SPER?Y UNIVAC

Assembly Language
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713

SPERRY<FUNIVAC®

ASSEMBLY LANGUAGE
PROGRAMMER REFERENCE MANUAL
98A 9952 452 '
FEBRUARY 1978

The statements in this publication are not intended to create any warranty, express or implied.
Equipment specifications and performance characteristics stated herein may be changed atany time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California,
92713.

© 1978 SPERRY RAND CORPORATION

Sperry Univac is a division of Sperry Rand Corporation Printed in US.A.

CHANGE RECORD

) Page Issue _—
Number Date Change Qescnphon
all 10-76 original issue

misc. 5-77 ‘minor revisions/corrections
misc. 2-78 deleted references to Varian

Change Procedure:

When changes occur to this manual, updated pages are issued to replace the obsolete
pages. On each updated page, a vertical line is drawn in the margin to flag each
change and a letter is added to the page number. When the manuﬁ

completely reprinted, the vertical line and page-number letter are removed.

is revised and

96A0730-000A

LIST OF EFFECTIVE PAGES

Page Number

Change in Effect

All

Complete Revision

96A0731-0008

TABLE OF CONTENTS

SECTION 1

INTRODUCTION
1.1 SPERRY UNIVAC 70 SERIES ASSEMBLY LANGUAGE ...c.cceeeree 1-1
1.2 DAS ASSEMBLERS......ccoooteeteceteeeiecteesteeessseesssssssessessasenssnsassseeses 1-2
1.2.1 DAS 8A ASSEMDIEE ...oceiee et es e e r s enrnen s sese e s sneneseees 1-3
1.2.2 DAS MR ASSembIercooviiiverininiiiininiens et 1-3
1.3 BIBLIOGRAPHYiriciiteccvreecvteersescteescnssenseessessssssssssassnsaseanasns 1-3
SECTION 2
STATEMENTS
2.1 CHARACTER SET ...oooiiiicccrevrtteer st s s ersseeseesessssssnssevsssssnsresesss 2-1
2.2 STATEMENT FORMATooeeeciecctteeceetre e nreees e s s aessane s s annossnsnas 22
2.2.1 Label Field....ccoooieiieeeeccieccctieeer s sercesecneer e errseresssnnssesssssanssessses 2-3
2.2.2 Operation Field......ccccoocciieiiciiccreieeccecescsecenerrreee e es s e banaeens 2-4
2.2.3 Variable Field ... ccesreccenemreeeer s ceeseess e cesnneeesas 24
2.2.4 Comment Field.....ccccoooiiiiiiieiireiieeeiccencorenreeeessteasierreeeeresesssessaes 2-5
2.3 CONSTANTS ...ttt ser e e s e e e s s te s e seeessensssssnneesssnssnsesanns 25
2.3.1 Decimal INtegers......ccccvvrirreeiccerirneeniiisseseeressssser e e ssneeseeeseeeeeeeas 2-5
2.3.2 Octal INtegErS.......ccccimiiriciiceerriirrccrrse e sscrenr s s nressscne s v evmaeeenanees 26
2.3.3 Floating Point NUMDbDErScccoovmrirvceeriiceeereneeeccceeer e 26
2.3.4 Character Constants........ccccimmreiiiriiciesiceeenneeenrermiinieeeesennecssesns 2-8
2.3.5 AJAress CoNStantsccccceiecrcmmememteiiiiiecesscsersssnensasssessesmereseees 2-8
2.3.6 Indirect Address CONStaNtScccccevieecccmricinnirerrreereees s srneeecesssnnes 2-8
P2 A I (=T - UL OO . 2-8
24 EXPRESSIONScoiciercietcterrreseciese s s snte e s nnne s s anaessanessssenasnns 29
P2 U I] o T=1 - (o - PO 2-10
2.4.2 Expression Evaluation.......ccoceciiiiiniiiiiiciiscsiceienineiscensseesneseesseenes 2-10
2.4.3 Address EXPreSSiONnsS.........cceiicrisivemnieeescrssneeranersssssssneessssssseeees 2-11
2.4.3.1 Absolute EXPreSSioNns........cccccccvvevvrireeeircssrcreneersesrssreesssessnseeses 2-11
2.4.3.2 Relocatable Expressions (DAS MR Only).......ccccovirvrrvenrireenes 2-12
2.4.4 Mode Determinationcccvvveevreiienicccsiienennnrenreeeneresieeesseneesses 213
2.5 SYMBOLS ...ttt rrerersser e s e sse s et sesns e be e s s e ns 2-14
2.5.1 USer SYMDOISc..coiiciiecitenninceeicese e e s e s enee e e ssaneeans 2-14
2.5.2 Assembler-Defined Symbols ... 2-15
25.2.1 Operation Field SYMDBOISccocceeiiieeiiriinrmreerriiiiessseeesiessseenes 2-15
2.5.2.2 Location Counter SymbolS......cccceeiririicisicssiiincrisrenreeeseeesseees 2-15
2.5.3 Symbol ValUes.......ceciiirreiricrirciiirccrerciecessneessneeecssnee s ns s sssnronns 216
254 Address Symbols and Relocatabilityccccceeevniriecienrreineiensenen, 2-16
2.5.4.1 Relocatability (DAS MR Only)...cceceirecceeercimieerecerecceneeeeneesnns 2-16
2542 ADSOIUte SYMDOIS.......cceererierreeiecrnctreere e sesees s esencsneeseesens 217
2.5.4.3 Relocatable Symbols (DAS MR Only).....ccccoecvvrivirrniennenenenn. 2-18
2.5.5 SYMDOl MOAESccoirrrrerececcctre s e cresere e e s sessesssseesasaessanens 2-19

SECTION 3
INSTRUCTION SUMMARY

3.1 TYPE 1 INSTRUCTIONS.......corictitinrnnriisisnnssiscss st 32
3.2 TYPE 2 INSTRUCTIONS......oirieirterrrrsesscsenesai s sesssneeseesanenans 35
3.3 TYPE 3 INSTRUCTIONS......ccotieecreicrrtesreerssenestnresne s seesnssnnnesans 3-6
3.4 TYPE 4 INSTRUCTIONS......ciiriritinititecnrrcnennnse e ercaneessseesensnenans 39
3.5 TYPE 5 INSTRUCTIONS.......ccvimimimrritiinnnntenn st 3-13
3.6 MULTIPLE REGISTER INSTRUCTIONS ... 3-16
3.6.1 Register-To-Memory Instructions.........ccccovveeiiciiinniccereienerennnn. 317
3.6.2 Byte INStructions.......cccccvemiiciiieeeeet s rrenesssesesiress e sens 3-17
3.6.3 Jump-If INStrUCtioNScceveurreirenerie e 3-18
3.6.4 Double-Precision INStructions........ccceceuevveeveereeenrssereseseseesenensnens 3-18
3.6.5 Immediate INStructionscccccevcmimrrrciiercccrcre e, 3-18
3.6.6 Register-To-Register Instructions........ccccovrecreriiceveireccecrccnernnnen, 3-19
3.6.7 Single Register INstructions........cccceccvnviviicrcccinrvneeecceenssneenenen, 3-19
SECTION 4

ASSEMBLER DIRECTIVES

4.1 -SYMBOL DEFINITION DIRECTIVES......ccoiirieereee e e e 4.3
4.1.1 EQU Directive......c.ociiiiimniiniiniicenininnniniiic s secses 4-3
4.1.2 SET DireCtivVe...ccccccieneieiiiricreeiene s eresnteessseses s ssesensssesssssseesnnennens 4.4
4.1.3 MAX Directive (DAS 8A ONIY) ..ccoivrrriieriinr e scenreccrnnensesnneenns 4-4
4.1.4 MIN Directive (DAS 8A ONly)....cueeeeciiiiecccceenenneiesrseeeseseaeeneens 4.5
4.2 -INSTRUCTION DEFINITION DIRECTIVEcccocivmmretrcccrerrecaeeeen, 4.6
4.2.1 OPSY DireCliVEuuureererierineinriecisrnnetnrirerearsesessasssssesssssssssessesesses 4-6
4.3 LOCATION COUNTER CONTROL DIRECTIVES.....cccoevvivinerreerrrennn. 4-6
4.3.1 ORG DiteCtiVe.cuseeeeeeeeeeeeriiseereeeeeeereeressieeeereeenens ereeeeeesreen e eanns 4.7
4.3.2 LOC DIreCtive .c.ccoveieeeieeiiiieiieeerieiessssrasnanesessesneesnensessssssssssnsssnsenns 4.8
4.3.3 BEGI Directive (DAS 8A ONlY)..ccccceeiiiciieiicecerrinirceeessnaeeens 49
4.3.4 USE Directive (DAS 8A ONIY)....ccmirericciiiicrcreeeniesececiensevenenns 4-10
4.4 DATA DEFINITION DIRECTIVES.......... rersareeeseesirreerereerraneeesnnenes 4-10
4.4.1 DATA DireCHIVE...uuueereetreeccrctteisresccrnnnreiererirssesesesiansssssasanmsensees o 4-11
4,42 PZE DireCtiVe.....cicvciieriirecriceinreenscecesserenereseensseesssisesessesssssseesanese 4-12
4,83 MZE DireCtive..cccoiviereiiericcteise s srcvneenreseneenreeenssassssssssssnsnsnanes 4-13
4.4.4 FORM DireCtiveueiriceiiiciereccvemtrecccceneese s nsnaesesssnsenesssensnnans 4-14
4.5 MEMORY RESERVATION DIRECTIVES......ccoivierririvesisreennennneeneneens 4-14
4.5.1 BSS DiIreCtive....c.ccciviiririviirieiniiisieccresieeneeeseeresssssersenssessesssssenenss 4-15
4.5.2 BES Direcltiveuueriiieiciverieincccrrrectiennsessse e s sissses s snessneeseseaes 4-15
4.5.3 DUP Dir€CliVe....cocoeveeirvrreecieericssieerresisssnensssssssssssesessssenserssssnsses 4-16
4.6 CONDITIONAL ASSEMBLY DIRECTIVES......ccceeveiremereereirerenennns 4-17
4.6.1 IFT DireCtiVe...ciiseeiieicmererinrierieiies i cssserenssosessessnesrnessnssesssssnasssnanes 4-17
4.6.2 IFF Dir€CHIVE .. .ccovreeirreieeiiirreeississenrnenraeeessssesssesssssnesssassnsssssaners 4-18
4.6.3 GOTO DireCliVE.....euierireiricireiinsccscnnnresinressessteee s ressssessssssnsessasnees 4-18
T4.6.4 CONT DiIireCtiVe ..uvieierererreerreisiesrercrssnrreerossrssnseessssessssesessessaneseras 4-19

SECTION 4 fcontinued)

4.6.5 NULL DIrective.......cccicceieiiciireeriirreerieseesscseeesseesssessnsseesssssssenssas 4-19
4.7 ASSEMBLER CONTROL DIRECTIVES......ccovivemtreerrniierenniesssssnnsenses 420
4.7.1 MORE Directive (DAS 8A ONIY)..ccitieiiiiiccierineeecciereesseseeenenans 4-20
4.7.2 END Dir€CiVe ..cocceeerirereiesteeecceer et eenscsinrereseses s ssesssesnnsesssnes 4.-21
4.8 SUBROUTINE CONTROL DIRECTIVEScovmrereemeereeeeere e 4.21
4.8.1 ENTR DireCtive......uieeiieiiiiieirircrtiiiicscccanssssssesesessesseeesssessenns 4.21
4.8.2 RETU¥ Dir€CtiVe......ooieievrerieeeiicnriricsecersssssensessessssssssesssesssssnesens 4.22
4.8.3 CALL Dir€CtiVe.....euveiriireceiiririciciritieiiesissssensssssesssssnsesseeeses sesssns 4.22
4.9 LIST AND PUNCH CONTROL DIRECTIVES......ccooevvereeernrerinennns 4.24
4.9.1 LIST DireCtiVe....ccceeveeeveriririisiecienieee i scnetenssasssseereerereeeseesessssnen 4-24
4.9.2 NLIS DiIreCHIVE .cccvivreiriciiirctierc s s reseessess s sasssesssssssesesenss 4.24
4.9.3 SMRY DireCtive.....ccccvveiveieiieiiricccnreiericsssesssnssssssnseees rererenereeeenne 4-24
4.9.4 DETL DireCtivecccoummeeeeiiiecintesninnncnne e esseseans 4.24
4.9.5 PUNC Directive (DAS 8A ONIY)...cocveiverirriirreriereersiereesseressses 4.25
4.9.6 NPUN Directive (DAS 8A ONlY) creeiureieccinnerccieeeneeeseeee s 4.25
4.9.7 SPAC Dir€CliVe ...ceceeeiieeetieicetecsccnrccnitstecessnssssress s beers e s ssesenas 4.25
4.9.8 EJEC DireCtiVe..ccuuimmiieeieeiee e cee vt seveseeesseansasnsessssnnssaes 4-25
4.10 PROGRAM LINKAGE DIRECTIVES......coooiiinrrninmreniinreniseenseieccssonens 4.26
4.10.1 NAME Dir€CtiVe...coccrivroiieeicrernerieieerccsresseessensissseresesseesssssssanes 4-26
4.10.2 EXT Dir€CHIVE c.coceeeeriieeeecerr et evsttene s cerssr s es s ssbas e esssssmsaesas 4-26
4.10.3 COMN Dir€Ctive......cccoureirieieiiiriiicrccincisissseeesessesssssssesssssssescssans 4.27
4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)....ccceceeene. 4.28
4.11.1 MAC Directive (DAS MR Only)....ccoveeeiicrrineeireccernnnn, rveerens 4.28
4.11.2 EMAC Directive (DAS MR Only)....cccevereveervennnn. rerereanaennes 4-29
4.11.3 MacCro CallS......cccorniesinrrinntrneistr e s 4-29
SECTION 5

OPERATING THE ASSEMBLER

5.1 ASSEMBLER PROCESSING........ccoceriieiriiinecnrersrenesseeessserensesssessnserans 5-1
5.1.1 Assembler Input Media......cocoeeervirererererernen. et e et arrenens 5-1
5.1.2 Pass 1 - Symbol Table......ccovivriviniininnniniiinencseeene 53
5.1.3 Pass 2 - Assembler Output......ccccceiiiiciiciiicriece e e rcreren e 5-4
5.1.4 Error Messages.......ccovevremererernerrennens eerrereressraeeearantareasearrasseanes 55
5.2 ASSEMBLER OPERATING PROCEDURES........cccccevmrrnrecrrnrnverreenns 5.7
5.2.1 DAS MR Operation (VORTEX I/VORTEX 1) ceceerurrerrurvrccrenninns 5.7
5.2.2 DAS MR Operation (MOS)c.ccseriunmminrcinionineinnrneceneeseeesenens 515
5.2.3 DAS MR Operation (Stand-Alone)c.ccoceveceerrirrerverrencsenneens 5-18

5.2.4 DAS 8A Operationcc.cocvccericvumrccnnineesiinneenscssessessesesssaseessenees 5.21

SECTION 6
STAND-ALONE FORTRAN/DAS MR LIBRARIES

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED).......cceeuvrniuues 6-1
6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED)...6-1
6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED)..... 6-1

6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED)....cc.ccccevvmennnnee 6-2

6.5 SINGLE PRECISION ARITHMETIC (DAS CODED).......cccoceeveuueennn. 6-2

6.5.1 Hardware Multiply/Divide........c.cueererrccrirrcrrcecerinnnnnneerneeeececereenees 6-2

6.5.2 SOFTWARE MULTIPLY/DIVIDEcuevimciiricccccrrennccveeeenrceneen, ..6-3

6.6 RUN-TIME 1/0 (DAS CODED)cccosriirriennrriecsnernncnneessasnsssssesennns 6-3

6.7 RUN-TIME UTILITIES (DAS CODED)......ucoeeeveeeccmreiereeeecveeeceeseene 6-4
APPENDIX A

INDEX OF INSTRUCTIONS

| APPENDIX B
V70 SERIES ASCIlI CHARACTER CODES

LIST OF TABLES
Table 2-1. Standard DAS 8A Location Countersc.cccceevcrvvrurecnnennen. 2-11
Table 2-2. Arithmetic Operation Results (DAS MR only)c....ee. 2-16
Table 3-1. Assembler Instruction Type Characteristics..........cccovvvneen, 31
Table 3-2. Summary of Assembler Instruction Types......cccccccrvecennnaee 3-2
Table 3-3. JIF/JIFM/XIF Code Conditions............. tereererseeeree e aeeteas 37
Table 3-4. Standard Device AdAresses.......ocevverieeeanesrarensssirceessnensaneas 3-13
Table 4-1. Directives Recognized by DAS Assemblers.........cccoveuiiuniinee 4-2
Table 5-1. DAS Symbol Table Capacities........cccevcrerrrrriieerceerernesssnnannns 5-3
Table 5-2. DAS Error Codescccovmrmieinernensrersseeresierssesssessessiasssneesns 55
Table 5-3. DAS MR Options for Background Operation..........cc.cceeeunne 5-8
Table 5-4. List of Peripheral Assignments for Stand-Alone DAS MR 5-20
Table 5-5. Acceptable 1/0 DeviCes.......ccevivciceirrrrcrieicieenese e eesineseienns 5-21
Table 5-6. Device Names for Magnetic Tape Transports........cccoceenen 5-23

viii

LIST OF ILLUSTRATIONS

Figure 2-1. Format for Source Statement Recordsccecerervureeruenenne. 2-3
Figure 4-1. Sample DATA Directive Usage......ccccccceerrcerrerncennrcrnnrresenees 4-12 .
Figure 4-2. Sample PZE Directive USagec.ccocerrrrererircnenrccinnirerneens 4-13
Figure 4-3. Sample MZE Directive USage.........cecerereerreerieisnseseresessesenens 4.13
Figure 4-4. Sample FORM Directive Usage.......c.cccevicrercrrenierneenncsennns 4-14
Figure 4-5. Sample DUP Directive Usage.c.cccccceereirrrerrrerenrennscnnnns 4.17
Figure 4-6. Sample Conditional Assembly Directives Usage............... 4-20
Figure 4-7. Sample CALL Directive Usage.........cccceevuerieeneerrrnenne. - 4.23
Figure 4-8. Sample Macro UsSage.......ccoceicimrerrrericcrersreeresnerenensineseensnns 4-30
Figure 4-9. Output Listing Obtained by Calling P(0).......cccccerrurrrrrenen. 4-30
Figure 5-1. Field Placement Summary..........cocceeerremrenrenrrcncnnncnenieseneens 5-2
Figure 5-2. Output Listing FOrmat..............oocvvmimmmrecireeeeeeeeeccenens 5-5
Figure 5-3. Example of Assembled and Executed DAS MR Program
Under VORTEX Control......ccccriiiieeniiiiiiinccecccnnnsenneneeesncessssresncseressssenes 5-9
Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Controlcccoveeeeeciriiimrcinesierrsessseeesesssessessnnemsesseessssesensnne 5-15
Figure 5-5. Coding Example reeetessttesssseeseeerannstasereesanesnansrransn 5-24
Figure 5-6. Example of an Assembled DAS 8A Program................... 5-24

Figure 5-7. Example of an Assembled DAS 8A Program with Errors 5.27

SECTION 1
INTRODUCTION

This manual describes the assembly language and assembler processing used to write,
assemble, and execute programs for the SPERRY UNIVAC V70 series computers.

1.1 V70 SERIES ASSEMBLY LANGUAGE

The assembly language is a symbolic representation of the programmabie capabilities of the
V70 series computers. Using assembly language, the programmer is able to specify the
machine instruction codes symbolically and to address memory locations by alphanumeric
symbols of his own choosing, providing a flexibility not attainabie with absolute addressing.

Internally, the computer obeys instructions kept in its memory in 16-bit binary format. For
example, the instruction:

001000000001111

when executed causes the A register to be loaded with the contents of location 15 (decimal).
In octal the same instruction is written:

010017

However, it is not necessary to learn the octal or binary representation of the computer’s
instruction repertoire. Instead, a user can write his program using a symbolic language and
then use another computer program, the DAS (Data Assembly System) assembiler, to convert
the instructions to binary upon input. The instruction given previously is then written:

LDA 017
or, if decimal working is preferred:

LDA 15

which is read as ""Load the A register with the contents of location 15 (decimal).”

The DAS assembler translates the statement "LDA 15 into its binary machine language
equivalent, i.e.:

LDA 15 ———= DAS ASSEMBLER ——= 001000000001111
Similarly:
STX 0177

is translated by the DAS program to form the instruction ''Store the X register contents in
location 0177."”

The DAS assembler has many other capabilities than translating source instructions one-for-

11

INTRODUCTION

one into their binary equivalents. A primary feature is allowing the programmer to represent
memory locations with symbolic labels instead of requiring absolute addresses. Another
feature allows the programmer to define data constants and character constants without
prior conversion to binary or octal values. For example, suppose the user wishes to load the A
register with the value 64 at some point in his program. He could do this with the following
statements:

VALU DATA 64

.

LDA VALU

The first statement defines a word of data having the value 64; ""VALU” is a symbolic label
that can be used to address that data word. The second statement is an instruction to load
the A register with the contents of memory location "VALU". The programmer need not be
concerned with the absolute location of the data word.

An even simpler version--requiring only one statement--can be written using a "literal”
constant: ‘

LDA =64

In this version, the assembler itself will designate a location in which the value 64 is to be
placed. '

DAS assembly language allows the user to give directions to the assembler, called assembler
directives, to perform such functions as defining program loading addresses, data locations
(such as the DATA directive above), subroutine linkage, and input/output functions; further
control features include conditional assembly directives and a macro capability. Comments
can be added between symbolic source statements or appended to the statements themselves
to enable easier checkout and program documentation.

By using the DAS assembly language, the programmer is able to write functional application
programs and control the operation of the assembler. Symbolic coding reduces machine
language bookkeeping and fully utilizes the computer capabilities without a corresponding
increase in the time required for programming.

1.2 DAS ASSEMBLERS

The principal objective of any assembler is to translate source programs written in a
symbolic machine language into the more precise numeric language of the computer. The
assembler (DAS) achieves this objective by converting programmer-prepared symbolically
coded instructions, directives, and data (the source program) into their binary machine
language equivalents (the object program).

DAS processes source programs in two passes. The first pass defines user-designated
symbols. The second pass produces an assembly listing and the object program.

