This document is for internal Xerox use only.

Dorado Hardware Manual
by E.R. Fiala ‘

contributions to the manual by
R. Bates, D. Boggs, B. Lampson, K. Pier, E. Taft, and C. Thacker

other help by
D. Clark, W. Crowther, W. Haugeland, G. McDaniel, and
S. Ornstein

14 September 1981

The document describes the architecture and hardware design of the Doradd computer at a
level appropriate for programming. At the date of this printing, approximately 22 systems
have been released to users.

This release incorporates a major revision of the Display Controller chapter, medium revisions
to the Disk Controller and Instruction Fetch Unit chapters, and minor revisions elsewhere.

Revision history:

14 February 1979 First complete manual exclusive of io controller chapters.
8 QOctober 1979 Chapters on io controllers added; major revisions.
14 September 1981 Major revision to the Display Controller chapter, medium revision to

Instruction Fetch Unit and Disk chapters, minar revisions elsewhere.

XEROX

Palo Alto Research Center
Computer Sciences Laboratory
3333 Coyote Hill Rd.

Palo Alto, California 94304

This document is for internal Xerox use only.

21
2.2
2.3
24
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
- 3.8
3.9
3.10
3.1
3.12

4.1
4.2
43
4.4
45
46
47
48
49
48

5.1
5.2
5.3

54

Table of Contents
Introduction

Overview

Control

Registers, Memories, and Data Paths
Timing

Instruction Fields

Notation

Processor Section

RM and STK Memories, RBase and StkP Registers
Cnt Register

Q Register

T Register

BSEL: B Multiplexor Select

ASEL: A Source/Destination Control
ALUF, ALU Operations

LC: Load Control for RM and T

FF: Special Function

Multiply and Divide

Shitter ’

Hold and Task Simulator

Control Section

Tasks

Task Switching

Next Address Generation
Conditional Branches
Subroutines and the Link Register
Dispatches

IFU Addressing

IM and TPC Access

Hold

Program Control of the DMux

Memory Section

Memory Addressing

Processor Memory References
IFU References

Memory Timing and Hold

-

O oo o NMNDDN

10
10
12
13
13
13

15

17
19

19

23
23
25

26
26

‘26

27
29
30
31
32
33

34

36
36
37
H
M

Dorado Hardware Manual Table Of Contents

5.5
5.6
5.7
5.8
5.9
5.10
5.1
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5
9.6

The Map

14 September 1981

An Automatic Storage Management Algorithm

Mesa Map Primitives
The Pipe

Faults and Errors
Storage

The Cache
Initialization

Testing

Instruction Fetch Unit
Overview of Operation
The IFUJump Entry Vector
Timing Summary

Use of MemBX and Duplicate Stk Regions

Traps

IFU Reset

Rescheduling

Breakpoints

Reading and Writing IFUM
Continuing from Processor Faults
IFU Testing

Details of Pipe Operation

Timing Details

Slow 10

Input/Output Functions

10 Opcodes

Wakeup, Block, and Next

SubTasks

lllegal Things 10 Tasks Must Not Do

Fast 10

Transport

Wakeups and Microcode
Latency

Disk Controller

Disk Addressing

Sector Layout Considerations
General Firmware Organization
Task Wakeups

Control Register

Format RAM and Sequence PROMs

48
49
51
53
57
58
59
61

64
64
69
71
72
72
75

75

76
76
77
79
80
82

85
85
86

28R

90
90
90
91

92
93
93
95
96

97

97

Dorado Hardware Manual

9.7
9.8
9.9
9.10

10.
10.1
10.2
10.3
- 10.4
10.5
10.6
10.7
10.8
10.9

Tag Register

FIFO Register

Muffler Input

Error Detection and Correction

Display Controller
Operational Overview

Video Data Path

Horizontal and Vertical Control
Pixel Clock System

OIS Seven-Wire Video Interface
Praocessor Task Management
Slow 10 Interface

DispM Terminal Interface

DDC Initialization Requirements -

10.10 Speed and Resolution Limits

11.

11.1
11.2
11.3
11.4
11.5
11.6
1.7
11.8
11.9

‘Ethernet Controiler

Ethernet Packets
Controller Overview
Receiver
Transmitter

Clocks

Task Wakeups
Muffler Input

IOB Registers
Control Register

11.10 Status Register

12.

12.1
12.2
123

13.

13.1
13.2
13.3
13.4
13.5
13.6

14.
14.1

Other 10 and Event Counters
Junk Task Wakeup

General 10

Event Counters

Error Handling
Processor Errors
Control Section Errors
IFU Errors

Memory System Errors
Sources of Failure
Error Correction

Performance Issues
Cycle Time

Table Of Contents

14 September 1981

99
101
101
104

109
109
110
113
115
116
117
119

121

122
122

124
124
125
127
128
129
129
130
131
131
132

133
133
133
133

136
137
139
139
139
140
141

144
144

Dorado Hardware Manual Table Of Contents 14 September 1981

14.2
14.3
14.4
14.5
14.6
14.7

15.

Emulator Performance

IFU Not-Ready Wait

Microstore Requirements

Cache Efficiency and Miss Wait
Performance Degradation Due to IO Tasks
Cache and Storage Geometry

Glossary

144
145
145
146
147
147

150

Dorado Hardware Manual Table Of Contents

List of Tables

1. Memories

2. Registers

3. Data Paths

4, Load Timing

5. Instruction Fields o

6. RSTK Decodes for Stack Operation

7. BSEL Decodes

8. ASEL Decodes

9. ALUFM Control Values

10. LC Decodes

11. FF Decodes

12. ALUF Shift Decodes

13. Branch Conditions

14. Reserved Locations in the Microstore

15. Timing of a Dirty Miss

16. Map Configurations

17. Fault Indications .

18. IFUM Fields

19. Operand Sequence for «Id

20. IFU FF Decodes

21. 10 Register Addresses

22. Task Assignments

238. T-80 Specifications and Characteristics

24. OIS Terminal Microcomputer Messages

25. DDC Muffler Signals

26. Ethernet Muffler Signals

27. Error-Related Signals

28. Double Error Incidence vs. Repair Rate

29. Utilization of the Microstore

30. Execution Time vs. Cache Eificiency

31. Cache Geometry vs. LRU Behavior

14 September 1981

N O bW

1
13
15
17
19
20
25
30

44
45
54
65
66
68
85
86
95

117

120

130

137

143

145

146

149

Dorado Hardware Manual Table Of Contents

oo im0 NoaNLN 2

List of Figures

Dorado: Programmer's View

Card Cage

Processor Hardware View

Shifter

Control Section

Next Address Formation

Instruction Timing

Qverall Structure of the Memory System
Cache, Map, and Storage Addressing
The Pipe and Other Memory Registers
Error Correction

Instruction Fetch Unit Organization
Disk Controller

Display Controller

Display Controller IO Registers
Ethernet Controller

Programmers’ Crib Sheet

14 September 1981

Dorado Hardware Manual Introduction 14 September 1981 1

Introduction

Dorado is a high performance, medium cost microprogrammed computer designed primarily
to implement a virtual machine for the Mesa language, as described in "The Mesa
Processor Principles of Operation," and to provide high storage bandwidth for picture-
processing applications. Dorado aims more at word processing than at numerical
applications.

The microprocessor has a nominal cycle time of 60 ns, and most Mesa opcodes will
execute in one or two cycles; the overall average opcode execution time will be subject to
a number of considerations discussed later. Dorado will also achieve respectable
performance when implementing virtual machines for the Alto, Interlisp, and Smalltalk
programming systems, although simple instructions for these run three to five times slower
than Mesa.

Dorado is implemented primarily of MECL-10K integrated circuits; storage boards use MOS
and Schottky-TTL components primarily. Backplanes and storage boards are printed
circuits; other logic boards are stitchweld in prototypes and muitiwire or PC in production
machines. The mainframe is divided into sections called Control, Processor, Instruction
Fetch Unit (IFU), and Memory, and peripheral control is accomplished by the Disk,
Ethernet, and Display Controller sections, as discussed in chapters of this manual. The
main data paths, shown in Figure 1, are 16-bits wide (the word size). The control section is
shown in Figure 5. The Baseboard section, used to control the mainframe, is discussed in
the "Dorado Debugging Interface" document.

The processor is organized around an Arithmetic and Logic Unit (ALU) whose two inputs
are the A and B data paths (Figure 1), and whose output is normally routed to the Pd data
path. Inputs to A, B, and Pd include all registers accessible to the programmer. In
addition, 16-bit literal constants can be generated on B. B appears on the backplane for
communication with the IFU, Control, and Memory sections.

The processor also includes a 32:-bit in/16-bit out shifter-masker optimized for field
. insertion and extraction and with specialized paths for the bit-boundary block transfer
(BitBIt) instruction.

An instruction fetch unit (the IFU) operating in parallel with the processor can handle up to
four instruction sets with 256 opcodes each; opcodes may independently be specified as
one, two, or three bytes long.

Emulator and IFU references to main memory are made through a 4k-word high-speed
cache. Main storage can be configured in various sizes up to a maximum of 222 16-bit
words when 64k x 1 RAMSs.

The processor initiates data transfers between main memory and fast input/output devices.
16 16-bit words are then transmitted without disturbing the processor data paths in about
1.68 us (28 cycles). New references can be initiated every 8 cycles, so total bandwidth of

the memory, 533 mHz, is available for devices with enough buffering.

Dorado Hardware Manual Overview 14 September 1981 2

Overview

Experience suggests that programmers will gradually develop a mental model something
like Figure 1; until this mental model is well established, it is probably desirable to

Read the following with Figure 1in view.
Dorado has Processor, Control, Memory, IFU, and 10 controller sections.

lo controllers are independent of each other and of the other sections—you will have to
understand a particular io controller iff you are going to write microcode that controls it.

The memory.and IFU are "slaves" to the processor/control section. In most situations,
their external interface is simple relative to internal details of operation, and effective
programming is usually possible without detailed understanding.

However, programmers will have to understand the processor thoroughly because the
different parts of the processor are controlled directly by instruction fields, and most of the
processor will be used, even in a small program.

Programmers must also understand most of the control section, although fairly simple
assembly language contstructs are transformed into the complicated branch encodings
needed by Dorado, so detailed understanding of Dorado branching is not required.

Control

Dorado supports up to 16 independent tasks at the microcode level. Each task has its own
program counter (TPC), and other commonly-used registers are also replicated on a per-
task basis. Tasks are scheduled automatically by the hardware in response to wakeup
requests, where task 15 is highest priority, task 0, lowest.

Emulator microcode runs entirely in task 0 (lowest priority); fault conditions normally
wakeup task 15, the "fault task" (highest priority). Other tasks are normally paired with io
devices that issue wakeup requests when they need service. Task switching, discussed in
"Control Section", is in most cases invisible to the programmer, because commonly-used
registers are duplicated for each task.

In this manual, "instruction” refers to a microinstruction in the control store, as opposed to
an opcode in the higher level language interpreted by a microprogram. The JCN field in an
instruction encodes a variety of jumps, calls, conditional jumps and calls, instruction
dispatches and returns for the current task.

Registers, Memories, and Data Paths

Tables 1, 2, and 3 describe memories, registers, and data paths in Dorado; these are
diagrammed in Figure 1. The first two tables below focus on a particular register or
memory and tell how it is used and where it connects; the third table focuses on particular
data paths and shows how they connect various parts of the machine.

Dorado Hardware Manual Overview 14 September 1981 3

Table 1: Memories
Memory Comments

M IM is a 4096-word x 34-bit (+2 parity) RAM used to store instructions. When written, the address is
taken from Link and data from B 16 bits at-a-time (1 extra bit and parity from RSTK field). When
read, the address is taken from Link, and data is delivered to Link 9 bits at-a-time. The read or
write is controlled by the JCN field and two or three low bits of RSTK.

ALUFM ALUFM is a 16-word x 6-bit ALU control RAM addressed by the 4-bit ALUF field. Five ALUFM bits
specify 16 boolean or 5 arithmetic operations on A and B. One bit is the input carry for arithmetic
operations (modifiable by several functions). ALUFM[ALUF] is read onto Pd by the ALUFMEM
function or both read onto Pd and loaded from B by the ALUFMRWe¢ function.

RM RM is a 256-word x 16-bit (+2 parity) RAM used for general storage by all tasks. The normal
address is RBase[0:3],,RSTK[0:3]. Data can be read onto A or B and loaded from Pd or Md
without using FF. Together with T, RM forms the input to the Shifter.

STK STK is a 256-word x 16-bit (+2 parity) stack accessible only to the emulator, used instead of RM
when the BLOCK bit in the instruction is 1. Its address comes from StkP, modified by -4 to +3
under control of RSTK.

IFUM IFUM is a 1024-word x 24-bit (+3 parity) decoding memory containing 256 words for each of four
instruction sets. The instruction set can be set by the InsSetOrEvent« function. The low 8 address
bits are normally an opcode fetched from the cache, but can be loaded from B by the Brkinse
function to read or write IFUM itself. The IFUMLH¢ and IFUMRH¢ functions load, and the
B«IFUMLH' and B«IFUMRH' functions read different bits of IFUM. During normal operation IFUM
controls decoding of the stream of opcodes and operands fetched from memory relative to BR 31,
the code base.

MAIN Main storage consists of a 64-row x 4-column x 16-word virtual cache coupled with one to four
256k x 16-bit memory modules (using 16k-bit storage chips). The IFU and processor independently
access the cache, with IFU references deferring to the processor. The processor has two dissimilar
methods of reference, one primarily to the cache (with "misses"” initiating main memory action) and
one directly to main memory (invalidating cache hits on writes, using dirty cache hits on reads).
Fetch«, Store«, IFetch«, LongFetch«, and PreFetch¢ are cache references. Md can be loaded
into T or RM (LC field), routed onto B (BSEL field), onto A (FF field), or used in a shift-and-mask
operation (ASEL and ALUF fields). IOFetch« and |OStore¢ (ASEL field) initiate a 16-word transfer
between an io device and memory without further processor interaction (using Fin or Fout bus).
Virtual addresses are transformed to absolute using the Map memory. All references leave
information in the Pipe memary.

BR A 32-word x 28-bit base register memory addressed by the MemBase register. The virtual address
for any memory reference is BR[MemBase] +Mar. BR is loaded from Mar by the BrLo«A and
BrHi«A functions and can be read indirectly onto B via the virtual address left in the Pipe after a
memory reference (PipeO0 and Pipe1l functions).

Pipe The 16-entry x 6-word pipe contains trace information left by memory references. This information
includes the virtual address, map stuff, single-error and double-error information, cache control stuff,
task and subtask. It is automatically loaded during any memory reference and can be read onto B
by the Pipe0, Pipet, .., Pipe5 functions.

Map The Map is a 16k or 64k-word x 19-bit (+parity) memory used to transform virtual addesses to
absolute. Addressed by VA[10:23], map entries contain 16 bits of real page, write protect, dirty,
and referenced bits. They can be written from B with Map« (ASEL) and read from the Pipe after
main storage references.

Dorado Hardware Manual Overview 14 September 1981

Register

T#

RBase*

StkP

Cnt
TIOA*
ShC

MemBase*

_ MemBX

Link*

PC

TPC*

Mcr

Table 2: Registers

Comments * = one of these for each task; ie., "task specific"

16-bit (+2 parity) T sources either A (ASEL field or FA field with memory ops) or B (BSEL field), or
the Shifter (ASEL) and loads from either Pd or Md (LC field).

4-bit RBase, RSTK field forms addresses for RM. RBase can be loaded from FF[4:7] or from
B[12:15] by the RBase«SC, RBase¢B, or Pointers«B functions; it is read onto Pd[12:15] by the
Pd «Pointers function. RBase is loaded with 0 or 1 when the IFU dispatches to the first instruction
for an opcode.

The emulator uses STK instead of RM when the BLOCK bit is 1. 8-bit StkP holds the address for
STK. The RSTK field is interpreted as an adjustment to StkP, which can be modified -4 to +3 in
conjunction with testing for overflow and underflow. This mechanism implements the Mesa
evaluation stack. StkP can be loaded by the StkP«B function and read onto Pd{8:15] by the
«TIOA&StkP function (Stack overflow and underflow indicators are read into Pd[8:9] by the
Pd«Painters function.).

16-bit Q is used as a shift register by multiply and divide. Q can be read onto A (FF field or FA
with Fetche or Store+) or B (BSEL field) and loaded from any B source except a constant (BSEL
and FF fields). Functions implement Q Ish 1 and Q rsh 1.

Cnt is a 16-bit counter that can be both decremented and tested for zero by a branch condition.
Cnt can be loaded from FF[4:7] with 1 to 16 or from B (FF field) and can be read onto Pd (FF).

TIOA is an 8-bit io address register (see "Slow 10") loaded by the TIOA«B function and read onto
Pd[0:7] with the Pd«TIOA&StkP function. TIOA[5:7] may also be loaded from FF[5:7].

16-bit ShC controls the shifter-masker (see "Shifter"). RF«A, WF«A, and ShC«B functions load
ShC in various ways. ShC can be read onto Pd by the PdehC function.

MemBase is a 5-bit register addressing BR for memory references. The MemBase«n functions load
it from FF[3:7]; the MemBaseX«¢n functions load it from 0,,MemBX[0:1},,FF[6:7]. The IFU loads
MemBase with a value between O and 3 relative to MemBX or with 34 to 37, as specified in IFUM,
prior to executing the first instruction of an opcode. MemBase is read onto Pd[3:7] by the
Pd«Pointers function and loaded from B[3:7] by the Pointers«B and MemBase«B functions.

MemBX is a 2-bit register used like a stack pointer in conjunction with MemBase. The ideas behind
this are discussed in "Memory Section".

16-bit Link holds subroutine return addresses, address-modification for dispatches, IM address for IM
reads/writes, and data for TPC reads/writes. It can be read onto or loaded from B[0:15] by the
BeLink or Link«B, BigBDispatch¢B, or BDispatch«B functions, or from CIA+1 by CALLs and
RETURNSs.

16-bit PC contains the byte displacement of the next opcode relative to BR 31, the code base. The
IFU maintains this register, so only conditional jumps that don't jump and opcodes of type "pause"
have to load it with the PCF«B function. The B¢PCX' function reads PC.

TPC contains the address of the next instruction for each task. It is addressed from B[12:15] and
read/write control is in JCN. Data is read from/written into Link under control of the JCN field of

the instruction.

Memory control register—disables parts of memory system for initialization and checkout.

4

Dorado Hardware Manual Overview 14 September 1981 5

Table 3: Data Paths
Path Comments

A The 16-bit high-true A bus (called "alua" in hardware drawings) may be driven from T, RM, STK, Q,
Id, Md, a small constant between 0 and 178, or the shifter. It is also possible to 'or’ the low-true
shifter output with one of th2 other A sources. The A bus is totally inside the processor section,
not connected to any ather sections of Dorado, and it is one of the two Alu inputs. The RF«A and
WF«A functions, which load ShC for subsequent shift operations, receive data from A.

Mar The 16-bit Mar bus transmits the displacement for a memory reference from the processor or IFU
section to the memory section. The CFlags register, some bits of the Mcr register, and the BR
memory in the memory section are also loaded from Mar. The processor drives Mar only when it is
starting a reference or executing one of the functions between 1208 and 1278 (i.e., CFlags«A’ and
LoadMcr[A,B] are in this group of functions); during other instructions, the IFU may use Mar to
initiate instruction-fetches. Mar is driven low-true; when driven by the processor, it receives the
same data as are driven onto A (but the shifter cannot drive Mar).

B The 16-bit B bus consists of one data path inside the processor section (called "alub" in hardware
drawings) and another on the backplane (called "Bmux" in hardware drawings); the 10B bus is
driven from Alub on Output operations, when it also is an extension of B. Alub and Bmux may be
directly driven high-true from registers inside the processor; alternatively, Bmux may be driven low-
true from other sections, in which case the processor receives the data onto alub through inverters
(so the data appears high-true on alub). The BSEL field in an instruction can specify that either T,
RM/STK, Q, or Md sources B; other sources and destinations loaded from B are specified in the FF
field; BSEL and FF are used in combination to specify that a literal 8-bit constant (in either the left
or right byte of the word with 0's or 1’s in the other byte) sources B. Alub is one of the two Alu
inputs. The processor computes odd byte parity on alub; Bmux and IOB destinations may store or
check the parity computed by the processor.

Pd The Pd path ("Processor data") receives data from an 8-input multiplexor whose inputs are the Alu
output, possibly shifted left or right one bit on Alu shift functions or masked on a shifter operation,
io device input data, and the infrequently read registers in the processor section. Pd may be
written into the T register or the RM or STK memories.

Id The Id path ("IFU data") is used to send arguments from the IFU to the processor for interpretation.
It can be routed onto A using ASEL (A«ld, Fetche«ld, Store+!ld, or IFetch«RM/STK); alternatively,
the Tisld or Risid functions can be used to replace data from T or from RM/STK by IFU
data—these functions provide a roundabout method of getting Id onto B.

Md The Md path ("Memory data") moves data from the cache in the memory section into the
processar. The processor latches Md and can route it onto A or B, load it into T and RM/STK, or
use it in a shift-and-mask operation.

I0A The I0A bus ("Input-output address") is driven from the TIOA register; it specifies the io device
affected by a Pdelnput -or Output«B function.

l0]:] The 10B bus ("Input-output bus") is driven from alub on an Output«B function or received on Pd
by a Pde«input function; it transmits data to or from an io device.

Fout ("Fast output bus") transmits data from the error corrector to a fast output device.

Fin ("Fast input bus") transmits data from a fast input device (Presently, there are no fast input
devices) to the syndrome generator.

Sout ("Storage output bus") transmits data from the syndrome generator to storage.

Sin ("Storage input bus") transmits data from storage to the error "corrector.

Dorado Hardware Manual Overview 14 September 1981 6
Timing

The terminology used in discussing timing is as follows:

clock The 30 ns (nominal) atomic time period of the machine. Clock period can be

controlled by the baseboard microcomputer or through the manifold system as
discussed in the "Dorado Debugging Interface"” document.!

cycle The duration of instructions—two clocks or 60 ns except for instructions that
read/write IM or TPC.

ty The instant at which MIR (Microlnstruction Register) is loaded—the beginning of
a cycle.

t, The next instant after t;—always one clock later.

ty The instant following t,—one clock after t, except for instructions that

read/write IM or TPC. Additional clocks intervening for these special cases,
which only affect the control section, are denoted by t,,, t,,, etc.

ta, t, Subsequent instants for a instruction. t; of the previous instruction coincides
with ty of the current instruction; ty with t,.

First half cycle '
The interval from ty to t; (or t, to ty).

Second half cycle
The interval from t, to t, (or t; to t,).

As implied by this terminology, Dorado initiates a new instruction every cycle. Instructions
are pipelined, requiring a total of three cycles for execution. Timing for a typical
instruction is shown in Figure 7. At t,, the next instruction address is determined and
instruction fetch from IM begins; at t,, the instruction is loaded into MIR from IM. During
the first half cycle, the selected register is read from RM or STK, and at t, is loaded into a
register. During the next two clocks (t;-t;), addition is performed in the ALU; at t; the
result is loaded into a register for writing into RM/STK or T. During the final clock, RM is
written.

Since a new instruction begins before the previous one finishes, paths exist to bypass the
register being written if the following instruction specifies it as a source (These paths,
inaccessible to the programmer, are not shown in Figure 1).

Most registers load from B at t; (i.e., at the mid-clock of the cycle following the load
instruction). These may source B in the instruction after they are loaded. The load
information and data are pipelined into the next cycle, as described above. Registers
loaded at t, may be used during the first half-cycle of the following instruction. Usually,
this type of register is used for some type of control information, since control registers are
normally clocked at t (= t, of previous instruction), data-oriented registers at ty (t3 of
previous instruction).

Table 4 summarizes the time at which loading takes place and some other information.

1 We actually operate with a clock speed of 32 ns, slower than the 30 ns nominal period, and production
machines typically become unreliable at about a 29 ns clock period.

Dorado Hardware Manual Overview 14 September 1981

Table 4: Load Timing

Register/ Task Load Data Load Comment
Memory Specific Time Source Control
MIR* no to M JCN Holds current instruction
ClA no t0 TNIA,BNPC JCN Holds current instruction address
ClAinc* no t1 CIA —
TPCI* no t2 TNIA, CIA —
TPC yes FHC TPCI HOLD :
t2 LINK(??) JCN,B Reading/writing takes 3 cycles
Link yes t2 B FF Also loaded by CALL, RETURN, and
dispatches—readout valid t1 to t3
M no — B JCN Reading/writing require 3 cycles
CTASK no t0 Next Switch Current task
CTD no t1 CTASK - Current task delayed
Ready no to PEnc Switch Task-ready flipflops
StkP no t2 B FF New value read if it changes in the
same instruction
RBase yes t2 F2 F1 RAM writte at t3, bypassed
Cnt no t2 F2 F1 Br cond to sub 1 and test
. B FF
ALUFM no t2 B FF Addressed by ALUF
The output is valid t1 to t3
TIOA yes t2 B FF Readout valid till t3
MemBX no t2 F2 F1 Readout valid till t3
MemBase yes t2 F2 F1 Readout valid till t3
MemBase xor 1 FF
ShC no t3 AB FF RF«A, WF«A, ShCe¢B
t1 FF ASEL,BSEL
Q no t3 8 FF,BSEL
t3 ALU[15),,Q[0:14] FF Multiply
t3 Q[1:15},,ALUcry FF Divide
t3 Q FF Q rsh 1, Q Ish 1
RM no SHC Pd,Md LC,RSTK Bypassed
STK no SHC Pd,Md LC,RSTK Bypassed
T yes SHC Pd,Md - LC,FF Bypassed
IFUM no SHC B FF IFUMLH«/IFUMRHe
Brkins no t2 B FF
PC* no 3 B FF Level F PC loaded, level X read
Br no t2 A FF BrLo«/BrHi«, «Pipe0, «Pipel
. MapBuf* no FHC B ASEL, FA Written on Map¢, TestSyndrome«,
ProcSRN«, LoadMcr
DBuf no FHC B ASEL, FA Written on Storee
Md yes t5 cache —_ Bypassed
CFlags no t2 Mar FF For debugging, initialization
Mcr no t3 Mar, MapBuf FF For debugging, initialization
Asrn no t2 Asrn — Addresses the pipe for ring refs
ProcSRN no t3 MapBuf FF Addresses the pipe for PipeQ to Pipe5
TestSyndrome no t3 MapBuf FF For debugging error correction
Pipe0 no t3 Br, etc. ASEL, FA Written on ref.,, B¢PipeO
Pipet no t3 Br, etc. ASEL, FA Written on ref.,, Be¢Pipe1
Pipe2 no t3 — ASEL, FA Written on ref.,, Be¢Pipe2
Pipe3 no t14 map ASEL, FA Valid after any storage access or Map+¢
Pipe4 no t14,t48 map, EC - ASEL, FA Valid after any storage access
Pipe5 no t3,14 cache ASEL, FA Written on ref.,, Be«Pipe5

*Cannot be read as data by the processor

7

Dorado Hardware Manual Overview 14 September 1981

Instruction Fields
The 34-bit instruction is divided into the following fields:

Table 5: Instruction Fields

Field Size Purpose (may have other effects, described below)

RSTK 4 bits Selects RM register to be read and/or written

ALUF 4 bits Selects ALU function ' or shifter operation

BSEL 3 bits Selects source for B :

LC 3 bits Controls source and loading of RM and T

ASEL 3 bits Source/destination control for A

BLOCK 1 bit Blocks io task unless wakeup is waiting
Selects stack operations for emulator task

FF 8 bits Function (FA=FF[0:1], FB=FF[2:4], FC=FF[5:7])

JCN 8 hits Jump control

P0O16 1 bit Odd parity on first word of instruction

P1733 1 bit Odd parity on second word of instruction

Total 34 bits + 2 parity

The above instruction layout emphasizes compactness at the expense of programming
flexibility. The following comments explain some of these tradeoffs

1. The RSTK field specifies only four of the eight address bits needed for addressing RM.
The other four are taken from the RBase register (loaded by a function). In the emulator
task, BLOCK causes STK to be used instead of RM, and RSTK is decoded to cause
modifications of StkP.

2. ALUF addresses the 16-word ALUFM memory in which 16 of 26-odd useful ALU
operations are stored. For the shift operation decode of ASEL, the first three bits of ALUF
select the kind of shift, while the ALUFM address is forced to 164 or 174

3. BSEL decodes the most common data sources for B. Less common B sources are
selected by FF, and then BSEL encodes one of several destinations for the source.

4. ASEL specifies the source and destination for A. The default source is the RM address
selected by RSTK. Four ASEL decodes specify the most common memory operations,
where the virtual address is BR[MemBase] + A. These decodes consume the two leading
bits of FF to specify alternate sources (T or Id) or less frequent memory operations. The
remaining four ASEL decodes select alternate sources T, Id, or the shifter, where the shifter
decodes work in combination with ALUF, as discussed later.

5. LC specifies loading of RM/STK and T from Pd and Md.

Dorado Hardware Manual Overview 14 September 1981 9

6. FF is the catch-all field in which operations or data not otherwise specifiable can be
encoded. Operations encoded in FF are called "functions". There are five ways FF is
used:

a. To extend the branch address encoded in JCN (long goto, long call).

b. To form a constant on B as selected by BSEL.

c. To specify one of 64 common functions and branch conditions while the two leading bits modify the
memory reference operation specified in ASEL.

d. To specify one of 256 functions and branch conditions, some of which use low bits of FF as literal
values.

e. As a shift control value when ASEL decodes to "shift" and BSEL to a constant.

When FF is used as a function, it sometimes modifies the interpretation of other fields in
the instruction. For example:

a. 16 FF decodes modify RM write address bits which would otherwise have come from RSTK or StkP.
b. 16 FF decodes modify RM write-address bits which would otherwise come from RBase.

c. 16 FF decodes select less common B sources, causing BSEL to encode a destination rather than a
source for B.

7. JCN (in conjunction with current address} encodes the next instruction address as
follows:

One of 64 global Calls.

One of 60 local Gotos.

One of 4 local Calls.

One of 14 local conditional branches with 7 branch conditions.

One of 16 long Gotos/Calls (use FF field for rest of address).

One of 4 IFU jumps for next opcode (high 10 address bits from IFU).
Return.

TPC read/write.

IM read/write (Use low bits of RSTK also).

“Temeaopge

8. PO and P1 are odd parity on the left and right halves of IM. When wrong, these give
rise to error signals (see "Theory of Operations") which stop the machine after
(unfortunately) the instruction with bad parity has been executed. The artifice of
deliberately loading both parity bits incorrectly is used to implement breakpoints.

Notation

The notation used in referring to fields in the instruction is that the left-most bit of the field
is denoted as 0. Hence, the fields in the instruction are as follows: RSTK[0:3], ALUF[0:3],
BSEL[0:2], LC[0:2], ASEL[0:2], BLOCK][0], FF[0:7], JCN[0:7].

The BLOCK bit is also called StackSelect, for its use in choosing STK instead of RM for the
emulator task.

Dorado Hardware Manual Processor Section 14 September 1981 10

Processor Section

The processor section implements most registers accessible to the programmer and
decodes all instruction fields except JCN. The FF field of the instruction is also decoded
by the control, memory, and IFU sections.

Read this chapter with Figure 1 in front of you.

The processor section contains the Q, ShC, Cnt, StkP, and MemBX registers, the T, RBase,
MemBase, and TIOA task-specific registers, and the ALUFM, RM, and STK memories. |t
contains the arithmetic and logic unit (ALU) and the shifter.

The processor communicates with the control, memory, and IFU sections via B; with io
devices via the I0B bus. It exports MemBase and Mar to the memory system for
addressing, 10A to devices for io addressing, and branch conditions to the control section.
It imports Md from the memory system and Id from the IFU.

RM and STK Memories, RBase and StkP Registers

RM ("Register Memory," sometimes called "R") is the memory most easily. available to
microprograms; it stores 256 words x 16 data bits with odd parity on each byte of data.
RM is read at t; and latched at t,. Data may be routed to A, B, or the shifter, and branch
conditions (see "Control Section") test the sign bit (R<0) and low bit (R Odd). RM may be
written between t; and t, with data from Md or Pd.

The RM read address is RBase[0:3],,RSTK[0:3]. For io tasks SubTask[0:1] (discussed in
"Slow 10") are or'ed with RBase[2:3]. Each task can thus select from 16 RM registers in
the block pointed to by RBase.

Normally, this read address is also used for the write part of the instruction (if any).
However, two groups of FF decodes discussed below modify the write address.

. The RBase«SC function loads RBase with FF[4:7], selecting any block of 16 registers;
RBase«B loads RBase from B[12:15]; Pointers+B loads RBase from B[12:15] while also
loading MemBase from B[3:7] (Previous RBase value is used for both the read and write
portions of the instruction.). The IFU initializes the emulator task’s RBase to 0 or 1 before
dispatching to the first instruction of an opcode.

The STK memory (sometimes called "stack") is accessible only to the emulator (task 0).
Since the emulator cannot block, the instruction bit interpreted as BLOCK for io tasks is
instead interpreted as StackSelect; when StackSelect is 1, RM is disabled and STK used
instead. Like RM, STK stores 256 words x 16 data bits with odd parity on each byte of
data. STK is addressed by the 8-bit StkP register, and RSTK controls the adjustment of
StkP; StkP may be decremented or incremented by any value between -4 and +3.

Unadjusted StkP is always the read address and normally the write address, but the
ModStkPBeforeW FF decode forces adjusted StkP to be used for the write. STK is divided
into four separate regions, each 1005 words long. Valid addresses are 1 to 774 within each
region. That is, StkP[0:1] select the region, stack overflow occurs at the onset of a
instruction that would increment StkP[2:7] > 77, and underflow occurs when location 0 is

Dorado Hardware Manual Processor Section 14 September 1981 L

either read or written or when SikP[2:7] is decremented below O.

StkP[2:7] are initialized to 0, denoting the empty stack. A push could do StkP«+StkP +1 and
write in one instruction. A pop does StkP«StkP - 1, and the item being popped off can be
referenced in the same instruction if desired.

Table 6: RSTK Decodes for Stack Operations

RSTK[O] 0
)

no underflow on StkP = ‘0 at start or end
underflow when StkP originally 0 or finally O.

RSTK[1:3] Meaning

no StkP change
StkP«StkP +1
StkP«StkP +2
StkP«StkP +3
StkP+StkP - 4

StkP «StkP - 3
StkP«StkP - 2
StkP«StkP - 1

NOoOOA~LON=O

In other words, RSTK[1:3] treated as a signed number are added to StkP[2:7] (StkP[0:1]
don't change.). In the emulator, an attempt to underflow or overflow the stack generates
the signal StkError:

StkError = (BLOCK eq 1) & Emulator &
[((StkP[2:7] + RSTK[1:3]) < 0) % ((StkP[2:7] + RSTK[1:3]) > 778) %
((RSTK[O] eq 1) & ((StkP[2:7] eq 0) % ((StkP[2:7] + RSTK[1:3]) eq 0O))]

StkError generates HOLD and wakes up the fault task (task 15) to deal with the situation,
so the instruction causing StkError has not been executed when the fault task runs.
StkUnd and StkOvf are remembered in flipflops read by the Pd«Pointers function. These
get cleared (i.e., recomputed) when the next stack operation is executed by the emulafor.
The fault task can read them to decide whether stack underflow or overflow action is
necessary.

Interpretation of underflow: StkP eq 0 denotes the empty stack. A stack adjustment may
occur either by itself or with a read or write stack reference. StkP originally equal 0
underflows if the top of stack is read or written; decrementing StkP below 0 is always an
underflow error; StkP equal 0 after modification underflows iff writing at the maodified
address. Consequently, the assembler sets RSTK[0] equal 1 for a stack reference only
when either reading STK and incrementing the pointer or writing at the modified address
and decrementing the pointer.

In other words, thé microassembler must tell the hardware when to make the StkP equal 0'
underflow checks, and it must do this correctly when the ModStkPBeforeW FF decode is
used.

StkP can be loaded from B[8:15] using the StkP«B function; however, this is illegal in
conjunction with a STK read or write in the same instruction (e.g., T«Stack, StkP«T leaves
StkP unchanged).

Dorado Hardware Manual Processor Section 14 September 1981 12

StkP is saved at t, of an instruction dispatched to by the IFU. The saved value may be
reloaded into StkP at t, by the RestoreStkP function; RestoreStkP is illegal in conjunction
with a STK read or write in the same instruction.

RestoreStkP is useful only if opcodes are restarted after servicing map faults. However, we are also
arranging for the IFU state, branch conditions, etc. of an interrupted opcode to be readable and
reproducible, so that it will be possible to simply continue from the instruction that faulted.
RestoreStkP will be useless if the continue-method of restarting is adopted.

The opcode-restart method effectively prevents use of the IFU entry vector scheme discussed in "IFU
Section," degrading performance perhaps 2%, so it is desirable to continue from rather than restart
from faults. Also, complicated opcodes may require special-case code in the fault handler before
opcode restart is possible, so continuing from the instruction that faulted is likely to be simpler
overall.

Two groups of FF decodes change the RM address for the write portion of an instruction.

The first group of 16 FF decodes forces the write address to come from
RBase[0:3],,FF[4:7]. This allows different registers in the same group of 16 to be used for
the read and write portions of the instruction, or allows STK[StkP] to be used for the read
portion and any of the 16 registers pointed to by RBase in the write portion.

The second group of 16 FF decodes forces the top four write address bits to come from
FF[4:7]. The complete RM write address becomes FF[4:7],,RSTK[0:3]. This allows an
arbitrary RM address to be written without having to load RBase in a previous instruction.
Alternatively, if the i'th register in a group of 16 is read from RM, it permits the i'th register
in a different group of 16 to be written in the same instruction. In conjunction with a read
of STK, RSTK[0:3] will encode the StkP modification, and whatever RM word this happens
to point to will be written (Programmers will have to struggle to use this with a STK read.).
Note: SubTask does not affect the write address for these functions. '

Note that there is no way to read RM and write STK in one instruction.

The Risld FF decode causes Id to be substituted for RM/STK in fhe A, B, or shifter
multiplexing.

There are branch conditions to test R[0] (R<0) and R[15] (R odd). These branch conditions
are unaffected by the Risld FF decode; actual data from RM/STK is tested.

Cnt Register

The 16-bit Cnt register is provided for use as a loop counter. Since it is not task-specific,
jo tasks must save and restore it.

Cnt can be decremented and tested for 0 by the Cnt=0& -1 branch condition; loaded from
B[0:15] or from small constants 1 to 16 (FF decodes), and read onto the Pd path (into T or
RM/STK) by an FF decode.

Dorado Hardware Manual Processor Section 14 September 1981 13

Q Register

The 16-bit Q register is provided primarily for use as a shift register with multiply and
divide, but will probably be used more widely by the emulator. Since it is not task-specific,
io tasks must save and restore it.

Q can be read onto B (BSEL) or onto A (FF); it can be loaded from B (FF) and when FF
specifies an external B source in the memory, ifu, or control sections, it can also be loaded
from B (BSEL). Q can be left-shifted or right-shifted one (bringing O into the vacant bit) by
two FF decodes.

T Register

The 16-bit T register is the primary register for data manipulation in the processor. Since it
is task-specific io tasks do not have to save and restore it. T can be read onto B (BSEL) or
A (ASEL); it can be loaded from Pd or Md (LC).

BSEL: B Muitiplexor Select

BSEL normally selects one of the "internal" processor sources for B, as shown in the
"Primary"” column in the table below (Note that although Md originates in the memory
section, it is latched by the processor and appears as an internal B source.). However, the
FF field can be used to substitute some other source external to the processor—there are
many "external" sources in the control, IFU, and memory sections, and the codes for these
are given in Table 11. When an external source is specified, then BSEL instead encodes
the destination for B, as shown in the "External" column of the table below.

The sources selected by BSEL are:

Table 7: BSEL Decodes

BSEL Primary With External Source
0 Md —_
1 RM/STK —
2 T —
3 Q QeB *
4 0, FF Inapplicable because FF is not available to encode an external source
5 3778,,FF Inapplicable
6 FF,,0 Inapplicable
7 FF,.3778 Inapplicable

*Note: BSEL decode for Q¢B is needed in initializing Dorado from the baseboard or Alto. Because
ALUFM contents may be unknown, and data from the Alto is transmitted via the B¢Link FF decode,
some other field is needed to encode a destination that can then be routed into ALUFM.

The values selected by BSEL =4-7 are 16-bit constants obtained by concatenating the 8-bit
FF field with zeroes or ones. When this is done, normal effects of functions are disabled,
so external B sources are impossible. In conjunction with a shift operation on A, BSEL =
4 to 7 will cause the shifter controls to come directly from FF rather than from ShC as

Dorado Hardware Manual Processor Section 14 September 1981 14

discussed in "Shifter"”; the Q-register sources B when an FF-controlled shift is carried out.

The Tisld and Risld FF decodes may be used with the B«T or B«RM/STK BSEL decodes,
respectively, to accomplish Beld.

The "External" decode of BSEL applies with Link, DBuf, Pipe0-Pipe5, Faultinfo, PCX,
DecLo, DecHi, and other functions that source B on the backpanel, as selected by the FF
decode. For these external sources, BSEL is interpreted as the destination for B rather
than the source.

Note: When the memory or control section sources the external B bus, it is illegal to
execute arithmetic alu operations; these sources are not electrically stable soon enough to
permit the extra 10 ns required for carry propagation. But: if you are sure carries will not
propagate into the high 8 bits of ALU result, then the hardware is fast enough.

However: Arithmetic is permitted when the IFU sources the external B bus, provided the
previous instruction was not one of the slow B sources from the memory or control
sections. This permits (Id)-(PCX')-1, common in emulator microcode.

This implies that an io task must never block on an instruction that reads B from a slow external
source. .

Hardware Implementation

The processor's internal version of B, called Alub, is driven by a 4-input multiplexor when sourced from within
the processor; in this case an identical multiplexor drives the external bus, called Bmux (high-true). When the
B source is external, both of these muitiplexors are disabled, and the backpanel Bmux (low-true) is inverted
through a gate onto Alub. The multiplexor arrangement is shown in Figure 3.

The IFU section is on/off of Bmux by t1 +6 ns and the processor section is off by t1 +7 ns, but the memory
and control sections are not on/off until t1+16 ns; hence, a slow Bmux source in the previous instruction
prevents Bmux from stabilizing until t1 +16 ns of the current instruction, allowing insufficient time to propagate
Bmux onto Alub and finish carry propagation. However, because Bmux is gated onto Alub, and the gate shuts
off quickly, arithmetic on internal Alub sources is always permissible. ’

Bmux sources in this manual are given high or low-true names that agree with the way signals éppear on Alub.
For external sources this is inverted with respect to the sense of these signals on Bmux. However, because
external sources cannot feed external destinations (no way to encode this in an instruction), the signal
inversion is invisible to programmers.

Dorado Hardware Manual Processor Section 14 September 1981 15

ASEL: A Source/Destination Control

The AMux drives the A input to the ALU, and is the data source for the read-field (RF«¢)
and write-field (WF «) methods of loading ShC. The shifter also drives A, in which case the
AMux is usually disabled.

A copy of the AMux drives the backplane Mar bus on processor memory references. The
IFU may also drive Mar, when the processor isn't using it.

The three-bit ASEL field controls the source and destination for A as follows:
Table 8a: ASEL Decodes When FF is ok*

ASEL FF[0:1] Meaning
0 PreFetch«RM/STK

Map«RM/STK (emulator or fault task) -or- IOFetch¢RM (io task)
LongFetch«RM/STK

Store«RM/STK

DummyRef «RM/STK

Flush«RM/STK (emulator or fault task) -or- IOStore«RM (io task)
IFetch«RM/STK :
Fetch«RM/STK

Store«Md

Store«Id

Store«Q

Store¢T

FetcheMd

Fetcheid

Fetch«Q

FetcheT

A«RM/STK

A«ld--see "Instruction Fetch Unit"

AeT

Shift operation—see "Shifter" (uses ALUF)

N
|l avasocwmvmaocwnma0CLN 2O

N g s
I

I

Table 8b: ASEL Decodes When FF is not ok*
ASEL Meaning

Store«RM/STK

Fetch«RM/STK

Store«T

FetcheT

A«RM/STK

A«ld

AeT

Shift operation—see "Shifter" (uses ALUF)

NOOAEWOND -0

*FF is ok when not used in a long goto, long call, as a BSEL constant, or in an FF-
controlled shift.

When FF is ok and ASEL = 0 to 3, the decoding of FF as a function is forced to be in the
range 0 to 63. In other words, FF[0:1], stolen to modify the memory operation on A, do not
participate in the FF decode. Hence, only functions 0 to 63 can be used in the same
instruction with a memory reference.

Dorado Hardware Manual Processor Section 14 September 1981 16

In the above tables, each instance where the source for A is RM/STK can be overruled by
one of the 4 FF decodes for A sources or the FF decodes that put FF[4:7] on A. These FF
decodes are illegal with the ASEL or ASEL-FF[0:1] values that select Id or T, and the
source for A is undefined when this restriction is violated.

The notation "Fetch+A", "Store+«A", etc. in the above table is compatible with the
microlanguage. These routing expressions mean, for example, that the displacement
originating on A is routed onto the Mar bus on the backplane, added to BR[MemBase] in
the memory section and loaded into the memory address register. Then the Fetch, Store,
etc. is started as detailed in "Memory Section”.

ASEL does a pretty thorough job of encoding possible actions on A: Store« and Fetch«
references take the address from RM/STK, T, Md, Id, or Q; other references take the
address from RM/STK; LongFetch+ takes the low 16 bits of address from RM/STK and
high 8 bits from B.

The FF field can be used to select any of the following sources:

FF[4:7] (small constant)
RM/STK

Q
T
Md

These functions are illegal except on shifts (ASEL=7) or when the source otherwise
selected would be RM/STK (ASEL=0, 1, or 4). On shifts these functions cause the A
source to be wire-or'ed with the shifter output (otherwise the A source would be disabled);
with references, these functions overrule RM/STK as the source.

Hardware Implementation

A is driven by a 4-input multiplexor as shown in Figure 3. A similar arrangement drives Mar, which is disabled
except on memory references or when one of the 8 FF decodes that use Mar is executed; the IFU may use
Mar when the processor does not. The 4-input multiplexors are usually disabled on shifts, which OR onto A
. independently.

However, the A multiplexor is not disabled when the source for A is encoded in FF, so it is possible to OR any
A input except Id with the (complemented) shifter data—this is useful for BitBIt and other complicated uses of
the shifter. Since shifter data on A is low-true, and since the normal ALU operation is NOT A on shifts, the
effect of enabling both the shifter and the normal A multiplexor is [Shiftdata and not A].

Dorado Hardware Manual Processor Section 14 September 1981 17

ALUF, ALU Operations

The 4-bit ALUF field controls the ALU operation. It addresses a RAM (ALUFM) containing
control for the MC10181 ALU chips.

ALUFM is 8-bits wide, of which 6 bits are used. ALUFM[0] controls the carry-in for
arithmetic ALU operations. It is a "don’t care" for the 16 logical ALU operations. The
XorSavedCarry function causes the saved carry-out of a previous operation to be xor'ed
with this bit. The XorCarry function complements the value from ALUFM. ALUFM[3:7]
select the ALU function performed as below. The carry-out (task-specific) changes
whenever an arithmetic operation is performed in the ALU unless explicitly disabled by the
FreezeBC function (freeze branch conditions).

The Carry20 function forces the bit 12 carry-in to one. Assuming that this carry-in would
otherwise have been zero, then this function adds 20g to the (arithmetic) ALU output.
Adding 204 is expected to be useful because the cache, fast input bus, and fast output bus
deal with 20g-word munches. '

The table below shows the logical and (useful) arithmetic ALU operations.

Table 9: ALUFM Control Values (Octal)

Logical Arithmetic (No Carry) Arithmetic (With Carry)

*1 NOT A *0 A *0 A+1

3 (NOT A) OR (NOT B) **6 2*A 6 2*A +1
5 (NOT A) OR (B) *14 A+B *14 A+B+1

7 All-ones output *22 A-B-1 *22 A-B

11 (NOT A) AND (NOT B) *36 A-1 36 A

*13 NOT B :
15 A XNOR B (Assembler makes "EQV" and "=" synonyms for XNOR)

17 A OR (NOT B)
21 (NOT A) AND B
*23 A XOR B (Assembler makes "#" synonym for XOR)
*25 B
*27 A CR B
31 All-zeroes output
**33 A AND (NOT B)
*35 A AND B
37 A

*System microcode can count on these operations being defined.
**Emulator task can count on these operations being defined.

On a barrel shift (selected by ASEL =7), the first three ALUFM address bits are forced to 1
(ALUF[0:2] selects the kind of shift in this case). The intent of this arrangement is that
ALUFM[16;] selects the "NOT A" ALU operation. Nearly all shifter operations use this ALU
function to route shifter output through the ALU. ALUFM[178] is loaded with assorted
controls (i.e., used as a variable) by BitBlt or other opcodes that do more complicated
things.

ALUFM can be read onto Pd by the ALUFMEM function or both loaded from B and read
onto Pd by the ALUFMEMRW function.

Dorado Hardware Manual Processor Section 14 September 1981 18

External B sources from the IFU and internal sources are ready in time for. arithmetic, but
external sources from the memory and control sections are not (see the earlier section on
"BSEL: B Multiplexor Select"). Internal A sources except shifter are ready in time for
arithmetic. Unless explicitly disabled by the FreezeBC function, the branch conditions
ALWCO, ALU=0, Carry’ (ALU carry out’), and Overflow are available for testing on the
control card at ts.

The Overflow branch condition, defined as carry-out from bit 0 unequal to carry-out from
bit 1, is true iff a signed arithmetic operation yields an incorrect result.

Normally, the ALU is routed directly onto Pd, and Pd is then written into either T or
RM/STK. However, several functions route ALU output shifted left or right 1 position onto
Pd. Note that the ALU output of this instruction are used (not the previous one) and that
AlLUcarry is undefined on a logical ALU operation. The right shifts are:

ALU rsh 1 (0 onto Pd[0])

ALU rcy 1 (ALU[15] onto Pd[0])

ALU arsh 1 (ALU[O] onto Pd[0] preserving the sign)
ALU brsh 1 (ALUcarry onto Pd[0])

Multiply (ALUcarry onto Pd[0]).

The left shifts are:

ALU ish 1 (O onto Pd[15])

ALU lcy 1 (ALU[O] onto Pd[15])
Divide (Q[0] onto Pd[15])
CDivide (Q[0] onto Pd[15]).

Multiply, Divide, and CDivide have other effects as well discussed later.

Note: The barrel shifter discussed in the "Shifter" section also use the Pd muitiplexor for
masking, so it is illegal to combine barrel shifts and ALU shifts in the same instruction.

Note: ALUKO, ALU =0, Carry’, and Overflow branch conditions test the ALU .output of the
previous instruction executed by the task and any shifting or masking that takes place in
the Pd input multiplexor does not affect the result of these branch conditions.

Note: The value of Carry’ and Overflow change only on arithmetic ALU operations.
However, ALU«A may be either an arithmetic or a logical operation; in order to use
XorCarry with ALU«A, we will probably use the arithmetic form of ALU«A, but the
consequence of this is that Carry’ will change on ALU«A. Programmers will have to be
wary of this. -

Note: Overflow is implemented correctly only for the A+B, A+B+1, A-B, and A-B-1
operations; other arithmetic ALU operations (A+1, A-1, 2A, 2A+1, etc.) may modify the
branch condition erroneously.

Dorado Hardware Manual Processor Section 14 September 1981 19

LC: Load Control for RM and T

This field controls the loading and source selection for the RM/STK memory and T register.
The eight combinations are: '

Table 10: LC Decodes

-
(2]

Meaning

No Action

T«Pd

T«Md, RM/STKePd
TeMd

RM/STK«Md
T«Pd, RM/STK«Md
RM/STK«Pd

TePd, RM/STK«Pd

NoudsWLWN=O

The only missing combination is T+«Md, RM/STK«Md. T¢Md, RM/STK«Md can be
accomplished by combining an LC value of 5 with the TgetsMd FF decode. It is illegal to
use TgetsMd with other LC decodes.

