolumeHandle, insufficientSpace, needsScavenging,
noSuchDrive. notFormatted, notReady, volumeOpen. writelnhibited};

5

For all operations, if the floppy tape software is currently busy processing a
ChangeVolume, Erase, Format, OpenVolume, ReserveDiagnosticArea, Scavenge, or
Retention, then Error[inUse] is raised. For all other operations, subsequent FloppyTape
calls will wait.

Caution: On some pieces of hardware, it is possible to remove a tape in the middle of a
read or write. Doing so may lead to undefmed results.

All write operations in this interface are asynchronous, unlike the Floppy interface which is
synchronous. That is, some FloppyTape write operations may return to the client before the
data has actually been written to tape. If a client wishes to force a synchronous write,
then either of the procedures ForceOut or ForceOutBuffersOnly must be called.

FloppyTape.ForceOut : PROCEDURE [volume: FloppyTape. VolumeHandle];

ForceOut moves all the files buffered by the file system to the tape and forces a write of
other internal file structures to the tape. ForceOut returns only after the write operations
are complete.

FloppyTape.Error[invalidVolumeHandle] is raised if the floppyTape was removed and/or
reinserted, the volume was closed, or an otherwise bogus handle was specified. See
FloppyTape.WriteFile error conditions for other errors occurring during the ForceOut.

FloppyTape.ForceOutBuffersOnly: PROCEDURE [

volume: FloppyTape. VolumeHandle];

F~rceOutBuffersOnly moves all the files buffered by the file system to the tape, but does
NOT write otherintemal fue structures to the tape. Therefore, it should complete faster
than ForceOut, although the contents of the tape may be harder to recover if a Scavenge is
required at a later time. ForceOutBuffersOnly returns only after the write operations are
complete.

FloppyTape.Error[invalidVolumeHandle] is raised if the floppyTape was removed and/or
reinserted, the volume was closed, or an otherwise bogus handle was specified. See
FloppyTape. Write File error conditions for other errors occurring during the ForceOut.

Note: Use of the procedures ForceOut and ForceOutBuffersOnly overrides the streaming
capabilities estimated for the Wangtek tape drives. For ForceOut, the tape will rewind to
the rust stream, frrst track, frrst sector, before completion of the operation. Rewinding
may take up to one and a half minutes. Limited use of both procedures is recommended.

FfoppyTape. Drive: CARDINAL;

FloppyTape.locaIDrive: FloppyTape.Drive • 0;
FloppyTapeExtras.nuIiDrive: FloppyTape.Drive •.•• ;

local Drive is usually the drive containing the floppyTape unit. However, to be sure that a
floppyTape unit is referenced, clients must use the stateless enumerator
GetNextFloppyTapeDrive.

5-39

5

5-40

110 Devices

FloppyTapeExtras.GetNextFlo~)pyTapeDrive: PROCEDURE [
drive: FfoppyTape.Drive)
RETURNS [nextDrive: FloPPl,Tape.Drive];

Enumeration of floppyTap,e devices begins and ends with FloppyTapeExtras.nuIiDrive. If
drive does not exist, then FloppyTape.Error[noSuchDrive] is raised. If there are no
floppyTape devices, then FlclppyTapeExtras.nuliDrive is returned on the first enumeration as
the value of nextDrive.

5.8.1 .. 1 Opening, closing, and ChUlging volume

In order to access the floppyTape at all, the volume must be opened.

NotifyClientProc: TYPE • PRtJCEDURE [
drive: FloppyTape.Drive, which: {start, stop}];

FloppyTape.OpenVolume: PRC)CEDURE [
drive: FloppyTape.Drive"-IFloppyTape.local Drive.
readOnly: BOOLEAN ..- FAL~;Eo
notifyClientOfRetention: FloppyTape.NotifyCI ientProc,l
RETURNS (volume: FloppyTa,MI. VolumeHandle];

The operation OpenVolun1e opens the floppyTape volume and prepares it for all
subsequent operations. The' drive argument indicates which floppyTape drive is intended.
If readOnly is TRUE, then the floppyTape is opened only for read access. If FALSE, the tape is
opened for read and write, £!)rcing an automatic three minute retention pass. If the client
wishes to be informed of l~etention passes occurring dwing use of the tape after an
OpenVolume, then the call back procedure, notifyClientOfRetention, must be provided.
Once a volume is opened, nlO other clients can open that volume; if an attempt is madt!,
then Error(volumeOpen] is raised.

If no floppyTape is in the dlrive or if for some other reason the drive is not ready, then
Error(notReady] is raised. 1f drive specifies an unknown device, then Error[noSuchDrive]
is raised. If a hardware drive failure occurs, then Error[hardwareError] is raised. If the
floppyTape is not formatted l • then Error[notFormatted] is raised. If the tape does not allow
the proper context to be set, then Error[badTape) is.raised. If there is insufficient virtual
memory for Pilot's use, the:n Error[insufficientSpace] is raised. If the volume otherwise
appears not to be well formed (Pilot data structures cannot be read or inconsistencies occur
in the structures), then Errolr[needsScavenging] is raised. If the tape is opened read/write,
but the hardware says readOnly, then Error[writelnhibited] is raised. In any of these
cases, the volume is not operled.

FloppyTape.CloseVolume: PROCEDURE [volume: FloppyTape. VolumeHandle];

An open volume must be cl(]lsed by calling CloseVolume. If the volume is not closed after
having been opened for write, the next open may raise Error[needsScavenging].
Error[invalidVolumeHandle] is raised if the floppyTape was removed and/or reinserted or
an otherwise bogus handle was specified. Closing a closed volume is a no-oPe

Note: If the tape is not positioned at the beginning, then both OpenVolume and
CloseVolume will rewind to the rll"st stream, rll"st track, first sector before completion of
the operation. Rewinding may take up to one and a half minutes.

Pilot Programmer's Manual 5

FloppyTape.ChangeVolume: PROCEDURE [volume: FloppyTape. VolumeHandle]
RETURNS [newVolume: FloppyTape. VolumeHandle];

FloppyTape.ChangeTapeNow: SIGNAL[drive: FloppyTape.Drive];

ChangeVolume locks volume while a tape is removed and another tape inserted. This
procedure is provided for those clients that do not wish to give up their access to the drive
while tapes are being changed. A new volume handle, newVolume, is returned after the
next tape is inserted. The tape is supposed to actually be changed when ChangeTapeNow
is raised in the middle of the call to ChangeVolume. Thus, the signal should be resumed.

Possible errors are the same as for CloseVolume and OpenVolume. The new tape will
have the same access that the old tape had; that is, readOnly or read/write.

5.8.1.2 Data transfer procedures

The principal operations on floppyTape files are to read from or write to them a sequence
of bytes.

Note: All byte counts and byte offsets must be in increments of the page size.

FloppyTape.ByteCount. ByteOffset: TYPE • LONG CARDINAL;

FloppyTape. VMBuffer: TYPE • RECORD [count: ByteCount. vm: LONG POINTER];

FloppyTape.ScatteredVMSeq: TYPE • RECORD [
SEQUENCE length: CARDINAL OF FloppyTape. VMBuffer);

FloppyTape.ScatteredVM: TYPE. LONG POINTER TO FloppyTape.ScatteredVMSeq;

FloppyTape.ReadFile: PROCEDURE [
file: FloppyTape.FileHandle. first: FloppyTape.ByteOffset
scatteredVM: FloppyTape.ScatteredVM1;

FloppyTape.WriteFile: PROCEDURE [
volume: FloppyTape.VolumeHandle. type:Fn.~Type.
scatteredVM: FloppyTape.ScatteredVM1
RETURNS [fileld: FloppyTape.FileID);

ReadFile and WriteFile cause a sequence of pages to be copied to or from the areas in
virtual memory designated by scatteredVM. scatteredVM is a sequence of long pointers to
vm and a count to copy; each vm pointer must point to the beginning of a page. The total
counts is the amount copied. Each chunk. of virtual memory is concatenated with the next
as it is copied to the floppyTape.

ByteCount limits ,the tape to approximately 4194 megabytes.

scatteredVM is provided during write operations for performance reasons; that is, to keep
the floppyTape streaming. Otherwise, one vm pointer would have been sufficient. During
read operations, scatteredVM is provided for clients requiring more than one buffer; that
is, a single buffer is not sufficient to hold the data or a leader page extracted from the file
data portion.

ReadFile reads from the floppyTape file beginning at the location designated by first and
ends when the total counts specified by scatteredVM is· exhausted or the file is exhausted.
ReadFile returns to the client upon completion of the read.

5-41

5

5-42

I/O Devices

If the file argument d4)es not specify a known file on that floppyTape, then
Error[fileNotFound] is raised. If first is not an increment of a page size or is not a page
within the file, then Errol'[invalidByteOffset] is raised. If certain Pilot structures are
unreadable, then Error[needsScavenging] is raised. If the drive suddently does not appear
ready, then Error[notReady] is raised. If the hardware does not seem to be functioning
properly, then Error[hardw'areError] is raised.

In order to read in an entiJre file, ReadFile may be called multiple times by adjusting the
first parameter. The area to or from which data is copied must be mapped virtual memOI'Yf
page aligned, and if necessary, writeable; otherwise, an address fault or write protect fault
results.

If a read error occurs during transmission of the data (due to an unexpected error resulting
in a bad sector), then the ,error FloppyTape.IOError is raised and data transmission stops.
This error is raised after the data transmission occurs. The values returned with this
error indicate the offending file, byte offset into the file where the fIrst bad sector
appeared, the sector number on the tape where the fust bad sector appeared, and the
number of holes that were c:aused during transmission.

Note: Bad sectors occurriJo.g during a read operation are placed in the file system's bad
sector table. These sectors will appear as holes in the files in which they are contained.
The sectors will not be resLd, but will have zeroed-out data substituted for them. If too
many bad pages are enc:ountered (i.e., if the number exceeds the limit specified
internally), then Error[bad1rape] is raised.

WriteFile creates a file of type type and a size of the total counts specified by scatteredVM.
fileld is the file id of the newly created file. WriteFile returns to the client after the data
has been copied to the file system buffers, implying the data may not immediately be
written to tape.

Writing beyond the physical end-of-tape raises Error[insufficientSpace] before any data is
transferred. If an attempt~ to write to the floppyTape fails because the tape is write­
protected or was opened read-only, then the error Error[writelnhibited] is raised.
Error[invalidVolumeHandle] is raised if the floppyTape was removed and/or reinserted,
the volume was closed, or an otherwise bogus handle was specified. If the drive suddenly
does not appear to be ready, then Error[notReady] is raised. If the hardware does not seeIn
to be functioning properly, then Error[hardwareError] is raised.

All bad sectors occurring during write operations are handled by the file system. A client
is not informed of the bad sectors occurring. However, Error[badTape] is raised if the
number of bad sectors exceeds the limit specified by the file system.

Note: Because of the asynchronous behavior of the write operation, errors detected during
the write are reported on the following floppyTape operation. Clients must handle
catching errors from the previous asynchronous tape operations.

Caution: In Pilot 14.0, it is recommended to keep a buffer of259 unused sectors at the end
of a floppyTape in order to aid in scavenging and to guarantee not overflowing the tape on
an asynchronous write that ,encounters bad pages.

Pilot Programmer's Manual

FloppyTape.AppendFile: PROCEDURE [
file: FloppyTape.FileHandle, scatteredVM: FloppyTape.ScatteredVM.
updateEndOfFile: BOOLEAN];

5

AppendFile grows file on the floppyTape and writes into it the contents of scatteredVM
(see above paragraphs for usage and restrictions of scatteredVm) , file will become the last
file on the floppyTape. It the client wishes to further append to the same file,
updateEndOfFile should be set to FALSE. It the client is done with the file, then
updateEndOfFile should be TRUE. AppendFile returns to the client after the data has been
copied to the file system buffers, implying the data may not immediately be written to
tape.'

If the file argument does not specify a known file on that floppyTape, then
Error(fileNotFound1 .is raised. Writing beyond the physical end-of-tape raises
Error[insufficientSpace1 before any data is transferred. It an attempt to write to the
floppyTape fails because the tape is write-protected or the volume was opened read-only,
then the error Error[writelnhibited1 is raised. Error[badTape1 is raised if the new bad
sectOr appears on the floppyTape and the total number of bad sectors exceeds the limit
specified by the file system (256 sectors). It certain Pilot structures are unreadable, then
Error[needsScavenging) is raised. It the drive suddenly does not appear to be ready, then
Error[notReady] is raised. If the hardware does not seem to be functioning properly, then
Error[hardwareError] is raised.

Note: AppendFile makes file the last file on the floppyTape. All data files following this
file will be erased. The recommended approach is to AppendFile to the last file on the tape.
However, client-level scavengers may want to intentionally erase files on a tape beyond a
certain point.

Note: The AppendFile procedure carries a performance penalty, since the floppyTape may
stop streaming. It and when updateEndOfFile is finally TRUE, the floppyTape may be
positioned back to the beginning of the file to write the final size of the file and then
positioned back to the end of the file.

FloppyTape.RewriteFile: PROCEDURE [
file: FloppyTape.FileHandle. first: FloppyTape.ByteOffset.
scatteredVM: FloppyTape.ScatteredVM];

RewriteFile allows clients the flexibility of rewriting over a portion of an already existing
file with the contents specified in scatteredVM. first specifies where in file to start
writing. It the total scatteredVM.counts plus first is greater than the size of the existing
file, then Error(insufficientSpace] is raised. This operation may be valuable to clients
maintaining a directory type structure. RewriteFile returns to the client upon completion
of the write to tape.

If the file argument does not specify a known file on that floppyTape, then
Error(fileNotFound1 is raised. It first is not an increment of a page size or is not a page
within the file, then Error(invalidByteOffset] is raised. If an attempt to write to the
floppyTape fails because the tape is write-protected or the volume was opened with
readOnly set to TRUE, then the error Error[writelnhibited1 is raised. If a sector becomes bad
during the RewriteFile, then FloppyTape.lOError is raised. (See description of ReadFile for
an explanation of FloppyTape.lOError.) It certain Pilot structures are unreadable, then
Error(needsScavenging] is raised. If the drive suddenly does not appear to be ready, then

5-43

5

5-44

I/O Devices

Error[notReady] is raised. If the hardware does not seem to be functioning properly, then
Error[hardwareError] is raised.

5.8.1.3 Miscellaneous facilities

FloppyTape.GetFileAttributes: PROCEDURE [
file: FloppyTape.FileHandle] RETURNS [size: ByteCount, type: File.Type];

GetFileAttributes gets the attributes of the file. If the file argument does not specify a
known file on that floppyTape, then Error[fileNotFound] is raised. If certain Pilot
structures are unreadable l, then Error[needsScavenging] is raised. If the drive suddenly
does not appear to be ready, then Error[notReady] is raised. If the hardware does not seem
to be functioning properly, then Error[hardwareError] is raised.

FloppyTape.GetNextFile: PROCEDURE [
previousFile: FloppyTape.f:ileHandle]
RETURNS (nextFile: Floppyl'ape.FileHandle];

GetNextFila enumerates the files on the floppyTape in the standard style of a Pilot
stateless enumerator. Files are enumerated in the order in which they occur on the
floppyTape. The enumeration begins by supplying the nuliFilelD and the appropiate
volume and it ends with thtt same value. Enumeration, if started from a non-null file, does
not wrap around searching all files. It returns when it reaches the logical end of a file list.

If the previousFile argument does not specify a known file on that floppyTape or nullFilelD,
then Error[fileNotFound] ils raised. If certain Pilot structures are unreadable, then
Error[needsScavenging] is raised. If the drive suddenly does not appear to be ready, then
Error[notReady] is raised. If the hardware does not seem to be functioning properly, then
Error[hardwareError] is rai:sed.

Note: GetNextFi Ie caches the attributes associated with the file returned. Thus, a call to
GetFileAttributes of that file will not cause a tape access.

FloppyTape.SetRootFile: PROC:EDURE [
fileld: FloppyTape.Fileld, v.llumeHandle: FloppyTape.VolumeHandle];

SetRootFile allows the clierlt to record the FilelD of a file in the volume data structures for
later use; for example, the pointer to a client level directory or to some other data
structure.

If an attempt to write to the floppyTape fails. because the tape is write-protected or the
volume was opened with reiBdOnly set to TRUE, then Error[writelnhibited] is raised. If the
volume handle is no longer valid, then Error[invalidVolumeHandle] is raised. If
SetRootFile is never initialjlzed, then the root file is set to FloppyTape.nuIiFileID. If certain
Pilot structures are unreadable, then Error(needsScavenging] is raised. If the drive
suddenly does not appear to be ready, then Error[notReady] is raised. If the hardware does
not seem to be functioning properly, then Error[hardwareError] is raised.

Pilot Programmer's Manual 5

5.8.2 Managing the floppyTape volume

The floppyTape may be formatted using the following operation. The volume must not be
open.

FloppyTape.maxByteslnName: CARDINAL. 100;
FloppyTape.VolumeName: TYPE. LONG STRING;

FloppyTape.AlreadyFormatted:SIGNAL [labelString: FloppyTape.VolumeName];

FloppyTape.FeedBack: TYPE. {none, erasePass, retention Pass, formatPass, verifyPass};
FloppyTape.FeedBackPtr: TYPE • LONG POINTER TO FloppyTape.FeedBack;

FloppyTape.Format: PROCEDURE [
drive: FloppyTape.Drive +-FloppyTape.locaIDrive,
name: FloppyTape.VolumeName, clientWord: UNSPECIFIED +- 0,
feedBack: FloppyTape.FeedBackPtr +-NIL];

Format erases the tape by writing special marks on every client usable sector, sets bad
sectors in a bad sector table, and sets file system data structures. A retention pass
automatically occurs before writing the special marks to tape, guaranteeing the integrity
of the data written. 'A name is also. written to the floppyTape. clientWord is a client­
specified two words of storage written to tape. feedBackPtr is an optional client word of
storage to which messages by the format procedure are posted. These messages indicate
progress during the procedure call. It is intended to be used by clients wanting the
progress reports dermed by FloppyTape.FeedBack.

If the floppyTape is already formatted, then a resumable signal AlreadyFormatted is
raised. This gives the client a chance to perform an Erase (quicker operation) instead. If
the volume on the tape is open, then Error[volumeOpen] is raised. If the length of name
exceeds FloppyTape.maxCharacterslnLabel, then the label is truncated to the maximum
length. If the floppyTape cannot be formatted due to problems with the floppyTape, then
Error[badTape] is raised. If no floppyTape is in the drive or if for some other reason the
drive is not ready, then the error Error[notReady] is raised. If drive specifies an unknown
device, then Error[noSuchDrive] is raised. If an attempt to write to the floppyTape fails
because the tape is write protected, then the error Error[writelnhibited] is raised.
Error[hardwareError] is raised for unexpected failures accessing the floppyTape drive.

Format is a client-abortable proeedure; though it cannot abort instantly, it will abort
within 1-1/2 to 3 minutes.

FloppyTape.GetVolumeAttributes: PROCEDURE [
volume: FloppyTape.VolumeHandle, name: FloppyTape.VolumeName]
RETURNS [freeSpace, usedSpace: FloppyTape.ByteCount,
rootFile: FloppyTape.FileID, clientWord: UNSPECIFIED,
drive: FloppyTape.Drive, numberOfBadSectors: CARDINAL];

GetVolumeAttributes gets relevant attributes about a floppyTape volume. The value of
the label string is stored in name (unless a NIL argument was supplied). The label string is
truncated if name is too short. Other attributes are returned in the result list. The result
freeSpace indicates the approximate number of free bytes on the floppyTape accessible
from the current logical end-of-tape position. The result usedSpace indicates the number
of bytes on the floppyTape preceding the current logical end-of-tape position and the
number of known bad spots. The sum of the two will equal the size of the tape volume.
The rootFile is a distinguished file identified by the client.

5-45

5

5-46

110 Devices

If the root file was not set by FloppyTape.SetRootFile, then FloppyTape.nuliFileld is returned.
clientWord is a client-spedfied word of storage. drive is the drive to which the volume
handle corresponds. Error(invalidVolumeHandle] is raised if the floppyTape was removed
and/or reinserted, the volume was closed, or an otherwise bogus handle was specified.
numberOfBadSectors is thf! current number of bad sectors on the tape.

Note: The maximum size of a file created is freeSpace minus one sector size for file system
overhead. This calculatiol1l assumes only the bad sectors listed in the badSector table are
known. Thus, any new bad spots will alter the amount of free space existing on the
tloppyTape.

FloppyTape.Erase: PROCEDURE [
drive: FloppyTape.Drive +-, FloppyTapeoiocalDrive,
newName: FloppyTape.VclumeNameg

clientWord: UNSPECIFIED.- 0, securityErase: BOOLEAN +- FALSE];

The operation Erase resets all the floppyTape file system data structures and all file and
microcode pointers. If a ne'wName is specified, it replaces the current name; otherwise the
current name remains unchanged. clientWord is a client-specifed word of storage written
to tape. If securityErase is TRUE, then the entire data portion of the tape will be rewritten
with a well-known value. If securityErase is FALSE, then only some internal structures are
reset, and the contents of the tape remain but are inaccessible. The default is FALSE.

If drive does not describe a drive currently in the system, then Error(noSuchDrive] is
raised. The error Error[vollumeOpen] is raised if the tloppyTape volume is open. If the
length of newName exceeds FloppyTape.maxCharacterslnLabel, then the label is truncated
to the maximum length. Error[badTape] is raised if the tape cannot be accessed.
Error[notReady] is raised if no floppyTape is in the drive or if the drive is not ready. If the
floppyTape cartridge is physically write protected, then Error[writelnhibited] is raised.
Error[notFormatted1 is raised if the tloppyTape has invalid formatting information.
Error[badTape] is raised if' the tape context cannot be properly set or if some part of the
tape that was previously Vlrriteable is now not writeable. Error[hardwareErrorl. is raised
for unexpected failures acc1l!ssing the tloppyTape drive.

FloppyTape.Scavenge: PROCEIJURE [
drive: FloppyTape.Drive +-, FioppyTape.locaiDrive1
RETURNS [okay: BOOLEAN1;'

Scavenge recovers the contents of a malformed floppyTape by restoring the Pilot data
structures (root page) and repairing bad marker pages. The volume must not be open. The
return value okay indicate:3 whether the scavenge was successful: if okay returns TRUE, the
floppyTape was, or was made, consistent.

All the errors raised durin~t the Erase operation also apply to Scavenge.

Note: Scavenge may have:! difficulty (Le., may take a long time) recovering a tape that
was previously written and. only erased with securityErase = FALSE.

FloppyTape.SectorNumber: TYPE • LONG CARDINAL;
FloppyTape.nuIiSectorNumber: FloppyTape.SectorNumber • 0;

FloppyTape.MarkSectorBad: PROCEDURE [
drive: FloppyTape.Drive~· FloppyTape.localDrive.
sector: FloppyTape.SectorNumber];

Pilot Programmer's Manual 5

MarkSectorBad places the sector specified in the tile system's bad sector table. The sector
will then be avoided on subsequent writes and reads. This procedure need only be used by
error recovery clients, such as diagnostics.

Error(volumeOpen] is raised if the volume is open. Error(noSuchDrive] is raised if the
drive is not a floppy tape drive or does not exist. Error[badTape] is raised if there are too
many bad pages. Error[notReady] is raised if the tape does not appear to be ready.
Error[writelnhibited1 is raised if the tape is physically write-protected.
Error[notFormatted] is raised if the tape does not appear to be formatted.
Error[hardwareError) is raised on other unexpected errors.

FloppyTape.GetNextBadSector: PROCEDURE [

drive: FloppyTape.Drive +- FloppyTape.localDrive,
sector: FloppyTape.SectorNumber)
RETURNS [FloppyTape.SectorNumber);

GetNextBadSector is a stateless enumerator of the known bad spots on the tape. The same
errors may be raised as for MarkSectorBad, except that Error[badTape) and
Error[writelnhibited) will not be raised.

Note: GetNextBadSector will read information off the tape whenever sector =
nuliSectorNumber or the tape has changed state (e.g., ready to not-ready and back).
Otherwise, the information is r~ported out of a cache.

FloppyTape.Retention: PROCEDURE [drive: FloppyTape.Drive);

Retention moves the floppyTape from one end to another, averaging about three minutes.
If a floppyTape is not retentioned, softlhard errors may occur.

Error[notReady) is raised if the floppyTape was removed and/or reinserted.
Error[volumeOpen] is raised if the volume is open. Error[noSuchDrive] is raised if the
drive is not a floppy tape drive or does not exist. Error[hardwareError] is raised if some
other unexpected error occurs.

5.8.3 Booting from the tape

Several special operations are necessary to support Pilot-bootable floppyTapes. All may
raise the errors raised by MarkSectorBad and for the same reasons.

SpecialfioppyTape. Createl nitial MicrocodeFi Ie: PROCEDURE [

volume: FioppyTape.VolumeHandle, initial: File.File,
size: FioppyTape.ByteCount, type: File. Type,
starti ngOffset: FloppyTape.ByteOffset];

CreatelnitialMicrocodeFile creates the initial microcode file at the exact location
demanded by the hardware boot facility. In particular, the page of the file indicated by
startingOffset will appear where the hardware expects to read the first block from the
floppyTape at boot time. The hardware of our current machines demands that the initial
microcode file must be contiguous and contain no bad sectors. Thus,
CreatelnitialMicrocodeFile should normally be applied only to floppyTapes having no bad
sectors on track zero.

5-47

5

5-48

I/O Devices

If it is not possible tOt create such a file because some sector is bad, then
FloppyTape.Error[badSector!i) is raised. If startingOffset is not an increment of a page size
or is not a page within thn file, then FloppyTape.Error(invaJidByteOffset) is raised. If the
floppyTape was removed and/or reinserted, the volume was closed, or an otherwise bogus
handle was specified, then FloppyTape.Error(invalidVolumeHandle) is raised. If the
floppyTape is write protected or the volume was opened readonly~ then
FfoppyTape.Error[writelnhibited] is raised.

SpeciaIFloppyTape.BootFilePointer: TYPE. RECORD (

file: FloppyTape.FileID, offset: FloppyTape.ByteOffset);

SpeciaIFloppyTape.nuIIBootFilePointer:speciaIFloppyTape.BootFilePointer;

SpeciaIFloppyTape.SetBootFiltts: PROCEDURE [

volume: FloppyTape. VolurneHandle .. piiotMicrocode ..
diagnosticMicrocode, gE!rm, pilotBootFile: FloppyTape.BootFilePointer ~
FloppyTape.nuIIBootFilePclinter];

SpeciaIFloppyTape.GetBootFilf.S: PROCEDURE [volume: Floppy. VolumeHandle]
RETURNS (initiaIMicrocodt!, piiotMicrocode, diagnosticMicrocode,
germ, piiotBootFile: Flop:pyTape.BootFilePointer);

SetBootFiles sets the pointers to the relevant boot files in the volume data structures.
These data structures are read by bootable tools, to construct an initial microcode root
page at a rIXed lOcation set by initial and used by initial microcode during the booting
process.

Both a FilelD and a byte c.:ffset into the file are specified so that leader pages may be
included in floppyTape boot files if desired. SetBootFiles sets the pointer in track zero's
data structures for any of its arguments with a non-null FileiD. Boot file pointers with
nuliFilelD are cleared.

If offset is not an increnlent of a page size or is not a page within the file, then
FloppyTape.Error(invalidByteOffset) is raised. FloppyTape.Error[i nval idVol u meHandl e) is
raised if the floppyTape was removed and/or reinserted, the volume was closed, or an
otherwise bogus handle was specified. If the floppyTape is write-protected or the volume
was opened read-only, then FloppyTape.Error(writelnhibited] is raised.

The remaining boot files Olll the floppyTape, apart from the initial microcode boot file, are
all read by the initial micrOtl:ode rlie. Thus, they can be located anywhere.

Note: Pilot 14.0 initial microcode does not interpret the bad sector table. Therefore,
bootfiles, germ, and microcode cannot contain bad sectors in the areas in which they are
placed; otherwise, FloPPyTall18.Error[badSectors] is raised during the making of bootable
tapes.

GetBootFiles gets the pointl~rs to all of the boot files using track zero's volume structures.
The operation also returns pointers to initial microcode.
FloppyTape.Error(invalidVolumeHandle] can be raised.

Note: Initial microcode is located in a reserved location on the tape.

It is recommended that cliElnts assign distinguished Pilot file types to boot files to allow
the boot file pointers to be rE!Set after scavenging, ifnecessary.

PllotProgrammer's Manual 5

Possible alternate bootfiles may also be placed on the tape through the normal tape
operations (FloppyTape.WriteFile, FloppyTape.AppendFile, and FloppyTape.RewriteFile) and use
ofSpedaIFloppyTape.CheckBootFile.

SpeciaIFloppyTape.CheckBootFile: PROCEDURE [file: FloppyTape.FileHandle);

If the specified file does not exist, then CheckBootFile may raise the error
FloppyTape.Error(fileNotFound). If there are bad sectors in the file, then Error[badSectors]
is raised (since boot files may not contain bad sectors) .

Note: Clients' must use FloppyTapeCommands to create bootable floppyTapes in Pilot
14.0.

SpeciaIFloppyTape.ReserveDiagnosticArea: PROCEDURE [
drive: FloppyTape.Drive FloppyTape.localDrive]
RETURNS [ableToReserve: BOOLEAN);

ReserveDiagnosticArea reserves and writes diagnostic data to the diagnostic data area.
Reserving diagnostic area logically results in truncating the tape approximately in half.
ReserveDiagnosticArea is a client-abortable procedure; though it cannot abort instantly,
it will abort within one and a half to three minutes.

Note: In Pilot 14.0, aborting ReserveDiagnosticArea may take longer than one and a half
to three minutes.

SpecialFloppyTape.GetDiskAddress :PROCEDURE [file: .FloppyTape.FileHandle.
byteOffset: FloppyTape.ByteOffset)
RETURNS [diskAddress: FloppyChannel.DiskAddress];

GetDiskAddress returns the disk address of the file at the specified byte offset into that
file. If the file does not exist, then Error[fileNotFound] is raised.

5-49

5 I/O Devices

5-50

6.

Communication

6.1 Well known sockets o. 0 ••••••••••••••••••••• 0 •••••••••••••• 00 ••••••• 6-2

6.2 Packet exchange .. 6-4

6.2.1 Types and constants .. 6-4

6.2.2 Signals and errors .. 6-6

6.2.3 Procedures ... 6-7

6.3 Network streams 0 •••••••••••••••••••••• '. • • • • • • • • • • • • • •• 6-9

6.3.1 Types and constants ... 6-10

6.3.2 Network stream creation ... 6-11

6.3.2.1 Creating client streams 6-12

6.3.2.2 Creating server streams 6-13

6.3.3 Signals and errors ... 6-14

6.3.4 Utilities ... " 6-17

6.3.4.1 Assigning unique address components 6-17

6.3.4.2 Discovering addresses of established streams 6-17

6.3.4.3 Controlling timeouts 6-17

6.3.4.4 Closing streams ... 6-17

6.3.5 Attributes of Network streams 6-18

6.3.5.1 Elements of Network stream objects 6-19

6.3.5.2 Input options ... 6-21

6.3.5.3 Completion codes 6-21

6.4 Routing .. 6-21

6.4.1 Types and constants ... 6-22

6.4.2 Signals and errors ... 6-23

6.4.3 Procedures , 6-23

6.5 RS232C communication facilities. .. 6-25

6.5.1 Corres-pocdents ... 6-25

6.5.1.1 Types aln.d constants 6-26

6.5.1.2 Procedures ... 6-26

6.5.2 Environment types and constants 6-2'7

6.5.3 RS232C channel ... 6-30

6.5.3.1 Types and constants 6-30

6.5.3.2 Signals ,and errors ... 6-36

6.5.3.3 Proc~dures for creating and deleting channels 6-37

6.5.3.4 Data transfer procedures 6-39

6.5.3.5 UtilitYPlrocedures........... .. 6-40

6.5.4 Procedures for SULrting and stopping the channel 6-41

6.5.5 Auto-dialing. .. 6-41

6.5.5.1 OutcomE~ ... 6-42

6.5.5.2 Dialer T.ype ... 6-4a

6.5.5.3 Utilities.... .. 6-45

6.6 Courier ... 6-46

6.6.1 Dermition of terms ... 6-46

6.6.2 Binding. .. 6-4'"

6.6.2.1 Binding·toaservice 6-4'"

6.6.2.2 Server bilnding .. 6-48

6.6.3 Remote procedure' calling ... 6-49

6.6.4

6.6.3.1 Client call .. 6-49

6.6.3.1.1 Call initial processing. .. 6-50

6.6.3.1.2 Argument processing 6-50

6.6.3.1.3 Waiting for results 6-50

6.6.3.1.4 Freeing results 6-S1

6.6.3.2 Server's dispatcher .. 6-52

Errors

6.6.4.1

6.6.4.1

6.6.3.2.1 Completing the binding 6-52

6.6.3.2.2 Processing the remote procedure call 6-52

6.6.3.2.3 Freeing the arguments 6-53

.. 6-53

Errors raised by Courier 6-53

Signals cHents may raise 6-56

6.6.5 Bulk data ... 6-57

6.6.5.1 Intra-eall bulk transfer 6-57

6.6.5.2 Inter-call bulk transfer 6-57

6.6.6 Description routines ... 6-58

6.6.6.1 Mesa data type restrictions 6-58

6.6.6.1.1 Fully compatible data types 6-58

6.6.6.1.2 Data type compatibilty supported by Courier clients . 6-59

6.6.6.1.3 Data type compatibility supported by Courier via notes 6-59

6.6.6.2 Description context .. 6-59

6.6.6.3 Data noting procedures 6-60

6.6.3.3.1 NoteSize .. 6-60

6.6.3.3.2 NoteLongCardinal, NoteLongInteger 6-60

6.6.3.3.3 NoteString 6-61

6.6.3.3.4 NoteChoice 6-61

6.6.3.3.5 NoteArray Descriptor 6-61

6.6.3.3.6 NoteDisjointData 6-62

6.6.3.3.7 NoteParameters 6-62

6.6.3.3.8 NoteSpace 6-63

6.6.3.3.9 NoteDeadSpace 6-63

6.6.3.3.10 NoteBlock 6-63

6.6.3.3.11 Unnoted _. 6-63

6.6.7 Miscellaneous facilities .. 6-64

6.7 Network Binding .. 6-65

6.7.1 Description ... 6-65

6.7.2 Types and constants ... 6-65

6.7.3 Errors .. 6-68

6.7.4 Client procedures .. 6-68

6.7.5 Server procedures ... 6-70

6.8 XStream· bulk data protocol .. 6-71

6.8.1 Interface definition .. 6-71

6.8.2 Additional semantics .. 6-73

6.9 PhoneNet driver ... 6-74

6

Communication

The communication package provides Pilot clients the facility to perform inter- and intra­
processor communication at a relatively high level. The structure of Pilot
communications is layered. That layering follows closely the protocol levels specified in
Internet Transport Protocols, XSIS 028112, dated December, 1981 (XNS).

Only the lowest level protocol layer, level 0, is medium .dependent. The only medium
supported by Pilot communications is the Ethernet. Level 0 does provide the framework
that permits Pilot clients to implement other level 0 drivers. It is assumed that all level 0
drivers will provide at least the following features: immediate destination addressing,
data checking (CRC, LRC, etc), the ability to transmit any 8-bit data pattern, and a means
of detecting physical message length.

The level 1 communication layer, known as the Internet Datagram Protocol (IDP) , is
medium independent. Access to this layer is via sockets. A socket is a logical input/output
resource modeled after the. Pilot software channel. A socket is an address within a
machine, identified by a 16-bit number, to which NS packets (henceforth referred to as
packets) can be delivered and from which packets may be transmitted. Any number of
unique addresses may coexist in the same machine.

The socket facility enables reception and transmission of packets per the conventions of
lOP. At this level, packets are delivered with only some high probability. Packets may
arrive out of order, may be duplicated, or may never arrive. The socket facility is used
internally in the implementation of higher-level communication facilities and is not itself
available to Pilot clients.

Packets may be transmitted or received over one of the Ethernet local networks connected
to the machine, or over any other communication media that is part of the NS
communication system. Packets have an advisable maximum internetwork length of 576
bytes in order to be forwardable by internetwork routers.

The full source or destination address of packets is a System.NetworkAddress. Addresses
are the concatenation of the host's network number (System.NetworkNumber), the host
number (System. HostNumber), and a socket number (System.SocketNumber). Source
addresses include an iriternally generated unique socket. Initial contact with remote
machines requires knowing the full address of that machine. The network and host
numbers are usually obtained from a central name to address translation facility

6-1

6 Communication

(clearinghouse), and the slllCket is well known (see §6.1). Socket numbers in the range
[0 .• 3000) are reserved for well known sockets.

Communication over the Ethernet local network or any communication network is
different from most other devices since the network may deliver an unsolicited packet
which is destined for a so(:ket. Such packets typically consume communication buffers,
which are a critical resourl:e. If the arrival rate of packets is high~ the client is advised to
perform a sufficient number of receive operations to provide adequate buffering. Incoming
packets will never be queu~!d for a particular socket if that socket does not exist.

The sections on PacketExchange and NetworkSt m describe interfaces to higher-level, more
reliable protocols. The iJnplementations of these interfaces are clients of the socket
facility. These two intedaces supply the facilities to be used for NS communication
applications. These two implementations make use of the error protocol which is not
directly accessible to Pilot dients but is alluded to in some of the signal status codes. They
also use the routing protocol. Client access to routing is described in the section on Router.

6 .. 1 Well known sockets

6-2

NSConstants: DEFINITIONS •••• ;

NSConstantsExtras: DEFINITIONS •••• ;

As mentioned, a portion of the socket number name space is reserved for use as well known
sockets. Network addressc!s containing well known sockets are used to contact remote
machines for the purpose of~ or in absence of, arbitration for a unique network address. .

For example, to echo to a remote machine, a client would specify the remote machine's
address including the well known socket NSConstants.echoerSocket. The echo protocol is
not a connection-oriented protocol; therefore ,it does not require arbitration for a unique
remote address.

In the case of the sequence packet protocol, listeners are created using well known sockets
and machines contact theln by sending packets to that well known socket. But the
protocol's connection establishment procedures permit and encourage establishing the
connection using a unique address, not consuming the well known socket.

Note: A socket number asnigned from outside the well known socket number range and
then made known to one 01' more agents does become well known to those agents. The
conveyance of that information should be considered a form of arbitration, regardless of
how it is done.

The following well known sockets are assigned for specific purposes and are defined in the
interface NSConstants. Clients should not use the listed socket number values except for
the purpose indicated by their name. Applications that require well known sockets should
pick an unassigned value and make it known so that use can be properly registered.

unknownSocketlD: System.S1ocketNumber • on

uniqueSocketlD: System.SocicetNumber ••••

routinglnformationSo~ket: !5ystem.SocketNumber ••••

echoerSocket: System.SocketNumber ••••

errorSocket: System.SocketNumber •.••

Pilot Programmer's Manual

envoySocket: System.SocketNumber •.••

courierSocket: system.SocketNumber ••••

x860ToFileServer: System.SocketNumber •.•.

clearingHouseSocket: System.SocketNumber •.••

timeServerSocket: System.SocketNumber ••••

pupAddressTranslation: System.SocketNumber •.••

bootServerSocket: System.SocketNumber •.••

ublPCSocket: System.SocketNumber ••••

ubBootServerSocket: System.SocketNumber ••••

ubBootServeeSocket: ~System.SocketNumber ••••

diagnosticsServerSocket: System. SocketNumber ••••

newClearinghouseSocket: System.SocketNumber ••••

electronicMailFirstSocket: System.SocketNumber ••••

electronicMailLastSocket: System.SocketNumber ••••

etherBooteeFirstSocket: System.SocketNumber ••••

etherBootGermSocket: System.SocketNumber

etherBooteeLastSocket: System.SocketNumber •.••

voyeurSocket: System.SocketNumber •.••

netManagementSocket: System.SocketNumber ••••

teleDebugSocket: System.SocketNumber ••••

galaxySocket: System.SocketNumber ••••

protocolCertificationControl: System.SocketNumber ••••

protocolCertificationTest: System.SocketNumber ••••

outsideXeroxFirstSocket: System.SocketNumber ••••

outsideXeroxLastSocket: System.SocketNumber ••••

maxWell KnownSocket: System.SocketNumber ••••

6

Additional well known sockets are assigned for specific purposes and are defined in the
interface NSConstantsExtras.

authenticationlnfoSocket: System.SocketNumber • • ••

mailGatewaySocket: System.SocketNumber •.••

netExecSocket: System.SocketNumber • . ••

wslnfoSocket: System.SocketNumber • . •.

mazeSocket: System.SocketNumber • . ••

pcRouti ngTestSocket: System.SocketNumber • . ••

maxWell KnownSocket: System.SocketNumber ,- .•.

6-3

6 Communication

6.2 Packet exchange

6-4

PacketExchange: DEFINITIO~IS • • •• ;

PacketExchange is an interfa.ce to an implementation of the Packet Exchange Protocol --a
level 2 Network Services Communication Protocol which is defined in Xf~rox Internet
Transport Protocols. In c:ontrast to NetworkStream, the PacketExchange interface provides
access to a less reliable, connectionless protocol. The protocol is ftsingle packet" oriented
for simplicity, yet includes retransmission and duplicate suppression rOlr reliability.
packetExchange is suitable £l>r applications where a single packet request is immediately
followed by a single packet response that is the result of an idempotent operation, or where
the communicating clients are capable of providing the necessary level ()f reliability
through the very nature of their interaction.

PacketExchange is implemented by the object file XNS • bed.

Packet Exchange Protocol packets may be sourced from and destined to any socket. While
there is no connection established between PacketExchange correspondents, it is helpful to
think. of the entities that p.uticipate in the protocol in terms of a requestor 8.l1ld replier. A
replier provides a service (or is a service agent), listening for PacketExchange lpackets from
requestors. A requestor uses a service by sending requests to a replier. There is minimal
state maintained by each Etnd, only enough to remember local network addresses and to
handle retransmissions and duplicates.

Note: Due to the constaJtlt timeout-retransmission mechanism being used currently,
PlcketExchange is best suited for local-network communication.

Caution: PlcketExchange is, best applied to idempotent operations. This is due to the
unreliable nature of the delivery of the reply and the inability to corref~tly process
duplicate requests within the framework of the protocol.

6.2.1 Types and constants

PlcketExchange.ExchangeClientType: TYPE • MACHINE DEPENDENT {
unspecified(O), timeSerlfice(1), clearinghouseService(2), teledebug(1 08),
electronicMaiIFirstPEType(20B), electronicMaiILastPEType(27B),
remoteDebugFirstPETYI:»e(30B), remoteDebugLastPEType(378),
acceptanceTestRegistration(40B), performanceTestData(41 8),
protocoICertification(S()8), yoyeur(51 8), dixieDataPEType(101 8),
dixieAckPEType(1021), dixieBusyPEType(103B), dixieErrorPEType(1048),
outsideXeroxFirst(10001001), outsideXeroxLast(LAST[CARDINAL])};

ExchangeClientType defines well known exchange types that may be used for filtering
requests or multiplexing wHhin a service.

packetExchange.ExchangeID: 1"YPE • MACHINE DEPENDENT RECORD [a, b: WORD];

An exchange identifier is :assigned to every request. This identifier may be used by
replying clients to suppress duplicate requests: and is used by the requesting code to
identify replies. The field will contain a value that is unique for each request using a
function that has a period at least as long as the advertised maximum packet lifetime (60
seconds). The semantics of the ExchangelD are not sufficient to warrant the field's use as a
request sequence.

Pilot Programmer's Manual 6

packetExchange.ExchangeHandle: TYPE (2);

packetExchange.null ExchangeHandle: READONL Y packetExchange. ExchangeHandl e;

An exchange handle is the result of one of PacketExchange's create routines and used as a
parameter in other procedures. nullExchangeHandle may be used to indicate no valid
exchange handle exists.

packetExchange.RequestHandle: TYPE. LONG POINTER TO READONLY
packetExchange.RequestObject;

packetExchange.RequestObject: TYPE • RECORD (
nBytes: CARDINAL,
requestType: PacketExchange. ExchangeCI ientType,
requestorsExchangel D: PacketExchange.Exchangel D,
requestorsAddress: System.NetworkAddress];

A request handle is the result of a packetExchange.WaitForRequest and is used as an
argument in packetExchange.SendReply. Through the request handle, the client can get at
some information about the request that is not included in the client data block. The fields
addressed by the request handle may not be modified. A request handle must be discarded
after the call to PacketExchange.SendReply.

PacketExchange.WaitTime: TYPE. LONG CARDINAL;

PacketExchange.defaultWaitTime: PacketExchange.WaitTime • 60000;

PacketExchange.defaultRetransmissionl nterval: packetExchange. WaitTi me • 30000;

WaitTime is a time used in all references having to do with setting wait times in either the
requestor or replier. The time specified is always in milliseconds and will be converted to
an internal representation before being used. If' the conversion leads to overflow, . an
infinite wait time will be used. Because overflow is possibile, clients should be cautious
attempting to time intervals greater than approximately 40 minutes. A wait time of zero
will be interpreted as an immediate timeout; that is, one that times out without waiting if
and only if the response is not already buffered in the local machine.

The defaultWaitTime equal to one minute is taken from the NS Internet Transport
specification's value for l'1UUimum packet lifetime. The defaultRetransmissionlnterval is
used to ensure that requests will be transmitted at least two times before abandoning the
effort.

packetExchange.maxBlockLength: READONL Y CARDINAL;

The maximum length of the block (Environment. Block) that can be transmitted via
PacketExchange is based on the maximum internet packet size. Attempting to send
requests or replies longer than PacketExchange.maxBlockLength causes an error to be raised.

6-5

6

6-6

Communication

6.2.2 Signals and errors

PacketExchange.Error: ERROR [why: packetExchange.ErrorReason];

PacketExchange.ErrorReason:: TYPE • {
blockTooBig, blockTooSmall, noDestinationSocket, noRouteToDestination,
noReceiverAtDestination, insufficientResourcesAtDestination, rejectedB~vReceiver,
hardwareProblem" abctrted, timeout};

packetExchange.Error may be raised by most of the request/reply procedures. ErrorReason is
defmed below.

blockTooBig
The block the client attempted to transmit was too big. The size of the block
must be in the range [O •• PacketExchange.maxBlockLength].

blockTooSmall
The block specifi.ed by the client to receive a request or reply was smaller than
the amount of data transmitted.

noDestinationSocket
This error code i~, obsolete and unimplemented.

noRouteToDestination
When attempting to transmit a request, it was found that the i:nternet was
partitioned in su.ch a manner that the target network is not reacbable, or the
network field of the remote address is invalid. The remote host has not been­
contacted.

noReceiverAtDesti nation
A request was sent to a machine that does not currently have arepliler listening
on that socket. Communication with the remote machine has been ac:hieved.

i nsufficientResourcesAtDe!;ti nation
An error packet was received in response to a PaeketExchange request. The
indication is that; either an intermediate internet router or the tarl~et machine
does not currently have the resources to service the request.

rejected ByReceiver
The request was rejected by the- replier for some undetermined reason.
Communication with the remote machine has been achieved.

hardwareProblem
An undefined errl[)r packet was received in response to a request.

aborted This error code is obsolete and unimplemented.

timeout Used for internal processing and should not be observed by Pack.~tExchange
clients.

PacketExchange. Ti meout: SIGN.AL;

The time interval set in one of the create routines (PacketExchange.CreateREtquestor or
CreateReplier) or PacketExchange.SetWaitTimes has expired and the operation has not
completed. This signal may be RESUMEd in order to wait another timeout interval.

Pilot Programmer's Manual

6.2.3 Procedures

PacketExchange.CreateRequestor: PROCEDURE [
waitTime: PacketExchange.WaitTime 4-- packetExchange.defaultWaitTime,
retransmissionl nterval: PacketExchange. WaitTime 4-­

packetExchange.defaultRetransmissionlnterval]
RETURNS [packetExchange.ExchangeHandle]i

6

CreateRequestor creates a socket on a unique local address. The requestor's wait time and
retransmission interval may be specified using the parameters waitTi me and
retransmissionlnterval. The successful return from Create Requestor results in the client
possessing a valid exchange handle that may then be used as an argument in a
packetExchange.SendRequest or Delete. CreateRequestor generates no transmissions to any
host and raises no signals.

packetExchange.CreateReplier: PROCEDURE [
local: System.NetworkAddress, requestCount: CARDINAL 4--1,

waitTime: PacketExchange.WaitTime +- PacketExchange.defaultWaitTime,
retransmissionl nterval: PacketExchange. WaitTime +-

packetExchange.defaultRetransmissionl nterval]
RETURNS [packetExchange.ExchangeHand~e]i

CreateReplier creates a PacketExchange replier at the well known address, local. Since it
is expected that repliers are supplying a service to many clients, clients of CreateReplier
may request more buffering via requestCount. requestCount represents the number of
requests that may be queued to the replier at any given time. This permits the replier
process time to service a request and still not miss new requests that arrive while that
processing is in progress.

packetExchange.Delete: PROCEDURE [h: PacketExchange.ExchangeHandle);

When a requestor or a replier is no longer needed, it must be deleted. Once deleted, the
exchange handle is no longer valid.

Caution: If a client process is waiting inside the packet exchange implementation (either
at WaitForRequest or SendRequest) and the requestor or replier is deleted, then that
process (or processes) will be aborted and the ABORTED signal will be permitted to propagate
to the caller. This action is taken despite the popular notion that deleting an instance of a
facility with client processes still active inside that facility is a client error.

packetExchange.RejectRequest: PROCEDURE [
h: packetExchange.ExchangeHandle, rH: packetExchange.RequestHandle];

If a replier client does not wish to respond to a request, the request may be rejected by
calling PacketExchange.RejectRequest. This call permits the implementation to delete the
small state object represented by rH, the request handle.

packetExchange.SendReply: PROCEDURE [
h: packetExchange.ExchangeHandle,
rH: PacketExchange.RequestHandle, replyBlk: Environment.Block,
replyType: PacketExchange.ExchangeClientType E- unspecified1;

6-7

6

6-8

Communication

To respond to a request, the client calls packetExchange.SendReply, specifying the exchange
handle (h) used when he called PacketExchange. WaitForRequest and the request handle (rH)
returned by that procedure. replyBlk describes the data that is to be sent in respom;e.
That block cannot be larger that packetExchange.maxBlockLength. The reply packet has an
exchange identifier set to the value specified in replyType. This procedure may signal
PacketExchange.Error.

packetExchange.SendRequeS1c: PROCEDURE [
h: PlcketExchange.ExchalngeHandle, remote: System.NetworkAddress,
requestBlk, replyBlk: Environment.Block,
requestType: PacketExchange.ExchangeClientType If- unspecified)
RETURNS [nBytes: CARDINIAL, replyType: PlcketExchange.ExchangeClientType);

A client that possesses a valid exchange handle (h) may send a request to a remote
machine that implements a service in the form of a replier. The request must include an
Environment.Block that represents the request (requestBlk) and describes no more than
packetExchange.maxBlockLer.lgth bytes. The client must also specify an area for the reply to
be stored, replyBlk. requestBlk and replyBlk may describe the same area, and either or
both may be Environment.nuliBlock it the protocol being implemented permits it. The value
of requestType will be copied into the exchange packet and may be used for filtering at the
replier.

Send Request returns only -after a valid response has been received. When it returns,
replyBlk contains nBytes oJ: client data, and the reply received is of type replyType. This
procedure may signal Pack'ltExchange.Error or packetExchange.Timeout. The latter may be
RESUMEd causing the requel:lt to reenter the timeout interval. It is important to note the
difference between RESuMEjlng and RETRying. REsuMEing will not assign a new exchange
identifier permitting the replier to suppress any retransmissions as duplicates if
appropriate. RETRying will c:ause a new identifier to be assigned and the replier will not be
able to detect it as a duplicate.

Note: SendRequest may be aborted via Process.Abort. The ABORTED signal will not be
caught by Send Request.

packetExchange.SetWaitTi me~;: PROCEDURE [
h: PacketExchange.Exchar.lgeHandle,
waitTi me, retransmissifl)nlnterval: PacketExchange. WaitTime];

SetWaitTimes permits an exchange client to adjust the timeout values associated with a
exchange handle. waitTimt! affects both PlcketExchange.WaitForRequest and Send Request
while retransmissionlntervc:1I affects only the latter. Refer to §6.2.1 for additional details
about wait times. This proc,edure raises no signals.

PacketExchange. WaitForRequ«!st: PROCEDURE [
h: packetExchange.ExchangeHandle, requestBlk: Environment.Block,
requi red RequestType : F1acketExchange.ExchangeCJientType If- unspecified]
RETURNS [rH: PacketExchange.RequestHandle);

A client that has created a replier via PacketExchange.CreateReplier is expected then to wait
for a request to arrive. That is done by calling WaitForRequest. It requires a
PacketExchange.ExchangeHandle and an Environment.Block (requestBlk) in which to receive
the data of the request. The field requiredRequestType may be set to a unique
packetExchange.ExchangeClientType or allowed to default to unspecified, indicating that the

Pilot Programmer's Manual 6

exchange client type of the request is not a significant part of the protocol. If
requiredRequestType is not unspecified, then only requests of type requiredRequestType
are accepted.

packetExchange.WaitForRequest returns only when a suitable request has arrived. When it
does, the data structure pointed to by rH will contain additional information about the
request. That information may be used by the client to determine if the request is a
duplicate or to be ignored for any reason. Once the procedure returns with rH, rH must be
accounted for in one of two manners. It must either be the object of a
packatExchange.SendReply (the norm), or it must be dispensed with via
PacketExchange.RejectRequest.

WaitForRequest may signal packetExchange.Error and Timeout. The latter signal may be
RESUMEd. It would be quite usual to specify an infinite timeout on a replier, thus
eliminating the need to service the PacketExchange.Timeout signal.

Note: WaitForRequest may be aborted via Process.Abort. The ABORTED signal will not be
caught by WaitForRequest.

6.3 Network st17eams

NetworkStream: DEFINITIONS ... ;

A Network stream is the principal means by which clients of Pilot communicate between
machines. NetworkStream provides access to the implementation of the Sequenced Packet
Protocol, a level 2 Internet Transport Protocol which is defined in Xerox Internet
Transport Protocols. It provides sequenced, duplicate-suppressed, error-free, flow­
controlled communication over arbitrarily interconnected communication networks.

The Network stream package is implemented by XRS • bed.

As previously mentioned, NetworkStraam is implemented by a sequenced packet transducer
which utilizes sockets to communicate with machines on a communication network. All
data transmission via a Network stream is invoked by means of Stream operations. Here,
the most common model of communication using Network streams will be described.
Subsequent sections provide a description of the actual NatworkStream primitives.

A Network stream provides reliable communication between any two network addresses
(System. NetworkAddresses). The stream (connection) can be set up between the two
communicators in many ways; the most typical case involves a supplier of a service at one
end, and a client of the service at the other. Creation of such a stream is inherently
asymmetric.

At one end is a server; that is, a process or subsystem offering some service. When a server
is operational, one of its processes listens for connection requests on its network address
(which has previously been made known to potential clients through some binding
mechanism) and creates a new Network stream for each separate request it receives. The
handle for the new stream is typically passed to a subsidiary process or subsystem (called
an agent) which gives its full attention to perf~rming the service for that particular client.

6-9

6-10

Pilot Programmer's Man1lal 6

At the other end is the cliell~t of the service. This process or subsystem requests service by
actively creating a Network stream, specifying the network address of the server as a
parameter. The effect is t(J1 create a connection between the client and its server agent.
These two then communicate by means of the new Network stream set up between theln
for the duration of the service.

It is not necessary that the client and server be on different machines. If they are on the
same machine, Pilot will optimize the transmission of data between them and will avoid
the use of physical network :resources. Thus, a client does not need to know where a server
is located. This scheme permits configuration flexibility, permitting services that reside
on one machine to be split across a number of machines connected together by a network,
or vice versa.

The manner in which a client imds out the network address of a server, or the manner in
which a server makes its network address known to potential clients is outside the scope of
Pilot.

6.3.1 Types and constants

NetworkStream.WaitTime: TYPE a LONG CARDINAL;

WaitTime is used in referen(:e to establishing intervals for timeouts. The value associated
with the type is always in milliseconds.

Note: Ifa wait time interval is asigned a value of zero, subsequent operations will timeout
immediately if data is not pr1esent when a data request is made.

Caution: The wait time is converted to an int~mal format to be used by the
implementation. If the con'version results in an overflow, subsequent timed operations
will never time out. Clients should use caution when attempting to set timeouts of more
than approximately 40 minutes.

NetworkStream.defaultWaitTirne: WaitTime • 60000;

The default wait time of 60 seconds is a value taken from the maximum internet packet
lifetime.

N8tworkStream.infiniteWaitTirna: READONLY NetworkStre.m. WaitTime;

The inimite wait time is equivalent to asserting that the operation will never time out, or
there is no interest in proceslsing timeouts. It is assumed that any process that uses this
value will also be capable of aborting the affected process at some time.

NetworkStream.ClassOfService: TYPE. {bulk, transactional};

The class of service parameter permits the client to convey some hint as to the use of the
transport being created. If a client hints the transport is bulk, the assertion is that it will
be used for a high performance application, such as file transfer or the like. If the client
hints transactional, it is assumed that the transport will be used for alternating traffic; for
example, remote procedure calls as implemented by Courier.

6 Communication

NetworkStream.uniqueNetworkAddr: READONLY System.NetworkAddress;

The value uniqueNetworkAddr may be used as a local address specification to indicate to
the underlying code that any legal locally generated network address is applicable. This
is equivalent to the client calling NetworkStream.AssignNetworkAddress and using the
result as the parameter value.

NetworkStream.ConnectionID: TYPE[11;

NetworkStream.uniqueConnID: READONLY NetworkStream.ConnectionID;

NetworkStream.unknownConnID: READONLY NetworkStream.ConnectionID;

A connection identifier is a 16-bit value that is unique within a particular machine; it may
not be unique across system restarts. It is used in conjunction with the network address to
fully define a Sequence Packet Protocol connection. The val ue
NetworkStream.uniqueConnlD may be used by clients of NetworkStream.CreateTransducer to
indicate that they want the implementation to generate a unique ConnectionlD. This is
equivalent to the client calling NetworkStream.GetUniqueConnectionlD directly and using
the result for the same parameter. NetworkStream.unknownConnlD may be assigned to the
remoteConnlD parameter in a NetworkStream.CreateTransducer call. It indicates that the
connection identifier will be supplied by the remote machine.

NetworkStream.ListenerHandle: TYPE [21;

The ListenerHandle is the result of a NetworkStream.CreateListener and is required as a
parameter on all other listener operations.

6.3.2 Network stream creation

Clients are provided access to a Network stream via the Stream.Handle and the
Stream.Object that it references. Network streams are variants of generic Pilot streams.
For the general defInition of Pilot streams, see Section 3.

Network streams are usually created in one of two ways depending on whether the stream
is supporting a client that is· consuming a service or providing a service. The consumer
will use NetworkStre.m.Create while the server uses the listener mechanism. Both
processes are clients of NetworkStream.Create.Transducer. CreateTransducer may also be
called directly by clients, provided they are familiar with the options it permits.

NetworkStream.CreateTransducer: PROCEDURE [
local, remote: System.NetworkAddress,
connectData: Environment.Block ... Environment.nuIiBlock,
localConnlD, remoteConnlD: NetworkStream.ConnectionID,
activelyEstablish: BOOLEAN,
timeout: NetworkStream.WaitTime ... NetworkStream.defaultWaitTime,
c1assOfService: NetworkStream.ClassOfService ... bulk]
RETURNS [Stream.Handle];

CreateTransducer does not return to the caller with the Stream.Handle until the connection
is fully established. When established, the stream is ready to perform stream operations
with the cooperating partner of the connection as specified in remote. The value local is
usually specified as NetworkStream.uniqueNetworkAddr. This value is recognized by the

6-11

6-12

Pilot Programmer's ManllLal 6

create process and causes a unique address to be generated. That address is generated by
calling NetworkSteam.Assign'~etworkAddress. (The client is welcome to call the routine
directly and use its resultsi for the value of local.) It is not recommended that local
consume a well known sockE~t. The remote address must be fully specified, including the
socket. The socket field of remote may be a well known socket. If so, the connection
actually established does not consume that socket, but generates a unique network
address in its place.

localConnlO is usually defaulted to NetworkStream.uniqueConnIO. Alternatively, the client
may use the results ofNetworkStream.GetUniqueConnectionlO for the value of 10calConnl0.
Usually, the value of remoteConnlD is set to NetVlorkStream.unknownConnIO. This asserts
that the value of the remote's connection identifier will be generated by the remote
machine and its value conveyed during the connection rendezvous.

The boolean activelyEstabliish is used to establish the solicitorllistener relationship
normally required to arbitrsLte a connection. If activelyEstablish is TRUE, then the create
process transmits connection requests to the remote. If it is FALSE, then the create process
merely listens for the connection requests. In some cases, both parties know the entire set
of connection parameters, irlcluding the connection identifiers. This implies that some
previous binding arbitration has occurred. It is possible, under those conditions~ to create
transducers on both the locnl and remote machines that are fully established, without
transmitting any information at all.

When creating a transducer, timeout is used for two different purposes. If
activelyEstablish is TRUE, thc!n timeout is used as the time allowed for the remote to
respond to the connection eSltablishment requests. It will also be used as the value of
timeout for stream get operations; that is, the interval permitted to expu-e during data
input operations before the stream implementation signals Stream.TimeOut.

The classOfService parameter affords the client the opportunity to hint the type of
application the stream is to S1lpport. Both parties of the connection should select the same
class. If there is disagreemen,t, then transactional is assumed.

The Stream.Handle returned is a variant of a generic Pilot byte stream handle. The
positioning operations, getPosition and setPosition, are unimplemented and will result in
Stream.JnvalidOperation.

CreateTransducer may gene:rate the error NetworkStream.ConnectionFailed. A process
blocked in CreateTransducer may also be aborted (Process.Abort). CreateTransducer will
not catch the ABORTED signal.

8.3 .. 2.1 Creating client streams

NetworkStream.Create: PROCEDURE [
remote: system.NetworkAddress.
connectOata: Environment.Block +- Environment.nuIiBlock.
timeout: NetworkStream. W,iitTi me +- NetworkStream.defaultWaitTi me.
classOfService: NetworkStrclam.ClassOfService +- bulk]
RETURNS [Stream.Handle];

Create is the most common mE~thod that a client stream client uses to solicit the creation of
a transport to a server client. This procedure is a client ofNetworkStream.CreateTransducer.
Create assigned a valu.e of NetworkStream.uniqueNetworkAddress to local,

6 Communication

N.tworkStream.uniqueConnectionID to localConnlD and asserts activelyEstablish to be TRUE,
causing the process to transmit the needed request packets to solicit the connection.

8.3.2.2 Creating server streams

NetworkStream.CreateListener: PROCEDURE [addr: System.NetworkAddress]
RETURNS [N.tworkStream.ListenerHandle];

Creating a listener creates the state object (represented by the ListenerHandle). The state
object includes a socket at addr. CreateListener does not cause any data to be transmitted.
It does provide the necessary buffering and queuing to receive data. A listener exists as
such until it is deleted via N.tworkStream.DeleteListener. CreateListener generates no
signals.

NetworkStream.Listen: PROCEDURE [
IistenerH: NetworkStr.am.ListenerHandle.,
connectData: Environm.nt. Block +- Environm.nt.null Block,
listenTimeout: N.tworkStr.am.WaitTime N.tworkStr •• m.infiniteWaitTime]
RETURNs[remote: Syst.m.NetworkAddress, bytes: CARDINAL];

Once a listener is created, the client must provide the process to actually listen, whieh is
done by calling .~.tworkStr.am.Listen. When an acceptable connection request packet
arrives at the address specified in CreateListener, Listen returns with the network address
of the requestor (remote) and the number of bytes received (bytes) in the rendezvous. The
client then has the opportunity to reject or honor the connection request. A connection
request is rejected either by calling N.tworkStr.am.Listen again or by deleting the listener.
Both actions cause an error paeket to be transmitted to the requestor.

Ifno suitable packet arrives at the socket in IistenTimeout milliseconds, then Listen raises
the signal N.tworkStr.am.ListenTimeout. This signal may be RESUMEd. The default value of
infiniteWaitTime implies that the listener should never timeout, which is an acceptable
(and normal) practice.

NetworkStream.ApproveConnection: PROCEDURE [
IistenerH: NetworkStream.ListenerHandie,
streamTimeout: N.tworkStream.WaitTime +-NetworkStream.infiniteWaitTime,
classOfService: NetworkStream.ClassOfService +- bulk]
RETURNS [sH: Stream.Handle];

When N.tworkStream.Listen returns and the client wishes to honor the connection request,
he calls N.tworkStream.ApproveConnection. ApproveConnection is a client of
N.tworkStream.CreateTransducer. The local address and connection identifier are defaulted
to NetworkStream.uniqueNetworkAddr and NetworkSt.am.uniqueConnID, respectively. The
values for remote address and connection identifier are taken from the appropriate fields
of the packet requesting the connection. The client is given the opportunity to provide a
hint about the expected application of the stream by assigning an appropriate value to
classOfService. This hint should agree with the hint provided by the remote requestor.

In spite of the evidence that a communication path exists between the local machine and
the remote requestor, this procedure may still signal NetworkStream.ConnectionFailed.

6-13

6-14

Pilot Programmer's Manual 6

NetworkStream.DefeteListenel": PROCEDURE [listenerH: NetworkStream.ListenerHandle];

Should the client desire to 110 longer listen at the socket specified in CreateListener, the
listener should be deleted. It is advised that this be done at a time when no process is
actively listening. The Listen process is abortable (Process.Abort). The procedure
DefeteListener may signal N'ltworkStream.ListenError if IistenerH does not represent a valid
ListenerHandle.

Caution: If DeleteListener notices a process blocked in Listen, it aborts that process and
the signal ABORTED is propagated to the Listen client. This action is taken despite the
popular notion that deletin,~ an instance of a facility with active processes inside that
facility is a client error.

6 .. 3.3 Signals and errors

NetworkStream.ConnectionSus:pended: ERROR [why: NetworkStream.SuspendReason);
NetworkStream.SuspendReaso.n: TYPE. {

notSuspended. transmissionTimeout. noRouteToDestination.
remoteServiceDisappeal'ed};

Clients of Pilot streams tha,t are implemented by Network streams are responsible for
catching not only all Streanl signals, but also a Network streams unique signal. That
signal is ConnectionSuspended, a name which implies the stream has been established
but now is failing. The signal carries with it a reason for the suspension, as described
below.

notSuspended
The connection is not suspended. This state should never be observed by. a
client. It is includEld to simplify internal processing.

transmissionTimeout
A connection that was previously communicating has not seen a response from
the remote machine for an extended period of time. The internal processing of
SPP retransmits packets at computed intervals until they are acknowleged. If a
packet is retranslnitted more than 30 times without acknowlegement, the
connection is abantdoned. The interval between retransmissions is computed
based upon previous response rates and is initially (before statistics can be
gathered) based OlL the number of internet routers that the packet must pass
through to reach the remote machine. In the absence of retransmissions and in
conjunction with lehem, idle line probes are also transmitted at computed
intervals to the remote host. The number of probes that will be transmitted
without acknowlegement is fixed, and the interval between probe transmissions
is computed based simply on the number of internet routers that the packet
must pass through to re~ch the remote machine.

noRouteToDestination
A previously functional connection has discovered that the internet has become
partitioned in SOmE! manner that the remote host is no longer accessible, either
because it must pass through too may internet routers or because a path has
totally disappeared.

remoteServiceDisappeared
A previously functional connection has been notified that the remote address no

6 Communication

longer exists. In other words, the socket on which the connection was based has
been deleted.

NetworkStream.ConnectionFailed: SIGNAL [why: NetworkStream.FailureReason];
NetworkStream.FailureReason: TYPE. {

timeout. noRouteToDestination, noServiceAtDestination. remoteReject.
tooManyConnections, noAnswerOrBusy. noTranslationForDestination. circuitl nUse.
circuitNotReady. noDialingHardware. dialerHardwareProblem};

NetworkStream.ConnectionFailed is applicable only to clients who are attempting to
establish a SPP connection. This includes clients of NetworkStream.CreateTransducer,
Create and ApproveConnection. The implication is that the connection never was
established; it does not always conclude that the remote machine was not contacted.

timeout
The time stated in the parameter timeout of Network Stream. Create Transd ucer has
expired and the packets requesting connection establishment have not been
acknowleged. This and only this value of why may be RESUMEd.

noRouteToDestination
Attempts to fmd a route to the remote network failed. Either the network is
temporarily partitioned in such a manner that the network is unreachable or
the network number in the remote address is invalid. In any ease, the remote
host has not been contacted.

nOServiceAtDestination
There is no listener at the address specified in the remote address. The machine
did respond, indicating that the internet and the machine are both responsive.

remoteReject
The process implementing the service at the remote address rejected the request
for connection (see §6.3.2.2). Since the remote host sent the reject, it is obvious
that the internet and the remote host are both responsive.

tooManyConnections
The number of simultaneous connections permitted on the local machine would
have been exceeded by creating a new stream. In eases where activelyEstablish
is TRUE (e.g., NetworkStream.Create), no communication with a remote machine
has been attempted.

noAnswerOrBusy
This error is applicable only to circuit oriented connections. When the phone
was dialed, it was either not answered or was busy. The remote machine has
not been contacted.

noTranslationForDesti nation
This error is applicable only to circuit oriented connections. No phone number
is currently registered for access to the network specified. The remote machine
has not been accessed.

circuitlnUse
Applicable only to circuit-oriented connections. The circuit that must be used to
access the remote machine is currently in use. The remote machine has not
been contacted.

6-15

6-16

Pilot Programmer's Man1Jlal 6

circuitNotReady
Applicable only to circuit-oriented connections. The circuit that must be used to
access the remote machine was not ready. Possibly the modems need to be made
ready or the phone needs to be manually dialed. The remote machine has not
been contacted.

noDialingHardware
An attempt was Dlade to access a remote network that would require a circuit
oriented device, but the proper hardware does not exist to make such a
connection. The rc!mote machine has not been contacted.

dialerHardwareProblem
An attempt was nlade to access a remote network that would require a circuit
oriented device, but the hardware needed to make such a connection appears to
be inoperable. Tht! remote machine has not been contacted.

Networkstream.ListenError: ERIIOR [reason: Networkstream.ListenErrorReason];

NetworkStreamaListenErrorReason: TYPE. {

iIIegalAddress. illegal Handle" iIIegalState, blockTooShort};

NetworkStream.ListenError is BLpplicable only to clients of the listening procedures. Errors
are deimed below.

iIIegalAddress
The local address specified in Networkstream.CreateListener is illegal, because
either addr already exists on the local machine or the socket field of addr has a
value of zero.

illegal Ha ndle
The handle specified in one of the listener procedures is not valid. Either the
handle has been deleted (Networkstream.DeleteListener) or was never created.

iIIega I State
The state of the listener handle specified to one of the listener procedures
(NetworkStre.m.ApproveConnection or Listen) was in an illegal state for that
operation. In the c:ase of Network Stream. Approve Connection, the state indicated
that no request for connection had been received. In the case of
Networkstream.Listel~, a process was already found to be listening, implying that
two or processes ar,e sharing the listener handle.

blockTooShort
The Environment.Block provided to collect the connection data in
Networkstream.Listen was not large enough to hold the data supplied by the
requestor of the cormection. Note: The ability to pass rendezvous information is
not currently implEimented, so this status should never be observed.

Networkstream.ListenTimeout: SIGNAL;

Networkstream.UstenTimeout is raised if no acceptable packet arrives at the listener within
the specified time interval. That interval is client-specified in NetworkStream.CreateListener
as listenTimeout. This signal may be RESUMEd, causing the interval to be reentered. It is a
common practice to use NetworkStream.infiniteWaitTime as a value for listenTimeout when
creating listeners to eliminatE~ the need to process the ListenTimeout signal.

6 Communication

6.3.4 Utilities

The following utility functions are avaible to NetworkStream clients. In general, the utilities
provide functionality unique to Network streams.

6.3.4.1 Assigning unique address components

NetworkStream.AssignNetworkAddress: PROCEDURE RETURNS [System.NetworkAddress];

AssignNetworkAddress returns to the caller a network address that is unique for the
current system restart. The address is constructed from the local machine's network
number for the default communication device, the local machine's processor identification
number, and a unique socket number that is not a well known. The result is applicable to
any argument that might use a unique local address.

NetworkStream.GetUniqueConnectionIO: PROCEDURE
RETURNS [iO: NetworkStream.ConnectionID);

GetUniqueConnectionlO returns to the caller a connection identifier that is unique within
the current system load. It may be used any place a NetworkStream.uniqueConnectionlO
would be applicable (NetworkStream.CreateTransducer).

6.3.4.2 Discovering addresses of established streams

NetworkStream.FindAddresses: PROCEDURE [sH: Stream.Handle]
RETURNS [local. remote: System.NetworkAddress];

A client may rmd the local and remote network addresses of an existing stream by calling
FindAddresses.

6.3.4.3 Controlling timeouts

NetworkStream.SetWaitTime: PROCEDURE [sH: Stream.Handle. time: NetworkStream.WaitTime];

SetWaitTime may be used to acijust the stream timeout of an established network stream.

Note: Since the generic Pilot stream also provides the same capability, it is suggested that
use of this procedure be phased out in preference to the standard operation. This operation
will be removed in a future Pilot release.

6.3.4c4 Closing streams

An implementation of a clQse protocol is provided by Network stre.ams. This method of
terminating dialogue on a stream is suggested in the NS Internet Protocol
Specification. Use of these routines (or any like them) is optional.

NetworkStream.CloseStatus: TYPE. {good, noReply, incomplete};

NetworkStream.closeSST: Stream.SubSequenceType • 254;

NetworkStream.closeReplySST: Stream.SubSequenceType • 255;

NetworkStream.C!ose: PROCEDURE [sH: Stream.Handle]
RETURNS [NetworkStream.CloseStatus];

6-17

6-18

Pilot Programmer's Manual 6

NetworkStream.CloseReply: PI~OCEDURE [sH: Stream.Handle]
RETURNS [NetworkStream.C:loseStatus];

To initiate a close sequence, a client may call NetworkStream.Close. That procedure
transmits an empty packet with a Stream. SubSequence Type of NetworkStream.closeSST. As
a side effect, all buffered da.ta is transmitted before the empty packet. After the close SST
is transmitted, the procedure attempts to receive a NetworkStream.closeReplySST. All data
not of subsequence type clo:seReplySST is ignored. When a NetworkStream.closeReplySST is
received, the procedure transmits NetworkStream.closeReplySST and returns without
waiting. NetworkStream.CIOSc! raises no signals.

If a client protocol uses the dose procedure and receives a NetworkStream.closeSST, it should
respond by calling Ne1workStream.CloseReply. This procedure transmits a
NetworkStream.closeReplySS1", the side effect of which forces transmission of all currently
buffered data. After sendltng the closeReplySST, the procedure attempts to receive a
packet with subsequence type of closeReplySST. NetworkStream.CloseReply raises no
signals. .

NetworkStream.CloseStatus hus the following definitions.

good The close protocoll terminated cleanly. All data that was buffered by the streaIa
implementation prior to initiating the close was transmitted and acknowleged
at least to the levE!1 of the Network stream client.

noReply There was no response to· the NetworkStream.closeSST. All data buffered in the
local stream implementation was transmitted, but may not have been
acknowleged.

incomplete
The local machine transmitted a NetworkStream.closeReplySST in response to a
NetworkStream.closeSST and received no response. All data buffered in the local
stream implementation was transmitted and acknowleged. The closeReplySST
is expected, but n<.t required.

6 .. 3.5 Attributes of Network streanlS

Network streams are byte streams built on top of the Sequenced Packet Protocol. Because
of the distributed nature of the streams, clients may rmd some behavior unique. This
section points out the unique! areas of these streams with the intent of assisting in design
and debugging applications using Network streams.

All output operations (putByte, putWord, put, setSST, sendAttention, sendNow) buffer
the data internally, transrnLitting those buffers only when they are either full or the
semantics of ·an operation indicate they must be transmitted. When the buffers are
actually transmitted, the client process may be blocked indefinitely if the remote partner
in the connection is not consuming data. This state is known as the waiting for allocation.
state. All output operations ·may signal NetworkStream.ConnectionSuspended.

All input operations (getBytt!, getWord, get) may signal any of the defined Stream errors,
except Stream. EndOf Stream. The end of stream concept is not implemented by Network
streams. All input operations may also signal NetworkStream.ConnectionSuspended.
Physical packet boundaries will not be visible to the byte stream client, but they may bE~
inferred through the input operation status or signals. Any operation that signals or

6 Communication

returns a completion status other than normal is at a packet boundary. On a normal
return, the .stream mayor may not be at a packet boundary.

Any Network stream operation may be aborted (Process.Abort). The ABORTED signal will be
permitted to propagate to the stream client.

6.3.5.1 Elements of Network stream objects

Elements ofa Network Stream.Object are described below.

inputOptions
The defaultlnputOptions defmed by the Stream interface are almost always
inappropriate for Network streams. In particular, terminateOnEndRecord
should be TRUE because Network streams do not implement the end of stream
concept, but do have the concept of a message or logical record. If
terminateOnEndRecord is FALSE, then input operations will not terminate at the
end of the logical record and the return status end Record will never be
observed. If a get is not permitted to terminate with an end Record status, then
it will invariably fmd itself waiting to complete a transfer when it should be
responding to the information it has in hand.

ge,tByte Returns the byte of data from the byte stream. It asserts the input options as
[FALSE, FALSE, FALSE, TRUE, TRUE. TRUE, TRUE, FALSE), making the signals
Stream.SSTChange, Stream.Attention or Stream. TimeOut possible.

putJlyte Appends one byte of client data to the byte stream. Should that addition cause
the internal buffer to be tilled, it will be transmitted over the established
connection.

getWord Returns the word of data from the byte stream. It asserts the input options as
[FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE], making the signals
Stream.SSTChange, Stream.Attention or Stream.TimeOut possible. GetWord
operations that signal SSTChange or Attention are ambiguous if the signal is
raised after processing half (or one byte) of the request. Such ambiguity is a
client error. The sender and receiver should use the same type of alignment
characteristics.

putWord Appends one word of client data to the byte stream. Should that addition cause
the internal buffer to be tilled, it will be transmitted over the established
connection.

get Retrieves the number of bytes specified in block (Environment. Block). If the
number of bytes requested is actually transferred, then the status returned by
get will always be normal unless the inputOptions have been set to
terminateOnEndOfRecord and the end of the logical record is detected.
Conversely, a completion code of anything other than normal or end Record
implies that the transfer operation was not satisfied. The input options are
settable by the client, so the various stream signals are possible depending on
the options.

IfsignalLongBlock or signalShortBlock is TRuE,then packet boundary semantics
are applied to the byte stream and the client is notified by the appropriate
signal Stream.LongBlock or Stream.ShortBlock. These two input options should be
used only by clients wishing to directly control buffering, and those clients

6-19

6-20

Pilot Programmer's MUlual 6

would be well advised to use something other than Network streams in their
application.

put Appends the specified block (Environment. Block) to the byte stream. The addition
may cause any (bounded) number of internal buffers to be transmitted. The
parameter end Record may be set to TRUE, causing any currently buffered data to
be transmitted BLnd define the end of a logical record. A put specifying no bytes
and with endRec:ord set to TRUE is equivalent to a send Now with end Record set
to TRUE. The endRecord status is preserved by the Network stream and is
detectable by tho receiving client.

setSST Causes a buffer to be transmitted with the current sst if and only if the new sst
is of a di:fierent value. If there was no data buffered, then an empty buffer is
transmitted canying only the changed sst state. Lastly, the new sst is recorded
and declared to be the current sst. When a stream is created, it is assigned a
default sst of value O.

sendAttention
Causes an atteIlltion byte to be appended to the byte stream. The Network
stream implementation also performs some heroics in its attempts to deliver
attentions. This amounts to expediting the delivery, circuMventing SPP
allocation window constraints, if necessary. SendAttention assumes the
receiver is taking equally heroic action. Because of the additional overhead in
such operations, it is advised that attentions be used judiciously.

waitAttention

delete

Allows the clien1~ process to wait for an out-of-band attention notification. If a
sending client is transmitting attentions, then the receiving client is
responsible for processing both the in-band and out-of-band attentions. Failure
to do so is a clienlt error and will cause the stream to fail. Only a small number
of out-of-band attentions will be maintained (less than 10). When that number
is reached, the cCJ,nnection is no longer able to receive data.