Two versions of DAS are available: DAS 8A and DAS MR, described in the folloWing
subsections.

1-2

INTRODUCTION

1.2.1 DAS 8A Assembler

DAS 8A is a stand-alone program that can operate on a minimum system (8K of memory). It
produces absolute object code that can be loaded by the stand-alone binary load/dump
program (BLD (I).

Because DAS 8A was designed to operate in a restricted environment, it does not provide
some of the features described in this book, principally the macro directives (section 4.11).
Appropriate error messages are generated if a source program contains statements notrec-
ognized by the DAS 8A assembler.

1.2.2 DAS MR Assembler

DAS MR is a macro assembler which produces relocatable object code that can be loaded
into any area of memory. Itis available either as a free-standing program or as an integral part
of the MOS or VORTEX I/VORTEX |l operating system. DAS MR includes all of the features
described in this book.

1.3 BIBLIOGRAPHY

The following manuals contain information on Sperry Univac hardware and software that
would be helpful to the 70 series computer user (the x at the end of each document number is
the revision number and can be any digit 0 through 9):

Title Manual Number
V70 Architecture Reference Manual 98 A 9906 00x
VORTEX | Reference Manual 98 A 9952 10x
VORTEX |l Reference Manual 98 A 9952 24x
MOS Manual 98 A 9952 09x

13

SECTION 2
STATEMENTS

Input to the assembler is supplied by the user in the form of source statements. A statement
constitutes one input record and may be in either a position-dependent fixed format or free
format.

Each statement can be classified, according to its operation field entry, into one of the
following three groups:

a. Computer instruction statement
b. Assembler directive statement
c. Macro call statement

Computer instructions are instructions which are translated into machine-executable code on
a one-to-one basis.

Assembler directives are requests to the assembler to perform certain operations during the
assembly. These directives may define symbols, reserve and/or initialize data areas, control
the listing, and alter the normal processing of statements. The FORM directive allows the user
to symbolically define a bit-placement pattern whose name may subsequently appear in the
operation field.

A macro call statement represents a predefined block of statements (usually a block of
instructions). The macro allows the entire block to be included, with varying parameters, each-
time the macro name appears in the operation field of a source statement.

This section describes the syntax of composing source statements. A summary of instructions
is given in section 3. Assembler directives and macros are described in section 4.

2.1 CHARACTER SET

Source statements are written with the following DAS character set:

Alphabetical characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Numerical Characters 0123456789
Teletype characters CR (carriage return)
LF (line feed)
Special characters - + (plds sign)
- (minus sign)
* (asterisk)
(slash)
(period)

21

STATEMENTS

(blank)

(at sign)

(left bracket)
(right bracket)
(less than)
(greater than)
(up arrow)

(left arrow)
(equal sign)
(comma)
(prime)

(left parenthesis)
(right parenthesis)
(backslash)
(exclamation point)
(quotation mark)
(pound sign)

% (percent sign)

& (ampersand)

: (colon)

; (semicolon)

? (question mark)
$ (dollar sign)

#:-—\vf\ - - li'-\//\;—ar—'n@

In addition, any of the 128 ASCIl characters (see appendix B) may be used anywhere that
characters appear between paired apostrophes or brackets, in comments, literals, and in
instruction operands.

2.2 STATEMENT FORMAT

A DAS source program consists of a sequence of source statements. Each source statement is
input as one record. A punched card is one record, as is one line punched to paper tape and
terminated by a carriage return and line feed.

A source statement may contain a maximum of 80 characters. If a source record contains
more than 80 characters, then the record is truncated to 80 characters. If a record contains
less than 80 characters, the assembler supplies blank characters to fill out 80 character
positions. If an assembler source record is completely blank, the source record is ignored by
the assembler.

Each source statement comprises a combination of label, operation, variable, and comment
fields, depending on the requirements of the computer instruction or assembler directive. One
computer instruction is generated by each instruction source statement. None, one, or more
words of object code may be generated by each assembler directive, depending on the
operation and variable field entries. A standard format for DAS source statements, where
each field is separated by one or more blanks and begins in a standard line position, is shown
in figure 2-1. Alternative formats may be used, prime among them being the use of commas
as field separators. A detailed treatment of statement item placement for various input media
is given in section 5.

2-2

STATEMENTS

LABEL OPERATION VARIABLE
1 678 15 16 29
Loop STAE TEN, COUNT
-

COMMENT IDENTIFICATION

30 AR 72 73 80

INITIALIZE WORD couwrl (| 001

NV : '
Figure 2-1. Format for Source Statement Records ' b

The fields are described further in the following subsections.

2.2.1 Label Field

The Label Field is the leftmost field on each source statement. It is either blank (no label), or
it is used to contain a symbol (section 2.4) created by the programmer. If a label is present, it
must begin in character position 1.

For DAS 8A, symbols in the label field comprise one to four alphanumeric characters; for
DAS MR there may be from one to six such characters. The first character of a symbol is an

alphabetic character, pound sign (#), or dollar sign (the dollar sign and pound sign are used
in the Sperry Univac software and should not be used in normal user programs).

Examples

16 30

valid label (DAS MR)

valid label (DAS 8A)

valid label

valid label

valid label

valid label

invalid--must begin in position 1
invalid--cannot begin with a number
invalid characters

An entry in the label field is always optional for instruction statements. It is optional for most
assembler directives; however, certain assembler directives (EQU, SET, etc.) require a label
field entry. ‘

The programmer generally labels a statement to identify the statement. Symbols in the label
field identify program points for reference by other parts of the program. They make a
program point or particular numeric value more easily identifiable. The first appearance of a
symbol in the label field establishes its identity (most commonly a relative or absolute

2-3

STATEMENTS

address) throughout the remainder of the program. A previously established symbol is
referenced by placing it in the variable field of the source statement. When the symbol is
used, the DAS assembler substitutes the previously assigned value from its symbol table.

Example

START JIMPM FETCH® Call Fetch routine.)
DAR) Decrement counter in A.
JANZ START Loop back if A not zero.

In this example,y the label field is used in the first statement to establish a user symbol for the
location of the first statement in a loop. This label, START, is later referenced in the third
statement as the return point for another loop iteration.

Label field entries are also used to establish the name of a user-written macro definition
(section 4.11).

2.2.2 Operation Field

The Operation Field is to the immediate right of the label field. The entry in this field
describes to the assembler the specific type of statement that has been entered, thus
determining how it should be processed. Entries in this field are composed of from one to six
alphanumeric characters that may describe a machine instruction, assembler directive, or a
macro call. An asterisk may follow certain instruction mnemonics to specify indirect
addressing (see section 3). It is possible to redefine mnemonics with OPSY assembler
directives (section 4.2.1).

An entry in the operation field is always required, and if not supplied by the programmer, will
cause an ""undefined operation’’ error code to be generated.

Examples

30

2.2.3 Variable Field

The Variable Field is to the immediate right of the operation field. The purpose of this field
varies. according to the requirements of the operation defined by the source statement. The
variable field can contain none, one or more symbols, constants or expressions combining
symbols and constants. Multiple entries are separated by commas.

The types of entries that may appear in the variable field are described in section 2.3
(constants), section 2.4 (symbols), and section 2.5 (expressions).

24

STATEMENTS

Examples

1 8 30
LDA Load A register with contents of TAB.
ADDI Add 16 to the A register.
JMP Jump to program location PILL.
STXE* Store X register indirect, indexed by B.
LSRA Logical shift right A register 7 bits.
IAR Increment A register (has no variable).

2.2.4 Comment Field

An optional comment field follows the variable field in all source statements. This field is used
for programming notes. An entire line of comment may be entered if an asterisk is coded in
the first position. The assembler ignores all comments in the object code production process,
but lists comments and comment lines with the program listing output.

On punched cards, the comment field generally extends from position 30 to position 72.
Positions 73 through 80 can be used to sequence cards, simplifying collation if a card deck is
accidentally dropped.

Examples

2.3 CONSTANTS

A constant is a number, or character string, whose value is specified directly by the
programmer in the variable field of a source statement. DAS recognizes decimal integers,
octal integers, floating point numbers, and character constants.

In the following descriptions of DAS constants, unsigned numbers are considered positive.

2.3.1 Decimal Integers

A decimal integer is a signed (+, -) or unsigned string of from one to five decimal digits (0
through 9). The first digit must not be a zero, since a leading zero signifies an octal number.

2-5

STATEMENTS

Decimal integers are converted to a right-justified 15-bit value, in the range - 32,768 thrdugh
+ 32,767, with the high order bit representing the sign (0 = positive, 1 = negative). Negative
numbers are stored in twos complement representation.

Examples
1 Decimal integer +1
20 Decimal integer +20
-3 Decimal integer -3
-9000 Decimal integer - 9000
6,099 Invalid--no commas may appear
144000 Invalid--out of range

2.3.2 Octal Integers

An octal integer is a string of from one to six octal digits (0 through 7), preceded by a leading
zero. The conversion from octal to binary is straightforward. The number is right-justified in
the 16-bit word and may have a range of 0 through 0177777. Octal numbers may optionally
be signed (although they normally are not) and will be represented in twos complement form.

Examples
07 Octal constant 7
023 Octal constant 23
0123 Octal constant 123
0677 Octal constant 677
0177777 Octal constant 177777
5612 Invalid octal--no leading zero
07581 Invalid digit

2.3.3 Floating Point Numbers
Floating point numbers may be specified in the following format:
)tinteger.fractionEtexponent

where:

) the right parenthesis indicates a floating
point number.

+ is 2 minus sign (negative number) or an
optional plus sign (positive number).

integer is the integer portion of the number (if

any).

is the decimal point and must appear.

26

fraction

Et exponent

is the fractional portion of the number
(if any).

is the signed (optional if positive)
exponent (if any). The letter "E” may
be omitted in the exponent if desired.

At least one digit must appear in the number.

The number is stored in one of the following formats:

Single Precision

STATEMENTS

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
S Exponent Fraction (high)
Fraction (low)
Double Precision
15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
ofo o o0 O O o0 o Exponent
S Fraction (high)
0 Fraction (mid)
0 Fraction (low)

The exponent is represented in an excess 128 format so that the smallest exponent
representable contains all zeros. An exponent field containing 128 (0200) corresponds to an

exponent value of 0. The largest exponent representable contains all ones.

The fraction is expressed in a modified sign-magnitude format. Rather than inverting the sign
bit for negative numbers, the complete word in which the sign appears is inverted. In single
precision, this inverts the exponent, the sign, and the high 7 bits of the fraction. In double
precision, the sign and the high 15 bits of the fraction are inverted.

The number 1s zero represented by all zeros. All other numbers are normalized.

Examples

)5.5
60.00079
)6. + 10
)09.E-2
).1E-12
)-4. + 20
16.E2
)16E2

)E2

The real number 5.5 (five and a half)

The real number 60.00079

The real number 60000000000.

The real number .09

The real number .0000000000001

The real number - 400000000000000000000.
Invalid--no right parenthesis.

Invalid--no decimal point.

Invalid--no digit.

2-7

STATEMENTS

2.3.4 Character Constants

A character constant consists of one, two, or more ASCI| characters enclosed by primes (').
Any of the 128 ASCII characters may appear in a character term. To code a prime character
in DAS MR, use two primes in succession; this cannot be done in DAS 8A, however. Note that
blanks are also recognized as characters.

When a single alpha constant is defined by the DATA directive (section 4.4.1), DAS MR left-
justifies it in the field and fills the remaining positions with blanks. In other DAS MR and all
DAS 8A statements, a single alpha constant is right justified with leading zeros.

Examples

' STRING' Valid character constant.

'THIS' Valid character constant.

‘I8’ : Valid character constant.

‘A’ l-character constant: = 'A ' in DAS MR,
= '0A’ in DAS 8A.

"I CAN''T' (DAS MR only)--coded as | CAN'T.

MMM Invalid--surrounding primes missing.

2.3.5 Address Constants

An address constant is a symbol, numer, or expression which may be enclosed in paren-
theses. It generates a 15-bit direct address (bit 15 = 0).

Examples:

A Address constant
(31)

where A is an address symbol whose value is taken from the symbol table by DAS.

2.3.6 Indirect Address Constant

An indirect address constant is an address constant enclosed in parentheses followed by an
asterisk. It generates a 15-bit indirect address (bit 15 = 1).

Examples:

(A+2)* (3)" (A)

2.3.7 Literals

A literal term or simply, literal, is a constant or expression preceded by an equal sign (=). A
literal represents data, rather than an address of data. The appearance of a literal directs the

2.8

STATEMENTS

assembler to assemble the data specified in the literal, store this data in an assembler-
maintained literal pool, and assemble the address of the data into the current instruction.
The literal pool is assigned addresses starting with the value of the literal's location counter
when the END directive is processed. Duplicate values are discarded in the literal pool. In
general, literals can be used whenever an address is permitted in the variable field.

NOTE

The literal pool may not be assembled into COMMON areas. Any attempt to place
literals into COMMON areas is flagged as an error and the mode of the location
counter is changed to program relocatable.

Literals may contain undefined symbols, although use of undefined symbols in literals may
cause extraneous words to be allocated within the literal pool.

The use of literal terms allows the programmer to both define and reference a constant word
in the same machine instruction statement.

Examples

LDA =g Load A register with the constant
5. The value 5 is placed in
the literal pool, and its address
(in the pool) coded in the LDA
instruction.

ADD =255 Add the value 255 to the A register.
The value 255 is placed in the
literal pool, and its address
coded in the ADD instruction.

ORA =07077 Inclusive OR with the A register.
. The indicated value is placed
in the literal pool. For the
. ERA (Exclusive OR instruction)
ERA =07077 the same literal pool location
is addressed, thus minimizing
storage required for the mask
word.

2.4 EXPRESSIONS

An expression is a singlé constant, a single symbol, or any combination of constants and
symbols connected by operators. Operators are described in section 2.4.1.

A discussion of multi-term expression evaluation is given in section 2.4.2 (expression

evaluation), section 2.4.3 (address expressions), and section 2.4.4 (mode determination).
Section 2.4.5 describes literals.

29

STATEMENTS

2.4.1 Operators
The following operators are allowed in expressions:

Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division
Arithmetic operations always involve all 16 bits of the computer words, and are performed
from left to right, with multiplication and division occurring before addition and subtraction.
Thus, A + B/C * D in DAS is equivalent to A + (B/C) * D in conventional notation.
The rules for coding expressions are:

a. An expression cannot contain two terms or two operators in succession.

b. An expression with a leading minus sign (-) is evaluated as though a zero preceded the
minus sign.

c. An expression with a leading plus sign (+) is evaluated as though a zero preceded the plus
sign.

d. A multi-term expression cannot contain an external symbol. If it does, an "invalid
relocation” error message is printed.

e. Character constants used in mulit-term expressions may contain only one or two

characters.
Examples
A+1 Valid expression
"A'+1 Valid expression
'A'-'B' ‘ Valid expression
6443/2 Valid expression (evaluates to 3221)
-1%2 Valid expression (evaluates to -2)
10/5%2 Valid expression (evaluates to 4)
6+6+6-0MS Valid expression (evaluates to 18 minus
the value of OMS)
'A"++'B’ Invalid--adjacent operators
'ASM'+2 Invalid--contains a long character string.

2.4.2 Expression Evaluation
A single-term expression takes on the value of the term involved.

A multi-term expression is reduced to a single value, as follows:

2-10

STATEMENTS

a. Eachtermis evaluated.

b. Arithmetic operations are performed from left to right.

c. Division always yields an integer result; any fractional portion of the result is dropped.
d. Division by zero is permitted and yields a zero result.

Negative values are carried in twos complement form. The value of the expression must be in
the range - 32,768 to 32,767 or the results may be meaningless.

2.4.3 Address Expressions

In addition to its evaluated numerical value, the relocatability of an expression is determined.
The relocatability of an expression depends upon the term(s) in the expression. The
expression is absolute if it contains a single absolute value. The expression is relocatable if it
contains a single relocatable value. A multi-term expression may be absolute or relocatable.

Absolute and relocatable expressions are derived from the term or combination of terms

composing them, and the way in which these terms are combined. Table 2-2 shows, for each
arithmetic operation, whether the result is absolute (abso), relocatable (relo), or illegal.

Table 2-2. Arithmetic Operation Results (DAS MR only)

A = abso A = abso A = relo A = relo
B = abso B = relo B = abso B = relo
A+B abso relo relo illegal
A-B abso illegal relo abso
A =B abso illegal illegal illegal
A/B abso illegal illegal illegal

2.4.3.1 Absolute Expressions

An absolute expression is a constant, an absolute symbol, or any arithmetic combination of
absolute terms. An expression may be absolute even though it contains relocatable terms,
alone or in combination with absolute terms, under the following conditions:

a. There must be an even number of relocatable terms in the expression and the terms must
be paired. Otherwise, an "invalid relocation’ error message will resuit.

b. Each pair of terms must have opposite signs and the same relocatability. (Program, blank
COMMON or the same named COMMON). The paired terms do not have to be
contiguous.

STATEMENTS

c. Relocatable terms entering into multiply or divide operations are considered absolute
terms, with the same value.

The pairing of relocatable terms with the same relocatability and opposite signs cancels the
effect of the relocation, since both symbols would be relocated by the same amount. Thus, the
value represented by the paired terms remains constant, regardiess of program relocation.

An absolute expression reduces to a single absolute value.
Examples

If A and B are relocatable symbois and X and Y are absolute symbols or terms, the following
are absolute expressions:

X abs = abs

A-B rel-rel = abs

A-B+X rel-rel + abs = abs

X+Y abs +abs = abs

X*Y abs*abs = abs

x/Y abs/abs = abs

A*B rel*rel is interpreted as abs*abs = abs

(see discussion below under Relocatable
Expressions).

2.4.3.2 Relocatable Expressions (DAS MR Only)

A relocatable expression is a relocatable term or a combination of relocatable and absolute
terms under the following conditions:

a. There must be an odd number of relocatable terms with the same relocatability.

b. All the relocatable terms but one must be paired (see the description of pairing under
ABSOLUTE EXPRESSIONS).

c. Theunpaired term must not be directly preceded by a minus sign (-).
If the above conditions are not met, an "invalid relocation’ error message will resuit.
Relocatable terms entering multiply or divide operations are considered absolute terms with
the same value. A relocatable expression reduces to a single relocatable value. This value is
the value of the expression, with the relocatability attributes of the unpaired relocatable term.

Examples

If A and B are relocatable symbois and X and Y are absolute symbols, the following are
relocatable expressions:

A rel = rel

A+X rel +abs = rel

X+B abs+rel = rel

A-B+A rel-rel +rel = rel

A+2 rel + abs = rel

X+B+Y abs +rel+abs = rel

A*B+A rel*rel +rel is interpreted as
abs*abs +rel = rel

2-12

2.4.4 Mode Determination

STATEMENTS

The mode of an expression is determined by the mode of the symbols in the expression. The

mode is determined by the following rules:

a. Ifthe expression contains any mode E or C symbol, the expression is mode E.

b. Ifthe expression contains only mode A symbols, the expression is mode A.

c. If the expression contains mode A and R symbols, the mode of the expression is R if there is
an odd number of mode R symbols. Otherwise, the mode of the expression is A.

The foliowing restrictions apply only to DAS MR and to FORTRAN-compatible output assembly

with DAS 8A.:

a. No expression can contain symbols of both modes E and C.

b. Amode E expression comprises a single mode E symbol.

c. NomodekE,C, or R expression can multiply or divide a mode E or C symbol.

d. No expression can add or substract a mode C and a mode R symbol, or a mode E and a

mode R symbol.

e. No expression can add two or more mode E, C, or R symbols.

f. Amode A symbol can be added to or subtracted from a mode C or R symbol.

Examples

The following program code illustrates expression mode determination rules.

EEEE EXT
cccce COMN
RTN ENTR
TBL BSS
ABL BSS
LENG EQU
CALL
LDA
LDA
LDXI
LDA

DATA
DATA
DATA
DATA

6

50

'A'+5

*-TBL

EEEE, TBL, LENG
*+6

CCCC+6

CCCC+6

0,1

EEEE+4
CCCC+4
CCCC+LENG
TBL+LENG

Defines mode E.

Defines mode C

Defines a symbol (RTN) as mode R.
TBL is mode R.

ABL is mode R.

LENG is mode A (defines area length).

Legal, one-word relative forward.
lllegal, one-word not R or A.

Legal, two-word instruction.

Legal, loads CCCC+6 in A register.

lllegal, value not zero.
Legal.

Legal.

Legal, mode is R.

2-13

STATEMENTS

2.5 SYMBOLS

A symbol is a character or combination of characters used by the programmer to symbolically
define instruction addresses, data addresses, general purpose registers, and arbitrary values.
Through their use in label fields and in operand fields they provide the programmer with an
efficient method to name and reference program elements. The assembler creates a symbol
table and assigns to each of the symbols written in the source program a value and a
relocation bias (DAS MR only); it also provides indicator flags when required by the program.
This relieves the programmer of having to know the absolute address locations of code and
data areas.

Symbols are formed from the following three classes of characters:

a. Alphabetic characters: A through Z

b. Numeric characters: 0 through 9

o Special character: pound sign (#)
A symbol is formed from one to six characters (DAS MR) or one to four characters (DAS 8A)
in length, chosen from the preceding classes. The first character must not be numeric.

Symbols cannot contain imbedded blanks.

Symbols may be classified as user symbols (section 2.5.1) and assembler-defined symbols
(section 2.5.2).

2.5.1 User Symbols

User symbols are defined and used by the programmer to symbolically reference instruction
and data area addresses, the general purpose registers, and arbitrary values.

Although it is possible for the user to define user symbols that begin with the pound sign, he
should not do so to avoid conflict with V70 series system software, which uses the pound sign.

Examples
A User symbol.
MAIN User symbol.
BETA11 User symbol (DAS MR).
BUFFER User symbol (DAS MR).
READ1 User symbol (DAS MR).
CON90 User symbol (DAS MR).
128B Invalid--first character is numeric.
CODE1 Invalid--more than 4 characters (DAS 8A).
RECORD 1 Invalid--more than 6 characters (DAS MR).
RCD+A Invalid character in symbol. v
IN AREA Invalid--contains an imbedded blank character.

