local workstations.

; Mailing Lists
.i BZ, CZ and MZ

UD1--251 Rev, 3/73

Operating System/3 (0S/3)

Information Management
System (IMS)

Action Programming in
RPG 11

User Guide

Mailing Lists AGO, AO7, A08, BOO, BO7, 18, 18U, 19,
19U, 20, 20U, 21, 21U, 28U, 29U, 75, 75U, 76 and 761
(Package A to UP-9206, 7 pages plus Memo)

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNiIVAC Operating
System/3 (0S/3) Information Management System (IMS) Action Programming in'RPG |1 User"GuiQe", UP-9206.

P

This update for release 8.0 documents guidelines for defining the program information block eind buffer size for

Copies of Updating Package A are now available for requisitioning. Either the updating pai:lgﬁge'fg;ily or the complete

manual with the updating package may be requisitioned by your local Sperry Univac repré‘séhtqtivg. To receive only
the updating package, order UP-9206—-A. To receive the complete manual, order UP-9206. A

v

Library Merﬁo for
J UP-9206-A

BELEASE DATE:
January, 1983

SPERRY<FUNIVA

COMPUTER 8YSTEMS

Operating System/3 (OS/3)

Information Management
System (IMS)

Action Programming

IN RPG Il

User Guide

®

UD1-281 Rev. 3/73

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (OS/3)
Information Management System (IMS) Action Programming in RPG 1l User Guide”, UP-9206.

The Information Management System (IMS) Action Programming in RPG I User Guide is one of five books
replacing the IMS 90 Applications User Guide/Programmer Reference, UP-8614, Rev. 1. Other manuals replacing
UP-8614 are:

L] IMS Concepts and Facilities, UP-9205

L IMS Action Programming in COBOL and Basic Assembly Language (BAL) User Guide, UP-9207

] IMS Terminal Users Guide, UP-9208

] IMS Data Definition and UNIQUE User Guide, UP-9209

This manual describes and illustrates how to write RPG |l action programs. It is presented in nine sections and four
appendixes as follows:

Section 1. Setting the Stage
Section 2. General Rules for Coding Action Programs
Section 3. Writing an Action Program
Section 4. Writing a More Complex Action Program
Section 5. Special Types of Output Messages
Section 6. Using Screen Format Services for Format Messages
Section 7. Action Programming in a Distributed Data Processing Environment
Section 8. Compiling, Linking, and Storing Action Programs
9

section 9.
LIBRARY MEMO ONL

Mailing Lists Mailing Lists A0O, A07, A08, B0OO, BO7, 18, 18U, 19, Library Memo for
BZ, CZ and MZ 19U, 20, 20U, 21, 21U, 28U, 29U, 75, 75U, 76, and UP-9206
76U
(Cover and 287 pages) RELEASE DATE

September, 1982

Appendix A. Using Device Independent Control Expressions and Field Control Characters

Appendix B. Generating Edit Tables
Appendix C. Summary of IMS Error Codes
Appendix D. Action Program Coding Restrictions

The complete titles and ordering numbers of the books that form the IMS library are:

Information Management System (IMS) System Support Functions User Guide,'UP-8§64, Rev. 7
Information Management System (IMS) Concepts and Facilities, UP-9205
Information Management System (IMS) Action Programming in RPG 11 User Guide, UP-9206

Information Management System (IMS) Action Programming in COBOL and Basic Assembly Language (BAL)
User Guide, UP-9207

Information Management System (IMS) Terminal Users Guide, UP-9208
Information Management System (IMS) Data Definition and UNIQUE User Guide, UP-9209

IMS/DMS Interface User Guide, UP-8748, Rev. 1

Additional Copies may be ordered by your local Sperry Univac representative.

Information Management System (IMS)

Action Programming

B
. »;,*&Qh%;?wg é:&;‘%ﬁi
LD
e
.
;‘\‘%‘ﬁ: ‘?fi;’;a

in

.

5
e

il
o

o
S
.

2

g
.
e
...
o
. gg»??; -
S

"
o \,g\ﬁ%‘*

.

o
o

Tl
o
5 g

.
... .
.
...

