VS

Principles of Operation
Release 7 Series

VS

Principles of Operation
Release 7 Series

1st Edition — February 1986
Copyright © Wang Laboratories, Inc., 1986
715-0422

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However, nothing
contained herein modifies or alters in any way the standard terms and conditions of the Wang purchase,
lease, or license agreement by which the product was acquired, nor increases in any way Wang's liability
to the customer. In no event shall Wang or its subsidiaries be liable for incidental or consequential dam-
ages in connection with or arising from the use of the product, the accompanying manual, or any related
materials.

SOFTWARE NOTICE

All Wang Program Products (software) are licensed to customers in accordance with the terms and con-
ditions of the Wang Standard Software License. No title or ownership of Wang software is transferred,
and any use of the software beyond the terms of the aforesaid license, without the written authorization
of Wang, is prohibited.

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of Part
15 of FCC rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment in a residential area is likely to
cause interference, in which case the user, at his own expense, will be required to take whatever meas-
ures may be required to correct the interference.

PREFACE

This manual describes the machine architecture of Wang VS systems.

The manual is one of several that, used together, enable the reader
to write operating system applications and user applications in assembly
language. While the VS Assembly Lanquage Reference (800-1200) describes
the conventions of assembly language programming on the VS, the VS
Principles of Operation describes the operations of privileged and
nonprivileged machine instructions. The VS Operating System Services
Reference (715-0423) describes system services and their assembly
language calling sequence.

The chapters of this manual fall into three sections:

Chapters 1 through 7 describe machine organization, general
instruction and data formats, instruction execution, interrupts, Control
mode, and the Debug facility.

Chapter 8 describes the format and operation of each machine
instruction.

Chapters 9 through 13 describe the characteristics of I/O devices
(including workstations, printers, disk and tape drives), with special
attention to input/output command words (IOCWs) and input/output status
words (IOSWs).

For information on the VS operating system, the reader can refer to
the VS Operating System Services Reference and the current Software
Release Bulletin.

The following manuals are referred to in this document:

. VS Data Management System Reference (800-1124)

e VS System Operator's Guide (715-0418)

i1i

CHAPTER

CHAPTER

CHAPTER

.
W

3.2

3.3

CONTENTS

INTRODUCTION TO VS SYSTEMS

VS Family Characteristics

VS15 Basic Configuration
VS65 Basic Configuration ..

VS100 Basic Configuration

VS300 Basic Configuration

MACHINE ORGANIZATION

Central Processor ...

General Registers .
Floating-Point Registers

oooooo

..........................

ooooo

Control Registersceeeeeeerscesscsssscscsanns
Translation RAM (T-RAM)

T-RAM Monitor Area

@9 0 e e 000000 e 00000 s00sce s

Translation Buffer (T-BUF) ..

Reference and Change Table (RCT)
Arithmetic and Logic Unit (ALU)

o0 e 00 00

oooooooooooooooo

e e e e s 00000t es 000

Clock Ceereesesteasesanas ceccscestacenesscans
Time-of-Day Clock cetesenn Ceteesteseceacennn
Clock Comparatorccecveesenns teesscesensanns

I/0 Processors (IOPS)cevvecercnecnescccanncnns .

Main MemOLY ... ceeeeenceoaneossocoaoacnsnsns ceeeseens
Information FOrmatsceeeeeeeenccannscanna

Conventions of Description

Addressing .

e e s o 0

DATA ORGANIZATION

Instructions ..
Operands ...

Instruction Format
Operation Code
Fixed-Point Instructions ...

Data Format

e e 00000

e s o0 0

LR Y

......................

..............................

0o 00

®© © 5 0 00 000000600000 000s000000000s00e00o0 .

Fixed-Point Arithmetic
Decimal Instructions

Decimal Arithmetic

Data Formats

...............................

oooooo

ooooo

(- HITIJ [
Vb WD

NN ? ? ? ? Tn? ? NN NN N
NNOOQAUUIU e DB WH

NNNOU W

CHAPTER

3.4

4.3

CONTENTS (continued)

Floating-Point Instructionsccc0veieeenn,

Floating-Point Arithmetic e
Data Formaticitiieicenencscnnccncncsnanns
Normalizationc.ceeieneescecaconacns ceeesas

Floating~Point Instruction Formats
Decimal Floating-Point Instructions

Logical Instructionsceeveveenscoccnncccnans
Fixed-Length Logical Datacccvvvevvevnnnnesn.
Variable-Length Logical Data ceeeas

Summary of Data Formatsccceeeceeeneesceccnnss

Linked List Instructionscceeeeveeveerenencoes
Structure of LIFO LisStScicecteesccnnnccnanss
Structure of FIFO Listsceevveriicrcnnnnanans

Semaphore Manipulation Instructions

Stack-Oriented Instructions Ceeececasaenerennan

Stack Switching ceeseranan Meceesescaansannn

INSTRUCTION EXECUTION

Program Control Word et estseensesasctarsaaes .
Wait Stateiiiiiiiiiriiniieienronenncronaanns
Condition Codesivieeveneceenoescnnsonananns
Process Levelsciiiieinnnncannns ceeeas e

AdAresSing c.ueieeecetesoneesesacosoccsasnnasnancnns
Base-Displacement Address Generation
Relative Address Generationc.cceveveninns
Direct Address Generationv... oo ..

Address Translationcecveeeees e eaeese e
Physical/Virtual Address Spacecccceeeeunns
Main Memory Page TablesS ...cvoieveecrcnccncensaons
Local Page Table Ceteeccessesasatanaonn
Segment Control Registersceeeceeecenncacns
Region Tablecccuvn.. e cecesesaaneaneanns
Summary of Address Translationcevcuue.e
T-RAM Monitor Area Ceetssesscsteeaneeesenes
Reference and Change Tableciecvveecenenns
Alternate SCR Formatciieiieinnenecacnnns

Sequential Instruction Execution Ceeeeenen

Branchingciiiiiniiinennnss Ctscerseretesenanan
Instruction Formats S eeses ettt

JSCI Instruction et ceetaecsoas Cereaenas e
JSCI Save Areaeoevvee et tecesessecasecsnonas
Linkage Tableicvveveceocsoncecnssacsonaanos
Control Registers 6 and 7ccicvueennn e

Subroutine Branchingiceeetecieencrnceases

vi

3-10
3-10
3-11
3-13
3-14
3-14
3-15
3-15
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20

lbbhvbbbbhbbbrlhbbrbnbbh
WO NN NSO ULU D W =

T
o |
w N =

4-14
4-16
4-16
4-17
4-17
4-18
4-19
4-19
4-20
4-20
4-21

CHAPTER

CHAPTER

(S8
N =

o,
W

5.7

5.8

6.1

6.2

CONTENTS (continued)

INTERRUPTIONS
Introductionceeiiienieeeneeeeceneaoccnscnonns
Point of Interruptionccceveeevecennee ceeens
Instruction Executioncciciiieeeninnn.. .o
Location Determinationccecetieececceennnns
Main Memory Locations ceeeccsccscessesseasans
Input/Output Interruption Cetesecsacsansanse
Clock Interruptioncccieeueeesecncccsosascnnans
Program Interruption ceeeeeen ceceseeanes ceen
Program Interruption Codes in the PCW
Access Exceptionscciiiiiiiiiinticienaaens
Operation Exceptioncc... ceesecsenss
Privileged-Operation Exceptionceiceeeenn
Execute Exception Ceetreesetereresenneann
Protection Exception secsseasscsrenncna
Addressing ExXceptioncceceevcecscccccsssacons
Specification Exceptioneicitieceeconccans
Data Exception ceeenn ceeneaes seceseanee
Fixed-Point Overflow Exceptionccceeeceues
Fixed-Point Divide Exceptioncccieeeeees
Decimal Overflow Exceptionceeeeeeencane
Decimal Divide Exception setesescsens
Supervisor Call Range Exception cees
Load or Trap Exception Ceerecaeens .es
Debug Facility Exceptionsc00.. ceeeees

Address Translation Exceptionscccee0eneen
Stack Facility Exceptionscccveeeecsncscces

Floating—-Point Exceptions Ceeenenn ceeenn
Machine Check Interruptionc.ccvieeeecencnns
MEeMOrY EXFrOr ..cveeioesoseasssessassssossnsnannsaes
Interrupt Codescciiiieneeeccacnsencnnanns .o
Priority of Interruptionscciiveeeeienennns
OVerVIiEeW ...iiiieeeeoneerneasessocsasonaosnocnnses
Priority of Detection eeeesaneann

CONTROL MODE

Introductionccciiiiiiriieninnennnnannns i
Control Mode Facilitiescciiveiienesenenncenes
Control Mode Communications Areac.cceeeeeeas
Methods of Entry ettt ei it .o
Entry from IPL (VS100) Chee et ceen
Entry from IPL (VS300)ccivreiirnnnncnonnnsnan
Entry During Program Execution Ceceseen .

vii

un.nmmmmmmmmmmu‘nmmmmmmmmmmmm
WOOOWOWOWOOWONNNNNNOAOODUTN W WNDNDNDN

T
== |
o o

5-11
5-11
5-11
5-13
5-13
5-14

CHAPTER

CHAPTER

[+3]
Ul W

[=)}

NN SNNNNN
SN U WY

~N o

CONTENTS (continued)

Load Commandsccuieeeeereeccencccsosaansscanene
VS100 Load Commandsc.citeeeetecesccccncnna
VS300 Load Commandscccieeeeecenccccanccnna
Execution of Load Commands -- VS100
Execution of Load Commands — VS300

VS15, VS65, and VS100 Debug Commandsce00ves.

VS300 Debug Commandscocceecenerecncecnnnosas
PF Keys for ECommandiitiiiiernecocnnanens
Cursor Control Keys for M Command

Entering and Cancelling Commandscceceveeees

Editing Command LiNeSceeseesecccocsssoscnsoacnns

Control Mode DUMPS . ..cccvetecaccececonsennnscnsesas

DEBUG FACILITY

Debug Facility OVErVIewcceevevccerceascccscnnss
Trap TypPeS .t vieiereeeeesoencaoecosseensasasencsassas
Control Register 3ciiieeereetenescceanensnnnens
Control Registers 4 and 5civeinineironeccnnenns
Control Register 10ciciiiiieiiiiircnennncnnas
Table Formatciieiiiieineneeeenerococncenanans
Table Entry Formatciiieieinenrennnenncnnoas

Format of Byte 0viierinnrieiniennnnnnnnns ..

Format of Bytes 1-11ccvieiinneccencanennsas
Counter Wordiieiiiieiiieeeeesennencnnncnnas

INSTRUCTIONS

General Instruction Setciiiiiiiiiinencacncnns
ADD (AR, A) ..ttt cietiocesnosassosssosssssssoensas
ADD DECIMAL (AP) ...t eeecsccensceancsancsononoes
ADD DECIMAL (FLOATING-POINT) (AQR, AQ)
ADD HALFWORD (AH)vuieerireneeenecnnnnonnnsan
ADD LOGICAL (ALR, AL) ..icievereccecnsancnsnannnns
ADD NORMALIZED (FLOATING-POINT)

(ADR, AER, AD, AE) ...veeeveecocscsoncsncosnsns
ADD UNNORMALIZED (FLOATING-POINT) (AW, AU)
AND (NR, N, NI, NC) ..vcetiecencnronnsacsnancnsos
ARGUMENT CHECK FOR SYSTEM ROUTINES (ACHECK)
BIT RESET (BRESET) .c.cvececretoccnsoanaosanasnnons
BIT SET (BSET) .vvevrveeceaccosnscsasnssocesnsnsnns
BIT TEST (BTEST) ...ccveereccececcenascensnananssns
BRANCH AND LINK (BALR, BAL)cvivecevecancsns
BRANCH AND LINK (RELATIVE) (RBAL)ccco000eces
BRANCH AND LINK ON CONDITION INDIRECT (BALCI) ...
BRANCH AND LINK STACK (BALS) .¢.vcvcerccocnaccnns
BRANCH AND LINK STACK (RELATIVE)(RBALS)
BRANCH ON CONDITION (BCR, BC)cicieeeeecnnn

viii

\l\l\l\JTl\l\l\l\l\l
N WWWwWwNDN -

CONTENTS (continued)

BRANCH ON CONDITION (RELATIVE)(RBC)cc... 8-23
BRANCH ON CONDITION INDEXED (RELATIVE) (RBCX) ... 8-25
BRANCH ON CONDITION STACK (BCS)ceceveeeenans 8-26
BRANCH ON COUNT (BCIR, BCT)cccceceecnnnccnns 8-27
BRANCH ON COUNT (RELATIVE)(RBCT)cc0nuevveus 8-28
BRANCH ON INDEX HIGH (BXH)ienveveennnnnn 8-29
BRANCH ON INDEX HIGH (RELATIVE) (RBXH) 8-29
BRANCH ON INDEX LOW OR EQUAL (BXLE)ccceve.n 8-31
BRANCH ON INDEX LOW OR EQUAL

(RELATIVE) (RBXLE) ...cvvvriennnnnennncnnnncnsas 8-32
COMPARE (CR, C) tiieveriencecenonnnnosnncsonnnanss 8-33
COMPARE (FLOATING-POINT) (CDR, CER, CD, CE) 8-34
COMPARE DECIMAL (CP)civeneeneccnnccacnannns 8-36
COMPARE HALFWORD (CH)cetiiriineencseancanans 8-37
COMPARE LOGICAL (CLR, CL, CLI, CLC)ccveeenns 8-38
COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) 8-40
COMPARE LOGICAL LONG (CLCL)icveeencccnnnnss 8-41
COMPARE LOGICAL WITH PAD (CLPC)ooveveennans 8-43
COMPRESS STRING (COMP)iiiiiienencsannocnns 8-44
CONTROL I/0 (CIO) .tuiviiireerenevdnnnnsocsaannannns 8-45
CONVERT DECIMAL (FLOATING—POINT)

TO PACKED DECIMAL (CVP)ccitietiininnnacnas 8-47
CONVERT PACKED DECIMAL

TO DECIMAL (FLOATING-POINT) (CVQ) 8-48
CONVERT TO BINARY (CVB)icvuinirencncenanncans 8-49
CONVERT TO DECIMAL (CVD)ceitieecennnennnncans 8-50
CONVERT FLOATING-POINT TO INTEGER (CDI) 8-51
CONVERT INTEGER TO FLOATING-POINT (CID) 8-52
DECREMENT AND INSPECT SEMAPHORE (DSEM) 8-53
DEQUEUE (DEQ)cciereeocencaccerncnnnnoccnnnns 8-54
DESTACK (DESK) .e.vuivecenaceroeassosoconcnocananns 8-55
DIVIDE (DR, D) .utiuuierireeencoecnnnasocssacannans 8-56
DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE) 8-57
DIVIDE DECIMAL (DP)icietcennnncnnencannnnans 8-59
DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ) 8-61
EDIT (ED) ..ivtinninneneneeecasoosoenacsacnasannnns 8-63
EDIT AND MARK (EDMK)cicceeeenniecnennancnnnns 8-70
ENQUEUE (ENQ) ..cvieeereeerenocnnoeccaccncacnsnns 8-71
ENSTACK (ENSK) ...iereriereesreneoonesoonnasannnans 8-73
EXCLUSIVE OR (XR, X, XI, XC) ..ivuiuecinoonnaannns 8-74
EXECUTE (EX) ...eiieernieenncananennnnns ceseacsane 8-76
EXPAND STRING (XPAND)ceveeenscncnnnaassnanns 8-78
HALT I/0 (HIO) ..uiuiieniireeennnenniaseoscacscnnns 8-79
HALVE (FLOATING-POINT) (HDR, HER) 8-81
INCREMENT AND INSPECT SEMAPHORE (ISEM) 8-83
INSERT CHARACTER (IC)vviveenreencuanannnoas 8-84
INSERT CHARACTERS UNDER MASK (ICM)covevee. 8-85
JUMP TO SUBROUTINE ON CONDITION INDIRECT

0 1S 8-86
LOAD (LR, L) ...uiiinniiiiiiiiiiaieneanennnnnnans 8-89
LOAD (FLOATING-POINT) (LDR, LER, LD, LE) 8-90

ix

CHAPTER 1
INTRODUCTION TO VS SYSTEMS

1.1 VS FAMILY CHARACTERISTICS

The Wang VS computer family consists of medium-scale, general-purpose
computers designed to provide sophisticated hardware at a low cost. The
general register size on all models is 32 bits. A powerful instruction
set has been microprogrammed into the machines, consisting of logical
functions, arithmetic instructions (including decimal, floating-point,
and decimal floating-point instructions), and queue and push-down stack
instructions. This variety of instructions makes for easier programming
and faster, more compact code.

Main memory is semiconductor random access memory (RAM) with
automatic error correction circuitry. The largest main memory for a VS
system is currently 16 MB. For making full use of available memory on
any VS system, there is virtual memory support in the form of address
translation hardware and several privileged instructions.

Input/output processors or controllers (IOPs or IOCs) optimize
central processor (CP) function by governing I/0 operations independently
of CP activity. The CP and all peripheral processors have direct memory
access through main memory controllers. Memory requests are handled
according to a priority system and are satisfied on a cycle-stealing
basis.

Refer to the following sections for diagrams of particular VS
machines, and to Chapter 2 of this manual for a discussion of machine
organization.

1.2 VS15 Basic Configuration

The VS15 is the entry-level VS system. The internal CPU data path is
16 bits. The basic configuration of the VS15 consists of the CP (Type
5), main memory, an included 1.2-MB diskette drive, an included
fixed-disk drive, and an operator console workstation. Additional I/0
devices may be added as options. Other VS systems having the same
architecture, including the VS45, may substitute removable-disk drives
for the fixed-disk drive.

Figure 1-1 is a diagram of the VS15.

Serial Device
{up to 32)

Main Memory
Fixed-Disk Drive
{34M bytes)

Memory Controller Diskette Drive [['

{1.2M bytes)

\
bootstrap - o \

Disk Drives

Additional A{

DAs

Control Memory

Central
Processor

DMA for DAs

Legend

16-bit data path

Tape Drives

Figure 1-1. VS15 Architecture

1-2

1.3 VS65 Basic Configuration

The VS65 is the most powerful of the VS systems utilizing the Bus
Processor I/0 architecture. The basic configuration of the VS65 consists
of the CP (Type 7), main memory and cache memory, a 5 1/4-inch diskette
drive, an internal fixed disk of 80 or 160 MB, and an operator console
workstation. Additional I/0 devices may be added as options.

Figure 1-2 is a diagram of the VS65.

Serial Device
(up to 32)

Main Memory
Fixed Disk Drive

——
80/160 (bytes))
Memory Controller Diskette Drive | .
{1.2M bytes} N
\ bootstrap -o\‘
§ I l Disk Drives
Control Memory c \ I I
. Bus A _l Additional
Central e’ J [[/ P 2 DA1 DA2 DAs TC
Processor h n
e l I I
—— 11]
11 [|
11 [|
[| t
1 L 3 |_\
DMA for DAs
Legend
16-bit data path

Tape Drives

32uasapetn 7 77T

Figure 1-2. VS65 Architecture

1.4 VS100 Basic Configuration

The VS100 supports more main memory, external storage, and
peripherals than does the VS65, and executes machine instructions more
rapidly. Its internal CPU data path is 32 bits. The basic configuration
of the VS100 consists of the CP (Type 4), main memory, one Or more
removable-disk drives, and an operator console workstation with attached
1.2-MB diskette drive. Additional I/0 devices may be added as options.
The VS85, VS90, and VS100 share the same central processor type. The
VS85 and VS90, however, support only one Bus Adapter. Cache memory is
optional on the VS85 and is not available on the VS90.

Figure 1-3 is a diagram of the VS100.

Main
Memory

System Bus
Controller
Bus

System Bus Adapter

Mini-Diskette l

Control Memory

Central
Processor

Legend:
16-bit path

s2.vitpatn ZZZ 77

64-bit path

Disk Drives

Printers

Workstations

Figure 1-3. VS100 Architecture

1.5 V300 Basic Configuration

The VS300 is the largest and fastest member of the VS family. The
basic configuration of the VS300 consists of the CP (Type 8), main
memory, one or more removable-disk drives, and an operator console
workstation with attached 1.2-MB diskette drive. Additional I/O devices
may be added as options. The I/0 Controller (IOC) and System Bus
Interface (SBI) are similar in function to the I/0 Processor (IOP) and
Bus Adapter (BA) of the VS100 class systems. The support packet bus
provides an SCU-based control path for the system components.

Figure 1-4 is a diagram of the VS300.

MEMORY 0 MEMORY 1 F — UPTO8MEMORY BOARDS — { MEMORY 6 MEMORY 7

| L

MEMORY BUS MEM (0:77)

MEMORY
CONTROL
UNIT

SYSTEM DATA BUS SD(0:63)

11 1]

SYSTEM ADDRESS BUS SA(0:31) MEMORY CONTROL BUS MC (0:3)

S

SYSTEM BUS SUPPORT
/ HE SUPPORT PACKET BUS
INTERFACE ATU/CAC CONTROL UNIT
SYSTEM CONSOLE g
] PWR FAIL/AUTO RESTART
WANGNET REMOTE DIAG. INTERFACE .
t 0BUS ERROR LOG REMOTE
o) FPU DIAGNOSTIC PROCESSOR DIAGNOSTIC
o]

o) SYSTEM ACTIVITY MONITOR LINK
]
10C 18(0:31) toc DISK
[9}) LEGEND:
o AGU ~ ADDRESS GENERATOR UNIT
o ATU = ADDRESS TRANSLATION UNIT
v ESU = EXPONENT SIGN UNIT
. CPU = CENTRAL PROCESSING UNIT
UPTO 1510Cs FPU = FLOATING POINT UNIT

10C = INPUT/OUTPUT CONTROLLER

Figure 1-4. VS300 Architecture

1-5

CONTENTS (continued)

LOAD ADDRESS (LA)covevveene e ceeeeeeee. 8-91
LOAD ADDRESS (RELATIVE)(RLA)cceveeanncecns 8-91
LOAD AND TEST (LTR, LT) tvvverreeecnacnnannnnnnn 8-92
LOAD AND TEST (FLOATING-POINT) (LTDR, LTER) 8-93
LOAD CHARACTER (LC) +vvvivrernnonncannonoannnnns 8-94
LOAD COMPLEMENT (LCR) ...cvcvevecccennns Ceereenn 8-95
LOAD COMPLEMENT (FLOATING-POINT)

(LCDR, LCER) v'ivverrnreeoneeconcnonssanannnns 8-96
LOAD CONTROL (LCTL) ..vvvenvenonnnnnn Ceieeeeaa . 8-97
LOAD HALFWORD (LH) ...vvvvrrennenenceannoneonnns 8-98
LOAD MULTIPLE (LM) ...vviennrennnnconannannannnna 8-99
LOAD NEGATIVE (LNR) . ..vvvrrenennnseaenonnannnnse 8-100
LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER) 8-101
LOAD OR TRAP (LOT) .vvvvierrennonorenennnannnne . 8-102
LOAD PCW (LPCW) +vreveveeenneenonaseaannnnnnnnan 8-103
LOAD PHYSICAL ADDRESS (LPA) +ivevvreneenncannnns 8-104
LOAD POSITIVE (LPR) vvvveenreneenonennsonnaannns 8-105
LOAD POSITIVE (FLOATING-POINT) (LPDR, LPER) 8-106
LOAD ROUNDED (FLOATING-POINT) (LRER) 8-107
LOAD SEGMENT CONTROL REGISTER (LSCTL) ...veee... 8-108
LOAD SHORT TO LONG (FLOATING-POINT) (LDER) 8-109
MODIFY COUNTER (MCOUNT) +evvvvveneerencnnnnnnnna 8-110
MOVE (MVI, MUC) .iuvuieveneenneenocneaneanenannnns 8-112
MOVE CHARACTERS LONG (MVCL) Ceeeeeeaeen .. 8-113
MOVE NUMERICS (MVN) ..c.ivevreeennennceannannnnnn 8-116
MOVE WITH OFFSET (MVO) +vervvveeenncconaananannan 8-117
MOVE WITH PAD (MVPC)vvvenvenncnnoans Ceeeenn 8-118
MOVE ZONES (MVZ) toveveeeeenecneennoosanonnnnnas 8-119
MULTIPLY (MR, M) +uvteerrennoeencanancnnnenannns 8-120
MULTIPLY (FLOATING-POINT) (MDR MER, MD, ME) ... 8-121
MULTIPLY DECIMAL (MP) ..vvveeeennnesceanoannnnas 8-123
MULTIPLY DECIMAL (FLOATING-POINT) (MQR, MQ) 8-124
MULTIPLY HALFWORD (MH)cvveeeccnccncannnnns 8-126
OR (OR, O, OI, OC) tvvrrrneennooanennnnnns eee.. 8-127
PACK (PACK) . .vvvrerveennuoneeensoanannssaencenns 8-129
PACK AND ALIGN (PAL) ©.'vvveeneecnnnnonconcnnenns 8-130
POP (POP) ttviiveeeeenneennoesoensnanaonenannons 8-134
POP CHARACTERS (POPC) . vvvvverennecnnoneneannces 8-135
POP HALFWORD (POPH)iveveenecnn Ceeeeeeeaan 8-136
POP MULTIPLE (POPM) ...vivvernennocencennnannons 8-137
POP NOTHING (POPN) tevvivrenrennencenanenonnnens 8-138
PUSH (PUSH) ..vvvirnrenennneneanneenns e eeeeeae 8-139
PUSH ADDRESS (PUSHA) +.ivvvvrrerennenncncnnnesns 8-140
PUSH ADDRESS (RELATIVE)(RPUSHA)ccevceeene 8-141
PUSH CHARACTERS (PUSHC) tvv'vvvernnreennennnnnnns 8-142
PUSH MULTIPLE (PUSHM)vvieereennnnccnnenoans 8-143
PUSH NOTHING (PUSHN)evevennnecenans Ceeeeene 8-144
RESET REFERENCE AND CHANGE BITS (RRCB) 8-145
RETURN AND POP ON CONDITION (RPC) ...evveevennnn 8-147
RETURN ON CONDITION (RTC) +@vvuveevecennnennennn 8-148

CONTENTS (continued)

SAVE THEN 'AND' SYSTEM MASK (STNSM) 8-150
SAVE THEN 'OR' SYSTEM MASK (STOSM) 8-151
SCAN FOR BYTE (SCAN)vtieresncnensnccasnnns 8-152
SET PROGRAM MASK (SPM)ciicinercncenconaans 8-154
SHIFT AND ROUND DECIMAL (SRP)cceeeeecnnne 8-155
SHIFT LEFT DOUBLE (SLDA)veicneerecnscasansans 8-157
SHIFT LEFT DOUBLE LOGICAL (SLDL)cccc0vn.n 8-159
SHIFT LEFT SINGLE (SLA) ...t ereveeescennannnsns 8-160
SHIFT LEFT SINGLE LOGICAL (SLL) ...cioveceerons 8-161
SHIFT RIGHT DOUBLE (SRDA)icovecenasnsconnns 8-162
SHIFT RIGHT DOUBLE LOGICAL (SRDL)cvcovevean 8-163
SHIFT RIGHT SINGLE (SRA) ...cvvieceecncennenonces 8-164
SHIFT RIGHT SINGLE LOGICAL (SRL)ce0eveeess 8-165
START I/0 (SIO) .t evivreectecnseseaacssssnnsanse 8-166
STORE (ST) tiveeersnencoecoetonsasaasossansnoaass 8-168
STORE CHARACTER (STC) ...ivevrveecncsconnsnosnns 8-169
STORE CHARACTERS UNDER MASK (STCM)c.c0.. 8-170
STORE CONTROL (STCTL) ..vvcereececncnnonoenaanns 8-171
STORE (FLOATING-POINT) (STD, STE)cc0nvuvven 8-172
STORE HALFWORD (STH)vevveercnnercnncensnns 8-173
STORE MULTIPLE (STM)ccviiiverennesnnoasanns 8-174
STORE SEGMENT CONTROL REGISTER (STSCTL) 8-175
SUBTRACT (SR, S) .. iciiirenreroeneeeroccsnnanns 8-176
SUBTRACT DECIMAL (SP) ..viveeerecoceonssnnnsnnas 8-177
SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ) 8-178
SUBTRACT HALFWORD (SH)cveecencencocnncnnsns 8-179
SUBTRACT LOGICAL (SLR, SL) ceeiervnncscensanssss 8-180
SUBTRACT NORMALIZED (FLOATING-POINT)

(SDR, SER, SD, SE) .tteeteeteercesccasosssonanss 8-181
SUPERVISOR CALL (SVC)cceevececcanconses ceaes 8-183
SUPERVISOR CALL EXIT (SVCZX)eveeecnacccacsns 8-184
TEST UNDER MASK (TM)cieiieencencocncnssnas 8-185
TRANSLATE (TR) ... cvvveerceeseccncnnnsooncancess 8-186
TRANSLATE AND TEST (TRT)coveeeececccncacens 8-187
UNPACK (UNPK) ..icieteeeneeonssssnnacassasanases 8-189
UNPACK UNSIGNED (UNPU)cevevecacancccnnasns 8-190
UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL) 8-191
ZERO AND ADD (ZAP) ...i.ieiereececnccnnnnnscnnnass 8-192

8.2 Extended Operation Code Instructions 8-193
STORE CP TYPE AND MICROCODE VERSION (STCPID) ... 8-194
STORE DIAGNOSTIC DATA (STDD) ...ceeveceecancncss 8-195
STORE EXTENDED CP TYPE AND MICROCODE VERSION

(STLCPID) .. vvvieverceosccccnsnonsssssassananan 8-199
STORE RING NUMBER (STRING)ccccvceanacnanas 8-200

xi

CONTENTS (continued)

CHAPTER 9 INPUT/OUTPUT OPERATION
9.1 Introductioncccevvivennenen Ceeceerescareannan
9.2 Summary of Data Transfer Operations ceeeoan
9.3 Main Memory Assignments for Interprocessor

CommunNications ...iceeeeceecesoessocosssoncsncnses

CP-BP Communications Areacoeeee creesacans

9.4 I/0 Status Table ...ccceeeeirertosccosessoscoscsccncenns
VS15, VS65 Device Adapter Status Table (DAST) ...

VS100 IOP Status Table (IOPST)veevecscaccans
VS300 IOC Status Table (IOCST)vceevencsonens
9.5 I/0 Command Table (IOCT)vciccecvceccrccsnnnnnas
9.6 Status Qualifier Byte (SQB)ccvivieenrescascnsn
VS15, VS65, VS100 Status Qualifier Byte
VS300 Status Qualifier Byteceeeiveerncnns
9.7 Physical Device Address (PDA)ciceeeeescecenns
VS15, VS65 PDAveeeeeeereconsosnnnnanse ceeeean
VS100 PDA Ceteseceen et ittt eseteeaeaaa
VS300 PDAivevcvnnccanasnnns Chesesaseceneanen
9.8 I/0 Command Word (IOCW) for SIO Instructlon
Command Code ceeseesenannn Cesecseseseenn
Command Modifier Bitscvceeerecnccrcnconness
Definition of Storage Areaccvevten...
Indirect Address Lists ceccertetencsnanee
Device-Dependent Sectionceciiiiiinaas.
9.9 I/0 Status Word (IOSW) Cheescectensaanas
General Status Byte il .o
Error Status Byteiiiii ittt
Device-Dependent Status Bytes
Residual Byte Countcciiiiiiiinninnnnn.

Extended Device-Dependent Status Bytes
9.10 General Status Byteceivetiiiriiieetnnioennnnnns

IRQ ~— Intervention Requiredc0ceueenen
NC -- Normal Completionccivieevenccnccaes
EC —— Error Completionciiiieenncnsnas
U —- Unsolicited (Attent1on/Dev1ce Now Ready) ...
PC —— IOP Now Readyvov... Checesseceencacanne
DAR —- Data Area Early Releaseccecuv...
9.11 Error Status Byte ettt eeseceeeceeter et aanas
IC — Invalid Commandc.c0... Geeseonaana .o
MPE —-— Memory Parity Errorcceeeveees e
MAE —— Memory Address Errorcoceeeeeeeeene
DM -— Device Malfunctionccveevecveanns .
DAM —— Memory or Device Damagecceeveeecens
IL — Incorrect Lengthcc0icteeeenneees. .o
PP and DP--IOP or Device Code Not Loaded
9.12 Extended Device Specific Status Bytes
(VS300 Only) ..civeverennnnsoancsncnannes Ceseseans .-
9.13 I/O Instructionsccceieeeeceecanse ceeee ceeaen

xii

w0 W
| L L A R L T L U D B |
SV

OO W IWWLWLWLWLWLWLWWL
WWOOONNGOTOUTU W WW

=
oo

|

'\D\O\D
[
[el

9.14

9.17

9.18

10.3

10.4

10.5

10.6

CONTENTS (continued)

Initiation of I/0 Operationsccceeeeecncccannns 9-18
Initiation of I/0 Operations -- VS15, VSGS 9-18
Initiation of I/0 Operations —— VS100 9-19
Initiation of I/0 Operations —— VS300 9-19

Receipt of I/0 Command by I/O Processor 9-20

I/0 Termination teetisecsscesrerssensnsenrsenne 9-21
Completionccoceeveeences eeeeeveesosesanans 9-21
Forced Completioncicetvenccnansncocsanane 9-21
Malfunctionc.viiiiiieeeanannnsnns ceeeeannn 9-21
System Initializationiiiieiieeeiiinnnn 9-21

I/0 Interruptionscivveeeereeocccnsansacosncannns 9-22
Types of Interruptioncciicieevenccecnnns 9-22
Priority of Interruptsceceeercevennnccsnns 9-22

Interrupt ProceSSingceeeeeveccsceacasscsssnnns 9-22
Interrupt Processing —— VS15, VS65 9-22
Interrupt Processing —— VS100ccicvevenenns 9-22
Interrupt Processing —— VS300cccieeevnenns 9-23

WANG WORKSTATION CHARACTERISTICS

Introductioncccieeiiirrerrnneeconsesanansasnnes 10-1
The CRT ..tiiiiiieeeeessasotorocssasosasssssananncsons 10-1
Screen and Cursor Cecsesetscacscassnsnsonns 10-1
Screen Formattingciiiiiinininrnncccnnncs 10-3
Field Attributesciveeeaennncncans Cecessenn 10-4
= o - 10-5
Audio Indicatorscieicriicinecnacsancesoannaas 10-5
Type-Aheadcevveecernneessenosncssocsoscnsonna 10-6
The Keyboardc.ciieeeeieteccneasansncsocconsanns 10-6
Cursor Positioning Keyscceveeveinercncenconss 10-8
Data Entry Keysiiiineeinneenenccccsncansoanns 10-9
Special KeyS t.ieecierersencccareccassssscsannnnns 10-10
Keys that Communicate with the Computer 10-11
Data Area ...ieieeeescecesocesssasessasassessosonsas 10-11
Order Area ...c.ceeseceeesesesosncassssocnsassnsas 10-12
Interpretation of the Order Area on a Read 10-13
Interpretation of the Order Area on a Write 10-13
Write Control Character (WCC)covveerncennns 10-14
Mapping Ar€a ...c.eeececeseecscscnscssocnsscsnnnas 10-16
Workstation TOCWiiviieanecsnsssnaseasasononnons 10-16
Command Byteieeieenncececaccccsscosscnnnns 10-16
Workstation I/0 Commandscceceeeccccceccecnnnnne 10-18
Read Commandcceteeeeesoccacccoasoccnnssnns 10-18
Read Altered Commandccievicvcnencccccannns 10-18
Read Diagnostic Commandcececeeececccccccace 10-18
Read Tabs Commandcccveeeoeecsncscncssasoas 10-18
Write Commandc.ciivenecnecaccnccscsoannas 10-19
Write Selected Commandcoioeeneennnnons ... 10-19
Write Tabs Commandcc.eevceececccannacass 10-19

xiii

CHAPTER

CONTENTS (continued)

10.7 Workstation I/O Status Wordccceececeens
General Status Byteciiivivtinincennass

Error Status Byte

Device~Dependent Bitscivvvvereevncnans
Extended MPE/MAE Byte (VS300 Only)

10.8 Example of Computer Conversation
with a Workstationcvevieeevinnnernnns

11 WANG PRINTER CHARACTERISTICS
11.1 OVEEVIEW tovereveneeanenaosnanaceanene cecteeacane
11.2 Data Blockscccceeveen Cecececcsserenesens

11.3 Compressed Records

e oo s

e s 00 0000000000000 0000

11.4 Power—Up JOCW ...civeeeecnoccnnnccnsnsscncanss
11.5 Font Loading Protocolccieeeenrennnnne
11.6 IPL Code Overlay Loading Protocolcvvevvenes

11.7 IOCW Format

e o e 0 0 0

Command Codecetieeeesetsccecesassccasoscnases
Data AdAresscveeeeecscrceccscncaccnsca

Data Count

Command Modifierc.ccoeeececscacnnsncss
Last Block Indicator and Font/IPL Code Overlay

Number
11.8 IOCW TYPES coesessn

DI I A I I I R AR SR AP]

e e e 0000000 e 0000000000 00

Print Data Block TOCWccvieecencnnnas

Control Data Block IOCWcceveeeeecnoocan

Read Information IOCWcevveeneecennnn

Power-Up IOCW ..

Error IOCW

e o0 s e

e 000 00

s o0 0

oo 0 0 e

oooooo

ooooooooooooooooooooooooooooooooo

IPL Code Overlay Block IOCW Ceeseeeeeaaan
Font Data Block IOCW Cetesesseene ceee
End of Job IOCHiveeeveronnoenscccnsnnas ceus
11.9 Printer TOSWciiireeereecroesescnosnsocaannnns
General Status Byte Ceeic e oo
Error Status Byte ceeseaan Ceteeetsecaeanas

Lines Printed Bytes .
Residual Count Bytesciiveiennnnnas

Status Modifier Byte

Extended Error Status Bytecccc0eeves
Suspend and Resume JOSWcceivevvcesnes

11.10 Print Data Block ..

Print Data Recordscccecececsosecacses

11.11 Print Control Bytes ...

Chain Bits ...cievierneencnns ceeescesnacenn
Unsupported Functionscoceceeeeeeeess
PCB Bit Definitions
PCB 1 Options -- Double-Width Characters ..
PCB 1 Options -— Sheet Feeder/Bin Select ..

Xiv

.......................

s e 000

10-19
10-20
10-20
10-21
10-23

10-23

11-1
11-10
11-10
11-12
11-12
11-13
11-14
11-14
11-14
11-15
11-15

11-15
11-15
11-16
11-16
11-17
11-18
11-18
11-19
11-19
11-20
11-21
11-21
11-22
11-22
11-22
11-22
11-23
11-24
11-24
11-25
11-25
11-26
11-26
11-26
11-28
11-28

CHAPTER

11.12

11.13

11.14

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

CONTENTS (continued)

PCB 2 Options et eietecateaaseasacns ceseens
PCB 3 Options —— Font Specificationc.00..
PCB 3 Options -- Graphics Printing ceeas
Graphics Printingcciveevieiniann... ceeeseaenn
Graphics ProtocOlcivveecoceccsonnnnscsens
Graphics Command Syntaxccceeeevceesecacens
Graphics Commandscovveeecueeeconcsasances
Control Data Block Cesecseanaann ceeeesens
Block Length Bytesccieeeieesecnsnancnanns
Options Bytesceveeeeinsriesasonsnssncscnensns
Format of Control Data Block Records
Vertical Pitch Recordcciiveeercnecncennas
Horizontal Pitch Recordcciiviinennnnss
Printer Speed Recordciveeenevencncacnnss
Direct Access Vertical Format Unit Record
Font Selection Record Cheetecatnaaeens
Ideographic Printing Ceeesecssssenesens
WANG DISK FACILITY CHARACTERISTICS

Introductioncceeeeeeeeccane Cecesesescnseseans
Logical and Physical Sectorsccovvvvnne cevens
Disk Drives and I/0 Processors cecens cecsenaean
Disk IOCW teeasscseteseer et atcenesarananan
Command Byteccceveevee cestccecstscsseacsesnans
Memory Addressc.cciiinnnnn cheesetesreanoan
Data Countccitiiievnenccescscacansncnnnnns
Sector AdAresscieeenreeeeceosocaccnccscnsnns
Dual Port Commandsccieveeeesscencsccacennssans
Release Commandcceeteeeeconccesancsccnnnns
Reserve Commandccc0eeeeeae ceicessaane ceaan
I70 Commands ...ceeeececesencococesosncsosssssnssocsns
Read Commandccc0ceevee ceeseereneassscaenan
Write and Write (Verify) Commandsc00..
Disk Control Commandsccceevsvecsccnccsecannons
Seek ... et esecesescecesasecenssassaane s
Formatiuiiiiiieeeeteneneoonccnsocosessnsacans

Command Modificationcceeveeececcsrecacsonceanos
Releaseccuun. Seeteeceeastasnccscoanesnsnsne
Read/Write Diagnosticiiecevcecerecensanncnns
Suppress Retrycicveieieennns eeseecsnenan
Indirect Data Addressing cecenenns ceeeean
Removable Platterciiiiiieieienrennnns .en

Xv

11-29
11-29
11-30
11-30
11-31
11-31
11-32
11-37
11-38
11-38
11-38
11-39
11-39
11-40
11-40
11-43
11-44

CONTENTS (continued)

12.9 Disk I/0 Status Wordccccveeeeecacsocassasncscse

General Status Bytecciiiiiiiintenenncncns
Error Status Byteciiiiiiiiiitiietiieneanses
Extended Status Bytesccciieiiiiiiiiannn.
Residual Byte Countciiiieiiieennnnannes
Retry Indicator Bytecccverereccncvcccccacnne
TJOSW Byt 7 .iviieenenececoaconsencscassannsnonse
Disk Unsolicited Interruptionsccc0....

WANG MAGNETIC TAPE CHARACTERISTICS

.1 Introduction ceesrecssnn ceeecssen ceesns
.2 General Description of Reel-to-Reel Tape Drives ..

Track Allocationc.cceeeeeeereccccsocnancnsns
Tape Markerscceceeee.. Ceeenaeen Ceteessesesnans
Tape MArK .cceeceeseeiosesoossssncssossscsscsssnsas
Tape BlOCKS ...cveceeececieacseescncnenccscccnans
File Protection cesteeenns cectessen e
Checking Tape Validity ...cceveecencencccccsnncns

13.3 General Description of the Cartridge Tape Drive

13.

Track Allocation R “en
Tape MArkersSceeceeeencosasecasocassscnsanssns
Tape Markvvieeeereeeesnnneconsccsnnasanncnns
Tape BloCKS ...iieveienececcssecsonsaconcaosnsnsns
File Protectionccciivvvieeenecerecnennencns
Dismounting Cartridgeccteeeevococncncans
LoAading TAP@ .ccveeeeesvcecsssscssosasesonssasssscns
Tape Length and Thicknesscceceveevecannnns
High and Low Currentcciiiiennneanecnnns
Checking Tape Validityveevrieencncncecananns
Auto—Retryttt iiiieitecectettencannne
4 Tape IOCHW .. viiiereeeeeasoocsassoascnsscansssons e
Command Byteccciieieeeenreeacccnanscaanannns
Data Count Bytecceeeeeeeccnscconsasasanans

13.5 I/OCommandscccceeeeccens cececescsccscesananane

REAA .. it ittt iieeeescetcecescatesoscscscssasasnsans

xvi

CONTENTS (continued)

13.6 Tape Control CommandsS ..cccccecsveeossccasesssesassea 139

SeNSEe t.vceeeerceccascesscoccsasescsnsssssnse eeess 13-11
Erase Tapeccce.e cecsencsessenas tesecesccccaa 13-11
Write Tape Markcecveeccocccns tessvmesnes see 13-11
Forward Space BloCKkccicieecccccensnanes ceos 13-11
Forward Space File ..cccieeesseccscsonssscsassaaas 13-11
Rewindcivieiennencnannans seecscsesacsacsnan 13-11
Rewind and Unload ...ccce0eees ceeteccsescsscacane 13-11
Backspace Blockcceeeancas cecesensen cescescsas 13-12
Backspace Fileieecctacecsonsccsosnssasaansnas 13-12
Set Density .cceevcecccnscns seessesscessascsesess 13-12
Set Parity Ceeeccsccscssesasasens cecssccsee 13-12
Drive Selected Modeccveeeecssscncancans ees 13-12
Find Tape Length0... cesessannes cecesessss 13-13
Set Write Current Highcieveetevrccccanene 13-13
Set Write Current Lowccceveevecossscccsssss 13-13
Toggle Retry cecesesscssessans ceesesesan . 13-13
13.7 Effect of Tape Markers on IOSW Bitsccccceeeee 13-13
13.8 Tape I/0 Status Word cesene teetsssseassessseass 13-14
General Status Byteccviveecvecnencss ceress 13-14

Error Status Byte —— Reel—to—Reel Tape Drives ... 13-15
Error Status Byte —- Cartridge Tape Drive 13-16
Extended Status Bytes —— Reel-to-Reel

Tape Drives .c..iceeeeecsscsceesscesassasscasess 13-18
Extended Status Bytes —- Cartridge Tape Drive ... 13-20
Error Count Byte —— Reel-to-Reel Tape Drives 13-22
Error Count Byte —— Cartridge Tape Drive 13-23

Extended MPE/MAE Byteccveeeeceeces cesessenes 13-23
Unsolicited Interrupt at Load Time ceeenan 13-23
APPENDIX A OPERATION CODE AND ASCII CHARACTER LIST0c.. A-1
APPENDIX B GLOSSARY ...iceeessnsesecasacacananns cesessecasssean B-1
INDEX Gecceerecsccssnssscsssnesnssanns seessesseessacns .. Index-1

xvii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

| A L I O L
NAUT W WN D W

WWWWWwWWN e

w
|
(0]

I w
(Ve

w

1T W ||
el el B A A U R I
HFONONBWNHWNROWVONOU®WNH N

L N N S N S N A N
N

[]

W W WWSN SN N NN NN

FIGURES

VS15 Architectureciiiievnen. ceeries cerene
VS65 Architecture C e et seeesteseecescananeanan
VS100 Architecture ceeecan ceeeen cer e ceeen
VS300 Architectureccieieeennnn cececensacans
Sample Information Formats Cheeeeeeaes
Fixed-Point Fullword Data Format ceeaas .o
Packed Decimal Number Formatcceiiecennann
Zoned Decimal Number Formatccecececencencacens
External Decimal Number Format ceseereecans
Long and Short Floating-Point Numbers
Decimal Floating-Point Number Format
Fixed-Length Logical Operand (One to

Four Bytes) e reeeectrsentesessessaannas
Variable-Length Logical Operand (Up to

256 Bytes) ceterresresesesenanes ceeetteesenans
LIFO LiSt i vveeeeeccnsoeseaosssasosnsssscsososocoannos
FIFO List Ceeecsesecaccoacas cescscansees

SemMaPhOre ...iivirceseeiescrsonsososasssssssenssacanse
Format of Stack Header Block (SHB)cccvieevececes

PCW Format ceseesas ceteesesssenastannns ceseens
Physical Address Formatcccvevvirnnennnn. .es
Virtual Address Format000enn ceneens ceees
Main Memory Page Table Entry Format
Format of SCRciivevnnnnns e tesessesscasasanne
Byte 4 Of SCR ...t ieriiiiiieteneceneeetonneceaneannns
Format of a Region Node e iesesesessensens
Format of MOD Byte et eseaasenann eseseasanans
Virtual-to-Physical Address Translatlon ceerenee cens
Alternate Format of SCR et eteenteseseenn
JSCI Save Areaecceeceeeses Ceteseeseseenanann ceen
Format of Linkage Table Entry Cheeeiens
Control Registers 6-7 et ecessesesessassannn
Format of Control Register 3 Ceieaeeiean
Format of Control Registers 4 and 5ccc0vvunn
Entry for Main Memory Modification Trap
Entry for PCW Trap Ceseeens e seeereaee
Entry for Instruction Step Trap ...ccceeeeervcanases
Entry for Opcode Trap ...ceeceeeensescncencececnesoss
Entry for PCW Range Trap ...ccceeeeeeae Cesseseaeanen
Entry for General Register Modification Trap
DA Status Table (DAST) Entrycicieicicecaens
IOP Status Table (IOPST) for the VS 100
IOC Status Table (IOCST) Entry ceeeeas e
I/0 Command Table (IOCT)ivverecnnnacscnnoncnons

Xxviil

w W
1 1 WWWWwWN s e
[ot el 1 Y Y T T T I Y|
U HOWOVUOONU B WN

3-16

3-16
3-18
3-18
3-19
3-21

4-2

4-8

4-9
4-11
4-11
4-12
4-12
4-14
4-16
4-19
4-20
4

~N
U U
N O

|

W WWW NSNS
1
AoV~ OO UV

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

| I U Y N DR B O B
N HWN N e

O WOoOOOWNU WwwWw

FIGURES (continued)

Status Qualifier Byte (SQOB)c.ceveenecenns cecees 9-7
VS300 Status Qualifier Byte (SQB)c.vcevcencnans 9-8
VS15, VS65, PDAiiiieiereesoecancesascassnnnans 9-9
VS100 PDA ...c.iveetecsosnccscasasoansnsnsessssanans 9-9
VS300 PDAiiceeeeneonessocansscncsasasossnssnsans 9-10
I/0 Command Word (IOCW) Format Ceeeterecacaens 9-11
JOSW Formatc.cceeeeeereieccascoscancssccnsanans 9-13
SIO, CIO, and HIO Instruction Formatcc0c. 9-18
The Keyboardc.cieeeiieienneesnnscsssancacnnans 10-7
Data Area Specified by Workstation IOCW 10-12
Workstation IOCWccieieiecececcccnncsasasnanans 10-16
Workstation IOSW Formatccvieienenccncncaans 10-19
Format of Data Block Recordccccvevvenneccsas 11-10
Format of Data Stringec0een checececersncans 11-11
Elements of Compressed Recordccevuecuncscas 11-11
Printer IOCWcciciverececscreocecsceasocassnnans 11-14
Printer JOSW Formatc.ccveeeevecescccscacanncns 11-21
Format of Print Data Block and Record 11-25%
Format of the Control Data Blockcceovveuennnas 11-37
Format of Vertical Pitch Recordeviveeeencase 11-39
Default Values of DAVFU Tableccctiveenecnann 11-41
Four-Byte Font Selection Recordceeeeueeenen 11-43
Five-Byte Font Selection Recordccvcvveeee. 11-43
Disk IOCW .ivetveesveesosenosocancassnossssassnnnans 12-5
Disk TOSH t.tiiieseeneecenenonsesssssoncsssacansons 12-10
Tape Bit Positionsicieeicniecreccsancnncsnas 13-2
Reel-to-Reel Tape Blockscv0veeues Ceereeenaaas 13-4
Cartridge Tape BloCKSivivereccncecscecsencasans 13-5
Tape IOCW .cvvereeeroosesacsssacsnsasascscssscnnsoans 13-7
Tape IOSW Formatceeeeececrancscncocrsassscncans 13-14
TABLES
Bit Codes for Digits and Signsccccvevevennnns 3-8
Data Representation and Boundary Alignment 3-17
PCW BitsS .tvceeeceeerreconsncescsnscsasacscsscaanansns 4-2
Permanent Storage Assignmentsccc000i0cnann 5-3
Format of First Byte of Debug Table Entries 7-4
Pattern Character Codingcieeeeenencesncnnans 8-64
Summary of Editing Operation creeeanaen 8-68
PACK AND ALIGN Scan Ordercceeeeseeceoccnnnas 8-131
Permanent Memory Assignmentscccieeencncans 9-3
CP-BP Communications Ar€acceeececacvcasscanas 9-4

xix

CHAPTER 2
MACHINE ORGANIZATION

2.1 CENTRAL PROCESSOR

The Central Processor (CP) contains facilities for addressing main
memory, for fetching and storing information, for arithmetic and logical
processing of data, for sequencing instructions in the desired order, and
for initiating communication between memory and external devices.

2.1.1 General Registers

The processor can address information in 16 general registers. The
general registers may be used as index registers in address arithmetic
and indexing, and as accumulators in fixed-point arithmetic and logical
operations. The registers have a capacity of one word (32 bits). The
general registers are identified by Numbers 0-15 and are specified by a
4-bit R field in an instruction format. Some instructions have several R
fields.

2.1.2 Floating—Point Registers

There are four floating—-point registers, specified as Registers 0, 2,
4, and 6. Each such register is 64 bits in length and can contain one
floating-point number. These registers are addressed by the floating-
point and decimal floating-point instructions only.

2.1.3 Control Registers

The control registers provide a means of maintaining and manipulating
control information that resides outside the Program Control Word (PCW).

Sixteen 32-bit registers are provided for control purposes. These
registers are not part of addressable storage. The instruction LOAD
CONTROL (LCTL) provides a means of loading control information from main
memory into control registers, while STORE CONTROL (STCTL) permits
information to be transferred from control registers to main memory.
These instructions operate in a manner similar to LOAD MULTIPLE and STORE
MULTIPLE. Also, the JUMP TO SUBROUTINE ON CONDITION INDIRECT (JSCI),
RETURN ON CONDITION (RTC), SUPERVISOR CALL (SVC), and SUPERVISOR CALL
EXIT (SVCX) instructions modify Control Register 1. LCTL and SVCX are
privileged instructions.

At the time the registers are loaded, the information is not checked
for exceptions, such as addresses designating unavailable locations. The
validity of the information is checked, and the exceptions, if any, are
indicated, at the time that the information is used. Control register
allocations for the VS systems are as follows:

Control

Register Allocation

CRO Reserved

CR1 Save area back chain

CR2 System stack limit word

CR3 Debug table descriptor

CR4 Prior instruction address

CRS Current instruction address; debug table inspection flag
CR6-7 Linkage table descriptors

CR8 Pointer to active stack header block
CR9 Pointer to stack header table

CR10 Debug scope

CR11 Reserved

CR12-13 Time of day clock

CR14-15 Clock comparator

This section provides only a general description of register contents
and functions. For more detailed information, refer to the facility or
instruction with which the registers are associated.

Control Register 1 is updated by the JSCI, RTC, SVC, and SVCX
instructions to maintain a protected back chain of program calls and
supervisor service entries (supervisor calls). Control Register 2,
referred to as the system stack limit word, is used to detect stack
overflow. Control Register 3 contains the Debug table address and a
count of entries in the table. Control Registers 4-5 are used by the
Debug Facility for storing trapped instructions; also, a flag-byte in
Control Register 5 synchronizes processing of the Debug table. Control
Registers 6-7 describe the location, length, and element-size of a task's
linkage table. This table is referred to during execution of the JSCI
instruction, as explained in Section 4.6.2. The structures pointed to by
Control Registers 8-9 are referred to by the JSCI instruction when
branching to a dynamically-linked subroutine. Control Register 10 holds
two Debug scope fields that demarcate the range of process levels wherein
Debug traps are taken. Registers 12-15 are associated with the clock.

2.1.4 Translation RAM (T-RAM)

Translation RAM (T-RAM) is a section of local CP memory (RAM) on the
VS15, VS65, and VS100 systems, consisting of halfword entries. A field
in each entry indicates the physical page frame wherein a virtual page
has been loaded.

The number of T-RAM entries and the size of the physical page frame
field varies between classes of VS systems. The number of entries in
T-RAM determines the maximum amount of virtual address space that can be
mapped to physical main memory; and the size of the physical page frame
field determines the maximum amount of physical main memory supported on
the system.

The size of T-RAM on VS15, VS65, and VS100 systems is shown below,
along with the maximum size of virtual and physical memory supported.

VS15

Number of T-RAM entries: 4K
Total size of T-RAM: 8 KB
Size of Page Frame field: 10 bits
Maximum Virtual Memory: 8 MB
Maximum Physical Memory: 2 MB
VS65

Number of T-RAM entries: 8K
Total size of T-RAM: 16 KB
Size of Page Frame field: 11 bits
Maximum Virtual Memory: 16 MB
Maximum Physical Memory: 4 MB

VS 100

Number of T-RAM entries:
Total size of T-RAM:

Size of Page Frame field:
Maximum Virtual Memory:
Maximum Physical Memory:

4K (8K optional)

8 KB (16KB optional)
13 bits

8 MB (16MB optional)
16 MB

2-3

2.1.5 T-RAM Monitor Area

The T-RAM monitor area is used for selective clearing of the T-RAM
entries. Each monitor area entry records the number of a virtual page
mapped to physical memory. This number serves as an index to a T-RAM
entry that must be cleared at the end of a task's time slice. The
monitor area itself is cleared by the monitor area function of RESET
REFERENCE AND CHANGE BITS (RRCB) instruction. The monitor area of the
VS15 and VS100 is in local CP memory:; that of the VS65 is in main
memory. Further information on monitor areas is provided in Section
4.3.7.

2.1.6 Translation Buffer (T-BUF)

The Translation Buffer (T-BUF) is a section of local CP memory on the
VS300 consisting of 1K entries. A field in each entry indicates the
physical page frame wherein a virtual page has been loaded.

Whereas there is one T-RAM entry for one page of wvirtual address
space, there is one T-BUF entry for eight virtual pages. Since more than
one virtual page number can map to a single entry, each T-BUF entry has a
tag associated with it. Tags are stored in a separate area of local
memory, called a tag store area and consisting of 1K 3-bit entries.

2.1.7 Reference and Change Table (RCT)

The RCT is an area of local memory that contains two bits per page
frame (2048 bytes on a 2048-byte boundary) of physical memory. Whenever
a location in a page frame is referenced by a machine instruction, the
reference bit of the corresponding RCT entry is set to 1. When this
reference involves modification of the memory location, the change bit in
the RCT is also set to 1. RCT entries are cleared by the RESET REFERENCE
AND CHANGE BITS (RRCB) instruction.

2.1.8 Arithmetic and Logic Unit (ALU)

The arithmetic and logic unit can process binary integers of fixed
length, decimal integers of variable length, and logical information of
either fixed or variable length.

Arithmetic and logical operations performed by the CP fall into five
classes: fixed-point arithmetic, floating-point arithmetic, decimal
arithmetic, decimal floating-point arithmetic, and logical operations.
These classes differ in the data formats used, the registers involved,
the operations provided, and the way the field length is stated.

2-4

2.2 CLOCK

2.2.1 Time-of-Day Clock

The time-of-day clock provides a consistent measure of elapsed time
suitable for the indication of date and time. The clock 1is a
double-register, 64-bit binary counter. Time is measured by incrementing
the value of the clock, following the rules for unsigned fixed-point
arithmetic. The clock is incremented by adding 1 to the low-order bit
position at split line frequency (17100 or 1/120 second) for the VS15 and
VS65 class systems, 2.5 MHz for the VS100 and VS300 class systems. The
resolutions of these clocks are, respectively, 17 milliseconds and 400
nanoseconds.

When the incrementing of the clock causes a carry to be propagated
out of bit position 0, the carry is ignored and counting continues from
zero. The program is not alerted, and no interruption condition is
generated as a result of the overflow. The clock runs while the machine
is powered on, even when the machine is in Control mode or wait state.

The clock value resides in Control Registers 12 and 13 and is set to
zero during a power-up. This value can be manipulated under program
control by means of the LOAD CONTROL and STORE CONTROL instructions.

2.2.2 Clock Comparator

The clock comparator provides a means of causing an interruption when
the time-of-day clock has passed a value specified by the program. The
clock comparator has the same format as the time-of-day clock.

The clock comparator value is compared with the wvalue " of the
time-of-day clock, each being regarded as a 64-bit unsigned number.
Whenever the time-of-day clock value is greater than or equal to the
value of the clock comparator, and clock interrupts are enabled (PCW
T-bit=1), a clock interrupt is generated. The value of the clock
comparator resides in Control Registers 14 and 15 and is set to all 1s
during power-up. An interruption request disappears if the value in
Control Registers 12 and 13 or Control Registers 14 and 15 is changed so
that the value in Control Registers 12 and 13 is less than that in
Control Registers 14 and 15. These values can be manipulated under
program control by means of the LOAD CONTROL and STORE CONTROL
instructions.

2-5

2.3 I/0 PROCESSORS (IOPs)

Input/output processors (IOPs) connect the CP and main memory with
the input/output (I/O) devices. IOPs relieve the CP of the burden of
communicating directly with I/O devices and permit data processing to
proceed concurrently with I/0 operations. IOPs provide the logical
capabilities necessary to operate and control I/0 devices. IOPs decode
the commands fetched from main memory and interpret them for particular
devices.

For the VS15 and VS65, a single bus processor (BP) controlling
several device adapters (DAs) does the work of VS100 IOPs. For the
VS100, intelligent bus adapters (BAs) provide an interface between the CP
and IOPs. The input/output controllers (IOCs) and system bus interfaces
(SBIs) of the VS300 are functionally equivalent, respectively, to IOPs
and BAs.

2.4 MAIN MEMORY

Main memory for all VS systems consists of semiconductor random
access memory (RAM) with automatic error correction circuitry. Memory is
automatically refreshed by hardware at intervals of 10 msec and therefore
cannot be maintained past system power-off. Requests for memory access
by the CP and other processors are handled on a priority system (whereby
the CP has lowest priority) and are satisfied on a cycle-stealing basis.
Therefore, instructions that fetch and subsequently store data do not
necessarily use consecutive memory cycles, because one or more
intervening cycles may be devoted to I/O operations.

2.4.1 Information Formats

VS systems transmit information between main memory and the CP in
logical units of eight bits or a multiple thereof. Each 8-bit unit of
information is called a byte, the basic building block of all formats.
All storage capacities are expressed in terms of the number of bytes
provided.

Bytes may be handled separately or grouped together in fields. The
address of any field or group of bytes is the address of its leftmost
byte. A word is a field of four consecutive bytes whose address is a
multiple of 4. A doubleword is a field of two consecutive words whose
address is a multiple of 8, and a halfword is a field of two consecutive
bytes whose address is a multiple of 2.

For the VS15, byte-aligned write operations of one or two bytes and
halfword-aligned read operations of two bytes are supported. For the
VS65, halfword-aligned read and write operations of one or two bytes are
supported. For the VS100 and VS300, byte-aligned write operations of
one, two, four, or eight bytes are supported, along with
doubleword-aligned read operations of eight bytes only.

2-6

In any instruction format or any fixed-length operand format, the
bits or bytes making up the format are consecutively numbered from left
to right starting with 0, and are indicated in the line under the format
description. Figure 2-1 is a diagram of these units of information.

Bytes O 1 2 3 4 5 6 7
I I I I I
halfword halfword halfword halfword
I I I
word word
I
doubleword

Figure 2-1. Sample Information Formats

2.4.2 Conventions of Description

To indicate the left or right end of any field or word definition,
the following terminology and abbreviations are used throughout this
manual:

Leftmost Portion Rightmost Portion

Most Significant Byte (MSB) Least Significant Byte (LSB)
High Order Low Order
Most Significant bit (MSb) Least Significant bit (LSb)

2.4.3 Addressing

Byte locations in memory are numbered consecutively, starting with 0;
each number is considered the address of the corresponding byte. A group of
bytes in memory is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly defined by the operation.
The VS addressing arrangement uses a 24-bit virtual address to accommodate a
maximum of 16,777,216 byte addresses.

When only a part of the maximum storage capacity is available in a given
installation, the available storage is normally a contiguous range of physical
addresses starting at Address 0. An addressing exception is recognized when
any part of an operand is located beyond the maximum available capacity of an
installation. The addressing exception is recognized when the data is used
and causes a program interruption.

Refer to Sections 4.2 and 4.3 for details of addressing and address
translation.

Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

10-1
10-2
10-3

10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
12-1
12-2
13-1
13-2
13-3

TABLES (continued)

The Character Setcccecuen teesetesersenanennnn 10-2
Field Attribute Character Valuescc... ceeesss 10-3
Significance of Bytes in the Workstation

Order Area tecestsiessaans et eetseeseaaeans 10-12
Workstation Write Control Character (WCC) Codes 10-14
Workstation Commandscocecieienceccesacannans 10-17
Attention ID (AID) Characters ...c.ceececeeseceseass 10-22
Characteristics of VS Chaintrain Printers 11-2
Characteristics of VS Band Printersccc0vevne 11-3
Characteristics of VS Daisy Wheel Printers 11-4
Characteristics of VS Matrix Printers 11-5
Characteristics of VS Laser Printers ceeses 11-7
Characteristics of VS Remote Printers Ceeecens 11-8
Sample Form Length Codes Ceceiaccacenans ce.. 11-42
Characteristics of Disk Drive Modelscc000veee. 12-1
Combinations of IOPs and Disk Drivescccee.. 12-5
VS Tape Drive Characteristicse0v0vevvevecneess 13=-2
Control Command Modifier Codescveecen ceearaes 13-10

Effect of Tape Markers on IOSW Bitscc0000e.., 13-13

XX

CHAPTER 3
DATA ORGANIZATION

3.1 INSTRUCTIONS

VS machine instructions perform five classes of operations:
fixed-point arithmetic, floating-point arithmetic, decimal arithmetic,
decimal floating-point arithmetic, and logical operations.

Each instruction consists of two major parts: an operation code,
which specifies the operation to be performed, and the designation of the
operands that participate.

3.1.1 Qperands

Operands can be grouped in three classes: operands located in
registers, immediate operands, and operands in main memory. Operands may
be either explicitly or implicitly designated.

Register operands can be located in general, floating-point, or
control registers, and are specified by identifying the register in a
4-bit field, called the R field, in the instruction. For some
instructions, an operand is located in an implicitly designated register.

Immediate operands are contained within the instruction, and the
8-bit field containing the immediate operand is called the I field.

The length of operands in main memory may be either implied or
specified by a 4-bit mask in the instruction called the M field. The
length of operands in main memory may also be specified by a 4-bit or
8-bit length parameter, called the L field, in the instruction.

The addresses of operands in main memory are specified by a format
that uses the contents of a general or base register as part of the
address. The address in the general register is called the B field and
the additional displacement address (which may be 0) is the D field. The
X field denotes an address in an index register, which is added to the
base register address. A detailed explanation of the B, D, and X fields
is given in Section 4.2.1.

Operands on a stack in main memory may be specified by a 4-bit field
in the instruction, called the S field, that specifies the user stack
vector or implies the system stack vector. A stack vector comprises a
pair of registers pointing to the stack limit and the stack top, as
explained in Section 3.9.

The VS allows up to three operands, depending on the instruction
format. For purposes of describing the execution of instructions,
operands are designated as first, second, and third operands. The
operand to which a field in an instruction format applies is generally
denoted by the number following the code name of the field (e.g., R1, B1,
L2, D2).

In general, two operands participate in an instruction execution, and
the result replaces the first operand. An exception is instructions with
STORE in the name, where the result replaces the second operand. Except
for storing the final result, the contents of all registers and memory
locations that participate in the addressing or execution part of an
operation remain unchanged.

As an aid in describing the logic of the instruction format, examples
showing the format and and operation of two instructions are given:
RR Format: LR 7,9

opcode R R

[I |
| 18 (oaD) | 7 |
I I |

0 8 1

2 1
Execution of the LOAD instruction copies the contents of General Register
9 to General Register 7.

RX Format: ST 3,TOTAL

opcode R X B D

[[[
| 50 (STORE) | 3 |
I l |

0 8 1

10 14 300

b e o]

I I
I I
I I
16 20 3

2

Execution of the STORE instruction stores the contents of General
Register 3 at a main memory location addressed by the sum of 300 and the
contents of General Registers 14 and 10, with the data name TOTAL.

3.1.2 Instruction Format

An instruction is one, two, three, or four halfwords in length and
must be located in main memory on an integral halfword boundary.

The nine basic instruction formats are denoted by the format codes
RL, RR, RRL, RX, RS, SI, S, SS, and SSI. The format codes express, in
general terms, the operation to be performed.

RR - Register-to-register operation

RL - Register-to-register (relative) operation

RX - Register-and-indexed-storage operation

RS - Register—and-storage operation

RRL - Register-to-storage (relative) operation

SI - Storage—and-immediate-—operand operation

S - Implied-operand-and-storage operation

SS - Storage-to-storage operation

SSI - Storage-to-storage—and-immediate-operand operation

® 0 0 0 0 0 0 0 0

The following diagrams illustrate the representation of the
nine instruction formats in VS memory.

RR Format——One Halfword

0 78 11 12 15

RL Format—-Two Halfwords

0 7 8 11 12 15 16 19 20 31

Programming Note:
If D and B are omitted in RX format, R is used for D .
2 2 1 2

3-3

RS Format-—-Two Halfwords

Il ' R T rR I B	1 D	
Op code Il 1 31 2	2	
0 78 11 12 15 16 19 20 31		
RRL Format-——Two Halfwords		
[R M I'R X	L	
Op code	1Tor 1	3o0or 2
L I I		
0 7 8 11 12 15 16 31		
SI Format--Two Halfwords		
	I I B 1 D [
Op code	2 : 1 : 1 }	
0 78 15 16 19 20 31		
S Format—-Two Halfwords		
[[B T D	
Op code	————oo— I 1 [
[1		
0 78 15 16 19 20 31		
SS Format—--Three Halfwords		
	T B Ts7+mnm1 B 177D 1	
Op code	Lorri/2	1
		77
0 78 15 16 19 20 31 32 35 36 47		
SSI Format—Four Halfwords		
I I 1 o T/7/B1/7//m177/817 /1		
opcode	1	1
[I Ve V77 V7 L7 |
0 78 1516 23 24 31 32 35 36 47 48 51 52 63

3-4

3.1.3 Operation Code

The first byte of an instruction contains the operation code (op
code). The length and format of an instruction are specified by the
first two bits of the operation code.

Bit Positions Instruction Instruction
0and 1 Length Format
00 Halfword RR
01 Two halfwords RX
10 Two halfwords RS, SI, S, RL, or RRL
11 Three or four halfwords SS or SSI

3.2 FIXED-POINT INSTRUCTIONS

The binary fixed-point instructions perform binary arithmetic on
operands serving as addresses, index quantities, and counts, as well as
on fixed-point data. In general, both operands are to be considered
unsigned and 24 bits long for address computations, or signed and 31 or
15 bits long for arithmetic computations. One operand is always in one
of the 16 general registers; the other operand may be in main memory or
in a general register.

The binary fixed-point instructions provide for 1loading, adding,
subtracting, comparing, multiplying, dividing, and storing, as well as
for the radix conversion and shifting of fixed-point operands.

The condition code is set as a result of all ADD, SUBTRACT, COMPARE,
and SHIFT operations.

3.2.1 Data Format

Binary fixed-point data in main memory occupies a 16-bit halfword or
a 32-bit word. This data must be located on integral boundaries for
these units of information; that is, halfword or fullword operands must
be addressed with one or two low-order address bits set to O,
respectively.

Fixed-point numbers occupy a fixed-length format consisting of an
integer field. This format is shown in Figure 3-1. When held in one of
the general registers, a fixed-point quantity occupies all 32 bits of the
register. In register-to-register operations the same register may be
specified for both operand locations.

3-5

MSb LSb

I |
I integer |
| |

bits 0 31

Figure 3-1. Fixed-Point Fullword Data Format

3.2.2 Fixed-Point Arithmetic

The basic arithmetic operands are the 32-bit fixed-point binary word
and the 16-bit fixed-point binary halfword.