2-14

STATEMENTS

2.5.2 Assembler-Defined Symbols

Assembler-defined symbols are of a specialized nature and are used primarily to control the
assembly process. They are unique in that they are not defined by the programmer, but by
the assembler itself. All symbols that are not assembler-defined symbols must be properly
defined by the user in his source program.

2.5.2.1 Operation Field Symbols

All instruction mnemonics and assembler directives appearing in the operation field are
predefined by the assembler and control the processing of the source statement.

CAUTION

DAS assemblers recognize the complete instruction sets of all SPERRY UNIVAC 70
series computers, even when the system on which they operate lacks the hardware for
executing a particular instruction. The programmer, therefore, must have a thorough
knowledge of the instructions applicable to his system before attempting to assembie a
program.

Any other operation symbols are user symbols; these are comprised of OPSY-defined
instruction mnemonics (section 4.2.1), FORM-defined symbols (section 4.4.4), and macro call
names (section 4.13).

2.5.2.2 Location Counter Symbols

Current Location Counter (*). The assembler maintains a location counter to assign storage
addresses to program statements. It is the assembler’s equivalent of the computer’s program
counter. As machine instructions and data areas are assembled, the location counter is
incremented to reflect the length of the assembled code or data. Thus, it always contains the
address of the next available word.

The location counter also has an associated relocatability mode, either absolute, program
relocatable, or named FORTRAN COMMON relocatable. Modification of the current value and
mode of the location counter is accomplished with the ORG directive. The Iocatlon counter is
never negative and is always less than 2'°.

The programmer can reference the current value of the location counter by using the asterisk
(*) character as a term in an operand. The asterisk term represents the word address of the
beginning of the current instruction or data area. Use of the asterisk term in a literal
address constant results in the assembler using the word address of the instruction
containing the literal.

The relocatability mode ~of the asterisk term--absolute, program relocatable, or named
FORTRAN COMMON relocatable--is dependent on the current mode of the location counter.

2:15

STATEMENTS

Examples
JMP *+4 Jump to the location 4 words down.
LDA * Load A with the word at the

current location counter (i.e.,
the "LDA” instruction itself).

DAS 8A Location Counters. DAS 8A has five standard location counters that have predefined
names, as described in table 2-1. These location counter names may be used in location
counter control directives (section 4.3) for controlling the location counter values used during
the DAS 8A assembly process. These names have special significance only in the location
counter control directives; if used in instruction statements or other directives, they are
considered user symbols.

These five location counters are not applicable in DAS MR programs.

2.5.3 Symbol Values

Associated with every symbol is a value. The value is in the range - 32,768 through +32,767.
This value is substituted in place of the symbol whenever the symbol appears in the variable
field of other source statements.

A symbol's value is defined when it appears in the label field of a statement. The value
assigned is one of two types:

« For all instruction mnemonics and most assembler directives, the symbol is assigned the
value of the current location counter.

+ In certain assembler directives, the symbol is assigned the value of the variable field entry;
these directives are: EQU, SET, MAX, MIN, OPSY, ORG, LOC, and BEGI. In addition,
special purpose symbols are used in the label field for FORM and MAC directives. (All of
these directives are described in detail in section 4.)

2.5.4 Address Symbols and Relocatability

2.5.4.1 Relocatability (DAS MR Only)

In addition to having names and values, all symbols are associated with a set of attributes.
These attributes describe how the symbol is handled by the assembler.

The most important attribute is that of relocatability. A relocatable program (DAS MR only) is
one that has been assembled with its instruction and directive locations assigned in such a
manner that it can be loaded and executed anywhere in memory. When such a program is
loaded, the beginning memory address is specified, and a value (known as the relocation
bias) is added to the addresses of subsequent relocatable instructions. The relocatable
loader is used to load a program in any area of memory and modify the addresses as it loads
-so that the resulting program executes correctly.

2-16

STATEMENTS

Programs can contain absolute addresses, relocatable addresses, or both. Symbols which
refer to addresses that will change during program loading are relocatable. Other symbols,
such as register numbers or buffer lengths, do not change with program loading and are
called absolute symbols. Programs are usually assembled with a zero relocation bias on the
first instruction. .

The assembler’s location counter contains the (relative) address of the instruction or directive
currently being executed. The location counter is absolute when it contains the actual address
of the instructions, and relocatable when it contains an address relative to the start of the
program.

Symbols can be absolute or relocatable. If a symbol is equated to the location counter, it is .
relocatable if the location counter is relocatable. Otherwise, the symbol is absolute.
Expressions (section 2.5), since they contain symbols, can be absolute or relocatable.
Constants are always absolute.

At the beginning of each instruction or data word generated by the assembler, the
relocatability can be set by the ORG directive. On encountering an ORG directive, the
assembler makes the location counter absolute if the corresponding expression is absolute, or
relocatable if the corresponding expression is relocatable.

Table 2-1. Standard DAS 8A Location Counters

Counter Initial Value Description

COMN 002000 Controls assignment of memory
within an interface area common
to two or more programs.

IAOR 000200 Control assignment of memory
to indirect pointers.

LTOR 001000 Controls assignment of memory
to literals.

SYOR 000000 Controls assignment of memory

to all system parameters.

(blank) 004000 Used initially and normally
by the assembler for memory
assignments until/unless over-
ridden by the use of the ORG
directive

2.5.4.2 Absolute Symbols
Absolute symbols are those whose values are independent of the execution address. These

symbols are used to represent such things as register numbers, fixed memory locations,
buftfer lengths, or bit masks.

2-17

STATEMENTS

These symbols can be defined in the following two ways:
a. By appearing in a label field when the location counter is in the absolute mode.

b. By being defined as equivalent to some absolute value in directives (EQU, ORG, etc.).

Examples
" ORG 0500 ' (Specifies absolute address origin.)
START LDA VSYS The label START is assigned an
absolute value of 0500.
TEN EQU 10 The label TEN is assigned an

absolute value of 10.

2.5.4.3 Relocatable Symbols (DAS MR Only)

Values of relocatable symbols are dependent upon the execution address of the program.
They can represent such things as instruction addresses, data addresses, and addresses of
other programs.

Relocatable symbols may be defined in the following ways:

a. Byappearingin a label field while the location counter is in the relocatable mode.

b. By being defined as equivalent to some relocatable value in directives (EQU, ORG, etc.)
There are four major types of relocatable symbols:

a. Program relocatable symbols, whose values depend on the program location.

b. Blank COMMON relocatable symbols, whose values depend on the location of FORTRAN
blank COMMON, ‘

c. Named COMMON relocatable symbols, whose values depend on FORTRAN named
COMMON.

d. External symbols, whose values depend on the location of separately assembled programs.
Examples

*NO ORG DIRECTIVE IN DAS MR ASSEMBLES AS RELOCATABLE.
START LDA MERF The label START is assigned
a value of relocatable zero.

HERE EQU * Where the program counter is
relocatable, assigns the
relocatable value to the label
HERE.

218

2.5.5 Symbol Modes

STATEMENTS

Each symbol has one of the following modes assigned by the assembler:

a. External (E)
b. Common (C)

c. Relative (R)

d. Absolute(A)

The mode of a symbol is determined by the following rules:

a. Ifthe symbolisin an EXT directive, the mode is E.

b. If the symbol is defined by a COMN directive, the modeis C.

c. |If the symbol is a symbol in a program, or if * is the current location counter value, the

- mode is R.

d. If thesymbol is a number (numerical constant), the mode is A.

e. Ifthe symbol is defined by an EQU, SET, or similar directive, the mode of the symbol is that
of the variable field expression in the directive.

Examples
EXT
UNIV COMN
START ENTR
CONS DATA
TIME EQU

EDAT

41

24

Symbol EDAT has mode E.
Symbol UNIV has mode C.

Symbol START has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol CONS has mode R (location
counter relocatable) or mode
A (location counter absolute).

Symbol TIME has mode A.

2-19

SECTION 3 |
INSTRUCTION SUMMARY

For use with DAS, SPERRY UNIVAC 70 series instructions are divided into six categories:
types 1 through 5 and multiple register. Tables 3-1 and 3-2 list the characteristics and
mnemonics of the instruction types.

A complete list of V70 series instructions, arranged alphabetically by mnemonic, is given in
appendix A. The details of the 16-bit configuration of each individual instruction word are
given in the applicable system handbook. Also refer to the handbook for a complete
description of addressing modes.

Computer instructions have the general format for source statements described in section 2.
A label is always optional in instruction statements. In the following descriptions of the
individual instruction groups, the field format:

Operation Variable
is used, with the optional label being understood to precede the operation field when used,
and the optional comment field to follow the variable field when used. In cases where the
variable field contains more than one item or expression, these are always separated by
commas. Mandatory elements of the field are in bold type, and optional items, in italic type.

Table 3-1. Assembler Instruction Type Characteristics

Parameter Type 1 | Type 2 | Type 3 | Type 4 | Type 5 | Multiple
: Register
Words generated 1 2 2 1 2 (Varies

with
Memory addressed Yes Yes* Yes No Yes instruc-
tion
Indirect addressing | Yes Yes* Yes No Yes group)
Indexing Yes No No No Yes
Variable field lor2 |1 2 Oorl |1to3
expressions
Microcoding No No Yes Yes No
* Except for immediate instructions.

31

INSTRUCTION SUMMARY

Table 3-2. Summary of Assembler Instruction Types

Type 1 | Type 2 Type 3 Type 4 Type 5 | Multiple
Register

ADD ADDI JS3N BT AOFA LLRL ADDE AD
ANA ANAI JS3NM IME AOFB LLSR ANAE ADI
DIV DIVI JXNZ JOF AOFX LRLA DIVE ADR
ERA ERAI JXNZM | JIFM ASLA LRLB ERAE COM
INR INRI JIXZ OME ASLB LSRA 1IJMP DADD
LDA JAN JXZM SEN ASRA LSRB INRE DAN
LDB JANM LDAI XIF ASRB MERG JSR DEC
LDX JANZ LDBI CIA NOP LDAE DER
MUL JANZM LDXI CIAB OAB LDBE DLD
ORA JAP MULI CiB OAR LDXE INC
STA JAPM ORAI COMP OBR MULE JDNZz
STB JAZ STAI CPA ROF ORAE JDZ
STX JAZM STBI CPB SEL SRE JN
SUB JBNZ STXI CPX SEL2 STAE LBT

JBNZM SUBI DAR SOF STBE LD

JBZ XAN DBR SOFA STXE LDI

JBZM XANZ DECR SOFB SUBE SB

JMP XAP DXR SOFX SBR

JMPM XAZ EXC TAB SBT

JOF XBNZ EXC2 TAX ST

JOFM XBZ HLT TBA T

JOFN XEC IAR TBX

JOFNM XOF IBR TSA

JSS1 XOFN INA TXA

JSS2 XS1 INAB TXB

JSS3 XS1N INB TZA

JSIM XS2 INCR TZB

JSIN XS2N IXR TZX

JSINM XS3 LASL ZERO

JSz2Mm XS3N LASR

JS2N XXNz

JS2NM XXZ

JS3M

3.1 TYPE 1 INSTRUCTIONS

An assembler type 1 instruction occupies one computer word and is memory-addressing. It
may optionally specify indirect or preindexed addressing.

3-2

INSTRUCTION SUMMARY

Assembler type 1 instructions are:

Normal Load/Store LDA Load A register
LDB Load B register
LDX Load X register
STA Store A register
STB Store B register

, STX Store X register

Arithmetic ADD Add memory to A register
SuB Subtract memory from A register
MUL Multiply
DIV Divide
INR Increment memory

Logic ANA AND memory and A register
ORA Inclusive OR memory and A register
ERA Exclusive OR memory and A register

The format of type 1 instructions varies according to the type of addressing, as follows:

Operation Variable

XXX address Direct addressing
XXx* address Indirect addressing
or
XXX (address)*
XXX incr,i Indexed addressing
where:
XXX is a type 1 instruction mnemonic
address is an address expression
incr is an indexing increment, < 0512

i specifies an index register: 1=X, 2=B

If the direct form of instruction is used, DAS selects the addressing mode of the generated
computer instruction according to the following rules:

a. Direct Addressing: If the specified address is 2047 or below, direct addressing is used.

b. - Relative Addressing: If the specified address is above 2047 but not more than 512 and not
less than one word beyond the current instruction, the mode of addressing is relative to
the program counter.

¢. Indirect Addressing: If neither of the preceding conditions for direct or relative addressing

is true, an address within the range O through 511 (called indirect pointer) is generated
and the indirect pointer address will be used in the instruction in the indirect mode.

3-3

INSTRUCTION SUMMARY

.Indirect addressing is specified by an asterisk after the mnemonic or after-a variable field
expressed in parentheses, e.g.:

LDA* address

LDA (address)* NOTE CAUTION BELOW.

The instruction will be coded to address a locaticn in lower core containing the address of the
word to be accessed. Indirect addressing to five levels is permitted and is accomplished by
setting the high-order bit at the indirect address location(s).

CAUTION

Only the first form should be used in DAS 8A (i.e., LDA¥*). In the second form (i.e.,
address)* DAS 8A will force bit 15 to a 1, changing the instruction.

Indexing is specified by two expressions in the variable field. The first is the indexing
increment and is less than 512. The second specifies the indexing register: X register = 1,
and B register = 2. Preindexing is used. (Type 1 instructions cannot be postindexed.)

Examples

LDA 0500 Load A register with the contents
of memory location 0500. Addressing
is direct.

LDA *4+12. Load A register with the contents
of the word 12 locations down
from the LDA instruction.
Addressing is program counter
relative.

LDA 070000 Load A register with the contents
of memory location 070000. An
indirect address is generated
pointing to.a location in lower
core containing the address
- (070000).

LDA* TIN Load A register with the contents
. of the location whose address
is contained at TIN, i.e., load
. A register with the contents of
TIN DATA 05100 location 05100. Addressing is
indirect.

LDA* IND1 This shows an example of multiple
. indirect addressing to 3 levels.
The A register is loaded with
. . the contents of memory location
IND1 DATA (IND2)* 050.
IND2 DATA (IND3)*
IND3 DATA 050

34

LDA

0300, 1

INSTRUCTION SUMMARY

Load A register with the contents
of the memory address specified
by the sum of the X register
contents and 0300. Thus, if

the X register contains 0200,

the operand for this instruction
is in memory address 0500.

3.2 TYPE 2 INSTRUCTIONS

An assembler type 2 instruction occupies two consecutive computer words and is memory-
addressing. The second word is the address of a jump, jump-and-mark, or execution
instruction; or the operand specified by an immediate instruction.

Assembler type 2 instructions are:

Immediate
Load/Store
Arithmetic
Logic

Jump-
Jump and-Mark
JMP JMPM
JOF JOFM
JOFN JOFNM
JAP JAPM
JAN JANM
JAZ JAZM
JBZ JBZM
JXZ JXZM
JANZ JANZM
JBNZ JBNZM
JXNZ JXNZM
JSS1 JS1IM
JSS2 JS2M
JSS3 JS3M
JSIN JSINM
JS2N JS2NM
JS3N JS3NM

LDAI
LDBI
LDXI
STAI
STBI
STXI
ADDI
SuBI
MULI
DIVi
INRI
ANAI
ORAI
ERAI

Execute
XEC
XOF
XOFN
XAP
XAN
XAZ
XBZ
XXZ
XANZ
XBNZ
XXNZ
XS1
XS2
XS3
XS1N
XS2N
XS3N

Load A register immediate
Load B register immediate
Load X register immediate
Store A register immediate
Store B register immediate
Store X register immediate
Add to A register immediate
Subtract from A register immediate
Multiply immediate

Divide immediate

increment immediate

AND immediate

Inclusive OR immediate
Exclusive OR immediate

Unconditionally

If overflow set

If overflow not set

If A register positive
If A register negative
If A register zero

If B register zero

If X register zero

. ¥ A register not zero

If B register not zero
If X register not zero

If SENSE switch 1 set

if SENSE switch 2 set
If SENSE switch 3 set
If SENSE switch 1 not set
If SENSE switch 2 not set
If SENSE switch 3 not set

35

INSTRUCTION SUMMARY -

The immediate instructions have the following format:

Operation Variable

xxx| value
where:
xxx| is an immediate instruction mnemonic
value is any expression value

The format of type 2 program control transfer instructions is the same as for type 1 direct or
indirect addressing. Since a full word is allocated to the address, the assembler will never
need to code an indirect address pointer for the purpose of reaching a specified location
otherwise out-of-range. The programmer may code an indirect address. With two-word
instructions, indirect addressing is limited to four levels. Type 2 instructions cannot be
indexed.

Examples

LDAI 19 Load A register with the value
19. The value is coded in
the second word of the instruction.

JMP THERE Unconditionally jump to the
instruction with the label
THERE.

JXNZ* SM If the X register is not zero,
jump to the instruction whose
address is contained in location
SM (may be multi-leveled).

XAZ IMP If the A register is zero,

execute the instruction at
location IMP. In either case,
control passes to the instruction
following XAZ.

3.3 TYPE 3 INSTRUCTIONS

An assembler type 3 instruction occupies two consecutive computer words and is memory-
addressing. It differs from an assembler type 2 instruction in that the variable field contains
two expressions instead of one.

Assembiler type 3 instructions are:

Jump : JIF Jump if condition(s) met
BT Jump if bit condition met
Jump-and-Mark JIFM Jump and mark if condition(s) met
Execution XIF Execute if condition(s) met
170 SEN Program sense and jump if true
IME Input to memory

OME Output from memory
36

INSTRUCTION SUMMARY

The format of type 3 instructions is as follows:

Operation Variable

XXXX code,address Direct addressing
yyyy* code,address Indirect addressing
yyyy > . code,(addre;s)*
where:
XXXX is any type 3 instruction mnemonic
yyyy is any type 3 instruction mnemonic except
IME or OME
code is a condition code (see below)
address is an address expression

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions. Note that IME and OME
cannot specify indirect addressing.

The code parameter entries are described in detail below.

JIF, JIFM, and XIF Instructions

For the JIF, JIFM, and XIF instructions, the expression code specifies the conditions required
for the jump, jump-and-mark, or execution. The conditions are summarized in table 3-3; they
are described in detail in the system handbook. Multiple conditions can be specified by
setting additional bits.

Table 3-3. JIF/JIFM/XIF Code Conditions

Variable Field Jump/Execute if:

0001 Overflow indicator is set.

0002 A register contents are positive.
0004 A register contents are negative.
0006 NOT test of specified conditions.
0010 A register contents are zero.
0020 B register contents are zero.
0040 X register contents are zero.
0100 SENSE switch 1 is set.

0200 SENSE switch 2 is set.

0400 SENSE switch 3 is set.

3.7

INSTRUCTION SUMMARY

BT Instruction

For the BT instruction, the expression code is a 6-bit value that specifies the register and bit

to be tested, in the form:
‘ 4 3 21 0

z z|b b b b

where:

00 Specified bit in A register is 1
01 Specified bit in B register is 1
10 Specified bit in A register is 0
11 Specified bit in B register is 0

bbbb specifies the bit to be tested, from bit
0 (low-order bit) to bit 15 (high-order
bit) -

SEN Instruction

For the SEN instruction, the expression code is a 9-bit value that specifies the device address
and 1/0 function, in the form:

8 7 6 5 4 3 2 1 0

q da
where:
q is a line number (0 to 7)
da is the device address

Stahdard device addresses are listed in section 3.4.

IME and OME Instructions

For IME and OME instructions, the expression code is the device address.

Examples

JIF 0222,ALFA In this example, the next
' instruction is taken from

symbolic address ALFA if the
A register contains a positive
number (0002), the B register
contains zero (0020), and
SENSE switch 2 is set (0200);
i.e., 0002 + 0020 + 0200 =
0222.

3-8

BT 056, ADDR
SEN 0101, ADDR
JMP *-2

ADDR OME 01,L0C

3.4 TYPE 4 INSTRUCTIONS

INSTRUCTION SUMMARY

In this example the next instruction
from symbolic address ADDR is fetched
if bit 14 of the A register contents

is zero.

In this example, the next instruction

is fetched from symbolic address ADDR
if the write register of the Teletype

is ready; OME is executed, which outputs
the data in symbolic address LOC to

the Teletype. Otherwise, the next
instruction in sequence (JMP) is executed,
which returns the program to the SEN
command.

An assembler type 4 instruction occupies one computer word and does not address memory.
These instructions take none or a single variable operand.

Assembiler type 4 instructions are:

Register Transfer TAB Transfer A register to B register
TAX Transfer A register to X register
TBA Transfer B register to A register
TBX Transfer B register to X register
TXA Transfer X register to A register
™XB Transfer X register to B register
TZA Transfer zeros to A register (clear A)
TZB Transfer zeros to B register (clear B)
TZX Transfer zeros to X register (clear X)
TSA Transfer switches to A register
Register Modification IAR Increment A register
IBR Increment B register
IXR Increment X register
DAR Decrement A register
DBR Decrement B register
DXR Decrement X register
CPA Complement A register
CPB Complement B register
CPX Complement X register
AOFA Increment A register if overflow set
AOFB Increment B register if overflow set
AOFX Increment X register if overflow set
SOFA Decrement A register if overflow set
SOFB Decrement B register if overflow set
no SOFX Decrement X register if overflow set
Control operand NOP No operation
ROF Reset overflow indicator
SOF Set overflow indicator
HLT Halt '

39

INSTRUCTION SUMMARY

Shift/Rotation

ASRA Arithmetic shift right A register
.ASRB Arithmetic shift right B register
ASLA Arithmetic shift left A register

operand ASLB Arithmetic shift left B register

Combined Register
Transfer/Modification

170

LASR Long arithmetic shift right
LASL Long arithmetic shift left
LSRA Logical shift right A register
LSRB - Logical shift right B register
LRLA Logical rotation left A register
LRLB Logical rotation left B register
LLSR Long logical shift right

LLRL Long logical rotation left

MERG Merge source to destination registers

INCR Increment source to destination registers
DECR Decrement source to destination registers
COMP Complement source to destination registers
ZERO Zero (clear) registers.

EXC External control
SEL External control
EXC2 Auxiliary external control
SEL2 Auxiliary external control
CIA Clear and input to A register
CiB Clear and input to B register
CIAB Clear and input to A and B registers
INA Input to A register
iNB Input to B register

" INAB Input to A and B registers
OAR Output from A register
OBR Output from B register
OAB Output from A and B registers

The format of type 4 instructions appears as follows:

where:

XXXX

yyyy

expression

Operation Variable
XXXX No variable field

yyyy expression

is any of the register transfer, register
modification, or control instructions
(except HLT) listed above. These instruc-
tions take no operand.

is any of the remaining instructions
listed above. Theses instructions take
one operand.

is an expression value

The expression value is described below for each group that uses it.

