@

UCT-281 Rev. 7/87

UNISYS

System 80

0Ss/3
Job Control
Programming Guide

This Library Memo announces the release and availability of Update B to the System 80 0S/3 Job Control Programming
Guide, UP-9986 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

0S/3 job control is the part of the operating system that manages system resources, prepares programs for execution,
and starts program execution.

This guide provides an overview of job control, describes its basic concepts, and explains how to use it through detailed
instructions and specific examples.

This update documents the following changes for Release 13.0:

* Additional printer device type codes and logical unit numbers have been added to appropriate examples.
¢ The use of more main storage to speed up job processing has been clarified.

® The JCL for using multivolume files online simultaneously has been corrected.

¢ The handling of STAND1 (standard) forms has been changed.

* The CARTID parameter of the LCB job control statement has been clarified.

¢ The JOBDUMP feature of the OPTION job control statement has been clarified.

* The PRO and SERIAL features have been added to the OPTION job control statement.

¢ The format of the DD (data definition) job control statement has been expanded.

o Keyword S80 has been expanded to include the Model 7E.

[}

Miscellaneous typographical and other nontechnical corrections have also been made.

You can order the update only, or the complete manual with all updates. To receive only the update, order UP-9986 Rev.
1-B. To receive the complete manual, order UP-9986 Rev.1.

LIBRARY MEMO ONLY | LIBRARY Mi
Mailing Lists Mailing Lists ' ~ Library Memo for
MBOO, SAB, and SAE MBW and MBO1 UP-9986 Rev. 1-B
(66 pages plus Memo)

RELEASE DATE:
January 1990

PUBLICATIONS

‘ ‘ UPDATE
| System 80

0s/3
Job Control
Programming Guide

UP-9986 Rev. 1-A

This Library Memo announces the release and availability of Update A to the Systern 80 0S/3 Job Control Programming
Guide, UP-9986 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

This update provides an index and a set of tab breakers. The content of the manual is unchanged.
Copies of Update A are now available. You can order the update only, or the complete manual with the update, through

your local Unisys representative. To receive only the update, order UP-9986 Rev. 1-A. To receive the complete manual,
order UP-9986 Rev. 1.

Mailing Lists Mailing Lists) Library Memo for
v . MBZ, MCZ, MMZ, MBW, MBOO, and UP-9986 Rev. 1-A
) , M28U, and M29U MBO1
pa— (31 pages plus Memo)

February 1989

System 80

0s/3
Job Control
Programming Guide

This Library Memo announces the release and availability of the System 80 0S/3 Job Control Programming Guide,
UP-9986 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

Operating System/3 (0S/3) job control is the part of the operating system that manages system resources, prepares
programs for execution, and starts program execution.

This revision documents the following changes for Release 12.0:

¢ The ID and IGNORE parameters have been added to the LFD job control statement.

* The explanation of the TESTPG parameter for the SPOOL JPROC has been expanded.

* The STL parameter has been added to the SPL job control statement.

® Anexplanation of the HDR parameter for the SPL job control statement has been added.
¢ The ROUTE job control statement has been modified to handle one to eight destinations.

¢ Some destinations to which you can send spooled output using the ROUTE job control statement have been
modified. Examples are included.

* The GOSUB and IMMOVE features have been added to the OPTION job control statement.

* The MSGSUPP parameter has been added to the DD job control statement.

The Julian date is now available to the RUN processor control statement via the INQuire SYS parameter, JUL.

Additional copies may be ordered through your local Unisys representative.

Destruction Notice: This revision supersedes and replaces System 80 0S/3 Job Control Programming Guide released
on Library Memo dated February 1984. Please destroy all copies of UP-9986, its updates, and library memos.

Mailing Lists Mailing Lists Library Memo for
MBZ, MCZ, MMZ, MBW, MBOO, and UP-9986 Rev. 1
M28U, and M2SU MBO1 A

{316 pages plus Memo)

51 Rew 787 October 1988

UNISYS

UNISYS

System 80
0S/3

Job Control

Programming
Guide

Copyright © 1988 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

0S/3 Release 13.0 January 1990

Printed in U S America
Priced ltem UP-3986 Rev. 1 - Update B

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in such License or Agreement. Unisys cannot
accept financial or other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using the Business
Reply Mail form at the back of this manual or by addressing remarks directly to Unisys Corporation, 0S/3 Systems
Product information Development, P.0. Box 500, Mail Station E5-114, Blue Bell, Pennsylvania, 19424, U.S.A.

PAGE STATUS SUMMARY

ISSUE: Update B - UP-9986 Rev. 1

Page Update Page Update Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover B 3 thru 9 Orig.| |Index Tab Breaker A
10 thru 14 B 1 thru 10 orig.
Title Page/Disclaimer B 15 Orig. 11 B
16 B 1 thru 10 Orig.
PSS iii B 17 orig. 12 thru 14 Orig.
18 B
About This Guide Tab Breaker A 19 thru 27 Orig.| |User Comments Form
v, vi Orig. 28 B
vii thru ix B 29 thru 33 Orig.] |Back Cover Orig.
34 thru 37 B
Contents xi thru xvi Orig. 38 thru 43 orig.
xvii B 44 B
xviii, xix orig. 45 orig.
46 B
1 Tab Breaker A 47, 48 orig.
1 thru 11 orig. 49, 50 B
12 B 51 thru 53 orig.
54 B
2 Tab Breaker A 55 orig.
1 orig. 56 8
2 B 57, 58 Orig.
. 3 thru 13 Orig. 59, 60 B
61 thru 78 Orig.
3 Tab Breaker A
1 thru 3 orig.| |7 Tab Breaker A
4, 5 B 1 thru 15 orig.
6 thru 23 Oorig. 16 B
17 orig.
4 Tab Breaker A
1, 2 Orig.{ |8 Tab Breaker A
3 B 1 thru 15 Oorig.
4 thru 26 Orig.
27 B 9 Tab Breaker A
28 thru 50 Orig. 1 B
2 thru 11 Orig.
5 Tab Breaker A 12 B
1 thru 26 orig.
27 B Appendix A Tab Breaker A
28 thru 38 Orig. 1 thru 10 Oorig.
39 B
40, 41 Orig.| |Appendix B Tab Breaker A
1, 2 Orig.
6 Tab Breaker A
1 Orig.| |Appendix C Tab Breaker A
2 B 1 thru 23 orig.

. Technical changes are denoted by a change bar in the margin.

UP-9986 Rev. 1

i
Update B

About This Guide

Purpose

This manual is one of a series designed to help the programmer use the Unisys
Operating System/3 (0S/3).

Scope

This guide specifically deseribes job control and explains how to use it.

Audience

The intended audience is the novice programmer with a basic knowledge of data
processing but with little programming experience, and the programmer whose
experience is not on Unisys systems.

Prerequisites

Anyone using this guide should understand basic structured programming techniques.

How to Use This Guide

Read the entire guide to familiarize yourself with the basic concepts it presents; then
use it for reference as needed.

Organization

This guide is divided into four parts as follows:
Part 1. Job Control Overview

Part 1 consists of sections 1 and 2. It tells you what job control is, and how it is used
by the operating system. You learn the basic concepts of a control stream and the
general program logic.

Part 2. Basic Job Control Programming
Part 2 consists of sections 3, 4, and 5. In this part, you become familiar with the basic
job control statements used to run your programs. You also learn about job control

procedure call statements (JPROCS) that can save you coding time and reduce control
stream coding errors.

UP-9986 Rev. 1 v

About This Guide

Part 3. Advanced Job Control Programming

Part 3 builds on part 2. It consists of sections 6, 7, 8, and 9. You will learn how you
can get better performance and response from the computer by using advanced job
control statements that perform functions that cannot be done with the basic set. You
will learn how to write jproc definitions that you can store in the system and how you
can call them when needed.

Part 4. Appendixes

* Appendix A discusses and illustrates the rules used in describing job control
statement formats. You also learn how you should code these job control
statements.

* Appendix B contains supplementary information that increases your
understanding of job control.

¢ Appendix C contains an alphabetical listing of all the job control statements and
their parameters. This can be used as a quick-reference chart.

Results

After reading this document, site administration personnel and workstation or
terminal users will be able to use job control statements and job control procedures to
specify to the operating system what specific work it must do.

Related Product Information

vi

The following Unisys documents may be useful in understanding and implementing
job control.

Note: Throughout this guide, when we refer you to another manual, use the version
that applies to the software level at your site.

Integrated Communications Access Method (ICAM) Utilities Programming
Guide (UP-9748)

This guide describes how programmers can use the utility routines provided by ICAM.
Job Control Programming Reference Manual (UP-9984)

This manual is a quick-reference document for programmers familiar with OS/3. It
describes the job control statements and job control procedures used in a System 80
enhancement to communicate with job control as well as the the procedure definition

statements that allow expansion and conditional modification of the job stream when
you start the job.

UP-9986 Rev. 1

About This Guide

System Service Programs (SSP) Operating Guide (UP-8841)

This guide describes the system service programs. They are utility programs that support the
operation and organization of the operating system. They include the SAT and MIRAM
librarians, the linkage editor, the disk, tape, and diskette prep routines, and various copy
routines.

Consolidated Data Management Macroinstructions Programming Guide
(UP-9979)

This guide describes Consolidated Data Management (CDM), a collection of program modules
that handles the movement of data between input and output devices on your system. It also
describes the consolidated data management macroinstructions, which let you obtain information
about the characteristics of your file or request that consolidated data management process the
files you defined for your program.

Models 3-6 and 8-20 Operations Guide (UP-8859)

This guide describes the hardware configuration of the System 80 models 3-6 and 8-20 and
presents procedures for initializing the system. It also covers all commands and procedures used
in the 0S/3 environment.

Model 7E Operations Guide (7002 3866)

This guide describes the hardware configuration of the System 80 model 7E and presents
procedures for initializing the system. It also covers all commands and procedures used in the
0S/3 environment.

Supervisor Technical Overview (UP-8831)

This manual presents an overview of the OS/3 supervisor and its functions for OS/3 high-level
language programmers and site administrators.

Supervisor Macroinstructions Programming Reference Manual (UP-8832)

This manual describes, for the assembler programmer, the OS/3 supervisor macroinstructions
used for program management, file space management, file access, multitasking, and spooling. It
also describes formats and coding conventions for the macroinstructions, and diagnostic and
debugging information, and gives examples of macroinstruction use.

Models 3-6 and 8-20 Installation Guide (UP-8839)

This guide provides the system administrator with the information and procedures needed to
install, tailor, and maintain OS/3 software in a System 80 environment.

Model 7E Installation Guide (7002 3858)

This guide provides the system administrator with the information and procedures needed to
install, tailor, and maintain OS/3 software in a System 80 environment.

UP-9986 Rev. 1 Vi
Update B

About This Guide

Interactive Services Operating Guide (UP-9972)

This guide describes procedures used to communicate with the operating system interactively
through a local workstation or remote terminal. It also describes the procedures for logging on
and off the system and performing various interactive commands.

File Cataloging Technical Overview (UP-9982)

This manual describes the OS/3 file cataloging facility in a System 80 environment for the system
administrator or programmers who are authorized to control use of the system catalog file.

Spooling and Job Accounting Operating Guide (UP-9975)
This guide describes, for the system administrator, basic spooling and job accounting concepts.
Screen Format Services Technical Overview (UP-9977)

This manual describes how programmers can use screen format services to create and maintain
formatted screen displays to be used with their application programs.

Menu Services Technical Overview (UP-9317)

This manual describes the procedures for creating and using menus. It also describes how
menus, displayed on the workstation screen, can be used with assembler, COBOL, RPGII, and
FORTRAN IV programs.

Dialog Processor User Guide/Programmer Reference (UP-8858)

This manual provides the experienced programmer with information on the dialog processor,
which is the interface between the dialog (written in dialog specification language) and the
application program using the dialog.

Distributed Data Processing Programming Guide (UP-8811)

This guide describes OS/3 distributed data processing and the various distributed data
processing program products.

General Editor (EDT) Operating Guide (UP-9976)

This guide describes the commands and procedures needed to use the OS/3 general editor to copy
files, concatenate files, and create and modify library modules and data files interactively from a
workstation.

Consolidated Data Management Programming Guide (UP-9978)

This guide describes consolidated data management and how it moves data between peripheral
devices and programs.

viii UP-9986 Rev. 1
Update B

About This Guide

Assembler Programming Guide (UP-8913)

This guide describes the OS/3 basic assembly language (BAL) and its use. Included are general
language concepts, assembler instructions, and programming techniques.

Data Utilities Operating Guide (UP-8834)

This guide provides the information needed to use the data utilities. Included are instructions on
executing data utilities interactively and as batch jobs.

UP-9986 Rev. 1 iX
Update B

Contents

Part 1.

Section 1.

Section 2.

UP-9986 Rev. 1

About This Guideccoeieiieiieciececceceerecrree e e ee s e e s e e seenaaens \
Job Control Overview
Overview
Why You Need Job Control.............cccccoomieeieecnneenirnnieeeeneee s ereeessessiaesnees 1-1
Job Control Statements and Job Control Streamscc.cceeevvvvivrecnnnn. 1-1
JOD SEEPS ... e aa e s e e s rr e s rane s ssee e s saseasen 12
Job Control Procedures (JPROCS)..........ccoccvvveerrrirrrcecenieensreeseneeesensensseneenes 1.2
Job Control and the Operating Systemcccccceivvvrrvncerniciciciiiccnincnene 1-3
Processing a Job Control Streamcccovrevieiineencneenninnieeennee s 14
Beginning Job Processing - the Run Processorcccccveerveenieencerrneennen. 15
Considering Jobs for Execution - the Job Schedulerccoeemreevveernen. 1-6
Beginning Job Execution - the Job Initializercccccevvvevennerecrcnnriiccneaen. 1-7
Initializing a Job Step - the Job Step Processorcccvceevvievernveeesieenenn. 1-7
Ending the Job Step - the Job Step Processor..........ccevveveeveereecvenieenens 18
Ending the Job - the Job Terminatorccocvveevereercecrecceecee e, 18
Building and Storing Job Control Streams and JPROCS................cc..cnnenee. 19
Saving Translated, Expanded Job Control Streams
(Save/Restore Facility)ccoceeereeecniniiniiciiiitcniececrr s 1-10
Running Job Control Streams.............ccoccvvveeinreririnenniceneniecnee e ssaeennee 111
Basic Concepts
Assigning Devices and Files...............cocooeviriiineiniinneeniineneee e 2-1
Peripheral Devices and Logical Unit Numbers (DVC Statement) 2-2
Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)......... 2-3
File Identifiers (LBL Statement).......ccueeirrcceerirrerreinieeene e 24
Disk and Format-Label Diskette File Area (EXT Statement}cccoeveeneee. 25
Data-Set-Label Diskette File Area (EXT Statement)cceevviieeecvrnrcennnen. 2-6
Logical File Names (LFD Statement)coccccvrveecceirciiinnieneninnnisiniiniennnn. 2-7
Device Assignment Set Place and Durationc.cocoovivvivenccennncenccnnnenne. 29
JOb TEIMINALON..........cccoitverreerieeieeieeeecreresereeeseresees e e eee et ssbbessressnns 2-10
Restarting @ Jobccoeveeoieiniiieencerereee ettt 211
Branching Within a Control Stream...........c..ccecvviviceniiiiiiiciicccineeeeennee 2-11
Jobs and Main SEOTAZe..........oovvvvvemieriierineenre e ne e reereeesesree s sre s ssnees 2-12
JOD ROIFOUL/ROIHIN.......c.ve vttt 212
Minimum and Maximum Main Storage........cccccocvviviiiiiiiiiiniiinniiieenennnne, 212
Dynamic Expansion of Main Storage.........ccocceeeceniniiiiiinienniiiiinncennn 2-13
Xi

Contents

Part 2. Basic Job Control Programming

Section 3. Minimum Control Stream Requirements

What is a Minimum Control Stream?...............cccoeeveveiirevvnienecieseeevesveseenes 31
Constructing the Minimum Control Stream..........coeeeeeveeneeecirerseesresseenne 31

The Beginning of the JOb......ccvovvveeeeeeerieeeeeeecee et 33
[dentifying the DEVICES ...ovveeeeeeeeirereceeeeeecetee e ces s reaseee s 34
Assigning a Logical File Name to the File..........cceevvevrreenrenneeeneenecnsessann. 35
Executing the Programoccveeineeeviesisimnsensennineeessssscessssssessesnes 36

Ending the Basic Control Stream.........cccceeeeeveecmneiiecereeeccreerineesaeene 38

Ending the Card Reader Operationooveeevvievuieirecsinieneeeseeneeseeenens 38

The Control Stream So Far - AReview...............ccccooevevveieninveiniecseeereeeesreens 39
AdAING Card INPUL......ccveeeeeieiecreereeeeee ettt sre v esaesaessee s 310

Card Input and Embedded Datacccuoueeeureeeeeeisiereesreeseeseeere e 312

The Program is Changed - Another Device..............ooeeuveeeceieeeccereveeeesieesenns 314
What is Needed to Use @ TAPEYc..cvivveeeeeenreiniieinecereeneeseeeseossesvenns 314

The Logical Unit Number and File Name for the Tapeccccevvvveveereveecnennns 315
Supplying a Volume Serial Number for the Tape........cceeveevereeceeecnsrvenns 315
Labeled Tapes for File Identification...........cceeeeeeeeeeivneiirceceeseceeeenns 317
Another Programming Change - Another Device Assignment....................... 318
The Device Assignment Set for a Disk or Format-Label Diskette 320

The Device Assignment Set for Data-Set-Label Disketteccoooun......... 321

The Device Assignment Set for a Workstation............cccevveereveeeeeerveeenenn. 321

The UID Job Control Statement............cccoevvvevvoreeneeeeeeerreeennns 322

The USE Job Control Statement.......c..coevveeivevrvecrenereivesresveennns 322

Job Step Temporary and Job Temporary Filescoccoevvveeveneececrenennn. 323
Basic Job Control Statements.................ccceevuveveveieneiniiieeeerneeseessesssenssses 323

Section 4. Getting the Most Out of the Basic Job Control Statements

Optional Parameters Can Improve Job Performance.............cccccoovvverenenn... 41
Improving Your Control of the Jobcoooeeviiviieenirecieecrereereereseesnees 41
A Selection Priority for the JObccvvivveveereiinrieiicee et eresreeae e 42
Main Storage NEES.......cccueeevieeeeeeriireesiescetsecneeesseeseeeeseeseseseesseneens 42
More Main Storage to Speed Up the JObocveeviieeeeeeeceeeeseeeeereeeeenn, 43
Multitasking Specificationc.creeeerseeeriieriisenseeee e e eeerseeseene 44
The Processing Time for the JOb............oveveriieieineeeeeeeeeeeeeeeeeeeeeensenseas 45
Debugging the Control Sream.........ceeeveeieiecieeeiiecre e e eeressveseaesnens 46
Job Accounting and Spool BUIFEIS........eeeeeeeeeeeeee e eeceeeeeeeeeeeeeevenns 47
Printing the Job Log File and Page Headerscoocueeeeeoveveerveecverneennannn. 48
Identifying the Peripheral Devices a Little Furtherccoecvveervevevennennn. 49
Using Multiple Devices, SYSRES, or the Job's SYSRUNFilecoeeveevmeveeenenns 49
Specifying Multiple Workstationsceevveeeieeeeeiieceeeeeeneeeeeenreseeneens 410

Xii UP-9986 Rev. 1

Contents

Section 5.

