Integrated Communications Access Method (ICAM)

Communications Physical
Interface (CPI)

Environment: System 80

L\ v

UpP-97486

This document contains the latest information available at the time of

preparation. Therefore, it may contain descriptions of functions not
implemented at manual distribution time. To ensure that you have the
latest information regarding levels of implementation and {functional
availability, piease consult the appropriate release documentation of
contact your local Sperry representative.

Sperry reserves the right to modiy or revise the content of this
document. No contractual obligation by Sperry regarding level, scope, or
timing of functional implementation is either expressed or implied in this
document. 1t is further understood that in consideration of the recemt or
purchase of this document, the recipient or purchaser agrees not to
reproduce or copy it by any means whatsoever, nor to permit such action
by others, for any purpose without prior written permission from Sperry.

FASTRAND, +SPERRY, SPERRY, SPERRY+UNNAC. SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNNAC, and o= are registered trademarks of the
Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXE, SPERRYUNK
and UNIS are additional trademarks of the Sperry Corporation.

£ 1983 — SPERRY CORPORATION PRINTED IN _.S.A.

UP-9746 ‘ SPERRY 0S/3 PSS 1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

PAGE STATUS SUMMARY

ISSUE: UP-89746
RELEASE LEVEL: 8.2 Forward

Part/Section Page Update Part/Section Page Update Part/Section Page Update
Number Level Number Leve! Number Level
Cover/Disciaimer
PSS 1
Preface 1thru 4
Contems 1thru 4
1 1 thru 23
2 ‘4 1 thry 27
3 1 thru 12
4 1 thru 22
5 1t 16
Appendix A 1 thru 25
Index 1thry 5

User Comment

. Snoq;w

All the technical changes are denoted by an arrow (==} :~ the margin. A downward pointing arrow (.) next to a line indicates thar
techrucal changes begin 81 this line and continue unul &7 vowars pomnting arrow (1) is found. A horizon:z araw (we) pointing to 8 ine
ingicates a technical change in only that line. A horizontal amow located between two consecutive lines ing.za:es 1echmeal changes in both
lines or deletions.

UP-9746 SPERRY QS/3 Preface 1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Preface

This manual is one of a series that describes the purpose and use of the SPERRY
Operating System/3 (0S/3) Integrated Communications Access Method (ICAM). It
specifically describes the communications physical interface and how it is used to write
user programs at the physical level. This manual is intended for the applications
programmer experienced in data communications and assembler programming.

The physical interface requires the least amount of main storage; but, it also provides a
minimum amount of support. To use this interface, you must have considerable
knowledge of data communications, because your program must initialize the hardware,
format all output messages using the appropriate protocol, perform any vequired

. translations, acknowledge and process all input messages, and perform all error
_detection and recovery procedures. In addition, the communications portion of your

program must be written in basic assembly language, and your system must inciude the -
0S/3 assembler.

The information contained in this manual is presented as follows:

" 'm Section 1. Basic Concepts

Describes the overall concepts and procedures in writing a user program that uses
the physical interface of ICAM. Introduces the control packet (table) format
(CPIOCP) and imperative macroinstruction (CCRCALL) necessary to interface your
program with ICAM software. Also discusses how to generate an ICAM network
for a communications physical interface and how to load it.

s Section 2. Writing a User Program
Describes how to request the network and lines, initialize the single line
communications adapter (SLCA), perform the transmit/receive functions, and
release the lines and network.

m Section 3. Additional User Program Features
Discusses additional useful functions available via the physical interface, such as

reading the SLCA words and tebles, reading the line link table, chaining, and
automatic commands.

A%

UP-87486 * SPERRY 0S/3 Preface 2

ICAN. COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Section 4. Single Line Communications Adapter Subsystem

Describes the singie line communicazions adapter hardware subsystem and the
software procedures necessary to initialize it. The description includes construction
of the port control words, character detect tables, and character interpretation tabie
required to support the communications lines and line disciplines necessary for
remote devices.

Section 5. SLCA Tabie Initialization

Describes the initialization parameters for an SLCA pertinent to specific SPERRY
remote device handlers. This inciudes the control character detect tables, control

character interpretation tables, and port control words for terminals supported by .
SPERRY software.

Appendix A. Control Tabies
Describes the control packet and line link table used to present the required

information to the system software. The tables are described via the dummy
control section (DSECT) labels for the necessary fields and field settings.

As one of a series, this manual is designed to guide you in programming and using the
0S/3 integrated communications access method. Depending on your need, you may
wish to refer to the current version of one of the other ICAM manuals. Complete manual
names, their ordering numbers, and a general description of their contents and use is as

follows:

Integrated Communications Access Method (ICAM) Concepts and Facilities,
UP-9744

Provides an overview of the facilities offered by ICAM including the hardware

. supported, the types of programs supported (assembler, CQBOL, .and ‘RPG i), and

the services provided (polling, queueing, buffering, etc).
ICAM Network Definition and Operations User Guide, UP-9745

Describes how to define an ICAM network, submit it to the system generation
procedure, and load and operate the resulting ICAM symbiont. Many sample
network definitions are provided to make it easier to define your ICAM network. In
addition, most of the required operational functions are described. These functions
include loading ICAM, establishing a dynamic session from a terminal,
communicating with ICAM, etc.

ICAM Standard MCP (STDMCP) Interfaze User Guide, UP-8550

The standard interface is a logical interface that provides a general communications
capability with message queueing and 3 message processing capability. '

This user guide provides all of the macroinstructions, programming requirements,
and terminal information you need to interface with the standard interface.

UP-9746 SPERRY 0S/3 Preface 3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)

You \;vill need this user guide only if you are writing your own communications
program. Programs that use the standard interface directly must be coded in basic
assembly language (BAL), and your system must include the OS/3 assembler.

m- |CAM Direct Data Interface (DDIl) User Guide, UP-8549

The DD interface commonly supports ICAM utility programs and programs written
in the RPG Il language. If you are using an ICAM utility only, or if your program is
written in RPG I, you won't need this user guide because the utility programs and
the RPG Il compiler automatically convert any requests by your program to the
proper instructions needed to work with this interface.

The DDI interface also enables you to write your own specialized communications
program to work with it. If you do this, you must take care of your own message
buffering and queueing. If you write a program to interface directly with direct data
interface, it must be written in basic assembly language.

s ICAM Utilities User Guide, UP-9748
Describes the utilities provided by ICAM. These utilities:

- Enable your processor to emulate a SPERRY 1004 Card Processor System,
SPERRY DCT 2000 terminal, or IBM 2780 terminal

- Provide a facility to enable you to submit batch jobs from a remote terminal
— Provide the capability to produce printed reports from journal files
- Supply the software to create a module that converts communications requests
in your COBOL program to instructions recognizable by the ICAM standard
interface I ' '

— Describe how to run RPG Il under ICAM as & utility
- Describe how to dump and list the contents of an SLCA
— Help locate the cause of operational problems

m ICAM Message Processing Procedure Specification (MPPS) User Guide, UP-8946
MPPS enables you to write message processing routines and include them in your
ICAM network. This makes it possible for ICAM to analyze and process input
messages before they are made available to your program, including the
establishment of priority based on message content. Message processing routines
can also be used to process output messages, including rerouting, if necessary, due
to hardware and software error conditions.
You do not need to include message processing routines in your network - they

are totally optional; hence your need for this user guide depends on your
requirements.

b

UP-§746 SPERRY 0S/3 Preface 4

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

ICAM Programmer Reference, UP-9749

This reference summarizes the information found in the other ICAM manuals. No
introductory information or examples are given; however, it is a useful document
when you are familiar with ICAM and you need a quick reference to
macroinstructions, formats, and tables.

NTR Utility User Guide, UP-9502

Describes how the System 80 can operate as a remote job entry/batch terminal to
a SPERRY Series 1100 System via ICAM.

The utility permits operation of reader, punch, and printer device-dependent files. it
also supports user-own-code tasks to process device-independent files (e.g., tape,
disk, paper tape).

Remote Terminal Processor (RTP) User Guide, UP-8990

The remote terminal processor is a data communications program that permits your
SPERRY System 80 processor to function as a remote job entry terminai to one or
more IBM host processors. Using the SPERRY OS/3 integrated communications

‘access method (ICAM) software, the remote terminal processor enables you to:

- send jobs to an IBM host;
- transmit and receive files on tape, punched cards, or diskette;
- send messages to the central site; and

~ receive output data and console messages from the IBM host.

'Remote terminal processor operations are directed from the OS/3 system console.

UP-§746 SPERRY 0S/3 Contents 1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl}

Contents
PAGE STATUS SUMMARY -
PREFACE
CONTENTS
‘ 1. BASIC CONCEPTS
- 1.1. GENERAL =1
1.2. GENERAL DESCRIPTION OF THE PHYSICAL INTERFACE =11 .
1.3. TERMINOLOGY USED IN THIS MANUAL j=12
1.4, ‘ PHYSICAL INTERFACE MACROINSTRUCTIONS AND PACKETS . 1-1'2‘
1.5. USE OF DUMMY CONTROL SECTIONS (DSECTS) ' 1=16
1.6. GENERATING ICAM 1-20
1.7. CPi NETWORK DEFINITION , 1=20
1.8. ICAM INITIALIZATION 1-22
1.8.1. Loading an ICAM Symbiont 1-22
1.8.2. Loading Your Program 1-23
2. WRITING A USER PROGRAM
2.1. GENERAL 2=1
’ ‘ 2.2. REQUESTING A NETWORK 2=-7

2.3. REQUESTING ‘A LINE 2-8

- 3.3

UP-8746

SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Contents 2

2.4.

2.4.1.
2.4.2.
2.4.3.
2.4.4.
2.4.5.

2.5.

2.6.

2.7.

2.8

INITIALIZING A LINE

Clear the Line Adapter

Load the Port Control Word

Load the Character Detect Table

Load the Character Interpretation Table
Set the Data Terminal Ready

TRANSMITTING THE DATA

RELEASING THE LINE

RELEASING THE NETWORK

EXAMPLE OF A BASIC USER PROGRAM

3. ADDITIONAL USER PROGRAM FEATURES

3.1.
3.2.
3.2.1.
3.2.2.
3.2.3.

3.4.
3.5.

3.6.

4. SINGLE
a.1.

4.2,

4.2.1.
4.2.2.
4.2.3.

CONTROL PACKET CHAINING

READING THE SLCA WORDS AND TABLES
Reading the Port Control Word

Reading the Character Detect Table
Reading the Character Interpretation Table

CPIOCS TRACE

'READ LINE LINK TABLE

AUTOMATIC COMMANDS

CANCEL CONDITIONS

LINE COMMUNICATIONS ADAPTER SUBSYSTEM

GENERAL

CONSTRUCTING THE SLCA WORDS AND TABLES
How to Construct a Port Control Word

How to Construct a Character Detect Table

How to Construct a Character interpretation Table

5. SLCA TABLE INITIALIZATION

5.1.

5.2.

GENERAL

DCT 500 SERIES/TELETYPE TELETYPEWRITER REMOTE DEVICE HANDLER

5.3. DCT 2000 REMOTE DEVICE HANDLER

5.4,

1004/9200/9300 REMOTE DEVICE HANDLER

2-10 T
e @
2-13

2-14 -

2-16

2-17

2-18

2-19

2-20

2-21 —

3-6
3-7
3-8
3-9

3-10

3-11

3-12

4-3
4-3
4-11
4-17 \

UP-9746 SPERRY QS/3 Contents 3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

-

. 5.5. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 REMOTE
DEVICE HANDLER 5-7
5.6. BSC REMOTE DEVICE HANDLER : 5-9
5.7. AUTOMATIC DIALING 5-14
APPENDIXES

A. CONTROL TABLES
A.1. COMMUNICATIONS CONTROL PACKET A-1

A.2. LINE LINK TABLE A=-22

USER COMMENT SHEET

FIGURES
1=1. Common Structure for Data Communications Software 1=-2
Ci 1-2. Typical Example of Line Protocol : 1=3
> 1-3. Typical Communications Message Envelopes ’ 1-5
. - 1-4, Typical Communications Message Envelopes with Control Characters 17
1-5. Comparison of Data Management and ICAM Structures 1-14
1-6. Communications Control Packet Basic Format 1-15
2-1. Structure of @ Communications Physical Interface Program 2=2
2-2. Skeleton Program Outline for the Physical Interface 2-5
. 2=3. . Basic User Program Example , 2-23
4-1. System 80 Model 8 with Singie Input/Output Microprocessor S 4=
4-2. Byte 1 of Port Control Word 4-4
4-3. Byte 2 of Port Control Word 45
4-4. Byte 3 of Port Control Word 4-6
4-5. Byte 4 of Port Control Word 4-8
4~8. Character Detect Table 4-~15
4--7. Character interpretation Table 4-20

A-1. Communications Physical Input/Output Control Packet (CPIOCP} Functional
Field Description A-2
A-2. Line Link Table Functionai Field Description A-23

UP-8746 SPERRY 08/3 Contents 4
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY

TABLES
1=1. Control Character Descriptions -5
1-2. Control Codes and Control Code Sequences for a UNISCOPE Visual Display Terminal 1-10
4-1. Singie Line Communications Adapters 4-2
4-2. Asynchronous Line Speeds 4-5
4-3. Parity Functions for Port Control Word Byte 3 4-7
4-4. . High and Low Elapsed Time Ranges 4-9
4-5. CD Table Functions When Preceded by DLE Character 4-12
4-6. CD Table Functions When Not Preceded by DLE Character 4-12
4-7. CD Table Codes Accessing the Cl Table 4-13
4-8. Character Interpretation Table Functions 4-18
5-1. DCT 500 Series/TELETYPE Teletypewriter ASCHl Control Character Detect Table 5-1
5-2. DCT 500 Series/TELETYPE Teletypewriter ASCll Control Character Interpretation Table 5-2
5-3. DCT 500 Series/TELETYPE Teletypewriter Baudot Control Character Detect Table 5-2
5-4, DCT 500 Series/TELETYPE Teletypewriter Baudot Control Character interpretation Table 5-3
5-5. DCT 500 Series/TELETYPE Teletypewriter Port Controi Word 5-3
5-6. DCT 2000 Control Character Detect Table 5-4
5-7. DCT 2000 Control Character iInterpretation Table 5-5
5-8. DCT 2000 Port Control Word 5-5
5-8. 1004/9200/9300 Controi Character Detect Table - DLT-1 and DLT-3 Boards 5-6
5-10. 1004/9200/9300 Control Character Interpretation Table 5-6
5-11. 1004/9200/8300 Port Control Word 5-7

_5-12. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Cor.trol Character

o Detect Table o ' 5-7
5-13. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Control Character

Interpretation Table 5-8

5-14. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Port Control Word 5-9
5-15. BSC ASCIH Nontransparent Control Character Detect Table 5-9 °
5-16. BSC ASCIl Nontransparent Control Character interpretation Table 5-10
5-17. BSC ASCIl Nontransparent Port Control Word 5=-11
5-18. BSC EBCDIC Control Character Detect Table . B=11
5-19. BSC EBCDIC Control Character Interpretation Table 5-12
5-20. BSC EBCDIC Port Control Word 5-12
5-21. BSC Transcode Control Character Detect Table 5-13
5-22. B8SC Transcode Control Character interpretation Table 5-13
5-23. BSC Transcode Port Control Word 5~14
5-24. Dialing Information 5~16
A~1. Control Packet Detailed Field Description A-3
A-2. Standard Processor Hardware Status Byte Settings A-13
A-3. Control Packet Format Error Code Specifications A-14
A-4. Sense Byte Settings for CPIOCP Word 5 A-15
A-5. Cross-Reference of Logical Command Functions and Hardware Command Codes A-16
A-6. Channel and SLCA ID Assignments A-21
A-7. Line Link Table Detaiied Field Descriptions A-24

UP-8746 SPERRY 0S/3 11
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl}

1. Basic Concepts

1.1. GENERAL

Data communications — very simply stated — is the transmission of computer data via
communications lines. These lines may be directly connected from one piece of
equipment to another (dedicated) or they may operate across telephone transmission
switching equipment (switched).

Just as the ordinary telephone converts vibrations (voice) to electrical impulses, an
attachment to the telephone, called a data set, converts data bits to electrical
frequencies. The household telephone uses diaphragms and magnets to. oscillate at

. audio frequencies and superimposes this signal on a carrier wave. The data set uses a
‘modem to modulate or demodulate a data signal and superimposes it on a carrier wave.

Data input/output equipment (I/O devices) may be connected to a communications line
via a data set or they may be directly connected to the line. When these |/O devices
terminate a communications line directly, they contain their own internal modem and are
commonly known as terminals. There are a large number of |/O devices that can be
used as terminals, such as printers, punches, magnetic and paper tapes, disks, and
video display. terminals. The terminals themselves may have additional 1/O equipment
attached, such as tape cassette drives and diskettes. This type of equipment is
designated as an auxiliary device. Out of this diversity of equipment, analysis will show
that there are a number of functions common to all that can be woven together to form
a common structure for data communications software. (See Figure 1-1.) The first of
these functions is a line request. In software terms, this means that we must specify
the kind of line it is that we want. This may include the mode of communication, such
as batch or interactive, the line speed and the line type (switched versus dedicated, half
duplex versus full duplex, automatic versus manual dial, etc).

in the following paragraphs, we use a simple UNISCOPE display terminal protocol to
show how data communications works.

- UP-8746 SPERRY 0S/3 1=2
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

batch/interactive

LINE REQUEST line speed {baud rate of modulation)
line type {switched, dedicated, unattended)
b {half duplex/full duplex)
{automatic/manual dial)
CONNECT/ immediate
MAIN DISCONNECT at 170 time
CONSIDERATIONS
IN OUR ———
USER PROGRAM
NEED
EE POLLING (Any message traffic?) »
i
PROTOCOL {handshaking)
!
?g::i? (transiation, message format,
HANDLING envelope building, network/line conversion)
- SPECIAL {terminal auxiliary devices)
FUNCTIONS :
STATISTICS
RECOVERY {retry /notification)
PROCEDURES
ERROR
HANDLING

Figure 1~1. Common Structure for Data Communications Software

UP-9746 SPERRY 0S/3 1=3
" ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

Once we have requested the specific type of line we require and a connection is made,
we must determine how we can converse with the other end of the line. That is, we
must have set up some common rules and formats that both ends of the line are aware
of and agree on. We must both speak the same language and play the same game.
" Thus, we have line protocol (the rules) and message envelopes (the format). The
protocol (Figure 1-2) determines the sequence or order in which our messages are sent
and received and is commonly known in the trade as handshaking. The message
envelope (Figure 1-3) contains a prefix and suffix to the message transmitted. This
contains basic information about the message, such as what kind of message it is,
where it is going, and what is to be done with it.

STATION 1 l ' STATION 2
| |
| |
TRAFFIC ! |
l +
POLL i | TEXT 1
ACK | !
l i
' 1 TEXT 2
NAK ! |
!
| ' ’ TEXT 2
]
ACK | i
\ L
! | TEXT 3
1
w T
| 1 TEXT 3
ACK | P
] l .
1 A EOT
| |

Figure 1-2. Typical Exampie of Line Protocol

Now that we have formulated a basic set of rules and structure, how do we get our
message or conversation going? Well, in a telephone conversation, when we call
someone, we generally say "‘Hello’”” to find out if anyone is there. The same holds true
for our data conversation — we must first send some kind of message to the effect:

UP-9746 SPERRY 0S/3 1-4
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Is anyone out there?
Does anyone have a message for me?
or
I'm sending a message, is anyone awake?

This type of message is called a poll. It expects some kind of reply or response, such
as an acknowledgment:

Yes, I'm here.

| have a message for you and here it is.
or

I'm awake -~ go ahead.

Normally, you would respond with a “yes, | am’’ by sending text. | would then respond
with an acknowledgment message (ACK) that says: "“Got your first text message -
thank you — please send more.” You would then send your second text message.

Suppose, however, that | did not receive your second text message correctly —

something may have been garbled or did not make sense in the order of things. | would
then return a negative acknowledgment (NAK) and you would transmit the second text
message again. -

Another case might be that you would send me a message and | would not respond. In
this .case, your program would have to time out and retransmit until it received an
acknowledgment. After a certain number of retries and failures, it would disconnect or
send an EOT. - : '

If you sent me all the messages you had or | signed off on my end, an EOT message
~ would perform the disconnect notice.

Now, if I'm going to send a poll message and expect an acknowledgment (ACK) or
some text, what would these messages really look like? Well, let's iook at some
specific formats. (See Figure 1-3 and Table 1-1.) First, if | am in synchronous
operation, my prefix (header) must have at least two synchronous characters (SYNCs),
which are provided by the the single line communications adapter (SLCA).

If I'm in asynchronous operation, | don’t have to send these characters, because the
transmission equipment itself includes a transmission characteristic with each message
transmitted.

uP-9746

SPERRY 0S/3 1-5

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

My header would now have a start-of-header (SOH) character preceding a destination
address that consists of a RID, SID; and DID. A RID specifies a remote installation
identifier, a hexadecimal number representing an installation such as the O'Hare Airport
or the World Trade Center. A SID specifies a particular terminal station identifier, a
hexadecimal number representing a station such as visual display 14. A DID specifies a
hexadecimal device address of a specific auxiliary device that may be connected to a
specific terminal station. This device address may represent a printer, a diskette, a tape

cassette, or other supporting auxiliary devices.

POLL
(TRAFFIC)

ACK ===p-1 SYN ISYN |SYNISYNISOH {RID {DID { DLE | ACK{ETX | BCC

NAK ===~ SYN |SYN | SYN|SYN|[SOH |RID [SID | DID | DLE | NAK] ETX | BCC

et SYN | SYN | SYN| SYN | SOH [RID |SID | ETX | BCC

POLL
(STATUS) e SYN {SYN [SYN|{SYN|SOH|RID |SID | DID |ENQ|ETX | BCC
TEXT—w{ SYN |SYN |SYN| SYN{sOH [RID |10 | Do [s7x{ TEXT (T BCC
Figure 1-3. Typical Communications Message Envelopes
Table 1-1. Control Charscter Description (Part 1 of 2}
ASCIl .
Char.actor Hex. Vaiue Meaning

ACK 31 Acknowledgment - An affirmative reply response used to positively acknowiledge
receipt of a message. Indicates that line conditions and status of message are

BCC - - . Block check character — A character added at the end of a mess'age or transmission
block to facilitate error detection. '

DID 20-7F | Device identifier ~ DID characters specify an auxiliary device. The DID is not a
function of the device type but of the station configuration.

DLE 10 Data link escape -~ A communications control character that will change the meaning
of a limited number of contiguously following characters. it is used exclusively to
provide supplementary controis in data communications networks.

ENQ 0s Enquiry —= A communications controliler character used in data commmunications

: systemns as a request for a response from a remote station. it may be used as a
“Who are you?” (WRU} to obtain identification. or may be used to obtain station
status, or both. (ENQ is the basic character for the status poll.)

EOT 04 End of transmission - A communications control sequence used to indicate the
conclusion of a transmission that may have contained one or more text and any
associated headings. The sequences may also be used to indicate 8 "'no traffic’’ in
response to a poll.

ETX 03 End of text — A communications control character used to terminate a sequence of
characters started with STX or SOH and transmitted as an entity.

M

UP-9746

SPERRY 0S/3 1-6

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)

Tabie 1-1. Control Character Description (Part 2 of 2)

Meaning

Character HeAx_se;lue
NAK 15
RID (20-4F)
siD (50-6F)
SOH 01
STX 02
SYN 16

Negative acknowledgment — A negative reply response used to indicate receipt of a
garbied message. The condition may reflect bad status, block check errors, or line
problems.