FF: Special Function

This field is the catch-all for functions not otherwise encoded in the instruction. For
consistency with the hardware implementation, the 8-bit FF field is shown below as a two-
bit field FA (= FF[0:1]) and two 3-bit fields, FB (= FF[2:4]) and FC (= FF[5:7]). Field
values are given in octal.

The FF field is interpreted as a function iff:

(BSEL not selecting a constant) and
JCN does not select a "long" goto or call

- When ASEL selects one of the memory references, the FF decode is forced to be that of
FA =0 because the FA field specifies the source for A or alternate memory reference in this
case.

The decoding assignments have been made with the following considerations:

Functions that source the external BMux are grouped for easy decode of the signal
that turns off the processor's B-multiplexors.

Operations that might be useful in conjunction with a memory reference are put in
_ the first 64 decodes (FA=0) since FA is decoded as zero on memory references.

Functions decoded by different hardware sections are arranged in groups to
reduce decoding logic.

Dorado Hardware Manual Processor Section 14 September .1981 20

Table 11a: FF Decodes (FA = 0)

FB FC Function

* The AMux is not disabled when A¢xx decodes below are used while ASEL selects a shift.
0-1 - A[12:18] « FF[4:7}

2 0 A ¢ RM/STK
2 1 A« T
2 2 A ¢ Md
2 3 A« Q
2 4 XorCarry (complements ALUFM carry bit)—see the "ALUF, ALU Operations" section
2 5 XorSavedCarry—see the "ALUF, ALU Operations" section
2 6 Carry20 (carry-in to bit 11 of ALU = 1)—see the "ALUF, ALU Operations" section
2 7 ModStkPBeforeW (Use modified StkP for write address of STK)
3 0 —
3 1 ReadMap. Modifies action of Map¢ (see "Memory Section")
3 2 Pd « Input (checks for I0OB parity error)
3 3 Pd ¢ InputNoPE (no check for IOB parity error)
3 4 Risld (causes !d to replace RM/STK in A«RM/STK, B¢RM/STK, and shifter)
3 5 Tisld (causes Id to replace T in A«T, Be¢T, and shifter)
3 6 Qutput ¢« B
3 7 FlipMemBase (MemBase + MemBase xor 1)
4-5 — Replace RMaddr[0:3] by RBase[0:3] and RMaddr[4:7] by FF[4:7] for write of RM;
Forces RM to be written even if STK was read.
6 07 Branch conditions (see "Control"). In conjunction with an IFU jump in JCN,
if the condition is true, IFU advance is disabled (see "IFU")
7 0 BigBDispatch « B (256-way dispatch on B[8:15]. See "Control")
7 1 BDispatch « B (8-way dispatch on B[13:15]. See "Control")
7 2 Muitiply (Pd[0:15] « ALUcarry, ALU[0:14]; Q[0:15] « ALU[15],,Q[0:14];
Q[14] OR'ed into TNIA[10] as slow branch—see "Multiply")
7 3 Q ¢« B
7 4 —
7 5 TgetsMd (In conjunction with LC=5, this causes T«Md, RM/STKeMd)
7 6 FreezeBC (freezes previous values of ALU and IOAtten’ branch conditions for 1 cycle)
7 7 Reserved as a no-op ’
Table 11b: FF Decodes (FA = 1)
FB FC Action
0 0 PCF ¢ B. Load PCF and starts fetching instructions
0 1 IFUTest ¢ B, dismisses junk wakeup, bits used as follows:
0:7 TestFG 8 TestParity 9 TestFault 10 TestMemAck
11 TestMakeF«D 12 TestFH' 13 TestSH’ 14 enables testing
IFUTick

RescheduleNow (doesn’t set Reschedule branch condition)

AckJunkTWeB. B[15] =1 shuts off junk task wakeups, =0 enables them; B[0:14] ignored
MemBase «B[3:7]

RBase«B[12:15]

Pointers«B (MemBase«B[3:7] and RBase«B[12:15])

Unused

-~ 000000
NoOo o s wN

e
\‘

Dorado Hardware Manual Processor Section 14 September 1981

FB

FC

Table 11c: FF Decodes (FA = 1)

Action

*The following 8 FF decodes drive Mar from A.

[~ SN VRN CR (VR CR LB V)

Wwmw ww

w W

(4] (S0 IS IS I R o

(4,04

NNSNSNNNNNOOODODODOD OO

0-1

ONOO A WLWN

1
2
3

Unused

CFlags « A’ (see Figure 10) (Mar must be stable during prev. instr.)
BrLo « A. BR[16:31] « A[0:15]

BrHi ¢ A. BR[4:15] « A[4:15]

LoadTestSyndrome from DBuf (see Figure 10)

LoadMcr[A,B] (see Figure 10)

ProcSRN ¢ B[12:15]

21

InsSetorEvent « B. If B[0] = 0, then B[4:15] are controls for EventCntA and EventCntB;

if B[] = 1, then B[6:7] are loaded into the IFU's InsSet register.
EventCntB ¢ B or equivalently GenOute«B (General output to printer, etc.)
Reschedule

NoReschedule

data must setup during previous instruction and not glitch when writing IFUMLH/RH-—see IFU section.

4
5

[4,] PO ONOOOPSDLONM=0O ~N o

~N o

NOoOO PO~ ONOOODGOPAEOND -0

IFIIMRH « B. Packeda«B.5, IFaddr’ «B[6:15]

IFUMLH « B. SigneB.0, PE[0:2]«B[1:3], Length'«B[4:5], RBaseB'«B.6,
MemBe¢B[7:9], TPause'¢B.10, TJumpeB.11, N¢B[12:15]

IFUReset. Reset IFU

Brkins ¢« B. Opcode«B[0:7] and set BrkPending

UseDMD (see "Control Section")

MidasStrobe ¢ B (see "Control Section")

TaskingOff

TaskingOn

StkP « B[8:15]

RestoreStkP .

Cnt ¢« B (overrules Cnt=0&-1 in the same instruction)
Link ¢ B (overrules loading of Link by Call or Return in same instruction)
Q I1sh 1 (Q[0:14] « Q[1:15], Q[15] « 0}

Q rsh 1 (Q[1:15] « Qo:14], Q0] « 0)

TIOA[0:7] « B[0:7] (Note: loaded from Jleft-half of B)
Hold&TaskSim « B (Hold reg « B[0:7], Task reg « B[9:15].
See "HOLD and Task Simulator")

WF ¢ A (load ShC with write-field controls—see "Shifter")
RF ¢ A (load ShC with read-field controls—see "Shifter")
ShC « B (see "Shifter")

Faultinfo’. B[8:11]«SRN for 1st fault, B[12:15]«number of faults
Pipe0 (B«VaHi—see Figure 10)

Pipel (B«VaLo—see Figure 10)

Pipe2' (see Figure 10)

Piped' (B¢«Map'—see Figure 10)

Pipe4’ (B¢Errors’—see Figure 10)

Config’ (see Figure 10)

Pipe5' (see Figure 10)

PCX’

. EventCntA’ (see "Other IO and Event Counters")
IFUMRH' (low part of IFUM)

IFUMLH' (high part of IFUM)

EventCntB' (see "Other 10 and Event Counters")

RWCPReg (= Link¢B' and B«CPReqg)
Link

DOWODWODODEOODOLDOWO oo

b N . R R S S N S S N R Y S S N

DBuf (normally non-task-specific data from last Store« — see "Memory")

Dorado Hardware Manual

FB

0-1
2.3

(o3 o)R) BN o> =2}]

(<]

NNNNNSNSNSNO

0-3
4.5

FC

=2}

NOOeWN-=ON

Action

Processor Section 14 September 1981

Table 11d: FF Decodes (FA = 2)

RBase ¢« FF([4:7]

Replace RMaddr[0:3] by FF[4:7] for write of RM.

Forces RM to be written even if STK was read.

TIOA[5:7] « FF[5:7] (TIOA[0:4] unchanged)

MemBaseX ¢ FF[6:7]

(MemBase[0] « 0, MemBase[1:2] « MemBX[0:1], MemBase[3:4] « FF[6:7])
MemBX +« FF[6:7]

Pd
Pd
Pd
Pd

O

-

ALUFMRW (Pd « ALUFMEM as below, ALUFMEM « B.8, B[11:15])
ALUFMEM (Pd.0 « DMux data, Pd.8 and Pd[11:15] ¢ ALUFMEM[ALUF])
Cnt (If Cnt=0&-1 in same instruction, unmadified value is read)
Pointers (Pd[1:2] « MemBX, Pd[3:7] ¢« MemBase,

Pd[8] « StkOvf, Pd[9] « StkUnd, Pd[12:15] « RBase)
Pd « TIOA&SIkP (Pd[0:7]«TIOA, Pd[8:15]«StkP; if the instruction modifies StkP
concurrently, the MODIFIED value is read)

Pd
Pd
Pd
Pd
Pd
Pd
Pd

-

++t 1+t 1+ 1+t

Divide
CDivide (Pd[0:15]«ALU[1:15],,Q[0]; Q[0:15]«Q[1:15],,ALUcarry’)

ShC

ALU rsh 1 (Pd[0] « 0)

ALU rcy 1 (Pd[0] « ALU[15])

ALU brsh 1 (Pd[0] « ALUcarry)

ALU arsh 1 (Pd[0] ¢ ALU[O] preserving sign)
ALU Ish 1

ALU lcy 1

(Pd[0:15] «ALU[1:15],,Q[0]; Q[0:15]«Q[1:15),,ALUcarry)

Table 11e: FF Decodes (FA = 3)

MemBase ¢« FF[3:7]

Cnt « small constant (Cnt[0:10] « O, Cnt[11] « O if FF{4:7] # 0O else 1,
Cnt[12:15] « FF[4:7]; ie., values of 1 to 16 are loadable)

Wakeup[n] — Initiate wakeup request for task FF[4:7]

22

Dorado Hardware Manual Processor Section 14 September 1981 23

Multiply and Divide

The Multiply, Divide, and CDivide functions operate on unsigned 16-bit operands. Unsigned
rather than signed operands are used so that the algorithms will work properly on the extra
words of multiple-precision numbers.

The actions caused by these functions are as follows:

Multiply:
Result + ALUCarry..ALU/2
Q « ALU[15]..Q/2
Next branch address ¢ whatever it is OR 2 if Q[14] is 1.

Divide, CDivide:
Result « 2*ALU..Q[00]
Q « 2*Q.AlUCarry -or- 2*Q..ALUCarry’

Complete examples for Multiply and Divide subroutines are given in the microassembler
document. The inner loop time is 1 cycle/bit for multiply and 2 cycles/bit for divide.

Shifter
See Figure 4.

Dorado contains a 32-bit barrel shifter and associated logic optimized for field extraction,
field insertion and the BitBIt instruction.

The shifter is controlled by a 16-bit register ShC. To perform a shift operation, ShC is
loaded in one of three ways discussed below with 14 bits of control information, and one of
eight shift-and-mask operations is then executed in a subsequent instruction. Alternatively,
(a limited selection of) shift controls may be specified in FF and BSEL concurrent with a
shift; in this case, ShC is not modified. ASEL =7 causes a shift and ALUF[0:2] select the
kind of masking. '

The execution of a shift instruction (after ShC has been loaded in a previous instruction)
proceeds as follows:

ShC[2] selects between T and RM/STK for the left-mast 16 bits input to the shifter;
ShC[3] selects between T and RM/STK for the right-most 16 bits. Using the Risld
or Tisld FF decode in the same instruction allows Id to replace either T or RM/STK
in the shift. This 32-bit quantity is then left-cycled by the number of positions (0-
15) given by ShC[4:7]. When ShC[2] and ShC[3] are both 1, then the shifter left-
cycles T; when both 0, RM/STK. In these cases it operates as a 16-bit cycler.
When ShC[2] and ShC[3] are loaded with complementary values, then it left-cycles
the 32-bit quantity R.T or T..R.

The low order 16 bits of shifted data are placed complemented on A by the shift,
and normal A source is disabled (except when the source for A is encoded in
FF—see the ASEL section).

ALUF[0:2] select one of eight mask operations (see below) and the first three

Dorado Hardware Manual Processor Section 14 September 1981 24

ALUFM address bits are forced to 1, so that the ALU operation in either ALUFM
164 or ALUFM 17,5 can be performed. This must be a logical ALU operation using
the shifted data on A and data on B because there is insufficient time to propagate
carries for an arithmetic operation. The intent is that ALUFM 164 contain the
control for the "NOT A" ALU operation normally desired, while ALUFM 17 is used
by BitBlt and other opcodes that need computed ALU operations.

ALU output passes to the masking logic. The mask operation determines which of .
two independent masks in ShC are applied to the data. LMask contains 0 to 15

ones starting at bit 0, RMask 0 to 15 ones starting at bit 15. The masked area(s)

of ALU output corresponding to 1's in the mask are replaced either with zeroes or

with corresponding bits from Md according to the shift-and-mask function selected.

Replace-with-Md generates HOLD if Md isn't ready yet, and the timing for this is

the same as Md onto B (i.e., data is never ready sooner than the second

instruction after the Fetch«+).

Masked data is routed onto Pd, then sent to the destination specifiéd by LC.

Note: The Pd input multiplexor is used to carry out masking, so it is illegal to
combine a shifter operation with an ALU shift in the same instruction.

Three functions load ShC: RF«A and WF«A treat A[8:15] as a Mesa field descriptor and
transform the bits appropriately before loading ShC; they also load ShC[2:3] from A[2:3].
ShC+B allows an arbitrary value to be placed in ShC (used by BitBIt).

Microcode for the Mesa RF (Read Field) and WF (Write Field) opcode is shown as an
example of the use of the shifter. In these examples, a and 8 are the two operand bytes
for the opcode, as discussed in "Instruction Fetch Unit." RF and WF both take a pointer
from the top of the stack and add «a to it as a displacement. RF fetches the word, and
pushes the field specified by 8 onto the stack; WF fetches the word, and inserts a field
from the rightmost bits of the word in the second position of the stack into it, then restores
the word to memory.

RF: IFetch«Stack, Tisld; *Calculate the pointer. a replaces BR[MemBase] (MDS);
*this value is then added to Stack to compute the
*address for the pointer.
StackeMd, RF«Id; *IFU supplies ,B, the field descriptor
IFUJump[0], Stack«ShiftLMask; *Right-justify & mask the field, IFU to next instruction

WF: T¢(IFetch«Stack&-1) + T, Tisld; *Start fetch of word containing field
WF«ld, RTemp T, *IFU supplies [)', the field descriptor
T«ShMdBothMasks[Stack&-1];

IFUJump[0], Store<RTemp, DBuf«T;

The shift controls come directly from FF if ASEL =7 (a shift) and if BSEL = 4, 5, 6, or 7,
selecting a constant. This specifies complete shift control in the instruction which does the
shift, so ShC doesn’t have to be loaded in a previous instruction, and ShC isn't clobbered,
so io tasks don’t have to save and restore it. When BSEL controls a shift in this way, the B
source is forced to be Q.

The mask operations are as follows:

Dorado Hardware Manual Processor Section 14 September 1981 25

Table 12: ALUF Shift Decodes

ALUF[0:2]*
0 ShiftNoMask
ShiftLMask-—masked bits on the left-hand-side of the word replaced with 0's
ShiftRMask—masked bits on the right with O0's
ShiftBothMasks—masked bits on both sides replaced with 0's
ShMdNoMask—unused ({falls out of decoding)
ShMdLMask—masked bits replaced with Md
ShMdRMask—masked bits replaced with Md
ShMdBothMasks—masked bits replaced with Md

NO O~ ON =

*ALUF[3] selects the ALU operation in either ALUFM ‘IES,3 or 17g

ShiftLMask implements right shift and load-field operations; ShiftRMask implements left
shift; ShiftBothMasks deposits the selected field into a word of zeroes; ShMdBothMasks
deposits the selected field into data coming from memory; and ShiftNoMask implements
various cycle operations.

Note: On a shift the ALU branch conditions apply to the unmasked ALU output.

Hold and Task Simulator

The hold and task simulators are provided for hardware checkout (programmers skip this
section).

Hold&TaskSim«B loads HOLDSIM[0:7] from B[8:14]..0 and TASKSIM[0:6] from B[1:7].
HOLDSIM is a recirculating shift register in which the presence of a 1 in bit 7 causes HOLD
two instructions later. For example, Hold&TaskSim«200, will complete three instructions
after the Hold&TaskSim+«+, HOLD the next cycle, and HOLD every seventh instruction (i.e.,
every eighth cycle) thereafter. Since this register cannot be loaded with all 1’s and since its
clocks are not disabled by HOLD, HOLD of infinite duration is impossible.

" To disable this debugging feature, the register must be loaded with O.

TASKSIM is a seven-bit counter which determines the number of cycles before a task
wakeup occurs. The task selected for wakeup must be jumpered on the backplane (else no-
op). Whenever TASKSIM is loaded with a non-zero value, it counts up to 1774, then
generates a wakeup request when the counter overflows to 200g. The wakeup request
remains true until TASKSIM is reloaded.

Dorado Hardware Manual Control Section 14 September 1981 26

Contrel Section

The control section interfaces the mainframe to the baseboard microcomputer or Alto which
controls it as detailed in the "Dorado Debugging Interface" document. In addition, the
control section stores instructions in 4k x 34-bit (+2 parity) IM ("Instruction Memory") and
contains logic for sequencing through instructions and switching among tasks.

The current instruction is clocked into the MIR register at t; and exported to the processor,
memory, and IFU sections for decoding. The control section itself decodes the JCN field,
the BLOCK bit, and its own FF decodes (Wakeup, BeLink, B«RWCPReg, Link¢B,
TaskingOn, TaskingOff, BDispatch+B, BigBDispatch+«B, Multiply, MidasStrobe+B, UseDMD,
and branch conditions).

The control section also exports the task number via the Next bus, which somewhat after t,
contains the task number that will execute an instruction at t,.

Figure 5 shows the overall organization of the control section. Figure 6 shows how branch
control is encoded in JCN. Figure 7 shows the timing for regular instructions and for the
multi-cycle TPC and IM read/write instructions.

Tasks

Dorado provides sixteen independent priority-scheduled tasks at the microcode level. Task
15 is highest priority, task O lowest. Task 15 (the "fault task") is woken by StkError and by
memory map and data error faults. Tasks 1-14 provide processing functions for io
controllers implemented partially in hardware, partially in firmware; the present assignment of
these tasks to device controllers is given in the "Slow I0O" chapter. Task 0 {the "emulator")
implements instruction sets (Mesa, Alto, etc.). In the absence of io activity, task 0 (always
awake) controls the processor.

Essentially, io devices are paired to tasks when built, and a device controller can assert a
wakeup request for the task with which it is paired. A program cannot modify the
assignment of controllers to tasks (although the hardware change for this is easy).
Additional flexibility in this area is not thought to be worth additional hardware cost.

Each task has its own program counter and subroutine return link, stored in the (task-
specific) TPC and TLINK registers when the task is inactive. TPC may also be treated as a
memory, so program counters for tasks other than the current task can be read and written
by a program. This is discussed later in this chapter.

Task Switching’

When device hardware requires service from a task, it activates its wakeup request line at ty
Wakeup requests are priority-encoded, and the highest priority request (BNT or "Best Next
Task") is clocked at t, and competes with the current task (CTASK) for control of the
machine. If BNT is higher priority than CTASK, or if the current (non-emulator) instruction
has BLOCK = 1, a task switch will take place; in this case, CTASK will be loaded from BNT
at t,. This implies that the shortest delay from a wakeup request to the first instruction of

Dorado Hardware Manual Control Section 14 September 1981 27

the associated task is two cycles.

The 16 Wakeup[task] FF decodes allow any task to be woken, just as though a hardware
device had activated its wakeup line. A minimum of two cycles elapses after the instruction
containing Wakeup before the task executes its first instruction. The task responding to a.
Wakeup must not block sooner than the second instruction, or it will get reawakened.

When a task has been woken by Wakeup[task] or has executed one or more instructions and
then deferred to a higher priority task, the fact that it is runnable is remembered in a Ready
flipflop. The Ready flipflop is cleared only when the associated task blocks. In other words,
there is no way to deactivate a task, after its ready flipflop has been set, except by forcing it
to execute an instruction that blocks. The Wakeup[task] function must be executed with
tasking off, if it is possible that the specified task might be waking up for some other reason
(e.g., due to a wakeup request from an external device, or due to a wakeup issued by yet
another task). Otherwise, the control section may get horribly confused, and the machine
will hang in the same task forever.

An acceptable sequence is:

TaskingOff;
Wakeup([task];
TaskingOn;

The baseboard and Alto controlle;'s may also clear the Ready flipflops by another mechanism,
discussed in "Dorado Debugging Interface".

The emulator has no Ready flipflop and cannot block; the BLOCK bit in the instruction is interpreted
as StackSelect for the emulator.

Task switching may occur after every instruction unless explicitly disabled by the TaskingOff
function. The TaskingOn function reverses the effect of TaskingOff. TaskingOff is "atomic";
an instruction containing TaskingOff will be held if a task switch is pending; the next
instrcution will be executed in sequence without any intervening task switches. TaskingOn is
not immediately effective; at least two more instructions will be executed by -the same task
before task switching can occur.

It would be a programming error for a task to block with tasking off, but if it did, the block would fail,
and it would continue execution.

It is illegal for a task to block in an instruction that might be held, if the wakeup line for the
task might be dropped at t, of the instruction. If this occurred, the instruction might
inadvertently be repeated before the block occurred.

Remark

Multiple tasks seem better than a more conventional priority interrupt system because interference by
input/output tasks is substantially reduced. As to the exact implementation, variations are possible. The current
scheme requires mare hardware than one in which the program explicitly indicates when a task switch is legal
(as on Alto and DO0). . However, because Hold may last for about 30 cycles, & reliance upon explicit tasking
would result in inadequate service for high priority tasks.

Dorado Hardware Manual Control Section 14 September 1981 28

Next Address Generation

This section gives a low-level view of jump control. Because the microassembler
and loader handle details of instruction placement automatically, programmers need
not struggle with the encodings directly. For this reason, programmers may wish to
skim this section while concentrating on high-level jump concepts described in
"Dorado Microassembler”.

Read this with Figure 6 in front of you.

For the most part, instruction memory (IM) addressing paths are 16 bits wide, although only
12 bits are presently used; the extra width allows for future expansion to 13 or 14 bits, when
sufficiently fast 4kx1 ECL RAMS are economically available; there are no plans to utilize the
remaining 2 bits, but since nearly all hardware components in the control data paths are
packaged 4/can, the extra two bits are almost free. Also, the 16-bit wide Link register can
be used to hold full word data items.

The various registers and data paths that contain IM addresses are numbered 0:15, where
bits 4:15 are significant for the 4k-word microstore, while the quadrant bits 2:3 are ignored.
This numbering conveniently word-aligns the bits while also allowing for future expansion.
The discussion below assumes a 4k-word microstore. ’

Dorado does not have an incrementing instruction-address counter. Instead, the address of
the next instruction is determined by modifying the current instruction address (CIA) in
various ways. The Tentative Next Instruction Address (TNIA) is determined from JCN[0:7] in
the instruction according to rules in Figure 6. TNIA addresses IM for the fetch of the next
instruction unless a task switch occurs. If a task switch occurs, the program counter for the
highest priority competing task (BNPC or "Best Next PC") addresses IM.

A 16k-word microstore is viewed as consisting of four 4k-word quadrants; each IM quadrant
is viewed as containing 64 pages of 64 instructions. Values in JCN are provided for the
following kinds of branches:

Local branches to any of the 64 locations in the current page;
Global branches to location 0 on any of the 64 pages of the current quadrant;

Long branches to any location in the quadrant using the 8-bit FF field to extend JCN
(normal interpretation of FF is disabled);

Conditional branches to any of 14 even locations in the current page, if the selected
condition is false, or to the adjacent odd location, if the condition is true (7 branch
conditions are available);

IFU jumps to a starting address supplied by the IFU; JCN selects any one of up to 4
entries in the starting address vector (This is motivated by an entry-vector scheme
discussed in "Instruction Fetch Unit".);

read/write IM and read/write TPC, after which execution continues at .+1;

Return to the address in Link;

Dorado Hardware Manual Contral Section 14 September 1981 29

Branch conditions may also be specified in FF, as discussed below. Several dispatches may
also be specified in FF. These 'OR’ bits into the branch address computed by the following
instruction.

If IM is expanded to 16k waords, branching from one quadrant to another will only be possible
by loading the Link register with a 14-bit address and then returning; jumps, calls, and
IFUJumps will be confined to the current 4k-word IM quadrant.

Remarks on JCN Encoding

JCN cleverly encodes in 8 bits almost as much programming flexibility as would be possible with an arbitrarily
large and general field. The main disadvantage is that MicroD is needed to postprocess assemblies and place
instructions.

The earliest prototype of Dorado used a 7-bit JCN encoding that had fewer global and conditional branch
targets, so programming was harder and additional instructions had to be inserted in a few places. This was
slightly worse than the 8-bit encoding, but it would have been feasible to stay with the 7-bit encoding and
employ the bit thus saved for some other use in the instruction.

Local, global, and long branches are analogous, respectively, to local, page-zero, and indirect branches used on
many minicomputers. However, Dorado scatters its global locations over the microstore rather than concentrating
them in page-zero; this is better than the minicomputer scheme for the following reason. During instruction
placement, when a cluster of instructions is too large to fit on one page, a global allows it to be divided between
two pages; but if all globals were in page zero, then page zero itself would quickly fill up.” In other words,
dispersing the globals is theoretically more powerful than concentrating them in page zero; because MicroD does
all the tedious work of placing instructions, this theoretical advantage is made practical; minicomputers have not
employed any program like MicroD, so they have used the less powerful but simpler page-zero scheme.

Local branches on Dorado are within a 64-word page, where minicomputers usually branch relative to the current
PC. Relative branching is probably more powerful, but it cannot be used on Dorado because of insufficient time
for addition.

Long branches on Dorado use 4 bits of JCN in conjunction with the 8-bit FF field to specify any location in the
4k-word quadrant. Since BSEL never selects a constant in this case, an improvement on our scheme would
have used 3 bits of JCN in conjunction with BSEL.0 and the 8-bit FF field; this would have freed 8 values of
JCN to encode some other kind of branch. In addition, 5 of the 256 values of JCN are unused and 1 is a
duplicate (See Figure 6 for the 5 unused decodes; the replicated decode is the Global call on the Local page.).
We have variant JCN decodings that correct these problems, but they were not ready when the design was
frozen. .

Conditional Branches

IM is organized in two banks, with odd addresses in one bank, even in the other. The
address is needed shortly after t, but the bank-select signal not until 15 ns after the
address. For this reason conditional branches select between an even-odd pair of
instructions (i.e., between the two banks) according to branch conditions that need not be
stable until a little after t,.

Alternatively, a conditional branch may be encoded in FF in cnnjunction with any addressing
mode except a long branch in JCN. When this is done, the result of the branch test is ORed
with TNIA[15].

This implies that for both FF-encoded and JCN-encoded branch conditions, the false target
address is even and the true target is odd.

Hence, it is possible to conditionally branch using only JCN, while using FF for an unrelated

Dorado Hardware Manual Control Section 14 September 1981 30

function, or to encode a branch condition in FF while using any addressing mode in JCN. If
branch conditions are encoded in both FF and JCN, the branch test results are OR'ed,
providing further flexibility.

The branch condition encodings are:

Table 13: Branch Conditions

JCN[5:7] FF Branch Condition
0 60 ALU=0
1 61 ALU<O
2 62 AlLUcarry’
3 63 Cnt=0&-1 (decrements count after testing)
4 64 RO (RM or STK, whichever is selected, not overruled by RIsld)
5 65 R Odd (RM or STK, whichever is selected, not overruled by Rlsid)
6 - 66 I0Atten’ (non-emulator) or ReSchedule (emulator) .
—_ 67 Overflow

ALU=0 and ALU<KO are the results of the last ALU operation executed by the current task.
AlLUcarry’ (the saved carry-out of the ALU) and Overflow are the result of the last arithmetic
ALU operation executed by the current task (ALU+A may be stored in ALUFM as either an
arithmetic or logical operation, so programmers should be wary of smashing these branch
conditions when ALU<«A is used.). These are saved in a RAM and may be frozen by the
FreezeBC function for one cycle. In other words, the branch conditions are ordinarily loaded
into the RAM at t,, but if FreezeBC is present, then the RAM is not loaded and values from
the previous instruction for the same task will- apply.

The I0Atten’ branch condition tests the task-specific 10Attention signal optionally generated
by the io device associated with the current (non-emulator) task.

Remark on Target Pairs

The bank-select toggling trick, which allows branch conditions to be developed very late, is valuable. Without
this trick, it would be necessary to choose between slowing the instruction cycle or restricting branch conditions
to signals stable at ‘0‘ Neither of these alternatives is palatable.

A more traditional implementation of conditional branches would go to the branch address, if a condition were
true, or fall through to the instruction at .+1, if it were false. This traditional scheme is never faster but is
sometimes more space-efficient than the target-pair scheme because the target-pair requires a duplicated
instruction for every instance of a conditional branch to a single target, which is fairly common. The traditional
scheme does not allow DblGoto and DblCall constructs discussed in "Dorado Microassembler,” but these are
infrequent.

Subroutines and the Link Register

Dorado provides single-level subroutines by means of the (task-specific) Link register. A Call
occurs on any instruction whose destination address is 0 mod 16 before any modification of
TNIA due to branch conditions or dispatches. On a Call, Return, or IFUJump, Link is loaded
with CIA +1.

Because Return loads Link with CIA+1, CoReturn constructs are possible. Because IFUJump also
loads Link with CIA + 1, the conditional exit feature discussed in the "Instruction Fetch Unit" chapter is
possible.

Dorado Hardware Manual Control Section 14 September 1981 31

CIA +1 is used rather loosely in discussion here; the actual value loaded into Link by a call
or return is [(CIA & 1777005) + ((CIA+1) & 778)]. In other words, a call or return in location
774 of any page loads Link with location 0 of that page.

Link may be loaded and read by programs, so deeper subroutine nesting is possible, if Link
is saved/restored across calls.

The functions Link¢B and B«RWCPReg and the B dispatch functions discussed below, all of which
load Link from B, overrule a call. In other words, if there are conflicting reasons for loading Link,
Link¢B wins over Link¢CIA+1.

The B¢«RWCPReg function (= Link«B, B«CPReg') is provided primarily for initialization from the
baseboard computer and for use by the Midas debugging program. Since the CPReg register clock is
asynchronous to the Dorado clock system, a Dorado microprogram that reads CPReg (e.g., to receive
information from the baseboard) must use some synchronization method to ensure that CPReg is
stable during the cycle in which it is read.

Note: it is illegal to use an ALU branch condition in the instruction after Pd«RWCPReg, if CPReg
might have been loaded during the cycle in which it is read—this might result in an unstable IM
address being presented to the control store.

Remark on Call/Jump

Deciding between call and jump based on target address saves one bit in the instruction and .costs little for the
following reasons. Instructions can be divided into three groups: those always jumped to, those always called,
those for which Link can be smashed (i.e., "don't care" about call or jump), and those both jumped to and
called.

A realistic guess is that over half of all instructions will be "don't care"; namely, these will be executed at the
top level, not inside a subroutine, and the Link register will not contain anything of importance. Assembly
language declarations make this information available to MicroD.

The hardware makes 1/16 of the locations in each page "call locations". It is estimated that this is somewhat
more than real programs will need, on the average (although we vacillated about whether 1/8 or 1/16 of the
targets should be calls). .

In each page, MicroD first places instructions that must be called or must be jumped to. Because there are so
many "don't care" instructions, it is unlikely that either call or jump slots in a page will be exceeded.
Consequently, it will nearly always be possible to complete allocation of the call and jump targets without
overflowing due to the call/jump restriction. After this "don't care" instructions fill in the remaining slots.

The remaining situation, with which Dorado cannot cope, is an instruction both called and jumped to. This
would arise in a subroutine whose entry instruction closed a loop (uncommon). On Dorado, this situation
requires duplicating the entry instruction, so it costs one location but no extra time.

Dorado Hardware Manual Control Section 14 September 1981 32

Dispatches

Several FF decodes are dispatches which OR various bits with TNIA[8:15] during the
following instruction. The dispatch bits must be stable by t,.

Dispatches are:

BigBDispatch«B B[8:15] (256-way dispatch)
BDispatch«B B[13:15] (8-way dispatch)
Multiply OR's Q[14] into TNIA[14] (The value of Q[14] is captured in a flipflop at ty of the

instruction containing the Multiply function and is OR'ed into TNIA[14] during the
next instruction for the same task.)

Example:

BDispatch+«T;
Branch[300]; *branches to 300 OR T[13:15]

The two B dispatches load Link register from B, then OR appropriate bits of Link into TNIA
‘during the next instruction for the task. Since Link is task-specific, this works correctly
across task switching. The Q-bit is only loaded during a multiply, and tasks other than the
emulator are not allowed to use the multiply function. :

The decision between call and jump in the instruction after a dispatch is unaffected by
dispatch bits—it depends only upon JCN. In other words, the instruction following a
dispatch is a Call if its unmodified target address is 0 mod 16, else a jump.

It is possible to neutralize any bits in a dispatch by placing target instructions at locations
with 1's in the neutralized bits. In other words, a dispatch on B[8:10] could be accomplished
by locating the 8 target instructions at IM locations whose low five address bits were 1, e.g.
at 378, 778, 1378, 177, 2373’ 277, 3378, and 3778, and by branching to 378 in the
instruction after the BigBDispatch+B.

Note: Methods discussed later for resuming a program interrupted by a page fault do not
permit continuation when a fault occurs between a dispatch and the following instruction; for
this reason, programmers should ensure that no fault can possibly occur by holding for
memory faults with «Md prior to or concurrent with the dispatch; also, stack operations that
might overflow/underflow may not be used in the instruction after a dispatch.

Note: When the PC for another task is loaded using the LdTPC+ operation discussed later,
any pending dispatch conditions for that task are cleared. The debugging program Midas
does not clear pending dispatches, however, so it should be ok to put a breakpoint on the
instruction after a dispatch or to single-step through a dispatch.

IFU Addressing

The IFU supplies ten bits of opcode starting address to the processor. During the last
instruction of every opcode, exit to the next opcode is accomplished by IFUJump[n] (n = O
to 3) which selects among four entry locations for the next opcode. The starting address
supplied by the IFU is used for TNIA[4:13] and TNIA[14:15] are set to n. If the IFU is
unprepared, it supplies a trap address instead of a starting address, and control goes to the

Dorado Hardware Manual Control Section 14 September 1981 33

nth location in a trap vector.

IFUJump’s always load Link with CIA+1. This is necessary to implement the following
conditional exit feature for opcodes.

If an FF-encoded branch condition is true in the same instruction as an [FUJump, IFU
advance to the next opcode is disabled. This kludge allows an opcode with common and
uncommon exit conditions to finish, for example, with IFUJump[2,condition]. If the condition
is false (common case), then the IFU advances normally to the next opcode, starting at
location 2 of the entry vector. Otherwise (uncommon case), control continues at location 3
of the entry vector, but the IFU does not advance, so emulation of the current opcode can
continue.

Utilization of IFUJump and conditional IFUJump is discussed in "Instruction Fetch Unit."
IFU trap addresses and other reserved locations in the microstore are as follows:

Table 14: Reserved Locations in the Microstore

Reason Locations Comment

Reschedule request *14-17 Indicates that some previous instruction executed the
ReSchedule function.

IFUM parity error *74-77 Indicates a hardware failure in the IFUM storage.

IFU not ready *34-37 The instructions in this vector should contain IFUJump(n],
waiting for the IFU to become ready.

IFU data parity error *4.7 Parity wrong on data from cache.

IFU map fault *0-3 The IFU buffers the fact of a map fault and completes all
: opcodes in the pipe ahead of the one experiencing the fault.
Upon dispatch to the first instruction for the opcode affected

by the fault, this trap occurs.

Midas Call command 7776
Midas Crash detect 7777

*Ifu traps OR the 1's complement of the instruction set into bits 8:9 of the trap address, so actual trap
locations for Reschedule, for example, are 14-17, 114-117, 214-217, and 314-317. The trap vector is 1
to 4 instructions long according to the IFUJump programming convention, as discussed in the
"Instruction Fetch Unit" chapter.

IM and TPC Access
See figures 6 and 7.

IM is read and written by programs using a special decode of JCN in conjunction with the
RSTK field of the instruction; TPC is also read and written using a special JCN decode.
TaskingOff must be in force, and anything that might cause hold is illegal in the same
instruction; hold is also illegal in the instruction after an IM or TPC read, when the data is
accessed using Be¢Link.)

It has been reported that IM«Md doesn’'t work because «Md causes hold at unexpected times.

After the read or write instruction, control passes to the next sequential instruction, i.e., to
CIA+1 (with wrap-around at 64-word page boundaries). CIA+1 also winds up in Link.

Dorado Hardware Manual Control Section 14 September 1981 34

Note: The hardware does not actually load Link with the IM or TPC data; instead B«Link in the next
cycle routes inverted data onto B using an alternate path. The Link register itself is smashed with
ClIA+1 as discussed above, and this value would be read (assuming it wasn't overwritten) in later
instructions.

This implies that continuation from a breakpoint or program-interrupt halt on the instruction following
an IM or TPC read (i.e., on the Be¢Link instruction) won't work correctly. ’

Total time for an IM or TPC read or write operation is 6 clocks (i.e., thrice as long as a
normal instruction). '

A 34 (+ 2 parity)-bit IM word is read as four 9-bit quantities. The read address is taken from
Link. Data must be read from Link[7:15] in the instruction immediately after the IM read; this
data is inverted; Link[0:6] contain 1's, so that when the entire word is 1's complemented the
desired data will have leading 0's. The byte select is RSTK[2:3].

IM writes also take the write address from Link, 16 bits of data from B and 2 bits from RSTK;
the half-word affected is also specified in RSTK.

Any task can read or write TPC for an arbitrary task other than itself (an attempt to set TPC
of the running task is unpredictable). The task number is B[12:15], and data is taken from or
written into Link. The assembly language notations for these are RATPC«B and LdTPC«B.
After RATPC¢B, the 16 bits of data in Link are 1's complemented.

Note: The dispatch-pending conditions for a task whose TPC is loaded by LdTPC+ are
cleared, so LdTPC« works even when that task has just executed a BDispatch+«B or
BigBDispatch«B.

Hold

Many events in the memory system, StkError and the hold simulator in the processor, and
several IFU error conditions generate hold (The IFU error conditions cause a one-cycle hold
iff an IFUJump occurs on the first cycle of the error.). The control section itself forces hold
. when a task switch occurs concurrent with TaskingOff. This signal, clocked at t,, occurs
when the current instruction cannot be completed. Its effect on the hardware is to suspend
the current instruction, while completing parts of the previous instruction that have been
pipelined into the current cycle. Approximately, it converts the current instruction into a
Goto[.] while preserving branch conditions and some other stuff.

Higher priority tasks are not prevented from running when the current task is experiencing
Hold.

Remark

The fact that the address of the next instruction is needed at to, while Hold is not generated until t1 means that
concurrence of Hold and BLOCK with a switch to a lower priority task produces an anomalous situation called
"Next Lies". The hardware disables clocks to CIA, TPC, and MIR when this occurs, so that the current
instruction is repeated. This results in some hardware complications discussed in the "Slow IQ" chapter, but
programmers need not worry about it.

Program Control of the DMux

Dorado Hardware Manual Control Section 14 September 1981 35

Dorado contains a large number of multiplexors called mufflers which allow a selected signal
from a set of up to 2048 signals to be observed on a one-wire bus called the DMux. This
provides a passive method by which the Baseboard section or the external Midas debugger
can examine internal control signals and registers not otherwise observable.

The particular DMux signal is selected by shifting in an 11-bit address one bit at-a-time.
Each board with mufflers contains a 12-bit address register that responds to the shifted
address bits; the highest bit is ignored for the purposes of selecting the signal to be read.
"Dorado Debugging Interface" discusses a clever. generator algorithm that allows all 2048
signals to be read into a table in 2048+ 11 shift-read cycles. .

In addition, the DMux address can also be executed as a control function. In this case the
full 12-bit address determines what function is executed. This "manifold" mechanism is
used to control power supplies, set clock rate, enable/disable error halt conditions, and test
IM without involving other hardware.

The DMux facility can also be controlled directly by Dorado programs by means of the
MidasStrobe+B and UseDMD functions. Essentially, the DMux address mechanism is
controlled externally by the Baseboard or by Midas operating through the Baseboard when
Dorado isn’t running, and by Dorado when Dorado is running.

The MidasStrobe«B function causes B[4] to be shifted out as an address bit. This takes
three cycles, so the program must execute three more instructions before doing another
MidasStrobe«+B function. The DMux signal selected by the last 11 address bits shifted out is
read on B[0] when the Pd«ALUFMEM function is executed.

The UseDMD function causes the current DMux address to be executed as a manifold
operation.

The following subroutine reads the DMux signal selected by the address in T:

Subroutine;
ReadDMux:
Cnte13S;
RdDMuxLp:
MidasStrobe«T; *Shift out address in T[4]
Noop;
Noop;
T«(T) Ish 1, Goto[RdDMuxLp,Cnt#0&-1];
T«ALUFMEM; *T[0] returns selected DMux address
Return;

Dorado Hardware Manual Memory Section 14 September 1981 36

Memory Section

Dorado supports a linear 22-bit to 28-bit virtual address space and contains a cache to
increase memory performance. All memory addressing is done in terms of virtual
addresses; later sections deal with the map and page faults. Figure 8 is a picture of the -
memory system; Figure 9 shows cache, map, and storage addressing. As Figure 8
suggests, the memory system is organized into three more-or-less independent parts:
storage, cache data, and addressing.

Inputs to the memory system are NEXT (the task that will control the processor in the next
cycle) from the control section, subtask from io devices, Mar (driven from A or by the IFU),
MemBase, B, the fast input bus, and an assortment of control signals. Outputs are B, Md
to the processor, the F/G registers for the IFU, the fast output bus (data, task, and
subtask), and Hold.

The processor references the memory by providing a base register number (MemBase) and
16-bit displacement (Mar) from which a 28-bit virtual address VA is computed; the kind of
reference is encoded in the ASEL field of the instruction in conjunction with FF[0:1].
Subsequently, cache references transfer single 16-bit words between processor and cache;
fast io references independently transfer 256-bit munches between io devices and storage.
There is a weak coupling between the two data sections, since sometimes data must be
loaded into the cache from storage, or returned to storage.

The storage pipeline allows new requests every 8 cycles, but requires 28 cycles to
complete a read. The state of the pipeline is recorded in a ring buffer called the pipe,
where new entries are assigned for each storage reference. The processor can read the
pipe for fault reporting or for access to internal state of the memory system.

Memory Addressing

Processor memory references supply (explicitly) a 16-bit displacement D on Mar and
(implicitly) a 5-bit task-specific base register number MemBase. Subtask[0:1] (See "Slow
10") are OR’ed with MemBase[2:3] to produce the 5-bit number sent to the memory.
MemBase addresses 1 of 32 28-bit base registers. The full virtual address VA[4:31] is
BR[MemBase]+D. D is an unsigned number.

The 28 bits in BR, VA, etc. are numbered 4:31 in the discussion here, consistent with the hardware
drawings. This numbering conveniently relates to word boundaries.

Note that although the VA path is 28 bits wide, limitations imposed by cache and map geometry limit
usable virtual memory to only 222 or 224 words in most configurations, as discussed in "The Map”
section later.

MemBase can be loaded from the five low bits of FF, and the FlipMemBase function loads
MemBase from its current value xor 1. In addition, MemBase can be loaded from
0.MemBX[0:1].FF[6:7], where the purpose of the 2-bit MemBX register is discussed in "IFU
Section.” The IFU loads the emulator task’s MemBase at the start of each opcode with a
MemBX-relative value between 0 and 3.

The intent is to point base registers at active structures in the virtual space, so that
memory references may specify a small displacement (usually 8 or 16 bits) rather than full

Dorado Hardware Manual Memory Section 14 September 1981 37

28-bit VA’s. In the Mesa emulator, for example, two base registers point at local (MDS +L)
and global (MDS +@G) frames.

In any cycle with no processor memory reference, the IFU may make one. IFU references
always use base register 31, the code base for the current procedure; the D supplied by
the IFU is a word displacement in the code segment.

Programmers may think of Mar as an extension of A since, when driven by the processor, Mar
contains the same information as A. :

The base register addressed by MemBase can be loaded using BrLo+<A and BrHi<A
functions. VA is written into the pipe memory on each reference, where it can be read as
described later. The contents of the base register are VA-D on any reference.

Processor Memory References

Memory references are initiated only by the processor or IFU. This section discusses what
happens only when references proceed unhindered. Subsequent sections deal with map
faults, data errors, and delays due to Hold.

Processor references (encoded in the ASEL and FF[0:1] instruction fields as. discussed in
the "Processor Section" chapter) have priority over IFU references, and are as follows:

Fetche¢ Initiates one-word fetch at VA. Data can be retrieved in any
subsequent instruction by loading Md into R or T, onto A or B
data paths, or masking in a shift operation.

Store« Stores data on B into VA.)

LongFetch+ A fetch for which the complete 28-bit VA is
(B[4:15],,Mar[0:15]) + BR[MemBasel].

IFetch+« A fetch for which BR[24:31] are replaced by Id from the. IFU.

When BR[24:31] are 0 (i.e., when BR points at a page boundary),
this is equivalent to BR + Mar +Id, saving 1 instruction: in many
cases. Note: the IFU does not advance to the next item of «Id
for IFetche«, so an accompanying Tisld or Risld function is
needed to advance.

PreFetch« Moves the 16-word munch containing‘ VA to the cache.

DummyRef« Loads the pipe with VA for the reference without initiating cache,
map, or storage activity.

Flushe« Removes a munch containing VA (if any) from the cache, storing
it first if dirty (emulator or fault task only).

Map« Loads the map entry for the page containing VA from B and
clears Ref; action is modified by the ReadMap function discussed
later (emulator or fault task only).

IOFetch« Initiates transfer of munch from memory to io device via fast
output bus (io task only).

Dorado Hardware Manual Memory Section 14 September 1981 38

|OStore+ Initiates transfer of munch from io device to memory via fast
input bus (io task only).

(Inside the memory system, there are three other reference types: IFU reads, dirty cache victim
writes, and FlushStore fake-reads that result from Flushe references which hit dirty cache entries.)

The notation for these memory references has been confusing to people who first start
writing microprograms. The following examples show how each type of reference would
appear in a microprogram:

FetcheT; *Start a fetch with D coming from T via Mar

TeMd; *Read memory data for the last fetch "into T

Store«Rtemp, DBuf«T; *Start a store with D coming from an RM
*address via Mar and memory data from T via B.

PreFetch «Rtemp;

Flush«Rtemp;

|OFetch+Rtemp;

|0OStore +Rtemp;

Map+Rtemp, MapBufeT; *Start a map write with D coming from an RM
*address (Rtemp) via Mar, data from T via B

RMap+Rtemp; *Start a map read with D coming from an Rm
) *address (Rtemp) via Mar.
LongFetch«Rtemp, B¢«T; *Start a fetch reference with
*VA = BR[4:31] +(T[4:15],,Rtemp[0:15]).
IFetch«Stack; *Start a fetch reference with Id replacing BR[24:31]
: *and with D coming from Stack.
IFetch«Stack, Tisld; *Start a fetch as above and also advance the IFU to the

*next item of «Id.

The tricky cases above are Store«, Map+«, and LongFetch+, which must be accompanied
by another clause that puts required data onto B. DBuf¢ and MapBuf« are synonyms for
B+, and do not represent functions encoded in FF; these synonyms are used to indicate
that the implicitly loaded buffer registers (DBuf on MemD and MapBuf on MemX) will wind
up holding the data. ’

The encoding of these references in the instruction was discussed in the "Processor”
section under "ASEL: A Source/Destination Control". The ten possible memory reference
types have the following properties:

Fetch¢, IFetch¢, and LongFetche

These three are collectively called "fetches" and differ only in the way VA is computed. In
any subsequent instruction, memory data Md may be read. If Md isn’t ready, Hold occurs,
as discussed below. If the munch containing VA is in the cache and the cache isn’t busy,
Md will be ready at t; of the instruction following the fetch, with the following implications:

If Md is loaded directly into RM or T (loaded between t; and t,), it can be read in
the instruction after the fetch without causing Hold. This is called a deferred
reference.

If Md is read onto A or B (needed before t,) or into the ALU masker by a shift
(needed before t3), it is not ready until the second instruction after the fetch (Hold
occurs if Md is referenced in the first instruction.). This is called an immediate
reference.

Dorado Hardware Manual Memory Section 14 September 1981 39

The above timing is minimum, and delays may be longer if data is not in the cache or if the
cache is still busy with an earlier reference.

Md remains valid until and during the next fetch by the task. If a Store« intervenes
between the Fetch+ and its associated «Md, then «Md will be held until the Store+
completes but will then deliver data for the fetch exactly as though no Store+« had
intervened.

Store«

Store+ loads the memory section’s DBuf register from B data in the same instruction. On a
hit, DBuf is passed to the cache data section during the next cycle. On a miss DBuf
remains busy during storage access and is written into the cache afterwards.

Because DBuf is neither task-specific nor reference-specific, any Store«, even by another
task, holds during DBuf-busy. However, barring misses, Store«’s in- consecutive
instructions never hold. A fetch or «Md by the same task will also hold for an unfinished
Storee.

PreFetch+¢

PreFetch+« is useful for loading the cache with data needed in the near future. PreFetche
does not clobber Md and never causes a map fault, so it can be used after a fetch before
reading Md.

IOFetch «

An IOFetch« is initiated by the processor on behalf of a fast output device. When ready to
accept a munch, a device controller wakes up a task to start its memory reference and do
other housekeeping.

An IOFetch« transfers the entire munch of which the requested address is a part (in 16
clocks, each transferring 16 data+ 2 parity bits); the low 4 bits of VA are ignored by the
hardware. If not in the cache, the munch comes direct from storage, and no cache entry is
made. If in the cache and not dirty, the munch is still transferred from storage. Only when
in the cache and dirty is the munch sent from the cache to the device (but with the same
timing as if it had come from storage). In any case, no further interaction with the
processor occurs once the reference has been started. As a result, requested data not in
the cache (the normal case) is handled entirely by storage, so processor references
proceed unhindered barring cache misses.

The destination device for an IOFetch« identifies itself by means of the task and subtask
supplied with the munch (= task and subtask that issued I0Fetch<«). The fast output bus,
task, and subtask are bussed to all fast output devices. In addition, a Fault signal is
supplied with the data (correctable single errors never cause this fault signal); the device
may do whatever it likes with this information. More information relevant to IOFetch« is in
the "Fast IQO" chapter.)

Dorado Hardware Manual Memory Section 14 September 1981 40

IOFetch« does not disturb Md used by fetches, DBuf used by Store«, or MapBuf used by
Map+.

There is no way to encode either IOFetch« or I0Store« in an emulator or fault task instruction, and
there should never be any reason for doing this.

10Store«

IOStore« is similar to IOFetch«. The processor always passes the reference to storage.
The cache is never used, but a munch in the cache is unconditionally removed (without
being stored if dirty). A munch is passed from device to memory over the fast input bus,
while the memory supplies the task and subtask of the IOStore+ to the device for
identification purposes. The device must supply a munch (in 16 clocks, each transferring
16 bits) when the memory system asks for it.

The Carry20 function may be useful with IOFetch+ and I0Store«. This function forces the
carry-in to bit 11 of the ALU to be 1, so a memory address D on A can be incremented by
16 without wasting B in the same instruction.

Map <«

This is discussed later.

Flush«

Flush+ unconditionally removes a munch containing VA from the cache, storing it first if
dirty. lt is a no-op if no munch containing VA is in the cache; it immediately sets Vacant in
the cache entry and is finished on a clean hit; it gives rise to a FlushStore reference on a
dirty hit.

