Mesa.mu 2-Sep-78 17:21:54 Page

MESA MICROCODE ;
Version 34 H

; Mesa.Mu - Instruction fetch and general subroutines
; Last modified by Levin - August 1, 1978 11:27 AM

;Completely rewritten by Roy Levin, Sept-Oct. 1977
;Modified by Johnsson; July 25, 1977 10:20 AM
;First version assembled 5 June 1975.

;Developed from Lampson's MESA.U of 21 March 1975,

1)

2)

3)

4)

5)

6)

e e w5 we we ws we ws wa we ws we we Wws we we ws ws ws ws wo we ws we we e we we ws we we we wo we we we wo wo wo wo wo wo

Stack representation:
stkp=0 => stack is empty
sktp=10 => stack is full
The validity checking that determines if the stack pointer is
within this range is somewhat perfunctory. The approach taken is
to include specific checks only where there absence would not 1lead
to some catastrophic error. Hence, the stack is not checked for
underflow, since allowing it to become negative will cause a disaster
on the next stack dispatch.

Notation:
Instruction tlabels correspond to opcodes in the obvious way. Suffixes
of A and B (capitalized) refer to alignment in memory. 'A' is intended

to suggest the right-hand byte of a memory word; 'B' is intended to
suggest the left-hand byte. Labels terminating in a lower-case letter
generally name local branch points within a particular group of
opcodes. (Exception: subroutine names.) Labels terminating in 'x' generally
exist only to satisfy alignment requirements imposed by various dispatches
(most commonly IR« and B/A in instruction fetch).

Tasking:
Every effort has been made to ensure that a 'TASK' appears approximately
every 12 dinstructions. Occasionally, this has not been possible,
but (it is hoped that) violations occur only in infrequently executed
code segments.

New symbols:
In a few cases, the definitions of the standard Alto package
(ALTOCONSTS23.MU) have not been quite suitable to the needs of this
microcode. Rather than change the standard package, we have defined
new symbols (with names beginning with 'm') that are to be used instead
of their standard counterparts. A1l such definitions appear together in
Mesab.Mu.

Subroutine returns:
Normally, subroutine returns using IDISP require one to deal with
(the nuisance of) the dispatch caused by loading IR. Happily, however,
no such dispatch occurs for 'msr0' and 'srl' (the relevant bits
are 0). To cut down on alignment restrictions, some subroutines
assume they are called with only one of two returns and can
therefore ignore the possibility of a pending IR« dispatch.
Such subroutines are clearly noted in the comments.

Frame pointer registers (1p and gp):
These registers normally (i.e. except during Xfer) contain the
addresses of local 2 and global 1, respectively. This optimizes accesses
in such bytecodes as LL3 and SG2, which would otherwise require another cycle.

#Mesab.mu;

Mesa.mu 2-Sep-78 17:21:564 Page

There is a fundamental difficulty 1in the selection of addresses that are known and

used outside the Mesa emulator. The problem arises in trying to select a single set of
addresses that can be used regardiess of the Alto's control memory configuration. In
effect, this cannot be done. If an Alto has only a RAM (in addition, of course, to its
basic ROM, ROMO), then the problem does not arise. However, suppose the Alto has both a

RAM and a second ROM, ROM1. Then, when it is necessary to move from a control memory to

one of the other two, the choice is conditioned on (1) the memory from which the transfer

is occurring, and (2) bit 1 of the target address. Since we expect that, in most cases, an
Alto running Mesa will have the Mesa emulator in ROM1, the externally-known addresses have
been chosen to work in that case. They will also work, without alteration, on an Alto that
has no ROM1. However, if it is necessary to run Mesa on an Alto with ROM1 and it is desired
to use a Mesa emulator residing in the RAM (say, for debugging purposes), then the address
values in the RAM version must be altered. This implies changes in both the RAM code itself
and the Nova code that invokes the RAM (via the Nova JMPRAM instruction). Details
concerning the necessary changes for re-assembly appear with the definitions below.

%1,1777,0,nextBa; forced to location 0 to save a word in JRAM

.