Remote identifier — RID characters are used to address a remote station, 2 message
switching center, or a group of terminais. The number of RIDs may vary. A minimum
address must at least contain a RID character.

Station identifier — SID characters specify 8 specific terminal that may be connected
to the communications line by appropriate facilities or via a message switching
center. The number of SID characters in a station address may vary depending on
system requirements.

Start of header — A communications control character sometimes used at the
beginning of a2 sequence of characters that constitutes a machine-sensible address or
routing information. This sequence is referred 1o as the header.

Start of text = A communications control character that precedes a sequence of data
characters that is t0 be treated as an entity. Such a sequence is referred 1o as TEXT.
STX may be used to terminate a sequence of characters (headings) started by SOH.

Synchronous idle — A communications control character used by a synchronous
transmission system 1o provide a signal from which synchronism may be achneved or
retained. . .

The RID, SID, DID address trio shown in Figure 1-3 may also make use of a general
identifier (GID). This GID may be used in place of the RID, SID, or DID. For the RID, a
GID = 2016 is recognized by all remote installations as its RID. For the SID, a GID =
5016 is recognized by all terminals at an installation. For the DID, a GID = 7016 merely

addresses the station wnthout selecting an auxnhary device.

S'um'rhary of GIDs:

Example:

RID SID DID

/ { A

All groups

All terminals in one group

Station only

o —— W wwa G et G Guma game

Destination Station: Device

BLUEBELL U100#2 Printer

UP-8746 SPERRY 0S/3 1-7
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Following the address trio are control characters that determine the type of message
being transmitted. For instance, a poll is the name given to a particular message header
that solicits or requests input. if an end-of-text (ETX) character was encountered
immediately after the address trio, the message is designated as a traffic poll. A traffic
poll is one that simply requests the other terminal’s identification. if an ENQ character
followed by an ETX was encountered, the message would be designated as a status
poll. A status poll is one that requests a response from the terminal. If the message is
not a. poll message, the control character next seen is a data link escape (DLE)
character. This signifies that some type of supplementary control information is coming.
(See Figure 1—-4.) An ACK followed immediately by an ETX signifies that the message
is a positive acknowledgment (ACK). If the message is a negative acknowledgment
(NAK), a NAK character follows the DLE.

If the message is a text message, a start-of-text (STX) control character follows the DID
without a DLE character. This is followed by the text and ends with an end-of-text
(ETX) character (tail). All messages then end with a BCC character, which is a parity
check character used to detect transmission errors.

The message header and the tail together comprise what is known as a message
envelope. It is normally the job of a remote device handler to build this envelope on
transmittals and strip it on reception of messages. In the physical interface, it is the job
of your program. Once this set of rules and regulations has been solidified, the system
is ready to receive data and must now consider how to handle the data coming in and
-going out of the buffer areas.

Example 1 — Sending an auxiliary device command

Carriage Returmn
t

'SYN|{SYN|SYN|SYN|SOH|RID |SID |DID | STX|CR TEXT'ETX BCC

Example 2 - Sending to a UNISCOPE tape cassette auxiliafy device

WRITE SYN|SYN|SYN| SYN {SOH |RID | SID |DID | STX| TEXTIDC2 | ETX|8CC

4

Print (write)®

READ SYN|SYN|SYN|SYN [SOH |{RID | SID |{DID |STX|DC2} ETX | BCC

4

Print (read)®

*The DID determines interpretation as either a readg-head or write-head command.

Figure 1—4. Typical Communications Message Envelopes with Control Characters {Part 1 of 2)

UP-9746

SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)

1-8

Example‘3 - Sending to a8 UNISCOPE terminal

(Format)
SYN|SYN|SYN|SYN| SOH|{RID |siD |DID | STX|ESC|VT | 00 | 0O
UNISCOPE Commands

st [TEXT] ETX | BCC

{Machine Language)

16 |16 {16 |16 |01 |23 |s5 |70 |02 |1B |0B | 25 | 29

General DID Line 6 Row {0 .

ofF |TexT| 03 | BCC

Figure 1-4. Typical Cornmunications Message Envelopes with Control Characters (Part 2 of 2)

In Figure 1-4, example 3 shows a typical message envelope for a UNISCOPE visual
display terminal. Following it is a hexadecimal machine language representation of the
“~ format. The hexadecimal code equivalents are obtained from Figure 1-3 and Tables 1-1

-and 1-20. The following exampie is typical of what your assembler source code must

do to construct this message envelope:

UP-9746 SPERRY 0S/3 1-9
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))

BEGIN START 8

BAL 12, UWRITEL Set up message

TRMADR]! DC X:235576888° Destination termina! address
BAL 12,SEND Go to send routine
B FINISH

UWRITEl=MVi- OTBF,1l
~MVC OTBF+1(3),TRAMADRI

Mve OORD+3(2).MARGIN!
MVC— | OTBF+4(6).COORD
MVCe OTBF+10(5).TEXT
nve OTBF+15(1).ETX

RETURN B 8(12)

FINISH EOJ
DS BF

OTBF DS CL1D26

MARGIN1]{ DC X*2529° ‘!

—
COORD DC X'821BPBOOOORF’

EXT oc | x'e3’ ' , : 1 R
- TEXT De C HELLD" :
END

\ A P i . - - Y - A/
6123|5579 | 82| 1B | 8B |25 | 29| BF | 4B | 45 | 4C | 4C | 4F | 83
SOH STX ESC VvT - 81 H E L L 0 ETX

As you can see, in the example we chose a particular installation and station with no
auxiliary device addressed (235570). This was placed into our output buffer following
the start of headers. Text was introduced by the start of text character (STX=02).
Then we set the display terminal screen coordinates in front of our text. This control
message is a cursor positioning code sequence but could just as well have been any
display terminal function listed in Table 1-2. The cursor control code sequence was
terminated with the shift in (SI=0F) character, followed by the text. Following the text,
we terminated the message with an end of text. Finally, we would branch to our send
routine to transmit the message. '

This is the typical kind of communications message for a display terminal that would be
transmitted across a physical interface via software. The protocol and format
comprising this message is known as the remote device handler discipline or the line
discipline. This line discipline will vary for each device. It is the objective of ensuing
sections to describe how this line discipline is constructed at machine level by a user
program and how it interfaces with OS/3 at this physical level.

UP-9746

SPERRY 0OS5/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

-

Table 1=2. Control Codes and Control Code Sequences for a UNISCOPE Visual Display Terminal (Part 1 of 2)

Function Code to Terminal Code From Terminal Henggtlmal He;;‘;;:cm"
Cursor positioning ESC VT Y X 8I - 1BOBYXOF 270B0O0000F
SOE positioning - ESC VT Y X NUL SI 1BOBYXOOOF
Cursor return (new line) CR CR ob oD
Erase to end of dispiay ESC & - 1861 2781
Erase to end of line ESCb - 1862 2782
Delete in line ESCc - 1863 2783
Delete in display ESC C - 1B43 27C3
Insert in line ESC d - 1864 2784
insert in display ESCD - 1844 27¢c4
Scan left ESCg - 1867 2787
Scan right ESC h - 1B68 2788
Scan down ESC i - 1869 2789
Scan up ESC f - 1866 2786
Character erase {(space) SP SP 20 40
Tab HT - o8 05
Tab.stop set ESC HT' - 1B0S 2705
~Tab stop - v HT - -
Message waiting BEL‘ ’ - 07 2F
Cursor to home ESC e - 1865 2785
insert line ESC j - 1B6A 2791
Delete line ESC k - 1B6B 2792
érase field ESC K - 1848 27D2
Erase display ESC M - 184D 27D4
Request processor message | - BEL 07 2F
Start blink marker FS FS 1C 1c
End blink marker GS Gs 1D 1D
Lock keyboard DC4 or ESC DC4 - 14 3C
Print DC2 - 12 12
Print transparent ESC DC2 - 1812 2712

UP-9746 SPERRY 0S/3 1-11
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Tabie 1-2. Control Codes and Control Code Sequences for a UNISCOPE Visual Display Terminal (Part 2 of 2)

Function Code to Terminal Code From Terminal Hex:gecc;lmal H”E"B‘:;gg"
-
Start of entry {SOE) RS RS 1E 1E
Shift in (note 6) Sl - OF OF
Shift out S0 - OE OE
Line feed LF LF 0A 25
Form feed FF FF oc oc
Transmit (unprotected) DC1 - 11 11
Transmit display ESC DC1 - 1811 2711

1.2. GENERAL DESCRIPTION OF THE PHYSICAL INTERFACE

An interface is basically defined as an interconnecting link between two systems. In
data processing, this link may be either hardware or software. A physical interface is
commonly considered to mean the link between the hardware (machine} and software
(programming). It is often referred to as machine-level programming, since it has direct

‘§ccess to the hardware. In the mtegrated communications access method (ICAM), the

communications physical interface (CPl) is the fundamental link between the single line
communications adapter hardware and 0S/3 communications software. This physical
interface in ICAM is primarily intended to allow experienced programmers to write a
user program at the physical level. In most instances it is used only when it is
necessary to control a device or terminal that is not supported by current ICAM
software. :

The physical interface is a logical and physical packet-driven interface that gives you
access to every command and status capability of the single line communications
adapter (SLCA) hardware subsystem. The SLCA provides the hardware interface to a
single communications line. The information necessary to control these communications
lines is initially loaded into the SLCA. At the physical interface level, you must load this
information via your user program.

In the basic System 80 Modeis 3-6, up to two SLCAs are supported. With a single
input/output microprocessor attached, Models 3-6 support one to eight SLCAs and
Model 8 supports up to 14 SLCAs. With a dual input/output microprocessor attached,
Model 8 supports up to 28 SLCAs.

The physical interface is the lowest level of ICAM support. In essence, it merely
provides activity scheduling within OS/3. It takes up the least amount of storage but
also provides the least amount of services. Thus, the bulk of the work is left to you. In
this interface, you must perform all the necessary initialization of the hardware. You
must request and release the network and lines to be used, provide the device and line
discipline, process the data, and perform all error detection and recovery procedures.

UP-8746 SPERRY 0S/3 1-12
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

ICAM merely provides you with a formatted table and the necessary macroinstructions
to schedule your communications task. In addition, you must construct the tables
(packets) within your user program and supply the proper parameters in the proper
sequences. Your user-own-code program is then submitted as a normal user job via a
job control stream.

If you need to write a program at this level, you should be thoroughly knowledgeable of
assembler language programming and data communications generally, and single line
communications adapter hardware specifically. It is strongly recommended that you
become familiar with current versions of the following Sperry manuails:

® integrated communications access method (ICAM) concepts and facilities, UP-9744
m interfacing a remote device handier programmer reference, UP-8424
B input/output microprocessor programmer reference, UP-8909

The physical interface actually has the dual role of servicing physical-level user programs
and linking higher-level user programs via remote device handiers. This manual is
primarily written for the physical-level user program; however, it does contain a great
deal of information concerning remote device handlers, since the two are so closely
related.

1.3. TERMINOLOGY USED IN THIS MANUAL

To retain a link with former versions of this manual, yet simplify terminology, you can
also refer to the CPl as the physical interface. The communications physical input/output
control packet (CPIOCP) is also called the control packet. The communications control
routine user program is, simply, the user program (your program).

1.4. PHYSICAL INTERFACE MACROINSTRUCTIONS AND PACKETS

If you are familiar with data management or the use of macroinstructions, you probably
have some understanding of the relationship between imperative and declarative
macroinstructions. '

The imperative macroinstruction causes the generation of executable code sequences in
the user program. These code sequences are the link between your user program and
the input/output portions of the supervisor (in our sphere of interest, the extension of
the supervisor known as ICAM). The imperative macroinstructions are used to request
services of the supervisor and direct operations of the user program. Operands used
with the imperative macroinstruction point to the file described by a declarative
macroinstruction and specify the processing action to be taken.

N\
}
J

UP-8746 SPERRY 08/3 ‘ 1-13
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

Access to the physical interface is supported by ICAM solely via the imperative
macroinstruction CCRCALL, which defines entry to the physical interface through the
communications control routines and identifies the associated control packet. This
macroinstruction identifies a control packet that must be aligned on a full-word
boundary. (The CYIELD and CAWAKE macroinstructions are available to the physical
interface user to release or activate the communications task.) Before execution of the
instructions generated by a CCRCALL, the referenced control packet fields must have
been set according to Appendix A.

Format:
LABEL | AOPERATIONA | OPERAND
{symbol] CCRCALL I {CPIOCP-label}[,IRL=N0]
& P)
Label:
symbol

An alphanumeric character string up to eight characters long uniquely
identifying this instruction.

Parameters:

e

CPIOCP-lLabel
identifies the symbolic name of the control packet.

o ‘
Indicates that the address of the control packet to be accessed is contained in
register 1. The high-order byte of the register must be zero (X'00°).

IRL=NO s ‘ ;

May be used by the remote device handler to indicate that the control packet
does not request immediate return line (IRL) of control following execution of
the instructions generated by the macroinstruction.

NOTE:

The CCRCALL macroinstruction generates a service request interrupt for the physical
user program, but it generates a BALR instruction for remote device handlers, since they
are an integral part of ICAM.

The declarative macroinstruction provides inline expansion of nonexecutable code, such
as define constant (DC) and define storage (DS) statements. Declarative
macroinstructions are used to allocate areas in main storage to describe all aspects of a
file to be processed.

Figure 1-5 Iillustrates the parallel structure of imperative and declarative
macroinstructions that exists between data management and ICAM, since ICAM, in
effect, is a set of data-management-type macroinstructions used to control
communications input/output operations.

UP-8746 SPERRY 0S/3 1-14
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)
DECLARATIVE MACROINSTRUCTION
TYPICAL CONSOLIDATED DATA MANAGEMENT TYPICAL ICAM
STRUCTURE STRUCTURE
PRCD CDIB FILENAME=MAGFILE cur1 DTFCP TYPE=GT,
PRRB RIB BFSZ=n, I0AREA=I0BUF1 ERRET=NOGET
CREATES A
CDIB TABLE AND
RIB TABLE CREATES A
[r— SUCH AS m—— DTFCP TABLE
Y
PRCD length | function PRRB start of table CUP1 [indicators
process file name
filename buffer size1 source name
compietion address
flags status 10 area 1 address buffer address
,-L error routiné address
link controf nr
completion status end of table

DMOUT PRCD,BUFFOUT
or
DMINP PRCD,BUFFIN

CREATES A SERVICE

CALL SUCH AS
DC DY(®)
L 1,=A(PRCD)
L ©,=A(BUFFOUT)
MVI 49¢1) ,x'20!
L 15,521
sve 98

IMPERATIVE MACROINSTRUCTION

TYPICAL CONSOUDATED DATA MANAGEMENT
STRUCTURE

TYPICAL ICAM
STRUCTURE

PUTCP CUP1,BUFFOUT

or

GETCP CUP1,BUFFIN

CREATES A SERVICE

CALL SUCH AS
CNOP 0,4
DC X'97000700"
sve 98
DC ALZ2((0*/8++5)
EOQJ
SYSTEM
DS @H
SVC 28
sveC 09

Figure 1-5. Comparison of Data Management and ICAM Structures

UP-9746 SPERRY 0S/3 1-15
, ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP)

The declarative and imperative macroinstructions operate together similarly for both data
management and most ievels of ICAM. However, at the physical level, there is no
declarative macroinstruction to construct the control table or control packet. You must
do this yourself via assembler DC and DS instructions. For exampie, to construct the
DTFCP table (CUP1) in Figure 1-5, we might perform the foliowing code:

Example 1:
cuP1 DC Fro! Indicators
bC A(PRF1) Process file name
DC A(CSRC1) Source name
DC A(GOOD10) '~ Completion address
DC ACBUFFIN) Buffer address
DC A(ERRI) - Error routine address

Thus, instead of using the declarative macroinstruction to format and construct the
needed information packet, we merely build it using standard assembler instructions.

Let's briefly look at the actual/ control packet (Figure 1-6) that is used to pass the

required information across the physical interface. This is shown functionally and in
detail in Appendix A, but here we just want to look at its structure.

-

24 tirne aliocation {in seconds) buffer length 7
logical .
28 ;e ion CPIOCP chain addres 8
ROH: line control table address
3 control Hags user program: line request fields, autc buffer, trace 8
ag channel number SLCA numbar port number reserved 10
0 resarved for ICAM 1
44 . reserved for ICAM 12
a8 | ‘aenee bytes.0-3. e L S| 13
52 | . Csensebytes 4-7) e

LEGEND:
7T System-suophed parameters

Figure 1-6. Communications Control Packet Basic Format

UP-9746 SPERRY 0S/3 1-16
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)

We could build this control packet with the foliowing typical coding, which we might ‘
call "hard coding”:
Exampie 2:
OTPTPKT bDC Frot Priority/activity control
DC A(COMPADDR) Completion address
DC Fro! Flag field
DC Fre® Status field
DC Fro! Sense bytes
DC XL1'00! Clear command code
bC AL3(OUTBUFF) Output buffer address
DC H'3! 3-sec time allocation
DC HY 47! Buffer lLength
SOFTFUNC DC YLY Logical command
DC XL3'00! Chain address
1] Fro! Operational flags
SLCANO DC XL4'00000000" Channel, SLCA number and port number
DC Fre! Reserved for ICAM
DC Fto! Reserved for ICAM
bC Fros System 80 sense bytes
V] o Flo!* System 80 sense bytes

When we wish to perform a particular communications input/output function, we now
only need an imperative macro that points to this control packet. However, in many
programs, multiple control tables are desirable and the hard coding method of
constructing them is both repetitive and time consuming. The use of dummy sections
(DSECTs) reduces the amount of coding required by providing you with all the symbolic
names and. values for accessing and setting any portion of the packet that might be
required. : ‘ :

1.5. USE OF DUMMY CONTROL SECTIONS (DSECTS)

A special assembler directive is available in 0OS/3 to generate dummy control sections
(DSECTs) that can be shared by a user program. A DSECT permits you to define ‘
symbolic addresses in your user program without requiring any additional storage ;
allocation for them. This allows you to map or overlay a storage area in your program
with a set of symbolic addresses (labels) that were previously constructed for you in a
dummy control section of the system software. Thus, you can map a storage area in
your program with a set of labels without allocating space within your program.

UP-9746 SPERRY 0S/3 1-17
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Displacement and base addresses are calculated by the assembler for each symbol
defined by the DSECT, but they do not become part of your object program. This
facility is especially useful in ICAM for control table access and manipulation, thereby
considerably reducing the size and complexity of the programmer’s coding task. This is
most evident in the physical interface user program. This is because, in the physical
interface, the use of multiple control tables for various functions is quite advantageous.
The format and size of the tables may be identical, but the contents differ for each
function. Using DSECTs, you need to perform only a simple allocation statement in your
user program for each table required and then map it with the DSECT.

For instance, suppose you wanted to construct an imaginary control packet for a
network request and another for a transmit function. Instead of labeling each word and -
byte in each table, as well as all the commands, flags, and status settings, you could
use a single precoded DSECT to map any number of packets. As an example, let's
make up a single fictitious DSECT, such as the following:

Example 3:

THPKT DSECT

T#FUNC DS XL1 Function (command)
THFLGS DS XL1 " Flags
THRESV DS XL2 Reserved
T#BUFADR DS XL4 Buffer address
T#CMPLAD DS XLé - - Completion address
T#PRIM DS XL1 Primary status
THDETL DS XL1 ‘ Detailed status
THSENS1 DS XL1 Sense byte 1
THSENS2 DS XL1 Sense byte 2
* EQUATES FOR TABLE SETTINGS
* Commands
THSEND EQU ~ X'@01' - 4 Send . L

. THPDTR EQU X'e2' . Set data terminal ready
THEDI EQU X'93! ' Enable data input
T#LREQ EQU X'2C!' Line request
TH#NREQ EQU X'2D' Network request
* Status settings
THEND EQU - X'eo1 Message completion
T#PROGE EQU X'02' Program error
T#PAR EQU X'e3! Parity error
THBUSY EQu X104 Busy

if this fictional DSECT existed in the system software, you could call it in for availability
to your user program immediately following the START instruction of your program, as
follows:

START ©
TN#DSECT T#PKT

where T#PKT is an operand that sbecifies the dummy control section.

UP-9746 SPERRY 0S/3 1-18
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

This DSECT, in effect, would allocate a table of constants and equates in system
storage that would functionally appear as:

T#FUNC T#FLGS TN#PRESV

T#BUFADR

T#CMPLAD

T#PRIM T#DETL T#SENS1 T#PSENS2

These symbolic names could now be used in your program and you could very simply
define muitiple control packets by mapping or overlaying this DSECT on the control
packet storage allocated in your program. For brevity, we’ll assume just two packets:
therefore, only two DS statements are required, but it could just as easily be a hundred.

SENDPKT DS 4F' 0! A 4-word control packet
for transmit functions
- _NTRQPKT DS 4F'0! , , A 4-word control packet

for network request functions

To overlay the first packet, ‘ﬁrst load register 1 with the address of the storage area
defined for our transmit control packet (SENDPKT). Then, use a USING statement to
specify that register 1 is the cover register for the desired DSECT; e.g.:

LA R1,SENDPKT
USING T#PKT,R1

This techhique in effect‘maps (or overlays, if you prefer) the SENDPKT Storaée’ area with

the labels of the constants and equates of the T#PKT dummy control section. You can
now use these labels in your program to fill in the control packet with the information
necessary to perform a specific function.

If we wished to use a network request function, we could do this simply by doing a

LA R1,NTRQPKT
USING T#PKT,R1

and we would now have our NTRQPKT storage area mapped by our dummy control
section.

Putting this all together, if such a DSECT was available, we might use it as in Example
4.

UP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Example 4:

BEGIN

REQNET

NREQCMP

SEND

SENDCMPL

ISSUE

SENDPKT
NTRQPKT
MSGBUF

START ©
TNHDSECT THPKT
BALR R3,0
USING *,R3
USING T#PKT,R1

. Application code

LA R1,NTRQPKT

MV1 TH#FUNC, THNREQ

MVC T#CMPLAD,=A(NREQCMP)
B ISSUE

. Status checking

B SEND

LA R1,SENDPKT

MV1 THFUNC, THSEND

MVC T#BUFADR,=A(MSGBUF)
MVC T#CMPLAD,=A(SENDCMPL)
B . ISSUE

. Status checking
CCRCALL (1)

EOJ
DS 3Fte!
DS 3F'o!
DS 16F'0!
END

Call required DSECT
Set program relative @
Begin program here
DSECT covered by R4

Map packet

Set command

Set completion address
Issue 1/0

Map packet

Set command

Set data address

Set completion address
Issue 1/0

UP-9746 SPERRY 0S/3 1-20
: ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

As you can see, first the network request control packet is mapped, the DSECT labels
are used to fill in the packet with the relevant information, and a branch is made to
issue the imperative macro. When the service request is completed, control returns at
NREQCMP, which was specified as the completion address. At this point, the available
DSECT labels could be used to perform status checking, such as:

CLI THPRIM,THEND Good completion?

BE CONTINUE

CLI T#PRIM, THPROGE Program error?
etc

The program might then branch to SEND where it now maps the SENDPKT control
packet and again fills in the relevant data via the DSECT labels provided.

It is important to thoroughly understand the use of dummy control sections before
proceeding. As you will see in the following sections, this basic technique is used many
times in writing a complete physical interface program.

1.6. GENERATING ICAM

You create your communications system as part of the system generation (SYSGEN)

process outlined in the current version of the system installation user guide/programmer

reference, UP-8839. You can have as many as 18 different ICAM symbionts that

comprise your communications system; you create each one in a separate system
generation.