Fixed-point arithmetic can be wused both for integer operand
arithmetic and for address arithmetic. This combined usage permits the
entire fixed-point instruction set and several logical operations to be
used in address computation. Thus, multiplication, shifting,
calculation, and logical manipulation of address components are possible.

Additions, subtractions, multiplications, and comparisons are
performed upon one operand in a register and another operand either in a
register or in memory. A word in a register may be shifted 1left or
right. A pair of conversion instructions -— CONVERT TO BINARY (CVB) and
CONVERT TO DECIMAL (CVD) —-- provide for translation between decimal and
binary number bases without the use of tables. Multiple-register LOAD
and STORE instructions facilitate subroutine switching.

In an unsigned fixed-point number, all bits may be considered to
express the absolute value of the number. Only the AL, SL, and CL
instructions take signed binary operands; all three require fullword
operands.

A fixed-point number may also be considered a signed quantity, where
the leftmost bit represents the sign, followed by the 31-bit or 15-bit
integer field. Positive numbers are then represented in true binary
notation with the sign bit set to 0, and negative numbers in
2's—-complement notation with a 1 in the sign-bit position.

The 2's-complement representation of a negative number may be
considered the sum of the integer part of the field, taken as a positive
number, and the maximum negative number. The 2's complement of a number
is obtained by inverting each bit of the number and adding a 1 in the
low-order bit position. A negative =zero is not included in
2's—-complement notation; so, the set of negative numbers is one larger
than the set of positive numbers.

3.3 DECIMAL INSTRUCTIONS

Decimal instructions allow arithmetic, shifting, and editing
operations on decimal data.

3.3.1 Decimal Arithmetic

Decimal arithmetic 1lends itself to procedures that require few
computational steps between the source input and the output. This type
of processing is frequently found in commercial applications,
particularly those using problem-oriented languages. Because of the
limited number of arithmetic operations performed on each item of data,
radix conversion from decimal to binary and back to decimal is not
justified, and the use of registers for intermediate results yields no
advantage over storage-to-storage processing. Hence, decimal arithmetic
is provided, and both operands and results are located in memory.
Decimal arithmetic includes addition, subtraction, multiplication,
division, and comparison.

Decimal arithmetic operates on data in the packed format. In this
format, two decimal digits are placed in each 8-bit byte. Each digit is
interpreted as an integer and is right-aligned in its 4-bit field. A
decimal number is kept in true notation with a sign in the least
significant 4-bit field of the string of bytes that compose the number.

Processing takes place from right to 1left between main memory
locations. All decimal arithmetic instructions wuse a two—address
format. Each address specifies the 1leftmost byte of an operand.
Associated with this address is a 1length field, which indicates the
number of additional bytes that the operand extends beyond the first byte.

The decimal arithmetic instructions provide for addition,
subtraction, comparison, multiplication, and division, as well as format
conversion of variable-length operands.

The condition code is set as a result of all decimal instructions
except MP and DP.

The sign of the result is determined by the rules of algebra. When
an operation (other than PACK AND ALIGN (PAL)) is completed without an
overflow, a zero sum result has a positive sign, but when high-order
digits are lost because of an overflow, a zero result may be either
positive or negative, as determined by what the sign of the correct
result would have been. A decimal instruction will set the condition
code even if a decimal overflow exception occurs.

3.3.2 Data Formats

Decimal operands reside in main memory only. They occupy fields that
may start at any byte address and are composed of from one to sixteen
8-bit bytes.

Lengths of the two operands specified in an instruction need not be
the same. If necessary they are considered to be extended with 0s to the
left of the most significant digits. Results never exceed the limits set
by address and length specification. Lost carries or lost digits from
arithmetic operations are signaled as decimal overflow exceptions.

Packed Decimal Number

In the packed format, numbers are represented as right-aligned true
integers, with a plus or minus sign in the rightmost four bit positions.

The decimal digits 0-9 are represented in the 4-bit binary-coded-
decimal form by 0000-1001. The codes 1010-1111 represent signs rather
than digits, as shown in Table 3-1. The preferred sign codes are
generated by all decimal arithmetic instructions.

Table 3-1. Bit Codes for Digits and Signs

Digit Code Preferred Sign Code Allowed Sign Code

0000 - 1101 - 1101

0001 + 1111 + all other codes
0010
0011
0100
0101
0110
0111
1000
1001

WO UTbdWINKHEHEO

All decimal arithmetic is performed on data in the packed format. 1In
the packed format, two decimal digits are adjacent in a byte, except for
the rightmost byte of the field. In the rightmost byte a sign is placed
to the right of the decimal digit. Both digits and a sign are encoded
and occupy four bits each.

Decimal operands and results are represented by 4-bit binary-coded-
decimal digits packed two to a byte. They appear in fields of variable
length and are accompanied by a sign in the rightmost four bits of the
least significant byte, as shown in Figure 3-2. Operand fields may be
located on any byte boundary, and may have a length of up to 31 digits
and a sign. Operands participating in an operation may have different
lengths. Packing of digits within a byte and of variable-length fields
within memory results in efficient use of memory, increased arithmetic
performance, and an improved rate of data transmission between memory and
files.

3-8

| —————MSB————- | _ P — LSB-———- |

S
I [[I [[[T [
ldigit :digit ldigit | ldigit }digit ldigit :digit i

Figure 3-2. Packed Decimal Number Format

Zoned Decimal Number

A zoned decimal number is a right-aligned integer with one digit code
per byte and the sign code in the four high-order bits of the low-order
byte, as shown in Figure 3-3. Zoned decimal numbers are converted to
packed format by the PACK instruction. The four high-order bits (zone
bits) of bytes other than the low-order byte do not affect the resulting
packed decimal number.

o I LSB I
[| | | | [[| | |
|zone |digit| zone |digit : | zone ldigit |sign |digit |
I I I | 1 I I |

Figure 3-3. Zoned Decimal Number Format

External Decimal Number

Decimal numbers may also appear in an external format as a subset of
the 8-bit alphameric character set. External decimal format is shown in
Figure 3-4. This representation is required for character-set-sensitive
I/0 devices. An external format number carries its sign as an 8-bit
ASCITI character that precedes or follows the ASCII number. The external
format is not used in decimal arithmetic operations. The PAL and PACK
instructions are provided to transform external data into packed data,
and the ED, EDMK, UNPACK, UNPAL, and UNPU instructions may be used to
change data from packed to external format.

| MSB y\ - I LSB I
| | I I I I
| ascIiI | ascII I | ascII | ascII |
} digit } digit I digit { digit :

Figure 3-4. External Decimal Number Format

The sign character may appear as the first or the last character in
the external format character string. The external format string for any
field that is to be converted to a packed format field cannot exceed 16
ASCII characters. '

The fields specified in decimal instructions either should not
overlap at all or should have coincident rightmost bytes. In ZERO AND
ADD, the destination field may also overlap to the right of the source
field. Because the code configurations for digits and sign are verified
during arithmetic, improperly overlapping fields are recognized as data
exceptions.

The rules for overlapped fields are established for the case where
operands are fetched right to left from memory, eight bits at a time,
just before they are processed. Similarly, the results are placed in
memory eight bits at a time, as soon as they are generated.

3.4 FLOATING-POINT INSTRUCTIONS

The floating-point instruction set is used to perform calculations on
operands with a wide range of magnitudes. Floating-point operations
yield results scaled to preserve precision.

3.4.1 Floating-Point Arithmetic

A floating-point number consists of a signed exponent and a signed
fraction. The quantity expressed by this number is the product of the
fraction and the number 16 raised to the power of the exponent. The
exponent is expressed in excess-64 binary notation; the fraction is
expressed as a hexadecimal number having a radix point to the left of the
high-order digit.

To avoid unnecessary storing and loading operations for results and’
operands, four floating-point registers are provided. The floating-point
instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, storing, and sign control, of both long and short
operands. Operations may be either register-to-register or storage-to-
register.

Maximum precision is preserved in addition, subtraction,
multiplication, and division by producing normalized results. For
addition, instructions are also provided that generate unnormalized
results. Normalized and unnormalized operands may be wused in any
floating-point operation. Normalization is discussed in Section 3.4.3.

3-10

The condition code is set as a result of all floating-point sign
control, add, subtract, and compare operations. Multiplication,
division, loading, and storing leave the code unchanged. The condition
code can be used for decision-making by subsequent branch-on-condition
instructions. The condition code can be set to reflect two types of
results for floating-point arithmetic. For most operations, the Codes 0,
1, and 2 indicate, respectively, that the result is 0, less than 0, or
greater than 0. A zero result is indicated whenever the result fraction
is 0, including a forced 0. Code 3 is never set by floating-point
operations.

In comparisons, the States 0, 1, and 2 indicate, respectively, that
the first operand is equal, low, or high.

3.4.2 Data Format

Floating-point data appears in a fixed-length format that may be
either 8-byte (long) or 4-byte (short), as pictured in Figure 3-5.
Operands in either format may be specified either in main storage or in
floating-point registers. The floating-point registers are numbered 0,
2, 4, and 6.

1 | /7 / |
| s | Characteristic | 14-digit Fraction |
[| | / 7/ |
0 8 63
o 1 / / |
| s | Characteristic | 6-digit Fraction I
L | /7]
0 8 31

Figure 3-5. Long and Short Floating-Point Numbers

The first bit is the sign bit (S). The subsequent seven bit
positions are occupied by the characteristic. The fraction field has
either 14 or 6 hexadecimal digits, for long or short floating-point
numbers, respectively.

Short floating—point numbers occupy only the leftmost 32 bit
positions of a floating-point register. When a floating-point register
is used as the source of a short floating-point number, the rightmost 32
bit positions of the register are ignored. When a floating-point
register is used as the destination of a short floating-point number, the
rightmost 32 bit positions of the register remain unchanged.

3-11

The entire set of floating-point functions is available for both
short and long operands. These instructions generate a result that has
the same format as the sources, except that in the case of the ME and MER
multiply instructions, a long product is produced from a short multiplier
and short multiplicand. The LOAD ROUNDED instruction provides for
rounding from 1long to short format, while the LOAD SHORT TO LONG
instruction provides for expansion from short to long format.

Although final results have either 14 or 6 fraction digits,
intermediate results in ADD NORMALIZED, SUBTRACT, ADD UNNORMALIZED,
COMPARE, HALVE, and MULTIPLY may have one additional low-order digit.
This low-order digit, the guard digit, increases the precision of the
final result.

The fraction of a floating—point number is expressed in hexadecimal
digits. The radix point of the fraction is assumed to be immediately to
the 1left of the high-order fraction digit. To provide the proper
magnitude for the floating-point number, the fraction is considered to be
multiplied by a power of 16. The characteristic, Bits 1-7 of both long
and short floating-point formats, indicates this power. The bits within
the characteristic field can represent numbers from 0 through 127. To
accommodate large and small magnitudes, the characteristic is formed by
adding 64 to the actual exponent. The range of the exponent is thus -64
through +63. This technique produces a characteristic in excess-64
notation.

Both positive and negative quantities have a true fraction, the
difference in sign being indicated by the sign bit. The number is
positive or negative, accordingly, as the sign bit is 0 or 1.

The allowed range of magnitude (M) is 16**-65 < M < (1-16%*%-14) *
16**63 for a long floating-point number, and 16**-65 < M < (1-16**-6) *
16**63 for a short floating-point number; or approximately 5.4 * 10%*-79
<M< 7.2 *% 10%*75 in both formats.

A number with a characteristic of 0, a fraction of 0, and a plus sign
is called a true 0. A true 0 may result from an arithmetic operation
because of the particular magnitude of the operands. A result is forced
to be true 0 when one of the following conditions occur:

1. An exponent underflow occurs and the exponent-underflow mask (PSW
- Bit 38) is 0.

2. A result fraction of an addition or subtraction operation is 0
and the significance mask (PSW Bit 39) is 0.

3. The operand of HALVE, one or both operands of MULTIPLY, or the
dividend in DIVIDE has a fraction of 0. When a program
interruption due to exponent underflow occurs, a true 0 fraction
is not forced; instead, the fraction and sign remain correct and
the characteristic is too large by 128.

3-12

When a program interruption due to lost significance occurs, the
fraction remains 0 and the sign and characteristic remain correct.
Whenever a result has a fraction of 0, the exponent overflow and
underflow exceptions do not cause a program interruption. When a divisor
has a fraction of 0, division is suppressed, a floating-point divide
exception exists, and a program interruption occurs. In addition and
subtraction, an operand with a fraction or characteristic of 0
participates as a normal number.

The sign of a sum, difference, product, or quotient with a fraction
of 0 is positive.

3.4.3 Normalization

A quantity can be represented with the greatest precision by a
floating-point number when that number is normalized, that is, when the
nonzero fraction digits are shifted left as far as possible so that the
exponent is of the minimum possible magnitude. A normalized
floating-point number has a nonzero, high-order, hexadecimal fraction
digit. If one or more high-order fraction digits are 0, the number is
said to be wunnormalized. The process of normalization consists of
shifting the fraction 1left until the high-order hexadecimal digit 1is
nonzero and reducing the characteristic by the number of hexadecimal
digits shifted. A fraction of 0 cannot be normalized and its associated
characteristic therefore remains unchanged when normalization is called
for.

Normalization usually takes place when the intermediate arithmetic
result is changed to the final result. This function is called
postnormalization. For multiplication and division, the operands are
normalized prior to the arithmetic process. This function is called
prenormalization.

Most floating-point operations are performed only with normalization;
a few are performed only without normalization. Addition may be
specified either way.

When an operation is performed without normalization, high-order Os
in the result fraction are not eliminated. The result may or may not be
normalized, depending upon the original operands.

In both normalized and unnormalized operations, the initial operands
need not be in normalized form. Also, intermediate fraction results are
shifted right when an overflow occurs, and the intermediate fraction
result is truncated to the final result length after the shifting, if any.

Programming Note: Since normalization applies to hexadecimal digits, up
to three high-order bits of a normalized fraction may be 0s.

3-13

3.4.4 Floating-Point Instruction Formats

Floating-point instructions use the RR and RX formats, as described
in Section 3.1.2. In these formats, Rl designates a floating-point
register. The contents of this register are called the first operand.
The second operand location is defined differently for the two formats.

In the RR format, the R2 field specifies a floating-point register
containing the second operand. The same register may be specified for
the first and second operands. The register specified by the R1 and R2
fields should be 0, 2, 4, or 6. Otherwise, a specification exception is
recognized, and a program interruption occurs.

In the RX format, the contents of the general register specified by
X2 and B2 are added to the contents of the D2 field to form an address
designating the location of the second operand. A value of zero in an X2
or B2 field indicates the absence of the corresponding address component.

The storage address of the second operand should be on a fullword
boundary. Otherwise a specification exception is recognized, causing a
program interruption.

Results replace the first operand, except for storing operations,
where they replace the second operand. The contents of all other
floating-point or general registers and storage locations that
participate in the addressing or execution part of an operation remain
unchanged.

The floating-point instructions are the only instructions that use
the floating-point registers.

3.4.5 Decimal Floating—Point Instructions

Decimal floating-point instructions perform calculations on decimal
data with a wide range of magnitudes.

Decimal Floating-Point Arithmetic

Decimal floating-point arithmetic combines certain features of packed
decimal arithmetic and true (hexadecimal) floating-point arithmetic.
Like packed decimal numbers, decimal floating-point numbers appear in BCD
format rather than the hexadecimal format of true floating-point
numbers. Like hexadecimal floating-point numbers, decimal floating-point
numbers are represented by sign, characteristic, and mantissa values, and
undergo arithmetic manipulations analogous to those for hexadecimal
floating-point numbers. Therefore, decimal floating-point arithmetic can
operate on numbers with a wide range of magnitudes and yield results
scaled to preserve precision, without requiring conversion between
decimal and hexadecimal representations.

3-14

The format of decimal floating-point numbers is shown in Figure 3-6.

[I / / I

sl Characteristic | 14-digit decimal Fraction |

LI | // |
bits 01 8 63

Figure 3-6. Decimal Floating-Point Number Format

A decimal floating-point number consists of a sign bit (S), a binary
exponent (characteristic), and a decimal mantissa (fraction). The
fraction consists of decimal digits (0-9) packed two to a byte, with the
radix point of the fraction assumed to fall immediately to the left of
the high-order fraction digit. The quantity expressed by this number is
the signed product of the fraction and the number 10 raised to the power
of the characteristic. The characteristic is expressed in excess-64
binary notation and ranges from -64 to +63.

Decimal floating-point arithmetic may use the four 8-byte
floating-point registers for data manipulation. Decimal floating-point
instructions provide both normalized RR and normalized RX formats for
arithmetic operations —- that is, for addition (AQR and AQ), subtraction
(SQR and SQ), multiplication (MQR and MQ), and division (DQR and DQ).
Instructions in RX format for conversion between packed decimal and
decimal floating-point numbers are CVP and CVQ. Load, store, and compare
operations for decimal floating-point numbers employ the same
instructions used for hexadecimal floating—point numbers.

Invalid digits cause data exceptions in all arithmetic and conversion
instructions; data exceptions cause the instruction to be suppressed and
leave the result unchanged. Invalid digits are not detected in LOAD,
STORE, and COMPARE instructions.

3.5 LOGICAL INSTRUCTIONS

Logical information is handled as fixed- or variable-length data. It
is subject to such operations as comparison, translation, editing, bit
testing, and bit setting.

3.5.1 Fixed-Length Logical Data

When used as a fixed-length operand, logical information can consist
of from one to four bytes and is processed in the general registers.
Figure 3-7 shows the structure of fixed-length logical operands.

I I I 77 [|
| logical | logical | | logical |
I A I
bits 0 8 31

Figure 3-7. Fixed-Length Logical Operand (one to four bytes)

3.5.2 Variable-Length Logical Data

A large portion of logical information consists of alphabetic or
numeric character codes, called alphanumeric data, and is wused for
communication with character-set-sensitive I/0 devices. This information
is in variable-field-length format and can be up to 256 bytes long. It
is processed on a storage-to-storage basis, left to right, one byte at a
time. Figure 3-8 shows the structure of variable-length logical operands.

[| [77 1

|character|character| |characterl
| 77 | |
Bytes 0 1 256

Figure 3-8. Variable-Length Logical Operand (up to 256 bytes)

The system can handle any 8-bit character set, although certain
restrictions are assumed in decimal arithmetic and editing operations.
However, all character-set-sensitive I/0 equipment will assume the USA
Standard Code for Information Interchange (USASCII) extended to eight
bits, with the parity bit always set to 0 internally. In this manual the
character set 1is referred to as USASCII-8 or simply, ASCII. The
numbering convention for bit positions within a character or byte is as
follows:

Bit positions

012
USASCII-8 876

34567
54321

Graphics are not defined for all 256 8-bit codes. When it is desirable to
represent all possible bit patterns, a hexadecimal representation may be used
instead of the 8-bit code. Hexadecimal representation uses one graphic for a
4-bit code, and therefore, two graphics for an 8-bit byte. The graphics 0-9

are used for codes 0000-1001; the graphics A-F are used for codes 1010-1111.

3-16

3.6 SUMMARY OF DATA FORMATS

Table 3-2 summarizes the data formats for the instructions described in
Sections 3.1 through 3.4. The relative addresses for a series of numbers are
given in order to illustrate boundary alignments of fixed-point and floating
point data.

Table 3-2. Data Representation and Boundary Alignment

Data Decimal Hexadecimal Relative
Type Value Representation Address
Floating—Point +4.3 4144CCCCCCCCCCep 000000
" -4.3 C144CCCCCCCCCCCh 000008
" 4,56E+5 456F540000000000 000010
" 4,56E-5 3C4C810D05SCCF38E 000018
Decimal Floating-Point +4.3 4143000000000000 000020
" " -4.3 C143000000000000 000028
" " 4 ,56E+5 4645600000000000 000030
" " 4.56E-5 3D2FD0A823A01839 000038
Fixed-Point
Binary fullword +123 0000007B 000040
" -123 FFFFFF85 000044
Binary halfword 123 007B 000048
Decimal
Packed +123 123F 00004A
" -123 123D 00004C
Zoned +123 3132F3 00004E
" -123 3132D3 000051
External 123 313233 000054
" +123 2B313233 000057
" -123 2D313233 00005B
" 123+ 3132332B 00005F
" 123- 3132332D 000063
Logical "DATA' 44415441 : 000067

3.7 LINKED LIST INSTRUCTIONS

The instructions ENQ, ENSK, DEQ, and DESK handle 1lists of blocks
connected by pointers. Two kinds of linked lists are supported: last-in
first-out (LIFO) 1lists and first-in first-out (FIFQO) lists. The instructions
provide the means to add to and delete from the lists, and to determine
whether the lists are empty.

3-17

3.7.1 Structure of LIFO Lists

The LIFO header consists of an aligned word containing either a null
pointer (0s) or the address of the first block in the 1list. This
address, or pointer, is in the low-order three bytes of the word. Each
block in the list also contains either a null pointer or the address of
the start of the next block in the list. Figure 3-9 is a diagram of such
a list. The pointers in the blocks are all at a displacement into the
block determined displacement field of the ENSK or DESK instruction.

First Block Second Block Last Block

[Head l—>i
IPtr I

Figure 3-9. LIFO List

3.7.2 Structure of FIFO Lists

The FIFO 1list, pictured in Figure 3-10, consists of head and tail
pointers in consecutive words, doubleword aligned, and the chain of
blocks addressed by the head and tail pointers. If the list is empty.
the head and tail pointers are null (0). TIf the list is not empty, the
head pointer addresses the start of the first block in the list, and the
tail pointer addresses the start of the last block. If there is only one
block, the head and tail pointers are the same. In the blocks the
pointers will be exactly the same as for the LIFO list.

First Block Second Block Last Block
I |
[Head l—3»| | |
|ptr | I I | I
[Taill I | I | | | |
|Ptr Next Ptr Next Ptr | I [o I

Figure 3-10. FIFO List

3.8 SEMAPHORE MANIPULATION INSTRUCTIONS

The Decrement and Inspect Semaphore (DSEM) and Increment and Inspect
Semaphore (ISEM) instructions operate on a unique doubleword data type,
the semaphore, consisting of linked list head and tail pointers and a
l1-byte count field. The semaphore data type is illustrated in Figure
3-11. The semaphore must be aligned on a doubleword boundary. These
pointers contain addresses of a FIFO list, and are manipulated exactly as
for the FIFO list instructions.

These instructions may be used to control sharing of a system
resource (e.g., processor, memory, or I/0 devices). The DSEM instruction
is issued when a unit of the resource is to be requested, and the ISEM
instruction is issued when a unit of the resource is to be released. The
conditional branching effected, which is contingent on the contents of
the count field, allows the program to prevent the allocation of more
units of the resource than are specified by the initial positive value of
this field. For details of instruction execution, refer to the
particular instruction descriptions in Chapter 8.

I I /7 I I /7
| Semaphore | | |

| count | Head pointer | unused | Tail pointer
| I /7 I I /!

0 8 32 40 63

I
I
I
|

Figure 3-11. Semaphore

3.9 STACK-ORIENTED INSTRUCTIONS

The stack-oriented feature consists of the BALS, BCS, SVC, SVCX,
JSCI, RTC, PUSH, PUSHM, PUSHC, PUSHN, POP, POPH, POPM, POPC, and POPN
instructions, which operate on a pushdown 1list in descending memory
locations. This 1list is addressed through two address words (stack
pointer and stack 1limit word, in that order) that may be either in
General Register 15 and Control Register 2 (which constitute the system
stack vector) or in two consecutive general registers (the user stack
vector). If the S1 (or S2 for BCS) field of one of these instructions is
0, the system stack vector is used. Otherwise the S1 (or S2 for BCS)
field addresses the general register containing the stack limit. The
previous register will be the stack pointer.

The stack 1limit word addresses the lowest byte location into which
the stack may extend as it grows into successively 1lower addressed
locations. The stack pointer addresses the current stack top, that is,
the lowest byte location that contains stacked information. Note that
the stack pointer of the system stack vector is in General Register 15.
The value in the stack pointer decreases as items are placed on a stack.

3-19

Items, including character strings, are placed on stacks in
word-aligned 1locations. The stack pointer must address a fullword
boundary (that is, have two 1low—order =zero bits) before any
stack-oriented instruction is processed, or a specification error will
result and the instruction will be suppressed. Thus, registers may
dependably be loaded from stacks by L, LH, and LM instructions. They may
also be loaded by POP, POPM, and ICM instructions.

When bytes are placed on a stack by the PUSHN or PUSHC instructions,
sufficient bytes are skipped (unmodified) before pushing any bytes so
that the stack pointer addresses a fullword boundary when the instruction
is completed. Thus zero, one, two, or three bytes may be skipped. When
bytes are removed from the stack by the POPN or POPC instructions,
sufficient additional bytes are popped and discarded (as for POPN) so
that the stack pointer addresses a fullword boundary when the instruction
is completed.

The previous contents of the high-order byte of words in the stack
vector are irrelevant to all stack-oriented instructions. The high-order
byte of the stack pointer will be set to =zero whenever this word is
modified by one of these instructions. The stack limit word is unchanged
by these instructions.

3.10 STACK SWITCHING

In a task's virtual address space, a system stack is maintained for
each process level at which the task may execute. The separation of
stack areas reduces the possibility of programs at different process
levels overwriting each other's modifiable data.

When one routine calls another that executes at a higher process
level, the system stack associated with the called routine is activated:
that is, the system stack vector is updated to describe the status of the
called routine's stack. Upon return of control to the caller, the
caller's stack is reactivated.

The activation of a new stack is called a stack switch. Stack
switching is implemented through a data structure called a Stack Header
Block (SHB). There is a SHB for each process level and stack associated
with that level. Entries in the SHB point to the top of stack and the
stack limit. Another SHB field points to the most recently built JSCI
save area. (The JSCI save area is described in Section 4.6.1.) Control
Register 8 points to the active SHB (that is, the SHB associated with the
currently active stack). The SHB is illustrated in Figure 3-12.

3-20

Offset

(bytes)
x'0' | Pointer to Top of Stack |
X'4' | Stack Limit]
x'8' | Pointer to JSCI Save Area |
x'c' | Reserved for OS Use]
| . I
| |
| 1
byte 0 3

Figure 3-12. Format of Stack Header Block (SHB)

The length of each SHB entry is 4 bYtes, of which the first is zero.

Stack Header Blocks are are addressed through the Stack Header Block
table (SHBT), which in turn is pointed to by Control Register 9. The
table consists of eight 4-byte entries. The rightmost three bytes of
each entry hold the address of the SHB associated with a process level.
The entries address the SHBs for Process Levels 0-7 in ascending order of
process level.

The SHB associated with a particular process level can be located by
indexing into the table by the level number. The process level of a
called routine can be found in the Linkage table, described in Section
4.6.2. The process level of the calling routine is recorded in the JSCI
save area.

When a stack switch involves a transition to a higher level, the
following occurs: the current value of the stack vector (GR15 and CR2)
and the JSCI save area back chain (CR1l) are saved in the SHB pointed to
by CR8. The address of the new SHB, associated with the called routine,
is extracted from Stack Header Block table and loaded into CR8. GR15 and
CR2 are loaded from the new SHB pointed to by CR8. The system wvectors
now describe the stack used by the called routine.

When the RTC or RPC instruction returns control to the caller,
another stack switch takes place. GR15 and CR2 are saved in the called
routine's SHB, which is still pointed to by CR8. CR1 points to the save
area on that stack, where the caller's process level has been stored.
CR9 points to the Stack Header Block table. The caller's process level
provides an index to the address of the caller's SHB in the SHBT. This
address is loaded into CR8. GR1S5 and CR2, comprising the stack vector,
are loaded from the caller's SHB, so that they now describe the caller's
stack.

For further information on stack switching, refer to the descriptions
of the JSCI and RTC instructions in Chapter 8.

3-21

CHAPTER 4
INSTRUCTION EXECUTION

4.1 PROGRAM CONTROL WORD

The Program Control Word (PCW) is eight bytes long and contains the
information required for proper program execution. It includes status
and control information, interruption codes, and the instruction
address. Uses of the PCW are explained in Chapter 5. 1In general, the
PCW is used to control instruction sequencing and to indicate the status
of the system in relation to the program currently being executed.

To execute a sequence of instructions, the CP takes the address of an
instruction from the PCW. It executes that instruction and increments
the PCW's instruction address by the length of the instruction. It then
takes the new instruction address from the PCW. The process continues
until an interruption occurs or a branching instruction is executed.

The active or controlling PCW is called the current PCW. Through
storage of the current PCW, the status of the CP can be preserved for
subsequent inspection. Through loading of a new PCW or part of a PCW,
the state of the CP can be changed. The PCW is made up of a 1l-byte
interruption code (discussed in Chapter 5), a 3-byte instruction address,
a 2-byte status field, a 1l-byte program mask field, and a l-byte field
whose three low order bits indicate process level. The PCW for a program
can be inspected through Debug mode or by doing a program dump. Figure
4-1 shows the PCW format.

4-1

l |
| Interruption | Current instruction address
| code
0 8 31

U 8V A0 1 T Ip lrzrzrrervzeveezessvy
wilcle v lzzlx T M IB l7777272727727227777
L ezt UL g N2222222222277227717
32 33 34 35 36 37 38 39 40 41 47

Status Field

(e T T T Tz77707707777777777777] I
cc |p Ivolrulsglzzzzrzrererrzrzrrzezl ppp o |
ot | | Az27707772777777777771 |

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Program Mask Field

Figure 4-1. PCW Format

Table 4-1 gives a more detailed explanation of the function of each
bit in the PCW.

Table 4-1. PCW Bits

PCW Bits Mnemonic Function
0-7 Interruption code
8-31 Current instruction address

System Mask Field

32 W Wait state
0 = Operating state
1 = Wait state

33 C Control mode

0 = Normal operating mode
1 = Control mode

(continued)

4-2

Table 4-1. PCW Bits (continued)
PCW Bits Mnemonic Function
34 P Memory protection violation and
privileged instruction trap
0 = Do not trap on attempt to access
protected memory or execute
privileged instruction
1 = Trap on attempt to access protected
memory or execute privileged
ingtruction
35 v Virtual machine
0 = Native machine mode
1 = Virtual machine mode
36 Reserved
37 I I/0 interruption mask
0 = I/0 interruptions disabled
1 = I/0 interruptions enabled
38 T Clock interruption mask
0 = Clock interruptions disabled
1 = Clock interruptions enabled
39 M Machine check interruption mask
0 = Machine check interruptions
disabled
1 = Machine check interruptions
enabled
40 DBG Debug control bit
0 = Debug traps disabled
1 = Debug traps enabled
41-47 Reserved
48-49 cc Condition code
Program Mask Field
50 FPO Fixed-Point overflow mask

0 = Do not interrupt on overflow
1 = Overflow will cause
interruption

(continued)

Table 4-1. PCW Bits (continued)

PCW Bits Mnemonic Function
51 DO Decimal overflow mask
0 = Do not interrupt on overflow
1 = Overflow will cause
interruption
52 EU Exponent underflow mask

(floating-point instructions)

0 = Do not interrupt on underflow

1 = Underflow will cause
interruption

53 SG Significance mask (floating-

point add or subtract instructions)

0 = Do not interrupt on zero
intermediate sum

1 = Zero intermediate sum will cause

interruption
54-60 Reserved
61-63 Process level
4.1.1 Wait State
When the Wait state bit = 1, the CP does not execute machine

instructions. Three external events cause the CP to leave wait-state:
an enabled clock interrupt, an enabled I/0 interrupt, and pressing of the
Control mode button.

When the CP is in Wait state and a clock or I/0O interrupt becomes
active, the CP, taking the interrupt, loads the new PCW, which typically
brings the CP to normal operating state. When Control mode entry is
detected, the CP enters that state while preserving the current PCW value.

The CP does not turn off the Wait state bit when leaving Wait state.
That bit is typically turned off by the loading of a new PCW or, upon
exit from Control mode, by the reloading of the current PCW.

4.1.2 Condition Codes

The condition code is a 2-bit field in the PCW that can be tested by
many of the instructions. Once the code is set, it 1is changed only by
certain instructions, such as ADD, COMPARE, SET PROGRAM MASK, and LOAD
PCW. The meanings of the condition codes for each instruction are listed
under that instruction in Chapter 8.

4-4

4.1.3 Process Levels

The process level is a 3-bit field in the PCW that indicates the
current level of execution. Levels of execution range from 0 to 7.

Only programs running at Level 7 may execute privileged
instructions. A comparison of process level to access levels determines
a program's access rights to memory.

The access levels for a region of memory are defined in the Region
Table entry describing that region. Each entry includes a 3-bit read
access field and a 3-bit write access field. (The Region Table and its
entries are fully described in Section 4.3.5.) The values of these
fields signify the minimum process level from which the associated region
can be read or written to. Thus, to read a region whose read access
level is n, a program must be executing at a process level equal to or
greater than n. The value of the write access field must be that of the
read access field or 7.

4.2 ADDRESSING

For addressing purposes, operands can be grouped in three classes:
explicitly addressed operands in main memory, immediate operands placed
as part of the instruction stream in main memory, and operands located in
registers.

To permit the ready relocation of program segments and flexible
specification of input, output, and working areas, most instructions
referring to main memory can employ a full address. A full address
consists of a base address, an index, and a displacement. For
instructions in the RL and RRL format, the base address is implicitly the
current instruction address (relative addressing). Instructions in other
formats explicitly specify a base address in their B field
(base—-displacement addressing).

To address the first 4096 bytes of memory, an instruction can specify
an address by the displacement element alone (direct addressing).

4.2.1 Base-Displacement Address Generation

Base—-displacement addresses are generated from the following three
binary numbers:

e Base Address (B) is a 24-bit number contained in a general
register specified by the program in the B field of the
instruction. The B field 1is included in every address
specification. The base address can be wused for static
relocation of programs and data. In array calculations it can
specify the location of an array, and in record processing it can
identify the record. The base address provides for addressing
all of main memory. The base address may also be used for
indexing purposes.

4-5

e TIndex (X) is a 24-bit number contained in a general register
specified by the program in the X field of the instruction. It
1s included only in the address specified in the RX instruction
format. The RX format instructions permit double indexing: that
is, the index can be used to provide the address of an element
within an array.

e Displacement (D) or offset is a 12-bit number contained in the
instruction format. It is included in every address computation.
The displacement provides for relative addressing of up to 4095
bytes beyond the element or base address. In array calculations
the displacement can specify one of many items associated with an
element. 1In processing records, the displacement can identify
items within a record.

In forming the address, the base address and index are treated as
unsigned 24-bit binary integers. The displacement is similarly treated
as an unsigned 12-bit binary integer. The three are added as 24-bit
binary numbers, ignoring overflow. Since every address includes a base,
the sum is always 24 bits long.

The program may show a value of zero in the base address, index, or
displacement field. A zero indicates the absence of the corresponding
address component. A base or index of zero implies that a value of zero
is to be used in forming the address, and does not refer to the contents
of General Register 0. Thus, the use of Register 0 as a base register
makes a program unrelocatable. A displacement of zero has no special
significance. Initialization, modification, and testing of Dbase
addresses and indexes can be carried out by fixed-point instructions, or
by BRANCH AND LINK, BRANCH ON COUNT, BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW OR EQUAL instructions.

4.2.2 Relative Address Generation

For instruction formats (RL and RRL), a base register is
unnecessary. The current instruction address is an implied base address,
and a relative offset is added to it to form the effective address. Use
of this format is limited to five branch instructions, RLA, and RPUSHA.

The address used to refer to main memory is generated from the
following three binary numbers:

e Current instruction address is the implied base address. So, for
example, if both X and L values (see below) are zero, then the
instruction branches to itself.

® Index (X), if specified in the instruction, is a 24-bit number
contained in a general register specified by the program in the X
field of the instruction.

] Relative OQOffset (L) is extended from the number of bits in the
instruction to a 24-bit number.

4-6

In forming the address, these three numbers are added as unsigned
24-bit binary integers, ignoring overflow.

4.2.3 Direct Address Generation

Addresses 0-4095 can be generated without a base address or index.
This property is important when the PCW and general register contents
must be preserved and restored during program switching. These addresses
further include all reserved addresses used by the system for fixed
purposes, such as old PCWs, new PCWs, and IOSW and IOCT locations.

4.3 ADDRESS TRANSLATION

All VS systems provide many users simultaneously with a wvirtual
address space for instructions and data that is larger than the amount of
memory physically available to the system; in fact, VS is an acronym for
virtual storage. Most of this virtual address space is located on disk.

Because instructions and data must be present in main memory (i.e.,
physical memory) while being processed, they are copied from disk into
main memory as needed. The process of copying information from virtual
memory into main memory is called paging. Paging is accomplished in
units of 2 KB, or one page, by a part of the operating system called the
Pager.

Before a program instruction can be executed, a conversion must be
performed on the virtual addresses specified within it. The process of
converting virtual addresses into physical main memory addresses is
called address translation. A combination of hardware and operating
system action translates each virtual address as it is encountered during
program execution.

Because the programs of many users exist 1in physical memory
simultaneously and only one of these can be processed at a time, a means
of working for short "time slices" successively on different programs is
implemented in the operating system. Time slices give the effect of
simultaneous action on a number of programs.

The process of preparing conditions for the CP to work first on one
program, then another, is called context switching. Context switching
also is accomplished by a combination of hardware and operating system
action. As a part of context switching, the translation of one user's
virtual address space is discontinued and that of another user's is begun.

4.3.1 Physical/Virtual Address Space

Main memory for all VS machines consists of byte-addressable random
access memory (RAM). Located on semiconductor chips in the CP cabinet,
main memory is divided logically into page frames of 2 KB, each aligned
on a 2-KB boundary and containing exactly one page of information.

Main memory addresses consist of a 15-bit page frame number and an
11-bit byte index to locations within the page, as illustrated in Figure
4-2,

-

I I

| Page frame number | Byte index
|

N
Ul e —

bits 0 15

Figure 4-2. Physical Address Format

The range of main memory addresses depends upon the amount of
physical memory configured into the installation, and currently wvaries
from 512 KB to 64 MB (i.e., 2**26 = 64M) with different processors of the
VS family.

Virtual memory, located in disk storage, is divided logically into
pages and regions. Virtual memory addresses consist of a 13-bit wvirtual
page index and an 11-bit byte index to locations within the page, as
illustrated in Figure 4-3. The 24-bit virtual address allows for up to
16 MB of addressable storage (i.e., 2%*24 = 16M). Virtual pages are 2 KB
in size, beginning on a 2-KB boundary: physically, each page occupies one
sector of a disk platter. Regions are blocks of pages, variable in size,
and beginning on a 2-KB boundary. The VS architecture supports the
segmentation of a task's address space into 512 regions; a smaller
number, however, is actually implemented by the operating system. Pages
of virtual memory are copied as needed into available page frames of main
memory, as discussed in Section 4.3.2.

[| |

| Virtual page number | Byte index |

I |

bits 0 13 23

Figure 4-3. Virtual Address Format

4.3.2 Main Memory Page Tables

A task's page tables form an essential part of the address
translation mechanism. A page table is a section of main memory that
defines the mapping of virtual address space to main memory page frames.
There 1is a page table for each region of a task's address space. The
format of page table entries is illustrated in Figure 4-4.

4-8

F Page Frame Number

bits 01 1

Figure 4-4. Main Memory Page Table Entry Format

Each halfword entry of the page table corresponds to a virtual page
address. If the page exists in main memory, the fault bit (F) is equal
to 0 and Bits 1-15 are its page frame number. If not, F=1 and the rest
of the entry is not examined.

To translate a wvirtual address, the CP first indexes into the page
table to the appropriate page table entry. The correct index, or offset,
is obtained as follows: the first entry of a page table maps the lowest
page number in a region to physical memory. The lowest page number in a
region is recorded in a Region Table, as explained in Section 4.3.5. The
residual difference between the 1ll-bit page number of a virtual address
and the lowest page number in a region supplies the index to the page
table entry corresponding to that page number.

If the fault bit of that entry is off (0), the CP concatenates the
15-bit page frame number number in the entry with the 11-bit byte index
of the virtual address to form a 24-bit physical address. The CP then
uses this physical address to access the data in memory. If the fault
bit is on (1), the CP signals the operating system (i.e., the pager) that
a page fault has occurred. The pager copies the virtual page from disk
into an available page frame and records the number of the selected page
frame in the page table. The task can then resume execution.

4.3.3 Local Page Table

To speed up address translation, a subset of the currently executing
task's page tables is held in local CP memory and is checked first during
translations. Most instances of address translation are accomplished by
reference to this local page table.

Translation RAM (T-RAM)

The 1local page table of VS15, VS65, and VS100 systems 1is called
Translation RAM (T-RAM). There are as many 2-byte entries in T-RAM as
pages in the user's virtual address space.

At the start of each user's time slice, the fault bits of T-RAM
entries are set to 1, indicating that they do not hold valid page frame
numbers. Then, as pages are referenced by the task, page frame numbers
found in main memory page tables are also recorded in the T-RAM, and
subsequent references to these pages during the same time slice are
satisfied from the T-RAM in 720 nanoseconds rather than the 20
microseconds (approximate times estimated for the VS15) required for a
main memory page table access.

T-RAM entries include memory protection fields that regulate read and
write access to the corresponding page frame. The format of these fields
varies between VS systems, as explained in Section 4.3.7.

Translation Buffer (T-BUF)

The 1local page table of the VS300 system is called a translation
buffer (T-BUF). T-BUF, like T-RAM, holds a subset of the currently
executing task's page tables, and is checked first during translations.
T-BUF entries include a physical page frame number, fault bit, monitor
bit, and protection fields.

There are 1024 entries in the buffer. One entry is associated with a
set of eight virtual page numbers in the user's address space. These
numbers increase by increments of 1K, sc¢ that Bits 3 through 12 of the
virtual page numbers in a set have the same value.

At the start of each user's time slice, the fault bits of T-BUF
entries are set to 1, indicating that they do not hold valid page frame
numbers. Then, as pages are referenced by the task, page frame numbers
found in main memory page tables are recorded in T-BUF.

To translate a virtual address, the CP first locates the T-BUF entry
associated with the virtual page number of the address, using Bits 3
through 12 as an index. If the entry's fault bit is on, the appropriate
physical page frame number is copied from a main memory page table to the
T-BUF entry. The most significant three bits of the wvirtual address
being translated are placed in a tag store area in local memory. This
area consists of 1K entries, each paired with a T-BUF entry. Having
indexed to a valid entry, the CP compares the three most significant bits
of the virtual address being translated with the contents of the tag
store entry paired with the T-BUF entry. This comparison determines
whether the physical page frame number in the T-BUF entry maps to the
virtual page number of the address being translated or to one of the
seven other virtual pages in the set. If the comparison results in a
match, a full physical address 1is generated by concatenation, as
described in Section 4.3.2. Otherwise, a page table in main memory is
referenced for the correct physical page frame number.

4-10

4.3.4 Segment Control Registers (SCRs)

Segment Control Registers (SCRs), along with Region Tables, are used
to locate the page table applicable to translating a particular virtual
address. At the beginning of a task's time slice, its four SCRs are
loaded with information that typically takes the form shown in Figures
4-5 and 4-6.

|) 1 |

I LOHI | RNODE | PA(Region Table) |

| | |

bytes 0 4 5 7

Figure 4-5. Format of SCR

| FLG : # RN-1 |

bits 0 1 7
Figure 4-6. Byte 4 of SCR

The first word of each SCR is a LOHI word, which indicates the
virtual address range covered by the corresponding Region Table. The
first 16 bits of this word indicate the starting virtual page number; the
other 16 bits indicate the ending virtual page number plus 1. On a T-RAM
fault, the 13-bit virtual page number of the faulted address is compared
with each LOHI word until a match is found.

Byte 4 of the SCR, shown in Figure 4-6, contains a 1l-bit flag and a
7-bit field that specifies the number of regions nodes minus 1 in the
associated Region Table. VS architecture supports up to 128 Region Nodes
per table; the operating system, however, may support fewer. The value
of the flag is typically 0, which indicates that the format of Bytes 4-7
is that shown in Figure 4-5. A value of 1 indicates the alternate format
shown in Figure 4-10, which is used for translating a virtual address
without reference to a page table.

Bytes 5 to 7 contain the physical address of the associated Region
Table. The use of a physical address avoids possible recursion of
translation (i.e., translating a second virtual address in order to
locate the Region Table used to translate the target virtual address).

The contents of SCRs are loaded and stored through the privileged
LSCTL and STSCTL instructions, described in Chapter 8.

4-11

4.3.5 Region Table

A Region Table contains one or more 1l6-byte entries called Region
Nodes; each entry describes a region and points to the page table for
that region. Figure 4-7 illustrates the format of the first 8 bytes of a
Region Node; the remaining bytes are reserved for use by the operating
system.

[T [[7771

| LOHI | MOD | A(Page Table) I |

| | L 77]

bytes 0 4 5 7 15

Figure 4-7. Format of a Region Node.

LOHI Word

The LOHI word in the first four bytes of each entry is identical in
format to the LOHI word of the Segment Control Register (see Section
4.3.4). On a T-RAM or T-BUF fault, the 13-bit virtual page number of the
faulted address is compared with each LOHI word; when a match is found,
the page table has been located. The residual difference between the
virtual page number and LO page number is used to index into the page
table.

MOD Byte
The format of the fifth, or MOD, byte is shown in Figure 4-8.

| M Rmin | Wmin |

bits 0 1 2 5 7

T 1 I I
i

Figure 4-8. Format of MOD Byte

Bit 0, the M bit, indicates whether monitoring is in effect for the
region. When monitoring is in effect (i.e., when M=1), it records each
page table entry loaded into the T-RAM or T-BUF from the main memory page
table pointed to by Bytes 5-7. For a discussion of monitoring, refer to
Section 4.3.7. Bit 1, the VP bit, indicates whether the Region Table
address in Bytes 5-7 is physical or virtual. A value of 1 for the VP bit
indicates a physical address.

4-12

The 3-bit Rmin and Wmin fields specify the minimum read and write
access levels for all pages in the region. During virtual address
translation, the values of Rmin and Wmin fields are compared with the
current process level (i.e., the level of the process that has specified
in an instruction the virtual address being translated). A process level
equal to or greater than the Rmin or Wmin values 1is required,
respectively, for read and write access to memory locations mapped to the
region. The possible values of the Rmin and Wmin fields are described in
Section 4.1.3.

4.3.6 Summary of Address Translation

To translate a virtual address, the CP first locates the
corresponding entry in the T-RAM or T-BUF, using part of the address as
an index. If the page into which the virtual address falls has already
been referenced by the task, the entry contains a valid page frame
number. Using this number, the CP translates the virtual address by
concatenation, as described in Section 4.3.2.

If the T-RAM or T-BUF entry does not hold a valid page frame number,
address translation proceeds as shown in Figure 4-9. The page index of
the virtual address is matched to the LOHI range of the task's Segment
Control Registers (SCRs). (Figure 4-9 shows only two of the task's four
SCRs.) The SCR whose LOHI range includes the page index points to the
appropriate Region Table. The sample Region Table in Figure 4-9 consists
of two Region Nodes. The node whose LOHI range includes the page index
points to the appropriate page table. The residual difference between
the page index of the virtual address and the LO page number of the
Region Node supplies an index to the correct page table entry. The fault
bit of the entry is checked to determine whether the page indicated by
the virtual address is currently in memory. If the fault bit = 0, the
page frame number of the page table entry is concatenated with the byte
index of the virtual address to form a physical address. Otherwise, the
paging task is called to load the page in memory.

4-13

Virtual Address

R
| Page Index } Byte Index :
SCRs
I I [I
——————»} LOHI | I A(Region Table)
I | I
! I | |
| rLoHr | | A(Region Table) |
I I [|
Region Table %
I | |
: LOHI | I A(Page Table) :
I I
I T I
—»{ LoHI | I A(Page Table) ——
L I |
Page Table %
(1 i I
| | | Page Frame Number |
1 I
R I
————»| F | | Page Frame Number |
L1 1 |
l Physical Address +
[I
I Page Frame Number I Byte Index |

| | B
Figure 4-9., Virtual-to-Physical Address Translation

4.3.7 T-RAM Monitor Area

The Monitor Area of memory is used for recording the wvirtual page
numbers stored in T-RAM entries. The Monitor Area is referred to during
the clearing of T-RAM entries, which takes place at a change from higher
to lower process level during a task's time slice or at the end of a
task's time slice. For the VS65 system, the Monitor Area is located in
main memory, at an address determined by the operating system and passed
to the CP; for the VS15 and VS100 systems, the Monitor Area is in local
CP memory.

4-14

Monitoring is enabled for a region of a user's virtual memory if the
M-bit is set in the Region Node for the region; refer to Figures 4-7 and
4-8 for an illustration of Region Node format. During the successful
servicing of a T-RAM fault for a wvirtual page in a region for which
monitoring is enabled, the virtual page address is recorded in the next
available Monitor Area location. At a downward change of process level
or at the end of a user's time slice, only those T-RAM entries identified
by the monitor are cleared (i.e., their high order bit is set to 1),
rather than the entire T-RAM. Because only a fraction of all the T-RAM
entries is likely to be loaded during a given time slice, using the
monitor greatly reduces the number of T-RAM entries to be cleared.

There is no Monitor Area on the VS300 system. Instead, each T-BUF
entry includes a monitor bit. When monitoring is enabled for a region
(through the M-bit of that region's node) and a T-BUF entry is loaded
from that region's page table, the T-BUF monitor bit is set to 0. At the
end of a task's time slice, the CP can selectively clear those T-BUF
entries whose monitor bits are set to O.

As explained in the remainder of this section, the memory protection
fields of T-RAM entries vary between classes of VS systems. Accordingly,
there are variations between VS systems in the composition of the Monitor
Area and the clearing of the T-RAM.

VS15 and VS100 Monitor Area

In these classes of VS systems, the T-RAM entry includes a 2-bit
protection field supporting read/write access (bit values = 00) and read
access only (bit wvalues = 01). These bits are set during address
translation after a comparison of the current process level (indicated in
the current PCW) with the read minimum (Rmin) and write minimum (Wmin)
fields in the appropriate Region Node. Rmin and Wmin values range from 0
to 7. When a page is first referenced by a process running at Level 7,
the protection bits in the appropriate T-RAM entry are always set to 00,
because the process level is equal to or greater than any possible values
in the Rmin and Wmin Region Node fields. A downward change of process
level renders the value of T-RAM protection bits inapplicable. Thus, to
maintain memory protection, T-RAM entries are cleared on downward changes
of process 1level, as well as at the end of a task's time slice, as
explained in the next paragraph.

The Monitor Area consists of an executive list and a user list. The
executive list records virtual page numbers that are mapped to physical
memory when a task runs at a process level higher than zero. The user
lists records virtual page numbers mapped at Process Level 0. When
execution of the RTC or RPC instruction lowers the process level to =zero,
the executive 1list is used to clear those T-RAM entries added at the
higher process level. In this way, the differentiation of memory access
rights according to process level is efficiently enforced. On a downward
change of process level to a nonzero level, all entries recorded in the
executive list are cleared. At the end of a task's time slice, the RRCB
instruction clears the T-RAM using both executive and user monitor lists.

4-15

The VS15 architecture supports a Monitor Area of 64 entries, 32
entries per list. The VS100 architecture supports a Monitor Area of 128
entries, 64 entries per list.

VS65 Monitor Area

On this VS system, the T-RAM entry memory protection field includes a
process level subfield (3 bits) and a write protect bit. The process
level field defines the minimum process level for read access. When the
write protect bit is off, the minimum process level for write access is
equal to that for read access; when the write protect bit is on, only
processes running at Level 7 or in privileged state (PCW Bit 34 = 0) have
write access. Because of this protection scheme, it is not necessary to
clear T-RAM entries on downward transitions of process level.
Accordingly, the Monitor Area is a single list.

4.3.8 Reference and Change Table

The reference and change table (RCT) makes possible the efficient
replacement of old memory pages with new pages read in from disk. The
RCT is an area of local CP memory containing an entry of two bits for
each page of main memory. When some location in a page frame is
referenced by a user program, the reference bit for the page frame is set
to 1; when the location is also modified, the change bit is also set to
1. The operating system uses the reference and change bits along with an
aging count in deciding which virtual pages to overwrite with new ones
during paging operations.

4.3.9 Alternate SCR Format

When page tables are involved in address translation, they are
located through Segment Control Registers, as explained 1in Section
4.3.6. Address translation, however, can also be accomplished without
page tables, as when consecutive pages are fixed in consecutive page
frames. When page tables are dispensed with, SCRs have a function and
format different from that previously described. A value of 1 for the
SCR flag bit indicates the alternate format illustrated by Figure 4-10.

[T [|
| LOHI [1] —— | MOD | constant K |
[| I | |
bytes 0 4 5 6 7

Figure 4-10. Alternate Format of SCR

The LOHI word in the alternate SCR format specifies the range of
virtual addresses in a region. The page frame number corresponding to
the page number in a virtual address equals the residual difference
between that page number and 16-bit LO value in the SCR plus the constant
K. That is, PFN = (VPN-LO)+K. The MOD byte is the same in format as the
MOD byte of the Region Node, illustrated in Figure 4-8.

4.4 SEQUENTIAL INSTRUCTION EXECUTION

Normally, the operation of the CP is controlled by instructions taken
in sequence. An instruction is fetched from a location specified by the
instruction address in the current PCW. The instruction address is then
increased by the number of bytes in the fetched instruction to address
the next instruction in sequence. The instruction is then executed and
the same steps are repeated using the new value of the instruction
address. A change from sequential operation may be caused by branching,
status switching, interruptions, or manual intervention.

4.5 BRANCHING

The normal sequential execution of instructions is changed when
reference is made to a subroutine, when a 2-way choice is encountered, or
when a section of coding, such as a loop, is to be repeated. All these
tasks can be accomplished with branching instructions. Provision is made
for subroutine linkage, permitting not only the introduction of a new
instruction address but also the preservation of the return address.

Decision-making is generally and symmetrically provided by the BRANCH
ON CONDITION instruction. This instruction inspects a 2-bit condition
code that reflects the result of a majority of the arithmetic, logical,
and I/O operations. Each of these operations can set the code to any one
of four states, and the conditional branch can specify any selection of
these four states as the criterion for branching. For example, the
condition code reflects such conditions as nonzero; first operand high,
equal, or 1low; overflow; I/O device busy: zero; etc. Once set, the
condition code remains unchanged until modified by an instruction that
sets it differently.

Loop control can be performed by the conditional branch when it tests
the outcome of address arithmetic and counting operations. For some
especially frequent <combinations of arithmetic and tests, the
instructions BRANCH ON COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX
LOW OR EQUAL are provided. These branches are specialized to increase
performance for these tasks.

4-17

4.5.1 Instruction Formats

Branching instructions use the RR, RX, RS, RL, and RRL formats. In
these formats R1 specifies the address of a general register. In BRANCH
ON CONDITION, a mask field (Ml) identifies the bit wvalues of the
condition code. The branch address is defined differently for the three
formats.

In the RR format, the R2 field specifies the address of a general
register containing the branch address, except when R2 is zero, which
indicates no branching. The same register may be specified by Rl and R2.

In the RX format, the contents of the general registers specified by
the X2 and B2 fields are added to the D2 field to form the branch address.

In the RS format, the contents of the general register specified by
the B2 field are added to the contents of the D2 field to form the branch
address. The R3 field in this format specifies the location of the
second operand and implies the location of the third operand. The first
operand is specified by the R1 field.

Programming Note: The third operand location is always odd. Thus, in
instructions such as BXLE and BXH, if the R3 field specifies an even
register, the third operand is obtained from the next higher addressed
register. If the R3 field specifies an odd register, the third operand
location coincides with the second operand location.

In the RL format, the current instruction address is added to the L2
field to form the branch address.

In the RRL format, the current instruction address is added to the X2
and L2 fields to form the branch address.

A zero in a B2 or X2 field indicates the absence of the corresponding
address component.

A branching instruction can specify the same general register for
both address modification and operand location. The order in which the
contents of the general registers are used for the different parts of an
operation is as follows:

1. Address computation
2. Arithmetic or link information storage.

Results are placed in the general register specified by Rl. Except
for the storing of the final results, the contents of all general
registers and memory 1locations participating in the addressing or
execution part of an operation remain unchanged.

4-18

Programming Note: In several instructions the branch address may be
specified in two ways: In the RX format, the branch address is the
address specified by X1, B2, and D2; in the RR format, the branch address
is in the register specified by R2.

4.6 JSCI INSTRUCTION

4.6.1 JSCI Save Area

Branching to the entry point of a subroutine is accomplished by the
JSCI instruction (described in Chapter 8). Before the branch is taken,
the JSCI instruction pushes the context of the calling routine onto a
stack. The information pushed on the stack consists of the program mask
byte and the updated instruction address of the current PCW (which serves
as the return address), the caller's process level, a back chain to any
prior JSCI save area, and the general register contents. The stack area
containing this information, called the JSCI save area, is illustrated in
Figure 4-11.

offset (bytes) Higher address
X'40' Program Mask |Return Address
X'3C' 0000PPPS Back chain
X'38" General Register 14
| .
X'00' General R?gister 0 Lower address
bytes 0 1 2 3

Figure 4-11. JSCI Save Area

PPP (at offset X'3C') is a 3-bit field indicating the caller's
process level. When the caller's process level is equal to the process
level of the called routine, the JSCI stack area is built on the current
system stack. Otherwise, a stack switch takes place, as described in
Section 3.10, and the save area is built on the stack associated with the
process level of the called routine.

The S-bit, immediately following PPP, indicates a JSCI stack frame
(S=0) or an SVC stack frame (S=1).

4-19

4.6.2 Linkage Table

The Linkage Table allows branching to external subroutines, which are
dynamically linked to a program after it has been 1loaded into main
memory. Each entry of the Linkage Table describes an external
subroutine. The JSCI instruction refers only to the first 8 bytes of the
a Linkage Table entry, whose format is shown in Figure 4-12. The total
length of the entry minus 1 is indicated by the high-order byte of
Control Register 6.

I | I [[[
| MPL. | XPL | A(ENTRY POINT) | ——— | A(STATIC AREA) or 0 |

L l I I I |

bytes 0 1 4 5 7

Figure 4-12. Format of Linkage Table Entry

MPL indicates the minimum process level required to call the given
routine. XPL indicates the process level at which the called routine
will execute. MPL and XPL are each 4-bit fields.

During the process of dynamic linking, the second operand of a JSCI
instruction is resolved to the address of the Linkage Table entry that
contains the entry point address of the called routine.

4.6.3 Control Registers 6 and 7

The location, 1length, and element size of a Linkage Table are
indicated in Control Registers 6-7. The format of this information is
shown in Figure 4-13.

[I |
CR6 | ENTRY SIZE -1 | A(START OF TABLE) :
| I
[| |
CR7 { ZERO I A(END OF TABLE + 1) }
bytes 0 1 4

Figure 4-13. Control Registers 6-7

The Linkage Table entry size is indicated in bytes. The actual entry
size (not the size-1) must be an integer power of 2.

4-20

4.6.4 Subroutine Branching

This section briefly describes the use of the Linkage Table by the
JSCI instruction. For a more detailed description of JSCI execution,
refer to Chapter 8, where the instruction is described.

The address specified by the second JSCI operand is compared with
the range of addresses specified in CR6-7. If the branch address falls
outside this range (and is a valid address), then the calling and called
subroutines have been statically linked in the same load module, their
process levels are the same, and stack switching is not required. The
save area is built on the caller's stack, and control is passed to the
called routine.

If the address specified in the JSCI instruction falls within the
range of addresses in CR6-7, the current process level (CPL) is compared
with the MPL and XPL values in the Linkage Table entry addressed by the
JSCI instruction. The comparison of CPL to MPL ensures that the caller
is privileged to execute the called routine. When CPL is equal to XPL,
the save area is built on the caller's stack and control is passed to the
called routine. Otherwise, a stack switch takes place, and the save area
is built on the called routine's stack. The process level specified in
the PCW (i.e., CPL) is raised to the XPL value, and control is passed to
the called routine.

In branches to an external subroutine, General Register 14 is updated

with a nonzero address of the subroutine's static area, taken from Bytes
5-7 of the Linkage Table entry.

4-21

CHAPTER 5
INTERRUPTIONS

5.1 INTRODUCTION

The interruption system permits the CP to change state as a result of
conditions external to the system, in input/output (I/0) devices, or in
the CP itself. Four classes of interruption conditions are possible:

I/0

Clock

Program
Machine check

® & 0 0

Each class of interruption has two related PCWs called "old" and
"new" in permanently assigned main memory locations. An interruption
involves storing information, identifying the cause of the interruption,
storing the current PCW in its old position, and making the PCW at the
new position the current PCW. A new PCW is also assigned for use by the
SVC instruction. The SVC, however, is more properly considered a special
branching instruction than an interruption of the instruction stream.
The SVC instruction itself, rather than an interrupt handler, copies the
the new SVC PCW into the current PCW, as described in Chapter 8.

The old PCW holds necessary CP status information at the time of
interruption. If, at the conclusion of the program invoked by the
interruption, an instruction is executed making the old PCW the current
PCW, the CP is restored to the state prior to the interruption, and the
interrupted program continues.

5.2 POINT OF INTERRUPTION

An interruption is permitted between units of instructions, that is,
after the performance of one instruction and before the start of a
subsequent instruction. This is true for all instructions except
interruptible instructions (MVCL, CLCL). Interruptible instructions can
be interrupted during instruction performance. They resume from the
point of instruction interruption after the interruption has been
serviced.

5-1

5.2.1 Instruction Execution

An interruption occurs between instructions, except for interruptible
instructions. The manner in which the preceding instruction is finished
may be influenced by the cause of the interruption. The instruction is
said to have been completed, terminated, aborted, suppressed, or resumed.

In the case of instruction completion (which is the wusual case),
results are stored and the condition code is set as for normal
instruction operation, although the result may be influenced by the
exception that has occurred.

In the case of instruction termination, all, part, or none of the
result may be stored. Therefore, the result data is unpredictable. The
setting of the condition code, if called for, may also be unpredictable.
In general, the results should not be used for further computation. The
PCW is not updated on termination.

When an instruction is aborted, all results including the condition
code and the PCW are unpredictable. An instruction can be aborted only
by a machine check interruption.

In the case of instruction suppression, results are not stored, the
condition code is not changed, and the PCW is not updated. The condition
code 1s indeterminate for suppressed floating-point instructions on
machines with a hardware floating-point unit.

In the case of instruction resumption, the instruction resumes after
a higher priority interruption has been serviced.

5.2.2 Location Determination

Nearly always. the instruction causing the interruption is given by
the address in the PCW. In the rare case when an instruction is
completed before the interruption occurs, the instruction address in the
old PCW designates the next instruction to be executed.

5.3 MAIN MEMORY LOCATIONS

The four classes of interruptions are distinguished by the memory
locations in which the old PCW is stored and from which the new PCW 1is
fetched. The detailed causes are further identified by the interruption
code stored in the first byte of the old PCW and in some cases by
additional information placed in main memory during the interruption.

For I/0 interruptions, additional information is provided by the
contents of the I/0 Status Word stored as part of the I/O interruption.
(The I/0O Status Word is discussed in Section 9.9.) For program
interruptions caused by address translation exceptions, additional
information may be provided in the form of a page index stored in the
page fault reporting area and the address of the associated region node
in the region node address area. PFor machine check interruptions,
additional information may be stored in the machine check reporting area.

5-2

Table 5-1 lists the permanently allocated main memory locations.

Table 5-1. Permanent Storage Assignments
Address Length
{hexadecimal) (decimal) Function

0 8 Input/Output Status Word (IOSW)
8 4 Reserved ’

C 20 Control mode communications area
20 8 0ld PCW for machine check

28 8 New PCW for machine check

30 8 01d PCW for program check

38 8 New PCW for program check

40 8 0ld PCW for clock interrupt

48 8 New PCW for clock interrupt

50 8 0l1d PCW for I/O interrupt

58 8 New PCW for I/0 interrupt

60 8 New PCW for SVC

68 8 PCW save area (Control mode)

70 2 Reserved

72 2 Page fault reporting area

74 4 Region Table entry address

78 8 Machine check reporting area

80 2 I/0 Device Address

82 14 For VS15 and VS65: CP/BP communications

area
For VS100: Reserved for system use

90 Variable I/0 status table

NOTE

The SVC 01d PCW is placed on the system stack by means of the
It is reloaded (made current) from there by
means of the SVCX instruction.

SVC instruction.

5.4 INPUT/QUTPUT INTERRUPTION

The I/0 interruption provides a means by which the processor responds

to signals from I/0O devices.

5-3

A request for an I/0 interruption may occur at any time, and more
than one request may occur at the same time. The requests are preserved
in the I/0 device until accepted by the processor. While I/O
interruptions are masked by setting the I/0 interruption mask bit (Bit 37
of the Current PCW) to 0, more than one event which establishes a pending
interruption may occur at a device. Each such event is recorded at the
device, and when the I/0 interruption mask bit is then set to 1, the I/0
interruption for the device is taken. The stored I/0 Status Word (IOSW)
may reflect the occurrence of all such events by the ORing of status bits
in the IOSW. Priority is established among devices so that only one
interruption request is processed at a time.

An I/0 interruption can occur only after the current unit of
operation is finished and while the processor 1is interruptible.
Interruptions not serviced remain pending.

The I/0 interruption causes the 0ld PCW to be stored in the I/O 0l1d
PCW. The IOSW associated with the interruption will have been stored in
the IOSW slot at the time of the interruption. Subsequently, a new PCW
is loaded from the I/0O New PCW.

5.5 CLOCK INTERRUPTION

The clock interruption provides a means by which the CP responds to
timing conditions set within the system. Clock interruptions are
maskable by zeroing the clock interruption mask bit (Bit 38 of the
current PCW). Any clock interruption that becomes pending while the
clock interruption mask bit is 0 remains pending. A pending clock
interruption is taken immediately upon completion of any instruction that
turns off the clock interruption mask bit in the PCW. The clock
interruption causes the old PCW to be stored in the Clock 0ld PCW and a
new PCWN to be loaded from the Clock New PCW. The interruption code in
the old PCW is set to all Os on a clock interruption.

A clock interruption becomes pending whenever the time-of-day clock
value is greater than or equal to the clock comparator value, both
comparands being considered unsigned 64-bit binary quantities. The
time-of-day clock is maintained in Control Registers 12-13; the clock
comparator value is loaded in Control Registers 14-15.

Loading a comparator wvalue that is already less than or equal to the
time-of-day value causes an immediate interruption.

5.6 PROGRAM INTERRUPTION

Exceptions that result from improper use of instructions and data
cause a program interruption. Only one program interruption occurs for a
given instruction and is identified in the 0ld Program-Check PCW. The
occurrence of a program interruption does not preclude the simultaneous
occurrence of other causes of program interruption. The program
interruption causes the current PCW to be stored at the 0ld Program-Check
PCW location and a New Program—Check PCW to be fetched. The cause of the
interruption is identified by the interruption code in PCW Bits 0-7. The
operation is completed, suppressed, or terminated by a program
interruption, but this is determined on an individual interruption basis.

A description of the individual program exceptions follows. Some of
the exceptions listed may also occur in operations resulting from I/O
instructions. In such cases, the exception is indicated in the IOSW
stored with the I/0 interruption (as explained in Section 9.9.2).

5.6.1 Program Interruption Codes in the PCW

Program interruption codes are defined as follows:

Program Interruptions Hex Code

Programming Errors and Miscellaneous Exceptions

Operation 01
Privileged operation 02
Execute 03
Protection 04
Addressing 05
Specification 06
Data 07
Fixed-Point overflow 08
Fixed-Point divide 09
Decimal overflow 0A
Decimal divide 0B
Supervisor call range oc
Load-or-trap oD
Debug Facility
Debug trap taken 10
Debug trap specification 16
Address Translation Exceptions
Page fault 20
Region table entry fault 21
Page table address recursion 22
Region table entry range 25
Translation structure 26
Paging File I/0 Error (software-defined error code) 28
Unresolved External Reference (software-defined error code) 29

Stack Facility

Stack overflow 30

Stack header block 36
Floating-Point Exceptions

Floating-Point overflow 40

Floating-Point underflow 41

Significance 42

Floating-Point divide 43

5.6.2 Access Exceptions

The protection, addressing, debug trap, and address exceptions are
collectively referred to as access exceptions. An access exception may
be indicated when a reference to a partially inaccessible operand is
recognized even if the correct result could be arrived at without the use
of the inaccessible part of the operand. The access exception is
indicated as part of the execution of the instruction making the
reference.

Whenever an access to an operand location can cause an access
exception to be recognized, the word "access" is included in the list of
program exceptions in the description of the instruction. This entry
also indicates which operand can cause the exception to be recognized and
whether the exception is recognized on a fetch or store access to that
operand location. Also, each instruction can cause an access exception
to be recognized due to instruction fetch.

An access exception is indicated only if the instruction with which
the exception is associated is executed. Thus, the exception is not
recognized when

e The CP has not attempted a fetch from the inaccessible location
or otherwise detected the access exception before a branch
instruction.

e The interruption changes the instruction sequence such that the
inaccessible data is not required.

5.6.3 Operation Exception

When an operation code is not assigned, an operation exception is
recognized. The first eight bits of an instruction are considered to
form the operation code.

5.6.4 Privileged-Operation Exception

A privileged instruction or operation is defined to be one that
generates an exception if the user mode bit (Bit 34) of the PCW is on.
Some VS privileged instructions are CIO, HIO, LCTL, LPCW, RRCB, STNSM,
STOSM, SIO, STDD, and SVCX. When a privileged instruction is encountered
while this bit is on in the PCW and the current process level is not 7, a
privileged-operation exception is recognized, and the instruction is
suppressed.

5-6

5.6.5 Execute Exception

The execute exception is recognized when the subject instruction of
EXECUTE is another EXECUTE. The instruction is suppressed.

5.6.6 Protection Exception

A protection exception is recognized when all of the following
conditions obtain:

e The PCW memory protection bit (PCW Bit 34) is on.

e The current process level is not 7.

e Fetch or store access is disallowed by the protection bits of a
valid T-RAM entry or by the read-minimum or write-minimum fields

of a region table entry.

5.6.7 Addressing Exception

When an address specifies any part of a datum, an instruction, or a
control word to be outside the wuser's address space, an addressing
exception is recognized. On a branch instruction or any instruction that
introduces a new PCW, the address to which control is to be passed is not
checked for validity; thus, the addressing exception will occur on the
instruction that was branched to and not on the branch instruction
itself. An addressing exception always causes instruction termination.

5.6.8 Specification Exception

A specification exception is recognized when any of the following
conditions exist:

¢ An operand address does not designate a location on a doubleword,
fullword, or halfword boundary, depending on the instruction type.

o The first operand field is shorter than or equal to the second
operand field in decimal division.

¢ An invalid head/tail queue word has been specified in
enqueue/dequeue operations.

¢ Other special cases exist.

5.6.9 Data Exception

A data exception 1is recognized when either of the following
conditions occurs:

o The digit codes of operands in decimal arithmetic or editing
operations or in CONVERT TO BINARY are incorrect

e Fields in decimal arithmetic overlap incorrectly.

5.6.10 Fixed-Point Overflow Exception

When a high-order carry occurs or high-order significant bits are
lost in fixed-point add, subtract, arithmetic shift, or sign-control
operations, a fixed-point overflow is recognized. When an overflow
occurs and the corresponding mask bit is set to 1, the exception is
recognized.