Emulator Entry Point Definitions
These addresses are known by the Nova code that interfaces to the emulator and by
RAM code executing with the Mesa emulator in ROM1. They have been chosen so that
both such "users" can use the same value. Precisely, this means that bit 1 (the
400 bit) must be set in the address. In a RAM version of the Mesa emulator intended
to execute on an Alto with a second ROM, bit 1 must be zero.

%1,1777,420,Mgo; Normal entry to Mesa Emulator - load state

H of process specified by ACO.
%1,1777,400,next,nextA; Return to 'next' to continue in current Mesa
H process after Nova or RAM execution.
$Minterpret $L004400,0,0; Documentation refers to 'next' this way.
%1,1777,776,DSTr1,Mstopc; Return addresses for 'Savestate'. By

standard convention, 'Mstopc' must be at 777.

Mesa.mu 2-Sep-78 17:21:54 Page 3

; Linkage from Mesa emulator to ROMO

H The Mesa emulator uses a number of subroutines that reside in ROMO. In posting a
H return address, the emulator must be aware of the control memory in which it resides,
H RAM or ROM1. These return addresses must satisfy the following constraint:

H no ROM1 extant or emulator in ROM1 => bit 1 of address must be 1

H ROM1 extant and emulator in RAM => bit 1 of address must be 0

H In addition, since these addresses must be passed as data to ROMO, it is desirable
: that they be available in the Alto's constants ROM. Finally, it is desirable that
H they be chosen not to mess up too many pre-defs. It should be noted that these

H issues do not affect the destination location in ROMO, since its address remains

H fixed (even with respect to bit 1 mapping) whether the Mesa emulator is in RAM or
: ROM1,

; MUL/DIV 1linkage:

H An additional constraint peculiar to the MUL/DIV microcode is that the high-order
H bits of the return address be 1's. Hence, the recommended values are:

H no ROM1 extant or emulator in ROM1 => MULDIVretloc = 177675B

H ROM1 extant and emulator in RAM => MULDIVretloc = 177162B

$ROMMUL $L004120,0,0; MUL routine address (120B) in ROMO
$ROMDIV $L004121,0,0; DIV routine address (121B) in ROMO

$MULDIVretloc $177675;

; The first value in the following pre-def must be:
: (MULDIVretloc AND 777B)+1 (yes, 'plus', not 'OR').

1676,2 ,MULDIVret ,MULDIVretl; return addresses from MUL/DIV in ROMO

; BITBLT linkage:

H An additional constraint peculiar to the BITBLT microcode is that the high-order
H bits of the return address be 1's. Hence, the recommended values are:

H no ROM1 extant or emulator in ROM1 => BITBLTret = 177714B

H ROM1 extant and emulator in RAM => BITBLTret = 177176B

iROMBITBLT $L004124,0,0; BITBLT routine address (124B) in ROMO
$BITBLTret $177714;
; The first value in the following pre-def must be: (BITBLTret AND 777B)

1714,2 ,BITBLTintr,BITBLTdone; return addresses from BITBLT in ROMO

@ - o e o e e . e = - - o - = - " e - " - . - - - - - - - . = - -

; CYCLE 1inkage:

H A special constraint here is that WFretloc be odd. Recommended values are:
H no ROM1 extant or emulator 1in ROM1 => Fieldretloc = 452B, WFretloc = 6058B
: ROM1 extant and emulator in RAM => Fieldretloc = 335B, WFretloc = 203B

éRAMCYCX $L004022,0,0; CYCLE routine address (22B) in ROMO
$Fieldretloc $452; RAMCYCX return to Fieldsub
$WFretloc $605; RAMCYCX return to WF

; The first value in the following pre-def must be the same as 'Fieldretloc' above.
1462,1,Fieldrc; return address from RAMCYCX to Fieldsub
; The first value in the following pre-def must be the same as 'WFretloc' above.

1606,2, WFnzct,WFret; return address from RAMCYCX to WF

Mesa.mu

.......