.
..
. %g%%’:’iM? - S

e

G
G
S

-

.
.

i

e
o =

.
5;

o
.
e

L

. -
o .
..
.
...
i L
. .
.
.
S

UP-9206

.
i

©1982 — SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your locat Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered

trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 5655 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

UP-9206 SPERRY UNIVAC 0S/3 PSS 1
IMS ACTION PROGRAMMING IN RPG I Update A
PAGE STATUS SUMMARY
ISSUE: Update A — UP-9206
’ RELEASE LEVEL: 8.0 Forward
Part/Section NE:?; or Ulf‘ :Iz;t'e Part/Section sz?;er Uf:;tle Part/Section N:,anfer Ul?:vztle
Cover/Disclaimer Orig.
PSS 1 A
Acknowledgment| 1 Orig.
Preface 1thru 3 Orig.
Contents 1 thru 10 Orig.
1 1 thru 10 Orig.
2 1 thru 23 Orig.
24 A
25 thru 43 Orig.
3 1 thru 23 Orig.
4 1 thru 21 Orig.
5 1 thru 55 Orig.
6 1 A
2 thru 13 Orig.
‘ 7 1 thru 10 Orig.
8 1thru 9 Orig.
9 1 thru 28 Orig.
Appendix A 1 thru 15 Orig.
Appendix B 1 thru 19 Orig.
Appendix C 1thru 7 Orig.
Appendix D 1 thru 4 Orig.
Index 1thru 13 Orig.
User Comment
Sheet

changes in both lines or deletions.

All the technical changes are denoted by an arrow (=} in the margin. A downward pointing arrow { *) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow { 4) is found. A horizontal arrow (=%} pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

UP-9206 SPERRY UNIVAC 0S/3 Acknowledgment 1
IMS ACTION PROGRAMMING IN RPG I

Acknowledgment

We are indebted to the many systems analysts and staff
members of Sperry Univac branch offices and customer
organizations who helped us develop the OS/3 IMS library. They
gave us suggestions, answered numerous questions, reviewed
the manuals, and provided us with ‘‘real-life’”” programming
examples. The customer organizations assisting us include:
® Gay and Taylor Insurance Adjustors, Winston-Salem, NC
® Penn Ventilator Company, Philadelphia, PA

. m Victor Valley Community College District, Victorville, CA

The Sperry Univac organizations assisting us include:

m Los Angeles Access Center, Customer Support Services, Los
Angeles, CA

m Charlotte Commercial Branch, Raleigh Office, Raleigh, NC

m Charlotte Commercial Branch, Greensboro Office,
Greensboro, NC

m Minneapolis Marketing Branch, Minneapolis, MN

B Wellesley General Branch, Wellesley, MA

m Philadelphia Manufacturing Branch, Wayne, PA

m Des Moines Marketing Branch, West Des Moines, |A

] System 80 Benchmark and Demonstration Services, Blue
Bell, PA

UP-9206

SPERRY UNIVAC 0S/3 Preface 1
IMS ACTION PROGRAMMING IN RPG I

Preface

This manual is one of a series designed to instruct and guide you
in using the SPERRY UNIVAC Information Management System
(IMS) for Operating System/3 (0S/3). It describes and illustrates
how to write RPG Il action programs.

This manual is divided into seven sections and four appendixes.
The topics discussed are:

Section 1. Setting the Stage

Introduces and defines IMS terminology related to action
programming and discusses how IMS and action programs
interface.

Section 2. General Rules for Coding Action Programs

Discusses special coding considerations in writing action
programs with particular emphasis on the RPG II/IMS
interface areas.

Section 3. Writing an Action Program

Presents simple programming examples illustrating the
fundamental properties of action programming - processing
input messages and generating output messages.

Section 4. Writing a More Complex Action Program

Presents more complex programming examples illustrating
the use of internal subroutines and screen format services in
action programs.

Section 5. Special Types of Output Messages

Describes and provides -programming examples of the many
types of output action programs can generate — namely,
multiple output, continuous output, output-for-input queueing,
and output with message switching.

UP-9206

SPERRY UNIVAC 0S/3 Preface 2
IMS ACTION PROGRAMMING IN RPG i

Section 6. Using Screen Format Services to Format

Messages

Describes how action programs use screen format services
to format output messages and receive formatted input.