5.6.11 Fixed-Point Divide Exception

A fixed-point divide exception 1is recognized when either of the
following situations occur:

¢ The quotient exceeds the register size in fixed-point division,
including division by 0

. The result of CONVERT TO BINARY exceeds 31 bits.

5.6.12 Decimal Overflow Exception

When the receiving field is too small in a decimal arithmetic
operation, a decimal overflow is recognized. When an overflow occurs and
the corresponding mask bit is set to 1, the exception is recognized.

5.6.13 Decimal Divide Exception

A decimal divide exception is recognized when the quotient in decimal
division exceeds the specified data size.

5.6.14 Supervisor Call Range Exception

Issuance of a SUPERVISOR CALL (SVC) instruction with a value in the I
operand field greater than the value in the first byte of the Supervisor
Call New PCW results in a supervisor call range exception, and the
instruction is suppressed.

5.6.15 Load or Trap Exception

A load or trap exception is recognized when the LOAD OR TRAP (LOT)
instruction has 1loaded a fullword field from memory into a general
register and the high-order bit of the loaded word is equal to 1.

5.6.16 Debug Facility Exceptions

Debug Trap Taken Exception

A Debug trap taken exception (X'l0') occurs when, immediately after
processing of the Debug table, the trap taken flag (TTF) of any active
entry is found to be set to 1. A description of the Debug table and
traps is provided in Chapter 7.

Debug Trap Specification

A Debug trap specification is recognized under any of the following
conditions: The Debug table spans a page, the Debug table is not word
aligned, an entry in the table is not in the order prescribed for its
trap type, or TTF flags set during previous processing of the table have
not been cleared prior to current processing of the table.

5.6.17 Address Translation Exceptions

Five address translation exceptions are recognized; they are
described in the following paragraphs. In the case of page fault and page
table address fault exceptions, the page index of the faulted address and
the address of the associated region table entry are written,
respectively, in the page fault reporting area (Location X'72') and the
region table entry address area (Location X'74').

e Page Fault Exception -- A page fault exception (Code X'20')
occurs when the page table entry corresponding to the virtual
address is faulted; i.e., when its high order bit (fault bit) is
1. This is an ordinary page fault, and causes the virtual page
to be read in from disk storage.

L Page Table Address Fault Exception —— A page table address fault
exception (Code X'21') occurs when the page table address
reported in the appropriate region table entry is virtual and is
faulted.

e Page Table Address Recursion Exception -- A page table address
recursion exception (Code X'22') occurs when the page table
address reported in the appropriate region table entry is virtual
and the region table entry accessed to translate the page table
address reports another virtual page table address. 1In this
case, the second virtual page table address is not translated and
an exception is noted immediately.

L Region Table Entry Range Exception —— A region table entry range
exception (Code X'25') occurs when a virtual address falls within
the range of a region table, but not within the LOHI range of any
entry in that region table.

L Translation Structure Exception -- A translation structure
exception (Code X'26') occurs when the address of a region table
reported in a segment control register is zero, a region table is
not word-aligned, or the page table address reported in a region
table entry is zero.

5.6.18 Stack Facility Exceptions

Stack Overflow Exception

The stack overflow exception (Code X'30') occurs under either of the
following conditions:

The

The address value in the stack top word is less than the address
value in the stack limit word before the instruction is executed.

The address value in the stack top word would be 1less than the
address value in the stack limit word after the instruction was

executed.

instruction is suppressed on all stack overflow program

interrupts. This implies that the values in the stack vector are
unchanged.

Stack Header Block Exception

A stack header block exception (Code X'36') occurs under either of
the following conditions:

[J

A stack header block address (reported in the stack header
pointer table) is zero.

The address of a new stack header block, found by indexing into
the stack header pointer table, is the same as the address of the
current stack header block, reported in Control Register 8.

5.6.19 Floating-Point Exceptions

Four kinds of floating-point exceptions are recognized; they are
described in the following paragraphs.

Floating-Point Overflow -- When the final exponent of a floating-

point number becomes greater than 127 as a result of an ADD,
SUBTRACT, MULTIPLY, or DIVIDE operation, the instruction is
completed and a floating—point overflow exception is recognized.
The fraction is correct and normalized if normalization was
specified by the instruction, the sign 1is correct, and the
characteristic is smaller by 128 than the correct characteristic.

Floating-Point Underflow -— When the final exponent of a
floating-point number becomes less than zero as a result of an
ADD, SUBTRACT, MULTIPLY, DIVIDE, or HALVE operation, and the
exponent underflow program mask bit is 1, the instruction is
completed and a floating-point underflow exception is
recognized. The fraction is correct and normalized if
normalization was specified by the instruction, the sign is
correct, and the characteristic is larger by 128 than the correct
characteristic.

5-10

e Floating-Point Significance -- When the intermediate sum of a
floating-point ADD or SUBTRACT operation is zero, and the
significance program mask bit is 1, a significance exception is
recognized. No normalization occurs; the intermediate sum
characteristic remains unchanged. When the intermediate sum is
zero and the significance program mask bit is 0, the significance
exception does not occur; rather, the characteristic is made
zero, yielding a true zero result.

e Floating-Point Divide -- A floating-point divide exception is
recognized when floating-point division by a divisor with a
fraction of zero is attempted. The instruction is suppressed and
the dividend remains unchanged.

5.7 MACHINE CHECK INTERRUPTION

The machine check interruption provides a means for reporting machine
malfunctions so that processing can halt and corrective action be taken.

An enabled machine check interruption causes the old PCW to be stored
in the Machine Check 0ld PCW and a new PCW to be fetched from the Machine
Check New PCW. The cause of the malfunction is 1identified by an
interruption code stored in the Old PCW. On the VS300, the interruption
code and an explanatory message are displayed at the System Control Unit
(SCU) running in Control mode. On other VS systems, the interruption
code is displayed in decimal notation at Workstation 0.

5.7.1 Memory error

A multibit memory cell error causes a machine check when the error
cannot be corrected by the associated Error Correction Check (ECC) code.
When a read or write operation by the CP generates a memory error, a cell
isolation routine (CIR) attempts to locate the failing cell. Successful
CIR determines the physical address of the failing cell and the erroneous
data. On the VS300, this information is stored in the Memory Control
Unit (MCU). It can be displayed at the SCU by means of the Machine
Status utility. On other VS systems, the erroneous data is placed in
main memory Location X'78' and the physical address of the failing cell
(i.e., word) 1is placed in Location X'7C'; otherwise, Location X'7C'
contains a zero address.

During an I/0 operation, memory errors are detected by the I/O
processor and reported in the I/0 Status Word, as described in Section
9.9.2.

5.7.2 Interrupt Codes

Listed below are the machine check interrupt codes placed in the 0ld
Machine Check PCW. On the VS300, the codes are displayed in hexadecimal
at the SCU running in Control mode; on other VS systems, they are in
decimal at workstation 0.

Interrupt Codes—--VS1l5, V865, VS100

Decimal Hex

Code Code
001 01
002 02
003 03
017 11
018 12
019 13
020 14
021 15
022 16
023 17

Definition

Main Memory parity error on read by CP. 0ld PCW contains
the address of the instruction following the instruction
which received the error and then aborted. CIR used.
X'78' contains erroneous data; X'7C' contains word
address of error. Address is zero if CIR failed.

VS15 and VS65 This error may be detected on a 1-byte
read-modified-write operation.

IOP transmit error. After requesting and then receiving
permission to present an interruption, the IOP made
another request or presented the interruption after
expiration of timeout. Byte O of the machine check
reporting area contains device address, or X'FF' in case
of timeout.

Main memory error on a l-byte read-modified-write. 0Old
PCW contains the address of the instruction following the
instruction which caused the error and then completed.
CIR used. X'78' contains erroneous data; X'7C' contains
word address of error. Address is zero if CIR failed.

Bus Transaction log overflow. The old PCW contains the
address of the instruction following the instruction
which caused the error.

IOP receive error. IOP has rejected CP or BA
communication. 0ld Machine Check PCW points to the
instruction whose execution followed (but did not
necessarily cause) the error.

Both errors X'll' and X'1l2' have occurred.

IOP receive error. IOP has rejected CP communication.
0ld Machine Check PCW points to the instruction whose
execution followed (but did not necessarily cause) the
error.

Both errors X'1ll' and X'14' have occurred.

Both errors X'12' and X'14' have occurred.

Errors X'1l1l', X'12', and X'14' have occurred.

5-12

Interrupt Codes—-VS300

Hex
Code

01

OF

10

20

21

22

41

42

44

50

Definition

Main Memory parity error on read by CP. 0ld PCW contains the
address of the instruction following the instruction which
received the error and then aborted. CIR used. The SCU can
read the address of the failing cell along with erroneous
data. This information resides in the MCU; it is not stored by
the CPU in the machine check reporting area.

Default trap taken; probable hardware error within the CP card
set.

Address Generation Unit (AGU) error received. Invalid state in
instruction queue. Probable hardware error within the AGU.

I/0 interrupt received with no active IOSW in the IOC status
table. This signals a failure within the CP/IOC protocol.

Power fail interrupt received. The system is running on
battery backup. The clock (Control Registers 12-13) is stored
at Locations X'78' and X'7C' immediately upon receipt of the
power fail indication (after the current instruction is
completed).

Spare control exception trap taken; probable hardware failure
within the CP card set.

Translation buffer parity error; probable hardware error within
the CP card set.

Illegal state -- external cache probe. Probable Address
Translation Unit (ATU) hardware error.

Illegal state —— internal cache probe. Probable ATU hardware
error.

System bus parity error. Probable hardware error in any system
bus element (i.e., SCU, System Bus Interface (SBI), ATU, MCU,
or backplane).

5.8 PRIORITY OF INTERRUPTIONS

5.8.1 Overview

Some

interrupts are recognized, or detected, during instruction

execution; others are recognized between execution of instructions.

5-13

The first class of interrupts are recognized and handled as they
occur; there is no established priority for handling them. The second
class of interrupts, however, are recognized and handled in an order that
is independent of their occurrence. During the execution of an
instruction, several of these interrupts can occur; at the end of
instruction execution, they are all outstanding. At this time, the CP
checks for these interruptions in a certain order, which is independent
of their occurrence and is the reverse of the order in which they are
actually handled, once detected.

When multiple interrupts are outstanding between instruction
execution, the following actions occur: After one of these interruptions
is detected, a swap of PCWs takes place, after which the current PCW
points to the interrupt handler for the detected interruption. Before
execution of the instruction addressed by the current PCW, interruptions
(of the second class) are again checked for, except those of the type(s)
already detected since execution of the last instruction. Upon detection
of another interruption, another swap of PCWs occurs, after which the
current PCW addresses the handler for the interrupt last detected. This
process 1is repeated until no interruptions are outstanding. Then, the
handler of the interruption last detected is executed; the old PCW
associated with the interruption serves as a back chain to the handler of
the interruption detected next-to-last. Thus, the order in which
interrupt handlers execute is the reverse of the order in which
interrupts are detected.

By setting bits of the PCW status field, interrupt handlers can
disable interrupts to prevent the contents of old PCW areas from being
overwritten. While thus masked out, interrupts except machine checks are
ignored; when disabled machine checks occur, the system enters Control
mode.

5.8.2 Priority of Detection

Listed below, in order of their detection and in reverse order of
their handling, are interrupts detected between instruction execution.

e Program check (Interrupt Code X'05'--addressing exception)
. Machine check

X'03’

X'lx!'
¢ Clock interrupt

] I/0 interrupt

5-14

" CHAPTER 6

CONTROL MODE

6.1 INTRODUCTION

6.1.1 Control Mode Facilities

Control mode is a CP state in which normal program execution is
halted and certain other facilities are made available. These facilities
are implemented by two groups of commands.

1. Load commands -- Commands for 1loading into main memory the
operating system or a standalone program. (These commands are
not supported by the VS15 and VS65 systems.)

2. Debug commands -— Commands for displaying and/or modifying main
memory, general registers, control registers, and the PCW. Also
included in this group are commands for single-step program
execution and virtual address translation. All VS processors
support debug commands.

On all systems except the VS300, Control mode commands are entered at
Workstation 0; on the VS300, Control mode commands are entered at the
Support Control Unit (SCU) running in Console mode. For the the sake of
conciseness, this chapter generally refers to both Workstation 0 and the
SCU in Console mode as the system console. It should be noted, however,
that the two terminals are fundamentally different in that Workstation 0
communicates with the CP and memory controller through intermediate
processors (shown in Figures 1-1 through 1-3), whereas the SCU
communicates directly with system elements through the support packet bus.

6.1.2 Control Mode Communications Area

The Control mode communications area (X'C'-X'lF') is a main memory
area used for communications between the CP and console. Through the
communications area, the CP instructs the device to enter Control mode.
The CP receives, via the communications area, Control mode commands
entered at the console, and then places requested data and status
information in the area.

When Control mode is entered from program execution, the current PCW
is saved in the last eight bytes (X'18' to X'1F') of the Control mode
communications area. In leaving Control mode, the CP picks up the PCW
from this location.

6-1

6.2 METHODS OF ENTRY

Control mode can be entered at the time of initial program load (IPL)
or during program execution.

After entry from IPL, load or debug commands are available. Load
commands, when successfully executed, cause the loading and execution of
IPL text, which can be a bootstrap loader of the operating system, a
standalone diagnostic, or any other VS code.

When Control mode is entered during program execution, debug commands
are available.

6.2.1 Entry from IPL (VS100)

The following sequence of steps taken during system initialization
cause the system to enter Control mode:

1. Powering up the system.

2. Pressing the BT (bootstrap) button on the control panel to load
the CP microcode.

3. Pressing the LOAD or INITIALIZE button on the control panel.
Pressing the LOAD button initializes T-RAM to make low memory
addressable, and clears the other translation structures and main
and cache memory. Pressing the INITIALIZE button additionally
initializes the system clock (Control Registers 12-13) and
comparator (Control Registers 14-15).

At Step 3, the system enters Control mode.

When the system is re—initialized, after it has been powered up and
the CP microcode has been loaded, the following sequence of steps cause
entry into Control mode:

1. Pressing the CM (Control mode) button on the control panel.

2. Pressing the LOAD or INITIALIZE button.

At Step 2, the system enters Control mode.

6.2.2 Entry from IPL (VS300)

System initialization —- Pressing the ON button powers up the system,
loads the CP microcode, 1initializes system elements, and causes the
system to enter Control mode. Initiation and completion of these
processes is indicated on the SCU Start-up screen. After all processes
are completed, the SCU accepts Control mode commands.

6-2

System re—initialization —— After the system has been powered up and
the CP microcode has been 1loaded, pressing the RESET button on the
control panel clears memory and causes the CP to enter Control mode.
Control mode commands can be entered after selecting Console mode from
the SCU Main menu and then Control mode from the Console menu.

6.2.3 Entry During Program Execution

All VS systems enter Control mode during program execution after any
of the following events:

e The Control mode bit (Bit 33) of the current PCW has been set by
an instruction such as LPCW or STOSM.

¢ The Control mode button on the control panel has been pushed:; or,
in the case of the VS300, Control mode has been selected from the
console menu.

e A single step trap, set from Control mode, has been taken.

. A machine check has occurred when the M-bit of the PCW (Bit 39)

has been masked, disabling machine check interrupts.

6.3 LOAD COMMANDS

Load commands select a fixed or removable disk platter from which IPL
text is to be loaded; entering the commands also initiates the loading
process. The commands are available only after Control mode has been
entered at IPL time, as described in Sections 6.2.1 and 6.2.2.

Load commands identify the IPL device by specifying numbers for the
following:

VS100 VS300

Bus Adapter (BA) System Bus Identifier (SBI)
I/0 Processor (IOP) I/0 Controller (IOC)

Port Port

The BA/SBI, IOP/IOC, and port numbers of a device can be found in the
file GCONFIG@ in the library @SYSTEM@ on the system volume.

On the VS15 and VS65 systems load commands are not supported.
Instead, the IPL device is manually selected by a hardware switch, and
loading is initiated from a menu on Workstation 0.

6.3.1 VS100 Load Commands

R nn Initiates loading of IPL text from the removable (R) disk
platter identified by nn. These hexadecimal values indicate
the bus adapter, IOP, and port of the IPL device, as follows:

6-3

hex

Q% —3

n
|
v
binary biii PPPP

where b = 0 for BA 1
1 for BA 2

iii = IQP 0-7
pppp = device 0-15

For example, a removable platter on port 4 of IOP 3 on BA 2
would be indicated in binary as:

(biii) (pppp)
1011 0100
and in hexadecimal as:
B 4
The command for loading from this device is: R B4
F nn Initiates loading of IPL text from the fixed (F) disk platter
identified by nn. These hexadecimal values indicate the BA,

IOP, and port of the fixed platter as for the R command.

6.3.2 VS300 Load Commands

R nnnn Initiates loading of IPL text from the removable (R) disk
platter identified by nnnn. These hexadecimal values
indicate the system bus interface, IOC, and port of the IPL
device, as follows:

hex n n nn
l i l

SBI # I0C # port #

hex 0-F 1-F 00-FF

Although the architecture supports hexadecimal values from O
through F for the SBI number, only the wvalue of 0 is
currently allowed. This value, specifying the first SBI, is
assumed if three or fewer digits are entered.

For the IOC number, specified by the second digit, a value of
1 is assumed if two or fewer digits are entered.

A port number of one or two digits must be entered; there is
no default port number.

6-4

F nnnn Initiates loading of IPL text from the fixed (F) disk
platter identified by nnnn. These hexadecimal values
indicate the SBI, IOC, and port of the fixed platter just
as they do when appearing as the argument of the R
command.

6.3.3 Execution of Load Commands —- VS100

After a load command has been entered, the CP places an IOCW in an
I/0 Command Table (IOCT) entry starting at Location 200 (hexadecimal).
Each entry is 16 bytes in length; so, the starting location of the IOCT,
in hexadecimal, is

200 - (p * F)

where p is the port number specified with the Load command. The CP
stores the command table address (CTA) in that entry of the IOP Status
Table (IOPST) which corresponds to the IOP specified in the Load
command. The IOPST starts at Location 90 (hexadecimal).

The IOCW specifies a read of 2048 bytes from sector 0 of the IPL
device into main memory, starting at Location 800 (hexadecimal).

In successful execution of a Load command, the CP issues an SIO
command to the IPL device, awaits an I/0 interrupt from the device, .
inspects the I/0 Status Word (IOSW) returned by the device after the read
operation completes, and passes control to the IPL text.

The IOSW is stored by the device in the I/O status table, which
starts at main memory Location 90 (hexadecimal). I/0 status tables, the
IOSW, IOCW, IOCT, and CTA are described in Chapter 9.

VS100 Error Messages

Listed and explained below are the error messages displayed at the
console when load group commands do not execute successfully.

Error Message Meaning
INV DEV Either the IOP rejected the SIO sent by the

CP, or the IOP specified by the Load command
does not exist.

INT REQ The SIO was accepted, but the device returned
an Intervention Required IOSW.

I/0 ERROR The SIO was accepted, but the device returned
an Error Completion IOSW. The IOSW can be
inspected at Location X'0!' for a

determination of the I/0 error.

6.3.4 Execution of Load Commands —— VS300

After a load command has been entered, the SCU places an IOCW in that
entry of an I/0 Command Table (IOCT) which corresponds to the port number
specified in the command. The IOCT <starts at Location 280
(hexadecimal). The CP stores this command table address (CTA) in that
entry of the IOC Status Table (IOCST) which corresponds to the IOC
specified in the 1load command. The IOCST starts at Location 90
(hexadecimal).

The IOCW specifies a read of 2048 bytes from sector 0 of the IPL
device to main memory, starting at Location 800 (hexadecimal).

After issuing a START I/0 (SIO) command to the specified IOC, the SCU
waits for the IOC to interrupt. When an interrupt is detected, the SCU
checks each IOCST entry for a Status Qualifier Byte (SQB) whose IOSW
Active Flag bit is set to 1. The entry with this bit set corresponds to
the interrupting IOC.

The Physical Device Address (PDA) stored in this entry is compared
with the PDA specified by the Load command. If the PDAs do not match,
the interrupt was not from the expected IOC (i.e., the IOC specified in
the command). Unexpected interrupts are cleared and ignored. The SQB of
the entry is examined for an error condition. Any error is reported and
the SIO is reissued.

When the returned IOSW is found to originate from the IOC specified
in the Load command, the IOSW is examined for indications of an
unsolicited interrupt and error completion. Unsolicited interrupts are
cleared and ignored. Error completions are reported, and the IPL process
is restarted.

When a solicited, normal completion IOSW is received from the IOC
specified in the Load command, the SCU stores the command code of the
IOCW in Location 20 (hexadecimal) and stores the specified PDA in
Location 80 (hexadecimal). The IPL text later uses the command code and
PDA to continue loading from the disk.

The SCU, using the Control mode communications area, sets the PCW
instruction address to the start of the IPL text (IAD 800, hexadecimal).
The SCU then exits from Control mode, and the IPL text begins execution.

The IOCW, IOCT, IOCST, PDA, and SQB are described in Chapter 9.

VS300 Error Messages

Listed and explained below are the error messages displayed at the
console when load commands do not execute successfully.

6-6

6.4

Error Messsage Meaning

IPL Failed.

No The IOC specified by the Load command

SOB received from did not respond to the command. The specified

the I0OC

IPL Failed.

IOC or device may not exist.

The IOC stored an invalid SQB and may be

Invalid SQB faulty.

IPL Failed. No An interrupt was not received from the IOC
interrupt re- after it stored an SQB. This indicates a
ceived from IOC system bus failure.

IPL failed.

IOC returned an Error Completion IOSW.

Drive not ready The IPL drive is not powered on, the disk
or I/0 error may be damaged, or the drive may be faulty.

VS15, VS65, AND VS100 DEBUG COMMANDS

Gn

P nnnnnn

V nnnnnn

Displays general registers n and n+l, with n ranging from
0 to E. (A value of n=F results in display of general
register F followed by general register 0.)

Displays control registers n and n+l, with n ranging from
0 to F.

Displays the data in physical address nnnnnnn.

Translates the virtual address nnnnnn by means of the LPA
instruction. Displays the condition code and the
contents of Rl resulting from an LPA instruction. The
condition code comprises the first two digits of the
displayed numbers. If the translation is successful
(condition code = 00), the condition code is followed by
a three-byte physical address and eight bytes of memory
starting at that physical address. In the event of
unsuccessful translation, a nonzero condition code is
followed by a 3-byte address consisting of zeros.

Displays the PCW.

Allows modification of the eight bytes displayed as a
result of the G or C commands. When entered, this
command does not appear on the screen; the cursor moves
to the first modifiable character. A character is
modified by being overstruck. Pressing the space bar
passes over a character without modifying it. Not all
eight characters need be modified; but any characters
between the first and 1last ones modified must be
overstruck or spaced over.

TAB (key) Causes execution of a single program step and displays
the updated PCW. All 1I/0O operations will proceed
normally.

X Causes exit from Control mode; instruction execution
proceeds under control of the current PCW.

NOTE

In Control mode no device other than Workstation 0 will be
serviced by the Control mode I/0 processor (i.e., keystrokes
from other workstations are ignored).

For the V command, a failure to display data may indicate
that a page break (2048-byte boundary) has been found:;
otherwise, nondisplay (or a partial display) indicates that a
main memory parity error was detected by the IOP at the
particular memory location.

For the single step command, re-entry into Control mode with
the PCW not updated indicates that the single stepped
instruction caused a T-RAM fault. The single step command
can be successfully entered again at this point.

Change bits in the Reference and Change Table (RCT) are not
set for any pages modified by a P or V command followed by an
M command.

6.5 VS300 DEBUG COMMANDS

The E, P, S, and V commands display on the SCU screen the contents of
the PCW, eight bytes of memory starting at the current instruction
address, general registers, control registers, floating-point registers,
and 128 bytes of main memory. The argument of the E, P, or V commands
specifies the starting address of the 128-byte display. If a V or P
command has not set the address mode, the starting address is physical.

6-8

E expr

M addr

MPaddr

MVaddr

P addr

S [or] TAB

Examines memory starting at address specified by "expr",
where "expr" may be one of the following:

addr

sym
sym+addr
sym-addr

where
addr A 6-digit hexadecimal number

sym The symbol $, signifying the last
byte of currently displayed memory; or
the symbol PC, signifying the current
instruction address

The most recent execution of the P or V command causes
the argument "expr" to be treated, respectively, as a
physical or virtual address. In the absence of a P or V
command, the address mode defaults to physical.

After an M command, positions the cursor to the first
floating point register.

Allows the modification of data displayed on the screen
by the invocation of other debug commands.

Allows the modification of data at the address specified
by "addr". The mode of "addr" ~- physical or virtual ——
is set respectively by the last invocation of a command
that specifies P or V (i.e., a P, V, MVaddr, or MPaddr
command). In the absence of a command specifying P or V,
the mode defaults to P.

Allows the modification of data at the physical address
specified by "addr".

Allows the modification of data at the virtual address
specified by "addr".

Displays - memory starting at the physical address
specified by "addr", where "addr" is a 6-digit
hexadecimal number.

Causes execution of a single program step and displays
the wupdated PCW. All TI/O operations will proceed
normally.

V addr Displays memory starting at the virtual address specified
by "addr", where '"addr" is a 6-digit hexadecimal number.

T Causes the SCU, but not the CP, to exit from Control mode.
X Causes the SCU and the CP to exit from Control mode;
instruction execution proceeds under control of current
PCW.
NOTE

Change bits in the Reference and Change Table (RCT) are not
set for pages modified by any form of the M command.

6.5.1 PF Keys for E Command

Two frequently~used E commands can be entered with a single keystroke
as follows:

PF4 Equivalent to "E $-80"; displays previous 128 bytes.
PFS Equivalent to "E $+80"; displays next 128 bytes.

6.5.2 Cursor Control Keys for M Command

After the M command has been entered, the following keys can be used
to position the cursor to or within modifiable fields. Modifiable fields
are highlighted; they comprise all fields except the eight bytes starting
at the current instruction address.

Key Function

Cursor Right, Left Moves cursor anywhere on the screen.
Up, Down Arrow.

TAB Moves cursor to start of next modifiable field.

BACKTAB Moves cursor to start of current field if not
already there; else, to start of preceding field.

HOME Moves cursor to first modifiable field, which 1is
PCW.

SPACE Advances cursor to next modifiable position
without altering data, or to a new field if
necessary.

6-10

Key Function

BACKSPACE Backs up cursor to preceding modifiable position
without altering data, or to a new field if
necessary.

P Positions cursor to PCW data.

G Positions cursor to start of general register

data (i.e., start of general register 0).

S Positions cursor to start of control register
data (i.e., start of control register 0).

M Positions cursor to the first modifiable byte
displayed on the Control mode screen.

6.6 ENTERING AND CANCELLING COMMANDS

The RETURN key must be pressed to execute a Control mode command.
On VS100 systems, a command that has not been entered may be

cancelled and cleared by the BACKSPACE key. On the VS300 system,
cancellation of a command is effected by the CANCEL key.

6.7 EDITING COMMAND LINES

On the VS300 system only, command lines may be edited. Editing is
accomplished by the following keys:

Key Function

BACKSPACE or Acts as a rubout key; moves the cursor one

Cursor Left Arrow position left and erases any character in the
position on which the cursor rested before the
move.

Cursor Right Arrow Moves the cursor one position right, restoring
any erased character in the position on which
the cursor rested before the move.

BACKTAB [or] HOME Positions the cursor at the start of the command
line.

6.8 CONTROL MODE DUMPS

The procedure for taking system dumps in Control mode is described in
the VS System Operator's Guide.

6-11

CHAPTER 7
DEBUG FACILITY

7.1 DEBUG FACILITY OVERVIEW

The Debug facility comprises features of VS machine architecture
intended to support debugging utilities. The principal structure of the
facility is the Debug table, in which a debugging utility can define the
conditions under which traps are to be taken (i.e., process execution is
to be interrupted). The table supports six trap types, each with its own
entry format. The DBG bit of the PCW (Bit 40), qualified by control
information in Control Registers 5 and 10, activates processing of the
Debug table.

Processing of the Debug table takes place after checking of the DBG
bit and control registers, and before execution of the next program
instruction. During processing, every entry in the table is inspected.
When a trap condition defined by an active entry (Entry Active bit = 1)
is found to be satisfied, the trap taken flag (TTF) bit of the entry is
set to 1. Processing continues uninterrupted until all entries of the
table are examined. Then, if the TTF bit of any entry has been set to 1,
a trap taken exception (Code X'10') is recognized.

The flow of Debug table processing 1is described more fully in
Section 7.4.
7.2 TRAP TYPES

Table entries for all traps, except the memory modification trap,
include a 4-bit trap identifier. A memory modification trap entry is
indicated by the setting of a single bit. Supported trap types and their

identifier are as follows:

Trap Identifier Trap Type

Memory Modification

PCW Trap

Instruction Step

Opcode Trap

PCW Range Trap

General Register Modification

U W

The function of each trap type is indicated in Section 7.7.2.

7.3 CONTROL REGISTER 3

The operating system places in Control Register 3 the address of the
Debug table and the number of table entries, as illustrated in Figure 7-1.

| count (-1) | DEBUG TABLE ADDRESS
|

|
l .
|-
bits 0 78 31

Figure 7-1. Format of Control Register 3

The value of the register's high-order byte indicates the number of
table entries minus one. The address provided by the remaining bytes is
virtual.

7.4 CONTROL REGISTERS 4 AND 5

The CP places in Control Registers 4 and 5, respectively, the prior
and current instruction address at the time that the trap exception is
taken. In addition, the CP uses the high order byte of Control Register
5 as a synchronization flag that is cleared at the outset of table
processing and set at the completion of processing. The format of this
register pair is shown in Figure 7-2.

! T |
CrR¢ | ZERO | ADDRESS OF PRIOR INSTRUCTION |
[| |
| I |
CrR5 | FLAG | ADDRESS OF CURRENT INSTRUCTION |
I | |
bits 0 78 31

Figure 7-2. Format of Control Registers 4 and 5.

Before the processing of table entries, the instruction address in
Control Register 5 is moved to Control Register 4. Then the current
instruction address (i.e., the address of the instruction next to be
executed) is copied from the PCW to Control Register 5. Each table entry
is inspected; if the trap condition(s) defined by the entry are met, the
entry's TTF bit is set to 1. Control Register 4 points to the
instruction that caused the trap. After all table entries have been
inspected, the flag byte is set to X'80'.

7-2

At the time that the DBG bit is inspected, it is possible that the
current instruction (i.e., the instruction next to be executed) had
already started executing, was interrupted, and is about to be
restarted. In this case, the Debug table has already been processed for
the current instruction. The values of the flag byte and current
instruction address in Control Register 5 are used to determine whether,
in fact, the table has already been processed for the current
instruction. This determination is necessary to maintain the accuracy of
counter values in table entries for trap types 1-5. The flag byte,
unlike TTF bits, must not be cleared by the debugging utility.

7.5 CONTROL REGISTER 10

The low-order byte of Control Register 10 holds the values of two
process levels. The two 3-bit values, each left-justified in a 4-bit
field, signify the inclusive range wherein Debug traps are active. When
the current process level is outside this range, the DBG bit of the PCW
is ignored.

7.6 TABLE FORMAT

The Debug table must be word-aligned. It cannot span pages; thus,
because each table entry is 12 bytes in length, the table cannot comprise
more than 170 entries.

The table can include any mix of trap type entries in any order,
except that any entry(ies) for the memory modification trap must precede
entries for other traps, and may not be intermixed with entries for other
types.

7.7 TABLE ENTRY FORMAT

7.7.1 Format of Byte 0

There is a unique table entry format for each trap type. However, as
indicated by Table 7-1, the format of the first byte is common to trap
types 1-5, and the format of the first four bits is common to all trap
types.

7-3

Table 7-1. Format of First Byte of Debug Table Entries

Bit
Number Function
Trap Types 0-5
0 Entry Active
0 = Entry inactive
1 = Entry active
1 Trap Taken Flag (TTF)
0 = Trap not taken
1 = Trap taken
2 Reserved
3 Memory Modification Select
0 = Trap type is 1-5
1 = Trap type is 0 (memory modification)
Trap Type O
4 Comparison
0 = Trap when operand and comparand are unequal
1 = Trap when operand and comparand are equal
5-7 Operand length
A value of 0-7; length of operand in bytes minus 1
Trap Types 1-5
4-7 Trap Type
1 = PCW trap
2 = Instruction step
3 = Opcode trap
4 = PCW Range trap
5 = General Register Modification trap

7-4

7.7.2 Pormat of Bytes 1-11

Main Memory Modification Trap

Figure 7-3 shows the format of entries for the main memory
modification trap (trap type 0).

[I]
| TARGET ADDRESS | COMPARAND VALUE l

bytes 1 3 4 11

Figure 7-3. Entry for Main Memory Modification Trap

The target address in Bytes 1-3 indicates the virtual address of the
operand in memory. The length of this operand is indicated by the Bits
5-7 of Byte 0 (described in Table 7-1). The comparand value in Bytes
4-11 is considered to be left-adjusted. A logical comparison between the
operand and comparand value is performed. Then the comparison bit in
Byte 0 is inspected to determine whether the trap condition is equality
or inequality of operand and comparand. The TTF bit in Byte 0 is set
when the specified condition is met.

PCW Trap

Figure 7-4 shows the format of entries of the PCW trap (trap type 1)

[l]
| TARGET ADDRESS | | COUNTER WORD
I

bytes 1 3 4 78 1

[e —

Figure 7-4. Entry for PCW Trap

The virtual target address in Bytes 1-3 is compared with the
instruction address in the current PCW. In the case of equivalence, the
value of the counter word is decremented by 1. If the value of the
decremented counter word is 0, the TTF bit in Byte 0 is set to 1.

Instruction Step Trap

Figure 7-5 shows the format of .entries for the Instruction Step trap
(trap type 2).

7-5

[[[I
| - COUNTER WORD |
I

bytes 1 34 7 8 11
Figure 7-5. Entry for Instruction Step Trap

The value of counter word is decremented by 1. If the decremented
value is 0, the TTF bit in byte 0 is set to 1.

Opcode Trap

Figure 7-6 showsbthe format of entries for Opcode traps (trap type 3).

[[[|
| OPCODE | | COUNTER WORD |
| I | |

bytes 1 2 7 8 11

Figure 7-6. Entry for Opcode Trap

The value of the opcode field in Byte 1 is compared with the opcode
byte of the current instruction. In the case of equivalence, the value
of the counter word is decremented by 1. If the value of the decremented
counter word is 0, the TTF bit in Byte 0 is set to 1.

PCW Range Trap

Figure 7-7 shows the format of entries for the PCW Range trap (trap
type 4).

[[R 1 HIGH [|
| LOW ADDRESS I FLG | ADDRESS | COUNTER WORD |
I I | I

bytes 1 34 5 78 11

Figure 7-7. Entry for PCW Range trap

This entry specifies as a trap condition either the inclusion or
exclusion of the current PCW instruction address by a specified range of
addresses.

7-6

The low address field (Bytes 1-3) and high address field (Bytes 5-7)
indicate the address range. A PCW instruction address greater than or
equal to the low address, and less than or equal to the high address is
considered to be in-range.

The first bit of Byte 4 serves as the range flag. A flag value of 0
means "trap if in-range condition is met"; a value of 1 means "trap if
in-range condition is not met". If the trap condition is met, the value
of the counter word is decremented by 1. Decrementing to O causes the
TTF flag bit in Byte 0 to be set to 1.

General Register Modification Trap

Figure 7-8 shows the format of entries for the General Register
Modification trap (trap type 5).

[rRG 1 [| 1
| BYTE | ———- | COMPARAND VALUE | COUNTER WORD |
l

bytes 1 2 3 4 7 8 11
Figure 7-8. Entry for General Register Modification Trap

The Register (RG) byte has the following format:

Bits 0-3 Mask:
X'8' Trap on equivalence
X'4' Trap if comparand is low
X'2' Trap if comparand is high

Bits 4-7 Number of General register

The comparand (Bytes 4-7) is compared with the contents of the
general register indicated by the RG byte (Bits 4-7). If the outcome of
the comparison meets the condition indicated by the RG mask (Bits 0-3),
the counter word value is decremented by 1. Decrementing to 0 causes the
TTF flag bit in Byte 0 to be set to 1.

7.8 COUNTER WORD

The counter word does not wrap around at 0. If the value of the
counter word is 0 before decrementing takes place, the value remains zero
and the TTF bit of the entry is set to 1.

The Debug table is processed and the counter decremented before
instruction execution. Thus, to indicate a trap condition of n
iterations, the counter value must be n+l. For example, the stepping of
a single instruction is accomplished by using a counter value of 2.

7-7

CHAPTER 8
INSTRUCTIONS

8.1 GENERAL INSTRUCTION SET

The following instructions represent the basic instruction set for
the VS. In addition to these wuniversal machine instructions, the
assembler supports some extended mnemonic codes, such as JSI, which are
discussed in the chapter on machine instructions in the VS Assembly
Language Reference. A list of operation codes and formats for the basic
instruction set is provided in Appendix A of this manual.

The superscript "p" (e.g., (CIO)?) in the first 1line of an
instruction description means that the instruction is privileged.

Instructions are ordered alphabetically by name in this chapter, and
alphabetically by mnemonic in the index.

Instructions having extended operand codes (i.e., 9Bxx) are described
in Section 8.2.

The order in which program exceptions are 1listed, within each
instruction description, is not necessarily the order in which they
occur. When multiple exceptions are pending, the order in which they are
recognized depends on the type of VS system being used.

ADD (AR, A)

AR R1,R2 (RR)

| ' R T R 1

| 1A I 11 2|

L I I |

0 8 12 15
A R1,D2(X2,B2) (RX)

I | R | x | B | D |
| 5A P10 21 21 2 |
| | I | | |
0 8 12 16 20 31

The second operand is added to the first operand, and the sum is
placed in the first operand location.

Addition is performed by adding all 32 bits of both operands. If the
carry from the sign-bit position and the carry from the high-order
numeric bit position agree, the sum is satisfactory; if they disagree, an
overflow occurs. The sign bit is not changed after the overflow. A
positive overflow yields a negative final sum, and a negative overflow
results in a positive sum. The overflow causes a program interruption
when the fixed-point overflow mask bit in the PCW is 1.

Operand 2 of the A instruction must be fullword aligned.

Resulting Condition Code

Sum is 0

Sum is less than 0
Sum is greater than 0
Overflow

wN=HO

Program Exceptions

Access (fetch, operand 2 of A only)
Fixed-point overflow
Specification (A only)

Programming Note

In 2's-complement notation a zero result is always positive.

ADD DECIMAL (AP)

AP DI1(L1,Bl),D2(L2,B2) (SS)

[' ' w T B 171l B 177D 1
| FA Il 11 2 | 1 | il 2 | 2 |
| | I I l 77 | 7 7/ |
0 8 12 16 20 32 36 47

The second operand is added to the first operand, and the sum is
placed in the first operand location.

Ll and L2 are the field lengths in bytes, minus 1.

Addition is algebraic, taking into account sign and all digits of
both operands. All digits are checked for validity. If necessary, Os
are supplied for either operand on the most significant end. When the
first operand field is too short to contain all significant digits of the
sum, an overflow condition is recognized.

Overflow has two possible causes. The first is the loss of a carry
from the most significant digit position of the result field. The second
cause is an oversized result, which occurs when the second operand field
is larger than the first operand field and significant result digits are
lost. The field sizes alone are not an indication of overflow. An
overflow causes a program interruption when the decimal overflow mask bit
is 1.

The first and second operand fields may overlap when their least
significant bytes coincide; therefore, it is possible to add a number to
itself.

The sign of the result is determined by the rules of algebra. When
the operation is completed without an overflow, a zero sum result has a
positive sign, but when high-order digits are 1lost because of an
overflow, a zero result may be either positive or negative, as determined
by what the sign of the correct result would have been. This instruction
will set the condition code even if the decimal overflow exception is
taken.

8-3

Resulting Condition Code

Sum is 0

Sum is less than 0O
Sum is greater than 0
Overflow

wNe-=O

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data
Decimal overflow

ADD DECIMAL (FLOATING-POINT) (AQR, AQ)

AQR R1,R2 (RR)

[' R T rR 1

| 3A b1l 2

l I I |

0 8 12 15

a0 R1,D2(X2,B2) (RX)

| ' R T x 1T B 1 D |
| 1A Il 11 21 21 2

| | I | I |
0 8 12 16 20 31

The second operand is added to the first operand, and the normalized
sum 1is placed in the first operand location. Fullword alignment is
required.

Addition of two decimal floating-point numbers consists of a
characteristic comparison and a fraction addition. The characteristics
of the two operands are compared, and the fraction with the smaller
characteristic is right-shifted; its characteristic is increased by one
for each decimal digit of shift until the two characteristics agree. The
fractions are then added algebraically to form an intermediate sum. If
an overflow carry occurs, the intermediate sum is right-shifted one digit
and the characteristic is increased by one. If the increase causes a
characteristic overflow, a program interruption occurs. The fraction and
the sign are correct, but the characteristic is 128 smaller than the
correct characteristic.

The intermediate sum consists of 15 decimal digits and a possible
carry. The low-order digit is a guard digit obtained from the fraction
that is shifted right. The guard digit is 0 if no shift occurs.

After the addition, the intermediate sum is normalized as necessary
by shifting 1left the fraction; vacated low-order digit positions are
filled with Os; the characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and if the
corresponding mask bit is 1, a program interruption occurs. The fraction
is correct, but the characteristic is 128 larger than the correct one.
If the corresponding mask bit is 0, the result is made a true zero.

When the intermediate sum is zero and the significance mask bit is 1,
a significance exception exists and a program interruption takes place.
No normalization occurs; the intermediate sum characteristic remains
unchanged. When the intermediate sum is zero and the significance mask
bit is 0, the program interruption for significance exception does not
occur; rather, the result is forced to be true zero. Exponent underflow
cannot occur for a zero fraction.

8-5

The sign of the sum is derived by the rules of algebra. A zero sum
fraction is regarded as positive.

Resulting Condition Code

Result fraction is 0
Result fraction is less than 0
Result fraction is greater than O

WO

Program Exceptions

Specification

Data

Significance
Exponent overflow
Exponent underflow
Access (AQ only)

ADD HALFWORD (AH)

AH R1,D2(X2,B2) (RX)

D |
2 |

[I r 1
I 42 | 1 |
| I I

0 8 1

|

l

I
6 20 31
The second operand is added to the first operand, and the sum is
placed in the first operand location. The second operand is two bytes in

length, must be halfword aligned, and is considered to be a 16-bit signed
integer.

The second operand is expanded to 32 bits before the addition by
propagating the sign-bit wvalue through the 16 high-order bit positions.
The contents of the second operand in main memory remain unchanged.
Addition 1is performed by adding all 32 bits of both operands. If the
carry from the sign-bit position and the carry from the high-order
numeric bit position agree, the sum is satisfactory; if they disagree, an
overflow occurs. The sign bit is not changed after the overflow. A
positive overflow yields a negative final sum, and a negative overflow
results in a positive sum. The overflow causes a program interruption
when the fixed-point overflow mask bit in the PCW is 1.

Resulting Condition Code

Sum is 0

Sum is less than 0
Sum is greater than 0
Overflow

whH+=HO

Program Exceptions

Access (fetch, operand 2)
Fixed—-point overflow
Specification

ADD LOGICAL (ALR, AL)

ALR R1,R2 (RR)
! Il R | rR |
| 1E I 11 2 |
| I | |
0 8 12 15
AL R1,D2(X2,B2) (RX)
] 'R T x 1T B 1 D I
| 5E 1 2 | 2 | 2 |
| | | | | I
0 8 12 16 20 31

The second operand is added to the first operand, and the sum is
placed in the first operand location. The occurrence of a carry from the
sign position is recorded in the condition code.

The second operand of the AL instruction must be fullword aligned.

Logical addition 1is performed by adding all 32 bits of both
operands. If a carry from the leftmost position occurs, the leftmost bit
of the condition code is made 1. In the absence of a carry, the leftmost
bit is made 0. When the sum is 0, the rightmost bit of the condition
code is made 0. A nonzero sum is indicated by a 1 in the rightmost bit.

Resulting Condition Code

Sum is 0 (no carry)
Sum is not 0 (no carry)
Sum is 0 (carry)

Sum is not 0 (carry)

wNH+=HO

Program Exceptions

Access (fetch, operand 2 of AL only)
Specification (AL only)

8-8

ADD NORMALIZED (FLOATING-POINT) (ADR, AER, AD, AE)

ADR RI1,R2 (RR, Long)

[F'TrR T rR 1

I 2a lof 11 2 |

| | | | |

0 8,9 12 15

AER R1,R2 (RR, Short)

[I'TrR T r 1

I 2A lal 121 2 |

| | | I I

0 8,9 12 15

AD R1,D2(X2,B2) (RX, Long)

[F'Tr T x 1T B 1 D]
| 62 lol 21 2 | 2 | 2 |
l | | | | | |
0 8,9 12 16 20 31
AE R1,D2,(X2,B2) (RX, Short)

[I'TrR T x | B 1T D]
I 6A [l 21 2 | 2 | 2 |
l || I | | |
0 8,9 12 16 20 31

The second operand is added to the first operand, and the normalized
sum is placed in the first operand location.

Operand 2 of the AD instruction must be fullword aligned.

Addition of two floating-point numbers consists of comparing
characteristics and adding fractions. The characteristics of the two
operands are compared, and the fraction with the smaller characteristic
is right-shifted; its characteristic is increased by 1 for each
hexadecimal digit of shift until the two characteristics agree. The
fractions are then added algebraically to form an intermediate sum. If
an overflow carry occurs, the intermediate sum is right-shifted one digit
and the characteristic is increased by 1. If this increase causes a
characteristic overflow, an exponent-overflow exception is signaled and a
program interruption occurs. The fraction is normalized and correct, the
sign is correct, and the characteristic is smaller by 128 than the
correct characteristic.

The intermediate sum consists of 15 hexadecimal digits (for AER and
AE, 7 hexadecimal digits) and a possible carry. The low-order digit is a
guard digit obtained from the fraction that is shifted right. Only one
guard digit position participates in the fraction addition. The guard
digit is 0 if no shift occurs.

After the addition, the intermediate sum is left-shifted as necessary
to form a normalized fraction, vacated low-order digit positions are
filled with Os, and the characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and if the
corresponding mask bit is 1, a program interruption occurs. The fraction
is correct and normalized, the sign is correct, and the characteristic is
larger by 128 than the correct one. If the corresponding mask bit is 0,
the result is made a true 0. If no 1left shift takes place, the
intermediate sum is truncated to the proper fraction length.

When the intermediate sum is 0 and the significance mask bit is 1, a
significance exception exists, and a program interruption takes place.
In this case, no normalization occurs; the intermediate sum
characteristic remains unchanged. When the intermediate sum is O and the
significance mask bit is 0, the program interruption for the significance
exception does not occur; rather, the characteristic is made 0, yielding
a true zero result. Exponent underflow does not occur for a fraction of
0.

The sign of the sum is derived according to the rules of algebra; a
result of 0 is regarded as positive.

Resulting Condition Code

Result fraction is 0
Result is less than 0
Result is greater than 0

W ~O

Program Exceptions

‘Specification
Significance
Exponent overflow
Exponent underflow
Access

Programming Note

Interchanging the two operands in a floating-point addition does not
affect the value of the sum.

8-10

ADD UNNORMALIZED (FLOATING-POINT) (AW, AU)

AW R1,D2(X2,B2) (RX, Long)

| IT'TrR T x T B 1 D |
| 6E flol 21 2 | 2 | 2 |
L | | I | |]
0 . 8,9 12 16 20 31
AU R1,D2(X2,B2) (RX, Short)

| I TrR T 2 | B | D |
| 6E fal 21 2 1 2 1 2 I
| | | I | | B
0 8,9 12 16 20 31

The second operand is added to the first operand, and the
unnormalized sum is placed in the first operand location. Operand 2
requires fullword alignment.

After the addition the intermediate sum is truncated to the proper
fraction length.

When the resulting fraction is 0 and the significance mask bit in the
PCW is 1, a significance exception exists and a program interruption
takes place. When the resulting fraction is 0 and the significance mask
bit is 0, the program interruption for the significance exception does
not occur; rather, the characteristic is made 0, yielding a true =zero
result. (See ADD NORMALIZED.)

Leading 0s in the result are not eliminated by normalization, and an
exponent underflow cannot occur.

The sign of the sum is derived by the rules of algebra. The sign of
a sum with a result fraction of 0 is always positive.

Resulting Condition Code

Result fraction is 0
Result is less than 0
Result is greater than 0

wWwN O

Program Exceptions

Specification
Significance
Exponent overflow
Access

8-11

AND (NR, N, NI, NC)

NR R1,R2 (RR)
['R T rR 1
I 14 [1 | 2 |
| I | B
0 8 12 15
N R1,D2(X2,B2) (RX)
['R T x T B] D |
| 54 v | 2 1 2 | 2 |
| I I I | |
0 8 12 15 31
NI D1(Bl),I2 (SI)
[[I I B 1 D |
| 94 | 2 I 1 | 1 |
| | [| |
0 8 16 20 31
NC DI1(L,Bl),D2(B2) (SS)
[[I 8 T/7m1T B8 177D 1
I D4 [L 1 | il 2 | 2 |
| | | | 77 | l7 7/ |
0 8 16 20 32 36 47

The logical product (AND) of the bits of the first and second operand
is placed in the first operand location. Operands are treated as
unstructured logical quantities, and the connective AND is applied bit by
bit. A bit position in the result is set to 1 if the corresponding bit
positions in both operands contain a 1; otherwise, the result bit is set
to 0. All operands and results are valid.

Operand 2 of the N instruction must be fullword aligned. For the NC
instruction, L is the length of each operand minus 1.

Resulting Condition Code

Result is O
Result not 0

WNHO

8-12

Program Exceptions

Access (fetch, operand 2, N and NC; fetch and store, operand 1, NI,
NC)

Specification (N only)

Programming Note

The AND instruction may be used to set a bit to 0. For this purpose,
the second operand should have 0s in all positions corresponding to the
first-operand bits to be set to 0.

8-13

ARGUMENT CHECK FOR SYSTEM ROUTINES (ACHECK)P®

ACHECK R4,D1(B1),D2(B2),D3(B3) (Special)

[['R I B T/7mn1T B T/7/7mI B 1T7/m1
I E9 I v | 4 | 1 | il 1 | 2l 3 | 3l
| | | I 77 | 77 | 177 |
0 8 12 16 20 32 36 48 52 63

Access to the memory area defined by the first and second operands is
checked; the result is placed in the condition code.

The first operand addresses the first byte of the area to which
access is to be verified. The second operand specifies the length of the
area in bytes. The third operand specifies the process level at which
access to the area is to be verified. The fourth operand, if nonzero,
specifies a register which, if the defined area spans two regions,
receives the starting address of the second region.

The 4-bit mask field determines the type of access to be verified.
Valid values for this field are X'8' for read access, X'4' for write
access, and X'2' for execute access.

Read access is allowed (mask = X'8' and returned condition code = 0)
as follows:

e When the specified process level is greater than 0, read access
is allowed if 1) the defined area falls in LOHI range of the
first region node in the region table addressed by the first
segment Control Register (SCR 0), or 2) the minimum read level of
the region is less than or equal to the specified process level.

e When the specified process level is 0, read access is allowed if
1) the minimum read level of the region is 0, and 2) no part of
the defined area lies in the stack area for process level zero
between the current stack pointer and the beginning of the heap
area.

Write access is allowed (mask = X'4' and returned condition code = 0)
as follows:

e When the specified process level is greater than 0, write access
is allowed if the minimum write level for the region that
includes the defined area is less than or equal to the specified
process level.

e When the specified process level is 0, write access is allowed if
1) the minimum write level of the region is 0, and 2) no part of
the defined area lies in the stack area for process level zero
between the current stack pointer and the beginning of the heap
area.

8-14

Execute access is allowed (mask = X'2' and returned condition
code = 0) for process levels 0-7 if minimum read level of the region that
includes the defined area = 0 and the minimum write level = 7.

When the mask value = X'8' or X'4' and the specified process
level = 0, the value of the stack pointer (General Register 15) is
obtained from the stack header block for process level =zero. A
specification error occurs if this stack header block spans memory pages.

A specification error occurs if the specified process 1level is
greater than 7 or greater than the current process level.

Resulting Condition Code

Access type specified is allowed for this area and process level
Area crosses a region boundary (first part allowed)

Region not found (or specification error)

Region found but access denied

wNhhH=O

Program Exceptions

Privileged operation
Specification

8~-15

BIT RESET (BRESET)

BRESET D1(Bl),M2 (SI)

| [M I B 1 D |
| 9D [2 I 1 | 1 [
| I | | |
0 8 16 20 31

The bit at bit displacement M2 from the high-order bit (Bit 0) of the
first operand is set to 0. Bit numbering begins with the high-order bit
of each byte and proceeds through ascending byte locations. The
condition code reflects the wvalue of the specified bit before
modification.

Resulting Condition Code

Bit was 0 before operation
Bit was 1 before operation

W -O

Program Exceptions

Access (store, operand 1)

8-16

BIT SET (BSET)

BSET D1(Bl1l),M2 (SI)

I | M |
I 9C | 2 |
I I |

0 8 1

The bit at bit displacement M2 from the high-order bit (Bit 0) of the
first operand is set to 1. Bit numbering begins with the high-order bit
of each byte and proceeds through ascending byte 1locations. The
condition code reflects the value of the specified bit before
modification.

Resulting Condition Code

Bit was 0 before operation
Bit was 1 before operation

wNne-=O

Program Exceptions

Access (store, operand 1)

8-17

BIT TEST (BTEST)

BTEST D1(Bl),M2 (SI)

| | M
| 9E | 2

[

I 1
| I I

1

B | D
I
|
0 8 2

[
[90)) Sp——

6 0

The bit at bit displacement M2 from the high-order bit (Bit 0) of the
first operand is tested, and the result is reflected in the condition
code. Bit numbering begins with the high-order bit of each byte and
proceeds through ascending byte locations.

Resulting Condition Code

0 Bit is 0
1 Bit is 1

Program Exceptions

Access (fetch, operand 1)

8-18

BRANCH AND LINK (BALR, BAL)

BALR R1,R2 (RR)
[' R T rR 1
I 05 Il 11 21
I | [|
0 8 12 15
BAL R1,D2(X2,B2) (RX)
[I' R T x 1T B | D l
| 45 I 121 21 21 2 |
| | | | | |
0 8 12 16 20 31
BRANCH AND LINK (RELATIVE) (RBAL)
RBAL R1,L2 (RL)
| I rR | L |
| 75 R 2 |
I I | |
0 8 12 31

The program mask byte of the PCW and the updated instruction address
are stored as link information in the general register specified by Rl.
Subsequently, the instruction address is replaced by the branch address.
For BALR, the branch address is the contents of R2; for BAL, it is
X2+B2+D2. For RBAL, the branch address is the sum of the current
instruction address and the L2 field.

The branch address is determined before the 1link information is
stored. The link information contains the updated instruction address.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The link information is stored without branching in the RR format
when the R2 field contains zero.

8-19

BRANCH AND LINK ON CONDITION INDIRECT (BALCI)

BALCI M1,R3,D2(B2) (RS)

|
99 | 11 3

I

1

} B TI D
L I I
0 2

[

0 3

The updated instruction address is replaced by the branch address if
the state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address. If
the branch is taken, the program mask byte of the PCW and the updated
instruction address are stored as 1link information in the general
register specified by R3.

The branch address is determined before the 1link information is
stored. The three low-order bytes of the word at the location designated
by the second operand address are used as the branch address.

The M1 field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes are as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 0
9 4 1
10 2 2
11 1 3

The branch 1is successful whenever the condition code has a
corresponding mask bit of 1.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 if the branch is taken)
Specification

Programming Note

This instruction combines a conditional branch and 1link with an
indirectly specified branch address.

8-20

BRANCH AND LINK STACK (BALS)

BALS S1,D2(X2,B2) (RX)

| [' s T x 1T B 1 D 1
| 81 11 21 2| 2 |
l | | | | |
0 8 12 16 20 31

The relevant stack vector is determined from the S1 field of the
instruction. A branch address is calculated from the second operand
field according to the rules for base-displacement or relative address
formation. The stack pointer 1is decremented by 4, and the same
information BAL would put in a register, including the updated
instruction address, is placed in the four byte locations starting with
the location addressed by the updated stack pointer. A branch is made to
the previously calculated branch address.

Resulting Condition Code

The condition code remaing unchanged.

Program Exceptions

Stack overflow

Access (store, bytes pushed onto stack)
Specification

8-21

BRANCH AND LINK STACK (RELATIVE) (RBALS)

RBALS R1,L2 (RL)

| [R 1
| 73 Il 11
l I I
0 8 1

et b e

The relevant stack vector is determined from the Rl field of the
instruction. A branch address is calculated as the sum of the current
instruction address and the L2 field. The stack pointer is decremented
by 4, and the same information BAL would put in a register, including the
updated instruction address, is placed in the four byte locations
starting with the location addressed by the updated stack pointer. A
branch is made to the previously calculated branch address.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Access (store, bytes pushed onto stack)

8-22

BRANCH ON CONDITION (BCR, BC)

BCR MI1,R2 (RR)
| [M T R 1
| 07 I 121 2|
| | | |
0 8 12 15
BC M1,D2(X2,B2) (RX)
[I M T x T B | D |
| 47 [21 21 21 2 |
| I | | l |
0 8 12 16 20 31
BRANCH ON CONDITION (RELATIVE) (RBC)
RBC M1,L2 (RL)
[[M 1 L R
| 77 [1| 2 |
| I l |
0 8 12 31

The updated instruction address is replaced by the branch address if
the state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address.
For BCR, the branch address is contained in R2; for BC, it is X2+B2+D2.

For RBC, it is the sum of the current instruction address and the L2
field.

The Ml field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding mask
bit of 1.

Resulting Condition Code

The condition code remains unchanged.

8-23

Program Exceptions

None

Programming Notes

When a branch is to be made on more than one condition code, the
pertinent condition codes are specified in the mask as the sum of their
mask position values. A mask of 12, for example, specifies that a branch
is to be made on condition codes 0 or 1.

When all four mask bits are 1s, that is, when the mask position value
is 15, the branch is unconditional. When all four mask bits are Os or
when the R2 field in the RR format contains 0, the branch instruction is
equivalent to a no-operation. For a no-operation BCR the branch address
{R2) is ignored.

8-24

BRANCH ON CONDITION INDEXED (RELATIVE) (RBCX)

RBCX Ml1,L2(X2) (RRL)

[[M
| 65 R T
I I I
0 8 1

L]
|
|
1

6 3

The updated instruction address is replaced by the branch address if
the state of the condition code is as specified by M1l; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The branch address is formed by adding the halfword L2 field, the
contents of the general register designated by the X2 field, and the
current instruction address.

The M1l field is used as a 4-bit mask as in the BRANCH ON CONDITION
(BC) instruction.

When the instruction is executed, the current instruction address
used in the effective-address calculation is the address of the EXECUTE
instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-25

BRANCH ON CONDITION STACK (BCS)

BCS M1,S2 (RS)

[[M T s
I 01 | 1
| I

I
I
0 8 12 1

2

1
|
|
5

The updated instruction address is replaced by the branch address if
the state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The M1 field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a
corresponding mask bit of 1.

The relevant stack vector is determined from the S2 field of the
instruction. The 24-bit address in the low-order three bytes of the
word-aligned 4-byte memory area addressed by the contents of the stack
pointer is placed in the current instruction address field in the PCW
(i.e., a branch is made to that location). The stack pointer is then
incremented by 4.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, bytes popped from stack)
Specification

Programming Note

This instruction is a BCR that uses the stack.

8-26

BRANCH ON COUNT (BCTR, BCT)

BCTR R1.R2 (RR)
| ' R | rR 1
| 06 I 1 1 2 |
l I l I
0 : 8 12 15
BCT R1,D2(X2,B2) (RX)
| ' R T x T B 1 D |
| 46 I 121 2 1 2 | 2 I
| | | | | |
0 8 12 16 20 31

The «contents of the general register specified by Rl are
algebraically reduced by 1. When the result is 0, normal instruction
sequencing proceeds with the wupdated instruction address. When the
result is not 0, the instruction address is replaced by the branch
address. The branch address for BCIR is R2; for BCT it is X2 + B2 + D2.

The branch address is determined prior to the counting operation.
Counting does not change the condition code. The subtraction proceeds as
in fixed-point arithmetic, and all 32 bits of the general register
participate in the operation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Notes

An initial count of 1 results in 0, and no branching takes place. An
initial count of 0 results in all 1s and causes branching to be executed.

Counting is performed without branching when the R2 field in the RR
format contains 0.

8-27

BRANCH ON COUNT (RELATIVE) (RBCT)

RBCT R1,R2 (RL)

I [R 1 L |
| 76 I 1 | 2 |

| I l |
0 8 12 31

The sign of the L2 field is extended 12 bits to the left, to form a
32-bit signed 2's—complement displacement. The displacement is added to
the current instruction address to form the branch address.

. Instruction execution 1is then identical to the corresponding RX
instruction.

When the instruction is executed, the current instruction address
used in the effective-address calculation is the address of the EXECUTE

instruction. :

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-28

BRANCH ON INDEX HIGH (BXH)

BXH R1,R3,D2(B2) (RS)
I 'R T R T B T D |
| 86 Il 11 31 21 2 [
| I I I | |
0 8 12 16 20 31
BRANCH ON INDEX HIGH (RELATIVE) (RBXH)
RBXH R1,R3,L2 (RRL)
[T R T R | L]
I 66 | 11 31 2 |
| I | | |
0 8 12 16 31

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the
first operand location, regardless of whether the branch is taken. When
the sum is high, the instruction address is replaced by the branch
address. When the sum is low or equal, instruction sequencing proceeds
with the updated instruction address. For BXH, the branch address is
B24D2. For RBXH, it is the sum of the current instruction address (bits
8-31 of the PCW) and the L2 field.

The first operand and the increment are in the registers specified by
Rl and R3. The comparand register address is odd and is either greater
by 1 than R3 or equal to R3. The branch address is determined prior to
the addition and comparison.

Overflow caused by the addition is ignored and does not affect the
comparison. Otherwise, the addition and comparison proceed as in
fixed-point arithmetic. All 32 bits of the general registers participate
in the operations, and negative (quantities are expressed in
2's-complement notation. When the first operand and comparand locations
coincide, the original register contents are used as the comparand.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-29

Programming Note

The name "branch on index high" indicates that one of the major
purposes of this instruction is the incrementing and testing of an index
value. The increment is algebraic and may be of any magnitude.

8-30

BRANCH ON INDEX LOW OR EQUAL (BXLE)

BXLE R1,R3,D2(B2) (RS)

B | D
2

[[R |
| 87 [
[| |

0 8 1

[uiry E g —

I
I |
I I
16 20 3

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the
first operand location, regardless of whether the branch is taken. When
the sum is low or equal, the instruction address is replaced by the
branch address. When the sum is high, normal instruction sequencing
proceeds with the updated instruction address. The branch address is
B2+D2.

The first operand and the increment are in the registers specified by
Rl and R3. The comparand register address is odd and is either greater
by 1 than R3 or equal to R3. The branch address is determined prior to
the addition and comparison.

This instruction is similar to BRANCH ON INDEX HIGH, except that the
branch is taken when the sum is low or equal compared to the comparand.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-31

BRANCH ON INDEX LOW OR EQUAL (RELATIVE) (RBXLE)

RBXLE R1,R3,L2 (RRL)
[|
| 67 | 1
I |

| L [
| 2 I
| I
16 31

0 8

The branch address is formed by adding the signed halfword L2 field
and the current instruction address. Instruction execution is then
identical to the corresponding RS instruction.

When the instruction is executed, the current instruction address
used in the effective—address calculation is the address of the EXECUTE
instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-32

COMPARE (CR, C)

CR RI1,R2 (RR)
[Il R | R |
| 19 Il 1 1 2 |
I l I |
0 8 12 15
C R1,D2(X2,B2) (RX)
['R I x | B | D l
| 59 Il 21 2 1 2 | 2 |
| I I | | 1
0 8 12 16 20 31

The first operand is compared with the second operand, and the result
determines the setting of the condition code. The second operand of the
C instruction must be fullword aligned.

Comparison is algebraic, treating both comparands as 32-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

whe~O

Program Exceptions

Access (fetch, Operand 2 of C only)
Specification (C only)

8-33

COMPARE (FLOATING-POINT) (CDR, CER, CD, CE)

CDR R1,R2 (RR, Long)

| [TrR T R 1

| 29 lol 121 2 |

I || | |

0 8,9 12 15

CER R1,R2 (RR, Short)

| [TrR T R 1

| 29 il 11 2 |

l | | | |

0 8,9 12 15

CD R1,D2(X2,B2) (RX, Long)

[TR T x T B 1 D]
| 69 fol 21 2 | 2 | 2 |
| | | I | | I
0 8,9 12 16 20 31
CE R1,D2(X2,B2) (RX, Short)

| T'TrR T 2 T B 1 D 1
| 69 frtl 121 2 | 2 | 2 I
| | | | I | |
0 8,9 12 16 20 31

The first operand is compared with the second operand, and the
condition code indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and
exponent of each number. An exponent inequality is not decisive for
magnitude determination, since the fractions may have different numbers
of leading 0Os. An equality is established by following the rules for
normalized floating-point subtraction. When the intermediate sum,
including the guard digit, is 0, the operands are equal. Neither operand
is changed as a result of the operation.

An exponent—overflow, exponent-underflow, or lost significance
exception cannot occur.

Operand 2 of the CD instruction must be fullword aligned.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

W N O

8-34

Program Exceptions

Specification
Access

Programming Note

Condition code 0 (equal comparison) is set when numbers with zero
fractions are compared, even when they differ in sign or characteristic.

8-35

COMPARE DECIMAL (CP)

CP D1(L1,B1),D2(L2,B2) (SS)

[T o ' T B T7/m1T B 17/ 1
| F9 [11 2 1 1 | il 2 | 2 |
| | | | L 77 | L 77 |
0 8 12 16 20 32 36 47

The first operand is compared with the second, and the condition code
indicates the comparison result.

Comparison proceeds right to left, taking into account the sign and
all digits of both operands. All digits are checked for validity. If
the fields are unequal in length, the shorter is extended with 0s on the
most significant end. A field with a zero value and positive sign is
considered equal to a field with a zero value but negative sign. Neither
operand is changed as a result of the operation. Overflow cannot occur
in this operation.

The first and second fields may overlap when. their least significant
bytes coincide. It is possible, therefore, to compare a number to itself.

L1 and L2 are the field lengths in bytes, minus 1.

Resulting Condition Code

Operands equal
First operand is low
First operand is high

wh-=O

Program Exceptions

Access (fetch, operands 1 and 2)
Data

Programming Note

The COMPARE DECIMAL instruction is the only COMPARE instruction that
processes from right to 1left, taking signs, 0s, and invalid characters
into account, and extending variable-length fields when they are unequal
in length.

8-36

COMPARE HALFWORD (CH)

CH R1,D2(X2,B2) (RX)

I [R]
I 49 [1 |
| | [

0 8 1

ot — —]

The first operand is compared with the second operand, and the result
determines the setting of the condition code. The second operand is two
bytes in 1length, must be halfword aligned, and is considered to be a
16-bit signed integer.

The second operand is expanded to 32 bits before the comparison by
propagating the sign-bit value through the 16 high-order bit positions.

Comparison 1is algebraic, treating both comparands as 32-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

wNhH+HO

Program Exceptions

Access (fetch, operand 2)
Specification

8-37

COMPARE LOGICAL (CLR, CL, CLI, CLC)

CLR R1,R2 (RR)
['rR T r 1
| 15 [1 1 2 |
| I I |
0 8 12 15
CL R1,D2(X2,B2) (RX)
| 'R T x T B 1 D |
| 552 . | 1 1 2 1 2 | 2 |
| | I I | |
0 8 12 16 20 31
CLI D1(Bl),I2 (S1)
[[' B 1 D |
[95 [I [1 | 1 |
I I | | |
0 8 16 20 31
CLC D1(L,B1),D2(B2) (SS)
[] '8 T/s/m1T B 177D 1
| D5 I L | 1 | il 2 | 2 |
I I | | 77 | Y |
0 8 16 20 32 36 47

The first operand is compared with the second operand, and the result
is indicated in the condition code. For the CL instruction, the second
operand requires fullword alignment.

The instructions allow comparisons that are register-to-register,
storage-to~-register, instruction-to-storage, and storage-to-storage. The
length of the CLC instruction is stored as the actual length minus 1 in
the L1 field.

Comparison is unsigned binary, and all codes are valid. The
operation proceeds left to right and ends as soon as an inequality is
found or the end of the fields is reached. However, when part of an
operand in the CLC instruction is specified in an unavailable location,
the operation may be terminated by an addressing exception.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

whH+=HO

8-38

Program Exceptions

Specification (CL only) ‘
Access (fetch, operand 2, CL and CLC; fetch, operand 1, CLI, CLC)

Programming Note

The COMPARE LOGICAL instructions treat all bits alike as part of an
unsigned binary quantity. In variable-length operation, comparison is
left to right and may extend to the full specified field length. The
operation may be used to compare unsigned packed decimal fields or
alphanumeric information in any code that has a collating sequence based
on ascending or descending binary values. For example, ASCII has a
collating sequence based on ascending binary values.

8-39

COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)

CLM R1,M3,D2(B2) (RS)

[[R
| BD [
| | [

0 8 1

The second operand is compared with the first operand under control
of a mask, and the result is indicated in the condition code.

The contents of the M3 field (bit positions 12-15) are used as a
mask. The four bits of the mask, left to right, correspond with the four
bytes, left to right, of the general register designated by the Rl
field. The byte positions corresponding to ls in the mask are considered
a contiguous field and are compared with the second operand. The second
operand is a contiguous field in memory, starting at the second operand
address and equal in length to the number of 1ls in the mask. The bytes
in the general register corresponding to Os in the mask do not
participate in the operation. The comparison is performed with the
operands regarded as binary unsigned quantities, with all codes wvalid.
The operation proceeds left to right.

When the mask is not 0, exceptions associated with storage-operand
access are recognized only for the number of bytes specified by the
mask. However, when part of the designated storage operand is in an
inaccessible location but the operation can be completed by using the
accessible operand parts, it is unpredictable whether or not the
exception for the inaccessible part is indicated. When the mask is O,
access exceptions are recognized for one byte.

Resulting Condition Code

Selected bytes are equal, or mask is 0
Selected field of first operand is low
Selected field of first operand is high

wNe-=O

Program Exceptions

Access (fetch, operand 2)

8-40

COMPARE LOGICAL LONG (CLCL)

CLCL R1,R2 (RR)
[[
I OF : 1

0 8

The first operand is compared with the second operand, and the result
is indicated in the condition code.

The R1 and R2 fields each designate an even-odd pair of general
registers and must each specify an even-numbered register; otherwise, a
specification exception is recognized.