UP-9986 Rev. 1

More Control Over Peripheral DEVICES.......cceevrerveerrenseensreersresseesesecanens 411
Assigning Devices by Physical Address and Assigning

REAl DEVICESeivrreeneeecrearreersrerteessnessuessuesseessseesssssrseasansranens 411
Is This Device Needed for This Particular Run?..........cccccvveeineneen. 412
Different Volumes on the Same Device.........cocvvverveerrvvenrvecrnnnen. 412

Multiple Volumes in a File? Use Alternate Devices to Decrease
Operator Setup TIME ..ccc.ccvievrverrreerenircnrrenrensieeseesseesseraneens 414
Ensuring that Workstations Are Connected to a Jobccoeunveneeee 415
Specifying a Remote Disk Fileccccecveervirurerieerveniemnieessereseessenesseneanes 416
Indicating Use of the DDP Program-to-Program Facility.............ceceeruvennen. 417
More Information About the Characteristics of Your Volumes...................... 419
More Than One Volume in @ Flgouvevverierieesierieeseessnnsusesnessaeessessanes 420
Special Characteristics of Tape VOIUMEScocvevveveerneerrirneeeeirrrrnneeesnens 421
Extending Your Tape VOIUMES........ccccoevvvrerrrreereeseenseeuereernssesesessnerenees 422
Sharing DiSk VOIUMESvceevrvmrereerruensnnssnessuesssessseessosssnessssessanssaernses 424
Ignoring or Changing the Volume Serial Numbercccceceveeiieevenennn. 424
Muitivolume Files Online SIMUIEAREOUSIY...c.eviveeeeeeeieteceseeeeseressvreensrena 4.27
More Information on Disk and Format-Label Diskette File Allocation 427
THE FIlE TYPE .veivie et esteeeseresseresteessesessaseesssrssessessnssasnssesensen 427
Formatting a File and Using Contiguous SPacecveeevevevrevereervnrennnes 428
Your Disk or Format-Label Diskette File Needs More Space.........cceeuveene. 429
Terms of AllOCAtIoNcviiceeereecsieciercrceereeceerereesreesreensesnnseseessanassnsens 430
AllOCAtion AMOUNLSecvvireeeererecreecreeenreenreesssrsseeesserseessnssessessasssessons 431
Changing the Specifications of a Previously Allocated File...........cccceeeuueee. 433
Allocating Space in the Fixed-Head Area of Your 8417 Disk...........cc........ 4.34
No Terminate Option for Insufficient Extent Space.........cccoevvereercceennnen. 4.34
Information About Data-Set-Label Diskette File Allocation 434
Using Your File Identifier More Efficientlyc.coeeeniiieiinienenceenieinene 435
Multivolume File? Assign Each Volume a File Serial Number 436
The Expiration and Creation Date of the Filecoovmrverricvveniveeenernnenns 4-37
indicating the Position of the File when Several Are on a Tape Volume........ 4.38
Different Versions of @ File.......cceeierrireecrrecerieennnsersninnersneessrsnessseeessssenes 439
Changing the Label of a Disk File..........ccccccovirvireircciireenerencccnereeseereneens 440
Specifying Qualifiers for File Identifiersc.ccccccevrivveinecinreneccnenenenne 443
More Information About the Logical Filecccocovvvivvrevvnnreeecrenrcenreeennees 444
Reserving an Extent Information Storage Area.........c.cevcevevreeveereercreennnes 444
Specifications for EXiSHNE FIlES ...eevvvereereriereerrreeeererierreesesseeeesssssnnrecsssnnns 445
Indicating Where the Load Module is Locatedccccoevevuerrerneecnnennnenns 446
Task SWitching Priority.........cocceeceeeremrieecieeciiecin e ececeisecsessneseeeesseesnees 4-48
Avoiding Abnormal Termination Due to Program Errorsceceeeriveennee 4.50
The Job Control Language So Farccocceeeviiinviieineeneninenneeneneesisnnnnnnne 450

Doing It the Easy Way - with Procedure Calls

What is @ Procedure?................oiiceeeeeeeiireeersnesneesseeeeesesssesssessesnsssssssnsesssssone 51
Setting Up Temporary Work Filescccoroviiiiiiiiniiieiiiniinnicincsiiinnenen, 52
USIiNg YOUr OWN VOIUME ...c..eeevieereeeeeeeeeeerreeeeeernneeesesneese s enneessssmeeeenanns 55
Providing the Extent Specificationscccveerecrereerccrrnreecssrnnecrssssnnecsnssnens 56

Xiil

Contents

Xiv

Part 3.

Section 6.

Accessing Previously Allocated Filesccooeeirivirceneeceirieneeeeie e 58
Allocating a File with a JPROC Callcccoovvvirererrecreerieeeenrecseeensees 510
Too Many Devices for the Same Volume.............ccceeveeernecriiecnrrcrennenne, 513
Using the Linkage EdIMOF..............oovvvieeviveirteececceeceeeteseneeceser e sesesseaess 5-16

Generating LOADM and INCLUDE Linkage Editor Control Statements 5-21

Making the Linkage Editor Suit YOUr NEedScvevvuveeeceeeeeieierereereensanee 523
Personalizing Your Print OQutput................oooovevmmreeerineeecteeeereeeesnee s eeeeenee 5-33
Controlling Spooled Output with aJPROC Call.............cooveuveiveiieeieeeeenennn, 5-37

Advanced Job Control Programming

Making Job Control Work for You

Advantages of Using Advanced Job Control Statements.............cccceunn...... 61
Controlling Spooled Output with a Job Control Statement.............................. 61
Sending Spooled Output to Remote Batch Processing Terminals 6-3
Sending Spooled Qutput to DDP Sites and Auxiliary Workstation Printers 64
Spooling INput Card Datacc.ceueveeeveeveieiieceeiierececreeseeeessae st eenesavsneas 67
Spo0ling DiSKEtte FIleS.......coveiveeiriirirentinseisreeseeitessteseesensesessesssssssesenssens 69
Equating Logical Unit Numbers to Device Type Codes............c.coeecerrmrvnnnnn 610
Specifying Unique Load Codes...............cccvereereirirennrenniinesnenisnestesessses 611
Using Forms Control.................ccoveieeiieeieieeeeeeeeeeee e sreseeseesesesaeens 6-16
Controlling Tape UNIts............c.ccovveveeeeiieeneiiniccticnreeesesseesseesseesessasesssesans 6-20
Releasing {Freeing) a Device and Volume..............ccccooveeevemreeceeeseeeeirenrans 6-22
Scratching Unwanted Files................ccoovreeriiienieiieeceeceeeeeee e 6-24
File Cataloging............cceveeuiveriireieticeeeee et esvesaesessaeeons 6-26
Selecting Optional Features...................c.oveieeieeiiiieeeeeeeeeeeeeeeeeeeessesssesesens 6-26
Using the SET Job Control Statementccccooueeeeiiiieccriieeeee e 6-38
Changing the Date..........cuoeeeiiiiiricieeeeerreetee e eeteeteeseeereessessesseesesaes 6-39
Setting the UPSI.......eoeeeieeereeeereetereevcemiresssreseseseesse e st seeneeen 6-39
The CommMUNICAtIONS REZION.covververrireecterseerieesneseossesseeersssseeseessessesas 6-40
The User Local Data Ared (LDA).......ovivveveeeeireeeeec et ceesvesee s 641
ReStarting @ JObc..ooeeieeeicieie et ese st ste s e st eneeean 642
Restarting a Job from @ JOb Step........eevveueeeeeiiecenieeeeeeeeeeeerereseesaens 643
Restarting a Job from a Checkpoint Recordc.ceeveevveevecrireeceeeerrnenens 6-45
Issuing System Commands.................cccocevueniierenneenneeneneeeeriseeeeesesesesssens 646
Calling Control Streams...............o.ccoveivmiivietieeeee e seeeeeeeeeee e e seeresseneens 6-47
Using the RUN/RV Job Control Statements to Call Contro!f Streams........... 6-48
Using CC SC/S! to Call Saved Translated Control Streams....................... 6-49
Communicating with the System Operator or Workstations 6-50
Introducing Processing Optionscecvveereirmireeeeeeereeessesersereesssasessses 652
Defining Software Facilities Needed by Your Job.............ccceeevviivecevrnnenennn. 6-53
Making Temporary Changes to aLoad Moduleccocovvveeveereereennnn, 6-56
Changing Your File Definition at Run Time...............ococoeovvvvevevceeeneeeeeen, 658
Adding Cards to a Stored Control Stream...............c.cooeveeeeeevivvveveesrererssnnns 661
Bypassing Job Control Statementscoeeveeeeeeeereeerireeeeeeeeressenesen. 6-63

UP-9986 Rev. 1

Contents

Section 7.

Section 8.

Section 9.

UP-9986 Rev. 1

Bypassing Job Control Statements to Avoid Abnormal Termination............. 6-68

Dynamic Skip Function from a Workstationccccooeeevnieieccrecnennen. 669

Substituting Embedded Data.............oocceeeueiiniinciieeeeeteeeee e eerane e 669

Replacing Embedded Data Sets in Expanded Control Streams.................... 670
Job Control Considerations for Screen Format Services,

Menu Services, and Dialog Processing............cccocuvvvevvievvviniveeenseeenneenens 672

The USE Statement for Screen Format Services.........oooeeevcevevirnriecnnnn. 673

The USE Statement for Menu Servicescoveevvveneeevriniennieeneeenneesneenns 674

The USE Statement for Dialog ProCessing.......ccoveveeeevivvurreirerireeeesesneens 676

Source Module Access via the USE Statementccccooeeevvevereennennen. 678

Run-Time Conditional and Set Symbol Job Control Statements

Run-Time Conditional Job Control Statements.............cccoevermneeenirerncirecnnieeenn 71
Unconditional BranChingeeeveereeecireesrimricieeeceeseeiescsneessvesssvesseeses 7-1
Conditional BranChingeoveeeeeeeeerriieiiireeeiscirereeesicneieseesnnsreeeeesssseessenes 7-2
Providing Targets for Branching.........c.cccevvvevviveeeverenneenisereesivesssneensnses 74

Run-Time Set Symbols...............c..cooiieiiiiininvnrnnineneese e eseeseesens 75
Global Status Set SYMDOIScovvveievverenireniririerreee e eve e 75
Local Status Set SYMbBOISeeeeeverrieeicceier e e 7-10
Specifying Set Symbol Values in QUOLES..........ccccvvereriiveerreennnrrrecreennnne 7-12
Using Symbols to Examine Job and System Related Values and

FACIIIES .. vvvveeeeserrecreenesrererresesnerrsseessseessseesssesesssnsessnanssssnessssanessons 7-13

Priorities Among Set Symbols, Keyword Parameters, and Positional

Parameters..............cccooviieriirinieieniieecnrere e e e e s e e e e saee s e e s eaeesaeaeaeeas 7-17

How to Write and Call a Job Control Procedure Definition

The Benefit of Procedure Definitions..............ccoveeeeveiiiiieiirieecceieee e ceiieee e 81
COAING RUIESoovvieiii it eccte e s eerre e e s satre e e e s aree s snataeesensbnaaesnnnens &1
Parameter TYPES..........ccoovvveiieriiererecreeereveeesriveesesnneneessnsreassesasasnressessnesens 83
The Start of the JPROC Definition.............coeevvervecieeniiicienieeccirecreeeeeeeseneees 83
Naming the JPROC Definitioncccocveveveremnrrerecreenrsieernreenenesessnssssnsessnnes 84
Ending the JPROC Definition............ccccvveirieeinrerenrnencnneenernresssessneesssesessseenss 85
Calling JPROC Definitionscccccceniiieerreirerercnensterntreees e sseeeseesnessenes 86
How JPROC Definitions Are Storedccccoevvmeeiirriiieceeeiecervessenne e 87
Specifying an Alternate Library File to be Searched for JPROCS................... 89
Parameter ReferencCingooeeeeeiiiereieceeeecrereee e crrereeeeseeneessesvrenesessnons 810

Using the Interactive Job Control Dialog

The Function of the Job Control Dialogccovvveeeriiiriiiciee e 91
Building a Control Stream with the Job Control Dialog..........cccccevreerceernnnnen. 93
Building a User JPROC with the Job Control Dialog......c..cceeeeevvervveereecernnenns 98
Entering Embedded Dataooeeeemeeiiiecieeicerereee st reeeeeseeveeesees 98

Changing Dialog ReSpONSesccccccvveeeiirircererecrreenscnceieenessnteessssnnenesesennne 99

XV

Contents

Xvi

Part 4.

Appendix A.

Appendix B.

Appendix C.

Appendixes

Statement Conventions

Job Control Statement FOrmat..............c.ccoeeerienineireeenreenssissesiseseceanscssesesseses Al
How Job Control Statements Are Presentedococoeeveemeenereeeceseereereens A2
Coding CONVENLIONScovvrreeivrceceernsneeererissisnesesessnssssssessssessssessnsemsenne A7
Statement ContinUALIoNccoverrierenireninnerncnssesesesestsseseeseeessesessseseseens A8
Software CONVENLIONSc.c.ooevuieeerieriesirierieseeseesresesnssssnssssssssesesessessens A9

Operation Considerations

System LIBraries..............ccoceereveeenrenesieieesneeeeerin e teeesstesesssssssssessssssnsnsasaes B-1
Volume Table of Contents reeernesesssntressssantesrssanrasesaentsseaesssrssesns B2
Job Control Statement Formats

Job Control Statementsoeeuieeeemeeeneeeeeeeeeseesenessseeesserssssessessssenes C1

Job Control Proceduresccooveiueeceemeneeeeeeeeseseeesesessesssesssssssssessssens Cl1

User Comments Form

UP-9986 Rev. 1

Figures

1-1.
1-2.

2-1.
91.

92.
93.

"IP-9986 Rev. 1

Operating SYSteM/3 (0S/3)....uivuiieriiciiericcrerreesseerensecansenessessossssansssssssssssessssnsssnsssnsennas 13
JOD ProCeSSING FIOWeveereieiiiiererneenererecesseesesseerereasssnesssnnesssaseesassesssessessssssnssssssases 15
Job Region in Main StOrage..........eervecrierenieeienereessesseeeseessenssessssosssssssssssnssssssssnsssnns 2-13
Using the Job Control Dialog to Build a Control Stream or User JPROCc.covnuiiviniininnne 92
Audit Version of the Dialog Processor.......cceeceeereverenee eeerecreseresreesstressrbaesntaessebessraeess 910
Changing Your Dialog RESPONSESccvreveecererverrenesionreessicsssssiesssessenssssssssessnnsanssanes 911

Xvii

Update B

Tables

41.
61.

7-1.

UP-9986 Rev. 1

..

XiX

Section 1
Overview

Why You Need Job Control

To process any program, the operating system must have some necessary instructions
and information. Should the system compile, link edit, or execute a program? Does it
know what files a program uses, which devices to reserve, and how much main storage
a program needs? Should it allocate space for a file? For the operating system to
know what specific work - what job you want it to do and how, you must supply this
type of information to that part of OS/3 called job control.

To communicate with job control, you use 0S/3 job control language (JCL) which
consists of job control statements and job control procedures (JPROCS). The
statements and JPROCS you code make up a job control stream.

Job Control Statements and Job Control Streams

Each of the many job control statements has a different function but they are
combined in a control stream to do a singular job. OS/3 requires that every job have a
control stream. Using three statements, / JOB, / EXEC, and /&, we can show you the
following outline job control stream required for executing a program:

(// JOB MYJOB =P Identifies your job and indicates
the beginning of the control stream.

Job control

stream for // EXEC PROG1 —P Specifies execution of the program PROG1.
executing
a program

\ /& —> Indicates the end of the control stream.

(If the control stream is on cards, /&
must be followed by //FIN. See “Ending the
Card Reader Operation® in Section 3.

These three statements illustrate the idea of a job control stream, but you'll see in
later sections that you must also include statements identifying files and devices.
Additional statements are used depending on the specific function needed to
accomplish your job. You can also include program data in the control stream.

In this guide we’ll explain the function of each job control statement and its
parameters so you can build simple as well as complex job control streams.

UP-9986 Rev.1 1-1

Overview

Job Steps

Any job can have one or more steps. If, for example, you want to execute three
programs, one after the other, you can construct one job control stream with three (job)

steps like this:
// JOB MYJOB
Job step 1
// EXEC PROG1
w
Job named MYJOB / L job step 2
// EXEC PROG2
 Job step 3
// EXEC PROG3
\ /&

A job can have up to 254 job steps. The steps are processed serially and the EXEC job
control statement normally marks the end of each one.

Job Control Procedures (JPROCS)

Besides using individual job control statements in your control stream, you can use job
control procedures (JPROCS).

A JPROC is a series of job control statements that performs a certain function or
routine. JPROCS are supplied as part of the system and you can also write your own.
They are filed in a library and each JPROC has its own name. (See "Building and
Storing Job Control Streams and JPROCS" in this section.) When referenced by that
name in a job control stream, the statements that make up the JPROC are generated
and incorporated into the control stream.

You may frequently need some function that a specific group of job control statements
performs. Instead of coding the same group of statements in every job control stream
requiring that function, you can simply define the statements as a JPROC, then code
the JPROC name.

Compiling a source program, for example, is something that’s done often. If you
include a certain system supplied JPROC name in your job control stream, all the
statements necessary for the language processor to compile your source program are
generated. The following simplified control stream specifies the COBOL language
processor JPROC.

1-2 UP-9986 Rev. 1

Overview

// JOB MYJOB

// COBOL

/&

Causes the generation of job control
statements that identify files and
— devices needed by the COBOL language

processor.

Executes the language

processor so that a source program can

be compiled.

System-supplied and user-written JPROCS are explained in Sections 2 and 3.

Job Control and the Operating System

To better understand what job control does, it helps to know where job control fits into
the operating system.

Unisys Operating System/3 (0S/3) is divided into two parts: the executive and the
system support software components. Job control is part of the executive portion of
0S/3. Together, the supervisor and job control manage job processing for OS/3.
Figure 1-1 shows the executive and system support software components of 0S/3.

EXECUTIVE

SUPERVISOR

JOB CONTROL

SYSTEM SUPPORT SOFTWARE COMPONENTS

DATA
MANAGEMENT

LANGUAGE
PROCESSORS

SYSTEM
SERVICE
PROGRAMS

INFORMATION
MANAGEMENT
SYSTEM

DATA BASE
MANAGEMENT
SYSTEM

COMMUNICATIONS

INTEGRATED

ACCESS
METHOD

APPLICATIONS

EMULATORS

DIAGNOSTIC
PROGRAMS

UP-9986 Rev.1

Figure 1-1. Operating System/3 (0S/3)

13

Overview

The supervisor controls the sequence and position of your programs and system
programs in main storage. For more information on supervisor facilities, see the
Supervisor Technical Overview (UP-8831).

Job control manages system facilities and prepares the system for job execution. In
general it does the following:

¢ Assigns a job number to every active job and symbiont

¢ Analyzes the job control stream

® Checks the order and syntax of control statements

* Expands job control procedures (JPROCS)

® Schedules jobs and queues them according to priority

¢ Allocates peripheral devices and main storage

These and some of the other functions that job control is responsible for are handled
by (system) programs called symbionts. Symbionts are normally executed in response
to a user request that may be in the form of a system console command, a workstation
command, or certain job control statements. Symbionts compete for main storage and
CPU time along with your jobs. The run processor, which begins processing your job

control streams, is a symbiont. We'll be discussing the run processor in the next
section.

Processing a Job Control Stream

14

One way to build a job control stream is to code and keypunch job control statements
on cards.

// EXEC PRGRM1

// JOB MYJOB

UP-9986 Rev. 1

Overview

The cards are placed in a card reader and a request to process the job is made either
by pushing the RUN button on the card reader or by issuing a RUN command from
the system console. When the request is accepted, the cards are read and job
processing begins. Looking at Figure 1-2 you can see that job processing (whether the
control stream is on cards, disk, or data-set-label diskette) involves several steps.

OR

OR

®

i
JOB CONTROL
STREAM ; l
JoB STEP JOB STEP
REQUEST RUN JoB JoB PROCESSOR PROCESSOR Jos
TG RUN 1 PrROCESSOR [~ scHebuLer [~ INmALzER [~ (STEP INI- T (STEP TER- [~™] TERMINATOR
A Joe TIALIZATION) | MINATION)
ACTUAL
EXECUTION
OF YOUR
PROGRAM
'

$YSRUN FILE
(CONTAINS TRANSLATED JOB CONTROL STREAM, INCLUDING EXPANDED JPROCS)

Figure 1-2. Job Processing Flow

A brief discussion of each step in the job processing flow should give you a general idea
of what happens after job control accepts a request to process a job.

