System 80

0S/3
Dump Analysis
Programming Guide

This Library Memo announces the release and availability of the System 80 OS/3 Dump Analysis Programming Guide,
UP-9980 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

This guide describes how to interpret Operating System/3 (0S/3) dumps to help you understand job or system conditions.
It contains the following:

¢ Descriptions of the structure and functions of 0S/3 software

¢ [xplanations of the task control block (TCB) and the program status word (PSW)
® Descriptions of three 0S/3 dumps

* Sample dump analyses

For Release 12.0, this guide adds parameters to the suboption SELECT and incorporates minor technical and editorial
changes.

Destruction Notice: This revision supersedes and replaces the Dump Analysis User Guide/Programmer Reference,
UP-9980, released on Library Memo dated February 1984. Please destroy all copies of UP-9980, all updates, and all
Library Memos.

Additional copies may be ordered through your local Unisys representative.

Mailing Lists Mailing Lists Library Memo for
MBZ, MCZ, MMZ, MDE, MBW, MBVO, MBQO, and UP-9980 Rev. 1
MGZ, and MHA MBO1.

RELEALE DATE:

(116 pages plus Memo)

October 1988

UNISYS

UNISYS

System 80
0S/3

Dump Analysis
Programming Guide

Copyright © 1988 Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation.

0S/3 Release 12.0 October 1988

Printed in U S America
Priced Item UP-9980 Rev. 1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a
duly executed Program Product License or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set
forth in such License or Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or software material, including
direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the User Comments form at
the back of this manual or remarks addressed directly to Unisys Corporation, to E/MSG Product
Information, P.0. Box 500, M.S. E5-114, Blue Bell, PA 19424 U.S.A.

PAGE STATUS SUMMARY

. ISSUE: UP-9980 Rev. 1
Page Page Update Page Update
Part/Section Number Part/Section Number Level Part/Section Number Level

Cover

Title Page/Disclaimer

PSS iii

About This Guide v thru ix

Contents xi thru xv

1 1

2 1 thru 16

3 1 thru 26

4 1 thru 53

Appendix A 1, 2
. Appendix B 1, 2

User Comments Form

Back Cover

UP-9980 Rev. 1

About This Guide

Purpose

This guide discusses dump analysis primarily as it applies to user jobs.

Scope

This guide contains the following:

* Explanations of the task control block (TCB) and the program status word (PSW),
two of the most important structures in dump analysis, and an overview of the
structure and functions of Operating System/3 (0S/3) software

* An overview of OS/3 dumps

¢ User dump analysis with examples

Audience

The intended audience for this guide is the programmer, who will use dump analysis
to help develop and maintain Unisys software, programs, and files.

Prerequisites
Anyone using this guide should understand the following:
® Unisys OS/3 machine language
¢ How to read a dump

* Job organization

How to Use This Guide

Read the entire guide to familiarize yourself with the basic concepts it presents; then
use it for reference as needed.

UP-9980 Rev. 1 v

About This Guide

Organization

This document contains four sections and two appendixes:
Section 1. Introduction to Dump Analysis

Defines dump analysis, and explains when you need dumps.
Section 2. 0S/3 Overview

Gives a basic overview of OS/3, including the supervisor and user region, and several
data structures and registers.

Section 3. Dumps and Their Formats

Describes the three types of dumps 0S/3 provides: YDUMP, JOBDUMP, and EQJ
dump.

Section 4. Sample Dump Analyses

Presents examples of dump analyses applied to actual user programs by using the
ideas presented in the previous sections.

Appendix A. Program Exceptions

Lists the interrupt codes and their causes.
Appendix B. $YSDUMP File Allocation

Shows the number of cylinders required for YDUMP file allocation, depending on
your system’s main storage capacity and the type of disk device you are using.

Results

After reading this document, programmers will be able to use dump analysis to correct
program errors.

Related Product Information

The following Unisys documents may be useful in understanding and implementing
dump analysis.

Note: Throughout this guide, when we refer you to another manual, use the version
that applies to the software level at your site.

vi UP-9980 Rev. 1

About This Guide

Processor - System 80 Programmer Reference (UP-8881)

Provides the detailed hardware-oriented information required to program the System
80 processor. Includes a brief functional description and configurations.

Supervisor Technical Overview (UP-8831)

Provides an overview of the OS/3 supervisor and its functions for OS/3 high-level
language programmers and site administrators.

Assembler Programming Guide (UP-8913)

Describes, for both novice and experienced programmers, the OS/3 basic assembly
language (BAL) and its use. Discusses general language concepts, assembler
instructions, and programming techniques.

System Messages Reference Manual (UP-8076)

Lists the system messages and describes them. Message deseription composed of the
remedial action or response required as applicable.

Job Control Programming Guide (UP-9986)

Provides information on the format and use of job control statements and job control
procedure calls (jprocs).

Hardware and Software Programming Quick-Reference Guide (UP-8868)

Summarizes machine instructions, supervisor related information, physical
input/output control system (PIOCS) information, and I/0 sense data byte definitions.

System Service Programs (SSP) Operating Guide (UP-8841)

Describes the system services programs, the utility programs that support the
operation and organization of the operating system.

Operations Guide (UP-8859)

Describes the hardware configuration of each System 80 model, presents procedures
for initializing the system, and describes all commands and procedures used within
the OS/3 environment.

Installation Guide (UP-8839)

Provides the system administrator with information and procedures necessary to
install, tailor, and maintain OS/3 software in a System 80 environment.

UP-9980 Rev. 1 vii

About This Guide

Notation Conventions

The notation conventions used in this guide are the following:

viii

Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown. For example:

SET SY,LOFF

(SELECT)

FILE=YDUMP
Lowercase letters and words are generic terms representing information that
must be supplied by the user. Such lowercase terms may contain hyphens and
acronyms (for readability). For example:

vsn (volume serial number)

decimal -area-number

job/symbiont-name

did (device identification number)

Information contained within braces represents mandatory entries of which one
must be chosen, such as:

DISPLAY= fstartaddr:n W
X' xxxxxxxx' [startaddr-endaddr])

C'ccecceccee!

CR

10

PR

RR

SN

SR
LJOBS /
Information contained within brackets represents optional entries that
{depending upon program requirements) are included or omitted. Braces within
brackets signify that one of the specified entries must be chosen if that parameter
is to be included. For example:

[,P=did]

,V=fvsn
(vsn,AT)

UP-9980 Rev. 1

About This Guide

UP-9980 Rev. 1

An optional parameter having a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although you can specify the default, you do not have to.
For easy reference, when a default specification occurs in the format delineation
it is printed on a shaded background. For example:

,SPL { PRINTER
TAPE

L

,FILE= [YDUMP
Lblname

If, by parameter omission, the operating system performs some complex
processing other than parameter insertion, it is explained in the parameter
description.

When a portion of a parameter is underlined, only that portion need be specified.
For example:

[,MLIB=NO]
can be coded as:

[,MLIB=N]

Contents

Section 1.

Section 2.

Section 3.

UP-9980 Rev. 1

ABOUL This GUIAEcooveeeeieiieeieeieeececrre et eee e e e e e siv bbb ae et e e e e e s eeeennes v

Introduction to Dump Analysis

L1, Generaloooooiiiiiiiieeeeceeeeeeeee e e a e s e et eeaeas 1-1

1.2. WhenDumps Are Neededccccooormmiiiiiniiiiiee e, 1-1
0S/3 Overview

2.1, GeNEraloooeiieieic e s e e e e e aeaene 2-1

2.1.1. Program Status Word (PSW)cccoooiiiviiiiieeeeic e 2-1

2.1.2. Task Control BIock (TCB) ..ocveeveiiiiieriecieeieecte e 2-4

2.2 0S/3 Structural OVErVIEWcccceiiviiiiieiieiiie et 26

2.2.1. SUDPBIVISOT ciiieitiiiiiiee e eeeeeset et e e e e e eere e e e e e e e e e e e e e e e arar e ranaeeeas 2-6

Low-Order Main Storage and Relocation Registerscccevveeeinnnnnn, 2-7

System Information Block (SIB)ccoveieiiiiiieieiee, 2-8

TrANSIENLS 1eiiiieeee ettt ee e e e e e ae e rr e e e 2-9

2.2.2. JOD REZIONS .iiieeiii ettt ettt et e et 2-9

2.2.3. SYMDIONES ittt 2-11

2.2.8, Fre@ REZIONS oveiiveeerreeeeiieteeeieieeeeerreeeseneee e e s sbanee e ebrneeesesenees 211

2.2.5. StruCture SUMMAEIY ..oooveveeiieeeeiie et st e e et 2-11

2.3. Functional Descriptionc.ccccovveniiiriiiiiiniiie e 2-13

2.3.1. TCBs and MUltItaSKiNg uvvveevervieiiereiee et 2-13

2.3.2. Task Switching Considerationscocovveviieiieiiieeee e 2-14

0S/3 Dumps and Their Formats

3.1
3.2,

GENEIAl ..o e 31
System Dump Routine (SYSDUMP}ccooooviiiiiiin e, 32
3.2.1. SYSDUMP MaKEUD oeeorreeeiiitie et eeirre ettt eetree e e ennree e e e ennns 32
3.2.2. Operator-initiated SYSDUMPoviiiiiiiiieee e 33
3.2.3. Supervisornitiated SYSDUMP ..o 3-18
SYSDUMP from User Program Errorsoocevveeeeiivieeeeeeciiieeee e, 318
SYSDUMP from System EXrors ...ccoovevvviiiiiiieeeieceieeeeeeeeeee 319

3.2.4. SYSDUMP SAVE and RESTORE Options ...cc..coovveviiiieiiieeeiveiiine, 320
SAVE OPHON oottt e e e 3-20
RESTORE OPHON weviiiiiees ettt 321
Prepping a Diskette or Magnetic Tape for SAVE/RESTORE 322

Xi

Contents

Xii

Section 4.

Appendix A.

Appendix B.

3.3. Job Dump Routine (JOBDUMP)oooiovoriiieceeeeeceereeeeeenveeeseavnree e 323
3.3.1. Full Job Dump (OPTION JOBDUMP) ..o et neeeeseeaees 323
3.3.2. Abbreviated Job Dump (OPTION ABRDUMP) ...oooveeiriieeeeeeee e, 324
3.4, EOJDUMP ROULINGccocovvvereirreieriiecieeerenieeeeereeeeeeeneeeseeesessnseaans 324
3.5. Supervisor Trace Analysisccccvvvviieniiiiriieiinenrecneensnreesseneesossenes 324
3.5.1. How to Read a SUPEIVISON TrACE ..ceeeeievreieieiicinirrecessnreseesneneeeens 3-24
Sample Dump Analyses
A1, GeNEKaAlooooiieee et e e e es s bra e s reaa e enans 41
4.2. BALDUMDP ANAIYSISccovvvieiiieirireennrererereensnrenssesosisssesssesssseessssnessnns 43
4.2.1. Materials USBA ...ccvvveeireeiirereirecrerereiresessesessseecesesesseesssessssesens 43
4.2.2. Outline of EQJDUMP coviviiiiineeiecrreecreeeesrrererneecenreresnessnsesssseenens 43
O T -1 11 SRR 46
4.2.4. Dump Analysis Materialsoceevvvieeirrereeeeeneriereesseeecsneecssneeens 410
4.3. COBOL DUMP ANAIYSISooveneriienriciiecenteecenteesneeeeteeesenvaeetreessenesnnes 418
4.3.1. Materials USEdoooovevieieieteeecerreescecnteesecsrnreeesssaeaeessseenesasenes 418
4.3.2. Outling of JOBDUMPevieerriieirrertirenirerestressneesrenressesssssesesssnesns 418
T Vo 1, T U 420
4.3.4. Dump Analysis Materialscccceevvvieeivereieriesinnereeeessnreeessnsnereeees 425
4.4. RPGIDUMP ANAlYSISooovveeirirenrreininieeireressteiesreesrnsessessessnsesersseenns 440
4.4.1. Materials USEdevvvieieeeeeereeeecereereener e veeeees s rareererasaseesenes 440
4.4.2. Program-File Interface - the Input/Qutput Request Blockcc...e.. 440
4.4.3. Program Check Island Codecuvevvreevrreiecriiircreecireeeceeeceee e 441
G424, ANBIYSIS ceeeeeiiieiee ettt re e reesst e s banr e e e esrabtesseanrraeeseaes 441
4.4.5. Dump Analysis Materialsccveveevrrveversvernrinenerenrreressseessseeeesneenes 444

Program Exceptions

File Allocation

User Comments Form

UP-9980 Rev. 1

Figures

2-1. Handling an INteITUPE ..ocveieeiieecee ettt e e s s 24
2-2. Summary of 0S/3in Main STOrage ...eccvecieiieneee e 2-12
2-3. 0S/3 TaSK PHIOMHES ..veeviiireeeee e et eeteecie et e ereeste ettt e st e st st e b e re e et et nmee e ennie 2-14
24, Passing Control from Task t0 Task ..eecericiiniie e 2-15
41, EOJ DUMP Organizationooovviiiieiieeieete e ettt ettt e 45
4.2, BAL Dump Analysis LISHINZoooiiiiieiiiiee e e 411
4.3. JOBDUMP Orgamizationoeouiiieie ettt e ecie et te ettt et e e 419
44, COBOL Dump Analysis LISHINEZS ...covevvieririeeeeiitieeeeeier e eesiteee s sein e e semcee e eeneeeeenieneee e 426
45, RPG DUMP ANalYSIS LISHING ueviiriiieieeiiiiiier e esiiee et e e 445
UP-9980 Rev. 1 ii

Tables

31.
32

Al.

B-1.

UP-9980 Rev. 1

RUN Statement KEYWOIdSooiieeieieeeeee ettt st se e e s senn s 317
Supervisor Area Trace Table Entry FOrmatscccooiiiiiieeiee e 326
Program EXCEPONS ..c..ocviiiieieieeeieiiesiieeieeie st et eseeees et eeseaeesbbeernnneanis Al
SYSDUMP File Size in CYINAEIS ..ovvieeeeeeeeee ettt st e B-1

XV

@ Section 1
Introduction to Dump Analysis

1.1. General

Dump analysis is one of the set of diagnostic tools available for your use in developing
and maintaining Unisys Operating System/3 (0S/3) software, programs, and files. A
raw dump itself is a hexadecimal image of the system main storage and registers at
the time of the dump, which is output to a printer. Dump facilities in OS/3
supplement a raw dump by extracting from it information needed to interpret job or
| system conditions. Dump analysis is the process by which you interpret the dump and
| is one of your primary tools for uncovering errors and problems in your 0S/3
programs.

1.2. When Dumps Are Needed

Dumps are used on a number of occasions:

. * When a HALT AND PROCEED (HPR) occurs. Many HPRs listed in the System
Messages Reference Manual (UP-8076) request that the operator perform a dump.

* When a system hang occurs. If the system remains in a run state but cannot
communicate with the operator, a dump is often taken.

* When a user job terminates with an error. If certain job control language (JCL)
options are specified, the system will react to the error by generating a dump and
sending it to a printer.

* When some system errors will automatically generate a system dump.

While the dump is an important diagnostic tool to you, it is an equally important tool
for your Unisys representative, if a system problem is serious. For less serious
problems, though, you can analyze your own dumps and resolve your program
problems. In fact, the emphasis in this guide is on analyzing job failures, since system
failures usually require the services of a Unisys representative.

UP-9980 Rev. 1 1-1

Section 2
0S/3 Overview

2.1. General

To do dump analysis, you should know some of the operation of OS/3 software. For
0OS/3 operation, main storage can be divided into two parts: the supervisor and the
user region. The supervisor is the complex of routines that prepares user programs
for running, serves as the primary I/O software interface, and, most importantly for
dump analysis, handles unexpected or error conditions. The user region contains your
program and is where most user-solvable problems occur. The two areas, supervisor
and user region, occupy separate parts of main storage and share in the use of several
data structures and registers, the most important of which are the program status
word (PSW) and the task control block (TCB).

2.1.1. Program Status Word (PSW)

One of the most important registers in OS/3 is the current program status word. This
register contains the address of the next instruction to be executed as well as other
indicators and flags which, taken together, define the hardware status of the system,

The format and description of the PSW are:

INTERRUPT CODE

31

INSTRUCTION ADDRESS

63

UP-9980 Rev. 1 21

0S/3 Overview

2-2

A complete description of the PSW can be found in the appropriate processor
programmer reference. For our discussion, you need know only about the unshaded
fields shown in the previous illustration:

PR (bit 13)

Defines the general register set to be used in executing an instruction. The
processor contains two sets of 16 general registers: problem registers and
supervisor registers. The set the processor uses is determined by the following
settings of bit 13:

PR=1 Problem registers

PR=0 Supervisor registers (not for user analysis)

PS (bit 14)

Specifies one of two processor modes of operation:

PS=1 Problem mode

PS=0 Supervisor mode (not for user analysis)

In problem mode, all privileged machine instructions are invalid, and their
attempted execution results in a program exception (interrupt code 02; see Table
A-1). In supervisor mode, all instructions may be executed.

Interrupt code (bits 24-31)

Contains the interrupt code used in software analysis of interrupts. A list of the
interrupt codes used in OS/3 is shown in Table A-1.

ILC (bits 32-33)

Contains the instruction length code, the length in half words of the instruction
being executed at the time of an interrupt. For each instruction, the instruction
address field is incremented by the number of bytes indicated in the ILC for that
instruction.

Instruction address (bits 40-63)
Contains the address of the next instruction to be executed, obtained when the

OS/3 hardware adds the address of the currently executing instruction to the
length of that instruction.

UP-9980 Rev. 1

o

0S/3 Overview

Because the last field of the PSW, the instruction address, points to the next
instruction, it can be altered by hardware branch instructions. The address can also
be stored in main storage, if the current program is interrupted, and later loaded back
into the PSW, permitting the program to resume without loss of control. The OS/3
software handles a number of such interrupt types, including:

* Program exception - issued by the hardware when it detects the improper use of a
machine instruction or data.

® Machine check - issued by the hardware when it detects a hardware failure.

¢ Supervisor call - issued by user programs through use of the SVC instruction.
SVC is the user’s primary interface to the supervisor and may be used to call
transients (2.2.1).

The OS/3 software contains error routines that handle each type of interrupt. Figure
2-1 shows how an interrupt is handled. When an interrupt occurs, the processor
microcode swaps the current PSW of the interrupted program (PROG1) with a new
PSW used for handling the interrupt.

The PSW for PROG1 (old PSW) is stored in a reserved slot and is used later to
determine at which instruction PROGI is to resume. The new (now current) PSW of
PROG?2 is loaded into the PSW register and sets the system in a new state that
branches to the supervisor error routine (PROG2) that is designed to handle the
interrupt.

When PROG2 routine is finished, a LOAD PSW instruction usually loads the old PSW
back into the PSW register, thus returning processor control to PROG1. The
hardware maintains a pair of PSWs, old and new, for each type of interrupt.

UP-9980 Rev. 1 23

0S/3 Overview

r—— = I r——-—-= =

| PSW I | PSW |

| REGISTER | : REGISTER |

S | S T, i R
r 1 r 7
| STORAGE | | STORAGE '
1 b - I
I | —] |
I OoLD NEW I |1 oLD NEW [
PSW PSW I'| SUPERVISOR ERROR ROUTINE || PSW PSW |
| : (PROG2) | I
| {PROG1) (PROG2) | | (PROG1) (PROG2)
J

L e J

LOGIC PATH /

PROG1 (I) PROG2 (I) PROG1
\l/

INTERRUPT, | LOAD PSW
PSW SWAP

Figure 2-1. Handling an Interrupt

Because these interrupts may represent either an error condition or the operating
system’s response to one, their old PSWs can provide clues to the cause of an error.

2.1.2. Task Control Block (TCB)

Besides PSWs, the structure you may analyze most thoroughly in a dump is the task
control block (TCB). Up to 255 TCBs may be active in OS/3 at any time, and each of
these represents a task that is competing for processor time with all other tasks. A
TCB contains fields that completely define its task to the rest of the system; the TCB
thus serves as a software counterpart to the hardware-oriented PSW.

2-4 UP-9980 Rev. 1

0S/3 Overview

For dump analysis, certain fields are important, and these are represented by the
unshaded portion of the following TCB format diagram:

RELATIVE 0 4 8 Cc 10 14 18 ic
ADDRESS

000000

000020

PSW SAVE AREA REGISTER SAVE AREA

000040

000060

* PSW Save Area (byte offset 20,,-27,,)

Two full words into which the old PSW is stored in the event of an interrupt
occurring in the task. When the task resumes processor control, this data is
loaded back into the current PSW.

On abnormal termination, the PSW is also stored in the last five bytes of the
preamble and the interrupt code and instruction address are displayed and
written to the job log. This information is useful if a dump is not obtained.

* Register Save Area (byte offset 28,,-67,,)
Sixteen full words into which the contents of the current register set are stored
when an interrupt occurs in the task. When the task resumes processor control,

these full words are loaded back into the proper register set.

You can find more detailed information of TCBs in the Supervisor Technical Overview
(UP-8831).

UP-9980 Rev. 1 25

0S/3 Overview

2.2. 0S/3 Structural Overview

This subsection summarizes some of the important OS/3 structures that are resident
in main storage and describes how they are linked together. A knowledge of these is
important to dump analysis. Broadly, main storage is allocated as follows:

000000
I SUPERVISOR
ASCENDING
ADDRESSES JOB REGION
l JOB REGION
JOB REGION
/__/

The 0S/3 supervisor occupies the low-order part of main storage. Job regions occupy
some parts of high-order main storage, with free regions taking up the remainder.
The formats of the supervisor and of the job regions are discussed in the following
subsections. Samples of these are in the dumps shown in Section 3.

2.2.1. Supervisor

Three areas of the supervisor are often used in dump analysis: low-order main
storage, the system information block, and the transient area.

2-6 UP-9980 Rev. 1

0S/3 Overview

Low-Order Main Storage and Relocation Registers

The first 4096 bytes of the main memory unit for the System 80, models 8 through 20
are reserved for special purposes by the operating system and thus cannot be used as
a storage area for ordinary data and instructions. In System 80, models 3 through 6,
low-order main storage occupies the lowest 256 bytes of main storage. One area of
low-order main storage is of interest in dump analysis; this is shown in the following
illustration:

Byte Address
{Hexadecimal) o 1 2 3 4 5 6 A B C D E
00X
01X
02X 170 old PSW 170 new PSW
03X Exigent machine check Exigent machine check
old PSW new PSW
04X Program check old PSW Program check new PSW
05X Supervisor call old PSW Supervisor call new PSW
06X External old PSW External new PSW
07X Repressible machine check* Repressible machine check*
old PSW new PSW
08X PER old PSW PER new PSW
09X Restart old PSW* Restart new PSW*
0AX
A

* Not used in Model 8.

Low-order locations 000020 through 00009F contain, for each type of interrupt
supported in System 80, the new PSW that is always loaded into the current PSW
register, and the old PSW that is swapped out. The PSWs for program checks,
machine checks, and SVCs have already been discussed; of these, the program
exception will figure the most in the dump analyses shown in Section 4.

In addition to the data kept in low-order main storage, the system uses 16 relocation
registers (identified as 0 through F,) for models 3 through 6 and 64 relocation
registers (identified as 1-40,,) for models 8 through 20. In the operating system,
models 8 through 20 provide up to 48 user jobs, each using one of the registers 1-30,,
as its base. For models 3 through 6, the maximum number of user jobs is 14 and each
job base is one of the registers 1-E .

UP-9980 Rev. 1 2-7

00

20

40

60

80

0S/3 Overview

These registers should not be confused with the base registers used within programs,
especially by BAL programmers; in fact, every effective address within a job is added
to the job’s relocation register to get the absolute address required, a process generally
transparent to users.

All TCBs within a job specify the relocation register for that job in byte 0. While the
job has processor control, its register number occupies bits 8-11 of the current PSW.
Register 0 is reserved for the supervisor; the field contains a value of zero, which
permits supervisor routines to address the entire address space of a system. Because
it is important to distinguish between system errors and job errors in dump analysis,
job regions and relocation registers are further discussed in 2.2.2.

System Information Block (SIB)

+0

28

The system information block (SIB) occupies supervisor space just past low-order
main storage. Fields within the SIB are often used in dump analysis and are
presented in the following illustration:

+4 +8 +C +10 +14 +18 +1C

ADDR OF

1ST TRANS

ADDRESS O
CURRENT |
TCB

Bytes 40 to 43 contain the full-word address of the first transient area (see 2.2.1). The
two half words in bytes 84 to 87 define the user region with the keys to the first and
last user blocks. The address in bytes 94 to 97 points to the current TCB, which is the
last TCB given control by the system (see 2.3.1).

UP-9980 Rev. 1

II\

0S/3 Overview

Transients

To handle system tasks OS/3 uses two basic types of routines: supervisor overlays and
transient routines. Supervisor overlays occupy a single 1192-byte area within the
supervisor; these are routines that are loaded when needed to handle urgent tasks,
such as operator communications. Transient routines are loaded when needed, occupy

several contiguous 1192-byte areas of supervisor, and can be called by user jobs or by
other transients.

2.2.2. Job Regions

Each user job in OS/3 occupies a single job region in main storage. Within that region
are all the fields unique to that job, including:

¢ Job preamble
¢ JobTCBs

¢ Load module

The job preamble contains data about the job that is used by the supervisor in
scheduling, running, accounting, and terminating the job. The TCBs, of which at least
one exists for each job, represent the individual tasks that may compete for processor

. time while the job is run. The load module is scheduled and loaded through job
control language (JCL) or as a symbiont and may contain one or more phases.

UP-9980 Rev. 1 29

0S/3 Overview

PREAMBLE

000000

000120

0000C0

2-10

As mentioned in 2.2.1., models 3 through 6 have 14 user slots and models 8 through 20
have 48 user slots. This means that System 80 allows you to run simultaneously up to

14 user jobs on models 3 through 6 and up to 48 user jobs on models 8 through 20.
Pointers within each job preamble point to other jobs and to free regions (see 2.2.4).
Each job uses one of the relocation keys discussed in 2.2.1. Five fields in the preamble
are often used in dump analysis, as shown in the following illustration:

4 8 A c 10 14 18 1C 20 Bytes

LAST NEXT

MAIN main | NUMBER

OF BYTES |

JOB NAME STORAGE | STORAGE

ASSIGNED

REGION | REGION

ADDRESS | ADDRESS | TOJOB

123 127

ACTIVE
FILE
TABLE
ADDRESS

NOTE:

Not used in analysis

The eight bytes starting at location 0 contain the name of the user’s job coded in
EBCDIC. The two half words starting at locations 8 and A point to the user regions
immediately following and preceding this region, thus defining the space addressable
by this job. A user region can be a job, a symbiont, or a free region. Location C
contains the number of bytes assigned to this job.

Location 120 contains the switch priority, if a switch command is entered that is to be
in effect for the entire job. Otherwise, this byte will be zero.

UP-9980 Rev. 1

0S/3 Overview

Location 123 through 127 will contain the low-order five bytes of the current PSW
(containing the interrupt code and instruction address) when a job abnormally
terminates. Job control will write this information to the job log and display.

Location CO contains the address of the active file table, which is used as an interface
between the job and the files assigned to it (see 4.4.2).

2.2.3. Symbionts

Symbionts are dynamic extensions of the supervisor which occupy user main storage
in much the same way as do user jobs. Each symbiont has a job-like preamble, TCBs
preceding the code executed in the symbiont, and other necessary structures.

Some of the differences between symbionts and jobs lie in priority (see 2.3.1) and
relocation keys: symbionts use key 0 (the supervisor) and run in supervisor mode; also,
symbionts are loaded from the low-order end of user main storage upwards and are
scheduled and loaded separately from job control.

