Introduction to Interscript

AR

19 September 1985

Table of contents

(AN

1 Document interchange overview 1
1.1 The problem 1
1.2 Thesolution . . 3
1.3 Why not Interpress? . 3
1.4 Interscript’s characteristics . 4
2 Interscript overview 7
2.1 Some terminology . 7
2.2 Layer 1: The Interscript base language . . 8
2.3 Layer 2: The layout model and standard constructs . 10
2.4 Other Interscript traits . . 10
3 Base language:syntax.13
3.1 Publication encoding and machine encoding 13
3.2 Anoverview of Interscript base language. 13
3.3 Interscriptobjects16

3.4 Baselanguage syntax for the pubhcatxon encodmg . .19

4 Base language: semantics . . . e e e e . . 29
4.1 Internalization, evaluation, and externalization . . . 29
4.2 Nodes: contents and bindings30
4.4 Quoted expressions and formulas 32
44 Referencingnodes.33
4.5 Node construction35

Interscript -- September 1985

Table of Contents

ii

5 Safety rules for Interscript systems

5.2

5.3 Editing totally unknown nodes .

5.1 Standard tags and their implementation

Unknown tags.

6 Document architecture

6.1

6.2 Presentation and representation of documents

6.3
6.4

Architectural concepts .

Interchange formats
Formatting process.

7 Standard document constructs

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Document as an entity .
Relations and labels
Content architecture
Layout constructs .
Pouring constructs .
Styles .
Non-Interscript edltlng
Hints

Revisions .

8 The formatting process

8.1
8.2
8.3
8.4
8.5

Formatting process overview
Pouring

Penalties .

Fixing process .

Another example

References .

Interscript --

. 37

.37
. 38
. 38

. 41

. 41
. 44
. 45
. 49

. o1
. 51
. 52
. 95
. 61
.72
.79
. 80
. 80
. 81

. 83
. 83
. 84
. 94

. 95
102

107

September 1985

Document interchange overview

1.1 The problem

Before the advent of word processors people had no problem interchanging documents.
They simply distributed typed sheets of paper. If someone wanted to "pick up” words in an
existing document, they retyped them. But now that documents exist in electronic form,
people try to avoid retyping anything. They want to exchange electronic documents and
"pick up" sections of such documents without actually handling paper at all.

Such exchanges can be smooth when the document is accepted by the same hardware and
software that created it. Unfortunately even small office environments have different
document creation devices that usually cannot "speak" to each other.

The desire to interchange documents electronically among dissimilar machines is so criti-
cal several companies have found a market for devices that convert documents from a few
electronic formats into a few others. That's the function of the "black box" shown in
Figure 1.1. A document "arrives" over a communication link or on magnetic media.

This is, of course, an ad hoe solution. The "black box" doesn’t support every format and is
always in danger of becoming obsolete as manufacturers change their electronic formats
to provide increased functionality. And since "black boxes" are needed wherever docu-
ments are created, they represent a significant incremental expense for what seems like
such a simple capability.

Diskette Diskette

®
| | I
Black Box [l =)
W Document

Format B

—

Document
Format A

Figure 1.1: Interchanging dissimilar document formats.

Interscript -- September 1985

Introduction to Interscript

34

Star Special editors (Smalltalk, LISP) CAD/CAM editor
| | |
r ™
CP/M Wordstar Word Processor
PC/DOS Microsoft Word Electronic Typewriter
Ethernet '

Figure 1.2: Document creation products. v

The people within offices have traditionally installed diverse products from different
manufacturers. Figure 1.2 depicts seven different hardware/software products offered by
a variety of vendors. All attach to a local area network and can create, store, and retrieve
documents in electronic form. That does not mean, however, a particular device can edit
or display what it retrieves if the document was created by another product.

Why don’t manufacturers provide routines that convert from their product’s internal elec-
tronic format to the formats of others? Because it is too expensive for even a small number
of products. Each arrow in Figure 1.3 represents one conversion routine, from the format
at the base of the arrow to the format at the head of the arrow. There are 42 arrows in this
figure. Adding just one more product increases the number of conversion routines
(arrows) to 56. And this is just to provide document interchange among a very small
number of products.

Even if an office had access to all 42 conversion routines, it wouldn’t be good enough.
That’s because converting from one format to another loses information. The conversion
of a Star document, for example, to a word processor format would preserve text charac-
ters (assuming the characters are recognizable by the word processor}, but it would not
preserve font information such as character height and italics, and certainly not graphics

— . ={ Special editors (Smalltalk, LISP) [~ .

~b

v .

-4 CAD/CAM editor

v

x 4
N . \ { :
CP/M Wordstar 4{Word Processor | v
\ = ' K .‘
X « s

X . - :
T PC/DOS Microsoft Word >4 | Electronic Typewriter 3

Figure 1.3: Required conversion routines for seven products.

Interscript -- September 1985

Documentinterchange overview

Special editors (Smalltalk, LISP)

! .
Star \ t / CAD/CAM editor

CP/M Wordstar | el duums interscript | @l 4mm | \Word Processor

A \'\

PC/DOS Microsoft Word Electronic Typewriter

Figure 1.4: Required conversion routines using Interscript.

like the figures in this document. Customers want document exchange without informa-
tion loss. Clearly we must have a better solution than writing converters for every possi-
ble permutation of document creation devices to be found in modern day offices.

1.2 The solution

One way to reduce the number of conversion routines is to provide a single, "all-inclusive"
format. Only one routine is required to convert a given product’s internal document
format into the "all-inclusive" format and one more to convert from the "all-inclusive"
format to the internal document format. Interscript is the name of the "all-inclusive"
document format being developed by Xerox. The impact this has on the number of
conversion routines is shown in Figure 1.4.

Having a document interchange format like Interseript means only 14 conversion rou-
tines are needed for seven products. A new product needs just two conversion routines to
interchange documents with other products that accept the Interseript format. Only two
conversion routines are needed to support a single "foreign" format such as the Navy’s
Document Interchange Format (DIF) or the International Organization for Standards

Office Document Architecture (ODA).

1.3 Why not Interpress?

Interpress is the final form document representation Xerox has adopted for encoding
documents for printing on electronic printers (see Figure 1.5). It is Xerox’ intent that its
document creation products will produce Interpress "masters” and that all its electronic
printer products will accept and print these masters.

Although Interpress is a document interchange format, it operates in only one direction
(from a document creator to a document printer). Interpress "masters" encode the
information that is to appear as "marks on paper." As good as this is, it is not sufficient for
interchanging documents in revisable form. Here's why:

Interscript -- September 1985

1 Introduction to Interscript

Printer

Workstation

T

T

“nterpress

e

g (final form)

Figure 1.5: Interpress for documents in final form representation.

1. Interpress has no conception of a document’s logical structure.
A document might consist logically of front matter, body, and back matter. The
body might consist of chapters, titles, sub-titles, sections, and paragraphs. These
logical entities are important for subsequent editing and electronic processing.
Interpress is only concerned about where to place "marks on paper.”

2. Everything has been specifically placed in an Interpress master.
Suppose one wanted to add a word to an Interpress master. That one word could
change a line ending decision and even the page ending decision as one line moves
from one page to another through an entire chapter. Interpress has no mechanism
to alter the words in a master.

For these and other reasons, Interpress is not an appropriate format for interchanging
documents that must be revised and edited.

1.4 Interscript’s characteristics

Interscript is a kind of computer language for representing the content part, logical struc-
ture, and layout structure of documents (see Figure 1.6). All three are important.

Content part: What you see when vou look at a document.

Logical structure: The way a document is organized, typically but not alwaysina
hierarchical structure (paragraphs subordinate to sections that are subordinate to
chapters).

Layout structure: The way a document is to be rendered (headings and footings on
every page, multi-column dimensions, margin settings, and the like).

Interscript version 1.0 describes and accomodates the interchange of textual content, text
layout, and page layout. Subsequent versions will describe other parts of documents that
are not text (e.g. data-driven graphics such as pie charts, synthetic graphics built with
points and lines, scanned images, spreadsheets [relationships among cells must be
specially described], and the like).

The greatest challenge for any interchange format is to provide enough "richness" to
handle every conceivable document. Interseript provides a base language that all
Interseript accepting editors (and format converters) understand, called "Layer 1." The
base language will change only when new basic objects (such as digitized audio, scanned
images, or animated graphics) are defined. Editors that support an older version of the
Interscript base language will still be able to co-exist with newer versions, though they
will not be able to display or edit information described in new basic objects.

4 Interscript -- September 1985

Documentinterchange overview 1

LOGICAL STRUCTURE
The way the docu- ::_‘:I- T ==
ment is Io(?ically
organized. |

introddetion to interscript <4 The way the docu-
v | - pmentshould be
| / rendered.
1.1 The Problem *

Before the advent of word

|

I | LAYOUT STRUCTURE
|
1

|

*

. processors people had no

CONTENT PART ,‘ problem interchanging
The words conveying " documents. They simply
information within . distributed typed sheets

.

the document. .
Page 1

Figu’re 1.6: A document’s constituent parts.

Layer 2 consists of certain common constructs such as "text,"” "box," "line," and "page."
Most programs that process scripts (the term for a document encoded in Interseript) must
implement most of Layer 2 if they expect to support the editing and rendering of textual
information.

Some editors run on limited hardware which leads to problems with complex documents.
An electronic typewriter does not really ‘support multiple type faces (few operators are
willing to swap type elements or print wheels when pages are being typed). Electronic
typewriters certainly don’t support multiple type sizes. What should a format converting
routine do when it finds text that cannot be displayed on an electronic typewriter? There
are at least two options: 1) Convert the document on a "best efforts" basis and discard
whatever the electronic typewriter cannot represent; 2) Convert inappropriate constructs
into text strings that can be displayed (markup codes). In all probability, users will be
able to select the option that best suits their needs when documents are converted from
one format to another.

A "best efforts" conversion is appropriate when a user knows a document will never be
sent back to the originator. Consequently a word originally in italics could be emphasized
by being printed in bold letters; tall letters can be printed in the normal font; unexpected
characters, like Cyrillic, can be discarded. On the other hand, a conversion that does not
lose information is necessary when a document will be returned to the originator or sent
to another software editor. Figure 1.7 shows a document with markup codes (left-side)
and how that document might be printed (right-side).

Although operators could be confused by markup codes, they will never "edit" them.
Markup codes are not as understandable as a WYSIWYG (what-you-see-is-what-you-get)
interface. (However it is easy to recognize text in the left box of Figure 1.7 that could be
changed.) If text with markup codes is printed on an electronic typewriter, the pages will
NOT be formatted correctly. But when a "marked-up" typewriter-like document is recon-
verted into a script (called externalizing in Interscript terminology) and then converted
from that script to the format of a full-featured editor (called internalizing), the document

Interscript -- September 1985

{PW.612/PD.792/CW,240/GW, 24/HYP>
<IWSP,72,25>
<RULE=HR,504,5.0,-24/VR.504,-24>
<#AA1=<4/CP>>
{#AA2=<4/QL,504,10>>
{#B2=<1/JU.240,0/WS,2,2,3/SP.2>>
<CW,504/N5/SP,18><AA2>SECTION 8:
<AA1> POLICY VALUES
CRULED>CSP,24/CW,240><NS><Z>8.1
<B1> DEFINITION OF NET CASH VALUE
<b2>The net cash value is the
policy cash value plus the cash
value of any dividend additions
or accumulations, less any policy
loan interest. The policy cash
value is determined according to
the Basis of Computation Provisio

SECTION 8: POLICY VALUES

8.1 DEFINITION OF NET CASH VALUE

The netcash value
is the policy cash
value plus the cash
value of any divi-
dend additions or
accumulations, less
any policy loan n-
terest. The poiicy
cash value is deter-
mined according to
the Basis of Compu-
tation Provision.

OPTION 1. LONGER
TERM. You may
continue your policy
as extended term
insurance by appiy-

policy from the due
date of the premium
in defaut for a re-
duced amount of
paid-up life insur-
ance eligible for div-
idends. The amount
of insurance will be
that which the net
cash value will pur-
chase as a new sin-
gle premium at the
Insured’s attained
age on the due date
of the premium in
default.

OPTION 3. CASH

Figure 1.7: Document with markup codes and as printed.

can be formatted and printed correctly. There is always a benefit to using a low-level
editor such as found on an electronic typewriter to make small editing changes.

Some diskette-based products like electronic typewriters have limited internal storage.
The bits in a single scanned image could overwhelm the available diskette space if sent as
a long string of [unintelligible] characters. In these cases a conversion routine might
simply send a pointer to the unrepresentable construct (e.g. a scanned image) in a
markup code. When the document in markup format is later externalized, the
unrepresentable construct from the original script would be inserted when the markup
code is encountered. (That code could, of course, be deleted by an operator, and that would
delete whatever that code represented.)

Alternatively a conversion service might send a low-level product just the text fragments
of a document with markup codes identifying where these fragments are located in the
script. When these [edited] fragments are returned. a conversion service could recombine
them with the information that describes the logical and the lavout structure of the docu-
ment.

These are a few ways a low-level editor could edit the parts of a document it understands
while preserving those parts it does not understand. Note that this capability is available
without changing existing editors in any way. This is an important consideration since it
will take time before the world’s present generation of text editors is superceded by a new
generation.

Interscript -- September 1985

Interscript overview

2.1 Some terminology

Documents are used to communicate information. This information is conveyed to people
after being laid out on a plane surface (e.g. a terminal display screen or paper). Docu-
ments are laid out according to rules varying with cultures and languages. For example,
western languages expect pages to be laid out from left to right and top to bottom. Such
rules lead to a layout structure when a document is printed: text is placed in lines of a
particular length, lines are assembled into parag‘raphs, paragraphs are placed on pages
without isolating the first paragraph line at the bottom of a page, etc. The layout
structure precisely defines where information is to appear on a surface when it is
displayed.

Pieces of information within a document are usually organized to aid understanding. A
document may be divided into chapters, chapters into sections, and sections into para-
graphs. A chapter has a title and may have a subtitle. This structure is called the logical
structure. There is a connection between the logical and the layout structure: the layout
structure facilitates the understanding of the logical structure through typographic
effects.

In order to interchange documents, computer systems must be able to specify the repre-
sentation of documents as sequences of digital values. Document representations are
expressed in terms of abstract constructs. Well-known constructs are pages, titles, para-
graphs, etc. A document architecture specifies a set of abstract constructs, their meaning
and their relationships.

If documents are to be interchanged among computer systems, those systems must have
a common understanding of some particular architecture (i.e. the constructs that consti-
tute the document representations). A document interchange standard provides such a
document architecture. Computer systems may then build and circulate document
representations using constructs defined by the standard.

The layout structure is constructed by the formatting process. The formatting process
applies a style to set the appropriate rendering parameters. A particular text string in a
document might be tagged as emphasized and the style may tell the formatter to use
bold typeface for emphasized text strings. A formatting process needs to find layout
information in a revisable form document to produce a formatted document. This infor-

Interscript -- September 1985

-1

2 Introduction to Interscript

mation should be represented by descriptions concerning pieces of information rather
than being "hardwired" into a document as is typically the case with markup codes.

In some applications documents might be considered to have no layout characteristics.
This would be true for an information retrieval system that searches filed documents for
the presence of keywords. Such applications deal exclusively with text strings within
documents and ignore layout. They may even ignore irrelevant parts of the logical
structure, such as scanned images.

Some applications use a document's logical structure, yet also need to obtain layout
information. When editing a document, an author needs to refer to both logical and
layout structure in phrases like "see the footnote on page 17" or "as explained in section
4.3.2." The exact reference depends on how the final document is formatted.

The division between the logical and layout structure corresponds to the document
production process, which has existed for only a few centuries. Today electronic docu-
ments are manipulated by many systems other than document production systems.
Those systems have their own structured view of a document. Consider a computer
system using forms. A form is a document and contains data such as default values,
minimum or maximum values for numeric fields, and possibly some calculation
formulas. These data are encoded as part of the form document, not in the software
processing the form. Hence they are considered by this software as contents of the
document, even though those data are not part of either the logical structure or the
layout structure.

Electronic documents are different from paper documents. They may be manipulated
(processed) by different applications for different purposes, yet each document is a single
consistent unit. Any process operating on a revisable form document should always be
able to find and store the data it understands into the structures it recognizes within the
document. Hence one requirement for a revisable form standard is that it provides a
mechanism to represent any kind of structure inside a document. More accurately, it
should provide the capability to distinguish for each structure its contents and its
properties.

The Interscript standard is a revisable form digital representation of documents to be
interchanged among different computer programs or editors. The Interscript standard
does allow the representation of structures together with their contents, their properties,
and associated descriptions. But there are many other goals that have influenced the
design of Interscript.

2.2 Layer 1: The Interscript base language

Conventional systems for the representation of data structures in a data stream provide a
set of syntactic rules about the placement of data and operators in the stream. Whether
the syntax is a static file format or more complex, a language is needed. Hence the
Interscript base language defines the representation of documents in a byte stream. This
digital representation encoded using the Interscript base language is called a script. Note
that it is an encoding of the document, not the document itself.

8 Interscript -- September 1985

Interscript overview 2

Even though there is no international standard for document interchange, computer
users have had some success in limited interchange. A few interchange formats have been
markup languages such as TgX {Reference 1|, Scribe [Reference 4], and TROFF [Reference
5]. These markup languages were originally provided to achieve several goals:

® Allow users who did not understand typography to obtain good quality printing;

® Make it possible for users without high-quality terminal displays to produce
documents requiring complex layouts and different typefaces;

o Allow a document to be printed on different printers.

Though markup languages were not designed as interchange formats, marked up
documents are revisable to some extent. One can enter new markup signs to change the
layout or modify a document's content and continue to get the same layout. The same
document can also be printed on different computer systems with different printers.

The flexibility provided by markup languages comes from the fact that documents are
parsed and interpreted. Programs parse the documents and associate some meaning to
the markup symbols they encounter. They then interpret the information found in the
document according to the symbol’s meaning. The markup sign TITLE, for example,
might be used to interpret the layout of the following character string according to both
a style and the specified printer.

New markup signs may be added to the language, which allows for an infinite extension
of possible interpretations. However one must describe the meaning of new markup
symbols to have a precise and "communicable" understanding of those symbols. A
language provides the formalism. The appropriate language to describe the meaning of
the markup symbols is clearly NOT the markup language itself. Rather it is the meta
language of the markup language. Many markup languages do not have a formal meta
language. They usually hard-wire the meaning of markup symbols into the parsing
software. A kind of macro facility is sometimes provided to rename a set of markup signs
as a single sign to make it easier to use. This makes it very difficult to translate a
document from one markup language to another, and makes it impossible to input a
TROFF document, say, into a Scribe parser.

Unlike an object manipulated by a software application—which is concerned only with
the abstractions developed for that application—a single document may be manipulated
by many different applications. Although many processes operate on revisable documents
and usually change the data, they must not affect any data not concerned with the
operation. For example, some editing systems can manipulate bar charts or equations;
others cannot. Editing systems with different capabilities must retain the constructs they
find in a document even though they may not be able to display or edit those constructs.
These are fundamental principles in the Interscript design:

® Any operation is expected to process known constructs and preserve unknown
constructs without change. An Interseript editor must not lose information when
processing a script.

® Any operation must control the validity of its own actions. For instance, some
construct may be restricted to contain only "paragraphs." Then an application
must be sure to put only paragraphs into this construct.

Layout and logical structures are basically tree structures. This property makes it easy
to have them mapped onto a data stream through syntactic markers. However some-
times it is necessary to maintain other structures. When a phrase as "see paragraph xx"
is encountered, xx may be unknown. One must then maintain a link between the source

Interscript -- September 1985

2 Introduction to Interscript

paragraph and its reference such that they remain consistent. It may be that the linked
elements do not belong to the same structures as "see figure xx on page yy." These links
cannot be explicitly introduced into the data stream tree structure. A binding is required
that dynamically links the necessary objects.

Interscript provides a comprehensive and simple binding mechanism. A binding associ-
ates a name with some value; the value is then accessed through the name. This very
general operation may also be used to achieve compactness. A form might contain, for
example, the same item repeated 25 times. A compact script would bind it to a name and
repeat that name 25 times.

The part of the Interseript standard concerning the base language is called Layer 1 of the
standard. In addition to the base language, the Interscript standard also provides a set of
abstractions that are expected to be widely used. These abstractions are described using
the Interscript base language. Since those constructs have their own significance and
are built on the top of Layer 1, this part of the Standard is called Layer 2. Convenient
abstractions can be designed for a particular application in terms of the Interscript base
language. New constructs can and will be added to Layer 2 as necessary by those
responsible for maintaining the Standard.

2.3 Layer 2: The layout model and standard constructs

Structuring a document into its logical components identifies common structures that
should be handled in a common way. These logical components require layout rules
specifying how each should should be rendered on a page. Interscript’s layout process
considers logical components of a document as liquid that is poured onto a surface. This
pouring operation involves two kinds of entities: the liquid that is poured (typographers
have called this the galleys) into rectangular shapes (called boxes) constructed according
to rules given by a template.

Most of the standard constructs in Layer 2 concern layout. This is because the inter-
change of electronic documents has not yet reached a point where standard non-layout
constructs exist. Few organizations use the same typical logical structures. Although
people use terms like letter, memo, or report, these terms actually describe many
different document types. It is therefore premature to introduce standard constructs for
those terms.

2.4 Other Interscript traits

A representation standard must be extensible to allow for future requirements. Inter-
script provides extensibility through the base language. The Interscript version 1.0 base
language contains basic objects that are needed to describe ordinary documents (e.g.
atoms [names] and integers [characters are considered integers]). When the set of basic
objects is enlarged, the version of Interscript must be increased. The types of information
contained in documents will change slowly. Today’s documents contain numbers, char-
acters, and sometimes scanned images; tomorrow’s electronic documents will contain
digitized sound and perhaps digitized video.

Since scripts are document representations to be interchanged among machines, a script

in its machine encoding is about as readable as a program in binary code. Because only
computer systems will directly manipulate scripts, the Interscript base language was

10 Interscript -- September 1985

Interscript overview

not designed to be manipulated by people. A format has been designed so human beings
can read documents containing Interscript examples, but it is still difficult.

The Interscript Standard defines how to represent a document as a sequence of bytes. It
makes no attempt to standardize how the byte sequence of a script should be transmitted
or stored.

The Interscript Standard provides a vehicle for document interchange. It does not pro-
vide an efficient internal encoding to be used in the memory of a computer system.

The Interscript Standard does NOT describe a particular set of functions that could be
available in a system. Nor does it describe or give clues about the user interface of an
Interseript-based system.

The Interscript base language is independent of standard constructs that are added,
removed, or modified within the Standard. If the syntax of the base language is changed
during the standard's life, changes in the description of constructs will occur. But the
concepts behind those constructs will remain. Once a paragraph, always a paragraph.

Interscript -- September 1985

11

Base language: syntax

This chapter describes the Interscript Base Language syntax (the symbols that may
appear in a script and the order in which they must appear).

3.1 Publication encoding and machine encoding

The Interscript base language defines the encoding of scripts. A script is exchanged
among computers and consists of a sequence of digital values. The syntax used by com-
puter systems to interpret these values is called the machine encoding. It is designed for
convenient processing by computers. The syntactic definition of the machine encoding
will be published in early 1986.

The best way to represent data for computers is usually not a good way for people. If, for
example, an Interscript example were presented as a sequence of encoded bytes, it would
be very accurate. It would also be very tedious for people to understand. Consequently
we use another syntax to communicate seripts among human beings. This syntax
encodes a script as a series of text characters and is called the publication encoding. The
numeric value one hundred and twenty three, for example, is represented in the publi-
cation encoding by the three-character string 123; in the machine encoding, a binary
value is used. It will be easy to convert any script from one encoding into the other. The

publication encoding will be used as an interchange format among Xerox systems during
1985.

All examples in this document use the publication encoding whose syntax is described in
this chapter.

3.2 The Interscript base language

A document is a collection of structures. Consequently there is a need to refer to struc-
tures or parts of structures within documents. For example, one might like to give a name
to the description of a structure that usually contains a number of sentences and refer to
that description by a name, like "paragraph," say. Interscript provides a mechanism to
bind values to names, much like a variable takes on or "is bound to" a value in a computer
program.

Interscript -- September 1985

3 Introduction to Interscript

14

Standard programming languages could be used to express those document structures.
To get the flavor of documents written in a programming language, Example 3.1a shows
a simple document that is written in Pascal in Example 3.1b.

Example 3.1a: A simple document.

Title of document
Paragraph 1 is made out of this single sentence.
This second paragraph is the last paragraph of the document.

Example 3.1b: The simple document expressed as a Pascal program.