Beginning Job Processing - the Run Processor

The run processor begins job processing by scanning the control stream, translating
the job control statements into tables on disk, and expanding JPROCS. At this point,
it also checks the stream for order and syntax errors. If there are errors, no further
preparation of the job is made and job control error messages are generated.

UP-9986 Rev.1 1-5

Overview

Once the control stream is translated, the run processor places it in a system file
$YSRUN (a YRUN file is created for every job being processed). The name of the
job (obtained from the // JOB statement) is entered in a table called the job queue
table. The job queue table contains the names of all jobs waiting to be executed. The
jobs are ordered by a priority specified on the JOB statement (or, as you'll see later, on
other job control statements or workstation/console commands). Within a particular
priority, the jobs are ordered on a first-in first-out basis.

RUN PROCESSOR
. Translates job control statements

L Expands JPROCS

® Checks order and syntax of control stream
L4 Builds control blocks
. Enters job name in job queue table

. Creates SYSRUN file

Considering Jobs for Execution - the Job Scheduler

16

After the run processor prepares your job control stream, processing control passes to
the job scheduler, which checks the job queue table. If there are jobs in the queue
table, the scheduler determines which jobs will be executed next. The job priority and
the availability of system resources (peripheral devices and main storage) is the basis
for this determination.

A job can have one of four priorities: preemptive, high, normal, or low. At any one
time, the job queue table can contain the names of up to 15 preemptive priority jobs,
39 high priority jobs, 71 normal priority jobs, and 15 low priority jobs. The job
scheduler considers preemptive jobs for execution first, followed by high, normal
priority, and low jobs (in that order). Jobs are considered within each priority level on
a first-in, first-fit basis. Lower priority jobs are not considered until there are no other
higher priority jobs in the job queue table. Jobs in HOLD status are not considered at
all.

Before job execution can start, sufficient main storage and the necessary peripheral
devices must be available. The job scheduler checks for both; and if both are not
available, the job is left in the job queue table. A slightly different situation exists if
roll-out is configured with the system. (See "Job Roll-Out/Roll-In" in Section 2.)

UP-8986 Rev. 1

Overview

In addition to checking priority and the availability of main storage and peripheral
devices, the job scheduler maintains the shared code directory, reserves volumes,
maintains a volume use table for all jobs, deletes your job name from the job queue
table, and displays your job name at the system console.

JOB SCHEDULER FUNCTION
® Considers your job for execution by priority

® Reserves devices and main storage for your job so that
job execution can begin

® Deletes the job name from the job queue table

® Displays the job name on the system console

Beginning Job Execution - the Job Initializer

Processing control passes to the job initializer when job execution is ready to begin.
Up to 14 jobs can be executed concurrently.

The job initializer also loads shared code modules, activates job accounting, and
updates job log status.

JOB INITIALIZER FUNCTION

® Builds job preamble

® loads shared code modules
e Activates job accounting

® Updates job log status

Initializing a Job Step - the Job Step Processor

The job step processor performs the functions necessary for initializing and completing
a job step. At this point in job processing, the program specified on the EXEC
statement is loaded and executed.

UP-9986 Rev.1 1.7

Overview

JOB STEP PROCESSOR FUNCTION

{STEP INITIALIZATION})

Reviews volume requirements

Reviews device allocation

Updates system volume use table

Allocates devices and disk space

Locates and updates file control blocks
Locates and posts address of embedded data
Stores logging data

Performs utility functions (rewinding tapes,
scratching files, etc)

Ending the Job Step - the Job Step Processor

The job step processor also performs the end-of-job-step housekeeping duties. If this
is the last step in the job, the job step processor passes processing control to the job
terminator; if not, it retains processing control for initialization of the next job step.

JOB STEP PROCESSOR FUNCTION

(STEP TERMINATION)
Updates job preamble
Initiates burst mode printing of spool files
Records logging data

Scratches job step (temporary) work files

Ending the Job - the Job Terminator

When the last step in the job has been processed, the job terminator receives control to

perform end-of-job housekeeping duties.

18

UP-9986 Rev. 1

Overview

JOB TERMINATOR
4 Deletes job name from system console
® Scratches job temporary files
¢ Scratches job's SYSRUN file
® Requests printing or punching or log and spool files
. Displays job termination message
* Frees memory and releases devices

® C(lears job entries from system volume use table

Building and Storing Job Control Streams and JPROCS

In addition to coding, then keypunching job control statements on cards, there are
other ways of building and storing control streams.

BUILDING/STORING CONTROL STREAMS

. If you have UDS-200 data entry equipment, you can use it offline to place job control
statements directly onto data-setabel diskettes.

* |f your system is interactive, you can use the general editor (EDT) to build control
streams at a workstation. Depending on the instructions you give the editor, the
control stream can then be placed on data-setdabel diskette, in the spool file, or
cards, or in a permanent job control stream library on disk or format-label diskette.
You can specify a permanent SAT library of your own as the stream's destination or you
can use SYSJCS, the system job control stream library. The General Editor (EDT) Operating
Guide (UP-9976) explains the use of the general editor.

L4 if your system is interactive, you can use the job control dialog to build control streams. The
dialog stores the completed stream in SYSJCS. Section 9 explains the interactive job control dialog.

L4 If the control stream is already on cards, data-setabel diskette, or in the spool file,
you can use a FILE system console command or the FILE workstation command to place
the stream in a permanent SAT library. The FILE system console command is explained in
your operations handbook and the FILE workstation command is discussed in the Interactive
Services Operating Guide (UP-9972).

Note: Many of the sample applications and coding examples in this manual are
oriented toward cards, but all the job control functions discussed here can also
be used in an interactive environment.

UP-9986 Rev.1 19

Overview

For JPROCS to function as intended, you must store them in YJCS or your own
SAT library. So whether you use EDT, the job control dialog, or whether you
keypunch the statements on cards, the eventual destination of the JPROC is a
permanent library. See "How JPROC Definitions Are Stored" in Section 8 for more
information on storing JPROCS.

Saving Translated, Expanded Job Control Streams
(Save/Restore Facility)

Before a job can be executed, no matter how often its been executed already, it must
be translated and have any JPROCS expanded first. This is done by the run
processor, and for some jobs (especially those with many JPROCS) this takes a long
time. You can reduce this time by saving the control stream in its translated,
expanded state. Because the run processor can skip the step of translating and
expanding this type of control stream when it is restored and job processing starts, the
job’s execution begins sooner.

To save a job control stream in its translated, expanded state, you simply include the
// OPTION SAVE or // OPTION NOSCHED statement in the control stream. (See
"Selecting Optional Features” in Section 6.) When job processing is initiated and the
run processor finishes expanding and translating the control stream, a copy of the
stream (as it appears in §Y$RUN) is placed in a permanent MIRAM library. You can
specify your own library or you can use the system library YSAVE.

Depending on which OPTION statement you used, processing then proceeds through
execution (OPTION SAVE) or stops as soon as the expanded, translated stream is
placed in the specified library (OPTION NOSCHED). In either case, you'll have a
copy of the expanded stream in a permanent library.

When a translated stream is processed, the OPTION SAVE/NOSCHED statement is
ignored. If you intend to process the untranslated stream, you should remove the
OPTION SAVE/NOSCHED statement. A command different from the one used to
initiate processing of the untranslated stream is used for the translated one. See
"Running Job Control Streams" later in this section for more information.

1-10 UP-9986 Rev. 1

Overview

EXPANDED, TRANSLATED
CONTROL STREAM CONTAINING // OPTION SAVE/NOSCHED CONTROL STREAM

YSAVE

YSJCS
OR

AN ALTERNATE

SAT LIBRARY

CONTROL STREAM PROCESSING

ALTERNATE
MIRAM
LIBRARY

OR
AN ALTERNATE n
SAT LIBRARY

’ YJCS @

ORIGINAL CONTROL STREAM

When deciding whether or not to save expanded, translated control streams, keep the
following in mind: these streams take up more disk space than untranslated ones, you
can’t use them to update a file catalog (see "File Cataloging” in Section 6), and you
can’t change parameters on any of the job control statements. Replacing embedded
data sets is the most extensive change you can make to these streams (see "Replacing
Embedded Data Sets in Expanded Control Streams” in Section 6). Remember, you
cannot use a hyphenated job name if you intend to save your translated control
stream; the save processor does not recognize the hyphen.

Running Job Control Streams

Running a job control stream is a term commonly used in place of processing a control
stream. In OS/3 there are several ways you can initiate the running of a control
stream. These include the RUN/RV system console and workstation commands, the
// RUN/RYV job control statements, the SC/SI system console and workstation
commands, and the / CC SC/SI job control statements. The differences between these
commands and statements are summarized as follows:

* RUN system console or workstation command

This command initiates a job control stream from a workstation or system console
that needs an input device. This may mean the control stream to be run is on
cards, a data-set-label diskette, or in the spool file. It may also mean the control
stream is stored in YJCS or an alternate SAT library file but contains a CR job
control statement and, therefore, will need an input device to complete
processing. (See "Adding Cards to a Stored Control Stream” in Section 6.)

UP-9986 Rev.1 1-11

Overview

1-12
Update B

RV system console or workstation command

This command initiates a stored control stream from a workstation or system
console that does not need an input device.

// RUN job control statement

This statement, when encountered in an executing job control stream, initiates
the running of another control stream. You can use / RUN if the control stream
is on cards or is stored in a library but contains a // CR statement because card
input is needed to complete job processing.

// RV job control statement

This statement is used the same as / RUN except that it initiates a stored control
stream that does not need a card reader.

SC system console or workstation command

This command initiates an expanded, translated control stream (stored in
YSAVE or an alternate MIRAM library) that does not require replacement of
embedded data and, therefore, does not need an input device.

SI system console or workstation command

This command initiates an expanded, translated control stream from YSAVE
or an alternate MIRAM library that needs an input device for the replacement of
embedded data.

// CC SC job control statement

This job control statement, when encountered in an executing control stream,
initiates an expanded, translated control stream from YSAVE or an alternate
MIRAM library that does not require replacement of embedded data and,
therefore, does not need an input device.

// CC SI job control statement

This job control statement is used the same as / CC SC except that it initiates
expanded, translated control stream from YSAVE or an alternate MIRAM
library requiring an input device for the replacement of embedded data.

For information about system console commands, see the appropriate operations
guide. For information about workstation commands, see the Interactive Services
Operating Guide (UP-9972). For information about the / CC SC/SI and

// RUN/RYV job control statements, see, respectively, the "Using the RUN/RV Job
Control Statement to Call Control Streams” and "Using CC SC/SI to Call Saved
Translated Control Streams" in Section 6.

UP-9986 Rev. 1

Section 2
Basic Concepts

Assigning Devices and Files

An important part of writing a job control stream is identifying devices and files and
establishing a logical connection between the files and the program using them. The
following job control statements help you do this:

DD EXT LFD ub VOL
DST LBL ROUTE USE
DVC LCB SPL VFB

The DVC and LFD statements (in that order) are required for every type of file and
device you use. The other statements (when used) must appear between the DVC and
LFD statements. They’re necessary depending on the kind of file, or function you
want performed in relation to that file. As a group, these statements are called a
device assignment set.

// JOB MYJOB

Device // DVC...

assignment

set for a

file used by .
PROG1 // LFD...

// EXEC PROG1
/&

The CAT, DECAT, EQU, FREE, REN, and SCR job control statements are not coded
between the DVC and LFD statements; so, technically, they're not part of a device
assignment set, but their function is related. We'll talk about these in later sections.
For now, though, a brief description of the DVC, VOL, LBL, EXT, and LFD job control
statements should help you become familiar with the overall function of a device
assignment set.

UP-9986 Rev.1 21

Basic Concepts

Peripheral Devices and Logical Unit Numbers (DVC Statement)

A peripheral device is any unit of equipment, distinct from the central processor and
main storage, that allows the system to send or receive data. Some devices, such as
card readers, only handle incoming data (input); some, such as printers and card
punches, can only handle outgoing data (ouput); while others, such as disks, format-
label diskettes, tapes, and workstations, can handle both (input and output).

In OS/3, each type of peripheral device is assigned a specific number called a logical
unit number. You specify logical unit numbers in the DVC job control statement. This
tells job control (the job scheduler) which peripheral devices you need for your job.

Suppose you need a printer because your program produces printed output. The
following information taken from Table A-1 of the Job Control Programming Reference
Manual (UP-9984) shows some logical unit numbers for printers.

Device Type | Logical Device Type and Features
Code uUnit No.

04040000 14, 15 8791 correspondence quality printer
04010000 16, 17 0798 printer, no optional features
04020000 18, 19 9789 printer

04FF0000 20, 21 Any printer, no features specified
04400000 22, 23 9246 printer, no features specified
84100000 24, 25 0776 printer, no optional features
04200000 26, 27 AP9215 Printer, no features specified
04800000 28, 29 0770 printer, no optional features

If you need a Unisys 0776 printer, specify either 24 or 25 on the DVC statement. If
any printer will do, specify 20 or 21.

Device assignment // JOB MYJ0B Device // JOB MYJOB
for the 0776 // DVC 24 assignment // DVC 20
printer // LFD... for any // LFD...
// EXEC PROG1 available // EXEC PROG1
printer

Each logical unit number you use corresponds to a device requirement for your job.

So, if you specify logical unit number 20 in one job step and logical unit number 21 in a
following step, two printers must be available in order for your job’s execution to
begin, even if one is sufficient.

2-2 UP-9986 Rev. 1
Update B

Basic Concepts

// JOB MYJOB W

// DVC 20
// LFD...
. Two printers must be
// EXEC PROG1 available for this
job to run.
// DVC 21
// LFD...

// EXEC PROG2
/% /

" Besides using logical unit numbers, disk devices can be assigned by specifying RES or
RUN. These and other functions of the DVC statement are further discussed in
Sections 3 and 4.

Note: For 0776 printers, the CLASS=parameter should be used if a unique logical
unit number is required.

Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)

Volume serial numbers are used to uniquely identify disk packs, diskettes (format and
data-set-label), and tape reels to the operating system. This number is written
externally (generally on a gummed label) and internally (on the actual recording
surface). Both numbers should match for identification purposes.

The assignment of volume serial numbers takes place when the prep routines
associated with disk, diskette, and tape are performed. See the System Service
Programs (SSP) Operating Guide (UP-8841) for information about prep routines.

When you specify a volume serial number in a VOL statement, job control checks to

make sure that a tape reel, diskette, or disk pack with the matching volume serial
number is mounted. If the wrong volume is mounted, the system notifies the operator.

UP-9986 Rev.1 23

Basic Concepts

In this example

// JOB MYJOB

Specifies any available
» disk device

Device // DVC 5@
assignment // VOL 12345A
for a disk file // LFD...

» Specifies a disk pack with
the assigned volume serial
number of 12345A

// EXEC PROG1
/&

the disk volume whose serial number is 12345A must be mounted for job processing to
continue.

We'll discuss other functions of the VOL statement in Sections 3 and 4.
Notes:
1. OS/3 assumes that all volume serial numbers are unique. The mounting of two

volumes with the same volume serial number at the same time yields unpredictable .
results.

2. 08/3allows a maximum of 151 volumes to be in use by all active jobs. (The
maximum number of volumes allowed for a single job is also 151.)

File Identifiers (LBL Statement)

While a volume serial number identifies one tape, disk, or diskette volume, a file
identifier names (or identifies) a particular file on that volume. The file identifier is
an alphanumeric name physically written on the recording surface of the tape, disk, or
diskette (format and data-set-label). You specify a file identifier on the LBL job
control statement. If you're creating the file, the identifier you specify is assigned. If
the file already exists, job control checks to see that the file identifier specified with
the LBL statement matches one already recorded for a file on a particular volume.
This ensures correct file use.

24 UP-9986 Rev. 1

Basic Concepts

// JOB MYJOB

Device . // DVC 58 If the file,is being created,

assignment set // VOL 12345A MYFILE is the identifier
for a disk file // LBL MYFILE =) assigned. If the file exists,
// LFD... MYFILE is the identifier job

control checks for.

// EXEC PROG1
/&

A file identifier specified on an LBL statement is required for any file on disk,
diskette, or multifile tape volume. If a tape volume holds only one file, a file identifier
may be specified but isn’t required. As you'll see in a later section on spooling card
input, it is sometimes useful to specify an LBL statement (with a file identifier) in the
device assignment set for a card file that’s been spooled.

The LBL statement has other functions that are covered in Sections 3 and 4.

Note: The prep routine for data-set-label diskette automatically assigns a file
identifier of DATA unless you specify otherwise during the prep.

Disk and Format-Label Diskette File Area (EXT Statement)

Whenever you're creating a disk or format-label diskette file, you allocate space for
that file in contiguous areas (on the recording surface) called extents. The amount of
space as well as other characteristics of the file’s extent are specified using the EXT
job control statement. The device assignment set for every disk or format-label
diskette file you are creating must include an EXT statement. It is also required if
you want to change certain extent specifications for a file that already exists.

Using the EXT statement, space on disk or format-label diskette is allocated in terms
of one of the following:

e Number of cylinders
You specify the number of cylinders needed for the file.
¢ Absolute cylinder address

You specify the number of cylinders needed for the file and you also specify the
starting address of the file as an absolute cylinder address.

UP-9986 Rev.1 2-5

Basic Concepts

e Number of tracks
You specify the number of tracks needed for the file.
¢ Absolute track address

You specify the number of tracks needed for the file and you also specify the
starting address of the file as an absolute track address.

® Number of blocks (by cylinder)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of cylinders so the actual
allocation is by cylinder.

¢ Number of blocks (by track)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of tracks so the actual allocation
is by track.

You'll learn more about file space allocation when we discuss the EXT statement in
Sections 3 and 4. For now, it is enough to know that an EXT statement must be
included in the device assignment set when you’re allocating space or making certain
allocation changes for a disk or format-label diskette file.

// JOB MYJOB

// DVC 50

// VOL 12345A
Device assignment // LBL MYFILE This statement specifies four
set for a // EXT MI,C,,CYL,4 ——> cylinders of contiguous space
disk file. // LFD... for a MIRAM (disk) file.

// EXEC PROG1
/&

Data-Set-Label Diskette File Area (EXT Statement)

The prep routine for a data-set-label diskette automatically allocates the entire
diskette for one file and assigns a file identifier of DATA unless you specify otherwise.
If the space was already allocated by the prep routine, there is no need for you to
include an EXT statement in your device assignment set. If, however, the space was
not previously allocated, you must use the EXT statement to allocate the space
yourself. Allocating the space yourself allows you to have control over how many files
the diskette can contain.

2-6 UP-9986 Rev. 1

Basic Concepts

Space on data-set-label diskette must always be allocated by block and it must be
contiguous. Data-set-label diskette files are always one-extent files. For information
about the EXT statement for data-set-label diskette, see "Information about Data-Set-
Label Diskette File Allocation” in Section 4.

Logical File Names (LFD Statement)

We've already talked about how you specify a file identifier (a name that’s physically
recorded on the surface of a disk, tape, or diskette) on the LBL job control statement.
There is another name, however, that is required for every file (not just disk, tape, and
diskette) and must be included in every device assignment set. It is the logical file
name: the name your program references the file by.

You specify it on the LFD (logical file definition) job control statement, which is
always the last statement in any device assignment set. The name you specify
logically (LFD) links the file (name) you reference in your program with the physical
file (LBL) defined in your job stream’s device assignment set. The names that you use
are:

e InBAL

The name from the label field of the file definition macroinstruction.

If: Then:
1 10 16
// DVC 50 Device assignment
FILE1 CDIB // VOL 12345A set for a newly
// LBL MYFILE allocated file
// EXT MI,C,,CYL,4 referenced by the
// LFD FILE1 program as FILE1

e InCOBOL (COBL74)
The LFD field of the implementor name from the SELECT clause.
If: Then:

12

// LFD INFIL

SELECT CDS ASSIGN TO CARDREADER-INFIL-F // DVC 30 Device assignment set
for the card file

(In basic and extended COBOL, the LFD name corresponds to the first eight
characters of the file name from the SELECT clause. If an external name is
specified, however, then use the external name instead.)