Ins

State
1)

2)

2-Sep-78 17:21:54 Page

- . . " 7. " e b - . " o . - o o o o s e

truction fetch

at entry:
ib holds either the next instruction byte to interpret
(right-justified) or 0 if a new word must be fetched.
control enters at one of the following points:
a) next: ib must be interpreted
b) nextA: ib is assumed to be uninteresting and a
new instruction word 1is to be fetched.
c) nextXB: a new word is to be fetched, and interpretation
is to begin with the odd byte.
d) nextAdeaf: similar to 'nextA', but does not check for
pending interrupts.
e) nextXBdeaf: similar to 'nextXB', but does not check for
pending interrupts.

at exit:

ib is 1in an acceptable state for subsequent entry.

T contains the value 1.

A branch (1) is pending if ib = 0, meaning the next
instruction may return to 'nextA'. (This is subsequently
referred to as "ball 1", and code that nullifies its
effect is labelled as "dropping ball 1".)

If a branch (1) is pending, L = 0. If no branch is
pending, L = 1.

Mesa.mu 2-Sep-78 17:21:54 Page b

® e o . . . e e e e e e . e e . -

Table must have 2 high-order bits on for BUS branch at 'nextAni'.

Warning! Many address inter-dependencies exist - think (at least) twice
before re-ordering. Inserting new opcodes in previously unused slots,
however, is safe.

“e wo vs we we

%7,1777,1400,NOOP,ME,MRE ,MXW ,MXD ,NOTIFY,BCAST,REQUEUE; 000-007
%7,1777,1410,LG0,LG1,LG2,LG3,LG4,LG5,LG6,LG7; 010-017
%7,1777,1420,LGB,LGDB,SG0,SG1,SG2,SG3,SGB, SGDB;; 020-027
%7,1777,1430,LL0,LL1,LL2,LL3,LL4,LL5,LL6,LLT; 030-037
%71,1777,1440,LLB,LLDB,SLO,SL1,SL2,SL3,SL4,SL5; 040-047
%7,1777,1450,SL6,SL7,SLB,SLDB,LI0,LI1,LI2,LI3; 050-057
%7,1777,1460,LI4,L15,L16,LIN1,LIB,LIW,LINB,; 060-067
%7,1777,1470,,,, 44443 070-077
%71,1777,1500,R0,R1,R2,R3,R4,RB,W0,W1; 100-107
%7,1777,1510,W2,WB,RF,WF,RDB,RDO,WDB,WDO; 110-117
%7,1777,1620,RSTR,WSTR,RXLP,WXLP ,RILP,RIGP,WILP,RILO; 120-127
%7,1777,1530,,,,,4443 130-137
%7,1777,1540, ,WS0,WSB,WSF,WSDB,RFC,RFS,WFS; 140-147
%7,1777,1550,PUSH, POP,EXCH, PUSHX,DUP, , , ; 150~-157
%71,1777,15660,J2,J3,J4,35,J6,J07,J8,39; 160-167
%71,1777,15670,JB,JW,JEQ2,JEQ3,JEQ4,JEQ5E,JEQ6,JEQ7; 170-177
%7,1777,1600,JEQ8, JEQ9,JEQB,INE2 ,IJNE3,INE4, INE5, INEG; 200-207
%7,1777,1610,JINE7,INE8,INE9,INEB,JLB,IGEB,JGB,JLEB; 210-217
%7,1777,1620,JULB, JUGEB, JUGB, JULEB,JZEQB,JZNEB,JIB,JIW; 220-2217
%7,1777,1630,,,,,,..: 230-237
%7,1777,1640,,,,,,..: 240~-247
%7,1777,1650,,,,,DESCB,DESCBS, ,; 250-257
%7,1777,1660,ADD,SUB,MUL,DBL,DIV,LDIV,NEG, INC; 260-267
%7,1777,1670,AND,OR, XOR,SHIFT,DADD,DSUB,DCOMP,ADDO1; 270-2717
%7,1777,1700,EFCO,EFC1,EFC2 ,EFC3,EFC4,EFC5,EFC6,EFC7; 300-307
%7,1777,1710,EFC8,EFC9,EFC10,EFC11,EFC12,EFC13,EFC14,EFC15; 310-317
%7,1777,1720,EFCB,LFC1,LFC2,LFC3,LFC4,LFC5,LFC6,LFC7; 320-327
%7,1777,1730,LFC8,LFC9,LFC10,LFC11,LFC12,LFC13,LFC14,LFC15; 330-337
%7,1777,1740,LFC16,LFCB,SFC,RET,LLKB,PORTO,PORTI,KFCB; 340-347
%7,1777,1750,LADRB, GADRB,BLT,ALLOC, FREE, IWDC,DWDC,BLTC; 350-357
%7,1777,1760,STOP,CATCH,, ,BITBLT,STARTIO, JRAM, ; 360-367