"To generate an ICAM symbiont, you code the parameters in the COMMCT phase of
system generation. The COMMCT parameters include the network definition
macroinstructions and message control program (MCP) parameters described in 1.7.
You submit the COMMCT phase to the parameter processor SGSPARAM, which
validates the specifications and produces a listing. You then run the prefiled job control
stream SGSCOMMK to assemble and link the ICAM symbiont into the YSLOD library
on your system resident disk volume.

1.7. CPI NETWORK DEFINITION

For your program to work with ICAM, you must define the network you are going to
use. A network definition consists of a set of macroinstructions you submit to the
COMMCT phase of the system generation process of the operating system. The ICAM
load module created by this process is a symblont When you Ioad this symbiont, it
becomes part of the supervisor.

UP-9746 SPERRY 0S/3 1-21
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)

. ’ A communications physical interface network is a dedicated network - that is, the
resources assigned to it are available only to your program.

The following shows the arrangement of physical users in a communications physical
interface environment. ,

TERMINALS

ICAM COMMUNICATION

PHYSICAL USER/ SINGLE LINE
REMOTE DEVICE PHYSICAL INTERFACE/ | | COMMUNICATIONS
HANDLER CHANNEL CONTROL ADAPTER
ROUTINES

Since only the physical interface and channel control routines of ICAM are provided in a
communications physical interface environment, your network definition is extremely
simple — only two macroinstructions are involved: CCA and ENDCCA.

Format:
LABEL |A0PERA1"10NA | OPERAND T
.‘ " PI10OCS [cca | usersan S
Label:
PI0OCS :
Required for a communications physical interface network only.

Parameter:

USERS=number

Applies only to the communications physical interface and is the decimal
number of physical user programs that will use the physical network.

Example:

PIOCS CCA USERS=2
ENDCCA

UP-9746 SPERRY 0S/3 ' 1-22
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

The message control program (MCP) section of the COMMCT phase specifies the
volume that the ICAM symbiont is to be placed on and the name of the symbiont. In
addition, the CACH parameter identifies each SLCA accessed or supported by the ICAM
symbiont. If you specify half-duplex or full-duplex mode operation in word 10 of the
CPIOCP, you must also specify the corresponding mode in the CACH parameter. For
instance, if you specified asynchronous, 9600 baud, full-duplex mode in the port control
word and CPIOCP, the corresponding COMMCT would look like:

COMMCT

PIOCS CCA USERS=2
ENDCCA
McpP
MCPNAME=M3
CACH=(08,9600,FULL) SLCA#1,960¢ baud, full-duplex
END

Physical interface network definitions must be the last ones specified when a muitiple
CCA ICAM is generated.

1.8. ICAM INITIALIZATION

You must load ICAM before you can execute any communications user programs. ICAM
resides in main storage until the last communications user program is terminated (unless
you specify the KEEP parameter). Then ICAM shuts itself down.

The KEEP parameter keeps the ICAM symbiont loaded until cancelled by the system.
operator or if ICAM experiences an unrecoverable error. For example, if you load ICAM
~ symbiont M3 by keying in:

. M3 KEEP

ICAM remains loaded after all user programs are terminated.

1.8.1. Loading an ICAM Symbiont

Always load ICAM in an idle system to avoid main storage fragmentation. You load
ICAM from the system console by keying in the operator command:

{Cn}A[KEEP]
Mn

UP-9746 SPERRY 0S/3 1-23
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)

where:

tn Or Mn
Is the ICAM symbiont name specified on the MCPNAME parameter in the
COMMCT phase of system generation.

KEEP
Keeps the ICAM symbiont loaded until cancelled by the system operator or
ICAM suffers an unrecoverable error.

You can also load ICAM from a job control stream with the statement:

// CCA'{Cn}AKEEP'
Mn

This allows you to load ICAM bi/ means of a workstation instead of asking the console
operator to do it for you.

You can use the CC job control statement in two ways:

1. In a job control stream that only loads ICAM:
// JOB jobname ‘
//ACCA'{Cn}AKEEP'

Mn
/8

2. In a job control stream that executes your program. The CC job control statement
immediately follows the JOB statement.

- NOTE:

Even if you load ICAM by job control, ICAM messages are still directed to the

operator’s console.

1.8.2. Loading Your Program

You load your program the same way as any other user program. That is, you submit a
job control stream defining the devices, program name, and any data associated with
your program. You must always assign a printer.

You can execute your program in the same job control stream that loads ICAM or in a
separate job control stream. If you execute your program after ICAM is loaded, wait
until the ICAM READY message is received.

U7P79746 i SPERRY 0S/3 2-1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)

2. Writing a User Program

2.1. GENERAL

We have seen the similarities in programming structure between data management and
ICAM. We have also discussed the use of dummy control sections to aid in
constructing our control packets. However, since data communications takes place over
communications lines, communications programming has a number of additional
functions that data management does not.

As discussed in 1.1, all communications programming is basically the same in structure,

o so let's put these functions in logical order and then see how they specifically apply to

. ~ the physical interface. In Section 1, we mentioned such items as loading the single line

- communications adapter (SLCA), requesting networks and lines, and providing line

discipline. Figure 2-1 shows a block diagram of the basic functions required in the
physical interface and summarizes the basic steps required to perform these functions.

UP-9746 SPERRY 0S/3 2-2
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

& [T=
(@) inmaize the SLCA tables, i apphcable.
PRESET PORT @ INITIALIZE @ Request the network.
CONTROL WORD @ PROGRAM : ; tF.:ad“mf c?vu vm; e with n;n r p o et
PRESET CHARACTER __‘ ' c. issue the CCRCALL.
DETECT TABLE ‘ @ oo
the line.
PRESET CHARACTER ® :;"w"gi 2. Load the cover register with the request packet.
INTERPRETATION TABLE b. Filt the poccg with the line request command and information.
c. issue the CALL.
@| Reouest (®) ininiskze the line.
UNE s Clesr the ine adapter.
[] Losd the cover register with the request packet.
‘ [] Fill the packet with the clesr kne sdapter and info
TALIZE . issue the CCRCALL.
@ N LiNE b. Loed the SLCA port control word.
. CLEAR UINE ADAFTER ® Load the cover regisier with the request pecket.
TOAD Pow | TTRST LINE | & Fill the paciet with the ioad PCW command and information.
ENTRY . issue the CCRCALL.
LOAD CDT ONLY LOAD c. Load the SLCA character detect 1able.
{FOR EACH SLCA ® Load the cover register with the request packet.
LOAD CIF | UINE) & Fill the packet wih the ioad CDT and i
» Issue the CCRCALL.
d. Load the SLCA character interpretation mble.
SET DATA TERM READY L] Load the cover register with the request packet.
[] Fill the packet with the ioad CIT command and tunction.
l : [] Issue the CCRCALL.
TRANSMIT/ ' e. Set the data termnai resdy.
@ RECEIVE s Load the cover regisier with the request packet.
DATA [Fill the packet with the set DTR command and function.
‘ [issue the CCRCALL.
Transmit the data.
@ RELEASE , ® 2. Load the cover register with the nput/output packet.
. LINE b. Fill the packet with the send data command and informarion. ;
o I . c. issue the CCRCALL.
Relesse the Wne.
b. Fill the packet with the release line command and informetion.
c. issus the CCRCALL.
’ Relsase the network.
: 8. Load the cover register with the request packet.
-) b. Fill the packet with the rek d and function.
c. issue the CCRCALL.

Figure 2-1. Structure of a Commubications Physical Interface Program
As you can see in Figure 2-1, most of the functions 'required are simply unique formats
of the control packet. The bulk of the task, therefore, simply breaks down to:
m Load the cover register with the desired packet.
® Use the DSECT labels to fill the control packet with the relevant parameters.

m Use the imperative macroinstruction to call the service request for the relevant
control packet.

UP-9746. SPERRY 0S/3 2-3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP)

The only exception to this task is on initial line entry. Before each initial line entry, the
SLCA must be loaded with the port control word, character detect table, and character’
interpretation table. We must tell the control packet that we are using our own user
discipline and supply the appropriate port control word, character detect table, and
character interpretation tabie to be loaded. These additional tasks will be considered in
detail in following sections.

But, for now, let's make up some simple symbolic labels for the functions in Figure
2-1, such as:

Label Routine
NETREQ1 Réquest the network.
LNEREQ1 Request the line.
INITLINE Initialize the line.
SETRMRDY Set the terminal ready.
- SENDMSG Transmit the message.
LNEREL1 Release the line.
NETREL1 Release thé network.
Label Control Packet Function
| REQPK Request control.
SETDTRPK Set data teri'ninal ready.
| INPTPK i Input
OTPTPK Output

Using these symbolic labels, we can code a basic outline of our communications
program in Figure 2-2. The procedures in Figure 2-1 are numerically keyed to the
labels in Figure 2—-2 for easy identification (items 1a, 1b, etc). Following this outline, the
rest. of this section describes how to use the dummy control section labels to set the
parameters in the control packet for each function. The dummy control section fields are
shown here for ease of use, but are discussed in detail in Appendix A. The fields and
the actions performed on them for each function are then numerically keyed to a typical
coding example. :

.

UP-9746 SPERRY 0S/3 2-4
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

Byte
0.
4
8 3
12 4
16 5
20 TN#PCMMD TN#PBADR 6
24 TN#PTIME TN#PBLTH 7
28 TN#PFUNC | _TN#PLINK 8
32 TN#PFLGS TN&#PLCT 9
36 TN#PCHNL TN#PPORT TN#PS80P TN#PSBOF 10

You must specify the channel number (in field TN#PCHNL} and the SLCA number (in field TN#PPORT) for all CPl requests,
including a network request. The channel numbers can be hexadecimal 02, OD, or OF, and the SLCA number range can’
be hexadecimal 01 to OF or 08 10 OF, depending on the System 80 model type (Table A-6). For example, because
TN#PMUX is the haif-word label for TN#PCHNL AND TN#PPORT, you can specify:

MVC TN#PMUX,=X'0208'

UP-8746 SPERRY 0S/3 2-5
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))
‘ USING TN#PARP,R1
(3 NETREQ1 LA R1,REQPK
. Set parameters in control packet for network request
CCRCALL (1)
(@) LNEREQ1 LA R1,REQPK
. Set parameters in control packet for line request
CCRCALL (1)
9 INITLINE LA R1,REQPK
' . Set parameters in control packet for line adapter clear
CCRCALL (1)
LDPCW LA R1,REQPK
. ‘ Set parameters in control packet for lpad port control word
CCRCALL (1)
G9LoCDT LA R1,REQPK
. Set pa'rameters in control packet for load character
. detect tabtle
CCRCALL (1)

Figure 2-2. Skeleton Program Outline for the Physical Interface (Par: 1 of 2)

UP-9746

SPERRY 0S/3 2-6

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

EJLocrT

SETRMRDY

(6) SENDMSG

(@) LNEREL1

(8) NETREL1

LA R1,REQPK
Set parameters
. interpretation

CCRCALL (1)

LA R1,REQPK

. Set parameters

CCRCALL (1

LA R1,0TPTPK

. Set parameters

CCRCALL (1)

.
-
.

LA R1,REQPK

. Set parameters

CCRCALL (1)

LA R1,REQPK

. ‘ Set parameters

CCRCALL (1)

EOJ

in control packet for load character
table

in control packet for set data terminal ready

in control packet for send message

in control packet for release line

in control packet for release network

Figure 2-2. Skeleton Prog_ram Outline for the Physical Interface (Part 2 of 2)

UP-9746 - SPERRY 0S/3 . 2=7
, ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

in 2.8, the coding discussed for each function is merged into one basic program to
illustrate what an overall physical user program would look like. In this example,
completion routines containing status, sense, and condition code checks are not shown
to keep the size of the program manageable and the structure visible. Section 4
describes how the port control word, character detect table, and character interpretation
tables are constructed for standard and unique user line disciplines.

2.2. REQUESTING A NETWORK

The first function that any communications program must perform is to request the
network of lines and terminals desired. Referring to the dummy control section (DSECT)
for our control packet, as detailed in Appendix A, the fields that require setting for the

network request function are:

Field Action

(D) TN#PLINK Set to O.
(@ TN#PFUNC Set to TN#PNREQ. Bits O and 1 are not interpreted.

Using the programming techniques discussed in Section 1, we load the base address of
our dummy control section via the USING statement-and map the control packet area in
cur user program by loading the address of the control packet in register 1. We now
set the required fields by performing the following typical coding, using the relevant
labels of the dummy control section:

'NETREQ EQU *

LA R1,REQPKT : Map packet

> ~ MVI TN#PCMMD,® Clear command

® XC' TN#PLINK, TN#PLINK ~ No chaining _

@ "~ MVI TN#PFUNC, TN#PNREQ Set function command
MVC TN#PFCPL,=A(NTREQCMP) Set completion address
LH R3,TIME3 Set time-out
STH R3,TNSPTIME
CCRCALL (1 Issue 1/0 request

in this coding, the request packet address is first loaded in register 1 for mapping
purposes. The hardware command code is then cleared to signal 1/O control (CPIOCS)
that it must translate the logical command in TN#PFUNC to a hardware command and

~to overlay it on the TN#PCMMD byte. If this is not done, /O control uses whatever

hardware command currently resides there. Next, data chaining is inhibited by clearing
the address field, and the function to be performed is inserted in the function field. The
/O completion address is set and a 3-second time-out is inserted. Finally, an 1/O
request is issued by the CCRCALL macroinstruction. :

-

UP-8746 SPERRY 0S/3 2-8
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

The user program is assigned one of activity control’s user activity slots when it issues
its network request function (or, under the temporary option, when it issues its first
CCRCALL for whatever function). If a user activity slot is not available, the user program
is cancelled and the control packet identified by register 1 has TN#PRIM set to
TN#PROGE and TN#PDETL set to TN#PMNCE. Refer to 3.6 for other conditions that
result in the user program being cancelled by the interface code.

If the user program operates as a muititasked job, all access to the physical interface
should be via one specific task. Should the user program access the physical interface
by means of more than one task for one job, each task would be assigned one of
ICAM’s task identities.

While the user program is executing communications I/O requests, it must not be
executing other /O requests using the same task. The user program’s task identity is
deleted and its lines are released when it goes to end-of-job (EQJ) either normally or
abnormailly.

After the supervisor request call issued via inline expansion of the CCRCALL has been
completed successfully, control returns to label NTREQCMP as set in the completion
address portion of the control packet.

Normally, at this point in your program, you would want to perform clean-up tasks,
such as checking compiletion status. Again, using the DSECT labels available to you, you

-eould check logical status bytes, such as:

CLC TN#PRIM(2),=X'0180"' Good completion?
BE LNEREQ1 Yes, perform line request

The status bytes are interrogated by assembler statements using labels in the control
packet DSECT. The number of checks available to you is rather large; the degree of
checking is your option.

2.3. REQUESTING A LINE

Once the network request is completed satisfactorily, you must request the specific line
on which you wish to communicate.

All user program attempts to execute functions without prior request and assignment of
a line are aborted. Your user program must secure the desired line and a set of
communications adapter interpretation ‘tables before it can issue |/O functions. Do not
attempt a line request while non-CP! line requests are in progress.

To request a line, the user program must set the following control packet fields as
directed. Those fields not specified here are set as specified in the control packet
description in Appendix A.

UP-9746 SPERRY 0S/3 2-9
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)
Field Action

@ TN#PMUX Set byte O (TN=PCHNL) to 02, OD, or OF depending on your
System 80 model type (Table A-6). Set byte 1 to the SLCA
number and byte 2 to the port number.

(@ TN#PFUNC Set to TN#PLREQ. Bits O and 1 are not interpreted.

@ TN#PLINK Setto 0.

@ TN#PDSPL Set bit O to 1 and set bits 1-3 to any value. A user program key
is placed into bits 4~7 to create a unique user remote device
handler discipline ID.

(® TN#PCAID Set from 00w to 021. The SLCA has two control character
detect tables and one control interpretation table. When this byte
is set to 0016, an available set of tables is located and the ID is
placed back in TN#PCAID. The user program can optionally
specify the tables it wants {0116 — 0216).

@ TN#PBLTH The SLCA buffer size must be specified in the TN&BLTH field of

the CPIOCP at the request time. The valid range is 32-256 in
decimal. If buffer toggiing is required, the line buffer size must be
an even multiple of the SLCA buffer size.

Translating these actions into actual coding, we might have something like this:

‘LNEREQ1 EQU

®

3

¥ceocl

LA
MVI
MVI
MVI
MV1
XC
LH
STH
MVC
MVI
MVI
MVC

*

R1,REQPKT
TN#PCHNL , 2
TN#PPORT, 8
TN#PCMMD , 0
TN#PFUNC, TN#PLREQ
TN#PLINK, TN#PLINK
R3, TIME3

R3, TN#PTIME
TN#PFCPL,=A(LNREQCMP)
TN#PDSPL,X'80°
TN#PCAID, 1
TN#PBLTH+1,H' 256"

CCRCALL (1)

LNREQCMP EQU

*
INITLNE

Map packet

Set to channel 2

Set to SLCA#1.

Clear command

Set function command
No data chaining

Set time-out

Set completion address

Set for user own discipline
Set for CDT1/CITT -

Set SLCA buffer length to 256
Issue 1/0 request

Line request completion routine
Continue to next function

UP-8746 SPERRY 0S/3 2-10
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

As you can see in the coding, the channel is set to channel 2; the SLCA is set to J
SLCA#1. The command is set to line request. For this example, we could have selected
a remote device handler discipline (label TN=PDSPL). If we choose a remote device
handier that is already supported, we must construct a port control word, character
detect table, and character interpretation table according to the parameters pertinent to
that handler. These parameters are described in Section 5. (An explanation of how to
construct these tables with the relevant parameters is given in 4.2.1 through 4.2.3.) We
chose instead to construct our own remote device handler discipline by setting bit O
equal to 1.

We have aiso specified that we want the number 1 character detect and character
interpret tables. However, we could have requested any available set of tables by
-performing a

MVI TN#PCAID,0

You will notice in the next section that line initialization need only be performed the first
time that a particular line is requested.

Some other considerations you should keep in mind when performing line requests are:

B A full-duplex line is assigned only if both ports are unallocated.

-8 A line with primary and secondary channels can be assigned only one channel at a
time. A line request must first be made for the primary channel port; then, a
second line request should be made for the secondary channel port. Separate line
requests must be issued for autodialer ports and the associated line. The dial
commmand request will be illegal if the dial port and the line associated with the
autodialer have not both been assigned to you.

NOTE:

Two simultaneous line request operations can cause an attach error condition to be
presented (TN#PRIM=TN#PROGE and TN#PDETL=TN#PAATH) in one of the control
packets (CPIOCPs). You can recover from this condition by reissuing the line request
function for the control packet returned with the error status.

2.4. INITIALIZING A LINE

The following procedure is recommended to initialize a line once the line request
function has been completed successfully. This procedure is identical to that performed
by remote device handlers for other ICAM interfaces.

m Half-duplex lines:

1. Issue line adapter (LA) clear (TN#PFUNC=TN#PFSL+TN#PLACL).

2. Load port control word (TN#PFSL — TN#PLB14).

3. Load the SLCA control tables if not already loaded.

UP-8746

SPERRY 0S/3 2-11
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

This consists of loading the character detect and character interpretation tables
before the first transmission on the line. These tables are described in Section
5. These tables must be constructed within the nonexecutable code of your
program before issuing the load commands. As mentioned in 2.3, if the
remote device handler discipline used is one of the supported handlers, the
parameters prescribed may be used directly to construct the tables. This
construction is described in 4.2.1 through 4.2.3. If your own unique discipline
is to be used instead, you must then construct your own unique tables.

Issue a set data terminal ready function (TN#PFUNC=TN#PFSL+TN#PDTR).
This enables receipt of the BREAK interrupt and permits dial connection.

® Full-duplex line:

1.

5.

Issue clear and load port control word for output port as explained for
half-duplex lines.

Load control tables. (Same as item 3 for half-duplex lines)
Clear and load port control word for input port.
NOTE:

Port O is for special control, port 1 is for output, and port 2 is for input. The

. 2-way alternate (half-duplex) operation, therefore, assumes port 1 is for both

output and input if the set-full-duplex command is not set. For full-duplex

operation, you specify port 2 for input by issuing the set-full-duplex command
in step 4. See Appendix A

Issue set-full-duplex command 10 output port (T N#PFUNC-—TN#PFSL +
TN#PFLDX)

Issue a set data terminal ready function (TN#PFUNC=TN#PFSL + TN#PDTR).

Breaking each of these functions down to . our standard structure and using the
half-duplex procedure, we would have:

® clear the line adapter;

B load the port control word;

® |oad the character detect table;

® load the character interpretation table; and

m set the data terminal ready.

UP-9746

. SPERRY 0S/3 2-12
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

Once the line has been initialized for the first time, these functions do not have to be
performed again. Therefore, in the coding of the next section, we will insert a switch

that falls through on the first entry and is then set to skip the initialization procedures
on ensuing transmissions for this particular line. If other lines are to be used, they also
must be initialized before the first entry.

2.4.1. Clear the Line Adapter

To issue a line adapter clear, we must perform the same steps of setting the relevant
parameters in the control packet and making a service request via the CCRCALL. To

issue this command,

Field
(D TN#PCHNL
@ TN#PPORT
(@ TN#PFUNC

Showing these actions in coding format, we might have:

INITLNE EQU

you must perform the following actions on the specified fields:
Action
Same as line request (see 2.3)
Same as line request (see 2.3)

Set to TN#PFSL + TN#PLACL (start and end of message with
line adapter clear command).

*

SWITCH BC 0,SENDMSG Initialization switch
LA R1,REQPKT Map packet
Myl TN#PCMMD , 0 Clear command

(1) MVI TN#PCHNL,2

(2) MVI TN#PPORT,S8

P MVI TN#PS8OP,1 : :

@ ~ MVI TN#PFUNC,TN#PFSL+TN#PLACL Set function command

‘ Xxc TN#PLINK, TN#PLINK No data chaining
LH R3, TIME3 ' Set time-out
STH R3, TN#PTIME :
MVC TN#PFCPL,=A(LACMPL) Set completion address
CCRCALL (1) : Issue 1/0 request

LACMPL EQU * Line adapter clear completion routine
MVI SWITCH+1,X'Fo' - Set to skip after 1st time thru
B LDPCW Continue to next function

\.

UP-8746 SPERRY 0S/3 2-13
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

2. 4 2. L;ad the Port Control Word

Each port in the SLCA must have a port control word consisting of a set of four control
bytes. These control bytes must be coded and loaded by your user program. The
settings for these control bytes are determined by the characteristics you require for a
particular remote device handler discipline. These characteristics are described in detail
in Section 3 of the input/output microprocessor programmer reference, UP-8909
(current version). Briefly, byte 1 concerns details of synchronous/asynchronous
operation. Byte 2 references the character detect table to use, the character iength, and
the asynchronous line speed, if applicable. Byte 3 references the character interpretation
table to use, specifies whether to include or exclude the start character in the block
check character count, and the type of parity to be used in transmission. Byte 4
specifies whether operation is of the synchronous or asynchronous mode and timing
intervals.

Subsection 4.2.1 describes how to construct a port control word. At this point, we are
basically concerned with loading it via our user program. So for now, let’s assume that
we have a tabie in our nonexecutable code of the form:

DCT2PCW DC X'80 20 19 e2°'

Field Action
(1) TN#PFUNC Set to load port control word (TN#PFSL+TN#PLB14).
(@ TN#PBLTH Set to 4 bytes.

