
-

OS/3
Job Control
Programming Guide

This Library Memo announces the release and availability of Update B to the System 80 OS/3 Job Control Programming
Guide, UP-9986 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

OS/3 job control is the part of the operating system that manages system resources, prepares programs for execution,
and starts program execution.

This guide provides an overview of job control, describes its basic concepts, and explains how to use it through detailed
instructions and specific examples.

This update documents the following changes for Release 13.0:

•
•
•
•
•
•
•
•
•

Additional printer device type codes and logical unit numbers have been added to appropriate examples .

The use of more main storage to speed up job processing has been clarified .

The JCL for using multivolume files online simultaneously has been corrected .

The handling of STAND! (standard) forms has been changed .

The CARTID parameter of the LCB job control statement has been clarified .

The JOBDUMP feature of the OPTION job control statement has been clarified .

The PRO and SERIAL features have been added to the OPTION job control statement.

The format of the DD (data definition) job control statement has been expanded .

Keyword S80 has been expanded to include the Model 7E .

Miscellaneous typographical and other nontechnical corrections have also been made.

You can order the update only, or the complete manual with all updates. To receive only the update, order UP-9986 Rev.
1-8. To receive the complete manual, order UP-9986 Rev.l.

Mailing Lists
MBOO, SAB, and SAE

Mailing Lists
MBW and MBOl
(66 pages plus Memo)

Library Memo for
UP-9986 Rev. 1-B

January 1990

• ·~·

PUBLICATIONS
UPDATE

System 80

OS/3
Job Control
Programming Guide

UP-9986 Re'I. 1-A

This Library Memo announces the release and availability of Update A to the System 80 OS/3 Job Control Programming
Guide, UP-9986 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

This update provides an index and a set of tab breakers. The content of the manual is unchanged.

Copies of Update A are now available. You can order the update only, or the complete manual with the update, through
your local Unisys representative. To receive only the update, order UP-9986 Rev. 1-A. To receive the complete manual,
order UP-9986 Rev. 1.

Mailing Lists
MBZ, MCZ, MMZ,
M28U, and M29U

Mailing Lists
MBW, MBOO, and
MBOl
(31 pages plus Memo)

Library Memo for
UP-9986 Rev. 1-A

February 1989

••

•

•

• ''~·

Programming Guide

This Library Memo announces the release and availability of the System 80 OS/3 Job Control Programming Guide,
UP-9986 Rev. 1.

This guide is a standard library item (SU). It is part of the standard library provided automatically with the purchase of the
product.

Operating System/3 (OS/3) job control is the part of the operating system that manages system resources, prepares
programs for execution, and starts program execution.

This revision documents the following changes for Release 12.0:

•

•

•

•

•

•

The ID and IGNORE parameters have been added to the LFD job control statement.

The explanation of the TESTPG parameter for the SPOOL JPROC has been expanded .

The STL parameter has been added to the SPL job control statement.

An explanation of the HDR parameter for the SPL job control statement has been added .

The ROUTE job control statement has been modified to handle one to eight destinations .

Some destinations to which you can send spooled output using the ROUTE job control statement have been
modified. Examples are included.

• The GOSUB and IMMOVE features have been added to the OPTION job control statement.

• The MSGSUPP parameter has been added to the DD job control statement.

• The Julian date is now available to the RUN processor control statement via the INQuire SYS parameter, JUL.

Additional copies may be ordered through your local Unisys representative.

Destruction Notice: This revision supersedes and replaces System 80 OS/3 Job Control Programming Guide released
on Library Memo dated February 1984. Please destroy all copies of UP-9986, its updates, and library memos.

Mailing Lists
MBZ, MCZ, MMZ,
M28U, and M29U

Mailing Lists
MBW, MBOO, and
MBOl
(316 pages plus Memo)

Library Memo for
UP-9986 Rev. 1

October 1988

•

•

•

•
•

UNISYS

•

•

System 80
OS/3
Job Control
Programming
Guide

Copyright © 1988 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

OS/3 Release 13.0

Priced Item

January 1990

Printed in U S America
UP-9986 Rev. 1 - Update B

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Unisys Corporation, OS/3 Systems
Product Information Development, P.O. Box 500, Mail Station ES.114, Blue Bell, Pennsylvania, 19424, U.S.A.

•

•

•

•

•

•

Page Update
Part/Section Nllllber Level

Cover B

Title Page/Disclaimer B

PSS iii B

About This Guide Tab Breaker A
v, vi Orig.
vii thru ix B

Contents xi thru xvi Orig.
xvii B
xviii, xix Orig.

1 Tab Breaker A
1 thru 11 Orig.
12 B

2 Tab Breaker A
1 Orig.
2 B
3 thru 13 Orig.

3 Tab Breaker A
1 thru 3 Orig.
4, 5 B
6 thru 23 Orig.

4 Tab Breaker A
1, 2 Orig.
3 B
4 thru 26 Orig.
27 B
28 thru 50 Orig.

5 Tab Breaker A
1 thru 26 Orig.
27 B
28 thru 38 Orig.
39 B

40, 41 Orig.

6 Tab Breaker A
1 Orig.
2 B

PAGE STATUS SUMMARY
ISSUE: Update B - UP-9986 Rev. 1

Page Update
Part/Section Nl.lllber Level Part/Section

3 thru 9 Orig. Index
10 thru 14 B
15 Orig.
16 B
17 Orig.
18 B
19 thru 27 Orig. User Conments Form
28 B
29 thru 33 Orig. Back Cover
34 thru 37 B
38 thru 43 Orig.
44 B
45 Orig.
46 B
47, 48 Orig.
49, 50 B
51 thru 53 Orig.
54 B
55 Orig.
56 B
57, 58 Orig.
59, 60 B
61 thru 78 Orig.

7 Tab Breaker A
1 thru 15 Orig.
16 B
17 Orig.

8 Tab Breaker A
1 thru 15 Orig.

9 Tab Breaker A
1 B
2 thru 11 Orig.
12 B

Appendix A Tab Breaker A
1 thru 10 Orig.

Appendix B Tab Breaker A
1, 2 Orig.

Appendix C Tab Breaker A
1 thru 23 Orig.

Technical changes are denoted by a change bar in the margin •

UP-9986 Rev. 1

Page
Nl.lllber

Tab Breaker
1 thru 10
11
1 thru 10
12 thru 14

iii
Update B

Update
Level

A
Orig.
B

Orig.
Orig.

Orig.

•

•

•

•

•

•

About This Guide

Purpose

Scope

This manual is one of a series designed to help the programmer use the Unisys
Operating System/3 (08/3).

This guide specifically describes job control and explains how to use it.

Audience
The intended audience is the novice programmer with a basic knowledge of data
processing but with little programming experience, and the programmer whose
experience is not on Unisys systems.

Prerequisites
Anyone using this guide should understand basic structured programming techniques.

How to Use This Guide
Read the entire guide to familiarize yourself with the basic concepts it presents; then
use it for reference as needed.

Organization
This guide is divided into four parts as follows:

Part 1. Job Control Overview

Part 1 consists of sections 1 and 2. It tells you what job control is, and how it is used
by the operating system. You learn the basic concepts of a control stream and the
general program logic.

Part 2. Basic Job Control Programming

Part 2 consists of sections 3, 4, and 5. In this part, you become familiar with the basic
job control statements used to run your programs. You also learn about job control
procedure call statements (JPROCS) that can save you coding time and reduce control
stream coding errors.

UP-9986 Rev. 1 v

About This Guide

Part 3. Advanced Job Control Programming

Part 3 builds on part 2. It consists of sections 6, 7, 8, and 9. You will learn how you
can get better performance and response from the computer by using advanced job
control statements that perform functions that cannot be done with the basic set. You
will learn how to write jproc definitions that you can store in the system and how you
can call them when needed.

Part 4. Appendixes

• Appendix A discusses and illustrates the rules used in describing job control
statement formats. You also learn how you should code these job control
statements.

• Appendix B contains supplementary information that increases your
understanding of job control.

• Appendix C contains an alphabetical listing of all the job control statements and
their parameters. This can be used as a quick-reference chart.

Results
After reading this document, site administration personnel and workstation or
terminal users will be able to use job control statements and job control procedures to
specify to the operating system what specific work it must do.

Related Product Information

vi

The following Unisys documents may be useful in understanding and implementing
job control.

Note: Throughout this guide, when we refer you to another manual, use the version
that applies to the software level at your site.

Integrated Communications Access Method (ICAM) Utilities Programming
Guide (UP-9748)

This guide describes how programmers can use the utility routines provided by !CAM.

Job Control Programming Reference Manual (UP-9984)

This manual is a quick-reference document for programmers familiar with OS/3. It
describes the job control statements and job control procedures used in a System 80
enhancement to communicate with job control as well as the the procedure definition
statements that allow expansion and conditional modification of the job stream when
you start the job.

UP-9986 Rev. 1

•

•

•

•

•

•

About This Guide

System Service Programs (SSP) Operating Guide (UP-8841)

This guide describes the system service programs. They are utility programs that support the
operation and organization of the operating system. They include the SAT and MIRAM
librarians, the linkage editor, the disk, tape, and diskette prep routines, and various copy
routines.

Consolidated Data Management Macroinstructions Programming Guide
(UP-9979)

This guide describes Consolidated Data Management (CDM), a collection of program modules
that handles the movement of data between input and output devices on your system. It also
describes the consolidated data management macroinstructions, which let you obtain information
about the characteristics of your file or request that consolidated data management process the
files you defined for your program.

Models 8-6 and 8-20 Operations Guide (UP-8859)

This guide describes the hardware configuration of the System 80 models 3-6 and 8-20 and
presents procedures for initializing the system. It also covers all commands and procedures used
in the OS/3 environment.

Model 7E Operations Guide (7002 3866)

This guide describes the hardware configuration of the System 80 model 7E and presents
procedures for initializing the system. It also covers all commands and procedures used in the
OS/3 environment.

Supervisor Technical Overview (UP-8831)

This manual presents an overview of the OS/3 supervisor and its functions for OS/3 high-level
language programmers and site administrators.

Supervisor Macroinstructions Programming Reference Manual (UP-8832)

This manual describes, for the assembler programmer, the OS/3 supervisor macroinstructions
used for program management, file space management, file access, multitasking, and spooling. It
also describes formats and coding conventions for the macroinstructions, and diagnostic and
debugging information, and gives examples of macroinstruction use.

Models 8-6 and 8-20 Installation Guide (UP-8839)

This guide provides the system administrator with the information and procedures needed to
install, tailor, and maintain OS/3 software in a System 80 environment.

Model 7E Installation Guide (7002 3858)

This guide provides the system administrator with the information and procedures needed to
install, tailor, and maintain OS/3 software in a System 80 environment .

UP-9986 Rev. 1 vii
Update B

I

I

About This Guide

Interactive Services Operating Guide (UP-9972)

This guide describes procedures used to communicate with the operating system interactively
through a local workstation or remote terminal. It also describes the procedures for logging on
and off the system and performing various interactive commands.

File Cataloging Technical Overview (UP-9982)

This manual describes the OS/3 file cataloging facility in a System 80 environment for the system
administrator or programmers who are authorized to control use of the system catalog file.

Spooling and Job Accounting Operating Guide (UP-9975)

This guide describes, for the system administrator, basic spooling and job accounting concepts.

Screen Format Services Technical Overview <UP-9977)

This manual describes how programmers can use screen format services to create and maintain
formatted screen displays to be used with their application programs.

Menu Services Technical Overview <UP-9317)

This manual describes the procedures for creating and using menus. It also describes how
menus, displayed on the workstation screen, can be used with assembler, COBOL, RPG II, and
FORTRAN IV programs.

Dialog Processor User Guide/Programmer Reference (UP-8858)

This manual provides the experienced programmer with information on the dialog processor,
which is the interface between the dialog (written in dialog specification language) and the
application program using the dialog.

Distributed Data Processing Programming Guide (UP-8811)

This guide describes OS/3 distributed data processing and the various distributed data
processing program products.

General Editor (EDT) Operating Guide (UP-9976)

This guide describes the commands and procedures needed to use the OS/3 general editor to copy
files, concatenate files, and create and modify library modules and data files interactively from a
workstation.

Consolidated Data Management Programming Guide (UP-9978)

This guide describes consolidated data management and how it moves data between peripheral
devices and programs.

viii
Update 8

UP-9986 Rev. 1

•

•

•

•

•

•

About This Guide

Assembler Programming Guide (UP-8913)

This guide describes the OS/3 basic assembly language (BAL) and its use. Included are general
language concepts, assembler instructions, and programming techniques.

Data Utilities Operating Guide (UP-8834)

This guide provides the information needed to use the data utilities. Included are instructions on
executing data utilities interactively and as batch jobs .

UP-9986 Rev. 1 ix
Update B

•

•

•

• Contents

Part 1.

Section 1.

•
Section 2.

•
UP-9986 Rev. 1

About This Guide v

Job Control Overview

Overview

Why You Need Job Control.. 1-1
Job Control Statements and Job Control Streams . 1-1
Job Steps.. 1-2
Job Control Procedures (JPROCS) ... 1-2
Job Control and the Operating System.. 1-3
Processing a Job Control Stream 14

Beginning Job Processing - the Run Processor... 1-5
Considering Jobs for Execution - the Job Scheduler :.............. 1-6
Beginning Job Execution - the Job Initializer .. 1-7
Initializing a Job Step - the Job Step Processor 1-7
Ending the Job Step - the Job Step Processor... 1-8
Ending the Job - the Job Terminator 1-8

Building and Storing Job Control Streams and JPROCS................................ 1-9
Saving Translated, Expanded Job Control Streams

(Save/Restore Facility)... 1-10
Running Job Control Streams.. 1-11

Basic Concepts

Assigning Devices and Files... 2-1
Peripheral Devices and Logical Unit Numbers (DVC Statement) 2-2
Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)......... 2-3
File Identifiers (LBL Statement).. 24
Disk and Format-Label Diskette File Area (EXT Statement) 2-5
Data-Set-Label Diskette File Area (EXT Statement) 2-6
Logical File Names (LFD Statement).. 2-7

Device Assignment Set Place and Duration 2-9
Job Termination ... 2-10
Restarting a Job.. 2-11
Branching Within a Control Stream .. 2-11
Jobs and Main Storage .. 2-12

Job Roll-Out/Roll-In... 2-12
Minimum and Maximum Main Storage.. 2-12
Dynamic Expansion of Main Storage .. 2-13

xi

Contents

Part 2.

Section 3.

Section 4.

xii

Basic Job Control Programming

Minimum Control Stream Requirements

What is a Minimum Control Stream? .. 3-1
Constructing the Minimum Control Stream.. 3-1
The Beginning of the Job.. 3-3
Identifying the Devices 3-4
Assigning a Logical File Name to the File.. 3-5
Executing the Program 3-6
Ending the Basic Control Stream... 3-8
Ending the Card Reader Operation 3-8

The Control Stream So Far - A Review... 3-9
Adding Card Input.. 3-10
Card Input and Embedded Data.. 3-12

The Program is Changed -Another Device .. 3-14
What is Needed to Use a Tape?.. 3-14
The Logical Unit Number and File Name for the Tape.............................. 3-15
Supplying a Volume Serial Number for the Tape...................................... 3-15
Labeled Tapes for File Identification... 3-17

Another Programming Change -Another Device Assignment 3-18
The Device Assignment Set for a Disk or Format-Label Diskette 3-20
The Device Assignment Set for Data-Set-Label Diskette 3-21
The Device Assignment Set for a Workstation... 3-21

The UID Job Control Statement.. 3-22
The USE Job Control Statement... 3-22

Job Step Temporary and Job Temporary Files .. 3-23
Basic Job Control Statements.. 3-23

Getting the Most Out of the Basic Job Control Statements

Optional Parameters Can Improve Job Performance 4-1
Improving Your Control of the Job 4-1

A Selection Priority for the Job 4-2
Main Storage Needs.. 4-2
More Main Storage to Speed Up the Job 4-3
Multitasking Specification 4-4
The Processing Time for the Job... 4-5
Debugging the Control Stream.. 4-6
Job Accounting and Spool Buffers... 4-7
Printing the Job Log File and Page Headers 4-8

Identifying the Peripheral Devices a Little Further 4-9
Using Multiple Devices, SYSRES, or the Job's YRUN File 4-9
Specifying Multiple Workstations 4-10

UP-9986 Rev. 1

•

•

•

•

•

Section 5.

•
UP-9986 Rev. 1

Contents

More Control Over Peripheral Devices.. 4-11
Assigning Devices by Physical Address and Assigning

Real Devices... 4-11
Is This Device Needed for This Particular Run?............................. 4-12
Different Volumes on the Same Device.. 4-12
Multiple Volumes in a File? Use Alternate Devices to Decrease

Operator Setup Time... 4-14
Ensuring that Workstations Are Connected to a Job 4-15

Specifying a Remote Disk File ... 4-16
Indicating Use of the DDP Program-to-Program Facility............................ 4-17

More Information About the Characteristics of Your Volumes...................... 4-19
More Than One Volume in a File .. 4-20
Special Characteristics of Tape Volumes ... 4-21
Extending Your Tape Volumes... 4-22
Sharing Disk Volumes 4-24
Ignoring or Changing the Volume Serial Number 4-24
Muitivolume Files Online Simultaneously.. 4-27

More Information on Disk and Format-Label Diskette File Allocation 4-27
The File Type.. 4-27
Formatting a File and Using Contiguous Space 4-28
Your Disk or Format-label Diskette File Needs More Space...................... 4-29
Terms of Allocation 4-30
Allocation Amounts.. 4-31
Changing the Specifications of a Previously Allocated File 4-33
Allocating Space in the Fixed-Head Area of Your 8417 Disk...................... 4-34
No Terminate Option for Insufficient Extent Space................................... 4-34

Information About Data-Set-Label Diskette File Allocation 4-34
Using Your File Identifier More Efficiently.. 4-35

Multivolume File? Assign Each Volume a File Serial Number 4-36
The Expiration and Creation Date of the File 4-37
Indicating the Position of the File when Several Are on a Tape Volume....... 4-38
Different Versions of a File.. 4-39

Changing the Label of a Disk File... 4-40
Specifying Qualifiers for File Identifiers 4-43
More Information About the Logical File 4-44

Reserving an Extent Information Storage Area 4-44
Specifications for Existing Files 4-45

Indicating Where the Load Module is Located 4-46
Task Switching Priority... 4-48
Avoiding Abnormal Termination Due to Program Errors 4-50

The Job Control Language So Far 4-50

Doing It the Easy Way - with Procedure Calls

What is a Procedure?... 5-1
Setting Up Temporary Work Files 5-2

Using Your Own Volume... 5-5
Providing the Extent Specifications.. 5-6

xiii

Contents

Part 3.

Section 6.

XIV

Accessing Previously Allocated Files 5-8
Allocating a File with a JPROC Call .. 5-10
Too Many Devices for the Same Volume .. 5-13
Using the Linkage Editor.. 5-16

Generating LOADM and INCLUDE Linkage Editor Control Statements........ 5-21
Making the Linkage Editor Suit Your Needs .. 5-23

Personalizing Your Print Output ... 5-33
Controlling Spooled Output with a JPROC Call... 5-37

Advanced Job Control Programming

Making Job Control Work for You

Advantages of Using Advanced Job Control Statements................................ 6-1
Controlling Spooled Output with a Job Control Statement.............................. 6-1

Sending Spooled Output to Remote Batch Processing Terminals 6-3
Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers 6-4
Spooling Input Card Data ... 6-7
Spooling Diskette Files... 6-9

Equating Logical Unit Numbers to Device Type Codes 6-10
Specifying Unique Load Codes.. 6-11
Using Forms Control 6-16
Controlling Tape Units.. 6-20
Releasing (Freeing) a Device and Volume .. 6-22
Scratching Unwanted Files... 6-24
File Cataloging... 6-26
Selecting Optional Features... 6-26
Using the SET Job Control Statement 6-38

Changing the Date... 6-39
Setting the UPSI... 6-39
The Communications Region... 6-40
The User Local Data Area (LDAl.. 6-41

Restarting a Job 6-42
Restarting a Job from a Job Step.. 6-43
Restarting a Job from a Checkpoint Record 6-45

Issuing System Commands .. 6-46
Calling Control Streams... 6-47

Using the RUN/RV Job Control Statements to Call Control Streams........... 6-48
Using CC SC/SI to Call Saved Translated Control Streams....................... 6-49

Communicating with the System Operator or Workstations 6-50
Introducing Processing Options 6-52
Defining Software Facilities Needed by Your Job... 6-53
Making Temporary Changes to a Load Module ... 6-56
Changing Your File Definition at Run Time ... 6-58
Adding Cards to a Stored Control Stream.. 6-61
Bypassing Job Control Statements 6-63

UP-9986 Rev. 1

•

•

•

•

Section 7.

•
Section 8.

Section 9.

•
UP-9986 Rev. 1

Contents

Bypassing Job Control Statements to Avoid Abnormal Termination............. 6-68
Dynamic Skip Function from a Workstation ... 6-69
Substituting Embedded Data 6-69
Replacing Embedded Data Sets in Expanded Control Streams.................... 6-70
Job Control Considerations for Screen Format Services,

Menu Services, and Dialog Processing.. 6-72
The USE Statement for Screen Format Services..................................... 6-73
The USE Statement for Menu Services.. 6-74
The USE Statement for Dialog Processing.. 6-76

Source Module Access via the USE Statement .. 6-78

Run-Time Conditional and Set Symbol Job Control Statements

Run-Time Conditional Job Control Statements... 7-1
Unconditional Branching... 7-1
Conditional Branching .. 7-2
Providing Targets for Branching.. 7-4

Run-Time Set Symbols ... 7-5
Global Status Set Symbols... 7-5
Local Status Set Symbols.. 7-10
Specifying Set Symbol Values in Quotes... 7-12
Using Symbols to Examine Job and System Related Values and

Facilities .. 7-13
Priorities Among Set Symbols, Keyword Parameters, and Positional

Parameters... 7-17

How to Write and Call a Job Control Procedure Definition

The Benefit of Procedure Definitions.. 8-1
Coding Rules 8-1
Parameter Types... 8-3
The Start of the JPROC Definition 8-3
Naming the JPROC Definition 8-4
Ending the JPROC Definition.. 8-5
Calling JPROC Definitions.. 8-6
How JPROC Definitions Are Stored 8-7
Specifying an Alternate Library File to be Searched for JPROCS......... 8-9
Parameter Referencing 8-10

Using the Interactive Job Control Dialog

The Function of the Job Control Dialog.. 9-1
Building a Control Stream with the Job Control Dialog................................ 9-3
Building a User JPROC with the Job Control Dialog.................................... 9-8
Entering Embedded Data 9-8

Changing Dialog Responses 9-9

xv

Contents

• Part 4. Appendixes

Appendix A. Statement Conventions

Job Control Statement Format. .. A-1
How Job Control Statements Are Presented ... A-2
Coding Conventions A-7
Statement Continuation ... A~
Software Conventions A-9

Appendix B. Operation Considerations

System Libraries.. B-1
Volume Table of Contents ... B-2

Appendix C. Job Control Statement Formats

Job Control Statements C-1
Job Control Procedures C-11

User Comments Form •

•
xvi UP-9986 Rev. 1

•

•

•

Figures

1-1. Operating System/3 (OS/3).. 1-3
1-2. Job Processing Flow... 1-5

2-1. Job Region in Main Storage.. 2-13

9-1. Using the Job Control Dialog to Build a Control Stream or User JPROC 9-2
9-2. Audit Version of the Dialog Processor.. 9-10
9-3. Changing Your Dialog Responses >... 9-11

· JP-9986 Rev. 1 xvii
Update B

•

•

•

• Tables

4-1. Mode Characteristics... 4-22

6-1. DD Supported Keywords.. 6-60

7-1. Keywords and Symbol Values for II INQ JOB and II INQ SYS.. 7-15

•

•
UP-9986 Rev. 1 xix

•

•

•

•

•

•

Section 1
Overview

Why You Need Job Control
To process any program, the operating system must have some necessary instructions
and information. Should the system compile, link edit, or execute a program? Does it
know what files a program uses, which devices to reserve, and how much main storage
a program needs? Should it allocate space for a file? For the operating system to
know what specific work - what job you want it to do and how, you must supply this
type of information to that part of OS/3 calledjob control.

To communicate with job control, you use OS/3job control language (JCL) which
consists of job control statements and job control procedures (JPROCS). The
statements and JPROCS you code make up a job control stream.

Job Control Statements and Job Control Streams
Each of the many job control statements has a different function but they are
combined in a control stream to do a singular job. OS/3 requires that every job have a
control stream. Using three statements, II JOB, II EXEC, and/&, we can show you the
following outline job control stream required for executing a program:

Job control
stream for
executing
a program

II JOB MYJOB Identifies your job and indicates
the beginning of the control stream.

II EXEC PROG1 Specifies execution of the program PROG1.

!& Indicates the end of the control stream.
(If the control stream is on cards, /&

must be followed by //FIN. See "Ending the
Card Reader Operation" in Section 3.

These three statements illustrate the idea of a job control stream, but you'll see in
later sections that you must also include statements identifying files and devices.
Additional statements are used depending on the specific function needed to
accomplish your job. You can also include program data in the control stream.

In this guide we'll explain the function of each job control statement and its
parameters so you can build simple as well as complex job control streams .

UP-9986 Rev .1 l·l

·---·--.

Overview

Job Steps
Any job can have one or more steps. If, for example, you want to execute three
programs, one after the other, you can construct one job control stream with three Gob)
steps like this:

II JOB MYJOB

} Job step 1

II EXEC PROG1

Job named MYJOB

II EXE; PR002 }
Job step 2

II EXE" PROG3 }
Job step 3

I&

A job can have up to 254 job steps. The steps are processed serially and the EXEC job
control statement normally marks the end of each one.

Job Control Procedures (JPROCS)

1-2

Besides using individual job control statements in your control stream, you can use job
control procedures (JPROCS).

A JPROC is a series of job control statements that performs a certain function or
routine. JPROCS are supplied as part of the system and you can also write your own.
They are filed in a library and each JPROC has its own name. (See "Building and
Storing Job Control Streams and JPROCS" in this section.) When referenced by that
name in a job control stream, the statements that make up the JPROC are generated
and incorporated into the control stream.

You may frequently need some function that a specific group of job control statements
performs. Instead of coding the same group of statements in every job control stream
requiring that function, you can simply define the statements as a JPROC, then code
the JPROC name.

Compiling a source program, for example, is something that's done often. If you
include a certain system supplied JPROC name in your job control stream, all the
statements necessary for the language processor to compile your source program are
generated. The following simplified control stream specifies the COBOL language
processor JPROC.

UP-9986 Rev. 1

•

•

•

•

•

•

Overview

II JOB MYJOB

Causes the generation of job control
statements that identify files and

II COBOL --+devices needed by the COBOL language
processor. Executes the language
processor so that a source program can
be compiled.

I&

System-supplied and user-written JPROCS are explained in Sections 2 and 3.

Job Control and the Operating System
To better understand what job control does, it helps to know where job control fits into
the operating system.

Unisys Operating System/3 (OS/3) is divided into two parts: the executive and the
system support software components. Job control is part of the executive portion of
OS/3. Together, the supervisor and job control manage job processing for OS/3.
Figure 1-1 shows the executive and system support software components of OS/3 .

EXECUTIVE

SUPERVISOR JOB CONTROL

DATA
MANAGEMENT

DATA BASE
MANAGEMENT

SYSTEM

UP-9986 Rev .1

SYSTEM SUPPORT SOFTWARE COMPONENTS

LANGUAGE
PROCESSORS

INTEGRATED
COMMUNICATIONS

ACCESS
METHOD

APPLICATIONS

SYSTEM
SERVICE

PROGRAMS

EMULATORS

Figure 1-1. Operating System/3 (OS/3)

INFORMATION
MANAGEMENT

SYSTEM

DIAGNOSTIC
PROGRAMS

1-3

Overview

The supervisor controls the sequence and position of your programs and system
programs in main storage. For more information on supervisor facilities, see the
Supervisor Technical Overview (UP-8831).

Job control manages system facilities and prepares the system for job execution. In
general it does the following:

• Assigns a job number to every active job and symbiont

• Analyzes the job control stream

• Checks the order and syntax of control statements

• Expands job control procedures (JPROCS)

• Schedules jobs and queues them according to priority

• Allocates peripheral devices and main storage

These and some of the other functions that job control is responsible for are handled
by (system) programs called symbionts. Symbionts are normally executed in response
to a user request that may be in the form of a system console command, a workstation
command, or certain job control statements. Symbionts compete for main storage and
CPU time along with your jobs. The run processor, which begins processing your job
control streams, is a symbiont. We'll be discussing the run processor in the next
section.

Processing a Job Control Stream

1-4

One way to build a job control stream is to code and keypunch job control statements
on cards.

II FIN

11 EXEC PRGRMl

II JOB MYJOB

UP-9986 Rev. 1

•

•

•

•

•

•

~ ...___

Overview

The cards are placed in a card reader and a request to process the job is made either
by pushing the RUN button on the card reader or by issuing a RUN command from
the system console. When the request is accepted, the cards are read and job
processing begins. Looking at Figure 1-2 you can see that job processing (whether the
control stream is on cards, disk, or data-set-label diskette) involves several steps.

==l OR

~
OR

~
@

O

REQUEST
TO RUN
A JOB

JOB CONTROL
STREAM

JOB STEP JOB STEP
RUN JOB JOB PROCESSOR PROCESSOR JOB

H PROCESSOR r- SCHEDULER H INITIALIZER H (STEP INI- rr (STEPTER- t-' TERMINATOR
TIALIZATION) MINATION)

I
~

ACTUAL
EXECUTION

OF YOUR
PROGRAM

YRUN FILE
(CONTAINS TRANSLATED JOB CONTROL STREAM. INCLUDING EXPANDED JPROCS)

Figure 1-2. Job Processing Flow

A brief discussion of each step in the job processing flow should give you a general idea
of what happens after job control accepts a request to process a job.

Beginning Job Processing - the Run Processor

The run processor begins job processing by scanning the control stream, translating
the job control statements into tables on disk, and expanding JPROCS. At this point,
it also checks the stream for order and syntax errors. If there are errors, no further
preparation of the job is made and job control error messages are generated .

UP-9986 Rev.1 1-5

Overview

Once the control stream is translated, the run processor places it in a system file
YRUN (a YRUN file is created for every job being processed). The name of the
job (obtained from the// JOB statement) is entered in a table called the job queue
table. The job queue table contains the names of all jobs waiting to be executed. The
jobs are ordered by a priority specified on the JOB statement (or, as you'll see later, on
other job control statements or workstation/console commands). Within a particular
priority, the jobs are ordered on a first-in first-out basis.

RUN PROCESSOR

• Translates job control statements

• Expands JPROCS

• Checks order and syntax of control stream

• Builds control blocks

• Enters job name in job queue table

• Creates YRUN file

Considering Jobs for Execution - the Job Scheduler

1-6

After the run processor prepares your job control stream, processing control passes to
the job scheduler, which checks the job queue table. If there are jobs in the queue
table, the scheduler determines which jobs will be executed next. The job priority and
the availability of system resources (peripheral devices and main storage) is the basis
for this determination.

A job can have one of four priorities: preemptive, high, normal, or low. At any one
time, the job queue table can contain the names of up to 15 preemptive priority jobs,
39 high priority jobs, 71 normal priority jobs, and 15 low priority jobs. The job
scheduler considers preemptive jobs for execution first, followed by high, normal
priority, and low jobs (in that order). Jobs are considered within each priority level on
a first-in, first-fit basis. Lower priority jobs are not considered until there are no other
higher priority jobs in the job queue table. Jobs in HOLD status are not considered at
all.

Before job execution can start, sufficient main storage and the necessary peripheral
devices must be available. The job scheduler checks for both; and if both are not
available, the job is left in the job queue table. A slightly different situation exists if
roll-out is configured with the system. (See "Job Roll-OutJRoll-In" in Section 2.)

UP-9986 Rev. 1

•

•

•

•

•

•

Overview

In addition to checking priority and the availability of main storage and peripheral
devices, the job scheduler maintains the shared code directory, reserves volumes,
maintains a volume use table for all jobs, deletes your job name from the job queue
table, and displays your job name at the system console.

JOB SCHEDULER FUNCTION

• Considers your job for execution by priority

• Reserves devices and main storage for your job so that
job execution can begin

• Deletes the job name from the job queue table

• Displays the job name on the system console

Beginning Job Execution - the Job Initializer

Processing control passes to the job initializer when job execution is ready to begin.
Up to 14 jobs can be executed concurrently .

The job initializer also loads shared code modules, activates job accounting, and
updates job log status.

JOB INITIALIZER FUNCTION

• Builds job preamble

• Loads shared code modules

• Activates job accounting

• Updates job log status

Initializing a Job Step - the Job Step Processor

The job step processor performs the functions necessary for initializing and completing
a job step. At this point in job processing, the program specified on the EXEC
statement is loaded and executed .

UP-9986 Rev.I 1-7

Overview

JOB STEP PROCESSOR FUNCTION
(STEP INITIALIZATION)

• Reviews volume requirements

• Reviews device allocation

• Updates system volume use table

• Allocates devices and disk space

• Locates and updates file control blocks

• Locates and posts address of embedded data

• Stores logging data

• Performs utility functions (rewinding tapes,
scratching files, etc)

Ending the Job Step - the Job Step Processor

The job step processor also performs the end-of-job-step housekeeping duties. If this
is the last step in the job, the job step processor passes processing control to the job
terminator; if not, it retains processing control for initialization of the next job step.

JOB STEP PROCESSOR FUNCTION
(STEP TERMINATION)

• Updates job preamble

• Initiates burst mode printing of spool files

• Records logging data

• Scratches job step (temporary) work files

Ending the Job - the Job Terminator

1-8

When the last step in the job has been processed, the job terminator receives control to
perform end-of-job housekeeping duties.

UP-9986 Rev. 1

•

•

•

•

•

•

Overview

JOB TERMINATOR

• Deletes job name from system console

• Scratches job temporary files

• Scratches job's SYSRUN file

• Requests printing or punching or log and spool files

• Displays job termination message

• Frees memory and releases devices

• Clears job entries from system volume use table

Building and Storing Job Control Streams and JPROCS
In addition to coding, then keypunching job control statements on cards, there are
other ways of building and storing control streams.

•

BUILDING/STORING CONTROL STREAMS

If you have UDS-200 data entry equipment, you can use it offline to place job control
statements directly onto data-set-label diskettes.

• If your system is interactive, you can use the general editor (EDT) to build control
streams at a workstation. Depending on the instructions you give the editor, the
control stream can then be placed on data-set~abel diskette, in the spool file, or
cards, or in a permanent job control stream library on disk or formaHabel diskette.
You can specify a permanent SAT library of your own as the stream's destination or you
can use SY$JCS, the system job control stream library. The General Editor (EDT) Operating
Guide (UP-9976) explains the use of the general editor.

• If your system is interactive, you can use the job control dialog to build control streams. The
dialog stores the completed stream in YJCS. Section 9 explains the interactive job control dialog.

• If the control stream is already on cards, data-set-label diskette, or in the spool file,
you can use a FILE system console command or the FILE workstation command to place
the stream in a permanent SAT library. The FILE system console command is explained in
your operations handbook and the FILE workstation command is discussed in the Interactive
Services Operating Guide (UP-9972).

Note: Many of the sample applications and coding examples in this manual are
oriented toward cards, but all the job control functions discussed here can also
be used in an interactive environment .

UP-9986 Rev .1 1-9

Overview

For JPROCS to function as intended, you must store them in YJCS or your own
SAT library. So whether you use EDT, the job control dialog, or whether you
keypunch the statements on cards, the eventual destination of the JPROC is a
permanent library. See "How JPROC Definitions Are Stored" in Section 8 for more
information on storing JPROCS.

Saving Translated, Expanded Job Control Streams
(Save/Restore Facility)

1-10

Before a job can be executed, no matter how often its been executed already, it must
be translated and have any JPROCS expanded first. This is done by the run
processor, and for some jobs (especially those with many JPROCS) this takes a long
time. You can reduce this time by saving the control stream in its translated,
expanded state. Because the run processor can skip the step of translating and
expanding this type of control stream when it is restored and job processing starts, the
job's execution begins sooner.

To save a job control stream in its translated, expanded state, you simply include the
II OPTION SAVE or II OPTION NOSCHED statement in the control stream. (See
"Selecting Optional Features" in Section 6.) When job processing is initiated and the
run processor finishes expanding and translating the control stream, a copy of the
stream (as it appears in YRUN) is placed in a permanent MIRAM library. You can
specify your own library or you can use the system library YSA VE.

Depending on which OPTION statement you used, processing then proceeds through
execution (OPTION SAVE) or stops as soon as the expanded, translated stream is
placed in the specified library (OPTION NOSCHED). In either case, you'll have a
copy of the expanded stream in a permanent library.

When a translated stream is processed, the OPTION SAVE/NOSCHED statement is
ignored. If you intend to process the untranslated stream, you should remove the
OPTION SAVE/NOSCHED statement. A command different from the one used to
initiate processing of the untranslated stream is used for the translated one. See
"Running Job Control Streams" later in this section for more information.

UP-9986 Rev. 1

•

•

•

•

•

•

Overview

EXPANDED, TRANSLATED
CONTROL STREAM CONTAINING / / OPTION SA VE/NOSCHED CONTROL STREAM

YJCS
OR

AN AL TERNA TE
SAT LIBRARY

CONTROL STREAM PROCESSING

YJCS
OR

AN AL TERNA TE
SAT LIBRARY

ORIGINAL CONTROL STREAM

YSAVE

ALTERNATE
MIRAM

LIBRARY

When deciding whether or not to save expanded, translated control streams, keep the
following in mind: these streams take up more disk space than untranslated ones, you
can't use them to update a file catalog (see "File Cataloging" in Section 6), and you
can't change parameters on any of the job control statements. Replacing embedded
data sets is the most extensive change you can make to these streams (see "Replacing
Embedded Data Sets in Expanded Control Streams" in Section 6). Remember, you
cannot use a hyphenated job name if you intend to save your translated control
stream; the save processor does not recognize the hyphen.

Running Job Control Streams
Running a job control stream is a term commonly used in place of processing a control
stream. In OS/3 there are several ways you can initiate the running of a control
stream. These include the RUN/RV system console and workstation commands, the
II RUN/RV job control statements, the SC/SI system console and workstation
commands, and the// CC SC/SI job control statements. The differences between these
commands and statements are summarized as follows:

• RUN system console or workstation command

UP-9986 Rev.I

This command initiates a job control stream from a workstation or system console
that needs an input device. This may mean the control stream to be run is on
cards, a data-set-label diskette, or in the spool file. It may also mean the control
stream is stored in YJCS or an alternate SAT library file but contains a CR job
control statement and, therefore, will need an input device to complete
processing. (See "Adding Cards to a Stored Control Stream" in Section 6.)

1-11

Overview

•
• RV system console or workstation command

This command initiates a stored control stream from a workstation or system
console that does not need an input device.

• II RUN job control statement

This statement, when encountered in an executing job control stream, initiates
the running of another control stream. You can use //RUN if the control stream
is on cards or is stored in a library but contains a// CR statement because card
input is needed to complete job processing.

• II RV job control statement

This statement is used the same as //RUN except that it initiates a stored control
stream that does not need a card reader.

• SC system console or workstation command

This command initiates an expanded, translated control stream (stored in
YSAVE or an alternate MIRAM library) that does not require replacement of
embedded data and, therefore, does not need an input device.

• SI system console or workstation command • This command initiates an expanded, translated control stream from YSA VE
or an alternate MIRAM library that needs an input device for the replacement of
embedded data.

• II CC SC job control statement

This job control statement, when encountered in an executing control stream,
initiates an expanded, translated control stream from YSAVE or an alternate
MIRAM library that does not require replacement of embedded data and,
therefore, does not need an input device.

• II CC SI job control statement

This job control statement is used the same as // CC SC except that it initiates
expanded, translated control stream from YSA VE or an alternate MIRAM
library requiring an input device for the replacement of embedded data.

I For information about system console commands, see the appropriate operations
guide. For information about workstation commands, see the Interactive Services
Operating Guide (UP-9972). For information about the// CC SC/SI and
II RUN/RV job control statements, see, respectively, the "Using the RUN/RV Job
Control Statement to Call Control Streams" and "Using CC SC/SI to Call Saved
Translated Control Streams" in Section 6. •

1-12 UP-9986 Rev. 1
Update 8

•

•

•

Section 2
Basic Concepts

Assigning Devices and Files
An important part of writing a job control stream is identifying devices and files and
establishing a logical connection between the files and the program using them. The
following job control statements help you do this:

DD EXT LFD UID VOL

DST LBL ROUTE USE

DVC LCB SPL VFB

The DVC and LFD statements (in that order) are required for every type of file and
device you use. The other statements (when used) must appear between the DVC and
LFD statements. They're necessary depending on the kind of file, or function you
want performed in relation to that file. As a group, these statements are called a
device assignment set .

Device
assignment
set for a
file used by

PROG1

II JOB MYJOB

1
11 DV;· ..

II LFD •••

II EXEC PROG1
I&

The CAT, DECAT, EQU, FREE, REN, and SCRjob control statements are not coded
between the DVC and LFD statements; so, technically, they're not part of a device
assignment set, but their function is related. We'll talk about these in later sections.
For now, though, a brief description of the DVC, VOL, LBL, EXT, and LFD job control
statements should help you become familiar with the overall function of a device
assignment set .

UP-9986 Rev.1 2-1

Basic Concepts

Peripheral Devices and Logical Unit Numbers (DVC Statement)

2-2
Update B

A peripheral device is any unit of equipment, distinct from the central processor and
main storage, that allows the system to send or receive data. Some devices, such as
card readers, only handle incoming data (input); some, such as printers and card
punches, can only handle outgoing data (ouput); while others, such as disks, format­
label diskettes, tapes, and workstations, can handle both (input and output).

In OS/3, each type of peripheral device is assigned a specific number called a logical
unit number. You specify logical unit numbers in the DVC job control statement. This
tells job control (the job scheduler) which peripheral devices you need for your job.

Suppose you need a printer because your program produces printed output. The
following information taken from Table A-1 of the Job Control Programming Reference
Manual (UP-9984) shows some logical unit numbers for printers.

Device Type Logical Device Type and Features
Code Unit No.

04040000 14, 15 0791 correspondence quality printer
04010000 16, 17 0798 printer, no optional features
04020000 18, 19 0789 printer
04FF0000 20, 21 Any printer, no features specified
04400000 22, 23 9246 printer, no features specified
04100000 24, 25 0776 printer, no optional features
04200000 26, 27 AP9215 Printer, no features specified
04800000 28, 29 0770 printer, no optional features

If you need a Unisys 0776 printer, specify either 24 or 25 on the DVC statement. If
any printer will do, specify 20 or 21.

Device assigrvnent
for the 0776
printer

II JOB MYJOB

{
II DVC 24}
II LFD •••
II EXEC PROG1

Device
assigrvnent
for any
available
printer

II JOB MYJOB

{
II DVC 20}
II LFD .•.
II EXEC PROG1

Each logical unit number you use corresponds to a device requirement for your job.
So, if you specify logical unit number 20 in one job step and logical unit number 21 in a
following step, two printers must be available in order for your job's execution to
begin, even if one is sufficient.

UP-9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

II JOB MYJOB

II DVC 20
II LFD •••

II EXEC PROG1

II DVC 21
II LFD •••

II EXEC PROG2

I&

Two printers must be

available for this
job to run.

Besides using logical unit numbers, disk devices can be assigned by specifying RES or
RUN. These and other functions of the DVC statement are further discussed in
Sections 3 and 4 .

Note: For 0776 printers, the CLASS=parameter should be used if a unique logical
unit number is required.

Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)

Volume serial numbers are used to uniquely identify disk packs, diskettes (format and
data-set-label), and tape reels to the operating system. This number is written
externally (generally on a gummed label) and internally (on the actual recording
surface). Both numbers should match for identification purposes.

The assignment of volume serial numbers takes place when the prep routines
associated with disk, diskette, and tape are performed. See the System Service
Programs (SSP) Operating Guide (UP-8841) for information about prep routines.

When you specify a volume serial number in a VOL statement, job control checks to
make sure that a tape reel, diskette, or disk pack with the matching volume serial
number is mounted. If the wrong volume is mounted, the system notifies the operator .

UP-9986 Rev.I 2-3

Basic Concepts

In this example

Device
assignment
for a disk file

II JOB MYJOB

Specifies any available

{

II DVC 50 ~~ disk device
II VOL 12345A
II LFD ••. ~~Specifies a disk pack with

the assigned voll.llle serial

II EXEC PROG1
I&

nlJllber of 12345A

the disk volume whose serial number is 12345A must be mounted for job processing to
continue.

We'll discuss other functions of the VOL statement in Sections 3 and 4.

Notes:

1. OS I 3 assumes that all volume serial numbers are unique. The mounting of two
volumes with the same volume serial number at the same time yields unpredictable
results.

2. OS/3 allows a maximum of 151 volumes to be in use by all active jobs. (The
maximum number of volumes allowed for a single job is also 151.)

File Identifiers (LBL Statement)

24

While a volume serial number identifies one tape, disk, or diskette volume, a file
identifier names (or identifies) a particular file on that volume. The file identifier is
an alphanumeric name physically written on the recording surface of the tape, disk, or
diskette (format and data-set-label). You specify a file identifier on the LBLjob
control statement. If you're creating the file, the identifier you specify is assigned. If
the file already exists, job control checks to see that the file identifier specified with
the LBL statement matches one already recorded for a file on a particular volume.
This ensures correct file use.

UP-9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

Device
assignment set
for a disk file

II JOB MYJOB

{

II DVC 50 If the file, is being created,
II VOL 12345A MYFILE is the identifier
II LBL MYFILE ---.~ assigned. If the file exists,
II LFD... MYFILE is the identifier job

control checks for.

II EXEC PROG1
I&

A file identifier specified on an LBL statement is required for any file on disk,
diskette, or multifile tape volume. If a tape volume holds only one file, a file identifier
may be specified but isn't required. As you'll see in a later section on spooling card
input, it is sometimes useful to specify an LBL statement (with a file identifier) in the
device assignment set for a card file that's been spooled.

The LBL statement has other functions that are covered in Sections 3 and 4.

Note: The prep routine for data-set-label diskette automatically assigns a file
identifier of DATA unless you specify otherwise during the prep .

Disk and Format-Label Diskette File Area (EXT Statement)

Whenever you're creating a disk or format-label diskette file, you allocate space for
that file in contiguous areas (on the recording surface) called extents. The amount of
space as well as other characteristics of the file's extent are specified using the EXT
job control statement. The device assignment set for every disk or format-label
diskette file you are creating must include an EXT statement. It is also required if
you want to change certain extent specifications for a file that already exists.

Using the EXT statement, space on disk or format-label diskette is allocated in terms
of one of the following:

• Number of cylinders

You specify the number of cylinders needed for the file.

• Absolute cylinder address

UP-9986 Rev.I

You specify the number of cylinders needed for the file and you also specify the
starting address of the file as an absolute cylinder address .

2-5

Basic Concepts

• Number of tracks

You specify the number of tracks needed for the file.

• Absolute track address

You specify the number of tracks needed for the file and you also specify the
starting address of the file as an absolute track address.

• Number of blocks (by cylinder)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of cylinders so the actual
allocation is by cylinder.

• Number of blocks (by track)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of tracks so the actual allocation
is by track.

You'll learn more about file space allocation when we discuss the EXT statement in
Sections 3 and 4. For now, it is enough to know that an EXT statement must be
included in the device assignment set when you're allocating space or making certain
allocation changes for a disk or format-label diskette file.

Device assignment
set for a
disk file.

II JOB MYJOB

I
II DVC 50
II VOL 12345A
II LBL MYFJLE
II EXT Ml,C,,CYL,4 ~~
II LFD ...

II EXEC PROG1
I&

This statement specifies four
cylinders of contiguous space
for a HIRAM (disk) file.

Data-Set-Label Diskette File Area (EXT Statement)

2-6

The prep routine for a data-set-label diskette automatically allocates the entire
diskette for one file and assigns a file identifier of DATA unless you specify otherwise.
If the space was already allocated by the prep routine, there is no need for you to
include an EXT statement in your device assignment set. If, however, the space was
not previously allocated, you must use the EXT statement to allocate the space
yourself. Allocating the space yourself allows you to have control over how many files
the diskette can contain.

UP-9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

Space on data-set-label diskette must always be allocated by block and it must be
contiguous. Data-set-label diskette files are always one-extent files. For information
about the EXT statement for data-set-label diskette, see "Information about Data-Set­
Label Diskette File Allocation" in Section 4.

Logical File Names (LFD Statement)

We've already talked about how you specify a file identifier (a name that's physically
recorded on the surface of a disk, tape, or diskette) on the LBL job control statement.
There is another name, however, that is required for every file (not just disk, tape, and
diskette) and must be included in every device assignment set. It is the logical file
name: the name your program references the file by.

You specify it on the LFD (logical file definition) job control statement, which is
always the last statement in any device assignment set. The name you specify
logically (LFD) links the file (name) you reference in your program with the physical
file (LBL) defined in your job stream's device assignment set. The names that you use
are:

• In BAL

The name from the label field of the file definition macroinstruction .

If: Then:

10 16
II DVC 50

l
Device assignment

FILE1 CDIB II VOL 12345A set for a newly
II LBL MYFILE allocated file
II EXT MI,C,,CYL,4 referenced by the
II LFD FILE1 program as FILE1

• In COBOL (COBL74)

UP-9986 Rev .1

The LFD field of the implementor name from the SELECT clause.

If: Then:

12

SELECT CDS ASSIGN TO CARDREADER-INFIL·F II DVC 30 }
II LFD INFIL

Device assignment set
for the card file

(In basic and extended COBOL, the LFD name corresponds to the first eight
characters of the file name from the SELECT clause. If an external name is
specified, however, then use the external name instead.)

2-7

Basic Concepts

2-8

• In FORTRAN

The device number from the READ or WRITE statement, prefixed by FORT.

If: Then:

7 10 II DVC 90

} II VOL TAPE01 Device assignment
READC6, 10) II LBL PAYFIL set for a tape file

II LFD FORT6

• RPGII

The file name from the file description specification.

If:

FOAMF
TYPE

I---

PAGE FILE
NO. LINE NAME

NO. ~
::>
I-
0
z

1 2 J 5 6 7 13 14

OJ_ o_L1_LO •~'Ril Njl

FILE TYPE

FILE DESIGNATION

END Of FILE

SEQUENCE

FILE FORMAT

I-

0 Ci
3 !;! 0 BLOCK
!;! [[

0 ~
LENGTH

0 ~ :< " w

15 16 17 18 19 20 23

0 i: J_

Then:

II DVC 20 }
II LFD PRINT

Device assignment
set for a print file

The file names used for printer and punch card files in programs supplied by Unisys
(such as the compilers and the linkage editor) are standard system file names. A
printer file is always PRNTR, and a punch card file is always PUNCH. So, if you want
the printed output from a compilation, for example, the LFD statement for the print
file device assignment set is// LFD PRNTR. These logical file names apply only to
programs supplied by Unisys. In a job or job step that executes a user program, you
must supply your own logical file names (for the printer, punch, plus any other files)
on the LFD job control statement.

When using any other Unisys routines (such as the data utility routines), specify the
standard system file names shown in the coding examples in the corresponding user
guide.

These and other applications of th~ LFD statement are discussed in Sections 3 and 4.

UP-9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

Device Assignment Set Placement and Duration
There is no strict rule for the placement of a device assignment set in a job control
stream: simply place the device assignment set somewhere between the JOB
statement and the EXEC statement.

II JOB MYJOB

..----- other job control statements

II DVC 50
II VOL 12345
II LFD DSKFIL1
II LFD PAYROLL

------ other job control statements

II EXEC PROG1
I&

Where a multiple step job is concerned, just remember that a device assignment set
specified in one job step is normally effective for that step as well as any that follow.
Consider this example .

Job step 1

II JOB MYJOB

II DVC 20
II LFD PRTFIL
II DVC 90
II VOL T00001
II LBL TAPE1
II LFD PAYRATE

II EXEC PROG1

Device assignment sets for a print
file and a tape file. The assignments
are effective for job steps 1, 2,
and 3.

continued

UP-9986 Rev .1 2-9

-~--

Basic Concepts

Job step 2

Job step 3

II DVC 50
II VOL 1234A
II LBL DSKFIL1
II LFD PAYROL

II EXEC PROG2

II EXEC PROG3

I&

} Device assigrvnent set for a disk
file. The assigrvnent is effective for
job steps 2 and 3.

Any of the device assigrvnents
specified in job steps 1 and
2 are effective for job step 3.

In the preceding example, PROGl can reference only PRTFIL and PAYRATE. It
cannot reference PAYROL. PROG2 and PROG3 can reference PRTFIL, PAYRA.TE,
and PAYROL.

Job Termination

2·10

There are two ways in which a job can terminate: normally or abnormally.

1. Normal Termination

This is initiated by the control stream, the program, or the workstation or system
console operator. Generally, it occurs after the last job step, but it can also be
caused by the operator using the CANCEL or STOP operator command, or by the
program issuing a cancel instruction. If terminated by the CANCEL system
command or program instruction, the entire job terminates immediately. This
includes the currently executing job step plus all subsequent job steps (if any) in
the job. The STOP operator command terminates a job when the job step
currently executing is finished.

2. Abnormal Termination

This is caused by program errors or by control stream errors (syntax order). If
caused by program errors, you can get a main storage printout (dump), which can
be used to debug your program, provided that you have placed an OPTION
DUMP statement in the control stream prior to the job step that caused
termination. The OPTION job control statement is covered in "Selecting Optional
Features" in Section 6. If caused by a control stream error, a message explaining
the error is displayed on the system console.

UP·9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

In anticipation of program errors, you may use the ABNORM=label parameter of the
EXEC statement. This parameter causes a skip forward in the job control stream so
that the job finishes executing and doesn't terminate abnormally. If, however, the
operator issues a cancel instruction, the job terminates normally.

All terminations result in the deallocation of the system facilities (peripheral devices,
main storage, disk work areas, etc) allocated to the job.

Restarting a Job
What if your job terminates abnormally - specifically when your program is executing?
If the program only processes a few records, you can rerun the job from the beginning
without any great loss; but, if the program processes many records, rerunning the job
increases processing time and cost. To help avoid this, OS/3 provides a restart facility
that permits you to resume execution of your job from a particular job step or a
checkpoint record. See "Restarting a Job" in Section 6 for more information.

Branching Within a Control Stream
When you write a program, you can set alternate paths for the program to take.
Normally, program statements execute consecutively in the order of their appearance.
However, it is often necessary to alter this normal sequence and skip forward to a
different point in the program - this is called branching. Similarly, alternate paths
can be taken in job control streams. The SKIP and OPTION QUERY job control
statements allow you to skip forward in the job control stream during your program's
execution to another job control statement. The ABNORM parameter of the EXEC job
control statement allows you to skip forward in the job control stream if your program
causes an abnormal termination. (See Section 6.)

You can also branch from one job control statement to another in a control stream by
using run-time conditional job control statements (they're called run-time statements
because they are available and effective through the run symbiont). Run-time
conditional job control statements are interpreted and acted upon while the run
symbiont is scanning the control stream. They are not placed in the job's YRUN
file; their actions are completed when the run processor has acted upon them. Only
forward branches are allowed. The job control statements belonging to this category
are GO, IF, and NOP. They are explained in "Run-Time Conditional Job Control
Statements" in Section 7 .

UP-9986 Rev.1 2-11

Basic Concepts

Jobs and Main Storage
After the supervisor is loaded into the system, the remaining main storage is available
to job control, symbionts (like the run processor and the job scheduler), your jobs,
shared code, and your programs. Naturally, the amount of available main storage
varies depending on the jobs, symbionts, and programs executing at the time. Job
control assigns a portion of main storage to each job as the space becomes available.
The amount of main storage assigned is that which is needed to execute the largest job
step in the job. When a job is completed, the space it occupied is returned to the
system.

Job Roll-Out/Roll-In

In "Considering Jobs for Execution - the Job Scheduler" in Section 1, we mentioned
that the job scheduler considers jobs for execution by priority and the availability of
main storage and peripheral devices. In general, if the necessary main storage and
peripheral devices are not available, the jobs execution, regardless of its priority,
cannot begin. A different situation exists if roll-out (ROLLOUT=YES) is configured at
SYSGEN time.

With roll-out, high, normal, and low priority jobs are rolled out to disk to provide
enough main storage for preemptive jobs to be executed. When the preemptive
priority section of the job queue table is empty, the job scheduler rolls first the high,
then the normal, and last the low priority jobs back into main storage for execution.
Remember though, even if roll-out is configured, the peripheral devices needed for the
preemptive job must also be available; otherwise, roll-out does not occur.

Note: Rolled out jobs are no longer identified by an asterisk(*) in a job slot header
(models 3 through 6).

Minimum and Maximum Main Storage

2-12

By minimum main storage size we mean the amount needed to successfully execute
the largest step of a job. The maximum size is the amount that can be used, if
available, to improve or speed up job step execution. As you'll see in Section 4, you can
specify the minimum and maximum main storage size on the JOB statement or on the
OPTION statement.

The total amount of main storage used by a job step also includes the size of the job
prologue. The prologue contains information (control tables) needed to regulate your
job. The size of the prologue, however, is automatically taken into consideration so
you don't have to include it in any main storage size that you specify. Just keep in
mind that the job prologue is part of the true main storage requirement for a job. This
is illustrated in Figure 2-1.

UP-9986 Rev. 1

•

•

•

•

•

•

Basic Concepts

1 JOB PREAMBLE l

TASK CONTROL BLOCKS

1-----------
k ?

JOB ACCOUNTING TABLE

LOCAL DAT A AREA

SHARED CODE TABLE

f DISK STORAGE ~ EXTENT INFORMATION

SPOOL CONTROL TABLE AND BUFFERS

PHASE LOAD TABLES

SAT /COM ACCELERATION
CODE

JOB
PROLOGUE

JOB REGION
LENGTH

~ ; MINIMUM PROGRAM
JOB STEP LOAD MODULE LENGTH AREA

If. "'

I M~XIMUM
~NGTH

ii-------------ir~l -------
Figure 2-1. Job Region in Main Storage

Dynamic Expansion of Main Storage

Your job may require dynamic expansion of its initial main storage allocation to load
software modules (data management modules, for example), or to accommodate other
program modules called by your job. This capacity for dynamic expansion of the job
region is called the DLOAD facility. For more information about this facility, see
"Defining Software Facilities Needed by Your Job" in Section 6 .

UP-9986 Rev.I 2-13

•

•

•

•

•

•

Section 3
Minimum Control Stream Requirements

What is a Minimum Control Stream?
A minimum control stream consists of only those job control statements needed to
properly direct the execution of a job.

Let's assume you want to execute a program that has been compiled, link edited, and
stored in a library. This particular program does not use any input (cards, tape, disk,
etc.) and the only output is directed to the printer. The purpose of the program is to
print constants on adhesive-backed mailing labels, like this:

ZIP CODE ------

Granted, this isn't a widely used application, but it illustrates a bare minimum control
stream.

Constructing the Minimum Control Stream

In order to run this program, we have to construct a control stream to tell the
operating system what to do with it. Since the needs of the program are simple, we
need very few job control statements .

UP-9986 Rev.1 ~1

Minimum Control Stream Requirements

3-2

First, a JOB job control statement is needed to indicate the beginning of the job to the
operating system. Every job entering the system must start with a JOB control
statement. Each job step does not need a JOB control statement, only one for the job
as a whole. Next, since there is a print output, a DVC job control statement is needed
to assign a printer to the job. And finally, every peripheral device we use has a file
associated with it; every file needs a file name. An LFD job control statement
provides the file name.

The DVC and LFD job control statements make up a basic device assignment set.
Since the printer is the only peripheral device used by our program, no other device
assignment sets are required.

In fact, there are no other processing options needed for this program. We are now
ready to initiate the execution of the job step (our entire job consists of only one job
step). We need an EXEC job control statement for this.

Now our program has all the job control statements that it needs to function. But,
when it is finished, we have to tell the system that our control stream is finished. We
need a/& job control statement.

Briefly, we have indicated all the job control statements needed for this simple
program. They are:

• JOB

• DVC

• LFD

• EXEC

• /&

We will cover each of these job control statements in its proper sequence. We will
show all the parameters available for these job control statements, but, at first, only
those parameters that are required will be described, along with any parameters that
are generated by default. The optional parameters will be introduced into the
discussion of job control at the appropriate time.

But, before we start our control stream, you should read the statement conventions in
Appendix A. They explain how the job control statements are presented in text (how
you can tell which parameters are optional, which are required, how a default option
is shown, etc.) and how you code them.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The Beginning of the Job

The JOB job control statement is the first job control statement that you need. Its
format is:

C,print·option·listlC,acc·nolC,nXml , ACT
LOG
NOA CT
NOLOG
NONE
BOTH

As you can see, it has quite a number of parameters. You can specify the name of the
job, the priority, how much main storage is needed, the amount of tasks in a job step,
how long the job should take, special information for display on the system console,
accounting information, spooling buffer size, and log information (where your
accounting record is kept).

The only parameter we are interested in right now is thejobname parameter, and any
default parameters (shown by shading) that are generated.

The job name parameter does just what it implies: it names the job. It consists of one
to eight alphanumeric characters. Do not hyphenate the job name if you plan to save
the job. The save processor does not allow or recognize hyphens.

For example, we assign the name POCO to the job. It's coded as:

II JOB POCO

By default, the job has a normal scheduling priority (N) and one task (1).

There is a special feature of the job name parameter that helps you ensure that unique
job names are always assigned - you can use trailing ampersands (&) in the job name.
You could, for example, code:

II JOB POCO&&&&

When the stream is processed, the system replaces the ampersands with unique
numbers .