The addresses of the leftmost bytes of the first and second operands,
respectively, are specified by Bits 8-31 of general registers Rl and R2.
Numbers of bytes in the first and second operands, respectively, are
given by Bits 8-31 of general registers Rl+l and R2+1. Bits 0-7 of
register R2+1 contain the padding character. Bits 0-7 of registers R1,
R1+1, and R2 are ignored.

The comparison is performed with the operands regarded as binary
unsigned quantities, with all codes valid. The comparison starts at the
high-order end of both fields and proceeds to the right. The operation
ends as soon as an inequality is detected or the end of the longer
operand is reached. If the operands are not of the same 1length, the
shorter operand is extended with the padding character for purposes of
comparison.

If both operands are of zero length, the operands are considered
equal.

The execution of the instruction 1is interruptible. When an
interruption occurs after a unit of operation other than the last one,
the contents of registers Rl1+l and R2+1 are decremented by the number of
bytes compared, and the contents of registers Rl and R2 are incremented
by the same number, so that the instruction, when re-executed, resumes at
the point of interruption. The high-order bytes of registers R1 and R2
are set to 0:; the contents of the high-order byte of registers R1+1 and
R2+1 remain unchanged. If the operation is interrupted after the shorter
operand has been exhausted, the count field pertaining to the shorter
operand is 0 and its address is updated accordingly.

8-41

The instruction may be refetched from main storage even in the
absence of an interruption during execution.

If the operation ends because of a mismatch, the count and address
fields at completion identify the byte of mismatch. The contents of bit
positions 8-31 of registers R1+l and R2+1 are decremented by the number
of bytes that matched, unless the mismatch occurred with the padding
character, in which case the count field for the shorter operand is set
to 0. The contents of bit positions 8-31 of registers R1 and R2 are
incremented by the amounts by which the corresponding count fields were
reduced. If the count fields of both operands are made 0 at completion
and the addresses are incremented by the corresponding count values, the
contents of bit positions 0-7 of registers Rl and R2 are set to 0, even
in the case when one or both of the original count values are 0. The
contents of bit positions 0-7 of registers R1+1 and R2+1 remain unchanged.

When part of an operand is designated in an inaccessible location but
the operation can be completed by using the available operand parts, it
is unpredictable whether an access exception for the inaccessible part is
recognized.

When the count field for an operand has the value 0, no access
exceptions are recognized for that operand.

Resulting Condition Code:

Operands are equal, or both fields have zero length
First operand is low
First operand is high

whH+=O

Program Exceptions

Access (fetch, operands 1 and 2)
Specification

Programming Notes

When the contents of the Rl and R2 fields are the same, the condition
code 1is set to 0, but protection and addressing exceptions do not
necessarily occur as called for by the operand designation.

Special precautions should be taken when COMPARE LOGICAL LONG is made
the subject of EXECUTE. See the programming notes under EXECUTE.

See also the programming notes under MOVE LONG.

8-42

COMPARE LOGICAL WITH PAD (CLPC)

CcLPC D1(L1,B1),D2(L2,B2),I3 (SSI)

| |l o T = I'n ITB I7m T B 17/ |
| s | 1 1 31 2 | 11 1l 2 | 2

| I I | | l7 7 | | 7/ |
0 8 16 24 32 36 48 52 63

The first operand is compared with the second operand, and the result
is indicated in the condition code. Comparison is binary, and all codes
are valid. All bits are treated alike as part of an unsigned binary
gquantity. The operation proceeds left to right and ends as soon as an
inequality is found. Ll and L2 are the operand lengths, minus 1. If
operand lengths L1 and L2 are unequal, the shorter operand is extended on
the right for purposes of comparison by replication of the character
specified in the I3 field of the instruction.

The bytes compared are not modified.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

W N -~O

Program Exceptions

Access (fetch, operands 1 and 2)

8-43

COMPRESS STRING (COMP)

COMP DI1(R1,Bl),D2(R2,B2) (SS)
] I R
| F6 I 1

R
2

B
1

/ /7 D

| [[|
I | | I
I I A |
0 8 1 1 20 3

2 6

The second operand is placed in the first operand location in a
compressed format.

The lengths of operands 1 and 2 are taken from registers Rl and R2,
respectively. If the value in either register is 0 or greater than 2048,
the instruction terminates immediately with condition code 2, and operand
1 is not changed.

The resulting string in the first operand location contains one or
more substrings, each consisting of a length byte followed by one or more
data bytes. The length byte format is as follows:

Bit 0 = 0 Uncompressed substring follows
= 1 Compressed substring follows

Bits 1-7 Length of original substring minus 1
A compressed substring is always two bytes in length, and consists of
the length byte followed by a byte to be replicated when recreating the
original string. All bytes repeated three or more times are compressed:

pairs of identical bytes are not compressed.

Resulting Condition Code

0 String successfully compressed; length of compressed string
placed in register RI.

1 Compressed string too long for operand 1; register Rl unchanged;
data in operand 1 unreliable.

2 Length in Rl or R2 is 0 or greater than 2048; instruction
suppressed; register Rl unchanged.

3 —_—

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Note

Pairs are not compressed. Thus hexadecimal 'AABBCCCCDD' becomes
'04AABBCCCCDD' rather than 'O1AABB81CCQODD'.

8-44

CONTROL I/0 (CIO)®

CI0O Rl (RR)
| [R 1r777171
| oc I 1 77722171
i | 17771777)
0 8 12 15

CONTROL I/0 causes the addressed device or I/0 processor to perform
device-dependent or processor-dependent actions. Not all devices and I/0
processors accept CIO as a valid request. When issued for a device for
which it is not supported, CIO returns a condition code 0, and program
execution continues.

Bits 16 to 31 of Rl identify the device. Bits 0 to 15 are ignored.
Formats of device addresses for VS systems are described in Section 9.7.

Before the instruction is issued, the command table address (CTA)
must be stored in the appropriate entry of the I/0 status table, and the
I/0 command word (IOCW) must be stored in the appropriate entry of the
I/0 command table (IOCT) addressed by the CTA. These structures are
described in Chapter 9.

During instruction execution, the I/0 operation defined by the
prestored IOCW is presented to the BP, BA, or IOC addressed by the PDA.
These processors may accept or reject the command, as explained in
Section 9.13. Acceptance of the command is indicated by a zero condition
code; rejection, by a non-zero condition code.

It is possible that having been accepted by the addressed BP, BA, or
IOC, the I/0O command is later rejected because of a condition at the
addressed device, or because the addressed device is nonexistent. This
rejection is reported in the Status Qualifier Byte (SQB), an extension of
the IOSW. The SQB format is described in Section 9.6; types of rejection
reported in the SQB are described in Section 9.14.

When an CIO instruction is completed with a condition code of 0, the
I/0 command is usually carried out; exceptions are noted in the preceding
paragraph. A pending I/0 interruption is established on completion of
the operation. Until the completion interrupt has been received, the
IOCW must not be changed. The IOCW is not changed by the I/0 processors.

8-45

Resulting Condition Code

3

VS15, VS65

Successful
Not used
Not used

BP busy

Program Exceptions

VS100
Successful
Not used
IOP busy

IPC-IN busy

Privileged operation

Programming Notes

vS300
Successful
Not used
Not used

IOC busy or nonexistent

Telecommunications (TC) IOPs use the SIO instruction rather than CIO
for memory diagnostic operations.

When issued for a device for which it is not supported, CIO returns
condition code 0, and program execution continues.

8-46

CONVERT DECIMAL (FLOATING-POINT) TO PACKED DECIMAL (CVP)

Cvp R1,D2(X2,B2) (RX)

[[R 1
| 7F I 1 |
| | I

0 8 1

ot e —]

The decimal floating-point number in the floating-point register
designated by Rl is converted to packed decimal format, and the result is
stored in the location specified by the second operand. If the second
operand address is not word aligned, a specification exception will occur.

Absolute values greater than 9 99 99 99 99 99 99 99 result in a
decimal overflow, and cause a program interruption if the decimal
overflow mask bit is 1. In the event of an overflow, the low-order 15
digits plus the sign digit are stored in the second operand.

Resulting Condition Code

Result 1s 0

Result is less than 0
Result is greater than 0
Overflow

wNH+HO

Program Exceptions

Specification
Data

Decimal overflow
Access

8-47

CONVERT PACKED DECIMAL TO DECIMAL (FLOATING-POINT) (CVQ)

CvQ R1,D2(X2,B2) (RX)

[I
| 7E I 1 |
L I I
0 1

Ay e —

The 8-byte packed decimal value in the second operand is converted to
a normalized decimal floating-point number and ©placed in the
floating-point register designated by Rl.

The second operand address must be word aligned, or else a
specification exception occurs.

Exponent overflow and exponent underflow cannot occur.
No significance exception will be taken for a zero fraction.

Resulting Condition Code

Result is O
Result is less than 0
Result is greater than O

wiv=Oo

Program Exceptions

Specification
Data
Access

8-48

CONVERT TO BINARY (CVB)

CVB R1,D2(X2,B2) (RX)

4F (. |

lr I R
|
0

ot b o

The radix of the second operand is changed from decimal to binary.
The number is treated as a right-aligned signed integer both before and
after conversion. The second operand has the packed decimal data format
and is checked for valid digit codes. Improper codes cause a program
interruption with interruption code 07 (data exception). The decimal
operand occupies eight bytes in memory and must be fullword aligned. If
the decimal operand is not properly aligned, the instruction will be
suppressed and will cause a specification exception. The low-order four
bits of the field represent the sign. The remaining 60 bits contain 15
binary-coded-decimal digits in true notation. The result of the
conversion is placed in the general register specified by RL. The
maximum number that can be converted and still be contained in a 32-bit
register is 2,147,483,647; the minimum number is -2,147,483,648. For any
decimal number outside this range, the operation is completed by placing
the 32 1low-order binary bits in the register; a fixed-point divide
exception exists, and a program interruption follows. In the case of a
negative second operand, the low-order part is in 2's-complement notation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Data

Fixed-point divide
Specification

8-49

CONVERT TO DECIMAL (CVD)

CvD R1,D2(X2,B2) (RX)

[[R |
| 4E I 1|
| I I

0 8 1

= ——— —

The radix of the first operand is changed from binary to decimal, and
the result is stored in the second operand location. The number is
treated as a right-aligned signed integer both before and after
conversion.

The result is placed in the memory location designated by the second
operand and has the packed decimal format. The second operand must
occupy eight bytes and must be fullword aligned. If the second operand
is not properly aligned, the instruction will be suppressed and will
cause a specification exception. A positive sign is encoded as 111l1; a
negative sign is encoded as 1101. The remaining 60 bits contain 15
binary coded decimal digits in true notation.

Since 15 decimal digits are available for the decimal equivalent of
31 bits, an overflow cannot occur.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

8-50

CONVERT FLOATING-POINT TO INTEGER (CDI)

ChI R1, R2 (RR)

[[' R |

| 2F | 1 |

| | | |
0 8 1

The integer portion of the floating-point number in the
floating-point register designated by the second operand is converted to
a binary integer in 2's-complement form, and placed in the general
register designated by the first operand. Any binary fraction digits are
discarded (right-truncated) in the fixed-point integer result. Values
greater than (2*%*31)-1 or less than -(2**31) result in overflow, and
cause a program interruption when the fixed-point overflow mask bit is
1. In the event of overflow, the low-order 32 bits of the correct result
are placed in the result register.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

wiN O

Program Exceptions

Fixed-point overflow
Specification

Programming Note

To save the fraction before conversion, multiply the floating-point
number by that power of 10 corresponding to the degree of precision
desired.

8-51

CONVERT INTEGER TO FLOATING-POINT (CID)

CID R1l, R2 (RR)

| IRFR1l
|

| 2E | 1 2
| |

I
I
0 8 12 15

The binary integer in the general register designated by the second
operand is converted to a normalized floating-point number and placed in
the floating-point register designated by the first operand. Exponent
overflow and exponent underflow cannot occur. Binary 0 is converted to
true floating-point 0.

Resulting Condition Code

Result is 0
Result is ‘less than 0
Result is greater than 0

wNn-=O

Program Exceptions

Specification

Programming Note

A significance interrupt will never occur.

8-52

DECREMENT AND INSPECT SEMAPHORE (DSEM)

DSEM R1,D2(X3,B3) (RX)

[IT'R T x T B T D]
| 51 11 3 | 3 | 2 |
| | | I | |
0 8 12 16 20 31

The byte addressed by contents of register R1 is treated as a
2's—complement binary number, and 1 is subtracted from it. If the result
is 0 or greater, the next instruction is taken. If the result is less
than 0, a binary 1 is added to the high-order byte of the word addressed
by the combined second and third operands (D2(X3,B3)), without regard for
possible overflow. An enqueuing operation occurs exactly as if the
instruction were an ENQ instruction with the same R1l, B3, X3, and D2
fields.

If a result of -129 is developed by the subtraction, a fixed-point
overflow is indicated. When the fixed-point overflow flag is 1, the
exception will be taken.

If there is a fixed-point overflow, the count is updated and the rest
of the effects of the instruction are suppressed.

_ Data fields referenced by this instruction must be aligned as is
required for the ENQ instruction. The queue head and queued blocks must
not overlap in memory.

Resulting Condition Code

Result of subtraction is 0

Result of subtraction is less than 0
Result of subtraction is greater than 0
Overflow

[PV 3 S N]

Program Exceptions

Specification
Fixed-point overflow

Access (fetch and store, operand 1; fetch and store, combined
operands 2 and 3 as for ENQ instruction)

8-53

DEQUEUE (DEQ)

DEQ R1,D2(B3) (RS)

] ' R Tzz77772/T B 1 D |
| A0 |1 dzz77¢771 3 | 2 |
| I 17777771 | |
0 8 12 16 20 31

The first operand addresses a doubleword First-In First-Out (FIFO)
queue which consists of a head word and a tail word. When the queue is
empty, both the head and the tail words are null (the last 24 bits of
each of these words are binary 0s). The dequeuing operation checks for
an empty queue first, and if the queue is empty, the third operand is
made null and a condition code of 0 is set. If the queue 1is not empty,
the address of the storage block indicated by the head word is placed in
the third operand and the chain word at displacement (D2) in the storage
block being dequeued is placed in the head word and zeroed in the storage
block. If the new head word is null, the queue is empty, and the tail
word is also made null. A condition code of 1 is set to indicate that a
storage block has been dequeued. The DEQ instruction does not modify or
test the first byte of the head or tail pointers or of the chain word.

An addressing exception is recognized and the operation is terminated
if the first operand (queue) address is invalid. Both the queue
addresses and the chain word location in the dequeued storage block are
checked for protection exceptions: the instruction is suppressed if a
violation is recognized. A specification exception is recognized and the
operation is terminated if one but not both of the head/tail words is
null, or if both head/tail words point to the same block but the chain
word in the block is not null.

A sgpecification exception is recognized if the head/tail area is not
doubleword aligned or if any chain word referenced is not fullword
aligned. The queue head and queued blocks must not overlap in memory.

Resulting Condition Code

No storage blocks queued
Storage block dequeued and queue updated

W= O

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

8-54

DESTACK (DESK)

DESK R1,D2(B3) (RS)

| I R lr7r7771 B | D |
[Al |1 lzzr7071 3 | 2 [
L | Yy | N
0 8 12 16 20 31

The first operand addresses a LIFO stack pointer to the most recently
entered storage block in the stack. When the stack is empty, the stack
pointer word is null (the last 24 bits of this word are binary 0s). The
third operand defines a register which is to receive the pointer to the
destacked storage block, and the second operand defines the displacement
of the chain word in the storage blocks in the stack.

The unstacking operation checks for a null stack first, and if the
stack is empty, the third operand is made 0 and a condition code of 0 is
set. If the stack is not empty, the address of the storage block
indicated by the stack pointer word is placed in the third operand, the
high-order byte of the third operand is =zeroed, the value found in the
low-order three bytes of the chain word of the destacked storage block is
placed in the low-order three bytes of the stack pointer word, and the
chain word is made null. The condition code is set to 1 to indicate that
a storage block has been destacked. The DESK instruction does not modify
or test the first byte of the stack pointer or chain word.

If the first operand (stack) address is invalid, an addressing
exception is recognized, and the operation is terminated. The stack
address and the chain word address in the destacked storage block are
checked for protection exceptions; the instruction is suppressed if a
violation is recognized.

If the stack address is not in a fullword-aligned location, or if any
chain word that the instruction references is not fullword aligned, a
specification exception is recognized.

Resulting Condition Code

No storage blocks stacked
Storage block destacked and stack updated

W NHO

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

8-55

DIVIDE (DR, D)

DR R1,R2 (RR)
[T rR T rR 1
| 1D I 1 1 2 |
I I | |
0 8 12 15
D R1,D2(X2,B2) (RX)
[' R T x T B 1 D I
| 5D 121 2 1 2 | 2 I
| P | | J
0 8 12 16 20 31

The dividend (first operand) is divided by the divisor (second
operand) and replaced by the quotient and remainder.

The dividend is a 64-bit signed integer and occupies the pair of
registers beginning with the register specified by the R1 field of the
instruction. A 32-bit signed remainder and a 32-bit signed quotient
replace the dividend in register R1 and the register following R1,
respectively. The divisor is a 32-bit signed integer.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when Rl is odd. Operand 2 of the D instruction requires
fullword alignment.

The sign of the gquotient is determined by the rules of algebra. The
remainder has the same sign as the dividend, except that a zero quotient
or a zero remainder is always positive. All operands and results are
treated as signed integers. When the relative magnitudes of dividend and
divisor are such that the quotient cannot be expressed as a 32-bit signed
integer, a fixed-point divide exception 1is recognized (a program
interruption occurs, no division takes place, and the dividend remains
unchanged in the general registers).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of D only)
Fixed-point divide
Specification

8-56

DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE)

DDR R1l,R2 (RR, Long)

[1T R I R |

| 2D lol 121 2 |

l | I |

0 8,9 12 15

DER R1,R2 (RR, Short)

I ITTrR T rR |

| 2D izl 11 2 |

I | | | |

0 8,9 12 15

DD R1,D2(X2,B2) (RX, Long)

| TITR T x T B 1 D I
| 6D lol 21 2 1 2 | 2 |
| | | I | | |
0 8,9 12 16 20 31
DE R1,D2(X2,B2) (RX, Short)

| IT'TR T x T B 1 D |
I 6D flal 21 21 2 | 2 I
| | | I | | B
0 8,9 12 16 20 31

The dividend (the first operand) is divided by the divisor (the
second operand) and replaced by the quotient. No remainder is
preserved. Operand 2 of the DD and DE instructions must be fullword
aligned.

A floating-point division consists of a characteristic subtraction
and a fraction division. The difference between the dividend and divisor
characteristics plus 64 is used as an intermediate quotient
characteristic. The sign of the quotient is determined by the rules of
algebra.

The quotient fraction is normalized by prenormalizing the operands.
Postnormalizing the intermediate quotient 1is never necessary, but a
right-shift may be called for. The intermediate—quotient characteristic
is adjusted for the shifts. All dividend fraction digits participate in
forming the quotient, even if the normalized dividend fraction is larger
than the normalized divisor fraction. The quotient fraction is truncated
to the desired number of digits.

8-57

A program interruption for exponent overflow occurs when the
final-quotient characteristic exceeds 127. The operation is completed,
the fraction is correct and normalized, the sign is correct, and the
characteristic is smaller by 128 than the correct characteristic.

If the final quotient characteristic is less than 0 and the exponent
underflow mask bit in the PCW is 1, a program interruption for exponent
underflow occurs. The fraction is correct and normalized, the sign is
correct, and the characteristic 1is larger by 128 than the correct
characteristic. If the corresponding mask bit is not 1, the result is
made a true 0. Underflow is not signaled for the intermediate quotient
or for the operand characteristics during prenormalization.

When division by a divisor with 2zero fraction is attempted, the
operation is suppressed. The dividend remains unchanged, and a program
interruption for floating-point divide occurs. When the dividend
fraction is 0, the quotient fraction will be 0. The quotient sign and
characteristic are made 0, yielding a true zero result without taking the
program interruption for exponent underflow and exponent overflow. The
program interruption for significance is never taken for division.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Exponent overflow
Exponent underflow
Floating-point divide
Access

8-58

DIVIDE DECIMAL (DP)

DP D1(L1l,Bl1l),D2(L2,B2) (SS)

[' o T o I 8 1/7m1 B 177D 1
| FD 11 2 1 1 | 1l 2 | 2 1
| | | I 77 | 7 7 |
0 8 12 16 20 32 36 47

The dividend (the first operand) is divided by the divisor (the
second operand) and replaced by the quotient and remainder.

The quotient field is placed leftmost in the first operand field.
The remainder field is placed rightmost in the first operand field and
has a size equal to the divisor size. Together, the qgquotient and
remainder occupy the entire dividend field; therefore, the address of the
quotient field is the address of the first operand. L1 and L2 are the
field lengths in bytes, minus 1. The size of the quotient field in bytes
is L1 - L2. When the divisor length code (L2) is larger than 7 (15
digits and sign) or is greater than or equal to the dividend length code
(L1), a specification exception is recognized. The operation is
suppressed, and a program interruption occurs.

If division by 0 is attempted, a decimal divide exception is
recognized and the operation is terminated.

The dividend, divisor, quotient, and remainder are all signed
integers, right-aligned in their fields. The sign of the quotient is
determined by the rules of algebra from dividend and divisor signs. The
sign of the remainder has the same value as the dividend sign.

Division 1is algebraic, taking into account the sign and all digits of
both operands. All digits are checked for validity. If necessary, Os
are supplied for either operand on the most significant end. When the
first operand field (L1l) is too short to contain all significant digits
of the quotient, the operation is terminated and the overflow condition
is set.

A quotient larger than the number of digits allowed is recognized as
a decimal divide exception. The operation is terminated.

The divisor and dividend fields may overlap if their least
significant bytes coincide.

8-59

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store operand 1, fetch operand 2)
Data

Decimal divide

Specification

Programming Notes

The maximum dividend size is 31 digits plus sign. Since the smallest
remainder size is 1 digit and sign, the maximum quotient sgize is 29
digits and sign.

The condition for an overflow exception can be determined by a trial
subtraction. The leftmost digit of the divisor field is aligned with the
second-to-leftmost digit of the dividend field. When the divisor, so
aligned, is less than or equal to the dividend, an overflow exception is
indicated.

8-60

DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ)

DOR R1,R2 (RR)

I 'R T R 1

| 3D 1 1 2 |

| I I 1

0 8 12 15

DQ R1,D2(X2,B2) (RX)

| 'R T x T B 1T D |
| 7D 11 2 1 2 | 2 |
| | I I I |
0 8 12 16 20 31

The dividend (the first operand) is divided by the divisor (the
second operand), and the quotient replaces the first operand. Any
remainder is discarded. Fullword alignment is required.

A decimal floating-point division consists of a characteristic
subtraction and a fraction division. The difference between the dividend
and divisor characteristics plus 64 is used as an intermediate quotient
characteristic. The sign of the quotient is determined by the rules of
algebra.

The quotient fraction is normalized by prenormalizing the operands.
Postnormalizing the intermediate quotient is never necessary, but a
right-shift may be called for. The intermediate—quotient characteristic
is adjusted for the shifts. The quotient fraction is truncated to 14
digits.

A program interruption for exponent overflow occurs when the
final-quotient characteristic exceeds 127. The operation is completed,
the fraction is correct and normalized, the sign is correct, and the
characteristic is 128 smaller than the correct characteristic.

If the final quotient characteristic is less than zero and the
exponent underflow mask bit is 1, a program interruption for exponent
underflow occurs. The fraction is correct and normalized, the sign is
correct, and the characteristic is 128 1larger than the correct
characteristic. If the corresponding mask bit is 0, the result is made a
true zero. Underflow cannot occur during prenormalization.

When division by a divisor with zero fraction is attempted, the
operation is suppressed. The dividend remains unchanged, and a program
interruption for floating-point divide occurs. When the dividend
fraction is zero, the quotient result is made a true zero without taking
a program interruption (for exponent underflow or overflow). The program
interruption for significance is never taken for division.

8-61

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Data

Exponent overflow
Exponent underflow
Access (DQ only)
Floating-point divide

8-62

EDIT (ED)

ED DI(L,Bl),D2(B2) (SS)

| | |
I DE | L I
| I |

0 8 1

W) | e o]

The format of the source (the second operand) is changed from packed
to zoned, and is modified under control of the pattern (the first
operand). The edited result replaces the pattern.

Editing includes sign and punctuation control, and the suppressing
and protecting of 1leading Os. It also facilitates programmed blanking of
all-zero fields. Numeric information in the source may be interspersed
with text from the pattern.

The length field applies to the pattern (the first operand). L is
equal to the pattern length minus 1. The pattern has the zoned format
and may contain any character. The source (the second operand) has the
packed format. The leftmost four bits of a source byte must specify a
decimal digit code (0000-1001); a code of 1010-1111 is recognized as a
data exception and causes a program interruption. The rightmost four
bits may specify either a sign or a decimal digit. Overlapping pattern
and source fields give unpredictable results.

During the editing process, each character of the pattern is affected
in one of three ways:

1. It is left unchanged.
2. It is replaced by a source digit expanded to zoned format.

3. It is replaced by the first character in the pattern, called the
£ill character.

Which of the three actiohs takes place is determined by one or more

of the following: the state of the significance indicator, the type of
the pattern character, and whether the source digit examined is 0.

8-63

Significance Indicator

The significance indicator is a bit that by its state (on or off)
indicates the significance or nonsignificance, respectively, of
subsequent source digits or message characters. Significant source
digits replace their corresponding digit selectors or significance
starters in the result. Significant message characters remain unchanged
in the result.

The significance indicator also indicates the negative (on) or
positive (off) value of the source, and is used as one factor in the
setting of the condition code. The total number of digit selectors,
significance starters, and immediate significance starters in the pattern
must equal the number of source digits to be edited; otherwise, the state
of the significance indicator and the condition code at the end of
instruction execution is unspecified.

The indicator is set to the off state if it is not already so set,
either at the start of the editing operation or when the decimal digit in
the last byte of the source exhausts the digit selectors and significance
starters of the pattern and the low-order part of the same byte does not
contain 1101.

The indicator is set to the on state, if it is not already so set,
when a significance starter or immediate significance starter is
encountered whose source digit is a valid decimal digit, or when a digit
selector is encountered whose source digit is a nonzero decimal digit,
provided in either instance that the low order source byte does not have
a plus code in the four low-order bit positions.

In all other situations, the indicator is not changed. A minus sign
code has no effect on the significance indicator.

Pattern Characters

There are five types of pattern characters: £fill characters, digit
selectors, significance starters, immediate significance starters, and
message characters. Their coding is presented in Table 8-1.

Table 8-1. Pattern Character Coding

Binary Hexadecimal
Pattern Character Code Code
Fill character Any Any
Digit selector 0001 0000 | 10
Significance starter 0001 0001 11
Immediate significance starter 0001 0010 12
Message character Any other Any other

8-64

The £fill character is the first character of the pattern. It may
have any code and may concurrently specify a control function. If this
character 1is a digit selector, significance starter, or immediate
significance starter, the indicated editing action is taken after the
code has been assigned to the fill character.

The digit selector makes source digits appear as in the source field,
unless the significance indicator is off.

The significance starter functions as a digit selector, except that
it turns on the significance indicator after processing its corresponding
source digit.

An immediate significance starter functions as a significance
starter, except that it turns on the significance indicator before
processing its source digit.

Message characters in the pattern are replaced by the fill character,
or they remain unchanged in the result, depending on the state of the
significance indicator. They may thus be used for padding, punctuation,
or text in the significant portion of a field or for the insertion of
sign-dependent symbols.

The Edit Operation

The detection of a digit selector, significance starter, or immediate
significance starter in the pattern causes an examination to be made of
the significance indicator and of a source digit. As a result, either
the expanded source digit or the fill character, as appropriate, is
selected to replace the pattern character. Additionally, encountering a
digit selector, significance starter, or immediate significance starter
may cause the significance indicator to be changed.

Each time a digit selector, significance starter, or immediate
significance starter is encountered in the pattern, a new source digit is
examined for placement in the pattern field. The source digit either is
zoned and replaces the pattern character or is disregarded. When a code
that is not between 0000 and 1001 is detected in the four high-order bit
positions, the operation is terminated with a data exception.

8-65

The source digits are selected one byte at a time, and a source byte
is fetched for inspection only once during an editing operation. Each
source digit is examined once and only once for a zero value. The
leftmost four bits of each byte are examined first, and the rightmost
four bits, when they represent a decimal-digit code, remain available for
the next pattern character that calls for a digit examination. Source
digits are examined until the digit selectors, significance starters, and
immediate significance starters of the pattern are exhausted. If more
than 32 digits must be examined, or if a source digit with codes 1010
through 1111 is examined in response to a digit selector, significance
starter, or immediate significance starter, the operation is terminated
with a data exception.

When the source digit is stored in the result, its code is expanded
from the packed to the zoned format by attaching the zone code 0011.

The field resulting from an editing operation replaces and is equal
in length to the pattern. It is composed of pattern characters, fill
characters, and zoned source digits.

If the pattern character is a message character and the significance
indicator is on, the message character remains unchanged in the result.
If the significance indicator 1is off when a message character is
encountered in the pattern, the fill character replaces the pattern
character in the result.

If a digit selector or significance starter is encountered in the
pattern when the significance indicator is off and the source digit is O,
the source digit is considered nonsignificant, and the £fill character
replaces the pattern character. If an immediate significance starter is
encountered in the pattern with the significance indicator off and the
source digit 0, the source digit is considered significant, is zoned, and
replaces the pattern character in the result. If a digit selector,
significance starter, or immediate significance starter is encountered
either with the significance indicator on or with a nonzero decimal
source digit, the source digit is considered significant, is zoned, and
replaces the pattern character in the result.

Result Conditions. All digits examined are tested for the code 0000.
The sign of the field edited and whether all source digits in the field
contain 0Os are recorded in the condition code at the completion of the
editing operation.

The condition code is made 0 when the field is 0, that is, when all
source digits examined are Os. When the pattern has no digit selectors
or significance starters, the source is not examined, and the condition
code is made 0.

When the editid field is nonzero and the significance indicator is
on, the condition code is made 1 to indicate a result field less than O.

8-66 ,

When the edited field is nonzero and the significance indicator is
off, the condition code is made 2 to indicate a result field is greater
than 0.

Summary. Table 8-2 summarizes the functions of the editing operation.
The leftmost four columns list all the significant combinations of the
four conditions that can be encountered in the execution of an editing
operation. The two rightmost columns list the action taken for each case
-— the type of character placed in the result field and the new setting
of the significance indicator.

The last column (column 6) of the table shows the state of
significance indicator at the end of digit examination when the examined
source digit (column 3) is the high-order digit in its byte. Column 4
refers to the low-order source digit in the same byte as the examined
source digit. To determine the state of the significance indicator at
the end of digit examination when the examined digit is the low-order
digit in its byte, refer to the entry in column 6 on the same row which
shows the value of the examined digit (column 3) and the value "No"
(column 4). ‘

8-67

89-8

Table 8-2. Summary of Editing Operation
Conditions Results
Previous State Low-0Order State of Significance
Pattern of Significance |Source |Source Digit Result Indicator at End of
Character Indicator Digit Is a Plus Sign Character Digit Examination
Digit Off 0 * Fi11 character off
selector 1-9 No Source digit On
1-9 Yes Source digit Off
On 0-9 No Source digit On
0-9 Yes Source digit off
Significance Off 0 No Fi11 character On
starter 0 Yes Fi11 character Off
1-9 No Source digit on
1-9 Yes Source digit off
On 0-9 No Source digit On
0-9 Yes Source digit Off
Immediate off 0-9 No Source digit Oon
significance 0-9 Yes Source digit off
starter On 0-9 No Source digit on
0-9 Yes Source digit off
Message off % *x Fi11 character off
character On X wx Message character On

* No effect on significance indicator.

** Not applicable because source digit not examined.

Resulting Condition Code

Field is O
Field is less than 0 (significance indicator on)
Field is greater than 0 (significance indicator off)

wNH+=O

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

As a rule, the source is shorter than the pattern because for each
source digit a zone and numeric are inserted in the result.

If the fill character is a blank, if no significance starter or
immediate significance starter appears in the pattern, and if the source
is all Os, the editing operation blanks the result field.

The resultant condition code indicates whether or not the field is
all O0s, and, if the code is not 0, reflects the state of the significance
indicator. The significance indicator reflects the sign of the source
field only if the last source digit examined is in a high-order digit
position.

Address translation demands that operands be located in main memory
before instruction execution may begin, so the length of operand 2 must
be determined before execution. This is accomplished by scanning operand
1 for significance starters and digit selectors; the total number divided
by 2 (and rounded up if total number is odd) yields the number of bytes
in operand 2.

8-69

EDIT AND MARK (EDMK)

EDMK D1(L,B1),D2(B2) (SS)

[[' 8 Ts-m1 B 177D 1
[DF | L I 1 | il 2 | 2

| | | | 77 | l7 7 |
0 8 16 20 32 36 47

The format of the source (the second operand) is changed from packed
to zoned and is modified under control of the pattern (the first operand).

The address of the first significant result character is recorded in
General Register 1. The edited result replaces the pattern.

The instruction EDIT AND MARK is identical to EDIT, but it has the
additional function of inserting the address of the result character in
Bits 8-31 of General Register 1 whenever the result character is a zoned
source digit and the significance indicator was off before the
examination. The use of General Register 1 is implied. The contents of
Bits 0-7 of the register are not changed.

Resulting Condition Code

Last field is 0
Last field is less than 0 (significance indicator on)
Last field is greater than 0 (significance indicator off)

WO

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

The instruction EDIT AND MARK facilitates the programming of floating
currency-symbol insertion. The character address inserted in General
Register 1 is 1 more than the address where a floating currency sign
would be inserted. The instruction BRANCH ON COUNT (BCTR), with 0 in
the R2 field, may be used to reduce the inserted address by 1.

The character address is not stored when significance is forced. To
ensure that General Register 1 contains a valid address when significance
is forced, it 1is necessary to place in the register beforehand the
address of the pattern character that immediately follows the
significance starter.

8-70

ENQUEUE (ENQ)

ENQ R1,D2(X3,B3) (RX)

[[
| 52 I
L | |
0 1

A storage block beginning at the location specified by the third
operand (the sum of the contents of registers B3 and X3) is enqueued on
the First-In First-Out (FIFO) queue specified by the first operand. The
queue head addressed by register Rl is composed of two successive words
of storage of which the first word, or head word, is a pointer to the
first storage block in the queue, and the second word, or tail word, is a
pointer to the last storage block in the queue. When the FIFO queue is
empty, both the head and the tail pointers are null (the last 24 bits of
each of these words are binary 0s). The head pointer must be doubleword
aligned.

When a storage block is gqueued, the head and tail pointers are
checked, and if they are null, the third operand address is placed in
both the head and tail queue positions. If the queue pointers are both
not null, then the third operand address is placed in the block pointed
to by the tail pointer at the displacement position specified by the
second operand. The third operand is then placed in the tail queue
position, and in all cases, the chain word in the queued storage block is
made null. Thus, blocks are enqueued so that the word at the chain word
displacement in each block points to the first location of the next
block in the queue, and the last block in the queue has a null chain
word. ENQ does not test or change the first byte of either the head or
tail pointer or the chain words.

An addressing exception is recognized, and the operation terminated,
if either the first-operand (queue) address or the third-operand (storage
block) address is invalid. Both the queue addresses and the chain word
locations in any storage blocks that are modified in the gqueue are
checked for protection boundary violations and for modification trap
exceptions. The instruction is suppressed if a violation occurs. A
specification exception is recognized and the operation is terminated if
one but not both of the head/tail words is null. The head/tail pointer
must be doubleword aligned and the chain words must be fullword aligned
or a specification exception will be recognized. The queue head and
queued blocks must not overlap in memory.

Resulting Condition Code

The condition code remains unchanged.

8-71

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

8-72

ENSTACK (ENSK)

ENSK R1,D2(X3,B3) (RX)

r
| 53 | 1
[

0

A storage block beginning at the location specified by the third
operand (the sum of the contents of registers B3 and X3) is stacked in
the Last-In First-Out (LIFO) stack specified by the first operand. The
stack head addressed by register Rl consists of one aligned word of
storage that is a stack pointer to the last (or most recent) storage
block placed into the stack. When the stack is empty, the stack pointer
is null (the 1last 24 bits of this word are binary 0s). The second
operand is a displacement from the start of the storage block to the
chain word in the storage block.

When a storage block is stacked, the stack pointer word is placed in
the chain word of the storage block being stacked, and the pointer to the
start of the storage block (third operand value) is placed in the stack
pointer word. Storage blocks are intended for removal from a LIFO stack
in the reverse order from the sequence in which they were added to the
stack, since the only pointer kept for a LIFO stack is to the last
stacked storage block. ENSK does not change or test the first byte of
the stack pointer or the chain word.

An addressing exception is recognized and the operation terminated if
either the first operand (stack) address or the third operand (storage
block) address is invalid. Both the stack address and the chain word
location in the storage block are checked for protection violations and
for modification trap exceptions; the instruction is suppressed if a
violation occurs. Both the stack pointer and the chain word must be
fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

8-73

EXCLUSIVE OR (XR, X, XI, XC)

XR RL,R2 I (RR)

! I R | rR |

| 17 [l 1 | 2 |

I l l a

0 8 12 15

X R1,D2(X2,B2) (RX)

['R [T x T B 1 D]
| 57 [11 21 2 | 2 [
| I | | | |
0 8 12 16 20 31
XI D1(Bl),I2 (SI)

[| I B 1 D |
| 97 | I I 1 |
| I | I I
0 8 16 20 31
XC D1(L,Bl),D2(B2) (SS)

[| [8 T/s/7+so1 B 177D 1
I D7 I L I 1 | il 2 | 2 |
[I | | 77 | 7 7/ |
0 8 16 20 32 36 47

The modulo-two sum ("exclusive OR") of the bits of the first and
second operand is placed in the first operand location.

Operands are treated as unstructured logical quantities, and the
connective EXCLUSIVE OR is applied bit by bit. A bit position in the
result is set to 1 if the corresponding bit positions in the two operands
are unlike; otherwise, the result bit is set to 0.

The instruction differs from AND and OR only in the connective
applied. '

Operand 2 of the X instruction.requires fullword alignment. For the
¥XC instruction, L is the length of each operand, minus 1.

Resulting Condition Code

Result is 0
Result not 0

wN=O

8-74

Program Exceptions

Access (fetch, operand 2, X and XC; fetch and store, operand 1, XI
and XC)

Specification

Programming Notes

The EXCLUSIVE OR instruction may be used to invert a bit, an
operation particularly useful in testing and setting programmed binary
bit switches.

Any field EXCLUSIVE ORed with itself becomes all 0s.

8-75

EXECUTE (EX)

EX R1,D2(X2,B2) (RX)

| 44 | 1

Bits 8-15 of the instruction designated by the second-operand address
are ORed with Bits 24-31 of the register specified by R1l, except when
Register 0 1is specified, which indicates that no modification takes
place. The resulting subject instruction is then executed. The subject
instruction may be two, four, six, or eight bytes in length.

The ORing does not change either the contents of the register
specified by Rl or the instruction in memory, and it is effective only
for the interpretation of the instruction to be executed. The execution
and exception handling of the subject instruction are exactly as if the
subject instruction were obtained in normal sequential operation, except
for the instruction address. The instruction address of the current PCW
is increased by the length of EXECUTE. This updated address of EXECUTE
is used as part of the link information when the subject instruction is
BRANCH AND LINK. When the subject instruction is a successful branching
instruction, the wupdated instruction address of the current PCW is
replaced by the branch address specified by the subject instruction.

When the subject instruction is in turn an EXECUTE, an execute
exception is recognized, and the operation is suppressed. The subject
instruction must be halfword aligned: otherwise, a specification
exception is recognized.

Resulting Condition Code

The condition code may be set by the subject instruction.

Program Exceptions

Execute
Access (fetch, operand 2)
Specification

Programming Notes

The ORing of eight bits from the general register with the designated
instruction permits indirect length, index, mask, immediate data, and
arithmetic-register specification. An addressing or specification
exception may be caused by EXECUTE or by the subject instruction.

8-76

When an interruptible instruction is made a target of EXECUTE, the
program usually should not specify any register wupdated by the
interruptible instruction as the R1l, X2, or B2 register of the EXECUTE,
since if the instruction is refetched, the updated values of these
registers will be used in execution of the EXECUTE. Similarly, the
program should not let the destination field of an MVCL instruction
include the location of the EXECUTE.

When a relative branch instruction is the target of EXECUTE, the

branch address is relative to the EXECUTE and not to the target
instruction.

8-77

EXPAND STRING (XPAND)

XPAND D1(R1,B1l),D2(R2,B2) (SS)

] I R

| F7 | 1
|

R
2

B
1

77D 1
| 1 |
f 77 | | 77 |
24 3

I |
I |
I I
0 8 1 1

2 6

The second operand, assumed to be a character string compressed by
the COMP instruction, is placed in the first operand location in expanded
form.

The lengths of operands 1 and 2 are taken from registers R1 and R2,
respectively. If the wvalue in either register is 0 or greater than 2048,
the instruction terminates immediately with condition code 2, and operand
1 is unchanged.

The source string is interpreted as a concatenation of subfields,
each beginning with a length byte in the following form:

Bit 0 = 0 Uncompressed substring follows

Bit 0 =1 Following byte to be replicated as many

times as specified
Bits 1-7 Length of expanded substring minus 1

Resulting Condition Code

0 String successfully expanded; length of expanded string placed in
register Rl

1 Expanded string too long for operand 1; register Rl unchanged;
data in operand 1 valid

2 Length in Rl or R2 equal to 0 or greater than 2048; instruction
suppressed; register Rl unchanged

3 Length byte in operand 2 indicates that a source subfield extends
beyond the source area defined by the R2 length; the instruction
terminates; operand .1 data and register Rl contents are
unreliable.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

8-78

HALT I/0 (HIO)®

HIO Rl (RR)
| |- 222222
| 03 |1 s777771
| | 777777
0 8 12 15

HALT I/O causes the addressed device to terminate the current
operation, if any. HALT I/0 is executed only when the system is in the
supervisor state. I/0 interrupts should be disabled.

Bits 16 to 31 of R1 identify the device address. Bits 0 to 15 are
ignored.

When the HALT I/O instruction is issued to an active I/0 device, the
I/0 operation may be terminated before all data specified in the
operation has been transferred, or before the operation at the device has
reached its normal ending point. A completion interruption becomes
pending when the I/0 operation has been terminated. The associated IOSW
shows normal completion and, after the halt of a data transfer operation,
a nonzero residual byte count.

If the HIO instruction receives an IOP BUSY indication, the HIO was
not accepted. This also indicates that an IOP NOW READY interrupt will
be made pending. (The IOP BUSY condition and IOP NOW READY interrupt are
encountered on the VS100 system only.)

The meaning of the condition codes returned for this instruction is
explained in Section 9.13.

Resulting Condition Code

VS15, VS65 VS100 VS300
0 Successful Successful Successful
1 Not used Not used Not used
2 Not used IOP busy Not used
3 BP busy IPC-IN busy IOC busy or non-existent

Program Exceptions

Privileged operation

8-79

Programming Notes

Not all devices support HALT I/O. When it is issued for a device for
which it is not appropriate, the HIO instruction returns condition code
0, and program execution continues.

8-80

HALVE (FLOATING-POINT) (HDR, HER)

HDR. RI1,R2 (RR, Long) .
[" TTrR T rR 1
| 24 lol 21 2 |
| || | I
0 8,9 12 15
HER R1,R2 (RR, Short)
| IF'TR T R 1
I 24 il 11 2 |
] | | | |
0 ’ 8,9 12 15

The second operand is divided by 2, and the normalized quotient is
placed in the first operand location. The second operand remains
unchanged.

The fraction of the second operand is shifted right one bit position,
placing the contents of the low-order bit position in the high-order bit
position of the guard digit and introducing a 0 into the high-order bit
position of the fraction. The intermediate result is subsequently
normalized, and the normalized quotient is placed in the first operand
location. The guard digit participates in the normalization.

When normalization causes the characteristic to become less than
zero, exponent underflow occurs. If the exponent underflow mask in the
PCW is 0, the sign, characteristic, and fraction are set to 0, thus
making the result a true 0. If the exponent underflow mask is 1, a
program interruption occurs. The result is normalized, its sign and
fraction remain correct, and the characteristic is made 128 larger than
the correct characteristic.

When the fraction of the second operand 1is 0, the sign,
characteristic, and fraction of the result are made 0. No normalization
is attempted, and a significance exception is not recognized.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Exponent underflow

Programming Notes

The HALVE operation is identical to a divide operation with the
number 2 as divisor, or to a multiply operation with 1/2 as a multiplier.

8-81

The result of HALVE is replaced by a true 0 only when the second
operand fraction is 0, or when exponent underflow occurs with the
exponent-underflow mask set to 0. When the fraction of the second
operand is 0 except for the low-order bit position, the low-order 1 is
shifted into the guard digit position and participates in the
postnormalization.

8-82

INCREMENT AND INSPECT SEMAPHORE (ISEM)

ISEM R1,D2(B3) (RS)

I I R Tr777771 B 1 D |
| A2 V' x drzzrrerl 301 2 |
| | {777777] | |
0 8 12 16 20 31

The byte addressed by contents of register Rl is treated as a
2's-complement binary number, and 1 is added to it. If the result is
greater than 0, the next instruction is taken. If the result is less
than or equal to 0, a dequeuing operation occurs exactly as 1if the
instruction were a DEQ instruction with the same Rl, B3, and D2 fields,
and a binary 1 is subtracted from the byte at displacement D2 in the
dequeued block, without regard for possible overflow. If a result of
128 1is developed, a fixed-point overflow is indicated. When the
fixed-point overflow flag is 1, the exception will be taken. If there is
a fixed-point overflow, the count is updated and the other effects of the
instruction are suppressed. Overflows in the chain field will not cause
an overflow indication or a program check.

Data fields referenced by this instruction must be aligned as
required for the DEQ instruction. The queue head and queued blocks must
not overlap in memory.

Resulting Condition Code

Result of addition not greater than 0, no block dequeued
Result of addition not greater than 0, block dequeued
Result of addition greater than 0

Overflow

wN+=O

Program Exceptions

Specification
Fixed-point overflow

Access (fetch and store, operand 1; fetch and store, operands 2 and 3
as for DEQ instruction)

8-83

INSERT CHARACTER (IC)

IC R1,D2(X2,B2) (RX)

| I R]
I 43 I 1 |
I I [

0 8 1

The 8-bit character at the second operand address 1is inserted into
the low-order byte of the register specified as the first operand
location. The remaining bits of the register remain unchanged.

IC is a storage-to—general-register instruction. The byte to be
inserted is not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

8-84

INSERT CHARACTERS UNDER MASK (ICM)

ICM R1,M3,D2(B2) (RS)

[I r |
| BF |1 |
| | |

0 8 1

M
3

B
2

| I
I I
[I |
2 16 20 31
Bytes from contiguous locations beginning at the second operand
address are inserted into the first operand location under control of a

mask.

The contents of the M3 field, Bits 12-15, are used as a mask. The
four bits of the mask, left to right, correspond with the four bytes,
left to right, of the general register designated by the Rl field. The
byte positions corresponding to 1ls in the mask are filled, in the order
of ascending byte numbers, with bytes from the storage operand. Bytes
are fetched from contiguous memory locations beginning at the second
operand address. The length of the second operand is equal to the number
of 1s in the mask. The bytes in the general register corresponding to 0Os
in the mask remain unchanged.

The resulting condition code is based on the mask and on the value of
the bits inserted. When the mask is 0 or when all inserted bits are 0,
the condition code is made 0. When not all inserted bits are 0, the code
is set according to the leftmost bit of the storage operand: if this bit
is 1, the code is made 1 to indicate a negative algebraic value; if this
bit is 0, the code is set to 2, reflecting a positive algebraic value.
When the mask is not 0, exceptions associated with storage operand access
are recognized only for the number of bytes specified by the mask. When
the mask is 0, access exceptions are recognized for one byte.

Resulting Condition Code

0 All inserted bits are 0s, or mask is 0

1 First bit of the inserted field is 1

2 First bit of the inserted field is 0 and not
all inserted bits are Os

3 —

Program Exceptions

Access (fetch, operand 2)

Programming Note

The condition code for INSERT CHARACTERS UNDER MASK is defined such
that when the mask is 1111, the instruction causes the same condition
code to be set as for LOAD AND TEST.

8-85

JUMP TO SUBROUTINE ON CONDITION INDIRECT (JSCI)

JSCI M1,D2(X2,B2) (RX)

I I M
| 61 I 1 |
| | I

0 8 1

The updated instruction address is replaced by a branch address if
the state of the condition code is as specified by Ml:; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The second operand must be fullword aligned. It addresses a word
operand in memory. In the case of a branch, the three low-order bytes of
the word operand are compared with the three low-order bytes of Control
Registers 6 and 7. (These bytes in Control Registers 6 and 7 indicate,
respectively, the start and end of a Linkage Table.)

If the three low-order bytes of the word operand fall outside the
range of addresses in Control Registers 6 and 7, those bytes are used as
the branch address, and the following actions occur: The PCW and the
updated instruction address are pushed onto the current system stack.
Then pushed onto the stack is a byte consisting of four high-order zeros,
followed by the three PCW process level bits, followed by a binary 0,
which indicates a JSCI-type save area. Then the three low-order bytes of
Control Register 1 are pushed onto the stack, followed by the entire
contents of General Registers 14 to 0. After these items have been
pushed onto the stack and the stack pointer (Register 15) has been
updated, the value in Control Register 1 is set to the current value of
the stack pointer, with a high-order byte of binary 0s. Control then
passes to the branch address. (Figure 4~11 in Chapter 4 of this manual
shows the format of data pushed onto the stack by execution of JSCI.)

Alternatively, if the three low-order bytes of the word operand fall
within the range of addresses in Control Registers 6 and 7., those bytes
are used as the address of a Linkage Table entry whose second, third, and
fourth bytes specify the branch address. The process level bits of the
PCW are compared with the execution process level bits of the Linkage
Table Entry, and one of the following actions then occurs:

8-86

1. If the value of the execution level field is greater than that of
the process 1level field, a stack switch takes place: The
contents of General Register 15, Control Register 2, and Control
Register 1 are saved in the Stack Header Block addressed by
Control Register 8. The wvalue of the execution level field is
used to form an offset into the Stack Header Block Table. The
address at this offset is 1loaded into Control Register 8.
General register 15 is loaded with the contents of the first four
bytes of the Stack Header Block addressed by Control Register 8;
Control Register 2 is loaded with the contents of the next four
bytes in the same SHB. The three low order bytes of General
Register 15 and of Control Register 2 now address, respectively,
the top and limit of the active system stack.

Status information 1is pushed onto the stack, as already
described. Then the three low order bytes of the Linkage Table
Entry, if non-zero, are loaded into General Register 14; these
bytes address the static area of the called subroutine. The
process level bits of the PCW are set equal to the execution
process level bits in the Linkage Table entry. Control then
passes to the branch address.

2. If the value of the execution level field is less than or equal
to that of the process level field, no stack switch takes place.
The three 1low order bytes of the Linkage Table Entry, if
non-zero, are loaded into General Register 14; these bytes
address the static area of the called subroutine. Status
information is pushed onto the active system stack, whose lowest
byte location is addressed by General Register 15. Control then
passes to the branch address.

The M1 field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding mask
bit of 1. '

Resulting Condition Code

The condition code remains unchanged.

8-87

Program Exceptions

Stack overflow

Access (fetch, operand 2; store, the bytes pushed onto the stack if
the branch is taken)

Specification

Programming Note

This instruction is a conditional indirect branch. If the branch is
taken, status will be saved on a stack that will allow the RTC
instruction to return control to the location after the JSCI
instruction. Control Register 1 is wused to point to the status
information saved by a previously executed JSCI instruction.

An overview of stack switching appears in Section 3.10. The format

of a Linkage Table entry is described in Section 4.6.2. The format of
Control Registers 6 and 7 is described in Section 4.6.3.

8-88

LOAD (LR, L)

LR R1,R2 (RR)

| 'R T rR |

| 18 I 1 1 2 |

| | [|

0 8 12 15
L R1,D2(X2,B2) (RX)

] 'R T x 1T B | D |
| 58 I 2 1 2 | 2 I
| | | | I |
0 8 12 16 20 31

The second operand is placed in the first operand location, and the
second operand is not changed. For the L instruction, the second operand
must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of L only)
Specification (L only)

8-89

LOAD (FLOATING-POINT) (LDR, LER, LD, LE)

LDR R1,R2 ' (RR, Long)

[I'TrR T R |

| 28 lol 11 2 |

| | | I |

0 8,9 12 15

LER R1,R2 (RR, Short)

| TR T R |

| 28 il 11 2 1

| | | | |

0 8,9 12 15

LD R1,D2(X2,B2) (RX, Long)

| TTR T x T B 1 D]
| 68 flol 21 2 | 2 | 2 I
l L I | |
0 8,9 12 16 20 31
LE R1,D2(X2,B2) (RX, Short)

| TTrR T x T B 1 D]
| 68 il 21 2 1 2 | 2 |
| | I | | |
0 8,9 12 16 20 31

The second operand is placed in the first operand location and is not
changed. Exponent overflow, exponent underflow, or 1lost significance
cannot occur. For the LD instruction, the second operand must be
fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Addressing (LD, LE only)
Specification (LD, LE only)
Access (LD, LE only)

8-90

LOAD ADDRESS (LA)

LA R1,D2(X2,B2) (RX)
| ' R T x 1T B 1 D 1
I 41 Il 11 2 1 2 | 2 |
| | | | | |
0 8 12 16 20 31
LOAD ADDRESS (RELATIVE) (RLA)
RLA R1,L2 (RL)
])] L |
| 71 | 1 | 2 |
L I I |
0 8 12 31

For LA, the address specified by the X2, B2, and D2 fields is
inserted in bit positions 8-31 of the general register specified by the
Rl field. For RLA, the address inserted is the sum of the current
instruction address (bits 8-31 of the PCW) and the L2 field. Bits 0-7 of
the register are set to 0s. The address computation follows the rules
for base-displacement address formation. No memory references for
operands take place, and the address is not inspected for access
exceptions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The same general register may be specified by the R1l, X2, and B2
instruction field, except that General Register 0 can be specified only
by the Rl field. In this manner it is possible to increment the
low-order 24 bits of a general register other than General Register 0 by
the contents of the D2 field of the instruction. The register to be
incremented should be specified by Rl and by either X2 (with B2 set to 0)
or B2 (with X2 set to 0).

8-91

LOAD AND TEST (LTR, LT)

LTR R1,R2 (RR)

| Il R | rR |

| 12 I 1 1 2 |

I I I]

0 8 12 15
LT R1,D2(X2,B2) (RX)

] ' R T x | B 1 D]
| 4p Il 11 2 | 2 | 2 |
| I | | I |
0 8 12 16 20 31

The second operand is placed in the first operand register, and its
value determines the condition code. When the LT instruction is used, a
fullword field from memory as specified by the second operand is loaded
into the first operand register. The second operand is not changed.

The condition code of this instruction indicates whether the result
is zero, or, if at least one bit of the result is on, whether the
leftmost bit is on (called less than 0) or off (called greater than 0).

Operand 2 of the LT instruction requires fullword alignment.

Resulting Condition Code

Result is 0
Result is less than 0
Result is more than 0

wN-~O

Program Exceptions

Access (fetch, operand 2, LT)
Specification (LT only)

Programming Note

When the same register is specified as first and second operand
location, the operation is equivalent to a test without data movement.

8-92

LOAD AND TEST (FLOATING-POINT) (LTDR, LTER)

LTDR R1,R2 (RR, Long)
[[TrR T rR 1

| 22 lol 121 2 |

| || I I

0 8,9 12 15

LTER R1,R2 (RR, Short)
I I TrR I r 1

| 22 fal 21 2 |

l | | |

0 8,9 12 15

The second operand is placed in the first operand location, and its
sign and magnitude determine the condition code. The second operand is
not changed.

Resulting Condition Code

Result fraction is 0
Result is less than O
Result is greater than 0

w NN H=O

Program Exceptions

Specification

Programming Note

When the same register is specified as first and second operand
location, the operation is equivalent to a test without data movement.

8-93

LOAD CHARACTER (LC)

LC R1,D2(X2,B2) (RX)

[I R 1
I 62 I 1 |
l I |

0 8 1

The second operand is placed in the first operand 1location. The
second operand is one byte in length and is placed in the low—order byte
of the first operand register. The three high-order bytes of the first
operand register are set to binary Os.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

8-94

LOAD COMPLEMENT (LCR)

The 2's complement of the second operand is placed in the first
operand location.

The condition code of this instruction indicates whether the result
is zero, or, if at least one bit of the result is on, whether the
leftmost bit is on (called less than 0) or off (called greater than 0).

An overflow condition occurs when the maximum negative number is
complemented. The number remains unchanged. The overflow causes a
program interruption when the fixed-point overflow mask bit is 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

wWwNHO

Program Exceptions

Fixed-point overflow

Programming Note

Zero and the maximum negative number do not have a 2's complement.

8-95

LOAD COMPLEMENT (FLOATING-POINT) (LCDR, LCER)

LCDR R1,R2 (RR, Long)
| TR T R |
| 23 lol 11 21
| | | I 1
0 89 12 15
LCER R1,R2 (RR, Short)
| T TR T R |
| 23 lal 121 21
| |1 | |
0 89 12 15

The second operand is placed in the first operand location with the
sign changed to the opposite value.

The sign bit of the second operand is inverted, while characteristic
and fraction are not changed.

Resulting Condition Code

Result fraction is 0
Result is less than 0
Result is greater than 0

w N O

Program Exceptions

Specification

8-96

LOAD CONTROL (LCTL)P

LCTL R1,R3,D2(B2) (RS)

[|RTRjB
|
1

| B7 | 1 3

l I
0 8

o b s et

I
I
2 16

The set of control registers starting with the control register
designated by the Rl field and ending with the control register
designated by the R3 field is loaded from the locations designated by the
second operand address.

The memory area from which the contents of the control registers are
obtained starts at the location designated by the second operand address
and continues through as many memory words as the number of control
registers specified. The control registers are loaded in ascending order
of their addresses, starting with the control register designated by the
Rl field and continuing up to and including the control register
designated by the R3 field. The second operand remains unchanged.

An attempt is made to fetch the operand from main memory for each of
the designated control registers. Whenever the storage reference causes
an access exception, the exception is indicated. The second operand must
be designated on a word boundary:; otherwise, a specification exception is
recognized, and the operation is suppressed. A specification exception
will also be recognized if Rl is numbered higher than R3 (wraparound).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (fetch, operand 2)
Specification

8-97

LOAD HALFWORD (LH)

LH R1l,D2(X2,B2) (RX)

I [rR 1
I 48 [1
I [|

0 8 1

= b

The second operand is placed in the first operand location, is two
bytes in length, and is considered to be a 16-bit signed integer. It
requires halfword alignment.

The second operand is expanded to 32 bits by propagating the sign-bit
value to the 16 high-order bit positions. Expansion occurs after the
operand is obtained from memory and before insertion in the register.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)

8-98

LOAD MULTIPLE (LM)

LM R1,R3,D2(B2). (RS)

98 1

I I
I I
[I I

0 1

Uiy BRI —

The set of general registers starting with the register specified by
Rl and ending with the register specified by R3 is loaded from the
locations designated by the second operand address.

The memory area from which the contents of the general registers are
obtained starts at the location designated by the second operand address
and continues through as many words as needed. The general registers are
loaded in ascending order of their addresses, starting with the register
specified by Rl and continuing up to and including the register specified
by R3, with Register 0 following Register 15.

The second operand, which must be fullword aligned, remains unchanged.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Specification

8-99

LOAD NEGATIVE (LNR)

LNR R1,R2 (RR)

| I rR 1
| 11 |1 |
I | |

0 8 1

R
2

|

I
|
5

2 1

The 2's complement of the absolute value of the second operand is
placed in the first operand location. The operation complements positive
numbers; negative numbers remain unchanged. The number 0 = remains
unchanged with positive sign. ’

Resulting Condition Code

Result 1s 0
Result is less than 0

wiN = o

Program Exceptions

None

8-100

LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER)

LNDR R1,R2 (RR, Long)
| TR | rR |
| 21 lol 21 2 |
I | 1 | |
0 8,9 12 15
LNER R1,R2 {RR, Short)
[TR T rR 1
| 21 1l 21 2 |
I | | | |
0 8,9 12 15

The second operand is placed in the first operand location with the
sign made minus.

The sign bit of the second operand is made 1, even if the fraction is
0. Characteristic and fraction are not changed.

Resulting Condition Code

Result fraction is 0
Result is less than 0

WN O

Program Exceptions

Specification

8-101

LOAD OR TRAP (LOT)

LOT R1,D2(X2,B2) (RX)

[' r 1
I A8 [1
L | I
0 8 1

et b e comed

The fullword field from memory as specified by the second operand is
loaded into the first operand register.

The high-order bit of the word loaded is inspected. 1If this bit is
1, then a 'LOT' program interrupt is taken.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)
'LOT' exception

8-102

LOAD PCW (LPCW)°®

LPCW D1(Bl) (S)

] [7777777777777/1 B 1] D |
| 82 V7777270777077 1 | 1 I
L \7771711117117] I AJ
0 8 16 20 31

The two words at the location designated by the operand address
replace the PCW. On the VS300, the operand must be halfword-aligned; on
other VS systems, the operand must be word-aligned. Improper alignment
of the operand causes the instruction to be suppressed with a
specification exception.

The doubleword that is loaded becomes the PCW for the next sequence
of instructions. This loads a new instruction address.

The interruption code of the new PCW is not retained as the PCW is
loaded. When the PCW is subsequently stored because of an
interruption, these bit positions contain a new code.

Resulting Condition Code

The condition code is set according to the condition code bits of the
new PCW.

Program Exceptions

Specification
Privileged operation
Access (fetch, operand 1)

8-103

LOAD PHYSICAL ADDRESS (LPA)

LPA R1,D2(X2,B2) (RX)

[' rR 1
| Bl I 1 |
| | I

0 8 1

U WO

The physical address corresponding to the second operand address is
inserted 1in the general register designated by the R1 field. The
remaining high-order bits of the register are set to 0.

The 1logical address specified by the X2, B2, and D2 fields is
translated using the contents of the main memory page tables, which are
located through the segment control registers and region tables. These
translation structures are described in Section 4.3. The resultant
24-bit physical address is inserted in bit positions 8-31 of the general
register designated by the Rl field, and Bits 0-7 are set to 0. The
translated address is not inspected for protection or validity.

The condition code is set to 0 when translation can be completed; if
the translation is not successfully completed, the condition code is set
to a value of 1-3 and the general register designated by Rl is set to
zero. The Page Fault Reporting Area (X'72') and Region Node Address area
(X'74') in low memory are never modified by execution of LPA.

Resulting Condition Code

O Successful translation

1 SCR specification or invalid virtual address
Region Table address = 0
Region Table address not word-aligned
Page Table address (in Region Node) = 0
Page Table address not word-aligned
Virtual address not in any region
Virtual address not in LOHI range of any Region Node

2 Page fault condition (fault bit of Page Table entry = 1)
3 Page table fault condition
Virtual address of Page Table faulted or invalid

SCR recursion error case

Program Exceptions

None

8-104

LOAD POSITIVE (LPR)

LPR Rl,R2 (RR)

| 10

| IR
|
| |

0 8

The absolute value of the second operand is placed in the first
operand location. The operation includes complementing of negative
numbers; positive numbers remain unchanged.

An overflow condition occurs when the maximum negative number is
complemented; the number remains unchanged. The overflow causes a
program interruption when the fixed-point overflow mask bit is 1.

Resulting Condition Code

Result is 0

Result is greater than O
Overflow

wNn-=O

Program Exceptions

Fixed—point overflow
Specification

8-105

LOAD POSITIVE (FLOATING-POINT) (LPDR, LPER)

LPDR R1,R2 (RR, Long)
[I'TrR T rR 1
I 20 lol 11 2 |
| | | [N
0 8,9 12 15
LPER R1,R2 (RR, Short)
[[TrR I rR |
I 20 il 11 2 |
l [| | |
0 8,9 12 15

The second operand is placed in the first operand location with the
sign made positive.

The sign bit of the second operand is made O, while the
characteristic and fraction are not changed.

Resulting Condition Code

Result fraction is 0

Result is greater than 0

wN-~O

Program Exceptions

Specification

8-106

LOAD ROUNDED (FLOATING—POINT) (LRER)

LRER R1,R2 (RR, Short)

|
25 1l 1
||

]

|

L
0

The second operand is rounded to short format, and the result is
placed in the first operand location.

Rounding consists of adding 1 to bit position 32 of the long second
operand, and propagating the carry, if any, to the left. The sign of the
fraction is ignored, and addition is performed as if the fraction were
positive.

If rounding causes a carry out of the high-order digit position of
the fraction, the fraction is shifted right by one digit position, and
the characteristic is increased by 1.

The sign of the result is the same as the sign of the second
operand. No normalization takes place.

An exponent overflow exception is recognized when shifting the
fraction right causes the characteristic to exceed 127. The operation is
completed by loading a number whose characteristic is 128 1less than the
correct value, and a program interruption for exponent overflow occurs.
The result is normalized, and the sign and fraction remain correct.

Exponent underflow and significance exceptions cannot occur.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptiong

Exponent overflow
Specification

8-107

LOAD SEGMENT CONTROL REGISTER (LSCTL)®

LSCTL R1,R3,D2(B2) (RS)

| [R 1
| a3 1 |
L I |

0 8 1

B

3 2

puivy ES——

| I
I I
I I
16 20 3

The set of segment control registers (SCRs) starting with the
register specified by Rl and ending with the register specified by R3 is
loaded from locations designated by the second operand address.
Allowable SCR values are 0,2,4, and 6.

The memory area from which the contents of the SCRs are obtained
starts at the location designated by the second operand address and
continues through as many words as needed. Each SCR requires eight bytes
of data from memory.

The SCRs are loaded in ascending order of their addresses, starting
with the register specified by Rl and continuing up to and including the
register specified by R3. R3 must be greater than or equal to Rl. The
contents of the memory area remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Privileged operation
Specification

8-108

LOAD SHORT TO LONG (FLOATING-POINT) (LDER)

LDER R1,R2 (RR, Long)

I |
| 25 lo
|

[

[2 |
I |
12 15

0 8.9

The second operand is extended with low-order Os to long format, and
the result is placed in the first operand location.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-109

MODIFY COUNTER (MCOUNT)

MCOUNT R1,D2(X2,B2),M3,M4 (Special)
[I' R 1T x 1T 8 1T7s7ml 7m 1T 7m 1
| E8 I 10 2 | 2 | 21 3 | 4 |
| | I I 77 L 77 0 707 |
8 12 16 20 32 48 63

R1 is a general register into which the main memory word addressed by
the second operand is copied after being modified by addition or
subtraction. The second operand addresses a word in main memory, which
must be fullword-aligned. M3 is a 16 bit function mask that determines
the operation performed by MCOUNT. M4 is a 16-bit unsigned integer used
as an increment for the add immediate and subtract immediate functions.

The following functions are available using the M3 mask values given
below:

X'8000' Add 1 to main memory word; result to R1.
X'4000' Subtract 1 from main memory word; result to Rl.

X'2000' Exchange Rl with main memory word; unmodified main memory
word to RI1.

X'1000' Add M4 to main memory word; result to Rl
X'0800' Subtract M4 from main memory word; result to R1

Invalid values for the function mask result in a specification
exception. In all cases except the exchange function (X'2000'), the
condition code reports on the new value of the main memory word; and the
general register named by Rl is loaded with this new value if the named
register 1s not General Register 0. In the case of the exchange
function, the condition code reports on the updated value of the general
register named by Rl; and that register is always updated, even if it is
Register 0.

Resulting Condition Code

0 Result =0
1 Result is negative
2 Result is positive

Program Exceptions

Specification
Overflow

8-110

Programming Note

An overflow can occur when adding or subtracting, and will cause a
program check, whatever the setting of the binary arithmetic overflow
mask. On overflow, the main memory word is not modified, and the
condition code is undefined. Given a 32-bit counter (32 bits in 2's
complement =+/- 10%*9), normal usage of this instruction should never
cause overflow.

8-111

MOVE (MVI, MVC)

MVI DI1(Bl),I2 (SI)

|] I [B | D [
I 92 | 2 I 1 | 1 I
| | | I |
0 8 16 20 31

MVC D1(L,B1),D2(B2) (SS)

| 1 '8 T/7/m1 B8 177D 1
| D2 | L I 1 | il 2 | 2 |
| | | |77 | l7 7 |
0 8 16 20 32 36 47

The second operand is placed in the first operand location.

The SS format is used for a storage-to-storage move. In the MVC
instruction, the length field in the instruction format is the operand
length minus 1. The SI format introduces one 8-bit byte from the
instruction stream.

In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The bytes to be moved are not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of MVC; store operand 1, MVI and MVC)

Programming Note

It is possible to propagate one character through an entire field by
having the first operand field start one character to the right of the
second operand field.

8-112

MOVE CHARACTERS LONG (MVCL)

MVCL R1,R2 (RR)
| I r
|
|

I

I 2 |
l |
12 15

| OE

L

0 8

1

The second operand is placed in the first operand location, provided
overlapping of operand locations does not affect the final contents of
the first operand location.

The Rl and R2 fields each designate an even-odd pair of general
registers and must each specify an even-numbered register; otherwise, a
specification exception is recognized.

The leftmost bytes of the first operand and second operand locations
are designated by the contents of bit positions 8-31 of the general
registers specified by the Rl and R2 fields, respectively. The numbers
of bytes in the first operand and second operand locations are specified
by the contents of bit positions 8-31 of general registers having
addresses R1+1 and R2+1, respectively. Bit positions 0-7 of register
R2+1 contain the padding character. The contents of bit positions 0-7 of
registers R1, R1+1l, and R2 are ignored.

The movement starts at the high-order end of both fields and proceeds
to the right. The bytes to be moved are not changed or inspected. The
operation is ended when the number of bytes specified by bit positions
8-31 of register R1+1 have been moved into the first operand location.
If the second operand is shorter than the first operand, the remaining
low-order bytes of the first operand are filled with the padding
character.

As part of the execution of the instruction, the wvalues of the two
count fields are compared for the setting of the condition code, and a
check is made for destructive overlap of the operands. Operands are said
to overlap destructively when the first operand location is used as a
source after data has been moved into it, assuming movement to be
performed one byte at a time. The inspection for overlap is performed by
use of logical operand addresses. When the operands overlap
destructively, no movement takes place and condition code 3 1is set.
Movement is performed when the high-order byte of the first operand
coincides with or is to the left of the high-order byte of the second
operand, or if the high-order byte of the first operand is to the right
of the rightmost second operand byte participating in the operation. The
rightmost second operand byte is determined by using the smaller of the
first operand and second operand counts.

8-113

When the count specified by bit positions 8-31 of register RI1+1 is O,
no movement takes place, and the condition code is set to 0 or 1 to
indicate the relative values of the counts.