Only emulator or fault task instructions can encode Flush¢, using the private pipe entry (0 or 1)
pointed at by ProcSRN. The FlushStore triggered, if any, uses the ring-buffer part of the pipe.
FlushStore turns on Beingloaded in the cache entry and trundles through a (useless but harmless)
storage access to the item being flushed; when this finishes Vacant is set in the cache entry; then
the dirty-victim is written into storage.

Unfortunately, Flush¢ clobbers the Victim and NextV fields in the cache row, which causes the cache
to work less efficiently for awhile.

Some applications of Flush« are discussed later in the Map section. Note: it is necessary
to hold until any preceding private pipe entry fetch or Store« has finished by issuing
«Md—reasons for this are discussed in "The Pipe" section.

DummyRef ¢

DummyRef« writes VA into the pipe entry for the reference without initiating cache, map, or
storage activity. This is provided for reading base registers and so diagnostic microcode
can exercise VA paths of the memory system without disturbing cache or memory. Note: it
is necessary to hold until any preceding private pipe entry fetch or Store« has finished by
issuing «Md—reasons for this are discussed in "The Pipe" section.

Dorado Hardware Manual Memory Section 14 September 1981 4

IFU References

The F and G data registers shown in the IFU picture (Figure 11) are physically part of the
memory system. The memory system fetches words referenced by the IFU directly into
these registers. The IFU may have up to two references in progress at-a-time, but the
second of these is only issued when the memory system is about to deliver data for the first
reference.

An IFU reference cannot be initiated when the progessor is either using Mar or referencing
the Pipe; for simplicity of decoding, the hardware disables IFU references when the
processor is either making a reference or doing one of the functions 1205 to 1274
(CFlags«A’, BrLo+A, BrHi«A, LoadTestSyndrome, or ProcSRNe¢B); or 160 to 1674
(B« Faultinfo’, B+Pipei, or B+Config’).

The IFU is not prevented from making references while the processor is experiencing Hold,
unless the instruction being held is making a reference or doing one of the functions
mentioned above.

Memory Timing and Hold

Memory system control is divided into three more or less autonomous parts: address, cache
data, and storage sections. The storage section, in turn, has several automata that may be
operating simultaneously on different references. Every reference requires one cycle in the
address section, but thereafter an io reference normally deals only with storage, a cache
reference only with the cache data section. Address and cache data sections can handle
one reference per cycle if all goes well. Thus, bairing io activity and cache misses, the
processor can make a fetch or store reference every cycle and never be held.

If the memory is unready to accept a reference or deliver Md, it inhibits execution with hold
(which converts the instruction into a Gote[.] while freezing branch conditions, dispatches,
etc.). The processor attempts the instruction again in the next cycle, unless a task switch
occurs. If the memory is still not ready, hold continues. If a task switch occurs, the
instruction is reexecuted when control returns to the task; thus task switching is invisible to
hold.

In the discussion below, cache references are ones that normally get passed from the
address section to the cache data section, unless they miss (fetches, stores, and IFU
fetches), while storage references unconditionally get passed to storage (IOFetche,
I0Store«, Map+, FlushStore arising from Flush¢« with dirty hit, and dirty-victim writes).
PreFetch« and DummyRef« don’t fall into either category.

Situations When Hold Occurs

A fetch, store, or «Md is held after a preceding fetch or store by the same task has missed
until all 16 words of the cache entry are loaded from storage (about 28 cycles).

Store« is held if DBuf is busy with data not yet handed to the cache data or storage
sections. LongFetch« (unfortunately) is also held in this case. Since DBuf is not task-
specific, this hold will occur even when the preceding Store« was by another task.

Dorado Hardware Manual Memory Section 14 September 1981 42

An immediate «Md is held in the cycle after a fetch or store, and in the cycle after a
deferred «Md.

Because the task-specific Md RAM is being read ty to ta for the deferred «Md in the preceding
cycle, and ‘0 to t1 for the immediate «Md in the current cycle, which are coincident, hold is

necessary when the tasks differ. Unfortunately, hold occurs erroneously when the immediate and
deferred «Md's are by the same task.

Any reference or «Md is held if the address section is busy in one of the ways discussed
below.

«Md is erroneously held when the address section is busy, an unfortunate consequence of the
hardware implementation, which combines logic for holding «Md on misses with logic for holding
references when the address section is busy. .

B+«Pipei is held when coincident with any memory system use of the pipe. Each memory
system access uses the pipe for one cycle but locks out the processor for two cycles. The
- memory system accesses the pipe t, to t, following any reference, so B«Pipei will be held
in the instruction after any reference. Storage reads and writes access the pipe twice
more; references that load the cache from storage access the pipe a third time.

Map¢«, LoadMcr, LoadTestSyndrome, and ProcSRN¢ are not held for MapBuf busy; the
program has to handle these situations itself by polling MapBufBusy or waiting long
enough, as discussed in the Map section.

Flush«, Map+, and DummyRef« are not held until a preceding fetch or store has finished
or faulted. The emulator or fault task should force Hold with «Md before or coincident with
issuing one of these references, if it might have a fetch or store in progress.

In the processor section, stack overflow and underflow and the hold simulator may cause
holds; in the control section TaskingOff or an IFUJump in conjunction with the onset of one
of the rare IFU error conditions may cause one-cycle holds; there is also a backpanel
signal called ExtHoldReq to which nothing is presently connected—this is reserved for
input/output devices that may need to generate hold in some situation. All of these
reasons for hold are discussed in the appropriate chapters. '

Address Section Busy

The address section can normally be busy only if some previous reference has not yet
been passed to the cache data section (for a cache reference that hits) or to storage (for a
storage reference, or a cache reference or PreFetch« that misses). A reference is passed
on immediately unless either its destination is busy or the being-loaded condition discussed
below occurs.

The address section is always busy in the two cycles after a miss, or in the cycle after a
Flush«, Map¢, IOFetch«, or IOStore«.

Hardware note: This allows Asrn to advance; for emulator and fault task fetch and store misses,
which do not use Asrn, this hold is unnecessary. Unfortunately, the display controller's word task
finishes each iteration with IOFetche and Block, so many emulator fetches and stores will be held
for one cycle when a high-bandwidth display is being driven. Asrn is the internal register that
contains the pipe address for storage references.

Dorado Hardware Manual Memory Section 14 September 1981

There are six other ways for the address section to be busy:

1

()

3)

(4)

®)

(6)

A cache reference or PreFetch« that misses, or a FlushStore, transfers storage
data into the cache. At the end of this reference, as the first data word arrives,
storage takes another address section cycle.

The preceding cache reference hit but cannot be passed to the cache data section
because the data section is busy transferring munches to/from storage (or to an io
device if an IOFetch« finds dirty data in the cache). Total time to fetch a munch
from storage is about 28 cycles, but the cache data section is busy only during the
last 10 of these cycles (9 for PreFetch or IOFetch« with dirty hit), while data is
written into the cache. The cache data section is free during the interim.

The preceding storage reference, or cache reference or PreFetch« that missed
has not been passed on to storage because the storage section is busy. Storage
is busy if it received a reference less than 8 cycles previously, and may be busy
longer as follows: : '

successive cache references must be 10 cycles apart;
successive write references must be 11 cycles apart;
with 4k storage ic’s, successive references must be ‘13 cycles apart.

A cache write (caused by a miss with a dirty victim or FlushStore) ties up the
address section until the storage reference for the write is started; this happens 8
cycles after the storage reference for the miss or FlushStore is started. Note that
the new munch fetch starts before the dirty victim store and that hold terminates
right after the store is started.

A reference giving rise to a cache write that follows any other cache miss will tie
up the address section until the previous miss is finished.

The address section is busy in the cycle after any reference that hits a cache row
in which any column is being loaded from storage.

Any reference except IOFetch«, DummyRef¢, or Map« that hits a cache row in
which any column is being loaded from storage remains in the address section
until the BeinglLoaded flag is turned off—i.e., for the first 19 of the 28 cycles
required to service a miss, the reference is suspended in the address section;
during the last 9 cycles of the miss, when the munch is transferred into the cache
data section, the reference proceeds (except that a fetch or store will still be held
because the cache data section is busy during these 9 cycles). This is believed to
be very infrequent.

A more perfect implementation would suspend a reference in the address section only
when the hit column, rather than any column in the row, was being loaded. However, the
situation is only costly when the suspended reference is by another task; since there are
64 rows, ~1.5% of all references will be held whenever any task is experiencing a miss.
There is more discussion of this in the "Performance Issues" chapter.

References to storage arise as follows:

a cache miss (from a cache reference or PreFetch«) causes a storage read;

a cache reference or PreFetch« miss with dirty victim also causes a storage write
immediately after the read;

43

Dorado Hardware Manual Memory Section 14 September 1981 44

a Flush« which gets a dirty hit causes a FlushStore read reference which in turn
causes a storage write of the dirty victim;

every io reference causes a storage read or write;
a Map+ causes a reference to storage (actually only the map is referenced, but the
timing is the same as for a full storage reference).

The following table shows the activity in various parts of the memory system during a fetch
that misses in the cache and displaces a dirty victim; the memory system is assumed idle
initially and nothing unusual happens.

Table 15: Timing of a Dirty Miss

Time Time ’
(Cycles) Activity of Fetch (Cycles) Activity of Dirty-Victim Write
0 . Fetch¢« starts
1 in address section 2.9 in address section (wait for map)
3-18 in ST automaton (generate
syndrome, transport to storage)
2-9 in map automaton * 10-17 in map automaton *
7-14 in memory automaton * 15-22 in memory automaton *
14-21 in Ec1 automaton 22-29 in Ec1 automaton ** -
21-28 in Ec2 automaton 29-36 in Ec2 automaton **
27 +«Md succeeds

* The map automaton continues busy for two cycles after a reference is passed to the memory automaton
because it is necessary for the Map storage chips to complete their cycle.

** The work of the dirty-victim write is complete after it has finished with the memory automaton, but it
marches through Ec1 and Ec2 anyway for fault reporting.

STOP! The sections which follow are about the Map, Pipe, Cache, Storage, Errors, and
other internal details of the memory system. Only programmers of the fault task or
memory system diagnostic software are expected to require this information. Since there
are many complications, you are advised to skip to the next chapter. -

The Map

VA is transformed into a real address by the map on the way to storage. The hardware is
easily modifiable to create a page size of either 256, 1024, or 4096 words and to use either
16k, 64k, or 256k ic’'s for map storage. The table below shows the virtual memory (VM)
sizes achievable with different map configurations. However, the cache configuration limits
VM size independently, as discussed later, and this limit may be smaller than the Map limit.

Dorado Hardware Manual Memory Section 14 September 1981 45

Table 16: Map Configurations

Map Map
IC Page VM Addressed
Size Size Size By

214 o8 222 VA[10:23]

oM 210 224 VA[8:21]

214 212 2%6 VA[6:19] requires 16k-word cache

216 28 224 VA[8:23]

216 210 2% VA[6:21] requires 16k-word cache

216 212 228 VA[4:19] requires 16k-word cache sans parity
- o8 28 226 VA[6:23] 2'8.bit ic’s don’t exist yet

218 210 228 VA[4:23] 2'"8.pit ic’s don't exist yet

Larger page sizes increase the virtual memory size limit. Since the 4k-word cache imposes
a 2%.word size limit (228 if the parity bit in the address section is converted into another
address bit), the largest VM sizes are only achievable in conjunction with a 16k-word
cache. Larger page sizes might reduce map and storage management overhead; our
experience in this area is inconclusive but suggests that 4k-word pages would only be
desirable with very large storage configurations.

Note that the physical storage size limit is unaffected by either cache parameters, map
RAM size, or page size because RP is large enough to address the largest possible storage
configuration (4 modules using 218.pit MOS RAM components), even when the smallest
page size is used; this maximum size is 22* words.

The cache handles virtual addresses, so the map is never involved in cache references
unless they miss.

A consequence of virtual addresses in the cache is that it is illegal to map several virtual
pages into the same real page (unless all instances are write-protected). This restriction
prevents cache and storage from becoming inconsistent.

A map entry contains a 16-bit real page number (RP) and three flags called Dirty, Ref, and
WP, which have the following significance:

WP write-protects the page; a fault occurs if a write is attempted.

Dirty indicates that storage has been modified; set by any I0Store« or by a
dirty-victim write; Store« does not set Dirty.

Ref indicates that the page has been referenced; set by any storage reference
except Mape¢; cleared by Mape«.

The combination WP =true with Dirty = true makes no sense, and encodes the Vacant state
of the map entry. A map entry is vacant if it has no corresponding page in real memory.

Dorado Hardware Manual Memory Section 14 September 1981 46

Faults

Every storage reference causes a mapping operation. If mapping reveals something other
than Vacant, the reference proceeds normally. Otherwise, the storage reference is aborted,
and MapTrouble is reported as discussed later. There are two kinds of faults:

Page fault reference to a vacant map entry (WP = true, Dirty = true)

WP fault Store+ that misses, IOStore+, or dirty-victim write with WP true.
(Dirty-victim WP faults should not occur if the map and cache are
handled as proposed below.)

Writing the Map

Map+, which can only be encoded in an emulator or fault task instruction, is used to write
the map; like other storage references, it returns previous map contents in the pipe, where
they can be read. For reasons discussed in "The Pipe" section later, Map+« should not be
issued if a preceding fetch or Store+ might be in progress; normally issue a «Md to hold
until preceding references cannot fault.

Map« first writes B[0:15] and TIOA[0:1] into MapBuf (a buffer register on the MemX board)
and turns on MapBufBusy in the pipe; 9 cycles later (barring delays) MapBuf has been
written into the Map entry addressed by the appropriate bits of VA and MapBufBusy is
turned off.

B[0:15] are the real page number, TIOA.O is WP, and TIOA.1 is Dirty. Map+« zeroes Ref,
and there is no direct way to write a map entry with Ref=1; a fetch, Store«, or PreFetch+
to the appropriate page after loading the map entry will set Ref=1. Note that if the real
address space is less than 22* words (2'¢ pages), high order RP bits are ignored during
references though they are kept in the map and appear in the pipe.

Map¢ never wakes up the fault task.

If previous map contents indicated Vacant or had a parity error, MapTrouble will be true.in the pipe
but not reported to the fault task. Quadword and syndrome in the pipe, not written by Mape,
contain previous values.

For all programming purposes, Map+« is complete on the cycle when MapBufBusy is turned
off; at this time, previous map contents are valid in the pipe entry. Polling MapBufBusy
until it is false is the only way to find out when the pipe entry is valid.

Since Map+« never faults and doesn’t use any pipe information clobbered by an overlapping
reference, another reference may be started without waiting for Map+« to finish, unless the
following reference is another Map+. Also, Map« does not interfere with Md or DBuf, so
its only interference with other kinds of references is its use of the private pipe entry (0 or
1) pointed at by ProcSRN. However, it is illegal to issue another Map<¢, LoadMCR,
LoadTestSyndrome, or ProcSRN« without waiting for Map¢« to finish. These functions
(discussed later) share the MapBuf register with Mape«; there is no Hold arising from
MapBufBusy, so the microprogram must ensure that MapBuf is free when one of these
functions is executed.

Dorado Hardware Manual Memory Section 14 September 1981 47

B is latched in MapBuf during t, to ty and TIOA[0:1] are clocked into MapBuf at t, for all of these;
then MapBuf is written into MCR, TestSyndrome, or ProcSRN at ty or into the Map at by (if no

delays). In other words, MapBuf is a buffer register for all registers on the MemX board that are
loaded from B.

Reading the Map

Every storage reference causes mapping and returns old contents of the relevant map entry
in the pipe. l.e., Ref and Dirty may change as a result of a reference—old values appear in
the pipe.

A ReadMap function accompanying Map+« prevents the map entry from being modified, so
that old contents can be read from the pipe without also smashing the map entry.

Flushing One Page From the Cache

Any cache reference or PreFetch« that misses or any IOFetch+ or IOStore+ sets Ref in the
map; IOStore«’s set Dirty as well. If the victim for the miss or hit for the Flush« is dirty,
Ref and Dirty for its map entry also get set. However, Store+ does not set Dirty in the map
entry until that munch is chosen as victim.

For this reason, any calculation based upon Dirty must first validate the map Dirty bit by
flushing associated cache entries, as discussed below.

In addition, almost any change to a map entry requires a flush, again because of problems
with dirty cache entries. The following examples illustrate this point:

Before changing RP, a flush prevents dirty victims from being written into the
previous real page (if the old page had WP false).

Before turning on WP, a flush prevents dirty cache entries from being written into
the now write-protected page.

Before turning off WP, a flush prevents multiple cache entries for a munch, one
write-protected, the other not (The cache will not work correctly, if there are
multiple entries for a munch.).

Before sampling Ref, flushing is required so that subsequent references to the
page will set Ref=1 and so that dirty munches in the cache will not erroneously
set Ref=1 when they are displaced.

Before clearing Dirty, a flush prevents dirty munches subsequently displaced from
the cache from erroneously setting Dirty again.

To flush a 256-word page from the cache, 16 Flush« references may be made, one to each
munch of the page (64 with 1024-word pages). Flush+ invalidates any existing cache entry
for the munch (and stores the munch if dirty).

This succeeds iff there are no anomalous muitiple cache entries for a particular munch. Multiple
cache entries for a munch should never occur except prior to system initialization or when some of
the debugging features are turned on in Mcr.

Dorado Hardware Manual Memory Section 14 September 1981 48

Flushing the Entire Cache

Depending upon what kind of storage management algorithm is used, it may be desirable to
clear out the entire cache; for example, this might be useful before looping through all the
map entries to sample Ref. It would be extremely expensive to do this with Flush« onea
page at-a-time (2'® Flush«’es for 1M words of storage). The cleverest method which we
have thought of for doing this is as follows:

Designate 4 consecutive 256-word pages (64-row cache) or 16 consecutive pages (256-row
cache) that contain vacant map entries; the munch VA’s in these pages will span every row
in the cache. Make one pass through the cache for each column; before each pass, load
Mcr with UseMcrV true and McrV equal to the column—even though it is usually illegal to
modify Mcr while the memory system is active, it should be safe to change these particular
fields. Then do PreFetch«’'es for all 64 or 256 munches in the designated pages; these
PreFetches will all miss and map fault, leaving the selected column filled with vacant cache
entries. After clearing all four columns, restore Mcr to its previous value. While this flush
is going on, io tasks may continue to reference memory, but they will experience more
misses and longer miss wait than usual. The total time for this algorithm is about 9
cycles/PreFetch or about 138 us with 64 rows or 553 ps with 256 rows in the cache at 60
ns/cycle.

Map Hardware Details

The map and its control are on the MemX board. Physically, map storage consists of 21 16k, 64k, or 256k x 1
MOS RAM's; in addition to the 19 bits discussed earlier, there are a duplicate of the Dirty bit and an odd parity
bit.

Dirty is duplicated so map parity won't change when both Dirty bits are set. Ideally Ref should also be
duplicated, but it is not, and Ref is not checked by map parity. The parity written on Mape« is the exclusive-or
of the two B byte parity bits and TIOA.O (i.e., WP). Parity failure on any map read will cause MapTrouble and
MemeError and wakeup the fault task when appropriate.

On a cache reference that misses or on an IOFetch« or l0Store«, the map read starts at t4 and the real
address is passed to storage at t1 4

The MOS RAM's in the map require refresh, carried out like the storage refresh diécussed later.

An Automatic Storage Management Algorithm

We envision for Mesa, Lisp, etc. an automatic storage manager that will pick pages in storage which have not
been referenced recently for replacement by new ones. This manager will use the Ref bits in map entries to
determine which pages have not been referenced for a long time.

The storage manager discussed here controls N pages, where N is some subset of all pages in storage; in
general N will vary. A procedure called DeliverPage() returns RP for one of the N pages to the caller and
removes that page from N; a procedure called ManagePage(RP,Age) adds a page to N. A page returned by
DeliverPage has been removed from the virtual space; pages accepted by ManagePage may or may not be
vacant.

Entries for the N pages are sorted into 8 bins, such that entries in the bin 0 have age O, bin 1 age 1, etc.
Whenever DeliverPage has been called N/8 times or after a specified elapsed time has occurred, all N pages
are aged, which means: ¢

(a) Entries originally in bin 7 wind up in bin O if they have been referenced, bin 7 if not referenced;

(b) Entries in bin i (i # 7) wind up in bin 0 if referenced or bin i+1 if not referenced.

Dorado Hardware Manual Memory Section 14 September 1981 49

This aging is performed by first clearing the entire cache using the clever algorithm discussed earlier, then
sampling and zeroing Ref.

DeliverPage first returns the RP of any page on the vacant queue. If the vacant queue is empty, it next scans
entries on the disk write-complete queue; if one is found that has not been referenced in the interim, its map
entry is cleared and its RP is returned; if referenced, it is moved to bin 0. If the disk write-complete queue is
empty, entries in bin 7 are scanned; if this bin is exhausted, bin 6 is scanned, etc., until finally bin O is
scanned. When an entry has been referenced, it is moved to bin 0; when unreferenced but dirty, it is put on
the disk write queue; when unreferenced and clean it is returned.

The caller of DeliverPage will frequently be a disk read or new page creation procedure. It should complete its
work and then call ReturnPage(RP,0) to restore the page to the storage manager. ReturnPage will put the
page on the vacant queue, if it is vacant, or into bin O.

Mesa Map Primitives
Basic Mesa mapping primitives are:
Associate[vp,rp,flags] adds virtual pages to the real memory, or removes them if flags=Vacant.

SetFlags[vp,flags] RETURNS oldValue: flags reads and sets the flags. |If flags=Vacant, the page is
removed from the real memory.

GetFlags[vp] RETURNS [rp,flags].

These are defined as indivisible operations and are implemented trivially on a machine with.no cache (e.g.,
Dolphin). For example, if a SetFlags clears Dirty and sets WP, the returned value of Dirty tells correctly
whether the page has been changed—no store into the page may occur between reading Dirty and setting WP.

One intended use of the primitives is illustrated by the following Mesa sequence for rei’noving a virtual page
from real memory:

oldFlags ¢« SetFlags{v,WP};
IF oldFlags.Dirty THEN WritePagel...]
SetFlags|v,Vacant]

This sequence prevents the page from being changed during the write. Another possibility would be just to
clear Dirty, and then to check it again after the write. This must be done properly, however, to avoid a race
condition:

WHILE (oldFlags+SetFlags[v, Vacant]).Dirty
DO SetFlagsv, [Dirty: false]l; WritePage[..., ENDLOOP

To avoid inconsistent map and cache entries, SetFlags[v, ...] must remove entries for page v from the cache.
Unfortunately, since we don’'t want to make the cache removal process atomic, parts of the page already
passed over by the removal process could be brought back into the cache before the process is complete.
The implementation of the primitive must allow for this.

On Dorado it is, unfortunately, difficult to implement these primitives as indivisible operations because almost
any change to -map flags must be preceded by clearing all cache entries in the page. However, it is
unacceptable to do this with TaskingOff because the time required might be as long as 16*10 cycles with 256-
word pages or 64*10 cycles with 1024-word pages (if every munch in the page is in the cache and dirty),
which is too long. Consequently, io tasks will be active during the removal process, and one of them might
move a munch back into the cache after it has been passed over by the removal process. For this reason, the
present Mesa code flushes once with tasking on and then again with tasking off.

The implementation of SetFlags(v, ..) proceeds as follows (Associate is similar.):

Flush all cache entries for the page in question. [f any entry is dirty, removal will cause a write and
set Dirty in the map, as discussed -earlier.

Disable tasking.

Flush all cache entries for the page again.

Dorado Hardware Manual Memory Section 14 September 1981 50

oldFlags + map[v].Flags

If turning on WP: map|v]flags ¢ [WP: true, Dirty: false, Ref: false].
If selting Vacant: mapl[v].flags « [WP: true, Dirty: true, Ref: false].
If turning off WP: map[vlflags « [WP: false, Dirty: false, Ref: false].

These are done with Mape« after which old data is retrieved from the pipe (possibly followed by
PreFetch to set map[v].Ref true).

Note: These primitives do not support the complete cache flush discussed earlier; another primitive will
probably needed to do this. Also, we really want a primitive that will allow the flags to be sampled and Ref
zeroed without changing the value of WP or Dirty. And efficiency may demand primitives particularly tailored
to the needs of whatever storage management algorithm is employed.

Dorado Hardware Manual Memory Section 14 September 1981 31

The Pipe

Information about each reference is recorded in the 16-word pipe memory. Pipe layout is
shown in Figure 10, which you should have in front of you while reading this section. The
processor reads the pipe with the B+Pipe0, ..., B«Pipe5 functions. You should note that
Pipe0, 1, and 5 are read high-true, while Pipe2 and 3 are read low-true; Pipe4 contains a
mixture of high and low-true fields; 150361, xor Pipe4’ produces high-true values for all
fields in Piped. The discussion in this section assumes that all low-true fields have been
inverted.

It is illegal to do ALU arithmetic on pipe data (not valid soon enough for carry propagation),
and Be«Pipei is illegal in the same instruction with a reference because Hold won’t be
computed properly.

The EmulatorFault, NFaults, and SRANFirstFault stuff in Pipe2, which duplicate what B¢Faultinfo would
read back, is not part of the pipe, although it is read by B+Pipe2’; B+Pipe2' is simply a convenient
decode for reading it bach—this will be discussed in the section on fault handling, not here.
Similarly, Dirty, Vacant, WP, BeinglLoaded, NextVictim, and Victim stuff in Pipe5 is not part of the
pipe and is read back by B«Pipe5 purely for decoding convenience. This information, used primarily
for debugging, is discussed later.

The Task, SubTask, VA, and cache control stuff in Pipe0, 1, 2, and 5 is used both internally
by the memory system and externally by the processor. Map and error stuff in Pipe3 and 4
is solely for memory management and diagnostic activities carried out by the processor.

Two main problems in dealing with the pipe are:

Finding the pipe entry for a particular reference;
Knowing when various bits become valid;

How the Pipe Is Addressed

System microcode is expected to use the pipe in only two situations: fault handling by task
15 (the "fault task") and reading map or base registers by task O (the "emulator"). Other
tasks will not read the pipe. This rigid view of how the pipe will be used during system
operation has motivated the implementation discussed below.

Pipe entries are addressed by 4-bit storage reference numbers, or SRNs, assigned to each
storage reference. All task O and task 15 references except PreFetch« with miss (and
implicit FlushStore and Victim references) use the SRN contained in ProcSRN exclusively;
~ all other references share SRN'’s 2 to 15, which form a ring buffer addressed by an invisible
register called ASRN.

To read a pipe entry, first ProcSRN«B addresses the pipe entry, then the contents of that
entry are read with B«Pipei. In system microcode, the emulator is expected to keep the
value 0 in ProcSRN to avoid smashing the ring buffer on references; if the fault task needs
to make a reference, it will normally load ProcSRN with 1 and use that SRN for the
reference; the fault task will manipulate ProcSRN however it likes to examine the pipe but
always restore it to O before blocking; other tasks will not use ProcSRN. This
implementation is welded to the assumption that only the fault task will probe the pipe
when io tasks are running.

Dorado Hardware Manual Memory Section 14 September 1981 52

To io task references and emulator PreFetch«’es that miss, the cache address section’s
SRN, called ASRN, is assigned at t,. ASRN will be advanced to the next ring value iff the
reference starts the map. In all other cases ASRN remains unchanged and is used by the
next reference as well. '

A reference starts the map unless it is a DummyRef+«, a cache reference or PreFetch+ that
hits, or a Flush+ that misses or gets a clean hit. A convenient way to guarantee that the
map is started without worrying about the contents of the cache is to do a Map« .in the
emulator or an IOFetch« in any other task. The reasoning behind this treatment of ASRN
is explained in the section on fault reporting.

Tasks 1 to 14 generally cannot find out the SRN for their last reference. Even if this were
determined somehow by polling all the pipe entries, there would be no assurance that,
meanwhile, a higher priority task didn't clobber the pipe entry.

Because of its single pipe entry, the emulator must wait for an earlier reference to finish or
fault, before starting another. Of all emulator references, only a fetch, Store«¢, or
PreFetch+ might fault. However, PreFetch« doesn't use the private pipe entry, so only a
preceding fetch or Store« might still be in progress when a new reference is issued. If the
new reference is another fetch or Store<«, it will hold until the preceding one finishes (no
problem). Hence, the only restriction imposed by the private pipe entry is that the emulator
must cause hold with «Md before issuing Map<«, Flush+, or DummyRefe¢, if a fetch or
Store+ might still be in progress.

Timing constraints do not permit generating Hold in the above case. It has been observed that
issuing Mape¢ without holding for a previous Store¢ to finish will result in infinite DBuiBusy (i.e.,
infinite Hold), so do not fail to issue «Md before or concurrent with Mape« or RMape.

When the Pipe is Accessed

Conceptually, the pipe is three different memories. First, VA, task, subtask, and cache
control bits in Pipe0, 1, 2, and 5 are written during the reference. Next, the 20 bits of map
information in Pipe3 and Pipe4 are written following the map read-write (if any). Finally, the
- error correction-detection stuff in Pipe4 is written following the storage read (if any). The
memory system needs one cycle for each of these accesses.

However, the hardware treats the pipe as only two separate memories internally, or as only
a single memory for purposes of holding the processor. In other words, within the memory
system Pipe0Q, 1, 2, and 5 may be accessed by one part of the pipeline, while another part
independently accesses Pipe3 and 4. But processor accesses by B«Pipei are held, if the
memory system wants any part of the pipe. Warse, the memory system uses the pipe
between even clocks (t;, to t,), the processor between odd clocks (t, to t3), so the
processor is locked out for two cycles during each of these intervals.

Programs can safely read Pipe0, Pipel, Pipe2, or Pipe5 (i.e., task, subtask, VA, and cache
control stuff) in the cycle after any reference, since these are updated at the end of the
cache address section cycle. Be«Pipei in the cycle after a reference will hold for one cycle
while the memory system uses the pipe.

Values in a pipe entry are not reset at the onset of a reference and Pipe3 and Piped4 are
not written at all unless storage is accessed. Consequently, Pipe3 and Pipe4 may refer to a

Dorado Hardware Manual Memory Section 14 September 1981 53

previous reference *Caution*.

The control bits in Pipe2’ and Pipe5, used by the memory system, also indicate (to the fault
task) what kind of reference is described in the pipe, as follows:

CacheRef a fetch or Storee

Store' Store+’

IFURef IFU fetches

RefType distinguishes read, write, Map+«, and other references
FlushStore dirty victim write triggered by Flushe«

ColVic cache column of a hit, or of the victim on a miss

DummyRef« finishes immediately and only VA in Pipe0 and Pipel and the stuff in Pipe2 are
relevant. For Flush+«, cache information in Pipe5 is also valid. Flush«¢ finishes immediately
because the resulting FlushStore and dirty-victim write references (if any) are started in
ring-buffer pipe entries.

Programs can read map stuff (Pipe3 and Ref, WP, Dirty, MapTrouble, and MemError in
Piped) as soon as that part of the reference is complete. For Map«, completion of the map
read is coincident with MapBufBusy going false, determined by polling. For a fetch or
store, there is no way to distinguish completion of the map read from completion of the
entire reference. Consequently, Pipe3 and Pipe4 are normally read by doing «Md (which
holds for completion), then reading the pipe.

For IOFetch«, |IOStore+, and PreFetch« there is no way to tell when the reference has
finished, except by waiting longer than the memory can possibly take to complete the
reference.

I0Store«’s and dirty victim writes zero the Syndrome and EcFault fields in Pipe4. Hence,
the only reference that leaves junk in these bits is Map«; the fault task can distinguish plpe
entries for Map« by means of the RefType field.

All data in Pipe0, 1, 2, and 5 except FlushStore and ColVic are written at t3 and can be read
immediately after a reference. However, FlushStore and ColVic are written at ty. Ordinarily, this

would mean that their values could not be read safely; however, since B¢Pipej is held in the cycle
after a reference, the values will always be ok.

in the best case, map information in Pipe3 and Piped4 will be loaded at t1 & fault and error corrector
information in Piped4 at t48'

Faults and Errors

Remember that hrgh -true values for all fields in the Pipe are used in the following
discussion.

Errors

Several events cause memory errors from which the system does not recover. Errors hait
the processor if the MemoryPE error is enabled (see "Error Handling"). f MemoryPE is
disabled, the program will continue without any error indication. MemoryPE conditions are:

Dorado Hardware Manual Memory Section 14 September 1981 54

Byte parity errors from the cache data memory (checked on write of a dirty victim, not
on «Md or IFU reads); the processor checks Md parity (see "Error Handling") and the
IFU checks F/G parity;

Byte parity errors from fast input bus;
Cache address memory parity errors.
Faults
Other events cause faults. A fault condition is indicated in the MapTrouble, MemError, and

EcFault fields of Pipe4 when it occurs; in addition, the fault task is woken to deal with the
situation unless NoWake is true in Mcr. The encoding of the various errors is as follows:

Table 17: Fault Indications

Kind of Error Name MapTrouble MemError EcFault

Map parity error MapPE 1 1 —
Page fault PageFit 1 0 —
Write-protect WPFIt 1 0 —_
Single error SE 0 0 1
Double error DE 0 1 1

In the above table, WPFIt and PageFit have the same encoding; these must be distinguished
by means of the Store’ bit in Pipe5 and the WP bit in Piped4; WPFIt can only occur for
Store+, I0Store«, or dirty-victim stores that encounter WP true.

_MapTrouble might be true and reported to the fault task on a fetch or store that misses or
an IOFetch«, 10Store«, FlushStore, or dirty-victim write. Flush¢« and DummyRef« never
cause MapTrouble. Map¢, PreFetch«, or IFU fetches might record MapTrouble in the pipe
but never wake the fault task. Map faults on IFU fetches are reported instead to the IFU,
which buffers the fault indication until an IFUJump occurs to an opcode with at least one
instruction byte in the word affected by the map fault; then a trap occurs, as discussed in
"Instruction Fetch Unit".

In system microcode, we expect a WPFIt and PagefFit due to IOFetch¢, I0Store«, FlushStore, or a
victim write to indicate a programming error; however MapPE might occur. Note that if any kind of
MapTrouble occurs on a storage write (i.e.,, on an IOStore«, FlushStore, or victim write), storage is
not modified and contains the old value; however, the map's Dirty bit will be true, even though the
storage write has not completed.

SE and DE may occur on any cache reference or PreFetch¢« that misses or on an
IOFetch«. Map+, I0Store«, DummyRef«, and Flush« never cause these errors. Also note
that fault task wakeup on an SE£ requires not only NoWake false but also ReportSE true in
Mcr; the fault indication transmitted with the munch for an IOFetch« is set only for DE,
never for SE. ‘ .

Unlike map faults, data errors on IFU fetches and PreFetche'es are reported to the fault task. This
must be done for DE's, which are fatal; for corrected SE's, the fault causes no disruption to the
program because the fault task, after logging the failure, simply lets the task that faulted continue.

Dorado Hardware Manual Memory Section 14 September 1981 35

The special things about a fault are:

If a program obeys the rules given earlier, hold will occur until any fault is reported
or until the program can proceed safely.

EmulatorFault in B+Faultinfo is set true if a fault is described by the emulator or
fault task pipe entry (0 or 1) pointed at by ProcSRN;

FirstFaultSRN in B+Faultinfo is loaded if FaultCnt is -1 (indicating no faults) or i
FirstFaultSRN was previously zero;

FaultCnt in BeFaultinfo is incremented;

Be«Faultinfo stuff is updated and the fault task is woken at the end of the storage
pipeline, but sufficiently in advance of hold termination that it will surely run first.
For this reason, any operation that might fault is illegal with tasking off.

References leave the pipeline in the order that they entered.

Subtleties: In the event of a miss with a dirty victim, the new cache entry read starts and
finishes before the victim write. However, data transport of the victim to storage finishes
before data transport of new data into the cache starts—storage actually reads new data
first, but meanwhile transports the victim into a holding register on the storage board, from
which it is written into storage after the read.
Pipe entries identified by EmulatorFault, FirstFaultSRN, and FaultCnt represent
complete storage references;

The task that fauited is not blocked; hold terminates as though no fault had
occurred; the task will continue unless the fault task changes its PC.

The fault task is expected to read B+Faultinfo, service all faults it describes, service stack
underflow or overflow, then block. Because it is highest priority, the fault task cannot do
much computing (io tasks that are lower priority have to be serviced); probably it should
not make any memory references itself. Its normal actions are:

crash (uncorrectable data errors, map faults by tasks other than the emulator);
block letting the task that faulted continue (correctable data errors); or

change the TPC of the emulator to an appropriate trap routine (emulator map
faults, stack overflow or underflow).

EmulatorFault and FaultCnt are automatically reset by Be«Faultinfo. These can be read
without reset in B«Pipe2 (primarily for use by’ Midas).

Several faults could occur while the fault task is running (due to references initiated before
the fault task was awakened). In this case, when the fault task blocks, it will continue
because of the pending wakeup, and so service the faults. Only while the fault task is
running or while tasking is off is it possible for FaultCnt to become greater than one.

Dorado Hardware Manual Memory Section 14 September 1981 56

Remarks

The careful scheme in which ASRN is advanced only for storage references, and faults reported in precise
order is essential. If faults were reported out of sequence, then the fault task might see Pipe0 to Pipe2 stuff
inconsistent with Pipe3 and Pipe4 error indicators for a previous loop through the ring buffer.

The hardware must not and does not repart MapTrouble until the end of the pipeline. If this were not true,
then an SRN might report MapTrouble before its predecessor reported SE or DE; this could screw up the fault
task.

In tasks other than the emulator, map faults will probably represent programming errors. In the emulator, page-
not-in-memory and write-protect faults are expected, and the. fault task will trap the emulator to a fault-handling
Mesa program. Information saved by the trap microcode must be sufficient to continue the faulted opcode at
the instruction that faulted.

The B«DBuf FF decode permits the fault task to retrieve data being written when a Store« faults.

Error Correction Faults

For error correction purposes, munches are divided into four quadwords, each containing
64 data and 8 check bits.

At the end of a storage read, the hardware indicates DE after a double-error or SE after a
single error as discussed earlier. The SE or DE indication is unambiguous assuming at
most two bits in error in any 64-bit quadword; for an odd number of errors greater than 2,
the hardware erroneously reports an SE; for an even number of errors greater than 2, DE is
reported. If several quadwords in a munch suffer errors, the hardware reports the first DE,
if any, or the /ast SE, if no DE’s.

Error correction can be enabled/disabled by the LoadTestSyndrome function discussed
later; when enabled, the hardware will complement (= correct) any SE; for DE’s the
hardware does not modify any bits from storage.

The absolute address of the quadword containing the reported error is
RP[0:15]..VA[24:27]..quadword[0:1] with 256-word pages, or
RP[2:15]..VA[22:27]..quadword[0:1] with 1024-word pages. l.e., the word address of the
first word in the quadword would be these 22 bits with two low-order zeroes appended.

SE and DE are derived from the 8-bit syndrome field in Piped. Syndrome = 0 means no
error; neither DE nor SE should be true in this case. Syndrome ncn-0 with an odd number
of 1’s should have SE indicated. Syndrome non-0 with an even number of 1's or an invalid
word code (discussed below) should have DE indicated.

See Figure 11 for the correspondence between syndrome and bits within the quadword.

-Dorado Hardware Manual Memory Section 14 September 1981 57

For SE’s, syndrome specifies exactly which of the 64 data bits or 8 check bits was in error.
If syndrome has a single one in it, then the corresponding checkbit was in error. When
syndrome contains more than one 1, then syndrome[4:6] indicate which word in the
quadword suffered the error as follows:

word 0 011
word 1 101
word 2 110
word 3 111

The other four values of syndrome[4:6] are impossible for an SE and are reported as a DE.

Syndrome[0:3] indicates the bit position within that word; unfortunately these bits are
reversed, so that the bit number is given when the bits are taken in the order 3, 2, 1, O.
" Syndrome[7] is the parity of the syndrome, and a double error is indicated by a non-zero
syndrome having even parity. '

Storage writes leave garbage in the EcFault and Syndrome fields of the Pipe; the fault task must
distinguish these cases by means of the RefType field in Pipe2.

As discussed below in the "Testing" and "!nitialization" sections, TestSyndrome is xor'ed with check
bits that would otherwise be written on storage writes. This means that Syndrome-of-read equals
TestSyndrome-of-write is an exact indication of no-error. However, the hardware always reports non-
zero syndrome as an error, as discussed above, regardless of what's in TestSyndrome.

Dirty is set in the cache after a Store« that misses, despite any fault, so when that munch
is chosen as victim, it will be written back into storage. Consequently, if the fault task
attempts recovery from a double error on a Store«, it may have to clear the cache address
section’s Dirty bit for the munch using the tricky sequences discussed later.

Storage

Storage is organized into modufes consisting of two identical boards per module. The
modules appear in the chasis as shown in Figure 2. Depending on whether 16k-bit or 64k-
bit IC’s are used, a module stores 256k or 1m 64-bit (+ 8 check bit) quadwords. A Dorado
can have up to 4 modules, for a maximum of 16m words. Every module must be the same
_size—it is illegal to mix module sizes.

The module in slot 0 supplies the first quarter of real memory; slot 1, second quarter; slot
2, third quarter; and slot 3, fourth quarter. In other words, real memory addresses are not
interleaved among modules and the address range covered by a particular module cannot
be controlled by the firmware.

The B«Config’ function (Figure 10) returns M0, M1, M2, and M3 which are true only when
a module is plugged into the corresponding storage board slot. ChipSize indicates what
size ic’s are used on the storage boards. The memory system automatically adjusts itself to
operate according to the IC size in use on the storage boards.

When 256k x 1 MOS storage ic's become available, we plan to replace the 4k and 16k
wires on the backplane by an extra address wire and a 256k wire; at this time we will lose
the ability to handle 4k x 1 and 16k x 1 ic’s and the hardware will allow either 64k or 256k
storage ic’'s to be used.

Dorado Hardware Manual Memory Section 14 September 1981 58

MOS RAMs used on storage boards (and in the map) must be refreshed at regular
intervals, else they drop data. This occurs during refresh references once every 16 ps.
Every MOS RAM on every storage board participates in every refresh reference, and one
row of data is refreshed each time. This means that 64 (4k RAMSs), 128 (16k RAMSs), or 256
(64k RAMs) refresh references are required to refresh all data (So the refresh period is 2 or
4 ms—the specification on both 16k and 64k RAMs is a 2 ms refresh period at the
maximum operating temperature (85° C). The dominant leakage term is exponential in
temperature so the refresh period can be doubled each 5° C drop in operating
temperature. Because the specification is conservative and because we have no intention
of operating anywhere near 85° C, a 4 ms refresh period should be adequate.

The time for each refresh reference is 8 cycles (13 cycles with 4k-bit RAMs), same as
normal references. Refresh hardware competes for storage access with the cache data
section and fast io references. During the first 8 us of a 16 pus period, refresh defers to
normal references; during the last 8 pus, it preempts normal references.

The Cache

The physical cache structure consists of 256 entries in an array of 64 rows by 4 columns.
Each entry holds 15 address bits, a parity bit for the address bits, four flag bits, and one
munch of data (= 256 data bits + 32 check bits). Hence, the cache holds a total of 4k
words of data.

The address section is implemented with 256-word RAM's, but only 64 words are presently used.
The data section uses 1kx1 RAM’s for storage. When sufficiently fast 4kx1 ECL RAM's become
available, we plan to use them in the cache data section and utilize all 256 words in the address
section. In this case, the cache geometry will be 256 rows by 4 columns (16k words in the data
section).

The cache address section stores 4 flag bits discussed below, 15 VA bits, and 1 parity bit.
The way the VA bits are assigned depends upon whether or not 4k x 1 ECL RAM’s are
used in the cache data section. VA[7:19] are stored in the address section for all
configurations. Two other bits are either VA[5:6] or VA[20:21]; VA[5:6] are used with 4k
- ic's in the cache data section (VA[20:21] then appear in the row address of the cache, so
they don’t have to be stored). The hardware is also arranged so that the parity bit may be
replaced by VA[4].

In other words, the cache initially implements a 225-word virtual memory with provision for
expanding this to 227 words when 4k x 1 RAM's are available or to 228 words at the cost of
eliminating the parity bit in the address section. However, the map organization also limits
virtual memory, probably to a smaller size than the cache limit, as discussed earlier.

Normally, the cache is invisible to the programmer except for problems with map/cache
consistency discussed in the map section. However, features discussed below in
"Testing" allow more direct access for checkout, initialization, and error recovery.

An address VA, if in the cache at all, must be in one of the four columns of the row
addressed by VA[22:27] (or VA[20:27] if the cache is expanded). References compare the
appropriate 15 or 16 bits of VA[4:21] with the values stored in each of the 4 columns to
determine which cache entry, if any, contains VA.

Dorado Hardware Manual Memory Section 14 September 1981 59

The VNV memory contains two two-bit entries for each row of the cache. The Victim field
specifies the cache column displaced if a miss occurs in this row. The NextV field is the
next victim. When a miss or a hit in Victim occurs, Victim«NextV is done. When a miss,
hit in Victim, or hit in NextV occurs, NextV+Victim.0Q',,NextV.1’ is done (i.e., NextV is loaded
with a value different from both the original NextV and Victim). This strategy is not quite
LRU, since there is a 50-50 guess on the ordering of the third and fourth replacements.
This treatment of VNV is used for fetches, Store+, PreFetch+, and IFU fetches but not for
IOFetch¢, I0Store«, or Map+, which don't use the cache.

On a Flush+«, Victim is written with 0 on a miss or with the column of the hit and NextV is
written with Victim.0',,NextV.1’. If the Flush« hit a dirty cache entry, then a FlushStore
reference is fabricated which will wind up writing Victim (= column hit by the Flush¢) back
into storage. The FlushStore reference will also do Victim«NextV and
NextV«Victim.0’,,NextV.1’ again. This means that the VNV entry for the row touched by a
Flush« is effectively garbaged, which probably won't affect performance much.

A better strategy for Flush+ and I0Store« would be as follows: On a miss, Victim and NextV remain
unchanged; on a hit in a column different from Victim, Victimehit column, NextV«Victim; on a hit in
Victim, no change.

The UseMcrV feature discussed in "Testing” allows Victim and NextV to be replaced by McrV and
McrNV. .

Associated with each cache entry are four flag bits that keep track of its state, as follows:

Dirty - set by Store«, cleared when loaded from storage. This bit does not imply
anything about the map’s Dirty bit. The cache Dirty bit causes a storage write
when the entry is chosen as victim, and the map's Dirty bit is set at that time.

Vacant - set by hit on Flush¢, hit on IOStore+, or Store+ into a write-protected
entry, cleared when the entry is loaded from storage. Vacant is not set after an SE
or DE. Vacant prevents the entry from matching any VA presented to the cache.

WriteProtect - a copy of the map’s WP bit. It is copied from the map when the .
cache entry is loaded and not subsequently changed. If a Store« is attempted into
a write-protected entry, the entry is invalidated, there is a cache fault, and a write
protect fault will be reported by the map.

Beingloaded - set while an entry is waiting for data from storage. Any reference
that hits in the same row will remain in the cache address section until the bit goes
off; any reference or «Md following the one which hit a row being loaded will be
held.

Remark

At the end of a miss, data from the error-corrector is loaded into the cache 16 bits/clock. Not until all 16
words of the munch have been loaded is Md loaded and the task (which has been held) allowed to continue.
A scheme whereby the word being waited for is loaded into Md concurrent with writing it into the 1kx1 RAM's
has been considered but rejected as too complicated. This would reduce average miss time from about 28
cycles to about 24.

Dorado Hardware Manual Memory Section 14 September 1981 60

Initialization

This section outlines the order in which parts of the memory system can be initialized.

Clocks

The instruction decoding flipflops of the memory section are enabled when the processor
clocks are enabled. All other memory clocks are enabled by a signal called RunRefresh, as
discussed in "Dorado Debugging Interface".

When RunRefresh is true, clocks internal to the memory system always happen, even if the
processor is halted. When RunRefresh is false, memory clocks run with the processor.
Except for low-level debugging of the memory system itself, RunRefresh should be true.
Otherwise, storage will not retain data at breakpoints.

Mcr Register

The Memory Control Register (Mcr) contains fields that affect the memory system (see
Figure 10). Mcr is intended to facilitate testing, and in some cases initialization. The
register can be loaded with the Mcr« function and read back over the DMux. Bits in Mcr
are as follows (Some of these bits are loaded from A and others from B, as indicated in
Figure 10):

dVA«Vic On each reference, write the cache address entry selected by the row
of VA and column of Victim (Note: Victim determines the column, even
on a hit) into VA of the pipe, so that VA[4:21] in the pipe contain the
address from the cache. Also prevent both map and storage
automata from starting (which prevents ring buffer pipe entries from
being allocated to these as well). FDMiss should always be true when
dVA«Vic is true.

FDMiss "Force dirty miss" forces each cache reference to miss and store the
victim, even if not dirty. Misses caused by FDMiss do not cause Hold
(*details*).

UseMcrV Use McrV as victim and McrNV as next victim for all cache misses
instead of Victim and NextV from VNV.

McrV The two-bit victim, or cache column used on a miss, when UseMcrV is
true.

McrNV The two bit next-victim when UseMcrV is true.

DisBR "Disable base registers" prevents base registers from being added to
D in computing VA and prevents BR from being written.

DisCF "Disable cache flags" forces cache flags to read out as zeroes and
prevents them from being written. .

DisHold "Disable Hold" unconditionally prevents hold and BLretry from

occurring.

Dorado Hardware Manual Memory Section 14 September 1981 61

NoRef Disable storage references.

WMiss Wakeup fault task on every miss.

ReportSE’ Don't wake up fault task after (correctable) single errors.
NoWake Never wakeup fault task.

During normal operation every bit in Mcr should be 0, except possibly ReportSE’, if
correctable errors are not being monitored. It is illegal to load Mcr while references are in
progress (Changing DisHold is known to cause problems).

System Initialization

System initialization must get the map initialized as desired and the cache in agreement
with the map. Initialization firmware should allow for cache rows containing several entries
for the same address, which might occur after power up or after running diagnostics.
There are many ways to carry out this initialization. One is as follows:

1. Set NoWake and DisHold true in Mcr, so the fault task won't disturb initialization, and so that
Beingloaded conditions won't cause trouble.

2. Clear TestSyndrome.

3. Load the map as desired. Clear the cache as discussed in the Map section. After this the
cache will be empty and Ref and Dirty in map entries will be smashed.

4. Reload the map as desired.
6. Read Faultinfo to kil any pending wakeup for the fault task.

6. Setup Mcr for normal activity (0 or ReportSE’).

Dorado Hardware Manual Memory Section 14 September 1981 62

Testing

This section outlines the order in which parts of the memory system can be tested, so that
only a few new components are involved at each step.

VA, Adder, BR’s

The first step is to set NoWake, FDMiss, and DisBR to true. Now processor references will
deposit Mar in VA of pipe entry 0 (in the emulator), or of every other pipe entry (in other
tasks), so that this part of the pipe can be tested (LongFetch« allows all the VA bits to be
tested). Next, setting DisBR false, loading BR's, and making more processor references
will allow BR’s and adder to be tested.

Cache Address Storage

Then set NoWake, FDMiss and UseMcrV to true and use McrV and McrNV to select one
column of the cache at-a-time. Each processor reference will store its VA into that column,
and into the pipe, and will read out the old VA into the next ring buffer pipe entry (as the
victim because FDMiss is true). This allows the VA bits in the address memory to be
initialized and tested. The column number in Pipe2 should read back the value in McrV in
this case.

Above, address memory values are read using FDMiss, then VA is checked in the pipe
entry created for the victim. A simpler method of reading any address section VA is as
follows: Turn on DisBR, UseMcrV, and dVA«Vic. On processor references, the cache
entry addressed by Mar[6:11] (the row) and McrV (the column) will then have its VA[7:21]
written into VA[7:21] of the pipe entry for the reference.