Program Document;
{In this example we assume the Text type exists. It has two fields: chars
containing characters and font indicating a font. We also assume a
paragraph consists of only one text unit}

TYPE

ParagraphList = 1 Paragraph;
Paragraph = RECORD
flush : (left, centered, right);
text : Text;
next : ParagraphList;
END;

Document = RECORD
contents : ParagraphList;
reference : Integer;
author s String;

END;

VAR
me : Document;

parList: ParagraphList;

BEGIN
me.reference := 1257823
me.author := 'Vania's

new(parList); { make title }
with parList 1 do { set title }
begin

text.chars := 'Title of document';
text.font.typeface:= bold;
flush := centered;

new(next) { make paragraph one}
end;
with parList 1 .next 1 do { set paragraph one}
begin

text.chars := 'Paragraph 1 is made out of this single sentence.';
flush := left;
new(next) { make paragraph two}

end;

Interscript -- September 1985

Base language: syntax 3

with parList 1 .next 1 .next 1 do { set paragraph two}
begin
text.chars:='This second paragraph is the last paragraph of the
document.';
flush := left;

next := NIL
end;
me.contents:= parList ;
repeat { assign font TimesRoman everywhere }

parList 1 .text.font.name:= TimesRoman;
parList := parList 1 .next
until parList = NIL
END.

The Pascal program in Example 3.1b is a valid representation of the example document in
Example 3.1a. When the program is executed, it creates a data structure in the memory of
the computer reflecting the structure of the document (a title and two paragraphs).

If we used Pascal as a document representation language, we could define document con-
structs like paragraphs. This would guarantee a common, precise understanding among
computers of what constitutes a paragraph. There are, however, major disadvantages
with using Pascal for such a representation (e.g. Pascal does not support variables of
unknown type, it creates a large overhead, etc.). These disadvantages make using Pascal
as a document representation language inadvisable.

Interscript defines its own mechanism to describe data structures that is particularly
suited for the description of constructs occuring within documents: the Interscript base
language. Since that's like many programming languages, we could say the Interscript
base language is a kind of programming language.

The units that are interchanged between Interscript systems are called scripts. When
being transmitted, documents must be expressed as scripts. Considering the Interscript
base language to be a programming language suggests what may be the most important
concept in Interscript: a script is not a straightforward mapping of a document structure
into a byte stream: it is a program in the Interscript base language.

As with Pascal programs a recipient must execute an arriving script and transform it into
an internal structure. This internal structure will mirror the original script, with some
evaluations performed. Local applications, especially the editor, will read and manipulate
it. Producing this internal structure is the task of the internalizing process. When
transmitting documents, a sender must transform them into scripts. This is the task of
the externalization process. Figure 3.1 illustrates Interseript’s processing model.

Interscript -- September 1985

Jd Introduction to Interscript

Other i
{ application |

|
1 Editor 1
L . G GUNS TN N J

Document
(in some pri-
vate format)

. Internalization - . Externalization .
Input script Output script

Figure 3.1 Interscript processing model.

3.3 Interscript objects

The entities occuring in a script are called Interscript objects. This section provides an
overview of the fundamental objects and their properties.

3.3.1 Scripts

Many programming languges use the bracketing of expressions to encapsulate smaller
units and to indicate an appropriate place in a superior unit (e.g. Pascal uses begin and
end keywords, Lisp has parenthesized expressions). Interscript has a similar bracketing
notation using braces ({}). The units these braces enclose are called nodes. Like blocks in
a programming language, nodes delimit the scope of the constructs they contain and
build-up tree-shaped structures.

A script presents itself as a tree of nested nodes forming a hierarchy called the dominant
hierarchy. Such a dominant hierarchy may either express the logical or layout structure
of a document. Not all nodes appearing in a script belong to the dominant hierachy. Some
specify values for bindings (see below); such nodes are associated with names and are not
subnodes of the superior node.

3.3.2 Nodes and tags

Consider a bottle of wine. [t consists of two parts: a container and contents. The container
is independent of contents. In fact, for special display purposes there may be no contents
at all.

Tags are affixed to the container. Some are mandatory, like the percent of alcohol by
volume and the capacity of the container. Some are highly desirable, like the product
number encoded in wide and narrow bars affixed to the bottle by the manufacturer and

16 Interscript -- September 1985

Base language: syntax 3

the price affixed by the retail store. Some are optional, like words of praise from a long
forgotten state fair. With imported wine, some consumers may not understand everything
on a tag because it is written in a foreign language. But even so, one can open the
container and enjoy the contents.

The nodes in a script may be compared to bottles of wine. Like bottles of wine, nodes are
containers with contents and tags.

Since scripts are programs, the content of a node is known only after the internalizing
process has evaluated all "expressions" and "formulas" within the node. The resulting
content objects, if any, may be basic objects like integers or atoms, subnodes, or structural
bindings. They all are "structural,” i.e. the place they occupy within a node is important
and must carefully be preserved by Interscript systems. Removing a content object
changes the whole internalized script (basic objects represent the text portions of a
document). The content objects are sequentially ordered as they appear—from left to
right—in the superior node. Note that tags and non-structural bindings do NOT count-as
content objects.

A node may or may not be accompanied by one or more tags. Tags are Interscript objects
providing information about the node. A list of attributes is associated with most tags to
specify information. Tags are used for three purposes:

® Tags may make some categorical statement about the content (e.g. the CHARS tag
requires the content to be an integer and it is interpreted as a character). Such tags
are called content tags.

® Tags may provide additional information related to a node’s content (e.g. the
LABELS tag supplies a set of labels).

® Tags may create record-like structures that are self-contained and not related to
the node content. Such a "record" consists of values for the tag attributes (e.g. nodes
with the MEASURES$ tag provide a triple of numbers attached to the three
MEASURE attributes). Such tags are called record tags.

Instead of saying "that node carries the tag T$," this document uses the expression "that
node is a T node."

When evaluating a node, the internalizing process builds a list of tags and attaches this
list to the internalized node (at least in this vergion of Interscript). Therefore tags do not
"remember" their place within a node.

3.3.3 Basic objects

Interscript version 1.0 has these basic objects: Atom, Boolean, Integer, and Number (also
called basic types). Each basic object is considered a built-in Interseript object that is not
formally defined in the base language. It provides an encoding-decoding mechanism for
transforming basic objects into binary values and for interpreting binary values as basic
objects (e.g. a particular byte sequence may be interpreted as an integer).

Basic objects constitute the contents of "leaf" nodes (those are the nodes containing no
subnode). In publication encoding they are characterized by special rendering properties:

® Basic objects of type Atom appear as strings encoded in the ISO646 character set.
They contain only letters and digits. They are used as (machine readable) names
and identifiers.

® Basic objects of type Boolean appear as TRUE or FALSE (these are reserved key-
words).

Interscript -- September 1985

1

-

3 Introduction to Interscript

® Basic objects of type Integer and Number appear as decimal values expressed in
digits. As usual, Integers and Numbers may be positive or negative; Numbers may
have fractional values.

Note that there is NO basic object of type String. In Interscript, strings are expressed as
nodes with a special tag (the CHAR$ tag) containing an integer. The integer encodes a
particular character. To make reading easier, the publication encoding presents these
integers as characters enclosed in angle brackets (see section 7.3).

3.3.4 Bindings and references

As in programming languages, it is often necessary in Interscript to attach a name to a
value. Such named values may be copied to different places by referencing the name. Of
special importance are names denoting tag attributes that are bound to the corresponding
attribute values. The bindings in Interscript fulfill this task.

Unlike most programming languages, Interseript has a rigorous naming concept. A name
does not automatically refer to the value to which it is bound. An explicit construction,
called a reference (denoted by #), must be used to get the associated value. When the
internalizing process encounters a reference, it starts a look-up procedure for a binding
with a matching name. This look-up procedure goes upward in the dominant script
hierarchy ("from right to left" if the script is considered to be written as a linear
sequence). Note that all nodes encountered this way are already opened and not
completely internalized. The tags and bindings these nodes provide are called the actual
environment.

Interscript supplies two kinds of bindings: non-structural and structural. When the
internalizing process reaches the end of a node, it eliminates non-structural bindings
(denoted by =) from the content. If the non-structural binding provides a value for a tag
attribute (such bindings are called relevant), it is put into an attribute list; otherwise it is
discarded. A subsequent non-structural binding with the same name overwrites the last
one encountered.

Structural bindings (denoted by = %) are part of the content and preserve their position
within the node. In particular, several structural bindings with the same name may
appear in an internalized node.

3.3.5 Formulas

Consider this problem: a document contains a title and text paragraphs with the rule that
the (left) margin of the text is six units indented compared with the title margin. How is
this rule to be expressed in Interscript? The simple solution utilizing non-structural
bindings and references does not work; e.g.

TitleParaMargin = 10 TextParaMargin = TitleParaMargin# + 6

The internalizing process will calculate the correct value 16 for the text margin; but after
this calculation, TextParaMargin is bound to 16 and its dependence on TitleParaMargin is
lost.

To prevent this loss, Interscript provides formulas (denoted by %). Formulas require that
the original expression be kept with the result to allow recalculating the value of the
formula (for example, when a user changes the title margin to 12, the text margin should
change to 18).

18 Interscript -- September 1985

Base language: syntax 3

Formulas are the most difficult part of the base language since they involve several
problems and subtleties. In the TitleParaMargin example, it is not sufficient just to bind
TextParaMargin to a formula:

TitleParaMargin= 10 TextParaMargin = (TitleParaMargin# + 6)%

The internalizing process will put both bindings into the attribute list (assuming that
both bindings are relevant) destroying the order in which these bindings appeared. After
internalizing, the reference to TitleParaMargin is inappropriate; it is not clear which
binding of TitleParaMargin should be used (particularly if a second binding of
TitleParaMargin overwrites the first). Therefore formulas must preserve:

® the expression that provides the result of the formula,
® the positions of all references that occur within the formula;
® the position of the formula itself.

The first requirement is met by using a formula, the remainder by using structural
bindings. To emphasize the common requirements to remember positions, the % symbol
denotes formulas as well as structural bindings. The correct solution to our problem is
therefore:

TitleParaMargin= % 10 TextParaMargin =% (TitleParaMargin# + 6)%

3.4 Baselanguage syntax for the publication encoding

This section describes the publication encoding syntax for the Interscript base language.
The grammatical rules are explained from a syntactical point of view, i.e. what kind of
entities may appear in a script and in what order. The rules enable the internalizing
process to identify these entities and activate corresponding operations when parsing a
script. The semantics of these entities, i.e. the definition of the corresponding operations,
is discussed in Chapter 4.

The syntactic rules are designed to support fast parsing. The syntactic rules allow con-
structing syntactically legal scripts that will be rejected by the semantic operations. The
syntax does not contain rules about how a script is displayed in publication encoding.
Most of the examples in this document will contain spaces, rendering characters such as
line feed or tab, and different fonts. The usage is considered self-explanatory.

The formalism used to define the base language 'is Backus-Naur Form (BNF). The BNF
description of any formal language comprises a series of replacement rules called pro-
ductions. By following the replacement rules, all valid expressions of the language can be
generated. Three classes of symbols appear in a production: terminals, non-terminals,
and operators. A terminal is a symbol that appears literally in the language being
described. Terminal symbols are defined in the productions as a string within double
quotes ("). A non-terminal is a symbol that is defined as equivalent to either a particular
series of symbols—either teminal or non terminal—or a choice among several such series
or denotes a basic object that is not defined in the syntax. Such basic objects are expected
to be well-known in the environment interpreting the syntax.

Two operators are used in productions. The equivalence operator (:: =) defines the
replacement rule for the non-terminal appearing on the left side. The alternative operator
(|) distinguishes among several possible alternatives, one (and only one) of which must
be selected. When several options are offered within an alternative, they are separated by
an alternative operator and grouped within parentheses.

interscript -- September 1985

Introduction to Interscript

20

The empty symbol appearing in the right side of a rule is a special descriptor meaning the
left side non-terminal may be replaced by nothing.

The entire grammar for the Interscript base language can be summarized in only a few
rules. Here they are:

Rule 1
Rule 2
Rule 3
Rule 4
Rule5
Rule 6
Rule 7

Rule 8

Rule 9

Rule 10
Rule 11
Rule 12
Rule 13
Rule 14
Rule 15
Rule 16
Rule 17
Rule 18

script :: = "INTERSCRIPT/1.0" node “"ENDSCRIPT"

node ::="{"items"}"

items :: = empty|items item

item :: = tag| expression | nonStructuralBinding | structuralBinding | formula
tag :: = atom"$"

expression :: = term | operation term | expression operation term

operation :i= M4 | | UETPYM MM UM< > | <=
">=" | "equal" | "not" | "or" | "and"

term ::= basicObject|reference|node|"(" expression *)"

basicObject :: = Atom | Boolean | Integer | Number

reference :: = (name |path |reference)"#"

name :: = Atom | qualifiedName

qualifiedName :: = Atom "." Atom

path :: = reference ":" qualifiedName

nonStructuralBinding :: = name " =" (expression | quotedExpression)

structuralBinding :: = name " = %" (expression | formula | quotedExpression)

formula :: = expression" %"

quotedExpression :: = expressionlist

expressionList :: = expression | expressionList expression

Rule 1

script :: = "INTERSCRIPT/1.0" node "ENDSCRIPT"

In the publication encoding, a script is defined as the character string within the double
quotation marks, one node, and a second character string within the double quotation
marks, in that order. (Of course a script constructed under a subsequent version of Inter-
script would be identified by a version number greater than 1.0.) The presence of this
specific character string insures that this is really a script. The version identifies the
encoding being used. The specific trailing character string at the end of the script insures
the correct balancing of braces in the dominant hierarchy.

A node is defined in the next rule. The one appearing in rule 1 plays a particular role. It
is the outermost node in a script and is called the root node of the dominant hierarchy.

Interscript -- September 1985

Base language: syntax 3

Rule 2,3
node ::=a “{"items"}"
items :: = empty|items item
Rule 2 says a node is defined as a left brace, something called items, and a right brace.

Rule 3 says items is a list of zero or more entities called item. Hence a node is a list of
items between braces. Example 3.2 is the simplest possible valid script that can be
designed, the emnpty script.

Example 3.2: The empty script.

--1-- INTERSCRIPT/1.0 { } ENDSCRIPT

Rule 4
item :: = tag | expression | nonStructuraiBinding | structuralBinding | formula

An item is defined as one and only one of the enumerated alternatives, all of which are
defined in subsequent rules. Items provide the tags, contents, and bindings that
constitute a node.

Rule 5
tag ::= atom"$"

A tag is defined as an atom followed by a dollar sign. A tag describes the node containing
it. Example 3.3 contains a one node script (because it has only one set of braces). This node
contains a tag, CHARS, that identifies the content of this node as one or more characters.

Example 3.3: A simple script containing a character string. T

-~ 1- INTERSCRIPT/1.0
—-2-- { CHAR$ <Thisis a one node script. It contains a string.>}
=3 ENDSCRIPT

Rule 6

expression :: = term | operation term | expression operation term

Expressions provide that part of a node’s content whose derivation is NOT "remembered."
They are evaluated by the internalizing process and replaced by the result. They may be a
single operand, called a term, or combine values according to the operation specified,
producing a new value.

Rule 7

Operation ez (1] * “" | n_u | ll*“'"/" | "!u I " l " '
n<u | Il>ll | ll< = " ! ll> = (1} l nequalll l"nOt" ' llorll "and“

The arithmetical operations allowed within expressions are addition (+), subtraction (-),
multiplication (*), and division (/). Although with this formalismm any term may be

t The examples in this chapter are greatly oversimplified. Much has been omitted to avoid confusion.

Interscript -- September 1985

21

J Introduction to Interscript

22

involved, the semantic actions associated with these operations accept only Integer and
Number values as operands.

The index operator (!) provides access to a particular content object, i.e. a subnode, basic
object, or structural binding (the node’s content is sequentially ordered). Normally the
index operator is used to access unnamed content objects (subnodes and basic objects).
Semantically the expression on the left-hand side of the ! must be a node and the right-
hand side be an integer used as an index. In Interscript, the index value of the first item
in a sequence is zero.

The opening operator (|) is used to get all the content of a node. The semantic action
requires the expression preceding the | to be a node.

The relational operations are the strict and inclusive numeric comparison (<, < =, >,
> =) and identity (equal). They produce Boolean values. Except for identity, the
semantic actions allow only Integer and Number values as operands.

The logic operations are negation (not), conjunction (and), and disjunction (or). The
semantic actions allow only Boolean values as operands.

Between the above operations precedence rules are enforced (e.g. multiply and divide
occur before add and subtract). Parentheses may be used to force one calculation to occur
before another.

Example 3.4 Syntactically legal operations.

1-- 1+ {1} result: error

. 4/0 result: error

B {1234}1(1+1) result: 3

--4-- {CHAR$ <text1> <text2>}| result: <text1> <text2>
Rule 8

term :: = basicObject|reference | node | "(" expression ")"

Terms are the operands in expressions. They may be basic objects, references, subnodes,
or expressions contained within parentheses.

Rule 9
basicObject ::= Atom| Boolean | Integer | Number

As discussed in section 3.3.3, Interscript has Atom, Boolean, Integer, and Number as
basic objects. They are not defined in the base language.

Rule 9 is the only syntax rule that will change with new Interscript versions as new basic
objects are incorporated into the base language.

Example 3.5 Leaf nodes containing basic objects.

—-1-- {A B} Atoms

-2-- {A=B TRUE} Booleans
3. {123} Integers
. . {11.2 + 2} Number

Interscript -- September 1985

Base language: syntax 3

Rule 10
reference ::= (name]|path|reference) "#"

References point to bindings whose values will be copied by the internalizing process
replacing the reference. The referred binding is the "first" one that is encountered when
the actual environment is scanned upward for a matching name. Such a binding may be
structural or non-structural.

Syntactically, references are denoted by the # symbol that follows directly after a name
or path identifying the desired binding.

References may be used recursively to allow indirect addressing. Indirect addressing is
like calling information to get a telephone number. The "address" of information is
known, and therefore the "address" of someone else can be obtained. Indirect addressing
in a computer means using what is contained in a known location as a pointer to a data
element. Scripts cannot explicitly use pointers, per se, as pointers depend upon memory
mapping. A script may, however, bind a name to another name that produces a value
when the reference process is applied twice. A multiple reference indicates the need to
follow an indirect path to obtain a value. Example 3.7 shows such a double reference (in
connection with bindings).

Rule 11,12,13

name ::= Atom | qualifiedName

qualifiedName ::= Atom "." Atom

path ::= reference ":" qualifiedName
These rules control naming in Interscript. There are:
® simple names consisting of an atom.:

® qualified names consisting of two atoms separated by a dot. Normally qualified
names are used to name tag attributes: the first atom is the tag’s name and the
second atom is the attribute’s name. .

Simple and qualified names refer to ;bindings accessible within the actual environ-
ment (i.e. the hierarchy of opened nodes that are not yet internalized).

® paths consisting of a reference and a qualified name separated by a colon. The
qualified name provides a tag attribute and the reference points to a node that
should provide a relevant binding for the that tag attribute.

Paths always refer to relevant bindings of internalized nodes that are not contain-
ed in the actual environment.

Note that paths may only occur on the right-hand side of bindings. The values they
point to belong to nodes that have been internalized and therefore are "read-only."

Example 3.6: Some references.

—1--
.
-3
4

T.A# Reference with qualified name
B## Double reference

C#. TA#.TB Nested path reference
(C#):(T.A#) Not legal

Interscript -- September 1985

Introduction to Interscript

24

Rule 14
nonStructuralBinding ::= name " =" (expression | quotedExpression)

A binding equates or "binds" a name to a value provided by an expression or to a quoted
expression. In contrast to structural bindings, non-structural bindings are eliminated
from the contents after the internalization process has evaluated them. They are used for
two purposes:

e Non-structural bindings may save bits in the machine encoding by binding values
to names and using references to those names. The internalizing process replaces
those references by their common value and eliminates the binding. This usage is
not of interest for the publication encoding.

® Non-structural bindings may provide values for tag attributes (relevant bindings).
In this case the name must be a qualified name.

Example 3.7 shows how double references work using non-structural bindings. The goal
of this node is to express that the margin text should be placed 10 units below the margin
position. This margin is either the top margin or the bottom margin according to the
value of the binding for the name where.

Example 3.7a: A double reference in a node.

—-1--
-2
-3--
--4--
--5--
--6--

{MARGIN$ CHAR$
MARGIN.TopMargin = 0
MARGIN.BottomMargin = 270
where = MARGIN.TopMargin
MARGIN.TextPosition = where## + 10
<text placed at the top or at the bottom of the page>}

Note that in this example where is bound to the atom MARGIN.TopMargin and NOT to
the value of MARGIN.TopMargin which is 0. The first reference of where in line 5 sup-
plies the atom MARGIN.TopMargin, the second reference supplies the value 0. Example
3.7b shows the corresponding internalized node.

Example 3.7b: The node of Example 3.7a internalized.

S
-2
-3
—-4--
--5--

{<text placed at the top or at the bottom of the page>} with
the tag list (MARGIN$ CHARS) and
the attribute list (MARGIN.TopMargin = 0
MARGIN.BottomMargin = 270
MARGIN.TextPosition = 10)

An important process is referencing and opening nodes. A node may be bound to a name
and later referenced and opened. An opening places the contents of the node into the
environment in which it is referenced. Referencing and opening a node is a feature
similar to the include of some programming languages, used to include some definitions,
usually declarations, into a program. This Interscript feature may be used to introduce
default values for tags or bindings anywhere in a script. Such a node reference can also
be used to associate styles with parts of a document. A node may then be "imported" and
locally modified because the node reference may be followed with additive bindings in
the node where it is referenced. This is illustrated in Example 3.8a and b.

Interscript -- September 1985

Base language: syntax 3

Example 3.8a: Referencing and opening nodes.

-
—-2--
-3
b
-5
6
-7~

{ CHAR$ FONT$
myFont = {FONT$
FONT.Name = Helvetica
FONT.Points = 10
FONT.Boldness = regular }
myFont#| FONT.Boldness = darker
< Hereisthe title> }

A node is (non-structurally) bound to the name myFont'in line 2. It provides a default font
for use throughout the node beginning on line 1 via a reference to myFont. The reference
preceding a title on line 6 specifies that the title font comes from myFont (the document
font), but is printed in bold face. The expectation is that if the font of the document text is
changed (by changing lines 3 through 5), the font of the title will also change in the same
way, yet remain bold. (See Example 3.9a for the correct way to meet that expectation.)
The internalized node is shown in Example 3.8b.

Example 3.8b: The internalized node of Example 3.8a.

—1--
—-2--
—-3--
--4--
--5--

{< Hereisthetitle> } with
the tag list (CHAR$ FONT$) and
the attribute list (FONT.Name = Helvetica
FONT.Points= 10
FONT.Boldness = darker)

Rule 15
structuralBinding:: = name" = % "(expression | formula | quotedExpression)

Like non-structural bindings, structural bindings attach names to values for later
reference. In contrast to non-structural bindings, they are part of the contents and must
be retained wherever they occur within a node. Since they remain in an internalized
node, they can be referenced in formulas: the way a referenced value was obtained is
reconstructible after internalization.

Consider the internalized node of Example 3.8b. The font style called myFont in the
original node has disappeared although myFont might provide significant information to
an editor. In Example 3.9a myFont is structurally bound (denoted by the = % in line 2)
and therefore transferred into the internalized node.

Example 3.9a: Node with a structural binding.

—-1--
-2
--3--
—-q--
--5--
--6--
-7

{ CHAR$ FONTS$
myFont = % {FONT$
FONT.Name = Helvetica
FONT.Points= 10
FONT.Boldness = regular }
myFont#| FONT.Boldness = darker
< Hereisthe title> }

Interscript -- September 1985

25

Introduction to Interscript

26

Example 3.9b: The internalized node of Example 3.9a.

1
-2--
-3
—f--
-5
—-6--
w7
-8--
--9--

{ myFont = % {FONT$
FONT.Name = Helvetica
FONT.Points= 10
FONT.Boldness = regular }
< Here is the title> } with
the tag list (CHAR$ FONT$) and
the attribute list (FONT.Name = Helvetica
FONT.Points= 10
FONT.Boldness = darker)

If a formula is bound to a name, a structural binding must be used. In particular, if the
value of a tag attribute should be given as a formula, the corresponding relevant binding
must be structural.

Rule 16
formula ::= expression"%"

When an expression is evaluated, it is replaced by the result. To retain the original
expression with the result, a formula must be used. The original expression serves as a
rule that can be applied to recalculate the result, perhaps after an editing operation.

Syntactically, a formula is characterized by the % symbol following an expression that
must be remembered.

Semantically, a formula requires that the references it contains refer to structural bind-
ings. Otherwise it would not be possible to recalculate the result of the formula. A special
case are references using a path since two references occur. In this case only the first
reference, which refers to the node, must be structural.

Formulas appear as values of bindings or as node items. In the first case they must be
structurally bound and therefore are part of a content object (see rule 15). In the second
case they are a kind of "ghost" content. On one hand, formulas do not count as content
objects: their result belongs to the content. On the other hand, the position of a formula

within a content sequence must be remembered for later recalculation.

Example 3.10 shows a typical use of a formula (in line 6 to compute the value of the text
margin). [t specifies that the margin for text nodes is to be the margin for titles plus 6
units (e.g. text margins are indented six units compared to a maximum-width title).