2.2.4. Free Regions

As explained in 2.2, free regions are those parts of the user region not allocated to user
jobs or symbionts. These regions are not simply ignored in OS/3, however: like a job
or symbiont, each such region has a preamble with pointers in locations 8-B indicating
the jobs/symbionts immediately preceding and following it, thus maintaining forward
and backward links throughout the entire user region.

2.2.5. Structure Summary

The separate structures and pointers of an 0OS/3 system can be pulled together into a
single diagram, shown in Figure 2-2.

UP-9980 Rev. 1 211

0S/3 Overview

000000 \ k
RELOC.**| ReLoc. | ReLoc. | RELOC.
REG. REG. REG. REG. LOW-ORDER
TO EXECUTABLE S ; o A | VAN STORAGE
Co?ga #1 -] J (1024 BYTES)
JOB #2 € /
)
ADDRESS OF
FIRST TRANSIENT
, SiB
ADDRESS OF FIRST | ADDRESS OF LAST
USER MAIN USER MAIN
;‘Y’J;T‘S,Ef YTE = STORAGE REGION STORAGE REGION
TO FIRST BYTE ~&] J SUPERVISOR
JOB #1
o~ A
v fnJ
SOA
(1192 BYTES)
> TRANSIENT
AREA #1
1cs (1192 BYTES)
TRANSIENT
AREA #2
TCB (1192 BYTES)
TRANSIENT
AREA #3
cB (1192 BYTES)
~ A
T 4
______ -t -
NEXT | LAST* TCB
| REGION | REGION
f SYMBIONT
NEXT LAST A
REGION | REGION CreE
T f REGION
/ NEXT | LAST \ USER
REGION
f /— REGION | REGION TCB | TCB
| EXECUTABLE CODE s ¢ JOBH2
]
*NEXT | LAST \
REGION | REGION TCB | TCB | TCB
' EXECUTABLE CODE 5 r JOB#
HIGH-ORDER
END OF
MAIN } ‘
STORAGE

*Contains O's indicating that it does not point to another region. **Relocation registers not in main storage

Figure 2-2. Summary of 0S/3 in Main Storage

2-12 UP-9980 Rev. 1

0S/3 Overview

In Figure 2-2, two jobs and one symbiont are running concurrently, leaving a free
region between them. Note that two relocation registers in low-order main storage are
each pointing to the first byte of executable code in a job region. In analyzing dumps
caused by errors within a user job, these relocation values can help determine
specifically what job caused the error. Note that each job can have more than one
TCB, although only one TCB can be active at any time.

2.3. Functional Description

This subsection summarizes some of the major operations of OS/3 software. You can
find more information in the Supervisor Technical Quverview (UP-8831). For dump
analysis purposes, this discussion focuses on OS/3 tasks and task handling.

2.3.1. TCBs and Multitasking

As described previously, 0S/3 tasks are processes that compete with other tasks for
processor time. Each task is defined by an associated TCB. Each job or symbiont in
the system is considered a primary task to which other tasks may be attached. The
supervisor overlay and transient areas are individual tasks having one TCB each.

Tasks can be active or waited. An active task is one capable of getting processor
control, but a waited task is made ineligible for processor control and must wait,
. usually for some event to occur, until it can be made active again.

Tasks are allotted processor time by the task switcher, a supervisor routine that scans
all active tasks and chooses one among them to get the processor’s attention. The
TCB having the highest priority gets the processor first. Figure 2-3 shows the relative
priorities assigned to different classes of TCBs.

UP-9980 Rev. 1 2-13

0S/3 Overview

HIGHEST SWITCH LIST
PRIORITY SUPERVISOR OVERLAY
PRI : .
RIORITY: O “REA TCB
, ICAM > 1c8
DIRECTION SPOOLER
»{ TCB
OF SCAN 2
3 |SYMBIONTS/TRANSIENTS | o
4 USER TCBs »| TCB | TCB
5 USER TCBs o Tcs
LOWEST ¥ ——v-—

PRIORITIES

Figure 2-3. 0S/3 Task Priorities

Note that the supervisor overlay TCB has the highest priority since supervisor
routines must be run as soon as they are needed. As you move down the list, the tasks
move from supervisor-oriented to user-oriented until you reach priority 4, the highest

priority a user task can have. .

Some priority levels have more than one task, although the tasks may be associated
with different jobs and routines. When one task finishes or is interrupted, the
switcher usually gives processor time to the next TCB at that priority if one exists and
is active. Otherwise, the switcher scans lower priorities until it finds another active
TCB to which to give processor control.

2.3.2. Task Switching Considerations

2-14

Switcher activity within a system can be determined from a dump and can thus help
tell you why an error occurred within a job (which, remember, is itself a task operated
on by the switcher).

Much task switching is done in response to an interrupt. When an interrupt is
processed (Figure 2-4a) the current PSW 1is stored in the appropriate old PSW region
of low-order main storage (step 1A). The corresponding new PSW is then loaded into
the current PSW, thus handling processor control to an interrupt handling routine
(step 1B). That routine in turn copies the old PSW into the double word PSW save
area in bytes 20-27 of the interrupted task’s TCB (step 2). Next, the routine in control
stores the 16 registers used by the interrupted task into bytes 28-67 of the same TCB
(step 3). (This step is omitted if control goes back to the same task as the one
interrupted.) Finally, the interrupt handler returns processor control to the switcher.

UP-9980 Rev. 1

0S/3 Overview

The result of these operations is that control can be easily returned to the interrupted
task when the time comes. This is shown in Figure 2-4b when the switcher gives
control to a task which, like the task in Figure 2-4a, has had its registers and PSW
saved. The switcher simply loads the 16 registers from the register save area (step 1)
and the current PSW from the PSW save area (step 2). Control then passes to the
instruction pointed to by the now-current PSW and the newly activated task begins
processing.

As you will see later, task switching within a job is often prompted by interrupts
responding to errors: in these cases, the old PSW (saved in the TCB of the interrupted
task) shows which instruction caused the error. This is one of the most important

techniques of dump analysis and is used extensively in the dump analyses in Section
4,

OLD PSWs INTERRUPT @ —————————

Y

Al

HANDLING
ROUTNE | | | The—m—e——= —

PSW REGISTER

INTERRUPTED TASK

SWITCHER
NEW PSWs
*Registers are not saved in the TCB if interrupted task
is to receive control back directly.
REGISTERS

a. Saving the environment of an interrupted task

Figure 2-4. Passing Control from Task to Task (Part 1 of 2)

UP-9980 Rev. 1 215

0S/3 Overview

INTERRUPT | | [T — - 7-=777
OLD PSWs HANDLING TCB
ROUTNE | { [—=——=—=]
PSW REGISTER @ LPSW i
SWITCHER INTERRUPTED TASK
NEW PSWs
TCB
REGISTERS -
TASK SELECTED TO
b. Restoring the environment for a subsequent task RECEIVE CONTROL

Figure 2-4. Passing Control from Task to Task (Part 2 of 2)

2-16 UP-9980 Rev. 1

Section 3
Dumps and Their Formats

3.1. General

0S/3 provides three types of dumps. While all are basically hexadecimal images of
main storage at the time they are taken, they differ in scope and purpose as follows:

SYSDUMP

Dumps all or part of main storage and is run in two phases: main storage write
and dump printout. In addition to the raw dump, the printout can provide a
picture of your system in charts and text.

To produce an OPTION SYSDUMP, the RUN pack must have enough contiguous
free space to store a copy of the system’s main storage. See Appendix B for a
procedure to allocate enough file space for your system.

JOBDUMP

Dumps a user’s job region upon abnormal termination of the job or execution of
the DUMP or CANCEL macros. The raw dump is supplemented by charts and
text interpreting the state of the job. JOBDUMP requires space on the first
VTOC cylinder of SYSRUN to allocate files. You should eliminate unused files on
SYSRUN.

EOJ Dump

Dumps a user’s job region without translation as well as the registers and the
PSW.

The three types of dumps contain some common features, particularly in the user
regions. The type of dump you choose to take will depend on some of the following
considerations:

UP-9980 Rev. 1

HALT AND PROCEED (HPR) errors often require a SYSDUMP so that Unisys
representatives can analyze system problems.

System loops or hangs, usually appearing as operator communications that
receive no reply from the system console, require a SYSDUMP. Like HPR errors,
these usually require that a Unisys representative analyze your dump for system
problems.

31

0S/3 Dumps

® User job errors generally occur within the user’s own job region, thus requiring
nothing more than a JOBDUMP or EOJ dump. These are the dumps you are
most likely to work with in analyzing user program errors.

3.2. System Dump Routine (SYSDUMP)

3.2.1. SYSDUMP Makeup

32

The system dump routine (SYSDUMP) is most often used to determine why your
system failed. But it may be used at any other time (even during normal processing).
For example, you can use it interactively to dump all or specific regions of your job and
associated system activity. SYSDUMP provides you with a listing that translates the
state of the operating system when the dump was taken. In the case of a system
failure, the operating system is shown just as it was at the time of the failure.

SYSDUMP is made up of two parts:

* Atranslated dump, which translates the state of the entire operating system into
charts and text

* Alabeled hexadecimal/character main storage dump

SYSDUMP is part of the supervisor and is always included at system generation
(SYSGEN) time. It is designed to be run in 2 multiprogramming environment.

To get a system dump, the following two phases must occur:

1. The supervisor must write an image of main storage to the system dump file
(YDUMP). This phase is called the main storage write phase.

2. The SYSDMP load module, residing in load library YLOD, must be called in
and run. It is SYSDMP that reads the YDUMP file and prints the translated
and main storage dumps. This phase is called the execution phase.

Note: The system dump file, $YSDUMP, does not have to be on the SYSRES disk. It
can be assigned to any disk. Refer to the Installation Guide (UP-8839) for
more information.

Generally, the execution phase of SYSDUMP immediately follows the main storage
write phase. (The only exception to this is a SYSDUMP obtained from the operator
controls. For this the operator must call SYSDMP; see 3.2.2.) Because the contents of
main storage at the time of the main storage write are frozen in YDUMP, you need
not worry about the execution phase or any other job changing the contents of the
system dump before you see the listing. This also means that you may use the
SYSDUMP SAVE and RESTORE options (see 3.2.4) to perform a main storage write
phase at one site and an execution phase at an entirely different site.

UP-9980 Rev. 1

0S/3 Dumps

The operating system can generate a system dump in response to action by the
operator, in response to a system error, or upon encountering an error in your job.

3.2.2. Operator-Initiated SYSDUMP

You can initiate a dump from either the operator controls or the system
console/console workstation. Perform Step 1A if you are using the operator controls
(located on the console workstation); perform Step 1B if you are using the system
console,
Note: The handbook referenced in these procedures is the Operations Guide
(UP-8859).
Step 1A. Starting from the operator controls
To initiate the main stofage write phase, follow this procedure:
* For models 3 through 6:
While pressing the FUNCTION key:
- Pressthe D key to place the system in debug mode.
- Press the RESTART key.
The dump is completed when the following appears on the screen:
1pPL

¢ For models 8 through 20:

- Press the ESCAPE key on the console, then press M (for maintenance). A
menu appears on the screen.

- Select L (for system reset) in the menu and transmit. The same screen is
displayed.

- Press U (for run), then transmit. (Alternatively, you may press ESCAPE,
followed by R, a system function.) When the dump is successfully written to
the YDMP file on disk, the screen shows 99999999 in the bottom right
corner of the screen.

- Perform an initial program load (IPL) on the system according to the
directions in the Operations Guide (UP-8859).

When the IPL operation is finished, SYSDUMPO (the job stream that runs the
SYSDMP module) will run automatically.

UP-9980 Rev. 1 33

0S/3 Dumps

Note:

Step 1B. Starting from the system console

After Step 1A, you may get an HPR of 999F. This means that the YDUMP

‘

file still contains information to be processed by SYSDMP (from a previous
main storage write operation that has not yot been printed). If this happens,
you can:

Print it. - Ordinarily, the information in YDUMP is the system dump
data most helpful to the Unisys representative who maintains your
system. To print it, perform another IPL on the system according to the
procedure in Step 1A.

Overwrite it. - If you are sure you don't need the information in
S$YSDUMP, you can write over it with an image of the system’s main
storage at the time you perform Step 1A. To do this, press

- The FUNCTION and START console keys for models 3 through 6

- The letter U and transmit (or the ESCAPE key followed by the letter
R) for models 8 through 20

and wait for memory write completion. Perform an IPL on the system
according to the directions in the Operations Guide (UP-8859). When the
IPL operation is finished, the SYSDUMPO jobstream will run
automatically.

To initiate a dump, key in the following:

SYSDUMP

The SYSDUMP command writes main storage to the $YSDUMP file, then enters a job
in the job queue, whose only function is to print the system dump. The job is named
SYSDMPxx, where xx is the unique number assigned to this job by the system. When
the job is scheduled and run, the following message appears on the system console:

DUMP OPTION (ALL, NONE, DUMP, JOBS, EDIT, MINI, SAVE, RESTORE)

See Step 2 for an explanation of these parameters.

Note:

After the supervisor writes main storage to Y$DUMP, it locks that file until
Jjob SYSDMPxx is complete. If job SYSDMPxx is removed from the system
prior to displaying the DUMP OPTION message, you must unlock the
SY$DUMP file by entering the following console command:

SET SY,LOFF

UP-9980 Rev. 1

0S/3 Dumps

Two examples of when this command must be used are the following:
1. Ifyou delete job SYSDMPxx from the job queue before it is scheduled

2. Ifthe run processor encounters an error while trying to put job
SYSDMPxx in the job queue

Step 2.

Enter the SYSDUMP command in one of the following three formats, depending on
the output you want (unless the supervisor has already called it automatically).

Format1
RV SYSDUMP

Produces an output identical to that produced by running JOB SYSDUMPOQ with the
dump option ALL. (See Formats 2 and 3).

Format 2
- .
RV SYSDUMPO |,,DO= (I_\LL) [,v= vsn [,P=did]
NONE {(vsn[,A],[dev])}
DUMP
JOBS
\ EDIT }
MINI
SAVE
| RESTORE
Keyword Parameter DO
po= {ALL)
NONE
DUMP
JoBS
Yo (
MINI
SAVE
| RESTORE

UP-9980 Rev. 1 35

0S/3 Dumps

Specifies the dump option you want. Available options are:

LL
The dump listing displays and translates the state of your entire system,
including a header page, low-order main storage, the system information
block, the physical unit block, the main storage map (giving the locations of
everything in main storage), the system switch list, the job region for each
job or symbiont in the system, and the free region. Essentially, the ALL
option combines the DUMP and EDIT options, supplying a hexadecimal

dump with an English translation.

NONE
No output listing is produced.

DUMP
Writes the entire main storage in hexadecimal format.

JoBS
Produces a hexadecimal dump and a translation for all the jobs, symbionts,
and shared code in main storage at the time it was written to the YDUMP
file.

EDIT
Provides an English language description of the state of the system.

Note: EDIT replaces TRANSLATED. Both are supported and they are
functionally equivalent.

MINI
Provides a printed hexadecimal dump, including a table of contents, of
specific main storage regions dependent upon the HPR or system error code.

This is the recommended option for dumps to be sent to Unisys for analysis.

SAVE
Saves the YDUMP file to magnetic tape or diskette (see 3.2.4).

RESTORE
Restores the YDUMP file from magnetic tape or diskette (see 3.2.4).

If you omit keyword parameter DO or if the supervisor has already called SYSDMP
(as with the SYSDUMP console command), then the system will display the following
message:

DUMP OPTION (ALL, NONE, DUMP, JOBS, EDIT, MINI, SAVE, RESTORE)

You then enter the one option you want. SYSDMP redisplays this message after
finishing a SAVE or RESTORE function, so you can perform other SYSDMP
operations within the same job.

36

UP-9980 Rev. 1

0S/3 Dumps

Keyword Parameter V

V= fvsn
(vsnl,Al, [dev])

This parameter allows you to display a dump not residing on the booted SYSRES
device.

vsn

If specified, all data to be processed reside on the specified vsn. If not
specified, the booted SYSRES is used.

Indicates that the SYSDMP load module will also be executed from the
specified vsn. The vsn item must be an alternate SYSRES disk.

Indicates that the device number of the disk pack is specified. Use this
option when you have two volume serial numbers that are the same.

Keyword Parameter P

P=did
If you wish to assign a specific printer as the output device for SYSDUMP,
enter its 3-character device address using this keyword parameter. You may

wish to do this if your system supports spooling but you do not want to spool
the SYSDUMP listing.

If you want to enter more specifics in the RV SYSDUMPO command, use the
suboptions shown in Format 3.

UP-9980 Rev. 1 37

0S/3 Dumps |

Format 3

RV SYSDUMPO (,,DO= VALL[(SYSTEM)] 1 V= |vsn
NONE (vsni,Al,[dev])

[,P=didl|,FILE= {Si’!sbﬂﬁﬁ
tblname

DUMP | (NOSHARE)
(NOBUFFER)
(CACHE)
(SYSTEM)
(SELECT)

.'OBS | (NOSHARE)
(NOBUFFER)
(SELECY)

EDIT
MINI
SAVE
\ RESTORE)

, |FMT= (F {,MLIB=NOI|,SPL= | PRINTER| |[,FDD=NO1],BUF=
€ TAPE

PT=NO

Note: Of the Format 3 suboptions, SELECT is mutually exclusive of NOSHARE,
NOBUFFER, CACHE, and SYSTEM.

Keyword Parameter DO
Same as in Format 2, except with the following suboptions and options added.
(NOSHARE)
Excludes shared code modules in SYSDUMPs. NOSHARE can be used with
any SYSDUMP option except with SAVE, RESTORE, or SELECT.

(NOBUFFER)
Excludes the display of dynamic buffers and the dynamic shared code.

(CACHE)
Displays the entire CACHE main storage. If not selected, dump options JOB
and DUMP will display only 6K of CACHE.

38 UP-9980 Rev. 1

0S/3 Dumps

(SYSTEM)
Displays the following preselected regions of the supervisor

Low Core
System Information Block (SIB)
Switch List
Physical Unit Blocks Table (PUBS)
Shared Code Directory
Supervisor Debug Tables
Supervisor Overlay Area (SOA)/Transient Regions
System Spool Control Table
Dynamic Buffer Information Block
Resident Buffer Control Block
. Shared Code Information Block
(SELECT)
Allows you to interactively select particular regions of the main storage
dump. This suboption creates an interactive environment at the operator’s

console. You will then be prompted to enter requests as follows:

SD28 SELECT(DISPLAY, JOBNAME ,MEMORY,REGION, SHARED. ..
sD28TRANAREA, TERMINATE)

An abbreviated version of this message:
SD28 SELECT(DIS,JOB,MEM,REG, SHAR, TRAN, TERM)
appears after the first selection is made. Thereafter, the complete message

is displayed only after an incorrect response or when the HELP prompter is
invoked.

Note: At any time during entry of SELECT suboptions, you can enter a
SELECT keyword followed by a blank space, and a help prompter
for that keyword will appear on screen.

UP-9980 Rev. 1 39

0S/3 Dumps

You can then enter one of the following keyword requests:

(DISPLAY={ startaddr:nn)
X'xxxxxxxx'}[startaddr-endaddr]
{ C'ceccececce!
(CR)
10
{ IrR >
{RR ¢
SN
4 - !
| JOBS J
JOBNAME=
MEMORY=
SHARED=
TRANAREA=
REGION=
L TERMINATE= J
where:

[SPLAY=startaddr:nn

Displays 1 to 10 lines of main storage on the system console or 1 to
20 lines on a user workstation, from the start address forward.
Enter a hexadecimal value for startaddr.

When this keyword is in effect, a blank response results in the next
logical main storage addresses being displayed. The line count is
the same as the previous response.

DISPLAY= { X' XXXXXXXX ! } [(startaddr-endaddr)]

310

C'ccececccec!
Displays the address of the first occurrence of the sequence
specified. For the address of the next occurrence, return a blank
response to the SELECT request with this keyword in effect.

where:

XXXXAXXXX
Is a hexadecimal character string of up to 16 bytes.

ccccccecce
Is an ASCII character string of up to 16 characters.

UP-9980 Rev. 1

0S/3 Dumps

UP-9980 Rev. 1

startaddr -endaddr

Limits the search for the hexadecimal or ASCII character

string to the range specified.

DISPLAY=f/ CR)

10

PR

J RR

SN T
SR

\ JOBS /

Displays the contents of specified registers.

where:

CR
Represents the control registers.

10
Represents the I/O relocation registers
(models 3 through 6 only).

PR
Represents the problem registers.

RR
Represents the relocation registers.

SN
Represents the snap registers. (Not available on models
3 through 6.)

SR
Represents the supervisor registers.

JoBs
Lists the names and addresses of all the jobs in the
system.

JOBNAME= job/symbiont-name
Specifies an 8-character job/symbiont name, which produces a
hexadecimal dump of that job/symbiont. If you choose the JOB
option, an English language description is also provided.

311

0S/3 Dumps

If there is more than one copy of a job or symbiont, SYSDUMPO
displays a list of the duplicate jobs or symbionts and their
addresses. You can then choose the copy you want. For example:

152SYSDMP76 SD28 SELECT (DIS,JOB,MEM,REG, SHAR, TRAN, TERM)

15 J=SL$$OW00

16 SYSDMP76 SD40@ THERE ARE 902 COPIES OF SL$$0WO0

17 SYSDMP76 SD4@ ENTER NUMBER OF DESIRED ADDRESS. (@=NONE)
182?SYSDMP76 SD4G ENTER 1=06D100 2=076800

18 1

192SYSDMP76 SD4@ SELECT (DIS, JOB,MEM,REG, SHAR, TRAN, TERM)

MEMORY= fstartaddr { -endaddr
,byte-count

-END
ALL LEND

where:

startaddr-endaddr
Dumps main storage from the start address to the end
address specified. Note the use of the dash. Enter
hexadecimal values for startaddr and endaddr.

startaddr,byte-count
Dumps the number of bytes of main storage specified,
starting at the address specified. Note the use of the
comma. Enter a hexadecimal value for startaddr and a
decimal value for byte-count.

startaddr-END
Dumps main storage from the start address to the end of
machine capacity. Enter a hexadecimal value for
startaddr.

startaddr,END
Same as startaddr-END.

ALL
Dumps all the main storage.

SHARED=modul e -name

Specifies an 8-character shared code module name whose module is
dumped.

312 UP-9980 Rev. 1

0S/3 Dumps

UP-9980 Rev. 1

TRANAREA= [ALL
decimal - area-number
D'ID!'
X'ID!

where:

ALL
Dumps all transient areas.

decimal -area-number
Dumps a specified transient area.

D'ID!
Decimal ID of the requested transient area.

X'ID!
Hexadecimal ID of the requested transient area.

REGION

You may enter one of the following acronyms or words designating
a particular region:

CACHE)
DBIB
DEBUG
DISABLED
FREE
1S18
LOWCORE
PUBS
{ RBCB Y
sCD
SCIB
SIB
SOA
SUPERVISOR
SWITCHLIST
TRACE
\ UNIDENTIFIED |

where:

CACHE
Cache module and buffers

DBIB
Dynamic buffer information block

313

0S/3 Dumps

314

DEBUG
System debug tables

DISABLED
Main storage as disabled

FREE
Main storage as free

1S1B
Interactive services information block

LOWCORE
Main storage from location zero to system information
block (SIB)

PUBS
Physical unit blocks table

RBCB
Resident buffer control block

Sch
Shared code directory

SCIB
Shared code information block

SIB
System information block

SOA
Supervisor overlay area

SUPERVISOR
Dumps the entire supervisor region

SWITCHLIST
Switch list

TRACE
System trace table

UNIDENTIFIED
Unlabeled region of main storage (MEMORY) in synopsis

UP-9980 Rev. 1

0S/3 Dumps

TERMINATE
Ends the dump session. When a selection has been processed, you
will always be prompted to enter another selection until you choose
TERMINATE. A keyword remains in effect until you choose
TERMINATE. For example, if you select REGION=SIB, you may
then enter any accepted region acronym without repeating the
REGION=keyword.
Keyword Parameter V
The parameters are defined in Format 2.
Keyword Parameter P
The parameters are defined in Format 2.

Keyword Parameter FILE

FILE= [YblMp }
tblname

where:
FILE=YDUMP
This default parameter allows a dump image to be processed from system
file YSDUMP.
FILE=lblname
Allows a dump image to be processed from some file other than system file

YSDUMP.

Keyword Parameter FMT

" {e

where:

FMT=F
Provides a full System Maintenance Change (SMC) listing after the dump.

FMT=C
Provides a condensed SMC listing after the dump. (This is the default.)

UP-9980 Rev. 1 315

0S/3 Dumps

Keyword Parameter PT

PT=NO
PTSYES

where:

PT=NO
System Maintenance Change (SMC) listing is not printed. If this is entered,
you cannot specify any FMT.

PT=YES
SMC listing is printed. If nothing else is specified (FMT or PT=NO), this is
the default.

Keyword Parameter MLIB

MLI1B=NO
Prevents dumping of the YSDF file.

Keyword Parameter SPL

SPL= { PRI

where:

Sends all spooled output to the printer. (This is the default.)

SPL=TAPE
Sends all spooled output to tape. If this is not specified, then output is
printed.

Keyword Parameter FDD

FDD=NO
Turns off printing of the FDDO diskette.

BUF=NO
Turns off printing of the dynamic buffer summary.

BUFEYES
Turns on printing of the dynamic buffer summary. (This is the default.)

Table 3-1 is a summary of the run statement keywords.

316 UP-9980 Rev. 1

0S/3 Dumps

Table 3-1. Run Statement Keyword

Keyword
Parameter Option Suboption Format
DO ALL DO=AL
SYSTEM DO=A(SYS)
NONE DO=NO
Dump DO=DU
NOSHARE DO=DUNOS)
NOBUFFER DO=DWNOB)
CACHE DO=DU(CAC)
SYSTEM DO=DU(SYS)
SELECT DO=DWKSEL)
JOBS DO=JO
NOSHARE DO=JO{NOS)
NOBUFFER DO=JO(NOB)
SELECT DO=JO(SEL)
EDIT DO=ED
MINI DO=MI
SAVE DO=SA
RESTORE DO=RE
v vsn V=vsn
(vsn,A) V=(vsn[,Al, ldev])
P did P=did

UP-9980 Rev. 1

continued

317

0S/3 Dumps

Table 3-1. Run Statement Keywords (cont.)

Keyword
Parameter Option Suboption Format
FILE SYSDUMP1 FILE=SYSDUMP
Iblname FILE=Iblname
FMT F FMT=F
¢! FMT=C
PT NO PT=N
yes! PT=Y
MLIB NO MLIB=N
SPL PRINTER” SPL=PRINTER
TAPE SPL=TAPE
FDD NO FDD=N
BUF NO BUF=N
! Defaut

3.2.3. Supervisor-Initiated SYSDUMP

The supervisor will automatically generate a system dump in either of two situations:
* An error occurs within a user program.
¢ An error occurs within the supervisor itself.

These two situations are discussed in more detail in 3.2.4.

SYSDUMP from User Program Errors

You can enable the supervisor to generate a SYSDUMP if it encounters a program
error or the program executes either the DUMP or CANCEL macroinstruction. In this
case, the main storage write phase and execution phases are called and executed
automatically, one after the other. To accomplish this, the supervisor calls and
executes the SYSDMP load module in your job region within the same step in which
the program error occurred.

318 UP-9980 Rev. 1

0S/3 Dumps

To enable a supervisor-initiated SYSDUMP you must:
¢ Include a printer device assignment set with the LFD name PRNTR

* Include /AOPTION SYSDUMP job control statement preceding the /AEXEC
statement of the program for which the dump is to be taken

If you want to enable the SYSDUMP option for more than one step, use the // OPTION
GSYSDUMP job control statement. Inserting it in your control stream enables the
SYSDUMP option for all steps following it right up to the end of the job.