Section 7. Action Programming in a Distributed Data
Processing Environment

Describes the IMS transaction facility for handling distributed
data processing with IMS.

Section 8. Compiling, Linking, and Storing Action Programs

Explains how to compile, link, and store action programs for
use during online IMS sessions.

Section 9. Debugging an Action Program

Describes how to interpret data provided in a snap dump for
debugging purposes.

Appendix A. Using Device Independent Control Expressions
and Field Control Characters

Describes the use of device independent control expressions
and field control characters for formatting messages.

Appendix B. Generating Edit Tables

Explains the use of the edit table generator for converting
unformatted input into fixed formats.

Appendix C. Summary of IMS Error Codes

Presents all error codes returned by IMS as a result of
function requests made by action programs.

Appendix D. Action Program Coding Restrictions

Presents IMS restrictions for RPG Il coding forms.

UP-8206

SPERRY UNIVAC 0S/3 Preface 3
IMS ACTION PROGRAMMING IN RPG Il

As one of a series, this manual is designed to guide you in
programming and using the OS/3 information management
system. Depending on your need, you should also refer to the
current versions of other manuals in the series. Complete manual
names, their order numbers, and a general description of their
contents and use are as follows:

® Information management system (IMS) concepts and
facilities, UP-9205

Describes the basic concepts of IMS and the facilities that
IMS offers.

B Information management system (IMS) system support
functions user guide, UP-8364

Describes the procedures to generate, initiate, and recover
an online IMS system.

® Information management system (IMS) action programming
in COBOL and basic assembly language (BAL) user guide,
UP-9207

Describes how to write action programs in COBOL and BAL,
with extensive examples.

B [nformation management system (IMS) terminal users guide,
UP-9208

Describes terminal operating procedures, standard and
master terminal commands, and special purpose IMS
transaction codes. Also includes UNIQUE command formats
with brief descriptions. The manual is in easel format for
ease of use at the terminal.

® Information management system (IMS) data definition and
UNIQUE user guide, UP-9209

Describes how to create defined files for use with UNIQUE
or your action programs and explains how to use UNIQUE.
Includes extensive examples of data definitions and UNIQUE
dialogs.

®m IMS/DMS interface user guide, UP-8748

Describes how to access a data base management system
(DMS) data base from IMS.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

Contents 1

ACKNOWLEDGMENT

PREFACE

CONTENTS

1. SETTING THE STAGE

1.1.

1.2,

1.3.

1.4.

1.5.

1.6.

INTRODUCING IMS

INTERACTING WITH IMS

LET'S DEFINE SOME BASIC IMS TERMS
HOW YOU STRUCTURE TRANSACTIONS
WRITING REUSABLE ACTION PROGRAMS

HOW YOUR PROGRAM TALKS TO IMS

2. GENERAL RULES FOR CODING ACTION PROGRAMS

2.1.

2.2,

2.3.

2.4.

2.5.

CODING ACTION PROGRAMS

IDENTIFYING AN ACTION PROGRAM
DESCRIBING FILES AND INTERFACE AREAS
DEFINING THE INTERFACE AREAS

DEFINING THE PROGRAM INFORMATION BLOCK (PIB)
Structure of the Program Information Block