Causes the current processes and buffering used by the stream implementation
to be destroyed. No attempt to clean up the stream is made. The remote partner
of the connectiO[L is not notified that the local has been deleted. The client is
responsible for ensuring that the application data has been satisfactorily
delivered before deleting the connection.

getPosition is not implemented by Network streams.

setPosition is not implemeIllted by Network streams.

sendNow Forces transmis~lion of a buffer. That buffer may contain internally buffered
data, or it may be an empty buffer. SendNow with end Record set to TRUE

defines the end of a logical record. The logical record boundary status is
preserved by N~etwork streams during transmission and is detectable by
receiving clients.

clientData is not used by Network streams.

getSST Returns to the caller the current output SST; that is, the SST that can be set by
the client via setSST. This procedure raises no signals.

6 Communication

6.3.5.2 Input options

terminateOnEndRecord
If terminateOnEndRecord is FALSE, then the stream implementation ignores
logical record boundaries in incoming packets and continues to process
incoming packets until the get request is satisfied. IfterminateOnEndRecord is
TRUE, then the stream implementation assumes an exceptional condition at the
end of a packet that carries a logical record boundary status, terminates the
transfer, and returns with an end Record completion code.

signalEndOfStream is not implemented by Network streams.

6.3.S.3 Completion codes

The following codes are returned from the get procedure.

normal A normal return is one that satisfies the transfer request; that is, the number of
bytes requested.

endRecord
In an attempt to satisfy the input request, a buffer that carries a end of logical
record status was consumed and the input options indicated that the request
should terminateOnEndRecord. The input request may not be complete.

sstChange
The data stream type of the data stream has changed and the next byte of data in
the byte stream will be of type sst. The get procedure's transfer is not complete.

endOfStream is not implemented by Network streams.

attention
The next byte of the byte stream is an in-band attention byte. The in-band
attention marks the point in the byte stream where the attention was
transmitted, even though the out-of-band notification may have arrived at a
d.itrerent time. The get procedure's transfer is not complete.

6.4 Routing

Router: DEFINlnONS ••• ;

All routers transmit packets to an immediate host that is, or is closer to, the final
destination host. Internetwork routers are responsible for keeping other internetwork
routers and simple routers informed of as much of the topology as they require, and for the
actual forwarding of packets from one net to another. They always know the topology of
the entire internet. Simple routers are mostly ignorant of the network topology, and learn
only enough about it to send packets sourced in the local machine toward their destination
via the optimal route. Each instance of Pilot has a simple router to help direct packets to
their proper destination. Router offers operations for using Pilot as a simple router, and for
discovering information about the topology of the internetwork.

Distances between networks are measured in the number of internetwork routers a packet
must be routed through from source to destination. The unit of measurement used is a
hop. The delay to a network is the number of hops from the source host to the destination

6-21

6-22

Pilot Programmer's Manual 6

host. The local network is always considered to be zero hops away; a network available
through a single internetwork router is one hop a way.

The simple routers keep a routing table by which packet forwarding decisions are made.
A routing table entry contains a destination network number, the internetwork router
address to which packets bound for the destination network should be forwarded, and the
delay to the network in hops. The routing table contains entries only for those destination
networks that have been ac'cessed(i.e., had traffic transmitted to them) within the last
ninety seconds. The table Emtries are created when a client tries to send a packet to a
network unknown to Pilot, causing a routing table cache fault. The fault causes at least
one routing request to be made of a local internetwork router. The local routing table for a
simple router grows only when routing table faults occur. Thus, it is not a complete
picture of the networks that are reachable.

The routing table for simple router is maintained by aging entries to which no traffic has
been generated and diScardiJlg the old entries.

Router is implemented by the configuration XNS • bed.

6.,4el Types and constants

Router.endEnumeration: REACIONL Y System.NetworkNumber;

Returned by the EnumelrateRoutingTable stateless enumerator, endEnumeration
indicates the end of the list of entries in the current routing table has been reached.

Router.infinity: CARDINAL • 1~i;

infinity is the number of hOllS that defmes an unreachable network. Any network that is
infinity or more hops away from the local net is unreachable.

Router.PhysicaIMedium: TYPE. {ethernet. ethernetOne. phonenet. clusternet};

PhysicalMedium defines the various types of networks on the device chain. ethernet is a
10 Mbit Ethernet, as definE~d by The Ethernet, Version 1.0, September 30, 1980. Also
referred to as the experimental Ethernet, ethernetOne is a 3 Mbit ethernet. Based on the
create procedure in RS232C, phonenet is a phone line network. clusternet is a clusternet
network, a group of one or more RS232C ports used for remote workstations.

Router.RoutersFunction: TYPE. {vanillaRouting. interNetworkRouting};

The type of routing function for the current router is defined by RoutersFunction.

vaniliaRouting is the function for all simple routers. These routers are capable only of
requesting routing information, receiving the responses from the internetwork routers
and maintaining a table.

interNetworkRouting is thH function for internetwork routers. These routers are the
routing information SUppliE!rS that know about the network topology. They respond to
routing requests and periodically send out gratuitous routing information updates.

Pilot directly supports only "anillaRouting.

Pilot Programmer's Manual 6

Router.startEnumeration : READONLY System.NetworkNumber;

Used with the EnumerateRoutingTable stateless enumerator, startEnumeration is passed
to start the enumeration of the entries in the current routing table.

6.4.2 Signals and errors

Router.Netwo'rkNonExistent: ERROR;

Raised by GetNetworklD and SetNetworklD, NetworkNonExistent indicates the device
specified in the call does not exist.

Router.NoTableEntryForNet: ERROR;

Raised only .by GetDelayToNet, NoTableEntryForNet indicates that the network specified
by the client could not be found in the routing table and the information could not be
obtained from an internetwork router.

6.4.3 Procedures

Router. AssignAddress: PROCEDURE RETuRNS [System.NetworkAddress];

AssignAddress returns a netw~rk address with the primary network number (i.e., the first
device on the device chain), the local machine's ID and a unique socket number. It is
typically used by clients who need to generate a unique address.

Note: This address is not unique across system restarts.

RouterAssignDestinationRelativeAddress: PROCEDURE [System.NetworkNumber]
RETURNS [System.NetworkAddress];

Clients who wish to obtain their address with a unique socket number and who know what
destination network they will be communicating with should call
AssignDesti nation RelativeAddress. The network number passed is the destination
network number. Instead of setting the network field of the returned value to the primary
network number, the procedure sets it to the number of the local network on the best
known route to the destination net. The host field is set to the processor ID of the local
machine and socket field to a unique socket number.

Router.EnumerateRoutingTable: PROCEDURE[
previous:. System.NetworkNumber, delay: CARDINAL]
RETURNS [net: System.NetworkNumber);

A stateless enumerator, EnumerateRoutingTable is used to dump that portion of the
current local routing table which represents routes within a certain delay of the local
network.

delay specifies the number of hops to the remote network the client is interested in.
previous is the network number obtained from the last call; if this is the first call to the
procedure, then previous should be set to startEnumeration.

EnumerateRoutingTable returns the net and delay of the first net following previous that
has a delay equal to delay. Pilot's simple router holds only entries for those routes

6-23

6

6-24

Communication

recently accessed (i.e., have had traffic transmitted to them within the last 90 seconds) or
those that have been 4[)btained by an explicit routing information request via
Fill Routi"gTable or GetDellayToNet. In general, a machine can be connected to more than
one local network by havir.lg more than one Ethernet controller. In this case, the machine
also has more than one network address. To determine the list of local networks,
EnumerateRoutingTable c:an be used with maxDelay set to O. The networks are
enumerated in ascending clrder of network number.

Router.FiIIRoutingTable: PRtJCEDURE [maxDelay: CARDINAL +-Router.infinity];

FiliRoutingTable solicits iIllformation on all networks within the specified number of hops
from the local net.

maxDelay is the maximuDl delay in hops of the networks that the client wishes to collect
information about. The dEtfault value is infinity, filling the table with information about
every known reachable network.

Routing information requests are broadcast on the local network. All subsequent
responses from the intell"network routers, whether associated with the request or
gratutious, cause informadon about networks maxDelay or less away to be saved in the
local routing table. That; information is continuously updated as new .information is
received. The protocol uSt!d to maintain the routing table is by specification unreliable.
Therefore, the data beinf~ maintained in the table is also unreliable and should be
regarded as a hint.

FiliRoutingTable followed by EnumerateRoutingTable can be used to determine the
networks within the desired number of hops from the local net. The filling continues until
all clients who have called FiliRoutingTable call it again with a maxDelay of zero,
indicating they are no lon~~er interested in saving incoming entries. There must be a call
with a maxDelay of zero fc)r every call with a non-zero delay in order to properly maintain
the table. If multiple clilctnts have called this procedure, then the greatest maxDelay
specified is used in determining which entries to save in the table.

Router.FindDestinationRelativeNetID: PROCEDURE[System.NetworkNumber]
RETURNS [System.NetworkNumber];

When passed the number of a destination net, FindDestinationRelativeNetlD returns the
number of the local network on the best known route to the destination network. It is
useful for setting an unkItown source network number when the destination network is
known.

Router.FindMyHOS1ID: PROCIEDURE RETURNS [System.HostNumber];

This procedure returns the processor ID of the local machine.

Router.GetDelayToNet: PROC:EDURE [net: System.NetworkNumber] RETURNS [delay: CARDINAL);

Clients who wish to flnd th'B current delay to a specific net may call GetDelayToNet.

net specifies the number of'the network that the client is interested in; delay specifies the
number of hops from the l()l~al net to net.

Pilot Programmer's Manual 6

If net is not found in the current routing table, then Pilot requests routing information
from local internetwork routers . If net is unknown to the local machine and cannot be
obtained from the internetwork router, then Router. NoTableEntryForNet is raised.

GetDelayToNet is useful for determining timeouts and retransmission intervals for
clients, restrict broadcasts, or for determining the network topology close to the system
element. It might also be useful in choosing between two servers offering the same
service, based upon the delay to each element.

Router.GetNetworkID: PROCEDURE [
physicalOrder: CARDINAL, medium :Router.PhysicaIMedium]
RETURNS [System.NetworkNumber];

GetNetworklD provides the network number of any network directly attached to the local
machine.

physicalOrder specifies the index of the network driver on the device chain; the primary
network always has a physical order of 1. medium is the type Qlnetwork involved.

GetNetworklD raises the error NetworkNonExistent if there is no such device.

Router.GetRouterFunction: PROCEDURE RETURNS [Router.RoutersFunction];

Clients wishing to discover the function of the current router registered with Pilot may
call GetRouterFunction. The function of the router supplied by Pilot is always
vaniliaRouting, the simple routing information requestor. Special facilities may be used
to install an internetwork router on a machine.

Router.SetNetworkID: PROCEDURE[
physicalOrder: CARDINAL, medium: Router.PhysicaIMedium,
newNetlD: System.NetworkNumber]
RETURNS [oldNetlD: system.NetworkNumber];

This protocol should not be called. To do so could jeopardize the integrity of the system.

6.5 RS232C communication facilities

Pilot supports channel-level access to multiple full-duplex RS232C ports providing all of
the standard channel procedures listed in §5.1, as well as several specific to RS232C
communication. This support allows the client access to the equipment connected to the
RS232C port.

In addition to a channel interface, Pilot provides facilities to start and stop the RS232C
channel code, and to dial telephone numbers via RS366 dialing hardware associated with
RS232C ports.

The RS232C facilities are implemented by the configuration RS232CIO. bed.

8.5.1 Correspondents

RS232CCorrespondents: DEFINITIONS .•• ;

The RS232CCorrespondents interface defines the possible correspondents of the RS232C
channel. Each correspondent is used to set certain line parameters. The interface also

6-25

6

6-26

Communication

defines the different outcome possibilities of the auto-recognition facility of the RS232C
channel.

605.1.1 Types and constants

RS232cAutoRecognitionOu'tcome: TYPE III RS232CEnvironment.AutoRecognitionOutcome;

RS232CCorrespondents. fail ure: RS232.CEnvironment.AutoRecognitionOutcome • . ••

RS232CCorrespondents.asciiByiteSync: RS232CEnvironmentAutoRecognitionOutcome ••..

RS232CCorrespondents.ebcdiclUyteSync: RS232CEnvironmentAutoRecognitionOutcome ••.•

RS232CCorrespondents.bitSync,: RS232CEnvironmentAutoRecognitionOutcome • . ••

RS232CCorrespondents.nsProtctcol: RS232CEnvironmentAutoRecognitionOutcome • ••

RS232CCorrespondents.illegal: RS232CEnvironmentAutoRecognitionOutcome • . •.

RS232CCorrespondents.xeroxS.10: RS232CEnvironment.Correspondent ••••

RS232CCorrespondents.xeroxS!iO: RS232CEnvironment.Correspondent ••••

RS232CCorrespondents.SystemI6: RS232CEnvironment.Correspondent • . ••

RS232CCorrespondents.cmdl: RS232CEnvlronment.Correspondent • • ••

RS232CCorrespondents.ttyHOS1:: RS232CEnvironment.Correspondent ••••

RS232CCorrespondents.nsSystElmElement: RS232CEnvironment.Correspondent • • ••

RS232CCorrespondents.ibm3270Host: RS232CEnvironment.Correspondent ••••

RS232CCorrespondents.ibm2770Host: RS232CEnvironment.Correspondent ••••

RS232CCorrespondents.i bm6670Host: RS232CEnvlronment.Correspondent • • ••

RS232CCorrespondents.ibm6670: RS232CEnvironment.Correspondent •.••

RS232CCorrespondents.xeroxSCiO: RS232CEnvironment.Correspondent •..•

RS232CCorrespondents.nsSystEtmElementBSC: RS232CEnvironment.Correspondent ••

RS232CCorrespondents.siemens9750: RS232CEnvironment.Correspondent •••.

The correspondent implies information about the data formatting which the channel must
perform, and should be set :prior to data transfers.

Nate: xerox800 is not currently supported.

605 .. 1.2 Procedures

RS232CCorrespondent.AutoRec:ognitionWait: PROCEDURE [channel: RS232c.ChannelHandle1
RETURNS [outcome: RS2321::AutoRecognitionOutcome);

If the line type in the para.meter object (see §6.S.3.1) is set to autoRecognition, then the
client is asking the RS232C channel to attempt to determine as much as possible about the
correspondent at the other end of the communication line. The client should await the
results of this auto-recognition attempt via a call to AutoRecognitionWait.

Additional channel paramElters, as appropriate to the outcome, may then be set by calls on
SetParameter. The value illegal is returned if IineType is not set to autoRecognition.

Pilot Programmer's Manual 6

Note: The autcrrecognition facility is not currently supported. A call to
AutoRecognitionWait always results in a outcome of illegal.

6.5.2 Environment types and constants

The RS232CEnvironment interface dermes the environment of the RS232C channel, including
all the parameters of the line.

Types and constants of RS232CEnvironment are described below.

RS232CEnvironmentAutoRecognitionOutcome: TYPE. RECORD [[0 •• 15]];

AutoRecognitionOutcome dermes the range of possible results of the call to
RS232CCorrespondents.AutoRecognitionWait. See §6.5.1 for the specific outcomes.

RS232CEnvironment.CharLength: TYPE. [5 •• 8];

This type defines the possible number of bits in a character. It pertains only to the data
bits, and does not include start, stop or parity bits.

RS232CEnvironment.CommParamHandle: TYPE • LONG POINTER TO RS232c.CommParamObject;

RS232CEnvironment.CommParamObject: TYPE =- RECORD [
duplex: RS232c.Duplexity.
IineType: RS232c.LineType.
IineSpeed: RS232c.LineSpeed,
accessDetail: SELECT netAceess: RS232c.NetAceess FROM

directeonn • > NULL.
dialConn • > [

dial Mode: RS232C.DiaIMode.
dialerNumber: CARDINAL.
retryCount: RS232C. RetryCount].

ENDCASE];

When an RS232C channel is created, a number of channel parameters must be specified.
These parameters are supplied by means of CommParamObject. Additional
characteristics of the channel are gep.erally specified by calls to RS232C.SetParameter
subsequent to the call to Create.

duplex specifies a half duplex line or a full duplex line. IineType specifies the line type
parameter necessary for creating the channel; it serves to define some general
characteristics of the channel. Its choice is generally dictated by the equipment connected
to the RS232C port. (For more detail on the effect of the IineType parameter, see section
§6.5.3.4 on data transfer.) IineSpeed is the line speed and its choice is dictated by the
modem. access Detail is the variant of the record that describes whether the network is the
DOD network or a direct line network. For the dialing network, it determines how the
phone is to be dialed and how many times the dial is to be attempted.

RS232CEnvironment.Duplexity: TYPE. {full, half};

Duplexity dermes the line as being full duplex or half duplex.

6-27

6

6-28

Communication

RS232CEnvironment.Completic)nHandle: TYPE [2];

The CompletionHandle idE!ntifies an action initiated by a RS232c.Get or RS232C.Put. Each
Completion Handle must eventually be passed to a RS232Cc TransferWait or
RS232C.TransmitNow operation, which does not return until that particular activity is
completed or aborted.

RS232CEnvironment.Corresportdent: TYPE. RECORD [[0 •• 255]);

This type deimes the range of correspondents. For specific correspondents, see §6.5.1.

RS232CEnvironment.DiaIMode: TYPE. {manual. auto};

DialMode deimes how the phone is to be dialed.

RS232CEnvironment.FlowContlrol: TYPE • MACHINE DEPENDENT RECORD [
type(O): {none. xOnXOfl}.
xOn(1). x0ff(2): UNSPEClFI'ED];

FlowControl specifies the flow control possibilities. Flow control is only applicable to
asynchronous lines and will be ignored for synchronous lineso When the flow control type
is specified as xOnxOff' f(J,r asynchronous lines, the local system will use the client­
specified characters xOn and xOff as a means of controlling the data flow over the line.

RS232CEnvironment.LineSpeed: TYPE. {
bps50,bps75.bps110.b~~134p5,bps150,bps300.bps600,bps120O,bps2400,

bps3600. bps4800. bps7~~OO. bps9600, bps19200. bps28800. bps38400, bps48000,
bps56000.bps57600};

The LineSpeed deimes the slpeed of the line. The choice is dictated by the modem.

RS232CEnvironment.LineType: TYPE. {
bitSynchronous, byteSynclhronous, asynchronous, autoRecognition};

The LineType deimes whether the line is bitSynchronous, byteSynchronous or
asynchronous. A special line type of autoRecognition means the RS232C channel will
attempt to determine as much as possible about the correspondent at the other end of the
communication line. (For more detail on the effect of the line type, see the discussion
following Physical Record.)

RS232C.NetAccess: TYPE=- {diirectConn. diaIConn};

The NetAccess specifies the options for the connection types. I t is used in the
CommParamObject.

RS232c.nuIlLineNumber: CARDINAL. LAST [CARDINAL];

Used with the Pilot stateless enumerator RS232C. GetNextLi ne, nullLineNumber defines the
starting and ending values of the enumeration.

Pilot Programmer's Manual

RS232CEnvironment.Parity: TYPE. {none, odd, even, one, zero};

This type dermes the parity to be used.

6

RS232CEnvironment.PhysicaIRecordHandle: TYPE. POINTER TO PhysicalRecord;

RS232CEnvironment.PhysicaIRecord: TYPE. RECORD [header, body, trailer: Environment.Block];

The unit of information transferred across the RS232C Channel is the Physical Record.
The Physical Record dermes a frame of data consisting of an integral number of 8-bit bytes
in the code set expected by the equipment connected to the RS232C port. The client may
handle a frame as contiguous data, or may treat it as having up to three sections (header,
body, trailer) which the channel will gather/scatter appropriately.

As a frame travels between the client's buffers and the communication line, certain
elements of the frame are generated or stripped by the channel. Hence, the format of a
frame at the interface between Pilot and the client is slightly different from the frame
format as shown in the corresponding protocol documentation (e.g., BSC or HDLC). The S­
bit bytes are serialized across the the communication line with the following
transformations according to the LineType (see §6.5.1.2), as well as the setting of various
parameters (see SetParameter, §6.5.3.3).

bitSynchronous (HDLC, SDLC, ADCCP): Flag patterns (01111110), and
synchronization information are generated (on output) and stripped (on input) by the
channel for all frames. Checksum information is generated (on output) and checked
(on input), but not stripped, so the client's input buffer must provide two extra bytes.
Zero insertion and removal following "11111" patterns is performed for all frames. On
input, end-of-frame is dermed by the recognition of a second flag pattern. On output,
end-of-frame is defined by the Put procedure call.

byteSynchronous: Synchronization information is generated (on output) and stripped
(on input) by the channel. Checksum information is generated (on output) and
checked (on input) but not stripped, so the client's input buffer must provide two extra
bytes. On input, end-of-frame is determined by the client-supplied parameter,
correspondent. The channel generates or checks the checksum as implied by the
value of this parameter. On output, end-of-frame is defined by the Put procedure call.
In addition, a parity bit is (optionally) generated (on output) and checked/stripped (on
input) by the channel for each byte.

asynchronous (except when correspondent • ttyHost): Checksum characters are
generated (on output) and checked (on input) but not stripped by the channel, so the
client's input buffer must provide two extra bytes. On input, end-of-frame is
determined by the client-supplied parameter, correspondent. The channel generates
or checks the checksum as implied by the value of this parameter. On output, end-of­
frame is defined by the Put procedure call. In addition, parity and startJstop bits are
generated (on output) and checked/stripped (on input) by the channel for each byte.

asynchronous (when correspondent = ttyHost): No checksum operations are
performed. On input, end-of-frame is determined by a client-supplied parameter:
frameTimeout. On output, end-of-frame is defined by the Put procedure call, but has
no other meaning. In addition, parity and startJstop bits are generated (on output) and
checked/stripped (on input) by the channel for each byte.

6-29

6

6-30

Communication

RS232CEnvironment.ReserveType: TYPE. {preemptNever, preemptAlways,
preempttnactive};

RS232CEnvironment.RetryCounlt: TYPE • [0 .. 7];

RS232CEnvironment.StopBits: 1"YPE • [1 •• 2];

RS232CEnvironment.SyncCOun1t: TYPE. [0 •. 7];

RS232CEnvironment.SyncChar: TYPE. Environment.Byte;

The following types support the multiport board and new encoding. They are the types of
the new fields in the RS232c.I'arameter.

RS232CEnvironment.ClockSourcce: TYPE a {internal, external};

RS232CEnvironment.EncodeDa~ta: TYPE. {nn, nni, fmO, fm1};

RS232CEnvironment.ldleState: TYPE. {mark, flag};

8.0 .. 3 RS232C channel

RS232C: DEFINITIONS ••• ;

The RS232C channel provides the Pilot client with the lowest level access to the RS232C
controller and its connected equipment. It assumes that the client has some familiarity
withEIA Standard RS-232··C.

8.5.3.1 Types and constants

RS232C.ChanneIHandle: TYPE [2];

The result of a successful RS232C.Create is a Channel Handle, which is used for all
subsequent channel operations. The handle beco'mes invalid after executing a
RS232c.Deiete, and subsequEint use olit will have undermed results.

RS232c.CharLength: TYPE. IIlS232CEnvironment.CharLength;

RS232c.CommParamHandle: TYPE a RS232CEnvironment.CommParamHandle;

RS232c.COmmParamObject: 1ryPE • RS232CEnvironment.CommParamObject;

RS232c.COmpletionHandle: lYPE • RS232CEnvironment.CompletionHandle;

RS232c.COrrespondent: TYPE • RS232CEnvironment.Correspondent;

RS232c.ClockSource: TYPE. IltS232CEnvironment.ClockSource;

RS232c.EncodeData: TYPE • "S232CEnvironment.EncodeData;

RS232c.ldleState: TYPE • RS2~12CEnvironment.ldleState;

RS232c.DeviceStatus: TYPE. RECORO[statusAborted, datalost, breakDetected.
clearToSend, dataSetReady, carrierDetect, ringHeard, ringlndicator,
deviceError: BOOLEAN];

DeviceStatus defines the status of the RS232C device. It is accessed via RS232c.GetStatus
and RS232c.StatusWait.

Pilot Programmer's Manual 6

Status codes have the following deimitions.

statusAborted

data Lost

Normally FALSE on calls to RS232c.GetStatus. However, a call to
RS232c.StatusWait may return because the channel was suspended, causing
statusAborted to be set to TRUE.

May be returned by two procedures, and has a different meaning for each.
data Lost returned from RS232c.TransferWait indicates that the receive buffer
was not large enough to contain the entire incoming frame. data Lost returned
from RS232c.GetStatus implies that one or more frames were received with no
buffer available. In the latter case, the status is a "latched" state and must be
cleared by the procedure for clearing latched status bits.

breakDetected
Applicable only for IineType = asynchronous; indicates that a break was
received on the communication line.

clearToSend. dataSetReady, carrierDetect

ringHeard

These statuses correspond to states of circuits from the Data Communications
Equipment (DeE) as described in EIA Standard RS-232-C. Normally,
dataSetReady indicates that the data set (modem) is operational and connected
to the communication line. clearToSend indicates that the data set is prepared
to send data.
On a full-duplex communication line, dataSetReady and clearToSend are
normally always TRUE· following connection establishment, and need to be
monitored only as exception conditions. On a half-.duplex line, the normal use of
these booleans is as follows: the client sets requestToSend, waits (via
RS232c.StatusWait) until clearToSend is set, and then sends data (via
RS232C.Put). When the client expects to receive data, he must clear
requestToSend, so that the data set will allow the communication line to
operate in the receive direction.

This latched status indicates that a transient ring indicator status was
observed. This status is latched so that the interested process does not miss the
temporary raising of the incoming call status.
Note: This indicator is not correctly implemented and its presence or absence is
irrelevant.

ringlndicator
Indicates an incoming call on a switched circuit. This status is transitory, but
will result in a latched status being set as noted above.
Note: This indicator is not correctly implemented and its presence or absence is
irrelevant.

deviceError
Set if a data overrun situation occurred in the hardware, resulting in data loss.

RS232C.DiaIMode: TYPE =- {manual, auto};

DialMode specifies the options for dialing used in the dialConn net access, used in the
CommParamObject.

6-31

6

6-32

Communication

RS232c.Duplexity: RS232CEnvirclnment.Duplexity;

RS232C.FlowControl: TYPE • MACHINE DEPENDENT RECORD [type(O): {none. xOnXOff},
xOn(1), xOff(2): UNSPECIFIEIO];

FlowControl defines the type of flow control the channel should perform.

RS232C.LatchBitClearMask: n'PE • RS232c.DeviceStatus;

Bits ringHeard, data Lost, alltd breakDetected are called latch bits in that they are set by
the channel when the associnted condition occurs, but are not cleared by the channel when
the condition clears. They remain set to guarantee the client an opportunity to observe
them. To clear them, a nlask of type LatchBitClearMask must be defmed, with the
booleans corresponding to the proper latch bits' turned on.

RS232c.LineSpeed: TYPE. RS232CEnvironment.LineSpeed;

RS232c.LineType: TYPE • RS232CEnv'ronment.Li neType;

RS232c.NetAccess: TYPE. RS232CEnvironment.NetAccess;

RS232c.nuIILineNumber: R,S232CEnvironment.nuIILineNumber;

RS232c.Parity: TYPE. RS232CEnvironment.Parity;

RS232c.OperationClass: TYPE. {input, output, other, all};

OperationClass specifies the different classes of operations which may be aborted by
RS232c.Suspend. input consists of the Get operation only, output is Put and SendBreak,
other is GetStatus and StatusWait. A client wishing to abort all the operations may use
the all option.

RS232C.Parameter: TYPE. REC:ORD [SELECT type: RS232C.ParameterType FROM
charLength • > [charLen'gth: RS232c.CharLength],
c1ockSource • > [ciockScaufce: RS232C.ClockSource],
correspondent • > [corrl!spondent: RS232c.Correspondent],
dataTerminalReady • > [data Terminal Ready: BOOLEAN],
echoing. > [echoing: BC)OLEAN],
encodeData • > [encOdEtData: RS232c.EncodeData],
flowControl • > [flowControl: RS232C.FlowControl],
frameTimeout • > [frameTimeout: CARDINAL],
idleState • > [idleState: RS232C.ldleState],
latchBitClear • > [IatchElitClearMask: RS232C.LatchBitClearMask],
lineSpeed • > [lineSpeed: RS232c.LineSpeed1,
maxAsyncTimeout • > [maxAsyncTimeout: CARDINAL],
parity. > [parity: RS2324:.Parityl.
requestToSend • > [requestToSend: BOOLEAN].
stopBits • > [stopBits: RS232C.StopBits],
syncChar • > [syncChar': RS232c.SyncChar),
syncCount a > [syncCOl.lnt: RS232C.SyncCount].
ENDCASE];

Pilot Programmers Manual 6

RS232c.ParameterType: TYPE. {charLengthr correspondentr dataTerminalReadYr echoingr
flowControlr frameTimeoutr latchBitClearr IineSpeedr parity, requestToSend, stopBitsr
syncCharr syncCount};

The RS232C.Parameter contains the following additional channel parameters.

charLength
Specifies the number of data bits in a character. The number of bits, right
justified, is removed from and stored into the 8-bit bytes described by
RS232C.Physica,IRecord. Remaining bits are ignored on Put operations, and set to
zero on Get operations.

clockSource
The source 'Of the clock (from internal baud rate generator or from the external
source). Default for asynchronous is internal; default for bit synchronous and
byte synchronous is external.

correspondent
The type of correspondent the client is communicating with, which is used to set
certain channel characteristics. See §6.S.1.1 for the legal
RS232CCorrespondents.

data Terminal Ready
Corresponds to the state_ of the DTR circuit to the Data Communications
Equipment (DCE). It should be set by the client as described in EIA Standard
RS-232-C. Normally, dataTerminal~eady is set to FALSE when the client wishes
to disconnect the communication line.

echoing Specifies whether echoing of input character~ -should be done by the RS232C
channel. If echoing is TRUE, then all input characters received are echoed by the
RS232C channel. If it is FALSE, then client using the RS232C channel is
responsible for echoing input characters.

encodeData
Used with SDLC. The default for any line type is nrz.

flowControl
Specifies whether the channel should perform flow control. If type is xOnXOff,
then the RS232C channel stops output when it receives an xOff character and
resumes output when it receives an xOn character.

frameTimeout
Specifies the intra-frame timeout in milliseconds. On input, for all settings of
parameter correspondent other than ttyHost, if the last byte of a frame does not
arrive within frameTimeout milliseconds of the first byte, then the frame will
complete abnormally with status equal to frameTimeout. If the correspondent
is set to ttyHost, then once the first byte of the frame arrives, if the next byte
does not arrive within frameTimeout milliseconds, the frame will complete
normally. Setting frameTimeout to zero is equivalent to setting an infinite
frame timeout.

idleState Indicates the state of the line when it is idle; that is, whether to transmit flags
or mark. Default for bit synchronous is flag; default for byte synchronous and
asynchronous is mark.

6-33

6

6-34

Communication

latch BitClear
Dermes the ma~lk used for clearing the latch bits of the RS232c.DeviceStatus.
Only the latch bits which are set in this mask will be cleared.

IineSpeed
Dermes the speed of the line. Its choice is dictated by the modem.

maxAsyncTimeout

parity

Used in conjun(:tion with frameTimeout for multiport asynchronous frame
timing. Default is 0 (infinite timeout).

Specifies the typ.~ of parity to be used.

requestToSend
Corresponds to the state of the RTS circuit to the Data Communications

. Equipment (DeE:). It should be set by the client as described in EIA Standard
RS -232 -C. For full-duplex communication lines, it should remain TRUE at all
times. For half-duplex lines, it is used to control line turnaround. (See §6.S.3.1
for details).

stopBits Specifies the number of stop bits to use on the channel when IineType is
asynchronous.

syncChar Specifies the syn,(:hronization character which the channel will transmit at the
beginning of ea,(:h frame when IineType is byteSynchronous. On input,
synchronization (:haracters preceding frames are discarded.

syncCount
Indicates the number of synchronization characters which the channel will
transmit at the beginning of each frame when lineType is byteSynchronous.
On input, synchrctnization characters preceding frames are discarded.

Not all parameters nor all syntactically legal parameter values are valid for all LineTypes.
The following table shows the valid and default values following calls to Create or
SetLineType.

Pilot Programmer's Manual

Valid and Default Parameter Settings

charLength

correspondent

dataTermi nal Ready 4

echoing

flowControl

frameTimeout

IineSpeed

parity

requestToSend4

stopBits

syncChar

-syncCount

as~nchronous

anyl (8)

xerox800, ttyHost

(xerox800)

any (FALSE)

invalid2

invalid

any (infinite)

any (bps1200)

any (none)

any (FALSE)

any (1)

invalid

invalid

b~eS~nchronous

7,8 3 (8)

xerox850,system6,

cmcll (system6)
siemens9750

any (FALSE)

invalid

invalid

any (inflnite)

any (bps1200)

any (none)

. any (FALSE)

invalid

any (62B)

any (2)

1. "any" means any syntactically-accepted value is valid.

6

bitS~nchronoys

any (8)

nsSystemElement

(nsSystemElement

any (FALSE)

invalid

invalid

any (irumite)

any (bps1200)

any (none)

any (FALSE)

invalid

invalid

invalid

2. "invalid" means either the parameter is ignoredt error RS232C.UnimplementedFeature or error
RS232C.lnvalidParameter will be generated. See 16.5.3.2 for more information on these errors.

3. charLength. 8 with parity. none is valid. and charLength • 7 with parity#none is valid. All other
combinations are invalid.

4. Default values are set following calls to RS232C.Create. Values are unchanged following calls to

RS232C.SetLineType.

RS232C.StopBits: TYPE. RS232CEnvironment.StopBits;

RS232C.PhysicaIRecordHandle: TYPE. RS232CEnvlronment.PhysicaIRecordHandle;

RS232C.PhysicaIRecord: TYPE. RS232CEnvironment.PhysicaIRecord;

RS232c.ReserveType: TYPE. {preemptNever, preemptAlways, preemptlnactive} ;

The ReserveType is used to establish priority among clients contending for a line during a
call to RS232C.Create. Clients who wish to never attempt to gain ownership of a line
already being used should use preemptNever. Clients who wish to always attempt to gain
ownership of such a line should use preemptAlways. Clients using preemptlnactive will
attempt to gain ownership only if the current channel is not active.

6-35

6

6-36

Communication

RS232C. TransferStatus: TVPIE • {success, dataLos't deviceError, frameTimeout,
checksumError, parityElrror, asynchFramingError, invalidChar, invalidFrame, aborted,
disaster};

TransferStatus describes the status of an individual data transfer (i.e., Get or Put). It is
returned to the client as the result of the TransferWait or TransmitNow procedure. Status
types are dermed below.

success Returned norm~lLlly when data transfer has successfully completed.

data Lost Occurs when a Physical Record for a Get operation is not large enough to
accommodate the arriving frame. The channel will discard all overflow data
bytes until end-of-frame is detected.

deviceError
The transfer should be considered successful, but a non-recoverable "shouldn't
happen" hardw~lre or software error has occurred. Note that such status
changes cause the completion of any pending RS232C.StatusWait call (see
§6.5.3.5). The d4ltaLost latch bit is set in the DeviceStatus record if data arrives
when no PhysicalRecord has been allocated via a Get operation. deviceError is
returned as tho TransferStatus on all data transfer operations until the
data Lost latch bi.t is cleared.

frameTimeout
Set if the last by1~e ofa frame does not arrive within the timeout specified in the
frameTimeout pnrameter in RS232c.Parameter.

checksumError,parityError, asynchFramingError
These states all imply that the data has not been transferred faithfully; that is,
stop bits are misning.

invalidChar,invalidFrame
These states are lrlot implemented.

aborted Occurs ifRS232C.S,uspend is called while the data transfer is outstanding.

disaster Returned when the transmit count equals 0, when the receive byte count equals
0, or when the lower layer code returns a completion of disaster.

6 • .5.3.2 Signals and errors

RS232c.ChannelinUse: ERROR;:

If the channel is active .and reservation (pre-emption) fails, then ChannelinUse is
generated.

RS232c.ChanneISuspended: I:RROR;

After doing a RS232c.Susperld on a certain class of operations, a call to any operation in
that class will result in the C:hannelSuspended error being raised.

Pilot Programmer's Manual 6

RS232c.lnvalidLineNumber: ERROR:

If the IineNumber supplied to the Create procedure is invalid, then InvalidLineNumber is
generated.

RS232c.lnvalidParameter: ERROR:

Generated by RS232c.Create or RS232c.SetParameter, this error indicates the client specified
an invalid channel parameter.

RS232c.SendBreaklllegal: ERROR;

This error is raised when a client attempts to call the Send Break procedure on a channel
with a line type of byteSynchronous.

RS232C.NoRS232CHardware: ERROR;

This error indicates the Create procedure has been called with no RS232C hardware
installed.

RS232c.UnimplementedFeature: ERROR;

UnimplementedFeature may be raised by a: call to SetParameter. SetLineType, or Create.

8.5.3.3 Procedures for creating and deleting channels

RS232c.Create: PROCEDURE [lineNumber: CARDINAL.
commParams: RS232c.CommParamHandle. preemptOthers. preemptMe:

RS232c.ReserveType)
RETURNS [channel: RS232c.ChanneIHandle);

Each RS232C channel is a non-shareable resource that supports one full-duplex
communication path. A channel is potentially contended for by Communication software
and by Pilot clients accessing foreign devices. The RS232C channel resolves contention
for and supports pre-emptive allocation. Clients call the Create procedure to reserve a
channel. The channel handle returned is then used in all subsequent operations. If this
procedure is called when no RS232C hardware is installed, then the error
RS232C.NoRS232CHardware is raised.

IineNumber
Specifies the RS232C line to use, which may be obtained using the GetNextLine
procedure. If IineNumber does not represent a line present on the RS232C
controller, then the error RS232c.lnvaiidLineNumber is raised.

preemptOthers, preemptMe
Establish priority among contending clients. The state of a channel will be
either inactive (available or waiting for a connection) or active. If a channel is
available then a Create always succeeds. Otherwise, the success of the Create
depends on the relative priorities of the current "owner" of the channel and the
client trying to reserve it. If the channel is active and reservation (pre-emption)
fails, then the error RS232c.ChannelinUse is generated. The following matrix

6-37

6

6-38

Communication

defines the result; of a Create given the values of the owner's preemptMe and
the reserver's pre'emptOthers, as shown below.

Owner's preemptMe
Never If Inactive

Never Fail Fail
Reserver's

Always

Fail

If Inactive Fail Pre-empt* Pre-empt

Others
Always Fail Pre-empt Pre-empt

• Pre-empt if inacti ve
A new reservatioltl that is waiting for a connection has a grace period starting
when Create is called and ending after a certain time interval, during which it
is not considered to be inactive. During this time it is not pre-emptable by a
client specifying a preemptOthers equal to preemptlnactive. This is necessary
to prevent thrashing of contending listening clients who specify preemptMe
equal to preemptlnactive.

Caution: The grace period after a Create referred to above is not implemented
in this version of PHoto

The client who called RS232C.Create is responsible for releasing the channel
when the channel is pre-empted or when it is no longer required. Pre-emption is
detected by noticing that all RS232C calls return a status of aborted. The pre­
emption algorith:m assumes that the channel owner will. notice this, and
cooperate by relea.sing the channel by doing a RS232C.Delete.

(ommParams
Specifies the basi(: channel characteristics.

RS232c.SetParameter: PROCEDURE [channel: RS232c.Channel Handle,
parameter: RS232c.ParamE!ter);

Additional channel paramet1ers may be set by calling SetParameter.

RS232C.Delete: PROCEDURE [chiilnnel: RS232c.ChanneIHandle);

The Delete operation has thE~ effect of calling RS232c.Suspend, aborting all pending activity
on the channel. Any incomplete asynchronous activities (Le., those initiated via Get or
Put) are terminated immed.iately with status = aborted. Note that it is the client's
responsibility to call TranderWait or TransmitNow for each of these asynchronous
activities in order for the call to Delete to complete. In general, this means that the Delete
and the TransferWaits must be issued from separate processes. If the client wishes to
terminate all pending ac:tivities normally, then he should complete a call to
RS232c.TransferWait or RS2312C.TransmitNow for each pending activity before calling
Delete.

Upon return from the call to Delete, the ChannelHandle is invalid, and further calls using
this handle will have undefined results. One convenient way to idle-down the channel IS

to set flags for all proeesses which have access to the ChannelHandle t call
RS232c.Suspend[all], and then JOIN these processes prior to calling Delete. The assumption

Pilot Programmer's Manual 6

is that any process receiving an aborted status on an RS232C operation will check the flags
and terminate.

6.5.3.4 Data transfer procedures

The operations described below transmit information to and from the equipment
connected to the RS232C port.

RS232c.Get: PROCEDURE [channel: RS232c.ChannelHandle,
ree: RS232C.PhysicaIRecordHandle] RETURNS [RS232c.CompletionHandle];

Get. queues the Physical Record for input transfer and returns to the client with the input
transfer pending. The handle obtained via the RS232c.Create procedure is specified by
channel. rec is the input buffer for the incoming data frame.

RS232C.Put: PROCEDURE [channel: RS232c.ChannelHandle,
rec: RS232C.PhysicaIReeordHandle] RETURNS [RS232c.CompletionHandle1;

Put queues the Physical Record for output transfer and returns to the client with the output
transfer pending. Both Get and Put are asynchronous, in the sense that they return to the
caller as soon as the request has been queued, but complete at a later time. For each
direction (i.e., input and output), pending activities are processed and completed in the
order in which they are issued. The returned CompletionHandle identifies an activity
initiated by a Get or Put operation. Each Completion Handle must eventually be passed as
a parameter to the TransferWait ·or TransmitNow operation, which does not return until
that particular activity is completed or aborted.

channel specifies the handle obtained via the RS232c.Create procedure. rec is the output
buffer for the frame of data to be sent.

The 110 buffers described by the Physical Record must not be released, altered, or re-used
until after the TransferWait or TransmitNow operation for the associated transfer
completes.

RS232C. TransferWait: PROCEDURE [channel: RS232c.ChanneIHandle,
event: RS232c.CompletionHandle]
RETURNS [byteCount: CARDINAL, status: RS232C. TransferStatus];

Forking a process to perform a TransferWait allows the client program to proceed with
parallel processing.

channel is the handle obtained via the RS232c.Create procedure. event is the completion
handle that identifies the activity upon which to wait; that is, the handle returned from
the Get or Put data transfer operation. byteCount specifies the number of data bytes
transferred upon completion of the call. status specifies the status of the completed call;
see §6.5.3.1 for the different status values that may be returned.

TransferWait awaits completion of the activity initiated by Get or Put and returns to the
client the number of bytes transferred and the status. For Puts, the return from this
procedure indicates that the client's buffers are available for reuse, but does not guarantee
that the associated data has been transmitted on the communication line.

6-39

6

6-40

Communication

RS232c.TransmitNow: PROCI:DURE [channel: RS232c.ChanneIHandle.
event: RS232C.CompletictnHandle]
RETURNS [byteCount: CARDINAL. status: RS232C. TransferStatus];

Instead of TransferWait, TransmitNow may be used to force Put operations to complete.
Return from this procedure guarantees that the data has been transmitted on the
communication line.

RS232c.Suspend: PROCEDURE [channel: RS232c.ChanneIHandle.
class: RS232c.OperationC:lass];

Suspend aborts all pending: activity of the specified OperationClass and causes subsequent
calls to generate the error RtS232c.ChannelSuspended until a call to Restart is issued.

Suspend does not return until the abort of all pending activities of the specified
OperationClass is complete. In the case of asynchronous operations it is the client's
responsibility to call Trans,ferWait or TransmitNow for each of these operations in order
for the call to Suspend to complete. In general, this means that the Suspend and the
TransferWait must be issued in separate processes. Since Delete and SetLineType have
the effect of a call to Susperld, this is also true of calls to them.

RS232c.Restart: PROCEDURE [c,hannel: RS232c.ChanneIHandle.
class: RS232c.OperationCllass];

Restart clears the effect of a. call to Suspend. A suspend may occur as a result of an explicit
Suspend operation or as a rtesult of the occurrence of a sufficiently serious error.

8.0.3.5 Utility procedures

RS232c.GetNextLine: PROCEDURE [lineNumber: CARDINAL)
RETURNS [nextLine: CARDI~IAL);

RS232C line numbers may be' obtained by the GetNextLine procedure, a Pilot stateless
enumerator with starting 8.ltld ending values of nullLineNumber.

RS232c.GetStatus: PROCEDURE: [channel: RS232c.ChanneIHandle]
RETURNS [stat: RS232c.DevieeStatus];

In addition to the status information returned for each data transfer operation, Pilot
maintains global information about the device itself. This information is accessed via the
GetStatus and StatusWait procedures. GetStatus returns the current status of the device.

RS232c.StatusWait: PROCEDUFtE [channel: RS232c.Channel Handle.
stat: RS232c.DevieeStatus] RETURNS [newstat: RS232C.DeviceStatus);

StatusWait waits until the current DevieeStatus differs significantly from the supplied
parameter stat. Changes in status to statusAborted, dataLost, \ breakDetected,
clearToSend, dataSetReady, carrierDetect and ringHeard are defined to be significant; a
change to ringlndicator is lllot. The client must examine the device status to determine
what action to take.

Pllot Programmer's Manual 6

RS232c.SetLineType: PROCEDURE [channel: RS232c.ChanneIHandle.
IineType: RS232c.LineType]; _

SetLineType is used to change the LineType subsequent to creating the channel. Note that
the process of deleting a channel and then creating it again has the effect of setting
dataTerminalReady to FALSE, thereby hanging up a switched telephone line connected to
the modem. A call to SetLineType does not have this effect.

The SetLineType operation has the effect of a call to RS232c.Suspend. If the client wishes to
complete all pending activities normally, then he should first call RS232C. TransferWait for
each pending activity, prior to calling SetLineType. Parameter information (as supplied
via prior calls to SetParameter) is reset to default values (see chart below), and should be
resupplied.

RS232c.SendBreak: PROCEDURE [channel: RS232c.ChanneIHandle);

Send Break transmits a break on the communication line, where break is dermed to be the
absence of a "stop" bit for more than 190 milliseconds if IineType equals asynchronous, or
an abort (between 7 and 14 "1" bits) if IineType equals bitSynchronous. SendBreak is
illegal for IineType equal to byteSynchronous, and will result in the error
RS232c.SendBreaklllegal. Note that sending a break while data transfer operations are
outstanding has unpredictable results.

6.5.4 Procedures for starting and stopping the channel

RS232CControl: DEFINITIONS ••• ;

The RS232CControi interface allows the client to start and stop the RS232C channel code.
When the configuration RS232CIO is started, the channel code is started.

RS232CControl.StOP: PROCEDURE [suspendActiveChannels: BOOLEAN];

Stop stops the RS232C channel code. No new channel creations are allowed and any
attempt to create a channel results in the error RS232c.NoCommunicationHardware. In
addition, if suspendActiveChannels is TRUE, then all channels are suspended.

RS232CControl.Start: PROCEDURE;

Start allows channel creation after a Stop call.

RS232C.NoCommunicationHardware: ERROR;

NoCommunicationHardware is raised when a client. attempts to create a channel after
RS232C.Stop has been called.

6.5.5 Auto-dialing

Dialup: DEFINITIONS •.• ;

DialupExtras: DEFINITIONS ..• ;

The Dialup interface allows the client to specify a telephone number for the auto-dialing
hardware to dial. Upon successful completion of the dialing operation, data transfers
across the associated RS232C channel are directed to the equipment answering the
telephone call.

6-41

6

6-42

Communication

Note: The hardware association between modems and dialers is configured by the user,
and is assumed to be known to the client of the Dialup and RS232C interfaces.

To cause a telephone number to be dialed, the client calls

DialupExtras.DiaIExtra: PROCI~DURE [dialerNumber: CARDINAL, number: LONG POINTER TO
Dialup.Number,retries: Dia'up.RetryCount, dialerType: DialupExtras.DialerType]
RETURNS [Dialup. Outcome) ;

Dlalup.Number: TYPE. RECORD [number: PACKED SEQUENCE n: CARDINAL OF Environment.Byte];

Oialup.RetryCount: TYPE. [0 •• 7];

Dialup.Outcome: TYPE. {sl~ccess, failure, aborted. formatError, transmissionError,
dataLineOccupied. diale'rNotPresent. dialingTimeout. transferTimeout };

DialupExtras.DialerType: TYPI! • MACHINE DEPENDENT {RS366(O). Ventel(1),
smartmodem(2). RacaIVadic(3). V2Sbis(4), V2S(S). other(6), last(LAST[CARDINAL])};

Note: Use DlalupExtras.DialE:xtra instead of Dialup. Dial.

dialerNumber specifies a logical dialer number corresponding to a physical dialer attached
to a port either on the local processor or the Xerox 872/873 Communication Server.
Dialing operations also r.~quire some form of logical identifier to distinguish among
multiple modems serviced by the same dialer.

number is a sequence of bit patterns representing the digits to be dialed. With the
exception on the Dlalup.pau~se, the dialup implementation attaches no semantics to any of
the bit patterns it receives; they are simply passed to the dialer hardware. The client is
responsible for knowing what bit patterns represent special characters, such as EON and
SEP, for the particular hardware. The Modem then has the responsibility for detecting
Answer Tone. In the absl:tnce of the EON digit, transfer is made automatically upon
detection and processing of Answer Tone.

retries indicates how many times the Dialup routine will retry the dialing operation
following failure outcomes (see below).

6.5 .. 5.1 Outcome

Dialup.Outcome: TYPE. {success. failure. aborted, formatError. transmissionError,
dataLineOccupied. dialer'NOtPresent, dialingTimeout, transferTimeout };

The values of Outcome are ilnterpreted as follows:

success The dialing operation was successful. For dialers capable of detecting answer
tone, this means that the call was answered by a compatible modem and control
was successfully transferred by the dialer to the associated local modem. For
dialers not so ec:luipped (i.e., when EON is used to control transfer to the
modem), this menns that all the digits in the number were dialed, and control
was successfully transferred to the modem. Note that success refers to the
dialing operation., and should not be taken to mean that the associated modem
is ready to transfer data. This should be determined by examining
dataSetReady and clearToSend in the RS232c.DeviceStatu5.

failure The dialing operation resulted in no answer, a busy signal, or the telephone
answered by somE!thing other than a compatible modem (e.g., a human being).

Pilot Programmer's Manual 6

aborted The dialing operation was aborted (via Dialup.AbortCall).

formatError
The parameter number was formatted incorrectly.

transmission Error
The transfer of the dialing information to the dialing hardware did not succeed.
This situation should not happen in normal operation, and indicates a hardware
problem which should be investigated.

dataLineOccupied
The telephone line to which the dialing hardware is connected was off-hook.
This situation indicates an operational problem which should be investigated.

dialerNotPresent
The dialer hardware did not respond. This situation indicates a hardware
problem (or a lack-of-hardware problem) which should be investigated.

dialingTimeout
The dialer did not respond to a request during dialing. This situation indicates
a hardware problem which should be investigated.

transferTimeout

6.5.5.2 DialerType

No meaningful reply was received from the dialer following dialing the last
digit. The diaier neither detected a failure (i.e., busy or no answer) nor
successfully transferred control to the modem. This situation indicates a
hardware problem which should be investigated.

DialupExtras.DialerType: TYPE • MACHINE DEPENDENT {RS366(O), Ventel(1), smartmodem(2),
RacaIVadic(3), V2Sbis(4), V2S(S), other(6), last(LAST[CARDINAL])};

The number field in the DlalupExtras.DialupExtra interface call is closely tied to the
DialupExtras.DialerType that is passed to the DfalupExtras.DialExtra call.

For DialupExtras.DialExtra calls with the RS366 dialer type set, dial number specifications are
unchanged.

For DlalupExtras.DialExtra calls with the Ventel dialer type, the following semantics apply
for the number field.

The phone number is a string of 0 to 30 characters from the following set: the dial digits 0
through 9 and the dial modifiers &, % and space. The dial modifiers have the following
semantics:

& Wait for Dial Tone. The & modifier causes the Ventel to wait for up to five
seconds for a secondary dial tone before dialing the following numbers.

0/0 Pause. The % modifier causes the Ventel to pause for five seconds before
dialing the subsequent numbers.

-space Has no effect on the dialing of the specified number and is included only for
readablity.

For example,
9&1234% %4085551212

6-43

6

6-44

Communication

In this example, the 9 was dialed to get an outside line. When a second dial tone was
detected, the four digit billing code was issued and the modem waited for ten seconds
before dialing the rest of the number.

For DialupExtras.DialExtra calls with the smartmodem dialer type, the following semantics
apply for the number field.

The phone number is a string of 0 to 39 characters from the following set. The dial digits 0
through 9 ABC 0 :# and *, the dial modifiers P TRW , @ I and S and the punctuation
symbols (,),. and space. These punctuation symbols have no effect on the number dialing
and are only provided for user readability.

The symbols A B and 0 havl3 the following meaning.

A Off-hook in answer mode.

B Selects CCITT V.22 operation when communicating at 1200 bps.

D Dial number which follows 0 in the command line.

The symbols P TRW 6 @ and! are dial modifiers and have the following effect when
encountered in a dial numbElf string.

P Pulse Dial. Thf! P modifier causes the smartmodem to pulse dial the numbers
that follow.
Pulse dialing example:

P 5551212

T Touch-Tone Dilal. The T modifier in the dial string causes the modem to
Touch-Tone dial the numbers that follow (default).
Touch-Tone dial:ing example:

T5551212
Dialing an outside line example:

T9,5551212
In this example the modem dials 9 to access an outside line and waits two
seconds before dialing the rest of the number (see, below).

R Originate Call][n Answer Mode. The R modifier must be the last character
in the dial strini~. It causes the smartmodem to originate the call in answer
mode, and is used to dial an originate-only modem.

W Wait For Dial 'rone Before Dialing. The W modifier in the dial string
causes the smartmodem to wait up to thirty seconds for a dial tone before
dialing the numbers that follow.
W modifier exam.ple:

9W 5551212
In this example the modem dials 9 and waits up to thirty seconds fOf a
subsequent dial tone and then dials the rest of the numbers.

Delay A Dial Sequence. The, modifier in a dial string causes the
smartmodem to pause two seconds before processing the next symbol in the
string. Multiple c:ommas can be used consecutively to generate longer pauses.

@ Wait For Quiet Answer Before Dialing. The @ modifier in the dial string
causes the smartmodem to wait up to thirty seconds for one or more rings
followed by five sl;!conds of silence before processing the next symbol in the dial
string.

Pilot Programmer's Manual 6

Initiate Flash. The! modifier causes the smartmodem to go on-hook for one­
half second. This is equivalent to holding the switch-hook botton on your
telephone down for one-half second.

For oialupExtras.DialExtra calls with the RacalVadic dialer type, the following semantics
apply for the number field.

The phone number is a string of 0 to 16 or 0 to 32 characters, depending on how the modem
hardware is configured, from the following set: the dial digits 0 through 9 and the dial
modifiers •. The dial modifier • allows for tandem dialing and causes the modem to wait
for a secondary dial tone before dialing the subsequent numbers.

For example,
9.4085551212
In this example, the 9 was dialed to get an outside line, the modem waited for a
secondary dial tone, then dialed the rest of the number.

For oialupExtras.DialExtra calls with the V25bis dialer type the following semantics apply
for the number field.

The phone number is a string of characters from the following set: the dial digits 0 through
9 and the dial modifiers :, <, ., >. The dial modifier causes the modem to wait for a
secondary dial tone before dialing the following numbers. The modifiers <, ., > are for
national use; the individual modem manual should be consulted for their use.

For example,
9:4085551212
Here, the 9 was dialed to get an outside line, the modem waited for a secondary dial
tone, and dialed the rest of the number.

Note: The value of the frameTimeout in the RS232C channel will be changed according to
the following list of specifications when using the Dial and DialExtra procedures:

For calls with the smartmodem dialer type, the frame timeout will be set to 100 ms
when the call is completed.

For calls with the dialer type Ventel, RacalVadic, or V25bis, the frameTimeout will be
set to 30 ms.

Caution: The frame timeout should not be reset after a connection has been established,
since the DTR signal is reset when the frame timeout is changed.

8.5.5.3 Miscellaneous facilities

Dialup.AbortCall: PROCEDURE [dialerNumber: CARDINAL];

If the client wishes to abort the dialing operation (from another process) prior to the return
from Dial, he may call AbortCall, causing the call to Dial to return with an Outcome of
failure.

Dialup.GetDialerCount: PROCEDURE RETURNS [numberOfDialers: CARDINAL];

The procedure GetDialerCount returns the total number of RS366 (dialer) ports available.

6-45

6 Communication

Dialup.pause: Environment.Byte :I LAST[Environment.Byte];

When passed in the param1eter number, pause causes the dialer to wait six seconds before
dialing subsequent digits. pause is designed to be used in place of SEP on dialers that
cannot detect Dial Tone. This bit pattern does not actually get passed to the dialer
hardware.

6 .. 6 Courier

6-46

The term remote procedure calling refers to a software framework that facilitates the
design, implementation, and documentation of distributed services. Remote procedure
calling casts the network protocols that underlie distributed services into a model closely
resembling the invocation. of procedures in nondistributed programs. Thus a client
request for some service resembles a procedure call, and the information returned by the
service resembles the return from a procedure.

Mesa clients of Courier are provided with a set of facilities that closely parallel those
provided by Mesa running I)n a single machine. Just as Mesa provides powerful facilities
for modeling and controlling the interaction of programs through type-safety and signals,
Courier provides facilitie~1 for modeling and controlling the interaction of systems
distributed among an arbitrary number of machines. The principal limitation of Courier
is that it supports only a suhset of the Mesa data types.

6 .. 6.1 Definition of terms

The following terms are used throughout this section and have specific meanings in the
Courier context.

disjoint data In general, any Mesa structure that causes Courier to access data outside
the current parameter area is disjoint. Examples of disjoint data are
StringBOd),s and ARRAYS described by LONG DESCRIPTORs.

parameter area A segment of contiguous virtual memory that contains Mesa data types
and is being processed by a description routine. Parameter areas are
dermed by;! LONG POINTER and a size.

remote program A remote program usually represents a complete service, and the remote
procedures it contains represent the operations of that service.

RPC

server

transport

user

Remote Pr4lCedure Call. In this context it refers to the actual processing
of arguments and results, that function being separate from bulk data,
for instancH.

The Courier server is the Mesa Courier client that provides or exports a
service.

The transport is used by Courier to carry the remote procedure call
messages and by clients to carry bulk data. The transport is in the fornl
of a Pilot stream and is usually assumed to be a Network stream.

The Courier user is the Mesa Courier client that requests, consumes, or
imports a sHrvice.

Pilot Programmer's Manual 6

6.6.2 Binding

Courier provides mechanisms for late binding at both the user and server machine. The
mechanisms are less rigorous than their Mesa counterpart, but they do exist.

6.6.2.1 Binding to a service

Binding at the user machine is controlled by the procedures Courier. Create and Delete and
the existence of a valid Courier.Handle. The handle (and thus the binding) returned by
Create remains valid on the machine it was created until it is deleted or the system is
restarted.

Courier.SystemElement: TYPE. System.NetworkAddress;

Courier.Handle: TYPE. LONG POINTER TO READONLY Courier.Object;

Courier.Object: TYPE. RECORD [remote: Courier.SystemElement.
programNumber: LONG CARDINAL. versionNumber: CARDINAL.
zone: UNCOUNTED ZONE. sH: Stream.Handle.
classOfService: NetworkStream.ClassOfService];

Courier.Create: PROCEDURE [remote: Courier.SystemElement.
program Number: LONG CARDINAL. versionNumber: CARDINAL.
zone: UNCOUNTED ZONE, classOfService: NetworkStream.ClassOfService]
RETURNS [Courier.Handle];

Courier. Delete: PROCEDURE [cH: Courier. Handle];

Courier. Error: ERROR [errorCode: Courier.ErrorCode];

Courier.ErrorCode: TYPE. { •••• invalidHandle •••• };

Successful completion of the Create procedure results in the returning of a Courier.Handle.
The holder of that handle is then declared to be bound to the remote service specified. The
service in turn is specified as a concatenation of a Courier.SystemElement, a remote
program number and a desired version. Ccurier.Create also records other (interesting)
aspects of the client's access to the remote service, namely the UNCOUNTED ZONE to be used
for storing disjoint data structures, and an indication of the type of transport needed to
effectively communicate with the service.

Note: Create merely records the request for binding locally. Thus it may not do all the
checking that one would expect. The flrst attempt to establish a dialogue with the remote
service, hence completing the binding, is not made until the first Courier.call (see §6.6.3).

Note: The transport used by Courier for communication with the remote machine is
(usually) under full control of Courier itself. The transport may be shared by other
Courier clients, created or deleted at Courier's discretion. Therefore, the binding does not
include the transport,except when it is being used by bulk data transfer (see §6.6.5).

The success of Create results in the caller possessing a Courier.Handle, and, indirectly, the
Courier.Object to which it points. The only information in the object not provided by the
client is a Stream.Handle, used by BulkData (see §6.6.5). The possession of the
Courier.Handle entitles the holder to make procedural requests, one at a time, of a remote
service. The handle remains valid until explicitly deleted (Courier.Delete). Once deleted,
the handle is void and may not be used in any operation (including Delete) again.

6-47

6

6-48

Communication

Attempts to use an invalid handle result in the signal Courier.Error[invalidHandle) being
raised.

Note: Delete does not delete the transport immediately. Courier will retain the transport
for some period of time hO'ping another client will be able to use it, thus eliminating the
overhead of deleting and creating the transport. Courier goes to great pains to (properly)
utilize the transport, which is perceived to be very heavy-weight relative to the needs of
most RPC operations. Delayed creates, reusing existing transports, and delayed deletes
are all attempts to optimize the transport's use. Regrettably, it also reduces the
debuggability by at least all order of magnitude.

6.6.2.2 Server binding

Courier.ExportRemoteProgrtim: PROCEDURE [
programNumber: LONG CARDINAL, versionRange: Courier. VersionRange,
dispatcher: Courier .Dispa·tcher, service Name : LONG STRING +- NIL,
zone: UNCOUNTED ZONE, classOfService: NetworkStream.ClassOfService);

Courier.VersionRange: TYPE. RECORD [low, high: CARDINAL];

Courier.Dispatcher: TYPE. PIROCEDURE [
cH: Couri.r.Handle, procedureNumber: CARDINAL,
arguments: Couri.r.Argurnents, results: Courier.Results];

Courier.Arguments: TYPE

Courier.Results: TYPE •..•

Courier.ErrorCode: TYPE • {."., duplicateProgramExport, .•• };

Courier.NoSuchProcedureNumber: ERROR;

In order to make a service available on a machine, the server client must rust register
(export) that service via EXlportRemoteProgram. That action provides a template needed
by Courier to complete the binding process as it is needed. It registers information about
the service (program number, version range, class of transport and the UNCOUNTED ZONE)
much like Courier.Create. One difference is that the client specifies a version range when
registering the service. 1'his permits servers to provide backwards compatibility by
allowing a single export to nupport any number of versions. Courier uses the information
provided by the call as wormation to fabricate Courler.Handles (and the Courier.Objects
behind them). Each handlE! thus created may be treated exactly as a handle returned by
Courier.Create, with the exce:ption that the lifetime of the handle is defined by Courier. The
object is not created by a client and therefore should not be deleted by the client. I t is
assumed void when the client returns from his dispatcher.

Courier will signal duplica.te program exports (identical program number and version
range) by raising Courier.Err1or[duplicateProgramExport). Be aware that duplicate exports
require an exact match. Registering a secondary export with overlapping version ranges
will succeed, but will give non-deterministic results.

The active part of the ex]>orted service is the client's dispatcher. Courier calls this
procedure from a FORKed process and in no way serializes incoming requests. The
dispatcher is client-implemented and is responsible for the final stage of binding at the
server machine. The last eAement in the binding process is the procedureNumber. The
client must verify that the procedure is really exported by the service, and if it is not, it
should signal Courier.NoSuchProcedureNumber, thus rejecting the call. If the procedure

Pilot Programmer's Manual 6

number is valid, the service should proceed with the argument processing and perform the
deimed service.

Courier.UnexportRemoteProgram: PROCEDURE [
programNumber: LONG CARDINAL, versionRange: Courier.VersionRange];

Courier.ErrorCode: TYPE. { ••• , noSuchProgramExport, ••• };

Once registered via Courier.ExportRemoteProgram, the service is expected to respond to
remote requests as the protocol for that service specifies. That responsiveness should
continue until UnexportRemoteProgram is called. At that time, the service is no longer
available and all subsequent requests are rejected. UnexportRemoteProgram does not
affect calls currently in progress.

6.6.3 Remote procedure calHng

The major purpose of Courier is to provide a simple remote procedure call facility. Courier
relieves the client of many of the communications aspects of providing a remote service,
leaving a c~ll model that can be likened to Mesa in many respects.

6.6.3.1 Client call

Courier.call: PROCEDURE [
cH: Courier.Handle, procedureNumber: CARDINAL,
arguments, results: Courier.Parameters Courier.nuIiParameters,
timeoutlnSeconds: LONG CARDINAL LAST[LONG CARDINAL].
requestDataStream: BOOLEAN FALSE,
streamCheckoutProc: PROCEDURE[cH: Courier.Handle] NIL]
RETURNS [sH: Stream.Handle];

Courier.Parameters: TYPE. RECORD [location: LONG POINTER, description: Courier.Description];

Courier.nuIiParameters: Courier.Parameters • [NIL, NIL];

Courier.Description: •••• ;

Courier.ErrorCode: TYPE • { ••• ,
transmissionMediumHardwareProblem, transmissionMediumUnavailable,
transmissionMediumNotReady, noAnswerOrBusy. noRouteToSystemElement,
transportTimeout. remoteSystemElementNotResponding. noCourier AtRemoteSite,
tooManyConnections, invalidMessage, noSuchProcedureNum ber, returnTimedOut,
calierAborted, unknownErrorlnRemoteProcedure, streamNotYours,
parameterl nconsistency, i nval idArguments, noSuchProgramNumber,
protocolMismatch, invalidHandle, .•• };

The basis of Courier's RPC facility is embodied in the Courier.Call. Call completes the
specification of the desired service by merging the binding information (cH), a procedure
within that generic service (procedureNumber) and the parameters (arguments) to be
supplied to the procedure. Due to the implied distributive nature of the call, the client is
requested to provide an estimate of how much time will elapse before a response is
declared lost (timeoutlnSeconds). The remaining two arguments (requestDataStream
and streamCheckoutProc) are relevant to bulk data transfer (see §6.6.5), as is the
Stream.Handle returned by the Call.

6-49

6

6-50

Communication

6.6.3.1.1 Call initial processing

Courier.ErrorCode: TYPE. { ...•
transmissionMediumHardwareProblem. transmissionMediumUnavailable.
transmissionMedi umNotReady. nOAnswerOrBusy, noRouteToSystemElement,
transportTimeout. remoteSystemElementNotResponding, noCourierAtRemoteSite.
tooManyConnectionsl' plrotocol Mismatch. i nval idHandle •... };

Initial contact with the romote machine is made when the first call is made to that
machine. A transport win be created before the arguments are processed. That initial
contact will not include information about the particular service involved in the procedure
calL Thus,it establishes the ability to communicate with the remote machine but does not
verify that the desired service is actually exported.

Caution: Because of Courier's transport caching and swapping algorithms, it is almost
impossible for a Courier dient to tell when such initial contact is being established.
Therefore, for the purposesl of signal catching and the like, it is prudent to assume every
Courier.CaIl is an initial cont.act.

8 .. 6.3 .. 1.,2 Argument processing

Courier.ErrorCode: TYPE. { ..••
transportTimeout. invalidMessage. noSuchProcedureNumber,
parameterlnconsistency, invalidArguments, noSuchProgramNumber.
invalidHandle, ..• };

Courier.VersionMismatch: ERROR [versionRange: Courier.VersionRange];

Courier.VersionRange: TYPE .1 RECORD [low, high: CARDINAL];

The remote machine is made aware of the full binding information during or immediately
after processing the procedure's arguments. Should the binding fail, Courier will raise
Courier. Error with an appropriate error code (noSuchProcedureNumber or
noSuchProgramNumber) orcourier.VersionMismatch. In the case of Version Mismatch, the
user client is afforded the opportunity to select a version that is implemented by the server
and retry the operation.

Courier Call parameters are not an exact Mesa model of procedure parameters. As
described in §6.6.6, Courier needs help to map Mesa data types to Courier data types. To
provide that help, the Couril~r client must provide the location of the parameter area and a
description routine to desc:ribe them in the form of a Courier.Parameters record. The
Courier equivalent for a Mesa procedure with no arguments or results is a Courier.Call that
has its arguments and results parameters assigned (or defaulted) a value of
Courier .null Parameters.

Note: The description routine will not be called if either the location or the description
field of the Parameters record is NIL.

6.6.3.1.3 Waiting for results

Courier.ErrorCode: TYPE. { ... ,
transportTimeout, return'rimedOut, unknownErrorlnRemoteProcedure •... };

Pilot Programmer's Manual 6

Courier.RemoteErrorSignalled: ERROR [
errorNumber: CARDINAL. arguments: Courier.Arguments];

Courier.Arguments: TYPE • PROCEDURE [
argumentsRecord: Courier.Parameters ... Courier.nuIiParameters];

Once the arguments of a Call have been successfully transmitted, Courier does not return
to the client until it either receives the results of the procedure call, receives notification
that the call has failed, or abandons the call. During the period while Courier is waiting
for the results, the transport is bound to the call. If that transport fails, then the local
machine abandons the call and raises the signal courier.Error[transportTimeout). Courier
watches to ensure that the call returns in a client-specified period of time
(timeoutlnSeconds). If that time expires, then Courier raises the error
courier.Error[returnTimedOut].

Caution: timeoutlnSeconds must be translated to internal units by the underlying
software. Should that conversion result in an overflow, the call will never timeout. The
default OfLAST(LONG CARDINAL) falls in this category.

Note: Timing is begun after the user client returns from the streamCheckoutProc, or, if it
is NIL, immediately after completing arguments processing. It does not include the time to
create the transport, to process arguments, to transfer bulk data (see §6.6.5), or to process
results.

The server client may raise courier.SignalRemoteError instead of returning results. This
signal is translated to Courier.RemoteErrorSignalied at the user machine. The
concatenation of the binding information and the errorNumber is equivalent to a unique
Mesa signal and can be used to dispatch on proper code to process the signal's arguments,
which must be done by calling arguments with an appropriate Courier.Parameters record.
Like a Mesa signal, once RemoteErrorSignalied is raised, the client should no longer
expect the call to return results as well.

Caution: courier.RemoteErrorSignalled's arguments must be processed before UNWINDing.
To UNWIND would cause Courier to lose all the state being maintained for the call.

Note: Like arguments or results, a signal with no arguments is a call to arguments with a
parameter of Courier.nuIiParameters.

Notes: Courier user clients must distinguish the difference between Courier. Error and
Courier.RemoteErrorSignalied. The former is a Courier failure, while the latter is a (more
useful) conveyance of status from a remote service.

6.6.3.1.4 Freeing results

Courier.Free: PROCEDURE [parameters: Courier.Parameters. zone: UNCOUNTED ZONE];

Any time Courier translates Courier data types to Mesa data types, it may be necessary
for Courier to allocate storage for disjoint data structures. The storage will be allocated by
Courier on the client's behalf from the zone specified during the binding (Courier.Create[...•
zone: UNCOUNTED ZONE, ..•]) using the standard Heap machinery. The client is responsible for
deallocating these nodes; to make that task easier, Courier provides the Free procedure.
Once the client has processed the results, this procedure may be called, freeing all nodes
allocated during the store (see §6.6.6.2) operation.

6-51

6

6-52

Communication

Note: It is never wrong to call Courier. Free after processing the results, even if no storage
was allocated in the store process. It is considered an optimization requiring knowledge of
the Courier and Mesa data :3tructures involved to not do so.

6.6.3.2 Server's dispatcher

Courier.Dispatcher: TYPE. PROCEDURE [
cH: Courier.Handle, procedureNumber: CARDINAL"
arguments: Courier.Argul1nents, results: Courier.Results];

Courier.Results: TYPE • PROCI:DURE [
resultsRecord: Courier.Parameters +- Courier.nuIiParameters,
requestDataStream: BOOLEAN +- FALSE]
RETURNS [sH: Stream.Handle];

The dispatcher is the server client's link with the RPC mechanism. The dispatcher
procedure is registered by the service implementor via Courier.ExportRemoteProgram.
When a user places a call, Courier searches its intemallists of exports for an appropriate
export and calls the registelred dispatcher using a process spawned by Courier. The client
dispatcher is passed information similar to that which the user client passes to Courier: a
cH (Courier.Handle), a proceciureNumber indicating the exact procedure requested from the
service, and two procedurf!s (arguments and results) that the client uses to link the
appropriate parameter areas and description routines to the procedure'S parameters.

6.6.3.2.1 Completing the binding

Courier .NoSuchProcedureNul"ber: ERROR;

The dispatcher's rust responsibility is to complete the binding. The only unbound element
is the procedureNumber. 11he dispatcher must verify that the CARDINAL number supplied
is valid for the service, and if not, raise the signal Couri.r.NoSuchProcedureNumber. Once
the dispatcher verifies that the procedure does exist, it is obligated to service the remote
calls in the manner prescribed by the protocol it implements.

6.6.3.2.2 Processing the remote pr100edure call

The server client code lust processes the arguments of a procedure by calling the supplied
arguments procedure with an appropriate Courler.Parameters record. Even if there are no
procedure arguments, al'guments must still be called with parameters of
Courier.nuIiParameters. If actual arguments do exist, then the location field of the
Parameters record is assumt~d to point to an uninitialized but writeable section of virtual
memory. The argument da.ta will be translated from Courier data types to Mesa data
types with help from the des4:ription routine.

After processing the procedure's arguments, the service is expected to perform some
predefined function, a function not known to Courier, and one that may inc! ude bulk data
transfer (see §6.6.5). The byte stream is available (cH.sH) to the server client after Courier

. returns from arguments. The client is assumed to be finished with the stream when it
calls results.

When the service is complete, it must call results, either with a client defined paJ;:ameter
record or with Courier.nuIlPal~ameters. The results returns a Stream.Handle. That handle
will be NIL unless requestDataStream is assigned a value of TRUE. A non-NIL handle may be

Pilot Programmer's Manual 6

used for bulk data transfer. Client use of the stream in this case is assumed to be complete
when it returns from the dispatcher.

6.6.3.2.3 Freeing the arguments

When storing (see §6.6.6.2) the arguments ofa procedure call, Courier may allocate nodes
of storage on behalf of its clients to store disjoint data structures. At sometime before
returning from the dispatcher, the client must free that storage. This may be done as
described in §6.6.3.1.4.

6.6.4 Errors

Courier performs a considerable amount of error processing. Most signals that might be
raised by underlying implementations used by Courier are translated to Courier. Error with
a (hopefully) ~eaningful errorCode. Other errors are implemented by Courier and may be
raised by clients.

6.6.4.1 Errors raised by Courier

The following is a list of signals that Courier may raise and the client must catch. The
discussions defme the conditions under which they may be raised and suggest proper
client reactions.

Courier.Error: ERROR [errorCode: Courier.ErrorCode);

Courier.ErrorCode: TYPE. {

transmissionMediumHardwareProblem, transmissionMediumUnavailable,
transmissionMediumNotReady, noAnswerOrBusy, noRouteToSystemElement,
transportTimeout, remoteSystemElementNotResponding, noCourierAtRemoteSite,
tooManyConnections, invalidMessage, noSuchProcedureNumber, returnTimedOut,
callerAborted, unknownErrorlnRemoteProcedure, streamNotYours,
truncatedTransfer, parameterlnconsistency, invalidArguments,
noSuchProgramNumber, protocol Mismatch, duplicateProgramExport,
noSuchProgramExport, invalidHandle, noError};

This is the most common Courier signal. It should never be raised by and must always be
caught by the client. Unless specifically noted, the following codes may be observed by
both user and server clients.

transmissionMediumHardwareProblem
Most likely to happen during initial attempts at establishing a connection, but
could happen at any time. The error is also most likely to be related to circuit­
oriented devices. At any rate, it is highly unlikely that anything can be gained
by retrying the operation. Call your support personnel for assistance.

transmissionMediumUnavailable
Always associated with circuit oriented devices; indicates that the device is
either currently or permanently unavailable. Check the hardware to verify its
configuration, and if properly configured, retry at a later time.

transmissionMediumNotReady
Always associated with circuit oriented devices; suggests that the medium is
operational but unable to accept data. Possible remedies are to manually dial
the phone or ready the modems.

6-53

6

6-54

Communication

noAnswerOrBusy
Applies to circuit-oriented media only; indicates that the local hardware was
operational, but the remote either did not answer or was already busy. Retry at
a later time (on the order of minutes).

noRouteToSystemElement
The network on which the remote machine resides is not reachable at this time.
The internet mSLY have been temporarily partitioned (due to system failure)
such that the network is no longer reachable. Retry the operation at a later
time (on the order of minutes).

transportTimeout
An active connection has suddenly become unusable. The condition may be due
to the remote m.achine becoming inoperable or to an error-prone connection
somewhere in thf! internet .

. remoteSystemElementNotltesponding
Trying to estabUsh a connection failed after a reasonable amount of time and
attempts. Eithelr the remote machine is inoperable or it does not exist on the
specified networ]t. Check the network topology and the state of the machine in
question. This er:ror will be observed only by user clients.

noCourierAtRemoteSite
Observed only at the user machine; an attempt to establish a connection with a
remote machine succeeded, but it was found that Courier was not listening, an
indication that no services are exported by that machine.

tooManyConnections
Courier has a liInit as to how may transports it will support simultaneously.
Creating the trarlsport for this connection would exceed that limit. Try again at
a later time (on the order of seconds). This error will only be observed on the
user machine, but may reflect a condition on either the user or server machine.

invalidMessage
A message receiv'ed from a remote machine was of the wrong format. This is an
error in either Courier's or in the Courier client's protocol implementation.
Retrying the operation will probably not be fruitful. This error will be observed
only by user clien.ts.

noSuchProcedureNumber
The remote servilce does not implement the procedure specified. This is a client
protocol violatior.l. Retrying will not help. This error will only be observed at
the user.

returnTimedOut
A remote procedure call did not complete in the specified amount of time.
Courier has abandoned the call. This could be due to an overloaded server, so
retrying at a later time (minutes) may work. This error is observed only by user
machines.

calierAborted
The service has taken too long to formulate its reply. The calling machine has
abandoned the call, and the results cannot be delivered. The server never
retries operations. This error is observed only on server machines.