(3 TN#PBADR Set to data buffer address.

' In our codihg, we perform the following:

LOPCW EQqu *

MVC OUTBUFF,DCT2PCW Put port control word in buffer
LA R1,REQPKT Map packet
MVI TN#PCMMD, 0 Clear command
® MVI TN#PFUNC,TN#PFSL+TN#PLB14 Set function to load PCW
(:) MVI TN#PBLTH+1,4 . Set buffer length to 4 bytes
LH R3,TIME3 Set 3-sec time-out
STH R3,TNHPTIME '
‘(:> MVC TN#PBADR,OUTBUFAD Set output buffer address
' XC TN#PLINK, TR#PLINK’ No data chaining
MVC TNHPFCPL,=A(LPCWCMPL) Set completion address
CCRCALL (1) Issue 1/0 request
LPCWCMPL EQU * Load PCW completion routine

B LDCDTA Continue to next function

UP-9746 SPERRY 0S§/3 2-14
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Additional tasks performed in this routine are to reset a switch (such that this routine is
entered only the first time this line is requested), put the port control word in the output
buffer, prescribe the length of the data buffer that is to be transmitted, and set the
output buffer address in the control packet. Standard tasks are to insert the load port
control word command, and, of course, furnish a completion address.

2.4.3. Load the Character Detect Table

Each port in the SLCA references at least one of two character detect tables. These
tables are used to produce start and end character functions, and access a character
interpretation table word, if additional functions are required. Again, the character detect
table must be coded and loaded by your user program. The settings for these bytes are
determined by the characteristics you require. The characteristics are described in detail
in Section 3 of the System 80 input/output microprocessor programener reference,
UP-8908 (current version). A discussion on how to construct a typical character detect
table is contained in 4.2.2. Since this subsection is concerned only with loading the
table, let's assume there is a table in the nonexecutable code of our program that looks
like:

DCT2CDT DC X'0012001317001414" o0 - oF
DC X'0000000000000000"
DC X'0014000000141000" 10 - 1F

. DC X'0000001308001400" .

DC X'0000000000000000 ' . 20 - 2F
DC X'e900000000000000"
DC X'0000020000000000" 30 - 3F
DC X'0000080000000000"
DC X'0000000000000000 49 - 4F
DC X'0000000008000000" :
DC X'0000000000000000' 50 - SF
DC X'0000002000000000*
DC X'0000000000000000 60 - 6F
DC X'0000000000000000' .
DC X'0000000000000000 * 70 - 7F
DC X'0000000000000000 *
DC X'0000061300001400" 80 - 8F
DC X'0000000000000000"
DC X'0014000000000000" 90 - 9F
DC X'0000000000000000"
DC X'0000000008000000 ° A® - AF
DC X'0000000000000000 '
DC X'0000000000000000 " B® - BF
DC X'0000000000000000 '
DC X'0000000000000000" o - CF
DC X'0000000000000000"
DC X'0000000000000000* D® - DF
DC X'0000200000000000 '
DC X' 0000000000000000" E® - EF
DC X'PP00000020000000"
DC X'0000000000000000 F® - FF.

DC X'0000000000000000"

uP-9746 . SPERRY 0S/3 2-15
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

‘To load this table into the SLCA, you perform the following actions on the specified
fields: :

Field Action
@ TN#PFUNC Set to load character detect table number 1.
(The CD table is always 1 or 2 {0016 or O116)
for the SLCA.)
(@ TN#PBLTH Set to 256 bytes maximum.
(3 TN#PBADR Set to the address of the data output buffer.

To perform these actions on the specified fields, you do the following coding:

LDCDT1 EQu ~*

LA R1,REQPKT Map packet
MVC OUTBUFF,DCTZCDT Put character detect table in output
buffer
MVI TN#PCMMD , 0 Clear command
® MVI TN#PFUNC, TN#PLCD1 Set function to load CD table 1’
' (See NOTE.)
@ MVC TN#PBLTH,W256 . Set buffer lLength to 256 bytes
. - LH R3,TIME3 - Set 3-sec time-out
. STH R3,TN#PTIME
® MVC TN#PBADR,OUTBUFAD Set output buffer address
xc TN#PLINK, TN#PLINK No data chaining
MVC TN#PFCPL ,=A(LCDTCMPL) Set completion address
CCRCALL (1) : Issue 1/0 request
LCOTCMPL EQU * ' Load CD table completion routine
B LDCIT1 Continue to next function

NOTE:

This command loads only character detect tabie 1. The SLCA sliows two character detect tables.

As in the previous section, the data to be transmitted to (loaded into) the SLCA is
placed in the data output buffer, and the length of the output buffer and the address of
the output buffer are placed in the control packet. Finally, the function and completion
address are inserted and the 1/O service request is performed via the CCRCALL
macroinstruction. .

UP-8746 SPERRY 0S/3 2-16
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI) ’

2.4.4. lLoad the Character Interpretation Table

There is only one character interpretation table in the SLCA. It is used to provide
multiple sequences of action when addressed by the character detect table. That is, the
character detect table may initiate a single hard-wired function or it may be used to
initiate a function and address one word of the character interpretation tabie. Each
individual bit in the character interpretation tabie word can then indicate a particular
action or sequence of actions in the SLCA. Thus, multiple actions can be initiated by a
single character. As with the port control word and the character detect table, you must
code and load the character interpretation table via your user program. The settings for
these bytes are determined by the characteristics you require. A discussion on how to
construct a typical character interpretation table is contained in 4.2.3. Again, since
we're concemed here with only the loading of the table, let's assume we have
constructed a table in our nonexecutabie code that looks like the following:

DCT2CIT ©DC X'08010000"
DC X'11014800"
DC X'01000000"
DC X'o0000100"
DC X'100000000"
1o X'00000000"
DC X'00000000"
DC X'00000000' "léiif}wiiifj;f' ; f;”_j;:fffiﬂif*”**fjfff”j“f

- e

To load this table into the SLCA, you have to perform the following actions on the
specified fields:

Field Action

@ TN#PFU.NC | Set} to load character ihterprefation tab_le number 1.
(@ TN#PBLTH Set to 32 bytes maximum (16 words).
(3® TN#PBADR Set to address of data output buffer.

To perform these actions on the specified fields, we use the same format as before to
construct our table; the coding to do this looks like:

LDCIT1 EQU *

LA R1,REQPKT Map packet
MVC OUTBUFF,DCT2CIT . out character interpret table in
output buffer
MVI TN#PCMMD,0 Clear command
@ MVI TN#PFUNC, TN#PLCIA Set function to load CIT table 1
Xc TN#PLINK, TN#PLINK No data chaining
@ MVI TN#PBLTH+1,32 Set for 32-byte buffer
® MVC TN#PBADR,OUTBUFAD Set output buffer address
LH R3,TIME3 Set time-out

(continued)

UP-9746- SPERRY 0S/3 2=-17
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

STH R3,TN#PTIME
‘ MVC TN#PFCPL,=A(LCITCMPL) Set completion address
"CCRCALL (1) Issue 1/0 request
LCITCMPL EQU * Load Cl table completion routine
B SETRMRDY ‘ Continue to next function

2.4.5. Set the Data Terminal Ready
After the SLCA is loaded, line initialization is complete and we can now issue the
function to set the data terminal ready. This allows a BREAK interrupt to be received
and permits dial connection. To issue this command, you must perform the following
actions on the specified fields:

Field Action

| @ TN#PFUNC Set to TN#PFSL+TN#PDTR (start and end of message with set
~ .) ‘ 'data terminal ready command)

With the exception of entering this particular command, the coding again remains
basically the same:

SETRMRDY EQU *

LA R1,REQPKT . Map packet
© MVI TN#PCMMD,0 Clear command
<:>' MVI - TN#PFUNC, TN#PFSL+TN#PDTR Set function to set data term1nal
‘ ready
XC TNH#PLINK, TN#PLIRK
MVC TN#PBADR,AFAKEBUF Set fake buffer
LH R3,TIME3 Set time-out
~ STH R3,TN#PTIME
MVC TN#PFCPL,=A(SDTRCMPL) - Set completion address
CCRCALL (1) Issue 1/0 request
SDTRCMPL EQU * Set data terminal ready cempletion
routine
B SENDMSG Continue to next function

. The only unusual action in this coding might be use of a fake buffer {(contents of zero)
to clear the output buffer. The set data terminal ready command does not require use of
the output buffer, but clearing the bufer prevents any possible transmission of spurious
messages or commands to a terminal. '

UP-9746 'SPERRY 0S/3 2-18
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

2.5. TRANSMITTING THE DATA

Transmission or reception of data are basically the same structurally. They differ only in
the command and data buffer address supplied to the control packet. Reception of a
message might differ only in performing a poll before performing the actual receive. In
this case, a poll would merely be a send command control packet with a poll message
in the data buffer. For the sake of simplicity, however, we’ll only show a send text
procedure. To do a send, we would perform the following actions on the specified
fields of our control packet:

Field Action

@ TN#PFUNC Set to send data command (TN#PSEND + TN#PFSL).
(@ TN#PBADR Set to the data output buffer address.
(® TN#PBLTH Set to the length of the output buffer.

To perform these actions on the specified fields, we might code:

|
!
i

SENOMSG EQU *

LA R1,0TPTPKT Map packet
MVI TN#PCMMD , 0 Clear command
® . MVI TN#PFUNC,TN#PFSL+TN#PSEND Set function to send data
MVC OUTBUFF,MSG1 Put text in output buffer
) ¢ TN#PLINK, TN#PLINK No data chaining
LH R3,TINME3 Set time-out
STH R3, TN#PTIME
@ MVC TN#PBADR,OUTBUFAD Set buffer address
'(:) MVI TN#PBLTH+1,80 , Set buffer Length
MVC TN#PFCPL,=A(SENDCMPL) - Set completion address
“CCRCALL (1) : : - Issue 1/0 request
SENDCMPL EQU + Send completion routine
B LNEREL1 Continue to next function :

If we were performing a receive function, at this point, instead of continuing to the next
function, we might want to construct a loop that would send a poll message for text.
The text could then be scanned for an end message and, if obtained, a branch would
continue to the next function to release the line.

UP-8746 . SPERRY 0S/3" 2-19
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

- 2.6. RELEASING THE LINE

The line release function deallocates a line for assignment to other users. As with line
requests, primary and secondary channels must be released separately (secondary
before primary). An autodialer port and associated lines must aiso be released
separately.

Before a line release is issued, the user program must ensure that there are no
outstanding control packets. If there are any outstanding control packets for the line,
they may be retrieved by executing a CCRCALL with TN#PFUNC=TN#PFSL +
TN£PIOFF. (The turn-off command does not provide an immediate status. The 1/O
completion interrupt must be awaited.) If the user program interface code detects an
outstanding control packet, it will abort the Iline release function, setting
TN=PRIM=TN#PROGE and TN#PDETL=TN#PFRMT.

For this function, then, we’ll actually perform two functions — one to issue the turnoff
and one to issue the line release command.

Field Action
@ TN#PFUNC Set to complete message with turnoff (TN#PFSL+ TN#PIOFF).
To perform the turnoff, we .need only the following:

' LNEREL1 EQU * .
LA R1,REQPKT Map packet

MV1 TNH#PCMMD, 0 Clear command

@ MV1 TNH#PFUNC, TN#PFSL+TNH#PIOFF Set function to turnoff
XC TN#PLINK, TN#PLINK No data chaining
LH R3,TIME3 Set time-out
STH R3,TN#PTIME , S
MVC TN#PFCPL,=A(NOMOPKTS) Set completion address
CCRCALL (1) Issue 1/0 request

NOMOPKTS EQU * Turnoff cdmpletion routine
B LNERELZ Continue to next function

UP-9746 SPERRY 0S/3 2-20
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP})

At the completion address, as just mentioned, one of the things you would want to
check is if the outstanding packet check bit is set in the control packet. This could be
done, for instance with a: ‘

CLI TNH#PRIM, TNH#PROGE Program error?

BNE No

CLI TN#PDETL , TN#PFRMT Outstanding packet?
BNE , o , No

Once the turnoff has been completed successfully, the line release function can be
issued.

Field Action
. @ TN#PFUNC Set to line release command (TN#PLREL)
This function would be performed by:

LNERELZ EQU *

LA R1,REQPKT Map packet
MVI TN#PCMMD,0 " Clear command
(:) MVI TN#PFUNC, TN#PLREL Set function to Line release
e (¥ TN#PLINK, TN#PLINK No data chaining
' LH R3,TIME3 A Set time-out
STH R3, TN#PTIME p
MVC TN#PFCPL,sA(LRELCMPL) Set completion address
CCRCALL (1 Issue 1/0 request
LRELCMPL EQU * = _ Line release completion routine
' B NETREL1 S Continue to next function

2.7. RELEASING THE NETWORK

The last CCRCALL that the user program executes should be a user program network
release function to avoid abnormal termination by the supervisor. The user program
network release function releases all lines that the user program has not yet released
and disengages the user program from ICAM. The only field that needs setting for a
user program network release other than the standard ones is:

Field Action

() TN#PFUNC Set to TN#PNREL. Bits O and 1 are not interpreted.

@

-
H

UP-8746 - - SPERRY 0S/3 2-21
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY

.' You can p‘erform the function of network release with the following typical coding:

NETREL1 EQU *

LA R1,REQPKT Map packet
MV1 TN#PCMMD , @ Clear command
(:) MV] TN#PFUNC, TN#PNREL Set function to network release
xc TN#PLINK, TN#PLINK No data chaining
LH R3,TIME3 Set time-out
STH R3,TN#PTIME
MVC TN#PFCPL ,=A(NETRLCMP) Set completion address
CCRCALL (1) Issue 1/0 request
NETRLCMP EQU * Network release completion routine
EOJ

At this point in the program, there are no further functions to be performed and the
next instruction would be an EOJ to end the job and start the constant area to define
the required constants for the program. The communications task is now complete for
this sample program.

2.8. EXAMPLE OF A BASIC USER PROGRAM

To illustrate all of the functions described thus far, Figure 2-3 shows all of the
_staternents coded from 2.2 through 2.7 integrated as a simple program. The dummy
completion routines are all consolidated to save space and clarify the flow, especially
- since they are included only for completeness of explanation. Tables necessary for this
program are included in the example. They are discussed in detail in Section 3. .

T e

UP-8746

SPERRY 0S/3 2-22
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

" LNEREQ1 EQU =

PROGRAM INITIALIZATION

START @

CSECT

TN#DSECT XCPIOCP

TN#DSECT LLT

RGEQU

USING TN#PARP,R1

USING TN#PLINE,R7
BEGIN EQU ¥

BALR RZ2,0

USING *,R2

MVI SWITCH+1,0

*

* REQUEST A NETWORK
*
NETREQ EQU *
LA R1,REQPKT |
MVI TN#PCMMD,®
XC TN#PLINK, TN#PLINK
MVI TN#PFUNC, TN#PNREQ
MVC TN#PFCPL,=A(NTREQCMP)
LH R3,TIME3
STH R3,TN#PTIME -
CCRCALL (1)

*
* REQUEST A LINE

L

LA R1,REQPKT
MVI TN#PCHNL,2
MVI TN#PPORT,S8
MVI TN#PS80P,1
MVI TN#PCMMD,0
MVI TNH#PFUNC, TN#PLREQ
Xc TN#PLINK, TN#PLINK
LH R3,TIME3
STH R3,TN#PTIME
MVI TN#PBLTH+1,256
MVC TN#PFCPL,=A(LNREQCMP)
MVI TN#PDSPL,3
MVI TN#PCAID,1

“~ “CCRCALL (1)

Figure 2~3. Basic User Program Example (Part 1 of 6)

UP-8746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

2-23

*
* INITIALIZE THE LINE - (1) CLEAR THE LINE ADAPTER

*

INITLNE EQU *

SWITCH BC ©,SENDMSG
LA R1,REQPKT
MVl TNH#PCMMD , 0
MVI TN&#PFUNC, TN#PFSL+TN#PLACL
XC TN#PLINK, TN#PLINK
LH R3,TIME3
STH R3,TN#PTIME
MVC TN#PFCPL,=A(LACMPL)
CCRCALL (1)

*

* INITIALIZE THE LINE - (2) LOAD PORT CONTROL WORD
*
LDPCW EQU +
MVC OUTBUFF,DCT2PCW
LA R1,REQPKT
MVI TN#PCMMD,®
MVI TN#PFUNC,TN#PFSL+TN#PLB14
MVI TN#PBLTH+1,4
MVC TN#PBADR,OUTBUFAD
p 4 TN#PLINK, TN#PLINK
LM R3, TIME3
STH R3,TN#PTIME
MVC TN#PFCPL,=A(LPCWCMPL)

CCRCALL (1)
*

*

LDCDT1 EQu =
LA R1,REQPKT
MVC - OUTBUFF,DCT2CDT
MVI TN#PCMMD , 0
MVI TN#PFUNC, TN#PLCD
MVC TN#PBLTH, W256
MVC TN#PBADR,OUTBUFAD
XC - TN#PLINK,TN#PLINK
LH R3,TIME3
STH R3,TN4PTIME
MVC TNPFCPL,=A(LCDTCMPL)

CCRCALL (1)
*

* INITIALIZE THE LINE - (4) LOAD CHARACTER INTERPRETATION TABLE

* INITIALIZE THE LINE - (3) LOAD THE CHARACTER DETECT TABLE

Figure 2-3. Basic User Frogram Exsmple (Part 2 of 6)

UP-9746 SPERRY 0S/3 2-24
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))

LDCITT EQU *

LA R1,REQPKT

MVC OUTBUFF,DCT2CIT

MVI TN#PCMMD,0

MVI TN#PFUNC, TN#PLCI1

XC TNH#PLINK, TN#PLINK

MVC TN#PBADR ,OUTBUFAD

MVI TN#PBLTH+1,32

LH - R3,TIME3

STH R3,TN#PTIME

MVC TN#PFCPL,=ACLCITCMPL)

CCRCALL (1)
v B
* INITIALIZE THE LINE - (5) SET DATA TERMINAL
SETRMRDY EQU *

LA R1,REQPKT

MVI TN#PCMMD,®

MVI TN#PFUNC, TN#PFSL+TN#PDTR

XC TN#PLINK, TN#PLINK

MVC TN#PBADR,AFAKEBUF

LA R3,TIME3

STH R3,TN#PTIME

MVC TN#PFCPL,=A(SDTRCMPL)

CCRCALL (1)

*

+ TRANSMIT A MESSAGE
*
SENDMSG EQU *
LA R1,0TPTPKT
MVI TNH#PCMMD,®
MVI TN#PFUNC, TN#PSEND+TN#PFSL
MVC OUTBUFF,MSG1
XC TN#PLINK, TN#PLINK
LK R3,TIME3
STH R3, TN#PTIME
MVC TN#PBADR,OUTBUFAD
MVI TN#PBLTH+1,80
MVC TN#PFCPL,=A(SENDCMPL)
CCRCALL (1)

%*

* RELEASE THE LINE - (1) ISSUE LINE TURNOFF

*

Figure 2-3. Basic User Program Example (Part 3 of 6}

UP-9746 SPERRY 0S/3 2-25
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)
‘ LNEREL1 EQU *
LA R1,REQPKT
MVI TNH#PCMMD , 0 -
MVI TN#PFUNC,TN#PFSL+TN#PIOFF
Xc TN#PLINK, TN#PLINK
LH R3, TIME3
STH R3,TNHPTIME
MVC TN#PFCPL,=A(NOMOPKTS)
CCRCALL (1)
*
* RELEASE THE LINE - (2) ISSUE LINE RELEASE
L
LNEREL2 EQU *
LA R1,REQPKT
MVI TN#PCMMD,9
MVI TN#PFUNC, TN#PLREL
Xc TN#PLINK, TN#PLINK
LH R3, TIME3
STH R3,TN#PTIME
MVC TN#PFCPL,=A(LRELCMPL)
CCRCALL (1)
i *
.} * RELEASE THE NETWORK
. .
NETREL1 EQU *
LA R1,REQPKT
MVI TN#PCMMD,®
MVI TN#PFUNC, TNMPNREL
XC TN#PLINK, TN#PLINK
LH R3, TIME3
STH R3,TN#PTIME o
MVC TN#PFCPL,=A(NETRLCMP)

*

*

NTREQCMP EQU
: B
LNREQCMP EQU
B

LACMPL EQU
MVI
B

CCRCALL (1)

* DUMMY COMPLETION ROUTINES

%

LNEREQ1
*

INITLNE

* .
SWITCH+1,X'FO'
LDPCW

Figure 2-3. Basic User Program Example (Part 4 of 6}

UP-9746 SPERRY 0S/3 2-26
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

LPCWCMPL EQU *

B LDCDT1
LCDTCMPL EQU *

B LDCIT1
LCITCMPL EQU *

B SETRMRDY
SDTRCMPL EQU *

B SENDMSG _ — - . SR
SENDCMPL EQU +

B LNEREL1
NOMOPKTS EQU *

B LNEREL2
LRELCMPL EQU * :

B NETREL1
NETRLCMP EQU *
ENDCPI EOQJ
*

CNOP @,4

* START CONSTANT AREA
*
CNOP 9,8

REQPKT DS 14F10"
INPTPKT DS 14F'@!
OTPTPKT DS 14F 0"
OUTBUFF DS cL8e -
FAKEBUFF DS Fro!

OUTBUFAD DC AL3(OUTBUFF)
AFAKEBUF DC AL3(FAKEBUFF)

CNOP 0,4 .
TIME3 DC H'3! _
w256 BC X'01e0'
ZEROES DC X'000000:
MSG1 DC C'FOUR SCORE AND S!

DC C'EVEN YEARS AGO O
bC C'UR FATHERS BROUG!'
DC C'HT FORTH ON THIS®
De €' CONTINENT...END' .
CNOP 0,8

*

* PORT CONTROL WORD

*

DCT2PCW DC X‘80201962;

Figure 2-3. Basic User Program Exampile (Part 5 of 6)

UP-8746 . SPERRY 0S/3 2-27
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

-

. * CHARACTER DETECT TABLE
*

DCT2CDT DC X'@012001317001414"
DC X'0000000000000000"
DC X'0014000000141000"
DC X'0000001300001400"
DC X'0000000000000000 "
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000002000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000001300001400"
DC X'0000000000000000"
DC X'0014000000000000"
DC X'0000000000000000"
L DC X'0000000000000000"
. ’ . DC X'0000000000000000"
. DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'0000000000000000"
DC X'O000080000000000"
DC - X'0000000000000000"

*

* CHARACTER INTERPRETATION TABLE
L 4
DCT2CIT DC X'08010000'

DC X'11014800"

DC X'41000000"

DC X'00004100°

DC X'00000000"

DC X'00000000'

DC X'00000000"

DC X'00000000"

'il' END

Figure 2~-3. Basic User Program Example (Part 6 of 6)

<{TN#PFUNC/TN#PFSL) is set.

