
FSPDefs.mesa 2-Sep-78 13:58:17

-- file: FSPDefs.Mesa; edited by Sandman on March 22. 1978 3:23 PM

DIRECTORY
AltoDefs: FROM "altodefs";

DEFINITIONS FROM AltoDefs;

FSPDefs: DEFINITIONS·
BEGIN

-- types and formats of zone headers and nodes

BlockSize: TYPE m CARDINAL [0 .. 77777B--VMLimit/2--];

NodePointer: TYPE = POINTER TO NodeHeader;
FreeNodePointer: TYPE· POINTER TO free NodeHeader;

NodeHeader: TYPE = PRIVATE RECORD [
length: BlockSize.
extension: SELECT state: * FROM

inuse m)
NULL.

free =) [

fwdp. backp: FreeNodePointer].
ENDCASE];

Deallocator: TYPE PROCEDURE [POINTER];

ZonePointer: TYPE POINTER TO ZoneHeader;

ZoneHeader: TYPE = PRIVATE RECORD [
node: free NodeHeader.
rover: FreeNodePointer.

-- roving pointer to slow down fragmentation
-- (see Knuth, Vol I, p. 597 #6)

lock: MONITORLOCK,
restOfZone: ZonePointer. -- link to additional segments of zone
length: BlockSize.
deallocate: Deallocator,
threshold: PUBLIC BlockSize.
checking: PUBLIC BOOLEAN];

ZoneOverhead: CARDINAL = SIZE[ZoneHeader]+SIZE[inuse NodeHeader];
NodeOverhead: CARDINAL = SIZE[inuse NodeHeader];

NOTE: A zone whose largest possible node is N words, must have
N + ZoneOverhead + NodeOverhead words of storage

public procedures and signals

MakeNewZone: PROCEDURE [base: POINTER, length: BlockSize, deallocate: Deallocator]
RETURNS [z: ZonePointer];

MakeZone: PROCEDURE [base: POINTER, length: BlockSize] RETURNS [z: ZonePointer];
AddToNewZone: PROCEDURE

[z: ZonePointer, base: POINTER, length: BlockSize, deallocate: Deallocator];
AddToZone: PROCEDURE [z: ZonePointer, base: POINTER, length: BlockSize];
PruneZone: PROCEDURE [z: ZonePointer] RETURNS [BOOLEAN];
DestroyZone: PROCEDURE [z: ZonePointer];
DoNothingDeallocate: Deallocator; -- adds storage to System Heap

NoRoomInZone: SIGNAL [z: ZonePointer]; not enough space to fill a request

MakeNode: PROCEDURE [z: ZonePointer, n: BlockSize] RETURNS [POINTER];
FreeNode: PROCEDURE [z: ZonePointer, p: POINTER];
SplitNode: PROCEDURE [z: ZonePointer, p: POINTER, n: BlockSize];
NodeSize: PROCEDURE [p: POINTER] RETURNS [BlockSize];

ZoneTooSmall: ERROR [POINTER];
InvalidZone: ERROR [POINTER];
NodeLoop: ERROR [ZonePointer];
InvalidNode: ERROR [POINTER];

END.

zone header looks fishy

node appears damaged

Page 1