Pilot Programmer's Manual 6

unknownErrorinRemoteProcedure
An undefined error has occurred. The server machine's integrity is in doubt and
retrying could compound the problem. This error is observed only by user
machines.

streamNotYours
A client of inter-call (§6.6.S.2) style bulk data, transfer has attempted to call
Courier.ReleaseDataStream when it did not have the stream cheeked out. If the
client had previously used the (a) stream, then the integrity of the Courier RPC
transport is in doubt. The problem should rectify itself, but several RPCs may
fail fIrSt. This is a client implementation error.

truncatedTransfer
Bulk data transfer protocol implementors are clients of the filtered byte stream
provided by Courier for that purpose. The protocol requires that data be
transmitted with a SubSequenceType other than o. This error implies that the
stream client attempted to consume some data of SubSequenceType of O. This
error code will only be observed by implementors of the bulk data transfer
protocol.

parameterlnconsistency
Client parameter processing error, probably due to a malformed Mesa data item
or an invalid implementation of the client's protocol (in the description routine),
In such cases, it is doubtful that retrying the operation will help, and it might
hurt. It is also possible (but highly unlikely) that the transport has failed to
deliver the data correctly.

invalidArguments
Either Courier or the client description routine has noted a discrepancy in the
format of the arguments and raised Courier.lnvalidArguments, Courier caught
the signal and either sent a reject (ifit was raised remotely) or translated it into
a Courier. Error.

noSuchProgramNumber
The program number that the user wishes to bind to is not exported at the
server in any version. Retrying will not be helpful. Verify that the correct
machine is being accessed for the service desired. This error will only be
observed on user machines.

protocol Mismatch
The user and server are running incompatible versions of the Courier protocol.
No retrying is in order. Cheek the network topology and the versions of
software running at the respective machines. This error will only be observed
at the user during initial transport creations

duplicateProgramExport
The programNumber and version Range parameters of
Courier.ExportRemoteProgram matched exactly with those already known by
Courier. This error code is observed only when attempting to export a service.

noSuchProgramExport
The program Number and version Range specified in the unexport request
(Courier.UnexportRemoteProgram) did not have an equivalent known to
Courier. This error code is observed only when attempting to unexport a remote
service.

6-55

6

6-56

Communications

i nval idHandle

noError

An operation re<luiring a courier.Handle checked the handle and found it to be
invalid. The hcandle was probably already deleted, or (even worse) never
created. Do not retry the operation.

This error code should never be observed by any Courier client. It is included to
simplify internal processing.

Courier.VersionMismatch: EFtROR [versionRange: courier.VersionRange];

The remote service version number is passed as part of every remote procedure call. If the
Courier server discovers that the machine does export the program, but not the particular
version, then it notifies the user machine of the range of versions supported by the server.
The user then has the option to observe that range, and if it implements a compatible
version, to retry the operation with appropriate parameters.

Note: This feature is only iInplemented for servers of Courier version 3 or higher.

Courier.RemoteErrorSignalled: ERROR [

errorNumber: CARDINAL, C1lrguments: Courier.Arguments];

RemoteErrorSignalied is C<J,urier's equivalent to a Mesa signal. The signal is initiated in
the signaller (server) machine by the client raising the signal Courier.SignalRemoteError
(see §6.6.4.2), thus aborting'the call. At the user, the abort message is used to reconstruct
the context of the signal, renaming it Courier.RemoteErrorSignalied. The argument
errorNumber of the signal permits the client to dispatch to the appropriate processing
code. The remaining conte,~t of the signal must be ret~eved by calling arguments. If the
semantics of the signal indic:ate no arguments exist, then arguments should be called with
a defaulted value of Courier. null Parameters. The arguments of the signal must be processed
before the UNWIND is generated.

6.6 .. 4.2 Signals clients may raise

Courier.NoSuchProcedureNurnber: ERROR;

During the client dispatcher's final phase of binding, it may rmd that the
procedureNumber, specified as one of the Courier.Dispatcher arguments, is invalid. It must
then raise NoSuchProcedureNumber, and Courier will transfer that information to the
caller and reject the call. This signal must not be raised by the client except in the
dispatcher. At the user the information is translated to
Courier .Error[noSuchProceduireNumber].

Courier.lnvalidArguments: ERROR;

Client description routines :may notice unacceptable parameters. If this is so, the client
may raise InvalidArguments. This signal is translated by Courier to
Courier.Error(invalidArgumertts] at the user. Both server and user code may raise this
signal~ the server does not translate the error locally, but it rejects the call, sends the
information to the user, where Error(invalidArguments] is raised.

Pilot Programmer's Manual 6

Courier.SignaIRemoteError: ERROR [
errorNumber: CARDINAL, arguments: Courier.Parameters +- Courier.nuIiParameters];

SignalRemoteError is the mechanism Courier client servers use to emulate the generation
of a Mesa signal. Courier intercepts the signal and translates it into an abort message
that includes the errorNumber and any additional arguments the client may have
specified. If the semantics of the signal are that no arguments exist, then arguments
should be assigned (or defaulted) a value of Courier. null Parameters.

Note: Courier will call the client's argument description routine before UNwINDing from
the catch phrase.

6.6.5 Bulk data

Courier supports applications whose communication requirements are primarily
transactional in nature. However, not all network communication is transaction oriented.
File transfer, for example, is more appropriately modelled as bulk data transfer. In order
to blend this bulk transfer requirement with the transactional nature of remote procedure
calling, Courier provides access to an established byte stream, permitting the client to use
that byte stream for those applications that require it.

6.6.0.1 Intra-call bulk transfer

Courier.Call: PROCEDURE[.•• ,
streamCheckoutProc: PROCEDURE [cH: Courier.Handle] •.••] .•.

Courier.Object: TYPE. RECORD [.•• , sH: Stream.Handle, ...];

The Courier user and server client have the stream made available via the Courier.Object
that is in turn accessible through the Courier.Handle. The stream contained therein is
slightly limited when compared to a generic Pilot stream. It may be used only between
argument and result processing and it will not permit the client to set the Subsequence
Type to a value of zero, nor will it permit the client to delete the stream. Attempts to do
these result in the error Stream.lnvalidOperation.

Note: The client is responsible for processing all signals that might be raised by a Pilot
stream.

The user client is given control after the processing of the arguments if the
streamCheckoutProc has a value other than NIL. At the server, the client has control
between the processing of the arguments and results and may use the stream at that time.
The state of the stream provided the client is a default stream; that is, timeout = 60
seconds, sst = 0, input options = Stream.defaultlnputOptions. It is assumed the client is
imished with the bulk transfer when it returns from the streamCheckoutProc procedure
(user) or calls results (server). The state of the returned stream is undefined and Courier
expects to have to reset the parameters for its subsequent use.

6.6.3.2 Inter-call bulk transfer

Courier.Call: PROCEDURE [... , requestDataStream: BOOLEAN, ...]
RETURNS[sH: Stream.Handle];

Courier.Results: TYPE :II PROCEDURE [...• requestDataStream: BOOLEAN •...]
RETURNS[sH: Stream.Handle];

6-57

6

6-58

Communications

Courier.ReleaseDataStream: PROCEDURE [cH: Courier.Handle];

Courier.ErrOrCode: TYPE. {., .• , streamNotYours, ••• };

This version of bulk transfE~r provides the client with an unfiltered stream, unrestricted by
Courier in any way, either as a result of the Courier.Call at the user or as a result of calling
results at the server.

If the parameter requestDcltaStream is FALSE, then the value returned for sH is NIL. If the
parameter requestDataStrf!am is TRUE, then the stream provided is a default stream as
described in §6.6.S.1. The user client is assumed finished with'the stream when he calls
Courier.ReleaseDataStream.

If an attempt is made to release a stream that was never checked out, then the error
Courier.Error[streamNotYoulrs] is raised. Until that time the transport cannot be used for
any Qther purpose, including another remote procedure call. At the server, Courier
assumes ownership of the stream when the client returns from his dispatcher. The client
may perform any stream o'peration desired except delete and those not supported by the
transport (such as positioning in the case ofN etwork streams).

606.6 Description routines

Courier description routinE~s are used to translate Mesa data types to and from Courier
data types. Courier provides the machinery to perform this translation process via a notes
object passed by reference to each description routine.

The notes object contains tbe context within which the description routine is operating.

Courier.Description: TYPE. PROCEDURE [notes: Courier.Notes];

Courier.Notes: TYPE=- POINTER TO Courier.NotesObject;

Courier.NotesObject: TYPE. RECORD [•••];

Courier requires client assistance to map Mesa data types into Courier data types. The
client provides that assista.Jnce in the form of a description routine. Description routine
procedures are of type Courio.r.Description. The notes object is passed by reference" to all
client description routines. It contains context about the process being performed and a
series of procedures to perform the bulk of the work involved in mapping Mesa data types
to and from Courier data types.

6.6.6.1 Mesa data type restrictions

The Courier Protocol supports a set of data types that closely corresponds to the set of
common Mesa data types. However, because the Courier Protocol is intended for a
heterogeneous internet, not all Mesa types are supported. Also, for those Mesa data types
that are supported, there arl:! a few restrictions that arise from the need to maintain a set
of data types that are reasonably easy to support on other types of systems.

Below are suggested mappings of Courier data types to compatible Mesa data types. Since
Courier has a Mesa heritagEt, finding a semantically equivalent Mesa data type for every
Courier data type is a fairly !~imple task.

6.6.6.1.1 Fully compatible data types

The following data types have equivalent representations in Courier and Mesa.

Pilot Programmer's Manual

Courier data type

CARDINAL
INTEGER
UNSPECIFIED

Corresponding Mesa data type

CARDINAL
INTEGER
UNSPECIFIED

6.6.6.1.2 Data type compatibility supported by Courier clients

6

The following Courier data types have a representation in Mesa, but is not a common data
type. Courier does not support the noting of these data types within the description
routine. The Courier client is responsible for using the restricted form shown below.

Courier data type Corresponding Mesa data type

BOOLEAN

RECORD[id,: Type" '.0 idn: Typen1

MACHINE DEPENDENT RECORD [
zeros: [0 .. 777778), value: BOOLEAN)

MACHINE DEPENDENT
{id,(v,), .. , idn(v,J, LAST[CARDINALJ}

MACHINE DEPENDENT RECORD (

id,: Type" ... idn: Typen]

6.8.6.1.3 nata type compatibility supported by Courier via notes

The following Courier data types have a representation similar to that of Mesa. The
differences are ~esolved at the time the description routine notes instances of them.

Courier data type

LONG CARDINAL
LONG INTEGER
STRING

ARRAY n OF Type
CHOICE n OF {list}

SEQUENCE n OF Type

6.6.6.2 Description context

Corresponding Mesa data type

LONG CARDINAL
LONG INTEGER

LONG STRING
ARRAY [O •• n) OF Type
MACHINE DEPENDENT RECORD [

ido: Typeo,
id,: Type"

idn: SELECT n FROM

tago • > [Typen],
tag, • > [Typen + ,],

tagm • > (Typen +m11
DESCRIPTOR FOR ARRAY OF Type

The notes object contains the context within which the description routine is operating.

Courier.NotesObject: TYPE. RECORD [type: {fetch, store, free}, •••];

The rust field of the notes object ~nforms the client what type of operation is to be
performed. The notes object procedures are designed such that most of the operations are
performed as side-effects enabling a single description procedure to perform all three of the
following operations without caring about the specific operation type. In some cases,
however, the client needs to be aware of the current operation.

fetch To translate Mesa data types to Courier data types. This action is sometimes
referred to as serialization or marshalling of data. The action occurs when call

6-59

6

6-60

Communications

store

free

parameters are processed by the user or when return parameters are processed
by the server.

To translate Coulrier data types to Mesa data types. This action is sometimes
referred to as lU~serialization or unmarshalling. The action occurs when call
parameters are being processed by the server or when result parameters are
being processed by the user. In such cases, Courier allocates nodes of storage for
disjoint data structures (LONG STRING, LONG DESCRIPTOR FOR ARRAY, DisjointData)
from the current zone. In some cases, the client may wish (or have) to allocate
nodes directly J aSI in the case of NoteSpace.

To release storalIe nodes. The Courier client is required to free the storage
nodes allocated by Courier during a store operation. It is possible and
recommended that the client do that via the Courier.Free operation. When a
description routine is being called with type of free, the client has the
opportunity to release nodes that he may have allocated unknown to Courier,
such as nodes for the NoteSpace operation.

Courier.NotesObject: TYPE =- ~IECORD [••• , zone: UNCOUNTED ZONE, .•••];

The description client is all~o made aware of the heap that the program wishes to use to
allocate or free storage. This field is a copy of the zone registered by the client during
Courier. Create and Courier.Ex~M)rtRemoteProgram. The client will rmd that the zone field is
most useful during storing and freeing operations.

6.8.6.3 Data noting procedures

Each note routine contained. in the notes object is provided to perform mapping to and from
explicit Courier and Mesa data types. Each routine has at least three properties. First, it
has a specific Mesa to Courier mapping function. Second, it contains the site of the data
being described. Third, the Jlote procedure consumes an implicit amount of the parameter
area.

6.8.6.3.,1 NoteSize

Courier.NotesObjec1: TYPE=- RECORD [••• , noteSize: Courier.NoteSize, •••];

Courier.NoteSize: TYPE=- PROCEDURE [size: CARDINAL] RETURNS [site: LONG POINTER];

The rust responsibility of n description routine is to note the size of the record being
described. This size (in words) coupled with the starting address of the record defines a
parameter area whose cont~!nts must be noted, either explicitly through one of the data
noting procedures supplied iin the notes object, or implicitly by skipping over a portion of
the parameter area with other explicit notes, or by returning from the description routine.
No data noting procedures n1ay be called before NoteSize, and NoteSize may not be called
more than once per description routine.

6.6.6.3.2 N oteLongCardinaI, N otel.ongInteger

Courier.NotesObject: TYPE :8 RllCORO [••••
noteLongCardinal: Courier.noteLongCardinal,
noteLongl nteger : Courier. n:oteLongl nteger ••••];

Pilot Programmer's Manual

Courier.NoteLongCardinal: TYPE. PROCEDURE [
site: LONG POINTER TO LONG CARDINAL];

Courier.NoteLonglnteger: TYPE. PROCEDURE [
site: LONG POINTER TO LONG INTEGER];

6

All LONG CARDINAL and LONG INTEGER data types contained in the parameter area must be
explicitly noted. Two words are consumed from the parameter area with each call.

8.8.6.3.3 N oteString

Courier.NotesObject: TYPE. RECORD [••• , noteString: Courier.NoteString, .•.];

Courier.NoteString: TYPE. PROCEDURE [site: LONG POINTER TO LONG STRING];

All LONG STRING data types contained in the parameter area must be explicitly noted. Two
words are consumed from the parameter area with each call. Storage for the StringBody is
allocated from the notes object zone by the store operation.

Note: The maxlength attribute of the Mesa StringBody will be lost in the fetching
operation. Consequently, stored strings will always have a maxlength equal to the length.

Caution: Strings that are NIL or have a length of zero when fetched are always stored as
strings with zero length. The client must be aware that such stored strings are READONLY.
They must not be modified in any way. They must not be freed except by the. Courier .Free
operation.

8.8.6.3.4 N oteCboice

Courier.NotesObject: TYPE. RECORD [••• , noteChoice: Courler.NoteChoice, .••];

Courier.NoteChoice: TYPE. PROCEDURE [
site: LONG POINTER,
size: CARDINAL,
variant: LONG DESCRIPTOR FOR ARRAY OF CARDINAL,
tag: LONG POINTER +- NIL];

NoteChoice provides the Courier client with a somewhat restricted use of the Mesa
variant record. In addition to the site parameter, the procedure call also specifies the
undiscriminated length of the variant record. It is that length that will be consumed from
the parameter area by the procedure call. The client is also reguired to supply an array
descriptor for an array of variant record discriminated lengths. A fourth optional
parameter specifies the address of the variant record's tag field. If that field is omitted,
assigned a value of NIL, or a value equal to that of the site parameter, then Courier
assumes that the variant tag is the rust element of the variant record. Otherwise it
assumes a record with a static portion followed by a variant portion.

Note: The variant tag must be word aligned and 16-bits wide.

8.8.8.3.5 N oteArray Descriptor

Courier.NotesObjed: TYPE :& RECORD [... ,
noteArrayOescriptor: Courier.NoteArrayOescriptor, ...];

Courier.: TYPE :a PROCEDURE [
site: LONG POINTER, elementSize, upperBound: CARDINAL];

6-61

6

6-62

Communications

NoteArrayDescriptor notifi,es Courier that a Mesa LONG DESCRIPTOR exists at site. The
procedure call consumes three words of the parameter area. But since descriptors deime
disjoint data in the form of nn array, the virtual memory defined by that array is not from
the original (or current) parameter area. For that reason, another parameter area is
fabricated using the descriptor's BASE and LENGTH, the latter being multiplied by the length
of each element as passed by the client. The newly defined parameter area must be
completely consumed beforet any more of the previous parameter area can be processed.

For store operations, the storage for the parameter area is allocated from the notes object
zone. The last parameter, upperBound, is the maximum LENGTH that Courier should
accept within the descriptor.

Note: Descriptors having BJ'SE = NIL or LENGTH = 0 during the fetch will always be stored
as DESCRIPTOR(NIL, 0).

6.6.6.3.6 N oteDisjointData

Courier.NotesObject: TYPE. RECORD [••••
noteDisjointData: Courier.NoteDisjointData ••••];

Courier.NoteDisjointData: TVI'E • PROCEDURE [
site: LONG POINTER TO LONG POINTER. description: Courier.Description];

NoteDisjoi ntData permits the client to note data that is only referenced via a LONG POINTER
in the parameter area. It is provided as a convenience to clients to eliminate local copying
of parameters or as data hiding mechanism. NoteDisjointData consumes two words from
the parameter area. The sec:ond argument of the procedure is another description routine.
Courier calls that routine, 8.lnd it in turn calls noteSize. The beginning of the disjoint area
and the size define a new parameter area. That parameter area is allocated from the notes
object zone during store oPEtrations. Pointers are not Courier data types. The pointer is
dereferenced and the dereferenced object processed during a fetch operation. AIl
appropriate object is allocated from the notes object zone and a pointer to that object is
placed in the client parameter area during store operations. No notion of a pointer (or its
absence) is conveyed to the storing machine by Courier.

(:aution: This scheme does not lend itself to processing of linked list and other recursive
data structures that are assclCiated via pointers. Linked lists may be processed ifproperly
approached. Some other bit of information must be transmitted, usually a BOOLEAN, that
indicates the last element of a list has been processed so the recursion can be broken by the
storing client.

6.6.6.3.7 N oteParameters

Courier.NotesObject: TYPE=- RI:CORD [.•••
noteParameters: Courier.NI)teParameters, •••];

Courier.NoteParameters: TYPE. PROCEDURE [
site: LONG POINTER, description: Courier.Description];

NoteParameters is much liko NoteDisjointData except no pointer is involved. The second
argument of the procedure cnll is again a description routine. The closely following call to
noteSize coupled with the site of the noteParameter defines a new parameter area. That
new parameter area must be totally contained within the previous parameter area. In the

Pilot Programmer's Manual 6

former ease the amount of space specified in the noteSize operation is consumed from the
current parameter area.

6.6.6.3.8 NoteSpace

Courier.NotesObject: TYPE. RECORD [•••• noteSpace: Courier.NoteSpace ••••);

Courier.NoteSpace: TYPE. PROCEDURE [site: LONG POINTER, size: CARDINAL];

NoteSpace permits a Courier client to process a block of unspecified data. It does not
derme an new parameter area; hence, no data can be noted within the space defined by
NoteSpace. The data is not linked to the parameter area in any way_ Consequently, the
store space must be allocated by the client, unlike other disjoint data types. The procedure
call consumes no portion of the parameter area.

Caution: NoteSpace does not cause unnoted data to be processed. The space being
described is completely divorced from the current client parameter area.

6.6.6.3.9 N oteDeadSpace

Courier.NotesObject: TYPE • RECORD [••• ,
noteDeadSpace: Courier.NoteDeadSpace, •••];

Courier.NoteDeadSpace: TYPE. PROCEDURE [site: LONG POINTER, size: CARDINAL);

NoteDeadSpace is used to consume a portion of the parameter area without generating
any Courier data, just the· opposite of NoteSpace. The amount of parameter area to be
consumed is client-specified.

Note: NoteDeadSpace does cause unnoted data to be processed. Consequently, it is the
procedure of choice used to force unnoted data to be processed; for example,
notes.noteDeadSpace[site, 0] causes all unnoted data in the current parameter area to be
processed and then consumes zero more words of that parameter area.

6.6.8.3.10 Note Block

Courier.NotesObject: TYPE • RECORD [••• ,
noteBlock: Courier.NoteBlock ••••];

Courier.NoteBlock: TYPE. PROCEDURE [block: Environment.Block];

NoteBlock provides Courier clients with a mechanism that enables them to process byte
oriented data. This procedure processes only the bytes defined. by the Environment.Block,
and consume snothing from the current parameter area. Moreover, Courier does not
allocate storage during store operations for the disjoint area implied by the operation.

Caution: It is expected that this procedure will be used by clients as' a·building block for
complicated description routines. When using NoteBlock, such clients are responsible for
ensuring that an even number of bytes actually gets processed with each complete
operation, even if'it means appending a null byte to the end of a stream of bytes. Courier
data types always begin on 16-bit (word) boundaries.

6.6.6.3.11 Unnoted

Unnoted data is a concept rather than a procedure. Parameter areas are represented
internally and conceptually as ORDERED LONG POINTERS, constructed initially by the location

6-63

6

6-64

Communications

parameter of a Courier.Parameters and the size parameter of a notes.noteS;ze procedure
call. Subsequent paramE~ter areas may be created when describing disjoint data
structures; for example, Dis:jointData, DescriptorForArray. All the data noting procedures
specify a site that is an address within the bounds of a parameter area. The current data
point within the record is known to be the last site specified plus the amount of data
consumed by the last note procedure. The portion of the parameter area between that left
edge and the current site is unnoted data and is processed as such, implying that the
Courier and Mesa data types are compatible.

6.6.7 Miscellaneous facilities

Courier.SerializeParameters: PROCEDURE(
parameters: Courier.Parameters, sH: Stream.Handle];

Courier.DeserializeParametel's: PROCEDURE(
parameters: Couri.r.Paran1eters, sH: Stream.Handle, zone: UNCOUNTED ZONE];

Serialize and Deserialize procedures provide access to the description routine facilities of
Courier outside the bounds of a remote procedure call. SerializeParameters performs a
fetch operation, converting Mesa data types deflned by the parameters record to Courier
data types and putting theIIl on the stream defmed by sHe The client is responsible for all
signals that may be raised by the stream implementation. DeserializeParameters is the
counterpart of'SerializeParameters. It performs a store operation, converting Courier data
types gotten from the stream sH to Mesa data types defined by the parameters record.
Since this is a store operadon, Courier may have to allocate storage for disjoint data
structures. If so, the storage, will be allocated from lone. As with any store operation, the
client assumes responsibility for that storage and may deallocate it via Courier. Free.

Courier.LOcaISystemElement: PROCEDURE RETURNS(Courier.SystemElement];

LocalSystemElement returns a full network address of the local machine. The socket field
of the address will always bel Courier's well-known socket.

Courier.EnumerateExports: PROCEDURE RETURNS(
enum: LONG DESCRIPTOR Fon Courier. Exports];

Courier.FreeEnumeration: PRCICEDURE(
enum: LONG DESCRIPTOR FOft Courier.Exports];

Courier.Exports: TYPE. ARRA" CARDINAL OF Courler.Exportltem:

Courier.Exportltem: TYPE. M.ACHINE DEPENDENT RECORD(
programNumber: LONG CARDINAL,
versionRange: Courier. Ver!;ionRange,
serviceName: LONG STRING"
exportTime: System.GreenwichMeanTime];

EnumerateExports makes BL copy of the current internal structures representing the
results of' all previous Courior.ExportRemoteProgram requests. With one exception, the
elements of the array returned are supplied by the ExportRemoteProgram client. The
exception, exportTime, is the time that the ExportRemoteProgram request was made.
The storage for the enumera.tion array is allocated from a zone internal to Courier, so the
client is obligated to frE!e that space at some time, which he may do with
Courier.FreeEnumeration.

Pilot Programmer's Manual 6

6.7 Network Binding

In order to complete a remote procedure call, the active machine must bind to an
appropriate passive system element. A required part of that binding is a network address
(System.NetworkAddress). The Network Binding protocol provides a flexible mechanism
for imding the network address of a passive machine or set of passive machines as well as
information that may be applied to objectively qualify the response.

NetworkBinding is a broadcast-based protocol that supports a machine selection
abstraction based on user-defined predicates and responses. The goals of this protocol are:

1. To quickly locate an optimal machine on a specified network currently satisfying a
user-dermed selection criterion

2. To locate with reasonable speed an optimal machine in an area of the internet
currently satisfying a user-dermed selection criterion

3. To reliably locate all maehines on a specified network eurrently satisfying a user-
dermed selection criterion

This protocol is not meant to replaee all other remote procedure eall binding meehanisms.
When a serviee's topology and the information used in making a seleetion remain statie as
eompared with the propagation time of the Clearinghouse, a statie binding meehanism
based on the Clearinghouse is suffieient, appropriate, and preferred.

Additionally, binding meehanisms based on broadeasting ean suffer from problems not
found in a Clearinghouse-based mechanism. Broadeast messages are expensive, so care
must be taken to limit the amount of binding done by the stubs. The cost increases rapidly
if the binding mechanism must seareh several networks.

Since the Network Binding protocol will be used to bind to any Courier program, it has no
dependeneies on any other Courier programs or protocols (outside of Courier itself). Issues
like authentication and consistency are not handled by this protocol; they should be
addressed as needed by the system elements onee the binding to the passive element is
made and the initial remote procedure eall (RPC) is made.

Appendix G provides an example of how the N etworkBinding operations are used in a
software package.

6.7.1 Description

NetworkBinding: DEFINlnONS ••••

The Network Binding facility is included in Cour ierConfig. bed. The modules
HetworkBindingClient. bcd, .mesa and HetworkBindingServer. bcd, .mesa
implement the facility. Public client access is made available via the interface
NetworkBinding.

6.7.2 Types and constants

NetworkBlnding.Conjunct: TYPE • RECORD [LONG CARDINAL];

The client and service stubs agree a priori on the selection criterion a conjunct represents
and the number and type of the parameters needed by the service stub to determine
whether the conjunct is met, and the number of parameters, if any, in the response. The
allocation of conjunct numbers is associated with the NetworkBinding.RemoteProgram being
specified. The allocation of NeworkBinding.Conjunct, NetworkBinding.cTRUE, and conjunct

6-65

6

6-66

Communication

numbers associated with the NetworkBinding.RemoteProgram of NetworkBinding.dontCare are
allocated by Xerox.

NetworkBindlng.cTRUE: Netwc,rkBlnding.Conjunct • [0];

If the client stub does not require any selection rule other than the remote program, then
the conjunct cTRUE can be specified. This conjunct can never be reallocated by stub
implementors. Any bind request that uses the conjunct cTRUE is restricted to an empty
response.

NetworkBlndlng.defaultHops: CARDINAL. 3;

One of the Network Binding procedures (NetworkBinding.BindToFirstNearby) is capable of
searc~g all networks within a client-specified radius of the requester. The default and
recommended maximum radius for such calls is three hops.

dontcare: NetworkBlnding.RemoteProgram • [0,0];

If the client stub does not c'are whether a specific remote program is exported, then it can
specify a program of NetwrorkBindlng.dontCare. This might happen, for example, if the
client stub is meant to CODlmunicate with a remote program using a protocol other than
Courier.

NetworkBinding.Responses: TYPE • lONG POINTER TO NetworkBlndlng.ResponseSequence;
NetworkBinding.ResponseSeClluence: TYPE • RECORD [

elementSize: NATURAL,
elementCount:NA TURAl,
element: SEQUENCECOMPliTED NATURAL OF WORD];

Responses to a NetworkBlndlrlg.8indToAIl request are packaged together in a Mesa sequence
and passed to the client 8.l; a NetworkBlnding.ResponseSequence. Within this record the
field defmitions are as follows:

elementSize
The value of thifJ field is the size of each element of the element sequence in
words. Since tht! element sequence always includes a System.NetworkAddress
and the maximum length of the data portion of any response is limited to
approximately 2j50 bytes, the expected range of elementSize is between 6 and
125.

elementCount
The elementCo'-llnt field contains the number of responses in the element
sequence. The minimum value for this field is zero, indicating that there were
no affirmative responses to the query.

element The sequence of responses, concatenated into a single node. Each element of the
sequence includes as its rrrst field the network address of the machine that sent
the response. The remainder of each element of the sequence is that response,
in the Mesa type defined by the client supplied Courier description routine.

Pilot Programmer's Manual 6

The sequence must then be coerced into the appropriate client-dermed Mesa type. The
actual Mesa type will be of the form

ClientType: TYPE. RECORD[
address: System. NetworkAddress,
response: {client supplied type}];

This particular form of return is used for two reasons. First, Network Binding does not
know the format of the response. All it knows is how to concatenate the responding
station's network address with some number of bytes of data specified in a client
implemented description routine. Second, the form permits the client to delete all storage
allocated by the procedure call with one call into the heap package.

Note: If the bind request specified NetworkBlnding.cTRUE as the conjunct, then the response
is limited to an empty NetworkBinding.ResponseParameter record; that is,
response.elementLength will be equal to six.

NetworkBlnding.nu II Predicate : NetworkBlndlng.PredicateRecord • [
NetworkBlndlng.pTRUE, Courier.nuIIParameters];

In appropriate cases, such as when simply trying to imd the iU'St or all stations that
implement the network binding protocol, the constant NetworkBlndlng.nullPredicate may be
used.

NetworkBlndlng.null Response: NetworkBlndlng. ResponseRecord • Courier. nuliParameters;

A common case is when no response other than the network address of the responding host
is required. The proper response record is dermed by NetworkBinding.ResponseRecord.

NetworkBindlng.Predicate: TYPE • RECORD [
program: NetworkBinding.RemoteProgram,
conjunct: NetworkBindlng.Conjunct];

A predicate contains two conditions, both of which must be met by a service stub for it to be
selected. The rust condition is that a specific remote program is exported by the passive
system element. A remote program is specified as its Courier program number and
version. The second is a matching conjunct number. The program field may have the
value of NetworkBindlng.dontcare and/or the conjunct field may have the
NetworkBlnding.cTRU E.

NetworkBlnding.PredicateRecord: TYPE. RECORD [
pred: NetworkBinding.Predicate, param: Courier.Parameters];

A predicate and the parameters to the conjunct are represented as a predicate parameter.
A predicate parameter is specified in all Network Binding procedure calls. It includes the
predicate deimed for the procedure and supplies the location and the routine to describe
the predicate parameter. (See §6.6.6 for definition of description routines.)

NetworkBinding.pTRUE: NetworkBinding.Predicate • [
Ne~orkBinding.dontCare, NetworkBinding.cTRU E];

The predicate pTRUE is satisfied by any service stub. Its utility is for the most part limited
to finding all of the passive system elements (Le., Network Binding servers) on a network.

6-67

6

6-68

Communication

NetworkBinding.RemoteProgl'am: TYPE • RECORD [
programNumber: LONG CARDINAL. version: CARDINAL];

The specification of the NetworkBindlng.RemoteProgram restricts stations that do not
currently export that ver!;ion of the specified remote program from responding. For
example, it might be set to [2, 3], specifying that only machines exporting the
Clearinghouse Protocol, V E!rsion 3, should respond.

NetworkBlnding.ResponseRecord: TYPE • Couri.r .Parameters;

The NetworkBindlng.Respons,eRecord is used to pass the description routine of the expected
response to Network Binding. (See §6.6.6 for deimition of description routines, etc.)

6.7.3 Errors

NetworkBlndlng.Data TooLarg,e: ERROR;

DataTooLarge may be raiSEd by either the client or server stub. It indicates that the da'ta
specified in the predicate or response is too large to fit into a single internet packet.
Because of the overhead of the protocol, predicates and responses are limited to
approximately 250 bytes. Even that space is in competition with the protocol.
Consequently, heavy client; usage of predicate data will cause convergence of any of the
network binding procedureu that are looking for all instances of a service to be slow.

NetworkBlndlng.NoBinding: EltROR:

NoBinding may be raised by either the client or server stub, but with differing semantics.
An implementor of a response procedure would raise this signal if it found that the
predicate could not be satislaed. The client of the predicate procedure must be prepared to
catch this signal if there is IlO positive response to the binding query.

6.7.4 CHent procedures

NetworkBindlng.BindToAIIOn'~et: PROCEDURE [
predicate: NetworkBlndln~t.PredicateRecord ~ NetworkBlndlng.nuIiPredicate.
responseDescription: cCluri.r.Description ~NIL.
net: syst.m.NetworkNurnber ~ System.null NetworkNumber.
zone: UNCOUNTED ZONE NIL]
RETURNS [responses: NetvworkBlnding.Responses];

NetworkBlndlng.BindToAIIOn~.et attempts to reliably locate all stations on the specified net
that can answer a:fiIrnlative to the predicate. All of the responses are collected into a
single node pointed to by re~sponses that must then be coerced into the client specific data
type. The responses node il~ allocated from zone. The default value of zone implies that
Heap.systemZone should be used.

The responseDescription is called for each response that is collected from net. Its default
value implies that there its no client-specified response parameter, just the default
responding station's network address.

The default value of net implies that the local network should be searched.

Pilot Programmer's Manual 6

If no positive responses are received from the specified net, then this procedure returns
responses • NIL.

NetworkBlndlng.BindToAIiOnNet may take quite some time to complete. The actual time
depends on the number of stations responding, the distance net is from the station calling
NetworkBinding.BindToAIiOnNet, and the size of the predicate param record. For example,
the time to locate 200 stations on the local network using NetworkBindlng.nuliPredicate may
exceed one minute.

NetworkBindlng.BindToFirstNearby : PROCEDURE[
predicate: NetworkBlnding.PredicateRecord +- NetworkBinding.nuIiPredicate,
responseDescription: courier.Description +-NIL,
maxHops: CARDINAL ... NetworkBlnding.defaultHops,
zone: UNCOUNTED ZONE ... NIL]
RETURNS [responder: System.NetworkAddress, response: LONG POINTER];

NetworkBinding.BindToFirstNearby attempts to locate the rust station within a specified
radius, maxHop, of the requesting station that can answer affirmative to the predicate.
The result is returned as the responder, which is the network address of the station
responding, and a pointer to the client specified response. response should be NARRowed
into the proper data type. The response node is allocated from zone. The default value of
zone implies that Heap.SystemZone should be used.

The responseDescription is called for the first response that is collected. Its default value
implies that there is no client-specified response parameter, just the default responding
station's network address.

Note: NetworkBlnding.BindToFirstNearby is implemented using an expanding ring
broadcast. The time to locate an acceptable server varies, depending on how many
networks must be searched in order to get a single positive response.

If there are no responses to the query, then NetworkBlnding.NoBinding may be raised. If the
param description routine specifies more data than can be contained in a single packet
(approximately 250 bytes), then NetworkBinding.DataTooLarge may be rai~ed.

NetworkBlnding.BindToFirstOnNet: PROCEDURE[
predicate: NetworkBinding.PredicateRecord +- NetworkBinding.nuIiPredicate,
responseDescri ption: Courier .Descri ption +- NIL,
net: system.NetworkNumber +- System.nuIiNetworkNumber,
zone: UNCOUNTED ZONE ... NIL]
RETURNS [responder: System.NetworkAddress. response: LONG POINTER];

NetworkBindlng.BindToFirstOnNet attempts to locate the first station on the specified net
that can answer affirmative to the predicate. The result is returned as the responder,
which is the network address of the station responding, and a pointer to the client
specified response. response should be NARRowed into the proper data type. The response
node is allocated from zone. The default value of zone implies that Heap.systemZone
should be used. The default value of net implies that the local network should be queried.

The responseDescription is called for the first response that is collected. Its default value
implies that there is no client-specified response parameter, just the default responding
station's network address.

6-69

6

6-70

Communication

If the param description routine specifies more data than can be contained in a single
packet (approximately 250 bytes), then Network8lnding.DataTooLarge may be raised.

NetworkBinding. VerifyBindin4g: PROCEDURE [
predicate: NetworkBinding.PredicateRecord ... NetworkBinding.nuIiPredicate,
responseDescri ption: Courier .Descri ption ... NIL,
host: System.NetworkAddress,
zone: UNCOUNTED ZONE .-NIL]
RETURNs[response: LONCli POINTER);

NetworkBindlng. VerifyBindinl!:l attempts to contact the station specified in host. The result is
returned as pointer to the client-specified response. response should be NARRowed into
the proper data type. The r1esponse node is allocated from zone. The default value of zone
implies that Heap.SystemZo,ne should be used.

The responseDescription i,s called for the response that is collected. Its default value
implies that there is no client-specified response parameter. In such cases the value
returned for response is always NIL. Since this is a directed request (rather than
broadcasted), a NIL return is interpreted as a positive response and a negative or null
response is always signaled as described below.

If there is no response to the query, then NetworkBlndlng.NoBinding may be raised. If the
param description routine specifies more data than can be contained in a single packet
(approximately 250 bytes), then NetworkBlnding.DataTooLarge may be raised.

8.7.5 Server procedures

The following types and procedures are used only by clients that implement Network
Binding servers.

NetworkBinding.PredicatePro4:edure: TYPE. PROCEDURE [
pred: NetworkBinding.Predicate,
args: LONG POINTER,
response: Netw.orkBindln~t.ResponseProc);

NetworkBinding.PredicatePro4:edure defines the type of a procedure that the client must
implement if the application protocol intends to process predicates with client-specified
data. The N etworkBinding' server calls the procedure whenever a binding request arrives
at the station that satisfies conjunct and program portions of the NetworkBinding.Predicate.
The data that makes up the! client-specified portion of the binding request is pointed to by
args. This pointer should b4! NARRowed into the appropriate Mesa data structure.

If the client PredicateProcedure cannot answer in the afil1"111ative to the bind request, then
it must raise the error NetworkBinding.NoBinding, rather than returning from the predicate
procedure.

NetworkBlndlng.ResponseProt:: TYPE • PROCEDURE [
response: NetworkBindin~I.ResponseRecord ... NetworkBlnding. n ull Response];

If the client PredicateProcedure can answer in the afilrtnative, then it must call response.
However, if the response is null, then the procedure can be called with the default
argument, NetworkBinding.nuIiResponse. If the response is too large to fit into a single

Pilot Programmer's Manual 6

packet (approximately 250 bytes), then the Network Binding server will raise
NetworkBinding.DataTooLarge.

NetworkBinding.RegisterPredicate: PROCEDURE [
program Number: LONG CARDINAL,
versionRange: Courier.VersionRange,
conjunct: NetworkBinding.Conjunct,
proc: NetworkBinding.PredicateProcedure,
predicateDescri ption: Courier .Descri ption,
zone: UNCOUNTEDZONE..-NIL];

Before- a station can respond to a binding request, the service client must register the
information about the binding. Registration is done by calling
NetworkBlnding.RegisterPredicate. Once registered, the server responds appropriately as
defined by the arguments of NetworkBinding.RegisterPredicate.

The client must provide a programNumber and the versionRange of the Courier program
associated with the Network Binding application. It must be specified, but it may be
ignored (see NetworkBinding.dontCare in §6.7.2), The value of conjunct specified can be any
value, but if it is assigned the well known value NetworkBlnding.cTRUE, then the client proc
must be NIL or not return any response arguments via the NetworkBinding.ResponseProc. If
proc is NIL, then predicateDescription should also be NIL; otherwise it is the Courier
description procedure that describes the data present in the binding call's arguments.

NetworkBinding.DeregisterPredicate: PROCEDURE [
programNumber: LONG CARDINAL,
versionRange: Courier. Version Range,
conjunct: NetworkBinding.Conj unct];

NetworkBinding.DeregisterPredicate undoes the effect of NetworkBinding.RegisterPredicate.
The values assigned to programNumber, versionRange and conjunct must match exactly
with the values used in the registration or the call will be ignored.

6.8 XStream -Bulk Data Protocol

XStream: DEFINITIONS ••••

XStream is the programming interface to an implementation of the Bulk Data Transfer
Protocol as described in Addenda to Standards, XSIS 138301. This implementation
prescribes to the intent of the specification in that it «... is used in conjunction with
Courier-based protocols whose remote procedures produce or consume bulk data."

8.8.1 Interface definition

XStream.Object: TYPE;
XStream.Handle: TYPE :I LONG POINTER TO XStream.Object;

XStream uses an XStream.Object to cache information about the state of the current
session. A pointer to that object, an XStream.Handle, can be acquired via XStream.Make.

6-71

6

6-72

Communication

XStream.Request: TYPE • RECORD[SELECT access: ... FROM
none. > [].
stream • > [sH: Stream"Handle).
proc • > [proc: PRoc[x~;tream.Handle]].
deferred. > [sink. source: Courier.SystemElement).
ENDCASE];

The XStream.Request structure permits clients to derme their desires about the mode of
access that will be used during the session. The following four modes are permitted:

none A client should s·elect a none variant when it wishes a null bulk data transfer to
occur. When supplied a none sink, XStream discards the data that it would
have otherwise sent. When supplied with a none source, XStream acts as if it
has received no c:llata.

stream If the client wishes to make an immediate bulk data transfer and is in
possession of a well behaved stream, then it may use the stream variant of the
request record. Once that information is recorded by XStream, the bulk data
transfer will proceed with no direct client interaction (with the exception of
having to describe the bulk data argument). <'

proc The proc variant; defmes an immediate bulk data transfer much like the stream
variant. The difference is that when the transfer is initiated, the proc defined
in the Xstream.Request object is called. This is handy if'the source or sink of the
bulk data is not a well behaved stream; for example, the data may need filtering
or even generation.

deferred The deferred variant defmes that the bulk data transfer will be of the third
party variety. 'rhe system.NetworkAddress of the machines involved in the
transfer are incl1lded as source and sink.

N ote: Null and immediate requests do not require that the remote's address be known.
That information is not needed since it is available (and implicit) from the Courier
connection.

XStream.Create: PRoc[xStrean1.Handle] RETURNS[Stream.Handle];

XStream.Create gives the bulk data client a Stream.Handle on which to operate. The client is
the owner of the representa.tive stream until the stream is deleted (sH.delete). It is always
the client's responsibility to delete the stream, or any other resource, that it created.

In eases where XStream.Creclte is called to create a stream to be used as a sink (i.e., sH.put),
the deletion of the stream i.s taken as the indication of the end of the data. That action is
translated into a Stream. Enc:llOf Stream at the source side of the stream.

XStream.Copy: PRoc[sink. sOluree: Stream.Handle];

XStream.Copy may be used to copy the source stream into the sink stream. In order for a
stream to be used as an argument of XStream.Copy, that stream must be fairly well
behaved. The defInition of well behaved is included in §6.8.2. Needless to say, streams
returned from XStream.Crea'te meet the well behaved criteria.

sink and source are both prl{)vided by the caller. The data represented by the source stream
will be the object of read operations. The data read from the source will be written to the
sink stream. The transfer terminates when the source stream raises Stream.EndOfStream.
A stream acquired from XStream.Create is an appropriate stream for either source or sink.

Pilot Programmer's Manual

XStream.Destroy: PROC(XStream.Handle];

XStream.Make: PROC(request: XStream.Request)
RETURNS[handle: XStream.Handle);

6

XStream.Destroy and XStream.Make are used by the Courier user client (at a level of
abstraction below the bulk data client) to create the data structures needed to convey the
information about the bulk data stream.

XStream.ServerCheckout: PROC(Courier.Handle, XStream.Request);

XStream.ServerCheckout is somewhat analogous to XStream.Create and
XStream.UserCheckout. It associates the particular Courier.Handle to a client's
XStream.Request. It is important to note that the client is simply making an association of
the two state objects; it is not allocating resources. Therefore, no XStream.Handle is
returned, and no XStream.Destroy call is required.

XStream.UserCheckout: PROC(Courier.Handle];

XStream.UserCheckout is used by the Courier user client to synchronize the use of Courier's
transport and to complete the information required to initiate the transfer.

XStream.AbortTransfer: PROC(Stream.Handle];

In order to abort a transfer in a consistent manner, the client ' must call
XStream.AbortTransfer. This operation is applicable for both the source and sink operation
clients. After a stream is aborted, the only permissible operation is Stream.Delete
(sH.delete). All other operations will result in ERROR ABORTED.

XStream.DescribeSink: Courier.Description;

XStream.Descri beSource : Courier. Description;

Objects are not completely formed when they are created. They are completed as access to
them tpUolds. In particular, an XStream.Object is not typed as a sink or source until it is
(de) serialized. Consequently, only generic XStream.Handles are included as procedure call
arguments. Before the object is (de)serialized, it cannot be mapped into a stream. The
objects are translated to streams by the client-supplied procedures contained in the
XStream.Request during the processing of the client's XStream.Create.

6.8.2 Additional semantics

XStream.Objects are created by the client ostensibly for the use with a single remote
procedure call. An object may be used at most once and must be deleted after the remote
procedure call.

The streams utilized for immediate transfers are variants of Pilot byte streams (Le.,
Stream.Handle) with these restrictions:

• Only one stream per remote procedure call is allowed.

• The stream is simplex; that is, transfers data in only one direction.

• SSTs are not supported. The stream's SetSST and GetSST routines will result in ERROR
Stream.lnvalidOperation. XStream will never raise the signal Stream.SSTChange.

6-73

6

6-74

Communication

• Attentions are not supported. The stream's SendAttention and WaitAttenion
routines will raise ERRClR Stream.lnvalidOperation. XStream will never raise the signal
Stream.Attention.

• If a stream is created by a bulk data client within the xStream.Request callback
procedure, then that ::Jtream is owned by that client. Normal termination of the
transfer of data by th4! source client is signaled by deleting the stream (sH.delete).
Normal termination is, relayed to the sink client in the form of a Stream.EndOfStream
status or signal.

• Clients may provide stlreams to be used as sources or sinks.

• Client sink. streams arll! not required to process any signals. The status of the transfer
is implied from the rE~sults of the remote procedure call. The client then has the
responsibility for the stream.

• Client source streams, must signal Stream.EndOfStream to indicate the end of the
transfer.

• Source XStreams may be truncated, indicating some sort of transfer error. This is
done by calling XStream,.AbortTransfer, which results in ERROR ABORTED being raised at
the sink XStream.

6.9 PhoneNet co.nfiguratiO]l

The PhoneNet configuration provides XNS network access to ,Pilot-based systems via a
synchronous RS232C serial line, which may be either a leased line or a dialup line. The
access may be half duplex (8010 machines only) at line speeds between 2400 to 9600 bits
per second. .

Note: 6085 machines do not operate reliably at speeds above 4800 bits per second because
of the 6085's inability to handle simultaneous sending and receiving of data at the higher
rates.

The PhoneN et configuratil)n is a representation of a Data Link Layer in the ISO model.
The data link protocol us·ed is the Synchronous Point to Point Protocol (SPTP) , XSIS
158412, dated December 1984, plus some extensions. The SPTP specification defines
Version 3 of the data link protocol. The PhoneN et configuration also implements Version
2 to maintain backward c()mpatibility with System Interface Units [SIU] and Version 4
(not yet formally specified) to permit fragmentation and reassembly of Network Layer
packets in order to bypass (:urrent hardware limitations.

The support is implementf!d by PhonenetConfig. bed. Two interfaces are exported by
the configuration: PhoneNet and PhoneAdoption.

6.9.1 PhoneNet

PhoneNet: DEFINITIONS • . ••

6.9.1.1 Types

PhoneNet.EntityClass: TYPE =: MACHINE DEPENDENT {
internetworkRouter(O), clusterRouter(1), siu(2), remoteHost(3)};

Each machine that supports the SPTP protocol must declare itself to be one of the classes
deimed by Phone Net. EntityClass. During connection establishment negotiation, only

Pilot Programmer's Manual 6

certain combinations are permitted (defined in SPTP). The class of the machine is
selectable via the PhoneNet.lnitialize procedure (defmed below).

PhoneNet.Negotiation: TYPE :II {active. passive};

Clients may also select whether they want to be active or passive parties in the
establishment negotiation procedure. In active mode, once the physical medium becomes
available, the machine will gratuitously transmit negotiating packets soliciting the
connection. In passive mode, a machine will only respond to connection requests that it
has received.

6.9.1.2 Errors

PhoneNet. Unsupported: ERROR;

Unsupported will be raised by the PhoneNet implementation in situations where a client
has asked for a feature that may be implied by the interface but actually is not supported
by the current configurationo At present, there only two such cases. The first case is an
attempt to call PhoneNetoinitialize with the argument IineNumber anything other than zero.
The second case is an attempt to transmit a packet larger than 600 bytes when the
negotiated version of the data link protocol is not version 4.

PhoneNet.lllegalEntityClass: ERROR;

lIIegalEntityClass will be raised by PhoneNet.lnitialize if and only if the client specifies
ourEntityClass as siu. A Pilot-based machine can never behave as a System Interface
Unit.

PhoneNet.lnvalidLineNumber: ERROR;

PhoneNet.lnvalidLineNumber may be raised by procedures that take a IineNumber as their
only argument; for example, Phone Net. Destroy, PhoneAdoption.AdoptForNS and
.PhoneAdoption.DisownFromNS. In general, the error means that no driver associated with
the specifed line number currently exists in the system. Since the current implementation
only permits creating a driver with a IineNumber of zero, InvalidLineNumber indicates
that there are no active data link drivers of type phonenet.

8.9.1.3 Procedures

PhoneNet.lnitialize: PROCEDURE [
IineNumber: CARDINAL, channel: RS232c.ChanneIHandle,
commParams: RS232c.CommParam,Handle, negotiationMode: Negotiation,
hardwareStatsAvaiiable: BOOLEAN,'clientData: LONG UNSPECIFIED ~ 0,
ourEntityClass: EntityClass,
clientHostNumber: System.HostNumber System.nuIiHostNumber];

Initialize is the main procedure to initialize the data link layer. The procedure will
associate an RS232C line number (IineNumber) with that data link. Further references to
the association are via the line number specified.

Returning from PhoneNet.lnitialize does not imply that the data link is ready to support
higher level protocols. It does link the device to the list of network supporting devices.
When the physical medium becomes available and the establishment negotiation
succeeds, the link will then become available for supporting higher level protocols.

6-75

6

6-76

Communication

IineNumber is the logical line number associated with the RS232C line. The current
configuration will only support a single line, line number zero. Attempts to specify a line
number other than zero will result in the error Phone net. Unsupported being raised.

channel is the handle returned from the RS232c.Create call that was used to reserve the
channel for exclusive use by the PhoneNet configuration (See §6.S.3.3). The channel must
be reserved with a preemp1tMe • never.

commParams points to values in the record that derme the characteristics of the RS232C
line. Only the half/full duplex attribute and the line speed are applicable. The line speed
is used only as an initiul value and updated by empirical measurement after the
connection is established.

negotiation Mode specifie's the active/passive attribute of the data link protocol
negotiation. However, the parameter is ignored, since the norm is that both parties elect
to be active, and ifboth parties elect to be passive, then nothing will happen.

hardwareStatsAvaiiable applies to direct contacts through the driver to a CIU. It is
ignored in this implementa,tion. clientData is also ignored.

ourEntityClass is the entity class of the client requesting the connection. lithe entity class
specified is siu, then the f!rrOr PhoneNetoiliegalEntityClass is raised immediately. If the
protocol negotiation discovers a remote entity that is in conflict with the client-specified
value, then the connection will not be established.

clientHostNumber is ignort!d.

PhoneNet.Destroy: PROCEDURE [lineNumber: CARDINAL];

Destroy undoes the effect of the PhoneNet.Create. It causes the configuration to stop all
processes and remove itself from the network driver chain maintained by the system. If
higher level protocols are currently using the data link driver, then those protocol families
will be notified via their state-changed procedures about the pending removal of the
service.

IineNumber is the line numlber associated with the particular instance of the driver. Since
PhoneNet.Create permits only line number zero, it is expected that the value of IineNumber
will also be zero.

If no data link drivel' is associated with the line number specified, then
PhoneNet.lnvalidLineNumber is raised.

6.9.2 PhoneAdoption

PhoneAdoption: DEFINlnONS •••••

PhoneAdoption is used to "adopt" the }L"'IS protocol family to a specified data link layer
driver.

6.9.2.1 Errors

PhoneAdoption.lnvalidLineNLlmber: ERROR;

InvalidlineNumber is raisE~d if the lineNumber argument of either of the two procedures
(described below) is invalid.

Pilot Programmer's Manual 6

6.9.2.2 Procedures

PhoneAdoption.AdoptForNS: PROCEDURE [lineNumber: CARDINAL];

AdoptForNS establishes the linkage between the data link layer driver specified by the
argument IineNumber and the XNS protocol family. Once called and as long as the data
link.is available, the referenced device will be usable for all networking functions. The
procedure assumes that the XNS protocol family has been started.

If the line number specified does not represent an existing data link driver, then
PhoneAdoptlon.lnvalidLineNumber is raised.

PhoneAdoptlon.DisownFromNS: PROCEDURE [lineNumber: CARDINAL];

DisownFromNS undoes the effect of AdoptForNS. Once called, the particular data link
driver will no longer process XNS network packets.

If the line number specified does not represent an existing data link driver 9 then
PhoneAdoptlon.lnvalidLineNumber is raised. Duplicate calls to this procedure are treated as
no-ops.

6-77

6 Communication

6-78

7.

Editing and Formatting

7.1 ASCII character definitions ... 7-1

7.2 Formatting ... 7-2

7.2.1 Binding ... 7-2

7.2.2 Specifying the destination of the output 7-2

7.2.3 String editing .. 7-2 -

7.2.4 Editing numbers ... 7-3

7.2.5 Editing dates ~ ' 7-4

7.2.6 Editing network addresses .. 7-4

7.3 Strings. .. 7-5

7.3.1 Sub-strings. .. 7-5

7.3.2 Overflowingstringbounds .. 7-5

7.3.3 String operations ... 7-6

7.3.3.1 String operations that handle numbers 7-7

7.3.3.2 String operations that allocate storage 7-8

7.4 Time 7-10

7.4.1 Binding .. 7-10

7.4.2 Operations " ... 7-10

7.5 Sorting .. 7-12

7

Editing and Formatting

This chapter describes the facilities, usually Common Software packages, that are
concerned primarily with formatting and editing. These facilities include an interface
that defines some common ASCII characters, a package for converting between some
common Mesa types and strings, string manipulation procedures, operations for
converting between strings and Pilot's internal form of time, a Pilot byte stream
implementation, and a sorting function.

7.1 ASCII character deimitions

Ascii: DEFINITIONS ••• ;

The Ascii package consists only of a definitions file.

All of the control characters of the form control uppercase-letter are defined in the form:

ASdl.Controluppercase-letter: CHARACTER. 'uppercase-letter-100B:

For example,

Asdi.Controll: CHARACTER. 'B-100B:

In addition, a few special control keys are dermed as their commonly used names:

Ascil.IEL: CHARACTER. '6 -100B;

Ascil.IS: CHARACTER. 'H - 100B:

Ascii.CR: CHARACTER. 'M -100B:

Ascil.DEL: CHARACTER. 177C;

Ascil.ESC: CHARACTER • 33C;

Ascii.FF: CHARACTER. 'L -100B:

Ascii.LF: CHARACTER =- 'J - 100B:

Ascii.NUL: CHARACTER=- OC;

Ascii.SP: CHARACTER = ' ;

Ascii. T AS: CHARACTER = 'I - 100B;

7-1

7 Editing and Formatting

7.2 Formatting

7-2

Format: DEFINITIONS ••• ;

The Format package provides procedures to format various types into strings. The
procedures require the client to supply a string output procedure and a piece of data to be
formatted. Where appropriate, a format specification is also required. The client may also
specify client instance data to be used by the string output procedure. The Format
package is a Product ComUlon Software package.

The implementation module is Formatlmpl.bcd.

7.2.1 Binding

The Format package must be bound with the String and Time packages.

7.2 .. 2 Specifying the destination (Jlfthe output

The editing procedures defined in Format allow a client to pass in a procedure that will be
called when editing of the particular item has been completed. This procedure is called
with an output string and with the clientData passed to the editing procedure. This
procedure must be declared to be of type

Format.StringProc:TYPE III PRC)CEDURE [5: LONG STRING, clientData: LONG POINTER NIL];

Every editing procedure in Format requires a parameter of this type and clientData to be
passed to the editing proc1edure. If NIL is supplied for this procedure, then the output is
directed to the default output, known as a sink.

The default output sink can be changed with the procedure

Format.SetDefaultOutputSink: TYPE III

PROCEDURE [new:Format.StringProc, clientData: LONGPOINTER NIL)
RETURNS [old: Format.StringProc, oldClientData: LONG POINTER);

7.2.3 String editing

Format.Char: PROCEDURE [prcte: Format.StringProc, char: CHARACTER,
clientData: LONG POINTER NIL);

Char calls on proc with a string of length 1 containing char.

Format.LongSubStringltem:: PROCEDURE [proc: Format.StringProc, 55: String.LongSubString.
cI ientData: LONG POINTER NIL];

Format. LongString, Text: PROCEDURE [proc: Format.StringProc, 5: LONG STRING.
clientData: LONG POINTER NIL];

Format.SubString: PROCEDUfltE [proc: Format.StringProc, 55: String.SubString.
cI ientData: LONG POINTER NIL];

longSubStringltem repeatedly calls proc with strings filled from 55.

longStri ng (or Text) calls ~)roc with string 5.

Pilot Programmer's Manual 7

SubString calls Format.LongSubStringltem with proc and a pointer to a
Strlng.SubStringDescriptor whose base is ss.base, offset is ss.offset and length is
ss.length.

Format.Blank, Blanks: PROCEDURE [proc; Format.StringProc, n: CARDINAL +-1,
c1ientData: LONG POINTER NIL];

Format.Block: PROCEDURE [proc: Format.StringProc, block: Environment.Block.
c1ientData: LONG POINTER NIL];

Format.CR: PROCEDURE [proc: Format.StringProc. c1ientData: LONG POINTER NIL];

Format.Line: PROCEDURE [proc: Format.StringProc, 5: LONG STRING,
cli'entData: LONG POINTER NIL];

The procedure Blank(s) calls proc with a string containing n spaces. Block calls proc with
the contents of block. CR calls proc with a string containing a carriage return. The
procedure Line calls proc with 5, then with a string containing a carriage return.

7.2.4 Editing numbers

The format into which numbers are to be edited is governed by a record of the form

Format.NumberFormat: TYPE. RECORD [base: [2 .. 361 +-10,
zerofill: BOOLEAN +- FALSE, unsigned: BOOLEAN +- TRUE, columns: [0 .. 255] +- 0];

Format.OctaIFormat: Format.NumberFormat - [base: 8, zerofill: FALSE,
unsigned: TRUE, columns: 0];

Format. Decimal Format: Format.NumberFormat -
[base: 10, zerofill: FALSE, unsigned: FALSE, columns: 0);

The number editing procedure described below edits the number parameter as follows: the
number is edited in base base in a field columns wide (zero means use as many as needed).
If zerofill is TRUE, then the extra columns are filled with zeros; otherwise spaces are used.
If unsigned is TRUE, then the number is treated as a cardinal.

Two NumberFormat records are deimed for convenience. OctalFormat specifies editing
the number as a cardinal in base eight number, using as many columns as needed, no zero
fill. DecimalF~rmat specifies editing the number as an integer in base ten number, using
as many columns as needed, no zero fill.

Format.Number: PROCEDURE [proc: Format.StringProc, n: UNSPECIFIED,
format: Format. NumberFormat, c1ientData: LONG POINTER NIL];

Format.LongNumber: PROCEDURE [proc: Format.StringProc, n: LONG UNSPECIFIED.
format: Format. NumberFormat, c1ientData: LONG POINTER NIL];

Number and LongNumber convert n to a string of the base specified in format. If
format.unsigned is FALSE and n is negative, the character" -" is output. If the numeric
string length is less than format.columns, then proc is called, perhaps mUltiple times, to
output the necessary number of leading zeros (if format.zerofill) or spaces, before being
called to output the numeric string. If the numeric string length is greater than
format.columns, then proc is called.

7-3

7

7-4

Editing and Formatting

Format.Decimal: PROCEDURE £i:noc: Format.StringProcw n: INTEGER,
clientOata: LONG POINTER.-NIL];

Format.LongOetimal: PROCEDURE [proc: Format.StringProcr n: LONG INTEGER.
clientOata: LONG POINTER.-NIL];

Decimal and LongOecimal convert n to signed base ten. proc is then called.

Format.Octal: PROCEDURE [proc: Format.StringProcP n: UNSPECIFIED,
clientData: LONG POINTER .. -NIL];

Format.LongOctal: PROCEDURE: [prOC:Format.StringProc, n: LONG UNSPECIFIED,
clientOata: LONG POINTER .. -NIL];

Octal and LongOctal conver·t n to base eight. When n is greater than 7, the character B is
appended. proc is then called.

7.2.3 Editing dates

OateFormat allows the user to specify the format in which the date is to be edited by the
procedure Format.Oate.

Format.OateFormat: TYPE = {dateOnly, noSecondsr dateTime, full, maiiOate};

The di:fferent formats have the following interpretation:

maildate: 27 JulY 09:23:29 PDT (Wednesday)
full: 27-Jul-8S 9:23:29 PDT
dateTime: 27-Jul-8S 9:23:29
noSeconds: 27-Jul-8S 9:23
dateOnly: 27-Jul-8S

The maildate format is the .ANSI standard format for dates. Note the leading zero on the
time (when appropriate) and the omitted hyphens from the date. Also note that fewer time
zones have standard abbrevi.ations (Pacific through Eastern and Greenwich).

Format.Date: PROCEDURE [proc:: Format.StringProc, pt: Time.Packedw

format: Format. DateForma't ... noSeconds, zone: Time. TimeZone ... ANSI,clientData:
LONG POINTER ... NIL];

Date converts pt to a string of the form "27-Jul-83 9:23:29 PDT" which is truncated based
on the specified format. pr'oc is then called. The zone parameter indicates in which
format numeric time zonEiS are represented (see §7.4.2 for a description of the
representations).

7.2.8 Editing network addresses

The following procedures call be used to edit network addresses into various forms. The
exact form of the editing is specified with the type

Format.NetFormat: TYPE. {oc:tal, hex, productSoftware};

octal converts the number to octal, hex, to hex, and productSoftware converts the item to
a decimal number and then inserts a ft_" every three characters, starting from the right.
An example of number in product software format is 4-294-967-295.

· Pilot Programmer's Manual

Format. HostNumber: PROCEDURE [proc: Format. Stri ngProc,
hostNumber: System.HostNumber. format: Format.NetFormat,
clientData: LONGPOINTER+-NIL];

Format.NetworkAddress: PROCEDURE [proc: Format.StringProc,
networkAddress: System.NetworkAddress. format: Format.NetFormat.
clientData: LONG POINTER+-NIL];

Format.NetworkNumber: PROCEDURE [proc: Format.StringProc,
networkNumber: System.NetworkNumber, format: Format.NetFormat,
cI ientData: LONG POINTER +-NIL];

Format.SocketNumber: PROCEDURE [proc: Format.StringProc,
socketNumber: ·System.SocketNumber, format: Format.NetFormat,
cI ientData: LONG POINTER +- NIL];

7

A network address will be edited into the form network-number :# host-number :# socket­
number where the editing of the various components is determined by format.

7.3 Strings

String: DEFINITIONS ••• ;

The String interface provides facilities for string manipulation. It is Product Common
Software. The implementation modules for String are StringslmplA.bed and
Stri ngslm pi B. bed.

Note: The following procedures have been retained in the String interface for
compatibility .. Their use is strongly discouraged. Please see String~mesa for details of
their defmition: StringLength, EmptyString, EqualString, EqualString, EquivalentString,
EquivalentStrings, CompareStrings, EqualSubStrings, EquivalentSubStrings.

7.3.1 Sub-strings

A SubStringDescriptor describes a region within a string. The rust character is
base(offset) and the last character is base[offset + length-1).

String.SubStringDescriptor: TYPE. RECORD [base: LONG STRING,
offset, length: CARDINAL];

String.SubString: LONG POINTER TO SubStringDescriptor;

7.3.2 Overflowing string bounds

String.StringBoundsFault: SIGNAL [s: LONG STRING) RETURNS [ns: LONG STRING];

StringBoundsFault signal is raised when any of the append procedures described below
would have to increase the length of their argument string's length to be larger than its
maxlength. The catch phrase may allocate a longer string ns and return it to
StringBoundsFault. The operation is then restarted as if ns had been the original
argument. If StringBoundsFault is resumed with the value NIL, the procedure that raised
the signal fills in the original string with as many characters as will fit.

7-5

7

7-6

Editing and Formatting

7.3.3 String operations

String.WordsForString: PROCIEDURE [nchars: CARDINAL] RETURNS [CARDINAL];

WordsForString calculates the number of words of storage needed to hold a string of
length nchars. The value returned includes any system overhead for string storage.

There are two case-changing procedures:

String. LowerCase, UpperCas1e: PROCEDURE [c: CHARACTER] RETURNS [CHARACTER];

These procedures change the parameter character to lower or upper case, respectively.
The procedures are no-ops if the character is not a letter.

String.AppendChar: PROCEDUIU [s: LONG STRING, c: CHARACTER);

AppendChar appends the character c to the end of the string s. s.length is updated;
s.maxlength is unchanged. [f s = NIL, then AppendChar has no effect.

String.AppendString: PROCEDIURE [to, from: LONG STRING];

AppendString appends the string from to the end of the string to. to.length is updated;
to.maxlength is unchanged. If either to or from is NIL, then AppendString has no effect.

String.AppendSubString: PROCEDURE [to: LONG STRING, from: String.SubString];

AppendSubString appends the substring in from to the end of the string in to. to.length is
updated; to.maxlength is wlchanged. If either to or from is NIL, then AppendSubString
has no effect.

String.COpy: PROCEDURE [to, frlom: LONG STRING,];

Copy sets the length of to to zero and then appends from to to. If either to or from is Nil,
then Copy has no effect.

String.DeleteSubString: PROCI:DURE [s: String.SubString];

DeleteSubString deletes the substring described by s from the string s.base. 5.base.length
is updated; 5.base.maxlength is unchanged.

String.Empty: PROCEDURE [5: LCING STRING,} RETURNS (BOOLEAN);

Empty returns TRUE if 5 is NIL or if 5.length is 0 ; otherwise, FALSE is returned.

String.Equal: PROCEDURE [51, 5:~: LONG STRING) RETURNS [BOOLEAN];

Equal returns TRUE if 51 and 5:2 contain exactly the same characters or ifboth 51 and 52 are
NIL.

Pilot Programmer's Manual 7

String.Equivalent: PROCEDURE [51. $2: LONG STRING) RETURNS [BOOLEAN];

Equivalent returns TRUE if 51 and $2 contain the same characters except for case shifts or if
both 51 and 52 are NIL. Strings containing control characters may not be compared
correctly.

String.EquaISubString: PROCEDURE [51,52: Strlng.SubString)
RETURNS [BOOLEAN);

EqualSubString is analogous to Equal.

String.EquivalentSubString: PROCEDURE [51,52: String.SubString] RETURNS [BOOLEAN);

EquivalentSubString is analogous to Equivalent.

String.Compare: PROCEDURE [51,52: LONG STRING, ignore(a5e: BOOLEAN+-TRUE]
RETURNS [INTEGER);

Compare lexically compares two strings and returns -1, 0, or 1 if the lust is less than,
equal to, or greater than the second. An optional parameter may be supplied to have case
dUferencesignored.

String. Length: PROCEDURE [5: LONG STRING,) RETURNS (CARDINAL);'

Length returns zero if 5 is NIL; otherwise, 5.1ength is returned.

7.3.3.1 String operations that handle numbers

String.StringToNumber: PROCEDURE [5: LONG STRING, radix: CARDINAL+-10]
RETURNS [UNSPECIFIED];

String. I nvalidNumber: SIGNAL;

StringToNumber interprets the characters of 5 as an integer or cardinal and returns its
·value. The form of a number is:

{spaces \ controlCharacters} {'-} baseNumber {' B\ 'b\ 'nt • d} {scaleFactor}

where {} indicates an optional part and "\" indicates a choice, and baseNumber and
scaleFactor are sequences of digits. Note that baseNumber is the only portion of the
number that must be provided to form a valid number.

The value returned is ± baseNumber * radix**scaleFactor. controlCharacters are
characters whose Ascii code is less than 40B. The radix used depends on the contents of5
and radix: if the string has a 'B or 'b, then radix is 8; if the string has a '0 or 'd, then
radix is 10; otherwise, radix is radix. The number scaleFactor is always expressed in radix
10.

String.lnvalidNumber is raised if 5 does not have a valid form, is equal to NIL, s.length = 0,
values of radix are not in the range of 1 to 10, or base number is not provided. The use of
the digits 8 and 9 when radix 8 is in effect and the specification of a number whose value
falls outside of the range of the target type all produce undefined results.

7-7

7

7-8

Editing and Formatting

String.StringToDecimal: PR04:EDURE (S: LONG STRING] RETURNS [INTEGER];

String.StringToOctal: PROCEDURE (5: LONG STRING] RETURNS [UNSPECJFIED];

StringToDecimal is equivalent to StringToNumber[5, 10]. StringToOctal is equivalent to
StringToNumber[5.8].

String.StringToLongNumber: PROCEDURE [5: LONG STRING, radix: CARDINAL +-10]
RETURNS [LONG UNSPECIFIED];

StringToLongNumber is allalogous to StringToNumber, except that it returns a LONG
UNSPECIFIED instead of an UNSPECJFIED.

String.AppendNumber: PROCIEDURE [5: LONG STRING, nr radix: CARDINAL +-10];

AppendNumber converts the value of n to text using radix and appends it to 5. radix
should be in the interval [2 .. 36]. If5 = NIL, then AppendNumber has no effect.

String.AppendDecimal: PROCI:DURE [5: LONG STRING, n: INTEGER];

AppendDecimal converts the value of n to radix 10 text and appends it to s. A leading
minus sign is supplied, as appropriate. If 5 = "NIL, then AppendDecimal has no effect.

String.AppendOctal: PROCEDURE [5: LONG STRING. n: UNSPECIFIED1;

AppendOctal converts the -,ralue of n to radix 8 text and appends it to 5. A ua" will be
appe~ded. If 5 = NIL, then AI::tpendOctal has no effect.

Strlng.AppendLongNumber: PROCEDURE [5: LONG STRING, n: LONG UNSPECIFIED,
radix: CARDINAL 10];

AppendLongNumber is analogous to AppendNumber.

Strlng.AppendLongDecimal: I~ROCEDURE [s: LONG STRING, n: LONG INTEGER];

AppendLongDecimal is analogous to AppendDecimal.

7.3.3.2 String operations that allocate storage

String.MakeString: PROCEDURE [z: UNCOUNTED ZONE, maxLength: CARDINAL]
RETURNS [LONG STRING);

MakeString returns a strinl~ large enough to contain maxLength characters, allocated
from the zone z.

String.MakeMDSString: PROCE:DURE [z: MDSZone, maxLength: CARDINAL] RETURNS [STRING];

MakeMDSString returns a string large enough to contain maxLength characters,
allocated from the MDS zone z.

Pilot Programmer's Manual 7

String.FreeString: PROCEDURE [z: UNCOUNTED ZONE w 5: LONG STRING];

FreeString deallocates the string 5 to the zone z. The string must either be NIL or have been
allocated from z.

String.FreeMDSString: PROCEDURE [z: MDSZone, 5: STRING];

FreeMDSString deallocates the string 5 to the MDS zone z. The string must either be NIL or
have been allocated from z.

Strlng.AppendCharAndGrow: PROCEDURE [to: LONG POINTER TO LONG STRINGw C: CHARACTER,
Z: UNCOUNTED ZONE];

AppendCharAndGrow appends the character c onto the string pointed to by to .
. Automatic expansion of the string is provided when required; that is, a new string will be
allocated and the old will be returned to the zone z. to must point to a string allocated
from the zone z, and the client should have no other outstanding references to to t. If to f
is NIL, then automatic expansion occurs.

String.AppendExtensionlfNeeded: PROCEDURE [
to: LONG POINTER TO LONG STRINGw extension: LONG STRING, Z: UNCOUNTED ZONE]
RETURNS [BOOLEAN];

AppendExtensionlfNeeded cheeks the passed string pointed to by to to see if it contains
an extension (contains a period followed by at least one character). If not, it appends
extension (inserting a period if extension does not begin with a period). Automatic
expansion of the string is provided when required; that is, a new string will be allocated
and the old will be returned to the zone z. to must point to a string allocated from the zone
z, and the client should have no other outstanding references to to f .
AppendExten5ionlfNeeded returns TRUE if the extension was added.
AppendExtensionlfNeeded returns FALSE if the extension was not added or if to t is NIL.

String.AppendStringAndGrow: PROCEDURE [to: LONG POINTER TO LONG STRINGw

from: LONG STRINGw Z: UNCOUNTED ZONE, extra: CARDINAL 0);

AppendStringAndGrow appends the string from to the string pointed to by to. Automatic
expansion of the string is provided when required; that is, a new string will be allocated
and the old will be returned to the zone z. If the string must be expanded, then it will be
expanded to the new required length plus extra. to must point to a string allocated from
the zone z, and the client should have no other outstanding references to to f. If from is
NIL, then AppendStringAndGrow has no effect. If to f is NIL, then automatic expansion
occurs.

Strlng.CopyToNewStri ng:
PROCEDURE [5: LONG STRING, Z: UNCOUNTED ZONE, longer: CARDINAL 0)
RETURNS [newS: LONG STRING];

CopyToNewString copies a string into a new string allocated from the zone z. The new
string will be made longer characters longer than the length of s. If $ is NIL and longer is
zero, then newS will be NIL.

7-9

7 Editing and Formatting

String.ExpandStri ng:
PROCEDURE [5: LONG POIN1rERTO LONG STRING. longer: CARDINAL, z: UNCOUNTED ZONE];

ExpandString expands a string by longer characters. 5 must point to a STRING allocated
from zone z. Ifs t is NIL, then a new string will be allocated.

String. Replace :
PROCEDURE [to: LONG POI~ITERTO LONG STRING" from: LONG STRING. z: UNCOUNTED ZONE];

Replace replaces the striIllg pointed to by to with a copy of the string from. to will be
automatically expanded or' shortened as needed; that is, a new string will be allocated and
the old will be returned to the zone z. Iffrom is NIL, then to will be NIL. to must point to NIL
or to a string allocated from the zone z, and the client should have no other outstanding
references to to t .

7.4 Time

7-10

Time: DEFINITIONS ••• ;

The Time package providE~s functions to acquire and edit times into strings. The Time
package is Product Common Software.

Theimplementation module is Timelmpl. bed.

7.4.1 Binding

The Time package uses the String package and must be bound with StrinqslmplA" bed.

7.4.2 Operations

Time. TimeZoneStandard:TYI~E • {Alto, ANSI};

The ANSI time zone stand8.lt"d labels time zones by the number of hours each zone is ahead
of GMT. The Alto standard uses the number of hours behind GMT. For example, the
eastern standard time zone is represented as + 5 in the Alto standard, and -5 in the ANSI
standard.

The current time and date il~ kept is a record of the following form:

Time.Unpacked: TYPE. RECCIRD(
year: [0 •. 2104), month: [10 •• 12), day: [0 .. 31],
hour: [0 .• 24), minute: [0 .. 60), second: [0 .. 60),
weekday: [0 .• 6], dst: BOC.LEAN. zone: system.LocaITimeParameters];

Time.Packed: TYPE. System.CireenwichMeanTime;

The fields are filled by procedures described below which operate on the time and date as
kept internally by Pilot.

year is an absolute value, nl()t a relative value; that is, year = 1968 means the year 1968,
and year = 0 corresponds to year O. For month, January is numbered 0, etc. Days of the
month have their natural assignments. For weekday, Monday is numbered O.

Pilot Programmer's Manual 7

dst should be set to TRUE if daylight saving time is in effect; otherwise dst is set to FALSE.
See Time.Pack and Time.Append for further clarification.

zone indicates time zones.

Time.Current: PROCEDURE RETURNS [time: System.GreenwichMeanTime1;

Time.Unpack: PROCEDURE [time: System.GreenwichMeanTime 4- Tlme.defaultTime,
Itp:Time.L TP +- Time.useSystem]
RETURNS [unpacked: Time.Unpacked];

Tlme.LTP: TYPE. RECORD [
r:SElECTt:* FROM
useSystem • > [],
useThese • > [ltp:System.LocaITimeParameters]
ENDCASE];

useSystem: useSystem Time.L TP • [useSystem(]];
useGMT: use These Time.L TP • [useThese[[west, 0, 0, 0, 0]]];

Time.defaultTime: system.GreenwichMeanTime • System.gmtEpoch;

Time.lnvalid: ERROR;

Current is equivalent to System.GetGreenwichMeanTime. Unpack takes the Pilot­
standard Greenwich mean time and a target time zone and computes the values for the
fields in Unpacked. Passing defaultTime returns the current time.

If Pack gets bad data, then Time.lnvalid is raised. If the local time parameters are not
available to Pilot and Itp is defaulted to UseSystem, then
System.LocalTimeParametersU nknown is raised.

Caution: In UtilityPilot, the client must ensure that the processor clock is set correctly
and that the local time parameters are set. System.SetLocalTimeParameters must be called
before using Unpack.

Tlme.Pack: PROCEDURE [unpacked: Time.Unpacked,useSystemL TP: BOOLEAN +- TRUE]
RETURNS [time: System.GreenwichMeanTime];

Pack converts an Unpacked into the Pilot-standard GreenwichM~anTime. If
UseSystemL TP is set to TRUE, then Pilot's local time parameters are used; if FALSE, then
unpacked.zone is used.

,

Pack uses unpacked.dst and the time parameters (unpacked.zone or local) to determine
whether daylight saving time is in effect.

If the local time parameters are not a vailable to Pilot, then
System.LocalTimeParametersUnknown is raised.

Tlme.Append: PROCEDURE [s: LONG STRING, unpacked: Time.Unpacked,
zone: BOOLEAN +- FALSE, zoneStandard: Time.TimeZoneStandard +- ANSI];

Append appends the time in human readable form to s. It adds the time zone if zone "is
TRUE. Append handles daylight saving time ifboth zone and unpacked.dst are TRUE.

7-11

7

7.5 Sorting

7-12

Editing and Formatting

Tlme.AppendCurrent: PROCI:DURE [s: LONG STRING. zone: BOOLEAN +- FALSE,
Itp:Time.L TP ~ Tlme.useS~"tem. zoneStandard: TimeZoneStandard +- ANSI];

AppendCurrent is equivalc:!nt to Time.Append[s, Tlme.Unpack[Tlme.defaultTime, Itp], zone,
zoneStandard] .

QuickSort provides one sorting function, Sort. This routine requires the client to provide a
pointer to the data to be sorted. In addition, client implementation must provide the call­
back procedures for comp8Jring entries of the data and for swapping entries of the data.

QuickSort.lndex: TYPE. INTEc:;ER:

QuickSort.ClientData: TYPE • LONG POINTER:

QuickSort.Comparison: TYPE. {smaller, same, bigger};

Quicksort.CompareProc: TYPIE • PROCEDURE [
one. two: QuickSort.lnde)!:, data: QuickSort.ClientData)
RETURNS (Comparison];

QulckSort.SwapProc: TYPE • PROCEDURE [
one, two: QulckSort.lndex:, data: Qulcksort.ClientData);

QuickSort.Sort: PROC [
min, max: Index, compal"e: QuickSortoCOmpareProc,
swap: Quicksort.SwapPro,c, data: QuickSort.ClientData);

QulckSort.Sort, upon comple1~ion, will have ordered the specified entries in data. data is a
long pointer to an unspecifi.ed structure. The structure will be altered to contain the final
sorted structure. min is thn starting entry and max the ending entry. compare and swap
are both call-back procedures the client must implement for comparing and swapping two
entries in the structure being sorted.

Note: QuickSort.ComparePrc)c assumes one is xxx than two, where xxx is smaller, same, or
bigger.

8.