The flag bits in the address section can be directly tested using B«Pipe5 and CFlags«A.
These functions operate on the cache entry addressed by the row of the last reference .and
column of the hit or victim on a miss. Since the IFU or another task could have issued the
last reference, these functions are realistically limited to initialization and checkout, where
the last reference is known. Normally these will be used with UseMcrV and FDMiss true in
Mcr, so McrV will select the column.

B¢Pipe5 also reads V and NV from the selected row. CFlags+A won't work if DisCF is
true, and B¢Pipe5 will read zeroes for all four flags in this case.

CFlags<A requires that Mar data continue without glitching during the preceding
instruction as well. This means that data originating in RM or T must not have been loaded
during either of the two previous instructions (else a glitch might occur when the
multiplexor switched from the bypass to direct path) and that no higher priority tasks may
intervene between the two instructions. Issuing CFlags«A in both instructions is the
easiest way to drive Mar continuously for two cycles.

Cache Data Storage

Next, initialize the cache address section VA’s and flags so that the cache data section can
be tested. To do this turn off FDMiss while leaving on NoWake, dVA«Vic, UseMcrV.

Dorado Hardware Manual Memory Section 14 September 1981 63

Initialize the address section to a convenient range of virtual addresses by Store+’s to each
munch with appropriate McrV values. In the instruction after each reference, write the
flags to WP = false, Beingl.oaded = false, Vacant = false with CFlags«A.

At the end of this setup, the address section will be loaded and have write access to the .
desired virtual addresses. Hence, Fetch«’es and Store«’s to these VA's will not miss, and
will access the 4k of cache data memory, which can thus be systematically tested.

Map

Next, turn off UseMcrV, leaving vonly NoWake turned on and use Map+ to test the map. At
the end of this test initialize the map, say, to map virtual addresses into corresponding real
addresses.

Main Storage

Then finally the storage can be accessed and tested with fetches and Store«+. FDMiss can
be used to force storage references.

Fault Reporting

NoWake can be turned off and methods similar to the above can be used to test fault
reporting.

IOFetch«, IOStore«, Fast IO Busses

Special hardware is needed to test these (the I0Test board).

Error Correction

In normal operation TestSyndrome contains 0 and Syndrome, written by the error corrector,
should be 0 if no error was corrected or detected. For test purposes, TestSyndrome can
be loaded with any non-zero value and one bit disables error correction alitogether. If there
are no storage failures, TestSyndrome should wind up in Syndrome after a storage read.

The error-corrector, MemError, ECfault, ReportSE’, and fault reporting can be tested using
TestSyndrome.

The LoadTestSyndrome function causes TestSyndrome to be loaded from DBuf. This
should normally be done after a Store+, as follows:

TaskingOff;
Store<RMAddr, DBuf«T; *DBuf«data for TestSyndrome
LoadTestSyndrome;)
TaskingOn;

TaskingOff is required because an intervening higher priority task might change the
contents of DBuf.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 64

Instruction Fetch Unit

The instruction fetch unit, or IFU, decodes a stream of bytes from memory into a sequence
of 8-bit opcodes and operands using a writeable decoding memory, and presents the
results to the processor for efficient interpretation. The next section contains an overview
of IFU function, supplemented by details in later sections.

Read this chapter with Figure 12 in front of you.

Overview of Operation

The IFU handles four independent instruction sets. Opcodes are 8-bit bytes, which may be
followed in memory by 0, 1, or 2 operand bytes. Hence, the total length of an operation is
1, 2, or 3 bytes. The first operand byte is called «, the second pB.

One method of dealing with operations longer than 3 bytes is to encode them in IFUM as 1-byte
jumps to the next operation. This gives up the possibility of referencing N, «, or ,B with «Id but
avoids having to restart the IFU. The processor ‘then must compute the proper place in the
instruction stream and reference a, B, 7Y, etc. without help from the IFU.

The term PC refers to the displacement of an opcode byte from the codebase, which is BR
31. PC’s are 16-bit items, where 0:14 are an unsigned word displacement relative to the
codebase, and bit 15 selects the byte. In other words, codebase points at a 32k segment
of virtual memory; a PC selects a byte in this segment. The PC’'s are named PCF, . . .,
PCM, and PCX, where the final letter in the name denotes the level in the IFU pipeline.

Since the IFU's PC is only 16 bits, overflowing either erid of the code segment causes wraparound.
This programming error is not detected by the hardware.

For Alto compatibility reasons, we currently have the following kludge. Instruction sets 0
and 1 treat byte 0 in the selected word as bits 0:7, 1 as bits 8:15; instruction sets 2 and 3
treat byte 0 as bits 8:15, 1 as 0:7. Eventually, this may be changed so that all instruction
sets use 0 for the byte in 0:7 and 1 for 8:15.

The IFU is started by first selecting an instruction set (InsSetOrEvent«B function) and then
loading the F-level PC (PCF+B function). The IFU then starts fetching the byte stream
starting at the word BR[31] + PCF[0:14], byte PCF[15], from the cache and prepares
opcodes for interpretation by the processor.

Bytes from the cache then march through the IFU pipeline beginning with the F and G full-
word buffer registers on the MemD boeard; single bytes from F/G then move into J or H on
the IFU board. InsSet[0:1] and the opcode byte in J address the decoding memory, IFUM,
a 1024-word x 24-bit (+3 parity) RAM containing the information in the table below.
Although IFUM is writeable, it will normally be loaded with the microprogram and not
subsequently changed (Diagnostics are, of course, an exception.).

.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 65

Table 18: IFUM Fields

Name Size Contents

Length’ 2 Opcode length: 1, 2 or 3 bytes (0 length is illegal).
TPause' 1 The opcode is of type pause.

TJump’ 1 The apcode is of type jump.

IFaddr’ 10 TNIA[4:13] of the first instruction to be executed in interpreting this opcode
(TNIA[14:15] from the IFUJump in the exit of the previous opcode).

RBaseB’ 1 RBase initialization, discussed below.

MemB 3 MemBase initialization, discussed below.

Sign 1 Operand sign extension, discussed below.

Packeda 1 Packed «, discussed below.

N 4 Operand encoded in the opcode, discussed below.

Length’, TPause’, TJump’, Sign, Packeda, and N are used by the IFU to prepare operands
and to sequence correctly to the next opcode; IFaddr’ is passed to the control section; and
the processor uses MemB and RBaseB’ to initialize MemBase and RBase when the
microcode for the opcode commences.

Length’ determines the number of operand bytes; a for a two or three-byte instruction will
be in H, while 8 for a three-byte instruction will be in F/G, when the assembled instruction
is ready to proceed. The assembled instruction and « then drop into the M level.

IFUJump[n] (see "Control Section") transfers control to the starting instruction for the
opcode assembled in M, where TNIA[4:13]«IFaddr, TNIA[14:15]«n (n is O to 3) is the
location of the entry instruction. A 4-long entry vector, rather than a single starting
address, can be utilized for faster execution, as discussed later. /Faddr may be overruled
by a trap address when appropriate.

At ty of the starting instruction, the processor initializes RBase to RBaseB (i.e., to 0 or to 1)
and MemBase to 0.MemBX[0:1]..MemB[1:2] if MemB[0] = O, or to 345+MemB[1:2] if
MemB[0] = 1. MemBX is interpreted as a stack pointer to a 4-entry stack with 4 base
registers in each entry, and MemB[1:2] in IFUM select a particular base register from the
current entry. The MemBX kludge may reduce computation on procedure call/return, as
- discussed later. Other information about the opcode and a are copied into the X level.

Instructions that implement the opcode then reference operands in sequence using the
A«ld, Risld, or Tisld operations discussed in "Processor Section"” or the IFetch«¢ operation
discussed in "Memory Section," which read operands from the X level. The operand
sequence delivered by the IFU in response to «Id is as follows:

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 66

Table 19: Operand Sequence for «Id

Type Length Packedd Sequence

— 0 — lilegal
Jump 1 — Length, Length, Length,

Packedq, sign, and N determine jump displacement.
Jump 2 — Length, Length, Length,

Packeda. and N are unused; sign extends the sign of a for the
jump displacement.

Jump 3 — llegal o

Regular 1 — N if N ne 178. Length, Length, Length,
Packedat and sign are unused.

Regular 2 0 N if N ne 178. o, Length, Length,

) o is sign-extended if sign = 1. :

Regular 2 1 N it N ne 174, a[0:3], a[4:7], Length, Length,
Sign is unused.

Regular 3 0 N it N ne 175 a, B, Length, Length,
o is sign-extended if sign = 1.

Regular 3 1 N it N ne 175, af03], a[4:7], B, Length, Length,
Sign is unused.

Pause X X Same as regular

Regular and pause opcodes have an optional 4-bit operand N that is delivered first (¥ isﬁ’t supplied
when N = 178). This is followed by a and B, if they exist; a is sign-extended when sign = 1 or

split into two 4-bit nibbles if Packedat = 1. Subsequently, «ld delivers Length. For jumps, all of
these operands are consumed in computing the jump displacement, and <«Id delivers Length.

The normal opcode references all of its N, @, and B operands; however, except on three-
. byte opcodes, the IFU hardware does not require that these operands be referenced—the
processor could exit to the next opcode without reading all the operands, if that was
desirable for some reason. However, for opcodes of length 3, the processor must consume
the o byte with «Id (both «[0:3] and «[4:7] if Packeda = 1) before going to the next opcode
with an IFUJump—it does not suffice to consume the last a byte with «Id concurrent with
IFUJump. An opcode must never do more than 7 «Id’s for reasons that will be discussed
later. ’

The types of opcodes are distinguished as follows: A pause has no successor, and the IFU
must be restarted with PCF«B before the next IFUJump. A regular’s successor is the byte
following its last operand; a jump’s successor is determined by adding a displacement to
the current PC as follows:

If Length =1, then Sign.Packeda.N forms a six-bit signed displacement. In other
words, the jump is to any byte in the range PC—4O8 to PC+378.

If Length =2, then Packeda and N are unused; the jump displacement is a, if sign
is 0, or sign-extended a, if sign is 1.

A jump with Length=3 is illegal.
The IFU pipeline follows the instruction stream and fills up when it is five or six bytes ahead

of the current opcode. When a pause opcode is recognized, further memory references
are not made. When a jump opcode is recognized in J, the IFU discards any bytes in F, G,

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 67

and H and refills these pipe levels with bytes along the jump path. .

The B«PCX' function reads PC (inverted) for the current opcode. Note that PCF«B does
not affect the value of PCX; B+«PCX' continues to read the displacement of the current
opcode, which does not change until an IFUJump is done.

An opcode that conditionally jumps can be encoded in IFUM with type either jump or
regular. If encoded as type jump, when the condition is false, the program must issue
PCF«B to restart the IFU at the fall-through address. Similarly, if regular, PCF«B must be
issued to restart at the jump address.

The Length argument delivered by «Id after other operands have been referenced is useful in
conditional jump calculations. Note that the fall-through address for a conditional jump is
Length + PCX, so:

Te(id) - (PCX) - 1; *Id = Length for type jump
PCF«T;

Noop;

IFUJump(0];

restarts the IFU at the fall-through address for type jump.

Following PCF«B, the IFU flushes its pipeline; it is illegal for either the instruction
“containing PCF«B or the one immediately after it to do an IFUJump, but any subsequent
instruction can issue an IFUJump; however, the processor will spin uselessly at the IFU
"NotReady" trap until the fifth cycle after PCF«B (earliest) or later (longer opcodes, cache
misses, Mar traffic).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981

Name

IFUReset

B«IFUMLH’

IFUMLH«B

IFUMRH+B

B« IFUMRH’
PCF«B
B«PCX’
Brkins«B

InsSetOrEvent«B

Table 20: {FU FF Decodes

Action

Halt and clear the IFU pipeline and clear errors, testing features, and BrkPending
(i.e., Brkins); Reschedule condition and instruction set are not cleared.

Read the high-order IFUM word, InsSet, and IdCnt onto B (low-true) as follows:

Field B bits

IdCnt 0:2 Count of «Id's since start of opcode
InsSet 3:4 Instruction set number

Packeda 5 Packed «

IFaddr’ 6:15 Starting address

Load the high-order IFUM word from B (t1 to t3), where the Packeda and IFaddr

fields are in the same form as B«IFUMLH'. Must have at least one intervening
instruction after a preceding Brkins¢ or InsSetorEvente.

Load the low-order IFUM word from B (t1 to t3) in the format given below; must
have at least one intervening instruction after a preceding Brklns¢ or
InsSetarEvent«:

Field B bits

Sign 0
IPar.0 1 Even parity over N, MemB[1:2], and IFAD[0:1]
IPar.1 2 Even parity over IFAD[2:9]

3

IPar.2 Even parity on Packedq, Sign, Length’, MemB.0
RBaseB’, TPause, and TJump

Length’ 4:5 Instruction length (low true)

RBaseB' 6 1-bit RBase initialization

MemB 79 3-bit MemBase initialization

TPause’ 10 Type pause (low true)

Tdump’ 11 Type jump (low true)

N 12:15 4-bit operand

Read IFUM fields in the same format as IFUMRH«B (inverted).

Load PCF at ta, clear and restart the pipeline.

Read PC for the currently executing opcode (inverted).

Load Brkins from B[0:7] at ta and set BrkPending (ill-defined unless the IFU has

been reset). Brkins replaces the next opcode loaded into J; then BrkPending is
cleared. Brkins also addresses IFUM on IFUMLH/RHe¢ and BelFUMLH'/RH'.
If B[0]=1, then B[6:7] are loaded into the InsSet register at tg; if B[0] =0, then
B(4:15] control event counters as discussed in the "Other 10 and Event Counters”
chapter. A following PCF«B starts the IFU interpreting using the new instruction

set. lllegal except when the IFU is paused or reset or when PCFe¢ will be done
before the next IFUJump.

68

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 69

Table 20: IFU FF Decodes (continued)

Name Action

Reschedule Cause a reschedule trap on the second or third ‘"successful" [FUJump.
"Successful" means that an IFUJump is not trapped for some other reason such
as not-ready. The second IFUJump will be trapped if it does not occur in the
instruction immediately after the first successful IFUJump; otherwise, the third
successful IFUJump will be trapped. The trap instruction is executed as though it
were the first instruction of the rescheduled opcode, and +Id and IFUJump will
work as though that opcode were in progress.

Also set the Reschedule branch condition (emulator only) to true.

RescheduleNow RescheduleNow is guaranteed to trap the next successful lFUJump, so long as the
next IFUJump appears in the second cycle after RescheduleNow, or later. The
Reschedule branch condition is not affected.

NoReschedule Turn off the Reschedule trap and branch condition.

IFUTest«B Load the test-control register from B (load with 0 or do IFUReset when not testing)
as follows:
Field B bits
TestFG 0:7 Substituted for cache data
TestFGParity 8 Substituted for cache parity bit
TestFauit 9 Substituted for memory fault signal

TestMemAck 10 Substituted for memory MemAck signal
TestMakeF«D 11 Substituted for memory MakeF¢D signal

TestFH’ 12 enable FHCP and ty when IFUTick executed
TestSH’ 13 enable SHCP and t, when IFUTick executed
TestEn 14 test enable

IFUTick Tick the IFU's clock once according to TestFH and TestSH in the IFUTest register.

The IFUJump Entry Vector

An IFUJump(n], encoded in the JCN field of the instruction, sends control to an address
partly determined by the IFU and partly by the IFUJump clause. The four possible targets
of an IFUJump are called an "entry vector".

An opcode leaves its results in one of several convenient forms agreed to by convention,
then chooses an entry instruction in its successor with IFUJump[n], where n =0 to 3.
Every opcode in the instruction set must have an entry vector of the same length. Careful
choice of forms may reduce execution time by one cycle for some opcodes without
increasing execution time for successor opcodes.

A true branch condition (FF-encoded) with IFUJump prevents starting the next opcode. For
example, IFUJump[2,condition] sends control to the next opcode’s entry 2, if condition is
false, or entry 3, if condition is true. However, no other IFU activities associated with
starting the new opcode take place when condition is true, so entry 3 is executed in the
context of the opcode that did the IFUJump[2,condition]; however, the processor initializes
RBase and MemBase as though the next opcode were starting, so this part of the state is
lost. Thus, at a cost of one entry instruction in every opcode of an instruction set, it may
be possible to shorten the execution time of some opcodes using a conditional exit.

An opcode with common and uncommon exit cases, for example, can exit with
IFUJump[2,condition], where entry 2, the common case, starts the next opcode, while entry
3 is reached for the uncommon case. Since IFUJump loads Link with .+ 1, entry 3 can
either Return, to execute more code associated with the uncommon case, or it can do

‘Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 70

something more explicit, if an appropriate convention is followed by all opcodes.

The following example shows how an instruction set with four opcodes (Push, Add, Store,
and JNZ) is implemented using a four-long entry vector. The opcodes in this example deal
with the stack like Mesa opcodes do, and the first three entry conventions are, in fact, ones
which might be used by the current Mesa emulator.

%Entry
0: Stk[StkP] holds top-of-stack (if any—garbage if stack empty), T halds garbage
1: T and Stk[StkP-1] hold previous top of stack (garbage if stack empty),
Stk[StkP] garbage, Md holds top-of-stack.
2: T and Stk[StkP+1] hold top-of-stack,
Stk[StkP] holds previous top of stack (garbage if stack empty).

3: Results in same form as entry 2, but restart IFU at NewPC = (Id)-(PCX’)-1
Note that Stack& +1 references must not check for underflow when the stack may legitimately be
empty.

%

*Push the memory location pointed to by N.

Push: Fetcheld, T«StackNoUFL& +1, IFUJump[1];
Fetcheld, Te«StackNoUFL& +1«Md, IFUJump[1];
Fetcheld, StkP+2, IFUJump(1];
Te(ld) - (PCX") -1, StkP+1, Return;

*Replace the top two stack entries by their sum.
Add: TeStack& -1, Branch[. +2];
StackeMd;
T«Stack& - 1«T +(Stack& - 1), IFUJump[2];
Te(ld) -(PCX') -1, StkP+1, Return;

*Store the top-of-stack into the memory location pointed to by N and pop the stack.
Store: Store«ld, DBuf¢Stack& -1, IFUJump(0];

Stacke«Md, Branch[Storex];

Store«ld, DBufe¢T, IFUJump[0];

Te«(ld)-(PCX')-1, StkP+1, Return;
Storex: Store«ld, DBuf¢Stack& -2, IFUJumpl2];

*Pop the stack and branch if the top-of-stack was zero, else fall through
*This opcode is of type jump.
JINZ: Pd«Stackd& -1, Branch[ZTest];
PdeMd, StkP-1, Branch[ZTest];
Pd«T, Branch[ZTest];
Te(ld)-(PCX") -1, StkP+1, Return;
ZTest: TeStack& -1, IFUJump{2,ALU #0];
*Return here when the jump doesn't take.
T«Stack& -1, PCFeT; ’
IFUJump[2];

Push thus requires 1 execution cycle; Store and Add take either 1 or 2 cycles depending
upon the entry point; JNZ takes 2 cycles when the jump takes or 9 cycles when the opcode
falls through (because the IFU isn't ready until the fifth cycle after PCF«B).

Although every opcode in an instruction set must have an entry vector following the same
conventions, it is not necessary that the vector be four-long. In the above example, a
single-entry scheme would probably use the entry 2 convention followed above. In that
event, Push, Add, Store, and JNZ would require 2, 1, 2, and 3 cycles (common case),

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 71

respectively, compared to 1, 1 or 2, 1 or 2, and 2 or 3 cycles for the four-entry scheme
above.

Since Mesa requires about 120 IFU entries for its 256 opcodes, the cost of the second
entry in the vector is between 0 and 120 locations, and 120 locations each for the third and
fourth entries. Since Mesa is implemented by about 1044 instructions using entry vectors
of length 1, a vector of length 2 scheme would require ~1100, length 3 ~1220, and length
4 ~1340 instructions. The implementor of an instruction set should decide when the
additional locations expended for larger entry vectors are no longer worth the additional
speed.

Although we originally hoped for as much as 8% faster inner loops and 4% overall speed
improvement, Gene McDaniel measured only 2% faster execution for Mesa (excluding disk
wait) using a length 3 entry vector; microstore increased about 120 locations. Investigation
revealed that increased traffic on Mar (by overlapped Fetch« and «Md) was causing IFU
not ready to occur more often, offsetting the fact that fewer processor cycles were needed.
Forwarding saved about .2 cycles/opcode.

Note: IFU trap locations discussed below must also be entry vectors that follow the same
convention.

Timing Summary

From the detailed timing discussion at the end of this chapter, the following generalizations
about IFU timing can be drawn:

Assuming no misses and no delays because the processor uses Mar, IFUJump will
successfully dispatch to the entry instruction of the next opcode on the fifth cycle
after PCF«B if the new opcode either is one byte long or is two bytes long and
starts at an even byte; otherwise it will succeed on the sixth cycle.

A jump opcode causes a 3 cycle gap in the IFU pipe. The effect of the gap would
be a 3 cycle delay if each opcode were executed in exactly one cycle. However,
the gap can overlap with extra cycles taken on the jump opcode itself or either of
the two preceding opcodes. As usual in timing considerations, a 3-byte opcode
counts as two normal opcodes. '

If a long stream of regular one-byte opcodes is being executed by the processor at
the fastest possible rate (one instruction/opcode), and if the IFU neither misses
nor faults nor waits for the processor’s use of Mar or the cache, then it will always
have the next opcode ready for IFUJump. If the IFU waits one cycle for the
processor to use Mar, it will shortly fill its pipe again, so scattered Mar references
by the processor will not result in IFU NotReady.

If a long stream of regular two-byte opcodes, each of which has an a but no N
(This is the worst case.), is being executed by the processor at the fastest possible
rate (one instruction/opcode), and if the opcodes in the stream start at the even
bytes in words, and if the IFU neither misses nor faults, and if the processor never
uses Mar, then the IFU will give 25% NotReady. Each cycle in which the processor

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 72

uses Mar adds one cycle of delay. If the opcodes in the stream start at the odd
bytes in words, then the processor will get NotReady 40% of the time.

Three-byte opcodes are not as bad as two-byte opcodes because, in the worst
case, the processor cannot reference both « and f in less than 2 instructions.
Hence, a stream of three-byte opcodes has timing approximately the same as a
stream in which each three-byte opcode is replaced by a one-byte opcode followed
by a two-byte opcode.

Mar traffic may be an important timing factor if many opcodes finish in one or two cycles.
Whenever the processor is making a reference, the IFU cannot use Mar, and the IFU must
make one reference for every two bytes in the instruction stream. Note that if a processor
reference is held, the IFU will also be prevented from making references (but the IFU is not
prevented from making references when «Md is held). '

Use of MemBX and the Duplicate Stk Regions

The present Mesa implementation requires 34 cycles for a local XFER and 54 cycles for an
external XFER, excluding memory wait, and measurements made on the Mesa compiler
showed that 38% of all cycles were spent in XFER. For this reason, speed improvements in
XFER are an important objective.

Since about 70% of all calls return before calling any other procedure, if a caller's base
registers and stack were left untouched, then this information would neither have to be
saved during the call nor restored during the return in most cases.

The hardware that supports this idea consists of the MemBX register, pointing at one of
four blocks of 4 base registers each, and StkP, pointing at one of four stacks of 64
registers each. During a procedure call, StkP and MemBX may be advanced by 1 region,
leaving the caller’s state intact; if the callee makes nested calls, then eventually the MemBX
and Stk regions would be exhausted and some would have to be saved and (eventually)
restored. However, if the callee returns without too many nested calls, then its caller’s
state would still be intact.

We have not constructed examples that use this idea, but a savings of 50% in average
XFER timing has been projected for Mesa.

Traps

The IFU may trap for not ready, reschedule request, map faults, cache data errors, and
IFUM parity errors. When a trap condition occurs, the IFU substitutes a trap address for
IFaddr on the next IFUJump. Hence, the next IFUJump sends control to one of the entries
in the trap vector.

Locations assigned to these trap vectors are given in "Control Section"; note that each
instruction set has independent trap locations.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 73

Each trap vector is dispatched into by IFUJump exactly as though it were an opcode.
B¢PCX’' reads the PC of the opcode that would have been executed if the trap had not
occurred and RBase, MemBase, and «Id stuff are set according to that opcode (in every
case except NotReady—all are undefined at a NotReady trap).

The relative priority of traps is as follows: IFUM parity error is highest, then NotReady,
reschedule, cache data parity error, and map fault.

The NotReady trap occurs whenever the IFU does not have both an opcode and its
associated operands (a, B8) ready for the processor. Since PCX, MemBase, and RBase are
invalid, the trap microcode must wait for the IFU to become ready. The following code
sequence will work for all instruction sets that do not use a conditional exit:

NotReady:
FreezeBC, IFUJumplO];
FreezeBC, IFUJump(1];
FreezeBC, IFUJump[2];
FreezeBC, IFUJump(3];

For the sample instruction set given earlier, wh‘ich uses entry 3 as a conditional exit, the
following sequence would be appropriate:

NotReady:
IFUJump[0}; *Can’t convert to IFUJump[2] because stack may be empty
T«Stack& - 1«Md, IFUJump[2]; *Convert case 1 to case 2
IFUJump[2];

Te(ld) - (PCX') -1, StkP«StkP + 1, Return; *Resume the opcode which didn't really exit

If the IFU detects bad parity on any read of IFUM, the IFUJump to the opcode affected by
this parity error will trap to the IFUM parity error trap location.

The IFU will trap at the cache data parity error location, if it detected invalid parity on any
byte sent by the memory system. PCX will always correctly point at the opcode that would
have been executed next had the trap not occurred; however, the opcode and operands
pointed at by PCX are not necessarily the ones that suffered the parity error. This occurs
because the pipe has continued ahead of PCX. The most confusing case occurs when the
opcode following PCX was a jump; in this case the opcode fetched by the jump may have
caused the parity error, in which case PCX+ /- jump displacement is limited to the range
PCX-4005 to PCX+377g.

The IFU will hold an IFUJump in the cycle prior to a cache data parity error or IFUM parity
error trap.

Note that IFUReset must be given after an IFUM or cache data parity error and before
restarting the IFU.

The Reschedule function is used by io tasks to request service by the emulator. The IFU
will honor this trap request on the second IFUJump after it is exequted, as discussed in a
later section. The RescheduleNow function is like the Reschedule function, but the IFU
honors it on the first IFUJump after it is executed, rather than the second (RescheduleNow
was intended for use when continuing an opcode which previously experienced a fault).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 74

An IFU fetch may experience a map fault. The memory system does not report IFU map
faults to the fault task. Instead, it signals the IFU that a map fault has occurred, and the
IFU passes this indication through its pipeline. Eventually, the IFUJump that would have
sent control to the opcode affected by the map fault will instead transfer to the map fault
trap vector.

Although IFU map faults are not reported to the fault task, the fault task must be careful to pass
over any pipe entries that were created by IFU map fauits when it is woken for some other reason.

Erroneous bytes fetched after a pause or jump opcode might cause map faults, but the IFU discards
these before they reach the end of the pipeline, so the processor is never informed. Consequently,
erroneous references interfere with processor memory activity and delay the IFU's efforts to refill its
pipe on a jump, but don't have any disastrous effect.

An IFU fetch may experience single or double storage failures. Unlike map faults, these are
reported to the fault task just as on processor fetches. The memory system pipeline will
finish loading the cache munch just as though the data were ok, and the cache entries will
have valid byte parity. The IFU will continue running just as though no error had occurred.

However, the fault task will be woken soon enough that it will run before the IFU's F
register is loaded with a byte from the bad munch. Hence, the fault task will run before
the emulator can possibly execute an IFUJump to the byte that suffered the error.

For a recoverable error, the fault task can simply carry out some logging action and block;
no harm will occur because the IFU will actually have gotten valid data, and the cache will
contain valid data. For an irrecoverable error, the fault task must clear the bad cache
munch and use the RescheduleMNow function to trap the next IFUJump to code for dealing
with the irrecoverable error.

Erroneous bytes fetched after a pause or jump opcode might suffer irrecoverable errors. The fault
task has no reasonable way to distinguish these from bytes really in the instruction stream, so it will
cause a Reschedule trap anyway.

Remark

Although independent trap vectors for each instruction set are probably inessential, performance should be
- better when the NotReady trap, which occurs frequently, is distinct for each instruction set. This allows the
various IFUJump exits to be transformed into the form most likely to be convenient for the next opcode.

The other traps could have been implemented to use a common trap for all locations. This would be mare
economical for IFUM and FG parity error traps, if these simply result in an uncontinuable crash when running
system microcode. However, different trap vectors for each instruction set are probably more convenient for
Reschedule and Map fault traps, which have to save the state of the emulator currently running.

In any case, reserving locations for these traps costs at most 5 traps * 4 instruction sets * 4 entries/trap =
1008 locations, and realistically is much less than this because many instruction sets will not need 4 entries

and there will probably be fewer than 4 instruction sets concurrently active.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 75

IFU Reset

The processor can reset the IFU by executing the IFUReset function. This clears all IFU
error conditions, prevents further IFU memory references, clears the Brkins« feature
discussed earlier and the test features discussed later, and generally puts the IFU in. a
clean and operable state. The Reschedule feature is not affected by IFUReset.

IFUReset should be executed after power-on to get the IFU shut off. A single IFUReset will
make the IFU passive with respect to operating the rest of Dorado. However, the IFU itself
might not be operable until a second IFUReset is executed because of a pathological
condition (If Brkins is loaded and Testing is true, then the first IFUReset will clear Testing
but not Brkins; a second IFUReset is required to clear Brkins in this case).

If the IFU has any outstanding memory references pending at the time the first IFUReset is
executed, those references will complete and disturb the top part of the IFU pipeline. A
second IFUReset must be issued after these references have all finished prior to reading or
writing IFUM. If the second IFUReset is executed 36 or more cycles after the first, then it
will for sure completely reset the IFU. ‘

The worst case is when a miss has just started the storage pipeline with an IFU reference in the
cache address section. In this case the IFU reference does not enter the storage pipeline until the
8th cycle and then takes 28 cycles to complete.

IFUReset should be’executed prior to using Brkins«. It should also be executed after
reading or writing IFUM (to reset the BrkPending condition that is still lurking).

Rescheduling

lo tasks request service from the emulator by first indicating a request in some way
{Presently an RM location is used as a 16-bit table in which 1's indicate requests.), then
executing the Reschedule function, and finally blocking. The IFU and the processor store
the reschedule condition in flipflops which remain set until the NoReschedule function
turns them off. '

The next IFUJump after Reschedule transfers to the entry vector for the opcode as usual;
the reschedule trap address will drop into the IFAddr register at t, of this instruction, and
the first IFUJump after that will dispatch into the reschedule trap vector. This means that
second IFUJump will trap unless the second IFUJump occurs on the instruction
immediately after the first IFUJump, in which case the trap will not occur until the third
IFUJump. IFUJump’s that experience a NotReady trap are not counted.

The entry vector at the reschedule trap location is entered as though it were the next
opcode. When Reschedule is used by io tasks to request the wakeup of another process,
this fact is unimportant. However, the other use of Reschedule is in continuation from map
(and other) faults. In this application, the reschedule trap will wind up restoring the IFU
state by executing an appropriate number of «Id's and eventually branching back to the
instruction that experienced the fault. The continuation method is discussed later.

Opcodes which might execute for a long time, such as block trénsfer and BitBIlt, must
check for rescheduling explicitly, and the (emulator only) Reschedule branch condition

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 78

makes this check easier. If such opcodes did not check for rescheduling, then service to
the io device might be postponed for too long.

The reschedule flipflops are not cleared by IFUReset, so the MoReschedule function must
be executed as part of system reset.

When the reschedule trap vector is entered, the IFU is in an undefined state except for
PCX', and PCF« is needed to restart the IFU at the continuation address.

Breakpoints

Brkins«B implements debugging breakpoints straightforwardly. The idea is that a one-byte
opcode, BrkP, is used to transfer control to a debugger while saving emulator state needed
to continue later, and another opcade, Continue, is used to continue from breakpoints (For
Mesa, BrkP and Continue are special cases of Xfer.).

BrkP may be substituted for any opcode in a program. The debugger gets control when
BrkP is executed, saves state, and eventually can execute Continue to restore state from
values saved by BrkP.

Continue first restores registers, then loads Brkins with the opcode for which BrkP was
substitued; then it uses PCF+«B to restart the IFU at the breakpoint. The IFU will then start
running; the first opcode fetched will again be the BrkP opcode, but the contents of Brkins
will be substituted for the one fetched from memory, and the program will continue
correctly.

Without Brkins«B the debugger would have to simulate the broken opcode before
continuing at the following opcode, which would be harder. The example below shows a
code sequence for the final part of Continue.

Continue:
IFUReset; *Stop future IFU fetches and clear pipe’
T«41GC;
CnteT,;
IFUReset, Gotol[.,Cnt#08&-1}; *Reset after previous IFU fetches complete
Brkins«Opcode; *Load opcode which BrkP replaced
PCF «BreakAddress; *Restart IFU at address of BrkP
Noop; *No-op required after PCF« before IFUJump
IFUJump(0]; *Resume program’

Note: IFUReset is required before Brkins¢, even when an opcode of type Pause is in
progress.
Reading and Writing IFUM

In addition to its function related to breakpoints, Brkins«B is usecf to address IFUM when
reading or writing that memory.

When IFUM is loaded, it is addressed by the instruction set InsSet[0:1] and Brkins. The
data must remain on B for two cycles, so tasking must be disabled and the instruction

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 77

following the one with IFUMLH/RH+« must put the same data on B. If this data comes from
RM or T, the register must not have been loaded in the cycle preceding the IFUMLH/RH«
(because the bypass logic will change the B select from Pd or Md to RM or T, possibly
glitching data on B). The following subroutines illustrate loading and reading back IFUM.

WritelFUM:

IFUReset; *Stop future IFU fetches and clear the pipe

Te41C;

Cnt«T;

IFUReset, GoTo[.,Cnt #0& - 1]; *Reset after previously issued fetches complete

InsSetOrEvent«RMaddr0; *Load 2 instruction set bits forming {FUM address

Brkins«RMAddr1; *Load 8 opcode bits forming IFUM address

TaskingOff; *Ensure no B glitch below and let Brkins« settle for 1 cycle

IFUMLH «RMdataHi; *Write high part of IFUM

B«RMdataHi; . *Keep data good a little longer {mustn't glitch)

IFUMRH ¢« RMdatalo; *Write low part of IFUM

B+RMdatalLo, TaskingOn; *Keep data good a little longer

IFUReset, Return; *Clear Brkins

ReadlFUM:

IFUReset; *Stop future IFU fetches and clear the pipe

T¢41G;

CnteT,; :

IFUReset, GoTo[.,Cnt#0& - 1]; *Reset after previously issued fetches complete

 Brkins«RMaddr1; *Load 8 opcode bits forming IFUM address

InsSetOrEvent+RMaddr0; *Load 2 instruction set bits forming IFUM address

Noop; *Two instructions must elapse after loading Brkins
*one after loading InsSet (?Two noops after loading InsSet
*might be better since this is a tight path?)

RMdataHi«IFUMLH; *Read IFUM into RM.

RMdataLo«IFUMRH;

IFUReset, Return; *Clear Brkins

Continuing from Processor Faults

Saving and restoring the state of an interrupted program requires some cleverness not only
for the IFU, but also for the Control, Processor, and Memory sections. The emulator might
fault for a data error, map fault, or stack overflow/underflow; for io -tasks, stack
- overflow/underflow is impossible and map faults will probably be illegal, so only data error
faults are legitimate. The discussion here will concentrate on map faults, though the same
approach could be used for other fault conditions as well.

The fault task must use as few instructions as possible so that io tasks won’t be preempted
for too long. The minimum is to copy all pipe entries that contain memory faults into RM or
Stk buffers, preserve DBuf, and save the emulator's TPC; the fault task must itself deal with
data error faults by io tasks; it then restarts the emulator at a trap address. The emulator
microprogram then saves the rest of the emulator state and deduces the nature of the
fault(s) using methods discussed in "Memory Section".

The emulator fault microcode first saves ALU branch conditions and task-specific registers,
then other information of interest. The saved information is stored where the Mesa (or
whatever) program can get at it; then the trap microcode restarts Mesa at a trap procedure
that will service the map fault (probably swap in a page from the disk); eventually, state will
be restored and the opcode that faulted will be resumed at the instruction that faulted.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 78

The IFU state may be saved via B¢«IFUMLH' and B«PCX'. B<+«IFUMLH' reads the current
instruction set and IdCnt from B[0:4]; B[5:15] are IFUM bits which are not of interest when
saving the state of the program, so the tricky code sequence given earlier for reading IFUM
is not required. B¢«PCX reads the current PC.

The 3-bit counter, IdCnt, keeps track of how many «Id’s have been done; to avoid
overflowing this counter, no more than 7 «Id’s should be done when executing any
opcode. This is one (harmless) restriction on coding emulators. The other is that
emulators never map fault on the instruction after a dispatch (BDispatche«B,
BigBDispatch«B, or Multiply); this can be assured by doing «Md prior to or concurrent with
any dispatch.

Sample microcode for saving emulator state is as follows:

%Must first save the volatile branch conditions; Overflow and Carry won't change unless an arithmetic
ALU operation is executed, so saving them can be deferred. T, the first item saved, is written into the
RM region reserved for Save using the change-RBase-for-write FF decode.
%
Save: FreezeBC, DblGoTo[ALUls,ALUge,ALU<O};
ALUls: SavedT«T;
T«0C, GoTo[SaveBC];
ALUge: SavedT«T, DblGoTo[ALUgr,ALUeq,ALU #0];
ALUgr: T«1C, GoTo[SaveBC];

ALUeq: T«2C;
*Have a code, 0, 1, or 2, in T indicating the state of the ALUCO and ALU=0 branch conditions.
SaveBC: SavedALULEZ€T; *Save the branch condition code

TePointers; *T«MemBase, MemBX, and RBase

T«T Or (100000C); *Make negative

RBase +RBase[SaveRMRegion};
*Now choose twa numbers such that their sum produces the correct ALUcry and Overflow branch

*conditions.
SavedPointers«T, MemBase+«SaveBaseReg, DblGoto[Cry,NoCry,Carry];
Cry: DblGoTo[CryOvf,CryNoOvf,Overflow];

NoCry: DblGoTo[NoCryOvf,NoCryNoQvf,Overflow];
CryOvf: SaveA1¢100000C;
SaveA2«100000C, GoTo[SaveRest]; *Numbers such that SaveA1l+SaveA2 produces
*Qverflow and Carry result
NoCryNoOvf:
SaveA2+<0C, GoTol. +2];
CryNoOvf: SaveA2+1G;
SaveA1«177777C, GoTo[SaveRest];
NoCryOvf: SaveA1«77777C;
SaveA2«77777C, GoTo[SaveRest];

SaveRest:
SavedPCX«Not(PCX');
TeNot(IFUMLH’); *Read IdCnt and InsSet in IFUMLH[0:4]
SavedidCnt«LdF[T,0,2};
Te«T and (14000C);
T«RSh[T.2];
SavedInsSet¢T +(100000C); *Set up word for InsSetOrEvent« below
*Code to save rest of state (all easy)

Sample microcode for continuing is given below:

Resume: ... *Restore all processor registers except T, Cnt, RBase,
*and MemBase.
InsSetOrEvent « SavedinsSet; *Restore the IFU instruction 'set number.
PCF«SavedPCX; *Restart IFU at address of the opcode that faulted
WakeUp[ContTask]; *Wakeup the special task used for continuation.

Noop; *No-op required so that the instruction after the IFUJump

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 79

*below will be executed by the continuation task.
Cnt«SavedidCnt, IFUJump(0]; *Continue execution in the continuation task at Cont0

Resume1: Skip[Cnt=0& - 1], At{Resumeiloc]; *Reissue the appropriate number of «Id’s to put
A«ld, GoTo[.-1]; *the IFU in the state it was in at the fault.
Cnt«SavedCnt; *Restore Cnt
*Restore Md by fetching from a convenient storage
*location. Then repeat the Fetche or Store« that
*faulted using a convenient base register and restore
*the base register (complicated code here needs careful

*thought).
TeSaveAft;
Pd«T + SaveA2; *Restore Carry and Overflow branch conditions.
T«SavedT, TaskingOff; *Restore T register

*Below, the TaskingOff, WakeUp, TaskingOn sequence insures that precisely one emulator instruction will
*be executed after the TaskingOn before the continuation task runs.

BDispatch«SavedALULEZ; *Dispatch to 0, 1, or 2 in table based on
*ALU>0, ALU<O, or ALU=0.

WakeUp[ContTask]; *Wakeup the special task reserved for continuation.

Link«SavedLink, At{ConTab,0]; *Restore Link and ALU>0

TaskingOn;

Pd «Not(Pointers «SavedPointers), GoTo[COK];

LinkeSavedLink, At{ConTab,1]; *Restore’ Link and ALU<O

TaskingOn;

Pd «Pointers«SavedPointers, GoTo[COK];

Link« SavedLink, At[ConTab,2]; *Restore Link and ALU=0

TaskingOn;

Pd«(SavedPointers) xor (Pointers«SavedPointers), GoTo[COK];
COK: FreezeBC, GoTo[.};

*The special restart task needed for continuation
Continuelnit:
RBase +RBase[SavedTPC]; *Initialization code for the task
*First of two wakeups comes here—change emulator's TPC to Resumetl and block.
Cont0: Block;
TeResumeiloc;
Link«T, TaskingOff;
LdTPC+«0C; *Restart emulator at Resumet
TaskingOn;
Block;
*Second of two wakeups comes here. Reload emulator TPC with continuation address.
Contt: Linke«SavedTPC; :
LdTPC«0C; *Restart emulator at saved continue address
Branch[ContQ];

IFU Testing

The IFU test control register is loaded by the IFUTest«B function; when not testing, this
register should contain 1, and it is loaded with 1 by the IFUReset function. IFUTest.15
disables the periodic wakeup request to the Junk task discussed in the "Slow I0" chapter;
when IFUTest.15 is 0, the junk wakeups occur 60 times/sec and are dismissed by any
IFUTest« function.

IFUTest.14 (TestEn) enables IFU test mode; it is illegal for this bit to change from O to 1
when the IFU is active because, if this occurred in the same cycle that an IFU memory
reference was issued, then the IFU would pollute the Mar bus indefinitely, making the
memory system unusable by the processor.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 80

The test features aim at two situations. First, they allow the IFU clocks to be controlled by
a program, so a diagnostic can slowly step the IFU pipeline through its stages. Secondly,
they allow data supplied by a diagnostic to be substituted for signals that would otherwise
come from the memory system. This allows the IFU to be tested in the absence of the
memory system, which allows scope probes to be inserted easily and decouples IFU
problems from memory system problems.

The TestFH' and TestSH’' bits in the IFUTest register enable the first-halif-cycle and second-
half-cycle clocks, respectively, which will occur between t, and t, of the cycle after the one
issuing the IFUTick function. Thus, the IFU can be stepped through a PCF«B function as
follows:

TaskingOff;
IFUTest+TestEn;
IFUTick;
PCF«value;

where PCF«value is just an example—any other IFU function or an IFUJump could be used
instead.

The IFU's memory interface is simulated by the TestFG, TestParity, TestFault, TestMemAck,
and TestMakeF«D bits in IFUTest. Memory references are not issued by the IFU when
TestEn is true. TestFG and TestParity are substituted for the FG byte and parity bit from
the memory system; the other signals are control signals sent by the memory system in
response to IFU references. They are supposed to work as follows:

MemAck occurs at t, of a cycle in which the IFU makes a reference at t,, iff the memory
system accepted the reference; if the memory system was busy and did not accept the
reference, then MemAck does not occur, and the IFU should repeat its reference. The
absence of MemAck serves approximately the same purpose for the IFU that Hold serves
for the processor.

MakeF «D occurs at t, of a cycle in which the memory system loads F at ty; in the event of
a map fault, MakeF«D occurs at t, of the cycle in which the memory system would have
- loaded F at ty if the map fault had not occurred. The IFU can try to start a reference at t,
even though it has an unfinished reference in progress. The memory system will accept
the reference iff MakeF«D occurs; otherwise, it will refuse the reference. In other words,
the IFU's second reference starts at t, iff the first reference will deliver data at tg.

Fault is concurrent with (?) MakeF«D and indicates that the IFU reference experienced a
map fault. '

In other words, a memory reference can be simulated with the IFU test feature by (1)
ticking the IFU through a cycle in which it makes a reference; (2) ticking the TestMemAck
response of the memory system with IFUTest«B and IFUTick; (3) ticking TestMakeF«D; (4)
ticking with TestFG and TestParity holding simulated memory data.

Details of Pipe Operation

The IFU is a six-stage pipeline, starting with words fetched from memory, and ending with
opcode starting addresses delivered to the control section and operands delivered to the

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 81

processor. The levels are named: F, G, H, J, M and X. Each level has a data-valid bit
indicating whether or not it contains something useful.

PCF, PCJ, PCM, and PCX are PC’s for the corresponding pipe levels (except that PCF is a
word PC rather than a byte PC). PCF, PCM, and PCX are independent of each other since
jumps and PCF« may result in these all being different; PCJ is related to PCF by the
number of valid bytes in the F/G/H levels; the hardware also uses PCFG, which contains
PCF plus the number of valid bytes in the F/G levels. Operationally, F/G are a FIFO in
which PCF is the write pointer, incremented as words are fetched from the cache, and
PCFG is the read pointer, incremented as bytes are moved from F/G into J/H. Note that
there is no PCH because PCH would equal PCJ+1.

Pipe control is straightforward in principle. The F and G levels are 16-bit registers filled
from the cache. Following PCF«B, if there is space in the pipeline for another word, the
IFU will start a reference at ty of any cycle in which the processor is not using Mar (so as
many as 2 IFU references can be outstanding). Cache words are stored in F at t, then
dropped into G at t,; bytes drop into H at t, or J at t,; there are bypass paths to get bytes
directly from F/G into J when H is invalid. As the processor executes opcodes, F and G
become invalid, and the IFU refills them from memory automatically. This continues until
the IFU is reset by the processor, or encounters a pause opcode.

The F and G registers are physically located on the MemD board. The four bytes in F/G are inputs
to a muitiplexor controlled by the IFU, and the multiplexor output is sent across the backplane to the
IFU. Brkins[0:7] or IFUTest{0:7] replace F/G data when using breakpoints, reading/writing IFUM, or
using IFU test features.

While following the opcode stream, a jump will invalidate data in F. However, if a reference is in
progress and F has not yet been filled by the memory system, then the IFU will invalidate the data
when it arrives and restart the next reference immediately. In aother words, the IFU cannot abandon
the useless fetch; it must wait for it to finish and discard the result.

The J and H levels are one byte wide. For one-byte opcodes it is possible to consider H
and J as independent levels of the pipe; however for two or three-byte opcodes, it is
appropriate to consider J/H as a single level in which J holds the opcode and H holds a.

If J is invalid, then it will be loaded from the next opcode (which may be in G, F, or H
according to various conditions) at an even clock (t;) and H will be loaded from the byte
after the opcode (which is always in G) at the following odd clock (t,); if the byte after the
opcode isn’t ready, it will drop into H at the next odd clock after it is ready. The InsSet
and J registers address IFUM and IFUM outputs reveal whether the byte in H is a (Length
= 2 or 3) or the next opcode (Length = 1). ‘

The conditions under which the M level can be loaded from J are that M is invalid (or
about to become invalid) and:

Length = 1 -or-
Length = 2 and H is valid -or-
Length = 3 and H is valid and either F or G is valid.

If these conditions are met, then the M level is loaded (t,) with information from IFUM and
with a, if Length = 2 or 8. |If Length = 3, then B will drop from G into H (t;).

Dorado Hardware Manual instruction Fetch Unit 14 September 1981 82

If Length < 3, then the H/J level is now free to work on the next opcode. . If Length = 1
and the next opcode happens to be in H, then H will drop into J at the same time (ty);
otherwise, J will be loaded from the next opcode in F/G when it is ready.

When the processor does an IFUJump[n], level M presents information needed by the next .
opcode as follows:

IFaddr is” TNIA[4:13] for the IFUJump;

MemBase is set to 0.MemBX.MemB[1:2] or 34;+MemB[1:2];
RBase is set to O or 1;

N, Sign, Length, Packeda, and « are loaded into the X level;
B is loaded into the M level if Length = 3.

Referencing IFU operands with A«Id, Tisld, or Risld affects the IFU in two ways: it causes
the IFU to advance to the next item of Id, and for a 3 byte instruction when «a is taken
(a[4:7] when Packeda = 1) it causes B to drop from M to X, freeing M for the next
instruction.

IFetch« also uses Id, as discussed in memory section, but does not advance the IFU to the
next item of Id.

For a one or two-byte opcode, it is permissible for the processor to do an IFUJump before
referencing any operands with <«Id; this will advance normally to the next opcode.
However, for a three-byte opcode the processor must reference all of «, so that 8 drops
into X, before doing an IFUJump.

When a pause or jump is recognized, the IFU may already have filled the F and G levels
erroneously (i.e., 4 bytes ahead). These levels are flushed and refilled along the jump path.
Timing Details

This section discusses timing details of the IFU pipeline assuming that all IFU referénces hit
in the cache and are never deferred for processor references.

First case: Restart IFU at even byte

t0: An instruction with PCF«FQO is started, where FOO is even.

t2: F, G, H, J, and M levels are made invalid.

t3: Reference the word containing FQO.

t5: Reference word containing FOO+2.

t7: Load F with data from the FOO reference; reference the word containing FOO +4.

t8: Load the first byte from F into J; load G from F; F becomes invalid; start reading the IFUM
entry for J.

to: Load the putative operand byte from G into H; G becomes invalid; load F from the FOO +2
reference. .

t10: Distinguish 5 cases below.

FOO is a one-byte regular opcode

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981

t10: Load M from IFUM; IFUJump will now succeed; load J from H (FOO+1); load G from F
(FOO+2 and FOO+3); F and H become invalid; start reading the IFUM entry for J.

t11: Load H from G (FOO+2); load F from FOO+4 reference.

t12: — (The FOO+1 opcode would pop into M if IFUJump were done at t10.)
IFU is quiescent; F has two useful bytes, G one byte, J/H has two bytes; M level is ready
and waiting for IFUJump.

FOO is a two-byte regular opcode

t10: Load M from IFUM and M[a] from H; IFUJump will now succeed; load J from F (FOO+2);
load G from F (garbage and FOO +3); F and H become invalid; start reading the IFUM entry
for J.

ti1: Load H from G (FOO+3); G becomes invalid; load F from FOO +4 reference; reference the
word containing FOO +6.

t12: Load G from F; F becomes invalid.

t15: Load F from the FOO+6 reference; now quiescent.

FOO is a three-byte regular opcode

t10: Load M from IFUM and M[a] from H; IFUJump will now succeed; load G from F (FOO+2
and FOO+3); H and F become invalid; J goes to special state (,B in H).

t11: Load H from G (FOO+2 = B); load F from the FOO+4 reference; now quiescent.

t122 — (The FOO+2 byte would pop from H into M[ﬁ] if IFUJump were done at t10.)

FOO Jis a one-byte jump opcode

t10: Load M from IFUM; IFUJump will now succeed; J, H, G, and F become invalid.

t11: Discard the FOO+4 reference; reference the first word along the jump path.

t13: Reference the second word along the jump path.

t15: Load F from the first word along the jump path.

t16: Load J from F, etc.

FOO is a two-byte jump opcode

t10: Load M from IFUM and M{a] from H; IFUJump will now succeed; G and F become invalid; J
and H are in a special jump state, computing the jump address.

t11: Discard the FOO+4 reference; reference the first word along the jump path.

2 J and H become invalid.

t13: Reference the second word along the jump path.

t15: Load F from the first word along the jump path, etc.

Second case: Restart IFU at odd byte

to:
t2:
13:
t6:
t7:
8:
to:
t10:

An instruction with PCF«FOO is started, where FOO is odd.

F, G, H, J, and M levels are invalid; IFUJump will trap at NotReady.

Reference the word containing FQOO.

Reference word containing FOO+1.