UP-9986 Rev .1 3-3

I

Minimum Control Stream Requirements

When would you use this feature? If you have a job control stream (POCO for
example) that is used frequently by different personnel - perhaps even concurrently
from workstations - all the users could use POCO&&&& and be assured of having
unique job names assigned. It is recommended that if you use this feature, you use at
least three trailing ampersands.

You can override the parameters specified on the JOB control statement through
selected features of the OPI'ION job control statement, which is explained in
"Selecting Optional Features" in Section 6.

Identifying the Devices

34
Update 8

The next entry needed in the control stream is for the printer. The DVC job control
statement is used to request the assignment of peripheral devices to a job. Its format
is:

//[symbol] OVC !nnn[(n)ll , addr
RES OPT
RUN IGNORE

ALT

0

REQ[(n) l
REAL

The DVC job control statement specifies the logical unit number associated with a
peripheral device type. It can also be used to assign alternate devices, or to specify
that the job should be executed even if the requested devices are unavailable.

Here, again, we are only interested in the required parameter specifying the logical
unit number. There are no default parameters.

The nnn is a decimal number indicating the logical unit number of the device. By
looking at the following information taken from Table A-1 of the Job Control
Programming Reference Manual (UP-9984), we see that the category for printers is in
the range of 14-29. Ifwe are willing to use any printer that is available, we use logical
unit number 20 or 21. But, it just so happens that there also are a Unisys 0776
printer subsystem and a Unisys 0770 printer subsystem available in the system. Our
program uses a special character that is only present on the 0776 printer, so we will
use logical unit number 24.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

Logical Device Type Device Type and Features
Unit No. Code

14, 15 04040000 0791 correspondence quality printer
16, 17 04010000 0798 printer, no optional features
18, 19 04020000 0789 printer
20, 21 04FF0000 Any printer, no features specified
22, 23 04400000 9246 printer, no features specified
24, 25 04100000 0776 printer, no optional features
26, 27 04200000 AP9215 printer, no features specified
28, 29 04800000 0770 printer, no optional features

You'll notice that there are two other choices for this parameter: RES and RUN. They
will be discussed and used in later examples.

We can now add the DVC job control statement to our control stream as follows:

II JOB POCO
7/ii'[bvc '22

Notes:

1. The (n) portion of the nnnparameter is used only when the logical unit number
indicates a workstation device.

2. Logical unit numbers can be changed at system generation (SYSGEN) time to suit
the needs of a particular installation. You must be aware of any changes because
they could cause device assignment problems within your control stream, especially
if you're using JPROCS supplied by Unisys.

Assigning a Logical File Name to the File

Every device assignment set in the control stream ends with the LFD job control
statement. This associates the file defined in the program with the file information in
the control stream. Its format is:

ll[synboll LFD {fi~ename } [,{n.}]
*filename 8 ,,EXTEND] !NIT

PREP
ID
IGNORE

The LFD job control statement specifies the file name of the file. It's also used to
reserve main storage for information about disk file extents, write over the
information of the file, and add to the data already in the file .

UP-9986 Rev.1 3-5
Update B

Minimum Control Stream Requirements

The filename parameter specifies the name of the file you are going to use, and must
correspond to the name given to the file in the program. The file name for the LFD job
control statement is determined in the following manner:

• The basic assembly language (BAL) programmer uses the name in the label field
of the file definition macroinstruction.

• The COBOL programmer uses the external name from the SELECT entry in the
environment division. (If the external name is omitted in COBOL 68, use the file
name from the SELECT entry.)

• The FORTRAN IV programmer uses the device number from the READ or
WRITE statement, prefixed by FORT.

• The FORTRAN 77 programmer uses FO followed by the unit number unless a
specific name was specified in the OPEN statement.

• The RPG II programmer uses the file name from the file description specification.

The filename parameter is normally one to eight alphanumeric characters, but if you
are using a data management file, it has a maximum of seven characters. This is
because data management allows only one to seven characters in the label field of the
file definition macroinstruction.

If an asterisk is placed in front of the file name on the LFD job control statement, it
means this is an input-only file; you cannot write on it. The operator should be
notified of this so he can take appropriate action.

For our control stream example, we'll assume our program is a COBOL program. The
file name for the printer in the FD entry is WRITEOUT. We can now add the LFD job
control statement to our control stream.

II JOB POCO
II DVC 20
II LFD IJRITEOUT

Executing the Program

3-6

We have defined all the requirements of the program to the operating system. Now
we have to provide a job control statement to call the sorted program from a library
and initiate execution. This is done with an EXEC job control statement. Before the
program is actually loaded, any outstanding tape and disk mounting requests are
completed.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The format of the EXEC job control statement is:

//[symbol] EXEC program-name '{library-name} [,switch-priority][,ABNORM=labell
YRUN
YLOD

The EXEC job control statement identifies the name of the load module. It is also
used to specify the library containing the load module, the task switching priority, and
any action to be taken if the program causes an abnormal termination.

Once more, we are only interested in the required parameter and any default
parameters generated.

The program-name parameter identifies the load module to be executed. Every
program that is successfully compiled and link edited creates a load module. Every
load module that is created and every routine supplied by Unisys must have a name.
The LOADM linkage editor control statement assigns a name to a load module; the
EXEC job control statement calls the load module by a program name. These names
must agree.

For example, you link edit your program with the module name TESTR on the
LOADM linkage editor control statement. The linkage editor creates the load module
with the name TESTR. When you want to execute this program, your EXEC job
control statement uses this same name: TESTR.

If, when you link edit your object module, you do not use a LOADM linkage editor
control statement, the load module name, by default, is LNKLOD.

Assume that this program is stored in a library from which it can be retrieved as many
times as needed. When the program was link edited, the linkage editor was
instructed to place the load module in a specific, permanent library; otherwise, it
automatically would have been placed in the job's YRUN file, which is only a
temporary file. Assume it is located in the system load library file (YLOD), and the
load module name is LABELS. Since YLOD is the default parameter generated for
the load library, we only need to specify the program name, which is the same as the
load module name: LABELS.

We can now add the EXEC job control statement to our control ~tream as follows:

II JOB POCO
II DVC 20
II LFD IJRITEOUT
II EXEC LABELS

By default, the lowest available task switching priority established at system
generation time is used .

UP-9986 Rev.I '3-7

Minimum Control Stream Requirements

Ending the Basic Control Stream

So far, we have provided all the job control statements needed to construct a basic
control stream: JOB, DVC, LFD, and EXEC.

This control stream is all the system needs to execute our simple program. But, after
the program executes, the system returns to job control to obtain the next job control
statement. Because the job is finished, a/& job control statement is used to signal the
end of the job. Its format is:

I&

This statement has no parameters, but it can have comments. These comments have
no effect on the system; they only provide a means of annotation. The comments must
be separated from the/& job control statement by at least one blank column.

The statement conventions for coding more than one job control statement on a line
(multistatement coding) are presented in Appendix A. The/& job control statement,
however, must be the only job control statement on a line.

Adding the/& job control statement, along with some comments, our control stream
looks like this:

II JOB POCO
II DVC 20
II LFD IJRITEOUT
II EXEC LABELS
1& END·OF·LABEL·JOB

Ending the Card Reader Operation

3-8

We have signaled the system we are finished processing. Now, we have to terminate
the card reader operation - this informs the system that there are no more cards
associated with the job. We do this with a FIN job control statement. Its format is:

//[symbol l FIN

There are no parameters.

We can now add a FIN job control statement to our control stream, as in the following
example:

II JOB POCO

II DVC 20
II LFD IJR ITEOUT
II EXEC LABELS
1&
II FIN

END·OF·LABEL·JOB

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The FIN job control statement also signals the end of card input when merging job
control statements with stored control streams, submitting data cards as input for a
stored control stream, or storing a complete control stream.

Note: Using the FIN job control statement is unnecessary when input is on data-set­
label diskette or in the input spool file.

The Control Stream So Far - A Review
We have defined everything the system needs to know about the job. It has been
given a name, the system was instructed what load module to use, and the job has
been assigned the peripheral device it needs. The program is ready for execution.

This control stream represents only a minimum application. We have only scratched
the surface of the capabilities of the OS/3 job control. Throughout the rest of this user
6Uide, we are going to build on this minimum control stream by adding and modifying
job control statements.

Let's assume that the program with a load module name of LABELS was recompiled
and link edited after it was modified to accept input from the card reader. This new
input contains name and address information that will be printed on the adhesive­
backed labels along with the constant information as shown in the following sample .

NAME JOHN A. SMITH

ADDRESS 143 S. 52ND. ST.

CITY __ H_O_ME_T_O_WN ___ STATE_-"-'PA~·----

ZIP CODE 18908 ------

UP-9986 Rev.I 3-9

Minimum Control Stream Requirements

Adding Card Input

3-10

Since the job will now accept card input, we must provide a device assignment set for
the card reader. This means we have to insert a DVC and LFD job control statement
for the card reader into the control stream. Once again, their formats are:

//[symbol] DVC lnnn[(n)J}, addr
RES OPT
RUN IGNORE

[,HOST=host·id]

ALT
I

0

REQ[(n)]
REAL

//[symbol] LFD {filename } [·{ n}j ·1EXTEND)
*filename 8 !NIT

PREP
ID

IGNORE J

The following section of Table A-1 in the Job Control Programming Reference
(UP-9984) indicates that the category for card readers is 30-35.

Logical
Unit No.

30, 31
32, 33
34, 35

Device Type
Code

08FF0000
08200000
08800000

Device Type and Features

Any card reader subsystem, no features specified
0719 card reader, no features specified
0716 card reader, no features specified

For this example, we will assume the system you're using has only one card reader, a
0719 card reader. For a logical unit number, there are four alternatives. We can use
32 or 33, which assigns a 0719 card reader specifically, or, since the 0719 card reader
is the only one we have, we can use 30 or 31, which allows us to use any available card
reader.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

If the system had two card readers, both of a different type, and a particular card
reader is needed, you must be more specific in your assignment. If it's immaterial
which card reader is used, you could assign the logical unit number for any card
reader (30 or 31).

A point to remember about logical unit numbers: if you don't care about the specific
device type, use the logical unit number that assigns any device within the category
(20 and 21 for printer, 30 and 31 for card readers, etc.). In that way, ifthere is more
than one type of device, you get the first one available. For instance, suppose you
selected logical unit number 25 (Unisys 0776 Printer Subsystem) but there is also a
0770 printer connected to the system. The 0776 printer has 40,000 lines waiting to
print, while the 0770 printer has a backlog of only 500 lines. By specifying only the
0776 printer, you must wait for the other 40,000 lines to finish printing. By specifying
any printer, the output is sent to the first available printer. The logical unit number
we are going to use for the card reader is 30.

Note: When requesting the assignment of more than one device of the same type (two
printers, for example), be sure you request the assignment of any specific devices
you need before you request the assignment of general ones. This ensures that a
specific device you may need (the 0770 printer, for example) will not be
allocated for use as a general printer when it's needed as a specific device.

Now that we have a DVC job control statement for the card reader, we need a
corresponding LFD job control statement. Since this program is written in COBOL,
we check the SELECT entry in the COBOL program and find that the file name is
CARDIN. This filename is coded in the LFD job control statement.

We can now add the device assignment set for the card reader to the control stream.
It can be placed anywhere in the control stream, with the following restrictions:

• It must be before the EXEC job control statement.

• It cannot be within embedded data.

• It cannot be within the device assignment set (DVC through LFD sequence) for
another device .

UP-9986 Rev.1 3-11

Minimum Control Stream Requirements

Card Input and Embedded Data

3-12

To accept data input from a card reader, we must inform the card reader in some way
that it is data to be read. In many cases, this data is caused to be read at execution
time by data management. In this kind of application, the data cards follow the // FIN
card that caused the card reader to be turned off previously. All that is additionally
needed is a /* card after the data signifying end of data. There are no other
parameters required, and no comments are permitted in the comment area of the
card. This/* statement is always required for any type data. Thus, to our control
stream we can now add the data, followed by the/* end-of-data statement, and run
our job, which consists of the LABELS program. Basically, we are saying to the
processor, run my job POCO which executes the program called LABELS - my data is
a card file after the FIN statement when you are ready to execute. This will print the
name and address information, plus constants, as shown, on adhesive-backed labels
that the operator has previously placed in his printer. The following example
illustrates this control stream:

II JOB POCO
II DVC 20
I I LFD WRITEOUT
II DVC 30
II LFD CARDIN
II EXEC LABELS
I& END-OF-LABEL-JOB
II FIN

data'cards
I*

Note: You should be aware, however, that in the case of multiple files, ifthe first
program in the series does not read all of its data cards (along with the/* that
signals end of data), the next program step will pick up where the previous one
left off. Additionally, if you are programming in higher level languages, such
as RPG, COBOL, or FORTRAN, you cannot read multiple card files in a single
program without closing and reopening the files.

Another way in which data cards may be accepted, and which informs the card reader
that data is being input, is the embedded data method. This means that the data is
embedded within the control stream itself. All it requires is a start-of-data (/$)job
control statement immediately after the EXEC statement, followed by the data and
the/* end-of-data. /$ has no parameters, and may appear as the last job control
statement on a multistatement line.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The advantage of this method is that the device assignment set is no longer required
for the reader, since the control stream is already being read. Additionally, the data
being read is instantly accessible, which is discussed later in a section on JPROCS. A
disadvantage is that embedded data in a prefiled job control stream is harder to
change than the data in a card file (which follows the// FIN job control statement).
This is because the embedded data is actually a part of your control stream rather
than a separate card file. Changing embedded data is discussed in "Substituting
Embedded Data" and "Replacing Embedded Data Sets in Expanded Control Streams"
in Section 6. An example of an embedded data control stream is:

II JOB POCO
II DVC 20
II LFD WRITEOUT
II EXEC LABELS
1$

i~

I&

data·c:ards

II FIN
END-OF-LABEL-JOB

You can use this method when you become familiar with the programming techniques
needed by the language you're using - for example, a COBOL ACCEPT or FORTRAN
READ instruction. In fact, programs supplied by Unisys (such as the COBOL
compiler and the data utility routines) use this method. It entails the use of a
supervisor macroinstruction in the program (if it's assembler language; if it's one of
the other languages, there are similar instructions that are used). Again, if you decide
to use the embedded data method, the changes to your job control stream are:

1. Remove the device assignment set for the card reader; it's not needed.

2. Place the data (/$, data cards,/*) after the EXEC job control statement. This is
what's known as embedded data.

When you use the embedded data method, and you have a 0716 card reader
supporting the 96-column card feature, your data file can use the full 96 characters.
With data-set-label diskette, you can use up to 128 characters. But, even though your
control statements also can be on 96-column cards and data-set-label diskette, only
the first 72 columns (characters) can be used for job control statements.

In addition to embedded data, there is a dummy data set. A dummy data set consists
of only a/$ and a/*. This is used with some language JPROCS. More information
about dummy data sets can be found in the language manuals (COBOL, FORTRAN,
etc.).

You can replace embedded data sets in translated, saved job control streams by using
the DATA STEP job control statement. Refer to "Dynamic Skip Function from a
Workstation" in Section 6 for more information .

UP-9986 Rev.1 3-13

Minimum Control Stream Requirements

The Program is Changed - Another Device
So far, the program has been written to read name and address cards and print the
information, plus constants, on adhesive-backed labels. The program has been refined
once more. It is still going to print 8Cnstants. However, the name and address file is
now on magnetic tape, in ZIP Code sequence. This tape was created by someone
else's job. We want to list only the name and addresses of certain ZIP Codes;
therefore, we modify the program to accept a table from the card reader. This table
contains only the ZIP Codes we want to print. The program instructs the system to
compare the ZIP Codes from the table with the file on the magnetic tape and print the
names and addresses that match the ZIP Code table.

We have already provided the device assignment sets for the printer and the card
reader. Even though the format of the card reader input is different (previously it was
the name and address file, now it is the ZIP Code table), no changes are needed to the
card reader device assignment set. It was a program change and does not affect the
job control stream. The logical unit number is still 30 (DVC job control statement),
and the file name in the program is still CARDIN (LFD job control statement). The
only new item we have to provide in the control stream is a device assignment set for
tape.

What is Needed to Use a Tape?

3-14

We have already said that every peripheral device used needs the DVC and LFD job
control statements. For readers, printers, and punches, this is all that is needed to
complete the device assignment set. However, magnetic tapes have volume serial
numbers, and, optionally, file identifiers. So, the device assignment set for a tape file
could be either

or

II DVC •••
II VOL
II LFD

II DVC
II VOL
II LBL •••
II LFD •••

The first step is to provide a logical unit number and file name.

ZIP Code is a registered trademark of the U. S. Postal Service.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The Logical Unit Number and File Name for the Tape

The range oflogical unit number for magnetic tapes is 90-127. The name and address
tape is a 9-track, phase-encoded tape. We must be specific. The logical unit number
selected for the DVC job control statement is 100. This gives us any tape drive that
can read a 9-track, phase-encoded tape; the tape unit transfer rate is immaterial.

We can now add this partial device assignment set for tape to our control stream.

II JOB POCO
II DVC 20
// LFD \./RITEOUT
II DVC 30
II LFD CARDIN
lii:::ovc 100
/.L:t.!'o tlAMAOO
II EXEC LABELS
!& END·OF·LABEL·JOB
II FIN
/*

These new DVC and LFD job control statements do not represent the entire device
assignment set needed for tape. If we tried to run the job now, it would abort.

Supplying a Volume Serial Number for the Tape

Every tape file used in a job must have a VOL job control statement in the device
assignment set. This identifies the volume to be used. Its format is:

//[symbol l VOL

UP-9986 Rev.I

Mee
N

NMee
volsn·1

SCRATCH

{

(S) }
(NS)
(NOV)
(PREP).

vol sn· 1 {'CS> }
(NS)
(NOV)
(PREP)

volsn·2 {CS) }
CNS)
(NOV)
(PREP)

SCRATCH

volsn·2

volsn·3

SCRATCH

{

(S) }
CNS)
(NOV)
(PREP)

{

'(S) }
CNS)
(NOV)
(PREP)

3-15

Minimum Control Stream Requirements

3-16

The VOL job control statement supplies the volume serial number of the volume to be
accessed by the job. However, a tape volume does not necessarily need a volume serial
number, but it still must have a VOL job control statement.

You can also use the VOL job control statement to: count the number of blocks in the
file; specify the mode characteristics of the tape; request data management to write a
volume serial number; inhibit the checking of volume serial numbers if they are not
known; or, to indicate that the volume may also be used by someone else at the same
time that you are using it (this only applies to disk).

Again we are only interested in the required parameter. This parameter has several
different options, but for this job, only the volume serial number is needed.

The volsn-1 parameter is the 1- to 6-alphanumeric-character volume serial number of
the first volume of the file. A file may span more than one volume. Perhaps the
length of the file made it necessary to use three tapes (volumes) to hold the entire file.
Since this file is on only one volume, only one volume serial number is needed.
Assume it to be T APll 1.

We can now add the VOL job control statement to our control stream as follows:

II JOB POCO
II DVC 20
II LFD WRITEOUT
II DVC 30
II LFD CARDIN
II DVC 100
1/i!vot:::ri\J:i 111
II LFD NAMADD
II EXEC LABELS
II I& END·OF·LABEL·JOB
II FIN

data cards
I*

This control stream could now be run, provided that the tape is unlabeled (no file
identifier).

OS/3 data management supports a maximum of151 explicit volume names per file for
disk, diskette, and tape files.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

Labeled Tapes for File Identification

Just as there can be one or more volumes in a file, there can also be one or more files
in a volume. Suppose the tape volume contained five files. It would be necessary to
have file identifiers on each particular file to access the proper file. Single-file tape
volumes also can have file identifiers. This is done to ensure that the correct file is
used. Even though the volume serial number is checked to see if the proper tape is
mounted, it is possible that this tape does not have the proper file needed for the job.
For example, someone could have inadvertently written on the tape because it did not
have a file identifier to indicate that this tape already contains information to be
saved. By using a file identifier, you indicate this is a saved tape. Had there been a file
identifier on the tape, anyone trying to write on this tape would have been notified
that this is a saved tape.

The LBL job control statement is used to either check or create a file identifier. Its
format is:

//[symbol] LBL
{

file-identifier '} [·{file-serial-number}][,expiration-date]
'file-identifier VCHECK

The LBL job control statement identifies the file. It also can be used to: ensure that
the correct members of a multivolume file are used; indicate the date the file can be
deleted (by a SCRjob control statement); indicate the date the file was created;
indicate the position of the file in respect to the other files in a multifile tape volume;
and, specify the generation and version number of a tape file, thus ensuring the most
current edition of the tape file is used.

We only want to ensure that the proper file is on the tape volume, so we need only the
required parameter.

The file-identifier parameter is 1 to 1 7 alphanumeric characters for tape, card, and
diskette files. It is 1 to 44 alphanumeric characters for a disk file unless that file is a
scratch (temporary) file; then the file-identifier is 1 to 39 alphanumeric characters. If
the file-identifier contains embedded blanks, it must be enclosed by single quotation
marks .

UP-9986 Rev.I 3-17

Minimum Control Stream Requirements

Assume that MASTERFILE is the file identifier assigned to this tape file when it was
created. We can now add the LBLjob control statement to the control stream as
shown in the example.

II JOB POCO
II DVC 20
II LFD WRITEOUT
II DVC 30
II LFD CARDIN
II DVC 100
II VOL TAP111
II LBL MASTERFILE
II LFD NAMADD
II EXEC LABELS
1&
I&
II FIN

data cards
I*

END-OF-LABEL-JOB

The default parameters generated indicate this is the only file on the volume (1), and
it is the only edition of the file (1).

Note: File identifiers prefixed by $SCR refer to job step temporary files; those prefixed
by $JOB refer to job temporary files.

Another Programming Change - Another Device
Assignment

3-18

The site manager has determined the label program doesn't fulfill all the
requirements for which it was intended. Once more, it must be changed.

The name and address file was copied from the tape volume to a disk volume by using
a Unisys data utility routine. Now, the input name and address file is on disk, the ZIP
Code table is still input from the card reader, and the selected names and addresses,
plus constants, are still printed on adhesive-backed labels. These selected names and
addresses are now going to be saved and output to a file on a tape volume for a later
processing application.

Although there may be many programming changes involved, the control stream
changes are minimal.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

The device assignment set for the card reader, the printer, or the tape doesn't need
changing. Even though the tape was used previously as an input file, converting it to
an output file is only going to involve changes in the program; it is not reflected in the
control stream. After the tape was copied to disk, the information it contained was
deleted in another procedure. We can use this tape with a volume serial number of
TAPlll as the output tape. We can also use the same logical unit number in the DVC
job control statement. NAMADD is used as the file name for the output tape file in
the program. This allows us to continue using NAMADD as the file name in the LFD
job control statement. However, we are going to give this tape file a different file
identifier. In the previous device assignment set for the tape it was MASTERFILE.
We want to change it to reflect its purpose.

It is no longer a master file for input; it is an output tape - let's call it OUTPUTTAPE.
This requires a change to the file-identifier parameter of the LBL job control
statement for the tape device assignment set. We do not need to change it, but to
make the purpose and the name agree, we will. Changing the LBL job control
statement makes our control stream look like this:

II JOB POCO
II DVC 20
II LFD IJRITEOUT
II DVC 30
II LFD CARDIN
II DVC 100
II VOL TAP111
Ii t.st.:>oorJ>urr APE
II LFD NAMADD
II EXEC LABELS
I&
II FIN

data-cards
I*

END-OF-LABEL-JOB

We still must provide a device assignment set for the name and address file input
from disk .

UP-9986 Rev.1 3-19

Minimum Control Stream Requirements

The Device Assignment Set for a Disk or Format-Label Diskette

3-20

The following chart lists the necessary job control statements for the basic disk and
format-label diskette device assignment set.

Your SYSRES
Disk or or

Allocation Format- YRUN File
Label (Disk only*)
Diskette

DVC DVC
Previously VOL LBL
Allocated LBL LFD

LFD

DVC DVC
VOL LBL

Not LBL EXT
Allocated EXT LFD

LFD

*A format-label diskette volune cannot be used as your SYSRES volune or the
volume containing the SYSRUN file.

In our case we have a disk file, the extent was allocated, and the file is not SYSRES or
the job's YRUN file. So the following job control statements are needed: DVC, VOL,
LBL, and LFD.

The disk pack used for the name and address file fits on a Unisys 8416 Disk
Subsystem. The logical unit number we are going to use for the DVC job control
statement is 64.

Within the program, the file name from the FD entry is DKNAME. This is the file
name for our LFD job control statement.

We need a VOL job control statement to indicate the volume serial number of the disk
we are going to use. We need only the required parameter for the volume serial
number. Assume the site manager had the name and address file copied to the disk
with a volume serial number of DSKOOl.

Since most disk volumes contain many files, each file needs a file identifier. When the
site manager copied this file, he allocated it with a file identifier of DSKMASTFIL.
We must specify this in an LBL job control statement.

UP-9986 Rev. 1

•

•

•

-----------~-------

•

•

•

Minimum Control Stream Requirements

We now have all the information needed for the disk file. We can add the device
assignment set for the disk input file to our control stream and run the job.

II JOB POCO
II DVC 20
II LFD \.IRITEOUT
II DVC 30

II LFD CARDIN
II DVC 100
II VOL TAP111
II LBL OUTPUTTAPE
II LFD NAMADD
JI .DVC•:64
JJ,•vo1..·.··os1<001
lh Liii... OSKMASTFJL
7/''tl'b:'bKliAME
II EXEC LABELS
I&
II FIN

data-cards
I*

END·OF·LABEL·JOB

The Device Assignment Set for Data-Set-Label Diskette

The prep routine for data-set-label diskette automatically allocates the entire diskette
for one file and assigns a file identifier of DATA (unless you specify otherwise). When
this file is used, you must include a device assignment set in your job control stream
that consists of the DVC, VOL, LBL, and LFD job control statements. For example:

II DVC 130

II VOL DSL01
II LBL DATA
II LFD FILE01

You only include an EXT statement in the device assignment set (and specify your
own identifier on the LBL statement) if the space wasn't already allocated during the
diskette prep routine. See "Information about Data-Set-Label Diskette File
Allocation" in Section 4 for information about the EXT statement.

The Device Assignment Set for a Workstation

The DVC and LFD job control statements are required for a basic workstation device
assignment set. The UID, USE SFS, USE DP, and USE MENU statements are
included under certain circumstances .

UP-9986 Rev.1 3-21

Minimum Control Stream Requirements

The UID Job Control Statement

The UID job control statement may be used as part of the device assignment set for a
workstation when you want to ensure that specific workstations, identified by user-id
or device address, are automatically connected to a job. This is done before a job's
execution begins (if the workstation has not already been connected via the
CONNECT command.) Its format is:

//[symbol] UID { user-id-1 1 ·····1 user·id-255 l1
(addr-1) (addr-255)
user-id-1(addr·1) user-id-255(addr-255)

A maximum of 255 workstations may be specified. You can specify YMAS as a
user-id to assign the job's master workstation to a job. The user-id parameter is one to
six alphanumeric characters in length. A device assignment set that assigns the
workstation being used by user-id (JONESl) could look like this:

II DVC 200
II UID JONES1

II LFD IJKSTN

Assigning workstations is discussed in more detail in "Specifying Multiple
Workstations" in Section 4.

The USE Job Control Statement

3-22

If you are preparing a control stream for a program that uses screen format services,
menu services, or the dialog processor, you must include a USE job control statement
as part of your workstation device assignment set. Three different forms of the USE
statement make it possible for you to specify which workstation service you want.
These are as follows:

II USE SFS •••

II USE MENU •••

II USE DP •••

(for screen format services)
(for menu services)
(for dialog processing)

Each statement and its accompanying parameters is discussed further in Section 6 in
"The USE Statement for Screen Format Services", "The USE Statement for Menu
Services", and "The USE Statement for Dialog Processing", respectively.

UP-9986 Rev. 1

•

•

•

•

•

•

Minimum Control Stream Requirements

Job Step Temporary and Job Temporary Files
To satisfy the needs of the software components for disk work areas, files lasting for a
job step and for the length of the job are provided. These files are deleted at the end of
the job step or the end of the job. While these files are primarily used by the software
components, the ability to allocate and use temporary files is also available to you.

Basically, you allocate job step temporary and job temporary files the same way you'd
allocate any disk file. The only difference is you must prefix your file identifier with
$SCR for a job step temporary file and $JOB for a job temporary file. For example, to
allocate a job step temporary file, you could include the following device assignment
set in your job control stream:

II DVC 50
II VOL 012345
II LBL $SCR'WORK1
II EXT Ml,,,CYL,2
II LFD 'WORKFIL

When a temporary work file ($SCR, $JOB) is allocated, the file label is modified by job
control to allow concurrent jobs using the same file identifiers to access the proper
work file. Every job in the system is assigned a unique job number. The label $SCR1
in JCL is allocated as $SCRnnnnnl where nnnnn is the job number .

Job step temporary files are automatically deleted at the end of the job step, while job
temporary files are automatically deleted at the end of the job. If the system is
reinitialized in the middle of your job, job control automatically scratches job
temporary files and job step temporary files when it reallocates them.

See "Setting Up Temporary Work Files" in Section 5 for information about using
JPROCS to allocate job step temporary and job temporary files.

Basic Job Control Statements
This section has covered the job control statements needed to run most jobs. In the
following section, we are going to use the basic job control statements and add the
optional parameters, explaining how each parameter affects the performance of the
job .

UP-9986 Rev.I 3-23

•

•

•

•

•

•

Section 4
Getting the Most Out of the Basic Job
Control Statements

Optional Parameters Can Improve Job Performance
So far, in our discussions of basic job control statements, we've concentrated on the
required parameters. A great deal of work can be accomplished using just these
parameters. Sometimes, however, required parameters won't provide enough
information. In other instances, the ability to provide more information to the system
will speed up job execution. Additional information about a job and its peripheral
devices is supplied via the optional parameters that are part of the basic job control
statements. This section describes these parameters and shows how they are used.

Improving Your Control of the Job
The JOB control statement was used to give a name to the job. It is used also to
specify the following: a selection priority; the main storage size for the job; how many
tasks are in any one job step; how long the job should take; a list of the control streams
on the operator's system console for debugging purposes; and spooling buffer sizes.
Once again, its format is:

UP-9986 Rev.I

[,print·option·List][,acc·nol[,nXml , ACT
LOG
NOA CT
NOLOG
NONE
BOTH

4-1

Getting the Most Out of the Basic Job Control Statements

As you can see, some optional parameters generate default values when they are
omitted. In the previous discussion of the JOB control statement, only the required
parameter - jobname - was coded. By so doing, we indicated that, by default, the job is
to have normal priority (N) and there is only one task (1). This points up the fact that
when only the required parameters are specified, you are, in many cases, providing
more information about the job than is contained in the required parameters. The
default values were selected because they conform to the most frequently used
programming practices. This allows you to code as short a control statement as
possible. The less there is to code, the less chance there is of making a coding error.

Note: The OPTION job control statement can be used to override individual
parameters of the JOB control statement. Refer to "Selecting Optional
Features" in Section 6 for more information.

A Selection Priority for the Job

Jobs are selected for execution on a priority basis. The second parameter on the JOB
control statement specifies the priority. There are four priorities: low (L), normal (N),
high (H), and preemptive (P). Remember our discussion on the use of priorities in
Section 1, where we outlined how the priority is used by the system for selecting jobs
and what each priority means?

Most jobs are normal priority, which is by default, the parameter generated. If you
need another priority, you have to specify it.

It so happens that the label job named POCO is needed in a hurry, so the system
administrator allowed you to assign high priority. Added to the existing JOB control
statement, it would be coded as:

II JOB POCO,H

Main Storage Needs

4-2

When the load module named on the //EXECUTE statement is in a load library on a
mounted disk volume, you don't have to indicate the minimum amount of main
storage to execute the load module. If the disk volume containing the load module is
not already mounted, you must indicate the minimum amount of main storage needed
to execute the module.

The min parameter does this. The minimum main storage size is specified in decimal
or hexadecimal. The smallest amount that can be specified is SK decimal bytes (2000
in hexadecimal). The area used by the job prologue is not included in this amount.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Assume the label program needs approximately 12K (12,288) decimal bytes (3000 in
hexadecimal) and that it's in a load library on your own volume. The JOB control
statement would now be:

II JOB POCO,H,3000
or

II JOB POCO,H,X 13000 1

You can also specify the minimum main storage size in decimal. This is done by
coding D'number' for the min parameter, as illustrated in the following JOB control
statement:

II JOB POCO,H,0'12288 1

For the sake of illustrating the omission of positional parameters, this JOB control
statement is coded as follows when the priority is omitted (it would be assigned the
normal priority, by default, by the system):

I I JOB POCO, ,3000

See "Coding Conventions" in Appendix A for information about coding numbers in job
control statements.

Note: If a job consists of multiple job steps, specify only the minimum main storage
size needed by the largest load module.

Consider the possibility that you may be running a 3-job-step job, consisting of
perhaps a COBOL compile, followed by a link edit, and then the execution of the
generated load module. OS/3 knows how much main storage to allocate for both the
COBOL compiler and the linkage editor, but there is no way OS/3 can know how much
is required for the execution of your program, since it is not generated until after all
the job control has been interpreted. If your generated load module does not use more
main storage than the COBOL compiler (which is larger than the linkage editor, thus
the largest known job step), then your load module will have sufficient main storage
allocated. On the other hand, if your load module is larger than the COBOL compiler,
not enough main storage will be reserved.

More Main Storage to Speed Up the Job

In addition to specifying the minimum main storage, you can also request additional
main storage. This is an amount that can be used, but is not required, to speed up job
execution. However, the program must be structured to take advantage of the
additional main storage; for example, a segmented COBOL program. Some of the
routines supplied by Unisys that use extra main storage in this manner are
sortlmerge, linkage editor, and the language translators. Additional memory may also
be advisable when running large assembly programs using many tags. As the
minimum main storage size is specified in decimal or hexadecimal, so is the
maximum; it is the fourth parameter (max) shown in the format .

UP-9986 Rev .1 4-3
Update 8

I

Getting the Most Out of the Basic Job Control Statements

We'll assume that the label program was structured to use 41K decimal bytes (A028
hexadecimal) of main storage, ifit is available; also, that it uses the high scheduling
priority and needs at least 12K decimal bytes (3000 hexadecimal). Added to our JOB
control statement, it would be coded as follows:

II JOB POCO,H,3000,A028

You can also code X'A028' to represent the maximum main storage size in
hexadecimal.

You can specify the maximum main storage size in decimal by coding D'number'for
the max parameter (e.g., D'41000' instead of A028 or X'A028').

If we omitted the scheduling priority (it would default to normal) and the minimum
main storage size, it would be coded as follows:

II JOB POCO,,,A028

Note: If either the min or the max parameter is omitted, the value specified for one is
used for the other. If both are omitted, and the load module is not located in
YLOD (on SYSRESJ or in an alternate load library on either SYSRES or the
volume containing the job's YRUN file, job control automatically allocates
BK decimal bytes of main storage (2000 in hexadecimal). If you have requested
ajob dump through the OPTION statement (JOBDUMP), and you have not
specified min or max on the JOB statement, job control nearly doubles the
amount of main storage that is automatically allocated. If you specify min or
max and intend to request a job dump, specify at least 14K decimal bytes (3500
in hexadecimal).

Multitasking Specification

44

If a program is written in BAL, you can create multiple tasks within it by using the
task parameter. This is called multitasking.

So far, we have been saying that job POCO is written in COBOL. For this example,
assume that it is written in BAL, and that we are going to allow for 18 tasks to be
active. The job still needs 12K decimal bytes to execute, but it can use 41K decimal
bytes, and has a high scheduling priority. Adding the multitasking specification
would make our JOB control statement look like this:

II JOB POCO,H,3000,A028, 18

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Each task specified requires 256 bytes in the job prologue. The maximum number of
tasks you can have within a job is limited by the maximum size of the prologue (65535
bytes). If we omit the task parameter, job control assumes 1 by default.

Note: There are other tables which require prologue space and their size varies
depending, for example, on the number of files and spool buffers declared
through job control. If you exceed the prologue size (you receive an R289
message and the job is not scheduled), you can reduce the number of tasks, files,
or spool buffers specified.

The Processing Time for the Job

After the same job has run several times, you probably know how long it takes to
execute. Should it run longer, it may mean something is wrong - perhaps there is a
"bug" that has never been encountered before. Rather than waste processing time,
you can set a processing time limit using the max-time parameter. If the job executes
beyond this time limit, a message is sent to the operator, who can either cancel the job
or extend the time limit by any increment. If you specify max-time, you should tell the
operator what action to take if the specified processing time is exceeded.

The max-time limit is specified in minutes. It refers to elapsed wall-clock time or to
elapsed CPU time, depending upon how your supervisor is configured. If you want to
suppress the max-time function completely for a particular job, you can specify SUP in
the max-time parameter, rather than a number.

The system will adjust the max-time value to allow for the following conditions:

• Checkpoint/restart

• PAUSE job control statements

• SET CLOCK commands

• Roll-in/roll-out

If you omit max-time, the time limit set at system generation is used as the default
value. The max-time parameter is supported only on supervisors configured with
NORMAL or MAX timer services. If a timer service is not specified at system
generation, max-time specifications are ignored.

Suppose you know that the job POCO should take no more than 15 minutes to run.
Added to the other parameters of the JOB statement, the max-time parameter is
coded as follows:

II JOB POCO,H,3000,A028, 18, 15

UP-9986 Rev.I 4-5

Getting the Most Out of the Basic Job Control Statements

Debugging the Control Stream

4-6

With the print-option-list parameter, you can control the printing of job control
statements and JPROC listing by specifying one or more available options. In a
spooling system, statements are printed (without passwords) in the job log; otherwise,
they are displayed on the system console. This gives a graphic display or printout of
the control stream for debugging purposes. For example, if a particular control stream
is run for the very first time and there are syntax errors in the coding, the system will
generate an error message telling you so. If you have used one of the debugging list
options, you receive a listing of your control stream. It's easier to find errors on this
graphic display or printout than having to look at the punched cards.

The options for this parameter are:

B Lists job control statements with symbol substitution. This is the default in a
spooling system

D Lists job control statements (as they're read in by the run processor) without any
symbol substitution

P Lists completed job control statements, which are generated by a procedure call
statement in the control stream, showing the values assigned in the procedure
definition statements

E Lists any data contained in the control stream

S Lists all the job control statements skipped as a result of an IF or GO job control
statement

A Combines all the options

W Suppresses the display of job control warning errors on the console or workstation
but not on the job log

a None of the options are in effect (the default in a nonspooling system)

You may specify more than one option on a JOB control statement. However, if more
than one option is specified, the parameter group must be enclosed in parentheses.
Each option must be separated by a comma and can be specified in any order. For
example, (S,P,E) or (P,E,S); when only one option is specified, no parentheses are
needed.

When the D, P, E, or S options are chosen (separately or in combination) you get a
listing of your basic job control statements with symbol substitution even if Bis not
specified.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Let's assume this is the first time we are running job POCO, and we want to list the
basic job control statements with symbol substitution, the job control statements
generated by a procedure call, and the data. These are options B, P, and E, but since
the option B is in effect when either P or E is chosen, you don't have to specify it.
Added to the other parameters of our JOB control statement, it would be coded as
either:

II JOB POCO,H,3000,A028, 18, 15,CP;E)

or

II JOB POCO,H,3000,A028,18,15,(E,P)

Job Accounting and Spool Buffers

Use the ace-no ~arameter to provide the account number that has been assigned to
you at your installation. This 1- to 4-alphanumeric-character parameter creates an
entry in the job preamble for this account number, containing the total elapsed wall
clock time. Wall clock time can be defined as the point in time when a job is initiated
for execution, up to the time when the job terminates. Therefore, any time used by
spool input and spool output is not included.

This parameter may or may not be required, depending on the accounting procedures
used at your installation.

Suppose the account number assigned to you is AOOl. Adding this information would
make the existing JOB control statement appear as: ·

II JOB POCO,H,3000,A028,18,15,CE,B),A001

The nXm parameter sets up buffers for the file. This buff er holds data from the time
it first becomes available until the time it's needed for processing. Thus, the central
processor does not have to wait as long for data. The job log and any spooled files that
don't have their own buffers can share these buffers.

When coded, the n is the number of buffers, Xis a constant, and the m is the number
of (256-byte) blocks. Whenever nXm is omitted, a single 256-byte buffer (lXl) is
reserved if only the job log is sharing the buffer with your spool files. If other spool
files are also sharing the buffer, two buffers of 512 bytes each (2X2) are allocated for a
total of 1024 bytes.

For example, if you wanted to allocate 2 buffers of 2048 bytes total, you would code:

II JOB POCO,H,3000,A028, 18, 15,CE,B),A001,2X4

The only values accepted form are 1, 2, 4, 8, 16, and 32. Numbers larger than 32
default to 32. Numbers not in the acceptable range are changed to the lower
acceptable constant (e.g., 6 is changed to 4) .

UP-9986 Rev.! 4-7

Getting the Most Out of the Basic Job Control Statements

Printing the Job Log File and Page Headers

4-8

The job log file contains the job accounting records, dumps created as a result of an
OPTION job control statement with the DUMP parameter, and a log, or list, of
messages and job control statements that were displayed on the system console. You
can selectively print this job log file with your job, by using one of the following
parameter choices of the JOB control statement:

ACT
LOG
NOACT
NO LOG
NONE
BOTH

The ACT parameter forces the printing of accounting records, regardless of the system
options in effect. LOG forces the printing of job log records, regardless of the system
options in effect. The NOACT parameter, when used, suppresses the printing of
accounting records. The NOLOG parameter means do not print the log (which also
contains dumps generated by an OPTION DUMP job control statement). If you code
the NONE parameter, both the log and accounting records aren't printed. The BOTH
parameter allows both the log and accounting records to print. If you don't specify one
of these parameters, the system options in effect are used.

For example, if you want only the accounting information to print (no log records -
NOLOG), you would code:

II JOB POCO,H,3000,A028, 18, 15,(E,B),A001,2X4,NOLQG

Cancel and snapshot dumps are never suppressed. If you're running in a nonspooling
environment, this parameter is ignored.

At the beginning of the job log and accounting record printout, a page header, which
consists of several lines of asterisks, is printed. This can be suppressed by coding the
NOHDR parameter on the job control statement; by default, HDR is generated.
Coded, it would be:

II JOB POCO,H,3000,A028, 18, 15,(E,B),A001,2X4,NOLOG,NOHDR

This parameter is ignored if you're not spooling.

A job log report program is also available that will provide you with a job accounting
report based on the contents of the log file. For more information about the job log
report program, refer to the System Service Programs (SSP) Operating Guide
(UP-8841).

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Identifying the Peripheral Devices a Little Further
The DVC job control statement associates a physical device type, specified by a logical
unit number, with your job. It can also be used to: assign multiple device, in a serial
manner, during a job step; provide the physical address of the unit for using a specific
device; or (in a DDP environment), indicate that a disk file is remotely located. Here,
again, is its format:

addr
RES OPT

//[symbol] DVC {nnn[(n)l) ,

RUN IGNORE
ALT
I

0

REQ[(n) l
REAL

C,HOST=host-idl

Refer to this format when each new parameter is introduced.

Note: A particular job cannot mix RBP destinations with auxiliary printers or DDP
destinations .

Using Multiple Devices, SYSRES, or the Job's YRUN File

The first parameter has three choices: nnn, RES, or RUN. (Remember, the (n) portion
of nnn is only used when assigning workstations.)

We have already explained how to use nnn to specify a logical unit number (see
"Identifying the Devices" in Section 3). However, if you want to use more than one
print, punch, or card file in a job, you should assign a different logical unit number to
each file because the run processor flags multiple occurrences of the same logical unit
number in the same job step. If your system contains only 0776 printers, for example,
you can use the logical unit numbers 20, 21, 24, and 25. Sometimes, in a spooling
environment, you may want to assign more than four virtual printers or punches. To
do this, you must use the EQU statement (see "Equating Logical Unit Numbers to
Device Type Codes" in Section 6) to equate additional logical unit numbers to your
devices. You can use any logical unit number that is not already in your system. The
EQU statement is placed just before the device assignment set. To get an 0776
printer when you have already used the logical unit numbers 20, 21, 24, and 25, you
might use the logical unit number 10, as follows:

UP-9986 Rev.1

II EQU 10,0440
II DVC 10

4-9

Getting the Most Out of the Basic Job Control Statements

The number used for the type parameter of the EQU statement, 0410, is listed in
Table A-3 of the Job Control Programming Reference Manual (UP-9984) as the device
type code for the 0776 printer.

Note: The maximum number of unique devices allowed in a job is 255. The
maximum number of unit record devices (e.g., card readers, data-set-label
diskettes, printers) allowed in one job is 42.

You don't have to supply a logical unit number for files in SYSRES or the volume
containing the job's YRUN file. Use RES to indicate that the file is on the SYSRES
volume, or RUN to indicate that the file is on the volume containing the job's YRUN
file. Whenever RES or RUN is used, you can omit the VOL job control statement in
the device assignment set. The system differentiates between which volume is the
SYSRES volume and which volume contains the job's YRUN file. RES or RUN can
only be used for disk files.

In our control stream, we used this device assignment set for the name and address
disk input file as follows:

II DVC 60
II VOL DSK001
II LBL DSKMASTFIL
II LFD DKNAME

If, instead of using the disk with a volume serial number of DSKOOl, the site manager
puts the name and address file on the SYSRES volume, still using the file identifier of
DSKMASTFIL, and assuming the file name in the program is still DKNAME, then the
device assignment set is:

II DVC RES
II LBL DSKMASTFIL
II LFD DKNAME

The VOL job control statement is omitted because the file is on SYSRES.

Specifying Multiple Workstations

4-10

Suppose you want to access a workstation file from more than one workstation. The
(n) portion of the DVC statement's nnn parameter allows you to associate up to 255
workstations of the type and characteristics specified by (nnn) with one file. Consider
the following example:

II DVC 200(4)

I I LFD WKSTF I LE

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

When the DVC statement is specified like this, up to four workstations can be logged
on and then optionally connected (using the workstation CONNECT command) to the
same job. These workstations access WKSTFILE.

If all four workstations must be connected for the job to begin execution, use the REQ
parameter of II DVC, like this:

II DVC 200(4),REQ

The UID statement is used when you want specific required workstations
automatically connected to the job.

The REQ parameter and the UID job control statement are discussed further in
"Ensuring that Workstations are Connected to a Job" in Section 4.

More Control over Peripheral Devices

The format shows there are eight possible choices for the second parameter of the
DVC job control statement: addr, OPT, IGNORE, ALT, I, 0, REQ, and REAL. Each
are explained in the following paragraphs, except for I and 0, which are explained
when we discuss spooling diskette files. Refer to "Spooling Input Card Data" in
Section 6 for more information .

Assigning Devices by Physical Address and Assigning Real Devices

Every device has a physical address associated with it. This is a hexadecimal number
representing the channel number, control unit address, and device number. It is
assigned by a Unisys customer engineer. You can specify it by using the addr
parameter of the DVC job control statement.

It is unlikely you will need to use the addr parameter because the system can best
assign devices, since it is aware of the requirements of all jobs being run. Your job
may have special needs, however. Suppose you are running in a spooling
environment. You have a large job where the format of the printed output is very
important. You want to bypass spooling so that you can check your printed output
immediately and stop the job, if necessary, to correct the format. Since it is a large
job, you do not want it to go first to a spool file and then print if there are formatting
errors. You would specify the physical address of a real (rather than a virtual) printer,
like this:

II DVC 20, 160

UP-9986 Rev.1 4-11

Getting the Most Out of the Basic Job Control Statements

You may assign a real device and bypass spooling without specifying its physical
address if you use the REAL parameter. The following statement, for example, allows
you to request any real printer:

II DVC 20,REAL

If you use the addr parameter to request a specific tape or disk device, be sure the
volume you want is not mounted on another unit. The// UID job control statement
can be used to assign workstations by physical address. Refer to "Ensuring that
Workstations are Connected to a Job" in Section 4 for more information.

Is This Device Needed for This Particular Run?

Sometimes, all the peripheral devices normally used by the job are not absolutely
needed. You may have a case where a job normally produces print and tape output.
Your system administrator needs the print output in a hurry, but is not worried about
the tape output at this time. If necessary, the job can be rescheduled to produce the
tape output.

Our control stream has device assignment sets for tape and print files. In the DVC job
control statement of the device assignment set for the tape file, we can use the OPT
parameter. This indicates that the peripheral device is optional; it is not essential to
the running of the job. If it is not available at the time the job is put into execution, all
references to this device are bypassed.

Added to our DVC job control statement for the tape output file, it would be coded as
follows:

II DVC 100,0PT

Different Volumes on the Same Device

4-12

Within a job step, job control normally allocates one device for each logical unit
number specified in the control stream. You might, however, have several different
volumes to be processed serially within the same job step. This could require several
different devices and your job would not be run until all the devices are free. You can
suppress job control's check for one volume per logical unit number within a single job
step and reuse the same device serially by specifying IGNORE on the DVC statement.
Since IGNORE reduces the number of peripheral devices a job needs, it increases the
chances of your job being run sooner.

If the first occurrence of a logical unit number does not specify IGNORE in the DVC
statement, all subsequent references to that logical unit number must have IGNORE
specified in the DVC statements.

If you use the IGNORE parameter, processing for the first volume must be completed
before the second volume is needed, and so forth.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

A typical application for the IGNORE parameter might be a program that takes
information from a tape file, updates it with information from a card file, and creates
a new tape. But a job is scheduled that lasts most of the day, and it uses all but one of
the installations's tape drives. Since you need two tape drives, you would have to wait
until that job was finished. However, you wrote the program so that it reads the input
tape file completely, updates the information, and then writes it out to a new tape.
Since the processing of the tape volume containing the input file is finished before the
program creates the new tape file, you can use the same device by using the IGNORE
parameter of the DVC job control statement in the device assignment set for the next
file to be processed (the output file, in this case).

The IGNORE parameter tells the system to disregard the fact that there already has
been a device assignment set for this logical number in this job step.

Suppose the input file is on a tape with a volume serial number ofTAPlll, a file
identifier of FIRST, and the file name for the input file is MASTIN. The output file
will be on a tape volume with a volume serial number ofTAP222, have a file identifier
of SECOND, and the file is MASTOUT: The logical unit number we are going to use is
101.

The device assignment sets for the input and output files would be:

II DVC 101
II VOL TAP111
II LBL FIRST
II LFD MASTIN
I I DVC 101, IGNORE
II VOL TAP222
II LBL SECOND
II LFD MASTOUT

When you use this feature of job control, make sure you inform the operator of the
tape mounting sequence.

Users of the Unisys sort/merge routine will find the IGNORE parameter useful on
tape sort applications that use tape volumes as input, work areas, and output.

When a job consists of more than one job step, the system assumes that the first
device assignment set for a logical unit number will be used in subsequent job steps
until a new device assignment set for the same logical unit number occurs. For
instance, if you wanted to use the tape file with a volume serial number ofTAP222 in
the next job step, you would have to specify the following device assignment set at the
beginning of the new job step:

UP-9986 Rev.1

II DVC 101
II VOL TAP222
II LBL SECOND

II LFD xxxx (this depends on your program)

4-13

Getting the Most Out of the Basic Job Control Statements

Otherwise, the system assumes the tape with a volume serial number ofTAPlll is to
be used.

Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Setup Time

4-14

The file is large - in fact, so large it needs four tape volumes to hold it. When the
program uses four tape volumes, the operator can mount them, one at a time, on the
device associated with the logical unit number on the DVC job control statement.
When a volume is processed, the operator removes it from the device and mounts the
next volume on the device. Meanwhile, processing time is wasted while the system
waits for the new volume to be mounted. The operator must do this for every volume
of the file.

One way of avoiding this is to use the ALT parameter on the DVC statement. This
allows you to alternate the same logical unit number between two devices provided
that two devices of the same type are available. One device uses the logical unit
number while the first volume is being used, then the logical unit number switches to
the other device for the next volume. After the second volume is finished, and ifthere
are any more volumes in the file, the logical unit number is switched back to the first
device, and so on, until all volumes are used. In this way, the operator can amount
two tape volumes, on two different physical devices associated with a logical unit
number, in their proper sequence. When the first volume is finished, the system
switches to the device containing the second volume. Meanwhile, the operator can
unload the first volume and mount the third volume on the device. In this way, no
time is wasted because of setup time. All alternate devices must be of the same type.
This is especially helpful when small tape reels are used. Note that alternating is
restricted to the boundaries of one job step, and that if only one device is available, a
job will execute with only one device (even though ALT is specified).

The ALT parameter of the DVC job control statement doesn't work correctly if it is
used more than once in a jobstream. A separate drive is allocated for each ALT, and if
there are insufficient drives to accommodate all oftheALTs, only one drive is
allocated even if two drives are available. If the ALT function is needed more than
once in a jobstream, the following job control can be used:

II DVC 90 II VOL A
II DVC 91 II VOL B

Assume a job has four tape volumes, using logical unit number 100. You can switch
between the two physical devices associated with logical unit number 100 by coding
the DVC job control statement as follows:

II DVC 100,ALT

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Of course, the VOL job control statement must be modified to indicate the volume
serial numbers of the four different tape volumes. We'll discuss the use of optional
parameters for the VOL job control statement later. Briefly, the following example is
how multiple volume serial numbers are coded.

II DVC 100,ALT
II VOL T11111,T22222,T33333, T44444

To ensure that alternation occurs between devices, you may explicitly declare two
devices in your job control stream. This means you'll have two DVC statements, each
specifying a different logical unit number. Consider the following example:

II DVC 100
II VOL T11111,T33333
II DVC 101
II VOL T22222,T44444

In this case, the operator can always alternate between the two devices specified by
the logical unit numbers 100 and 101, until all volumes are used.

Users of the sort/merge routine will find it helpful to alternate when sorting many
tapes with the same label on a master tape .

Ensuring that Workstations Are Connected to a Job

You can use the REQ [(n)] parameter of the DVC statement or the UID job control
statement when you want to ensure that workstations are connected to a job.

REQ tells the system that the number of workstations you've specified through the
nnn[(n)] parameter of the// DVC statement are required and must be connected (using
the workstation CONNECT command) for the job to begin execution. You can further
tailor the DVC statement by specifying that only a certain number of the workstations
must be connected before the job is executed. You do this with the (n) portion of the
REQ parameter. If you prepare your statement like this:

II DVC 200(8),REQC1)

it tells the system that eight workstations can be connected to the job and that one of
the eight is required and must be connected for the job's execution to begin.

Notes:

1. The (n) portion of the nnn parameter and the REQ>(n)] parameter are used to
assign workstations only. Up to 255 workstations can be assigned to a single
workstation file .

UP-9986 Rev. I 4-15

Getting the Most Out of the Basic Job Control Statements

2. The nnn parameter of I I DVC is used differently for workstations than for other
devices. If you specify the logical unit number 200 (any workstations) and tailor
the specification by using the (n) portion of the nnn and REQ parameters, multiple
workstations (of any type) are assigned to the job.

Recall from "The Urn Job Control Statement" in Section 3 that the UID statement is
used if you want specific workstations connected to a job automatically. This is done
before the job's execution begins (if the workstations specified have not already been
connected using a CONNECT command). You identify a particular workstation by its
user-id, device address, or both. For example:

II DVC 200
II UID WS1,C018),YS2(019)
I I LFD IJKSTF I LE

The UID statement in this example indicates that the following three workstations
will automatically be connected: any workstation logged on with a user-id ofWSl, the
workstation with the address 018 and logged on with any user-id, the workstation
with the address 019 and logged on with a user-id ofWS2. If these three conditions
are not satisfied, the job remains in the scheduling queue. Remember that
workstations specified in the urn statement are required; therefore, the job will not
run until these devices are available (that is, logged on).

Although the (n) portion of the nnn parameter and the REQ {(n)] parameter are
generally unnecessary in the DVC statement when the UID statement is used, you
may encounter a special situation. For example:

II DVC 200(4)
II UID YS1,YS2
I I LFD IJKSTF I LE

The DVC statement indicates that the job can use up to four workstations. The two
identified in the UID statement are required and, provided they're logged on, will
automatically be connected at execution time. Two more workstations (any two) can
optionally log on and then connect to the job with the CONNECT command.

Remember, you can specify YMAS as a user-id to assign the job's master
workstation to a job.

Specifying a Remote Disk File

4-16

To indicate that a disk file is located at a remote host in a DDP network, specify the
HOST=host-id keyword parameter on the// DVC statement. The host-id is one to four
alphanumeric characters long and identical to the label-id of the LOCAP
macroinstruction in your ICAM network. $HOST (in place of a host-id) indicates that
the file is located at the job's remote originator (the remote host that initiated the job).

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Consider the following:

II JOB MYJOB

II DVC 50,HOST=A123
II VOL 0000028
II LBL FILE1
II LFD REMOTE

II EXEC PROGA
!&

The DVC statement in the preceding device assignment set means that the disk file is
located at host A123.

Note: The host you specify (using either a host-id or $HOST) must be a remote host.
If you specify a local host, you'll receive a data management error message
(DM21 INVALID DEVICE ASSGINMENT).

For information about DDP facilities, see the Distributed Data Processing
Programming Guide (UP-8811). For more information about the originator, see the
OPTION ORI statement in "Selecting Optional Features" in Section 6. See "How Job
Control Statements are Presented" in Appendix A for information about coding job
control statements containing positional as well as keyword parameters.

Indicating Use of the DDP Program-to-Program Facility

If your program is written in BAL and uses consolidated data management macros,
you can use DDP's program-to-program facility. In its simplest form, this facility
allows a program at one host (the primary) to initiate communication with a program
at another host (the surrogate). The job control stream for each program participating
in this simple conversation must contain a DVC PROG job control statement. Used in
place of II DVC, II DVC PROG begins the device assignment set for the program-to­
program type file. The format is:

//[symbol] DVC PROG [,job-name][,HOST=host-idl

You can specify one II DVC PROG statement in any single-step job control stream. (A
single-step job requests the execution of only one program.) The device assignment set
must contain a II LFD statement and may contain a II LBL statement for cataloging
purposes .

UP-9986 Rev.I 4-17

Getting the Most Out of the Basic Job Control Statements

4-18

The job-name parameter identifies the name of the other participant in the program­
to-program communication. For example, when specified in the II DVC PROG
statement for the primary,job-name identifies the surrogate. When specified in the
II DVC PROG statement for the surrogate,job-name identifies the primary. This
parameter is required in the II DVC PROG statement for the primary, but is optional
in the II DVC PROG statement for the surrogate.

The HOST=host-id parameter simply identifies a particular host in a DDP network.
The host-id is one to four alphanumeric characters long and identical to the label-id of
the LOCAP macroinstruction in your ICAM network. You use $HOST (in place of a
host-id) to indicate the originator (the host that initiated the job). Consider the
following control streams:

HOST AAAA
II JOB MYJOB

II DVC PROG,YOURJOB,HOST=BBBB
II LFD THISFIL

II EXEC PROG1
I&

HOST BBBB
II JOB YOURJOB

II DVC PROG
II LFD THATFIL

II EXEC PROG2
I&

The II DVC PROG statement in MYJOB indicates that communication can only be
established with PROG2 - the program identified in YOURJOB at host BBBB.
PROGl, in this case, must act as the primary. The II DVC PROG statement in
YOURJOB means that PROG2 is a surrogate in the program-to-program
communication with PROGl. PROG2 can also act as the surrogate when other job
control streams declare II DVC PROG,YOURJOB,HOST=BBBB. Now consider the
following:

HOST AAAA
II JOB MYJOB

II DVC PROG,YOURJOB,HOST=BBBB
II LFD THISFIL

II EXEC PROG1
!&

HOST BBBB
II JOB YOURJOB

II DVC PROG,MYJOB,HOST=AAAA
II LFD THATFIL

II EXEC PROG2
!&

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

These two job control streams indicate that only PROG2 at host BBBB and PROGl at
host AAAA can communicate with each other. The first program to open the program­
to-program type file is considered the primary.

Although primarily intended for communication between programs executing on
different hosts, the program-to-program facility can be used between programs
executing on the same host. For more information about DDP's program-to-program
facility, see the Distributed Data Processing Programming Guide (UP-8811).

More Information About the Characteristics of
Your Volumes

We have used the VOL job control statement to specify the volume serial number. It
also has additional parameters for further identifying each volume to the system.
Once again, its format is:

II [symbol] VOL Mee

N

NMee

volsn·1

SCRATCH

{

($) }
(NS)

(NOV)

(PREP)

, volsn· 1 {l:f ~l }

(PREP)

volsn-2 {(S) }
(NS)

(NOV)

(PREP)

SCRATCH

Refer to this format when each new parameter is introduced.

Notes:

volsn-2 { :-:s .. >'' } I .~ ..

(NS)

(NOV)

(PREP)

volsn-3 {~!~) }
(NOV)

(PREP)

SCRATCH

1. If all the volumes used to contain a multivolume file are going to be online
simultaneously (mounted on different devices during the course of a single job
step), the NOV and PREP options, if used, must be specified for each volume.

2. The DVC specification in the device assignment set is used to determine if more
than one device is being used.

3. In a multivolume file, ifthe individual volumes are mounted on separate devices,
the NOV and PREP options can be specified only for the individual volumes.

4. If the PREP option is specified for any volume in a multivolume file sequentially
mounted on one device, it applies to all volumes in a multivolume file. NOV must
be specified for the last volume in the file for it to apply to all volumes in the file .