System Generation and Initialization

8.1 System components .. 8-1

8.2 Pilot initialization .. 8-2

8.3 V olume initialization ... 8-3

8.3.1 Formatting physical volumes .. 8-4

8.3.2 Checking drives for bad pages :....................... 8-5

8.3.3 Microcode and boot files .. 8-6

8.3.4 Miscellaneous operations .. 8-9

8.4 Communication initialization .. 8-11

8.5 Booting .. 8-11

8.5.1 Creating a boot tile .. 8-12

8.5.2 Writing the contentsofa boot file 8-12

8.5.3 Making a boot file bootable .. '. 8-13

8.5.4 Installing a boot file .. " 8-13

8.5.5 Booting a boot file .. " 8-13

8.5.6 Updatingabootfile 0 0 ... 0 8-14

8.5.7 Atomic saving and restoring of Pilot instances 0 ••• " 8-14

8

System Generation and Initialization

This section describes in general terms the organization of Pilot, Pilot-related
components, and various aspects of system initialization. The following topics are
addressed:

e the components of a Pilot release

e the various aspects of initializing Pilot. These pertain to the routine operation of Pilot
and client programs in an already established environment

e· the special considerations of initializing an environment on a new machine or disk

e the general areas of initializing a communication network

e the general areas of introducing a new machine into a network

8.1 System components

Seven kinds of software components in a release of Pilot are of interest to the client
programmer:

The Pilot kernel: Pilot is released as PilotKernel. bed, a file containing the object
code of the fundamental parts of the Pilot operating system. Pilot imports the device
faces from the heads (below) and exports most of the interfaces described in this
manual. Utility Pilot is a variant of the Pilot kernel which is released as
Utili tyPilotKernel. bed. It is intended to support small applications and utilities
which must run in real memory. (See Appendix D for more detail.)

The Communication package: the code allowing Pilot clients to perform inter- and
intra-processor communication.

The heads: for each processor, one or more files containing the object code of the
modules which export the device faces.

The germ: a bootstrap loader which can load a Pilot boot file into a Mesa processor and
place it into execution. There are one or more germs for each kind of processor.
Programmers normally have no direct contact with the germ.

Microcode: the code which, together with the heads, implements the Mesa processor
on a given kind of hardware. Programmers normally have no direct contact with
microcode.

The optional packages: a collection of object files containing the object code of various
packages released with and used in conjunction with Pilot.

8-1

8 System Generation and Iniltialization

Development tools: a conection of Pilot boot files and object files which provide support
for developing Pilot-b8fled software. Among these are Tajo, an executive and
environment for general purpose programming; Othello, the Pilot disk and volume
utility (not supported in Pilot 14.0), Installer, another disk and volume utility used for
installing product software, and Sword, the debugger run in Tajo.

The documentation accompanying a Pilot release describes in detail the file names of the
available components, the functions they implement, and the interfaces they export.
Please refer to that documen1~tion for details.

Caution: Pilot components]may export a number of interfaces which are not documented
in this manual. These interJaces exist for the convenience of the implementation and for
special purposes outside the ~lCope of this document. Unauthorized use of these interfaces is
not supported and is strongl:y discouraged. Such interfaces are subject to change without
general notice or review, and projects which use them improperly are subject to
considerable risk from one release of Pilot to the next.

8~2 Pilot initialization

8-2

The primary method of pre}>aring a Pilot client system for operation is to bind it with
PilotKernel.bcd f the appropriate heads~ and the desired optional packages into a single
object file representing the whole system. This object file is then processed by a program
called MakeBoot, described In the Mesa User ~ Guide, to create a boot file. The boot file
may be installed on a rigid disk, floppy disk, or Ethernet server for loading in response to
some hardware operation, or it may be invoked by software using the facilities of the
remporaryBooting interface. If the boot file is invoked by software, it is possible for the
invoking program to pass a llimited form of parameters called switches for interpretation
by the booted system.

An alternative method of invoking a program is to boot a system and cause that to load the
object file of the desired program, using the facilities in the Runtime interface, which are
implemented by Loader.bed. This is especially appropriate if the same boot file can load
many different programs 01' if the programs being loaded are under development and
constantly evolving. For eXI:Lmple, the Mesa development environment provides facilities
for the user to dynamically lctad programs.

When a boot file is invoked, the state of the processor is reset. The part of the boot file
representing initially residc!nt code and data is copied into memory and the virtual
memory mapping hardware is set accordingly. The configuration of I/O devices and of real
memory must be determinEd and tables established accordingly. The heads must be
initialized to reset the I/O devices. Then Pilot begins to execute. It opens the system
physical and logical volumes, creates or rmds certain files for its own use, creates and
maps spaces for code and data, scavenges volumes if necessary, and performs other
necessary initialization fun,ctions. Initialization of Pilot on a new or recently erased
volume typically takes a bit longer than initialization of an established volume where the
various files and control information already exist.

Pilot (i.e., PilotKernel.bcd) ir.litializes disks containing Pilot volumes as follows:

The system lJolume is the logical volume on which the boot file resides. The physical
volume containing the systE!m volume is automatically brought on-line and the system
logical volume is opened. Clients may bring other physical volumes on-line and open the
logical volumes contained 011 them, and they may take existing physical volumes ofiline
after rust closing all of the I=ontained logical volumes. (It is not meaningful to close the

Pilot Programmer's Manual 8

system volume or its containing physical volume, as Pilot uses these for its own
operation.)

UtilityPilot, on the other hand, assumes that there is no system- volume, and no volumes
are brought on-line at initialization time. This is necessary so that a client can initialize a
new disk to be a physical volume without rust depending upon it. Once a disk is formatted
to be a physical volume, it may be brought on-line in the usual way. Initialization of
volumes is described in the next section. .

Finally, after initialization is complete, Pilot starts the client by calling the procedure Run
from the interface PilotCJient. This procedure is the only one imported by Pilot from the
client system.

8.3 Volume initialization

FormatPiiotDisk: DEFINITIONS ••• ;

OthelioOps: DEFINlnONS ••• ;

The steps in initializing a disk for use as a Pilot volume are as follows:

• The disk must be formatted into sectors corresponding to Pilot pages with
appropriate headers, labels, and data blocks;

• The disk must be scanned, any unusable pages must be recorded, and a physical
volume must be created;

• One or more logical volumes must be created on the physical volume;

• Various microcode, germ, and boot files must be copied onto the logical volumes, and
pointers must be set to indicate that these files be invoked when the machine is
booted.

Formatting is normally done by EIDisk, the disk diagnostic. All other initialization is
done by Othello, the development disk utility (not supported in Pilot 14.0), or the Installer,
the product installation and initialization utility. Applications may also provide facilities
in their Pilot-based systems for initializing; for example, removable volumes as part of
routine operation.

An important part of formatting a disk is to scan the disk for unusable pages (the format
package provides a scanning procedure) and to mark them as bad. Pilot will avoid placing
any data or control information on such bad pages for the life of the physical volume. A
page of a physical volume may be marked bad at a later time, but this action will cause the
information on that page to be lost. (The facilities of the Scavenger interface (see §4.4) can
be used to recover some of the lost information.)

Note: A characteristic of rigid disks is that a disk is expected to have some unusable pages
at the time of manufacture, but the rate of pages going bad during operation over the life
of the disk is expected to be inf"mitesimal.

The Volume interface provides facilities for creating logical volumes on a physical volume.
A logical volume has a volume type indicating its intended use to contain normal Pilot
clients, the debugger, the debugger's debugger, or for non-Pilot purposes. Logical volumes
of different types are kept separate by Pilot so that a system will not affect its debugger.
Once a logical volume has been created, it may be opened and files may be copied onto it.

8-3

8

8-4

System Generation and Ini"tialization

Finally, a disk may need to be prepared for booting. Typically, four kinds of files need to
be fetched to the disk: the initial microcode, the Pilot microcode, the germ, and the boot
tile.

The initial microcode is microcode that typically resides in a special place on the disk
(outside any logical volume) ~md is invoked by the hardware booting logic of the machine;
it is the program that reads the Pilot microcode and the germ from the disk. The Pilot
microcode is the main microc'ooe for the operation of the machine, and resides in a file on a
lo'gical volume, as do the gerI[l and boot file. The microcode, germ, and boot file are not all
in one file, or even necessarily on the same volume.

A formatting package provides the facility for installing the initial microcode (since its
location is specific to the typ4! of device), and the interface OthelioOps provides facilities for
installing and setting pointe]:"s to the microcode, germ, and boot files. These pointers are
necessary so that the initiallnicrocode can rmd the Pilot microcode and germ, and so that
the germ can rmd the Pilot bcot rue.

This section describes the iJnterfaces and object files distributed with Pilot that allow
clients to create their own v'olume initializers. OthelloOpslmpl. bed implements the
OtheUoOps operations, and l'ormatPilotDisklmpl.bed implements the FormatPliotDisk
operations. Both packages al'e clients of Pilot and UtilityPilot.

803,,1 Formatting physical volumes

Before a physical volume can be presented to the CreatePhysicalVolume operation for the
rU'St time, it must be formatt.ed into sectors corresponding to Pilot pages with appropriate
headers, labels and data bloc:ks. As a side effect, formatting rmds many of the bad pages
on the disk so that they call be marked as bad after a Pilot physical volume has been
created.

Pilot disk families are formaUed using the following operation.

FormatPliotDlsk.RetryLimit: TYPE - [0 •• 254);

FormatPliotDlsk.noRetries: FormatPllotDlsk.RetryLimit .. 0;

FormatPllotDfsk.retryLi mit: FornlatPliotDlsk.RetryLimit - LAST[FormatPliotDlsk.RetryLi mit];

FormatPliotDlsk.Format: PROCECtURE [h: Physicalvolume.Handle,
firstPage: FormatPilotDlsk.DiiskPageNumber, count: LONG CARDINAL,
passes: CARDINAL+-10, retries: FormatPllotDisk.RetryLimit +- noRetries,
returnOnUserAbort: BOOLEAN +-FALSE,
signalPassDone: BOOLEAN 'f- FALSE];

FormatPllotDisk.FormatBootMi,crocodeArea: PROCEDURE [h: PhysicaIVolume.Handle,
passes: CARDINAL, retries: f:ormatPiiotDisk.RetryLimit);

FormatPliotDisk.DiskPageNumber: TYPE. PhysicaIVolume.PageNumber:

FormatPIIotDisk.NotAPiiotDisk:: ERROR;

FormatPiiotDisk. FormattingMustBeTrackAl igned: ERROR;

FormatPflotDisk.BadPage: SIGNJ'L [p: FormatPIIotDisk.DiskPageNumber];

FormatPIIotDisk.PaSsesLeft: TYPE = CARDINAL;

FormatPllotDisk.PassDone: SIGflIAL(passesLeft: Passes Left] ;

Pilot Programmer's Manual 8

FormatPIIotDisk. SetUserAbort: PROCEDURE;

Format formats count pages of the disk h starting at page firstPage. If a problem occUrs
when verifying headers, labels, or data, then retries is the number of times to retry the
format operation on that page.

passes is the number of times to go over the disk for bad pages. If any are found, then
BadPage is raised. If h does not denote a Pilot disk drive, then NotAPiiotDisk will be
raised. If h denotes a drive other than the SA4000, then the run of pages to be formatted
must start at the beginning or a track atld end on the last page of a track or
FormattingMustBeTrackAligned is raised. If the volume is online (i.e., asserted to be a
Pilot volume), then Physicalvolume.Error[alreadyAsserted) is raised.

returnOnUserAbort indicates whether a user abort should be checked for early return
during format.

signalPassDone indicates whether a PassDone should be raised on completion or each
pass. PassDone must be RESUMEd for proper cleanup.

FormatBootMicrocodeArea formats the area or the disk on h where microcode will reside.
See the previous paragraph ror description or other parameters and errors raised.

SetUserAbort sets an indicator that the user wishes to abort a Format in progress. Format
checks the indicator if it was called with returnOnUserAb~rt set to TRUE. For formats to be
abortable, returnOnUserAbort must be in effect. SetUserAbort has no effect-if a Format
is not in progress.

FormatPilotDlsk.Disklnfo: PROCEDURE [h: PhyslcaIVolume.Handle] RETURNS [
firstPilotPage: FormatPilotDisk.DiskPageNumber, countPages: PhysicaIVolume.PageCount,
pagesPerTrack: CARDINAL, pagesPerCylinder: CARDINAL);

Ifh does not denote a Pilot Disk drive, then the error FormatPIIotDisk.NotAPiiotDisk is raised.
firstPiiotpage is the rust page on the device where Pilot volumes may begin. countPages
is the total number orpages on that volume.

Note: For clients who use the FormatPliotDisk interface to install microcode, NotAPiiotDisk is
raised by any procedures that previously raised cantlnstallUCodeOnThisDevice.

8.3.2 Checking drives for bad pages

The following procedure permits scanning an already-formatted disk to determine if there
are any bad pages on the disk. The client may then inform Pilot of these bad pages, via
PhysicaIVolume.MarkPageBad, so that Pilot will no longer reference them.

FormatPliotDlsk.Scan: PROCEDURE [h: PhysicaIVolume.Handle,
firstPage: FormatPliotDisk.DiskPageNumber, count: LONG CARDINAL,
retries: FormatPIIotDlsk.Retrylimit +-10);

Scan scans the indicated section of the disk for bad pages, retries number of times per each
bad page, and then reports them by raising the signal BadPage. The signal may be
resumed to continue the scan. If h does not denote a Pilot disk drive, then the error
NotAPiiotDisk is raised. If the volume is online, then PhysicajVolume.Error[aJreadyAsserted)
is raised.

8-5

8

8-6

System Generation and Ini1tialization

8.3.3 Microcode and boot tiles

This section discusses

• boot files, which contain ready-to-run, Pilot-based systems that can be loaded by a
germ for execution

• germs, which contain the bootstrap loader
• microcode files, which contain the Mesa emulator for a given machine

Boot files, germs, and microcode .files must be installed; that is, made known to Pilot, the
germ, and microcode. The IFormatPiiotDisk and OthelioOps interfaces provide facilities for
dealing with boot files, germu, and microcode. The TemporaryBooting interface provides the
means of actually invoking a lboot file.

Note: Installing boot file, l~erm, and microcode files on a floppy disk is not directly
supported by the current version of Pilot. They may be installed using the utility program
MakeDLionBootl'loppyToo:L or MakeDoveBootl'loppyTool. Refer to Chapter 22 of
the XDE User's Guide for de~lils.

The lowest level of microcod,e is the initial microcode, the microcode that is read by the
hardware booting logic of the system element. Microcode is installed by the operation

FormatPiIotDisk.lnstaIiBootMicrocode: PROCEDURE [h: PhysicaIVolume.Handle,
getPage: PROCEDURE RETURNS[LONG POINTERll;

FormatPiiotDisk.MicrocodelnstaIiFailure: SIGNAL [m: FormatPiiotDisk.FailureType);

FormatPIIotDisk.FailureType: TYPE. {emptyFile, firstPageBad, flakeyPageFound,
microcodeTooBig. other};

The microcode is installed on the disk h. This operation finds sequential pages of the
microcode file by repeatedly invoking getPage. The end of the microcode file is indicated
when getPage returns NIL. The pointer returned by getPage must denote a resident page.

If an error is found in the ltIlicrocode file, then FormatPliotDisk.MicrocodelnstaliFailure is
raised and the attempt to ilnstall the microcode has failed (any previous microcode is
destroyed unless emptyFile is the error). If FormatPIIotDisk.MicrocodelnstaliFailure is
resumed, then getPage is called until NIL is returned but the data is ignored. emptyFile
indicates that the microcode file was empty; that is, getPage returned NIL the ilrst time
that it was called.

If the rust page of the microcode is bad, then firstPageBad is raised. If some page of the
disk reserved for the boot nucrocode is found to be unusable, then flakeyPageFound is
raised, indicating a problem with the disk. If an attempt is made to install too large a
microcode file, then micro,codeTooBig is raised. The error other is raised if the
installation failed in some other way. If h does not denote a pilot disk drive, then the error
FormatPiiotDisk.NotAPiiotDisk is raised.

There are four types of boot rHes; clients may have as many of each as they desire.

OthelioOps.BootFileType: TYPE. {hardMicrocode. softMicrocode. germ. pilot};

A softMicrocode boot file contains Pilot microcode; it is typically loaded by the initial
microcode and contains the ~desa emulation microcode. A germ boot file contains a germ,
which is a bootstrap loader used to load a Pilot boot file and start it executing. pilot boot
files contain the image of a Pilot suitable for loading by a germ into a processor for

Pilot Programmer's Manual 8

execution; a pilot boot file is produced by MakeBoot. hardMicrocode boot files are not
currently used.

Before a Pilot file may be installed as a boot file, it must be made bootable by invoking

OthelioOps.MakeBootable: PROCEDURE [file: File.File,
type: OthelloOps.BootFileType, firstPage: File.PageNumber];

Othelioops.lnvalidVersion: ERROR;

MakeBootable modifies file so that it is readable by the boot loader or microcode (the
operation does not change the contents of the file, it only modifies the file labels). file must
be writeable and permanent and the logical volume that contains it must be open.

If file is unknown to Pilot, either File.Unknown or Volume.Unknown is raised. If the
specified boot file is not compatible with the version of Pilot doing the MakeBootable, then
InvalidVersion is raised. In this case, the file is still made bootable so as to permit
installation of boot files with incompatible version numbers. MakeBootable may also
raise Volume.NotOpen, VOlume.NotOnline, volume.NeedsScavenging, Volume.ReadOnly, and
File. Missi ngPages.

Before changing the size of a file that has been made bootable, invoke the following
operation:

OthelioOps.MakeUnbootable: PROCEDURE [file: File.File,
type: OthelioOps.BootFileType, firstPage: File.PageNumber];

The same restrictions as for MakeBootable apply. file may be deleted without first
invoking MakeUnbootable.

A default boot file of each type may be associated with every logical and physical volume.
These boot files may be set and information about them obtained by invoking the
following operations.

Othelioops.SetPhysicaIVolumeBootFile: PROCEDURE [file: File.File,
type: OthelioOps.BootFileType, firstPage: File.PageNumber];

OthelloOps.SetVolumeBootFile: PROCEDURE [file: File.File,
type: OthelioOps.BootFileType, firstPage: File.PageNumber];

The logical volume containing file must be open. If file is unknown to Pilot, then either
Flle.Unknown or Volume.Unknown is raised.

The information set by the above operations may be retrieved by invoking

OthelioOps.GetVolumeBootFile: PROCEDURE [lvID: volumeJD,
type: OthenoOps.BootFileType]
RETURNS [file: File.File, firstPage: File.PageNumber];

OthelioOps.GetPhysicaIVolumeBootFile: PROCEDURE [pvID: PhysicalVolume.lD,
type: OthelioOps.BootFileType]
RETURNS [file: File.File, firstPage: File.PageNumber);

Logical volume IvlD must be on-line; that is, contained on a physical volume that is known
to Pilot. If the physical volume is only partially online, then Volume.NotOnline is raised. If
the IvlD is not open, then Volume.NotOpen will be raised. Volume.NeedsScavenging and
Volume.ReadOnly may also be raised. If IvlD is unknown to Pilot, then Volume.Unknown is

8-7

8

8-8

System Generation and Ini.tiaJization

raised. If pvlD is unknown u) Pilot, then Physicalvolume.Error[physicaIVolumeUnknown] is
raised.

Pilot can be told to remove a logical or physical volume's default boot file association for a
file by invoking

OthelioOps. voidVolumeBootFife: PROCEDURE [lvID: volume.IO,
type: OthelioOps.BootFileTy'pe];

ethelloOps. VoidPhysicalVol u",eBootFi Ie: PROCEDURE [pvlO: Physicalvolume.1 0,
type: OthelioOps.BootFileTy'pe];

Logical volume IvlO must be! open or Volume.Unknown is raised. Physical volume pvlD
must be on-line or PhysicaIVolume.Error[physicaIVolumeUnknown] is raised.

Every boot file of type pilot can have an explicit pointer to a debugger for that boot file;
that is, a debugger that willI be invoked whenever that boot file is loaded and calls a
debugger. Normally, Pilot finds a debugger on a volume of the next higher type than the
volume being booted. This isl not sufficient if the debugger needs to be called very early in
Pilot initialization, or if the boot file is built on top of Utility Pilot, which never looks for a
debugger.

OtheUoOps.SetOebugger: PRO(:EDURE [debuggeeFile: File.File,
debuggeeFirstPage: File.PilgeNumber, debugger: volume.IO,
debuggerType: Device.Type, debuggerOrdinal: CARDINAL]
RETURNS [OthelioOps.SetOebuggerSuccess];

Ot.helioOps.SetDebuggerSuCCEtSS: TYPE. {success, nuliBootFile,
cantWriteBootFile, notlni1tialBootFile, cantFindStartListHeader,
startListHeaderHasBadVersion, other, noDe bugger ,};

The file debuggeeFile must permit writing and denote a file on a volume that is open.
The rust page of the boot file within the file debuggeeFile is denoted by
debuggeeFirstPage (normally this is zero). The debugger will be found on the device
denoted by debuggerType and debuggerOrdinal. The debugger is on volume debugger of
the physical volume containt!d on that device.

The returned value success :indicates that the pointers were set. If debugger is unk.nown
to Pilot, then Volume.UnknO",'" is raised.

If null BootFile is returned, then debuggeeFile is either unknown or the volume on which
it resides is unknown, not (Jlnline, or not open. If Pilot is unable to modify the boot file
denoted by debuggeeFile, then cantWriteBootFile is returned.

The boot file denoted by debuggeeFile must not be a restart file, since such files cannot
have their debugger pointers set. If the file is a restart file, then notlnitialBootFile is
returned. A return of can1:FindStartListHeader indicates that the boot file header has
probably been damaged, or that the boot file has been shortened.

If the specified boot file was created by an earlier version of either Pilot or MakeBoot, then
Pilot is unable to access it and startListHeaderHasBadVersion is returned. If Pilot is
unable to set the debugger pointers for some other reason (i.e., the boot file is too short,
missing pages exist, or the bootfile is of the wrong version), the operation returns other. If
no installed debugger can bE~ found on debugger, then noDebugger is returned.

Pilot Programmer's Manual 8

8.3.4. Miscellaneous operations

A Pilot physical volume consists of the pieces of one or more logical volumes. Each such
piece is known as a subvolume.

The subvolumes on a physical volume can be enumerated by invoking

OthelioOps.GetNextSubVolume: PROCEDURE [pvlD: PhysicalVolume.lD,
thisSv: OthelioOps.SubVolume]
RETURNS [nextSV: OthelioOps.SubVolume];

OthelioOps.SubVolume: TYPE. RECORD [lvlD: Volume.ID,
subVolumeSize: VOlume.PageCount,
firstLVPageNumber: Othe.lloOps.LogicaIVolumePageNumber,
firstPVPageNumber: PhysicaIVolume.PageNumber];

OthelioOps.LogicaIVolumePageNumber: TYPE • LONG CARDINAL;

OthelioOps.nuIiSubVolume: OthelioOps.SubVolume • [Volume.nuIllD, 0, 0, 0];

OthelioOps.SubVolumeUnknown: ERROR [sv: OthelioOps.SubVolume];

GetNextSubVolume is a stateless enumerator and begins and ends with nuliSubVolume.
If thisSv cannot be found on pvlD, then SubVolumeUnknown is raised. A SubVolume
identifies a logical volume, IvID. The number of pages that this piece of that logical
volume contains is given by subVolumeSize. The subvolume begins at page number
firstLVPageNumber within IvID, and at page number firstPVPageNumber within pvlD. If
pvlD is unknown to Pilot, then Physlcalvolume.Error[physicaIVolumeUnknown] is raised.

Note: This operation is designed to deal with logical volumes that span multiple physical
volumes. Since the current version of Pilot does not provide the facility to create such
logical volumes, firstLVPageNumber is always 0, and subVolumeSize always gives the
actual size oflvlD.

Pilot reserves the right to delete some or all temporary files on a logical volume when that
volume is opened for writing. The following operation is guaranteed to delete all
temporary files on a logical volume.

OthelioOps.DeleteTempFiles: PROCEDURE [Volume.IO];

OthelioOps. Vol umeNotClosed: ERROR;

The specified volume must be closed or VolumeNotClosed is raised. Volume.Unknown,
Volume.ReadOnly, Volume.NotOnline, and Volume.NeedsScavenging may be raised by this
procedure.

The number of pages available on a storage device on a given drive is obtained by

OthelioOps.GetOriveSize: PROCEDURE [h: PhysicalVolume.Handle)
RETURNS [nPages: LONG CARDINAL];

A character string denoting which switches should be down when booting a boot file can be
converted into a System.Switches by the following operation.

OthelioOps.DecodeSwitches: PROCEDURE [switchString: LONG STRING]
RETURNS [switches: System.Switches];

8-9

8

8-10

System Generation and Iniltialization

OthelioOps.BadSwitches: ERROlt:

The semantics of the swib:h string passed to DecodeSwitches are as follows: the
characters tC_" and "-" mean Bet the next specified switch to System.UpDown(up]; a phrase of
the form "\xxx", exactly threo in length, is interpreted as the octal value of the switch that
is to be set. Note that the order of switches is significant in that only the last (rightrnost)
setting (or clearing) of a particular switch is retained. Thus, the switches "ab-a", f'ub~a"
and "13" are all equivalent. If a character is not a valid switch name, then BadSwitches is
raised.

It is possible to set default switches in boot files and to associate an expiration date with a
boot file.

OtheUoOps.SetGetSwitchesSuc:cess: TYPE • OtheUoOps.SetDebuggerSuccess[success •• other];

OthelioOps.GetExpirationDateSuccess: TYPE.
OtheUoOps.SetDebuggerSuc:cess(success •• other];

OthelioOps.SetExpirationDate~;uccess: TVPE •
OtheUoOps.SetDebuggerSuc:cess(successuother) ;

OtheUoOps.GetExpirationDate: PROCEDURE [file: Flle.File, firstPage: File.PageNumber)
RETURNS [OthelioOpsoGetExpiirationDateSuccess, System.GreenwichMeanTime];

OthelloOps.SetExpirationDate:: PROCEDURE [file: File.File, firstPage: Flle.PageNumber
expirationDate: System.GrE!enwichMeanTime]
RETURNS [OthelloOps.SetExpi ration DateSuccess] ;

OtheUoOps.GetSwitches: PROCI:DURE [file: Flle.File,firstPage: File.PageNumber)
RETURNS [OtheUoOps.SetGetSwitchesSuccess, System. Switches] ;

OtheUoOps.SetSwitches: PROCEDURE [file: File.File,
firstPage: File.PageNumbelr, switches: System. Switches]
RETURNS [Othelloops.SetGetSwitchesSuccess];

The expiration date is used a~s a validity check on the processor clock. When a boot file is
booted, Pilot attempts to ensure that the processor clock is set correctly. If the processor
clock cannot be set from the Ethemet, or is not set to a time less than or equal to the boot
file's expiration date, then Pilot will refuse to boot and will hang with maintenance panel
code 937. The logical voluDle on which the boot rue resides must have been openled in
order to invoke these proced\llres.

Note: The boot filEt may be booted with the \200 switch,
PliotSwitchesExtra Extra Extras. conti nueBooti nglfNoTimeServer . Files created during sUlch a
boot session will have undeillled timestamps.

Note: These comments only apply to Pilot. For UtilityPilot, the client is always
responsible for ensuring that the processor clock is set correctly.

Each boot ille may also contain default boot switches. These switches are set and retrieved
by SetSwitches and GetSwiltches. When a boot tile is booted, Pilot sets the system
switches to the value passed to it by the client booting program. If no switches are passed,
or if they are equal to Systeln.defaultSwitches, Pilot sets them to the boot file's default
switches.

Pilot Programmer's Manual

The following operations aid the client in setting the processor clock to a valid value.

OthelloOps.lsTimeValid: PROCEDURE RETURNS [valid: BOOLEAN);

OthelioOps.SetProcessorTime: PROCEDURE [time: System.GreenwichMeanTime];

OtheIIoOps.GetTimeFromTimeServer: PROCEDURE RETURNS [serverTime.:
System.GreenwichMeanTime, serverL TPs: System.LocaITimeParameters];

OthelioOpso Ti meServerError: ERROR [error: OthelioOps. Ti meServerErrorType];

OthelloOpsoTimeServerErrorType: TYPE. {noCommunicationFacilities, noResponse};

8

The validity of the time in the processor clock can be ascertained br calling IsTimeValid.
The processor clock can be explicitly set by calling SetProcessorTime. This call is required
of all UtilityPilot clients as their rust action upon gaining control. The time servers on
the network can be queried for their notion of the current time by calling
GetTimeFromTimeServer which returns the time that the time servers believe it is, as well
as the local time parameters that they are using. The error TimeServerError indicates
that the attempt to access a time server failed; noCommunicationFacilities indicates the
processor is not connected to the Ethernet; no Response indicates that there was no
response from any time server on the local network.

8.4 Communication initialization

8.5 Booting

Local networks are interconnected logically via machines executing an internetwork
routing function. Physically, the networks can be interconnected via a phone line link or
via a processor with multiple Ethernet boards. All Pilot processors contain a simple
routing function, which is· capable of requesting routing information from internetwork
routers.

All machines running Pilot are automatically initialized to do routing. They discover
their local network number(s) by broadcasting for routing information at initialization
time or via routing update packets that are broadcast by internetwork routers.

There is a local network, thus network number, for every Ethernet board in a Pilot
processor. The network number is assigned via an administrative method that assigns
unique 32-bit numbers.

When a Pilot processor is restarted, it does not know its network number. Until it is
otherwise notified of a new number, it uses a default number, referred to as the unknown
network number. A local network can operate correctly without an internetwork router;
all the machines on the network use the same constant, unknown network number. If all
machines on a network use the unknown network number in their network addresses,
completely general communication is possible. If the default network number is used, no
special communication initialization is necessary to assign or discover the local network
number.

TemporaryBooting: DEFINITIONS ••• ;

Pilot supports installing boot files on logical volumes, and booting from a specified file or
logical volume. The operations providing this support are in the interface Temporary8ooting.

8-11

8

8-12

System Generation and Initialization

A boot tile is a client-on-Pilot configuration which has been converted by MakeBoot into a
ready-to-run form. It is executed by loading it into a suitable processor with the Pilot boot
loader, which is known as the germ. The boot file commences execution by flrst
initializing Pilot and then in'~oking PliotClient.Run. Pilot associates a boot file with each
logical volume and with each physical volume, so that booting from that volume means
loading the associated boot fille.

It is recommended that the boot file for a physical volume be the boot file for some logical
volume on that physical volume, although this is not required. Pilot also provides an
operation for booting directly from a file, which need not be the installed boot file of its
volume.

Setting up a bootable tile inv'olves several steps. A file of the right size must be created,
and its contents must be written with the boot file as produced by MakeBoot. Once the tile
is created, the operation MakeBootable must be applied to the tile, modifying it in such a
way that the germ can rea.d it. Then the file may be booted using the operation
BootFromFile. For this operlltion, installing the tile is not necessary. If it is desired to
associate this file with a par1cicular logical volume, then the tile must be installed using
the operation InstaliVolumeElootFile. A subsequent BootFromVolume operation applied
to that volume (e.g., by the Installer, or by a client program analogous to the Installer)
causes the installed system tel run.

Similarly, for a physical volume, use InstaliPhysicalVolumeBootFile to install a boot file~
followed by a call on BootFt'omPhysicalVolume or BootButton, or by pushing the boot
button.

8 .. 5.1 Creating a boot file

A boot file is created in the normal fashion, using File.Create. The operations in
TemporaryBootlng are set up in such a way that a boot file may begin with a client-provided
leader of one or more pages; in the relevant operations, a firstPage parameter specifies the
page at which the "real" boot file (as output by Make Boot) begins.

A boot file may have any filEI type. The interface item TemporaryBooting. tBoQtFile remains
for compatibility (with a value of FileTypesatUntypedFile).

As is always the case when c:reating a Pilot tile, it is better to specify the actual size (Le. p

the number of data pages O'Lltput by MakeBoot, plus the number of leader pages to be
prefIXed) when creating it, ruther than doing a series of Flle.SetSize operations. This gives
Pilot the best opportunity tc:. allocate the file in a small number of contiguous portionsp

which reduces both access tilDes and storage overhead in Pilot's data structures. (See also
the discussion under "Updating a boot file" below.)

8 .. 5.2 Writing the contents of a boot; tile

The Space operations Map, Unmap, Copyln, and CopyOut apply to bootable files just as to
any other, allowing the contents to be written. Since a boot file is originally built by
MakeBoot, which runs in a different environment, part of the process of installing a boot
tile is to copy it into the pre'nously created Pilot boot file. This is typically accomplished
via the Ethernet; for exampl1e, an Installer's fetch command.

Pilot Programmer's Manual 8

8.5.3 Making a boot tile bootable

Once a boot file has been created and written with the appropriate contents, it must be
subjected to the following operation.

TemporaryBooting.MakeBootable: PROCEDURE (file: File.File,
firstPage: Flle.PageNumber 0];

TemporaryBootlng.lnvalidParameters:ERRoR;

TemporaryBooting.1 nval idVersion: ERROR;

The parameter firstPage specifies the lust page containing the information produced by
MakeBoot; for example, the page following the client leader pages, or zero if no leader
pages are present.

If the file does not contain a valid Pilot boot file starting at firstPage, then
InvalidParameters is raised.

If the file being made bootable has an invalid version, then InvalidVersion is raised. The
file is made bootable before this error is raised so that boot files which are incompatible
with the current version of Pilot can be installed by the current version. '

8.3.4 Installing a boot tile

To establish a file as the boot file of a particular logical volume, use the following
operation.

TemporaryBooting.lnstaIiVolumeBootFile: PROCEDURE [file: FIIe.File,
firstPage: Flle.PageNumber 0];

The file should already have been made bootable. The parameter firstPage has the same
significance as for MakeBootable. Note that InstaliVolumeBootFile does not take an
explicit volume parameter because a boot file may only be installed on the volume
containing that file.

To associate a file as the boot file of a particular physical volume, use the following
operation.

TemporaryBooting.lnstaIlPhysicaIVolumeBootFile: PROCEDURE (file: Flle.File,
firstPage: Flle.PageNumber 0];

8.5.3 Booting a boot tile

Four operations are provided: booting a specified boot file, booting from the file installed
on a specified logical volume, booting from the file installed on a specified physical
volume, and simulation of the boot button. A program may boot from any Pilot-formatted
volume, regardless of its type. These operations do not return. Control passes irrevocably
to the new boot file.

TemporaryBooting.BootFromFile: PROCEDURE [file: File.File,
firstPage: File.PageNumber 0,
switches: System.Switches System.defaultSwitches);

Note: Pilot will not successfully complete the Temporary8ooting.BootFromFile operation if
the file is temporary and firstPage is zero.

8-13

8

8-14

System Generation and Ini.tialization

TemporaryBooting.BootFromVollume: PROCEDURE [volume: Volume.ID,
switches: System.Switches System.defaultSwitches];

TemporaryBooting.BootFromPh3,sicaIVolume: PROCEDURE [volume: Volume.ID,
switches: System. Switches System.defaultSwitches];

Note that the parameter to ElootFromPhysicalVolume is not a physical volume identifier,
but the identifier of any logic:al volume on that physical volume.

TemporaryBooting.BootButton: PROCEDURE [
switches: System.Switches SystemodefaultSwitches];

The value of the defaultSwitches parameter represents all switches as being up. Errors
resulting in improper arguments to these booting operations' typically result in a.
maintenance panel code and ,a crash.

8.5.8 Updating a boot tile

From time to time a new velt"sion of a boot file must be installed onto a volume. Several
approaches are possible.

1. a new file can be created, written, made boatable, and installed; then the old boot file
may be deleted.

2. an existing boot file may be -overwritten with new contents; then MakeBootable must;
be applied again. I nstall"ol umeBootFile need not be reapplied.

The rust approach has the advantage that it never leaves the volume in an inconsistent
state. It has the disadvantage of requiring extra disk space during the time the old and
new boot files co-exist.

If the second approach is used, then before rewriting the old boot file's contents, it must be
made unbootable using the operation

TemporaryBootlng.MakeUnbootable: PROCEDURE [file: File.File,
firstPage: FUe.PageNumbeir+-O];

To understand the purpose of this operation, a little background is helpful. MakeBootable
writes an absolute disk address (called a link) in otherwise unused words of the label of
some boot file pages. The germ uses this information rather than the ordinary Pilot
volume file map structure b) read the file. If the size of the boot file changes when it is
being updated, then new physical disk pages may be allocated, invalidating some of the
old links. Thus, MakeUnb()otable is provided to remove the old links from a boot file
about to be updated. Afterward, MakeBootable must be used to put in the correct new
links.

8.3.7 Atomic saving and restoring 4)f Pilot instances

TemporaryBooting.BootLocation: TYPE. RECORD [
body: SELECT bootLocatiorl:* FROM
bootButton, none • > NULL,
physicalVolume • > [pvL.ocation: TemporaryBooting.PVlocation],
logicalVolume • > [volul11eLocation: TemporaryBooting.VolumeLocation],
file. > [fileLocation: Ten1poraryBooting.FileLocation],
ENDCASE];

TemporaryBooting.PVLocation: TYPE [11];

· Pilot Programmer's Manual

TemporaryBooting.VolumeLocation: TYPE [11];

TemporaryBootlng.FileLocation: TYPE [11];

8

A BootLocation describes a place that the state of a running Pilot may be saved in or
restored from. A bootButton BootLocation and a none BootLocation are always valid;
the other variants are only valid for limited periods of time as described below. The
conservative approach is never to store these other variants in a permanent location but to
recreate them just before using them (as parameters to Outloadlnload). Currently, it is
only possible to save state in a file BootLocation.

The following procedures return a BootLocation for the specified location. For each
operation, the circumstances under which the returned information becomes invalid are
noted.

TemporaryBooting.GetFileLocation: PROCEDURE [file: Flle.File, firstPage: File.PageNumber +- 0]
RETURNS [bootLocation: file TemporaryBootlng.BootLocation];

The returned BootLocation is valid so long as the specified file is neither deleted nor has
any of its attributes changed (including size and permanency). Scavenging may
invalidate the returned BootLocation if the file was damaged and the client sea venger
repaired the damage. The returned BootLocation is also valid only if the specified file has
been made bootable (via TemporaryBooting.MakeBootable) and is not subsequently made
unbootable.· GetFileLocation raises TemporaryBootlng.lnvalidParameters if the specified file
page is beyond the end of the file. It may also raise Flle.MissingPages, Flle.Unknown,
Volume.NotOnline, Volume.NotOpen, Volume.Unknown.

TemporaryBootlng.GetVolumeLocation: PROCEDURE [volume: VoIume.lD]
RETURNS [bootLocation: logicalVolume TemporaryBooting.BootLocation];

The returned BootLocation refers to the boot file installed on the logical volume. It is
valid as long as the boot file on the specified volume is not deleted. The comments for the
validity of returned BootLocatlons in GetFileLocation also apply here.
TemporaryBooting.lnvalidParameters is raised if the specified volume does not have a Pilot
boot file installed on it. Volume.Unknown, Volume.NeedsScavenging, and Volume.NotOnline
may also be raised.

TemporaryBootlng.GetPVLocation: PROCEDURE [volume: PhysicalVolume.lD]
RETURNS [bootLocation: physicalVolume TemporaryBooting.BootLocation];

The returned BootLocation refers to the boot file installed on the physical volume. It is
valid as long as the boot file on the specified physical volume is not deleted. The comments
for the validity of returned BootLocations in GetFileLocation also apply here.
TemporaryBootlng.lnvalidParameters is raised if the specified volume does not have a Pilot
boot file installed on it. GetPVlocation may also raise
PhysicaIVolume.Error[physicaIVolumeUnknown].

TemporaryBootlng.OutloadlnLoad: PROCEDURE [
outloadLocation: file TemporaryBooting.BootLocation,
i nloadLocation: TemporaryBooting.BootLocation.
pMicrocode. pGerm: LONG POINTER +-NIL,
countGerm: Environment.PageCount +- O.
switches: System.Switches +- System.defaultSwitches);

8-15

8

8-16

System Generation and Ildtialization

TemporaryBooting.OutLoadlnLllad is an atomic operation; that is, nothing happens between
the outload and inload. The state of the currently running system is saved on
outloadLocation. The system represented by inloadLocation is restored to a running
state. The microcode and/or germ may be changed by passing the appropriate information
in pMicrocode, pGerm and countGerm. If pMicrocode is defaulted, the microcode is not
changed. If pGerm is defaulted, the germ is not changed.

The switches are available to the inloaded Pilot. These are typically examined only when
the system being booted is not an outload file; for example p it was made by MakeBoot.
Note that the switches may lbe ignored ifinloadLocation is a bootButton BootLocation.

Upon return, the following s,equence has occurred:

1) Pilot has successfully performed the outload and has executed the inloaded system.

2) At a later time a client, possibly a different one, has inloaded the state of the origina.l
system; that is, the one! outloaded in 1).

9.

The Backstop

9.1 Implementing a backstop .. 9-1

9.1.1 Initializing a backstop log file .. 9-2

9.1.2 Control flow .. 9-2

9.1.3 Logging errors ... 9-3

9.2 Reading backstop log files .. 9-4

9

The Backstop

A backstop is a system for recording information about ailing software and hardware. For
product systems, it is installed instead of a debugger, and receives control in the same way
and at the same times that a debugger would.

When the backstop is invoked, it records the error and a restart message in a backstop log
file and reboots the debuggee system. The debuggee system may then read the restart
message from the backstop log and inform the user as to what has happened.

The interface Backstop supplies facilities for implementing a backstop. The interface
BackstopNub supplies facilities for reading entries from a log file written by a backstop.

The implementation modules are Backstoplmpl.bcd and BackstopNublmpl.bcd.
When these modules are used, the object files VMMaploglmpl.bcd, MemCacheNub.bcd,
and BSMemCache.bcd must also be bound in. In the following description, the term
backstop core refers to the facilities provided by these interfaces. The term backstop control
refers to the software built on top of it to implement a complete backstop system. Where
the meaning is unambiguous, the term backstop may be used for either or both.

9.1 Implementing a backstop

The facilities in the Backstop interface are used to implement a backstop. The backstop
core uses the Pilot logging facilities (Log) for recording the error information and the
restart message in the backstop log file.

The implementation module BackstopNublmpl.bcd exports the interface BackstopNub
and can be used for reading backstop logs. It uses the facilities of the Log and LogFile
interfaces, so clients of BackstopNub must ensure that these interfaces are exported to
BackstopNublmpl.

The following kinds of errors are reported to a backstop:

Address faults
Write protect faults
Uncaught signals and errors
Diz:ect calls: Runtime.CaliDebugger and Runtime.lnterrupt

Operations are provided to determine the type of error and to record sufficient information
in the log to later identify the source line in the procedure and module which caused the
error. Parameters accompanying signals, errors, and direct calls are also recorded.

9-1

9

9-2

The Backstop

Additional information about the currently running processes and their can stacks can
also be recorded.

9.1.1 Initializing a backstop log file

The following procedure is us,ed to initialize a backstop log file.

Backstop.CreateBackstopLog: J)ROCEDURE [size: CARDINAL, file:File.File,
firstPageNumber: File.PagElNumber +- 0];

file is initialized as a backstop log. firstPageNumber indicates the number of pages over
which the backstop should skip before it starts writing its data.

9.1.2 Control flow

A backstop receives control when its volume is booted or when its client tries to go to the
debugger. The backstop may be booted to create a new log file, read an existing log file, or
perform some other maintenance task. A boot switch should be used when booting a
backstop to perform the maintenance tasks so that the backstop control software can
determine why it received control. Whenever the backstop is booted, control enters the
backstop when Pilot calls PiiotClient.Run.

When the backstop is installed, it may raise the signals volume.lnsuffidentSpace or
Volume. RootOirectoryError in the process of creating its outload file.

A backstop must pass control to the debuggee system by calling Backstop.Proceed.

Backstop.Proceed: PROCEDURE [boot: volume.IO];

boot specifies the volume to be restarted. If boot is Volume.nuIllO, then the physical volume
is booted.

Backstop. VersionMismatch: SICiNAL;

VersionMismatch indicates that the version of Pilot in the backstop is different from that
in the product system, and that the backstop may not record meaningful error information.
This situation could occur if a new version of a debuggee system was installed without also
installing a compatible version of the backstop. VersionMismatch will be raised by the
first Backstop procedure called. that examines the client.

Note: The size of the volum~e containing the backstop bootfile can be calculated by adding
the following numbers:

size of backstop bootfile +
size of debuggee's outload file +
size of backstop's data +
size of Pilot's backing file +
size of Pilot's internal data structures

Virtual memory size and real memory size alter the outload size, backing file size,
and Pilot's internal structures.

Pilot Programmer's Manual 9

9.1.3 Logging errors

Procedures described in this section are used to write information into the current backstop
log file about the state of the product system when an error occurs. These are the only
proc~dures that may be used to write entries into a backstop log file; do not use
Log.PutBtock, etc.. The backstop control software may use LogFile.Restart to communicate
with the debuggee system. It may also use Logfile.GetLost, etc. to determine the state of the
current backstop log file. These procedures may raise the signal VersionMismatch.

Backstop.LogError: PROCEDURE []; ,

Backstop.GetError: PROCEDURE RETURNS (BackstopNub.ErrorType];

BackstopNub.ErrorType: TYPE = MACHINE DEPENDENT {

addressfault, writeprotectfault, signal, call, unused, interrupt, other, bug};

Backstop.NotLoggingError: ERROR:

Log Error records the type of error that caused the backstop to be invoked, along with the
information necessary to locate the error in the source code and any parameters of the
error. It also does a Log.SetRestart, recording the index of the log entry it wrote and the
current time. GetError returns the type of the current error. These operations and all
operations in this section can only be used when the backstop is invoked to process an
error. If they are called when not processing an error, they will raise NotLoggingError.

The following procedures can be used to enumerate all of the debuggee's active processes
and log the state of each one. The current process can also be identified.

Backstop.GetNextProcess:· PROCEDURE [process: Backstop.Process]
RETURNS (next: Backstop.Process];

Backstop.GetCurrentProcess: PROCEDURE RETURNS (process: Backstop.Process];

Backstop.GetFaultedProcess: PROCEDURE RETURNS [process: Backstop.Process1;

Backstop.LogProcess: PROCEDURE (process: Backstop.Process];

Backstop.nuIiProcess: READONLY Backstop.Process;

Backstop. Process : TYPE [1];

Backstop.NotAFault: ERROR;

GetNextProcess is a stateless enumerator that begins and ends with nullProcess. Processes
are returned in order beginning with the handle of the process that caused the error.
GetCurrentProcess returns the handle of the process that caused the error.
GetFaultedProcess returns the handle of the process that took the fault when the error type
is addressfault or writeprotectfault. If GetFaultedProcess is called for some other error
type, then the signal NotAFault is raised. LogProcess records information about the state
of its argument process in the current backstop log file.

Once a process is obtained, the following procedures can be used to enumerate the frames
in its call stack, starting with the most recently called procedure, and then to log the state
of each one.

Backstop.GetNextFrame: PROCEDURE [process: Backstop.Process, frame: Backstop.Frame]
RETURNS [next: Backstop.Frame];

9-3

9 The Backstop

Backstop.LogFrame: PROCEDURE [frame: Backstop.Frame];

Backstop.nuIlFrame: READONLY Backstop.Frame;

Backstop.Frame: TYPE [1];

Passing null Frame to GetNextFrame returns a handle for the local frame of the most
recently called procedure of the process. Passing a handle so obtained returns a handle for
the local frame of the next-rn.ost-recently-called procedure. Passing the handle of the root
frame of the process returns null Frame. Logframe records information about the state of
its argument frame in the current backstop log file.

9.2 Reading backstop log files

9-4

Facilities provided by the BclckstopNub interface are used to enumerate the entries of a
backstop log file and to read the information there. This might be done either by backstop
control or by the debuggee system. The backstop log file is implemented using the Pilot
logging facilities. Log.GetLos;t, etc., may be used to determine the state of the backstop log
file.

BackstopNub.GetNext: PROCEDURE [log: File.File. current: Log.lndex,

firstPageNumber: File.PagE!Number +- 0]
RETURNS (next: Log.1 ndex];

BackstopNub.GetSize: PROCEDU"E [log: File.File. current: Log.lndex,
firstPageNumber: File.Pagf!Number +- 0]
RETURNS [size: CARDINAL];

BackstopNub.GetLogEntry: PROCEDURE [log: File.File. current: Log.lndex.

place: BackstopNub.Handle, 'firstPageNumber: File.PageNumber ~ 01;

BackstopNub.NotErrorEntry: ERROR;

BackstopNub.Handle: LONG POINTER TO BackstopNub.ErrorEntry;

BackstopNub.ErrorEntry: TYPE = MACHINE DEPENDENT RECORD(
globaIFrame(O): BackstopNulo.GlobaIFrame.
pc(2): BackstopNub.PC.

time(3): System.GreenwichMeanTime,
options(1): SELECT error(S): BackstopNub.ErrorType FROM

signal = > [signal(6): BackstopNub.Signal.
msg(7): BackstopNub.SignaIMsg,
stk(8): ARRAY [O •• stacI<Size) OF UNSPECIFIED],

call = > [msg(6): StringB,ody],

unused = > [],
interrupt = > n,
addressfault = > [faultE!dProcess(6): BackstopNub.PSBlndex],
writeprotectfault = > [1:aultedProcess(6): BackstopNub.PSBlndex],
other = > [reason(6}: Bac:kstopNub.SwapReasonJ,
bug = > [bugType(6}: CARDINAL].

ENDCASE);

BackstopNub.GlobaIFrame: TYPE [2];

BackstopNub.PC: TYPE [1];

BackstopNub.PSBlndex: TYPE [11;

Pilot Programmer's Manual

BackstopNub.Signal: TYPE [2];

BackstopNub.SignaIMsg: TYPE [1];

BackstopNub.SwapReason: TYPE [1];

9

GetNext is a stateless enumerator that begins and ends with Log.nulllndex. Values are
returned in the order that they were written to' the file. GetSize returns the number of
words of the current entry. An entry of type ErrorEntry is copied into the storage provided
to GetLogEntry. firstPageNumber is the number of pages over which the backstop should
skip before it starts reading the data. If any of these procedures are called with an index
that does not correspond to a valid backstop log entry, then they raise NotErrorEntry.

No facilities are provided for reading process or frame entries.

9-5

9 The Backstop

9-6

10.

Online Diagnostics

10.1 Communication diagnostics .. 10-1

10.1.1 Testing Ethernet echo ... 10-2

10.1.2 Gathering Ethernet statistics ... ~. .. 10-6

10.1.3 Testing RS232C ... 10-8

10.1.4 Testing the Dialer ... 10-13

10.2 Bitmap Display, keyboard, and mouse diagnostics............. 10-14

10.3 Lear Siegler diagnostics .. 10-16

10.4 Floppy diagnostics .. 10-17

10.5 FloppyTape diagnostics .. 10-21

10

Online Diagnostics

10.1 Communication diagnostics

CommOnlineOiagnostics: DEFINITIONS .•. ;

The CommOnlineDiagnostics interface is used by clients of communications online diagnostics.
It includes procedures for running echo tests, gathering Ethernet statistics, and testing
RS232C and dialer facilities. All tests may be run on any host machine exporting the
communications online diagnostics server.

CommOnlineDiagnostics is implemented by two configurations: CommDiagClient. bed and
CommDiagServer • bed. CommDiagCl ien t provides the client access to the diagnostic
functions which are implemented in CommDiagServer. bed. Consequently, systems
that only require remote access to another's diagnostic capability need not include
CommDiagServer.bed.

Note: Pilot releases preceding Pilot 14.0 included a backward-compatibility feature of
CommOnUneDiagnostics. This feature has been removed; clients must now bind in
CommDiagCl ien t. bed in place ofsaekCompa t ibleDiag. bed.

CommOnlineDiagnostics.ServerOn: PROC;

Calling ServerOn causes the local machine to export the communications online
diagnostics. Any of the following diagnostics can then be run on the local machine from
any other machine.

CommOnlineDiagnostics.ServerOff: PROC;

Calling ServerOff causes the local machine to unexport the communications online
diagnostics. If a client attempts to run a diagnostic on a machine that is not exporting
communications online diagnostics, then the error CommError is raised with a reason of
nOSuchDiagnostic.

CommOnlineDiagnostics. Com m Error: ERROR [reason:commOnUneDiagnostics. Com m ErrorCode 1 ;

CommError is raised by any of the diagnostics when art error occurs in the
communications used to c~ll the diagnostics.

10-1

10

10-2

Online Diagnostics

CommOnlineOiagnostics.CommErrorCode: TYPE = MACHINE DEPENDENT {
transmissionMediumProlblem,
noAnswerOrBusy,
noRouteToSystemElemel'1tr
transportTimeout,
remoteSystem ElementN4:)tRespondi ng,
noCourierAtRemoteSite,
tooManyConnections,
invalidMessage
noSuchDiagnostic,
returnTi medOutr
call erAborted r
unknownErrorlnRemoteli»rocedure,
streamNotYours,
truncatedTransfer,
parameterlnconsistency.,
i nval idArguments,
protocol Mismatch,
duplicateProgramExport.
noSuchProg ramExportr
invalidHandle,
noError};

CommErrorCode dermes the type of fatal error that occurred, as follows.

transmissionMediumProblern
A problem with the physical device occurred.

noAnswerOrBusy
The remote end did not answer or was already busy. Applies to circuit-oriented
media only.

noRouteToSystemElement
The network on which the diagnostic is to be run is not reachable at this time.

remoteSystemElementNotRtesponding
The machine specified in the host parameter of the diagnostic is not responding.

tooManyConnections
The maximum nu:mber of courier connections has been reached.

noSuchDiagnostic
The remote service does not export the diagnostic specified.

The rest of the error codes a,re translations of the Courier error codes that derme Courier
communication errors. See the Courier section for more details.

10.1.1 Testing Ethernet echo

CommOnlineOiagnostics.EchoDiclgHandle:TYPE = LONG POINTER TO
CommOnlineOiagnostics.EchoDiagObject;

CommOnlineDiagnostics.EchoDiagObject: TYPE;

CommOnlineOiagnostics.StartEc!noUser: PROC [
targetSystemElement: System.NetworkAddress,
echoParams: CommOnlinE!Diagnostics.EchoParams,

Pilot Programmer's Manual

eventReporter: CommOnlineOiagnostics.EventReporter +- NIL,
host: System.NetworkAddress +- System.null NetworkAddress RETURNS
[dH: CommOnlineOiagnostics.EchoDiagHandle]

10

StartEchoUser starts the echo test. Multiple echo tests may be run on the same host.

targetSystemElement is the machine that is to be the echo ~erver. echoParams are the
client-specified parameters for the test to be run.

eventReporter is the client-supplied procedure that is called whenever an interesting
event occurs; for example, when an echo response is received or when some kind of error
occurs. If the client does not wish the kind of feedback provided by the event reporter, then
he should set the eventReporter to NIL or let it default to NIL.

host is the network address of the machine that is to be used as the echo user. The dH
returned from StartEchoUser is the handle to be used to retrieve the echo test results.

CommOnlineOiagnostics.GetEchoResults: PROC [
dH: CommOnlineOiagnostics.EchoDiagHandle;
host: System.NetworkAdd ress,
stop't: BOOLEAN]
RETURNS [totalsSinceStart: CommOnlineOiagnostics.EchoResults,
hist: CommOnlineOiagnostics.Histogram];

After starting the echo user, the client obtains the results of the test by calling
GetEchoResults. The test is implemented with a fCdead man's switch"; the client must call
GetEchoResults within the safetyTOlnMsecs that was passed in StartEchoUser for the test
to actively continue. Every echo test that was started with the StartEchoUser proc must
eventually be terminated by a call to GetEchoResults with stoplt set to TRUE, regardless of
whether the test is actually sending.

dH is the handle that identifies the test from which to retrieve the results. If the procedure
is called with stoptt equal to TRUE, then the test returns the results and then stollS. If the
client wishes to obtain intermediate results of an echo test, he may call GetEchoResults
with stoplt equal to FALSE; the current counters are returned, and the test continues to run.
This feature is useful for real-time feedback at time intervals chosen by the client. host is
the network address of the machine that is the echo user. totalsSinceStart are the actual
results of the echo user test. hist is a histogram of the timing between the sending of the
echo request and the receiving of the echo reply.

CommOnlineOiagnostics.EchoEvent: TYPE :.

{successr later timeoutr badDataGoodCRC. sizeChange, unexpected};

U sed with EventReporter for client feedback, EchoEvent defines the type of event that has
just occurred in the echo test.

success indicates that the echo request/response exchange was successfully completed.
late indicates the response to the echo request arrived late. timeout occurs when no
response is received for the echo request sent; the test times out and sends the next echo
request. badDataGoodCRC indicates that the echo response was received without a CRC
error, but some data bytes of the packet do not match the expected pattern. If the test is
varying the length the the data in the echo request, then an event of sizeChange occurs
when the size goes from the maximum back to the minimum. unexpected indicates that

10-3

10

10-4

Online Diagnostics

unsolicited packets were rec:eived on the echo socket before the echo test was actually
started.

CommOnlineDiagnostics.EchoParams: TYPE ::I MACHINE DEPENDENT RECORD [
totaICount(O): CARDINAL +- LAST(CARDINAL),
safetyTOlnMsecs(1): LONG CARDINAL 4-60000,
minPacketSizelnBytes(31~: CARDINAL 4-2,
maxPacketSizelnBytes(4): CARDINAL 4- 512,
wordContents(S): CommClntineDiagnostics.WordslnPacket +- incrWords,
constant(6): CARDINAL 4-125252B,
waitForResponse(7): BO()LEAN 4- TRUE,
minMsecsBetweenPackE!ts(8): CARDINAL 4-0,
checkContents(9): BOOLEAN 4- TRUE,
showMpCode(10): BOOU:AN 4-FALSE];

EchoParams is used by the client to define the parameters desired for the echo test.

totalCount indicates the nurnber of echo requestJresponse exchanges the client wishes the
test to execute. After total<:ount packets have been echoed, the test will wait in an idle
state for the client to terminate it and to retrieve the results via GetEchoResults. Of
course, the test may be terlninated at any time (Le., before totalCount packets have been
echoed) via GetEchoResults. If this number is set to 0, then the test runs until stopped by
GetEchoResults or by the "dE~ad man's" switch.

safetyTOlnMsecs is the timE!Out used in the test's "dead-man's switch." After starting the
echo test, GetEchoResults m.ust be called within this time, either to reset the timeout and
continue echoing or to stop the test and collect the results. If GetEchoResults is not called
within this time, then the test enters an idle state. It must still be terminated via
GetEchoResults.

minPacketSizelnBytes is uSEld to specify the minimum number of data bytes to send in the
echo request. maxPacketSizelnBytes is used to specify the maximum number of data bytes
to send in the echo request. If the specified size is larger then the maximum data bytes
allowed in an echo packet, then the packet is truncated to the maximum allowed. If
maxPacketSizelnBytes is equal to minPacketSizelnBytes, then the test sends constant
length. echo packets; otherwise, the size will range from the minimum specified to the
maximum.

wordContents specifies what the data words in the packet will contain. The data word
constant is set using the constant parameter. This parameter is used by the test only if
the wordContents parametf!r is aliConstant.

If waitForResponse is TRUE, then test does not send an echo request until the reply to the
previous request is received or until a timeout occurs.

minMsecsBetweenPackets :allows the client to set the approximate interval between echo
requests by specifying minl\"secsBetweenPackets.

checkContents allows the dient to have the test verify each word in the echo response
packet by specifying checkC:ontents.

showMpCode is currently lmimplemented.

Pilot Programmer's Manual 10

CommOnlineDiagnostics.EchoResults: TYPE = MACHINE DEPENDENT RECORD [
totalAttempts, successes,timeouts, late, unexpected: LONG CARDINAL,
avgDelaylnMsecs: LONG CARDINAL,
okButDribble, badAlignmentButOkCrc. packetTooLong. overrun, idlelnput,
tooManyCollisions, lateCollisions. underrun. stuckOutput: LONG CARDINAL];

Returned by the GetEchoResults procedure, EchoResults is the results of the Ethernet echo
test. It includes statistics obtained from the Ethernet during the test.

totalAttempts is the total number of echo packets that the echo user attempted to send,
regardless of the number of valid responses received. successes is the total number of
successful echo request/response exchanges. timeouts is the number of times the test sent
an echo request, and did not receive the response before timing out and sending the next
request. late is the number of echo responses that arrived at the echo user late.
unexpected is the number of unexpected packets that were received on the echo socket.
The avgDelaylnMsecs is the average time between successful echo request/response
exchanges.

okButDribble. badAlignmentButOkCrc. packetTooLong, overrun, idlefnput,
tooManyCollisions, lateCollisions, underrun. stuckOutput are the Ethernet statistics for
the number of packets found with the specified problem.

Note: These last statistics are only valid for echo tests using Ethernets and should be
ignored for other media.

CommOnlineDiagnostics.EtherDiagError: ERROR [
reason: CommOnlineDiagnostics.EtherErrorReason];

Raised by the Ethernet diagnostics, EtherDiagError indicates an error has occurred which
prohibits the test from starting or continuing. The reason parameter indicates what type
of fatal error has occurred.

CommOnlineOiagnostics.EtherErrorReason: TYPE 2 MACHINE DEPENDENT {
echoUserNotThere.
noMoreNets.
invalidHandle};

EtherErrorReason defines the fatal errors that can occur in the Ethernet echo test,
retrieving echo counters and the gathering of Ethernet statistics. If GetEchoResults is
called when no echo test is running on the host machine, then an error is raised with a
reason of echoUserNotThere. noMoreNets is raised by GetEthernetStats and indicates
that no net exists with the physicalOrder specified. invalidHandle indicates that the client
attempted to call GetEchoResults with a handle that is NIL or one that was deleted via
setting the stoplt boolean.

CommOnlineDiagnostics.EventReporter: TYPE = PROC [
event: CommOnlineDiagnostics.EchoEvent.
dH :CommOnlineDiagnostics.EchoDiagHandle];

Clients wishing to be notified at every echo event can implement an EventReporter
procedure and register it as an argument of CommOnlineDiagnostics.StartEchoUser. The
procedure will be called at each interesting event, as defined by the enumerated type
CommOnlineOiagnostics.EchoEvent. The type of interesting event is passed as an argument to
the client-implemented procedure, as is CommOnlineDiagnostics.EchoDiagHandle. The latter

10-5

10

10-6

Online Diagnostics

argument identifies the particular instance created by the call to
CommOnlineDiagnostics.StartE(:hoUser.

CommOnlineDiagnostics.Histogl~am: TYPE :a

LONG DESCRIPTOR FOR ARR,c, Y CARDINAL OFCommOnlineDiagnostics.Detail;

CommOnlineDiagnostics.Detail: TYPE = RECORD[msecw count: CARDINAL];

A Histogram is used for the data of the histogram that the echo test builds. Each element
of the histogram is a Detail.

msec is chosen by the echo test. msec for the current element of the histogram and msec
for the previous element spHcifies an interval in which echo packets complete a round trip.
The count is the number of packets that were sent and returned in the interval defined by
the value of msec and the va.l ue of msec for the previous element of the histogram.

CommOnlineDiagnostic5.WordslnPacket: TYPE :a MACHINE DEPENDENT {
aIlOs(O), aIl1s(1), incrWctrds(2), aIiConstant(3), dontCare(4)};

The data content of the echo request is defined by WordslnPacket. aliOs means the words
in the packet will contain zeros. all1 s means the words in the packet will contain ones.
incrWords means each word. of the packet will be incremented, starting with the fll'st word
equal to one. aliConstant means the words in the packet will be a client-specified
constant. dontCare means the client does not care what the data content of the packet is.

10.1.2 Gathering Ethernet statisti«~s

CommOnlineDiagnostics.EtherStatslnfo: TYPE =- ARRAY CommOnlineDiagnostics.Statslndices OF LONG
CARDINAL;

EtherStatslnfo is the statistics collected for the Ethernet since the last system restart.

CommOnlineDiagnostics.Statslndices: TYPE = {echoServerPkts, EchoServerBytes,
packetsRecv, wordsRet:v, packetsMissedw badRecvStatus, okButDribble, badCrc,
badAlignmentButOkCrc, crcAndBadAlignmentw packetToolongw overrun, idlefnput,
packetsSent, wordsSEmt, badSendStatus, tooManyCoHisions, lateCollisions,
underrun, stuckOutput, collO, call 1 , coll2, coll3, coll4, coliS, coli6, coll7, coll8, coll9,
co1l10, coll11, co1l12, co1l13, co1l14, co1l15, spare};

Each item in the Statslndice:5 represents the specified Ethernet statistic, as follows.

echoServerPkts
The number of pa(:kets that the machine has echoed.

EchoServerBytes
The number of bytes that the machine has echoed.

packetsRecv
The total number of packets that have been successfully received, including
echo packets.

wordsRecv
The total number of words that have been successfl,llly received, including
words in echo packets.

packets Missed
The number of packets that have been dropped for lack of buffering.

Pilot Programmer's Manual 10

bad RecvStatus
The total number of packets that were not successfully received.

okButDribble
The number of packets that were"successfully received, but had extra bits at the
end.

badCrc The number of packets that were received with bad CRCs.

badAlignmentButOkCrc
The number of packets that were received with correct CRCs but did not end.on
byte boundries.

crcAndBadAlignment
The number of packets that were received with bad CRCs and did not end on
byte boundries.

packetTooLong

overrun

idlelnput

The number of packets received that were longer than the maximum internet
size of576 bytes.

The microcode cannot take bits out of the input silo fast enough to keep up with
the bits coming in off the wire.

The number of times the machine did not receive input from the Ethernet for at
least 40 seconds.

packetsSent
The total number of packets that have been successfully sent, including echo
packets.

wordsSent
The total number of words sent, including those in echo packets.

badSendStatus
The total number of packets that were not successfully sent.

tooManyCollisions
The number of packets that were never sent after sixteen attempts failed
because of collisions.

lateCollisions
The number of packets that have had collisions occurring in the later part of the
packet (after bit 512).

underrun
The microcode cannot put bits into the output silo fast enough to maintain the
10 Mbit rate.

stuckOutput
The number of times the machine was unable to send a packet in 2.5 seconds.

colla. coll1 ~ coll2. coll3. coll4. coll5. coll6, coll7, coll8. coll9, co1l10. co1l11, co1l12,
coll13, co1l14. coll15

Each item indicates the number of packets that were sent after the specified
number of collisions. "

10-7

10

10-8

Online Diagnostics

CommOnlineOiagnostics.GetEthernetStats: PROC [
physicalOrder: r.ARDINAL ~~ 1,

host: System.NetworkAddress of- System.nuIINetworkAddress]
RETURNS [info: CommOnlineOiagnostics.EtherStatslnfo,
time: System.Greenwichl\~eanTime];

Calling GetEthernetStats obtains the Ethernet statistics since the last system restart
from the machine.

physicalOrder is the number of the device on the device chain; the primary network has a
physical order of one. host is the machine from which to obtain the statistics. stats
returns the current Ethernet statistics.

time is the time when the snapshot of the stats was taken. The client may make multiple
calls to GetEthernetStats aIlld use the times returned to calculate the number of echoed
packets in a certain time intE!rval.

CommOniineOiagnostics.GetEchcICounters: PROC [
host: System.NetworkAddress +- System.nuIINetworkAddress]
RETURNS [packets, bytes: LONG CARDINAL, time: System.GreenwichMeanTime1;

To obtain the number of packets which the echo server on the specified machine has
echcdd since the last systeDl restart, clients may call GetEchoCounters. The additional
parameter host in the RernoteCommDiags procedure is the network address of the
machine from which to collec:t the echo counters.

host is the network addresis of the machine from which to collect the echo counters.
packets is the number of echoed packets. bytes is the total number of bytes the server has
echoed.

time is the time the statistics were collected. The client may make multiple calls to
GetEchoCounters and use the times returned to calculate the number of echoed packets
within a certain time interval.

10.1.3 Testing RS232C

RS232C testing consists of :running a loopback test that exercises and verifies the data­
transmission/reception features of the RS232C channel. As clients are required to set
some of the channel characteristics, they should be familiar with the EIA RS232C
standard.

CommOnlineOiagnostics.StartRS:232CTest: PROC [
rs232cParams: CommOnlilrleOlagnostics.RS232CParams,
setDiagnosticLi ne: ComrnOnlineDiagnostlcs.SetDiagnosticLi ne of- NIL,
writeMsg: CommOnlineDiclgnostics.WriteMsg +-NIL,
modemChange: CommOrllineDlagnostics.ModemChange of- NIL,
host: System. NetworkAdd ressof-System.nul I NetworkAdd ress]
RETURNS [dH: CommOnlinel)iagnostics.RS232CHandle];

The test is' run by calling StartRS232CTest and requires that a loopback plug be installed
on the RS232C cable. The parameters specified by the client in the StartRS232CTest test
are concerned with defining the transmission. medium usage and the session
characteristics.

Pilot Programmer's Manual 10

Multiple RS232C tests may be run on the same machine, but only one per port. Calling
StartRS232CTest on an already active port results in the error RS232CDiagError with the
code channelinUse.

setDiagnosticLine is used only by CIU diagnostic implementors for resetting the port for
running the loopback test. Other clients should set it to NIL.

writeMsg is a client-supplied procedure for realtime feedback, called after a frame has
been sent and received through the loopback. Clients who are not interested in this kind
of feedback should set this parameter to NIL.

modemChange is a client-supplied procedure for realtime feedback, called whenever any
of the ModemSignals changes state. Clients who are not interested in this state change
should set this parameter to NIL.

host is the network address of the machine on which to run the diagnostic.

dH is handle returned from StartRS232CTest and passed to the GetRS232CResuits
procedure; it provides support for RS232C diagnostics on the multiport board. Clients
must use the handle identifying a particular test to obtain the test results.

CommOnlineoiagnostics.GetRS232CResults: PROC [
dH: CommOnUneOiagnostics.RS232CHandle,
stoplt: BOOLEAN,
host: System.NetworkAddress of- System.null NetworkAddress]
RETURNS [counters: CommOnlineoiagnostics.CountType];

After starting the loopback test, the client obtains the results of the test by calling
GetRS232CResults. The test is implemented with a t'dead man's switch"; the client must
call GetRS232CResuits with safetyTOlnMsecs that was passed to the StartRS232CTest
procedure in order for the test to continue. Clients must eventually terminate the loopback
test by calling GetRS232CResuits with stoplt equal to true.

If the procedure is called with stoplt equal to TRUE, then the test returns the results and
terminates. If the client wishes to obtain intermediate results of an echo test, he may call
GetRS232CResuits with stoplt equal to FALSE; the current counters are returned, and the
loopback test continues to run. host is the network address of the machine on which to run
the loop back test. counters is the current results of the loop back test.

CommOnlineOiagnostics.RS232CDiagError: ERROR [
reason: CommOnlineOiagnostics.RS232CErrorReason1;

The error RS232CDiagError is raised whenever a fatal error occurs during the test. The
client should do the necessary clean up and end the test process.

CommOnlineOiagnostics.RS232CErrorReason: TYPE = {aborted, noHardware, nOSuchLine,
channellnUse, unimplementedFeature, invalidParameter, invalidHandle};

RS232CErrorReason defines the reasons for the errors raised in RS232CDiagError.

aborted The channel has been aborted.

noHardware
No RS232C hardware is present or the RS232C channel code has not been
started.

10-9

10

10-10

Online Diagnostics

nOSuehLine
A bad RS232C linc~ number has been specified by the client.

ehannelinUse
Some other proc1ess was already using the RS232C port when the client
attempted to start the RS232C test.

uni mplementedFeature
U sed internally and should never be observed by the client.

invalidParameter
An invalid param1eter was passed to the RS232C test.

i nval idHandle
The client called GetRS232CResuits with a NIL handle or a handle that was
deleted viasettin~~ the stoplt boolean.

CommOnUneOiagnostics.CountT~fpe: TYPE :II MACHINE DEPENDENT RECORD [sendOk, bytes Sent,
reeOk, bytesRee, devieeError, dataLost, xmitErrors, badSeq, missing, sendErrors,
recErrors: LONG CARDINAL];

CountType contains the counters used in StartRS232CTest. At the end of the test these
counters are the results. 1'he client may also check these counters during the test by
caning GetRS232CResuits with stoplt equal to FALSE.

sendOk is a counter that reflects the number of successfully sent frames. bytesSent is the
current number of bytes that have been sent. reeOk reflects the number of successfully
received frames. bytesRee is the current number of bytes that have been sent.

deviceError indicates the number of times data was received when no receive operation
was outstanding. data Lost indicates the number of times that a incoming frame was too
large to fit in the input buffor. xmitErrors indicates the number of frames that have been
received with some sort of transmission error; for example, checksum error, parity error.
badSeq indicates the nUlnber of times the receiver detected a frame with an
unrecognizable sequence number. Generally this means that a frame has been lost or
garbled during transmission. missing indicates the number of times the receiver has
detected a missing frame from looking at the sequence numbers. send Errors indicates the
total number offrames that have not been successfully sent. recErrors indicates the total
number offrames that have not been successfully received.

CommOnUneOiagnostics.Lengthltange: TYPE • RECORD [
low, high: [O •• CommOnlinc!Diagnostics.maxData)];

dermes the range of data length (in bytes) in the frames.

CommOnlineOiagnostics.maxData: CARDINAL = 1000;

maxData is the maximum number of bytes of data in a frame.

CommOnline~iagnostics.ModemChange: TYPE = PROC [
modemSignal :CommOnlineOiagnostics.ModemSignal,
state: BOOLEAN, dH: ComnrtOnlineOiagnostics.RS232CDiagHandle]; .

CommOnlineDiagnostics.ModemSignal: TYPE = {dataSetReady, cfearToSend,
carrierOetect, ringlndiccltor, ringHeard};

Pilot Programmer's Manual 10

ModemChange is a procedure type used by the client when he wishes to be notified of a
change in the state of the signals dermed in ModemSignal.

modemSignal is the signal of interest. The possible values of modemSignal correspond to
the circuits described in EIA Standard RS232C. The state of that circuit is conveyed in the
parameter state. A value of FALSE corresponds to a low EIA value, a value of TRUE to a high.
dH is the handle identifying the particular test.

CommOnlineDiagnostics.PatternType: TYPE = (zero, ones, oneZeroes, constant, bytelncr};

The Pattern Type dermes the contents of the data in the frames being sent. zero indicates
the contents will be all zeros. ones indicates the contents will be all ones. oneZeroes
indicates the contents will be an alternating bit pattern (l010 ...). constant indicates the
test will use a client-supplied constant in each byte of data. bytelncr indicates the test will
increment each byte of data in the frame, starting with a value of one.

CommOnlineOiagnostics.RS232CParams: TYPE:: MACHINE DEPENDENT RECORD [
testCount(O): CARDINAL +- LAsT[LONG CARDINAL],
safetyTOlnMsecs(1): LONG CARDINAL +-6000,

lineSpeed(3): Rs232c.LineSpeed,
correspondent(4): RS232c.Correspondent,
lineType(S): RS232c.LineType,
IineNumber(6): CARDINAL,
parity(7): RS232c.Parity,
charLength(8): RS232c.CharLength,
pattern(9): CommOnlineDiagnostics.Pattern Type,
constant(10): CARDINAL 0,

dataLengths(11): CommOnlineDlagnostics.LengthRange
clockSource(13):RS232C.clockSource,
waitForDSR(14): BOOLEAN TRUE];

RS232CParams dermes the parameters passed to the RS232C test, as follows.

testCount
The number of frames to send/receive. If this number is set to 0, then the test
runs actively loopback until stopped by the GetRS232CResuits or by the "dead
man's" switch.

safetyTOlnMsecs

liineSpeed

The timeout used in the test's t'deadman's switch." After starting the RS232C
test by calling StartRS232CTest, GetRS232CResuits must be called within this
time, either to reset the timeout and continue echoing or to stop the test and
collect the results.

The speed of the line. Should agree with the setting of the modem.

correspondent
The type of system the test is to ucorrespond" with. The line type determines
what the correspondent should be. For a line type of asynchronous, use ttyHost.
For bit synchronous, use nsSystemElement. For byte synchronous, use system6.

lineType The type of line the channel will use.

10-11

10

10-12

Online Diagnostics

lineNumber

parity

The number of the RS232C line. Should normally be set to O. Other values
apply only to processors with multiple RS232C lines.

The parity to use during the test.

charLength
The character data length, (excluding parity, stop and start bits). Should agree
with the setting on the modem.

pattern The contents for each byte of data.

constant What the data constant should be if the client has specified a pattern of
constant.

data Lengths
The range of data lengths to send in the frames. If the low and high are equal,
then test sends constant length data. If they are not equal, then the test first
sends the frame of the right length, decrementing the length with each
subsequent send.

clockSource
Determines whether the clock will be provided by the DTE (internal) or by the
modem (external).

waitForDSR
Some modems in the field do not raise DSR. waitForDSR enables users of such
modems to tell the test to start even if DSR has not come up.

COmmOnlineDiagnostics.RS232C1estMessage: TYPE :I MACHINE DEPENDENT {
looped, sendError, recEr:ror};

The RS232CTestMessage is passed to the client-supplied procedure that is called every
time a frame is sent or received. The message indicates the status of the transfer.

looped reports a successfult send/receive sequence. sendError reports an unsuccessful
send. recError reports an unsuccessful receive.

CommOnlineDiagnostics.SetDiagnosticLine: TYPE :I PROC (IineNumber: CARDINAL, dH:
CommOnlineDiagnostics.RS2:32CDiagHandle]
RETURNS (IineSet: BOOLEA~I];

SetDiagnosticLine is a tYPf! used by the CIU implementors to reset the port when
diagnostics are started.

IineNumber is the line to set:; lineSet indicates whether the reset was successful. dH is the
handle identifying the particular test.

CommOnlineDiagnostics.WriteM~5g: TYPE :I PROC [
msg; CommOnlineDiagnostic5.RS232CT estMessage,
dH:CommOnlineDiagnostics.RS232CDiagHandle];

WriteMsg is a procedure type used by clients when they wish real-time feedback during
the RS232C test. .

msg indicates the type of €lVent that just occurred. dH is the handle .identifying the
particular test.

Pilot Programmer's Manual 10

10.1.4 Testing the Dialer

Dialer testing verifies correct operation of the RS366 hardware and an external auto­
dialer. The RS366 cable must be connected to the auto-dialer.

CommOnlineDiagnostics.DialupTest: PROC [
rs232ClineNumber: CARDINAL,
phoneNumber: LONG POINTER TO Dialup.Number.dialerType:Oialup.DialerType.
host: System.NetworkAddress ... System.nuliNetworkAddress]
RETURNS [outcome: CommOnlineDiagnostics.DialupOutcome];

DialupTest is called to test the dialer. The test retries the dial a maximum of three times
before returning to the client. The additional parameter host in the RemoteCommDiags
procedure specifies the network address of the machine on which to run the test.

rs232ClineNumber specifies the line number to be used and should be set to O. Other
values apply only to processors with multiple RS232C lines.

phoneNumber is the number to be used to call the foreign device.

Note: The dialup implementation attaches no semantics to any of the bit patterns
specified in phoneNumber, simply passing them to the dial hardware. Clients and/or
their users must determine what the special characters (such as EON and SEP) are for
their particular hardware and pass those characters to the dialup test.

dialerType is the type of dialing equipment being used. outcome is the result of the dialup
test.

CommOnlineDlagnostics.DialupOutcome: TYPE :II {

success, failure, aborted, formatError, transmission Error, dataLineOccupied,
dialerNotPresent, dialingTimeout, transferTimeout. otherError, noHardware,
nOSuchLine. channelinUse, unimplementedFeature. invalidParamater};

DialupOutcome defines the result of the DialupTest, as follows.

success The dialing operation was successful; that is, all the digits in the number were
dialed, and control was successfully transferred to the modem.

failure The dialing operation resulted in no answer, a busy signal, or the telephone was
answered by something other than a compatible modem.

aborted Not implemented.

formatError
The parameter phoneNumber was formatted incorrectly.

transmission Error
The transfer of the dialing information to the dialing hardware did not succeed.
This outcome indicates a hardware problem.

dataLi neOccupied
The telephone line to which the dialing hardware is connected is off-hook.

dialerNotPresent
Working dialer hardware is lacking.

dialingTimeout
The dialer did not respond to a request during dialing. This outcome is a
hardware problem.

10-13

10 Online Diagnostics

transferTi meout
No meaningful rE~ply was received from the dialer following dialing the last
digit. This outcOIne indicates a hardware problem.

otherError
An unknown, unexpected error occurred.

noHardware, nOSuchLine, channelinUse, unimplementedFeature. invalidParamater
These errors are u.sed internally and should never be observed by the client.