Load F with data from the FOO reference; reference the word containing FOO+3.
Load the second byte from F into J; F becomes invalid; start reading the IFUM entry for J.
Load F from the FOO+1 reference.

Distinguish 3 cases below (and the one and two-byte jump cases which are not repeated
below).

83

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981

FOO is a one-byte opcode

t10: Load M from IFUM; IFUJump will now succeed; load J from F (FOO+1); load G from F
(garbage and FOO+2); F becomes invalid; start reading the IFUM entry for J.

t11: Load H from G (FOO+2); G becomes invalid; load F with the FOO +3 reference; reference
the word containing FOO +5.

t12: Load G from F; F becomes invalid.

t15: Load F from the FOO+5 reference; now quiescent.

FOO is a two-byte opcode

t0: Load G from F (FOO+1 and FOO+2); F becomes invalid.

t11: Load H from G (FOO+1); load F with the FOO+3 reference.

t12: Load M from IFUM and M[a] from H; IFUJump will now succeed; load J from G (FOO +2);
load G from F; F and H become invalid; start reading the IFUM entry for J.

t13: Reference the word containing FOO+5; load H from G (FOO+3).

t17: Load F with data from the FOO+5 reference; now quiescent.

FOO is a three-byte opcode

t10: Load G from F (FOO+1 and FOO+2); F becomes invalid.

t11: Load H from G (FOO+1); load F from the FOO+3 reference.

t12: Load M from IFUM and M[a] from H; IFUJump will now succeed; H becomes invalid; J is in
a special state (8 in H).

t13: Load H from G (FOO +2); load G from F (FOO +3 and FOO +4); F becomes invalid; reference
the word containing FOO +5.

t17: Lload F from the FOO+5 reference; now quiescent.

84

Dorado Hardware Manual Slow 10 14 September 1981 85

Slow 10

The slow io facility allows data transfers between the processor and any of up to 256
independently addressed io registers. It is intended that the slow io facility will be used to
load and read control information associated with high speed io devices (> 20 x 108
bits/sec), which will then use the fast io system for their data transfers. Low speed devices
(< 20 x 10° bits/sec) will use the slow io bus for all phases of their operation. Very slow
or polled devices may be driven directly from an emulator.

Device controllers for Dorado interact with the processor by exchanging data over a 16-bit
bidirectional bus 10B ("Input/Qutput Bus"). There may be a total of up to 256 jo registers
in all controllers connected to a single system. The unique 8-bit device numbers assigned
to particular devices or uses that appear in every system are discussed in subsequent
chapters and summarized in the table below.

Table 21: 10 Register Addresses

Number Name Comment
10 DiskCaontrol Disk control register
11 DiskMuff Disk muffler control
12 DiskData Disk FIFO data
13 DiskRam Disk format RAM
14 DiskTag Disk tag register
15 EData Ethernet input or output data
16 EControl Ethernet control and status
360 PixelClock DDC pixel clock
361 Mixer DDC mixer
362 CMap DDC CMap
363 — DWTFlag* (DispM analog of DWTFlag)
364 — DHTFlag* (DispM analog of DHTFlag)
365 BMap DDC BMap
366 — NLCB* (DispM analog of NLCB)
367 —_ Statics* (DispM analog of Statics)
370 Status DDC muffler and OIS data
372 MiniMixer DDC MiniMixer
373 DWTFlag DDC word task control
374 DHTFlag DDC horizontal task control
375 HRam DDC horizontal waveform control
376 NLCB DDC next line control block

377 Statics DDC debugging control

Dorado Hardware Manual Slow 10 14 September 1981 86

Input/Qutput Functions

In most cases, a task will need to do many sequential io operations to the same io register.
The 8-bit task-specific register TIOA holds the device address being referenced by each
task.

TIOA is loaded at t, from B[0:7] by the TIOA«B function, or TIOA[5:7] can be loaded from
FF[5:7] while preserving TIOA[0:4] by the TIOA«small constant function. Pd«Input,
Pd<«InputNoPE, or Output«B functions can be issued in the instruction immediately
following the one that loads TIOA.

Most input registers include odd byte parity with 10B data. The Pd+«input function reads
I0B data and checks parity. The Pd«InputNoPE function reads IOB data without a parity
check; this is useful when determining whether a device exists (IOB has bad parity if a
nonexistent register is selected). The enabling and timing of parity error halts is discussed
in the "Errors" chapter.

The Output+B function sends 16 bits of data with parity to the io register selected by TIOA.
Many controllers check the parity and report parity errors as part of their status.

The tasks reserved for standard peripherals are given in the table below.

Table 22: 'Task Assignments

Number Name Comment
0 EMU The emulator
1 CON Special task for restarting emulator after fauits
2 JNK Junk task (awakened every 32 pus)
3 DHT Display horizontal task
4 AHT DispM terminal interface horizontal task
6 EOT Ethernet output task
7 EIT Ethernet input task
Mg AWT DispM terminal interface word task
124 SIM Task simulator
134 DWT Display word task
144 DSK Disk io
174 FLT The fault task
10 Opcodes

The Mesa instruction set has two opcodes for dealing with the slow io system:

INPUT:
TIOA«q;
Stkp«Stkp + 1;
Stack«Input, IFUJump[0];

OUTPUT:

Dorado Hardware Manual Slow 10 14 September 1981 87

TIOA«a;
Output+Stack& -1, IFUJump[0];

These opcodes allow a Mesa program to have full access to the io system. The intent is
that these instructions will be used to set up registers in firmware-driven devices, and do all
the service required by polled slow devices. In many cases, the use of an INPUT or
OUTPUT instruction is not sensible (doing io to a device normally driven by firmware, for
example), but the capability should prove useful for testing and diagnostics.

Wakeup, Block, and Next

The "Control Section" chapter discussed task switching, and the material which follows is an
elaboration of that discussion.

Note that a task for which a wakeup request is issued at t, cannot commence its next
instruction until t,; i.e., at least two cycles elapse after a wakeup before the next instruction
is executed. The task then runs until it does a Block; in order to avoid an erroneous extra
wakeup, the task must lower its wakeup request at least one cycle before issuing Block.

Consequently, an io device may turn off its wakeup request according ta one of three
strategies:

The first is to turn off the request when Next becomes equal to its task number; in
this case the wakeup request is lowered at t; of the first instruction executed for the
task, and it must not block until the second instruction to prevent an erroneous
second wakeup. The special situation in which Next is invalid ("Next Lies") must be
dealt with by device controllers that do this. This situation occurs as follows:

Suppose that a task blocks with the following instruction:
Branch[Loop], Fetch«Address, Block; *Fetch next word

This generates Switch and the task in Bnt is broadcast over the Next bus.
If the Fetch+ causes hold and Bnt < Ctask, then no task switch will occur.
However, the Next bus is incorrectly broadcasting Bnt. Since hold occurs
after t,, there is insufficient time to change the Next bus back to Ctask in
this case.

Consequently, controllers using Next detect "Next Lies" and disable any
actions that would otherwise be performed when it occurs.

A pathological lockout problem should be noted: Since task T's wakeup
request was lowered at t, when Next=T was noted at t;,, the Next Lies
condition will (correctly) result in repeating the held instruction at t,
however, some task of lower priority than T may erroneously execute at ty
This might be a problem if some high demand task of higher priority is
coded so that it always creates Next Lies (say, by doing Block and
immediate «Md in the instruction after a Fetch¢).

Another consequence of "Next Lies" is that IOAtten may be incorrect when

Dorado Hardware Manual Slow 10 14 September 1981 88

"Next Lies" is occurring. Consequently, branch on I0Atten is illegal during
an instruction that blocks and might cause hold.

The second strategy monitors TIOA becoming equal to a particular device value. In
this case the wakeup request is lowered at t; of the second instruction following a
wakeup, and the task must not block until the third instruction. The disk controller
has used this strategy, which has the draw back that if TIOA inadvertently assumes
the particular device value for any other task, the hardware will malfunction. A
consequence of any device using this strategy is that a/l tasks must be careful to
initialize TIOA properly when first awakened.

The third strategy waits for some OQutput«B or Pd+«Iinput operation to reset the
wakeup condition. This would reset the condition at t; or tg of the Output«B
instruction, and the wakeup would be lowered at t, or t; in this case the task must
not block until the third or fourth instruction after the Qutput¢B or Pd<«input to
avoid an erroneous wakeup. The exact requirement depends upon the io
controller—the disk controller, for example, lowers its wakeup request at t, and can
block in the third instruction after Output«B, while the display controller horizontal
task lowers its wakeup request at t; and can block in the fourth instruction.

If loops naturally run for at least three instructions, use of TIOA is more economical than use
of Next because TIOA decoding is mandatory in any case, while Next is needed only for
short loop devices, devices that use the fast io system, and devices that drive the SubTask
lines.

SubTasks

When an io device sees Next becoming equal to its task, it can (optionally) present a two-bit
SubTask number as well.

The processor, control, and memory sections clock SubTask into flipflops at t,. The
processor OR's SubTask [0:1] into RBase[2:3] and into MemBase[2:3]. This allows the same
firmware to control several identical io devices concurrently—each device, represented by a
SubTask, gets its own RM region with 16 RM locations and its own pair of MemBase
registers; if only SubTask[0] is driven, then two RM regions and four MemBase registers are
available to each subtask. Note that the 16 change-RBase-for-write functions do not OR
SubTask into the changed address, so they cannot be used; also, if RBase is read by the
processor the value read out has SubTask OR’ed in. However, the 16 change-RSTK-for-
write functions do work. '

Note also that when the debugging processor (Baseboard microcomputer or Alto running
Midas) asserts the Freeze signal, the affect of the subtask on RBase[2:3] is disabled, but
subtask continues to affect MemBase[2:3].

In the memory section, the task and SubTask that issued an IOFetch+ is bussed to fast
output devices with data from storage. The device receiving the data identifies itself by
means of this information. [0Store«’s are handled similarly.

A task presenting SubTask signals generally must Block at the same location each iteration

Dorado Hardware Manual Slow 10 14 September 1981 89

since there is only a single TPC value for all of the SubTasks. Hence, the full generality of
tasking is unavailable—the microcode for these tasks must be coded as though the wakeup
mechanism were a priority interrupt.

lllegal Things 10 Tasks Must Not Do
(1) It is illegal to Block in an instruction that does B«ExternalSource, where ExternalSource
is anything except one of the sources on the IFU board. This restriction is needed so that

the emulator will be able to do arithmetic on B«PCX'.

(2) The 10Atten branch condition is illegal in an instruction that Blocks and might be held,
because NextlLies might occur, as discussed above.

(8) A task may not Block on an instruction that might be held, if its wakeup request might be
dropped at t; of the instruction. If this occurred, the instruction might inadvertently be
repeated before the Block took effect.

(4) 1t is illegal to Block with TaskingOff in force.

(5) A task must not Block until one cycle after its wakeup request is turned off.

(6) It is illegal to issue Wakeup[n] if task n might run in the next cycle. Wakeup[n] must be
executed with TaskingOff in such circumstances.

Dorado Hardware Manual Fast 10 14 September 1981 90

’ Trast 10

The fast input/output system provides high-bandwidth data transfers between storage and
io devices. Transfers occur in units of one munch (= 16 words); the addresses of the 16
words must be i, i+ 1, ..., i+ 15, where i mod 16 = 0. One word is transferred every clock,
for a peak bandwidth of 533 x 108 bits/second. A fast device is also interfaced to the slow
io system, from which it receives its control information, since there is no way for the
device to communicate directly with the processor using the fast io system.

A -single transaction of the fast io system transfers exactly one munch. Successive
transactions are completely independent of each other, whether they involve the same or
different devices, as far as the io system is concerned. The only relationship between
transactions is that storage references of two transactions occur in the order that they were
issued.

Each fast io transaction is initiated by an |OFetch« or 10Store+ reference coded in ASEL.
Once this instruction has been executed, the transaction proceeds without further
interaction with the processor (except for fault reporting). The transaction itself involves a
storage reference, and transport of the data between main storage and the device. In the
case of a fetch, transport happens at the end of the reference, after the munch has been
error-corrected. For a store, transport happens at the beginning of the reference, in
parallel with mapping the VA and starting the storage chips. As a result of this difference,
the transport for a fetch may overlap or even follow the transport for a following store.

Transport

The device is only concerned with the transport of the data, and has no way of knowing
exactly how or when the storage reference take place. The transport happens in 16
clocks, each transporting a single word using the Fin bus (IOFetch«’es) or Fout bus
(IOStore«’s). The two busses are independent, and transport can be happening on both of
them simultaneously.

The two busses have much in common. Both have Task and Subtask lines, on which the
memory presents the task and subtask involved in the transport about to begin and a Next
signal used for synchronization. The Fout bus has a Fault line which is high at the time the
last word of the transaction is delivered if there-was a memory fault during the fetch (other
than a corrected single errar).

Both data busses are 18 bits wide: 16 data bits, numbered 0..15, and two byte partiy bits,
numbered 16 (bits 0..7) and 17 (bits 8..15). The parity bits have the same timing as the
data bits. A device is invited to check the parity of data on Fin, and is required to generate
parity for data on Fout.

Wakeups and Microcode

The normal interface between a device and its task involves one wakeup for each munch
transferred. The device must keep track of the number of wakeups it has issued, since
data may not arrive from storage for several microseconds, but there is no way to stop the

Dorado Hardware Manual Fast 10 14 September 1981 91

data from arriving once the task has started the memory reference.

Typical microcode for a fast output device is given in the "Display Controller" chapter.

Latency

Suppose that the highest priority fast io task issues its wakeup request at ty then it will
execute its first instruction at t,. Some other task can cache fault with clean victim in the
cycle starting at t,, and another task can cache fault with dirty victim in the cycle starting
at t,. The first reference gives rise to one storage reference and the second to two storage
references; each of these three storage references takes 8 cycles to handle, so the fast io
reference will not begin for about 24 cycles. From the time it begins until the last data
word is delivered to the device is 23.5 cycles, for a total of 47.5 cycles, to which 2 cycles
must be added for the time between the wakeup and the first executed instruction. In this
situation, the transport is rot finished until 49.5 cycles after the wakeup. Lower priority
tasks are delayed by an additional 8 cycles for each reference which might be made by a
higher priority task. :

The above is one possible worst case. Another is the execution time of higher priority
tasks; a wakeup might be delayed by sum of the longest normal execution of the fault task
and of other higher priority tasks. The fault task execution time is presently unknown.

A store reference is slightly better, since its transport is finished 8 cycles after the
reference starts, for a total latency of 40 cycles.

All these numbers assume that a reference can be started every 8 cycles. If
successive references are to 4k modules, however, they can happen only every 13
cycles, and the calculations must be adjusted accordingly. Also, data is returned
from a 4k module 3.5 cycles later.

Dorado Hardware Manual Disk Controller 14 September 1981 92

Disk Controller

This chapter describes the Dorado disk controller, which uses the Slow 10 system to
control up to four Century Data Trident disk drives. Either the 80x108-byte T-80 or the
300x108-byte T-300 drives can be used. An extension of the controller onto a second logic
board (not designed) would allow control of up to 31 disk drives; alternatively, duplicating
the present controller (with different TIOA, task, and muffler assignments) would allow
independent control of four additional drives. -

Keep Figure 13 in view while reading this chapter.

The disk controller uses task 14g and the first five values of the TIOA addresses in block
10g - 17g (The Ethernet controller, on the same logic board, uses two of the other three.).
Either the task or TIOA block can be modified by changing a SIP component on the logic
board. TIOA assignments are as follows:

10g DiskControl OQutput«B to control register

g DiskMuff OCutput«B muffler control and Pd«lnput to read muffler
124 DiskData Pd«Input to read FIFO or OQutput«B to write FIFO data
134 DiskRam Output+B to format RAM

144 DiskTag Output¢«B to tag register

Note: other tasks must not select these TIOA addresses at any time; doing so may cause the disk
controller to malfunction.

The controller is interfaced to the disk drives by a daisy chain cable bussed to all drives
and by an independent radial cable to each drive. The radial cables contain the following
signals:

data line (bidirectional, differentially driven)

data clock (from drive, differentially driven)

subsector/index line (from drive)

selected line (from drive)

select line (from controller)

sequence line (from controller, controlled by the baseboard for drive 0 and grounded
for other drives)

two VCC lines and scope trigger (from controller)

The daisy-chain cable contains the following signals:

16 control "tags" driven by the controller and received by the selected drive
9 error and status signals from the drive as follows:

CylOffset’

ReadOnly’

NoTerminator

HeadOvfl'

Seekinc’

DevCheck’

NotOnLine

NotReady

Index’

Dorado Hardware Manual Disk Controller 14 September 1981 93

The controller or's the NoTerminator error (which means that the daisy-chain cable isn't
terminated) into the NotOnLine error; the other error indications are discussed later.

Disk Addressing

The disk system is accessed through a many level addressing scheme. First a particular
disk drive is selected. Then a data surface or head and a cylinder are selected (5 surfaces,
815 cylinders on a T-80). Each cylinder is further divided into sectors which consist of
blocks. -

Firmware may control the following parameters:

Sector size (1378 words max., limited by 4-bit subsector counter)
Number of blocks within one sector (1 to 4)
Block sizes (2 to 2684 words)

Note: Various limits on the sizes of blocks and sectors will be discussed. The processor interface allows
a six-bit subsector counter of which only four bits are presently implemented, and this is the most
significant length limit at present (1378 words). |If the subsector counter were enlarged to six bits, then
the block size limit imposed by the error correction algorithm (2684 data words) would apply. We are,
however, unlikely to find any of these length limits significant unless we enlarge the memory page size to
4096 words. Jumpers in the disk unit could also be set to vary the spacing between subsector pulses.

Because sector formats are flexible, firmware can adjust the controller to system needs.
The sector formats specifically envisioned in the design of the controller include 28 256-
word sectors for Alto Diablo emulation and Pilot, 16 512-word sectors for Juniper, and 9
1024-word sectors for Alto Trident emulation.

Sector Layout Considerations

Each block within a sector can be either read, written, or checked. However, once any
block is written, later blocks in that sector cannot be read during that disk revolution.
(Later blocks should be readable on subsequent disk revolutions, though this is not
guaranteed and no existing software depends on this.) Reading or writing must start with
the first block in the sector and continue; since check bits are stored at the end of each
block, the entire block must be read to verify its data or correct errors; however, one does
not have to read or write subsequent blocks in the sector. After a check-block operation is
started, the controller inhibits writing later blocks within a sector without a specific "OK"
from the firmware.

Qur general plan is to use the first block in a sector as a header identifying the disk
address; all headers will be written when a disk pack is initialized; subsequently, the disk
task compares the header with the disk address it thinks it is accessing. The header not
only provides a useful safeguard against positioning errors but also allows faster sector
determination when switching to a new drive, as discussed later.

The second block might identify information stored in the sector (e.g., the Label block in
Alto format). The third block might be the data block. The fourth block could hold
reference, backup, or archiving information. All of these choices are a matter of
programming convention.

Dorado Hardware Manuall Disk Controller 14 September 1981 94

Feasible sector layouts are determined by several considerations. First, each disk drive is
configured to generate 117 subsector pulses/revolution. The disk controller has a
subsector counter for each drive that is initialized to N when an index pulse is received
from the drive; it then counts down to -1, generates a sector pulse, and reinitializes itself.
The firmware can specify N (0 to 175) independently for each disk drive and thus create
117/(N + 1) sectors/revolution. [f this division leaves any remainder, then there will be one
or more unused subsectors at the end of the cylinder.

Note that the quantization of cylinders into subsectors allows a sector size to be specified
in units of 10,080/117 = 86.15 words/subsector.

Various delays must be provided at the beginning and end of each block to allow for
electrical and mechanical tolerances within the disk drive. To define a sector format, one
simply needs a summary of "words lost" for each block:

Total words/track = 10,080

Words lost for the 1st block in a sector = 38
Words lost for successive blocks = 14
Required gap at end of sector = (micrqcode-dependent)

A track is the path swept through one revolution by a single head at a single cylinder.
"Words lost" for each block include 2 words of error detection and correction (32 bits of
ECC code) which are always added at the end of the data written, plus preamble,
postamble, and various other delays required by the controller and drive electronics.
These are detailed later under "Format RAM and Sequence PROMs". Additionally, to
enable the microcode to process consecutive sectors, there must be some gap between
the end of the last block and the end of the sector; the number of words required depends
on the amount of time the microcode requires to complete processing the last block and
issue a command for the next sector.

For the Alto Trident format there is a 2-word Header block, 10-word Label block, and 1024-
word data block; total words lost for disk formatting is 38 for the first block, 14 for the
second, and 14 for the third; altogether, this requires 1100 words/sector. The next larger
multiple of the subsector size is 86.15*13 = 1119 words, leaving 19*1.65 = 31.35 pus of
gap at the end of the sector. Thus 13 subsectors/sector are required, yielding 117/13 = 9
sectors/revolution.

Using this kind of analysis, reasonable sector layouts on the T-80 are as follows:

29 sectors of 256 data words each (4 subsectors/sector),
16 sectors of 512 data words each (7 subsectors/sector), or
9 sectors of 1024 data words each (13 subsectors/sector).

Note: The 29-sector and 16-sector formats do not divide the disk evenly but rather yield an unusable
leftover fraction of a sector; the 9-sector format does divide the disk evenly. The 9-sector format is
compatible with the Alto Trident 9-sector format (used by BCPL Trident software such as {FS). The 16-
sector format is not compatible with the Alto Trident 16-sector format (used by Juniper), though it is
usable if interchangeability of disk packs with Altos is not required. The 29-sector format has no Alto
analogue.

Dorado Hardware Manual

Capacity
Transfer rate

Cylinder positioning time

Rotational speed
Sector length selection

Densities

Disk pack characteristics

\

Qperating rnethods
Mechanical specifications

Error rate

Pack start/stop time

Controls and indicators

Disk Controller 14 September 1981

Table 23: T-80 Specifications and Characteristics

82.1 million 8-bit bytes unformatted
8.67 x 106 bits/sec (= one 16-bit word/1.65 us)

6 ms cylinder to cylinder maximum (3 ms typical)
30 ms average
55 ms maximum

3600 rpm (16.66 ms/revolution)
12-bit increments through jumpers on sector board

370 cylinders/inch
8060 bits/inch max. recording density

IBM 3336-type components
5 recording surfaces plus 1 servo surface
815 cylinders/surface

Modified frequency modulation recording
Linear positioning motor with cylinder following servo

Size - 17.8" wide x 10.5" high x 32" deep
Weight - 230 Ibs.

Recoverable: 1 error/1010 bits
Irrecoverable: 1 em:nr/1013 bits
Paositioning: 1 error/106 seeks

20 sec start time
20 sec stop time (with dynamic braking)

Ready Indicator
Off = disk not spinning
Flashing = spinning up/down
On = Ready

Fault Indicator

Start/Stop switch

Read-only switch

Degate switch (inside the drive; takes disk off-line for testing)

General Firmware Organization

95

This section gives a general overview of how the disk controller firmware is organized;
more detailed descriptions follow later.

The disk drive generates subsector and index pulses on one .Iine in the radial cable; the

controller distinguishes these according to pulse width.

in the normal Idle loop, the

controller looks only at these pulses from the connected drives. A four-bit counter for each
drive counts down subsector pulses and generates sector pulses. Upon either a sector or
an index pulse from the selected drive, the controller generates a disk task wakeup. The
disk task then either increments (sector wakeup) or zeroes (index wakeup) its firmware
sector counter, clears the wakeup condition, checks for a new command, and blocks.

Because there are no hardware sector counters, the disk task must maintain a sector
counter itself; this implies that the rotational position is generally unknown on all

deselected drives.

Dorado Hardware Manual Disk Controller 14 September 1981 86

When first selecting a drive, there are two strategies for determining the sector position: (1) Wait for
an index wakeup, at which time the sector position becomes known; (2) Wait for a sector wakeup
and then read the sector number stored in the header block (This can only be done if the disk is
not moving to a new cyclinder.). The most efficient strategy appears to be a combination: Select
the drive and start a seek to the correct cylinder; if an index wakeup arrives before the seek is
finished, then the sector position is synchronized with no loss of time. If the seek finishes first, then
read the next header to deteninine the sector number.

When a new disk operation is noted, firmware will perform the following steps:

Execute a drive-select command, if the drive differs.

Load the sector size only if different, and block until index.

Load the format RAM only if word count or commands differ.

Execute a Control Tag (seek) command only if the cylinder differs, and wait (continuing
to count sectors) until the drive becomes ready again.

Execute a Head Tag command.

Block until, at a sector wakeup, the next sector is the one wanted.

Load the appropriate transfer command into the control register

Block until the next sector wakeup.

At the start of the next sector, the controller will become active and sequence through
commands under control of the format RAM and two sequence proms (one- for reading,
one for writing).

The sequence proms define what operations the controller must go through, and the format
RAM contains all parameters that might change from one implementation to another.
Actual commands for the Trident disk are stored in the format RAM along with count
values such as words/block, words of ECC, and words of delay before some operation; the
commands are loaded into the tag register and executed by the controller during the
transfer.

Once a transfer has started, the disk task will be woken according to the number of words
in the FIFO, and it will send or receive the appropriate number of words. Read and
compare operations are performed by firmware, as well as detecting checksum errors at
the end of reading. During writing, firmware must provide one word of sync bits (201 8
standard, 001g for Alto Trident emulation) followed by the specified number of words for
that block (the controller will append 2 words of checksum). During read, the controller
will look for, and discard, the first word of sync bits, then firmware must accept the
specified number of words for that block, followed by two words of checksum to be
discarded, followed by the ECC remainder to be used for error detection/correction.

Task Wakeups

The controller may wakeup the disk task for many conditions; the disk task must detemine
the cause and take appropriate action, which must in some way cause the wakeup to go
away.

In general, there are two ways to determine the wakeup condition: read the wakeup
condition, or assume the condition knowing the state of the disk task (which implies the
state of the controller). When expecting a sector or index wakeup, the disk task must test
carefully to count sectors reliably, but in the middle of word transfer operations, it will

Dorado Hardware Manual Disk Controller 14 September 1981 97

assume the wakeup reason to minimize overhead. The various conditions are as follows:
IndexTW, SectorTW, TagTW, RdFifoTW, and WrFifoTW; these wakeup conditions are
detailed in the "Muffler Input"” section.

Control Register

The DiskControl register is a collection of flip-flops defining the state of the controller; on
Output to DiskControl, I0OB is interpreted as follows:

B[5] Clear EnableRun
B[6] Set DebugMode ’
B(7] Set BlockTillndex
B[8:9] Operation for first block of sector, where the operations are:
0 = Done (finished with all blocks in this sector)
1 = Write
2 = Read and check
3 = Read
B[10:11] Operation for second block of sector, as above.
B[12:13] Operation for third block of sector, as above.
B[14:15] Operation for fourth block of sector, as above.
EnableRun determines whether the controller is active at all. It is initially cleared by

IOReset, and can only be set by completing the loading of the format RAM (see below).

DebugMode allows the controller to be exercised by diagnostics when no disk is present; in
this case, diagnostic firmware provides fake disk bit-clocks and data. The flip-flop is
cleared by DisableRun.

BlockTillndex can be set to disable sector and index task wakeups until (a) the selected
drive is ready, and (b) an index pulse is received from the drive. It is cleared by an index
wakeup. This is useful after switching drives or executing a ReZero operation, either of
which causes the controller to lose sector synchronization with the drive. BlockTilllndex
prevents the wakeup conditions from being set until these conditions are met, but does not
clear any such wakeups that have already occurred. To prevent races, it is necessary to
clear SectorTW and IndexTW, then set BlockTillindex, then clear SectorTW again.

A request for a sector transfer is initiated by loading bits 8 and 9 of the control register
with a non-zero value. Then the controller will wait until the next sector pulse to set the
"Active" flip-flop and execute the transfer. Once a transfer has been started, it may be
aborted by loading a new value into the control register twice. The first will clear the
Active flip-flop, and the second will load the control register. (When Active, the control
register is enabled for shifting commands rather than loading of io data.)

Format RAM and Sequence PROMs

The format RAM is a 16-word by 12-bit register that holds commands and delay counts
used by the controller during a transfer. Words within the RAM are used according to the
following table; the example values are appropriate for Alto Diablo disk emulation (2-word
“header, 8-word label, and 256-word data record).

Dorado Hardware Manual Disk Controller 14 September 1981 98

Example
Addr Description Value
00 Word count of the first block 0001
01 Word count of the second block - 0007
02 Word count of the third block 0377
03 Word count of the fourth block 0000
04 Control tag command for a read operation 0104
05 Control tag command for a write operation 0204
06 Control tag command to set Head Select 0004
07 Control tag command to zero the tag bus 0000
08 Word count to write zeroes before writing the 1st block of a sector 0033
09 Word countto write zeroes before writing the sucessive blocks 0006
10 Word count to wait hefore reading the 1st block of a sector 0011
" Word count to wait before reading the sucessive blocks 0002
12 Word count of ECC words plus one 0002
13 Word countof 2 0001
14 Word count of 1 {minimum count) 0000
15 Notused 0000

Notice that the format RAM contains both word counts and tag commands. Word counts
are 1 less that the desired count. Tag commands will be loaded into the tag register (see
below) and then used as a "control tag function” by the Trident disk. The values in the
right column are those used for the Alto Diablo emulation format. Notice that all but the
first 4 values are determined by characteristics of the drive being used as opposed to the
specific sector format. The meaning of the tag command values can be found in the "Tag
Register"” section.

The format RAM is addressed in two ways. During a transfer, sequence PROMs move data
from the RAM into either a tag register or a count register. At other times, the Dorado may
address the RAM with the RAM Address register, which is zeroed when the control register
is written; executing an Output to the DiskRam register writes IOB into the RAM at the
current address and then increments the address. Loading the last word in the format
RAM turns on the EnableRun flip-flop allowing normal disk control activity. The format
RAM may be read via the muffler scheme discussed later.

There are two sequence PROMSs, one for reading (or checking) and one for writing. The
PROMs are addressed by a program counter that is initialized to zero at the beginning of a
- sector and is incremented upon completion of each PROM program action. Either the read
PROM or the write PROM is selected according to the operation being performed on the
current block.

The sequence PROMs are clocked by WordClock, which is derived from the disk bit clock,
which in turn is derived from timing information pre-recorded on the disk pack. The
subsector pulses generated by the drive are also derived from this timing information. This
enables very precise placement of the data on the disk, in a manner that is independent of
the disk’s rotational velocity or the Dorado’s clock rate.

Dorado Hardware Manual Disk Controller 14 September 1981

The read and write sequence PROMs are described in the following tables.

Write Sequence PROM
Addr Description
00 Issue tag command in RAM[6] (head select)
(o] Delay (wait for head select to settle)
02 Issue tag command in RAM[5] (write command)
03 Write long preamble for first block
04 Write sync word
05 Write data for first block
06 Write first ECC word .
07 Write second ECC word and 2 postamble words
08 Advance control register to the operation for the next block
09 Issue tag command in RAM[5] (write command)
10 Write short preamble for second block
11 Write sync word
12 Write data for second block
13 Write first ECC word
14 Write second ECC word and 2 postamble words
15 Advance contral register to the operation for the next block

16-22 Same as 09-15, except step 19 uses RAM[2] + 1
23-29 Same as 09-15, except step 26 uses RAM[3] + 1

30 Zerothetagbus
31 Not used
Read Sequence PROM
Addr Description
00 Issue tag command in RAM(6] (head select)
01 Delay (wait for head select to settle)
02 Delay (skip over early part of preambie)
03 Issue tag command in RAM[4] (read command)
Note: WordClocks cease until controller has read sync word from disk
04 Read data for first block
05 Read ECC words
06 Compute first word of ECC remainder, issue tag command in RAM[6]
07 Compute second word of ECC remainder
08 Advance control register to the operation for the next block
09 Delay (skip over early part of preamble)
10 Issue tag command in RAM(4] (read command)
Note: WordClocks cease until controller has read sync word from disk
11 Read data for second block :
12 Read ECC words
13 Compute first word of ECC remainder, issue tag command in RAM[6]
14 Compute second word of ECC remainder
15 Advance control register to the operation for the next block

16-22 Same as 09-15, except step 18 uses RAM[2] + 1
23-29 Same as 09-15, except step 25 uses RAM(3] + 1

30
31

Zero the tag bus
Not used

Tag Register

Duration
(WordClocks)

1
RAM[13] + 1
1

RAM[8] + 1
1

RAM[0] + 1
RAM[14] +1
RAM[12] +1
RAM[14] +1
1
RAMI9] + 1
1

RAM[1] +1
RAM[14] + 1
RAM[12] +1
RAM[14] +1

Duration
(WordClocks)

1
RAM[13] + 1
RAM[10] +1
1

RAM[O] + 1
RAM[13] + 1
1

RAM[14] +1
RAM[14] + 1
RAM[11] +1
y

RAM[1] +1
RAM[13] + 1
1

RAM[44] +1
RAM[14] +1

99

The 16-bit tag register drives the tag bus on the daisy-chain cable; all disk drive commands
are initiated through the tag register. The tag register is sometimes loaded from 0B via an
Output command to DiskTag, sometimes from the format RAM. Loading a Head Tag,
Cylinder Tag, or Control Tag into the tag register (from either source) activates a timing
circuit that handles all timing requirements of the Trident drive as follows: Only the tag bus
bits are enabled for the first 200 ns; then the Tag[0:3] bits are also enabled for 1.2 ps;
finally, the Tag[0:3] bits are disabled again and the TagTW flip-flop is set to wakeup the
disk task (indicating completion of the Tag instruction). The Drive Select Tag (Tag[0]) does
not activate the timing circuit, since the timer counts disk clock cycles, but disk clocks are
invalid during drive select changes.

Dorado Hardware Manual Disk Controller 14 September 1981

100

Bits 4 through 15 of the tag register are interpreted according to the following table:

Tagl[0]

Tag[1]

Tag[2]

Tag[3]

Drive select and subsector count

Tag[4:15] are interpreted by the controller to effect drive select or
subsector counter changes. The tag timing and wakeup circuit is not
activated; firmware must take care of the timing by first loading Tag[4:15]
as desired but with Tag[0:3] equal O, then or-ing in the Tag[0] bit and
outputting again.

4:9 Subsector count
Divide the 117 subsector pulses from disk by subsector count+1 to form Sector
pulses (Tag[4:5] are presently unimplemented).
Tag[4:9] = 3 yields 29 sectors large enough for 256-word data blocks
Tag[4:9] = 6 yields 16 sectors large enough for 512-word data blocks
Tag[4:9] = 148 yields 9 sectors large enough for 1024-word data blocks

10 Load subsector from Tag[4:9] for the drive selected prior to the execution of this
tag instruction.

11:15 Drive select
The basic controller handles up to 4 disk drives; additional units may be
accommodated by adding drive dependent logic on an additional board and
connecting it in in place of drive 3. To allow this, the 5§ bit drive select field is
interpreted as follows.

0-3 select drive 0 to 3, respectively
4 - 368 select drive 3
378 don't select any drive

Head Tag

Loads a register in the drive that selects the head to be used during
subsequent read/write commands. A Tag wakeup occurs at completion
(1.6 ps).

4.7 Unused

Off Cylinder—may be activated during a read to attempt recovery of unreadable
data. It causes cylinder positioning to be offset 80 micro-inches.

9 Determines direction of offset if bit 8 is set.

10:15 Head number—values from 0 to 4 are valid for a T-80, 0 to 19 for a T-300. The
drive will turn on "EndOfCylinder" (alias HeadOverflow) error if an invalid head
address is issued.

Cylinder Tag

Causes the drive to seek to the specified cylinder. A Tag wakeup occurs
after the tag timing sequence has completed (1.6 ps), and the NotReady
status bit is raised until the seek has completed (3 to 55 ms depending on
the seek distance).

4:15 Cylinder number {0 to 814 for Trident disks presently in use). An illegal cylinder
number will cause DeviceCheck to be raised.

Control Tag .

A Tag wakeup occurs at command completion (1.6 ps) and upon
completion of the last read/write operation in a sector. Generally, Control
Tag commands are issued only by the controller itself (using tag
commands from the format RAM) rather than by the microcode; Device
Check Reset and ReZero are an exception.

Dorado Hardware Manual Disk Controller 14 September 1981 101

4 AltoLeader—special flag to the controller that allows disks written by an Alto
Tricon Controller to be read. This bit should only be used for the Alto Trident
simulation.

5 Unused

Strobe Late—causes data recovery circuits within the drive to sample data early
within the data bit time (for recovery when the drive is experiencing excessive
read errors).

Strobe Early—like StrobelLate except in the obvious way.
Write—turns on the write circuits.

Read—turns on the read circuits.

10 Unused

11 Reset Head register—zeroes the head address register in the drive.

12 Device Check Reset—resets all latched error conditions in the drive.

13 Head Select—turns on the head selection circuits, in conjunction with a Read or
Write.

14 ReZero—repositions the heads to cylinder 0 (if the heads are loaded) and resets
the head address register; resets Seeklncomplete and DeviceCheck error
conditions. :

15 Head Advance—increments the head address register in the drive.

FIFO Register

Data to/from the disk is buffered through a 16-word FIFO (25 pus of buffer), which is
read/written with Pd<«Input/Output«B when TIOA selects DiskData. Each FIFO word holds
16 data bits, 2 parity bits, and a 2-bit field indicating that the next word to be read is either
write, read, or read-and-check type data. During output to the disk, the controller checks
parity both when receiving data on the io bus and again when reading the FIFO. During a
disk read, parity is computed before writing into the FIFO, is passed through the FIFO, and
is then written on the io bus for the processor to test.

Muffler Input

Dorado uses a multiplexor scheme called the muffler system for reading miscellaneous
logic signals during debugging from the Alto or baseboard. The disk controller also allows
a muffler address to be specified on an Output to the DiskMuff register; in this way, any
DskEth board signal available through the muitiplexors (mufflers) is also available for
firmware sampling. Other bits of the DiskMuff register output specify other operations as
follows:

B0} Simulate read data of 1 for 1 cycle (for use by diagnostic programs)

B[1] Simulate read clock of 1 for 1 cycle (for use by diagnostic programs)

B{2] Clear CompareErr—done by disk task if a read&compare is found to be OK
B(3] Set ReadDataErr—done by disk task to inhibit future writes

B(4] Clear the index wakeup flip-flop

B([s] Clear the sector wakeup flip-flop

B[6] Clear the tag wakeup flip-flop

Dorado Hardware Manual Disk Controller 14 September 1981 102

B(7] Clear all error flip-flops within the controller (not the disk drive)
B[8:15] Muffler address—signals are enumerated below

Following an output to the DiskMuff register, the firmware must wait one cycle before
inputting the selected muffler signal with Pd«Input. The state of the signal selected will be
driven on IOB[15], and the remaining bits will be zero. For the purpose of examination
from Midas, the signals are grouped into 16-bit words, as shown in the following table. The
bits within each word and an appropriate explanation follow:

KSTATE various bits indicating the state -of the controller

000 TempSense see "Dorado Debugging Interface” document

001 IndexTW disk task wakeup is due to an index pulse; index pulses occur once/disk
revolution (16.7 ms) and are used to synchronize the hardware subsector
counter and the firmware sector counter. An index pulse also causes a
SectorTW. ’

002 SectorTW disk task wakeup is due to a sector pulse. To maintain a reliable sector
count in a race-free manner, the microcode must (a) check for SectorTW,
and upon finding it set increment the sector number and clear SectorTW;
(b) check for IndexTW, and upon finding it set zero the sector number and
clear both IndexTW and SectorTW.

003 TagTW © disk task wakeup is due to completion of a Head Tag, Cylinder Tag, or
Control Tag command. This occurs 1.6 us after issuing an Output to the
DiskTag register, and also upon completion of the last read/write transfer
in a sector.

004 RdFifoTW disk task wakeup is due to presence of at least 3 words in the FIFO during
a normal read or 1 word during a read-and-check. During a normal read,
an Input that reduces the FIFO below 3 words will drop RdFifoTW in time
for a Block to take effect on the 5th cycle following the Input; this permits
a 2-cycle loop (Input, Block). During a read-and-check, -an Input that
empties the FIFO will drop RdFifoTW in time for a Block to take effect on
the 3rd cycle following the Input; this permits a 4-cycle loop (Input, no-op,
no-op, Block).

005 WrFifoTW disk task wakeup is due to space for at least 4 words in the FIFO. An
Qutput that reduces the free space below 4 words will drop WrFifoTW in
time for a Block to take effect on the 5th cycle following the Qutput; this
permits a 2-cycle loop (Output, Block). WrFifoTW is enabled to occur- by
selecting TIOA[DiskData] when a write command is in progress; it is
disabled by TIOA[DiskControl], which the microcode -executes after
outputting the last data word of a block. One more WrFifoTW will occur
after all data has actually been sent to the disk.

006 ReadData Data bit from the disk (available for diagnostics)

007 WriteData Data bhit to the disk (available for diagnostics)

010 EnableRun Format RAM has been written, and wakeups are enabled

011 DebugMode Controller has been placed in debug mode

012 RdOnlyBlock’ The controller is processing a block in normal read mode
013 WriteBlock’ The controller is processing a block in write mode

014 CheckBlock’ The controller is processing a block in read and check mode
015 Active The controller is processing a command for the current sector
016:017 Select.0..1 The address of the currently selected drive unit

KSTAT various bits indicating the status of the drive/controller. The controller will
turn on Writelnhibit for the remainder of the sector after any of the following
errors are detected, but will still go through all the motions of word
transfers.

Dorado Hardware Manual

020
021

022

023

024
025
026

027

030

031

032
033

034
035
036
037

KRAM

040:043
044057

KTAG

060:077

KFIFO

Seeklinc

HeadOvfl

DevCheck

NotSelected

NotOnLine

. NotReady

SectorOvfl

FifoUnderflow

FifoOverflow

ReadDataErr

ReadOnly
CylinderOffset

|0BParityErr
FitoParityErr
WriteErr
ReadErr

103

Disk Controller 14 September 1981

The disk drive has not correctly positioned the heads within the last 700
ms. A ReZero command must be issued to clear this error.
The head address given to the disk drive is invalid (i.e., greater than 4 for
a T-80 drive).
One of the following errors occurred:
Head select, Cylinder select, or Write command and disk not ready
lllegal cylinder address.
Offset active and cylinder select command.
Read-Only and Write.
Certain errars during writing, such as more than one head selected, no
transitions of encoded data or heads more than 80 micro-inches off
cylinder.
A ReZero command may be necessary to clear this error.
The selected drive is in "off-line" test mode or the selected drive is not
powered up
The drive is in test mode or the heads are not loaded
There is a cylinder seek in progress or the heads are not loaded
The controller detected that a command was active when the next sector
pulse occurred. This error implies either a hardware malfunction or a
discrepancy between the sector format of the drive and the word count the
program thinks is appropriate.
Either the FIFO became empty while writing (task got behind) or the FIFO
had too many words taken out of it while readng (microcode word count or
wakeup error).
Either the FIFO became full while reading (task got behind) or the FIFO
had too many words put into it during writing (microcode word count or
wakeup error).
A flip-flop in the controller for latching one of three errors:

CompareErr a read-and-check operation was executed on a block,
and the microcade did not issue ClearCompareErr before
the beginning of the next block.

ECCError the microcode can set the ReadDataErr flag if it

determines that the ECC words after reading one block
are non-zero in order to inhibit future writes.

ECCComputeErr The ECC hardware within the disk controller failed to
generate a single "1" bit (i.e., a hardware malfunction).

The "Read-Only" switch on the drive is on.

The cylinder position is currently offset. This is a mode used for recovery
of bad data.

The controller detected bad parity on the IOB bus.

The controller detected bad parity on the data out of the FIFO.
OR of errors on muffler addresses 020-035

OR of errors on muffler addresses 020-031 and 034-035

contents of the format RAM

Address of format RAM word
contents of format RAM word

contents of the tag register

20 bit value

last loaded

into the tag register

state of the io control logic

Dorado Hardware Manual Disk Controller 14 September 1981 104

100 Shiftin The controller is currently shifting data into the FIFO
101 ShiftOut The controller is currently shifting data out of the FIFO
102 ComputeECC The controller is currently shifting data and computing the ECC checksum
103 NextBlock Occurs between blocks within a sector
104 LoadTag Indicates that the next word read from the format RAM should be loaded
into the tag register as opposed to the count register
105 CntDone’ Indicates that the count register is again zero, and a new value from the
format RAM will be loaded next . .
106 QutRegFull The holding register on the input to the FIFO has been loaded, but not
transferred into the FIFO.
107 InRegFull The holding register out of the FIFO has been loaded, but not read via
Pde¢Input or loaded into the output shift register.
110:113 Fifowaddr The 4-bit address indicating where the next word will be written into the
FIFO
114:117 FifoRaddr The 4-bit address indicating where the next word will be read from the

FIFO. if FifoWaddr equals FifoRaddr then the FIFO is defined as empty.

Error Detection and Correction

To allow high data density and a few surface imperfections during manufacture, Trident
disk packs are not required to be perfect. A disk pack is defined as suitable when no more
than three bad areas occur on any data surface; a bad area is defined as one which could
potentially cause read errors of no more than 11 bits in length. To correct errors arising
from these imperfections as well as other (infrequent) read errors, the controller implements’
an error detection and correction scheme which will detect (with very high probability)
errors of any length, and will allow correction of any burst error of 11 bits or less.

Warning: If an error burst longer than 11 bits occurs, there is a significant possibility that the error
correction algorithm detailed below will fail and double the number of bad bits! Consequently, disk
handling programs should try other methods of error recovery before invoking the error-correction
algorithm.

To avoid problems, it is good practice to run diagnostic programs on new disk packs; note bad
sectors and don't use these during normal operation.

When an error does occur, the first step is to try rereading the offending sector several times. One
of these reads may succeed. If not, try rereading with the cylinder position offset or with the data
strobe early or late as discussed in the "Tag Register" section. If these attempts all fail, then try
error carrection.

Error correction is accomplished through a mixture of disk controller hardware (for ECC
generation and checking) and system software/firmware (for error recovery). This is a
compromise between capability, speed, and cost. The basic capabilities and restrictions of
the 32-check-bit scheme are summarized below.

1) A single error burst of length less than 12 data bits (i.e., a scattering of error
bits within the bit stream, all of which fit within an 11-bit span) can be corrected in
blocks shorter than 2685 data words. (Example: for the data "0001100101", the
data "0000101101" contains a single burst error of length 4.). The code
implemented will detect errors in arbitrarily long blocks, but not enough
information exists to correct longer blocks.

Dorado Hardware Manual Disk Controller 14 September 1981 105

2) Simple error detection—two words are returned by the hardware which are both
zero if the read is successful.

3) Software/firmware error correction can be completed in less than one disk
revolution. The correction procedure is well suited to a mixture of software and
firmware. If done entirely in firmware, error correction would take less than 1 ms.

4) Not all uncorrectable errors will be detected as such. An uncorrectable error
requires two bad spots on the disk surface within one sector (the pack is
bad—throw it out!), an electronic error in a sector with a bad spot, or two
electronic errors within one sector. If such an error has occurred, it can, with a
probability of say 20 percent, result in an error pattern and displacement that
seems valid. This will result in leaving the error bits uncorrected and changing
some bits which were in fact correct. This means that for high data security, a
check code should be generated and imbedded as part of the data file before
writing on the disk.

The error-correcting code (ECC) generated is referred to as a Fire Code (see Error-
Correcting Codes by Peterson). The following is a detailed description of this code and
recovery procedure.

The code calls for dividing the outgoing data stream by a polynomial of the form:
PX) = P{OX™ + 1)

Where P{(X) is an irreducible polynomial of degree n (n = burst length) and m is > 2*n.
For this particular application the polynomials chosen are:

PO = XM+ X2 & X3 &+ 1)

During a write, the two polynamials are multiplied together and implemented by hardware in
the form:

PX) = X32+ X23+ X21 + X11 - X2 + 1

The data stream is premultiplied by x32 to make room for the 2 word ECC and then
reduced modulo P(X). This is accomplished by the normal feedback shift register
technique with the difference that to perform premultiplication, the output of the register is
exclusive-or'd with the incoming data and then fed back. Aifter all data bits have been
shifted out, the contents of the ECC shift registers are appended to the disk block.

During a read, the feedback shift register is reconfigured such that the two original
polynomials are implemented separately. The incoming data stream, including the 2
appended words of ECC, is independently reduced modulo Py(X) and P4(X), where

Po¥) = X2 4+ 1

Dorado Hardware Manual D}'sk Controller 14 September 1981 106

P,e0 = X1 4 X2 4+ 1

After reading in all words off the disk, the contents of the two polynomial shift registers are
read out of the FIFO. If the data is recovered without error, then reducing it modulo Pp(X)

and P{(X) results in the registers containing all zeroes.

If the data contains an error, then the two registers will be non-zero. If one but not both
registers is non-zero, then the error is irrecoverable.

To recover from an error, a procedure is undertaken which determines the pattern of bits
which are in error, and the displacement of this pattern from the end of the record. | am
simply going to present the magic equation to be solved, and some magic constants to be
used for solving this equation. Much of the polynomial implementation and the equations,
which use the "Chinese Remainder Theorem" are discussed in technical reports from
CALCOMP (Calcomp Technical Report TR-1035-04, by Wesley Gee and David George) and
XEROX (Xerox XDS preliminary report "Error Correction Code for the R.M. Subsystem,"” by
Greg Tsilikas, 28 March 1972.).

The basic equation is:

D = Q'LCM - (Ag*Mg*Sp + A;*M;*S;)

where:
E; = modulus of the polynomial
LCM = least common multiple of EO and Eq
M; = LCM/E; '
A; = a constant such that A;*M; modulo E; = 1
Q = smallest integer to make D positive
Si = number of shift operations to the appropriate polynomial remainders as
described below.
D = displacement of right-most incorrect bit from the end of the record.

The values of Ey and E; were found by programming the procedure outlined in the
CALCOMP report, and yielded the following result:

The least common multiple (LCM) of Eg and E4 is simply the product of Eg and E4 since
the two numbers have no factors- in common. Thus the LCM, which is also the record
length which can be corrected, is 42,987 bits, or 2686-2 words.

Knowing LCM and EO and E1, the values of MO and MA1 are easily found to be

Mg = 2047 My = 21

The values of Ag and Ay are next determined using a trial and error approach that | put in
a small program. The results can easily be confirmed, and are given below:

Dorado Hardware Manual Disk Controller 14 September 1981 107

Ag = 19 Ay = 195

All of the above values derived so far are constants determined for the particular
polynomials chosen. The values of Sy and Sq are determined in the software from the
error patterns returned at the end of a disk transfer.

Sg is first determined by a software procedure using the following steps:

1) The remainder from dividing the input data by X2 & 1is found in ECC[11:31];
if this remainder is zero, then the error is uncorrectable.

2) Test the low order 10 bits for all zeroes, and if not then perform a left circular
shift on the 21 bits. When the low order 10 bits are all zeroes, the error pattern is
in the upper 11 bits of the word, and Sy is the number of times the circular shift
was performed.

3) If the low order 10 bits don’t become all zeroes within 20 shifts (1 full cycle), the
error is uncorrectable.

S1 is then determined in microcode as follows:

1) The remainder from dividing the input data by x1 &+ X2 &+ 1 is found in
ECC[0:10]; if this remainder is zero, then the error is uncorrectable.

2) Test this number to see if it is equal to the error pattern determined in step 3 of
Sg, and if not reduce this number modulo X1 4+ X2 4 1 (left shift and XOR
feedback). When the contents of this word equals the error pattern (it is
guaranteed to happen before 2047 reductions), S is determined as the number of
reductions performed (In the hardware implementation of switching from the write
polynomial to the read polynomials, it was easier to implement a polynomial that
premultiplied by X1, This means that the remainder returned by the hardware
already has had 11 shifts performed. To compensate, when S; has been
determined by the above procedure, you must add 11 to the value, and subtract
2047 if the result is greater than or equal to 2047.).