The execution of the instruction 1is interruptible. When an
interruption occurs after a unit of operation other than the 1last one,
the contents of registers R1+1 and R2+1 are decremented by the number of
bytes moved and the contents of registers Rl and R2 are incremented by
the same number, so that the instruction, when re-executed, resumes at
the point of interruption. The high-order bytes of registers Rl and R2
are set to 0; the contents of the high-—order byte of registers R1+l1 and
R2+1 remain unchanged. If the operation is interrupted during padding,
the count field in register R2+1 is 0, the address in register R2 is
incremented- by the original contents of register R2+1, and the contents
of registers Rl and R1+1 reflect the extent of the padding operation.

The instruction may be refetched from main storage even in the
absence of an interruption during execution.

At the completion of the operation, the count in register R1+1 is 0
and the address in register Rl is incremented by the original value of
the count in register R1+1l. The count in register R2+1 is decremented by
the number of bytes moved out of the second operand location, and the
address in register R2 is incremented by the same amount. The contents
of bit positions 0-7 of registers Rl and R2 are set to 0, even in the
case when one or both of the original count values are 0 or when
condition code 3 is set. The contents of bit positions 0-7 of registers
R1+1 and R2+1 remain unchanged.

When the count specified by bit positions 8-31 of register R1+1 is O,
or condition code 3 is set, no exceptions associated with operand access
are recognized. When the count specified by bit positions 8-31 of
register R2+1 for the second operand is larger than that for the first
operand, access exceptions are not recognized for the part of the second
operand field that is in excess of the first operand field.

Resulting Condition Code

First operand and second operand counts are equal
First operand count is low

First operand count is high

No movement performed because of destructive overlap

WwNHO

Program Interruptions

Access (fetch, operand 2; store, operand 1)
Specification ’

8-114

Programming Notes

When the first operand count is 0, the operation consists of setting
the condition code and setting the high-order bytes of registers Rl and
R2 to 0.

When the contents of the Rl and R2 fields are identical, the
condition code is set to 0, but protection and addressing exceptions are
not indicated when called for by the operand designation.

Since the execution of MOVE LONG is interruptible, the instruction
cannot be used for situations where the program must rely on
uninterrupted execution of the instruction or on the clock's not being
updated during the execution of the instruction. Similarly, the program
should normally not let the first operand of MOVE LONG include the
location of the instruction. This is because the new contents of the
location may be interpreted as the instruction if execution is resumed
after an interruption or if the instruction is refetched without an
interruption.

Special precautions should be taken when MOVE LONG is made the
subject of an EXECUTE instruction. See the programming notes in the
description of the EXECUTE instruction.

When the CONTROL MODE button is pressed during the execution of MOVE
LONG or COMPARE LOGICAL LONG, the CP enters Control mode at the
completion of the execution of the next unit of operation. If the
modification trap condition occurs during the current unit of operation,
the trap will be taken at the completion of execution of the current
unit. However, the single-step trap will only be taken at the completion
of the instruction; it will not be taken at the completion of any other
unit of execution. The amount of data processed in a unit of operation
may depend on the particular condition that caused the execution of the
instruction to be interrupted.

8-115

MOVE NUMERICS (MVN)

MVN Di(L,B1),D2(B2) (SS)

| | I B T/7/mI1 B 177D 1
I D1 | L | 1 | 1l 2 | 2 |
I I [| 77 | Y |
0 8 16 20 32 36 47

The low-order four bits of each byte in the second operand field, the
numerics, are placed in the low-order bit positions of the corresponding
bytes in the first operand field.

L is the length of each operand, minus 1.

The instruction is storage-to-storage. Movement is from left to

right through each field, one byte at a time, and the fields may overlap
in any desired way. ‘

The numerics are not changed or checked for validity. The high-order

four bits of each byte, the =zones, remain unchanged in both operand
fields.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

8-116

MOVE WITH OFFSET (MVO)

MVO Di1(L1,Bl1),D2(L2,B2) (SS)

[' T T B T/7mI B 177D 1

| Fl Il 1 1 2 | 1 | il 2 | 2 |

| I | I | 77 | l7 7 1|
0 8 12 16 20 32 36 47

The second operand is placed to the left of and adjacent to the
low-order four bits of the first operand.

The 1low-order four bits of the first operand are attached as
low-order bits to the second operand; the second operand bits are offset
by four bit positions, -and the result is placed in the first operand
location. The first operand and second operand bytes are not checked for
valid codes. :

The fields are processed right to left. If necessary, the second
operand is extended with high-order 0Os. If the first operand field is
too short to contain all bytes of the second operand, the remaining
information is ignored. Overlapping fields may occur and are processed
by storing a result byte as soon as the necessary operand bytes are
fetched.

Ll and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)

8-117

MOVE WITH PAD (MVPC)

MvPC DI1(L1,Bl1),D2(L2,B2),I3 (SSI)

! I L I
| E2 1 1 3
| I

L
2

[
[
I | 77/ | | 77 |
3

| I
I I
1 |

0 8 16 24 2 36 48 52 63
The second operand is placed in the first operand location. If the
first operand length (Ll1) is less than the second operand length (L2),
only the number of bytes specified by L1 is moved. If the first operand
length is greater than the second operand length, the additional bytes of
the first operand are filled with the character specified in the I3 field

of the instruction.
The bytes to be moved are not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Note

At least one byte of the first operand is always moved by a
successful MOVE WITH PAD. (The L1 and L2 fields of the instruction are 1
less than the lengths they specify.)

8-118

MOVE ZONES (MVZ)

MVZ DI1(L,Bl),D2(B2) (SS)

D3	L I		
		77	
0 8 1 3

[

2 1
/7 |
6 47

The high-order four bits of each byte in the second operand field
(the 2zones) are placed in the high-order four bit positions of the
corresponding bytes in the first operand field.

The instruction 1is storage-to-storage. Movement is from 1left to
right through each field one byte at a time, and the fields may overlap
in any desired way.

The zones are not changed or checked for validity. The low-order

four bits of each byte (the numerics) remain unchanged in both operand
fields.

L is the length of each operand, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)

8-119

MULTIPLY (MR, M)

MR RIL,R2 (RR)
| Il R | rR |

| 1C I 1 1 2 |

L I I |

0 8 12 15
M R1,D2(X2,B2) (RX)

['R T x T B 1 D |
I 5C Il 11 2 1 2 | 2 |
| I | | | |
0 8 12 16 20 31

The product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand. For the M
instruction, operand 2 requires fullword alignment.

Both multiplier and multiplicand are 32-bit signed integers. The
product is always a 64-bit signed integer and occupies register Rl and
the register following Rl. The multiplicand is taken from the register
following R1. The contents of register Rl (replaced by the high-order
part of the product) are ignored. An overflow cannot occur.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when R1 is odd.

The sign of the product is determined by the rules of algebra, except
that a result of 0 is always positive.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2 of M only)

Programming Note

The significant part of the product usually occupies 62 or fewer
bits. Only when two maximum negative numbers are multiplied are 63
significant product bits formed. Since 2's-complement notation is used,
the sign bit is extended right until the first significant product digit
is encountered.

8-120

MULTIPLY (FLOATING-POINT) (MDR, MER, MD, ME)

MDR R1,R2 (RR, Long)

| F'TrR T r 1

| 2C lol 21 2 |

| | | |]

0 8,9 12 15

MER R1,R2 (RR, Short)

| TR T rR |

| 2C 2t 121 2 |

| || [|

0 8,9 12 15

MD R1,D2(X2,B2) (RX, Long)

I TR T x T B 1 D |
| 6C lol 21 2 | 2 | 2

| | | | | |

0 8,9 12 16 20 31
ME R1,D2(X2,B2) (RX, Short)

| [TrR T x T B | D [
| 6C a2t 21 2 | 2 | 2 |
| || | I I 1
0 8,9 12 16 20 31

The normalized product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand.

The multiplication of two floating-point numbers consists of adding
the characteristics and multiplying the fractions. The sum of the
characteristics less 64 is used as the characteristic of an intermediate
product. The sign of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and
postnormalizing the intermediate product when necessary. The
intermediate sum of the characteristics is reduced by the number of
left-shifts. The intermediate product of the fractions is truncated to
15 digits before the left-shifting.

Exponent overflow occurs if the final sum of the characteristics
exceeds 127. The operation is completed and a program interruption
occurs. The fraction is normalized and correct, the sign is correct, and
the characteristic is smaller by 128 than the correct characteristic.
The overflow exception does not occur for an intermediate sum of
characteristics exceeding 127 when the final characteristic is brought
within range because of normalization.

8-121

Exponent underflow occurs if the final sum of the characteristics is
less than 0. If the corresponding mask bit is 1, a program interruption
occurs. The fraction is normalized and correct, the sign is correct, and
the characteristic is larger by 128 than the correct characteristic. If
the corresponding mask bit is not 1, the result is made a true O.
Underflow is not signaled when an operand's characteristic becomes less
than 0 during prenormalization, and the correct characteristic and
fraction value are used in the multiplication.

When all 15 digits of the intermediate fraction are 0, the product,
sign, and characteristic are all made 0, yielding a true zero result. No
interruption for exponent underflow or exponent overflow can occur when
the result fraction is 0. The program interruption for lost significance
is never taken for multiplication.

The second operand of the MD and ME instructions requires fullword
alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Exponent overflow
Exponent underflow
Access (MD and ME only)

Programming Note

Interchanging the two operands in a floating—point multiplication
does not affect the value of the product.

8-122

MULTIPLY DECIMAL (MP)

MP DI1(L1,Bl),D2(L2,B2) (SS)

I ' o T v T B T/7m1T B 177D 1
| FC l 21 2 1 1 | il 2 | 2 |
| | I I L 77 | YA |
[) 8 12 16 20 32 36 47

The product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand.

The multiplier size is limited to 15 digits plus a sign and must be
less than the multiplicand size. Ll and L2 are the 1lengths of the
operands, minus 1. Length code L2, when larger than 7 or larger than or
equal to the length code L1, causes a specification exception; in this
case, the operation is suppressed and a program interruption occurs.

Since the number of digits in the product is the sum of the number of
digits in the operands, the multiplicand must have high-order zero digits
for a field size at least equal to the multiplier field size; otherwise,
a data exception is recognized and a program interruption occurs. This
definition of the multiplicand field insures that no product overflow can
occur. The maximum product size is 31 digits. At least one high-order
digit of the product field must be 0.

All operands and results are treated as signed integers,
right-aligned in their field. The sign of the product is determined by
the rules of algebra from the multiplier and multiplicand signs, even if
one or both operands are 0.

The multiplier and product fields may overlap when their least
significant bytes coincide.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Specification

Programming Note

When the multiplicand does not have the desired number of most
significant Os, multiplication may be preceded by a ZERO AND ADD into a
larger field.

8-123

MULTIPLY DECIMAL (FLOATING-POINT) (MQR, MQ)

MOR R1,R2 (RR)
['R T r |
| 3C I 1 1 2 |
L | [I
0 8 12 15
MO R1,D2(X2,B2) (RX)
| ' R T x | B | D |
| 7C I 11 2 1 2 | 2 |
| | | | | I
0 8 12 16 20 31

The normalized product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand. Fullword
alignment is required.

The multiplication of two decimal floating-point numbers consists of
a characteristic addition and a fraction multiplication. The sum of the
characteristics minus 64 is used as the characteristic of an intermediate
product. The sign of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and
postnormalizing the intermediate product, if necessary. Postnormalizing
is performed after the fraction is truncated to 15 digits.

Exponent overflow occurs if the final product characteristic exceeds
127. The operation is completed and a program interruption occurs. The
fraction is normalized and correct, the sign 1is correct, and the
characteristic 1is 128 smaller than the correct characteristic. The
overflow exception does mnot occur for an intermediate product
characteristic exceeding 127 when the final characteristic 1is brought
within range because of postnormalization.

Exponent underflow occurs if the final product characteristic is less
than zero. If the corresponding mask bit is 1, a program interruption
occurs. The fraction is normalized and correct, the sign is correct, and
the characteristic is 128 larger than the correct characteristic. If the
corresponding mask bit is 0, the result is made a true zero. Underflow
is not signaled when an operand's characteristic becomes less than zero
during prenormalization, and the correct characteristic and fraction
value are used in the multiplication.

8-124

When all 15 digits of the intermediate product fraction are 0s, the
product is made a true zero. No interruption for exponent underflow or
exponent overflow can occur when the result fraction is =zero. The
program interruption for lost significance 1is never taken for
multiplication.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Data

Exponent overflow
Exponent underflow
Access (MQ only)

8-125

MULTIPLY HALFWORD (MH)

MH Rl1,D2(X2,B2) (RX)

{ [R 1
| 4c I 11
| I I

0 ' 8 1

b e e]

The product of the second operand (multiplier) and first operand
(multiplicand) replaces the multiplicand. The second operand is two
bytes in length, must be halfword aligned, and is considered to be a
16-bit signed integer.

Both multiplicand and product are 32-bit signed integers and may be
located in any general register. The 16-bit multiplier is expanded to 32
bits before multiplication by propagating the sign-bit value through the
16 high-order bit positions. The multiplicand is replaced by the
low-order part of the product. The bits to the left of the 32 low-order
bits are not tested for significance; no overflow indication is given.

The sign of the product is determined by the rules of algebra from
the multiplier and multiplicand signs, except that a result of 0 is
always positive.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Specification

Programming Note

The significant part of the product usually occupies 46 or fewer
bits; however, 47 bits are occupied when both operands have the maximum
negative value. Since the low-order 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign bit of the result may
differ from the true sign of the product if there is overflow.

8-126

OR (OR, O, OI, OC)

OR R1,R2 (RR)
[' R | rR 1
I 16 I 1 1 2 |
| I |
0 8 12 15
0 R1,D2(X2,B2) (RX)
[I'' R I x T B | D |
I 56 1 2 1 2 | 2 |
| | | | I]
0 8 12 16 20 31
O0I D1(B1l),I2 (SI)
[| I I B 1 D |
| 96 [2 I 1 1 1 |
| I | | B
0 8 16 20 31
OC DI1(L,B1),D2(B2) (SS)
[[' B T7m1 B 17/ |
D6 I L I 1 | il 2 | 2 |
| I 77 | l 77 |
0 8 16 20 32 36 37

The logical sum (OR) of the bits of the first and second operands is
placed in the first operand location. Operands are treated as
unstructured logical quantities, and the connective inclusive OR is
applied bit by bit. A bit position in the result is set to 1 if the
corresponding bit position in one or both operands contains a 1;
otherwise, the result bit 1s set to 0. All operands and results are
valid. Operand 2 of the O instruction requires fullword alignment.

Resulting Condition Code

Result is O
Result not 0

WNH-=O

Program Exceptions

Specification (O only)

Access (fetch, operand 2, O and OC; fetch and store, operand 1, OI
and OC)

8-127

Programming Note

The OR may be used to set a bit to 1. For this purpose, the second
operand should have 1s in all positions corresponding to the first
operand bits to be set to 1.

8-128

PACK (PACK)

PACK D1(L1,Bl1l),D2(L2,B2) (SS)

[l o I o I B Ts7/mn1 B I7r/7D 1
| F2 [21 2 | 1 | 1l 2 | 2 |

| I | | 77 | 7 7 |
0 8 12 16 20 32 36 a7

The format of the second operand is changed from zoned to packed, and
the result is placed in the first operand location.

The second operand is assumed to have the zoned format. All =zones
are ignored except the zone over the low-order digit, which is assumed to
represent a sign. The sign is placed in the rightmost four bits of the
low-order byte, and the digits are placed adjacent to the sign and to
each other in the remainder of the result field. The sign and digits are
moved unchanged to the first operand field, and are not checked for wvalid
codes.

The fields are processed right to left. If necessary, the second
operand is extended with high-order 0Os. If the first operand field is
too short to contain all significant digits of the second operand field,
the remaining high-order digits are ignored. Overlapping fields may
occur and are processed by storing one result byte immediately after the
necessary second operand bytes are fetched. Except for the rightmost
byte of the result field, which is stored immediately upon fetching the
rightmost byte of the second operand, two operand bytes are needed for
each result byte.

L1 and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Notes

The PACK instruction may be used to interchange the two digits in one
byte by specifying a 0 in the Ll and L2 fields and the same address for
both operands.

To remove the zones of all bytes of a field, including the low-order

byte, both operands must be extended with a dummy byte in the low-order
position, which subsequently is ignored in the result field.

8-129

PACK AND ALIGN (PAL)

PAL D1(L1,Bl),D2(L2,B2) (SS)

[' o T o I B 17/l B 177D 1
[c4 I 1 1 2 1 1 | il 2 | 2 |
L | I I 77 | L7 7 |
0 8 12 16 20 32 36 47

The format of the second operand is changed from external format to
packed, and the result is placed in the first operand location.

The second operand is assumed to have the external format. The
source field may contain (moving right to 1left) blanks (ASCII space
code), followed by a sign (ASCII plus or minus), followed by data. Or it
may contain data followed by a sign followed by blanks. It may also
contain a single ASCII decimal point character. L1 and L2 are the
operand lengths, minus 1.

The source field is scanned right to left until the first nonblank
character is encountered. If the first nonblank character is a wvalid
sign character (hexadecimal 2B for plus or hexadecimal 2D for minus) its
packed equivalent (1111 for plus or 1101 for minus) will be stored in the
rightmost four bits of the least significant byte of the first operand
(receiver field). If a decimal point has not previously been
encountered, a check for decimal point is made. If the character is a
decimal point, its existence and position will be reflected in the
contents of Register 1, and the recognition of another decimal point will
be treated as an invalid character. A final test is made to determine
whether or not the character is a valid decimal character. The scan
continues until the 1leftmost source byte 1is reached. If the first
nonblank character was not a valid sign, the leftmost character is
checked for a valid sign, and the first operand is set accordingly. If
no sign is specified in the source field, a plus sign (1111) is stored in
the first operand.

Table 8-3 summarizes the scan order, disregarding any leading or
trailing blanks.

8-130

Table 8-3. PACK AND ALIGN Scan Order

Order Test When Applied

1 Sign To rightmost nonblank character

2 Sign To leftmost character (if the
rightmost nonblank character was not
a sign)

3 Decimal point Until a decimal point is encountered

4 Valid decimal Always

character

The code coversions from external ASCII to packed format are as
follows:

® ASCII codes 0 through 9 are converted to 4-bit binary equivalents.

e The sign character, if present, is converted to 1111 for plus and
1101 for minus, and is stored in the rightmost four bits of the
packed field. The presence of the sign character in the source
field is indicated in Register 1. If no sign was found, a plus
code is stored in the sign position of the packed field.

¢ The decimal point presence and position is indicated in Register
1 and it is skipped.

e The destination field is padded with leading packed Os.

e The number of source digits converted is indicated in Register
1. Leading 0Os preceding the decimal point in the source field
are counted as digits.

The target field is filled in from right to left. If necessary, the
second operand is padded with most significant O0s. If the first operand
is too short to contain all significant digits of the second operand
field, the remaining digits are ignored and the condition code is set to
indicate truncation. In all cases of truncation, the operation is
completed ignoring truncated digits. If an invalid character is
encountered during conversion, the condition code is set to indicate a
data validity error and the instruction is terminated.

8-131

If the instruction is completed, Register 1 is set to reflect the
result of the operation. Bit 24 of Register 1 is set if a sign character
was present, and Bit 25 is set if a decimal point was present. Bits 0
through 15 of Register 1 are unchanged. Bits 16 through 23 are set to
the number of digits (including 0s) to the left of the decimal point in
the source field. Bits 26-31 are set to the 2's complement of the count
of digits (including Os) to the right of the decimal point in the source
field. Register 1 appears as follows after the PAL instruction is
completed without encountering an invalid character:

7777771 Left T T | 2's complement |
{77777/] count | s | D | of right |
L727777] b count

16 23 24 25 26 31

Rl Bits Function

16-23 Left count: count of source digits (including 0s) to left
of decimal point
24 S, Sign presence
0 = no sign present
1 = sign present
25 D, Decimal point presence
0 = no source field decimal point encountered
1 = decimal point encountered

26-31 2's complement of right count: 2's complement of count of
digits to right of the effective decimal point in the
source field

Overlapping operand fields will yield unpredictable results.

Resulting Condition Code

Conversion completed successfully
Invalid character encountered

Left truncation occurred

WO

Programming Exceptions

Access (fetch, operand 2; store, operand 1)

8-132

Programming Notes

The initial contents of Register 1 are overwritten by the action of
PAL.

If all digits in the source field are 0, the sign of the result will
reflect the sign of the source. If truncation of a nonzero field occurs,
the sign will reflect the value before truncation.

The "right count" in Register 1 after execution of PAL is in

2's—complement form for use in the second operand of the SHIFT AND ROUND
DECIMAL (SRP) instruction.

8-133

POP (POP)

POP S1,R2 (RR)

[[s 1
I 08 [1 |
| I |

0 8 1

2

|

I
|
5

2 1

The relevant stack vector is determined from the S1 field of the
instruction. The stack pointer is incremented by 4. Register R2 is then
loaded with the contents of the four bytes which were addressed by the
stack pointer before updating.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

8-134

POP CHARACTERS (POPC)

POPC D1(L,B1),0(S2) (SS)

[T T B | D T s 177 |
| ps | L [1 | 2 | |
| I | | | |7 7 |
0 8 16 20 32 36 47

The relevant stack vector is determined from the S2 field of the
instruction. The D2 field is ignored. Bytes are taken from the location
addressed by the stack pointer and ascending locations, and stored in
ascending locations beginning at the location specified by the Bl and D1
fields. The number of bytes specified is stored. The stack pointer is
then incremented by this number. The stack pointer is then incremented
again (by 0, 1, 2, or 3) so that it addresses a fullword boundary.

L is the operand length in bytes, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack; store, operand 2)

Programming Note

This is a move from a word-aligned location to a location with no
alignment restriction.

8-135

POP HALFWORD (POPH)

POPH S1,R2 (RR)

| I s 1

| 09 |1 |

| I | |
0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The stack pointer is incremented by 4. Then the low-order
halfword of register R2 is loaded with the contents of the two low-order
bytes of the word that was addressed by the stack pointer before
updating. Bit 16 of register R2 1is then propagated through the
high~order half (Bits 0 through 15) of the register.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

8-136

POP MULTIPLE (POPM)

POPM S1,R3,R2 (RS)

| s T R T R Tr111777271777172777777]
| A6 V' x V 3 0 2 Nr21772227772772722777]
| | | | V7700070700020777111777)
0 8 12 16 20 31

The relevant stack vector is determined from the S1 field of the
instruction. The stack pointer is incremented by the number of bytes
implied by the range of registers R3 to R2. Register R3 and succeeding
registers (with Register 0 following Register 15) are then loaded,
starting from the location that was addressed by the stack pointer before
updating, until register R2 has been loaded.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

8-137

POP NOTHING (POPN)

POPN S1,D2(X2,B2) (RX)

| [s |
| 84 [1 |
| I |

0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The D2(X2,B2) value is added to the address in the stack
pointer and the result stored in the stack pointer. The stack pointer is
then incremented (by 0, 1, 2, or 3) so that it addresses a fullword
boundary.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

8-138

PUSH (PUSH)

PUSH S1,R2 (RR)

| I s 1

| 0B [1 |

| l | I
0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The contents of the register specified by the R2 field are
stored at the 1location addressed by the stack pointer, minus 4. The
stack pointer of the stack vector is then decremented by 4.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

Programming Note

If the value in the stack pointer is pushed onto a stack by PUSH or
PUSHM, the value pushed will be that in the register before the
instruction was executed.

8-139

PUSH ADDRESS (PUSHA)

PUSHA S1,D2(X2,B2) (RX)

| s, |
| BO | 1 |
| I [

0 8 1

The relevant stack vector 1is determined from the S1 field of the
instruction. The address in the stack pointer is decremented by 4. The
second operand address is then placed in the three low-order bytes of the
word addressed by the stack pointer. The high-order byte of this word is
set to binary Os. Address computation follows the rules for
base-displacement address formation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

Programming Note

The second operand address is determined before the stack pointer is
decremented, and therefore reflects the contents of registers before the
instruction is executed.

8-140

PUSH ADDRESS (RELATIVE) (RPUSHA)

RPUSHA R1,L2 (RL)

| | R T L O

| 72 | 1 |

| l l |
1

0 8 2 31

[\

The sign of the L2 field is extended 12 bits to the left, to form a
32-bit signed 2's-complement displacement. The displacement is added to
the current instruction address to form the effective address.

Instruction execution 1is then identical to the corresponding RX
instruction.

When the instruction is executed, the current instruction address

used in the effective-address calculation is the address of the EXECUTE
instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

8-141

PUSH CHARACTERS (PUSHC)

PUSHC 0(L,S1),D2(B2) (SS)

[I [s sz 7771 B 177D 1
I D9 | L | 1 V77 77721 2 | 2 |
l I | \77 /771 l7 7 |
0 8 16 20 32 36 47

The relevant stack vector is determined from the S1 field of the
instruction. The length specified is subtracted from the stack pointer
in the stack vector. The stack pointer is then decremented again (by 0,
1, 2, or 3) until it addresses a fullword boundary. Bytes are then taken
from the location specified by the B2 and D2 fields and ascending
locations; they are stored in ascending locations beginning at the
location addressed by the updated stack pointer. The number of bytes
specified is stored.

L is the operand length, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack; fetch, operand 2)

Programming Note

This is a move from a location with no alignment restriction to a
word-aligned location.

8-142

PUSH MULTIPLE (PUSHM)

PUSHM S1,R3,R2 (RS)

[I s T R T R Tz777777777777777277771
| A9 | x| 3 | 2 1277777722727772717777]
| I I | [/77777712271711717777)
0 8 12 16 20 31

The relevant stack vector is determined from the S1 field of the
instruction. The wvalues in register R2 and preceding registers (with
Register 15 preceding Register 0) are stored in descending words starting
four bytes below the 1location addressed by the stack pointer, until the
register specified by the R3 field has been stored. The stack pointer is
then decremented by the number of bytes stored.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

8-143

PUSH NOTHING (PUSHN)

PUSHN S1,D2(X2,B2) (RX)

I ' s T x T B 1 D]

| 85 1 2 | 2 | 2 |

l I | | I |
0 8 12 16 20 31

The relevant stack vector is determined from the S1 field of the
instruction. The D2(X2,B2) value is subtracted from the address in the
stack pointer and the result is stored in the stack top word. The stack
pointer is then decremented again (by 0, 1, 2, or 3) until it addresses a
fullword boundary.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification

8-144

RESET REFERENCE AND CHANGE BITS (RRCB)°®

RRCB D1(Bl).,M2 (SI)

[I M [B | D I
| 9F | 2 I 1 | 1 |
I l | | |

This privileged instruction, according to the value of M2, either
examines and modifies the Reference and Change Table (RCT), or modifies
the T-RAM and Monitor Area. When used with the RCT, operand 1 must be a
physical address; when used with the T-RAM and Monitor Area, it must be a
virtual address.

The action taken is determined by value of M2, whose format is shown
below.

[sT rRIZ/71 alz/1 ol Mlz/1
| El clzzl wlizz1 Nl olz/]
| wl Tizz7t Llizzl EI Nlz/)
bits 8 9 10 11 12 13 14 15

RRCB Reference and Change Table Functions

SEL=0 selects RCT functions. (The RCT 1is described in Section
4,3.8.) When SEL=0, the operand 1 address is treated as a physical
address.

When SEL=0 and RCT=0, the reference and change (RC) bits associated
with this page frame are fetched and moved to the condition code bits of
the PCW.

When SEL=0 and RCT=1, the RC bits are cleared to zero after being
fetched; the condition code reflects the state of the RC bits before they
were cleared.

Resulting Condition Code

Reference bit 0, change bit 0
Reference bit 0, change bit 1
Reference bit 1, change bit 0
Reference bit 1, change bit 1

WO

Program Exceptions

Access (addressing only, operand 1)
Privileged operation

8-145

Monitor Area Functions

SEL=1 selects T-RAM and Monitor Area functions. (These structures
are described, respectively, in Sections 4.3.3 and 4.3.7.) When SEL=1,
the operand 1 address is treated as a virtual address.

When SEL=1 and ALL=1, all T-RAM entries are cleared; i.e, the high-
order, fault bit of all entries is set to 1. The Monitor Area is also
cleared. This function is available primarily for use during system
initialization.

When SEL=1 and ONE=1, the T-RAM entry associated with the (virtual)

operand address is cleared; i.e., the fault bit is set to 1.

When SEL=1 and MON=1, those T-RAM entries referenced by the Monitor
Area are cleared; the Monitor area is also cleared. For VS100 class
systems, whose Monitor area consists of two lists, both lists and their
associated T-RAM entries are cleared.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (addressing only, operand 1)
Privileged operation

8-146

RETURN AND POP ON CONDITION (RPC)

RPC M1,R2 (RR)

| [M R |

| 26 [1 2
|

|
| |
I |
0 8 12 15

This instruction is identical to the RTC instruction, except that
after all other processing is completed, the stack pointer (General
Register 15) will be loaded with the wvalue that was contained in the R2
register before execution of this instruction began. The high-order byte
of General Register 15 is set to 0 by this instruction.

Resulting Condition Code

Set with value from stack

Program Exceptions

Access (fetch, bytes popped from the system stack)

Specification (if the current Control Register 1 value is not a
multiple of 4)

8-147

"RETURN ON CONDITION (RTC)

RTC M1 (RR)
[T M 17777771
| 04 |1 lzz777¢771
! | 1/77777]
0 8 12 15

If the state of the condition code is as specified by Ml, this

instruct
addresse

ion locates the most recently-built JSCI save area, which is
d by Control Register 1. The 3-bit process 1level field in the

save area is compared with the 3-bit process level field in the current
PCW. Depending on the outcome of this comparison, one of the following

occurs:

1.

If the value of the save area process level field is the greater
of the two, a program exception (x'06) is taken; a return cannot
be made to the more privileged routine.

If the values of the two process level fields are equal, the
instruction sets General Register 15 (the stack pointer) equal to
the current value in Control Register 1 plus 4 (thus skipping
over the contents of Register 0 stored the save area by a JSCI
instruction); the instruction then pops off the system stack
General Registers 1 to 14. The high-order byte of Control
Register 1 is set to 0. The next word is popped off the stack
and its value replaces the current contents of Control Register
1. One more word is then popped off the stack and used as the
program mask byte and address portion of the current PCW.
Control then passes to the address specified in the address
portion of the PCW.

If the value of the save area process level field is the lesser
of the two, a stack switch occurs: The contents of General
Register 15, Control Register 2, and Control Register 1 are saved
in the Stack Header Block addressed by Control Register 8. The
value of the save area process level field is used to form an
offset into the Stack Header Block Table. The address at this
offset is loaded into Control Register 8. General Register 15 is
loaded with the contents of the first four bytes of the Stack
Header Block addressed by Control Register 8; Control Register 2
is loaded with the contents of the next four bytes in the same
SHB. The three low-order bytes of General Register 15 and of
Control Register 2 now address, respectively, the top and limit
of the active system stack.

8-148

Status information is popped from the stack, as already described
in paragraph 2. The area of T-RAM monitored by the executive
list is cleared if the value of the save area process level field
is 0. (This clearing of T-RAM entries takes place only on VS15
and VS100 class systems, as explained in Section 4.3.7.) The
value of the PCW process level field is set to that of the save
area process level field. Control then passes to the address
specified in the address portion of the PCW. (For a general
description of stack switching, refer to Section 3.10.)

If the state of the condition code is not as specified by M1, none of
the above occurs, and normal instruction sequencing proceeds with the
updated instruction address.

Resulting Condition Code

Set with value from stack

Program Exceptions

Access (fetch, bytes popped from the system stack)

Specification (if the current Control Register 1 wvalue is not a
multiple of 4; if the value of the save area process level field exceeds
that of the PCW save area process level field). The contents of General
Registers 1 to 14 may have been changed by the time the specification
exception is taken. However, General Register 15 and Control Register 1

will not be changed.

8-149

SAVE THEN 'AND' SYSTEM MASK (STNSM)®

STNSM R1,R3,I2 (RS)

[[R T R
| ac [1 |

l I

l
0 8 12

3

[
I
I
16 31

This instruction tests whether to save the current PCW status field.
If the Rl field of the instruction is 0, the saving is bypassed. If Rl is
not 0, the current PCW status field is saved in Bits 16-31 of register
R1. Bits 0-15 of Rl are unchanged.

After the saving is performed or bypassed, the R3 field of the
instruction is tested. If it is 0, I2 is ANDed with the current PCW
status field. If R3 is not 0, I2 is ANDed with Bits 16-31 of register
R3, and this replaces the current PCW status field.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation

Programming Note

This instruction is normally used for one of three functions:
1. Turning off specified bits in the PCW

2. Turning off specified bits in the PCW while saving the previous
status

3. Re-establishing the previous status.

8-150

SAVE THEN 'OR' SYSTEM MASK (STOSM)®

STIOSM R1,R3,I2 (RS)

[I !
| 2 |
| I
16 31

1
an | 1 | 3

|

1

l

l

L I
0 .

This instruction first tests whether to save the current PCW status
field. If the Rl field of the instruction is 0, the saving is bypassed.
If R1 is not 0, the current PCW status field is saved in Bits 16-31 of
register R1. Bits 0-15 are unchanged.

After the saving is performed or bypassed, the R3 field of the
instruction is tested. If it is 0, I2 is ORed with the current PCW
status field. If R3 is not 0, I2 is ORed with Bits 16-31 of register R3
and this replaces the current PCW status field.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation

Programming Note

This instruction is normally used for one of three functions:
1. Turning on specified bits in the PCW

2. Turning on specified bits in the PCW while saving the previous
status

3. Re—establishing the previous status.

8-151

SCAN FOR BYTE (SCAN)

SCAN R1,M3,D2(B2) (RS)

[TR [M [B I D |
| B8 I 1 I 3 1 2 | 2 l
| | | | [|
0 8 12 16 20 31

The first operand designates an address—length register pair (general
registers Rl and R1+1, with Rl even-numbered). Second operand base and
displacement calculations are performed according to the rules for
address arithmetic, and the low-order byte of the resulting address is
used as an immediate operand. The byte string specified by the first
operand address—-length register pair is scanned in order of ascending or
descending memory addresses, comparing each byte with the second operand
byte value, until an equal or unequal value is found.

When the scan is descending, the first byte examined is located at
the address of the end of the string as computed by adding the address of
the string and its length minus one.

Options are selected by the M3 field as follows:

Bit 0 Ascending scan if 0; descending scan if 1
Bit 1 Stop on equal compare if 0; stop on unequal compare
if 1

Bits 2, 3 Must be 0 (specification exception if not)

For an ascending scan, the address-length register pair is updated as
follows: Register Rl contains the address of the byte that satisfied the
specified condition, or of the first byte beyond the string if the
condition is not satisfied. Bits 8-31 of register R1+1 contain either
the length of that part of the string including and above the byte on
which the condition was satisfied, or 0 if the condition was not
satisfied.

For a descending scan, the address-length register pair is updated as
follows: Bits 8-31 of register Rl are unchanged. Bits 8-31 of register
R1+1 contain either the length of that part of the string including and
below the byte on which the condition was satisfied, or 0 if the
condition was not satisfied.

The high—-order byte (Bits 0-7) of register Rl is set to 0 by the
instruction.

8-152

The execution of the instruction 1is interruptible. When an
interruption occurs after a unit of operation other than the last one,
the contents of registers Rl and R1+1l are incremented and/or decremented
so that the instruction, when re-executed, resumes at the point of
interruption. The instruction may be refetched from main storage even in
the absence of an interruption during execution.

Resulting Condition Code

0 Condition not satisfied
1 Condition satisfied, other than at end of operand 1

2 Condition satisfied at end of operand 1 (highest-addressed byte
ascending; lowest-addressed byte descending)

3 -

Program Exceptions

Specification
Access (fetch, operand 1)

Programming Notes

For general notes on interruptible instructions, refer to MOVE
CHARACTERS LONG.

8-153

SET PROGRAM MASK (SPM)

SPM Rl (RR)
} I R 7777171
| oD |1 lzz777/771
L [l/77777]
0 8 12 15

Bits 0-7 of the general register specified by the Rl field replace
the condition code and the rest of the program mask bits of the current
PCW. Bits 8-31 of the register specified by the Rl field are ignored.
The contents of the register specified by the Rl field remain unchanged.

The instruction permits setting of the condition code and the rest of
the program mask bits in either the problem program or the supervisor
state.

Resulting Condition Code

The code is set according to Bits 0-1 of the register specified by RI.

Program Exception

None

Programming Note

Bits 0-7 of the general register may have been loaded from the PCW by
BRANCH AND LINK (BAL).

8-154

SHIFT AND ROUND DECIMAL (SRP)

SRP D1(L1,Bl),D2(B2),I3 (SS)

| [l o I = IV B t7mI B 177D |

| FO [1 3 | 1 | il 2 | 2 |

| | | I | 77 | Y& 1
0 8 12 16 20 32 36 a7

The first operand is shifted in the direction and for the number of
digit positions specified by the second operand address. When shifting
to the right is specified, the first operand is rounded by the rounding
factor, I3. Ll is the operand length, minus 1.

The second operand address is not used to designate data; instead,
the contents of bit positions 26-31 of the address are considered a
signed fixed-point quantity, indicating the direction of the shift and
the number of digit positions to be shifted. The remainder of the
address is ignored. When Bit 26 of the second operand address is 0, a
left-shift is specified, and Bits 27-31 of the address are considered a
true binary number specifying the number of digit positions of shift.
When Bit 26 is 1, a right-shift is specified, and Bits 27-31, considered
as a binary number in 2's-complement notation, specify the amount of the
shift.

The first operand is considered to be in the packed decimal format
and is checked for the validity of decimal digit codes. Only its digit
portion 1is shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit positions. The
validity of the first operand is checked and the condition code is set
even if a shift amount of 0 is specified. A result of 0 is made positive.

If a significant digit is shifted out of the high-order digit
position during left-shift, a decimal overflow condition is recognized.
The operation is completed by ignoring the overflow.

During right-shift, bit positions 12-15, the contents of the I3
field, are used as a rounding factor. The shifted operand is rounded by
decimally adding the rounding factor to the last digit shifted out and
propagating the carry, if any, to the left. Both the first operand and
the rounding factor are considered positive quantities for the purpose of
this addition. Except for validity checking and the participation in
rounding, the digits shifted out of the low-order digit position are
ignored and lost. The validity of the rounding-factor code is checked
regardless of the direction and amount of shift specified.

8-155

Resulting Condition Code

Result is O

Result is less than 0
Result is greater than 0
Result overflows

wNhHFHO

Program Exceptions

Access (fetch and store, operand 1)
Data
Decimal overflow

Programming Note

Because the 2's-complement notation is employed, SHIFT AND ROUND
DECIMAL can be used for shifting up to 31 digit positions left and up to
32 digit positions right. This is sufficient to clear all digits of any
decimal field even when rounding in right-shift is specified.

Please refer to the programming note for SLDA.

8-156

SHIFT LEFT DOUBLE (SLDA)

SLDA R1,D2(B2) (RS)

] ' R Tr77777T B 1 D |

| 8F |1 7777771 2 | 2 |

| | 777777 | |
20 31

0 8 12 16

The double-length integer part of the first operand is shifted 1left
the number of bits specified by the second operand address. Bits 12-15
of the instruction are ignored.

The second operand address is not used to address data; its low-order
six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when Rl is odd.

The first operand is treated as a number with 63 integer bits and a
sign in the sign position of the high-order register. The sign remains
unchanged. The high-order bit position of the R1+1 register contains an
integer bit, and the contents of the R1l+l register participate in the
shift in the same manner as the other integer bits. Zeros are supplied
to the vacated positions of the registers.

If a bit unlike the sign bit is shifted out of bit position 1 of the
Rl register, an overflow occurs. The overflow causes a program
interruption when the fixed-point overflow mask bit is set to 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

wNh-=O

Program Exceptions

Fixed-point overflow
Specification

8-157

Programming Notes

The eight shift instructions provide the following three pairs of
alternatives: left or right, single or double, and algebraic or
logical. Algebraic shifts differ from the logical shifts in that
overflow is recognized, the condition code is set, and the high-order bit
participates as a sign in algebraic shifts.

The maximum shift amount that can be specified is 63. For algebraic
shifts this is sufficient to shift out the entire integer field. Since
64 bits participate in the double-logical shifts, the entire register
contents cannot be shifted out.

A shift amount of 0 in the two algebraic double-shift operations
provides a double-length sign and magnitude test.

The base register participating in the generation of the second

operand address permits indirect specification of the shift amount. A O
in the B2 field indicates the absence of indirect shift specification.

8-158

SHIFT LEFT DOUBLE LOGICAL (SLDL)

SLDL R1,D2(B2) (RS)

[T R Tr777771 B 1 D]
| 8D |1 rzre771 2 | 2 |
| I 7777771 I |
0 8 12 16 20 31

The double-length first operand is shifted left the number of bits
specified by the second operand address. The second operand address is
not used to address data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the address is ignored.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when Rl is odd.

All 64 bits of the register pair specified by Rl participate in the
shift. Most significant bits are shifted out of the first register and
are lost. Zeros are supplied to the vacated positions of the registers.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Programming Note

Please refer to the programming notes for SLDA.

8-159

SHIFT LEFT SINGLE (SLA)

SLA R1,D2(B2) (RS)

[' R Tr7777717 B 1 D]
| 8B 1 772071 2 | 2 |
| | [777777] | |
0 8 12 16 20 31

The integer part of the first operand is shifted left the number of
bits specified by the second operand address. Bits 12-15 of the
instruction are ignored.

The second operand address is not used to address data; its low-order
six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

The sign of the first operand remains unchanged. All 31 integer bits
of the operand participate in the left-shift. Zeros are supplied to the
vacated low-order register positions.

If a bit unlike the sign bit is shifted out of position 1, an
overflow occurs. The overflow causes a program interruption when the
fixed-point overflow mask bit is set to 1.

Resulting Condition Code

Result is 0

Result is less than 0O
Result is greater than 0
Overflow

WO

Program Exceptions

Fixed-point overflow

Programming Notes

For numbers with an absolute value of less than 2**30, a left shift
of one bit position is equivalent to multiplying the number by 2.

Please refer to the programming notes for SLDA.

8-160

SHIFT LEFT SINGLE LOGICAL (SLL)

SLL R1,D2(B2) (RS)

['R Tr777771 B 1] D |
| 89 Il 1 Az7z77771 2 | 2 I
| [l/7/7177] I]
0 8 12 16 20 31

The first operand is shifted left the number of bits specified by the
second operand address.

The second operand address is not used to address data; its least
significant six bits indicate the number of bit positions to be shifted.
The remainder of the address is ignored.

All 32 bits of the general register specified by Rl participate in
the shift. Most significant bits are shifted out and are lost. Zeros
are supplied to the vacated least-significant register positions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

Please refer to the programming notes for SLDA.

8-161

SHIFT RIGHT DOUBLE (SRDA)

SRDA R1,D2(B2) (RS)

[[R Irz777771 B | D |
| 8E |1 rrreerrl 20| 2 |
| | 7777771 | |
0 8 12 16 20 31

The double-length integer part of the first operand is shifted right
the number of places specified by the second operand address. Bits 12-15
of the instruction are ignored.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when Rl is odd.

The second operand address is not used to address data; its low-order
six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a number with 63 integer bits and a
sign in the sign position of the high-order register. The sign remains
unchanged. The high-order bit position of the 1low-order register
contains an integer bit, and the contents of the low-order register
participate in the shift in the same manner as the other integer bits.
The low-order bits are shifted out without inspection and are lost. Bits
equal to the sign are supplied to the vacated positions of the registers.

Resulting Condition Code

Result is 0
Result is less than 0
Result is greater than 0

wWNeH=O

Program Exceptions

Specification

Programming Note

Please refer to the programming notes for SLDA.

8-162

SHIFT RIGHT DOUBLE LOGICAL (SRDL)

SRDL. R1,D2(B2) (RS)

[[R Tr777771T B 1 D |
I 8C b x dzrerrrl 2 | 2 |
| I 17777771 I |
0 8 12 16 20 31

The double-length first operand is shifted right the number of bits
specified by the second operand address.

The Rl field of the instruction specifies an even/odd pair of
registers and must contain an even register address. A specification
exception occurs when Rl is odd.

The second operand address is not used to address data; its rightmost
six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the register pair specified by Rl participate in the
shift. Least significant bits are shifted out of the second register and
are lost. Zeros are supplied to the vacated positions of the registers.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Programming Note

Please refer to the programming notes for SLDA.

8-163

SHIFT RIGHT SINGLE (SRA)

SRA R1,D2(B2) (RS)

| ' R Tz7r77771 B 1 D |
| 8A L1 zrrre7l 2 | 2 |
| | l7777771 | |
0 8 12 16 20 31

The integer part of the first operand is shifted right the number of
bits specified by the second operand address. Bits 12-15 of the
instruction are ignored.

The second operand address is not used to address data:; its low-order
six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

The sign of the first operand remains unchanged. All 31 integer bits
of the operand participate in the right-shift. Bits equal to the sign
are supplied to the vacated high-order bit positions. Low-order bits are
shifted out without inspection and are lost.

Resulting Condition Code

Result is O
Result is less than 0
Result is greater than 0

WN~=O

Program Exceptions

None

Programming Notes

A right-shift of one bit position is equivalent to division by 2 with
rounding downward. When an even number is shifted right one position,
the value of the field is that obtained by dividing the wvalue by 2. When
an odd number is shifted right one position, the value of the field is
that obtained by dividing the next lower number by 2.

Shifts of from 31 to 63 bit positions cause the entire integer to be
shifted out of the register. When the entire integer field of a positive
number has been shifted out, the register contains a value of 0. For a
negative number, the register contains a value of -1.

Please refer to the programming notes for SLDA.

8-164

SHIFT RIGHT SINGLE LOGICAL (SRL)

SRL R1,D2(B2) (RS)

| I R 7777771 B 1 D l
| 88 I x dzrr7r770 2 | 2 |
| I 7777771 | |
0 8 12 16 20 31

The first operand is shifted right the number of bits specified by
the second operand address.

The second operand address is not used to address data; its least
significant six bits indicate the number of bit positions to be shifted.
The remainder of the address is ignored.

All 32 bits of the general register specified by Rl participate in
the shift. Least significant bits are shifted out and are lost. Zeros
are supplied to the vacated most-significant register positions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

‘None

Programming Note

Please refer to the programming notes for SLDA.

8-165

START I/0 (SI10)°

SI0O Rl (RR)
| R 222223
| 02 L' 1 rr77/71
| [\777777]
0 8 12 15

An I/0 command is initiated at the addressed I/0 device. The
instruction START I/0 is executed only when the system is in the
supervisor state.

Bits 15 to 31 of Rl identify the device to which the instruction
applies. Bits 0 to 15 are ignored. Device address formats for VS
systems are described in Section 9.7.

Before the instruction is issued, the command table address (CTA)
must be stored in the appropriate entry of the I/0O status table, and the
I/0 command word (IOCW) must be stored in the appropriate entry of the
I/0 command table (IOCT) addressed by the CTA. These structures and
their use by the SIO instruction are described in Chapter 9.

During instruction execution, the I/O operation defined by the
prestored IOCW is presented to the BP, BA, or IOC addressed by the PDA.
These processors may accept or reject the command, as explained in
Section 9.13. Acceptance of the command is indicated by a zero condition
code; rejection, by a nonzero condition code.

It is possible that having been accepted by the addressed BP, BA, or
IOC, the I/O command is 1later rejected because of a condition at the
addressed device, or because the addressed device is nonexistent. This
rejection is reported in the Status Qualifier Byte (SQB), an extension of
the IOSW. The SQB format is described in Section 9.6; types of rejection
reported in the SQB are described in Section 9.15.

When an SIO instruction is completed with a condition code of 0, the
I/0 command is usually carried out; exceptions are noted in the preceding
paragraph. A pending I/0 interruption is established on completion of
the operation. Until the completion interrupt has been received, the
IOCW must not be changed. The IOCW is not changed by the I/0 processors.

8-166

Resulting Condition Code

3

VS15, VS65 VS100
Successful Successful
Not used Not used
Not used IOP busy
BP busy IPC-IN busy

Program Exceptions

Privileged operation

Programming Notes

VS300

Successful
Not used
Not used

IOC busy or nonexistent

The completion of the I/O operation initiated by the SIO is indicated

by an I/0 interruption.

Looping on an

SIO instruction should be avoided

since it may interfere with the operation of the IOP.

Telecommunications (TC) IOPs use the SIO instruction rather than CIO
for memory diagnostic operations.

8-167

STORE (ST)

ST R1,D2(X2,B2) (RX)

50 |1

[|
l l
L I I

0 1

The first operand is stored at the second operand location. The
second operand must be four bytes 1long, and it requires fullword
alignment.

The 32 bits in the general register are placed unchanged at the
second operand location.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

8-168

STORE CHARACTER (STC)

STC R1,D2(X2,B2) (RX)

i [R |
| 42 |1 |
l I |

0 8 1

Bit positions 24-31 of the general register designated as the first

operand are placed at the second operand address. The byte to be stored
is not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)

8-169

STORE CHARACTERS UNDER MASK (STCM)

STCM R1,M3,D2(B2) (RS)

I I R 1
I BE I 1 |
| | |

0 8 1

Bytes selected from the first operand under control of a mask are
placed in contiguous byte locations beginning at the second operand
address.

The contents of the M3 field, bit positions 12-15, are used as a
mask. The four bits of the mask, left to right, correspond one for one
with the four bytes, left to right, of the general register designated by
the Rl field. The bytes corresponding to 1ls in the mask are placed in
the same order in successive and contiguous memory locations beginning
with the location designated by the second operand address. The number
of bytes stored is equal to the number of 1s in the mask. The contents
of the general register remain unchanged.

When the mask is not 0, exceptions associated with storage-operand
access are recognized only for the number of bytes specified by the
mask. When the mask is 0, access exceptions are recognized for one byte.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)

8-170

STORE CONTROL (STCTL)

SICTL R1,R3,D2(B2) (RS)

[[R |
| B6 I 1
| | I
0 8 1

|
I
J

0 31

The set of control registers starting with the control register
designated by the R1 field and ending with the one designated by the R3
field is stored at the locations designated by the second operand address.

The memory area where the contents of the control registers are
placed starts at the location designated by the second operand address
and continues through as many memory words as the number of control
registers specified. The contents of the control registers are stored in
ascending order of their addresses, starting with the control register
designated by the Rl field and continuing up to and including the control
register designated by the R3 field. The contents of the control
registers remain unchanged.

Whenever the memory reference causes an access exception, the
exception is indicated. The second operand must be designated on a word
boundary; otherwise, a specification exception is recognized, and the
operation 1is suppressed. A specification exception will also be
recognized if Rl is numbered higher than R3.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

8-171

STORE (FLOATING-POINT) (STD, STE)

STD R1,D2(X2,B2) (RX, Long)

| I'TrR I x | B | D |
I 60 flol 21 2 | 2 | 2 I
| | | [I | |
0 89 12 16 20 31
STE R1,D2(X2,B2) (RX, Short)

[[TrR I x | B | D |
| 60 il 21 2 | 2 | 2 I
l | | | | |]
0 8 9 12 16 20 31

The first operand is stored at the second operand 1location. The
first operand, a floating-point register, remains unchanged. For SID,
the second operand must be eight bytes in length and fullword aligned.
For STE, the second operand must be four bytes in length and fullword
aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Addressing
Protection (store violation)
Specification

8-172

STORE HALFWORD (STH)

STH R1,D2(X2,B2) (RX)

[I R 1
| 40 [1 |
I | [

0 8 1

The contents of bit positions 16-31 of the general register
designated by the Rl field are placed unchanged at the second operand

location. The second operand is two bytes in length and requires
halfword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
‘Specification

8-173

STORE MULTIPLE (STM)

STM R1,R3,D2(B2) (RS)

I [R |
I 90 I
| I |

0 8 1

et b e

The set of general registers starting with the register specified by
Rl and ending with the register specified by R3 is stored at the
locations designated by the second operand address.

The memory area where the contents of the general registers are
placed starts at the location designated by the second operand address
and continues through as many words as needed.

The general registers are stored in the ascending order of their
addresses, starting with the register specified by Rl and continuing up
to and including the register specified by R3, with Register 0 following
Register 15. The contents of the general registers remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

8-174

STORE SEGMENT CONTROL REGISTER (STSCTL)?

STSCTL R1,R3,D2(B2) (RS)

[' R T R T B T D |

I A4 [121 3 1 2 | 2 I

| [| | | |
0 8 12 16 20 31

The set of segment control registers (SCRs) starting with the
register specified by Rl and ending with the register specified by R3 is
stored at the location designated by the second operand address. Each
segment control register requires eight bytes of data from memory.
Allowable SCR values are 0, 2, 4, and 6.

The memory area where the contents of the SCRs are placed starts at
the location designated by the second operand address and continues
through as many words as needed.

The contents of the SCRs are stored in ascending order of their
addresses, starting with the register specified by Rl and continuing up
to and including the register specified by R3. R3 must be greater than
or equal to Rl. The contents of the SCRs remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Privileged operation
Specification

8-175

SUBTRACT (SR, S)

SR R1,R2 (RR)
['R [rR |
[1B | 1 1 2 |
| I I |
0 8 12 15
S R1,D2(X2,B2) (RX)
! , 'R T x T 8B 1T D]
| 5B Il 11 2 1 2 | 2 |
| | I I | |
0 8 12 16 20 31

The second operand, which must be fullword aligned, is subtracted
from the first operand, and the difference is placed in the first operand
location.

Subtraction is considered to be performed by adding the 1's
complement of the second operand and a low-order 1 to the first
operand. All 32 bits of both operands participate, as in ADD. If the
carry from the sign-bit position and the carry from the high-order
numeric bit position agree, the difference is satisfactory:; if they
disagree, an overflow occurs. The overflow causes a program interruption
when the fixed-point overflow mask bit is set to 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is greater than 0
Overflow

wWwNe=O

Program Exceptions

Specification
Access (fetch, operand 2 of S only)
Fixed-point overflow

Programming Notes

The use of the 1l's complement and the low-order 1 instead of the 2's
complement of the second operand is necessary for proper recognition of
overflow when the maximum negative number is subtracted.

When in the RR format the Rl and R2 fields designate the same
register, subtracting is equivalent to clearing the register.

Subtracting a maximum negative number from another maximum negative
number gives a result of 0 and no overflow.

8-176

SUBTRACT DECIMAL (SP)

SP DI1(L1,Bl),D2(L2,B2) (SS)

I ' T ¢ T B 1/7/m1 B 1/7/D |
| FB [11 2 | 1 | 1l 2 | 2 |
| | I | V77 | 7 7 |
0 8 12 16 20 32 36 47

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location.

Subtraction is algebraic, taking into account the signs and all
digits of both operands. SUBTRACT DECIMAL is similar to ADD DECIMAL,
except that the sign of the second operand is changed from positive to
negative or from negative to positive after the operand is obtained from
memory and before the arithmetic is performed.

The sign of the difference is determined by the rules of algebra.

L1 and L2 are the operand lengths in bytes, minus 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is geater than 0
Overflow

w N =O

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Decimal overflow

Programming Note

The operands of SUBTRACT DECIMAL may overlap when their least
significant bytes coincide, even when their lengths are unequal. This
property may be used to set to 0 an entire field or the least significant
part of a field.

8-177

SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ)

SOR R1,R2 (RR)
['R T rR 1
| 3B I 1 | 2 |
I l l |
0 8 12 15
SO R1,D2(X2,B2) (RX)
I 'R T x T B 1 D |
| 7B I 121 2 1 2 | 2 I
| | | | | I
0 8 12 16 20 31

The second operand is subtracted from the first operand, and the
normalized difference is placed in the first operand location. Fullword
alignment is required.

The SUBTRACT DECIMAL (FLOATING-POINT) instruction is similar to ADD
DECIMAL (FLOATING-POINT), except that the sign of the second operand is
inverted before addition.

The sign of the difference is derived by the rules of algebra. The
sign of a difference with zero result fraction is always positive.

Resulting Condition Code

0 Result fraction is 0
1 Result fraction is less than O
2 Result fraction is greater than 0

Program Exceptions

Specification

Data

Significance
Exponent overflow
Exponent underflow
Access (SQ only)

8-178

SUBTRACT HALFWORD (SH)

SH R1,D2,(X2,B2) (RX)

[T R |
[4B | 1|
| I I

0 8 1

D]
|
|
1

X
2

I
I
I
2 1

6 0 3

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location. The second operand
is two bytes in length, must be halfword aligned, and is considered to be
a 16-bit signed integer.

The second operand is expanded to 32 bits before the subtraction by
propagating the sign-bit value through the 16 high-order bit positions.

Subtraction is considered to be performed by adding the 1's
complement of the expanded second operand and a low-order 1 to the first
operand. All 32 bits of both operands participate, as in ADD. If the
carry from the sign-bit position and the carry from the high-order
numeric bit position agree, the difference is satisfactory: if they
disagree, an overflow occurs. The overflow causes a program interruption
when the fixed-point overflow mask bit is 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is greater than 0
Overflow

wNHO

Program Exceptions

Access (fetch, operand 2)
Fixed-point overflow
Specification

8-179

SUBTRACT LOGICAL (SLR, SL)

SLR R1,R2 (RR)

{ [R I R |

| 1F I 11 21

| | I]

0 ~ 8 12 15
SL R1,D2(X2,B2) (RX)

| Il R I x T B 1 D |
| 5F I 11 21 21 2 |
[| | | | |
0 8 12 16 20 31

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location. The occurrence of a
carry from the sign position is recorded in the condition code.

Logical subtraction is considered to be performed by adding the 1l's
complement of the second operand and a low-order 1 to the first operand.
All 32 bits of both operands participate, without further change to the
resulting leftmost bit position.

If a carry from the sign position occurs, the leftmost bit of the
condition code is made 1. In the absence of a carry, the left bit is
made 0. When the sum is 0, the rightmost bit of the condition code is
made 0. A nonzero sum is indicated by a 1 in the rightmost bit.

The second operand of the SL instruction requires fullword alignment.

Resulting Condition Code

Difference is not 0 (no carry)
Difference is 0 (carry)
Difference is not 0 (carry)

whNhNHO

Program Exceptions

Specification
Access (fetch, operand 2 for SL)

8-180

SUBTRACT NORMALIZED (FLOATING-POINT) (SDR, SER, SD, SE)

SDR R1l,R2 (RR, Long)

| TR T R 1

| 2B ol 11 2 |

[|| | |

0 8,9 12 15

SER R1,R2 (RR, Short)

! TR I R |

| 2B il 11 2 |

| | 1 I |

0 8,9 12 15

SD R1,D2(X2,B2 (RX, Long))

| TTrR T x T B |1 D |
I 6B lol 21 2 | 2 | 2 I
L L1 | | |
0 8,9 12 16 20 31
SE R1,D2(X2,B2 (RX, Short)

[I'TR I x T B |1 D]
| 6B il 21 2 | 2 | 2 I
l | 1 | I I |
0 8,9 12 16 20 31

The second operand is subtracted from the first operand, and the
normalized difference is placed in the first operand location.

SUBTRACT is similar to ADD NORMALIZED, except that the sign of the
second operand is inverted before addition.

The sign of the difference is derived according to the rules of
algebra. The sign of a difference with a zero result fraction is always
positive.

The second operand of the SD instruction requires fullword alignment
and is eight bytes long.

Resulting Condition Code

Result fraction is O
Result is less than O
Result is greater than 0

w N -O

8-181

Program Exceptions

Specification
Significance
Exponent overflow
Exponent underflow
Access

8-182

SUPERVISOR CALL (SVC)

(]

| 0A

If the high-order byte of the Supervisor Call New PCW is less than
the value in Bits 8-15 of the instruction, the instruction 1is suppressed
with a supervisor call range program exception. Otherwise, the system
stack vector 1is retrieved from General Register 15 and Control Register
2. The stack pointer (Register 15) is decremented by 8. The
currently-active PCW is stored in the eight bytes addressed by the
decremented stack pointer. The value in Bits 8-15 of the instruction are
placed in the interruption code field of the PCW just stored. Then
pushed onto the stack is a byte consisting of four high-order =zeros,
followed by the three PCW process level bits, followed by a binary 1,
which indicates a SVC-type save area. Then the three low-order bytes of
Control Register 1 are pushed onto the stack, followed by the contents of
General Registers 14 to 0. The three low-order bytes of Control Register
1 are then set to the value of the updated stack pointer, with a
high-order byte of binary 0Os. The high-order word of the Supervisor Call
New PCW is then added to four times the contents of bit positions 8 to 15
of the instruction, and the word at the resulting address (which must be
the address of a fullword present in main memory, not page faulted)
becomes the current PCW address portion. The second word of the
Supervisor Call New PCW becomes the current PCW status portion.

Neither SVC or SVCX, alone or paired, can cause a change of process
level.

Resulting Condition Code

The condition code is replaced by the condition code in the new PCW.

Program Exceptions

Stack overflow

Access (store, bytes pushed on to stack; fetch, address word to
become current PCW address portion)

Specification

Supervisor call range

8-183

SUPERVISOR CALL EXIT (SVCX)PF

SVCX (RR)
[222272
I 27 |1 zz777/71
I I 1777717]
0 8 12 15

General Registers 0 through 14 are loaded from the words addressed by
Control Register 1. Control register 1 is loaded from the word above
these (beginning 60 bytes above the word addressed by Control Register
1). The high-order byte of Control Register 1 is set to binary 0.
General Register 15 is loaded with the value in the general register
specified by the Rl field of the instruction. The active PCW is replaced
by the two words on the system stack starting 64 bytes above the word
that had been addressed by Control Register 1 before it was updated.

Resulting Condition Code

The condition code is replaced by that in the new PCW.

Program Exceptions

Access (fetch, bytes on stack)
Privileged operation
Specification

8-184

TEST UNDER MASK (TM)

T D1(B1l),I2 (SI1)

| | I T B 1 D]
| 91 | 2 [1 |
| | | |]
0 8 16 20 31

The state of the first operand bits selected by a mask is used to set
the condition code.

The byte of immediate data, I2, is used as an 8-bit mask. The bits
of the mask are made to correspond one for one with the bits of the
character in memory specified by the first operand address.

A mask bit of 1 indicates that the memory bit is to be tested. When
the mask bit is 0, the memory bit is ignored. When all memory bits thus
selected are 0, the condition code is made 0. The condition code is also
made 0 when the mask is all 0Os. When the selected bits are all 1ls, the
code is made 3; otherwise, the code is made 1. The character or
characters in memory or the registers are not changed.

Resulting Condition Code

Selected bits all 0; mask is all 0Os
Selected bits mixed 0s and 1s

Selected bits all 1

wiNe=Oo

Program Exceptions

Access (fetch, operand 1)

8-185

TRANSLATE (TR)

TR DI1(L,B1),D2(B2) (SS)

[[' 8 T/7/7+sn1 B 177D 1
| DC I L [1l 2 | 2 |
| I I | 77 | L/ / |
0 8 16 20 32 36 47

The 8-bit bytes of the first operand are used as arguments to
reference the 1list designated by the second operand address. Each
function byte selected from the list replaces the corresponding argument
in the first operand.

The bytes of the first operand are selected one by one for
translation, proceeding left to right. Each argument byte is added to
the initial second operand address, in the 1least significant bit
positions. The sum is used as the address of the function byte, which
then replaces the original argument byte.

All result data is wvalid. The operation proceeds until the first
operand field is exhausted. The list is not altered unless an overlap
occurs.

L. is the length of operand 1, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operands 1 and 2; store, operand 1)

Programming Note

A table length of 256 bytes is recommended as matching the full range
of values that an argument byte can assume (i.e., 0 through 255). The
starting address of the table must be at least 256 bytes away from the
end of the program's legal memory area because the instruction assumes
that the table is potentially 256 bytes long. This restriction is easily
met by allocating 256 bytes for the table or placing it near the
beginning of a program's legal memory.

8-186

TRANSLATE AND TEST (TRT)

TRT D1(L,B1),D2(B2) (S8)

| | [B [Ts7mI B 177D |
I DD | L I 1 | il 2 | 2 |
I I I | 77 | l/ / |
0 8 16 20 32 36 47

The 8-bit bytes of the first operand are used as arguments to
reference the list designated by the second operand address.

The L field is the length of the first operand, minus 1.

Each function byte thus selected from the list is used to determine
the continuation of the operation. When the function byte is a 0, the
operation proceeds by fetching and translating the next argument byte.
When the function byte is nonzero, the operation 1is completed by
inserting the related argument address in General Register 1 and by
inserting the function byte in General Register 2.

The bytes of the first operand are selected one by one for
translation, proceeding from left to right. The first operand remains
unchanged in memory. Fetching of the function byte from the list is
performed as in TRANSLATE. The function byte retrieved from the list is
inspected for the all-zero combination.

When the first operand field is exhausted before a nonzero function
byte is encountered, the operation is completed by setting condition code
0. The contents of General Registers 1 and 2 remain unchanged.

When a function byte is nonzero, the related argument address is
inserted in the low-order 24 bits of General Register 1. This address
points to the argument last translated. The high-order eight bits of
Register 1 remain unchanged. The function byte 1is inserted 1in the
low—-order eight bits of General Register 2. Bits 0-23 of Register 2
remain unchanged. Condition code 1 is set when one or more argument
bytes have not been translated. Condition code 2 1is set if the last
function byte is nonzero.

8-187

Resulting Condition Code

0 All function bytes that have been translated are 0

1 Nonzero function byte found before the first operand field is
exhausted; one or more argument bytes have not been translated

2 The last function byte is nonzero
3 _

Program Exceptions

Access (fetch, operands 1 and 2)

Programming Note

The instruction TRANSLATE AND TEST may be used to scan the first
operand for characters with special meaning. The second operand, or
list, is set up with all-zero function bytes for those characters to be
skipped over and with nonzero function bytes for the characters to be
detected.

8-188

UNPACK (UNPK)

UNPK DI1(L1,Bl),D2(L2,B2) (SS)

[Il v I v I B8 IT7ml B 177D |
I F3 11 2 1 1 | il 2 | 2 |
| I I I | 77 | lr 7 |
0 8 12 16 20 32 36 a7

The format of the second operand is changed from packed to zoned
form, and the result is placed in the first operand location.

The digits and sign of the packed operand are placed unchanged in the
first operand location, using the external format. Zones with coding
0011 are supplied for all bytes except the low-order byte, which receives
the sign of the packed operand. The operand digits are not checked for
valid codes.

The fields are processed right to left. The second operand is
extended with high-order 0Os before unpacking, if necessary. If the first
operand field is too short to contain all significant digits of the
second operand, the remaining high-order digits are ignored. The first
and second operand fields may overlap; if so, they are processed by
storing the first result byte immediately after the rightmost operand
byte is fetched; for the remaining operand bytes, two result bytes are
stored immediately after one byte is fetched.

L1l and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

8-189

UNPACK UNSIGNED (UNPU)

UNPU D1(L1,Bl),D2(L2,B2) (SS)

[l' o T T B T/7mT B I77D |

| F4 I 1 | 2 | 1 | 1l 2| 2 |

| | | | | 77 | 7 7 |
0 8 12 16 20 32 36 47

The format of the second operand is changed from packed to external,
and the result is placed in the first operand location.

The digits of the packed operand are converted to ASCII form and are
placed in the first operand 1location. Zones with coding 0011 are
supplied for all bytes. The sign of the second operand is ignored. No
sign character is supplied in the result.

The fields are processed right to left. The second operand is
extended with high-order 0Os before unpacking, if necessary. If the first
operand field is too short to contain all significant digits of the
second operand, the remaining high-order digits are ignored. The first
and second operand fields may overlap and are processed by storing the
first result byte immediately after the rightmost operand byte is
fetched; for the remaining operand bytes, two result bytes are stored
immediately after one byte is fetched.

L1l and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

8-190

UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL)

UNPAL. D1(L1l,Bl),D2(L2,B2) (SS)

[A
| DB I 1
| I I
0 8 1

2

The format of the second operand is changed from packed to character
format with a separate trailing sign character, and the result is placed
in the first operand location.

The second operand is processed from right to left. First the
low-order byte of operand 1 will be filled with either the '+' or '-'
character. If the low-order digit position of the last byte of operand 2
is 1101, the character will be '-'; otherwise the character will be '+'.
The digits are then moved from operand 2 to operand 1. The digits are
copied unchanged from the second operand to the first with a zone of 0011
supplied for each digit.

The digits in the source field are not inspected for valid packed
characters and the sign is not inspected for validity.

The fields are processed right to 1left. The second operand is
extended with high-~order zero digits before unpacking, if necessary. If
the first operand field is too short to contain all significant digits of
the second operand, the remaining high-order digits are ignored. The
first and second operand fields may overlap, and are processed by storing
two result bytes immediately after one byte is fetched.

If the receiving field is one byte, only the sign character will be
placed there.

Ll and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

8-191

ZERO AND ADD (ZAP)

ZAap D1(L1,Bl),D2(L2,B2) (SS)

[[o T ol B 1//ml
| F8 | 11 21 11 1|
| I | | 77 |
0 8 12 16 20 3

Il 7 m 1
| 2 |
l 77 |
36 47

B
2

2

The second operand is placed in the first operand location.

The operation is equivalent to an addition to 0. A zero result is
positive. When the most significant digits are lost because of overflow,
an overflow is recognized. If the decimal overflow mask bit is on when
an overflow is recognized, the exception is taken.

Only the second operand is checked for valid sign and digit codes.
Extra Os are supplied if needed on the most significant end. When the
first operand field is too short to contain all significant digits of the
second operand, the most significant digits are lost and the overflow
condition is set. The first and second operand fields may overlap when
the rightmost byte of the first operand field is coincident with or to
the right of the rightmost byte of the second operand.

L1 and L2 are the operand lengths, minus 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

W= O

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Decimal overflow

8-192

8.2 EXTENDED OPERATION CODE INSTRUCTIONS

Opcode X'9B' has been designated a 2-byte opcode. Opcodes X'9B00'
through X'9B7F' are privileged opcodes; X'9B80' through X'9BFF' are not
privileged. Executing an instruction with an undefined opcode in the
range from X'9B00' through X'9B7F' while the privileged-instruction trap
bit in the PCW is set may result in a privileged-instruction interrupt
rather than an invalid-operation interrupt.

8-193

STORE CP TYPE AND MICROCODE VERSION (STCPID)

STCPID R1 (S)

[| IR 77777777772777177777777]
| 9B | 80 V' 1 N777772707772777777777777]
| | I 1/7777771171171777117717]
0 8 16 20 31

A 2-byte code, representing the current CP type and current microcode
version, is stored in a general register.

Bits 0-15 of general register Rl are set to 0. The CP type code is
stored in Bits 16-23 of register Rl; the current microcode version number
is stored in Bits 24-31 of register RI.

Current CP type codes are: for the VS15, 5; for the VS65, 7; for the
VS100, 4; and for the VS300, 8.

Resulting Condition Code

For the current VS processors, the condition code remains unchanged.

Program Exceptions

None

Programming Note

Bits 0-15 of general register R1l, Bits 20-31 of this ingstruction, and
condition code values other than 0 are reserved. They may eventually be
used to indicate any optional features present in a particular processor,
or for other purposes.

8-194

STORE DIAGNOSTIC DATA (STDD)?