Contents

1-1
1-1

1-3

1-9

1-9

UP-9206 SPERRY UNIVAC 0S/3 Contents 2
IMS ACTION PROGRAMMING IN RPG H
2.6. HOW PROGRAM INFORMATION BLOCK FIELDS ARE USED 2-9
Determining Error Status 2-9
Naming a Successor Program 2-11
Specifying Types of Termination 2-11
Record Locking and Rollback 2-14
Transaction ldentification 2-16
Defined File Identification 2-16
Standard Message Size 2-16
Work and Continuity Area Sizes 2-17
Success Unit Identification 2-17
Source Terminal Characteristics 2-18
Remote Transaction Type 2-19
2.7. HOW TO READ THE PROGRAM INFORMATION BLOCK 2-20
2.8. HOW TO UPDATE THE PROGRAM INFORMATION BLOCK 2-23
2.9. DEFINING THE INPUT MESSAGE AREA (IMA) 2-25
Format of the Input Message Area Header 2-25
Input Message Header Fields 2-26
2.10. READING THE INPUT MESSAGE AREA 2-27
2.11. USING THE INPUT MESSAGE AREA TO PASS DATA 2-28
2.12. DEFINING THE OUTPUT MESSAGE AREA (OMA) 2-30
Format of the Output Message Area Header 2-31
Output Message Header Fields 2-31
2.13. FILE SPECIFICATIONS FOR THE OUTPUT MESSAGE AREA 2-33
2.14. HOW TO CODE YOUR QOUTPUT MESSAGE AREA 2-35
2.15. DEFINING THE CONTINUITY DATA AREA (CDA) 2-38
2.16. HOW TO USE THE CONTINUITY DATA AREA TO PASS DATA 2-39
2.17. HOW TO VARY CONTINUITY DATA AREA SIZE TO SUIT
AMOUNT OF DATA PASSED 2-41
3. WRITING AN ACTION PROGRAM
3.1. DIFFERENCES BETWEEN ACTION PROGRAMS AND NORMAL
RPG Il PROGRAMS 3-1
3.2. PURPOSE OF EXAMPLES 3-1
3.3. HOW TRANSACTIONS ARE INITIATED 3-2
3.4, SAMPLE TRANSACTION (EXTERNAL SUCCESSION)

UP-9206 SPERRY UNIVAC 0S/3 Contents 3
IMS ACTION PROGRAMMING IN RPG H
3.5. A DESCRIPTION OF WHAT THE SAMPLE TRANSACTION DOES 3-3
RCMENU - Pass 1 3-3
RCMENU - Pass 2 3-4
RCCUST 3-4
3.6. GENERAL OPERATION OF ACTION PROGRAMS 3-5
3.7. EXPLANATION OF THE CODING FOR RCMENU 3-6
3.8. RCMENU - ASSIGNING A NAME TO THE PROGRAM 3-11
3.9. RCMENU - DEFINING THE INTERFACE AREAS (IMA, OMA, and PIB) 3-11
3.10. CONTENTS OF MAIN STORAGE AFTER RCMENU IS SCHEDULED 3-13
3.11. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 1) 3-13
3.12. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 2) 3-14
3.13. HOW RCMENU USES THE OUTPUT MESSAGE AREA 3-16
Generating the Output Message — Pass 1 3-16
Generating the Output Message — Pass 2 3-17
When No Output Message is Generated 3-17
3.14. HOW RCMENU USES THE PROGRAM INFORMATION BLOCK 3-18
3.15. EXPLANATION OF THE CODING FOR RCCUST 3-20
3.16. RCCUST - ASSIGNING A NAME TO THE PROGRAM 3-20
3.17. RCCUST - DEFINING THE INTERFACE AREAS {IMA, OMA, PIB) 3-20
3.18. DEFINING THE INPUT FIELDS 3-21
3.19. CALCULATIONS FOR RCCUST 3-22
Validating Input 3-22
Computing a New Account Balance 3-22
3.20. OUTPUT CODING FOR RCCUST 3-22
4. WRITING A MORE COMPLEX ACTION PROGRAM
4.1. GENERAL DESCRIPTION OF SAMPLE PROGRAM 4-1
4.2, A SUMMARY OF JAMENU'S PROCEéSING 4-1
4.3. A SUMMARY OF JAADD1, THE SAMPLE PROGRAM 4-2
JAADD1T - Pass 1 4-12
JAADD1 - Pass 2 4-12