Example 3.10a: Defining a paragraph margin relative to a title margin.

1
9.
-3
-4
_.5--
—-6--
.-
8-
9.
--10--
11—
-12--

{title =% {PARAS$
PARA.LeftMargin= 10
PARA.Raggedness = centered
PARA.Justification = FALSE}
text =% {PARAS
PARA.LeftMargin = % (title#:PARA.LeftMargin# +6)%
PARA.Raggedness = left
PARA. Justification = TRUE}
{ PARAS title#|%
< Hereisthetitle> }}
{ PARAS text#|%
< The first paragraph starts here> } }

Interscript -- September 1985

Base language: syntax 3

Example 3.10b: The internalized node of Example 3.10a.

-1-- {title =% { } with

-2-- tag list (PARA$) and

--3-- attribute list (PARA.LeftMargin= 10

--4-- PARA.Raggedness = centered
--5-- PARA.Justification = FALSE)
--B-- text =% { PARA.LeftMargin=% 16 with formula (title#:PARA.LeftMargin# + 6)%
-7-- } with taglist (PARAS) and

--8-- attribute list (PARA.LeftMargin = 16

--9-- PARA.Raggedness = left
--10-- PARA.justification = TRUE)
-11-- { formula: title#|

--12-- < Here isthe title> } with

--13-- tag list (PARA$) and

--14-- attribute list (PARA.LeftMargin= 10

--15-- PARA.Raggedness = centered
--16-- - PARA.Justification = FALSE)
-17-- {formula: text#|

--18-- PARA.LeftMargin = % 16 with formula (title#:PARA.LeftMargin# + 6)%
--19-- < The first paragraph starts here> } with

--20-- tag list (PARAS$) and

--21-- attribute list (PARA.LeftMargin = 16

--22-- PARA.Raggedness = left
--23-- PARA.Justification = TRUE) }

If the left margin of the title paragraph is changed by an editing operation, the left
margin for the text paragraph will also be changed. If the left margin of the text
paragraph were defined by a simple expression, changing the left margin of the title
paragraph would NOT affect the left margin of the text paragraph.

Rule 17,18

mwuan meee

quotedExpression

expressionList

expressionList expression | expressionList expression

Quoted expressions are sequences of expressions delimited by double quotes. They
appear as values for bindings. They are evaluated when the corresponding reference
appears, not when they are first encountered. They are used to define expressions that
need to be evaluated in an environment different than the one in which they are occur.
Quoted expressions may only appear in bindings.

Interscript -- September 1985

Base language: semantics

4.1

Internalization, evaluation, and externalization

The semantics provide the meaning of a script and state what a computer system should
do with that script.

Unless altered by a user, a computer system should maintain in a seript it externalizes
what was found when that script was internalized. In the simplest case where a system
does not change anything in a script, it should externalize a script equivalent to the one
it internalized. But equivalence does not mean identity. Interscript, like any language,
permits different phrases to mean the same thing even though different words are used.
To externalize scripts equivalent to those internalized, a system must rely on the Inter-
script semantics, which states what a seript means.

The semantics of the Interseript language are formally expressed in the Standard. Here
we describe the semantics informally through illustrative examples. This kind of des-
cription should help determine the meaning of a script, much as a dictionary provides
understanding for the meaning of words. However, any informal semantics description
may leave ambiguities in the understanding of concepts. Interscript system implemen-
tors must refer to the Standard to avoid such misunderstandings.

Scripts consist of nodes: nodes have contents, bindings, and tags. Care must be taken
when scripts are internalized because those tags, bindings, and content will have to be
externalized eventually. Interscript does not require systems to represent seripts in a
specific way inside the memory of a computer (such design issues are left to implemen-
tors). There are rules, however, that should be respected if a system is to "understand” a
script correctly. Those rules give hints about how internalization should be done.

The succession of grammar rules used when generating a seript form a syntactic tree
called the parse tree of that script. For example, an Interseript node is a list of items.
Those items make up the first level in the parse tree of that node. The Interseript
semantics tell the meaning of a parse tree. To define the meaning of a node, we say the
node is evaluated and the result of this evaluation should be consistent with the Inter-
script semantics rules.

Interscript -- September 1985

29

4 Introduction to Interscript

Interscript system implementors need not implement a system that evaluates nodes. But
they must implement a system that behaves according to the evalution rules fixed by the
semantics as described in this chapter.

4.2 Nodes: contents and bindings

No matter which data structure is used, a node has content, bindings, and tags. The
content of a node is deduced from the items in the parse tree by precise rules. Here are the
first semantics rules for Interseript:

Rule 1: All items in the parse tree should be evaluated in a depth-first manner, from
left to right and moving down when embedded nodes are encountered.

Rule 2: At any time the set of items that have been evaluated at that time form
what is called an environment. _

Rule 3: The content of a node is the sequence obtained when all items in the node
that are expressions, formulas, and references have been evaluated.

Rule 4: Basic objects evaluate to themselves.

Rule 5: The evaluation of a non-structural and structural binding results in the
association of the binding name with the corresponding expression. This binding is
added to the environment.

Rule 6: The evaluation of a reference, when the entity referenced is a name bound to
a value, results in that value.

Consider a node consisting of just terms:

{3 TimesRoman}

The contents of this node are the number 3 and the atom TimesRoman. Consider this
node with four items:

{x=5 x# x# x#}

The first item binds the name x to the value 5; the next three terms are references to x.
Therefore the contents of this node is the sequence of numbers 5 5 5. The binding is not
part of the contents, but it is part of the environment until the end of the node is reached.

Non-structural bindings are used only to save bits in the machine encoding and to make
things clearer in the publication encoding. They need not be remembered for the purpose
of externalizing a node. {5 5 5} is an equivalent node to {x=5 x# x# x#}: a system
might externalize either of the two nodes after internalizing the other. Thus two
different scripts may be equivalent though they consist of different sequences of byte
values.

Example 4.1 Node contents.
-1-- {y=9{4a y#4}y=8 5 y# 5}

The first item in Example 4.1 binds y to 9. The second item is a node that must be
evaluated next. This embedded node has three items. Since y is bound to 9, the contents
of the embedded node is 4 9 4. The next item in sequence binds y to 8. The outer node

30 Interscript -- September 1985

Base language: semantics

contents therefore consists of four values: a node containing 4 9 4, and the numbers 5, 8,
and S.

Here is a possibly erroneous node:

{{y=4 y#+6}zaS5+y#}

The first embedded node is correct: its content yields the value 10. Assuming that no
outer node contains a binding to y, the reference to y following this node is an error since
non-structural bindings are only available within the node in which they appear. Thus
the addition of 5 to the value bound to y violates Interscript semantics. (It would not be
an error if y were defined in a node embracing this one.)

Rule 7: Structural bindings are attached to the node in which they appear and
must be preserved when that node is externalized.

The only difference between structural and non-structural bindings is that structural
bindings must be remembered together with the node in which they appear. The node on
line 1 in Example 4.2 may be externalized as it is or as the node on line 2. In any case, a
structural binding to the variable x must appear.

Example 4.2 Structural binding.

-1-- {x=%10 x=%20 x#+10}
-2 {x=%20 30}

Rule 8: When the name used in a binding is a qualified name, a "record" named
with the first identifer is searched in the present environment. If it does not exist, it
is created. Then, the second name is searched within that record. If it does not exist,
it is created. Then the value is bound to the name.

Example 4.3 Qualified names.

-1-- { POINT.X = 10
2-- POINT.Y = 20
--3-- POINT.X# + POINT.Y# }

In Example 4.3 POINT acts somewhat like a Pascal record with two fields, X and Y. This
node contains the value 30 obtained by adding the values bound to POINT.X and
POINT.Y. It might be externalized as the node: {30}. The dot naming convention is just a
convenience. The node would be the same if the variables were simply called X and Y.

Rule 9: When the first name of a qualified name is the name of a tag that exists in
the environment, it is said to be a relevant binding. Relevant bindings must be

externalized within the node in which they occur.

Example 4.4 Relevant bindings.

- 1-- { FONTS
-e2-- FONT.Points = 20
--3-- FONT.Boldness = regular }

Interscript -- September 1985

31

4 Introduction to Interscript

Example 4.4 must be externalized as it is.

Rule 10: A path is formed with references and qualified names separated by a
colon. The evaluation of paths proceeds from left to right. The evaluation of the
reference must yield a node. This node in turn should have a binding for the
qualified name from which the evaluation proceeds.

Example 4.5 Paths.

-1-- {myline = { LINES$
--2-- LINE.AboveBaseline = {MEASURE$ MEASURE.Nominal = 10} }
--3-- linespace = myline#:LINE.AboveBaseline#:MEASURE.Nominal# *2}

Example 4.5 shows a relevant binding that sets the value of AboveBaseline to a node
that is a MEASURE node. This node contains a relevant binding to the Nominal attribute.
On line 3 the linespacing is computed by accessing this value through its path. Finally
the name linespace gets bound to 20. The reference of the path causes an inspection of
the LINE node from which the AboveBaseline value is taken. Then an inspection of the
MEASURE node yields the value 10 for the Nominal relevant binding. Note that a path
can be used only in a reference. It may never appear on the left side of a binding. Values
in inner nodes are read only; they cannot be modified from the outside.

4.3 Quoted expressions and formulas

32

Sometimes it is necessary to remember not only a value, but how that value was obtained.
Assume the length of a line of text is to be 60 characters long. (Since Interseript’s basic
measurement unit is the mica [0.01 millimeters], in the following example each "charac-
ter" is 25 micas wide.) This is NOT the way to set the right margin:

{ leftMargin =% 10*25
lineLength = % 60*25
rightMargin = % leftMargin# + lineLength# }

This is wrong because it does not achieve the desired goal. The node might be correctly
externalized as :

{ leftMargin =% 250
lineLength =% 1500
rightMargin = % 1750}

Now if this node were internalized into another sytem, a user could reset leftMargin or
lineLength without affecting rightMargin. Although that gives a correct Interscript node,
the original intention of setting the rightMargin based on a computation involving
leftMargin and lineLength would be lost.

For this example, it is not sufficient to perform the computation; the system must also
remember that a formula was used to obtain the value of rightMargin. A formula (marked
by a % symbol) is an expression that is remembered with the binding name. Example 4.6
shows the correct way to set the right margin.

Interscript -- September 1985

Base language: semantics

Example 4.6: Formulas.

-1-- { leftMargin =% 10*25
--2-- lineLength =% 60*25
--3-- rightMargin = % (leftMargin# + lineLength#) % }

Rule 11: The evaluation of a formula results in a value associated with the binding
name. The difference with simple expressions is that formulas must be externalized
as they were internalized. This explains why formulas can be used only with names
from structural bindings.

Rule 12: The evaluation of a quoted expression results in the expression obtained
by removing the quotes. More formally, it results in the parse tree obtained when
parsing the expression, without evaluating this parse tree.

Rule 13: The evaluation of a reference where the entity referenced is a name bound
to a quoted expression results in the evaluation of that parse tree in the environ-

ment of the reference.

Example 4.7: A simple document with a quoted node.

—-1- INTERSCRIPT/1.0

-2~ { DOCUMENT$

--3-- footer = "{ CHARS$ PARA$ <interscript -- September 1985> pageNumber# }"
--4-- {PARAS

--5-- pageNumber = 1

--6-- {CHAR$ <This text is printed on the page >}

-7-- footer# }

--8-- }ENDSCRIPT

Line 3 in Example 4.7 binds the name footer to a quoted node. Because no evaluation is
performed when the expression is encountered, there is no error even though
pageNumber has an unknown value. When the footer reference on line 7 is evaluated,
the content within the quote marks is substituted and evaluated. Then pageNumber is
referenced, yielding the value 1.

4.4 Referencing nodes

The node reference facility is provided for the purpose of clustering common use infor-
mation into a single node that is later referenced. It promotes script compactness and
avoids tedious and possibly erroneous repetitions in a script. A node reference is like
transferring a liquid from one container into another or like the include statement of
many programming languages. The content of the identified node flows into the node
where it is referenced and joins whatever is there. It is different from a quoted expres-
sion because content is evaluated at the time the node is bound. Consider the reference
to x in Example 4.8 (line 1). The first # following x obtains the node containing ten
digits; the second # removes the braces. The content of the outer node is the digits from
0 to 9 repeated three times. A less compact way to externalize this node is shown on
line 2.

Interscript -- September 1985

33

4 Introduction to Interscript

34

Example 4.8: Referencing nodes.

el
2

{x={0123456789) x## x## x##)}
{012345678901234567890123456789}

A collection of bindings may also be grouped into a node (e.g. a collection of default
values). Such bindings must be structural (or relevant) or they will not be retained by
the node evaluation. Those bindings may simply be recalled elsewhere by node
references as shown in Example 4.9.

Example 4.9: Referencing nodes to introduce defaults.

—1--
-2--
--3--
—-4--
--5--
--6--
—7--
--8--
-9..
--10--
11

INTERSCRIPT/1.0
{ DOCUMENTS
title = % {PARA$
PARA LeftMargin= 10
PARA.Raggedness = centered
PARA Justification = FALSE}

{ -- chapter 1 starts here--
{title# # <Title of chapter 1>}}
{ -- chapter 2 starts here--

{title# # <Title of chapter2>}}
}ENDSCRIPT

Although this is correct, Example 4.9 could produce Example 4.10 during externali-
zation. We say, therefore, that 4.9 and 4.10 are equivalent. However, a user’s intent
will be lost if the script shown in Example 4.10 is produced.

Example 4.10: Equivalent script to Example 4.9.

1--
9.
3.
4
.
6
T
_-8--
9.
--10--
11—
-12--
13-
--14--
--15-
—-16--
17--
--18--
--19--

INTERSCRIPT/1.0
{ DOCUMENT$
title = % {PARAS
PARA.LeftMargin= 10
PARA.Raggedness = centered
PARA.Justification = FALSE}
{ -- chapter 1 starts here--
{PARAS
PARA.LeftMargin= 10
PARA.Raggedness = centered
PARA.Justification = FALSE
<Title of chapter 1>} }
{ - chapter 2 starts here--
{PARAS
PARA.LeftMargin= 10
PARA.Raggedness = centered
PARA Justification = FALSE
<Title of chapter2>} }
}JENDSCRIPT

There is no indication in this script that a chapter title is influenced by the characteristics of
titles in general (lines 3-6). If a generalized title’s LeftMargin is changed to 20 (see line 4), it

Interscript -- September 1985

Base language: semantics 4

would not influence the margin for the titles of chapters because there is no indication these
values (on lines 9 and 17) were obtained by referencing a node bound to title. To maintain
that relationship, the node reference must be accompanied by a formula as shown in
Example 4.11.

Example 4.11: Using a formula to remember the references.

P
P
-3
--4--
-5
—-6--

INTERSCRIPT/1.0
{ DOCUMENTS
title = % {PARAS
PARA.LeftMargin= 10
PARA.Raggedness = centered
PARA.Justification = FALSE}

{ -- chapter 1 starts here--
- {title# #% <Title of chapter 1>}}
{ -- chapter 2 starts here--

{title # #% <Title of chapter2>}}
}ENDSCRIPT -

4.5 Node construction

Tags have attributes and nodes may carry tags. Whenever a node has some tag, it may
specify the attribute values of that tag by simply binding the attribute name to the desired
value. Such bindings are called the relevant bindings for that node. To maintain the base
language syntax, relevant bindings take the same syntactic form as non-structural bindings
(name = term). This will not be the case in the machine encoding where non-structural
bindings, relevant bindings, and structural bindings will be distinguished.

There will be no ambiguity in the machine encoding between an attribute name and a non-
structural binding name. For publication encoding, it is good practice to specify all the tags
on a node first, followed by the relevant bindings. They may then be understood immedi-
ately.

Here is the semantics rule concerning the construction of a node:

Rule 14: To construet a node, evaluate all items in the node and then:
— Get the content items.

— Retain the tags and their attribute values that are assigned using relevant
bindings.

— Retain the structural bindings attached to the node, if any.

Interscript -- September 1985 35

Safety rules for Interscript systems

Interseript makes it possible for systems to manipulate the parts of documents they
understand without altering parts they do not. The second section of this chapter shows
how a system may safely process nodes even if that system does not specifically imple-
ment the tags carried by those nodes.

5.1 Standard tags and their implementation

A system might be based on the evaluation rules enumerated in the semantics. [t could
build specific memory constructs called items, nodes, tags, and so on. A data structure
containing those constructs would be obtained through an evaluation mechanism respect-
ing the enumerated rules. Such a system is said to interpret layer 2 through layer 1. This
is because there is nothing like a page or a paragraph in such a system. It only knows
about nodes and tags. The definition of each tag is kept as a specific node in some sort of
symbol table. For each binding, it would be necessary to look in the symbol table to know
if this binding is relevant and find the attribute definition to check its consistency with
the value. This definition in turn might be a new node that must be interpreted.

Such a system can be interesting for developing experimental software. For the purpose
of error handling in erroneous scripts, it would say exactly why and where a script is
erroneous. It may be useful too to check the output of another system. But it would
consume excessive memory space and operate slowly because it would always act as an
interpreter.

Consider now a system that wants to take advantage of the PARAS$ tag. Although this
tag has not yet been defined precisely, let us assume it specifies that sequences of
characters should be printed with certain line spacing, within specified margins, and
with or without line justification. Assume also the system is coded in Pascal. It may then
define Paragraph asa record type and its contents as a list of strings. The attributes
of the PARA$ tag are then declared as fields of this record, with their type matching
the tag definition.

Our system does not know any memory construction called node. Thus, whenever this
system internalizes a PARA node, it does not create a node structure in memory. It does
create a new instance of a paragraph record. Since PARAS$ is a predefined tag, its
attributes are known. The system does not need to lookup attribute names for PARAS$ in
some symbol table. It knows what they are and simply fills in the record fields with the
relevant binding values it finds in the script. For the fields that have not been assigned,

interscript -- September 1985

Introduction to Interscript

a simple procedure may supply default values that are also known from the PARA$ tag
and may be represented as Pascal constants in the program. The paragraph contents
may be obtained by building a list with all successive strings found in the node with
their different fonts.

Fast systems result if some tags have been predefined. If PARAS were not pre-defined, we
could not encode a program that knows about paragraphs. This is why the Interscript
Standard defines a particular set of tags called the standard tags. Those tags are either
tags used in conjunction with the imaging model developed in chapter 7, or tags that are
known to be of general utility. Of course the Standard may be extended by adding new
standard tags from time to time. The machine encoding also provides a more compact
encoding for standard tags than for non-standard ones.

Systems that embed knowledge of standard tags in their code are said to implement tags.
Most systems will implement all the standard tags (that is why standard tags have been
defined) in the fastest possible way.

5.2 Unknown tags

A particular organization or software manufacturer might also develop its own systems
with a set of its own private tags. Such systems will be able to interchange scripts
correctly, while taking advantage of more sophisticated features.

But this raises a question for the systems that do not implement these private tags:
What do they do if they receive such seripts? The question also applies to systems that do
not implement all standard nodes. They receive scripts they do not understand entirely,
that is, they cannot interpret the meaning of the nodes according to the tag. Since most
tags concern layout, a system receiving unknown nodes cannot display these nodes as
intended. To handle a node correctly a system must know what its tags mean. Some
operations, however, can be performed on nodes with unknown tags.

Consider a system that does not implement the standard tag named INKED$. This tag
describes a rectangular area totally filled with some colored ink. A system receiving an
INKED node may know nothing about this tag. It cannot display the inked rectangle and
it cannot do anything to the INKED node. Another system might know that INKED$ is a
tag that has a color attribute. Even though it is not able to display the inked rectangle, it
may allow the editing of the color attribute.

Thus there are several possibilities for dealing with non-understood nodes according to a
system’s capabilities.

5.3 Editing totally unknown nodes

38

Consider a system that implements only a subset of the standard tags. Such a system
would do nothing for other tags and would not know the definition of the standard tags it
does not implement. However this system conforms to Interscript and knows the syntax
for nodes and tags.

Assume this system implements the CHAR node and that it receives the node in Example
5.1 with color a relevant attribute for UNKNOWNS.

Interscript -- September 1985

Safety rules for lnterscript editors

Example 5.1 Node with UNKNOWNS$ tag containing immediate and indirect contents.

e]a- { UNKNOWNS$ UNKNOWN.Color = <black>
--2-- {CHARSS$ <the catis > } {CHARS$ UNKNOWN.Color| } }

This system cannot display the node as intended, but can manage this node in either of
two ways:

® The system does nothing with these nodes because it does not implement everything.
The nodes must be saved somewhere. They must not be modified and should be
externalized as received. This allows the interchange among systems with different
capabilities. One wouldn’t expect a spreadsheet system, for example, to implement the
display of complex graphics.

® The system might display the nodes to a user (with a warning) to allow some editing
since it knows how to display the inner nodes. In this example a user might change
the word <cat> to <parrot>.

We can prove from Interscript semantics that immediate values in the node contents (of
this example) may be replaced by another value with the same tag.

In the case of indirect content the values in the nodes’ content that were obtained
through simple references may be changed. Example 5.1 is semantically equivalent to
the node in Example 5.2. Hence the value in the second CHARS node may be changed
also.

Example 5.2 Node with UNKNOWNS$ tag containing nodes with immediate contents.

-1-- { UNKNOWNS$ UNKNOWN.Color = <black>
--2-- {CHARS$ <the catis > } {CHARS$ <black>}}

Consider the question of modifying the bindings. A system cannot do anything to the
relevant bindings of an unknown tag. It does not know, for example, what values are
allowed for the Color attribute. A system that assumes "since the value is a string, it can
be replaced by a string"” would be wrong.

Example 5.3 Attribute of UNKNOWNS tag referenced in a formula.

--1-- { UNKNOWNS$ UNKNOWN.Color = <black>
--2-- {CHARS$ <thecatis >} {CHARS$ UNKNOWN.Color|{% } }

In Example 5.3 the content of the second CHARS node is obtained by a formula. In this
case the script clearly specifies that the content comes from the binding and should be
kept identical. Consequently it is not possible to modify the content. This node must be
externalized as it is and the value of the binding cannot be changed.

We may now summarize the two possible actions a system might take when it receives a
node with an unknown tag:

1. It may not modify any binding in the node nor modify the contents obtained by
formulas, or

2. It may modify the values in the contents if their tags are maintained.

Iinterscript -- September 1985

39

Document architecture

The preceding chapters discussed layer 1 of Interscript, called the base language. Infor-
mation expressed in this base language may be interchanged and will be formally
understood by the recipient, i.e. the recipient can identify the constituents like nodes,
tags, bindings, ete., and transform them into an internal structure (this is the internaliz-
ing process). But the base language is not able to express the meaning of the content. In
particular, the base language has no constructs specifically for a document; it only
describes seripts and knows nothing about documents.

The next chapters discuss layer 2 of Interscript. They define the standard document
constructs and describe how to use those constructs for expressing documents as scripts.
This chapter presents the philosophy underlying those constructs. It gives an intro-
ductory overview of the document architecture and interchange formats used in Inter-
script.

6.1 Architectural concepts

What a user perceives as a document is a conceptual unit with varying aspects and is
viewed by different users in different ways. Before we standardize document interchange,
we need to specify that conceptual unit. The document architecture clarifies that concept
by introducing the constructs and rules from which documents are built.

6.1.1 Whatis a document

"Document” is a fuzzy concept. The information that a document contains or conveys can
vary depending both on the nature of the document itself and the beholder. Telegrams, a
printed memo, and an illuminated manuscript differ considerably. A book on physics is
viewed differently by a professor, a student, and a typographer.

Recent efforts (especially within ECMA, CCITT, and Xerox) to standardize document
interchange have brought a better and more formal understanding of documents. ECMA,
in its Office Document Architecture (ODA) [Reference 71, and CCITT, in its document
interchange protocol for the telematic services [Reference 8], define documents this way:

A document is a structural amount of text that can be interchanged as a unit
between an originator and a recepient.

Text is information for human comprehension that is intended for presentation in a
two-dimensional form, e.g. printed on paper or displayed on a screen. Text consists

Interscript -- September 1985

b Introduction to Interscript

of graphic elements such as character box elements, geometric elements, photogra-
phic elements, and combinations of these.

The content of a document consists of text and some additional control information.

6.1.2 Constituent parts of a document

Essentially a document consists of these parts:

® Profile ® Layout directives
® Logical definitions ® Layout structure
® Layout definitions ® Common content
® Logical structure ® Content

Documents need not contain all these parts. But those parts present in a document must
be captured by an editor and faithfully stored and transmitted.

Document Profile
Logical Layout Logical Layout
definitions [— — P definitions = = =+ structure structure
Layout Layout
directives directives
Common Common Content Content
content content

Figure 6.1: Constituent parts of a document

6.1.3 Layout structure

An "ordinary" user’s view of a document is as one or more pages containing character text
and illustrations. A user sees the character text assembled in lines that fill one or more
columns along with illustrations contained in boxes. Lines, columns, boxes, pages, etc.,
are layout objects that are nested (pages contain columns and these, in turn, contain
lines) and form the layout structure of the document.