If you want to restart a job while OPTION SYSDUMP is still processing, use the

// OPTION PSYSDUMP job control statement. This option immediately terminates
the failing job and processes the OPTION PSYSDUMP under a cover name of
JOBNAME#,

If a program run with /AOPTION SYSDUMP fails, the supervisor will write a main
storage image to YDUMP, load the SYSDMP module for the execution phase, then
display the following message:

DUMP OPTION (ALL, NONE, DUMP, TRANSLATED, JOBS, RESTORE, SAVE)

You may want to tell the system operator beforehand what SYSDUMP option to enter
should a system dump be generated from your program. See Step 2 in 3.2.2 for an
explanation of these options.

SYSDUMP from System Errors

Some system errors (errors occurring within the supervisor) may automatically
initiate a SYSDUMP. The supervisor will attempt to write a main storage image to
$YSDUMP; if it succeeds, an SE15 message will be displayed on the system console, as
in the following example:

SE15 SYSTEM ERROR 20 IN TRANS # 33-SYSDUMP WRITTEN TO DISK

The system will then schedule job SYSDMPxx to print the contents of YDUMP.
This example of message SE15 shows that a program check (error code 20) occurred in
transient number 33. The SYSDUMP WRITTEN TO DISK message indicates that job
SYSDMPxx has been scheduled. When you see the DUMP OPTION message, you
should reply with the DUMP, MINI, or SAVE option, and send the resulting printout
to your Unisys representative for analysis.

UP-9980 Rev. 1 319

0S/3 Dumps

If the YDUMP file is in use or locked when a system error occurs, a SE16 message
will be displayed on the console showing the error and the current contents of the
program status word (PSW) and registers. In this case, no main storage write will be
performed. The system will, however, continue to run.

3.2.4. SYSDUMP SAVE and RESTORE Options

The end product of a SYSDUMP is the printed listing that shows the state of the
operating system and user jobs at the time the system crashed. For analysis purposes
you may wish to send a SYSDUMP listing to another site. The size and bulk of a
printed listing, however, may make sending it a slow and expensive process. To help
you avoid this problem, Unisys provides the SAVE and RESTORE options with
SYSDUMP. You may use the SAVE option to copy the $YSDUMP file to diskettes or a
magnetic tape volume. With the RESTORE option you copy the data on that diskette
or tape back onto the YDUMP file. This means, for example, that at one site you
can copy a $YSDUMRP file to a diskette (with SAVE), send only the diskette to another
site, copy the diskette data to the $YSDUMP file there (with RESTORE), and run
SYSDUMPO to get the printed listing of the dump, all at reduced cost and in less
time.

You can use the SAVE and RESTORE options with single and multivolume tapes and
diskettes; however, there are some requirements.

* Tape
- Requires Consolidated Data Management (CDM)
- Requires 9-track tape

* Diskette

- Requires Consolidated Data Management

SAVE Option

320

To use the SAVE option you must first prep a diskette or magnetic tape using the
canned job control stream SD$PREP. When you call SYSDUMPO and get the DUMP
OPTION message, you key in SAVE. The system will reply with the following console
message:

ENTER DUMP DEVICE INFORMATION (DISKETTE, TAPE, NONE)

UP-9980 Rev. 1

0S/3 Dumps

Key in the device you will use in saving the YDUMP file, DISKETTE or TAPE, or
key in NONE to terminate SAVE without saving the YDUMP file. If you enter
DISKETTE or TAPE, the system will then ask you to mount a prepped diskette or
magnetic tape on an unused drive. When you have done so, the system will copy the
YDUMP file. After it finishes it will display:

| $YSDUMP SAVED ON TO [TAPE
DISKETTE

The system will then display the DUMP OPTION message so that you may select
another SYSDUMPO option or terminate SYSDUMPO altogether (with NONE). In
other words, when you run SYSDUMPO with the SAVE option, you will be assigning a
diskette/tape in addition to supplying a brief "problem description”.

You can send tapes containing saved dumps to the Customer Support Center for
analysis. Please include the following on the label of the tape:

¢ Whether or not the system that created the tape was generated for tape block
numbering

¢ Streaming or non-streaming type of the tape drive
* Your company name
. e Applicable reference number
- UCF number (supplied by Unisys)
- Authorization number (supplied by Unisys)
¢ Date

¢ Number multivolume tapes giving the number of the tapes and the total number
of tapes (for example: 1 of 3, 2 of 3, 3 of 3)

* The dump name (please note on UCF form in comments area), for example,
HENRC001

Note: The SYSDUMP will print the SMC LIST and error log. Include these listings
with the tape or tapes.
RESTORE Option
You use the RESTORE option much like the SAVE option. In response to the
SYSDUMPO DUMP OPTION message you key in RESTORE. The system will reply

with the following console message:

. ENTER DUMP DEVICE INFORMATION (DISKETTE, TAPE, NONE)

UP-9980 Rev. 1 321

0S/3 Dumps

Key in the device type that contains the saved YDUMP file, DISKETTE or TAPE, or
key in NONE to terminate RESTORE without restoring the YDUMP file. If you
enter DISKETTE or TAPE, the system will then ask you to mount the magnetic tape
or diskette. When you have done so, the system will copy the data to the YDUMP
on the SYSRES volume, destroying any data previously stored there. After it finishes,
it will display:

YDUMP RESTORED FROM [TAPE
DISKETTE

The system will then display the DUMP OPTION message so that you may select
another SYSDUMPO option or terminate SYSDUMPO altogether (with NONE). You
can now have the system print the SYSDUMP listing in any of its available formats.

Note: When the SYSDUMP main storage write and execution phases take place in
the same system, the main storage map will include a list of the CSECTs in
main storage. If you run SYSDUMPO on a system other than the one whose
main storage image is in the YDUMP file, you will not get the CSECT
listing. All other parts of the SYSDUMP listing, however, will be printed.

Prepping a Diskette or Magnetic Tape for SAVE/RESTORE

Before you can use a diskette or magnetic tape with the SAVE or RESTORE options,
you must prep it using the canned job control stream SD$PREP. The control stream
accepts a diskette or magnetic tape straight from the factory, formats it if necessary,
and allocates a single-volume file called YDMP, the file which the SAVE and
RESTORE options use.

Note: Ifyou send a dump on tape to the Customer Support Center, make sure
another tape is prepped and ready for future dumps.

To call SD$PREP, key in:
RV SD$PREP,,TYPE= [TAPE ,NUMBER= | 1 ,VOLUME={'1 },sons= 1}
DISKETTE nn vv 2
where:

TYPE= | TAPE
DISKETTE

Specifies the type of device to be prepped.

NUMBER= { 1
nn

nn specifies 01 to 16 tape or diskette volumes.

322 UP-9980 Rev. 1

0S/3 Dumps

VOLUME= { | }
vv

vv specifies the first volume to be prepped.
SIDES= { 1 }
2
Specifies a 1- or 2-sided diskette.

The system will ask you to mount the diskette or magnetic tape to be prepped. When
you have done so, the system preps it.

These are a few things to remember when using SD$PREP:

1. Prepping a magnetic tape or diskette for SYSDUMPO destroys all data
previously recorded on that medium.

2. A diskette or magnetic tape prepped by SD$PREP cannot be used for other files
or programs. To use a magnetic tape or diskette (for other files) that has already
been prepped with SD$PREP, you must prep it again using the appropriate
system service program described in the System Service Programs (SSP)
Operating Guide (UP-8841).

3. Tapes or diskettes prepped prior to Release 8 are no longer valid.

3.3. Job Dump Routine (JOBDUMP)

You use the job dump routines JOBDUMP and ABRDUMP to determine what caused
your job to terminate abnormally.

3.3.1. Full Job Dump (OPTION JOBDUMP)
JOBDUMP provides a method for determining what caused the job to terminate
abnormally. It prints out a listing of the state of the job region when the job crashed.
JOBDUMP is made up of two parts:
¢ A dump that translates the state of the job region into charts and text

¢ Alabeled hexadecimal/character main storage dump

UP9980 Rev. 1 323

0S/3 Dumps

To execute JOBDUMP, a // OPTION JOBDUMP job control statement is required and
must precede the EXEC job control statement. The first statement invokes
JOBDUMP if the job terminates abnormally or upon execution of a DUMP or
CANCEL macroinstruction in the assembler program.

There must also be a printer device assignment present in the control stream with a
LFD file name of PRNTR.

3.3.2. Abbreviated Job Dump (OPTION ABRDUMP)

The abbreviated job dump provides you with a shortened listing of the full job dump to
help you determine what caused the job to terminate abnormally. When ABRDUMP
is called, only the area in the vicinity of the last instruction executed, along with the
address and contents of the I/O buffers associated with the OPEN DTFs, is printed.

To execute ABRDUMP, a / OPTION ABRDUMP job control statement is used in place
of the // OPTION JOBDUMP job control statement. The abbreviated job dump is
called similarly to the full job dump.

3.4. EOJ Dump Routine

The EOQJ dump routine is called by either the DUMP macro used in place of the EOJ
macro in your assembler program or by an abnormal termination of your job. In either
case, the / OPTION DUMP job control statement must be present in your control
stream. The EQJ is in hexadecimal format and is divided into four sections: problem
program registers, job preamble, task control blocks (TCBs), and your program region.
In addition, the dump also gives you the PSW at interrupt time, the error code that
caused the abnormal termination, and the next TCB address.

3.5. Supervisor Trace Analysis

The supervisor trace facility is automatically included in any system dump, whether
operator- or supervisor-initiated; you don’t need to activate it.

The module for the supervisor trace facility is SM$TRACE.

3.5.1. How to Read a Supervisor Trace

324

1. Find the module heading SM$TRACE in the system dump printout. It should be
located near the end of the resident supervisor portion of the dump.

2. Find the word TRAC in the interpreted (edited) section on the right side of the
system dump printout.

UP-9980 Rev. 1

0S/3 Dumps

3. Now find the equivalent of TRAC in the hexadecimal portion of the printout.
This hex value marks the beginning of the trace table where the supervisor
activities are logged.

Note that the entry for each supervisor activity consists of four hexadecimal
words. The supervisor trace table can contain up to 400 entries and will wrap
(overwrite the beginning of the table) when the end of the table is reached, so that
only the 400 most current entries are listed.

4. Find the word following the hex equivalent of TRAC. This word contains the
address of the next available entry in the table (i.e., where the next entry will be
logged).

5. Look for this address in the hex portion of the printout. Note the entry in front of
this address. This entry is the last (most current) one logged,; it is the logical end
of the supervisor trace table.

Table 3-2 describes the supervisor area trace table entry formats. Note that word 1
for each entry appears in the interpreted portion at the right of the dump printout.

Table 3-2 also provides the interpretations of the hex values of words 2, 3, and 4 for
each supervisor area. Note that all zeros indicate that there are no values (no entries
to be made) for that word. In some cases, words 2 and 3 are combined to provide one

. value.

UP-9980 Rev. 1 325

0S/3 Dumps

Table 3-2. Supervisor Area Trace Table Entry Formats

Supervisor Word 1 Word 2 Word 3 Word &
Area

Timer T1 20000000 00000000 Interval
timer

register

Machine MC Machine check old Interval
check program status timer

word (PSW) register

Program PC Program check old Interval
check PSW timer

register

Transient T0 Transient Overlay Interval
overlay area transient timer

address id register

Task switch TS 00000000 TCB Interval
address of timer

new task register

SVC call SV Interval
SVC old PSW timer

register

Transient TR Transient Transient Interval
release area id timer

address register

Shared SC TCB address Name of Interval
code call of task shared code timer

using shared | module being register

code called

Shared SR TCB address Name of Interval
code release of task shared code timer

using shared | module being register

code exited

326

UP-9980 Rev. 1

® Section 4
Sample Dump Analyses

4.1. General

In the preceding sections, you got a general overview of OS/3 dumps and of how 0O5/3
interacts with user programs. In this section, you will see examples of dump analyses
applied to actual user programs by using the ideas already presented. A number of
programs are shown here that have failed while being executed. Although all have
been compiled or assembled correctly, errors have nonetheless remained. Itisin
uncovering these errors that dump analysis is a useful tool.

Three programs are presented in this section, each written in a language supported by
08/3:

* BALOBJ, a program that reads data from cards, adds the data, and outputs the
result to a printer, is written in Basic Assembler Language (BAL).

* (COBOBJ, a program that performs the same functions as BALOBJ, is written in

. COBOL.

¢ RPGOBJ, a program that performs the same functions as BALOBJ, is written in
RPGII.

In these examples, you will be working with different types of dumps, as well as with
other diagnostic tools supplied with the individual language processors. Each
example takes the following form:

* An outline of the program and the circumstances under which it failed

¢ Alist of the dumps and other materials used in the analysis

¢ A brief outline of the particular type of dump used or of an analysis technique

* A step-by-step dump analysis narrative

* An edited copy of the output listings used in the analysis

UP-9980 Rev. 1 41

Dump Analyses

The dump analysis itself will consist of two parts; the narrative and the listings. Most
important among these listings is the dump itself, but compiler/assembler listings and
other materials are also included where needed.

In a typical dump analysis, you will move forward and backward within and often
outside the dump. With analysis, you are trying to uncover the logical (and not
necessarily the physical) sequence of events leading up to a program failure.

To help you find your way through the following analyses, they are broken down into
logical steps numbered @ , @ , @, etc. With each step, a relevant portion of the
listings is reproduced within which an identically numbered pointer indicates the data
used in that step. All the pointers reappear in the listings themselves, together with
an index indicating where each pointer is.

As an example, we show two excerpts from a dump analysis, one taken from the
narrative and the other from the output listings.

Dump Analysis Narrative
©

200143-00070000 000BNUCO 0JUOUOCO NODEDDDG 00000GOD 0DONODDD FZF3F240 FIF6FSAT| dececascassacassscasscase232 365 ~001890
CO0LCO-408D02CS D3D3CSES 6BANL3D6 DANOSLND SONDSDA0 4DNONNAD AGAOSUND S0ATADAD & KELLEY, YOR -o01880

COQIEC-FIFOF 380 M0F3FOF2 &N4DESCY? DSC3ICSDS E36B4LCT CSD6DOCT CSNTM08C 80a0aNSD ¢1N3 302 VINCENT, GEORGE -bo1800

At location 18AD (9 we see that the three bytes operated on by the PACK
instruction...

Dump Analysis Output Listing

OO00EG-DOGD1ALR JD0L0SFO J11D0NUO NOODDT28 BONUNGT8 J2L018DO0 N000DC28 0J2889I0 %$esescceNorcccscvscscsssseseceses~0017D0
00C170-8208LA0S 00280000 0NUCISAB 30N00UDC 0CO0JOOCO LNLIOCDO AWIVOUND QN2TONOT %eecssscesseveccsssesncsssnscscees-B01TFD

000120-0N00u00Y 00D0O3ND BCONUOLO 0QOUDCOC 0ODD8LES JOLIDNUD DONCOODG UPOOIASC ®eecesceccsscecscssscssaccssssee®~001810

707140-00001886 CJ0DOUNU UCOD0SDT D709C6CSY D3C59080 80L00DN8 CDDOD00C UOJDDNF? ®svevcvcsossePRFILE ceoveveceeeN=-001830

C3C160-F12000U" GGCR02000 GOUOL6S8 01001920 O000NC28 ON2CA88T JC88aUDA Q028000 @

ssesesecssoncsnsssssnsses vasee-001850

J00182-01G018F8 NOOUDDOD D0GOUDO0 0GOUNGNU 0O0GOQO0U LNLIADOC MLOGOODL UDUDCOOG #eeeBeccocasssssascassosscasscsss-001870
nGP1A3-000MU0ON 0O00NGCO 0OUOUCOO N0DCD00G 0CO0DGOD ODONDODC F2F3F240 FYFEFSAT] #ecaccncnsscecssscocssssd23z] 65| -001890
£O01C0-40840D2CS D3D3CSES 6BADESD6 DNNDAUND AOSOSGAD 4ONDANSD SUSINUND ADANSOND & WELLEY, TON) -001880

COQLEC-FIFOF 380 SOF3FOF2 RNGNESC? DSC3CSOS E36B8LCT CSD6DICT CSATNJAC A0K0K0ON0 ¢1N3 302 VINCENT, GEORGE 0 ~001800

4.2 UP-9980 Rev. 1

Dump Analyses

4.2.

4.2.1.

4.2.2.

These analyses assume that you have a knowledge of machine language, especially
main storage addressing. If you need to learn about how machine instructions in
general are executed, refer to the appropriate processor programmer reference. To
learn what an individual machine instruction does, refer to the Hardware and
Software Programming Quick-Reference Guide (UP-8868).

BAL Dump Analysis

In this subsection, we will analyze an EOJ dump generated from a BAL program
called BALOBJ. We will use some of the TCB fields discussed earlier to help uncover
the error causing the dump.

Program BALOBJ, run as part of a job named BALJOB, reads numeric data from an
input card, adds the numbers, and outputs them to a printer together with a copy of a
character string punched on the input card. The program as written is assembled
without any errors, but when we run it, it fails, generating an error code of 20 - a
program exception. Anticipating the possibility of such an error, we have put an

// OPTION DUMP card in the JCL runstream immediately preceding the EXEC
instruction that loads and runs BALOBJ. The program exception causes the
operating system to dump the job area containing BALOBJ; because the EOJ dump
goes directly to the user’s log file, there is no need to assign a printer exclusively to the
dump.

Materials Used

The materials we will use in the analysis are contained in 4.2.4. They include the
following as shown in Figure 4-2:

* The BAL source code for BALOBJ
* The linkage editor allocation map

* The EOJ dump, edited for clarity

Outline of EOJ Dump

We will use the step-pointer system outlined in 4.1 to help guide our way around the
output listings shown in 4.2.4. An important part of using this system is knowing how
the EOJ dump is organized. You should compare the examples and chart presented
here with the actual dump shown in 4.2 4.

UP-9980 Rev. 1 43

Dump Analyses

A portion of a typical EOJ dump looks like this:

JOB-RELATIVE
ADDRESSES

FFFFE8 8040D30S
FFFFAS DOD209E0
FFFFCS 07420000
FFFFES FODADTFF

PROGRAN REGION
200000 0F020

00002C ['91801048
000040 [92001032

LOCATION
000000

D2CSCAES
308

FOFo0200

fa0000028

00000000

9500F028

SO0MFOF 7
ST80F O30
91801086

§780F022

82280000
S00010S8
8T10F0S6

280
89F 00008

OASASSFO

n0000000
58001054

92131038

FFFFFTCS
eunooacl
12FF88FD

FO2807FF

00000000
90ECDODC
96021032

n0000C10
NBECO1ID0

00088780

DOFEAASS

20000090
SUEQDO1U
n7rFee102

FFFFF9fs
00018600

FD18a88F0

fooouraoo
S1AQFS0E

10860718

NCEQADND
nr00nCc37

naneS8F o

focuroos
S1BLFA9E

95201031

ABSOLUTE
ADDRESSES

owgses
C1BSA8

otascs

01BSES

a1860n
otpe2n

018680

As you can see, each line of the dump contains 32 bytes of data. The location of that
data is given by the two addresses flanking each line. Both addresses always refer to
the hexadecimal location of the first byte in the line but differ in their addressing: the
right-hand address is the address of the location relative to the entire system, while
the left-hand address is relative to the program region. Since the job prologue comes
before the program region, its left-hand addresses are given as negative (twos
complement) values.

The characteristics of the EOJ dump are summarized in Figure 4-1.

UP-9980 Rev. 1

Dump Analyses

LEFT CONTENTS RIGHT
MARGIN MARGIN
ADDRESSES ADDRESSES
RESIDENT SUPERVISOR 000000
000020
[]
(OTHER JOBS)
A \
PREAMBLE
TCBs
PROLOGUE
PROLOGUE
TABLES
}jg"‘f EEEEES MAIN STORAGE
18 SHOWN IN
________________ — T~ | EOJ DUMP
000000
000020
PROGRAM
REGION LOAD
MODULE
AND
INUSED
MAIN STORAGE
Y l \ y

Figure 4-1. EOJ Dump Organization

As Figure 4-1 shows, the EOJ dump presents the entire job region, broken up into a
number of blocks: the preamble, each TCB, other prologue tables, and the program
region. To read and analyze an EQJ dump, you will need to know about the structure
of the TCB, discussed earlier in this manual. As we go through the following analysis
you may want to review 2.2 for the structure of the TCB.

UP-9980 Rev. 1 45

Dump Analyses

4.2.3.

46

Not shown in Figure 4-1 are several other items that are present at the beginning of
the EOJ dump:

* Jobname

* System version

* PSW at the time the program failed

¢ Error code

® Address of the TCB that was active when the program failed

® Contents of problem registers 0 through 15 when the program failed

Analysis

To determine what caused program BALOBJ to fail, we proceed as follows:

PSUNT INTERRUPT JCO1600063000143A] CAROR COOE = DO00DC20 Tce aoor = [GTABGY
TS
FFFSO0, 10014800 0DODOO300 2001ABOU OODODIOG CGOOF22A NOD1AAND 1COGO00O NOOONGND - [GIABOA)

FFFS20 [CO160006¢ 8000188A] D0DO0COC 80001698 aL700000 NOOCDOC0 MLOOOOOO NOOON0OD otasan

FFFSaD 00000000 00000000 00000000 0QODO00D ocoecoon 00000000 40001492 NONCOOND O1ABaP
FFFS60 0Q000000 30000000 00000000 DO0C0000 0000000 N00000N0 0ONOOEOR NODLNONOD 01AB6"
FFFS80 00000000 0ASe0020 6CO00000 C€O160006 8000148A 0000N000 01862800 NC815000 014B8D
FFFSAD OQFED6CS 0DOO0000 00000000 00000000 rO000000 CQOGDODD ©DOQ0COC NhONCOODO 0tABAN
FFFSCO 00000000 00000000 01 ABCO

We begin by looking for the instruction that directly caused the failure of the program.

The TCB at location 1AB00,, is the primary TCB for the job; therefore, its PSW save
area (offset 20,,-27,,) @ holds the PSW at the time of the error.

UP-9980 Rev. 1

—

Dump Analyses

Let’s look more closely at the task PSW. Using the PSW illustration in 2.1.1, we can
extract the following information:

co16 oolos} |8jooo

BINARY INSTRUCTION
1000 ADDRESS
'C%EEERUPT INSTRUCTION LENGTH CODE
(SPECIFICATION :i gé{_—E'SWORDS
EXCEPTION)

From this PSW, we can determine where the error occurred and what caused it. We
find the error location by remembering that all interrupt handlers store the address of
the next instruction to be processed in bits 48-63 of the PSW. The length of the
instruction being processed at interrupt time is stored in bits 32-33. From this
information, we can find the address of the instruction causing the interrupt:

14BA PSW instruction address
- 4 ILC (= 2 half words)
14B6 Address of instruction causing interrupt

As to what caused the interrupt, we can determine that from bits 24-31, the interrupt
code. In our case, the code is 06, which, according to Table A-1, is a specification
exception involving the improper use of the instruction at 14B6.

PUASE WARE TRANS ADDR FLAS
00 ENG OF AUTO-INCLUDED ELEMENTS \-
- 79709707 21.11 -

LABEL TYPE [21 8] LNK 0ORE HIADODR LENGTH OBJ ORG
BALOBJCT osJ

BALOBJCY CSECT 01 B0001490G NO00168F 0onpn2n0 aonanong

(43 ENTRY 01 50007151C [4l BT
COFILEC ENTRY o1 00001582 ngognos2
COFILEE ENTRY 01 00001588 noooross
PRFILE ENTRY o1 00001580 N0000JFO
PRFILEC ENTRY 01 00001582 noooci22
PRFILEE ENTRY o1 00001588 ngoon12s

To use the information we have so far, we will need to find the instruction that caused
BALOBJ to fail. Keep in mind that a load module like the one loaded and run in this
job can comprise one or more object modules like BALOBJ, bound together by the
linkage editor. We can use the linkage editor allocation map to determine in what
portion of the load module our failing instruction lies.

UP-9980 Rev. 1 47

Dump Analyses

Pointer @ indicates an entry on the allocation map. Three items of the entry are of
interest to us: the label BALOBJ, the LNKORG address 1490, and the HIADDR
address 168F. The LNKORG and HIADDR addresses define the boundaries of the
object module named BALOBJ and we see that address 14B6, indicated by @ , lies
within BALOBJ. The exact location of the address can be determined as follows:

14B6 Address of failing instruction in load module
-1490 LNKORG address (first address of BALOBJ)
26 Offset of failing instruction within BALOBJ

nyl PRBUFF,C* * CLEAR outPuUTY BUV}ER. \
nyC PRBUFF+1439) ,PRBUFF 1
6ET COFILE ,COBUFF READ INPUT RECORD.

00001C 9240 CiBC
000020 D226 C13P

18C 001BD 0O1BC

000026 A 1T oc LYE0) SET ALIGNMENT 6EYQ0230
(000026] 5010 C1FQ DO1F3 & 18+ LOAD R1s, FILENAME ADDRESS GETON260
j000 5800 C1Fa OD1F8 A 19+ L ‘e T LBU LOAD RS, WORKAREA ADDRESS 6ETOD8SO
00002t 9210 1031 oons) A 20e L1)3 4941),X"10° SET FUNCTION CODE 6ETOL1010

We now know that the failing instruction we seek does lie within our BAL program,
rather than within one of the other object modules making up our load module. We
turn to the assembler listing for program BALOBJ and look at offset 26,,), the
instruction location calculated in @ . We find there that our failing instruction is one
that LOADs register 1 from a storage location determined by base register 12 (C,)
and offset 1F0,,. Looking at Table A-1 for possible causes of our error, we see that the
most likely explanation is that the LOAD does not refer to a proper boundary. LOAD
instructions can operate only on data residing on full-word boundaries; might the
main storage location given by 3 not satisfy this requirement? To see, we go to @,
located at the beginning of the EQJ dump.

PREBLER PROSERAN RECS
REES 0-T 00000000 80D018%8 00000000 00000000 0CO00000 00000000 ©0000000C 0000N000

REGS 8-F 00000000 00000000 000 IQOOOIQQZI 00000000 00000000 NOOOOROOD

48 UP-9980 Rev. 1

Dump Analyses

To find the storage location referred to by the LOAD instruction in @ , we must first
find what is in base register 12 @ . Ignoring the high-order byte, which plays no part
in address formation, we see that register 12 contains the value 1492. Once again, the
instruction in @) is:

5810 C1Fo0
The storage location is determined as follows:

1492 Register 12 contents
+ 1FQ Displacement
1682 Referenced main storage location

Location 1682 does not lie on a full-word boundary; therefore, any LOAD instruction
referencing it will generate a program exception like the one that has occurred in this
program.

One question remains: why does the main storage location fail to lie on a full-word
boundary? As @ shows, the location is represented by an address constant (for
CDFILE) and address constants are assembled on full-word boundaries. For more
clues, we will have to look backwards in the program to see what events could have
disrupted it.

000000 1 BALOBJUCT STARY ¢
000000 05¢O 2 BALR 12,0
000000 3 @ USING BALOBJCT,32

. 0¥ 0 N OPEN FILES.
000002 0700 A Se CNOP L& OPEQD130
00000« 4510 CO10 00010 & 6 8AL 1p®eias3) OPEDQOSO0
000008 FO A T ;14 X*FO* OPEDDS80
000009 DDODSD A 8¢ oc AL3IICOFILED oPEN06D0
00000C 80 A 9e oc x*sn* oPEDOS S0
000000 0O0QOFD A 10 oc ALSIPRFILE) : OPEND600
000010 0A26 A 11e sve 38 ISSUE SVC oPED0800
000012 9240 C19% 0ol oy 12 LooP nyl COBUFF,C* * CLEAR INPUT BUFFER.