UP-9206 SPERRY UNIVAC 0S/3 Contents 4
IMS ACTION PROGRAMMING IN RPG I
4.4, USING THE CONTINUITY DATA AREA 4-14
File Description Form (CDA) 4-14
Input Form Coding (CDA) 4-14
Calculation Form (CDA) 4-15
Output Form (CDA) 4-16
45, USING INTERNAL SUBROUTINES -17
Subroutine $REFDT 4-17
Subroutine $CUST 4-18
Subroutine $ERROR 4-18
4.6. USING AN ERROR MESSAGE FILE 4-19
4.7. USING SCREEN FORMAT SERVICES 4-20
5. SPECIAL TYPES OF OUTPUT MESSAGES
5.1. DIFFERENT TYPES OF OUTPUT MESSAGES 5-1
5.2. GENERATING MULTIPLE OUTPUT MESSAGES 5-1
Coding the File Description Form 5-3
Coding the File Extension Form 5-3
Coding the Input Form 5-3
Coding the Calculations Form -4
Coding the Output Form 5-4
5.3. HOW MULTIPLE OUTPUT MESSAGES ARE PROCESSED 5-5
5.4. GENERATING CONTINUOUS OUTPUT 5-9
5.5. DEVICES THAT CAN RECEIVE CONTINUOUS OUTPUT 5-9
5.6. CODING FOR CONTINUOUS OUTPUT 5-9
Directing Continuous Output to a Terminal 5-10
Directing Continuous Qutput to an Auxiliary Device 5-1
5.7. WRITING A CONTINUOUS OUTPUT PROGRAM 5-13
5.8. THE IMS DELIVERY CODE 5-17
5.9. RECOVERY CONSIDERATIONS WITH CONTINUOUS OUTPUT 5-21
5.10. A SAMPLE CONTINUOUS OUTPUT PROGRAM 5-23
File Description Form Coding 5-25
Input Form Coding 5-25
Calculation Form Coding 5-25
Output Form Coding 5-25
5.11. ANOTHER SAMPLE CONTINUQUS OUTPUT PROGRAM 5-29
5.12, CONTINUOUS OUTPUT AND CASSETTE/DISKETTE USE 5-40
5.13. INITIATING A TRANSACTION AT ANOTHER TERMINAL

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

Contents b

5.18.

5.19.

5.20.

HOW YOU CODE USING OUTPUT-FOR-INPUT QUEUEING
OUTPUT-FOR-INPUT QUEUEING WITH CONTINUOUS OUTPUT
OUTPUT-FOR-INPUT QUEUEING WITH A SCREEN BYPASS DEVICE
MESSAGE SWITCHING

THE IMS SEND FUNCTION AND IMS STATUS CODES
DISCONNECTING A LINE FROM AN ACTION PROGRAM

SENDING MESSAGES TO THE SYSTEM CONSOLE
Error Returns on Output to the Console

6. USING SCREEN FORMAT SERVICES TO FORMAT MESSAGES

7.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

ACTION PROGRAMMING IN A DISTRIBUTED DATA PROCESSING

DISPLAYING FORMATTED SCREENS

DEVICES SUPPORTING SCREEN FORMAT SERVICES
GENERATING SCREEN FORMATS

CONFIGURATION REQUIREMENTS

REQUIREMENTS AT IMS START-UP

HOW IMS HANDLES SCREEN FORMATTED MESSAGES

USING FORMATTED SCREENS FOR INPUT

CODING REQUIRED TO USE SCREEN FORMAT SERVICES
GENERATING AN OUTPUT SCREEN WITH NO VARIABLE DATA
ERROR CODES RETURNED BY IMS

TRANSMITTING FORMATTED SCREENS TO AN AUXILIARY DEVICE

ENVIRONMENT

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

BASIC DDP REQUIREMENTS AND TERMINOLOGY

HOW iMS ROUTES REMOTE TRANSACTIONS

PROCESSING A REMOTE TRANSACTION

PROCESSING AN OPERATOR-INITIATED REMOTE TRANSACTION
PROCESSING A PROGRAM-INITIATED REMOTE TRANSACTION

USING SCREEN FORMAT SERVICES TO PROCESS REMOTE
TRANSACTIONS

5-43

5-46

5-46

5-47

5-49

5-52

6-1

6-1

6-1

6-11

6-12

7-1

7-3

7-5

7-8

7-9

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

Contents 6

8. COMPILING, LINKING, AND STORING ACTION PROGRAMS

8.1.

8.2.

8.3.

8.4.

8.5.