UP-9746 - SPERRY 0S/3 3-1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

3 Additional User Program
Features

——— s cvmm———— - ——-

3.1. CONTROL PACKET CHAINING

The physical interface supports both data buffer chaining and message chaining. Data
buffer chaining is the linking of control packet buffers for input or output of a single
message. The buffers may be chained through the TN#PLINK field of the control packet
at the time of CCRCALL execution, or they may be linked one or more at a time. The
communications physical I/O control system (CPIOCS) will then chain a following control
packet behind one that is already queued on a particular line. Invalid packet chaining
links cause unpredictable errors. Message chaining is the same as the linking of data
.buffers with the exceptions that more than one complete message

L)

For data buffer chaining, the first control packet of a message or function must have
TN#PFUNC set to TN#PFS (start of message). Output messages must have TN#PFUNC
set to TN#PFL for the last control packet of a message (end of message). You must set
up the first two CPIOCPs before issuing the first CCR call. Failure to do so causes a
chaining check error. It is also required that all control packets within one message have

TN#PMUX set to the same channel and SLCA numbers. : '

Whenever the ‘function or buffer of'a specified control packet reaches completion, the
control packet is scheduled back to your program unless TN#PFLGS is set to TN#PCIX
(buffer completion suppressed), or TN#PESO (error schedule only). If either of these
flags is set and the condition indicated by the flag is met, the packet is released from
the active line queue and placed on a delayed queue for the same line. f the flags are
not set, CPIOCS <checks the compietion status. I TN#PRIM=TN#PEND

" {message/function completion) and TN#PDETL=TN#PBCI (buffer completion), CPIOCS

breaks the link to the chained control packet and proceeds to check for any control
packets on the delayed queue. If TN#PRIM=TN#PEND and TN#PDETL=TN#EOM
(successful) message/function (completion), CPIOCS then checks to see whether any
other control packet is chained to this control packet. If there is, a link is kept intact to
the next control packet that has TN#PFUNC set to TN#PFS. The last control packet in
the chain is indicated with TN#PLINK set to O. If the completed control packet has any
error status in TN#PRIM and TN#PDETL, the chain is kept intact regardiess of the
number of control packets having TN#PFS set.

UP-9746 - ' SPERRY 0S/3 3-2
_ ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)

" NOTE:

If buffer toggling is required, TN=PESO (error schedule only) must not be set in the
TN#PFLGS field of the CPIOCP because it would prevent the buffer completion interrupt
from being reported. The line buffer size must be an even multiple of the SLCA buffer
size specified in TN#PBLTH if using buffer toggling.

Before - scheduling the completed control packet back to your program, together with
any chained control packets, CPIOCS checks if there are any packets on the delayed
queue. If there are, the currently completed packet is chained behind the last packet on
the delayed queue. Status in the currently compieted packet is then moved to the head
control packet on the delayed queue. The head packet on the delayed queue is now
scheduled back to your program at the completion address specified by its TN#PFCPL
field together with all control packets chained to it.

As an example, good use of message chaining is accomplished when chaining an output
poll message to the first buffer of an input response. The poll control packet has
TN#PFLGS set to TNEPESO. The first control packet of the input message does not
have TN#PFLGS set to TN#PESO. If the output poll is successfully issued, your program
will be notified at the completion address of the output control packet when the first
input message control packet is complete. This technique saves scheduling your
program until significant information is available requiring your attention, and it provides
- for issuance of the input function immediately upon successful completion of the poil.

To clarify the preceding discussion on data chaining, we’ll give a coding example of
each of the two types, including the special case of chaining output polls to input
response, and point out the major differences of each.

For data buffer chaining, let's take a case where we want to send three buffers chalned
. together to make one complete message '

Packet Fteld | Actlon
1 TN#PFUNC Set to send data with data chaining first packet
indicator (TN#PSEND + TN#PFS).
TN#PLINK Set to address of second control packet.
2 TN#PFUNC Set to send data (TN#PSEND) (not first packet or
last packet).
TN#PLINK Sei to address of third control packet.
3 TN£PFUNC Set to send data with data chaining last packet

indicator (TN#PSEND + TN#PFL).

TN£PLINK Set to zeros.

UP-8746

SFERRY US/S
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Naturally, all three packets must have the same channel and SLCA number. Control is
. returned at the completion address of the first packet, and completion or error status

will be contained in it. Showing these actions in code we have:

SENDMSG1

SENDMSG2

SENDMSG3

EQU
LA

MVI
MVI
MVI
MVI
MvC
MvC
MVl
MvC
MvC
LH

STH

EQU
LA
MVI

MVI |

MV1
MVI
MVC
MVC
MVC
MVC
LH

STH

EQU
LA

MVI
MVI
MV1
MVl
MvC
MVC
Mve
MvC
LH

STH
LA

*

R1,0TPTPKT1
TN#PCHNL , 2
TN#PPORT, 8

TN#PS80P, 1

TN#PFUNC, TN#PSEND + TN#PFS
TN#PLNKF ,=A(SENDMSG2)
TN#PBADR ,ATEXT1
TN#PFLGS, TN#PESO
TN#PBLTH,=H'15"
TN#PFCPL,=A(OUTCMPL)
R3,TIME3

R3, TN#PTIME

*

R1,0TPTPKT2
TN#PCHNL , 2
TN#PPORT , 8

TN#PS80OP, 1
TN#PFUNC , TN#PSEND
TN#PLNKF ,=A(SENDMSG3)
TN#PBADR ,ATEXT2
TN#PBLTH,=H' 17"
TN#PFCPL,=A(QUTCMPL)
R3,TIME3

R3, TN#PTIME

*

R1,0TPTPKT3
TN#PCHNL , 2
TN#PPORT, 8
TN#PS80P, 1

TN#PFUNC, TN#PSEND + TN#PFL
TN#PLNKF,=X' 00091
TN#PBADR, ATEXT3
TN#PBLTH,=H'34"
TNH#PFCPL,=A(OUTCMPL)
R3, TIME3

R3, TN#PTIME
R1,0TPTPKT1

CCRCALL (1)

{continued)

UP-9746 . SPERRY 0S/3 3-4
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

OUTCMPL EQU * completion routine ' Ty

EOJ

OTPTPKT1 DS 14F'0’

OTPTPKTZ DS 14F'0!

OTPTPKT3 DS 14F'0"

. ATEXT1 DC AL3(TEXT1)

“TEXT1 DC C'NOW IS THE TIME'

ATEXTZ2 DC AL3(TEXT2)

TEXT2 DC C'FOR ALL GOOD MEN'

ATEXT3 DC AL3(TEXT3)

TEXT3 DC C'TO COME TO THE AID'
DC C' OF THEIR PARTY!
END

As you can see, this has the effect of chaining the data buffers together with one
service request call. The messages or text shown in the buffer are small for the sake of
brevity — this type of chaining is normally performed where the message is too large for
one buffer — therefore, it is usually only part of the overall message.

- Message chaining, as opposed to data buffer chaining, consists of chaining complete
* messages together — still with the use of only one service request call. Let's use three
messages again (as opposed to three buffers) to show the differences.

Packet Field , Action
1 TN#PFUNC - Set to send complete message (T N#PSEND +
TN#PFSL). , L
" TN#PLINK - Set to address of second control pac‘ket.
TN#PFLGS Set to suppress notification until all messages
complete (TN#PESO).
2 TN#PFUNC Set to send complete message (TN#PSEND -+
TN#PFSL).
TN#PLINK Set to address of third control packet.
TN#PFLGS Set to suppress notification until all messages

complete (TN#PESO).

3 TN#PFUNC Set to send complete message (TN#PSEND +
TN#PFSL).

TN#PLINK Set to zeros.

Wt w7

ICAM COMMUNICAﬁONS PHYS,ICAL INTERFACE (CP1)

Again, all three packets must have the same channel and SLCA number. Control and
status are returned to the first packet. As you can see, the only difference in the coding
would be to set the function byte to send complete messages.

Finally, message chaining can be used to perform the special case of chaining an output
poll to an input response. In this case, the messages are still complete messages;
however, the output packet uses the TN#PLINK field to chain the input packet address.
For this special case, the TN#PESO bit is set to suppress notification of successful
completion until the input packet without this setting has been received. Therefore we

would have:
Packet

1

Field

TN#PFUNC
TN#PFLG

TN#PLINK
TN#PFUNC

TN#PFLG
TN#PLINK

Action

Set to complete output message (TN#PSEND -+
TN#PFSL). ‘

Suppress notification until input complete
(TN#PESO).

Set to address of input packet.

Set to complete input message (TN#PEDI <+
TN#PFSL).

Set to zero.

Set to zero.

Since a poll is actually an output message with. no text, an example of buffer chaining a
poll to the input response might look like the following:

SENDPOLL EQU
’ LA
MVI
MVI
MVI
MVI
MVC
MVC
MVI
MVI
MVC
MVC
MVC
LH
STH
LA
MV1
MVI
MVI
MVI

*

R1 OTPTPKT Map

TN#PCHNL, 2

TN#PPORT, 8

TN#PS80OP, 1

TN#PFUNC, TN#PSEND + TN#PFSL

OUTBUFF,POLL

TN#PLINK ,RCVPKT Chain packet address

TN#PCMMD , 0 Clear command byte _
TN#PFLGS , TN#PESO Suppress until chaining complete
TN#PBADR , OUTBUF AD' ’

TNH#PBLTH, =H'5"

TNBPFCPL ,=A(INPUTMSG)

R3, TIME3
R3, TN#PTIME
R1, INPTPKT
TN#PCMMD , @
TN#PCHNL , 2
TN#PPORT, 8
TN#PS80P, 1

{continued)

uP-9746

SPERRY 0S/3 3-6
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))

MV1
xC
MvC
MvC
MVC
LH
STH
LA

TN#PFUNC, TNA#PEDI + TN#PFSL

TN#PLINK, TN#PLINK Clear chaining
TN#PBADR, INPTBFAD

TN#PBLTH,=H'256"

TN#PFCPL,=A(INPUTMSG)

R3, TIME3

R3, TN#PTIME

R1,0TPTPKT Reload first packet

CCRCALL (1)

INPUTMSG EQU

TIME3 DC
OTPTPKT DS
INPTPKT DS
OUTBUFAD DC
INBUFAD DC
OUTBUFF DS
INPTBUFF DS-
POLL DC

ZEROES DC
END

* Completion routine

HI3|

1% F'o

14 Fro!
AL3(OUTBUFF)
AL3(INPTBUFF)
CL64

CL6&
X'0120507003"

o w»n:
QD e
O -
T o
> -~ m

X'oo0000!’

' ‘ Note that the comp!etion address of the first packet is the place in your program where
control is passed. When control is returned, the logical status of the last packet (or the
packet with the error) will overlay that of the first packet.

3.2. READING THE SLCA WORDS AND TABLES

Sometimes it may be desirable to know the particular line discipline that is already
resident on a particular port. Or, for diagnostic purposes, it may be desirable to know
the conditions that existed both before and after an input/output operation on a port.
The physical interface of ICAM gives you the capability of obtaining this information
with the diagnostic commands to:

B read a port control word;

® read a character detect table; and

| read a character interpretation table.

UP-8746 SPERRY 0S/3 3-7
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

3.2.1. Reading the Port Control Words

The READ PORT CONTROL WORD command is a diagnostic command that causes the
SLCA to transfer the control bytes associated with the addressed SLCA to the
processor. When it is issued, the 32 bytes associated with the port control word are
read. ‘

Therefore, if we allocate space in our program for the port control word information and
construct a control packet with this command, we can look at our control information at
any time for any port. This may be done both before and after any input or output
function completion for comparison purposes. To perform this procedure, we would
first do a network request and line request as described in 2.2 and 2.3. Then, when we
initialize our line, we perform a read port control word function in our control packet.
This action is, in effect, the opposite operation of loading the port control word
described in 2.4.2.

Field Action
- TN#PFUNC Set to read port control word (TN#PFSL + TN#PRPCW).

TN#PBLTH Not required, CPIOCS automatically transfers 24 bytes in order
shown.

-~ TN#PBADR Set to address of buffer that is to contain the desired information. |
These actions can be performed with the following typical coding:

RDPCW EQU *

LA R1,REQPKT Map

MVI TN#PCMMD,0 Clear

MVI TN#PFUNC, TN#PFSL+TN#PRPCW Set to read PCW

MVC TN#PBADR,APCW "~ Set buffer address

Xc TN#PLINK , TNEPLINK No chaining

MVC TN#PFCPL,=A(RDPCWCMP) Set completion address

CCRCALL (1)

RDPCWCMP EQU * Completion routine

In your nonexecutable code, you would allocate 24 bytes with a label of PCW.

APCHW bDC AL3(PCW)
PCW DC 6 F'o!

UP-9746 - SPERRY 0S/3 3-8
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

3.2.2. R;ading the Character Detect Table

The READ CHARACTER DETECT TABLE command is a diagnostic command that
transfers a command-specified 256-byte character detect table to the processor. When
it" is issued, the table words are read sequentially beginning with address 0016 through
FFie. The command requires that an SLCA number referencing the table be given. (You
will recall that each SLCA references at ieast one of the two character detect tables.)

To perform this function, we would do a network request and line request as described
in 2.2 and 2.3. When we initialize our line, we would then perform a read character
detect control table function in our control packet. This action is, in effect, the opposite
operation of loading the character detect table described in 2.4.3.

TN=PFUNC Set to read character detect table number 1 (TN#PFSL+TN#RCDn).

TN=PBLTH Not required. CPIOCS automatically transfers 256 bytes sequentially.

TN=PBADR Set to address of buffer that is to contain the desired information.
These actions can be performed with the following typical coding:

RDCDT1 EQU *)

LA R1,REQPKT Map

MVI TN#PCMMD , 0 Clear

MV] TN#PFUNC, TN#PFSL+TN#PRCD1 Set to read character detect

' table no. 1
MVC ‘TN#PBADR ,ACDT1
. XC TN#PLINK, TN#PLINK
" MVC TN#PFCPL,=A(RDCD1CMP)
CCRCALL (1)

RDCD1CMP EQU *

Again, sufficient storage would have to be allocated in your nonexecutable code to hold
the number of tables you want to read (at 256 bytes per table) either totally or one at a
time: For one table, we would have merely:

ACDT1 EQU AL3(CDTD
thT1 DC 64 F'o!

UP-9746 SPERRY 0S/3 o 3-9
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

3.2.3. Reading the Character Interpretation Table

The READ CHARACTER INTERPRETATION TABLE command is a diagnostic command
that transfers a command-specified 16-word character interpretation table to the
processor. When it is issued, the table words are read sequentially beginning with word
00+ and ending with word OFis. The command requires that an SLCA number
referencing the table be given, since each SLCA references one of the character
interpretation tables. (See 4.2.1.)

To perform this function, we would do a network request and line request as described
in 2.2 and 2.3. When we initialize our line, we would then perform a read character
interpretation table function in our control packet. This action is, in effect, the opposite
-operation of loading the character interpretation table as described in 2.4.4.

Field Action

TN#PFUNC Set to read character interpretation table number 1 (TN#PFSL
+TN#RCI1).

TN#PBLTH Not required. CPIOCS automatically transfers 16 words sequentially.
TN#PBADR Set to address of buffer that is to contain the desired information.
: . -~ These actions can be performed with the following typical coding: |

ROCIT1 EQU +

LA R1,REQPKT Map

MV] TN#PCMMD , 0 Clear

MVI TN#PFUNC ,TN#PFSL+TN#PRCI1 Set to read character interpretation
. table no. 1
MVI TN#PBADR ,ACIT1 ‘
XC . TN#PLINK, TN#PLINK
MvC TN#PFCPL,=A(RDCICMPL)
CCRCALL (1)

RDCICMPL EQU *

Sufficient storage must be allocated in your nonexecutable code to hold the number of
tables you desire to read (at 16 words per table). For one table, this would merely be:

ACIT1 DC AL3CCITD
CIT1 DC 64 F'0!

UP-8746 SPERRY 0S/3 3-10

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

3.3. READ LINE LINK TABLE
The read line link table function transfers the last 16 bytes of the line link table
pertaining to the port specified to the user program’s buffer area. To issue a read line
Jlink table command, the following actions must be performed on the specified fields:
Field Action
TN#PMUX Set byte O (TN#PCHNL) to 02, OD; or OF, depending on your System
80 model type (see Table A-6). Set byte 1 to the SLCA number and
byte 2 to the port number.
TN#PBADR Set to the buffer address into which the information is to be read.
TN#PBLTH Not interpreted. The 16 bytes are transferred regardless of value.
TN#PFUNC Set to TN#PRLLT. Bits O and 1 not interpreted.
TN#PLINK Set to O.

Again, we would load our control packet and map it. To perform the actions, our
coding might appear as:

LA R1,REQPKT. ﬁap ST T T s

MVI TN#PCHNL,2 ' Set to channel 2
- ’ MVI TN#PPORT,S8 Set to port 8

MVI TN#PS80P,1
MV1 TN#PCMMD , 0 Clear
MVI TN#PFUNC,TN#PRLLT Set command
XC TN#PLINK, TN#PLINK No chaining

" MVC = TN#PBADR,LNELNKTB. Set buffer address

© MVC TN#PFCPL,=A(RDLLTCMP) = Set completion address

CCRCALL (1)

RDLLTCMP EQU = Completion routine

After checking our status for good completion, we can look at our data in our input
buffer. However, using our dummy control section technique, we must take into account
the fact that the line link table is a work area and only the last 16 bytes are read into
your user program. If you load a register with the address of the 16-byte area into
which the line link information is to be read, the value must be modified by 2016 to be
used properly as a cover for the DSECT. That is, TN#PLINE is the label of the DSECT,
but to map the labels on your storage area (arbitrarily named LNELNKTB in the
example), we would have to load the register with the storage area label and a using
statement with an address of TN=PLINE+20. This would align the relevant DSECT
labels with our buffer for the line link table. ‘

up-9746 SPERRY 08/3 3-11

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Looking at our coding, we could have something like the following:

LA R7,LNELNKTB
USING TN#PLINE+20,R7

CLC TN#PFLGT, TN#PDOWN Line down

gLC TN#PFLGT, TN#PALLO ‘ Line allocated
zLC TN#PFLGT, TN#PAPND Allocation pending
ZLC TN#PFLGT , TN#PEON : EON required

2LC TN#PFLGT, TN#PNEP No physical line
B

or we could interrogate any other bytes of our line link table buffer area using the
relevant DSECT labels.

3.4. CPIOCS TRACE

ICAM has a trace facility that saves mformatnon at critical pomts within CPIOCS and user

-program interface code.

For details on the ICAM trace facility, see the ICAM utilities user guide, UP-9748
(current version).

3.5. AUTOMATIC COMMANDS

Unless a diagnostic user specifiés thai automatic comfnands be subbressed

(TN#PFLGS=TN#PS2F), CPIOCS executes commands automatically in response to the
following conditions:

1. a control packet time-out occurs; and
2. a unit check interrupt occurs.
CPIOCS does the following:

B In response to a control packet time-out (TN#PTIME decremented to 0), CPIOCS
issues a halt-device command.

® In response to an error interrupt, @ sense command is issued. All sense bytes are
placed in the CPIOCP.

Whenever there is an outstanding attention condition for a line, CPIOCS takes the next
control packet you issue and forces the sending of the sense command. This is done to
fulfil an SLCA requirement that a sense command be issued following detection of an
unsolicited status.

UP-9745 - ' SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

3.6. CANCEL CONDITIONS

There are three error conditions for which user program interface code will cancel the
user program foliowing execution of a CCRCALL. The first condition is when register 1
or the address in TN#PLINK of any chained control packet does not specify a full-word
boundary for the control packet address. The second condition is when register 1 or
the address in TN#PLINK of any chained control packet indicates that the entire control
packet is not within the user program boundary. The third condition is when there is no
available task identity. Under this condition, TN#PRIM is set to TN#PROGE, and
TN#PDETL is set to TN#PMNCE. Refer to the OS/3 system messages
programmer/operator reference, UP-8076 (current version) for a listing of ICAM cancel
identification codes.

UP-9746 - SPERRY 0§/3 4-1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

4. Single Line Communications
Adapter Subsystem

4.1. GENERAL

The single line communications adapter (SLCA) is a microprocessor communications
controller that coordinates data transfer, status, and commands between the central
processor and remote devices via communications lines. In the basic System 80 Models
3-6, up to two SLCAs are supported. With a single input/output microprocessor
attached, Models 3-6 support one to eight SLCAs and Model 8 supports up to 14
SLCAs (Figure 4—1). With a dual input/output microprocessor attached, Model 8
supports up to 28 SLCAs. An IOMP is connected to the SLCAs via the muitiple line
communications multiplexer (MLCM), also known as the communications muitiplexer
.ochannel. For a more detailed description of the SLCA, see Section 3 of the System 80
IOMP programmer reference, UP-8909.

-— — -—

' MAIN STORAGE
PROCESSOR
- IOMP-
CENTRAL
MICRO-
PROCESSOR

MLCM 1 SDMA*

P o
D cee (=14 eoe D
SLCAs

*Shared direct memory access channel (device channel)

Figure 4—1. System 80 -Model 8 with Single Input/Output Microprocessor

UP-8746- SPERRY 0S/3 4-~2
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

- The SLCAs can be configured to support half-duplex or full-duplex communications
lines. Logic functions can be dynamically configured by down-line loading the SLCAs
random access memory (RAM) by ICAM. The RAM can be loaded by ICAM and
configured to operate in the basic read only memory function, or according to one of
the following preset features (Table 4—1):

s Communications muitiplexer module synchronous mode
® Communications multiplexer module asynchronous mode
® Universal data link control (UDLC) mode

In the communications physical interface, you must construct your own tabies of logic
functions in an ICAM user program and load them into the read only memory via your
user program.

Table 4—1. Single Line Cornmunications Adapters

Feature interface Transmission | Half Duplex (HD) | Async/ Bit/ Protocol Microcode
Number Specification | Rate (bits/s) Full Dupiex {FD) Sync Byte | (See notes.) | Name &
F2788-02 RS-232 9600 HD Sync Byte 1 CMM1
B e 3:4800?*‘, R o b by
F2788-03 MIL-STD-188 9600 HD Sync Byte 1 - CMM1
R : . 4800 FD
F2788-03 RS-232 9600 HD Sync Byte NTR NTR1 -
. 9600 FD
F2788-04 MIL-STD-188 9600 HD Syne Byte NTR NTR1
-F2798-00 | RS-232 . 19200 . HD Sync | Bit _ 2 _ UDLC
‘ ' 9600 : FD- . :
F2799-00 RS-232 8600 HD Sync Bit 2 — cvm2
: 4800 FD
F2799-01 MIL-STD-188 9600 HD Async Byte 3 CcvM2
. ~ 4800 FD
F2986-05 CCITT V.35 56000 HD Sync Byte NTR NTRS
56000 FD
F37_94 RS366 Autodial
F2986 00 | CCITT V.35 56000 ’ FD Sync Byte BSC BSCS
NOTES

1. Any standard synchronous byte protocol, e.g., UNISCOPE, BSC, 1004, NTR, or remote workstation

2. Handles any standard bit-oriented protocol, e.g., X.25 on UDLC ABM.
3. Any standard ‘asynchronous protocol, e.g., UNISCOPE display terminal, teletypewriter, DCT 500, UTS 10
4. The microcode name is actually eight characters. The first four specify the microcode name, the next two specify the

release version, and the last two are zeros; for exampie, CMM1F000. The release version is supplied in the software
release description (SRD) for each release. .

UP-9746 SPERHY US/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

4.2. CONSTRUCTING THE SLCA WORDS AND TABLES

As discussed in 2.4, each port in the SLCA requires a port control word, a control
character detect table, and a control character interpretation table. A table of each type
is allocated in the SLCA. One of the functions of the port control word is to reference
one of the character detect and character interpretation tables. These tables are
constructed to detect and interpret the control characters necessary for the particular
line discipline you wish to support. At the physical level interface, you must construct
these tables within your own user program.