UP-9986 Rev. I 4-19

Getting the Most Out of the Basic Job Control Statements

More Than One Volume in a File

4-20

When we discussed the ALT parameter of the DVC job control statement, it was
stated that all volumes in the file must be specified on the VOL job control statement
of the device assignment set for the two devices sharing a logical unit number. (See
"Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Set-Up
Time" in Section 4). The example given was:

II DVC 100,ALT
II VOL T11111,T22222,T33333,T44444

Each group of numbers specified on the VOL job control statement (Tlllll, T22222,
etc) represents the volume serial number of the volumes in the sequence in which they
are mounted.

Remember, whenever there is more than one volume in a file, notify the operator of
the mounting sequence.

If more than eight volume serial numbers are listed, a nonblank character must
appear in column 72 of the VOL job control statement and one or more continuation
cards (Appendix A) must follow. For example:

Colllll'l 72

(continuatio~

II VOL T11111,T22222,T33333,T44444,T55555,T66666,T77777,T88888,
111 T99999,TAAAAA

L Continuation Column
Indicator
(Optional)

x

You can also specify multivolume files by using separate VOL control statements, like
this:

II VOL T11111
II VOL T22222
II VOL T33333

This method has an advantage over the continuation method in that you can change
VOL specifications easier if they are coded separately.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

The VOL statement's (NOV) and SCRATCH parameters provide you with the option
of not listing each specific volume serial number in a multivolume file. For further
discussion of these parameters, see "Ignoring or Changing the Volume Serial Number"
in Section 4.

Special Characteristics of Tape Volumes

Tape volumes have certain mode characteristics, such as bytes per inch, parity, and
the number of tracks (7 or 9). The mode characteristics of tape volumes are specified
using the Mee parameter. The values for cc are given in Table 4-1.

Suppose you are using a UNISERVO® 12 Magnetic Tape Subsystem, and the tape
volume is 7-track, 200 bytes per inch, even parity, with the translate and convert
features off. The mode setting is 20 and it would be coded as M20. The volumes being
used are coded as the remaining parameters.

II VOL M20,T11111,T22222

If the Mee parameter is omitted, the mode settings specified at system generation
time are used.

If your supervisor supports block numbering and you have specified BKNO=YES in
your program's file definition macroinstruction (or BC$CLNM for PIOCS), data
management will check block numbers on input tape volumes or write sequential
block numbers on output tape volumes. If you want to suppress block numbering or
checking during initialized processing, you use the N parameter on the VOL job
control statement. Initialized processing includes use of the TPREP utility routine or
the PREP option on the VOL statement as well as processing of input or output files
with nonstandard labels or no labels. When you specify N, block numbering is
suppressed for all volumes included on the VOL statement. For noninitialized
processing, the N parameter is ignored. That is, if your supervisor supports block
numbering and you have specified it in the file definition macroinstruction, you cannot
suppress checking or writing of block numbers by using the N parameter. For details
about block-numbered tapes, see the Consolidated Data Management
Macroinstructions Programming Guide (UP-9979).

For example, to suppress block numbering on two tape output volumes with volume
serial numbers ofTlllll and T22222, code as follows:

II VOL N,T11111,T22222

When both the N and Mee parameters are used, code them as one parameter. For
example:

II VOL NM20,T11111,T22222

UNISERVO is a registered trademark of Unisys Corporation.

UP-9986 Rev .1 4-21

Getting the Most Out of the Basic Job Control Statements

Table 4-1. Mode Characteristics

Tape cc Bytes per Inch Parity Translate Feature Convert Feature

UNISERVO 12/16 and 10/14 Magnetic Tape Volumes

7-track 10 200 Odd Off On
20 200 Even Off Off
2B 200 Even On Off
30 200 Odd Off Off
3B 200 Odd On Off
50 556 Odd Off On
60 556 Even Off Off
6B 556 Even On Off
70 556 Odd Off Off
7B 556 Odd On Off
90 BOO Odd Off On
AO BOO Even Off Off
AB BOO Even On Off
BO BOO Odd Off Off
BB BOO Odd On Off

9-track C8 BOO Odd Off Off
co 1600 Odd Off Off

I
UNISERVO 22/24 Magnetic Tape Volumes

9-track CB 800 Odd Off Off
co 1600 Odd Off Off

UNISERVO 26/28 Magnetic Tape Volumes

9-track co 1600 Odd Off Off

DO 6250 Odd Off Off

Extending Your Tape Volumes

4-22

If you recall, when we were assigning file names to files, we used the LFD job control
statement (see "Assigning a Logical File Name to the File" in Section 3). Well, now
we'll use this same statement to extend our file. Once again, here is the format:

//[symbol] LFD { fi ~ename } [· { N }] [· {EXTEND} l
*f1 lename 8 !NIT

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Looking at the format, we see the optional parameter EXTEND. The EXTEND
parameter lets us add information to the present end of a tape or disk file, provided
our program allows us to do so and the following job control conditions are met:

• The PREP option is not specified on the VOL job control statement.

• The file being extended is the only file on the volume.

• The file uses standard labels.

• The file specified is an output file.

The following example shows the use of the LFD statement to extend the file ADDRl:

II LFD ADDR1,,EXTEND

The following device assignment set, which includes this LFD statement, illustrates
how to extend a file (MAST) on volume Tlllll.

II DVC 100
II VOL T11111,T22222,T33333
II LBL MASTER
II LFD MAST,,EXTEND

If you expect additional volumes will be needed to accommodate extension of the file,
you can add the volume serial numbers of any tapes to the VOL statement. The
following device assignment set indicates that the extension of MAST will result in a
multivolume file.

II DVC 100
II VOL T11111,T22222,T33333
II LBL MASTER
II LFD MAST,,EXTEND

If you are extending a tape file that already has multiple volumes, your VOL
statement has to specify only the last volume containing the file plus any additional
volumes. You must include the serial number of the file's first volume as the second
parameter (file-serial-number) of the LBL statement. See "Multivolume File? Assign
Each Volume a File Serial Number" in this section for more information. Suppose, for
example, the file MAST is on volumes Tlllll, T22222, and T33333. If you expect the
file's extension to require an additional tape volume, you would code the device
assignment set as follows:

II DVC 100
II VOL ,,,T33333,T44444
II LBL MASTER,T11111
II LFD MAST,,EXTEND

The volume serial number Tlllll is required to identify T33333 and T44444 (the new
volume) as being part of the same file.

UP-9986 Rev.I 4-23

Getting the Most Out of the Basic Job Control Statements

Note: When referencing multivolume files on the VOL statement, any undeclared
volume serial numbers must be represented with commas. Additionally, if Mee,
N, or NMcc are not specified for the first positional parameter, you must supply
a comma. In the VOL statement in our previous example
(I I VOL ,,, T33333, T44444) the first comma represents the first positional

parameter. The second and third commas represent Tl 1111 and 7'22222,
respectively.

The Consolidated Data Management Macroinstructions Programming Guide
(UP-9979) also contains information about extending tape files.

Sharing Disk Volumes

More than one job can share a disk volume. But suppose you are updating a file that
will be accessed by other user jobs. They should not access the file until the update is
completed, or else their output would not be the most current. You can indicate, on
the VOL job control statement, that the disk volume is nonsharable; thus the file
cannot be accessed. The system will not allow other jobs to begin execution until your
job has finished the update.

Assume the file being updated has a volume serial number of DSK083 and it should
be nonsharable. You indicate this by using the (NS) parameter. The parentheses are
coded as part of the parameter, and there is no comma separating the volume serial
number and the (NS) parameter. This is coded as:

II VOL DSK083(NS)

When there is more than one volume in the file (DSK083, DSK076, and DSK093, for
instance) and they are all nonsharable, code it in this manner:

II VOL DSK083(NS),DSK076(NS) DSK093(NS)

Sharable disk volumes are the default condition.

Ignoring or Changing the Volume Serial Number

4-24

Through the VOL job control statement, you have the option of ignoring volume serial
numbers. This allows the use of any available volume or one with an unknown
volume serial number.

For example, you want to create a tape file. The operator is told that you can mount
any unused tape with a volume serial number (it does not contain a permanent file,
and you do not want a scratch tape because you are creating this file for other jobs).
Since you don't know what tape the operator will use, you don't know the volume
serial number for your VOL job control statement. By using the (NOV) parameter and
a dummy volume serial number, you can use a volume without specifying the correct
volume serial number.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Code it this way:

II VOL DUMMY(NOV)

Notice that there is no comma separating the dummy volume serial number and the
(NOV) parameter. The parentheses are part of the parameter.

After the job is processed, you should be informed, in some manner, of the volume
serial number of the created tape. This volume serial number must be used on the
VOL job control statement for any subsequent job using this tape volume.

Notes:

1. The volume serial number DUMMY is used here just as an example. You can use
your own dummy volume serial number, but if it isn't a unique one, keep the
following in mind: if two or more jobs use the same dummy volume serial number
for a disk volume, these jobs can run concurrently and share the same disk volume.
This may or may not be desired. If a job uses the (NOV) parameter with a dummy
volume serial number for one type of volume (e.g., a tape), and a second job uses
the (NOV) parameter with the same dummy volume serial number for another type
of volume (e.g., a disk) or, for another nonsharable volume (e.g., another tape), the
second job is not executed until the first job is finished .

2. If you specify a volume serial number and the volume with that serial number is
mounted on a device before the job goes into execution, that volume (and the device
on which it's mounted) is used even if you've specified a different physical device
number on the DVC statement. If, however, you use I I VOL DUMMY (NOV) the
physical request is not ignored.

With the VOL statement's SCRATCH parameter you can specify a multivolume file
without listing each volume's serial number. Consider this example:

II VOL VSN1,VSN2,SCRATCH

This statement declares a multivolume file and requests that the volume VSNl with
the serial number be mounted first and volume VSN2 be mounted second. The
SCRATCH parameter indicates that after VSN2, any volumes can be mounted.

When you request scratch processing, a message to mount a scratch volume is
displayed (after any explicitly requested volumes have been taken care of) on the
system console. Any volume will then be accepted until the end of file. Remember,
because data management cannot check for the proper serial numbers at this point,
you should make sure that the operator knows exactly what volumes to mount and the
sequence to mount them in.

The SCRATCH parameter can also be used alone. For example:

II VOL SCRATCH

UP-9986 Rev. I 4-25

Getting the Most Out of the Basic Job Control Statements

4-26

This statement requests scratch processing for all volumes in the file.

You may want to use the SCRATCH parameter if you have a 20-volume diskette file
for example, and you don't want to list 20 volume serial numbers in your job control
stream. When coding job control statements remember that the SCRATCH
parameter can only appear once in a VOL statement and it is always the last
parameter specified.

You can also suppress checking of volume serial numbers for all volumes of a
multivolume file by specifying NOV in the VOL statement for the last volume of the
file.

You can change a volume serial number by specifying the new volume serial number
followed by the (PREP) parameter. You can also use this to assign a volume that
currently does not have a volume serial number (scratch volume or a new volume).
Any information that is currently on the volume is scratched.

Your job creates an output tape that you want saved and to be assigned the volume
serial number ofTAP099. It would be coded as follows:

II VOL TAP099(PREP)

Once again, there is no comma separating the new volume serial number and the
(PREP) parameter. The parentheses are part of the parameter.

Notes:

1. Be very careful when you use the PREP option on a file to be processed by the
librarian. When you specify the PREP parameter, the tape is prepped every time it
is opened as output. The librarian closes output tape files whenever they are to be
used as input and then reopens them as output. If a tape file is to be reused as an
output file within the same job, the librarian closes it as input and reopens it as
output. This reopening causes the tape to be reprepped (if PREP was specified),
thereby effectively erasing all the information previously produced. Therefore, use
this option only if the file will be output only, or output, then input. Otherwise, use
the TPREP utility to prep the file. The PREP option cannot be suppressed. You
must redefine the tape file without specifying the PREP option on the VOL
statement.

2. For multivolume files, if PREP is specified for any of the volumes, all volumes in
the file are prepped.

3. SCRATCH lets you mount additional tape volumes (unlimited processing);
however, these additional volumes are not prepped if PREP is specified. If they
must be initialized, use the TPREP utility routine.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Multivolume Files Online Simultaneously

You may have an application, a data base system, for example, that requires a large
multivolume file, with the volumes online simultaneously (since they are accessed in a
random manner). Suppose you have a 3-volume file (volumes A B, and C). You would
code the device assignment set for the file like this:

II DVC 50
II VOL A
II DVC 51
II VOL B
II DVC 52
II VOL C
II LBL DATA
II VMNT=NO
II LFD BASE

More Information on Disk and Format-Label Diskette
File Allocation

You use the EXT job control statement to allocate the space (extent) needed by a disk
or format-label diskette file. The format is:

addr
Tccc:hh
BLK
TBLK
CYL
TRK
OLD

[, {mj. . } , ···] [,OLD][,FIXl[,NTERMl
(bJ,8J)

All the parameters are optional.

The File Type

With the first parameter of the EXT statement, specify the type of file you're
allocating the extent for .

UP-9986 Rev.I 4-27
Update B

I

I

Getting the Most Out of the Basic Job Control Statements

MIRAM files are discussed in the Consolidated Data Management Programming
Guide (UP-9978). System access technique files are described in the Supervisor
Technical Overview (UP-8831).

For the EXT job control statement, you can specify MIRAM (multiple indexed random
access method) files, indicated by coding MI, or SAT (system access technique) files,
indicated by coding ST.

If, for example, you wanted to use the multiple indexed random access method, you
would code:

II EXT Ml,C,,CYL,1

Formatting a File and Using Contiguous Space

4-28

Files are formatted using the parameters F, BLK, and (bi,ai). These indicate that you
are going to format the file, F, in terms of blocks, BLK, to a certain length, (bi,ai). The
bi indicates the number of bytes in the block, and the ai indicates the number of
blocks in the file. Files can be formatted only in terms of blocks.

Suppose that you have a MIRAM file to allocate and it contains 5000 blocks, each 4 72
bytes long. Refer to the format of the EXT job control statement to see the correct
position of each of the parameters you are going to see: MI, F, BLK, and (bilai]). It
would be coded as follows:

II EXT MI,F,,BLK,(472,5000)

You can set up your program to access a particular block (or blocks) within the file.

The EXT job control statement is also used to allocate space contiguously. When you
allocate a file, there may not always be a single extent (a single contiguous area)
available on the disk or format-label diskette. Suppose, for example, you need 10
cylinders for a file but there aren't 10 contiguous cylinders anywhere on the volume.
Instead, there are 2 contiguous cylinders in one place, 3 in another, and 5 more in
another. If this is the case, OS/3 disk space management divides the file among 3
different areas resulting in a 3-extent file. The C parameter (shown as one of the
choices in the second parameter in the format) can prevent this from happening so
that if enough contiguous cylinders cannot be found, the file won't be allocated.

Note: A single file on disk or format-label diskette can have no more than 16 physical
extents. If a file already occupies 16 extents but more are needed, you must use
another volume even if sufficient space is still available on the original volume.
(The file becomes a multivolume file.) A VTOC listing of the volume will tell you
in advance how many extents an existing file occupies. Just remember there
can be only 16 extents for a single volume file, 32 extents if the file occupies two
volumes, 48 for three volumes, and so on.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

When you specify the absolute starting address (the addr parameter, explained in
"Terms of Allocation" in this section), you must allocate contiguously. You must also
specify addr in hexadecimal. The use of continguous space reduces file access time,
thus reducing job processing time.

To allocate a MIRAM file that contains 1000 blocks, each containing 1024 bytes, and
you want contiguous disk space, code as follows:

II EXT Ml,C,,BLK,(1024,1000)

The C and F parameters can be combined to form one parameter. Use this if you want
contiguous, formatted disk space. A comma is not needed to separate these
parameters.

For example, to allocate 300 blocks, each 256 bytes in a contiguous area, using the
multiple indexed random access method, code the following:

II EXT Ml,CF,,BLK,(256,300)

Notice that we've been coding BLK in these examples. BLK, however, is the default
condition - you could have coded the last example like this:

II EXT Ml,CF,,,(256,300)

Your Disk or Format-Label Diskette File Needs More Space

When a disk or format-label diskette file is allocated, a certain area is reserved for a
file. It is possible, however, the amount that you estimate may not be enough. There
may be more information than you realized; an update of the file made it larger than
originally intended, or, you may be replacing existing information with new
information (this requires the use of the !NIT parameter of the LFD job control
statement, which is explained in "The Expiration and Creation Date of the File" in
this section). This new information may require more space than you had previously
allocated.

Job control can extend the requested area, if necessary. Let's say you're setting up a
file to contain 700 or 800 entries for an accounts payable procedure, and you estimated
the file would need 100 blocks, each 256 bytes in length. Since this is only an
estimate, you can use a parameter in the EXT job control statement to allocate more
space if it is needed. This is called dynamic extension. If it isn't needed, it isn't
allocated. In this way, you don't waste space by allocating more than necessary.

The parameter used to provide this dynamic extension is the third parameter group in
the format. The inc parameter is the amount of additional space that you request.
This dynamic extension is in terms of cylinders .

UP-9986 Rev.1 4-29

Getting the Most Out of the Basic Job Control Statements

Specifying 0 indicates you do not want to allow for dynamic extension of the file. Use
this when you want to limit the amount of information placed in the file. If nothing is
specified, by default, one cylinder is generated.

Assume, for the accounts payable application, that we estimated 100 blocks, each 256
bytes long, on a formatted, MIRAM file. We want two additional cylinders if dynamic
extension is necessary. The coding would be:

II EXT Ml,F,2,,C256,100)

Terms of Allocation

4-30

We've already covered some allocation terms in previous examples: BLKfor allocating
in terms of blocks and CYL for allocating in terms of cylinders. With the addr
parameter you can also specify the absolute cylinder address in hexadecimal at which
the file is to begin. When you do this, allocation is in terms of cylinders.

Note: The absolute address can be specified in decimal by coding D'number', or
hexadecimal by coding X 'number'. Any number not preceded by D or X and
enclosed in single quotes is considered hexadecimal.

Let's say you need one MIRAM file, allocated contiguously, allowing 5 cylinders for
dynamic extension, and it must start at cylinder 78. Code it:

II EXT Ml,C,5,4E

Do you recall specifying the amount of blocks needed for the file? One of the examples
looked like this:

II EXT IS,C,,BLK,(1024,1000)

Specifying (1024,1000) told job control how many blocks to allocate: 1000. When you
specify allocation in terms of cylinders or by absolute address, you must indicate how
many cylinders to allocate for the file by using the mi parameter.

If you wanted 10 cylinders, it would have been coded as:

II EXT Ml,C,5,CYL,10

The TRK parameter allows you to allocate disk and format-label diskette files in
terms of tracks. The TBLK parameter allows you to allocate a file in blocks by track
rather than in blocks by cylinder (BLK parameter). The Tccc:hh parameter is similar
to the addr parameter because it lets you specify the absolute hexadecimal (X'number'
or number) or decimal (D'number') starting address of the file. The address, however,
is a track address in cylinder/head format and the allocation is in terms of tracks, not
cylinders. For more information about file allocation by track, see the Consolidated
Data Management Macroinstructions Programming Guide (UP-9979).

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Note: You cannot allocate a disk file or format-label diskette file by track (using TRK.
TBLK or Tccc:hh) when creating MIRAM files with IRAM characteristics.

Remember that when you specify CYL, addr, TRK, or Tccc:hhh, you must specify the
number of cylinders or tracks with the mi parameter.

Allocation Amounts

The parameters for indicating the amount of space wanted were shown, indirectly,
when we discussed formatting and terms of allocation. These were coded as the fifth
parameter, mi or (bi,ai).

The mi parameter is used with either the CYL, addr, TRK, or Tccc:hh parameter, and
indicates the amount of cylinders or tracks needed by the file. These were covered in
the last example of "Terms of Allocation" in this section.

The (bi,ai) parameter is used with the BLK or TBLK parameter for allocating in terms
of blocks (rounded up to cylinders or tracks, respectively). Remember BLK is the
default parameter so you don't need to specify it. The bi indicates the amount of bytes
in the block, and the ai indicates the number of blocks in the file. For instance, this
example

II EXT Ml,C,5,CYL,10

indicates an allocation of 10 cylinders, while either of these examples

II EXT Ml,F,10,,(2S6,100J

II EXT MI,F,10,BLK,(256,100)

indicates an allocation of 100 blocks, each 256 bytes in length.

You can specify any number of separate disk areas (extents) for an individual file. A
reason for using several different extents for a single file would be to decrease data
access time, thus reducing processing time. Assume the program is designed such
that the file can be divided into two different extents. The first extent contains data
used only by the first part of the program; the second extent contains data used only
by the second part of the program.

For instance, the first extent contains hourly pay rates for calculating gross pay, and
the second extent contains payroll deductions to subtract from the gross pay to get the
net pay. Once the gross pay is calculated, the first extent is no longer needed; the
program will not need this information again. It only needs the deduction information
in the second extent to finish processing. In this way, one large extent is divided into
two smaller extents, reducing the amount of access arm movement for the disk unit .

UP-9986 Rev. l 4-31

Getting the Most Out of the Basic Job Control Statements

4-32

For example, you have a file divided into two different extents. The total size of the
file is 20 cylinders. The first part of your program uses 12 cylinders, and the second
part needs 8 cylinders. They can both be specified on the same EXT job control
statement. The information in the first four parameters applies to both extents in the
file.

Look at this portion of the format:

[, {mi }] [· { mj } , .. ·]
Cbi,ai) (bj,aj)

The mj parameter means the same as the mi parameter and the (bj,aj) parameter
means the same as the (bi,ai) parameter. The only difference is that mj and (bj,aj) are
used for additional extents in the file. So, we could code the two extent files (12
cylinders and 8 cylinders) as:

II EXT Ml,C,1,CYL,12,8

--;-~~
Notes:

This applies to both extents.

2 This is the allocation for the first extent.

3 This is the allocation for the second extent.

If you allocated in terms of blocks, with the first extent occupying 300 blocks, each 256
bytes in length, and the second extent occupying 700 blocks, each 256 bytes in length,
it would be coded as:

II EXT Ml,C,1,BLK,(256,300),(256,700)

Notes:

This applies to both extents.

2 This is the allocation for the first extent.

3 This is the allocation for the second extent.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

You can also specify separate extents for an individual file by coding separate EXT
statements, as we did when we coded separate VOL statements for a multivolume file.
Refer to "More Than One Volume in a File" in this section for details. You have coded
separate extent specifications for our previous example, like this:

II EXT Ml,C,1,BLK,(256,300)
II EXT Ml,C,1,BLK,(256,700)

Changing the Specifications of a Previously Allocated File

Sometimes, you may want to change some of the information pertaining to a
previously allocated file. Use the OLD parameter to do this. The following portion of
the EXT job control statement format shows OLD as either the fourth or seventh
parameter:

addr
Tccc:hh
BLK
TBLK
CYL
TRK
OLD

'{mi } [·{mj } , ... l[,OLDlC,FIXl[NTERMl
(bi[,ai]) (bj[,ajl)

When coded as the fourth parameter, OLD means you want to change the automatic
allocation amount for dynamic extension (the third parameter) for a previously
allocated file. Suppose you specified one cylinder when a MIRAM file was originally
created. To change this specification to five, you code the EXT statement as follows:

II EXT ,,5,0LD

You can omit the first and second parameters, since they are ignored if specified.

When OLD is coded following the allocation amount (mi, mj, etc), it increases the
original allocation amount for your extents .

UP-9986 Rev. I 4-33

Getting the Most Out of the Basic Job Control Statements

Let's assume your file was originally a 30-cylinder, sequential file and you discover
you really need 50 cylinders. To obtain these extra 20 cylinders, you can change the
allocation amount for the file by using this EXT job control statement:

II EXT ,,,CYL,20,0LD

When changing the allocation amount, you may omit the first, second, and third
parameters since they are ignored, if specified.

Allocating Space in the Fixed-Head Area of Your 8417 Disk

If you have an 841 7 disk subsystem with a fixed-head feature, use the FIX parameter
with your EXT statement when you want to allocate the extent in the fixed-head area.
See the Consolidated Data Management Macroinstructions Programming Guide
(UP-9979) for information about the 841 7 fixed-head disk.

No Terminate Option for Insufficient Extent Space

The NTERM option, when used, informs you if the extent cannot be allocated because
of insufficient disk space or because a specified absolute disk area is already in use
(error code 36). Rather than terminating the job, which is what happens without this
option, the system displays a JC48 message and waits for either a retry (R) or cancel
(C) reply. This allows your operator to evaluate the files currently on the disk and to
clear those that are not needed so your job can continue.

Information About Data-Set-Label Diskette File Allocation

4-34

To allocate space for a file on data-set-label diskette, include an EXT statement in the
device assignment set for the diskette.

A data-set-label diskette file is always a 1-extent, nonextendable, sequential file.
Therefore, several of the EXT statement parameters and options that we discussed in
the preceding section do not apply. To help you avoid confusion, refer to the following
EXT statement for data-set-label diskette:

//[symbol] EXT Ml,C,0,BLK,(bi,ai)[,NDI]

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Just as for disk, the first parameter of the EXT statement indicates file type. The
extent for a data-set-label diskette file must be contiguous and cannot be dynamically
extended. So specify C for the second parameter and 0 for the third parameter. Space
on a data-set-label diskette is allocated by block, so BLK and (bi,ai) must be specified
for the fourth and fifth parameters respectively. Specify the last parameter, NDI
(non-data-interchange), for all System 80 data-set-label diskettes that are not basic
data exchange (BDE) diskettes. If you omit this parameter, it is assumed that you're
allocating a BDE diskette (a single-sided, single-density diskette having 128-byte
sectors, 26 sectors per track, and 73 tracks.) For more information about the
characteristics of data-set-label diskettes, see the Consolidated Data Management
Macroinstructions Programming Guide (UP-9979).

The following is an example of an extent statement for a data-set-label diskette file
having 100 blocks of 80 bytes each:

II EXT MI,C,0,BLK,(80,1000)

Using Your File Identifier More Efficiently
So far, the LBL job control statement was used to designate the individual files on a
volume by providing a file identifier (labeling a file).

We are now going to explain the optional parameters, and a special variation of the
file-identifier parameter, that improve file handling efficiency. Once again, the format
of the LBL job control statement is:

//[symbol] LBL
{

file· identifier } [' {file-serial ·number}] [,expiration-date]
'file· identifier' VCHECK

As each individual parameter is introduced, refer to this format .

UP-9986 Rev. I 4-35

Getting the Most Out of the Basic Job Control Statements

But first, we'll describe the special variation of the file-identifier parameter.
Sometimes, you may not want more than one job to access a particular file at the same
time, for example, when it is being updated. If it's a disk file, you can make it lockable
by assigning a 6-byte lock ID as a prefix to your file identifier. Ninety-nine lock IDs
are available: $LOK01 through $LOK99. The lock ID may be followed by up to 38
characters. The LBL statement for a lockable file might be coded this way:

II LBL $LOK15MASTERFILE

Once you have assigned a lock ID to the file, it is locked automatically each time it is
opened. The type oflock (read-only or write-only) is determined by the ACCESS
parameters in your file definition macroinstruction for the file. See the Consolidated
Data Management Macroinstructions Programming Guide (UP-9979) for a complete
description of the file lock facility.

Multivolume File? Assign Each Volume a File Serial Number

4-36

When using a file consisting of multiple volumes, a file serial number can be assigned
to identify each volume as being a member of the file. In this way, a volume that is
not a member of the file cannot be used.

The file serial number is identical to the volume serial number of the first volume of
the file. For instance, there are four volumes in a file, in this sequence:

1. XYZ

2. PlO

3. A79

4. TPL

The file serial number for all the volumes in this file would be XYZ.

You use the VCHECK parameter to either create a file serial number on output
volumes, or to check the file serial number on input volumes. This VCHECK
parameter instructs job control to use the first volume serial number specified on the
VOL statement as the file serial number.

Once again, we have the four volumes, XYZ, PlO, A79, and TPL, in that order, in a file.
We want to write a file serial number on them. Arbitrarily, the file identifier we are
going to use is OUTPUT. Your VOL and LBL statements would look like this:

II VOL XYZ,P10,A79,TPL
II LBL OUTPUT,VCHECK

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

If this file was already created with a file serial number (input rather than output), it
would be coded the same way. The VCHECK parameter writes on output and checks
on input.

The file-serial-number parameter is also used to write or check the file serial numbers
of volumes, but in a slightly different manner.

Again, we have these same four volumes (XYZ, PlO, A79, and TPL) in the file. But,
you only want to use the last two volumes, A79 and TPL, in that order, on this run.
This is a previously created file; when it was created, the VCHECK parameter was
used, giving a file serial number ofXYZ to each volume. Ifwe used the VCHECK
parameter now, while trying to read only these two volumes, A79 and TPL,job control
would use the volume serial number of the first volume specified on the VOL
statement, A 79, as the file serial number value. Since these volumes were created
with a file serial number of XYZ, the job would not run. But, the file-serial-number
parameter allows you to specify the particular file serial number to use. This case
would be coded like this:

II VOL ,,,A79,TPL
II LBL OUTPUT,XYZ

Note: When referencing multivolume files on the VOL statement, any undeclared
volume serial numbers must be represented with commas. Additionally, ifMcc,
N, or NMcc are not specified for the first positional parameter, you must supply
a comma. In the VOL statement in our previous example
(I I VOL ,,,A79,TPL) the first comma represents the first positional parameter.
The second and third commas represent XYZ and P 10 respectively.

If either VCHECK or the file-serial-number parameter is omitted when a multivolume
file is created, there is no file serial number for the file, or, if it's a tape volume, there
is no VOLl label.

The Expiration and Creation Date of the File

You can limit the life of files by writing an expiration date with the LBL statement.
This date indicates whether or not a file can be deleted by a scratch routine (by using
the SCR job control statement, explained in "Scratching Unwanted Files" in Section 6)
or by a function of data management. This is coded as the third parameter on the
LBLjob control statement, and can take either of two forms:

• yyddd

UP-9986 Rev. l

In this form, yy is the year, and ddd is the day of the year. For example,
February 10th is the 41st day of the year (31 in January, plus 10) .

4-37

Getting the Most Out of the Basic Job Control Statements

• Rdddd

In this form, R is a constant, and indicates a retention cycle is being used based
on the creation date (either the next parameter, or the date set in the system).
The dddd indicates the amount of days (1-9999).

For instance, you create an output tape with a file identifier ofXRAY, and you want it
to have an expiration date of the 98th day of 1979. This would be coded as:

II LBL XRAY,,79098

If you omit the expiration date when writing a file, the current date is inserted for you.
If you omit it when allocating a file, no date is specified and zeros are inserted. If you
omit the date and allocate, then write to the file (in the same jobstep), the current
system date is used.

The creation-date parameter indicates the date the file is generated. If omitted for a
tape file or a disk output file, the date stored in the job preamble is used. If omitted
for a disk input file, this field is ignored.

The creation date has only one form: yyddd, where yy is the year and ddd is the day.

If you want a creation date of the file, identified by XRAY, to be the lOOth day of1979,
code:

II LBL XRAY,,,79100

Indicating the Position of the File when Several Are on a Tape Volume

4-38

When you place more than one file on a single tape volume, you can indicate each file's
position on the tape by assigning sequence numbers. Later, if you want a particular
file on that volume, you simply reference the file (in the II LBL statement) by its
identifier and sequence number. You can only assign sequence numbers to standard
labeled tape files.

When you create a tape file, you use the fifth positional parameter of the II LBL
statement (file-sequence-number) to assign a sequence number. The following
statement, for example, assigns a sequence number of 3 to PRMAST - the third output
file on a volume to contain 5 files:

II LBL PRMAST,,,,3

Later, when you want to read (input) PRMAST, you can go directly to that file by
including the same statement(// LBL PRMAST,,,,3) in your device assignment set.
When you specify the file sequence number, data management searches for the first
file with that number. If it's found, data management then checks the file identifier
for a match. (If the file sequence number you specify is not bound or if the file
identifiers don't match, a data management error results.)

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Remember, you must assign file sequence numbers when a tape file is created in order
to reference that file by sequence number later. If you don't assign a sequence number
on output, data management assigns a number 1 to the file regardless of its position
on the tape volume. If you don't provide a sequence number on input, data
management does not check for a sequence number but expects to use the first file
encountered. In either case, omitting file sequence numbers means using another
method to position the tape to the file you want (e.g., the// MTC statement or reading
and closing preceding files without rewinding until the desired file is reached).

Different Versions of a File

Ordinarily, only one generation of a file is used by a program. There are instances,
however, when more than one generation of the same file may be needed. For
example, one generation contains payroll deductions only used in January, March, and
May, and another generation has the payroll deductions used only in February, April,
and June. To indicate the different generations of a file, you can use the 1- to 4-digit
generation-number parameter of the LBLjob control statement. This is used only
with tape files, and is the sixth parameter shown in the format. By using this
parameter, you can be sure the correct generation is used.

Suppose you did have two different generations of the payroll deduction file, with a
file identifier ofCUSTMAST, and you want to use the second generation. This would
be coded as:

II LBL CUSTMAST,,,,,2

If you omit this parameter, data management assumes 0001.

Let's go one step further. Each generation of a file can have several different versions.
Again, we have these two different generations of the CUSTMAST payroll deduction
file. Generation 1 is used in January, March, and May, and generation 2 is used in
February, April, and June. But, suppose each of these generations had two unique
sections. Version 1 is used in odd-numbered years, and version 2 is used in even­
numbered years.

We could use the 1- to 2-digit version-number parameter to do this.

Suppose it is January, 1980. We need generation 1 (January) and version 2 (1980 is
even numbered). This would be coded as:

II LBL CUSTMAST,,,,, 1,2

If the version-number parameter is omitted, data management assumes 01.

UP-9986 Rev. l 4-39

Getting the Most Out of the Basic Job Control Statements

Changing the Label of a Disk File

440

The REN statement is used to permanently change the label of a disk file through job
control - a simpler procedure than the alternative methods for renaming disk files.

The format of REN is:

//[symbol] REN lfdname, {new-label } [,NTERMl
•new-label 1

The lfdname parameter identifies the file to be renamed. It must match the lfdname
in the LFD statement for the file.

The file's new label is specified in the new-label parameter. New-label replaces the
existing label identified in the device assignment set for the file. If new-label contains
embedded blanks, it must be enclosed by single quotation marks. It may be from 1 to
44 alphanumeric characters in length.

Specifying optional parameter NTERM causes any fatal errors encountered during the
renaming process to be ignored, but permits the job to continue. If this parameter is
present, the job continues running if a renaming error occurs, but the file is not
renamed. If NTERM is omitted, the job terminates at the point of error.

The REN statement is checked for syntax errors by the run processor during job
stream validation. If no errors are detected, the job is queued and becomes a
scheduling candidate. The run processor passes information from the REN statement
to the step processor, which performs the actual renaming during job execution.

The device assignment set for the file to be renamed must precede the REN
statement. It is a good idea to place the REN statement within the control stream as
close to the device assignment set for the file as possible, since //REN is only effective
against files on volumes mounted when the REN statement is encountered.

A file is renamed in the job step containing// REN, prior to execution of the program
for that step, or prior to job termination if no EXEC statement follows// REN.
Subsequent references to the renamed file must use new-label in the LBL statement
of the device assignment set for the renamed file.

Notes:

1. The REN statement is used only to rename disk or format-label-diskette files; it may
not reference device assignment sets for data-set-label diskette or tape volumes.

2. REN statements are not permitted against files on SYSRES that begin with $¥$, or
against files on SYSRUN that begin with YR.

3. Don't use I I SKIP to bypass a device assignment set referenced by a REN statement
that is not also bypassed. If you do, you'll get an error during the renaming process.
(See "Adding Cards to a Stored Control Stream" in Section 6 for more information.)

4. If you rename a cataloged file, you must recatalog the file under the new name.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Suppose you have a program that calculates the engineering department's payroll and
outputs a disk file labeled EGRPAY. The control stream to rename the file EGRCOST
looks like this:

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT

II REN DSKOUT,EGRCOST

The file's label is now EGRCOST. Suppose that a subsequent job step uses EGRCOST
as input for calculating company-wide costs. Building on our first example, the
renamed file is referenced subsequently in the control stream like this:

UP-9986 Rev. I

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT

II REN DSKOUT,EGRCOST

II DVC 50
II VOL DSK01
II LBL EGRCOST
II LFD DSKIN

4-41

Getting the Most Out of the Basic Job Control Statements

442

A single REN statement applies only to the first volume in a multivolume file. To
rename a multivolume file, therefore, you must specify a unique REN statement for
each volume in the file.

If EGRPAY in our first example had been a multivolume file, we would have renamed
it this way:

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT1

II DVC 51
II VOL DSK02
II LBL EGRPAY
II LFD DSKOUT2

II REN DSKOUT1,EGRCOST
II REN DSKOUT2,EGRCOST

Use the REN statement carefully to avoid renaming a file concurrently used by
another job. To help prevent this problem, establish nonsharable status (using the NS
option of the VOL statement) for endangered disk volumes, or use passwords known
only to selected personnel.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Specifying Qualifiers for File Identifiers
The QUAL job control statement is used to prefix a qualifier to all subsequent file
identifiers in a job. The format of the QUAL statement is:

//[symbol J QUAL qualname

The qualname is a 1- to 8-character alphanumeric name. When specified, this name
followed by a slash becomes the qualifier, and is automatically prefixed to each
subsequent file identifier in your job control stream.

Consider the following example:

II QUAL SMITHCO
II DVC 60 // VOL DISK01
II LBL PAYABLES.TAXES
II LFD PAYFILE
II DVC 60 // VOL DISK01
II LBL INCOME.INTEREST
II LFD INFILE

In this example, SMITHCO is specified as the qualifier and will be prefixed, along
with a slash, to each subsequent LBL file identifier producing
SMITHCO/PAYABLES.TAXES and SMITHCO/INCOME.INTEREST. The qualifier
remains in effect until the end of the job or until another QUAL statement is
encountered. If the next QUAL statement specifies another qualname, that name
becomes the qualifier for any subsequent file identifiers. If no name is specified (e.g.,
II QUAL), use of the qualifier is terminated.

An LBL file identifier that is already prefixed with an alphanumeric name and a slash
overrides the QUAL statement qualifier. Consider this example:

I I QUAL SMITHCO
II DVC 60 II VOL DISK01
II LBL PAYABLE.TAXES
II LFD PAYFILE
II DVC 60 II VOL DISK01
II LBL INCOME/INTEREST
II LFD INFILE

INCOME/ in the second LBL statement is already considered a unique qualifier;
therefore, SMITHCO/ will be prefixed to PAYABLE.TAXES but not to
INCOME/INTEREST.

Because the QUAL statement is especially useful in identifying cataloged files (see
"File Cataloging" in Section 6), QUAL is also discussed in the File Cataloging
Technical Overview (UP-9982) .

UP-9986 Rev.1 443

Getting the Most Out of the Basic Job Control Statements

More Information About the Logical File
So far, you know the LFD job control statement is used to provide a file name that
associates the file defined in the program with the file information in the control
stream. Now, by introducing the optional parameters, you will see some of the other
functions it provides. Once again, its format is:

//[synbol J LFD { filename } [' { n }] 'I EXTEND l *filename 8 !NIT
PREP
ID
IGNORE

Refer to this format as each parameter is introduced.

We have already discussed the filename parameter. An asterisk(*) indicates that the
file label is lockable.

Reserving an Extent Information Storage Area

444

Files are defined on disk and format-label diskette volumes in terms of extents. An
extent is space on the volume made up of contiguous tracks. If you recall, we used the
EXT job control statement to split up a file into two extents. So, in the strict sense, an
extent is not always the entire disk area a file requires; at times it is, but at other
times it isn't.

Information about the extents is placed in the job's prologue along with other
information needed to regulate your job. (See "Minimum and Maximum Main
Storage" in Section 2.) On the JOB statement, you specify the minimum and
maximum amount of main storage needed to execute your largest job step. However,
in order for job control to reserve sufficient main storage for the extent information in
the prologue, you must specify the number of physical extents a file has in the second
parameter of the LFD statement. Assume, for example, that the file named DSKOUT
has 10 extents. To reserve space for information about these extents, you code the
LFD statement as follows:

II LFD DSKOUT,10

The space acquired by using this parameter influences the total main storage
requirement for the job. If you specify a value of zero, job control does not reserve
main storage for extent information. If you omit this parameter, main storage
sufficient for information about eight extents is reserved. The maximum value you
can specify for this parameter is 20.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Note: If you specify a greater number of extents on the LFD statement than a file
actually has, main storage is used unnecessarily for the extent information.
Although this should be taken into consideration, problems are more likely to
arise if you specify fewer extents on the LFD statement than the file actually
has.

Specifications for Existing Files

The third parameter of the LFD job control statement provides five different options:
!NIT, EXTEND, PREP, IGNORE, and ID.

The !NIT option is used to initialize an existing disk file; that is, !NIT causes all
information except the allocated space and file identifier to be discarded when the
program using that file opens it. When you specify !NIT for an output file, the output
will start at the beginning of the file. When !NIT is specified for an input file, an end­
of-file will be indicated when your program reads the first record. You can specify
!NIT for all disk and diskette files.

Suppose you already reserved for the old file rather than allocate a new one? In this
way, you are not leaving dead space on the disk volume.

We'll assume that the file name is SORTOUT. The device assignment set to reuse
WORK2 on disk volume DPS028 would look like this:

II DVC 50
II VOL DSP028
II LBL WORK2
II LFD SORTOUT,,INIT

Notice the logical unit number for the DVC job control is 50. This indicates any disk
device can be used. Also note the absence of an EXT job control statement. It wasn't
needed; specifications for the new file are the same as the old one.

Note: The !NIT parameter must not be used for a file that contains checkpoint
records. The use of this parameter causes writing to begin at the start of file
every time you log a checkpoint record to the file, thus overwriting any
checkpoint records already existing on the file.

The EXTEND option allows you to add information to the present end of an existing
output file if the instructions in your program allow you to do so. EXTEND has no
effect on input files.

You can specify EXTEND for tape files; EXTEND logically does not affect disk and
diskette files.

Suppose you allocated four cylinders for your file, but filled only two cylinders with
information. Now, you have more information to add to this file, and your program
allows you to do so. You must also instruct job control that you intend to do this .

UP-9986 Rev .1 445

Getting the Most Out of the Basic Job Control Statements

If the file name were ADDON, you could extend the file like this:

II LFD ADDON,,EXTEND

Remember, whether or not you can actually extend a file depends on the instructions
given in your program. In COBOL, for example, an OPEN OUTPUT statement does
not permit file extension even if you specify the EXTEND parameter on the LFD
statement.

The IGNORE option lets you specify that a file is an optional file. This means you can
decide at job execution time, without having to change the program, whether accesses
to the file should be processed or ignored based on the file resources that are available.
This option should be used only with consolidated data management. It is ignored if
specified for a file that is accessed using basic data management (including SAT files).

When the IGNORE option is specified, the following status is returned to the
executing program:

• File initialization (OPEN) - successful status

• Input operation - end of file (EOF) indication

• All other operations - successful status (request is ignored)

Use this option when a program reads or writes multiple files and it is not necessary
that all of the files be accessed. For example, a program updates some files and
produces a report, but the report is not always needed. You would specify IGNORE in
the// LFD statement of the printer device assignment set. Another example is where
the program reads multiple input files, but one of them is not available at the time
and is not essential to the execution of the program.

When this option is specified for an input file, the program should be performing
sequential retrieval; otherwise, it may not be expecting an EOF indication.

Indicating Where the Load Module is Located

446

An EXEC job control statement is required to call a load module and initiate
execution. Once again, the format is:

//[symbol] EXEC program·name '{ library·name} [,[~:.]switch·priority][,ABNORM=labell
YRUN
YLOD

The second parameter indicates the name of the library (on disk) containing the load
module. This can be either YLOD, YRUN, or the LFD name of the alternate load
library you have previously specified in the control stream.

UP-9986 Rev. 1

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

As you can see, the shaded default option is YLOD. This is where you would store
most of your programs. When you omit the second parameter, YLOD is searched.
If the load module is not found here, then the job's YRUN file is searched.

Another choice you have is the job's YRUN file, which is where the linkage editor
stores your load module if you have not indicated a specific library. You would code
YRUN in the EXEC job control statement if you have a load module with the same
program name in YLOD. Let's assume that you have a load module named
PAYROL in YLOD and that you want to make some changes to this program. Take
the source deck, make the necessary changes, and compile it with the same program
name: PAYROL. When it comes time to execute, the system is told that the load
module to fetch is PAYROL. Without specifying the library name on the EXEC job
control statement, the default (YLOD) is assumed, so the system fetches the
PAYROL load module from YLOD. But, you wanted the one from the job's YRUN
file. You are going to receive the wrong load module. So, in this case, you had better
indicate that you want to fetch from the job's YRUN file. Remember, the job's
YRUN file is only a temporary file. Any load module you store here is available
only during that job.

Let's say your load module is named PA YROL and it is loaded in the job's YRUN
file. It would be coded as follows:

II EXEC PAYROL,YRUN

If the load module cannot be found in the job's YRUN file, YLOD is searched to
see if it was stored there.

The remaining choice for this parameter, library-name, is used when the load module
is stored in a private load library of your own. If you do this, you must define this
library in a device assignment set, and the library-name must agree with the file
name on the LFD job control statement. Normally, if the module is not found in this
library, YLOD and then YRUN are searched. If, however, you specify NSRCH on
the OPTION job control statement, only the library named on the EXEC statement is
searched for the load module; YRUN and YLOD are not searched. (See "Selecting
Optional Features" in Section 6.)

Let's say the load module is named PAYROL, and it is stored in a library with a file
identifier of PAYLIBRARYMAST, on disk volume DISKOl. You used PAYLIB as the
file name on the LFD job control statement, and, as the file identifier on the LBL job
control statement, you would, of course, have to use PAYLIBRARYMAST. The device
assignment set and the EXEC job control statement would be coded as:

UP-9986 Rev.1

II DVC 50

II VOL DISK01
II LBL PAYLIBRARYMAST
/Flfti:'PAYLJB 11

JI.exec PAYR0L;J>AYL1a---1

447

Getting the Most Out of the Basic Job Control Statements

If this library is not accessed by your program (if it is only accessed by the system to
obtain the load module named on the EXEC job control statement), the file name on
the LFD job control statement need not agree with any specification within your
program. It serves only to associate the library in the device assignment set with the
library on the EXEC job control statement. As the file name on our LFD job control
statement, we could have used any name as long as it agrees with the specification on
the EXEC job control statement.

If the load module is not located, YLOD, then the job's YRUN file is searched.

Task Switching Priority

4-48

The EXEC job control statement is also used to specify task switching priorities. This
synchronization and rotation of central processor control from task to task is a
function of the supervisor, and is described in the Consolidated Data Management
Programming Guide (UP-9978).

The switch-priority is the third parameter of the EXEC job control statement. The
priority you specify can be an absolute value ranging from 1 to 60, with the lower
number representing the higher priority. (1 is the highest priority.) Assume, for
example, your job has one step and you want a switching priority of 10 assigned to the
specified program. (The load module name for the program-name is SWITCH and it
is stored by default in YLOD.) You could code the EXEC statement as follows:

II JOB MYJOB

II EXEC S~ITCH,,10
I&

You can also specify a relative value such as +3 or -3 to change priority for a program
specified in a particular job step with respect to the job's overall priority (as set, for
example, by a SWITCH operator command or an OPTION PRI job control statement).

When specifying priorities this way, remember that a plus(+) value decrements the
overall assigned value. This results in a higher task switching priority. A minus (-)
value increments the overall assigned value. This results in a lower task switching
priority.

UP-9986 Rev. I

•

•

•

•

•

•

Getting the Most Out of the Basic Job Control Statements

Suppose you code the following:

II JOB MYJOB
II OPTION PRI=7 }

Assigns an overall task switching priority of 7
to each program.

II EXEC PROG1

II EXEC PROG2

II EXE: PROG3,.+2 }

II EXE: ORJG4,,3 }

II EXE; PROG5,,·4}

I&

The program specified in these 2 job steps
have a task switching priority of 7.

The program specified in this job step has a
task switching priority of 5.

The program specified in this job step has a
task switching priority of 3 .

The program specified in this job step has a
task switching priority of 11.

The OPTION PRI job control statement is discussed in "Selecting Optional Features"
in Section 6.

If you omit a task switching priority, the lowest available priority (the highest
number) is used.

You should understand that the task switching priority specified on the EXEC job
control statement is only the initial switching priority for that job step. There are two
ways it can be changed during the job step:

• The operator can raise or lower the priority using the SWITCH console command
if a job is getting too much or too little CPU time.

• The program itself may raise or lower its priority using the CHAP (change
priority) macroinstruction. This function is described in the Consolidated Data
Management Programming Guide (UP-9978) .

UP-9986 Rev.l 449

Getting the Most Out of the Basic Job Control Statements

As you can see, the effect of the switching priority really depends on the task
switching priorities specified for other jobs running at the same time as your job. Your
job will not gain any advantage by specifying a task switching at priority of 1 (the
highest priority) if all other jobs also use priority 1. There is a case, however, where
the assigned switching priority is particularly significant. Recall from Section 1 that
the RUN symbiont is one portion of job control that reads and analyzes job control
streams. The RUN symbiont is only one of many OS/3 symbionts that perform system
functions, usually in response to operator console commands. Normally, all symbionts
run at priority 0, i.e., higher than any user job. A SYSGEN option, however, allows
the supervisor to be configured so that all symbionts run at some lower (user) priority.
For example, suppose symbionts run priority 2 under your supervisor. The only jobs
that should be run with task switching priority 1 would be those that are extremely
time-critical and cannot tolerate the loss of CPU time whenever a symbiont is active.
Other jobs should be run at priority 3 and lower.

Avoiding Abnormal Termination Due to Program Errors

The ABNORM=label keyword parameter of the EXEC job control statement is used to
bypass job control statements if your program contains errors that may cause the job
to abnormally terminate. If the program has such errors, control of the job skips to
the statement whose label you specify in this parameter so that the job's execution can
continue. Any subsequent action depends on the contents of the target job control
statement. A more specific example for using this parameter is given in "Bypassing
Job Control Statements to Avoid Abnormal Termination" in Section 6. For now, just
remember thatABNORM=label is a keyword parameter, not a positional parameter,
and therefore, may be coded in any position. For example:

II EXEC MYPROG,ABNORM=ERROR

Also remember that the operator can still cancel (normally terminate) your job even
though you specify this parameter.

The Job Control Language So Far

4-50

We have now covered the job control statements you'll probably use most frequently
for your jobs. The remaining section in this part of the guide deals with system
JPROCS provided in the basic OS/3 software package. Their use eliminates the need
ofrepeatedly coding a series of job control statements that perform a specific function.

UP-9986 Rev. 1

•

•

•

•

•

•

Section 5
Doing It the Easy Way - with Procedure Calls

What is a Procedure?
Have you ever heard someone say: "I've made that mistake before. There must be
some way, some procedure, to make sure it won't happen again"? Common errors are:
keypunching errors, forgotten commas, statements out of sequence, etc - errors that
occur because of repetition rather than unfamiliarity. Ifwe could reduce the number
of job control statements coded, the bulk of these errors would also be reduced. What
is needed is a procedure that allows you to write a series of job control statements,
store them for later use, and, by writing a single job control statement, call in these job
control statements whenever needed.

This procedure exists - it allows you to write and call your own procedures, or to call
procedures supplied by Unisys. In Part 3, you'll learn how to write, store, and call
your own procedures. This section discusses how to use procedures supplied by
Unisys. These procedures are called by job control procedure call statements (JPROC
calls) in the control stream. Each JPROC call generates a ready-to-use set of job
control statements. Optional parameters in the JPROC call line enable you to tailor
the job control statements generated to suit your needs. (See "Job Control
Procedures" in Appendix C for a complete listing of JPROCS.)

When you use more than one JPROC call, keep this in mind: only one JPROC call can
appear on a single card. JPROC calls can be part of a multistatement line of coding,
but

• It must be the only JPROC in the line

• It must be the last statement on the line

You can code this:

II job control statement 11 jproc call

but not this:

11 jproc call 11 jproc call

and not this:

11 jproc call II job control statement

UP-9986 Rev.1 5-1

----- ----------------------------

Doing It the Easy Way - with Procedure Calls

Setting Up Temporary Work Files

5-2

Temporary work files are used extensively by programmers to store intermediate
processing results and data that will only be used in a particular job or job step.
Depending on file characteristics and the device used, from three to five job control
statements are needed in the device assignment set for each temporary work file. The
WORK and TEMP JPROC calls allow you to generate any device assignment set
needed for temporary work files.

The difference between the two JPROCS is that WORK sets up temporary files for one
job step and deletes them at the end of the job step. TEMP sets up temporary files for
the duration of the job, deleting them at the end of the job. WORK and TEMP also
generate different default file name values - we'll explain these in a moment.

The format for WORK and TEMP is:

I I [l fdname l { llORKn }
TEMPn

DVC=nn, VOL= {vol -ser ·no}
RES

RUN

VOL= {vol ·ser-no}
RES

RUN

, { BLK=nnnn}
BLK=4000
CYL=nn

Suppose your assignment is to write a program that reports the grades for each
student in the local school district. The program must list each student's name,
grouped by school, in descending grade order. The disk area that stores the data used
to calculate the order will never be used again once the job step terminates - an ideal
candidate for a temporary file created by WORK

Ignoring all optional parameters, the basic WORK JPROC call is:

II llORKn

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Where n is a number in the range 1through10. Up to 10 temporary work files can be
set up for each job step (or job, if you're using TEMP). If no specific device or volume
is requested, the file is allocated on either SYSRES or the job's YRUN file; odd­
numbered files go to SYSRES and even-numbered files to YRUN. So, if you want
one temporary file allocated on the job's YRUN file, for the duration of the job step,
you would code the following:

II WORK2

These job control statements would be generated:

II DVC RUN
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2, 16
II LFD $SCR2

We'll discuss the generated EXT statement in conjunction with the BLK, EXTSP, and
TYPE parameters. For now, it's sufficient to know that 4000 blocks, each 256 bytes
long, are allocated by default.

The lfdname parameter of WORK and TEMP supplies a file name for the generated
job control statements. It is one to eight alphanumeric characters in length. The file
identifier on the LBL statement generated by WORK is always prefixed by $SCR,
which identifies job step temporary (scratch) files. The number after $SCR
corresponds ton in WORKn. If you omit the lfdname parameter of the WORKJPROC
call and code the following:

II WORK1

the generated statements are:

II LBL $SCR1
II LFD $SCR1

The file name in your program must also start with $SCR. In addition, you must use
the same WORKJPROC call each time the program is run. If the JPROC call is
changed to II WORK7, for example, the file name in your program must be changed to
$SCR7 .

UP-9986 Rev.1 5-3

Doing It the Easy Way - with Procedure Calls

5-4

For TEMP, unlike WORK, the generated file identifier is $JOB if you omit the
lfdname parameter. Therefore, if the file name in your program begins with $SCR,
you must use the lfdname parameter of the TEMP JPROC call, like this:

//$SCR1 TEMP1

to generate:

II LBL $JOB1
II LFD $SCR1

If you had not used the lfdname parameter in this example, the generated file name
would have been $JOB1, which would not have matched the file name in your
program.

You can have the control statements generated by WORK and TEMP listed by
specifying the P option on the JOB statement. If you have spooling in your system,
the control statements will be printed in the job log. Otherwise, they will be displayed
on the system console.

When the job step terminates, all temporary files created by WORK are scratched.
Files created by TEMP are scratched at the end of the job.

The lfdname parameter can also indicate a file's function when using the WORK
JPROC call. For example, if you code

llGRADEOUT YORK2

the generated job control statements are:

II DVC RUN
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

It is easier to remember what GRADEOUT contains than it might be to remember
what $SCR2 contains.

The remaining optional parameters of the WORK and TEMP JPROC calls are
keyword parameters. If you are unsure of the rules for coding them, tum to Appendix
A to refresh your memory.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Notes:

1. Work file labels ($JOB and $SCR) are modified to be unique for the job by
inserting a job-id after the first four bytes of the label. This enables all residual
work files (for example, work files not scratched when an HPR occurs) to be cleared
from the disk during IPL.

2. Within user JCL, work file labels (those starting with $JOB or $SCR) cannot
exceed 39 characters.

Using Your Own Volume

By default, temporary work files are allocated on SYSRES or YRUN. But what if
you needed several work files and there isn't enough available space on these
volumes? In this case, you would use your own volume by specifying the VOL
parameter. Building on our last example, if your own volume is DISKOl, you would
code:

llGRADEOUT YORK2 VOL=DISK01

This device assignment set is generated:

/[PVC50
7''/''::voL , 0Js1<0:1
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

Note that the logical unit number generated for the DVC job control statement is 50.
The WORK and TEMP JPROCS automatically assign the first available logical unit
number in the range 50 through 59, but you can use the DVC parameter to assign
another logical unit number (selected from Table A-3 in the Job Control Programming
Reference Manual (UP-9984). In order to avoid a conflict, for example, you may want
to assign a different logical unit number to the temporary work file if you've already
assigned DVC 50 to a disk volume in your job control stream.

Suppose we select logical unit number 60 (indicating any 8419 disk) and add the DVC
parameter to our example, like this:

llGRADEOUT YORK2 VOL=DISK01,DVC=60

Since DVC and VOL are keyword parameters, they do not have to be in any specific
order. So, it could be coded:

llGRADEOUT YORK2 DVC=60,VOL=DISK01

UP-9986 Rev.1 5-5

Doing It the Easy Way - with Procedure Calls

Either of these two JPROC calls generate these job control statements:

II DVC 60
II VOL DISK01
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

You can use the VOL parameter and omit the DVC parameter -job control will assign
a logical unit number. The converse is not true; if you use the DVC parameter, you
must use the VOL parameter.

Providing the Extent Specifications

5-6

When the WORK or TEMP JPROC calls allocate temporary work files, they are, by
default, 4000 blocks - each 256 bytes long. However, you can change this by using the
BLK parameter or the CYL parameter.

Possibly, your file doesn't nquire 4000 blocks. Maybe you only need 1000 blocks.
Don't tie up 3000 blocks that your program isn't going to use. Use the BLK keyword
parameter to indicate that only 1000 blocks are needed:

llGRADEOUT WORK2 DVC=60,VOL=DISK01,BLK=1000

which would generate these job control statements:

II DVC 60
II VOL DISK01
II EXT ST,,1,BLK,(256,1000)
II LBL $SCR2
II LFD GRADEOUT

Suppose you want to allocate 3 cylinders for the file instead of 1000 blocks. In this
case, specify the CYL parameter in the JPROC as follows:

llGRADEOUT WORK2 DVC=60,VOL=DISK01,CYL=3

This JPROC generates the following job control statements:

II DVC 60
II VOL DISK01
II EXT ST,, 1,CYL,3
II LBL $SCR2
II LFD GRADEOUT

UP-9986 Rev. 1

•

•

•

.....--------------------

•

•

•

Doing It the Easy Way - with Procedure Calls

In "Reserving an Extent Information Storage Area" in Section 4, we used the second
parameter of the LFD job control statement to tell the system how many extents
existed in the file. Job control used this to calculate the amount of main storage
needed to contain the information about the extents. For the WORK and TEMP
JPROC calls, you do this with the EXTSP keyword parameter.

When the number of extents is omitted, 16 is assumed. If you know your data will
take less than 16 extents, it's a good practice to specify the EXTSP parameter. For
example, your data may only need one extent; it is foolish to let the system allocate 16.

Assuming only one extent, we would code:

llGRADEOUT WORK2 DVC=60,VOL=DISK01,BLK=1000,EXTSP=1

These statements would be generated:

II DVC 60
II VOL DI SK01
II EXT ST,,1,BLK,(256,1000)
II LBL $SCR2
II LFD GRADEOUT,1

In "Your Disk or Format-Label Diskette File Needs More Space" in Section 4, we
discussed the dynamic extension of a disk file. You can indicate how much additional
area to allocate on the WORK and TEMP JPROC calls, too. Use the SEGALL
keyword parameter.

In the grading report, we estimated 1000 blocks were needed for 5000 students. If
this amount is exceeded, you will, by default, receive one additional cylinder. The
dynamic extension process takes a little time, which increases processing time.
Normally, one additional cylinder is enough extra space to contain any additional
information, but, at different times in the school year, you are called upon to do the
grading report for a neighboring school district. This district has 15,000 students.
This will no doubt exceed the 1000 blocks, and the overflow of data will take up more
than one cylinder; it will be closer to five cylinders. Job control will keep on
dynamically extending the file, in increments of one cylinder, until the needed space is
acquired. Since each dynamic extension takes time, why not request that the
extension be made all at once, by increasing the dynamic extension amount? This
additional space is only allocated when needed (and most times you run this job,
dynamic extension will not be needed). The relative cost of extra temporary space
acquired infrequently, by dynamic extension, is minimal compared with the processing
time cost required to allocate one cylinder five times. Since you know when the
special runs for the other school district will occur, they can be scheduled when the use
of these five additional cylinders will not hinder jobs being run .

UP-9986 Rev.1 5-7

Doing It the Easy Way - with Procedure Calls

Let's add a 5-cylinder dynamic extension to the example we've been using:

llGRADEOUT IJORK2 DVC=60,VOL=DISK01,BLK=1000,EXTSP=11,SECALL=5

This generates these job control statements:

II DVC 60
II VOL DISK01
II EXT ST,,5,BLK,(256,1000)
II LBL SSCR2
II LFD GRADEOUT,1

You should now be able to use the WORK and TEMP JPROC calls and tailor them to
your own needs.