STDD D1(B1) (S)

I |
| 9B | 00

0 8

= | — — —]

Diagnostic information, including the contents of general and control
registers, is stored starting at the location specified by the operand 1
address. This address is not translated. (It is a physical main memory
address.) Operand 1 must be fullword aligned, or a specification
exception will occur and the instruction will be suppressed.

Diagnostic data 1s stored in the order shown below. (The
parenthetical values in each diagram give the register length in bits.)
On VS15 class systems only, floating-point registers, control registers,
file registers, and general registers are stored with high-order and
low-order halfwords reversed.

VS15

Data Item (and Decimal Size) Byte Offset
from Operand 1 Address

i 32 File Registers (16) E X'0!

! 4 Floating-Point Registers (64) I X'40"

} Control Registers 0-7 (32) { X'60"

} 32 CP Work Registers (16) : X'80’

| 16 General Registers (32) | x'co

i 4 Segment Control Registers (64) E X'100'

| 64 Monitor Area Registers (16) | x'120°

i 32 Reserved Registers (16) ! X'1A0!

| Control Registers 8-15 (32) | x'1E0'-X'200"'

8-195

VS65

Data Item (and Decimal Size) Byte Offset
from Operand 1 Address

i 32 BANKO File Registers (16) ! X'0!'

I 16 General Registers (32) } X'40'

} 48 BANK1 File Registers (16) 1I X'80"

} 4 Floating-Point Registers (64) : X'E0’

} 32 BANK2 File Registers (16) jI X'100'

} 16 Control Registers (32) { X'140'

} 18 BANK3 File Registers (16) 7I X'180"

| 4 Segment Control Registers (64) | X'l1E0'-X'200'

8-196

VS100

Data Item (and Decimal Size)

Byte Offset
from Operand 1 Address

16 General Registers (32)

16 Control Registers (32)

32 BANKO File Registers (32)

4 Floating-Point Registers (64)

4 Segment Control Registers (64)

Memory Size

Reserved

VS Monitor Area Origin

VM Monitor Index

32 BANKLl File Registers (32)

——1——1——-—————‘—*—————————-——1———1——‘

T-RAM Monitor Area

e e e e e e e e e s e e e e e e e e — e)

8-197

X'0'

X'40'

X'80'

X'100'

X'120'

X'140'

X'144'

X'178'

X'17C!'

X'180'

X'200'-X'400"'

VS300

Data Item (and Decimal Size) Byte Offset
from Operand 1 Address

I i

| 16 General Registers (32) | x'0°
I |

| 16 Control Registers (32) | x140°'
[|

| Reserved | x'80'
[|

| 4 Floating-Point Registers (64) | X'100'
! l

| 4 Segment Control Registers (64) | X'120'

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 1)
Specification
Privileged operation

8-198

STORE EXTENDED CP TYPE AND MICROCODE VERSION (STLCPID)

STLCPID R1 (S)

| | T R T7r7777777707277777777777]
| 9B | 83 | 12 Nz7777277220722777127777]
| | | [/7777277777771717117717)]
0 8 16 20 31

Three bytes of information, indicating the CP type, major version of
the microcode and minor version, are stored in a general register.

Bits 0-6 of register Rl are reserved for future use. Bit 7 indicates
a 16M virtual address when set to 1, an 8M virtual address space when set
to 0. The CP type, currently denoted by a single digit, is stored right-
justified in Bits 8-15 of register Rl; the major microcode version
number, consisting of two digits, is stored in Bits 16-23; the minor
microcode version number, consisting of two digits, is stored in Bits
24-31.

Identifying numbers for the CP types are: for the VS15, 5; for the
VS65, 7; for the VS100, 4; and for the VS300, 8.

Resulting Condition Code

For the current VS processors, the condition code remains unchanged.

Program Exceptions

None

8-199

STORE RING NUMBER (STRING)®

STRING Rl (S)

[[I R 17777777777777777777777]
| 9B | 85 V1 Nr7777777772772277722772771
| I | 77777711127747717771717]
0 8 16 20 31

The ring number (i.e., process 1level) of the current process is
stored in a general register.

The ring number, consisting of a single digit, is stored
right-justified in general register Rl.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

8-200

CHAPTER 9
INPUT/OUTPUT OPERATION

9.1 INTRODUCTION

This chapter describes the control data that is passed between the CP
and I/0 processors to control the I/O operations initiated by the START
I/0, CONTROL 1/0, and HALT I/0 machine instructions.

In this chapter, the term "I/O processors" refers to processors that
serve as an interface between the CP and device processors. In the
context of VS15 and VS65 systems, the term refers to the Bus Processor
(BP); in the context of the VS100 system, the term refers to the Bus
Adapter (BA) in combination with the IOP; in the context of the VS300
system, the term refers to the I/O Controller (IOC).

Two items of control data, the I/0 Command Word (IOCW) and I/O Status
words (IOSW) include fields whose contents are device-specific. This
chapter describes only those fields of the IOCW and IOSW whose definition
is the same for all devices. Device specific fields are described in
Chapters 10 through 13.

9.2 SUMMARY OF DATA TRANSFER OPERATIONS

The following outline of a data transfer operation is provided to
indicate the functional relationship between the various control data
items described later in the chapter. Certain phases of I/0 operations
are described more fully in Sections 9.14 through 9.18.

To initiate the data transfer operation, the CP executes the
privileged START I/0O (SIO) instruction. Before execution of this
instruction, the operating system has placed an I/0 command word (IOCW)
in an I/0 Command Table (IOCT) that resides in main memory. This word
specifies the I/O operation to be performed (e.g., Read, Write), the
location of the data to be transferred, the size of the data, and other
information. The operating system has also placed in main memory a
Command Table Address (CTA), which points to the IOCT.

During execution of the START I/0 instruction, the CP presents an I/0
request to the I/0O processor. On the VS15 and VS65 systems, the CP
places in a shared main memory area the physical device address (PDA) of
the device involved and an IOCW. On VS100 and and VS300 systems, the CP
sends the PDA to an internal register of the I/0 processor; using the PDA
and CTA, the I/0 processor can locate the appropriate IOCW in main memory.

9-1

When presented with an I/0 request, The I/0 processor may be
available or busy, and accepts or rejects the request accordingly. After
determining the disposition of the request, the CP reports its
acceptance or rejection through the condition code of the PCW. There is
no further communication between the CP and I/0 processor until the I/O
Processor interrupts the CP to signal completion of the I/O operation.

Before issuing the interrupt, the I/0 processor stores an I/0 status
word in a status table that starts at main memory Location X'90'. Bit
settings in the IOSW indicate successful completion of the I/0 operation
or an error completion and the nature of that error. An extension of the
IOSW, called a Status Qualifier Byte (SQB), may indicate that an I/0
request, after being accepted by the I/O processor, was subsequently
rejected because the device addressed by the request was not available.

When granting an interrupt, the CP locates the IOSW that has been

stored in the I/O status table, and copies the IOSW to main memory
Location X'00' for access by the interrupt handler.

NOTE

I/0 processors do not perform address translation.
Therefore, all addresses passed between the Central and I/0
processors must be physical.

9-2

9.3 MAIN MEMORY ASSIGNMENTS FOR INTERPROCESSOR COMMUNICATIONS

Table 9-1 summarizes permanent memory assignments for I/0 control
data:

Table 9-1. Permanent Memory Assignments

Written
Location Data Item By System
X'00-07"' IOSW CP VS15, VS65, VS100, VS300
X'50' SQOB CP VS15, VS6S, VS100, VS300
X'80-81" PDA cp VS15, VS65, VS100, VS300
X'82-8F' (for VS100 and VS300, area reserved for system
use; for VS15, VS65: CP-BP communications area)

X'90' (DAST) IOSwW, SOB BP VS15, VS65

CTA 0s? " "
X'90' (IOPST) IOSW I0p VS100

CTAa os® "
X'90* (IOCST) IOSW, SQB, PDA I0C VS300

CTA os? "
per CTA (IOCT) IOCW 0s? VS15, VS65, VS100, VS300

a

Operating System

9.3.1 CP-BP Communications Area

As indicated by Table 9-1, Locations X'82-8F' are used on VS15 and
VS65 systems for communication between the CP and Bus Processor (BP).
The CP-BP communications area is defined in Table 9-2.

9-3

Table 9-2. CP-BP Communications Area

Location Description
X'82'-X'83" Here the BP pre-stores for the CP the PDA
associated with an upcoming interrupt.
X'84-X'8C' Here the CP stores for the BP any IOCW
associated with the current command.
X'8D' Here the CP stores one of the following
command bytes:
00 = Alert
01 = SIO
02 = HIO
03 = CIO
X'8E'-X'8F' Here the CP stores for the BP the physical

address of the device associated with the
current command.

9.4 I/0 STATUS TABLE

On all VS systems, an I/0 status table starting at Location X'90'
receives status information on completed I/0 operations. On VS15 and
VS65 systems, there are as many table entries as supported Device
Adapters; on VS100 systems, there are as many table entries as supported
IOPs; on the VS300 system, there are as many table entries as supported
ICCs.

Table entries are 16 bytes in length. The entry format differs among
VS systems, as indicated in the following sections. Common to all
formats is a field for the IOSW and for the Command Table Address (CTA).

The I/0 processor pre-stores the IOSW in a table entry before
signaling an interrupt to the CP. Then the CP, granting the interrupt,
copies the IOSW from the table entry to Location X'00'.

The Command Table address (CTA) points to the IOCT associated with
the I/0 processor specified by the I/O instruction. The operating system
places the CTA in the table before a SIO or CIO machine instruction
initiates an I/0 operation.

9.4.1. VS15, VS65 Device Adapter Status Table (DAST)

The DAST comprises six 16-byte entries —-— one entry for each Device
Adapter (DA) supported by the system. The entries are arranged in
ascending order by DA number. Figure 9-1 shows the format of each entry.

[[s] [
I 10sW |Ql ResvlcTal
| IBI]
bytes 0 8 9 13 15

Figure 9-1. DA Status Table (DAST) Entry

The BP pre-stores in the table the Status Qualifier Byte (Byte 8)
along with the IOSW. The format and function of the SQB is described in
Section 9.6. The CP, when granting an I/0 interrupt, copies the IOSW to
Location X'00' and the SQB to Location X'50'.

Immediately following the SQB is a four-byte area reserved for system
use.

9.4.2 VS100 IOP Status Table (IOPST)

The IOP Status Table (IOPST) comprises sixteen 16~byte entries —-— one
entry for each IOP supported by the system. The entries are arranged
from IOP0-IOP7 on BAl, then from IOPO-IOP7 on BA2. Figure 9-2 shows the
format of each entry.

I I 1
| I0SW | ResvicrTal

|

bytes 0 8 13 15

Figure 9-2. 1IOP Status Table (IOPST) for the VS100

9-5

9.4.3 VS300 IOC Status Table (IOCST)

The IOC Status Table (IOCST) comprises fifteen 16-byte entries —— one
entry for each IOC supported by the system. The entries are arranged
from IOC1-IOC15 on System Bus Interface (SBI) 0. Figure 9-3 shows the
format of each entry.

| IOSW

@ (WiIo N
wlqd 0 1

bytes 0
Figure 9-3. IOC Status Table (IOCST) Entry

The SQB (Byte 8) includes an IOSW Activé Flag bit, as described in
Section 9.6.2

9.5 I/0 COMMAND TABLE (IOCT)

There is an IOCT for each I/O processor; it is addressed by the
Command Table Address (CTA) field of the I/0 status table entry for the
same processor. The IOCT may begin at any doubleword-aligned address in
main memory, and consists of one 16-byte entry for each device attached
to the processor. The entries are arranged from logical device number 0
to the highest 1logical device number supported by the particular
processor.

Each IOCT entry begins with a 9-byte IOCW for the particular device.
The next four bytes are reserved for use by the operating system. The
operating system uses Bytes 13-15 for the Unit Control Block Address
(UCBA) for the device, thereby establishing a direct link between the
device address and the device's UCB.

Figure 9-4 shows the format of each IOCT entry.

I [[I
| IOCW IRes'dlucBal

bytes 0 9 13 15

Figure 9-4. 1I/0 Command Table (IOCT)

9-6

9.6 STATUS QUALIFIER BYTE (SQOB)

An I/0 command initiated by the SIO, CIO, or HIO instructions can be
accepted or rejected at two stages: 1) When presented by the CP to the
I/0 processor, or 2) When the I/O processor passes the order to the
device specified in the instruction.

The CP reports on the I/0 command's initial acceptance or rejection
(Stage 1) through setting the condition code for the I/0 instruction.
Having set the condition code, the CP executes the next instruction; it
does not wait to determine whether the I/0 command has been finally
accepted (Stage 2) before setting the condition code.

The I/0 processor reports any later rejection of the I/0 command
(Stage 2) in the Status Qualifier Byte (SQB) that it writes along with
every IOSW. For VS15, VS65, and VS100 systems, a nonzero SQB indicates
rejection of the last I/0 command directed to the device. On the VS300,
a SOB value other than X'80' indicates rejection.

The following sections describe the format and bit definitions of
SQBs. Sections 9.14 and 9.15 describe in more detail the conditions
under which I/0 commands are accepted and rejected.

9.6.1 VS15, VS65, VS100 Status Qualifier Byte

Figure 9-5 shows the format of the SQB for VS15, VS65, and VS100
systems.

[IRIRIRI]
fool Resv INIDIII
P IDIBIP|
bits 0 2 56 7

Figure 9-5. Status Qualifier Byte (SQB)

Bits 5-7, when set to one, have the following significance:

Bit 5 (RND) Rejected -- nonexistent device. A SIO or CIO command
has been rejected because the device specified by
the command is nonexistent.

Bit 6 (RDB) Rejected —— device busy. A CIO or SIO command has
been rejected because the particular device is still
executing a previous command. The RDB bit is not set
after the rejection of a HIO instruction.

Bit 7 (RIP) Rejected —— interrupt pending. A CIO or SIO command
has been rejected because the particular device has
an unsolicited interrupt to report but the 1I/O
processor has not yet raised its request line (i.e.,
has not yet stored the unsolicited IOSW in the I/0
status table). An HIO instruction is ignored in this
case.

9.6.2 V300 Status Qualifier Byte

Figure 9-6 shows the format of the SQB for the VS300 system.

oW o
N H®D

F |
L | resv |
G |

wio 2™

bits 0 1

Figure 9-6. VS300 Status Qualifier Byte (SQB)

Bit 0 of the SQB is the IOSW Active Flag. When pre-storing the IOSW
and SQB in the IOC Status Table (IOCST), the IOC sets the flag bit to 1;
then signals an interrupt. The CP, processing the interrupt, scans the
IOCST for an entry whose flag bit is set to one. Having located that
entry, the CP sets the flag bit to 0, then copies the IOSW and SQB stored
there to main memory Locations X'00' and X'50', respectively.

Section 9.6.1 describes the significance of Bits 5-7 when they are
set to 1.

9.7 PHYSICAL DEVICE ADDRESS (PDA)

The general register specified in a SIO, CIO, or HIO instruction
holds a 16-bit physical address of the device involved in the I/0
operation. The CP passes this physical device address (PDA) to the I/0
processor when initiating an I/O operation; the I/0O processor passes the
PDA to the CP when signalling an interrupt. Because of variations in VS
system architecture, there are several forms of the PDA, each described
in a following section.

9-8

9.7.1 VS15, VS65 PDA

On VS15 and VS65 systems, the PDA is defined as shown in Figure 9-7.

[T 1 |
|BP#=DA#| logical device# |
| |

bits 0 3 6 15

Figure 9-7. VS15, VS65 PDA

The only value allowed for Bits 0-2, which specify the Bus Processor
(BP), is '001'.

Bits 3-5 specify one of seven Device Adapters (DAs). The wvalue '000’
must be specified for the diskette DA; '0l10' for the serial device DA
supporting Workstation 0. The remaining wvalid values can be assigned to
any type of DA.

Bits 6-15 specify the logical device number (LDN) on the DA. Current
DAs do not support the potential 10-bit range of LDNs, and reject
instructions containing LDNs that are out of range.

9.7.2 VS100 PDA

On the VS100 system, the PDA is defined as shown in Figure 9-8.

[T 1 |
IBA#:IOPl Logical Device# |

L1 # | |
0

3 6 15

bits

Figure 9-8. VS100 PDA

The values allowed for Bits 0-2, which specify the Bus Adapter (BA)
are '001' (BAl) or '010' (BA2).

Bits 3-5 specify the IOP, in the range '000' (IOPQO) to '111' (IOP7):
the BA interprets Bits 3-5 as indicative of IOP position on the outboard
bus.

Bits 6-15 specify the 1logical device number (LDN) on the IOP.

Current IOPs do not support the potential 10-bit range of LDNs, and
reject instructions containing LDNs that are out of range.

9-9

9.7.3 VS300 PDA

On the VS300 system, the PDA is defined as shown in Figure 9-9.

[

| logical device# |
[l
6 15

Figure 9-9. VS300 PDA
There is no field that specifies a System Bus Interface (SBI) number,
because SBIO is assumed.

Bits 0-5 specify the I/0 Controller (IOC) number (starting at 1) plus
7. Allowable values for this field are 8-22.

Bits 6-15 specify the 1logical device number (LDN) on the IOC.

Current IOCs do not support the potential 10-bit range of LDNs, and
reject instructions containing LDNs that are out of range.

9.8 I/0 COMMAND WORD (IOCW) FOR SIO INSTRUCTION

The IOCW specifies the command to be executed. For SIO commands
initiating data transfer, it designates the storage area associated with
the operation. The IOCW is contained in the IOCT entry for the device
specified in the SIO instruction.

NOTE

From the time an SIO is accepted until the clearing of the
resulting I/0 completion interrupt, the IOCW must not be
changed. Neither the device nor the I/0 processor will
change the IOCW.

9-10

The IOCW consists of a 6-byte general section and a variable-length
device-dependent section, as shown in Figure 9-10. The device-dependent
section can be of any length up to three bytes, but is fixed for each
device. The IOCW must be fullword-aligned.

[[
| Command | Data address
| code |
bits 0 8 31
byte 0 1 3
| / / |
Data count | device-dependent section |
| // |
bits 32 48 end
byte 4 6

Figure 9-10. I/0 Command Word (IOCW) Format

The fields in the IOCW are allocated as follows:

e Command code —— Bits 0-7 specify the operation to be performed.

¢ Data address -— Bits 8-31 specify a fullword-aligned physical
memory address. This address is the beginning of the data area
for the specified operation, or is the beginning of an indirect
data address list, which in turn specifies the data areas for the
operation.

e Data count field (DC) -- Bits 32-47 specify the number of 8-bit
byte locations in memory to be transmitted either to or from the
device. The data length may be up to 64K, minus 1.

OWhen the IOCW contains an invalid field, an I/O interrupt is generated
with the invalid condition indicated in the IOSW.

9.8.1 Command Code

The command code, bit positions 0-7 of the IOCW, specifies to the I/O
device the operation to be performed.

Bits 0 and 1 of the command code are the command type, and Bits 2-7
are the command modifier bits. The following four command types are
defined: ’

Reserved - '00'
Read - 'o1°
Write - '10'
Control - '11'

9-11

A Control command is used to initiate an operation that does not
involve transfer of data, such as Seek or Write Tape Mark. For most
control functions, the entire operation is specified by the modifier bits
in the command code. If the command code does not specify the entire
control function, the device-dependent field of the IOCW can be used.
The data address field is always ignored for a control command.

9.8.2 Command Modifier Bits

The use of the modifier bits is device dependent. The modifier bits
of the command specify to the device how the command is to be executed.
The fifth modifier bit (Bit 6 of the command code) is set to indicate
indirect data addressing for those devices supporting that option.

9.8.3 Definition of Storage Area

The IOCW defines a main memory area associated with an I/0 operation
by specifying the fullword-aligned address of the first byte to be
transferred and the number of consecutive bytes contained in the area.
The address of the first byte appears in the data-address field of the
IOCW, unless indirect data addressing is specified. For indirect data
addressing, the data address field of the IOCW addresses the beginning of
the first entry of an indirect data address list. The number of bytes
contained in the memory area is the data count (DC).

If the IOCW refers to a location not provided in the system, an I/O
interrupt is generated with the 'memory address error"” condition
indicated in the IOSW.

Programming Note

A malfunction that affects the validity of data transferred in an I/O
operation is signaled at the end of the operation by the stored IOSW. 1In
order to make use of the checking facilities provided in the system, data
read in an input operation should not be used until the end of the
operation has been reached and the wvalidity of the data has been
checked. Similarly, cn writing, the copy of data in main memory should
not be destroyed until the program has verified that no malfunction
affecting the transfer and recording of data was detected.

9.8.4 Indirect Address Lists

Certain devices expedite the transfer of multiple, noncontiguous
pages of data to or from memory by means of an indirect address list, as
indicated by a modifier bit of the command byte of the IOCW. The
indirect address 1list is composed of 4-byte entries, each consisting of a
fullword physical memory address. The IOCW data address field addresses
the start of the indirect address 1list; the list in turn addresses the
data areas for the operation. Data transfer begins into or from the
first address specified and continues until a page (2 KB) boundary is
reached. Data transfer then continues into or from the address specified
in the second and succeeding list entries and continues for the length
specified in the IOCW or wuntil end-of-data at the device occurs.
Theindirect address 1list thus allows the transfer of multiple,
noncontiguous pages of data by means of a single IOCW.

9-12

Certain devices (especially disk devices) may require that the memory
addresses specified in indirect address list entries have up to eleven
low-order 0s (i.e., be aligned on a boundary as large as 2 KB). Refer to
specific device descriptions in Chapters 10-13 for the restrictions
applicable to particular devices.

9.8.5 Device-Dependent Section

The device-dependent section of the IOCW is not required by all
devices. Its length depends on the type of device for which it is used.
One use for this area is the sector address for a disk drive.

9.9 I/0 STATUS WORD (IOSW)

All communication from I/O devices to the system occurs through
IOSWs. An IOSW 1is stored at main memory Location X'00' when the
associated I/0 interrupt is granted. It is from one to eight bytes in
length. The format of the IOSW is shown in Figure 9-11:

[| ! | I device- |
| Generall Error | device- | Residual | dependent |
| status | status | dependent | byte count | (extended) |
bits 0 8 16 32 48 63
byte 0 1 2 4 6 8

Figure 9-11. IOSW Format

Sections 9.9.1 through 9.9.4 provide an overview of the fields in the
IOSW, which are discussed in more detail in Sections 9.10 through 9.12.
One byte of the IOSW, the general status byte, is always stored.
Additional bytes are stored as required by particular devices. A given
type of device always stores an IOSW of the same length.

9.9.1 General Status Byte

The general status byte (Byte 0) is always stored.

Bits Mnemonic Meaning

0 IRQ Intervention required

1 NC Normal completion

2 EC Error completion

3 U Unsolicited

4 PC IOP now ready (VS100 only)
5 DAR Data area early release
6-7 Reserved

9-13

9.9.2 Error Status Byte

The error status byte (Byte 1) is always stored if the error
completion bit is set in the general status byte. This byte may or may
not have any error indications in it if the error completion bit is set.
If any of the conditions 1listed in the error status bits occur, the
corresponding flag is set and the error completion bit is set.

On VS300 systems, if Bit 9 (MPE) or Bit 10 (MAE) is set, IOSW Byte 7
further defines the error condition.

Bits Mnemonic Meaning
8 IC Invalid command
9 MPE Memory parity error
10 MAE ‘Memory address error
11 DM Device malfunction
12 DAM Memory or device damage (error after data
transmission)
13 IL Incorrect length

14-15 PP,DP

=11 (DCT) A device configuration table is required by the
IOP before any normal I/0 operation can be
performed on programmable devices.

=10 (PP) A peripheral processor microprogram 1is required
by the IOP before any normal I/O operation can be
performed on programmable devices.

=01 (DP) A device processor microprogram 1is required by
the IOP before any normal I/O operation can be
performed on programmable devices.

9.9.3 Device-Dependent Status Bytes

The device-dependent status bytes (Bytes 2-3) are different for each
type of I/0 device. Refer to specific descriptions of device types in
Chapters 10-13 for further information on these bytes.

9.9.4 Residual Byte Count

The residual byte count indicates the byte count remaining at the
time of I/0 completion. Not all devices support storing of this count.
If supported, this field is always stored when IL is set. If the device
does not support storing of the residual byte count, it may still set the
IL bit.

9.9.5 Extended Device-Dépendent Status Bytes

On the VS300, Byte 7 is used to define errors indicated by Bit 9
(MPE) and Bit 10 (MAE).

9-14

9.10 GENERAL STATUS BYTE

9.10.1 IRQ —— Intervention Required

This bit is set with Error Completion (EC) and without normal
completion (NC) to indicate that the device was in a not-ready state when
an SIO or CIO instruction was accepted. This condition requires operator
intervention to return the device to the ready state. IRQ is also
indicated when the device becomes not ready during an I/0 operation. In
this case it always appears by itself (no other general status bit set),
and completion 1is indicated 1later, when the "intervention required"
condition has been cleared and the operation has been completed.

9.10.2 NC -- Normal Completion

This bit is set to indicate completion of an I/0 operation without
permanent error. An interruption with NC or EC set will occur exactly
once for each SIO accepted.

9.10.3 EC —— Error Completion

This bit is set to indicate completion with error of an I/O
operation. If NC is also set, the operation was successful after at
least one retry by the device or I/O processor. If the EC bit is set,
the errors detected are indicated in the error status byte or
device-dependent status bytes, whether or not NC is also set. Possible
combinations of NC and EC bit settings are listed below.

NC EC Meaning

0 O Completion not indicated

1 0 Normal completion

0 1 Completion with permanent error
1 1 Completion with corrected error

9.10.4 U —— Unsolicited (Attention/Device Now Ready)

This bit is set when the device signals an unsolicited interrupt. An
unsolicited interrupt is one not caused by I/0 completion; it indicates
that either the device has become available for I/0 operations or that
someone is signaling the CP for attention. This bit may be set with PC.

9.10.5 PC —— IOP Now Ready

This bit is significant only on the VS100. It indicates that an IOP
may now accept an SIO, CIO, or HIO instruction. This bit can be set in
an IOSW associated with any type of interrupt, with other bits, or by
itself. Whenever an I/0 machine instruction 1is rejected with condition
code 2 (IOP BUSY), an interruption with PC set will eventually be
presented. If more than one I/0 machine instruction to devices on the
same IOP is rejected with condition code 2 and no interruptions with PC
set intervene between rejections, then only one interruption with PC set
will be presented.

9-15

9.10.6 DAR —- Data Area Early Release

This bit indicates that the main memory page frame(s) containing a
block of records written to a device will not be re-accessed and may be
paged out by the operating system. No other status bits are set with DAR.

9.11 ERROR STATUS BYTE

9.11.1 IC —— Invalid Command

This indicates that part of the IOCW or the device-dependent control
information was invalid (e.g., invalid command code or invalid data
address alignment). This condition also causes a hard error to be
indicated.

9.11.2 MPE —— Memory Parity Error

A memory parity error is indicated whenever there is a parity error
while the I/0 processor associated with the I/O device is accessing
memory. On VS300 systems, the parity error is further defined in IOSW
Byte 7.

9.11.3 MAE --— Memory Address Error

A memory address error is indicated whenever an attempt is made to an
address outside the available memory on the machine during an I/0
operation. On VS300 systems, the address error is further defined in
IOSW Byte 7.

9.11.4 DM —— Device Malfunction

A device malfunction indicates that an equipment error has occurred
during an I/0 operation or that the I/O operation cannot be completed
normally. A device malfunction is not indicated in the case where
operator intervention will correct the problem. Therefore, device
malfunction is not indicated when Intervention Required (IRQ) is set.

9.11.5 DAM — Memory or Device Damage

This bit indicates that the data transfer was interrupted while in
process and that data either at the device or in memory has been
changed. The receiver of the data transmission has unpredictable data,
and the data must be retransmitted (if possible) to correct the problem.
The device's status may also have changed (e.g., for a magnetic tape, the
tape may have been repositioned). DAM will be set only if the hard error
indication is set.

9-16

9.11.6 IL -— Incorrect Length

This bit is set if the length of the data specified in the data count
of the IOCW and the length of the corresponding item of data at the
device are different. If this bit is set, the normal completion (NC) bit
is also set. If the IL bit is set and the device supports storing of the
residual data count, a valid residual data count will be stored. This
count is zero when the IOCW data count is less than the number of bytes
of data available at the device.

9.11.7 PP and DP —— IOP or Device Code Not Loaded

For IOCs, programmable IOPs, and programmable devices, these two bits
are encoded to indicate that the required microprogram or table for the
I/0 operation is missing or is damaged.

(PP) (DP)
Bit 14 15 Meaning

1 1 A device configuration table is required by the
IOP/IOC in order to process an I/0 operation.

1 0 Microprogram reloading 1is required for the
IOP/IOC.

0 1 Microprogram reloading for the programmable
device is required in order to process an I/0
operation.

9.12 EXTENDED DEVICE SPECIFIC STATUS BYTES (VS300 ONLY)

When the EC and MAE bits are on, IOSW Byte 7 shows one of the
following hexadecimal codes:

Code Meaning
02 Illegal system memory address
10 Illegal system memory page access
20 Illegal I/0 command from IOC

When the EC and MPE bits are on, IOSW Byte 7 shows one of the
following hexadecimal codes:

Code Meaning
01 System memory data error
04 System bus memory read parity error
08 System bus parity error

9-17

9.13 I/0O INSTRUCTIONS

SIO, CIO, and HIO are the privileged assembler instructions that
control I/0O operations. The SIO instruction starts a transfer of data
between main memory and an I/0 device via an I/O processor. The CIO
instruction starts control operations for the I/0 processor, or begins
memory diagnostics or microcode loading or reading. The HIO instruction
halts action started by a previous SIO or CIO. The format of all three
instructions is as follows:

I | [7777]
| Opcode | R1 |////1
L I l7777]
bits 0 8 12 15

Figure 9-12. SIO, CIO, and HIO Instruction Format

The opcode is X'02' for SIO, X'0C' for CIO, and X'03' for HIO. The
general register designated by Rl contains, in its 16 least-significant
bits, the device address of the I/O device involved in the operation.
Physical device addresses are described in Section 9.7.

9.14 INITIATION OF I/0 OPERATIONS

The following sections describe the presentation of an I/0 command by
CP to I/0 processor during execution of a SIO, CIO, or HIO instruction.

9.14.1 Initiation of I/0 Operations —— VS15, VS65

When executing the I/O instruction, the CP locates the appropriate
I/0 Command Table (IOCT) by means of the Command Table Address (CTA)
placed in the Device Adapter Status Table (DAST) prior to instruction
execution. An I/0O Command Word has been placed in the appropriate entry
of the IOCT, also before instruction execution. The CP uses the physical
device address, supplied by the SIO instruction, to index into these two
tables.

The CP places in the BP-CP communications area the IOCW and command
byte, which together define the requested I/O operation, and the PDA.

The CP checks the state of its a I/0 request line to the BP and sets
the condition code as follows:

Condition Code Meaning

Command received by the BP
not used
not used
BP busy

WO

9-18

9.14.2 Initiation of I/0 Operations - VS100

When executing the I/O instruction, the CP locates the appropriate
I/0 Command Table (IOCT) by means of the Command Table Address (CTA)
placed in the IOP Status Table (IOPST) prior to instruction execution.
An I/0 Command Word (IOCW) has been placed in the appropriate entry of
the IOCT, also before instruction execution. The CP uses the physical
device address, supplied by the I/O instruction, to index into these two
tables.

The CP sends a 32-bit IPC message to the Bus Adapter (BA) specified
in the PDA. The message identifies the IOP and device specified in the
I/0 instruction and defines the requested I/0 operation as SIO, CIO, or
HIO.

The BA maintains an IPC-IN register for each IOP. The BA ascertains
whether the IPC-IN register for the specified IOP is available (that is,
whether the IOP has processed the last message in its IPC-IN register).
If the register is available, the BA loads it with the IPC message from
the CP, signals the IOP, and waits for a response from the IOP.

The BA returns an IPC message to the CP, indicating whether the I/0
command has been accepted or rejected. In the case of rejection, the
message indicates two possible causes of rejection: the IPC-IN register
for the IOP was unavailable, or the IOP was busy (that is, did not
respond to the BA's signal).

After receipt of the BA's IPC message, the CP sets the condition code
as follows:

Condition Code . Meaning

Command received by the IOP
not used

. IOP busy

IPC-IN register busy

whhe-=oO

9.14.3 Initiation of 1I/0 Operations —— VS300

When executing the I/0 instruction, the CP locates the appropriate
I/0 Command Table (IOCT) by means of the Command Table Address (CTA)
placed in the IOC Status Table (IOCST) prior to instruction execution.
An I/0 Command Word (IOCW) has been placed in the appropriate entry of
the IOCT, also before instruction execution. The CP uses the physical
device address, supplied by the I/0 instruction, to index into these two
tables.

The CP sends a 32-bit IPC message to the System Bus Interface (SBI).
The message identifies the IOC and device specified in the 1I/0
instruction and defines the requested I/0 operation as SIO, CIO, or HIO.

The SBI determines whether the IPC register of the specified IOC is
available (that is, whether the IOC has processed the last message in its
IPC register). If the register is available, the SBI loads it with the
IPC message from the CP.

The SBI sets a status bit to indicate that the IOC did or did not
receive the IPC message. After inspecting the status bit, the CP sets
the condition code as follows:

Condition Code Meaning
0 Command received by the IQOC
1 not used
2 not used
3 IOC busy or nonexistent

9.15 RECEIPT OF I/0 COMMAND BY I/0O PROCESSOR

When the I/0 processor (BP, IOP, or IOC) receives an I/0 command, it
ascertains the status of the device addressed by the instruction.

There are four possible device states:

1.

No previous command is active at the device and no interrupt
signaled by this device is outstanding.

A device in this state 1is considered available. The I/0
processor accepts an SIO or CIO command for an available device.
A HIO command is ignored; 1it is not acknowledged by an IOSW or
SQB.

The device is busy with a prior command and has not yet signaled
a completion interrupt.

A device in this state is considered busy. The I/0 processor
rejects a SIO or CIO command; it sets the RDB (Rejected —- device
busy) bit in the SQB that it writes after the device signals a
completion interrupt.

A HIO command, if successful, forces termination of the I/O
operation in progress; the I/0 processor stores a completion IOSW
before raising its interrupt line. The SQB for this interrupt
does not indicate any rejection.

The device has signaled an interrupt; the I/0 processor has
stored an IOSW for this interrupt and has raised its request line
to the CP.

A device in this state 1is considered available. The 1I/0

processor accepts the SIO or CIO command. A HIO command is
ignored; it is not acknowledged by an IOSW or SQB.

9-20

4., The device has signaled an unsolicited interrupt for which the
I/0 processor has not yet pre-stored an IOSW.

The I/O processor rejects an SIO or CIO command; it sets the RIP
(Rejected-—-interrupt pending) bit in the SQB that it writes when
pre-storing an IOSW for this interrupt. An HIO command is
ignored; it is not acknowledged by an IOSW or SQB.

9.16 I/0 TERMINATION

An I/0 operation lasts until one of the following events occurs:

The device completes the operation.

A HALT I/0 instruction forces completion.
The device malfunctions.

The system is initialized or reset.

9.16.1 Completion

In the case of a data transfer operation, the device completes the
operation when the number of bytes specified by the IOCW has been
transferred.

9.16.2 Forced Completion

A HALT I/0 instruction, if accepted and successful, immediately
terminates any operation active at the device. Successful termination is
reported by a normal completion IOSW with a nonzero residual byte count:;
an unsuccessful attempt is reported by an error completion IOSW. The HIO
instruction does not clear any pending interrupts generated by the device.

9.16.3 Malfunction

When equipment malfunctioning is detected, the recovery procedure and
the subsequent states of the devices depend on the type of error.
Normally, the device attempts all appropriate error recovery procedures.
If the recovery is successful, the I/0O operation is completed and the
IOSW indicates a corrected error. If the recovery is unsuccessful, the
operation is terminated and a permanent error is indicated in the IOSW.
(The representation of corrected and permanent errors 1is described in
Section 9.10.3.)

9.16.4 System Initialization

All I/0 devices are reset when a system IPL sequence is completed or
when the LOAD button 1is pushed. Resetting causes I/0 devices to
terminate all operations. Status information and interrupt conditions in
the devices are lost. Data transfer operations and control operations
are immediately terminated, and the results are unpredictable.

9-21

9.17 1/0 INTERRUPTIONS

9.17.1 Types of Interruption

I/0 interruptions provide a means for the system to change its state
in response to conditions that occur in I/O devices and I/0 processors.
A general distinction is made between a solicited and unsolicited I/0
interrupt. A solicited interrupt results from completion of an I/O
operation initiated by a SIO, CIO, or HIO instruction. An unsolicited
interrupt results from a condition other than the completion of an I/O
operation, such as operator action at an I/0 device.

On the VS100, there exists a third type of interruption -- IOP NOW
READY. An IOP NOW READY interruption occurs when an IOP becomes
available for an SIO or CIO command after that command was previously
rejected with a condition code of 2 (IOP BUSY).

9.17.2 Priority of Interrupts

All I/0 interrupt requests to the CP are asynchronous with system
activity; interrupt conditions associated with more than one I/0 device
may exist at the same time. Priority among I/0 interrupt requests is
determined by the physical position of the associated I/0 processor in
the hardware configuration, which is determined at installation time.
While the processor is servicing one interrupt, the others remain pending.

9.18 INTERRUPT PROCESSING

9.18.1 Interrupt Processing -— VS15, VS65

At the time of a request for an I/0 interrupt, the BP has already
pre-stored the IOSW, SQB, and PDA in the appropriate locations (refer to
Section 9.3) in main memory.

The CP grants an interrupt after ascertaining the DA and device
number of its origin from the pre-stored PDA. It then copies the IOSW
into Location X'00' of main memory, the SQB into Location X'50', and the
PDA into Location X'80'. Finally, an I/0 interrupt is formally granted
by replacing the current PCW with the New I/0 Interrupt PCW and storing
the replaced PCW in the 0ld I/0 Interrupt PCW location.

9.18.2 Interrupt Processing —- VS100

At the time of a request for an I/0O interrupt, the IOP has already
pre-stored the IOSW in the appropriate slot of the IOPST in main memory
(refer to Section 9.3.) and has pre-stored the appropriate logical device
number, along with the SQB, in the IPC-OUT register of the BA.

9-22

The CP grants an interrupt after ascertaining the BA number and IOP
number of its origin from the Interrupt Request Mask (IRM) of the BA, an
internal register that displays the pending I/O interrupt requests of the
associated IOPs. It then copies the IOSW into Location X'00' of main
memory, the SQB into Location X'50', and the PDA (formed by combining the
BA number, IOP number, and logical device number of the device involved)
into Location X'80'. Finally, an I/0 interrupt is formally granted by
replacing the current PCW with the New I/0 Interrupt PCW and storing the
replaced PCW in the 0ld I/0 Interrupt PCW location.

9.18.3 Interrupt Processing —— VS300

At the time of a request for an I/0 interrupt, the IOC has already
pre-stored the IOSW, SQB, and PDA in the appropriate locations (refer to
Section 9.3) in main memory.

The CP grants an interrupt after ascertaining the IOC of its origin
by scanning the IOSW active bits in the IOCST. It then copies the IOSW
into Location X'00' of main memory, the SQB into Location X'50', and the
PDA into Location X'80'. Finally, an I/O interrupt is formally granted
by replacing the current PCW with the New I/O Interrupt PCW and storing
the replaced PCW in the 0l1d I/O Interrupt PCW location.

9-23

CHAPTER 10
WANG WORKSTATION CHARACTERISTICS

10.1 INTRODUCTION

This chapter describes the control of data transfer between Wang VS
systems and Wang VS serial workstations during data processing operations.

The VS workstation has two main parts, the CRT and the keyboard. The
keyboard described in this chapter is the Wang Universal Keyboard. The
description of keyboard functionality in Sections 10.2.5 through 10.2.7
and in Section 10.3 applies to the Wang model 4230 workstation equipped
with the Wang Universal Keyboard.

10.2 THE CRT

10.2.1 Screen and Cursor

The CRT screen can display 24 rows of 80 characters each. Every
position of the screen can display any character. A special symbol,
resembling an underscore and called a cursor, is displayed beneath a
character position to indicate where the next character entered from the
keyboard will be stored. The cursor is displayed on the screen when data
can be typed by the operator. If it is not displayed, the keyboard is
locked. This has no effect on the display or the computer interface with
the workstation, but prevents data entry from the keyboard. Each
position of the screen is referenced by its row and column numbers. The
first position of the screen (upper left corner) is called Row 1, Column
1. The columns are numbered from left to right and the rows from top to
bottom. Position 2 is the second character from the left on the first
line. Table 10-1 gives the set of characters displayed at the Wang model
4230 workstation and their associated representations in bits.

Table 10-1. The Character Set

NOTE: b1 o(ojojol|r i1 1|1
bg always

equals zero”. b2 Ol 0] 1 11010 1 1
b3~y O} 1| Of 11 Of 11 O 1
High-Order Digit—=}{ O |1 |2 |3 [4 |5 (6| 7

ba| bs| bg| b7| Low-Order Digit

A

o 0 of|o0 0o 4 |SP[O|J@fP |°|p
0100 |1 1 ¢ e |! 1]1]A]Q|a|q
OJjO0O (|1]0 2 »|i 2 |BJR}b|Tr
oO{0 |1 |1 3 4|6 [# |3]|]C|[S|c!|s
ol1jo|(o 4 — |G {$ 14D |Tid]|t
o111 011 5 - |ld |% |5 |[E |UJe|u
o |1 110 6 € |& (6 |F IV I[If |v
o1 {11 7 i | "|7]lc|{w|g]|w
110]o o 8 “lo [t |8 |H|Xx|h|x
1 1o lo |1 9 Ma) je [y iy
1(o}1]o0 A cola |t J |z i |z
T {0 |1 {1 B Wie |+ |; K[[k |§
1 {11010 C nia t, <tL |\ £
11110 |1 D TIA|=-|=]IM]] mi| é
1{1]1]o E B |0 >IN |t |n]g
101 |1 [1 F U7 2o —lo|c¢

*Bit combinations 10000000 through 11111111 are field attribute characters.

10-2

10.2.2 Screen Formatting

An important feature of the workstation screen is its division into
fields. The beginnings of fields on the screen cannot generally be
determined by inspection, except for high intensity fields, which are
easily distinguished by their bright or blinking display. Although not
visible, fields are very important, because they affect the operation of
the workstation under both keyboard control and computer control. A
field is defined as all characters from one field attribute character to
the next.

A field can be from 0 to 80 characters in length. All the characters
within a given field have the same attributes, which are defined by the
field attribute character that precedes the field. The possible
attributes are defined in Table 10-2.

Table 10-2. Field Attribute Character Values

Bit Field Description
0 Must be 1
1 Selected-field tag

for READ ALTERED and WRITE SELECTED
2 = 1 Underscore

3-4 Display control

00 Intensified display

01 Low intensity display

10 Blinking display
11 Nondisplay

5 Protect bit

0 Modifiable field
1 Protected field

6-7 Valid data specification

00 Alphanumeric upper- and lowercase
01 Alphanumeric uppercase shift

10 Numeric only

11 reserved

10-3

Field attribute characters are never displayed regardless of their
value. Each row is considered to have a field attribute character just
before the first character in the row and just after the last character
in the row. These nondisplayed field attribute characters do not take up
space on the screen. They have a default value of low intensity,
protected, and alphanumeric upper- and lowercase. (Refer to the
description of the field attributes in Section 10.2.3.) These default
field attribute characters allow the use of 80-character lines. In
addition, any location on the screen can contain a field attribute
character.

10.2.3 Field Attributes

The meaning of each field attribute bit is given below.

Selected field tag: This field has been modified by user data entry
at the workstation, or (when set in the mapping area) is written by
Write Selected.

Underscore: The characters in this field are underscored when
displayed on the screen.

Intensified display: The characters in this field are displayed in
higher intensity than those in a low-intensity display field.

Low intensity display: The characters in this field are displayedkon
the screen.

Blinking display: The characters in this field are displayed
alternately in intensified display and normal display mode. The
display will change modes at a fixed rate of about three times a
second.

Nondisplay: The characters in this field are not displayed on the
screen. The field will be displayed as all blanks.

Unprotected (also called "modifiable"): Any or all of the positions
of this field can be changed by the operator.

Protected: No position of this field can be modified by the operator.

Alphanumeric: This field allows typing of any character on the
keyboard. ‘

Uppercase shift: Letters are displayed and stored as uppercase only,
regardless of whether the SHIFT or LOCK key is pressed. All other
keys respond to the SHIFT and LOCK keys as they normally would.

Numeric only: Only the characters 0-9, decimal point (.), and minus
(-) may be entered into this field. If other keys are pressed, the
keystroke is ignored and the alarm sounds.

10-4

Reserved: This is not a valid combination at this time. It is
intended for addition of later options. Its use produces
unpredictable results.

10.2.4 Tabs

Ten tabs can be set by programs; they can be set to any column of the
workstation screen (1-80) with the command Write Tabs. They do not take
up a screen location, are not displayed, and allow forward tabbing
operations to stop at locations within modifiable fields. A tab position
is specified by column number and affects the column of every row in
which the specified column is modifiable. A tab set in a protected field
has no effect; i.e., the cursor cannot be positioned to such a tab by
either the TAB or BACKTAB key. When the workstation is powered on, all
tabs are cleared.

10.2.5 Audio Indicators

The audible alarm sounds a short tone whenever an illegal keying
operation is attempted. This operation can be an attempt by the user to
enter data into a protected field, to move the cursor past the end of the
screen with a field-sensitive key, or to enter data when the keyboard is
locked. The alarm also sounds when a Write is issued while Bit 2 of the
WCC is on.

The keystroke indicator is a small device attached to the keyboard
that makes a clicking sound. It sounds each time a key is pressed.

The operator can adjust the volume of auto indicators by the
following procedure:

1. Press the 2ND key and then PF5 to enter set-up mode. In set-up
mode, bell, clicker, and arrow symbols appear at the bottom of
the workstation screen. (The arrow symbol signifies the
type-ahead feature, described in the next section.)

2. Position the cursor over the bell or clicker symbol, using the
east/west cursor keys.

3. Set the volume using the north/south cursor keys. Pressing these
keys causes the bell or clicker to sound. Each stroke of the
north key increases volume until the maximum level is reached:;
each stroke of the south key decreases volume until the minimum
level is reached.

4, Press PF16 to exit from set-up mode.

10-5

10.2.6 Type-Ahead

The type—-ahead feature allows the operator to enter data from the
keyboard while data is being transferred between the workstation and the
VS. Using this feature, the operator need not wait for the next screen
to appear before entering data to that screen.

The operator enables or disables the type—ahead feature by the
following procedure:

1. Press the 2ND key and then PF5 to enter set-up mode. In set-up
mode, bell, clicker, and arrow symbols appear at the bottom of
the workstation screen.

2. Position the cursor over the arrow symbol, using the east/west
cursor keys.

3. Press the up arrow to enable type—-ahead; press the down arrow to
disable the feature. When the feature is enabled, the arrow

symbol blinks; when the feature is disabled, the arrow symbol is
non-blinking.

4. Press PF16 to exit from set-up mode.

10.3 THE KEYBOARD

The VS workstation keyboard is illustrated in Figure 10-1.

10-6

L—-0T

HELP IN PAGE CEN DEC FOR MERGE NOTE STOP SRCH REPLC COPY MCVE. C%M [} GO TO
DENT TER TAB MAT MAND '

1 1813 19[4 20 E] 21ile 22)|7 238

zs|o 26|11 27|12 28 13 29(l14 30|lis Mij1e

Il i | D O il A
@ - X

sAcki [l 11 # $ % Y Cil & * () — |+ BacK N PREV + =z
w2 (I (e LS [lle 117 thie [lle [llo [I- [IE |{f{=ee 1|l [scwr !

TaB e [[w TIE TIR TIT v (v I e TP (I TlleL oe_ [|| ext 7 [lile Tije [| T
]

Lock o A S D F G H J K L : " TURN t 4 5, 6 ERASE
— _ 5 '

SHIFT Z X c v B qu M < > '/) SHIFT - }o el |||~ 1 2 3
. = Tum
g%t ' 2ND | 0

Figure 10-1. The Keyboard

10.3.1 Cursor Positioning Keys

Non-Field-Sensitive Keys

These keys position the cursor but are not affected in any way by
fields and field attribute characters. They can position the cursor to
any location on the screen. There are four keys in this group:

Up arrow Positions the cursor in the same column but up one
row. If the cursor started in the first row, it is
positioned in the same column but in the last row.

Down arrow Positions the cursor in the same column but in the
next row. If the cursor started in the bottom row of
the screen, it is positioned in the same column but
on the first row of the screen.

Left arrow Moves the cursor one position to the left in a row.
If the cursor was at the start of a row, it moves the
cursor to the last position in the preceding line.
If the cursor is in the first location of the screen,
it is positioned in the last position of the screen.

Right arrow Moves the cursor one position to the right in a row.
If the cursor is at the end of a row, it is moved to
the first position of the next row. If it is at the
last position of the screen, it is positioned in the

- first position of the screen.

Field-Sensitive Cursor Positioning Keys

The following keys move the cursor to the first byte of a modifiable
field or to the first byte of a field with the attribute of protected
numeric. (The contents of a field with this attribute may be
alphanumeric; the attribute and contents of a protected field need not
match.) Because of their sensitivity to field attributes, these keys can
be used to simplify data entry. A tab set in a protected field has no
effect on these keys.

TAB Moves the cursor ahead to the start of the next
modifiable or protected numeric field. If there are
no more such fields, the alarm sounds and the cursor
does not move.

BACK TAB Positions the cursor at the start of the nearest
modifiable or protected numeric field preceding the
current cursor location. If the cursor is 1in a
modifiable field and in other than the first
location, the cursor is positioned to the start of
that field. If there is no preceding modifiable
location (or protected numeric field), the alarm
sounds and the cursor does not move.

10-8

EXECUTE

HOME

Advances the cursor to the first position of the next
line, and then moves the cursor to the first
modifiable or protected numeric field following the
start of the line. This key may cause the cursor to
be moved several lines from the original position.
If there is no modifiable or protected numeric field
following the start of the next 1line, the alarm
sounds and the cursor does not move.

Positions the cursor at the first modifiable or
protected numeric field on the screen. If there are
no such fields on the screen, the alarm sounds and
the cursor does not move.

10.3.2 Data Entry Keys

None of the keys mentioned so far change data in any positions of the

screen display.

The sole function of the data entry keys is to enter

data into positions of the screen. For all these keys the cursor must be
in a modifiable field. If the cursor is not in a modifiable field, the
keystroke is not honored and the alarm sounds.

Character
keys

ERASE

INSERT

These include letters, numbers, and special
characters. These keys enter characters just as a
typewriter does (with the use of LOCK and SHIFT). If
any characters other than numerals (0-9), hyphen (-),
or period (.) are pressed in a numeric - attribute
field, an audible alarm sounds. If the field is an
uppercase character attribute field, lowercase
letters are interpreted as uppercase letters.

When the cursor is in the last position of a field
and one of these keys is pressed, the character is
entered into the 1location and the cursor is
positioned at the next modifiable location. This may
involve skipping the field attribute character or
skipping several lines. If the cursor is currently
at the 1last modifiable location on the screen, the
keystroke 1is honored, the alarm sounds, and the
cursor is not moved.

Sets the cursor location and all subsequent locations
of the current field to blank characters. Any
locations that precede the cursor are not changed.
The cursor does not move.

Places a blank at the cursor 1location and shifts to
the right by one position all the characters in the
current field, starting with the one at the cursor
location up to but not including the last character
in the field. The 1last character in the field, if a
blank, pseudoblank, or dectab, is lost. If the last
character in the field is not a blank, pseudoblank,
or dectab, no screen location is changed, the alarm

10-9

DELETE

10.3.3 Special Keys

sounds, and the cursor does not move. Pseudoblanks
and dectabs are the characters X'0OB' and X'05',
respectively, in a modifiable field.

Deletes the character at the cursor 1location and
moves the subsequent characters in the field left by
one position. The last character moved 1is the
rightmost character in the field, and it is followed
by a newly inserted blank. If the cursor is not in a
modifiable field, the key is not honored and the
alarm sounds. This key is reciprocal in action to
the INSERT key.

Special keys are keys additional to those already described that are
used during data entry.

SHIFT

LOCK

2ND

CANCEL

Has the same effect as the SHIFT key on a
typewriter. For keys with an wupper and lower
character on the key face, the SHIFT key is used to
select which character is to be entered. However, it
has no effect on letters to be entered in an
uppercase attribute field. These are entered as
uppercase whether the SHIFT key is pressed or not.
Pressing this key when the SHIFT light 1is 1lit causes
the SHIFT 1light to be turned off and unSHIFTs the
keyboard.

Lights the SHIFT light. The workstation then behaves
as 1if the SHIFT key were continuously pressed.
Pressing this key again does not change the device
status. Pressing the SHIFT key turns off the SHIFT
light, returning the keyboard to an unSHIFTed state.
When the workstation is powered on, the device is in
an unLOCKed state.

Used to adjust the volume of audio indicators and to
enable/disable the type—-ahead feature. This key is
used in conjunction with PF5, PF16, and the cursor
control keys, as described in Sections 10.2.5 and
10.2.6.

Causes all field attribute characters on the screen
with a blinking display to be set to (unblinking)
high intensity. This key is still effective when the
keyboard is locked for data entry.

10-10

10.3.4 Keys that Communicate with the Computer

This set of keys causes an interruption to be presented to the
computer. If the key can be honored, the AID byte in the IOSW is set to
the character for the struck key and an interruption is presented to the
computer. After these keys are pressed, all keys except the HELP key and
the CANCEL key are locked, and the alarm will sound if they are struck.
The cursor is removed from the screen.

HELP This key is intended for operating system use. The
SHIFT key does not affect its action. The key cannot
be honored when an wunsolicited interruption is
pending for the same device or when the key has been
disabled by a system administrator via SECURITY. At
any other time the key is honored, both when the
keyboard is locked for any of the data entry keys and
during a Read or Write to the workstation. A HELP
key struck while a Read or Write is in progress
results in a separate attention interruption
occurring after the Read or Write completion

interruption.
PF1- Program function keys —— There are 16 PF keys; the
PF32 lowercase values for these keys represent PFl1-PF1l6,

and the shifted (uppercase) values PF17-PF32. These
keys work the same as RETURN, the only difference
being in the value of the AID byte generated.

RETURN This key 1is the normal means of terminating data
entry and requesting the program to process the
data. The SHIFT key does not affect the action of
the RETURN key. The RETURN key, like a PF key, is
not honored when the keyboard is locked for data
entry keys.

10.4 DATA AREA

I/0 commands transfer data between the workstation and an area of
main memory referred to as the data area, whose beginning and length are
specified by the IOCW.

The data area can consist of two adjacent areas: the order area and,
optionally, the mapping area. The 4-byte order area contains the
starting row number of the Read or Write operation to be performed. On a
Write, the Write control character (WCC) of the order area specifies how
the Write is to be performed. After a Read, the order area receives the
current column and row address of the cursor. The mapping area is the
data transmitted to or from the screen and contains field attribute
characters and display characters. Figure 10-2 illustrates the
relationship of data area, order area, and mapping area.

10-11

Offset

T .

order area

r
| Starting row number
| WCC (0 for READ)

| Cursor column

| Cursor row

wNhHO

data area

mapping area

S
?

>
e e e e

Figure 10-2. Data Area Specified by Workstation IOCW

10.4.1 Order Area

The order area is always four bytes long. Table 10-3 shows the
layout of this area.

Table 10-3. Significance of Bytes in the Workstation Order Area

Byte On Read On Write
0] Row number Row number
1 Reserved (must be 0) WCC (write control charac-

ter: Refer to Sections
10.4.3 and 10.4.4)

2 Cursor column address Cursor column address (if
cursor bit set in WCC)

3 Cursor row address Cursor row address (if
cursor bit set in WCC)

The contents of the order area and the interpretation of the fields
in the area are different for a Read and a Write.

10-12

10.4.2 Interpretation of the Order Area on a Read

The first byte of the order area is inspected before the data
transfer and is used to specify the starting row number for the Read. If
this row number is not in the range 1-24, the command is terminated with
an indication of Order Check (OR) in the IOSW. This byte is not changed
by the Read.

The third and fourth bytes of the order area are set by the Read to
the address of the cursor at the time of the read. The first byte of the
two will contain the column number (1-80), and the second will contain
the row number (1-24) of the current cursor 1location. These two bytes
are not inspected before the Read.

The second byte of the order area for a Read is not inspected or
modified, but is to be supplied as binary 0s for compatibility with
future options.

10.4.3 Interpretation of the Order Area on a Write

Neither the order area nor the mapping area is changed on a Write.
The first byte of the order area on a Write is interpreted as the row
number where the Write is to start. If this row number is not in the
range 1-24, the command is terminated with an indication of order check
(OR) in the IOSW.

The second byte of the order area is interpreted as the Write Control
Character (WCC). If the "position cursor" bit is set in the WCC, the
next byte of the order area is interpreted as a cursor column address,
and the fourth byte as the cursor row address. If the "position cursor"
bit is not set in the WCC, the third and fourth bytes of the order area
are ignored.

If the "position cursor" bit is set in the WCC, the cursor row
address byte must be set to a value between 0 and 24 inclusive, and the
cursor column address byte must be set to a wvalue between 0 and 80
inclusive. After the Write completes, the cursor is positioned to that
row and column. If the cursor row address byte is 0, it is treated as if
it were 1. If the cursor column address byte is 0, this acts as if the
cursor were positioned one location before the first location in the
specified row and the TAB key were pressed. If there are no modifiable
positions on the screen after the Write command, the cursor is positioned
to the first location in the specified row.

If the "cursor position'" bit is set in the WCC and the cursor row
address byte has a wvalue other than 0-24 or the cursor column address
byte has a value other than 0-80, the command is terminated with an
indication of Order Check (OR) stored in the IOSW.

10-13

10.4.4 Write Control Character (WCC)

The Write Control Character (WCC) 1s is the second byte of every
order area supplied for a Write operation. WCC bits can be set to select

the options

shown in Table 10-4.

Table 10-4. Workstation Write Control Character (WCC) Codes

Bit Explanation (if set to 1)

0 Unlock keyboard (Lock if 0)

1 Sound alarm

2 Position cursor

3 Roll down

4 Roll up

5 Erase modifiable fields to pseudoblanks
6 Erase and protect rest of screen

7 Reserved (must be 0)

WCC options, if selected, and data transfer occur in the following

order:

The
The
The
The
The
The
The
The

.

WOV WNH

keyboard is locked.

alarm is sounded.

roll down is performed.

roll up is performed.

"erase modifiable" or "erase and protect rest" is performed.
data is transferred to the screen.

keyboard is unlocked.

cursor is positioned.

If the keyboard is unlocked, the cursor is displayed.

Unlock the Keyboard

After the record is written to the screen and after sounding of the
alarm, if specified, the AID character is set to blank, and the keyboard
is then unlocked.

10-14

If bit 0 is 0, the keyboard is locked before any data is transmitted
to the workstation. If the keyboard is locked, this bit does not change
the status of the keyboard. The normal method for locking the keyboard
is to wait for the operator to press one of the computer communication
keys. If the bit is 0 and the keyboard is locked, the AID character in
the IOSW does not change. However, if the command locks the keyboard,
the AID character is set to " ' " (X'21').

Sound the Alarm

If Bit 1 is set to 1, the alarm sounds before the data is transmitted
to the screen.

Position the Cursor

If Bit 2 is set to 1, after data is transferred to the screen the
cursor is positioned as described in Section 10.4.3.

Roll Down

Setting Bit 3 to 1 causes the bottom line of the screen to be lost
and each line above it to be copied into the next lower 1line. This
copying proceeds until the row specified in the order area has been
copied. The specified row is then set to blanks and the Write continues.

Roll Up

If Bit 4 is set to 1, the row specified in the order area is lost and
each line below it is copied into the next higher line (e.g., line 1 is
replaced by the contents of line 2, etc.). This copying proceeds until
the last row of the screen has been copied. The last row is then set to
blanks, and the Write proceeds on the last line of the screen. An
attempt to write more than one line in a single command with '"roll up"
specified results in Order Check (OR) being reported.

Erase Modifiable Fields to Pseudoblanks

All modifiable locations at and after the row address specified in
the order area are set to pseudoblank characters (bit pattern 00001011)
before the data is transferred to the screen.

Erase and Protect Rest of Screen

All locations of the screen at and after the row address specified in
the order area are set to the field attribute character X'8C' before the
data is transferred to the screen. Therefore, there are no modifiable
locations after the data that is written.

10-15

10.4.5 Mapping Area

The mapping area contains the data transmitted either to or from the
screen. Its maximum length is 1920 bytes. The first location of the
mapping area corresponds to the first character of the row specified in
the first byte on the order area. Byte number 81 of the mapping area
would correspond to the first byte of the next row. If the starting row
number and the length of the mapping area are such that locations in the
mapping area would extend past the end of the screen, the command will be
terminated with an indication of incorrect length stored in the IOSW.
Note that, although the mapping area's first position always corresponds
to the start of a row, the only restriction on the end of the mapping
area is that it not extend past screen end. No mapping area need be
supplied for a 4-byte Read or Write (order area only).

10.5 WORKSTATION IOCW

A general discussion of the IOCW is found in Chapter 9. The
workstation IOCW consists of a command, a data area address, and data
count, as shown in Figure 10-3.

I [‘ [|
| Command : Data Area Address : Data Count i
l

byte 0 1 4 5

Figure 10-3. Workstation IOCW

10.5.1 Command Byte

The first byte of the IOCW contains the I/0O command, the command
modifier bits, and the indirect addressing flag in the form:

CCMMMMIO

where CC is the command, MMMM are the command modifier bits, and I is the
indirect data addressing flag. The 1last bit of the command byte is
always 0.

Table 10-5 lists wvalid workstation commands.

10-16

Table 10-5. Workstation Commands

Command and
Command Modifier Bits
WRITE 10 0000
WRITE SELECTED 10 0100
WRITE TABS 10 0001
READ 01 0000
READ ALTERED 01 0100
READ DIAGNOSTIC 01 0010
READ TABS 01 0001

Indirect Addressing

Bit 7 of the command byte is set to indicate that the data address
portion of the IOCW addresses an Indirect Address list as described in
Chapter 9. For the workstation, the address contained in the first entry
of an Indirect Address list must have two low-order 0s (specifying word
alignment), and the Indirect Address list itself must be word aligned.

Data Address

The data address points to the first byte of the order area, or to an
Indirect Address list whose first entry points to the first byte of the
order area. As explained in Section 10.4, the first byte of the order
area is also the first byte of the data area.

Data Count

The data count specifies the number of bytes in the data area, which
as explained in Section 10.4, consists of the order area and mapping
area. The minimum data count permitted for this device is the length of
the order area (four bytes). If a length shorter than the order area is
specified, the command is terminated with an indication in the IOSW of
incorrect length. The mapping area must not extend past the end of the
workstation screen, so the maximum length of the mapping area is 1920
bytes and the maximum data count is 1924 (mapping area plus order area).
If the data count exceeds 1924, the command is terminated with an
indication of incorrect length stored in the IOSW.

10-17

10.6 WORKSTATION I/O COMMANDS

10.6.1 Read Command

The Read command causes the contents of the screen locations that
correspond to the mapping area to be copied into the mapping area. This
includes all characters and field attribute characters in the range to be
read. Selected-field tags of the field attribute characters in the
portion of the screen read are turned off, both in the workstation and in
main memory. The cursor row and column addresses are stored in the order
area. This command is valid both when the keyboard is locked and when it
is unlocked. Issuing it is not recommended while the keyboard 1is
unlocked, however, as this may cause some operator keystrokes to be lost.

If any of the characters in the range of the Read are pseudoblanks,
they are converted to blanks on the screen before the data is read.
Pseudoblanks are characters with bit patterns 00001011 (the solid blank)
or 00000101 (the dectab) in a modifiable field. When these characters
are in protected fields, they are not considered to be pseudoblanks, and
they are not changed to blanks either on the screen or in memory.

If any characters in the range of the Read are field attribute
characters with blink indicated, the blink indication is converted to
high intensity both on the screen and in memory. This is true for field
attribute characters that have either protected or modifiable field
indications set.

10.6.2 Read Altered Command

The Read Altered command causes the contents of fields within the
specified range that have selected-field tags set to be copied into
corresponding positions of the mapping area. The selected-field tags in
the portion of the screen read are turned off at the workstation, but
they are set in the corresponding field attribute characters of the
mapping area. Pseudoblanks and blinking fields within the range of the
Read Altered are affected as for the Read command.

10.6.3 Read Diagnostic Command

‘ The Read Diagnostic command is identical to the Read command, except
that it does not change pseudoblanks to blanks, reset blinking fields, or
turn off selected-field tags either on the screen or in the data that is
read.

10.6.4 Read Tabs Command

The Read Tabs command reads into memory the column numbers of all set
tabs. The command transmits up to ten characters. Each location has a
value of 0 or 1-80. The first 0 encountered indicates that there are no
more set tabs and that subsequent locations have undefined values. The
tabs are 1listed in the mapping area in order of increasing column
numbers. The IOCW must have a data count greater than or equal to 14 or
the command is rejected with an indication of OR (order check).

10-18

10.6.5 Write Command

The Write command causes a transfer to the screen of the data in the
mapping area. Field attribute characters, including selected-field tags,
are transferred unchanged. This command can be issued when the keyboard
is locked or unlocked. It is, however, normally undesirable to issue a
Write when the keyboard is unlocked, because doing so could cause loss of
operator keystrokes.

10.6.6 Write Selected Command

The Write Selected command causes a transfer to the screen of those
fields in the mapping area that have selected-field tags set in their
field attribute characters. The selected-field tags in main memory are
not reset. Selected-field tags at the workstation (indicating altered
fields) are turned off only in those field attribute characters that
identify the fields to be written.

10.6.7 Write Tabs Command

The Write Tabs command causes all tabs to be cleared, and then sets
up to 10 tabs specified in the first 10 bytes of the mapping area. Each
column that is to be set as a tab stop has its column number specified in
the mapping area. Column numbers are to be specified in increasing order
(1-80). The first zero byte encountered within the 10-byte mapping area
terminates the list of tab settings; the contents of any subsequent bytes
are not examined. Incorrect specification of tab settings result in
unpredictable and erroneous tab operation. The IOCW must have a data
count greater than or equal to 14, or the command is rejected with an
indication of OR (order check).

10.7 WORKSTATION I/O STATUS WORD

For a general discussion of the IOSW, refer to Chapter 9. Figure
10-4 shows the IOSW format for workstations. Byte 7 is used on the VS300
system only. ’

[| | I T [[(vs300) |
| General | Error | AID | Device | —— | —— | Extended |
[status | status | character | Dependent | | | MPE/MAE {
bits O 8 16 24 32 46 56 63
byte 0 1 2 3 4 5 7 8

Figure 10-4. Workstation IOSW Format

10-19

10.7.1 General Status Byte

Set on normal completion.

Set on completion with error.

Set on power-on or on pressing of RETURN,
PROGRAM FUNCTION, or HELP key. NC and EC never
set along with this bit.

Set only in conjunction with NC, EC, or U.

Reserved (always 0).

IOSW
Bit Mnemonic Meaning
0 IRQ Never set.
1 NC
2 EC
3 3)
4 PC
5-6
7

10.7.2 Error

Status Byte

IOSwW
Bit

Mnemonic

Reserved for software use.

Meaning

8

10

11

12

13

IC

MPE

DM

DAM

IL

Set to indicate invalid command byte in IOCW,
IOCW not fullword aligned, Indirect Address
list not fullword aligned, or data area not
fullword aligned. EC always set when IC is set.

Set with EC on occurrence of main memory parity
error during reading of CTA, Indirect Address
list, TIOCW, or data. On VS300 only, is
qualified by IOSW Byte 7.

Set with EC on occurrence of main memory
addressing error during reading of IOCW,
Indirect Address list, or data. On VS300 only,
is qualified by IOSW Byte 7.

Set on timeout during reading or writing of
screen buffer in response to an I/0 command.
EC always set when DM is set.

Set when device RAM parity error or power—-off
occurs in an I/0 operation.

Set if IOCW specifies a data 1length less than
4, or if an operation attempts to read or write
beyond the end of the screen. (In the latter
case, the operation is terminated rather than
suppressed.) EC always set when IL is set.

10-20

Bit

14

15

Mnemonic Meaning

PP Set when microprogram loading for a
programmable IOP (data 1link processor) is
required.

DP Set when a programmable workstation is powered

off, or when an internal RAM parity error
occurs. This error condition indicates that
device processor microprogram reloading is
required.

If both PP and DP are set, loading of a device
configuration table for a programmable I/0
processor is required.

10.7.3 Device-Dependent Bits

Bits 16-33 (Bytes 2-3) are always stored on an interrupt. Bits 16-33
hold the current Attention ID (AID) character. Table 10-6 1lists AID
characters and the key or condition associated with them.

IOSW
Bit

16-23

24

25

26-31

Mnemonic

Meaning

OR

The current AID character. This byte indicates
whether the keyboard was 1locked by the last
completed I/0 operation, or it indicates what
PF key was last struck.

The AID character is X'20' if the operation is
a Write which has unlocked a previously locked
keyboard, X'21' if the operation is a Write
which has locked a previously unlocked
keyboard. 1If the operation did not change the
locked/unlocked status, the AID character is
the 1last AID character set by workstation
interaction (computer communication key.,
power—-on, Oor error).

Order check. This indicates that the row or
column addresses specified in the order area
are invalid or that the IOCW data count was
less than 14 for Write Tabs. The row specified
in the order area is not between 0 and 24, or
the column is not from 0 to 80, or more than 10
tabs were requested. The screen or tab
settings may have been modified.

Set on normal completion of a Read Altered
command that transfers data to main memory.

Reserved for future use.

10-21

Table 10-6. Attention ID (AID) Characters
Hex Hex
Character Graphic Character Graphic

AID (ASCII) Character AID (ASCII) Character
Keyboard 20 " ' (blank) Locked by 21 !
Unlocked Write

RETURN key 40 e

PF1 key 41 A PFl17 key 61 a
PF2 key 42 B PF18 key 62 b
PF3 key 43 c PF19 key 63 c
PF4 key 44 D PF20 key 64 d
PFS key 45 E PF21 key 65 e
PF6 key 46 F PF22 key 66 f
PF7 key 47 G PF23 key 67 g
PF8 key 48 H PF24 key 68 h
PF9 key 49 I PF25 key 69 i
PF10 key 4A J PF26 key 6A j
PF1l key 4B K PF27 key 6B k
PF12 key 4C L PF28 key 6C 1
PF13 key 4D M PF29 key 6D m
PF14 key 4E N PF30 key 6E n
PF15 key 4F 0 PF31 key 6F o
PF16 key 50 P PF32 key 70 p

Screen
HELP key 30 0 damage 3F ?
alert

10-22

Additional Workstation A;Ds

The following AID characters, in addition to those listed in Table
10-6, can be returned in the IOSW.

AID Character Meaning
X'00' Power On
X'0l" Disconnect
X'02' Connect

10.7.4 Extended MPE/MAE Byte (VS300 Only)

On the VS300 only, IOSW Byte 7 provides extended status information
on memory address and memory parity errors.