When considering a document from the layout point of view, the content appears divided
into content portions fitting into the "leaf" layout objects of the layout structure (such as
Lines in Figure 6.2).

6.1.4 Logical structure

A document is not the black and white pattern of ink on a page; a user "reads more into
it." The user attaches significance to the text characters that comprise the words in the
document, rather than to the exact pattern of ink or toner that display the letter-shapes.
A user attaches significance to some of the typographic characteristics of the document:
words may be emphasized by font selection, lists may be constructed by indenting.
Supported by the spatial arrangement, a user recognizes other logical objects such as
paragraphs and chapters. All those logical objects are nested (chapters contain para-

42 Interscript -- September 1985

Document architecture 6

Page
NS
/ \
Line Column box
Line Line Line Layout

structure

I NN NN SN GINN TINN GEND SINE UNGD GENR ANLE SUNE G GRAN D BN DN SINE SIEE WEe Sae .

Content
Heading Contentl Content2 Content3 | portions

Figure 6.2: Layout structure with content portions

graphs and these, in turn, contain emphasized words), forming the logical structure of the
document.

When considering a document from the logical point of view, the content appears divided
into content portions belonging to the "leaf" logical objects of the logical structure (such
as Paragraphs in Figure 6.3).

6.1.5 Layout and logical definitions

When the content of a document is filled into the layout structure, the resulting content
portions are adapted to the containing boxes and are therefore difficult to edit. For
example, inserting a character into a line may cause the last character in the line to
extend beyond the line boundary. The layout structure does not specify what should be
done in that case. It does NOT contain any information about how it is to be changed. Such
information is provided by layout definitions.

Layout definitions contain rules that define how to create and change layout structures.
They may determine whether to squeeze the characters in a line such that an inserted
character fits, or to create a new line. They may define special page layouts (e.g. the

Report
///\\
Chapter Chapter
Paragraph Paragraph Paragraph Logical
structure
Content1 Content2 Content3 Contentd Content
onten onten ontent: onten portions

Figure 6.3: Logical structure with content portions

Interscript -- September 1985

43

0] Introduction to Interscript

partitioning of a page into a fixed heading box, a "stretchy" content box, and a fixed
footing box) or special chapter layouts (e.g. how a chapter title should be rendered).

Logical definitions contain rules that define how to create and change logical structures.
The logical definition of a chapter may require, for example, that each chapter consists of
a title and an arbitrary number of a special paragraphs.

Layout definitions and logical definitions may contain some fixed content portions that
appear in each instance of the definition. For example, a user may put some fixed text into
a footing box of a page definition that is rendered each time a page is created according to
that definition. Such content portions are called common content.

For rendering logical objects a layout definition is necessary. Layout directives provide
this information. They may be attached directly to logical objects ("this object must be
laid out according to that layout definition") or to logical definitions ("each instance of
this logical definition must be laid out according to that layout definition™).

6.1.6 Profile

It is often useful to attach information to a document that facilitates the handling of the
document as a whole. Such information is carried with a document but not rendered. The
user may want to associate an author’s name or the creation date with a document. Such
information is carried in the profile.

6.2 Presentation and representation of documents

Within the electronic office, what a user sees as a document and what is stored electronic-
ally as the document are two different things. The former shows certain aspects of the
document depending on the output device (this is the presentation). The latter is a
machine-readable dataset containing all relevant information, and can be precisely
defined (this is the representation).

6.2.1 Representation of documents

An editor must operate on a well-defined machine-readable form of a document. As
discussed in section 3.2, the internalizing and externalizing process produce such forms:
when internalized, a document is transformed into its internal representation; when
externalized, it is transformed into the machine encoding. We call those machine-read-
able forms a representation of a document.

Something that cannot be expressed in an editor’s representation cannot be included in a
document that editor manipulates. Thus the form of the representation controls, to some
extent, the power of an editor.

Interscript is one such representation. Since it is designed to be general-purpose, it is
important that it be able to represent arbitrary document content.

The problem of taking a user-perceived piece of document content and capturing it within
an editor’s representation is the main task of this standard.
6.2.2 Presentation of documents

How an editor shows a document to a user is greatly affected by the nature of the machine
on which the editor runs. Some editors have primitive display mechanisms, some are
more complex. Some editors may output a document to a CRT and to an attached printer.
These are all presentations.

44 Interscript -- September 1985

Document architecture 6

Often, an editor is prepared to present a document on a printer in a form a user thinks of
as its "finished" form. This is called rendering the document. Rendering may be a
capability of an editor, or it may be an "offline" activity performed by a separate software
package.

The presentation of a document so a user can get feedback during an editing session is
called display. A display usually only shows a fragment of a document, and frequently the
display is in a form quite different from the "finished" form that will be rendered.

Some editors attempt to display a document in the same form as it will appear when
rendered. Such editors are called WYSIWYG ("what you see is what you get") editors; they
typically use a bitmap-style raster output device to achieve reasonable fidelity to the as-
rendered image. Since such editors must, in effect, render a document on-line and in real-
time, they require considerable computing power to achieve good performance when
displaying complex documents.

Other editors display a document by showing the user a stylized (and not final-form) ver-
sion of the document—the presence of italic text may be indicated by the appearance of
/italic/ onthe display. This is often the case with editors that operate on character-CRT
workstations.

6.3 Interchange formats

The interchange format that should be chosen for a document depends on a sender’s
expectation of what a recipient will do or should be allowed to do with the document.
Interscript offers an alternative: a sender may transmit a document either in image for-
mat or in processible format. Both formats use a common content format.

6.3.1 Content format

At present Interscript supports only character content; future versions will contain con-
tent formats for graphics, images, spreadsheets, and other content types.

In principle, Interscript decomposes each character content portion into a sequence of
individual characters and defines an individual character as a CHAR node.

Interscript does not require one particular character set; a document originator may
choose any character. The name of the character set is put into the CHAR node by binding
it to a special CHAR attribute.

Control characters (i.e. characters that affect the processing or interpretation of a content
portion without being rendered such as "New Line") may be contained in a character set.
Control characters may also be provided by special Interscript tags (e.g. the TAB$ tag
defining tabs).

Characters are rendered in character boxes; the necessary information about the box
dimensions is given by the FONT$ tag. Characters serve two functions: from the logical
viewpoint they represent the logical content; from the layout viewpoint they are small
boxes containing information about a certain distribution of ink within the box area.

Section 7.3 will discuss content formats in detail.

Interscript -- September 1985 _ 15

introduction to interscript

Example 6.1: A character content portion of three characters (elides detail).

1--
.
-3
4
—-5--
—-§--
-q--
—-8--
-9

--10--
—11--
-12--

{CHAR$ FONT$
CHAR.Characterset = XeroxCharacterSet
FONT.Name = Helvetica
<T>}

{CHAR$ FONTS
CHAR.Characterset = XeroxCharacterSet
FONT.Name = Helvetica
<h>}

{CHAR$ FONT$
CHAR.Characterset = XeroxCharacterSet
FONT.Name = Helvetica
<e>}

6.3.2 Image format

46

When a recipient is expected only to render the document but not to edit it, the image
format (also called final format) is used. It describes the rendered document comprising
the Layout structure and the Content possibly with the Profile.

Document Profile

Layout
structure

Content

Figure 6.4: Image format of a document

Interscript knows only one type of layout object: the box defined by the BOX node. A box is
a rectangular area on the page with its edges parallel to the page edges. Lines and pages
are defined as special boxes by the LINE$ and PAGE$ tag, respectively. All boxes in the
image format have a fixed size. When nested, they have a distance measure in the x- and
y-direction to the containing box that fixes their relative position.

Boxes are not specific to the image format; they appear in the processible format where
many more of their features are used.

In Interscript image format documents are scripts whose dominant hierarchy represents
the layout structure. This layout structure is a sequence of page boxes each of which con-
tains a nested tree of subboxes.

Interscript -- September 1985

Document architecture 6

The content in an image format document is formatted (i.e. divided into content portions
and filled into the leaf boxes of the layout structure). Since image format documents
represent the result of rendering, the content is not expected to be edited or reformatted.

Example 6.2: The layout structure of Figure 6.2 expressed in Interscript (elides detail).

-1--
-2
--3--
—4-
_5--
--6--
-
8-
--9--
--10--

{BOX$ PAGE$ Page box
{LINE$ Heading line
{CHARS$ <..>} ... {CHARS <. >}} Sequence of characters
{BOX$ Column box
{LINE$
{CHAR$ <..>} ... {CHARS <..>1}} Contentl
{LINES
{CHAR$ <..>} ... {CHAR$ <..>}} Content2
{LINES$
{CHARS <..>} ... {CHARS <..>1}}} Content3

The image format of a document must not be confused with the Interpress master of the
document. Both formats represent the rendered document in a device-independent form,;
but the former is a structural description as perceived by people, and the latter consists of
procedural instructions for a "vitual" printer. Transforming image format documents into
Interpress masters is often expensive in terms of computing time; this task must be done
by a separate printing procedure.

6.3.3 Processible format

When a recipient is supposed to edit and reformat a document, the processible format
(also called revisable format) is used. This format allows several users on different
systems to interchange and edit the same document. Compared to the image format, it is
much more complex. Establishing such a format is an ambitious task and is the main goal
of Interscript.

The processible format separates the content from the layout. It comprises the Logical
structure and the Content of the document, Lavout definitions attached to the objects of
the logical structure possibly with Common content portions, and possibly the Profile.
(See Figure 6.5.)

Note that this version of Interscript is not capable of expressing logical definitions. It does
not allow characterizing special logical objects as instances of, say, a chapter definition.
But it does allow attaching a layout definition to this special logical object such that the
rendered object looks like a chapter.

Note also that this version of Interscript does not allow processible documents to contain
their layout structure. Each recipient of a processible document must convert it into dis-
playable form.

Interscript knows only two special types of logical objects: documents and paragraphs as
contained in the DOCUMENT and PARA node, respectively. All other logical objects are
given as ordinary nodes. Logical objects to be rendered obtain their necessary layout
directive from the POUR$ tag whose Template attribute is bound to a layout definition.
PARA nodes are implicitly POUR nodes with a predefined layout definition.

In Interseript a processible document is a script whose dominant hierarchy represents the
logical structure. This logical structure is a nested tree of nodes rooted in a DOCUMENT
node.

Interscript -- September 1985

17

Introduction to Interscript

48

Document

PN

Profile

Layout e Logical
definitions Lavout structure
directives
ommon
C ° Content
content

Figure 6.5: Processable format of a document

The content is divided into content portions according to the logical objects to which they
belong. In contrast to the image format, the content portions are here separated from the

layout. This allows them to be edited.

In Example 6.3 we assume that the global environment contains bindings for Report-
Layout and ChapterLayout providing layout definitions for "reports” and "chapters.”

Example 6.3: The logical structure of Figure 6.3 expressed in Interscript (elides detail).

1
-2
-3
.
5
B
-
--8--
--9..
--10--
11
-12--
--13--

{DOCUMENT$ POURS
POUR.Template = ReportLayout |
{POURS .
POUR.Template = ChapterlLayout |
{PARAS
{CHARS$ <..>} ... {CHAR$ <..>}
{CHARS$ <..>} ... {CHAR$ <..>}}

{PARAS
{CHARS$ <..>} ... {CHARS$ <..>}}}
{POUR$
POUR.Template = ChapterLayout |
{PARAS

{CHARS$ <..>} ... {CHARS$ <..>}}}

}

A report
First chapter
Content 1
Content 2
Content 3

Second chapter

Content 4

In contrast to the layout structure, layout definitions must be capable of handling content
portions of varying sizes. For example, they must require the construction of a new page
when the content "flows over” the previous page, or allow boxes to disappear when no
content is received. Providing such rules is the central task of layout definitions.

Interscript solves this problem by providing two constructs:

¢ Templates

Layout definitions are given as regular box expressions built with TEMPLATE

nodes. These expressions enable the user:

— to require that certain boxes must appear in the layout (e.g. a page must con-
tain a heading box, content box, and footing box). These are sequences.

Interscript -- September 1985

Document architecture 6

— to allow that a certain box be repeated arbitrarily often (e.g. a page box ac-
cording to the content that is filled in). These are repetitions.

— to offer a choice between certain boxes (e.g. between one-column and two-
column pages). These are alternations.

¢ "Stretchy" boxes ‘
Boxes appearing in layout definitions are "stretchy." Their size measures and dis-
tances are determined according to their content and the surrounding boxes. In
layout definitions, boxes that should disappear when no content is received have
"synthesized" size measures; when such a box is constructed for the layout struc-
ture, its size is calculated such that the content just fits.

Example 6.4 illustrates how a simple page would be defined in a template in Interscript.

Example 6.4: The layout definition of a simple page (elides detail).

—1--
-9

el

-3
e
--5--
--6--
-
_-8--

{BOX$ PAGE$ TEMPLATES
TEMPLATE.expresses = sequence

{BOX$..some fixed measures ..} Fixed heading box
{BOX$.. some synthesized measures Synthesized content box
{TEMPLATE$ containing
TEMPLATE.expresses = repetition arbitrarily many
{LINES }} lines
{BOXS$..some fixed measures .. }} Fixed footing box

The layout definition constructs are explained in detail in section 7.5.

6.4 Formatting process

Since layout and content are separated in the processible format, they must be combined
when the document is rendered. Boxes must be created according to the layout
definitions; content must be divided in appropriate portions fitting into the boxes; the
resulting boxes must be arranged onto the presentation medium. This is done by the
formatting process.

The principles of the formatting process come from the hot-metal days of typography. At
that time "dummies" were used to provide the page layout and "galleys" to provide the
running text.

A dummy divided a page into boxes filling some of them with fixed content and leaving
"holes" in the remainder. These holes had to be filled with text from galleys.

In Figure 6.6 there are four holes with three labels. For each label there must be a
corresponding galley. The galley labelled with T will first be filled into the left column
and the reminder into the bottom right box.

Interscript -- September 1985

49

Introduction to Interscript

50

<Fixed heading text>

Text with
Label T

Hlustration
with
Label |

Caption with
Label C

Text with
Label T

Figure 6.6: A dummy

Galleys containing text are type-set and broken into lines. They could be regarded as a
series of lines on one long sheet of paper, to be cut and rearranged on pages.

Figure 6.7 shows three galleys that are to be placed, line after line, into the corresponding

holes of the dummy in Figure 6.6.

Interscript’s formatting concept is based on this interaction of dummies and galleys. In
Interscript, the holes in dummies are called "MOLD boxes;" filling those holes is called

"pouring."

Pouring is the main activity of the formatting process. Normally there are multiple levels
of pouring: paragraph text (regarded as a sequence of character boxes) will first be poured
into lines producing a sequence of lines. This sequence of lines will then be poured into a
content box. Pouring will be explained in detail in Chapter 8.

Galley with label T

Galley with label C

Text Caption
Text Text
Text

Galley with label |

llustration
box

Figure 6.7: Three galleys meant to fit in the dummy of Figure 6.6

Interscript -- September 1985

Standard document constructs

This chapter describes how documents can be expressed and interchanged by using the
base language. For that purpose a set of standard document constructs forming Layer 2 of
Interseript is created. This set builds up the processable and image format of documents
determining the functionality of Interscript. Since Interscript is designed to be a general
purpose standard for document interchange, the set of standard document constructs is
intended to be as comprehensive as possible. This is certainly not the case for the present
version. Future versions will standardize additional constructs.

Formally, the standard document constructs are given as tags in the base languge. Since
a mechanism for defining tags is not available in the present Interscript version, the
standard document constructs are informally presented by listing their attributes, some-
times with a Required Tags or Content property. The Required Tags and Content property
are "typed;" the allowed "types" are contained in the list. Any attribute may be bound
formally to the atom match regardless of its type (although match has meaning only for
MOLD nodes). This will not explicitly be mentioned in the list. OneOf, SetOf,
SequenceOf, and | (as a shorthand for ChoiceOf) are used to construct types. The types
Any and Nil allow an arbitrary value and no value, respectively.

The standard document constructs are expected to be an integral part of most Interseript
editors. Since Interscript is open-ended, additional document constructs may be created
by an editor by using non-standardized tags; these constructs may be handled like
standard ones.

7.1 Document as an entity

A document is defined as a script whose highest node carries the DOCUMENTS$ tag. Thus a
DOCUMENT node contains all the other nodes comprising a document. The attribute
bindings of the DOCUMENT$ tag define a list of properties that concern the document as a
whole and must be carried with the document. This list is the document’s profile.

Interscript -- September 1985

q Introduction to [nterscript

Tag: DOCUMENTS

Attributes
DOCUMENT.CreationTime: Integer -- Use XNS standard
DOCUMENT.LastAlterationEditor: Atom -- Editing software

system that last changed the document.
DOCUMENT.LastAlterationTime: Integer -- Use XNS standard
DOCUMENT.Title: CHAR node
DOCUMENT.Author: CHAR node
DOCUMENT.Owner: CHAR node
DOCUMENT.EditReason: CHAR node

Example 7.1: A document node.

~1- {DOCUMENT$
-2-- DOCUMENT.Author = {CHARS$ <William C. Smith>}
--3-- DOCUMENT .EditReason = {CHARS$ < Update node definitions>}

The document node bindings contain information that describes the document itself. It
does not contain information about how a document is to be handled by other applica-
tions; such information 1s outside the scope of Interscript.

Of course a document has many more characteristics when considered as a whole. These
are provided by attributes of further tags that are added to the DOCUMENT node or to
nodes contained within the DOCUMENT node.

7.2 Relations and labels

An essential part of a document is the relations between a document's components. These
relations define rules for editing and formatting. For example, when a name appearing in
two places in a document is changed, an editor might ask a user whether the new name
should replace both instances or not.

The base language provides a straightforward method to express hierarchical relations by
using the hierarchical node structure of a seript together with the rules about scope and
inheritance of bindings.

Not all relations can be expressed by such a hierarchical method. Interscript also provides
a uniform way to describe non-hierarchical relations. Labels are used to attach some
naming information to nodes in the logical or layout structure establishing relations
between all nodes with matching labels. Labels are defined by tags; in contrast to the
hierarchical method, non-hierarchical relations are evaluated only by an editing process.

All non-hierarchical relationships in a script must be expressed via the label facility of
Interscript. There is no such thing as an "implicit" non-hierarchical connection. This
enables any editor to discover all document connections in order to enable non-destructive
editing.

52 Interscript -- September 1985

Standard document constructs 7

7.2.1 Labels

7.2.2 Remote tags

Labels may be attached to nodes by using the LABEL$ tag.

Tag: LABELS
Attributes
LABEL.Labels: {SetOf Atom}

The attribute Labels must be bound to a set of atoms that are called label-atoms. The
phrase "a node is labelled with an atom" is a short way of saying "a node is given the
LABEL$ tag and that atom is among the elements of the set bound to the Labels attribute."
Labels are not user-sensible; they are supplied by an editor.

Labels express two forms of intra-document relations:

¢ Pointers

These relations are "directed.” One node is distinguished as the source node and con-
tains a label used to point to another node, the target node. For example, a source
node may reference the page number of a certain chapter (the target). Pointers are
defined by certain tags with a from attribute that is bound to a label-atom (a typical
example is the REMOTEBINDING$ tag of section 7.2.2). The source node is always the
node where such a tag appears and the target node is defined by the label-atom
bound to the from attribute.

Set and sequence relations

These relations are not "directed." A unique label-atom is chosen. Each node that is
a member of the set or sequence is labelled with that atom. For a set relation, the
order of its elements is not relevant. For a sequence relation, the order is dictated by
the script order. Some editing processes invoked by other tags will evaluate such
relations. A typical example is the set of nodes labelled for the pour operation (see
section 7.5.1).

Remote tags may augment any node. They are used when information is to be derived
from another node which cannot supply this information at the moment when the
internalizing process encounters the remote tag. This information will later be provided
and transferred by special editing operations typically occuring during a pour. This
information may consist of the content of a node (indicated by the REMOTECONTENT$
tag) or the value of a relevant binding (indicated by the REMOTEBINDING$ tag).

Interscript -- September 1985

introduction to interscript

54

Tag: REMOTECONTENTS
Attributes

REMOTECONTENT.FromNode: Atom

Tag: REMOTEBINDINGS
Attributes

REMOTEVALUE.FromNode: Atom
REMOTEVALUE.FromBinding: Atom
REMOTEVALUE.Value: Atom

The REMOTECONTENTS tag and the REMOTEBINDINGS tag have a FromNode attribute
that must be bound to a label-atom. This label-atom must point to a uniquely defined
target node in the logical or layout structure .

In case of REMOTECONTENTS, an editing operation copies the content of the target node
into the REMOTECONTENT node overwriting the old content if any.

In case of REMOTEBINDINGS, the FromBinding and the Value attribute are bound to
attribute names. The former names an attribute in the target node whose relevant
binding is to be copied. The latter names the attribute in the REMOTEBINDING node that
is to be bound to the copied value. An editing operation creates that desired binding
overwriting the old value.

Example 7.2: A REMOTEBINDING node .

1--
-2
-3--
4
.
--6--
-
8-
-9

{DOCUMENT$
.. {REMOTEBINDINGS T1%
REMOTEBINDING.FromNode =L
REMOTEBINDING.FromBinding = T2.A2
REMOTEBINDING.Value=T1.A1

T1.A1=5 .. }

.. {T2$ LABELS The target node
T2.A2=10 uniquely defined by
LABEL={L} ... } the label L

The editing operation looks for a node with label L, copies the value 10 of the attribute
T2.A2in that node, and changes the binding of T1.A1 in the REMOTEBINDING node to 10.

Of special importance are references to nodes, which provide some numbers associated
with the node they point at. This is typically the case with a reference to an illustration,
say, to get its page number. A reference is expressed as a REMOTEBINDING node where
the FromNode attribute points to the referenced node and the FromBinding attribute
points to the name of the desired numeration. When the referenced node is moved within
a document, the reference doesn't change (but the value of the reference does). It is not
necessary to put an "anchor" into the referenced node. TEXTSHOW nodes must be used to
make the value appear in the appropriate format (see section 7.3.5).

Interscript -- September 1985

Standard document constructs 7

7.2.3 User-sensible naming

It is often convenient for an editor to attach a user-sensible name or description to a node.
This could be used by an editor to prompt a user for some data-value. Interscript provides
the USERNAMES and the USERDESCRIPTIONS tags to augment any node.

Tag: USERNAMES$
Attributes

UsSeRNAME.Name: CHAR node

Tag: USERDESCRIPTIONS
Attributes

USERDESCRIPTION. Description: CHAR node

7.3 Content architecture

In this document, the word "content" is used with two different meanings. When speaking
about the nodes of the base language, "content” refers to the content of a single node (i.e.
everything that is between braces). When speaking about documents, "content"” refers to
the content of an entire document, typically what one sees when the document is printed.
"Content portion" is a subdivision of content in the latter sense.

Content portions are always attached to the leaf nodes of the logical and/or layout
structure and never carry an internal node structure. The set of structures used to des-
cribe a content portion is called the content architecture. There are many content archi-
tectures, each corresponding to a particular "type" of content. This version of Interscript
defines a character content architecture. Future Interscript versions will define a content
architecture for graphics, images, spreadsheets, and other content types.

7.3.1 Character nodes and character boxes

Characters are expressed in Interscript as CHAR nodes which may contain one or more
characters. Each character is uniquely identified by its name. This unique name is repre-
sented by an integer according to the character set containing the character.

Interscript -- September 1985

Introduction to Interscript

56

Tag: CHARS
Attributes

cHAR.Dialect: Atom -- Encoded with the 1SO3166 two-let-
ter-plus-digit identification scheme
CHAR.Characterset: Atom -- e.g. ISO646, XeroxCharacterset

Content: SequenceOf Integer -- Identifies characters in the
Characterset

The Dialect attribute identifies the language the character belongs to. An editor might
use this information to select an appropriate hyphenation algorithm or to determine the
correct sort sequence for an index (e.g. words beginning with ch collate between cand d in
Spanish).

The Characterset attribute identifies the character set containing the character. The
character set determines which characters are available and how those characters are
encoded as integers. Interscript does not require certain character sets; any character set
may be chosen. Of special importance is the Xerox Character Set {Reference 6]. It is a
superset of other international standards and even includes the Japanese national
standard JIS C6627.

To make the publication encoding easier to read, the character-integers are presented in
legible form. Instead of integers, the corresponding characters appear enclosed in angle
brackets.

Example 7.3: Equivalent character nodes using angle brackets.

—1--
9
_3.-
4

1) {CHAR$ CHAR.Characterset = XeroxCharacterCode 6315 } is equivalent to
{CHAR$ CHAR.Characterset = XeroxCharacterCode <c¢>}

2) {CHAR$ CHAR.Characterset = 150646 6315 6115 7416} is equivalent to
{CHAR$ CHAR.Characterset = 150646 <cat>}

CHAR nodes serve two different purposes in a script. First, they act as text-string values
for bindings, some of which have been described: user-sensible names, author, etc. In this
case, they may contain several characters. Second, they define the character content of the
document. In this case, they should contain only one character (see section 7.3.2). These
two uses of the CHAR node are quite different; the distinction is important.