By default, both the WORK and TEMP JPROCS set up temporary SAT files, but you
can also specify MIRAM files (MI) using the TYPE parameter:

For example, we can include the TYPE parameter in the previous example to indicate
a MIRAM file type. Code the JPROC as follows:

II GRADEOUT YORK2 DVC=60,VOL=DISK01,BLK=2000,EXTSP=11,SECALL=5,TYPE=MI

This generates the following job control statements:

II DVC 60
II VOL DISK01
II EXT MI,,5,BLK,(256,1000)
II LBL $SCR2
II LFD GRADEOUT,1

Accessing Previously Allocated Files

5-8

Ordinarily, to access a previously allocated disk file, you use the DVC, VOL, LBL, and
LFD job control statements. These statements aren't needed, however, if you use the
ACCESS JPROC call. Its format is:

This JPROC call can be used to access any tape or previously allocated disk file,
except a multivolume file. For instance, to access multivolume files, a file serial
number must be specified (otherwise, data management returns an error indication).
There is no parameter in the ACCESS JPROC call for this specification.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The ACCESS JPROC call uses both positional and keyword parameters; if you're a
little hazy on the rules for coding, consult Appendix A.

Let's digress a moment, and discuss the DVC and VOL parameters. The rules
governing their use are exactly the same as for the WORK and TEMP JPROC calls.
See "Using Your Own Volume" in Section 5. If you omit the VOL parameter, the file is
assumed to be on the volume containing the job's YRUN file.

Let's set up a situation where the ACCESS JPROC call can be used to advantage.
Suppose we want to write an inventory control program for a metal fabricating plant.
This plant produces many different items: office furniture, aircraft parts, aluminum
siding, and such. Each item produced depletes a central metal inventory, and the
purchasing agent wants to know when to order new stocks of metals. After making
some further assumptions (DVC=60 and VOL=DKWORK) we have the information
needed to code a useful ACCESS JPROC call:

llMMIFIL ACCESS METALMASTINV,DVC=60,VOL=DKWORK

This ACCESS JPROC call generates this device assignment set:

II DVC 60

II VOL DKWORK

II LBL METALMASTINV

II LFD MMIFIL

The ACCESS JPROC call has two optional positional parameters that allow you to
generate a complete LFD job control statement. In "Specifications for Existing Files"
in Section 4, we discussed how the optional parameters of the LFD job control
statement are used. Well, the optional positional parameters of the ACCESS JPROC
call correspond exactly to the parameters of the LFD job control statement.

Compare these formats:

//[symbol] LFD {fi~ename} [·{n }]['{EXTEND}]
*filename 8 !NIT

//l fdname ACCESS { lblname [·] [l } '{ DVC=nn·,···V····o·· L= lvo. lsn I}
(

lblname I {n} I {EXTEND}) VOL= 1v~lsnl RU.N
8 !NIT RU.N *

*

The two enclosed portions are identical, both in format and function .

UP-9986 Rev.I 5-9

Doing It the Easy Way • with Procedure Calls

The n parameter specifies the number of extents reserved in main storage, and the
default value is 8.

The other optional positional parameter provides two different options: EXTEND and
!NIT.

As a brief recap of "Specifications for Existing Files" in Section 4, we can say that
using the EXTEND option allows you to add information to the present end of the file.
With the !NIT option, you can write over the existing information in the file (except
for the file identifier).

When you code any of these options, or specify the number of extents in the file, with
the lblname parameter, you have to enclose them all within parentheses.

Since the metal fabricating plant buys and sells a lot of materials, the metal master
inventory file changes a great deal. You must update the metal master inventory file
to reflect any new materials purchased and sold, and perform the main processing
function.

All new material is purchased on the tenth of the month. On the eleventh, it's time to
add the new material to the metal master inventory file. Our call line would look like
this:

llMMIFIL ACCESS METALMASTINV,DVC=60,VOL=DKWORK

By default, space is reserved for eight extents. The following device assignment set is
generated:

II DVC 60
II VOL DKIJORK
II LBL METALMASTINV
II LFD MMIFIL

While there are more minor limitations to the ACCESS JPROC call, there are many
instances where it's very useful.

Allocating a File with a JPROC Call

5-10

You saw how we used the ACCESS JPROC call to access an existing disk file. This
replaced four job control statements, helping to reduce the possibility of coding errors.
You save more coding time by using the ALLOC JPROC call to allocate disk and
diskette files. It's a combination of the ACCESS JPROC call and the EXT job control
statement.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The format is:

//Lfm- ALLOC (c:-[• m][· c:::'°)])) { :~:1~~~, 1 ~~"°l)

:: ·o-} tn ::;:,hh 1[·17~; .• ;,1J
TBLK
(:YL
TRK
OLD

f,{mj .. }····][,OLDH,FIX][,NDll l (bJ,8J)

The EXT keyword parameter provides all the options available as positional
parameters on the EXT job control statement. The only difference is the equal sign
and the parentheses .

Note: Section 4 describes the parameters and options available for data-set-label and
format-label diskette using the EXT statement.

Your site processes payrolls for 25 different companies. Each company has a file
containing each employee's name and hourly wage. This file is accessed during the
processing of the company payroll (a use for the ACCESS JPROC call). Originally,
though, each company file was on punched cards, and each of them must be loaded
into its own disk area. (Here is one use for the data utility card-to-disk routines; why
write your own program when one is already provided?) To do this, there must be a
device assignment set for each file being created. This means 25 device assignment
sets for the 25 files. Looking back at "Basic Job Control Statements" in Section 3, we
see that the site manager needed five job control statements to allocate his disk file:
DVC, VOL, EXT, LBL, and LFD. This means 125 job control statements would be
needed. The ALLOC JPROC reduces this to 25.

For our example, assume that the file requirements (such as access method area
needed, etc) are identical for each of the 25 files, so most of the parameters for the job
control statements (and the ALLOC JPROC call) would be the same. Of course, each
file must have its own unique file identifier, but the information about the extents is
the same, all the files can be stored on the same disk volume, and, since you're using
the same program to store them (the data utility routine, run 25 times), the file name
is the same .

UP-9986 Rev.1 5-11

Doing It the Easy Way - with Procedure Calls

5-12

We'll assume that disk volume DSP028 will hold these files. It's the only volume with
DSP028 as the volume serial number, so a logical unit number in the range of 50
through 59 (any disk device) suffices. If we omit the DVC keyword parameter, job
control assigns the first available number in this range. Assume that the first one
available is 50. The data utility card-to-disk routine uses OUTPUTl as the file name
in the LFD job control statement; this is the value we must use as the lblname
parameter. All the file names for the different data utility routines can be found in
the Data Utilities Operating Guide (UP-8834).

We are going to take the default value for the number of extents (8), and we don't
want to use any of the options for a previously allocated file.

After defining the extent information, we'll have the parameters that are common to
all files. The only thing left will be to supply a unique file identifier for each file. All
the files are MIRAM files (which is a default condition, MI), allocation is contiguous,
with one cylinder for dynamic allocation. The initial allocation is two cylinders. Now
we have what we can call our master ALLOC JPROC call for the 25 different files.
The only thing missing is the file identifier.

From the information we've gathered, our master ALLOC JPROC call for the file
identifier would look like this:

//OUTPUT1 ALLOC xx •.. xx,VOL=DSP028,EXT=C,C,1,CYL,2)

Now, we need file identifiers for each file. Each of the 25 files must be given a unique
file identifier so the proper file can be accessed at the proper time. The names of two
of the companies are Target Manufacturing, Incorporated, and the Reality's Dress
Company. Why not use TARGET and REALITYS as the file identifiers? It makes
them easier to remember and identify. The ALLOC JPROC call for Target
Manufacturing, Inc., would be:

//OUTPUT ALLOC TARGET,VOL=DSP028,EXT=C,C, 1,CYL,2)

and the generated job control statements would be:

II DVC 50
II VOL DSP028
II EXT ,C,1,CYL,2
If ;fa I.: >r:Ak'(;'~t
II LFD OUTPUT

The ALLOC JPROC call for the Reality's Dress Company would be:

//OUTPUT1 ALLOC REALITYS,VOL=DSP028,EXT=(,C,1,CYL,2)

The only difference in the generated job control statements is the file identifier of the
LBLjob control statement: one is TARGET; the other is REALITYS.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Note: If the EXT keyword parameter is omitted, job control assumes one cylinder for
dynamic extension and, therefore, allocates one cylinder of extent space for a
MIRAMfile.

Now, let's see how to avoid the error of assigning one volume to different devices.

Too Many Devices for the Same Volume
Many applications use two files on the same volume. A common mistake is to assign
the files - thus the volume - to two different devices during the job. Using the
DVCVOL JPROC helps to avoid this. This JPROC assigns logical unit numbers for
the generated DVC job control statements. It also generates a VOL job control
statement with the volume serial number you specify in the JPROC call. The format
is:

The symbol in the label field is only used as a target for the job control statement that
causes a branch .

The DVCVOL JPROC assigns the logical unit numbers 50 through 59, in ascending
sequence, to the different volume sequence numbers in the order they are encountered
in the control stream. if you had three volumes, A, B, and C, in that sequence, A
would be 50, B would be 51, and C would be 52. It is possible, however, to override
these volumes and assign a specific logical unit number to a specific volume by using
the lun parameter.

The NOVOL parameter (NOVOL=Y) performs the same function as the NOV
parameter of the VOL job control statement. It suppresses the checking of volume
serial numbers.

Once a logical unit number is assigned by the DVCVOL JPROC call to a volume, the
same logical unit number is assigned whenever this volume is encountered in the job.
If volume A was assigned 50 in one job step, and you tried to assign it to 51 in the next
job step, the system overrides the 51 and assigns 50.

If you tried to do this by using just the DVC and VOL job control statements,
assigning 50 in the first job step and 51 in the next job step, your job may run, but you
may have to demount the volume from DVC 50 and mount it on DVC 51.

When you use the DVCVOL JPROC call, the LBL and LFD job control statements for
the file must be present in the control stream after the DVCVOL JPROC call. If
you're allocating a file on a disk volume, the EXT job control statement must, of
course, also be used .

UP-9986 Rev. l 5-13

Doing It the Easy Way - with Procedure Calls

5-14

There is a limit to the number of volumes you can assign using the DVCVOL JPROC
call in a job: 10.

Another point worth remembering: the DVCVOL JPROC call can be a member of a
multistatement line of coding, but it must be the last statement on the line.

Let's set up a control stream with some DVCVOL JPROC calls, and see what job
control statements are generated. The numbers refer to the explanation following the
example.

1.

2.

3.

4.

II DVCVOL DISK01
II LBL A
II LFD A II DVCVOL DSK002
II LBL B II LFD B
II DVCVOL DK0003,69
II LBL C II LFD C
II DVCVOL DISK01
II LBL X
II LFD X
II DVCVOL DK0003,67
II LBL Y
II LFD Y

1. This is an example of a multistatement line of coding. Note that the
DVCVOL JPROC call is the last statement on the line. The next line and
the line after example 2 are also multistatement lines.

2. This line assigns a specific logical unit number, 69, to the volume DK0003.

3. This DVCVOL JPROC call is used again for the volume DISKOl. It was also
used in the first DVCVOL JPROC call on the first line. It will be assigned
the same logical unit number assigned to the first call for the volume
DISKOl. You'll see this more clearly when we show the job control
statements generated by these DVCVOL JPROC calls.

4. This is another example calling for the volume DK0003, which was already
assigned a logical unit by a DVCVOL JPROC call. Notice that it also
requests a specific logical unit number: 67. Since this volume already was
assigned to logical unit number 69 in example 2, the request for logical unit
number 67 is ignored, and it is assigned to logical unit number 69.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Here are the generated job control statements. They should give you a clearer picture
of how each DVCVOL JPROC call functioned.

UP-9986 Rev.1

1. II DVC 50
II VOL DISK01
II LBL A
II LFD A

2. II DVC 51
II VOL DSK002
II LBL B
II LFD B

3. II DVC 69
II VOL DK0003
II LBL C
II LFD C

4. II DVC 50
II VOL DISK01
II LBL X
II LFD X

5. II DVC 69

1.

2.

3.

4.

II VOL DK0003
II LBL Y
II LFD Y

Volume DISKOl was the volume encountered in the first DVCVOL JPROC
call - it's assigned to logical unit number 50. The LBL and LFD job control
statements are not generated by the JPROC call. Remember, these were
supplied in the control stream. If another DVCVOL JPROC call for volume
DISKOl is encountered in this job, it is automatically assigned to logical unit
number 50.

A DVCVOL JPROC call for volume DSK002 was the next one encountered.
It's assigned the next available logical unit number. Since 50 was already
assigned to volume DISKOl, 51 is the next available logical unit number.

The next DVCVOL JPROC call was for volume DK0003. Normally, it would
be assigned to logical unit number 52, which was the next one available.
But, the DVCVOL JPROC call for this volume requested a specific logical
unit number, 69, so that's what is assigned. ·

Another DVCVOL JPROC call for volume DISKOl was encountered. Since
this volume was already requested and assigned earlier in the control
stream, this occurrence is assigned the same logical unit number: 50 .

5-15

Doing It the Easy Way - with Procedure Calls

5. The volume DK0003 was requested by another DVCVOL JPROC call. Even
though a specific logical unit number, 67, was requested, it was assigned to
logical unit number 69, since this is the logical unit number assigned earlier
in the job. The first number encountered is used, and any other logical unit
numbers requested for the volume in the same job are ignored.

To assign multiple diskette volumes through a JPROC call, use the DVCDKT JPROC.
It functions the same as the DVCVOL JPROC except that it assigns the logical unit
numbers 130 through 132. Its format is:

There is also a JPROC call for tape units: DVCVTP. Except for a few minor
differences, it functions the same as the DVCVOL and DVCDKT JPROCS. Its format
is:

The DVCVTP JPROC call assigns the logical unit numbers 90 through 99.
Additionally, DVCVTP has the keyword parameter PREP=Y. If specified, this
parameter functions the same as the PREP option of the VOL job control statement
("Ignoring or Changing the Volume Serial Number" in Section 4); it causes any
information currently on the tape volume to be effectively erased.

Using the Linkage Editor

5-16

So far, we've discussed how to execute programs stored in a library. These programs
were not always located in this library. At one time they could have been on punched
cards in one of the programming languages, such as COBOL or RPG II.

These programs are compiled or assembled using a language translator, which
converts the program instructions into a form understandable to the computer (an
object module). Each language translator has a JPROC call you can use to generate
the job control statement needed to direct the operation of the language translator; in
other words, you get an object module from source input. The JPROC call for each
language translator can be found in the assembler user guide, the COBOL
supplementary reference manuals, the FORTRAN supplementary reference manuals,
and the RPG II user guide.

In this guide, we'll explain the JPROC call for the linkage editor. But, before we do, a
word or two about the linkage editor.

UP-9986 Rev. 1

•

•

•

----------~------------------

•

•

•

Doing It the Easy Way - with Procedure Calls

The linkage editor converts an object module into an executable load module. Only
load modules can be executed, and the only method of converting object modules to
load modules is by using the linkage editor. The function of the linkage editor is fully
covered in the System Service Programs (SSP) Operating Guide (UP-8841).

The format of the linkage editor JPROC call is:

//[symbol l

UP-9986 Rev.I

{
LINK } [input·module·name· 1, ••• , input·module·name· 10]

LINKG

,PRNTR= {:~~::]} l
,IN= Cvol·ser·no,label)

CRES)

CRES,label)

(RUN, label)

(*,label)

O~UN1YRUN)

,RLIB={ (vol ·ser·no, label)}
(RES, label)

CRUN,label)

(*,label)

,OUT= Cvol·ser·no,label)

(RES, label)

(RUN, label)

(*,label)

(N)

CRUN,$'($RUN)

,ALIB={ (vol·ser·no,label)}
(RES, label)

(RUN, label)

(*,label)

[,SCR1={ vol ·ser·no }] [,STD= {YES}] 1ALTLOD=1.,Cvo.,, .. l,.· •. se·r·····n···o .. , .•.• label)) RES NO (RES, label)

(RUN, label)

(*,label)

CRUN ;•$)'$RUNJ

C ,OPT= •options' l ,CLIB={ Cvol ·ser·no, label ,mociiame)}
CRES,label,modname)

CRUN,label,modname)

C*,label,modname)

[,CMT='conment'lC,ENTER=expressionl

5-17

Doing It the Easy Way - with Procedure Calls

5-18

There are two choices in the operation field: LINK and LINKG. By specifying LINK,
you execute the linkage editor. By specifying LINKG, you execute the linkage editor
and the load module you just created (without using an EXEC job control statement).

As you can see, all the parameters are optional. But this JPROC call has default
values, which generate the job and linkage editor control statements sufficient to
accomplish a link-edit, and assumes the following:

• All the object code you specifically want included in the load module is in the job's
YRUN file.

• Any object code that may have to be automatically included in the load module
(such as error processing routines) is in Y0BJ.

• The load module produced is given the name LNKLOD, and it's stored in the job's
YRUN file.

You can alter these default conditions using the optional parameters. There are also
parameters that allow you to choose special options (such as a specific printer, a
certain scratch work file, etc).

Let's see what job and linkage editor control statements are generated when you omit
all the parameters. We'll use both the LINK and the LINKG operations. For these
examples, assume that the program was just compiled (or assembled) by a language
translator, and the object code was placed in the job's YRUN file. This occurred in
the last job step, but it is still the same job. The job's YRUN file is only a temporary
file, lasting for the length of the job. So, if you placed the object code in the job's
YRUN file in one job and tried to locate it in another job, you wouldn't find it.

I* (this is the end of the language translator job step)
II LINK
I&
II FIN

Here's what job control statements are generated:

I* (this is the end of the language translator job step)
1. II DVC 20 II LFD PRNTR

{

II DVC RES
2. II EXT ST,C,1,BLK,(256,10)

II LBL $SCR1 II LFD $SCR1
3. II EXEC LNKEDT

4. {I$ LOADM LNKLOD

I*
5. I&

II FIN

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

1. This is the device assignment set that's generated for the printer. Notice
that we've used multistatement coding, showing the DVC and LFD job
control statements on the same line.

2. The linkage editor always uses one scratch work area. The JPROC call
assigns it to the SYSRES device, and makes it a job step temporary file.
(The file identifier begins with $.)This work area is scratched at the end of
the job step.

3. This calls the linkage editor from YLOD and initiates its execution.

4. The generated load module must be assigned a name. The default is
LNKLOD. This is on the LOADM linkage editor control statement, which is
treated as data by job control, thus the/$ and/* job control statements.

5. As always, this indicates the end of the job.

This example is fine if you don't want to execute the program, since default conditions
assign the load module to the job's YRUN file, which is only a temporary file. This
load module is not available to another job (but it is to another job step in the job).
This application is useful if you only want to see the output of the linkage editor; but it
isn't much help if you want to execute. This does not mean that you can never access a
load module in a job other than the one in which it was link-edited. You can, but you
have to assign it to a library other than the job's YRUN file. You'll see how later on,
when we discuss the optional parameters. But first, let's see how to execute the load
module that was placed, by default, in the job's YRUN file.

There are two ways you can execute a load module placed in the job's YRUN file:
first, you can execute it in a subsequentjob step after link-editing, using the default
LNKLOD load module name on the EXEC job control statement; or, second, you can
use the LINKG operation, which automatically executes the load module.

Here's method 1 (LINK):

UP-9986 Rev .1

I* (end of language translator job step)
II LINK
II EXEC LNKLOD,YRUN
I&
II FIN

5-19

Doing It the Easy Way - with Procedure Calls

5-20

The job control statements generated are:

I* (end of language translator job step)
II DVC 20 II LFD PRNTR
II DVC RES
II EXT ST,C,1,BLK,(256,10)
II LBL SSCR1 II LFD SSCR1
II EXEC LNKEDT
1$

I* l..OAD!ol 't'/LQD

zzii'EXEC' fajJ<foli;'$YSRUN
I&
II FIN

The load module name on the LOADM linkage editor control statement and the
program name on the EXEC job control statement is the same: LNKLOD. Since we
know the linkage editor always assigns this as the default load module name, we use
it as the program name. Also note that YRUN is the second parameter on the
EXEC job control statement. Remember, in "Specifying Qualifiers for File Identifiers"
in Section 4, we said this parameter indicates the name of the library containing the
load module. If omitted, YLOD is searched, then the job's YRUN file. Since the
job's YRUN file is searched eventually, why specify it? Time. We know, it's in the
job's YRUN file, so why search YLOD needlessly? Go directly to the job's
YRUN file.

Now, here's method 2 (LINKG):

I* (end of language translator job step)
II LINKG
I&
II FIN

And here are the generated job control statements:

I* (end of language translator job step)
IPOPTIQN\GQ
II DVC 20 II LFD PRNTR
II DVC RES
II EXT ST,C,1,BLK,(256,10)
II LBL SSCR1 II LFD SSCR1
II EXEC LNKEDT
1$

I*
!&

LOADM LNKLOD

II FIN

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The only difference between this LINKG operation and the LINK operation is the
generated OPTION job control statement. The GO means the load module should be
automatically executed when linkage editing is completed. You don't need an EXEC
job control statement.

The LINKG operation generates a load module name of LNKLOD and is loaded, by
default, in the job's YRUN file. This means it is not available after the job is
completed. The LINKG operation is useful when you're testing programs or running
programs that are infrequently used.

So far, we've covered only the basic use of the linkage editor JPROC call. Now, let's
add some optional parameters and make it do exactly what we want.

Generating LOADM and INCLUDE Linkage Editor Control Statements

Up until now, the module name for the generated LOADM linkage editor control
statement has been LNKLOD (the default name). You can override this using the
label field of the JPROC call, shown as symbol in this portion of the format:

//[symbol l {LINK } [input-module-name-1, ••• , input-module-name-10]
LINKG

The symbol parameter is a 1- to 6-alphanumeric-charactername. If fewer than six
characters are specified, it's padded on the right with zeros. If it's omitted, the value
for the first input-module-name specified is used for the load module name. If the
input-module-name parameter is also omitted, LNKLOD is used.

Since we mentioned input-module-name, now is a good time to explain it. This
parameter allows you to specify up to 10 object modules to be included in the load
module you're constructing. In other words, it specifies the module names for the
INCLUDE linkage editor control statements. Each input-module-name can be from
one to eight alphanumeric characters long. If this parameter is omitted, the value
specified as symbol is also omitted, all object modules residing in the job's YRUN
file are included in the load module. An explanation of how the linkage editor JPROC
searches for input modules to be included in the load module is given in the
description of the IN parameter (see "Making the Linkage Editor Suit Your Needs" in
Section 5).

If you are specifying more than one object module name, you may want to specify a
value in the symbol field that is representative of all the input-module-names to be
included. Also, if all eight positions are used for the first input-module-name and it is
also to be used as the symbol by default, the last two positions are truncated by the
linkage editor to obtain a 6-character symbol, and the linkage editor diagnostic
message KOl 6 is issued.

Let's look at examples showing different ways of assigning module names for the
generated LOADM and INCLUDE linkage editor control statements .

UP-9986 Rev.1 5-21

Doing It the Easy Way - with Procedure Calls

5-22

Here's the first example:

I* (end of language translator job step)

llPROG LINK
II EXEC PROG,YRUN
I&
II FIN

Here's what is generated:

I* (end of language translator job step)
II DVC 20 II LFD PRNTR
II DVC RES
II EXT ST,C,1,BLK,(256,10)
II LBL $SCR1 II LFD $SCR1
II EXEC LNKEDT
1$

I*

LOADM PROG
INCLUDE PROG

II EXEC PROG YRUN
1$

II FIN

By using PROG as the symbol, you get PROG as the module name on the LOADM
linkage editor control statement. By default, it's also the module name for the
INCLUDE linkage editor control statement. (You'll notice there's no space between II
and PROG on the JPROC call.) You also use it as the program-name parameter on the
EXEC job control statement.

The same job and linkage editor control statements would have been generated if you
specified it like this:

I* (end of language translator job step)
II LINK PROG
II EXEC PROG YRUN
I&
II FIN

Notice that PROG, in this case, is specified as the input-module-name, rather than the
symbol. Remember, one can substitute for the other if it's omitted.

You could make this job a little easier by getting rid of the EXEC job control
statement, like this:

I* (end of language translator job step)
II LINKG PROG
!&
II FIN

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The following sections describe the rest of the parameters used with the linkage editor
JPROC call, and present examples showing what job control statements result, in that
order (except in special cases, where an example is needed to clarify a point).

Making the Linkage Editor Suit Your Needs

Once again, the format of the linkage editor JPROC call is:

//[symbol l {LINK } [input-module-name-1, - - . , input·module·name· 10]
LINKG

,PRNTR= {;rt'.•:~:.'.~···tl]}
.. .,

UP-9986 Rev.1

,IN= (vol-ser·no,label)
(RES)
(RES, label)
(RUN, label)
(*,label)
CRUN1YRUN)

,OUT= Cvol·ser·no,label)
(RES, label)
(RUN, label)
C*, label)
(N)

(RUN,YRUN)

, RLIB= { Cvol ·ser-no, label)} ,ALIB={ Cvol -ser·no, label)}
(RES, label) (RES, label)
(RUN, label) (RUN, label)
(*,label) (*,label)

[
,SCR1= {vol ·ser·no }] [,STD= {YES }j ·ALTLOD=1(VO···l·ser·n·o· ,label))

RES NO (RES, label)
(RUN, label)
(*,label)
(RUN,SYSRUN)

[,OPT='option' l

, CLI B= {(vol· ser ·no, label ,modname)}
CRES,label,modname)
CRUN,label,modname)
C*,label,modname)

[,CMT='comment'][,ENTER=expressionl

5-23

Doing It the Easy Way - with Procedure Calls

5-24

We've already covered symbol and input-module-name, and the difference between
LINK and LINKG. The remaining parameters are used to define particular input and
output files, to indicate libraries to be searched for modules to be automatically
included, to define scratch work areas, and to specify the alternate library that
contains the linkage editor (normally it's YLOD). If you want to assign a specific
printer, there's a parameter for that. And, if you are going to provide your own
linkage editor control statements (you might want to do multiple link edits in a single
job step), you must use a parameter to indicate this.

Let's start with the PRNTR parameter. If PRNTR=N is specified, the LINKJPROC
does not generate a device assignment set for a printer. Also, it is assumed the
PRINT file is not to be sent to a terminal. Remember, since no device assignment set
is generated, you must supply your own. The lun subparameter is used if you want to
assign a logical unit number for a specific printer (20 is the default, indicating that
any printer can be used). The dest subparameter indicates the remote destination
identifier (one to six alphanumeric characters) for the print output file when dealing
with remote batch processing, which requires that every unit record device must have
a destination.

There may be times when you want to change the spooling environment, the standard
load code, or the vertical format buffer used by the linkage editor. (These buffers are
changed with the SPL, LCB, and VFB job control statements, described in
"Controlling Spooled Output with a Job Control Statement", "Specifying Unique Load
Codes'', and "Using Forms Control" in Section 6.) This is accomplished by coding N as
the value of the PRNTR parameter. When you code N, the JPROC will not generate a
device assignment set for the printer; you must physically insert the printer's device
assignment set into the control stream before the JPROC call. This device assignment
set consists of a DVC job control statement and an LFD job control statement (which
must have a value of PRNTR for the file name). The SPL, LCB, or VFB job control
statement you want to use is placed between the DVC and LFD job control
statements. For example:

II DVC 20
II VFB LENGTH=78,0VF=75
II SPL RETAIN
II LFD PRNTR
11 LINK PRNTR=N

Note: Other JPROCS allow you to use the PRNTR=N parameter and supply your
own device assignment set for the printer. All the language JPROCS and the
JPROCS for generating control streams for data utility routines allow you to
specify PRNTR=N. This parameter is used in these JPROCS exactly as it's
described for LINK I LIN KG.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Next, let's look at the parameter for the input file definition:

,IN= Cvol-ser-no,label)
(RES)
(RES, label)
(RUN, Label)
(*,label)
'CRUN;i'RuNJ

The linkage editor uses two processes to include modules - specific and automatic
inclusion. Modules specified in the input-name parameter and modules specified on
embedded INCLUDE statements are specifically included. For each input-module­
name specified, the linkage editor performs a specific inclusion search in the following
manner: If the IN parameter is specified, only the file it identifies is searched; if the
IN parameter is not specified, first, YRUN is searched for object modules to include.
Then the file defined in the RLIB parameter is searched (if the RLIB parameter was
specified) and, finally, Y0BJ is searched.

For automatic inclusion, the linkage editor performs a search in the following manner:
The file defined by the ALIB parameter is searched first (if the ALIB parameter was
specified), and then the file defined by the RLIB parameter (or the default Y0BJ) is
searched. Modules are automatically included to satisfy the external requirements of
modules that have already been included by either automatic or specific inclusion.
Automatic inclusion may be suppressed by specifying the NOAUTO option.

Here are the options available to you through the IN parameter.

The first option is IN=(vol-ser-no,label). The vol-ser-no is the volume serial number of
the disk volume you're using, and the label is the file identifier of the file used when
the file was created.

The next choice is IN=(RES). This means the file is on SYSRES in Y0BJ.

The following two choices are very similar: IN=(RES,label) and IN=(RUN,label). In
both, label stands for the file identifier. If you use RES, the file is on SYS RES; if you
use RUN, the file is on the volume containing the job's YRUN file. (Remember,
YRUN can be on the SYSRES device.)

The next choice is IN=(*,label). This means the file is cataloged, therefore, its location
is obtained from the file catalog.

The default parameter (RUN,YRUN) should not be coded when you want to use the
default; its use in coding can cause an invalid file name.

Whenever you use the IN parameter, with both subparameters (vol-ser-no,label, for
example), and STD=NO is omitted, an INCLUDE module-name I IN linkage editor
control statement is generated .

UP-9986 Rev. I 5-25

Doing It the Easy Way - with Procedure Calls

5-26

The next parameter we'll discuss defines the output file. Here's what it looks like:

,OUT= (vol-ser·no,label)
(RES, label)
(RUN, l abet)
(*,label)
(N)

(RUN, YRUN)

Quite frequently, you will not want to permanently save the generated load module,
particularly when you don't have all the bugs out of your program. However, once the
program is working satisfactorily, you'll probably want to save the load module, rather
than compiling (or assembling) and link editing it every time you run it (unless it's
used only once a year, for example). This is done with the OUT parameter.

As we've said, most times you don't want to save the generated load module for any
length of time (but you'll probably want to execute it in the next job step to see how
close to the finished product you are). For this reason, the linkage editor JPROC
places the generated load module in the job's YRUN file by default.

But, once the module is ready to be saved, you override the default in one of these
ways.

You can specify OUT=(vol-ser-no,label). This is the volume serial number and the file
identifier of the file where you want to store the load module.

The following two choices are similar: OUT=(RES,label) and OUT=(RUN,label). This
is like the IN parameter we just discussed. label is the file identifier; RES means the
file is on SYSRES; RUN means the file is on the volume containing the job's YRUN
file.

The next choice is OUT=(*,label). This means the file is cataloged, therefore, its
location is obtained from the file catalog.

The last choice is OUT=(N). This means you don't want to save the load module at all;
not even for the next job step. When this option is used, all you get is a listing of the
load module, which you can use for debugging. The generated load module is not
placed in any file.

Just as with the IN parameter, the default (RUN,YRUN) should not be coded.

Whenever the OUT parameter is coded, a P ARAM OUT= OUT job control statement is
generated to specify the linkage editor option that an output file has been defined for
the load module. The PARAMjob control statement is explained in Section 7.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The linkage editor JPROC call assumes the output file is already allocated. If it isn't,
you must allocate the file by placing a device assignment set in the control stream
before the linkage editor JPROC call. Let's clarify with an example. Suppose you
want to store the load module on disk volume DISKOl, and you want it placed in the
file identified by SAVEDPROGRAM. This file has never before been allocated. So,
what you have to do is allocate the file before you can link-edit the module.

You've probably noticed that the logical unit number is not coded in the OUT
parameter (or any other except for the printer). This is because the linkage editor
JPROC call uses the DVCVOL JPROC call (a JPROC call within a JPROC call, which
is in tum converted to DVC and VOL job control statements). In "Too Many Devices
for the Same Volume" earlier in this section we explained how there can be conflicting
device assignments and how the DVCVOL JPROC call eliminates this conflict. So,
we'll use the DVCVOL JPROC call in the device assignment set.

The OUT parameter generates a file name of OUT for the generated LFD job control
statement of the device assignment for the output file. So, we might as well use OUT
as the file name when we allocate the file. (We don't have to, since the program does
not have to have a match for this file name; it's only serving the purpose of completing
the device assignment to allocate a file. Think of it as a job step in itself.) Remember
that OUT is the file name used by the JPROC. In "Specifying Qualifiers for File
Identifiers" in Section 4 we said that, if the load module is stored in a user library (a
function of the OUT parameter), you have to use the file name of the device
assignment set for this library as a parameter in the EXEC job statement. This will
be a lot clearer in the example .

First we start to allocate the file
using the DVCVOL JPROC call. -+ II DVCVOL DISK01

Next, an EXT job control statement. -+ II EXT ST,C,3,CYL,1

Now the file identifier, -+ II LBL SAVEDPROGRAM

and then the file name

//LFDOO\ ~ that allocated the file. -+
Now, the linkage editor JPROC call
(let's call the load module XYZ), -+ II XYZ LINK OUT=CDISK01,SAVEDPROGRAM)

and execute the program. -+ II EXEC XYZ,JT

If the file is already allocated, the load module created is appended to the present end
of the file. If a load module with the same name already exists in the file, it is
replaced by the new load module.

When you specify the LINKG operation, you can't use the OUT parameter to define a
specific output file. You must use the job's YRUN file .

UP-9986 Rev.1 5-27
Update B

I

Doing It the Easy Way - with Procedure Calls

5-28

Next, the parameters RLIB and ALIB name libraries that contain object modules,
such as your own (user-written) subroutines, for inclusion in the load module. To see
exactly how and why different object modules are included into your load module, see
the System Service Programs (SSP) Operating Guide (UP-8841).

By default, the linkage editor searches Y0BJ for the needed modules for automatic
inclusion processing. The ALIB parameter allows you to specify an additional file to
be searched. This file is searched first. If all the needed modules are not found here,
Y0BJ, or the file named by the RLIB parameter, is searched.

The RLIB parameter names the file to be searched before Y0BJ during specific
inclusion processing, and in place of Y0BJ during automatic inclusion processing
when no ALIB parameter is specified.

Both the RLIB and ALIB parameters look very much alike:

,RLIB= {(vol -ser-no, label)}
(RES, label)

(RUN, label)

(*,label)

,ALIB={ (vol -ser-no, label>}
(RES, label)

(RUN , l abe l)

(*,label)

In RLIB=(vol-ser-no,label) and ALIB=(vol-ser-no,label), you provide the volume serial
number and the file identifier of the file containing the library you want.

RLIB=(RES,label) and ALIB=(RES,label) are similar, just as are RLIB=(RUN,label)
andALIB=(RUN,label). The label provides the file identifier; RES means the file is
on SYSRES; RUN means the file is on the volume containing the job's YRUN file;
the asterisk(*) means the volume is identified in the file catalog.

Whenever you use the RLIB or ALIB parameters, P ARAM job control statements are
generated to specify the linkage editor option for libraries for inclusion processing.
These P ARAM job control statements are:

• P ARAM RLIB=RLIB

• PARAM ALIB=ALIB

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The linkage editor needs one scratch work file. Normally, SYSRES is used, but, you
can use a different volume:

SCR1={ v~.~-ser-no}
RES

This parameter, whether specified directly or indirectly through default, generates all
the job control statements needed to allocate a job step temporary work file.

The linkage editor JPROC call often follows immediately after one of the language
translation JPROC calls. Each of the language translators also uses scratch work files
(the SCRl parameter; some also use SCR2 and SCR3). The SCRl parameter coded
for the linkage editor must agree with the SCRl parameter for the language
translator; you can't contradict this assignment without getting errors. So, if you
specified SCR1=DSP028 in the language translator JPROC call, you must do the same
in the linkage editor JPROC call.

You've alr<lady seen that the symbol field provides a name for the generated LOADM
linkage editor control statement, and the input-module-name parameters provide the
names for the generated INCLUDE linkage editor control statements. However, there
are times when you want to physically place these linkage editor control statements in
the control stream as data; you don't want the JPROC call to generate them. You
indicate this by using the STD parameter .

For instance, you may want to include only certain parts of an object module to form a
load module. Since there's no provision for doing this with the JPROC, you have no
choice but to physically place the linkage editor control statements you need in the
control stream. But, you have to use the STD parameter to tell the linkage editor
JPROC that you're going to do this, or else it automatically looks at the input-module­
name parameters, and then the symbol field, for the name of an object module to
include. Since you didn't specify the linkage editor control statements through the
JPROC call (they're physically in the control stream), these fields would be blank.

Another case: you may want to use additional linkage editor control statements as
well. (OVERLAY, for example, there's no parameter for this.) Whenever you place any
linkage editor control statement physically in the control stream, all the needed
linkage editor control statements must be physically placed in the control stream.

The STD parameter looks like this:

Indicating NO means you're going to physically place the linkage editor control
statements in the control steam. The default value, YES, means you want them
generated automatically.

STD=NO tells the JPROC to ignore any specifications in the JPROC call for
automatically generating INCLUDE and LOADM linkage editor control statements .

UP-9986 Rev. l 5-29

Doing It the Easy Way - with Procedure Calls

5-30

Next, let's look at the parameter telling the JPROC where to find the linkage editor:

AL TLOD=1 (vol ·ser·no, label))
(RES, label)
(RUN, label
(*,label)
(RUN,YRUN)

Normally, the linkage editor resides in YLOD. However, you may want to use a
copy of the linkage editor that is not in YLOD. The ALTLOD parameter allows you
to identify the file that contains the linkage editor you want to use. You may specify a
volume serial number, RES, RUN, or an asterisk(*). RES means the file is on
SYSRES; RUN means the file is on the volume containing the job's YRUN file; and
the asterisk means the volume is identified in the file catalog. In all cases, the label
provides the file identifier. If the ALTLOD parameter is omitted, the normal
procedure of searching YLOD and the YRUN is performed.

The next parameter we discuss is one making available certain linkage editor options.
The parameter looks like this:

OPTION='options'

The options that may be specified here are all the keywords appearing in the linkage
editor //PARAM and LINKOP control statements that do not need to be equated to
subparameters as, for example, SHARE, NOSHARE, AUTO, and NOAUTO. Refer to
the linkage editor section of the System Service Programs (SSP) Operating Guide
(UP-8841) for all the options.

The GLIB parameter looks like this:

CL I B= {(vol· ser ·no, label ,modname) }
(RES,label,modname)
CRUN,label,modname)
(*,label,modname)

You use this parameter to specify where the linkage editor control statements reside
that are to be processed for this link-edit job. As the parameter indicates, you must
supply the name of the source module and the file in which it resides. You must also
specify the disk volume on which the file resides.

The GMT parameter inserts a character string in the comment field of each phase
header record produced for the generated load module. Its format is:

CMT='conrnent'

The character string you choose may run up to a maximum of 30 characters and must
be enclosed in apostrophes. It may contain blanks, commas, and other special
symbols, excluding apostrophes.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The ENTER parameter specifies the transfer address. The ENTER parameter looks
like this:

ENTER=expression

The expression is a decimal number from one to eight digits, a hexadecimal number
from one to six digits in the form X'nnnnnn', a previously defined symbol, or a
previously defined symbol plus or minus a decimal or hexadecimal number, in the
form we've just discussed.

Now, let's do some coding.

1.
2.

3.

UP-9986 Rev.l

II JOB LNKJPROC

Col~ 721
x

{
//BELLPR LINK PAYROLL,IN=CDISK01,PRAREA),
//1 OUT=CDISK01,BELLHRLPR)

{
/&
II FIN

1. This is the JOB control statement telling the operating system that the
name of the job is LNKJPROC.

2. This is the JPROC call. (We're only link editing, not automatically
executing, also. Thus, the operation is LINK, not LINKG. Besides, the OUT
parameter is used. When an output file is specified, the LINKG operation
can't be used.) As you can see, we used the IN and OUT parameters. The
source deck was already compiled (let's say yesterday), and the IN
parameter indicates it's stored in the file identified by PRAREA, on disk
volume DISKOl. The OUT parameter indicates we also want the load
module to be stored on disk volume DISKOl. This payroll is for the Bell
Historical Library, so we chose a file identifier that closely represents the
name: BELLHRLPR. (Assume this file has already been allocated;
otherwise, we'd need a device assignment set to allocate the file.)

When the object module was created (compiled or assembled), it was given
the name PAYROLL. So, this is the name of the object module we want to
obtain from the file identified as PRAREA. This provides us with the input­
module-name parameter, which generates an INCLUDE linkage editor
control statement for this module.

We're providing a name for the load module by using the symbol field. We
also want to make this name readily identifiable with the company name.
Since the symbol field is limited to six characters maximum, we can't use
BELLHRLPR, as we did for the output file identifier. (Also, two identical
names in the same JPROC call could cause confusion.) We'll shorten it to
BELLPR. This is what will appear on the generated LOADM linkage editor
control statement. When you want to execute this load module, this is the
program-name you'd use on the EXEC job control statement .

5-31

Doing It the Easy Way - with Procedure Calls

5-32

3. This ends the job and terminates the card reader operations.

Now here's what the JPROC call generated:

1.

2.

3.

4.

5.

II JOB LNKJPROC
II DVC 20 II LFD PRNTR

{
II DVC 50 II VOL DISK01
II LBL PRAREA II LFD IN

{
II DVC 50 II VOL DISK01
II LBL BELLHRLPR II LFD OUT

{

II DVC RES
II EXT ST,C,1,BLK,(256,10)
II LBL $SCR II LFD $SCR1
II EXEC LNKEDT

{
II PARAM OUT=OUT
1$

I*
I&

LOADM BELLPR
INCLUDE PAYROLL,IN

II FIN

1. This is generated by the IN parameter. The linkage editor uses the DVCVOL
JPROC (which we're showing in its generated form: DVC and VOL). DISKOl is
the first volume requested in the job, so it receives the first logical unit number:
50. The IN parameter always generates a file name of IN for the LFD job control
statement.

2. This is generated by the OUT parameter. Again, DISKOl was requested in the
JPROC call, and since it was already assigned to logical unit number 50, this
number is assigned to this volume every time it's encountered in the job. The
OUT parameter always generates a file name of OUT for the LFD job control
statement.

3. This is the device assignment set for the scratch work area, which was generated
by default in this case.

4. This is the P ARAM job control statement generated by the OUT parameter.

5. This is the object module name (PAYROLL) and the load module name
(BELLPR). These linkage editor control statements are generated by the input­
module-name parameter and the symbol field. The IN shown on the INCLUDE
linkage editor control statement is generated because both subparameters on the
IN keyword parameter are used.

We've now covered all the parameters of the linkage editor JPROC call and provided
examples of their use. You should now be able to use this JPROC call correctly.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

Personalizing Your Print Output
Unisys provides the WRTBIG and WRTSML JPROCS to produce block characters on
your printed output. Any type of information can be printed by WRTBIG and
WRTSML - your name or a message, for example.

WRTBIG and WRTSML function in the same way; the only difference between the
two is the size of the block characters produced. Those created by WRTSML are
smaller than those created by WRTBIG.

WRTBIG and WRTSML produce block characters formed by the characters
themselves, arranged in the pattern of the characters being printed. You can print the
letters A through Z and the numbers 0 through 9. In addition, you can use WRTBIG
and WRTSML to print these special characters:

Left parenthesis Left bracket

Right parenthesis Right bracket

+ Plus Double quote

& Ampersand Apostrophe

Asterisk @ At

Hyphen > Greater than

I Slash < Less than

Question mark Vertical line

Colon Exclamation Point

Number Semicolon

Equal Underscore

Period Comma

S Dollar % Percent

Embedded blank

Note: Some printers cannot print all of these characters - check with your system
administrator.

Up to eight blocks, or lines, of print can be generated by WRTBIG and WRTSML.

UP-9986 Rev.I 5-33

Doing It the Easy Way - with Procedure Calls

5-34

Each line produced by WRTBIG can contain up to 12 characters. A maximum of four
lines can be printed on each page. WRTBIG produces characters 10 characters high
and 8 characters wide. The letter P, for example, prints like this:

PPPPPP
ppppppp
PP PP
PP PP
PPPPPPP
PPPPPP
pp
pp
pp
PP

WRTSML produces characters seven characters high and five characters wide. Up to
20 characters can be printed on each line, and up to 6 lines can be printed on each
page. The number 7 produced by WRTSML looks like this:

77777
7

7
7

7
7
7

Note that the character produced by WRTSML is 7 characters high and the one
produced by WRTBIG is 10 characters high.

The format for WRTBIG and WRTSML is:

//[symbol] {l.JRTBIG} 1 block-1 1
[,

1 block-2 1
, ••• ,

1block-8 1 J
l.JRTSML

, IN=(Cvol-ser-no, label))
(RES, label)

(RUN, label)

(*,label)

CRES,SYSLOD)

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way • with Procedure Calls

The 'block' parameter is where you code the actual information you want printed on a
line. Notice there are eight 'block' parameters - one for each line of print. Each
parameter is enclosed by apostrophes. You can use blanks anywhere in the field to
position the characters on the page.

For instance, if you coded this:

II WRTSML I RETURN', I TO', I JOHN DOE'

you get:

RRRR EEEEE TTTTT u u RRRR N N TTTTT 00000
R R E T u u R R NN N T 0 0
R R E T u u R R N N N T 0 0
RRRR EEE T u u RRRR N NN T 0 0
R R E T u u R R N N T 0 0
R R E T u u R R N N T 0 0
R R EEEEE T uuuu R R N N T 00000

JJJ 00000 H H N N DODD 00000 EEEEE
J 0 0 H H NN N D D 0 0 E
J 0 0 H H N N N D D 0 0 E
J 0 0 HHHHH N NN D D 0 0 EEE
J 0 0 H H N N D D 0 0 E

J J 0 0 H H N N D D 0 0 E
JJ 00000 H H N N DODD 00000 EEEEE

Notice that even though the field can be 12 characters, it does not have to be. You can
put the end apostrophe after the last character for the line. Also, note that if there are
over 12 characters for WRTBIG or over 20 characters for WRTSML the field is
truncated.

You can also use WRTBIG and WRTSML to print the date, the time the job started,
the system version number, and the job name from the JOB control statement. This is
done by coding the following as the first four characters in any 'block' parameter
(nothing else can appear in the parameter; the last eight positions must not be used):

• TIM$

This prints the time of day in the form ofhh:mm:ss (hours, minutes, seconds).

• DAT$

This returns the date, in the form ofyy/mm/dd (year, month, day) .

UP-9986 Rev .1 5.35

Doing It the Easy Way - with Procedure Calls

5-36

. . ..

..

• VER$

This gives you the version number of the operating system in use.

• JOB$

This prints the job name from the JOB control statement.

Each option can be used alone, or combined with other options or information.

Look at this example:

II JOB POCO

II WRTBIG '************'

111 'JOB$',

112 'DAT$',

113 '************'
(Remainder of your
control stream)

Column 721
x
x
x

Note the use of statement continuation. The printout would look like this:

. .
•• . .

. . ..
••

. . ..
• •

PPP PPP
PPPPPPP
pp PP
pp PP
PPPPPPP
PPP PPP
pp
pp

PP
pp

1111111
1171111

17
11
1

11
11

11
17
11

. .
••

. .
•• ..

• •

000000
00000000
00 00
00 00
00 00
00 00
00 00
00 00
00000000

000000

BBBB
BBBBBB
88 88
88 88

8888
BBBBBB

BB BB
BB BB

888888
B8B8

. .
••

• • • • •• . .

CCC CCC
cccccccc
cc cc
cc
cc
cc
cc
cc cc
cccccccc
cccccc

I
II

Ill
Ill

Ill
Ill

Ill
Ill
II
I

. .
•• • • . .

• • •• ..
•

000000
00000000
00 00
00 00
00 00
00 00
00 00
00 00
00000000

000000

0000
DO 00

00 DO
DO 00
00 00
DO OD
DO OD
DO OD

DO 00
ODDO

. .
•• ••

• • • • •• . .

88B8
88BBBB
88 BB
88 88

8888
B88888

88 B8
BB B8

888888
8888

. .
•• •• • •

. .
•• ••

II
Ill

Ill
Ill

Ill
Ill

Ill
II
I

. .
•• ..

• • • • •• • •

0000
DO DO

00 OD
DO DO
00 OD
OD OD
DO OD
DO DD

OD OD
DODD

. .
• • • • • •

• • •• ..

8888
BBBB88
88 BB
88 88

8888
B8B8BB

B8 BB
88 88

888888
8888

. .
•• • •

. .
••

..
• • • •

. .
• • . .

. . . .
• • • •

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The IN parameter identifies the file containing either the load module WRTBIG or the
load module WRTSML. If you don't specify this parameter, it is assumed that the
module you want is on SYSRES in the file YLOD. If the load module is on SYSRES,
but in a file other than YLOD, specify (RUN,label), where label is the file identifier.
To indicate that the load module is on the volume containing the job's YRUN file,
use (RUN,label). If the file containing the load module is identified in the file catalog,
use (*,label).

The LUN parameter provides the logical unit number of the printer to be used. By
default, 20 is used. But, if you want a specific printer, use the appropriate logical unit
number. (Make sure the rest of your print output goes to this printer.)

If the file name in the job is not PRNTR (which the programs supplied by Unisys use),
you indicate this through the lfdname of the L UN parameter (this is similar to the
LFD job control statement).

The dest subparameter indicates the remote destination identifier (one to six
alphanumeric characters) for the print output file when dealing with remote batch
processing, which requires that every unit record device must have a destination.

You can change the standard load code or vertical format buff er used for the job by
coding N as the value of the LUN parameter. This indicates that the JPROC is not to
generate a device assignment set for the printer; you must physically place the device
assignment set for the printer in the control stream before the JPROC call .

Suppose you wanted to use WRTSML to print the date at the beginning of the
printout, and the file name for the printer in the program is LISTER. You would code
it as:

II WRTSML 'DAT$',LUN=(,LISTER)

We have now finished our discussion of what is known as basic job control. From this
point on, we enter the area of advanced job control programming. You'll learn how to
use the advanced job control statements to perform functions that cannot be done with
the basic set. You'll also learn how to write your own job control procedure definitions,
which you can store and call when needed.

By now, your grasp of job control should be such that you could construct control
streams for the majority of jobs in your installation. When you complete Part 3, you
should be able to construct control streams for any job.

Controlling Spooled Output with a JPROC Call
The manner in which spooled output files (print, punch, or data-set-label diskette) are
handled is set at SYSGEN time, but you can alter the standard operation of individual
files with the SPOOL JPROC. To fully understand the function of this JPROC, you
should be familiar with spooling, which is discussed in the Spooling and Job
Accounting Operating Guide (UP-9975) .

UP-9986 Rev.I 5-37

Doing It the Easy Way • with Procedure Calls

5-38

When used, the SPOOL JPROC must be included in the device assignment set for the
spooled output file. The format of the JPROC is:

//[symbol] SPOOL, REDIRECT=/~~:~ } [,BUF=nXml[,COPIES={~}l
l DISKETTE

Note: When using the SPOOL JPROC for a spooled data-set-label diskette output file,
only BUF, RETAIN, UPDATE, COMPRESS, and HOLD keyword parameters
are meaningful.

The REDIRECT keyword parameter redirects spooled output (output that's already in
the spool file volume) to a disk, tape, or format-label diskette for temporary storage -
the output is printed or punched later. A spooling component known as the output
writer assigns the tape, disk, or format-label diskette volumes to be used for the
redirected output so you don't have to include a special device assignment set in your
job control stream for these volumes.

Notes:

1. When you specify REDIRECT=TAPE, make sure that a DEV operator command,
directing all spooled output to a tape volume, is not in effect for this copy of the
output writer. A note to the operator should suffice.

2. REDIRECT=DISKETTE means redirect the spooled output to a System 80 format­
label diskette only.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The COPIES keyword parameter allows you to specify the number of times (up to 255)
you want a spooled file printed or punched (output). If you don't specify this keyword,
the file is output only once and then deleted from the spool file. If you specify 0, the
output is written to the spool file but is immediately deleted instead of being printed
or punched.

The BUF keyword parameter sets up buffers to be used by the spool subfile being
created. Then specifies the number of buffers, Xis a constant, and m specifies the
size of each buffer (in 256-byte increments). If you omit this parameter, the spooled
file shares the job log buffers along with other spooled files not having reserved
buffers.

You must specify SKIPCODE if you're requesting a filed vertical format buffer (via the
II VFB statement) that has more than seven skip codes or if the system default vertical
format buffer has more than seven skip codes. Three skip codes are always included
in this count: home position for current page, overflow for next page, and home
position for next page. The four remaining are for user-specified skip codes. This
parameter, therefore, specifies the total count oflines on a form where a skip code is
allowed, plus three. Zero indicates no skip codes.

The RECORDS keyword specifies the number of records Oines, including spaces and
skipped lines for print files, cards for punch files) the spool file can contain before a
message asking if the job should be continued, breakpointed, or cancelled is sent to the
operator. The operator receives this message only when the specified number is
reached, and job processing stops until the operator replies. The specified number is
rounded to the next higher multiple of1024. For example, if you specify 7000, it's
rounded to 7168. The highest number you can specify is 262,144.

Note: If you're executing a COBOL program that uses the WRITE verb with the
AFTER clause, the number you specify for RECORDS should be double that of
the actual number of records.

If your spooled file is to be output on a special printer form or on special cards, you
must identify the special form or card type in the FORMNAME parameter. The form
name you specify is a 1- to 8-alphanumeric-character name assigned by your
installation to each form. A message identifying the form or card type to be used is
issued to the operator. Remember, a form name specified in a VFB statement
overrides a form name specified in the SPOOL JPROC (see "Using Forms Control" in
Section 6).

The HDR parameter (HDR=NO) suppresses the printing of a page header in burst
mode at the beginning of the spooled file when it's output. If omitted, a page header is
automatically printed.

If you specify the FORMNAME parameter, a query is directed to the operator asking
if a sample test pattern page should be printed. Specifying TESTPAGE=NO
suppresses this query. If the TESTPAGE parameter is omitted, the system default
(YES) is used. This query does not occur for STAND! forms. I

UP-9986 Rev .1 5-39
Update B

Doing It the Easy Way - with Procedure Calls

5-40

You use the PAGEBRK parameter to specify the number of pages or cards to be
spooled out before the file is breakpointed and printed or punched. The highest value
you can enter is 32,000. When you omit this parameter, the file is printed or punched
according to the burst or nonburst operating mode in effect.

The UPDATE parameter (UPDATE=NOJ specifies that the spool file subdirectory
entry is to be updated only when a file is closed. (In this case, if the system halts, you
lose any output the program generated prior to restarting the IPL with spool file
recovery.) If you omit this parameter, the spooler updates the subdirectory each time
it crosses a logical track in the program file. (In this case, ifthe system halts, you can
still print any output the program created prior to starting the IPL again.)

Using the COMPRESS keyword parameter (COMPRESS=NO), you can prevent the
system from attempting to compress data that's directed to the output spool file.
Normally, you should not specify COMPRESS=NO ifthe data contains a large
number of embedded blanks or ifthe file has a block size larger than 120. Specifying
this parameter when the block size is 121 or greater results in an output spool file
containing only one line per sector and requires that n x m be at least 2 x 4.

If you specify RETAIN=YES, the spooled output file is printed, punched, or placed on
data-set-label diskette, but it is also retained in the spool file to be printed, punched,
or output to data-set-label diskette again at a later time. If RETAIN is specified with
REDIRECT (the first keyword parameter), the output file is redirected to a tape, disk,
or format-label diskette and it is also retained in the spool file for printing, punching,
or outputting to data-set-label diskette at a later time.

The HOLD keyword parameter (HOLD=YES) simply holds the spooled print, punch,
or data-set-label diskette output file for later processing. (Files on hold are released
when the BEGIN SPL command is issued or when a CC job control statement
specifying the BEGIN SPL command is encountered in a job stream.) This parameter
is useful if you have a large spooled file that will take a long time to output and you
don't want to tie up the output device during peak processing time. Remember
though, since the file being held remains in the spool file, there is a possibility that the
spool file's available disk space may be exhausted. Also, if you specify HOLD=YES in
conjunction with RETAIN, REDIRECT, or both, the output file is put on hold and the
RETAIN or REDIRECT parameters are not acted upon until the file is released.

UP-9986 Rev. 1

•

•

•

•

•

•

Doing It the Easy Way - with Procedure Calls

The last keyword parameter (SECURE) determines whether print output that's
destined for an auxiliary workstation printer is secured or not secured. (Spooled
output is directed to an auxiliary workstation printer via II ROUTE or II OPI'ION
OUT.) We say the print file is secured if the workstation to which the auxiliary printer
is physically connected must be logged on before the output file can be printed. If the
workstation isn't logged on, the file will not be printed. If the file is not secure (this is
the default), the file will be printed at the specified auxiliary workstation printer
whether or not the workstation is logged on. Here is an example of a job using the
SPOOL JPROC to control output spooling.

UP-9986 Rev.I

II JOB PAYROLL
II DVCVOL DSP028
II LBL JONESPAYROLL
II LFD JONESPAY
II DVC 130
II SPOOL BUF=4X32
I I LFD JONESYTD
II DVC 20
II SPOOL HOLD=YES
II LFD JONESCHK
II EXEC JONCKS
I&
II FIN

l

Device assignment set for
the input file on disk.

)----
l Device assigment set

for a spooled printer
output file.

Device assignment set for a
spooled data-set-label diskette
output file. (See "Spooling
Input Card Data" in Section 6
for information about the DVC
statement for spooled
data-set-label diskette files.)

5-41

•

•

•

•

•

•

Section 6
Making Job Control Work for You

Advantages of Using Advanced Job Control Statements
As you have just seen, quite a lot can be done by using the job control procedure calls
(JPROCS) and the basic job control statements supplied by Unisys. Now we'll see how
to increase performance by using the advanced job control statements and JPROCS
that you write yourself. Your basic objective is to run jobs in the most efficient, most
economical, and quickest way possible. This objective is achieved not only by how you
write a program, but also in the way you use job control.

Controlling Spooled Output with a Job Control Statement
In "Controlling Spooled Output with a JPROC Call" in Section 5, we discussed how
you can alter the standard operation (established at SYSGEN time) of spooled output
files with the SPOOL JPROC. The SPL job control statement provides the same
facilities and parameters as the SPOOL JPROC, so the following brief description of
the SPL job control statement is essentially a review of "Controlling Spooled Output
with a JPROC Call" in Section 5. When deciding whether to use the SPLjob control
statement instead of the SPOOL JPROC, keep the following in mind: although the
SPOOL JPROC is easier to code because of its keyword (rather than positional)
parameters, it takes more time for the run processor to process the SPOOL JPROC.

The format of the SPLjob control statement is:

//[symbol l SPL

I
HOLD l [,nXml[, {no-cop}]
RETAIN 1
TAPE
DISK
DISKETTE

[,brk-pge][,NOUPDl[,NOCMP][,RETAIN][,HOLD][,SECUREl

Note: When using the SPL statement for a spooled data-set-label diskette output file,
only the nXm, NOUPD, NOCMP, RETAIN, and HOLD parameters are
meaningful. The remaining parameters are ignored .

UP-9986 Rev. I 6-1

I

Making Job Control Work

6-2
Update 8

The HOLD parameter holds the spooled output file (print, punch, or data-set-label
diskette) for later processing. Files on hold are released by a BEGIN SPL command
or by a CC job control statement specifying a BEGIN SPL command. You'll notice
that HOLD is also the last parameter of the SPL statement. This is so you can specify
HOLD (as the first parameter) or choose one of the other options for the first
parameter and still specify HOLD (last).

With the RETAIN parameter, the spooled output file is processed (printed, punched,
or placed on data-set-label diskette), but it is also retained in the spool file for
processing at a later time. For the same reasons mentioned for HOLD, you can specify
RETAIN as the first or the twelfth parameter.

You use the TAPE, DISK, and DISKETTE parameters to redirect spooled output to
tape, disk, or format-label diskette for temporary storage. The output can be
processed (printed, punched, or placed on data-set-label diskette) at a later time.

The remaining parameters can be summarized as follows:

• The nxm parameter establishes buffers for use only by the spool subfile being
created.

• The no-cop parameter allows you to specify the number of times (from 0 to 255)
you want a spool file processed (printed or punched). Zero indicates no output.

• The no-skpcode parameter must be specified if a filed vertical format buff er
(requested via// VFB) or the system default vertical format buffer has more than
seven skip codes. One skip code for forms overflow and two for home paper
position are always included in this count.

• The max-rec parameter specifies the number of records the output file can
contain before a message is sent to the operator asking if the job should be
continued, breakpointed, or cancelled.

• The forms parameter identifies any special form or card type (other than the
standard paper or cards) needed when the spool file is output.

• The NOHDR parameter suppresses the printing of a page header at the
beginning of a print file; the HDR parameter prints it.

• The NOTSTL parameter suppresses the test line request message to the operator
when a forms change is required. This request message does not occur for
ST ANDl forms. The STL parameter sends a test lines message to the operator
when a forms change is required. If both parameters are omitted, the system
default is used.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

• The brk-pge parameter indicates a specific number of pages or cards to be spooled
out before the file is breakpointed and printed or punched.

• The NOUPD parameter indicates that the spool file subdirectory entry be
updated only when a file is closed.

• The NOCMP parameter indicates the system should not attempt to compress
data that's directed to the output spool file.

• The RETAIN and HOLD parameters perform the same function they do when
specified as the first parameter. Remember, though, if you specify HOLD (as the
last parameter) with RETAIN; TAPE, DISK, or DISKETTE; or with RETAIN and
TAPE, DISK, or DISKETTE, the output file is first put on hold. The other
parameters are acted upon accordingly when the file is released. If you specify
RETAIN (the twelfth parameter) with TAPE, DISK, or DISKETTE, the output is
redirected to the appropriate device and a copy of the file is also retained (in the
spool file) for later use.

• If specified, the SECURE keyword parameter indicates that the workstation to
which the auxiliary workstation printer is connected must be logged on before the
output file can be printed. If the workstation is not logged on and this keyword
parameter is specified, the file will not be printed .