UP-9986 Rev.1 2-7

Basic Concepts

28

* In FORTRAN

The device number from the READ or WRITE statemént, prefixed by FORT.

If: Then:
1 7 10 // DVC 90
// VOL TAPE®1 Device assignment
READ(6, 10) // LBL PAYFIL set for a tape file

// LFD FORTé

e RPGII

The file name from the file description specification.

If: Then:
pr— FILETYPE // DVC 20 Device assignment
TYPE FILEDESIGNATION _ // LFD PRINT set for a print file
END OF FILE
SEQUENCE
PAGE FILE FILE FORMAT
NO. LINE NAME -
NO. 2lels
213|9 a| stock
5 g % o E LENGTH
Z|Z | lwig
t 213 5(6]|7 1314151617118 19120 23
Ol }0,1,0|FPRT NIT, | (=) Bl

The file names used for printer and punch card files in programs supplied by Unisys
(such as the compilers and the linkage editor) are standard system file names. A
printer file is always PRNTR, and a punch card file is always PUNCH. So, if you want
the printed output from a compilation, for example, the LFD statement for the print
file device assignment set is / LFD PRNTR. These logical file names apply only to
programs supplied by Unisys. In a job or job step that executes a user program, you

must supply your own logical file names (for the printer, punch, plus any other files)
on the LFD job control statement.

When using any other Unisys routines (such as the data utility routines), specify the
standard system file names shown in the coding examples in the corresponding user
guide.

These and other applications of the LFD statement are discussed in Sections 3 and 4.

UP-9986 Rev. 1

Basic Concepts

Device Assignment Set Placement and Duration

There is no strict rule for the placement of a device assignment set in a job control
stream: simply place the device assignment set somewhere between the JOB

statement and the EXEC statement.

// JOB MYJOB

. — Other job control statements

// DVC 50

// VOL 12345
// LFD DSKFIL1
// LFD PAYROLL

. -g———— Other job control statements

// EXEC PROG1
/&

Where a multiple step job is concerned, just remember that a device assignment set
specified in one job step is normally effective for that step as well as any that follow.

Consider this example.

// JOB MYJOB

// DVC 20

// LFD PRTFIL

Job step 1 // DVC 90

// VOL T00001
// LBL TAPE1

ﬁ // LFD PAYRATE

// EXEC PROG1

UP-9986 Rev.1

Device assignment sets for a print
file and a tape file. The assignments
are effective for job steps 1, 2,

and 3.

continued

29

Basic Concepts

// DVC 5@

// VOL 1234A Device assignment set for a disk

// LBL DSKFIL1 file. The assignment is effective for
// LFD PAYROL job steps 2 and 3.

Job step 2 9

L // EXEC PROGZ

. Any of the device assignments
Job step3 4 // EXEC PROG3 > specified in job steps 1 and
2 are effective for job step 3.

\ : /
/&

In the preceding example, PROGI can reference only PRTFIL and PAYRATE. It

cannot reference PAYROL. PROG2 and PROGS3 can reference PRTFIL, PAYRATE,
and PAYROL.

Job Termination

There are two ways in which a job can terminate: normally or abnormally.

1. Normal Termination

This is initiated by the control stream, the program, or the workstation or system
console operator. Generally, it occurs after the last job step, but it can also be
caused by the operator using the CANCEL or STOP operator command, or by the
program issuing a cancel instruction. If terminated by the CANCEL system
command or program instruction, the entire job terminates immediately. This
includes the currently executing job step plus all subsequent job steps (if any) in
the job. The STOP operator command terminates a job when the job step
currently executing is finished.

2. Abnormal Termination

This is caused by program errors or by control stream errors (syntax order). If
caused by program errors, you can get a main storage printout (dump), which can
be used to debug your program, provided that you have placed an OPTION
DUMP statement in the control stream prior to the job step that caused
termination. The OPTION job control statement is covered in "Selecting Optional
Features” in Section 6. If caused by a control stream error, a message explaining
the error is displayed on the system console.

2-10 UP-9986 Rev. 1

Basic Concepts

In anticipation of program errors, you may use the ABNORM=label parameter of the
EXEC statement. This parameter causes a skip forward in the job control stream so
that the job finishes executing and doesn’t terminate abnormally. If, however, the
operator issues a cancel instruction, the job terminates normally.

All terminations result in the deallocation of the system facilities (peripheral devices,
main storage, disk work areas, etc) allocated to the job.

Restarting a Job

What if your job terminates abnormally - specifically when your program is executing?
If the program only processes a few records, you can rerun the job from the beginning
without any great loss; but, if the program processes many records, rerunning the job
increases processing time and cost. To help avoid this, OS/3 provides a restart facility
that permits you to resume execution of your job from a particular job step or a
checkpoint record. See "Restarting a Job" in Section 6 for more information.

Branching Within a Control Stream

When you write a program, you can set alternate paths for the program to take.
Normally, program statements execute consecutively in the order of their appearance.
However, it is often necessary to alter this normal sequence and skip forward to a
different point in the program - this is called branching. Similarly, alternate paths
can be taken in job control streams. The SKIP and OPTION QUERY job control
statements allow you to skip forward in the job control stream during your program’s
execution to another job control statement. The ABNORM parameter of the EXEC job
control statement allows you to skip forward in the job control stream if your program
causes an abnormal termination. (See Section 6.)

You can also branch from one job control statement to another in a control stream by
using run-time conditional job control statements (they’re called run-time statements
because they are available and effective through the run symbiont). Run-time
conditional job control statements are interpreted and acted upon while the run
symbiont is scanning the control stream. They are not placed in the job’s $YSRUN
file; their actions are completed when the run processor has acted upon them. Only
forward branches are allowed. The job control statements belonging to this category
are GO, IF, and NOP. They are explained in "Run-Time Conditional Job Control
Statements" in Section 7.

UP-9986 Rev.1 2-11

Basic Concepts

Jobs and Main Storage

After the supervisor is loaded into the system, the remaining main storage is available
to job control, symbionts (like the run processor and the job scheduler), your jobs,
shared code, and your programs. Naturally, the amount of available main storage
varies depending on the jobs, symbionts, and programs executing at the time. Job
control assigns a portion of main storage to each job as the space becomes available.
The amount of main storage assigned is that which is needed to execute the largest job
step in the job. When a job is completed, the space it occupied is returned to the
system.

Job Roll-Out/Roll-In

In "Considering Jobs for Execution - the Job Scheduler” in Section 1, we mentioned
that the job scheduler considers jobs for execution by priority and the availability of
main storage and peripheral devices. In general, if the necessary main storage and
peripheral devices are not available, the jobs execution, regardless of its priority,
cannot begin. A different situation exists if roll-out (ROLLOUT=YES) is configured at
SYSGEN time.

With roll-out, high, normal, and low priority jobs are rolled out to disk to provide
enough main storage for preemptive jobs to be executed. When the preemptive
priority section of the job queue table is empty, the job scheduler rolls first the high,
then the normal, and last the low priority jobs back into main storage for execution.
Remember though, even if roll-out is configured, the peripheral devices needed for the
preemptive job must also be available; otherwise, roll-out does not occur.

Note: Rolled out jobs are no longer identified by an asterisk (*) in a job slot header
(models 3 through 6).

Minimum and Maximum Main Storage

2-12

By minimum main storage size we mean the amount needed to successfully execute
the largest step of a job. The maximum size is the amount that can be used, if
available, to improve or speed up job step execution. As you'll see in Section 4, you can
specify the minimum and maximum main storage size on the JOB statement or on the
OPTION statement.

The total amount of main storage used by a job step also includes the size of the job
prologue. The prologue contains information (control tables) needed to regulate your
job. The size of the prologue, however, is automatically taken into consideration so
you don’t have to include it in any main storage size that you specify. Just keep in
mind that the job prologue is part of the true main storage requirement for a job. This
is illustrated in Figure 2-1.

UP-9986 Rev. 1

Basic Concepts

1 i 4
A JOB PREAMBLE ’

AN

TASK CONTROL BLOCKS

M
\W
N
2

JOB ACCOUNTING TABLE JOB
PROLOGUE

LOCAL DATA AREA

SHARED CODE TABLE

)2 DISK STORAGE) JOB REGION
1 EXTENT INFORMATION 1 LENGTH

SPOOL CONTROL TABLE AND BUFFERS

PHASE LOAD TABLES

SAT/CDM ACCELERATION
CODE |

3N\,
NS

JOB STEP LOAD MODULE LENGTH AREA

2\
ANY
\

Figure 2-1. Job Region in Main Storage

Dynamic Expansion of Main Storage

Your job may require dynamic expansion of its initial main storage allocation to load
software modules (data management modules, for example), or to accommodate other
program modules called by your job. This capacity for dynamic expansion of the job
region is called the DLOAD facility. For more information about this facility, see
"Defining Software Facilities Needed by Your Job" in Section 6.

UP-9986 Rev.1 213

® Section 3
Minimum Control Stream Requirements

What is a Minimum Control Stream?

A minimum control stream consists of only those job control statements needed to
properly direct the execution of a job.

Let’s assume you want to execute a program that has been compiled, link edited, and
stored in a library. This particular program does not use any input (cards, tape, disk,
etc.) and the only output is directed to the printer. The purpose of the program is to
print constants on adhesive-backed mailing labels, like this:

()

NAME

ADDRESS

. CITYy STATE

ZIP CODE

_ y

Granted, this isn’t a widely used application, but it illustrates a bare minimum control
stream.

Constructing the Minimum Control Stream

In order to run this program, we have to construct a control stream to tell the
operating system what to do with it. Since the needs of the program are simple, we
need very few job control statements.

UP-9986 Rev.1 31

Minimum Control Stream Requirements

First, a JOB job control statement is needed to indicate the beginning of the job to the
operating system. Every job entering the system must start with a JOB control
statement. Each job step does not need a JOB control statement, only one for the job
as a whole. Next, since there is a print output, a DVC job control statement is needed
to assign a printer to the job. And finally, every peripheral device we use has a file
associated with it; every file needs a file name. An LFD job control statement
provides the file name.

The DVC and LFD job control statements make up a basic device assignment set.
Since the printer is the only peripheral device used by our program, no other device
assignment sets are required.

In fact, there are no other processing options needed for this program. We are now
ready to initiate the execution of the job step (our entire job consists of only one job
step). We need an EXEC job control statement for this.

Now our program has all the job control statements that it needs to function. But,
when it is finished, we have to tell the system that our control stream is finished. We
need a /& job control statement.

Briefly, we have indicated all the job control statements needed for this simple
program. They are:

e JOB

e DVC
e LFD

¢ EXEC
¢ /&

We will cover each of these job control statements in its proper sequence. We will
show all the parameters available for these job control statements, but, at first, only
those parameters that are required will be described, along with any parameters that
are generated by default. The optional parameters will be introduced into the
discussion of job control at the appropriate time.

But, before we start our control stream, you should read the statement conventions in
Appendix A. They explain how the job control statements are presented in text (how
you can tell which parameters are optional, which are required, how a default option
is shown, etc.) and how you code them.

32 UP-9986 Rev. 1

Minimum Control Stream Requirements

The Beginning of the Job

The JOB job control statement is the first job control statement that you need. Its
format is:

//Isymbol] JOB jobname],

[,minl[,max]}, {tasks . [max-time
1 SUP

p
H
N
L

LOG HOR
NOACT
NOLOG
NONE
BOTH

[,print-option-list]l[,acc-noll,nXml{, { ACT ,{NOHDR}

As you can see, it has quite a number of parameters. You can specify the name of the
job, the priority, how much main storage is needed, the amount of tasks in a job step,

‘ how long the job should take, special information for display on the system console,
accounting information, spooling buffer size, and log information (where your
accounting record is kept).

The only parameter we are interested in right now is the jobname parameter, and any
default parameters (shown by shading) that are generated.

The jobname parameter does just what it implies: it names the job. It consists of one
to eight alphanumeric characters. Do not hyphenate the job name if you plan to save
the job. The save processor does not allow or recognize hyphens.
For example, we assign the name POCO to the job. It’s coded as:

// JoB POCO
By default, the job has a normal scheduling priority (N) and one task (1).
There is a special feature of the jobname parameter that helps you ensure that unique
job names are always assigned - you can use trailing ampersands (&) in the job name.
You could, for example, code:

// JOB POCO&&&&

When the stream is processed, the system replaces the ampersands with unique
numbers.

UP-9986 Rev.1 33

Minimum Control Stream Requirements

When would you use this feature? If you have a job control stream (POCO for
example) that is used frequently by different personnel - perhaps even concurrently
from workstations - all the users could use POCO&&&& and be assured of having
unique job names assigned. It is recommended that if you use this feature, you use at
least three trailing ampersands.

You can override the parameters specified on the JOB control statement through
selected features of the OPTION job control statement, which is explained in
"Selecting Optional Features" in Section 6.

Identifying the Devices

The next entry needed in the control stream is for the printer. The DVC job control
statement is used to request the assignment of peripheral devices to a job. Its format
is:

RES oPT

RUN IGNORE
ALT

I

0
REQL(N)]
[REAL

//Lsymbol] DVC lnnn[(n)]] faddr] W

The DVC job control statement specifies the logical unit number associated with a
peripheral device type. It can also be used to assign alternate devices, or to specify
that the job should be executed even if the requested devices are unavailable.

Here, again, we are only interested in the required parameter specifying the logical
unit number. There are no default parameters.

The nnn is a decimal number indicating the logical unit number of the device. By
looking at the following information taken from Table A-1 of the Job Control
Programming Reference Manual (UP-9984), we see that the category for printers is in
the range of 14-29. If we are willing to use any printer that is available, we use logical
unit number 20 or 21. But, it just so happens that there also are a Unisys 0776
printer subsystem and a Unisys 0770 printer subsystem available in the system. Our
program uses a special character that is only present on the 0776 printer, so we will
use logical unit number 24.

34 UP-9986 Rev. 1
Update B

Minimum Control Stream Requirements

Logical Device Type Device Type and Features

Unit No. Code

14, 15 04040000 0791 correspondence quality printer
16, 17 04010000 0798 printer, no optional features
18, 19 04020000 0789 printer

20, 21 Q4FF 0000 Any printer, no features specified
22, 23 04400000 9246 printer, no features specified
24, 25 04100000 0776 printer, no optional features
26, 27 04200000 AP9215 printer, no features specified
28, 29 04800000 0770 printer, no optional features

You’ll notice that there are two other choices for this parameter: RES and RUN. They
will be discussed and used in later examples.

We can now add the DVC job control statement to our control stream as follows:

Notes:
1. The (n) portion of the nnn parameter is used only when the logical unit number
indicates a workstation device.

2. Logical unit numbers can be changed at system generation (SYSGEN) time to suit
the needs of a particular installation. You must be aware of any changes because
they could cause device assignment problems within your control stream, especially
if you're using JPROCS supplied by Unisys.

Assigning a Logical File Name to the File

Every device assignment set in the control stream ends with the LFD job control
statement. This associates the file defined in the program with the file information in
the control stream. Its format is:

//Tsymboll LFD [filename .n . |EXTEND
{*filename} {8} INIT
PREP
1D
IGNORE

The LFD job control statement specifies the file name of the file. It’s also used to
reserve main storage for information about disk file extents, write over the
information of the file, and add to the data already in the file.

UP-9986 Rev.1 35
Update B

Minimum Control Stream Requirements

The filename parameter specifies the name of the file you are going to use, and must
correspond to the name given to the file in the program. The file name for the LFD job
control statement is determined in the following manner:

® The basic assembly language (BAL) programmer uses the name in the label field
of the file definition macroinstruction.

¢ The COBOL programmer uses the external name from the SELECT entry in the
environment division. (If the external name is omitted in COBOL 68, use the file
name from the SELECT entry.)

* The FORTRAN IV programmer uses the device number from the READ or
WRITE statement, prefixed by FORT.

* The FORTRAN 77 programmer uses F0 followed by the unit number unless a
specific name was specified in the OPEN statement.

¢ The RPGII programmer uses the file name from the file description specification.

The filename parameter is normally one to eight alphanumeric characters, but if you
are using a data management file, it has a maximum of seven characters. This is
because data management allows only one to seven characters in the label field of the
file definition macroinstruction.

If an asterisk is placed in front of the file name on the LFD job control statement, it
means this is an input-only file; you cannot write on it. The operator should be
notified of this so he can take appropriate action.

For our control stream example, we’ll assume our program is a COBOL program. The
file name for the printer in the FD entry is WRITEOUT. We can now add the LFD job
control statement to our control stream.

// JOB POCO
// DVC 20
7/ LED:WRITEOUT

Executing the Program

36

We have defined all the requirements of the program to the operating system. Now
we have to provide a job control statement to call the sorted program from a library
and initiate execution. This is done with an EXEC job control statement. Before the
program is actually loaded, any outstanding tape and disk mounting requests are
completed.

UP-9986 Rev. 1

Minimum Control Stream Requirements

The format of the EXEC job control statement is:

$YSRUN

//Isymbol] EXEC program-name|,{ library-name] [[,switch-priorityl[,ABNORM=label]
YLOD

The EXEC job control statement identifies the name of the load module. It is also
used to specify the library containing the load module, the task switching priority, and
any action to be taken if the program causes an abnormal termination.

Once more, we are only interested in the required parameter and any default
parameters generated.

The program-name parameter identifies the load module to be executed. Every
program that is successfully compiled and link edited creates a load module. Every
load module that is created and every routine supplied by Unisys must have a name.
The LOADM linkage editor control statement assigns a name to a load module; the
EXEC job control statement calls the load module by a program name. These names
must agree.

For example, you link edit your program with the module name TESTR on the
LOADM linkage editor control statement. The linkage editor creates the load module
with the name TESTR. When you want to execute this program, your EXEC job
control statement uses this same name: TESTR.

If, when you link edit your object module, you do not use a LOADM linkage editor
control statement, the load module name, by default, is LNKLOD.

Assume that this program is stored in a library from which it can be retrieved as many
times as needed. When the program was link edited, the linkage editor was
instructed to place the load module in a specific, permanent library; otherwise, it
automatically would have been placed in the job’s §YSRUN file, which is only a
temporary file. Assume it is located in the system load library file ($§Y$LOD), and the
load module name is LABELS. Since YLOD is the default parameter generated for
the load library, we only need to specify the program name, which is the same as the
load module name: LABELS.

We can now add the EXEC job control statement to our control stream as follows:

// JOB POCO

// DVC 20

// LFD WRITEOUT
71 EXEC:LABELS

By default, the lowest available task switching priority established at system
generation time is used.

UP-9986 Rev.1 37

Minimum Control Stream Requirements

Ending the Basic Control Stream

So far, we have provided all the job control statements needed to construct a basic
control stream: JOB, DVC, LFD, and EXEC.

This control stream is all the system needs to execute our simple program. But, after
the program executes, the system returns to job control to obtain the next job control
statement. Because the job is finished, a /& job control statement is used to signal the
end of the job. Its format is:

/&

This statement has no parameters, but it can have comments. These comments have
no effect on the system; they only provide a means of annotation. The comments must
be separated from the /& job control statement by at least one blank column.

The statement conventions for coding more than one job control statement on a line
(multistatement coding) are presented in Appendix A. The /& job control statement,
however, must be the only job control statement on a line.

Adding the /& job control statement, along with some comments, our control stream
looks like this:

// J0OB POCO

// DVC 20

// LFD WRITEOUT

// EXEC LABELS

7& END-OF -LABEL-J0B

Ending the Card Reader Operation

We have signaled the system we are finished processing. Now, we have to terminate
the card reader operation - this informs the system that there are no more cards
associated with the job. We do this with a FIN job control statement. Its format is:

//Tsymbol1 FIN
There are no parameters.