3-10

INSTRUCTION SUMMARY

HLT Instruction

The HLT variable field expression is optional; if present, it becomes the coded value of the
instruction (otherwise zero). The HLT number can be displayed from the | register whenever a
halt occurs to determine which halt was reached.

Shift Instructions

For the shift instructions, the variable field expression is the shift count (31 maximum).

Combined Register Transfer/Modification Instructions

For the combined register transfer/modification instructions, the variable field expression is a
number of the form:

Oxsd

composed as shown below:

X
8 7 6 5 4 3 2 10
00 s d
A A t
0 = execute 1 = Areg
unconditionally 1 = Breg
1 = execute if OF is set 1 = Xreg
1 = Areg
1 = Breg
1 = Xreg

For the ZERO instruction, the code must be of the form ’0x0d"’.

170 Instructions

For EXC, SEL, EXC2, and SEL2, the expression specifies the 1/0 function and the device

address in the form:

8'7'6 5 4 3 21 0
f da

where:

f is the control function

da is the device address

3-11

INSTRUCTION SUMMARY

For the remainder of the 1/0 instructions in this group, the expression is the device address
only (the 170 function being specified by the mnemonic).

Examples

HLT 066 Codes an instruction of the
operand value that may be displayed
when a halt at this location

occurs.

ASLA 1 Arithmetic left shift A register
1 bit (equivalent to multiplying
by 2).

coMP 035 Unconditionally takes the

inclusive OR and complements
' the contents of the A (0010)
and B (0020) registers, and
places the result in the A
(0001) and X (0004) registers.
Note that if bit 8 were one
in the operand, the instruction
would execute only if the
overflow indicator is set.

CIB 030 Clears the B register and loads
it from the peripheral specified
by device address 030.

Standard device addresses are given in table 3-4.
NOTE

SEL/SEL2 are identical to EXC/EXC2 instructions.

3-12

Table 3-4. Standard Device Addresses

INSTRUCTION SUMMARY

Class Code | Addresses Option or Peripheral
00-07 01-07 Teletype or CRT device
010-017 010-013 Magnetic tape unit
014 Fixed-head rotating memory
" 015 Movable-head rotating memory
016-017 Movable-head rotating memory
020-027 020,021 First BIC
022,023 Second BIC
024,025 Third BIC
026,027 Fourth BIC
030-037 030 Card reader
031 Card punch
032 Digital plotter
033 Electrostatic plotter
034 Second paper tape system
035,036 Line printer
037 First paper tape system
040-047 040-043 PIM
044 All PIM enable/disable
045 MP/PARITY
047 RTC
050-057 050-053 Special applications, and
Digital-to-analog converter
through
054-057 Analog system
060-067 060-067 Digital 1/0 controller, or
Buffered 1/0 controller
070-077 070-073 Data communications system
074-076 Relay 1/0 controller, or
Special applications
077 Computer control panel

3.5 TYPE 5 INSTRUCTIONS

An assembler type 5 instruction occupies two consecutive computer words and is memory-
addressing. All of these instructions have indirect addressing as an option. Most can be

preindexed or postindexed.

313

INSTRUCTION SUMMARY

Assembler type 5 instructions are:

Extended Load/Store LDAE Load A register extended
LDBE Load B register extended
LDXE Load X register extended
STAE Store A register extended
STBE Store B register extended
STXE Store X register extended .
Arithmetic ADDE Add memory to A register extended
SUBE Subtract memory from A register extended
MULE Multiply extended
DIVE Divide extended

INRE Increment memory extended
Logical ANAE AND memory and A register extended
ORAE inclusive OR memory and A register extended
ERAE Exclusive OR memory and A register extended
Jump 1JMP Indexed jump
JSR Jump and set return in index register
SRE Skip if register equals memory

These instructions have the following formats:

Operation Variable

XXXX address, i,post Optional indexed
addressing

XXXX*# address,i,post Indirect addressing
©ooor
XXXX (address)*,i,post

where:
address is an address expression

i if present, is an index specification,
described further below

post if present, is a postindex specification
for all extended addressing instructions.

Indirect addressing is specified by an asterisk after the mnemonic or after a variable field
expression in parentheses as described for the type 1 instructions.

Preindexing is specified as described for the type 1 instructions. Note that IJMP and SRE
cannot be preindexed.

Postindexing is specified by three expressions in the variable field. The first expression is the
data address, the second specifies the indexing register (X register = 1, and B register = 2),
and the third is logically ORed with the instruction word to set bit 7 (which specifies

- postindexing). The assembler does not check the validity of the third expression; thus, the
value 0200 should always be used. There is no purpose to postindexing unless indirect
addressing is involved.

314

INSTRUCTION SUMMARY
Variations in the interpretation of the variable field entries are discussed below.

Extended Instructions

For extended instructions, the variable field may contain one operand (direct addressing), two
operands (preindexing), or three operands (postindexing). The instructions may also include
indirect addressing. ’

address Direct addressing
or

address,i Preindexed addressing
or

address,i,0200 Postindexed addressing

IJMP Instruction

The IJMP instruction may have direct, indirect, and postindexed addressing, i.e., variables of:

address Direct addressing
or
address,i Postindexed addressing

IJMP cannot be preindexed.

JSR Instruction

The JSR instruction, like IJMP, is not preindexed, nor is it postindexed. A variable field of the
form:

address, i
is used to specify the jump address and the index register into which the return address is to

be placed.

SRE Instruction

For the SRE instruction, the first expression in the variable field is the data address, the
second specifies the type of addressing, and the third is logically ORed with the instruction
word to control bits 3-5 to specify the register to be compared. The format may be illustrated
as:

address,t,reg
where:

address is the memory location to be compared
to the specified register

3-15

INSTRUCTION SUMMARY

t specifies the type of addressing and may
be any of the following:

= 1 index with X register
2 index with B register
7

not indexed

reg is a register code of the register to be
compared, as follows:

010 A register
020 B register
040 X register

Examples:

LDAE#* ADDR, 2,0200 Loads the A register extended,
indirect and postindexed with
the B register.

IJMP GO, 1 Indirect jump through location
GO, postindexed by the X
register.

ISR MOM, 2 Jump to location MOM and set

return in B register.

SRE ADDR, 7,020 Compares the contents of the
v B register with the directly
addressed word at ADDR, and,
if equal, skips the next two
locations

3.6 MULTIPLE REGISTER INSTRUCTIONS

It should be noted that from the earliest Sperry Univac 620 software, the assembler syntax
uses the convention that the X register isindex register 1 and the B register isindex register 2.
However, the V70 emulation microprograms use hardware register R1 for the B register and
hardware register R2 for the X register. The VORTEX DAS Assemblers resolve this by
mapping references to register R1 into references to hardware register R2 and vice versa.
Thus, for V70 series instructions, references to the X register generate instructions
referencing hardware register R2 (X register). Since the programmer is usually indifferentto
the hardware register number assigned the X and B registers (except possibly a diagnostic
programmer), this should cause no programming problems. If a diagnostic programmer
does want to reference a particular hardware register, the register designation in his
assembly statements should be written as follows:

a. Toreferenceregister RO (A); write 0.

3-16

INSTRUCTION SUMMARY

b. Toreferenceregister R1 (B), write 2.

c. Toreference register R2 (X), write 1.

d. Toreference registers R3 through R7, write 3 through 7, respectively.
NOTE

The multiple register instructions generally require more time for execution;
therefore, the standard instruction should be used whenever possible.

3.6.1 Register-To-Memory Instructions

Assembler mnemonics for the register-to-memory instructions are:

AD Add
LD Load
SB Subtract
ST Store
Example
LD, 0 0300,3 Register RO is loaded with

the contents of the memory
address specified by the sum
of 0300 and the contents of
register R3. Thus, if R3
contains 0200, the operand
for this instruction is in
memory address 0500.

3.6.2 Byte Instructions
Assembler mnemonics for the byte instructions are:

LBT Load Byte
SBT Store Byte

Example

SBT 0200,3 The contents of the right byte
of register RO are stored at
the address specified by the
sum of 0200 and the contents
of register R3 (shifted right
one bit). Thus, if R3 contains
041, the operand is stored in
the right byte at address 0220.

3-17

INSTRUCTION SUMMARY

3.6.3 Jump-If Instructions

Assembler mnemonics for the jump-if instructions are:

Example

JDNZ Jump If Double-Precision Register Not Zero

JDZ Jump If Double-Precision Register Zero

JN Jump If Register Negative

JNZ Jump If Register Not Zero

JP Jump If Register Positive

Jz Jump If Register Zero

Jz,3 ADDR The program jumps to the symbolic

address ADDR if register R3
contains zero. If register R3
does not contain zero, the next
instruction in sequence is
executed.

3.6.4 Double-Precision Instructions

Assembler mnemonics for the double-precision instructions are:

DADD Double Add

DAN
DER
DLD
DOR
DST

Double AND

Double Exclusive OR

Double Load
Double OR
Double Store

DSuUB Double Subtract

Examples

3.6.5 Immediate Instructions

DsST, 4 0200

DsT, O 0200

The contents of double-precision
register R4-R5 are stored at
the two consecutive memory
locations starting at address
0200.

Same as above except register
RO-R1 contents are stored.

Assembler mnemonics for the immediate instructions are:

3-18

ADlI Add Immediate

LDI

Load Immediate

INSTRUCTION SUMMARY

Example

ADI,S 0642 The immediate operand value
of 0642 is added to the contents
of register R5.

3.6.6 Register-To-Register Instructions

Assembler mnemonics for the register-to-register instructions are:
ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.
3.6.7 Single Register Instructions

Assembler mnemonics for the single register instructions are:

CcoMm Complement
DEC Decrement
INC Increment
Example
INC, 3 : The contents of register R3

are incremented by 1.

3-19

INSTRUCTION SUMMARY

Example

ADI,S 0642 The immediate operand value
of 0642 is added to the contents
of register RS5.

3.6.6 Register-To-Register Instructions

Assembler mnemonics for the register-to-register instructions are:
ADR Add Registers
SBR Subtract Registers
T Transfer Registers

Example

T,3,4 The contents of register R3
are transferred to register
R4.
3.6.7 Single Register Instructions

Assembler mnemonics for the single register instructions are:

COM Complement

DEC Decrement
INC Increment
Example
INC, 3 The contents of register R3

are incremented by 1.

3-19

SECTION 4
ASSEMBLER DIRECTIVES

Assembler directives are requests to the assembler to perform certain operations during
program assembly, just as machine instructions are used to request the computer to perform
operations during program execution.

Assembler directives are divided into the following functional groups:

* Symbol definition

* Instruction definition

» Location counter control
« Datadefinition

+ Memory reservation .
+ Conditional assembly

+ Assembler control

« Subroutine control

< Listand punch control

* Program linkage

¢« MOS /0 control

* VORTEX1/0 control

* Macro definition

Table 4-1 lists the assembler directives by function and shows which directives are recognized
by each assembler (DAS 8A and DAS MR).

Assembler directives have the same general format as the computer instructions. In the
following descriptions of the individual directives, the field format:

Label Operation Variable
is used, with the optional comment field being understood to follow the variable field when
used. In cases where the variable field contains more than one item or expression, these are

always separated by commas. Mandatory elements of the directive are in bold type, and
optional items, in italic type.

41

'ASSEMBLER DIRECTIVES

Table 4-1. Directives Recognized by DAS Assemblers

Function - Directive DAS 8A DAS MR
Symbol definition EQU Yes Yes
SET Yes Yes
MAX Yes No
MIN Yes No
Instruction deﬁnition OPSY Yes Yes
Location counter coﬁtrol ORG Yes Yes
LOC Yes Yes
BEGI Yes No
USE Yes No
Data definition DATA Yes Yes
PZE Yes Yes
MZE Yes Yes
FORM Yes Yes
Memory reservation BSS Yes Yes
BES Yes Yes
DUP Yes Yes
Conditional assembly IFT Yes Yes
IFF Yes Yes
GOTO Yes Yes
CONT Yes Yes
NULL Yes Yes
Assembler control MORE Yes No
END Yes Yes
Subroutine control ENTR Yes Yes
RETU* Yes Yes
CALL Yes Yes
List and punch control LIST Yes No
‘ NLIS Yes No
SMRY Yes Yes
DETL Yes Yes
PUNC Yes No
NPUN Yes No
SPAC Yes Yes
EJEC Yes Yes
Program linkage NAME Yes Yes
EXT Yes Yes
COMN Yes Yes

4.2

ASSEMBLER DIRECTIVES

‘Table 4-1. Directives Recognized by DAS Assemblers (continued)

Function Directive DAS 8A DAS MR

Macro definition MAC No Yes
EMAC No Yes

MOS 1/0 control. Applicable to DAS MR only; refer

to the MOS Reference Manual.

VORTEX 1/0 control Applicable to DAS MR only; refer
to the VORTEX | or VORTEX Il
Reference Manual.

VORTEX EXEC requests Applicable to DAS MR only; refer
to the VORTEX | or VORTEX Il
Reference Manual.

4.1 SYMBOL DEFINITION DIRECTIVES

Symbol definition directives are used to assign values, specified in_the variable field, to
symbols specified in the label field.

4.1.1 EQU Directive

The EQU directive assigns a value to a symbol. Once assigned by an EQU directive, the value
cannot be changed elsewhere in the program.

This directive has the following format:

Label Operation Variable
symbol EQU expression
where:
symbol is a symbol which must be present.
expression is any valid expression.

The assembler places the symbol in the symbol table and assigns it the value of the
expression. If the symbol has already been entered in the symbol table, DAS outputs an error
message, and the expression replaces the value in the symbol table. |f a symbol is used as the
variable field expression, it must have been previously defined.

Examples
AID EQU 076000 AlD is assigned the value 076000.
X EQU 1 X is assigned the value 1.

ASSEMBLER DIRECTIVES

B EQU 2+10/5 B is assigned the value 4.

ADDR EQU 0500 ADDR is assigned the (absolute)
value 0500.

ADRS EQU * ADRS is assigned the value

of the current location counter
(absolute or relocatable).

BAM EQU SAD-%*+1 BAM is assigned the expression
evaluation (absolute or relocatable).

NUM EQU 22 Double definition (*DD)--two
. equate statements with the same
label should not appear in the
. same program. |f they do, the
NUM EQU 14 symbol table will contain the
last value used.

4.1.2 SET Directive

The SET directive operates the same as EQU except that a symbol may be defined without
error.

This directive has the following format:

Label Operation Variable
symbol SET expression
where:
symbol is a symbol which must be present.
expression is any valid expression.
Examples
MOND SET 400 Assign value of 400 to MOND;
. for subsequent statements,
MOND has a value of 400.
MOND SET 500 Assign value of 500 to MOND;

for subsequent statements,
MOND has a value of 500.

4.1.3 MAX Directive (DAS 8A Only)

The MAX directive assigns the largest (maximum) algebraic value among a string of values to
a symbol.

4-4

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable

symbol MAX expression,expression(s)
where
symbol is a symbol which must be present
expression is any valid expression. The field may
contain multiple expressions, separated
by commas.

The assembler assigns the largest algebraic vaiue found among the expressions to the symbol.
If a symbol is used as a variable field expression, it must have been previously defined. The
value of the symbol may be redefined, if desired, via the SET directive.

Examples
MOST MAX 1,2,3,4,5 Assigns the value 5 to MOST.
SYM MAX HARRY, JOE, 3 Assigns to SYM the value of

the symbol HARRY, the value
of the symbol JOE, or 3,
depending on which has the
highest value. Both symbols
must have been previously
defined.

4.1.4 MIN Directive (DAS 8A Only)

The MIN directive assigns the smallest (minimum) algebraic value among a string of values to
a symbol. '

This directive has the following format:

Label Operation Variable
symbol MIN expression,expression(s)
where:
symbol is a symbol which must be present.
expression is any valid expression. The field may
contain multiple expressions, separated
by commas.

MIN is the same as MAX, except that the symbol is assigned the smallest algebraic value
found among the expressions.

4.5

ASSEMBLER DIRECTIVES

Examples
TRV MIN 50000 - Assigns the value 50000 to TRV.
IN EQU 10
10B EQU 2+10/2%6 _
MAPN MIN IN,10,10B Assigns the value 10 to MAPN

(note that both label IN and
constant 10 have this value).

4.2 INSTRUCTION DEFINITION DIRECTIVE

4.2.1 OPSY Directive

The OPSY directive allows the user to optionally define his own mnemonic names for
instructions.

This directive has the following format:

Label Operation Variable
symbol OPSY mnemonic
where:
symbol is a symbol which must be present.
mnemonic is any standard instruction mnemonic.

The assembler makes the symbol a mnemonic name with the same definition as the variable
field mnemonic.

Examples

CLA opsy LDA Define CLA as equivalent to
LDA 0300 LDA mnemonic; in subsequent
CLA 0300 program statements, CLA and
LDA may be used interchangeably
as the "Load A register”
instruction mnemonic.

J123 OPSY J1F,0700 Invalid--variable field must)
contain only a standard instruction
mnemonic.

4.3 LOCATION COUNTER CONTROL DIRECTIVES

Location counter control directives control the program location counter(s), which -control
memory area assignments and always point to the next available word.

DAS 8A Location Counter Control. DAS 8A recognizes directives to modify or preset the values
of any of its location counters (refer to table 2-1). In addition, up to eight other location -

4-6

ASSEMBLER DIRECTIVES

counters can be created, thus providing the possibility of constructing complex relocation and
overlay programs within a single assembly.

There are no user-created location counters at the beginning of an assembly. The assembler
uses three location counters for program location assignment. Thus, IAOR (indirect pointer
assignments) and LTOR (literal assignments) are always in used, as is a third counter used to
assign locations to generated instructions and data. The blank location counter performs this
task until the USE directive spécifies another counter.

In a straightforward program using only one location counter, the ORG and LOC directives
completely control the counter.

DAS MR Location Counter Control. DAS MR utilizes only one location counter. This location
counter normally has a relocation bias of zero. DAS MR is most commonly used with an
operating system and a relocating loader. Normally DAS MR programs are relocatable, and
therefore location counter control should not be used.

The ORG directive may be used in DAS MR to change the current location counter value
(relocatable or absolute). The LOC directive may be used in DAS MR for assembly of programs
that are to be moved under program control. Attempts to use ORG or LOC with DAS MR

programs to be run under the operating system should be done with care so as not to overlay
any system tasks.

4.3.1 ORG Directive
The ORG directive is used to specify the beginning location counter value.

This directive has the following format:

Label Operation Variable
symbol ORG expression
where:
symbol is an optional user symbol.
expression is an address expression.

The assembler sets the location counter currently in use to the value of the expression. If a
symbol is present in the label field, it is also set to the value of the expression (note that this
is the current location counter value also).

Any symbol used as the variable field expression must have been previously defined.

For DAS MR, the address origin defaults to relocatable zero if no ORG directive is given. For
DAS 8A, it defaults to absolute 04000 if no ORG directive is given.

4.7

ASSEMBLER DIRECTIVES

Example

The left-hand column below shows the value of the location counter at each program
statement when origined as shown.

Location
Counter
05000 ORG 05000 Origin at 05000.
05000 STRT LDA A
05001 ADD c
05002 SUB D
05003 JIMP AID
05004
05005 A DATA 5
05006 c DATA 4
05007 D DATA 3

AID EQU 076000

END

4.3.2 LOC Directive

The LOC directive is used to assemble a block of program code that is to be relocated during
program execution.

This directive has the following format:

Label Operation Variable
symbol LOC expression
where:
symbol is an optional user symbol.
expression is an address expression.

LOC is used if the data and instructions following this LOC address are to be moved to the
LOC address by the object program before executing the moved block, i.e., to keep a block of
data or instructions undisturbed by assembly. Data or instructions following LOC are
generated as if an ORG directive had changed the current location counter value. However,
this value is not actually changed.

The location counter used for coding the block is specified by the expression. If a symbol is
present in the label field, it is also set to the value of the expression.

Any symbol used as a variable field expression must have been previously defined. LOC
cannot be used in a relocatable program.

Example

The following program code illustrates the use of the LOC directive on the program counter
values, as shown in the left-hand column.

48

ASSEMBLER DIRECTIVES

Location
Counter Contents .
005000 URGL 03000 Origin at 03000.
003000 010001 A LDA 1 Instructions assembled
0035001 120002 ADD 2 from 03000..
0050ue 140003 Sudg 3
U0300s 001000 JMP o Last address must jump.
005004 OV3014 B
wusuos ENVA L pgy * ENDA = 03005.
000Suu 8 LoC 0500 Set assemble-origin at 0500.
U0USOL U0uuDl DATA 1 These data or instructions
QUUSUl uluyone UATA Z will be assembled for run-
UUuUS0e VoUUUs LATA 3 ning at location 0500. They
UOUSUS VU00uUY DATA 4 will be loaded into core at
Q0USUL 00U00S DATA 5 locations ENDA plus. You
V00505 00U00o DATA 6 must move them to location
) 0500 before running.
uouv5ue Qouuo’/ . DATA 7
TETIE ¢ URG ENUA+%=b
Uu3uld duuotlv VAT A a8 This is the next available
003V1s 000011 VDATA 9 location after program B.
eEND

4.3.3 BEGI Directive (DAS 8A Only)

The BEGI directive may be used in DAS 8A programs to define an initial value for any of the
location counters.

This directive has the following format:

Label Operation Variable
symbol BEGI expression
where:
symbol is COMN, IAOR, LTOR, or SYOR (see table 2-1);
or a user symbol to create a new location
counter.
expression is an address expression.

BEGI creates a new location counter, or redefines the value of any location counter before the
counter has been used. Up to eight user location counters may be created. BEGI gives the new
or redefined location counter the value of the expression, but has no effect on the current
location counter.

BEG! is used to define initial values only. It cannot redefine the value of any location counter
that has aiready been used for location assignment.

Any symbol used as a variable field expression must have been previpusly defined.

Examples

IAOR BEGI 050 Redefine standard counter IAOR
to begin at location 050.

4.9

ASSEMBLER DIRECTIVES

LTOR BEGI 075 Redefine standard counter
LTOR to begin at location
075.