Just as described in "Controlling Spooled Output with a JPROC Call" in Section 5 for
the SPOOL JPROC, the SPL job control statement must be placed in the device
assignment set for the spooled file.

Sending Spooled Output to Remote Batch Processing Terminals

The DST job control statement is used to send spooled output (print or punch) to RBP
(remote batch processing) terminals in your ICAM network. The format of the DST
statement is:

//[symbol] DST dest-1[,dest-2, ... ,dest-16]

The dest parameter is one to six alphanumeric characters and defined by RBP. The
keywords OS3CTR or CENTRAL can be used to specify the local site's printer .

UP-9986 Rev.1 6-3

Making Job Control Work

The DST statement must appear within the device assignment set for the print or
punch file. When specifying multiple destinations, you can list several destinations in
one II DST statement or use several II DST statements each listing one or more
destinations. For example:

II JOB REMOTE

II DVC 20
II DST A,OS3CTR,C,D
II LFD PRINT

II EXEC PROG1

I&

or

II JOB REMOTE

II DVC 20
II DST A
II DST OS3CTR

II DST C,D

II EXEC PROG1
I&

For more information on remote batch processing, see the Integrated Communications
Access Method (!CAM) Utilities Programming Guide (UP-9748).

Note: RBP output (specified by I I DST) and DDP and auxiliary printer output
(specified by I I ROUTE) cannot be mixed for any one job. For any job, all
output must be of one type or the other.

Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers

6-4

The ROUTE job control statement routes print or punch output to printers and
punches at DDP sites and to auxiliary printers connected to a load or remote
workstation or terminal. You place the ROUTE statement in the device assignment
set for the file to be routed.

Notes:

1. Output can be routed to the site central printer and up to seven auxiliary printers.

2. The II ROUTE and II DST statements cannot be mixed in the same job.

The ROUTE statement format is:

l/[symbolJROUTE destination-1, ... ,destination-8

You can specify up to eight destinations for non-DDP destinations, or one DDP site
destination. These destinations are the central printer or punch at a local or DDP
site, a workstation auxiliary printer at a DDP site, or an auxiliary printer that is
locally or remotely connected to your system.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

You specify the destination as follows:

[host-id:Juser-id-1, .•. ,user-id-8

The host-id identifies a particular host in a DDP network. It is one to four
alphanumeric characters long and identical to the label-id of the LOCAP
macroinstruction in an ICAM network. You can also use $HOST to indicate the host
that initiated the job (the originator/master). The host in this case may be remote or
local. A host-id is optional but must be followed by a user-id if specified. Whenever
you omit a host-id, the local host (the processor on which the job is executing) is
assumed.

To identify an auxiliary workstation printer, specify a 1- to 6-alphanumeric character
workstation user-id. You can also use YMAS to indicate an auxiliary printer at the
master workstation. The keyword CENTRAL in place of a user-id indicates a central
printer or punch. Any destinations that specify a user-id (other than CENTRAL) or
YMAS denote auxiliary workstation printers and are valid only for print files.

Consider the following destinations:

• CENTRALorOS3CTR

The output goes to the central printer or punch at the local site .

• host-id:CENTRAL

The output goes to the central printer or punch at a DDP site (identified by
host-id).

• host-id:user-id

The output goes to an auxiliary workstation printer (identified by a user-id) at a
remote host (identified by a host-id) at a DDP site. This destination is valid only
for print files.

• user-id

The output goes to an auxiliary workstation printer (identified by a user-id) that
is locally or remotely connected to your system. This destination is valid only for
print files.

• YMAS

UP-9986 Rev.1

The output goes to the auxiliary printer if the master (the terminal or
workstation that has control of the job when the job is executed) at the local site
is a workstation. Otherwise, the destination is the central printer at the local
site. The YMAS destination is valid only for print files .

6-5

Making Job Control Work

6-6

The following statements route output to the central printer:

II ROUTE OS3CTR

and

II ROUTE CENTRAL

The following statement routes output to up to eight auxiliary printers:

II ROUTE USERID1, ... ,USERID8

The following statement routes output to the central printer and up to seven auxiliary
printers:

II ROUTE OS3CTR,USERID1, ... ,USERID7

The following control stream contains a device assignment set for a print file which
includes the// ROUTE statement.

II JOB OUTPUT

II DVC 20
II ROUTE A123:CENTRAL
II LFD PRTFIL

II EXEC PROG1
I&

)
Print file
device
assignment set

The ROUTE statement in the preceding device assignment set routes the print output
to the central printer at a remote host whose host-id is A123.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Notes:

1. RBP output (specified by I I DST) and DDP or auxiliary printer output (specified
by I I ROUTE) cannot be mixed for any one job. For any job, all output must be of
one type or the other. Also, DDP destinations and local auxiliary printer
destinations cannot be used for the same print file.

2. When a workstation or terminal starts a job that directs printed output to an
auxiliary printer connected to a local or remote workstation or terminal (one that is
not the originator), the user at the other workstation or terminal must be logged on
with the same user-id as specified in the I I ROUTE job control statement and
must issue an RP command to starts printing. See the Interactive Services
Operating Guide (UP-9972) for more information on the RP command.

Spooling Input Card Data

A job that reads a large volume of data through the card reader ties up the operating
system by using a slow-speed device (card reader) as the means of supplying input to a
high-speed processor. You can avoid this by loading the card data into a spool file
(high-speed disk device) for later retrieval. In this way, the card reader can be used to
transfer data to the spool file while other jobs are being executed in the high-speed
processor. High-speed processing, therefore, goes on without interruption from a slow­
speed card reader .

The system operator uses the IN command to initiate spooling. You must identify the
card file to be spooled to the system operator, precede these cards with a DATA
statement, and follow them with a FIN job control statement or another DATA
statement. DATA is a control statement that identifies (to the input reader) the card
data you want spooled. Its format is:

II DATA FILEID=file-identifier[,RETAINJ[,IGNOREJ

When the operator places your cards in the card reader and issues the IN command at
the console, the card file is placed in the spool file along with the file-identifier from
the DATA statement. The FIN or the final DATA card terminates the card reader.
The spooled card file becomes a subfile.

Later, when your job stream is run, the subfile is read in (just as the cards are read in
at the card reader, only much faster). Spooled data cards may be read by a job that's
entered at a card reader or by a stored job control stream.

Note: Input data doesn't have to be spooled before your job's processing begins, but it
must be spooled by the time your program attempts to open its files.

The job control stream must contain a device assignment set for a card file. If you've
included an LBL job control statement in the device assignment set, the file identifier
specified on the DATA card must match the LBL statement's file identifier. If there
isn't an LBL statement, the file identifier on the DATA card must be a concatenation
of the job's name and the file name from the LFD job control statement. Either way,

UP-9986 Rev .1 6-7

Making Job Control Work

6-8

an association is made between the file you defined in your job control stream and the
subfile.

If this is the control stream,

II JOB BALANCE
II DVC 30
II LBL SPOOL1
II LFD READ
1&
II FIN

you code this DATA statement:

II DATA FILEID=SPOOL1

If this is the control stream,

II JOB BALANCE
II DVC 30
II LFD READ
I&
II FIN

you code this DATA statement:

II DATA FILEID=BALANCEREAD

The RETAIN parameter is used to maintain the subfile after it is processed. If you
specify RETAIN, only the DE SPL,RDR console command can delete the subfile. The
following example shows the use of the RETAIN parameter:

II DATA FILEID=BALANCEREAD,RETAIN
data cards

II FIN

You can, if necessary, place a// RUN/RV job control statement in the card deck. When
the deck is spooled, the run processor calls the specified job stream. Only one
RUN/RV statement may be placed within a DATA ... DATA or DATA ... FIN card
sequence. If more than one RUN/RV statement is present, only the last statement is
used.

The IGNORE parameter is used to permit RUN job control statements to be spooled
as data. It can be used, for example, for conversion jobs. Suppose you have a card
deck of control streams to be converted from 08/4 to 08/3 and you have several RUN
statements in the deck. When you spool the card deck, you don't want the RUN
statements to call stored control streams; you want them converted to 08/3 RUN job
control statements.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Let's assume we are running a conversion job named CNVT with an input card deck to
be spooled named CARDIN. The DATA FILEID job control statement is coded like
this:

II DATA FILEID=CNVTCARDIN,,IGNORE

Because we specified IGNORE in this example, RUN statements in the card deck are
spooled as data cards.

Spooling Diskette Files

Just as card input can be spooled, so can input from data-set-label diskette. The
operator uses the IN command to initiate the spooling and the data is placed in the
spool file. It remains there as a subfile and is retrieved by either a control stream
entered at a card reader, or by a prefiled job control stream. The data set label from
the diskette provides the label for your spool file, while the /* statement indicates the
end of the data file.

Whenever you're using input that's spooled from data-set-label diskette, specify the I
parameter of the DVC statement for the diskette. Remember, the format of the DVC
statement is:

//[symbol] DVC lnnn[(n)ll , addr
RES OPT
RUN IGNORE

ALT

I

0

REQ[(n)J
REAL

The I parameter tells job control that your data is in the spool file. The data cannot be
retrieved from this file unless the I parameter is specified as follows:

I I DVC 132, I

The 0 parameter is used when you want the spooled output to go to data-set-label
diskette .

UP-9986 Rev.1 6-9

I

I

Making Job Control Work

Equating Logical Unit Numbers to Device Type Codes

6-10
Update B

Since logical unit numbers can be changed at SYSGEN time, the possibility exists
that, when running your control stream on a system other than the one it was
designed for, one of your logical unit numbers may indicate a different device on the
other system. For example, the system your control stream was designed for might
have logical unit number 64 associated with an 8416 disk subsystem. But on the
system you are running under, logical unit number 64 may be an 8419 disk subsystem
- wrong device. A way to get around this is to use the EQU job control statement,
which equates logical unit numbers to specific device type codes. (This device type
code is always associated with this device.)

The format of the EQU job control statement is:

//[symbol] EQU lun-1,type-1[,lun-2,type-2, ••• ,lun-n,type·nl

The lun parameter indicates the logical unit number you have on the DVC job control
statement in the control stream. The type parameter is the 4- to 8-hexadecimal­
character device type code for the device you are using. See Table A-1 of the Job
Control Programming Reference Manual (UP-9984) for the codes.

The EQU job control statement, which you must place before the device assignment
sets in the control stream, is effective for the entire job.

Let's assume that a job is being run on a system other than the one it was written for
and that there's a possibility the logical unit numbers in the second system were
changed at SYSGEN time. On your system, logical number 64 is the 8416 disk
subsystem. To ensure that we get an 8416 on the other system, we insert an EQU job
control statement coded as follows (the device type code - 2002 - was obtained from
from Table A-1 of the Job Control Programming Reference Manual (UP-9984).

II EQU 64,2002
II DVC 64
II VOL DISK01
II LBL XYZ
II LFD TEST

You can also use the EQU statement to specify additional logical unit numbers for
virtual readers, printers, or punches. See "Using Multiple Devices, SYS RES, or the
Job's YRUN File" in Section 4.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Specifying Unique Load Codes
A load code buffer controls what characters are printed by your printer. Codes
corresponding to the characters on your print band or cartridge are placed in the
buffer and whenever a particular code is encountered, the character equated (via the
load code buffer) with that code is printed. (To simplify this discussion, we'll use the
term print cartridge from here on to mean print band or cartridge.)

For non-SDMA printers (0770 and 0776), the default contents of the load code buffer
are set at SYSGEN time; there is a unique buffer for each printer type. One of the
uses of the LCB job control statement is to override these specifications - to equate
different codes with different characters so that you can change print cartridges. You
define a load code buff er by specifying an 8-bit code for each character on the
cartridge. Whenever that code is encountered, the corresponding character is printed.

For SDMA printers (class I, II, III), each print cartridge contains its own
corresponding load code buffer. Therefore, you don't need to define a unique buffer in
an LCB statement when you change cartridges. If you do, it is ignored. As you'll see,
though, the II LCB statement has other uses.

The format of the LCB job control statement for non-SD MA printers is:

//[syinboll LCB {X'hex-string-1 1
} [{X'hex-string-2' } , ••• , {X'hex-string-n' }]

C'char-string-1' C'char-string-2' C'char-string-n•

UP-9986 Rev. I

[, CARTNAME=syinbo l]

,NAME= 148-BUS] 48-SCI
63-STD
OWNLC1
OWNLC2

[,NUMBCHAR=nl

[
' SPACE={~.·.·.·.: ;r ... }]

)(i'401

continued

6-11
Update B

I

I

I

Making Job Control Work

f>.12
Update B

[

,DUAL= jX'xxyyxxyyxxyyxxyy')j
c•abababab'
C'bbbb'
X'yyyyyyyy'

,MISMCHAR= [.x·.···· a. a ... ') c•c•
x•40•

The only parameters that have practical use for SOMA printers are symbol,
CAilTNAME, NAME, TYPE, and MISM.

The format of the LCB job control statement for SOMA and 9215 printers is:

II [symbol] LCB [CARTNAME=symbol]

,NAME= !48·BUS l
48·SCI
63-STD
OWNLC1 ·OWNLC9

[I TYPE=SDMA]

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

• To specify a default cartridge name when you omit the CAilTNAME parameter.

• To specify the name of a filed load code buffer that you're changing via the job
SG$PRB.

Use of symbol will become more clear after we discuss the CAilTNAME and NAME
parameters.

For non-SOMA printers, you use the first parameter of the LCB statement to assign
the codes for each graphic symbol on the print cartridge by specifying either the
X'hex-string' (hexadecimal) or C'char-string'. You need two hexadecimal characters or

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

one EBCDIC character for every symbol The position of each in the string of
parameters must correspond to its position on the print cartridge. As many
parameters as you need to specify the entire print cartridge may be used; you may
intermix the character and hexadecimal strings as required. Since the single quote
(apostrophe) and ampersand (&) symbols have special meanings to job control, they
must always be coded in hexadecimal. Statement continuation is only allowed
between parameters; individual character strings can't be coded on one job control
statement and continued on another. When using hexadecimal character strings, the
number of digits must be even.

Note: The character strings for your printer are shown in the appropriate printer
subsystem manual.

The CAR,TNAME parameter specifies the name of the print cartridge to be used. Your
installation is responsible for assigning a unique, 1- to 8-alphanumeric character
name to each cartridge. SCIENCE, for example, could be used for a scientific
character set.

When you provide a cartridge name in the II LCB statement, the operator is requested
to mount the cartridge just before the file starts printing. The output is not printed
until the operator mounts the cartridge and replies to the message. Remember, if you
don't specify a cartridge name, the cartridge that's already on the printer is used. So,
to ensure use of the proper cartridge and to avoid printing of the wrong characters,
you should specify a cartridge name .

You can use symbol in the label field of the LCB job control statement (instead of
CAR,TNAME) to specify a cartridge name. If you use both symbol and CAR,TNAME to
specify a cartridge name, the CAR,TNAME parameter takes precedence.

You specify NAME when you want to use one of the filed load code buffers (48-BUS,
48-SCI, 63-STD, or OWNLCn) established at SYSGEN time or by use of the job
SG$PRB. There is a unique 48-BUS, 48-SCI, 63-STD, and OWNLCn for each printer
type. (There is also a default load code buffer for each printer type when no II LCB
statement is specified.) NAME indicates that you want a filed load code buff er; you're
not establishing your own. Therefore, CARTNAME, TYPE, and MISM are the only
other parameters you can specify when you use NAME.

The NAME parameter specifies the name of the filed load code buffer, which in tum
specifies a cartridge name. So, when NAME is specified, CAR,TNAME is unnecessary.

As mentioned earlier, you can also use symbol for the name of a filed load code buffer.
This is done only when you are executing the job SG$PRB to change a filed load code
buffer (48-BUS, 48-SCI, 63-STD, or OWNLCn) via the job SG$PRB. If this is the case,
you use symbol to specify the name of the buffer to be changed. This is the only time
symbol indicates a load code buff er name. At all other times it indicates a default
cartridge name if you omit the CAR.TNAME parameter. See the appropriate I
installation guide for more information about the job SG$PRB .

UP-9986 Rev.1 6-13
Update B

I

Making Job Control Work

6-14
Update B

The CAR,TID parameter specifies a cartridge or band identifier. It may be either two
hexadecimal digits (X'aa') or one EBCDIC character (C'c'). This parameter is required
for non-SDMA printers (0776 and 0770) and must agree with the number found
physically on the cartridge.

The NUMBCHAR, parameter applies only to non-SDMA printers and specifies the
total number of graphic symbols expected on the print cartridge. As a safety check to
make sure you specified all characters, this number should coincide with the number
of characters specified in the character strings. When you omit NUMB CHAR,, the
number of characters specified by the character strings is assumed to be correct.

To identify the printer for which the LCB job control statement is constructed, you use
the TYPE parameter. From this, we can see that an LCB job control statement coded
for one type of printer cannot be used for another type.

You specify the space, or nonprinting code, for non-SDMA printers through the
SPACE parameter. This code is not included in either the X'hex-string' or
C'char-string' parameters. It may be either two hexadecimal digits (X'aa') or one
EBCDIC character (C'c'). The default value is X'40'.

A mismatch occurs when you try to print a character that is not in the load code buff er
or has not been specified as a dualed character. You can use the MISM parameter to
record character mismatch errors in the system error log by coding MISM=REPORT.
The default, MISM=IGNORE, means that mismatches aren't recorded.

For the 0770 or 0776 printer, you have a choice as to the replacement symbol. If you
specify in EBCDIC, you would use the DUAL=C'abababab' parameter, with a being a
character that is on the print cartridge and b being the character that a replaces. For
example, assume that the print cartridge contains the asterisk symbol (*) but not the
question mark symbol (?). You could substitute * for ? in the printout by specifying
DUAL=C'*?'. Every time the program outputs the EBCDIC code for a question mark,
an asterisk appears in the printed listing.

If you specify in hexadecimal, you would use the DUAL=X'xxyyxxyyxxyyxxyy'
parameter, where xx is the code for the character printed and yy is the code of the
character that xx replaces.

We've already said that when a character mismatch occurs, you can use the MISM
parameter to record it in the error log. For non-SDMA printers, you may also specify a
character that's to appear on the printed output in case of a character mismatch;
otherwise, a blank will appear (the default value X'40'). This is done with the
MISMCHAR, parameter. You can specify any character you want, in either
hexadecimal (X'aa') or EBCDIC (C'c'), as long as the character also appears in either
the X'hex-string' or C'char-string' parameter.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Here is an example of how the LCB job control statement is used for a non-SDMA
printer:

1. II DVC 28

Column 72

1
2. 11 LCB c • / .=* '';xqo•, c • + ,$' • >< -0123456789ABCDEFGH 1 JKLMNOPORSTUvwxvz •, x
3. 111 NUMBCHAR=48,CARTID=X'02' ,TYPE=0770,DUAL=C'*?' '>+<', X
4. 112 CARTNAME=SCIENCE
5. II LFD PRINTOUT

UP-9986 Rev .1

1. The DVC job control statement has 28 for the logical unit number, indicating
that a 0770 printer must be used.

2. This gives the actual character set for the load code buffer. Notice the
shaded area; this is where a switch is made from specifying in EBCDIC (C)
to hexadecimal (X). We did this because we want to specify a single
quotation mark (apostrophe) for the load code. Since a single quotation
mark begins and ends each character string, coding the single quotation
mark as an EBCDIC character would have terminated the character string,
and the remaining characters would be invalid. So, we ended the character
string after the last character before the single quotation mark (the
asterisk), specified the single quotation mark in hexadecimal (7D), and then
continued with the next character (a plus sign) in EBCDIC. The comma
character for the load code (after the plus sign) will not end the character
string because it's enclosed within single quotation marks.

3. The NUMBCHAR, parameter indicates that there are 48 characters in the
print cartridge. If we missed specifying a character in the character string
parameter, this would cause an error, so we'd know that we forgot a
character. The CAATID parameter indicates a cartridge identifier of 02, and
we're using a 0770 printer (1YPE parameter). The DUAL parameter
indicates that three nonprintable characters(?, >, and <) are going to be
appearing during the job, and gives the printable characters(*,", and+) that
will replace them.

4. When this print file is opened, the operator receives a message telling him to
mount the cartridge named SCIENCE.

5. Provides the file name for the print output file and completes the device
assignment set .

6-15

I

I

Making Job Control Work

Here is a similar example of how the LCB job control statement is used for an SDMA
printer:

II DVC 220
II LCB TYPE=SDMA,CARTNAME=SCIENCE

Some points to remember when coding the LCB job control statement are as follows:

• You can always specify the CAR,TNAME and TYPE parameters.

• If you specify NAME to indicate a filed load code buffer, you cannot specify any
other parameters except CAR,TNAME, TYPE, and MISM.

• If you're using the job SG$PRB to change a filed load code buffer, use symbol to
specify the name of the buffer rather than NAME.

Using Forms Control

6-16
Update B

A vertical format buffer controls a printer's vertical form spacing. This applies to the
0770, 0776, and 0789 printers. Codes corresponding to specific lines on a printer form
are loaded into the vertical format buffer. You advance the form to a particular line
by issuing a skip command in your program and specifying the code. The default
vertical format buffer for each printer type is set at SYSGEN time. You can use the
VFB job control statement to specify a unique vertical format buff er for a print file.

You must place the VFB job control statement within the device assignment set for
the printer file to which it applies. The II VFB statement becomes effective when your
program opens the print file. The format of the VFB job control statement is:

//[symbol] VFB LENGTH=lines
[,FORMNAME=symbol]

,USE= ISTAND1)
OWNVF1
OWNVF2-0WNVF9 (SOMA and 9215 printers only)

[,TYPE•[!~) ll,OVF•(li~·1, ••• ,ll~·nll

C,OVF2=Cline-1, .•• ,line-n)l[,CD1=Cline-1, •.• ,line-n), ••.
C,CD15=Cline-1, •.. ,line-n)ll

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

• To specify a default form name when you omit the FORMNAME parameter.

• To specify the name of a filed vertical format buffer that you're changing via the
job SG$PRB.

Use of symbol will become more clear after we discuss the FORMNAME and USE
parameters.

The LENGTH parameter indicates how many lines are on a form in the range of 1 to
192. You must use this parameter whenever you specify any of the VFB statement
parameters for forms overflow (OVFl ,OVF2) or vertical line positioning
(CD1, .. .,CD15). LENGTH must also be specified whenever you specify DENSITY.

The FORMNAME parameter specifies the name of the printer form to be used. (This
is very useful when you want your output printed on a special form.) Your installation
is responsible for assigning a unique, 1- to 8-alphanumeric character name to each
form. PAYCHK, for example, could be the name used for payroll checks.

When you provide a form name in the II VFB statement, the operator is requested to
place that form in the printer before the file begins printing. The output is not printed
until the operator loads the form and replies to the message. Remember, if you don't
specify a form name, the form that's already in the printer is used. So, to ensure use
of the proper form and to avoid printing on any valuable special forms, you should
always specify a form name.

Remember, you can specify a form name using any of the following:

• The SPOOL JPROC (See "Controlling Spooled Output with a JPROC Call" in
Section 5.)

• The SPLjob control statement (See "Controlling Spooled Output with a Job
Control Statement" in Section 6.)

• The symbol in the label field of the VFB job control statement. (A form name
specified this way takes precedence over a form name specified with
II SPOOL or II SPL. This method of identifying a form is provided for
compatibility with OSl4.)

• The FORMNAME parameter of the VFB job control statement. (A form name
specified this way takes precedence over a form name specified with II SPL,
II SPOOL, or the II VFB statement's symbol.)

UP-9986 Rev .1 6-17

I

Making Job Control Work

6-18
Update B

You specify the USE parameter when you want to use one of the filed vertical format
buffers (either STAND! or OWNVFn) established at SYSGEN time or via the job
SG$PRB. There is a unique STAND! and OWNVFn for each printer type. USE
indicates that you want a filed vertical format buff er - you're not establishing your
own. Therefore, FORMNAME and TYPE are the only other parameters you can
specify when you specify USE.

As mentioned earlier, you can use symbol for the name of a filed vertical format
buffer. This is done only if you are executing the job SG$PRB to change a filed buff er
(STAND! or OWNVFn). If this is the case, you specify either STAND! or OWNVFn in
the symbol field. You don't specify the USE parameter. This is the only time symbol
indicates a vertical format buffer name. At all other times it indicates a default form
name if you omit the FORMNAME parameter. See the appropriate installation guide
for more information about SG$PRB.

DENSITY indicates the number of print lines per inch. (The default is 8.) An 11-inch
form, for example, printed at a density of 8 lines per inch has 88 lines; this same form
printed at a density of 6 lines per inch would have 66 lines.

Note: If you change the print density for a print file, the forms mount message is
displayed to your operator. This occurs even if the form name remains the
same, and the form is not to be changed. Once alerted, your operator must reply
to the message before any output printing can occur.

We refer to the remaining parameters of the VFB job control statement as skipcodes.
These codes indicate forms overflow and vertical line positioning. When you specify
any one of these, you must also specify the LENGTH parameter because line is a
decimal number in the range of 1 to whatever amount is specified by the LENGTH
parameter. When only one line is specified for a code, you may omit the enclosing
parameter. If you accidentally repeat a code for the same line, the first one is accepted
and the others are ignored. (In this case, a warning message is displayed.)

The OVF parameter specifies the forms overflow line indicator. When an overflow
code is placed in the vertical format buffer, any space operation (such as print and
space) that advances the form to or beyond the overflow position causes the hardware
to detect and indicate forms overflow. You can specify multiple overflow indicators.
For example, you might indicate a forms overflow routine through your program that
prints subtotals, and another overflow routine that goes to the top-of-forms (home
paper) position of the next page.

The OVF2 parameter specifies a secondary forms overflow position for use with the
0770 printer. You can specify multiple overflow indicators. For example, if you're
going to print payroll checks and there are only 10 print lines for each check, setting
up a vertical format buff er at only 10 lines is impractical. Every time 10 lines are
printed, the vertical format buffer is rechecked to find the specifications for the next
paycheck (spacing, etc), even though it's the same form with the same spacing. This
takes time. But if you set up the vertical format buffer length for, say, 60 lines, you
could define 6 paychecks in one buffer. In this way, the vertical format buffer is
checked after every sixth form instead of after every form.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

When you design the VFB, bear in mind that lines can be printed (and the form
advanced) beyond the overflow position. For printing of assemblies, librarian runs,
dumps, etc, you should provide at least four lines between the overflow position and
the bottom of the form.

The user should always specify an OVF parameter if the file is to be spooled or if you
specify the LENGTH parameter.

The CDl through CD15 parameters are for the device independent control character
codes. These codes are used for vertical line positioning. For example, CD1=5 means,
every time this code is detected, each page of your report is skipped to the fifth line.
Not all codes may be used with all printers. The Consolidated Data Management
Macroinstructions Programming Guide (UP-9979) lists the appropriate control
character codes for your printers in the section that explains the control printer forms
macroinstruction.

Notes:

1. In a spooling environment, space must be reserved for all lines with assigned skip
codes. If you specify a I I VFB statement for a spooled file and provide a full
vertical format buffer specification (you do not specify a filed vertical format buffer
with USE or symbol), job control reserves enough space. If, however, you request a
filed vertical format buffer (STANDJ or OWNVFn) that has more than seven skip
codes, or if you use a system default vertical format buffer having more than seven
skip codes, you must specify the number of skip codes using the no-skpcode
parameter in the I I SPL statement or the SKIPCODE parameter in the I I
SPOOL JPROC.

When you don't use a I I SPL statement or I I SPOOL JPROC, the default is seven
skip codes. Three skip codes are automatically included in this count: home
position for current page, overfl,ow for next page, and home position for next page.
The four remaining are user-specified skip codes. Therefore, the I I SPL statement
and the I I SPOOL JPROC specify the total count of lines on your form where a
skip code is allowed, plus three.

2. Repeat occurrences of the same skip code on more than one line are counted as
separate skip codes.

Consider the following. Suppose you want to produce a report on a special 11- by 14-
inch form that prints 12 lines of data at 6 lines per inch (lpi), then skips 3 lines; prints
another 12, skips 3; and so forth down the page a total of 4 times. Your VFB
statement might look like this:

II VFB FO=WORKSHT,DE=6,LE=66,0V=61

UP-9986 Rev .1 6-19

Making Job Control Work

You would have to identify your special printer form (WORKSHT) to the operator so
that it can be loaded on an available printer. Specify your desired printing density in
terms of lines per inch (lpi). Specify the overall length of the form as a function of the
number oflines that could be printed on the form; in this case, 66 (6 lpi x 11 inches).
And, finally, specify the line on the form at which you want the printer to advance the
paper to the top of the next page, which is called the home paper position. This
parameter is sometimes critical because the location of the home paper position
depends on where the operator physically aligns the form on the printer. If the home
paper position has been set by the operator to line 4 of the form and your program
prints before skipping any lines, the first print line will occur on line 4.

If we assume that the form we're using is meant to be loaded at line 4 and that our
program prints before skipping, our OV specification would be 61 as shown in the
example. This would allow us to print 48 lines and skip 9, before advancing the paper
to the next top-of-forms, or home paper position (4 + 48 + 9 = 61). If, however, the
operator loads our form at print position 2, instead of 4, our OV specification would
have to be 59, instead of 61, to maintain our desired page format. The obvious lesson
in this example is that you must tell the operator how to load a special form when
your output format is critical. Most of the time, you're not concerned with the exact
number oflines that are printed, but only that the printed output not continue beyond
a reasonable line on the form.

Some points to remember when coding the VFB job control statement are as follows:

• You can always specify the FORMNAME and TYPE parameters.

• If you specify USE to indicate a filed vertical format buffer (STANDl or
OWNVFn), you cannot specify any other parameter except FORMNAME and
TYPE.

• If you're using SG$PRB to change STANDl or OWNVFn, use symbol to specify
the name of the buff er instead of USE.

• If you specify DENSITY, you must specify LENGTH.

• If you specify any codes (OVFI, OVF2, CDI through CD15), you must specify
LENGTH.

• If you specify LENGTH, you should specify at least one overflow code (OVF).

Controlling Tape Units

6-20

You use the MTC job control statement to position a tape volume prior to or after job
step execution. With it, you can move the tape volume to a certain block within a file
or to a certain file within a multiple volume. A tape volume can also be rewound to a
load point, rewound and unloaded, or have tape marks written.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

You must insert the MTC job control statement at a point after the device assignment
set for that tape unit. The format of the MTC job control statement is:

//[symbol] MTC lfdname, BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL
RU

The lfdname parameter specifies the same file name that was used in the device
assignment set for the tape volume.

The next parameter provides seven choices; they indicate the type of operation you
want done. They are:

BB - Backspace a specified number (nn) of blocks.

BM - Backspace a specified number (nn) of tape marks.

FB - Forward space a specified number (nn) of blocks.

FM - Forward space a specified number (nn) of tape marks .

WM - Write a specified number (nn) of tape marks.

RL - Rewind to load point.

RU - Rewind and unload the tape volume.

The amount, nn, must be a decimal number.

The relationship between the number of tape marks to the number of files on a
volume is covered in the Consolidated Data Management Macroinstructions
Programming Guide (UP-9979).

The following example shows how the MTC job control statement is used:

UP-9986 Rev .1

II JOB TAPELJST
II DVC 90
II VOL T123
II LFD TAPEIN
II DVC 20
II LFD PRNT
jj')l'TC'''TAPEI.N ,FB'/10
II EXEC TPRNT
l//MlC/TAPEINoRU
I&
II FIN

6-21

Making Job Control Work

The first MTC job control statement spaces tape T123 forward 10 blocks prior to job
step execution. The second MTC job control statement rewinds and unloads the same
tape after the job step is finished. Note that the lfdname parameter of both MTC job
control statements agrees with the filename parameter of the LFD job control
statement.

Releasing (Freeing) a Device and Volume

6-22

Once a device and a volume are assigned to a job, they remain assigned until the job is
finished. This assignment applies to all job steps of the job. But, what if your job has
10 job steps, and a certain device or volume is only used in the first job step? In effect,
they can't be used by any other job until this entire job is complete. You can use the
FREE job control statement to release the device and volume immediately after it is
no longer needed, even though the job is not completed. However, if a device and
volume are released during one job step and either one is requested in a later job step
in the same job, no release occurs. This protects you from not having a needed device
or volume available because it was released too soon. Remember, the entire control
stream is scanned before the job begins executing.

The format of the FREE job control statement is:

//[symbol] FREE lfdname-1[[(DEV)J, ... ,lfdname-n[(DEV)ll

The lfdname parameter specifies the same file name used in the device assignment set
for the file.

The (DEV) parameter indicates that the device and volume are to be released. There
is no comma between the lfdname and (DEV) parameters.

Note: You should always specify (DEV) even though it's shown as optional.
Additionally, you must specify (DEV) to free unit record devices such as card
readers, card punches, printers, and workstations.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Here's an example of a multiple-job-step job. The first job step needs the card reader.
After that, it's not needed.

II JOB PAYROL
II DVC 50
II VOL DISK01
II LBL DETAILS
II LFD PRDISC
II DVC 30
//'LFP::REAP01
II EXEC CARDTP
77:!, t8~~''R~1'ti0H:ti~V>
II EXEC EDIT
II EXEC BALANC
II EXEC NEGBAL
II EXEC WORKP
I&
II FIN

data file

I*

} Job steps that
don't need the reader

You can also use II FREE to allow a job to be scheduled that appears to use more
volumes or devices than are available .

Suppose, for example, that a job (PAYROL) uses four cataloged tape volumes. Your
system has only two tape drives. The system assumes, for cataloged volumes, that
each unique volume requires a unique device. Your job is not scheduled because there
are not enough unique devices available for each unique cataloged volume. You can
get the job scheduled; however, if you use the FREE statement to release the tape
drives once the first two volumes have been accessed.

During execution of the job, you are still protected from a needed device or volume
being unavailable, because no actual release occurs if// FREE specifies a device or
volume needed in a later job step.

Your job stream might look like this:

UP-9986 Rev.1

II JOB PAYROL
II LBL FILA
II LFD TAP1
II LBL FILB
II LFD TAP2
II EXEC STEP1
II FREE TAP1CDEV)
II FREE TAP2CDEV)
II LBL FILC
II LFD TAP3
II LBL FILO
II LFD TAP4
II EXEC STEP2

6-23

Making Job Control Work

Your job is scheduled, even though your system has only two tape devices, because the
drives are freed after the first job step. During execution of the job, volumes A and C
use one tape drive and volumes B and D use the other tape drive.

II FREE can be used to release a workstation when it's no longer needed by a job. You
specify the workstation lfdname as it appears on the LFD statement in the
workstation's device assignment set and code the FREE statement as follows:

II FREE WRKSTN(DEV)

If this statement is specified, all workstations connected to the file are freed.

Scratching Unwanted Files

6-24

Once a disk or diskette file is no longer needed, it might as well be scratched, making
the space available for some other file. The SCR job control statement does this. Any
file or extent specified on this job control statement is scratched as soon as the SCR
job control statement is encountered by the job step processor. Therefore, the SCR
statement should only be specified after any job steps needing that particular file are
executed. Only files on volumes that are currently mounted when the SCR job control
statement is encountered are scratched. You can't use the SCRjob control statement
to delete a file on SYSRES that has Y as the first three characters of the file label,
and you can't use it to delete the YRUN file from the RUN volume. Only one
volume serial number may be specified for any SCRjob control statement.

The format of the SCRjob control statement is:

//[symbol lSCR l fdname [' {DATE[, yydddl}]
PRE[,aaaa]

The lfdname parameter specifies the file name (of the file to be scratched) used in a
previous device assignment set in the control stream. Within that assignment set, you
must specify the volume serial number and the file identifier. But, if you're working
with a disk file and the next parameter is either DATE or PRE, you may omit the LBL
job control statement from the relevant device assignment set.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The DATE and PRE parameters are used only for disk files. When you use the
DATE parameter, all files on the disk volume that have an expiration date earlier
than the current system date are scratched. If you want to use a date other than
the current system date, include theyyddd parmeter as part of your specification
(where yy is the year and ddd is the day - leading zeros must be specified). When
you specify a date, all the files on the disk volume dated earlier than the date
specified are scratched.

The PRE parameter indicates that all files on a disk volume with a certain prefix
are to be scratched. You specify this prefix as the next 4-character parameter,
aaaa. The first three characters of this prefix, however, cannot be Y if the
volume is SYSRES. If you omit the aaaa parameter, the first four characters of
the file identifier from the associated LBL job control statement are used as the
prefix.

If this parameter (DATE and PRE) is omitted, the entire file specified by the
lfdname parameter is scratched.

Here are three examples:

fl DVCVOL DSP028
II LBL PAYROLLDETAILS
II LFD PRDET
II SCR PRDET

In this first example, the entire file identified as PAYROLLDETAILS is
scratched. The filename parameter of the LFD job control statement and the
lfdname parameter of the SCRjob control statement must agree.

II DVCVOL DSP028
II LFD DELETES
II SCR DELETES,DATE,76002

In this example, all files on disk volume DSP028 that have an expiration date
earlier than the second day of the year 76 are scratched. Notice the absence of an
LBLjob control statement. When you use either the DATE or PRE parameter,
an LBL job control statement isn't needed.

UP-9986 Rev.1

11 DVC 130
II VOL DKT001
II LBL ADDRFILE
II LFD ADDR1
II SCR ADDR1

6-25

Making Job Control Work

Our last example shows an entire file being scratched on our format-label
diskette. Remember, the filename parameter of the LFD job control statement
and the lfdname parameter of the SCRjob control statement must agree.

Notes:

1. The file to be scratched should not be in use by another job.

2. After an SCR job control statement is processed, the file is no longer available.
You can't even refer to this file with another SCRjob control statement or a FREE
statement.

File Cataloging
The file catalog (YCAT) is a system resident file. It contains entries consisting of
file information about tape, disk, and diskette files in the system. The catalog enables
easy access to this file information for jobs and can also restrict files to only authorized
users.

The CAT, DECAT, and QUALjob control statements and a special form of the LBL
job control statement are used to create, access, and decatalog cataloged files. Their
use and a complete description of the 08/3 file cataloging facility are contained in the
File Cataloging Technical Review (UP-9982). The catalog manipulation routine
(JC$CAT) is also described in the same manual.

Selecting Optional Features

6-26

Unisys Operating System/3 provides optional features you can select whenever you
want. As you'll see, some options (such as DUMP and GO) are only effective during
the job step in which they are specified, some (such as GABRDUMP, GDUMP, and
GSYSDUMP) are effective from the time the option is encountered until end-of-job,
while others (such as ACN, BUF, OFT, LOG, and SCAN) are in effect for the entire job
because they are acted upon when the run processor prepares the control stream for
execution.

This is the format of the OPTION job control statement:

//[symbol] OPTION p-1[, ..• ,p-n]

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

As you can see, you can specify as many features as desired, as long as they're
separated by commas (there can't be any spaces). The features available are:

• ABRDUMP

Provides a main storage dump in the immediate vicinity of the current TCB PSW
address. Displays current registers and buffers of all open DTFs.

• ACN=account-number

Overrides the acct-no specified in the JOB control statement.

• BOF

Your program is given control with binary overflow interrupt-enabled.

• BUF=nXm

Overrides the nXm parameter specified in the JOB control statement.

• DOF

Your program is given control with decimal overflow interrupt-enabled .

• DUMP

Provides a job region dump at execution time in hexadecimal, if job step
termination is requested, or a snapshot dump in response to a SNAP
macroinstruction.

• EOD=xx

Supplies substitute characters for the end-of-embedded-data(/*) job control
statement. Used when embedded data is DSL source code. The first character
specified must be a slash (/). The second character can be anything but a slash,
an asterisk, an ampersand, or a currency symbol(/,*,&,$).

• GABRDUMP

Specifies that OPTION ABRDUMP is in effect for every job step from the time
GABRDUMP is encountered to end-of-job.

• GDUMP

UP-9986 Rev.1

Specifies that OPTION DUMP is in effect for every job step from the time
GDUMP is encountered to end-of-job .

f>.27

Making Job Control Work

• GJOBDUMP

Specifies that OPTION JOBDUMP is in effect for every job step from the time
GJOBDUMP is encountered to end-of-job.

"' GO

Automatically executes a load module after link editing is completed. An
OPTION job control statement with the GO feature is generated automatically by
the ASMLG JPROC call statement, for example.

• GSUB

Provides symbol substitution for all embedded data sets in the job stream. This
is a global SUB option.

• GSYSDUMP

•

Specifies that OPTION SYSDUMP is in effect for every job step from the time
GSYSDUMP is encountered to end-of-job.

HDR= { NOHDR)
HDR

NOHDR suppresses the printing of page separators. HDR allows page separators
to be printed. OPTION HDR overrides the page separator specification in the
JOB control statement.

• HOLD

Places a job containing it in "hold" status while the job is in the job queue table.
A job containing this option is not released until a BEGIN operator command is
issued, or until a CC job control statement with BE specified is encountered in a
subsequent control stream. CC BE cannot be used to release a HOLD within the
same job.

• IMMOVE

Prevents memory consolidation moveable shuftle in this job step.

• JOBDUMP

Provides an edited version of a dump if a dump is requested and is in effect only
I for the job step that contains this option.

6-28
Update 8

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

• LDA

Directs job control to set up a 256-byte user local data area (LDA) in the job
prologue. This option is provided primarily for IBM® System/34 compatibility
and is used if RPG programs or the assembler uses the LDA.

• LINK

•

Automatically executes the linkage editor once the object module is created. This
allows you to compile and link edit without intervention from job control.

LOG= I logical-unit-number)
ORIGINATOR
CENTRAL

Directs the job log to a specific printer or a magnetic tape. The keywords
ORIGINATOR and CENTRAL refer only to printers. If you specify
ORIGINATOR, the log goes to the printer at the job's originator (this includes an
auxiliary workstation printer ifthe job's originator is a workstation). If you
specify CENTRAL, the log goes to the local site's control printer. Only
LOG=CENTRAL can be specified in RBP initiated jobs. The default log
destination for RBP is the originator.

For security purposes, the file passwords are not entered in the job log file .

Note: In nonburst mode, the job log is normally printed first (on the first available
printer) followed by the output file. Ifthe DVC statement for the output file
indicates a specific printer (e.g., DVC 28), you should include the OPTION LOG
statement with the same logical unit number (e.g., OPTION LOG=28) so that
the job log will be directed to the same printer as the output file. If OPTION
LOG isn't included, the job log will be printed first (on the first available
printer) and the output file will be printed on DVC 28 provided the device is
available. If the device is not available, the output file will not be printed.

Ifthe DVC statement for the output file indicates any printer (e.g., DVC 20) and
you include an OPTION LOG statement indicating a specific printer (e.g.,
OPTION LOG=28), both the job log and the output file will be printed (in that
order) on DVC 28. For more information on nonburst mode, output spooling,
and job logs, see the Spooling and Job Accounting Operating Guide (UP-9975).

IBM is a registered trademark of International Business Machines Corporation •

UP-9986 Rev .1 6-29

Making Job Control Work

6-30

• MASTER=destination (where destination=[host-id:]user-id)

Assigns the specified workstation (at the specified host) as the job's master - the
workstation that has control of the job when the job goes into execution. (By
default, the originator has control of the job so that master and originator are
usually the same unless you use this option. See OPTION ORI for a definition of
the originator.) The assignment as master takes effect when the job name is
entered in the job queue and this assignment does not change.

Specify OPERATOR as the user-id to designate a system console as the master.
If your system has DDP, you can use a host-id to specify a particular host. If you
omit the host-id, the local host (the processor on which the job is executing) is
assumed. The host-id is optional but if specified, must be followed by a user-id.
If you include this option in a saved translated control stream, the option will be
effective when the stream is restored.

• MASTER=destination(EXEC) (where destination=[host-id:]user-id)

Functions the same as MASTER=destination but takes effect only when the job is
in execution. The originator has control when the job is in the job queue.

• MAX=maximum-main-storage-size

Overrides the max parameter specification in the JOB control statement. The
max value is interpreted as a hexadecimal value when you simply code the
number or X'number'. You can also indicate that the max value be interpreted as
a decimal by coding MAX=D'number'. If more than one maximum value is
specified (via the// JOB statement or multiple// OPTION statements), the largest
value is used.

• MERGE=NO

•

Used to create a separate identifier for a job's log in the spool LOG file (when
spooling and log accumulation are configured for the system). By including
MERGE=NO, you can determine if your job log is present in the accumulated
LOG file.

MIN=minimum-main-storage-size

Overrides the min parameter specification in the JOB control statement. The
min value is interpreted as a hexadecimal value when you simply code the
number or X'number'. You can also indicate that the min value be interpreted as
a decimal by coding MIN=D'number'. If more than one minimum value is
specified (via the// JOB statement or multiple// OPTION statements), the largest
value is used.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

• MXT=maximum-time

Overrides the max-time parameter specified in the JOB control statement. The
maximum time can be specified in minutes, or you can specify SUP or DEF.
MXT=SUP suppresses the max-time function. MXT=DEF specifies that the
system default is to be used for the max-time value.

• NOSCHED

•

UP-9986 Rev.1

Saves a job control stream in its translated state (in YSAVE), but prevents the
job from being scheduled and executed. See the SA VE option for information
about subsequent runs of the saved, translated job stream.

NOSCHED: (alt-mirnm-lib [' i;~t) JY,write-passwo•dl

Functions like II OPTION NOSCHED but is used when you want the saved
translated control stream placed in your own MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier. The file identifier must not be hyphenated.

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies
the volume serial number of a disk pack or format-label diskette. Keep the
following in mind:

If the file is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

If the file is cataloged and you don't specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

If the file is not cataloged and you don't specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the
parentheses are optional and you can simply code
II OPTION NOSCHED:alt-filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

See the SAVE option for information about subsequent runs of the saved,
translated job stream .

6-31

Making Job Control Work

6-32

• NSCAN

Resets the SCAN facility. It should be used only with embedded data of a job
step for which SCAN has been specified. Subsequent job control statements
normally removed by SCAN are not removed. The OPTION NSCAN statement
itself is removed. When NSCAN is specified, SCAN cannot be used again in the
same job step.

• NSRCH

Only the library named on the EXEC job control statement is searched for the
load module; the job run library file (YRUN) and the lead library file (YLOD)
are not searched.

• NSUB

Resets the SUB facility. It should be used only within the embedded data of a job
step for which both SUB and SCAN have been specified. Set symbols in
embedded data are not substituted until another SUB is encountered.

• NULL

Specifies a no-operation for the OPTION statement.

• OFT=+n

Tells the run processor to reserve space for an additional number (n) of files in
the open file table. Then parameter must be in the range 1through16 and must
be preceded by a plus sign. For IMS users, n is the number of terminal classes
used to dynamically create files.

• OPL=option-list

Overrides print-option-list specifications on the JOB control statement. Any of
the options available through the print-option-list parameter of the JOB control
statement may be specified via OPTION OPL.

• ORIGINATOR=destination (where destination=[host-id:]user-id)

The originator is that workstation (and host) that physically initiates a job and
subsequently has control of the job. OPTION ORI allows you to designate
another workstation as the originator regardless of the physical originator. This
option takes effect (changes user-id) immediately when it is encountered in the
job control stream. That is, the run processor immediately changes the user-id to
that specified by the ORI parameter. You have the option of specifying more than
one OPTION ORI statement in the same job stream. In such cases, the last
OPTION ORI statement encountered in the job stream designates the
workstation that controls processing at execution time.

UP-9986 Rev. 1

•

•

•

•
•

•

•
UP-9986 Rev .1

Making Job Control Work

Specify OPERATOR as the user-id to designate a system console as the
originator. If your system has DDP, you can use the host-id to specify a
particular host. If you omit the host-id, the local host (the processor on which the
job is executing) is assumed. The host-id is optional but, if specified, must be
followed by a user-id. If you included this option in a saved translated control
stream, the option will be effective when the stream is restored.

OUT= I ORIGINATOR)
CENTRAL
[host-id:]user-id

Note: When a workstation initiates a job that directs printed output to an
auxiliary printer connected to another workstation (one that is not the
originator), the user at the other workstation must issue an RP command
to initiate printing. See the Interactive Services Operating Guide
(UP-9972) for information about this command.

Directs all job output (print files, punch files, and job logs) to the specified
destination as follows:

ORIGINATOR

Directs all printed output to the printer at the job's originator.
Directs all punch output to the central punch at the job's
originator.

CENTRAL

Directs all print or punch output to the local site's central
printer/punch.

[host-id:]user-id

Directs all printed output to the specified destination and all
punch output to the central punch at the specified host.

The host-id identifies a particular host in a DDP network, is 1 to 4
alphanumeric characters long, and identical to the label-id of the LOCAP
macroinstruction in your !CAM network. Use $HOST to indicate the job's
originator (the host that initiated the job). If the host-id is omitted, the local
host is assumed. The host-id is optional but, if specified, must be followed by
a user-id.

A 1- to 6-alphanumeric character workstation user-id identifies an auxiliary
workstation printer. The keyword CENTRAL in place of a user-id identifies
the central printer or punch. Any destinations that specify a user-id or
YMAS are valid only for print files. CENTRAL is valid for print and
punch files .

6-33

I

Making Job Control Work

6-34
Update 8

This option is effective for all of the job's print and punch output, but it can be
changed for individual print or punch files by specifying// ROUTE or// DST in
the device assignment set for that file.

• PRl=switch-priority

Establishes an overall task switching priority that applies to each program
specified on subsequent EXEC statements in that job. This priority can be
changed for particular programs by specifying a relative priority (e.g., +3 or -3) or
an absolute priority (e.g., 3) on the EXEC job control statement.

• PRO

Allows procs in embedded data.

• PRT= ACT
LOG
NO ACT
NO LOG
NONE
BOTH

Overrides the print option specified in the JOB control statement.

ACT forces the printing of accounting records.

LOG forces the printing of job log records.

NOACT suppresses the printing of account records from the job
log file.

NO LOG suppresses the printing of log information from the job
log file (including main storage dumps).

NONE suppresses the printing of both accounting records and
log information from the job log file.

BOTH forces the printing of accounting records and job
log information.

• PSYSDUMP

Terminates the job immediately if abnormal termination occurs. SYSDUMP is
executed as a separate job. This allows immediate rerunning of the terminated
job.

• QUERY

The OPTION QUERY job control statement is for workstation users. It allows
you to change control stream execution by dynamically skipping parts of the

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

control stream at run time. To use this facility, specify an OPI'ION QUERY job
control statement when you create your control stream. Then, when you run the
control stream (key in RV job name) and the OPI'ION QUERY statement is
processed, the following messages are displayed at the workstation screen:

JC 36 ENTER SKIP PARAMETER (DISPLAY, CANC, STEP=,LABEL=,OFF,NONE)

JC 37 UPSl=xxxxxxxx QUERY LABEL=yyyyyyyy

If you enter a null response to the message, the system assumes you want to
proceed without a skip.

The type of skip you want is specified by keying in one of the following options:

Option

NONE

CANC

STEP=

LABEL=

OFF

DISPLAY

X=

Y=

Meaning

Discontinue this function in the job step

Cancels the job

Resume processing at the specified job step (program name)

Resume processing at the label specified on the NOP QUERY job control statement

Discontinue this function in the job

Display all labels and job steps names in the the control stream. Step names
are preceded by an asterisk(*) to distinguish them from labels.

UPSI setting

Label of QUERY job control statement

To use the label skipping facility of OPI'ION QUERY, you must specify II NOP
QUERY job control statements in the stream as targets for the skips. The NOP
statement is discussed in "Providing Targets for Branching" in Section 7.

• REPEAT

•

UP-9986 Rev. l

The currently executing program is automatically restarted upon termination
until all embedded data files are exhausted. This gives you the ability to execute
stacked assemblies or compilations without job control intervention. The
REPEAT option does not clear the job region between executions, unless the ZRO
option is used when linking the program.

SAVE

Saves a job control stream in its translated state and schedules the job to be run.
A copy of the control stream as it appears in YRUN is stored in the system file
YSA VE. Subsequent runs of the job are initiated through the SC/SI system
command or through the// CC SC/SI job control statement. If you elect to use
this option, do not hyphenate the job name. Otherwise, an error condition will
result and your job will not be saved. Saving a job control stream with a large
number of JPROCS in its translated state eliminates the time-consuming chore of

6-35
Update B

I

Making Job Control Work

6-36
Update B

•

JPROC expansion by the run processor on subsequent runs. Information about
the SC/SI system command is found in the appropriate operations guide and the
appropriate workstation user guide for your system. This option is available only
if your system is configured with consolidated data management.

SAVE: (alt-filename [{ !~}] [,write-password])

Functions like// OPTION SA VE but is used when you want the saved translated
control stream placed in your own permanent MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier. (The file identifier must not be hyphenated.)

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies
the volume serial number of a disk pack or format-label diskette. Keep the
following in mind:

If the file is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

If the file is cataloged and you don't specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

Ifthe file is not cataloged and you don't specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the parentheses
are optional and you can simply code II OPTION SAVE:alt-filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

• SCAN

•

Acts upon and removes selected job control statements (CR, GBL, GO, IF, JSET,
NOP, and OPTION) from embedded data files. If this feature isn't selected, only
the terminators (FIN, END,/$, and/*) are detected.

SERIAL= { ~}

Allows you to have a list of RU/RV commands which are to be run serially rather
than concurrently, i.e., the first job must terminate before the second job is run.
The list of RU/RV commands following the option serial statement is referred to
as the controller job.

The controller job can contain any number of RU/RV statements as well as other
JCL statements excluding DVC-LFD sequences and EXEC statements.

UP-9986 Rev. 1

•

•

•

•
Making Job Control Work

If SERIAL=C and a job terminates abnormally, the controller is also terminated
and the following message is displayed:

JC61 CONTROLLER JOB JOBNAME TERMINATED ABNORMALLY

SERIAL=A specifies that the controller is not to be terminated. The UPSI byte is
set to X'80' so the controller can skip to the abnormal path.

When the last job terminates normally, the following message is displayed:

JC69 CONTROLLER JOB JOBNAME TERMINATED NORMALLY

Multiple controllers can be active simultaneously.

• SEVERE

Specifies that the run processor is to be terminated (the job is not to be scheduled) if
warning errors occur. Normally, warning errors would not terminate the job.

• SIG

Program is given control with floating-point significant exception interrupt-enabled.

• SUB

• Scans embedded data for parameters for set symbol substitution.

•

• SYSDUMP

A complete edited system dump is provided if job step termination is requested.

• TEST

Specifies that the job is not to be queued or run.

• TRACE

Fetches the monitor routine to record the effect of variable instruction parameters.
Optional monitor tasks may be selected as described in the Supervisor
Macroinstructions Programming Reference Manual (UP-8832).

• TSK::number-of-tasks

Overrides the tasks parameter specified in the JOB control statement. From 1 to
255 tasks can be active within any job step.

• UNDEFINED

UP-9986 Rev.1

Specifies that from the time this option is encountered to the end of job, a warning
error message is to be generated whenever an undefined SET symbol is detected .

~37

Update B

Making Job Control Work

• UNEQUAL

Specifies that a warning error message is to be generated whenever two character
strings of unequal length are compared.

• XUF

Your program is given control with exponent underflow exception interrupt­
enabled.

Ifno dumps are requested for a job step (JOBDUMP, DUMP, or SYSDUMP), a
NO DUMP feature is generated, which prohibits snapshot dumps, end-of-job-step
dumps, and abnormal termination dumps. This feature, NODUMP, is not to be
specified on an OPTION job control statement; job control assumes this feature.

The OPTION job control statement is generally inserted as the first job control
statement for the job step (unless, of course, this is the first job step, in which case the
JOB control statement is first). The OPTION statement may also be used in
embedded data when the NSCAN, NSUB, SCAN, or SUB features are specified.

In this example,

II OPTION JOBDUMP,TRACE

all the executed instructions of the program in this job step will be recorded. If the job
step terminates abnormally or a DUMP macroinstruction is encountered, an edited
dump is provided.

OPTION should not be placed between these job control statements:

• EXEC and/$

• EXEC and PARAM

• PARAM and PARAM

• PARAMand/$

• I* and/$ (where they delimit two separate embedded data sets)

Using the SET Job Control Statement

6-38

The SET job control statement modifies certain control fields in the job preamble and
establishes a local data area (LDA) in the job prologue. The three fields that can be
modified are: the date, user program switch indicator (UPSI), and the
communications region. The SET job control statement does not alter the contents of
the system information block; for this purpose, use the SET system console command.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The LDA is a 256-byte user area that follows the job accounting area in the job
prologue. It is provided primarily for IBM System/34 compatibility.

We use different formats of the SET job control statement to accomplish the
aforementioned functions, so we'll look at each separately.

Changing the Date

To temporarily change the date field of the job preamble until the end of the job, use
this format of the SET job control statement.

//[symbol] SET DATE,yy/111TI/dd[,t·date][,d·date]

The yy I mm I dd parameter is the date you want stored in the job preamble in place of
the current date. It's specified as year, month, day.

The t-date parameter specifies a 5-digit date for tape files, in the form yyddd (2-digit
year, 3-digit day). This date is stored, right-justified, in a 6-position field in the job
preamble, with the leftmost position set to a blank. This t-date parameter is flexible.
You can specify six digits, with the leftmost digit indicating the quarter of the year,
and the remaining five digits indicating the date. You use this parameter when you
want to compare the creation date of the first file header label (HDRl) against a date
different from the date in the system information block .

The d-date parameter is the 5-digit date for disk files, also in the form yyddd. You use
this if you want the format 1 label to be compared against a date different from the
one stored in the system information block. If you omit the d-date parameter, the date
specified in the t-date parameter is used. If you also omit the t-date parameter, then
the date from the system information block is used.

In this example,

II SET DATE,88/09/14

the date used for the job is September 14, 1988.

Setting the UPSI

The SET UPSI job control statement allows you to set indicators that can be tested
during program execution. This UPSI area is one byte long (eight bits). You can
assign a specific meaning to any or all of the bits. For instance, say a program will run
with either card or tape input (two different sets of instructions defining the input
device). You could code the program such that when the first bit of the UPSI byte is 1,
the program instructions for card input are used; when the first bit is 0, the program
instructions for tape input are used. Then, through the SET UPSI job control
statement, you set the first bit of the UPSI byte to indicate which type of input is
being used .

UP-9986 Rev. l 6-39

Making Job Control Work

The format of the SET UPSI job control statement is:

//[symbol] SET UPSI,switch-setting

The switch-setting parameter is the 8-bit UPSI byte. The allowable characters are:

0 The bit is set to off.

1 The bit is set to on.

X The bit is unchanged.

Unspecified rightmost bit positions are assumed to be X (unchanged). Initially, the
UPSI byte is set to all zeros.

More than one SET UPSI job control statement may be specified for a job. However,
you must reset conditions you don't want that have been set by a previous SET UPSI
job control statement. For example, on the first SET UPSI job control statement, you
want to set bits 0, 1, and 7. Code it like this:

II SET UPS!, 11000001

If, on a subsequent SET UPSI job control statement in the same job, you want to set
bits 0, 1, and 2, it would be coded like this:

II SET UPSI,XX1XXXX0

Since bits 0 and 1 were already set by the first SET UPSI job control statement and
we want them left on, we code an X in these positions, and code a 1 to set bit 2. Since
bit 7 is to be turned off, we code a 0 in this position, otherwise the 1 from the first SET
UPSI job control statement would still be effective.

The Communications Region

6-40

The communications region is a 12-byte field in the job preamble that passes
information from one job step to the next. For instance, assume your job has two job
steps. The first job step generates input for the second. But, if this input is incorrect,
you don't want to run the second job step. In the program for the first job step, you
insert a routine that checks the validity of the output, and if it's incorrect, writes a
code in the communications region. Then, in the program for the second job step, you
insert another routine that checks the communications region. If the code is there,
control is transferred directly to the end of the job.

Once you place these routines in your programs, they are there permanently unless
you remove the routines and recompile the programs. It may just happen that
sometimes you want to run the second job step even if the first job step was wrong (a
test). Here is where you would use the SET COMREG job control statement. This
allows you to change the code in the communications region.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The format of the SET COMREG job control statement is:

//[symbol] SET COMREG,char-string

The char-string parameter specifies the 1to12 EBCDIC characters or the 2 to 24
hexadecimal characters (even amounts only) to be stored in the communications
region. It is stored left-justified, and any unspecified rightmost characters remain
unchanged. Specify hexadecimal characters as X'ccc ... cc' and EBCDIC characters as
C'ccc ... cc'.

At the beginning of the job, the communications region is set to O's.

Let's say you wanted the hexadecimal code of E2 E3 D6 D7 to be stored in the first
four bytes of the communications region; it would be coded as:

II SET COMREG,X'E2E30607'

The User Local Data Area (LOA)

Job control support for the user local data area in the job prologue is primarily for
compatibility with the IBM System/34 LDA feature. You can, at your option, use this
area as a larger, more versatile communications region (COMREG). When specified,
this statement automatically sets the OPTION LDA, which sets up the LDA in the job
prologue. It also allows you to store character strings in the LDA.

The format of the SET LDAjob control statement is:

II SET LDA,n,m, {char-string }
'char-string'

The character string specified is stored left-justified in the LDA. If the character
string contains blanks, it must be enclosed by single quotes.

The n parameter specifies the byte at which the character string starts in the LDA.
The lowest value for this parameter is 1.

Them parameter specifies the total number of bytes occupied by the character string.
This value must be equal to or greater than the length of the string. It cannot exceed
the length of the LDA or be a value that, in conjunction with the n parameter
specification, extends beyond the end of the LDA.