We can now add a FIN job control statement to our control stream, as in the following
example:

// JOB POCO

// DVC 20

// LFD WRITEOUT

// EXEC LABELS

/& END-OF - LABEL - JOB
// FIN

38 UP-9986 Rev. 1

Minimum Control Stream Requirements

The FIN job control statement also signals the end of card input when merging job
control statements with stored control streams, submitting data cards as input for a
stored control stream, or storing a complete control stream.

Note: Using the FIN job control statement is unnecessary when input is on data-set-
label diskette or in the input spool file.

The Control Stream So Far - A Review

We have defined everything the system needs to know about the job. It has been
given a name, the system was instructed what load module to use, and the job has
been assigned the peripheral device it needs. The program is ready for execution.

This control stream represents only a minimum application. We have only scratched
the surface of the capabilities of the OS/3 job control. Throughout the rest of this user
guide, we are going to build on this minimum control stream by adding and modifying
job control statements.

Let’s assume that the program with a load module name of LABELS was recompiled
and link edited after it was modified to accept input from the card reader. This new
input contains name and address information that will be printed on the adhesive-

backed labels along with the constant information as shown in the following sample.

[)

NAME JOHN A. SMITH

ADDRESS 143 S. 52ND. ST.

CITY HOMETOWN STATE __ PA.

ZIP CODE_18908

UP-9986 Rev.1 39

Minimum Control Stream Requirements

Adding Card Input

Since the job will now accept card input, we must provide a device assignment set for
the card reader. This means we have to insert a DVC and LFD job control statement
for the card reader into the control stream. Once again, their formats are:

RES

//Lsymbol] DVC { nnnl(n)] l

//Lsymbol] LFD { filename } ,{ n} .

RUN

*filename

, [addr

OPT
IGNORE
ALT

I

0
REQ[(n)]
| REAL

8

[,HOST=host-id]

J J

EXTEND
INIT
PREP
1D
IGNORE

The following section of Table A-1 in the Job Control Programming Reference
(UP-9984) indicates that the category for card readers is 30-35.

Logical Device Type Device Type and Features
Unit No. Code
30, 31 08FF0000 Any card reader subsystem, no features specified
32, 33 08200000 8719 card reader, no features specified
34, 35 08800000 0716 card reader, no features specified

For this example, we will assume the system you're using has only one card reader, a
0719 card reader. For a logical unit number, there are four alternatives. We can use
32 or 33, which assigns a 0719 card reader specifically, or, since the 0719 card reader
is the only one we have, we can use 30 or 31, which allows us to use any available card

reader.

310

UP-9986 Rev. 1

Minimum Control Stream Requirements

If the system had two card readers, both of a different type, and a particular card
reader is needed, you must be more specific in your assignment. If it’s immaterial
which card reader is used, you could assign the logical unit number for any card
reader (30 or 31).

A point to remember about logical unit numbers: if you don’t care about the specific
device type, use the logical unit number that assigns any device within the category
(20 and 21 for printer, 30 and 31 for card readers, etc.). In that way, if there is more
than one type of device, you get the first one available. For instance, suppose you
selected logical unit number 25 (Unisys 0776 Printer Subsystem) but there is also a
0770 printer connected to the system. The 0776 printer has 40,000 lines waiting to
print, while the 0770 printer has a backlog of only 500 lines. By specifying only the
0776 printer, you must wait for the other 40,000 lines to finish printing. By specifying
any printer, the output is sent to the first available printer. The logical unit number
we are going to use for the card reader is 30.

Note: When requesting the assignment of more than one device of the same type (two
printers, for example), be sure you request the assignment of any specific devices
you need before you request the assignment of general ones. This ensures that a
specific device you may need (the 0770 printer, for example) will not be
allocated for use as a general printer when it’s needed as a specific device.

Now that we have a DVC job control statement for the card reader, we need a
corresponding LFD job control statement. Since this program is written in COBOL,
we check the SELECT entry in the COBOL program and find that the file name is
CARDIN. This filename is coded in the LFD job control statement.

We can now add the device assignment set for the card reader to the control stream.
It can be placed anywhere in the control stream, with the following restrictions:

¢ It must be before the EXEC job control statement.
¢ It cannot be within embedded data.

* It cannot be within the device assignment set (DVC through LFD sequence) for
another device,.

UP-9986 Rev.1 311

Minimum Control Stream Requirements

Card Input and Embedded Data

312

To accept data input from a card reader, we must inform the card reader in some way
that it is data to be read. In many cases, this data is caused to be read at execution
time by data management. In this kind of application, the data cards follow the / FIN
card that caused the card reader to be turned off previously. All that is additionally
needed is a /* card after the data signifying end of data. There are no other
parameters required, and no comments are permitted in the comment area of the
card. This /* statement is always required for any type data. Thus, to our control
stream we can now add the data, followed by the /* end-of-data statement, and run
our job, which consists of the LABELS program. Basically, we are saying to the
processor, run my job POCO which executes the program called LABELS - my data is
a card file after the FIN statement when you are ready to execute. This will print the
name and address information, plus constants, as shown, on adhesive-backed labels
that the operator has previously placed in his printer. The following example
illustrates this control stream:

// JOB POCO
/7 ove 20
// LFD WRITEOUT
/7 bvC 30
// LFD CARDIN
// EXEC LABELS
/& END-OF - LABEL-JOB
// FIN
data: cards
/*

Note: You should be aware, however, that in the case of multiple files, if the first
program in the series does not read all of its data cards (along with the /* that
signals end of data), the next program step will pick up where the previous one
left off. Additionally, if you are programming in higher level languages, such
as RPG, COBOL, or FORTRAN, you cannot read multiple card files in a single
program without closing and reopening the files.

Another way in which data cards may be accepted, and which informs the card reader
that data is being input, is the embedded data method. This means that the data is
embedded within the control stream itself. All it requires is a start-of-data (/$) job
control statement immediately after the EXEC statement, followed by the data and
the /* end-of-data. /$ has no parameters, and may appear as the last job control
statement on a multistatement line.

UP-9986 Rev. 1

Minimum Control Stream Requirements

The advantage of this method is that the device assignment set is no longer required
for the reader, since the control stream is already being read. Additionally, the data
being read is instantly accessible, which is discussed later in a section on JPROCS. A
disadvantage is that embedded data in a prefiled job control stream is harder to
change than the data in a card file (which follows the // FIN job control statement).
This is because the embedded data is actually a part of your control stream rather
than a separate card file. Changing embedded data is discussed in "Substituting
Embedded Data" and "Replacing Embedded Data Sets in Expanded Control Streams”
in Section 6. An example of an embedded data control stream is:

// JOB POCO
// DVC 20
// LFD WRITEOUT
// EXEC LABELS
/%
data-cards
7%
/& END-OF -LABEL-J0OB
// FIN

You can use this method when you become familiar with the programming techniques
needed by the language you're using - for example, a COBOL ACCEPT or FORTRAN
READ instruction. In fact, programs supplied by Unisys (such as the COBOL
compiler and the data utility routines) use this method. It entails the use of a
supervisor macroinstruction in the program (if it’s assembler language; if it’s one of
the other languages, there are similar instructions that are used). Again, if you decide
to use the embedded data method, the changes to your job control stream are:

1. Remove the device assignment set for the card reader; it’s not needed.

2. Place the data (/$, data cards, /*) after the EXEC job control statement. This is
what’s known as embedded data.

When you use the embedded data method, and you have a 0716 card reader
supporting the 96-column card feature, your data file can use the full 96 characters.
With data-set-label diskette, you can use up to 128 characters. But, even though your
control statements also can be on 96-column cards and data-set-label diskette, only
the first 72 columns (characters) can be used for job control statements.

In addition to embedded data, there is a dummy data set. A dummy data set consists
of only a /$ and a /*. This is used with some language JPROCS. More information
about dummy data sets can be found in the language manuals (COBOL, FORTRAN,
ete.).

You can replace embedded data sets in translated, saved job control streams by using

the DATA STEP job control statement. Refer to "Dynamic Skip Function from a
Workstation"” in Section 6 for more information.

UP-9986 Rev.1 313

Minimum Control Stream Requirements

The Program is Changed - Another Device

So far, the program has been written to read name and address cards and print the
information, plus constants, on adhesive-backed labels. The program has been refined
once more. It is still going to print %mstants. However, the name and address file is
now on magnetic tape, in ZIP Code™ sequence. This tape was created by someone
else’s job. We want to list only the name and addresses of certain ZIP Codes;
therefore, we modify the program to accept a table from the card reader. This table
contains only the ZIP Codes we want to print. The program instructs the system to
compare the ZIP Codes from the table with the file on the magnetic tape and print the
names and addresses that match the ZIP Code table.

We have already provided the device assignment sets for the printer and the card
reader. Even though the format of the card reader input is different (previously it was
the name and address file, now it is the ZIP Code table), no changes are needed to the
card reader device assignment set. It was a program change and does not affect the
job control stream. The logical unit number is still 30 (DVC job control statement),
and the file name in the program is still CARDIN (LFD job control statement). The
only new item we have to provide in the control stream is a device assignment set for
tape.

What is Needed to Use a Tape?

314

We have already said that every peripheral device used needs the DVC and LFD job
control statements. For readers, printers, and punches, this is all that is needed to
complete the device assignment set. However, magnetic tapes have volume serial
numbers, and, optionally, file identifiers. So, the device assignment set for a tape file
could be either

// DVC ...
// VoL ...
// LFD ...

or
// DVC ...
// VoL ...
// LBL ...
// LFD ...

The first step is to provide a logical unit number and file name.

ZIP Code is a registered trademark of the U. S. Postal Service.

UP-9986 Rev. 1

Minimum Control Stream Requirements

The Logical Unit Number and File Name for the Tape

The range of logical unit number for magnetic tapes is 90-127. The name and address
tape is a 9-track, phase-encoded tape. We must be specific. The logical unit number
selected for the DVC job control statement is 100. This gives us any tape drive that
can read a 9-track, phase-encoded tape; the tape unit transfer rate is immaterial.

We can now add this partial device assignment set for tape to our control stream.

// J0OB POCO

// DVC 20

// LFD WRITEOUT
// DVC 39

D CARDIN

/7. LED NAMADD

// EXEC LABELS

/& END-OF - LABEL - JOB
// FIN

/*

These new DVC and LFD job control statements do not represent the entire device
assignment set needed for tape. If we tried to run the job now, it would abort.

Supplying a Volume Serial Number for the Tape

Every tape file used in a job must have a VOL job control statement in the device
assignment set. This identifies the volume to be used. Its format is:

//[symbol1 VOL{ Mcc \ |/ volsn-1| {iS) \ volsn-2| [(S) \ ..
N (NS) (NS)
NMcc (NOV) (NOV)
volsn-1 (S) (PREP) (PREP)
(NS)
(NOV) J r 1 r 1%
1 (PREP) | T volsn-2| {(S) r ﬁ volsn-3| [(S)
(NS) (NS)
(NOV) (NOV)
(PREP) L (PREP)
\ SCRATCH / \ SCRATCH / \SCRATCH /

UP-9986 Rev.1 315

Minimum Control Stream Requirements

The VOL job control statement supplies the volume serial number of the volume to be
accessed by the job. However, a tape volume does not necessarily need a volume serial
number, but it still must have a VOL job control statement.

You can also use the VOL job control statement to: count the number of blocks in the
file; specify the mode characteristics of the tape; request data management to write a
volume serial number; inhibit the checking of volume serial numbers if they are not
known; or, to indicate that the volume may also be used by someone else at the same
time that you are using it (this only applies to disk).

Again we are only interested in the required parameter. This parameter has several
different options, but for this job, only the volume serial number is needed.

The volsn-1 parameter is the 1- to 6-alphanumeric-character volume serial number of
the first volume of the file. A file may span more than one volume. Perhaps the
length of the file made it necessary to use three tapes (volumes) to hold the entire file.
Since this file is on only one volume, only one volume serial number is needed.
Assume it to be TAP111,

We can now add the VOL job control statement to our control stream as follows:

// JOB POCO
// DVC 20
// LFD WRITEOUT
// DVC 30
// LFD CARDIN
// DVC 108
[oTapIn
// LFD NAMADD
// EXEC LABELS
// /& END-OF - LABEL - JOB
// FIN

data cards
/*

This control stream could now be run, provided that the tape is unlabeled (no file
identifier).

0S/3 data management supports a maximum of 151 explicit volume names per file for
disk, diskette, and tape files.

316 UP-9986 Rev. 1

Minimum Control Stream Requirements

Labeled Tapes for File Identification

Just as there can be one or more volumes in a file, there can also be one or more files
in a volume. Suppose the tape volume contained five files. It would be necessary to
have file identifiers on each particular file to access the proper file. Single-file tape
volumes also can have file identifiers. This is done to ensure that the correct file is
used. Even though the volume serial number is checked to see if the proper tape is
mounted, it is possible that this tape does not have the proper file needed for the job.
For example, someone could have inadvertently written on the tape because it did not
have a file identifier to indicate that this tape already contains information to be
saved. By using a file identifier, you indicate this is a saved tape. Had there been a file
identifier on the tape, anyone trying to write on this tape would have been notified
that this is a saved tape.

The LBL job control statement is used to either check or create a file identifier. Its
format is:

//Isymbol] LBL ffile-identifier ,)| |, [file-serial-number) |[,expiration-datel
‘file-identifier VCHECK

. [,creation-datel [, { file-sequence-number }] [,{ generation-number}]

[, {version-number}
1

The LBL job control statement identifies the file. It also can be used to: ensure that
the correct members of a multivolume file are used; indicate the date the file can be
deleted (by a SCR job control statement); indicate the date the file was created;
indicate the position of the file in respect to the other files in a multifile tape volume;
and, specify the generation and version number of a tape file, thus ensuring the most
current edition of the tape file is used.

We only want to ensure that the proper file is on the tape volume, so we need only the
required parameter.

The file-identifier parameter is 1 to 17 alphanumeric characters for tape, card, and
diskette files. Itis 1 to 44 alphanumeric characters for a disk file unless that file is a
scratch (temporary) file; then the file-identifier is 1 to 39 alphanumeric characters. If
the file-identifier contains embedded blanks, it must be enclosed by single quotation
marks.

UP-9986 Rev.1 317

Minimum Control Stream Requirements

Assume that MASTERFILE is the file identifier assigned to this tape file when it was
created. We can now add the LBL job control statement to the control stream as
shown in the example.

1/
//
//
/7
/7
1/
1/

ve s

1/
1/
/&
/&
/7

/*

JO8 POCO
DVC 20
LFD WRITEOUT
DVC 30
LFD CARDIN
DVC 100
VOL TAP111
LBL MASTERFILE
LFD NAMADD
EXEC LABELS
END-OF - LABEL - JOB

FIN
data cards

The default parameters generated indicate this is the only file on the volume (1), and
it is the only edition of the file (1).

Note: File identifiers prefixed by $SCR refer to job step temporary files; those prefixed

by $JOB refer to job temporary files.

Another Programming Change - Another Device
Assignment

318

The site manager has determined the label program doesn’t fulfill all the
requirements for which it was intended. Once more, it must be changed.

The name and address file was copied from the tape volume to a disk volume by using
a Unisys data utility routine. Now, the input name and address file is on disk, the ZIP
Code table is still input from the card reader, and the selected names and addresses,
plus constants, are still printed on adhesive-backed labels. These selected names and
addresses are now going to be saved and output to a file on a tape volume for a later
processing application.

Although there may be many programming changes involved, the control stream
changes are minimal.

UP-9986 Rev. 1

Minimum Control Stream Requirements

The device assignment set for the card reader, the printer, or the tape doesn’t need
changing. Even though the tape was used previously as an input file, converting it to
an output file is only going to involve changes in the program,; it is not reflected in the
control stream. After the tape was copied to disk, the information it contained was
deleted in another procedure. We can use this tape with a volume serial number of
TAP111 as the output tape. We can also use the same logical unit number in the DVC
job control statement. NAMADD is used as the file name for the output tape file in
the program. This allows us to continue using NAMADD as the file name in the LFD
job control statement. However, we are going to give this tape file a different file
identifier. In the previous device assignment set for the tape it was MASTERFILE.
We want to change it to reflect its purpose.

It is no longer a master file for input; it is an output tape - let’s call it OUTPUTTAPE.
This requires a change to the file-identifier parameter of the LBL job control
statement for the tape device assignment set. We do not need to change it, but to
make the purpose and the name agree, we will. Changing the LBL job control
statement makes our control stream look like this:

// J0B POCO
// DVC 20
// LFD WRITEOUT
// DVC 36
// LFD CARDIN
// DVC 100
VoL TAP111
77 UL B0TPUTTAPE
// LFD NAMADD
// EXEC LABELS
/& END-OF - LABEL - JOB
// FIN

data-cards
/*

We still must provide a device assignment set for the name and address file input
from disk.

UP-9986 Rev.1 319

Minimum Control Stream Requirements

The Device Assignment Set for a Disk or Format-Label Diskette

320

The following chart lists the necessary job control statements for the basic disk and
format-label diskette device assignment set.

Your SYSRES
Disk or or
Allocation Format- $YSRUN File
Label (Disk only*)
Diskette
pvC bveC
Previously VOL LBL
Allocated LBL LFD
LFD
bvC bvC
VoL LBL
Not LBL EXT
Allocated EXT LFD
LFD

*A format-label diskette volume cannot be used as your SYSRES volume or the
volume containing the YRUN file.

In our case we have a disk file, the extent was allocated, and the file is not SYSRES or
the job’s YRUN file. So the following job control statements are needed: DVC, VOL,
LBL, and LFD.

The disk pack used for the name and address file fits on a Unisys 8416 Disk
Subsystem. The logical unit number we are going to use for the DVC job control
statement is 64.

Within the program, the file name from the FD entry is DKNAME. This is the file
name for our LFD job control statement.

We need a VOL job control statement to indicate the volume serial number of the disk
we are going to use. We need only the required parameter for the volume serial
number. Assume the site manager had the name and address file copied to the disk
with a volume serial number of DSK001.

Since most disk volumes contain many files, each file needs a file identifier. When the

site manager copied this file, he allocated it with a file identifier of DSKMASTFIL.
We must specify this in an LBL job control statement.

UP-9986 Rev. 1

Minimum Control Stream Requirements

We now have all the information needed for the disk file. We can add the device
assignment set for the disk input file to our control stream and run the job.

// J0B POCO
// DVC 28
// LFD WRITEOUT
// DVC 30

// LFD CARDIN

// DVC 100

// VOL TAP111

// LBL OUTPUTTAPE
// LFD NAMADD
//:DVC 64

END-OF - LABEL - JOB

J// FIN
data-cards

The Device Assignment Set for Data-Set-Label Diskette

The prep routine for data-set-label diskette automatically allocates the entire diskette
for one file and assigns a file identifier of DATA (unless you specify otherwise). When
this file is used, you must include a device assignment set in your job control stream
that consists of the DVC, VOL, LBL, and LFD job control statements. For example:

// DVC 130
// VOL DSL@1
// LBL DATA
// LFD FILE®1

You only include an EXT statement in the device assignment set (and specify your
own identifier on the LBL statement) if the space wasn't already allocated during the
diskette prep routine. See "Information about Data-Set-Label Diskette File
Allocation” in Section 4 for information about the EXT statement.

The Device Assignment Set for a Workstation

The DVC and LFD job control statements are required for a basic workstation device
assignment set. The UID, USE SFS, USE DP, and USE MENU statements are
included under certain circumstances.

UP-9986 Rev.1 321

Minimum Control Stream Requirements

The UID Job Control Statement

The UID job control statement may be used as part of the device assignment set for a
workstation when you want to ensure that specific workstations, identified by user-id
or device address, are automatically connected to a job. This is done before a job’s
execution begins (if the workstation has not already been connected via the
CONNECT command.) Its format is:

//[symbol] UID { user-id-1 yoees | user-id-255
(addr-1) (addr-255)

user-id-1¢addr-1) user-id-255(addr-255)

A maximum of 255 workstations may be specified. You can specify YMAS as a
user-id to assign the job’s master workstation to a job. The user-id parameter is one to
six alphanumeric characters in length. A device assignment set that assigns the
workstation being used by user-id (JONES1) could look like this:

// DVC 200
// UID JONES1
// LFD WKSTN

Assigning workstations is discussed in more detail in "Specifying Multiple
Workstations” in Section 4.