000016 D226 C195 C194 00195 00194 13 nve CDBUFF+1439),CORUFF

00001C 2240 C1BC 0018C 18 nvl PRBUFF,C* * CLEAR OUTPUTY BUFFER.
000020 0226 C1BD C1BC D01BD 0018BC nYC PRBUFF+11439),PRBUFF
16 6Ly COFILE ,CDBUFF READ INPUT RECORD.
000026 A 1T oc CYLN) SET ALIGNMENY . 6E700230
26 10 Cifo 0O1FD A 18+ L 1o ZA{COFILEM|LOAD R1s, FILENAME ADDRESS GETON260

Looking at @) again, we see that the displacement 1F0,, is evenly divisible by 4. For
a full-word location, the value contained in register 12 must also be evenly divisible by
4. As @ shows us, however, the register 12 value of 1492 is not. So we look at
previous instructions affecting register 12 and find at & a BALR instruction and a
USING directive.

UP-9980 Rev. 1 49

Dump Analyses

4.2.4.

410

The USING directive marks the location of symbol BALOBJ as the base address for
this assembly and names register 12 as the base register. Since BALOBJ occupies
location 00 (1490 when linked into the load module), all references to main storage use
register 12, presuming it has a value of 0. However, the previous instruction at ®,
BALR 12,0 effectively loads a value of 2 (in fact, a load module-relative address of
1492) into register 12. Since the BALR instruction takes effect only at execution time,
it introduces a 2-byte address offset that was never taken into account by the
assembler. This unexpected offset causes the LOAD instruction in @) to try to access a
main storage location that is not on a full-word boundary. The result is the
specification exception that caused BALOBJ to fail.

The solution to the problem is to rearrange or rewrite those introductory BAL
statements in & . One correct sequence is:

BALOBJ! START @
BALR 12,0
USING *,12

We should note that the statements at @ and & were assembled without error. It
was only after they were executed that a problem emerged. We should also note by
looking at Figure 4-2 that the steps we take to analyze BALOBJ follow a logical, not a
physical, sequence - step & lies above @ , for example. It is the time sequence that
we are most concerned with, and the EOJ dump can be helpful to us in that respect.

Dump Analysis Materials

The edited printout from job BALJOB, including the assembler listing for program
BALOBJ, the link edit, and the EOJ dump are contained in Figure 4-2. All the
pointers referred to in 4.2.3 are shown in the list below in numerical order, each
pointer referring to the part of Figure 4-2 on which it appears. Use this list to assist
you in looking for these pointers.

@ partl
part 7
part 5

partl

@ ®© O

part 5

UP-9980 Rev. 1

Dump Analyses

(£ 10 T Med) Bunsi siskjeuy dwing Tyg "Z-b 2in314

803vio
e3avio

83avio

8ZJv10
800VI0
$34vi0

slavio

ulevigo
yvavio
ce8viD
J98v10
Jedvio
uzZavio

00gvIa

03vyvi0
wlYYio
uvyvio
usyvlio
Lovvip
ubyvio
uzZvyvio
utwvio

£360L00¢
udubsatd

4 8$00000

0u0o00co
ouounaou
ou0ou0goL

YednQ3el

0p0uduUCL
0uoLI8I0
oununNuou
0L0UdLoU
ouoLI00u

0u0u0atu

IV IV [+ 1]
20000400
00006300
$40u0380
000uU000L
82100uSu
000u0uOU
Quououou

0000000u
0G0u0000

asL 49314
£31J00¢0

00000008

00000000
00000000
00000600

8986000C

0000000u
0ce298to
ogegounc
2691009
0000000y
00009021

00000000
Gsto000o
8000040GC
00300800
0a£GZ 5t0
00000000
83231000
00981000

00000000
00000000

oosvio

94040404
$20£6000

0GevYIosI

0g00000u
00000000
8J000G8G

Z9LzZ100u

09030000
73030600
0u00000u
00000690
ooco000u

ouvyiQ0oU

00002020
00000000
00000608
10000600
0Gs00s00
00000000
©9381000
06910000

03000000
0000004

04345434
24995000

81281008

00000020
03000020
00000050

¥3800020

co007G3u
vasitone
000000dC
000GoCI U
000300y

¥2240000

832134434
00000000
800000930
00000380
000004S 4
Q00%08Sa

00106062

Cove0000

000000930

02000000 = 3007 BOuy3
2°S NOISN3IA WALSAS

£4506123
14212000

00004444

00000003
Q06000000
00000000
93000000

00040000
90009102
Go0G000U
26000004
86410008

30100000

81344444
0Q0000%0
00000000
33001000
Z363L 400
»3608583
04048212

00950000

00000000
00000000

QLL052L3
84644443
00000000
3A09Y SY¥
00000000
90000000
34010000

€0000000

00000000
70000029
00060000
00000000
00000000

noavrI002

Quo09s00
00010906
Cgo000000
00109810
v3004%00
95000000
9a£412322
00001600

00000000
00000000

$200$250
€20v100C
00000000

6J3$35J%) 008344
$8$00000 SALia4

SQLiddd3 8Ldiid

3WYS SJQVI0 05 8YIVIO

00000000 00000000 829444
00000600 00000000 809444
¥S9.£00C 904868%0 835444
6%8£0000 AYIOCO0Q0 $3S434
$378v1L 3N90704d
00000003 00000000 035444
00000000 ©39G3400 0VSAid
0Z00%SYG 00000000 085334
0000000C 00000000 09S344
00000000 00000000 0wSd4d
[vew10008 90009102] 025444
00£00000 008YIOOT \ 005234
00000000 00000600
01200000
Z0T10800 10000000
0000000C 00080000 08e3id4
34060640 0000 090 id4
00000000 00000000 Oweidd
04040210 90£0132) 0Zeddd
0s00Z39C 10£013Z3 000444
IMWuVING soOr
0000000C 00000000 4-8

411

UP-9980 Rev. 1

Dump Analyses

(£ 0 Z Ued) Buns sishjeuy dwng Ty “Z-p 24n314

y26910
uCe910
ulesig
4J8310
4¥8810
48¥810
499810
uNgetg
wZudio
418910
J318€10
wILSIC
4¥4810
vRLelo
“9L810
vei810
vZL8lo
unLelo
J39810
yl9810
uv9eio
J89910
u994810
Je9810
uzZ9dlo

ug9elIo

935910

34E 401
2Z9196% 4
L 40iLY
GolwgsZl
3w312501
2uTe2Zn0i
QECw2501
nELeZ923
Natelung
LI F 0] 1§
6LTINGESE
831 43ilLe
8IV434Le
S FRITR)
L10u02E
J5012%%le
IBT4TLSH
88017196
94200100
84400304
osLsluZl
LETR T4) F]
¥ya0l108t6
150102S6
EIS FLEIL)

000a000u

96£40L TN
CeLwBeNI
J£01£016
65vi83Z4
052ZaLent
10v600%
rg968enl
41480070
gL e6991
0z8ev¥3SU
696uL6SIES
88010216
N0Ne228 e
£261001 4
8010296
Le0T 4806
910anZew
84L0¥350
020s8201
08Lxvanl
v&010196
ogLwtgnl
JTT4N8Lw
81409801
I0v40VIN

000430004

0J0502¢
*0160501
0Lt 408Le
ngLe9ent
464600324
£0Ze5201
24962801
£i8Seant
498113924
vizicste
60Tn656¢
JEr10896
£2VI88T 4
T8LveN"I
L%01N296
¥3500sT4
96148l
aLL09401
02850074
LAY Lok]
28040LLy
JesS62v03
1£0TInS6
Z01694L0
01000130s

0G609000C

CSev3400

0s9uest 4
000s1501
80§£304L 0
01163831
ngLeLnt
00fe3624
PEONILZ S
iigy ¥4 T4]
1SS LT LB
9u0I8tls
62601261
80T 308L e
ACTE 13 IR
artesuny
88010196
naLele)l
91000UsS e
8TT6N0YL
0TZavaDT
NgLneell
18018856
0Ll
0Z14C8Le
25012uL96
200021306
00000000

44408204

G424000%
agnlzoza
91si08Le
Jgetnoza
nsYeveZi
N8LwEN01
0aL %2401
N4aLe8sol
1162824
3Z0106%
S0TTL ALY
80010116
woterevt
higg LEIY]
8LT40LLN
Ost63013
v3500£T 4
L8012096
OsT16Y3S0
10T16Y801
vYa0l 4806
88568440
15019456
eL0ILIZ6
*S01008S
00000000

04954SV0

0ZE 0890
2£01008S
96018016
L8010196
RETE TR)9
10163624
o0g60esal
0£892524
OTLed401
75010485
LA LR SENT T3
2£01022w
satiNele
N4L8£01
1£0124S6
08L4L100
O8Le9801
CIT40ULw
3304084
08963004
IVII04L e
25012096
34040816
9504011
8s0t000s
0000Us228

220408Le

2E€40TLN
91£400LN
80w JOE v
20Z408Ls
04%63¥24
0LLN6801
v9Z4i08Ln
OLLwba"]
10163423
0SRI6E6E
£v012026
1002021w
68014016
Q10020
YROTE d0e
A8G6L001
91162281
LeCINNTS
96018116
03Le8201
89L0vs01
5016126
L8010816
94010816
0£0 4081y
1 40 44000

820400S6

94010116
J£019016
0£908324
L4010216
08L4L%0%
L1162Z001
6£81100S
evS562924
OTL88401
696L6STS
5019096
£0000268
9314061
38t 4015w
89t JCsL
049600V0
L0801 4806
£C1 4826
venlig e
000svYI0J
%016%804
38040140
90ZJ08LN
ZE0100Z6
S8010%16
02040440

34400003

025000
00£000
032000
022000
gvzooe
382000
092000
a%200S
azzooc
002000
031000
031000
aviogo
091000
u91000
ast000
0zZ1000
001000
030000
0300G0
0v0000
0e0000
090000
040000
0Z0000
000000

014444

UP-9980 Rev. 1

412

1 'A%y 0866-dN

iy

01100
91100
so1180
go11AD
oor1CD
00110
001200
cD1220
001280
001260
001280
001240
ao12ce
0012€0
001300
001320
001380
001360
001380
0013A0
0013c0
0013€0
001800
001.2@
001040
001880
001480
00180

osgsvies
s TSOPCED
ST780FCDO
SIFOFCOC
SSEOF 106
8780FDS2
10028710
10589221
105A108C
100358580
8820FDAE
S000FDAS
FEASOSES
ST7B8OFE2N
05001026
STFOFENA
10874780
10608770
106087F0
96081058
91101060
0AD09123
S4S0FFS52
94011066
91041048
OTF9slnD
SSEVD3BO

0A269280

10098780
SI9OFFOA
91021048
$820107%
91201084
02011061
FD200AO1
10580400
9201105a
10541826
S920FDAE
8770F0CC
91801049
D5SN1105E
1027078C
JsE89120
FEA691D8
FEAZ98EF
FEAZ9610
NIFOFEDD
NT780FEES
10600788
91201084
91031067
STIOFFTA
12684120
ASEQD3BO

C1930226

FCO84390
91201004
ST8OFCBC
NSEQFa2C
8710FDD6
10560201
0201108¢
91801092
N TFOFDDO
14869180
NT720FD8A
NB20FDAC
8 78UFDEC
FANENTTO
8SEQF3Se
108A8710
10608710
106087F0
106094CF
94081054
9AEF 1060
96101060
8 780FFANC
N TEQFFNC
81801178
13088850
84SECD3BD

C195C194

FFOANSBO
sT10FCYe
91021089
8aS0F170
91801048
10SAFD6A
10189A7F
A710F0NA
00069102
10088710
a7FOFDCC
%920FDAC
SS9GFFOA
FE289180
91101086
FESANS9D
FEGE9I17M
FEA29120
108TOTFE
961910548
96201054
98DF1360
9108108
98FC1067
81201264
FFS25800
126684770

9280CiBC

FEBSOSED
1801008
ST80FCOC
1853187
S T780FD66
S1801016
108E981F
0a01D201
10868780
FDB28B 80
nc700000
8720FDB2
AS9OFF 58
1C02871D
NT710FESA
FFOAQTFC
10498710
1C87a780
4120103C
96081060
91081060
0IFB9180
STI0FF 3
8120108s
S450FFS2
10588120
J5C00700

0226C18D

91201084
NT10FCYS
NSEDFa1S
S TFOFCDC
8120105%
S0801056
108F 08180
13561061
FO7A9180
FDAEDSOL
00080002
40201054
NSBOFECD
FE100AC]
91801048
96801060
FEB869120
FEA2912C
5020109¢C
S 7FOFEDC
STBLFEFS
10890789
81202050
50201078
58801054
12648350
4510C010

C18C5810

ST710FCBO
96031058
SSEQFOFO
910810838
$020100C
92041054
108E5080
OATA9AFF
10498780
N000FO0BO
SG&0MBRD
OADGNTFO
94FB1089
91401002
NTBUFE3C
921011084
10874780
10608710
0A0Q07FB
41201058
94F71060
5840103C
STFOFF38
07F902n0
41201178
FFS207F9
FDO01510

C1F0S800

95001039
91031088
18631876
8780FCDC
?1N8 1089
NDAND9180D
10549202
10SED2M)
FDTA9680
a77CFODCC
FOACDSN3
FOFLASBLR
91801048
NTI10F336
aSECF2CS8
nTE911C
FETE9610
FE9E962C
940F 1058
$02010C
ASEQF13s
58201078
812G20A0
20rosuno
48S0FFS2
NSEQD3AS
80001580

C1Fa9210

o1CTAN
01CT60
a1c78n
01C7A0
oicrCcn
01C7EN
o1C800
orcs2n
01Caan
glcsen
gicesn
01CBAD
gicscn
01C8ED
g1coon
g1c920
01C94n
01c96"
gicean
01C9A"
orcocn
g1coE”
01CAQN
01CA2R
01CAANND
g1Caen
G1CARD
Q1CAAN

Figure 4-2. BAL Dump Analysis Listing (Part 3 of 7)

sasAjeuy dwng

Dump Analyses

(Z 40 Yed) Bunsr siskeuy dwing Tyg "Z-y @n314

wZ3210
ulid10
43Q210
3240210
L¥QJI0
Jeadio
u9Ql1i0
%3310
JZadin
J2a210
4312210
232210
u¥2310
u8lli0
L9210
u®ldio
uZ2210
[Flals e} 4]
u3ddi0
uldad10
uvedio
488310
u98210
usgllo
uzZe2i0
uoadio
L3v¥d10

[kl R {+]

Z9v¥9N il
wuB9N 4L N
T8LsTule
ZaVLD4Se
99vLtuLa
0G0JNeE N
8399044
£evLUEICL
26197110
8UC21IYS
81t1970v¥S
diLlwd6L9
OuCulTte
26l9Lu2a
asvidicy

o]

«0n
OhJuTale
J8n68i26
Tuououle
21000£8S
Je91040L
629264L4a
T00u0uIL
Oulugeou
048u000u
0L0ou000uY
2102041

43123810

95890440
®8I90 4L
60569029
®08908Le
84004806
040 40GS0
aL02Z 4456
ogocootr
Yv990.4Lt
80000168
Zi0ZCyBe
93569899
8J990LE W
989904 L%
0£830vL9
06eCelnle
Oud80e0n
38002426
3309011
00000000
ousiou0o
Ledelalalifs Lifo]
Jas10000
a00g00Z8
00S100%¢0
00000000
343508501

284031

869041 N
I189Z0Ne
oeLeTIZI
8L00NZT6
zoL9nsen
#303000.
TR
ISL9%4Lw
Zu0502 1y
80ren 1Ry
I939M8L 0
08149819
80030,68
13064556
C3Lu000s
OnD8DN0N
GNONONCHE
900%T0Y6
94092126
20510004
0003960
0C00000G
00%L82Z00
10100006
0000000
00000006
LFTE3)

431322v4

#08904L s
20000268
ISeIN 4L
808974l s
8L000%T6
100800t 6
YIQ9Cils
95L9019s
000£02) %
YZL90ILw
goozoetes
Col#0021
¥6490CT ¢
IVL908Le
OnNs0Nls
On0u0N0w

O%000

L]
3309802+«
Z0063062
00000070
00040034
00000010
00000udu
000000230
On0eSIE0
00000034
02263412

66124313

#08904Lw
160602¢s
vaL9OLLe
0J4900L e
66811290
9SvL04L
ISYLT 4SSN
0o0uUtITw
81187289
ocgozIate
ZLL90LL N
3svogz00
2649011w
28910000
Oe082000
O8a0n0NON
0808080
£02Qz309
40202006
60002200
14400000
00000000
00000000
©2910000
6J392%25)
0Q40v¥Ivu
agese4tl)

22240610

80890440
2z29120¥L
90060056
e9IVLIIVL
£0122206
S0Zo00lw
4020001
9549005 e
0u0Z1096
ZLL9D8LN
s0025vL9
0G00gatI
3539041 N
08s1000G
auNele0s
D080 0e
as080e0s
0gestg2a
33094020
+0000002
0000000
00000Q0C
000Couou
04Js 10000
00000006
42909410
0I9S3612

*31J32224

8290310
04SevaLe
NundOhhr
10SgZeve
91040030u
92390.iLw
44238949
20000068
%J020109%
384901 s
10s0e118
J399CaLw
ogzZiIveEL9
v291000¢
0808060y
Os00DN0N
osNesSZZ0
2299004
Z006080¢%
Q000000
20000000
000000600
00000000
83%0000C
0000000C
ot1esLeve
£3t120120

43506501

30890446
04Le29Y9
1006€0GS6
045099VL
Q0000600
%020001s
OsLe0G21
v6L9001w
SIOIOITY
1412015
0ZesSeI119
9299019¢
04562006
nI1s10a00
00800
O808Na0N
08990 4LN
QozZiszvo
L0Zgasvl
agca00%0
080#SIE0
000uL0000
0ooo0000C
00000010
00000000
0413018S
49120496

0JesSTL01

0zst00
008100
93i100
gJLT00
ovitgo
082100
094100
osl100
gzi100
004100
839100
039100
avotoo
099100
Q99100
oe3100
eZ9too
go9too
335100
0Jst00
gvstao

09s100

095100

38$100
025100
oos100
a3stoo
g3st00

UP-9980 Rev. 1

414

['A%y 0866-dN

SIv

PASE } 4

LO0C. OBJECT CODE ADDR1 ADDR2 LINE SOURCE STATEMENT 0S/3 ASH 79709707
000000 1 BALOBJ STARY
000000 05C0 2 BALR 12,0
000000 3 USING BALOBJ,12
[OPEN CDFILE,PRFILE OPEN FILES,

0o0002 070D A Se CNOP (¥ OPEOD13D
000008 8S10 CO10 00010 A 6+ BAL 1p%+(083) oPEDSSO0
0G0008 FO A 7 oc A°FO°® oPEDDSS0
000009 0000BD A Be oc AL3C(COFILED OPEDDS00
0oeo0C 80 A 9 oc x*8ne oPECDS SO
000000 DOGOFD A 10 oc ALIUPRFILE) OPEDDGD0
00DO10 DAZ6 A 11 (374 38 ISSUE SVC OPEDDSOD
000012 9240 C19% ro19s 12 LoOP MV1 COBUFF,C* * CLEAR INPUV BUFFER,
000016 D226 C195 C19% 00195 00194 13 MVC CDBUFF+1¢39),CDBUFF
00C01IC 9240 C1BC DO1BC 1s M¥YI PRBUFF,C® * CLEAR OUTPUT BUFFER.
000020 D226 C18D C1BC J01BD 0O1BC 15 MVC PRBUFF+1(39) ,PRBUFF

16 6ET COFILE,COBUFF READ INPUT RECORD.
000026] [CYE0) SET ALIGNMENT 6ET00230
100004'6 5810 ClFD] OOLFD A 18+ 14 =A{CDFILEM LOAD RIS, FILENAME ADDRESS GETON260
T0002A 5800 C1F& OOIF8 A 19e T vz Ul LOAD RNS, WORKAREA ADDRESS 6ETD08S0
000D2€ 9210 1031 oo631 A 20e nvl 49(1),X*10* SET' FUNCTION CODE SET01010
C00032 S8F0 1038 00038 A 21+ L 15,528,1) LOAD ADBR OF COMMON I1/0 6ET01020
000036 OSEF A 22 BALR 18,15 LINK YO COMMON GET01030
000038 F222 C1ES C19% DO1EN DO19M 23 PACK PADD1 (3),ADD2(3) CONVERT 1ST NUM TO PACMED D€C.
00O003E F222 C1ET €199 OO1ET DO199 28 PACK PADD2(3),ADD2(3) CONVERT 2ND NUN TO PACRED DEC.
DOOOMN FA22 CIET CIEN NOIET DOLEW 25 AP PADD2(3),PADD1(3) ADD NUMBERS.
DOOCONA F332 C1BC C1E7 DO1BC CO1E7 26 UNPK SUMIN),PADD2(3) CONVERT Sum® T0 EBCDIC.
nooDSD 96F0 C1BF J01BF 27 or SUM+3 X FD" MAKE LOW-ORDER DIGIT PRINTARLE.
000058 D21D C1C3 C19E 201C3 0O19E 28 MVYC NANEOUTI3D),NAMEIN MOVE CHARACTER STRING TO OUTPUY

29 PUT PRFILE,PRBUFF WRITE OUTPUT RECORD
0000SA A 3D oC LY(D) SET ALIGNMENT 6EY00230
000DSA 5817 CiF8 0O1F8 & 31+ L 1,=AIPRFILE) LOAD RIS, FILENAME ADDRESS GETQ0260
OONOSE 5800 C1FC DUIFC A 32+ L Ls=ACPRBUFF) LOAD RM$, VORKAREA ADDRESS GETO08S50
000062 9220 1031 20031 A 33 MYI a9(1),X*20° SET FUNCTION CODE GETR1030
000066 S8F0 103w 00N36 A 3N L 15,521,1) LOAD ADOR OF COMMON 1/0 GET01620
00CD6A OSEF A 35e BALR 18,15 LINK TO COMMON SEY01030
00006C N7FD €012 90012 36 [} LooP LOOP BACK,

37 «

38 ENDPROC CLOSE COFILE,PRFILE END-OF ~PROGRAM HQUSEXEEPING.
co0070 A 39+ENDPROC DC oven) oPEDDL00Q
0O%0TO 5810 C1FQ OULIFD A ACs L 1,=AtCDFILE) LOAD R13, FILENAME ADDRESS OPENBT20
00007s 0A27 A Nl SVC 39 ISSUE S¥C oPEOSYId
000076 S810 C1F8 OO1FB A #2e L 1o=AUIPRFILE} LOAD R1S, FILENAME ADDRESS OPECOT20
00007A DA27 A a3 (374 319 ISSUE SVC wPEOPTI0

an E0J
oonore A ASe DS CH E0JOWIBO
00007C DAlA [T sve 26 £0J00870

a7 s

48 CDFILE DOTFCD BLKSIZE=40,EQFADDR=ENOPROC,ERROR=ENDPROC,TOAREAL=COBUFF X

RECSIZE=AN ,SAVAREASSAVE
Figure 4-2. BAL Dump Analysis Listing (Part 5 of 7)

sashjeuy dwng

91

1 '3y 0866-dN

URIVAC SYSTEM 0S/3 LIMKAGE EDITOR VERT80803
DATE- 79/09/07 TInE- 21.12

CONTROL STREAWM ENCOUNTERED AND PROCESSED AS FOLLOMS-

/3
LOADK BALOAD
BALOBJUCT*RUN LIBE MODULEs
OPSCORD ¢AUTO-INCLUDED®*
ORSCON] *AUTO-INCLUDED®

SDEFINITIONS DICTIONARY®

SYMBOL . TYPE., PHASE. ADDRESS. SYMBOL. TYPL. PHASE. ADDRESS, SYMBOL . TYPE. PHASE. ADDRESS.
BALOBJCY CSECT ROOY 00001490 cosl1009 CSECT ROOT OUD0DNES CDFILE ENTRY ROOY o0n01510
COFILEC ENTRY ROOT 00001542 CODFILEE ENTRY ROOT 00001548 ppscond ENTRY ROOV ooeonono
opPsconl ENTRY ROOT ogooouto DPSCOM2 ENTRY ROOT 00000000 DPSCOM3 FNTRY ROOTY nonanonc
oPSCONS ENTRY ROOT 70000000 DPSCONS ENTRY ROOT ngoooooo DPSCOMG ENTRY ROOTY ounrooono
DPSCONY ENTRY ROOY 00000000 DORSCONM] ENTRY ROOT 0000D8ES NRSCOMIZ FNTRY ROOY NOOON&ES
DRSCONIS ENTRY ROOT COOOOSES DRSCON2 ENTRY ROOT 00000&ES DRSCOM3 ENTRY ROOY ooronate
ORSCOME ENTRY ROOT 00000NE S DRSCONT ENTRY ROOT n0C0OOsES DRSCONS ENTRY ROOV n0N0NaEs
KESALP ENTRY ABS 00001690 KESRES ENTRY ABS 70001690 PRS 10E CSECT ROOV ooognang
PRFILE ENTRY ROOQT 00001580 PRFILEC ENTRY ROOT 0001582 PRFILEE ENTRY ROOT 0001588

*8 ALLOCATION MAP #=»

LOAD MODULE - BALOAD SIZE - 0000169C

PHASE NAME TRANS ADDR FLAG LABEL TYPE ESIOD LNK ORG HTADDR LENGTH 08J ORG

BALOADDO NODE - ROOY 00000000 CONo16aF noND1690

¢ss START OF AUTO-INCLUDED ELEMENTS -

- 03/03/78 37,22 - PRS 10E [[:X]
PRS10E CSECT n1 10800000 00NDONE 3 nOODONES ngoonooe
oPsSCOM7 ENTRY 01 76000000 00000000
OPSCOND ENTRY n 20100000 20000000
pPsSCONMl ENTRY 01 00000600 00000000
DPSCOMG ENTRY 01 00000000 nononono
DPSCON2 ENTRY 0} 040006000 oononone
DPSCONS ENTRY o1 nooorooo nonononc
DPSCONA ENTRY 01 ng000000 00000000
OPSCON3 ENTRY 01 ro900u0a nongoane
- T1/09/29 12.36 - cosSI0J osJ

€DSIODJ CSECT 01 0UD00AES ooroD1aeF "ONONFAS 00000000
DRSCOR1S ENTRY o1 00DOOSES 00000000
DRSCOM] ENTRY 01 DODOONESR 00000000
DRSCONZ ENTRY 01 000006ES 0p000000
DRSCOM3 ENTRY 01 000D0NES 00000000
DRSCONE ENTRY 01 00000AES 00000000
DRSCORY ENTRY 01 D0000NES 00000000
DRSCONS ENTRY 01 N0O0DNES 00000000
DRSCON12 ENTRY 01 D00DONES 00000000

Figure 4-2. BAL Dump Analysis Listing (Part 6 of 7)

sasfjeuy dwng

["A3Y 0866-dN

LY

PHASE NARE TRANS ADDR FLAG LABEL TYPE £S10 LNK ORG HIADOR LENGTH 08J ORG
s¢s END OF AUTO-INCLUDED ELEMENTS -
- 19/09/707 21.11 - 8aLOBY 08
BALOBJ CSECY nl 1u0014a9¢C 00N0168F ognon2no 00ﬂ0"000|
OFILE ENTRY [a}] ngeoi1si 0onocaso
COF1ILEC ENTRY 01 TQo01582 nonJoons2
CDFILEE ENTRY o1 00031588 nooocoss
PRFILE ENTRY n coool1sed N00000F0
PRFILEC ENTRY 01 n1Y0V1SB2 20000122
PRFILEE ENTRY) £0001538 nononi2s
ongo1a9o0
FLAG CODES -
B8 - BLX DATA CSECT D - AUTO-DELETED £ - EXCLUSIVE °A°* 'REF 6 - GENERATED EXTRN I - INCLUSIVE °V°* REF
L - OEFERRED LENGTH K - MULTIPLY DEFINED N - NOT INCLUDED P - PROMOTED COMMON R - SHARED REC PRODUCED

S - SHARED ITEMW U - UNDEFINED REF
SANY OTHER CODES REPRESENY PROCESS ERRORS»

LINK EDIT OF °*BALOAD® COMPLETED
DATE~ 79/09/N7 TINE- 21,12
ERRORS ENCOUNTERED- 009G UPSI- X°*0Q°

¥ - VCON 17EMm

Figure 4-2. BAL Dump Analysis Listing (Part 7 of 7)

sasAjeuy dwng

Dump Analyses

4.3.