UCNT BEGI 06500 Create a user location counter
called UCNT.

4.3.4 USE Directive (DAS 8A Only)
The USE directive activates a specified location counter.

This directive has the following format:

Label Operation Variable
(none) USE counter
where:
counter is a blank, COMN, or SYOR (see table 2-1);
PREV; or a user-created location counter
label.

The USE directive causes the assembler to switch to the current value of the indicated
location counter for assembly of subsequent source statements. If PREV is given, the
previously used location counter is recalled, with the restriction that only the last-used
counter can be so recalled.

Examples
USE COMN Switch to COMMON location counter.
USE Switch to standard location counter.
USE SYOR Switch to system location counter.
LDA* * (Loads a- system parameter.)
USE COMN
USE SYOR
USE PREV Switch back to COMN location

counter.

4.4 DATA DEFINITION DIRECTIVES

Data definition directives allow the user to create words of data as part of his source program.

4-10

ASSEMBLER DIRECTIVES

4.4.1 DATA Directive

The DATA directive generates one or more words of data that are output with the object
program code.

This directive has the following format:

Label Operation Variable
symbol DATA expression,expression(s)
where:
symbol if present, is assigned the value of
the current location counter.
expression is any valid expression.

DATA generates data words with the values specified by the expression(s) in the variable field.
DATA assigns the symbol, if used, to the memory address of the first generated word. In the
absence of a symbol, an unlabeled block of data is generated.

Examples

D DATA 5 Creates data word of value 5
and assigns the current location
counter value to the symbol D.

DATA FF Creates data word of the value
of symbol FF (absolute or
relocatable).

DATA 'coMMENT' Creates 4 data words of 2 ASCII
character bytes per word.

DATA D-5 Creates data word of the value
of the expression (absolute or
relocatable).

DATA 142 Creates data word of value 3.

DATA 1 Creates data word of value 1.

Figure 4-1 shows a source listing to illustrate the object code generated by the above data
expressions. The first column shows the location counter (beginning at relocatable zero), and
the second column shows the object code generated. Refer to section 5 for a detailed
description of the source listing.

4-11

ASSEMBLER DIRECTIVES

005000 1 ORG 05000

005000 000005 20 DATA 5,FF, "COMMENT!,DeS,142,1
005004 00501}
005002 141717
005003 146715
003004 142718
003005 152240
009006 004773
005007 000003
00%040 000001}
005014 017000

R A A D

3 FP LDA 0
4 END

Figure 4-1. Sample DATA Directive Usage

4.4.2 PZE Directive
The PZE directive can be used to generate positive-only data words.

This directive has the following format:

Label Operation Variable
symbol PZE expression,expression(s)
where:
symbol if present, is assigned the value of the
current location counter.
expression is any valid expression.

PZE is similar to DATA except that the sign bit of the generated data word is always forced to
zero (positive).

Examples
Figure 4-2 shows a source listing illustrating data words (in the second column) generated by

the PZE directive. Note that the sign bit (high-order bit) is ailways zero, contrasted to the
DATA directive generations.

4-12

ASSEMBLER DIRECTIVES

006000 1 ORG 06000 |
006000 177777 2 DATA i,=2,7,1AB',010661
006001 177776
006002 000007
006003 140702
006004 106612
006005 077777
006006 077776
006007 000007
006010 040702
006011 NOGG12

3 P2E wi,3,7,'A8',0106612

P b b 2B 2B JF b JF JF J

4 END

Figure 4-2. Sample PZE Directive Usage

4.4.3 MZE Directive

The MZE directive can be used to generate negative-only data words.

This directive has the following format:

Label Operation Variable
symbol MZE expression,expression(s)
where:
symbol if present, is assigned the current location
counter value.
expression is any valid expression.

MZE is similar to DATA except that the sign bit of the generated data word is always forced to
one (negative).

Examples

Figure 4-3 shows a source listing illustrating the use of MZE.

007000 { " OR6 0r000
007000 100001 A 2 M2E 1./2,06642
007001 100000 A '
007002 100002 A
007003 106612 A

3 END

Figure 4-3. Sample MZE Directive Usage

4-13

ASSEMBLER DIRECTIVES

4.4.4 FORM Directive

The FORM directive specifies the format of a bit configuration of a data word.

This directive has the following format:

Label Operation . Variable
symbol FORM term,term(s)
where:
symbol is a user symbol.
term is an absolute expression.

The symbol is the name of the format. The terms specify the length in bits of each field in the

generated data word, where the sum of their values is from one to the number of bits in the

computer word.

FORM is ignored if there are any errors in the variable field, except that an error is flagged
when a term cannot be represented in the number of bits specified when FORM is applied (by
placing its name in the operation field of a symbolic source statement) to another statement.

A FORM symbol can be redefined.
Examples

Figure 4-4 shows sample usage of the FORM directive.

a. Without error: Label
{ BYTE
2 Ach
3 PYAB
4 ABC
000000 014701 A 5
00000t 106612 A 8
b. With error: Label
00000n2 000005 A 4
xS 7
aS87
8

Operation Variable
FORM 8,8

FARM 4,4,4,4
FORM 1,2,3,4
FORM 6,2,8

ABC 2»x3,1,'A0
BYTE 0215,0212

Operation Variable
PTAR 2,4,5

END

Figure 4-4. Sample FORM Directive Usage

4.5 MEMORY RESERVATION DIRECTIVES

Memory reservation directives control the reservation of memory addresses and areas.

4-14

ASSEMBLER DIRECTIVES

4.5.1 BSS Directive

The BSS directive is used to reserve a block of memory locations for use by the program
during its execution.

This directive has the following format:

Label Operation Variable
symbol BSS expression
where:
symbol if present, is assigned the current location
counter value.
expression is an absolute expression.

BSS reserves a block of memory addresses by increasing the value of the current location
counter the amount indicated by the expression. The symbol, if used, is assigned the value of
the counter prior to such an increase, thus referencing the starting address of the reserved
block.

If the variable field expression value is zero, the symbol is assigned the next available address
(i.e., BSSO = BSS 1).

Examples

B BSS 050 Reserve a block of 050 words
and assign the beginning loca-
tion address to B. On completion,
the location counter will
be at B+050. The locations
can be accessed as B, B+1,
B+2,.., B+047.

MO BSS 1 These three statements reserve

MP BSS 1 3 words of storage, each

MQ BSS 1 separately labeled.

4.5.2 BES Directive

The BES directive, like BSS, is used to reserve a block of memory locations.

This directive has the following format:

Label Operation Variable
symbol BES , expression

where:

4-15

ASSEMBLER DIRECTIVES

symbol if present, is assigned the current location
counter value.

expression = is an absolute expression.

The BES directive is similar to BSS, except that if there is a symbol it is assigned to the
address one less than the incremented location counter.

If the variable field expression is zero, the symbol is assigned the last address used (i.e., BES
0 has no effect).

Example

B BES 050 Same as BSS above, except that
the label B is assigned a
value of the end of the
block. Thus, the locations
can be accessed as B-1, B-2,
B-3,..., B-047.

4.5.3 DUP Directive
The DUP directive can be used to duplicate source statements input only once.

This directive has the following format:

Label Operation Variable
symbol DUP nm
where:
symbol if present, is assigned the current location
counter value.
n is a constant that specifies the duplication
count.
m if present, is a constant that specifies

the source statement count for duplication.
If omitted, it defaults to one.

DUP duplicates source statements that follow the DUP directive. An n-only format duplicates
the next source statement the number of times specified by n. An n,m format duplicates the
next 1, 2, or 3 source statements (the number of which is specified by m) the number of times
specified by n, which m< 3 and n< 32,767. If n or m is zero, it is treated as if it were a one.

A DUP statement may not appear within the range of another DUP statement. The

statement(s) being duplicated should not contain any labels, as the labels will be duplicated
also and a "’double definition” (*DD) diagnostic will result.

4-16

ASSEMBLER DIRECTIVES

Examples

B DuUpP 3 Duplicate the next statement
ADD 3 (the ADD instruction) three

c EQU * times.

B DUP 2,2 Duplicate the next 2 statements
ADD 3 (the ADD instructions) two
ADD [times.

c EQU *

Complete source listings for these two examples are shown in figure 4-5. Note the
duplications.

Example 1
V04000 1 ORG 04000
004000 A 2 A EQU *
38 pup 3
004000 120003 A 4 ADD 3
004001 120003 A 4 ADD 3
004002 120003 A 4 ADD 3
004003 A 3¢C EQU L]
6 END
Example 2
000000 R 1 A Equ L
' 2 B oup 2,2
000000 120003 A 3 ADD 3
000001 120004 A 4 ADD 4
000002 120003 A 3 ADD 3
000003 120004 A 4 ADD 4
000004 R 5 C EQU "
6 END

Figure 4.5, Sample DUP Directiye Usage

4.6 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives assemble portions of the program according to the conditions
specified in the variable fields.

4.6.1 IFT Directive
The IFT directive assembles the next source statement if the specified relationships are true.

This directive has the following format:

Label Operation Variable

(none) IFT expression,expression(s)
4-17

ASSEMBLER DIRECTIVES

where:
expression is an absolute expression

IFT assembles the next source statement only if the first expression is less than the second,
and the second is less than or equal to the third, i.e.:

IFT a for a= O
IFT a,b fora= b
IFT ab,b fora< b
IFT 0,a,b for 0< a< b

IFT examples are given in section 4.6.5.

4.6.2 IFF Directive
The IFF directive assembles the next source statement if the specified relationships are false.

This directive has the following format:

Label Operation Variable
(none) IFF expression,expression(s)
where:
expression is an absolute expression

{FF is similar to IFT (IFT = true) except that IFF (IFF = false) is the logical compiement of
IFT, i.e.:

IFF a fora = 0
IFF a,b fora = b
IFF a,b,b foraz b
IFF 0,a,b for 0= a> b

IFF examples are given in section 4.6.5.

4.6.3 GOTO Directive
The GOTO directive can be used to skip assembly of a b‘lock of source statements.

This directive has the following format:

4-18

ASSEMBLER DIRECTIVES

Label Operation Variable
symbol
symbol,

(none) GOTO integer
integer,

where:
symbol is a user symbol

integer is any integer

a comma following the variable field
entry is used to control output listing.

GOTO usually follows an IFF or IFT directive. All source statements between the GOTO and the
statement containing the symbol/integer in its label field are skipped, and the instruction so
labeled is assembled next. GOTO camot return to an earlier point in the program. '
If the first and third GOTO formats are used, the skipped instructions are listed. If the second
and fourth formats (containing a comma after the variable field element) are used, they are
not listed. This listing can also be suppressed by a SMRY directive (section 4.9.3).

GOTO examples are given in section 4.6.5.

4.6.4 CONT Directive
The CONT directive may be used in conjunction with GOTO as the destination statement.

This directive has the following format:

Label Operation Variable
symbol}
integer CONT (none)
where:
symbol is a user symbol
integer is any integer

CONT provides a target for a previous GOTO directive. The symbol/constant is not entered in
the assembler’s symbol table.

CONT examples are given in section 4.6.5.

4.6.5 NULL Directive

The NULL directive may be used in conjunction with GOTO as the destination statement.

4-19

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
symbol NULL (none)

NULL provides a target for a previous GOTO directive with the symbol entered in the symbol
table. NULL has the same effect as a BSS directive with a blank variable field.

Examples

The sample program in figure 4-6 illustrates use of the conditional assembly directives.

000022 A { NBIT EQU 18
, 2 Y NAITni6
3 GoYo YyYy 18 BIYS
4 »
S5 & 16 BIY INSTRUCTIONS
6 IFF NBITel8
, 7 60Y0 123 16 BITS
000000 005000 A 8 YYY NOP
9 @
10 » 18 BYY INSTRUCTIONS
14
000001 12 123 NULL ENTER INTO SYMBOL TABLE
13 345 CONY IGNORE SYMBOL
14 END

Figure 4-6. Sample Conditional Assembly Directives Usage

4.7 ASSEMBLER CONTROL DIRECTIVES

Assembler control directives signal the end or continuance of an assembly.

4.7.1 MORE Directive (DAS 8A Only)

The MORE directive is used in DAS 8A assembly when the input medium does not hold all of
the source statements at one time.

This directive has the following format:
Label Operation Variable
(none) MORE (none)

MORE halts the assembly process to allow additional source statements to be put in the input
device. Assembly resumes when the RUN or START switch on the computer control panel is
pressed. MORE is never listed.

4-20

ASSEMBLER DIRECTIVES

4.7.2 END Directive
The END directive signals the end of the source program.

This directive has the following format:

Label Operation Variable
(none) END expression
where:
expression is an address expression

END is the last source statement in the program. The expression is the execution address of
the program after it has been loaded into the computer. A blank in the variable field yields an
execution address of zero.

4.8 SUBROUTINE CONTROL DIRECTIVES

Subroutine control directives create closed subroutines (i.e., internal to the main program)
and control their use.

4.8.1 ENTR Directive
The ENTR directive is the first statement in a closed subroutine.

This directive has the following format:

Label Operation Variable
symbol ENTR (none)
where:
symbol is a user symbol which must be present.

The symbol is used as the name of the subroutine when called. ENTR generates a linkage
word of zero in the object program.

Example

The following program listing illustrates use of the ENTR directive as the first statement of a
closed _subroutine.

000002 000000 A 2 TYYW ENTR

000003 101163 A 3 SEN 0101, wed
000004 000007 R
000005 001000 A 4 IMP "2

000008 000003 R

4.21

ASSEMBLER DIRECTIVES

4.8.2 RETU* Directive
The RETU* directive can be used to return from a closed subroutine.

This directive has the following format:

Label Operation Variable
symbol RETU* expression
where:
symbol if present, is assigned the current location
counter value.
expression is an address expression

RETU* returns from a closed subroutine, generating an unconditional indirect jump to the
address indicated by the value of the expression.

Example

The following program listing illustrates use of the RETU* directive to return from a closed
subroutine.

000007 0085000 A s NOP

000010 001000 A 6 RETU» TYYW
000011 100002 R
? END

4.8.3 CALL Directive
The CALL directive is used to call closed subroutines.

This directive has the following format:

Label Operation Variable
symbol CALL name,parameter(s),error(s)
where:
symbol if present, is assigned the current location
counter value.
name is the symbolic name of the subroutine

being called.

parameters(s) if present, are one or more data parameters
being passed to the subroutine, separated
by commas.

4.22

error(s)

ASSEMBLER DIRECTIVES

if present, are one or more address
expressions, separated by commas, that
are to be used by the closed subroutine.

CALL causes the program to jump and mark to the closed subroutine specified by name. The
parameter list, if present, is available to the subroutine. The error return list, if present,

provides the possibi

statement.

Examples

lity of returning to locations other than the statement following the CALL

The sample program calls in figure 4-7 illustrate use of the CALL directive.

Example 1

000000
000001

Example 2

004000
004000

004001
0040082

004003
004004
004005
004006
004007
004040

0040114
004042
004013
00401 4

002000
000002

000000

001000
104000

002000
004000
0040114
004013
004043
104014

0000083
000006
000747
000727

 »

> rrer> » >

>»>r>

1 CALL TTYMW

1 ORG 04000

2 FuUNC ENTR

I »

4 » FUNC WILL MAVE ADDRESS QF PARAMETER X
8 w WHEN CALLING THIS SUBROUTINE,

g »

7 REYU» FUNC

8 a

8 »
10 =
11 CALL FUNC,X,Y+1, (ERR), (GDOF) »
12 » '
13 » MAIN BODY OF PROGRAM

14 »
15 X DAYTA L

18 v DATA 8

17 ERR DATA 0747
18 GOOF DATA or27
19 END

Figure 4-7. Sample CALL Directive Usage

4.23

'ASSEMBLER DIRECTIVES

4.9 LIST AND PUNCH CONTROL DIRECTIVES

List and punch control directives control listing and punching during program assembly. They
are operative only during the second pass of the assembler, when the object program and
listings are produced.

4.9.1 LIST Directive

The LIST directive is used to resume generating a source listing after a list-inhibiting directive
has been given.

This directive has the following format:

Label Operation Variable

(none) LIST (none)
LIST causes the assembler to start or resume output of a source program listing. The
assembler normally outputs a list of the source statements. The LIST directive is used to bring

the assembler back to this condition when the NLIS directive (section 4.9.2) has been issued
to change the listing status. '

4.9.2 NLIS Directive
The NLIS directive is used to inhibit the program listing.

This directive has the following format:

Label Operation Variable
(none) NLIS (none)

NLIS suppresses further listing of the program.

4.9.3 SMRY Directive

The SMRY directive may be used to inhibit listing of conditionally-skipped source statements.
This directive has the following format:

Label Operation Variable
(none) SMRY (none)

SMRY suppresses the listing of source statements that have been skipped under control of the
conditional assembly directives.

4.9.4 DETL Directive

The DETL directive is used to cancel the effect of the SMRY directive.

4-24

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
(none) DETL (none)

DETL removes the effect of SMRY, i.e., causes listing of all source statements, including those
skipped by conditional assembly directives.

4.9.5 PUNC Directive (DAS 8A Only)
The PUNC directive is used in DAS 8A programs to cancel the effect of the NPUN directive.

This directive has the following format:

Label Operation Variable
(none) PUNC (none)

PUNC causes the assembler to produce a paper tape punched with the object program. The

assembler normally outputs such a tape. PUNC returns the assembler to this condition when
the NPUN directive (section 4.9.6) changes the punching status.

4.9.6 NPUN Directive (DAS 8A Only)

The NPUN directive may be used to inhibit further punching of the object program to paper
tape. '

This directive has the following format:

Label Operation Variable
(none) NPUN (none)

NPUN suppresses further production of paper tape punched with the object program.

4.9.7 SPAC Directive
The SPAC directive can be used to insert blank lines in the source listing.

This directive has the following format:

Label Operation Variable
(none) SPAC {(none)

SPAC causes the listing device to skip a line. The SPAC directive itself is not listed.

4.9.8 EJEC Directive

The EJEC directive causes a page eject.

.4.25

ASSEMBLER DIRECTIVES

This directive has the following format:

Label Operation Variable
(none) EJEC (none)

EJEC causes the listing device to move to the next top of form. The EJEC directive itself is not
listed.
4.10 PROGRAM LINKAGE DIRECTIVES

Program linkage directives establish and control links among programs that have been
assembled separately but are to be loaded and executed together.

4.10.1 NAME Directive

The NAME directive establishes I'inkage definition points among separately assembled
programs. - -

This directive has the following format:

Label Operation Variable
(none) NAME symbol,symbol(s)
where:
symbol is ahy symbolic expression

With the NAME directive, each symbol can then be referenced by other programs. Each
symbol also appears in the label field of a symbolic source statement in the body of the
program to give it a value. Undefined NAME symbols cause error messages to be output.

Examples

NAME A Provide value of symbol A to
other programs.

NAME A,B Provide values of symbols A
and B to other programs.

NAME EX,WHY, ZEE Provide values of symbols
EX, WHY, and ZEE to other
programs.

4.10.2 EXT Directive

The EXT directive allows separately assembled programs to obtain the values of symbols
defined in other program NAME directives.

This directive has the following format:

4-26

ASSEMBLER DIRECTIVES

Label Operation Variable

label EXT symbol(s)
where:
symbol is a value to be obtaired from other
programs.

In linking separately assembled programs, EXT declares each symbol not defined within the
current program. Each symbol, in both the label and variable fields, is output to the
relocatable loader with the address of the last reference to the symbol for the loader to supply
the value to the program when the value is known.

If a symbol is not defined within the current program and is not declared in an EXT directive,
it is considered undefined and causes an error message output. If a symbol is declared in EXT
but not referenced within the current program, it is output to the loader for loading, but no
linkage to this program is established. If a symbol is both defined in the program and
declared to be external, the EXT declaration is ignored.

Examples
EXT AY Declare AY to be external.

BEG EXT BE, SEE Declare BE and SEE to be external;
the value of BEG is passed
to the loader.

EXT DEE,EE,FF,GEE Declare the indicated symbols
to be external. :
4.10.3 COMN Directive

The COMN directive defines an area in blank common for use at execution time.

This directive has the following format:

Label Operation Variable

symbol COMN expression
~ where:
symbol if present, is assigned the current location
counter value
expression is an absolute expression

COMN allows an assembler program to reference the same blank common area as a
FORTRAN program. The common area is cumuiative for each use of COMN, i.e., the first
COMN defines the base area of the blank common, the second COMN defines an area to be
added to the already established base, etc.

427

ASSEMBLER DIRECTIVES

Examples

AAA COMN 3 Allocate 3 words of common, the
first word addressable by AAA.

COMN 6%2 Allocate’ 12 words of common; if
following the above statement,
this would be the fourth through
sixteenth common locations.

BBB COMN 9 Allocate 9 words of common, the
first word addressable by BBB;
if following the above 2 state-
ments, this would-be the
seventeenth through twenty-fifth
locations of common.

4.11 MACRO DEFINITION DIRECTIVES (DAS MR ONLY)

The V70 series macro language is an extension of the V70 assembler language. It provides a
convenient way to generate a desired sequence of assembly language statements many
times in one or more programs. The macro definition is written only once, and asingle macro
call statement used each time a programmer wants to generate the desired sequence of
statements. This method simplifies the coding of programs, reduces the chance of
programming errors, and ensures that standard sequences of statements are used to
accomplish desired functions.

Every defined macro is associated with a four- or six-character symbolic name. The defined
macro is called when this name appears in the operation field of an assembler source
statement.

A Macro Definition is a set of statements that provides the assembler with the symbolic name
of the macro and the sequence of statements that is to be generated when the macro is
called. Macro definitions start with the MAC directive and are ended with the EMAC directive.

The macro is the assembly equivalent of the execution subroutine. It is defined once and can
then be "called”” from the program. The macro is an algorithmic statement of a process that
can vary according to the arguments supplied. It is assembled with the resultant data
inserted into the program at each point of reference, whereas the subroutine executed during
execution time appears but once in a program,

4.11.1 MAC Directive (DAS MR Only)

The MAC directive is used to mark the beginning of a macro definition and specify the name
of the macro. ‘

This directive has the following format:

Label Operation Variable
symbol MAC (none)

4-28

. ASSEMBLER DIRECTIVES

MAC introduces a macro definition. The symbol is the name of the macro.

The use of the MAC directive is shown in the program example given in section 4.11.3.