10.2 Bitmap display, keyboard, a:nd mouse diagnostics

10-14

OnlineDiagnostics: DEFINITIOINS ... ;

The OnlineDiagnostics intelrface Is used by clients of the bitmap display, keyboard, and
mouse online diagnostics. It includes procedures for running the bitmap display
diagnostics, the keyboard diagnostics, and the mouse diagnostics.

OnlineDiagnostics.Background: TYPE .. {white, black};

Background defines the background on the bitmap display.

OnlineDiagnostics.CursorArray~ TYPE :I ARRAY [0 .. 16] OF WORD;

CursorArray defines the si2:e and bit pattern of the cursor for display on the bitmap
display.

OnlineDlagnostlcs.Coordinate: 'TYPE .. MACHINE DEPENDENT RECORD [x, y: INTEGER];

The bitmap display is addrlessed by x-y coordinates. The coordinate origin (0, 0) is the
uppermost, leftmost pixel of the display; x increases to the right and y increases
downward.

OnlineDiagnostics.KeyboardType: TYPE .. {american, european, japanese};

KeyboardType defines the type of keyboard being used.

OnlineDlagnostics.KeyboardAnd Mouse Test: PROCEDURE [
keyboardType: OnlineDiagnostics. KeyboardType,
screenHeight: CARDINAL [0 .. 32767].
screenWidth: CARDINAL [0 .• 32767].
SetBackground: PROC [bac:kground: OnlineDiagnostics.Background].
SetBorder: PROC [oddPairs., evenPairs: [0 .. 377811.
GetMousePosition: PROC ftETURNS [OnlineDiagnostics.Coordi nate].
SetMousePosition: PROC [newMousePosition: OnlineDiagnostics.Coordi nate].
SetCursorPattern: PROC [cursorArray: OnlineDiagnostics.CursorArray],
SetCursorPosition: PROC ['1ewCu rsorPosition: OnlineDiagnostics. Coord i nate],
keyboard: LONG POINTER,
Beep: PRoc [duration: CARDINAL],
ClearDisplay: PROC,
BlackenScreen: PROC [x, y" width, height: CARDINAL],
InvertScreen: PROC [x, y, width, height: CARDINAL],
WaitForKeyTransition: PROC];

Pilot Programmer's Manual 10

The KeyboardAndMouseTest procedure is used to run keyboard and mouse diagnostics
using a bitmap display.

slcreenHeight defines the number of horizontal lines on the bitmap display and is
equivalent to UserTerminal.SCreenHeight. screenWidth defines the number of horizontal
dots across the bitmap display and is equivalent to UserTerminal.screenWidth.

SetBackground [background: ...] sets the bitmap display background to either white or
black and is equivalent to UserTerminal.SetBackground. If the display has a border, then
cHents may set the pattern to be displayed in the border by calling SetBorder; the
procedure is equivalent to UserTerminal.SetBorder.

GetMousePosition[] gets the x and y values of the mouse position. SetMousePosition
modifies the x and y values of the mouse position and is equivalent to
UserTerminal. SetMousePosition.

SetCursorPattern sets up the bit pattern of the cursor for display on the bitmap display
and is equivalent to UserTerminal.SetCursorPattern. SetCursorPosition sets the position of
the cursor on the bitmap display and is equivalent to UserTerminat.SetCursorPosition.

keyboard is equivalent to UserTerminal.keyboard.

Beep emits a tone from the speaker for the given duration of time. Duration is in
milliseconds. Beep is equivalent to UserTerminal.Beep.

CJearDisplay turns the entire screen white. BlackenScreen turns the screen black for the
given width and height, starting at the x/y coordinates. InvertScreen inverts the screen
for the given width and height, starting at the x/y coordinates.

WaitForKeyTransition waits for an entry from the keyboard before returning (not
presently used in Star).

OnlineOiagnostics.NextAction: TYPE = {nextPattern, invertPattern, quit};

NextAction defines the next action to be taken. The procedure is used with the bitmap
display alignment pattern.

OnlineOiagnostics.LFDisplayTest: PROCEDURE [
screen Height: CARDINAL [0 .. 32767],
screenWidth: CARDINAL [0 •. 32767],
SetBackground: PROC [background: OnlineDiagnostics.Background],
SetBorder: PRoe [oddPairs, evenPairs: [O •• 377B]],
GetNextAction: PRoe RETURNS [OnlineOiagnostics.NextAction),
ClearDisplay: PROer

BlackenScreen: PRoe [x, y, width, height: CARDINAL],
FiliScreenWithObject: PRoe [p: LONG POINTER TO ARRAY [0 .. 16) OF WORD]];

LFDisplayTest displays test patterns on the display. The procedure can be used as a bitmap
display alignment tool.

screenHeight defines the number of horizontal lines on the bitmap display and is
equivalent. to UserTerminal.screenHeight. screenWidth defines the number of horizontal
dots across the bitmap display and is equivalent to UserTerminal.scre.enWidth.

SetBackground sets the bitmap display background to either white or black and is
equivalent to userTerminal.SetBackground. If the display has a border, then clients may set

10-15

10 Online Diagnostics

the pattern to be displayed in the border by calling SetBorder; the procedure is equivalent
to UserTerminal. SetBorder.

GetNextAction gets the nl;!xt action through keyboard input from the user. See
OnlineDiagnostics.NextAction above.

ClearDisplay turns the entirle screen white. BlackenScreen turns the- screen black for the
given width and height stalt"ting at the x/y coordinates. FiIIScreenWithObject fills the
entire screen with the bit pattern in the I6-word array.

10.3 Lear Siegler diagnostics

OnlineDiagnostics: DEFINITIONS ••• ;

10-16

The OnlineDiagnostics interface is used by clients of the Lear Siegler Online Diagnostics.
It includes procedures for running the Lear Siegler diagnostic.

OnUneDiagnostics.LSMessage: TYPE • {kTermAdj, kTypeCharFiII, kCTLC, kFiIIScreen,
kTypeXHair, kEndAdj, kTerrnTest, kTestKey, kCTLStop, kLineFeed, kReturnKey, kLetter,
kAndCTL. kEscape, kSpBnr, kAndShift, kShColon, kShSemiColon, kTypeComma.
kHyphen, kTypePeriod, kVir'gule, kNumeral, kKey, kLearColon, kSemiColon, kShComma,
kShHyphen, kShPeriod, kShVirgule, kAtSign, kLeftBracket, kBackSlash, kRightBracket,
kCaret, kBreak, kShAt, kShLeftBracket, kShBackSlash. kShRightBracket, kShCaret,
kShBreak, kUnknown};

LSMessage defines the message displayed on the screen when the given character is
entered from the keyboard.

OnlineDlagnostics.LSAdjust: PROCEDURE [
cancel Signal : SIGNAL,
GetMesaChar: PROC RETURNS [CHARACTER],
PutCR: PRoe,
PutMessage: PROC [message: OnlineOiagnostics.LSMessage, char: CHARACTER OC],
PutMesaChar: PROC [char: CHARACTER]];

LSAdjust allows the user to adjust the Lear Siegler display. cancelSignal is raised when
the user enters a (Control C' on the keyboard and is equivalent to NSCommand.CanceL
GetMesaChar gets the character entered on the keyboard by the user and is equivalent to
NSCommand.GetMesaChar. PutCR outputs a carriage return to the Lear Siegler display and
is equivalent to NSCommandJ)utCR[TRUE1. PutMessage displays the given message on the
Lear Siegler display and is equivalent to NSCommand.PutLine.

Note: The default for char i:; used for the Lear Siegler diagnostic.

PutMesaChar outputs a character to the Lear Siegler display and is equivalent to
NSCommand.PutMesaChar.

OnlineDiagnostics.LSTest: PROCJ:DURE [
cancelSignal: SIGNAL,
GetMesaChar: PROC RETURNS [CHARACTER],
PutMessage: PROC [message: OnlineOiagnostics. LSMessage, char: CHARACTER OC]];

LSTest allows the user'to test the Lear Siegler display or equivalen-t.

cancel Signal is raised when the user enters a (Control C' on the keyboard and is equivalent
to NSCommand.Cancel. GetlVlesaChar gets the character entered on the keyboard by the

Pilot Programmer's Manual 10

user and is equivalent to NSCommand.GetMesaChar. PutMessage displays the given
Illessage on the Lear Siegler display and is equivalent to NSCommand.PutLine.

Note: For the diagnostic, the default for char is taken.

10.4 Floppy diagnostics

OnlineDiagnostics: DEFINITIONS •.. ;

The OnlineDiagnostics interface is used by clients of the Floppy Online Diagnostics. It
includes procedures for running the Floppy diagnostic.

OnlineDiagnostics.FloppyMessage: TYPE=- {

cfirst. ccalieSe. cCloseWn, cEnsureReady. cExit, clnsDiffeleanDisk. clnsertCleanDisk.
dnsertDiagDisk. clnsertWriteable, cNBNotReady, cOtherDiskErr, cRemoveCleanDisk,
clRemoveDiskette, clast,

hFirst, nBusy, hExpec1, hExpec2m, hCRe1, hCRC2, hCReerr, hDelSector, hDiskChng,
hErrDetc. hGoodComp, hHead, hHeadAddr, hlllglStat, hlncrtLngth, hObser1, hObser2.
hReadHead, hReadSector, hReadStat, hReady. hRecal, hRecalErr, hSector, hSectorAddr,
hSectorCntErr, hSectorLgth, nSeekErr, hTimeExc. hTrack, hTrackO, hTrackAddr,
hTwoSide, hWriteDelSector, hWritePro, hWriteSector, nLast,

iFirst. iBadContext, iBadLabel, iBadSector, iBadTrackO, iCheckPanel, iCIERec, iCleanDone,
iCleanPr.ogress, iErrDet, iErrNoCRCErr, iExerWarning. iFormDone, iFormProgress,
iFormWarning, iHardErr, iHeadDataErr. ilnsertDiagDisk,. ilnsertFormDisk, iOneSided,
iRunStdTest, iSoftErr. iTnx, iTwoSided, iUnitNotReady. iVerDataErr, iLast,

tFirst, tByteCnt, tCIERH, tCIERS, tCIEVer, tCIEWDS, tCIEWS, tHeadDataErr, tHeadDisp,
tHeadErrDisp, tSectorDisp, tStatDisp, tSummErrLog, tVerDataErr, tLast,

yFirst, yDispSects, yDispExpObsData, yDoorJustOpened, yDoorOpenNow,
yDoorOpenShut. ylsltDiagDisk, ylsltWrProt. yStiliContinue, yStiliSure, yLast};

FloppyMessage def"mes the message keys used by the Floppy diagnostic.

OnlineDiagnostlcs.FloppyReturn: TYPE = {
deviceNotReady, notDiagDiskette, floppyFai I ure,noErrorFound};

FloppyReturn def"mes the type of returns from some of the Floppy Diagnostics tests.
dleviceNotReady is returned when the floppy drive is not ready and therefore cannot be
tested. notDiagDiskette is returned when the floppy diskette is not a diagnostics diskette
and therefore cannot be tested because it cannot be written on. floppyFailure is returned
when a floppy hardware error is detected. noErrorFound is returned when the test runs
successfully.

OnlineDiagnostics.Field: TYPE = RECORD [
fieldN~me: OnlineDiagnostics.FloppyMessage, fieldValue: UNSPECIFIED];

Field is used for Floppy Diagnostics status display.

10-17

10

10-18

Online Diagnostics

OnlineOiagnostics.FieldDataType: TYPE = {
boolean. cardinal, charaicter, hexadecimal, hexbyte, integer, octal, string};

FieldDataType defines the various types of data displayed by the Floppy Diagnostics.

OnlineDiagnostics. FloppyWhatl~oDoNext: TYPE = {
continueToNextError, lo,opOnThisError, displayStuff, exit};

FloppyWhatToDoNext defines the operator options for running Floppy Diagnostics
command files.

-OnlineDiagnostics.SingleDoublE!! TYPE = {single, double};

SingleDouble defines the nUlmber of sides and data density of a floppy diskette.

OnlineDiagnostics.Sectorlength: TYPE = {one28, twoS6, five12, one024};

Sectorlength defines the number of bytes in a sector of a floppy diskette. It is used in
Floppy Diagnostics command. files.

OnlineDiagnostics.ErrorHandling: TYPE :I {

nOChecking, stopOnErrclr, loopOnError, continueOnError};

ErrorHandling defines the operator options for the handling of floppy errors in the Floppy
Diagnostics command files.

OnlineOiagnostics.DisplayFields,Proc: PROCEDURE [
fields: DESCRIPTOR FORARlllAY OF Field,
title: OnlineDiagnostics.FloppyMessage +- tFi rst"
fieldType: OnlineDiagnostks.FieldData Type,
numberOfColumns: CARlllNAL +- 3];

DisplayfieldsProc displays :~loppy Diagnostics status. fields defines the names of the
status bits and their boolean values. title defines the title of the display.fieldType
defines the type of data being displayed. numberOfColumns defines the number of
columns in which to display the data.

OnlineDiagnostics.DisplayTabfeProc: PROCEDURE [
headers: DESCRIPTOR FOR J'RRAY OF OnlineDiagnostics.FloppyMessage,
rowNames: DESCRIPTORF40RARRAY OF OnlineDlagnostics.FloppyMessage,
val ues: DESCRIPTOR FOR ARRAY OF DESCRIPTOR FOR ARRA Y OF UNSPECIFIED,
title: OnlineDiagnostics.FlolppyMessage+- tFirst,
fiefdType: OnlineDiagnostics.FieldDataType];

DisplayTableProc displays an error/summary log. headers defines the name of each
column in the error/summary log. rowNames defines the name of each entry in the
error/summary log. title defines the title of the error/summary log. fieldType defines the
type of data being displayed.

Pilot Programmer's Manual

OntineDiagnostics.DisplayNumberedTableProc: PROCEDURE [
values: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED.
rowNameHeader: OnlineDiagnostics.FloppyMessage+o- tFi rst.
title: OnlineDiagnostics.FloppyMessage+o- tFirst.
numOfColumns: CARDINAL.
startNum: INTEGER.
fieldType: OnlineDiagnostics.FieldDataType];

10

DisplayNumberedTableProc displays a table of numbers plus the number of entries
displayed. values defines the actual numbers to be displayed. rowNameHeader defmes
the name of the entries displayed; for example, Byte Count. title defines the title of the
table. numOfColumns defines the number of columns displayed. startNum defines the
rlrst of the number of entries displayed. fieldType defines the type of numbers being
displayed.

OnlineDlagnostics.PutMessageProc: PROCEDURE [msg: OnlineDiagnostics.FI oppyMessage];

PutMessageProc displays the given message to the operator.

OnlineDiagnostics.GetConfirmationProc:PROCEDURE [
msg: OnUneOiagnostics.FloppyMessage];

GetConfirmationProc displays the given message to the operator and requests
confirmation.

Online Diagnostics. YesOrNo: TYPE. {yes. no};

OnlineDiagnostics.GetYesOrNoProc: PROCEDURE [
msg: OnlineDiagnostics.FloppyMessage] RETURNS [OnlineDiagnostics. YesOrNo];

GetYesOrNoProc displays a message to the operator and requests a yes or no response.

OnlineDiagnostics.GetFI oppyChoi ceProc: PROCEDURE
RETURNS [OnlineDiagnostics. FI oppyWhatToDoNext];

GetFloppyChoiceProc gets an answer from the operator on how to proceed after an error
has occurred in the command file.

OnlineDiagnostics.FloppyExerciser: PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFieldsProc.
displayTable: OnlineDiagnostics.DisplayTableProc.
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc.
putMessage: OnlineDiagnostics.PutMessageProc.
getConfi rmation: OnlineOlagnostics. GetConfi rmationProc.
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc.
getFtoppyChoice: Online Diagnostics. GetFI oppyChoiceProc];

FloppyExerciser thoroughly exercises the floppy disk hardware. See arguments described
above. .

10-19

10

10-20

Online Diagnostics

OnlineDlagnostics.FloppyStandardTest:PROCEDURE [
displayFields: OnlineDiagllostics.DisplayFieldsProc.
displayTable: OnlineDiagrlostics. Dis playTa bleProc,
displayNumberedTable:: OnlineDlagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfi rmation: Onlinelliagnostics. GetConfi rmationProc,
getVesOrNo: OnlineDiagnostics. GetYesOrNoProc,
getFloppyChoice: OnlinetOiagnostics.GetFloppyChoiceProc]

RETURNS [floppy Return : OnlineDiagnostics.FloppyReturn];

FloppyStandardTest runs ,a nondestructive floppy disk diagnostic. See arguments
described above.

OnlineDiagnostics.FloppyCJeanIReadWriteHeads: PROCEDURE [
displayFi elds: OnlineDiagl1ostics.DisplayFi eldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable~ OniineOiagnostics.DisplayNumberedTa.bleProc,
putMessage: OnlineOiagnostics.PutMessageProc.
getConfi rmation: Onlinel)iagnostics. GetConfi rmationProc.
getYesOrNo: Online Diagnostics. GetYesOrNoProc,
getFloppyChoice: Onlineftliagnostics.GetFloppyChoiceProc)

RETURNS [floppy Return: OnlineOiagnostics.FloppyReturn];

FloppyCleanReadWriteHeads cleans the read/write heads of the floppy disk drive. See
arguments described above.

OntineDiagnostics.FloppyFormcitDiskette: PROCEDURE [
displayFields: OnlineDiag;r1ostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable:: OnUneDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfi rmati on: Onlinelliagnostics. GetConfi rmationProc,
getVesOrNo: OnlineDiagnostics. GetYesOrNoProc,
getFloppyChoi ce: OnlineDiagnostics. GetFloppyChoi ceProc];

FioppyFormatDiskette formats a diskette using the IBM format. See arguments described
above.

OnlineOiagnostics.FloppyCommandFileTest:PROCEDURE [
density: OnlineDiagnostics"SingleDouble,
sides: OnlineOiagnostics.Si ngleDouble,
sectorsPerTrack: CARDINj~l [8 •• 26],
sectorLength: OnlineDiagnostics.SectorLength,
errorHandling: OnlineDia,gnostics.ErrorHandling,
cmdFile: LONG STRING,
displayFields: OnlineDiaglr1ostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfi rmation: OnlineDiagnostics. GetConfi rmationProc,

Pilot Programmer's Manual

getYesOrNo: OnlineDiagnostics. GetYesOrNoProcr
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc];

10

FloppyCommandFileTest executes an operator-generated floppy command file.
sectorsPerTrack indicates the number of sectors per track that are to be used. cmdFile are
the Floppy commands that are to be executed. For the remaining arguments, see the
descriptions above.

OlnlineDiagnostics.FloppyDisplayErrorLog:PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFi eldsProc,
displayTable: OnlineDiagnostics.DisplayTableProcr
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfi rmati on: Online Diagnostics. GetConfi rmationProcr
getYesOrNo: OnlineDiagnostics. GetYesOrNoProc,
getFloppyChoice: Online Diagnostics. GetFI oppyChoiceProc];

FloppyOisplayErrorLog displays a summary/error log of the prior executed tests. See
arguments described above.

10.5 FloppyTape diagnostics

OnlineDiagnosticsExtraExtras: DEFINITIONS •.. ;

The OnlineDiagnostlcsExtraExtras interface is used by clients of the FloppyTape Online
Diagnostics. It includes procedures for running the FloppyTape Diagnostic.

OnlineDlagnosticsExtraExtras.FITapeMessage: TYPE. {
wishToContinue, stiliSure, ensureDriveReadYr readyAndWrEnable. successComplete.
removeCartridge, uncompleter userTerminate, testTerminated, writeProtect,
mediaProblemr hardwareProblem~ drivetnUser notReady, notFormat, warningFormat,
enterTapeLabel, formatTape, verify Format, createDataStruc, formatFailed r
alreadyFormat, tapeLabel, retentionTape, retentFailed, insertDiagTape, note,
verifyRead, verifyPass, verifyFail r tooManySoft, hardReadError, caliSupport,
scavengeTape, scavengeFailed, unSuccessRepair, successRepair, sectorToEnter,
enterToTable, 10gSectorFailed, readTable, countls, badSectorTable, emptyTable,
secTableFailed, badSector, stream, track, sector, badSectorFullr extra1, extra2., extra3,
extra4., extraS};

FITapeMessage defines the message keys used by the FloppyTape Diagnostic.

OnlineDiagnosticsExtraExtras. YesOrNo: TYPE. {yes., no};

Call-back procedures are used as parameters in the procedures called by clients. They are
used to post messages and data to the display and to obtain input from the user. The call­
back procedures are of the same sty Ie as the ones used in the floppy online diagnostics.
Nine call-back procedures are listed below.

10-21

10

10-22

Online Diagnostics

OnlineDiagnosticsExtraExtras.GetTextProc: TYPE = PROCEDURE [

msg: OniineDiagnosticsExtrcaExtras. FITapeMessage,

inputText: LONG STRING);

GetTextPro(gets a text string from the user. The procedure call passes a message key,
msg, and a long string, i nputText, as arguments. The client posts the message key which
requests. input from the use.r and fills the string body with the input from the user. The
string must be a Mesa string and can be up to 100 characters long.

OnUl'leDiagnosticsExtraExtras.GetNumberProc: TYPE ::II PROCEDURE [

msg: OnUneDiagnosticsExtrcIExtras.FITapeMessage] RETURNS [inputNumber: LONG CARDINAL);

GetNumberProc gets a number from the user. The procedure call passes a message key,
msg, and the client returns inputNumber, a long cardinal obtained from the user.

OnlineDiagnosticsExtraExtras.PutMessageProc: TYPE = PROCEDURE (

msg: OnlineDlagnosticsExtrilExtras. FITapeMessage,

moreFoliows: BOOLEAN +o-FALSE];

PutMessageProc displays the given message to the user. The parameters passed are a
message key, msg, and a boolean, moreFotlows, which is used to tell the client whether to
terminate this display line ~rith a carriage return.

OnlineDiagnosticsExtraExtras.PutNumberProc: TYPE =- PROCEDURE [

number: LONG CARDINAL,

width: CARDINAL +- 5,

moreFoliows: BOOLEAN +-FALSE);

PutNumberProc displays the given number to the user. The parameters passed are a
message key, msg, and a boolean, moreFollows, which is used to tell the client whether to
terminate this display line with a carriage return.

OntineOiagnosticsExtraExtras.PutTextProc: TYPE = PROCEDURE [

outputText: LONG STRING"
moreFollows: BOOLEAN +- FALSE];

PutTextProc displays the given text string to the user. The parameters are a long string,
outputText, and a boolean, lmoreFoliows, which is used to tell the client not to terminate
this display line with a carriage return.

OnlineDiagnosticsExtraExtras.PutTimeStampMessageProc: TYPE =- PROCEDURE [

msg: OnlineDlagnosticsExtrilExtras. FITa peMessage);

PutTimeStampMessageProc posts a time stamp along with the given message, msg, to the
display.

OnlineOiagnosticsExtraExtras.GetConfirmationProc: TYPE = PROCEDURE [

msg: OnUneDiagnosticsExtrilExtras. FITa peMessage];

GetConfirmationProc displays the given message, msg, to the user and requests
confirmation. The client procedure does not return until the user types any character.

Piilot Programmer's Manual 10

OnlineDiagnosticsExtraExtras.GetYesOrNoProc: TYPE = PROCEDURE [
msg: OnlineDiagnosticsExtraExtras.FITapeMessage] RETURNS [VesOrNo];

GetYesOrNoProc displays a message, msg, to the user and requests a Y(es) or N(o)
response. An enumerated type of yes or no, YesOrNo, is returned by this procedure.

OnlineDiagnosticsExtraExtras.LookForAbortProc: TYPE = PROCEDURE[]
RETURNS [userAbort: BOOLEAN);

lc)okForAbortProc returns a boolean ofTRu£.ifthe user wishes to abort out of a utility. The
client dermes which key or keys are used to indicate an abort request. When this

- procedure is called, the client returns immediately with a true or false response,
depending on whether the user has requested an abort prior to the procedure call.

The following six procedures are provided as floppy tape online utilities. The procedures
use the nine call-backs as parameters.

OnlineDiagnosticsfxtraExtras.FITapeFormat: PROCEDURE (
getText: OnlineDlagnosticsExtraExtras. GetTextProc,
putMessage: OnlineDiagnosticsExtra Extras. PutMessageProc,
putText: Online Diagnostics Extra Extras. PutTextProc.
putTi meStampMessage: OnlineDiagnosticsExtraExtras.PutTi meStampMessageProc,
getConfi rmati on: OnlineDiagnosticsExtraExtras. GetConfi rmationProc.
getYesOrNo: OnlineDiagnosticsExtraExtras. GetYesOrNoProc.
look For Abort: OnlineDlagnosticsExtraExtras. LookFor AbortProc];

FITapeFormat is used to format a cartridge tape. It does a retention pass, formats the
entire tape, verifies the formatted data, creates a bad sector table, enters bad sectors found
during the verify pass into the table, and puts the file system data structures on the tape.

OnlineDiagnosticsfxtraExtras.fITapeRetention: TYPE = PROCEDURE(
putMessage: OnlineDiagnosticsExtra Extras. PutMessageProc,
putTi meSta mpMessage: OnlineDiagnosticsExtraExtras. PutTi meStam pMessageProc,
getConfi rmation: OnlineDiagnosticsExtraExtras. GetConfi rmationProc];

FITapeRetention is used to condition (also known as retention) the tape.

OnlineDiagnosticsExtraExtras.FITapeVerifyRead: TYPE = PROCEDURE[
putMessage: OnlineDlagnosticsExtraExtras. PutMessageProc,
putText: OnlineDiagnosticsExtraExtras.PutTextProc,
putNu m ber: OnlineDiagnosticsExtraExtras. PutNum berProc,
putTi meSta m pMessage: OnlineDlagnosticsExtraExtras.PutTi meSta m pMessageProc,
getConfirmation: OnlineDiagnosticsExtraExtras. GetConfi rmationProc,
lookForAbort: OnlineDiagnosticsExtraExtras.LookForAbortProc,
debugSwitch: UNSPECIFIED +-0);

FITapeVerifyRead reads two streams of data from the Offline Diagnostic tape, collects
data, and provides passed and failed information to the user.

10-23

10

10-24

Online Diagnostics

OnlineDiagnosticsExtraExtras.FIT,apeScavenge: TYPE = PROCEDURE(
putMessage: OniineDiagl1osticsExtra Extras. PutMessageProc.
putTi meSta m pMessage': OnlineDiagnosticsExtra Extras. PutTi meSta m pMessageProc.
getConfi rmati on: OnlinEIOiagnosticsExtra Extras. GetConfi rmati onProc.
10okForAbort: OnlineDia~lnosticsExtraExtras. LookFor AbortProc];

FITapeScavenge repairs a malformed tape by restoring the Pilot data structures (root
page) and repairing bad marker pages.

OnlineDiagnosticsExtraExtras.FITapelogBadSector: TYPE = PROCEDURE(
getNum.ber: OnlineOiagn,osticsExtraExtras.GetNumberProc.
putMessage: OnlineDiagI1osticsExtraExtras.PutMessageProc.
putTimeStampMessage': OnlineDiagnosticsExtraExtras.PutTimeStampMessageProc.
getConfi rmation: OnlineDiagnosticsExtraExtras. GetConfi rmationProc.
getYesOrNo: OnlineOiaglrlosticsExtraExtras.GetYesOrNoProc);

FITapeLogBadSector enters a sector specified by the user into the bad sector table.

OnlineOiagnosticsExtraExtras.FITapeDisplayBadSectorTable: TYPE = PROCEDURE[
putMessage: OniineDiagl10sticsExtra Extras. PutMessageProc,
putN um ber: OnlineOiagnosticsExtra Extras. PutNu m berProc,
putTi meStampMessage!: OnlineOiagnosticsExtra Extras. PutTi meSta m pMessageProc,
getConfi rmation: OnlinEtDiagnosticsExtraExtras. GetConfi rmationProc,1;

FITapeDisplayBadSectorTable displays the contents of the bad sector table.

Appendices

A

Performance Criteria

Appendix A contains quantitative information about the observed performance of Pilot
and information about how client programs are expected to behave. Where machine
dependencies are a factor, it is assumed that the machine is a Dandelion. Some effort has
been expended in describing the source of and confidence in the figures presented. These
figures are presented to convey the flavor of the system rather than as hard performance
guarantees. In general. crisp and quantitative performance requirements tar Pilot are not
a,vailable for comparison with the figures presented here.

A.I Physical memory requirements of Pilot

The resident part of Pilot, the part that is ineligible for swapping, is 121 pages (30,976
words), allocated as follows: code - 62; data - 37; the Mesa runtime data structures - 6; and
global frames - 16. As far as memory usage is concerned, this is the only machine­
dependent part of Pilot.

Most Pilot functions will require additional code and data to be swapped in. The memory
requirements for Pilot functions are given in terms of working sets. A working set for a
function is defmed as those virtual pages (code and data) which, if they are all in memory.
provide a local minimum of page faults to service the function. .

Because there is a significant overlap of code and data between one Pilot function and
another, it is not possible to simply add up the sizes of all the working sets one anticipates
using to get the total amount of memory required for a task.

Table A.l summarizes the memory requirements. In the table, working set sizes are given
in pages. They do not include the resident.

A-I

A Performance Criteria

Table A.!', Pilot Physical Memory Requirements

Working
Pilot Function

Communications -XNS
Idle
Active - nrst conne"ction
Active - subsequent connections

Communications - Base
Idle
Active

Communications - Courier
Idle
Active
Active - bulk data

File
Create
Delete
SetSize (grow)
SetSize (shrink)

Floppy Channel
Heap

MakeNode (Heap Impl)
FreeNode (Heap Imp!)
MakeN ode (SOSP83 Heap Impl)
FreeNode (SOSP83 Heap' Imp!)

Signals

Space
Allocate
DeaHocate
MapAt
UnmapAt

Streams

Set Size

7
22 to 24
22+n*3

to 45+n*3

21
21 to 173

5
18
28

29
28
31
30

10

15
15

9
9

3

9
10
29

5
1

Notes

Does not include Idle.
Does not inc! ude first connection;
n = number of streams.

A.2 Execution speed and client pr'ogram profile

A-2

This section enumerates sonle typical characteristics which Pilot expects or will support in
its clients. These estimates are intended to assist the client programmer in designing his
use of Pilot facilities. They provide guidelines about which facilities are expensive and
thus to be used sparingly and which facilities are inexpensive and can be exercised
heavily,

These estimates apply to th(! cumulative load imposed by all clients operating on a single
system element. A particular client program or system which does not exercise any of the
resources very heavily ma.y share the system element with other client programs,
provided t~at the sum oftheilr requirements remains within the estimates set out below.

Pilot Programmer's Manual A

A.2.1 Memory management

'l'able A.2 indicates the dynamic cost of virtual memory in terms of disk accesses, CPU
time, and real time for a particular disk unit.

Table A.2. Dynamic Cost of Virtual Memory

Facility Minimum Typical Maximum

disk accesses to create
or delete a space 0 2 >4

number of disk accesses to
handle a page fault 0 1 >2

cpu time to handle a page fault 4-5 msec 6-8 msec

real time to handle a page fault 1,2 5-7 msec 45-55 msec > 0.1 sec

1 Paging from the local Shugart 4008 disk. Real time per disk access = 100-200 milliseconds.
2 No guarantee as to the ~aximum time to service a page fault will ever be given. In the case that the

disk is occupied with real time processing, page fault handling times of several seconds or more can
occm'. The maximum time stated is the maximum time ex.clusive of such situations.

A.2.2 File management

Table A.3 indicates the typical characteristics of the Pilot file system. In the table, the
term t~active file" means a file which has been referenced recently so that its location and
description are still present in the Pilot caches.

Table A.3. Typical Characteristics of Pilot File System

Facility Typical Maximum

total drives
(Le., active physical volumes) 1 16

total existing files per volume lIdisk page

rate of file creation and
deletion (long term average) 4

size of files (in pages) 8 8 * 106

number of volume pages
8 * 106 allocated as a unit

number of file pages
accessed in a sequence 1 8 * 106

1 Limited by the amount of real memory for the access sequence.

A-3

A

A-4

Performance Criteria

A.2.3 Communication via the Ethernet

The following figures indic:ate the expected performance of communication between
system elements connected to the same Ethernet.

Facility

memory-to-memory transfer
through the Stream interfacl~

A.2.4 Processes

Maximum

7.5 * 105 to 2.3 * 106 bits/sec

Table A.4 provides data about the expected processing time on the Dandelion of each of the
process structuring facilities.

Table A.4. Expectf~d Processing Time of Process Structuring Facilities

Facility Minimum Typical Maximum

Monitor entry or exit 3psec < 4J.lsec 5 psec

Process switch time 25 psec 30 psec 40 psec

Fork or Join2 0.7 msec 1 msec 1.5 msec

Waitl ,2 10 psec < 60psec 100 psec

Notifyl 10 Jlsec 15 psec 20 Jlsec

1 Exclusive of process switching time.
2 The wide range on this fllLCility reflects a current lack of data about its operating time rather than a

dynamic variation in the final product. .

B

Managing and Assigning File Types

In Pilot, every file must be assigned a type code at the time it is created. This code is of
type File. Type and is constant for the life of the file. It provides a means for Pilot, various
scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to
recognize which file is which. To make this principle work effectively, each different kind
of' file shouldl be assigned its own unique type. This appendix describes how the type codes
are assigned.

The center of this scheme is the File Types interface, maintained by the Pilot group. In this
file are defined all subranges of File.Type assigned to individual client and application
groups. This module is designed so that it can be recompiled whenever a new type is
assigned without invalidating any old version. Thus, within certain limits, a program
may include any version of FiteTypes which contains the type codes of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of FileTypes is a set of subrange and constant defmitions of the following
form:

PiiotFileType: TYPE a CARDINAL [0 •• 256);

MesaFileType: TYPE. CARDINAL (256 •• 512);

DCSFileType: TYPE. CARDINAL [512 •• 768);

. . . -- Subranges assigned to other clients and subsystems

The subranges are designed to allow individual client organizations to administer their
own file type assignment for their own purposes. Each group should maintain a module of
the same form as FileTypes and include FileTypes in its DIRECTORY clause. Such a module would
be used to assign types within the subrange allocated to that group while still providing a
measure of protection against conflicting assignment by independent groups. The
structure of this module should be similar to that of FiteTypes in order that the assignment
of a new type code does not trigger a universal recompilation of the subsystem.

B-1

B

B-2

Managing and Assigning File Types

For example, the Mesa Development Environment group is assigned the subrange of file
types [9280 .. 9344) to allocatEI as they see fit. This allocation is managed by the module
Mesa DEfile Types, of the following form:

DIRECTORY

File: USING [Type1.
FileTypes: USING [MesaDEFileType];
MesaDEFileTypes: DEFINITIIONS •
BEGIN
MesaDEFileType: TYPE • iFileTypes.MesaDEFileType;
-- MesaDB File Type~;
tUnassigned: File.Type a [MesaDEFileType(FIRST(MesaDEFileType)]];
tRootDirectory: File.Type a [tUnassigned + 1];
tDirectory: File. Type. [tRootDirectory + 1];

. -- Other rile types ror use by Mesa
END.

This module can be recompiled independently of the module File Types, for example each
time a new type code is added. by the Mesa Development Environment group. All of Mesa
environment would derive tho type codes for its files from this module.

In a similar manner, types within the subrange PilotFileType, for file types used by Pilot
itself, are found in a private Pilot definitions module.

It is possible for two differEint program modules or configurations which include two
different versions of Pi:LeTypes. bed (or any of its derivatives, such as
MesaDEFileTypes. bed) to Ioe bound together without error or conflict. This situation
can arise, for example, because one configuration was compiled prior to the assignment of
a new file type while the othE!r was compiled afterwards. A problem occurs, however, if a
module includes (either directly or indirectly) two different files defining file types. In this
case, the compiler will refus4e to compile the module unless the same version is used in
both cases.

For example, if a program includes both FileTypes and MesaOEFileTypes, and if
FileTypes .mesa was updated after MesaDEFileTypes. bed was created, then the Mesa
compiler would generate an error message about File Types being used in differing versions.
This error would also be generated if the program included FileTypes indirectly; for
example, by including another definitions module which itself had included a different
version of Fire Types.

This problem should not, however, occur in a well-structured system design. For example,
a file of type tWidget is perct~ived as such only by the module or modules which actually
implement widget objects. All other modules use only a well-defined interface and deal in
widgets, not widget implementations; that is, the underlying file and its type are hidden.
Since a single module will not be involved in the implementation of abstractions from two
widely separated parts of the NS world, it need not see two different modules both defining
separate ranges of type codes for files.

Pilot Programmer's Manual B

Therefore, the following style rules are recommended:

a. FileTypes. bed and its derivatives should be included only in program modules, not
in definit.ions modules.

b. Only one module defining the type codes,for files should be included in any program;
for example, do not include both File Types and MesaDEFileTypes.

c. The Pilot group will keep FileTypes.mesa and FileTypes.bed up-to-date in
conspicuous places, on the release directory between releases of Pilot.

d. All programs, including Pilot, Common Software, and applications, should use type
codes only symbolically from modules in which they are assigned. No program should
fabricate a value of type File.Type from a numeric constant.

If all clients of Pilot observe these rules and the style of using Mesa definitions modules of
the form of File Types , the job of administering the assignment of type codes for Pilot files can
be kept manageable. In return, the Pilot group can react immediately to requests for a
new type code or subrange of type codes.

If this style is not observed, the administration of global constants such as these will
become a complicated, time-consuming task with a corresponding difficulty in reacting
quickly to requests.

B-3

B Managing and Assigning File Types

B-4

c

Pilot's Interrupt Key Watcher

Appendix C describes the operation of the interrupt key watcher that can be enabled by
users or clients at boot time, via boot switch 8.

If one goes to the debugger and then does "an interpret call, the interpret call is executed in
the process that went to the debugger, and consequently runs at that process's priority. If
this is a priority at which the taking of faults is restricted, then the interpret call may
fault and block trying to allocate state vectors.

If Pilot is booted with the 8 boot switch, pressing LOCK-LeftSHIFT-RightSHIFT-STOP will cause
Pilot to call the debugger with the message f'panic interrupt." This is done at a priority
level that precludes doing any interpret calls from the debugger.

C-l

c PUotts Interrupt Key Watcher

C-2

D

UtilityPilot

Systems that are based on PilotKernel.bcd require that a disk be present on the machine.
'I'he boot file containing the system must be installed on the disk, from which it is loaded
into the processor memory when the system is booted. The disk contains the system
physical and logical volumes for the system; that is, those on which the boot file is located.

UtilityPilot is commonly used to build special utility systems, such as disk initializers and
diagnostics. Systems that are based on UtilityPilotKernel.bcd do not require that a disk be
present on the machine. The boot file containing the system may be loaded from any
source; for example, Ethernet or floppy disk.

UtilityPilot provides the same facilities as regular Pilot, with the following exceptions:

• There are no system physical and logical volumes.

• No volumes are brought online as part of Pilot initialization.

• The entire system and its working data must fit into the real memory of the processor.
(Backing storage is provided by Space. Scratch Map and the system heaps come from
real memory)

.. Clients must validate/set local time parameters and the processor clock before calling
any Pilot facility that needs them.

• Map logging is disabled.

• Run-time loading is not supported.

• If debugging of UtilityPilot-based clients is desired, then they must be built using a
.bootmesa file that causes the bcd to be made resident. Without this bootmesa file,
UtilityPilot might reclaim the real memory behind the bcd, resulting in an
InvalidLoadState or bad module messages when the debugger is entered from a
UtilityPilot-based client. The command line should be:

MakeBoot YourFavoriteUtilityPilotBootFile [
parm;UtilityPilot, parm:DebugUtilityPilot ...]

D-l

D Utility Pilot

D-2

E

Multi-national Considerations

The hardware and software described in this manual support serial communication via
the RS232C controller in accordance with EIA standard RS232C. No support is provided
for CCITT Recommendations V.24 and V.27, the equivalent prevailing standard in most of
Europe.

E-l

E M:ulti-national Considerations

E-2

F

References

F.l Mandatory references

Study ~he following documents before or in conjunction with this document:

• Courier: The Remote Procedure CallProtocol--XSIS 038112

• Mesa Language Manual--610E00170

• XDE User's Guide--610E00140

• Mesa Programmer's Manual--610E00150

In addition, consult the release documentation accompanying each release of Pilot before
writing programs that use Pilot.

F.2 Informational references

The following documents provide additional useful information:

• The Ethernet, A Local Area Network, Data Link Layer, and Physical Layer
Specifications, Version 1.0, September 30, 1980

• Xerox Internet Transport Protocols. XSIS 028112, December 1981.

F-l

F References

F-2

G

Network Binding Example

-- File: NetworkBindingSample.mesa - last edit:
-- AOF 26-Jan-8816:24:33

-- Copyright (C) 1988 by Xerox Corporation. All rights reserved.

DIRECTORY
Courier USING [Description, Parameters, VersionRange],
Heap USING [systemZone],
Inline USING [LongCOPY],
NetworkBinding USING [
BindToAIIOnNet, BindToFirstNearby, Conjunct, DeregisterPredicate,
NOBinding, Predicate, PredicateProcedure, RegisterPredicate, Responses],
System USING [NetworkAddress, null NetworkAddress),
Volume USING [GetAttributes, PageCount, system I D);

NetworkBindingSample: PROGRAM
IMPORTS Heap, Intine, NetworkBinding, Volume =
BEGIN

program: LONG CARDINAL = ... ;
«
The program number is a Courier program number and globally administered.
For details of how to attain a program number, reference the NetworkBinding
Protocol Specification (in progress).
»

conjunct: NetworkBinding.Conjunct = [1];
«
The conjunct is relative to the program number and locally administered.
As many conjuncts as desired may be associated with the relevant program number.
»

version:' Courier. Version Range = [1, 1];
predicate: NetworkBinding.Predicate = [
program: [programNumber: program, version: version.high], conjunct: conjunct];

SamplePredicate: TYPE = RECORD[pages: Volume.PageCount];

G-l

G

G-2

Network Binding Example

SequenceOfLargeFreeSpaces: TYPE = LONG POINTER TO LargeFreeSpaces;
LargeFreeSpaces: TYPE = RECORD[SEQUENCE count: NATURAL OF FreeSpaceTuples);
FreeSpaceTuples: TYPE = RECORD[

networkAddress: System.NetworkAddress, free: Volume.PageCount);

OescribePages: Courier.Description =
{notes. noteLongCardi nal [notes.noteSize[SIZE[Volume.Pag eCount1l1};

FindLargeFreeSpace: PUBLIC PROC[pages: Volume.PageCount]
RETURNS(him: System.NetworkAddress, howmuch: VOlume.Pa'geCountl =
BEGIN

«
This procedure will search all the networks three hops and less from
this station for a machine that has more than 'pages' of disk space
free on the system volume. The result from the procedure will be the
address of the first machine that responds satisfying the criteria. It
is by definition also the closest. In addition to the address of the
responding machine, the result will also include the number of pages
actually available on that machine's system volume.
If there is no answer to the request, then the procedure will return a
null System. NetworkAddress and a free count of zero.
»

ENABLE NetworkBinding.NoBinding = >
{him .-System. null NetworkAddress; howmuch +- 0; CONTINUE};
where: LONG POINTER;
sample: SamplePredicate +- [pages: pages);
param: Courier.Parameters +- [@sample, DescribePages];
[him, where] Eo- NetworkBinding.BindToFirstNearby[

predicate: [pred: predicate, param: param1,
responseDescription: DescribePages);

howmuch Eo- NARROW[where, LONG POINTER TO SamplePredicate).pages;
Heap.systemZone.FREE[@Where1; --need to free the storage for the answer
END; --FindLargeFreeSpace

FindAIiLargeFreeSpaces: PUBLIC PROC[pages: Volume.PageCount]
RETU RNS[list: SequenceOfLargeFreeSpaces] =
BEGIN

«
This procedure will/ocate all the machines on the local network that
have more than 'pages' of disk space available on the system volume.
The result will be tuples of the network addresses that responded and
the actual amount of space available.
If there are no responses, as indicated by a NIL return from the call,
a NIL will also be returned to the caller of this procedure.
»

sample: SamplePredicate Eo- [pages: pages];
param: Courier.Parameters +- [@sample, DescribePages1;
responses: NetworkBinding.Responses +- NetworkBinding.BindToAIIOnNet[

Pilot Programmer's Manual

predicate: [pred: predicate, param: param),
response Descri pt i on: Descri beP ages);

IF responses = NIL THEN RETURN(NIL];
list +- Heap.systemZone.NEW(LargeFreeSpaces[responses.elementCount]];
Inline.LongCOPY[--copy answer to our record construct

to: list, from: @rt!sponses.element[O],
nwords: responsE~s.elementSjze 11 responses.elementCount];

Heap.systemZone.FRI:E[@responses]; --free the original answer
END; --FindAIILargef=reeSpaces

PredicateProcedure: Ne~NorkBinding.PredicateProcedure =
--[pred: Predicate, ar!~s: LONG POINTER, response: ResponseProc]
BEGIN

«
This procedure will be called when the NetworkBinding Server has fielded
a request from the nE~twork. The server has already verified that the
conjunct matches and has converted the predicate of request into a Mesa
data structure.
Since the semantics afthe request require that in order to answer in the
affirmative this macl1tine must have more pages free on the system
volume than specified in the request, a free count of less than that value
requires that the predicate procedure signal ERROR NoBinding. If it does
satisfy the criteria, then the actual number of free pages is returned.
»

param: Courier.Pararneters +- [@free, DescribePages];
pages: Volume.Page4Count = NARROW[args, LONG POINTER TO
SamplePredicate].pa'ges;
free: Volume.PageCc)unt +­
Volume.GetAttributE~s{Volume.systemID].freePageCount;
IF free> pages THEN response(response: param]
ELSE RETURN WITH ERROR NetworkBinding.NoBinding;
END; --PredicateProc:edure

StartServer: PUBLIC PROc:n =
BEGIN
NetworkBinding.RegisterPredicate(

program Number: program, version Range: version,
conjunct: conjunct, proc: PredicateProcedure,
pred i cateDescri ption: Descri bePages];

END; --StartServer

StopServer: PUBLIC PRO(:[] =
BEGIN
NetworkBinding.DeregisterPredicate(

programNumber: program, versionRange: version, conjunct: conjunct];
END; --StopServ4!r

END ... --NetworkBindin~~Sample

G

G-3

G Network Binding Example

G-4

APPENDIXH

TCP/IP Interfaces

1 ArpaConstants ... " H-2

1.1 Types and constants .. H-2

2 A,RP ARouter .. H-4

2.1 Types and constants :............................ H-4

2.2 Procedures .. H-4

3 A,R~ ARouterOps ... H-5

3.1 Types , .' H-5

3.2 Exported Variables ... H-6

2.3 Pro cedures .. H-6

4 ArpaSysParameters ... H-9

4.1 Types and constants .. H-9

4.2 Procedures. .. H-l1

5 ArpaUtility ... H-12

5.1 Types .. H-12

5.2 Exported Variables .. H-12

5.a Pro cedures , H-13

6 Resolve , , , , H-15 ,

6.1 Signals and Errors .. H -15

6.2 Procedures , , .. , " Ii-16

7 TcpStream ., , ... , "................ H-13

7.1 Types and constants ... H-18

7.2 E'xported variables .. H-21

7.3 Signals and Errors .. H-21

7.4 Procedures ... H-22

7.5 Restrictions. .. H-23

8 ArpaTelnetStream .. "... H-24

8.1 Types and constants ... H-24

8.2 Signals ... I-I-30

8.3 Procedures ... H-30

9 TelnetListener ... H-36

9.1 Types and constants H-36

9.2 Types and constants '.' " H-36

10 ArpaFilingCommon ... H-37

11 TFTP (Trivial File Transfer Protocol) H-39

11.1 Types and constants ... H-39

11.2 Errors and signals ... H-39

11.3 Procedures. H-40

12 ArpaFTP .. H-42

12.1 Types and constants ... H-42

12.2 Errors and Signals .. H-43

12.3 Procedures ... H-45

13 ArpaFTPServer .. H-49

13.1 Types and constan1~s .. H-49

13.2 Errors and Signals .. H-53

13.3 Procedures. .. H-53

14 ArpaFileName ... H-54

14.1 Types. .. H-54

14.2 Signals ... H-54

14.3 Procedures ' " H-54

15 ArpaSMTP. .. H-56

15.1 Types and constants ... H-56

15.2 Signals. .. H-56

15.3 Procedures ... " H-58

16 ArpaAMTPServer ... H-60

16.1 Types and constants ... H-60

16.2 Procedures ... " H-61

17 ArpaMailParse. H-62

17.1 Types .. H-62

17.2 Constants and data objects ... H-63

17.3 Signals and errors ... H -63

1'7.4 Procedures. .. H-64

18 Arpa Version ... H-66

APPENDIXH

TCP/IP Interfaces

Appendix H defines and describes the interfaces of TCP/IP communications. The
description provides sufficient information to allow the programmer to understand the
available facilities and to write procedure calls in the Mesa language to invoke them. For
each of the facilities of TCP!IP, the section lists the procedure names, parameters, results,
data types of each of the arguments, and possible signals which can be generated.

Relevant RFC references are provided at the beginning of each section.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

H-l

H TCP/IP Interfaces

1 ArpaConstants

H-2

ArpaConstants is the interface that defines the well-known ports described in RFC 923.

1.1 Types and constants

maxWeliknownPort: ArpaRoutfilr.Port • LOOPHOLE[255);

reservedPort: ArpaRouter.Port • LOOPHOLE[O];

rjePort: ArpaRouter.Port :II LOOf»HOLE[S];
echoPort:ArpaRouter .Port • LOOPHOLE [7] ;
discardPort: ArpaRouter.Port • lOOPHOLE[9];
activeUsersPort: ArpaRouter.Port :II LOOPHOLE[11];
daytimePort: ArpaRouter.Port II LOOPHOLE[13];
netStatPort: ArpaRouter.Port :II LOOPHOLE[15];
quotePort: ArpaRouter.Port :II LOOPHOLE[17];
charGeneratorPort: ArpaRouter.Port :II LOOPHOLE[19];
ftpOataPort: ArpaRouter.Port :I LOOPHOLE[20];
ftpControlPort: ArpaRouter,Port :II LOOPHOLE(21];
telnetPort: ArpaRouter.Port :I LOOPHOLS(23];
smtpPort: ArpaRouter.Port • LCtoPHoLE(25];
nwsUserSystemFEPort: ArpaRctuter.Port • LOOPHOLE[27];
msglCPPort: ArpaRouter.Port • LOOPHOLE[29];
msgAuthPort: ArpaRouter.Port • LOOPHOLE(31];
anyPrinterServerPort: ArpaRouter.Port • LOOPHOLS[35];
timePort: ArpaRouter.Port • LOOPHOLE[37];
rlpPort: ArpaRouter.Port • LOOltHOLE[39];
graphicsPort: ArpaRouter.Port ,. LOOPHOLE[41];
nameServerPort: ArpaRouter,Port :II LOOPHOLE[42];
nicNamePort: ArpaRouter.Port • LOOPHOLE[43];
mpmFIagsPort: ArpaRouter.Port • LOOPHOLE[44];
mpmReceivePort: ArpaRouter.Port • LOOPHOLE(45];
mpmSendPort: ArpaRouter.Port • LOOPHOLE(46];
niFtpPort: ArpaRouter.Port • LCtOPHOLE[47];
loginPort: ArpaRouter.Port • LCtOPHOLS[49];
impLogicalAddrMaintPort: Arl~aRouter,Port :II LOOPHOLE[51];
domainPort: ArpaRouter.Port • LooPHOLs[53];
isiGIPort: ArpaRouter.Port :II Lo,oPHoLE[S5];
privateTermAccessPort: ArpaRouter.Port :II LOOPHOLE[57];
privateFileServicePort: Arpa ROluter ,Port • LOOPHOLE(59];
niMailPort: ArpaRouter.Port • 1.00PHOLE[61];
viaFtpPort: ArpaRouter.Port • L,OOPHOLE(63];
tftpPort: ArpaRouter.Port :II LOCtPHOLE(69];
remoteJobService1 Port: ArpaRouter ,Port • lOOPHOLS(71];
remoteJobService2Port: ArpaRouter ,Port :II LOOPHOLE(72];
remoteJobService3Port: ArpaRouter.Port • lOOPHOLE(73];
remoteJobService4Port: ArpaRouter.Port • LOOPHOLE[74];
privateDialoutPort: ArpaRouter,Port • LOOPHOLE(75];
privateRJEPort: ArpaRouter.Port • LOOPHOLE[77];
fingerPort: ArpaRouter.Port :II LOOPHOLE(79];

Pilot Programmer's Manual

hostS2NameServerPort: ArpaRouter.Port :II LOOPHOLE[81];
mitMIDevice1Port: ArpaRouter.Port • LOOPHOLE[83];
mitMIDevice2Port: ArpaRouter.Port • LOOPHOLE[85];
mitMIDevice3Port: ArpaRouter.Port • LOOPHOLE[87];
suMitTeinetGatewayPort: ArpaRouter.Port :II LOOPHOLE{89];
mitDoverSpoolerPort: ArpaRouter.Port :II LOOPHOLe(91];
dcpPort: ArpaRouter.Port :II LOOPHOLE[93];
supdupPort: ArpaRouter.Port :II LOOPHOLE[95];
swiftRvfPort: ArpaRouter.Port :II LOOPHOLE[97];
metagramPort: ArpaRouter.Port :II LOOPHOLE[99];
hostNamePort: ArpaRouter.Port :II LOOPHOLE[103];
csnetNsPort: ArpaRouter.Port :II LOOPHOLE[1051;
remoteTelnetPort: ArpaRouter.Port :II LOOPHOLE[107];
postOfficeProtocolPort: ArpaRouter.Port :II LOOPHOLE(109];
sunRpcPort: ArpaRouter.Port • LOOPHOLE[111];
authPort: ArpaRouter.Port :II LOOPHOLE[113];
sftpPort: ArpaRouter.Port :II LOOPHOLE[1151;
uucpPathPort: ArpaRouter.Port :I LOOPHOLE(117];
surveyMeasurePort: ArpaRouter.Port :II LOOPHOLE[243];
linkPort: ArpaRouter.Port :II LOOPHOLE[245];

H

H-3

H TCP/IP Interfaces

2 ArpaRouter

H-4

ArpaRouter is the interface for (:ommon, public types and procedures of the lower level ARPA
Internet transport and internet facilities.

References:

2.1 Types and constants

RFC768 User Datagram Protocol, Postel, August, 1980.

RFC791 Internet Protocol, Postel, September, 198J.

RFC793 Transmission Control Protocol, Postel, September, 1981.

ArpaRouter.Port: TypeI1];

Portis a TCP or UDP port as dermed in the TCP and UDP protocol specifications, RFC 793
and RFC 768. It is used for intra-machine multiplexing and is a parameter in many of the
procedures in the interfaces to the Arpa protocol implementations. A Port can either have a
well known value or a unique value. A well known value is one that is defined in
ArpaConstants; a unique value is one that is known to both sides of a connection only for the
dW'ation of that connection.

ArpaRouter.l nternetAddress: "'PE(2);

InternetAddress is an ARPA I~ternet address of any address class as defined in the IP
protocol specification, RFC 791. InternetAddress is used by the low level communications
as source and destination addresses for other hosts in the Internet. This type is a parameter
in many of the procedures in ,the interfaces to the ARPA protocol implementations.

ArpaRouter.unknownlnterne~\ddress: READONLY ArpaRouter.lnternetAddress;

unknownlnternetAddress ca.n be used for initializing an InternetAddress and indicating
an address that has not been. set to a valid address. It is not a null address indicating the
local machine or network. Such an address may not have 0 bits in the address class fields
and should be obtained by other means.

2.2 Procedures

ArpaRouter.ArpaPackageMake: PROCEDURE;

ArpaPackageMake starts and initializes the TCPIIP protocol family. This procedure must
be called at least once durin.g the loading of the protocol suite. Once started, subsequent
calls cause a reference count to he incremented hut take no other action.

ArpaRouter .ArpaPackageDestroy: PROCEDURE;

ArpaPackageDestroy stops and unregisters the TCPIIP protocol family. Operationally the
procedure first decrements the reference count. If and only if the result is zero does it
actually stop the protocol and delete the resources required to support it.

Pilot Programmer's Manual H

ArpaRouter.GetAddress: PROCEDURE RETURNS [ArpaRouter.lnternetAddress];

GetAddress returns the InternetAddress of the local machine. If the internet address is not
known, then unknownlnternetAddress is returned.

3 ArpaRouterOps

3.1 Types

ArpaRouterOps is the interface for procedures that are of use to many clients of the ARPA
networking facility. This interface should be viewed as an extension to ArpaRouter. The
facilities defined here are done so that they may evolve more freely.

Some of the procedures defined in ArpaRouterOps use a modified semantic definition of an
internet address (ArpaRouter.lnternetAddress). Internet addresses nominally define a
unique machine address within an internet. The record includes fields that represent the
network number, in cases where subnetting is used, a subnetwork number, and a network
or subnetwork relative host number. In cases where the type ArpaRouter.lnternernetAddress
is used to identify a network or subnetwork, the bits representing the host have been
stripped.

It is assumed, and this implementation relies on the assumption, that all subnets on a
particular network will be using the same subnetting strategy. Consequently, in order to
strip the host number field from an internet address record, the following rules are applied.

1) The network number is extracted from the internet address. This can be done
mechanically by looking at the addressing class bits in the record.

2) If the network number extracted in 1) is the same as the network number of the
directly attached network, the local subnet mask is applicable. By AND'ing that mask
with the original record, the host field is cleared and the resultant value that includes
both the network number and subnet number fields and becomes the value referred to
as either the network number or the subnet number.

3) If the network number extracted in 1) is not equal to the local network, then nothing
can be assumed about the subnetting strategey being used on the remote network.
Therefore the result of 1) becomes the network number for comparison purposes. It is
also assumed that there is some external gateway between the remote and the local
subnet that knows about the remote's subnetting scheme if one should exist.

References: RFC1058 Routing Information Protocol, Hendrick, June, 1988.

ArpaRouterOps.lsSame: TYPE ~ {yes, no, cantTell};

IsSame defines the type of returns possible by the routine ArpaRouterops.SameSubnet. In
addition to an absolute answer, it dermes the possibility that there is not enough context
locally to make the determination required.

H-5

H

H-6

TCP/IP Interfaces

3.2 Exported variables

ArpaRouterOps.startEnumeraticm: READONLY ArpaRouter.lnternetAddress;

ArpaRouterOps.stopEnumeraticm: READONLY ArpaRouter.lnternetAddress;

The two variables listed are used in conjunction with the stateless enumeration procedure,
ArpaRouterops.Enumerate. They have no valid application except within the context of the
enumerate procedure.

ArpaRouterOps.all Networks: RE."DONL Y Arpa Rc;»uter .J nternetAdd ress;

ArpaRouterops.ailNetworks defines the value that may be used in conjunction with
ArpaRouterOps.Flush to indicate! that the client wishes to flush all entries that are currently
in the routing table. The variable has no valid application except within the context of the
flush procedure.

3.3 Procedures

ArpaRouterOps.Enumerate: PROtCEDURE(
last: ArpaRouter.JnternetAddress, delay: CARDINAL]
RETuRNs(next,gateway: Ar'paRouter.l nternetAddress];

ArpaRouterops.Enumerate is a stateless enumerator used to list the contents of the local IP
routing table. Each call to I:numerate will return a network and the address of the
immediate gateway used to reach the network. For each call, a unique network that has a
delay characteristic specified. (currently delay is measured in hops, roughly equivalent to
the number of gateways that a packet must pass through to reach the remote network). To
perform a complete enumeration at a specific delay, the rust value passed as the argument
last should be ArpaRouterops.startEnumeration. If the value returned in next is not equal to
ArpaRouterops.endEnumeratiol'1 it represents another remote net of the specified delay, and
the second returned value, galteway, is the address of the immediate machine to which the
packet will be sent in order to reach any destination on the netwok next. The value of next
should then be used as the a.rgument last in the next call to Enumerate and the process
should continue until next is returned with a value equal to ArpaRouterops.endEnumeration.

The following Mesa example shows a correct use of the enumerate procedure. It
enumerates all networks tha.t are currently in the cache with a delay between zero and
255. A delay of zero indicates that the network is directly attached. Enumerations should
always indicate at least one network, the local network.

FOR delay: NA TU RAL IN [0 .. 25-6) DO
network: ArpaRouter.lntc!rnetAddress +- ArpaRouterOps.startEnumeration;
DO

gateway: ArpaRoutef'.lnternetAddress;
[network, gateway] .. - ArpaRouterOps. Enumerate[network, delay];
IF network = ArpaRouterOps.endEnumeration THEN EXIT;
< <do something with network and gateway> >
ENDLOOP;

ENDLOOP;

Pilot Programmer's Manual H

ArpaRouterOps.Flush: PROCEDURE[

network: ArpaRouter.l nternetAddress +- ArpaRouterOps.a II Networks];

ArpaRouterOps.Flush may be used to flush a currently cached route to a remote network or all
cached entries, other than the local network. The value specified for the argument network
may be any valid internet address on the target network. The host number portion of the
address will be stripped as discussed earlier in order to determine the correct entry to flush.

The default value of ArpaRouterops.allNetworks indicates that the entire table is to be
flushed.

Caution: The cache or routes to remote networks is global to the entire system. Clients
should use this procedure with caution since they may have adverse affects on the
performance of clients other than themselves.

Note: Under no circumstances is it possible to flush the entry representing directly
attached networks. Attempts to do so are treated as no-ops.

ArpaRouterOps. GetDel ay: PROCEDURE [network: ArpaRouter.1 nternetAddress]
RETURNS[hops: CARDINAL. gateway: ArpaRouter.lnternetAddress];

ArpaRouterOps.GetDelay may be used to retrieve a hint about the distance to a remote
partner. This procedure is most meaningful if the network is using the Routing
Information Protocol [RIP]. If RIP is being used, then the value of hops returned by the
procedure call is roughly equivalent to the number of gateways a packet must pass through
to get to the remote netork and will have values ranging from zero (directly attached) to 16
(not reachable).

If RIP is not being used, hops will have one of four values. A value of zero indicates that the
remote network is one directly attached to host machine via a broadcast medium (e.g.,
ethernet). If the remote network is on the same network but a different subnet, the
procedure will return a value of one. If the network does not have the same network
number but still believed to be reachable, the value return in hops will be 15. If the
network is unreachable, then the value returned will be identical to that returned if RIP is
enabled, 16.

The value returned for gateway will be consistent whether RIP is being used or not. It is
the internet address of the gateway to which outbound packets will be transmitted in order
to deliver them to the remote network. If the remote network is directly attached (Le., hops
is zero) the value of gateway will be Router.unknownlnternetAddress.

ArpaRouterOps.GetUseCount: PROCEDURE[] RETURNs[users: CARDINAL];

As noted in the specification of those procedures, ArpaRouter.ArpaPackageMake will simply
increment a reference count if the protocol has already been started. And
ArpaRouter.ArpaPackageDestroy will not stop the protocols if decrementing the reference
count does not result in a zero value. ArpaRouterOps.GetUseCount may be used to interogate
the number of times ArpaRouter,ArpaPackageMake and ArpaRouter,ArpaPackageDestroy
have been called by returning the current reference count, or the current number of users
of the protocol package, to the caller.

H-7

H

H-8

TCP/IP Interfaces

Caution: Unloading the configuration that includes the ARPA protocol engines (any
configuration including ArpiiSubConfg.bcd) with a reference count that is not zero will
result in non-deterministic bE!havior.

ArpaRouterOps.LocaINetwork, l.ocaISubnet: PROCEDURE[
network: ArpaRouter.lnternetAddress] RETURNS[isLocal: BOOLEAN];

The procedure ArpaRouterops.LocalNetwork may be used to determine if the address
specified is included in the salme network as the host machine. That is to say, the network
number is the ,same. It does nl[)t guarantee that the remote address is directly accessible.

ArpaRouterOps.LocalSubnet ma.y be used to determine if the specified address is on the same
subnet as the host machine. If the result is true, this guarantees that the remote is on the
same network (Le., LocalNet'lNork would also return true with the same argument) and it
also asserts that the remote address is directly accessible.

ArpaRouterOps.SameNetwork: :flROCEDuRE(netA, netS: ArpaRouter.lnternetAddress]
RETURNs(isSame: BOOLEAN~;

ArpaRouterOps.SameSubnet: PROCEDuRE[netA, netS: ArpaRouter.JnternetAddress)
RETURNs(isSame: IsSame];

The two procedures ArpaRol~terOps.SameNetwork and ArpaRouterOps.SameSubnet are
extensions of ArpaRouterOps. LClca I Network and ArpaRouterOps.LocaISubnet. In the latter case
the argument passed is compared to the values of local parameters. Thus
ArpaRuterOps.SameNetwork[s()melnternetAddress, ArpaRouter.GetAddress[]] is identical to
ArpaRouterOps.LocaINetwork(somelnternetAddress].

In the case of ArpaRouterOps.SCllmeSubnet, it is possible that the two addresses specified are
not on the network. Under those conditions, it is not possible to ascertain the subnet masks
of one or both of the networks specified. That results in a returned value of cantTel1.

Pilot Programmer's Manual H

4 ArpaSysParameters

ArpaSysParameters defines some of the options that may be included in IP and TCP headers,
including type of service and security abstractions. The current package provides the
following guarantees with respect to type of service and security options.

A client may globally set any of the type of service parameters. Those parameters will be
transmitted in all outbound IP packets. The protocol package defined here is used in an end
station environment only. Consequently, other than transmitting the information, there is
no processing involved in supporting any of the type of service options.

The implementation described in this document is intended to be used in an unclassified
environment only. Client setting of security levels other than. unclassified (the default) is
unsupported. As long as the global security setting remains unclassified, the IP options
security options field will not be transmitted. Inbound packets may include security
options. If those options indicate a security classification higher than unclassified, there is
no guarantee that those packets will be discarded.

4.1 Types and constants

Many of the following types are used simply in the development of the top level types,
TypeOfService and SecurityObject. Consequently the intermediate types will not be
defined.

Fine point: However, it is left as an exercise to the reader to prove that they are correct.

ArpaSysParameters.AuthorityFlag: TYPE = MACHINE DEPENDENT RECORO(
source(O:O •• 6): wORo(O •• 128), more(O:7 •• 7): BOOLEAN1;

ArpaSysParameters.nuilAuthority: AuthorityFlag a [0. FALSE];

ArpaSysparameters.lpOption: TYPE = MACHINE DEPENDENT RECORO(
option(O:0 •• 7): OptionNumber.
length(0:8 •• 15): NATURAL(O •• 256)];

ArpaSysparameters.Precedence: TYPE = MACHINE DEPENDENT{
routine(O), priority. immediate, flash. flashOverride. criticEcp,
i nternetControl. networkControl(7)};

ArpaSysparameters.OptionClass: TYPE = MACHINE DEPENDENT{
control{O), rsvd1(1), debugging(2), rsvd2(3)};

ArpaSysparameters.OptionNumber: TYPE = MACHINE DEPENDENT RECORD[
d(O:O •• O): BOOLEAN.
class(O: 1 •• 2): OptionClass,
number(O:3 •• 7): NATURAL[O .• 40B)];

ArpaSysParameters.endNumber: OptionNumber a [FALSE, control, 0];

ArpaSysparameters.noopNumber: OptionNumber • [FALSE, control, 1];

H-9

H

H-10

TCP/IP Interfaces

ArpaSysparameters.basicSecurityNumber: OptionNumber • [FALSE, control, 2];

ArpaSysparameters.looseSourceRoutingNumber: OptionNumber • [FALSE, control, 3];

ArpaSysparameters.extendedSetcurityNumber: OptionNumber • [FALSE, control, 51;

ArpaSysParameters.structSourCEtRoutingNumber: OptionNumber • [FALSE, control, 9];

ArpaSysParameters.recordRoute,Number: OptionNumber • [FALSE, control, 7];

ArpaSysparameters.streamIDNumber: OptionNumber =- [FALSE, control, 8);

ArpaSysParameters.timestampNumber: OptionNumber =- [FALSE, debugging, 4];

ArpaSysparameters.basicSecuritylength: NATURAL[0 .• 256) • 7;

ArpaSysparameters.SecurityTypli!: TYPE,. MACHINE DEPENDENT{type(130)};

ArpaSysparameters.Securitylen~~th: TYPE. MACHINE DEPENDENT{minimumlength(4)};

ArpaSysparameters.Security: TYFIE :I LONG POINTER TO READONLY SecurityOption;

ArpaSysParameters.SecurityObj«!ct: TYPE :I MACHINE DEPENDENT RECORD[
type(0:0 •• 1): SecurityType +- type,
length(0:8 •• 1 5): Securityl~ength +- minimumLength,
level(1 :0 •• 1): SecurityLevel +- unclassified,
protection(1 :8 •• 15): Autl1iorityFlag +- nuIiAuthority];

ArpaSysparameters.SecurityLevnl: TYPE • MACHINEDEPENDENT{
unctassified(85), confidelntial(122), secret(173), topSecret(222)};

ArpaSysParameters.SecurityOptnon: TYPE :I MACHINE DEPENDENT RECORD(
option(0:0 •• 15): IpOptiorl +- [basicSecurityNumber, basicSecuritylength],
security(1 :0 •• 31): SecuritvObject +- [],
noop(3:0 •. 7): OptionNun1ber +- noopNumber,
end(3:S •• 15): OptionNurTIber +- endNumber];

The SecurityOption constru(:t defines the default security implemented. Since this is a
multiword construct, procedures requiring a security argument pass a reference to a
SecurityOptions record. On those procedures that accept a security argument, a NIL is
equivalent and preferrable to the default security options. Either setting will result in
packets being transmitted with no security options included.

ArpaSysParameters. TypeOfService: TYPE ::I MACHINE DEPENDENT RECORD(
precedence(O: 0 •. 2): Prec1edence +- routine,
delay(O: 3 •• 3): BOOLEAN .,... FALSE,
throughput(O: 4 .• 4): BOOl.EAN .-FALSE,
reliability(O: 5 •• S): BOOLEJ~N .-FALSE,
reserved(O: 6 •• 7): WORD[O .. 4) +- 0];

The TypeOfService construct defines the default type of service implemented and is the
value used as a default in pro4=edures that require a type of service argument.

Pilot Programmer's Manual

ArpaSysparameters.TcpOptionType: TYPE III MACHINE DEPENDENT{
eol(O), nop, maxSegment, (25S)};

4.2 Procedures

H

The following procedures set the relevant parameters that are used as system wide
defaults.

ArpaSysParameters.GetSecurity: PROC[] RETuRNs[security: Security];

A client may query the current security'options at any time by calling GetSecurity. The
reference returned is readonly and may not be used to modify the value of the system's
security object directly. In order to maintain a copy of the current settings the referent
must be copied into a variable allocated by the client.

ArpaSysParameters.SetSecurity: PRoc[security: Secu rity];

A client may call SetSecurity and modify the system's current value of the security options.
The referent passed as the security argument will be copied into the system's global data
and applied to all transmitted and received packets from that point on.

Note: Setting any value of the security options other than the default is not supported.

GetTypeOfService: PROC[] RETURNS[toS: TypeOfService];

A client may query the current type of service options at any time by calling
GetTypeOfService.

SetTypeOfService: PROC[toS: TypeOfService];

In order to modify the current assignments for type of service, a client may call
SetTypeOfService. The value specified as tos will become the system's default value.

H-I1

H TCP/IP Interfaces

5 Arpa Utility

H-12

ArpaUtility is a collection of' procedures through which higher level clients may specify
configuration details that ma.y be environment and/or installation specific.

5.1 Types

ArpaUtility.Option: TYPE = {
securityDiscard, tcpKeep·Alive, use~ip, spare2, spare3, spare4, spareS};

The current implementation permits the setting of several soft switches defined by
ArpaUtility.Option. Each option has a specific function, a default value and global impact.

securityDiscard
This switch is used to control the disposition of Internet Protocol (IP) packets that
arrive at the local machine with a security classification higher than is supported. If
this switch is set to TRUE such packets will be discarded and the clients will not be
notified. If it is FALSE, the packets will be delivered normally. The default value of the
switch is TRUE, i.e., the packets will be discarded.

tcpKeepAI ive
If the tcpKeepAlive swit<:h is TRUE the system will transmit keepalive packets on all idle
TCP connections at predetermined intervals.

useRip
Routing Information Prlltocol (RIP) is a Internal Oatway Protocol (lOP) that has
gained some poularity in the ARPA community. It provides end stations with hints
about routing topologies and delays to remote networks. As such it can be used by
higher level clients as input into timeout algorithms and the like. If this option is set to
TRUE the system willlist,en for RIP response packets that are gratuitously broadcasted
by gateways supporting RIP to refresh the local machine's internal routing table.
Having this switch set to TRUE will also cause the station to solicit information about
routes to remote networks when the entries are first entered into the cache. The
default value for this switch is FALSE. In that setting the system relies on the static
information (see ArpaUtility.SetGateway) in conjunction with ICMP redirects to
maintain the local cache.

spare2, spare3, spare4, spare·S
These switches are reserved and currently unimplemented.

ArpaUtility.Options: TYPE = PACKED ARRAY Option OF BOOLEAN;

ArpaUtility.Options defines the type of the exported variable.

5.2 Exported variables

Arpautility.options: READONLY ()ptions;

ArpaUtility.option exports the current setting of each of the switches. These switches are
READONL Y and may only be sc~t during startup.

ArpaUtility.zone: < <READONLY:> > UNCOUNTED ZONE;

ArpaUtility.zone exports a heap that is used by all internal state machines for incidental
storage. This heap must be created before starting any of the protocol engines

Pilot Programmer's Manual H

(ArpaRouter.ArpaPackageMake) by calling ArpaUtility.CreateZone. The zone must not be
deleted until after those protocol engines have been stopped (by calling

_ ArpaRouter .ArpaPackageDestroy).

5.3 Procedures

ArpaUtility.CreateZone: PRoc(pages. increment: CARDINAL +-10];

ArpaUtility.CreateZone must be the first procedure called in the initialization process. This
procedure creates the heap used by all the low level protocol machines for incidental
storage. The client may tune the heap to expected requirements by adjusting the pages and
increment arguments appropriately. Those arguments will be applied directly to a
Heap.Create function. If the heap has already been created, this operation is a no-op.

ArpaUtility.DeleteZone: PRoe[checkEmpty: BOOLEAN];

This procedure must not be called until after the client has first called
ArpaRouter.ArpaPackageOestroy. It should then be called to delete the storage occupied by
the heap during operation. If the package is to be unloaded, to not call this procedure at the
proper time would cause a storage leak of the entire heap even if the heap is empty. When
called, the client may test to see if the heap was indeed empty by setting the checkEmpty
argument to TRUE. Calls the Arpautility.DeleteZone where the heap has already been deleted
is treated as a no-op.

ArpaUtility. GetHost: PROen RETURNS(ArpaRouter.l nternetAddress];

ArpaUtility. GetGateway: PRoeO RETURNS(ArpaRouter.l nternetAdd ress];

ArpaUtility.GetSubnetMask: PROen RETURNS[ArpaRouter.lnternetAddress];

Arpa Utility. GetNameServer: PROen RETURNS(ArpaRouter.1 nternetAddress];

ArpaUtility.GetDefaultDomain: PROe[LONG STRING];

Each of the above procedures returns, in internal format, the value of the relevant global
variable that was set during initialization.

Caution: Due to a startup problem, it is not possible for the implementation to detect if the
global variables have actually been set. It is the client's responsibility to insure that the
proper set procedure has been called before any calls to any of the get procedures.

ArpaUtility.SetHost: PROc[LONG STRING];

ArpaUtility.SetHost defines the home internet address of the machine. That address is
usually associated with the primary networking device, which is most likely to be the first
ethemet controller. Configurations not having an ethernet as the primary networking
controller are not supported. This caution is also applicable to ArpaUtility.SetGateway,
ArpaUtility.SetNameServer and ArpaUtility.SetDefaultDomain if they are specified.

Caution: The LONG STRING passed in as the argument must not require any network access.
It should be of the form DD.DD.DD.DD where the 'D is a decimal digit. The numbers may
be in octal or hexidecimal base providing the fields are suffixed with the proper character,
~B or ~H respectively, but this is not recommended.

ArpaUtility.SetGateway: PRoe(LONG STRING];

If the system is being used in an internet or subnet environment, the IP address of the
primary gateway must be specified. This need not be the only gateway available on the

H-13

H

H-14

TCP/IP Interfaces

local subnet. If others are available, they will be discovered either by ICMP redirect
packets or by use of the RIP protocol.

ArpaUtility.SetSubnetMask: PROC(LONG STRING];

If subnetting (see RFC 950) is to be used on the local network, the subnet mask must be
specified. The subnet mask is required by this implementation to be consistant for all
subnets on the same network. .

ArpaUtility.SetNameServer: PRIOC[LONG STRING];

ArpaUtility.SetNameServer provides the address of the default Domain server. It need not be
the only domain server a vail:able on the local subnet or network or internet. Others may be
discovered by the resolver by using the Domain protocol.

ArpaUtility.SetDefaultDomain:: PROC(LONG STRING];

The LONG STRING specified in ArpaUtility.SetDefaultDomain will be appended to lookups that
use the resolver.

ArpaUtility.SetSystemOptions: PRoc(option: Option, setting: BOOLEAN];

This procedure must be called before ArpaRouter.ArpaPackageMake if it is to make changes
to the default settings. It may be called as many times as there are options to set, once for
each option. The value of setting may be interpreted as a pure BOOLEAN (Le., TRUE or FALSE) or
as a switch using TRUE as equivalent to on and FALSE as equivalent to off.

Pilot Programmer's Manual H

6 Resolve

The Resolve interface translates between human-readable strings and the internal
representation of Internet addresses.

References:

6.1 Signals and Errors

RFC952. DoD Internet Host Table Specification. Harrenstien, October,
1985.
RFC1034. Domain Names· Concepts and Facilities. Mockapetris,
November, 1987.
RFC1035. Domain Names • Implementation and Specification.
Mockapetris, November, 1987.

Resolve.CantAcquireHostsDotTxt: SIGNAL;

This signal is obsolete and will never be raised again.

Resolve.Error: ERROR [which: WhichErrorl;

Resolve.WhichError: TYPE :I {

badQuery, serverFailure, nameError, notlmplemented, refused, otherRCode,
serviceUnavaiiable, serverUnreachable, networkProblem, cantFind, noAnswer,
badReply, badSyntax, other};

Resolve.Error may be raised by several of the procedures dermed below. The table below
dermes the reasons the error was raised and possible corrective actions when the error is
raised.

badQuery

serverFailure

nameError

notlmplemented

refused

otherRCode

A name server answered that didn't recognize the question
(parameters of the query were not understood). This is an
internal error in either the local implementation or that of the
server that responded. This operation should not be retried
and the local system administrators should be notified.

A server failure notification was returned by a name server.
The indication is that there is some problem with the
particular server. Local system administration should be
notified.

The server that responded claims that there is no such name.
That server is supposed to be authoritive. If the problem
persists after verifying the arguments of the procedure call,
notify local system administration.

The feature requested is not provided by the implementation
of a name server that responded. Verify that the operation is
valid before notifying administrative personnel.

A name server refused to answer. It may due to a security
issue. Do not retry the query.

This error code will be returned if the server responded with
an extended return code. Call a developer.

H-15

H

H-16

TCP/IP Interfaces

serviceUnavailable

serverUnreachable

networkProblem

cantFind

noAnswer

badReply

badSyntax

other

6.2 Procedures

The domain query resulted in an IeMP packet indicating that
there was no listener at the well-known port or the wrong
protocol was being used. Perhaps the service is temporarily
unavailable. Try again in a few minutes and if the situation
persists, notify administrative personnel.

There is no domain server currently reachable from the host
lmachine, perhaps due to a temporary network failure. Try
again in a few minutes and if the situation persists, notify
administrative personnel.

Some (hopefully) temporary unexpected network failure has
eaused the operation to fail. Try again in a few minutes.

:~o server could be located that knows about the existance Or
Ilon-existance of the name specified.

:~o server responded in a timely fashion. Try again later.