4.3.1.

4.3.2.

418

COBOL Dump Analysis

In this subsection, we analyze a JOBDUMP generated from a COBOL program called
COBOBJ. This program acts much like the BALOBJ program in 4.2: it reads two
numbers off a punched card, adds them, and outputs the sum to the printer. In our
situation, the program aborts after reading the third data card in the deck. We have
inserted an / OPTION JOBDUMP card immediately preceding the EXEC instruction
for COBOBJ. We have also, as required, routed the JOBDUMP output to a separate
printer file with an LFD of PRNTR, thus causing the JOBDUMP to appear after the
entire user log has been output.

Materials Used

The materials we will use in this analysis are contained in 4.3.4. They are as shown in
Figure 4-4:

¢ The COBOL source code for COBOBJ

¢ The COBOL object map produced by the COBOL compiler in response to the
LST=0 parameter

¢ The linkage editor allocation map

¢ The edited JOBDUMP

Outline of JOBDUMP

As before, we will use the step-pointer method to find our way through our dump
analysis. Before we begin analysis, you should look at the portion of the JOBDUMP
shown in Figure 4-4. As you can see, these pages interpret the raw dump and present
pertinent information in the form of charts, tables, and other narrative.

The remainder of the JOBDUMP shows the contents of the user job region in
hexadecimal. Like the EQJ dump shown in 4.2, both margins contain the address of
the first byte in each line. Unlike the EQOJ dump, though, the JOBDUMP interprets
dump data in EBCDIC in a column to the right of the data itself. Also, unlike the EOJ
dump, the JOBDUMP uses different base addresses according to the following
scheme, shown in Figure 4-3.

UP-9980 Rev. 1

Dump Analyses

As you can see, the simple EOJ dump division of a job into its prologue and its
program region is extended in the JOBDUMP. Each table in the prologue has a
header and its own self-relative addresses in its left margin. Likewise, each CSECT
(control section) within the program region begins with a header and has its own set of
self-relative addresses. {Certain spooling and related tables in the prologue keep their
negative job-relative addresses in a manner like that of the EOJ dump.)

LEFT RIGHT
MARGIN MARGIN
ADDRESSES ADDRESSES
0
RESIDENT SUPERVISOR 2
(OTHER JOBS)
L]
k= Toooo00”T —mMmMm ™ 8 ™ — " [T Tk
°°°v°2° PREAMBLE
000000
000020 TCB
PROLOGUE
L]
OTHER
JOB-RELATED
TABLES
JOBDUMP .
) . L . | A |
000000 000000 A
000020 FIRST 000020
CSECT
000000
000020 SECOND
CSECT LOAD
MODULE
000000
000020 THIRD
CSECT
L]
L]
. []
SAME ADDRESSES
UNUSED UNUSED
AS RIGHT MARGIN MAIN STORAGE D RAGE
vy 1y Ty

Figure 4-3. JOBDUMP Organization

UP-9980 Rev. 1 419

Dump Analyses

The prologue/program region division of the EOJ dump is carried over to the right .
margin except that the JOBDUMP prologue contains absolute system addresses while

the JOBDUMP program region has self-relative addresses extending down the entire

region. Unused main storage within the job region (that main storage not contained

within the program region) is addressed relative to the job in both margins.
The JOBDUMP margin addresses will find much use in the upcoming analysis, so
look at the JOBDUMP, Figure 4-4 (parts 6-14), to familiarize yourself with the
JOBDUMP addressing scheme.
JOBDUMP requires space on the first VTOC cylinder of SYSRUN to allocate files.
Users should eliminate unused files on SYSRUN.

4.3.3. Analysis

To determine what caused the JOBDUMP we proceed as follows:

PP ST T TR PPN P P PR P B 2X PR DR B Bl 2 et an Bl Bt Bt Bt Bl Dok S ot ol 4
1 1
* T ASK CONTROL BLOCK 1 *
1 1
FOTTT SRR P T P N BN P IR P TR B B D2 DL I 2t Dt Be Dl Bt Dt 2 ok ot d
TASK CONJROL BLOCK AT ADDRESS N14110

TASK KEY = 1

ONLY TASK AT PRIORITY 8

TCB FLAGS

WAJT FOR TRANSIENT

WAIT FOR CANCEL IN PROGRESS

ORIGINAL PSW HAS BEEN SAVED
PREANMBLE ADORESS = DleglC
TRANSIENT ID/S¥C CODE = 1C

@ot TASK PSUu ss%

PROGRAM STATUS WORD = C0160007 DUOD1AAM
PROGRAM KEY = 1 , WHICH IS JOB COBJOB
INTERRUPT CODE
CONDITION CODE = 1 ‘
INSTRUCTION ADDRESS = [GO1aae
NONZERO INSTRUCTION LENGTH[(6 BYTES)

OPERATION: INSTRUCTION:

We first look at the task PSW in the JOBDUMP narrative @O . There, all information
contained in the PSW is extracted for you. Using this information we see that:

¢ The interrupt code of 07 indicates a data exception (see Table A-1).

® The failing instruction is add decimal (AP).

420 UP-9980 Rev. 1

Dump Analyses

® The instruction address can be found by subtracting the AP instruction length
from the address given in the PSW:

1A44 PSW address
-6 Instruction length
1A3E Failing instruction address

As before, all addresses given are relative to the job base address. Since data

exceptions are associated with operands in main storage, we should find the operands
addressed by the AP instruction.

@

REG O REG 1 REG 2 REs 3 REG & REE S REG 6 REG 7
FFFFFFF2 D0DOLT7AS 0000177¢C LODVOS S 80000SSA 020018A8 n10018F8 ong01948
REG & REG 9 RET RES B REG C REG O REG E REG F
OOTFFFFF OOTFFFFF 30002718 NO00D19FA 40001997 %0001A10 ango1410

The two operands of the AP instruction shown in (D are both of register-displacement
type using register 10 (A,,). @ points to the contents of register 10 at the time the
exception occurred. From this we can find the two operand addresses:

1718 Register 10 contents 1718 Register 10 contents
+ 8 Operand 1 displacement + 18 Operand 2 displacement
1720 Operand 1 address 1730 Operand 2 address

se¢es COBOB Y cCoBLODODU PHASE ¢ s

000000-0SFOASED £A06OTFC 98ADFO12 985904Q DAAQOTFE UOCO1718 000U2718 UNODIFED %ufeebecosebesea=sessensssanssesa—0016FO
£00020-0000199) NLOVOGOD O0UDDDLD DAOONO0G [D06508k6 FEFIESID 92TAI0O2 92TAICOS #eersenscoracsrassnscelVontesetoo-001710
0000C GO £598D201 393E59A 02013006 DODOIAGE LOGDISFS NUOD1T7AS DDCOLTAS SeeveVeKoneVeKaoassodoooBuoasne +e-001730

000060-000018217 00001820 ODOCO6LD NODOOSO8 NONOONCE UNCODNEN NDTFFFFF UOGOLTIO ®essvees avevoscencocHesele®rocsen~ 001750

In @ we see the two AP operands at the addresses calculated in @ . Note that the AP
instruction operates on three bytes beginning with each operand. In decimal
instructions such as AP, the low-order half byte of each operand is treated as the sign
for that operand. Operand 2, at 1730, has a sign value of C, indicating a positive
number. Operand 1, however, has an invalid sign value of 4. We can see now that this
invalid sign caused a data exception when the AP instruction attempted to operate on
it.

UP-9980 Rev. 1 421

Dump Analyses

At this point, we have found the immediate cause of the error, an erroneous sign. We
now attempt to find how the error occurred.

PHASE NANE TRANS ADDR FLAB LABEL TYPE ESID LNK ORE HIADOR LENGTH OFJ ORG
CO3BJERR CSECT 01 ~006060¢ nononNI2ZY ngnoni12se ngrananrg
CO3BJER] ENTRY 231 “0000678 f0nonare
COABJER?2 ENTRY 01 n00uN68 6 nangnase
COdBJER3 ENTRY 01 70007698 nonona9s
COSBJERY ENTRY 01 7000U06AA NQrONoAA
~ 08720779 35.13 - cosioy oBJ
€DsS 10D CSECT 01 ngooer2e NONO16EF "ononFCcse Nohgnara
DRSCONIS ENTRY o1 nOno0728 ngegnaro
DRSCON] ENTRY 01 70000728 0Lo0NaNG
DRSCOM2 ENTRY 13 nru000728 03n0naro
DRSCOM3 ENTRY o1 rapunrze fAungnoro
DRSCOMS ENTRY 13} nc000728 aunocuno
DRSCONY ENTRY m ~0000728 nanpnanc
DRSCOMB ENTRY 01 0000N728 LVl L 7]
DRSCOM12 ENTRY m 70000728 oungnono

#88 ENO OF AUTO-INCLUDED ELEMENTS\ -

422

- 79/N9/06 00.55 - I o
€oBOBJCU CSECT na 0G0016F L 00001A9D 0000034E DODUBOFD]

JN0016F O

Because the COBOL compiler generated all the instructions leading up to the error,
we now go to the COBOL listing and linkage editor allocation map for program
COBOBJ. We will have to look at the allocation map first because the COBOL object
program we seek is only one among a number of object modules occupying load
module COBLOD. We see from @) that the AP instruction address of 1A3E lies
between the LNKORG address of 16F0 and the HIADDR address of 1A9D, thus
placing it inside the COBOBJ00 CSECT. (This CSECT is also labeled in the
JOBDUMP; see (3 .) We will need to know the displacement of the AP instruction
within COBOBJO00 and this can be done as follows:

1A3E Instruction address from @
-16F0 LNKORG address
34E AP instruction displacement within COBOBJ00

LINg o BASE/OISPL ADORESS CONTENTS OF REMORY OPERAND ADDRESSES oPCODE COMMENTS
00050 c 030 000334 F2 22 A 018 5 LOD ounaag PACK ADD
c__036 popo3sn 98 FC A D1A ngogs2 N1
MA 000388 F2 22 A 008 5 LOS 000030 PaCK |
2] PUOOINA I8 FC & GOA Do0032_ T
C Das Q00 A (U8 A C18 700030 L0000 AP
L] — ODG3SH F3 32 & 000 & LOB Tooo30 URPK
¢ 0so 0OU3SA 96 FO & (03 [}

UP-9980 Rev. 1

Dump Analyses

Looking at address 34E & on the COBOL object map, we can see the COBOL
instruction that generated the AP. Under the heading OPERAND ADDRESSES are
listed the addresses of the two AP operands. We can confirm this by finding their
addresses relative to COBOBJ:

16F0 LNKORG address 16F0 LLNKORG address
+ 30 Operand 1 address from & + 40 Operand 2 address from®
1720 Operand 1 load module address 1730 Operand 2 load module address

Compare the two addresses to the addresses calculated in @ .

Because operand 1 is the operand that contains the erroneous sign, we should look at
instructions prior to the AP instruction that used operand 1 (see illustration above
®). Using the OPERAND ADDRESS column, we find that a PACK instruction ®)
used operand 1 as its destination field. We next look at the source operand.

A

RES 0 REG 1 REG 2 REG 3 REG & REG S REG © REG 7
FFFFFFF2 000017A8 0000177C Loo0QSLe 8u000554A 020018a8 n10018F8 4No01948
REG 8 REG 9 RE6 A REG B RE6 C RE6 € RE6 F
OOTFFFFF OOTFFFFF oooor 718 30002718 S00019FA uoool99n 20D01AND 4nOBLALD

The source field, like the destination field, appears in displacement/base form and
uses register 5. Looking at the register contents @) , we can calculate the source field
address as follows:

(02)0018A8 Register 5 contents (leading byte ignored)
+ 5 Displacement
18AD Address of source field

For a 4-byte address such as the one in register 5 above, only bits 8-31, the low-order
three bytes, are actually used in addressing main storage.

GrIA3-0NOTUNON 000ONOED GPLOUCDD 70DDTODG 0GODDGND ODONODOD FZF3FZA0 FIFOFSHT[#ercaevscssaccnsascnnnnne 232 365 -001890
£01C0-840ADDZCS DID3CSEE 6BADE3D6 DAADAUND SOSOALADC 404DANND RUAORUND NOUN4DND * KELLEY, TON -001880
COUIEC-F IFOF 30 SOF3FOFZ ATMDESCY DSC3CSDS E36BALCT CS5D6D9ICT CS4GADNC A0RONNED #1N3 3G2 VINCENT, GEORSE -001800

At location 18AD (8, we see that the three bytes operated on by the PACK instruction
of ® comprise two EBCDIC digits and a blank. The PACK instruction had treated
the blank (X'40’) as a signed digit by inverting its half bytes (X’'40’ becoming X’04")
thus causing later difficulties by accidentally putting an invalid hexadecimal digit (4)
in the sign.

UP-9980 Rev. 1 4.23

Dump Analyses

We see by the interpreted data in the right half of the dump printout that these bytes
formed part of a character string, very likely part of COBOBJ’s data division. To
check this we look next at the data division memory map output by the COBOL

compiler.

DATA DIVISION MEMORY AP
LINE LEVEL DATA NARME REG DISP ADDR LENGTH TYPFf

00025 FO COFILE

00028 D1 CDBUFF s nang 87 6P
0g629 02 ADD1 s CJ0u 3 NUP
pgosn 02 FILLER 5 0003 2 AN
]noosl 02 ADD2 5 nuos 3 NUP

032 TZ FICLER T rons T AN
00033 02 NAMEIN 5 rona 37 AN

Looking at the data division main storage map of the COBOBJ compilation listing @ ,

we see that location 18AD lies within the input buffer CDBUFF and has the

data-name ADD2. (Compare this address with the source field address in the PACK |
instruction calculated in @.) We see too that ADD2 is a 3-character unsigned |
numeric field that is offset within the buffer by five bytes. Let’s see what ADD2

contained a the time COBOBJJ failed.

ADD1 ADD2

ngr143-0N0NUNAN DECONGED 0NUOUCTO NUN0J0DL NGOODGOC ODUNDDGO F2F3F280 FIF6FSAT #ecisscscscscscscanscane [232]365] -001890

0O01C0-4080D2CS D3D3CSES GBADE3D6 DNADNLNT AONONLAD 4DSNANKD SUSOSUND S0ANHOND & KELLEY, TOM CDBUFF -pgisso

COCIEC~-FIFOF 380 GOF3FOF2 AN6NESCY DSC3CSDS E36BALCT C506D9CT CS8OMDNG aDaOsNsD #1R3 302 VINCENT, GEORGE -Do18D0

The interpreted data at 18AD @ shows that input numeral 365 incompletely
overlaps data area ADD2, the leading digit falling outside of it altogether. By looking
at the COBOBJ data division main storage map, it becomes apparent that the
program exception was caused when the numeral to be input as ADD2, 365, was
punched one column to the left of where it should have been. Repunching the card
correctly will resolve this particular problem. In addition, you should include error
handling routines in your program to prevent future recurrences.

424 UP-9980 Rev. 1

Dump Analyses

4.3.4. Dump Analysis Materials

This subsection contains the edited printout from job COBADD, including the COBOL
source program, compilation, and link edit for program COBOBJ. In addition, an
edited JOBDUMP produced from the execution of JOBDUMP is shown here. All the
pointers referred to in 4.3.3 are shown in numerical order, each pointer referring to

the part of Figure 4-4 on which it appears.

UP-9980 Rev. 1

@ part7
@) part8
(3 part12
@ part5
(B) part3

® part3
(T part8
part 13
® vpart4

@ part 13

425

9

1 A3y 0866-dN

COMPILED BY UNIVAC OS/3E COBOL COMPILER VERSION 06.U0/09 DATE 79/09/06 TINE DO.

/74 PARAR INzCOBSRC/INCPUT

44 PARAR LST=1S$,0,K,L,C)

SOURCE CREATION

LINE NO.

00001
00002
00003
0000
00005
20006
00007
oooos
00n09
o210
cocll
/1) ¥4
0oc13
oo21s
00Nn1s
con1é
00017
oon)8
roo19
non20
npn21
noo22
oon23
0on2sa
na%2s
0726
ronazr
ronae
npo29
00730
00n31
00932
00733
Q0038
00N3s
20036
00037
00038
DO039
000a0
00041
00082
000a3
00088
000aS
000486

DATE 79/05/15 TINE 20.30

SOURCE STATEMENT

IDENTIFICATION DIVISION,
THIS PROGRAM ACCEPTS TWO 3-0DIGIT NUMBLRS
FROM A CARD RECORD, ADDS THEM, AND OUTPUTS
THE SUM, ALONG WITH CERTAIN IDENTIFYING
INFORMATION TAKEN FROM THE CARD, TO
THE PRINTER.
PROGRAN-ID. COBOBJ.
AUTHOR. SYSTEM PUBLICATIONS,
*
ENVIRONMENT D1VISION.
CONFIGURATION SECTION,
SOURCE-CONPUTER. UNIVAC-9(30.
OBJECT-COMPUTER. UNIVAC-9L30.
INPUT~-O0UTPUT SECTION.
FILE-CONTROL.
SELECTY COFILE ASSIGN TO CARD-READER.
SELECT PRFILE ASSIGN TO PRINTER.

L2 2 2R R J

*
DATA DIVISION.
FILE SECVION.
COFILE IS THE INPUT FILE; CARD INPUT MUST
BE IN THE FOLLOWING FORMAT: FIRST I-DIGIV NUMERAL, 2 bLANKS,
SECOND 3-DIGIT NUMERAL, 2 BLANKS, CHARACTER
STRING UP T0 30 CHARACTERS LONG.
FD CDFILE
RECORD 40 CHARACTERS
LABEL RECORDS ARE ONITTED,
01 CDBUFF.
02 ADDY PIC 9i(3).
02 FILLER PIC XX.
02 ADDZ PIC 9(3}.
02 FILLER PIC XX,
02 NAREIN PIC Xi30).
FO PRFILE
RECORD 40 CHARACTERS
LABEL RECORDS ARE OMITTED.
01 PRBUFF.
02 SUN PIC 9(8).
02 FILLER PIC X(3).
02 NAREOUT PIC X303,
02 FILLER PIC X(3),
PROCEDURE DIVISION.
BEGINPROG.
OPEM INPUT CDFILE.
OPEN OUTPUT PRFILE.
LoOP.

*
*
.
*

S8.488

TDEN.

COBSROQD
COBSRNIN
coBSRNZN
COBSRN3N
COBSRNaN
COBSRNS "
COBSRNGN
COBSRNTN
CoBsSRN8N
COBSRN9N
COBSR1GN
COBSRI LN
coBSR12"
COESR13"
COBESRI4N
COBSR15"
CobSRleN
COBSR1T"
CoESR18"
COPSR19N
COBSR2aGN
CORSRZ 1N
co8sSR22"
COBSR23"
COBSR?24"™
COBSR257
COLSR26M
COESR27"
COBSR?8N
CORSR29"
COBSR3 LN
COBSRI1N
COBSR327
COBSR3I 3N
COBSR34N
COBSR35N
COBSR360D
COBSRITN
COBSR38N
CORSR39N
COBSRA0DO
COBSR4 1N
COBSRA2N
COBSRA 3N
COBSRMAN
COBSRASN

PAGE

09001

Figure 4-4. COBOL Dump Analysis Listings (Part 1 of 14)

sasfjeuy dwng

[A3y 0866-dN

ey

LINE NO.

0onNe?
JD0s8
nonNas
00050
0o0s1
00952
00953
NUISs
o00nss
20056
00757
o0nse
nooss
naoer

SEQ.

*

SOURCE STATEMENT IDEN.

READ COFILE AT END GO 1O ENDPROC. COESRS6N
MOVE SPACLS TO PRBUFF. COBSRATN
ADD THE NUMBERS, PUT RESULT IN OUTPUT BUFFER. COBSRagn
ADD ADD1l, ADD2 GIVING SuM, COBSRO9N
MOVE CHARACTER STRING TO OUTPUY BUFFER. COBSRSON
MOVE NAMEIN TO NAMEOQUT. COBSRS51r
WRITE OUTPUT RECORD. COBSRS2"
WRITE PRBUFF. COBSRS53"
LOOP BACK, COBSR54&"
60 10 tLOQOP. COBSR55"
HOUSEKEEPING AT END OF PROGRAM, COBSRSHN
ENDPROC, COBSRS7IM
CLOSE CDFILE, PRFILE. cOBSRS8N
STOP RUN. COBSR59N

PAGE

0uda2

Figure 4-4. COBOL Dump Analysis Listings (Part 2 of 14)

sasAjeuy dung

8CY

1 'A3Y 0866-dN

LINE 8 BASE/OISPL ADDRESS CONTENTS OF MEMORY OPERAND ADDRESSES OPCODE COMMENTS PAGE 00005
000258 %EF OF OF OF OF OF OF OF OF CF OF OF OF OF OF 0 nC X 32 +D0ONGNONODODOOD
FOFOFOFOFOFOFOFOFOF OFNFOFOFOFOF O nONENGNONO0I0O0D
FONENDADN0ADN04DS0ND40S04040804N Ne
SD80408080404N4NK080404NEDENTENLN
%040
DOU29A 2700 0700 G700 cHOP
0002AD DS 72
oou2es JO00Q01AC "2 oC &
20G2EC Noecoon
07083 WNOZFD BEGINPROG PARAGRAPH MEADER
0o04N one2FO0 S8 16 A uL3% W0a5C L 0PEN
GDL2FY 58 FL A (86 ~grare L
L002F 8 Js EF BALR
07085 LCU2FA S8 1L A 03C ngouea L OPEN
UDUZFE S8 FO A L8 nonoT. L
800302 LS EF BALR
0ou3ue 90 66 A LG ~gnosc ST™
02086 000308 Loor PARAGRAPH HEADER
Qo087 oNu3us us Ccu AALR READ
c I 00U30A S8 10 A _3u4 rargsc L
[1) 00U3LE 41 Fu C CIE ng032s LA
¢ Dua 000312 " FU 1 UL28 ST
c ooc uou3le 92 1L 1 L31 MV
c 010 0L31A S8 FU 1 J3a L
c 014 GOG31E us EF RALR
c 016 000329 90 55 A L6L RIETY STM
C Ol14A 000324 47 FO € J24 nQn32E BC
aroa? ¢ D0IE 0oL328 S8 Fu A J28 ru00Sy L 60 Y0
¢ o022 anus3ac us EF RALR
07088 c D28 00032€ D2 03 6 370 7 L 3E LOU?96 MYC MOVE
C D024 uDy33a D2 23 & u24% 6 00 mve
02050 c 037 0003 3A F2 22 A 018 5 LOL VLIVL Y] PACK ADD
c 03 upg3an 98 FC A U1A nyogs2 NI
©\>| [T 000388 F2 22 A u08 5 L0S 0cNa3c PACK |
€_0a) L RLY) 9% FC A UOA 800032 N1
3 ODD3aE FA 22 A LO8 A C18 430030 00040 AP]
FY 32 6 000 & 08 G00030 UNPK
000354 96 FO ¢ (03 o1
0o0s2 C 058 80035E D2 10 6 UOT S DA nyve “OVE

Figure 4-4, COBOL Dump Analysis Listings (Part 3 of 14)

sasAjeuy dwng

1 "A3Y 0866-dN

6cv

PROGRAN-ID,

€0808J COMPILED BY

UNIVAC OS/3E CoBOL CO

MPILER

VERSION C6.00/N9 DATE 79/N9/06 TIME 00.5%.88

DATA DIVISION MEMORY MaAP

LINE LEVEL DATA NANE REG DISP ADDR LENGTH TYPE PILOC oCC
* * FILE SECTION ¢ & =
st TALLY s 000U NL9C 3 NP
00025 fD COFILE
00028 21 COBUFF 5 ™INg 8 GP
00029 02 ADD} S CJ0u 3 NUP
03n 02 FILLER 5 __0uo3 2 _A/IN
[égosl 02 ADD2 S nNEds 3 NUP |
0032 L2 FILLER S Tans ¢ AIN
00033 02 NAMEIN 5 rgnha 37 AN
00038 FD PRF ILE
o00n37 01 PRBUFF 6 030 8" GP
00038 02 sum 6 300 8 NUP
age3y U2 FILLER 6 runy 3 AN
00080 02 NANEOUTY 6 0027 37 AN
00041 02 FILLER 6 002% 3 A/N

PAGE 0LT07

LINE NUMBERS OF REFERENCES

UnGus oNoaT JNOSY
ancso

unuso

0nLs52

uruas Lngse

aNLa8 0NOSe
Lnuso

unps2

Figure 4-4. COBOL Dump Analysis Listings (Part 4 of 14)

sasAjeuy dunq

oev

1 A3y 0866-dN

ESID

PHASE NAME TRANS ADDR FLAG LABEL TYPE LNK ORG HIADDR LENGTH ORJ ORG
CO3BJERR CSECT o1 ~00006NG nonanr2? ngnoni2e ngronang
CoaBJER] ENTRY 01 ~000D67H ngnonaTs
CO3BJER2 ENTRY o1 n0NG068 S nangnose
CO3BJER3 ENTRY 01 n0u20%6%8 ngnorass
COaBJERY ENTRY 01 T00UDLAA 0O0nNONaAR

- G8720779 35.13 - CDsI0J 0BJ

cDs 100J CSECT c1 nanoer2e "OND16EF ~OnNOOFCSH nangnaro
DRSCOM]S ENTRY 01 ngnooT2e ngngnaro
DRSCONMI ENTRY 01 ~gnoor2s nGNONaANG
DRSCOM2 ENTRY n rungonr28 ognanaro
DRSCONM3 ENTRY 01 Tanpun72s8 nunrgnarg
DFECOME ENTRY ol ~56000728 aufInyno
DRSCONT ENTRY 01 ~goun728 aanronang
DRsCONE ENTRY 01 nungnNr2s LV Lal1 Ll L 1)
DRSCON12 ENTRY a1 231700728 nunangno

*¢s END OF AUTO-INCLUDED ELEMENTS -

- 19/"9/706 BU.55 - CoBOBYTO ObJ
COBOBJTL CSECT "2 ~CoUl6F ~orulaed "ONQN3AE "cnunurul
INGO16F D
FLAG CODES -
B - BLK DATA CSECT - AUTO-DELETED € - EXCLUSIVE °*A°* REF 6 - GENERATFD EXIPN I - INCLUSIVE °*¥*® REF
N - NOT INCLUDED P - PROMOTED COMMON R ~ SHARED REC PRODUCED

S = SHARED ITEm UNDEFINED REF

D
L - DEFERRED LENGTH # - MULTIPLY DEFINED
U -
SANY OTHER CODES REPRESENT PROCESS ERRORSs

LINK EDIT OF °COBLOD® COMPLETED
OATE~ 79/09/C6 TIME- 00,56
ERRORS ENCOUNTERED- 2u0L UPSI- X°P0°

V - YCON 1TEn

Figure 4-4. COBOL Dump Analysis Listings (Part 5 of 14)

sasAjeuy dwnq

1 'A9Y 0866-dN

UNIYAC 0S73 JOBDURP
DATE: 79709706 TIME: D0:356:35

0S/3 VERSION 6.0 .
SUPERVISOR CHARACTERISTIC WASK - 73B2

¢ % & USER ERROR COOE D020, PROGRAN CHECK

HARDMARE CONFIGURATION MASK - E100

ccecccce
cecceceecce
ccee ccce
ccc
cce
cce
cce
cce
ccee cccee
ceceecececcc
cceecce