4.11.2 EMAC Directive (DAS MR Only)
The EMAC directive is used to signal the end of a macro.

This directive has the following format:

Label Operation Variable
(none) EMAC (none)

EMAC terminates the definition of a macro.

The use of the EMAC directive is shown in the program example given in section 4.11.3.

4.11.3 Macro Calis

A Macro Call statement is a source program statement with the symbolic name of a defined
macro written in the operation field. The assembler generates a sequence of assembly
language statements for each occurrence of the same macro call statement. The generated
statements are then processed like any other assembly langauge statement.

A macro is called by the appearance of its name in the operation field of a source statement.
The variable field of this statement contains expression(s) P(1), P(2).,,,P(n), which are then
processed with the values in the table being substituted for the respective values of the
expressions in the source statement variable field. For example, if the variable field of the
symbolic source statement contains:

2,B9+8,=63
then within the generated macro P(1) =2, P(2) =the value of B, P(3)=17, and P(4) is the
address of the value 63. All terms and expressions within the macro-referencing symbollc
- source statement parameter list are evaluated prior to calling the macro.
If the label field of such a source statement contains a symbol, the symbol is assigned the

value and relocatability of the location counter at the time the macro is called but before data
generation.

A macro definition can contain references to machine instruction mnemonics or to assembler
directives other than DUP. Macros can be nested within macros to a depth limited only by the
available memory at assembly time.

Figure 4-8 illustrates the use of macros.

4.29

ASSEMBLER DIRECTIVES

{1 SENSE MAC ,
2 SEN PC1),ned \ Macro
3 JMp T | Definition
4 EMAL ‘
5 SENSE 020! — Macro Call
000000 101204 A
000001 000004 R Macro_
000002 001000 A Expansion
000003 000000 R
000004 102501 A 8 CIA 01
? SENSE 0104
000008 101104 A ‘
0000068 000014 R
- 000007 001000 A
000010 000005 R :
000041 103101 A 8 CAR 01
] END

Figure 4-8. Sample Macro Usage

P(0) can also be accessed by a normal call. P(0) is the first entry in the table formed by the
assembler and contains the number of entries in that table. Figure 4-9 shows the output
listing obtained by calling P(0).

1 A MAC
2 DATA P(0)
3 EMAC
000001 000000A 4 A
000002 000001A 5 A 1
000003 000002A 6 A 1,2
000004 000003A 7 A 1,2,3
000005 000004A 8 A 1,2,3,4
000006 000005A 9 A 1,2,3,4,5
10 - END

Figure 4-9. Output Listing Obtained by Calling P(0)

4-30

SECTION 5
OPERATING THE ASSEMBLER

DAS MR and DAS 8A are two-pass assemblers that may be scheduled by job central
directives. Assembler processing during the two passes is described in section 5.1.
Operation of DAS MR under VORTEX I/VORTEX Il is described in section 5.2, followed by
operation descriptions of DAS MR under MOS, as stand-alone, and of DAS 8A (also stand-
alone).

5.1 ASSEMBLER PROCESSING

This section describes the general features of DAS assembler processing. Specific operating
procedures and output listing examples for various DAS/operating system combinations are
given in section 5.2.

5.1.1 Assembler Input Media

The source prog?am may be input to the assembler on punched cards, paper tape, or any
other source input medium. Details regarding source statement field placement are given
below.

Fixad Format. Fixed format, normally used with punched cards, used as input to the DAS
assemblers contains four fields corresponding to the instruction and directive fields:

a. The label field is in columns 1 through 6. Its use is governed by the requirements of the
instruction or directive.

b. The operation field is in columns 8 through 14. It contains the instruction or directive
mnemonic. Indirect addressing is specified by an asterisk following the mnemonic.

¢. The variable field begins in column 16 and ends with the first blank that is not part of a
character string. Its use depends on the instruction or directive. If two or more subfields
are present, they are separated by commas.

d. The comment field fills the remainder of the card. If the variable field is blank, the
comment field begins in column 17.

An asterisk in column 1 indicates that the entire card contains a comment.

The fixed format is shown in figure 5-1. Note that columns 7 and 15 are always unpunched
_(blank).

Free Format. Free format (normally used with paper tape) used as input to the DAS
assemblers contains source statements of up to 80 characters each (not incuding the carriage
return and line feed characters). Each punched statement contains four fields corresponding
to the instruction and directive fields. The label, operation and variable fields are separated
by commas, and the comment field starts after the first variable field blank that is not part of

5-1

2§

Arewwing juawiadeld pidld ‘1-G a4ndig4

A. FIXED FORMAT (STANDARD COLUMNS)

LABEL OPERATION VARIABLE COMMENT* IDENTIFICATION
1 6 8 14 16 28 30 7273 80

B. FIXED FORMAT (MINIMUM SPACING)

LABEL OPERATION VARIABLE COMMENT

(7 spaces or less !
LABEL OPERATION COMMENT

(8 spaces or more)

C. FREE FORMAT (COMMAS FOR SEPARATORS)
LABEL ,OPERATION ,VARIABLE COMMENT*

,OPERATION ,COMMENT FORMAT FOR NO LABEL OR VARIABLE FIELD.

* The comment can start anywhere after a blank following the
variable field.

YITGIN3SSY 3HL ONILYYIdO

OPERATING THE ASSEMBLER

a character string. Each statement is terminated by a carriage return (CR) followed by a line
feed (LF). -

The four fields used when free format input to the DAS assembler is selected are:

a. Label field use is governed by the requirements of the instruction or directive. It is
terminated with a comma. If this field is not used, a comma appears as the first
character of the source statement.

b. The operation field contains the instruction or directive mnemonic. An asterisk following
the mnemonic specifies indirect addressing. This field begins immediately following the
label field terminator and is terminated by a comma.

c. Thevariable field can be blank, or contain one or more subfields separated by commas. It
must immediately follow ¢he instruction field terminator (,). Subfields can be voided by
using adjacent commas. This field is terminated by a blank that is not part of a
character string, or with a CR or LF.

d. The comment field fills the remainder of the statement (from the terminating blank of the
variable field to the next CR or LF).

If the first nonblank character of a source statement is an asterisk, the entire statement is a
comment.

The free format where commas are used as separators is shown in figure 5-1. Note that any
source input may use either free or fixed format.

5.1.2 Pass 1 - Symbol Table

During pass 1, the DAS assembler reads the source program and constructs a symbol table of
all symbols appearing in the source program. For each symbol in the table, there is a
corresponding value, usually an address in memory. Symbol table capacities are summarized
in table 5-1.

Table 5-1. DAS Symbol Table Capacities

Assembler 8K Memory Greater than 8K Memory
DAS 8A 440 440 + n (800)

DAS MR 20 20 + n (800)

where n = number of 4K memory increments
above 8K.

5-3

OPERATING THE ASSEMBLER

5.1.3 Pass 2 - Assembler Output

DAS produces a source/object listing of the assembled progkam, as well as an object program
in reloadable format. The object program may be output to any BO device supported by the
operating system.

The listing can be obtained in whole or in part as the program is being assembled. The source
(symbolic) program and the object (absolute) program are listed side by side on the listing
device. This device can be any LO device supported by the operating system.

The listing is output according to the specifications given by the list and punch control
directives in the assembly (DAS 8A, DAS MR). '

Error analysis during assembly causes error messages (section 5.1.4) to be output on the line
following the point of detection.

Figure 5-2 illustrates the format of the output listing. The columns are further described
below:

Address This column shows the current location
counter value in octal. It is incre-
mented for each word of object code.

Code Most entries in this column are words
of object code (in octal). The values
of symbols assigned via symbol definition
directives (EQU, SET, etc.) are also
shown in this column but are not part
of the object code.

Mode An indication of the addressing mode,
as follows:

A Absolute value

C Common

E Externally defined

| Indirect Pointer

L Literal Pointer

R Relative address value
Line Count The assembler assigns a unique ascending
(DAS MR only) integer number to each non-blank input

statement in order of sequence in the
input source deck, starting with 1. This
statement number is listed in the fourth
column, and is used to cross reference
error messages to the statements which
caused the errors. Statements generated
by macro expansions are not assigned

a statement number. All statements
generated by a DUP directive have the
same line number.

5.4

Symbolic Source Reproduces the source statements as

Statement input, with additional lines showing
: directive-duplicated statements and

macro expansion space.

'OPERATING THE ASSEMBLER

Line Symbolic

Address Code Mode Count Source Statement
014000 1 ORG 014000
014000 000000 2 ABS ENTR
014001 001002 R 3 JAP* ABS
014002 114000
014003 005211 4 CPA
014004 001000 5 JMP* ABS
014005 114000 R

000000 6 END

5.1.4 Error Messages

Figure 5-2. Output Listing Format

The assembler checks source statement syntax during both pass 1 and 2. Detectable errors

are listed during pass 2.

The error message appears in the listing line following the statement found to be in error.
Each line can hold up to four error messages.

The DAS error codes and their meanings are listed in table 5-2.

Table 5-2. DAS Error Codes

Code

Meaning

*AD

*DC

*DD

*E

*EX

*FA

*IL

Error in an address expression
Decimal character in an octal constant

lllegal redefinition of a symbol or the
location counter

Incorrectly formed statement
lllegally constructed expression

Floating-point number contains a format
error

First nonblank character of a source
statement is invalid (the statement
is not processed)

5.5

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

*MA Inconsistent use of indexing and
indirect addressing

*MQ Missing right quotation mark in '
character string

*NR No memory space available for additional
entries in assembler tables

*NS No symbol in the label field of a SET,
EQU, MAC, or FORM directive or no
symbol in the label or variable field of
an OPSY directive, or no symbol in the
variable field of a NAME directive.

*OP Undefined operation field (two No
Operation (NOP) instructions are
generated in the object program; the
remainder of the statement is not
processed), or illegal nesting of

DUP or MAC directives or DUP of a

macro call
*QQ lllegal use of prime (')
*R Relocatable item where an absolute

item should be defined

*SE Synchronization error: symbol value
in pass 2 is different from that
found in pass 1

*SY Undefined symbol in an expression

*SZ7 Expression value too large for a

~subfield, or a DUP directive specifies
that more than three statements are to
be assembled (m parameter)

*TF Undefined or illegal indexing specification

*UcC Undefined character in an arithmetic
expression

*UD Undefined symbol in the variable

field of a USE directive

56

OPERATING THE ASSEMBLER

Table 5-2. DAS Error Codes (continued)

Code Meaning

*VF Instruction contains variable subfields
either missing or inconsistent with
the instruction type

*XR Address out of range for an indexing
specification

* = Invalid use of literal

* Implicit indirect reference when |
parameter is present on the /DASMR
directive.

5.2 ASSEMBLER OPERATING PROCEDURES

Since DAS MR operates under MOS or VORTEX and uses the MOS or VORTEX 1/0 control
system, the /0 devices can be defined as required.

DAS MR uses the secondary storage device unit for pass 1 output. It inputs the symbolic
source statements from the processor input (Pl) logical unit in aiphanumeric mode, and
outputs them in the same mode on the processor output (PO) logical unit. When DAS MR
detects the END directive, it terminates pass 1, returns to the beginning of the source
program, and begins pass 2. During pass 2, the source statements are the input from the
system scratch (SS) logical unit, a listing is output on the LO unit, and the binary object
program is output on the BO unit.

Sections 5.2.1, 5.2.2, and 5.2.3 describe DAS MR operations in different environments. DAS
8A operation is described in section 5.2.4.

5.2.1 DAS MR Operation (VORTEX I/VORTEX II)

The /DASMR directive schedules the DAS MR assembler with the specified options for
background operation on priority level 1. It has the general form: .

/DASMR,p(1),p(2)...,p(n)
where:
each p(n) if any, is a single character
- specifying one of the options
shown in table 5-3. The /DASMR

directive can contain up to six
such parameters in any order.

5-7

OPERATING THE ASSEMBLER

Table 5-3. DAS MR Options for Background Operation

Parameter Presence Absence

B Suppresses binary object Output binary object

L Outputs binary object on GO Suppresses output of binary
file object on GO file

M Suppresses symbol-table listing Output symbol-table listing

N Suppresses source listing Outputs source listing

E Assembles multiple register Flags multiple register
instructions instructions with '*OP error’.

| Flags implicit indirect Assembles implicit indirect
instructions with "*1l error’. instructions.

The DAS MR assembler reads source records from the VORTEX Pl logical unit on the first
pass. The Pl unit must be set to the beginning of the source file before the /DASMR directive
is executed. This can be done with an /ASSIGN, /SFILE, /REW, or /PFILE directives. Aload-
and-go operation requires, in addition, an /EXEC directive. Details of the preceding’
directives are given in the V70 VORTEX | or VORTEX |l Operating System Reference Manual.

Shown below is an example for scheduling the DAS MR with no source listing but with the
binary object output on the VORTEX logical unit GO file:

" /JOB, EXAMPLE
/DASMR,N,L,B

/JOB (as well as/ENDJOB or /FINI) initializes the GO file to start of file. If BO is assigned to
a rotating memory partition, a /PFILE,BO,,BO must precede the /DASMR directive to initial-
ize the file (unless the assembly is part of a stacked job).

DAS MR uses the secondary storage device unit for pass 1 output. It reads a source module
from the PI logical unit and outputs it on the PO unit. The source input for pass 2 is entered
from the SS logical unit.

When an END statement is encountered, the SS unit is repositioned and reread. During pass
2, the output can be directed to the BO and/or GO units for the object module and the LO
unit for the assembly listing. The SS or PO file, which contains a copy of the source module,
can be used as input to a subsequent assembly.

DAS MR has a symbol-table area for 175 symbols at five words per symbol. To increase this
area, input before the /DASMR directive a /MEM directive where each 512-word block
enlarges the capacity of the table by 100 symbols.

5-8

OPERATING THE ASSEMBLER

A VORTEX Il physical record on an RMD is 120 words. Source records on RMD are blocked
three 40-word records per VORTEX Il physical record, and object modules on RMD are
blocked two 60-word modules per record. However, in the case where SI = Pl = RMD,
records are not blocked but assumed to be one per VORTEX Il physical record. When an input
file contains more than one source module each new source module must start at a physical
record boundary. Unused portions of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may be ensured by following the END
statement of the previous source module with two biank records.

Figure 5-3 shows the listing output resulting from assembling and executing a sample DAS
MR program under VORTEX II.

13126143 /J0OB,SWITCH.
131263549 /KPMODE,O
133526382 /JDASMR,L,B

Figure 5-3. Example' of Assembled and Executed DAS MR Program
Under VORTEX Control

5-9

PAGE { 08-{6e76 SWITCH VORTEX DASMR 1326 WOURS

0000185 010004
000016 000000
000017 000000
000020 000000

(]
4 NAME SWITCH
000000 R 2 SWITCH EQU *
3 EXT PIFCB,LOFCB
= 000001 A 4 X EQU $
s 000002 A L EQU 2
o 000024 A 6 COUNT EQU 20 SWITCH COUNY
& 000050 A 7 RECL EQU COUNT4COUNT RECORD LENGTH (IN WORDS)
cm 000004 A 8 PI1 EQu 4 - PROCESSOR INPUT
33 000005 A 9 L0 EQU 5 LISTING OUTPUY
T3 000000 A 10 WAIT EOU 0 WAIT FOR 10
s°® 000008 A §1 NOWAIT EOU { IMMEDIATE RETURN
22 000004 A 12 ASCIl EQU !
mZ 000000 R 13 START EQU .
5 5 14 IOLINK PI,BUFF,RECL
g2 000000 008505 A
$ 2 000004 000000 E
~ o 000002 001404 A
g 2 000003 000078 R
2 [000004 000050 A
2 3 19 JOLINK L 0,CENTRL,RECL+1
8 F 000008 006505 A
S 000008 000001 E
S 000007 001405 A
® 000010 000074 R
S 000011 000084 A
2 16 READ READ PIFCB,PI,WATTY,ASCII
S 000012 008503 A
s 000013 000000 E
3 000014 100000 A
| A
L
A
A

{7 READCR 8TAY READEND,END,END,READCR

4I1GNISSY ‘FHL INILVYIAO

116

(panunuod) [043u0Y XILHOA 4opun

weiSoid YN SYQA PeINdex3 pue pajquiassy jo Ijdwexy ‘-G aunSiy

000021
000028
000023
000024
000025
000026
000027
000030

PAGE
0000314

000032
000033
000034
000038
000036
000057
000040
0000414
000042
000043

000044

000048
000046
000047
000050

00005
000032
000053
000054

1000055
000086

006505
000000
000012
000071
000074
0000714
000024
006030

>V VBB M>

18

2 08x16e76 SWITCH

000024
000032
006018
000074
004230
005244
006028
000146
006055
000446

004030

005244
006063

000074

008344
0010486
000032

006505

000013
100000

010408

000000
000000

>Mm» »m>» B PP RPR>I>PPI>PT>

19 DoI17Y
20

21
22
23
24

23
26
27

28
29

30 WRITE WRITE

Lox1

EQU
LDAE

COUNY
VORTEX DASMR 1326 HOURS
]
BUFFei,X GET A MWORD
8 SWITCH BYYES

LRLA
cPx
LDBE

STAE
LRLE
crx

SYBE

DXR
JXN2

INVERY POINTER
BUFF+RECL+1,X GET INVERSE WORD

BUFFeRECL#1,X SAVE ORIGINAL SWIYCHED WORD

8 SWITCH BYTES OF INVERSE WORD
RESTORE PDINTER

BUFFe1,X SAVE INVERTED INVERSE WORD
COUNY DOWN

001T REPEAT IF MORE

LOFCB,L0,WATT,ASCIT

43T8N3SSY FHL INILYY3IdO

AR

(panunuod) (044u0) XILYOA 48pun

weiSoid YN SYA P3ndex3y pue pajquiassy jo ajdwex3 "g-g aindig

»

000087 000000
0000680 006305
000061 000022
000062 000051
000063 000071
000064 000074
000068 000074
000066 000060
000087 601000
000070 000012

0000714 006303
000072 000006
000073 000200

32 JMP READ READ SOME MORE
33 END EXIT

a » > »> BrBBVODTM>

000074 120240 34 CNTRL DATA 1 PRINT CONTROL
000075 35 BUFF BSS RECL

000000 38 END START
PAGE 3 08w16a76 SWITCH VORTEX DASMR 1326 WOURS

ENTRY NAMES

000000 R SWITEN

EXTERNAL NAMES

000085 E LOFCE 000018 E PIFCB 000072 E VSEXEC 000082 E vSiOC
000061 € VSIOST

SYMBOLS

000001 A ASCI? 000002 A B 000078 R BUFF 000060 R BUSY
000074 R CNTRL, 000024 A COUNT 000032 R DOIT 000074 R END
000005 A LO 000053 E LOFCB 000004 A NOWAIT 000004 A P!
000046 F PIFCB 000012 R READ 000021 R READCR 000050 A RECL
000000 R START 000000 R SWITCH 000072 E VSEXEC 000052 E VSIOC
000064 E VSIOST 000000 A WAIT 000031 R WRITE 000001 A X

0 ERRORS ASSEMBLY COMPLETE

YIT9NISSY JHL HNILYHIJO

€IS

(panujuod) |043u0) XILYOA 4oPun
weiS0id YW SVQ PoINdex3g pue pajquaessy jo ajdwex3 ‘-G aindiy

13127122

PAGE

VSFMER
VEPNRM
VSALTE
VSSAL
1 T4
VICLOK
vsjrer
Tions,
vsiocC
SHITCH

>»rrrpeErPprr»>

/EXEC

08e16e76 SWITCH

71343
70307
67002
63323
62353
62160
78407
75254
67262
01000

VSFMCB
TOFOOD
VSSERY
VSEROR

VSFPP

BIFCH
VSOPBF
TIDBER
VSEXEC
(SIAP)

B B I B B B I Jb J

71338
70213
65646
630714
62352
75516
78336
75217
65648
00800

VORTEX L MBEN

VSBIC A 71244 VSERR A 708632
VSFNR A 70013 VSTBSR A 67062
VBFNIS A 652854 VSENMP A 635205
IFLAG A 62770 VSPFDN A 62675
VSMPER A 62267 VSMPJP A 62166
SIFCB A 75460 VSGFCB A 75460
VSTB A 78303 TIDSL2 A 78303
TBINTH A 78368 VSIOST A 71154
PIFCS A 735472 LOFCB A 75504
[SLITY A 00777 (SPED) A 0114

HCTINS

L]

DCFDL:GCFI:

4

TNUOC HCTIWS 02

ISDROW NI¢ MYBNEL DROCER TNUOC+TNUOC

TUPN! ROSSECORP 4

TUPTUD GNITSIL S

01 ROF TIANW 0

NRUTER ETAIDEMM? 1

|

]

LCER,FFUB,IP

1¢LCER,LRTNC,OL

TICSA,TYIAN,IP,BCFIP

RCDAER,DNE,DNE,DNE ,DAER

TNUOE

*

DRQOW A TYEG X:1eFFUB

EMAN
UQE
TXE
UQE
UQE
UGE
UGE
UQE
UQE
UQE
UQE
UQE
UGE

KNILOT
KNILOY

DAER

TATS

IXDL
UQE

EADL

HCTINWS
X

B
TNUOC
LCER

b {J

oL
TIAMW
TIAWON
I1C8A
TRATS

DAER

RCDAER"

rieo

YIT1GWISSY FHL INILVH3IdO

AN

(penunuoo) 101u0Y XILUOA Jepun

wei30id ¥ SVQA PeIndex3 pue pajquiassy jo ojdwex3 ‘g-G aundiy

SETYB MCTIWS 8
RETNIOP TREVNI
ODROW ESREVNY TEG X,1«LCEReFFUB
DROW DEHCYIWS LANIGIRQ EVAS X,t+LCER+FFUB
DROW ESREVNI PO SETYP HCTINWS 8
RETNIOP EROTSER '
DROW ESREVNY DEYREVNY EVAS X,1=FFUB

NWOD TNUDC
EROM FI TAEPER Y100
TICSA,TIAW,0L,RCFOL
YSUB, DNE, DNE , DNE,ETIRN
EROM EMDS DAER DAER
| DRTNOF TNIRP ! '
LCER
TRAYS

ALRL
XPC
EBDL
EATS
BLRL
XPC
EBTS
RXD
INXJ
ETIRMW
TATS
PMJ
TIXE
ATAD

858
DNE

ETIRW

ysus

DNE
LRINC

FFUB

8318’IA'I3SSV JH1 9NILVH3dO

OPERATING THE ASSEMBLER

5.2.2 DAS MR Operation (MOS)

The DAS MR assembler may be loaded and executed under the Master Operating System
(MOS) using the following directives:

/ASSEMBLE
/A,p(1),p(2),...,p(N)

This control directive directs the executive to load the assembler. The parameter string
specifies optional tasks for the assembler or executive to perform after the assembly is
completed. These tasks are:

Parameter Definition Default Assignment

N No source listing Source listing

B No binary object Binary object program output
MAP Memory map on load-and-go No memory map on load-and-go
L Load-and-go after assembly No load-and-go after assembly
M No symbol table listing Symbol table listing

To read the same physical symbolic source statements for both assembly passes, input:

/ASSIGN PO=DUM, SI=PI
/ASSEMBLE

The processor output listing serves as a copy of the program; it can be input for another
assembly. ’

During a DAS MR assembly operation, if logical unit SS is not a magnetic tape unit, a flag bit
is set in the peripheral control word PCW. When the end of pass 1 is detected, this bit is
interrogated. If it is set, DAS MR does a status check on logical unit PO, prints the message
RELOAD SOURCE on the Teletype, and halts. When the computer is placed in the run mode,
DAS MR rewinds logical unit SS and begins pass 2 of the assembly. |f the flag bit is not set
(SS not equai to magnetic tape), no status check is done on PO and DAS MR immediately
rewinds logical unit SS and begins pass 2.