A CHAR node that is part of the character content of a document is a "leaf node" in the
logical structure tree. As such, it can participate in layout. From the layout point of view,
a CHAR node is a box (the character box) containing information about a certain
distribution of ink within the box area. These character boxes are handled like all other
boxes; laying out characters in a line is analogous to laying out lines in a column. It is
their measures not their content that are relevant for layout.

How does a character become a box for the layout process? By augmenting a CHAR node
with a FONT$ tag. Conceptually, a font can be considered to be a prototypical array of
boxes available to an editor in a font database; a character-number can index into the
array and obtain a box.

Interscript -- September 1985

Standard document constructs 7

Tag: FONT$
Attributes

FONT.Name: Atom -- Printer's name of the font family
FONT.Points: Number -- Body size of type
FonT.BaselineOffset: Number -- Baseline up-shift
FONT.ltalic: Boolean -- Use italic version of font if TRUE
FONT.Boldness: ONEOF (lighter regular darker)
FONT.Strikeout: Boolean -- Use 'strikeout’ version of font
FONT.Underlining: ONEOF (none single double)

-- The metrics for underlining are provided

by the font designer

The binding of the Name attribute describes the font. Hierarchical names containing a
manufacturer's name may be used to designate fonts uniquely. Information about the font
form (condensed, normal, or wide) or about the foreground and background color (normal
or inverse) may also be included in the font name. Interscript does not standardize font
naming: that is a matter for a separate standard. The discussion of font naming in the
Interpress standard (XSIS 048201 ppg. 48-49) and the Introduction to Interpress (XSIG
038306 ppg. 70-93) are relevant.

The Size attribute defines the size of the font and the BaselineOffset attribute a vertical
shift for superscripts and subscripts. Both attributes are expressed in points (one inch is
approximately 72.27 points). Note that the attribute values are numbers: fractions are
allowed and appropriate.

The Italic attribute, if TRUE, indicates that the italic version of the font should be used.

The boldness of a font is often included in the font name (e.g. Futura Light). The Boldness
attribute is separate from this and may indicate "one step lighter" or "one step darker."

The Strikeout and Underlining attributes indicate whether the struck-out or underlined
versions of the font should be used. These versions may actually exist in a font catalog or
be synthesized: this is not of concern to Interscript.

Example 7.4: Character node for an Q.

—1--
-2
--3--
-4
-5
—-6--
i,

{CHAR$ FONT$ CHAR.Characterset = XeroxCharacterCode
CHAR.Dialect = US1
FONT.Name = Modern
FONT.Size= 14
FONT.Italic= TRUE
FONT.Boldness = darker

6116}

7.3.2 The CHARSS$ encoding-notation

Since character nodes are treated individually during a pour, it is appropriate for the
running text of a document to consist of individual CHAR nodes.

Interscript -- September 1985

Introduction to Interscript

This is cumbersome in the publication encoding of Interscript. To make things easier to
read, we define an encoding-notation.

A construction of the form {... CHARS$... <anything ...> ... } that lacks a MOLD$ tag—
that is a node which syntactically looks like a CHARS node—is an encoding-notation for a
sequence of CHAR nodes, each with a single character from the CHARS$ encoding. These
CHAR nodes have whatever other tags and bindings the CHARS "node" has.

Example 7.5: Equivalent character strings using the CHARS notation.

—1--
9.
-3
4
5.
—6--
e

{CHARS$ LABEL$ This CHARS

CHAR.Characterset = IS0646 LABEL.Labels = {A} node . . .
<cat>}

CHAR.Characterset = 150646 LABEL.Labels = {A} ... is equivalent to
{CHAR$ LABEL$ <c¢>} this sequence of
{CHAR$ LABEL$ <a>} CHAR nodes.

{CHARS$ LABEL$ <t>}

A construction of the form {... CHARSS ... MOLD% <anything ...> ...} —that is a "node"
that syntactically looks like a "CHARS" mold—is an encoding-notation for a template
which defines a repetition of CHAR nodes, with FILL nodes, PSEUDOCHAR nodes, and TAB
nodes allowed.

Thus the encoding-notation {CHARS$ MOLD$} is an encoding for

{TEMPLATES TEMPLATE.Expresses = repetition
{TEMPLATES$ TEMPLATE.Expresses = alternation
{CHARS$ MOLDS$} { FILL$ MOLD$} {TAB$ MOLD$} {PSEUDOCHARS MOLD$ } } }.

Note well that this CHARS encoding-notation does not augment Interscript in any way. It
simply makes it easier and more compact to create the publication encoding.

7.3.3 Running text

58

Character content portions attached to the logical structure are handled as running text.
The main problem with running text is to break it into lines. Interseript has no special
tags to control line breaks. Whether a line should be broken on a word boundary or
whether automatic hyphenation should be invoked is a local decision that a script does
not control. The general penalty method (see section 7.5.3) could be applied to influence
decisions as to how many character boxes are poured into a line. However, since penalties
occuring at low document levels greatly complicate the formatting process, they are not
normally used in lines. Each Interscript system is expected to know how to handle line
formatting.

The pour operation concatenates all the character content portions of a stream (see
section 7.5.1) and lets a line breaking algorithm assemble lines. The line assembly
process cuts and rearranges the content portions as shown in Example 7.6:

Example 7.6a: Content portions in running text.

1--
9.

{CHARS$ <The quick bro>}
{CHARS$ <wn fox jumped.>} This running text might be laid out as ...

Interscript -- September 1985

Standard document constructs 7

Example 7.6b: Content portions laid out in lines.

1--
-9
-3.-

7.3.4 Tabs

{LINES$... {CHARS$ <The>}} Blanks at line
{LINE$ {CHARS$ <quick brown fox>}} ends are omitted
{LINE$ {CHARSS$ <jumped.>} ...}

This is the principle. In practice there are some irregularities connected with a line break:
some content portions receive no box so they are not rendered, other content portions are
inserted as box content without a corresponding portion in the running text.

® A discretionary hyphen may appear in running text. A discretionary hyphen defines
a potential hyphenation point that may be used when a line break would occur
"nearby." If the discretionary hyphen does not appear at the end of a line, no
character box is attached to it and it is not rendered. Discretionary hyphens may be
inserted by a user to correct automatic hyphenation errors or as a kind of manual
hyphenation. They could also be inserted by an editor to remember hyphenation
peints produced by an automatic process.

¢ A discretionary hyphen may be inserted in the layout. In this case the hyphen
character is only attached to a leaf box in the layout structure. This hyphen may be
discarded when the text is reformatted.

® Hyphenation can even cause changes in the appearance of some characters in some
languages. There are two such instances in German. In such cases, some content
portions are added and only attached to the layout structure. They may be discarded
when the text is reformatted.

¢ When words must not be separated by line breaks, a non-breaking space character
can be used.

® When a space character is to be placed in a line that is already full, it is not
displayed. The space character remains in the running text but is not attached to a
box of the layout structure.

A TAB node tells the formatting process that the actual content portion must be posi-
tioned at a tab stop (some character sets provide a special character for tab; this character
may be used instead of a TAB node).

Tag: TAB$

The properties of that stop (e.g. the position or the alignment) are not defined as TAB
attributes but as TABSTOP attributes of a particular TABSTOP node (see sections 7.4.6 and
7.4.7). TABSTOP nodes are defined as a sequence bound to the LINE. Tabstop attribute of
the actual LINE node. The correspondence between tabs and TABSTOP nodes is given by a
"counting off” process. Sequential TAB$ tags are counted; the nth TAB$ is associated with
the nth TABSTOP node.

If text has already been placed at or beyond the tab position, overwriting does not occur.
The formatting process starts a new line and the content portion is aligned at the
appropriate position. This is particularly advantageous when a font larger than the one
specified by a script's creator is being used because of a font substitution.

Interscript -- September 1985

59

Introduction to Interscript

Typewriter-like tabbing is possible if an editor transforms typewriter tabs into Interscript
tabs (and vice versa).

7.3.5 Textfields

60

Suppose a node contains an integer. How should that integer be rendered: with a decimal
point, commas between triads, with a plus or minus sign? Since it is not a CHAR node, it
cannot be rendered until the integer is transformed into one or more characters. And that
character string must maintain its relationship with the original integer so changes to
the integer produce a new character string. (The character string itself may not be
changed since it has no identity of its own; it's simply the rendering of an integer.)

The TEXTSHOWS tag is used with the CHAR$ tag to indicate that the characters in the
content do not express the full meaning of the node; they are a representation of some
other value. Consequently the textual content of a node with a TEXTSHOWS$ tag should
not be changed directly. The underlying value may be changed, of course, and that will
cause a change in the character string. An editor that does not "understand" the
TEXTSHOWS tag, but does "understand” the CHARS tag will be able to display the textual
representation, but not change it. This is an important feature of a TEXTSHOW neode.

Tag: TEXTSHOWS
Attributes

TEXTSHOW.Type: OneOf (text amount date)

TEXTSHOW.Value: Any

TEXTSHOW.Picture: CHAR node -- A COBOL picture clause if
Type =amount

Required tags: CHAR$

The Value attribute of the TEXTSHOWS tag is the underlying value, e.g. an integer. The
TEXTSHOW node may be augmented with a REMOTEBINDINGS tag; if it is, the value is
effectively copied from another node.

The Type attribute requires the value of the textfield to be of a certain "type" (in this ver-
sion text, amount, and date). This is of special importance when the value is copied by a
REMOTEBINDINGS tag.

The Picture attribute determines how the value is to be transformed into a character
string. This transformation depends on the tag of the Value and is automatically executed
by an editor. Interscript version 1 does not define a transformation of its own. Instead, it
uses the picture clause of COBOL that supplies a transformation of a number into text.
Future Interscript versions may provide more possibilities for rendering numbers.

Example 7.7a: A textfield definition.

—1--
I,
3.

{CHARS$ TEXTSHOWS
TEXTSHOW.Type = amount TEXTSHOW.Value = 41
TEXTSHOW.Picture = {CHAR$ <9.9> }} This textfield gets
evaluated to ...

Interscript -- September 1985

Standard document constructs

Example 7.7b: An evaluated textfield.

—-1-- {CHARS$ TEXTSHOW$

--2-- TEXTSHOW.Type = amount TEXTSHOW Value = 41
--3-- TEXTSHOW.Picture = {CHAR$ <9.9> }

--4-- <4.1>}

7.3.6 "Pseudo” characters

The PSEUDOCHARS tag may be added to content portions. The formatting process will
handle a PSEUDOCHAR node as though it were a CHAR node. If a box in a layout definition
must be filled by the content of CHAR nodes, PSEUDOCHAR nodes may also be used.

The PSEUDOCHARS tag does not add any Interscript functionality to a node. It expresses a
user's intent to treat a content portion as a character, and helps an editor perform opera-
tions like "select the next character." A PSEUDOCHARS$ tag might be attached, for
example, to a logotype contained in a small bitmap frame.

Tag: PSEUDOCHARS
Required tags: BOX$

7.3.7 Other content architectures

A fragment of Interpress encoding may be contained in a document as a content portion as
identified by the INTERPRESSS$ tag.

Tag: INTERPRESSS
Attributes
INTERPRESS.Version: Atom

Content: SequenceOf integer -- Probably an encoded sequence

7.4 Layout constructs

This section discusses all the constructs that are needed to describe the geometrical
layout. These constructs are used for the layout definitions in the processable format as
well as the layout structure in the image format.

7.4.1 Measures

Measures define the size and positioning of boxes. They are expressed in terms of a Basic
Measurement Unit (BMU). Within Interscript a BMU is a mica (0.01 millimeter).

Each measure is bound either to the atom synthésized, to the atom match, or to a node
with the tag MEASURES$. The latter is called a numeric measure.

Interscript -- September 1985

61

Introduction to Interscript

62

Tag: MEASURES
Attributes

MEASURE.Under: Number
MEASURE.Nominal: Number
MEASURE.Over: Number

A MEASURE node is a record defining a variable measure. It supplies a Nominal value for
a distance, together with an Over and an Under value. The Nominal value is a suggestion
that the layout process should use when possible. It may be adjusted with some leeway,
given by the Under and Over value. The Under value is always less than the Nominal
value and defines a lower [imit that must always be respected; its difference compared to
the Nominal value gives the shrinkability of the measure. The Over value is always
greater than the Nominal value and may be exceeded; the relevant information is its
difference to the Nominal value that gives the stretchability of the measure.

Such variable measures are like glue in Knuth's TgX [reference 1]. They may be consider-
ed as springs that the layout process stretches or squeezes in order to get boxes into a con-
taining box. For example, the layout process may squeeze character boxes in a line to
avoid word wrapping.

When a measure must be fixed, all three values must coincide. All measures that occur in
the layout structure? of the image format are fixed measures. When a measure is to take
arbitrary values, the Under and Over values must specify the lowest and the highest
values respectively. In this document, the following abbreviations are used:

® for variable measures: {MEASURE$ n1 n2 n3}instead of
{MEASURE$ MEASURE.Under=n1 MEASURE.Nominal = n2 MEASURE.Over =n3}

® for fixed measures: {MEASURE$ n} instead of
{MEASURE$ MEASURE.Under=n MEASURE.Nominal =n MEASURE.Over =n}

In the following example, the highest value is assumed to be 99999.

Example 7.8: Some measures.

—1--
9.
.
4
5.
-6--
7

{MEASURE$ -100 500 1000} A variable measure

{MEASURE$ 1000} A fixed measure

{MEASURE$ 1000 1000 1000} An equivalent fixed measure
{MEASURE$ 0 10 99999} An arbitrarily stretchable measure
{MEASURE$ -99999 0 10} An arbitrarily shrinkable measure
{MEASURE$ 0 0 100} A non-shrinkable measure
{MEASURE$ -100 500 500} A non-stretchable measure

The atom synthesized may be used only for the size measures. Synthesized size measures
let a box assume a size dictated by the layout requirements of its content. When all sub-
boxes are determined, the layout process replaces the synthesized size measures by
numeric ones (see Chapter 8).

T The layout structure is a sequence of box-trees each of which has a page box as a root node. Chapter 8
contains a comprehensive discussion of the formatting process.

Interscript -- September 1985

Standard document constructs 7

The atom match may be used for measures (or any other attribute) of nodes containing a
MOLD$ tag. Match arrangements are discussed in conjunction with pouring in section
7.5.1.

7.4.2 Boxes: external view

All geometrical layout is defined in terms of boxes within a document presentation
medium. A box is a rectangular area with its own cartesian coordinate system. The
coordinate axes are named x and y. The positive x-axis, when rotated 90° counterclock-
wise, produces the positive y-axis. Both axes run parallel to the edges of the box.

Tag: BOX$
Attributes

BOX.X: SPAN node
BOX.Y: SPAN node
BOX.Rotation: Number -- Must be 0, 90, 180, 270 ccw
gox.Clips: Boolean

Tag: SPAN$
Attributes

sPAN.LowPartExtent: MEASURE node | synthesized
spaN.HighPartExtent: MEASURE node| synthesized
spaN.FromLowContainer: MEASURE node
spaN.FromHighContainer: MEASURE node
spAN.FromLowSibling: MEASURE node
spaN.FromHighSibling: MEASURE node

The size of a box is defined by the distances of the coordinate origin to the edges. More
precisely:

the LowPartExtent measures give the distances to the lower edges and
the HighPartExtent measures give the distances to the higher edges.

Each measure has to be defined separately for the x- and y-direction (to simplify the des-
cription, the expressions "lower" and "higher" are also used here in the sense of "left" and
"right" respectively).

Bozxes can be nested to build a complex layout. Character boxes may fill line boxes, line
boxes may fill paragraph boxes, and paragraph boxes may fill page boxes. The edges of
boxes must be parallel to the edges of a containing box. Each box carries information
about how it should be placed inside a containing box. It prescribes the distances

of its upper edge to the lower edge of the upper sibling box by the FromHighSibling
measure,

of its lower edge to the upper edge of the lower sibling box by the FromLowsSibling
measure,

of its upper edge to the upper edge of the containing box by the FromHighContainer,

Interscript -- September 1985

Introduction to Interscript

of its lower edge to the lower edge of the containing box by the FromLowContainer.

Each measure is separately defined for the x- and y-direction. So there are six measures
for each coordinate direction associated with a box. These box measures are evaluated by
built-in layout methods (see section 7.4.4). The particular layout method determines
which measures are relevant. For each direction the box measures are collected in a SPAN
node and are bound to the BOX attributes XSpan and YSpan. Figure 7.1 illustrates these
measurements.

__.._.__._.'

T FromHighContainer
I | L
i TFromHighSibling
S R S
y

: HighPartExtent

I

I Origin

L

|

|

|

1
I
|
................... 1.9
: FromLowContainer

: . . 4

Figure 7.1 A box SPAN for the y-direction.
(Rotate ninety degrees clockwise to produce the x-direction figure)

Two further attributes influence the layout of a box. A box can be rotated when it is
placed in a containing box. This rotation is measured by the angle between the positive x-
axis of the containing box and the positive x-axis of the filled-in box. Since the edges of the
filled-in box must be parallel to those of the containing box, only multiples of 90° are
permitted. The BOX attribute Rotation defines the appropriate value. To keep explana-
tions simple, coordinate rotations are ignored in this document.

Boxes may extend beyond the area of their containing box, perhaps by having a negative
FromLowContainer or a large extent. The BOX attribute Clips controls rendering. If the
Clips binding is FALSE, any portions that extend are rendered. If the Clips binding is TRUE,
such portions are not rendered.

Boxes with variable measures, Rotation attribute, and Clips attribute are used in the
layout definitions of the processable format. They provide rules about how to adapt posi-
tions and sizes of boxes to the filled-in content and the surrounding boxes.

Boxes in the layout structure of the image format have fixed positions and sizes. They are
specified by their extent measures and the lower container distance for each coordinate
direction. The other SPAN and BOX attributes are not relevant.

Interscript -- September 1985

Standard document constructs

7.4.3 Color of boxes

The INKEDS$ tag determines the background color of boxes. Boxes without an INKED$ tag
are transparent (i.e. an overlaying box does not cover the underlaying box). The ink
provided by the INK$ tag is opaque and makes underlaying boxes invisible.

Note that overlaying does not depend on the box hierarchy. It is determined by the order
in which the boxes are created by the formatting process; subsequent boxes overlay
previously created ones.

Tag: INKED$
Attributes
INKED.Color: OneOf (black white)
Required Tags: BOX$

The value-space of the Color binding will probably be extended to include greys and
colors.

7.4.4 Boxes: internal view

All but the leaf boxes in the layout structure have additional layout within them. They
carry an INSIDELAYOUT$ tag whose attributes describe how the inside layout is to be
performed.

Tag: INSIDELAYOUTS
Attributes

INSIDELAYOUT.X: INSIDELAYOUTMETHOD node
INSIDELAYOUT.Y: INSIDELAYOUTMETHOD node

RequiredTags: BOX$

The attributes are X and Y, which are bound to an INSIDELAYOUTMETHOD node. This
node selects a method for calculating the position of a filled-in box (see the next chapter).
Because boxes are independently laid out in the x- and y-direction, these nodes may be
defined independently of each other.

Interscript -- September 1985

Introduction to Interscript

66

Tag: INSIDELAYOUTMETHODS
Attributes

INSIDELAYOUTMETHOD. Direction: OneOf (fixed up down onOrigins)
INSIDELAYOUTMETHOD.SiblingAdjacency: OneOf (parallel serial)

The attributes of the INSIDELAYOUTMETHOD$ tag are Direction and SiblingAdjacency.
The Direction attribute can be bound to one of four predefined methods:

® The fixed method

Each subbox to be poured defines its position by its two container distances; all other
distances are ignored. For that, the extent measures of the containing box must
already exist; containing boxes with synthesized extent measures are excluded from
fixed inside layout. Normally only one container distance is specified and the other
is given an arbitrary leeway. The formatting process will calculate the appropriate
value. A typical example is the partition of a page into fixed boxes for a heading, a
footing, and content. Here the fixed method is used for the x- and y-direction. The
binding of SiblingAdjacency is ignored when the Direction is fixed.

® The onOrigins method

This is also a "fixed" method. The origin of each box as it is placed into a containing
box is made to coincide with the origin of the containing box. Sibling distances and
container distances are ignored. Characters, for example, are normally filled into
lines such that their base lines are at the same height (i.e. the onOrigins method is
used for the y-direction). Of course, the layout method in the x-direction is not
onOrigins as that would cause every character to be placed on top of every other. The
binding of SiblingAdjacency is ignored when the Direction is onOrigins.

¢ The up method

This is the "fluid" case. The first box to be poured defines its position by its
FromHighContainer distance. Its other distance measures are ignored. The positions
of subsequent boxes are calculated from the lower sibling distance of the preceding
box and the higher sibling distance of the next box. The container distances are
ignored.

If those sibling distances are not identical, a compromise is necessary. The Sibling-
Adjacency attribute of the INSIDELAYOUTMETHODS$ tag permits a choice between
two compromise methods: serial which simply calculates the arithmetic average and
parallel which takes into account the different stretchability of both distances.
Typical examples are lines filled with character boxes according to the up method in
the x-direction.

® The down method

This is the up-method in the opposite direction. Typical examples are columns or
pages filled with lines according to the down method in the y-direction.

T}}e following two examples demonstrate the utility of variable measures in connection
with inside layout methods. Example 7.9 shows how to center (in the x-direction) a box
within a containing box.

Interscript -- September 1985

Standard document constructs 7

Example 7.9: A centered box.

-1-- {BOX$ INSIDELAYOUTS

-2-- INSIDELAYOQUT.X = {INSIDELAYOUTMETHOD$

--3-- INSIDELAYOUTMETHOD.Direction = fixed}

--4-- {BOX$ BOX.X = {SPAN$ SPAN.FromLowContainer = {MEASURE$ 0 0 99999}
5. SPAN.FromHighContainer = {MEASURE$ 0 0 99999}

B 13

Since the layout method of the outer box is fixed, only the container distances of the
subbox are relevant for centering. Because the two container distances are of equal
stretchiness, the formatting process will stretch them equally. This produces a centered
box.

Example 7.10 handles the problem of breaks. This problem occurs when a box is filled
according to the up or down method. When a pour-operation encounters certain boxes
("breaking boxes"), it must stop filling the actual containing box and place such a
breaking box into the next container (e.g. the first box of a chapter is always poured into a
new page or column). Example 7.10 is a solution that utilizes the sibling distance (other
solutions may utilize the FILL$ tag).

Example 7.10: A breaking box for the down method.

1 {BOX$ BOX.Y = {SPAN$
2 SPAN.FromHighSibling = {MEASURE 99999}
3 SPAN.FromHighContainer = {MEASURE 0 100 500} ...}

If there is a prior sibling box, this breaking box cannot be poured into a containing box
according to the down method since it regires an "infinite" higher sibling distance. But if
this breaking box is the first box that is poured, the sibling distance is ignored; the
breaking box will then be poured according to its higher container distance.

7.4.5 Page boxes

A page box is a BOX node carrying an additional PAGE$ tag. The attributes of the PAGE$
tag assemble the information about the medium on which a single document page is
displayed. They are a subset of the page attributes of Interpress [Reference 2].

Tag: PAGES

Attributes
PAGE.MediumName: Atom
PAGE.MediumXSize: Number
“PAGE.MediumYSize: Number

RequiredTags: BOX$

The MediumName attribute identifies the desired medium. If it is bound to NIL, the
document may be printed on a medium that is the default medium of the printer. As with
Interpress, Interscript doesn't define other media identifiers. The MediumXSize and

Interscript -- September 1985 67

Introduction to Interscript

7.4.6 Lines

68

MediumYSize attributes define the size of the medium in BMUs (micas, or 0.01 milli-
meters).

Page boxes are the starting point for the layout procedure that fixes box measures.
Therefore the page box itself must have fixed extent measures (its distance measures are
not relevant). The resulting layout structure is then a sequence of box-trees each of which
has a page box as a root node.

A line is a node carrying the LINES$ tag. It is used in templates. The attributes of the LINE$
tag provide information about the appearance of a line.

The LINE$ tag does not extend the functionality of Interscript: it is the equivalent of a
certain arrangement of boxes ("line boxes"). This equivalence is provided in the
Interscript Standard as the formal definition of the LINE$ tag.

Although it does not add functionality to Interscript, there are two important reasons for
the existance of the LINES tag:

® An editor can recognize lines during editing and therefore perform operations such
as "select next line."

® An editor can recognize lines during formatting and therefore invoke special
procedures for line layout and line breaking. Since these procedures are "hard-
coded" into the editor, they speed up the layout process.

Tag: LINES
Attributes

LINE.Justification: Boolean

LINE.Raggedness: ONEOF (atBeginning centered atEnd)
LINE.LeftMargin: MEASURE node

LINE.RightMargin: MEASURE node

LINE.InterlineLeading: MEASURE node
LINE.AboveBaseline: MEASURE node

LINE.BelowBaseline: MEASURE node

LINE.Tabstops: { SequenceOf TABSTOP nodes }

The Justification attribute determines whether the initial and final characters in a line
are forced to be at the ends of the line box, with stretching occurring between character
boxes.