%7,1777,1770,DST,LST,LSTF, ,WR,RR,BRK, StkUf; 370-377

Mesa.mu 2-Sep~78 17:21:64 : Page

. . . - - o 0 - o " . . e S e e N e S - e o e o e . e

Enter here to interpret ib. Control passes here to process odd byte of previously
fetched word or when preceding opcode "forgot" it should go to 'nextA'. A 'TASK'
should appear in the instruction preceding the one that branched here.

next: L0, :nextBa; ' (if from JRAM, switch banks)
nextBa: SINK«ib, BUS; dispatch on 1ib
ibeL, T«0+1, BUS=0, :NOOP; establish exit state

; NOOP - must be opcode 0
: control also comes here from certain jump instructions

11,1,nextAput;

NOOP: Lempc+T, TASK, :nextAput;

Mesa.mu 2-Sep-78 17:21:54 Page

; Enter here to fetch new word and interpret even byte. A 'TASK' should appear 1in the
; instruction preceding the one that branched here.
nextA: LeMAR¢mpc+1, :nextAcom; initiate fetch

Enter here when fetch address has been computed and left in L. A 'TASK' should
appear in the instruction that branches here.

nextAput: tempel; stash to permit TASKing
L«MAR<temp, :nextAcom;

; Enter here to do what 'nextA' does but without checking for interrupts

nextAdeaf: LeMAR¢mpc+1;
nextAdeafa: mpceL, BUS=0, :nextAcomx;

Common fetch code for 'nextA' and 'nextAput'
11,2,nextAi,nextAni;
11,2,nextAini,nextAii;

nextAcom: mpcel; ’ updated pc
SINK«NWW, BUS=0; check pending interrupts
nextAcomx: T«177400, :nextAi;

No interrupt pending. Dispatch on even byte, store odd byte in ib.

we we we

nextAni: L«MD AND T, BUS, :nextAgo; L«"B"*8, dispatch on "A"
nextAgo: ibeL LCY 8, L¢T«0+1, :NOOP; establish exit state

; Interrupt pending - check if enabled.

.
’

nextAi: LeMD;
SINK¢wdc, BUS=0; check wakeup counter
TeM.T, :nextAini; isolate left byte
nextAini: SINKeM, L«T, BUS, :nextAgo; dispatch even byte

i Interrupt pending and enabled.
11,2,nextXBini,nextXBii;

nextAii: Lempc-1; back up mpc for Savpcinframe
mpcel, Le0, :nextXBii; ’

Mesa.mu 2-Sep-78 17:21:54

11,2,nextXBi,nextXBni;
nextXB: LeMARempc+T;
SINK«NWW, BUS=0, :nextXBdeaf;

; Enter here (with branch (1) pending) from Xfer to do what
; checking for interrupts. L has appropriate word PC.
nextXBdeaf: mpcel, :nextXBi;

; No interrupt pending. Store odd byte in ib.

nextXBni: LeMD, TASK, :nextXBini;
nextXBini: ibeL LCY 8, :next;

Interrupt pending - check if enabled.

nextXBi: SINK«wdc, BUS=0, :nextXBni;

; Interrupt pending and enabled.