The basic equation for the displacement now looks like

D = Q42,087 - 19*2047*Sy - 195*21*S,

Notice that the straightforward solution to this equation cannot be done with single-
precision arithmetic on the Dorado; to avoid double precision, the following manipulation of
the equations is useful:

Dorado Hardware Manual Disk Controller 14 September 1981 108

D = Q'2047°21 - 19*2047*Sy - 4095*S,
D = Q*2047*21 - 19°2047*Sy - 2*2047*S; - Sy
D'= Q*21 - 19"8; - 2°S,

where:
0<D <20
D = 2047*D' - 81 (add 42,987 if D’ = 0)

For some reason that we don’t understand, the actual required calculation must be D =
2047*(D’+ 1) - S, in the last step. Also D’ is conveniently calculated as (215*21 — 19*S,

- 2’81) rem 21.

Dorado Hardware Manual Display Controller 14 September 1981 109

Display Controller

The Dorado Display Controller (DDC) uses the fast io system to obtain representations of
video images from storage; it then transforms these representations into control signals for
monitors. lts three design objectives are:

(1) To handle a variety of color, grey-level, and binary (black-and-white) monitors;
(2) To utilize the full power of the fast io system in producing high-bandwidth
computer graphics;

() To allow various compromises in color and spatio-temporal resolution for
experimental purposes. Clock rates, video signals, and other monitor waveforms
should be controllable by firmware.

There are two independent video channels capable of running in a variety of modes. Two
channels allow text to be displayed on one channel, graphics on another, or the main
picture on one, cursor on the other.

The DDC must readily handle Alto-style and LF (large format) monitors which we expect to
be standard for most systems. Bit maps, display control blocks, and monitor control
blocks, similar to those used on the Alto, provide the software interface to the DDC. The
"seven-wire" video interface makes provision for one or more low bandwidth input devices
(keyboard, pointing device, etc.); our current provisions for keyboard and mouse input are
also discussed in this chapter.

Keep Figure 14 in view while reading this chapter.

Operational Overview

Video scan lines are encoded in bitmaps, which are contiguous blocks of virtual memory;
the two channels, A and B, have independent bitmaps and data paths in the DDC. The
high-priority DWT (Display Word Task) runs on behalf of either A or B using the subtask
mechanism; it transmits each bitmap to a FIFO consisting of 15 munches/channel. The
bitmap stream emerging from the FIFO is then sorted into items (1, 2, 4, or 8 bits wide) for
each channel which are combined, mapped, and transformed into pixels (picture cells) on
the screen.

In addition to the two channels, the DDC supports a programmable cursor that is 16 pixels
x 1 bit/pixel wide.

A lower priority DHT (Display Horizontal Task) handles horizontal and vertical retrace and
sets up starting addresses and munch counts, cursor data, and formatting information in
the NLCB (Next Line Control Block) for the DDC. The NLCB is then copied into the CLCB
(Current Line Control Block) during horizontal retrace prior to the next scan line.

The rate-of-flow of items is governed by the resolution and pixel clock period. Resolution
may be independently programmed for each channel so that items flow at 1/4, 1/2, or 1
times the pixel clock period. If the DispM board is present, then the pixel clock period is
also progammable; otherwise, it is determined by a crystal oscillator on the DispY board,
which must have a frequency appropriate for the monitor being driven.

Dorado Hardware Manual Display Controller 14 September 1981 110

ltems can be treated in one of three ways: First, an Alto monitor can be driven. Second,
items can be mapped through the 256-word x 4-bit MiniMixer into video data for a black-
and-white or grey-level monitor. '

Three separate interfaces are provided on the DispY board. An Alto monitor interface ORs one-bit
items from the A and B channels with the cursor, and then XORs by polarity to produce one-bit
pixels for an Alto display. A seven-wire interface outputs 1 bit/pixel for a binary monitor. And an 8-
bit digital-to-analog converter (DAC) produces grey-level video.

Third, items may be mapped by the Mixer (or A color map), a 1024-word x 24-bit RAM, into
signals for a color or grey-level monitor. A variety of modes determine which bits from the
A and B items address the mixer. Mixer output consisting of 8 bits for each of the red,
green, and blue guns is then digital-to-analog converted for color monitors. Additionally,
there is a 24-bit/pixel mode in which the Dorado supplies 8 bits for each of the three
colors; the colors are independently mapped through the Mixer and two additional 256-
word x 8-bit RAMs called the BMap and the CMap.

The DDC is implemented on two Dorado main logic boards, called DispY and DispM.
DispY contains all the logic necessary for vertical and horizontal sweep control, channel
data paths, and video data for binary and grey-level monitors running at a fixed pixel clock
rate. DispM contains the color maps, the programmable pixel clock, and the three DACs
for driving a color monitor. Additionally, DispM contains an independent terminal controller
that is structurally similar to a one-channel, one bit/pixel DispY but is specialized to driving
a 7-wire terminal.

Thus there are two principal DDC configurations. On a Dorado with only a 7-wire terminal
and no color monitor, only the DispY board is present; it is programmed for Alto terminal
emulation, and only a small subset of its capabilities are used. However, on a Dorado with
both a 7-wire terminal and a color monitor, the DispM board is also present; all of DispY
and the color hardware on DispM are used to drive the color monitor, and the independent
controller on DispM is used to drive the 7-wire terminal.

Video Data Path

Fast 10 Interface and FIFO

The fast io system delivers data to the DDC at a rate of 16 bits/clock; words are received
alternately in the REven (t,) and ROdd (t,) registers shown in Figure 14, then written into
the FIFO, a 256-word x 32-bit RAM, during the first half of the next Dorado cycle (’c2 to ty),
leaving the second half of the cycle free for read access by the video channels. In other
words, the REven and ROdd registers widen the data path from 16 to 32 bits to allow
sufficient time to both write and read the FIFO in one cycle.

The 256 double-words in the FIFO are divided evenly among the two channels, so each has
buffer storage for 16 munches. Each channel has write and read pointers that address the
FIFO when appropriate.

Write pointers are initialized once during vertical retrace and then sequence through
addresses for the entire display field; a write pointer is incremented after each double-word
write for its channel, so that the next word to be written is addressed at all times. Since

Dorado Hardware Manual Display Controller 14 September 1981 111

the fast io system delivers only one munch at a time, there is never any problem in
deciding which of the two write pointers should address the FIFO.

Read pointers, however, are initialized during each horizontal retrace, so that the correct
first double-word is read at the start of every scan line. This is required because the fast.io
system always delivers complete munches, but unused double words may appear at the
end of the last munch for the previous scan line, or at the beginning of the first munch for
the current scan line; the read pointer has to be reinitialized to skip over these. FIFO reads
alternate between channels A and B, so the data rate for one channel is limited to 32
bits/2 cycles (=16 bits/cycle).

Note that bitmaps are required to start at even addresses because the FIFO is 32 bits wide.

Iltem Formation

At the output end of the FIFO there is a multiplexor shared by both channels and, for each
channel, two intermediate buffers (F/B and SIB), and a shift register SR. The multiplexor
permutes the 32-bit quantity emerging from the FIFO so that when the double-word has
marched through FIB and SIB and is finally loaded into SR, successive shifts will produce
successive items of the selected size (8, 4, 2, or 1 bits).

The SR is tapped as follows:

SR.0 ltem[0] for item sizes 1, 2, 4, or §;
SR.16 Item[1] for sizes 2, 4, or 8, gated to O for size 1;
SR.8, SR.24 ltem[2:3] for sizes 4 or 8, gated to O for sizes 1 or 2;

SR.4, SR.12, SR.20, SR.28 Item[4:7] for size 8, gated to Q for sizes 1, 2, or 4.

_All eight ltem bits are gated to 0 if the channel is off. It is useful to think at this point that,

regardless of a channel's item size, an 8-bit wide item is produced, whose bits contain non-
zero data only in those positions dictated by the item size; i.e., for size 1 only the most
significant bit may be non-zero; size 2 allows data in the topmost two_ bits, etc.

The SR loads on the item clock after its last item has been used; the item clock rate is the
pixel clock rate divided by the resolution (1, 2, or 4 for full, half, or quarter, respectively).
Hence, for 8, 4, 2, or 1-bit items, SR will be shifted 3, 7, 15, or 31 times, repectively, and be
reloaded from SIB on the following item clock.

Synchronization of SR, which uses the item clock, with FIB and SIB, which use the Dorado system
clock, is a little tricky. SIB«FIB will occur no later than (4.6 ns)+C+(1.1 ns)+C+C = 3*C+5.7 ns
after SR«SIB, where C is the period of the Dorado system clock and 4.6 ns and 1.1 ns are the worst
case propagation delay and setup time of the components in the synchronizer; FIB«FIFO will occur
at this time or on one of the next three Dorado clocks, depending upon which of these four clocks
corresponds to t, of the cycle in which this channel can read the FIFO. Allowing for propagation
delay through SIB (5.0 ns) and setup time for SR (1.7 ns), the worst case minimum spacing between
loads of SR is 3*C+(5.7 ns)+(6.7 ns) = 3*C+124 ns. This must be less than the time for
emptying SR which is 17(32/ItemSize), where | is the period of the item clock. Hence, | >
(3*C+12.4)/4 for ItemSize=8, or | > 256 ns for a Dorado clock period of C = 30 ns.

The 8-bit items from the two channels are then presented to either the Mixer section on the
DispM board or the MiniMixer or Alto video interface on the DispY board.

Dorado Hardware Manual Display Controller 14 September 1981 112

Mixer

The Mixer is controlled by the A8B2, BBypass, and 24Bit mode controls. It is a 1024-word
x 24-bit RAM for which the 10 bits of address required may be obtained from two possible
source distributions, depending upon the A8B2 mode. When A8B2 is true, the address
consists of Altem[0:7] and Bitem[0:1]; when false (called A6B4), the address is Altem[0:5]
and Bltem[0:3]. '

Another mode, the BBypass mode, can be enabled independently for the B channel. If B is
bypassed, none of its bits contribute to the Mixer address. Instead, they bypass the mixer
and address a 256 x 8 RAM, the BMap, whose outputs are ORed with the mixer outputs for
the blue DAC. For example, with ASize =8, BSize =4, BBypass true, and A8B2 true, and
with appropriate values in the Mixer RAM, the controller may be thought of as three 4/bits
pixel channels driving three color guns. One channel is bypassed data from B, while the
other two are mapped through the Mixer.

24Bit mode, used in conjunction with BBypass mode, is used to run a three-channel color
display directly from memory. In this mode, items from the A channel alternately address
the Mixer (called the AMap in this mode) and another 256 x 8 RAM called the CMap.
Meanwhile, the B channel runs at half the A channel rate and addresses the BMap as
described above. (That is, the B channel must be set to one-half the resolution of the A
channel.) With suitable values in the color maps, the AMap, BMap, and CMap
independently generate outputs for the red, blue, and green DACs respectively.

Note: when the A channel is turned on, the first Altem addresses the AMap and the second Altem
addresses the CMap. For the A and B pixels to align properly on the display in 24Bit mode, the left
margin counts must be set to start the B channel one pixel clock earlier than the A channel. The
blue and green portions of the AMap must be entirely zeroed, since the blue and green outputs are
ORed with the BMap and CMap.

After routing as dictated by the mixer modes, chosen items are loaded into the map
address registers, causing the color maps to produce a new video value every pixel clock
(every two pixel clocks in 24Bit mode), and these values are latched in the three 8-bit mixer
output registers. Three very fast DAC modules then produce a Red-Green-Blue triple of
analog signals for a color monitor, or up to three grey-level video signals. In conjunction
with the sync, blank, and composite waveforms produced by the monitor control circuitry,
these signals can drive a wide variety of monitors attached to the Dorado.

Alto Video Interface

A small circuit on the DispY board produces video for an Alto monitor. This circuit ORs
CursorData, Altem[0], and Bitem[0], then XORs by the polarity, and finally ORs with the
vertical and horizontal blanking signals. This interface is obsolete and is no longer in
active use.

MiniMixer . .

A small video mixer on the DispY board, not to be confused with the large Mixer on the
DispM board, can drive either a DAC or the seven-wire interface discussed later. The
MiniMixer is a 256 word x 4-bit RAM addressed by a combination of Altem, Bltem, and state
bits, as shown in Figure 14. On every pixel clock, dDAC[0:3] are loaded from MiniMixer

Dorado Hardware Manual Display Controller 14 September 1981 13

output, while dDAC[4:7] are loaded directly from Altem[4:7]. The MiniMixer aims at
experiments with mixing channels and driving grey level monitors.

Horizontal and Vertical Control

Every monitor requires horizontal synchronizing and blanking waveforms. Interlaced
monitors must be able to distinguish fractions of a scan line to implement interlacing. In
general, the duration and phasing of sync/blank waveforms is unique to a given monitor.
The DDC uses the 1024-word x 3-bit HRam (Horizontal RAM) to control horizontal
sync/blank.

The DDC has a set of registers called the CLCB (Current Line Control Block) which
controls video generation for the current scan line. The DHT sets up parameters for the
next scan line in NLCB (Next Line Control Block), a 16-word x 12-bit RAM. The first 32
pixel clocks of horizontal blanking are called the HWindow; during HWindow parameters for
the next line are copied from NLCB into CLCB. Vertical control is also handled through the
NLCB.

The interpretation of fields in NLCB and HRam are shown in Figure 15 and loading will be
discussed in the "Slow 10 Interface" section; the use of the different information is
discussed here. The top part of Figure 14 shows how horizontal timing is controlled.

Line Control Blocks

The fields in NLCB/CLCB aré interpreted as follows, where a denotes that the item is
channel-specific (i.e., copies exist for both A and B channels):

aPolarity. A single bit, used only for binary monitors, that inverts black and white
(APolarity and BPolarity are or'ed by the hardware).

aResolution. A 2-bit field that controls item clock generation; values of 0, 2, and 3
cause quarter, half, and full resolution, respectively.

altemSize. A 4-bit field unary encoded as aSizel, aSize2, aSize4, or aSize8,
denoting bits/pixel for the channel; setting multiple bits is illegal.

aleftMargin. A 12-bit field in units of pixel clocks specifying 31 less than the
number of pixel clocks to wait after HWindow completes before turning the
channel on. This value is not a straightforward constant, but depends upon
monitor-specific horizontal blanking time. If the horizontal blanking time is B pixel
clocks and the desired beginning of data is L pixel clocks after the end of
horizontal blanking, then caleftMargin should be loaded with B+L-32-31 =
B+ L -63, independent of resolution. Since L may be 0, this implies that the
horizontal blanking time for the monitor must be greater than 63 pixel clocks.
Since high-speed monitors typically have greater than 4 ps horizontal blanking
times, and are this fast only with high speed pixel clocks, this restriction is not
expected to be significant.

Dorado Hardware Manual Display Controller 14 September 1981 114

Note: For a monitor connected via the 7-wire interface, aleftMargin must be B+L -68,
rather than B +L - 63, because video signals are delayed from horizontal control waveforms
by 5 pixel clocks.

Note: The value loaded into «leftMargin must actually be the negative of the left margin
count computed above.

aWidth. A 12-bit counter that counts at the pixel clock rate as soon as the
channel turns on; when the counter runs out (or when horizontal retrace starts,
whichever is earliest), the channel is turned off. Precisely, if the channel is to run
for W pixel clocks, the width counter must be loaded with - (W +255).

aFifoAddr. An 8-bit quantity pointing to the munch and word within the munch for
the first FIFO read for the next scan line; this must be an even number because
doublewords are fetched from the FIFO. Firmware must keep track of the number
of used munches for any given line and advance aFifoAddr by exactly the right
amount, adjusting for munch boundaries, interlacing, and data breakage. The
CLCB register for aFifoAddr is the channel read pointer itself.

MixerModes. A set of bits that control the mixer; these are not channel-specific.
These will normally be changed infrequently, maybe at the field rate or during
display initialization. However, they are in the NLCB to allow modes to change on
the fly.

Vertical Control Word (VCW). A word controlling the vertical retrace operation of
the monitor; it contains the vertical blank bit, vertical sync bit, and interlace field
bit discussed in the "Vertical Waveform Generator" section below.

Cursor_and CursorX. The 12-bit CursorX value is loaded into a counter which
starts counting at the end of HWindow. When the counter runs out, the 16-bit
Cursor value is shifted out onto the CursorVideo line. This is used by the Alto
video interface and in the MiniMixer address. Precisely, if horizontal blanking is B -
pixels in duration, and the leftmost bit of the cursor is to appear X pixels beyond
the end of horizontal blanking, then the CursorX register must be loaded with
-(B+X+226), or —(B+X+221) when using the 7-wire interface.

Horizontal Waveform Generator

The 1024-word x 3-bit HRam contains control information for these waveforms. Under
normal operation, HRam is addressed by a 12-bit counter (HRamAddr[0:11]) which is reset
at the leading edge of horizontal sync and then increments every pixel clock until the next
leading edge of horizontal sync; HRamAddr[1:10] address the RAM, and the output is
loaded into the HRamOut register every other pixel clock. The three bits in HRamOut
control horizontal sync, horizontal blank, and half-line; these three bits are combined and
level shifted by a logic network appropriate for the monitor being driven.

The 1024-word HRam imposes the uninteresting restriction that there be fewer than 2048 pixels/scan
line.

As shown in the diagram at the top of Figure 14, horizontal blanking (HBlank) is true from
the end of one scan line to the beginning of the next. During horizontal blanking, HSync is
turned on to initiate the horizontal retrace and turned off again when horizontal retrace is

Dorado Hardware Manual Display Controiler 14 September 1981 115

finished. HBlank then continues for a monitor-specific interval. Note that if a channel’s
visible left margin is non-zero, then the horizontal scan will begin before that channel is
producing any data; in this case, the video channel outputs zero items to the mixing stages
until the channel is turned on.

Due to an implementation error, when the 7-wire interface is being driven from DispY, the value of
HBlank[i] may differ from HBlank[i-1] only when i is even, where i is HRamAddr[1:10].

Vertical Waveform Generator

Only 2:1 interlaced monitors are supported in this design, but more complicated vertical
control could be provided, if desired. To support 2:1 interlace, HRam contains a waveform
called HalfLine, which is a pulse at the horizontal line frequency, 180° out of phase with
HSync.

Vertical control is handled by DHT through the NVCW word in the NLCB, which specifies
whether or not veriical blank or retrace should begin or end during the next scan line. The
DHT microcode must keep track of scan lines to enable vertical signals at the appropriate
times.

The three VCW bits are called VBlank, VSync, and OddField. VSync enables vertical sync
to begin on the next line, and the OddField bit chooses either HSync or HalfLine on which
to do vertical syncing (OddField =1 implies HaliLine phasing for vertical sync). This phase
will alternate from the start of the line to the middle of the line and back for successive
fields. The blanking signal for the monitor is VBlank ORed with HBlank.

Pixel Clock System

The programmable pixel clock on the DispM board, if present, determines the fundamental
video data rate for a given monitor. The pixel clock is controlled by loading the PixelClk
register via the slow io system. The pixel clock frequency is (312.5*(241 - M))/(16-D)
KHz, where M is PixelClk[4:11] and D is PixelClk[12:15]. Note that the pixel clock will not
stabilize until about 1/2 second after the PixelClk register is loaded.

The parts of the DDC synchronized to the rest of Dorado do, of course, use the Dorado
system clock. As discussed earlier, the synchronization logic for refilling SIB after SR«SIB
puts a lower bound on the pixel clock period of (3*C+12.4)/4 ns (= 25.6 ns for a Dorado
clock period of C = 30 ns), for an item size of 8 on either channel. We anticipate that
pixel clock rates in the range 10 to 50 MHz (100 to 20 ns/pixel) will be required, so the
lower bound is approximately consistent with this.

Dorado Hardware Manual Display Controller 14 September 1981 116

Seven-Wire Video Interface

So that a number of different controller and terminal types may be freely interconnected in
Dolphin and Dorado-based systems, a common interface between terminals and controllers
has been defined. This interface assumes that a terminal contains a raster-scanned bitmap
display and one or more low bandwidth input devices (keyboard, pointing device, etc.) The
DDC transmits digital video and sync to the terminal over six pairs of a seven-pair cable.
The input data is encoded by a microcomputer in the terminal and sent back serially over
the seventh pair (the "back channel”). Video and control (sync) are time-multiplexed, and
four bits are transmitted in parallel to reduce the cable bandwidth required.

While the description in the following sections assumes a display having one bit/pixel, the
basic signalling mechanism may be extended to support gray-level or color displays.

Video Output

The four output lines are interpreted as either a 4-bit nibble of video or four control signals
according to the phases of the two clock signals; the DDC places data on the data lines at
the falling edge of CIkA, and the terminal samples this data on the rising edge of CIkA. If
ClkB is 1 at this time, the nibble is interpreted as four bits of video, else as sync and
control information. CIkA and CIkB are transmitted in quadrature so that the terminal can
reconstitute a clock at the video bit rate.

When a nibble is interpreted as control information, bit 2 is reserved for horizontal sync
and bit 3 for vertical sync, while 0:1 are undefined; different types of terminals may use 0:1
for any purpose.

A circuit on the DispY board drives the seven-wire interface from the MiniMixer.
MinMixer{Q] is serial-to-parallel converted into four-bit nibbles, which are held in a register
for transmission. Sync, blank, and clock phases are generated in accordance with the
seven-wire interface specification. ‘

* Back Channel

Data from low bandwidth input devices at the terminal are transmitted serially over the back
channel. Data are clocked by the terminal on the rising edge of the horizontal blank pulse
and are sampled by DHT during the subsequent scan line after HWindow.

By convention the terminal microcomputer encodes 32-bit messages (delivered in 32 scan
lines); each message begins with a 1, and after the 32nd bit of the message the DHT
ignores the backchannel until the start of another message is indicated by another 1. The
message consists of a start bit, 3 unused bits, a 4-bit message type, a 16-bit message body,
and finally an 8-bit trailer which must be 200g.

The terminal microcomputer perpetually cycles through all possible keys on the keyboard
(as well as mouse buttons and keyset paddles), detecting changes in state of the keys; the
state of the keyboard then exists in seven 16-bit words, and a back channel message is
defined for each. Whenever one of these words changes value, it is sent to the Dorado in
a message. Additionally, changes in mouse x,y coordinates are reported once per field
(i.e., twice/frame or typically 60 times/sec). If the mouse has not changed position during

Dorado Hardware Manual Display Controller 14 September 1981 117

a field, then one keyboard word is reported instead of the mouse position change; thus, the
correct state of the keyboard is eventually reported even if transitions are missed.

Table 24: Terminal Microcomputer Messages

Message

Type Comments

00B lllegal—ignored

0iB Keyboard word O (corresponds to. Alto memory location 1077034B)

028 Keyboard word 1 (Alto 177035B)

03B Keyboard word 2 (Alto 177036B)

04B Keyboard word 3 (Alto 177037B)

058 Mouse buttons and keyset (Alto 177033B)

068 8-bit changes in X-coordinate (0:7 of the message body) and Y-coordmate (8:15 of the

message body), represented in excess-200B notation

o78 lllegal—ignored

108 Keyboard word 4 (Star keyboards only; no Alto analogue)

11B Keyboard word 5 (Star)

12B-168B lllegal—ignored

178 Boot message. Actually, depressing the boot button jams the data to one continuously,

rather than generating a valid terminal message. Furthermore, when thé boot button is
let up, there may be as many as 8 bits of garbage following the last consecutive one
bit; these must be ignored by the firmware. The firmware should also ignore boot
button pushes less than 10 ms in duration, as these may be caused by noise or contact
bounce.

Processor Task Management

This section outlines the implementation requirements of DHT and DWT and discusses the
hardware associated with task wakeups and DWT subtask arbitration between the two
channels.

Since DHT must do a lot of processing, it runs at low priority and is awakened once/scan
line at the end of HWindow. When it runs, it must calculate all parameters for the next
scan line (i.e., the one after the scan line that is just starting), load the NLCB appropriately
for each channel, and set up the munch address and count for each channel in the RM
registers aNextAddr and aNextCount referred to in the DWT sample code below; then it
sets the aNextWCBFlag flags discussed below. The DHT wakeup will remain active until
any NLCB output command is executed, so the DHT must execute at least one NLCB
output command every time it wakes up, and this must occur at least three instructions
prior to blocking.

DWT is a very high priority task which may run on behalf of either channel: channel A is
subtask 0; channel B, subtask 2. Since it uses the subtask mechanism, DWT must always
block at the same instruction each iteration. DWT does not explicitly know the channel for
which it is executing at any given time; its two parameters, a start address and munch
count, are received from DHT in RM registers specific to the subtask. In the normal case,
DWT initates an IOFetch and blocks. The following is the main-line DWT microcode
presently in use:

Dorado Hardware Manual Display Controller 14 September 1981 118

%RM registers for channel A, indicated by names beginning with "A" below, are used in the program, but the
corresponding set of registers for channel B, in a different RM region, will be referenced when SubTask is 2.

Note that TIOA selects the DWTFlag register and T contains 20 at the beginning of the loop, so the second
instruction is used both to increment the munch address and to signal the hardware that an IOFetchis
commencing.
%
DWTStart: ACount«(ACount) - T, Branch[DWTCheck, R<0};

AAddress«(IOFetch«AAddress) + (Output«T), Block, Branch[DWT Start];

%AAddress will be even if we just exhausted a scan line. AAddress will be odd if we have just been awakened to
start a new scan line. In either case, isolate flag in AAddress[15] for use in adjusting the WCB flags.
%
DWTCheck: AAddress« (AAddress) AND (1C), Branch[DWTAdjustWCBFlags, R even];
%Note that the change-RSTK-for write function used below is ok, but the change-RBase-for-write functions are
illegal because of subtasking.
%
DWTRefill: ACount~ANextCount; *from DHT, # munches to fetch -1in 0:11
BrLo«ANextAddrLo; *first munch address
BrHi« ANextAddrHi;

%Now adjust WCB flags, as follows: If we just exhausted a scan line, AAddress =0 now; execute Cutput«0 to
clear the CurWCB flag, and set AAddress to - 1 for the next wakeup. If we are starting a new scan line,
AAddress = 1 now; execute Output« 1 to set the CurWCB flag and clear the NextWCB flag, and set AAddress to 0
for the first IOFetch.
%
DWTAdjustWCBFlags:

AAddress« (AAddress) - 1, Output« AAddress, Block, Branch[DWTStart];

DWT lowers its wakeup request at the onset of the DWTStart instruction, and the DDC
remembers that DWT is in progress. No further DWT wakeups will be generated while the
task is running or is preempted by a higher priority task. Whenever DWT blocks, a counter
is initialized to a constant value N and counts once per Dorado cycle; when the counter
runs out, DWT wakeups are allowed again. This counter has two purposes. First, within a
munch loop it spaces out IOFetch references to the memory system by 8 or more cycles
(depending upon N, which is adjustable through a hardware SIP component), so as not to
clog the memory pipeline. Second, the decision to generate subsequent DWT wakeups is
based upon the state of flags that may be altered by output commands; these commands
take time to get from the processor to the DDC and alter the state. Other tasks may have
the processor while these state changes take effect.

After N cycles have elapsed, DWT will be woken whenever aWantsDWT is true for one of
the channels. Two channel-specific flags are involved in DWT wakeup control:
aCurrentWCBFlag is true when a is actively moving words into the FIFO; aNextWCBFlag is
set true by DHT after it has loaded the munch address and munch count into DWTnextaddr
and DWTnextcount for a. After fetching the last munch for a scan line, DWT clears
aCurrentWCBFlag and blocks unless aNextWCBFlag is true. In other words, aWantsDWT
when

(aNextWCBFlag & not aCurrentWCBFlag) %
(aCurrentWCBFlag & aFifoAvailable).

If only AWantsDWT or only BWantsDWT, no conflict arises and the requesting channel gets
DWT. However, if both channels want DWT, the channel that ran least recently will run
next.

Dorado Hardware Manual Display Controller 14 September 1981 119

Two observations must be made about the DWT microcode. First, because the final
instruction is normally an IOFetch«, the next instruction executed (by another task) will be
held one cycle if it initiates any memory reference. Secondly, the two instruction loop
above requires that the hardware cope with the NextlLies condition discussed in the "Slow
10" chapter; a pathological lockout problem could occur if a high demand task of higher
priority is coded so that it always creates Nextlies (say, by doing Block and immediate
«Md in the instruction after a fetch). This would result in the DWT wakeup being
frequently delayed by 2 cycles.

Note: Neither DWT nor DHT drives the |OAtten branch condition.

Slow 10 Interface

DDC manages all control functions via the slow io system. At this point you should study
Figure 15, which shows the format of the various output and input commands; there are six
output devices and one input device on the DispY board, and eight output devices and one
input device on the DispM board (if present). Qutput commands are handled uniformly:
TIOA is clocked into a register at t,; the register output is decoded and identified as one of
the DDC commands; if the processor is doing an Output«B, then at t, OB data from the
processor is clocked into a register and one of the "TIOA command" pulses occurs from t,
to t5, at which point the desired action is complete.

The 10B data received at t; of an Output«B will remain in the DDC buffer register (RIOB)
until the next output command. This is useful for debugging and for muffler readout of the
NLCB (because an NLCB address can be loaded into RIOB for multiple cycles).

The HRam, MiniMixer, Mixer, BMap, and CMap are RAMs that will generally be loaded
during system initialization and not often changed while pictures are being displayed. The
programmable pixel clock will also be loaded during initialization, if it is being used instead
of the fixed crystal oscillator. :

The HRam, Mixer (AMap), BMap, and CMap addresses each have two' independent
" sources: the Dorado slow io system and the video system. Video system addressing is
disabled during loading from the Dorado. The output commands to each of these RAMs
are interpreted as follows: The Keep' bit is saved in a flipflop loaded by every RAM output
command; as long as Keep’ is true (i.e., low), video system addressing is off. If LoadAddr
is true, then IOB[4:15] are loaded into the RAM address register. If Write' is true (i.e., low),
the currently-addressed word of the RAM is written from the data field; additionally, the
RAM address register increments after writing, so the RAM can be loaded sequentially at
high speed. A RAM output command with Keep' false (i.e., high) releases the RAM from
Dorado control and returns it to the video system.

Note: the LoadAddress and Write’ bits of a RAM output command take effect only if the Keep’
flipflop is already true (i.e.,, set to zero by a previous RAM output command).

Note: in the case of the Mixer, the RAM address is loaded from 10B[4:14] and a Hi/Lo Select bit is
loaded from IOB[15]. The latter bit determines which 12 bits of the 24-bit wide mixer word will be
loaded by the next Write'. The Hi/Lo Select bit behaves as a low-order extension of the Mixer
address counter, so successive Write' commands will alternate between the halves of one mixer word
before advancing to the next.

Dorado Hardware Manual Display Controller 14 September 1981 120

The MiniMixer is loaded by a single output instruction that specifies both the address and
data to be loaded. During the command pulse from t; to t; of the Output«B instruction,
the video channel address to the MiniMixer is replaced by the address being loaded, so if
the video channel is active, garbage may appear at the output during this cycle.

~The 16-word x 12-bit NLCB is also loaded by single output instructions that specify both
the address and data. For the NLCB, output instructions are only effective when HWindow
is not occurring—during HWindow the RAM address is supplied by a counter that
successively copies the NLCB words into CLCB. The format of each of the words in NLCB
is shown in Figure 15. Note that any NLCB output operation will dismiss the wakeup
request for DHT, and DHT must not block any sooner than the fourth instruction after the
first NLCB output operation is issued.

The Statics output command is used for debugging and initialization. Two bits in the
Statics register called DHTShutUp and DWTShutUp are discussed in the "DDC Initialization
Requirements" section below. Three other fields called FakePClk, UseFakePClk, and
MufAddr are used for debugging. When UseFakePClk is true, the regular pixel clock is
degated; if FakePClk is true, then a pixel clock will occur at tg of the Statics output
command; otherwise no clock occurs. Every Statics command also loads the hardware
signal addressed by MufAddr into a flipflop (at t;) which can be read by the Status input
command discussed below. In combination, the fake pixel clock and muffler readout
features allow diagnostic firmware to checkout most of the internal data paths in the
DDC—by simulating a very slow pixel clock and "stepping" the DDC through various states,
the diagnostic can check nearly all of the data paths between fake pixel clocks. The
hardware signals selected by MufAddr[5:11] are given in the table below.

Table 25: DDC Muffler Signals

MufAddr Signal MufAddr Signal
0 ACurrentWCBFlag 70 AFifoFull

01:.07 AReaderPtr[1:7] 71 BFifoFull

10 ANextWCBFlag 72 ASize8
11:17 AWriterPtr[1:7] 73 ASize8-4

20 BCurrentWCBFlag 74 ASize8-4-2
21:27 BReaderPtr{1:7] 75 BSize8

30 BNextWCBFlag 76 BSize8-4
31:37 BWriterPtr{1:7] 77 BSize8-4-2
40:47 Altem[0:7] 100 AOn
50:57 Bltem[0:7] 101 BOn
60:63 AServicePtr[1:4] 102:103 ARes[0:1]
64.67 BServicePtr[1:4] 104:105 BRes(0:1]

' 106 MonitorType

Muffler 106 (MonitorType) is the only one of interest during normal operation. It identifies
the type of monitor connected via the 7-wire interface: zero denotes an Alto-style monitor;
one denotes an LF (large format) monitor.

Dorado Hardware Manual Display Controller 14 September 1981 121

A single input device called Status is implemented. It is used to return the currently
selected muffler bit and the seven-wire interface received data bit.

The MapinLo and MaplnHi input devices read the current values output from the color
maps (Mixer, BMap, and CMap, whichever are active). When the color maps are controlled
by the video system, these outputs change too rapidly for reading them to be useful (unless
the DDC is being single-stepped by means of UseFakePixelClk). However, when the color
maps are controlled by the Dorado, this input device can be used to read out the color
map entries addressed by their respective RAM address registers.

MaplnHi[Q] is the 7-wire terminal input bit for the independent terminal interface on DispM;
its position corresponds to Status[0] on DispY (see below). MaplnHi[1] is a constant 1 if a
DispM board is installed; if DispM is not installed, an Input from the nonexistent register
yields a zero value. This enables firmware to detect the presence or absence of a DispM
board. MapinLo[0:3] are a 4-bit color monitor type jumpered on the Dorado backpanel.

Note: the MaplnLc and MapinHi input devices do not generate I0OB parity, so they must be read by
the Pde«inputNoPE function to disable parity che.cking.

DispM Terminal Interface

The independent terminal interface on the DispM board functions much the same as a
single-channel DispY board, but is specialized to driving a binary monitor via a 7-wire
interface. The data path is one bit/pixel; the resolution is full; there is no MiniMixer; and
the horizontal waveforms are fixed by a PRom (which must be changed when a different
type of 7-wire terminal is installed).

Aside from these limitations, the DispM terminal interface operates almost identically to the
A channel of DispY. In particular, the io addresses are grouped parallel to the ones on
DispY, and the data formats are identical; so a microprogram can initialize TIOA to the
correct group and subsequently use the function that changes only TIOA[5:7] to select
registers within that group. This enables practically all the microcode for driving a 7-wire
terminal to be shared between DispY and DispM.

In Figure 15, the DispY io operations that are also defined for DispM are marked with an
asterisk. Note that outputs to unused NLCB addresses are ignored.

Due to hardware differences between DispY and DispM, the AleftMargin and CursorX
values must be computed slightly differently. For DispM driving the 7-wire interface,
AlLeftMargin = -(B+L-130) and CursorX = -(B+X+190).

Note: DispM does not have a muffler system. In particular, the MonitorType muffler value is always
read from DispY. By convention, this refers to the type of 7-wire terminal attached to the Dorado,
whether that terminal is connected to DispY or to DispM. Also by convention, the 7-wire terminal is
always connected to DispM if DispM is installed.

Dorado Hardware Manual Display Controller 14 September 1981 122

DDC Initialization Requirements

The two low-order bits in the Statics register are called DWTShutUp and DHTShutUp. They
are forced true by IOReset and prevent the respective task wakeups from happening. They
are individually set or cleared by the- Statics output command. In addition, IOReset sets the
signal DoradoHasHRam; this will prevent horizontal sync from being sent to monitors until
the HRam has been loaded and released by firmware. Blanking is sent to monitors as long
as DHTShutUp remains true. It is anticipated that DHTShutUp will be left true until all DDC
initialization has been completed by the emulator (or by the DHT running in response to a
Notify).

Some other initialization requirements are as follows: «LeftMargin should be loaded with a
large negative value in case one of the channels remains unused forever; the Cursor in
NLCB should be zeroed in case the cursor is completely off-screen forever; HRam must be
loaded with monitor-specific waveforms; the pixel clock rate must be set; mixer modes must
be set; the MiniMixer must be loaded. In addition, the DHT must explicitly set the aAddress
registers to zero on behalf of the DWT, which cannot initialize itself completely for each
subtask.

Speed and Resolution Limits
High performance color monitors are typified by the following performance: limits:

22 ps horizontal scan time
5 us horizontal blanking time
800 us vertical blanking time

Parameters for a particular monitor can be modified slightly through hardware adjustments,
but cannot be controlled by the DDC, which must provide control signals with timing
appropriate for the monitor. Consequently, a monitor must be chosen that conforms to the
speed limitations of the DDC.

" One important speed limitation is how fast bits can be moved from storage through the
DDC. This limit is derived using the following parameters:

F Frame update rate. High speed phosphors require a minimum update rate of
30 frames/sec with interlaced operation for reasonable visual effects; this is
marginal and faster update is desirable.

S Scan lines/frame.

VR Vertical retrace time; with interlaced operation, there will be two vertical
retraces/frame.

HB Horizontal blanking time.

HS Horizontal scan time. The FIFO must not go empty during the horizontal scan
or garbage will be displayed.

T Time/munch or the rate at which storage can deliver data for IOFetches; this
is 1 munch/8 cycles = 1 munch/0.4 pus,

Dorado Hardware Manual Display Controller 14 September 1981 123

M Munches/scan line that the fast io system can deliver.

The time required to fill the FIFO for both channels is a little longer than 30*8 + 20 cycles
(= 276 cycles) or about 13.8 ps at a Dorado clock period of 25 ns; this follows from the
fact that there are 15 munches/channel or a total of 30 munches of FIFO storage, and the
fast io system can deliver one munch per 8 cycles with the first munch arriving 20 cycles
after the first IOFetch«. 13.8 us is much smaller than the vertical blanking time and longer
than the horizontal blanking time, so the FIFO will start out full at the beginning of a field
and will be actively refilling itself during HS + HB of each scan line. If the memory system
keeps up with the demands of the video channels, then the FIFO will tend to refill itself
after momentary transients in which it empties out a little.

Consequently, we know that HS+HB = 1/(S*F) - 2*VR, and that M = (HS+HB)/T less
corrections for refresh references, storage references by other tasks, hold, and delays for
tasks of higher priority than DWT. At F = 30 frames/sec, VR = 800 ps, and S = 1000
scan lines, we get HS+HB = 31.7 us and M = 31.7/0.4 = 79 munches less corrections.
There will be an average of two refresh references/scan line, so we get an upper bound of
77 munches = 19,712 bits/scan line from storage.

However, the DWT will not get all storage bandwidth. The DWT wakeup spacing is
controlled by a SIP; the smallest reasonable spacing would result in one IOFetch every 8
cycles—closer spacing would result in hold while a preceding I0Fetch completed, so more
processor cycles would be consumed without improving data rate. At this tightest spacing,
DWT runs for 2 cycles out of every 8. Conceivably, worst case memory activity discussed
in the "Fast |IO" chapter could occur during these 6 cycles (a clean miss 3 cycles before
the IOFetch, followed by a dirty miss 2 cycles before the I0Fetch, each by a different task).
However, the large amount of storage in the FIFO allows us to rely upon statistics to
average out memory competition, so it is probably reasonable to allow DWT at least 80% of
storage bandwidth or about 16,000 bits/scan line in the above example, which would
accommodate 1000 line x 1000 pixels/line x 16 bits/pixel. For HB = 5 ps this is equivalent
to a pixel clock period of 26.7 ns. ’

This is only one speed limitation. Since the 32-bit wide FIFO is accessed once/cycle
alternately by the A and B channels (i.e., 16 bits/cycle/channel), and since exactly three
doublewords are fetched before the horizontal scan begins for each channel, the maximum
bits/scan line for each channel is about (3*32 bits) + [(26.7 ns/pixel)*(16 bits/50 ns)* (1000
pixels/line)] = 8640 bits/scan line. This means that unless both channels are running at
the same data rate, the data rate will be significantly below the upper bound determined
above. For example, in 24Bit mode, if the A channel runs at full resolution and gets 8640
bits/scan line, the B channel will run at half resolution and get only 4320 bits/scan line, so
the maximum data rate would be about 1000 lines x 538 pixels/line x 24 bits/pixel.

Dorado Hardware Manual Ethernet Controller 14 September 1981 124

Ethernet Controller

An Ethernet is the principal means of communication between a Dorado and the outside
world. An Ethernet is a broadcast multi-access packet switched network which can
connect up to 256 stations separated by as much as 1 kilometer with a 3 mHz channel.
The 'Ether’ is a passive coaxial cable to which each station is connected through a
transceiver that is high-impedance when receiving, low impedance when driving.

Readers unfamiliar with the general concepts behind the Ethernet should refer to
"Ethernet: Distributed Packet Switching for Local Computer Networks," by R. M. Metcalfe
and D. R. Boggs, CACM, 19(7):395-404, July 1976; or to Design and Performance of Local
Computer Networks, by John Shoch, published by University Microfilms, August 1979.

Read this chapter with Figure 16 in view.

Ethernet Packets

Ethernet data are encoded in packets. Packets are preceded by a low signal (i.e., silence)
on the Ether; they begin with a one-bit prefixed by the transmitter, called the start bit. Bits
in the packet are phase encoded, where the bit cell time is nominally 340 ns; phase
encoded signals have one data transition per bit cell and its direction (low-to-high. = 1) is
the value of the bit. Midway between these there may be a setup transition, so that the
next data transition can be in the correct direction. ' :

Packets end when no transitions are detected for more than 1.5 bit times and the Ether is
low. Collisions are transmissions that overlap in time and cause malformed and
undecodable bits. Transmitters jam the Ether with a continuous high for several bit times
after participating in a collision. Collisions are of four types: too many transitions, in which
two transitions occur within .25 bit times; too few transitions, in which a transition occurs
between 1.25 and 1.5 bit times after the last one; end-of-packet (EOP), in which no
transitions occur for more than 1.5 bit times and the Ether is low; and jam, which is the
same as EOP except that the Ether is high. ’

In a well-formed packet that does not experience a collision, the start bit is immediately
followed by an 8-bit destination host number, then an 8-bit source host number. This is
followed by an indefinite number of 16-bit data words, a 16-bit checksum, and finally
silence.

Even when transmitted without a source-detected collision, a packet may fail to reach its
destination; packets are delivered only with high probability. Stations requiring a lower
residual error rate must follow mutually agreed upon communication protocols.

When the sender of a packet detects a collision, some method is needed to arbitrate
(without communication) its use of the Ether with other stations pontending for it. The
algorithm used on 'the Ethernet, called the 'binary exponential backoff collision algorithm,’
is discussed in the above references. It involves waiting a random interval and then
reattempting transmission. The (ideal) distribution of the random intervals depends upon
many factors.

Dorado Hardware Manual Ethernet Controller 14 September 1981 125

Remarks

From the method of collision detection, it follows that in a noise free Ether with ideal transmitters and
receivers, a bit cell time between 0.75*T and 1.25*T, where T is the nominal bit cell time (340 ns), can be
decoded correctly.)

Phase encoding has the undesirable property that only 50% of the transmission medium's theoretical bandwidth
is utilized. A number of reasonably simple encodings are known that more nearly approach the theoretical
limit, though phase encoding is simple to implement. If at some time we were willing to abandon compatibility
with the existing Ethernet, we should reconsider the use of phase encoding.

A promising alternative to phase encoding is bit-stuffing, which averages 67%, 86%, or 93% of theoretical
bandwidth for Oth, 1st, and 2nd order codes. This encoding outputs data bits in a cell time equal to 1/2 of
the phase-encoded cell time; when 1 (Oth order), 2 (ist order), or 3 (2nd order) data bits have been output
without a transition, then a non-data transition is inserted into the bit stream. The 1st order encoding (86%)
could be implemented with a few changes to the current controller.

Controller Overview

The Ethernet controller is a slow 10 device packaged with the disk controller on the DskEth
logic board. These two devices require more edge pins than are available in an MSA-IO
slot, so the board must be mounted in a Fast 10 slot (see Figure 2).

It would be possible to package two Ethernet controllers on one logic board using different task and
TIOA assignments for each. This might be appropriate if Dorados are ever used as Ethernet
gateways.

A cable connects the controller to a transceiver outside the Dorado enclosure; this
transceiver is almost identical to the ones used for Altos and other computers, the
difference being that it uses + 12 volts rather than +15. Dorado transceivers are painted
bright red and have large block lettering saying "Dorado only". Plugging in the wrong type
of transceiver will not damage anything; it just won't work. The cable between the
controller and the transceiver contains twisted-pair signals for receiver data, transmitter
data, collision, +5 v, and +12 v.

The controller has independent transmitter and receiver sections. Because these two
. sections are completely independent, the Dorado can receive its own transmissions. This
is an important aid in hardware and software debugging and simplifies the device driver,
which need not check for sending to itself. Furthermore, the receiver can receive
consecutive packets separated by the minimum inter-packet spacing (510 ns). This means
that the Dorado can receive, without loss, streams of packets directed to it by mulitple
hosts and packets that immediately follow broadcasts. This capability is important for
servers and other high-performance applications.

The controller uses two tasks, one for the transmitter (EOT for Ethernet Qutput Task) and
one for the receiver (EIT for Ethernet Input Task). The receiver task is higher priority. To
-permit two instruction/wakeup loops, a wakeup request is removed whenever the Next bus
says the task is about to run. This simple strategy can be fooled into removing a request
when Nextlies occurs, but this is harmless since the required service rate is low. To avoid
a spurious wakeup, a wakeup is not requested again until after the task has blocked. A
debugging control bit can be set which prevents wakeups even when all other conditions
are satisfied.

Dorado Hardware Manual Ethernet Controller 14 September 1981 126

The transmitter and receiver each have 16-word x 20-bit Fifos. The bits are 16 data + 2
parity + 2 spare (the receiver uses one of the spare bits). Each Fifo has read and write
pointers, multiplexed into the address inputs of the storage chips, to select the next
location to be read or written; these pointers are zeroed by IOReset. A Fifo is empty when
the pointers are equal and full when (WritePtr + 1) mod 16 equals ReadPtr. There are bus
registers between the Fifos and 10B. Service requests from the Ether side of a Fifo are
given priority. The Fifos are synchronous to t,.

The basic clock for transmitting and receiving .data from the Ether, called EtherClk,
originates from a 23.5 MHz crystal oscillator (i.e., the period is 42.5 ns or 1/8 of the 340 ns
bit cell time). The memory system’s Pendulum clock (period 16 ms) is also used to time
retransmissions after a collision, as discussed later.

The receiver runs continually; its phase decoder (PD) samples the Ether every EtherClk; a
finite state machine (FSM) driven by the samples detects the presence or absence of
packets on the Ether, zero/one transitions, and collisions. Another FSM accumulates the
status of the packet and controls a shift register that assembles 16-bit words from the
incoming data. Words in the shift register are written into the receiver's Fifo together with
odd parity on each byte; the status is written into the Fifo after the last word of each
packet and marked to distinguish it from data words. This allows the receiver to handle
back-to-back packets; firmware decides what to do with each packet as it is read from the
Fifo. EtherClk is used for receiver stages through the shift register; data in the shift
register is synchronized to the Dorado system clock as it is written into the Fifo.

When the transmitter is turned on, it attempts to send one packet and then must be
restarted by firmware. The EOT fills the Fifo; the transmitter FSM loads the shift register
from the Fifo and supplies a serial bit stream to the phase encoder (PE). Transmitter status
is read directly from the controller status registers (unlike receiver status, which travels
through the data path). Data is synchronized to EtherClk between the output of the shift
register and the input of the PE. A collision may be detected by either the transceiver or
the PD. The occurrence of a collision is captured, synchronized, and used to abort the
outgoing packet after jamming the Ether briefly.

The controller has a number of features to help debugging. All of the interesting internal
state is available via the 10B and the muffler system. The transceiver can be disconnected
and PE output internally connected to PD input under firmware control. Task wakeups can
be disabled permitting the controller to be driven entirely from emulator-level software. The
internal clock can be single-stepped. These features permit the construction of a
simulation program which compares its predictions with what the controller is actually
doing.

Dorado Hardware Manual Ethernet Controller 14 September 1981 127

Receiver

Most of the receiver runs continuously, tracking traffic on the Ether. The PD reports what
it sees to the receiver FSM, which assembles packets in the shift register and buffers them
in the Fifo. As words emerge from the Fifo into the bus register, they are either discarded
or generate a wakeup request under control of the wakeup logic. Following the last data
word of each packet as it travels through the Fifo are the CRC word and a status word.
IOAtten branches when a status word is present in the receiver bus register. Data and
status are synchronized to the Dorado clock between the output of the shift register and
the input of the Fifo.

The peculiar placement of status bits in Figure 16 eases emulation of the Alto Ethernet controller.

The PD is a FSM which takes in raw phase-encoded serial data and produces phase
decoder events and carrier. Phase decoder events are 'saw a zero bit’, ’'saw a one bit’,
and 'saw a malformed bit’. Carrier indicates that the PD is seeing. transitions on the Ether
(i.e. the Ether is in use). Since the PD is completely digital, it can be single-stepped for
debugging. Receiver collision detection, a by-product of this decoding technique, works as
well as transceiver collision detection.

The receiver control is another FSM that takes in PD output and produces control and
status signals. RxSRCtrl controls the shift register and the bit counter. The bit counter
decrements when a data bit is shifted into the shift register and resets to -1 when the
status is parallel loaded into the shift register. RxSRFull’ is low when the next shift will
make the register full. RxEOP travels in parallel with each Fifo word and is true if the word
is an ending status word. This bit is called EthData.18 when it is in the bus register where
it can be tested with |OAtten. '

Writing data or status from the shift register into the Fifo has priority over loading the bus
register from the Fifo. Byte parity is computed at the shift register output and travels with
" the data through the Fifo and the bus register, down IOB and into the processor where it is
checked.

The optimum point at which to synchronize received data with the Dorado clock system
would be at the input to the PD, where there is only one signal to synchronize, except that
this would make proper operation of the PD depend upon the Dorado clock period. The
next best sync point is the PD output where the number of signals has only grown to three.
The problem here is that the PD can produce events faster than they can be synchronized
to the Dorado clock without buffering. Consequently, synchronization takes place after the
shift register where the number of signals exceeds 20. This is not as unfortunate as it
seems because status and data use the same paths and can share a single synchronizer,
RxSRDump, which produces RxFifoWE’ each time RxFSM pulses RxSync’. This leaves only
RxCollision and PDCarrier which must be synchronized for the transmitter. RxCollision
shares a synchronizer with XcCollision, and PDCarrier's is a simple level synchronizer.

A receiver data-late occurs when the receiver FSM requests a Fifo write and the Fifo is full.
In this case the write does not happen and the data is lost. RxDatal ate is cleared after an
end-of-packet status word is successfully written into the Fifo. This status has the data late
error bit set so that the EIT is notified that the preceding packet was bad.

Dorado Hardware Manual Ethernet Controller 14 September 1981 128

EIT wakeup requests occur when the bus register contains an interesting word (provided
that the EIT is currently blocked, as discussed earlier). Words are interesting if they
emerge from the Fifo into the bus register while RxOn and RxBOP are true and NoWakeups
is false. RxBOP is set after the status word for a packet is discarded, so that the next word
out of the Fifo (presumably the first word of the next packet) can generate a wakeup. Itis
reset by the EIT to discard the remaining words of a rejected packet (usually because the
address didn’t match). The receiver may be reset at any time by clearing RxOn. No more
wakeups are generated and every word is discarded as it emerges from the Fifo. When
RxOn is next set, the receiver will continue to discard words until it has discarded a status
word. It will then set RxBOP, and the next word (first word of the first packet after turning
on the receiver) will cause a wakeup.