Figure 5-4 illustrates a sample program assembly under MOS.

/JOB,EXAMPLE .
/DATE,08n17=78
/ASSEMBLE,B,L

Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control

515

916

~ (panuuod) 104u0) SOW 48pun

wesSoid YN SYQ Pandex3 pue pajquiassy jo ojdwexy “p-g ain3i4

PAGE

000000
000000
0000014
00no002
000003
000004
000005
000008
000007
000040
0000144
000012
000013
000014
00001458
000018
000047
000020
0000214
000022
000023
000024
000025
000026
000027
000030
000034
000032
000033
000034

000035

000036

1 EXAMPLE

1066412

002000
000000
001005
000044
00001868
002000
000001
0000053
00001 4
000014
000014
000005
002000
000000
{06642
147704
142701
147240
145286
120307
140723
1523417
147240
106612
134667
132640
147288
120307
151301
147304
1068612

»

P rE>P PP EPPEPREPPMBEPEDIN0R MO0 >M»

08=17e76

1 NAME
2 CRLF EQu

3 STRT BS8S

4 WALF
5 STAY
6 caLL
7 NAME DATA
8 DATA
9 DATA

STRT
0166612

d
5,36,NAME

S,08d4, 043,042,098

ExtT

CRLF,'0ODEAN J, GASYON!

CRLF, YORANGE

" CRLF, 1975 N, GRAND!

ORANGE!'

¥I1GWISSY IHL DNILYNIJO

L1°G

(Ponuiuoo) 104u0) SOW 4opun

weiSoid YN SYQ PeIndexy pue pajquiassy jo sjdwexy ‘p-g aindiy

000037
000040
0000414
000042
000043
000044
000043
000048
000047

PAGE

- 000030

000034
000052
000053

000084

000053
000086
000087
000080
000084
0000814

147722
1407186
143705
120240
120240
147722
1407186
143704%
106612

2 EXAMPLE

141701
146311
143240
120240
120240
134662
133268
133840
106812
000000

000000

ENTRY NAMES
000000 R STRY
EXTERNAL NAMES
000015 E EXIT

SYMBOLS

108612 A CRLF
000016 R NAME
0 ERRORS ASSEMBLY COMPLETE

P 2B 2B 2B 2 2B 2B 2B 2

b I B B I B 2B 2B b J

10 DATA

08»17«76

11 LAST BES
12 EXIT EXY
13 ZND

0000068 E 10CS

000013 E EXIY
000000 R SYRY

CRLF,'CALIF

4]

STRY

000006 E INCS

92667 ' ,CRLF,0

000063 R LASY

HITAWISSY IHL ONILVYIHO

OPERATING THE ASSEMBLER

DRANGE
92667

ODEAN J, GASTON
975 N, GRAND

ORANGE
CALIF

Figure 5-4. Example of Assembled and Executed DAS MR Program
Under MOS Control (continued)

5.2.3 DAS MR Operation (Stand-Alone)

DAS MR may be loaded and executed under control of the stand-alone FORTRAN 1V loader.
The operating procedure is as follows:

a. Load the stand-aloneloader using the binary load/dump program (BLD Il). Set A register to
zero before loading to prevent execution of the stand-alone loader. At completion of
loading, the execution address of the stand-alone loader will be in the X register
(013260). ;

b. Make the following modifications to memory:

Location New Contents
5 0210
6 0210
7 0210

c. Execute the stand-alone loader by setting the P register to the execution address
determined in step a and pressing RUN.

d. When executed, the stand-alone laoder will print ""LN’" on the Teletype. At this time,
peripheral device assignments may be altered by entering the one-digit number of the
old logical unit followed by the two-digit number of the substitute unit. DAS MR uses the
following logical units:

Logical Logical Default

Unit Unit Device

Number Name Assignment

3 Pl Card reader

4 LO Line printer

2. BO Paper tape punch
6 GO Dummy o
8 SS Magnetic tape* 00
9 PO Magnetic tape** 10

* Device Address 010
##* Device Address 011

5-18

OPERATING THE ASSEMBLER

As an example of device reassignment:

LN
300400201806900

Would reassign:

Pl = Teletype Keyboard
LO = Teletype Printer
BO = Teletype Paper Tape Punch
SS = Teletype Keyboard
PO = Dummy
For a complete list of peripheral assignments, see table 5-4.

Table 5-4. List of Peripheral Assignments for Stand-Alone DAS MR

Logical Assignment
Unit
Number
0 Teletype keyboard and printer
1 Teletype paper tape reader and punch
2 High-speed paper tape reader/punch
3 Card reader
4 Line printer
5 Dummy
6 Dummy
7 Card punch
8 Magnetic tape unit O
9 Magnetic tape unit 1
10 Magnetic tape unit 2
11 Magnetic tape unit 3
12 Unformatted paper tape 1/0 (HSPT)

e. Following device reassignments, the stand-alone loader will print "IN’ on the Teletype. At
this time, the operator should ready the DAS MR object on the input device and respond
by typing the proper designation on the Teletype:

5-19

OPERATING THE ASSEMBLER

P = Paper Tape Reader
T = Teletype Paper Tape Reader
0, 1, 2, 3 = Magnetic Tape Controller

0, 1, 2, or 3 respectively

To enable print out of a load map, the operator must type ""M”’ immediately following the
device designator. Following the typed characters, the operator must type a CR (carriage
return) to initiate loading of the DAS MR object.

If an error is detected, the loader types a 2-character error message code and halts. To
continue, the operator should remove the cause of the error (refer to error messages),
ready the input device to read from the beginning of the object material, reload the
loader program, and repeat the above procedure.

Error Messageé

The following 2-character error messages are output to the Teletype whenever the cor-
responding error condition is detected:

Messages Meaning
PS Program Size Error. Program memory requirements exceed
available program/common storage.

LS Literal Size Error. Program literal requirements exceed
available literal storage.

CM Common Error. The program contains conflicting size
definitions for a common block. '

DA Data Error. The program attempted to overlay the loader,
‘ loader tables, or resident programs.

TX Text Error. The program object text contains an illegal or
erroneous loader code.

RD Read Error. The loader encountered a read error while
attempting input of object text.

RC Record Error. The loader inputs an invalid record type.

SQ Sequence Error. The loader inputs an object text record
with an’invalid sequence number.

CK Check-Sum Error. The loader inputs an object text record
with an invalid check-sum.

f. After DAS MR is Iogded; peripheral devices for logical units 3, 4, 2, 6, 8, and 9 must be
loaded from the Run-Time 1/0 tape. This is accomplished by placing the Run-Time 1/0
tape on the input device and repeating step e.

5-20.

OPERATING THE ASSEMBLER

g. After the Run-Time 1/0 is loaded, the 1/0 control program must be loaded from the Run-
Time utility tape. This is accomplished by placing the Run-Time utility tape on the input
device and repeating step e.

h. When all externals have been satisfied the loader will halt with the P register = 3. To
execute DAS MR, the operator should press RUN.

Upon execution, DAS MR will input source statements from logical unit (Pl), output source for
pass to logical unit (PO), input pass source from logical unit (SS), output binary object to
logical unit (BO), and output listing to logical unit (LO).

Source input to DAS MR terminates upon input of either an EOF or a source record containing
a slash (/) as the first character. A slash record will cause an end-of-file to be output to the
BO device.

5.2.4 DAS 8A Operation

The DAS 8A assembler may be loaded and executed by the stand-alone procedure described
in the following paragraphs.

Loading the Assembler. Load the assembler program into memory using the binary load/dump
program (BLD Il). Execute it by entering a positive, nonzero value in the A register during
loading, or by clearing all registers, pressing (SYSTEM) RESET and entering the RUN state.
(Set RUN indicator on and press START).

During execution, the program first determines the amount of memory required. It then
stores in address 000003 a value one less than the lower limit of BLD |l. This is the highest
address that the assembler can use without destroying part of BLD Il.

DAS 8A comprises two sections: The 1/0 section allows the specification of 1/0 devices for
assembler input and output. The second section is the assembler itself.

1/0 Section Operation. The 1/0 section of DAS 8A, using the Teletype printer, makes three
requests for definitions of 1/0 devices:

ENTER DEVICE NAME FOR xx

where xx is one of the 1/0 function names: S! (source input), LO (list output), or BO (binary
output), respectively.

170 Device Assignment. Assighment of 1/0 devices is accomplished by responding to each
request in turn by means of a Teletype keyboard input which names the desired device,
followed by a carriage return (CR). The acceptable device names for each request are listed in
table 5-5. If the default assignment is desired, press CR only.

If an incorrect device name is type, the message:

DEVICE NAME NOT VALID

is output and the request repeated.

521

OPERATING THE ASSEMBLER
To terminate the output of any line to the Teletype, press RUBOUT. The error correction
feature can be used any time during 1/0 device specification.

When 170 assignments are complete, the I/0 section uses BLD il to load the assembler
section into memory.

To restart the 1/0 section before the assembler section is loaded, set STEP indicator on, clear
all registers, press (SYSTEM) RESET, set RUN indicator on and press START.

Table 5-5. Acceptable 1/0 Devices

Assembly Device Description Default
Function Assignment
SI (source input) TR Teletype paper tape read TR
TY Teletype keyboard
PR High-speed paper tape
reader
CR Card reader (026 code)
CR1 Card reader (029 code)
MTnn Magnetic tape
LO (list output) TY Teletype printer TY
LP2 Line printer (70-6701)
BO (binary output) TP Teletype paper tape punch TP
PP High-speed. paper tape
punch
cpP Card punch
MTnn Magnetic tape

Assembler Section Operation. When BLD |l relinquishes control to the assembler section, the
computer halts with 000001 in the program counter (P register). For an assembler pass 1, set
SENSE switch 1; for pass 2, reset SENSE switch 1 and set SENSE switches 2 and 3.

If pass 1 is selected, ready the S| device with the source input media and set RUN indicator
on and press START.

For pass 2, ready the SI device with the source input media, ready the BO and LO devices, set
RUN indicator on and press START.

The END directive terminates both passes 1 and 2. Pass 1 terminates with 000001 in the P
register and 0177777 in the A register. Pass 2 produces the binary object loader text and
program listing and terminates when END is encountered with the same register values as
pass 1. A MORE directive causes the computer to stop and wait until the S| unit prepared with
the additional source input media, and the RUN state is entered. MORE is indicated by
0170017 in the A register.

522

OPERATING THE ASSEMBLER

The program listing can be suppressed during pass 2 by resetting SENSE switch 2, and the
binary output, resetting SENSE switch 3. Error messages cannot be suppressed and are
output on the LO device as the error is detected during pass 2. :

Synchronization errors halt the assembly with 000777 in the A register. To continue the
assembly, set RUN indicator and press START. The assembler resets the location counter
value to that assigned on pass 1, prints error message *SE, and continues the assembly.

Pass 2 can be restarted or repeated for extra copies of the assembled program without
repeating pass 1.

At the completion of pass 2, the assembler can accept another assembly using the same 170
devices. For other |/0 devices, reload the assembler program, starting with the 1/0 section.

To restart the assembler, set STEP indicator on, clear all registers, press (SYSTEM) RESET,
set RUN indicator on and press START. The assembler halts with 000001 in the P register
and is ready to accept another assembly.

Using Magnetic Tape. The DAS 8A assembler can communicate with any of the magnetic tape
transports on a controller. Up to four transports may be connected to each of the tape
controllers. A configuration may have one to four magnetic tape controllers.

The magnetic tape transport number and controller device address is specified in the device

name specification of the 1/0 Control Section. A listing of magnetic tape transport device
names with their corresponding tape transport number and address is given in table 5-6.

Table 5-6. Device Names for Magnetic Tape Transports

Device Transport
Name Number
MTOO0 010 1
MTO1 010 2
MTO02 010 3
MTO3 010 4
MT10 011 1
MT11 011 2
MT12 011 3
MT13 011 4
MT20 012 1
MT21 012 2
MT22 012 3
MT23 012 4
MT30 013 1
MT31 013 2
MT32 013 3
MT33 013 4

5-23

ve-S

ajdwexg buipo) G- ainbi4

*J-G ainbBiy ul umoys si s10419
. H379IN3SSY IHL ONILVHILO

DAS CODING FORM ‘ e 3
usEivXAMPL gpsm‘nou - VARTABL AN§30’£"?P.S€ILL§¢¢T PR¢GRAM DENTIFICATION |
¥ ‘ L U SN SR, e - e U, [
9_‘__;TJ:II§ A R%UM;NL T® CALL_ THE SQUARE RGST (XSQT) SUBRPUTINE, = .. . __| __ . __|
fE“Epig RETURN FOR SQUARE RGPST ¢F NEGATIVE NUMBERS IS IN CALL =
* +2/ [(n+2)_ NORMAL RETURN FRPM SQUARE_ ROST IS AT CALL + 3 (nh+3).
% THi|S ROUTINE IS DESIGNED [T§ TAKE THE SQUARE REST
X @F do PCTAL NUMBERS AND ST@RE THE ANSWER IN_40 pcTAL LgC.
LA i AN ENEEEEE v e . o R
1. .1re . |]losoo. | T ‘ __lstarTiNG ADDRESS1]
- jp?x?.l:~o7%,1i ' XR = c@unT - | ‘
NEXT. [LDB __ 1WLécC, I . _BR = _(L$C + XR) U T
. CALIL XSQ1;017L . SUBR CALL WITH ERRGR_RETURN]
. IbTB ilseRY 1 | NORMAL RETURN STORE RESULT ‘
ol 1 RS *]
% NBTE| [THAT] Thie| DATA Tis| ﬁz manegp ,Auo :¢f&sgﬁegm BRI NN
X BY o TP || RREE] ’ ‘ : o e
%t L , —— L E U e e e R -
JXZ HALT ' | MR = _0 END @F RPUTINE ,*
! D x : o NDEX =-_! = INDEX
T Mp N)gx‘r»r'; {.. . . [RETURN F@R NEXT NUMBER I
HALT LT L __ N@RMAL MALT N
Lgic! EAH‘A 2/ ; I3L6 oso ,=1,100,0100,0. 4 200 - . L
. N TA 000 aJoo, -40,|50,60,70,80,90, 110,120 . __ __}.__. |
‘ ATA o;alzoo'o 2/ 9 300 g,,;oo% % s, :7,4@ o140 o
AT 1 .| lo2ioa Zpo 310 sgogso 340,3%50,400,500,-10 _ :
1/213:415,8287 s[v 0 i, afispie iy n 193 zo 2 22‘23 2‘2 26 27 28 2902 3 32 ¥3 34,35 Ge 37 38 3‘? 4% 41,42 43 A4 45 46 47 43 &7 36 51 52 53:56/53 %6 5 38 39 o0 61 ti 63 64 AT 4t 67 68 % ’7(71 F2473.74°75 7o 7,"7”79,00

yim weiboud yg Sy pajquassse ue Jo sjdwexa UV '9-G ainbij ul umoys st wesboud vg SYq -
pajquasse ue Jo ajdwexa uy 'G-G aunby ul umoys s) wesboid yg Syq e Jo sjdwexa Buipod vy

(panunuod) sjdwexy Buipon "g-g ainbig

T

DAS CODING FORM ’ 2 S

PROGRAMMES FRCCaan

*

LABEL ;10PERATION VARIABLE AND COMMENT FiELD IDENT(FICATION
3 n

lo4o IRESER‘!_E_, 4o PCTAL LBCATIONS

qg: RO snwurme CALCULATED BY THE APPRIXIMATION

%21 dpo wor kEYPUNCH]

aRE RAPT |N_THE B REGISTER. TWE _ . | _
! REIPLACED oN EXIT. ERRGR RETURN FOR
0F NEGATIVE NUMBERS AT n+2 FREM CALL,

ETVRIN. AT nh+3 FROM CALL WITH SQUARE _ROST SF NUMBER . . .| - .
VSTER s

Ll [llPLACE WHERE RtTuR)j,;ABP_&A&_SA__LETD -]
lgxzra—u‘ i LS RTL @F 0=0 o]
TR NUMBER =] BR = AR

XSQT i ERRPR RETURN T8 N+2

NMBR | | SAVE NUMBER

APRX | ___INUMBER = 15T APPR¢X1NATI¢N
S

7

AVE || | | lsAvE XR :
FT I INITIALIZE’ XR FOR APPR. . . _ S
pibpitey iZERQ_A&_IEQR DIVIDE ; . i
NMBR .. INUMBER = BR =~ . e

APRX. Fymsstz 7 APPR¢)(I_MA_TI¢N R

|
|
L

/X = BR = AR S .

i —
1141213 114415116 |7llaL|9 2021 22;20{24]2512¢:27:28. 29130131 3231 34 33 36,37 339 40,40 a2 30 0 s o g kS S SIS 8 a3 s T % S A m ap gk i e e 67 6k -) 70 72|73 74 75 70 7 78 79: 80

3

- Y379WISSY FHL ONILYHIO

92-G

DAS CODING FORM 3 3

b2

OPERATION VARIABLE AND CCMMENT FIELD DENT SV ITATION

_imas 1 I/X4X _=AR *BR

ADD | [APRX __ _A/X+X =AR
SRB [} A/X+X)1/2 =BR_

xR

STB. . | [APRX . INEXT_APPROXIMATION .
e RR= 1 =XR
TXZ EXIT SQ RT, =BR

AGN COMPLETE APPROXIMATION

Co R e

D .
NR . | IXserT . luPDATE _ENTRY TO n+3%
ETU* | IXSQT _lep BACK TO MAIN PREGRAM _

- jBla.gds f Lo —— e S

| | L o

BSIS : Po i Dl e e e
END EEEEE | | Ng! EXECUTI@N ADDRESS _ .. _. T

i ——— - e
T T
i i vt] i
: : : DS e i —— R S U ——

(panunuod) sjdwexz:buipos ‘G- ainbiy

H379N3SSY IHL ONILVYHIJO

!
+
! | [
—— ——— e e — i - -
‘! USSP UEPRE PSS

—+ Tt

| ; . i
T+ + t t = - B e T eyt S U
8|9 10]1{12{13 14f15]1617118]19]20,21{2212324{25:26] 27,28 29430:31 132,33 3¢ 35 36, 3 IF AT, 41 42 43 & 45 & 4748 49 0 S| D F MISS B T 5 30 81 62 63 s 6T th o7 o 4o . 7L AT 475 38 77 78179, 80

OPERATING THE ASSEMBLER

PAGE ,00001

*EXAMPLE : SQUARE RNOT PROGRAM
] .
* THIS A ROUTINE TP CALL THE SQUARE RDOT (XSAT) SUBROUTINE,
» ERROR RETURN FOR SQUARE RNOT NF NEGATIVE NUMBERS 1S IN CALL
* +2 (N+2) NORMAL RETURN FROM SNUARE ROOT I8 AT CALL + 3 (Ne3)
*» THIS ROUTINE IS DESIGNEDM TO TAKE THE SQUARE ROQT
* OF 40 UCTAL NUMBERS AND STORE THE ANSWER IN 40 DCTAL LOC,
® B
000500 ,DRG ,0500 STARTING APDRESS
000500 006030 JLOXT 037 XR = COUNT » |
000501 000037
000502 025515 NEXT ,LDB)LOC, Y BR s (L.OC + XR)
000503 002000 +CALL ,XSBT,0777 SURR CALL WITH ERRDR RETURN

000504 000626 R

000505 000777 ‘

000506 065566)STR) SQRT, NORMAL RETURN STORE RESULT
L]
* NOTE THAT THE DATA 18 RETRIEVED AND STORED FROM
« BOTTOM TO TOP

000507 0016040 1 IXZ "HALT XR = 0 END OF ROUTINE
000510 000514 R
000511 005344 yDXR INDEX » {1 = INDEX

’
000512 001000 1 JMP o NEYT RETURN FOR NEXT NUMBER
000513 000502 R
000514 000000 HALT ,HLT ' NORMAL HALT
000515 000031 Loc yDATA 125,30,36,050,~1,100,01,00,0,4,200
000816 000036
000%17 000044
000%20 000050
000321 177777
000522 000144
000523 000001
000524 000000
000525 000000
0600526 000004
000527 000310
0no5306 001750 +DATA +11000,0700,-40,50,60,70,80,90,110,120
000531 000700
000532 177730
000533 000062
000534 000074

VTII-1171
Figure 5-6. Example of an Assembled DAS 8A Program

5-27

OPERATING THE ASSEMBLER

PAGE

000333,

000536
000537
000540
oo0t4y
000542
000543
000544
000545
000546
000547
000550
0no3851
000552
000353
000554
000555
. 000556
000557
000860
0005614
000362
000563
000864
0003565
000866

000626
000627
000630
000631
000632

VIL-1172

5-28

000002

000106
000120
000132
000136
000170
000000
002000
000002
000011
005670
003000
000017
0000214
000202
000001
000204
000454
0004486
000300
000312
000524
000536
000620
000784
177766