When the EC and MPE bits are both set to 1, IOSW byte 7 shows one of
the following hexadecimal codes:

Code Meaning

01 System memory data error

04 System bus memory read parity error
08 System bus parity error

When the EC and MAE bits are both set to 1, IOSW byte 7 shows one of
the following hexadecimal codes:

Code Meaning

02 Illegal system memory address

10 Illegal system memory page access
20 Illegal I/0 command from IOC

10.8 EXAMPLE OF COMPUTER CONVERSATION WITH A WORKSTATION

When the operator powers on the workstation, an attention interrupt
is generated, and the workstation microcode is loaded. The system then
issues a Write. The data transmitted to the workstation formats the
screen into fields and displays the information that tells the operator
what data to insert into the fields. This Write has the WCC set to
unlock the keyboard after the Write. After this Write is finished, the
computer does not need to communicate with the workstation until the
operator has signaled that data entry is finished and the system may read
the data. Having finished entering data, the operator presses the RETURN
key (or one of the other communication keys). This causes an interrupt
and locks the data entry keys, program function keys, and RETURN key. At
any time after this interrupt the program can issue a Read to the
workstation. After the Read has finished, the program processes the data
read and prepares new messages and a new screen format, which are sent to
the workstation with a Write. The WCC has the bit set to unlock the
keyboard. The above sequence of operations can be repeated until all
needed data has been supplied to both the operator and the computer.

10-23

CHAPTER 11
WANG PRINTER CHARACTERISTICS

11.1 OVERVIEW

Five basic types of printers are supported by Wang VS systems:

Chain Train
Band

Dot Matrix

Daisy Wheel
Laser

¢ 0 0 0 o

Characteristics of the various printer models are shown in Tables
11-1 through 11-6.

Transfer of data between main memory and the printer is facilitated
by the IOCW (sent to the printer) and the IOSW (returned by the
printer). The format of these structures and their use in communication
between CP and peripheral devices is generally described in Chapter 9.
Sections 11.7 and 11.9, respectively, describe the printer IOCW and IOSW
in detail. Sections 11.2 through 11.6 provide an overview of the data
blocks addressed by IOCWs, and of the IOCW/IOSW protocol.

11-1

Table

11-1.

Characteristics of VS Chaintrain Printers

Wang VS
Model 5570 5571
Number
Printing
Speed 600 425
(1pm)
Size of 64 96
Character (Upper and
Set (Uppercase) Lowercase)
Chars/inch
(Horizontal 10 10
Pitch)
Maximum
Characters 132 132
per Line
Lines/Inch 6,8° 6,8°
(Vertical
Pitch)
Vertical Paper Tape Paper Tape
Format Channels Channels
Unit 1 -12 1 -12
Expanded
Characters No No
Loadable
Fonts No No

3 8 lines/inch is a hardware-selected

option

11-2

Table 11-2. Characteristics of VS Band Printers.

Wang VS
Model 5573 5574 5574-1 5575
Number
Printing
Speed 250 600 600 1100
(lpm)
Size of 64 64
Character (Uppercase) (Uppercase) 64/96 64/96
Set
Characters
per 10/15 10 10 10
Inch
Maximum 132/10 pitch
Characters 198/15 pitch 132 132 136
per Line
6,8 6,8 6,8 6,8
Lines/Inch (software (software (software (software
selectable) selectable) selectable) selectable)
Vertical DAVFU DAVFU DAVFU DAVFU
Format Channels Channels Channels Channels
Unit 1 - 12 1-12 1 - 12 1 - 12
Expanded ,
Characters No No No No
Loadable
Fonts No No No No

11-3

Table 11-3.

Characteristics of VS Daisy Wheel Printers

Wang VS 6581W 6581WC DW/20 DW/55
Model Wide
Number Carriage
Printing
Speed 30 30 20 55
(cps)
Size of
Character 96 96 96 96
Set
Characters 10,12,15 10,12,15 10,12,15 10,12,15%
per (software (software (software (software
Inch selectable) selectable) selectable) selectable)
Maximum 132/10pitch 180/10pitch 132/10pitch 132/10pitch
Characters 158/12pitch | 216/12pitch | 158/12pitch | 158/12pitch
per Line 198/15pitch 270/15pitch 198/15pitch 198/15pitch
3,4,6,8 3,4,6,8 3,4,6,8 3,4,6,8
Lines/Inch (software (software (software (software
selectable) selectable) selectable) selectable)
Vertical DAVFU DAVFU DAVFU DAVFU
Format Channels Channels Channels Channels
Unit 1 - 12 1 - 12 1-12 1 - 12
Expanded
Characters No No No No
Loadable Yes Yes Yes Yes
Fonts (Each print (Each print (Each print (Each print

wheel is a
font)

wheel is a
font)

wheel is a
font)

wheel is a
font)

11-4

Table 11-4. Characteristics of VS Matrix Printers
Wang VS
Model 5521 5531-2 55211 5533-1/
Number 5535-1
Printing 55337100
Speed 200 120 120 5535/180
(cps)
Size of 96 96 96 114
Character (Upper- and (Upper— and in normal
Set Lowercase) Lowercase) mode
Chars/Inch 10 (normal) 12 (normal) 10 (normal) 10 (5535-1)
(Horizontal S (expanded | 6 (expanded 5 (expand.) |12 (5533-1)
Pitch) characters) characters)
Max imum 128 (normal) | 132/10pitch
Characters 132 132 56 (ideo- 158/12pitch
per Line graphic)
Approx:
Lines/Inch 6 6 8 (normal) 6/8
4 (graphic)

Vertical Paper Tape Paper Tape Paper Tape DAVFU
Format Channels Channels Channels Channels
Unit 1 -5 1 -5 1 -5 1 - 12

Expanded
Characters Yes Yes Yes Yes
Loadable
Fonts No No No No
Ideographic :
Printing/ No No Ideographic No
Graphics
(continued)

11-5

Table 11-4.

Characteristics of VS Matrix Printers (continued)

Wang VS
Model 5577
Number
Printing 160 @10-
Speed pitch draft
(cps) 40 @10-
pitch HD
Size of
Character 128
Set
Chars/Inch 10, 12, 15
(Horizontal (font-
Pitch) dependent)
Maximum 132/10pitch |
Characters 158/12pitch
Per Line 198/15pitch
3,4,6,8
Lines/Inch (software
selectable)
Vertical DAVFU
Format Channels
Unit 1 -12
Expanded
Characters No
Loadable Yes
Fonts
Ideographic
Printing/ Graphics
Graphics

11-6

Table 11-5.

Characteristics of VS Laser Printers

Wang VS
Model LPS-8 LIS-12 LIS-24
Number
Printing
Speed 8 12 24
{(pg/min)
Size of 128 128 128
Character (Upper- and (Upper- and | (Upper- and
Set Lowercase) Lowercase) Lowercase)
Chars/Inch 10,12,15 10,12,15 10,12,15
(Horizontal (font- (font- (font-
Pitch) dependent) dependent) dependent)
Maximum 136/10pitch | 136/10pitch 136/10pitch
Characters 163/12pitch | 163/12pitch | 163/12pitch
per Line 203/15pitch | 203/15pitch | 203/15pitch
Lines/Inch 3,4,6,8 3,4,6,8 3,4,6,8
Vertical DAVFU DAVFU DAVFU
Format Channels Channels Channels
Unit 1-~-12 1 - 12 1 - 12
Expanded
Characters No No No
Loadable Yes Yes Yes
Fonts (Cartridge)
Ideographic
Printing/ No Graphics Graphics
Graphics

11-7

Table 11-6. Characteristics of VS Remote Printers
Wang VS 2221V 2231V 2273V-1 2233R
Model Matrix Matrix BAND Matrix
Number Printer Printer Printer Printer
Printing
Speed 200 cps 120 cps 300 1lpm 100 cps
120 cps
Size of 96 96 64 114
Character (Upper— and (Upper—- and (Uppercase)
Set Lowercase) Lowercase)
Chars/Inch 10 (normal) 12 (normal) 12 10
(Horizontal 5 (expanded | 6 (expanded
Pitch) characters) characters)
Maximum
Characters 132 132 132 158
per Line
6 Standard
Lines/Inch 6 6 8 Optional 6,8
Vertical Paper Tape Paper Tape DAVFU DAVFU
Format Channels Channels Channels Channels
Unit 1-5 1 -5 1-12 1 - 12
Expanded
Characters, Yes Yes No Yes
Double Width
Loadable
Fonts No No No No
(cont inued)

11-8

Table 11-6.

Characteristics of VS Remote Printers (continued)

Wang VS 2235R 2281WR
Model Matrix Daisy
Number Printer Wheel
Printing
Speed 180 30
(cps) 220
Size of
Character 114 96
Set
Chars/Inch
(Horizontal 10 10,12,15
Pitch)
Maximum 132/10pitch
Characters 132 158/12pitch
per Line 198/15pitch
Lines/Inch 6,8 3,4,6,8
Vertical DAVFU DAVFU
Format Channels Channels
Unit 1-12 1 - 12
Expanded
Characters No No
Loadable
Fonts No No
Ideographic
Printing/ No No
Graphics

11-9

11.2 DATA BLOCKS

Data is passed from main memory to the printer in variable 1length
blocks. The maximum data block length is 2048 bytes. Transfer of data
is initiated by the SIO machine instruction. The associated IOCW
indicates the type of block being passed to the printer, its address in
main memory, and its length.

Listed below are the several types of blocks and their contents:

. Print Data Blocks —-- Contain records to be printed, including
text, graphics, and ideographic characters.

L] Print Control Data Blocks -- Contain records wused for
controlling the printing of print data blocks. These records
specify vertical and horizontal pitch, form length, standard
font, and printer speed. The specified parameters remain in
effect until reset by another Print Control Data Block.

. Font Data Blocks -— Contain font files. A default font may be
loaded in the printer via font data blocks when the device is
IPLed; other fonts may be loaded later when an application
selects a font not already resident in the printer. Operating
systems prior to Release 7.10 do not support font loading via
font data blocks. Tables 11-1 to 11-6 indicate which printers
support font loading.

. IPL. Code Overlay Blocks -- Contain overlays of printer
microcode. One overlay may be loaded in the printer wvia IPL
Code overlay blocks when the device is IPLed: other overlays may
be loaded 1later to support functions requested by an
application. Operating systems prior to Release 7.10 do not
support overlay loading via IPL code overlay blocks.

11.3 COMPRESSED RECORDS

Records in print data blocks and print control data blocks are
transmitted to the printer in compressed form. A compressed record
includes a two-byte record length (RL) field followed by a string of data
whose format is dictated by the COMPRESS STRING machine instruction. The
RL field indicates the compressed length of the data string plus the RL
bytes. Figure 11-1 shows the format of a data block record.

data string |

—— —

0 2 var

Figure 11-1. Format of Data Block Record

11-10

The data string of a record is made up of one or more substrings.
Each substring includes a compression length (CL) byte followed by one or
more data bytes, as shown in Figure 11-2.

substring 1 substring n
[77 T 1]
| cL | data | var | cL | data |
| I l 77 | I |

0 1 cee
Figure 11-2. Format of Data String

When compression takes place, via the COMPRESS STRING instruction, a
data byte repeated three or more times is compressed into a single byte.
The high order bit of the CL byte indicates whether the following data
has been compressed (1 = compression; 0 = no compression). The seven low
order CL bits indicate the uncompressed length of the data that follows
CL. When the high order bit of CL = 1, one data byte follows; and the
seven low order bits indicate the number of times that byte is to be
replicated by the printer. When the high order bit of CL = 0, up to 128
bytes of data follow; the seven low order CL bits hold a count of those
bytes. For a full explanation of data compression and expansion, refer
to descriptions of the COMPRESS STRING and EXPAND STRING instructions in
Chapter 8 of this manual; also, to the description of compressed records
in the Data Management System Reference.

Figure 11-3 shows the relationship of record, data string, and
substring.

CL | data | CL | data | CL | data | CL | data |

[0 = Compress | Length I Actual |
| 1 = No compress | of string | data |
| | string |

Figure 11-3. Elements of Compressed Record

11-11

11.4 POWER-UP IOCW

Not all systems support loading of fonts and IPL code overlays. On
systems that do support these functions, a power-up IOCW is sent to each
font/overlay loading printer after it has been powered up and loaded with
microcode. Until a printer receives this IOCW, it does not issue IOSWs
that request fonts or IPL code overlays. In response to a power—up IOCW,
the font/overlay loading printer issues an IOSW that indicates whether
the default overlay or font are to be sent to the printer during the IPL
sequence.

11.5 FONT LOADING PROTOCOL

This section describes the exchange of IOCWs and IOSWs that takes
place when fonts are loaded during printing.

When some record in a Print Data Block specifies a font to be used
for printing, the following occurs. The printer determines whether the
selected font has already been loaded. If necessary, it requests the
font through an IOSW showing the following: normal completion; font
request code (X'C3') in Byte 6; and a function code in Byte 7 that
indicates whether the font to be loaded is the standard font or a new
font. (The term "standard font" is defined in Section 11.13.8.) 1In
addition, the IOSW indicates the number of print data records in the
block processed before the font was requested and the number of print
data bytes not yet processed.

When the printer requests the standard font, the system can determine
the appropriate font number without interrogating the printer. The
system then responds with one or more Font Data Block IOCWs, which define
the memory location and size of blocks holding the requested font data.

When, instead, the printer requests a new font, the system responds
with a Read Information IOCW to obtain the identifying number of the
requested font. The data address field of this IOCW addresses a main
memory location which is to receive from the printer the number of the
requested font. After receipt of this information and an IOSW indicating
normal completion, the system sends the requested font via Font Data
Block IOCWs. The last Font Data Block IOCW is marked as such by a flag
bit.

Each Font Data block successfully transmitted is acknowledged by an
IOSW showing normal completion. After the last font data block is
acknowledged, the system notifies the printer task, and stores at
Location X'00' a normal completion IOSW. This IOSW shows the number of
print records in the block processed before the font was requested and
the number of print data bytes not yet processed. Using this
information, the printer task issues a Write IOCW that causes printing of
the print data block to be resumed.

11-12

When the system cannot honor a font loading request made through an
IOSW, it responds with an Error IOCW that shows error code X'02',
signifying ‘'requested font unavailable". The printer then issues a Font
Request IOSW that specifies the standard font. If another Error IOCW
with error code X'02' indicates that the standard font is unavailable,
the printer issues a Font Request IOSW for the default font. If the
system cannot honor this request for the default font, it respnds with an
Error IOCW that shows error code X'00'. A printer having resident fonts
can continue printing without the default font; it issues an IOSW
indicating normal completion. A printer without resident fonts issues
an IOSW indicating error completion and showing an extended error code.

The format of the IOCWs and IOSWs mentioned in this summary are fully
defined, respectively, in Sections 11.7 and 11.9.

11.6 IPL CODE OVERLAY LOADING PROTOCOL

This section describes the exchange of IOCWs and IOSWs that takes
place when an overlay of microcode is loaded during printing.

Unlike fonts, IPL code overlays are not explicitly selected by an
application; instead, an option requested by an application, such as
printing of graphics, implicitly selects an IPL code overlay that
supports the function.

Once an overlay has been implicitly selected, the printer requests
the overlay through an IOSW showing the following: normal completion,
overlay request code (X'C4') in Byte 6 and the identifying number of the
overlay in Byte 7, the number of print data records in the block
processed before the overlay was requested, and the number of print data
bytes not yet processed.

After receipt of this information, the system sends the requested
overlay via IPL Code Overlay Block IOCWs. The last IPL Code Overlay
Block IOCW is marked as such by a bit flag. Each Overlay Data Block
successfully transmitted 1is acknowledged by an IOSW showing normal
completion. After the last font data block is acknowledged, the system
notifies the printer task, and stores at location X'00' a normal
completion IOSW. This IOSW shows the number of print records in the
block processed before the overlay was requested and the number of print
data bytes not yet processed. Using this information, the printer task
issues a Write IOCW that causes printing of the print data block to be
resumed.

When the system cannot honor an overlay loading request made through
an IOSW, it responds with an Error IOCW showing an error code. If the
printer can continue printing without the requested overlay, it issues an
IOSW indicating normal completion; otherwise, the printer issues an IOSW
indicating error completion and showing an extended error code.

The format of the IOCWs and IOSWs mentioned in this summary are
completely defined, respectively, in Sections 11.7 and 11.9.

11-13

11.7 IOCW FORMAT

Figure 11-4 shows the format of the I/0 Command Word (IOCW) passed to
Wang serial printers.

[command | | | command | last block |
| code | data address | data count | modifier | indicator & |
L | | | | font/overlay # |

9

byte 0 1 4 6 7
Figure 11-4. Printer IOCW
11.7.1 Command Code

Byte 0 of the IOCW, in conjunction with Byte 6, defines a request to
the printer. Command code bits are defined as follows:

Bit Meaning
0-1 00 = Reserved
01 = Read
10 = Write
11 = Control
2-4 Reserved; must be zero
5 0 = Data Address points to print data block
1 = Data address points to control data block
6 0 = Data address is a direct address
1 = Data address is an indirect address
7 0 = Translate characters into upper case
1 = Do not translate

The Read command is applicable only to printers that support font
loading. Chain train printers accept only the Write command.
Inapplicable commands cause the return of an invalid command IOSW.

11.7.2 Data Address

Bytes 1-3 address directly or indirectly (as indicated by Bit 6 of
the command code) the main memory location of a data block to be
processed by the printer.

11-14

11.7.3 Data Count

Bytes 4-5 indicate the number of bytes plus one, after any record
compression, in the data block addressed by Bytes 1-3. This data count
includes the block length indicator that comprises the first two bytes of
every data block. The value of the data count and the block length
indicator must agree, or the command is suppressed with error and
incorrect length indications.

In IOCWs addressing blocks of compressed data (i.e., print data
blocks or print control data blocks), allowable data counts range from 6
to 2048 bytes. The one exception to this rule is presented by a control
data block that resets the system defaults for all options controlled by
the block. The length of a control data block so used is 4 bytes, which,
in this one instance, is an allowable value for the IOCW data count. 1In
IOCWs pertaining to font or overlay data blocks, allowable data counts
range from 1 to 2048 bytes.

11.7.4 Command Modifier

Command modifier codes in Byte 6 of the IOCW modify commands
specified by Byte 0. In the case of Read, Write, or Control commands
involving data blocks, the command modifier codes indicate the type of
data block involved. The following command modifier codes are defined:

X'00' = Print data block or control data block
X'C3' = Font data block

X'C4' = IPL code overlay data block

X'C5' = Power—up IOCW (no data block)

X'C6' = Reserved

X'C7' = End of Job IOCW (no data block)

X'C8' = Reserved for ideographic functions
X'CA' = Reserved for ideographic functions

11.7.5 Last Block Indicator and Font/IPL Code QOverlay Number

Bit 0 of Byte 7 is set to one when the block addressed by Bytes 1-3
is the last block in the file.

Bits 1-5 of Byte 7 are reserved. Bits 6-7 of Byte 7 and all bits of
Byte 8 form a 10-bit identifying number of a font or overlay being
transmitted to the printer.

11.8 IOCW TYPES
Valid values for the IOCW command code (Byte 0) and command modifier

(Byte 6) fields define seven types of IOCWs, which are described in the
following sections.

11-15

NOTE

All seven IOCWs are sent to the printer by means of the SIO
machine instruction.

11.8.1 Print Data Block IOCW

This IOCW requests printing of print data block records.

Byte 0

bit o 1 2 3 4 S5 6 7

Bit 5 = 0 to indicate a print data (rather than control data) block.
Bits 6 and 7 can be set to indicate indirect addressing and uppercase
translation.

Bytes 1-7
[data [data [[| 1
} address | count : X'00' | x'00' | xX'00' |
| | | | | |
bytes 1 2 3 i 5 6 7 8

A wvalue of X'00' in Byte 6 indicates that this IOCW initiates
processing of the print data block described by Bytes 1-5.

11.8.2 Control Data Block IOCW

This IOCW transfers to a printer information used to control printing.

Byte 0

bit 0 1 2 3 4 5 6 7

Bit 5 = 1 to indicate a control data (rather than print data) block.
Bit 6 can be set to indicate indirect addressing; Bit 7 is ignored.

11-16

| data [data I | |]

| address | count | X'00' | x'00' | X'00' |

| | | | | | | | |
bytes 1 2 3 4 5 6 7 8

11.8.3 Read Information IOCW

This IOCW is sent to a device after it has requested the loading of a
new font. It is a read request for 2 bytes of data that specify the
identifying number of the font to be sent to the device.

Byte 0O

17 1T 1T 1 1
lol1lolololololol
| O e

0

| |]
bit 1 2 3 4 5 6 1
Bytes 1-7
| data | | [| I |
I address | x'02' | x'c3' | x'00' | x'00' |
| | I | | | | | 3
bytes 1 2 3 4 5 6 7 8

A value of X'C3' in Byte 6 when Byte 0 = X'40' indicates a request
for a font identifier. Bytes 1-3 address a main memory location which is
to receive a 2-byte font identifier from the printer. Byte 5, the second
byte of the data length field, indicates the 2-byte length of the font
identifier.

11.8.4 Power-Up IOCW

This IOCW indicates whether the system supports IPL overlay code and
font loading.

Byte 0

bit 0 1 2 3 4 5 6 7

11-17

B [[[info | cpu |
I X'00" | x'clm' : X'C5' | byte { code
I I |
bytes 1 2 3 4 5 6 7 8

The value of X'C5' in Byte 6 identifies this IOCW, distinguishing it
from other types of IOCWs whose command code (Byte 0) is also X'CO'.

A value of X'00' in Byte 7 indicates that font and IPL code overlay
loading are not supported. A value of X'0l' indicates that requests for
font/IPL code overlay loading are supported.

The CP codes reported in Byte 8 identify the model of the VS system
as follows:

CP Code VS Model

X'05' VS15, Vs4S

X'07' VS65

X'04' VsS85, VSS90, VS100
X'08' VS300

11.8.5 Error IOCW

This IOCW is issued to indicate that the system cannot honor a
printer's request for a font or IPL code overlay.

Byte O
[T 1 [1 | [T 1
1 11lo0lololololol
I | I I I | | | |
bit 0 1 2 3 4 5 6 1
Bytes 1-7
[| [x'c3' | error | |
I Ix'cJoi : x'(l)o' Ix'c4'I codeIX'OO':
\ | |
bytes 1 2 3 4 5 6 7 8

The value of X'C3' in Byte 6 when Byte 0 = X'CO' signifies that the
system is unable to load a requested font. In this case, Byte 7 shows
one of the following error codes:

X'00' = Default file not found
X'0l1l' = Error reading file
X'02' = Requested font unavailable

11-18

The value of X'C4' in Byte 6 when Byte 0 = X'CO' signifies that the
system is unable to load a requested IPL code overlay. In this case,
Byte 7 shows one of the following error codes:

X'00' = Code overlay not found
X'01' = Error reading overlay file

11.8.6 IPL Code Overlay Block IOCW

This IOCW allows overlays of microcode to be transferred to the
printer in IPL Code Overlay Blocks.

Byte 0

bit o 1 2 3 4 5 6 7

Bit 6 can be set to indicate indirect addressing; Bit 7 is ignored.

Bytes 1-6
[data | data | |
| address | count | x'c4' |
| | I | I | 5
bytes 1 2 3 4 5 6 7

A value of X'C4' in Byte 6 indicates that an IPL code overlay block
is associated with this IOCW.

Bytes 7-8

I
Reserved | Overlay Number |

I
I
I |

—_—

F
L
G

bit 0 1 56 15

Bit 0 of Byte 7 is a flag bit that, when set to 1, indicates the last
block of the file. Bits 1-5 of Byte 7 are reserved for future use. Bits
6-7 of Byte 7 and Bits 0-7 of Byte 8 hold the number of the overlay being
loaded.

11.8.7 Font Data Block IOCW

This IOCW allows font files to be transferred to the printer in font
data blocks.

11-19

Byte 0

bit 0 1 2 3 4 5 6 7

Bit 6 can be set to indicate addressing; Bit 7 is ignored.

Bytes 1-6
[data | data | |
| address | count | X'c3' |
L I | | [|
bytes 1 2 3 4 5 6 7

A value of X'C3' in Byte 6 indicates that a font data block is
associated with this IOCW.

Bytes 7-8

bit 0 1 56 1

]
| Reserved I Font Number
|

Qo

Bit 0 of Byte 7 is a flag bit that, when set to 1, indicates the last
block of the file. Bits 1-5 of Byte 7 are reserved for future use. Bits
6-7 of Byte 7 and Bits 0-7 of Byte 8 hold the number of the font being
loaded. This is not necessarily the number of the requested font; when
unable to load the requested font, the system may load a default font
instead.

11.8.8 End of Job IOCW

This IOCW 1is issued to the printer after the printer has
acknowledged, with a normal completion IOSW, the last print data block of
a print file.

Byte O

bit 0 1

11-20

[[[[[|
| X'00' | x'00' | x'c7' | X'00' |
| l | | | | | |
bytes 1 2 3 4 5 6 7 8

A value of X'C7' in Byte 6 identifies this IOCW, distinguishing it
from other IOCWs with a command code of X'CO'.

11.9 PRINTER IOSW

Figure 11-5 shows the format of the I/O status word (IOSW) passed
from the printer to the system.

[T] | | | extended |
| General | Error | Lines | Residual | status | error |
| status | status | printed | byte count | modifier | status |
byte 0 1 2 4 6 7 9

Figure 11-5. Printer IOSW Format

11.9.1 General Status Byte

Bits in the the General Status byte (Byte 0) have the following
significance when set to 1:

Bit Mnemomic Meaning

IRQ Intervention required

NC Normal completion

EC Error completion

u Unsolicited

PC IOP now ready (VS100 only)

DAR Data area early release
-7 Reserved; must be zero

AV WO

The printer sets the IRQ, NC, EC, U, and DAR bits; the I/0 processor
sets the other bits of the general status byte.

These error status codes are standard in VS I/0 protocol and are more
fully explained in Chapter 9.

11-21

11.9.2 Error Status Byte

Bits in the Error Status byte (Byte 1) have the following
significance when set to 1:

Bit Mnemomic Meaning

0 IC Invalid command

1 MPE Memory parity error

2 MAE Memory address error

3 DM Device malfunction

4 DaM Memory or device damage

5 IL Incorrect length

6 DP Device microcode required

7 PP Peripheral processor microcode required

The IC, DM, and IL bits are set by the printer; the other bits of the
error status byte are set by the I/0 processor.

These error status codes are standard in VS I/O protocol and are more
fully explained in Chapter 9.

11.9.3 Lines Printed Bytes

IOSW Bytes 2-3 indicate the number of records in the current print
data block that have been printed, except when the General Status byte
indicates an unsolicited interrupt, in which case Bytes 2-3 are zero.

11.9.4 Residual Count Bytes

Bytes 4-5 report the number of bytes in the data block remaining to
be processed after processing has been interrupted by one of the
following:

'An error condition

A Halt I/0 instruction

A request by the printer for a font or IPL code overlay

A request by the printer for suspension of data transmission

® & o O

11.9.5 Status Modifier Byte

This byte can indicate a busy state or a request for a font or IPL
code overlay. Values for the byte are defined as follows:

Code Meaning

X'00' Normal or error completion of an IOCW order

X'C3! Request font

X'C4' Request IPL code overlay

X'C8' Reserved for ideographic function

X'C9’ Printer busy; no further data accepted until requested
X'Ca’ Reserved for ideographic function

11-22

11.9.6 Extended Error Status Byte

The contents of Byte 7 depend on whether the IOSW is issued to
request a font, to request an overlay, to report an error, or to answer a

Power-Up IOCW.

Font Request

When Byte 6

contains X'C3' (request for font loading), Byte 7

contains one of the following function codes:

Code

X'00'
X'02'

Overlay Request

Meaning

Load default font
Load new font

When Byte 6 contains X'C4' (request for IPL overlay code loading),
Byte 7 contains the number of the requested overlay.

Error Report

Byte 7 can contain an extended error status code that signals the
system to abort the current I/0 order or IPL, depending on the particular
code. The IOSW showing this code properly follows an Error IOCW (which
reports that a requested font/IPL code overlay cannot be loaded) or a
Power-Up IOCW (which indicates that font/IPL code overlay loading is not
supported). In this IOSW, the general status must be error completion,
the error status must be zero, and Byte 7 set to one of these extended

error status codes:

Code
X'01!

X'02'

X'03"

Meaning
Abort order because overlay is required

Abort order because font is required; no substitute
possible

Abort TIPL because printer requires support for
loading of fonts or IPL overlay code

X'04'-X'05' Reserved for ideographic functions

NOTE

All codes that set the high order bit of Byte 7 ON are
reserved for ideographic functions.

11-23

Power-Up IOSW

In response to a Power-Up IOCW that indicates support of font/IPL
code overlay loading, the printer issues an IOSW indicating whether
Overlay 0 or the default font is to be loaded. Byte 6 is zero; Bits 0-1
of Byte 7 are defined as follows:

Bit Meaning when Set to 1
0] Load Overlay 0
1 Load default font

11.9.7 Suspend and Resume IOSW

When the printer, because of a busy condition, wishes to suspend
transmission of data, it issues an IOSW with a code of X'C9' in Byte 6.
The printer can issue a Suspend IOSW after receipt of an End-of-Job IOCW
or data block. Thus, the IOSW can suspend data transmission that is in
progress or anticipated. When the IOSW is issued to suspend data
transmission in progress, the residual data count shows the number of
bytes in the data block remaining to be processed.

To cancel the Suspend IOSW, the printer sends an unsolicited IOSW
with the U bit set in Byte 0, a Ready code of X'60' in Byte 2, and one of
the following function codes in Byte 7:

Code Meaning

X'01' Resume I/0

X'03' Error status in Byte 1
X'05' Intervention required

When the system receives a Suspend IOSW and then the unsolicited IOSW
just described, it can resume data transmission at the point indicated by
the residual count field of the Suspend IOSW.

Between the reception by the system of a Suspend and Resume IOSW, the
printer is not subject to timeout.

11.10 PRINT DATA BLOCK

The print data block is used to transmit records of printable data.
This data can be in the form of character strings, graphics data, or
ideographic data. A single block may contain more than one of these data
types.

A block consists of 2 block length bytes followed by an integer
number of records. The block length count equals record bytes, plus the
two block length bytes, plus 1. The range of valid block length counts,
in decimal, is 6 to 2048 inclusive. The block length count and the data
count of the associated IOCW must have the same value.

11-24

11.10.1 Print Data Records

In general, one record represents one line of printed data. 1In the
first substring of a record, the compression length (CL) byte is followed
by two to six print control bytes. This is the only occurrence of print
control bytes in a record.

Figure 11-6 1illustrates the format of a print data block, showing
the relationship of block, records, substrings, and print control bytes.
In the illustrated substring, the printable data following the print
control bytes happens to be uncompressed. If the printable data were
compressed, it would be preceded by a CL byte indicating compression
(i.e., it would belong to a second substring.).

[Print data block (in main memory) pointed to by IOCW |

[B | Data record | Data record | Data Record |
/
| RL | Data l
L string |

CL [data [CL | data [cL | data [CL [data |

Compress | Length [Print [Actual 1

G
| 1 = No compress | of string | control | data |
| | | bytes | string

Figure 11-6. Format of Print Data Block and Record

11.11 PRINT CONTROL BYTES

Each print data record includes from two to six print control bytes
(PCBs) . These control print functions at the record level, whereas
print functions at the block level are controlled by the Print Control
Data Block.

Bit settings of PCBs control the following functions:

Vertical Spacing

Hardware alarm

Double width printing

Line feed direction

Font selection

Graphic printing selection
Ideographic printing selection
Sheet feeder/bin selection
Ribbon selection

o & 0 0 0 0 0 0 0

11-25

11.11.1 Chain Bits

Two PCBs are required to control vertical spacing. The presence of
additional PCBs is indicated to the printer by setting a chain bit (Bit
7) as follows: A third PCB (PCB 3) is indicated by the chain bit of the
first PCB; PCBs 4 through 6 are each indicated by the chain bit of the
preceding PCB; there is no chain bit in PCB 2.

Although there is currently a maximum of 6 PCBs per record, the VS
architecture allows for the chaining of an indefinite number. In the
future, additional PCBs may be defined to support new functions. PCBs 7
and 8 are reserved for ideographic functioms.

11.11.2 Unsupported Functions

Generally, when PCBs specify a function not supported by the
receiving printer, the printer ignores the selection as if it had not
been made; in a few cases, the printer generates an Invalid Command
IOSW. The following descriptions of PCBs assume that unsupported
functions are ignored, and mention only those instances that generate an
error IOSW.

11.11.3 PCB Bit Definitions

PCB bits are defined as shown below. Explanations of the functions
selected by PCB bits are provided in later sections.

PCB 1

Bit Meaning

0 0 = Space the number of lines specified by PCB 2
1 = Use skip channel specified by PCB 2 for line spacing
1 0 = Line space before printing
1 = Line space after printing
2 0 = Normal width characters
1 = Double width characters
3 0 = No hardware alarm
1 = Activate hardware alarm
4 0 = Select bin/feeder 2
1 = Select bin/feeder 1
5 0 = Use normal ribbon
1 = Use alternate ribbon
6 Reserved for future use
7 0 = There are only two PCBs
1 = A third PCB follows the first two

11-26

Bit Meaning

0 0 = Line feed in positive direction
1 = Line feed in negative direction
1-7 This bit is significant only when Bit 0 of PCB 1 = 0

Lines to be skipped (if Bit 0 of PCB 1 = 0) or skip
channel number (if Bit 0 of PCB 1 = 1)

Bit Meaning

0-2 000 = Use standard font (or left print wheel)
001 = Use font 1 (or right print wheel)
010 = Use font 2
011 = Use font specified in PCBs 4-5
100 = Interpret this record as graphics data
101
thru Reserved for ideographic functions
111

3 Reserved for future use

4-6 bin number (if Bit 4 of PCB 1 = 0)

7 0 = This is the last PCB
1 = There is a fourth PCB

Bit Meaning

0-6 Most significant seven bits of requested font number
7 Must be 1 (i.e., this PCB must be followed by PCB 5)
Bit Meaning
0-6 Least significant seven bits of requested font number
7 0 = This is the last PCB .

1 = There is a sixth PCB

11-27

Bit Meaning

0-6 Reserved
7 Must be zero

11.11.4 PCB 1 Options --— Double Width Characters

The double-width character function affects printing of both
ideographic and font characters. If this option is selected, all
printable data contained in the current record is printed in double
width. If both double- and normal-width characters are desired on the
same line of print, it is necessary to create two print records and then
to overstrike one with the other.

11.11.5 PCB 1 Options —— Sheet Feeder/Bin Select

PCB 1 Bit 4 applies to printers that receive sheets from twin sheet
feeders, twin bins, or several bins. PCB 1 Bit 4 can be used to select
bin 1 or 2. Setting the bit to 1 selects bin 1; setting the bit to 0
selects bin 2 or any bin specified by PCB 3 Bits 4-6. Thus, when the
first two PCBs are present, either of two bins may be selected; when the
first three PCBs are present, one of seven bins may be selected.
(Currently, no printer supports more than three bins.) The interaction
of bin selection bits when three PCBs are present is shown below.

PCB 1 PCB 3
Bit 4 Bits 4-6 Bin Selected

Bit Values:

1 ignored Bin 1

0 0 Bin 2

0 1-6 Specified bin

0 7 Highest numbered bin

Selecting a sheet feeder or bin has no effect unless PCB 1 also
specifies "use skip channel" and PCB 2 specifies skip channel 1. That
is, sheet feeder/bin selection is ignored unless PCBs 1 and 2 explicitly
specify top of form. 1In the absence of an explicit top of form, the
printer uses the sheet feeder/bin last selected. In the absence of an
explicit top of form and a previous selection, the printer wuses the
default, which is sheet feeder/bin 2.

11-28

Qut of Paper Action

If the selected or default sheet feeder/bin is empty, the printer
issues an "intervention required" operator message, deselects, and waits
to be reselected. There is one exception: When a bin that has been
selected as the highest numbered bin (PCB 1 selection bit = 0 and PCB 3
selection bits = 7) is empty, the printer attempts to use the bin with
the next lower number.

Sheet Feeder/Bin Designation

Twin sheet feeders/bins are numbered as follows: The sheet feeder
nearer the cable side of the printer is sheet feeder 2. The lower twin
bin is bin 2. :

The bins on laser printers are numbered as follows:

LPS-8 Bin 3 = the standard bin
2 = the higher optional bin
1 = the lower optional bin
LIS-12 Bin 2 = the higher bin
1 = the lower bin
LIS-24 Bin 3 = the 1500 sheet bin
2 = the higher of the two remaining bins
1 = the lower of the two remaining bins

11.11.6 PCB 2 Options

Negative Line Feed

Specifying negative, or backward, line feed has no effect when a skip
channel is being used (i.e., when Bit 0 of PCB 1 = 1). When the number
of lines to be skipped (specified by Bits 1-7 of PCB 2) is zero, the
linefeed bit (Bit 0 of PCB 2) is ignored.

11.11.7 PCB3 Options —— Font Specification

The setting of Bits 0-2 determines the font used to print the current
record. Some bit settings apply to a particular type of printer; bit
settings that apply to more than one type of printer are interpreted
according to the type involved.

For purposes of explaining font specification via PCB 3, printers may
be grouped into the following three types:

1. Printers supporting two fonts in the form of two print wheels,
referred to logically as fonts 0 and 1.

2. Printers supporting two fonts held in their microcode, referred
to logically as fonts 1 and 2.

11-29

3. Printers supporting more than two fonts held in their microcode
or in cartridges.

The remaining paragraphs of this section describe settings of ECB 3,
Bits 0-2 that are defined for font selection.

Bit Setting 000

A bit setting of 000 applies to Types 1, 2, and 3. When applied to
type 1, this setting signifies '"use the left print wheel"” (wheel 1,
logical font 0). When applied to Types 2 and 3, this setting signifies
"use the standard font."

The standard font is designated by means of a control data block, as
explained in Section 11.13.8. If not designated by a control data block,
the standard font is that specified as the default in the font catalog.
In the absence of PCB 3 from a record, the font used for printing the
current record is the designated or defaulted standard font.

Bit Setting 001

A bit setting of 001 applies to printer Types 1 and 2. When applied
to Type 1, this setting means "use right print wheel" (wheel 2, logical
font 1). When applied to Type 2, this setting means "use logical font 1."

Bit Setting 010

A bit setting of 010 applies only to printers of Type 2 and means
"use logical font 2."

Bit Setting 011

A bit setting of 011 applies to printers of Type 2 and 3, and
signifies "use the font specified in PCBs 4-5". This setting is the only
means of selecting a font for printers of Type 3. It is the preferred
method of selecting a font for printers of Type 2 that are configured in
a fontloading system because on a fontloading system, the actual font
numbers associated with 1logical fonts 1 and 2 can change during the
printing of a print file.

11.11.8 PCB 3 Options —— Graphics Printing

Graphics printing is described in\Section 11.12.

11.12 GRAPHICS PRINTING

A graphics record in a print data block consists of three print
control bytes, followed by at least one graphics command. Raster data
is an argument of the DRAW RASTER and DRAW PIXEL commands.

Graphics printing is specified by setting Bits 0-2 of PCB 3 to binary
100. When graphics printing is specified, the only other significant PCB
bits are those controlling hardware alarm and skip channels. Other bits
are ignored.

11-30

11.12.1 Graphics Protocol

The printer buffers rasterized data in units of the raster line,
which is defined as the equivalent in bits of the pixels on one scan line
of the CRT. It is an axiom of graphics protocol that a command pertains
only to one raster line. Accordingly, rasterized data supplied with a
command belongs to the current raster line only:; it is not carried from
the current raster line to the next. The printer discards rasterized
data in a DRAW command that exceeds the length of a raster line. Raster
data of multiple DRAW commands in immediate succession is concatenated
until the maximum raster line length is reached. Any remaining data in
the last concatenated command is discarded. Similarly, a MOVE command or
series of concatenated MOVEs cannot move the virtual cursor beyond the
end of a single raster line. Commands involving vertical moves from one
raster line to the next (MOVE DOWN, LINE FEED, CARRIAGE RETURN/LINE FEED)
implicitly signal the end of the current raster line.

When the printer buffer is filled with raster lines, the buffer is
printed. Printing can be forced before the buffer is full by any of the
following:

e A Print Data record whose PCBs specify skip to channel 1 (top of
form)

e A print data record whose PCB 3 specifies text or ideographic
printing.

e A MOVE DOWN graphics command that specifies a move of enough
raster lines so that the sum of currently buffered raster 1lines
plus the vertical move is greater than the number of raster lines
buffered before printing.

11.12.2 Graphics Command Syntax

The first two bytes of each command hold a count of bytes in the
command, including the 2-byte count. A count of 0 or 1 is invalid; the
result is undefined. A count of 2 is valid; it implies that the next two
bytes hold another length count. The second and third bytes of a command
consist of an operation code. The remaining bytes of the command, if
any, vary in format between commands. The maximum length of a command is
the maximum record length supported by the system.

11-31

11.12.3 Graphics Commands

In the following command descriptions, parenthetical numbers indicate
field length in bytes. Values are decimal.

NOTE

Some printers capable of graphics printing support only a
subset of the commands described in this section. To
ascertain the commands supported by a printer, refer to the
user manual describing that printer.

Define Color

Fields
Field Value Description
length (2) 7 Byte count of command
opcode (1) 10 Define color
index (1) 0 - 255 Index to color in map
red intensity (1) 0 - 255 255 = full intensity
green [1] " "
blue " " L1
Effect: Defines a color, addressed by the index parameter, in a

red/green/blue (RGB) color model map.

Default: There are two system—-defined default indexes:

index 0 = the normal background for the device
(usually white)
index 255 = the complement of normal device
background
Notes: A maximum of 255 colors can be simultaneously defined.

Both index 0 and index 255 may be redefined by the DEFINE
COLOR command.

The RGB color model is additive, but mixing pigments on a
printer ribbon does subtractive coloration. A pixel
written in both red and green is meant to be yellow. A
printer should only strike both red and green pigments at
the pixel if that yields the best available approximation
to yellow.

11-32

Select Color

Fields:

Effect:

Default:

Notes:

Draw Raster

Fields:

Effect:

Default:

Notes:

Name Value Description

length (2) 4 Byte count for command

opcode (1) 11 Select color

index (1) 0 - 255 Index to an RGB color
in map

Selects the color to be applied to "1" bits (i.e., bits
set to 1) in raster format image data in DRAW RASTER
commands.

Index = 255

If the index is not defined, 1i.e. 1is neither a system
default definition nor previously defined by the DEFINE
COLOR command, index 255 1is selected. Thus, unless index
255 has been redefined from its system default, the
complement to normal background color is selected. Since
printer paper is usually white, black would be struck for
each "1" bit in image data passed in a DRAW RASTER
command.

Name - Value Description
length (2) 5 - 32767 Byte length of command
opcode (1) 20 Draw raster formatted
data
pad count (1) 0-7 # pad bits in last byte
data byte 1 0 - 255 1's = draw, 0's = skip
byte 2 " L]
byte n " "

The data is buffered or drawn in the currently selected
color starting at the 1location of the virtual cursor
which ends one pixel beyond the last data (not pad) pixel.
None

This command assumes that the data represents raster
format pixels, whereby ls are drawn, Os are skipped.

The maximum value for a given printer is limited by the
size of its buffer.

11-33

Draw Pixel

Fields

Effect:

Default:

Notes:

Draw Vectors

Fields:

Effect:

Default:

Notes:

Name Value Description
length (2) 4 - 32767 Byte count for command
opcode (1) 21 Draw pixel
data byte 1 0 - 255 Index for pixel 1
byte 2 " pixel 2
byte n " pixel n

Draws each pixel in the color given by the index
specified for that pixel starting at the current position
of the virtual cursor. The cursor ends one pixel beyond
the last one drawn.

None
If an index has not been previously defined, the color at

index 255 1is wused (initialized to the complement of
background).

Name Value Description
length (2) 4 - 32767 Byte count for command
opcode (1) 22 Draw vectors
data byte 1 0 - 255 Index for pixel 1
byte 2 " pixel 2
byte n " pixel n

Processes the data as a sequence of positioning commands
(such as MOVE or DRAW), and non-positioning commands
(such as TEXT, DEFINE PEN, etc.).

None

The specific implementation of this command is a function
of the printer or interface to which it is connected.

11-34

Move Right

Fields:

Effect:

Default:

Notes:

Left

Move

Move

Fields:

Effect:

Default:

Notes:

Down

Fields:

Name Value Description

length (2) 5 Byte count for command

opcode (1) 30 Move right

pixel count (2) 0 - 32767 Number of pixels to
move

Moves the wvirtual cursor to the right by the counted
number of pixels.

None
If the cursor is moved beyond the printer's buffer

extent, the result 1is truncation to the last pixel
location in the buffer.

Name Value Description

length (2) 5 Byte count for command
opcode (1) 31 Move left

pixel count (2) 0 - 32767 Count of pixels to move

Moves the virtual cursor to the left by the counted
number of pixels.

None

Truncates at starting location of pixels.

Name Value Description

length (2) 5 Byte count for command

opcode (1) 32 Move down

line count (2) 1 - 32767 Number of 1lines to
move down

11-35

Effect:

Default:

Notes:

Does an implicit end of raster and moves the virtual
cursor down the requested number of raster lines. This
may cause the raster buffer to be printed and the paper
to be moved.

None

A count of "1" renders this command identical in function
to the LINE FEED command.

Carriage Return

Line

Fields:

Effect:

Default:

Notes:

Feed

Fields:

Effect:

Default:

Notes:

Name Value Description
length (2) 3 Byte count for command
opcode (1) 33 Carriage return

Returns the virtual cursor to the left-hand side start
location for pixels.

None

None

Name Value Description

length (2) 3 Byte count for command
opcode (1) 34 Line feed ‘

Does an implicit end of raster and moves the virtual
cursor to the next raster line.

None

None

11-36

Carriage Return Line Feed

Fields:
Name Value Description
length (2) 3 Byte count for command
opcode (1) 35 Carriage return line
feed

Effect: Returns the wvirtual «cursor to the right-hand side
starting pixel location, does an implicit end of raster,
and skips to next raster line.

Default: None

Notes: This command does an implicit end of raster command as
does any other vertical move.

11.13 CONTROL DATA BLOCK

The control data block contains data that controls the printing of
whole print data blocks. (Print Control Bytes, by contrast, control the
printing of a record within a print data block.) The block is passed
from main memory to the printer by means of an IOCW that describes the
type. location, and length of the block.

Control data block records are compressed. One print control block
can include records relating to the control of different functions, and
these records may be of different length.

Control data blocks control the following functions:

Vertical pitch

Horizontal pitch

Form control (via Direct Access Vertical Format Unit [DAVFU])
Standard font

Printer speed

o 6 & 0 o

The format of the print control data block is shown in Figure 11-7.

[[] [[7 71 1
| BL | opTIoNs | RECL | REC2 | | RECn |
l 77 | 1

bytes 0 2 4 var var

Figure 11-7. Format of the Control Data Block

11-37

11.13.1 Block Length Bytes

The two block length (BL) bytes hold a count that equals the record
bytes plus the two block length bytes plus one. The range of valid block
length counts is 4-2048. The value of the count must equal the value of
the data count in an associated IOCW.

11.13.2 Options Bytes

The options bytes serve as a function mask whose bits, when set to 1,
select functions whose parameters are specified in a record following the
options bytes. Bits in the options byte are defined as follows:

Bit Function

Reset parameters for all functions to default value.
Vertical pitch

Horizontal pitch

Direct Access Vertical Format Unit (DAVFU)

Standard Font

Printer speed

Reserved for ideographic function

Reserved for future use

NOUd WO

|
=t
(%}

There must be a record following the options bytes for each option
bit that is set, and the order of the records must be the same as the
order of the set option bits.

When a printer is initialized, default parameters are set for all of
the functions 1listed above. These defaults remain in effect until
expressly altered. Some malfunctions (e.g., loss of power) can cause
the default values to be reinstated. The user may reestablish default
values for all parameters by setting Bit 0 of the options field to 1, and
all other bits of the field to 0. If Bit 0 and any other bit are set, an
error completion is returned from the printer.

11.13.3 Format of Control Data Block Records

Control data block records are compressed before transmission to the
printer. As explained in Section 11.3, each compressed record includes a
2-byte record length field, followed by one or more data substrings.
Each data substring includes a Compression Length (CL) byte followed by
data.

11-38

11.13.4 Vertical Pitch Record

The Vertical pitch record, shown in Figure 11-8, specifies the number
of printed lines per inch.

I I [
I 00 : 04 } 00 : nn

byte 0 1 2 3

Figure 11-8. Format of Vertical Pitch Record

Bytes 0-1, the RL field, specify a record length of 4 byes. Byte 2,
the CL field, specifies no compression. Byte 3, the data byte, specifies
lines per inch (lpi) by one of the following codes:

00 = default; usually 6 lpi
01 = 8 1pi
02 = 3 1pi
04 = 4 1pi

The printer initializes the horizontal pitch to the default wvalue
when the printer is powered on or in the event of certain malfunctions.

After processing this record, some printers redefine top of form as
the current line; other printers recompute the current line number, using
the lpi value supplied by the record.

Sending this record to a printer whose vertical pitch is not
programmable results in the return of an IOSW with an Invalid Command
error.

If the printer supports vertical pitch selection, but not the
particular pitch selected by this record, the printer adopts the default
pitch and returns an IOSW without an error. The printer takes the same
action upon receiving a code that is not one of those listed above.

11.13.5 Horizontal Pitch Record

The horizontal pitch record specifies the number of printed
characters per inch (cpi). This record is the same in format as the
vertical pitch record. The values of the record fields are also the
same, except for the codes held by Byte 3, which are defined as follows:

00 = default (usually 10 cpi)
01 = 12 cpi

02 = 15 cpi

03 = 16.5 cpi

11-39

The printer initializes the horizontal pitch to the default value
when the printer is powered on or in the event of certain malfunctions.

Sending this record to a printer whose horizontal pitch is fixed may
result in the return of an IOSW with an Invalid Command error.

Printers whose horizontal pitch is a function of the font selected
ignore this record and do not report an error in the IOSW.

If the printer supports horizontal pitch selection, but not the
particular pitch selected by this record, the printer adopts the default
pitch and returns an IOSW without an error. The printer takes the same
action upon receiving a code that is not one of those listed above.

11.13.6 Printer Speed Record

The printer speed record specifies speed of printing and affects its
quality; at slower print speeds, the quality of print increases.

This record is the same in format as the vertical pitch record. The
values of the record fields are also the same, except for the codes held
by Byte 3, which are defined as follows:

00 = printer's maximum speed (default)
01 = approximately 1/2 of printer's maximum speed

Codes other than those listed are interpreted by the printer as the
default.

The printer initializes its speed to the default value when the
printer is powered on or in the event of certain malfunctions.

Printers whose speed is a function of the font selected ignore this
record and do not report an error in the IOSW.

11.13.7 Direct Access Vertical Format Unit Record

The Direct Access Vertical Format Unit (DAVFU) record simulates a
12-channel paper tape whose channels are defined by the DAVFU record.

DAVFU Record Format

DAVFU data follows the record length and compression bytes of the
DAVFU record. This data has the same format as a table in the memory of
a printer supporting DAVFU. In this table, two-byte rows represent the
rows of a l2-channel tape; there are as many pairs of bytes as lines on a
page. The setting of each bit in a two-byte row represents a hole or the
absence of one in a channel (1 = hole; 0 = no hole). Since a pair of
bytes equals 16 bits and only 12 are needed to represent channels, the
setting of four bits (Bits 0, 1, 8, and 9) are ignored.

When the printer is initialized, and in the event of certain

malfunctions, the DAVFU table receives the default values shown in Figure
11-9.

11-40

Channel 121110 9 8 7 6 5 4 3 2 1
Bit b0 bl b2 b3 b4 b5 b6 b7 b8 b9 10 11 12 13 14 15

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

-
HPoOoOwoo OV WN KO

N el o N e
el el el e e el
e el el el e e e el
e i
e T N e
e N e e
o e e e
e e e e R e O a a
Tl = e ol I I S PR R S ST
e e e e e
e I e e e e T
COO0OO0OOHODOOO O K
o e e e e e e
e e
o O
CO0O00O0COOODOH

Figure 11-9. Default Values of DAVFU Table

Default DAVFU table values are changed by setting Bit 3 of the option
field to 1 and providing a record whose data portion duplicates the
format of the table shown in Figure 11-9. The data portion is received
by the printer in compressed form; after the data is expanded, it
replaces the existing values in the table.

In a DAVFU record, Channel 1 must retain the default definition as
top of form. On band printers, the first position of Channel 2 must
retain the default definition of 0 to allow proper operation of the Page
Eject function. Otherwise, there are no constraints on the channel
definitions supplied by DAVFU records.

Form Length

The length of the DAVFU record indicates the number of lines per form
(form length). Form 1length, together with the wvertical pitch (as
indicated by the wvertical pitch record), defines for the printer the
dimensions of the paper used for printing. The manner in which DAVFU
record length indicates form length depends on the manner in which the
printer receives paper.

Printers receive paper as a continuous form or as sheets from twin
sheet feeders, twin bins, or multiple bins.

Twin sheet feeders, supported by daisy wheel printers and the 5577
matrix printer, hold one paper size: 8.5 x 11 inches.

Twin bins, supported by the 5577 matrix printer and the DW/55 daisy
wheel printer, hold paper of various dimensions, some fractional. Each
bin in a pair holds paper of the same dimension; however, the paper in
bin 2 may be fed broadside (for landscape printing) rather than
lengthwise (for portrait printing).

11-41

A laser printer may hold two or three bins, depending on the model.
In all bins of a 1laser printer, the paper is the same size and fed
lengthwise. Portrait and landscape printing are controlled by the font
rather than by the physical orientation of the paper.

In the case of continuous forms and twin sheet feeders, there is one
form length associated with any given width; thus, specifying the forms
length serves to define both dimensions of the paper. When the printer
receives continuous forms or sheets from twin sheet feeders, the number
of DAFVU record bytes must be twice the number of lines per form (at the
vertical pitch specified by the vertical pitch record).

In the case of twin bins, however, there may be more than one length
associated with a width. Twin bins and multiple bins support fractional
paper lengths. For these reasons, the length of DAVFU records associated
with twin and multiple bins is not strictly derived from physical paper
length. Instead, the correct number of DAVFU record bytes is twice the
value of a code that has been assigned to a particular paper size.
Tables of form length codes are found in user manuals for printers
supporting twin and multiple bins.

Table 11-7 lists form length codes assigned to two combinations of
paper sizes supported by twin bin feeders. This partial 1listing is
provided to illustrate the selection of form 1length codes. For a
complete listing, refer to the appropriate user manual.

Table 11-7. Sample Form Length Codes

Form Length Paper Size Printable Paper Size Printable
Specified Bin #1 Lines Bin #2 Lines
31 @ 3 pitch 8 x 10.5 in. 31 8 x 10.5 in . 31
42 @ 4 pitch " 41 " 41
63 @ 6 pitch " 62 " 62
84 @ 8 pitch " 82 " 82
32 @ 3 pitch [7.25 x 10.5 in 31 7.25 x 10.5 in 31
43 @ 4 pitch " 41 " 41
64 @ 6 pitch " 62 " 62
85 @ 8 pitch " 82 " 82

According to Table 11-7, if both bins hold 7.25 X 10.5 inch paper,
and the desired vertical pitch is 6 1lpi, the DAVFU record should show 64
lines per page. For the same combination of paper sizes and a vertical
pitch of 8 1pi, the DAVFU record should show 85 lines per page. If both
bins hold 8 x 10.5 inch paper and the desired vertical pitch is 8 1lpi,
the DAVFU record should show 84 lines per page.

11-42

Because printers require a margin for handling sheets of paper, the
number of printable lines per page is less than the number of lines
indicated by the DAVFU record. Table 11-7, like tables in user manuals,
shows both the actual and printable number of lines.

If the DAVFU record indicates a code that is not listed in a table,
the next higher code listed is selected. If the indicated code is higher
than any listed, the highest code in the table is used.

11.13.8 Font Selection Record

Selecting a font through the Control Data Block establishes that font
as the standard font until another font is selected from the control data
block. If not selected from the control data block, the standard font is
that font which is designated in the font catalog @FONTCAT as the default
font.

The standard font 1is used for printing a record when the record's
fourth print control byte specifies the standard font (PCB 3,
Bits 0-2 = 000) or when PCB 3 is omitted from the record.

The length of the font selection record depends on the magnitude of
the font number specified by the record. Selecting a font numbered 0-255
requires a 4-byte font selection record, whose format is shown in Figure
11-10. The font number, signified in the figure by nn, occupies the
fourth byte.

1
I
i
byte 0 1 2 3 4

Figure 11-10. Four-Byte Font Selection Record

Selecting a font whose number exceeds 255 requires a font selection
record five bytes in length, whose format is shown in Figure 11-11.

byte 0 1 2 3 4

Figure 11-11. Five-Byte Font Selection Record

The maximum font number is 999 decimal:; thus, the font number xxyy is
a 10-bit value, and the six most significant bits of xx are ignored.

11-43

11.14 IDEOGRAPHIC PRINTING

Control of ideographic printing through print control bytes, IOCW,
and IOSW will be described in a future addendum to this manual.

11-44

CHAPTER 12

WANG DISK FACILITY CHARACTERISTICS

12.1 INTRODUCTION

Table 12-1 lists the characteristics of disk drives supported by Wang

VS systems.

transfer rate assume a formatted disk.

Specifications given by the table for total storage and data

The following drives listed in Table 12-1 can no longer be ordered
2260V; 2270V series; 2280V-1,-2.

from Wang Laboratories, Inc.:

Table 12-1. Characteristics of Disk Drive Models
Disk Q2040 2230 2260V 2265V-1
Type Fixed Fixed F/R? Removable
Tracks per cylinder 8 8 4 5
Cylinders 512 512 408 823
Sector size (in bytes) 256 512 256 2048
Sectors per track 32 16 24 9
Total storage (in MB) 33.55 33.55 10.03 75.85
Seek average (in ms) 65 45 38 30
Seek max (in ms) 100 80 130 55
Seek min (in ms) 10 10 9 6
Full rotation time (in ms) 20 17 25 16.66
Data transfer rate
(in bytes/sec) 410K 482K 246K 1.1M
(continued)

12-1

Table 12-1. Characteristics of Disk Drive Models (continued)

Disk 2265V-2 2265V-3 2267V-1 2268V-1
Type Removable Fixed Removable Fixed
Tracks per cylinder 19 40 5 6
Cylinders 823 842 823 692
Sector size (in bytes) 2048 2048 2048 20438
Sectors per track 9 9 9 9
Total storage (in MB) 288.22 620.7 75.85 76.52
Seek average (in ms) 30 25 30 25
Seek max (in ms) 55 50 55 50
Seek min (in ms) 6 10 7 7
Full rotation time (in ms) 16.6 16.6 16.6 17.1
Data transfer rate
(in bytes/sec) 1.1M 1.1M 1.1M 1.1M

Table 12-1. Characteristics of Disk Drive Models (continued)

Disk 2268V-2 2268vV-4 | 2270v-1 2270v-2,-4
Type Fixed Fixed Removable |Removable
Tracks per cylinder 8 24 1 2
Cylinders 1024 711 77 77
Sector size (in bytes) 2048 2048 256 1024
Sectors per track 9 13 16 8
Total storage (in MB) 150.9 454.3 0.3154 1.2
Seek average (in ms) 20 20 260 260
Seek max (in ms) 40 45 ° °
Seek min (in ms) 5 5 8 8
Full rotation time (in ms) 16.66 16.66 166 166
Data transfer rate
(in bytes/sec) 1.1M 1.8M 25K 49K

(continued)

12-2

Table 12-1. Characteristics of Disk Drive Models (continued)
Disk 2270V-3 2270V-5,-6 2280v-1
Type Removable Removable F/R?
Tracks per cylinder 2 2 1+1
Cylinders 77 40 823
Sector size (in bytes) 256/1024° 512 2048
Sectors per track 8 9 9
Total storage (in MB) .3154/1.2° 0.368 30.34
Seek average (in ms) 260 463 30
Seek max (in ms) ° ® 55
Seek min (in ms) 8 40 6
Full rotation time (in ms) 166 200 16.6
Data transfer rate
{(in bytes/sec) 49K 23K 1.1M
Table 12-1. Characteristics of Disk Drive Models (continued)
Disk 2280V-2 2280V-3
Type F/R? F/R?
Tracks per cylinder 1+3 145
Cylinders 823 823
Sector size (in bytes) 2048 2048
Sectors per track 9 9
Total storage (in MB) 60.68 91.02
Seek average (in ms) 30 30
Seek max (in ms) 55 55
Seek min (in ms) 6 6
Full rotation time (in ms) 16.6 16.6
Data transfer rate
(in bytes/sec) 1.1 1.1M
® Fixed/Removable
® Specification not supplied by manufacturer
¢ Hard-sectored/Soft-sectored

The 2265V, 2267V, and 2268V series are available as dual port drives,

which can be concurrently configured in two VS systems.

are denoted by a model number ending with "A"

(i.e.,

2265V-3A; 2267V-1A; 2268V-1A, 2268V-2A, 2268V-4A.).

Q2040 is not a model number:;

systems.

it

12-3

Dual port drives
2265V-1A, 2265V-2A,

is the designation used by the
GENEDIT utility for the fixed disk drive internal to the VS25 and VS45

The following information is provided to aid in distinguishing
between models in the 2270V series.

Models 2270V-1, -2, -3, and -4 support 8-inch diskettes. Of these,
2270V-1, -2 and -3 are used in archiving workstations; 2270V-4 is an
internal drive for VS25 and VS45 systems. Of the archiving workstation
units, 2270V-1 supports hard-sectored diskettes, 2270V-2 supports
soft-sectored diskettes, and 2270V-3 supports both hard- and
soft-sectored diskettes.

Models 2270V-5 and 2270V-6 support 5.25-inch diskettes. Of these,

2270V-5 is an internal drive for VS15 and VS65 systems, and 2270V-6 is
used in an archiving workstation.

12.2 LOGICAL AND PHYSICAL SECTORS

A physical sector is the smallest addressable unit of data on a
disk. A logical sector is the smallest unit of data transferred between
disk and main memory. Table 12-1 shows the physical sector size of VS
disk drives. The 1logical sector size for all disks is 2048 bytes.
Sector sizes, both physical and logical, do not include control
information (i.e., headers and ECC bytes).

12.3 DISK DRIVES AND I/0 PROCESSORS

Table 12-2 1lists, by class of VS system and central processor (CP)
type, the supported combinations of I/O processors and VS disk drives.
The term "I/O processors" refers to Device Adapters (DAs), I/O Processors
(IOPs), and I/0 Controllers (IOCs).

Of the I/O processors listed in Table 12-2, only the following can be
currently ordered from Wang Laboratories, Inc.: 25V50, 22V88, and 23V98,

12-4

Table 12-2. Combinations of IOPs and Disk Drives

DA/IOP/IOC Disk Drive

VS15 (CP5) VS65 (CP7)

22V50-0 2268vV-1,-2

25V50 2265V-1,-1A-2,-2A,-3,-3A 2267V-1,~-1A
2268V-1,-1A,-2,-2A 2280V-1,-2,-3

25V51 2230

25V55 Q2040

VS100 (CP4)

22V28 2265V-1,-2 2280v-1,-2,-3
22V28A 2265V-1 2280V-1,-2,-3
22v4s 2265-1,-1A,-2,-2A 2280V-1,-2,-3
22v88 2265V-1,-1A,-2,-2A,-3,-3A 2267vV-1,-1A
2268V-1,-1A,-2,-2A,-4,-4A 2280vV-1,-2,-3

VS300 (CP8)

23v98 2265V-1,-1A,-2,-2A-3,-3A 2267V-1,-1A
2268v-1,~-1A,-2,-2A,-4,-4A

12.4 DISK IOCW

A general description of the IOCW is found in Chapter 9. The disk
I/0 command word consists of a command, a memory address, a data count,
and sector address, as illustrated by Figure 12-1.

I I I [
| Command | Memory Address | Data Count | Sector Address

| I I I I I |
byte 0 1 3 6

[V p———

Figure 12-1. Disk IOCW

12-5

12.4.1 Command Byte

The first byte of the IOCW contains the I/0 command and the command
modifier bits.

The two dual port commands (Release and Reserve) are specified by
Bits 0-3 and are modified by Bits 4-7. The remaining disk commands are
specified by Bits 0-2 and are modified by Bits 3-7.

The following command codes are defined:

Command Code Function
0001 Release (dual port)
0010 Reserve (dual port)
010 Read disk sector(s)
100 Write disk sector(s)
101 Write Verify
110 Seek
111 Format

The command modifier bits are defined as follows:

Command
Modifier Bits Function
10000 Release
1000 Read/Write Diagnostic
0100 Suppress Retry
0010 Indirect Addressing
0001 Removable Platter

The 5-bit command modifier Release is wused only with
commands; thus, the total of command bits and command modifier bits never

exceeds eight.

12.4.2 Memory Address

the 3-bit

If IOCW Bit 6 = 0, the IOCW directly addresses a main memory area

from which or into which data is to be transferred.

must be 2048-byte aligned.

This area of memory

If Bit 6 = 1, the IOCW addresses the start of an indirect address

list, comprised of physical addresses of data areas.

The memory data

area addressed by each entry of the Indirect Address list must be
2048-byte aligned, or the command will be rejected with an indication of
"invalid command."

12-6

12.4.3 Data Count

For data transfer operations, the data count field of the IOCW
specifies the number of bytes to be transferred between the disk and
memory. This number must be divisible by the logical sector size (2048),
or the command will be rejected with an indication of "invalid data
count."

12.4.4 Sector Address

Bytes 6-8 of the IOCW indicate the address of the starting sector to
be transferred. The value supplied in this field is interpreted as the
relative number, starting at zero, of a 256-byte sector. Thus, the
specified address of a 2048-byte sector is its relative sector number
multiplied by eight; and the three 1least significant bits of the
specified address must be zeros.

If the starting sector and data count imply a cylinder change, the

command will be rejected with an indication of invalid command and
invalid data count.

12.5 DUAL PORT COMMANDS

12.5.1 Release Command

Execution of the Release command causes the controller to give up
reservation of a dual port disk. A Release command issued to a disk that
is already reserved by the other controller or is not dual ported has no
effect: the controller returns a Normal Completion IOSW.

12.5.2 Reserve Command

Execution of the Reserve command causes the controller to attempt
reservation of a dual port disk. If the disk is already reserved by
another controller, the controller returns an IOSW with Error Completion
and Disk Unavailable bits set. Otherwise, the returned IOSW indicates
normal completion. A Reserve command issued to a disk that is not dual
ported has no effect; the controller returns a Normal Completion IOSW.

12.6. I/0 COMMANDS

12.6.1 Read Command

Execution of a Read command positions the access mechanism and
transfers information from the disk into memory. The access mechanism is
positioned at the specified sector within the specified cylinder. The
disk verifies (using the Error Correction Code attached to each sector)
that the data as read is valid. Also, it verifies that the sector(s)
read are those requested, by comparing the sector address identification
with the specified sector of the Read command.

12-7

If any error is detected and automatic retries are enabled (IOCW Bit
S = 0), the I/0 device initiates the appropriate retry procedures. If
retry is successful, normal processing is continued. In this case, the
error is reported at the end of the I/O sequence by means of an IOSW with
both NC and EC bits set. The appropriate error status bits are set in
the IOSW to describe the error.

If an irrecoverable error occurs (i.e., if all retry attempts fail),
then the Read operation terminates and the error 1is reported as
irrecoverable by means of an Error Completion IOSW. The residual byte
count indicates the amount of data transferred before termination.

The Read command allows any number of sectors on a cylinder to be
read by one command.

12.6.2 Write and Write (Verify) Commands

Execution of a Write command positions the access mechanism and
transfers information from memory to the disk. The access mechanism is
positioned to the specified cylinder and sector within the cylinder. As
the Write operation is performed, an Error Correction Code is computed by
the disk controller and appended to the sector record.

The Write Verify command requires a second revolution of the disk
mechanism. The contents of the sectors as written on the disk are
validated by a reading of all the data written and a comparison of that
data with the data as it is found in memory. As part of the Read
operation, the ECC is recalculated and checked.

If an error 1is found during data verification, the IOSW data
comparison error bit is set. If automatic retries are enabled (IOCW Bit
5 = 0), the I/O device initiates the appropriate retry procedures. If
all retry attempts fail, the operation 1is terminated and an Error
Completion IOSW is issued with a nonzero residual byte count. ‘

For disk drives configurable to the VS100 (listed in Table 12-2) and
for the 2230 drive, the stored residual byte count indicates the sector
in error. This residual count is decremented each time a sector is
successfully verified. Thus, an uncorrectable error on the first sector
written would result in a residual count equal to the original data
count; an error on the second sector written would result in a residual
count equal to the original count minus 2048, and so forth.

If retry is successful, the operation is reported back through the
IOSW with both Normal Completion (NC) and Error Completion (EC) bits set.

The Write command allows any number of sectors on a cylinder to be
written.

12-8

12.7 DISK CONTROL COMMANDS

12.7.1 Seek

Execution of a Seek disk address command positions the disk access
mechanism. The data count field and the memory address field of the IOCW
are ignored. No validity checking of the actual disk mechanism position
occurs during this command. The Seek operation is automatic on Read,
Write, and Format commands.

12.7.2 Format

The Format command causes the addressed sectors to be formatted with
sector preambles. The data in the sectors after successful execution of
the command is unpredictable.

The data count of a Format IOCW can be any number that is a multiple

of the logical sector size (X'800'), less than X'10,000', and does not
imply a cylinder change.

12.8 COMMAND MODIFICATION

IOCW Bits 4-7 modify dual port commands; Bits 3-7 modify other
commands.

12.8.1 Release

When Bit 3 is set to 1, the operation specified by Bits 0-2 is
performed; then the controller releases the disk. The other controller
may then reserve the disk and perform an I/0 or control operation. Bit 3
is not interpreted as a command modifier by disks that do not have dual
ports.

Because a Reserve operation is implicitly performed by an I/0 or
control operation, a command modifier bit need not be defined for
reserving a dual port disk.

12.8.2 Read/Write Diagnostic

When Bit 4 is set to 1, data transfer is limited to one physical
sector. Indirect data addressing is not allowed. Specification of
multiple sectors or indirect data addressing causes the return of an IOSW
with EC and IC bits set; no data is transferred.

When this bit is set on a Read command, the bytes of ECC code
associated with the specified sector are transferred into memory
immediately following the data. ECC error recovery is suppressed. A
physical sector of 256, 512, or 1024 bytes is followed by an ECC code of
four bytes. A sector of 2048 bytes is followed by an ECC code of eight
bytes.

12-9

When this bit is set with a Write command, the number of bytes in a
physical sector, starting from the address specified in the IOCW, are
transferred to the disk sector as data, as in a normal Write command.
However, instead of generating an ECC code for the sector, the disk
hardware uses the next four or eight bytes of memory as its ECC code and
writes these into the sector. ECC error recovery is suppressed.