Assume you want to insert a 7-byte string in the LDA. You want the string to begin at
byte 3 and the string doesn't contain blanks; your statement is coded as:

II SET LDA,3,7,ABCDEFG

UP-9986 Rev. l 641

Making Job Control Work

the entry in the LDA appears as:

byte

If the string contained blanks (ti), then your statement would be coded as:

II SET LDA,3,7,'ABCtitiFG'

The entry in the LDA appears as:

byte I 2 I : I : I : I : I : I : I : I ,, I ,, I 12 I

If the total number of bytes specified (m parameter) exceeds the actual length of the
string, the entry is left-justified and padded with trailing blanks. For example:

II SET LDA,3,9,ABCDEFG

results in the following entry into the LDA:

A B c D E F G ti ti

byte 1 2 3 4 5 6 7 8 9 10 11 12

Keep in mind not to specify a string that exceeds the limit of the LDA (256 bytes) or to
specify a string length that extends beyond the end of the LDA. For example:

II SET LDA,250,8,ABCDEFGH

This statement is invalid because you are attempting to insert an 8-byte string into
the LDA beginning at byte 250. This extends beyond byte 256, the upper limit of the
LDA.

Restarting· a Job

642

In "Restarting a Job" in Section 2, we mentioned that you can restart a job that
stopped running because of a computer malfunction, without rerunning the entire job
from its beginning. To be specific, we provide you with a restart facility that lets you
resume execution of your job from a particular job step or from a particular checkpoint
record reached when the job stopped. In both cases, the job control restart (RST)
statement is used to initiate the restart process. The RST statement defines the
criteria for restarting the job. You simply complete the RST statement, insert it as the
first statement of the job control stream for the job being restarted, and rerun that
control stream. If the job is on cards, make the RST statement the first card in the
deck and rerun the job deck. In cases where the job is prefiled, submit only the RST
statement for the job through the card reader. If you are a workstation user and the

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

control stream is prefiled, use the general editor (EDT) or the librarian to place the
RST statement in the control stream.

The format of the RST statement varies slightly depending on whether you are
restarting from a job step or a checkpoint record. There is also a certain amount of file
preparation required if you want to set up restart from checkpoint records. This is
discussed later in the section. The general things you should keep in mind when using
the restart facility are:

• You may submit only one RST statement per job.

• Card files cannot be repositioned.

• If a multifile tape is to be repositioned, the file sequence number must be
included on the LBL job control statement.

• Tapes previously positioned via an MTC job control statement are not positioned
to the proper point in the restarted job.

• If a restart is to take place after the job has terminated (normally or abnormally),
the restarted job step must not have originally requested temporary work areas.

• Scheduling may be delayed if all the resources needed by all job steps in the job
are not available, even if those needed only by the job step to be restarted are
available.

• Mount messages to the operator may be produced for volumes that were not
needed for the original run because the SKIP job control statements are ignored.

• If the file containing checkpoint records is a disk file, it cannot contain any of
your data.

• If the job being executed at the time a checkpoint was recorded was in the job's
YRUN file (output to the linkage editor), the job being restarted will not run to
normal completion if a program overlay is called after the job is restarted.

Restarting a Job from a Job Step

Restarting a job from a job does not require any special preparation other than
preparing an RST statement, inserting it in the control stream for the job being
restarted, and rerunning the job stream. The step processor skips to the job step
specified in the RST statement and execution of the job resumes at that step. The
format of the RST statement for restarting a job at a job step is as follows:

//[symbol] RST,,step-number[,jobname[(rename)J[,priJ[,key-1=val-1, ..• ,key-n=val-nJ

The step-number is the only required parameter. It specifies the number of the job
step at which you want to restart the job .

UP-9986 Rev. I 643

I

Making Job Control Work

6-44
Update 8

The job name parameter should only be used if the RST statement is submitted from a
card reader.

The rename parameter allows you to specify an alternate name for a prefiled job that
you want to restart.

You can also override the priority level originally defined for the job (JOB statement) by
including the pri (priority) parameter. Valid entries for this parameter are P for
preemptive, H for high, N for normal, or L for low. If omitted and no priority is
specified on the JOB statement, the priority defaults to normal

The key=val parameter represents keywords and their values that may be referenced
like the parameters of a GBL job control statement. (See "Local Status Set Symbols" in
Section 7.) The effect of these parameters is as if a GBLjob control statement were
inserted as the first job control statement of the job. The total length of the value for
the parameters cannot exceed 44 characters.

The following coding of the RST statement restarts the job MY JOB at the beginning of
job step 3. The control stream can be assumed to be prefiled since the job name is
given, and the priority will be established by the original job statement, if specified;
otherwise, it will be run at a normal priority.

II RST ,,3,MYJOB

This same statement can define an alternate name for the job MY JOB by adding the
rename parameter. In this case, MYJOB is renamed NEWNAME.

II RST ,,3,MYJOBCNEWNAME)

Likewise, you can change the priority level of the restarted job by including the pri
parameter. In the coding example shown, the priority for the job is changed to high (H).

II RST ,,3,MYJOBCNEWNAME),H

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Restarting a Job from a Checkpoint Record

To restart a job from a checkpoint record requires that you first establish checkpoint
records in your program. In a BAL program, this is done with the CHKPT
macroinstruction. In a COBOL program you use the RERUN clause. You must also
define a file (through use of the CHKPT macroinstruction and RERUN clause) into
which the checkpoint records are written as they are encountered during your
program's execution. Therefore, you must provide a device assignment set for this file
in the control stream for the job. Once you have completed this, you may use the RST
job control statement to restart the job if it stops. The process is the same as that
described for restarting from a job step. That is, prepare the RST statement, insert it
as the first statement in the control stream for the job, and rerun the job control
stream. (See "Restarting a Job from a Job Step" in Section 6.) However, the format for
the RST statement requires two additional parameters when used to restart a job by
checkpoint records; they are filename and checkpoint-id. All of the remaining
parameters are the same as those described in "Restarting a Job from a Job Step" in
Section 6.

II [symbol] RST filename,checkpoint·id,number[,jobname[(rename)[,pril
[,key·1=val·1, ... ,key-n=val·n])

The filename, checkpoint-id, and job step number are required parameters and must
be specified in the order shown .

The filename parameter identifies the file into which the checkpoint records were
written. Therefore, the file name you specify in the RST statement must agree with
the file name specified in the LFD control statement of the device assignment set for
the checkpoint record file. A word of caution; the LFD job control statement for the
checkpoint file must not contain the !NIT parameter because the use of this
parameter will begin writing at the beginning of the file. (See "Specifications for
Existing Files" in Section 4.)

The checkpoint-id parameter specifies the particular checkpoint that you want to
restart the job from. You obtain this number from the screen of the system console. A
checkpoint number is displayed on the console screen each time a checkpoint record is
written by your program.

The following example shows how you would code the RST statement to restart a job
named POCO. The job is to resume execution from checkpoint 6 (the number
displayed at the system console at the time the job stopped) in job step 2. The file
containing the checkpoint record is identified as CHKPTLOG. This is the same name
as that specified on the LFD job control statement used in defining the file earlier in
the job control stream.

II RST CHKPTLOG,6,2,POCO

UP-9986 Rev. I 645

I

Making Job Control Work

Suppose there is a possibility that another job named POCO is scheduled for
execution. To be safe, you can rename the job to be restarted as follows:

II RST CHKPTLOG,6,2,POCO(NEWNAME)

And, by including the priority parameter, you can redefine the priority for the
restarted job. For example:

II RST CHKPTLOG,6,2,POCO(NEWNAME),L

Issuing System Commands

6-46
Update B

The CC job control statement allows you to issue OS/3 system console and workstation
commands, with their associated parameters, from within a job control stream.
Because there are many system commands, we will not attempt to discuss each one
here. You can find the formats and descriptions of system console commands in the
appropriate operations guide. Workstation commands are described in the Interactive
Servic!!s Operating Guide (UP-9972). The format of the CC statement is:

//[symbol] CC {cOlllTiand }
'c0111Tiand and parameters'

When enclosed in single quotes, any system console or workstation command and
parameters can be specified in the CC statement. When the command has no
associated parameters or when you do not specify any parameters, the quotes are not
used.

Let's say you want to release a job (JOBl) that's being held as the result of a HOLD
system command. If you specify the BEGIN command in a CC job control statement,
you can include this statement in the job you're going to run. JO Bl will be released
when this statement is processed (at your job's execution time). You would code the
CC statement as follows:

II CC 'BE J081'

Suppose you wanted to initiate the general editor from a job control stream. The
workstation command for the general editor is simply EDT. Because there are no
parameters, you'd code the CC statement as follows:

II CC EDT

Whenever parameters are specified with a command, the total number of characters
within the quotes cannot exceed 60.

The CC statement is examined for syntax errors by the run processor during job
stream validation. If no syntax errors are found, the job is queued. The command and
its associated parameters are sent to the system when the CC statement is
encountered by the job step processor. The command is validated by the system

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

independently of your job, so errors associated with satisfying commands do not
terminate a job stream. If no EXEC statement follows a CC statement, the specified
commands are acted upon prior to job termination.

Notes:

1. The following system console commands cannot be specified in the CC job control
statement: MIX, SWITCH, AVR, REBUILD, SHUTDOWN, SYSDUMP, and all
SET commands.

2. When the command string contains no blanks (other than the blank separating the
command from its first parameter), you can precede the first parameter with a
comma instead of enclosing the command and its parameters in single quotes.
For example: I I CC BE,JOBJ

3. Unsolicited input messages (see the Interactive Services Operating Guide
(UP-9972)) and I I PAUSE responses cannot be specified in the CC job control
statement.

Calling Control Streams
As we mentioned in "Running Job Control Streams" in Section 1, there are several
methods available for calling control streams. System console or workstation
commands such as RUN/RV and SC/SI can be used, but we'll discuss only the methods
available through job control.

The following job control statements are used to call control streams:

//RUN

//RV

/ICC SC

/ICC SI

Note: The run processor (RUN I RV commands) and restore processor (SC I SI
commands) do not allow any volumes for a multivolume, single-mount file to be
RES or RUN packs.

The RUN and RV job control statements are discussed in "Using the RUN/RV Job
Control Statement to Call Control Streams" later in this section. Using the CC SC/SI
statement to call saved, translated streams is discussed in "Using CC SC/SI to Call
Saved Translated Control Streams" later in this section .

UP-9986 Rev.1

Making Job Control Work

Using the RUN/RV Job Control Statement to Call Control Streams

6-48

The RUN and RV job control statements are used in a job control stream to call
another job control stream. They both select the stream you name and prepare it for
execution; however, RUN is normally used when the control stream you're calling
needs a card reader while RV should be used when you're calling a prefiled control
stream that does not need a card reader.

A card reader is necessary (therefore, II RUN is used) when the control stream is on
cards or when the control stream is stored but contains a CR job control statement.
The CR statement in a control stream indicates that data on cards is to be accepted
from the input device and inserted into the stream. (See "Adding Cards to a Stored
Control Stream" later in this section.)

An input device is unnecessary (II RV is used) when the control stream you want is in
YJCS or an alternate library file and doesn't contain a CR job control statement.

Although you can use II RUN when an input device is not required, you should use
II RV. Using the RUN statement wastes time because your job will not be initiated
until the (unnecessary) card reader is available. On the other hand, your job will not
be initiated at all if you use an RV statement to call a control stream that needs a card
reader.

The format of the RUN/RV statement is:

//[symbolllRUN[{ jobname[(new·name)] }])
(new-name)

RV jobname[(new·name)l

:alt-filename

'{£RE} [_ l [key-1=val·1, ••• ,key·n=val·nl
HIGH {time }
,!!OR time+n

.b_OIJ

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

This statement's parameters are similar to those of the RUN/REV console command
and are explained in detail in the appropriate operations guide. They are also I
explained in the OS/3 Job Control Programming Reference Manual (UP-9984).

Using CC SC/SI to Call Saved Translated Control Streams

Recall from earlier sections that a job control stream can be saved in its translated
state (after JPROCS have been expanded) by including an OPTION SAVE or OPTION
NOSCHED job control statement in your control stream. When the stream is run, a
copy of it is stored in the system file YSA VE. Subsequent runs of the control stream
can be initiated through the SC/SI command or the CC job control statement
specifying the SC/SI command. We are interested in the CC job control statement
here. The format of the CC statement is:

//symbol] CC {conmand }
•conmand and parameters'

The format of the command we want to specify is:

SI [{(did)) l ([didl,label)
(RDR,label)

jobname[(new·name)l

SC

[. ~£"} [{:::.n} l]

You use the SI command to initiate a job control stream that requires replacement of
embedded data from an input device (card reader, data-set-label diskette, or input
spool file). The SC command is used only to initiate a job control stream that does not
require the use of an input device to replace embedded data. Consider the following
examples:

• II CC 'C MYJOB'

This statement initiates the translated job control stream called MYJOB.

UP-9986 Rev.I &49
Update B

I

Making Job Control Work

• II CC 'SI MYJOB(NEWDATA)'

This statement initiates the translated control stream MYJOB. MYJOB is to be
run under the new name NEWDATA The replacement embedded data for
MY JOB is expected to be found on the first available card reader.

Notes:

1. Further explanation for the SC I SI command and its associated parameters can be
found in the appropriate operations guide.

2. When substituting embedded data, the DATA STEP statement must be used. It is
explained in "Substituting Embedded Data" later in this section.

3. When embedded data is submitted on diskette, the diskette must be a data-set-label
diskette, and the record size must be 128 bytes or less. The records must be
unblocked and unspanned.

Communicating with the System Operator or
Workstations

6-50
Update B

You can send a message to the system console or specific workstations with the OPR
job control statement. The message you specify is displayed at job step processor time.
The format of the OPR statement is:

//[symbol] OPR conment-line[,destination-1, ... ,destination-nl

You use the comment-line parameter for the text of your message, which can contain
up to 60 characters and must be enclosed in single quotes if it contains embedded
blanks, the slash character, or commas.

The destination parameter is provided for those systems with workstations or DDP. If
your system has neither, the destination parameter is ignored and your messages go to
the system console.

A destination is actually a host-id, user-id pair:

destination=[host-id:Juser-id

The user-id directs the message to a particular workstation. The host-id allows users
who have DDP to direct the message to a workstation or system of console at a
particular host. If your system does not have DDP, you'll only be interested in the
user-id portion of the destination.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The user-id can be any 1- to 6-alphanumeric character workstation user-id. You can
also specify the keyword OPERATOR or YCON to denote the console workstation,
or YMAS to denote the master workstation. If you omit the destination, YMAS is
assumed. (See the OPTION MAS and OPTION ORI statements in "Selecting
Optional Features" in Section 6 for more information about originator/master
workstations.)

The host-id is 1- to 4-alphanumeric characters and is identical to the label-id of the
LOCAP macroinstruction in your ICAM network. The host-id is optional but if
specified, you must follow it with a user-id. You can also specify $HOST as a host-id.
$HOST simply means that the host of the master (the originator of II JNOTE) is used.

If you specify a user-id but omit the host-id, the local host (the processor on which the
job is executing) is assumed. Remember, if you omit a destination entirely, the
message goes to the job's master workstation.

Consider this example. Suppose you want to tell the operator an error is going to
occur but that the job is to continue processing. You could code the following:

II OPR 'AN ERROR WILL OCCUR - DO NOT CANCEL JOB', OPERATOR

OPERATOR is the destination, so the message is directed to the console and the local
host is assumed. (Without DDP, the processor is always a local host.) The following is
a list of other sample destinations you could specify in the// OPR statement:

• USEROl

The message is sent to workstation USEROl. (The local host is assumed).

• YMAS

The message is sent to the master workstation. (The local host is assumed).

• No destination specified

The message is sent to the master workstation.

• A321 :USEROl

The message is sent to workstation USEROl at host A321.

• $HOST:OPERATOR

The message is sent to the console workstation at the originator/master host.

Messages sent to workstations that are not logged on are not rerouted unless they
were intended for the master workstation (YMAS). The system reroutes such
messages to the console .

UP-9986 Rev. l 6-51

Making Job Control Work

The PAUSE job control statement lets you send messages to the system operator or
specific workstations; however, it causes the job's processing to stop until the message
is acknowledged. (Processing of other jobs in the system continues without
interruption.) Regardless of the PAUSE statement's position within a job step, the
message is displayed just before execution of the program within the job step. The
PAUSE statement has the following format where the comment-line and destination
parameters are identical to the corresponding parameters in II OPR:

//[symbol] PAUSE corrrnent·line[,destination-1, ••• ,destination·nl

Suppose you want the operator to check a job's printer listing for errors before the job
is run. You might code the PAUSE statement like this:

II PAUSE 'CHECK FOR ERRORS· IF NONE, CONTINUE, OTHER~ISE CANCEL', OPERATOR

Job processing stops until the operator acknowledges the message by cancelling or
continuing the job. When multiple destinations are specified, the acknowledgements
are requested one at a time, not all at once.

The JNOTE job control statement allows you to send messages to the system operator
or a particular workstation. Unlike II PAUSE, however, II JNOTE does not stop job
processing and does not require acknowledgement. II JNOTE is like OPR except that
it's acted upon by the run processor so you can send messages earlier on in the job's
processing - before job execution actually begins. Format of the JNOTE statement is:

//[symbol] JNOTE corrrnent·line[,destination-1, ... ,destination·nl

The parameters function the same as II OPR and II JNOTE parameters; however, you
cannot specify YMAS as a user-id. You can specify Y0RI to indicate the
originator of the job. This is also the default if no destination is specified. Messages
sent (via JNOTE) to workstations that are not connected are not rerouted unless
they're intended for the originator workstation (Y0RI). The system reroutes such
messages to the console.

Introducing Processing Options

6-52

Some programs are written to perform a variety of functions in addition to their main
processing function. These programs must be told what variable functions to perform
when the job is run. A good example of this type of program is a language translator,
which can produce a series of special services if they are requested, but which are not
desirable with every compilation or assembly. You submit these requests with
PARAMjob control statements.

Since P ARAM job control statements are read by the individual program, you design
the content and format of the information when you write the program. PARAM
statements are prepared and read as embedded data.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

There is no limit to the number of P ARAM job control statements allowed in the
control stream, and each one can contain up to 62 characters of information. However,
any information beyond column 71 is ignored. You must place the P ARAM job control
statements immediately following the EXEC job control statement.

The format of the PARAMjob control statement statement is:

//[symbol] PARAM operand-1[, ... ,operand·nl

The operands are the variable information you want to introduce into the job. If the
information contains embedded blanks, it must be enclosed by single quotation marks.

Assume that in a program named LISTX, you set a variable option called LST=, which
defines the line spacing on the printer. The values you defined in the program are A
for a single space, B for a double space, and C for a triple space. On this running of
the program, you want to triple space, so it would be coded as the following:

// EXEC LI STX
II PARAM LST=C

Defining Software Facilities Needed by Your Job
OS/3 automatically loads all of the shared-code modules needed by your job; you do
not need to identify these shared code modules in order for them to be loaded. If,
however, you have written your own shared-code modules and they are not on
YLOD or the volume that contains your job's YRUN file, you must use the //SFT
statement to identify these modules to the system.

You can also use// SIT to identify data management shared-code modules that you
want loaded prior to job initiation. This ensures that your job does not have to wait
until a particular shared-code module it needs becomes available. The data
management shared-code modules loaded prior to job initiation stay resident for the
duration of the job.

The// SFI' statement may also be used to indicate that dynamic loading is needed or
to override the system generation limits for dynamic expansion of the user job region.
(This feature is for ANSI'74 COBOL users.)

Let's review the applications for the SFT job control statement. You use
II SIT to:

• Identify user-written shared-code modules that are not in YRUN or YLOD

• Identify data management shared-code modules that you want loaded prior to job
initiation

• Specify dynamic loading and/or override SYSGEN limits for dynamic expansion
of the user job region as established by the SYSGEN parameter DLOADBUFR
(ANSI'74 COBOL users only)

UP-9986 Rev.1 6-53

I

Making Job Control Work

6-54
Update B

The format of the II SFI' statement is:

//[symbol] SFT module· 1[, ••• ,mod.rle·ntDLOAD= [([cal ls], [{:=~ansion· limit}])]]

DLOAD=[([calls], [{:=~ansion·l imit}])]

The module parameters identify to the run processor the user shared-code modules
needed in a job step or the data management shared-code modules that you want
loaded prior to job initiation. (User shared-code modules are always loaded prior to
job initiation.) The Supervisor Macroinstructions Programming Reference Manual
(UP-8832) lists all the shared code modules and their functions.

The SF!' statement identifies shared-code modules only for the job step in which it
appears. If you need the same shared-code modules in three job steps, for example,
you must code an SFT statement for each of the three job steps.

Suppose you want to load, prior to job initiation, the data management module that
provides for magnetic tape file output in the last step of your job. The module that
performs this function is named DD$T1110. You would code

II SFT DDST1110

and place it in the control stream for your job. The run processor would detect the
SF!' statement while scanning the control stream and the shared-code module
DD$T1110 would be loaded before your program is executed.

Notes:

1. When preparing a job, you must not request more shared-code modules than were
provided for when your system was generated, or the job will not be scheduled.

2. Data management shared-code load modules reside in the system library
YSCLOD. You can use the SAT librarian to get a listing of these modules and to
obtain information related to each, or, if you have interactive facilities, you can use
the FST command and specify YSCLOD.

3. There is a system generation parameter (IGNORESFT) that allows you to specify
that I I SFT job control statements be ignored. This system generation option is
useful because you can then take advantage of the dynamic shared-code feature of
OS I 3 without having to change existing control streams that contain I I SFT job
control statements. The appropriate installation guide contains more information
about this system generation option.

The DLOAD parameter of the SF!' job control statement may be used only with

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

ANSI'74 COBOL programs. DLOAD tells the run processor that your job needs the
OS/3 dynamic loading facility for externally referenced program modules and
indicates the space requirements for dynamic loading.

Normally, the run processor checks the load module and determines from the phase
header record whether a job needs dynamic loading of main storage. If it does, the
supervisor then allocates space for dynamic loading, immediately following the user
job region, according to the limits specified at system generation. In the following
instances, however, the DLOAD parameter may be needed:

• If your COBOL program references modules not in YRUN or YLOD that
reference other program modules that would make it impossible for the run
processor to determine whether these externally referenced modules require
dynamic loading.

• If you want to override the SYSGEN-specified limits for dynamic expansion of the
user job region.

The format of the DLOAD parameter is:

The calls specification indicates the maximum number of dynamically loaded modules
allowed for a job. The expansion-limit specifies the maximum number of bytes (total)
that can be added to a job in support of the DLOAD facitily. The number is considered
hexadecimal if you codeX'number' or number. It is considered decimal if you code
O'number'.

If you code

II SFT DLOAD=(S,5000)

five DLOAD calls will be allowed for in this job, and the job will be allowed to expand
a maximum ofX'5000' bytes over its initial main storage allocation.

The MAX specification indicates that the size of the job is limited only by the amount
of main storage in the system.

If you omit the number of calls, the system default number of calls (set by the
SYSGEN parameter DLOADTABLE) are allowed. If you omit the expansion limit, the
system default for the expansion limit (set by the SYSGEN parameter DLOADBUFR)
is used. If you code I I SFT DLOAD= then both these defaults apply.

If your job region must be expanded to accommodate the DLOAD facility, the system
allocates contiguous main storage immediately following your job. This may involve
moving your job to a larger region in main storage. If a large enough region does not
exist, an error message is generated - unless your system is generated with the
DLOAD facility.

UP-9986 Rev.1 6-55

I

Making Job Control Work

If the DLOAD facility has been specified at system generation and there is not enough
contiguous space to accommodate your expanded job, your job is rolled out to disk
until the required contiguous main storage is made available through:

• Main storage consolidation

• Roll out of other lower priority jobs

• Waiting until other jobs terminate, freeing the required contiguous space

Note: Other jobs can only be moved or rolled out to free main storage for your
expanded job after your job has been rolled out.

There are several points to keep in mind about DLOAD. If the DLOAD facility was
not specified at system generation, an error may occur if enough main storage does not
exist to dynamically expand your job. On the other hand, if you specified the DLOAD
facility at system generation, your job might be rolled out for a long time. Even if you
do not need to roll out jobs, the DLOAD facility takes time. One way to avoid this
problem is to allow for a larger initial main storage allocation for your job through the
JOB control statement. Suppose, however, that you do need the ability to dynamically
expand your job size and you have specified the DLOAD facility at system generation.
To avoid being rolled out for an extended period of time, you can

• Run your job on a system generated with main storage consolidation

• Run your job with preemptive priority (P) specified on the JOB control statement

• Avoid running your job when other large or long-running jobs are using main
storage

Note: Jobs that use files with locks set cannot be rolled out to accommodate dynamic
expansion requirements.

For more information about specifying the DLOAD facility at system generation, see
the appropriate installation guide.

Suppose your job needs the shared code module SINCOS and you want to override the
SYSGEN limits for dynamic expansion of your job. You need to allow for six DLOAD
calls with a total expansion limit ofX'8000' bytes over your initial main storage
allocation. Your SFT job control statement would look like this:

II SFT SINCOS,DLOAD=C6,8000)

Making Temporary Changes to a Load Module

6-56
Update B

You use an ALTER job control statement to make minor temporary changes in up to
eight bytes of a load module to see if the changes have the desired effect before these
changes are made permanent. Recompiling and link-editing are time-consuming. As

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

many ALTER job control statements as you need to change the module are grouped
before the EXEC job control statement.

The format of the ALTER job control statement is:

The phase-name parameter is either the 8-alphanumeric-character name of the phase
assigned by the linkage editor or the 1- to 6-alphanumeric-character alias name of the
phase. If you omit this parameter, the last phase name used on an ALTER job control
statement in this job step is used.

The address parameter is the 1- to 5-digit starting location address where changed
information is to be stored. The number you specify for the address is considered
hexadecimal if you code X'number or number. It is considered decimal if you code
D'number. This is in relation to the first byte of the phase area. If you omit this
parameter and an address is required, an address of zero is used. An address is not
required when RESET is used as the fourth parameter.

Note: If the address given is invalid, a change does not take place .

The actual information to be placed in the phase is specified with the change
parameter. You can specify it in either EBCDIC or hexadecimal. EBCDIC
information takes the form C'c ... c'. The maximum number of characters is eight (eight
bytes). If you omit the change parameter, no modification is made for this ALTER job
control statement alone, but the information it does contain, such as phase name, is
passed to subsequent ALTER job control statements.

The ORG parameter indicates that the address specified in the address parameter
should be added to all the addresses on succeeding ALTER job control statements,
until one with a RESET parameter or a different phase name is encountered.

Once an ALTER job control statement is encountered, each and every phase of the
load module expects an ALTER job control statement. This is the reason for the
RESET parameter. It indicates that no other ALTER job control statements are in
the control stream .

UP-9986 Rev. I 6-57

Making Job Control Work

Consider these examples:

II ALTER TSTPGM00
II ALTER ,4361,X'FAF3F9'
II ALTER ,4700,X 1 F8 1

II ALTER ,,,RESET

If a RESET parameter is specified, the information is passed along to the program
execution phase. When the phase that had the RESET parameter specified is loaded
for the first time, the option is reset so that no other phases will be altered. This saves
time if a phase that is only loaded once is the only phase requiring alteration.

Suppose there is a phase named TSTPGMOO and it constantly needs changes
according to weather conditions. The first and last ALTER job control statements
could be inserted as needed. In the preceding example, the information contained in
addresses 4361 and 4 700 is changed.

Changing Your File Definition at Run Time

6-58

You may need to change the file definition contained in one of your programs.
Regardless of the type of program (COBOL, assembly, and so forth), you would have
needed to either reassemble or recompile and relink your program with the updated
file definition. Now, using the DD (data definition) job control statement, you can
make this change at run time. The changes made using the DD statement are
effective only during the execution of the job; if you want to make a permanent
change, you must make it in your source program.

You can have only one DD statement in each DVC-LFD sequence, and it must be
placed with the assignment set for that device.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The format of the DD statement is:

//[symbol] DD RCFM = lFIXBLK] [,BKSZ=nlC,RCSZ=nl[,SIZE=AUTO][,SIZEn=nl
FIXUNB
UNDEF
VARBLK
VARUNB

I ACCESS= EXC
EXCR
SRDF
SRDO
SRO
SADD
UCP

[
,REWIND= {NORWD } l

UNLOAD

[,OPRW=NORWD][,CLRW= {~~~:D l [,FILABL= [~~~DJ l
ASSIGN

[,TPMARK=NO] ,RECV= 1;~!0) [,VSEC= gEs}][,VMNT= {~~E}][,RCB= {~~s} l
FCE
OFF

In the format, we see all the allowable keyword parameters. If a parameter is
specified but not allowed, it is ignored. The n following the KLEN and KLOC
keywords refers to KEYn of a multikey MIRAM disk file. The n following the SIZE
keyword refers to the partition identifier of a MIRAM disk file types. In Table 6-1, we
equate the keyword parameters with their associated file types. For a complete
description of all parameters, see the Consolidated Data Management Programming
Guide (UP-9978). Descriptions of the parameters that are associated with SAT files
are found in the Supervisor Macroinstructions Programming Reference Manual
(UP-8832) .

UP-9986 Rev .1 6-59
Update B

I

I

Making Job Control Work

Table 6-1. DD Supported Keywords

Format Label Data Set Label
Keyword Diskette/Disk Diskette Tape Card Printer

RCFM* x x x
BKSZ* x x x x x
RCSZ* x x x
KLENl-5* x
KLOCl-5* x
INDS* x
SIZE x
SIZE 1-2 x
ACCESS x
VSEC x
RECV x
VMNT x x
RCB x x
OFFSET x
REWIND x
OPRW x
CLRW x
FILABL x
TPMARK x
RESTORE x
CACHE x
MSGSUPP x

Take care when specifying this keyword parameter. If the program accessing the file is dependent on a
predefined (e.g., compile time) file or processing characteristics, it may not be prepared for such a change
at execution time. You may obtain unexpected results unless the program is a user-written BAL program
prepared for this type of specification change or if the user documentation for the product explicitly states
that this specification can be changed at execution time.

LEGEND

X - Allowed keyword

6-60
Update 8

Suppose we had an FD entry in a COBOL program to be changed. Our original FD
looked like this:

8 12

FD SAVE IT
RECORDING CODE IS F
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS
BLOCK CONTAINS 10 RECORDS

72

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Our FD describes an output magnetic tape file. We want to change the record size
from 133 characters to 120 characters. Our DD statement would be:

II DD RCSZ=120

When a file is cataloged, the DD information does not get cataloged. When you call
the file using the catalog, if the DD information is required, you must specify the DD
statement in your control stream following the LBL statement. For example, when
you cataloged the file, the following assignment set was used.

II DVC 60
II VOL DISK01
II DD BKSZ=200
II LBL DISKMAST
II LFD DISKM
II CAT DISKM

Now, when you call the file using the catalog, and the DD information is required, you
would use the following:

II LBL DISKMAST
II DD BKSZ = 200

When you use the DD statement with a cataloged file, it must appear following the
LBL statement. Otherwise, it can appear anywhere in the DVC-LFD sequence.

Note: The file cataloging facility is described in the File Cataloging Technical
Overview (UP-9982).

Adding Cards to a Stored Control Stream
The CR job control statement is used in a stored control stream to indicate that other
job control statements or embedded data (on cards, data-set label diskette, or input
spool file) is to be accepted from the input device and temporarily inserted into a
stored control stream. You indicate the type of input device in the RU command or
the// RUN job control statement. The CR job control statement has no parameters,
it's just specified as:

//[symbol] CR

Let's examine one application of the CR statement. Suppose you're constructing a job
control stream to execute programs that use low volume card input in the form of
embedded data. Assume that you also want to store the control stream in YJCS,
but you know that the embedded data will have to be periodically changed. Because
the embedded data is part of the control stream, you'll actually be changing the
stream when the data is changed. This somewhat defeats the purpose of storing a
control stream in the first place .

UP-9986 Rev. l 6-61

Making Job Control Work

6-62

You could change the programs to accept the data as card files submitted from the
card reader (the card files can be changed without disturbing the control stream).
Another alternative is to place CR statements in the control stream. When the stored
control stream is initiated (with an RU command or a// RUN statement), the run
processor will expect to find data in the card reader when it encounters a CR
statement. The following example illustrates this:

The stored stream is:

II JOB MYJOB

II EXEC PROG1

II CR

II EXEC PROG2
II CR

I&
II FIN

In the card reader you've placed:

1$

embedded data for PROG1

I*
II FIN

1$

embedded data for PROG2

I*
II FIN (This last FIN statement

is unnecessary if the
input is on data-set-label
diskette or in the spool
file.)

When the first CR statement is encountered, control is directed to the card reader
where you've placed the embedded data for PROGl between the/$ and/* statements.
The first FIN statement ends card reader operations and control is returned to the
stored stream until the next CR is encountered. Then the embedded data for PROG2
is accepted. Using this method you can place different data in the card reader for each
job run if necessary.

Note: This application of the CR statement cannot be used with saved translated
control streams. Embedded data already included in such streams may,
however, be replaced using the DATA STEP statement as described in
''Replacing Embedded Data Sets in Expanded Control Streams" in this section.

As you'll see when we talk about bypassing job control statement, II CR is also used
when you want other job control statements temporarily inserted in the stored stream.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Depending upon your application, a CR statement can be placed anywhere in the
control stream. If, however, it is placed between a/$ and/* in the stored stream (e.g.,
for inserting job control statements within embedded data), you must include an
OPl'ION SCAN statement in you control stream. For example:

II JOB MYJOB
II OPTION SCAN

II EXEC PROG1
1$

embedded data
II CR
embedded data
I*
1$

II FIN

If the OPl'ION SCAN statement is omitted, the CR statement is ignored.

Note: Filed control streams should be limited to control imformation or other low­
volume data sequences that remain relatively constant. These control streams
and any constant data (not entered from the input reader on each run) are
considered permanent and occupy space otherwise available to the system.

Bypassing Job Control Statements
You use the SKIP job control statement to skip forward in the control stream to
another job control statement. SKIP is effective during execution of your program.
Here's where the label field is used. Put a symbol in this field of the job control
statement that's the target of the branch and specify this symbol in the SKIP job
control statement. The skip can be conditional or unconditional, depending on the
parameters you use.

Note: Although both are used to bypass job control statements, I I SKIP, which is
effective at execution time, must not be confused with I I GO, which is effective
at run processor time. See "Unconditional Branching" in this section for an
explanation of I I GO.

Neither the SKIP job control statement nor the target job control statement can be
within a device assignment set or embedded data. All the devices assigned within a
skipped section are still required before the job can be scheduled; however, skipped
devices can't be referenced subsequently in the same control stream because (even
though they are available) they aren't completely identified to the system. In view of
this, you cannot bypass device assignment sets referenced subsequently in the control
stream by REN or SCRjob control statements. If you use SKIP to bypass the device
assignment set for a cataloged file, you must specify a complete device assignment set
for the file, not just the// LBL statement, and skip to a target label beyond the device

UP-9986 Rev.1 6-63

Making Job Control Work

6-64

assignment set for the cataloged file. File cataloging is explained in File Cataloging
Technical Overview (UP-9982). The skip function ends following the completion of the
advance or upon the detection of a/& job control statement, whichever occurs first.

The format of the SKIP job control statement is:

//[symbol] SKIP target-label ,mask, IALL l
ANY

NONE

The target-label parameter corresponds to the symbol in the label field of the job
control statement that's to receive the branch.

The mask parameter tests the UPSI byte and makes the SKIP job control statement
conditional. (See "Setting the UPSI" in this section.) It's one to eight characters long,
and each character is a binary digit that corresponds to the bits of the UPSI byte. The
allowable characters are 0 and 1; 0 means not set, and 1 means set. If you use fewer
than eight characters, the unspecified rightmost positions are assumed to be zero. If
you omit the mask parameter, the skip is unconditional.

The ALL, ANY, and NONE parameters are used in conjunction with the MASK
parameter to establish the criteria for satisfying the skip condition. For example, ALL
states that all the UPSI bits indicated by the mask must be set to satisfy the skip
condition. Only then will the skip be processed. Otherwise, it is ignored and
processing continues with the next job control statement in the control stream. The
same applies to the ANY and NONE parameters. If you do not specify one of these
conditional parameters, ANY is assumed by default.

Let's set up a hypothetical situation. Suppose there's a program like the one described
under the SET UPSI job control statement. (See "Setting the UPSI" in this section.)
The program accepts input either in the form of cards or tape. In this case, bit 1 set
means card input, no bits set means tape input. It edits details for an accounts
receivable application and is run many times daily. So, you want to store this control
stream in YJCS, rather than have it input through the card reader each time it's
run - but then there would be two different device assignment sets for one input file
(card or tape). Using the SKIP and SET UPSI job control statements, you could set
and test the UPSI byte to see which device assignment set is needed and skip over the
unwanted device assignment set. You could code the control stream to be stored as
follows:

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

II JOB BALANCE
II CR

1. II SKIP CARD, 1
II DVC 90
II VOL MAST01
II LBL DETAILS
II LFD TAPEIN

2. II SKIP DOIT
3. //CARD DVC 30

II LFD CARDIN
4. //DOIT EXEC EDIT

!&
II FIN

and then precede the data cards to be processed with a SET UPSI job control
statement that would identify the type of input device required.

In the sample control stream, parameter 1 in the first SKIP job control statement
specifies that if the first bit of the UPSI byte is set to 1 (on), go to the job control
statement with a symbol of CARD (3). This provides the device assignment set for the
card reader, and the device assignment set for a tape is bypassed. If this bit is off, the
device assignment set for a tape is processed until the second SKIP job control
statement is reached. This causes an unconditional branch to the job control
statement with a symbol of DOIT (which is the EXEC job control statement) and
bypasses the device assignment set for the card reader.

Now, let's use input. Assume it's in the form of a card file. Look back at the example
of the stored control stream. When it's read, the first CR job control statement
switches control to the card reader, where we place a SET UPSI job control statement
to turn the UPSI byte to on (which indicates card input). It's followed by a FIN job
control statement, which terminates the card reader operation - control returns to the
stored control stream. Since the UPSI byte is set to on, the tape device assignment set
is bypassed, and the card reader device assignment set is used. The load module is
then called. Here's what the stream to set the UPSI byte and provide the card input
would look like.

II SET UPSI,1
II FIN

data cards
/*

}
}

Control statements inserted in the stored
stream when II CR is encountered

Input card file

If the input were on tape, you would place a single FIN job control statement in the
card reader. When the first CR job control statement transfers control to the card
reader, FIN job control statement transfers it right back. Since the UPSI byte is not
set, the device assignment set for tape is used, and the device assignment set for the
card reader is bypassed .

UP-9986 Rev .1 6-65

Making Job Control Work

6-66

Several system programs, such as the assembler, dump/restore, and disk prep, set the
UPSI byte when an error occurs. For example, when an error occurs during a disk
prep, the prep routine, by its nature, will continue to normal termination. If the error
is fatal, you wouldn't want to run any subsequent job steps in the job, as they in tum
would also be in error; you'd want to continue processing. The UPSI byte is
automatically set on error conditions, and you can test it with the SKIP job control
statement. The system programs use the following conventions when errors occur:

• A binary 1000 0000 (X'80') represents a fatal error. If this occurs, you would not
want to run the remaining job steps. This can also be specified as a binary 1.

• A binary 0100 0000 (X'40') represents a warning error condition, which means
that subsequent job steps can be processed. (However, it's up to you to determine
whether the job should be rerun for total accuracy.)

The following two examples show how you can use the SKIP job control statement to
check for errors in the system programs. (We're using the disk prep routine, whose
control statements are explained in the System Service Programs (SSP) Operating
Guide (UP-8841).

Example 1

1. II JOB DSKPRP
2. II DVC 20 II LFD PRNTR
3. II DVC 50 II VOL DSP028 II LFD DISKIN
4. II EXEC DSKPRP
5. /$

6. SERNR=DSP028,PARTL=V
7. /*

8. II SKIP ENDS,1
9. (other
10. job steps
11. go here)
12. //ENDS NOP
13. /$

14. II FIN

In example 1, you check the UPSI byte to see if a fatal error has occurred. If the UPSI
byte contains bit 1 set (line 8), then all the other job steps are bypassed and control is
transferred to the NOP job control statement with the label ENDS (line 12). The NOP
job control statement provides you with an address for the skip, with no function being
performed. The/& job control statement terminates your job while the FIN job control
statement terminates the card reader operation.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Example 2

1. // JOB DSKPRP
2. II DVC 20 // LFD PRNTR
3. II DVC 50 // VOL DSP028 // LFD DISKIN
4. // EXEC DSKPRP
5. /$

6. SERNR=DSP028,PARTL=V
7. /*

8. II SKIP WARN,01
9. II SKIP FATAL, 10
10. // SKIP EXIT
11. //WARN OPR 'WARNING-A NON-FATAL ERROR HAS OCCURRED'
12. // SKIP EXIT
13. //FATAL QPR 'FATAL ERROR-JOB TERMINATED-CORRECT AND RERUN'
14. // SKIP ENDOFJOB
15. //EXIT NOP
16.

17.

18.
19. //ENDOFJOBNOP
20. !&

21. II FIN

(other
job steps
go here)

In example 2, you check for both the fatal and warning errors and the display of
appropriate messages on the system console. If a warning error has occurred, that is,
bit 2 set in the UPSI byte (line 8), then you skip to the label WARN on the OPRjob
control statement. The SKIP job control statement (line 12) is the next job control
statement processed. Here, you skip down to the label EXIT on the NOP job control
statement (line 15). As mentioned earlier, the NOP acts as an ending point for the
SKIP job control statement. The remaining job steps follow the NOP statement and
are processed accordingly. Following the last job step, the NOP statement on line 19
is processed, with no action being performed. Your job then terminates normally
through the/& and FIN job control statements.

If a fatal error occurs, which is bit 1 set in the UPSI byte (line 9), you skip down to the
label FATAL on the OPR statement (line 13) and print the specified message. The
SKIP job control statement (line 14) skips down to the label ENDOFJOB on the NOP
statement, thus bypassing your remaining job steps and terminating your job .

UP-9986 Rev.1 6-67

Making Job Control Work

Bypassing Job Control Statements to Avoid
Abnormal Termination

6-68

The ABNORM=label keyword parameter of the EXEC statement is used to skip
forward in the job control stream if your program contains errors that will cause an
abnormal termination. Recall that the format for the EXEC statement is:

11 [symbol l EXEC program-name , I library-name l [, C~)swi tch-pr ior i ty] [,ABNORM=l abel l
YRUN
YLOD

The label that you specify with the ABNORM parameter corresponds to the symbol (in
the label field) of the job control statement that is the target of the skip. Since
ABNORM is a keyword parameter rather than a positional parameter it may be coded
in any position. For example:

II EXEC MYPROG,ABNORM=ERR
or

II EXEC MYPROG,MYLIB,ABNORM=ERR

Now consider the following job control stream:

II JOB MYJOB
II DVC 20
II EXEC MYPROG,ABNORM=ERR
II OPR 'MYPROG TERMINATED NORMALLY'
II SKIP EOJ
II ERR OPR 'MYPROG TERMINATED ABNORMALLY'
llEOJ NOP
I&

Should MYPROG contain errors that will cause abnormal termination, the ABNORM
parameter in this example specifies a skip to the job control statement with the label
ERR. In this case, the message MYPROGTERMINATED ABNORMALLY will be
displayed on the system console. IfMYPROG terminates normally, this skip will not
occur. Instead, the console message MYPROG TERMINATED NORMALLY will be
displayed.

Remember, if the operator issues a cancel instruction for your job, the job still
terminates normally, even though you've specified the ABNORM= parameter.

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

Dynamic Skip Function from a Workstation
The interactive user can change control stream execution from the workstation by
dynamically skipping parts of the control stream. This is accomplished through the
OPTION QUERY job control statement. (See "Selecting Optional Features" earlier in
this section.) When a control stream containing the OPTION QUERY job control
statement is processed, a message is displayed at the workstation screen asking you to
indicate the type of skip function you want.

Substituting Embedded Data
Data can be embedded within a stored control stream, but there may be times when
not all of this is used. For example, you may have a payroll application using a file
with the names and pay rates of all the employees. The first quarter of the file may
consist of salaried employees, and the remainder is the hourly employees. This job is
run every week, but the salaried employees only get paid every two weeks, so you
don't need to use their portion of the file on every run.

You can place job control statements within the embedded data to control this. By
using the SCAN parameter in the OPTION job control statement, the embedded data
is scanned to detect and act upon the job control statements embedded in the data.
Thus, the data you do not want is skipped. If the OPTION job control statement is
omitted, the job control statements are passed over without action .

The following rules are used by the run processor, and must be followed when placing
job control statements in embedded data:

• There can be only one job control statement per card.

• Job control statements cannot be on the same card as data.

• The job control statement must be the target of an IF or GO job control
statement.

When scanning embedded data for job control statements, two situations exist:

1. Embedded data is scanned when the OPTION job control statement is not
present in the following manner:

• Data is divided into sets - a particular/* job control statement is paired with
its corresponding/$ job control statement in order to determine the true end
of embedded data. The number of/* and/$ job control statements must be
equal.

UP-9986 Rev.I

• The FIN job control statement and the END proc definition statement are
acted upon when detected .

6-69

Making Job Control Work

2. If the SCAN parameter of the OPTION job control statement is used, the
following job control statements are also acted upon:

CR

GBL

GO

IF

JSET

NOP

OPTION

We'll discuss replacing embedded data sets in a saved, translated job control stream
next.

Replacing Embedded Data Sets in Expanded
Control Streams

6-70

Embedded data in a saved translated control stream can be replaced for only one run
of the job. The replacement data must be preceded by a// DATA STEP statement and
submitted from a card reader, data-set-label diskette, or an input spool file. The
format of the DATA STEP statement is:

II DATA STEP=nnn

The nnn parameter is a decimal number in the range 1-255 that specifies the number
of the job step within the job for which you're submitting new embedded data. Step 1,
for example, is specified like this:

II DATA STEP=1

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The DATA STEP statement is followed by a PARAM statement (if needed), the start­
of-embedded-data statement (!$), the new data set, and the end-of-embedded-data
statement(/*). If the job step specified in// DATA STEP has more than one data set,
you must replace the old data sets in the job step with an equal number of new data
sets. If you don't, an error occurs and the function is not performed. For example, let's
say you want to replace the embedded data sets (two of them) in job step 3 of your job
with new data sets. You would prepare these statements:

II DATA STEP=3
IS

I*
IS

/*

new embedded data

new embedded data

A DATA STEP statement must be submitted for each job step that contains embedded
data you want to replace. If your job has four job steps, for example, and you want to
replace the embedded data sets in steps 2 and 4 with new data, you would prepare
these statements. For this example, assume step 2 has one data set and step 4 has
two data sets:

II DATA STEP=2
IS

new embedded data
I*
II DATA STEP=4
IS

I*
IS

I*

new embedded data

new embedded data

Since the DATA STEP sequence of statements (including the new embedded data) are
submitted to the saved, translated stream from a card reader, diskette, or spool file,
you must use the SI command or the // CC SI job control statement to initiate the
running of the saved, translated stream.

The data sets you submit through the DATA STEP statement last for the duration of
the run only because the copy of the job's YRUN file stored in YSAVE contains a
copy of the original embedded data. To permanently change a saved, translated
stream, submit a new stream to be translated and saved .

UP-9986 Rev .1 fr71

--------~------ -- ---.

Making Job Control Work

Note: You can also use the I I DATA STEP statement to null existing embedded data
by not including any new data between the start-of-embedded-data statement
(/$)and the end-of-embedded-data statement (/*). However, bit pointers must
be set in the original job control stream when attempting this operation. To
null embedded data in a saved translated control stream, your prepared
statement appears as follows:

II DATA STEP=nnn
1$

I*

Job Control Considerations for Screen Format Services,
Menu Services, and Dialog Processing

6-72

If you are preparing a control stream for a job that uses screen format services, menu
services, or dialog processing, you must include the USE statement in your
workstation device assignment set. The USE statement has different formats
depending on which of the three interactive components your job uses. Only one USE
statement may be specified in each workstation device assignment set.

Notes:

1. When menu processing is initiated from a BAL user program, the following
statements are required for the workstation OPEN RIB:

WKFM=VARI

WAIT= YES

WORK=YES

PMODE=WSAM

2. Menus and screens may not be used together within a user program except when
the screens are processed directly by the menu processor (i.e., via the SCREEN and
DISPLAY menu function commands).

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The USE Statement for Screen Format Services

When your program needs to use screen format services from a workstation, the USE
statement you specify takes this form:

//[symbol] USE SFS '{ [format-file-LFD-1]/[format-file-LFD-2]}
format-file-LFD
$)'$Ff'1T

[,screen-format-1=alias-1[, ... ,screen-format-12=alias-12ll

The symbol parameter is used as the target of a branching statement, is one to six
alphanumeric characters long, and the first character must be alphabetic.

In the first positional parameter, you can provide an LFD name for up to two screen
format files. Any name you use must match an LFD name specified in a previously
defined device assignment set for a screen format file. (Screen format files are always
MIRAM files.) The format-file-LFD is one to eight alphanumeric characters long .

When coding this parameter, remember the following:

• If you omit a format-file-LFD name, it is assumed that all screen formats used
reside in the system file YFMT.

• If you code lformat-file-LFD-2 alone, YFMT is examined first, then the file
indicated by format-file-LFD-2.

• If you code format-file-LFD-1 I alone, the file indicated by format-file-LFD-1 is
examined first, then YFMT.

• If you code format-file-LFD alone, only the file indicated by format-file-LFD is
examined.

The initial-screen parameter specifies the name of the first screen format to be used by
the application program. It is one to eight alphanumeric characters in length. Use of
this parameter depends on the program's language. For more information, see the
Screen Format Services Technical Overview (UP-9977).

The nnn parameter specifies the number of screens to be resident in main storage at
one time, in the range 1 to 255. The default value is 1.

The screen-format=alias parameter equates a screen format name specified in an
application program (alias) to the actual screen format name generated by the screen
format generator. A maximum of12 alias name sets may be specified. The screen­
format name and alias name may each be from one to eight alphanumeric characters
in length.

UP-9986 Rev.I 6-73

Making Job Control Work

The control stream for a job that uses screen format services could include these job
control statements:

II JOB YOURJOB

II DVC 50

II VOL ABC
I I LBL FRMTF I LE
II LFD FORMAT

II DVC 200

}
Device assignment set for the screen
format file

II USE SFS,FORMAT } Device assignment set for the

II LFD """"'!.__ ________ workstation

II EXEC PRGRM2
I&

~ • Screen format file LFD name

When you run YOUR.JOB, PRGRM2 is executed. PRGRM2 contains an instruction to
open WORKSTN, which opens the screen format file FORMAT.

For more information about screen formats, see the Screen Format Services Technical
Overview (UP-9977).

The USE Statement for Menu Services

6-74

When your program needs to use menu services from a workstation, the USE
statement you specify takes this form:

//[symbol] USE MENU , lmenu-file-LFDlYFMT}
YFMTlmenu-file-LFD
YFMT

[,menu-format-1=alias·1[, ... ,menu-format-12=alias-12JJ

UP-9986 Rev. 1

•

•

•

•

•

•

Making Job Control Work

The USE MENU statement is similar to the USE SFS statement except that the
parameters refer to menu formats instead of screen formats.

The symbol parameter is used as the target of a branching statement, is one to six
alphanumeric characters long, and the first character must be alphabetic.

The first positional parameter provides an LFD name for up to two menu format files.
Any name you use must match an LFD name specified in a previously defined device
assignment set for a menu format file. (Menu format files are always MIRAM files.)
The menu-file-LFD is one to eight alphanumeric characters long. When coding this
parameter, remember the following:

• If you omit a format-file-LFD name, it is assumed that all menus used reside in
the system file YFMT.

• When you code /menu-file-LFD, YFMT is examined first, then the file
indicated by menu-file-LFD.

• When you code menu-file-LFD I, the file indicated by menu-file-LFD is examined
first, then YFMT.

The initial-menu parameter specifies the name of the first menu format to be used by
the application program. It is one to eight alphanumeric characters in length .

The nnn parameter specifies the number of menus to be resident in main storage at
one time, in the range 1 to 255. The default value is 1.

The menu-format=alias parameter equates a menu format name specified in an
application program (alias) to the actual menu format name (given when the menu
was created). A maximum of 12 alias name sets may be specified. The menu-format
name and alias names may each be from one to eight alphanumeric characters in
length .

UP-9986 Rev.1 6-75

Making Job Control Work

The control stream for a job that uses menu format services could include these job
control statements:

II JOB YOURJOB

II DVC 50
II VOL ABC
II LBL MENUFILE
II LFD MENU1

} Device assignment set for the menu
format file

II USE MENU,MENU1 Device assignment set for the
II DVC 200 l
// LFD IJORKS~ ... -------- workstation

II EXEC PRGRM1
/&

L • Menu format file LFD name

When you run YOUR.JOB, PRGRMl is executed. PRGRMl contains an instruction to
open WORKSTN, which opens the menu format file MENUl.

For more information about menu services, see the Menu Services Technical Overview
(UP-9317).

The USE Statement for Dialog Processing

6-76

When your job needs the dialog processor to manage a dialog session at a workstation,
the USE statement you specify takes this form:

//[symbol] USE DP,dialog-name[,printer-lfdJ[,new-audit-lfd][,old-audit-lfdJ

The files specified in the USE DP statement must have been previously identified
(through device assignment sets) in the control stream.

The symbol parameter is used as the target of a branching statement. It is one to six
alphanumeric characters in length, with the first character being alphabetic.

The dialog-name parameter specifies the name of the dialog you want to use; it must
match the LFD statement of the dialog file's device assignment set. It is one to eight
alphanumeric characters in length.

UP-9986 Rev. 1

•

•

•

....---------·---------

•

•

•

Making Job Control Work

The printer-lfd parameter specifies the name of the printer file. It must match the
LFD statement of the printer's device assignment set. It is one to eight alphanumeric
characters in length. This parameter is specified when you want to produce a printed
summary of the dialog session.

The new-audit-lfd parameter specifies the name of the new audit file output by the
audit version of the dialog processor. It must match the LFD statement of the new
audit file's device assignment set. The new audit file contains a record of your
responses to a current dialog session. This parameter is one to eight alphanumeric
characters in length.

The old-audit-lfd parameter specifies the name of the old audit file used as input to
the audit version of the dialog processor. It must match the LFD statement of the old
audit file's device assignment set. It is one to eight alphanumeric characters in length.
The old audit file contains a record of your responses to a previous dialog session.

The control stream for a job that calls the dialog processor could contain these job
control statements:

II JOB MYJOB

I DVC 20
II LFD PRNTR

II DVC 50
II VOL DSK01
II LBL NEWAUDITFILE
I I LFD AUDIT 1

II DVC 51
II VOL DSK02
II LBL DIALOGFILE
II LFD DIALOG1

II DVC 200
II USE DP,DIALOG1,PRNTR,,AUDIT1
II LFD WKSTN

II EXEC PRGRM1
I&

} Device assignment set for the printer

}
Device assignment set for the new
audit file

}
Device assignment set for the
dialog file

}
Device assignment set for the
workstation

New audit file lfd
Printer lfd
Dialog name

UP-9986 Rev.1 6-77

Making Job Control Work

When you run MY JOB, PRGRMl is executed. PRGRMl contains an instruction to
open WKSTN, which, when processed, causes DIALOG! to execute at the workstation.
Your responses to DIALOGl are routed back to PRGRMl.

For more information about dialog processing, see the Dialog Processor User
Guide I Programmer Reference (UP-8858).

Source Module Access via the USE Statement

6-78

Your programs can write (create) or read a source module that you identify in the USE
LIB job control statement. When included in the device assignment set for a library
file,// USE LIB indicates that the file contains source modules and the specified
module will be accessed by your program.

The format for II USE LIB is:

//[symbol] USE LIB,module-name

The module name you specify can be from one to eight alphanumeric characters long
and the first character must be alphabetic. The following job control stream indicates
that PROGl will access a source module named MODULEl.

II JOB READMOD

II DVC 50
II VOL 01234
II LBL SRCLIB1
II USE LIB,MODULE1
II LFD SRCMOD

II EXEC PROG1
/&

Note: Access of a source module by your program is limited to either a sequential read
or sequential write operation.

UP-9986 Rev. 1

•

•

•

•

•

•

Section 7
Run-Time Conditional and Set Symbol Job
Control Statements

Run-Time Conditional Job Control Statements
GO, IF, and NOP are run-time conditional job control statements. They allow you to
branch to other job control statements in the control stream. Unlike SKIP job control
statements (effective during execution of your program), they are interpreted and
acted upon while the run processor is scanning the control stream, and then stripped
from the stream. Therefore, any devices and volumes specified on the bypassed job
control statements need not be available. Only forward branches are allowed for run­
time conditional statements. Because GO, IF, and NOP are processed only by the run
processor and their actions are completed when the run processor has acted upon
them, they are very useful when writing job control procedure (JPROC) definitions.

Unconditional Branching

The GO job control statement causes an unconditional branch to another job control
statement identified by a symbol. The destination can be a set symbol with a value
determined when the job stream is analyzed.

The format of the GO job control statement is:

//[symbol] GO destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The destination parameter identifies the target job control statement and must agree
with the symbol in the label field of that statement.

Like the other run-time conditional statements, the GO job control statement is acted
upon by the run processor, before a job is scheduled, and then deleted from the control
stream. For this reason, the devices and volumes skipped by a GO statement need not
be available when the run symbiont is scanning the control stream.

Note: Unlike GO, SKIP is effective during the execution of a program. Because a job
is not executed until all the devices and volumes it uses are available to the
system, devices and volumes bypassed by SKIP must be available or the job
won't be scheduled. However, devices and volumes bypassed by a SKIP
statement can't be referenced in subsequent job control statements in the control
stream because, even though they are available, they have not been completely
identified to the system.

UP-9986 Rev. 1 7-1

Run-Time Conditional and Set Symbol Job Control Statements

The following is a stored control stream similar to the one shown with the SKIP job
control statement. (See "Bypassing Job Control Statements" in Section 6.)

II JOB BALANCE
II CR
II DVC 90
II VOL MAST01
II LBL DETAILS
II LFD TAPEIN
I/ GO DOIT
//CARD DVC 30
II LFD CARDIN
//DOIT EXEC EDIT
!&

II FIN

If the input is on cards, you would place the following stream in the card reader:

II GO CARD
II FIN

data cards
/*

}
Job control statements inserted in the stored stream
when// CR is encountered.

} Input card file

When the first CR job control statement from the stored control stream is encountered
by the run processor, it transfers control to the card reader, where the GO job control
statement causes the device assignment set for the tape to be skipped without any
processing. The tape volume and the device that would use it do not have to be
available. Therefore, they can be used by another job. If the input is on tape, a FIN
job control statement is all that's needed in the card reader. The tape device
assignment set would be read, and the stored GO job control statement would cause
the device assignment set for the card reader to be bypassed.

Conditional Branching

7-2

The IF job control statement causes a conditional branch to another job control
statement, depending upon certain test conditions. This is similar to using the SKIP
job control statement conditionally, except that it's interpreted and acted upon by the
run processor, just like the GO job control statement.

The format of the IF job control statement is:

//[symbol] IF Ca op b)destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The test for a conditional branch is specified as (a op b), where a and b are the two
operands to be compared. You can compare two numeric operands (1 op 2) or two

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

alphabetic operands (a op b) but a run processor error results if you attempt a
comparison between one numeric and one alphabetic operand (1 op b).

The op in the expression is the relational operator that specifies the type of
comparison to be done. The values for op are:

EQ - a is equal to b

NE - a is not equal to b

GT - a is greater than b

LT - a is less than b

GE - a is greater than or equal to b

LE - a is less than or equal to b

Remember, whenever you enclose an operand in quotes, the quotes are considered a
part of the operand. For example, ('a' EQ a) is an allowable comparison but the
operands are not equal because one value is 'a' and the other is a. (See "Specifying Set
Symbol Values in Quotes" later in this section for more information.)

The operands are separated from the relational operator by spaces and the entire
parameter is enclosed within parentheses.

Note: If a numeric comparison is made and neither a nor b is numeric, both the
greater than and less than conditions are set, resulting in all conditions except
equal being allowed to branch. If a character compare is being used and the
two operands are not of the same length, then the comparison is made on the
number of characters present in each, rather than on the contents of the
operands. Thus, a string of five characters will always be less than a string of
six characters, regardless of the character content of the comparands. If you
have specified I I OPTION UNEQUAL, an error message is generated whenever
character strings of unequal length are compared. (See "Selecting Optional
Features" in Section 6.)

The destination parameter identifies the target job control statement that will receive
control ifthe transfer condition is true. This entry must agree with the symbol in the
label field of the target job control statement.

When scanning for the target job control statement, only the FIN job control
statement is acted upon. Therefore, you cannot branch out of the current job stream;
any procedure calls or CR job control statements that are skipped are not acted upon.

The comparand fields may be variable symbols, or dummy arguments, that can be set
in a JPROC definition. They're called dummy arguments because the variable symbol
can be modified when called by the JPROC call.

UP-9986 Rev. 1 7-3

Run-Time Conditional and Set Symbol Job Control Statements

Let's look at an example. At first, this example will not be totally clear, but when
combined with the explanations of the remaining job control statement in this section
and the JPROC definitions in the next section, it will become clearer. The only
purpose here is to explain how the IF job control statement functions.

Consider this example:

II IF ('&IN' EQ 'N')EXIT

This job control statement is in a JPROC definition. When the PROC directive was
written, it contained a parameter called IN. The ampersand of &IN identifies this as
a variable symbol; this means, use the value of the IN parameter. EQ is the relational
operator. N is a value that can be supplied as a value for IN. Thus, ifthe value
specified by the IN parameter is equal to N, transfer control to the destination
supplied by the next parameter, which is EXIT. If IN is not equal to N, control is
transferred to the job control statement immediately following the IF job control
statement. Nate in the example that spaces precede and follow both IF and the
operator EQ. Nate also the lack of spaces between the parentheses and the '&IN' and
'N' terms and the lack of spaces or a comma before the word EXIT.