The Raggedness attribute determines how unused space in a line should be distributed. It
offers a selection between atBeginning (lines assembled from left to right would be
"ragged" at the left), centered (lines would be "ragged" at both ends), and atEnd (lines
assembled from left to right would be "ragged" at the right). Raggedness makes sense
only for non-synthesized line widths. If Justification is bound to true, it overrules
Raggedness.

Interscript -- September 1985

Standard document constructs 7

The LeftMargin and the RightMargin attribute determine the line margins in BMUs. The
left margin defines the FromLowContainer and the right margin the FromHighContainer
distance.

The InterlineLeading attribute defines both sibling distance measures for the y-direction
(they are equal).

The AboveBaseline and the BelowBaseline attribute define the line's HighPartExtent and
the LowPartExtent measure in the y-direction.

The Tabstops attribute defines a sequence of TABSTOP nodes that apply to this line (see
section 7.4.7).
7.4.7 Tabstops

The sequence of TABSTOP nodes bound to the Tabstops attribute of the actual LINE node
contains information used by the formatting process when one or more consecutive TAB$
tags are encountered in a script (see section 7.3.4).

tag: TABSTOPS
Attributes

TABSTOP.Type: OneOf (left centered right aligned)
TABSTOP.AlignedOn: CHAR node
TABSTOP.Position: Number

The Position attribute specifies the distance from the beginning of the line to the tabstop
expressed in BMUs. Note: This distance is NOT measured from the edge of the page.

The Type attribute determines whether the text following a TAB$ sequence must:
® begin at the tab position (Type is bound to left);
® end at the tab position (Type is bound to right);
® be centered around the tab position (Type is bound to centered);
°

be moved such that a certain character (defined by the AlignedOn attribute) falls at
the tab position (Type is bound to aligned). Aligned tabs may be used to define
"decimal tabs."

Interscript -- September 1985

Introduction to Interscript

Example 7.11a: Lines with TABSTOP nodes.

1-
9.
--3--
b

--10--
~11--
~12--

LINE.Tabstops =
{ {TABSTOP$ TABSTOP.Type =left
TABSTOP.Position = 30*254}
{TABSTOP$ TABSTOP.Type = aligned
TABSTOP.Position = 50*254
TABSTOP AlignedOn = {CHARS$ <:>} }
{LINES
{TAB$} {CHARS$ <Arrival>}
{TAB$} {CHARS$ <1:00p.m.>}}
{LINES ...
{TAB$ } {CHARS$ <Departure>}
{TAB$ } {CHARS$ <10:00 p.m.>}}

Example 7.11b: Rendered lines with tabs.

1--
i,

7.4.8 Fill

Arrival 1:00 p.m.
Departure 10:00 p.m.

It is often necessary to terminate the "filling" of the layout entity currently being filled
and then continue with the "next" one (e.g. when forcing a new line or new page). The FILL
node aids in the implementation of this function (some character sets provide special
control characters for creating a new line or page; those control characters may be used
instead of FILL nodes).

Tag: FILLS
Attributes

FiLL.Container: Atom | Nil

The FILL$ tag simply augments the node where it appears. It provides the relevant
binding FiLL.Container. The molds of a pour operation must be arranged to provide the
functionality of terminating the filling of a layout entity. If FILL.Container is Nil, the
entity whose filling is to be terminated is the immediate container; if FILL.Container is
non-Nil, the entity is the first entity higher in the layout with a label matching
FILL.Container.

7.4.9 Balanced nodes

70

A popular layout arrangement is balanced columns. The desired effect is to divide
document content evenly between two or more layout boxes, where "evenly" is in terms of
set-length.

The appropriate way to accomplish this within the Interscript layout facilities is to
enclose the "balanced” layout boxes within an outer box, with their fromContainer
measures arranged so they must all be the same height as the containing box.

Two column boxes might be contained within a page-area box. The column boxes are of
variable height (their extent measures have a lot of stretch). The page-area box is also

Interscript -- September 1985

Standard document constructs 7

stretchy. But the column boxes’ fromLowContainer and fromHighContainer measures
are zero. Thus the two columns are forced to the same height.

But such an arrangement can be difficult for an editor to paginate. The user-intent is not
clear and an editor might try, and then reject, many different lines-per-column arrange-
ments before it finds an appropriate one.

The BALANCED node is provided as an aid to an editor.

Tag: BALANCEDS

If two or more sibling nodes have a BALANCED$ tag, then: 1) they all have an
INSIDELAYOUTS$ tag and the same InsideLayout attributes; 2) their InsideLayout method,
for exactly one of X and Y, has Direction = up or Direction = down; 3) they are constrained
to have the same total extent in the X or Y direction.

7.4.10 Templates

The rules that define layout in Interscript allow a page to vary with the formatted con-
tent. The construction rules for the layout structure are given by the POUR.Template
binding in a pour node. Within that binding, it is necessary to allow flexibility: to allow
"some number of these" or "this or that, whichever matches the logical content." The
flexibility is provided by TEMPLATE nodes within the POUR.Template.

Tag: TEMPLATES
Attributes
TEMPLATE.Expresses: OneOf (sequence alternation repetition)

Content: SequenceOf Node

The Expresses attribute gives the semantics of the node:

® sequence
All the subnodes of the TEMPLATE node must be chosen for the layout and must
appear in the order given.

® alternation
One of the subnodes of the TEMPLATE node must be chosen.

® repetition
The TEMPLATE node contains only one subnode that may be repeated arbitrarily
often.

Example 7.12 provides a template for a report layout. It consists of a special first page and
then some number of following pages. Each page contains a heading, a content box, and a
footing.

Interscript -- September 1985

l Introduction to Interscript

Example 7.12 The template of a report (incomplete).

-1-- {TEMPLATE$ TEMPLATE.Expresses = sequence

2. {BOX$ PAGE$ TEMPLATE$ TEMPLATE.Expresses = sequence
~3-- {BOX$ MOLDS}

4 {BOX$ MOLDS$...}

5. {BOX$ MOLDS}}

—B-- {TEMPLATE$ TEMPLATE.Expresses = repetition

-7-- {BOX$ PAGE$ TEMPLATES TEMPLATE.Expresses = sequence
8- {BOX$ MOLD$...}

9. {BOX$ MOLDS ...}

--10-- {BOX$ MOLDS$ BH

First page
heading
content box
footing

Following pages
heading
content box
footing

Example 7.13 shows a page template that allows a choice between a two-column and a

one-column page.

Example 7.13 A page template (incomplete).

-1-- {TEMPLATE$ TEMPLATE.Expresses = alternation

--2-- {BOX$ PAGE$ TEMPLATE$ TEMPLATE.Expresses = sequence
--3-- {BOX$ TEMPLATE$ TEMPLATE.Expresses = repetition
-4 {LINES ... 1}

--5-- {BOX$ TEMPLATE$ TEMPLATE.Expresses = repetition
--6-- {LINES}}}

Sy {BOX$ PAGE$ TEMPLATE$ TEMPLATE.Expresses = repetition
--8-- {LINES }}}

7.5 Pouring constructs

Two-column page
left column

right column

One-column page

In the processable format, the logical structure with the content and the layout defini-
tions are separated. Therefore the formatting process must include functions that recom-
bine them so the text is positioned in the right place on a page. These functions are the
pour operations. This section describes the tags controlling these pour operations.

7.5.1 POUR and MOLD nodes

72

The formatting process performs the layout of a document by choosing boxes from a
template, filling them with text, and arranging them within containing boxes. It is a
nested bottom-up process consisting of a hierarchy of independent pour operations each
governed by a single POUR node. Its result is a sequence of boxes which, in turn, may be

used as input for a higher pour operation.

A POUR node may contain content portions and subordinate POUR nodes providing boxes
that are constructed by the corresponding pour operations. The content portions and these
boxes are called content nodes. A pour operation pours the content nodes into some con-

taining boxes.

Interscript -- September 1985

Standard doéument constructs 7

Tag: POURS
Attributes

POUR.Labelset: { SetOf Atom}
POUR.Template: Node
POUR.SatisfactionThreshold: Number
POUR.SatisfactionForwardSearch: Number
pOUR.SatisfactionUpwardSearch: Number

The SatisfactionThreshold, SatisfactionForwardSearch, and SatisfactionUpwardSearch
attributes are discussed in connection with the PENALTY$ tag (see section 7.5.3).

The Labelset attribute defines the set of relevant labels. They are used to indicate in which
boxes the content nodes must be poured. These boxes are called MOLD nodes. The corres-
pondence between MOLD nodes and content nodes is defined in two steps (the next chap-
ter gives a more detailed description):

1. Each subset of relevant labels defines a stream of MOLD nodes and a stream of con-
tent nodes taking in all nodes that are labelled with the corresponding label set and
whose other labels are not relevant. The pour operation concatenates the members
of a stream in the order in which they appear in the POUR node to produce a solid
layout. Since the pour operation handles each stream independently, the succession
of streams is not relevant and the memberscan be mixed.

2. If a stream of liquid nodes and a stream of MOLD nodes have the same subset of
relevant labels, the nth liquid node is poured into the nth MOLD node.

Example 7.14 demonstrates how the set of relevant labels defines streams. This example
uses only content portions.

Example 7.14 Streams in a POUR node.

-1-- {POUR$ POUR.Labelset = {English French Footnote}

-2-- { {CHARS$ LABEL$ LABEL.Labels={English} <Englishtext1>}

--3-- {CHARS$ LABEL$ LABEL.Labels = {English Footnote} < English footnote>}}
--4-- {CHARS$ LABEL$ LABEL.Labels={French} <Frenchtext1>}

--5-- {CHARS$ LABEL$ LABEL.Labels = {English} <Englishtext2>}

--6-- { {CHARS$ LABELS$ LABEL.Labels = {French} <Frenchtext2>}

-q-- {CHARS$ LABEL$ LABEL.Labels = {French Footnote} <French footnote>}}}

The above POUR node contains four streams given by the subsets of {English French
Footnote}:

o {English} defines the stream {CHARS$ < English text 1>}{CHARS$ <English text 2>}.
® {French} defines the stream {CHARS$ <French text 1>}{CHARS$ < French text2>}.

e {English Footnote} defines the stream {CHARS$ <English footnote>}.
e {French Footnote} defines the stream {CHARS$ < French footnote>}.

POUR nodes contain templates that define construction rules for the layout structure. The
templates are bound to the Template attribute. Often they are predefined in the global
environment or in styles and attached to certain logical "types." For example, a chapter-

Interscript -- September 1985

Introduction to Interscript

template may be predefined and copied into those POUR nodes that should be handled as
"chapters." (Note: at present a CHAPTERS tag as a logical structure cannot be defined.)

Tag: MOLDS
Attributes

moLD.Coercion: QuotedExpression

The Coercion attribute enables changing attribute bindings after a content node has been
poured into the MOLD node. A typical use of Coercion is to handle a pour specifying that
the first letter of a line-is to be two points larger than the other letters. This larger font
cannot be stated in the logical content since it is not known which characters will be
placed at the beginning of a line. Also, this larger font cannot be stated in the layout
definition of the line since the font of the poured-in characters is not known. Example 7.15
shows a solution to this problem utilizing Coercion. Chapter 8 discusses Coercion more
thoroughly.

Example 7.15 A MOLD node with Coercion.

—1--
D
_-3--
-4

{LINES ...
{CHAR$ MOLDS$... First character box
MOLD.Coercion = "FONT.Size = FONT.Size# +2"}
{CHARS$ MOLDS$... }}

7.5.2 VACUUM nodes

Sometimes the desired effect of a "pour"” is not simply to put each item of content into
a place in a layout. Often one wishes to replicate certain values from the logical
structure. For example, a page heading given as content portion of the logical
structure will appear in each page node as the result of a pour, yet there is only one
instance of the page heading in the document.

This need is addressed via the VACUUM node.

Tag: VACUUMS
Attributes
vacuuM.Sources: {SetOf Atom }
Required Tags: MOLD$%

When a VACUUM node is encountered in a template, the pour operation is at a certain
node, matching the pour label set, in the content. The content tree is scanned upward,
examining the direct ancestors of that node and their immediate descendants, for the
first instance of a VACUUMSOURCE node whose binding to Sources is the same as in
the VACUUM node. That is, a match with ('parenti)j for the smallest i, then the
smallest j. The content of this node is used as the source of the pour into the VACUUM

Interscript -- September 1985

Standard document constructs

node in the template. The pour may alter bindings and content in the target VACUUM
node. If no matching VACUUMSOURCE node is found, the VACUUM node is treated
just like an ordinary mold that lacks matching liquid.

Tag: VACUUMSOURCE$S
Attributes

VACUUMSOURCE.Sources: {SetOf Atom }

7.5.3 Penalties

Templates often allow an editor to choose among several, valid choices. If there were no
additional information, an Interscript editor would be free to choose any alternative
which managed to lace molds and content in a one-to-one correspondence. Consider a
simple example of lines that are to be filled into pages. When does the pouring process
stop filling one page and begin another? If there is no specification, putting only one line
on each page would be perfectly legal.

Such unrestricted choices are often given when formatting lines since it is assumed that
each editor knows how to handle them. To disallow this freedom and to control the
various choices, Interseript provides the PENALTY$ tag. The PENALTY$ tag is used in
templates and may be attached to any node. Since its purpose is to discriminate among
alternatives, it is normally attached to nodes that appear in a choice or a repetition.

Tag: PENALTY$
Attributes

PENALTY.Amount: Number

The Amount attribute is bound to a number defining a penalty. It'is the task of the pour
operation to choose alternatives such that the sum of all penalties is as small as possible.
The alternatives of all hierarchy levels contribute to this penalty sum. Therefore a choice
on a lower level must be propagated to the whole document. "Good" choices may prove to
be "bad" when considered on a higher level.

When formatting the simple document in Example 7.16, an editor should create as few
lines and pages as possible. Therefore each line and page gets a penalty.

interscript -- September 1985

-1
ut

l Introduction to Interscript

Example 7.16: Penalties for a simple page layout.

--1-- {DOCUMENT$ POUR$ POUR.Labelset = {A}

--2-- POUR.Template = {TEMPLATE$ TEMPLATE.Expresses = repetition

--3-- {BOX$ PAGE$ INSIDELAYOUTS$

-4-- PENALTY$ PENALTY.Amount =2000

-5 {TEMPLATES TEMPLATE Expresses = repetition

--6-- {LINE$ PENALTY$ PENALTY.Amount =100 ...}}}}
T {CHARSS LABEL$ LABEL.Labels={A} ... <some text>}}

To calculate the penalties in Example 7.16, we assume the total number of text lines to be
12. The optimal selection with respect to the inner template (line 5) is choosing only one
line for a page which supplies a penalty sum 25200 for the whole document (2000 x 12
pages plus 100 x 12 lines). If the worst selection of the inner template is chosen (all lines
on one page), the penalty sum is 3200 (2000 x 1 page plus 100 x 12 lines).

Contradictory conditions as in the above example often occur between different tem-
plates. It would be impossible to enumerate each of them and instruct an editor on its
alternatives. The PENALTY$ tag provides a universal method to make all alternatives
comparable. So a script doesn't explicitly define how it is to be rendered. The local editor
must find a layout that minimizes the penalty. Different systems may produce different
results because of their different minimizing algorithms. Since a local change of a penalty
may have global effects, one must handle the penalty number carefully.

Minimizing the penalty requires examining an entire set of alternatives before a single
alternative is chosen. Normally this set is large and it would take too much time to
examine it completely. Therefore approximation methods are used as determined by the
attributes SatisfactionThreshold, SatisfactionForwardSearch, and SatisfactionUpward-
Search of the POURS tag (see the next chapter).

A second tool is also useful to reduce the complexity of minimizing penalties. The FENCE$
tag permits a layout to be broken into a sequence of pieces with a "hard” boundary (or
fence) between the pieces. The pouring process optimizes the penalty of one piece after
another which is much faster than if it were handling the layout as a whole.

Tag: FENCE$

7.5.4 TOGETHER relations

A content portion must frequently be rendered near another. Typical examples are a
caption, which must not be separated from the image with which it is associated, or a
footnote, which should be rendered on the same page as its reference.

The requirements of a caption associated with an image can be "structurally” met by
making the caption immediately follow the image in the same stream. One can simply
define a containing box in which both the caption box and the image box are placed. Since
a pour operation never divides boxes, those two boxes cannot be separated by a subse-
quent pour operation. This problem can thus be solved by the appropriate template
definition.

76 Interscript -- September 1985

Standard document constructs 7

A structural solution won't work for a footnote and its reference because they are in
different streams. Since they are laid out independently, there must be additional infor-
mation to relate them. That's the function of the TOGETHERS tag.

Tag: TOGETHERS
Attributes

TOGETHER.Penalty: Number
TOGETHER.LevelLabel: Atom | Nil

Content: SequenceOf Node

All the subnodes contained in a TOGETHER node should be rendered as "near" as possible.
The Penalty attribute defines a penalty for the "distance" between the TOGETHER sub-
nodes. This distance counts how many boxes lie in the layout structure between the boxes
containing the TOGETHER subnodes. All boxes are not necessarily counted. It doesn't
matter, for example, if the boxes for a footnote and its reference lie in other boxes. Only
page boxes count. Relevant boxes are distinguished by a label-atom bound to the
LevelLabel attribute. The algorithm for determining such a distance is explained in the
next chapter. This distance and the associated penalty will be calculated by the corres-
ponding pour operation and added to the penalty sum of the layout.

7.5.5 Paragraphs

A PARA node collects together the text and layout information that make up a single
document paragraph. The PARA$ tag does not extend the functionality of Interscript: a
PARA node is the equivalent of a POUR node which "pours" characters (and other things)
into lines. The PARA node has been standardized so editors can easily recognize the
straightforward instances of paragraphs.

The PARAS tag standardizes "reasonable" cases. Exceptional cases must explicitly use
pour constructs and declare themselves as paragraphs by the PSEUDOPARAS$ tag.

Interscript -- September 1985

-]
-1

Introduction to Interscript

Tag: PARAS
Attributes

paRA.Justification: Boolean

parRA.Raggedness: ONEOF (atBeginning centered atEnd)
PARA.AvoidWidow: Boolean
pAaRA.AvoidOrphan: Boolean
paRrA.FirstLineLeftMargin: MEASURE node
PARA.LeftMargin: MEASURE node
PARA.RightMargin:MEASURE node
PARA.Preleading: MEASURE node
PARA.Postleading: MEASURE node
PARA.AboveBaseline: MEASURE node
pARA.BelowBaseline: MEASURE node
paRrA.InterlineLeading: MEASURE node
PARA.LabelAugment: Atom | Nil

parA.Tabstops: { SequenceOf TABSTOP nodes }

The attributes specify the template that is associated with a PARA node. More precisely,
they determine the corresponding attributes for the lines in that template. The following
attributes have a special meaning.

The FirstLineLeftMargin attribute defines the left margin of the first line. The left margin
of all other lines is defined by the LeftMargin attribute. The RightMargin attribute
defines the right margin for all lines.

The InterLineLeading attribute defines the "from sibling" attributes for the lines. There
are two exceptions: the FromHighSibling distance measure for the first line is given by the
PreLeading attribute, the FromLowsSibling distance measure for the last line by the
PostLeading attribute.

The WidowControl and the OrphanControl attributes define whether widows (the first
line of a paragraph that is separated from the following lines) and orphans (the last line of
a paragraph that is separated from the preceding lines) should be avoided if possible.

Essentially, paragraphs are POUR nodes whose template provides "lines" into which
paragraph content is poured. Two special labels are used as follows:

® The ParaContent label controls pouring the paragraph. It is the only pour label of
this pour and is attached to the paragraph content and the MOLD nodes in the
template lines.

® The Line label is attached to the resultant lines of the paragraph pour. It is
expected that higher pour operations with Line as a pour label will handle those
lines.

The Line label cannot distinguish between lines produced by different paragraphs. This is
sometimes necessary, for example to cause the lines of a footnote paragraph to be directed
to the footnote area of a page. Therefore the labelset of the resultant lines may be
augmented by an additional label supplied by the LabelAugment attribute of the
paragraph node. The result of the paragraph's pour is labelled with Line and the

Interscript -- September 1985

Standard document constructs 7

LabelAugment value, if any. In principle, this result is a sequence repeating the following
box:

{ BOX$ LABEL$ LABEL.Labels = {Line PARA LabelAugment #}....}.

For the precise definition of a paragraph in terms of a pour, please see the Interscript
Standard.

7.5.6 "Pseudo” paragraphs

7.6 Styles

As with "pseudo” characters, the formatting process handles a PSEUDOPARA node as
though it were a PARA node.

The PSEUDOPARAS tag does not add any Interseript functionality to a node. It expresses a
user's intent to handle a content portion as a paragraph and helps an editor perform
operations as "expand selection to a paragraph." PSEUDOPARAS$ tags will typically be
attached to pour nodes, where the pour node is logically a paragraph, but utilizes some
complex layout arrangement not expressable via an ordinary PARA node.

Tag: PSEUDOPARAS

POURS$ is not a required tag, but it will frequently be present. It is not required because a
logical pararaph could be expressed without a pour: it could be a sequence of line nodes.

Many editors use "styles" in their user interface. Styles enable a user to associate a
named property, like foreign word, with text. The style can then cause the text to be
presented in some different way, such as in italic font. This indirection has two advan-
tages: 1) different properties (foreign word and emphasis, say) may be rendered the same,
yet can be discriminated in a search; 2) the presentation of a document may be altered by
substituting a new set of styles.

The concept of styles exists within Interscript via indirection. The STYLE$ standard
document construct defines the user-sensible styles of a document.

Tag: STYLES
Attributes

sTYLE.Expansion: Node | Quoted Expression

The binding to sTyLe.Expansion is the expansion of the style. A style definition exists
in a script by being bound to a name, such as Name = { STYLE$... }. Invoking this
style within the script takes this form: Name#:STYLE.Expansion # | .

Interscript -- September 1985

Introduction to Interscript

A user-sensible name is typically attached to a style by augmenting a STYLE node
with a USERNAMES or USERDESCRIPTIONS tag.

7.7 Non-Interscript editing

7.8 Hints

80

Interseript enables a non-Interscript conforming editor to "edit" a script by allowing it to

leave "warnings" in nodes. This is particularly useful when a user wishes to edit a node
that he understands but the workstation software does not; the workstation could allow
him to directly edit Interscript constructs.

These warnings are given by CAUTIONS tags. These tags indicate that possibly non-
Interscript conforming edits have been made to this node. Editors should exercise care. If
an editor understands a node, it can, if it desires, remove the warning.

Tag: CAUTIONS

It may be convenient for an editor to remember accelerator information in a script. An
editor might, for example, remember the line-breaks associated with a paragraph and a
particular set-width. This could speed a subsequent pagination operation.

Interscript provides this functionality via the HINT node. A HINT node carries redundant
information which may be useful to an editor, presumably because the information is
expensive to recompute.

Tag: HINTS$
Attributes

HINT.Predicate: Boolean -- Should be TRUE
HINT.ldentifier: Atom

Content: Any

A HINT node only contains information concerning its directly enclosing node and the
nodes hierarchically contained within it.

If an editor alters a document, it must do something about HINT nodes that carry informa-
tion about the edited fragment of the document that might no longer be valid. It is always
appropriate for an editor to delete a HINT node. This is not considered an editing action.

The Identifier attribute uniquely identifies the nature of the hint. An editor that recog-
nizes the identifier will be able to take advantage of the hint content and perhaps re-
create it after an editing action. An editor that does not recognize the identifier will not be
able to take advantage of the content; if it edits the document, it should delete the hint
since it does not know how to recreate it.

Interscript -- September 1985

Standard document constructs 7

The Predicate attribute appears for future compatibility. It should be set to TRUE.

7 9 Revisions

Documents are often revised and it is common to track the parts of a document that have
been changed. Interscript enables this via the REVISION$ tag. The REVISIONS tag, applied
to a node, indicates that the node and its content, or some fraction thereof, has been
“revised." REVISIONS tags are optional. An editor may edit without utilizing REVISION$
tags, it can also place a REVISION$ tag on a node without setting revision information in
all ancestor nodes.

Tag: REVISIONS
Attributes

REVISION.Version: Integer

A typical editing action is when an editor removes all "old" revision indications, then
attaches new revision indications. Another action is when an editor "ages" the older
revision indications.

The Version binding allows for "aging" revisions. A "new" revision always gets a Version
of zero. An editor may, as an editing action, "age" revisions by subtracting one from the
Version of all pre-existing REVISIONS tags. Thus the revision versions within a document
range from the newest revisions, with Version=0, to some old versions with negative
Version bindings.

This REVISIONS$ tag capability is not the same as allowing a "last edit date" to be attached
to an arbitrary node. A possible extension to Interseript is to allow multiple "edit date"
values to be associated with the DOCUMENT node and have them correlated with revision
Versions.