.
’

nextXBii: ib«L, :Intstop;

Page

Enter here to fetch word and interpret odd byte only (odd-destination jumps).

check pending interrupts

‘nextXB' does but without

skip over even byte (TASK

prevents L«0, :nextBa)

check wakeup counter

ib = 0 for even, ~= 0 for odd

Mesa.mu 2-Sep-78 17:21:54

© e e b e e e e e S e SO M e e e e e e S et W e S e W e e e o e

Any alteration is fraught with peril.

; Return Points (sr0-sr17)

117,20,F1ieldra,SFCr,pushTB,pushTA,LLBr,LGBr,SLBr,SGBr,
LADRBr,GADRBr,RFr, Xret, INCr,RBr,WBr, Xpopret;

; Extended Return Points (sr20-sr37)
; Note: KFCr and EFCr must be odd!

117,20,XbrkBr ,KFCr ,LFCr,EFCr,WSDBra,DBLr ,LINBr,LDIVf,
Dpush,Dpop,RDOr,Splitcomr ,RXLPrb,WXLPrb,,;

; Returns for Xpopsub only

117,20,WSTRrB,WSTRrA, JRAMr ,WRr,STARTIOr ,PORTOr ,WDOr ,ALLOCrx,
FREErx,NEGr,RFSra,RFSrb,WFSra,DESCBcom,RFCr, ;

; Extended Return Machinery (via Xret)

11,2,XretB,XretA;

Xret: SINK«DISP, BUS, :XretB;
XretB: :XbrkBr;
XretA: SINK«0, BUS=0, :XbrkBr;

Page

The two most heavily used subroutines (Popsub and Getalpha) often

share common return points. In addition, some of these return points have
additional addressing requirements. Accordingly, the following predefinitions
have been rather carefully constructed to accommodate all of these requirements.

[A historical note: an attempt to merge in the returns from FetchAB as well
failed because more than 31D distinct return points were then required. Without
adding new constants to the ROM, the extra returns could not be accommodated.
However, for Popsub alone, additional returns are possible - see Xpopsub.]

keep ball 1 in air

Mesa.mu 2-Sep-78 17:21:54 Page

B e e e " . - o - . W e S e om e ER R O e e e e R e e e e e o e S

; Pop subroutine:

: Entry conditions:

: Normal IR linkage

H Exit conditions:

H Stack popped into T and L

© - . - S -t " . " 0 S b e e o e e S e S S e e e Y SN S e e e e o . o e

11,1,Popsub; shakes B/A dispatch
17,1,Popsuba; shakes IR+ dispatch
117,20, Tpop, Tpop0, Tpopl,Tpop2,Tpop3, Tpop4, Tpopb,Tpop6,Tpop7,,, .44,

Popsub: Lestkp-1, BUS, TASK, :Popsuba;

Popsuba: stkpel, :Tpop; old stkp > 0

i Xpop subroutine:

; Entry conditions:

H L has return number

; Exit conditions:

H Stack popped into T and L

' Invoking instruction should specify 'TASK'

ii,l,Xpopsub; shakes B/A dispatch

Xpopsub: saveretel;

Tpop: IResr17, :Popsub; returns to Xpopret

H Note: putting Tpop here makes
H stack underflow logic work if
H . stkp=0

Xpopret: SINK«saveret, BUS;

:WSTRrB;

10

Mesa.mu 2-Sep~78 17:21:54

; Getalpha subroutine:
: Entry conditions:
L untouched from instruction fetch

alpha byte in T

branch 1 pending if return to 'nextA' desirable
L=0 if branch 1 pending, L=1 if no branch pending

; Exit conditions:
1]

11,2,Getalpha,GetalphaA;

17,1,Getalphax;
17,1,GetalphaAx;
Getalpha: Teib, IDISP;
Getalphax: ib«L RSH 1, L«0, BUS=0, :Fieldra;
GetalphaA: LeMARempc+1;
GetalphaAx: mpceL;
T«177400;
LeMD AND T, TeMD;
Getalphab: T€377.T, IDISP;
ib«L LCY 8, L«0+1, :Fieldra;

Page

shake IR« dispatch
shake IR« dispatch

ib«0, set branch 1 pending
initiate fetch

mask for new ib

L: new ib, T: whole word

T now has alpha
return: no branch pending

; FetchAB subroutine:

H Entry conditions:
H Exit conditions:
H T: <<Kmpcd>+1>

H ib: unchanged (caller must ensure return to

11,1,FetchAB;
17,1,FetchABx;
17,10, LIWr,dWr,,, .\,

FetchAB:
FetchABx:

L«MAR¢#mpc+1,
mpcel, IDISP;
T«MD, :LIWr;

:FetchABx;

drops ball 1
shakes IR« dispatch
return points

1

Mesa.mu 2-Sep-78 17:21:54 Page 12

; Splitalpha subroutine:

: Entry conditions:

H L: return dindex

H entry at Splitalpha if instruction is A-aligned, entry at

H SplitalphaB if instruction is B-aligned

: entry at Splitcomr splits byte in T (used by field instructions)
: Exit conditions:

; lefthalf: alpha[0-3]

; righthalf: alpha[4-7]

11,2,Sp1italpha,SplitalphaB;

11,1,Splitx; drop ball 1
%160,377,217,Sp11it0,Sp1it1,Sp1it2,Sp1it3,Sp1it4,Sp1it5,Sp1it6,Split7;
11,2,Sp1itout0,Spiitoutl;

17,10,RILPr,RIGPr ,WILPr,RXLPra,WXLPra,Fieldrb,,; subroutine returns
Splitalpha: saveret«L, L«0+1, :Splitcom; L«1 for Getalpha
SplitalphaB: saveret¢L, L«0, BUS=0, :Splitcom; (keep ball 1 in air)
Splitcom: IR¢sr33, :Getalpha; T:alpha[0-7]
Splitcomr: L«17 AND T, :Splitx; L:alpha[4-7]
Splitx: righthalfeL, LeT, TASK; L:alpha, righthalf:alpha[4-7]
tempeL; temp:aipha
Letemp, BUS; dispatch on alpha[1-3]
tempeL LCY 8, SH<O, :Split0; dispatch on alpha[0]
Split0: LeT«0, :SplitoutO; L,T:alpha[1-3]
Splitil: L«T«ONE, :Splitout0;
Split2: LeT«2, :SplitoutO;
Sp1it3: LeT«3, :Splitout0;
Split4: LeT«4, :Splitout0;
Splits: LeT«5, :SplitoutO;
Splité: LeT«6, :Splitout0;
Split7: LeT«7, :Splitout0;
Splitoutl: Le10+T, :Splitout0; L:alpha[0-3]
SplitoutO: SINK«saveret, BUS, TASK; dispatch return

TefthalfelL, :RILPr; lefthalf:alpha[0-3]

Mesa.mu 2-Sep-78 17:21:54 Page 13

R e e e el R T Y

; Pop-into-T (and L) dispatch:
: dispatches on old stkp, so Tpop0 = 1 mod 208,

TpopO: LeT+stk0, IDISP, :Tpopexit;
Tpopl: LeTestkl, IDISP, :Tpopexit;
Tpop2: LeTestk2, IDISP, :Tpopexit;
Tpop3: L«Testk3, IDISP, :Tpopexit;
Tpopé4: LeTestk4, IDISP, :Tpopexit;
Tpop5: L«Testk5, IDISP, :Tpopexit;
Tpop6: LeTestk6, IDISP, :Tpopexit;
Tpop7: LeTestk7, IDISP, :Tpopexit;

Tpopexit: :Fieldra; to permit TASK in Popsub

Mesa.mu 2-Sep~78 17:21:564 Page 14

; pushMD dispatch:

: pushes memory value on stack

: The invoking instruction must load MAR and may optionally keep ball 1

: in the air by having a branch pending. That 1is, entry at 'pushMD' will
H cause control to pass to 'next', while entry at 'pushMDA' will cause

H control to pass to 'nextA'.