[T S S S P R e Y

1
* XK E
1

PEY O 2 2N T BT BT BT TY TN B

JOB NAME IS

ALLOCATION MAP

FROR
18000
18110
181D8
18226
1435s
18588
18408
18DBC

15000
16AA0

LAST PHASE LOADED - COBLODOO,

REGION DATE - 79/09/06

$ 4% JOB

0000000 BBBBBBBBAB JJJ 0000000
000000000 BBBBBBBBBBB LdJd 000000000
0000 0000 BBB BBB JJJ 0000 0000
000 000 :1:1:] BBB JJdJ 000 000
[+]:11] 000 BBBBBBBBBA JJdJ 000 [']4]
000 000 -3:1:1:3:1:3:1:1:] JJdJd 000 000
000 000 sae BBB JJJ 000 000
000 000 ::]:] 8B8B JJdJ 000 060
0000 0000 :1:1:} BBB JJJJ JJJJg 0000 0000
000000000 6BBBBBRBBBBB NNNNNNNN 000000000
0000000 BBBBEBBABS JISIJJIY 0000000
1
Y 1 &
1
cosJoB8 , JOB NUMBER -~ 8, STEP NUMBER - 3
10 LENGTH CONTENTS
1810F 2712 PREAMBLE
184107 200 TCB
18223 76 JOB ACCOUNTING TARLE
14353 3us DTF ACTIWE LISTY
18308 136 PHASE LOAD TABLE
18AG7 1108 SPOOLING BUFFERS
18AES8 228 LO6 SPOOL CONTROL TABLE
18E9F 228 PRINT SPOOL CONTROL TAGBLE
16A9F 6816 LOAD MODULE AREA
1FFFF 38260 UNUSED MEMORY

cCoOMnN

JOB STEP OPTIONS

TROL

197249

PHASE DATE - 79709706

AREA *= %=

spsBsBsBBe

B8BBBBABBBB
ses 888
BEB BBB
88BBBBBBBS8

spsgpsBBB

888 1:1.)
388 aBge
BB8 :1-1.]
BBBBBBBBBBE
3BBEBBBABA

vERTS 22T

ey

Figure 4-4. COBOL Dump Analysis Listings (Part 6 of 14)

sasAjeuy dwng

CEY

['A9Y 0866-dN

OPYION-DUNP
OPTION-JOBDUNP

JOB CONTROL FLAGS
JOB ABNORNALLY TERRINATED
JOB TERMINATION BUSY
ROLL OUT OF J0B INMIBITED
PRINTS SPOOL FILE GENERATED
WIL BUFFERS INIVIALIZED
ACTIVE PMASE TABLE PRESENY

JOB CONTROL INFORMATION
JOB SCHEDULING PRIORITY - (OW
JOB CONTROL DIRECTORY DISC ADDRESS - 307/ o/ 1
NO0. CYLS FOR ROLLOUTZJOBOUNP - 5
JOBDUNP COPY RUNLIB DISC ADDRESS - 3577 2/ 1

* s+ L O0OADER SEARCH TABLL % ¢ »

SEARCH LIBRARY LIBRARY PUB FORMAT 2 LABEL
ORDER NARE VSN ADORESS CCIM/R

1 SYSLOD REL JbU oczas 1547 7714

2 S YSRUN RELCO6U oczs 1547 1732

P N N N A T T IR R RS 2L RN B BT B B 2 2

1
* TASK CONTROL B LOCK 1
1

1
3
1

[T T o BT T T ETRE B P P PR PR Y Y BT RS B BT B B P B ET EE 2 R

TASK CONTROL BLOCK AT ADDRESS N1411L
TASK KEY - 1
ONLY TASK AT PRIORITY 8
TCB FLAGS
WAIT FOR TRANSIENT
WAIT FOR CANCEL IN PROGRESS
ORIGINAL PSW HAS BEEN SAVED
PREAMBLE ADDRESS = (01&CCC
TRANSIENT ID/SVC CODE = 1C

=+ T ASK PSH & =3

PROGRAM STATUS WORD = CD160007 DODO1AAA
PROGRAM KEY =] , WHICH IS JOB COBJOB
INTERRUPT CODE
CONDITION CODE =
INSTRUCTION ADDRESS =
NONZERO INSTRUCTION LENGIH (6 BYTES)
OPERATION:

INSTRUCTION: [FA22 ALD8 AOQ18

BEGIN SEARCH

dLOCK BYTF
JTU291 “0
FILVIs T | 27

Figure 4-4. COBOL Dump Analysis Listings (Part 7 of 14)

sasAjeuy dwing

OOPFFFFF OOTFFFFF

1 'A3Y 0866-dN

TERNINATION SYC UASS
ERROR STATUS CODE 0020
ERROR/PSH ADDRESS = 00QN00

EoE Dd D3 D2 D2 2 Bt D Da 23 2n 2 Bt Bt Tt

1 1
* CODF 1LE hd
1 1

LAl S Bt Bt D B B2 2 B D 22 2ot B2 B2 2ol 4

CARD DYFCD AT ADDRESS UOL7AS8

RE6 A
00001718

s ¢¢ TERNINAT ION INFORRAMY ION ==

REG O REG 1 REG 2
FFFFFFF2 000017A8 0000177¢C
REG & REG 9

REE 3
L00005C8
REG 8
J0002718

REG &
. 8U00DS5A
REG C
SUT019FA

-

REG S
020018A8

Re6 O
+000199"

€CB: 00 <D 80 68 00COTUND UDGD DONL UROCLTZES PROULICE JTLOLNQDuOU" 7C U7

MODULE FLAGS = 80ODO
PUB AY NBBS (1103 FOR READER 1

END-OF -FILE ROUTINE ADORESS = 001Al8

RECORD LENGTH ADJUSTNENT = o
FUNCTION COOE - 17
ERROR FLAGS = 2700

COMMON TOCS MODULE ADDRESS = T00N728

ERROR MESSAGE CODE - 0O

USER ERROR ROUTINE ADDRESS = DON698

CCul:
OP-CODE = N2
DATA ADODRESS = DO18DN
FLAGS = 2Q30
BYTE COURY = 40
IN THE SAVE-AREA:

RECORD SIZE REGISTER OISPLACEMENT - DU

IO0REG DISPLACEMENT = 28
FLAG BYTE 1 = %9
FLAG BYTE 2 - 00
FLAG BYTE 3 - 82
FLAG BYTE &4 = D8
FLAG BYTE 5 = 06
INPUTY FILE
RECORD FORMAT = FIX UNBLOCKED
BLOCK SIZE = &0
ALTERNATE DATA ADDRESS = 001848
RECORD LENGTH = 39
EOF -MASK-TABLE DISPLACENENT = 08
FLASS -
STD mODE
IORG SPECIFIED

REG 6
niv018Fe
REG E
ap001A10

REG 7
0onoo1948
REG F
enQoniALD

137

Figure 4-4. COBOL Dump Analysis Listings (Part 8 of 14)

sasAjeuy dwung

1434

c
z
Qo
O
1]
=]
-]
3

=

—

P2 B T2 D B B D B 2ot D 2l 2 Dt D 2o

1
.

1
PRFILE .
1

P2 Do Do Bl B 22 T D3 20 Bt Dol D DX 2 Bt

PRINTER DTFPR AY ADDRESS 001820

cCes 00 00 80 68 J0DOCOCO ODDC NDOO 0000185C NDOO18%6 UCOOLOOOWODO 04 LO
MODULE JDENTIFICATION FLAGS = 8CON
PUB AT DONB (FFF) FOR PRINTER 3
RECORD LENGTH ADJUSTRENT = O
FUNCTION CODE = 20
ERROR FLAGS - 0000
COMMON I0CS MODULE ADODRESS - 00000000
ERROR MESSAGE CODE = DO
cCul:
oP-CODE = 01
OATA ADDRESS = 001920
FLAGS = 0DOO
BYTE COUNT = &0
IN THE SAVE-AREA:
RECORD-SIZE REGISYER DISPLACEMENT - 0O
TOREG DISPLACEMENTY = 2C
FLAG BYTE |1 = »8
FLAS BYTE 2 = 80
FLAG BYIE 3 = 30
FLAG BYTE & = 83
FLAG BYTE 5 = &0
KRECORD FORMAT = FIX UNBLOCKED
BLOCKSIZE = &)
OP-CODE STORAGE = 390
STD 0P-CODE = 01
ALTERMATE DATA ADDRESS = J01BF8

FLAGS -

CONTROL-YVES
I0REG SPECIFIED
PRINTOVZSKIP

Figure 4-4. COBOL Dump Analysis Listings (Part 9 of 14)

sasAjeuy dwng

Dump Analyses

(71 40 0T Hed) sBunsr] siskjeuy dwng 70809 b endiy

GoTe10-

esesssny

UQINTQ-*""trvescccccceccoscsscccsesyecsy orynNGhgn

COTRTQ-*%""o0secccacccsnccsvscnsccasscy ga5Qign

CLIgIQ-**e**vescrcsscscsssscsncscans sve 4 ,nnAgnNyn

CGIaTIQ-"%%e%e scevscrccs ocoos sovesency GaaT(0GP

CEIQTg-* [*capeeoccsnsecnencccnccy gygIgnzn

CTINIQg-ov0cecece

coinlo-

ssecsccevencscnnrseces, JACIYNLC

¢secccssscrsne gy

CINQTIQ-*"o9scssssssegecsnecssssevevescss, jNaANI0.

COCNTQ-""**¢ceseccsvsasnssvnsvocscccsasc, pAGAGN,D

DYNeIQ-s*ecccrssesccces

sssscssarsnyg JugnanLn

CENRT(—***®esecccccenssccracsoonvovaceny 4I;N52N

CONgIQ-* " *sezecccerccnzgs 6°

CaOaiIg~Q° vvcesecse

b S s 2010£€10

secassesey ggrnur9n

0204 (oot csecrcsecsss;ng0180duMUOTLOIs QOUNLNL"

00CeTIp-*%**°9eescescncsssacecss

40rg0d« nSENCNCO

20060000
Tosuestu
CCrgounu
LELY Sultiel]
vsso0Qne

NyNuolLIl

Cs000u0u
retgownu
040600
Pu3LYeny
SCguZ 410
noOGouoL
889LG2LNL

ruNsTane

goao0g0acn
000003,
0200863uL"
81420301
80500700

g0LwId30rn

0002320
agnunCeaun
agJdcaulan
100ee3cn
grennni2
aogounon
06106200

36¥1020N

aaognota
h4¥10000
20900000
81L10G0C
JLL1oa0a

9s42C000

88543434
00nGo00L
707%4000C
00708270
LRI FLF]
a092000n0
Q0906061

00180000

06000600
40709102
73000098
43444200
8YL10004

06100000

0493904809
A FEEEF]
ag0oNuNu
ouaanony
34NQt00L
24641 404
0gtueoos
04144390

00920600

unuoeooo
00000000
oogoanon
43443000
23344434

griwtocz

Garunangce
gouludso
Goutaogo
gnogacao
aningsiIo
64004000
¢no0gaco
£32J390g2
000casn0

* ¥

00000u0e0
cgogoono
©2006SY0
NIvYI0CON
84610000
*eyY10090
00£00000

& &

nG0J0J30U
nuognono
ClislOBUL
1C02Y600
ooounNd0.
Jgoensio
0GC00Uou
04044290

08062290

00000000-030000
*4E % 4400-0v0000
00aNgo000-080000
CIvio00¥-090000
84810010-060000
L00N910)-020U00
LTI&I00T-000000

+ 801 =9 ¢

coune000-001300
oooeLr00-030000
#2206030-050000
100nC040-0yNu03
0nuL8G0u0n-180u0]
Oh0nCe0#-090000
G0000000-000003
£02390£)-020000

102390¢2-000000

178 KY3I8d &&=

Pl Bt D2 BX Sk Dl od Bl Bk Bl Dd B¥ BX 2 Df B D DX D1 2l J

I
*
1

vyiuy

31090170134 *

Lt Bd Dl 2 D o Dd Dt Sl Dod Bl Dod D Sod 0 Dd Dol DX DX 22 J

435

UP-9980 Rev. 1

9EY

['A3Y 0866-dN

FFFEAD-O7000C3? 078420000 0OD0000GO 00007000 80000000 COCBA100 NMBAFTOOB H9UDUBS5Y ®.ececcccasccnscccccrcsccnncncnse—01NEAD
FFFECO-00080008 00090008 49000849 DOOCO000 00000000 UOC00B81 00000055 0N02U00C *eeceeRovescscscscsoncccccssaceee=01NCO
FFFEEO-O0000BS8]1 CO000B80 00000000 00100005 O0CO00CDO0 O0COO0NOC OUOUOGD0 D1UDGOOC ®eevecccccscocvseccsessnscassasecee—DINEED

FFFFO0-00000000 00000000 00000300 CQOQDOCO 00000070 uN8BD210 NOOAOUND UNODUOUD #eeececccescscccncrcccsonrcnccceee~D18FD)

sasAjeuy dwng

FFFF20-00000004 OCOUL9BFC FFFFOOO0A 00000000 OGOLASCS (D000001 DCDTIDIDS E3D94TU4T #.evescccscscsnvescccHeooo o PRNTR -014F20
FFFFaD-80010000 00009878 &N0OD0CO 00210000 CUDOE2E3 CIODSCAF) S08JD3DS D2CSCNE3 * eeecees sescseseco STANDI UINKEDT-D18F4D
FFFF60-FOFO0200 00000083 FFFFF5B8 0000U0C10 FFFFFSCB UDNB4N00 C0N2M79Ey 00J0GO0C #UNeecseseoSocnccecSHos socoseeee=018F60
FFFF80-00000000 DCOO0280 Q0000001 0C280100 O0QO015300 U7000C37 07827000 (OOOUOOD #eesecoe cvvsvsvsccbososcscccnnac—018F8D
FFFFAQO-00000000 89F00008 12FFB8F0 NODBATA0 FO1888F0 OTC6SBFD FLDYOTFF 9SUDFNS8 ®eaceeeNeecoeNeee CeeloeeDOMaeeele-01NFAD
FFFFCO-8T80F022 DASMSBFO FO2B0TFF OUFFI11AC 9S00FG2C 478NFO00A OASY490GTC DOJC9BAC #%,.0cceeMBocvccscsclaceliconsdacee—018FCO
FFFFEQ-FO241BBC 189F 8890 00181499 SBFOB11& 1BFCOTFF 10C75810 00000280 uBU1ISTO0 #*UseecensrscacNecesscabosencceclo—014FED
[2 Dot Dt D 22 B 2 B2 B B 22 T B B2 28 B2 B2 B2 B B2 B BS B 2% 4

: PROBLEMNM REGISTERS :

1 1
9= 8=0=0=0-8+B-0-0 -8 -0 -0 ~0 -0 = -8 - BB -8~ == -B -8

REG O REG 1 REG 2 REG 3 REG & REE S REG 6 RES 7
FFFFFFF2 00001748 0000177C Loooosos 8000055 02uC18A8 910018F8 00001988
REG 8 REG 9 REG A REG B REG C REE D ° REG £ REG F
OOTFFFFF OOTFFFFF 00001718 L00o0D27)18 450019FA un0o1990 40N01A10 ango1ALn

=8Bttt BBt -B-P-0—F-F-B-8-B b8 -8

1 1
L4 LOAD "moDUVULE AREA .
|} 1

P g Dot Dot DT Bt B 2 Do Bt Dt Dot D Tl L2 It Ko Bt B Dot 2d B L4 2d J

*$ ¢ PRSIOCE CSECT, coBLOD vu PHASE = s
CO0000-87FOF020 SOOMFUFT 7513uD00 00000D00C COOQDEDO UOGNOCOO NOOOOO0D ODODOOOC #.NQ0e sGTevecescscocscsecssccasee—000000

C00020-91801048 &4TBOFO30 STD010S8 SBD01058 SUECDLOC SOEDDOLD SIACF3EE A1BOFATE 8, coeeleloccrcsscncobecseeldeeed=~-000020

Figure 4-4. COBOL Dump Analysis Listings (Part 11 of 14)

1 7A3Y 0866-dN

LEY

000020-16560201
000D80-D201108E
000060-91801002
000D80-%7F OF OFO
NCO0AQ-1A869180
000DCD-8720FDAA
ODODED-4820F DCC
0DOE0Q-% 780FEOC
ODCE20-FNS28770
ODCESD-8SEOF 358
COCE60-108ANTIO
00CES0-10608710
DODEAD-106087F0
O0OECO-106094CF
O0CEEC-9408 1058
000F 00-9 4EF 1060

0OOF 20-96101060

O00FS0-4780FF6C.

000F60-8 7EOFF6C
O0OF80-81401178
OQOF AD-130088450

C00F CO-EDQDN190

se® COBBOBJOD

10SAFD8s
1018987F
AT710FD6A
00069102
10488710
8TFOFDEC
8920FDCC
A590FF2a
FENRY B0
91101086
FE6ANS590
FEBE91ING
FEC29120
108707FE
96191058
96201054
980F 1060
910810488
94FCl067
41201268
FFT25880

EQDONTFO

41401018
108E98)F
0AO010201
10864780
FDD28840
or0n0000
8720FD0D2
4590FF 78
10028710
ATIDFEGA
FF2AQTFC
10894710
10874780
4120103C
96081060
91081060
07FB89180
8710FF S8
81201088
S850FF 72

81606008

CSE
9BADFO12

00000000

50801058
104F8180
10561061
FD9A9180
FDCEDS01
20080602
80201054
N5B0FEED
FE3GO0AO)
918010488
96801060
FEA69120
FEC29120
S02v100C
A 7FOFEFO
STBOFF18
10890789
41202050
50201078
S8801054

STFOFSFe

00000000

92041054
108€5080
DATS9AFF
10494780
&GOOFDDO
808086480
0ADONTFO
94FB1G49
91801002
NT8OFESC
91011G8A
16878780
10608712
CADGOTFB
%12010Ss
94F 71060
S880103C
ATFGFFSS
07F90200
8120117

FFT207F9

eaLODO

O8AOOTFE

[oassore

0ACO9180
10589202
1NSED 201
FD9A968B0
4TT0FDEC
FDCCDS5Q3
FE1DASBC
91801048
4710F336
4SEOF 2C8
oree9l11l
FE9E9610
FEBE962C
98LF1N54
$020100C
4SECF13%
58201078
412720A0
2CG08000
WNSNFFT2

DO7892FS

1028710
10589221
10SA104C
16n35840
8B20FDCE
a0D0FDCE
FEC87SES
4T7BUFENS
DSNO1U26
8IFUFE6A
10874780
106U TF O
16600 7F0
96NB10SH
91101066
04009125
RUSUFFT2
9A011u66
91081088
CTF981a0

TeA3N110

0 PHASE =

FO&N0UAQ]
10S80A00
92011754
10581826
4920FDCE
4770FDEC
91801049
DS01105E
1027078C
uSg8912n
FEC6E910n
FEC29M8EF
FEC2961N
4TIFTFEFN
478IFF .8
17605768
91201044
914631767
4TIOFFSA
12684120

TNFESLIFN

00001718 0D002718 OOQOIYEC

96FIESSD 92743002 92743005

%eeKeaduoe ool sescssescccaccs oo-0018483
Meeteec™etese o o9k coseeSennsss-001468
%eeresseeseMoncalsosssihooTeCoeoe-0uluBs
T T U LY Y]
%aee ooseefs coNe esscevccsosssese—DULINCE
#eeeoeNiovesssaes o seNe oolooes—0D1ES
R ITTS: [N PO YIL PR T T1.1:
e e | R 71!
BUypesvervesssssse esass3eNeseeaose-0UL588
#ee3esencsancaccsses®esZHeMNeaoY, 001568
#ulescasosscssss~ssslocssassesFuae—001588
Fe-reessssencunsserssacnse-sleBeo-0UI5AB
#emuNePecssessRocs=sasssns—aNelee-0U15C8
%e-sseneensssbossscsnsssssssesNe-OUlSES
%eessnsecase=sMeNeesabocsoss—esse—001608
#eee-sonssseassesTesolonssae=se-001628
Y F S S LT
#eee¥esecnsesessblefNlocceescecsanse-001668
*eesZasnsesacboseeINese osssnoeese—001688
%o csvsavefoss sssccceboceds oese-D01648
%eeelose o7 meeN5600eP00eBenaseesl-0016CH

-0016E8

%eeeensel

$.Neelesoeolecec=cosconsssccsseee—0D16FD

#e0esss0cevvessescsescslVecioneee-001710

000080 DO ES980201 3003ES9A D20130D06 0000)A6E ODCO19F8 NUON1TA8 OC001TAB $,ceeVeKeooVeKesoosodeooBasaesoee—001730
000060-00001820 00001820 00000600 COCOOSD8 O0OO0D0DNC8 UOCOONEN DOIFFFFF UDO01718 ®.ceccsssncssscssscesMaccslie®eenees=001750
Figure 4-4. COBOL Dump Analysis Listings (Part 12 of 14)

sasfjeuy dwung

Dump Analyses

(P10 €1 Ued) sBunsn sisAjeuy dwng 708909 v~ 2314

0eviIOo- ssee epeccesccacy

0LVIO0~-TTyeso(oessscsyopnrcscccsyepocccay,
osvie0-°

..a......c..... .u.-.
QEVI00-*Ho-gossomsgossoesesaragesazasany
DTVI00-230%oz0—omoyssoosysesepessgeseny
4610025 +0ssoesesgyeegessrsasanconsany

Ssscses

0@6100-°

066100~-8°***"*

e2eccnse oee

0L6100-"""*"" »
0s6100- +000J00N00LDGOL0UTVTU0URUNS
0£6100-0UNGCUOU. 3940 39+
OI6INC- *NYWATHD SBaD »

ogstog- 39039 *INIINIA ZNf fule

9 WOL *A3113% «

088180~ 4,ngqp

£0£0122S
02504350
a120£009
otasetoy
4360e€01
a48S2¢QY
81410000
JLL1g000
oeenaoen
DLIVL Je J¢]]
34340404

[FLEL A1) &

[SLIVAJel Dol

PLITLIVE 0}]

060100-[sof [exzfteeeerenrecessesenanens[sk s

0281000Y L100Vieeeectasessossasengeony

0se100-°* *etele

0s8l00-u*" °°*T 31 4yd° b

018I0G~-»""°

LR R R R X R X Y
C4L10Q-®"*"®cccescsscssessssccsnccnsosvorn,

CQLIOQ=-"""®%*crcesnscsncscrccne sonsoncy,

0g94100-°""" 310 4Q)% **ecccesecrocscsny,

06L100-°"

esecesee e sgepesesy

oLLI00-*" e t0s esene

Q0gagegn
10078200
ude0CLN
Js8100un
ate0L2uC
GlewnszZCo
88800008
ooglo000n

gc 400000

0202044
320v04es
0496800V
22240009
0Jestsol
0185435
EFEEETL I
8vL10000
0GL0Ce0%
O80e3804
04040430

%GLQT0I8)

J80e08SO
OeNe0eNY
08235424
Qquoangny
r:@-mwun
70000G0J
0G0GIu0G
ounaoLny
82960090
(11 131 Lo i yt]
89080000

EFEEETH) A

Jt10J018S
000v 4350
00092£5 4
%009¢£220
01268201
880VU18S
EEEEFTN: 4]
24434443
OhOwGhON
04040404
OBGHONON
£2GH0N0N
AT6 10

L36090S3
A%0R0NON
aooouwdao
QoQocrun
188422u0
84000708
gooocnor
gogoLlun
ggstoIer
693920280
000007400

44433100

oL

43502%0Y

wo0v0 488

#10v800Y
35020009
04053102
L i € 1
88610000
QIVIOGOw
Os040800
04040404
Ou%060n

$4846404

137689%1
[T RLLE T]
00n00000
nooooo0o
82000000
0%00S2£0
89780000
00000000
869uty00
0agdc0000
P4 LY FLY

84610000

c48100

02264350
048S2£0Y
*I0VYOZIN
ZZv4vooy
£0204350
04Twbes0Y
00000000
84810610
GIvIOOOw
Ow040400
0404N404
08Ca060W

NaNeGe0y

aQuon 1SYT SY JWYS

$QSs2£Js0

Ow

Oesa
00000000
00200000
02610010
639J60L0
coooneoo
60000000
82100000
00000000
9020001

84810010

0%0v048S
0T 8S4380
2 0voTes

2465008
szovodes
01950350
26810000
svs10020
ozesesot
ONONONGe
04040404
ovoeoNaN

31

[11 Je 1)

63S30%0LY
90¢ IJuwa9
000000G0
cogoo9000
86900000
unesggoor
anoogcuo
8ve1a0Geo
goguo00tIC
3d4100a0
2Ev30LLY

svet10020

£000001Te
e0V08S
1000001
s00vZ2e4
4200040
4¥90V9906
V461000
v$500008
03053520
0e08080N
03040404
a808S2L)

CACeOn00

Z4045 40
93s2¢0¢a
0oou0o0a
0gocoaty
00000000
06000000
0uso000o0
00008200
04200000
43410000
*003%004

06610000

viveL2vo-0vVEDDD
2£0V0T9$~00%000
v0034009-091800

viovdsee-0ego00
0%0¥$506-02£000
4350840V -00£000
81420000-032000
90$00000-032000
0318£01-0v2200
0v0e0s08-082000
0404040 4-092000
6090S3L3-082000

0v0%0N0ve022000

12000 OL 002000

0v§ 4041 3-23T000
$3200%0%-021000
00000000-0YT300
94%10010-081000
000002ZT 3-091002
94810000-04T000
coongoon-czto0to
%0408028-0CT000
81v10000-030000
00006000-020000
00000000-0v0000

J8410000-080000

UP-9980 Rev. 1

438

1 'A3Y 0866-dN

6EV

LR Dg g B T B2 2 Bt 2t Bt D D 22 Bt B B Bt B2 Bt B

1 1
* UNUSED NEMORY .
1 1

L R e R R R R bt ot b T
001AAD-103158FD 103405€EF 18E21827 D7FED203
001AC0O-105C0203 2010C35C 17FFa3F0 BUL158D0
00 1AEQ-000DG000 80000888 ODO0CODCD SUDQIAAS
001870-00000016 00000G0S DDDC1B68 NOOCLODOO
001820-00000000 00001810 OOULOOOOD 0ULCODODG
001B40-00000000 00000030 000000G3 BOOOOODD
001860-00000001 00001893 DOUDUS2A DCDORASO
CO1880-03A20A1A 81000003 S8FOADAC OSEFOED3
001BAC-00000000 0ODG00QOU 00000000 C505C8D3
001BCO-9EC3D6C2 D3D6CAFD FOT90906 DOS6N8N0
OO IBEO-80408080 S080%080 &CH0804C 40408080
001C00-00000000 00000000 O8CAND709 SBCIDGCS
001C20-000040C3 C27CD6D7 C3D3F117 1C008300
C01C80-DYE3EGE3 171C0080 DOLUDODU6 OLOGODOO
001C60-408080A0 SOAOS080 A0ADA0A0 SONON0N0
001C80-0000165C D200D6DF TOU245E0 D6DCD201
001CAQ-C17CD203 D6DCTU0S 4SE0D6CC D2079068
G01CCO-4SECD382 87F0C136 1B338140 80038130
O01CEO-C1184030 C1920202 9031C19D &SEQD67A
001000-9110D7A0 &4710C1SE 9610DTAD 411000CS

0031020-CO06AN110 ODODSHSED DSEC968D D7A0NTFO

1038C38¢C
DO0&98BEE
QCFF11A0
0000189E
00000000
00000000
nonJ0002
00030330
C9C24.L40
DC1A9L 4D
40808080
a080171C
00u000508
00000L01
40A080E0
903ADT06
D7000205
36019580
8SEQD3B2
SSEODSEC

C0C69150

58201060
p0OGC980C
02000SE 4
80C0195C
£0Co0n0uo
00600000
00CI0SES
vocoonue
43970CUD
404D4040
4942404 C
u0800000
005NC00’
28C3D67C
0NGO4ASD
02089030
D60C7009
40G08780
9RIFDTIAL
O7F38110

D7A04780

02032019
DO1892FF
80000478
oungooF?
ngoooong
00000184
40130202
0u0L0002
ngoonuco
40404080
80171C"0
1004C80%
00NODOF8
c201C509
€505C403
€1989101
8100060C
€12Ca1a0
FAAFDTAD
00D68SED

COEC9240

Ca685820
DNUCOTFE
80uC19817
coo01B79
Louporon
UNOBLFFC
(H:Wialelehily
1IFQo18.C
uwnNOouG1A
47404040
871000000
ad0o0Leco
c3czrco7
D98Ny 0an
C9C2a040
D2B74780
41109024
NNO18T7FO
ATFGDS1E
OSECATFO

902C021E

% eelececeSeceeKooaCloos—KaroDosa—DO1AAD
#e9KeeelPeeeNeescearsoannseconcess-0D1ACO
%eees esoeses sevsvesssel seesess-001AED
®eeeevssoesecescssassesstessTeesa-001800
Bereeecscerncensscsssscncnssscsse—001820
L P L LY}
%eeeescesecssselbocssncsl cooenso-001863
BeeeenceceNe seesnsnsecscscessass—001880
%eensecsasassENDLIB wevansesssss-001BAD
. CORLOD"Oeavensssee -0U1BCI
» cereeee-D01BED
%eeeeeeeesDPRSTOF cavevessHesoes=001C00
#.0 CBAOPCL1sssssvcsseseseessBCBIP-001C20
#RTUTeeesecsacsssesses COIBJERR -001Ca0
* +«oCEENDLIB -001C60

*eeo®KeDosoooOeKoaoPONsoohoookooo-001C80

*A3Ke0ecroveleleooPekeOuareeOeoeee—001CAD

‘ool eeDAcees cosvese eovhees oo0-001CCO

#Aooshehocehscolcoclee™PosePeclN.~002CED
$eePoseAiecPesceDesNee3ese0eolN,.N-001000

BeseoeNoelee PosloFobPocosoe oolto-001020

Figure 4-4. COBOL Dump Analysis Listings (Part 14 of 14)

sasAjeuy dwng

Dump Analyses

4.4. RPG Il Dump Analysis

In this subsection, we analyze a JOBDUMP taken from an RPG II program named
RPGOBJ. This program reads two numbers from a card like the programs analyzed
in 4.2 and 4.3. Unlike them, it divides one number by the other and prints the results
along with a character string taken directly from the input card.