PREPARING ACTION PROGRAMS FOR ONLINE PROCESSING
COMPILING ACTION PROGRAMS

LINK EDITING ACTION PROGRAMS

STORING ACTION PROGRAMS IN A LOAD LIBRARY

REPLACING ACTION PROGRAMS IN THE LOAD LIBRARY
DURING ONLINE PROCESSING

9. DEBUGGING AN ACTION PROGRAM

9.1. CONDITIONS FOR A SNAP DUMP

9.2, TYPES OF SNAP DUMPS

9.3. LAYOUT OF A SNAP DUMP

94 ANALYZING A SNAP DUMP

9.5. THE PROGRAM INFORMATION BLOCK (PIB)
Finding Your Error
Finding Other Data in the Program Information Block

9.6. THE OUTUT MESSAGE AREA

9.7. THE INPUT MESSAGE AREA

9.8. ACTION PROGRAM LOAD AREA

9.9. SINGLE AND MULTITHREAD SNAPS

9.10. OTHER DEBUGGING RESOURCES

APPENDIXES

A. USING DEVICE INDEPENDENT CONTROL EXPRESSIONS
AND FIELD CONTROL CHARACTERS

A,

A.2.

A.3.

A4.

GENERAL

FORMATTING MESSAGES
Output Messages

Input Messages

DICE AND ICAM

THE FORMAT OF DICE SEQUENCES

8-1

8-2

8-7

8-8

UP-9206 SPERRY UNIVAC 0S/3 Contents 7
IMS ACTION PROGRAMMING IN RPG I

. A.5. INTERPRETING DICE SEQUENCES A-9
A.6. USING DICE IN AN RPG Il ACTION PROGRAM A-12
A.7. USING FIELD CONTROL CHARACTERS A-14

B. GENERATING EDIT TABLES

B.1. PURPOSE B-1
B.2. STATEMENT CONVENTIONS AND CODING RULES FOR EDIT TABLE

GENERATOR INPUT B-1
B.3. EDIT TABLE GENERATOR PARAMETERS B-5
B.4. EXECUTING THE EDIT TABLE GENERATOR B-10
B.5. ERROR PROCESSING B-12
B.6. ENTERING INPUT MESSAGES FROM TERMINAL B-15
B.7. SAMPLE EDIT TABLE APPLICATION USING POSITIONAL AND

KEYWORD PARAMETERS B-16

. C. SUMMARY OF IMS ERROR CODES

D. ACTION PROGRAM CODING RESTRICTIONS

FIGURES

1-1. A Simple Transaction 1-3
1-2. A Dialog Transaction 1-4
1-3. Normal Termination 1-6
1-4. External Succession 1-6
1-5. Delayed Internal Succession 1-7
1-6. Immediate Internal Succession 1-7
1-7. Dynamic Transaction Structure 1-8
1-8. The Activation Record in Main Storage 1-10
1-9. The Action Program and lIts Interface Areas 1-10

2-1 Coding the Control Form 2-2
2-2 Defining Files and Interface Areas 2-5
2-3 Defining the Program Information Block as an Input Demand File 2-20
2-4 Testing Status and Detailed Status Codes 2-21
2-5 Defining the Program Information Block as an Update Demand File 2-23
2-6 Designating a Successor Program and Type of Termination 2-24
2-7 Defining the Input Message Area as a Primary Input File 2-27
’ 2-8 Defining the Input Message Area as an Update Demand File 2-28
hall 2-9. Defining the Output Message Area as an OQutput File 2-33
2-10. Defining the Output Message Area as an Update Demand File 2-35