Interscript -- September 1985

The formatting process

Chapter 7 lists the standard document constructs and formally defines them as tags with
associated attributes. With those constructs we are now able to express documents as
scripts. But if we received such a seript, we still wouldn't know how to render it. We also
need to know the meaning of the standard document constructs. This meaning is given by
the built-in procedures invoked by those constructs. This chapter describes the built-in
procedures controlling rendering; the Standard will provide their formal definitions. Note
that these procedures are not described in the base language and are not interchangeable;
they are expected to be "hard coded" in an Interscript editor.

8.1 Formatting process overview

The formatting process is part of an editor and is invoked each time a script is to be ren-
dered (on screen or on paper). The formatting process reads internalized scripts and starts
special actions when encountering layout or pour constructs (defined by the tags listed in
section 7.5 and 7.6). It produces a new script that represents the image format of the
original script.

The image format describes the layout of a script. It may contain nodes of any type, but
only its BOX nodes will be rendered. Essentially it consists of a sequence of page boxes
each of which contains a tree of nested subboxes. These box trees form the layout struc-
ture. The content portions of the original script are broken into parts and filled into the
leaf boxes of the layout structure.

Interscript’s description of the formatting process is declarative and not procedural. Inter-
script imposes rules which the resulting image format must satisfy, but does not prescribe
the procedures by which legal image formats are achieved. In particular, Interscript does
not standardize how to break text into lines or when to stop filling lines into a box. There
is the general understanding that boxes should be filled as much as possible, although
each Interscript editor is expected to apply its own filling algorithm.

Interscript provides its own formatting process model. This model does not uniquely deter-
mine the result and allows the construction of several legal image formats. It is used for
checking Interscript editors: an image format produced by an Interscript editor is consid-
ered legal if it can also be produced by Interscript’s layout process.

The task of the formatting model is to describe clearly and simply Interscript’s formatting
rules. That description should not be regarded as a model for implementation. To demon-

Interscript -- September 1985

o] Introduction to Interscript

strate how an effective implementation might work, section 8.5 gives an example
produced by an existing editor.

Interscript’s formatting process proceeds in two major steps: pouring and fixing.

Pouring produces an intermediate script by copying the original seript and replacing the
POUR nodes by sequences of nested nodes that are constructed according to a POUR node’s
template. Normally pouring produces boxes in which the content of a document is filled.
Those boxes are still stretchable and may change their size depending on their content
and surroundings. They represent the node structure of the image format but lack a fixed
arrangement. That intermediate script is called the incomplete image format. Pouring is
described in detail in section 8.2,

Fixing occurs after pouring. It takes the incomplete image format and arranges the final
box positions by calculating and fixing box measures. Its result is the complete image
format. Fixing is described in detail in section 8.4.

An effective formatting process would not proceed this way. Rather than performing all
pours and then detecting an error during fixing, it would perform a provisional fixing
incrementally after each pour.

Internalized “Incomplete Complete
script _ P| image format - | image format
Pouring Fixing

Figure 8.1: Interscript’s formatting model

Normally templates of POUR nodes do not uniquely prescribe the nodes to be constructed
as the result of the pour. They offer choices and repetitions which allow several image
formats to be legal. For example, it may happen that rendering only one character on
each page is a legal image format. To restrict this freedom and to express layout
preferences of a script’s originator (e.g. a text portion and an image should be rendered on
the same page), penalties may be attached to layout decisions. In this case several pour
processes must be started to get an image format with the least (or approximately least)
penalty sum. Interscript’s selection algorithm controls this process. It is described in
detail in section 8.3.

8.2 Pouring

Interscript’s pour process copies the original script and replaces all the POUR nodes. It is a
nested process that runs through the dominant script structure in bottom-up fashion
handling each POUR node separately (each such operation is called a pour operation).

Each pour operation proceeds in two steps:

1. A pour operation constructs a sequence of nodes that replaces the POUR node. The
template associated with the POUR node provides the necessaryv construction rules.
Normally a pour operation constructs BOX nodes.

2. A pour operation fills MOLD and VACUUM nodes with content. Such content may
consist of elementary content boxes (such as character boxes) or of nodes produced by
subordinate pour operations.

The result of a pour operation is a sequence of nodes with some internal structure. When
all POUR subnodes of a POUR node have been poured, a pour operation for the POUR node

34 Interscript -- September 1985

The formatting process 8

itself is started. The nodes produced by the subordinate POUR nodes are then part of the
content of the higher POUR node. In this way the pour process continues upward in the
dominant script hierarchy.

8.2.1 Creating nodes according to a template

A template is bound to the POUR.template attribute and consists of a tree of nodes. The
pour operation traverses this tree in depth-first order. When descending, it creates image
format nodes by transferring certain template nodes with all their tags and bindings into
the image format preserving the hierarchical order. Each template node (except the leaf
nodes) carries a TEMPLATES tag whose Expresses attribute tells the pour operation which
of the subordinate template nodes it may transfer to the image format:

® Expresses bound to sequence.
The pour operation must transfer each subnode.

® Expresses bound to choice.

The pour operation must transfer one of the subnodes. The alternative to be chosen
is not defined explicitly in a script. It is the task of an Interscript editor to find the
“right" alternative (i.e. an alternative that allows successful formatting of the whole
script). Normally the "right" alternative is not uniquely determined; several alter-
natives may prove to be "right." The pour operation at this point ignores penalties
that may be attached to the alternatives (see section 8.3). The pour operation
continues descending the template within the chosen alternative.

® Expresses bound to repetition.

The pour operation can decide whether to repeat the inside node or not. A script
doesn't explicitly limit the number of repetitions. It is the task of an Interscript
editor to find the "right” number of repetitions. Again, the "right" number is nor-
mally not uniquely determined. The pour operation at this point ignores penalties
that may be attached to the repetition node (see section 8.3). When the pour opera-
tion chooses a repetition, it continues descending the template within the repeated
node. Otherwise it ascends to the parent node of the actual node.

Templates may contain content portions. They are associated with fixed boxes and will be
rendered in these boxes (such as fixed heading text contained in a heading box). They do
not belong to the logical structure.

Templates may contain POUR nodes. These POUR nodes do not belong to the logical
structure but to the layout structure. They are handled like any other POUR node. Thus, a
subordinate pour operation is started creating a sequence of nodes replacing the POUR
node. POUR nodes in templates are used to put some content with dynamic layout rules
into predefined layout boxes. For example, such POUR nodes allow defining paragraphs in
headings or footings.

In this way the pour operation constructs a sequence of nested nodes that replaces the
POUR node. In the second step, the pour operation traverses these nodes in depth-first
order and fills VACUUM and MOLD nodes with content.

8.2.2 Filling MOLD nodes

MOLD nodes in the image format are placeholders for content nodes of POUR nodes. These
content nodes may consist of elementary content boxes (such as character boxes) or of
nodes produced by subordinate pour operations. The pour operation proceeds through
these six steps:

1. The pour operation builds streams of MOLD nodes for each subset of the set of
relevant labels (given by the LabelSet attribute in the actual POUR node). A MOLD

Interscript -- September 1985

3 Introduction to Interscript

node belongs to such a stream if it is labelled with the corresponding label set and all
its other labels are not relevant. The pour operation concatenates the members of a
stream in depth-first order as they appear in the image format.

2. In the same way the pour operation builds streams of content nodes. It traverses the
subnodes of the actual POUR node in depth-first order looking for leaf nodes (which
are then elementary content boxes) or subordinate POUR nodes. In the first case it
examines the set of labels of that leaf node looking for relevant labels. In the second
case it examines the set of labels of the nodes resulting from the pour operation of
that subordinate POUR node. The nodes found in this way are concatenated into
streams.

3. The pour operation compares the content node streams and the MOLD node streams.

® Streams associated with the same subset of relevant labels must have the same
number of members. Partial pours cause pour errors.

® Content node streams without a corresponding MOLD node stream and content
nodes without relevant labels are appended to the result of the pour operation.
Higher pour operations are expected to handle them. Otherwise they are discard-
ed (e.g. footnotes may occur in the TOGETHER nodes with the referred text; but
text and footnotes are handled by different pour operations).

® MOLD node streams without a corresponding content node stream and MOLD
nodes without relevant labels remain as they are.

4. If a content node stream matches a MOLD node stream, the nth content box is associ-
ated to the nth MOLD node. The pour operation checks whether each content node fits
the corresponding MOLD node. For this, the content node must carry all the tags of
the MOLD node (except the MOLD$ tag); otherwise a pour error occurs.

5. Fitting content nodes are transferred into the image format replacing the corres-
ponding MOLD nodes. The relevant bindings of the MOLD node remain valid. They
overwrite the corresponding bindings in the content node (except the binding of the
MOLD.coercion attribute which is just added to the content node). Attributes in the
MOLD node that are bound to the atom MATCH are excluded. Their bindings are
determined by the content node. Note: since pour operations handle internalized
scripts, the set of relevant bindings in a MOLD node is complete. If such a binding
should get its value from a content node, it must explicitly be bound to the atom
MATCH.

6. The pour operation evaluates the MOLD.Coercion expression within the transferred
content node. This may cause an overwriting of bindings. It may even happen that
the pour operation must start again from the beginning (e.g. perform new line
breaks if the Coercion expression requires a larger font size making the text extend
beyond the allocated line length).

8.2.3 Filling VACUUM nodes

The content of VACUUM nodes is not predefined in the template, but must be poured in
from an appropriate VACUUMSOURCE node in the logical structure.

VACUUMSOURCE nodes and VACUUM nodes are associated by matching Source label-
atoms. There may be several VACUUMSOURCE nodes associated with one VACUUM node.
The pour operation must choose the "nearest" one. This is done by the following proce-
dure:

When encountering a VACUUM node, the pour operation starts examining the
children of the actual node which is to be filled in from left to right. If no appropriate

36 Interscript -- September 1985

The formatting process 8

VACUUMSOURCE node is found among them, the pour operation ascends to the next
higher node again examining the children. It continues this procedure until it finds
an appropriate VACUUMSOURCE node or reaches the root node.

If no VACUUMSOURCE node is found, the VACUUMSOURCE node is treated like an
ordinary MOLD box without a matching liquid node.
8.2.4 An example of a one-level pour

This section demonstrates the principles of the pouring process. It discusses the one-level
POUR node shown in Example 8.1.

Interscript -- September 1985

37

Introduction to Interscript

Example 8.1: One-level pour *

-
-2--

—-3--

—-4--

—-5--

--6--

—-7--

—-8--

-9

-10--
—-11--
—-12--
13-
--14--
--15--
-16--
-17--
-18--
-19--
--20--
21
--22--
--23--
--24--
--25--
—-26--
27—
--28--
--29--
--30--
--31--
-32--
-33--
--34--
--35--
--36-
37—
--38--
--39--
--40--
41—
--42--
--43--
--44--
--45--
—-46--

88

{POUR$ POUR. LabelSet = {Text}
POUR.Template =
{TEMPLATE$ TEMPLATE Expresses = repetition

{BOX$ LABEL$ LABEL.Labels={TextLine}

{TEMPLATE$ TEMPLATE.Expresses = sequence
{CHAR$ FONT$ MOLD$ LABELS ...

LABEL.Labels = {Text}

FONT.Name = Roman FONT.Points= 12

FONT.BaselineOffset =0
FONT.Boldness = MATCH

FONT.ltalic= MATCH FONT.Strikeout = MATCH

FONT.Underlining = MATCH

Template
Line box

First MOLD
character box
(with coercion)

MOLD.coercion = “FONT.Boldness = FONT.Boldness# + 1" }

{CHARS$ FONT$ MOLD$ LABELS$...

LABEL.Labels = {Text}

FONT.Name =Roman FONT.Points= 12

FONT.BaselineOffset =0
FONT.Boldness = MATCH

FONT.ltalic = MATCH FONT Strikeout = MATCH
FONT.Underlining = MATCH }}}}}
{CHARS$ FONT$ LABELS ...

LABEL.Labels = {Text}

FONT.Name = Helvetica FONT.Points=10
FONT.BaselineOffset =0

FONT.Boldness = Regular

FONT.Italic = false FONT.Strikeout = false
FONT.Underlining = false

<Textportionl >}

{CHARS$ FONT$ LABELS ...

LABEL.Labels = {Text}

FONT.Name = Helvetica FONT.Points= 10
FONT.BaselineOffset = 0

FONT.Boldness = Regular

FONT.Italic =true FONT.Strikeout = false
FONT.Underlining = true
<EmphasizedText>}

{CHARS$ FONT$ LABEL$...

LABEL.Labels = {Text}

FONT.Name = Helvetica FONT.Points= 10
FONT.BaselineOffset =0

FONT.Boldness = Regular

FONT.ltalic = false FONT.Strikeout = false
FONT.Underlining = false
<Textportion2>}

{CHARSS ... LABEL$ LABEL.Labels= {Footnote} ...

<Footnotetext>}}

MOLD character boxes
(without coercion)

Content node
containing
36 characters

Content node
containing
10 characters

Content node
containing
38 characters

Content node

* Notational remark: A pour process handles internalized script. Here and in the following examples
internalized scripts are described in publication encoding. These descriptions will not be complete. Tags and
bindings that are not relevant for the actual discussion are omitted; this will be indicated by an ellipsis ...). '

Interscript -- September 1985

The formatting process 8

First major step: Creating nodes

The pour operation creates boxes by traversing the template (lines 3 .. 20) in depth-first
order. It selects a line box from the repetition node (line 3) and puts, as required (in line
5), the first character box into the line box. For reasons which lie beyond the scope of
Interscript, it fills that line box with an additional 41 character boxes. (The CHARS node
in line 14 is itself a template offering a repetition of character boxes.) It repeats this pro-
cedure creating a second line box with 42 character boxes. Then it stops creating boxes.
Example 8.2 shows the result.

Example 8.2: Node structure created according to the template in Example 8.1

o P
2
—-3-
b
-5
—6--
—7--
--8--
-9--
-10--
11
-12--
13-
—-14--
--15--
-16--
—17--
--18--
-19--
--20--

{BOX$ LABELS ... First line box
LABEL.LabelSet = {TextLine}
{CHAR$ FONT$ MOLD$ LABELS ... First character box

LABEL.Labels = {Text}

FONT.Name = Roman FONT.Points=12
FONT.BaselineOffset =0

FONT.Boldness = MATCH

FONT.ltalic = MATCH FONT .Strikeout = MATCH
FONT.Underlining = MATCH

MOLD.Coercion = “FONT.Boldness = FONT.Boldness# + 1"}

{CHAR$ FONT$ MOLD$ LABELS ... Following
LABEL.Labels = {Text} character boxes
FONT.Name = Roman FONT.Points =12 (repeated 41 times)

FONT.BaselineOffset =0

FONT.Boldness = MATCH

FONT.ltalic=MATCH FONT.Strikeout = MATCH
FONT.Underlining = MATCH }

ceea}
{BOX$ LABELS ... Second line box
LABEL.LabelSet = {TextLine} ...} Same as the first one

Of course, this is not the only legal construction. Creating 84 line boxes containing one
character box each would also be legal.

Second major step: Filling nodes

The pour operation performs filling in six steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

There is only one relevant label: Text. The pour operation builds one MOLD node
stream consisting of the 42 character boxes of the first line followed by the 42
character boxes of the second line.

The content node stream attached to the relevant label Text consists of the 84
character boxes of Textportionl, EmphasizedText, and Textportion2.

The content node stream matches the MOLD node stream. The content nodes
forming the Footnotetext do not carry any relevant label. They are not handled
by this pour and are appended to the resulting two line boxes.

The content character boxes carry all the tags of the corresponding MOLD
character boxes (except the MOLDS$ tag).

The content character boxes replace the corresponding MOLD character boxes.
The bindings of FONT.Name and FONT.Points are changed to the corresponding
values in the MOLD character boxes.

Interscript -- September 1985

89

e] Introduction to Interscript

90

Step 6: The first character box in each line contains a MOLD.Coercion expression. The
evaluation changes the binding of FONT.Boldness from its actual value Regular
into the new value Darker.

Example 8.3: Result of the pour operation of Example 8.1.

-1-- {BOX$ LABEL$... LABEL.LabelSet = {TextLine} Firstline box

--2-- {CHAR$ FONTS ... First character box
--3-- FONT.Name = Roman FONT.Points=12 of Textportionl
--4-- FONT.BaselineOffset = 0

--5-- FONT.Boldness = Darker

--6-- FONT.ltalic = false FONT.Strikeout = false

--7-- FONT.Underlining = false

--8-- <.>}

--9-- {CHARS$ FONT$... This is a sequence of
--10-- FONT.Name = Roman FONT.Points=12 35 character boxes
-11-- FONT.BaselineOffset = 0 of Textportionl
-12-- FONT.Boldness = Regular

-13-- FONT.Italic = false FONT.Strikeout = false

--14-- FONT.Underlining = false

--15-- <.>} ...

—-16-- {CHARS$ FONTS$... This is a sequence of
-17-- FONT.Name = Roman FONT.Points =12 6 character boxes
--18-- FONT.BaselineOffset = 0 of EmphasizedText
-19-- FONT.Boldness = Regular

--20-- FONT.italic=true FONT.Strikeout = false

--21-- FONT.Underlining = true

--22-- <.>} ... }

--23-- {BOX$ LABEL$... LABEL Labels = {Textline} Second line box
--24-- {CHAR$ FONTS ... Seventh character box
--25-- FONT.Name = Roman FONT.Points=12 of EmphasizedText
--26-- FONT.BaselineOffset = 0

--27-- FONT.Boldness = Darker

--28-- FONT.Italic = false FONT.Strikeout = false

--29-- FONT.Underlining = false

--30-- <.>}

-31-- {CHARSS FONTS ... This is a sequence of
--32-- FONT.Name = Roman FONT.Points=12 3 character boxes
--33-- FONT.BaselineOffset=0 of EmphasizedText
--34-- FONT.Boldness = Regular

--35-- FONT.ltalic=true FONT.Strikeout = false

--36-- FONT.Underlining = true

--37-- <.>}

--38-- {CHARSS FONT$... This is a sequence of
--39-- FONT.Name = Roman FONT.Points= 12 38 character boxes
--40-- FONT.BaselineOffset=0 of Textportion2
-41-- FONT.Boldness = Regular

--42-- FONT.ltalic = false FONT.Strikeout = false

--43-- FONT.Underlining = false

--44-- <.>}... }

--45-- {CHARS$ LABEL$... LABEL.Labels = {Footnote} ... Left-over

--46-- < Footnotetext>}

Interscript -- September 1985

The formatting process 8

The result, as shown in Example 8.3, is a sequence of two line boxes with the label
TextLine, and a left-over node labelled Footnote. Higher pour operations may handle
these sequence elements according to their label.

8.2.5 An example of a multi-level pour

This section illustrates how streams are formed in multi-level POUR nodes. Figures 8.2
and 8.3 show a two-level pour producing "chapters with marginal notes." These chapters
consist of a chapter title, a marginal note title; and several paragraphs containing a text
part and a marginal note part.

The inner POUR nodes handle paragraphs and produce lines for the text part (their POUR
label is indicated by a black frame) and for the marginal note part (gray frame). The outer
POUR node pours these lines together with the chapter title (dark gray frame) and
marginal note title (light gray frame) into pages. Figure 8.2 shows the structure of the
outer POUR node after the inner pours are done.

Interscript -- September 1985

91

introduction to interscript

POUR node for a chapter

CHARS nodes for titles

POUR subnodes for paragraphs

T \E
‘ n
RN

S AANIBIN
2%
g

Results of the
POUR subnodes

Streams of content nodes

Marginal notes

Chapter title

Marginal note title

Figure 8.2: Streamsin a POUR node

The chapters of Figure 8.2 are laid out into pages with two columns, one for text and one
for marginal notes. The first page has special column lines for the titles. Figure 8.3a
shows a page box sequence before the content nodes are poured in and Figure 8.3b shows

the result of the pour.

Interscript -- September 1985

92

The formatting process

Page boxes

Column boxes

Title boxes

MOLD
line boxes

MOLD
char. boxes

Page boxes

Column boxes

Title boxes

Line boxes

Char. boxes

Interscript -- September 1985

Figure 8.3b: Layout boxes after pouring

93

Lo Introduction to Interscript

8.3

Penalties
Penalties control layout decisions. Penalties may come from two sources:

® Penalties may be explicitly attached to nodes by the PENALTY$ tag. Normally they
are attached to choice and repetition nodes in templates. They may express a bias
for certain alternatives and fewer repetitions.

® Penalties may be generated by TOGETHER nodes contained in POUR nodes.
TOGETHER nodes expect their subnodes to be rendered as "near" as possible.

A formatting process is expected to produce an image format with a "minimal” penalty
sum.

8.3.1 Calculating penalty sums

When the formatting process has completed the pour process, it calculates the associated
penalty sum either for the image format as a whole or separately for each part as framed
by fences.

Penalties given by PENALTY$ tags are simply added together.
Penalties generated byTOGETHER nodes are calculated by this procedure:

For each immediate subnode of a TOGETHER node the formatting process considers
the box in the image format that the subnode was poured into. Such a box is called
an associated box. For each pair of associated boxes the pour operation calculates a
layout distance. The LevelLabel attribute of the TOGETHERS tag determines which
calculation method to use.

If the Levellabel attribute is bound to NIL, the layout distance is 0 if the parent
boxes of the box pair coincide; else the layout distance is 1.

If the Levellabel attribute is bound to an atom, the layout distance counts the
number of boxes "between" the box pair. Not all boxes in the image format
contribute to this distance; the relevant ones are labelled with the atom given by
the LevelLabel attribute. More precisely, the pour operation traverses the image
format in depth-first order and counts the number of relevant box nodes it
encounters between the box pair. The layout distance is either zero (if there is no
relevant box or if the parent boxes of the box pair coincide) or one less than the
number of relevant boxes between the box pair.

The layout distance is then multiplied by the number given by the Penalty
attribute of the TOGETHERS tag. This procedure is performed for each pair of asso-
ciated boxes and the resulting numbers are added together. This sum is added to
the penalty sum of the solid layout.

8.3.2 Minimizing penalty sums

94

To find an image format with a "minimal” penalty sum, a formatting process must start
several pour processes. In principle, it must exhaust all the possibilities offered by tem-
plates before deciding which image format to choose. Since the number of legal image
formats is typically very large, Interscript provides a selection algorithm that supplies a
local minimum for the penalty sum instead of a global one. An editor is deemed successful
with any image format whose penalty sum is at or below a local minimum. Of course, an
editor may search further for better image formats. So even with penalties a script does
not uniquely specify the appearance of its content; that depends on the cleverness of an
editor.

Interscript -- September 1985

The formatting process 8

Minimizing penalties for a single selection

The principles of the selection algorithm can be demonstrated in the simple case where
only a single selection is to be optimized.

All the alternatives of a single selection are regarded as threaded in a sequence. The alter-
natives of a choice are already threaded and a repetition gives the infinite sequence of the
alternatives {no repetition}, {one repetition}, {two repetitions}, etc. The search for a good
alternative always starts by examining the first alternative and continues to the next in
sequence. For each alternative the selection algorithm calculates the penalty.

The selection algorithm stops examining the sequence of alternatives when

® it finds an alternative with a penalty less than SatisfactionThreshold (defined by the
actual POUR node)

AND

® EITHER the next n alternatives don't have a better penalty (n is given by the
SatisfactionForwardSearch attribute of the actual POUR node)

® OR one of the next alternatives is at least d worse in penalty (d is given by the
SatisfactionUpwardSearch attribute of the actual POUR node).

Selections that cause an unsuccessful pour are considered "infinitely” bad (i.e. they get
the highest possible penalty).

Minimizing penalty sums for image formats or fenced parts of image formats

When constructing an image format, selections may occur on all levels. The decision as to
which alternative to choose can only be made when considering the entire image format
or, if fences break the layout into parts, an entire part. An alternative, which is chosen in
a subordinate selection and is "good" for that level, may prove unsatisfactory at a higher
level.

The alternatives that occur when constructing an image format are considered a sequence
threaded in depth-first order. Alternatives occuring on lower levels must be propagated to
the whole. In this way a sequence of multi-level alternatives is constructed with associ-
ated penalty sums. To this sequence the above approximation procedure is applied (the
necessary values for SatisfactionThreshold, SatisfactionForwardSearch, and Satisfaction-
UpwardSearch are supplied by some global POUR node).

A precise description of the selection algorithm is given in the Standard.

8.4 Fixing process

Fixing is the second major step of the formatting process; it handles the incomplete image
formats that the pour process produced. It first calculates synthesized box measures and
then fixes the positions and sizes of all the boxes. The complete image format is the result
of this step.

Calculating synthesized measures

For each box with synthesized measures the numeric procedure (described in section
8.5.3) calculates numeric measures that replace the synthesized ones. The numeric
measures are arranged in such a way that the subboxes contained in a synthesized box
just fit. The numeric procedure starts with the leaf boxes in the image format and
continues upward.