Providing Targets for Branching

7-4

The symbols in the label field of the job control statements provide the targets for
branching job control statements. But the 1$, I*, and I& job control statements don't
have a label field. You may also want to branch to the end of a JPROC, which is an
END directive. This doesn't have a label field that can be accessed by a branching job
control statement. The NOP job control statement allows you to branch to an
otherwise unaccessible position in the control stream.

The format of the NOP job control statement is:

//symbol NOP [QUERY]

This job control statement provides a target for a branching job control statement.
The symbol must agree with the target defined in the sending job control statement.
The optional QUERY parameter is used when you want to take advantage of the
label-skipping facility of II OPTION QUERY. This facility is available to workstation
users and console operators.

The following is an example, based on the IF job control statement example (found in
"Conditional Branching"), and using the END directive as the target (it's still within a
JPROC definition):

// EXEC LI STX
II IF ('&IN' EQ 'N')EXIT
II PARAM SPACE=T~O
//EXIT NOP

END

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

Notice that the IF job control statement was placed afer the EXEC job control
statement. This is allowable since it's a run-time conditional job control statement,
which is acted upon by the run processor, and then stripped from the control stream.

Note: You can use the NOP statement to place comments in your control stream. The
comment is used in place of the QUERY parameter, is separated from the NOP
statement by one or more blanks, and is enclosed in single quotes. When used
for this purpose, the NOP statement does not have to be the target of a
branching statement.

Run-Time Set Symbols
A set symbol is a type of variable that can be set to a value and used by the run
processor as a counter, switch, or value to control a job. Because the run processor is
responsible for making set symbols effective, they are called run-time set symbols.
There are two types of set symbols:

• GLOBAL

A global set symbol, once declared, can be referenced anywhere in the basic
control stream as well as in any JPROC definition the control stream calls.

• LOCAL

A local set symbol can only be declared and referenced within a JPROC
definition. (If a local and a global set symbol have the same name, the local
symbol is used within the JPROC.)

You use the following to declare run-time set symbols.

• II GBL, II QGBL, RUN/RV (command),// RUN/RV

Declare global set symbols only.

• II JSET

Declares local set symbols and (if specified in a basic control stream after II GBL
or II QGBL) can be used to supply or change the value of a global set symbol
(without changing the symbol's status to local).

Global Status Set Symbols

The GBL job control statement can be used to declare global set symbols. This
statement may appear anywhere in the control stream, and the symbols are global
from the point of declaration forward .

UP-9986 Rev. 1 7-5

Run-Time Conditional and Set Symbol Job Control Statements

7-6

The format of the GBL job control statement is:

llCsymbol]GBL set·id·1C=init·1lC,set·id·2C=init·2], ... ,set·id·n[=init·n]]

The set-id parameter specifies the name of the set symbol. The init parameter assigns
a value to the set symbol provided a value has not already been assigned. For
example:

II JOB MYJOB

II GBL PRNTR=20

The set symbol defined in the preceding// GBL statement is PRNTR and the value of
PRNTR (&PRNTR) is 20. The value 20 is substituted any time you reference this
symbol by &PRNTR later in the control stream, or in any JPROC the control stream
calls. For example:

II JOB MYJOB

II GBL PRNTR=20

II DVC &PRNTR=20
II LFD PRTFIL

I&

}

The value 20 is substituted for &PRNTR when the
run processor encounters this statement. The
result is II DVC 20.

Note: The & used when referencing a set symbol is never used when defining the set
symbol in the GBL job control statement.

The value assigned by the init (value) parameter is used only if a value is not assigned
by a preceding// GBL statement; is not assigned in the RUN/RV command (the
RUN/RV job control statement if you're initiating one job from another); is not
changed later in the control stream by a II JSET statement. Consider the following:

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

II JOB MYJOB

II GBL PRNTR=20

II GBL PRNTR=26

The value assigned by the first GBL job control statement applies for the entire
control stream any time &PRNTR is referenced. The second GBL job control
statement does not result in an error condition but has no effect on the value of
PRNTR. (You can use a JSET job control statement in place of the second GBL job
control statement to change the value of PRNTR. JSET is discussed in "Local Status
set Symbols" later in this section.)

The effect of specifying a global set symbol and value in the RUN/RV command is as if
II GBL is inserted directly after the II JOB statement in the control stream. If, for
example, you use RV MYJOB,,PRNTR=28 to initiate a job, II GBL PRNTR=28 is
considered the first statement in the stream. You can reference &PRNTR any place in
the job stream and the run processor will substitute the value 28. Consider the
following:

II JOB MYJOB

II DVC &PRNTR
II LFD PRTF IL

The global set symbol PRNTR was defined and given

}

a value of 28 in the RUN/RV conmand. The run
processor substitutes 28 for &PRNTR resulting in
II DVC 28.

Note: Remember to include a I I OPTION SUB statement in your control stream if
you want values substituted for set symbols referenced in embedded data.

If you include a II GBL statement for PRNTR in your control stream specifying one
value, and initiate that stream with a RUN/RV command specifying another value for
the same symbol, the value specified on the RUN/RV command is used. If, for
example, you use RV MYJOB,,PRNTR=28 to initiate the following stream:

UP-9986 Rev. 1 7.7

Run-Time Conditional and Set Symbol Job Control Statements

7-8

II JOB MYJOB

II GBL PRNTR=20

II DVC &PRNTR
II LFD PRTFIL

the value 28 is substituted for &PRNTR. The value 20 is used only if you don't supply
a value for PRNTR in the RUN/RV command.

Whenever you specify a set symbol in the II GBL statement without a value (for
example, II GBL PRNTR), you must use the RUN/RV command to supply the value, or
provide a value using the II JSET statement before the symbol is referenced.
Otherwise, the value of the symbol is considered null. This may or may not be desired.
Consider the following GBL job control statement:

II GBL PRNTR,TOKEN=DKIN

This statement declares global status for the set symbols PRNTR and TOKEN. The
value of TOKEN is DKIN. The value of PRNTR was previously defined in the
RUN/RV command, will be defined later in a JSET job control statement before
&PRNTR is referenced, or is a null value.

When coding the GBL job control statement, you cannot use the statement
continuation; specify separate II GBL statements.

With the QGBL job control statement, interactive users can declare global set symbols
in a job control stream and then specify values for those symbols through the
workstation at job run time. The format of the QGBLjob control statement is:

//[symbol] QGBL set-id-1[=init-1J[,set-id-2[=init-2J, .•• ,set-id-n[=init-nJJ

The set-id parameter may be a maximum of eight characters and the init (value)
parameter may be a maximum of 60 characters. When you run a control stream
containing a II QGBL statement, the specified set symbol is displayed at the
workstation and you're asked to provide a value for the set symbol. A null response
may indicate that a (default) value specified in the QGBL statement is valid. Suppose
you build a job control stream that includes these statements:

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

II JOB MYJOB
II QGBL DVC=20
II DVC &DVC
II LFD PRNTR

I&

When you initiate the control stream (RV MY JOB) and the run processor encounters
the// QGBL statement, the following is displayed on the workstation screen:

03 ? JOB=MYJOB SYMBOL=DVC VALUE=20 *ENTER VALUE

If you don't enter a value on the following line (for example, 03 22, indicating a specific
printer), the value specified in the// QGBL statement (20) is substituted for &DVC.

Suppose you write the following job control stream to prep a data-set-label diskette:

II JOB PREPDSL
II QGBL ADDR,VSN,RCSZ,SPIRL,IPL
II DVC 20
II LFD PRNTR
II DVC 130,&ADDR
II VOL XCNOV)
II LFD DISKIN
II OPTION SCAN,SUB
II EXEC DSKPRP
1$

I*
1$

SERNR=&VSN,RECSZ=&RCSZ,SPIRL=&SPIRL,IPLDK=&IPL
VOL1

The II QGBL statement declares five global set symbols. One is referenced in the DVC
statement for the diskette device. The other four are referenced in the embedded
data. (The embedded data consists of keyword parameters whose values provide
necessary information for the diskette to be prepped.) When you initiate the job at
your workstation using RV PREPDSL, and the run processor begins job processing,
the following occurs:

• A workstation screen display asks you to supply values for each of the set
symbols declared by the// QGBL statement. For example:

UP-9986 Rev. 1

JOB=PREPDSL SYMBOL=ADDR VALUE IS NULL *ENTER VALUE

(Assume that 320, DKOOl, 128, Y, and Y are the values you specify for ADDR,
VSN, RCSZ, SPIRL, and IPL, respectively.)

7-9

Run-Time Conditional and Set Symbol Job Control Statements

• When DVC 130,&ADDR is encountered, the run processor substitutes the value
320 resulting in// DVC 130,320. (Had a null response been entered, then a
physical device would not be assigned.)

• When the embedded data is encountered, the run processor substitutes the
specified values (provided, of course, you included a II OPTION SUB statement in
the job control stream) resulting in

SERNR=DK001, RECSZ=128, SP!RL=Y, and JPLDK=Y.

For information about prepping diskettes, see the Systems Service Programs (SSP)
Operating Guide (UP-8841).

If global symbols declared by II QGBL are given values through any other means (a
RUN/RV command, a II GBL statement in the control stream, a II JSET statement in
the control stream), you won't be asked to submit a value at the workstation even
though the stream includes a II QGBL statement.

Local Status Set Symbols

7-10

The JSET job control statement can be used to define a local set symbol or to change
the value of a global set symbol without changing its status to local.

The format of the JSET job control statement is:

//symbol JSET value

The symbol specifies the name of the set symbol. The value of this set symbol is coded
as the value parameter. It may be a character string up to eight characters long
enclosed by apostrophes, ifit contains blanks. For example:

II PRNTR JSET 20 (The symbol PRNTR is given a value of 20.)

Now, consider the following:

//PRNTR JSET &DEVICE

In this statement, PRNTR will have whatever value is given to DEVICE. The value
for DEVICE can be supplied via the RUN/RV command, in a preceding// GBL or II
QGBL statement, in a JPROC call, or even in// JSET statement specified later in the
control stream (for example, //DEVICE JSET 20).

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

The value can also be a simple 2-term expression such as &A+&B. The operations
allowed in a 2-term expression are:

Operator Description

II Covered quotient, N /8 is equivalent to (A+B-1)/8.

I NB means arithmetic quotient of A and B.

A *B means arithmetic product of A and B.

A-B means arithmetic difference of A and B.

+ A+B means arithmetic sum of A and B.

A• *B means logical product AND of A and B.

++ A++B means logical sum OR of A and B.

A- -B means logical difference XOR of A and B.

Whenever you're performing an operation using a JSET statement, the operands upon
which the operation is to act must be numeric. Look at this example:

II GBL M=1,X=2
//MX JSET &M+&X

The result of this operation is MX=3.

If both the operands are not numeric, the operation is not performed and the result is
a concatenation of the values. IfM had been set with the value of A in the preceding
example, the result would have been MX=A+2. The operation would not have been
performed.

You can also use the JSET control statement to establish a null value. This can be
done by specifying either:

//symbol JSET

or

//symbol JSET ''

Leading zeros are not maintained for multiple-digit numeric values in a JSET control
statement. If a leading zero is required when the symbol is used, it must be created
via a second JSET control statement. For example, if you want the value of symbol P
to be 08, assign another symbol (Kin this example) the value of 0, like this:

//K JSET 0

UP-9986 Rev. 1 7-11

Run-Time Conditional and Set Symbol Job Control Statements

Assign symbol P the value of 8, like this:

//P JSET 8

When P is referenced, it must be prefixed by K. Thus, the value of &K&P is 08.

As mentioned earlier, when you define a set symbol in a JPROC using II JSET, the
symbol is considered local and can only be referenced within the JPROC. JSET,
however, also allows you to change the value of a global set symbol without changing
its status to local. For example:

II JOB MYJOB
II GBL PRNTR=20

//PRNTR JSET 28
This statement changes &PRNTR to 28.
PRNTR is still a global set symbol.

If you define a global set symbol in the RUN/RV command or a GBL statement and
you don't specify a value (for example, RV MYJOB,,PRNTR or II GBL PRNTR) you can
simply use II JSET to provide one or more values for PRNTR.

For example:

II JOB MYJOB

//PRNTR JSET 28

//PRNTR JSET 20

PRNTR was defined in the RUN/RV command or a previous
II GBL statement. // JSET assigns 28 for the value of
PRNTR. Any time the run processor encounters &PRNTR,
28 is submitted until the next // JSET is encountered.

This statement changes &PRNTR to 20. Any time the
run processor encounters &PRNTR, 20 is substituted
until the end of job.

Specifying Set Symbol Values in Quotes

7-12

There are certain considerations you should take when assigning a value enclosed in
quotes to a set symbol.

Whenever you use II GBL or II QGBL to assign a quoted value to a set symbol, the
quotes are always considered part of the value. For example:

II GBL X='ABC',Y=XYZ

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

The value ofX (&X) in this case is 'ABC' while the value ofY (&Y) is XYZ. This is
worth remembering especially if &X will be involved in a comparison using the IF job
control statement. (See "Conditional Branching" earlier in this section.) If, for
example, the value of Xis set to 'ABC' as follows:

II GBL X='ABC'

the following statement represents a character comparison match:

II IF c&x EQ 1ABC 1)LABEL

This statement results in a branch to LABEL because the value ofX is 'ABC' and the
value you're comparing X to is 'ABC'. Consider the following statement:

II IF c&x EQ ABC)LABEL

This is not a character comparison match because the value of Xis still 'ABC' while
the value you're comparing X to is ABC.

A different situation exists when you use II JSET to assign a quoted value because
II JSET always removes one level of quotes (if any). Consider the following:

//X JSET 'ABC' The value of X C&X) is ABC

//X JSET ''ABC' I The value of X C&X) is 'ABC'

//X JSET ABC The value of X C&X) is ABC

I "' JSET "ABC "
The value of X C&X) is 'ABC'

//X JSET &X X is now ABC

This should also be considered when specifying a comparison with II IF that involved a
quoted value assigned by II JSET.

Using Symbols to Examine Job and System Related Values and Facilities

Through the use of symbols, the INQjob control statement allows you to examine job
and system related values (such as jobname, system time, and system date) or to
determine the availability of certain facilities (such as DDP and workstations).

The II INQ statement has two formats:

UP-9986 Rev. 1

//symbol INQ JOB,keyword
//symbol INQ SYS,keyword

7-13

Run-Time Conditional and Set Symbol Job Control Statements

7-14

You use II INQ JOB to examine job related values and facilities and II INQ SYS to
examine system related values and facilities. In both formats, symbol defines the
variable symbol that is set to a value specified by keyword.

The keyword ORI, for example, sets the value of the symbol X in the following
statement to the user-id of the job's originator (the workstation that initiated the job).

/IX INQ JOB,ORI

If you refer to the value of X (&X) elsewhere in the job control stream, the user-id of
the originator will be substituted for that value.

Consider the following:

II JOB MYJOB

/IX INQ JOB,ORI
II OPR 'DELIVER OUTPUT TO &X',OPERATOR

/&

IfUSEROl initiates the job, the run processor substitutes USEROl for &X so that the
operator receives the message 'DELIVER OUTPUT TO USEROl'. IfUSER02 initiates
the job, the operator receives the message 'DELIVER OUTPUT TO USER02'.

Suppose you want to execute a program that can receive input either from a
workstation or diskette. If the job is initiated from a workstation, then workstation
input is preferred. The II INQ JOB statement, used with the keyword WKS, allows
you to determine whether the job is initiated from a workstation. This way you can
configure a job control stream that assigns a diskette device or a workstation
depending on the situation.

The keyword WKS sets the value of the symbol X in the following statement to either
1 orO:

II X INQ JOB,WKS

If the value ofX is 0, it means that a workstation is not initiated for this job. If the
value ofX is 1, a workstation is initiated for the job. With this in mind, consider the
following job stream:

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

II JOB MYJOB

/IX INQ JOB,\.IKS
II IFC&X EQ 0)DSKT
II DVC 200
II USE SFS
II LFD INFO
II GO NEXT
//DSKT DVC 130
II VOL A123
II LBL FILE1
II LFD INFO
//NEXT EXEC PROG1

!&

This job stream is configured so that the device assignment set for the workstation is
skipped if the job is not initiated from a workstation and the device assignment set for
the diskette is skipped ifthe job is initiated from a workstation. Table 7-1 lists all of
the keywords that you can use with// INQ JOB and// INQ SYS .

Table 7-1. Keywords and Symbol Values for// INQ JOB and// INQ SYS

Keyword Value of Symbol

For // INQ JOB NAME The job name

ORI The user-id of the originator

HOST The host-id of the originator (null if none)

ORID device-id of the originator if a local workstation

WKS 0 if job is not initiated from a workstation
1 if job is initiated from a workstation

JBNO A 4-byte job number

DDP 0 if remote DDP is not initiated
1 if remote DDP is initiated

continued

UP-9986 Rev. 1 7-15

Run-Time Conditional and Set Symbol Job Control Statements

7-16
Update B

Table 7-1. Keywords and Symbol Values for// INQ JOB and// INQ SYS (cont.)

Keyword Value of Symbol

For// INQ SYS RES SYSRES volume serial number

RUN SYSRUN volume serial number

DATE The system date (VY/MM/DD)

TIME The system time (HH.MM.SS.)

HOST The system's own host-id

REL The system release-id (w.r.rrr)

SUP The supervisor's name

DDP 0 if DDP is not available
1 if DDP is available

WKS 0 if workstation support is not configured
1 if workstation support is configured

S80 03 if running on Model 3
04 if running on Model 4
05 if running on Model 5
06 if running on Model 6
07 if running on Model 7E
08 if running on Model 8
10 if running on Model 10
15 if running on Model 15
20 if running on Model 20

SPL 0 if spooling is not configured
1 if spooling is configured

JUL Assigns Julian date YYDDD to specified symbol

UP-9986 Rev. 1

•

•

•

•

•

•

Run-Time Conditional and Set Symbol Job Control Statements

Priorities Among Set Symbols, Keyword Parameters,
and Positional Parameters

External to a JPROC definition, the only possibility of substitution is for set symbols.
Inside of a JPROC definition, however, the possibility of a set symbol matching a
keyword parameter or positional parameter name does exist.

The positional parameter name is maintained as a separate entity. Global set
symbols are maintained in a single list. Keyword parameter names and local set
symbols are maintained together, with a new definition replacing the old. The effect
of keyword parameter names and local set symbols being maintained together is to
force keyword parameter names to local status if they are mentioned in JSET job
control statements within the procedure.

When it's determined that substitution should be performed, the following steps occur,
in the order given:

1. A comparison is made with the positional parameter name. This test is done
first, since there is one name with many values, but it's a relatively fast test.
Care must be taken to make the positional parameter name unique with respect
to all set symbols and keyword parameter names. A sublisted reference to a
keyword parameter cannot be distinguished from a reference to a positional
parameter.

2. The list of local set symbols and keyword parameter names is scanned.

3. The list of global set symbols is scanned.

The result is that if a keyword parameter name matches a local or global set symbol
within a procedure, the following occurs:

1. A reference to the name obtains the keyword parameter value up until the
occurrence of a JSET job control statement for the name.

2. From the point of occurrence of the JSET job control statement to the end of the
JPROC definition, the value of the most recent JSET job control statement is
used.

3. At the end of the JPROC definition, the value reverts to the value of the global
set symbol at the time of entering the procedure.

Note: Remember that set symbol substitution may increase the number of characters
in a value .

UP-9986 Rev. 1 7-17

•

•

•

•

•

•

Section 8
How to Write and Call a Job Control
Procedure Definition

The Benefit of Procedure Definitions
Section 5 discussed the job control procedure (JPROC) call statements supplied by
Unisys. In this section, we'll discuss how to write your own JPROC definitions and
how to call them.

A JPROC definition is similar to an assembler procedure definition, which is
explained in the Assembler Programming Guide (UP-8913). However, the JPROC
definition is a series of job control statements and procedure directives, as opposed to
assembler instructions and directives. It consists of a PROC directive, one or more
NAME directives, a series of job control statements, and ends with an END directive.

The PROC directive signals the beginning of the procedure, the NAME directive
declares a label by which the JPROC can be called, and the END directive signals the
end of the JPROC. Each time the series of job control statements is needed, a JPROC
call is used. Job control then inserts the necessary job control statements at the point
where the JPROC call was placed. The JPROC definition defines the coding and job
control statements needed for a particular operation, and the JPROC call specifies the
values for the variable parameters of the JPROC definition.

Coding Rules
The directives used in writing JPROC definitions take this form:

LABEL t.oPERATIONt. OPERAND

The label field extends from column 1 to column 8. At least one space must separate
the label field from the operation field, and also the operation field from the operand
field. Column 72 is used to indicate continuation, and columns 73 through 80 can
contain identification or sequence information.

Note: For compatibility with job control statements, you can precede the label field
with two slashes (I I) in columns one and two. In this case the label field
extends from column 3 to column 10.

The job control statements within a JPROC definition follow the same conventions as
regular job controls taternents. These are listed in Appendix A.

UP-9986 Rev. 1 8-1

How to Write and Call a Job Control Procedure Definition

8-2

The characters that are allowable in directives and job control statements are as
follows:

Letters
Special letters
Digits
Special characters

A through Z
?$ #@

0 through 9
+ - *I , = ' blank () . > < & ! : ;

The terms you can use in the operand field of a directive may be symbols or character
strings, which are explained in the following paragraphs.

A symbol is a group of up to 240 alphanumeric characters used for parameter
identification and as labels. The first character must be alphabetic. Special
characters or blanks may not be contained within a symbol. The following are
examples of valid symbols:

v CARD AREA

GS279 R$INTRN

DAVE

The $ of R$INTRN is allowable, because it's a special letter, not a special character.

For a symbol to be recognized by job control as a parameter identifier, it must be
immediately preceded by an ampersand.

The following are not valid symbols:

READ ONE embedded blank

SPEC'L special character

8AGN first character not alphabetic

The operand field in a NAME directive may be obtained by referencing the symbol
p(O), where p is the symbol used to reference any positional parameter in the
definition. The zero indicates the parameter of an operand field.

A character string can represent up to 252 valid characters, all of which must be
printable. Character strings containing embedded blanks or commas must be
enclosed in either quotation marks or parentheses. The enclosing quotation marks or
parentheses are considered part of the character string. Embedded quotation marks
are not allowed in the character string.

A null character string is represented by two consecutive quotation marks.

All parameter values are evaluated as character strings.

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

Parameter Types
Parameters are used to pass information from the JPROC call to the JPROC
definition. These parameters can be equated to values, symbols, or character strings,
and may be used to specify file identifiers, file names, volume serial numbers, etc.

There are two types of parameters: positional and keyword. Positional parameters
are identified by their position within the operand field of the JPROC call; keyword
parameters are identified by the symbols assigned to them in the JPROC directive.
The rules for specifying positional and keyword parameters with respect to position,
order, omission, and format are covered in Appendix A.

Both positional and keyword parameters may be sublisted. Thus, each operand of the
JPROC call may represent one value or a series of values that may be referenced
independently. When a parameter is sublisted, the subparameters must be separated
by commas, and the entire list must be enclosed by parentheses.

For sublisted positional parameters, an operand would appear as:

(val·1,val·2, ... ,val·n>

For sublisted keyword parameters, an operand would appear as:

key=(val·1,val·2, ... ,val·n)

An omitted positional parameter in a JPROC call takes the value of a null character
string. When a keyword parameter is given a value in the JPROC definition, it takes
that value if the keyword parameter is omitted in the JPROC call. When no value is
given to a keyword parameter in the JPROC definition, it takes the value of the null
character string when omitted.

Now, let's explain the three JPROC directives.

The Start of the JPROC Definition
The PROC directive signals the start of a JPROC definition. It defines the number
and type of parameters that may be specified in the JPROC call.

The format of the PROC directive is:

LABEL t.oPERATIONll OPERAND

[[//]symbol l PROC Cpos,nlC,k, ••• ,kl

The symbol is a dummy label of one to eight alphanumeric characters. It's used as an
entry point to the JPROC definition when it's expanded and inserted into the control
stream. If the JPROC call also has a symbol, it replaces the symbol of the PROC
directive when the JPROC definition is called. If the JPROC call has no symbol, the
dummy label is replaced by a null character string. The characters & . () ' , + - I may
not be embedded in the symbol.

UP-9986 Rev. 1 8-3

How to Write and Call a Job Control Procedure Definition

The pos parameter represents the symbol by which any positional parameter in the
body of the JPROC definition is referenced. If this parameter is omitted, no positional
parameters can be used in the JPROC call. The n is a decimal number that represents
the total number of positional parameters permitted in the JPROC call. If omitted,
zero is assumed. If you omit the pos and n parameters in this directive (thereby
indicating there are no positional parameters), you must still code two commas before
you can code any keyword name values.

The k parameter represents the name or names used in referencing keyword
parameters and their default values (if any).

To preset a keyword value, the k parameter takes the form:

[,k·1=value, •.• ,k·n=valueJ

In the following example, MODI is the symbol used as an entry point. One positional
parameter is allowed, and it's referenced by the symbol Pin the JPROC definition.
There are three keyword parameters allowed in the JPROC call; PRINTER, INPUT,
and OUTPUT. If the PRINTER keyword parameter is omitted, it defaults to 20.

MOD1 PROC P, 1,PRINTER=20,INPUT,OUTPUT
or

//MOD1 PROC P, 1,PRINTER=20,INPUT,OUTPUT

Naming the JPROC Definition

8-4

The NAME directive supplies the name by which a JPROC definition is referenced. It
must immediately follow the PROC directive. More than one NAME directive can be
used, but all must be grouped at the beginning of the JPROC definition. Each such
NAME directive specifies a different name for the same JPROC definition. Multiple
NAME directives allow you to specify a different parameter in the operand field of
each directive.

Note: You may not give a JPROC any valid job control statement names (DVC,
QGBL, etc).

When you call the particular NAME directive on the JPROC call, you can reference
the parameter of the NAME directive with p(O), where pis the symbol used to
reference positional parameters. This will be shown in an example, which should
make this much clearer.

The format of the NAME directive is:

LABEL t.oPERATION~ OPERAND

[//]symbol NAME par am

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

The symbol specifies the name of the JPROC definition. This is the name that's used
on the JPROC call to obtain the JPROC definition. The param is a parameter or
parameter sublist that may be selected at job execution time.

Here's an example of this procedure:

MOD1 PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X
II GO LABEL&PC0)
//LABELY OPTION JOBDUMP
II GO NEXT
//LABELX OPTION SYSDUMP
//NEXT NOP

or

//MOD1 PROC P, 1
//DUMPJOB NAME Y
//DUMPSYS NAME X
II GO LABEL&PC0)
//LABELY OPTION JOBDUMP
II GO NEXT
//LABELX OPTION SYSDUMP
//NEXT NOP

This JPROC definition has two names: DUMPJOB and DUMPSYS. Positional
parameters are referenced by the symbol P, so the parameter of the NAME directive is
referenced as P(O). Assume that DUMPSYS is the name used on the JPROC call. The
parameter on this NAME directive is X. When the first GO job control statement is
interpreted, it would mean go to the job control statement with a symbol of
LABEL&P(O). This &P(O) references the parameter of the selected NAME directive.
In this case, it's X. So Xis added to LABEL, giving the symbol LABELX. This job
would have an OPTION SYSDUMP job control statement inserted at execution time.
The procedure would then go to the next job control statement, the NOP .

If DUMPJOB is the name used on the JPROC call, the parameter on the NAME
directive would be Y. When the GO job control statement is interpreted, it would
mean go to the job control statement with a symbol of LABEL Y (from the
LABEL&P(O)). This job would have an OPTION JOBDUMP job control statement
inserted at execution time; the GO job control statement means go to the job control
statement with a symbol of NEXT. This is the NOP job control statement; the
OPTION SYSDUMP job control statement is skipped.

Ending the JPROC Definition
The END directive indicates the end of the JPROC definition. Therefore, it's the last
item in a JPROC definition. Everything between the PROC and END directives is
considered to be the body of the JPROC definition.

The format of the END directive is:

LABEL llOPERATIONll OPERAND

[//]symbol END unused

UP-9986 Rev. 1 8-5

How to Write and Call a Job Control Procedure Definition

and, added to the PROC and NAME directives defined in "Naming the JPROC
Definition" earlier in this section, looks like the following example:

MOD PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X

any
job control
statements

needed

END

If you are submitting embedded data as part of a JPROC definition and the embedded
data contains the characters END, a special situation arises because the run processor
interprets the characters END as the END JPROC directive. To avoid this problem,
you must use a// GBL job control statement to replace the END characters in the
embedded data. This is an example:

I I OPTION SUB
II GBL X=END
II EXEC program-name
1$

&X

I*

Calling JPROC Definitions

8-6

Once you've written and debugged a JPROC definition, use the file symbiont to store
it in the job control stream library file (YJCS) or an alternate library file, and then
call it when you need it. Until that time, you can test it by placing the JPROC
definition within a control stream and issuing a JPROC call containing the name you
supplied on the NAME directive. (In this way, you can test a JPROC without having
to actually file it.) The JPROC definition is stored temporarily, in the job's YRUN
file. We'll explain this in a little more detail in "How JPROC Definitions Are Stored"
later in this section.

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

To call the JPROC, you use a JPROC call in the control stream. When the run
symbiont encounters the JPROC call, it searches the job's YRUN file, then the
specified library file for the named JPROC definition, and then inserts the selected job
control statements from the JPROC definition into the control stream at this point.

The format of the JPROC call statement is:

//[symbol] procname [p1,p2, ... ,pn,ki=vi,kj=vj, ... ,km=vml

The symbol is a dummy label and is optional. When used, the symbol is substituted
for the symbol specified in the label field of the PROC directive.

The procname specifies the name of the JPROC definition. This must be the same as
that specified in the label field of a NAME directive in the JPROC definition being
called.

The p represents positional parameters, and the k=v represents keyword parameters
and their values.

Positional parameters specified in a JPROC call are associated with positional
parameters specified in job control statements in the body of the JPROC definition.
The PROC directive specifies the number of positional parameters allowed .

All parameters specified in the JPROC call must be separated by commas. Positional
parameters must precede any keyword parameters. When a positional parameter is
omitted, the comma must be retained to indicate the omission, except in the case of
omitted trailing positional parameters. When there are no positional parameters
preceding keyword parameters, two commas must precede the keyword parameters to
indicate the omission of the positional parameters.

Keyword parameters are identified by name, not by position, so an omitted keyword
parameter does not require a comma to indicate its omission. Keyword parameters
may be specified in any order.

No more than one JPROC call can be on a single line.

How JPROC Definitions Are Stored
The file symbiont stores JPROC definitions in YJCS or an alternate SAT library
file. (See "Building and Storing Job Control Streams and JPROCS" in Section 1.) The
values to be used are not substituted for any preset values until the JPROC call is
issued. Substitution then takes place, and the JPROC definition is then considered to
be expanded.

A JPROC definition may be called as often an necessary, or until it's deleted from the
library file .

UP-9986 Rev. 1 8-7

How to Write and Call a Job Control Procedure Definition

The reading, verifying, and expanding of the entire control stream is a function of the
run symbiont.

A job input directly from a reader device may include JPROC definitions in its control
stream. The JPROC definition must appear in the control stream before any
reference to it is made. Therefore, if a JPROC definition pertained to assigning
devices to a job, it should be placed before any device assignment sets. Such JPROC
definitions apply only to that particular job; they aren't stored in YJCS or an
alternate library file, they're stored temporarily in the job's YRUN file. They also
cannot be embedded within data.

Because the job's YRUN file is the first file searched for a JPROC definition, by
placing a JPROC definition in the job control stream you have the ability to test the
JPROC definition without storing it permanently. You can also use this facility to
temporarily override a JPROC definition that's already stored. Whenever a JPROC
definition being called is found in the job's YRUN file, YJCS or the alternate
library file is not searched.

A sample job using this facility would look like this:

II JOB TESTPROC
MOD PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X

any job control statements needed

END
II DUMPJOB

I&
II FIN

In this example, the JPROC named as either DUMPJOB or DUMPSYS would be
entered as a temporary JPROC definition, which is referenced later by the JPROC call
of II DUMPJOB. Upon encountering the PROC directive, the run processor will file
the statements up to the END directive into the job's YRUN file, which is scanned
when the JPROC call is encountered.

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

Specifying an Alternate Library File to be Searched
for JPROCS

The ALT JCS job control statement tells the run processor which alternate library file
is to be searched for JPROCS. An alternate library file is one other than YJCS.
II ALT JCS specifies an alternate library file to be searched for JPROCS only, not job
control streams. An ALT JCS job control statement specification overrides an
alternate library specification on the RUN/RV command that initiated processing of
the job control stream.

You can specify multiple ALTJCS control statements in a control stream; the last
library file specified is searched for JPROCS until the next ALT JCS statement is
processed.

Note: If your job control stream is in an alternate library, you cannot use the
I I ALJCS statement to specify a different library. You can only use it to specify
the options FREE, ONLY, OFF, or ON. (If the job stream is in YJCS, the
I I ALT JCS statement can reference any alternate library.)

The format of ALT JCS is:

//[symbol] ALTJCS [file·label-id] lJ:~: ~C,rpw][{~.:~~}
l C,vol-ser-no] OFF

ON

C,LUN=nnnl

The file-label-id is 1 to 44 alphanumeric characters long. It is optional if you're not
searching a new library, but changing the last parameter (FREE, ONLY, OFF, or ON)
for an alternate library already defined in a previous ALT JCS statement. We'll
discuss these options later. If you don't specify a file-label-id, you can't specify
vol-ser-no or rpw.

The vol-ser-no parameter specifies the volume serial number of the disk where the
alternate library file resides. This parameter can also specify the volume serial
number of a format-label diskette. RES, RUN, or the actual volume serial number of
the disk or diskette may be specified. If no vol-ser-no is specified, the cataloged
vol-ser-no is used; ifit is not cataloged, RES is used.

The rpw parameter specifies a read password associated with the alternate library
file. It must be specified if the file is cataloged with a read password. It is ignored if
no read password exists for the file or if the file is not cataloged.

The ONLY, OFF, and ON parameters specify order-of-search options. ONLY specifies
that only the identified alternate library file is to be searched. When OFF is specified,
the alternate library file remains open to the run processor and can be searched again
by the use of the ON or ONLY options. You specify this option if you no longer want
an alternate library file searched for JPROCS. ON specifies that the identified

UP-9986 Rev. 1 8-9

How to Write and Call a Job Control Procedure Definition

alternate library file is to be searched first and then YJCS. ON is the default
option. FREE is equivalent to OFF, except that it also frees the alternate device (from
the run processor).

Using the LUN keyword parameter, you supply a logical unit number to indicate the
device type and characteristics for the alternate library. LUN is never specified
unless a volume serial number is also specified. It is especially useful where either a
disk or format-label diskette can be the alternate library volume.

The volume serial numbers for disk and format-label diskette are syntactically the
same. As a result, the system cannot determine if a disk or format-label diskette is
required unless the volume is already mounted, or unless you use LUN parameter. If
you don't specify a logical unit number and if the proper volume isn't already
mounted, mount messages suggesting a disk drive, for example, could be directed to
the operator when a format-label diskette is actually required. The LUN parameter
helps avoid such confusion.

Notes:

1. LUN is used only to determine the device type and characteristics. It has no
relationship to logical unit numbers used elsewhere in the job control stream.

2. Confusion with mount messages is also avoided ifthe DVC-LFD sequence for the
file is cataloged. (See 'File Cataloging" in Section 6.) By simply providing a file­
label-id in the ALT JCS statement, the correct volume serial number as well as
device type is extracted from the catalog (according to the label specified).

You can identify alternate libraries for control streams and JPROCS through the
FILE system console command and the RUN/RV workstation or console command.
Workstation commands are explained in the Interactive Services Operating Guide
(UP-9972). System console commands are explained in the operations handbook for
your system.

Parameter Referencing

8-10

The parameters of job control statements that require substitute values at execution
time must begin with an indicator of&.

For example, if, in the body of a JPROC definition, you have a DVC job control
statement in which you wanted to vary the logical unit number, it could be coded as
follows:

II DVC &PC2>

The P is an arbitrary symbol assigned by you in the PROC directive; the (2) indicates
that the logical unit number to be inserted is coded as the second positional parameter
on the JPROC call. The parentheses around the 2 are required.

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

In this example,

II DVC &PC1,2)

the (1,2) indicates that the logical unit number to be inserted is coded as the second
subparameter under the sublist for the first positional parameter.

For each character string following the single ampersand, a substitution is made. If
the character string is invalid (not defined in the PROC directive), a null character
string is inserted.

Any job control statement may be continued between parameters, or between the
operation and the first parameter. No job control statement can exceed column 71.
This means that the total number of characters cannot exceed column 71, even after
substitution. The maximum of 71 characters includes embedded spaces. Column 72 is
used to indicate continuation.

The length of a single parameter is 242 characters. For positional parameters, this is
the value; for keyword parameters, it is the keyword and the value. If a parameter is
sublisted, the maximum length is decreased by 2 for each element of the sublist.

Note: The maximum length of a single operand of a job control statement is 252
characters. Thus, if you have a parameter of 242 characters, there are only 10
characters left for other parameters .

Here are some examples.

Example 1

UP-9986 Rev. 1

In this portion of a JPROC definition, we'll see how a value is given to the DVC
job control statement in the body of the JPROC definition.

PRCC PCS, 1
ACT! NAME

I I DVC &PCS(1)

END

8-11

How to Write and Call a Job Control Procedure Definition

8-12

Let's say that the JPROC call is this:

II ACT! 10

the DVC job control statement that would be generated and inserted to the
control stream would be as follows:

II DVC 10

Example 2

If part of the JPROC definition looked like this:

PROC KEY1=90
ACT2.NAME

II DVC &KEY1

END

and the following JPROC call was issued:

II ACT2 KEY1=20

this job control statement would be generated:

II DVC 20

If the JPROC call was issued without the KEYl parameter, the value of90 set in
the JPROC definition would be used.

UP-9986 Rev. 1

•

•

•

•

•

•

How to Write and Call a Job Control Procedure Definition

Example3

UP-9986 Rev. 1

This JPROC definition has one positional and one keyword parameter, and two
NAME directives.

1. LAB PROC POS,1,KEY1=10
2. MASTER NAME 20
3. DETAIL NAME 30

4. //&LAB DVC &POS(0)
5. // DVC &POS(1)
6. II DVC &KEY1

END

When this JPROC call is issued:

//L1 MASTER 40,KEY1=50

these job control statements are generated:

llL1 DVC 20
II DVC 40
II DVC 50

Line 4 in the JPROC definition means to take the value of the parameter in the
NAME directive that matches the name on the JPROC call - MASTER. So the
first DVC job control statement has a logical unit number of 20. Line 5 means to
take the value of the first positional parameter in the JPROC call; the second
DVC job control statement has a logical unit number of 40. Line 6 means take
the value of the KEYl keyword parameter; the third DVC job control statement
has a logical unit number of 50. LI is specified by the JPROC call as being the
substitute value for the symbol in the PROC directive. Line 4 will use this value.
So, the first DVC job control statement has a symbol of LI.

8-13

How to Write and Call a Job Control Procedure Definition

8-14

Example4

A parameter sublist may be referenced. This is done with a secondary level of
indexing, which is shown in the following example:

PROC POS,1,KEY=C10,20)
EXAM NAME (30,40)

1. II DVC &KEY(1)
2. II DVC &KEY(2)
3. II DVC &POS(0, 1)
4, II DVC &POSC0,2)

END

When the following JPROC call is used

II EXAM KEY=C50,60)

these job control statements are generated:

II DVC 50
II DVC 60
II DVC 30
II DVC 40

Line 1 of the JPROC definition means use the first subparameter of the KEY
keyword parameter. The JPROC call uses this keyword parameter, so its new
values (50 and 60) override the values assigned in the JPROC definition (10 and
20). Line 2 means use the second subparameter of the KEY keyword parameter.
Line 3 means use the first subparameter on the NAME directive (0,1), and line 4
means use the second subparameter on the NAME directive (0,2).

Example5

A reference to a parameter may occur anywhere in the body of a procedure
definition. If the reference is the only field, and therefore naturally delimited,
there is not much likelihood of confusion. If the possibility of confusion exists, the
reference may be terminated with a period, which is a concatenation operation.
The period is dropped during the expansion of the control stream.

UP-9986 Rev. 1

•

•

•

•

•

•
UP-9986 Rev. 1

How to Write and Call a Job Control Procedure Definition

The following JPROC definition has two keyword parameters: KEYl and
LABEL; neither has default conditions.

PRQC KEY1,LABEL
COM NAME

II QPR &KEY1.IS&LABEL.1988

END

If this JPROC call was used

II COM KEY1=TQDAY·,LABEL=·QCTQBER·6·

this would be generated:

II QPR TQDAY·IS·QCTQBER-6·1988

8-15

•

•

•

•

•

•

Section 9
Using the Interactive Job Control Dialog

The Function of the Job Control Dialog
The job control dialog is an interactive facility of OS/3 that guides you through the
process of building a job control stream or user JPROC from a workstation. To begin a
job control dialog session, key in SC JC$BLD. This activates the dialog processor and
opens the job control dialog file. Dialog text is displayed at the workstation screen
and your responses to the dialog are entered at the workstation keyboard. The dialog
processor passes your responses to the system program JC$BLD, which creates your
control stream or JPROC and stores it in the system file YJCS. The functions of the
dialog processor, which manages a dialog session, are detailed in the appropriate I
operations guide.

Note: If you encounter system errors when keying in SC JC$BLD, key in RV JC$BLD
and press XMIT. A short paragraph explaining RUN libraries is then
displayed followed by the question DO YOU WANT TO SA VE RUN
LIBRARIES? (YORN). Key in Y so that you'll be able to enter the SC
JC$BLD command without encountering any errors in the future.

The job control dialog introduces the concept of job control and (if you're building a
control stream) presents job control statements in the form of menu items from which
you choose the statements you want. If you need a dialog concept or particular
statement explained, you can ask for help - by keying in HELP or a choice that
generates HELP screens. HELP screens explain the choice or statement parameters
to you. When you make a valid choice, the dialog resumes at the point where it was
interrupted. The HELP screen facility of the job control dialog can be used selectively
(statement-by-statement) so that you receive detailed explanations only when you
need them. More experienced users, then, can execute the dialog session quickly while
still being constrained to build syntactically correct statements. Figure 9-1 presents
an overview of the process of using the job control dialog to build a control stream or
userJPROC .

UP-9986 Rev. 1 9-1
Update B

Using the Interactive Job Control Dialog

STEP 1

Key in the SC JCSBLD
command to initiate a
job control dialog session.

STEP 2

The dialog processor is
activated and the job
control dialog file is opened
in response to the command ...
begin executing the dialog.

STEP 3

The dialog processor routes
your dialog responses to the
system program JCSBLD.

STEP4

JCSBLD uses your responses
to the dialog to build a job
control stream or user JPROC
and stores it in SYSJCS.

SC JC$BLD ...

DIALOG
PROCESSOR

DIALOG
RESPONSES

t

Figure 9-1. Using the Job Control Dialog to Build a Control Stream or User JPROC

9-2

•

•

•
UP-9986 Rev. 1

•

•

•

Using the Interactive Job Control Dialog

Building a Control Stream with the Job Control Dialog

Let's begin a sample job control dialog session. First, you perform the system LOGON
procedures described in the appropriate workstation user guide. Then, you key in SC
JC$BLD and its associated parameters. The first dialog screen looks like this:

DIALOG FOR JOB CONTROL

PROGRAM=
THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
(JPROC). FOR AN EXPLANATION OF THE DIALOG PROCESS, ENTER
'HELP' IN THE SPACE PROVIDED. HELP

If you key in HELP, these screens are displayed:

THE DIALOG FOR JOB CONTROL IS A METHOD OF CONSTRUCTING
JOB CONTROL STREAMS AND PROCEDURES (JPROCS) USING COMPUTER
ASSISTANCE. PROMPTING FOR DATA ENTRY OR SELECTING FROM
AMONG AVAi LABLE OPTIONS IS ALWAYS PROVIDED, AND YOU CAN
ASK FOR MORE DETAILED EXPLANATIOl~S OF STATEMENTS,
PARAMETERS, AND OPTIONS. AFTER A STATEMENT IS COMPLETED,
THE IMAGE BUILT BY THE COMPUTE~ AS A RESULT OF YOUR CHOICES
IS DISPLAYED ON THE WORKSTATiml SCREEN. YOU MAY ACCEPT IT
FOR OUTPUT, CORRECT IT, OR REJECT IT ALlOGETHER.

Note: To proceed from one screen to the next, you usually press the transmit key.

UP-9986 Rev. 1

Whenever necessary, a note will appear at the bottom of the screen reminding
you to do this.

THE JOB CONTROL SETS ARE FORMED BY MAKING SELECTIONS FROM
MENUS OF AVAILABLE OPTIONS, AND ENTERING SOME TYPES OF
DATA DIRECTLY. THIS ALLOWS YOU AS MUCH FREEDOM IN YOUR JOB
CONTROL AS OTHER MEDIA, BUT AT THE SAME TIME PROVIDES
A STRUCTURE TO JOB CONTROL CREATION WHICH HELPS TO
PREVENT MANY COMMON ERRORS. REMEMBER, HOWEVER, THAT THE
DIALOG DOES NOT RECOGNIZE THE SAME JOB CONTROL ERRORS AS
THE RUN PROCESSOR. DIALOG ERROR CHECKING IS LIMITED 10
DIALOG OPERATION ERRORS, AND DATA TARGET MISMATCHES
(SUCH AS TRYING TO PUT ALPHABETIC DATA IN A STRICTLY
NUMBER FIELD) .

9-3

Using the Interactive Job Control Dialog

9-4

The next screen asks what type of module you want to build:

JOB CONTROL MODULE TYPES

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC)

3. HELP

SELECT ITEM BY ENTERING NUMBER. ~

If you ask for HELP, these screens are displayed:

IN ORDER TO EXECUTE ANY JOB, IT IS NECESSARY TO CONVEY TO
THE COMPUTER EXACTLY WHAT YOU WANT TC DO, AND WHAT RESOURCES
(PRINTER, READER, DISKS, ETC) ARE NEEDED. THIS IS ACCOMPLISHED
THROUGH THE USE OF JOB CONTROL. THERE ARE TWO TYPES OF JOB
CONTROL MODULES. THE COLLECTION OF JOB CONTROL STATEMENTS USED
TO RUN A JOB IS CALLED A JOB CONTROL STREAM, SOMETIMES REFERRED
TO AS THE JOB STREAM OR CONTROL STREAM. IN IT, THERE MAY BE JOB
CONTROL STATEMENTS, CALLS TO SYSTEM SUPPLIED PROCEDURES, AND THE
SECOND TYPE OF MODULE · USER-WRITTEN PROCEDURES (JPROCS).

JOB CONTROL PROCEDURES HAVE TWO PARTS · THE DEFINITION
AND THE CALL. THE DEFINITION IS THE JPROC MODULE CREATED
BY THE DIALOG. THE CALL IS A STATEMENT IN THE CONTROL
STREAM WHICH HAS THE JPROC NAME AS THE COMMAND, AND
PROVIDES ANY NECESSARY PARAMETERS. THE JPROC CALL IS USED
AS AN ABBREVIATION TO PREVENT CODING THE DEFINITION MANY
TIMES. WHEN THE CONTROL STREAM IS PROCESSED, EACH CALL IS
REPLACED BY THE APPROPRIATE DEFINITION WHICH HAS BEEN PUT
AT THE BEGINNING OF THE STREAM OR STORED IN A SYSTEM FILE
(YJCS). THE RESULT IS THE SAME AS IF THE DEFINITION HAD
BEEN CODED INSTEAD OF THE CALL.

•

•

•
UP-9986 Rev. 1

•

•

•

Using the Interactive Job Control Dialog

Once again, you're asked what type of module you want to build.

JOB CONTROL MODULE TYPES

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM
2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC)
3. HELP

SELECT ITEM BY ENTERING NUMBER. ~

You can ask that HELP screens explaining the choices be displayed again (by !{eying
in 3), but let's assume you want to build a control stream. The next screen displayed
is the JOB control statement screen:

STATEMENT: JOB

FORMAT: //SYMBOL JOB JOBNAME,PRl,MINSTORE,MAXSTORE,TASKS,
TIME,OPTIONS,ACCT,BUFFERS,LOG,HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE
JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE (YRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP.

What if you didn't need HELP screens? The job control dialog screens vary according
to the responses you make to the dialog. The initial screen is the same:

UP-9986 Rev. 1

DIALOG FOR JOB CONTROL

THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
(JPROC). FOR AN EXPLANATION OF THE DIALOG PROCESS, ENTER
HELP IN THE SPACE PROVIDED .

9-5

Using the Interactive Job Control Dialog

9-6

Because you don't need HELP screens to explain the dialog process, simply press the
transmit key to display the next screen. The next screen displayed is:

JOB CONTROL MODULE TYPES:

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM
2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC)
3. HELP

1

You key in 1, indicating that a job stream is being prepared. The next screen
displayed (since HELP screens weren't requested) is the JOB control statement
screen:

STATEMENT: JOB

FORMAT: //SYMBOL JOB JOBNAME,PRl,MINSTJRE,MAXSTORE,TASKS,
TIME,OPTIONS,ACCT,BUFFERS,LOG,HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE
JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE (YRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP.

As you can see, there is a big difference in the path the job control dialog takes,
depending on your responses to the dialog.

UP-9986 Rev. 1

•

•

•

•

•

•

Using the Interactive Job Control Dialog

Let's take the dialog one step further. If you key in HELP in response to the JOB
statement screen, each parameter of the JOB statement is explained. If HELP is not
requested, you are simply asked to key in the parametric values, without benefit of
prompting screens. When the JOB statement is built, it is displayed and you have a
final chance to change the parameters of the statement, with or without HELP
screens, or accept the statement as it appears. When the JOB statement is accepted,
the next screen presented is the job control statement master menu.

JOB CONTROL STATEMENT MASTER MENU

1. ALTER 11. EXEC 21. LFD 31. ROUTE 41. VFB
2. ALT JCS 12. EXT 22. MTC 32. RST 42. VOL
3. CAT 13. FREE 23. NOP 33. RUN/RV 43. /$

4. cc 14. GBL 24. QPR 34. SCR 44. /*

5. CR 15. GO 25. OPTION 35. SET 45. /&

6. DATA 16. IF 26. PARAM 36. SFT 46. SYSTEM JPROCS
7. DECAT 17. JNOTE 27. PAUSE 37. SKIP 47. GENERAL ENTRY
8. DST 18. JSET 28. QGBL 38. SPL 48. END OF SESSION
9. DVC 19. LBL 29. QUAL 39. UID 49. HELP
10. EQU 20. LCB 30. REN 40. USE

ENTER SELECTION BY NUMBER
IF YOU YILL NEED HELP YITH THIS STATEMENT, ENTER HELP - - - -

The rest of the job control dialog works in the same way as for the initial module-type
choice and the JOB statement screens. Each statement you choose from the master
menu is displayed and you are asked if you need help to build it. If you do, HELP
screens are displayed that explain the parameters of each statement.

Note: The DD job control statement is not provided on the job control statement
master menu. To include this statement in your job control stream, make the
GENERAL ENTRY menu selection (45), then enter the statement and its
parameters in the space provided.

The control stream you create is stored in YJCS. A printed summary of the dialog
session, organized by sequentially-numbered paragraphs, is produced by the dialog
processor. The default logical unit number of the printer file (printed summary)
output is 20 - any printer. You can accept this default or, during the dialog session,
provide a specific printer's logical unit number. Table A-3 of the Job Control
Programming Reference Manual (UP-9984) lists the OS/3 logical unit numbers for
printers .

UP-9986 Rev. 1 9-7

Using the Interactive Job Control Dialog

Building a User JPROC with the Job Control Dialog

The dialog for creating a JPROC guides you through the process of defining your
JPROC and building the job control statements and system JPROCS you want to
include in the body of the JPROC definition.

The procedure for initiating the dialog is the same as for building a job control stream:
perform the system LOGON procedures and key in SC JC$BLD.

When the job control dialog asks you whether you're building a job control stream or
user JPROC, key in the choice for user JPROC. The dialog then presents menus for:

• Beginning the JPROC (PROC, NAME)

• Choosing job control statements

• Choosing system JPROCS

• Ending the JPROC (END)

As is the case when you're building a job control stream, these menus generate other
menus based on your responses to the dialog.

You can request HELP screens at any point in the dialog where you need choices or
parameters explained. After the HELP screens are displayed and you make a valid
choice, the dialog returns to the point where it was interrupted.

JC$BLD uses your dialog responses to create a JPROC.

Note: If you store a JPROC in your own (alternate) library file instead of YJCS,
you must include the ALT JCS job control statement in any subsequent job
control stream that calls the JPROC. ALT JCS identifies the JPROC and
applies only to JPROCS.

Entering Embedded Data

9-8

To enter embedded data from a workstation, first choose the /$ (start-of-data)
statement from the job control statement master menu. Then, when the master menu
is redisplayed, make the GENERAL ENTRY selection (45). Once this is done, you'll
be able to enter your embedded data. When all embedded data is entered and the
master menu is presented again, choose the/* (end-of-data) job control statement.

If you plan to enter dialog specification language (DSL) source code as embedded data
from the workstation, a special situation arises because the characters that denote the
start of a DSL comment are the same as the end-of-data job control statement(/*). It's
necessary, then, to substitute another set of characters for the end-of-data job control
statement. You do this through the OPTION job control statement.

UP-9986 Rev. 1

•

•

•

•

•

•

Using the Interactive Job Control Dialog

When the OPTION statement menu is displayed at the workstation screen, choose an
OPTION EOD statement. The format is OPTION EOD=xx. The first character you
select must be a slash (!). The second character can be anything but a slash (!), an
asterisk (*), an ampersand (&), or a currency symbol ($). Let's say you choose /Z.
Then, when the end-of-data statement is displayed as part of the job control dialog
menu, you choose GENERAL ENTRY and key in your substitute characters; /Z in this
case. The control stream you create, then, will include these job control statements:

II OPTION EOD=/Z

/$ (start of data)

CDSL source code)

/Z (end of data)

You key in your DSL source code when the dialog requests it. By substituting
different characters for the end-of-data job control statement, you avoid any conflict
with the DSL start-of-comment delimiter.

Changing Dialog Responses
Once you build a control stream or JPROC from a workstation, you may be able to use
it for other jobs by making only a few changes to it or, you may discover that you need
to correct it. Rather than building a new control stream or JPROC from scratch to
incorporate the changes you want, you can use the audit version of the dialog
processor to change or edit the responses you made in a previous job control dialog
session. The audit version of the dialog processor outputs an audit file containing a
complete record of your dialog responses; or, it accepts as input an existing audit file of
your responses to a previous dialog, or both. An existing audit file used as input is
considered an old audit file. The audit file produced as output of the current dialog
session is considered a new audit file.

You begin a dialog session, which uses the audit version of the dialog processor, by
performing the system LOGON procedures and keying in RV JC$BLD. When you
identify a new and/or old audit file (by volume serial number and file label) during the
resulting dialog session, the system loads the audit version of the dialog processor.

Note: Old and new audit file names cannot be the same when responding to JC$BLD
queries .

UP-9986 Rev. 1 9-9

Using the Interactive Job Control Dialog

9-10

The audit version of the dialog processor (Figure 9-2) also outputs a printed summary
of a dialog session that is used as a guide to changing dialog responses in a subsequent
session. The summary is organized by sequentially-numbered paragraphs. When you
use the audit file as input to the dialog processor in a subsequent session, the job
control dialog asks you to enter the numbers of the paragraphs you want to change.
The summary lists these paragraph numbers.

NEW
AUDIT

FILE

YOUR DIALOG
RESPONSES

Figure 9-2. Audit Version of the Dialog Processor

Note: Audit files must be previously allocated MIRAM files.

The audit version of the dialog processor allows you to present the job control dialog
quickly and create a "new" control stream or user JPROC by changing only the
responses that need to be changed. Unchanged responses are automatically routed
from the old audit file by the dialog processor to JC$BUILD - without your
intervention. During the same session, you enter your new responses to the job
control dialog. You can also produce a new audit file (if you've specified it in the build
command) that contains a mix of responses from the old audit file and responses
entered during the current session. This audit file can then be used as input to the
dialog processor in a subsequent session.

Note: Only control streams and user JPROCS created using the job control dialog can
be changed in a subsequent dialog session.

Suppose you build a control stream for a job that runs nearly every day with only a
few changes to the control stream. Perhaps you want disk and print output on some

UP-9986 Rev. 1

•

•

•

•

•

•

Using the Interactive Job Control Dialog

days, and disk output only on other days. You first build the control stream on
Monday, specifying that a new audit file and a printed summary of the session be
produced. You use the audit file as input to Tuesday's dialog session and use the
summary report as your guide to changing the appropriate dialog responses.
Figure 9-3 traces the process of changing your dialog responses in a subsequent
session.

woRKsrAnoJLJLJ
t

ON MONDAY, you create a job control stream and
output a new audit file (SESSION1) that contains
your responses to the job control dialog.

SESSION1
(NEW AUDIT

FILE)

SESSION1 IS SPECIFIED AS THE OLD
AUDIT FILE FOR TUESDAY'S SESSION

I

SESSION1
(OLD AUDIT

FILE)

UP-9986 Rev. 1

t

DIALOG
PROCESSOR

SESSION2
!NEW AUDIT

FILE!

SUMMARY
PARA 1
PARA 2

ON TUESDAY, you create a new control stream, using
SESSION1 and the JOb control dialog as input to the dialog
processor. You change only those responses that need to be
changed, using Monday's printed summary as a guide.
Unchanged responses are automatically routed from SESSION1
(old audit file) to JCSBUILD. In addition, you create a new audit
file (SESSION2) and a printed summary of Tuesday's session,
which can be used as input to a subsequent dialog session .

.••. re.&P,ori~~i; taken frimr $f;S!).19Ni ·•·· ·••·
~data •i:i~t~reci aqa ch()ices'.frlade, !n*.

nispon$¢to the')Ob confrot dlSIQg. .
, ,h."" •• • •••• ·'>: .-.:=··

JCSBUILD

SUMMARY
PARA 1
PARA 2

Figure 9-3. Changing Your Dialog Responses

9-11

I

Using the Interactive Job Control Dialog

9-12
Update B

The appropriate operations guide has more information about using the audit version
of the dialog processor, including information about breaking off a session and
continuing it at a later time - without losing your changed dialog responses.

UP-9986 Rev. 1

•

•

•

•

•

•

Appendix A
Statement Conventions

Job Control Statement Format
A job control statement has a maximum of five fields, which must appear in the
following order:

1. Indication Field

2.

3.

Distinguishes job control statements from data. It is required and begins with
either//,/&,/$, or/*.

Label Field

Contains a 1- to 8-alphanumeric-character symbol; the first character must be
alphabetic. Unless this field is explained in a specified control statement, it is the
target address of a SKIP, GO, or IF control statements or the ABNORM=label
keyword parameter of the EXEC statement. This field is not separated from the
indication field by a space; it immediately follows the//.

Operation Field

Contains the name of the function to be performed. It is required for all job
control statements having an indication field of//. At least one space must
separate the operation field from the label field.

4. Operand Field

Contains the specific information concerning the items upon which a job control
function is to operate or the manner in which the function is to be performed. At
least one space must separate the operand field from the operation field.

5. Comments Field

UP-9986 Rev. 1

Contains any descriptive information desired but not processed. The field must
not contain a slash character. For those job control statements in which an
operand is not permitted, such as the FIN control statement, all information
beyond the operation field is treated as the comments field .

A-1

Statement Conventions

Excluding the indication and label fields, consecutive fields must be separated by one
or more spaces. A space may not appear in a field except within apostrophes
(hexadecimal code 7D) or parentheses in an operand field.

Example

//MYTARGAD LBL 'MASTER CUST' NAME FILE
~-...~...---..---~ ~~ ----....--
CD® ®0®

Notes:

Indication field

2 Label field

3 Operation field

4 Operand field: Note that spaces are allowable, because of the use
of apostrophes.

5 Conments field

6 Field separation spaces

How Job Control Statements Are Presented

A-2

The conventions used to delineate job control statements are:

• Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, and
subsequent positional parameters are being specified, the commas associated
with positional parameters must be retained; otherwise, the specified parameters
will not be processed as required. If no subsequent parameters are being
specified, their associated commas should also be omitted.

For example, the ALTER job control statement has four optional positional
parameters. This is presented in text in the following format:

UP-9986 Rev. 1

•

•

•

•

•

•

Then, the statement may be written:

II ALTER phase·name,address,change,RESET
II ALTER phase·name,address,change
II ALTER phase·name,address
II ALTER phase-name
II ALTER phase·name,,change
II ALTER ,,,RESET
II ALTER phase·name,,,ORG

Statement Conventions

Note that three commas are required in both the last and next-to-last examples.
In the next-to-last example, the three commas are encountered before any
parameters and are thus used to imply that the first, as well as the second and
third parameters, were omitted. In the last example, a parameter is encountered
before any commas, and thus the first comma is used to separate the first
parameter from the omitted second and third parameters.

II ALTER ,,,ORG

If the last example used four commas, it would appear that ORG was the fifth
parameter. And, because job control only associates four parameters with the
ALTER job control statement, the ORG parameter specification would be invalid.

• A keyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in tum, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to
separate parameters.