UP-9206 SPERRY UNIVAC 0S/3 Contents 8
IMS ACTION PROGRAMMING IN RPG i

2-11. Coding the Output Form Determines the Values in Message Length 2-36
2-12. How Placement of Output Fields Can Cause Incorrect Message-Length Field 2-36
2-13. Defining the Continuity Data Area when It Saves Data Only 2-39
2-14. Defining the Continuity Data Area when It Reads and Updates Saved Data 2-40
2-15. Defining the Continuity Data Area when It Reads Data Only 2-40
2-16. Coding the File Description Form for Program PROGO1 2-42
2-17. Coding the Output Form for Program PROGO1 2-43
3-1 Transaction Code Initiates IMS Transaction 3-2
3-2 How RCMENU and RCCUST Process a Transaction 3-5
3-3 RCMENU Program 3-7
3-4 RCCUST Program 3-9
3-5 Main Storage when IMS Schedules RCMENU 3-13
3-6 Contents of the Input Message Area - Pass 1 3-14
3-7 Contents of the Input Message Area — Pass 2 3-15
3-8 RCMENU’s Output Message - Pass 1 3-16
3-9. RCMENU’s Output Message on Pass 2 for Menu Selection 2 3-17
3-10. RCMENU’'s Output Message when Menu Selection '5-STOP’ Is Made 3-17
3-11. Input Message Coming into Program RCCUST 3-21
4-1. Screen Generated by JAMENU 4-2
4-2. Action Program JAADD1 4-3
4-3. Output Generated by JAADD1 on First Pass 4-7
4-4. Output Generated by JAADD1 on Second Pass 4-7
4-5. Action Program JAADD2 4-8
4-6 Error Screen Generated for Program JAADD1 4-20
5-1 Multiple Output Message Program (LSTLIM} -2
5-2 Coding a Continuous Output Message for the Terminal 5-10
5-3 Coding a Continuous Output Message for an Auxiliary Device with the

Transfer-All Option 5-13
5-4. Coding a Continuous Output Message for a Printer with Print-Transparent and

Inhibit Space Suppression 5-14
5-5 Coding to Move a Value to Continuous-Output-Code 5-17
5-6 Input Message Returned to Successor Program in Continuous Output Transaction 5-18
5-7 Continuous Output Program SALES2 5-24
5-8 Continuous Output Generated for SALES2 5-28
5-9. Continuous Output Program NCSC 5-29
5-10. Generating Output Message Using Output-for-Input Queueing 5-44
5-11. Coding an Output Message with Output-for-Input Queueing 5-45
5-12. Coding for Message Switching ‘ 5-47
5-13. Generating Switched Output Message 5-48
5-14. Coding a Line Disconnect from an Action Program 5-53
6-1 Creating and Using Screen Format 6-4
6-2 Output Screen Format with Display Constants, Variable Data, and Input Fields 6-5
6-3 Input Screen Format with Display Constants and Changed Input Fields 6-6
6-4 Coding the Output Form to Use Screen Format Services 6-8
6-5 Output Screen Display for Figure 6-4 6-9
6-6 Coding for a Formatted Screen without Variable Qutput Data 6-10
6-7 Coding to Transmit Formatted Screen to a Printer 6-12

UP-9206 SPERRY UNIVAC 0S/3 Contents 9
IMS ACTION PROGRAMMING IN RPG I

7-1 Processing an Operator-Initiated Remote Dialog Transaction 7-7
7-2 Processing a Program-Initiated Remote Transaction 7-8
8-1. Compiling an Action Program Using Jproc and Embedded Source Program 8-2
8-2. Compiling an Action Program Using Jproc and Filed Source Program 8-2
8-3. Compiling an Action Program Using Standard Job Control and Embedded Source Program 8-3
8-4. Compiling an Action Program Using Standard Job Control and Filed

Source Program 8-3
8-5 Link Editing an Action Program Using Jproc 8-4
8-6 Link Editing an Action Program Using Standard Job Control 8-5
8-7 Compiling and Linking an Action Program Using Jprocs 8-5
8-8 Compiling and Linking an Action Program Using Standard Job Control 8-6
8-9 Recompiling and Linking an Action Program During Online Processing 8-8
9-1. Layout of a Snap Dump 9-2
9-2. Relation between THCB and Interface Areas 9-4
9-3. Sample RPG Il Snap Dump 9-6
9-4. Single-thread Thread Control Block 9-14
9-5. Multithread Thread Control Block 9-18
9-6. Single-thread and Multithread Terminal Control Table 9-20
9-7. Link Map for RCCUST 9-26
9-8. Symbol Table for RCCUST 9-28
A-1 Using Terminal-Oriented Control Characters to Format Messages A-2
A-2 Using DICE Sequences to Format Messages A-3
A-3 Using DICE to Format an Output Message A-12
A-4 How DICE Formatted Message in Figure A-3 Appears at the Screen A-12
B-1 Edit Table Parameter Description with Positional and Keyword Parameters B-6
B-2 Sample Execution of Edit Table Generator B-10
B-3 Sample Input to Edit Table Generator and Format of Input Delivered to Action Program B-16
TABLES
2-1 Summary of File Types Used by Action Programs 2-3
2-2 Coding Interface Areas on the File Description Form 2-6
2-3 Contents of the Program Information Block 2-8
2-4 Termination Indicators 2-12
2-5 Summary of Action Program Termination Types and Successor-ids 2-13
2-6 Summary of Record Locks and Rollback 2-14
2-7 Input Message Area Control Header Contents 2-25
2-8 Output Message Area Control Header Contents 2-31
2-9 Defining the Continuity Data Area According to How the Action Program Uses It 2-38
3-1 Indicators Set On During Second Pass Through RCMENU and Resuitant Output 3-15
3-2 Successor Programs and Type of Termination Corresponding to Each Indicator Set On 3-18
3-3 RCCUST Indicators Set On and Resulting Output 3-23
4-1 JAADD1 Continuity Data Area 4-16
4-2 Summary of JAADD1 Continuity Data Area Update at Output 4-16
4-3 Summary of Error Indicator and Error Messages for JAADD1 4-19