© . e - . - . e e o0 o S L e W e e o e e e he

13,4,pushMD,pushMDA,StoreB,StoreA;

117,20,push0,pushl,push2,push3,push4,push5,push6é,push7,push10,,,,,,,;

pushMD: Lestkptl, IRestkp; (IR« causes no branch)
stkp«L, T«0+1, :pushMDa;

pushMDA; Lestkptl, IRestkp; (IR¢ causes no branch)
stkpeL, T«0, :pushMDa;

pushMDa: SINK«DISP, LeT, BUS; dispatch on old stkp value

LeMD, SH=0, TASK, :push0;

; Push-T dispatch:

H pushes T on stack

H The invoking instruction may optionally keep ball 1 in the air by having a
H branch pending. That is, entry at 'pushTB' will cause control to pass

H to 'next', while entry at 'pushTA' will cause control to pass to 'nextA'.

ii.Z,pusthB,pusthA; keep ball 1 in air

pushTB: Lestkp+1, BUS, :pushTi1B;

pushTA: Lestkp+1, BUS, :pushT1A;

pushTi1B: stkpelL, LeT, TASK, :push0;

pushT1A: stkpeL, BUS=0, L«T, TASK, :pushO; BUS=0 keeps branch pending

; push dispatch:

H strictly vanilla-flavored

H may (but need not) have branch (1) pending if return to 'nextA' is desired
H invoking instruction should specify TASK

; Note: the following pre-def occurs here so that dpushofl can be referenced in push10

117,20,dpush, ,dpushl,dpush2,dpush3,dpush4,dpush5,dpush6,dpush7, dpushofl,dpushof2,,,,,:

push0: stkOeL, :next;
pushi: stkileL, :next;
push2: stk2«L, :next;
push3: stk3«L, :next;
pushé4: stk4eL, :next;
pushb: stkbeL, :next;
pushé6: stk6«L, :next;
push7: stk7«L, :next;

push10: :dpushofi; honor TASK, stack overflow

Mesa.mu

2-Sep-78 17:21:564

Page

Double-word push dispatch:

<result+ld>
entry at 'Dpusha’ substitutes L for 1ib.

; picks up alpha from ib, adds 1t to T, then pushes <result> and

returns to 'nextA' <(=> ib = 0

11,2,DpA,DpB;
14,1,Dpushx;

Dpush:
Dpusha:
Dpushb:

DpA:

6pB:

Dpushc:
Dpushx:

dpush:

dpushi:
dpush2:
dpush3:
dpushé:
dpushb:
dpush6:
dpush7:
dpushofl:
dpushof2:

or entry at

LeTeib+T+1;

IR+0, :Dpushb;
LeTeM+T+1,

IR«ib, :Dpushb;
MAR¢LeM-1;
tempel, T«0+1;
Lestkp+T+1;
stkpel;

LeMD, TASK;
taskhole«L;
SINK+DISP, BUS=0;
MAR«temp+1, :DpA;

IR«0, :Dpushc;

IR«2000, :Dpushc;
Le«taskhole, :Dpushx;
SINK¢stkp, BUS;

T«MD, :dpush;

stk0«L, L«T, TASK, mACSOURCE,
stkil«lL, L«T, TASK, mACSOURCE,
stk2«L, LeT, TASK, mACSOURCE,
stk3«L, L¢T, TASK, mACSOURCE,
stkdel, LeT, TASK, mACSOURCE,
stk5«L, L«T, TASK, mACSOURCE,
stk6«L, L«T, TASK, mACSOURCE,
TesStackOverflow, :KFCr;

TesStackOverflow, :KFCr;

:pushl;
:push2;
spush3d;
tpush4;
:pushb;
:push6;
:push7;

shakes IR«~2000 dispatch

stkpestkp+2

(IR« causes no dispatch,
but subsequent mACSOURCE
will produce 0.)

mACSOURCE wil1l produce 1

dispatch on new stkp

stack cells are S-registers,
so mACSOURCE does not affect
addressing.

16

Mesa.mu

2-Sep-78 17:21:64

Page

TOS+T

dispatch:

adds TOS to T, then initiates memory operation on result.
used as both dispatch table and subroutine - fall-through to 'pushMD'.

dispatches on old stkp, so MAStkTO = 1 mod 20B.