Interscript -- September 1985

Introduction to Interscript

Fixing measures

The fixing procedure (described in section 8.5.4) fixes the position and the size of the

boxes. Not all 36 measure values associated with a box are needed to describe the result.

Six values are sufficient: three for the x-direction and three for the y-direction. They are:
¢ the Nominal values of the LowPartExtent measure

¢ the Nominal values of the HighPartExtent measure
¢ the Nominal values of the FromLowerContainer measure.

The fixing procedure calculates these nominal values by squeezing or stretching the
original nominal values. The fixing operation fails when the calculated values exceed
shrinkability. Then the formatting process must start another pour process trying other
alternatives.

The fixing procedure starts with PAGE boxes in the image format and traverses the
internal tree of subboxes in depth-first order. It is a straightforward process: having fixed
the measures of a box, it proceeds to the subordinate boxes and fixes their measures.
PAGE boxes as starting points always have fixed measures.

The following sections contain narrative descriptions of some technical procedures used
by the fixing process.

8.4.1 The compromise function

96

The compromise function is used when the nominal values of some measures are required
to fulfill a certain equation that the actual values don't fulfill. The compromise function
calculates new nominal values that fulfill the desired equation.

A typical problem is the glue between two consecutive boxes that are laid out in the up
direction and have contradictory sibling distances.

Example 8.4: Contradictory sibling distances.

1
2

{BOX$ BOX.XSpan = {SPANS$... SPAN.FromiLowSibling = {MEASURE$ 0 60 100} ...}
{BOX$ BOX.XSpan = {SPANS$... SPAN.FromHighSibling = {MEASURE$ 0 50 90}...}

The sibling distances are to be replaced by a common distance :the glue), but what should
this distance be? The Nominal value of the first box requires 60, that of the second box 50.

The compromise function calculates a new Nominal value as a "fair" compromise between
the original distances by squeezing the larger one and stretching the smaller one. It takes
into account how shrinkable (given by the difference between Nominal value and Under
value) and stretchable (given by the difference between Over value and Nominal value)
the nominal values are. The greater the shrinkability and the stretchability are, the more
the Nominal value will be changed. This is the reason why Over values are important,
although they do not provide an upper bound for stretching. In the above example the
compromise function yields the Nominal value 54.

The compromise function will not change fixed measures. On the other hand, if there is an
arbitrarily stretchable measure involved in a compromise and the changeability of the
other measures is much less, only that arbitrarily stretchable measure will be changed.

Measures may arbitrarily be stretched but they cannot shrink to less than their Under
value. Therefore a compromise is sometimes not possible. If, in the above example, the
distance measure of the higher box were fixed (say {MEASURES 50}) and the Under value
of the lower box were greater than this fixed distance (say {MEASURE$ 100 200 300}), a
compromise within the permitted scope would not be possible.

Interscript -- September 1985

The formatting process 8

The technical description of the compromise function is given in the Standard.

8.4.2 The glue procedure

The glue procedure is used when boxes are filled according to the INSIDELAYOUTMETHOD
up or down. It glues two consecutive boxes together by calculating a glue measure that
defines the distance between the two boxes. This glue measure replaces the corresponding
sibling distance measures.

The glue measure is calculated from:

® for the up method: the higher sibling distance of the first box and the lower sibling
distance of the second box.

o for the down method: the lower sibling distance of the first box and the higher
sibling distance of the second box.

Glue measures for fixed sibling distances .

If one of the sibling distances is fixed, it is taken as a glue measure. If both sibling
distances are fixed and different, a fixing error occurs.

Glue measures for stretchable sibling distances
If both sibling distances are variable, the glue measure is variable too. It is defined as:

® the Under value
It is the maximum of the Under values of the sibling distances.

¢ the Nominal value
The SiblingAdjacency attribute of the INSIDELAYOUTS$ tag determines what compro-
mise function must be chosen to get the Nominal value. If this attribute is bound to
SERIAL, the Nominal value is half the sum of the two original Nominal values. If this
attribute is bound to PARALLEL, the compromise function of section 8.5.1 is used.

® the Over value
It is the maximum of the Over values of the sibling distances.

The compromise function of section 8.5.1, when used to calculate the glue measure,
guarantees that the Nominal value of the glue measure is larger than the Under value
and smaller than the Over value. When the arithmetic mean is used, it may happen that
the resulting measure triple does not satisfy these inequalities and that causes a pour
error.

The following examples explain the glue procedure. Example 8.5 shows two subboxes to
be glued together in a "line" box . Only the sibling distances in x-direction (the higher one
of the first subbox and the lower one of the second) are relevant.

To simplify notation, we use these abbreviations:

LPE LowPartExtent HPE HighPartExtent
FLS FromLowsSibling FHS FromHighSibling

FLC FromLowContainer FHC FromHighContainer

Interscript -- September 1985

o] Introduction to interscript

Example 8.5: Boxes in a line before being glued.

~1-- {BOX$ INSIDELAYOUT$...

2. INSIDELAYOUT.X = {INSIDELAYOUTMETHOD.Direction = up

-3 INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
4 {BOXS$...

5. BOX.X = {SPANS$ SPAN.FLS = {MEASURE$ 0 254 508}

6 SPAN.FHS = {MEASURES$ 0 254 508} ..} ...}

- {BOXS$...

8- BOX.X = {SPAN$ SPAN.FLS = {MEASURE$ 0}

9. SPAN.FHS = {MEASURES 200 400 600} ...} ...}}

Example 8.6 shows the result of the glue procedure.

Example 8.6: The boxes of Example 8.5 after being glued.

-1 {BOX$ INSIDELAYOUTS ...

-2 INSIDELAYOUT.X = {INSIDELAYOUTMETHOD.Direction = up

--3-- INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
—-4-- {BOX$...

--5-- BOX.X = {SPAN$ SPAN.FLS = {MEASURE$ 0 254 508}

--6-- SPAN.FHS = {MEASURE$ 200 327 600} ...} ...}
--T-- {BOXS$...

--8-- BOX.X = {SPAN$ SPAN.FLS = {MEASURE$ 200 327 600}

--9-- SPAN.FHS = {MEASURE$ 0} ...} ...}}

8.4.3 The numeric procedure

The size measures of a box (i.e. LowPartExtent and HighPartExtent in the x- and y-
direction) may be synthesized. The numeric procedure replaces these synthesized mea-
sures by numeric ones. Such a numeric measure depends on the poured-in subboxes and
the direction attribute of the INSIDELAYOUTS tag. It is calculated such that the sizes and
distances of the subboxes need not shrink nor stretch.

1. Boxes carrying an INSIDELAYQUTS$ tag with the method fixed must not have
synthesized measures in this version of Interscript.

2. Boxes carrying an INSIDELAYOUTS tag with the method onOrigins require that a "low
sum” and a "high sum" be calculated for each subbox. The "low sum" adds the LowPart-
Extent and the FromLowContainer measure. The "high sum" adds the HighPartExtent
and the FromHighContainer measure. The LowPartExtent (or HighPartExtent) measure
of the containing box is then defined by these rules:

® the Under value
The maximum under value appearing in the "low sums" (or "high sums") of the
subboxes is taken.

® the Nominal value
The maximum nominal value appearing in the "low sums" (or "high sums") of the
subboxes is taken.

® the Over value
The maximum over value appearing in the "low sums" (or "high sums") of the
subboxes is taken.

When a box shrinks, the measures of its subboxes must also shrink. The above
definition guarantees that subboxes can shrink without violating their shrinkability
as long as the containing box remains within its shrinkability scope.

98 Interscript -- September 1985

The formatting process 8

3. Boxes carrying an INSIDELAYOUTS$ tag with the method up require that the subboxes
be glued together by the glue procedure of section 8.5.2.

® The LowPartExtent measure of the containing box is defined as the sum of the
LowPartExtent and the FromLowContainer measure of the first subbox.

® The HighPartExtent measure of the containing box is also defined as a sum that
adds the HighPartExtent measure of the first subbox, the LowPartExtent, the
HighPartExtent, and the glue measure for all the following subboxes, and the
FromHighContainer measure of the last subbox.

4. For boxes carrying an INSIDELAYOUTS$ tag with the method down the numeric
procedure is the same as for the up method with "low" and "high" interchanged.

The following examples explain the numeric procedure. Example 8.7 shows a "column"
box with synthesized height containing two line boxes. Only the measures in y-direction
are relevant.

Example 8.7: Column box with synthesized height

{BOX$ INSIDELAYOUT$...
INSIDELAYOUT.Y = {INSIDELAYOUTMETHOD.Direction = down
INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
BOX.Y = {SPAN$ SPAN.LPE =SYNTHESIZED
SPAN.HPE = SYNTHESIZED ...}
{BOXS$... , :
BOX.Y = {SPAN$ SPAN.FHC = {MEASURE$ 0}
SPAN.FLS = {MEASURES$ 0 0 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURE$ 508} ...} ...}
{BOXS$...
BOX.Y = {SPAN$ SPAN.FLC = {MEASURE$ 0}
\ SPAN.FHS = {MEASURE$ 0 254 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURE$ 508} ...} ...}}

After having glued together the two line boxes with the glue measure {MEASURE$ 0 127
508}, the numeric procedure calculates the synthesized height. Example 8.8 shows the
result.

Interscript -- September 1985

99

Introduction to Interscript

Example 8.8: The column box of Example 8.7 with numeric height

1--
-2
3.
4.
-5
—-6--
-
8-
9.
_-10--
-11--
-12--
13-
-14--
--15--

{BOX$ INSIDELAYOUTS ...
INSIDELAYOUT.Y = {INSIDELAYOUTMETHOD.Direction = down
INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
BOX.Y = {SPAN$ SPAN.LPE = {MEASURES$ 1216 1343 1724}
SPAN.HPE = {MEASURE$ 508} ...}
{BOX$...
BOX.Y = {SPANS$ SPAN.FHC = {MEASURE$ 0}
SPAN.FLS = {MEASURE$ 0 127 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURE$ 508} ...} ...}
{BOX$...
BOX.Y = {SPAN$ SPAN.FLC = {MEASURES 0}
SPAN.FHS = {MEASURE$ 0 127 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURE$ 508} ...} ...}}

8.4.4 The fixing procedure

100

The fixing procedure is performed independently for the x- and y-direction. It traverses
the image format in depth-first order replacing box measures by a triple of numbers for
the x-direction and a triple for the y-direction. Each triple consists of the Nominal values
LowPartExtent, the HighPartExtent, and the FromLowContainer measure.

The fixing procedure proceeds in top-down fashion. In principle, it takes the fixed extent
measures of a containing box and changes the Nominal values of some subbox measures
such that certain equations are fulfilled. Which subbox measures must be chosen and
which equations must be fulfilled depends on the direction attribute of the INSIDELAY-
OUTS$ tag of the containing box.

The fixing procedure uses the compromise function

® to stretch the original Nominal values, if they are too small. A solution within the
scope of stretchability is always possible.

® tosqueeze the original Nominal values, if they are too large. A solution within the
scope of shrinkability is only possible if the corresponding sum of the under
values does not exceed the fixed values of the containing box.

To simplify notation, we abbreviate a Nominal value as ".N".
1. When the INSIDELAYOQOUTS tag has the method fixed, each subbox is laid out as if it
were the only subbox in the containing box.

The nominal values of the FHC, FLC, LPE, and HPE measure of a subbox must be changed
to fulfill the following equation:

FHC.N + FLC.N + LPE.N + HPE.N = fixed width of the containing box
2. When the INSIDELAYOUTS$ tag has the method onOrigins, each subbox is laid out as if
were the only subbox in the containing box.

The Nominal values of the FLC and LPE measure of a subbox must be changed to fulfill
the following equation:

FLC.N + LPE.N = fixed LPE.N of the containing box

Interscript -- September 1985

The formatting process 8

In the same way the Nominal values of the HLC and HPE measure of a subbox must be
changed to fulfill the following equation:

FHC.N + HPE.N = fixed HPE.N of the containing box.

3. When the INSIDELAYOUT$ tag has the method up, the subboxes cannot be laid out
separately. First they are glued together by the glue procedure. The fixing procedure
then examines the Nominal values of the following measures:

® the FLC measure of the first subbox;

® the LPE, HPE, and the glue measure of all subboxes (each glue measure counts only
once);

® the FHC measure of the last subbox.

The fixing procedure changes these Nominal values such that their sum becomes equal
to the fixed width (or height) of the containing box. After that, the extent measures and
the position of each subbox are uniquely determined.

Then the fixing procedure calculates the FLC distance of each subbox. That is already
done for the first subbox. The FLC distance for the following subboxes are recursively
calculated by adding the FLC distance of the proceeding subbox and the Nominal value
of the glue measure.

Note, calculating the FLC distances of the second and the following subboxes is a
straightforward addition and does not change positions. The fixing procedure does NOT
check if those FLC distances violate their original stretchability scope.

4. When the INSIDELAYOUT$ tag has the method down, the fixing procedure is the same
as the up method with "low" and "high" interchanged.

The following examples explain the fixing procedure. Example 8.9 shows a fixed "column"
box containing two line boxes. Only the measures in the y-direction are relevant.

Example 8.9: Fixed column box with stretchable line boxes

—1--
—-2--
3
—-4--
--5--
—-6--
I
--8--
--9-.
-10--
—-11--
--12--
-13--
--14--
--15--
-16--
—-17--

{BOX$ INSIDELAYOUTS ...
INSIDELAYOUT.Y = {INSIDELAYOUTMETHOD.Direction = down
INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
BOX.Y = {SPANS$ SPAN.LPE = {MEASURE$ 1524}
SPAN.HPE = {MEASURE$ 508} ...}
{BOX$...
BOX.Y = {SPANS$ SPAN.FHC = {MEASURE$ 0}
SPAN.FLC = {MEASURE$ 0}
SPAN.FLS = {MEASURE$ 0 0 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURES$ 508} ...} ...}
{BOXS$...
BOX.Y = {SPAN$ SPAN.FHC = {MEASURE$ 0}
SPAN.FLC = {MEASURE$ 0}
SPAN.FHS = {MEASURE$ 0 0 508}
SPAN.LPE = {MEASURE$ 254}
SPAN.HPE = {MEASURE$ 508} ...} ..}}

First, the subboxes are glued together by the glue measure {MEASURE$ 0 127 508}. Then
the fixing procedure changes the FHC, LPE, and HPE measures of the first subbox, the glue
measure, and the FLC, LPE, and HPE measures of the second subbox, such that the sum of

Interscript -- September 1985

101

be} Introduction to Interscript

their Nominal values is equal to the fixed height {MEASURE$ 2032} of the outer box.
Since the glue measure is the only changeable measure, it is stretched to {MEASURE$
508}. Finally the fixing procedure calculates the FLC distance of the first subbox as
{MEASURE$ 1270}. Note that the original FLC distance {MEASURE$ 0} of the first subbox
is not relevant here. Example 8.10 shows the result.

Example 8.10: The column box of Example 8.9 with fixed line boxes

--1-- {BOX$ INSIDELAYOUTS$...

--2-- INSIDELAYOQUT.Y = {INSIDELAYOUTMETHOD.Direction = down
--3-- INSIDELAYOUTMETHOD.SiblingAdjacency = Serial}
--4-- BOX.Y = {SPAN$ SPAN.LPE = {MEASURE$ 1524}

5. SPAN.HPE = {MEASURES$ 508} ...}

--6-- {BOXS$...

-7-- BOX.Y = {SPAN$ SPAN.FLC = {MEASURE$ 1270}

--8-- SPAN.LPE = {MEASURE$ 254}

-9.- SPAN.HPE = {MEASURE$ 508} } ...}
--10-- {BOXS$...

-11-- BOX.Y = {SPAN$ SPAN.FLC = {MEASURE$ 0}

--12-- SPAN.LPE = {MEASURE$ 254}

—13-- SPAN.HPE = {MEASURE$ 508} } ...}}

8.5 Another example

This section outlines how an existing editor does pouring. It demonstrates the major steps
by means of a simple document consisting of a title and two text sections. This document
will be rendered into one-column pages, the first of which contains a fixed heading box for
the title.

Example 8.11 shows this document expressed in Interscript. To demonstrate nested
pours, it uses a two level pour, the outer one producing pages and the inner one lines.
(This simple document could also be rendered by a one-level pour.) Again the notational
conventions explained in the footnote of Example 8.1 are observed.

102 Interscript -- September 1985

The formatting process 8

Example 8.11: A simple document

-
-2--
--3--
—-4--
—-5--
—-6--

{DOCUMENT$ DOCUMENT.Title = {CHAR$... <Pourexample>} ...
{POUR$ POUR.Labelset = {Title Line} Quter POUR node
POUR.template =
{TEMPLATE$ TEMPLATE.Expresses = sequence

{BOX$ PAGE$ TEMPLATES ... Special first page
TEMPLATE.Expresses = sequence ...
{BOX$... Page heading box

-- some fixed box measures --
{CHARS$ FONT$ MOLD$ LABEL$
LABEL.Labelset = {Title}... }}
{TEMPLATE$ TEMPLATE.Expresses = repetition ... Repetition of lines
{BOX$ MOLD$ LABELS ...
--all box measures are bound to MATCH --
LABEL.Labelset = {Line}... }}

{TEMPLATE$ TEMPLATE.Expresses = repetition Repetition of pages
{BOX$ PAGE$ TEMPLATES ...
TEMPLATE Expresses = repetition ... Repetition of lines

{BOX$ MOLD$ LABELS$...
-- all box measures are bound to MATCH --
LABEL.Labelset = {Line}... }}}}

{CHARS$ FONT$ LABEL$ LABEL.Labelset = {Title} ... Document title
< adocument title>}
{POUR$ POUR.Labelset = {Text} First inner POUR node

POUR.template =
{TEMPLATE$ TEMPLATE.Expresses = repetition
{BOX$ LABELS$... Lines
-- in x-direction it has fixed container distances
and a zero LPE --
-- iny-direction it has fixed extent measures --
LABEL.Labelset = {Line}
{CHARS$ FONT$ MOLDS$ LABEL$
LABEL.Labelset = {Text}... }}}

{CHARS$ FONT$ LABELS$ Sequence of
LABEL.Labelset = {Text}... : character boxes
<text of section one>}}}}

{POUR$ -- the same POUR node as above with Second inner POUR node

another textportion -- }}}

The editor does pouring in a top-down fashion. It creates boxes and calculates their
measures as early as possible minimizing, but not excluding, the risk of later pour errors.

To construct the image format, the editor first opens a node and copies the DOCUMENT$
tag with its relevant bindings into that node. As it descends in the script, it meets the
outer POUR node and activates a pour operation. This produces two pages containing the
laid-out document. It puts those pages into the opened node and terminates pouring.
Example 8.12 shows the result.

Interscript -- September 1985

103

Introduction to Interscript

104

Example 8.12: Result of pouring the script in Example 8.11

1--
9
-3

{DOCUMENT$ DOCUMENT.Title = {CHARS ... <Pour example>} ...
{BOX$ PAGES$ --some content-- }
{BOX$ PAGE$ --somecontent-- }}

Next we discuss how the content of the page boxes is obtained.

Pour operation

For each POUR node a pour operation will be started during the pour process. Those pour
operations act like coroutines. They may activate each other though only one is active at
any moment. They preserve their present status when they return control; when
activated again, they run as if they had not been interrupted.

Pour operations are invoked to supply nodes for the image format. Except for the highest
nodes (normally page boxes) they are told to return nodes labelled with certain POUR
labels. In principle, they rely on these five procedures:

® TEMPLATE procedure
The template procedure is called to get the "next" node from the actual template.
It traverses the template tree in depth-first order and returns the nodes it
encounters together with information about the value of the Expresses attribute.
On demand it terminates traversing choice and repetition nodes.

e MOLD procedure
The MOLD procedure is called each time the TEMPLATE procedure supplies a
MOLD node. It fills that MOLD node with the "next" content node with matching
POUR labels that has not yet been poured. To get that content node, it traverses
the actual POUR node in depth-first order examining the labelsets of all
elementary content nodes and of all POUR subnodes (not just the highest POUR
subnodes since there may be some "leftovers").

An elementary content node is immediately poured without further action. When
encountering a POUR subnode, the MOLD procedure activates the corresponding
pour operation which creates and returns the desired content node. The MOLD
procedure pours that content node into the MOLD node.

¢ VACUUM procedure
The VACUUM procedure is called when the TEMPLATE procedure supplies a
VACUUM node. It looks for VACUUMSOURCE nodes and pours them into the
VACUUM node.

® BOX procedure

The BOX procedure is called whenever a BOX node is to be put into the image
format. As far as possible it calculates and fixes box measures checking if the
actual box "fits" (i.e. does not violate the stretchability of the box measures
involved). For example, it prevents character boxes from extending beyond a line
(we assume FHC distances of character boxes are positive). The BOX procedure has
access to all layout information available at the time it is invoked (e.g. it knows
the page width when breaking lines).

® CHARprocedure
The CHAR procedure is called to break running text into lines. From the BOX
procedure it gets a sequence of character nodes fitting geometrically into a line. Its
task is to produce semantically correct line breaks. It may activate a hyphenation
procedure, add character boxes to the content (e.g. for a hyphenation sign),
suppress other character boxes (e.g. blanks at line ends) etc. In particular, it may

Interscript -- September 1985

The formatting process 8

choose other line breaks than those proposed by the BOX procedure causing the
BOX procedure to do new calculations.

Here is how these procedures work together when producing an image format for the
script in Example 8.8.

Pour operation for the outer POUR node
Step 1: The TEMPLATE procedure supplies the first page box.

Step 2: The TEMPLATE procedure, descending within the first page template, supplies the
heading box which has fixed measures. The BOX procedure checks if the heading
box fits into the page. ;

Step 3: The TEMPLATE procedure, descending within the heading box template, supplies
the first character box which is a MOLD node with POUR label Title. The MOLD
procedure scans the outer POUR node for matching nodes. The first one is a char-
acter box which is poured into the MOLD character box. The BOX procedure
calculates the measures of the character box and states stretchabilty violations.

The third step is repeated until no character boxes are left (we assume the whole
text fits into the heading box). The MOLD procedure then searches the inner
POUR nodes. Since other matching nodes are not present, the pour operation ter-
minates the filling of the heading box.

Step 4: The TEMPLATE procedure proceeding in the first page template, supplies a line
box which is a MOLD node with POUR label Line. The MOLD procedure detects
that label in the labelset of the first inner POUR node and starts a new pour
operation, suspending the actual one.

Pour operation for the first inner POUR node

Step 1: The TEMPLATE procedure supplies a line of the inner POUR template. The BOX
procedure calculates the line measures using the page width.

Step 2. The TEMPLATE procedure, descending within the line template, supplies a charac-
ter box which is a MOLD node with POUR label Text. The MOLD procedure fills
this MOLD node with a matching character box from the content. The BOX
procedure calculates the measures of the character box and determines stretch-
ability violations.

This procedure is repeated until the "line is filled" (i.e. the BOX procedure detects
that even shrinking all the filled-in character boxes does not prevent the last
character box from extending beyond the line). The CHAR procedure is called to
fix the line break. The last character box is returned to the POUR node.

The pour operation returns the line and gets suspended.

Pour operation for the outer POUR node (continued)

Step 4 continues: The fourth step is repeated until the first inner POUR node cannot pro-
duce more lines (we assume the first section does not fill the first page). The
MOLD procedure, looking for further content nodes with a POUR label of Line,
activates the pour operation for the second inner POUR node, suspending the
actual one.

Interscript -- September 1985

105

o] Introduction to Interscript

Pour operation for the second inner POUR node
This pour operation produces lines in the same way as the first one. After
returning a filled line, it gets suspended.

Pour operation for the outer POUR node (continued)

Step 4 continues: The fourth step is repeated until the page is filled (i.e. the BOX procedure
detects that even shrinking all the filled-in lines does not prevent the last line
from extending beyond the page). The last line is given back to the POUR node.

Step 5: The TEMPLATE procedure supplies the second page of the global template.

Step 6: Now the second page is filled with lines in the same way as the first, page.

106 interscript -- September 1985

Appendix A

References

ARRRARRAA

(1] Knuth, Donald E. The TEXbook. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1984.

[2] Xerox Corporation. Interpress Electronic Printing Standard. Xerox
System Integration Standard. Stamford, Connecticut; 1983 June; XSIS
048306.

[3] Xerox Corporation. Interpress 82 Reader’s Guide. Xerox System Inte-
gration Guide. Stamford, Connecticut; 1982 May; XSIG 018205.

[4] Reid, Brian. Scribe. 7th Symposium on the Principles of Programming
Languages. 1980

[5] Osanna, Joe F. NROFF/TROFF User's Manual. Computer Science
Technical Report No. 54, Bell Laboratories.

[6] Xerox Corporation. Character Code Standard. Xerox System Integra-
tion Standard. Stamford, Connecticut; 1982 October; XSIS 058303.

[7JECMA. Office Document Architecture (Standard 101). April 1985.

[8] CCITT. Document Interchange Protocol for the Telematic Services
(Recommendation T.73). October 1984.

Interscript -- September 1985 107

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107