12.8.3 Suppress Retry

When IOCW Bit 5 = 1, any automatic retry procedures normally
initiated by the device are bypassed. All error conditions are reported
immediately as irrecoverable errors (IOSW bit EC set, bit NC not set).

12.8.4 Indirect Data Addressing

When IOCW Bit 6 is set to 1, the data address portion of the IOCW
addresses an Indirect Address 1list as described in Chapter 9. The
address contained in each of the Indirect Address list must be a multiple
of the disk drive's logical sector size (i.e., 2048).

12.8.5 Removable Platter

When IOCW Bit 7 is set to 1, the I/0 command disk address refers to
the removable platter. Otherwise the command is for the fixed platter.
This bit is ignored by disk drives that do not support fixed/removable
platter combinations.

12.9 DISK I/O STATUS WORD

A general discussion of the I/O Status Word (IOSW) is found in
Chapter 9. Figure 12-2 shows the IOSW for disks.

[[! | [retry | (vs300) |
| General | Error | Extended | Residual | indi- | Extended |
| status | status | status | byte count | cator | MPE/MAE |
bits 0 8 16 32 Y] 56 63
byte 0 1 2 4 6 7 8

Figure 12-2. Disk IOSW

12-10

12.9.1 General Status Byte

IOSW
Bit Mnemonic Meaning

0 IRQ Set only when an ‘"intervention required"
condition 1is detected at the start of an
operation. Not set when "Not Ready During
Operation" device status is set. EC is always
set when IRQ is set.

1 NC Set on successful completion, with or without
retries.

2 EC Set when any error status bit is set, even if
condition is corrected by retry. NC and EC
both set if a retry is successful.

3 U Set whenever device becomes ready after the
START button at the device is pressed. NC, EC,
or PC may also be set.

4 PC IOP now ready:vmay be set alone or with NC, EC,
or U. (Used only on the VS100 system.)

5-7 Reserved (always 0).

12.9.2 Error

Status Byte

IOSW
Bit

Mnemonic

Meaning

8

10

IC

MPE

Set to indicate invalid command byte in IOCW;
IOCW not fullword aligned; Indirect Address
list not fullword aligned; data area(s) not
2048-byte aligned. EC always set if IC is set.

Set on occurrence of main memory parity error
during transfer of Command Table Address (CTA),
IOCW, Indirect Address 1list, or data. EC
always set if MPE is set. On VS300 only, MPE
is qualified by IOSW Byte 7.

Set on occurrence of main memory addressing
error during transfer of IOCW, Indirect Address
list, or data. EC always set if MAE is set.
On VS300 only, MPE is qualified by IOSW Byte 7.

12-11

IOSW
Bit

Mnemonic Meaning

11

12

13

14-15

DM Set only if one or more of the following
conditions is indicated in the device-dependent
status bytes:

Sector overrun

Seek incomplete

Not ready during operation
Timeout on sector

Data compare error

Invalid sector ID

Invalid CRC or ECC check
Overrun

® 0 0 0 0 0 0 0

DAM Set whenever command terminated with error (EC
set; NC not set) after main memory or data on
disk has been modified.

IL Never set.

Reserved (always 0).

12.9.3 Extended Status Bytes

The Extended Status bytes consist of 16 bits that indicate specific
disk and/or controller states.

IOSW

Bit Mnemonic Meaning when Set to 1

16 HDF Sector header reformatted on Write retry
17 HDS Sector header skipped on Read retry

18 DIA ECC transferred (not applicable to diskette drives)
19 OPT Optimization used

20 IDA Invalid disk address

21 IDC Invalid data count

22 SO Sector overrun

23 ST Seek incomplete

24 WP Write protect

25 NRO Not ready during operation

26 ST Timeout on sector

12-12

IOsw

Bit Mnemonic Meaning

27 DC Data compare error
28 IID Invalid sector ID
29 CRC Invalid CRC or ECC
30 6] Overrun

31 DU Disk Unavailable

Optimization Used

This bit is set to 1 whenever transfer of multiple sectors starts
with a sector closer to the disk head than the sector specified by the
IOCW sector address. The specified sector is transferred at a later
point in the rotational cycle to take advantage of the disk's current
rotational position.

Invalid Disk Address

This bit is set to 1 when the starting sector address points to a
nonexistent cylinder, a condition that also causes the Error Completion
bit and the Invalid Command bit to be set to 1.

Invalid Data Count

This bit is set to 1 for the following conditions:

e Data count is not a multiple of the logical sector size.
e Data count is greater than or equal to X'10,000'.

e Data count implies\a cylinder change.

e Data count is 0.

These conditions cause the Error Completion bit and the Invalid Command
bit to be set to 1.

Sector Overrun

This bit is set to 1 when a sector in a multiple sector operation
requires an additional rotation for transfer to or from main memory. The
operation is retried starting at the "missed" sector. The condition may
be caused by insufficient intersector gap time due to a defective disk
pack or incorrect disk drive alignment.

Seek Incomplete

This bit is set to 1 to indicate that the disk was unable to complete
a Seek due to a malfunction or that a hardware fault occurred during a
transfer operation.

12-13

Write Protect

This bit is set to 1 on all commands when the disk or diskette is
write protected. The issuance of a Write command to a write-protected
drive causes the return of an IOSW with EC, IC, and WP bits set to 1; no
data is transferred.

Not Ready During Operation

This bit, along with the DAM bit, is set to 1 whenever a disk becomes
not ready during an operation.

Timeout on Sector

This bit is set to 1 whenever a sector operation takes longer to
complete than a sector's time. Device malfunction 1is indicated and the
command is not retried.

Data Compare Error

This bit is set to 1 whenever the controller detects a data mismatch
during the verify part of a Write Verify command.

Invalid Sector ID

This bit is set to 1, if at the start of an operation, the controller
finds that the sector identifier bytes are not as expected.

Invalid CRC or ECC Check

This bit is set during a Read operation if the CRC or ECC calculated
during the operation is not the same as the CRC or ECC written on the
disk.

Overrun
This bit is set if memory service is not provided fast enough to keep
up with the disk data transfer (rotation) speed during a Read or Write

operation. Data transfer stops as soon as this condition is detected.

Disk Unavailable

This bit is set to 1 when a controller attempts an operation to a
disk that is reserved by another controller. The EC bit is also set.

12.9.4 Residual Byte Count

In an error completion IOSW, this field of the IOSW specifies the
number of any data bytes transferred before the I/O operation terminated
unsuccessfully. If no data bytes were successfully transferred, this
field shows the data count. On certain drives, mentioned in Section
12.6.2, the residual byte count identifies the sector in which a Write
Verify operation encountered an uncorrectable error.

12-14

12.9.5 Retry Indicator Byte

IOSW
Bit Value Meaning
48-51 0 No special adjustment
1 Data strobe early adjustment applied during
retry
2 Data strobe late adjustment applied during retry
3 Servo offset minus adjustment applied during
retry
4 Servo offset plus adjustment applied during
retry
5 Data strobe early and servo offset minus
adjustments applied during retry
6 Data strobe 1late and servo offset minus
adjustments applied during retry
7 Data strobe early and servo offset plus
adjustments applied during retry
8 Data strobe late and servo offset plus
adjustments applied during retry
9 ECC applied on Read retry
52-55 n Number of retries (n) for the above adjustments

before terminating
Some disks do not support all of the adjustments listed above.

When invalid data is detected on a Read or Write Verify operation,
retries of a certain type (indicated by Bits 48-51) are performed. After
each retry, the retry count (Bits 52-55) is incremented. After the
maximum number of retries, the retry indicators (Bits 48-51) are updated
to indicate the type of retry attempted, the retry count is zeroed, and
the next type of retry is attempted.

For the 2270V-1, the retry indicators (Bits 48-55) are updated after
a maximum of 16 retries, with no special adjustment, for Read and Write
operations.

For the 2230, the drive attempts to read an invalid logical sector
four times. If the fourth attempt is unsuccessful, the drive attempts to
read each of the four physical sectors comprising the logical sector.
After eight unsuccessful attempts to read a single sector, the drive
attempts ECC, setting the retry indicator to a value of 9.

12-15

12.9.6 IOSW Byte 7

On the VS300, Byte 7 of an error completion IOSW can contain extended
status information on memory address and memory parity errors; Byte 7 of
a normal completion IOSW can contain diskette drive indicators.

On systems other than the VS300, IOSW Byte 7 1is used only for
diskette drive indicators.

Extended MPE/MAE Byte (VS300 Only)

When the EC and MPE bits are both set to 1, IOSW Byte 7 shows one of
the following hexadecimal codes:

Code Meaning
01 System memory data error
04 System bus memory read parity error
08 System bus parity error

When the EC and MAE bits are both set to 1, IOSW Byte 7 shows one of the
following hexadecimal codes:

Code Meaning

02 Illegal system memory address
10 Illegal system memory page access
20 Illegal I/0 command from IOC

Diskette Drive Indicator Bits

IOSW

Bit Meaning when Set to 1

56 Diskette write protected

60 Soft-sectored medium

61 Double-sided medium (valid only for soft-sectored diskettes)

12.9.7 Disk Unsolicited Interruptions

When a disk drive first becomes ready (i.e., after a disk platter is
mounted), an unsolicited '"device now readied" interruption request is
generated.

NOTE

Disk I/O Processors do not support the HALT I/0 machine
instruction. If this command is received, a condition code of
0 is returned 1if the specified device is idle. If an
operation is in progress or an interruption is pending, a
condition code of 1 is returned and disk processing continues
until the operation completes.

12-16

CHAPTER 13
WANG MAGNETIC TAPE CHARACTERISTICS

13.1 INTRODUCTION

All Wang systems support magnetic tape drives. The VS15, VS45, and
VS65 systems support only serial tape drives -— Wang models 2509V and
2529V. Other VS systems also support paraliel tape drives —— the 2209V
and 2219V series of Wang models.

All tape drives except the 2529V are reel-to-reel, using 0.5-inch
(1.27-cm) tape. The 2529V is a cartridge drive, wusing 0.25-inch
(0.64-cm) tape. The functional characteristics of reel-to-reel tape
drives, whether parallel or serial, are basically similar; there are
major functional differences, however, between reel-to-reel tape drives
and the cartridge tape drive.

All tape drives and their controllers are compatible with industry
standards and are designed to facilitate information interchange between
the Wang VS and other computer systems.

Table 13-1 summarizes the characteristics of VS tape drives. The

speeds listed in the last column apply to Read and Write operations
rather than to control operations such as Rewind.

13-1

Table 13-1. VS Tape Drive Characteristics

Recording Density (bpi) Speed
Model Tracks /Mode (ips)
Parallel Tape Drives
2209v-1 9 1600/PE 75
2209v-2 9 800/NRZI, 1600/PE 75
2209v-3 7 800/NRZI 75
2219v-1 9 1600/PE, 6250/GCR 75
2219v-2 9 1600/PE, 6250/GCR 125
2219v-3 9 800/NRZI, 1600/PE, 6250/GCR 75
2219v-4 9 800/NRZI, 1600/PE, 6250/GCR 125
Serial Tape Drives
2509V 9 1600/PE 75
2529V 4 6400 : 30

13.2 GENERAL DESCRIPTION OF REEL-TO-REEL TAPE DRIVES

Reel-to-Reel tape drives comprise all tape drives except the 2529V
cartridge tape drive.

13.2.1 Track Allocation

Information is written on tape by magnetizing small discrete
positions across the width of the tape. The result is a column of bits
that represent a byte of information plus parity. Bit positions do not
correspond sequentially to track numbers across the tape. Bit positions
are allocated as shown in Figure 13-1. The parity bit is indicated by
the symbol "P" in the figure. Tracks are numbered from the near edge
with the oxide side down and with the take-up reel on the right.

9-Track 7-Track

6

Track number 5 7
2 P3

12314 8 9 1234567
Bit position 4601 75 P012345

Figure 13-1. Tape Bit Positions

Bit positions 0-5 on the 7-track tape correspond to Locations 2-7 in
main memory.

13-2

13.2.2 Tape Markers

Magnetic tape must have some blank space at the beginning and end of
the reel to allow threading it through the feed mechanism of the tape
unit. Markers called reflective strips are placed on the tape by the
operator to enable the tape unit to sense the beginning and the end of
the usable portion of the tape. The tape unit senses a marker either as
the load point marker, where reading or writing is to begin, or as the
end-of-tape marker, approximately where writing is to stop.

Load Point Marker

At least 10 feet (3 meters) of tape must be allowed between the
beginning of the reel and the load point marker as a leader for threading
the tape on the tape unit. To indicate the load point, the marker must
be parallel to and not more than 0.31 inch (0.08 cm) from the edge of the
tape nearest the tape unit.

End-of-Tape Marker

About 14 feet (4.3 meters) of tape are usually reserved between the
end-of-tape marker and the end of the tape. This space includes at least
10 feet (3 meters) of leader and 4 feet (1 meter) for the recording of
data after the end-of-tape marker is sensed. When the tape is mounted,
the marker is placed parallel to and not more than 0.31 inch (0.08 cm)
from the edge of the tape nearest the tape unit. The end—of-tape
reflective marker indicates the beginning of the end-of-tape area.

13.2.3 Tape Mark

The tape mark is a special single-byte block written only by the
Write Tape Mark command. The value written is X'13' (X'0OF' for 7-track
tapes). It can be wused to separate multiple files (or any other
collection of blocks) on a tape.

13.2.4 Tape Blocks

Information on tape is arranged in blocks, as shown in Figure 13-2.
A tape block usually consists of a single record. Blocks are separated
on tape by an interblock gap —— a length of blank tape of approximately
0.6 inch (1.52 cm). During writing, the gap is always produced at the
end of a block. A tape block is therefore defined or marked by an
interblock gap before and after the block. Maximum block length is
32,768 bytes.

13-3

Forward Tape Motion — >

{7e7771 1T 1T 1 22221

l7777711B 1L | cl data record [IB 1777771

77//71gapIrR | RI lgapls/7771

777771 Ic | ¢l L Mr7727]
| one block |

IB Gap —— Interblock gap
LRC -- Longitudinal redundancy check
CRC -- Cyclic redundancy check

Figure 13-2. Reel-to-Reel Tape Blocks

13.2.5 File Protection

The write operation automatically erases any previous information on
the tape; therefore, a file protection device 1is provided to prevent
accidental erasure. A plastic write-enable ring fits in a circular
groove molded in the back (machine side) of the tape reel. This ring
must be in place for the machine to write on the tape in the reel. When
the ring is removed, only reading can take place; the tape is thus
protected from accidental writing, which could erase valuable information.

13.2.6 Checking Tape Validity

The validity of information written on or read from tape is ensured
through the use of longitudinal, vertical, and skew checks; there is also
a cyclic redundancy check for 9-track tape. The checking of tape
information is accomplished during a Read operation or during a read
check of a Write operation.

13.3 GENERAL DESCRIPTION OF THE CARTRIDGE TAPE DRIVE

The 2529V tape drive supports 0.25-inch (0.09-cm) tape. The tape is
wound on two reels within a cartridge that is inserted into the drive.

13.3.1. Track Allocation

Four tracks run lengthwise along the tape, one below the other.
After data has been read or written to the end of one track, the
direction of tape movement is reversed and the next 1lower track is
accessed to continue the operation.

Recorded data forms a single row of bits along the length of the
track. For every eight bits of data there is a parity bit.

13-4

13.3.2 Tape Markers

Tape markers are small perforations that demarcate the recordable
area of each track from that section of track used for threading the tape
onto reels. A tape marker on Track 0, the 1load point (LP) marker,
indicates to the tape drive where reading or writing is to begin. A tape
marker on Track 3, the End of Tape (EOT) marker, indicates to the drive
approximately where writing is to stop.

13.3.3 Tape Mark

The tape mark is a special block written only by the Write Tape Mark
command. It can be wused to separate multiple files (or any other
collection of blocks) on a tape. During Read operations, tape marks are
not transferred to main memory.

13.3.4 Tape Blocks

Information on tape is arranged in blocks, as shown in Figure 13-3.
A tape block usually consists of a single record. Blocks are separated
on tape by an interblock gap of blank tape. During writing, the gap is
always produced at the end of a block. A tape block is therefore defined
or marked by an interblock gap before and after the block.

Block length must range between 2 bytes and 17K bytes, inclusive.

Forward Tape Motion — —>

[7777/T T71 I (777771

lz777711B Icl data record IIB /77771

\777/71gaplRl lgapl/7/7/71

777771 icl | l77777]
| one block |

IB Gap — Interblock gap
CRC -- Cyclic redundancy check

Figure 13-3. Cartridge Tape Blocks

13.3.5 File Protection

The Write operation automatically erases any previous information on
the tape:; therefore, a tape protection device is provided to prevent
accidental erasure. A plastic knob is found on the edge of the cartridge
inserted into the drive. When this knob is rotated to the SAFE position,
only reading can take place; the tape is thus protected from accidental
writing, which could erase valuable information.

13-5

13.3.6 Dismounting Cartridge

The cartridge is not locked in the drive during any of the drive's
operations. Care must be taken not to remove the cartridge while the
TAPE LOADED indicator is 1lit. When the cartridge is dismounted, the tape
drive goes off-line and the TAPE LOADED indicator light turns off.

3.3.7 Loading Tape

There is no LOAD button on the tape drive unit. The tape is loaded
(i.e., positioned to tape load marker) by the drive after the operator
inserts the cartridge and presses the ONLINE button.

13.3.8 Tape Length and Thickness

The following lengths of cartridge tape are supported by the Find
Tape Length command: 300 feet (91.5 meters), 450 feet (120 meters), and
600 feet (240 meters). The 300- and 450-foot tapes are of the same
thickness, and thicker than the 600-foot tape.

13.3.9 High and Low Current

The electrical current passing through the drive's head on a Write
operation must be adjusted to the thickness of the tape being used. The
longest tape (600 feet) requires a higher current than the shorter
tapes. To adjust the current, three control commands are provided
through the I/0 command word (IOCW): Find Tape Length, Set Write Current
High, Set Write Current Low. Invoking the Find Tape Length command
causes the tape length to be indicated in the I/0 status word (IOSW).
The current can then be set high or low accordingly.

Programming Note

The drive responds to the Find Tape Length command by rewinding the
entire length of the tape. In the case of of the 450-foot (120 meter)
tape, this operation takes about three minutes. The command need be
invoked only once 1if the tape 1length (determined by this single
invocation) is written to a header block. Subsequently, the tape length
can be determined by the much briefer operation of reading the header
block.

13.3.10 Checking Tape Validity

The validity of information written on or read from tape is tested
through the use of parity and cyclic redundancy checks. The checking of
tape information is accomplished during a Read operation or during a read
check of a Write operation. '

13-6

13.3.11 Auto-Retry

The tape drive can be requested to initiate and carry out a retry
operation whenever invalid information is detected on a Read or Write
operation. This facility, called auto-retry, is automatically enabled at
Load time. It can be disabled and re-enabled by means of the IOCW
control command Toggle Retry, described in Section 13.6.16. IOSW Bit 30
indicates the current state (enabled, disabled) of the facility.

Auto Retry Enabled

In order to retry Write operations, the tape drive prefixes a 2-byte
block number to each block before it is written. When the block is
successfully written, the drive stores in a queue the block number and
number of bytes writtern. (The queue holds these counts only for the four
most recent writes.) When a Write error is encountered, the drive uses
these counts to reposition the tape to the end of the last valid block.
After repositioning the tape and erasing invalid data, the drive retries
the Write. After twenty unsuccessful retries, the drive returns an IOSW
showing error completion, CRC error, and number of retries.

Retries of Read operations are accomplished without the appendage of
block numbers. The maximum number of Read retries is thirty.

When auto retry is enabled and a Read operation is performed, the
drive strips off the first two bytes of each block being transmitted to
main memory. If the block was written when auto retry was enabled, these
bytes contain a block count. Note that the drive does not check the mode
in which the tape was written.

Auto Retry Disabled

When auto retry is disabled, no block counts are appended to data.
On encountering a Read or Write error, the drive returns an error
completion IOSW without performing retries. It is the responsibility of
the application to handle retry operations.

13.4 TAPE IOCW

A general discussion of the IOCW is found in Chapter 9. I/0 commands
to the magnetic tape consist of a command, a memory address, and a data
count, as shown in Figure 13-4. There is no device-dependent section.

I T |

| Command | Memory Address | Data Count

ol —]

byte O 1 4

Figure 13-4. Tape IOCW

13-7

13.4.1 Command Byte

The first byte of the IOCW contains the I/0 command, the command
modifier bits, the indirect data addressing flag, and reduced retry
flag. These are as follows:

CCMMMMIR
where CC is the command, MMMM are the command modifier bits, I is the

indirect data addressing flag, and R is the reduced retry flag. There
are three valid commands.

Command Code Command Function
01 Read
10 Write
11 Control

For all drives except the 2529V, setting the reduced retry flag on a
Read command reduces from 100 to 5 the number of attempts made to read a
tape block before a hard error is reported. The 2529V drive ignores the
reduced retry flag.

If the indirect data addressing (IDA) bit is set, the address of the
memory storage from which or into which data is to be transferred will be
fetched from the IDA list addressed by the memory address portion of the
IOCW. '

If the IDA bit is not set, the memory address portion of the IOCW
directly addresses a memory area from which or into which data is to be
transferred. This area of memory must be word aligned.

13.4.2 Data Count Byte

The data count portion of the IOCW contains the number of bytes to be
transferred. For all drives except the cartridge drive (2529V), wvalid
data counts range from 8 to 32,768 bytes on a Read command and from 12 to
32,768 bytes on a Write command.

For the cartridge tape drive, the minimum data count for Read and
Write commands is 2 bytes. When auto retry is enabled and the command is
Write, the maximum is 17K minus 2 bytes (17,406 bytes). 1In all other
cases for the cartridge tape drive, the maximum is 17 KB (17,408 bytes).

13.5 I/0 COMMANDS

13.5.1 Read

A valid Read command causes the selected tape unit to move forward to
the next interblock gap. Information recorded on the tape is read and
placed in contiguous ascending locations in main memory, starting with
the address specified in the IOCW. If no data is detected on the tape
within approximately 7 seconds after the command is issued, the operation
is terminated and the incorrect length bit is set in the IOSW.

On all VS systems, reading a tape mark sets the TM indicator (Bit 28
of the IOSW). The tape mark is not sent to storage. On the VS300
system, sensing the EOT marker during a Read operation sets the EOT
indicator (Bit 29 of the IOSW).

13.5.2 Write

A valid Write command causes the tape unit to move the tape forward,
writing data fetched from main memory, starting with the address
specified in the IOCW. The number of bytes to be transferred is
specified in the data count field. These bytes are written in the form
of a single physical record (a block) with vertical, longitudinal, and
cyclic redundancy checks for parity applied where supported and
appropriate. Sensing the EOT tape marker during a Write operation sets
the EOT indicator in the IOSW.

13.6 TAPE CONTROL COMMANDS

Control operations are specified by a command code of B'll' (IOCW
Bits 0-1) modified by Bits 2-5. Table 13-2 shows the control command
modifier codes defined for Bits 2-5. The significance of command
modifier codes B'0000' through B'1011' is common to all tape drives. The
significance of the four remaining command modifier codes is
drive-specific.

13-9

01-¢1

Table 13-2.

Control Command Modifier Codes

Bits Drive Models

2-5 2209v-1,-2,-3 2219v-1,-2,-3,-4 2509V 2529v

0000 Sense Sense Sense Sense

0100 Erase Tape Erase Tape Erase Tape Erase Tape

0101 Write Tape Mark Write Tape Mark Write Tape Mark Write Tape Mark

0110 Forward Space Block Forward Space Block Forward Space Block Forward Space Block
omn Forward Space File Forward Space File Forward Space File Forward Space File
1000 Rewind Rewind Rewind Rewind

1001 Rewind/Unload Rewind/Unload Rewind/Unload Rewind/Unload

1010 Backspace Block Backspace Block Backspace Block Backspace Block

1011 Backspace File Backspace File Backspace File Backspace File

1100 Set Density High Set Mode to PE Not Used Find Tape Length

1101 Set Density Low Set Mode to NRZI Not Used Set Write Current High
1110 Set Parity Odd Set Mode to GCR Not Used Set Write Current Low
1111 Set Parity Even Drive Selected Mode Not Used Toggle Retry

A valid control command causes the specified control function to be
executed. At the end of the control function, a normal completion IOSW
is issued. '

13.6.1 Sense

Execution of the Sense command senses the device's current status and
sets accordingly the Load Point, Offline, File Protect, End of Tape, and
Density bits.

13.6.2 Erase Tape

Execution of an Erase Tape command erases approximately 3.75 inches
(9.52 cm) of tape (3 inches, or 7.62 cm, for the 2529V drive).
Performing this operation in the EOT area sets the EOT indicator in the
IOSW.

13.6.3 Write Tape Mark

Execution of the Write Tape Mark command writes a tape mark (a
special block) on tape. Performing this operation in the EOT area sets
the EOT indicator in the IOSW.

13.6.4 Forward Space Block

Execution of the Forward Space Block command moves the tape forward
to the next interblock gap. Sensing a tape mark sets the TM indicator in
the IOSW.

13.6.5 Forward Space File

Execution of the Forward Space File command moves the tape forward to
the interblock gap beyond the next tape mark. Sensing the tape mark does
not cause the TM indicator to be set in the IOSW.

13.6.6 Rewind
Execution of a Rewind control command causes the tape drive to enter
rewind mode and reposition the tape at the load point tape marker. This

causes the load point (LP) indicator to be set in the IOSW.

13.6.7 Rewind and Unload

2209V Series and 2509V Tape Drive

On these tape drives, execution of a Rewind/Unload control command
causes the tape drive to enter rewind mode, reposition the tape at the LP
tape marker, and reset the tape status to off-line.

2219V Series
On these tape drives, execution of a Rewind/Unload control command

winds all of the tape onto the supply reel and reset the tape status to
off-line.

13-11

2529V Tape Drive

On the cartridge tape drive, execution of the Rewind/Unload control
command does not actually cause rewinding of the tape. Instead, the tape
drive winds the tape forward to End-of-Tape and resets the tape status to
off-line. (Subsequently, at load time, the tape is rewound to load point
and retensioned in the process.) ~

13.6.8 Backspace Block

Execution of the Backspace Block command causes the tape drive to
move the tape backward to the nearest interblock gap or to the load
point, whichever comes first. Sensing a tape mark sets the TM indicator
in the IOSW. Sensing the load point before the backspace operation sets
the LP indicator in the IOSW with Error Completion (EC).

13.6.9 Backspace File

Execution of the Backspace File command causes the tape drive to move
the tape backward to the interblock gap beyond the next tape mark or to
the load point, whichever comes first. Sensing the load point sets the
LP indicator in the IOSW.with Error Completion (EC). Sensing the load
point before the backspace operation sets the LP indicator in the IOSW
with Error Completion (EC). Sensing the tape mark does not cause the TM
indicator in the IOSW to be set.

13.6.10 Set Density

Execution of the Set Density command logically switches the tape
drive to the indicated density. The IOSW indicates the change in the
density status bits. The change does not become effective until an I/O
operation is initiated, at which point the wrong density status bit
appears in the IOSW if the selected density is unavailable. This command
is wvalid only for 9-track drives, and effective only for dual- and
tri-density drives.

13.6.11 Set Parity

Execution of the Set Parity command logically switches the tape drive
to the selected parity. The IOSW indicates the change in the parity
status bit. This command is valid only for 7-track drives.

13.6.12 Drive Selected Mode

Density can be set manually on 2219V-x drives while they are
off-line. Execution of the Drive Select Mode command selects the density
that has been set manually.

13-12

13.6.13 Find Tape Length

Execution of the Find Tape Length command causes IOSW Bit 20 and/or
21 to be set, indicating a cartridge tape length of 600 feet (240
meters), 450 feet (120 meters), or 300 feet (91.5 meters). As explained
in Section 13.3.9, this command is preparatory to a command that sets the
write current.

13.6.14 Set Write Current High

Execution of this command sets the current that magnetizes a
cartridge tape during a Write operation to the level appropriate for the
thickness of a 600-foot (240-meter) cartridge tape. This command applies
only to the 2529V drive.

13.6.15 Set Write Current Low

Execution of this command sets the current that magnetizes a
cartridge tape during a Write operation to the level appropriate to the
thickness of a 450-foot (120-meter) or 300-foot (91.5-meter) tape. This
command applies only to the 2529V drive.

13.6.16 Toggle Retry

Execution of this command enables auto-retry mode if it is disabled,
or disables it if it is enabled. This command applies only to the 2529V
drive. The auto retry facility is explained in Section 13.3.11.

13.7 EFFECT OF TAPE MARKERS ON IOSW BITS

I/0 commands and certain control commands, when encountering a tape
mark or tape marker, set LP, TM or EOT bits in the IOSW. Table 13-3
shows these commands and the IOSW bit(s) that they set when encountering
a tape mark or tape marker.

Table 13-3. Effect of Tape Markers on IOSW Bits

Load Point Tape Mark End-of-Tape
Tape Operation Mark (LP) (TM) Mark (EOT)
Write - - EOT
Read - ™ EOT (VS300 only)
Rewind LP - -
Rewind/Unload - - -
Write Tape Mark - - EOT
Forward Space Block - ™ -
Forward Space File - - -
Backspace Block LP (EC) ™ -
Backspace File LP (EC) - -

13-13

13.8 TAPE I/O STATUS WORD

A general discussion of the I/0 status word (IOSW) is found in
Chapter 9. Figure 13-5 shows the IOSW format for tapes.

[[| | | I]
| General | Error | extended | Residual | Error | Extended |
| status | status | status | byte count | count | MPE/MAE |
bits 0 8 16 32 48 56 63
byte 0 1 2 4 6 7 8

Figure 13-5. Tape IOSW Format

A full TIOSW is always stored on tape I/0 completion. The error
status byte is stored even if the completion is not an error completion
(bit EC of general status not set).

When a tape, after being mounted, first reaches load point and the
tape drive is on-line, an unsolicited interruption occurs with general
status bit U (unsolicited interruption) set. IOSW bits LP (load point)
and FP (file protected), or both, may be set.

13.8.1 General Status Byte

IOSW

Bit Mnemonic Meaning

0 IRQ Never set.

1 NC Set on successful completion with or without
retries.

2 EC Set when any error status bit is set, even if
the condition has been corrected by retry. NC
and EC are both set when a retry is successful.

3) Set whenever the device becomes ready after the
ONLINE button at the device is pressed.

4 PC IOP now ready; may be set alone or with NC, EC,
or U. (Used only on the VS100 system.)

5-7 Reserved (always 0).

13-14

13.8.2 Error Status Byte —— Reel-to-Reel Tape Drives

Set, with EC, to indicate an invalid command
byte in IOCW for any of the following reasons:

IOCW not fullword-aligned

Indirect Address List not fullword-aligned or
at an invalid address

Data directly addressed by IOCW or addressed by
Indirect Address List is not fullword-aligned.

Attempt made to select parity on a 9-track drive

Attempt made to issue diagnostic commands
except on a 9-track NRZI drive

Attempt made to use data length over 32,768

Attempt made to backspace when tape is at 1load

Attempt made to write, write tape mark, or
erase tape when tape is write protected

Attempt made to specify a Read operation of
less than 8 bytes, or a Write operation of less
than 12 bytes

Set in conjunction with EC on occurrence of
main memory parity error during reading of CTA,
IOCW, Indirect Address List, or data. On VS300
only, MPE is qualified by IOSW Byte 7.

IOSW
Bit Mnemonic Meaning
8 IC
point
9 MPE
10 MAE

Set in conjunction with EC on occurrence of
main memory addressing error during reading of
IOCW, Indirect Address List or data, or writing
of data. On VS300 only, MAE is qualified by
IOSW Byte 7.

13-15

IOSW
Bit

Mnemonic

Meaning

11

12

13

14-15

13.8.3 Error Status Byte

DM

DAM

IL

Set if one or more of the following conditions
exist: ’

Memory addressing error

Memory parity error

Memory overrun

CRC or ECC error

LRC error

VRC error

Parity error

Tape drive not ready during operation
Tape drive off-line during operation
Given density not available at tape drive

Set whenever command terminated with error (EC
set; NC not set) after main memory or data on
tape has been modified.

Set if the size of a block read from tape is
not the same as the data count in the IOCW. If
the IOCW residual count is 0, the block was
longer than expected; if not, it reflects the
difference between the data count and the block
length.

Reserved (always 0).

—— Cartridge Tape Drive

IOSW
Bit Mnemonic Meaning
8 IC

Set, with EC, to indicate an invalid command
byte in IOCW for any of the following reasons:

IOCW not fullword-aligned

Indirect Address 1list not fullword-aligned or
at an invalid address

Data not properly aligned (i.e., not fullword
aligned for direct addressing operation or for
first entry in Indirect Address 1list, or not
2048-byte aligned for subsequent entries in
Indirect Address list)

Attempt made to select parity, recording
density, and mode

Attempt made to backspace when tape is at load
point

13-16

I0Sw

Attempt made to write, write tape mark, or
erase tape when tape is write protected

Attempt made to specify a Read or Write
operation of less than 2 bytes

Attempt made to specify a Write operation of
more than 17,406 bytes or a Read operation of
more than 17,408 bytes when auto retry is

Attempt to specify a Read or Write operation of
more than 17,408 bytes when auto retry is

Set in conjunction with EC on occurrence of
main memory parity error during reading of CTA,
IOCW, Indirect Address List, or data. On VS300
only, MPE is qualified by IOSW Byte 7.

Set in conjunction with EC on occurrence of
main memory addressing error during reading of
IOCW, Indirect Address List or data, or writing
of data. On VS300 only, MAE is qualified by
IOSW Byte 7.

Set if one or more of the following conditions

Memory addressing error

Memory parity error

Memory overrun

CRC or ECC error

Parity error

Tape drive not ready during operation
Tape drive off-line during operation

Set whenever command terminated with error (EC
set; NC not set) after main memory or data on
tape has been modified.

Set if the size of a block read from tape is
not the same as the data count in the IOCW. If
the IOCW residual count is 0, the block was
longer than expected; if not, it reflects the
difference between the data count and the block

Bit Mnemonic Meaning
8 IC
enabled
disabled
9 MPE
10 MAE
11 DM
exist:
12 DAM
13 IL
length.
14-15

Reserved (always 0).

13-17

13.8.4 Extended Status Bytes —— Reel-to-Reel Tape Drives

The extended status portion of the IOSW provides a number of bits to
reflect the status of each I/O operation. This extended status consists
of both the unusual conditions detected in the I/0 operation and the
status of the device. Unless noted otherwise, the bit definitions listed
below apply to all models of reel-to-reel tape drives. These bits are
discussed in detail in the following sections.

IOSW
Bit Mnemonic Meaning
16 VRC 1 = Invalid vertical redundancy check
17 LRC 1 = Invalid longitudinal redundancy check
18 CRC 1 = Invalid cyclic redundancy check
19 SC/NB 1 = Skew check on Write/noise block on Read
20 WD 1 = Wrong density (density not available)
21 PE 1 = Phase-encoded ID burst detected
22 TR7 1 = 7-track tape drive
Always 0 for 2219V-x tape drives
23 PAR 0 = O0dd parity; 1 = Even parity
Always 0 for 2219V-x tape drives
24 FP 1 = File protected
25-26 Density 2209V-x Tape Drives only:
00 = 1600 bpi (PE)
11 = 800 bpi (NRZI)
2219V-x tape drives only:
00 = 1600 bpi (PE)
01 = 800 bpi (NRZI)
10 = 6250 bpi (GCR)
27 LP 1 = Load point encountered
28 ™ 1 = Tape mark encountered
29 EOT 1 = End-of-Tape marker encountered
30 0 1 = Overrun
31 OFF 1 = Tape off-line

13-18

Invalid Vertical Redundancy Check (VRC)

This bit is set during a Read operation if the VRC stored for a byte
does not give that byte odd parity on the tape.

Invalid Longitudinal Redundancy Check (LRC)

This bit is set during a Read operation if the number of 1 bits in a
track for the tape block including the LRC bit is not even.

Invalid Cyclic Redundancy Check (CRC)

This bit 1is set during a Read operation if the CRC character
calculated during the operation is not the same as the CRC character
written after the block on the tape.

Skew Check/Noise Block

This bit is set during a Write operation if excessive skew is
detected. This bit is set during a Read operation if a data error is
found in a block with less than 12 bytes of data

Wrong Density

This bit indicates that an I/O operation has been attempted at a
density not supported by the tape formatter.

Phase-Encoded ID Burst Detected

This bit indicates that a phase-encoded ID burst has been detected
during the reading of the tape from load point. It is set with bits
indicating the current density of the drive.

7-Track Tape Drive

This bit indicates that the tape drive is a 7-track drive.
Parity
This bit is set when even parity has been selected.

File Protected

This bit 1is set whenever there is no '"write-enable" ring on the
tape. Absence of this ring prevents accidental writing on the tape.

Density

These bits indicate the density at which the tape drive has been set.
Load Point

This bit is set whenever the tape is at load point when the operation

is completed.

13-19

Tape Mark Indicator

This bit is set whenever a tape mark has been read during a Read,
Forward Space Block, or Backspace Block Operation.

End-of-Tape Indicator

On all VS systems, this bit is set when the EOT reflective strip has
been detected during a Write or Write Tape Mark operation; this bit is
reset when the EOT reflective strip has been detected during a Backspace
operation. On the VS300, this bit is set additionally when the EOT
reflective strip has been detected during a Read operation.

Overrun

This bit is set if memory service is not provided fast enough to keep
up with the magnetic tape data transfer speed during a Read or Write
operation. Data transfer stops as soon as this condition is detected.

Off-Line

This bit is set when the tape is sensed to be off-line during an
operation.

13.8.5 Extended Status Bytes -— Cartridge Tape Drive

The extended status portion of the IOSW provides a number of bits to
reflect the status of each I/0O operation. This extended status consists
of both the wunusual conditions detected in the I/0 operation and the
status of the device.

IOSW
Bit Mnemonic Meaning
16 PAR 1 = Parity error
17 — not used
18 CRC 1 = Invalid cyclic redundancy check, faulty
erase, or format error
19 —_ not used

20,21 LEN1,LEN2 00 No tape in drive

01 = 300 feet
10 = 450 feet
11 = 600 feet
22 TR7 1 = 7 tracks
0 = 4 tracks
23 CUR 1 = High
0 = Low (default)

13-20

IOSW

Bit Mnemonic Meaning
24 FP 1 = File protected
25 NOT 1 = No tape in drive
26 NL 1= Tape not loaded
27 LP 1 = Load point encountered
28 ™ 1 = Tape mark encountered
29 EOT 1 = End-of-Tape marker encountered
30 MODE 1 = Auto-retry enabled (default)
0 = Auto-retry disabled
31 OFF 1 = Tape off-line

These bits are discussed in detail in the following paragraphs.

Parity Error

This bit is set to indicate that a parity error has been found.

Invalid Cyclic Redundancy Check (CRC)

This bit is set during a Read operation if the CRC character
calculated during the operation is not the same as the CRC character
written after the block on the tape.

Tape Length

These two bits, which indicate the length of the tape, are set by
execution of the Find Tape Length IOCW control command.

7-Track Tape Drive

. This bit indicates that the number of tape tracks is seven or four,
when set to 1 or 0 respectively. Currently, only four tracks are
supported.

Current

This bit indicates the Write current in effect. The default Write
current is LOW.

File Protected

This bit is set whenever the write protect knob on the tape cartridge
is rotated to the SAFE position.

13-21

No Tape In Drive

This bit is set to indicate that there is no tape in the drive and
that one must be inserted before the requested action can be performed.

Tape not Loaded

’

This bit 1is set to indicate that the tape in the drive is not
loaded. When the tape drive encounters a fatal error, it unloads the
tape, then sets this bit in the next solicited IOSW.

Load Point

This bit is set at the the completion of a successful Load operation.

Tape Mark Indicator

This bit is set whenever a tape mark has been encountered during a
Read, Forward Space Block, or Backspace Block operation.

End-of-Tape Indicator

On all VS systems, this bit is set whenever the EOT tape marker has
been detected during a Write or Write Tape Mark operation. On the VS300,
this bit 1s set additionally whenever the EOT marker has been detected
during a Read operation.

Retry Mode

This bit is set to indicate that the device is not in auto-retry mode
and, upon detecting a read or write error, will not retry the operation
before returning an error completion IOSW. When this bit is set, the
application is entirely responsible for handling retry operations. A bit
value of 0 indicates that the device is in auto retry mode and, after
detecting a Read or Write error, will retry the operation before
returning an IOSW that indicates the error.

Off-Line

This bit 1is set when the tape is sensed to be off-line during an
operation.

13.8.6 Error Count Byte —— Reel-to-Reel Tape Drives

When an error is detected, the error count is incremented by 1 and
the operation is retried.

For a Write operation, a maximum of 50 retries of the following
sequence 1is attempted: the tape is backspaced over the block just
written, an Erase operation is initiated to erase over 3.75 inches (9.5
cm) of tape,.and the Write operation is retried.

13-22

For a Read operation, a maximum of 100 retries (5 retries if IOCW Bit
7 is set to 1) of the following sequence is attempted: the tape is
backspaced over the block just read, and the read operation is retried.

13.8.7 Error Count Byte —— Cartridge Tape Drives

When the device is in auto retry mode and an error is detected, the
error count is incremented by 1 and the operation 1is retried. For a
Write operation, a maximum of 20 retries is performed. For a Read
operation, a maximum of 30 retries is performed; the tape is retensioned
during each retry after the twentieth.

13.8.8 Extended MPE/MAE Byte

On the VS300 only, IOSW Byte 7 provides extended status information
on memory address and memory parity errors.

When the EC and MPE bits are both set to 1, IOSW Byte 7 shows one of
the following hexadecimal codes:

Code Meaning
01 System memory data error
04 System bus memory read parity error
08 System bus parity error

When the EC and MAE bits are both set to 1, IOSW Byte 7 shows one of the
following hexadecimal codes:

Code Meaning

02 Illegal system memory address
10 Illegal system memory page access
20 Illegal I/0 command from IOC

13.8.9 Unsolicited Interrupt at Load Time

Tape drives issue an wunsolicited interrupt at 1load time to signal
readiness for commands. The actions preceding the interrupt and the
associated IOSW differ for reel-to-reel and cartridge drives.

Reel-to—-Reel Tape Drives

The tape drive issues an unsolicited interrupt at Step 4 of the following
sequence:

Operator physically mounts tape.

. Operator pushes LOAD button, causing tape to be advanced to load point.
Operator pushes ONLINE button.

Drive issues unsolicited interrupt; LP bit is set in associated IOSW.

> Wi

13-23

Cartridge Tape Drive

The tape drive issues an unsolicited interrupt at Step 3 of the following
sequence:

. Operator inserts cartridge in drive.

Operator pushes ONLINE button.

Drive issues unsolicited interrupt.

When processing first IOCW, drive positions tape to load point, then
attempts to perform requested operation.

D W N
“ .

.

There is no LOAD button on the cartridge tape drive.

13-24

APPENDIX A
OPERATION CODE AND ASCII CHARACTER LIST

Op Code Mnemonic Format Character Op Code Mnemonic Format Character
00 - RR 2B SDR, SER RR +
01 BCS RR 2C MDR, MER RR !
02 SI1I0 RR 2D DDR, DER RR -
03 HIO RR 2E CID RR .
04 RTC RR 2F CDI RR /
05 BALR RR 30 0
06 BCTR RR 31 1
07 BCR RR 32 2
08 POP RR 33 3
09 POPH RR 34 4
0A SvC RR 35 5
0B PUSH RR 36 6
ocC CIO RR 37 7
0D SPM RR 38 8
OE MVCL RR 39 9
or CLCL RR 3Aa AQR RR :
10 LPR RR 3B SOR RR :
11 LNR RR 3C MOR RR 4
12 LTR RR 3D DQR RR =
13 LCR RR 3E >
14 NR RR 3F ?
15 CLR RR 40 STH RX G]
16 OR RR 41 La RX A
17 XR RR 42 STC RX B
18 LR RR 43 Ic RX C
19 CR RR 44 EX RX D
1A AR RR 45 BAL RX E
1B SR RR 46 BCT RX F
1C MR RR 47 BC RX G
1D DR RR 48 LH RX H
1E ALR RR 49 CH RX I
1F SLR RR 4A AH RX J
20 LPDR, LPER RR (Space) 4B SH RX K
21 LNDR, LNER RR ! 4C MH RX L
22 LTDR, LTER RR " 4D LT RX M
23 LCDR, LCER RR # 4E CVvD RX N
24 HDR, HER RR 3 4F CvVB RX 0
25 LDER, LRER RR % 50 ST RX P
26 RPC RR & 51 DSEM RX Q
27 SVCX RR ! 52 ENQ RX R
28 LDR, LER RR (53 ENSK RX S
29 CDR, CER RR) 54 N RX T
2A ADR, AER RR * 55 CL RX 0]

Op Code Mnemonic Format Character
56 0 RX \Y
57 X RX W
58 L RX X
59 C RX Y
SA A RX Z
5B S RX [
5C M RX . (Backslash)
5D D RX 1
SE AL RX (Up-Arrow)
SF SL RX (Back-Arrow
or underscore)
60 STD, STE RX '
61 JSCI RX a
62 LC RX b
63 c
64 d
65 RBCX RRL e
66 RBXH RRL f
67 RBXLE RRL g
68 LD, LE RX h
69 CD, CE RX i
6A AD, AE RX j
6B SD, SE RX k
6C MD, ME RX 1
6D DD, DE RX m
6E AW, AU RX n
6F o
70 . P
71 RLA RL q
72 RPUSHA RL r
73 RBALS RL s
74 t
75 RBAL RL u
76 RBCT RL v
77 RBC RL w
78 X
79 y
7A AQ RX z
7B SQ RX
7C MQ RX
7D DQ RX
7E CcvQ RX
7F cvp RX
80
81 BALS RX
82 LPCW S
83
84 POPN RX
85 PUSHN RX

A-2

Op Code Mnemonic Format Character
86 BHX RS
87 BXLE RS
88 SRL RS
89 SLL RS
8A SRA RS
8B SLa RS
8C SRDL RS
8D SRDL RS
8E SRDA RS
8F SLDA RS
90 STM RS
91 ™ SI
92 MVI SI
93
94 NI SI
95 CLI SI
96 OI SI
97 XI SI
98 LM RS
99 BALCI RS
9A
9B Extended opcodes

(see list below)
9C BSET SI
9D BRESET SI
9E BTEST SI
gF RRCB SI
AQ DEQ RS
Al DESK RS
A2 ISEM RS
A3 LSCTL RS
A4 STSCTL . RS
AS
A6 POPM RS
A7
A8 LOT RX
A9 PUSHM RS
AA
AB Reserved for

diagnostic use
AC STNSM RS
AD STOSM RS
AE
AF
BO PUSHA RX
Bl LPA RX
B2
B3
B4
BS

Op Code Mnemonic Format Character Op Code Mnemonic Format Character
B6 STCTL RS E6
B7 LCTL RS E7
B8 SCAN RS ES8 MCOUNT Special
B9 E9 ACHECK Special
BA EA
BB EB
BC EC
BD CLM RS ED
BE STCM RS EE
BF ICM RS EF
co FO SRP SS
C1 Fl MVO Ss
Cc2 F2 PACK SS
C3 F3 UNPK SS
C4 PAL SS F4 UNPU SsS
C5 F5
C6 : Fb6 COMP SS
C7 F7 XPAND SsS
C8 F8 ZAP SS
C9 F9 CP SS
CA FA AP SS
CB FB SP Ss
cC FC MP SS
CD FD DP SsS
CE FE
CF FF
DO
D1 MVN SS Extended Opcodes
D2 MVC SS 9B00 STDD S
D3 MVZ SS 9B01-9B7F Unused S
D4 NC SS 9B80 STCPID S
D5 CLC SS 9B81-9B82 Unused
D6 0.0 SS 9B83 STLCPID S
D7 XC SS 9B84 Unused
D8 POPC SS 9B85 STRING S
D9 PUSHC SS
DA
DB UNPAL SS
DC TR SS
DD TRT SS
DE ED SS
DF EDMK SS
EO
El
E2 MVPC SST
E3
E4
ES CLPC SST

APPENDIX B
GLOSSARY

Address
The location of a byte in main memory. See also Base Address and
Displacement (Offset).

Address Translation
Translation of virtual addresses supplied by a program to addresses
in main memory. Address translation is done by reference to the
local page table.

ASCII
American National Standard Code for Information Interchange. The VS
uses ASCII for its internal character code.

Base Address
An absolute address in storage, contained in a general register. If
general register 0 is used, a base address of 0 is assumed.

Bit
A binary digit; the smallest unit of computer information, presented
in binary form to correspond to the on or off state of a computer
memory element.

Boundary Alignment
The positioning of a field on an integral boundary (such that the
address of the first byte of the field, as expressed in binary, has
one or more low-—order O0s). Boundary alignment is required for
halfwords, words, and doublewords on the VS. Instructions must be on
halfword boundaries.

Byte
On the VS, a sequence of eight bits that constitutes the smallest
addressable or transferable unit of information.

Change Bit
The change bit in an entry of the Reference and Change Table (RCT) is
turned on by hardware whenever the associated page in real storage is
modified.

Condition Code
A 2-bit field in the PCW that is set by certain arithmetic and
logical instructions and tested by conditional branching
instructions. The condition code remains unchanged in the PCW until
an instruction changes it. The meaning of the code is described for
each instruction in Chapter 8 of this manual.

Control Mode
A state of the computer system in which normal program execution is
halted and special facilities for diagnostics, restart, and debugging
are made available.

Control Register
Sixteen registers, holding 32 bits each, that contain a stack limit
word, a stack limit address, the system clock, and various controls
for trap handling.

Data Count Field
Bits 32-47 of the IOCW for a READ or WRITE command, specifying the
number of bytes to be transmitted between an IO device and storage.

Device-Dependent Status Area
Bits 16-31 of the IO Status Word.

Displacement (Offset)
The relative address of a byte beyond the base register address.

Doubleword
On the VS, a sequence of eight bytes aligned on an 8-byte boundary.

Error Status Byte
The second byte of the IOSW, where relatively device-independent
error indications may be stored.

Extended Status Bits
Bits 48-63 (bytes 6 and 7, counting from byte 0) of the IO Status
Word.

Floating-Point Register
Used to contain data that is to be manipulated in floating-point
format. The VS has four floating-point registers, each 64 bits in
length, and numbered 0, 2, 4, and 6.

General Register
On the VS, holds 32 bits or one word and is used for arithmetic and

logical manipulations and addressing. The VS has 16 general
registers.

High-Order

The leftmost bit or digit: in reference to bytes, the byte at the
lowest main memory address.

B-2

Index Register
The general register containing a 24-bit number used as the index in
base-index-displacement address calculations. The index can be used
to provide the address of an element within a list or an array.

Indirect Address List
A list of words containing addresses which designate the main memory
location of data areas for an I/0 operation. An Indirect Address
list is used to expedite the transfer of more than one page of data
at a time. '

Interrupt or Interruption
A transfer of control effected by switching PCWs.

I/0 Command Table (IOCT)
A table of I/0 command words (IOCWs) for the devices attached to an
I/0 Processor. A command table address (CTA) specifies the address
in main memory of each IQOCT.

I/0 Command Word (IOCW)
A variable-length area (1 to 8 bytes) that specifies the next command
to be executed for a device. Byte 0 holds the command code. Bytes
1-3 hold a data address or beginning address of an indirect address
list; bytes 4-5 hold the data count (number of bytes to be operated
on or transferred); bytes 6 to end may hold additional
device-dependent information.

Input/Output Processor
On the VS, a small computing unit that handles the transfer of data
between main storage and peripheral units, relieving the central
processing unit of this slower function.

-I/0 Status Word (IOSW)

Eight bytes of data, stored at main memory location 0, that pass
information concerning the status of an I/0O device to the central
processing unit. Byte 0 is the general status byte. Byte 1 is the
error status byte, stored if the error completion bit is set to 1 in
the general status byte. Bytes 2-3 are the device-dependent bytes;
bytes 4-5 hold the residual byte count. Bytes 2-6 (bits 16-55) are
sometimes referred to as the extended status bits for disk and tape.

Least Significant
The rightmost bit or digit.

Local Page Table
In local memory, a table consisting of one byte for each page in a
segment, containing the physical page number of that page when it is
in main memory. There is one local page table for each region of
virtual memory. These tables are used by the central processor in
translating virtual memory addresses to main memory addresses.

Low-Order
The rightmost bit or digit; the byte at the lowest main memory

address.

Main Memory
Real or physical memory in the CPU.

Masking

1. Use of the program mask field in the PCW to suppress or delay
processing of interruptions so that only one at a time is processed
and the link back to the current instruction address is saved. 2.
Use of instructions to turn off a mask bit in the PCW's status field
or program mask field corresponding to a program interruption for a
specific state. Masking an interruption can allow other interrupt
messages with lower priority to be handled first.

Monitor Area
An area of local CP memory that maintains a 1list of recently

referenced T-RAM entries.

Most Significant
The leftmost bit or digit.

Operand
A field of an instruction that defines an address or element of data
on which the instruction operates.

Operation Code (Op Code)
The field of an instruction that specifies the operation to be
performed.

Page
On the VS, a 2048-byte block of virtual memory located in main or
auxiliary storage, which can be transferred between the two
automatically by the computer.

Page Frame
An area of main memory that has a 2048-byte boundary alignment.

Parity
The number of 1s in a unit of data, whether odd or even. Parity
checks ensure that a bit has not been changed accidentally while
being read.

Privileged Instruction
One that will cause a program interruption unless the user mode bit
(bit 34) in the PCW has been set to 0. Some VS privileged
instructions are CIO, HIO, LCTL, LPCW, LSREG, STNSM, STOSM, RRCB,
SI1I0, STDD, and SVCX.

Process Level
A task can run on one of eight levels of privilege, called process
levels. A user program typically runs at level 0, the lowest level
of privilege. If that program calls a system service, the task's
process level is raised during execution of that service. See also
Ring Memory Protection.

Program Control Word (PCW)
A data item of 8 bytes maintained by the central processor to control
the order in which instructions are executed and to maintain the
status of the central processor. Byte 0 holds the interruption code,
bytes 1-3 hold the address of the current instruction, bytes 4-5 are
the status field for some causes of interruption, and bytes 6 and 7
are the program mask field.

Reference and Change Table (RCT)
In local memory, a table with two bits—-reference and change--for
each page frame of main memory.

Reference Bit
The reference bit is turned on by hardware whenever the associated
page in real storage is referred to.

Region
An area of contiguous virtual addresses beginning on a 2,048-byte
boundary, whose address translation is effected through a single
local page table. A region may consist of more than one page, with
only portions of a region being within main memory at any time.

Region Table
A table of at least one 16-byte entry called a region node. Each
entry holds the following information: the range of wvirtual
addresses in a region, the read and write access levels for all pages
in that region, and the address of the page table for that region.

Register
A storage device in the central processor. See also General
Register, Control Register, and Floating Point Register.

Residual Byte Count
Bits 32-47 of the IOSW, the data count in an IOCW minus the number of
bytes transferred by an IO operation.

Ring Memory Protection

A scheme of memory protection based on process levels and read/write
access levels. The access level for each region of a task's virtual
address space is defined in the minimum read/write fields of the
region node describing that region. During address translation, the
value of a region's minimum read/write fields is compared with the
the task's current process 1level. A process level equal to or
greater than the minimum read/write values is required for read/write
access to the physical memory locations mapped to the region. See
also Process Levels.

B-5

Sector
That part of a track on a disk that can fit into a page (2K bytes).

Segment Control Register (SCR)
A privileged 32-bit register holding the address of a task's main
memory page table for a segment.

Semaphore
On the VS, a doubleword data type consisting of a 1-byte count field
and head and tail pointers to elements of a first-in first-out list.

Shared Subroutine Library

A file of commonly used subroutines that can be linked during runtime
to all programs that contain calls to those subroutines. After the
SSL and a calling program have been 1loaded into main memory, SSL
subroutines are mapped to the virtual address space of the task
running that program. External references by the program to the
mapped subroutines are then resolved by the operating system through
a linkage table. The SSL facility reduces the space both on disk and
in main memory occupied by copies of commonly used subroutines.

Stack
A line or list of elements in a pushdown storage device that handles
data so that the next item to be retrieved is the one that has been
most recently stored. The system stack on the VS is addressed by
register 15.

Stack Header Block (SHB)
A data block describing the stack associated with one of a task's
process levels. Entries in an SHB hold the stack vector and the
address of the most recently-built JSCI save area. SHBs are referred
to by the operating system to control stack switching.

Stack Header Block Table
A table of eight addresses, each pointing to the stack header block
associated with one of a task's process levels.

Stack Limit Word
The address of the lowest byte 1location into which the stack may
extend.

Stack Pointer
Contains the address of the current stack top. See also Stack Vector.

Stack Switching
The switching from one system stack area to another within a task's
address space. There is a separate stack area associated with each
of a task's process levels. A call to, or return from, an external
subroutine can cause a change in a task's process level and stack
area.

Stack Vector
Holds a stack pointer and a stack limit word. On the VS, the system
stack vector consists of general register 15 and control register 2.
A program may use any two consecutive general registers (except the
pair 15 and 0) as an additional stack vector.

Trap
An unprogrammed conditional transfer of control to a specified
address.

Translation RAM (T-RAM)
A local page table, i.e., an area of local CP memory holding page
frame numbers for the loaded portion of a task's virtual address
space.

Virtual Memory or Virtual Storage
An address space that does not correspond to the physical main memory
addressing of the computer (and may be larger than the main memory
available), a portion of which is mapped onto main memory in page
size blocks (2K). This storage space may be used as addressable main
memory by the user, as the computer handles all paging in and out of
main memory automatically.

WCC
Write Control Character for the VS workstation, the second byte of
every WRITE command to the workstation. It controls locking, the
alarm, the cursor, scrolling of the screen, and erasing.

Word
On the VS, a sequence of 4 bytes, aligned on a 4-byte boundary.

A

Address generation
base address, 4-5
direct address, 4-7
relative address, 4-6
Address translation, 4-7 to 4-13
summary of, 4-13, 4-14
Auto retry tape facility, 13-7

B

Base address, see Address
generation

Base displacement address,
see Address generation

o

Character set, Table 10-1
Clock, 2-5
Clock comparator, 2-5
Compressed records, 11-10, 11-11
Condition code, 4-4
Control data block, 11-37
DAVFU record, 11-40 to 11-42
format, 11-37
functions controlled by, 11-37
option bytes, 11-38
records in, 11-38 to 11-43
Control mode
communications area, 6-1
debug commands, 6-1,
6-7 to 6-10
entering, 6-2, 6-3
load command format, 6-3, 6-4
load command error messages,
6-5, 6-7
load commands, 6-1, 6-3 to 6-6

Control registers, 2-1, 2-2
Control register 3, 7-2
Control registers 4 and 5, 7-2

Control registers 6 and 7, 4-27

Control register 8, 3-20, 8-85
Control register 10, 7-3
CP-BP communications area, 9-3

INDEX

Index-1

D

DAST, see Device Adapter Status
Table

DAVFU record, see Control data
block

DBG bit, see PCW
Debug commands, see Control mode
Debug facility, 7-1 to 7-7
counter word, 7-7
debug table entry formats,
7-3 to 7-7
debug table, use of, 7-1
general register modification
trap, 7-7
instruction step trap, 7-5
main memory modification trap,
7-5
op code trap, 7-6
PCW range trap, 7-6. 7-7
PCW trap, 7-5
trap types listed, 7-1
Decimal instructions, 3-7 to 3-10
data formats, 3-7
decimal arithmetic, 3-7
external decimal, 3-9, 3-10
packed decimal numbers, 3-8
zoned decimal, 3-9
Device Adapter Status Table
(DAST), see I/0 Status Table
Disk drives
control commands, 12-7
dual port IOCW commands, 12-7
I/0 commands, 12-7 to 12-10
I/0 command word, 12-5 to 12-10
IOCW sector address, 12-7
I/0 status word, 12-10 to 12-16
logical sector, 12-4
physical sector, 12-4

E

Field attributes
defined, 10-4
field attribute character (FAC)
values, Table 10-2

INDEX (continued)

First-in-first-out (FIFO) lists,

3-18 .
Fixed point instructions,
3“5’ 3_6

arithmetic, 3-6
data format, 3-5
Floating point instructions,
3-10 to 3-15
arithmetic, 3-10
data format, 3-11
decimal floating point
instructions, 3-14
formats, 3-14
normalization, 3-13
Floating point registers, see
Registers
Fonts
default font, 11-43
font loading protocol, 11-12
font selection by control
block, 11-43
font selection by PCB,
11-29, 11-30
standard font, 11-43

G

General registers, see Registers
Graphics printing, 11-30 to 11-37

H

High~order, defined, 2-6

I

I/0 Command Table (IOCT), 9-10
I/0 Command Word (IOCW), 9-10 to
9-13
disk, 12-5 to 12-10
printer, 11-14 to 11-20
tape, 13-7 to 13-13
workstation, 10-16, 10-17
I/0 Status Word, 9-13 to 9-17
disk, 12-10 to 12-16
printer, 11-22, 11-23
tape, 13-14 to 13-24
workstation, 10-19 to 10-21

Index-2

I/0 commands
disk, 12-7 to 12-10
tape, 13-9
workstation, 10-18,
I/0 status tables
Device Adapter Status Table
(DAST), 9-5
IOC Status Table (IOCT),
9-6
IOP Status Table (IOPST),
9-5
IAL, see Indirect Address List
IOC Status Table (IOCST),
see I/0 Status Table
IOCST, see IQOC Status Table
IOCT, see 1I/0 Command Table
IOCW, see I/0 Command Word
IOP Status Table (IOPST),
see I/0 Status Table
IOPST, see IOP Status Table
IOSW, see I/0 Status Word
IPC message, 9-19
IPL code overlay loading
protocol, 11-13
Indirect Address List (IAL),
disk, 12-10
workstation, 10-17
Information formats, 2-6, 2-6
Input/Output, summary of, 9-1, 9-2
Instruction execution
abortion, 5-2
completion, 5-2
suppression, 5-2
termination, 5-2
Instruction formats, 3-3, 3-4
RL format, 3-3
RR format, 3-3
RRL format, 3-4
RS format, 3-3
RX format, 3-3
S format, 3-4
SI format, 3-4
SS format, 3-4
SSI format, 3-4

10-19

9-12

INDEX (continued)

Interruptions
clock, 5-4
types of, 5-1
I/0, 9-22, 9-23
machine check, 5-4
priority of, 5-13, 5-14
program, 5-5 to 5-11
save areas, Table 5-1

Jd

JSCI save area, 4-19

L

Last-in—-first-out (LIFQ) lists,
3-18
Least significant, defined, 2-6
Linkage table, 4-20, 8-85, 8-86
Load commands, see Control mode
Logical instructions, 3-15, 3-16
fixed-length logical data, 3-15
variable-length logical data,
3-16
LOHI word
in region table, 4-12
in Segment Control Register,
4-11
Low memory, Table 5-1
Low-order, defined, 2-6

M

Memory protection, 4-5
region node bits, 4-12
process level bits, 4-2
MOD byte, 4-12
Monitor area, see T-RAM monitor
area
Most significant, defined, 2-6

N

Normalization, see Floating
point instructions

Index-3

0]

Operands of machine instructions,
3-1,3-2
operation code, 3-5
operands in main memory, 3-1
operands in registers, 3-1
operands on stack, 3-5

P

Packed decimal, see Decimal
instructions
Page table (local memory), 4-9
Page tables (main memory)
fault bit, 4-9
page table entry, 4-8
PCB, see Print control byte
PDA, see Physical Device Address
Physical Device Address (PDA),
9-8 to 9-10
Physical address format,
Fig. 4-2
Print Control Byte (PCB)
chain bit, 11-26
definitions, 11-26 to 11-28
location in record, 11-25
number per record, 11-26
Print data block, 11-24
Print data records, 11-25
Process level
memory protection, 4-5, 4-15
PCW bits, 4-2
stack switching, 3-20
Program Control Word (PCW)
4-1 to 4-5
condition code, 4-4
DBG bit, 7-1
interrupt codes, 5-5
interruptions, 5-1
Program interruption
codes in PCW, 5-5
exceptions, 5-6 to 5-11
R

RCT, see Reference and Change
Table

RL instruction format, see
Instruction formats

RR instruction format, see
Instruction formats

INDEX (continued)

RRL instruction format, see
Instruction formats
RS instruction format, see
Instruction formats
RX instruction format, see
Instruction formats
Rasterized data, 11-31
Reference and Change Table (RCT)
2—-4, 4-16
Region node, 4-12
Region table, 4-12
Registers
alternate SCR format, 4-16
control, 2-1, 2-2
floating point, 2-1
general, 2-1
segment control, 4-11

S

S instruction format, see
Instruction formats

Save areas, see Interruptions

Semaphore instructions, 3-19

SOB, see Status Qualifier Byte

SI instruction format, see
Instruction formats

SS instruction format, see
Instruction formats

SSI instruction format, 3-3

Stack Header Block (SHB), 3-20

Stack Header Block Table (SHBT),
3-21

Stack instructions, 3-19, 3-20

Standard font, defined, 11-43

Status Qualifier Byte (SQB),
9-7, 9-8

Support Control Unit (SCU), 6-1

I

Tape I/0 Commands, see I/0
Commands
Tape IOCW, see I/0 Command Word
Tape IOSW, see I/O Status Word
Tape drives
cartridge, 13-4 to 13-7
control commands, 13-9 to 13-13
reel-to-reel, 13-1 to 13-3

Index-4

Tape markers
cartridge tape, 13-5
reel-to-reel tape, 13-3
Tape marks
cartridge tape, 13-5
reel-to-reel tape, 13-3
T-BUF, see Translation buffer
Time of day clock, 2-5
T-RAM monitor area, 2-4, 4-14
to 4-16
executive and user list, 4-15
T-RAM, see Translation RAM
Translation Buffer (T-BUF),
2-4, 4-10
Monitor bit, 4-15
Translation RAM
clearing of, 4-14 to 4-i6
size of, 2-3
use of, 4-9, 4-10
Traps, see Debug facility
Twin bin/sheet feeder
designation of, 11-29
out-of-paper action, 11-29
selection of, 11-28

v

VS 100

architecture, Fig. 1-3

I1/0 operation, 9-19, 9-22

monitor area, 4-15

read and write operations, 2-6
VS 15

architecture, 1-2

I/0 operation, 9-18, 9-22

monitor area, 4-15

read and write operations, 2-6
VS 300

architecture, Fig. 1-4, 6-1

I/0 operation, 9-19, 9-23
VS 65

architecture, Fig. 1-2

I/0 operation, 9-18, 9-22

monitor Area, 4-16

read and write operations, 2-16
Virtual address format,

4-8

INDEX (continued)

W

Wait state, 4-4
Wang Universal Keyboard, 10-1,
10-7
Workstation
aid characters, Table 10-6,
10-23
audio indicators, 10-5, 10-6
data area, 10-11
I/0 commands, 10-18, 10-19
IOCW, 10-16, 10-17
key functions, 10-7 to 10-11
order area, 10-12, 10-13
tabs, 10-5
type-ahead feature, 10-6
write control character (WCC),
10-11 to 10-15
Write Control Character (WCC),
see Workstation

Z

Zoned decimal, see Decimal
instructions

Index-5

v —— —— — — —— —— i, — ot . i s ittt s, i g et i S e i s s — — o — — o— — w— — o— — o—

WANG Customer Comment Form Publication Number 715-0422

Title VS PRINCIPLES OF OPERATION

Help Us Help You. . .

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?
O Supportor O Don'tknow O introduction O Aid to advanced

Sales Rep to the subject knowledge
O Wang Supplies O Other O Classroom text O Guide to operating

Division (student) instructions
O From another O Classroom text O Asareference

user {teacher) manual
O Enclosed O Self-study O Other

with equipment text
Please rate the quality of this publication in each of the following areas. VERY

EXCELLENT GOOD FAIR POOR POOR

Technical Accuracy — Does the system work the way the manual saysitdoes? [0 O a 0O
Readability — Is the manual easy to read and understand? | O O O (]
Clarity — Are the instructions easy to follow? O O O O O
Examples — Were they helpful, realistic? Were there enough of them? O) O 0 O
Organization — Was it logical? Was it easy to find what you needed to know? O O 0 (] O
lllustrations — Were they clear and useful? (] O (] O O
Physical Attractiveness — What did you think of the printing, binding, etc? 0 a a O O

Were there any terms or concepts that were not defined properly? 0 Y O N If so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes [No
: O Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)

Do you have any other comments or suggestions?

Name Street

Title City

Dept/Mail Stop State/Country

Company ZipCode_______ Telephone
Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc.

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
PUBLICATIONS DEVELOPMENT

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

Cut along dotted line.

R L S R

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
715-0422
2-86

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	020
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-001
	08-002
	08-003
	08-004
	08-005
	08-006
	08-007
	08-008
	08-009
	08-010
	08-011
	08-012
	08-013
	08-014
	08-015
	08-016
	08-017
	08-018
	08-019
	08-020
	08-021
	08-022
	08-023
	08-024
	08-025
	08-026
	08-027
	08-028
	08-029
	08-030
	08-031
	08-032
	08-033
	08-034
	08-035
	08-036
	08-037
	08-038
	08-039
	08-040
	08-041
	08-042
	08-043
	08-044
	08-045
	08-046
	08-047
	08-048
	08-049
	08-050
	08-051
	08-052
	08-053
	08-054
	08-055
	08-056
	08-057
	08-058
	08-059
	08-060
	08-061
	08-062
	08-063
	08-064
	08-065
	08-066
	08-067
	08-068
	08-069
	08-070
	08-071
	08-072
	08-073
	08-074
	08-075
	08-076
	08-077
	08-078
	08-079
	08-080
	08-081
	08-082
	08-083
	08-084
	08-085
	08-086
	08-087
	08-088
	08-089
	08-090
	08-091
	08-092
	08-093
	08-094
	08-095
	08-096
	08-097
	08-098
	08-099
	08-100
	08-101
	08-102
	08-103
	08-104
	08-105
	08-106
	08-107
	08-108
	08-109
	08-110
	08-111
	08-112
	08-113
	08-114
	08-115
	08-116
	08-117
	08-118
	08-119
	08-120
	08-121
	08-122
	08-123
	08-124
	08-125
	08-126
	08-127
	08-128
	08-129
	08-130
	08-131
	08-132
	08-133
	08-134
	08-135
	08-136
	08-137
	08-138
	08-139
	08-140
	08-141
	08-142
	08-143
	08-144
	08-145
	08-146
	08-147
	08-148
	08-149
	08-150
	08-151
	08-152
	08-153
	08-154
	08-155
	08-156
	08-157
	08-158
	08-159
	08-160
	08-161
	08-162
	08-163
	08-164
	08-165
	08-166
	08-167
	08-168
	08-169
	08-170
	08-171
	08-172
	08-173
	08-174
	08-175
	08-176
	08-177
	08-178
	08-179
	08-180
	08-181
	08-182
	08-183
	08-184
	08-185
	08-186
	08-187
	08-188
	08-189
	08-190
	08-191
	08-192
	08-193
	08-194
	08-195
	08-196
	08-197
	08-198
	08-199
	08-200
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