- T . . - . Y S e e . e e e e e e e S e S . . e - " e . .

117,20 ,MAStkT ,MAStkTO,MAStkT1,MAStkT2,MAStkT3 ,MAStkT4,MAStkT5,MAStkT6 ,MAStKT7,,, .4,y

MAStkTO:
MAStkT1:
MAStkT2:
MAStkT3:
MAStkT4:
MAStkT5:
MAStkT6:
MAStkT7:

’
.
’
.
'
.
’

MAR¢stk0+T, :pushMD;
MAR«stk1+T, :pushMD;
MAR¢stk2+T, :pushMD;
MAR¢stk3+T, :pushMD;
MAR«stk4+T, :pushMD;
MAR€stk6+T, :pushMD;
MAR¢stk6+T, :pushMD;
MAR¢stk7+T, :pushMD;

Common exit used to reset the stack pointer
the dinstruction that branches here should have a ‘'TASK'
Setstkp must be odd, StkOflw used by PUSH

© e e e - - o 0 - " o o - e o " e o o e et e 0 -

117,11,56tStKp, s sy, 2 SEKOF WS

Setstkp:
StkOflw:

stkpel, :next;
:dpushofil;

branch (1) may be pending
honor TASK, dpushofl is odd

TesStackUnderflow,

catches dispatch of stkp = -1

16

Mesa.mu 2-Sep-78 17:21:64 Page
; Store dispatch:
H pops TOS to MD.
H called from many places.
H dispatches on old stkp, so MDpop0 = 1 mod 20B.
H The invoking instruction must load MAR and may optionally keep ball 1
H in the air by having a branch pending. That is, entry at 'StoreB' will
H cause control to pass to 'next', while entry at 'StoreA' will cause
: control to pass to 'nextA',
117,20,MDpopuf ,MDpop0,MDpop1,MDpop2,MDpop3,MDpop4,MDpop5,MDpop6,MDPOP7,,4ys 44,3
StoreB: Lestkp-1, BUS;
StoreBa: stkpeL, TASK, :MDpopuf;
StoreA: Lestkp-1, BUS;
stkpeL, BUS=0, TASK, :MDpopuf; keep branch (1) alive
MDpopO0: MDestk0, :next;
MDpop1: MDestkl, :next;
MDpop2: MDestk2, :next;
MDpop3: MDestk3, :next;
MDpop4: MD¢stk4, :next;
MDpop5: MDestk5, :next;
MDpop6: MDestk6, :next;
MDpop7: MD«stk7, :next;

Double-word pop dispatch:

picks up alpha from ib, adds it to T, then pops stack into result and

result+i
entry at 'Dpopa' substitutes L for ib.

returns to 'nextA' <=> ib = 0 or entry at 'Dpop'’

117,20,dpopuf2,dpopufl,dpopl,dpop2,dpop3,dpop4,dpop5,dpop6,dpop7,,,,,,,:

11,1,Dpopb;
Dpop: LeTeib+T+1;
MDpopuf: IR«0, :Dpopb;
Dpopa: LeTeM+T+H1;
IR«ib, :Dpopb;
Dpopb: MAR€T, tempel;
dpopuf2: Lestkp-1, BUS;
stkpelL, TASK, :dpopuf2;
dpopufi: :Stkuf;
dpop1l: MDestk1, :Dpopx;
dpop2: MDestk2, :Dpopx;
dpop3: MDestk3, :Dpopx;
dpop4: MDestk4, :Dpopx;
dpopb: MD«stk5, :Dpopx;
dpop6: MD«stk6, :Dpopx;
dpop7: MDestk7, :Dpopx;
Dpopx: SINK«DISP, BUS=0;
MAStkT: MAR<temp-1, :StoreB;

required by placement of
MDpopuf only.

Note: MDpopuf is merely a
convenient label which leads
to a BUS dispatch on stkp in
the case that stkp is -1. It

. is used by the Store dispatch

above.

stack underflow, honor TASK

17

Mesa.mu 2-Sep-78 17:21:64 : Page 18

#Mesac.mu;
#Mesad.mu;