4.4.1. Materials Used
The materials used in this analysis are contained in 4.4.5. They are as follows:
* Job log for job RPGCHG (the job which ran RPGOBJ)
e RPGII compilation for RPGOBJ

e Edited JOBDUMP

4.4.2. Program-File Interface - the Input/Output Request Block

In this analysis, we will look at a software structure used by RPG II as an interface
between an RPG II program and a file. That interface is called the input/output
request block (IORB). The IORB is 56 bytes long and contains information that is
useful in debugging an RPG II program. For our present purposes the format of the
IORB is as follows:

+0 +2 +4 +6

-+000000 CURRENT RECORD ADDRESS

+000030 FILE NAME

An IORB exists within your RPG II program for each file used by the program. More
information on the IORB can be found in the System Messages Reference Manual
(UP-8076).

440 UP-9980 Rev. 1

Dump Analyses

4.4.3.

4.4.4.

Program Check Island Code

Another 0S/3 facility that we will discuss in this analysis is the program check island
code. This code is a software feature that permits users to handle program exceptions
with their own routines rather than simply allowing their programs to fail. Several
language processors, RPG II included, automatically include island code in load
modules, mainly to print error messages and perform other recovery functions when a
program fails. As we will see later, the program check island code is designed to save
the hardware environment of a failing program in such a way as to let us see what
caused the failure. More information on island codes can be found in the Supervisor
Technical Overview (UP-8831),

Analysis

To determine what caused RPGOBJ to fail, we proceed as follows:

y]
I 7/ _SPTION JOBOURP l

. .
o 8 _RPECNE EXECUTING JOB STEP RPGLODOD 8003 21:05339

PS030~ DIVIDE BY e EXCEPTION
W 1Y b - Pm » FORN ~ STANDL o COPIES - 0001, PAGES - 0000000, STEP -ON3

Here we have loaded and executed our load module RPGLODO00, containing RPGOBJ.
The program, however, fails when the RPG030 message @) is printed in the job log.
By including an / OPTION JOBDUMP statement in the JCL runstream immediately
before the // EXEC RPGLODOO statement, we can cause OS/3 to generate a
JOBDUMP. In doing so we look at the JOBDUMP narrative.

$=0-0~8~0-0=08-0-0-0-8-0-8-3-0-F-6-F-0-0-0-t-8-0-0-0-0-8-3
1 1
. TASK CORTROL BLOCK 1 4
1 1
$-B-0-0=0-8-0-0-0-3-0-4-0-0-0-F-0-0-8-0-0-0-8-0-0-%_-C¢-0-¢

90 PROGRAN CHECHR I1SLAND CODE & *»

BusY
@ ENTRY POINT ADDRESS = DOOATO
PSU/REGISTER SAVE AREA ADDRESS = OOOBFD

PROGRAN STATUS WORD = CO160008 [DOOOGRC
PROGRAN KEY =) WMHICH IS JOB RPGCHG
INTERUPT CODE :

CONDITION CODE =
INSTRUCTION ADORESS = DD06SC

NONZERO INSTRUCTION LENGIH[(e BYTES)H]
oPERATION: [OF] INSTRUCTION: [FDF2 9CIT 3207]

At @ we see that a program exception occurred, which activated our program check
island code. The major purpose of the island code is to generate the RPG030 message
indicated by @ . But the island code also saves the PSW under which the error
occurred. We can thus use this PSW to determine that:

UP-G980 Rev. 1 441

Dump Analyses

0006200*00000000 DOOOOODO ODOOODCD DUSYO(

¢ The failing instruction was a divide decimal (DP)

* The interrupt code of 0B indicates an oversize quotient, most commonly
generated when dividing by zero

Since operand 2 of the DP instruction represents the denominator, we can confirm
that it contains zero, first going to @ .

REG O REG 1 REG & REG S REG & REG 7
00000008 E0000686 0001070 o0goacan 00"0™ 0L anonaoon
REG 8 REG 9 REG C RE6 D RF6 E REG F
60000672 FO conuo76C GOODOAFN 60N00DNS S10N0AT2

Operand 2 of the DP instruction is in base/displacement form using register 3 @ .
From register 3, the effective address of operand 2 can then be determined:

0000 Register 3 contents
+20F Displacement
020F Operand 2 address

Having found its address we now see what operand 2 contains.

DO O0O00CP102 D3IDANODT D9D&DTCS DIEICICS %ccesccsscccccnse s KL PROPERTIE-D002N0

000220-F 2404040 40408080 8080080 40508080 0OCO0OO0C SOA0S0N0 SDN0A080 ADNDSDN0 oS sese -oon22¢

442

In the JOBDUMP, @ points to address 20F. The DP instruction specifies that
operand 2 is three bytes long, so we highlight addresses 20F-211 to show that operand
2 does indeed contain a packed decimal value of zero.

The next question is how the zero value got into operand 2. To help answer that
question, we turn to the RPG II compilation listing that generated RPGOBJ.

FIELD NARES

ADBRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIFLD
000180 etnnOR O001A8 PISONP EXTRN 00020C ADD) CON20F ADD2 nunzt2 NAmEIN
000230 QueTE 000238 NANEOTY

The field name list in our RPG II listing shows that our operand 2 address of 20F
corresponds to a field within our program named ADD2 & . We turn to the RPG II
source listing itself to see what ADD2 is. .

UP-9980 Rev. 1

Dump Analyses

000 H D 1 RPGOB J

001 001 FCOFILE 1IPEAF a5 AS READER RPGSRNIN

2 PO2 FPRFILE © V 48 A3 PRINTER RPGSRNZN

r%%: 003 TCOFILE 011 01 OINCI | RPGSRN3N

NOTE 117

00N I 1___50ADO} RPGSRTAN

003 00s 1 i 8 120ADDZ] RPGSRNSN
[1] 006 1 TS W8 NAREIN

Line 005 of the source program ®) shows that ADD2 is a 5-byte decimal number
contained in bytes 8-12 of the input record for card file CDFILE (defined in line 003).
Knowing this, we can then look for the input card that presented a zero value in the
ADD2 field, thus causing the program to fail.

To pick out the error card we first find the data read into the job from that card. The
RPG 11 compiler listing and the System Messages Reference Manual (UP-8076) can
both help us here. Our intention is to find the IORB associated with file CDFILE. To
do so we first look at the RPG II compiler listing under the heading "PROGRAM
POINTERS™

PFCCRANM FCINTEFRS

TABLE INPUT/OUTPLT cug2s4
INPLT FIELC EXTRACTICA cotese
DETERMINE RECOFD TYPE cLrace
GEY INPLT RECORD Loesto
DETAIL CALCULATICNS LiCe?l
TCTAL CALCULATIONS CCleaz
CVERFLCW OUTPUT (CCefe
OVERFLCW BYPASS CCCerA
HEACER/CETAIL CUTPUT CCC7Ty
OLTPUT FIELDS CCC7€eC
[INFUT/CLTPUT REQLEST 21CCKS CCTECE |

As we can see the input/output request blocks @ are located starting at address 8C8.
We go next to that address and follow the IORB format shown in 4.4.2. RPG II always
arranges IORBs in the same sequence as the file description statements for their
respective files. Because file CDFILE is the first file defined in the program, its IORB
occupies the first 56-byte IORB slot, at address 8C8:

I0RB CURRENT RECORD ADDRESS IORB FILENAME

CCCeeC-0CLOCUCN CTC9C6CIND3IC54N40 80NG151) O300IFBC JNCLI0UFC FOE2LCCCC L12FFFFDL #40aoPRFILE susevssosee0&Qeccsnce-CiCERL

CCCBAG-CCLQLF96 C1CCC832 JOQCICIT 002¢c440C 84SAR2G04 uOICICYS CuCLCB2z UCUCICCL #evsssevocosessscscnesanoolonases-CLCEAL

(CCsCC-0CCOCIC0 422€0000 32000798ICUCDCZ‘DL‘ CL207CC1 COCIUCFF FFFFFFOL CCUCCCL1l [*envnoncevnnnnsnnonsssasnvelfescee~OCCECT

(C(SEL-L(L(’COEU CLCCCUO0 LCacu7ce C2CNFAC JL0unaou JCEDGSG('C}C“C&C? CICEUT40 1% asonsecscnstbacoravasans -CCCEEL

UP-9980 Rev. 1 443

Dump Analyses

CCC76C-CLCCLTEY

(CC78c-Ce108012

Bytes 1-3 ® of the CDFILE IORB hold address 798, the current recogl address.

At address 798 we find:
S@3azL038 FI151 323G%1DC ECOS4T10 X4 BuugSFE2Z 32303220 #4000 0000 2esensssesnasns Coessensse- CCCleC
2234 3Z234021C 22353234 DIFE2COC L 2CQUCLL [4CUCFeFS FCH 7 *Kesseosr s Kesoososossaeonn geg -Teciec

CCCPACH4 L4 uCFD

4C45C102 CI044CTT COCECLTCE CSE3CCS £24N404C 4L4CHLNC 4CUCHCHL | 7 UKLM PRCPERTIES -CCCasc

(CC?7CC«C404040 4CHOTCIU JuQ08CES CCOLCLOC CCCCCLOC COCPUECHTCICCLIEE COGCLCLL * seuvesassoosvaronsovsssnasc cueace

4.4.5.

CDFILE CURRENT RECORD

The large block indicates the CDFILE record most recently released to the program,
and 9 points to bytes 8-12 within the record, the field defined by RPG II field AD2
(see B). We see that ADD2 does contain a value of zero, perhaps a mispunch. We
can also tell, from the interpreted dump in the right column, just which input card
(JKLM PROPERTIES) contained the faulty data.

Dump Analysis Materials

On the following pages is Figure 4-5, the edited printout from which the dump
analysis of 4.4.4 is taken. The following list indicates where in Figure 4-5 each of the
pointers of 4.4.4 can be found.

part 1
part b
part 6
part 7
part 2
part 2
part 2

part 9

© @0 0®® O

part 8

UP-G980 Rev. 1

1 'A% 0866dN

Sy

17 J0B RPECNE, My g0y (BeE oS),y B0TH,HOR
17 ov¢C 20
77 \FD PERTR
47 DYC 20
#7 LFD PRFILE
47 d¥C 30
77 LFD COFILE
77 DYC SO
17 LBL CPYLIBOO
77 woL os3CPY
77 LFD CPYLIB
24RPESRC RPG INZHIOS3ICPY CPYLIBOO)
77 SKIP ENDER,11
/74 MORK]
/74 EXEC LNXEDY
(4]
LtOADR RPGLOD
il
/7 OPTION JOBDUNP

ASSIGNED MEMORY=(MQ230a0 BYTES (PLUS 003584 BYTF

» COPIES - GNC1, PAGES - 39070702, STEP -3M
ELAPSED WALL CLOCK TIMEZ-T(:0D:841.676
CPU TIME USED =Np:U0:09.8%5

PRTZ00OCO007S 440-00005011

s COPIES - 0OC1, PABGES - 0NDDONQ2, STEP =ON2
ELAPSED WALL CLOCK TIME-NG:00:82.532
CPU TIME USED ="Q0:00:12.125

PRY=Q0CO0OD97

s COPIES - (0C1, PAGES - 09000000, STEP -0N3
ELAPSED WALL CLOCK TIMEZCU:00:46.620
CPU TIME USED z00:00:14.795

116-00C00003 PRI-00000821

TOTAL ELAPSED WALL CLOCK TIME-D0:02:29.377

WALL CLOCK TIME OF ALL STEPS =D0:02:10.828

TOTAL CPU TIME OF ALL STEPS =00:00:36.755

21:06:29

77 EXEC WPGLODOD
7/ENDER NOP
”n
ACOL JOB RPGCHG ACET. No,
JC06 USING DEV=aan WSNZOS3CPY
JCOT USING DEV=FFF JYPE-PRNTR DEV=117 TYPESREADR
JCO1 JOB RPGCHE EXELUTING JOB STEP RPGIIDOC #001 21:L8:N4
ACI10 LFD - PRWTR , JFORM NAME - STAND1
AC11 STEP 8001 (RPGIIOCO) USED L0G22784 BYTLS
aciz TERN CODE=QGO SWITCH-PRIORITYZCS
Ac19 DEVJCE ExCP*s 303=00001638
JCO) JOB RPGCHG ENECUTING JOB STEP LNKEDYCQ 8002 21:(8:52
AC10 LFD - PRNTR [, FORM NAWME - STAND1
AC11 STEP 8002 KEDTOD) USED GOD14822 BYTES
AC12 TERM CODE=000 SW ITCH-PRIORITY=0S
aci9 DEVICE EXCP°S 3N3-00001638
JCOL JOB RPGCHG EXECUTING JOB STEP RPGLODCO 8003 21:05:39
RPGD30- DIVIDE BY ZERO EXCEPTION
(1] - E o FORN NAME - STAND]
AC11 STEP 803 (JOBDWPDO) USED 0O0D13552 BYTES
AC12 TERRM CODE=D00 SWITCH-PRIORITY=(S
ac1e DEVICE EXCP°S 30300010985
AC21 JOB TOTALS USED U0D2278% BYTES
ac22
ac23 .
JO3 JOB RPGCHG TERWINATED ABNORMALLY. ERR 000
ACI0 LFD - PRNIR v FORN NANE - STAND]

» COPIES - DOC1, PAGES - u0N000025, STEP -UN3

PROLOGUE) 19709727

TOTAL SVC CALLS=NQNrp353)
TRANSIFNT CALLS=NGMONSSC

TOTAL SVC CALLS=00NG3501
TRANSLIENT CALLS=MQONONGLTN

TOTAL SVC CALLS=POND2986
TRANSIFNT CALLS=N"QNON038

TOTAL J0B SvC CALLS-70010018
JOB TRANSIENT CALLS="0O0DO0162
TOTAL JOB EXCP°S =ngogs26n

Pk R R R R S el B R N ol o N el alad o ol ol ol ol ol ol ol ol R

21303237
21303300
21:03z01
21:03z4)
21:03:81
21:032681
21303281
21:03:41
21:03:481
21:03:82
21:03:42
21:03:42
21:03:49
21:03:50
21:03:51
21:03:51
21:03:51
21:03:51
21:C03:51
21:03252
21:C3:53
21:03:53
21:03:59
21:CazL2
21:08:200
21:C8:2(7
21:08:50
21:08:51
21:08:51

21:0a:58
21:C5:38
21:05:38
21:05:38
21:05:38
21:05:81
21:C5:51
21:05:58
21:06228
21:06:28
21:06:28
21:06:328
21:06:29
21306129
21306331’
21:06:32

Figure 4-5. RPG Dump Analysis Listing (Part 1 of 9)

sasAjeuy dwng

iy

1 'A9Y 0866-dN

UNIVAC 0S/3 RPGII VERS 80GS5G2 REGOUMP 8U/U6/26 2C.48 PAGE 1
GCC H 1 RPGO8Y
gc1 C10 FCOFILE IFEAF 4% 45 READER
0ce2 £2C FPRFILE O F 48 48 FFINTEF
[GT3 C3C ICCFILE 011 G1 CINCI]
aC4 T4l 1 1 SCALL]
[&TS [8 1zCACC<])
CCe CeC 15 44 NAMEIM
cc? c1c ¢ ACD1 CIV ACC2 QUOTE eC
cCs cec ¢ MCVE NAMEIN NAMECT 2C
(] C6C CPPFILE D 1 o1
o:c 1CC € CLecTE B8 140
gll 11C ¢ NAMECT B 48

SYMECL TABLES

RESULTINE INCICATCRS

BCLRESS FI ACCRESS RI ALCFESS RI ACCRESS FI ACCRESS RI ACCRESS FI tCCRESS RI
cecoiy 1F CCUGls5 LK dCullée oL Lgual7 01 CLet7a Ly €Tcues L ufeese w1
CCCoB87 +z ccocss #3 CCCC8as Hu LCUDEA K5 CCCCee re Leeesc v CCCLst M8
CCCTBE +§ ccuosF L1 Caul93 uzg L0LeS1 L3 crefse us CILTs? LS CCLl%4 Uue
CLCNsSs L7 LCG0%¢6 LE

FIELC MAPMES

ACLRESS FIELC ADCRESS FIELD (5) ACCRESS FIELC ACCRESS FIELC ACCRESS FIELC
(CC18C #ERRCK 13C2CC ACDL CCN20F ACC« CCCZ12 NAMEIN CLC230 quCTE

(ct234 MpMEOT

0lz NCTE 2r)

NCTE 201 RESULTING INDICATOR IS INVALID CF LNOEFINEC. ENTRY OF LO IS ASSUMED.

PFCCRAM FOINTEFRS

TABLE INPUT/OUTPLT cu02sy
INPUT FIELD EXTRACTICA cotess
DETERMINE RECORD TYPE teesc
GET INPLT RECORD teesce
DETAIL CALCULATICNS CcceTe
TCTAL CALCULATIONS CGL6r2
CVERFLCW OUTPUT COC6ES
OVERFLOW BYPASS CGCeDA
HEACER/CETAIL CUTPUT cCcLity
OLTPUT FIELDS cceiec
[INPUT/CLTPUT REQLEST ZLOCKS CCCECE]

Figure 4-5. RPG Dump Analysis Listing (Part 2 of 9)

sasAjeuy dwng

1 "A3Yy 0866-dN

Ly

UNIVAC 0S/3

«O0BCUMP

CATE: 80/06/26 TIME: 20:5(0:33

= + & USER ERROR COCE uOOC

0S/1 VERSION

Tel-aCl

SUPERVISOR CHARACTERISTIC MASK - 37BFEGAE
HARCwARE CONFIGURATION MASK =

ARORMRRK
PRRAFRRKRAR
RRR RRRP
RRR RRR
?RR RARR
CRARPRRRER
RRARDRPR
RRR} RPE
RRR PHR
CRR KR
oRe SRR

FPPPPOPP

PPPPPPPPPP

FPP oppp 5
PPP pPP i
PPp PPPP 3
PPPPPPPEPP 3
FopPPPOD 4
FPP 5
pep 3C
prp

opp

TR PR R TR T T P R R AL 2

1
+ K E Y
1

1
1 »
1

P T R Y P T P R Y P Xt

JC& NEME IS RFGC

ALLOCATICN MAP

h3 9 JCB NUMEER

FRCK TC LENGTH
17408 19B1F 288
1582¢ 19¢47 296
15CHE 19€53 76
16¢54 19072 z24
19064 19€C8 136
1A0€Y 1ASC2 1106
185CH 1A5E7 228
186€8 1a768 228
1A7EC 1A86F 228
1aacC 18447 4z6u
17408 1FFFF 17752

LEST PHESE LCADE

REGICN [ATE - o€

t 4 = g CB c

.C8 STEF CFTIONS

L - RPGLOCLG, FEA

/06726 BL/178

CNTROL AR

E104

36G6GCS5 ceceeece
G6GGEG5G6 ceceeeccee
GG GGGE cccce cccce
C ccce

5 cecc

s ccc

9 FLERS ccc

c GEHG6h cec

A9 66 ccec ccre
GGGLGLGO ceeeecece
S66C6GE cececece

- 1y STEP NUMBER - 3
CONTENTS

PREAMBLE

TCE

JC3 ACCCLNTING TABLE

CPEN FILE TAELE

PHASE LCAD TABLE

SPCCLINC BLFFERS

LOG SPOCL CCNTRCL TAELE
REACER SFOCL CCANTRCL TASBLE
PRINT SPCOL COMTROL TABLE

LOAC MCCLLE ARER
UNUSED MEMORY

SE CATE - 8L/U6E/26

EA * 2 »

HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHHHHHHHHHH
HHHHHHHHHHH
HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HHH

VER3CO6CH

GCGG6G6
GGGGGG666
GGLG G666
GEG
GGG
666

GGG 6EG66
6C6 GGG6E
6GG6G6 66
CGEGGG666

SGG6G666

Figure 4-5. RPG Dump Analysis Listing (Part 3 of 9)

sasAjeuy dung

E

1 'A9Y 0866-dN

OPTICA-CULMP
OPTION-JCBOUMP

vCB CCATROL FLAEGS
wOB AEMCRMALLY TERMINATED
JOB TERMINATICN BUSY
PRINT SPCOL FILE GENERATET
wTL BLFFERS INITIALIZED
ACTIVE PHASE TABLE PRESENT
26RC FHASE AREA ON LOACS

(B CCMIRCL INFCRMATION

JOB SCRECULING PRIORITY - LCW

JOB CCATRCOL DIRECTORY DISC ACCRESS - €67 C/ 1
NO. CYLS FOR RCLLOUT/JOBCUMP - 6

JOBCUMF COPY RULNLIB DISC ADCRESS - 17 L/¢4

4 L CACLCER SEARCH TABLE * » »

SEARCH LIBRARY LIBRARY PLE FORMIT 2 LABEL BEGIN SEARCH
ORCER NAME VEN ADCPESS (C/H/F BLCCK BYTE
1 $YSLCO RELIT7Z 1cce 1247 0/ 14 CCacal jods]
2 $YSRUN SPLLtE LFFC 1CLs nsz} cceoeg! 41

R R R S R L L R R e e e R PR R TP RS R T R B RS)

1 1
* T 4 S K CeNTROL 8L CCX i *
1 1

P T Tt oF BT e B P P R T T T PR)

TASK CCNTROL ELOCK AT LDORESS C1582C

TASK KEY = 1
CNLY TASK AT PFICRITY 1:
TCB FLACS

wAIT FOR TRANSIEANT

w217 FOR CAMNCEL IN PROCRESS
PREAMBLE ACDRESS = (C1SACC
TRANSIENT ID/SVC COCE = 38

t 4 % T 4 S K F S W * %=

PROGRAM STATUS WCRD = CLle0Q3e u)CCOB1S
PRCCRAM KEY =) wHICH IS JCE RPCGCLMP
INTERRUPT CCLE
CCNCITION CCDE
PRCGRAM MASK

FIXEL POINT OVERFLOW PREVENTEL
DECIMAL OVERFLOW PREVENTEL
EXPONEMNT OVERFLOW PREVEANTEC
SIGNIFICANT ALLOWED

’
ke

8
C

Figure 4-5. RPG Dump Analysis Listing (Part 4 of 9)

sasAjeuy dwng

% INSTRUCTION ADDRESS = UOGB1S

o NCNZERQ INSTRLCTICN LENGTH (Z BYTES)

bred OPERATION: SVC RPCMZ INSTRLCTICN: (0£28

3 .

o REG U REC 1 REC 2 REC 3 REC 4 REE S
=z rgeococe ECocoeee cuccoezg Locecceo coceciccc Leuc20cr
< REG 8 REG 9 REG A REC B REE ¢ REE D
— 6CEC0672 oC0CeBsC CODUNB3C LO0CL6LA CGOCn76C ceucaBsn

4+ 4 PR CCERAVPF CHECK I SLANC coCc e » % 2

BUSY
ENTRY POINT ACODRESS = C(046E
PSWw/REGISTER SAVE AREA ALDRESS = (DPLCZC

PRCGRAM STATUS wCRL = CCUlefUGE ECTUC6EC
PFCGRAM KEY = 1 , WHICK IS JCB RPGLUMP ®
INTERRUPT ccre =[CB]
CONCITION CCCE = 2
INSTRUCTICN ADDRESS = LI.6EC
NCNZERO INSTRUCTICN LENGTH [T€ EVIES)

OFERATION: INSTRUCTION: [FCF2 SC17 5ZF

REG o FEE 1 REL 2 FEC 3 REC & REC £
ceeccasle 8rollsuag C20C076¢ ceeeeced cyecicec cecerecLc
REG 8 REC 9 REGL & FEG B REC C REC C
€gacre72 Lcacce3d ceoonesc Lruocela CLoinyet crecuesr

+ ¢ ¢ TERKRMINATION INFCRMETITITCON 22 4

TERVMINATICN SVC 9SJF
ERROR STATUS CCDE JLCCC
ERRCR/FSW ADDRESS = L182¢8

* 4 & TERPFMINATIOCN F S W %= % %

PRCCRAM STATUS WCRC = CLleliCi ECCCN6EC
PRCGRAM KEY = 1 , WHICH IS JCB RPGCLMP
INTERRUPT (CCCE =.B
CCNCITION CCCF = 2
INSTRUCTICN ACDRESS = UCC6eC
NCNZ2ERC INSTRLCTION LENGTH (€ BYTES)

OPERATION: 0P INSTRUCTICN: FECF2 S(17 3:20F

LR RS S R R R R RIS R R S R S A
1 1
* CCFILE *
1 1

L R e R R R R R e It O 23]

CARC DYFCD AT ACDRESS G0O7ce

"

Figure 4-5. RPG Dump Analysis Listing (Part 5 of 9)

6v v

sasAjeuy dwung

0S¥

1 'A3Y 0866-dN

FFFFAQ-0CCOO000 89FQOUNB 12FF88F0 00084740 FLL1B8LEF0 COC6S58FC FOCDUCIFF SEFOFCZE % ,400000000ef0es OoelovellFoeoslDe~-01ASAC

FFFFCG-0TFFCCCC CCCCLODO OCOCOCCEC CCFF3SCC SECOFOZC 4TEDFOOA CASHCAES 2C19CA1S PeeocoosvocnssoeseeloooloasaZesse-CIASCE