000000
0031020
nones57
00590214
001004

+DATA 10,02000,2,9,3000,03000,15,17,130,01 40

1DATA »0204,300,310,320,330,340,350,400,500,=10

SORT ,ASS 040 RESERVE 40 DCTAL LOCATIONS
[]
¢ INTEGER SQUARE ROOT SUBROUTINE CALCULATED BY THE APPROXIMATION
-
. 172 (x+2) =x, +1
. X4 i
+ ENTER WITH NUMBER POR SQUARE ROOT IN THE B REGISTER, THE
« X REGISTER IS SAVED AND REPLACED ON EXIT, ERROR RETURN FQR
* SOUARE ROOT OF NEGATIVE NUMBERS AT Ne2 FROM CALL.
& NORMAL RETURN AT Ne3d FROM CALL WITH SQUARE ROQOY OF NUMBER
« 1IN THE B REGISTER
[
XS0T LENTR PLACE WHMERE RETURN ADDR 18 SAVED
2 JB2 tEXITed $Q RY, OF 080
,T8A NUMBER = BR s AR
JJAN® ,XSOT ERROR RETURN TO Ne2

Figure 5-6. Example of an Assembled DAS 8A Program (continued)

PAGE 400003
000633 100626 R
000634 060662
000635 0/0663
000638 070664
000837 006030
000640 000007
000641 005001
000642 020662
000643 170663
00Nn644 H0S02%
070645 120663
000646 005012
000647 004101
000650 060663
000651 005344
000652 001040
000653 000656 R
000654 001000
000655 000641 R
000656 030664
000657 040626
000860 001000
000661 100626 R
000662
000663
000664

000000

LITERALS

PNINTERS

SYMAQOLS

1 000664 R SAVE

1 000663 R APRX

1 000662 R NMBR

1 000656 R EXIT

1 000641 R AGN

{ 000626 R X3AT

{ 000566 R SQRT
VTII1-1173

PAGE 000004

1 000518 R LNC
1 000514 R HALT
t 000502 R NEXT

VTII-1174

AGN

EXIT

NMBR
APRYX
SAVE

OPERATING THE ASSEMBLER

SAVE NUMBER .
NUMBER = {ST APPROXIMATION
SAVE XR

INITIALIZE XR FOR APPR,

ZERQ AR FOR NDIVIDE
NUMBER = BR

NUMBER / APPROXIMATION
A/X =BR sAR

A/X+X EAR

A/X+X mAR =BR
(A/7X+X31/2 =BR

NEXT APPROXIMATION

XRew | =®XR

$A RT, =RR

COMPLEYE APPROXIMATINON
RESTORE XR

UPDATE ENTRY Y0 Ne2
60 BACK TO MAIN PRNAGRAM

NQ EXECUTION ADDRESS

Figure 5-6. Examplé of an Assembled DAS 8A Program (continued)

5-29

OPERATING THE ASSEMBLER

PAGE 100001
«EXAMPLE |
015000 , ORG
015000 005041 2 TZA
*SZ

015001 005004 SEC ,TZA
+0D

015002 003411 JHLY
wS7)

015003 000777 JHLT

015004 015036 LDA
wAD

015005 006015 JLDAE

015006 015036 R

015007 006030 SLDXY

015016 015036 R
n15011 015600 SEC ,LDA
*DD

015012 000004 yLDA
«TF

015013 015000 yLDA

015014 016000 LDA

015045 014020 (LDA

015016 006010 yLDA]
*87

015017 0277214

015020 006010 +LDAI

015021 077777

015022 0606010 +LDAT

015023 077777

015024 006010 yLDAY

015025 100000

»J22

*«NP

015030 001046 Py IX2

015031 015036 R ,

015032 001000 2 JMP
*SY

015033 0n0no0NNO

015034 001030 s JMP

015035 015037 R
015036 000n05 ALFA ,DATA
015037 01404% BRAV ,DATA

Vrii-1177

PAGE 000002

015040 STR ,BSS
000000 »END
LITERALS
PDINTERS
SYMANL S

0 015040 R STP
1 015037 R BRAV
1 015036 R ALFA
0 031550t R SEC

VTII-1178

JALFA
77777
,077777
, 32767
,=32768
JALFA
JALFA

,BRA
+BRAY

'5
;014045

3}

EXAMPLE WITH ERRORS
CANNDT HAVE A VAR, FIELD

VARIABLE FIELD TO LARGE

EXP § T0 LARGE
DOUBLE DEFINITION
EXP 2 HAS TD BE A § OR 2

CREATE A REL ADDRESS
VAR FIELD YO LARGE

ILLEGAL OPERATION CODE

BRA UINDEFINED

Figure 5-7. Example of an Assembled DAS 8A Prograni with Errors

5-30

SECTION 6

STAND-ALONE FORTRAN/DAS MR LIBRARIES

There are eight libraries for the stand-alone FORTRAN/DAS MR system.

6.1 COMPLEX MATH FUNCTIONS (FORTRAN CODED)

This library consists. of programs collected, without modification, from the MOS. In order, they

are:

$9E
CCOs
CSIN
CLOG
CEXP
CSQRT
CABS
CONJG
$AK
$AL
$AM
$AN

$AC
CMPLX
$8K
$8L
$8M
$8N
$zD
AIMAG
$0C
REAL
$8F
$8S

6.2 DOUBLE PRECISION MATH FUNCTIONS (FORTRAN CODED)

This library consists of programs collected, without modification, from the MOS. In order, they

are:

$XE

$YE

$ZE
DATAN2
DLOGIO
DMOD
DINT
DABS
DMAXI

DMINI
DSIGN
$YK
$YL
$YM
$YN .
DBLE
$XC

6.3 SINGLE PRECISION MATH FUNCTIONS (FORTRAN CODED)

are:

TANH
ATAN2
ALOG10

This library consists of programs collected, without modification, from the MOS. In order, they

SNGL
MAXO
MAX1

6-1

'STAND-ALONE FORTRAN/DAS MR LIBRARIES

AMOD
AINT
AMAXO0
AMAX1
AMINO
AMIN
DIM
FLOAT

MINO
MIN1
MOD
INT
IDIM
IFIX
$JC

6.4 DOUBLE PRECISION ARITHMETIC (DAS CODED)

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In
order, they are:

DSINCOS
DATAN
DEXP
DLOG

IF

POLY
CHEB
DSQRT
$DFR
IDINT

DMULT
DDIVIDE
DADDSUB
DNORMAL
DLOADAC
DSTOREAC
RLOADAC
SINGLE
DOUBLE
DBLECOMP

6.5 SINGLE PRECISION ARITHMETIC (DAS CODED)

6.5.1 Hardware Multiply/Divide

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In
order, they are:

6-2

$HE

aene
P

$QE

ALOG

EXP

ATAN
SQRT-H
SINCOS
FMULDIV
FADDSUB
SEPMANTI
FNORMAL
XDDIV-H
XDMULT-H

XDADD

XDSUB

XECOMP
$FLOAT
$IFIX
IABS
ABS
ISIGN
SIGN
$HN-H
$HM-H
XMUL
XDIV
ISFA

STAND-ALONE FORTRAN/DAS MR LIBRARIES

6.5.2 SOFTWARE MULTIPLY/DIVIDE

This library consists of programs collected from the MOS. The only modifications made were
the deleting or adding of control cards to define the object code for 16- or 18-bit machines. In
order, they are:

$HE XDADD
$PE XDSUB
$QE XDCOMP
ALOG $FLOAT
EXP $IFIX
ATAN IABS
SQRT-S ABS
SINCO ISIGN
FMULDIV SIGN

FADDSUB $HN-S
SEPMANTI $HM-S
FNORMAL $XMUL
XDDIV-S XDiv
XDMULT-S ISFA

6.6 RUN-TIME 1/0 (DAS CODED)

This library consists of programs collected from the MOS. Control cards were added or deleted
to define the object code for 16- or 18-bit machines.

Two additional modifications were made to the MOS routines: the Teletype paper tape reader
and punch drivers were merged into a single driver, $OH/$01; and the entry name of the
driver for the line printer was changed to $OR. In order, they are:

FORTIO MT$3
$00 MTAE
$04 KNT$
$08 RDC$
$0C WRT$
$0G STR$
$0H/$01 SWR$
$00 BL$P
$OM FCH$
CRIE TCK$
$OQ($OR) $TCO1
$0Q $HC37
$0P HCK$
$0S DIM$
CPAE LAS$
MT$0 10A%
MT$1 100K
MT$2 $BICD

6-3

STAND-ALONE FORTRAN/DAS MR LIBRARIES

6.7 RUN-TIME UTILITIES (DAS CODED)

This library, except for $BUF consists of MOS programs, some modified and some not. In the
following list, an asterisk (*) flags the programs which have more extensive modifications
than selecting the 16- or 18-bit word size. In order, they are: '

$DO $EE

$CG RSCB3*
$3S RSCBIMTB*
$SE $BUF
FORTUTIL

6-4

Mnemonic

AD
ADD
ADDE
ADI
ADDI
ADR
ANA.
ANAE
ANA|
AOFA
AOFB
AOFX
ASLA
ASLB
ASRA
ASRB
BT
CIA
CIAB
ciB
CcoM

COMP

APPENDIX A

INDEX OF INSTRUCTIONS

Octal
Code

0072xx
12xxxx
00612x
00745x
006120
0075xx
15xxxx
00615x
006150
005511
005522
005544
004200 +n
004000 +n
004300 +n
004100 +n
0064xx
1025xx
1027xx
1026xx
00743x

005xxx

Description
Add

Add memory to A register

Add extended

Add immediate

Add immediate

Add register

AND memory and A register
AND extended

AND immediate

Add overflow to A register

Add overflow to B register

Add overflow to X register
Arithmetic shift left A register
Arithmetic shift left B register
Arithmetic shift right A registef
Arithmetic shift right B register
Bit test

Clear and input to A register
Clear and input to A and B registers
Clear and input to B register
Complement register

Complement source to destination
registers

A-1

INDEX OF INSTRUCTIONS

A-2

Mnemonic

CPA
CPB
CPX
DADD
DAN
DAR
DBR
DEC

DECR

DER
DVI
DIVE
DIVi
DLD
DOR
DST
DSBU
DXR
ERA
ERAE
ERAI
EXC
EXC2

FAD

Octal
Code

005211
005222
005244
004x2x
004x4x
005311
005322
00742x

0053xx

004x6x
17xxxx
00617x
006170
004x0x
004x5x
004x1x
004x3x
005344
13xxxx
00613x
006130
100xxx
104xxx

105410

Description

Complement A register
Complement B register
Complement X register
Double add

Double AND
Decrement A register
Decrement B register
Decrement register

Decrement source to destination
registers

Double Exclusive OR
Divide

Divide extended

Divide immediate
Double load

Doubie OR

Double store

Double subtract
Decrement X register
Exclusive OR memory and A register
Exclusive OR extended
Exclusive OR immediate
External control
Auxiliary external control

Add single precision memory to
floating point accumulator

Mnemonic

FADD
FDV
FDVD
FIX
FLD
FLDD

FLT

FMU
FMUD
FSB
FSBD

FST

FSTD

HLT
IAR
IBR

1JMP

Octal
Code
105503
105401
105535

105621

105420

105522

105425

105416

105506

105450

105543

105600

105710

000000
005111
005122

0067xx

INDEX OF INSTRUCTIONS

Description

Add double precision memory to
floating point accumulator

Single precision floating point
divide

Double precision floating point
divide

Reformat floating point accumulator
and store integer in memory

Load floating point accumulator
with single precision number

Load floating point accumulator
with double precision number

Reformat single precision integer
and load into floating point
accumulator

Single precision floating point
multiply

Double precision- floating point
multiply

Single precision floating point
subtraction

Double precision floating point
subtraction

Store floating point accumulator
in memory in single precision
format

Store floating point accumulator
in memory in double precision
format :
Halt

Increment A register

increment B register

indexed jump

INDEX OF INSTRUCTIONS

A-4

Mnemonic
IME

INA
INAB
INB
INC

INCR

INR

INRE

INRI

IXR
JAN
JANM
JANZ
JANZM
JAP
JAPM
JAZ
JAZM
JBNZ
JBNZM
JBZ
JBZM

JDNZ

Octal
Code

1020xx
1021xx
1023xx
1022xx
00741x

0051xx

04xxxX

00604x

006040

005144
001004
002004
001016
002016
001002
002002
001010
002010
001026
002026
001020
002020

00677x

Description

input to memory

Input to A register
Input to A and B registers
Input to B register
Increment register

Increment source to destination
registers

Increment memory and replace

Increment memory and replace
extended

Increment memory and replace
immediate

Increment X register

Jump if A register negative

Jump and mark if A register negative
Jump if A register not zero

Jump and mark if A register not zero
Jump if A register positive

Jump and mark if A register positive
Jump if A register.zero

Jump and mark if A register zero
Jump if B register not zero

Jump and mark if B register not zero
Jump if B register zero

Jump and mark if B register zero

Jump if double precision register
not zero

Mnemonic

JDZ

JIF
JIFM
JMP
JMPM
JN
JNZ
JOF

JOFN

JOFM

JOFNM

JP

JSR

JSIM

JS2M

JS3M

JSIN
JS2N
JS3N

JSINM

Octal
Code

00676x

001xxx

002xxx

001000
002000
00674x
00673x
001001

001007

002001

002007

00675x

0065xx

002100

002200

002400

001106
001206
001406

002106

INDEX OF INSTRUCTIONS

Description

Jump if double precision register
zero

Jump if conditions met

Jump and mark if conditions met
Jump unconditionally

Jump and mark unconditionally
Jump if register negative

Jump if register not zero

Jump if overflow indicator set

Jump if overflow indicator not
set

Jump and mark if overflow indicator
set

Jump and mark if overflow indicator
not set

Jump if register positive

Jump unconditionally and set return
in X register

Jump and mark if SENSE switch 1
set

Jump and mark if SENSE switch 2
set

Jump and mark if SENSE switch 3
set

Jump if SENSE switch 1 not set
Jump if SENSE switch 2 not set
Jump if SENSE switch 3 not set

Jump and mark if SENSE switch 1 not
set

INDEX OF INSTRUCTIONS

Octal

Mnemonic Code Description

JS2NM : - 002206 ' Jump and mark if SENSE switch 2.
not set

JS3NM 002406 Jump and mark if SENSE switch 3
not set

JSS1 001100 Jump if SENSE switch 1 set

1852 001200 Jump if SENSE switch 2 set

JSS3 001400 Jump if SENSE switch 3 set

JXNZ 001046 Jump if X register not zero

JXNZM 002046 Jump and mark if X register not
zero

IXZ 001040 Jump if X register zero

JXZM 002040 Jump and mark if X register zero

JZ _’ 00672x Jump if register zero

LASL 004400 +n Long arithmetic shift left

LASR 004500+ n Long arithmetic shift right

LBT 00746x Load byte

LD 0070xx Load

LDA 01xxxx Load A register

LDAE 00601x Load A register extended

LDAI 006010 Load A register immediate

LDB 02xxxx Load B register

LDBE 00602x Load B i'egister extended

LDBI 006020 Load B register immediate

LDI v 00744x Load immediate

LDX 03xxxx Load X register

LDXE 00603x Load X register extended

A-6

Mnemonic

LDXI
LLRL
LLSR
LRLA
LRLB
LSRA
LSRB

MERG

- MUL
MULE
MULI
NOP
OAB
OAR
OBR
OME
ORA
ORAE
ORAI
ROF
SB
SBR
SBT

SEN

Octal
Code

006030

004440 + n
004540 +n
004240 +n
004040 +n
004340 +n
004140 +n

0050xx

16xxxx
00616x
006160
005000
1033xx
1031xx
1032xx
1030xx
1Ixxxx
00611x
006110
007400
0073xx
0076xx
00747x

101xxx

INDEX OF INSTRUCTIONS

Description

Load X register immediate
Long logical rotation left

Long logical rotation right
Logical rotation left A register
Logical rotation left B register
Logical shift right A register
Logical shift right B register

Merge source to destination
registers

Multiply

Multiply extended

Multiply immediate

No operation

Output OR of A and B registers

Output from A register

Output from B register

Output from memory

OR memory and A register
OR extendedi

OR immediate

Reset overflow indicator
Subtract

Subtract register

Store byte

Program sense

INDEX OF INSTRUCTIONS

Mnemonic

SOF
SOFA
SOFB
SOFX
SRE
ST
STA
STAE
STAI
STB
STBE
STBI
STX
STXE
STXI
SuB
SUBE

SUBI

TAB
TAX
TBA
TBX
TSA

TXA

Octal
Code

007401

005711

005722

005744

0066xx

007 1xx

05xxxx

00605x

006050

06XxxxX

00606x

006060

07 xxxx

00607x

006070

14xxxx

00614x

006140

0077xx

005012

005014

005021

005024

007402

005041

Description

Set overflow indicator

Subtract overflow from A register
Subtract overflow from B register
Subtract overflow from X register
Skip if register equal

Store

Store A register

Store A register extended

Store A register immediate

Store B register

Store B register extended

Store B register immediate

Store X register

Store X register extended

Store X register immediate
Subtract memory from A register
Subtract extended

Subtract immediate

Transfer

Transfer A register to B register
Transfer A register to X register
Transfer B register to A register
Transfer B register to X register
Transfer switches fo A register

Transfer X register to A register

Mnemonic

TXB
TZA
TZ8B
TZX
XAN
XANZ
XAP
XAZ
XBNZ
XBZ
XEC
XIF
XOF

XOFN

XS1
XS2
XS3
XS1IN
XS2N
XS3N
XXNZ
XXZ

ZERO

NOTE: n

Octal
Code

005042
005001
005002
005004
003004
003016
003002
003010
003026
003020
003000
003xxx

003001

003007

003100
003200
003400
003106
003206

003406

003046

003040

00500X

shift count

INDEX OF INSTRUCTIONS

Description

Transfer X register to B register

Transfer zero to A register

Transfer zero to B register

Transfer zero to X register

Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute

Execute
set

Execute
Execute
Execute
Execute
Execute
Execute
Execute

Execute

if A register negative

if A register not zero
if A register positive

if A register zgro

if B register not zero
if B register zero
unconditionally

if conditions met

if overflow indicator set

if overflow indicator not

if SENSE switch 1 set
if SENSE switch 2 set
if SENSE switch 3 set
if SENSE switch 1 not set,
if SENSE switch 2 not set
if SENSE switch 3 not set
if X register not zero |

if X register zero

Zero (clear) registers

APPENDIX B
V70 SERIES ASClHl CHARACTER CODES

Octal Decimal Character 029 ‘026 Description
200 l128 NUL Null
201 129 SOH Start of Heading
202 130 STX Start of Text
203 131 ETX . End of Text
204 132 EOT End of Transmission
205 133 ENQ Enquiry

- 206 134 ACK Acknowledge
207 135 BEL Bell
210 136 BS | Backspace
211 137 HT : Horizontal Tab
212 138 LF Line Feed
213 139 VT Vertical Tab
214 140 FF Form Feed
215 141 CR Carriage Return
216 142 SO Shift Out
217 143 Si Shift In
220 144 DLE ' Data Link Escape
221 145 DC1 ‘ Device Control >1
222 146 DC2 . Device Control 2
223 147 | DC3 : Device Control 3
224 148 DC4 Device Control 4
225 149 NAK Negative Acknowledge
226 150 SYN Synchronous File

B-1

'V70 SERIES ASCII CHARACTER CODES

Octal
227

230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256

257

B-2

Decimal

1561

152

1563

154

1585

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Character 029 026

- ETB

CAN

EM

SUB

ESC

FS

GS

RS

us

SP (blank) (blank)

! 11/2/8 11/2/8

" 7/8 0/5/8
3/8 0/7/8
$ 11/3/8 11/3/8
% 0/4/8 11/7/8
& 12 12/7/8
5/8 4/8
(12/5/8 0/4/8
) 11/5/8 12/4/8

11/4/8 11/4/8

+ 12/6/8 12
0/3/8 0/3/8
- 11 11

12/3/8 12/3/8

/ 0/1 0/1

Description

End of Transmission‘
Block '

Cancel

End of Medium
Substitute
Escape

File Separator
Group Separator
Record Separator
Unit Separator
Space
Exclamation Point
Quotation Mark
Pound Sign
Dollar Sign
Percent Sign
Ampersand
Apostrophe (prime)
Left Paren

Right Paren
Asterisk

Plus Sign

Comma

Minus Sign
Period

Slash

V70 SERIES ASCIl CHARACTER CODES

Octal Decimal Character 029 026 Description
260 176 0 0o 0

261 177 1 | 1 1

262 178 2 2 2

263 179 3 3 3

264 180 4 4 4

265 181 5 5 5

266 182 6 6 6

267 183 7 7 7

270 184 8 8 8

271 185 9 9 9

272 186 : 2/8 5/8 Colon

273 187 Vo 11/6/8 11/66/8 Semi-Colon
274 188 < 12/4/8 12/6/8 Less Than
275 189 = 6/8 - 3/8 Equal Sign
276 190 > 0/6/8 6/8 Greater Than
277 191 ? 0/7/8 12/2/8 Question Mark
300 192 @ 4/8 0/2/8 At

301 193 A 12/1 12/1

302 194 B 12/2 12/2

303 195 c 12/3 12/3

304 196 D 12/4 12/4

305 197 E 12/5 12/5

306 198 F 12/6 12/6

307 199 G 12/7 12/7

310 200 H 12/8 12/8

311 201 | 12/9 12/9

V70 SERIES ASCII CHARACTER CODES

Octal
312

313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341

342

B-4

, Decimal

202

203

204

205

206

207

208

209

210

21

212

213

214

215

. 216

217
218
219
220
221
222
223
224
225

226

Character

J

K

TorA

— Or -

020
11/1

11/2

- 11/3

11/4
11/56
11/6
11/7
11/8
11/9
0/s2
0/3
0/4
0/5
0/6
0/7
0/8
0/9
12/2/8
11/7/8
0/2/8
12/7/8

0/5/8

026 Description
11

11/2

11/3

11/4

11/5

11/6

11/7

11/8

11/9

0/2

0/3

0/4

0/5

0/6

0/7

0/8

0/9

12/5/8 Left Bracket
0/6/8 Backslash
11/5/8 Right Bracket
7/8 Vertical Arrow
2/8 Horizontal Arrow

Accent Grave