UP-9986 Rev. 1

The VFB job control statement has the following format:

//l•ymboll VFB LENGTH•li~•[,DENSITY• 1: l]l,FDRMNAME••ymboli

,USE={ STAND1)
OIJNVF1
OIJNVF2·0IJNVF9

, TYPE={ 0770) [,OVF=C line· 1, •.. , l ine·n) l
0776
SOMA

[,OVF2=Cline·1, ... ,line·n)][,CD1=Cline·1, ... ,line·n), ..•]
[,CD15=Cline·1, ••• ,line·n)]

A-3

-- --- ---

Statement Conventions

A-4

However, for the purpose of explaining the use of keyword parameters, we'll use
only the first four parameters. Thus, we arrive at the following format:

Then, this job control statement may be written as:

II VFB LENGTH=lines,DENSITY=6,FORMNAME=symbol,USE=STAND1
II VFB USE=stand,FORMNAME=symbol,DENSITY=6,LENGTH=lines
II VFB DENSITY=6,LENGTH=lines
II VFB LENGTH=lines
II VFB FORMNAME=symbol,USE=STAND1

• A job control statement may consist of a group of positional parameters followed
by a keyword parameter (as the last parameter).

For example:

//[symbol] EXEC program-name , I lib. r. ary·name}
YRUN
YLOD

[,[!]SWitch·priority][,ABNORM=labell

Since the last parameter is a keyword (not the last positional) parameter, this
statement may be written as follows:

II EXEC program·name,ABNORM=label
II EXEC program·name,library·name,ABNORM=label

Commas for the omitted positional parameters may be retained if desired. For
example:

II EXEC program·name,,,ABNORM=label
II EXEC program·name,library·name,,ABNORM=label

The conventions for coding commas when a positional parameter is omitted and
subsequent positional parameters are being specified still apply. When the
second positional parameter is omitted for example, the EXEC statement must be
coded as follows:

II EXEC program·name,,switch·priority,ABNORM=label

• A positional or keyword parameter may contain a sublist of parameters called
subparameters, which are separated by commas and enclosed in parentheses.
The parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the associated commas must be

UP-9986 Rev. 1

•

•

•

•

•

•

Statement Conventions

retained if a parameter is omitted, except for the case of trailing parameters, or
they may be nonpositional. The description of the subparameters will indicate
whether or not they are positional or nonpositional.

For example:

[,OVF=Cline-1, ••• ,line-n)][,OVF2=Cline-1, ••• ,line-n)l

• Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown.

•

CM cc

x•aa•

NUMBCHAR=n

(NOV)

Lowercase letters and words are generic terms representing information that
must be supplied by the user. Such lowercase terms may contain hyphens and
acronyms (for readability). For example:

phase-name

max-time

destination

filename

• Information contained within braces represents mandatory entries of which one
must be chosen, such as:

UP-9986 Rev. 1

BB,nn
BM,nn
FB,nn
FM,nn
IJM,nn
RL
RU

A-5

Statement Conventions

A-6

• Information contained within brackets represents optional entries that
(depending upon program requirements) are included or omitted. Braces within
brackets signify that one of the specified entries must be chosen if that parameter
is to be included. For example:

Csched-priorityl

{

addr }
ALT
OPT
IGNORE

• An optional parameter having a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified with no adverse
effect, it is considered inefficient to do so. For easy reference, when a default
specification occurs in the format delineation it is printed on a shaded
background. If, by parameter omission, the operating system performs some
complex processing other than parameter insertion, it is explained in the
parameter description.

{

l· .. ibr.ary-name)
YRUN
YLOD

• An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

• When a portion of a parameter is underlined, only that portion need be specified.
For example:

FORMNAME=symbol

can be coded as:

FO=symbol

UP-9986 Rev. I

•

•

•

•

•

•

Statement Conventions

Coding Conventions
All the job control statement information starts in position 1 and is not permitted to
extend for more than 71 positions. Job control statements begin with either one or
two slashes. In those with only one slash, no space is permitted between the slash and
the next character. However, one space must appear between this character and the
operand field. In job control statements beginning with two slashes, at least one space
must appear between the last slash and the operation field (except when using the
continuation statement (//n) or the label field).

More than one job control statement of the type beginning with two slashes may be
written on a card, but must not extend beyond position 71. At least one space must
precede the slashes denoting the beginning of the second job control statement; this is
referred to as multistatement coding.

Numbers required for particular parameters can be expressed in decimal or
hexadecimal. Numbers preceded by D' are considered decimal. Numbers preceded by
X' are considered hexadecimal. (A trailing quote may optionally be specified.) All of
the following represent the same value:

X' FF

x I FF I

0 1 255

0 1 255 1

Numbers not preceded by X' or D' are automatically considered decimal except in the
following cases when they default to hexadecimal:

• Main storage sizes specified on the JOB statement (min and max parameters)

• Memory sizes specified on the OPTION MIN and OPTION MAX job control
statements

• Absolute disk addresses specified on the EXT statement (addr or Tccc:hh
parameters)

• Address on the ALTER statement (address parameter)

• Expansion limit on the SFT statement's DLOAD option (expansion-limit
parameter)

Character strings on the ALTER, LCB, and SET job control statements must be
specified as shown in their formats .

UP-9986 Rev. 1 A-7

--

Statement Conventions

Statement Continuation

A-8

A continuation line is not considered to be a job control statement in itself. It is a line
that contains the continuation of a job control statement in a preceding line. A
nonblank character must appear in position 72 of the line containing the statement to
be continued. Continuation may be used with any job control statement that contains
at least the first two fields.

A continuation statement must begin with either the 3-character sequence //n, or just
a simple//, which then must be separated by one or more blanks from the continued
portion of the job control statement. The continued statement takes the form:

ll[n] param-1 ... param·n

The n is a decimal number in the range of 1 through 9. The numbers do not need to be
consecutive; however, each number must be greater than or equal to the preceding
number used in the control stream. This is an optional field and may be left blank, or
numbers can be used so you can keep a visual record of the amount of continuation
statements used.

For example, you could code the continuation as either

II parameters
//1 parameters
112 parameters

or

II parameters
111 parameters
111 parameters

or

II parameters
II parameters
II parameters

Column 72----i

x
x

x
x

x
x

The param-1 ... param-n are the parameters required to continue the immediately
preceding job control statement.

Continuation can only occur at the blanks following the operation or operand fields, or
after the comma following a parameter in the operand field. When you continue job
control statements, the positions between the last used position and position 72 must
be blank. Any information you intended as a comment for this line would be treated
as data.

UP-9986 Rev. 1

•

•

•

•

•

•

Statement Conventions

An error message occurs if:

• Column 72 contains a nonblank character and the card is not a valid continuation

• Comments extend past column 71

• A parameter list is not delimited by a comma

An example of the continuation of a multistatement line of coding is as follows:

II DVC 50 II VOL ABC123,T12345,T57341 II EXT ST,C,3,
111 CYL,1 II LBL MASTER II LFD FILEX

Software Conventions

x

The following rules and conventions apply to the processing of job control statements
and directives:

• Data cannot be contained on a job control statement.

• Embedded data is normally assumed to be 80 characters long; when input from
diskette, data can be 80or128 characters long .

• Comments cannot contain a slash.

• Job control does not scan past position 72, however, embedded data of up to 128
bytes is passed through.

• The CR job control statement, and a JPROC call when used, must be the last
statement on the card.

• The following job control statements and JPROC directives cannot be part of a
multistatement line:

II JOB

II FIN

II PROC

II NAME

II END

The //need not start in column 1, but must be first on the card. The// is optional
for PROC, NAME, and END .

UP-9986 Rev. 1 A-9

Statement Conventions

• The following job control statements cannot be part of a multistatement line. • They need not start in column 1, but must be first on the card.

/*

!&

/$

•

•
A-10 UP-9986 Rev. 1

•

•

•

Appendix B
Operation Considerations

System Libraries
There are five primary system program libraries stored on the system resident device
(SYSRES). The format of these libraries conforms to the standards established by the
librarian. For a description of these standards see the System Service Programs (SSP)
Operating Guide (UP-8841). As in all disk files, an entry for each library file is
maintained in the volume table of contents (VTOC) on SYSRES. These files may be
accessed by Y.!>Ur program without specifying a DVC-LFD sequence provided the file
name you use in your program is the same as the file identifier. For example:
YLOD.

The five library files are:

• System Load Library File

This file contains the load modules that are generated as output from the linkage
editor or the librarian. This includes system software load modules. This file is
used as the default input file to the system loader.

The file identifier for this file is YLOD.

• System Object Library File

This file contains the object modules generated as output from the language
translators. This includes system software object modules. This file is the
default input file to the linkage editor.

The file identifier for this file is Y0BJ.

• System Macro Library File

•

UP-9986 Rev. 1

This file contains the standard system macro definitions, and is used as the
default input file for these definitions by the assembler.

The file identifier is YMAC.

System Source Library File

This file provides permanent storage for source modules consisting of source
coding processed by the language translators. This file is used only when
specifically referenced in the control stream. It's never used as a default input or
output file .

B-1

Operation Considerations

The file identifier is YSRC.

• System Job Control Stream (JCS) Library File

This file provides for the permanent storage of control streams and JPROCS. It's
used as the default output file by the file symbiont and as the default input file by
the run symbiont.

The file identifier is YJCS.

Volume Table of Contents

8-2

For each file on a direct access volume, there exists a set of control blocks in the VTOC
area of the volume. Each set indicates the attributes and extents of the file, and may
contain up to two control blocks. The information contained in these blocks is used by
data management to control access to files. In case of multivolume files, there is a set
of control blocks for the file in the VTOC of each volume.

For a complete description of these control blocks, see the Consolidated Data
Management Macroinstructions Programming Guide (UP-9979).

UP-9986 Rev. 1

•

•

•

• Appendix C
Job Control Statement Formats

Job Control Statements

//[symbol] ALTJCS Cfile·label·idl[1:~: }~C,rpw][{~:~~~C,LUN=nnn]
vol·ser·no OFF

ON

• //[symbol] CC
{

coomand }
•conmand and parameters'

//[symbol] CR

II DATA FILEID=file-identifierC,RETAINJC,IGNOREJ

II DATA STEP=nnn

•
UP-9986 Rev. 1 C-1

Job Control Statement Formats

//[symbol l

C-2

DD RCFM=1FIXBLKl [,BKSZ=n][,RCSZ=n][,SIZE=AUTO][,SIZEn=nl
FIXUNB
UNDEF
VARBLK
VARUNB

[{
KLEN }=~[{KLOC }=~[,INDS=n]
KLENn ~ KLOCn ~

,ACCESS= EXC
EXCR
SRDF
SRDO
SRO
SADD
UCP

[
REWIND= { NORWD }]

UNLOAD

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//[symbol]

//[symbol] DST dest-1[,dest-2, ••• ,dest-16]

//[symbol l DVC l nnn[(n) l) '
RES
RUN

addr
ALT
IGNORE
OPT

0

REQC(n)]
REAL

//[symbol] DVC PROG[,job-name][,HOST=host-id]

//[symbol] EQU lun-1,type-1[,lun-2,type-2, ••• ,lun-n,type-nl

//[symbol l EXEC program-name ll ·l··.'···b····.r •. a.·r ... y-name ~ C, C:!:_lswi tch-pr iori ty] [,ABNORM=label]
YRUN
$)'$[db

For disk and format-label diskette:

addr
Tccc:hh
llLK
TBLK
CYL
TRK
OLD

r. {mj. . } , • ·] C,OLDlC,FIXlC,NTERMl L (bJ,aj)

C-3

Job Control Statement Formats

C-4

For data-set-label diskette:

//[symbol] EXT MI,C,0,BLK,(bi,ai)[,NDI]

//[symbol l FIN

//[symbol] FREE lfdname-1 [[(DEV)], ••• ,lfdname-n[(DEV)]]

//[symbol] GBL set-id-1C=init-1l,set-id-2C=init-2], ••• ,set-id-nC=init-n]]

//[symbol] GO destination

//[symbol] IF Ca op b) destination

II [symbol] INQ JOB, keyword

II [symbol] INQ SYS, keyword

//[symbol] JNOTE conment-lineC,destination-1, ••• ,destination-nl

//[symbol l

[,print-option-list]

C,acc-nolC,nXml , ACT
LOG
NOA CT
NO LOG
NONE
BOTH

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//[symbol] JSET value

//[symbol l LBL

//[symbol l LBL

UP-9986 Rev. 1

{
file-identifier } [{ f i le-serial-nunber }] [,expiration-date]
'file-identifier' VCHECK

[,creation-date]

[i:H•·,.~noe·~'}] [l ,;'"'""~·--'}]
[t;"•;on·~'}]

[<J'•l/l l"''Hd· 1 [!owl· fd·2 ••. [,!owl· ;d·nl ~: ~)["pw/•p•)]

'<<J'•l/llovol · fd· 1 [ov•l · fd·2 ..• [,low!· ;d·nl [F~ ~)[""''""'"'

[{
file-serial-number}] [,expiraton-datel [,creation-date]
VCHECK

C-5

Job Control Statement Formats

//[symbol] LCB { X'hex-string-1' }
C'char-string-1 1

[,CARTNAME=symbol]

NAME=l 48-BUS l 48-SCI
63-STD

O\JNLC1

O\JNLC2

[,NUMBCHAR=n]

I.MI SM= { 'IGNORE }~ L REPORT~

I. { X'hex-string-2' } , ••• , { X'hex-string-n' l] L C'char-string-2' C'char-string-n'

[

DUAL={ X 'xxyyxxyyxxyyxxyy • }~
C'abababab

C'bbbb'
X'yyyyyyyy'

[
MISMCHAR={ ~::a.· •.·• }LJ

x•40; ~

C-6 UP-9986 Rev. 1

•

•

•

•

•

•

Job Control Statement Formats

//[symbol] LCB [~AME=symboll

[

NAME={ 48·BUS ~
48·SCI
63·STD
OWNLC1·0WNLC9

[,TYPE=SDMA]

[
{

·.·····.···.···;.······.··.···u MISM= lGNORE
REPORT

//[symbol] LFD {filename } [{n. ~ ,!EXTEND)
*filename 8 !NIT

PREP
ID
IGNORE

//[symbol] MTC lfd'lame,

//[symbol] NOP [QUERY]

BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL
RU

//[symbol] CPR conment·line[,destination·1, •.. ,destination·nl

//[symbol] OPTION p·1[, ••• ,p·n]

//[symbol] PARAM operand·1[, .•• ,operand·nl

//[symbol] PAUSE conment·line[,destination·1, ... ,destination·nl

//[symbol] QGBL set·id-1C=init-1J[,set-id·2[=init·2], •.• ,set·id·n[=init·nll

//[symbol] QUAL Cqualname]

//[symbol] REN lfdname, {new· label } [,NTERMl
'new· label'

//[symbol] ROUTE destination

//[symbol] RST filename,checkpoint·id,step·number[,jobname[(rename)JJ[,pril
[,key·1=val-1, ••• ,key·n=val·nl

UP-9986 Rev. 1 C-7

Job Control Statement Formats

C-8

//[symbol llRUN [{ jobname[Cnew·name) l }] l
(new-name)

RV jobname[(new·name)]

:alt· filename

r·-m'"-· {;::})
(' t-f; ''"-· ~ :: ~, '"d-~"w'd)

[{ £.RE}~ [{t'.me u[,key·1=val·1, ••• ,key·n=val·nl
tllGH t1me+n
!l_OR

.!:.OIJ

//[symbol l SCR l fdname I. {DATE[, yyddd.l }~
L PRE[,aaaa] ~

//[symbol] SET COMREG,char·string

//[symbol] SET DATE,yy/rnn/dd[,t·datel[,d·date]

//[symbol] SET UPSI,switch·setting

//[symbol l SFT

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//[symbol] SKIP target-label ,mask[1~,~~ l]
ANY
NONE

I/ [symbol] SET LDA,n,m, {string }
'string'

//[symbol]
sPL (HOLD) r,nxm1[{~0-copU[{ ~o-skpcode}][{ ~8,,~,~recur,forms1

RETAIN i 7 5t20
DISK
TAPE
DISKETTE

[I::°'}] I ,NOTSTL][,bck·pg•l I ,NOUPOI I ,NOCMP][,RETAIN] [,HOLD] [,SECURE I

//[symbol]UID I user·id-1 l [····1 user·id-255 l]
(addr·1) (addr-255)
user·id-1Caddr·1) user·id·255Caddr·255)

//[symbollUSE DP,dialog·name[,printer·lfd][,new-audit·lfd][,old·audit·lfdl

//[symbol] USE LIB,module·name

//[symbol] USE MENU

[,menu·format·1=alias·1[, ••• ,menu·format·12=alias·12l]

UP-9986 Rev. 1 C-9

Job Control Statement Formats

llCsymbolJUSE SFSll [format-file-LFD-11Cformat-file-LFD-2l l~
format-fi le-LFD
YFMT

[,sereen-format-1=alias-1[, •.• ,sereen-format-12=alias-12J

II [symbol] VFB LENGTH=lines
[,FORMNAME=symbolJ

l

USE= I STAND1 ll
OWNVF1
OWNVF2-0\.INVF9 (SOMA printers only)

l'YPE• { !~j ~ I ,OVF •Cl ; ,,. . 1, ••• , l; ne-n)]

C,OVF2=Cline-1, ... ,line-n)J[,CD1=Cline-1, •.. ,line-n), ••.
C,CD15=Cline-1, ... ,line-n)Jl

ll[symbolJVOL Mee
N , volsn-1~'~:'~) }] , volsn-2~{~:~) }~

1$

I*

I&

NMee ~ ~ volsn-1 {'~:~> }
(NOV)
(PREP)

SCRATCH

(NOV) (NOV)
(PREP) (PREP)

volsn-2~'~:!, }~ volsn-3[{~:~) }~
(NOV) (NOV)

(PREP) (PREP)

SCRATCH SCRATCH

, ...

C-10 UP-9986 Rev. 1

•

•

•

•

•

•

Job Control Statement Formats

Job Control Procedures
//[symbol] procname Cp1,p2, ... ,pn,ki=vi,kj=vj, ••• ,km=vml

UP-9986 Rev. 1

C:YL
TRK
OLD

l.{mj .. } , .• JC,OLDlC,FIXlC,NDll L (bJ,BJ)

C-11

Job Control Statement Formats

C-12

//[symbol] l ASM l lPRNTR=i l .. u ... " ... [.. ····.de·······s···t···ll] ,IN=1(vol-ser-no,label)) ASML N[,dest] (RES)
ASMLG 2i1f(;CiE!sn (RES, label)

(RUN, label)
(*,label)

,OUT= (vol-ser-no,label)
(RES, label)
(RUN, label)
(*,label)
(N)

'CkDN ,'$'i'$kUR>

vol·ser-no-1,label-1
RES,label-1
RUN,label-1
*I label· 1
N

REs)$¥$MAc

vol-ser·no-1,label-1
RES,label-1
RUN, label· 1
*,label
N

Res;vskc

vol-ser-no-2,label-2
RES,label-2
RUN, label· 2
*I label ·2
N

REs,$'($MAc

vol·ser-no-2,label-2
RES,label-2
RUN, label-2
*,label-2
N

kes;tvtsRc

[
LST= {option }11 [SCR1= { .~.o,l ·ser·no }~

(opt-1, ••• opt-n ~ RES ~

(vol-ser-no,label)
(RES, label)
(RUN, label)
<*,label)
ckl:s ,'$vtt6ri>
'Cku>l;rkU>I)

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//[symbol l {AUTO } lRNTR= I lun. [. ,des.tl ~ , IN=1 (vol ·ser·no, label))
AUTRPG N[,dest] (RES)
AUTRPGL Z0C';'®$'j:'] (RES, label)
AUTRPGLG (RUN, label)

(*,label)

UP-9986 Rev. 1

,OUT= (vol·ser·no,label)
(RES, label)
(RUN, label)
(*,label)
(N)

'CRtiN ;'$'1'.$Rli>i>

[
OUTSRC= {(vol ·ser·no, label, l fd·name,module·name) }] [LST={ K ~

CRES,label,lfd·name,module·name) M
N

s

,ALTLOD=1 (vol ·ser·no, label))
(RES, label)
(RUN, label)
(*,label)
·cREs·;·r'loi:i:>

[EHB• 1 ;~. l] [MOD• n ~ C, SKIP•Cl

lCOPY n= I (vol ·ser·no, label, l fd·name)ll
CRES,label,lfd·name)
CRUN,label,lfd·name)

[,ERRFIL=Cvol·ser·no,label,module·name)J

C-13

Job Control Statement Formats

//[symbol l I COBL74 l lRNTR= I lu·n··.[· ,destl)~
COBL74L NC,dest]

COBL74LG 20[,dest]

, IN=1 (vol-ser-no, label))
(RES)

(RES, label)

(RUN, label)

(*,label)

,LIN=(I .(. v.o· .l-.se. r···n· o .•. label))) [LINn=({vol-ser-no, Label})~ (RES, label) RES, label

(RUN, label) RUN, label

(*,label) *,label

i(RE$,$YtSRC)

,OBJ=1 (· .. v·. o. l ... -... ·s·e·.· .r .. -. n.o······.l abet)) [SCR1= { ~. ol -ser-no}] (RES, label) RES

(RUN, label)

'CRUN,YRUNJ

(*,label)

,ALTLOD= (vol-ser-no,label) [,option=specificationl

(RES, label)

(RUN, label)

(*,label)

:CREs,iY$1.0P>

:CRON I $Yt!WN>

C,ERRFIL=(vol-ser-no,label,module-name)]

C-14 UP-9986 Rev. 1

•

•

•

•

•

•

//[symbol] COBOLB

//[symbol l

UP-9986 Rev. 1

COBOL BL

COBOLBLG

COBOL

COBOLL

COBOL LG

Job Control Statement Formats

lRNTR= l lun····[········de······s·t .. l l] , IN=((vol -ser-no, label) l NC,dest] (RES)

2"0C,des'fl (RES,label)

(RUN, label)

(*,label)

,OBJ=(.(.···v····o····l·· -.. s·e···.r·. -. n.·.o······label) l ,LIN=1.(. v o .. l····.····s·e·r·· -.. " •. ·.o···· label))

(RES, label) (RES, label)

(RUN, label) (RUN,label)

(*,label) (*,label)

!(RUN ~'YRut.f) !(RES ;$rtsRc >

[,OUT=(p-1[, ••• ,p-n)][,LST=(p-1, ••• ,p-n)]

(vol-ser-no,label)

(RES, label)

(RUN, label)

(*,label)

'{RES)$'Y$L6D>
(RUN';$'YtRUN>

C-15

Job Control Statement Formats

//[symbol l FORT

FORTL

FORT LG

FOR

FORL

FOR LG

FOR4

FOR4L

FOR4LG

C-16

tRNTR= (.l···u···n·[······.·d·.·····e····s···t···l l] ,IN=1 (vol-ser-no,label) l N[,dest] (RES)

i0[,desiJ CRES,label>
(RUN, label)

(*I label)

,OUT= (vol-ser-no,label)

(RES, label)

(RUN, label)

(*,label)

NO

:(RUN ,$'i$&ull)

[SCR 1 = { ~o.l - ser -no}] , AL TLOD=1 C .. v···o··· l -. s ... er. -.·.n···o .. • ... label) l RE.S (RES, label)

(RUN, label)

(*,label)

:c&ut1';'$rt&u1J >

[,OPT=(D,N,X)][,MDE=Il[,STX=optionsl

[,CNL=kl [LIN={ 'f .•• :.l.··.e.name}] [LST= { k • }~
:llb1 option ~

I ,MAP•CS ,A, L)] [SIZE• 1 ~ ~
[,ERRFIL=(vol-ser-no,label,module-name)l

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//[symbol] I ;~:~~G} rRNTR=1 :~n['.:;.st~'.t]] }~ L ,~.~s ~
, IN=1 (vol-ser-no, label))

(RES)

(RES, label)

(RUN, label)

(*I label)

UP-9986 Rev. 1

,OUT= (vol-ser-no,label)

(RES, label)
(RUN, label)

(*,label)

N

:CRON ;·rRDH:>.

l,scR1= { ~~.~. -ser-no }l L R.ES ~

,AL TLOD=1.(. v o, .·l··.· .•. •s··e·r·· n .. o ..•• label)) [,OPT=(S,N,X)] [, LIN=fi lenamel
(RES, label)

(RUN, label)
(*,label)

tRciN')'$'i$Run')

[,LST""Ptioo l [,MAP•(S ,A, L)] [SIZE• { ~ ~

[,ERRFIL=<vol-ser-no,label,module-name)]

C-17

Job Control Statement Formats

C-18

//[symbol l {LINK } [input-module-name-1, - •• , input-module-name-19]
LINKG

[

PRNTR= I lun .. [• ... de .. s .. tl }~ N[,destl

29r,clest1

,IN= Cvol-ser-no,label)
(RES)

CRES,label)

(RUN, label)

(*,label)
{RUN'; YRUN)

,OUT= Cvol-ser-no,label)

CRES,label)

CRUN,label)

(*,label)

(N)

(Ri.JN,tY$RON)

[

RLIB={ Cvol-ser-no, label)~
(RES, label)

(RUN, label)

(*,label>

[

ALIB= { Cvol-ser·no, label)}] [SCR1= { '.~.~l. ·ser-no}] [STD= { yf$ ~
CRES,label) RES NO
CRUN,label)
(*,label)

,AL TLOD=1.C .. v···o···l·· .. • .. s·.···e.·r······n···o·······label)) [,OPT= •options• l
(RES, label)

(RUN, label)
(*,label)

'(RUN,tY$RUN)

[

CL IB={ Cvol-ser·no, label ,modname)}] [,CMT=' cornnent •]
CRES,label,modname)

CRUN,label,modname)

C*,label,modname)

[,ENTER=expressionl

UP-9986 Rev. 1

•

•

•

•

•

•

Job Control Statement Formats

//[symbol] I RPG llRNTR=1.l.u.·n·····[·······de···.·····s·.·t··l}~ ,IN=1(vol-ser-no,label)) RPGL NC,dest] (RES)

RPGLG 20t,des0 (RES, label)
(RUN, label)
(*,label)

UP-9986 Rev. 1

,OUT= (vol-ser-no,label)

(RES, label)
(RUN, label)
(*I label)
(N)

iciloN:;'$'f$iloN >

, Al T LOD=1.(.·.v····.o···· ··l·········.·.s···e· ··.r· .. ··· .. n·o··· .• .. label))

(RES, label)
(RUN, label)
(*,label)
tcRuN;$YSRUN) .

[,CONSOLE=lfd-namel

C,ERRFIL=(vol-ser-no,label,module-name)]

C-19

Job Control Statement Formats

//[symbol] SPOOL

C-20

rEDIRECT=1 ~~:~)~ [,BUF-1 l.cclPIES• { i~ ~
L DISKETTE u L ~

[UPDATE• { ;~$ l] [~PRESS• { ~ llETAIN• u~S l]
[""'" {;~·l]['""''" {;~·1]

•

•

•
UP-9986 Rev. 1

•

•

•

Job Control Statement Formats

//;-"d UOD IN• (rn:·,.c·M} ,Lobel[l~xtl])

,OJT=a::·m·M} .L•b"[l~xtlI i::::"'l])

["'". Uft~i:' ~
rUNCH• i~~·i] [COMPARE-\;n]

,EXT• !Mil [{ H] [{t ~ . ~:'"'
CYL
TRK
OLD

l,{mi_ . }]'J,{mj_ . }•···J[,OLDH,F!Xl
~ Cb1,a1) ~ CbJ,aJ)

//;gooced UDT IN•(t:~:·•oc·oo} ,L•be'[l~"l])

,OJT•(vol·•oc·oo, lobel) l"''" { ({~~"} c.~•tl)} l
[PUNCH• \ ~~S l] [C04PARE• i :, l]

UP-9986 Rev. 1 C-21

Job Control Statement Formats

C-22

//ignored UTD IN=Cvol-ser-no,label),

CUT•(rnr~'-M} , lobe'[{ ~ u [{ :::··1])
r•RNTR• {~~i:'} J [~NCH•{:, u [C<MPARE• { :.1]

//Cl fdname] { WORKn }
TEMPn

CYL
TRK
OLD

[{mi .. l]'[{mj .. } , ... ~[,OLDH,FIX]
(b1,a1) (bJ,SJ) ~

DVC=nn, VOL= {RES)
RUN
vol-ser-no

VOL={ RES)
RUN
vol-ser-no

•

•

•
UP-9986 Rev. 1

•

•

•

//[symbol l { WRTBIG} 'block· 1' C, 1block·2', ••• , 1block·8 1 l

WRTSML

UP-9986 Rev. 1

,IN= I (vol·ser·no,label))
(RES, label)

(RUN, label)

(*I label)
:c'"R"···e··.,nnsrstoo·········>··' ~.,: :.... .

Job Control Statement Formats

C-23

•

•

•

•

•

•

Index

A
ABNORM parameter, EXEC statement,

4-50, 6-68
Abnormal termination, 2-10, 4-50, 6-68
ABRDUMP option, 6-27
Absolute address, 2-5
ACCESS JPROC call, 5-8
Access method, specifying, 4-26
Account numbers, 4-7
Account records, suppressing printing, 6-34
ACN=account-number option, 6-26
ALIB parameter, LINK JPROC call, 5-28
ALLOC JPROC call, 5-1 O
Allocation, file, 4-30, 4-31, 4-33, 5-10
ALTER job control statement description,

6-56
Alternate devices, 4-14
Alternate library files

for job control streams, 1-10
forJPROCS, 1-10
for saved, translated control streams,

1-10, 6-36
searching for JPROCS, 8-9
storing control streams in, 1-10
storing saved, translated control streams

in, 1-11, 6-36
ALT JCS job control statement, 8-9
ALTLOD parameter, LINKJPROC call,

5-30
Audit version, dialog processor, 9-9
Automatic inclusion, 5-25

B
Backspacing, 6-20
BAL, 2-7

UP-9986 Rev. 1

Basic assembler language (BAL), 2-7
Binary overflow interrupt, 6-27
BLK parameter, changing extent

specifications, 5-6
Block characters, printing, 5-33
Block numbering, tape volumes, 4_-21
Blocks

allocation amounts, 4-31
changing extents, temporary work files,

5-6
file allocation, 2-7

BOF option, 6-27
Branching

conditional, 7-2
directing program control, 2-11
providing targets, 7-4
unconditional, 7-1

Building job control streams
description, 1-9
using the job control dialog, 9-1

Buffers
load code (See Load code)
spool, 4-7
vertical format (See Vertical format

buffers)
BUF=nXm option, 6-27

c
CACHE parameter, DD statement, 6-59
Card data, input spooling, 6-7
Card input, adding, 3-10
Card reader

device assignment set, 3-10
ending operation, 3-8
start of data and end of data, 3-12

Cards, adding, 6-61

Index-!
Update A

Index

CARTID parameter, LCB statement, 6-14
CARTNAME parameter, LCB statement,

6-13
Cartridge (See Print cartridge)
CAT job control statement, 6-26
Catalog, file (See File cataloging)
CC job control statement

calling saved translated control
streams, 6-49

description, 6-46
CDl through CD15 parameters, VFB

statement, 6-17
Changing dialog responses, 9-9
Character strings

LCB statement, 6-11
phase header record comment field, load

modules, 5-30
Characters, block, 5-33
Checkpoints

INIT parameter, 4-45
restart facility, 2-11
RST statement, 6-45

CLIB parameter, linkage editor
JPROC call, 5-30

CMT parameter, linkage editor
JPROC call, 5-30

COBOL, naming your files, 2-7
Coding conventions, A-7
Commands, issuing (CC statement), 6-46
Comments field, A-1
Communications region, SET statement

(SET COMREG), 6-40
Conditional branching, 7-2
Continuation lines, A-8
Control fields, modifying, 6-38
Control streams (See Job control streams)
CR job control statement, 6-61
Creation date, file, 4-37
Cylinders, file allocation, 2-5, 4-30

lndex-2
Update A

D
Data

compressing, 6-3
definition, 6-58
embedded (See Embedded data)
start of data and end of data, 3-12

DATAjob control statement, 6-7
Data management

assigning a file name, 3-5
modules not in YLOD or YRUN, 6-53

Data-set label diskette (See Diskette files)
DATA STEP job control statement, 6-70
Date

block characters, 5-35
changing, 6-39
file expiration and creation, 4-37

DATE parameter, SCR statement, 6-25
DD job control statement

description and format, 6-58
keyword parameters, (table) 6-1, 6-59

DDP program-to-program facility,
DVC PROG statement, 4-1 7

DECAT job control statement, 6-26
Decimal overflow interrupt, 6-27
DENSITY parameter, VFB statement, 6-1 7
Destination, specifying

DST statement, 6-3
host-id, user-id pair, 6-4
JNOTE statement, 6-52
OPR statement, 6-50
OPTION LOG statement, 6-29
OPTION MAS statement, 6-30
_OPTION ORI statement, 6-32
OPTION OUT statement, 6-33
PAUSE statement, 6-52
ROUTE statement, 6-4

DEV parameter, FREE statement, 6-22

UP-9986 Rev. 1

•

•

•

•

•

•

Device assignment sets
card reader, 3-10
different volumes on same device, 4-14
disk, 3-20
diskette, 3-20
DVCVOL JPROC call, 5-13
file name assignment, 3-5
job control statements, 2-1
minimum control stream, 3-1
renamed file, 4-40
tape, 3-14
temporary work files, 5-2
workstation, 3-21, 3-22
(See also Devices)

Device independent control character codes,
6-19

Device type codes, equating logical unit
numbers, 6-10

Devices
adding, 3-14
alternate, 4-14
assigning by physical address, 4-11
assigning multiple workstations to a file,

4-10
different volumes on same device, 4-12
identifying, 3-4, 4-9
logical unit numbers (See Logical unit

numbers)
multiple volumes in a file, 4-14
optional device assignment, 4-12
releasing (freeing), 6-22
too many on same volume, 5-13
using, 2-2
using multiple, SYSRES, or YRUN file,

4-9
Dialog processor

audit version, 9-10
device assignment set for workstation,

3-21
job control considerations, 6-27, 6-76

Dialog responses, changing, 9-9
Dialog session, control stream, Section 9
Disk device assignment set, 3-20

UP-9986 Rev. 1

Disk file area allocation
amounts, 4-31
changing specifications, 4-33
contiguous space, 4-28
cylinders, 4-30
description, 2-5
EXT statement, 4-27
formatting the file, 4-28
more disk space needed, 4-29

Disk files
changing label, 4-40
reinitializing, 4-45
scratching, 6-24

Disk volumes
file allocation, 2-5
reserving extent storage area, 4-44
sharing, 4-24
temporary work files, 5-5
(See also Volumes)

Index

Diskette, device assignment set, 3-20, 3-21
Diskette files

area allocation, 2-5, 4-34
data-set-label, 2-6
EXT statement, 4-34
format-label, 2-5
scratching, 6-24
spooling, 6-1, 6-9

Diskette volumes extent information storage
area, 4-44

multifile, 5-13
DLOAD facility, 2-13, 6-54
DLOAD parameter, SFT statement, 6-54
DOF option, 6-27
DST job control statement, 6-3
Dummy data set, 3-13
Dump, edited, 6-28
DUMP option, 6-27
DVC job control statement

adding card input, 3-10
assigning device by physical address,

4-11
assigning multiple workstations to a file,

4-10

lndex-3
Update A

Index

assigning optional devices, 4-11
description, 4-8
device assignment sets, 3-4
different volumes on same device, 4-11
disk, 3-20
diskette, 3-20, 3-21
JPROC calls (DVCVOL), 5-13
minimum control stream, 3-1
multiple volumes in a file, 4-13
specifying a remote file, 4-16, 6-5
tape, 3-15
using multiple devices, 4-9
workstation, 3-21

DVC parameter, temporary work files, 5-5
DVCDKT JPROC call, 5-16
DVC PROG statement description, 4-1 7
DVCVOL JPROC call 5-13
DVCVTP JPROC call

description, 5-16
linkage editor JPROC call, 5-23

Dynamic expansion
main storage, 2-13
overriding SYSGEN limits, 6-56
user job region, externally referenced

program modules, 6-56
Dynamic extension, disk file

description, 4-29
JPROC calls, 5-6

Dynamic skip function, 6-69

E
Embedded data

entering from a workstation, 9-8
EOD option, 6-27
JPROC definitions, 8-6
sets, replacing in expanded control

streams, 6-70
start of data and end of data, 3-12
substituting, 6-69

END directive
ending JPROC definition, 8-5
target for branching, 7-4

End-of-data(/*) job control statement, 3-12
End-of-job (/&)job control statement, 3-7

lndex-4
Update A

End-of-job process, 1-8
End-of-job-step process, 1-8
ENTER parameter, linkage editor JPROC

call, 5-31
EOD=xx option, 6-27
EQU job control statement

description, 6-10
multiple devices, 4-9

Error messages
undefined set symbol, 6-37
unequal length character strings, 6-38

Errors
abnormal termination, 2-10
renaming disk files, 4-40
testing UPSI byte, 6-64

EXEC job control statement
abnormal program termination, 4-50,

6-68
format and description, 3-6
job step delimiter, 1-1
locating load module, 4-46
minimum control stream, 3-2
specifying alternate library file for

JPROCs, 8-9
task switching priority, 4-48
using the linkage editor, 5-20

Executive, 1-3
Expanded control streams, replacing

embedded data, 6-70
Expiration date, file, 4-37
Exponent underflow exception interrupt,

6-38
EXT job control statement for disk

allocating disk area for new files, 3-20
allocation amounts, 4-31
changing specifications of previously

allocated file, 4-33
cylinder allocation, 4-30
description, 2-5, 4-27
device assignment set for diskette, 3-20,

3-21
dynamic extension, 4-29
formatting a file and using contiguous

space, 4-28
specifying file access method, 4-27

UP-9986 Rev. 1

•

•

•

•

•

•

EXT job control statement for diskette, 2-5,
2-6, 4-34

EXT parameter, ALLOC JPROC call, 5-11
EXTEND option, access JPROC call, 5-10
Extending files, 4-45
Extent information storage area, 4-44
Extents

allocating disk area for new files, 3-20
allocating file with JPROC call, 5-11
allocation amounts, 4-31
changing specifications, 5-6
description, 2-5, 2-7
data-set-label diskette EXT statement,

4-34
disk EXT statement, 4-27
format-label diskette EXT statement,

4-27
LFD statement, 3-5
reserving, 4-44

EXTSP parameter, 5-6

F
FD entry, changing, 6-60
File access methods, 4-27
File allocation

amounts, 4-31
changing specifications, 4-33
data-set-label diskette, 2-7, 4-34
disk, 2-5
format-label diskette, 2-5
JPROC call, 5-10
terms, 4-30

File cataloging
description, 6-26
SKIP statement, 6-63

File definition
changing at run time, 6-59
linkage editor JPROC call, 5-21

File identifiers
description, 2-4
job step temporary files, 3-23

UP-9986 Rev. 1

JPROC calls, 5-2, 5-12
labeled tapes, 3-17
qualifiers, 4-43
using efficiently, 4-35

File names
assigning, 3-5
description, 2-7
JPROC calls, 5-2
tape, 3-15

Index

File serial numbers, multivolume files, 4-36
File symbiont, storing JPROC definitions,

8-7
FILE system console command, 1-9
FILE workstation command, 1-9
FILEID parameter, DATA statement, 6-7
Files

accessing previously allocated, 5-8
allocating with a JPROC call, 5-10
cataloging (See File cataloging)
different versions, 4-39
existing specifications, 4-45
formatting and using contiguous space,

4-28
identifiers, 2-4
job step temporary, 3-23, 5-2
job temporary, 3-23, 5-2
logical, 4-44
logical names, 2-7
multivolume (See Multivolume files)
naming, 2-7, 3-5
renaming, 4-40
scratching, 6-24
spooling, 6-1
(See also Disk files)

FIN job control statement, 3-8
Floating-point significant exception

interrupt, 6-37
Format-label diskette (See Diskette files)
FORMNAME parameter, VFB statement,

6-17
Forms, special (SPL statement), 6-2
Forms control, 6-16
FORTRAN, naming your files, 2-8
Forward spacing, 6-20
FREE job control statement, 6-22

lndex-5
Update A

Index

G
GABRDUMP option, 6-27
GBL job control statement, 7-5
GDUMP option, 6-27
Generation number, file 4-39
GJOBDUMP option, 6-28
Global set symbols

calling control streams, 6-4 7
description, 7-5

GO job control statement
branching, 2-11, 7-1
description, 7-1

GO option, 6-28
Graphic symbols, print cartridge, 6-11
GSYSDUMP option, 6-28

H

HDR option, 6-28
HELP screens, job control dialog, 9-3
Hexadecimal characters

LCB statement, 6-11
SET COMREG statement, 6-41

HOLD option, 6-28
HOLD parameter, SPL statement, 6-2
Host-id, user-id pair (See Destination)
HOST parameter

DVC statement, 4-16
DVC PROG statement, 4-18

I
IF job control statement

branching, 2-11
description, 7-2

IGNORE parameter
DATA statement, 6-8
LFD statement, 4-44

IN parameter, linkage editor JPROC call,
5-24

INCLUDE linkage editor control statement,
5-21

lndex-6
Update A

Inclusion, 5-25
Indication field, A-1
INIT option, ACCESS JPROC call, 5-8
Initialized processing, 4-20
Input card data, spooling, 6-6
Input file definition, 5-23
Input module names, 5-21, 5-25
INQjob control statement, 7-13
Interactive job control dialog (See Job control

dialog)

J
JNOTE job control statement, 6-51
Job accounting, 4-7
Job control dialog

definition, 9-1
building a control stream, 9-3
building a user JPROC, 9-8
changing dialog responses, 9-9
entering embedded data, 9-8
HELP screens, 9-1
job control statement master menu, 9-1
SC JC$BLD command, 9-1

Job control language, 1-1
Job control procedures (See Procedures)
JOB control statement

beginning the job, 3-3
debugging control stream, 4-6
improving control of your job, 4-1
job accounting and spool buffers, 4-7
job processing time, 4-5
main storage needs, 4-3, 4-4
minimum control stream, 3-1
overriding parameters, 6-30
printing job log file and page separators

4-8
priority, 4-2

Job control statements
advanced, Section 6
bypassing, 6-63, 6-68
coding conventions, A-7
continuation, A-8

UP-9986 Rev. 1

•

•

•

•

•

•

description, 1-1
formats, C-1
general format, A-1
JPROC definitions, parameter

referencing, 8-9
optional parameters, 4-1
presentation, A-2
run-time conditional, 7-1
set symbol, 7-5
software conventions, A-9
substituting embedded data, 6-69

Job control streams
building, 1-9
building from a workstation, 9-1
bypassing statements (SKIP), 6-63
calling, 6-4 7
debugging, 4-6
description, 1-1
ending, 3-2, 3-8
filing in YJCS, 1-10
library file (See YJCS)
minimum, 3-1
preparing, 1-9
processing, 1-4
replacing embedded data sets, 6-69
running, 1-11
saving in expanded state, 6-34
screen format services, 3-22
stored, adding cards, 6-61
stored, calling, 6-48
storing, 1-9

Job initializer, 1-7
Job log file

directing, LOG option, 6-29
printing, 4-8
suppressing printing, 6-34

Job name, block characters, 5-35, 5-36
Job queue table, 1-6
Job scheduler, 1-6
Job step processor, 1-8
Job step temporary files, 3-23, 5-2

(See also Temporary work files)
Job steps

definition, 1-2
ending, 1-8

UP-9986 Rev. 1

preparing for execution, 1-7
restarting a job, 6-43

Job temporary files, 3-23, 5-2
JOBDUMP option, 6-28
Jobs

defining software facilities, 6-53
definition, 1-1
deleting, 6-46
naming, 3-3
preparation, 1-6
processing flow, (figure) 1-5
processing time, 3-3, 4-5
renaming, 6-48
restarting, 2-11, 6-42, 6-43, 6-45
scheduling, 1-6
,terminating, 1-8

JPROC calls
allocating a file (ALLOC), 5-10
assigning previously allocated files

(ACCESS), 5-8

Index

calling JPROC definitions, 8-6
controlling spooled output (SPOOL), 5-37
description, 5-1
formats, C-7
JPROC definitions, 8-3
linkage editor (LINK, LINKG), 5-16,

5-21
personalizing print output (WRTBIG and

WRTSML), 5-33
setting up temporary work files (WORK

and TEMP), 5-2
too many devices for same volume, 5-13

JPROC definitions
calling, 8-6
coding rules, 8-1
description, 8-1
ending (END directive), 8-5
naming (NAME directive), 8-4
parameter referencing, 8-10
parameter types, 8-3
priorities among set symbols, keyword

parameters, and positional
parameters, 7-1 7

searching alternate library files, 8-9

lndex-7
Update A

Index

set symbols, 7 -5
starting (PROC directive), 8-3
storing, 8-7

JPROCS (See Procedures)
JSET, job control stream

description, 7-10

K

priorities among set symbols, keyword
parameters, and positional

parameters, 7-17

Keyword parameters, priorities, 7-17

L
Label field, A-1
Labels

changing disk file, 4-40
(See also LBL job control statement)

LBL job control statement
description, 2-4, 4-35
device assignment set for disk, 3-20
device assignment set for diskette, 3-20,

3-21
device assignment set for tape, 3-15
different versions of a file, 4-39
expiration and creation date of file, 4-37
file cataloging, 6-26
identifying files, 2-4
job step temporary files, 3-23
multivolume files, 4-36
position of file on tape volume, 4-38

LCB job control statement
description, 6-11
linkage editor JPROC call, 5-24

LDA option, 6-29
LENGTH parameter, VFB statement, 6-18
LFD job control statement

adding card input, 3-10
extending tape volumes, 4-22

lndex-8
Update A

device assignment set for disk, 3-20
device assignment set for diskette, 3-20,

3-21
device assignment set for tape, 3-15
device assignment set for workstation,

3-21
minimum control stream, 3-1
naming files, 2-7, 3-5
naming print and punch files for system

programs, 2-8
optional parameters, 4-44
reserving extent storage area, 4-44
specifications for existing files, 4-45

Library files
alternate, searching for JPROCS, 8-9
description, B-1
load module location, 4-46

LINKand LINKGJPROC calls, 5-16
LOADM and INCLUDE statements, 5-21
parameters, 5-22

LINK option, 6-29
Linkage editor

automatic execution, 6-29
generatiilgLOADM and INCLUDE

statements, 5-21
JPROC call, 5-16
program name, 3-6

LNKLOD, 5-1 7
Load code

buffer, 6-11
changing, 5-20
name, 6-13
unique, specifying, 6-11

Load library file (See YLOD)
Load modules

automatic execution, 6-28
changing contents, 6-56
identifying, 3-6
linkage editor, 5-16
locating, 4-46
main storage needs, 4-2
program name, 3-6
saving, 5-26
searching for, option, 6-53

UP-9986 Rev. 1

•

•

•

•

•

•

SIT statement, 6-53
temporary changes, 6-56

LO ADM control statement, 3-7, 5-21
Local date area, user, 6-41
Local status set symbols, 7-10
Lock ID, 4-36
LOG option, 6-29
Logical files, 4-44
Logical unit numbers

M

ALTJCS statement, 8-9
card reader, 3-10
description, 2-2
different volumes on same device, 4-12
DVC statement, 3-4
DVCVOL JPROC call, 5-13
equating to device type code, 6-10
multiple volumes in a file, 4-13
printing block characters, 5-33
tape, 3-15

Macro library file, B-1
Magnetic tape (See Tape)
Main storage

dump option, 6-27
job use, 2-12
maximum/minimum size, 6-30
needs, 4-2, 4-3

Master
assigning, 6-30
definition, 6-30

MASTER=destination option, 6-30
MAX option, 6-30
Menu services, 6-72, 6-7 4
Messages

error (See Error messages)
operator, 6-50

MIN option, 6-30
Minimum control stream, 3-1
Mismatches, 6-14
MISMCHAR parameter, LCB statement,

6-14

UP-9986 Rev. 1

Mode characteristics, tape volumes,
(table) 4-22

Module names, 5-21
Monitor routine, 6-37
MTC job control statement, 6-20
Multifile diskette volumes, DVCVOL

JPROC call, 5-14
Multitasking, 4-4
Multivolume files

accessing previously allocated, 5-8
assigning file serial numbers, 4-34
online simultaneously, 4-27

MXT option, 6-31

N
NAME directive, 8-4

Index

NAME parameter, LCB statement, 6-13
NDI parameter, EXT statement, 4-34
NOCMP parameter, SPL statement, 6-3
NOHDR parameter, SPL statement, 6-3
NOP job control statement description, 7-4
Normal termination, 2-10
NOSCHED option, 6-31
NOTSTL parameter, SPL statement, 6-3
NOUPD parameter, SPL statement, 6-3
NSCAN option, 6-32
NSRCH option, 6-32
NSUB option, 6-32
NULL option, 6-32
NUMBCHAR parameter, LCB statement,

6-15

0
Object codes, linkage editor, 5-18
OFT option, 6-32
Open file table, 6-32
Operand field, A-1
Operating System/3

components, (figure) 1-3
general concepts, 1-3

lndex-9
Update A

Index

Operation field, A-1
Operator messages, 6-50
OPL=option-list option, 6-32
OPRjob control statement, 6-50
OPTION job control statement

abnormal job termination, 2-10
description, 6-38
dynamic skip function from a

workstation, 6-69
embedded data, 6-69
linkage editor JPROC call, 5-21
parameters, 6-27
running a job control stream, 1-5

Options, processing, 6-52
Order-of-search options, 8-9
ORGparameter, ALTER statement, 6-57
Originator

assigning, 6-32
definition, 6-32

ORIGINATOR=destination option, 6-32
OUT option, 6-33
OUT parameter, linkage editor JPROC

call, 5-26
Output, spooled (See Spooled output)
Output file definition, linkage

editor JPROC call, 5-26
Overflow, forms, 6-17
OVF parameters, VFB statement, 6-1 7

p

Page separators
HDR option, 6-28
printing, 4-8
spooled output, 6-1

P ARAM job control statement, 6-51
Parameters

JPROC definitions, referencing 8-9
JPROC definitions, types 8-3
presentation, A-2
priorities among set symbols, keyword

parameters, and positional
parameters, 7-17

referencing, 8-10

Index-IO
Update A

PAUSE job control statement, 6-52
Peripheral devices (See Devices)
Phase names, 6-57
Positional parameters, priorities, 7 -1 7
PRE parameter, SCR statement, 6-25
PREP option, tape volume

DVCVTP JPROC call, 5-16
VOL statement, 4-45

Print cartridge
definition, 6-13
identifier, 6-14
name, 6-13

Print lines, number per inch, 6-17
Print output, block characters, 5-33
Printer

forms control, 6-16
linkage editor JPROC call, 5-24
specifying unique load codes, 6-11

Priorities, set symbols and parameters, 7-17
Priority

calling control streams, 6-48
job preparation, 1-6
job scheduling, 1-6
restarting a job, 6-41
task switching (See Task switching

priority)
PRI option 6-34
PRNTR parameter, linkage editor JPROC

call, 5-24
PROC directive, 8-3
Procedures

alternate library file, 8-9
call statements (See JPROC calls)
coding rules, 8-1
definition, 5-1, 8-1
description, 1-2
statement formats, C-7
storing 8-7
(See also JPROC definitions)

Processing options, introducing, 6-52
Processing time, job, 4-5
Program errors, 4-50
Program name, assigning, 3-6
Programs

automatic restart, 6-36

UP-9986 Rev. 1

•

•

•

•

•

•

changing, adding device assignments,
3-18

execution, 1-8
PRO option, 6-34
Prologue, 2-12
PRT option, 6-34
PSYSDUMP option, 6-34

Q
QGBLjob control statement, 7-18
QUAL job control statement, 4-43
Qualifiers, specifying, 4-43
QUERY option, 6-34
Queue table, 1-6
Quotes, specifying set symbols, 7-12

R
Read password, alternate library file, 8-9
RECV parameter, DD statement, 6-59
REN job control statement, 4-40
Renaming a job, 6-48
REPEAT option, 6-35
RES parameter of// DVC, 4-9
RESET parameter, ALTER statement, 6-58
Restart facility, 2-11, 6-42
RESTORE parameter, DD statement, 6-59
RETAIN parameter

DATA statement, 6-8
SPL statement, 6-1

Rewinding tape, 6-22
RLIB parameter, linkage editor

JPROC call, 5-25
Rollout facility

description, 2-12
job scheduling, 1-7

ROUTE job control statement, 6-4
RPG II, naming your files, 2-8
RST job control statement

description, 6-41
restart facility, 2-11

RUN job control statement, 6-48

UP-9986 Rev. 1

RUN parameter of// DVC, 2-2
Run processor

description, 1-5
run-time set symbols, 7-5
SIT statement, 6-53
task switching priority, 4-48
terminating if errors, 6-38
validating input, 6-52

Index

RUN statement, DATA statement, 6-8
Run-time conditional job control statements,

7-1
Run-time set symbols, 7-5
RV JC$BLD command, initiating job

control dialog audit file processing
Section 9

RV job control statement, 6-48

s
SAVE option, 6-35
Saved translate control streams, calling,

6-49
Saved tapes, 3-1 7
SCAN option, 6-36
SC JC$BLD command, initiating the job

control dialog, 9-1
Scheduling priority, 4-2
SCR job control statement, 6-24
Scratch files

JPROC calls, 5-3, 5-5
linkage editor, 5-29

SCRATCH parameter, VOL statement, 4-25
Scratching unwanted files, 6-24
SCRl parameter, linkage editor

JPROC call, 5-29
Screen format services (SFS), 3-21, 6-72
SEGALL parameter, 5-7
SECURE parameter

SPOOL JPROC, 5-41
SPL statement, 6-3

SERIAL option, 6-36
SET job control statement

changing the date (SET DATE), 6-39
communications region (SET COMREG),

6-40

lndex-11
Update B

Index

description, 6-39
establishing LDA in job prologue, 6-41
setting UPSI (SET UPSI), 6-40

Set symbols
assigning values with keywords, 7-13
enclosed quotes, 7-12
global, 7-5
local, 7-10
priorities, 7-17
substitution in embedded data, 6-27

SEVERE option, 6-37
SFT job control statement

description, 6-53
DLOAD facility, 2-13

Shared code data management, 6-53
SIG option, 6-37
SKIP job control statement

branching, 2-11
description, 6-63
unconditional branching, 7-2
workstation, 6-69

Snapshot dump, 6-27
Software conventions, A-9
Software facilities, defining, 6-53
Source library file, B-2
Source module access, 6-78
SPACE parameter, LCB statement, 6-14
SIZE parameter, DD statement, 6-59
SIZEn parameter, DD statement, 6-59
Software conventions, A-9
Specific inclusion, 5-25
SPL job control statement

description, 6-1
linkage editor JPROC call, 5-24

Spool buffers, 4-7
SPOOL JPROC, 5-41
Spool subdirectory entry, updating, 6-3
Spooled output

controlling, 6-1
sending to auxiliary printers, 6-4
sending to DDP sites, 6-4
sending to RBP sites, 6-3

Spooling
changing environment, 5-24
diskette files, 6-8

lndex-12
Update A

input card data, 6-6
sending output to auxiliary printers, 6-4
sending output to DDP sites, 6-4
sending output to RBP sites, 6-4

SPL statement, 6-1
Start of data(/$) job control statement, 3-12
Statements, job control (See Job control

statements)
STD parameter, linkage editor

JPROC call, 5-24
STOP command, 2-10
SUB option, 6-37
Supervisor, 1-3
Switch setting, UPSI, 6-38
Switching priority (See Task switching

priority)
Symbionts, 1-4
Symbols, set (See Set symbols)
YCAT, 6-26
SYSDUMP option, 6-37
YJCS

adding cards to control streams, 6-61
calling control streams, 6-48
description, B-2
restarting a job, 6-42
storing job control streams, 1-9

YLOD
description, B-1
locating load module, 4-46

YMAC, B-1
Y0BJ

ALIB and RLIB parameters (LINK
JPROC call), 5-25

description, B-1
SYSRES, temporary work files, 5-3, 5-5
YRUN

locating load module, 4-46
preparing a job for execution, 1-6
temporary work files, 5-3
using the linkage editor, 5-18

YSA VE, running a job control stream,
1-12

YSRC, B-1
System commands, 6-46

UP-9986 Rev. I

•

•

•

•

•

•

System libraries, B-1
System object library file, B-1
System operator, communicating with, 6-50
System support software, 1-3

T
Tape

device assignment set, 3-14
DVCVTP JPROC call, 5-16
files, specifying date, 6-39
labeled, 3-17
logical number and file name, 3-15
marks, 6-21
MTC statement, 6-20
units, controlling, 6-20
volume serial number, 3-15
volumes (See Tape volumes)

Tape volumes
extending, 4-22
indicating position of one of several files,

4-38
mode characteristics, (table) 4-22
positioning, 6-21
special characteristics, 4-21
(See also Volumes)

Task switching priority
specifying with the EXEC statement, 3-7,

4-48
specifying with PRI option, 6-34

Test pattern page, 6-3
Time of day, block characters, 5-35
TRACE option, 6-37
Tracks, 2-6
Transfer address, ENTER parameter

(LINK JPROC call), 5-31
Translated control streams, calling, 6-49
TSK option, 6-37
TYPE parameter

u

LCB statement, 6-14
VFB statement, 6-18

Index

UID job control statement, 3-22, 4-11, 4-16
Unconditional branching, 7-1
UNDEFINED option, 6-38
UNEQUAL option, 6-38
USE job control statement

dialog processor, 3-22, 6-76
library services, 6-78
menu services, 3-22, 6-74
screen format services, 3-22, 6-73
source module access, 6-78

USE parameter, VFB statement 6-18
User-id, host-id pair (See Destination)
User local data area, 6-41
User program switch indicator (UPSI)

setting, 6-39
testing (SKIP statement), 6-64

TBLK parameter, EXT statement, 4-30 V
TEMP JPROC call

changing extent specifications, 5-6
description, 5-2
using your own volume, 5-5

Temporary work files
changing extent specifications, 5-6
job step, 3-23, 5-2
setting up, 5-2
using your own volume, 5-5

Termination, job, 2-10
TEST option, 6-37

UP-9986 Rev. 1

Version number
block characters, 5-36
file, 4-39

Vertical format buffers
changing, 5-24
skip codes, 6-2
VFB statement, 6-16

Vertical line positioning, 6-16
VFB job control statement

description, 6-15

lndex-13
Update A

Index

linkage editor JPROC call, 5-24
SPL statement, 6-3

VOL job control statement
description, 4-19
device assignment set for disk, 3-20
device assignment set for diskette, 3-20,

3-21
device assignment set for tape, 3-15
DVCVOL JPROC call, 5-13
extending tape volumes, 4-23
ignoring or changing volume serial

number, 4-24
multivolume files, 4-19, 4-27
sharing disk volumes, 4-24
tape volumes, special characteristics,

4-21
VOL parameter, temporary work files, 5-5
Volume serial numbers

alternate library file, 8-9
description, 2-3
ignoring or changing, 4-23
multivolume files, 4-19, 4-36
tape, 3-15
temporary work files, 5-5
VOL statement, 4-19

Volume table of contents (VTOC), B-2
Volumes

data-set-label diskette file allocation, 2-7
different on same device, 4-12
disk, sharing, 4-24
disk file area allocation, 2-5
format-label diskette file allocation, 2-5
identifying files, 2-3
multiple, assigning file serial numbers,

4-36
multiple, online simultaneously, 4-27
releasing (freeing), 6-22
tape, extending, 4-22
tape, special characteristics, 4-21
tape labels, 3-17
temporary work files, 5-2, 5-5
too many devices, 5-13
VOL statement, 3-14, 4-19

lndex-14
Update A

w
Work files

linkage editor, 5-29
temporary, setting up, 5-2
(See also Scratch files)

WORK JPROC call
changing extent specifications, 5-6
description, 5-2
using your own volume, 5-5

Workstation
assigning more than one to a file, 4-10,

4-15
building a job control stream

(figure) 9-2
changing control stream execution, 6-35
communicating with operator, 6-50
device assignment set, 3-21
dynamic skip function, 6-69
master, reassigning, 6-30
originator, reassigning, 6-32
releasing (FREE statement), 6-23

WRTBIG JPROC call, 5-33
WRTSML JPROC call, 5-33

x
XUF option, 6-38

UP-9986 Rev. 1

•

•

•

•

•

•

• UNISYS

USER COMMENTS

We will use your comments to improve subsequent ed1ttons

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No) (Revision No) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S A)
Thank you for your cooperation

FOLD

FOLD

Ill Ill
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 - ES-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11,,,,1,1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

-'

•

•

•

•

•

•

• UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A)
Thank you for your cooperation

FOLD

FOLD

I I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 - ES-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1.;1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

I.

•

•

•

• NOTES

•

•

•

•

•

• NOTES

•

•

•

•

•

NOTES •

•

•

•

•

•

•

•

•

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
o Addition o Deletion D Revision D Error

Comments

Name

Title Company

Address I Street, City, State, Zipl

Telephone Number

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
o Addition D Deletion D Revision D Error

Comments

Name

Title Company

Address !Street, City, State, Zipl

Telephone Number

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
D Addition D Deletion o Revision D Error

Comments

Name

Title Company

Address !Street, City, State, Zipl

Telephone Number

BUSINESS REPLY MAIL
First Class Permit No. 21 Blue Bell, PA

Postage Will Be Paid By Addressee

Unisys Corporation
OS/3 Systems Product Information Development
PO Box 500- E5-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

BUSINESS REPLY MAIL
First Class Permit No. 21 Blue Bell, PA

Postage Will Be Paid By Addressee

Unisys Corporation
OS/3 Systems Product Information Development
PO Box 500- E5-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

BUSINESS REPLY MAIL
First Class Permit No. 21 Blue Bell, PA

Postage Wil I Be Pa id By Addressee

Unisys Corporation
OS/3 Systems Product Information Development
PO Box 500- E5-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
If MAILED IN THE
UNITED STATES

NO POSTAGE
NECESSARY
If MAILED IN THE
UNITED STATES

NO POSTAGE
NECESSARY
If MAILED IN THE
UNITED STATES

•

•

•

•

•

•