In the following sections, we’ll discuss how to construct these words and tables from
listings of line discipline common characteristics. These listings are shown within the
text as we proceed to build our words and tables. Section 5 contains table summaries
of the initialization parameters created from these lists for currently supported terminals.
Therefore, we’ll first discuss how to generate the words and tables from the
characteristics for the DCT 2000, since this was the terminal used in our example in
2.4. Then we'll show how the tables of initialization parameters may also be used to
directly code the control tables when you are using ICAM-supported terminals. In this
case, you will see that the tables arrived at by either method are identical.

4.2.1. How to Construct a Port Control Word

A port control word consists of four port control bytes that give specific information to

the SLCA. Its basic format is:

byte 1 . byte 2 byte 3 byte 4
where:

byte 1
Contains synchronous/asynchronous characteristics.

byte 2
indicates the character detect table to be used and contains character length
and asynchronous line speed, if applicable. :

byte 3
Indicates the character interpretation table to be used, the start character for
BCC accumulation, and parity type.

byte 4

Concerns synchronous/asynchronous selection and timing values and ranges.

UP-9746 ‘ SPERRY 0S/3 4-4
: ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

-

Figure 4-2 shows byte 1 in more detail. _

6 1 2 3 4 8 6 7

COMMAND FUNCTIONS (MUST BE ZERO)
MODIFIERS (MUST BE ZERQ)
CHARACTERISTICS

Synchronous Operation Asynchronous Qperstion
21t Characteristic o Charscteristic
X 0 input (specific start characters) 00 Invalid®
X 1 input (any nonsync start) ‘ 01 Output {1-unit interval stop eiement)
o X Output (2 pads + 2 syncs) 10 Qumput (1-1/2-unit intervai stop elements)
1 X Qutput {4 syncs) 11 Qutput {2-unit interval stop elements)

* Results in program-alert sense and unit-check sense.

* NOTE:

x indicates a “‘don’t care’ bit.

. Figure 4~2. Byte 1. of Port Control Word

Therefore, if, for example, our terminal were a synchronous operation with four sync
characters on output, and assuming zeros whenever a bit setting is not specified, we
" would have: R A L . S .

0 1 2 3 4 5 6 7

1 0 0 0{0 0 O O =X80

4 SYNC
CHARACTERS

B Ur-3/749 SrcHRY UoS/S H=3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPH

Figure 4-3 shows the format and characteristics for byte 2. Table 4-2 gives
. asynchronous lines speeds.

0 1 2 3 4 5 6 7

| 1
CHARACTER DETECT CHARACTER ASYNCHRONOUS
TABLE SELECT (ALWAYS 00 LENGTH LINE SPEED (Table 4-2)
FOR SYSTEM 80)
Bit Bit Character Length : L . -
o 3 Character Detect Table 7 3 (exciuding parity bit) :
00 Tabile 1 00 5 bits per-character
o1 Table 2 o1 6 bits per character
10 7 bits per character
11 8 bits per character

Figure 4~3. Byte 2 of Port Control Word

. -~ " ‘ " Table 4-2. Asynchronous Line Speeds
Bit Asynchronous Spesd (bps)
4567
0000 Not used (invalid °)
0001 50
0010 B
0011 110
0100 134.5
0101 150
0110 300)
0111 600
1000 900
1001 . 1200
1010 1800
1011 2400
. 1100 3600
. 1101 4800
1110 7200
1111 9600

*Results in program-aiert-sense and unit-check status

UP-9746

SPERRY 0S/3

4~6
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPj)

First, we specify character detect table 1 and assume our terminal needs 7-bit character
length. The second byte of our port control word would now look like: .

0 1 0]0 O 0 0 =X20 -

b t NOT ASYNCHRONOUS -

™ THEREFORE, ASSUME ZERO. -

| 7-BT

- CHARACTER DETECT TABLE 1

———

Figure 4—4 shows the format and characteristics for byte 3 and Table 4-3 gives its
parity functions.

— PARITY FUNCTIONS (See Table 4~3.)
INCLUDE EXCLUDE START CHARACTER

CHARACTER INTERFRETATION TABLE 1~ -
(ALWAYS 00)

Figure 4~4. Byte 3 of Port Control Word

UP-8746

A SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

4-7

Table 4-3. Parity Functions for Port Control Word Byte 3

Bit LRC : CRC
4567 e c'?‘om f c:::tymr Selactior g ?:ot.:mﬁn Applioation
0 00O | None | None None None None
000 1]|0Odd | Even None None None | CTMC/DCS compatible
0010)|0dd | Odd None None None | CTMC/DCS compstible
00 11| Even | Even None None None | CTMC/DCS compatible
0100 | Even | Odd None None None | CTMC/DCS compstible
0101 | Even Even Even Even None ANS! async standard
0 1 10 | Invalid| Invalid invalid Invaiid None
01 11| invalid| Invalid Invaiid | Invalid None | NTR/1004 (synchronous)
1000 | Odd* | Even* Even® Even® None | 1004 (DLT-1 or DLT-3)
100 1| 0dd | Oddt Eventt | Odd None | ANSI sync standard
1010/|0dd | Odd Even Even None | U300 (synchronous)
101 1] 0dd® | Odd* Even® Odd* - None BSCASCll'nonmspa;om'
1100] Oddt { Odc* invalid | invaiid 1 BSC ASCll transparent
{Note 2) '
110 1| invaiid| Invalid Invalid | Invaiid 1,4 BSC EBCDIC or 6-bit code
(Note 2)
1110/ inveiid] Invaiid invalid invaiid 2 ceT
1111 | invalid] Invalid invelid | invalid | s | Selectabie CRC

L ' {not used)

* invalid in asynchronous mode

1t Even in asynchronous mode

11 Odd in asynchronous mode

NOTES (apply to synchronous mode only):

1.

CRC 1: x'¢ + x'™ <+ x2 + 1 (CRC-16)
CRC 2: x* + x® 4+ x5 + 1 (CCITT)
CRC 3: 16-bit strap selected (special order)
CRC 4: x™ + x!" + x3 + x2 + x + 1 (CRC-12)

When parity function 1100; is used, 7-bit character size must be specified. When parity
function 1101, is used, 6-bit or 8-bit characier size must be specified. When parity function

1110: is used, 8-bit character size must be specified.

Next, we must use character interpretation table 1. For our discipline, we want to

include the start character in the block check character count (BCC) and we want ANSI
standard parity, which means even longitudinal redundancy character (LRC) and odd

vertical redundancy check (VRC).

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))

Going to Our tables and selecting the relevant settings, we have for byte 3:

0 1

2 3 4 5 6 7

0 0

o

1 0 0 1]=X19

g

? ,..41 -

—

SR ANSI STANDARD

INCLUDE START CHARACTER

CHARACTER DETECT TABLE 1

Finally, Figure 4-5 shows port control byte 4. Table 4—-4 gives high and low elapsed

time ranges.

(ALWAYS 00 FOR AN SLCA)

TIMER
VALUE

L TIMER RANGE (BIT 7 DETERMINES HIGH
RANGE WHEN SET AND LOW RANGE
WHEN ZERO.} '

SYNC/ASYNC msmmwmmemm

SYNC/ASYNC s

4 Y

46

Bit

Synchronous/Asynchronous Function

L B
(See Tabie 4—4.)

To get the data placed in the SLCA buffer when a CPIOCP input time-out occurs, you

00
01

~ Asynchronous transmission is specified

Synchronous transmission is specified

Figure 4~5. Byte 4 of Port Control Word

must specify a line procedure timer value.

SPERRY 0S/3 4-8

UF-8746

SPERRY OS/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Table 4-4. High and Low Elapsed Time Ranges

High Range* Low Range
Controi Byte 4 Bit Elapsed Time (seconds) Control Byte 4 Bit Elapsed Time (seconds)
0123 Maximum Minimum 0123 Maximum Minimum
0000 (Timer stopped) | (Timer stopped) 0000 (Timer stopped) | (Timer stopped)
0001 {Timer stopped) | (Timer stopped) 0001 (Timer stopped) | (Timer stopped)
0010 0.142 0.071 0010 4544 2.272
0011 0.213 0.142 0011 6.816 4.544
0100 0.284 0.213 0100 9.088 6.816
0101 0.355 0.284 0101 11.360 9.088
0110 0.426 0.355 0110 13.632 11.360
0111 0.710 0.426 0111 15.904 13.632
1000 0.994 0.710 1000 18.176 15.904
1001 1.278 0.994 1001 20.448 18.176
1010 1.562 1.278 1010 22.720 20.448
ETEE 1848 1.562 1011 24.982 22.720
1100 2.130 1.846 1100 27.264 24.992
1101 2.414 2.130 1101 29.536 27.264
1110 2.698 2.414 1110 31.808 29.536
1111 3.834 - 2.698 1111 34.080 31.808

* For this timer range, the timef will reset and continue timing when a SYN character is sent or received in addition to
those reset conditions previously discussed.

So, for this byte we’ll select synchronous transmission, and, for the sake of simplicity,
we’'ll not use the timer. Therefore, we have merely:

0123

4567

0000

0010

- X02'

0

UP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP!)

4-10

Summing it all up, our port control word looks like:

1 2 3 4 5

6 72 0 1 2

3 4 5 6 7 0 1

2 3 4 5 6 7 0 1

1 0 0 0|0 O O O}J}O O 1 OO O O O 0 0 O 1}j1 00 1]}J]0 ©0 0 0jl0 O "
—— ’ A m————
4 SYNC 7-BIT CHAR. START CHAR. . SYNCHRONOUS
CHARACTERS LENGTR IN LRC UNE
USE CHARACTER USE CHARACTER ODD VRC PLUS
DETECT TABLE 1 INTERPRETATION EVEN LRC
TABLE 1 (ANS! SYNC
STANDARD}
\ i \ i \
80 20 19 a2 16

Thus, we now add a label and place this word in the nonexecutable portion of our code
as:

DCT2PCW DC X '8e201902'

~ This word is placed in our output buffer at line initialization time with:

MVC OUTBUFF,DCT2PCW

The port control word can then be loaded as described in 2.4.2.

If you are using a standard remote device handier (that is, a handler written for a device
currently supported by ICAM), the tables in Section 5 can be used directly to construct
your port control word. Again, using the DCT 2000 as our example, Table 5~7 shows
the following:

Byte | Bn ‘Y:i:::y, Function
1 0.1 10 Four SYN characters on output
2 2,3 10 Seven-bit character length
3 3) 1 Include start character in LRC
4~7 1001 Odd VRC plus even LRC
4] 001 Synchronous line

UP-9746 SPERRY 0S/3 . 4-11
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Coding this directly gives us:

: |
. BYTE 1 BYTE 2 ! BYTE 3 BYTE4
6t 2 3 4 5 6 7 0 1 2 3 4 8§ 6 7 0 1t 2 3 4 5 6 7 0 1 2 3 4 5 €6 7

o | 10 1,100 1} -0 0 1

and, assuming all zeros for any bits not specified, we would again have X‘80201902" -
the same value as obtained from our previous characteristic tables for our hypothetical
case. Thus, it is easier to use the tables already constructed for us when we have one
of the supported devices; we must use the characteristics table when we have a unique
device.

4.2.2. How to Construct a Character Detect Table

The character detect table is used to detect single or muitiple function characters. It
uses the low-order 5 bits of a byte to signify the particular function. When bit 3 is not
set, it signifies a single function; when it /s set, it signifies a multiple function. For
instance:

SUPPRESS CHARACTER -

SINGLE FUNCTION

o e g e

b

NN J——— - —

. SEE CHARI:CTER INTERPRETATION TABLE WORD 3

_ .\ MULTIPLE FUNCTION

e ————
- T -

UP-8746. SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

4-12

Table 4-5 gives the functions in effect when bit 3 is zero and the detected character is
preceded by a DLE character.

Table 4-5. CD Table Functions When Preceded by DLE Character

Table 4—6 gives the functions in effect
not preceded by a DLE character.

when bit 3’isl z.e.}o‘ ;nd tl;t.ew aétemed character is

Table 4-6. CD Table Funciions When Not Preceded by DLE Charscter (Part 1 of 2)

Bit Position
Designation Function

34567

00000 NO-OP (Data) Produces no control function

0000 1 NO-OP Produces no control function

00010 NO-OP Produces no control function

000 11 SUPPRESS CHARACT ER' The character is suppressed and not transferred to
the processor. Active on input only.

00100 START-END Produces both START CHARACTER and END
CHARACTER functions and is used for single
character replies, for example, ACK and NAK. This
function is active only if a BCC is not being
accumulated when this character is detected.
Generates DEVICE END status.

Bit Position
Designation Function
34567
01000 NO-OP Produces no control function
01001 NO-OP Produces no control function .
01010 END-CHARACTER Stops input data and causes DEVICE END status to
be set. Ends two character sequences, DLE O and
DLE NAK. This function is active only if a BCC is
not being accumulated when this character is
detected.
01011 NO-OP Produces no control function
01100 NO-OP Produces no control function
01101 MONITOR Causes UNIT CHECK status and the MONITOR
sense bit to be set. Active only sfter detection of a
START CHARACTER and before detection of an
END CHARACTER. Input or output data flow stops
until 3 new command is received.)
01110 NO-OP Produces no control function .
o1t111 NO-OP Produces no control function

UP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Table 4-6. CD Table Functions When Not Preceded by DLE Character (Part 2 of 2)

Bit Position Desianation Functi

signa nction
34567 ¢ "

00101 MONITOR Causes UNIT CHECK status and the MONITOR
sense bit to be set. Active only after
detection of a START CHARACTER and
before detection of an END CHARACTER.
input or output dsta flow stops until a new
command is received. Nommally used to
monitor output text for illegal text characters

00110 NO-OP Produces no control function

00111 NO-OP Produces no control function

When bit 3 is set for multiple functions, the second half-byte now refers to a specific
word of a character interpretation table to supply the additional information. Table 4~7

describes the format in this case.

Table 4~7. CD Table Codes Accessing the C! Table

Bit Position

-~ | 34567

Function .

100

1

1

o O O O O

'y

1

1

1

1

1

1

0

1

SYN® — See word O (C! table access for asynchronous mode).

DLE® — See word 1.
Cl table access only — See word 2.

Cl table access only ~ See word 3.

. Cl table access only — See word 4.

Cl table access only - See word 5.
Cl table access only ~ See word 6.
EOT* - See word 7.

C! table access only ~ See word 8.
Cl 1able access only = See word 9.
Cl table access only — See word 10.
C! table access or'ny - See word 11.
Cl! table access only — See word 12.
Cl 1able access only — See word 13.
CI table access only ~ See word 14.

C! table access only — See word 15.

* These codes access the Cl table and also produce hardwired functions;
therefore, they must be used only for the indicated control character. An input
DLE EOT sequence always causes a disconnection when the 11'¢ and 177
codes appear in the Cl table.

UP-9746 SPERRY 0S/3 4~-14
: ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Armed with this format information, as each input or output character is received, it is
used as an address to access the character detect table. The control code is read from
the table and the relevant functions are produced. Since either parity may be used, this
fact must be taken into consideration when constructing the table. That is, output
characters address a table before a parity bit is inserted (when used). input characters
are used to address the table before the parity bit is stripped.

To make it easier for you to see an example of this, the control code ASCll hexadecimal
values are shown here with their functions.

0 NUL 08 BS 10 DLE 18 CAN
o1 soHV| o8 wT 1n oV | 19 mv
02 ST OA LF 12 o2 1A suB
s exV| o8 W 13 DC3 1B ESC
o eor¥| oc 14 DC4 1c Fs

05 ENQ o0 CR 15 nakd | 10 Gs

o6 ack¥| o so 6 sw¥| 1 &s

o7 e ¥| o = 17 EB | 1F uUs

In constructing a table then, let’s assume we need the codes checked, which in reality
are the codes required for the DCT 2000. We ailso require that, on input, we can have
only an ETX, ACK, and DC1. Since input means before parity is stripped, on input these
characters would look like 83, 86, and 91, respectively, since the most significant bit
would be set. :

- As we mentioned, the character itself is used as an address to access the table;
therefore, the tabie must be constructed similar to a translate table (Figure 4—6).

UP-9746 SPERRY 0$/3 4-15
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)
00 01 02 03 04 05 06 07 | 08 09 OA OB OC OD OE OF
0000 12 00 13 17 00 14 14 | 00 00 00 00 0O 00 00 00
10{00 14 00 00 OO 14 10 00 [00 03 00 00 00 00 00 00
2000 - 00
30 j00 00
40 {00 - 00
50 oo - 00
60 |oo 00
70 oo - 00 .
80/00 00 00 13 00 00 14 0O | 0O 00 00 00 00 00 00 00
9000 14 00 00 00 00 00 00 | 0O 00 00 0O 00 00 00 00
A0|00 - 00
80|00 - 00
coloo - 00
00|00 - 00
- o : EO |00 - ———
., Fo l00 00

Figure 4-6. Character Detect Table

This tells us that, when an SOH (X'01°) is detected, the SLCA will go to location X'01’
in our character detect table to find the functions to be executed. In this case, the
function is a X'12’. Since bit 3 is set in a X"12°, we know from our previous discussion
that it signifies a muitiple function, which is contained in word 2 of the relevant
character interpretation table. An ETX (X‘03’) would access location X'03° of our table,
which in turn signifies a muiltiple function contained in word 3 of a character
interpretation table.

UP-9746 . SPERRY 0S/3 4-16
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Coding our table as shown then, assuming all locations not used to be zeros, and giving
the table a label, we have:

DCT2CDT ©OC X'00 12 00 13 17 00 14 14 00 00 00 0 00 00 00 00' 00-OF
© X'00 14 00 00 00 14 10 00 00 03 00 00 00 00 00 00' 10-1F
X'00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 Q0' 20-2F
X'00 00 00 00 00 00 00 00 00 OO 00 00 OO0 00 00 00' 30-3F
X'00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 O0' 4LO-4F
X100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00' 50-5F
X100 00 00 00 00 00 00 00 G0 OO 00 00 00 00 00 00*' 69-6F
X'00 00 00 00 00 00 00 00 00 00 00 Q0 00 00 00 OQ' 79~-7F
X'00 00 02 13 00 00 14 00 00 00 00 00 00 00 00 00' 80-8F
X'00 14 00 00 00 00 00 00 00 00 00 00 00 00 00 09' 90-9F.
X'00 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00* “AG-AF
X'00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00' BO-BF
X100 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00' CO-CF
X'00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00' DO-DF
X'00 20 00 00 OO 00 20 00 00 00 00 00 00 Q0 OO0 OO' Ee-EF
X'00 00 00 00 20 00 00 00 00 00 OO0 00 00 00 00 00' FO-FF

Again, as in the port control word, if you are using a standard supported device, such
as the DCT 2000, the relevant table in Section 5 can be used directly to construct your
character detect table. For the DCT 2000, the following initialization parameters are
summarized: ' « '

ASCII CD Tabl
Character ‘1 Name | Setti Meaning of Setting
(hexadecimal) (hexadecimal)
01 . SOH 12 -See Cl word 2
03 - I ETX 13 See Cl word 3
04 EOT - 17 | See Cl word 7
06 ACK 14 - See Cl word 4
07 BEL 14 : See Cl word 4
11 DC1 14 See Cl word 4
15 NAK 14 See Cl word 4
16 ' SYN 10 See Cl word O
19 EM 03 Suppress characteér (input)
83 ETX 13 See Cl word 3
83 ACK 14 See Cl| word 4
91 DC1 14 See Cl word 4
NOTES:

@ These characters occur during input only (before parity is stripped
from the character).

@ All other CD table settings will be zero, implying data characters.

o

UP-9746 ~ SPERRY 0S/3 4-17
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

With this method, the value contained in the CD table setting column is placed in our
. coded table at the location corresponding to the value in the ASCll character column:

location 01 = 12
location 03 = 13 g
location 04 = 17

location 91 = 14

Assuming all locations other than those specified to be zero, you would derive the same
| table that was constructed by our previous method. Thus, it is easier to use the tables
| already constructed for us when we have one of the supported devices, but we must
| construct our own from scratch when we have a unique device.

As before, we place our table in the nonexecutable portion of our program and move it
into our output buffer at line initialization time with:

MVC OUTBUFF,DCT2CDT

The character detect table can then be loaded as described in 2.4.3.

" ‘ 4.2.3. How to Construct a Character Interpretation Table

The character interpretation table is composed of sixteen 12-bit words. These words
are accessed by the character detect table to support multiple functions. Each bit of a
character interpretation table word produces a single function when set. Thus, each
word can cause muiltiple functions to be performed.

The format of a Cl table word is:

0123 4567 0123 4567
eooQ0

?

ALWAYS
ZEROS

!

UP-9746 .

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP})

4-18

" where the bit settings cause the functions to be performed as given in Table 4-8.

Table 4-8. Character Interpretation Table Functions (Part 1 of 2)

Bit

Designation

Function

BYTE O

60

INTERMEDIATE
END CHARACTER

END CHARACTER

ABORT

START BCC

SUPPRESS CHARACTER

Not used

MONITOR)

START CHARACTER

This bit is normally used to detect an [TB
character. During an input, the following BCC is
checked and results are stored untii the
end-character code (ETB or ETX) is detecred, at
which time the appropriate status and sense bits
are set. No sutomstic look-for-sync function
occurs, and input data flow is not stopped
regardiess of the BCC checking resuits. A new BCC
accumulation is started and includes the next
non-SYN character received. During an ouwut,
detection of the ITB character causes transmission
of BCC. Output data flow is not stopped and a new
BCC is started on the next character received from
the MLCM to be an output.

Channel-end, device-end status is set. If applicable,
the following BCC is checked. Automatic
look-for-sync function commences after the BCC is
received. This bit stops input or output data flow
until 8 new command is received.

Must be preceded by 8 start character. Stops input
data flow and sets channel-end, device-end, as well
as unit-check status bits. Also sets abort sense bit.
This bit is active only on input. Automatic
look-for-sync function occurs immediately.

Sterts BCC accumulstion, but ignored if
accumulation has aiready been started. This bit is
active on input as well as output.

Character is not transferred to the MLCM by the
SLCA. This bit is active on input only. The
character is included in the BCC unless bit 11 is
also set t0 1.

Sett0 0.

Causes unit-check status snd monitor sense bits to
be set. This bit is active only on output.

First specific non-SYN character that starts input
data. If a start character has siready been detected,

.this bit has no effect.

- UP-8746 ' SPERRY 08/3 4-19
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Table 4—8. Character interpretation Table Functions (Part 2 of 2)

Bit Designation Function
BYTE 1
0-3 Not used
4 EXCLUDE This character and the preceding DLE character are
DLE CHARACTER excluded from the BCC accumuistion when they

occur after a start character. This function is active
only if the detected character was preceded by a
DLE character. (These characters are used in ANSI
control procedures for embedding acknowledgment
in the text]. Active only when LRC type parity
function is specified.

5 RESET TRANSPARENT Places SLCA port into nontransparent mode. This
bit is used only for input. This function is active
only if the detected character was preceded by a
DLE character. Active only when set in conjunction
with end (bit 1) or ITB (bit 0}

6 SET TRANSPARENT Places SLCA port imo transparent mode. This bit is
active for input as well as output. This function is
active only if the detected character was preceded
by a DLE character.

7 SUPPRESS BCC The accurmulated BCC is suppressed for this

B 1 cheracter. This bit is not aclive in transparent
mode. The character is transferred to the MLCM
uniless bit 4 aiso is set to 1.

———

'Bits1an&ébothsatto-i'ir;ttnsar'nedWord.hpor—admctionofmecontrolcth-racterinme
dsta stresm, would result in performance of the functions specified for bit 0, but functions
specified individually for bits 1 and 6 wouid be ignored by the SLCA.