Transmitter

When the transmiiter is turned on, it attempts to send one packet and then must be
restarted by firmware. At the request of the wakeup logic, the EOT fills the Fifo using
Output«B to the bus register. The transmitter FSM loads the shift register from the Fifo
and supplies a serial bit stream to the PE. Transmitter status is read directly from the
controller status registers (unlike receiver status, which travels through the data path).
Data is synchronized to the Ether clock between shift register output and PE input.

EOT wakeups occur when the bus register is empty, TxOn is true, and TxEOP, TxCntDwn,
and NoWakeups are false (provided that EOT is blocked, as discussed earlier). After
delivering the last word of a packet, EOT wakeups are disabled by setting TxEOP. While
counting down a collision retransmission interval, firmware can disable wakeups until the
next tick of Pendulum by setting TxCntDwn. The transmitter may be reset at any time by
clearing TxOn, which stops wakeup requests and shuts down the PE within 2 bit times.

The binary exponential backoff collision algorithm must be implemented in firmware. The
controller merely provides a way to generate a wakeup on the next rising edge of
Pendulum, making the grain size of countdown intervals 16 ps for the Dorado (compared to
38 ps for Altos and Novas). Note that setting TxCntDwn prevents a wakeup; for one to
actually occur when Pendulum clears it, the bus register must be empty and TxEOP must
be false. Pendulum is considered to be a foreign signal so it is synchronized before being
applied to the reset input of TxCntDwn.

Loading>the shift register from the Fifo has priority over writing into the Fifo from the bus
register. Byte parity is computed in the processor and travels with the data down IOB into
the bus register, and through the Fifo to the shift register where it is checked.

The transmitter control is a FSM which takes in start, end, and abort signals and produces
control signals. TxSRCtrl controls the shift register and bit counter. The bit counter
decrements when a data bit is shifted into the shift register and resets to -1 when the next
word is parallel loaded into the shift register. TxSREmpty’ is low when the next shift will
make the register empty. TxData wire-or's the start bit at the beginning of each packet.
TxGone clears TXEOP to cause a wakeup at the end of each packet. The transmitter starts
when the Fifo is full or, if the packet is less than 15 words long, when TxEOP is true. The
transmitter ends normally when the Fifo is empty and TxEOP is true. The transmitter aborts
when a collision, Fifo parity error or data late occurs. TxAbort can be tested with 1OAtten.

Dorado Hardware Manual Ethernet Controller 14 September 1981 129

A transmitter data late occurs when the TxFSM requests a Fifo read and the Fifo is empty
but TXEOP is false. The PE sends one random bit and then stops. The resulting . packet
has an illegal length and probably a bad CRC.

The PE inverts and latches TxData at the start of each bit cell and inverts the latched value
1/2 bit time later. TxGo, synchronized to the beginning of a bit cell, enables the PE. The
PE assumes that a data bit is available long before it is needed and acknowledges each bit
after latching it by generating TxGotBit.

A collision may be detected by either the transceiver or PD. The occurrence of a collision
is captured, synchronized, and used to abort the outgoing packet. The output of the first
stage of the TxCollision synchronizer is wire-or'ed with PD output to jam the Ether after a
collision. The jam lasts for one or two bit times, being the delay through the TxCollision
synchronizer, TxFSM, and TxGo synchronizer. '

Clocks

The controller needs a clock with a nominal frequency of eight times the Ether bit rate.
The SingleStep control bit selects either the 23.53 mHz crystal oscillator or single Dorado
clocks injected under program control. The clocks for the Ether-synchronous parts of the
controller are constructed from this basic clock.

The slowest Dorado clock period at which the transmitter works is 42.5 ns. Disabling the
Dorado system clocks while TxOn is true causes a transmitter data late. |f TxGo is true,
the packet is chopped off, causing an incomplete transmission and probably a runt bit.
When the clock is reenabled, the PE sends a few fragmentary bits and then the data late
aborts the packet.

The slowest Dorado clock period at which the receiver works is 85 ns. Disabling the
Dorado system clocks causes a receiver data late. The next packet that arrives after the
clock is reenabled reports the data late.

Task Wakeups

The controller is designed for two completely independent tasks, with the receiver higher
priority. Two IOAs select data and status/control registers. 10Atten may be tested to
decide whether a wakeup request is just for another word or something special (ending
status for the receiver, or PE aborted for the transmitter).

Task wakeups must, on the average, be serviced within 5.44 ps. The transmitter and
receiver each have 17 words of buffering (bus register + 15 Fifo + shift register) so the
variance can be quite large—accumulated delay of up to about 90 ps is tolerable, while
longer delay will cause a data late error.

Dorado Hardware Manual Ethernet Controller 14 September 1981 130

Muffler Input

All muffled signals on the DskEth board are accessible to Dorado firmware. The method by
which a particular signal is selected and read out is discussed in the "Muffler Input"”
section of the "Disk Controller" chapter. Signal addresses 1204 to 1774 for the Ethernet
controller are enumerated below. Unless it is obvious, signals which are specific to the
receiver or transmitter have Rx or Tx respectively somewhere in their names.

Table 26: Ethernet Muffler Signals

Word

Bit Name Meaning

ERX0

120 PDNew 1/8 bit time sample of PD input signal

121 PDOId PDNew delayed one sample time

122:125 PDCnt[0:3] Number of samples since last data transition

126 PDCntCtrl Increments or clears PDCnt .
127 RepartCollisions Control register bit that enables PD collision reporting
130 RxBOP "Beginning Of .Packet" enables receiver data wakeups
131 EthData.18 Marks status word terminating a packet

132 —

133 RxCRCError Qutput of receiver CRC checker

134 RxDatal ate Receiver Fifo overflowed

135 RxBusRegFull Word in BusReg can be read with Pd«Iinput

136 RxFifoFull Receiver Fifo is full

137 RxFifoEmpty Receiver Fifo is empty

ETX

140:142 TxState[0:2] State of transmitter FSM

143 TxEOP Transmitter data wakeups are disabled

144 TxBusRegFull’ Word is waiting to be written into the transmitter Fifo
145 TxGone Transmitter FSM is shut down

146 TxSREmpty’ Transmitter shift register is empty

147 TxCntDwn' Transmitter wakeups disabled until next pendulum clock
150 TxCRCEnbI Shift/compute control for transmitter CRC

151 TxGo Enable PE

152 ,TxData . Serial data input to PE

153:154 TxSRCtrl[0:1] Transmitter shift register control

155 PEQutput Phase Encoder (PE) output

156 TxFifoFuli Transmitter Fifo is full

157 TxFifoEmpty Transmitter Fifo is empty

ERX1

160:162 RxState[0:2] State of receiver FSM

163 RxCallision Receiver-detected collision

164 PDCarrier The Ether is in use

165:166 PDEvent[0:1] PD output (no event, callision, 0, and 1)

167 RxSRFull’ Receiver shift register is full

170 RxEOP Marks status word terminating a packet

171 RxSync’ True for one cycle triggering write of SR into Fifo
172 RxIncTrans Receiver incomplete transmission

173 RxCRCReset Resets receiver CRC chip

174 RxCRCClk Clocks receiver CRC ship

175 RxData Serial data output from RxFSM

176:177 RxSRCtri[0:1] Receiver shift register control

Dorado Hardware Manual Ethernet Controller 14 September 1981 131

IOB Registers

TIOA equals 154 selects the IOB registers (called EthD). The transmitter bus register is
loaded by Output«B and the receiver bus register is read with Pd+«Input. At end-of-packet,
after the last data word, the receiver delivers first the CRC word and then a status word
containing the following bits:

RxCollision Receiver-detected collision occurred (can happen only if ReportCollisions has

been set in the control word). '
RxDatalate Receiver data-late occurred—one or more words of the last packet were lost.
RxCRCError CRC was incorrect in last packet.

RxIncTrans Last packet did not end on a word boundary.

Control Register

TIOA equals 164 selects either the (write-only) control register (EthC), discussed here, or
the (read-only) status register (also called EthC), discussed in the next section. The control
register has three fields: transmitter, receiver, and test. Bits in a field are decoded only if
the command-enable bit for the field is true. Control bits with a single quote as their last
character are true when zero. ~ '

TxCmdEnbl’ enables decoding of transmitter commands.

TxOn enables the transmitter. The transmitter may be reset at any time by clearing
this bit. Cleared by I[OReset.

TxEOP disables transmitter wakeups. EOT sets this bit after outputing the last word of
a packet. It is cleared by the controller when the PE shuts down after an abort
or normal end. Cleared by TxOn=0.

TxCntDwn disables transmitter- wakeups. Set by EOT to time a retransmission interval after
a collision; cleared by the controller when the next rising edge of Pendulum
occurs (period = 16 us). N.B. the binary exponential backoff is done by
firmware. Cleared by TxOn=0.

RxCmdEnbl’ enables decoding of receiver commands.

RxOn enables the receiver, which may be turned off at any time by clearing this bit.
Cleared by IOReset.

RxBOP' disables receiver wakeups. Cleared by EIT to discard the currently arriving
packet; set by the controller when the first word of the next packet is available.
Cleared by RxOn=0.

TestCmdEnbl’ enables decoding of test commands

LoopBack disconnects the transceiver, loops PE output to PD input, and enables TestColl'.
Cleared by IOReset.

SingleStep disables the 23.53 mHz oscillator. Changing this bit can produce a runt clock.
‘Reset the transmitter first and expect an occasional bad receiver status.
Cleared by IOReset.

NoWakeups disables all controller wakeups. Cleared by IOReset.

TestClock injects a single Dorado clock pulse (t3 of the OQutput instruction) into the
EtherClk logic. SingleStep must already be set.

TestColl’ injects a single Dorado clock pulse (t3 of the Qutput instruction) into the
collision synchronizer. LoopBack must already be set.

TestData wire ORs with PD input. LoopBack must already be set and TxOn must already

Dorado Hardware Manual Ethernet Controller 14 September 1981 132

be false. Do not issue TestClock in an instruction that changes TestData.
Cleared by IOReset.

ReportCollisions allows the PD to report malformed bits as collisions. Cleared by IOReset.

Status Register

TIOA of 164 also selects the (read-only) status register. The bits in this register are the
most interesting to the microcode. Less interesting state is available from the mufflers.

Host Addr the host address set by pullups on the backplane.
RxOn the receiver is enabled.

TxOn the transmitter is enabled.

LoopBack the interface is looped back.

TxCall the current output packet was aborted by a collision.
NoWakeups all wakeups are disabled.

TxDatal.ate the current output packet was aborted by a data late.
SingleStep the 23.53 mHz oscillator is disabled.

TxFifoPE the current output packet was aborted by a parity error..

Dorado Hardware Manual Other 10 and Event Counters 14 September 1981 133

Other IO and Event Counters

In addition to the disk, ethernet, and display controllers discussed in earlier chapters,
Dorado contains a general input/output interface and a junk task wakeup located on the
IFU board; the two registers used in this interface may alternatively be used as event
counters in performance monitoring, and that use is also discussed here.

Since the IFU board is not interfaced to the 10B, it cannot use the slow io system to control
these features, so functions are used instead.

Junk Task Wakeup

The IFU board contains a circuit which wakes up the junk task (task 1) every 32 ps. The
wakeup is dismissed by the AckJunkTW+«B function; this function interprets B[15] as follows:
a 1 enables wakeups; a 0 disables them; B[0:14] are ignored. The junk task can dismiss the
wakeup by doing IFUTest«B with any value on B (but B[15] must be O to reenable the
wakeup at the next 32 us tick).

Junk task microcode will, among other things, maintain a Real Time clock.

General 10

A 16-bit register called Genln (synonym EventCntA) is used for general input; it can be read
with the B«Genln (synonym B+«EventCntA) function but cannot be written by firmware.
When used for general input, Genln is written with mformatlon that is TTL-to-ECL converted
from the backpanel.

A 16-bit register called GenOQut (synonym EventCntB) is used for general output; it can be
either read with the B¢GenOut (synonym B«EventCntB) function or written with the
GenOut«B (synonym EventCntB+B) function. GenOut is connected to the backpanel
through ECL-to-TTL converters. :

The plan is that devices such as Diablo printers can be connected to the Genln and/or
GenOut signals 'via backpanel connectors.

The choice of using one of these regiéters for general io or for event counting is determined
by the InsSetOrEvent«B function discussed below.

Event Counters

The Genln and GenOut registers can alternatively be used as event counters. They cannot,

of course, be used simultaneously for general io. The registers are setup for either io or
event counting by the InsSetOrEvent+B function, where B[0:15] are interpreted as follows:

Dorado Hardware Manual Other IO and Event Counters 14 September 1981 134

If B[0] is 1, then InsSet[0:1] are loaded as discussed in the "Instruction Fetch Unit" chapter.
If B[0] is O, then its the general io/event counters as follows:

B[4] enables counting of EventCntA
B[5] enables counting of EventCntB
B[8:10] select the event type to be counted by EventCntA as follows:

0 True (i.e., every cycle)

1 Hold

2 Processor memory reference (not held)

3 Good IFUJump (i.e., not held and not an exception)
4 Miss

6-7 Backpanel events A, C, and E, respectively
B[12:14] select the event type to be counted by EventCntB as follows:

0 True
1 Hold

2 Successful IFU memory reference

3 IFUJump that wasn't ready

4 Miss

5-7 Backpanel events B, C, and D, respectively

B[15] causes the event to be counted for all cycles if 1 or only for emulator or fault task cycles if O.

To use the event counters, you first stop them counting and read their current values; then
you tell them what to count and start them counting and your system running. Note that
they never get reset, but just keep counting from wherever they are—it's.up to the user to
worry about counter turnover.

The expected mode of operation is that the junk task will detect counter overflow and
update double or triple-precision vectors in RM that count events; even if the counter is
counting once per 60 ns cycle, counter wraparound only occurs every 3.93 ms, so a
double-precision vector could count for at least 255 seconds and triple-precision for 228
days. Sample microcode for maintaining a double-precision counter is given in the
example below:

*The double-precision vector consisting of two RM locations, CountHi and Countlo
*is initialized such that CountHi eq 0 and CountLo contains minus the value in
*the event counter, and another RM location called CountFlag is initialized to O.
*The microcode below increments CountHi whenever the event counter cycles.

*At any instant, the high part of the total count is in CountHi and the low part
*is CountlLo +event counter; CountHi has to be incremented by -1 if the counter
*just overflowed.

(CountLo) - (EventCntB') - 1; *CountLo + event counter

Pd«CountFlag, Branch[. +2,alu>=0];

CountFlag«T-T-1, Branchl. +3]; *Set CountFlag to -1 in 2nd half of the counter cycle.
CountFlag«T-T, Branch[. + 2,alu>=Q}; . *Set CountFlag to O in 1st half of the counter cycle,
CountHi«(CountHi) + 1; *and increment CountHi, if we were in the 2nd halif

*of the counter cycle last time.

The microcode for reading the counter when it is updated like this is as folows:
*Return to caller high part of event count in T, low part in Q.

TaskingOff, - Pd«CountFlag;

T«(CountLo) - (EventCntB') - 1, Branch[. +3,alu>=0]; *CountLo + event counter = low part of resuit
TaskingOn, Branchl. +3,alu<0}; *Low part ovf iff CountFlag<O and low sum >=0
T«(CountHi) + 1, Q¢T, Return; *High part of result = CountHi+1

TaskingOn; *High part of result = CountHi

Dorado Hardware Manual Other IO and Event Counters 14 September 1981 135

T+CountHi, Q+«T, Return;

Dorado Hardware Manual Error Handling 14 September 1981 136

Error Handling

In addition to single-error correction and double-error detection on data from storage,
Dorado also generates, stores, and checks parity for a number of internal memories and
data paths. The general concepts on handling various kinds of detected failures are as
follows:

(1) Failures of the processor or control sections should generally halt Dorado because
these sections must be operational before any kind of error analysis or recovery firmware
can be effective.

(2) Failures arising from memory and io sections should generally result in a fault task
wakeup and be handled by firmware. In some situations, such as map parity errors, it is
especially important to report errors this way rather than immediately halting because
firmware/software may be able to bypass the hardware affected by the failure and continue
normal operation until a convenient time for repair occurs. In other situations, the firmware
may be able to diagnose the failure and leave more information for the hardware
maintainers before halting. ‘

(8) IFU section failures and memory section failures detected by the IFU should generally
be buffered through to the affected IFUJump, then reported via a trap; in this way, if it is
possible to recover from the failure, then it will be possible to restart the IFU at the next
opcode and continue.

(4) Memories and data paths involving many parts should generally be parity checked. It
is not obvious that this is always a good idea because extra parts in the parity logic will be
an additional source of failures, but instantly detecting and localizing a failure seems
preferable to continuing computation to an erroneous and undetected resuit.

(5) When Dorado halts due to a failure, information available on mufflers and in the 16-bits
of passively available error status (ESTAT) should localize the cause of the error as
precisely as possible.

Since the MECL-10K logic family has a fast 9-input parity ladder component, the hardware
uses parity on 8-bit bytes in most places; there is usually insufficient time to compute parity
over larger units. IM and MIR, two exceptions, compute parity over the 17-bits of data in
each half of an instruction; and the cache address section computes parity over the 15
address bits and WP bit.

QOdd parity is used throughout the machine, except that the cache address section and
IFUM use even parity. Odd parity means that the number of ones in the, data unit,
including the parity bit, should be odd, if the data is ok.

The control processor (Midas or the baseboard microcomputer) independently enables
various kinds of error-halt conditions by executing a manifold operation discussed in the
"Dorado Debugging Interface" document. It also has to initialize RM, T, the cache address
and data sections, the Map, and IFUM to have valid parity before trying to run programs.
Reasons for this will be apparent from the discussion below.

When Dorado halts, error indicators in ESTAT indicate the primary reason for the halt, and

Dorado Hardware Manual Error Handling 14 September 1981 137

muffler signals available to the control processor further define the halt condition; ESTAT
also shows the halt-enables. Midas will automatically prettyprint a message describing the
reasons for an error halt. The exact conditions that cause error halts are detailed in the
sections below; the table here shows the ESTAT and muffler information which is relevant.

Table 27: Error-Related Signals

ESTAT ESTAT Task
Error Enable Experiencing Related Muftler Signals
Bit Bit Hait and Meaning
RAMPE RAMPEen Task2Bk STK, RM, or T parity failure.
RmPerr and TmPerr muiflers on each processor
board indicate which byte of RM/STK or T had a
parity failure. StkSelSaved indicates that RmPerr applies
to STK rather than RM.
MdPE MdPEen processor-detected Md parity failure
Task2Bk if immediate ¢Md («MDSaved false)
Task3Bk if deferred ¢Md (¢MDSaved true)
MdPerr muffler on each processor board
shows which byte of Md failed.
IMrhPE IMrhPEen CTD parity failure of IM[17:33]
IMIhPE IMIhPEen CTD parity failure of IM[0:16]
IOBPE IOBPEen Task2Bk Pd«Input parity failure if /OBoutSaved false
Task2Bk OutputeB parity failure if /OBoutSaved true

I0Perr mufflers on each processor board show
which byte failed.

MemoryPE MemoryPEen - ’ cache address section parity failure,
cache data parity failure on write of
dirty victim or dirty Flushe« hit, or
fast input bus parity failure.

Processor Errors
The processor has parity ladders on each byte of the following:

input to RM/STK generate parity for write of RM/STK

inputto T generate parity for write of T

B generate parity for DBuf¢B, MapBuf«B, Output«B, IM«B

10B check parity for Pd«input and Output+B

Md check parity for «Md

R check parity for «RM/STK (unless bypassed from Pd or
Md or replaced by «Id)

T check parity for «T (unless bypassed from Pd or Md or

replaced by «lId)

Input ladders to RM/STK and T generate parity stored with data in the RAM; these ladders
are not used for detecting errors.

The processor computes parity on its internal B bus (alub). The generated parity may be
transmitted onto I0OB when an Output+B function is executed; Store¢ references write B
data and parity in the cache; parity for IM writes and map writes is computed from B parity.
None of the other B destinations either check or store B parity. External B sources do not

Dorado Hardware Manual Error Handling 14 September 1981 138

generate parity.

Parity on the R/T ladders is checked only when the R/T data path is sourced from the
RAM, not when bypassing from Md or Pd is occurring, and not when R/T is sourced from
Id. A detected failure causes the RAMPE error halt, which indicates that some byte of RM,
STK, or T had bad parity. The muffler signals that further describe this error are in the
PERR word: StkSelSaved is true if the source for R was STK, false if the source for R was
RM; each processor board has RmPerr and TmPerr signals; RmPerr is true if the RM/STK
byte on that board had bad parity, TmPerr if the . T byte had bad parity. Note that if an
instruction beginning at t, suffered an error, Dorado halts immediately after t,; the muffler
signals apply to the instruction starting at t,. The Task2B8k muffler signals show the task
that executed the instruction at t,.

Md parity is checked whenever «Md is done; a failure causes the MdPE error-halt when
enabled. The «MDSaved muffler signal in PERR is true when a deferred +Md caused the
error (T«Md, RM/STK+Md), false when an immediate «Md (A<Md, B«Md, or ShMdxx)
caused the error. On a deferred «Md error, Dorado halts after t; and Task3Bk shows the
task that executed the instruction starting at t;; on an immediate «Md, Dorado halts after
t,, and Task2Bk shows the task. The MDPerr muffler signals on each processor board
show which byte of Md was in error.

lo devices (optionally) compute and send odd parity with each byte of data; the processor
checks parity when the Pd«Input function is executed, but not when the Pd«InputNoPE
function is executed. When enabled, an /OBPE error halts the processor at t, of the
instruction that suffered the error; Task2Bk shows the task that executed the instruction.
The processor also checks IOB parity on Output«B, and an error halts at t, as for
Pd«Input. The /OBoutSaved muffler signal distinguishes Pd«Input from Output«B errors;
an /OPerr muffler signal on each processor board shows which byte of IOB was in error; all
of these are in the PERR muffler word.

The processor generally does not pass parity at one stage through muitiplexing to the next stage, so .
any failure in the multiplexing between one stage and the next will go undetected (exception: B
parity passed through to IOB).

For example, the processor could write Md parity sent by the cache into the T RAM, when T is
being written from Md. Instead, however, it checks Md parity independently, but then recomputes
the parity written into T with the input ladder. Hence, a parity failure detected on a byte of T can
only indicate a failure in either (1) the input parity ladder; (2) the output parity flipflop; (3) the output
parity ladder; (4) one of three 16x4 T RAM's; (5) one of two 4-bit latches clocked at t1 (Figure 3)
through which the output of the T RAM passes; (6) one of two 4-bit latches clocked by preSHC'.

Parity is handled similarly for writes of RM/STK.

Parity is similarly recomputed on B.

The processor does not generate or check parity on the A, Mar, or Pd data paths. Any
failures of the A, Mar, B, Pd, or shifter multiplexing or of the ALU go undetected; failures of
Q, Cnt, RBase, MemBase, ALUFM, or branch conditions go undetected.

Remark

Since 256x4 and 16x4 RAM's are used for RM, STK, and T, and since the processor is implemented with the
high byte (0:7) on ProcH and the low byte (8:15) on ProcL, byte parity requires an additional 4-bit storage
element on each board, of which only 1 bit is used. We could conceivably have used all 4 bits to implement a
full error-correcting code for each byte of R and T data. However, there is insufficient time to correct the
data. (Also, we use 256x1 RAM's instead of 256x4 RAM's for the RM and STK parity bits.)

Dorado Hardware Manual Error Handling 14 September 1981 139

Alternatively, parity could be computed over each 4-bit nibble rather than each 8-bit byte; the MC170
camponent allows nibble parity to be computed just as economically as byte parity. If this were done, then a
parity failure would be isolated to a particular nibble. With byte parity, a detected failure could be any of 9+
camponents; with nibble parity, it would be isolated to ocne of 6 + components. Implementing nibble parity for
RM/STK and T would require about 4 more ic's per board than byte parity.

It is hard to say whether the additional precision of nibble parity would be worth the additional parts.

Control Section' Errors

The control section stores parity with each 17-bit half of data in IM. When IM is written,
the two byte-parity bits on B are xor'ed with the 17th data bit to compute the odd parity bit
written into IM. It is possible to specify that bad (even) parity be written into IM, and this
artifice is used to create breakpoints; bad parity from both halves of IM is assumed to be a
deliberately set breakpoint by Midas.

IM RAM output is loaded into MIR and parity ladders on each 17-bit half give rise to error
indicators that, when enabled, will halt the processor after t, of the instruction suffering an
error. For testing purposes, halt-on-error can be independently enabled for each half of
MIR. Both the unbuffered output of the MIR parity ladders and values buffered at t, appear
in ESTAT. The buffered values show the cause of an error halt, and the unbuffered signals
allow Midas to detect parity errors in MIR before executing instructions or when displaying
the contents of IM.

The special MIRDebug feature discussed in the "Dorado Debugging Interface" document
prevents MIR from being loaded at t, when MIR parity is bad. In other words, when the
MIRDebug feature is being used, all of the t, clocks in the machine will occur except the
ones to MIR. This feature prevents the instruction that suffered an error from being
overwritten at the expense of being unable to continue execution after the error.
MIRDebug can be enabled/disabled by the control processor.

IFU Errors

The IFU never halts the processor; any errors it detects are buffered until an IFUJump
transfers control to a trap location. The errors it detects, discussed in "IFU Section", are
parity failures on bytes from the cache, IFUM parity failures, and map parity failures on IFU
fetches.

Memory System Errors

There is no parity checking on Mar or on data in BR, so any failure in the address
computation for a reference goes undetected. However, valid parity is stored with VA in
the cache, and any failure detected will cause the MemoryPE error to occur, halting the
system (if MemoryPE is enabled). .
Parity is also stored in the Map (computed from B parity) and an error causes a fault task
wakeup in most situations (Exceptions: IFU references and Map+ references do not
wakeup the fault task when a map parity error occurs).

Dorado Hardware Manual Error Handling 14 September 1981 140

The cache data section stores valid parity with each byte of data. When a munch is loaded
from storage, the error corrector carries out single-error correction and double error
detection using the syndrome and recomputes parity on each 8-bit byte of data stored in
the cache. When a word from B is Store+'d in the cache, byte parity on B is stored with
the data.

A MemoryPE error occurs if, when storing a dirty victim back into storage, the memory
system detects bad parity on data from the cache.

The IFU and processor also check parity of data from the cache, as discussed previously.

Sources of Failures

In a full 4-module storage configuration, Dorado will have 1173 MOS storage, about 700
Schottky-TTL, 3000 MECL-10K, and 60 MECL-3 DIPs, and about 1500 SIPs (7-resistor
packages). This logic is connected with over 100,000 stitch-welded or multiwire
connections to sockets into which the parts plug; logic boards connect to sidepanels
through about 2500 edge pins. Sockets are used for all the RAM DIPs in the machine;
other parts are soldered in. Given all these potential sources of failure, rehable operation
has been a surprising achievement.

Initial debugging of new machines has been slow and difficult, requiring expertise not easily
available in a production environment. In addition to mechanical assembly, board stuffing,
and testing for shorts and opens both before and after stuffing, each machine has
averaged about one man month of expert technician time to repair other malfunctions
before it could be released to users.

Once released, the Dorados have been pretty reliable. During a 100-day period (6 October
1980 to 14 January 1981) the CSL technicians kept records of service calls made for
approximately 15 Dorados in service at that time. The following summarizes the 43 service
calls that were made.

37 days mean time between service calls per machine.

45 days mean time between failures (some service calls were for microcode or
- software problems).

2.5 hours per machine per month average service time.

13% of failures and 5% of time reseating logic boards in the chasis (connectors not
making contact).

11% of failures and 17% of time on open nets.

13% of failures and 12% of time repairing 16k MOS RAM failures (standard
configuration was 2 modules).

37% of failures and 28% of time replacing other DIPs and SiPs.

5% of failures and 10% of time on T80 problems.

Dorado Hardware Manual Error Handling 14 September 1981 141

13% of failures and 11% of time on power supply failures.
2% of failures and 2% of time on Terminal and display problems.

4% of failures and 20% of time on repairing boards damaged during manufacturing
or overheating.

The power supply failures were due to problems that have since been corrected, and most
of the service calls for microcode or software problems would not happen in the more
mature environment we have today. However, the other failures are believed to be
representative. Note that none of the MOS RAM failures was the reason for a service call.
These were found when testing a machine with diagnostics after a service call had been
made for some other reason.

Error Correction

Reliability has been improved by error-correction on storage. The Dorado error-correction
unit of 64 data and 8 check bits (quadword), guards 1152 MOS RAMs from single failures,
but almost no other parts on storage boards or in the error corrector are guarded.

Our Alto experience suggests that some machines repeatedly fail under normal use due to
undiagnosable failures. For this reason, error correction should be viewed as guarding not
only against new failures but also against imperfect testing of parts that are either already
bad or subject to noise (e.g., cosmic rays) or other kinds of intermittent failure. The latter
may be more important in our environment.

The failure summary above indicates, for a small sample, that 16k MOS RAMs, accounting
for 6% of all DIPs and SiIPs (because the 15 Dorados had 2-module configurations, half the
maximum) average about 4 times the failure rate of other parts and account for about 1.5
failures/year/Dorado - this would become 3 failures/year with a 4-module configuration. If
we continue to do this well, a Dorado with error correction should run for years without
uncorrectable MOS RAM failures. The manufacturer’s literature indicates that the dominant
failure mode appears to be single-bit failures with row and column addressing failures
affecting many bits somewhat less frequent, but we don’t know the distribution of these.

If MOS failures do become significant, different strategies may be needed for single- and
multi-address failure modes. With a multi-address failure, another failure in the same
quadword causes a double error; but many single-address failures can occur in the same
quadword without double ‘errors.

The failure model used below shows that with no periodic testing and replacement of bad
MOS RAMs, fatal failure statistics of the 1152 RAMs would approximate those of a 108
RAM uncorrected. store. By thoroughly testing storage and replacing bad parts 4 times
more often than the mean time to total failure of a part (defined below), the likelihood of an
uncorrectable RAM failure crashing the system can be made insignificant compared with
other sources of failure.

Although system software could bypass all pages affected by a multi-address RAM failure,
the entire module, 25% of storage, would be eliminated, so this is impractical except on an
emergency basis. Continuing execution despite a multi-address RAM failure will result in a
double error when any other coincident storage failure occurs in the same quadword; 1/16

Dorado Hardware Manual Error Handling 14 September 1981 142

of future failures will do this.

Some interesting questions are: How does MTBF vary with the EC arrangement? MTBF is
pertinent if we let Dorados run until they fail. Alternatively, how likely is a failure in the
next day, week, or month, if we test the memory that often and replace bad RAMs? These
questions can be asked assuming perfect testing (no failures at t=0) or imperfect testing
(some likelihood of failures at t=0 because diagnostics didn't find them).

To answer them, MOS RAM failures are modelled as one of two types: those affecting a
single address in the RAM (called SF’s), and those affecting all addresses (called TF’s).
We assume that TF's occur about 1/4 as often as SF's in 4Kx1 RAM’s. RAM failures are
assumed exponentially distributed, correct if the failure rate doesn’t change with time; over
the time range of interest, this is reasonable. Finally, perfect testing is assumed, so there
are 0 failures at t=0. These assumptions give rise to the following:

let p = prob that an ic has a TF = 1 - e~&
let @ = prob that an ic has a SF = 1 - e~bt
let n = number of MOS RAMs in the memory

Without error correction, MTBF is the integral from 0 to infinity of [(1-p)(1-q)]" =
1/n{a+b). With b = 4a, in our 4-module system with n = 1024, this is 1/5120a =
.00018/a.

3

With error correction, failure occurs when, in a single EC unit, a TF coincides with either
another TF or an SF. This ignores two coinciding SF’s which is about 4000 (16k RAMs) or
16000 (64k RAMs) times less likely.

let n = number of RAMs in an error correction unit
then Prob[no failure] = Prob[no TF] + Prob[1 TF and 0 SF]

Problno TF] = (1-p)"

Since failure modes are independent,

Prob[1 TF and 0 SF] = np[(1-p)(1-q)]"*~!

Prob[no failure] = P, = (1-p)" + np((1-p)(1-q)"~"

Pok = e-hat n(1_e~at)(e-(a+b)(n-1)t)

This is the probability for a single EC unit, so mean time to failure for all MOS storage is
P raised to a power equal to the number of EC units. In other words, the argument of
the integral for a 4-module x 4 quadwords/module system is Pok“s withn = 684+8; it is
P, with n = 256+10 for a one munch EC unit.

Then, expected time to failure for our 16 x n=64+8 memory system, is about:

(1/n) * (1/16a + 16a/(16a+b)® + 240a2/(16a+2b)® + 3360a3/(16a+3b)%
= (1/an) * (1/16 + 1/25 + 5/288 + 105/17208) .

= (1/16an) * (1 + .64 + .28 + .006) = 1.93/16an

= 1.93/16*72*a = .00168/a

In other words, mean time to failure is about 1.93 times longer than the time to the first TF
= 9.5 times better than with no error correction = as often as 1024/9.5 = 108

Dorado Hardware Manual Error Handling 14 September 1981 143

uncorrected storage ic's.

The resulis don't change much when imperfect testing is assumed. The effect of this is to
replace densities for p and q by 1 - Ae~ 2, where A would be .999 if there was a 1/1000
chance of a MOS ic being bad at t=0.

Remarks

On each storage board, data from MembD is transported to a shift register consisting of 8 flipflops which are
then written into the MOS RAM's after transport has been completed. This arrangement is unfortunate - any
failure in one of ihese components will cause a multiple error, and there are about 250 of these parts in a full
storage configuration.

One way to eliminate this problem while simultaneously reducing the part count on each storage board would
be to make modules consist of four storage boards, rather than two, so that only four flipflops receive data on
each bit path during transport; since each of these is in a different quadword, single failures would not cause
multiple errors.

The Dorado EC operates on quadwords, requiring 8 check-bits/64 data bits, or a 12.5% storage penaity.
Alternative schemes are: 10 check bits/256 data bits (3.9%); 9 check bits/128 data bits (7.4%); 7 check bits/32
data bits (22%); and no error correction at all (0%). -

The implementation of the EC pipeline is such that wider correction units significantly increase the time for a
miss. The current quadword error corrector requires 7 clocks (3 clocks for setup and correction, 1 clock per
word of the quadword); this would become 11 clocks with a 128-bit EC scheme or 19 clocks with a 256-bit EC
scheme. Although cache hit rate seems to be above 99%, some implementation avoiding this delay would still
be needed to make larger correction units attractive.

If our quadword correction unit were replaced by a 4 x n=256+10 scheme:

1/4na + 4a/n(da+b)2 + 3a2/2n(2a+b)3, where for b = 4a this is
(1/4n2)*(1 + 1/4 + 1/36) = 1.28/4na = .0012/a

In" other words, MTBF is about 1.28 times longer than the time to the first TF. So error correction has
increased MTBF by a factor of 6.2 over no error correction; alternatively, a 1064-RAM corrected memory fails
as frequently as a 1064/6.7 = 159 RAM uncorrected memory. '

Surprisingly, the 64 +8 EC scheme has only 42% longer MTBF than a 256 + 10 EC scheme. This improvement
may not be worth the 96 additional MOS RAM and 80 other DIPs required for address buffering; the 80
additional DIPs might cause more failures than they save, being a net loss.

The other method of maintaining our systems is to regularly test storage and replace bad RAMs. Then the
likelihood of no double error before replacement is simply the value of the probability distribution (P°k4 and

Pok16 above) at the selected instant. This reduces to an approximation of the form P, = e™* + xe™ XM

where x = nat, mis 4 or 16, and n = 72 for m=4 or 266 for m=16. |If this is evaluated at t = 1/mna,
1/2mna, 1/4mna, etc. the following results are obtained:

Table 28: Double Error Incidence vs. Repair Rate

m 1/mna 1/2mna 1/4mna 1/8mna
4 52 81 94 28
16 79 84 .98 .99

The interpretation of this table is as follows: Measure mean time to total failure (TF) of a MOS RAM and call
this time 1/a; then assume 4 SF's per TF. Then the rate at which TF's occur in storage will be 1/mna. So
the above tables show probability that the Dorado hasn't suffered a double error when tested and fixed as
often, 1/2 as often, 1/4 as often, or 1/8 as often as the mean rate of TF's.

Dorado Hardware Manual Performance Issues 14 September 1981 144

Performance Issues
This chapter discusses two issues:
(1) How rapidly will Dorado be able to execute Mesa, Lisp, SmaliTalk, etc. macroprograms;

(2) What relationship do some of the design parameters bear to performance;

Cycle Time

The first issue is cycle time. Dorado was designed for a 50 ns cycle time; the first three
prototypes used stitchweld technology for interconnections and operated correctly at 55 ns
cycle time; however, subsequent machines are being built using multiwire technology and
will not operate faster than about 60 ns cycle time. The baseboard at present initializes the
clock period to 64 ns for all machines during a boot, although there is some indication that
design changes made recently and repair of a few lingering slow path problems would
permit 5 to 10 ns faster operation.

With respect to achievable cycle time, the two important differences between stitchweld
and multiwire technology are that stitchweld uses point-to-point wiring and has wire
impedance of about 100 ohms (which is ideal), but multiwire uses Manhattan (square-
corner) wiring with wire impedance of about 50 ohms on the inner layer and 70 ochms on
the outer layer of wiring (Most signals are in the outer layer), longer wires and |mperfect
impedance matching result in slower speed.

Emulator Performance

Gene McDaniel’'s measurements of the Alto Mesa compiler have been adjusted to make
them compatible with Pilot Mesa and are summarized below. It must be pointed out that
the compiler makes heavier use of short pointers than do Pilot Mesa programs; programs
being developed now are heavily biased toward long pointers and would be slower than the
execution rate below indicates. Average execution rate was about 5.6 cycles/opcode
excluding disk wait. About 38% of all cycles are consumed by XFER opcodes (i.e.,
subroutine call or return) and account for about 6% of opcodes executed. |f these are
excluded, the remaining 94% average about 3.1 cycles/opcode; if jumps and conditional
jumps are also excluded {about 14% of executions), the others average 2.5 cycles/opcode.
These times include all memory and IFU delays.

These excellent results indicate that there are no unusual delays due to problems with the
memory or IFU and that the processor is completing most opcodes quickly. Since XFER
opcode take 34 (local) to 54 (external) cycles/opcode excluding memory delays, speeding,
respecifying, or reducing executions of XFER seem to be the most promising ways of
improving performance.

In the above results, instruction forwarding has saved an average of about .25
cycles/opcode or about 4% overall, in agreement with our expectations.

Dorado Hardware Manual Performance Issues 14 September 1981 145

For SmallTalk and Lisp instruction sets, performance is much worse than Mesa (averaging
over 30 cycles/opcode on Smalltalk 76). Careful studies should be made to understand the
reasons for this fully, but one reason is that the 16-bit word size is a serious limitation.
Long storage pointers are used extensively, so execution would be substantially faster on a
machine with, say, 32-bit data paths.

IFU Not-Ready Wait

For the Mesa compiler, 19.5% of all cycles were in IFU not-ready wait; 16% due to
incorrectly predicted jumps, 2.5% to cache miss wait, and 1% to other causes. The 16%
due to incorrectly predicted jumps might be improved.

The Mesa microcode presently predicts that all conditional jumps will not jump; it is
desirable to predict not-jump unless more than 75% of executions jump due to the
overhead of restarting the IFU an extra time. 40% of the time the prediction is wrong and a
jump occurs, so it seems that the microcode is doing the best it can.

However, some loops ("while J ne 0 do," for example) are compiled as a normally-false
conditional jump at the beginning of the loop and an unconditional jump from the end of
the loop back to the beginning; a faster sequence is a normally-true conditional jump at the
end of the loop, eliminating the unconditional jump altogether. The general objectives in
changing the compiler would be as follows: (1) Eliminate unnecessary jumps and
conditional jumps; (2) Make the jump/not-jump execution of conditional jumps be as
predictable as possible; and (3) Make the not-jump path be the most likely, unless this
conflicts with objective (1).

Microstore Requirements
Speed is not the only issue—some reduction in microstore requirements might be possible
through design changes. Space requirements for a 1981 release of the Alto/Mesa

emulator system were as follows:

Table 29: Utilization of the Microstore

Mesa basic opcode set 20244
Cedar allocator & collector 5764
Floating point 457
Alto opcode set 1163,
Alto BCPL Runtime 2264
BitBlt subroutine 4164
Fault handling 654
Ethernet driver 255¢
Disk driver 4308
Display driver 5004)
Junk io driver 764
LoadRam 1004

Initialization 1508

Dorado Hardware Manual Performance Issues 14 September 1981 146

Total 76735 leaving 105, free locations

Since we do not require that more than two emulators be loaded in the microstore at one
time, there is presently a little space left for extensions. MicroD is able to utilize well over
99% of the available microstore.

The third performance issue is cache efficiency and miss wait; the fourth is available io
bandwidth and io task cycle consumption. These are discussed in sections below.

Cache Efficiency and Miss wait

The value of shortening the wait for a storage read is roughly proportional to miss
likelihood. Suppose that the prototypical opcode was a one-byte opcode implemented by
the following microcode:

Fetch«ld, StkP+1;
Stack«Md, IFUJump[0];

For this example, execution time on a hit is 2 cycles; on a miss, 28 cycles. Delay for IFU
misses must be added to this. Since the IFU is 6 bytes ahead of the current opcode, its
misses delay 28 cycles less execution time for preceding 6 bytes; if any of the 6 bytes itself
causes a miss, IFU delay will be 0 because it will catch up; the IFU never gets two misses
(in this example) because it crosses at most one munch boundary. Hence, execution time
will be 2 + 26*(1-H) + (28-12)*H6*(1 -H), with the following results:

Table 30: Execution Time vs. Cache Efficiency

Hit Execution IFU % Miss
% Cycles Cycles Wait
100 2.00 .00 0
99 2.26 15 17
98 2.52 .28 29
96 3.04 50 44
94 3.56 .67 53
92 4.08 .79 59

This crude analysis shows the importance of cache efficiency in determining system
performance. Fortunately, measurements made by Doug Clark and Gene McDaniel
indicated the following surprisingly high cache hit statistics:

Overall cache hit rate on three Mesa programs was 99.2% to 99.8%. 4.9% to 8.1%
of all cycles were held. 10% to 19% of references were Store«’s, the rest fetches.
16% to 66% of misses had dirty victims, which cause additional cycles to be held
while the cache address section is busy.

Another measurement showed a 99.7% hit rate for IFU references.

The processor obtains a word from the cache in 16% of all cycles and the IFU in
32% of all cycles; the processor actually shuts out the IFU by making its own

Dorado Hardware Manual Performance Issues 14 September 1981 147

reference about 20% of the time.

Provision has been made to expand the Dorado cache to 16k words, when 4k x 1 MECL
RAM'’s are economically available, but the existing cache is so efficient that this may never
be necessary.

Performance Degradation Due to 10 Tasks

To first approximation, only the display controller word task (DWT) uses enough storage
bandwidth to interfere significantly with emulators. Since it uses the fast io system, DWT
requires service once/munch and will require two instructions/wakeup in the ordinary
case. In addition, if the next instruction (by another task) issues a memory reference, it will
always be held one cycle while the DWT's IOFetch+ advances ASRN.

A quick calculation shows that at an io bandwidth of 256 x 108 bits/sec (108 munches/sec)
the display controller will use 48% of storage bandwidth and 12% of processor cycles at 60
ns/cycle. ’

The earlier example showed that with no io interference and a 899% hit rate, the emulator
spent 17% of cycles in miss wait, 83% in useful execution. With a 256 x 10° bit/sec display
active, emulator misses are slowed about 2 cycles each, so the overall effect of the display
would be that about 78% of all cycles are emulator executions, 12% display task
executions, and 16% hold; the one cycle holds for I0Fetch¢« would make performance
somewhat worse than this.

An IOFetch+ by the display task to the same cache row as an emulator miss will remain in
the address section, increasing display task latency and requiring more buffering.
However, this won't degrade emulator performance.

The Alto monitor only uses 14.7 x 10° bits/sec (1/17 of the above) and would not interfere
appreciably with emulators.

The disk controller is the fastest "slow" io device among standard peripherals. When
running, its word interrupt task reads a double word from the cache every 3.2 ps in a 3
instruction/interrupt inner loop, consuming about 5.6% of all cycles at 60 ns/cycle. lts
memory references consume the cache at a rate of .04 munches/ps, low enough that
storage interference with the emulator isn’t significant. However, a 256-word disk transfer
displaces about 1/16 of the cache entries, so the emulator may experience a lower hit rate.

Cache and Storage Geometry

The current geometry was chosen without measurements or simulation of programs, but
measurements made since then have indicated a surprisingly good cache performance, so
not much could be gained through changes.

The following parameters are relevant:

1 word as the unit of storage inside the memory pipeline;
16-word munch;

Dorado Hardware Manual Performance Issues 14 September 1981 148

256 munches in the cache (expandable to 1024);
4 columns in the cache.

Munch Size

A 16-word munch size was chosen primarily because 8 cycles for transport balances 10
cycles for storage access, avoiding loss of bandwidth. The use of 256x4 RAM's to
implement the cache address section allows the original 4k-word cache (implemented with
1kx1 RAM's) to be expanded to 8k words or 16k words, when 4kx1 RAM’s are economically
available—this is possible because only 64 of the 256 words in the address section are
being used with the 4k-word cache. Miss wait is about 28 cycles and storage bandwidth
about 533 x 108 bits/sec with 16-word munches.

8-word munches would lower the storage bandwidth to about 262 x 108 bits/sec, probably
unacceptable. Also 8-word munches would limit cache expansion to 8k words. However,
miss wait would be reduced to about 24 cycles because transport would require only 4
cycles, 32-word munches would not allow greater storage bandwidth to fast io devices
because bandwidth is already limited by transport with 16-word munches. Nor would it
allow expansion to a larger cache data section because we have no way to build a data
section larger than 16k words. Also, miss wait would be slowed to 36 cycles, so it does not
seem that this munch size is attractive.

For a given size of the cache data section, with smaller munches the cache will tend to
stabilize with a. larger amount of useful information; however, when a program is changing
contexts, larger munches might bring the new context into the cache more quickly. Also,
fast io tasks will interfere less with the emulator on larger munches because fewer wakeups
and IOFetch«’es will be required. However, the extra buffering and longer miss wait offsets
this advantage somewhat.

Considered together, these factors suggest that the 16-word munch we are using is
substantially better than either 8 or 32-word munches.

Data Path Width

Having only 16 bit wide data paths slows misses. Doubling the paths to 32 bits would
reduce EC time by 1 cycle and transport time into the cache by 4 cycles (i.e., delay on
misses would be 23 cycles instead of 28). There were not enough edge pins to do this.
However, if a method of doubling the path width were found, the storage system would
probably be arranged as two modules of four storage boards each rather than four
modules of two boards each, and 32-word munches might be better than 16-word
munches.

Dorado Hardware Manual Performance Issues 14 September 1981 149

Cache Columns

The reason for multiple columns is to approximate LRU reloading; the columns are
moderately expensive because separate hit logic has to be provided for each one; the V-NV
stuff also costs a few ic’'s with more than two columns. Altogether the current 64x4 cache
is about 40 ic’s larger than a 128x2 cache (Because of its 50-50 LRU behavior on the
fourth column, our cache is somewhere between the 64x4 and 128x2 or 128x3 caches
below.). The table below shows likelihood that the Nth LRU munch is no longer .in the
cache for various geometries:

Table 31: Cache Geometiry vs. LRU Behavior
N 32x4 64x2 128x2 32x3 64x3 128x3 64x4 128x4

4 .000 .001 .000 .000 .000 .000 .000 .000
8 .000 .006 .002 .002 .000 .000 .000 .000
16 001 .025 .007 .013 .002 .000 .000 .000
32 .017 .089 .026 077 014 .002 .002 .000
64 .140 .264 .080 323 .079 .014 .018 .002
128 570 596 .264 767 323 .080 a4 .019
256 .960 910 .595 987 .764 .323 568 142
512 —_ - - —_ —_ .763 .959 .567

These numbers are computed from a binomial distribution using the following formulae:

let R rows in cache

let C columns in cache

then p = (R-1)/R = probability that a munch of VA is in its row
then q = 1/R = probability that a munch of VA is not in its row
then probability of a miss for the nth element is:

C P(miss)

1 1 - p"

2 1 - p" - ngp""!

3 1 - p" ngp"~1 - n(n-1)g3p"-2/2!

4 1 - p" - ngp™! - n(n-1)g%p"~2%/2! - n(n-1)(n-2)q%p""%/3l
etc.

Without extensive measurements on programs, it is impossible to know how much better,
say, a 32x4 cache is than a 64x2 cache, or to know whether a 128x2 cache is better or
worse than a 32x4 cache, for example. If a particular program is confining itself to a very
small set of munches, then more closely approximating LRU reloading is most important.
However, if the likelihood of reference flattens out after a small N, then it won’t matter
much that LRU reloading isn't very well approximated—the total size of the cache will be a
more important determinant of performance.

Dorado Hardware Manual Glossary 14 September 1981 150

Glossary
a - the first 8-bit operand of a two-byte or longer opcode.
B - the second 8-bit operand of a three-byte or longer opcode.

bypassing - a number of memories and task-specific registers in Dorado (RM, STK, and T,
for example) are written with data that might be needed before the write occurs. These are
implemented so that data about-to-be-written is substituted for data read from the register
or memory when appropriate. This substitution is called bypassing and enables Dorado to
run considerably faster than would otherwise be possible.

cache entry - a munch together with VA of the munch and 4 flag bitsf For a 64 row x 4
column cache, VA[28:31] are the word in the munch, VA[22:27] address the row, and
VA[7:21] are stored in the cache entry.

column - one of 4 groups of 64 (expandable to 256) cache entries. The cache column in
which a word with VA resides is determined by comparing VA[7:21] with the corresponding
bits stored in the four columns at row VA[22:27]. Thus a memory word may occupy one of
4 locations in the cache.

control processor - the microcomputer on Dorado's baseboard, or the Midas program
operating Dorado from an Alto.

dirty - a cache entry is dirty if the information in it differs from information in storage,
because a store has been done into the cache, and storage has not yet been updated. A
page is dirty if a store has been done into the page since its map dirty bit was cleared.

emulator - the lowest priority task, number 0, always awake. The emulator is distinguished
by the fact that it cannot block, can use Stk, and has a private pipe entry. Primarily the
emulator task will implement instruction sets. .

entry vector - the exit microinstruction of an opcode sends control to the first
microinstruction of the next opcode by means of IFUJump[n] (n = 0 to 3), where n
chooses one of 4 entry microinstructions for the next opcode; these four microinstructions
are the next opcode’s entry vector.

fault task - the highest priority task, number 15, woken whenever a memory fault or stack
error occurs.

hit - a reference which finds the desired word in the cache.
Midas - the Alto program used for loading and debugging Dorado remotely.
miss - a reference which does not find the desired word in the cache.

module - the unit in which storage is packaged, either 64K, 256K, or 1M words. A machine
may have 1 to 4 modules.

Dorado Hardware Manual Glossary 14 September 1981 151

MTBF - mean time between failures.
munch - 256 bits, or 16 machine words; the unit of data for main storage.

parity - the parity of a data unit is the exclusive-or of all bits in the data unit; parity has the .
property that changing any single bit in the data unit will also change the parity, so it can
be used to detect single failures. A data unit has odd parity when the number of 1's in the
unit is odd, even parity when the number of 1's is even. Dorado uses odd parity
everywhere, which means that the number of 1's in the data unit including its associated
parity bit should be odd when data is correct.

PC - "program counter". In this manual PC refers to the 16-bit byte displacements relative
to BR 31 (the codebase) which are maintained by the IFU for the current instruction set.
This term should be distinguished from TPC, which refers to the address of the next
microinstruction for a task.

pipe - a 16-entry memory which records the state of the last few storage references.
quadrant - one of the four 4k-word regions in a 16k-word control store.

RAM - "random access memory"; selected words in the memory can be both read and
written.

reference - a reference to the memory, initiated by the processor or by the IFU. A
processor reference transfers a single word between the cache and the processor; an io
reference transfers a munch between storage and an io device.