The USE Job Control Statement

322

If you are preparing a control stream for a program that uses screen format services,
menu services, or the dialog processor, you must include a USE job control statement
as part of your workstation device assignment set. Three different forms of the USE
statement make 1t possible for you to specify which workstation service you want.
These are as follows:

// USE SFS... (for screen format services)
// USE MENU... (for menu services)
// USE DP... (for dialog processing)

Each statement and its accompanying parameters is discussed further in Section 6 in
"The USE Statement for Screen Format Services", "The USE Statement for Menu
Services", and "The USE Statement for Dialog Processing”, respectively.

UP-9986 Rev. 1

Minimum Control Stream Requirements

Job Step Temporary and Job Temporary Files

To satisfy the needs of the software components for disk work areas, files lasting for a
job step and for the length of the job are provided. These files are deleted at the end of
the job step or the end of the job. While these files are primarily used by the software
components, the ability to allocate and use temporary files is also available to you.

Basically, you allocate job step temporary and job temporary files the same way you'd
allocate any disk file. The only difference is you must prefix your file identifier with
$SCR for a job step temporary file and $JOB for a job temporary file. For example, to
allocate a job step temporary file, you could include the following device assignment
set in your job control stream:

// DVC 50

// VOL D12345

// LBL $SCRWORK1
// EXT MI,,,CYL,2
// LFD WORKFIL

When a temporary work file (8SCR, $JOB) is allocated, the file label is modified by job
control to allow concurrent jobs using the same file identifiers to access the proper
work file. Every job in the system is assigned a unique job number. The label $SCR1
in JCL is allocated as $SCRnnnnnl where nnnnn is the job number.

Job step temporary files are automatically deleted at the end of the job step, while job
temporary files are automatically deleted at the end of the job. If the system is
reinitialized in the middle of your job, job control automatically scratches job
temporary files and job step temporary files when it reallocates them.

See "Setting Up Temporary Work Files" in Section 5 for information about using
JPROCS to allocate job step temporary and job temporary files.

Basic Job Control Statements

This section has covered the job control statements needed to run most jobs. In the
following section, we are going to use the basic job control statements and add the
optional parameters, explaining how each parameter affects the performance of the
job.

UP-9986 Rev.1 323

Section 4
Getting the Most Out of the Basic Job
Control Statements

Optional Parameters Can Improve Job Performance

So far, in our discussions of basic job control statements, we’ve concentrated on the
required parameters. A great deal of work can be accomplished using just these
parameters. Sometimes, however, required parameters won’t provide enough
information. In other instances, the ability to provide more information to the system
will speed up job execution. Additional information about a job and its peripheral
devices is supplied via the optional parameters that are part of the basic job control
statements. This section describes these parameters and shows how they are used.

Improving Your Control of the Job

The JOB control statement was used to give a name to the job. It is used also to
specify the following: a selection priority; the main storage size for the job; how many
tasks are in any one job step; how long the job should take; a list of the control streams
on the operator’s system console for debugging purposes; and spooling buffer sizes.
Once again, its format is:

//[symbol] JOB jobname]|,

[,min][,max]|, [tasks , [max-time
1 sup

p
H
|
L

LOG HOR
NOACT
NOLOG
NONE
BOTH

[,print-option-listl(,acc-noll,nXm)|, £ ACT [,{ NOHDR}}

UP-9986 Rev.1 41

Getting the Most Out of the Basic Job Control Statements

As you can see, some optional parameters generate default values when they are
omitted. In the previous discussion of the JOB control statement, only the required
parameter - jobname - was coded. By so doing, we indicated that, by default, the job is
to have normal priority (N) and there is only one task (1). This points up the fact that
when only the required parameters are specified, you are, in many cases, providing
more information about the job than is contained in the required parameters. The
default values were selected because they conform to the most frequently used
programming practices. This allows you to code as short a control statement as
possible. The less there is to code, the less chance there is of making a coding error.

Note: The OPTION job control statement can be used to override individual
parameters of the JOB control statement. Refer to “Selecting Optional
Features” in Section 6 for more information.

A Selection Priority for the Job

Jobs are selected for execution on a priority basis. The second parameter on the JOB
control statement specifies the priority. There are four priorities: low (L), normal (N),
high (H), and preemptive (P). Remember our discussion on the use of priorities in
Section 1, where we outlined how the priority is used by the system for selecting jobs
and what each priority means?

Most jobs are normal priority, which is by default, the parameter generated. If you
need another priority, you have to specify it.

It so happens that the label job named POCO is needed in a hurry, so the system
administrator allowed you to assign high priority. Added to the existing JOB control
statement, it would be coded as:

// JOB POCO,H

Main Storage Needs

When the load module named on the /EXECUTE statement is in a load library on a
mounted disk volume, you don’t have to indicate the minimum amount of main
storage to execute the load module. If the disk volume containing the load module is
not already mounted, you must indicate the minimum amount of main storage needed
to execute the module.

The min parameter does this. The minimum main storage size is specified in decimal
or hexadecimal. The smallest amount that can be specified is 8K decimal bytes (2000
in hexadecimal). The area used by the job prologue is not included in this amount.

42 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Assume the label program needs approximately 12K (12,288) decimal bytes (3000 in
hexadecimal) and that it’s in a load library on your own volume. The JOB control
statement would now be:

// JOB POCO, H,3000
or
// JOB POCO,H,X'3000"

You can also specify the minimum main storage size in decimal. This is done by
coding D'number’ for the min parameter, as illustrated in the following JOB control
statement:

// JOB POCO,H,D*12288*

For the sake of illustrating the omission of positional parameters, this JOB control
statement is coded as follows when the priority is omitted (it would be assigned the
normal priority, by default, by the system):

// JoB POCO, , 3000

See "Coding Conventions” in Appendix A for information about coding numbers in job
control statements.

Note: If ajob consists of multiple job steps, specify only the minimum main storage
size needed by the largest load module.

Consider the possibility that you may be running a 3-job-step job, consisting of
perhaps a COBOL compile, followed by a link edit, and then the execution of the
generated load module. OS/3 knows how much main storage to allocate for both the
COBOL compiler and the linkage editor, but there is no way 0S/3 can know how much
is required for the execution of your program, since it is not generated until after all
the job control has been interpreted. If your generated load module does not use more
main storage than the COBOL compiler (which is larger than the linkage editor, thus
the largest known job step), then your load module will have sufficient main storage
allocated. On the other hand, if your load module is larger than the COBOL compiler,
not enough main storage will be reserved.

More Main Storage to Speed Up the Job

In addition to specifying the minimum main storage, you can also request additional
main storage. This is an amount that can be used, but is not required, to speed up job
execution. However, the program must be structured to take advantage of the
additional main storage; for example, a segmented COBOL program. Some of the
routines supplied by Unisys that use extra main storage in this manner are
sort/merge, linkage editor, and the language translators. Additional memory may also
be advisable when running large assembly programs using many tags. As the
minimum main storage size is specified in decimal or hexadecimal, so is the
maximum,; it is the fourth parameter (max) shown in the format.

UP-9986 Rev.1 43
Update B

Getting the Most Out of the Basic Job Control Statements

We'll assume that the label program was structured to use 41K decimal bytes (A028
hexadecimal) of main storage, if it is available; also, that it uses the high scheduling
priority and needs at least 12K decimal bytes (3000 hexadecimal). Added to our JOB
control statement, it would be coded as follows:

// JOB POCO,H,3000,A028

You can also code X’A028’ to represent the maximum main storage size in
hexadecimal.

You can specify the maximum main storage size in decimal by coding D’number’ for
the max parameter (e.g., D’41000’ instead of A028 or X’A028).

If we omitted the scheduling priority (it would default to normal) and the minimum
main storage size, it would be coded as follows:

// JOB POCO, , A28

Note: If either the min or the max parameter is omitted, the value specified for one is
used for the other. If both are omitted, and the load module is not located in
$YSLOD (on SYSRES) or in an alternate load library on either SYSRES or the
volume containing the job’s $YSRUN file, job control automatically allocates
8K decimal bytes of main storage (2000 in hexadecimal). If you have requested
a_job dump through the OPTION statement (JOBDUMP), and you have not
specified min or max on the JOB statement, job control nearly doubles the
amount of main storage that is automatically allocated. If you specify min or
max and intend to request a job dump, specify at least 14K decimal bytes (3500
in hexadecimal).

Multitasking Specification

If a program is written in BAL, you can create multiple tasks within it by using the
task parameter. This is called multitasking.

So far, we have been saying that job POCO is written in COBOL. For this example,
assume that it is written in BAL, and that we are going to allow for 18 tasks to be
active. The job still needs 12K decimal bytes to execute, but it can use 41K decimal
bytes, and has a high scheduling priority. Adding the multitasking specification
would make our JOB control statement look like this:

// JOB POCO,H,3008@,A028,18

44 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Each task specified requires 256 bytes in the job prologue. The maximum number of
tasks you can have within a job is limited by the maximum size of the prologue (65535
bytes). If we omit the task parameter, job control assumes 1 by default.

Note: There are other tables which require prologue space and their size varies
depending, for example, on the number of files and spool buffers declared
through job control. If you exceed the prologue size (you receive an R289
message and the job is not scheduled), you can reduce the number of tasks, files,
or spool buffers specified.

The Processing Time for the Job

After the same job has run several times, you probably know how long it takes to
execute. Should it run longer, it may mean something is wrong - perhaps there is a
"bug" that has never been encountered before. Rather than waste processing time,
you can set a processing time limit using the max-time parameter. If the job executes
beyond this time limit, a message is sent to the operator, who can either cancel the job
or extend the time limit by any increment. If you specify max-time, you should tell the
operator what action to take if the specified processing time is exceeded.

The max-time limit is specified in minutes. It refers to elapsed wall-clock time or to
elapsed CPU time, depending upon how your supervisor is configured. If you want to
suppress the max-time function completely for a particular job, you can specify SUP in
. the max-time parameter, rather than a number.

The system will adjust the max-time value to allow for the following conditions:

¢ Checkpoint/restart

¢ PAUSE job control statements

¢ SET CLOCK commands

¢ Roll-in/roll-out

If you omit max-time, the time limit set at system generation is used as the default
value. The max-time parameter is supported only on supervisors configured with

NORMAL or MAX timer services. If a timer service is not specified at system
generation, max-time specifications are ignored.

Suppose you know that the job POCO should take no more than 15 minutes to run.
Added to the other parameters of the JOB statement, the max-time parameter is
coded as follows:

// JOB POCO,H,3000,A028, 18, 15

UP-9986 Rev.1 45

Getting the Most Out of the Basic Job Control Statements

Debugging the Control Stream

46

With the print-option-list parameter, you can control the printing of job control
statements and JPROC listing by specifying one or more available options. In a
spooling system, statements are printed (without passwords) in the job log; otherwise,
they are displayed on the system console. This gives a graphic display or printout of
the control stream for debugging purposes. For example, if a particular control stream
is run for the very first time and there are syntax errors in the coding, the system will
generate an error message telling you so. If you have used one of the debugging list
options, you receive a listing of your control stream. It's easier to find errors on this
graphic display or printout than having to look at the punched cards.

The options for this parameter are:

B Lists job control statements with symbol substitution. This is the default in a
spooling system

D Lists job control statements (as they’re read in by the run processor) without any
symbol substitution

P Lists completed job control statements, which are generated by a procedure call
statement in the control stream, showing the values assigned in the procedure
definition statements

E Lists any data contained in the control stream

S Lists all the job control statements skipped as a result of an IF or GO job control
statement

A Combines all the options

W Suppresses the display of job control warning errors on the console or workstation
but not on the job log

None of the options are in effect (the default in a nonspooling system)

You may specify more than one option on a JOB control statement. However, if more
than one option is specified, the parameter group must be enclosed in parentheses.
Each option must be separdted by a comma and can be specified in any order. For
example, (S,P,E) or (P,E,S); when only one option is specified, no parentheses are
needed.

When the D, P, E, or S options are chosen (separately or in combination) you get a

listing of your basic job control statements with symbol substitution even if B is not
specified.

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Let’s assume this is the first time we are running job POCO, and we want to list the
basic job control statements with symbol substitution, the job control statements
generated by a procedure call, and the data. These are options B, P, and E, but since
the option B is in effect when either P or E is chosen, you don’t have to specify it.
Added to the other parameters of our JOB control statement, it would be coded as
either:

// JOB POCO,H,3000,A028,18,15,(P,E}
or

// JOB POCO, H,3000,A028,18, 15, (EiP)

Job Accounting and Spool Buffers

Use the acc-no narameter to provide the account number that has been assigned to
you at your installation. This 1- to 4-alphanumeric-character parameter creates an
entry in the job preamble for this account number, containing the total elapsed wall
clock time. Wall clock time can be defined as the point in time when a job is initiated
for execution, up to the time when the job terminates. Therefore, any time used by
spool input and spool output is not included.

This parameter may or may not be required, depending on the accounting procedures
used at your installation.

Suppose the account number assigned to you is A001. Adding this mformatlon would
make the existing JOB control statement appear as:

// JOB POCO, H,3000,A028, 18,15, (E,B),A001

The nXm parameter sets up buffers for the file. This buffer holds data from the time
it first becomes available until the time it’s needed for processing. Thus, the central
processor does not have to wait as long for data. The job log and any spooled files that
don’t have their own buffers can share these buffers.

When coded, the n is the number of buffers, X is a constant, and the m is the number
of (256-byte) blocks. Whenever nXm is omitted, a single 256-byte buffer (1X1) is
reserved if only the job log is sharing the buffer with your spool files. If other spool
files are also sharing the buffer, two buffers of 512 bytes each (2X2) are allocated for a
total of 1024 bytes.

For example, if you wanted to allocate 2 buffers of 2048 bytes total, you would code:
// JOB POCO,H,3000,A028, 18, 15, (E,B),A001,2X4
The only values accepted for m are 1, 2, 4, 8, 16, and 32. Numbers larger than 32

default to 32. Numbers not in the acceptable range are changed to the lower
acceptable constant (e.g., 6 is changed to 4).

UP-9986 Rev.1 47

Getting the Most Out of the Basic Job Control Statements

Printing the Job Log File and Page Headers

The job log file contains the job accounting records, dumps created as a result of an
OPTION job control statement with the DUMP parameter, and a log, or list, of
messages and job control statements that were displayed on the system console. You
can selectively print this job log file with your job, by using one of the following
parameter choices of the JOB control statement:

ACT
LOG
NOACT
NOLOG
NONE
BOTH

The ACT parameter forces the printing of accounting records, regardless of the system
options in effect. LOG forces the printing of job log records, regardless of the system
options in effect. The NOACT parameter, when used, suppresses the printing of
accounting records. The NOLOG parameter means do not print the log (which also
contains dumps generated by an OPTION DUMP job control statement). If you code
the NONE parameter, both the log and accounting records aren’t printed. The BOTH
parameter allows both the log and accounting records to print. If you don’t specify one
of these parameters, the system options in effect are used.

For example, if you want only the accounting information to print (no log records -
NOLOG), you would code:

// JOB POCO, H,3000,A028, 18, 15, (E,B) ,A001, 2X4 , NOLGE

Cancel and snapshot dumps are never suppressed. If you're running in a nonspooling
environment, this parameter is ignored.

At the beginning of the job log and accounting record printout, a page header, which
consists of several lines of asterisks, is printed. This can be suppressed by coding the
NOHDR parameter on the job control statement; by default, HDR is generated.
Coded, it would be:

// J0B POCO,H,3000,A028,18,15, (E,B),A001,2X4, NOLOG, NOHDR
This parameter is ignored if you're not spooling.
A job log report program is also available that will provide you with a job accounting
report based on the contents of the log file. For more information about the job log

report program, refer to the System Service Programs (SSP) Operating Guide
(UP-8841).

48 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Identifying the Peripheral Devices a Little Further

The DVC job control statement associates a physical device type, specified by a logical
unit number, with your job. It can also be used to: assign multiple device, in a serial
manner, during a job step; provide the physical address of the unit for using a specific
device; or (in a DDP environment), indicate that a disk file is remotely located. Here,
again, is its format:

//Usymbol 1 DVC {nnn[(n)]} A addr W [,HOST=host- id]

RES OPT
RUN IGNORE
) ALT ,
I
0
REQL(N)]
\ REAL

d

Refer to this format when each new parameter is introduced.

Note: A particular job cannot mix RBP destinations with auxiliary printers or DDP
destinations.

Using Multiple Devices, SYSRES, or the Job's SYSRUN File

The first parameter has three choices: nnn, RES, or RUN. (Remember, the (n) portion
of nnn is only used when assigning workstations.)

We have already explained how to use nnn to specify a logical unit number (see
"Identifying the Devices" in Section 3). However, if you want to use more than one
print, punch, or card file in a job, you should assign a different logical unit number to
each file because the run processor flags multiple occurrences of the same logical unit
number in the same job step. If your system contains only 0776 printers, for example,
you can use the logical unit numbers 20, 21, 24, and 25. Sometimes, in a spooling
environment, you may want to assign more than four virtual printers or punches. To
do this, you must use the EQU statement (see "Equating Logical Unit Numbers to
Device Type Codes" in Section 6) to equate additional logical unit numbers to your
devices. You can use any logical unit number that is not already in your system. The
EQU statement is placed just before the device assignment set. To get an 0776
printer when you have already used the logical unit numbers 20, 21, 24, and 25, you
might use the logical unit number 10, as follows:

// EQU 10,0440
// pvc 10

UP-9986 Rev.1 49

Getting the Most Out of the Basic Job Control Statements

The number used for the type parameter of the EQU statement, 0410, is listed in
Table A-3 of the Job Control Programming Reference Manual (UP-9984) as the device
type code for the 0776 printer.

Note: The maximum number of unique devices allowed in a job is 255. The
maximum number of unit record devices (e.g., card readers, data-set-label
diskettes, printers) allowed in one job is 42.

You don’t have to supply a logical unit number for files in SYSRES or the volume
containing the job’s YRUN file. Use RES to indicate that the file is on the SYSRES
volume, or RUN to indicate that the file is on the volume containing the job’s $YSRUN
file, Whenever RES or RUN is used, you can omit the VOL job control statement in
the device assignment set. The system differentiates between which volume is the
SYSRES volume and which volume contains the job’s YRUN file. RES or RUN can
only be used for disk files.

In our control stream, we used this device assignment set for the name and address
disk input file as follows:

// DVC 60

// VOL DSK@01

// LBL DSKMASTFIL
// LFD DKNAME

If, instead of using the disk with a volume serial number of DSK001, the site manager
puts the name and address file on the SYSRES volume, still using the file identifier of
DSKMASTFIL, and assuming the file name in the program is still DKNAME, then the
device assignment set is:

// LBL DSKMASTFIL
// LFD DKNAME

The VOL job control statement is omitted because the file is on SYSRES.

Specifying Multiple Workstations

Suppose you want to access a workstation file from more than one workstation. The
(n) portion of the DVC statement’s nnn parameter allows you to associate up to 255
workstations of the type and characteristics specified by (nnn) with one file. Consider
the following example:

// DVC 200(4)

// LFD WKSTFILE

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

When the DVC statement is specified like this, up to four workstations can be logged
on and then optionally connected (using the workstation CONNECT command) to the
same job. These workstations access WKSTFILE.

If all four workstations must be connected for the job to begin execution, use the REQ
parameter of // DVC, like this:

// DVC 200(4),REQ

The UID statement is used when you want specific required workstations
automatically connected to the job.

The REQ parameter and the UID job control statement are discussed further in
"Ensuring that Workstations are Connected to a Job" in Section 4.

More Control over Peripheral Devices

The format shows there are eight possible choices for the second parameter of the
DVC job control statement: addr, OPT, IGNORE, ALT, I, O, REQ, and REAL. Each
are explained in the following paragraphs, except for I and O, which are explained
when we discuss spooling diskette files. Refer to "Spooling Input Card Data" in
Section 6 for more information.