To illustrate the use of this table, we might want to have .t_he‘functions of suppressing
the block character check count and also suppressing the character on input. Using our
table and setting the relevant bits we would have:

BYTE O BYTE 1
0123 4567 0123 4567
eoQoj|j1000i000C0 000 1]|=X080T

{ 1 1L— SUPPRESS BCC

ALWAYS ZEROS

SUPPRESS CHARACTER

UP-9746 | SPERRY 0S/3) 4-20
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Considering the DCT 2000 discipline in our example, let’'s make a list of some of the
multiple functions required:

1. A SYN function, when hardwired, requires an additional suppress character and
suppress BCC.

2. An SOH requires start character, start BCC, and suppress BCC functions.
3. ‘An ETX requires a suppress character and end character functions.

4. An EOT requires a start character function.

5. The BEL, DC1, NAK, and ACK require an additional start chéracter function.

Putting all these requirements into our character interpretation table, we have the table
" shown in Figure 4-7. .

ALWAYS
ZERO
AR,
0123 4567 0123 4567 HEX. FUNCTION
WORD 9 0000 zoao 0000 ooorx-oam' (SYN)
_ SUPPRESS CHARACTER - SUPPRESS BCC
\' 1 0000 6000 0000 9000=X 0000
2 aool 0001_ 'Y1X) oe¢1‘=x-1'1o1- (SOH)
STARTBCC ~ START CHARACTER SUPPRESS BCC
-3 | o100 1000 so00 00 00=X4800' ETX)
4 | e1ee ' ocee1 0009 00@0=X'4100" (BELDCI)
1 4 ' 4 . : : (NAK,ACK)
END CHARACTER = START CHARACTER
5 | evoe 0000 0000 ©000=x"0000"
6 0000 0000 0000 9000=X'0000"
7 alu . 'nol XYY 2000=X'4109' (EOT
. END CHARACTER START CHARACTER
8-15 | 0000 0000 0000 0000=X 0000

Figure 4-7. Character Interpretation Table

UP-9746 SPERRY 0S/3 4-21
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)

Putting this all together, and adding a label, we have:

DCT2CIT ©DC X'0801"
DC X'o000!

DC Xt1101!
bC X'4800°'
DC X'4100"
DC X'0000°
DC X'oo00!
DC X'4100°'
DC X'0000!"
pC X'oo00!
DC X'0000'
pC Xto000"
DcC X'0009!
DC X'9000'
]+ X'o000!
bC X'0000!

Once the character interpretation table is complete, we may then go back to the
character detect table and fill in the word numbers that we need to fulfill our list of
requirements. For example, our first requirement was that an SOH required the additional

. functions of start of data, start BCC, and suppress BCC. Therefore, we can now see

why we used a X'12' in location O1 of the character detect table. When an SOH is
detected, the SLCA accesses location 01 of the character detect table and finds the

value X'12’. This value is determined to mean

0001j0010

SEE CHARACTER INTERPRETATION .
TABLE WORD 2

MULTIPLE FUNCTION

Summing the functions then, we have:
SOH, start character, start BCC, suppress BCC

which is what we require.

UP-8746 SPERRY 0S/3 4-22
. ' ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl) ’

-Again, going to Section 5, we find that the initialization parameters for all the currently
supported devices are contained in tabular form. if we are using a supported device, we

may use these tables to directly code our character interpretation table. Using our DCT
2000 example, we have the following:

. C! Table
Cl Word | Setting® Meaning of Setting
{hax)
(o] 08.0.1 SYN character (hardwired function), suppress character, suppress BCC
1 - Not used
2 1101 Start characters plus start BCC plus suppress BCC
3 4800 Suppress character plus end character
4 4100 Start character plus end character
5 - Not used
6 - Not used
7 4100 Start character plus end character
8
through
15 - Not used

*All other C! table settings will be zero.

As you can see, this is identical to the table arrived at by our previous method. It is just
a table preconstructed for us to make it easier to create our coding tables when using
supported devices. if we are using unique devices, we must construct our tables from
the first method, whereby we constructed our words from the character interpretation
-table bit settings. As before, once our table is coded, we place it in the nonexecutable
- portion of our program. At line initialization time, we then place it in our output buffer -
via ;

MVC OUTBUFF,DCT2CIT

before performing the load character interpretation function. The character interpretation
table can then be loaded as described in 2.4.4.

UP-9746 SPERRY 0S/3 5-1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl) -

5. SLCA Table Initialization

5.1. GENERAL

The initialization parameters for the SLCA that are pertinent to the terminal handlers are
listed in the following tables. The definitions in each paragraph are the numeric values to
be preset into the control character detect table, control character interpretation table,
and port control word for each terminal currently supported by SPERRY software.

5.2. DCT 500 SERIES/TELETYPE* TELETYPEWRITER REMOTE
DEVICE HANDLER

.Th:' DCT 500 series/TELEi'YF;E Teletypewriter remote device handler provides the
-~ initialization parameters listed in Tables 5-~1 through 5-5.

Table 5-1. DCT 500 Series/TELETYPE Teletypewriter ASCH Control Character Datect Table

asen | CD Table |- -
Name Meening of Setting
(hexadecimal) . . (hexadecimal) :

00 NUL ; 03 Suppress input character

03 ETX ‘E 15 See Cl word §

05 NG | 18 See CI word 8

06 ACK L9 See Cl word 9

10 DLE o Ses C! word 1

15 NAK . 1A See Cl word 10

7F DEL 03 Suppress input character
NOTES:

B @ Depending upon the parity of the characters transmitted by the terminal, it

‘ may be necessary 1o have duplicate settings for both parities of the
characters; for exampie, an odd-parity DCT 500 must have the setting
15+¢ for both 03+¢ and 831e.

@ All other CD table settings will be zero, implying data characters.

*Trademark of Teletype Corporation

C

©.9746

SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

-2

Table 5-2. DCT 500 Series/TELETYPE Teletypewriter ASCIl Control Character Interpretation Table

Cl Word th ef:;:;;a" .Meaning .of Setting

o] 0000 DLE EOT disconnects line
1 - Not used
2 - Not used
3 - Not used
4 - Not used
5 4000 End character B
6 - Not used
7 - Not used
8 4000 End character
9 4000 End character

10 4000 | End character

. e

13 - Not used

14 - Not used

15 | - Not used

-Table 5-3. DCT 500 Series/TELETYPE Teletypewriter Baudot Control Character Detect Table

Baudot cOT
Character Name Setti Meaning of Setting
{hexadecimal) {hexadecimal)
00 NUL 03 Suppress input character
14 H/ 11 See C! word()
1® LTRS 0A H-LTRS ends input®)
NOTES:

@ All other CD table settings will be zero, implying data characters.

The table assumes that the sequence H-LTRS will be chosen by the user
to signal end of input.

UpP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

5-3

pr

Table 5~4. DCT 500 Series/TELETYPE Teletypewriter Baudot Control Character Interpretation Table

. Setting . .
Cl Word (hexadecimal) Meaning of Setting
o - Not used
1 0000 Set DLE
2
through
15 - Not used

Table 5-5. DCT 500 Series/TELETYPE Teletypewriter Port Control Woerd (Part 1 of 2)

Byte | BR ‘;;:‘;) Meaning
1 0 1 1 Two-unit mterval stop element (for 110 bps operation)
10 On&uqh ‘ interval stop element (for all other
transmission rates)
2 2,3 00 For Baudot terminals
| -~ 10 .For ASCIH terminals
4-7 0000 Not used finvalid®)

0001 50 bps

0010 75 bps

0011 110 bps

0100» 134 bps

0101 150 bps

0110 300 bps

0111 600 bps

1000 900 bps

1001 1200 bps

1010 1800 bps

1011 | 2400 bps

1100 3600 bps

1101 4é00 bps

1110 7200 pbps

1111 9600 bps

*Permitted values

UP-9746

SPERRY 0S/3

5-4

- . ’ -
Table 5-5. DCT 500 Series/TELETYPE Teletypewriter Port Control Word (Part 2 of 2}

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

‘Byte Bit ‘:i:l::y’] Meaning
N 3 3-7 0000 No parity checking®
- 0010 Odd parity*
0011 Even parity®
4 4-6 000 Asynchronous transmission -

* Permitted values

[

5.3. DCT 2000 REMOTE DEVICE HANDLER

‘The initialization parameters provided in the DCT 2000 remote device handler for the

control character tables and port control word are listed in Tables 5—6 through 5-8.

Table 5-6. DCT 2000 Control Character Detect Table

r - . - i

AscCll m |
Character Name i : Mesaning of Setting -
(hexadecimal) {hexadecimal) |
i) 01 SOH 12 See Cl word 2
03 ETX 13 See Cl word 3
04 " EOT 17 See Cl word 7 N
_ _. 06 ACK 14 See Cl word 4
07 BEL 14 See Cl word 4
i bc1 14 Seé Ci word 4
- 15 NAK 14 See Cl word 4
18 SYN 10 See Cl word 0
18 EM 03 Suppress character (input)
830 | e 13 See Cl word 3
86® ACK 14 See Cl word 4
910 1 be1 14 See Cl word 4
NOTES:

@ All other CD 1able settings will be zero, implying data characters.

- These characters occur during input only (before parity is stripped from the

character).

UP-9746 SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPi)
Table 5-7. DCT 2000 Control Chsracter interpretation Table
Cl Table
Cl! Word Setting* Meaning of Setting
{hexadecimal)
0 0801 SYN cheracter (hardwired function), suppress character, suppress BCC
1 - Not used
2 1101 Start character pius start BCC plus suppress BCC
3 4800 Suppress character plus end character
4 4100 Start character pius end character
5 - Not used B
6 - Not used
7 4100 Start character pius end character
8
through
15 - Not used

*All other Cl table settings are zero.

. Table 5-8. DCT 2000 Port Control Word

Byte | Bit ‘m) _ Meaning
1 0.1 10 Four SYN characters on output
2 2,3] 10 Seven-bit character length
3 3 - 1 Include start character in LRC
4-7 | 1001 Odd VRC pius even LRC
4 a6 | 001 Synchronous line

5.4. 1004/9200/9300 REMOTE DEVICE HANDLER

Tables 5-9 through 5~11 list initialization parameters provided in the 1004/9200/9300
remote device handler for the control character tables and port control word. The same

initialization parameters are used for the 1004 siave mode handler.

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

5-6

Table 5-9. 1004/8200/8300 Control Character Detect Tabie —
DLT-1 and DLT-3 Boards

ASCli CD Tabi
Characte Name Sctﬁngé Meaning of Setting
{(hexadecimal) (hexadecimal)
35 SYN 10 . SYN character, see Cl word O
55 EOM 13 EOM on input, see Cl word 3
g5 EOM 13 EOM on output, see Cl word 3
NOTES:

NO,

The SOM on input is 40, which is considered to be a data character
because of its odd parity. The port control word is set to start input and

start BCC on the first nonsynchronous input character.

All other CD table settings will be zero, implying data character.

Table 5~10. 1004/8200/9200 Control Character interpretation Table

) éetting .
C! Word 0 jecimal) Meamng of Setting
0 0800 SYN character, suppress data character on input
1 - Not used
2 - Not used
3 4801 Suppress BCC, end character, suppress
chargcw on input
4
through o
15 - Not used

UP-9746 SPERRY 0S/3 . B-7
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Table 5-11. 1004/9200/9300 Pert Control Word

Byte | Bit ‘;:::) Meaning
1 01 11 Four SYN characters on
- output, start input on first
nonsync
2 2,3 01 Six-bit character length
3 3 1 Start character included in LRC
47 1000 Parity option 8:
. Data = odd parity
Control characters =
. even parity
LRC = even
LRC parity = even (not
checked on input} |
4 0-3 - Line procedure timer value as
required (O's if not used)
6 1 Synchronous
7 - Line procedure timer range as
required

. 5.5. UNISCOPE 100/UNlSCOPE 200/DCT 1000/UTS 400/UTS 4000
- REMOTE DEVICE HANDLER

Tables 5-12 through 5-14 list the initialization parameters provided in the UNISCOPE

100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 remote device handler for the
control character tables and port control word.

Table.5-712. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Control Character Detect Table

(Part 1 of 2) ,
ASClI CD Tabile
Character Name Setting* Meaning of Setting
{hexadecimal) {hexadecimal)

01 SOH 12 See Cl word 2
02 STX 13 See Cl word 3
.03 ETX 15 See Cl word 5
04 EOT O 16 See Cl word 6

05 ENQ OA End input data (DLE sequence)
10 DLE | 11 See Cl word 1

. 15 NAK OA End input data (DLE sequence)
N 16 SYN 10 See Cl word O
7 ETB 14 See C! word 4

* All other CD 1abie settings are zero, implying data characiers.

UP-8746

SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPJ)

5-8

Table 5-12. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Control Character Detect Table

(P_arr 202 .
ASCHl CD Table

. Character Name . Setting*® Meaning of Setting
(hexadecimal) {hexadecimal)

30 0 OA End input data (DLE sequence}

31 1 OA End input data (DLE sequence)

3F ? OA End input data (DLE sequence)

81 SOH 12 See C! word 2 5

82 STX 13 See Cl word 3

83 ETX 15 See Cl word §

84 EOT 16 See Cl word 6

85 ENQ OA End input data (DLE sequence)

920 DLE 11 Sea Cl word 1

95 NAK OA End input data (DLE sequence)

96 SYN 10 See Cl word O

97 ETB 14 See CI word 4

BO (o] OA End input data (DLE sequence)

B1 1 OA End input data (DLE sequence)

BF ? 0A End input data (DLE sequence)

- * All.other CD table. settings are zero, implying data characters.

1

Table 5-13. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Control Character Interpratation Table

C! Word (ms‘d‘:;'mn Meaning of Setting
0 0801 Suppress character, suppress BCC accumulation for this character
1 0100 Start input daia
2 1101 Stant input data, start BCC, and suppress
BCC accumuiation for this character
3 1100 Start input data and start BCC
4 4800 Suppress character and end character
5 4800 Suppress character and end character
6 1100 Sta!:t input data and start BCC
7 - Not used
8
through
15 - Not used

UpP-8746

- SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Table 5-14. UNISCOPE 100/UNISCOPE 200/DCT 1000/UTS 400/UTS 4000 Port Control Word

. Vailue .
Byte Bits (binary) Meaning
1 0,1 10 Specific start character on input,
four SYN characters on output
01 One-unit interval stop element
{asynchronous)
2 2,3 10 Seven-bit character iength (both
synchronous and asynchronous)
4-7 0110 300 bps*
1001 1200 bps*
1610 1800 bps*
1011 2400 bps*®
3 3 1 Start character included in LRC
4-~7 1001 ANSI standard (synchronous}
parity function
0101 ANSI standard (asynchronous)
.parity function
4 4-6 oX1 Synchronous
ox0 Asynchronous
- :

'Asynchronoui line speed

5.6. BSC REMOTE DEVICE HANDLER

Tables 5-15 through 5-23 list the initialization parameters provided in the BSC remote
device handler for the control character tables and port control word.

Table 5~15. BSC ASCIl Nontransparent Control

Character Detect Table (Part 1 of 2)

ASCH CD Tabile
Character Name Setting* Mezaning of Setting
{hexadecimal) {hexadecimal)
01 SOH 13 See Cl word 3
02 §TX 13 See Cl word 3
03 ETX .15 See Cl word 5
83 ETX 15 See Cl word §
04 EOT 17 See Cl word 7
05 ENQ 12 See Cl word 2
85 ENQ 12 See C! word 2
10 OLE 11 See Cl word 1

*All other CD table entries will be zero, implying data characters.

UP-9746

, SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

5-10

Table 5-15. BSC ASCIl Nontransparent Control Character Detect Table (Part 2 of 2)

ASCIl CD Tabie
Character Name Setting* Meaning of Setting
(hexadecimal) _ (hexadecimal)
15 NAK 04 Start and end
16 SYN 10 See Cl word 0
17 ETB 14 See Cl word 4
19 EM 03 Suppress character
97: ETB 14 See C! word 4
1F T8 16 See Cl word 6
30 0 0A End input (DLE sequence) (ACK 0}
BO 0 OA End input (DLE sequence) (ACK 0)
3 1 0A End input (DLE sequence) (ACK 1)
38 ; 0A End input (DLE sequence} (WACK)
3C < 0A End input (DLE sequence) (RVI)

*All other.CD tabie entries will be zero, impiying data characters.

Table 5-16. BSC ASCI Nontransparent Control Character imerpretation Table

CiWord | Semnd m;" Meaning of Setting
0 0801 - SYN character, suppress on input, no BCC
1 0100 DLE, start input
2 4100 Start character plus end character
3 1100 SOH, STX, start input, start BCC
4 4000 ETB. end character
5 4000 ETX, end character
6 8000 ITB, intermediate end character
7 4100 EOT, start input, end character
8

through

18 - Not used

UP-8746

SPERRY 05/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

5-11

Tabie 5-17. BSC ASCIl Nontransparent Port Control Word

: Val .

Byte Bit (bi::r.y) Meaning

1 0,1 10 Specific start character on input,

: . ‘ v four SYNs on output
2 |23 | 10 | Seven-bit character length
3 |3 | 0 ' Start character omitted from LRC
4-7 1011 BSC ASCHi parity option
4 46 | OX1 | Syncihronous

 Table 5-18. BSC EBCDIC Control Character Detect Table

EBCDIC CD Table
Character Name Setting® Meaning of Setting
(hexadecimal) . {hexadecimal)
01 SOH 13 See Ci word 3
02 STX 13 See Cl word 3
03 CUETX 15 See Cl word 5
10 DLE 1. See C! word 1
19 EM 03 Suppress cheracter
¥ B 16 See Cl word 6
26 ' ETB . 14 ~ See Clword 4
20 . | ena 12 ~ See Cl word 2
32 SYN 10 - ' See Cl word 0
37 EOT 17 See C! word 7
3D NAK 04 Start at end cheracter
68 . OA End input (DLE sequence) (WACK)
70 None 0A | End input (DLE sequence) (ACK O} -
7 None 0A End input (DLE sequence) (ACK 1)
7C @ E)A End input (DLE sequence) (RVY)

*All other CD 1able settings will be zero, implying data characters.

UP-8746 | : SPERRY 0S/3 5-12
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Table 5-19. BSC EBCDIC Control Character Interpretation Table

Cl Word (hexs:dt:icr;?nan Meaning of Setting
(o] 0801 SYN character, suppress on input, no BCC
1 0100 DLE, start input
2 4100 ENQ, start input, end character
3 1102 SOH, STX. start input, start BCC, set transparent
mode
4 4004 ETB. end chearacter, clear iransparent mode
5 4004 ETX, end character, ciear tranéparem mode
6 8000 ITB. imermediate end character
7 4100 EOT. stant input, end character
8
through
15 - Not used

Table 5-20. BSC EBCDIC Port Comrol Word - L

Value .
Bits . Mea
Byte (binary) ning
1 01 10 Specific start character on input,
four SYNs on output
2 23] n Eight-it character length .
3 3 0 Start cheracter omitted from CRC

4-7 1101 BSC CRC-16

4 4- 001 Synchronous

UP-9746 SPERRY 0OS/3 5-13
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

Tabie 5-21. BSC Transcode Control Character Detect Table

Transcode CD Table
Character Name Setting* Meaning of Setting
{hexadecimal) {hexadecimal)
00 SOH 13 See Cl word 3
OA STX 13 See Cl word 3
OF e 14 See Cl word 4
1D T8 16 See Cl word 6
1E EOT 17 See Ci word 7
‘ 1F DLE 11 See Cl word 1
20 - 0A End input (DLE sequence) (ACK 0)
23 T 0A End input DLE sequence) (ACK 1)
2D ENd 12 See Ci word 2
2E ETX 18 See Cl word 5
32 2 OA End input (DLE sequence} (RV1)
3A - SYN 10 See Cl word O
7 ‘ b 3D ILJAKH 04 Start and end character
3E EM 03 Suppress character

*All other CD table settings will be zero, implying data characters.

Table 5-22. BSC Transcode Control Character interprstation Table

Cl Word (hens?::igml). Meaning of Setting
0 0801 SYN character, suppress on input, no BCC
1 0100 DLE, start input
B 2 4100 ENQ, start input, end character
3 1100 SOH, STX, start input, start BCC
4 4000 . ETB, end character
5 4000 ETX, end character
6 8000 . ETB,. intermediate end character .
‘o 7 4100 EOT, start input, end characterﬂ
.)
through
15 - Not used

UP-89746 .

: SPERRY 0S/3
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

5-14

Table 5-23. BSC Transcode Port Control Word

. Value .
Byte Bit (binary) . Meaning
] 1 0.1 10 Specific start character on input,
four SYNs on output
2 2,3 01 Six-bit character length
' 3 . 3 (o] Start character omitted from LRC
4-7 1101 BSC CRC-12
4 4-6 001 Synchronous

5.7. AUTOMATIC DIALING

— o — —— —— ——— O— on— — o_—

——— ey e e e

Control tables vare not used for the autodial adapter. The port control word for the
autodial adapter operation must have bit 6 of control byte 4 equal to 1. All other bits in

the four control bytes must be set to 0.

When a DIAL command (05} is sent to the autodial adapter, the autodial adapter will
check that the DATA LINE OCCUPIED signal is off and the POWER INDICATION signal is

on prior to turning on the CALL REQUEST. signal. If these conditions are not met, the
CALL REQUEST signal is not turned on. In addition, if the DATA LINE OCCUPIED signal
. i§ on and DATA SET STATUS is off, the autodial adapter will return UNIT CHECK .
status and set the ABANDON CALL AND RETRY sense bit. if the DATA LINE

OCCUPIED signal and DATA SET STATUS signal are both on when the DIAL command
is received, the SLCA does not return UNIT CHECK status; however, this situation is
avoided with proper software design (software should not issue a DIAL command when
- the associated modem is in the data mode). UNIT CHECK and ABANDON CALL AND
RETRY will also be generated if the POWER INDICATION signal from the ACU is off at
the time the DIAL command is received by the autodial adapter.

To avoid a potential race condition when aborting a call attempt (the CALL REQUEST
signal is turned off before the DATA SET STATUS signal is turned on), the DATA
TERMINAL READY signal to the associated modem must also be turned off when the

CALL REQUEST signal is turned off.

Dialing information from the System 80 buffer is presented to the autodial adapter by
the SLCA one byte at a time. No CD tables are referenced for these bytes.

The four most significant bits of the byte are stripped by the CMM, and the four least
significant bits are interpreted by the autodial adapter as shown in Table 5-24.

ft should be noted that CCITT V.25 automatic calling equipment may require an

end-of-number (EON) code following the d|al digits. The EON option normally is not used

with the Bell System 801 ACU.

Ur-83/740 wEERRT Ve/w o=1i9
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

The format of the dial buffer should be as follows:
' First digit

Second digit

Last digit
EON (if required by the ACU)
End of dial (EOD)
Dummy character (requested by the SLCA but does not go to the autodial adapter)
Dummy character (to prevent the byte count from going to zero)
The last dummy character is required for the autodial adabter port to remain active so

the ABANDON -CALL AND RETRY signal or DATA SET STATUS signal from the
“automatic callmg unit will be reported by the SLCA. When either of these status

~ conditions is reported, software should issue an LA CLEAR command to reset the CALL

REQUEST signal. . -

UP-9746 .