'rhe server responded with a reply that could not be processed
10cally. Either the server or the local implementation is in
4:!rror. Notify the local system administrators.

The argument to the procedure call had a bad syntax. This
apparently is a client problem and should not be retried until
the data is verified.

'rhe name exists but there is no data of the specified type or
the truncation bit is set in the reply.

Resolve.LocaIStringToAddr: PROC (s: LONG STRING]
RETURNS [addr: ArpaRouter.l.nternetAddress];

Resolve.LocalStringToAddr parses its argument string and returns the corresponding
internet address. The argunlent must be in standard host number representation: four
numeric literals separated by dots, representing the four bytes of the internet address in
order from most signific:ant to least significant. This procedure can raise
Resolve.Error[badSyntax1.

Resolve.StringToAddr: PROC [s: LONG STRING]
RETURNS [addr: ArpaRouter.l.nternetAddress];

Resolve.StringToAddr parses its argument string and returns the corresponding internet
address. If the argument is in standard host number representation, then it is converted
directly to an internet address as in Resolve.LocaIStringToAddr, above. Otherwise, the
argument is looked up first ill the host table HOSTS.TXT (if available), then in the Domain
Name Service if not found, and the resulting address is returned. This procedure can raise
Resolve. Error.

Resolve.AppendNameFromAddr: PRoe [
to: LONG STRING, addr: ArpctRouter.lnternetAddress, radix: CARDINAL +-10);

Resolve.LocaIAppendAddr: PRe)e [
to: LONG STRING. addr: ArpitRouter.lnternetAddress, radix: CARDINAL +-10];

Resolve.LocalAppendAddr converts an ArpaRouter.lnternetAddress to standard host number
representation: four numeric literals separated by dots, representing the four bytes of the

Pilot Programmer's Manual H

internet address in order from most significant to least significant. The result is appended
to the first argument, to. String.StringBoundsFault will be raised if the string described in
to is too short. The format of the numeric literals is determined by radix as in
String.AppendNumber.

Resolve.AppendNameFromAddr converts an ArpaRouter.lnternetAddress to a human­
readable name by looking up the address first in the host table HOSTS.TXT (if available),
then in the Domain Name Service if not found. If the lookup succeeds, the result is
appended to the first argument, to. String.StringBoundsFault will be raised if the string
described in to is too short. If the lookup fails, Resolve.Error will be raised.

H-17

H TCP/IP Interfaces

7 TcpStream

H-18

TcpStream is the client interface to the implementation of TCP in the ARPA family of
protocols. TCP provides a sequenced, error-free stream across interconnected
communication networks with duplicate suppression and flow control. It is assumed that
the client is familiar with the! TCP protocol specification, RFC 793.

References: RFC793 Trclnsmission Control Protocol, Postel, September, 1981.

7.1 Types and constants

TcpStream.CompletionCode: TYPE. {normal. timeout. pushed. closing, endUrgent};

Returned from the get procedure, CompletionCode indicates the status of that get. Any
status besides normal may have returned less data than requested by the client. The client
should look at the byteCount return code from the get in these cases to determine the
amount of data actually retw·ned.

normal indicates that the ge·t completed normally, returning to the client after retrieving
the amount of data requested. timeout indicates that the TCP waited the amount of time
specified in the Make or subsequent setWaitTime, and the requested amount of data did
not arrive. pushed indicates that the remote end pushed the data, causing it to be
transmitted immediately frolm the remote, and causing the local get to return at the point
in the stream when it noticed the pushed data. closing implies a push, and indicates the
remote end has no more data to send and issued a close, causing the local get to return
upon receipt of the close. endUrgent indicates the client (who was previously notified of an
urgent via waitForUrgent) hSLS reached the last byte of the data marked urgent.

TcpStream.defaultWaitTime: Tc:pStream.WaitTime • 60000;

The default wait time of6D seconds is taken from the maximum TCP packet lifetime.

TcpStream.WaitTime: Type :II LO'NG CARDINAL;

TcpStream.Failed: SIGNAL [why: TcpStream.FailureReason);

TCPStream.FailureReason: TYPE. {
timeout,
noRoute ToDesti nation,
noServiceAtDestination,
remoteReject.
precedenceMismatch,
security Mismatch,
optionMismatch.
nOAnswerOrBusy,
no Tra nslati on ForDesti na ti on,
circuitlnUse.
ci rcu itN,otReady.
noOialingHardware.
dialerHardwareProblem};

Pilot Programmer's Manual H

Failed is the error that is raised when a connection could not be established. Since the
connection was never established, the client should not attempt to Close or Destroy it after
this error.

Failure reasons are described below.

timeout
The connection could not be established within the amount of time the client
specified in the timeout parameter to the Make procedure.

noRouteToDesti nation
No route exists from the local socket to the target socket.

remoteReject
The connection had to be reset for one of two reasons: either a TCP reset packet
was received from the remote or a syn packet was received that acknowledged
data was never sent. Though such a packet is probably a Ustray," the integrity
of the connection was jeopardized, and it was reset. The client may want to try
the operation again, in case the condition was transient.

precedenceMismatch
A connection attempt was made to the local machine with a precedence lower
than that specified in the Listen or Make procedure.

securityMismatch
A connection attempt was made to the local machine with a security leve I
lower than that specified in the Listen or Make procedure.

TcpStream.Handle: TYPE. LONG POINTER TO TcpStream.Object;
TcpStream.Object: TYPE • RECORD [

destroy: PROC[tsH: TcpStream.Handle].
put: PROC [block: Environment.Block, push, urgent: BOOLEAN],
get: PRoe [block: Environment.Block]

RETURNS [byteCount: CARDINAL. completionCode: TcpStream.CompletionCodel.
waitForUrgent: PRoe [block: Environment.Block],
close: PRoe.
setWaitTime: PRoe [TcpStream.WaitTime].
findAddresses: PRoe RETURNS (

localAddr. remoteAddr: ArpaRouter.lnternetAddress.
local Port, remotePort: ArpaRouter . Port]] ;

A Handle Wliquely identifies a connection. Operations on this connection are executed by
calls to the procedure fields in the Object.

destroy deletes the TCP stream. Except under error conditions, clients should call the close
proc before deleting the stream in order to close gracefully and ensure proper
delivery/reception of the last piece of data. A call to destroy on a non-suspended stream
without executing the closing protocol causes a TCP reset message to be sent to the remote
end. destroy flushes all input and output queues and destroys all stream state information.
After calling destroy, the stream handle is invalid and cannot be used again.

put queues the block of client output data specified by block for transmission. If the client
wishes to specify that the data be flushed out to the network instead of being buffered in
the local TCP, then push should be set to TRUE. Indicating push not-only prevents buffering
at the local end, but also causes outstanding gets at the remote end to return immediately
upon receiving the pushed data. Use push only when really needed, as it impacts the

H-19

H

H-20

TCP/IP Interfaces

efficiency of the connection. Setting urgent marks the last byte of the block as the end of
urgent data.

get retrieves the specified amount of data from the stream and puts it in block. If the data
is not pending, then get wait:; the amount of time specified in the Make call (or subsequent
setWaitTimes) for the data t,o arrive from the remote. byteCount is the actual number of
bytes transferred, as the clieJ:lt may not get the amount of data requested if the wait time is
exceeded, if the data was. pushed by the remote, or if the remote closed. The
completionCode indicates the status of the completed get call.

waitForUrgent watches for ,a packet to arrive with the urgent bit set. This procedure
returns as soon as TCP recE!ives a packet with the urgent bit set. It is then the client's
responsibility to issue gets to flush the stream to the end of the urgent data. Typically, a
client has a separate process that is waiting in waitForUrgent and it notifies the data
receiver when it receives notification of pending urgent data. As with all operations that
block, waitForUrgent can be c:anceled.

close is the operation used to start gracefully closing down the stream when the client has
no more data to send. Outstanding puts are transmitted until complete, as flow control
permits. After calling this pJt"ocedure, the client should issue gets to receive outstanding
data until a get returns with the completion code of closed, indicating the remote end has
also issued a close. It is the client's responsibility to continue the graceful close handshake
by retrieving the close outco:me from the remote with get. If the client destroys the stream
immediately after issuing a close without waiting for the close from the other end, then
the data will not be reliably transferred.

setWaitTime sets the current timeout value for the stream. The timeout is the amount of
time in milliseconds that a gElt waits for the requested data before returning to the client.

findAddresses returns the SOf~kets that identify the connection.

TcpStream.NotifyListenStartedProc: TYPE = PROCEDURE;

NotifyListenStartedProc is called by Listen or Make during a passive connection
establishment. It is called when all resources have been allocated and started for the
connection and the port is ready to accept a connection attempt.

TcpStream.SuspendReason: TYFJE • {
notSuspended, transmis!iion Ti meout, noRoute roCesti nation,
remoteServiceDisappear,ed, reset, securityMismatch, precedenceMismatch};

Suspended is raised if an alrl~ady established connection is suspended for any reason. The
only operation a client can (a.nd must) do after receiving this error is Delete. It is also the
client's responsibility to cause an UNWIND so that the TCP state can be properly cleaned up
before calling Delete.

Suspend reasons are described below.

notSuspended
U sed for internal processing and should never be seen by the client.

transmissiohTi meout
The remote end has not acknowledged data sent to it in a long time. The local
end concluded tha.t the remote has disappeared.

Pilot Programmer's Manual H

noRoute ToDesti nation
The route from the local socket to the remote socket has disappeared and
another could not be found to use.

remoteServiceDisappeared - unused.

reset A TCP reset message was received from the other end.

securityMismatch
A connection attempt was made to the local machine with a security level
lower than that specified in the Listen or Make procedure.

precedenceMismatch
A connection attempt was made to the local machine with a precedence lower
than that specified in the Listen or Make procedure.

noAnswerOrBusy, noTranslationForDesti nation, circuitl n User, ci rcu itNotReady,
noDialingHardware, dialerHardwareProblem

These failures refer to problems on circuit-oriented networks and are not
implemented.

WaitTime is used for establishing intervals for timeouts. It is always in milliseconds.

7.2 Exported variables

TcpStream.infiniteWaitTime: READONLY TcpS~ream.WaitTime:

infiniteWaitTime is used either to keep an operation from ever timing out or to declare no
interest in processing timeouts. A client using infiniteWaitTime should be prepared to
cancel the affected process at some time.

TcpStream.uniquePort: READONLY ArpaRouter.Port;

uniquePort is a unique port number that may be used in creating TCP streams when the
client does not need a well known port number of the local end.

7.3 Signals and Errors

TcpStream.Suspended: ERROR [why: TcpStream.SuspendReason];

TcpStream.C!osed: ERROR;

Closed indicates the client tried to issue a put or a close after the connection was closed.

TcpStream.ListenTimeout: SIGNAL;

ListenTimeout is raised by the Listen procedure if a connection request does not arrive
within the interval specified by IistenTimeout in the Listen procedure. The client may
decide either to stop listening or to re~ume the signal to continue listening.

H-21

H

7.4

H-22

TCP/IP Interfaces

Procedures

TcpStream.Listen: PRoe [
localPort: ArpaRouter.Port,
IistenTimeout: TcpStream.\MaitTime TcpStream.infiniteWaitTime,
receiveTimeout: TcpStreanl.WaitTime ~ TcpStream.defaultWaitTime,
typeOfService: ArpaSysPanmeters.TypeOfService ~ [],
security: ArpaSysparameters:.Security NIL,
options: Environment. Block: ~ [Environment.nuIlBlock"
notifylistenerStarted: TCI)Stream.NotifylistenStartedProc ~ NIL]
RETURNS(tsH: TcpStream.Halndle];

The client must tell a passive TCP the port on which to listen and provide the process to do
so. This requirement is accomlplished with Listen.

local Port is the port on which to listen for a connection request.

receiveTimeout is the timeo\Jlt that will be set on the stream tsH after the connection has
been established.

typeOfService is the service desired in the network. This level of service will be requested
in all packets transmitted on streams resulting from the listen command. The request will
override the system's default ·as dermed by the interface ArpaSysParameters.

security is the required seculdty for a connection. When TCP (through Listen) receives a
connection request, it checks :security to determine if it is allowed to honor the request. The
default value of NIL implies that the system's default value for security should be used. If
the incoming connection reqtlest carries a security classification that is higher than those
specified in the listen reques·t (or the system's default), the request for connection will be
suppressed.

options are the TCP options .. It is the client's responsibility to put the options into the
options block in the proper format. If options are not to be used, then this parameter should
be a null block.

notifylistenerStarted is called when all resources have been allocated and started for the
connection and the port is ready to accept a connection attempt.

If the connection is honored, then Listen creates the stream and returns it to the client in
tsH. The client regains control only when Listen returns with a valid stream, or when
IistenTimeout is exceeded, raising the signal ListenTimeout.

TcpStream.Make: PRoe [
local, remote: ArpaRouter.l nternetAddress,
10calPort, remotePort: ArJtaRouter.Port,
establishConnection: BOOLEAN +- TRUE,
timeout: TcpStream.WaitTime 4- TcpStream.infiniteWaitTime,
typeOfService: ArpaSysParilmeters.TypeOfService ~ [],
security: TcpStream.Security NIL,
options.: Environment.Block ~ Environment.nuIiBlock],
notifyListenerStarted: TqtStream.NotifyListenStartedProc·~ NIL]

RETURNS [tsH: TcpStream.Handle];

Make is the procedure used to solicit a TCP connection.

Pilot Programmer's Manual H

local is the address of the local machine. Clients can set local to
ArpaRouter.unknownlnternetAddress, and the TCP implementation fills in the correct
address. remote is the address of the machine to connect. It can be any machine in the
Internet, including the local machine.

10caiPort is the port on the local machine to use for the connection. It is commonly set to
uniquePort. remotePort is the port on the remote machine to connect. This value may be a
well known port number for some well known service in the internet (see ArpaConstants), or it
may be a port known privately between the communicating partners. establishConnection
determines whether the connection is to be active or passive. If it is TRUE, the local end will
actively solicit the connection, else the local end will passively listen for a c'onnection
request. Note that the Listen procedure is the usual method of creating a passive listener.

timeout is the amount of time to wait for a connection to happen. If the timeout is exceeded,
then the Failed error is raised. precedence is the service precedence desired in the network.

typeOfService is the service desired in the network. This level of service will be requested
in all packets transmitted on streams resulting from the Make procedure call. The request
will override the system's default as defined by the interface ArpaSysParameters.

security is the required security for a connection. When TCP receives a packet, it checks
security to determine if it is allowed to pass the data to the client. The default value of NIL

implies that the system's default value for security should be used. If the incoming packet
carries a security classification higher than those specified in the make request (or the
system's default) the request for connection will be suppressed.

options are the TCP options to be used. It is the client's responsibility to put the options
into the options block in the proper format. If options are not to be used, then this
parameter should be a null block.

notifyListenerStarted is called when all resources have been allocated and started for the
connection and the port is ready to accept a connection attempt. This will only be used
when creating a passive listener.

If the connection is successfully established (the error Failed is not raised), then the return
value tsH identifies a connection that is ready to be used by the client. Operations on this
stream are executed through the procedures in the object pointed to by tsH.

7.5 Restrictions

The options parameter in the Make procedure is currently ignored, since only the
maximum segment size option 'exists, and it is set by TCP during the connection
handshake.

H-23

H TCP/IP Interfaces

8 ArpaTelnetStream

H-24

Telnet is a virtual terminal protocol to be used with the TCP/IP protocols. The
ArpatelnetStream interface provides Pilot clients with an interface to the Telnet Protocol
defined by RFC854 and telnet options defined by RFCs 855 to 861.

References:

8.1 Types and constants

RFC854 TBLNET Protocol Specification, Postel, May, 1983.

RFC855 TELNET Option Specification, Postel, May, 1983.

RFC856 TELNET Binary Transmission, Postel, May, 1983.

RFC857 TE~LNET Echo Option, Postel, May, 1983.

RFC858 TBLNET Suppress Go Ahead Option, Postel, May, 1983.

RFC859 TELNET Status Option, Postel, May, 1983.

RFC860 TELNET Timing MarkOption, Postel, May, 1983.

RFC861 TELNET Extended Options - List, Postel, l'lfay, 1983.

RFC960 Assigned Numbers, Reynolds, December, 1985.

ArpatelnetStream.Handle: TYPE. LONG POINTER TO ArpatelnetStream.Object;

ArpatelnetStream.Object: TYPE .1 RECORD [

options: ArpatelnetStream.Options,
getByte: ArpaTelnetStream.GietByteProc,
putByte: ArpaTelnetStream.PutByteProc,
get: ArpaTelnetStream.GetPr1oc,
put: Arpa TelnetStream.PutProc.
push: Arpa TelnetStream.PushProc.
delete: ArpaTelnetStream.DeleteProc.
getTi meout: Arpa TelnetStrenm. GetTi meoutProc.
setTi meout: Arpa TelnetStrea m.SetTi meoutProc.
setlnputOptions: ArpaTelne,tStream.SetlnputOptionsProc.
flushDataLine: ArpaTelnetSt:ream.FlushDataLineProc.
setTerminalType: ArpaTelnt!tStream.SetTerminaITypeProc.
performAction: ArpaTelnetStreamActionPro(,
setOption: Arpa TelnetStream.SetOpti OnPrOc);

A telnet Handle is modeled after the Pilot stream handle interface, and the procedures it
contains are similar to the Pilot stream interface.

The options record contains l~ettings of a variety of user parameters.

getByte returns the next byte of data in the data stream. If no data is pending, then
getByte waits for an infinite amount of time if no time out was set or waits the amount of
time specified in the setTilTleout procedure. getByte also returns the reason that the
procedure is returning in the field code. In most cases, this is se~ to normal, but if some
event occurs that forces the procedure to return, this is noted in the code field.

put Byte places one byte of data on the out going telnet connection. Setting the push flag to
TRUE has the same effect as the sendNow procedure on a Pilot stream: the data is flushed

Pilot Programmer's Manual H

from the sending side to the receiving side. If the push flag is TRUE, then the TCP data
buffers are flushed. This operation is expensive and should be done only when necessary.

The get and put procedures are similar to the getbyte and putByte procedures, except they
operate on blocks rather than bytes. The same comments on the push boolean apply for put
as well as for putByte.

push causes all buffered data to be sent to the telnet partner. This is the same operation
that is done when put or putByte procedures are called with the push boolean set tOTRUE.

getTimeout returns the timeout that is set on the telnet connection.

setTimeout sets the amount of time the telnet connection waits on a get operation before
returning with a timeout reason or before raising the timeout signal. If this procedure is
called with a value of 0, then the timeout in effect is infinite. The length of time the get
process can wait is limited to about 16 minutes.

setlnputOptions is used to set the various options described below.

flushDataLine flushes the incoming data stream of all pending data.

setTerminalType registers the client's desired terminal type for the current telnet
connection. This procedure should be called before any terminal-type option negotiation
with the remote host begin. The terminal type information then is used to answer remote
terminal-type queries.

periormAction sends telnet control information to the remote end.

setOption negotiates telnet options with the remote host.

ArpatelnetStream.Options: TYPE :II RECORD [
signalTimeOut: BOOLEAN +-TRUE,
signalOnGoAhead: BOOLEAN +- FALSE,
signalOnEraseLine: BOOLEAN +- FALSE,
signalOnEraseChar: BOOLEAN +- FALSE,
signalOnAbort: BOOLEAN +- FALSE,
signalOnlnterrupt: BOOLEAN +- FALSE,
signal On Break: BOOLEAN +- FALSE,
signalOnShortBlock: BOOLEAN +-FALSE,
willEcho: BOOLEAN +-FALSE,
willBinary: BOOLEAN +- FALSE,
willStatus: BOOLEAN +- FALSE.
wiliSupGA: BOOLEAN +- FALSE.
wiliTimeMark: BOOLEAN +- FALSE.
willTerminalType: BOOLEAN +- FALSE,
willEOR: BOOLEAN +- FALSE,
willEXOPL: BOOLEAN +- FALSE];

Options decides the way in which the telnet connection operates and how the client is
notified about connection events. The options that decide how the user is notified about
telnet events are signalTimeOut, signalOnGoAhead, signalOnEraseLi ne,
signalOnEraseChar, signalOnAbort, signalOnlnterrupt, 'signaIOnBreak, and
signalOnShortBlock. The options that govern the way a telnet connection responds to
option requests from a connection partner are willEcho, wiliBinary. willStatus, willSupGA,
wiliTimeMark, wiliTerminalType, wiIlEOR, and wiIlEXOPL.

H-25

H

H-26

TCP/IP Interfaces

The signal options, when true', cause the client to be signaled of events rather than notified
in the return arguments of tht! get call.

The other boo leans govern the telnet options exported to remote. Only the options
supported by the client implementation should be set to TRUE. A TRUE option means the
client is willing to negotiate that particular option with the remote, and the client supports
that option in a bi-directional manner.

ArpatelnetStream.ReturnCode: TYPE. {
abort, binary, break, doEJ(tendedOptionsList, doStatus, doTerminalType, echo,
endOfRecord, eraseChar, eraseLine, goAhead, interrupt, normal, sendStatus,
sendTerminalType, shortl810ck, status, supGA, terminalTypels, timeMark,
wiliBinary, wiliEcho, wililEndOfRecord, will ExtendedOptionsList, wi II Status,
willSupGA, wiliTerminallype, wiliTimeMark};

ReturnRecord: TYPE :I RECOFtD [
returnCode: ReturnCode normal,
argument: SELECT OVERLAID ReturnCode FROM

binary, doExtendedOptionsList, doStatus, doTerminalType,
echo, endOfRecol'd, normal, sendStatus, sendTerminalType,
supGA, ti meMark" wi II Bi nary, will Echo, wi II EndOfRecord,
willExtendedOptiionsList, willStatus, willSupGA,
wiliTerminalType', wiliTimeMark • > [on: BOOLEAN +- FALSE],

terminalTypels, status. > [hostStatus: ArpaTelnetStream.HostStatusRecordl,
ENDCASE];

The ReturnRecord is returned by all get operations, passing control information received
from the remote connection to' the client.

The return codes are described below.

abort

binary

The remote side of the telnet connection indicated that all the queued output
should be suspended but that the currently running process should continue.

The telnet partner requests or acknowledges the local end to start treating
both sending and receiving data in binary mode.

break Same as pressinl~ the Break key (128 decimal).

doExtendedOptionsList
The telnet partner requests or acknowledges the local end to begin
negotiating options that are on the "Extended Options Lists".

doStatus The telnet partner wishes to be able to send requests for status of option
information or confirms that it is willing to honor such requests.

doTerminalType
The telnet partner is willing to receive terminal type information during
terminal type sub-negotiation.

echo The telnet partn1er requestes the local end to begin echoing, or confirms that it
is willing to be ec!hoed by the local end.

endOfRecord is unused.

Pilot Programmer's Manual H

eraseChar The remote side of the telnet connection has sent an erase character code. The
user should treat this as if an eraseChar character were typed to the local
stream.

eraseline The remote side of the telnet connection has sent an erase line code. The user
should treat this as if an eraseLi ne character were typed to the local stream.

goAhead The telnet partner indicates that all the data has been sent and it is now
waiting for data.

interrupt The remote side of the telnet connection indicated that the current process
should be cancelled.

normal The procedure is returning because it has exhausted the space provided for
the results of the get operation. The byte(s) received from the remote host is
pure data with no control information.

sendStatus The telnet partner requests the local end to send its perception of the options
used in the current connection.

sendTerminalType
The telnet partner requests the local end to send its terminal type.

shortBlock is unused.

status The telnet partner sends its perception of the options used in the current
connection. The status information is contained in the return record.

supGA The telnet partner requests or acknowledges the local end to start supressing
the telnet Go-Ahead (GA) character when transmitting data.

terminalTypels
The return record contains the terminal type sent by the telnet partner in
response to the client's send. terminal request. The terminal type is an Ascii
string and should conform to RFC 940 - Assigned Numbers.

timeMark The telnet partner requests the local end to return a WILL-TIMING-MARK
in the data stream at the appropriate place.

wiliBinary The telnet partner requests for permission or agrees to begin transmitting
data in binary mode.

wi II Echo The telnet partner requests permission or agrees to begin echoing for the local
end.

will EndOfRecord unused.

willExtendedOptionsList

will Status

The telnet partner requests permission or acknowledges that it will begin
negotiating options that are on the "Extended Options List".

The telnet partner agrees to send status information in response to
sendStatus requests.

wiliSupGA The telnet partner requests permission or agrees to begin supressing GA
. character when transmitting.

wiliTerminalType
The telnet partner is willing to send terminal type information during
terminal type sub-negotiation.

H-27

H

H-28

TCP/IP Interfaces

willTimeMark
The telnet partner assures the local server that it is doing time mark
synchronization. as requested.

ArpatelnetStream.HostStatusRe,cord: TYPE :I RECORD [
remote: PACKED ARRAY ArpatelnetStream.OptionsEnum OF BOOLEAN ~ ALL[FALSE],
local: PACKED ARRAY ArpatelnetStream.OptionsEnum OF BOOLEAN ~ ALL[FALse],
Terminal: LONG STRING L);

The HostStatusRecord is a structure that is used to hold option status of a telnet
connection. The remote field contains information on options that the telnet partner
currently supports. The local field contains information on options that the local end
supports. The Terminal is an Ascii string specifying the terminal type which the connection
is supporting. This field may be NIL if no terminal type is set.

ArpatelnetStream.OptionsEnum: TYPE. {
Binary, Echo, EOR, EXOPI., Status, SupGA,TerminaIType, TimeMark};

The OptionsEnum is an enumeration of all the telnet options implemented by the
Arpa Tei netStream interface.

ArpaTelnetStream.Action: TYPE :1 {

abortOutput, areYouThere, break, eraseChar, eraseline, GA, interruptProcess,
sendStatuslnfo, sendTerrninalType, status};

Action is an enumeration of the control information the client can send.

ArpaTelnetStream.SetOptionType: TYPE • {
binary, doStatus, doTEtrminalType, echo, EOR, extendedOptionsList, supGA,
timeMark, wiliBinary, wiliEcho, willEOR, willExtendedOptionsList, wiliStatus,
wiliSupGA, wiliTerminal1rype, wiIiTimeMark}; .

SetOptionType is an enumeration of all the option negotiation types the client can use.

ArpaTelnetStream.ActionProc: T'fPE =- PROCEDURE [
sH: ArpaTelnetStream.Handle, action: ArpaTelnetStream.Action];

ActionProc is a procedure type that allows the client to send control information to the
telnet partner. sH is the current telnet session handle, and action contains the specific
operation to perform.

ArpaTelnetStream.DeleteProc: T''fPE :I PROCEDURE [sH: ArpaTelnetStream.Handle];

DeleteProc is a procedure typ1e that allows the client to delete the telnet session specified by
parameter sH.

ArpaTelnetStream.FlushDataLincaProc: TYPE =- PROCEDURE [sH: ArpaTelnetStream.Handle);

FlushDataLineProc is a procedure type that allows client to flush the incoming stream of all
pending data.

Pilot Programmer's Manual

ArpaTelnetStream.GetByteProc: TYPE ::I PROCEDURE [sH: Arpa TelnetStrea m. Handle]
RETURNS [byte: Environment.Byte, code: ArpaTelnetStream.ReturnCode];

H

GetByteProc is a procedure type that returns the next byte of data from the current telnet
data stream along with the appropriate status code.

ArpaTelnetStream.GetProc: TYPE ::I PROCEDURE [
sH: ArpaTelnetStream.Handle, block: Environment.Block]
RETURNS [bytesTransferred: CARDINAL, cOde: ArpaTelnetStream.ReturnCode];

GetProc is a procedure type that allows the client to read data from the incoming telnet
stream on a per block basis. The data is stored in block. The number of bytes transferred
and the status code of the transfer are returned.

ArpaTelnetStream.GetTimeoutProc: TYPE ::I PROCEDURE [sH: ArpaTelnetStream.Handle]
RETURNS [timeout: TcpStream.WaitTime];

GetTimeoutProc is a procedure type that returns the time out value that is set on the telnet
stream specified by sH.

ArpaTelnetStream.PutByteProc: TYPE :I PROCEDURE [
sH: ArpaTelnetStream.Handle, byte: Environment.Byte, push: BOOLEAN1;

PutByteProc is a procedure type that allows client to place one byte of data on the out going
telnet stream. When push is set to TRUE, the byte is sent immediately.

ArpaTelnetStream.PutProc: TYPE • PROCEDURE [
sH: ArpaTelnetStream.Handle, block: Environment.Block, push: BOOLEAN];

PutProc is a procedure type that allows client to send data to the telnet partner on a per
block basis. When push is set to TRUE, the data are sent immediately.

ArpaTelnetStream.PushProc: TYPE ::I PROCEDURE [sH: ArpaTelnetStream.Handle];

PushProc is a procedure type that allows client to make sure all buffered data on the
current telnet session is sent to the telnet partner.

ArpaTelnetStream.SetlnputOptionsProc: TYPE = PROCEDURE [
sH: ArpaTelnetStream.Handle, options: ArpaTelnetStream.Optioms];

SetlnputOptionsProc is a procedure type that allows the client to modify local supported
options after the telnet stream is created.

ArpaTelnetStream.SetOptionProc: TYPE = PROCEDURE [
SH:ArpaTelnetStream.Handle,on:BOOLEAN,setOption:ArpaTeInetStream.SetOptionType];

SetOptionPr'oc is a procedure type that allows the client to negotiate various options with
the telnet partner. The setOption field contains the option to be negotiated, and the on
field determines whether that option is to be turned on or off. This procedure raises
ArpaTelnetStream.Error if the client negotiates an option that is not registered.

H-29

H

H-30

TCP/IP Interfaces

ArpaTelnetStream.SetTerminaITypeProc: TYPE = PROCEDURE [
sH: ArpaTelnetStream.Handle, terminalType: LONG STRING)

RETURNS [success: BOOLEAN);

SetTerminalTypeProc is a proced.ure type that allows the client to register its terminal type
for the Telnet terminal type option negotiation.

ArpaTelnetStream.SetTimeoutProc: TYPE = PROCEDURE (
sH: ArpaTelnetStream.Handle, timeout: TcpStream.WaitTime];

SetTimeoutProc is a procedure type that allows the client to set a time limit on data
retrieval wait time.

8.2 Signals

ArpatelnetStream.Error: ERROR [reason: ArpatelnetStream. Tel netErrorReason];

ArpatelnetStream.TelnetErrorReasoln: TYPE ;a {

doesntBinary, doesntEcho, doesntStatus, doesntTermType, timeout, doesntEOR,
doesntTimeMark, doesntEXOPl, doesntSupGA};

The signal Error is raised eithE!r when the client tries to enable an option that is not
supported by the telnet connection or when the timeout interval set by the client is reached
on a get operation.

ArpatelnetStream.StreamAborted: IERROR [abortReason: ArpatelnetStream.AbortReason];

ArpatelnetStream.AbortReason: TYFtE • {
closing, timeout. noRouteTo,Destination, noServiceAtDestination, remoteReject,
precedenceMismatch, securityMismatch, optionMismatch, transmissionTimeout,
remoteServiceOisappeared" reset, other};

ArpatelnetStream. GoAhead: SIGNAL;:

ArpatelnetStream.eraseLi ne: SIGNAL,;

ArpatelnetStream.eraseChar: SIGNAL;

ArpatelnetStream.Abort: SIGNAL;

ArpatelnetStream.lnterrupt: SIGNAL;

ArpatelnetStream.break: SIGNAL;

8.3 Proced ures

ArpaTelnetStream.AbortOutput: PRC)CEDURE [sH: ArpaTelnetStream.Handle] • INLINE {
sH.periormAction[sH, abortOutput]};

AbortOutput cancels the output of a remote process if the connected system supports
output abort; o~herwise, the proc1ess continues to completion.

ArpatelnetStream.AreYouThere: PROCEDURE [sH: ArpatelnetStream.Handle] - INLINE {
sH.periormAction(sH, areYoluThere]};

Pilot Programmer's Manual H

AreVouThere forces the remote host to send some visible signal (character or string) that
the connection is still active. The character or string is seen on the get operation.

ArpatelnetStream.Binary: PROCEDURE [sH: ArpatelnetStream.Handle, on: BOOLEAN] • INLINE {
sH.setOption{sH, on, binary]};

Binary sends a DO BINARY if on is TRUE, else it' sends a WON'T BINARY (Binary option
negotiation).

ArpatelnetStream.Break: PROCEDURE [sH: ArpatelnetStream.Handle] • INLINE {
sH.periormAction[sH, break]};

Break sends the telnet break character to the remote host.

ArpatelnetStream.Create: PROCEDURE [
input: TcpStream.Handle,
options: ArpatelnetStream.Options,
addLFToCR: BOOLEAN ~ TRUE]
RETURNS [telnetStream: ArpatelnetStream,Handle);

Create sets up a stream-like connection to a remote host. The following parameters are
needed: a TcpStream.Handle to the connection which provides the data in the field input; the
set of options which describes how the telnet stream appears to the user and to the telnet
connection partner; the boolean addLFToCR, which defaults to TRUE if not supplied. This
boolean should he set to FALSE when the client wishes to provide lines ending only in an
Ascii carriage return. The telnet implementation adds the additional Ascii line feed (LF) to
make the line a valid te lnet line.

This procedure returns a Handle containing the procedures which are the telnet stream.

ArpatelnetStream.Delete: PROCEDURE [sH: ArpatelnetStream.Handle] • INLJNE {sH.delete[sH]};

Delete is called before closing the telnet connection to free up local storage and destroy the
Handle passed in by the Create procedure.

ArpaTelnetStream.DoStatus: PROCEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] •
INLINE {sH.setOption[sH, on, doStatus]};

DoStatus sends a DO STATUS when on is TRUE, or else it sends a DON'T STATUS (Status
option negotiation).

ArpaTelnetSteam.DoTerminaIType:PROCEDURE[sH :ArpaTelnetStream.Handle, on: BOOLEAN] •
INLINE {sH.setOption[sH, on. doTerminalType] };

DoTerminalType sends a DO TERMTYPE if on is TRUE, or else it sends a DON'T TERMTYPE
(Terminal type option negotiation). ,

ArpaTelnetStream.Echo: PROCEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] • INLINE {
sH.setOption[sH, on, echo]};

Echo sends a DO ECHO if on is TRUE, or else it sends a DON·'T ECHO (Echo option
negotiation).

H-31

H

H-32

TCP/IP Interfaces

ArpaTelnetStream.EOR: PROCEDURE (sH: ArpaTelnetStream.Handle, on: BOOLEAN] =- INlINE {
sH.setOption[sH, on, EOI~)};

EOR sends a DO EOR when on is TRUE, or else it sends a DON'T EOR (End-OF-Record
option negotiation),

ArpatelnetStream.EraseChar: PROCEDURE [sH: ArpatelnetStream.Handle] =- INLINE {
sH.performAction[sH, eraseChar]};

EraseChar is used instead of BS SP to do an erase of the last character. On many systems
the character BS does the COI'rect operation.

ArpatelnetStream.EraseLine: PRIOCEDURE [sH: ArpatelnetStream.Handle1 =- INlINE {
sH.performAction[sH, eraseLine]};

EraseLine erases the last linE! typed (to the last CRLF).

ArpaTelnetStream.ExtendedOptionsList: PROCEDURE [
sH: ArpaTelnetStream.Handle. on: BOOLEAN] •
INlINE {sH.setOption(sH, on, extendedOptionsList]};

ExtendedOptionsList sends a DO EXOPL if on is TRUE, or else it sends a DON'T EXOPL
(Extended-Options-List option negotiation).

ArpatelnetStream.FlushDataLine: PROCEDURE [sH: ArpatelnetStream.Handle] •
INlINE {sH.flushDataLine[sH]};

FlushDataLine flushes the incoming data stream's internal buffers of all pending data.

ArpatelnetStream.GetByte: PROICEDURE [sH: ArpatelnetStream.Handle]
RETURNS (byte: Environment.Byte, code: ArpatelnetStream.ReturnRecord] =- INLINE {
[byte, code] sH.getByte(sH]};

GetByte returns the next byte of data in the data stream. If no data is pending, then
Ge~Byte waits the amount oi'time set in the SetTimeout procedure, or an infinite amount of
time if no timeout was SElt. GetByte also returns control information plus option
negotiation requests and responses from the telnet partner. (Only client registered options
are passed on to the client;; unregistered ones are rejected automatically by the telnet
implementation). The returned byte field is valid only when the code returned is normal.

ArpatelnetStream.GetBlock:PROICEDURE[sH :ArpatelnetStream.Handle, block: Environment.Block]
RETURNS [bytesTransferrE!d: CARDINAL, code: ArpatelnetStream.ReturnRecord];

GetBlock is similar to GetByte except that it reads data on a per block basis.

ArpatelnetStream.GetTimeout: PROCEDURE [sH: ArpatelnetStream.Handle]
RETURNS [timeOut: TcpStream.WaitTime] •
INlINE {R~TURN[sH .getTi meout(sH]]};

GetTimeout returns the timE!Out that is set on the telnet connection.

Pilot Programmer's Manual

ArpatelnetStream.GA: PROCEDURE [sH: ArpatelnetStream.Handle] • INLINE {
sH.performAction[sH, GA]};

GA sends the go ahead signal on the telnet connection.

ArpatelnetStream.lnterruptProcess: PROCEDURE [sH: ArpatelnetStream.Handle] ::I INLINE {
sH.performAction[sH, interruptProcess]};

H

InterruptProcess interrupts a remote process if the connected system can interrupt the
process.

ArpatelnetStream.Push: PROCEDURE [sH: ArpatelnetStream.Handle] • INLINE {sH.push[sH]};

Push causes all buffered data to be sent to the telnet partner. This is the same operation
that is done when PutBlock or Put Byte is called with the push boolean set to TRUE.

ArpatelnetStream.PutByte: PROCEDURE [
sH: ArpatelnetStream.Handle, byte: Environment.Byte, push: BOOLEAN] ::I

INLINE {sH.putByte(sH, byte, push]};

Put Byte places one byte of data on the out-going telnet connection. Setting the push flag to
TRUE has the same effect as the sendNow procedure on a Pilot stream, and the data is
flushed from the sending side to the receiving side. The push flag generates a TCP Push
flag. This operation is expensive and should be done only when neccesary.

ArPatelnetStream.PutBlock: PROCEDURE [
sH: ArpatelnetStream.Handle, block: Environment.Block, push: BOOLEAN] •
INLINE {sH.put[sH, block, push]};

PutBlock is similar to PutByte, except that it sends data on a per block basis.

ArpaTelnetStream.SendStatusJnfo: PROCEDURE [sH: ArpaTelnetStream.Handle1 ::I INLINE {
sH.performAction[sH, sendStatuslnfo]};

SendStatuslnto sends the local option status information to the telnet partner.

ArpaTelnetStream.SendTerminaIType: PROCEDURE [sH: ArpaTelnetStream.Handle • INLINE {
sH.performAction[sH, sendTermi naIType]};

SendTerminalType allows the client to request the telnet partner to send terminal type
information. (Terminal type sub-negotiation).

ArpatelnetStream.SetlnputOptions: PROCEDURE [
sH: ArpatelnetStream.Handle, options: ArpatelnetStream.Options] •
INLINE {sH.setlnputOptions[sH, options]};

SetlnputOptions is used to modify the registered options during create time.

ArpaTelnetStream.SetTerminaIType: PROCEDURE [
sH: ArpaTelnetStream.Handle, terminalType: LONG STRING]

RETURNS [success: BOOLEAN] • INLINE {RETURN(sH.setTerminaIType(sH, terminalType]] };

H-33

H

H-34

TCP/IP Interfaces

SetTerminalType allows client to set the desired terminal type before starting terminal
type negotiation with the telnet partner. The terminalType information is used as response
to the telnet partner's send-terminal-type requests.

ArpatelnetStream.SetTimeout: PI~OCEDURE [
sH: ArpatelnetStream.Handl,!, timeOut: TcpStream.WaitTime] •
INLINE {sH.setTimeout[sH, timeOut]};

SetTimeout sets the amount of time the telnet connection waits on a get operation before
returning with a timeout reason or ~aising the timeout signal. If this procedure is called
with a value of 0, then the tinleout, in effect, is infinite. The length of time the get process
can wait is limited to about lEi; minutes.

ArpaTelnetStream.SupGA: PROCEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] •
INLINE {sH.setOption{sH, on, supGA]};

SupGA sends a DO SUPGA ifoln is TRUE, or else it sends a DON'T GUPGA (Supress-Go-Ahead
option negotiation).

ArpatelnetStream.Status: PROCEDURE [sH: ArpatelnetStream.Handle)
RETURNS [status: LONG POIN'TER TO HostStatusRecord1 :II INLINE {
sH.periormAction[sH, status]};

Status causes the remote site to send connection status information if this option is
supported. This process is des·cribed by RFC 859.

ArpaTelnetStream.TimeMark: PROCEDURE [sH: ArpaTelnetStream.Handle, On: BOOLEAN] •
INLINE {sH.setOption[sH, Oln, timeMark]};

TimeMark allows the client to insert time-mark characters in the telnet data stream.
Depending on the value oithe parameter on, it sends either a DO or DON'T TIMEMARK.

ArpaTelnetStream.WiIIBinary: PFlOCEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] • INLINE {
sH.setOption{sH, on, wiliBinalry]};

WiliBinary sends a WILL BINARY if on is TRUE, or else it sends a WON'T BINARY (Binary
option negotiation).

ArpaTelnetStream.WiIIEcho: PRCICEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] • INLINE {
sH.setOption(sH, on, wiliEcho]};

WiliEcho sends a WILL ECHO if on is TRUE, or else it sends a WON'T ECHO (Echo option
negotiation) .

ArpaTelnetStream.WiIIEOR: PRO(:EDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] • INLINE {
sH.setOption[sH, on, will EOR]};

WiIIEOR sends a WILL EOR if on is TRUE, or else it sends a WON'T EOR (End-Or-Record
option negotiation) .

Pilot Programmer's Manual

ArpaTelnetStream.WiIIExtendedOptionslist: PROCEDURE [
sH: ArpaTelnetStream.Handle, on: BOOLEAN] • INLINE

{sH.setOption[sH, on, willExtendedOptionsList] };

H

WiIIExtendedOptionsList sends a WILL EXOPL if on is TRUE, or else it sends a WON'T EXOPL
(Extended Options List option negotiation).

ArpaTelnetStream.WiIiStatus: PROCEDURE [sH: ArpaTelnetStream.Handle, on: BOOLEAN] ::II

INLINE { sH.setOption[sH, on, wiliStatus] };

WiliStatus sends a WILL STATUS if on is TRUE, or else it sends a WON'T STATUS (Status
option negotiation.

ArpaTelnetStream.WiIISupGA: PROCEDURE [sH :ArpaTelnetStream.Handle,on:800LEAN] • INLINE
{sH.setOption(sH, on, wiliSupGA]};.

WiIISupGA sends a WILL SUPGA if on is TRUE, or else it sends a WON'T SUPGA (Supress-Go­
Ahead option negotiation).

ArpaTelnetStream. WiIITerminalType: PROCEDURE [sH: ArpaTelnetStream.Handle,
on: BOOLEAN] • INLINE {sH.setOption[sH, on, wiIiTerminaIType]};

WiliTerminalType sends a WILL TERMTYPE if on is TRUE, or else it sends a WON'T
TERMTYPE (Terminal type option negotiation).

ArpaTelnetStream.WiIITimeMark: PROCEDURE [sH: ArpaTelnetStream.Handle.
on: BOOLEAN] • INLINE {sH.setOption[sH, on, wiliTimeMark]};

WiliTimeMark allows the client to insert time-mark character in the appropriate place in
the telnet data stream. Depending on the value of the parameter on, it sends either a WI LL
or WON'T TIMEMARK to the telnet partner.

H-35

H TCP/IP Interfaces

9 TelnetListener

H-36

The TelnetListener interface provides Pilot clients with an interface to the Telnet Protocol
defined by RFC854. The Te.lnetListener interface is used by clients needing to listen on a
specified port for a telnet connection. Telnet is a virtual terminal protocol used with the
TCPIIP protocols.

References: RFC854 TELNET Protocol Specification, Postel, May, 1983.

9.1 Types and constants

TelnetListener.ConnectProc: TYIItE = PROCEDURE [
sH: ArpaTelnetStream.Hanciler

underlyingStream: TcpStlream.Handler

remoteAddr: ArpaRouter.lnternetAddress];

ConnectProc is called by the telnet interface when a connection is received on the port
specified in the Listen procedure.

TelnetListener.ConnectID: TYPE: [2];

This ID is returned by the Listen procedure and is used to destroy a telnet listening
connection.

9.2 Proced ures

TelnetListener.Listen: PROCEDURE [
connect: TelnetListener.ConnectProcr

portNumber: ArpaRouter.l1ortr

suppressLF: BOOLEAN +- FALSE]

RETURNS [connection.D: TelnetListener.ConnectID1;

Listen is called by the client to establish a telnet listening connection on the port specified
in the field portNumber. The procedure that is called when a connection is received is
passed in the field connect. If line feeds are to be suppressed every time a carriage return
is seen (CRLF ... CR), then the suppressLF boolean should be set to TRUE. This procedure
returns the value connectiorl'D to be used in destroying the telnet listener.

TelnetListener.StopListening: PROCEDURE [connectionID: TelnetListener.ConnectID];

StopListening destroys a listening connection started with the procedure Listen.
StopListening is called with the connectionlD returned by Listen.

Pilot Programmer's Manual H

10 ArpaFilingCommon

The ArpaFilingCommon interface provides types to be used by clients using the ARPA Filing
interfaces. It def'mes a common set of filing definitions to be used by TFTP, ArpaFTP and
ArpaFTPServer.

Types and constants are defined be low.

ArpaFilingCommon.StatusCode: TYPE = {
aborted" accessViolation, directoryNotFound, eof, exceedStorageAlloc,
invalidFileName, fileBusy, fileNotFound. localFileError. mediumFuli. ok, paramsError,
undefined};

The StatusCode type is used to return information about the state of the local filing
operation in a standard manner.

aborted The-file action has been aborted by server.

accessViolation
The user did not have sufficient access rights to access the file.

directoryNotFound
The file action did not complete because the specified directory was not found in
the current context.

eof The logical end of the file was reached successfully and there is no more data to
retrieve.

exceedStorageAlioc
The file action failed because the user has exhausted his allocated space.

invalidFileName
The specified file name is not valid in the current context. (File name syntax
error).

fileBusy The file action failed because the file is currently in use by another user. Try
again later.

fileNotFound
The file action did not complete because the specified file was not found in the
current context.

localFileError
The file action failed due to local file processing error.

mediumFull
The file action failed because the local filing medium is full.

ok The filing action completed successfully.

paramsError
The file failed due to syntax errors in the specified parameters.

H-37

H

H-38

TCP/IP Interfaces

undefined
A file error which does not fit into the above categories.

ArpaFilingCommon.PutProc: TYPE :I PROCEDURE (
fileStream: Stream.Handler
block: Environment.Blockr
eot: BOOLEAN 4f- FALSE,r
clientData: LONG POINTER 4f- NIL1
RETURNS (statusCode: ArpaFilingCommon.StatusCode);

The PutProc type is used as the callback procedure to a file storing operation. The field
fileStream contains a strearn to the currently active local file and is passed to the caller
using some other protocol-specific operation. The field block contains the data to be stored.
The field eot is set TRUE when the file transfer has ended. The field dientData is provided
for client's own use. The field statusCode is returned with the appropriate code.

ArpaFilingCommon.GetProc: TYPE = PROCEDURE [
fileStream: Stream.Handler block: Environment.Blockr

clientData: LONG POINTER 4f-NIL)
RETURNS (statusCode: ArpaFilingCommon.StatusCoder

bytes Transferred : CARDIIIIAL);

The GetProc type is used as the callback procedure to a file retrieval operation. The field
fileStream contains a streaIn to the currently active local file and is passed to the caller
using some other protocol-specific operation. The field block receives the data to be sent.
The field clientData is provided for the client's own use. The field statusCode is returned
with the appropriate cod,e and the number of bytes transmitted is in the field
bytes Transferred.

ArpaFilingCommon.CloseProc: T'fPE • PROCEDURE [
fileStream: Stream.Handler
deleteFile: BOOLEAN 4f- FALSEr
fileName: LONG STRING +- NILr
cI ientData: LONG POINTER +- NIL];

The CloseProc type is used as a callback procedure in either a file retrieval or file storing
operation. It is called when the operation has been completed. The field fileStream
contains a stream to the speeifed local file that was passed to the caller by some protocol­
specific operation. The deleteFile field, when TRUE and when the file operation is storing,
indicates that the file operation did not complete; the file stored may be incomplete and
should be deleted. The field fileName contains the name of the file when the- field
deleteFile is TRUE and may provide a hint as to which file should be deleted. The clientData
field is provided for the client's own use.

Pilot Programmer's Manual H

11 TFTP (Trivial File Transfer Protocol)

Trivial File Transfer Protocol (TFTP) is a simple file transfer protocol which is a client of
the User Datagram Protocol (UDP). It can be used to transfer files between hosts
implementing the Arpa protocols. See RFC783 for a full description of this protocol.

References: RFC764 Telnet Protocol, Postel, June, 1980.

RFC783 The TFTP Protocol (Revision 2), Sollins, June, 1981.

11.1 Types and constants

TFTP.Modes: TYPE. {netascii, octet, mail};

TFTPModes is used to indicate the type of file being transferred.

netascii is Ascii as defined in USA Standard Code for Information Interchange with
modifications specified in RFC764; it is 8-bit Ascii. octet is raw 8-bit bytes. mail is netascii
characters sent to a user rather than a file.

TFTP.FileStreamProc: TYPE :I PROCEDURE [
fileName: LONG STRING,fileType: TFTP.TFTPModes]
RETURNS [

statusCode: ArpaFilingCommon.StatusCode,
fileStre"am: Stream.Handle, put: ArpaFilingCommon.PutProc,
get: ArpaFilingCommon.GetProc,
closeProc: ArpaFilingCommon. CloseProc];

FileStreamProc is used by the server side of an TFTP connection to solicit information from
the TFTP server client. The put and get callback procedures are used to store or retrieve
file data from the client's file system. The dose procedure is called when the file transfer is
completed. For the store case, the get procedure need not be provided; for the retrieve case,
the put procedure need not be provided. When the FileStreamProc is called, file type
information is derived from the fileType field and the file name from the fileName field.
Client filing errors are returned using the statusCode field.

TFTP.GetStreamProc: TYPE. PROCEDURE (fileName: LONG STRING]
RETURNS [stream: Stream.Handle, fileError: BOOLEAN];

GetStreamProc is used by Retrieve for file stream creation.

11.2 Errors and signals

TFTP.TFTPError: ERROR [reason: TFTP.TFTPErrorReason, errorMsg: LONG STRING];

TFTP.TFTPErrorReason: Type = {aborted, undefined, fileNotFound, accessViolation,
mediumFull, iIIegalOp, unknownTID, fileExists, noSuchUser, timeOut, hostError,
locaIFiI~Error};

Errors are defined as follows.

aborted

undefined

The current session is canceled.

Not defined; error message may help.

H-39

H

H-40

TCP/IP Interfaces

fileNotFound

accessViolation

mediumFull

iIIegalOp

unknownnO

fileExists

noSuchUser

timeOut

hostError

localFileError

File was not found at the remote location.

The remote file cannot be accessed.

The remote site's disk is full or allocation exceeded.

Received an illegal TFTP response.

Not used.

File exists and cannot be overwritten.

Not used.

The TFTP session has timed out because the remote site has not
responded.

Remote error.

Error in acquiring the file for transmission.

The errorMsg is passed by the protocol and contains an English error message. The
errorMsg is allocated from the zone passed into the interface by the client and should be
freed by the client.

11.3 Procedures

TFTP.Send: PROCEDURE [
toHost: ArpaRouter.lntern~!tAddressr
fileName: LONG STRINGr
fileStream: Stream.Handlnr
dataProc: ArpafilingCommon.GetProc,
zone: UNCOUNTED lONE,
rexmt: CARDINAL 5,
timeOut: CARDINAL 25];:

Send stores a file to a TFTP s,erver. The toHost field has the address of the destination file.
The fileName field has the name of the file on the remote server and should be in the file
naming structure of the renlote machine. fileStream is a stream to the local file to be
stored. The callback procedure provided in dataProc is used to retrieve the file from the
local file system.

This procedure may raise TF"rPError { •.• aborted, undefined, accessViolation, mediumFuU,
iIIegalOp. fileExists. timeOut ••• }. Any error message strings returned by the signal
TFTPError are allocated from :zone and should be freed by the client.

The rexmt field gives the timeout between TFTP data packets and TFTP
acknowledgements. The fiE!ld timeOut gives the total timeout period for the TFTP
connection.

Pilot Programmer's Manual

TFTP.Retrieve: PROCEDURE (
fromHost: ArpaRouter.l nternetAddress,
fileName, localName: LONG STRING,
fileType: TFTP.TFTPModes,
fileStreamProc: TFTP.GetStreamProc9

zone: UNCOUNTED ZONE,
rexmt: CARDINAL 5,
timeOut: CARDINAL 25];

H

Retrieve retrieves a file from a TFTP server. The fromHost field has the address of the
source of the file being retrieved. The fileName field has the name of the file on the remote
server and should be in the file naming structure of the remote machine. The
fileStreamProc is called when a connection is established to acquire the local filing stream
handle.

If a local filing error is encountered when trying to acquire the local file, then the
fileStreamProc should return a NIL stream handle and a value of TRUE in the fileError field.
Retrieve may raise TFTPError { ..• aborted, undefined, fileNotFound, accessViolation,
iIIegalOp, timeOut ••• }. Any error message strings returned by the signal TFTPError are
allocated from zone and should be freed by the client.

The rexmt field gives the timeout between TFTP data packets and TFTP
acknowledgements. The timeOut field gives the total timeout period for the TFTP
connection.

TFTP.Register: PROCEDURE [
storeFile: TFTP.FileStreamProc,
retrieveFile: TFTP.FileStreamProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL 5,
timeOut: CARDINAL ~ 25];

Register is used for server side filing implementation. The procedures registered are called
in the following instances. StoreFile is called when a request to write is received by the
server. Retri:eveFile is called when a request to read is received by the server. The rexmt
field gives the timeout between TFTP data packets and TFTP acknowledgements. The
field timeOut gives the total timeout period for the TFTPconnection.

Only one client should register procedures. Other clients who register procedures
overwrite the previous procedures.

TFTP.UnRegister: PROCEDURE;

UnRegister is called to suspend TFTP server operations.

H-41

H TCP/IP Interfaces

12 ArpaFTP

H-42

FTP is a file transfer protocol running on top of the TCPIIP protocols. The ArpafTP interface
provides Pilot clients with an interface to the File Transfer Protocol (FTP) defined by
RFC959.

References: RFC959 File Transfer Protocol, Postel, October, 1985.

12.1 Types and constants

ArpaFTP.Handle: TYPE • LONG FtOINTER TO ArpafTP.FTPObject;

ArpafTP.FTPObject: TYPE;

ArpaFTP.FileTypeEnum: TYPE ::11 {ascii. EBCDIC. image.locaI8. other};

The FileTypeEnum deflnes the file types understood by FTP.

ascii is the default file type, intended for transferring text files; ascii is defined in the telnet
specification to be the lOWell" half of an 8-bit code set (the most significant bit is zero).
EBCDIC is not supported. imalge is used for the transfer of binary or compressed data. localS
is used for the transfer of data that has a logical byte size of eight. other accommodates
other data representations and is supported for 8-bit bytes.

ArpaFTP.FileFormatEnum: TYPI: =- {nonPrint. telnet. asa};

FileFormatEnum defines the set of format control options that can be used with the file
types Ascii and EBCDIC.

nonPrint is the default form.atting option and indicates there is no formatting in the file.
telnet indicates that the filE, contains vertical format controls (such as >CR>, < LF >,
< NL >, < VT>, < FF ». i:lSa indicates that the file contains asa (FORTRAN) vertical
control characters (see RFC 740 or Communications of the ACM, Vol. 7, No. 10, p. 606,
October 1964).

ArpaFTP.FileStructureEnum: TYPE = {file, record. page};

FileStructureEnum defines the set of file structures that are known to FTP.

file is the defaulted file structure. record and page are not supported.

ArpaFTP.TransmissionModeEnum: TYPE = {stream. block. compressed};

TransmissionModeEnum defines the set of data transmission types known to FTP.

stream is the default transrnission mode; the data is transmitted as a stream of bytes.
block and compressed are not supported.

Pilot Programmer's Manual

ArpaFTp.Options: TYPE = RECORD [
fileType: ArpaFTp.FileTypeEnum +- ascii,
fileFormat: ArpaFTP,FileFormatEnum +-nonPrint,
fileByteSize: CARDINAL +- 8,
fileStructure: ArpaFTP.FileStructureEnum +- file,
transmission Mode: ArpaFTPoTransmissionModeEnum +- stream,
modeChanged: BOOLEAN +- FALSE,
fileTypeChanged: BOOLEAN +- FALSE,
fileStructureChanged: aOOLEAN +- FALSE,
optionsChanged: BOOLEAN +- FALSE];

H

The Options record sets various options allowed by the FTP protocol. Not all options are
available on all hosts. When options are changed, the optionschanged field for the
appropriate option should be set to TRUE (for example, when transmissionMode is changed,
the modeChanged boolean should be set to TRUE) and the optionsChanged boolean should
be set to TRUE. The fileByteSize is the size of the data bytes of a file. Only a byte size of
eight is supported.

ArpaFTP.defaultOptions: ArpaFTP.Options • [ascii, nonPrint, 8, file, stream];

defaultOptions can be used to set the options field in Store and Retrieve.

ArpaFTP.ListStyle: TYPE. {verbose, terse};

The ListStyle type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

ArpaFTp.OutputListProc: TYPE = PROCEDURE [output: Environment.Block];

The OutputlistProc is used with the List command to provide a callback procedure for the
listing return information.

12.2 Errors and Signals

ArpafTP.FTPError: ERROR [
reason: ,ArpaFTP.FTPErrorReason, errorNumber: CARDINAL, errorString: LONG STRING);

The error FTPError is raised for all error conditions that arise on the local or remote
machine. The error reasons are described below. The errorNumber field is reserved for
error conditions that are reported by the remote FTP site. Error numbers follow the error
number definitions as outlined by RFC 959. The errorString is also reserved for remote
errors and is the human readable text message that accompanies the FTP errorNumber.
The string errorString is allocated from a private zone and is deallocated on unwinding this
error.

H-43

H

H-44

TCP/IP Interfaces

ArpaFTP.FTPErrorReason: TYPE := {accountNeeded, badCommandSequence,
exceedStorageAlioc. fileAccessProblem, fileBusy, invalidFileName, invalidHandle,
localFileError, mediumFull, noDataConn, noRouteToDestination,
noServiceAtDestination. nOSuchUser, optionMismatch, other, paramsError,
precedenceMismatch, remoteFileError, remoteReject, reset, sercurityMismatch.
serverCommandError, service Busy , servi ceU nava i I a bl e, TcpError, ti meout,
transferAborted, undefined, unimplemented, unimplementedForParam,
userNotLoggedl n};

Errors are defined as follows.

accountNeeded
The user must supply an account number to complete the operation.

badCommandSequence
The commands issued are out of order and do not conform to the FTP protocol.

exceedStorageAlloc
The user has exhausted the allocated storage space.

fileAccessProblem
User does not have appropriate access rights for this file operation.

fileBusy The specified file is temporary unavailable. Try again later.

invalidFileName
The file name specified was invalid. (Illegal file name syntax).

invalidHandle
The requested action failed because the session handle is invalid.

local Fi leError
Some local filing c!rror was encountered.

mediumFull
The file action failed because the storage medium is full.

noDataConn
The file action failed because no data connection exits or a data connection can
not be opened.

noRouteToDestination
TCP level error. ~rhe stream failed or is suspended because the remote site can
not be reached.

noServiceAtDesti nation
TCP level error. 'rhe stream failed or is suspended because there is no service
at the destination site.

noSuchUser
The user name could not be found on the remote host.

option Mismatch

other

TCP level error. 'rhe stream failed or is suspended due to option(s) mismatch
with remote.

TCP level error.1'he stream failed due to some undefined problem.

Pilot Programmer's Manual H

paramsError
The requested action failed due to errors in the parameter(s) of the command
line.

precedenceMismatch
TCP level error. The stream failed or is suspended because the precedence
negotiated is incompatible with remote.

remoteFi Ie Error
Some remote file error was encountered.

remoteReject
TCP level error. The remote host rejects the connection request.

reset Telnet level error. The control stream is aborted due to a reset from remote.

sercurityMismatch
TCP level error. The stream failed or is suspended due to security mismatch
with remote.

serverCommandError
The requested action failed due to illegal command syntax.

serviceBusy
The file service is unavailable temporarily, try again later.

serviceU navai lable
The file service is not available.

tcpError TCP level error. Some undefined TCP error was encountered.

timeout The operation timed out. The remote host may no longer be responding.

transferAborted
The file transfer operation is aborted. Connection closed.

undefined
The requested action failed due to some undefined error.

unimplemented
The indicated action is not implemented by the remote host.

unimplementedForParam
Command not implemented for that parameter.

userNotLoggedl n
The requested action failed because the user is not logged in.

12.3 Proced ures

ArpaFTP.Abort: PROCEDURE [connectionHandle: ArpaFTP.Handle];

Procedure Abort cancels or terminates any outstanding FTP command, including data
transfers, on the connection specified by connectionHandle. Abort raises FTPError.

ArpaFTP.ChangeWorkDir: PROCEDURE [directory: LONG STRING,
connectionHandle: ArpaFTP.Handle];

ChangeWorkDir allows the client to specify a working directory for all subsequent file
operations. The directory field is a path name for the desired working directory. It must

H-45

H

H-46

TCP/IP Interfaces

conform to the remote host's directory name format. The connection Handle is the current
file session. This procedure raises FTPError.

ArpaFTP.Create: PROCEDURE [
destHost: ArpaRouter.1 ntel'netAdd ress,]
RETURNS [ftpHandle: ArpaF'TP.Handle];

Create allows the client to open an FTP session. The destHost field is the internet address
of the remote FTP server. The ftpHandle is returned once a session is sucessfully
established. This handle must be used in all subsequent FTP calls for this session. Create
raises FTPError (TCP level errors, serviceBusy, service Unavailable) in cases where a
connection can not be made.

ArpaFTP.Delete: PROCEDURE
filePathName: LONG STRING, connectionHandle: ArpaFTP.Handle];

Delete allows the client to delete the file specified by filePathName on the remote host. The
(onnectionHandle is the current session. FTPError is raised in case of error.

ArpaFTP.Destroy: PROCEDURE [c,onnectionHandle: ArpaFTP.Handle];

Destroy disconnects the user's current filing session from the remote FTP server. It should
only be used when the session can no longer continue due to errors. The connectionHandle
becomes invalid after this op.eration. Destroy raises FTPError.

ArpaFTP.List: PROCEDURE [
filePathName: LONG STRING,
outputProc: ArpaFTP. OutputListProc,
options: ArpaFTP, Options.,
o~tputStyte: ArpaFTp.ListStyle of- terse,
connectionHandle: ArpaF~rp.Handle];

The List procedure can be used to request that the FTP server send a list of the current
filing context to the user. The filePathName field specifies a system specific file path name.
If the outputStyle is verbOSE!, all current information on the file or file group specifed by
the field filePathName will be returned using the procedure outputProc. The options field
describes the attributes of the file information to be transfered. If outputStyle is terse only
the file name of each of the files specified by the filePathName will be returned. In either
case the file information should be separated by either a CRLF or a Null character. The
outputProc is used to send the received information to the client process. This procedure
may raise the error Error.

Pilot Programmer's Manual

ArpafTp.Login: PROCEDURE [
userName, userPassword, userAccount: LONG STRING,
connectionHandle: ArpafTP.Handle]
RETURNS [success: BOOLEAN ~FALSE];

H

Login performs the logging on sequence required by the remote host using the provided
parameters. The information should be the user's name, password, and account on the
remote system. Only paramter(s) required by the remote host need to be specified. The
connectionHandle field is the current FTP session handle. The procedure returns TRUE
when the user logged on the remote host sucessfully and FALSE otherwise. This procedure
raises FTPError.

ArpafTP.Passive: PROCEDURE (connectionHandle: ArpafTP.Handle]
RETURNS [port: ArpaRouter.Port];

Passive provides client with an interface to the FTP PASV command. The PASV command
is mainly used for third party file transfers. It asks the remote server to listen on a data
port (not the default data port) and to wait for a connection instead of initiating one upon
the receipt of a transfer command. The returned port value (from the remote server) is the
port address it is listening on. Passive raises FTPError.

ArpaFTP.Quit: PROCEDURE [connectionHandle: ArpafTP.Handle1
RETURNS [success: BOOLEAN FALSE];

Quit disconnects the user's current filing session from the remote FTP server. This
procedure returns TRUE when the remote acknowleges the disconnection request and FALSE
otherwise. The- connectionHandle becomes invalid after this operation regardless of the
remote host's response.

ArpaFTP.Relnit: PROCEDURE [connectionHandle: ArpaFTP.Handle);

Procedure Relnit reinitializes the current FTP connection specified by connectionHandle.
This procedure allows the client to change FTP user without having to drop the current
connection and create a new one. This procedure raises FTPError.

ArpafTP.Rename: PROCEDURE [
from, to: LONG STRING, connectionHandle: ArpafTP.Handle];

Rename provides the client with the facility to rename files on the remote host. The
remote file specified in the from field will be renamed to the name specified in the to field.
This procedure raises FTPError.

ArpafTP.Retrieve: PROCEDURE [
remoteFileName: LONG STRING,
fileStream: Stream.Handle,
putProc: ArpafilingCommon.PutProc,
options: ArpafTp.Options,
connectionHandle: ArpaFTP.Handle,
host: ArpaRouter.lnternetAddress +- LOOPHOLE(LONG[O]]
port: ArpaRoute.Port +- LOOPHOLE(O]];

H-47

H

H-48

TCP/IP Interfaces

Retrieve allows the client to retrieve a file from an FTP server. The remoteFileName field
is the name of the desired file at the remote site. The remoteFileName string must conform
to the remote host's file name format. The fileStream is the stream of the file to be stored on
the local file system. Procedure putProc is a callback procedure provided by the client that
stores the remote file on thE! local file system on a per block basis. The options fie Id
describes the file format, file type, and transmission mode for this file transfer. The
connectionHandle field is tho current session handle. Both the host and port fields are
parameters used in the passive mode. The host field contains the address of the host that
initiates the data transfer, and the port field contains the data port for the file action. (See
procedure Passive for more details). This procedure raises FTPError.

ArpafTP.Store: PROCEDURE [
remoteFileName: LONG STFlING,
fileStream: Stream.Handle,.
getProc: ArpafilingCommon.C;etProc,
options: ArpafTP.Options,
connectionHandle: ArpafTI'.Handle,
host: ArpaRouter.J nternetAddress '*- LooPHolE(LONG(Oll
port: ArpaRoute.Port +- LO()PHOlE(01];

The Store procedure allows the client to store a file to an FTP Server. The remoteFileName
field is the desired name for the file at the remote side. The remoteFileName string must
conform to the remote host's fBe name format. The fileStream is the stream of the file to be
stored. Procedure getProc is a callback procedure provided by the client that retrieves the
local file for remote storing on a per block basis. the options field describes the file format,
file type, and transmission mode for this file transfer. The connectionHandle field is the
current session handle. Both the host and the port fields are parameters used in the
passive mode. The host field contains the address of the host that initiates the data
transfer, and the port field contains the data port for the file action. (See procedure Passive
for more details). Thi s procedure raises FTPError.

Pilot Programmer's Man ual H

13 ArpaFTPServer

FTP is a file transfer protocol running on top of the TCP/IP protocols (RFC793 and
RFC792). The ArpaFTPServer interface provides Pilot clients with an interface to the server
side of the File Transfer Protocol (FTP) dermed by RFC959.

References: RFC740 NETRJS Proctocol • _4ppendix C, Braden, November, 1977.

RFC792 Internet Control Message Protocol, Postel, September, 1981.

RFC793 Transmission Control Protocol, Postel, September, 1981.

13.1 Types and constants

ArpaFTPServer.Options: TYPE • RECORD [
fileType: ArpaFTPServer.fileTypeEnum +- ascii,
fileFormat: ArpaFTPServer.FileFormatEnum +- nonPrint,
fileByteSize: CARDINAL ~ 8,
fileStructure: ArpaFTPServer.FileStructureEnum +- file];

The Options type dermes the record passed to the client to indicate the method by which a
file is retrieved or stored. The fileByteSize is the logical byte size of the file transferred.
All files are transferred as 8-bit files, regardless of their logical byte size.

ArpaFTPServer.FileTypeEnum: TYPE. {ascii, EBCDIC, image,local8, other};

FileTypeEnum defines the set of file types that can be understood by FTP. ascii is the
default file type and is intended for transferring text files; ascii is defined in the Telnet
specification to be the lower half of an 8-bit code set (the most significant bit is zero).
EBCDIC is not supported. image is used for the transfer of binary or compressed data.
localS is used for the transfer of data that has a logical byte size of eight. other is used to
accommodate other data representations and is supported for 8-bit bytes.

ArpaFTPServer.fileFormatEnum: TYPE. {nonPrint, tetnet, asa};

FileformatEnum defines the set of format control options that can be used with the file
types ascii and EBCDIC. nonPrint is the default formatting option and indicates there is no
formatting in the file. tel net indicates that the file contains vertical format controls; for
example, < CR >, < LF >, < NL >, < VT >, < FF > . asa indicates that the file contains
asa (FORTRAN) vertical control characters. (See RFC 740 and Communications of the
ACM, Vol. 7., No. 10, p. 606, October 1964).

ArpaFTPServer .. fileStructureEnum: TYPE. {file, record, page};

FileStructureEnum defines the set of file structures known to FTP. file is the defaulted file
structure. record and page are not supported.

ArpaFTPServer.LoginlnfoNeeded: TYPE. {
name, nameAndPassword, nameAndPasswordAndAcct};

The type LoginlnfoNeeded describes the types of login information required by the
authentication mechanism on the FTP server. name means that only the user's name is
required to use the FTP server. nameAndPassword means that the user's name and

H-49

H

H-50

TCP/IP Interfaces

password are required to use the FTP server. nameAndPasswordAndAcct means that the
user must specify name, password, and account information to use the FTP server.

ArpaFTPServer.ListStyle: TYPE :II {verbose, terse};

The ListStyle type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

ArpaFTPServer.FileStreamProc: TYPE :II PROCEDURE [
fileName: LONG STRING, opttions: ArpaFTPServer.Options,
conversationHandle: LONG POINTER]
RETURNS (

statusCode: ArpaFilingtCommon.StatusCode,
fileStream: Stream.Handle,
put: ArpaFilingCommon. PutProc,
get: ArpaFilingCommon.GetProc,
closeProc: ArpaFilingCommon.CIOseProc,
clientData: LONG POIN'TER ~ NIL);

The FileStreamProc procedure is the type of procedure the client registers with the
ArpaFTPServer so that its facility can be invoked in the case of store or retrieve operations.

The fileName field contains the name of the file for the operation. The options field
contains the attributes of the file. The conversationHandle field contains client
information that was passed to the server at user logon time.

The server client returns pElrmission (ok) to perform the requested file operations, or
reason of denial in the statu:sCode field. Data transfer will not start unless the returned
statusCode is ok. The fileStream field is set to be the stream of the file specified in
fileName when the operation request is granted. Both put and get are callback procedure
provided by the client that do the actual storing and retrieving of the file on a per block
basis. Procedure get need not be provided in a store operation and procedure put need not
be provided in a retrieve operation.

Procedure closeProc is also al callback procedure provided by the client. It is called when
the file transfer is completed. When closeProc is called, no other file operation is performed
on the file described by fileStream.

clientData is provided by the client so the server can pass it along when calling put, get, or
closeProc.

ArpaFTPServer.LogonProc: TYPE. PROCEDURE [
userName, userPassworcl, userAccount: LONG STRING +- NIL,
converstationHandle: LOII4G POINTER +- NIL]
RETURNS [success: BOOLEAFlI, newConversationHandle: LONG POINTER];

A LogonProc procedure is thc~ type of procedure a client registers with the ArpaFTPServer
to login new users. The client returns TRUE when the specified information identifies an
authenticated user. LogonProc is called at least once and at most three times depending
on the ciient's registered 10go"1 nfo (name only, nameAndPassword,
nameAndPasswordAndAcct). The converstationHandle contains client specified
information that identifies a user session. ArpaFTPServer calls LogonProc with a ~IL
converstationHandle when the user and the session is newly established, and a valued
converationHandle when thE~ user is new but the session is reinitialized. In the case of

Pilot Progra.mmer's Manual H

newly established session, the client creates a session, and returns the session handle in
newConversationHandle. In the case of a reinitialized session, the client resets the state of
the session for a new user, and sets newConversationHandle to the old
conversation Handle provided by the ArpaFTPServer. The newConversationHandle is
passed by the ArpaFTPServer in all subsequent calls so client can distinguish the different
user sessions. The ArpaFTPServer rejects all filing calls that are made with an
unauthenticated user.

ArpaFTPServer.QuitProc; TYPE. PROCEDURE [conversationHandle: LONG POINTER];

QuitProc is called at the end of a FTP session. The client may free any session information
at this time. The field conversation Handle contains client information for the current
session that was passed to the server at user logon time and should be invalidated by this
call.

Ar"aFTPServer.ReinitializeProc: TYPE :II PROCEDURE [conversationHandle: LONG POINTER];

When ReinitializeProc is called by the FTP server, the client should consider the current
session to be open but should set its state back to its initial values. This procedure is called
when the remote user wishes to destroy the session but maintain the communication line
as active. The field conversation Handle contains client information for the current session
that was passed to the server at user logon time and should be invalidated by this call.

ArpaFTPServer.RenameProc: TYPE·:II PROCEDURE [
from, to: LONG STRING,
conversationHandle: LONG POINTER]
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

RenameProc is called by the FTP server when it receives a request to rename a file. The
from field contains the current name of the file; the to field contains the new name of the
file. The field conversationHandle contains client information that was passed to the
server at user logon time. The client returns a code in statusCode.

ArpaFTPServer.AbortProc: TYPE :II PROCEDURE [conversationHandle: LONG POINTER1;

AbortProc is called by the FTP server when an abort is received from the FTP user. When
AbortProc is called, the client should suspend and terminate all active processes for the
specified session. The field conversation Handle contains client information that was
passed to the server at user logon time.

ArpaFTPServer.ChangeWorkDirProc: TYPE. PROCEDURE [
directory: LONG STRING +- NIL;
conversationHandle: LONG POINTER +- NILl
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

ChangeWorkDirProc is called by ArpaFTPServer when a CWD command is received from
the user. The client should check the validity of the directory field and return the status in
statusCode. The conversation Handle contains client specified information that has been
passed to the ArpaFTPServer at user logon time. CWD allows both relative and absolute
directory paths. If directory starts with either a 'tr, net, 'f < u, or 'Tt; then the directory path
with be reset, else the directory path will be set relative to the current working directory.

H-51

H

H-52

TCP/IP Interfaces

ArpafTPServer.DeleteProc: TYPE • PROCEDURE [
filePathName: LONG STRI,.JG.
conversationHandle: LO.,G POINTER)
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

DeieteProc is called by the F'rp server when it receives a request to delete a file. The field
filePathName contains the name of the file to be deleted. The field conversationHandle
contains client information that was passed to the server at user logon time. The client
returns the termination status in the field statusCode.

ArpafTPServer.ListProc: TYPE • PROCEDURE [
filePathName: LONG STRINIG,
outputProc: ArpaFTPServer. OutputLi stStri ngProc.
outputStyle: ArpafTPServer.ListStyle +- terse,
conversationHandle: LO~IG POINTER]
RETURNS [statusCode: ArpclfilingCommon. ReturnCode];

ListProc is called by the FTP server when it receives a request to list the contents of the files
specified by the field filePathName. This field may contain wildcard and expansion
symbols native to the local file system.

The type and amount of information returned is specified by the field outputStyle. When
the value of this field is terse, the client returns the name of the files specified by the
filePathName field. When the value of the field outputStyle is verbose, the client returns
a complete list of information about the file or files specified by the filePathName field.
The procedure specified by loutputProc is used to return this information to the caller.
Individual file information is separated by the Ascii character string CR and LF.

The field conversationHandlf! contains client information that was passed to the server at
user logon time.

The status of the list operation is returned in statusCode.

OutputListStringProc: TYPE = PROCEDURE [output: LONG STRING];

OutputListStringProc is used with ListProc to send list data to the remote site.

ArpaFTPServer.FTPProcList: TYPE: = RECORD (
logon: ArpafTPServer.LogolnProc,
quit: ArpaFTPServer.QuitPrc)c,
store: ArpafTPServer.FileStreamProc,
retrieve: ArpaFTPServer.Fi IE!Strea mProc,
reinitialize: ArpafTPServer.IReinitializeProc,
rename: ArpaFTPServer.RenlameProc,
abort: ArpaFTPServer.AbortProc,
changeWorkDi r: ArpaFTPScsrver .ChangeWorkDi rProc,
delete: ArpaFTPServer.DeleteProc,
list: ArpafTPServer.ListPro(:); "

FTPProcList is used with thle Register procedure to give the server a list of service
commands to call when it recf~ives services requests from a remote" user. These procedures
are described above.

Pilot Programmer's Manual H

13.2 Errors and Signals

ArpaFTPServer.FTPServerError: ERROR [
reason: ArpafTP.FTPErrorReason[ser~iceUnavailable •• serviceUnavailable]];

FTPServerError is raised by clients to notify the ArpaFTPServer when service on the server
side for a particular FTP session is unavailable due to errors or shortage of resources.
Upon receiving this error signal, ArpaFTPServer ends the specified session by closing down
the control connection in the case of errors, and rejects the request for a new FTP
connection in the case of resource shortage.

13.3 Proced ures

ArpaFTPServer.Register: PROCEDURE [
ftpProcList: ArpafTPServer.FTPProcList, logonl nfo: ArpaFTPServer.Logi nl nfoNeeded1;

Register initializes an FTP server process. Only one call to this procedure is valid without
calling UnRegister. Multiple calls to this procedure without calling UnRegister may
produce undefined results. Procedures passed in the field ftpProcList are used to satisfy
service requests from remote users. The field logonlnfo contains the value for the amount
of information needed to authenticate remote users. A NIL value in the FTPProcList is
considered as "command not implemented" and is reported as such to the FTP client on the
remote host when that specified command is requested. Note that a minimum set of
commands are required by the protocol.

ArpaFTPServer.UnRegister: PROCEDURE;

UnRegister terminates and unregisters the FTP server process initiated by a call to the
procedure Register. UnRegister is currently not implemented.

H-53

H

H-54

14

TCP/IP Interfaces

ArpaFileName

The ArpaFileName interface is similar to the Mesa FileName interface. It provides a
general data structure for dealing with file names.

14.1 Types

ArpaFileName.VirtuaIFilenarrle,VFN: TYPE.
LONG POINTER TO ArpafileNamle. VirtualFilenameObject;

ArpafileName. VirtualFilenameObject: TYPE. RECORD [
host. directory, name. version: LONG STRING);

14.2 Signals

ArpafileName.Error: SIGNAL;

Error is raised by ArpaFileNam4t.AllocVFN and ArpaFileName.UnpackFilename when the client
provides an invalid file name .. A file name should have the following syntax, with all fields
optional:

[host]dir1/dir2l •• /dirnlfilename!version
">" can also be used as a directory delimiter.

14.3 Procedures

ArpaFileName.AllocVFN: PROCEDURE [LONG STRING) RETURNS [ArpaFileName.VirtuaIFilename);

The AllocVFN procedure allo<:ates a new ArpaFileName.VirtualFilenameObject and parses its
parameter into a ArpaFileName.VirtuaIFilename. Both the object and the strings in the object
are allocated from the ArpaUtiUty.zone and must be deallocated by ArpafileName.FreeVFN.

ArpaFileName.FreeFilename: PR'OCEDURE [s: LONG STRING);

The FreeFileftame procedure frees the string allocated with ArpaFileName.PackFilename.