Assigning Devices by Physical Address and Assigning Real Devices

Every device has a physical address associated with it. This is a hexadecimal number
representing the channel number, control unit address, and device number. It is
assigned by a Unisys customer engineer. You can specify it by using the addr
parameter of the DVC job control statement.

It is unlikely you will need to use the addr parameter because the system can best
assign devices, since it is aware of the requirements of all jobs being run. Your job
may have special needs, however. Suppose you are running in a spooling
environment. You have a large job where the format of the printed output is very
important. You want to bypass spooling so that you can check your printed output
immediately and stop the job, if necessary, to correct the format. Since it is a large
job, you do not want it to go first to a spool file and then print if there are formatting
errors. You would specify the physical address of a real (rather than a virtual) printer,
like this:

// DVC 20,160

UP-9986 Rev.1 411

Getting the Most Out of the Basic Job Control Statements

You may assign a real device and bypass spooling without specifying its physical
address if you use the REAL parameter. The following statement, for example, allows
you to request any real printer:

// DVC 28,REAL

If you use the addr parameter to request a specific tape or disk device, be sure the
volume you want is not mounted on another unit. The // UID job control statement
can be used to assign workstations by physical address. Refer to "Ensuring that
Workstations are Connected to a Job" in Section 4 for more information.

Is This Device Needed for This Particular Run?

Sometimes, all the peripheral devices normally used by the job are not absolutely
needed. You may have a case where a job normally produces print and tape output.
Your system administrator needs the print output in a hurry, but is not worried about
the tape output at this time. If necessary, the job can be rescheduled to produce the
tape output.

Our control stream has device assignment sets for tape and print files. In the DVC job

control statement of the device assignment set for the tape file, we can use the OPT'

parameter. This indicates that the peripheral device is optional; it is not essential to

the running of the job. If it is not available at the time the job is put into execution, all

references to this device are bypassed. .

Added to our DVC job control statement for the tape output file, it would be coded as
follows:

// DVC 100,0PT

Different Volumes on the Same Device

412

Within a job step, job control normally allocates one device for each logical unit
number specified in the control stream. You might, however, have several different
volumes to be processed serially within the same job step. This could require several
different devices and your job would not be run until all the devices are free. You can
suppress job control’s check for one volume per logical unit number within a single job
step and reuse the same device serially by specifying IGNORE on the DVC statement.
Since IGNORE reduces the number of peripheral devices a job needs, it increases the
chances of your job being run sooner.

If the first occurrence of a logical unit number does not specify IGNORE in the DVC
statement, all subsequent references to that logical unit number must have IGNORE
specified in the DVC statements.

If you use the IGNORE parameter, processing for the first volume must be completed
before the second volume is needed, and so forth.

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

A typical application for the IGNORE parameter might be a program that takes
information from a tape file, updates it with information from a card file, and creates
anew tape. But a job is scheduled that lasts most of the day, and it uses all but one of
the installations’s tape drives. Since you need two tape drives, you would have to wait
until that job was finished. However, you wrote the program so that it reads the input
tape file completely, updates the information, and then writes it out to a new tape.
Since the processing of the tape volume containing the input file is finished before the
program creates the new tape file, you can use the same device by using the IGNORE
parameter of the DVC job control statement in the device assignment set for the next
file to be processed (the output file, in this case).

The IGNORE parameter tells the system to disregard the fact that there already has
been a device assignment set for this logical number in this job step.

Suppose the input file is on a tape with a volume serial number of TAP111, a file
identifier of FIRST, and the file name for the input file is MASTIN. The output file
will be on a tape volume with a volume serial number of TAP222, have a file identifier
of SECOND, and the file is MASTOUT. The logical unit number we are going to use is
101.

The device assignment sets for the input and output files would be:

// DVC 101

// VoL TAP111

// LBL FIRST

// LFD MASTIN

// DVC 101, 1GNORE
// VOL TAP222

// LBL SECOND

// LFD MASTOUT

When you use this feature of job control, make sure you inform the operator of the
tape mounting sequence.

Users of the Unisys sort/merge routine will find the IGNORE parameter useful on
tape sort applications that use tape volumes as input, work areas, and output.

When a job consists of more than one job step, the system assumes that the first
device assignment set for a logical unit number will be used in subsequent job steps
until a new device assignment set for the same logical unit number occurs. For
instance, if you wanted to use the tape file with a volume serial number of TAP222 in
the next job step, you would have to specify the following device assignment set at the
beginning of the new job step:

// DvVC 101

// VOL TAP222

// LBL SECOND

// LFD xxxx (this depends on your program)

UP-9986 Rev.1 413

Getting the Most Out of the Basic Job Control Statements

Otherwise, the system assumes the tape with a volume serial number of TAP111 is to
be used.

Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Setup Time

414

The file is large - in fact, so large it needs four tape volumes to hold it. When the
program uses four tape volumes, the operator can mount them, one at a time, on the
device associated with the logical unit number on the DVC job control statement.
When a volume is processed, the operator removes it from the device and mounts the
next volume on the device. Meanwhile, processing time is wasted while the system
waits for the new volume to be mounted. The operator must do this for every volume
of the file.

One way of avoiding this is to use the ALT parameter on the DVC statement. This
allows you to alternate the same logical unit number between two devices provided
that two devices of the same type are available. One device uses the logical unit
number while the first volume is being used, then the logical unit number switches to
the other device for the next volume. After the second volume is finished, and if there
are any more volumes in the file, the logical unit number is switched back to the first
device, and so on, until all volumes are used. In this way, the operator can amount
two tape volumes, on two different physical devices associated with a logical unit
number, in their proper sequence. When the first volume is finished, the system
switches to the device containing the second volume. Meanwhile, the operator can
unload the first volume and mount the third volume on the device. In this way, no
time is wasted because of setup time. All alternate devices must be of the same type.
This is especially helpful when small tape reels are used. Note that alternating is
restricted to the boundaries of one job step, and that if only one device is available, a
job will execute with only one device (even though ALT is specified).

The ALT parameter of the DVC job control statement doesn’t work correctly if it is
used more than once in a jobstream. A separate drive is allocated for each ALT, and if
there are insufficient drives to accommodate all of the ALT's, only one drive is
allocated even if two drives are available. If the ALT function is needed more than
once in a jobstream, the following job control can be used:

// DVC 90 /7 VOL A
// DVC 91 /7 vOL B

Assume a job has four tape volumes, using logical unit number 100. You can switch

between the two physical devices associated with logical unit number 100 by coding
the DVC job control statement as follows:

// DVC 108, AT

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Of course, the VOL job control statement must be modified to indicate the volume
serial numbers of the four different tape volumes. We'll discuss the use of optional
parameters for the VOL job control statement later. Briefly, the following example is
how multiple volume serial numbers are coded.

// DVC 100,ALT
// VOL T11111,122222, 133333, T4hbbt

To ensure that alternation occurs between devices, you may explicitly declare two
devices in your job control stream. This means you’ll have two DVC statements, each
specifying a different logical unit number. Consider the following example:

// DVC 100
// VoL T11111,733333
// DVC 181

1/ VOL 122222, T4bbbb

In this case, the operator can always alternate between the two devices specified by
the logical unit numbers 100 and 101, until all volumes are used.

Users of the sort/merge routine will find it helpful to alternate when sorting many
tapes with the same label on a master tape.

. Ensuring that Workstations Are Connected to a Job

You can use the REQ [(n)] parameter of the DVC statement or the UID job control
statement when you want to ensure that workstations are connected to a job.

REQ tells the system that the number of workstations you've specified through the
nnnl(n)] parameter of the / DVC statement are required and must be connected (using
the workstation CONNECT command) for the job to begin execution. You can further
tailor the DVC statement by specifying that only a certain number of the workstations
must be connected before the job is executed. You do this with the (n) portion of the
REQ parameter. If you prepare your statement like this:

// DVC 200(8),REQ(1)

it tells the system that eight workstations can be connected to the job and that one of
the eight is required and must be connected for the job’s execution to begin.

Notes:
1. The (n) portion of the nnn parameter and the REQ>(n)] parameter are used to

assign workstations only. Up to 255 workstations can be assigned to a single
workstation file.

UP-9986 Rev.1 415

Getting the Most Out of the Basic Job Control Statements

2. The nnn parameter of / /| DVC is used differently for workstations than for other
devices. If you specify the logical unit number 200 (any workstations) and tailor
the specification by using the (n) portion of the nnn and REQ parameters, multiple
workstations (of any type) are assigned to the job.

Recall from "The UID Job Control Statement" in Section 3 that the UID statement is
used if you want specific workstations connected to a job automatically. This is done
before the job’s execution begins (if the workstations specified have not already been
connected using a CONNECT command). You identify a particular workstation by its
user-id, device address, or both. For example:

// DVC 208
// UID WS1,(018),WS2(019)
// LFD WKSTFILE

The UID statement in this example indicates that the following three workstations
will automatically be connected: any workstation logged on with a user-id of WS1, the
workstation with the address 018 and logged on with any user-id, the workstation
with the address 019 and logged on with a user-id of WS2. If these three conditions
are not satisfied, the job remains in the scheduling queue. Remember that
workstations specified in the UID statement are required; therefore, the job will not
run until these devices are available (that is, logged on).

Although the (n) portion of the nnn parameter and the REQ [(n)] parameter are
generally unnecessary in the DVC statement when the UID statement is used, you
may encounter a special situation. For example:

// DVC 200(4)
// UID WS1,WS2
// LFD WKSTFILE

The DVC statement indicates that the job can use up to four workstations. The two
identified in the UID statement are required and, provided they’re logged on, will
automatically be connected at execution time. Two more workstations (any two) can
optionally log on and then connect to the job with the CONNECT command.

Remember, you can specify YMAS as a user-id to assign the job’s master
workstation to a job.

Specifying a Remote Disk File

To indicate that a disk file is located at a remote host in a DDP network, specify the
HOST=host-id keyword parameter on the // DVC statement. The host-id is one to four
alphanumeric characters long and identical to the label-id of the LOCAP
macroinstruction in your ICAM network. $HOST (in place of a host-id) indicates that
the file is located at the job’s remote originator (the remote host that initiated the job).

416 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Consider the following:

// JOB MYJOB

// DVC 50,H0ST=A123
// VOL D@0e0o28

// LBL FILE1

// LFD REMOTE

// EXEC PROGA
/&

The DVC statement in the preceding device assignment set means that the disk file is
located at host A123.

Note: The host you specify (using either a host-id or SHOST) must be a remote host.
If you specify a local host, you'll receive a data management error message
(DM21 INVALID DEVICE ASSGINMENT).

For information about DDP facilities, see the Distributed Data Processing
Programming Guide (UP-8811). For more information about the originator, see the
OPTION ORI statement in "Selecting Optional Features” in Section 6. See "How Job
Control Statements are Presented" in Appendix A for information about coding job
control statements containing positional as well as keyword parameters.

Indicating Use of the DDP Program-to-Program Facility

If your program is written in BAL and uses consolidated data management macros,
you can use DDP’s program-to-program facility. In its simplest form, this facility
allows a program at one host (the primary) to initiate communication with a program
at another host (the surrogate). The job control stream for each program participating
in this simple conversation must contain a DVC PROG job control statement. Used in
place of // DVC, // DVC PROG begins the device assignment set for the program-to-
program type file. The format is:

//[symbol] DVC PROG [, job-namel(,HOST=host-id)
You can specify one / DVC PROG statement in any single-step job control stream. (A
single-step job requests the execution of only one program.) The device assignment set

must contain a / LFD statement and may contain a // LBL statement for cataloging
purposes.

UP-9986 Rev.1 417

Getting the Most Out of the Basic Job Control Statements

418

The job-name parameter identifies the name of the other participant in the program-
to-program communication. For example, when specified in the / DVC PROG
statement for the primary, job-name identifies the surrogate. When specified in the
// DVC PROG statement for the surrogate, job-name identifies the primary. This
parameter is required in the / DVC PROG statement for the primary, but is optional
in the // DVC PROG statement for the surrogate.

The HOST=host-id parameter simply identifies a particular host in a DDP network.
The host-id is one to four alphanumeric characters long and identical to the label-id of
the LOCAP macroinstruction in your ICAM network. You use $HOST (in place of a
host-id) to indicate the originator (the host that initiated the job). Consider the
following control streams:

HOST AAAA) HOST BBBB

// JOB MYJOB // JOB YOURJOB
// DVC PROG, YOURJOB,HOST=BBBB // DVC PROG

// LFD THISFIL // LFD THATFIL
// EXEC PROG1 // EXEC PROG2

/& /&

The // DVC PROG statement in MYJOB indicates that communication can only be
established with PROG2 - the program identified in YOURJOB at host BBBB.
PROGI, in this case, must act as the primary. The / DVC PROG statement in
YOURJOB means that PROG2 is a surrogate in the program-to-program
communication with PROG1. PROG2 can also act as the surrogate when other job
control streams declare / DVC PROG,YOURJOB,HOST=BBBB. Now consider the
following:

HOST AAAA HOST BBBB

// JOB MYJOB // JOB YOURJOB

// DVC PROG,YOURJOB,HOST=BBBB // DVC PROG,MYJOB,HOST=AAAA
// LFD THISFIL // LFD THATFIL

// EXEC PROG1 // EXEC PROG2

/& /&

UP-G986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

These two job control streams indicate that only PROG2 at host BBBB and PROGI at
host AAAA can communicate with each other. The first program to open the program-
to-program type file is considered the primary.

Although primarily intended for communication between programs executing on
different hosts, the program-to-program facility can be used between programs
executing on the same host. For more information about DDP’s program-to-program
facility, see the Distributed Data Processing Programming Guide (UP-8811). -

More Information About the Characteristics of
Your Volumes

We have used the VOL job control statement to specify the volume serial number. It
also has additional parameters for further identifying each volume to the system.
Once again, its format is:

) . .) -
// [symbol] VoL (Mcc 1 , (volsn-1 (€3] . (volsn-Z e \ .
N (NS) (NS)
NMcc (NOV) (NOV)
volsn-1| ($) (PREP) (PREP)
(NS) L !]]
< oo |1 Voot o
(PREP) volsn-2| (¢$) volsn-3| { ¢S)
(NS) (NS)
(NOV) (NOV)
(PREP) (PREP)
| scraTCH J L scraten J 4L\ scratcu)

Refer to this format when each new parameter is introduced.

Notes:

1. Ifall the volumes used to contain a multivolume file are going to be online
simultaneously (mounted on different devices during the course of a single job
step), the NOV and PREP options, if used, must be specified for each volume.

2. The DVC specification in the device assignment set is used to determine if more
than one device is being used.

3. In a multivolume file, if the individual volumes are mounted on separate devices,
the NOV and PREP options can be specified only for the individual volumes.

4. Ifthe PREP option is specified for any volume in a multivolume file sequentially

mounted on one device, it applies to all volumes in a multivolume file. NOV must
be specified for the last volume in the file for it to apply to all volumes in the file.

UP-9986 Rev.1 419

Getting the Most Out of the Basic Job Control Statements

More Than One Volume in a File

When we discussed the ALT parameter of the DVC job control statement, it was
stated that all volumes in the file must be specified on the VOL job control statement
of the device assignment set for the two devices sharing a logical unit number. (See
"Multiple Volumes in a File? Use Alternate Devices to Decrease Operator Set-Up
Time" in Section 4). The example given was:

// DVC 100,ALT
7/ VoL T11111,T22222, 133333, T444bb

Each group of numbers specified on the VOL job control statement (T11111, T22222,
etc) represents the volume serial number of the volumes in the sequence in which they
are mounted.

Remember, whenever there is more than one volume in a file, notify the operator of
the mounting sequence.

If more than eight volume serial numbers are listed, a nonblank character must
appear in column 72 of the VOL job control statement and one or more continuation
cards (Appendix A) must follow. For example:

Column 72

(continuation) I

// VOL T11111,722222,133333, T44444, 155555, T66666, 77777, 788888, X
I/ T99999, TAAAAA

l Continuation Column
Indicator
(Optional)

You can also specify multivolume files by using separate VOL control statements, like
this:

// voL 711111
// VOL 122222
// VOL T33333

This method has an advantage over the continuation method in that you can change
VOL specifications easier if they are coded separately.

4-20 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

The VOL statement’s (NOV) and SCRATCH parameters provide you with the option
of not listing each specific volume serial number in a multivolume file. For further
discussion of these parameters, see "Ignoring or Changing the Volume Serial Number”
in Section 4.

Special Characteristics of Tape Volumes

Tape volumes have certain mode characteristics, such as bytes per inch, parity, and
the number of tracks (7 or 9). The mode characteristics of tape volumes are specified
using the Mcc parameter. The values for cc are given in Table 4-1.

Suppose you are using a UNISERVO® 12 Magnetic Tape Subsystem, and the tape
volume is 7-track, 200 bytes per inch, even parity, with the translate and convert
features off. The mode setting is 20 and it would be coded as M20. The volumes being
used are coded as the remaining parameters.

// VOL M2Q,T11111,T22222

If the Mcc parameter is omitted, the mode settings specified at system generation
time are used.

If your supervisor supports block numbering and you have specified BKNO=YES in
your program’s file definition macroinstruction (or BC$CLNM for PIOCS), data
management will check block numbers on input tape volumes or write sequential
block numbers on output tape volumes. If you want to suppress block numbering or
checking during initialized processing, you use the N parameter on the VOL job
control statement. Initialized processing includes use of the TPREP utility routine or
the PREP option on the VOL statement as well as processing of input or output files
with nonstandard labels or no labels. When you specify N, block numbering is
suppressed for all volumes included on the VOL statement. For noninitialized
processing, the N parameter is ignored. That is, if your supervisor supports block
numbering and you have specified it in the file definition macroinstruction, you cannot
suppress checking or writing of block numbers by using the N parameter. For details
about block-numbered tapes, see the Consolidated Data Management
Macroinstructions Programming Guide (UP-9979).

For example, to suppress block numbering on two tape output volumes with volume
serial numbers of T11111 and T22222, code as follows:

// VoL N,T11111,722222

When both the N and Mcc parameters are used, code them as one parameter. For
example:

// VOL NM2@,T711111,T122222

UNISERVO is a registered trademark of Unisys Corporation.

UP-9986 Rev.1 421

Getting the Most Out of the Basic Job Control Statements

Table 4-1. Mode Characteristics

Tape cc Bytes per Inch Parity Translate Feature Convert Feature

UNISERVO 12/16 and 10/14 Magnetic Tape Volumes

7-track 10 © 200 Odd Off On
20 200 Even Off Off

28 200 Even On Off

30 200 Odd Off Off

38 200 Odd On Off

50 556 Odd Off On

60 556 Even Off Off

68 556 Even On Off

70 556 Odd Off Off

78 556 Odd On Off

20 800 Odd Off On

AQ 800 Even Off Off

A8 800 Even On Off

BO 800 Odd Off Off

B8 800 Odd On Off

9-track c8 800 Odd Off Off
co 1600 Odd Off Off

UNISERVO 22/24 Magnetic Tape Volumes

9-track cs 800 Odd Off Off
Cco 1600 Odd Off Off

UNISERVO 26/28 Magnetic Tape Volumes

9-track co 1600 Odd Off Off
DO 6250 Odd Off Off

Extending Your Tape Volumes

If you recall, when we were assigning file names to files, we used the LFD job control
statement (see "Assigning a Logical File Name to the File" in Section 3). Well, now
we’ll use this same statement to extend our file. Once again, here is the format:

//lsymbol]l LFD { filename , IN . [EXTEND
*filename B INIT

422 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Looking at the format, we see the optional parameter EXTEND. The EXTEND
parameter lets us add information to the present end of a tape or disk file, provided
our program allows us to do so and the following job control conditions are met:

* The PREP option is not specified on the VOL job control statement.

* The file being extended is the only file on the volume.

* The file uses standard labels.

¢ The file specified is an output file.