FFFFEC-OMICCTFF CAZT70ALC QCGCOUCCO JGOCCLEOC OCCOLCO0 FFFFF374 COCCCLCC CCOCOLCCC *oeenescensacaconscnsenldocenesnae-U1ASEL

e T R R R e L L ET R e I L]

1 1
* FRCBLEM REG I SSTEGRS *
1 1

P T T R T R T e e e R P R P TY T T T P

REG © FEG 1 REG 2 REC & REC S REC 6 REG 7
ccocnace ECTCUEBE €COCIR3C £0GOuNCn cuccicee crocacee ceeeatec Gonogcee
REC 8 REG 9 REC A REC B REC C REE © REE ¢ PEG F
6L0CO672 4CaIcoB3C £CaLoeIC LOUDOECA acoceores £OCCuR 3 eceeooce 4100CAEA

IREEE P SR RS RERL PE NI R AL B B S S E L Bt Bt Rt Bt B Bt Bl]

1 1
4 L CAD MO0ODULE AR E A *
1 1

PR T T Ol Bt LT BT I Ny P PR UR i P N P P e T T

* %« RPFGCB U csegcrtT, EPGCLOC QYU P HASE » s 3

CCCO0O0-0cFOSEFC FCCO6CTFF LCUCJUE2C ACGCLCLIC CCTCCCOC J90(NFCFC OCCCOLCE CCOCCCLE *eCoefiloscoescnacosnoseelToanennae-CLLCCL

=3

- ccecae TC CCOOSF SAME AS LAST WCRD
(CL060»CCCOCECO0 CCCOCONU QLONuUCCh JQU2C2COC CEO000G00 U0CoU00C COOCFOEC OCUCLCCC #eeasesoosoncovoscssssnonoslonese-CCUCLEL
€CCosg-0CCO0000 NCFJ0O0T OQCONUCCH DJ0000GIC CUQOCLOU COCOUCUC RUCCCZCC CCOGCCCE #aeneeClovnoncnsanssncccenoscnanes-CLOLBL
cecoag~cCCCCOCO CCCOC254 QCUJUCCO NUCUOUOL O0O0QuOUAL J0CO000C QLCLC258 CZCCOL2CE ¥evevosesveocevesssssccsonccasnese~CLCLAL
(ceoco-0ccoco0o ooco0000 ocytocen J0700E0C OC00JILCUO CCLCue7C CCCCLerz LrollcLcl !.........-......................-thCCC[
(CCOEO-UCCOU6B6 CCCOO6DA nCCOOCCC COCUC?04 CCOCTCOU COLOOCOC COCCDCCC CCOOCT76C #cosvevonesscnsecssssocscooassees~—-CCCCEL
€cC17c-0CCOC0CT CoccoCOOU QCOOUACe 20000938 0CO000938 CCLOOCCE CCCLCCCC CLCOCCELD *cnveesovovetlivccansssevencssnese—CLUCIOC
tegi2¢ ¢ 00013F SAME AS LAST WGRD

Figure 4-5. RPG Dump Analysis Listing (Part 6 of 9)

sasAjeuy dung

["A2Y 0866-dN

1S+

€0C140#0CC00000 CCOUCO0U OCOODCCC 500Q0A68 CCOOCR3Q COCCOCCC CCCCCCCT GCCOCOCE %eacocosceseancansensasnvaseossse—0UCIUC
CCC16C-CCCOCOCO0 CCOQCOO2Z QCO2UCCO 000QOJI0C 403J0C34 QOCOUCEE OOCCCCCC U200C79E %evsonesenvscnone sssssvescesnsoe-CGLL6(
CCL18L-0CCOOOGCO 40404040 8CCTI0CCLO DGOCOE2C D(0OOCOL 1C40404C CUCCICLC CCOOZOGE #4400 csesessceness ssesesese-00C1B0
CCC1AC-CCCOCCEO CCCOCO0Q JCUOUCCLE ICCOOCIHIC ESDOIUDNO 00CN9C17 EGOCO6BC CCOCLLCT *eeoevescosssssseZococssessesnses-CCCLAL
£CC1C0-CCLO00C0 CCCOOUDG OCGOOCCO Q0CCH0OC 000UOCOL COC10CA1 COCCOLCE COUDUOOC Feseecscsnossovnsonsnassosassanse-0C0CICE
CCCIEC 1C OONLFF SAME AS LAST WORD :

CCCLZ0C#CCCELOCE CLCOCO0D UCU2UCCL 20e9CdlC 0GACL1C2 C3CYUCDT CICEDTCE CSEICICE Ponveessvscsnesensoukld PRCFERTIE-CCCZCC
CLC220-£2404040 4T40404d 40404040 4040440 CQCOGOCOC 40404040 4C4CUH UL 4C404TYHE *S cone ~CteCzze
(CC240-40404040 4CH0L0H0 4C4N4CHE 4I454L4C 4C4JOT00 DTFEQOOC C5805610 8C361211 * eseessessesnae=CilZHL
CCC260-C7€EE8E) CCT41288 (78E1483 S8SU3138 4AS10072 S825ICOC 502C317C 18585ASC #esesavscosasesoalrososeaboadoase-CLCIEC
(CC280~316805F8 BT7CCOT00 GCUSUCCC OCCCSLOC 8LCJON4A8 LC{COCLC OCECOLEC LCUCLCCE ?eeeB8avesascvconscevcsnssnsssnveee—CulZBL
CCC2ZAC-CCCOLCLC 1C1CICIC 1C1CICIC 1C1C1CIC 1C101C1C 2C2C2C2C 2C2C2C2C 2C2C2C2C *ovevavavovensnoaossnsnsnsnsoasse-CLLZAL
€CL2C0-2€202C2C 3C3¢3C3C 3C3C3C3C 3C3C3C3C 3C303C3C 4CUCHTHC YCHCUCHT HCHUCHUCHE PasessvavearesnsonesselCCLCCCLLLCC-CLEZCL
CLCZEQ-4C404C4C SCSCECSC 5C5CSCEC BCS5CSCS5C SC505C5C 6CECOHCHT 6COHCOHCHC HCHCOHCHE #CIKCHHAR R4 24A)4 #XXXTINNYINXT-CLCLEC
CGC300-6C6L6CHC 7CT7CTCTC 7CTCTCIC 7CTCICTC TCIBTCIC ECECECBC BC8CBCEC BCBCBCEC #% _XX33d33333a3333 3T ewssnenneses-GLLI0T
{CC320-8CECECBC SCSCSCOC 9C9CICSC 9CICICIC FCILICIC ACACACAC ACACACAC ACACACAC #eovenasssscencasasassoesosssssee-CCCIZE
CCC34C-ACACACAC ECBCRCBC BCBCBCEC BCBCBCBC BCBOBCRBC CCCCCCCC CCCCCCCC CCCCCCCC #*4uanonosnransanscscssnssscscssea-CLLIUC
€CL360-CCCOCCCC CCECOCDC DCOCLCLC DCLCDCNC CCECCCCC ECECECEC ECECECEC ECECECEC #svonsosoccacssnssoccovacsasosase-CLOIEL
CCC360-ECEDECEC FCFCFCFC FCFCFCFC FCFCFCFC FCFOFCFC F224320C 2CCCCCCL 320EFCIT *uecesessncscssvanssslosesevessbo-CCO2BE
CLC3A0-FZ24323F 20C7C0CI0 3211F010 DZ103212 2GOENTFE ECCY6DUC 9ZCC3C17 LIFELCCE #2svonoscaslokoossososn_soonasese-CCCIAL
(CC3CC-SCEDCCCC S825C06I 5C2C217C CICSFU24 FL24C703 1739101C CTC21CCE 1C089CH7 *EesoevsabaedPeleliePaasoePrsasnaa-ClLICC
L0C3E0-0C2805E) CCLL "GOO OCGCT9847 DC28168E 18505502 ECQCU4TTIC 2G2802CC 9CGFECCLY ¥eeeessosacsnscssscassncssskasnne-CLLIEC
€CC400~47F08028 58503198 1AS4UTF4 960F1CIC SBEDCCOC CTFEQSAL DECCFCL2 1C16477C #eCovsbocasolosnssnonacsahalonsss-0CCHIC
CCC42C-AC184SCO AG72C200 1C1SFOL2 47FQEJD6 91UBFUG3 4T71NA02H DSCCIC1S FrC2478L #esseeskoosfoaloaseConsooNoaelone-CCLH2L
CCCu4C-ECCEEBRT CC1041R3 BCOL1PER 43817016 1ABE9110 ENCOLTSEL AQUAUSCL ACT24TFC 3eeseossseascacscssaccasseloeeeel-CLCHUC
{CC460-ACCO92F0 2C8592C3 318C18C1 41CC0L02 SLCO2188 S1L13185 YTECALEE 91103188 #eesCovelesoBosnabovannsoesodease-LLLU6L
CCC48C-47ECAQGE 0A3BUTFU ECJ643B1 JUle41BR NCQ142B1 GO1605GL 1C161C17 CT0CS2C1 *eeedeealosvocovcnscsaeNoosoasnse=CLGUBL
CCC4AC~1C1607FC 45113020 BFICOOCC 70300394 0O00G0G17 COCOOCOC OOCCO3IBE GECIEIC! *.aeassasaveeesassancasssasescnse-CCCUAL
CCL4CC-0CCOCOCr 4S4EQ020 95CS2CC0 478C40L2¢C 41AD3017 96FOAROC SCA100C8 u;ruunlc eoevetsenlones aveneelonbogaef o-CLCKCE

Figure 4-5. RPG Dump Analysis Listing (Part 7 of 9)

sasAjeuy dwung

c¢sv

1 'r3y 0866-dN

COC4E0-BLCHCOA0 C394D203
(CC(500-058047F0 8C148010
(CCs2c-SCEDCOCY C7C83078
(CCS40-B8CE61A93 58A10UDS
CCL56C-318947ED BLO6E911LY
CLCS5EC-12FFuT8C 8CS21AF3
CLUCsa0-0CCOLYAY CCCGOONQ
CLC5CC-141358C0 21CguADl
CCCSEC-SEFIBDCE 1AF30SEF
(LCe0C-4770€1C€ SEFU30RS
fLCe2C-80525522 SC134770
CLCo40-DIC36NA2 BLAMTFU
(CCEEQ-41FFCCON CEEFS5880
CCC680G-FEF25017 320CFDF2
CCCeACL-CTFELSA0 SE€503150
CCC6CG-21065800 310C56CO
CCCeEC-9CF02043 47738014
CCCICC-ACCCL7FE S8AC31S0
CECT20-8CZES251 ZLu89210Q
CCC740-2C464102 CC3IBAOSED
CCC76C-CLCOCT764 58820038

(CC7eC-Cz10E012 3234928y

e
(C(?AC-Q(HU“GFDIQ[QSEIDZ

(CC7CC-[uCudu040 QCLOUUOU

CCC7EC-CCCOCUCT C3CucCecy
(ccedu-cceec12e2 €2CcaC798
(LCs820-0CCO00CT CCCOCLCO
CCCaun-4C40u040 C1C2C340

(Clee0-4Cu0COCO CCCOOUOD

1C044C1A 4SFEQU32 BCO4016C 41#3U06% SCALIOLCE 47FOENGE
QouooC0d 00CO03B8 CCCOOOCC CC2e181C S8OC315C SC1OCCCE
3C7847F0 BOBASBCC 31084AC1 00€2582C CLCCS5C2C 217C589C
96FCACLO 41FC3U85 19AF4770 80€£S0CC 31B892C1 31BE91C1
31684 7EC BUGEDA3E SeRAC3URS 4As08012 SClACCCL 58F1CrRCC
SECJIITUCO S8ACOlB4 1AA3NSEF EBECJCOU S8CCLLCE CTIFEPCIE
UCd00CChO FuFUFUFL FUFUFUFO FOFCFCFC OLCCCCCC S81CBCSE
JCCHLESD SBFUBLIA 1AF3NSEF $2CNICOE 95AAICIC 477060E4
4TIFCE1L2 58FL211C CSEFSIIG ST1E47EC 21CZ58FL SCLULZFF
S8A03GE8 47708120 S8AJ3LE8 4ArOBC1Zz 1BEESCEA LCLCYTFC
81564111 CUJW92FL 1C0Q1S58FU 8UA212FF 478C8146 SCFOBCSE
8C3AGEFC 20150208 30788CAA 47F08MN9Z SCBLCL14 SAFNICEC
JC1447F0 8u2COL3C CS8USE9L 31:060DE S164TT73Z 9CLC9CLT
9C17320F F83C323C 9U1T7940F 32300210 3234321z SBCE91en
SCCE?1esd 98CES164 GISOILFF LTFESEAC 31S5C9CCE ArC.CS8:cC
3CFC58BC 20E4D€d? 3C0C300C w7EBS68C 318E94TF 318BL58C
92272047 92022046 41020036 (SED920C 2C4BGZCC ZC4CseCE
9CCEACEO 58203108 Se0031CC S5B8CO3TFC 0S8C9SFL 3C17477r
2C4AS 852 033B924¢ S00JC226 S0C1900C 589C0CC0 USE992C<C
JS8C4TFG 8CLe96eFC 8Cl1SeCE ACCOUTFE 98CEACCC CTFELCCC
F2538CCY 32309100 ECCS4710 S01696F L BUC9FE2Z 37301223C
(ADD2) h N
L 32353234 QIFEJCDO0 o2CQLOCC [MLUCF3FS FLUCHTHC
Cl044CC7 COD6CTCS CSE3CHCS £26N404C 4LuCULUL 4040404 C
JuQ08Ces CCOLCLOC CCOCOLOC CCcOgeCs CI1CCC7EE CCocccec
03CS4 040 80001650 OCGJ015SA LOCOO08FC Cll1eCLCC 19FFFFDC
GCO0UC2E 0U2CH10 82083204 00zCUCuC COCCC758 SCubwLClC
gCocdcce 002¢0430 CClusuuu 4OuOFOFC FOFLFZFE 4C040404C
EIDYEUC3 D2C9DSCT 4CC3D64B 4C4C4C4L 4L4(4CUC 4CuCHl4C
oco08Ces8 COCOOLAC 0GODOOUOC COCOOBA4 CZCCCB8E cCuOLOceC

BossvseMene osocoses_coenbosseloo-CCCUEC

#eoeCoccverecssooncccncsneselloee-000500
#LocePostoMelosncaelAocosecbaeios-COLE2C
Peensneeealovelocsnncedbonealonee-CCLEHUL
$aveeede000s00’s00reelosnbonealas-CLLELC
$osassrelosesesesaccenssvcenansae-COCEBL
*eoeveveerenelCLCUCLCUCUGaeansves-CCLEAL
#eseoseloceorelenelavnenannsnnssee-CCLECT

L I A R I I g S o A

$e00solonccssesasorselocesebonssl-0CLECC

“#eseasasconessesloealonssensetlos-CLLEZL

#PeeevsceloceloeKeatinoaloobonaelae-CLLENUC
¥oeeessvsessloncoccceeblonesPoanee-rrlLeet
#ElcoeseZanorfossavencshesceansaas-QLLEBL
Paoeessefssansesscosncnsesloneeee-CCLEAC
PeseacrcsevsscelUococcecorens™aaea=CLLECC
Belesosesesosvssvsssosavecsaseelee=OCLECEL
Fosaesorfvoescosvernsesessceloned=CLLITC
Paoesecnrsslveene veKooosorvaneseZoo=CCLT2C
®ooececssecaloreloveccscnccncsnee-CUNI4C

PoesesneslesecsoversseveDonenaeee-CCCTEC

*Kooovoss oeMoossnsesnsees 8°C -ncciec
* 7 uKLM PRCPERTIES -CCCIAC
* esesrvesscenanrsssrvsescses=CLLTCC

#oeeslCFILE coebesalesaCossnnees-CLLIEL

$ocesesenevsnnescassovnnsnrssnsee-LLLECC

Poscvessersccscneas uocrae ~CCCEZ(
* ABC TRLCKING CCe -0cCesc
* cesesvecesssssscsvssnsnsnsnses-CLLESLL

Figure 4-5. RPG Dump Analysis Listing (Part 8 of 9)

sasAjeuy dwng

1 'A%y 0866-dN

€6y

cocesgc-0CCc00400
CCC8AD-CCcQgF 96

(ccsco-gecoo0co

E7C9C6C9 D3C54040_BONULS1I
(8)10RB CURRENT RECORD ADDRESS

0Q0udFac

QOC104FC Fe2CCCLC

12FFFFDC

[C(GEL-[D(ECCDCU

€CC92C-0CCNCR32
€CC926-5CCIGE6S
CCLS4U-1£405101
tcesec-scz0401e
ccrsec-4cLsceso
CLC9AD-SETQTNED
[CCSCa-5€707050
CCCSEU-C2C13161
CCCADO-47FCTCET
fceaz2c-cecacace
CCCA4C-0CC0E832
CCea6C-creecacl
CCLABL-21C34780
CCLAAC-5C1031828
CCCACL-47€CFO32
fCCAEC-DAIRESEC
CCC500-316A47ED
(C€82C-8CL0LACD
teeeuc-cLeocceo
(CeBeC-cLCOCoLo
CLCBEU-CCS35180
CCCBAC-CICI4LLE
CCCBCC-041112GC
CCCBEQ-1CCACL9F

CCCCOC-47FCCLIT2

C1€C0832 0COCJIC2Q DO2cu40C 84942004 ¢02CACUS CuCLCe2z gtuccoce
uzscuooalazboa7sa|ootocouc 0C2000C1 COCIUCFF FFFEFFLL GCLOCCIL
CCCCCU00 OCTCUTCE NGIGNFAC CCOUNJOG JCCOODOC|C3CaCeCy C2C5404L
CCCOO000 OC37uCetl 7J00272FF FFFFFFOO0 JOCN0OS11 102CCCCC cCuocece
CCOUCE48 CCCOICCE 25CCILIC CTC9CECY L3ICS404C CSFLSC4Z FCEALBTF
4194710 7CBE9180 401647E3 70269182 4CC(E478C TLZESEFL 2CBYUCSEF
4T7G756A 9SCCUCCE 477CT7L6A SESUMLNU SSCOUCOE 477C7CSC 1BSS43SC
4zSG7053 92409CCC £2C0Su1 9SCGOJWTFO 77€hlely S8FL3114 3SEFSSTC
56C0315U 41DDU11C 41CCTUEA ELCOOLEY SEICWC2C 587C4CZ4 CSETCETC
47FQTC9J 1BFF12FF 478Q7UCA 92FJU3385 S1)N401é 471C7CEZ SCFOTCEE
7CE6C23T 31837CE9 98427 EA 91013185 47EIFOCL CA3ES6EC 31BCLIFE
918Cu016 4TECTCEC SSCCUCOE 4TTQUTLEC S8FO30BY CSEFSEHZ TCEALTFE
CCCGIU0u uLUc2CCO CoCeciLnNg CCoOJube SCCOuUS0Z CCCCCECE CCGOLRIC
CCCUCT64U GLUTJIE2C 30lCO5F2 SCCONSIA JCCNGECE CCTUCuA4 CCGICSCE
CLCO0UOL uSFOSPZC 315092F0 3C855610 21(45C1C 21384E1C FCBESSCS
FCI2C201 318€1CC2Z 95072112 478CFUS2 S5CB2132 478LFQES 411021CC
S2FJ318u 91033189 4TTGFCAC 91087184 4710FCSC 4IFCFLAC slpCrcee
S2E7318U 91033189 477UFUGE 91083184 471MNFCYC S5LILZ1C4 9ECFZ1ILE
SE1UEUNS8 4IFIECCC 2cO0NI06 DANF92E9 31EJ51U2 31894770 FCACILICE
FCACS581s 31AUSCIC 21045604 318447FL FOPEJA3E S51LFLBE 4TFOFOBA
CACF4CB8 CCL6uCCC 2000JLOC CCOUGLCIu CLIBGICLC Crlceeer teocitct
CCCGCODY JCUSUNCT 03000CIC NCNJIGDU ONESGCAC CLLicCee ccocorce
rCCUCAQ3 GA11581C 3150413C 0CO1412U GOCBY4LET 3LSEYLFU OCFO42CC
1UDC4T780 DCS5E42F2 ELCTBYNC CCO14620 COUELTFL COTCHCCE COOLSH40CL
E4E3CTEH E342023CS 1BAON73C 4110123C 5610UDC8C STFCCC9C accoLCCl
47BUCO9A JAL1CDSCH4 1GCCOLSA 477JD0AE S6L1318S C2CICIEC C2BRCELS
477CCLBC 9UFE31€S DSCTI1CCT C1AS477g COLD9602 3189C2C1 C1BCL2B8
5084U318C 41BODIBE SUBL2174 1BOGSEFG 3CALUSEF S1C821EC 4710C2FC

$40esPRFILE wesessssoselboseosee-000ESE
Y T 11
T T L T
:iORBFln-LENAME -CCCEEC
P 1 TR 1T
FeeeaveseesneeneePPFILE aCaeCos”-0CCSZL
B4 vr eevesen vaeesns evevseleree-COCSHE
O S T T L 114
* eefubeer seKevossolossaslonnooa-CLESEL
Aessseselonsssanrbocers eoe saXaa-QUCSAL
¥oereelooenennsurelosne sooerbloh-CulSCC
FKseushKoaneZoanvonnenslonesesees=CLESEL

Heleuee venenes enneeaflesnrsaesas-CCOACC

Fuiernesenseannesernebacnsoabaoae-CLORRL
FerreeeeeassbaslhenansaHsoerenek=CCCANC
L T 1 PR RTY TPy S of Y 14
*eeeeloKooasasosonslononossbonsss=CLOABL
A e o L T 1
I O T T o S T S L [1
%ecevsceeelossnraesslosenseonCaon=CGLREC
#oeooloseeabasescenalGoasasloslCo-CLCECE
ferseesCecansaassassansonsronssne-CUNERL
1 14 114
Baereeenseassefonarsnassonceloloe-CLLESL
BieasensesieZesnsessestelad FCR A-CUCESC
$LL OUTPLT Llasesesssnsseeloa ooo-CCOEAL
FaresesesseNesecseessseseKedoKaho=CLLECE
BeadseessssasNonsudonsesssoekedoKo-CCCEEL

*#oCUebocesadiebooreoelosnectassake-CLCCOC

Figure 4-5. RPG Dump Analysis Listing (Part 9 of 9)

sasAjeuy dung

Appendix A
Program Exceptions

Table A-1. Program Exceptions

Interrupt Interrupt Cause

Code

01 Operation exception: An illegal operation has been attempted or an operation using a
noninstalled processor feature has been attempted.

02 Privileged operation exception: A privileged operation has been attempted by a program
operating in the problem mode (PS, bit 14 of current PSW, set to 1).

03 Execution exception: The subject instruction of an execute instruction is an execute
instruction.

04 Protection exception: A storage protection violation occurs on a program-generated
address when the storage protect feature is installed.

05 Address exception: A main storage location outside the range of the installed main
storage is referenced by a program-specified address. For the load-control-storage (LCS)
instruction only, the referenced control storage location is nonexistent.

06 Specification exception:

® The unit of information referenced is not on an appropriate boundary.
* Aninvalid modifier field is specified in the service timer register (STR) instruction.

. The " field of an instruction that uses an even/odd pair of registers (64-bit operand)
does not specify an even register.

. A floating-point register other than 0, 2, 4, or 6 is specified.
® A muitiplier or divisor in decimal arithmetic exceeds 15 digits and sign.

® The first operand field is shorter than, or equal in length to, the second operand in
decimal, multiply, and divide instructions.

UP-9980 Rev. 1

continued

Al

Program Exceptions

Table A-1. Program Exceptions (cont.)

Interrupt Interrupt Cause
Code
06 (cont.) ® The four low-order address bits specified by the contents of Iy comprise a set

storage key (SSK) or insert storage key (ISK) instruction and are not equal to 0.

® The function specified by the I2 field of a diagnose instruction was not loaded in the
transient area of control storage.

® A SOFTSCOPE instruction (SSFS or SSRS) was issued without the supporting
microcode loaded in the control storage transient area.

07 Data exception:

4 An invalid sign or digit code is detected in decimal operands.
4 Fields in decimal arithmetic overlap incorrectly.

4 The first operand of the multiply decimal instruction does not have sufficient number
of high-order 0 digits.

08 Fixed-point overflow exception: A fixed-point add or subtract operation exceeds the
capacity of the first operand field. This interrupt is masked by b, bit 36 of the current PSW.

09 Fixed-point divide exception: The quotient of a fixed-point divide operation exceeds the
capacity of the first operand (including division by 0), or the result of a convert-to-binary
instruction exceeds 31 bits.

OA Decimal overflow exception: The result of an add decimal, subtract decimal, or
zero-and-add instruction exceeds the capacity of the first operand location. This interrupt is
masked by d, bit 37 of the current PSW.

0B Decimal divide exception: The quotient of a divide decimal (DP) instruction exceeds the
capacity of the quotient part of the first operand field.

oC Exponent overflow exception: The final characteristic resuiting from a floating-point
arithmetic operation exceeds 127.

0D Exponent underflow exception: The final characteristic resulting from a floating-point
arithmetic operation is less than Q. This interrupt is masked by e, bit 38 of the current
PSW.

OE Significance exception: The final fraction resulting from a floating-point addition or

subtraction is equal to 0. This interrupt is masked by s, bit 39 of the current PSW.

OF Floating-point divide exception: The divisor fraction in a floating-point divide operation is
equal to 0.

A2 UP-9980 Rev. 1

® Appendix B
SYSDUMP File Allocation

This appendix contains information about $Y§DUMP file allocation.

Table B-1 shows the number of cylinders required, depending on your system’s main
storage capacity and the type of disk device you are using.

For example, a system with 8MB main storage requires 53 cylinders for the
SYSDUMP file on an 8433 disk drive.

Table B-1. $YSDUMP File Size in Cylinders

Disk Type

Storage
Capacity 8416 8417 8418 8419 8430 8433 8470 8494
(MB)

. Cylinders Required for Use
1 15 5 15 12 8 7 2 3
1.5 22 8 22 18 11 10 2 4
2 30 10 30 24 15 14 3 5
2.5 37 13 37 30 18 17 4 6
3 44 15 44 36 22 20 4 7
3.5 52 18 52 41 26 23 5 8
4 59 20 59 47 29 27 6 9
5 74 25 74 59 36 33 7 1"
6 88 30 88 71 44 40 8 13
7 103 35 103 82 51 46 19 15
8 118 40 118 94 58 53 " 17

UP-9980 Rev. 1 B-1

Use the following procedure to expand the size of the DUMP file after an increase in
storage:

1. Use the following JCL to scratch the YDUMP file on SYSRES:

// JOB SCRDUMP

// DVC 20 // LFD PRNTR

// DVC RES // LBL $YSDUMP // LFD SYSDUMP
// SCR SYSDUMP

/&

// FIN

2. Use Table B-1 to determine the number of cylinders required for your system.

3. Use the following JCL to allocate a MIRAM file (labeled YDUMP) and to
execute the SG3OPN load module:

// JOB ALLOCATE

// DVC 20 // LFD PRNTR

// DVC RES

// EXT MI,C,1,CYL,xx (where xx is the number of cylinders)
// LBL $YSDUMP // LFD SYSDUMP

// EXEC SGS$OPN

// PARAM SYSDUMP, 108

/&

// FIN

You now have sufficient contiguous free space to store a dump of your system’s main
storage.

B-2 UP-9980 Rev. 1

| unisys

. | USER COMMENTS

‘ We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

‘ {Document Title)

{Document No.) {Revision No.) {Update Level)

Comments:

From:

(Name of User)

‘ {Business Address)

[Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A)
Thank you for your cooperation

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation

E/MSG Product information Development
PO Box 500 — E5-114

Blue Bell, PA 19422-9990

|| | | " NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Il

I
|
I
I
I
|
I
I
I
I
I
I
|
|
I
I
I
|
I
I
I
|