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

5-16

Table 5~24. Disling Information

Bit Autodial Adapter
4567 Interpretation
0000 Digit 0
0001 Digit 1
0010 Digit 2
0011 Digit 3
0100 Digit 4
0101 | Digits
0110 Digit 6
0111 Digit 7
1000 Digit 8
1001 Digit 9
1010 Do not use
1011 End of Diat (EOD)
1100 End of Number (EON)

1101 Do not use
1110 Do not use
IERER Delay*

*tf semt 10 the autodial adapter, the delay
“digit will be discarded but will result in 8
pause of approximately 1.0 <= 0.6 second
in the dialing sequence. A number of delay
digits may be loaded in- a dial buffer 10
effect time deiays (for example, 10 wait for
the second dial tone if disling over a

tieline).

UP-9746 SPERRY 05/3 A-1
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP1)

Appendix A. Control Tables

[

i A.1. COMMUNICATIONS CONTROL PACKET i

This control packet is an activity request packet for the physical inteface. You must
construct a packet of the following structure in your user program area and enter the
specific parameters you require before execution of each CCRCALL macroinstruction.

Figure A-1 shows a functional field description and summary of the related DSECT
symbolic labels. A detailed description of the control packet and usage is provided in
Table A-1 and in the following text. The control packet is described in terms of the
TN#PARP dummy control section, which may be obtained from the OS/3 system library
- by: . .)
.' TN#DSECT CPIOCP .

Each label of this DSECT begins with the prefix TN#P; therefore, in the table, only the
label suffixes are shown.

UF-8746 . SPERRY 0S/3 A-2
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Byie 4]
0 ;; acrivity control queue
4
user flag field I’
8 | . (rnePTNDX) 3
12 4 : .
16 5 ’,
hardware command code ————
buffer add PBADR ;
20 (TNPCMMD) _ er address (TN#PBADR) 6 |
;
. |
24 time allocation (in seconds) (TN#PTIME) buffer length (TN#PBLTH) 7
; . i
og | lozcal °°"“::8:é;"‘°"°" CPIOCP chain address (TN#PLINK) 8 |
3 control flags RDH: line control table address
32 (TN=PFLGS) user program: line request fields (TN#PLCT) 9 ;
channel number SLCA number port number reserved 10 ;
36 (TN=PCHNL) (TN#PPORT) (TN#PSBOP) (TN#PSBOF) ‘
40 A reserved for ICAM (TN#PBFST) 11 ,
i
44 reserved for ICAM (TN#PBCUR) ; 12 |
) . . i
48 i
52 ;

LEGEND:

iz System-supplied pararneters

Figure A~1. Communications Physical input/Output Control Packet (CPIOCP} Functionsl Field Description

UP-8746

SPERRY 08/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPl)

A3

Table A~-1. Control Packet Detailed Field Description (Part 1 of 10}

Word

Field

Word/Bit

| Suffx”

Type
and

Length

Content

Comment

1 Byte

XLl

IRL and activity control fields
Bit 0 = IRL
Bit 1-7 == activity control fields

The IRL bit is set only by you When
set, you get an immediate return in-
line after CPIOCS has acted upon
the CCRCALL H the CCRCALL
references chained CPIOCPs, the
IRL only has significance in the
first CPIOCP. While CPXCS is
executing @ CPIOCP or has CPOCPs
on its line queues, it uses activity
control's chain field for work
fields:

Byte 0 = bits 0-1 of TN#PFUNC
bits 2-3 used to contro
butfers greater than
1024

Byte 1 = bits 2-7 of TN#PFUNC.

Byte 2 = bits 0-6 of TN#PMUX

Activity control chain field and

CPIOCS sets TN#PRESV to 0 before
returning CPIOCPs to you. You
must set TN#PRESV to 0 in all
chained CPIOCPs before executing
CCRCALL.

FCPL

XL4

Compietion address

When chained CPIOCPs are
scheduled back to you, only the
compietion address of the first
CPIOCP in the chain is used. if you

| set byte 1 to EE,, you will mot be

scheduled control when this
CPIOCP function is complete. The
CPIOCPs will be unchained normaliy
and then dropped from all CCR
queues, This facility is NOT
recommended for normal user
operations.

TRTS
LioL
LOCA

XLl

User flag

LOCAP address

Clear REQUEST TO SEND signai
No line turnaround

st

X

Primary .lozical status

idie time status - line
information not especially
related to message
complietion.

This field will be set to 0 by
CPIOCS when CPIOCP is first
received.

12

UP-9746 » SPERRY QS/3) A=-4
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPJ)

Table A-1. Control Packet Detailed Field Description (Part 2 of 10) —

Field .
Word Muﬁzit Tx Set by Content Comment Byte
© Suffix | Length | User | CCR
4 HOWR Hardware error -~ do not retry.
(cont)| ROGE Program ecror
] UuE Link level exception - line error
but retry is indicated.
ERND Erroneous function/message
completion.
END Function/message completion
tion .
DETL XL1 X |Detailed logical status This field will be set to 0 by 13
CPIOCS when CPIOCP is first
received. ’
For [TST
RING Ring interrupt
BRK Break
}
For HDWR
CREJ , Command reject
BUSO) Bus-out check
CHS1 Auto sense error
CHS2 Incorrect length —
CHS3 Program check
CHS4 Protection check
CHSS ~ |Data check
CHS6 Control check
CHS7 interface control check
CHS8 | . . {Chaining check - . b
DSRF Data set ready - off
OPNL Open line
DCON Disconnect
NOOP Device (SLCA not operational, unit
: exception)
For ROGE
FRMT CPIOCP format or procedure Refer to Table A-3. When this error
efror is reported by user program interface
code, even more detailed status is
. reported in TN#PSEN2.
AATH Attach error
DTCH Detach error
LPHE Lozd program phase error
LRLE User program line request line
error Requested line is already aflocated.
MNCE Maximum number of user Refer to 3.6. ICAM cannot process
program task identities another user program task.
exceeded

UP-97486 SPERRY 0S/3 A-5
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)
Table A-~1. Control Packet Detailed Field Description (Part 3 of 10 E—
Field
Word "‘ﬁ{:‘ T::’: Set by Content Comment Byie |
4 |For LLE '
(cont)| ORUN input overrun _
URNO Space to mark
ASS Qutput sequence abort
DCHK Data Check: LRC/CRC or char-
acter parity error
IORN idie overrun g
ABRT Abort
TIMD CPIOCP time-out
TMP SLCA time-out
CARF Carrier off
GSSE General subsystem error
For ERND
IMPR Status condition improper An example is no hardware sense
bits returned for a SENSE command.
For END
EOM Successful function/message
' compietion
BC! Buffer completion The interpretation of the value (bits) -
: notification in this field is dependent on the vaive
of TN#PRIM.
GIVB Return of CPIOCPs due to
subsequent CPIOCP requesting
immediate turn-off function
STAT XL2 Hardware status See Table A-2.
Byte 0 = device status
Byte 1 = channel status
5 |SENS X2 Sense bytes)
SEN1 Hardware sense byte 2 These fieids will be set to 0 by 16 —
CPIOCS when CPIOCP is received.
SEN2 Hardware sense byte 3 When TN#PRIM = TN#PROGE, and 17
TN#PDETL = TN#PFRMT, then
, TN#PSEN2 will be set to the values
or in Table A-3 when an error has
been detected by the user program
interface code. I device errors
oceur, sense bytes 2 and 3 are
reported here. See Table A-4.
CFEC CCRU CPIOCP format error code 17

UP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI}

Table A~1. Control Packet Detailed Field Description (Part 4 of 10)

Word/Bit
f Suffix:

Set by

Byte

(cont) ¢

RBC

Residual byte count for output,
or input character count for input

This field will be set to 0 by CPIOCS
when CPIOCP is first received.

When the input character count is
reported in more than one CPIOCP
(buffer chaining) for a particular
message, each CPIOCP contains

the total accumuiated count thus

far. This field is not for immediate
commands (commands that do not
result in device or channel status).

18

XLl

XL3

Hardware command code

Line buffer address

NOTE:
When this field is not set to 0 by
you, CPIOCS will not transiate the
logical command function in
TN2#PFUNC (bits 2-7) to obtain
proper hardware command
code. Whatever value was last
here or whatever value .you set
will be issved to the SLCA

Y3

20

Time allocation in seconds

The CPIOCP at the head of any
CPIOCS fine queue, when this

field is not 0, is decremented by 1
each time CCRs timer services is
notified that 1 second has elapsed.
When this fiekd decrements to 0, a
HALT DEV command is issued,

and the CPIOCPs are scheduied
back to you with TN#PRIM =
TNRPLLE and TN#PDETL =
TN#PTIMD. 1, however, the iogical
command function (TN#PFUNC,
bits 2-7) was set to TN2PIOLY, a
HALT DEV command is issued,

but the CPIOCP is scheduled back
to you with TN#PRIM == TN2PEND
and TN#PDETL == TN:zPEOM.

The accuracy of this field can be off
by minus 1 second, depending on
when CCRs timer service is next
notified that 1 second has eiapsed.

24

Ur-9/40

ICAM COMMUNICA

e !

TIONS PHYSICAL INTERFACE (CPY)

Table A-1, Control Packet Detailed Field Description {Part 5 of 10)

Field

Word/Bit
| Suffixi -

Type
and
Length

Set by

Byte

(cont)

BLTH

Line buffer length

NOTE:

Because this field is decremented
by CCRs timer services, you must
be careful to reset this field before
reusing this CPIOCP for another
CCRCALL.

Both TN#PTIME and TN#PBLTH
are used by the yser program for
Line Request

26

XLl

Logical command tunction pius
start and end of message/
function flags

Start of message

“|End of message

Start and end of message/function

Bits 2-7 specify the logical
command function

When TN&#PFS is set to 1, it indicates
that this CPIOCS is the first CPIOCP
for a particular message or function.
When it is set to 0, it means that
chained CPIOCPs are being used to
output or input a message and this
particular CPIOCP is not the first one.
Refer to 3.1 for information regarding
the setting of this bit for message
chaining.

When TN#PFL is set to 1, it indicates
that this CPIOCP is the last CPIOCP
for a particular message or function.
The setting of this bit for the last
CPIOCP of an output message is par-
ticularly critical. When TN#PFL is

set to 0, it means CPIOCP is being
used in buffer chaining and that it is
not the last CPIOCP of the chain. When|
you know that a particular CPIOCP is
the only one used to perform a func-
tion, TN#PFS and TN#PFL should
both be set (TN#PFSL).

Refer to Table A-5 for a cross-
referencing of the logical command
function, the hardware command
code, and the hardware command
code as it is represented in
TN#PCMMD.

28

UP-9746

SPERRY 0S/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

A-8

Table A-~1. Control Packet Detailed Field Description (Part 6 of 10}

Field

Word

Word/Bit

Type
and
Length

Set by

(cont)

WAIT

IOFF

DIAL
SPAC

SMRK

SioL
EDI
ON
NSYN
LSYN
OFf

Wait for interrupt

immediate port turn off

Enable data output for output/
input mode of operation

Dial
Send space (asynchronous oniy)

Send mark (asynchronous only)

Send idle

Enabie datz input

Same as TN#PED!

New sync

immed:ate look for sync
Port turn off

No SIO instruction is issued.

A CPIOCP tor this function is
issued only to receive notification
of an interrupt when no message
processing 1S in progress, such
as the RING interrupt. H an
interrupt other than unit

check is received for a fine with
no CPIOCP active on the CPIOCS
line queue, the interrupt will be
ignored. Refer to 3.5 for automatic
issuing of a SENSE command in
response to unit check.

Return ali CPIOCPs currently on

the CPIOCS line queve, marking

the head CPIOCP with a status of
TN#PRIM = TNZPEND and -
TN#PDETL == TN#PGIVB. Then,
perform a HALT DEV command.

This output function shouid be used
instead of TN#PRTS for all output
messages unless you know that sub-
sequent output messages will

follow with no intervening input.
This function enables the SLCA fast
turnaround logic which drops the
request-to-send load and prepares
for input.

it either a CPIOCP or an SLCA

time-out occurs for this function,

the status returned is

TN#PRIM = TN#PEND and
#PDETL = TN=PEOM.

This command disables interrupts
and must be used with caution.

No data transfer is processed.
No immediaie status

——

ICAM COMMUNICA

o oFeRRY Uo/3
TIONS PHYSICAL INTERFACE (CPY)

Table A-1. Control Packet Detailed Fieid Description (Part 7 of 10)

Field
Word ngﬁt Tx Set by Content Comment Byte
- Suffix’ | Length | User | CR
8 DiSC Disconnect
(cont) | SBSY Set busy
LACL LA ciear
DSRM Enable data set ready monitor
FLDX Set full duplex
TEST LA test
MODT |Modem test
LATO Line adapter turn off
RS Enable data output for output/ This output function does not clear
output sequence of message request-to-send as does TN#PSEND,
IDLT Send idie and wait for CPIOCP This send idle function does not
time-out - not an immediate result in an immediate command.
command. Status is not returned to you
until the hardware interrupts or
until 2 CPIOCP time-out occurs.
I a CPIOCP or an SLCA time-out
occurs for this function, the status
returned is TN#PRIM == TN#PEND
and TN#PDETL = TN#PEOM.
LB14 Load port control word
(bytes 1-4)
LB24 Load control bytes 2, 3, 4
LB34 Load control bytes 3, 4
LB4 Load control byte 4
LCo1 Load control character detect
table 1
Loz - Load control character detect
table 2.
Lei Load contro! interpretation
table 1
RPCW Read port control word
RCD1 Read control character detect
table 1
RCD2 Read control character detect
table 2
RCIL Read control interpretation
table 1
BNOP NO-OP
BRRM read random access memory
BLMA Load memory address
BLRM Load random access memory

UP-9746

SPERRY 0§/3

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP))

A-10

Table A-1. Control Packet Detailed Field Description (Part 8 of 10)

Word

Field

Word/Bit
! Suff

Type
and
Length

Set by

Byte

(cont).

BOIA
LREL
LREQ

RLLT

NREQ
NREL

LINK

X3

Diagnostic modem test
User program line release
User program line request

|User program read line link
table

User program network request
{User program network release

CPIOCP chain address field

Refer to 2.6
Refer to 2.3.

Refer to 3.3.

Refer to 2.2,
Refer to 2.7.

Refer to 3.1 for 2 complete
description of chaining and
unchaining CPIOCPs to support
data buffer chaining and message
chaining.

NOTE:
Do not chain a CPIOCP to
itsetf either directly or
iater in the chain.

29

FLes

X

£SO

ALl

X X

Control ‘fiags

- Suppress buffer completion
interrupt scheduling

Error schedule only

Whenever a buffer completion
interrupt occurs, the CPIOCP

for that buffer will be scheduled back
to you unless this flag is set. When
this flag is set, the scheduling will
be delayed. Refer to 3.1 for a state-
ment about scheduling suppressed
CPIOCPs.

When this flag is set, the schedul-
ing of the CPIOCP back to you will
be delayed if it has a successful
completion status (TN#PRIM =
TNZPEND and TN#PDETL =
TNHPEOM or TN#PBCI).

NOTE:
The fast CPIOCP in a chain must
not have this flag set.
Refer to 3.1 for an explanation of
how suppressed CPIOCPs are
scheduled back to you.

3

Ur-9 /740 SFERRY Us/3 A-11

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

Table A-1. Control Packet Detailed Field Description (Part § of 10)

® s

Word/Bit T Set b
Word | ' Label 'Y:' Y Content Comment Byte
e " Suff’ | Length | User | COR
9 TRNP BSC is now operating in
(cont) transparent mode.
cC X)Condition code The SIO condition code for the last
command issued for this CPIOCP
ts saved here.
‘ 00, = successful
| oo 01, = unsuccesstul, status
i pending
11, = illegal port (eg., 104
or 134) or SLCA not operational.
Let XL3 X | X |Multipurpose fiekd: 3
X ROH line control table address; or | The RDH line control table is
where RDH saves line information.
X X User program line request Refer to 2.3 for information about
fields the user program line request
" RQFG XLl X Line request flag field 3
TNGPRQFG = TN#PLCT
RFDQ . ~ Request fuli-duplex queueing
RFUL = Request full-duplex fine
DSPL XL X X JCA tables discipiine 34
‘ » b TN2PDSPL = TR#PLCT + 1 ' o ‘ '
. "UDID ' S | ~ User discipline 10
CAID XLl X X |CA tabies ID 35
) TN#PCAID = TN#PLCT + 2
lLCTF Full word address TN#PLCTF =TR#PFLGS + TN#£PLCT
10 IMUX : 36
CHNL | XL] X |Channel number
PORT { XLl X |SLCA number
S80p XLl X {Port number-
S80F XLi X IX-21 controi flag
MOTO X.21 map port 0 to 0
. ICio X.21 implicit chain
I0RBs

UP-9746 , | SPERRY 0S/3 A-12
ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPI)

- Table A-1. Control Packet Detailed Field Description (Part ;0 of 10)
Field _
Word wmt Tx Set by Content Comment Byte
" Suffix | Length | User | CCR
11 |BFST XL4 X Reserved for ICAM 40
12 |BooR |xa X Reserved for ICAM u
13 15808 XL4 X |Sense bytes (0-3) Reserved for ICAM 48
14 X4 X |Sense bytes (4-7) Reserved for ICAM 52

The following paragraphs describe the control packet on a word and byte basis.
m Word 1 - Priority and Activity Control (TN#PRTY and TN#PRESV)

Byte O is used to designate an immediate return line. An IRL transfers control inline
- immediately following the CCRCALL macro; however, control will also be passed to
your completion address as specified in word 2. You set this byte to regain control
while ICAM -is performing input/output functions. Your program is disconnected

'l

from ICAM at this point until you issue a non-IRL macro or a CYIELD instruction. }

(See example 1.) Bytes 1 through 3 are restricted to activity control usage and are
unusable by your program.

Example 1:
LBLPACKT DC XL4'80000000" o IRL

LBLPACKT DC F'Q' No IRL

B Word 2 - User Completion Address (TN#PFCPL)

The user completion address, the label of an entry point in your program where
status notification is to be scheduled, must be written as a full-word address
constant as shown in example 2:

Ekample 2:

%

DC A(COMPADDR) ' Entry point for status notification

UP-9746 SPERRY 0S/3 A-13

B Word 3 - User Flag Field and Activity Control Address
. Byte 8 — User flag field (TN#PTNDX)
TN#PTRTS
Clear REQUEST TO SEND signal in output/output messages sequences.
TN#PLIDL
No line turnaround after input completion.
Byte 9 — LOCAP address (TN#PLOCA)
Used by activity control.
B Word 4 - Status Word (TN#PRIM, TN#PDETL, and TN#PSTAT)

" Word 4 is initialized to zero by CPIOCS, since it is dynamically filled whenever user
status notification is scheduled. Bytes O and 1 are not hardware-generated codes
but software-generated logical codes to facilitate some degree of hardware
independence. Bytes 2 and 3 are filled with the actual hardware-generated codes.
Byte 2 is reserved for device status and byte 3 for channel status. See Table A-2.

. Tabie A~2. Standasrd Processor Hardware Status Byte Settings N ‘

t

Status LN Bvemaion Status Bir | Hexadscimal
Device status o %A— - " Channel status
Antention -1 0 - 80 Unassigned ‘ o | 80
Status modifier 1 40 Incorrect length 1 40
Control unit end 2 20 Program check 2 20
Busy 3 10 . Invalid address 3 10
- Channel end 4 o8 Channel data check 4 " 08 d
Device end 5 04 Interface control check | 5 04
Unit check 6 02 . _ : Channel control check | 6 02
Unit exception 7 01 Buffer terminate 7 01

Remote device handlers primarily use the software-generated status half word,
. while diagnostic routines supplied by Sperry use the hardware status half word.

SPERRY 0S/3

UP-9746
. ICAM COMMUNICATIONS PHYSICAL INTERFACE (CP)

Table A-3. Control Packet Format Error Code Specifications

Hexadecimal)
Value in interpretation of Error Code
TN#PSEN2*
00 Error condition not detected by user program interface code®™
EC No entry in SLCA load table to release
ED Received user RDH discipiine ID instead of requested system RDH discipline ID
EE Invalid channel and/or SLCA number
EF lliegal channe! vaive
FO Buffer length field greater than 10241
F1 TN#PLINK not zero as required for this function
F2 llegal buffer address for read LLT or read SLCA tables function
F3 CPIOCS line queue not empty before line release function
F4 liegal set of SLCA tables specified for line request
F5 CPIOCP chained to itself or TN#PRESV + 1 not zero when CPIOCP issued
F6 TN#PLCT has iliegal address.
F7 legal logical com'mand function
F8 Buffer address pius length exceeds program boundary.
Fo Load SLCA control tables function for tables not assigned to you
FA SLCA number above highest SLCA.spacified by system generation
FB’ SLCA number below first SLCA specified by system generation
FC | Not used
FD SLCA number not assigned to you
" FE Line request for secondary channel port before that of primary channel
FF Line release for primary channel before secondary channel

* When TN#PRIM = TN#PROGE and TN#PDETL = TN#PFRMT, then TN#PSEN2 should be
interpreted according to this table.

** This error condition will occasionally ‘occur if two or more CPIOCPs are toggled (buffer
chained) in order 10 input a message of unknown length. For exampie, when CPIOCP No. 1
has been returned to you with TN#PRIM = TN#PEND and TN#PDETL = TN#PBCI, in order
for you to process the data (if your program is interrupted by a message end condition for
CPIOCP No. 2) you will reissue CPIOCP No. 1, not yet knowing the message is over. CPIOCP
No. 1 will be scheduled back with this status because TN#PFUNC will not have -had bit O
(TN#PFS) set.

Co e m— —— —

ICAM COMMUNICATIONS PHYSICAL INTERFACE (CPY)

Word 5 - Sense Bytes and Output Residual Byte Count/Input Character Count
(TN#PSENS and TN#PRBC)

Word 5 is divided into two half-word fields. If user interface completion is not

successful, the first field contains a control packet format error code. If completion
is successful, see Table A-4.

Table A—-4 defines the mapping of the functional sense bytes to the primary and
detailed status fields in word 4.

_Table A—4. _Sense Bytes Serttings for CPIOCP Word §

— v —— — — —— — ——— — —

S TN#PRIM TN#PDETL ' TITLD PLoT TEYTH
Byte Bit | ARP Status | ARP Status ;
Primary Detail f
2 0 | TN#PHDWR TN#PCREJ ! ;
‘ 1 TN#PLLE TN#PIORN ; _;
_ 2 TN#PHDWR TN#PBUSO | i
' 3 TN#PLLE TN#PABRT | | Lo
: 4 TN#PLLE TN#PDCHK : ,
, 5 | TN#PLLE TN#PORUN ;
. 6 TN#PITST TN#PRING i
; 7 TN#PLLE TN#PCARF | |
. i
f 3 0 | TNePITST TN#PBRK ; ‘ —
) 1 TN#PHDWR TN#PDCON | | L
i 2 TN#PHDWR TN#POPNL o AN
| 3 TN#PLLE TN#PTIMP | b
i 4 TN#PERND TN#PIVCB } I
5 TN#PLLE TN#PURNO | ! v
' 6 TN#PHDWR TN#PDSRF |
7 TN#PLLE TN#PASS :

i
i

The second half word is used as a residual byte count (RBC) for output and an

accumulated character count for input. When control packets are chained, the count
is transferred to the various chained packets and reflects the total characters
received thus far. If a 3-packet chain of control packets, each specifying buffer
length, was used to handle a 54-byte input message, the packets would be marked
as follows:

CPIOCP1 0014+¢ (decimal 20)

CPIOCP2 002816 (decimal 40)

CPIOCP3 0036 (decimal 54)
The output RBC is the difference between the length of the buffer and the number
of characters transferred over the line. (if a user specifies a 40-byte bu