The following example shows the use of the LFD statement to extend the file ADDRI:
// LFD ADDR1, ,EXTEND

The following device assignment set, which includes this LFD statement, illustrates
how to extend a file (MAST) on volume T11111,

// DVC 100

// VoL T11111,722222,733333
// LBL MASTER

// LFD MAST, ,EXTEND

If you expect additional volumes will be needed to accommodate extension of the file,
you can add the volume serial numbers of any tapes to the VOL statement. The
following device assignment set indicates that the extension of MAST will result in a
multivolume file.

// DvC 100

// VOL T11111,722222,733333
// LBL MASTER

// LFD MAST, EXTEND

If you are extending a tape file that already has multiple volumes, your VOL
statement has to specify only the last volume containing the file plus any additional
volumes. You must include the serial number of the file's first volume as the second
parameter (file-serial-number) of the LBL statement. See "Multivolume File? Assign
Each Volume a File Serial Number" in this section for more information. Suppose, for
example, the file MAST is on volumes T11111, T22222, and T33333. If you expect the
file’s extension to require an additional tape volume, you would code the device
assignment set as follows:

// DVC 100
/7 VOL ,,,T33333, T4bbbb
// LBL MASTER,T11111
// LFD MAST, ,EXTEND

The volume serial number T11111 is required to identify T33333 and T44444 (the new
volume) as being part of the same file.

UP-9986 Rev.1 423

Getting the Most Out of the Basic Job Control Statements

Note: When referencing multivolume files on the VOL statement, any undeclared
volume serial numbers must be represented with commas. Additionally, if Mcc,
N, or NMcc are not specified for the first positional parameter, you must supply
a comma. In the VOL statement in our previous example
(// VOL ,,,T33333,T44444) the first comma represents the first positional
parameter. The second and third commas represent T11111 and T22222,
respectively.

The Consolidated Data Management Macroinstructions Programming Guide
(UP-9979) also contains information about extending tape files.

Sharing Disk Volumes

More than one job can share a disk volume. But suppose you are updating a file that
will be accessed by other user jobs. They should not access the file until the update is
completed, or else their output would not be the most current. You can indicate, on
the VOL job control statement, that the disk volume is nonsharable; thus the file
cannot be accessed. The system will not allow other jobs to begin execution until your
job has finished the update.

Assume the file being updated has a volume serial number of DSK083 and it should
be nonsharable. You indicate this by using the (NS) parameter. The parentheses are
coded as part of the parameter, and there is no comma separating the volume serial
number and the (NS) parameter. This is coded as:

// VOL DSK@83(NS)

When there is more than one volume in the file (DSK083, DSK076, and DSK093, for
instance) and they are all nonsharable, code it in this manner:

// VOL DSK@83(NS),DSKB76(NS) DSKO93(NS)

Sharable disk volumes are the default condition.

Ignoring or Changing the Volume Serial Number

Through the VOL job control statement, you have the option of ignoring volume serial
numbers. This allows the use of any available volume or one with an unknown
volume serial number.

For example, you want to create a tape file. The operator is told that you can mount
any unused tape with a volume serial number (it does not contain a permanent file,
and you do not want a scratch tape because you are creating this file for other jobs).
Since you don’t know what tape the operator will use, you don’t know the volume
serial number for your VOL job control statement. By using the (NOV) parameter and
a dummy volume serial number, you can use a volume without specifying the correct
volume serial number.

424 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Code it this way:
// VOL DUMMY(NOV)

Notice that there is no comma separating the dummy volume serial number and the
(NOV) parameter. The parentheses are part of the parameter.

After the job is processed, you should be informed, in some manner, of the volume
serial number of the created tape. This volume serial number must be used on the
VOL job control statement for any subsequent job using this tape volume.

Notes:

1. Thevolume serial number DUMMY is used here just as an example. You can use
your own dummy volume serial number, but if it isn’t a unique one, keep the
following in mind.: if two or more jobs use the same dummy volume serial number
for a disk volume, these jobs can run concurrently and share the same disk volume.
This may or may not be desired. If a job uses the (NOV) parameter with a dummy
volume serial number for one type of volume (e.g., a tape), and a second job uses
the (NOV) parameter with the same dummy volume serial number for another type
of volume (e.g., a disk) or, for another nonsharable volume (e.g., another tape), the
second job is not executed until the first job is finished.

2. Ifyou specify a volume serial number and the volume with that serial number is
mounted on a device before the job goes into execution, that volume (and the device
on which it’s mounted) is used even if you've specified a different physical device
number on the DVC statement. If, however, you use / /| VOL DUMMY (NOV) the

physical request is not ignored.

With the VOL statement’s SCRATCH parameter you can specify a multivolume file
without listing each volume’s serial number. Consider this example:

// VOL VSN1,VSN2,SCRATCH

This statement declares a multivolume file and requests that the volume VSN1 with
the serial number be mounted first and volume VSN2 be mounted second. The
SCRATCH parameter indicates that after VSN2, any volumes can be mounted.

When you request scratch processing, a message to mount a scratch volume is
displayed (after any explicitly requested volumes have been taken care of) on the
system console. Any volume will then be accepted until the end of file. Remember,
because data management cannot check for the proper serial numbers at this point,
you should make sure that the operator knows exactly what volumes to mount and the
sequence to mount them in.

The SCRATCH parameter can also be used alone. For example:

// VOL SCRATCH

UP-9986 Rev.1 4.25

Getting the Most Out of the Basic Job Control Statements

4-26

This statement requests scratch processing for all volumes in the file.

You may want to use the SCRATCH parameter if you have a 20-volume diskette file
for example, and you don’t want to list 20 volume serial numbers in your job control
stream. When coding job control statements remember that the SCRATCH
parameter can only appear once in a VOL statement and it is always the last
parameter specified.

You can also suppress checking of volume serial numbers for all volumes of a
multivolume file by specifying NOV in the VOL statement for the last volume of the
file.

You can change a volume serial number by specifying the new volume serial number
followed by the (PREP) parameter. You can also use this to assign a volume that
currently does not have a volume serial number (scratch volume or a new volume).
Any information that is currently on the volume is scratched.

Your job creates an output tape that you want saved and to be assigned the volume
serial number of TAP099. It would be coded as follows:

// VOL TAPO99(PREP)

Once again, there is no comma separating the new volume serial number and the
(PREP) parameter. The parentheses are part of the parameter.

Notes:

1. Be very careful when you use the PREP option on a file to be processed by the
librarian. When you specify the PREP parameter, the tape is prepped every time it
is opened as output. The librarian closes output tape files whenever they are to be
used as input and then reopens them as output. If a tape file is to be reused as an
output file within the same job, the librarian closes it as input and reopens it as
output. This reopening causes the tape to be reprepped (if PREP was specified),
thereby effectively erasing all the information previously produced. Therefore, use
this option only if the file will be output only, or output, then input. Otherwise, use
the TPREP utility to prep the file. The PREP option cannot be suppressed. You
must redefine the tape file without specifying the PREP option on the VOL
statement.

2. For multivolume files, if PREP is specified for any of the volumes, all volumes in
the file are prepped.

3. SCRATCH lets you mount additional tape volumes (unlimited processing);
however, these additional volumes are not prepped if PREP is specified. If they
must be initialized, use the TPREP utility routine.

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Multivolume Files Online Simultaneously

You may have an application, a data base system, for example, that requires a large
multivolume file, with the volumes online simultaneously (since they are accessed in a
random manner). Suppose you have a 3-volume file (volumes A B, and C). You would
code the device assignment set for the file like this:

// DVC 5@
// VOL A
// DVC 51
// VoL B
// DVC 52
// VoL C
// LBL DATA
// VMNT=NO
// LFD BASE

More Information on Disk and Format-Label Diskette
File Allocation

You use the EXT job control statement to allocate the space (extent) needed by a disk
or format-label diskette file. The format is:

//[symbol] EXT [MI , |C , |inc addr , [mi
{ST} CF 0 Tcce:hh {(bi,ai)}
F 1 BiK
TBLK
CYL
TRK

OoLD

-

. [mi s+++|[,0LDIL,FIXIL,NTERM]
(bj,aj)

All the parameters are optional.

The File Type

With the first parameter of the EXT statement, specify the type of file you're
allocating the extent for.

UP-9986 Rev.1 427
Update B

Getting the Most Out of the Basic Job Control Statements

MIRAM files are discussed in the Consolidated Data Management Programming
Guide (UP-9978). System access technique files are described in the Supervisor
Technical Overview (UP-8831).

For the EXT job control statement, you can specify MIRAM (multiple indexed random
access method) files, indicated by coding MI, or SAT (system access technique) files,
indicated by coding ST.

If, for example, you wanted to use the multiple indexed random access method, you
would code:

// EXT MI1,C,,CYL,1

Formatting a File and Using Contiguous Space

4-28

Files are formatted using the parameters F, BLK, and (bi,ai). These indicate that you
are going to format the file, F, in terms of blocks, BLK, to a certain length, (bi,ai). The
bi indicates the number of bytes in the block, and the ai indicates the number of
blocks in the file. Files can be formatted only in terms of blocks.

Suppose that you have a MIRAM file to allocate and it contains 5000 blocks, each 472
bytes long. Refer to the format of the EXT job control statement to see the correct
position of each of the parameters you are going to see: MI, F, BLK, and (bif,ail). It
would be coded as follows:

// EXT MI,F,,BLK,(472,5000)
You can set up your program to access a particular block (or blocks) within the file.

The EXT job control statement is also used to allocate space contiguously. When you
allocate a file, there may not always be a single extent (a single contiguous area)
available on the disk or format-label diskette. Suppose, for example, you need 10
cylinders for a file but there aren’t 10 contiguous cylinders anywhere on the volume.
Instead, there are 2 contiguous cylinders in one place, 3 in another, and 5 more in
another. Ifthis is the case, 0S/3 disk space management divides the file among 3
different areas resulting in a 3-extent file. The C parameter (shown as one of the
choices in the second parameter in the format) can prevent this from happening so
that if enough contiguous cylinders cannot be found, the file won’t be allocated.

Note: A single file on disk or format-label diskette can have no more than 16 physical
extents. If a file already occupies 16 extents but more are needed, you must use
another volume even if sufficient space is still available on the original volume.
(The file becomes a multivolume file.) A VTOC listing of the volume will tell you
in advance how many extents an existing file occupies. Just remember there
can be only 16 extents for a single volume file, 32 extents if the file occupies two
volumes, 48 for three volumes, and so on.

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

When you specify the absolute starting address (the addr parameter, explained in
"Terms of Allocation" in this section), you must allocate contiguously. You must also
specify addr in hexadecimal. The use of continguous space reduces file access time,
thus reducing job processing time.

To allocate a MIRAM file that contains 1000 blocks, each containing 1024 bytes, and
you want contiguous disk space, code as follows:

// EXT MI,C,,BLK, (1024,1000)

The C and F parameters can be combined to form one parameter. Use this if you want
contiguous, formatted disk space. A comma is not needed to separate these
parameters.

For example, to allocate 300 blocks, each 256 bytes in a contiguous area, using the
multiple indexed random access method, code the following:

// EXT MI,CF,,BLK,(256,300)

Notice that we've been coding BLK in these examples. BLK, however, is the default
condition - you could have coded the last example like this:

// EXT MI,CF,,,(256,300)

Your Disk or Format-Label Diskette File Needs More Space

When a disk or format-label diskette file is allocated, a certain area is reserved for a
file. It is possible, however, the amount that you estimate may not be enough. There
may be more information than you realized; an update of the file made it larger than
originally intended, or, you may be replacing existing information with new
information (this requires the use of the INIT parameter of the LFD job control
statement, which is explained in "The Expiration and Creation Date of the File" in
this section). This new information may require more space than you had previously
allocated.

Job control can extend the requested area, if necessary. Let’s say you're setting up a
file to contain 700 or 800 entries for an accounts payable procedure, and you estimated
the file would need 100 blocks, each 256 bytes in length. Since this is only an
estimate, you can use a parameter in the EXT job control statement to allocate more
space if it is needed. This is called dynamic extension. If it isn’t needed, it isn’t
allocated. In this way, you don’t waste space by allocating more than necessary.

The parameter used to provide this dynamic extension is the third parameter group in

the format. The inc parameter is the amount of additional space that you request.
This dynamic extension is in terms of cylinders.

UP-9986 Rev.1 429

Getting the Most Out of the Basic Job Control Statements

Specifying 0 indicates you do not want to allow for dynamic extension of the file. Use
this when you want to limit the amount of information placed in the file. If nothing is
specified, by default, one cylinder is generated.

Assume, for the accounts payable application, that we estimated 100 blocks, each 256
bytes long, on a formatted, MIRAM file. We want two additional cylinders if dynamic
extension is necessary. The coding would be:

// EXT MI,F,2,,(256,100)

Terms of Allocation

4-30

We've already covered some allocation terms in previous examples: BLK for allocating
in terms of blocks and CYL for allocating in terms of cylinders. With the addr
parameter you can also specify the absolute cylinder address in hexadecimal at which
the file is to begin. When you do this, allocation is in terms of cylinders.

Note: The absolute address can be specified in decimal by coding D'number’, or
hexadecimal by coding X ‘number’. Any number not preceded by D or X and
enclosed in single quotes is considered hexadecimal.

Let’s say you need one MIRAM file, allocated contiguously, allowing 5 cylinders for
dynamic extension, and it must start at cylinder 78. Code it:

// EXT MI,C,S 4E

Do you recall specifying the amount of blocks needed for the file? One of the examples
looked like this:

// EXT 1S,C,,BLK, (1024, 1000)

Specifying (1024,1000) told job control how many blocks to allocate: 1000. When you
specify allocation in terms of cylinders or by absolute address, you must indicate how
many cylinders to allocate for the file by using the mi parameter.

If you wanted 10 cylinders, it would have been coded as:
// EXT MI,C,5,CYL,10

The TRK parameter allows you to allocate disk and format-label diskette files in
terms of tracks. The TBLK parameter allows you to allocate a file in blocks by track
rather than in blocks by cylinder (BLK parameter). The Tccc:hh parameter is similar
to the addr parameter because it lets you specify the absolute hexadecimal (X’number’
or number) or decimal (D’number’) starting address of the file. The address, however,
is a track address in cylinder/head format and the allocation is in terms of tracks, not
cylinders. For more information about file allocation by track, see the Consolidated
Data Management Macroinstructions Programming Guide (UP-9979).

UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

Note: You cannot allocate a disk file or format-label diskette file by track (using TRK,
TBLK or Tcee:hh) when creating MIRAM files with IRAM characteristics.

Remember that when you specify CYL, addr, TRK, or Tcce:hhh, you must specify the
number of cylinders or tracks with the mi parameter.

Allocation Amounts

The parameters for indicating the amount of space wanted were shown, indirectly,
when we discussed formatting and terms of allocation. These were coded as the fifth
parameter, mi or (bi,ai).

The mi parameter is used with either the CYL, addr, TRK, or Tccc:hh parameter, and
indicates the amount of cylinders or tracks needed by the file. These were covered in
the last example of "Terms of Allocation” in this section.

The (bi,ai) parameter is used with the BLK or TBLK parameter for allocating in terms
of blocks (rounded up to cylinders or tracks, respectively). Remember BLK is the
default parameter so you don’t need to specify it. The bi indicates the amount of bytes
in the block, and the ai indicates the number of blocks in the file. For instance, this
example

// EXT MI,C,5,CYL,10

indicates an allocation of 10 cylinders, while either of these examples
// EXT MI,F,10,,(256,100)
// EXT MI,F,10,BLK,(256;100)

indicates an allocation of 100 blocks, each 256 bytes in length.

You can specify any number of separate disk areas (extents) for an individual file. A
reason for using several different extents for a single file would be to decrease data
access time, thus reducing processing time. Assume the program is designed such
that the file can be divided into two different extents. The first extent contains data
used only by the first part of the program; the second extent contains data used only
by the second part of the program.

For instance, the first extent contains hourly pay rates for calculating gross pay, and
the second extent contains payroll deductions to subtract from the gross pay to get the
net pay. Once the gross pay is calculated, the first extent is no longer needed; the
program will not need this information again. It only needs the deduction information
in the second extent to finish processing. In this way, one large extent is divided into
two smaller extents, reducing the amount of access arm movement for the disk unit.

UP-9986 Rev.1 431

Getting the Most Out of the Basic Job Control Statements

For example, you have a file divided into two different extents. The total size of the
file is 20 cylinders. The first part of your program uses 12 cylinders, and the second
part needs 8 cylinders. They can both be specified on the same EXT job control
statement. The information in the first four parameters applies to both extents in the
file.

Look at this portion of the format:

. [mi . [youe
(bi,ai) (bj,aj)

The mj parameter means the same as the mi parameter and the (bj,aj) parameter
means the same as the (bi,ai) parameter. The only difference is that mj and (bj,aj) are
used for additional extents in the file. So, we could code the two extent files (12
cylinders and 8 cylinders) as:

// EXT MI,C,1,CYL,12,8

o b

1 This applies to both extents.

Notes:

2 This is the allocation for the first extent.

3 This is the allocation for the second extent.
If you allocated in terms of blocks, with the first extent occupying 300 blocks, each 256
bytes in length, and the second extent occupying 700 blocks, each 256 bytes in length,

it would be coded as:

// EXT MI1,C,1,BLK,(256,300),(256,700)
w‘ﬂ—'“—’

Notes:
1 This applies to both extents.
2 This is the allocation for the first extent.

3 This is the allocation for the second extent.

432 UP-9986 Rev. 1

Getting the Most Out of the Basic Job Control Statements

You can also specify separate extents for an individual file by coding separate EXT
statements, as we did when we coded separate VOL statements for a multivolume file.
Refer to "More Than One Volume in a File" in this section for details. You have coded
separate extent specifications for our previous example, like this:

// EXT MI,C,1,BLK,(256,300)
// EXT MI,C,1,BLK, (256,700)

Changing the Specifications of a Previously Allocated File

Sometimes, you may want to change some of the information pertaining to a
previously allocated file. Use the OLD parameter to do this. The following portion of
the EXT job control statement format shows OLD as either the fourth or seventh
parameter:

, {addr) , (mi L, mj ,+--|[,0LDIC,FIXIINTERM]
Tecec:hh (bil,ail) (bjl,aj))

BLK
{ TBLK
cYL (
TRK
oLD J

When coded as the fourth parameter, OLD means you want to change the automatic

allocation amount for dynamic extension (the third parameter) for a previously

allocated file. Suppose you specified one cylinder when a MIRAM file was originally

created. To change this specification to five, you code the EXT statement as follows:
// EXT ,,5,0LD

You can omit the first and second parameters, since they are ignored if specified.

When OLD is coded following the allocation amount (mi, mj, etc), it increases the
original allocation amount for your extents.

UP-9986 Rev.1 433

Getting the Most Out of the Basic Job Control Statements

Let’s assume your file was originally a 30-cylinder, sequential file and you discover
you really need 50 cylinders. To obtain these extra 20 cylinders, you can change the
allocation amount for the file by using this EXT job control statement:

// EXT ,,,CYL,20,0LD

When changing the allocation amount, you may omit the first, second, and third
parameters since they are ignored, if specified.

Allocating Space in the Fixed-Head Area of Your 8417 Disk

If you have an 8417 disk subsystem with a fixed-head feature, use the FIX parameter
with your EXT statement when you want to allocate the extent in the fixed-head area.
See the Consolidated Data Management Macroinstructions Programming Guide
(UP-9979) for information about the 8417 fixed-head disk.

No Terminate Option for Insufficient Extent Space

The NTERM option, when used, informs you if the extent cannot be allocated because
of insufficient disk space or because a specified absolute disk area is already in use
(error code 36). Rather than terminating the job, which is what happens without this
option, the system displays a JC48 message and waits for either a retry (R) or cancel
(C) reply. This allows your operator to evaluate the files currently on the disk and to
clear those that are not needed so your job can continue.

Information About Data-Set-Label Diskette File Allocation

To allocate space for a file on data-set-label diskette, include an EXT statement in the
device assignment set for the diskette.

A data-set-label diskette file is always a 1-extent, nonextendable, sequential file.
Therefore, several of the EXT statement parameters and options that we discussed in
the preceding section do not apply. To help