ROM - "read-only memory"; the contents of the memory are specified when the hardware
is constructed and cannot be modified during program execution. ROM elements used on
Dorado can be reprogrammed with a special device constructed for the purpose.

row - one of the 64 or 256 groups of 4 cache entries. The cache row in whlch a word
resides is determined by bits 20..27 of its virtual address.

storage - the main memory of the machine, organized in munches of 256 bits, or 16
machine words.

storage reference - a reference to the storage, initiated as a result of a memory reference.
A processor reference causes a storage reference if there is a cache miss or if the FDMiss
control is true in the memory control reglster an io reference always causes a storage
reference.

storage reference number (SRN) - an address of a pipe entry which identifies a particular
storage reference.

subtask - a two-bit number presented by an io device to the processor and memory system
while its task is running. The processor OR’s subtask with RBase[3]..RSTK[1] in
determining the RM address and with MemBase[2:3] in determining the base register
selection. The memory system buffers the subtask for fast io devices, and then sends it
over the Fin or Fout bus as part of device identification.

Dorado Hardware Manual Glossary 14 September 1981 152

tag - The extra bit in Md readout which complements for successive Fetch«’'es and
Store«’s by the same task. Agreement of the bit in Md with the current value equals
reference finished.

task - one of the 16 priority scheduled tasks. Special tasks are the emulator {task 0, lowest
priority) and the fault task (task 15, highest priority). Other tasks are paired with io
controllers.

VA - virtual address.

Vacant - a cache entry or map entry which does not contain valid data.

Victim (Vic) memory - stores 4 bits for each cache row. Two of the bits specify the victim
which will be chosen if a reference to that row results in a miss, and the other two are the

next victim.

victim - on a processor reference that causes a cache miss, the cache entry chosen to be
replaced by the referenced data.

WP - write protected. Map entries and cache entries have bits with this name.

=

From devices

Cnt=08-1 EEfa7]) | Mem
N ot s l__.mx@_.>7 Base* .
EElaz]l o BR .
Multiply AL!i[1 5] d ! 2 To Processor
Divide LA Fy beage g0
CDivide S
Q 116 To Control . Memory
alht (aseL, Fr) L Hnj18
ALU cary mus 5| Fureen Ly
‘ BSIK(OA) - Storee ety
oor1 T RBase aLas—s> o ohe RO S
.LoadMs::%, I0Store+
| CFlagse s,
A< {ASEL} {AsEL}
RM (FF} {FF}
Bd 5 256 x 16 hd
< R Boinfers |
E— STK J o EE(4:7] ShG
{Lc} 256 % 16 Risld o 3 TIOA.StP . 3]
_S.amd.ﬁllsDB Aeld i S 1 ot)
- Stkp [8 {ALUF} SALUEM)
a3] e A
{ASEL} : ALUsh1
B8 5 1 18 A. A >
r s o |SHIFTER {BSEL} /o
R ‘ ALU :16 ALY
M B Carry' {FF}
— B ALU=0 {shift mask}
AMux > Q S ALUKO
AMux 116 Shift Overflow
: ShCTt Controls QEE 5
ShC« BMux) Efﬁ AFE 5
{BSEL} (asEL} EEQ S] 16
{FF} EE.-1 S
I0Atten’
E‘.d_‘%‘ T+ s T {16 .
M TIOA [IOA L8
(o) Tisid * 1 1o devices
Aeld
. o—t __1> OB ! 18,
) > ‘ {FF}
L > BMux
o > Linke s,
o EQ._ {FF ASEL} pox | Mose s, —Lm—>r [iMe s,
Pines’ ? ﬂﬂ“‘%})—al-&ﬂw—s ‘ < ma'__;.b | GenQuies, -BWCRRed s, mlmf;
Cofi) (7). (A8 - EuMLE | \FUMBH S, e
Eaultinfo’ 5} Store« LoadMecr [ELMBE | HELMLELS, {JCN,FF}
LoadTestSyndrome {FF} L Bridnse s,
MemX Map« LIFUTeste 5,
MemC MemD MemX IFU Control
BLlOCK {FF}
RSTK ALUF BSEL LC ASEL FF JCN
T ! T T o S B K B T

1t 2 3 4 5 6 7 8

* Task-Specific
{xxx} Source of Control

T T T
9 10 11 12 13 14

Figure 1
Dorado
Programmer’s View

T | — | p— | p—
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

D1ProgView.sil

8/31/79

K g] A' " | / S l The +5V supply and one fan are controlled by a switch; -5V, +12V, and
8 v -2 V supplies, the other four fans, and the disk logic and spindle power
: Fast or slow 170 625in are controlled by the baseboard microcomputer (or the controlling Alto).
Fastor slow 1/O BaseB and ContB boards are equipped with temperature sensors that are
repetitively monilored by the baseboard microcomputer; most other boards
Fast or slow 170 have temperature sensors that can be monitored when the microprocessor
is halted. Inthe event some temperature exceeds 60 degrees C, the
DispM (Display controller) microcomputer will shut down the three power supplies that it controls.
H DispY (Display controller) The microcomputer also monitors power supplies; when any voltage or current
w— deviates from its allowed range, the microcomputer shuts off power to
3 DskEth (Disk/Ethernet controller) the three supplies that it controls,
Storage odd or Slow 1/0 The card cage shown here is beneath the Trident T80 disk, and both are
inside an enclosure designed to reduce the noise level for an office
Storage even or Slow I/0 environment. The total enclosure size is about 4 feet high x 4 feet deep x
2 feet wide (ugh).
Storage odd or Slow I/0 -t .
The machine weighs between 500 and 600 lbs.
Storage even or Slow I/0 :
15.5in Storage odd 5 Vﬁ-q Fan Ean 2 Ht_
- ™
Storage even ITWJ ‘_WTI
/|
Storage odd] | ; 45in
Five 240 CFM (free air) fans estimated to produce 1
Storage even 375 CFM airflow in the enclosure. 2
MemD (Cache data and EC) Estimated temperature rise of the exiting air is about
MemX (Map and FSM's) 8degrees C.
N Power consumption on each logic board averages
MemC (Memory addressing) about 85 watts, on each storage board about 55
IFU (Instruction Fetch Unit) watts.
) Side On each board -6 V power is distributed by Side
ProcH (Processor hi-byte) Panel fingers reaching across the board on the top Panel |13in.
. Wiring side from the back, -2 V power by fingers Wiring
ProclL. (processor lo-byte) reaching across the board on the bottom from
ContA (branching and tasking) the back. +5Vand +12 Vreach across the board
from the front on top and bottom. The power
ContB (microstore) fingers on the bottom feed through to the
component side on the top.
BaseB (Baseboard) .
Not to
Scale —
Power Supplies 35in.
10.5in 5Vx150A +5VX70A L EJLL.
2Vx75A +12Vx25A
+5 Voit +12Volt
. N 15in. |
Front View
: Top View
. . . . | Each board can mount 24 x 12 or 288 16-pin DIPs.
Z?g g;:ggc ;’g‘;’;ﬁéﬂaﬁ?g‘?&"? : lg;?:cl,(e'asnvélllsl. gfemultiwire. Normal MECL-10000 DIP's are connected to the ground
rinted cir c%it P plane and -5V supply. Logic nets are terminated
printe s. through 100-ohm resistors at one or both ends to the
The following shows approximate component count: -2V supply. The resistors are in low-profile SIPs that
11 Logic boards: 8 Storage boards: mount between the DIPs (144 8-pin SIPs per board).
2315 ic's of random logic 1056 ic's of random logic The + 5 V supply is used for TTL/ECL conversions and
246 1kx1 ECL RAM's 1152 16Kx1 MOS RAM's for TTL components. The MOS IC's on the memory storage
71 16x4 ECL RAM's boards and in the Map use the + 12V supply.
24 256x4 ECL RAM's
21 16Kx1 MOS RAM's
1600 SIP's
Figure 2
Card Cage

D1CardCage.sil
9/14/81

&m:laﬂ;_.l

Shift controls MemBase«+SC EE[37] > .
RFe _Aua) EE FUJump [EUMemB.| 2 Mem | 4o o
WFe _Alua 116 S F Base
Shce ShC ! | | * To memory
1Ce Alub 5 (BSEL} MemBX+SC ;A BN
Pointers«8
{FF} MemBase B
CteB Alb___ | 16
CnteSC EEM4Z] 5 Cnt B
T - b
{FF} —l 118 Mar’
Q - T
Pointers«B _g[12 15]; RSTK(Q:3) 2":,3 3—1 To memory
. -
RBase+B
IFUJump -9 RBase A
* .
RBase+SC EEfez {XZFE}L}
Address Logic
RM N >
_dEd_9) 256 x 16 -l I
qm;; ’ J -+ 15 XorSavedCarry
STK Risd B__s) g:rgzo NN
Aeld SHA rCarry
(e 256 %10 Ly — AuEM S
la [ALUEY Alrsny
— B—3f g 2X ALUFM | i uiisnt
Sto 5 ‘ Control
- + Stkp - N X | 108 _dPd 116
> Shifter _Al.u.a_> ShQ____é
ded st S ALU
Tin T* 116 Alub
e RN B >
Tisld (FF}
{Lc} Aeld O .
{Shift mask}
—Mae 5] > - Ml
1 N Y L 01 -Cmﬂam—au pointers’ <P
Be«const {BSEL} {Shift mask}
ALUL1S] {BSEL} {FF} FFY * PRy
T 1
s o N 6
i
ALU canry .
™~
Multiply |
Divide
CDivide SHRTL JOA 1 8
Qlsh1 TIOA +
Qrsh1 | * i
I——-—y To devices
l>cﬁ N~ 108 116 <
B L -
denotes register or memory
BMux | 18
T
> . To/from Memory, Control, and IFU
. — denotes multiplexor latch
Em—
denotes multiplexor ! .
_—y)
b~ denotes multiplexor with inverted outputs
—_—
Figure 3
Processor
* Task-Specific Hardware View
D1Processor.sil

8/31/79

By convention ALUFM location 1Sisused as a

variable by BitBIt (or elsewhere), while ALUFM
16+ ALUF[3] F location 14 contains controls for the Not-A
ALUFM operation normally used with shifts.
Bl 3 SHA
Th—sShDatall s,) Control —5
. . A
T op—SHAL Shit 1 —>_pPd
I-'-—ﬁ —S
Shift8 RESULTIl —>
Shift 4 ALU —3
Shift 2 Shift’ or ‘ ‘
BMux(i] Mask(i]’
The first stage of shifter multiplexing selects B
between R and T. When shift control is M
taken from ShC, ShC[2] = 1 selects T for SHA
and ShC[3] = 1 selects T for SHB. When the MdShiftand |
shiftis FF-controlled, SHA and SHB are taken Maski]
from BSEL as shown in the table below.
The 32-bit quantity SHA..SHB is then left-shifted Mask(i] = LMask(i] or RMask(i]
through an 8-in multiplexor controlled by the shift 8, ALUF[0:2] controls masking

shift 4, and shift 2 controls.

The hardware actually uses two inputs of
the Pd multiplexor when shifting. One of
these is the normal ALU path, and the
other is either Md (on a replace-with-Md
shift) or 0. The muitiplexor selectis
changed to the Md/0 path when the

The final stage is an inverting 2-in multiplexor which
is disabled when no shift is taking place.

Shift Data Paths bit is being masked out.
" Shift
Field SHA SHB Count RMask LMask
ShC bits: 2 3 N 4 811 1215
RFeA Al2] A[3] P+S+1 undefined 15-8

Functions that Shift controls come from ShC
un:: l%nghca WE«A Al2] A3 16-P-S-1 16-P-S-1 P except when BSEL.Ois 1 in
oa the microinstruction that shifts

shceB | B[2) 8[3] B[4:7] B[8:11] B[12:15]

BSEL.0=1 | BSEL.1 BSEL.2 FF(4:7] FF[4:7] FF[0:3] Shift controls come from FF
when BSEL.Q is 1, and the
source for Bis changed to Q.

P = A[8:11] = number of bits to the left of the field
S = A[12:15] = number of bits in the field - 1

The values for RMask, LMask, and Shift Count are and’ed by 17-octal.
The 32-bit quantity SHA[0:15]..SHB[0:15] are left-cycled by the
shift count and the right-most 16 bits are the shift data.

RF« and WF+ are intended for use with "reasonable"” values of P and S.

Derivation of Shift Controls

Figure 4

Shifter D1Shifter.sil
9/5/79

70 [jE]

FF

CBr Q[14]

‘l’\l/\

IFUAd FF JCN Link

RERR R b
\
T0 Ee':tl T0 TNIA
PE ==
72 [T]
PEnc StartCycle .
To [CBNT] Write
T3
y \ ~
swich _TL ro [T2ca]
\
Next TPCBypass [
BNPC
70 [CTask]
\l/ Switch —
StartCycle
RA
r2 [C1p]
StartCycle \l, T0 EEK———]
TLinkAd
RSTK
{2:3] \l/
IMOut
\I/ Write
T3
RIM
Phax4 [TEIMOUL] [l T2
Control
Processor \l/
cpsirb [CPReg | [Blink 173
UseCPReg \l,
BMux
y
M I<
TO T T2 T3 T4 \l/
TO T T2 T3 T4
T0 T T2 T3 T4
T0 T1 T2 T3 T4
TO T T2 T3 T4
T0 T T2 T3 T4
TO T T2 T3
Figure 5
Control Section D1Controlsil

9/5/79

T4

JCN

01 2 3 45 6 7

TNIA:
1 0 ADDRESSBITS LocalJump/Call | , , oM, . . | , gpoven, | |
2 3 4 6§ 6 7 8 9 10 11 12 13 14 15
1 1 ADDRESSBITS Global Call longal| | Lseyery, | o 0,0 0 0 o]
2 3 4 5 6 7 8 9 10 11 12 13 14 15
O O O O ADDRESSBITS Long Jump/Call ICIA[?:S]' L I JCN[4:7] l
2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4oomesssirs srancy Conditional Ln Ly Ofle9] ! lJCN[“Q]l 0 IJCNP"‘]' R[Ris result
000x CONDITION - Jump/Call 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RETURN | ink[2:15 I
0 1 efmncrion 1 1 1 Return PR S S S, L. ki U S AT S N
2 3 4 5§ 6 7 8 9 10 11 12 13 14 15
NEXT ICIA :3][InstrAddr(4:13] X IJCN sﬂ
0 0 1 yumeer 1 1 1 IFU Jump 2 Ly ngieAdgriasl L [
2.3456789101112131415
00 01 x1 1 1 undefined A long, local, or conditional branch is a call iff,
: before any modification of TNIA by branch
conditions or dispatches, TNIA[12:15] is 0;
Conditional Branch otherwise, it is a jump. .
JCN(5:7] -or- FF BRANCH CONOITION
0 60 ALU =0
1 . 8 ALU<O
2 62 Carry’
3 63 Cnt=0&-1 (decrement Cnt after testing)
4 64 R<O0
5 65 R odd .
6 66 I0Atten’ (non-emulator) -or- Reschedule (emulator)
- 67 Overflow
Return
JCN[2:4] FUNCTION Loaded into Link by Call, Return, or IFUJump
0 Subroutine Return
1 unused I I i I | CIAO:AS] +1 I
2 unused
3 unused 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 Read TPC
5 WriteTPC .
6 Read Instruction Memory RSTKE2:3]
Address is in Link. o] IRSTK.O | RSTK.1 |RSTK.2 . RSTK.3 lALUF.O 'ALUF.1 |ALUF.2 IALUF.3 | BSEL.0 l
Data appears on B[7:15] : : : . : : : .
when B«Link executed in 1 Par16 < BSEL.1 BSEL2 LCO , LC1 | LC2 | ASELO ASEL.1 ASEL.2
following microinstruction. 1 1 1 L 1 1 1 1
2 lBLOCK' FF.0 \ FF.1 . FF.2 \ FF.3 FF.4 \ FF.5 . FF.6 FF.7 I
1 1 1 1 1 1 1 1
7 Write Instruction Memory 3 iPar.ﬂ : JCN.O= JCN.1 : JCN.2= JCN.S: JCN.4: JCN‘5= JCN.GI JCN.?I
Address is in Link.
RSTK.3is 1to write Good (odd) parity is written The most significant bit of

the left half of IM, O to
write the right half.

if RSTK.1is 0, else bad (even)
parity is written.

data is RSTK.2 and the least
significant 16 bits are B[0:15].

v

IRSTK.O {RSTK.1 RSTK2 RSTK.3 ALUF.O ALUF.1 ALUF.2 ALUF.3 BSELO BSEL1 BSEL2 6 LCO , LC1 , LC2 ASELO ASEL.1 lASEL.zl
1 1 1)) 1) 1) L) 1 L] 1 L 1 L L) L)

RSTK.2 BO B.1 B.2 B3 B.4 B.5 B6 B7 B8 B9 B10 B11 Bi2 BI13 Bi14 BI5
lBLOCKI FFO , FF1 FF2 FF3 | FF4 FF5 FF6 FF.7 JONO , JON1 JCN2 JCN3 , JCN4 JCN5 =~ JCNG JCNJ!
L} L) I] LB) T T 1 L] 1 1 I i)
Figure 6

Next Address Formation)
’ D1Branching.sil

6/26/80

3

Normal: t2 t-1 t 12 t3 t4

l Bhase Q I StartCyale I Phase StariCycle

Fetch Instr ction Read RM 'e‘lé— ALU oplzraion /I<" Write RM -—>|

Calculale next address

Modify address byb.c. Fetch next instruction
CTD «CTASK / CTD «CTASK I CTD«CTASK I CTD«CTASK
MIR Loaded MIR Loaded MIR Loaded MIR Loaded
Return: 4 t 12 13 1
| Phasa 0 l StartCvcle l PhaseQ | StartCycle |
/)
/t CIAING«CIA +1 Link « ClAInc
MIR Loaded me"m——‘
|Eeloh nextinstrugtion /{_ CTDeCTASK
MIR Loaded,
. R . 0->right half 0->odd .
Write IM: Link = address, RSTK[2],,B[0:15] = data, RSTK[3] = 1] e?t half RSTK[1] = l 1->even Link clobbered.
j l] t]a t]b t]c t]d parity w[
Phase0 Phase 1 Phase 2. Phase 3 Phase 4 StartGyale
? _ 1
ClAInc«ClA +1 . Lii k(-ClAlnc)
,L /Lﬁalnbmunatmcﬁon J—ﬂmﬂ‘-‘m‘—-l
MIR Loaded LINK«ClAlnc _ l CTD«CTASK
Read IM: Link = address, RSTK[2:3] = 9-bit byte, data to BLink. Data available on B next cycle ONLY. Link clobbered.
t(i t‘ t]a t]b t]c t]d ﬁ
Phase Phase 1 Phase2 Phase 3 Phasa d StariCyale
1\ ' TPIMO«IM /[\
CIAInc«CIA + 1 LINK+ ClAinG LINK«ClAlnc
,t |_Eetch next instruction
MIR Loaded CTD«CTASK
TPIM Mux « IM MIR Loaded
Read TPC: B[12:15] = address (task number). Data to BLink. Data available on B next cycle ONLY
IT t] t‘a tlb L) tld ‘1
PhaseQ Phase1 Phase 2 Phase 3 Phase 4 StariCygle
ClAInc«CIA +1 CTD¢BMux[12:15] Link¢ClAinc TPIMO«TPC LINK «ClAInG

lL MIR Loaded

CTD«CTASK
TPIMMux « TPC MIR Loaded
Write TPC: B[12:15] = address (task number). Data from Link. Link clobbered
v(i l] t]a t]b t]c t]d «?l
PhaseQ Phase 1 Phase 2 . Phase 3 Phase 4 StariCvale
CIAINC«CIA +1 CTD«B[12:15] TPCl«TNIA (Link) LINK«ClAlnc
Link«CIAING oo ar TLinkx
(i ——tia 120
MIR Loaded Eetch next instruction "ﬂB]IE'IU'N'L—{

I CTD«CTASK
MIR Loaded
Figure 7

Instruction Timing D1/r;%!/7'g}1;'l;g.sil

Main storage

Cache data

Addressing

Time from

I Reference

' Fasti us se *
Time from °
Reference B
-+18 T8 e TS
Base
u
Base \l,—__
adder
K Cache
T 28 | address
T Ad memory
20.27 256 rows x 4 col
\ 15
1
4..19
/ = = =
“T18
a Encoder
T 28
4 I
3
Pipe Pipe
" o |]
135 - t48
428 24 12015 45
< 31 27 23 119
Cache
data Ad <
<
256 rows x 4 col
x16 words
15- 151 I “
| Ad IS
Gener_ate Map-
EC bits 16K x 16 Hit Miss
8- 119 —+s8 Rea] nage Flags |
Ec Data 12 -3
Storage S e
256k x 16 words
Data
t29 - t44 r Pipe
map
Generate
syndrome
Correct
135 - 150 single bit _~
Pipe Md * 16 57
errors 4
18 18
136 - 151 Ej
Fast output bus l - I
VA
T R A B Masker
Figure 8 D1Memory.sil

Overall Structure of the Memory System

9/5/79

9 |10I11 |12 l13 '14|15 |16 17 L18|19l20121 I22|23 '24 25 I26 '27 |.28|29|30|31 VA

R . ! | Word in
Stored in address section > Row '%' 4k-word
I XXX SRS S RN N SR NSNS NN SO U VNN NSNS SN N ‘ T I R N | I Mugeh | Cache
I Stored in address section J& Row f v'mrdci: 16k-word
X | IO (RSN NN FOUN N AN N R WA N S L v b l Luen Cache
Cache Addressing

4 ‘5 ‘6 I7 '8 I9 '10'11 |12 I13 |14|15 |16 |17'18|19‘20121 122123124 |25 |26 |27 |28'29130 31 VA

I | l Word in page 256-word
xx |ROJCO|R1| C1|R2 R3 R4 RS R6 R7 R8[C2,C3,C4 C5 C6 CT CB| x | x ,x X | Xy X X4 X Page
l@—-—— 16k-bit ic's in Map Rx = row
< 64k-bit ic's in Map Cx = column
< 256k-bit ic’s in Map x = unused
nolco 07|ca R1|C1 lnz F3 R4 RS R6 R7 Ralcz C3 C4 C5 C6 Word inpage . 1k-word
] | ! | I T T T | [A ' Xy X [Xy X g X) X] xyXy3X X Page
I’ 84k-bit ic's in Map -
< 256k-bit ic's in Map
4k-word
C5|C6|C7 CBIR1|C1 IR2 R3 R4 R5 R6 R7 R8|C2 C3 C4 :
| 1 | I T T T | L1 Xy X3 X3 X | X3 X 3 X3 X] %3 X 34X X Page
64k-bit ic's in Map Word in page
Map Addressing
}/ Real page from Map N {
RP RP RP RP RP RP RP RP RP RP RP RP _RP RP RP RP|VA VA VA VA 256-word
1051061 0710810931101 111129131 141151241 251 264 27 Page
T 1] ‘ i 1 1 I ¥) 1 i L] {
Storage has:
16kic's X X X X MO Mi R2 C2 R3 R4 R5 R6 R7 R8 C3 C4 C5 C6 C7 C8
64k ic's X X MO M1 Rt Ct R2 C2 R3 R4 R5 R6 R7 R8 C3 C4 C5 C6 C7 C8
256k ic’s MO M1 RO CO Rt Ct R2 C2 R3 R4 R5 R6 R7 RB8 C3 C4 C5 C6 C7 C8
RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP|VA VA VA VA VA VA 1k-word
1051 061071083001 1041111211314y 150 20423104125, 06807 Page
i l ¥] 1 I i L] i ' L] 1 l) 1]]
Storage has:

R7 R8 C5 C6 C7 C8
R8 C5 C6 C7 C8
R7 R8 C5 C6 C7 C8

16kic's X X X X X x MO M1 R2 C2 R3 R4 R5 R6
64kic's X X X X MO Mt Rt C1 R2 C2 R3 R4 R5 R6
256k ic's X X MO M1 RO CO Rt C1 R2 C2 R3 R4 R5 R6

888
e
3

RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP|VA VA VA VA VA VA VA VA 4k-word
105 106 1071081091 10111} 121134 14115120121 322123}24125126127 Page
1] L | L} 1 |] T 1 T 1 | {) L4

Storage has:
16kic's « x X X X X X X Xx MO M1 R2 C2 R3 R4 C3 C4 R5 R6 R7 R8 C5 C6 C7 C8
64k ic's X X X X X x MO M1 R1T C1 R2 C2 R3 R4 C3 C4 R5 R6 R7 R8 C5 C6 C7 C8
266k ic's X X X X MO M1 RO CO Rt C1 R2 C2 R3 R4 C3 C4 R5 R6 R7 R8 C5 C6 C7 C8

Storage Addressing .

Figure 9

Cache, Map, and Storage Addressing D1MemAddr.sil
8/31/79

B«Pipe0
(B+VaHi)

B+Pipet
(B+Valo)

B¢Pipe2’

B«Piped
(B«Map’)
B on Map+«

" B¢«Pipe4’
(B«Errors’)

B« Pipe5
(B+PRef)

B«Config’

CFlags«A’

LoadTest
Syndrome

LoadMcr

B+« Faultinfo’

] N
| LT L N T]]] 1 p VA[:15] 1 | 1 1] |
1 1) T) 1 1 L L] 1 T T 1 L] T L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I VA[16:31] !
| 1 i] 1 | 1 1 g | 1 1 1 1 1] “1
H]] L 1 H i T]] ¥ 1 L}] 1
0 1 2 3 4 "5 6 7 8 9 10 1 12 13 14 15

The read out of VA is in the same bit positions as base register load via BrLo ¢ and BrHi¢

< : Emu No. fauits - 1 —_— .
I Renyi/pe l SublTask : | Tas!(: ; Fault £<"' 7is no fault : >‘<—'= SF‘IN for flrs!t fault } é’
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RefType: 0 = undef. .
1 = storage read (Fetch«, Store«, PreFetch«, IOFetch«, IFU fetch)
2 = storage write (IOStore« or dirty victim write)
3 = Map¢ or non storage op.
le N
L 1 1 1 1 L ;___ Real page no. (RP) 1 1 1 1 1 1]
L) T ¥ 1 L] L] { i 1 1] 1) 1)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
!’ Syndrome
Map . Mem EC , Reversed X e .
| Ref roulery WP | Dirty |Error_| Faul | Quadv‘{ord é——t Bitinvord ><—= W?rd code! >=Pan!y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MapTrouble MemError EcFault Word Code Meaning
true false X Page fault o011 word 0
true true X Map parity error 101 word 1
false false false No error 110 word 2
false true X Uncorrectable error (DE) 111 word 3
false false true Correctable error (SE) other uncorrectable

IMBapB”f Fs'!“s” PI'°° e Store’ | IFURef, WMo Dy vacant | we Mi‘;‘(’,’gm Nextyictim | Vicjim |
o [] | l | [} | l l 1] 1] 1 [

2 3 4 5 6 7 8 9 10 1 12 13 14
PtpeS[O 7] are in the Pipe, Pipe5[8:15] are values read from cache address section during last ref.

15

Map

I@- ProcSRN[0:3] zﬁ- ASRN[0:3] —T—e\' L, MO M1 M2 M3 Chip$ize .D?fi'i’, P
o 1 2 a 4 5 & 7 8 ¢ 10 M 12 13 14 15
MO, M1, M2, or M3 indicates that a storage board ChipSize 0 = 4kx1ic's
pair is plugged into slot 0, 1, 2, or 3. . 1 = 16kx1ic’s
2 = B4kx1ic's
3 = 256kx1ic's
) Being |
SN TR ERRAE RERA MR SR M N Dirty Vvacant | WP Loaded | ~ [- [
L} 1] L} 1] 1 1 T ¥ LI 1 1 L} 1 L} N
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
1 e
< TestSyndrome DisEC L T Lty . T
} t t t t t 1 1 T T T T T T T
0 1 2 3 4 5 6 7 8 .9 10 1 12 13 14 15
TestSyndrome is xor'ed with the checkbits on storage writes
dVAe FD Use : : Dis . Report No I
g . : MorV : M?V ’ Mc!'NV : DisBR =DosCF : Hold INoRef ! - = less. oy ; w
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Mcr[0:10] loaded from MarMux, Mcr{13:15] from BMux

dVA«Vic = put contents of cache address memory addressed by row of last reference and column
of Victim into Pipe0 and Pipe1

FDMiss = "force dirty miss", causes each reference to miss and store the victim, even if not dirty
UseMcrV = Use McrV as the victim and McrNV as the next victim for all cache misses
DisBR = "disable base registers", prevents base registers from being added to Mar
DisCF = "disable cache flags”, causes cache flags to read out false and prevents writing them
DisHold = prevent hold from occurring
NoRef = prevent storage references
WMiss = wakeup fault task on every miss

. ReportSE’ = when true, wakeup fault task on correctable errors (SE's), provided NoWake is false
NoWake = never wakeup fault task

|< | . Emu No. faults - 1) 9|
‘ProcSRr;l[O.S] ><————I : ASRN[O.S] "—""9": lé' 71 " '9<—| Sl?Nforflrﬁfault
1] 1 L] 1 ¥ l 1) i
0 1 2 3 4 5 6 7 8 1 12 13 14 15

Figure 10
The Pipe and Other Memory Registers

D1MemRegq.sil
6/26/80

ODVOS

o

UDOS

—

UTOS

N

ODVOS

w

¢h«¢18
b messy Error Quad-word
guggén/grd ‘! Quad-word EXOR Corrector in Cache
instorage network Y 7
| gl L f
2 - D—'E% check bits [A
Exon m i in storage Leomouteg checicbis | Enedle
network
Check bits are EXOR of JDMMMLJ
data bits marked x SYNL) ROME
fore r ror

. lol1l2l3]als]el7] “msi other stuft

0Q X X X 002]/

o X XX 208 s

Q2 X XX 1.2.8 "

Q3 X X X X X LT | Pipe 4 |

Q4 X X_ X QL8

Qs X X X X X 22T

Q8 X 1 x X _X X 1447

Q7 X X 1x X X RS

08 X X X 0z %3

9 X X X X X 2457

10 X X X X X AVETRA

11 X X | X Ix_ x 2% 3

12 X X x x4t QF§7 Interpretation of SYNDROME

13 X X X X X 2€ ¥ 3

14 xix x X X 163 If and number of

15 X xix x X X X LT SYNDROME | ones in and
e W (- i furthermore JHEN,

0q ~ % a1 : 3 0 ALWAYS ALWAYS NO ERROR

1 X X X 2142

02 X X X 1142 Not 0 oDD syndrome bits SINGLE ERROR (data bit)

03 X X X X X 3113 4,5,6 have 2 X .)

04 X X X _0fi2 or 3 ones on Bits 4,5,6 give bad word:

Q5 X X X X X 25183

ce x lx X X 1643

Qz X x1x X X 2 011

08 X X X QRE?2 101

9 X X X X X 2K 110

10 X XX X X 123 111

1 XX XX X H L2 Bits 3,2,1,0 give bad bit:

12 X x x1 x x Q713 .

13 X X X X X 21%2

14 X1x x x X 17 %2 0000 00

15 X X 1x x X XX KT 0001 " |ot

[V R X 1X X 0153 1110 14

Q1 X x1x 21«1 1111 15

a2 —X XN : : Bad bit will be corrected if

04 x « T x 0F i 1 error correction is enabled

05 X X xlx X 25U

Q6 x1x x1x X 1E¥3 NotO oDo exactly 1 one SINGLE ERROR (check bit)

074 XX X 1x KRTRY in Syndrome X

08 ~ x| x k1 Syndrome | bad check hit |

Q9 X X _x1x X 203 200 0

10 X x x1x X 1283 100 1

11 X X X _Xx1x Akt 040 2

12 X x x1x X Q7 %3 020 3

13 X X o x x1x 47t Q10 4

14 xIx x x1x 174 004 5

15 X xIx x x1x X 37%3 002 68
el 001 7
= - No data bits will be changed.

Q0 xlx x 0153

03] X XX X X 21217

02 % x I x x x 13t NotQ obD syndrome bils TRIPLE ERROR!

03 < % x I x % 313 4,5,6 have 0 (but no data bits will be changed)

04 < Y L x % x QLT or 1oneson Syndrome is nonsense.

05 X X x1x X 28 K3

08 XX X1x X L3 Not 0 EVEN ALWAYS DOUBLE ERROR

Qz XX 1X X1X X X X il No data bits will be changed.

08 X XX X X 0kl Syndrome is nonsense.

Q9 X X X Ix X 15¥3

10 X X x1x x 25 %3

11 X X X X 1xX x X X7

12 X X x1x x Q73

13 X X X xIx x x 257

14 xIx x x1x x X 124l Figure 11

18, X X1x x x1x X f3

Error Correction

D1ErrCorr.sil
9/5/79

Jump displacement

= Hif LengthK = 2; SignK extends H.0
= TwoAlphaK..NK if LengthK = 1;

11

SignK supplies top 11 bits 15 - To memory
BMux0.15 PcF ™ h
~lump displacement)|
Adder 1;3
pPel pCX:
PcFGI™ Pcd =1 PcM PcX e 2
to,t1 to t0 to IEUMBH' S| :
, To
L LEUMLHE' S b o cessor
PC Pipeline Section
Memory
AfuFault 3
18 O TolFU
e F iu
-~
fea < TolFu
(aov) ‘
(PcFG.15) .
K-Level M-Level X-Level
t1 q t0
13 Alpha/Beta I
AlphaM AlphaX.4..7
|_Brkins > H 1' 1 pha 2 H 1d.4.7 <—_—->
Test MK F ™
J InsSet
Hos) , To
g LengthtM |—> LengthX Processor
p Section
o M‘m‘a"—-‘-———ﬂ TwoAlphaM |—>{ TwoAlphax | -
SignK i
j: EGParityE, 9 1 \= SignM l%l SignX ‘.._.{>_|.LLSIQ.D_D
| TypePauseK'
Trap Trap IEUM
Condition Address MemBK 3 S _ ST R
RamParityErr InsSet..74 Highest priority 1024 words 0 processor section
Not Ready InsSet..34 X 27 bits ARAceSAIK!
Reschedule InsSet..14 — = IfuRBaseSel’ To processor section
FGParityErr InsSet..04 ,
K Fault InsSet..00 Lowest priority _InstrAddrC 1 10
TrapAddr’ ‘ IfuAddr’ To control section
| RamParity0
other bits
. other bits
| BamParity2
other bits
°
Figure 12
Instruction Fetch Unit Organization

D1IFU.sil
9/5/79

Write
Sequence
PROM 1 Other
| Controls
Read
Sequence
PROM
4
1 16-word 1 Word
108 1? Format ?
RAM Counter
| P Tagmus
16 Tag Drl i‘fﬁTaQ 16 Daisy chain cable To Disk
1 Register |———CulinderTag == Drives
——HeadTag |
P Contro —_ControlTag |
' Register I TagTw
6 _|subsector | 4 .| Subsector
! Divider l Counter
I [i selected
Index.i)
WrFifoTW.
RdFifoTW
' _BeadDatafrr
FIFO
Control FifoUnderflow
FifoQverflow
1
- B 16-word Shift D
! FIFO Register JOBParitvErr Errors
| From
Controller
~Badialcabla] Select Et PariE
| Muff 8 Drive
T X y Select
16 Register Selected.0
Selected 1 NoiSelected
DMuxData s} DMux Selected2 |
Address T——t—— Selected3 |
DMuxClock | 4
l . Status
- NoTerminator
CvlinderQffset Errors
NotOnline From
l Disk
' U i E —Daisychaincaple Si—TOHEAN— 1 prjyeg
|_HeadQufl
|_Seeklnc
Muffler |_DevCheck
Multiplexors ReadOnly -
DMuxData >

Figure 13
Disk Controller

D1Disk.sil
9/5/79

| €———————— Horizontal Blanking l< Visible Scan
Ié— Horizontal Sync —9’ L Visible . isi
left margin—'; &———— visible data rig\r(;srlr?z;?gin
1stFIFO 2nd FIFO
[<—— Hwindow —>) Read Read
32 LeftMargin S<— 15 —>fe— 18 —>|< Width
Che(z)n:el |Cursor video I Chg’f‘f“e'
< CursorX < 16]
A or B channel timing (in pixel clocks, not to scale)
_Altem.0 Altem,0
emi | Btemd L pgary)
oladly ~Altem3 |
Blem0o | ROB)|
AOn
|NLCBAddr l Bon PCik
_ama__1_1> mop b MiniMixer | 4 v . Grey-scale
256 x 4 RAM 1 Allemi4:7] DAC [Fdee—q
12 NLCB |12 CLCB
! 16x 12 ! Various
RAM registers MiniMix.0
HSyng .
10 See Figure 15 for layout 7-Wire ‘ i D)
of NLC8 and CLCB registers VeW Sync Csa\l’iik Interface To Terminal
] HRam | Generator VBlank
! 1024%3 W_HRamOut
RAM
) TO Dbl ltemClk's :
10, I1 . 3 N _i__AlLem__D
Fout 1? 5 AQdd 1? r FIB8 i SIB [t SR
L FIFO 3 3
11 256 32 F 5| permuter 1> Fia 5] sie [SF->{ sr [—flen
REven P RAM
] FIFO is written during FH and .
128 words of ACanReadFIFQ ; is read during the SH; reads 5
FIFO used by A, alternate between channel Pixel —PixelClic ™
128 by B. ~AWrilingFIFO s A and channel B (irrespective
' of whether or not the channel > (_>— Clock —AllemClk
-ABeaderPir , wants the FIFO). System |—8llemClk o
: < } Backpanel
—AWrterPtr o jumper
. Bwriterpte I
DispY
DispM (notincluding independent terminal interface)
- H4yen{ G Bufer | CMap Addr Green
P CMap 8 Green Video
248itMode 256 x 8 T Qutput D
Bio8 5| Dorado Reg
CMap Addr
|l A Buffer I' ?) ?
Mixer Addr Mixer Red Red
AOn | AM) q Video
ane s (AMap) =—— output —DAC <D
28108 5} Dorado 1024x24 | & Reg
Mixer Addr i
C O+l B Buffer g
— ! BMap Addr iy 5 | |Blue Video
n a i
BBypass 056 rg [Output -
BIOB Dorado Reg
Reg .
Figure 14 D1Display.sil
8/30/81

Display Controller

TIOA Output
377 (Y)) P Use DHT
PO X ake Fake OWT shutup
367 (M) Statics . e MUfAdd{5:11] ————— Eﬁ;gl‘; Pixel pixel - Shutup Reset
1 1] 1 1 1 1 1 (Clock | Clock , 1 1 1 DbC*
] 1 ! 1 1 1 I 1 i] i]] I |
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
[<S——NLCBAddr[0:3] < NLCB data
0 VCw* 10 - VBlank VSync QddFid
1 AMargin* 11 BMargin Left margin count (negative)
2 AWidth* 12 BWidth Width count (negative)
376 (Y) 3 AFifoAddr* 13 BFifoAddr G Fif0 Address (even)
366 (M) NLCB** 4 AScan** 14 BScan . \Polaritys Resolution , Size8 , Size4 , Size2 , Sizet
i T 1l 1) T 1
5 MixerMode 24Bit BBypass A882
15 CursorX* Cursor position (negative)
6 - 16 CursorLo* K Cursor data [8:15]
7 - =17 Cur?orHi‘ < } y : : T ; (I;ursor dz!ta [0:7] } 7 ;
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
' Keep Write Load - . € Addr[1:10] >
375 (Y) HRam HRam' HRam' HRam .-
{ y Addr - - P - 1 g e - ¢ . - {HSync HBlank ,HalfLin
1 T) I) 1 1])) 1 1 { 14
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
374 (Y) . ’ Set Set Must
364 (M) DHTFlag - - - - - - - - - - - - - BNext ANext Be
1 1 | ! | 1 | 1 1 1 1 1 y WeB , wes*, o°
) { 1 L] L}) L]] 1 i i) L] 4 1
] 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
M Mt
A ioreton "5 55 "Be' Crwcn
363 (M) 1 1 1 1 1 1 1 1] 1 1 1 0 4 0 Flag
L} 1 i L L} L} 1) 1 { 1) L L} L
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
372 (Y) MiniMixer < Address[0:7] >< Data[0:7] >
1 1 1 1 1 1 ! 1 1 1 1 1 1 1 !
] 1) 1{ 1 L] L} 1 1 L}] 1 i L L 1
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
. Load
365 (M) BMap ;(Aea‘;‘? m’;‘? Map - - . . . €& Address[0:7] OR Data[0:7]
362 (M) CMap 1 P Addr 1 1 1 1 ! 1 1 1 1 1 ! !
] 1) L]) 1 1 L] L T L]] L ¥ 1]
0 1 2 3 4 5 [5) 7 8 9 10 1 12 13 - 14 15
< "
- Addr[0:9] Hi/Lo =
. Keep =~ Write lt\-/i?)?gr . |[&——— Red[a:7] > Blue[0:7] -10
361 (M) Mixer Mixer' Mixer' 40
, . . < — - @reen[0:7] - - - < — Red[0:3] ——>| 1
1 i 1 T L] 1 1 1 1 L] 1] 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
360 (M) PixelClk - - - RS Multiplier Divisor
(] 1 [1 1 1 i 1 i 1 1 i 1 i (]
I 1) 1]] 1 T L} L L 1 1 1 1 1)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TIOA Input
370 (Y), Status** Terminal .. - - . . . Muffler
Data 1 1 1 ! 1 1 1 1 | 1 1 1 1 Data
1 1 1 L] 1 1] 1 1) 1 1 1 1 L] 1 L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TIOA InputNoPE)
Color
361 (M) MapinLo l&——pmonitor Type == Red[4:7] Blue[0:7]
1 1 1 1 1] 1 1 1 1 | ! 1 1 1
i 1 LI i L] L) T 1) 1 1)) L] 1
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
360 (M) MaplnHi** gz;r:jnal 1 - Green{0:7] Red[0:3] —>
1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1
1 T 1 1] 1] 1 1 1) 1) i 1] 1 1 L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* Parallel registers DispY/DispM
** Only starred bits or fields are used Figure 15 D1DispReg.sil

on DispM; all others are ignored

Display Controlier 10 Registers

8/29/81

ECIk EClk ECik

_BxCollision
—PDinput | - PDOId Phase POCarrier RxData
Decoder | ppEvent(0:1] RxSync'
BxCollision FSM 0 Noevent) | BxlncTrans
BxDatalate } 1 Collision Receiver | RyCRCReset
BxCRCError BxEifoRdPYr 2 Data0 FSM RXCRCCIK
i 3 Datat
ECIk
16 | BxCirif0:1]
| s
i SR 5| Receiver 71 —ExSRFUl
D_‘__ FIFO |18
|_EthDatao:17]
16-word !
ECIlk Parity L x 19-bit T1 B — CRC
RAM BxCRCClK | _RxCRCError
EthData.18 Check
BxEOP } - IOAtten BxCRCReset
Receiver
) T1
IxFifoRdPtr
T1 Trans T1
18 18 mitter 18 1 .
wire-or
JoB ¢ } FIFO Lidsn la PEQ I
16-word IxOff | .
x 18-bit XcCollision | Phase "I‘m"m”"—ﬁ Bl
RAM IxCRCEnbl | crc - BxCollision | Encoder -
IxCRCCIK | Gen TxGo
IxQOff
IxEnd IxData TXOff L
IxAbort] | IxCRCEnbl _TXFifOPE pmee|
Lt 4 Trans L TxCRCCI M
LSREmpty | ™Mitter | TxGone
GotTxBit | FSM TxGo) TxEifoEmpty
Transmitter
TIOA = 018 Tx Tx Rx Test No
EthC Cmd TxOn T«EOP Cnt Cmd R:On RXBOP' - Cma LOOP Sindle ., Jest — Test Test Report
Output«B Enbl’ ! g Own_ Enbl’ : : y Endl_y : P . : : l :
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TestCmdEnb!’ enables setting of LoopBack, SingleStep, NoWakeups, TestClock, TestColl’, TestData,
and ReportColls
RxCmdEnbl’ enables setting of RxOn and RxBOP’
TxCmdEnbl' enables setting of TxOn and TXEOP
’ No Tx . Tx
EthC < Host Address RxOn TxOn Eggﬁ TxColl Wake Data Ssnr‘\eg';e Fifo
Pd«Input 1 1 1 1 1 1 1 1 1 1 1 y ups ; Late PE
o 1 2 3 4 5 & 7 8 8 10 1 12 13 14 15
Host Address is set by backpanel jumpers
TIOA = 015 Rx Rx Rx Rx
- - “ - - - - - y - Data - CRC - - Inc
EthD 1 | I ! 1 ! ! ICO Illsmnl | Late ¢ y Error 4 1 y_trans
Pd«Input o 1 2 3 4 s & 7 8 9 10 1 12 13 14 15
(Receiver status word following end-of-packet)
Figure 16
Ethernet Controller .
D1Ethernet.sil

8/30/81

BSEL Decodes ASEL Decodes (FF is ok) ASEL Decodes (FF not ok)
BSEL Primary External ASEL FF[0:1] Meaning ASEL Meaning
[} Md - 0 0 PreFetche RM/STK 0 Store+ RM/STK
1 RM/STK - 1 Map+RM/STK (emu/flt) 1 Fetch« RM/STK
2 T .- IOFetch«RM (io) 2 Store+ T
3 Q Q¢ B 2 LongFetch+ RM/STK 3 Fetche T
4 0, FF 3 Store+ RM/STK 4 A« RM/STK
5 377, FF 1 0 CummyRef+ RM/STK 5 Aeld
6 FF,,0 1 Flush«RM/STK (emu/fit) 6 AeT
7 FF,.377 10Store «RM (io) 7 Shift operation
2 IFetche RM/STK -
LC Decodes 3 Felch« RM/STK RSTK Decodes for STK Operations
) 2 0 Store« Md RSTK[O0] 0 = No ovfl/undfl check
LC Meaning 1 Store« Id 1 = Ovfl/undfl check
0 Noaction 2 e Q RSTK[1:3] Meaning
! Terd 3 0 Fe?éi‘- Md 0 No.StkP change
2 Il e AM/STK P 1 Fetcheld 1 StkP ¢ StP +1
a RM/STK« Md 2 Fetch+ Q 2 StkP« StkP +2
5 Te Pd, RM/STK¢ Md 3 Fetche T 3 StkP« StkP +3
6 RM/S"I'K‘- Pd 4 - A+ RM/STK 4 StkP« StkP - 4
5 - A« 1d 5 StkP+ StkP - 3
7 T« Pd, RM/STK+« Pd
; 6 - AeT 6 StkP¢ StkP -2
7 - Shift operation 7 StkP ¢ StkP - 1
FF Decodes
00017 A[12:16]« FF[4:7] ALUFM Control Values ALUF Shift Decodes
gg? ﬁ: ?M/ STK Logical Arithmetic (no carry) ALUF[0:2] Meaning
022 Ae Md Value Addr Meaning Value Addr Meaning 0 ShiftNoMask
023 AcQ 1 18 NOT A -0 1 A 1 ShiftLMask
024 XorCarry 3 NOTAORNOT B 6 2°A 2 ShiftRMask
025 XorSavedCarry 5 NOTACRB 14 2 A+B 3 ShiftBothMasks
026 Carry20 7 A1 (all ones) 22 5 A-B-1 4 ShMdNoMask
027 ModStkPBeforeW 1 NOT A AND NOTB 36 13 A-1 5 ShMdLMask
030 . 13 14 NOTB 6 ShMdRMask
ReadM 15 AXNORB,AEQVB, A=8B I 7 ShMdBothMasks
g; Pg«a-dln:gt 17 AORNOTB Arithmetic (with carry)
033 Pd« InputNoPE 21 NOTAANDB 200 12 A+1
034 Risld 23 10 AXORB,A#B 206 2*A+1
035 Tisld 25 0 B 214 - 3 A+B+1
036 Outpute B 27 7 AORB 22 4 A-B
037 FlipMemBase 31 1 AO (all zeroes) 236 A
040-57 Replace RSTK by 33 15 AANDNOTB
FF[4:7] for write 35 AANDB
060-67 Branch conditions 37 A ‘I‘
070 BigBDispatche¢ B ALUFM addresses for operations
o7 BDispatch+ B in standard system microcode
072 Multiply
g;i Q-8B Derivation of Shift Controls
075 TgetsMd Field: SHA SHB Count RMask LMask
076 FreezeBC ShCbits: 2 3 47 811 12:15
077 Noop
RFe A Al2] A3} P+S+1 undefined 15-S Shift controls come from
100 PCFe B WFeA A[2] Al3] 16-P-8-1 16-P-S-1 P Shc when BSEL[0] =0 in the
101 IFUTeste B ShCe B B{2] B(3} B[4:7] B8[8:11] B[12:15] microinstruction that shifts
102 IFUTick Shift controls come from FF
103 RescheduleNow BSEL.1 BSEL.2 FF[4:7] FF[4:7] FF[0:3] _] when BSEL[0] =1, and the
104 - . . source for B is changed to Q
105 MemBase« B[3:7] P = A[8:11] = number of bits to the left of the field
106 RBase« B[12:15] S=A[12:15] = number of bits in the field - 1
107 Pointers¢ B -
11017 -
120-21 - 143 TaskingOn 165 B¢ Piped’ (Errors’) 260-61 -
122 CFlags+ A’ 144 StkP« B[8:15] 166 B« Config’ 262 Pde ALUFMRW
123 BrLo« A 145 RestoreStkP 167 B¢« Pipe5 263 Pde ALUFMEM
124 BrHie A 146 Cnte B 170 Be PCX’ 264 Pd¢ Cnt
125 LoadTestSyndrome 1147 Linke B 171 Be«EventCntA' 265 Pd+« Pointers
126 LoadMcr[A,B] 150 Qlsh 1 172 B« IFUMIRH' 266 Pd e TIOA&StkP
127 ProcSRN+ B[12:15] 151 Qrsh1 173 Be IFUMLH' 267 Pde ShC
130 InsSetorEvent+B 152 TIOA[0:7]« B[0:7] 174 BeEventCntB’ 270 Pde ALU rsh 1
131 EveniCntB¢B 153 - 175 B« DBuf 271 Pd« ALU rcy 1
132 Reschedule 154 Hold&TaskSime B 176 B¢ RWCPReg 272 Pde ALU brsh 1
133 NoReschedule 165 WFe A 177 Be Link 273 Pd« ALU arsh 1
134 IFUMRH« B 156 RF« A 274 Pde ALU Ish 1
135 IFUMLH« B 167 ShC« A 200-17 RBase« FF[4:7] 275 Pde ALU lcy 1
136 IFUReset 160 B« Faultinfo’ 220-37 Replace RBase by 276 Divide
137 Brkins« B 161 B¢ Pipe0 (VaHi) FF[4:7] for write 277 CDivide
140 UseDMD 162 Be Pipet (VaLo) 240-47 TIOA[5:7]« FF[5:7]
141 MidasStrobe+« B 163 B« Pipe2' 250-53 MemBaseX« FF[6:7] 300-37 MemBase« FF[3:7]
142 TaskingOff 164 B¢ Pipe3’ (Map’) 254-57 MemBXe« FF[6:7] 340-57 Cnte FF[4:7]
360-67 Wakeup[FF[4:7]]
Figure 17

Programmers’ Crib Sheet

D1CribSheet.sil
9/26/79

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001_Introduction
	002_Overview
	003
	004
	005
	006
	007
	008
	009
	010_Processor
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026_Control
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036_Memory
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064_Instr_Fetch
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085_Slow_IO
	086
	087
	088
	089
	090_Fast_IO
	091
	092_Disk_Controller
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109_Display_Controller
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124_Ethernet_Controller
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136_Error_Handling
	137
	138
	139
	140
	141
	142
	143
	144_Performance_Issues
	145
	146
	147
	148
	149
	150_Gossary
	151
	152
	Fig-01
	Fig-02
	Fig-03
	Fig-04
	Fig-05
	Fig-06
	Fig-07
	Fig-08
	Fig-09
	Fig-10
	Fig-11
	Fig-12
	Fig-13
	Fig-14
	Fig-15
	Fig-16
	Fig-17