ArpaFileName.FreeVFN: PROCEDURE [ArpaFileName.VirtuaIFilename];

The FreeVFN procedure frees a ArpaFileName.VirtuaIFilenameObject. It also frees the
component strings in the oQject to the ArpaUtility.zone. The VirtualFilenameObject must
have been allocated by ArpaFilEIName.AllocVFN.

ArpaFileName.PackFilename: PROCEDURE [vfn: ArpaFileName.VFN,h,d,n,v: BOOLEAN +- FALSE]
RETURNS [s: LONG STRING];

The PackFilename procedure converts the information in selected fields of a
VirtualFilename into a string', adding appropriate delimiters when necessary. h, d, n, v
indicate whether the host, directory, name, and version fields are to be included in the
string returned. Hosts are d4elimited by [], directories are delimited by either > or I, and
versions are preceded by !. If no version appears in vfn, enough room is left in s for a version
at least six characters long .• " <" receives no special treatment but is considered a normal

Pilot Programmer's Manual H

character in a file name field. s is allocated from the ArpaUtility.zone; it must be freed by the
client with ArpaFileName.FreeFilename.

"ArpaFilename.Re5etVFN: PROCEDURE [
vfn: Arpafilename.VirtuaIFilename. h. d. n. v: BOOLEAN +-FALSE);

The Re5etVFN procedure resets selected fields of a Virtual Filename to NIL and frees the
associated storage to the ArpaUtility.zone. h, d, n, and v indicate whether the host, directory J

name, and version fields are to be reset.

ArpaFileName.UnpackFilename: PROCEDURE [5: LONG STRING, vfn: ArpafileName.VFN1;

The UnpackFilename procedure parses a string into a Virtual Filename. If a directory is
present' in vfn and the directory in s does not begin with < J then the directory from s is
appended, or else the directory is overwritten. UnpackFilename creates VirtuaiFilename5
that no longer have a final > on the directory string. This procedure raises
ArpaFileName.Error if the file name 5 cannot be parsed.

H-55

H TCP/IP Interfaces

15 ArpaSMTP

H-56

The ArpaSMTP interface provides Pilot clients with an interface to the client side of the
Simple Mail Transfer Protocol (SMTP) defined by RFC821.

References: RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

15.1 Types and constants

ArpaSMTP.Handle: TYPE 2 LONG POINTER TO ArpaSMTP.SMTPObject;

ArpaSMTP.SMTPObject: TYPE;

Handle is a pointer to an SM1'PObjed representing a connection to a remote SMTP host.

ArpaSMTP.Recipients: TYPE = LC)NG POINTER TO ArpaSMTP.RecipientsSequence;

ArpaSMTP.RecipientsSequenCE!: TYPE = RECORD [
recipients: SEQUENCE length: CARDINAL OF LONG STRING];

The type RecipientsSequenCE! is a sequence of the recipients to whom a particular message
is addressed.

ArpaSMTP.lnvalidRecipientList: TYPE 2 RECORD [
invalidRecipients: SEQUEf.CE length: CARDINAL ·OF ArpaSMTP.lnvalidRecipientRecord];

The type InvalidRecipientLis1: is a sequence of all recipients to whom a post operation could
not post.

ArpaSMTP.lnvalidRecipientRecord: TYPE. RECORD [
recipientName: LONG STRING +-NIL.
errorReason: ArpaSMTP.SMTPErrorReason.
errorString: LONG STRING oil-NIL"
errorNumber: CARDINAL);

An InvalidRecipientRecord if) returned for each invalid recipient of a Post operation. The
field recipientName is a pointer to the name string that was passed into the Post procedure.

The errorReason field is the translated error condition as received from the remote host.
The errorString field is the error string as received from the remote host. The field
errorNumber contains the l~rror number reason of the remote reject. This number
conforms to the error numbering scheme outlined in RFC821.

15.2 Signals

ArpaSMTP.SMTPError: SIGNAL [
reason: ArpaSMTP.SMTPE"rorReason.
errorNumber: CARDINAL"
errorstri ng: LONG STRING];

The error SMTPError is raised for all error conditions that arise on the local or remote
machine. The errorNumber field is reserved for error conditions that are reported by the
remote SMTP site. Error numbers follow the error number definitions as outlined by RFC
821. The errorstring is also reserved for remote errors and is the human readable text

Pilot Programmer's Man ual H

message that accompanies the SMTP errorNumber. The string errorstring is allocated
from a private zone and is deallocated on unwinding this error.

ArpaSMTP.SMTPErrorReason: TYPE = {addressTranslationError,
insufficientSpaceOnRemote, invalidName, mailboxUnavailable, remoteError,
remoteStorageAllocExceeded, serverCommandError, serviceUnavailable, tcpError,
tcpTimeOut, transactionFailed, userNotLocal, transmissionTimeout,
noRouteToDestination, remoteServiceDisappeared, reset, securityMismatch,
precedenceMismatch };

Error reasons are described below.

addressTranslationError
The remote host name passed is invalid.

insufficientSpaceOnRemote
The remote site has insufficient space to process the mailing request.

invalidName
The specified recipient name is invalid.

mai I boxU navailable
The specified recipients mailbox is not available.

remote Error
Some remote error.

remoteStorageAllocExceeded
Remote mail storage allocation exceeded.

serverCommandError
Error in the processing of the SMTP command.

serviceUnavailable
The service must shut down.

tcpError Some TCP error on connection establishment.

tcpTimeOut
TCP timeout on connection establishment; the remote server may no longer be
responding.

transaction Failed
Mail transaction failed.

userNotLocal
User is not local to this remote machine; the accompanying error string may
have an alternate path to the user.

transmissionTimeout
The mail transfer connection timed out.

noRouteToDesti nation
The route from the local socket to the remote socket has disappeared and
another could not be found to use.

remoteServiceDisappeared
The remote site does not support the FTP service.

H-57

H

H-58

TCP/IP Interfaces

securityMismatch
The connection attempt was made with a security level lower than that
specified by the rE!moteservice.

precedenceMismatch
The connection a.ttempt was made with a precedence level lower than that
specified by the remote service.

15.3 Proced ures

ArpaSMTP.Open: PROCEDURE [relmoteHost,locaIHostName: LONG STRING]
RETURNS [ArpaSMTP.Handlei;

Open opens an SMTP connlection with the host specified in remoteHost. The field
localHostName contains the name that the local host has advertised to the remote server.
This name is the common Ilame of the sending machine. The procedure returns a
connection handle to be used ~ln all subsequent SMTP operations.

The procedure can raise the signal SMTPError.

ArpaSMTP.Post: PROCEDURE [
smtpHandle: ArpaSMTP.Hclndle, returnPath: LONG STRING,
recipients: ArpaSMTP.ReciIJients, message: Stream.Handle]
RETURNS (success: BOOLEA'.,

badRecipientList: LO •• G POINTER TO ArpaSMTP.lnvalidRecipientList];

Post sends a message to the host specified by the smtpHandle field. The field return Path
contains the common address of the sender of the message; that is,
<userName>@<locaIHostName>. The recipients field contains a sequence of users to
whom the message is addresBed and who are believed to reside on the host specified by the
smtpHandle field.

Post returns a boolean specifying success or failure in posting the message to the specified
recipients. If posting was no1; successful, then the field badRecipientList contains a pointer
to a sequence of invalid recipients. Free this field by using the procedure
FreelnvalidRecipients.

ArpaSMTP.Verify: PROCEDURE [smtpHandle: ArpaSMTP.Handle,
user, fullyQualUserName, mailBox: LONG STRING];

Verify confirms that the string user identifies a known user on the host specified by the
field smtpHandle. If the argllment user is a user on the remote host, then the full name of
the user (if known) and the fully specified mailbox are returned.

ArpaSMTP.Expand: PROCEDURE [smtpHandle: ArpaSMTP.Handle,
distributionList, expandc!dList: LONG STRING];

Expand asks the host specified by the field smtpHandle to confirm that the argument
distributionList identifies a mailing list, and if .so, to return the membership of that list.
The full name of the users (if known) and the fully specified mailboxes are returned.

Pilot Programmer's Manual H

ArpaSMTP.Reset: PROCEDURE [smtpHandle: ArpaSMTP.Handle];

Reset sets the connection to the state it was in when the connection was first established.
All current state information (recipients, send, etc.) will be reset.

ArpaSMTP.Close: PROCEDURE [smtpHandle: ArpaSMTP.Handle];

Close ends the existing SMTP connection identified by smtpHandle. The connection
identified by smtpHandle is invalid after successful completion of this operation and
should not be used for subsequent operations.

ArpaSMTP.FreelnvalidRecipients: PROCEDURE [smtpHandle: ArpaSMTP.Handle.
invalidRecipients: LONG POINTER TO ArpaSMTP.lnvalidRecipientList];

FreelnvalidRecipients frees invalid recipients returned by the procedure Post. The field
smtpHandle is a handle to the SMTP connection; the field invalidRecipients is a pointer to
the sequence returned by Post.

H-59

H TCP/IP Interfaces

16 ArpaSMTPServer

H-60

Simple Mail Transfer Protocol (SMTP) is a mail transfer protocol to be used with the
TCPIIP protocols. The ArpaSMTPServer interface provides Pilot clients with an interface to
the SMTP defined by RFC821.

References: RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

16.1 Types and constants

ArpaSMTPServer.RcptList: TYPE :II LONG POINTER TO ArpaSMTPServer.RcptRecord;

ArpaSMTPServer.RcptRecord: TYF'E :II RECORD (
recipientName: LONG STRINIG ~NIL,
nextRecipient: ArpaSMTPServer.RcptList ~ NIL];

ArpaSMTPServer.ReturnReason: TYPE. {ok, insufficientSpaceOnVolume,
storageAllocExceeded, transactionFailed, otherError};

Return reasons are described loelow.

ok The default return reason.

insufficientSpaceOnVolume
The local medium does not have enough space to accomodate the message.

storageAllocExceeded
The space allocated for this transaction has been exceeded.

transaction Failed
The transaction failed for some reason.

otherError
Catch-all error.

ArpaSMTPServer.PostProc: TYPE :: PROCEDURE [
message: Stream.Handle,
reci pi entNames: ArpaSMTPServer .RcptLi st,
returnPath: LONG STRING,
messageLength: LONG CARDINAL,
noOfRcptsHint: CARDINAL]
RETURNS [returnReason: Ar'paSMTPServer.ReturnReason);

PostProc is used by the SMTP server when a message is received for the users specified by
the list recipientNames. The message can be received by reading from the stream provided
in the field message until the signal Stream.EndOfStream is raised. The returnPath
contains the return mail path to the sender of the message.

The fields message Length and noOfRcptsHint can provide hints to the mail client as to
how to grow data structures to accommodate the message. The mail client should return
problems in the handling of the message in the return Reason field.

Pilot Programmer's Manual

ArpaSMTPServer.ExpandProc: TYPE = PROCEDURE [
dl: LONG STRING,
dataProc: PROCEDURE [user, mBox: LONG STRING]];

H

ExpandProc is used by the SMTP server when a request for distribution list expansion is
made on the server. The client process returns the distribution list contents identified in
the field dl by calling the dataProc with each user's name in the field user and mailbox
information in the field mBox.

ArpaSMTPServer.VerifyProc: TYPE 2 PROCEDURE [user: LONG STRING]
RETURNS [fullyQualifiedUser, mailBox: LONG STRING);

VerifyProc is used by the SMTP server when a request for user name verification is made
on the server. The client process returns the user1s fully qualified name (if known) in the
field fullyQualifiedUser and the user's mailbox identifier in the field mailBox.

ArpaSMTPServer.ValidateProc: TYPE = PROCEDURE [user: LONG STRING]
RETURNS [accept: BOOLEAN];

ValidateProc is used by the SMTP server when a request to deposit mail for a particular
user is made on the server. If the client process is receiving mail for the indicated user,
then it returns TRUE in the field accept.

ArpaSMTPServer.SMTPProcList: TYPE=- RECORD [
post: ArpaSMTPServer .PostProc,
expand: ArpaSMTPServer.ExpandProc,
verify: ArpaSMTPServer. VerifyProc,
validateUser: ArpaSMTPServer.ValidateProc];

SMTPProcList is used to pass a list of procedures to the SMTP server; the SMTP server uses
these procedures to communicate with client processes.

16.2 Procedures

ArpaSMTPServer.Register: PROCEDURE [
smtpProcs: ArpaSMTPServer.SMTPProcList, serverName: LONG STRING];

Register starts an SMTP server session. Only one session is started no matter how many
calls are made to Register. The fields smtpProcs contains a list of procedures that the
SMTP server uses to communicate with the client process. The serveName field contains
the commonly known name of the server.

ArpaSMTPServer.UnRegister: PROCEDURE;

UnRegister stops the SMTP server from receiving additional connections and releases all
resources used by the SMTP server.

H-61

H TCP/IP Interfaces

17 ArpaMailParse

H-62

ArpaMailparse parses the headers of messages formatted according to RFC822. Syntactic
entities from RFC822, such as atom, are indicated by italics in this section.

To parse a message, call Initialize loop calling GetFieldName, call either GetFieldList or
NameList (depending on the semantics of the field name returned by GetFieldName), and
call Finalize. NameList is the main procedure to deal with lists of recipients in the many
syntactic forms defined by RFC822. Most of the remaining procedures in the interface
support special cases of thesE! forms and are used infrequently.

ArpaMailParse is implemented by the program ArpaMailParser Impl. bcd.

References:

17.1 Types

RFC822 Standard for the Format of ARPA - Internet Text Messages,
Crocker, August, 1982

ArpaMaiIParse.BracketType: TYF'E • RECORD [
group: BOOLEAN +- FALSE,
routeAddr: BOOLEAN +- F.lI,LSE);

BracketType is passed to a PrlocessProc as part of its Namelnfo argument and describes the
context of a name in a name list.

group is TRUE if the name appears in the context ttphrase: ... ;"; that is, phrase is the name of
a group. This phrase is not treated as part of any recipient name.

routeAddr is TRUE if the namE! appears in the c·ontext ttphrase < ... >"; that is, phrase is the
initial part of a route-addr describing a recipient.

ArpaMaiIParse.Handle: TYPE = LCING POINTER TO ArpaMailParse.Object
ArpaMailParse.Object: TYPE;

A Handle is a pointer to an Object, representing an instance of a parse.

ArpaMailparse.Namelnfo: TYPE II RECORD [
nesti ng: ArpaMaiIParse.Brac:ketType,
type: ArpaMaiIParse.Namel'ype);

Namelnfo is used exclusively with the NameList procedure; it provides the client-supplied
process procedure with inforlnation about its parameters. nesting describes the context of
this name in the name list being parsed. If nesting.group or nesting.routeAddr is TRUE,
then procedures GetGroupPhrase or GetRouteAddrPhrase may be called from the process
procedure to obtain the phrase for that nesting property.

ArpaMaiIParse.NameType: TYPE. {normal, file};

NameType is passed to a PrOlcessProc as part of its Namelnfo argument; it describes how
the local name is interpreted.. normal means the name is a single recipient (neither a file
·name nor a public distribution list). file means the name occurs as the tag portion of an
empty group list and should be treated as the name of a file containing a list of recipient
names.

Pilot Programmer's Manual

ArpaMailParse.ProcessProc: PROCEDURE [
h: ArpaMaiIParse.Handle,
local. registry. domain: LONG STRING,
info: ArpaMaiIParse.Namelnfo]i

H

For each recipient encountered, NameList calls the client's ProcessProc, passing it the
simple name, registry, and Arpanet host.

h is provided so the client may call GetGroupPhrase or GetRouteAddrPhrase.

local is always non-empty. The string parameters are free from leading, trailing, and
excess internal white space. If domain is absent, then a string of length zero (not NIL) is
passed. Each is guaranteed to contain room for ArpaMailParse.minLength characters.
domain (but not local) may be changed in limited ways by a ProcessProc. It is permissible
either to change the length to zero or (if the length is zero) to append a value to alter the
qualification of the name that is to be passed to the write argument of NameList.
registry is not used.

info provides additional information about the name being supplied. See the description of
Nametnfo for above.

ArpaMaiIParse.WriteProc; PROCEDURE [string: LONG STRING];

Each time the client's ProcessProc returns TRUE, NameList outputs the complete name (with
possibly altered qualification) by calling WriteProc with fragments of the recipient name.
NameList keeps the original format of the name as much as possible, including bracketing,
comments, and the locat~on of white space. Successive white space characters (outside of
quoted strings) are replaced by a single space. NameList assumes responsibility for
outputting appropriate separators (commas) and brackets, based on the values returned by
successive invocations of process.

17.2 Constants and data objects

ArpaMailParse.endOflnput: CARDINAL ~ ••• ;

endOflnput should be returned by the client's next procedure (see Initialize) when the end
of the input is reached.

ArpaMailparse.endOfList: CARDINAL ~ ... ;

endOfList may be used as a delimiter terminating a list of names. It has no other effect.

ArpaMailparse.minLength: CARDINAL = 40;

The registry and domain STRINGs passed to the client's ProcessProc will be at least this long.

17.3 Signals and errors

ArpaMailParse.Error: ERROR [code: ArpaMailParse.ErrorCode, position: CARDINAL];

Error is raised when the parse of the mail message fails. code describes the reason for the
failure. position is the number of characters parsed when the error was detected.

ArpaMailParse. ErrorCode: TYPE =- {
i IlegalCharacter, unclosed Bracket, bracketNesti ng, implementation Bug,

H-63

H

H-64

TCP/IP Interfaces

phraseExpeded, domainExpected, atom Expected, commaOrColon Expected,
at Expected, spacelnLocClllName, mailBox Expected, missingSemiColon, nestedGroup,
endOflnput, commaExpE!cted, fieldsAreAtoms, colonExpected, lessThanExpected,
greaterThanExpected. noFromField};

The error conditions that cause a failure are largely self-explanatory. noFromField is not
raised by ArpaMailParse, but i:s provided for clients who cannot succeed if the message is
either unparseable or contains no UFrom:" field.

17.4 Procedures

ArpaMailParse.Finalize: PROCEDURE [h: ArpaMaiIParse.Handle);

Finalize finalizes the parse. This procedure must be called when the client has finished
parsing, after either normal completion or an error has occurred. Finalize modifies h, so it
should not be reused.

Note: Finalize may not be called from within the process procedure invoked by NameList
or from within the catch phrase of Error.

ArpaMaiIParse.GetFieldBody: PltOCEDURE [
h: ArpaMaiIParse.Handle. string: LONG STRING, suppressWhiteSpace: BOOLEAN ~ FALSE];

GetFieldBody reads the remainder of the current field body using next (see Initialize) and
puts the characters consumed into string. If the field body is too long, then overflow
characters are discarded. If the field body terminates before a CR is seen, then
Error(endOflnputJ is raised. Upon return, string has no initial or terminal white space
(blanks and tabs) and, if sUl=lpressWhiteSpace is TRUE, each internal run of white space is
replaced by a single blank. B:FC822 line-folding conventions are also observed.

ArpaMaiIParse.GetFieldName: StROCEDURE [h: ArpaMaiIParse.Handle, field: LONG STRING)
RETURNS [found: BOOLEAN'I;

GetFieldName presumes that next (see Initialize) is positioned to read the first character of
a field name and it returns the field name, without the terminating colon, in field. It
leaves next ready to return the first character following the colon (or, if the end of the
message header has been reached, the character (if any) after the two CRs that normally
terminate the header). If the field name is too long, overflow characters are discarded.
Upon return, found is FALSE if no field names remain in the header.

If the header field ends pre:maturely or illegal header characters are encountered, then
Error(fietdsAreAtoms] is raised. Error(colonExpected] is raised if there are embedded
spaces in the field name.

ArpaMailParse.GetGroupPhra,,!: PROCEDURE [h: ArpaMailParse.Handle, phrase: LONG STRING1;

GetGroupPhrase can only reasonably be called from inside the process procedure passed to
NameList. The phrase that introduces the current group is. appended to phrase. If the
phrase is too long, overflow characters are discarded. Upon return, phrase has no initial or
terminal white space (blank:3 and tabs, and each internal run of wl:tite space is replaced by
a single blank. If GetGroupl;thrase is called at an inappropriate time (for example, when
Nametnfo.nesting.group • f:ALSE), no changes are made to phrase.

Pilot Programmer's Manual H

ArpaMailParse.GetRouteAddrPhrase: PROCEDURE {h: ArpaMaiIParse.Handle. name: LONG STRING];

GetRouteAddrPhrase can only reasonably be called from inside the process procedure
passed to NameList. The phrase that describes the current recipient is appended to name.
If the phrase is too long, then overflow characters are discarded. Upon return, name has no
initial or terminal white space (blanks and tabs), and each internal run of white space has
been replaced by a single blank. If GetRouteAddrPhrase is called at an inappropriate time
(for example, when Namelnfo.nesting.routeAddr • FALSE), then no changes will be made to
name.

ArpaMailParse.lnitialize: PROCEDURE [next: PROCEDURE RETURNS [CHARACTER]]
RETURNS [ArpaMailParse.Handle);

Initialize creates an instance of the header parser and returns a Handle to be passed to
other procedures of this interface. Subsequent invocations of GetFieldName,
GetFieldBody, and NameList obtain their input using next.

ArpaMaiIParse.NameList:PROCEDURE[h:ArpaMaiIParse.Handle,
process:ArpaMaiIParse.ProcessProc,write:ArpaMaiIParse.WriteProc +- NIL1;

NameList expects to read characters using next (see Initialize) for a structured field body
consisting of a list of recipient names. For each name encountered, it calls process. If
process returns TRUE and write is not NIL, then NameList outputs the complete name, with
potentially altered qualification, by calling write. If syntax errors are detected during
parsing, then Error is raised. It is legitimate for the process procedure to raise a signal that
causes NameList to be unwound.

ArpaMailParse.Stri ng ForErrorCode: PROCEDURE [code: ArpaMailParse. ErrorCode,s: LONG STRING];

StringForErrorCode appends a user-sensible error message onto the string s. If the error
message is too long, then overflow characters are discarded.

H-65

H TCP/IP Interfaces

18 Arpa Version

H-66

ArpaVersion allows for the acquiring of version number information.

The procedure is defined below.

ArpaVersion.Append: PRoe [s: LONG STRING);

Append appends the version number of the software onto the string s.

Glossary

Glossary

abstract machine
A set of functions provided by hardware or software that forms the
underpinnings of a system sitting above. For example, Pilot is an abstract
machine that runs on a variety of physical machines.

address fault

adjective

A system error that occurs when an attempt is. made to reference an illegal
address.

An identifier constant from an enumerated type, used to select one of the
alternatives in a variant record. SEE tag.

alignment
An YO interface constant that constrains alignment of data in memory; that is,
each YO buffer must be aligned on a virtual memory address that is a multiple
of alignment. SEE ALSO granularity, truncation.

asynchronous
Returning control to the caller before completing an operation; e.g., after
queuing the operation. SEE synchronous.

atom A Mesa primitive that provides a unique identifier in a global naming space.
An atom has an associated property list.

backing storage

backstop

bank

bed

A sequence of pages from a file or real memory to which a part of virtual
memory is mapped. Any part of virtual memory currently in use is mapped to a
backing store. SEE Map.

A system for recording information about malfunctioning software and
hardware. For product systems, installed instead of a debugger.

A block of256 pages aligned on a 64K word boundary (Mesa terminology).

Binary Configuration Description.

Glossary - 1

Glossary - 2

Glossary

Binary Configuration Description
A compiled and possibly bound Mesa module, sometimes called an object file.
SEE configuration.

bind To combine objet!t modules into a larger unit (called a configuration) by
resolving intermodule references.

BITBLT
A complex Mesa processor instruction to do a very fast bit block transfer.
Originally designed to move arid possible modify a rectangular piece of the
display bitmap, but has found other uses. (Pronounced "bit blit.H)

bitmap A representation of a rectangular image as a sequence of bits, each of which
represents the intensity of a point in the image. The display hardware and
microcode convert a bit-map to a displayed image.

block 1. The description of a section of memory which is the source or sink of
transmitted bytes. This memory section is a sequence of bytes (not necessarily
word aligned) that must lie entirely within a mapped space.
2. A Mesa construct that is used as a placeholder to represent a region of
storage of in determinant size.

boot To load and start a system on a machine whose main memory has essentially
undefined contents. C'Boot" is short for "bootstrap," which in turn is short for
ffbootstrap load.")

boot file
1. A file that contains a ready-to-run Pilot-based system that can be loaded by a
germ for execution.
2. A file that contains all of the system routines and tools that are
automatically provided on power-up, as well as bootstrap code. The type of boot
file determines the environment of the machine; for e'xample, Tajo.

boot switch

build

A Runtime software-selectable option that transmits operational information
from the booting agent to the running boot file.

1. To combine separate modules into a single unit by assembling them into
object modules, binding Oinking) to produce a .Ink module, locating (assigning
an absolute location in main memory) to produce a .loc module, and finally,
running MakeMi.croBoot to produce a .db file. SEE file extension for module
definitions.
2. To generate a bootable file from individual components on a working
directory. Picks up named components from hierarchical DFs; last step is to run
MakeMicroboot or MakeBoot to create a boot file.

byte code

call stack

cardinal

A one-byte opcode instruction compiled by Mesa into a directly executable,
stack-oriented language. Interpreted by special microcode on each of the
various machines.

A Mesa processor data structure containing a frame for each procedure
invocation that has not yet returned. The call stack is ordered with the most
recent invocation first.

A non-negative integer.

catch phrase
A Mesa construct that establishes code to catch one or more signals.

Pilot Programmer's Manual

channel

client

A Mesa interface for accessing and driving I/O devices. Specifies the device­
specific data and control information needed by a client to operate the device.
SYNONYM: software channel.

A program that uses the services of another program or system.

code 1. The statements in a software program.
2. To write a list of instructions to cause the product/system to perform specified
operations.

Common Software
A collection of modules, written in Mesa and based on Pilot', that provide
frequently used functions. Not included in PilotKernel.bcd.

Communication Package
The code allowing Pilot clients to perform inter- and intra-processor
communication.

compile To translate a source file into object file (.bcd).

condition variable
A data structure that allows a process to wait for some event either until
notified by another process that the event has occurred or until a specified
period of time passes without occurrence of the event.

configuration
A set of modules andlor sub-configurations assembled into a new conglomerate
entity which has the characteristics of a single module.

configuration description
. A C/Mesa source file that tells the Binder how to combine modules into a

configuration. Called config.

consistent
Having the characteristic that in a set of object modules referenced directly or
indirectly there is no case of more than one version of a particular object
module.

CONTINUE

Courier

To resume program execution at the statement following the one to which the
catch phrase belongs. Thus, control is resumed in the procedure where a signal
was caught, not in the procedure that raised the signal.

The Xerox Network Systems protocol that permits the initiation and control of
remote processes, including the transfer of information and control parameters
associated with such processes. SEE remote procedure calling.

dangling pointer
A pointer to an invalid memory location, usually the result of deallocating
storage while a pointer to it remains. For example, a pointer allocated from a
local frame whose procedure has returned.

data stream
A device- and format-independent interface used to move sequential data
between a device and a process or between two processes. Two different
computers may be involved.

definitions module
1. In Mesa, an interface unit that serves as a blueprint or specification for how
the parts of a system will fit together. Does not contain executable code.
During compilation the modules provide definitions which can be referenced by

Glossary - 3

Glossary - 4

Glossary

other modules being compiled.
2. Describes an in.terface to a function by providing a bundle of procedure and
data declarations which can be referenced by client programs. SEE module.

Description File (DF)
A file that identifies the files needed to build a system component. A
fundamental Pilot concept, it is a text file listing all components that make up a
module, where they are located, and when they were created. Almost a
blueprint for build.ing a module.

detach To condition a process so that when it returns from its root procedure, it will
immediately be deleted.

device A peripheral unit, almost always hardware, that is separately accessible
through its own channel.

device driver
1. A set of progra:ms that implement and export a software channel. Includes
interrupt routine!s, interfaces with microprograms, control of hardware
registers, and othE!r functions required to service the device.
2. A program that translates the channel requests for a device into physical
device actions.

df(also DF)
Description File.

drive An I/O device capable of containing a Pilot physical volume, typically a fixed
disk or a removable disk pack. SYNONYM: disk.

event A value that nSLmes a particular occurrence which may interest some
subsystems.

exception
An unusual eventi which programs must be prepared to handle, such as I/O
error.

export To enable all or part of an interface to be used by other modules. SEE import1
interface.

face A Mesa interface that embodies some aspects of the processor and of its I/O
devices. Implemented by a combination of Mesa code (head), lower-level
machine code (microcode), and the underlying hardware.

fault A process failure that suspends running execution of the process (possibly only
temporarily). SEE 'page fault, frame fault, write fault.

file 1. The basic unit of long-term information storage. Consists of a sequence of
pages, the content:3 of which can be preserved across system restarts.
2. A sequence of data pages located on some physical device and containing
some common grouping of information. Files may be local or remote.

file extension
A part of a file na.me, separated from it by a period (.) that indicates the file
type. In Pilot, som.e file extensions are:

.boot - boot file

.db - microcod,e boot file

.df - description file

.com - command file that runs on the VMS operating system on a V AX .

. bat - command (batch) file that runs on an IBM-PC running PC-DOS .

. tds - tool driv€·r script for use with the XDE Tool Driver program .

. hex - PROM-i111age form of executable assembly codes, as made from loc file.
Joe - located vc!rsion of assembly code, as made from lnk file.

Pilot Programmer's Manual

fileid

fileType

.Ink -

. obj -

.asm­

. mpl­

.mp2-

linked version of assembly code, as made from other lnk files and obi
files.
object (assembled) version of assembly code, as made from asm file .
assembly (e.g., 80186) source code
output from the linker--sizes, unresolveds, included files, etc .
output from the locater--absolute addresses (gigantic !)

A unique identifier issued to a file by Pilot for use by higher level software.

A functional designation that enables Pilot, scavenging programs, and clients
to recognize a file's purpose. Assigned by programmer according to definitions
in the fileTypes interface file.

file window

filter

fork

frame

A consecutive (but not necessarily contiguous) group of pages within a file into
which a map unit is mapped.

A mechanism for modifying a data stream; that is, transforming, buffering, or
otherwise manipulating data before passing it onto another stream.

1. To create a new process that will run concurrently with the process that
created it. The process that is forked is called a live process.
2. To create a copy of a system followed by development of that copy in a fashion
inconsistent with the continuing development of the original.

A PrincOps data structure allocated for the variables and internal data
structures of an executing module or procedure. Module frames are called
global frames; procedure frames are called local frames. Since Mesa supports
multiple concurrent execution of a procedure, a given procedure may have
several frames.

frame fault
A fault that occurs when a process is unable to allocate a local frame from the
frame heap, typically during a procedure call.

frame pack
A swap unit produced by the Packager that contains the global frames for a
collection of modules.

frame segment header
A machine-dependent record located in resident MDS memory that keeps track
of sets of actual local frames.

friends interface

gateway

germ

An interface (possibly undocumented) that can be used with care by clients
outside the group owning the components.

1. A hardware/software system capable of exchanging messages between two
dissimilar networks.
2. A processor serving as a forwarding link between Ethernets. SEE Router.

A bootstrap loader that can load a Pilot bootfile into a Mesa processor and place
it into execution. Each kind of processor has one or more germs.

gran ularity
An I/O interface constant that constrains alignment of data in memory; Le.,
each I/O buffer in virtual memory must have a length that is an integral
multiple of granularity. SEE ALSO alignment, truncation.

Glossary- 5

Glossary - 6

Glossary

handle

handler

. head

An identifier associating the use of a hardware or software facility with the
process that obtaius the handle.

Device-dependent microcode associated with a given I/O device on the lOP
board. Each type ofIlO device has its own handler.

1. One or more files containing the object code of the modules that export the
device faces.
2. An implementa.tion of a face for a processor or device. A collection of heads
provides a processor-independent environment in which Pilot and its clients
execute.

heap A system-designated area of virtual memory used for dynamic allocation of
storage. SEE zone.

implementation module
SYNONYM: prograrn module.

initialize
To set to a known value.

initial microcode

interface

1. Lowest level microcode, typically residing in a special place on the disk,
outside any logical volume. Invoked by hardware booting logic of the machine.
2. The program that reads the Pilot microcode and the germ from the disk.

A formal contract between pieces of a system that describes the services to be
provided. A provider of these services is said to implement the interface; a
consumer of them is called a client of the interface.

interface module

internet

A module that defines types, variables, constants, procedures, and signals, thus
specifying the services to be provided by its implementation modules.
SYNONYM: Definitions module.

A collection of networks mutually accessible via internet routing services.

Internet Datagram Protoc:ol
A connectionless protocol which provides for the addressing, routing, and
delivery of standard internet packets.

Internet Transport Proto(:o.s

interval

The set of protocols which provide for the transport of data across an
interconnection of' networks.

A sequence of pages in the virtual address space, described by a pointer to the
first page and a count of the number of pages.

jam To deactivate or r(!move from a queue.

join 1. To return results to the process doing the join.
2. To delete the process that was spawned by the parent process' fork.

kernel For Pilot, a file containing the object code of the fundamental parts of the Pilot
operating system.

link An absolute disk address.

Pilot Programmer's Manual

local boot file
A boot file that is specific to the machine and circumstances in which it is
created. SEE universal bootfile.

log file A file containing a history of program actions.

logical volume

machine

The unit of storage for client files and the system data structures for
manipulating them. Contained in a physical volume.

A hardware configuration consisting of a processor, main memory, and
peripheral devices; for example, workstations and servers.

Main Data Space
A subspace of virtual memory that provides the local execution environment for
Mesa programs and holds the implicit Mesa data structures.

maintenance release
A small release that fixes problems in the previous major release. Only
problems too serious to wait for the next major release are addressed.

MakeBoot
A Mesa program that transforms an object file containing Pilot and its client
into a memory image which can be run on any machine conforming to the Mesa
Processor Principles of Operation. The resulting bootfile is later boot-loaded for
operation.

Make Micro Boot
A program that transforms an object file containing emulator and lOP code into
a . memory image which can be run on any machine conforming to the Mesa
Processor Principles of Operation. The resulting bootfile is later boot-loaded for
operation.

map To associate a region of virtual memory with a file window so that the contents
of the file window appear to be the contents of the region.

mapping

map unit

The act of associating an area of virtual memory with a sequence offile pages in
main memory (window).

A consecutive group of virtual memory pages that is the principal unit for
allocating, mapping, and swapping virtual memory.

MDS Main Data Space.

Mesa

Mesa.db

A Pascal-like, strongly typed, system programming language that forms the
basis of the Xerox Development Environment. Pilot is written in Mesa.

A boot file that contains SOlO-specific code, including initialization code, the
Mesa emulator, and lOP handlers not in ROM.

MesaDaybreak.db
A boot file that contains 60S5-specific code, including initialization code, the
Mesa emulator, and lOP handlers not in ROM.

Mesa Processor Principles of Operation (PrincOps)
A document that describes the Mesa abstract machine. A variety of machines
implement the PrincOps architecture in hardware and microcode; Pilot runs on
PrincOps machine.

Glossary -7

Glossary- 8

Glossary

Mesa run-time
A set of procedures used as a base upon which to build experimental systems.

microcode
The code that, tog'ether with the heads, implements the Mesa processor on a
given kind of hardware.

mode A special state of a system in which user actions have special meaning.

mode-less
Free of modes, so that a given action produces the same result. For example, ill
a mode-less user interface, pressing a particular key always has essentially the
same effect.

module In Mesa, the smallest self-contained executable program unit; the basic unit of
compilation. The two types are: definitions or interface modules and program
modules.

monitor A Mesa module that controls access to shared resources, thus synchronizing
interactions among' processes.

monitor lock

network

A data structure that contains the interlocks sufficient to guarantee that only
one process at a time may gain access to shared resources.

A communication medium, such as an Ethernet, known to routers by a unique
identifying number,

network address
1. The source ~r d.estination of processes which reside on different machines.
Unique between system restarts, but reused each time the system is restarted.
2. An identifier that consists of a network number, host number, and socket
number. The network number identifies a network anywhere in the world. The
host number uniquely identifies a machinwithin the designated network. A
socket number identifies a particular socket on that host.

network stream
A byte stream that provides sequenced, duplicate-suppressed, error-free, flow­
controlled communication over arbitrarily interconnected communication
networks, as definf~d in Xerox Internet Transport Protocols.

node A block of allocatE!d storage, often with a record structure. SYNONYM: storage
node.

Othello A Mesa program used to manage Pilot physical and logical disk volumes. Does
not provide programming facilities.

ou tload file
A snapshot of the volatile state of a system (essentially the contents of real
memory and registers). Outload files are used by the debugger. SEE World­
swap.

overlay The technique of repeatedly using the same area of internal memory for
bringing routines into memory from bulk storage. Used when the available
main memory is slmaller than the total storage requirements necessary for all
program instructions.

package '
To group components of modules into swap units to try to improve use of real
memory.

packet A unit of information in the internet.

Pilot Programmer's Manual

page A block of 256 words (512 bytes) of information in either virtual memory or a
file. The page is the basic addressable unit of a file.

page fault
A fault that occurs when a process attempts to reference a page of virtual
memory which is not (at that moment) backed by a page of real memory.

physical volume

Pilot'

pipeline

The basic unit of physical availability for random access file storage; for
example, rigid disks. A storage medium whose availability is intrinsically
independent of that of other instances of such media. SEE logical volume.

The operating system that manages the hardware resources of, and provides the
run-time support for, all Mesa programs on a machine. A nucleus of software
which interfaces between a Mesa processor and all other software.

A sequence of concatenated filters that perform a series of transformations on
the contents and properties of a stream.

pointer 1. A data item containing the location of a value.
2. The exact location of desired information.

private interface
An interface available only to clients of closely related components, whose
implementors are typically in the same group. SEE public interface.

process The fundamental architectural concept in all Mesa software. A procedure
activation that runs concurrently with its caller, allowing asynchronous
activities.

program module
1. A Mesa unit that contains actual data and executable code that implements
the interfaces. Program modules can be loaded and bound together to form
complete systems.
2. A binary object file that contains the procedural description of one or more of
the functions defined in some definitions module. Also called implementation
module. SEE module.

public interface

pulse

An interface that can be used by all clients. SEE private interface.

A processor-dependent unit of time, the resolution and accuracy of which is
determined by the internal clocks of the processor. Typically, resolution is in
the range of 1-1000 microseconds, and accuracy is 10% or better.

real memory

release

The physical memory that holds software and data during processing, as
opposed to secondary or virtual memory.

An official, consistent version of software produced and maintained by its
developers. The term used to identify and categorize a software product
provided by Engineering to any other functional group; releases are separated
into internal releases and external releases. SEE ALSO maintenance release.

remote procedure call
The invoking of a procedure from one machine to be executed in another
machine over a network.. SEE Courier.

rou ter 1. A software package that manages the transmission and reception of
information from one Pilot client to another Pilot client on the same or another
system element.

Glossary - 9

Glossary - 10

Glossary

scavenge

2. A software pac.kage that sends packets between sockets. If the destination
socket is on another network, then the path chosen by a router includes
intermediate stop:;. A router that sends packets between networks is called an
internet router.

To check for damaged file structures and to attempt to repair them.

server 1. A combination of hardware and software capable of performing some
particular set of sE!rvices. Includes appropriate peripheral devices; for example,
a large disk storage device in a file server.
2. A machine dedicated to performing one or more services. SEE user.

signal A Mesa language construct used to help handle exceptional conditions
encountered during program execution. Signals are like procedures except that
the code to be executed is determined at run-time.

Signaller

snapshot

The program that gets control when a signal is raised, attempts to find an
associated catch phrase, and executes the code in the catch phrase.

1. A record in a SE!parate file that contains the contents of another file or device
at a given moment.
2. To make such a record.

socket 1. A source or destination of packets on a given machine. Uniquely identified
by a I6-bit socket number. Accessed through a channel interface and thus is a
logical input/output device. Several streams of packets may share a single
socket.
2. An abstract locution in a host that can originate or receive communication.
3. A source or destination of packets on a given machine.

Space The Pilot interfac:e for managing virtual memory. Space often refers more
generally to virtu~JLl memory.

stateless enumerator
A type of function that enumerates items when successively called. The input
parameter for each call is the returned value of the previous call.

state vector
A statically alloca.ted (during MakeBoot) location for storage of the state of a
running process that has been suspended by an interrupt or fault. Cleared or
released when the interrupted process is restarted.

stream 1. A sequence of bytes, possibly marked by attention flags and possibly
partitioned into identifiable subsequences.
2. An abstraction for device- and format-independent sequential access to a
collection of data. Some streams also provide random access to the data.

stream component manag4~r
The software entity. that implements a stream components; that is, a
transducer, filter, or pipeline.

Stream Facility
An interface that provides Pilot clients with a convenient, efficient, device- and
format-independent sequential access to a stream of data.

stream handle
A pointer to a stream object that indentifies the particular stream being
accessed. Contain:; the data and procedures of operations on the stream.

Pilot Programmer's Manual

stream interface
The set of procedures and data types by which a client controls the transmission
of a stream of information.

Stream Package
Software that provides a basic set of transducers and filters and a way of
assembling them sequentially into processing and transmitting pipelines. A
mechanism for transporting sequential data between Pilot client and I/O device
or other Pilot client that is device- and format-independent.

Supervisor

swap

An interface that manages the orderly acquisition and release of shared
resources; for example, files, removable volumes, or even the entire processor.

To transfer data between memory and files, either in response to hints from the
client program or upon demand. To swap in is to copy from a file window into
real memory; to swap out is to copy from real memory to a file window.

swap unit
1. A subdivision of an interval that allows more efficient management of
swapping.
2. A portion of a space to be swapped.

switch A modifier to a command or subcommand, often preceded by /.

synchronous
Completing an operation before returning control to the caller. Most Pilot
operations are synchronous. SEE asynchronous.

Synchronous Point-to-Point Protocol
The Xerox bit-synchronous protocol for point-to-point data links.

system An organized combination of hardware components and software working
together to perform some logical process in a systematic manner.

system architecture
The design/configurator for attaching the various hardware/components of the
system to interact with each other for the purposes for which the system was
designed.

system volume
The logical volume on which the bootfile resides.

Tajo A collection of functions designed to facilitate the implementation and
execution of software development tools. (internal Xerox)

timeout
To fail to complete an operation within a specified amount of time.

transducer
1. A mechanism for transcribing a sequential stream of data on or off an I/O
device.
2. A software entity that implements a stream, such as MStream, connected to
a specific device or medium through a Pilot channel.

truncation
An I/O interface constant that constrains alignment of data in memory; that is,
each physical record on the device must have a length that is a multiple of
truncation. SEE ALSO alignment, granularity.

uncaught signal
A signal that is not handled by any module in the call stack. If a signal is
uncaught, then the Signaller transfers control to the debugger.

Glossary - 11

Glossary - 12

Glossary

universal boot tile
A boot file that can be transported to any machine (of the right configuration)
and executed there. COMPARE TO local bootfile.

universal identifier
A 5-word Mesa object that uniquely names network resources and other
permanent objects in a network.

user In the context of the user/server model, the active entity which uses a service
provided by a server. SEE server.

Utility Pilot
. A version of Pilot that provides most Pilot facilities but does not require that a

disk be present on the machine. Used primarily to build special utility systems;
for example, disk :lnitializers, diagnostics.

valid memory location
A currently allocated memory location. A location that has been freed is invalid
and should not be referenced.

version A complete and internally consistent set of modules that implement a system.
A fully debugged version with needed features becomes a release. SEE release.

virtual memory .
A large, linearly addressed, word-organized area common to all processes and
devices. All software, including Pilot, common software, and applications,
resides and executes here.

volume SEE physical volulne, logical volume.

window A data structure representing a sequence of pages from a file.

working set
Memory requirenlent for a Pilot function; that is, the virtual pages (code and
data) that, when in memory, provide a local minimum of page faults to service
the function.

world-swap
To write out the complete state of a logical volume onto a disk .file and then to
read in a differenf~ state. CoPilot normally works by world-swaps between the
debugger and the program being debugged. SEE outload file.

write fault
A fault that occurs when a process attempts to store into a page of virtual
memory which is backed by a read-only page of real memory.

Xerox Development Environment (XDE)
1. A set of robust and sophisticated software development tools, which use the
resources of Xeroll: Network Systems.
2. A set of basic tools for manipulating programs, including the Tajo user
interface and a va.riety of built-in tools, but not including language-dependent
tools such as the compiler and debugger.

Xerox Network Systems (XNS)
A combination of hardware and software that unites specialized devices into a
network where the capabilities of a variety of workstations are enhanced by
distributed servic.~s.

zone A client-designated area of virtual memory used to allocate and free arbitrary-­
sized storage nodes. SEE heap.

Index

a1,4-46
a16, 4-46
a2,4-46
a4,4-46
a8,4-46
abort

A

canceling, 2-37; key, 5-33

Index

Abort, 2-37,5-16,6-8,6-14,6-19, H-45
abort, H-52 -
AbortCall, 6-43, 6-45
ABORTED, 2-22, 6-8, 6-14,6-19
aborted, 5-28, 5-29, 10-9, H-37
abortedByOelete, 5-28, 5-29
AbortOutput, H-30
AbortPending, 2-28
AbortProc, H-51
AbortTransfer, 6-73
Access, 4-29
accessDetail, 6-27
access permissions, 4-29
accessViolation, H-37, H-40, H-41
accountNeeded, H-44
Activate, 4-35, 4-36, 4-37
ActivateProc, 4-38
active, 6-75
activelyEstablish, 6-12, 6-13
Add Dependency, 2-47
address fault

backstop, 9-1; dereferencing NIL, 2-43;
floppy copy ops, 5-21; in mapping, 4-29,
4-34; unmapped allocation pool, 2-51;
unmapped storage, 4-33, zones, 4-43

addressfault, 9-3
addressTranslationError, H-57

AddSegment, 4-45
AdjustGreenwichMeanTime, 2-22
AdoptForNS, 6-77
agent procedure, 2-45, 2-46
AgentProcedure, 2-46, 2-47
alarm clock, 2-24
AlignedBBTable, 2-13
AlignedTextBltArg,2-13
Alignment, 4-48
alignment, 4-46, 5-3
alignment

byte, 5-3; page, 5-3, 5-21; word, 4-46, 5-3
alive, 4-29, 4-36,4-37
Allocate, 2-50, 4-38, 4-39
allocation of objects, 2-49
AliocationPool, 2-49,2-50
AllocFree, 2-49
allocMaplnconsistent, 5-26
AllocPoolDesc, 2-49
alreadyAllocated, 4-38,4-39
alreadyAsserted, 4-3, 4-5, 4-6, 4-7, 8-5
al readyDeallocated, 4-39
alreadyFormat, 10-21
AI readyFormatted, 5-25, 5-45
AlreadyFreed,2-50
Alto, 7-10
Alto time standard, 2-22, 7-10
american, 10-14
and, 2-21
ANSI, 7-10
anyEthernet, 2-5
anyPiiotDisk, 2-5
Append, 7-11, H-66
AppendChar, 7-6
AppendCharAndGrow,7--9
AppendCurrent, 7-12
AppendDecimal, 7-8
AppendExtensionlfNeeded, 7-9

1- 1

Index

AppendFile, 5-43
AppendLongDecimal, 7-8
AppendLongNumber,7-8
AppendNumber, 7-8
AppendOctal, 7-8
AppendString, 7-6
AppendStri ngAndGrow, 7-9
AppendSubstring,7-6
Applications, 1-2
ApproveConnection, 6-13, 6-16
AreYouThere, H-30
Arguments, 6-48,6-51
arguments, 6-49, 6-50, 6-51, 6-52, 6-53
ArpaConstants,H-2
Arpafilename, H-54
ArpafilingCommon, H-37
ArpaFTP, H-42
ArpafTPServer, H -49
ArpaMailParse, H-S2
ArpaRouter, H-4
ArpaRouterOps, H-5
ArpaSMTP, H-56
ArpaSMTPServer, H-SO
ArpaSysParameters, H-9
ArpatelnetStream, H-24
ArpaUtility, H -12
ArpaVersion, H-66
ARRAY, 6-46
Ascii, DEFINITIONS, 7-1
ascii Bytesync, 6-26
AssertNotAPilotVolume, 4-5, 4-6
AssertPilotVolume, 4-5, 4-6
AssignAddress, 6-23
AssignDestinationRelativeAddress,6-23
AssignNetworkAddress, 2-20, 6-12, 6-17
asynchframingError, 5-29
asynchronous, 6-29
asynchronous operation, 1-8
atomic restoring & saving, 8-14
Attention, 3-5, 3-8, 6-20
attention, 3-5, 6-2
attention, 6-20, 6-21
attention flag, 3-2, 3-8
Attributes, 4-51, 5-16
AutoRecognitionOutcome, 6-26, 6-27
AutoRecognitionWait, 6-28
AwaitstateChange, 4-3

B

Background, 5-12, 10-14
backing file, 1-5,2-17,5-32
backing storage, 1-5, 2-30,4-29,4-30,4-32
backing stream, 5-34
BackingStream, 5-33

r - 1.

backstop,
booting, 9-2, calling, 2-43; control, 9-1, 9-2;
core, 9-1; def, 1-10,9-1; errors reported to,
9-1; implementing, 9-1; initializing log file,
9-2; log file, 9-1, 9-2; logging errors,
9-2; obj. files needed, 9-1; reading log file,
9-1,9-4; volume size, 9-2

BackstopImpl.bcd, 9-1
8ackstopNub, 9-4
BackstopNubImpl.bcd,9-1
bad pages; 4-9, 4-10,4-26,8-5
bad sector, 5-22
badCode, 2-40, 2-41
badCommandsequence, H-44
bad DataGoodCRC, 10-3
badDisk, 4-3, 4-6, 4-7, 5-24, 5-26
Sad Page, 8-5
badPageList, 4-7, 4-8
badPageTable, 5-26
bad Sector, 10-21
badsectorful',10-21
badsectors, 5-27, 5-39, 5-48
badSectorTable, 10-21
badSeq, 10-10
badSpotTableFull, 4-3, 4-9
Sad Switches, 8-10
badTape, 5-39,5-40,5-42,5-43,5-45,5-46,5-47
Base, 2-3, 4-42
basic machine

facilities, 1-3; Pilot-defined, 1-2
BBptr, 2-19
SBTable, 2-9, 5-12, 5-13
BBTableAlignment, 2-9
BBTablespace, 2-9
Beep, 5-15, 10-15
beginDST,2-22
BEL, 7-1
Billing and Accounting Functions, 1-3
Binary, H-31
binary, H-26
binding, 6-47
BindToAIiOnNet,6-S8
BindTofirstNearby, 6-69
BindTofirstOnNet,6-69
BitAddress, 2-3, 2-9
BITANO, 2-19
bit block transfer

arguments, 2-9; description, 2-8; flags, 2-10
to 2-11; source and destination functions,
2-12

BitBlt
bit addressing, 2-3; DEFINTIONS, 2-8; Table,
5-12 .

bitmap
destination, 2-8; display, 5-12; gray pattern
alignment, 2-11; font representation, 2-12,

Pilot Programmer's Man ual

2-13; raster bits, 2-14; top line, 2-14; width
restriction, 2-10

BitmaplsDisconnected, 5-13
BITNOT, 2·19
BitOp,2-18
BITOR, 2-19
bit operations, 2-18 to 2-19
bit pattern specification, 2-19
BITROTATE, 2-19
BITSHIFT, 2-19
bitsPerByte, 2-1
bitsPerCharacter, 2-1
bitsPerWord,2-1
bitSync, 6-26
bitSynchronous, 6-29
BITXOR,2-18
black, 5-12, 10-14
BlackenScreen, 10-15, 10-16
Blank, 7-3
Blanks, 7-3
BlinkDisplay, 5-12, 5-34
Block

Environment, 2-2, 3-3, 3-19, 6-6,6-63; Format,
7-3; in packet trans-mission, 6-6 to 6-9, 6-20,
6-21,6-65; stream, 3-3 to 3-5,3-12 to 3-13

block, 4-57
block,ernpty,2-2
blockPointer,2-2
BlockSize, 4-42
blockTooBig, 6-6
blockTooShort, 6-16
blockTooSmall, 6-6
boolean, 10-18
BooleanDefaultFalse, 4-13
boot, 9-2
boot button, 2-29, 2-24, 8-12,8-13
boot file

booting, 8-13; creation, 8-12; debugger, 8-8;
def, 8-12; default, 8-7; forked processes, 2-29;
ifdeleted, 4-24; in disk preparation for
booting, 8-4; in Pilot initialization, 8-2;
installation, 5-27, 5-28, 8-6, 8-13, 8-14;
leader, 8-13; making bootable, 8-13, 8-14;
status from scavenging, 4-7; types, 8-6;
unbound items, 2-34; updating, 8-14; using 0
switch, 2-29; writing, 8-12, 8-14

boot loader, 2-34, 8-6
boot switches

assignment, 2-25; default, 8-10; descriptions,
2-29 to 2-34; interfaces, 2-25; interrupt, C-1;
names, 2-26 to 2-28; u~e,
2-25; values, 2-26 to 2-28

bootable floppies, 5-26
BootButton, 8-12, 8-14
BootDevice,2-25
bootFile,4-7, 5-26

BootFileArray,4-23
BootFilePointer, 5-27, 5-48
BootFileType, 4-23, 8-6
BootFromFile, 8-12, 8-13
BootFromPhysicalVolume, 8-12, 8-14
BootFromVolume, 8-12, 8-14
booting, Pilot's state after, 2-16
booting agent, 2-25
BootLocation, 8-14, 8-15, 8-16
BoundsFault, 2-43
BracketType, H-62
break, 5-31
Break, H-31
break, H-26
breakDetected, 5-29, 5-30, 5-31, 6-31, 6-32
broadcastHostNumber, 2-20
BS, 5-35, 7-1
BSMemCache. bcd, 9-1
bug, 9-3
bulk, 6-10

I

bulk data transfer, 6-47, 6-49, 6-52, 6-57 to 6-58,
6-71 to 6-74

BWSFileType, 4-18
Byte, 2-1, 3-2
byte

alignment, 5-3; sequence in vm, 2-2; size,
2-1; stream, 6-57

Byte Bit, DEFINITIONS, 2-16
ByteCount, 5-41
ByteOffset, 5-41
bytesPerPage,2-2
bytesPerWord,2-1
bytesRec, 10-10
bytes Sent, 10-10
byteSynchronous, 6-29

C

CADFileType, 4-18
Call, 6-49, 6-50, 6-57
call, 9-3
CaliDebugger, 2-43, 9-1
callerAborted, 6-54
caliSlipport, 10-21
CancelAbort, 2-37
cancelSignal, 10-16, 10-17
cannotWriteLog, 4-22
cantFindStartListHeader, 8-8
CantlnstallUCodeOnThisDevice, 8-5
cantWriteBootFile, 8-8
cardinal, 10-18
carrierDetect, 6-31
catch phrase, 1-9, 2-37, 3-5·
Caution, def, 1-9
ceallesc, 10-17
CCITT Recommendations, E-l

1-3

Index

cCloseWn, 10-17
cdc9730, 2-5
CedarFileType, 4··18
cEnsureReady,10-17
Century Data Systems, 2-5
cExit, 10-17
cFirst, 10-17
change count, 4-3
ChangeLabeIString,4-15
ChangeName, 4-9
ChangeTapeNow,5-41
ChangeVolume, 5-41
channel

creating/initializing (example, 5-1 to 5-2; re
device drivers, 1-7

ChanneIAlreadyE.xists,5-28
Channel Handle, 5-28, 6-30
ChannelinUse, 6-36
channellnUse, 10-9, 10-10
ChannelQuiesced, 5-28
ChanneISuspended,6-36
Char, 7-2
character, 10-18
character raster data, 2-14
character size, 2-1
character terminal, 5-28, 5-31
Characterlength, 5-30
CharEntry,2-15
CharLength, 6-27, 6-30
CharsAvailable, 5-30, 5-33
charsPerPage, 2-2
charsPerWord, 2-1
CharStatus, 5-34
CheckBootFile,5-49
checkOnly, 4-6, 4-7, 4-8, 4-22
CheckOwner,4-52
CheckOwnerMDS, 4-52
Checksum, DEFINITIONS, 2-16
checksum algorithm, 2-16
checksum Error, 6-36
clnsDiffCJeanDisk, 10-17
clnsertCJeanDisk, 10-17
clnsertDiagDisk, 10-17
clnsertWriteable, 10-17
circuitlnUse, 6-15
ci rcuitNotReady, 6-16
CJass,4-31
ClassOfService, 6-10,6-13,6-47,6-48
cLast, 10-17
ClearDispiay, 10-15, 10-16
Clearinghouse, 2-20
clearToSend, 6-31
client, 6-10
client program profile, A-2
client programs, 1-1
ClientData, 7-12

1-4

clients, 2-48
Clientslmpls, 2-48
ClientType, 6-67
ClockFailed, 2-21, 2-31
clock ticks, conversion of, 2-35
clockSource, 6-33, 10-12
ClockSource, 6-30
Close

ArpaSMTP, H-59; Floppy, 5-21; Log, 4-54, 4-56;
NetworkStream, 6-17, 6-18; Volume, 4-14

close protocol, 6-17
Closed, H-21
closedAndConsistent, 4-13
ciosedAndlnconsistent, 4-13
CloseProc, H-38
CloseReply, 6-18
cioseReplySST, 6-17,6-18
closeSST, 6-17, 6-18
CloseStatus, 6-17, 6-18
CloseVolume, 5-40
clusternet, 6-22
cmell, 6-26
cNBNotReady, 10-17
code links, 2-40, 2-42
CommDiagClient. bcd, 10-1
CommDiagServer. bcd, 10-1
CommError, 10-1
CommErrorCode, 10-2
CommOnlineDiagnostics, DEFINITIONS, 10-1
Common Software

def., 1-2; EditIFormat facilities, 7-1, 7-2,
7-5, 7-10; file types, 4-19; TTY facilities,
5-28, 5-31; type code use, B-3

CommonSoftwareEventlndex, 2-46
CommonSoftwareFileType, 4-19
CommonSoftwarefileTypes, DEFINITIONS, 4-16
CommParamHandle, 6-27, 6-30
CommParamObject, 6-27, 6-30
commParams, 6-38
communication

boot switches, 2-31 to 2-32; errors, 6-14;
initialization, 8-11; link, 1-7; performance,
A-3; system, 1-6

Communication package, 8-1
Communication. bcd, 6-4, 6-9, 6-23
communicationError,10-1
Compact, 5-25
Compare, 7-7
CompareProc, 7-12
Comparison, 7-12
compiler option, 2-42
compile time, 2-41
complement, 2-12
CompletionCode, 3-4, 3-5, H-18
CompletionHandle, 5-3, 6-28, 6-30, 6-39
complex services, 1- 3

Pilot Programmer's Manual

ComputeChecksum, 2-16
condition variable, 1-4, 1-10,2-35, 2-36
condition variable timeout, 2-36
ConfigError, 2-40, 2-41
ConfigErrorType, 2-40
configuration, 2-40, 2-41
Conjunct, 6-65
connection, 6-10
ConnectionFailed, 6-12, 6-13, 6-15
ConnectionlD, 6-11
connection less protocol, 6-4
ConnectionSuspended, 6-14, 6-18
ConnectlD, H-36
ConnectProc, H-36
containsOpenVolumes, 4-3, 4-5
Context, 5-16
continueBootinglfNoTimeServer, 8-10
continueOnError, 10-18
conti nue ToNextError, 10-18
Control, 7-1
control characters, 7-1
control codes, 3-2
Control Data Corporation, 2-5
control link, null, 2-42
Control Fault, 2-42
ControILink,2-39
Coordinate, 5-11, 10-14
COPY, 2-17
Copy, 7-6, 6-72
CopyFromPiiotFile, 5-22
Copy'n, 4-34, 4-35,5-23,8-12
CopyOut, 4-35, 4-36, 5-23, 8-12
CopyToNewString,7-9
CopyToPiiotFile, 5-22
copy word limit, 2-17
correspondent, 6-29, 6-33, 6-35
Correspondent, 6-28
cOtherDiskErr, 10-17
countls, 10-21
CountType, 10-10
Courier data types, 6-58 to 6-59
CR, 7-1, 7-3
Create

ArpatelnetStream, H-31; bootfile, 8-12; Courier,

6-47,6-60; File, 4-20, 8-12; Heap, 4-48, 4-52;
logical volume, 4-12; memory stream, 3-19;
NetworkStream, 6-12, 6-15, RS232C, 6-37 to 6-38;
stream component access, 3-10; TTY,
5-32; TTYPort, 5-28; XStream, 6-72; Zone, 4-42

CreateBackstopLog, 9-2
createDataStruc, 10-21
CreateFile, 5-24, 5-25
CreateF1oppyFromlmage, 5-23
CreatelnitialMicrocodeFile, 5-26, 5-27,5-47
CreateListener, 6-11, 6-13, 6-16
CreateMDS, 4-49, 4-52

CreatePhysicalVolume, 4-6, 8-4
CreateReplier, 6-7,6-9
CreateRequestor, 6-7
CreateScroliWindow, 5-13
CreateSubsystem, 2-47
CreateTransducer, 6-11, 6-12, 6-13, 6-15, 6-17
CreateTTYlnstance, 5-32
CreateUniform, 4-48
cRemoveCleanDisk, 10-17
cRemoveDiskette, 10-17
cTrue, 6-66, 6-67
Current, 7-11
current date & time, 7-10
currentLogVersion, 4-24
cursor, 5-14
CursorArray, 5-13, 10-14
CyclicDependency, 2-47
cyli nderError, 5-17

D

damaged, 4-7, 4-8
DamageStatus, 4-7
Dandelion, 2-17,5-16, A-I, A-3
dangling reference

I

after Self Destruct or UnNew, 2-34; dead
process, 2-34; def, 1-9; in object file, 2-41; in
stream deletion, 3-3

data, 7-12
data blocks, 8-4
data space, 2-30
data window, 4-32, 4-33
Data Error, 5-21
dataError, 5-17
dataLengths, 10-12
dataLineOccupied, 6-43
dataLost, 5-17, 5-29, 6-31, 6-36,10-10
dataSetReady, 5-30, 6-31
dataTerminalReady, 6-33, 6-35
DataTooLarge, 6-68, 6-69
Date, 7-4
date, 2-21
DateFormat, 5-36, 7-4
dateOnly, 5-36, 7-4
dateTime, 5-36,7-4
Daylight Saving Time, 2-22, 2-23
DBITAND, 2-19
DBITNOT, 2-19
DBitOp, 2-19
DBITOR, 2-19
DBITSHIFT, 2-19
DBITXOR, 2-19
DCSFileType, 4-18, B-1
Deactivate, 4-36, 4-37
DeactivateProc, 4-36
dead, 4-29

I - 5

Index

Deallocate, 4-39
debugger, 4-12, 4-14,8-8
debugger

backstop as, 9"-1; boot file, 8-8; boot switches
affecting, 2-29, 2-33; call to, 2-33, C-1;
debugger, 8-3; opening a volume, 4-14;
remote, 2-17

debuggerDebugger, 4-12, 4-14
debuggerVolumelD, 4-15
Decimal,7-4
Decimal Format, 7-3
DecodeSwitches, 8-10
default, 5-23
default stream, 6-57, 6-58
default volume, 4-11
defaultBase, 4-38
defaultHops, 6-66
defaultlnputOptions, 3-4, 6-19, 6-57
defaultObject, 3-17
defaultOptions, H-43
defaultPageCount, 5-22
defaultRetransmissionl nterval, 6-5
defaultSwapUnitOption, 4-31
defaultSwapUnitSize, 4-31, 4-33, 4-40
defaultSwitches, 2-25, 8-12
defaultTime, 7-11
defaultWaitTime, 6-5, 6-10, H-18
deferred, 6-72
DEL, 7-1
DEL, 5-33
Delete

ArpafTP, H-46; ArpatelentStream, H-31; Coulrier, 6-
47, 6-48; File, 4-20; Heap, 4-50; PacketExchange,

6-7; RS232C, 6-38, 6-40; Stream, 3-3, 3-10;
TTYPort, 5-28, 5-29

delete, 3-17, 6-20
DeleteFile, 5-25
DeleteListener, 6-13, 6-14, 6-16
DeleteLog, 4-25
DeleteMDS, 4-50
DeleteOrphanPage, 4-27
DeleteProc, H-28
DeleteProcedure, 3-17
DeleteScroliWindow, 5-14
DeleteSubString, 7-6
DeleteSubsystem, 2-47
DeleteTempFiles, 8-9
demand swapping, 4-35
Density, 5-16, 5-23
dependency relationship, 2-44, 2-47
DependsOn, 2-44, 2-47
DeregisterPredicate, 6-71
DescribeSink, 6-73
DescribeSource, 6-73
Description, 6-49. 6-59
description, 6-53

description routine, 6-59,6-60,6-64,6-66
Deseri ptorfor Array, 6-64
deserialization, 6-60
DeserializeParameters, 3-19, 6-64
Destroy, 3-19, 5-32,6-72,6-76, H-46
Detach, 2-34, 2-36, 2-44
Detai I, 10-6
Development Common Software, 1-9
development tools, 8-2
Device, DEFINITIONS, 2-4
device driver, 1-7,5-1
device faces, 8-1
device interfaces, model of, 1-10
device numbers, 2-4
device types, 2-4 to 2-8
devieeError, 6-31, 6-36
deviceNotReady, 10-17
DeviceStatus, 5-5, 5-31, 6-32
DevieeTypes, Device TypesExtras, Oevice TypesExtra Extras,

OeviceTypesExtras3,OeviceTypesExtras4,

DeviceTypesExtrasS

DEFINITIONS, 2-4
Diablo 630 character printer, 5-28
diagnostics

bitmap Display, 10-14, 10-15;
. communication, 10-1; Dialer, 10-13; floppy,

10-17; keyboard and mouse, 10-14; Lear
Siegler, 10-16; RS232C, 10-8

DiagnosticsFileType, 4-18
diagnosticsServerSocket, 2-11
DialExtra, 6-42, 6-43, 6-44, 6-45
Dialer testing, 10-13
diaferHardwareProblem, 6-16
dialerNotPresent, 6-43, 10-13
DialerType, 6-42, 6-43
dialingTimeout, 6-43, 10-13
DialupExtras, 6-43
DialMode, 6-28, 6-31
dial modifiers and examples, 6-43 to 6-45
Dialup, DEFINITIONS, 6-41
DialupOutcome, 10-13
DialupTest, 10-13
DifferentType, 4-57
direction, 2-22
Direction, 2-10
direction flag, 2-10
di rectoryFull , 4-16
Disable, 4-55
disable, 4-55
DisableAborts, 2-38
DisableTi meout, 2-36
disaster, 6-36
disconnected, 5-11,5-13
disjoint data, 6-46, 6-53, 6-62
disjoint data types, 6-64
DisjointData, 6-61, 6-65

Pilot Programmer's Man ual

disjoint flag, 2-10
disjointItems flag, 2-10
disk diagnostic (for formatting), 8-3
disk drive '

access, 4-4, 4-5; def, 4-3; states, 4-3, 4-4;
unique instance, 4-4

disk formatting, 8-4
DiskAddress, 5-18
diskChange, 5-17
diskette

bad pages, 5-25; compaction, 5-24;
characteristics, 5-17; free pages, 5-24,
5-27; formatting, 5-24; IBM format 5-16
5-18; label, 5-24; malformed, 5-25; ;ead ~r
write hardware error, 5-21; Troy format,
5-16; write enable sticker, 5-21; Xerox 850
format, 5-16

diskHardwareError, 4-26, 4-27
Oisklnfo, 8-5
diskNotReady, 4-26, 4-27
DiskPageNumber, 8-4, 8-5
diskReadError, 4-3, 4-6
DisownFromNS, 6-77
dispatcher, 6-48
Dispatcher, 6-48, 6-52, 6-56
dispatcher, 6-52
display, 2-13, 2-14
display

bIUnking,5-12;border,5-12;cursor,5-13,
5-14; cursor coordinates, 5-13; cursor
pattern, 5-13; image, 5-11; memory boot
switches, 2-33

OisplayFieldsProc, 10-18
DisplayNumberedTableProc 10-19
displayStuff,10-18 '
DisplayTableProc,10-18
DivideCheck, 2-18, 2-42
divide operations, 2-18
DIVMOD, 2-18
DocProcFileType, 4-18
dontCare, 6-66, 6-67
double, 5-16, 5-23,10-18
down, 2-25
drive, 5-40, 5-45, 5-46
Drive, 5-19, 5-39
drivelnUse, 10-21
dstBpl, 2-8, 2-9
DstFunc, 2-12
duplex, 6-27
Duplexity, 6-27, 6-32
duplicate, 4-24
duplicate page, 4-24
duplicate suppression, 6-4, 6-9
duplicateFileID,5-26
DuplicateFileList, 5-26
duplicateProgramExport, 6-58

duplicateRootFile, 4-16

E
east, 2-2
ebcdicByteSync, 6-26
Echo, H-31
echo, H-26
echo testing, 10-2
EchoClass, 5-34
EchoDiagHandle, 10-2
echoerSocket,2-11
EchoEvent, 10-3
echoing, 6-33, 6-35
EchoParams, 10-4
EchoResults, 10-5
echoUserNotThere, 10-5
EIA Standard RS-232-C, E-1
EIDisk, 8-3
element, 6-66
elementCount, 6-66
elementSize, 6-66
eleveIS,5-15
Empty, 7-6
empty, 4-9
emptyFile, 8-6
emptyTable, 10-21
encodeData, 6-33
EncodeData, 6-30
EnableAborts, 2-38
end of time, 2-21
end of stream, 3-5, 6-19
endDst, 2-22
endEnumeration, 6-22
endOfFile, 5-21
endOflnput, H-63
endOfList, H-63
EndOfStream, 3-6, 3-7, 6-18
endOfStream, 3-4
EndRecord, 3-6, 3-12,3-14
endRecord, 3-4, 3-6, 3-7, 3-12, 6-21
ensureDriveReady, 10-21
enterTapeLabel, 10-21
enterToTable, 10-21
EntityClass, 6-74
EntryType, 4-23
Enumerate, H-6
EnumerateExports, 6-64
EnumerateRoutingTable, 6-23, 6-24
EnumerationAborted, 2-49
Environment, DEFtNITIONS, 2-1
eof, H-37
Equal, 7-6
EqualSubString, 7-7
Equivalent, 7-7
EquivalentSubString, 7-7

I

1-7

Index

Erase, 4-13, 5-26, 5-45, 5-46
EraseChar, H-32
eraseChar, H-27
EraseLine, H-32
eraseLine, H-27
Error

ArpaFileName,H-54 ArpaMailParse, H-63;
ArpatelnetStream, H-30; Courier, 6-47,6-53; Hie,
4-19; Floppy, 5-13, 5-16, 5-20; FloppyTape, 5-38;
Heap, 4-49; Log, 4-54; ObjAlloc, 2-50;
PacketExchange, 6-6, 6-8, 6-9; PhysicalVolume, 4-2,
4-8,4-9, 4-10;Resoive,H-15; Scavenger,4-22;
Space, 2-34, 4-30, 4-39, 4-40; Volume,4-12

error, 4-55
error

protocol, 6-2; uncaught, 9-1
error-free, 6-9
ErrorCode, 6-47, 6-48, 6-49, 6-50, 6-53, 6-58
ErrorEntry, 9-4, 9-5
ErrorHandling,10-18
ErrorReason, 6-6
ErrorType

BackstopNub, 9-3; File, 4-19; Floppy, 5-19, 5-~m, 5-
21,5-22,5-23,5-24,5-25,5-26,5-27;
FfoppyChannel, 5-16; FfoppyTape, 5-49; Heap,
4-49, 4-52, 4-53; Log, 4-54; ObjAfloc, 2-50;
PhysicalVolume, 4-3, 4-4, 4-5, 4-6; Scavenger,
4-22, 4-25, 4-26; Space, 4-30, 4-33,4-34, 4-36,
4-38,4-39; UserTerminalExtras, 5-14; Volume,
4-12

ESC, 7-1
ESC, 5-37
EtherDiagError, 10-5
EtherErrorReason, 10-5
Ethernet, 2-4
ethernet, 2-5, 6-22
Ethernet

device driver, 1-7; device types, 2-5; echo
testing, 10-2 to 10-7; in booting, 8-2, 8-11;
per-formance, A-3; switches for, 2-29, 2-30,
2-31; performance, A-3; statistics, 10-6.to 10-
7

Ethernet 1,2-30
ethernetOne, 2-5, 6-22
EtherStatslnfo, 10-6
european, 10-14
even, 5-30, 6-25
evenPairs, 5-12
Event, 2-46
eventData, 2-46,2-48
Eventlndex, 2-46
EventReporter, 10-5
ExchangeClientType, 6-4, 6-8

ExchangeHandle, 6-5, 6-7, 6-8
ExchangelO, 6-4
exit,10-18
Expand, 4-52, H-58
ExpandAliocation, 2-35
ExpandMDS, 4-52
ExpandProc, H-61
ExpandString,7-10
expiration date, 8-10
exportedTypeClash, 2-40, 2-41
Exportltem, 6-64
ExportRemoteProgram, 6-48, 6-52, 6-55, 6-60,

6-64
Exports, 6-64
extended By, 2-50
external, 6-30
external event, 2-25
extra 1 ,extra2, extra3, extra4, extraS, 10-21
ExtrasErrorType, 5-26

F
face, 1-1,8-1
Failed, H-18
failure, 6-26, 10-13
FailureReason, 6-15, H-18
FailureType, 6-7, 6-42, 8-6
FeedBack, 5-45
Feed BackPtr, 5-45
fetch, 6-59
FF,7-1
Field,10-17
FieldDataType,10-18
file

absence of pages at end, 4-24; access, 1-6,
4-1; addressing., 4-17; assignment to
bootfiles,5-28; changing size of, 4-20,
4-20; creating/deleting, 4-21; ID, 1-6;
identifier, 4-17; list, 5-19, 5-24, 5-25;
location of, 1-2; management, 1-10;
management performance, A-3; name, 4-17;
permanent 4-21; size, 4-17, 4-20;
temporary, 4-21, 4-25; types, 4-18. to 4-19;
windows, 4-30, 4-32

File, DEFINITIONS, 4-16
File

in file creation, 4-20; making permanent,
4-21; root, 4-15; uniqueness, 4-17

FileEntry, 4-23, 4-24
fileExists, H-40
FileFormatEnum, H-42
FileHandle, 5-20, 5-22, 5-38
FileHandleFromFilelD, 5-38'
FilelD, 5-20, 5-25,5-27,5-38,5-44,5-48
fileList, 5-26
fileListEntry, 5-26

Pilot Programmer's Manual

fileUstFull, 5-24
fileUstLengthTooShort, 5-23
FileLocation, 8-15
fileNotFound, 5-21, 5-25, 5-39, 5-42, 5-43, 5-44,

5-49, H-37, H-40
FileServiceFileType, 4-18
FileStreamProc, H-39, H-50
FileStructureEnum, H-42,H-49
file system characteristics, A-3
FileTypeEnum, H-42, H-49
FileTypes, B-1, B-2
File Types

DEFINITIONS, 4-16; listing, 4-18
FileTypesExtrasExtras, DEFINITIONS, 4-16
FileTypes.bcd, B-2, B-3
FileTypes.mesa, B-3
Fill RoutingTable, 6-24
FiliScreenWithObject, 10-16
filter, 1-7,3-1,3-2,3-5,3-9,3-11,3-13,3-14,

3-18
Finalize, H-64
FindAddresses, 6-17
FindDestinatjonReiativeNetID,6-24
FindMyHostlD, 6-24
FinishWithNonPilotVolume,4-6
fi rst64K, 2-3
firstLVPageNumber, 8-9
firstPageBad, 8-6
firstPageCount, 2-2, 4-2, 4-10, 4-17, 4-28
firstPageNumber, 2-2, 4-2, 4-11,4-17,4-28,9-2,

9-5
firstPageOffset, 2-2, 4-28
firstPilotPage, 8-5
firstPVPageNumber, 8-9
five12, 10-18
flag, 6-30
Flags, 2-15
flakeyPageFound, 8-6
Floppy, 2-4
Floppy, DEfiNITIONS, 5-21
floppy

enumeration of bad sectors, 5-25;
enumeration of files, 5-25; device types, 2-4,
2-5, 2-6 to 2-8; Pilot-supported standard,
5-22; snapshotting and replication, 5-22

floppy disk
boot file installation, 8-2; drive
characteristics, 5-16; multiple sector
transfers, 5-18; support, 5-15

Floppy file system, 4-19, 5-19
FloppyChannel, DEfiNITIONS, 5-15
FloppyCleanReadWriteHeads, 10-20
FloppyCommandFileTest,10-20
FloppyDisplayErrorLog, 10-21
FloppyExerciser,10-19

floppyFailure, 10-17
FloppyFormatDiskette, 10-20
floppylmagelnvalid, 5-23
FloppyImpl.bcd, 5-19
FloppyMessage, 10-17, 10-18
FloppyReturn, 10-17
floppySpaceTooSmall, 5-23
FloppyStandardTest, 10-20
FloppyTape, 2-4
FloppyTape

I

bad sectors, 5-42, 5-43; boot files, 5-48;
changing tapes, 5-41; device types, 2-4, 2-5,
2-6 to 2-8; diagnostic area, 5-49; erasing,
5-46; file enumeration, 5-44; file IDs, 5-38;
file size, 5-46; formatting, 5-45; initial
microcode, 5-47; max file size, 5-46; mbytes,
5-41; read error, 5-42; repositioning, 5-40,
rewriting, 5-43; security erasing, 5-46

FloppyTape. DEfiNITIONS, 5-38
FloppyTapeExtras. DEfiNITIONS, 5-38
FloppyWhatToDoNext, 10-18
flow-controlled, 6-9
FlowControl, 6-28, 6-32
flowControl, 6-33, 6-35
FITapeDisplayBadSectorTable, 10-24
FITapeLogBadSector, 10-24
FITapeFormat, 10-23
FITapeMessage, 10-21
FITapeRetention, 10-23
FITapeScavenge, 10-24
FITapeVerifyRead, 10-23
Flush, 4-52, H-7
FlushMDS, 4-52
fmO, fm1, 6-30
Font, 2-14
FontBitsPtr, 2-14
FontChar, 2-15
FontCharPtr, 2-15
FontHandle, 2-14
FontRecord, 2-14
fontRecordAlignment, 2-14
font representation, 2-13
FontWidths, 2-14
FontWidthsPtr, 2-14
ForceOut, 4-21, 4-36 to 4-37,5-39
ForceOutBuffersOnly, 5-39
FORK, 2-18, 2-20
format, 2-13
Format, 5-16, 5-23, 5-45, 8-4, 8-5
Format, DEFINITIONS, 7-2
Forrnatpackage, 7-2
formatting package, 8-4
FormatBootMicrocodeArea, 8-4, 8-5
formatError, 6-43, 10-13
formatFailed, 10-21
Formatlmpl.bcd, 7-2

Index

FormatPiiotDisk

DEFINITIONS, 8-3; operations, 8-4 to 8-7
FormatPilotDiskImpl. bcd, 8-4
formatTape,10-21 .
FormattingMustBeTrackAligned, 8-4, 8-5
FormatTracks,5-18,5-19
Frame, 9-3
frame links, 2-25, 2-26
frameTimeout, 6-33, 6-35, 6-36, 6-45
FREE, 4-41, 4-47, 4-50, 4-51, 4-53
Free, 2-50, 6-51, 6-61
free, 6-60
free storage package, 4-41
FreeEnumeration,6-64
FreelnvaUdReci pients, H -59
FreeMDSNode, 4-53
FreeMDSString, 7-9
FreeNode, 4-46, 4-53
freeSpaceConflict, 5-26
FreeString, 7-9
frequency (sound gen), 5-15
FSFileType, 4-18
FTPError, H -43
FTPErrorReason, H-44
FTPProcList, H-52
full, 5-36, 7-4
full-duplex, 5-31
Function, 2-13

G
GA, H-33
garbage collection, 4-42
GenericProgram, 2-38
germ, 4-8, 8-6
germ, 4-8,8-1,8-4,8-6,8-12,8-16
Get, 5-29,6-39
get, 6-19
GetAddress, H-5
GetAttributes, 4-9,4-14,4-21,4-44,4-51, 4-j57,

5-24
GetAttributesMDS, 4-51
GetBackground, 5-12
GetBcdTi me, 2-41
GetBitBltTable, 5-12, 5-13
GetBlock

ArpatelnetStream, H-32; LogFile, 4-57; Streanl,
3-4 to 3-6,3-7, 3-10,3-11,3-13

GetBootFiles, 5-27, 5-48
GetBuildTime, 2-41
getByte, 6-19
GetByte, 3-6, 3-7, H-32
GetByteProcedure, 3-15
Getcaller, 2-41
GetChar, 3-7, 5-34

1- 10

GetClockPulses, 2-23
GetConfirmationProc, 10-19, 10-22
GetContainingPhysicalVolume, 4-8
GetContext, 5··16
GetCount, 4-56
GetCurrent, 2-37
GetCurrentProcess, 9-3
GetCursorPattern, 5-13
GetDecimal, 5-37
GetDelayToNet, 6-24
GetDialerCount, 6-45
GetDiskAddress, 5-49
GetDriveSize, 8-10
GetEcho, 5-34
GetEchoCounters, 10-8
GetEchoResults, 10-2, 10-3
GetEditedString, 5-33, 5-34, 5-35, 5-36
GetError, 9-3
GetEthernetStats, 10-8
GetExpirationDate, 8-10
GetExpi rationOateSuccess, 8-10
GetFaultedProcess, 9-3
GetFieldBody, H-64
GetFieldName, H-64
GetFileAttributes, 5-25, 5-44
GetFileLocation, 8-15
GetFloppyChoiceProc, 10-19
GetGreenwichMeanTime, 2-21, 7-11
GetGroupPhrase, H-64
GetHandle, 4-4, 5-19
GetHints, 4-4, 4-5
GetlO, 5-35
GetlmageAttributes, 5-23
Getlndex, 3-19, 4-56
GetLabelString, 4-15
GetLine, 5-35
GetLocalTimeParameters, 2-23
GetLog, 4-25
GetLogEntry, 9-4, 9-5
GetLongDecimal, 5-37
GetLongNumber, 5-37
GetLongOctal, 5-37
GetLost, 4-56, 9-2, 9-4
GetMapUnitAttributes, 4-40
GetMesaChar, 10-16
GetMousePosition, 10-15
GetNetworklO, 6-24
GetNext, 4-9, 4-13, 4-56, 9-4, 9-5
GetNextAction, 10-16
GetNextBadPage, 4-10
GetNextBadSector, 5-25, 5-47
GetNextDrive, 4-3, 5-19
GetNextFile, 5-25, 5-44
GetNextfloppyDrive, 5-22
GetNextFIoppyTapeDrive, 5-39, 5-40
GetNextFrame, 9-3, 9-4

Pilot Programmer's Manual

GetNextLi ne, 6-40
GetNextLogicalVolume, 4-8
GetNextProcess, 9-3
GetNextRootFile, 4-16
GetNextSubVolume, 8-9
GetNumber, 5-37
GetNumberProc,10-22
GetOctal,5-37
GetPassword,5-35
GetPhysicalVolumeBootFile, 8-7
GetPosition, 3-9
GetPositionProcedure, 3-17
GetPriority,2-37
GetProc, H-38
GetProcedure; 3-14
GetPVLocation, 8-15
GetRestart, 4-57
GetRootNode,4-44
GetRouterfunction, 6-24
GetRS232CResults, 10-9, 10-10
GetSegmentAttributes, 4-45
GetSize, 4-20, 9-4, 9-5
getSST, 6-20
GetSSTProcedure, 3-16
GetState, 4-55,5-11
GetStatus, 4-13,5-31,6-40
GetStreamProc, H-39
GetString, 4-57, 5-35
GetSwapUnitAttributes,4-40
GetSwitches, 8-10
GetTableBase, 2-42
GetTextProc, 10-22
GetTimeFromTimeServer, 8-11
GetTimeout, H-32
getTimeout, 3-17
GetTimeoutProcedure, 3-16
GetType, 4-15
GetUniqueConnectionlD, 6-11, 6-12, 6-17
GetUniversallD, 2-19, 2-20
GetUpdate, 4-56
GetVolumeAttributes, 5-45
GetVo'umeBootFile, 8-7
GetVolumeLocation, 8-15
getWord,6-19
GetWord, 3-7
GetWordProcedure, 3-15
GetYesOrNoProc, 10-19, 10-21, 10-23
global frame

allocation, 2-32; initialization of contents
2-35; location, 1-6; space, 4-41; validation: .
2-39

GlobalFrame, 2-39, 9-4
gmtEpoch, 2-21, 4-57
goAhead, H-27
good, 6-18

goodCompletion, 5-17
granularity, 5-3
gray flag, 2-10
GrayParm, 2-11
gray pattern, 2-11
Greenwich mean time

comparison, 2-12; use of, 2-12
GreenwichMeanTime, 2·21, 2-25, 2-41, 7-11

H

Handle

I

BackstopNub, 9-4, Courier, 6-47, 6-48, 6-52 (SEE
ALSO Handle, stream); FloppyChannel, 5-16,
5-19; PhysicalVolume, 4-4; Stream (SEE NEXT);
TTY, 5-32, 5-33, 5-34, 5-36; Zone, 4-42, 4-43,
4-44; XStream, 6-71

Handle, Stream

as pointer, 3-14; definition, 3-3; in Courier,

6-49,6-52; in stream creation, 3-10, 3-11; in
memory stream, 3-19; in network streams
6-12,6-13; in stream deletion, 3-19; in '
stream positioning, 3-9

handle, 1-9, 2-45, 9-4
hardMicrocode, 4-7, 8-6, 8-7
hard Read Error, 10-21
hardware devices (control 00, 1-10
hardwareError, 4-3, 4-13, 5-22, 5-23,5-39,5-40,

5-42,5-43,5-44,5-45,5-46,5-47
hardwareProblem, 6-6, 10-21
has Border, 5-12
hasPilotVolume, 4-3, 4-6
hBusy, 10-17
heRC1, 10-17
hCRC2, 10-17
hCRCerr, 10-17
hDelSector, 10-17
hDiskehng, 10-17
head, 1-1,8-1,8-2
HeadCount, 5-16
Header, 4-23 to 4·24
headers, 8-4
Heap, DEFINITIONS, 4-47
heap

checking, 2-30, 4-50; implementations 4-47"
in storage management, 4-1, 4-47; MDS, '
4-47; normal, 4-47; uniform, 4-47

HeapExtras, DEFINITIONS, 4-47
hErrDetc, 10-17
hex, 7-4
hexadecimal, 10-17
hex byte ,10-17
hExpec1, 10-17
hExpec2m, 10-17
hFirst, 10-17
hGoodComp, 10-17

I - 11

Index

hHead, 10-17
hHeadAddr, 10-17
HighByte, 2-17
HighHalf, 2-17
hlllglStat, 10-17
hi ncrtLngth, 10-17
Hiragana, 5-7
Histogram, 10-6
hLast, 10-17
hObser1, 10-17
hObser2, 10-17
hop, 6-21
hostError, H-40
HostNumber, 2-20, 6-1, 7-5
HostStatusRecord, H-28
hReadHead, 10-17
hReadSector, 10-17
hReadStat, 10-17
hReady, 10-17
hRecal, 10-17
hRecalErr, 10-17
hSector, 10-17
hSectorAddr, 10-17
hSectorCntErr, 10-17
hSectorLgth,10-17
hSeekErr, 10-17
hTimeExc, 10-17
hTrack, 10-17
hTrackO, 10-17
hTwoSide, 10-17
hWriteDelSector, 10-17
hWritePro, 10-17
hWriteSector, 10-17

I

i BadContext, 10-17
iBadLabet, 10-17
i BadSector, 10-17
iBadTrackO, 10-17
IBM, 5-17
ibm2770Host,6-26
ibm3270Host, 6-26
ibm6670, 6-26
ibm6670Host, 6-26
IBM format, 5-17
iCheckPanet, 10-17
iCIERec, 10-17
iCleanDone, 10-17
iCleanProgress, 10-17
10,4-2,4-10,4-11,4-17
idle line probes, 6-14
idleState, 6-30, 6-36
i ErrDet, 10-17
i ErrNoCRCErr, 10-17

T _ 1?

iExerWarning,10-17
iFirst,10-17
iFormDone, 10-17
iFormProgress, 10-17
iFormWarning, 10-17
ignore, 5-34
ignoreClockFailures, 2-21, 2-22
iHardErr, 10-17
iHeadOataErr, 10-17
ilnsertDiagDisk, 10-17
ilnsertFormDisk,10-17
iLast,10-17
illegal, 6-26
Illegal Enumerate, 4-56
iliegalAddress, 6-16
illegal EntityClass, 6-75
iIIegalHandle, 6-16
illegal Log, 4-54
iIIegalOp, H-40
iIIegalState, 6-16
immediate timeout, 6-5
implementation module

Backstoplmpl.bcci,9-1
BackstopN ublmpl. bcd, 9-1
BSMemCache.bcd,9-1
CommDiagClient. bcd, 10-1
CommDiagServer. bcd, 10-1
CourierConfig. bcd, 6-65
FloppyImpl.bcd, 5-19
FormatImpl.bcd, 7-2
FormatPilotDiskImpl. bcd, 8-4
Loader. bcd, 2-40, 8-2
LogFilelmpl. bcd, 4-53
LogImpl.bcd,4-53
MemCacheNub.bcd,9-1
OthelloOpsImpl. bcd, 8-4
N etworkBindingClient. bcd, 6-65
N etworkBindingServer. bcd, 6-65
PilotKernel.bcd, 1-2, 8-1, 8-2
RS232CIO.bcd, 6-25
StringsImpIA.bcd, 7-5, 7-10
StringslmpIB.bcd, 7-5
SupervisorImpl. bcd, 2-44
TimeImpl. bcd, 7-10
TTYPortChannel. bcd, 5-28
UtilityPilotKernel.bcd, 1-2, 8-1
VMMapLogImpl. bcd, 9-1
XNS.bcd, 6-4, 6-9, 6-22

implementors, 2-48
imports, unbound, 2-40, 2-42
in-band

attention, 6-21; signal, 3-8
incompatibleSizes,5-22 .
incompleteSwapUnits, 4-31, 4-32,4-33
Inconsistent, 4-56
increment, 5-14

Pilot Programmer's Manual

Index, 4-56
IndexOutOfRange, 7-12
inf"mite wait time, 6-5
infiniteWaitTime, 6-11, 6-14, 6-17, H-21
infinity,6-23
initial microcode, 5-27, 5-48, 8-4
Initialize, 6-75, H-65
InitializeCondition, 2-35, 2-36
InitializeMonitor, 2-35
InitializePool, 2-50
initiaIMicrocodeSpaceNotAvailable,5-27
Intine, DEfiNITIONS, 2-17
inload, 8-16
inloadLocation, 8-15, 8-16
input streams, alternate, 5-34
inputOptions, 6-19
InputOptions, 3-4, 3-7, 3-14
insertDiagTape, 10-21
InsertRootFile, 4-16
Install, 4-54
Install BootMicrocode, 8-6
Installer, 2-25, 8-3, 8-12
InstaUPhysicalVolumeBootFile, 8-13
InstaliVolumeBootFile, 8-13
instanceData, 2-32
insufficient ResourcesAtDestination, 6-6
insufficientSpace

Heap, 4-49, 4-52, 4-53; Floppy, 5-24; ObjAlloc,
2-50; FloppyTape, 5-40, 5-43; Volume, 4-19

I nsufficientSpace
Space, 4-32, 4-39 ; Volume, 4-12, 4-19,4-20,
4-49,9-2

insufficientSpaceOnRemote, H-57
integer,10-18
inter-processor communication, 6-1
interesting event, 2-45, 2-46
interface, volume, 8-3
InterlispFileType, 4-18
internal buffering, 3-3, 3-9
internalStructures, 4-7, 4-8
InternetAddress, H-4
Internet Datagram Protocol, 6-1
Internet Transport Protocols, 6-1
Internetwork routers, 6-21
interNetworkRouti ng, 6-22
internetwork topology, 6-21
internetworking, 8-11
InterpretHandle, 4-4, 5-19
Interrupt, 2-44, 9-1
interrupt, 9-3, H-27
interrupt key, 2-30, 2-44, C-1
InterruptProcess, H-33
Interval, 2-49, 2-50,4-28 to 4-29
interval, 1-5, 1-6,4-32,4-33
interval timing, 2-23 to 2-24

intra-processor communication, 6-1
inUse, 5-39
Invalid, 7-11
InvalidArguments, 6-54, 6-56
invalidByteOffset, 5-39, 5-42, 5-43, 5-48
invalidConfig, 2-40, 2-41
invalidDrive, 5-19
InvalidFile, 4-56
invalidFile, 4-54
invalidFileName, H-37, H-44
invalidFormat, 5-20
InvalidFrame, 2-39
InvalidGlobalFrame, 2-39, 2-42
invalidHandle,

I

CommOnlineDiagnostics, 10-5, 10-10; Courier,
6-56; FloppyChannel, 5-16; Floppy, 5-21;
PhysicaiVolume, 4-3, 4-4, 4-5, 4-6, 4-7

invalidHeap, 4-50, 4-53
InvalidLineNumber, 5-28, 6-37, 6-75, 6-76, 6-77
invalidMessage, 6-54
invalidName, H-57
invalidNode, 2-29, 4-45, 4-53
InvalidNumber, 5-37, 7-7
InvalidOperation, 3-17, 6-13, 6-58
invalidOwner, 2-25, 4-52
invalidPageNumber,5-28
I nvalidParameter, 6-37
invalidParameter, 10-9, 10-10
InvalidParameters, 8-13, 8-15
i nvalidParameters

File, 4-19, 4-20; Heap, 4-49; ObjAUoc, 2-50; Space,
4-38, 4-39, 4-40, 4-41

invalidProcedure, 4-36
InvalidProcess, 2-34
InvalidRecipientList, H-56
InvalidRecipientRecord, H-56
invalidRootFileType,4-16
invalidSegment, 4-45, 4-46
invalidSize, 4-49, 4-50, 4-53
InvalidSubsystem, 2-47,2-48
invalidSwapUnitSize, 4-31, 4-32, 4-33
InvalidVersion, 8-7, 8-13
invalidVolumeHandle, 5-20, 5-39, 5-4-2,5-44,

5-46,5-48
invalidWindow, 4-31, 4-32, 4-35
invalidZone, 4-45, 4-46, 4-53
invertPattern, 10-15
InvertScreen, 10-15
IOError, 4-30,4-33,4-34,4-36,4-37,5-38,5-43
iOError,5-26
iOneSided, 10-17
irregular, 4-31, 4-33
iRunStdTest, 10-17
IsBound, 2-42
iSoftErr, 10-17

T _ 1 ~

Index

isPi lot, 4-4, 4-5
IsReady,4-4
IsTimeValid, 8-11
isUtilityPilot, 2-25
italics as metasymbols, 1-9
ItemCount, 2-49
Itemlndex, 2-49, 2-50
iTnx, 10-17
iTwoSided,10-17
iUnitNotReadY,10-17
iVerDataErr, 10-17

J

January 11968,2-12
japanese, 10-14
Japanese keyboard, 5-6
j Level S, 5-15
JLevellVKeys, DEFINITIONS, 5-6
job control facilities, 1-3
JOIN, 2-18
JukeBox, 2-4, 2-8
justification, 2-13

K

kAndCTL, 10-16
kAndShift, 10-16
Katakana, 5-7
kAtSign, 10-16
kBackSlash, 10-16
kBreak, 10-16
kCaret, 10-16
kCTLC, 10-16
kCTlStop, 10-16
kEndAdj,10-16
kerning, 2-14, 2-15
kEscape, 10-16
keyboard, 5-6, 5-14, 10-15
keyboard, 5-14, 5-15
KeyboardAndMouseTest, 10-14
KeyboardType, 10-14
keyboardType, 5-15, 10-14
KeyBoardType, 5-15
Keys, DEFINITIONS, 5-6
keyset, 5-6, 5-12, 5-14
Key Stations , DEFINITIONS, 5-6
kFiliScreen, 10-16
kHyphen, 10-16
Ki II, 4-36, 4-37
kKey, 10-16
kLearColon, 10-16
kLeftBracket, 10-16
kLetter, 10-16
kLi neFeed J 10-16
kNumeral, 10-16
kReturnKey, 10-16

T 1 A

kRightBracket, 10-16
kSemiColon, 10-16
kShAt, 10-16
kShBackSlash, 10-16
kShBreak, 10-16
kShcaret, 10-16
kShColon, 10-16
kShComma, 10-16
kShHyphen, 10-16
kShLeftBracket, 10-16
kShPeriod, 10-16
kShRightBracket, 10-16
kShSemiColon, 10-16
kShVirgule, 10-16
kSpBar, 10-16
kTermAdj,10-16
kTermTest, 10-16
kTestKey,10-16
kTypeCharFiII,10-16
kTypeComma,10-16
kTypeHair, 10-16
kTypePeriod, 10-16
kUnknown, 10-16
kVirgule, 10-16

L
labels, 8-4
lastPageCou nt, 2-2, 4-2, 4-10, 4-17, 4-28
lastPageNumber, 2-2, 4-2, 4-11, 4-17, 4-28
lastPageOffset, 2-2, 4-28
latch bit, 5-30, 5-31
latchBitCJear J 6-34
LatchBitClearMask, 6-32
Layout, 4-9
LDIVMOD, 2-18
learSiegler, 5-15
Lear Siegler ADM-3 display, 5-28
LearSiegler TTY defaults, 5-32
left shift, 2-19
Length, 7-7
lengthlsSbits, 5-30
lengthls.6bits, 5-30
lengthls7bits, 5-30
lengthls8bits, 5-30
LengthRange,10-10
Level, 4-55
level4, 5-15
levelS, 5-15
level 0,6-1
level 1,6-1
level 2, 6-4, 6-9
LevellVKeys, DEFINITIONS, 5-6
LevelVKeys, DEFINITIONS, 5-6
LF,7-1
LFDisplayTest, 10-15

Pilot Programmer's Manual

Life, 4-29
Line, 7-3
lineCountError, 5-14
IineNumber, 6-37
LineOverflow, 5-33, 5-34
IineSet, 10-12
LineSpeed, 5-30, 6-28, 6-32, 6-34
IineSpeed, 6-27, 6-34, 6-35, 10-11
LineType, 6-30, 6-34
link

absolute disk address, 8-14; code, 2-40;
frame, 2-41

link, 2-41, 2-42
LinkageFault, 2-42'
List, H-46
Listen, 6-13, 6-14, 6-17, H-22
listen, 6-9
listener, 6-11
ListenerHandle, 6-11, 6-13
ListenError, 6-14, 6-16
ListenErrorReason, 6-16
ListenTimeout, 6-13, 6-16, H-21
ListProc, H-52
ListStyle, H-43
LoadConfig, 2-40
loader, bootstrap, 8-1
Loader .bcd, 2-40
loading an object file, 8-2
local frame, 1-6, 2-35, 2-42
local frame validation, 2-39
local frame space, 4-41
local network number, 8-11
local network number default, 8-11
local networks, 8-11
localDrive, 5-39
localFileError, H-37,H-44
localHostNumber, 2-20
LocalSystemElement, 6-64
local time parameters, 2-22, 4-8
LocalTimeParameters, 2-22
LocalTimeParametersUnknown, 2-23, 7-11
Log, 4-24, 9-1
Log, DEFINITIONS, 4-53
log entries

enumeration of, 4-56; size, 4-55
log file

backstop, 9-1,9-2; current, 4-54, 4-55, 4-56;
enumeration of, 9-5; facilities provided,
4-53; information control, 4-55; initializing,
4-54; "message" entry, 4-55; minimum size,
4-54; of scavenger, 4-23, 4-24, 4-25; opening,
4-54; states, 4-55; reading, 4-56; Urestart"
entry, 4-57; writing entries, 4-54

logBitsPerByte, 2-1
logBitsPerChar, 2-1
logBitsPerWord, 2-1

log BytesPerPage, 2-2
logBytesPerWord, 2-2
logcap, 4-54
logCharsPerPage, 2-2
logCharsPerWord, 2-2
LogError, 9-3
LogFile

DEFINITIONS, 4-53, procedures, 4-56; used by
Backstop, 9-1

LogFilelmpl.bcd,4-53
Log Format, 4-23
Log Frame, 9-4
logical operations, 2-18
logical record, 6-21
logical volume

I

adding/removing (example), 2-45;
attributes, 4-14; close, 4-14; consistent state,
4-6; creating, 4-12; default boot file, 8-7, 8-8;
deleting temp files on, 8-9; enumeration of,
4-8; errors, 4-11; ID, 4-10; identifier,
8-14; label, 4-15; max number & size, 4-10;
name, 4-10; opening, 4-14, 8-2; root
directory, 4-15; scavenging, 4-21; physical
volume correspondence, 4-11; status, 4-13;
subvolumes, 8-9

LogicalVol umePageNumber, 8-9
LogImpl. bcd, 4-53
Login, H-47
LoginlnfoNeeded, H-49
logNoEntry, 4-56
logNotOpened, 4-54, 4-55, 4-56
LogonProc, H-50
LogProcess, 9-3
LogSeal, 4-22, 4-24
logSectorFailed, 10-21
logWordsPerPage, 2-2
Long, 2-3, 2-17
LONG CARDINAL, 6-61
LONG DESCRIPTOR, 6-46, 6-62
LONG DESCRIPTOR FOR ARRAY, 6-61
LONG INTEGER, 6-61
LONG POINTER, 6-46, 6-62
LONG STRING, 6-62
LongBlock, 3-13, 6-19
LongCOPY, 2-17
LongCOPYReverse, 2-17
LongDecimal, 7-4
LongDiv,2-18
LongDivMod, 2-18
LongMult, 2-18
LongNumber, 2-3, 2-17, 7-3
LongOctal, 7-4
LongPointerFromPage, 2-3,.4-28, 4-41
LongString,7-3
LongSubString,7-2
LongSubStringltem, 7-2, 7-3

I - 15

Index

long values, manipulation of, 2-3
LookForAbortProc, 10-23
LookUpRootFile, 4-16
loopOnError, 10-18
loopOnThisError,10-18
lost, 4-7
LowByte, 2-17
LowerCase, 7-6
LowHaJf, 2-17
LSAdjust, 10-16
LSMessage, 10-16
LSTest, 10-16
LTP,7-11

M

machine. 1-2
machine-independent environment, 1-2
mailboxUnavailable, H-57
mailDate, 5-36, 7-4
Main Data Space, SEE MDS
maintenance panel code, 2-29, 2-31, 2-32, 8-10
Make, 6-73, H-22
MakeBoot

build time, 2-34, in boot file creation, 8-:2,
8-12, in forking, 2-29

MakeBootable, 8-7, 8-12, 8-13, 8-14, 8-15
MakeDLionBootFloppy,5-28
MakeDoveBootFloppy, 5-28
MakeDLionBootFloppyTool,8-6
MakeDoveBootFloppyTool,8-6
MakeFileList, 4-24
Makelmage, 5-24
MakeMDSNode,4-53
MakeMDSString, 7-8
MakeNode, 4-46, 4-53
MakePermanent, 4-21

. MakeReadOnly, 4-37
MakeString, 7-8
MakeUnbootable, 8-7, 8-14
MakeWritable, 4-37
Map, 4-24, 4-31, 4-32, 4-33, 4-39, 8-12
map logging, 2-29
map unit, 1-5, 4-29, 4-30, 4-33, 4-34
MapAt, 4-38, 4-39, 4-40
mapping, 1-5, 4-29, 4-30
margin, 2-15
mark, 6-30
MarkPageBad, 4-9, 8-5
MarkSectorBad, 5-46, 5-47
marshalling, 6-59
master mode, 1-3
max, 7-12
maxAsyncTi meout, 6-34

T _ 1 ~

maxBlockLength, 6-5, 6-6, 6-8
maxByteslnName, 5-45
maxCARDINAL, 2-3
maxCharacterslnLabel, 5-23, 5-45, 5-46
maxData, 10-10
maxEntrieslnRootOirectory, 4-16
maxFileListEntries, 5-24
maximum internet packet size, 6-6
maximum internetwork length, 6-1
maximum packet lifetime, 6-5, 6-10
maXINTEGER, 2-3
maxLeftKern, 2-15
maXLONGCARDINAL, 2-3
maXLONGINTEGER, 2-3
maxNameLength, 4-6, 4-9, 4-12, 4-15
maxPageslnMOS, 2-2
maxPagesl nVM, 2-2
maxPagesPerFile, 4-17, 4-20
maxPagesPerVolume, 4-10
maxSizeExceeded, 4-49
maxSubvolumesOnPhysicalVolume, 4-12, 4-13
maxWell KnownSocket, 2-12
MOS, 4-38
MDS, 1-6,2-32,4-38,4-39
MDSzone, 2-19
MDSZone, 4-47, 4-50
mediaProblem, 10-21
mediumFull, H-37,H-44
MemCacheN ub. bcd, 9-1
memory management, performance, A-2
MemoryStream, DEFINITIONS, 3-19
Mesa development environment, 8-2
Mesa emulation microcode, 8-6
Mesa Processor Principles of Operation, 1-1,

2-1,5-13
Mesa to Courier mapping, 6-59 to 6-61
Mesa type-checking, 1-3
Mesa variant record, 6-63
MesaDEFileType, 4-18
MesaDEFileTypes, B-2
MesaEventlndex, 2-46
MesaFileType, 4-18, B-1
metasymbols, 1-9
microcode

def., 1-2, 8-1, 8-6, initial, 8-4, 8-6
microcode files, 8-6
MicrocodelnstallFailure, 8-6
microcodeTooBig, 8-6
Microseconds, 2-24
MicrosecondsToPulses, 2-24
Milliseconds, 2-35
min,7-12 .
minimumNodeSize, 4-42, 4-49
minINTEGER, 2-3
minLength, H-63
minlonglNTEGER, 2-3

Pilot Programmer's Manual

minPagesPerVolume, 4-10
missing, 4-23, 4-24, 4-26
missing page, 4-24
missingCode, 2-40, 2-41
MissingPages, 4-19, 4-32, 4-35,8-15
modemChange, 10-9
ModemChange, 10-10
ModemSignal,10-10
monitor

coordinator,I-4; initializing, 2-35; lock, 1-4,
2-34, 2-35; subsystem enumeration, 2-46

mouse, 5-15
mouse, 5-15
mouse coordinates, 5-15
move, 2-16
MsecToTicks, 2-35
multiple physical volumes, 8-9
multipleLogicaIVolumes,4-9
multipleWindows, 5-13

Namelnfo, H-62
NameList, H-65
NameType, H-62

N

nameRequired, 4-3, 4-6, 4-9,4-13,4-15
NARROW, 2-43
NarrowFault, 2-43
needsConversion, 4-3, 4-7, 4-22
needsRiskyRepair, 4-22 .
NeedsScavengi ng

Floppy, 5-20; PhysicalVolume, 4-3, 4-5; Volume,

4-12.4-14,4-15,4-21,8-7,8-9,8-15
needsScavenging, 5-22, 5-39, 5-40, 5-42, 5-43,

5-44
Negotiation, 6-75
NetAccess, 6-28, 6-32
NetFormat, 7-4
network address

construction, 6-17; description, 2-20, 2-21;
editing, 7-4; for local machine, 6-64;
function, 1-10; retrieval, 2-20; when
connected to many networks, 2-21

Network stream, 1-7,3-18
NetworkAddress, 2-20, 6-1, 6-9, 6-11, 6-13,

6-47,7-5
NetworkBinding

def, 6-6, DEFINITIONS, 6-65, example, App. G;
protocol, 6-65

NetworkNonExistent, 6-23, 6-25
NetworkNumber, 2-20, 6-1,7-5
NetworkStream

and router, 1-7; DEFINITIONS, 6-9; description,
6-2

NEW

.allocating nodes, 4-47, 4-50, 4-51; dynamic
storage allocation, 4-41; in component
implementation, 3-18; initialization for
monitor lock, condition variable, 2-35;
untyped storage, 4-53, use by Run, 2-44

NewConfig, 2-40
NewCreate, 4-48, 4-52
NewCreateMDS, 4-49, 4-52
NewCreateUniform, 4-48, 4-52
NewGetAttributes, 4-51
NewGetAttributesMDS, 4-52
Newline, 5-34
NewScavenge, 5-26
NextAction, 10-15
nextPattern, 10-15
nil, 4-44, 4-46
no, 10-19, 10-21
noAnswerOrBusy, 6-15, 6-54, 10-2
NoBackingFile, 5-33
NoBinding, 6-68, 6-70
noChecking, 10-18
noCommunicationFac;ilities, 8-11
NoCommunicationHardware, 6-41
noCourierAtRemoteSite, 6-52
node

checking, 4-43; size, 4-43, 4-50; root, 4-43,
4-44

noDe bugger , 8-8
NoDefaultlnstance, 5-32
nodeLoop, 4-45
NodeSize, 4-47
noDialingHardware, 6-16
noError, 6-56
noErrorFound,10-17
noHardware, 10-9
noMoreNets, 10-5
none, 5-26, 5-30, 5-34, 5-45, 6-25, 6-72
noneDeleted, 4-23
nonEmptySegment, 4-46
nonPilot, 4-12
Nop, 5-19
noProblems, 4-7
noReceiverAtDestination, 6-6
noResponse, 8-11
noRetries, 8-4
normal, 2-15, 3-4, 4-12, 6-21, H-18
noRoomlnZone, 4-46

I

noRouteToDestination, 6-6, 6-14, 6-15, H-19,H-
44 .
noRouteToSystemElement, 6-54, 10-2
NoRS232CHardware, 6-37
noScroliWi ndow, 5-14
noSeconds, 5-36, 7-4
noServiceAtDestination, 6-15, H-44
NoSuchDependency, 2-47

T _ 17

Index

noSuchDiagnostic, 10-2
noSuchDrive, 4-3, 4-4, 5-20, 5-22, 5-39, 5-40,

5-45, 5-46, 5-47
noSuchLine, 10-10
noSuchLogicalVolume, 4-3, 4-8
noSuchPage, 4-26
NoSuchProcedureNumber, 6-48, 6-52, 6-54, 6-56
noSuchProgramExport, 6-55
noSuchProgramNumber, 6-55
noSuchUser, H-40
NoTableEntryForNet, 6-23
NotAFault, 9-3
notAl located , 4-39
NotAPiiotDisk, 8-4, 8-5, 8-6
notation, 1-8
notDiagDiskette, 10-17
Note, def., 1-9
NoteArrayDescri ptor, 6-61
NoteBlock, 6-6, 6-63
NoteChoice, 6-61
NoteDeadSpace, 6-63
NoteDisjointData, 6-62
NoteLongCardinal, 6-61
NoteLonglnteger, 6-61
NoteParameters, 6·62
NotErrorEntry, 9-4, 9-5
note, 10-21
Notes, 6-58
notes object, 6-59
NoteSize, 6-60, 6-64
NotesObject, 6-59, 6-61, 6-62, 6·63
NoteSpace, 6-60, 6-63
NoteString, 6-61
notFormat, 10-21
notFormatted, 5-26, 5-39, 5-40, 5-46, 5-47
NOTIFY, 2-24, 2-35, 2-38
NotifyAIiSubsystems, 2-48
NotifyClientProc, 5-40
NotifyDirectSubsystems, 2-48
NotifyListenStartedProc, H-20
NotifyRelatedSubsystems, 2-48
notlnFont, 2·15
notlnitialBootFile, 8-8
NotLoggingError, 9-3
notMapped, 4-33, 4-34
NotOnline

def,4-11; raised by ops in: File, 4-19;
OthelioOps, 8-7, 8-9; Scavenger, 4-22, 4-25; Space,

4-32,4-35; TemporaryBooting, 8-15; Volume, 4-
13,4-14,4-15

NotOpen .
def, 4-12; raised by ops in: File, 4-19;
OthelioOps, 8-7; Scavenger, 4-25; Space, 4-32,
4-35; TemporaryBooting, 8-15; Volume, 4-15

notPilot,4-4
notReady, 10-21

1- 18

noTranslationForDestination, 6-15
notReady, 4-3, 4-5,5-17,5-20,5-39,5-40,5-42,

5-43,5-44,5-45,5-46,5-47
notSuspended, 6-14, H-20
NoITYPortHardware, 5-28
noWindow, 2-41,4-31,4-32
nrz, nrzi, 6-30
NS Communication System, 1-3
NSConS1ants, DEFINITIONS, 2-19, 6-2
NSConstants£xtras, DEFINITIONS, 6-2
nsProtocol, 6-26
nsSystemElement, 6-26
nsSystemEJementBSC, 6-26
NUL, 7-2
null, 2-5, 2-12,4-57
nuliAgentProcedure, 2-46
nuIiBadPage,4-10
null Block, 2-2, 6-8
null BootFile, 8-8
nullBootFilePointer, 5-27, 5-48
nuliChannelHandle, 5-28
nullChecksum, 2-16
nuIiDevicelndex,4-3
nuUDrive, 5-19, 5-22, 5-39, 5-40
nuliEvent, 2-46
nullExchangeHandle, 6-5
null File, 4-17, 4-25
nuliFilelD, 5-25, 5-27, 5-38, 5-44
null Frame, 9-4
nuliHandle, 4-43, 5-16, 5-32
nuliHostNumber, 2-20
nulllD, 2-20,-4-2,4-8,4-10,4-11,4-13,4-17
nullindex, 4-57, 9-5
nulllnterval, 4-28, 4-29
nullLineNumber, 6-28, 6-32
null NetworkAddress, 2-20
nullNetworkNumber, 2-20
nuliParameters, 6-49, 6-50, 6-51, 6-52, 6-57
nuliPrediCate, 6-67
nuliProcess, 9-3
null Program, 2-39
nuliResponse, 6-67
nuliSectorNumber, 5-46
nuliSegment, 4-44
nuliSocketNumber, 2-20
nUIiSubsystem, 2-47
nuliSubVolume, 8-9
nuliType, 2-4, 2-5
nuliVolumeHandle, 5-20, 5-38
Number, 6-42, 7-3
NumberFormat, 5-37, 7-3
NWords, 4-49

Pilot Programmer's Manual

o
ObjAlloc, DEFINITIONS, 2-49
Object

ArpaTelnetStream, H-24; Courier, 6-47, 6-48;
default values, 3-17; in component
implementation, 3-18; network stream
access, 6-11; procedures stored in, 3-14;
stream timeout, 3-9; TCPStream, H-19 XStream,
6-71

object allocation, 2-34
object file

errors, 2-41; links, 2-40; loading, 2-40;
missing code, 2-41; oiprogram, 8-2;
unloading, 2-41

Objects, 6-73
Octal, 7-4
octal, 10-18, 7-4
Octal Format, 7-3
odd, 5-30, 6-29
oddPairs, 5-12
off, 4-55, 5-11, 5-13
Offline, 4-5
ok, 5-34, H-37,H-60
okay, 4-7, 4-8, 4-43, 4-46, 4-47
okayToConvert, 4-7, 4-22
on, 5-11,5-13
one, 5-23, 5-30, 6-29
one024, 10-18
one28, 10-18
oneAndHalf, 5-30
online, 4-5, 8-3, 8-5
OnlineDiagnostics, DEFINITIONS, 10-14, 10-16, 10-17
OnlineDiagnostics£xtra£xtras, DEFINITIONS, 10-21
onlyEnumerateCurrentType, 4-13
onlyOneSide, 5-24
onlySingleDensity, 5-24
Open, 4-14, 4-21, 4-54, 4-57, 5-20, H-58
openRead, 4-13
openReadWrite, 4-13
OpenVolume,5-40
OperationClass, 6-32
Optical Device, 2-4
optical devices, 2-4, 2-8
optional packages, 8-1
Options, H-12
options, H-25
OptionsEnnum, H-28
or, 2-12
orphan, 4-24
orphan page, 4-24, 4-27
Orphan Handle, 4-23, 4-24, 4-27
orphanNotFound, 4-27
Othello, 8-2, 8-3
OthelloOps, DEFINITIONSoperations, 8-6 to 8-11

OthelloOpslmpl.bcd, 8-4
other, 6-43, 8-6, 8-8, 9-3, H-44
otherError, 4-49,5-13, 10-9, 10-13
out-oi-band

attention, 6-21; signal, 3-8
Outcome, 6-42
outload, 8-16
outload file, 9~2
OutLoadlnLoad, 8-16
outloadLocation, 8-16
OutOflnstances,5-32
OutputListProc, H-43
OutputListStringProc, H-52
Overflow, 2-24,4-55
OverLapOption, 2-16
owner checking, 2-29, 4-50
OwnerChecking,4-53
OwnerCheckingMDS, 4-53

Pack, 7-11
packager, 1-6
Packed, 7-10
packet, 1-6,6-1

p

Packet Exchange Protocol, 6-4
Packet Exchange

access to router, 1-7; DEFINITIONS, 6-4;
description 6-4; functions, 6-2

pad, 2-15
page

I

alignment, 5-3; fault, 4-35; fault service
time, A-2; number, 4-17; scavenger problem
types, 4-24; size (Mesa Processor), 2-2

PageCount, 2-2, 4-2, 4-10, 4-17, 4-19, 4-28,5-20
pageCountTooSmaliForVolume, 4-13
PageFromLongPointer, 2-3, 4-28, 4-41
PageNumber, 2-2, 4-2, 4-11, 4-17, 4-28, 4-30,

5-20
PageOffset, 2-2, 4-28
PagesForlmage, 5-22
PagesFromWords, 4-40
Parameter, 5-30, 6-34
parameter area, 6-46, 6-61, 6-62, 6-64
parameterlnconsistency, 6-65
Parameters, 6-49, 6-52
ParameterType, 6-33
Parity, 5-30, 6-29, 6-32, 6-34, 6-35
parityError, 5-29, 5-30
partialLogicalVolume, 4-9
partiallyOnLine, 4-13
PassDone, 8-4
Passes Left, 8-4
passive, 6-75
Passive, H-47

I - 19

Index

PatternType, 10-11
pause, 6-46
Pause, 2-24, 2-38
PC,9-4
PC emulation, memory alloc. switches, 2-3~~
performance testing, 2-29
PeriormanceToolFileType, 4-18
permanent, 4-22, 4-24
permissions, 4-29
phoneAdoption, DEFINITIONS, 6-76
phone Net. DEFINITIONS, 6-74
physical record, 6-20
physical volume

bad pages, 4-9; bringing online, 8-2;
consistent state, 4-6; creation, 4-6; def, -i-I;
enumeration of, 4-9; errors, 4-3; formatting,
8-4; ID, 2-23; identifier, 8-14; label, 4-6;
name, 4-2, 4-9; organization, 4-2; Pilot, 4-4;
removing from system (example), 2-45;
scavenging, 4-6 to 4-8; size, 4-2

PhysicalMedium, 6-22
Physical Record, 5-3, 6-29, 6-35, 6-39
PhysicalRecordHandle, 5-3, 6-29, 6-35
PhysicalVolume, DEFINITIONS, 4-1
PhysicalVolumelD, 2-20, 2-23, 4-2
physicalVolumeUnknown, 4-2, 4-3, 4-5, 4-8, 4-9,

4-10,4-13,8-9,8-10
pilot, 8-6, 8-7
Pilot

bootloader,8-12;boots~tches,2-25w,
2-34; disk device types, 2-5; execution sipeed,
A-3; file system, A-3; initialization,
8-2 to 8-3, 8-8; interrupt key, 2-30, C-l;
kernel, 8-1; microcode, 8-4; performance
requirements, A-I, A-2; physical memory
requirements, A-I; released version of, 1-1;
swapping, 1-5,4-30,4-31; switches, 8-2'1
8-10,8-14; System Components, 8-1;
volumes, 4-5

Pilot Emergency Interrupt, C-l
PilotCJient, DEFINITIONS, 2-44
PiiotDisk, 2-4, 4-3
PiiotFileType, B-1, B-2
PilotKernel.bcd, 1-2, 1-9, 8-1, 8-2, D-l
PiiotSwitches, PilotS witches Extras,

PiiotSwitchesExtraExtras, PiiotSwitchesExtraExtraE,.:tras,

PiiotSwitchesExtra Extra Extra Extras, PflotSwitchesb:trasS,
PiiotSwitchesExtras6, PiiotSwitchesExtras7,

PiiotSwitchesExtras8
DEFINITIONS, 2-25

pipeline
as stream component, 3-9, 3-13; def., 3-1 to 3-
2; example, 3-10 to 3-11; in Pilot, 1-7

pixelsPerlnch, 5-11
PixelWidth, 2-14
plain, 5-34

pMicrocode, 8-16
pointer, 2-3
Poi nter, 4-40
PointerFault, 2-28
PointerFromPage, 4-41
pointerPastEndOfVi rtual Memory, 4-30
PopAlternatelnputStreams, 5-34
PORT, 3-18
Port, H-4
port, 2-43
PortFault, 2-42
Position, 3-9
Post, H-58
PostProc, H -60
power control

automatic on, 2-25; off, 2-24, 2-45
PowerOff, 2-24
Precedence, H-9
precedenceMismatch, H-19
Predicate, 6-67
PredicateProcedure, 6-70
PredicateRecord, 6-67
preemptive allocation, 6-38
preemptMe, preemptOthers, 6-37 to 6-38
primary storage, 4-45
priority level, 2-37
Priority, 2-37
priorityBackground, 2-37
priorityForeground, 2-37
priorityNormal,2-37
probablyNotPilot, 4-5
probablyPilot, 4-5
Problem, 4-23, 4-24
proc, 6-72
procedures, activation and deactivation, 4-36
Proceed, 9-2
PROCESS, 2-34
Process, 9-3
Process, DEFINITIONS, 2-34
process

abort, 2-37; active, enumeration of, 9-3;
awakening, 2-45; dead, 2-34; def, 1-9;
forking, 2-34, 2-36; joined, 2-34; lightweight,
1-4; live, 2-34; maximum number, 2-36;
MDS association, 1-6; performance, A-3;
priority, 2-37, C-l; suspend, 2-38;
synchronization, 2-38; validation, 2-34;
yielding, 2-38

processor
setting of clock, 8-11; yielding control, 2-38

ProcessProc, H-63
Product Common Software.

def, 1-9; Format, 7-2; String, 7-10; Time,
7-10; TrY, 5-31; TTYPort, 5-28

product system debugging, 9-1

Pilot Programmer's Manual

productSoftware, 7-4
PROGRAM, 2-39, 2-40
program, logical correctness of, 2-38
protection, 1-3
protocol Mismatch, 6-55
Prune, 4-52
PruneMDS, 4-52
PSBlndex,9-4
pseudo-Mesa declarations, 1-8
pTrue, 6-67
pulse function, 2-23
Pulses, 2-23
PulsesToMicroseconds, 2-24
,Pup Protocol, 2-31
Push, H-33
PushAlternatelnputStream, 5-34
put, 6-20
Put, 5-4, 5-29, 6-39
PutBackChar, 5-33
PutBlank, 5-36
PutBlanks, 5-36
PutBlock

ArpatelnetStream H-33; Log, 4-54, 4-55, 9-2;
Stream, 3-6, 3-7, 3-10, 3-12, 3-15; TTY, 5-33

putByte, 6-19
PutByte, 3-7, 3-15, H-33
PutByteProcedure,3-15
PutChar, 3-7, 5-35
PutCR,5-36, 10-16
PutDate, 5-36
PutDecimal, 5-37
PutLine, 5-36
PutLongDecimal, 5-37
PutLongNumber, 5-37
PutLongOctal, 5-37
PutLongSubString, 5-36
PutMesaChar, 10-16

. PutMessage, 10-16
PutMessageProc, 10-19, 10-22
PutNumber, 5-37
PutNumberProc, 10-22
PutOctal,5-37
PutProc, H -29
PutProcedure,3-15
PutString, 3-7, 4-54, 4-55,5-36
PutSubString, 5-36
PutText, 5-36
PutTextProc, 10-22
PutTimeStampMessageProc,10-22
putWord,6-19
PutWord, 3-7, 4-54
PutVVordPr~cedure,3-16
PVLocation,8-14

q2000,2-5
q2010, 2-5
q2020, 2:.5
q2030, 2-5
q2040, 2-5
q2080,2-5

Q

quad-word alignment, 5-3
Quantum, 2-5
QuickSort, 7-12
Quiesce, 5-28, 5-31
quiescent state, 2-45
Quit, H-47
quit, 10-15
QuitProc, H-51

R
RacalVadic, 6-42, 6-45
radix, 5-37, 7-7
RasterOffset, 2-15
raster, 2-14, 2-15
RcptList, H-60
RcptRecord, H-60
Read, 5-22
ReadBadPage, 4-25
ReadFile, 5-41
ReadlD, 5-20
ReadOnly

def, 4-12; raised by ops in: File, 4-19, 4-20;
OthelioOps, 8-7, 8-9; Runtime, 2-41; Scavenger,
4-25; Space, 4-32, 4-37; Volume, 4-13, 4-15,
4-16

readOnly, 4-15, 4-29, 4-34, 4-37
ReadOrphanPage, 4-26
ReadSectors, 5-19
readTable, 10-21
readWrite, 4-29, 4-37
readyAndWrEnable, 10-21
readyToGet, 5-31
readyToPut, 5-31
Recipients, H-56
RecipientsSequence, H-56
recording information, 4-55
recordNotFound, 5-17
Recreate, 4-43
references, F-l
Register, H-41, H-53, H-61
RegisterPredicate, 6-71
Relnit, H-47
ReinitializeProc, H-51
rejectedByReceiver, 6-6
RejectRequest, 6-7
ReleaseDataStream, 6-55, 6-58
remark, 4-55
remote procedure calling (RPC), 6-46

I

1-21

Index

remote program, 6-46
remoteError, H-57
RemoteErrorSignalled, 6-51, 6-56
remoteFileError, H-45
remoteProgram, 6-68
remoteReject, 6-15, H-19, H-29
remoteServiceDisappeared, 6-14
remoteStorageAllocExceeded, H-57
remoteSystemElementNotResponding,10-1
removable medium, 1-6
removeCartridge, 10-21
RemoveCharacter, 5-36
RemoveCharacters, 5-36
RemoveDependency, 2-47
RemoveRootFile, 4-16
RemoveSegment,4-46
Rename, H-47
RenameProc, H-51
repair, 4-7, 4-8, 4-22
repaired, 4-7, 4-24
RepairStatus, 4-7
RepairType, 4-6, 4-22
Replace, 7-10
ReplaceBadPage, 4-26
ReplaceBadSector, 5-22
replier, 6-4, 6-5
Request, 6-72
RequestHandle, 6-5
RequestObject, 6-5
requestor, 6-4, 6-5
requestToSend, 5-31, 6-34, 6-35
ReserveDiagnosticArea, 5-49
reservedType, 4-19, 4-20
ReserveType, 6-30, 6-35,6-37
Reset, 4-55, 4-57, H-59
reset, 4-55
ResetAutomaticPowerOn, 2-25
ResetUserAbort, 5-33
resolve, 2-13
Resolve, H-15
resource

allocation, 1-3; new, acquisition of, 2-45;
shared, acquisition and release, 2-44

ResponseProc, 6-70
ResponseRecord, 6-68
ResponseSequence, 6-66
Responses, 6-66
RESTART, 2-42
Restart, 4-57, 6-40, 9-3
restart

file, 2-44,2-45; message, 9-1; system, 2-11
Results, 6-48, 6-52, 6-57
results, 6-49, 6-50, 6-52
retentFailed, 10-21
Retention, 5-47
retention Tape, 10··21
retransmission, 6-4, 6-14

1-22

retransmissionlnterval, 6-7
Retrieve, H-41, H-47
RETRY, 3-4, 3-9
RetryCount, 6-30, 6-42
retryLimit, 8-4
RetryLimit, 8-4
return, 4-33
ReturnCode, H-26
ReturnReason, H-60
ReturnRecord, H-26
returnTimeOut, 6-54
ReturnWait, 4-33
RewriteFile, 5-43
RewritePage, 4-26
RgFlags, 2-15
RgflagsPtr, 2-15
right shift, 2-9
ringHeard, 6-31
ringlndicator, 6-31
ripple, 2-16
riskyRepair, 4-6, 4-7,4-8,4-22
root page, 2-22
RootDirectoryError, 4-15,9-2
RootDi rectoryErrorType, 4-16
rootFileUnknown, 4-16
router, 1-6,8-11,6-21
Router, DEFINITIONS, 6-21
Routersfunction, 6-24
routing delay, 6-21
routing protocol, 6-2
routing table, 6-22, 6-23
routing table cache fault, 6-22
routingl nformationSocket, 2-11
RPC, 6-46
RS232C, DEFINITIONS, 6-30
RS232CControl, DEFINITIONS, 6-41
RS232CCorrespondents, DEFINITIONS, 6-25
RS232CDiagError, 10-9
RS232CErrorReason, 10-9
RS232CIO.bcd, 6-25
RS232CParams, 10-11
RS232CTestMessage, 10-12
RS366 (dialer Type), 6-43
Rubout, 5-33, 5-35
Run, 2-30, 2-44, 8-3, 8-12, 9-2
RunConfig, 2-40
Runtime,

DEFINITIONS, 2-38; Pilot initialization, 8-2
RuntimeLoader. bcd, 8-2

sa1000,2-5
sa1004, 2-5
5a4000, 2-5

s

SA 4000, 8-5
sa4008,2-5
sa800,2-5

Pilot Programmer's Manual

safeRepair, 4-6, 4-7, 4-8, 4-22
safetyTOlnMsecs, 10-3, 10-4, 10-11
SBSOFileType, 4-18
Scan, 8-6
scan line zero, 5-13
ScatteredVM, 5-41
ScatteredVMSeq, 5-41
Scavenge, 4-6,4-7,4-22,4-24,4-25, $·25, 5-47
scavenge

def, 4-21; file types, B-1; in initialization,
4-22,8-2; log file, 4-23; logical volume, 4-21;
physical volume, 4-6, 4-7; problem types
(floppy), 5-26; problem types (volume), 4-24;
restoring volumes, 4-1

scavengeFailed, 10-21
ScavengeProblemType, 5-26
Scavenger, DEFINITIONS, 4-21
ScavengerStatus,4-7
scavengeTape, 10-21
ScratchMap, 4-31, 4-33
scratch memory initialization, 2-29
screenHeight, 5-11, 10-15
screenWidth, 5-11, 5-13, 10-15
Scroll, 5-14
scroll window, 5-13, 5-14
scrollinglnhibitsCursor, 5-14
scrollXQuantum, 5-13, 5-14
scrollYQuantum, 5-13, 5-14
SCSIDisk, 2-4
SCSI Processor, 2-4
SCSIReadOnly, 2-4
SCSITape, 2-4
SDDivMod, 2-18
Seconds, 2-35
SecondsSinceEpoch, 2-21
SecondsToTicks, 2-35
secTableFailed, 10-21
sector, 10-21
SectorCount, 5-16
SectorLength, 1 0-18
sectorNine, 5-26
SectorNumber, 5-46
sectors, 8-5
sectorToEnter, 10-21
Security, H-I0
securityMismatch, H-19,H-21
segment

adding, 4-45; def, 4-42; removing, 4-46; size,
4-45 .

SegmentHandle, 4-44
segmentTooSmall, 4-45
Self Destruct, 2-39 to 2-40, 3-18
Send, H-40

sendAttention, 6-20
SendAttention, 3-8, 3-16
SendAttentionProcedure, 3-16
SendBreak, 5-29, 6-41
SendBreaklllegal, 6-37
sendNow, 6-20
SendNow, 3-6, 3-7, 3-12, 3-17
SendNowProcedure, 3-17, 3-18
SendReply, 6-5, 6-7, 6-9
SendRequest, 6-7, 6-8
SEQUENCE, 4-53
sequence, 6-5
sequence packet protocol, 6-2
sequenced, 6-9
Sequenced Packet Protocol, 2-31, 6-9, 6-18
sequential access, 3-1
sequential data, 1-7
serialization, 6-59
SerializeParameters, 6-64, 7-12
server, 6-10, 6-46
serverCheckout, 6-73
serverCommandError, H-45, H-57
ServerOff, 10-1
ServerOn, 10-1
ServicesFileType, 4-18
serviceUnavailable, H-45, H-57
SetAccess, 4-37
SetAutomaticPowerOn, 2-25
SetBackground,5-12,10-15
SetBackingSize, 5-32
SetBootFiles, 5-27, 5-48
SetBorder, 5-12, 10-16
SetChecking, 4-44, 4-52
SetCheckingMDS, 4-52
SetContext, 5-17
SetCursorPattern, 5-13, 10-15
SetCursorPosition, 5-13, 10-15
SetDebugger, 8-8
SetDebuggerSuccess, 8-8
SetDefaultOutputSink, 7-2
SetDiagnosticLine, 10-12
SetEcho, 5-34, 5-35
SetExpirationDate, 8-10
SetExpirationDateSuccess, 8-10
SetGetSwitchesSuccess, 8-10
Setl ndex, 3-19
SetlnputOptions, 3-4, 3-14,H-33
SetlnputOptionsProc, H-29
SetLineType, 6-40,6-41
SetLocalTimeParameters, 2-23, 7-11
SetMousePosition, 5-15, 10-15
SetNetworkl 0, 6-25
SetOverflow, 4-55
SetParameter, 5-30, 5-31, 6-38
SetPhysicalVolumeBootFile, 4-8, 8-7
SetPosition, 3-9

I

1-23

Index

setPosition, 3-17
SetPositionProcedure, 3-17
SetPriority, 2-37, 2-44
SetProcessorTime, 8-11
SetRestart, 4-55, 4-57, 9-3
SetRootFile. 5-25, 5-44
SetRootNode, 4-44
SetSize, 4-20, 8-12
setSST, 6-20
SetSST, 3-7, 3-8, 3-12
SetSSTProcedure, 3-16
SetState,4-55,5-13
SetSwitches, 8-10
SetTerminalType, H-33
SetTimeout, 2-24, 2-36, H-34
setTi meout, 3-16
SetTimeoutProcedure, 3-16
SetUserAbort, 5-33, 8-5
SetVolumeSootFile, 8-7
SetWaitTime, 6-17
SetWaitTimes, 6-8
shift operations, 2-19
ShortBlock, 3-13, 6-21
Shugart Associates, 2-5
Sides, 5-23
siemens9750, 6-26
Signal, 9-5
signal, 9-3
signal

in-band, 3-8; out-of-band, 3-8; uncaught, 9-1
signalAttention, 3-4, 3-7, 3-8
signalEndOfStream, 3-4, 3-6, 3-7, 3-14
signalEndRecord, 3-4, 3-6, 3-7, 3-12
signalLongBlock, 3-4, 3-7, 3-12, 3-13
SignalMsg, 9-4, 9-5
SignalRemoteError, 6-56, 6-57
signalShortBlock, 3-4, 3-7, 3-13
signalSSTChange, 3-4, 3-5, 3-7
signalTimeout, 3-4, 3-7
simple routers, 6-22
simulation, boot switches for, 2-29, 2-32
single,10.18, 5-16, 5-23
SingleBox, 2-4
SingleDouble,10-18
singleLogicalVolume, 4-9
sink,7-2
sixteen-word alignment, 5-3
sizeChange, 10-3
smartModem, 6-42, 6-43, 6-44, 6-45
smooth scrolling, 5-12, 5-13
SMTPError, H-56
SMTPErrorReason, H-57
SMTPProcList, H-61
socket(s)

def, 6-1, 6-15; for Network streams, 6-9; well
known, 2-11, 6-2

r - 24.

SocketNumber, 2-20,6-1, 7-5
softMicrocode, 4-7, 8-6
software channel

def, 5-1; floppy, handled as, 5-15; example, 5-
1

SoftwareTextBlt, 2-16
SORT,7-12
sound generator, 5-15
SP,7-1
space

alive, 4-36; dead, 4-36; mapping, 4-1
Space, DEFINITIONS, 4-27
space machinery (storage), 4-41
SpaceUsage, DEFINITIONS, 4-27
SpecialFloppyTape, DEFINITIONS, 5-38
SplitNode, 4-47
SrcDesc, 2-9
SrcFunc, 2-12
SSTChange, 3-5, 3-7, 6-20
sstChange, 3-5, 6-21
stars, 5-34
START, 2-35,2-42,2-44,3-19
Start, 6-41
StartEchoUser, 10-2
startEnumeration, 6-23
StartFault, 2-42
startlndex, 2-2,2-16,3-4,3-5
StartlndexGreaterThanStopl ndexPI usOne, 2-16
startingOffset, 5-47, 5-48
startListHeaderHasBadVersion, 8-8
StartRS232CTest, 10-8
State, 4-55, 5-12
stateless enumerator (of)

active processes, 9-3; bad pages, 4-10; def,
1-7 to 1-8; device drives, 4-3; floppy bad
sectors, 5-25; floppy devices, 5-22; floppy
files, 5-26; floppy tape, 5-39; log entries,
4-56; log files, 9-5; logical volumes, 4-8;
physical volumes, 4-9; root files, 4-16;
routing table entries, 6-23; subvolumes,
8-9

Statslndices, 10-6
Status, 4-13, 4-43, 4-44, 4-46, 5-17, H-34
status, H-27
statusAborted, 6-31
StatusCode, H-37
StatusWait, 5-31, 6-40
still Mapped, 4-39
stiliSure, 10-21
STOP, 2-42
Stop, 6-41
stop, 2-15, 5-34
StopBits, 5-30, 6-30, 6-34, 6-35
stopBits, 6-35
stoplndexPlusOne, 2-2, 2-16, 3-4
StopListening, H-36

Pilot Programmer's Manual

stopOnError, 10-18
storage allocation (using heaps & zones), 4-1
storage medium, 4-3
storageOutOfRange, 4-43, 4-45
Store, H-48
store, 6-60
Stream, DEFINITIONS, 3-1
stream, 6-72
stream

communication, 1-7; component manager,
3-13, 3-18; creation, 3-3, 3-9, 6-11, 6-13,
6-14; delete instances of, 3-18; determining
structure of, 3-3;example of creating, 3-10;
full duplex, 3-3; half duplex, 3-3;
implementation, 7-12; physical records
control, 3-11, 3-12; physical records,
maximum, 3-12; positioning, 3-9;
SubSequence type, 3-8, 6-56; timeouts, 3-9,
3-12,6-18; use, 1-10

stream, 10-21
StreamAborted, H-30
streamNotYours, 6-55
string, 10-18, 4-57
String, DEFINITIONS, 7-5
string body (allocating from a heap), 4-51
String package, 7-2, 7-5, 7-10
StringBody, 6-46, 6-61
StringBoundsFauit, 7-5
StringForErrorCode, H-65
StringProc, 7-2
StringslmpIA.bcd, 7-5,7-10
StringslmpIB.bcd, 7-5
StringToOecimal, 7-8
StringToLongNumber, 7-8
StringToNumber, 7-7
StringToOctal, 7-8
stringTooShort, 5-24
style rules, B-2
subscript out of range, 2-27
subsequence type, 3-2
subsequences, 3-2
SubSequenceType

changing, 3-8; function, 3-2; in bulk data
transfer, 6-56; in closing network stream,
6-19; in GetBlock termination, 3-4, 3-5; in
physical record output, 3-12

SubString, 7-2, 7-6
SubStringOescriptor, 7-3, 7-5
SubsystemHandle, 2-47
subsystems

clients-first order, 2-45; creating, 2-47;
deleting, 2-47: dependencies, 2-47 to 2-48:
error conditions, 2-49: event notification.
2-48; registration, 2-47; resource
acquisition, 2-44 to 2-45

SubVolume, 8-9

subvolume
def, 8-9; enumeration of, 8-9

subvolumeHasTooManyBadPages, 4-13
subVolumeSize, 8-9
SubVolumeUnknown, 8-9
success, 5-29,6-36,6-42, 8-8, 10-3, 10-13
successComplete, 10-21
successRepair, 10-21
Supervisor

I

database, 2-44; description, 2-44; error
conditions, recoverable, 2-49; ttandles, 2-45:
resource handling, 2-45; uses, 2-44, 2-45

Supervisor, DEFINITIONS, 2-44
SupervisorEventlndex

DEFINITIONS, 2-44, uses, 2-46
SupervisorImpl.bcd,2-45
suppress duplicate, 6-4
Suspend, 6-40
Suspended, H-21
SuspendReason,6-14,H-20
swap unit

access, 4-29, 4-37; boundary, 4-29; life, 4-29;
size, 4-29, 4-30, 4-31, 4-33

swapping
advice, 4-35; methods, 1-5; types, 4-35

SwapProc, 7-12
SwapReason, 9-5
SwapUnitOption, 4-31
SwapUnitSize, 4-31
SwapUnitType, 4-31, 4-33
Switches, 2-25, 8-9
switches, 2-25
switches, boot, 2-25 to 2-34, 8-2
Sword, 8-2
SyncChar, 6-30
syncChar, 6-34, 6-35
syncCount, 6-34, 6-35
SyncCount, 6-30
synchronous, 5-21
synchronous operation

def, 1-8; of physical devices, 1-5~ of Pilot
interface procedures, 1-4

Synchronous Point to Point Protocol, 6-74
synchronous procedures, stream, 3-3
System, DEFINITIONS, 2-19
system

logical volume, 4-14, 4-2~~ physical volume,
4-14: power, 2-24 to 2-25; volume, 4-11, 8-2,
8-3; zones, 2-29

system6, 6-26
systemBootOevice, 2-25
SystemElement, 6-47
systemlO, 4-11
systemMDSZone. 4-47, 4-50
systemZone, 4-47, 4-50

1-25

Index

t300, 2-5
tao, 2-5
TAB, 7-1

T

Table Compiler, 2-42
Tajo, 8-2
tapelabel, 10-21
tBackstopDebuggee, 4-19
tBackstopDebugger, 4-19
tBackstoplog, 4-19
tBootFile, 8-12
tByteCnt,10-17
tCarryVolumeDirectory, 4-19
tCIERH, 10-18
tCIERS, 10-18
tCIEVer, 10-18
tCIEWDS, 10-18
tCIEWS, 10-18
tCJearingHouse8ackupFile, 4-19
tcpError, H-45, H-57
Tcp5tream, H-18
tcpTimeOut, H-57
tDi rectory, 4-19
TelnetErrorReason, H-30
TelnetListener, H-37
temporary, 4-21, 4-22
temporary file, 8-9
TemporaryBooting

DEfiNITIONS, 8-11, interface 8-2 8-6' , , ,
operations, 8-13 to 8-16

terminalType, H-33
terminateOnEndRecord, 3-4, 3-6,3-7,3-12, 6-20
testCount, 10-11
TestFileType, 4-18
testTerminated, 10-21
TextBIt, DEfiNITIONS, 2-12
TextBlt, 2-12
TextBltArg, 2-13
TextBltArgAlignment, 2-13
TextBltArgSpace, 2-13
tFilelist, 4-19
tFirst, 10-17
TFTP, H-40
tHeadDataErr, 10-17
tHeadDisp, 10-17
tHeadErrDisp, 10-17
Ticks, 2-35
ticks, 2-35
TicksToMsec, 2-35
Time, DEfiNITIONS, 7-10
time of day, 2-21
Time package, 7-2, 7-10

1-26

time zone parameters, 2-22, 2-23
Timelmpl.bcd, 7-10
TimeOut, 3-9, 6-12, 6-19
Timeout, 6-6, 6-8, 6-9
timeout, 3-4, 10-3,6-6,6-12, 6-15
timeout interval, 2-35, 2-36
timer resolution, 2-15
Ti meServerError, 8-11
TimeServerErrorType, 8-11
TimeZoneStandard, 7-10
tooManyCollisions, 10-7
tlast, 10-18
tooManyConnections, 6-15,10-1
tooManyEchoUsers, 10-5
TooManyProcesses, 2-36
tooManySoft,10-21
tooManySubvolumes, 4-13
tooSmaliFile, 4-54
totaiAttempts, 10-5
track, 10-21
transactional, 6-10
transactionFailed, H-57
transducer

def, 3-1; in end of stream, 3-5; in network
stream, 6-10; in pipelines, 3-12; manager,
3-18; stream component, 1-7,3-9,3-13;
possible action, 3-11

TransferStatus, 5-4, 5-29, 6-37
transferTimeout, 6-43, 10-13
TransferWait, 5-4,6-39,6-40
transmissionError, 6-43, 10-13
transmissionMediumHardwareProblem 6-53
transmissionMediumNotReadY,6-53 '
transmissionMediumProblem, 10-2
transmissionMediumUnavailable 6-53
TransmissionModeEnum, H-42 '
transmissionTimeout, 6-14, H-57
TransmitNow, 6-40
transport, 6-46
transportTimeout, 6-54
Troy, 5-17
Troy format, 5-17
truncatedTransfer, 6-55
truncation, 5-3
tScavengerlog, 4-23, 4-24
tScavengerlogOtherVolume, 4-23, 4-24
tSectorDisp,10-17
tStatDisp,10-17
tSummErrlog,10-17
TTY, DEFINITIONS, 5-31
TTY Port controller, 5-28
ttyHost, 6-26
TTYPort, DEFINITIONS, 5-28
TTYPortChannel.bcd, 5-28
TTYPortEnvironment, DEFINITIONS 5-28
tUnassigned,4-19 '

Pilot Programmer's Manual

tUntypedFile, 4-15, 4-16, 4-19, 8-12
tVerDataErr, 10-17
two, 5-23, 5-30
twoS6, 10-17
Type

Device, 2-4, 2-5, 4-3; File, 4-15,4-16,4-17,
4-18,5-25, App. B; LogFile, 4-57; Volume, 4-12

type code, B-1
TypeSet, 4-13

u
UDDivMod, 2-18
UnboundProcedure, 2-39, 2-42
uncaught signals, 9-1
uncomplete, 10-21
UNCOUNTED ZONE, 4-41, 4-47, 4-50, 6-47
uncounted zone, 2-19, 4-49
undefined, H-3S, H-39,H-45
undelete, 4-20
unexpected, 10-3
UnexportRemoteProgram, 6-49, 6-55
uniform, 4-31,4-33
uniform swap units, 4-49
unimp'emented, H-45
UnimplementedFeature, 6-37
unimplementedFeature, 10-10
unique network address, 6-2, 6-18
uniqueConnectionlD, 6-13, 6-18
uniqueConnlO, 6-11, 6-12, 6-13
uniqueNetworkAddr, 6-11, 6-13
uniquePort, H-21
unitary, 4-31, 4-33
universalidentU1er

description, 2-19; Pilot facility, 1-10; supply,
2-20; uses, 2-20

UniversallD, 2-10, 4-10
Unknown

File.Unknown: def, 4-19; raised by ops in: File,
4-19; OthelioOps, 8-7; Scavenger, 4-25; Space,
4-32; when raised, 4-17.
VOlume.Unknown: def, 4-11; raised by ops in:
File, 4-20; OthelioOps, 8-7, 8-S, 8-9;
PhysicalVolume, 4-S; Scavenger, 4-22, 4-24, 4-25;
Space, 4-32,4-35; TemporaryBooting, 8-15;
Volume, 4-13, 4-14, 4-15

unknown, 2-40, 2-41, 4-13
unknownConnID,6-11
unknown Errorl nRemoteProcedure, 6-55
unknownlnternetAddress, H-4
unknown network number, 8-11
unknownUsage, 4-31
unlimitedSize, 4-49
Unmap, 4-31, 4-33, 4-34, 4-40, 8-12
UnmapAt, 4-39
unmapped storage, 4-40

unmarshalling,6-61
UnNew, 2-39, 3-19
UnNewConfig,2-41
unnoted data, 6-63 to 6-64
Unpack, 7-11
Unpacked, 7-10, 7-11
unreadable, 4-24, 4-26
unreadable page, 4-24, 4-26
unrecoverable error, 4-30
UnRegister, H-53,H-61
unSuccessRepair, 10-21
unusable pages, 8-3
unused, 9-3
unsupported, 6-74
Unsupported, 6-75
UNWIND, 2-49
up, 2-25
UpDown, 2-25
UpDown[up],8-10
UpperCase, 7-6
Usage, 4-31. 4-32
useGMT, 7-11
user, 6-46
UserAbort, 5-33
userCheckout, 6-73
UserTerminal, DEFINITIONS, 5-11
UserTerminalExtras, DEFINITIONS, 5-11
UserTerminaIExtras2, DEFINITIONS, 5-11
userNotLocal, H-57
userTerminate, 10-21
useSystem, 7-11
UtilityPilot

I

client initialization, 8-3, 8-4, 8-10; compared
to Pilot, D-1; data pages for, 1-5; debugger, 8-
8; if client running on, 2-25; facility
exceptions, D-l; kernel, 8-1; opening
volumes, 4-14; physical volume, 4-2; setting
time, 2-22, 2-23; use, 1-2, D-l; window
backup, 4-32

UtilityPilotKernel.bcd, 1-2, 8-1, D-1

V

V25bis, 6-42,6-43,6-45
Validate Frame, 2-39
ValidateGlobalFrame, 2-38
ValidateProc, H-61
ValidateProcess, 2-34
vaniliaRouting, 6-22
Ventel, 6-42, 6-43, 6-45
Verify, H-58
VerifyBinding,6-70
verifyFail, 10-21
verifyFormat, 10-21

1-27

Index

verifyPass, 10-21
VerifyProc, H-61
verifyRead, 10-21
Vel'$atecFileType, 4-18
Version Mismatch, 2-40, 6-50, 6-56, 9-2
VersionRange, 6-48, 6-50
virtual address (LONG NIL& NIL), 2-28
virtual memory

adding segments, 4-45; dynamic cost, A-3;
for zones, 4-43; highest numbered; page!, 2-2;
max address space, 2-2; organization, 4·27;
overview, 1-5; size, 1-5

virtual Memory, 4-38, 4-39
VM backing file switches. 2-28, 2-33
VMBuffer, 5-41
VMMapLoglmpl. bed, 9-1
VoidPhysicalVolumeBootFile, 8-8
VoidVolumeBootFile, 8-8
Volume, DEFINITIONS, 4-10
volume

file ID in, 4-17; initialization, 4-10, 8-3;
label, 4-15; local, 1-6; logical, 4-1; open/dose,
4-14; physical, 4-1; size, 1-5; withdrawing,
2-37

Volume, 8-3
VolumeHandle, 5-20, 5-38
VolumelD, 2-20, 4-10
VolumeLocation, 8-15
VolumeName, 5-45
VolumeNotClosed, 8-9
volumeNotOpen, 5-21
volumeOpen, 4-22, 5-26
VolumeType, 4-4

W

WAIT, 2-24, 2-35, 2-36, 2-37, 2-38
wait, 4-33
WaitAttentionProcedure, 3-16
WaitForAttention, 3-8, 3-19
WaitForKeyTransition, 10-15
WaitForRequest, 6-5,6-7,6-8
WaitForScanLine, 5-12
WaitTime, 6-5, 6-10, H-18
waitTime, 6-7
warning, 4-55
warningFormat, 10-21
well known exchange types, 6-4
well-known socket, 6-2, 6-64
west. 2-22
WestEast, 2-22
White, 5-12. 10-14
Window, 4-30
window

actual window length, 4-30, 4-32; allocation
& mapping to, 4-31; at file deletion, 4-20;

1-28

def, 4-29; overlapping, 4-32; types (data/file),
4-32,4-33

wishToContinue, 10-21
Word, 2-1, 3-7
word aligned, 2-50, 5-3
WordsForString, 7-6
WordslnPacket, 10-6
word size, 2-1
wordsPerPage, 2-2, 4-2, 4-27, 4-28
working set, A-I
wrap, 4-55
Write, 5-21
write-protect fault, 4-25, 4-29, 4-37,4-43,5-23
WriteDeletedSectors, 5-18
writeFile, 5-41, 5-42
writelnhibited, 5-21
WriteMsg, 10-12
WriteProc, H-63
writeProtect, 10-21
writeProtected,4-3
writeproteC'tfault, 9-3
WriteSedors, 5-18
wrongFormat, 4-3
wrongSeal, 4-43, 4-44
wrongVersion, 4-43

x
Xerox Internet Transport Protocols, 1-6
xerox800, 6-26
xerox850, 6-26
xerox860, 6-26
XNS.bed, 6-4, 6-9, 6-22
XNS protocol, 2-32
xOn, xOff, 6-28
xor, 2-12
xQuantumError, 5-13
XStream, DEFINITIONS, 6-71

y

yDispExpObsData, 10-17
yDispSects, 10-17
yDoor JustOpened, 10-17
yDoorOpenNow, 10-17
yDoorOpenShut, 10-17
yes, 10-19, 10-21
YesOrNo, 10-19, 10-21
yFirst, 10-17
Yield, 2-38
ylsltDiagDisk, 10-17
ylsltWrProt, 10-17
yLast, 10-17
yQuantumError, 5-13
yStiliContinue, 10-17
yStiliSure, 10-17

Pilot Programmer's Manual

z
zero, 6-25
ZeroDivisor, 2-18, 2-43
zeroSizeFile, 5-24
Zone, DEFINITIONS, 4-42
zone

def, 4-1, 4-41; description, 4-42; filed, 4-42, 4-
43; recreating, 4-43; root node, 4-44; sizes, 4-
43; wrong version, 4-43

zone, 2-22
zoneMinutes, 2-22
zoneTooSmall, 4-43

I

1-29

Index

1-30

CHANGE HISTORY

Update to Pilot Programmer's Manual of December 1986

The Pilot Programmer's Manual has been updated to reflect the state of the Pilot operating system
as implemented in Pilot 14.0. Changes made since publication of Document #610E00160 are
summarized below.

Chapter 1: In trod uction

Page

1-6
1-8

Change

§1.3.2. Revised MDS description.
§ 1.5. Revised pseudo-Mesa declarations

Chapter 2: Environment

Page

2-4 to 2-8
2-25 to 2-34

Change

§2.1.2. Added more device type interfaces.
§2.3.5. Map logging changes: Client-side map logging; switch \375 has no effect.
Added table of switch names, values, and meaning. Expanded description of
switches.

Chapter 3: Streams

Page

3-3
3-5
3-6
3-19

Change

§3.2. Expanded stream. Delete description.
Last~. Revised end-of-stream discussion.
§3.2.1.1. Added Note.
§3.6. Moved nMemory stream" from Chapter 7.

Chapter 4: File Storage and Memory

Page

4-18
4-47 to 4-49

Pilot Programmer's Manual

Change

§4.3.3. Added FileTypeExtrasExtras

§4.S.2. Added HeapExtras: NewCreate, NewCreateUniform, NewCreateMDS,
NewGetAttributes, and NewGetAttribu~esMDS.

CH-l

\.iHA.L'jljE HHSTUKY

Chapter 5: 1/0 Devices

Page

5-5
5-11,5-15
5-19
5-23
5-24
5-26
5-38 - end

Change

§5.2. Corrected LevelV description.
§5.3. Added UserTerminalExtras2.
§5.5. Added Flol=lpyExtras, FloppyExtrasExtras, FloppyExtras3, and FloppyExtras4.
§5.5.2. Added Note.
§5.5.3. Added Note.
§5.5.3. Added description ofFloppyExtras4additions to NewScavenge.
§5.8 and §5.9. New sections for FloppyTape.

Chapter 6: Communications

Page

6-2
6-4

6-24
6-25
6-28
6-31
6-43
6-56
6-59
6-66

Change

Socket number range is now 3000
§6.2. XHS.bcdl'eplaces Communication.bed.
(§6.4. Same.)
§6.4.3. Added caveat about routing table.
§6.4.3. Replaced. description ofSetNetworklD.
§6.5.2. FlowCorltrol is implemented and described.
§6.5.3.1 . Added. status code descriptions; correc ted device error description.
§6.S.5.2. Added dialupExtras.
§6.6.4.1. Corrected error in RemoteErrorSignalied statement.
§6.6.6.1.2. Corr,ected error in Mesa data type.
Added new sections: Network Binding (also added example in Appendix G),
XStream - Bulk data protocol, and PhoneN et driver

Chapter 7: Editing and Formatting

Page

7-2
7-6,7-7
7-7

7-9, 7-10
7-10
7-11

7-12

.. Change

§7.2.2. Corrected .format.StringProc.
§7.3.3. Added NI:L description for most operations.
§7.3.3.1. Corrected StringToNumber discussion.
Added NIL d~scription where applicable.
§7.3.3.2. Added NIL description where applicable.
§7.4.2. Redefined year; added dst description to Time.Packed.
§7.4.2. Expanded Pack description.
§7.5. Moved "ME~mory streams" to Chapter 3.
§7.5 (new). AddE!d new section, Sorting.

CHANGE HISTORY

Chapter 8: System Generation and Initialization

Page

8-2
8-3
8-4
8-5
8-7
8-13

Change

Global: Othello is not supported in Pilot 14.0.
§8.2. Changed Runti"meLoader.bcd to Loader. bed.
§8.2. Deleted description of possible local boot file facility.
§8.3.1. Added to FormatPiiotDisk. .
§8.3.1. Expanded SetUser Abort description.
§8.3.3. Added other signals raised by MakeBootable.
§8.5.3. Added errors to TemporaryBooting.MakeBootable.

Chapter 9: The Backstop

Page

9-2

Change

§9.1.2. Added Note: how to calculate the size of the volume containing the
backstop boot file.

Chapter 10: Online Diagnostics

Page

10-1
10.5
10-11

Change

§10.1. Added implementation beds; added note about backward compatibility.
§10.1.1. Modified EventReporter description.
§10.1.3. Modified modemSignal description.

Appendices A· G

Page

A-2

D-1
D-1
G

Change

§A.1.1. Updated physical memory re<l'uirements of Pilot. - .
§A.2.3 Revised communication performance estimate for system elements
connected to the same Ethernet.
Added: Clients must set processor clock.
Added: debugging UtilityPilot-based clients.
New: Example of network binding. ;

Appendix H: TCP/IP (old Section 11)

Because the interfaces described in the original Section 11 are non-Pilot related, the section was movrd to
this appendix.

Page Change

H-3
H-4
H-6, H-7

§ 1.2. ArpaPackageMake and ArpaPackageDestroy procedures added.
§2.1. Suspend reasons securityMismatch and precedenceMismatch added.
§2.1. NotifyListenStartedProc added. Called by Listen and Make.

CH-3

CHANGE HISTORY

Appendix H: TCP/IP (old Se(!tion 11) - continued

CH·4

Page

H-13
H-20
H-28, ff
H-30
H-30, H-31
H-32
H-37
H-38
H-40
H-41
H-41
H-48
H-49

Change

§5. GetArpalnitlnfo procedure deleted.
§6.2. StreamAborted error added.
§10.2 Several E~rror reasons added.
§10.3 Destroy procedure added.
§10.3 host and port parameters added to Store and Retrieve procedures.
§10.3 Passive procedure added.
§12.1 errorStrilng field added to InvalidRecipientRecord.
§12.2 Several €lrrOr reasons added.
§12.3 Reset procedure added.
§ 13.1 RcptList and RcptRecord and return reasons added.
§13.1 message Length and noOfRcptsHintfields added to PostProc.
§15. New section: Arpalnit.
§16. New section: ArpaVersion.

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	06-001
	06-002
	06-003
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	A-00
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	H-001
	H-002
	H-003
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32
	H-33
	H-34
	H-35
	H-36
	H-37
	H-38
	H-39
	H-40
	H-41
	H-42
	H-43
	H-44
	H-45
	H-46
	H-47
	H-48
	H-49
	H-50
	H-51
	H-52
	H-53
	H-54
	H-55
	H-56
	H-57
	H-58
	H-59
	H-60
	H-61
	H-62
	H-63
	H-64
	H-65
	H-66
	gl-00
	gl-01
	gl-02
	gl-03
	gl-04
	gl-05
	gl-06
	gl-07
	gl-08
	gl-09
	gl-10
	gl-11
	gl-12
	i-00
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	i-16
	i-17
	i-18
	i-19
	i-20
	i-21
	i-22
	i-23
	i-24
	i-25
	i-26
	i-27
	i-28
	i-29
	i-30
	upd-01
	upd-02
	upd-03
	upd-04