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

Contents 10

AR NN
ONOO R WD =

(G20 RS NS NG IS LIS 6

??

X
—_ N =

i 4 | 1

>>>>r >

AR

o
1 | 1 |
N =

O000O0
RN =

WK =

U'UU

[

Indicating and Accepting Multiple Output Messages

Settings for Aux-Function Field of the Output Message Header

Print and Transfer Options

Output Delivery Notice Status Codes Returned by IMS

UNISCOPE and UTS 400 Auxiliary Device Condition Code

Settings for Auxiliary Function Field of Output Message Header

user Message Text for Searching Cassette/Diskette

Status Codes and Detailed Status Codes Returned following the Send Function

Error Codes Returned by IMS When Using Screen Format Services
Print/Transfer Options for Writing of Screen Formats to Auxiliary Devices

Hexadecimal Equivalents for Function Cails

DICE Input/Output Commands, Codes, and Device Interpretation
DICE Primary Devices

DICE Usage for Auxiliary Devices

Hexadecimal Codes Used as M in the FCC Sequence
Hexadecimal Codes Used as N in the FCC Sequence

Edit Table Diagnostic Messages
Description of Sample Input to Edit Table Generator

Values Returned to the Status-Code Fields after Function Requests

Detailed Status Codes for Defined Record Management Errors (Invalid Key-Status Code 1)
Detailed Status Codes for Invalid Requests

Detailed Status Codes for Internal Message Control Errors (Status Code 6}

Detailed Status Codes for Screen Formatting Errors (Status Code 7)

IMS Restrictions for RPG Il Coding
Allowable File Description Specifications for ISAM, MIRAM, DAM, and Defined Files
Allowable File Description Specifications for Sequential MIRAM and SAM Output Files

5-8

5-10
5-11
5-19
5-20
5-40
5-42
5-50

A-6

A-10
A-11
A-14
A-15

UP-9206 SPERRY UNIVAC 0S/3 1-1
IMS ACTION PROGRAMMING IN RPG I

INTRODUCTION

1. Setting the Stage

1.1. INTRODUCING IMS

The SPERRY UNIVAC Information Management System (IMS) is
an interactive, transaction-oriented file processing system. It is
interactive because it carries on a conversation with the terminal
operator; it is transaction-oriented because for each input
message, the terminal operator receives a response or output
message. In this way, operators are constantly informed of the
results of their inquiries.

. 1.2. INTERACTING WITH IMS

Action programs Application programs, called action programs, interact with IMS
process messages to process input messages from terminals, perform file retrieval
or updating functions, and create output messages.

Languages used - You can write action programs in RPG Il, COBOL, or basic

BAL, COBOL, RPG 1I assembly language (BAL). IMS also provides a set of action
programs called the uniform inquiry update element (UNIQUE) that
performs file retrieval and updating functions through the use of
commands from the terimnal.

Purpose of this manual This manual tells you how to write action programs in RPG Il
Action programs are similar to standard RPG Il programs, but
must follow specific rules because they operate under the control
of IMS.

Read IMS concepts and Before you start writing action programs, you must understand
facilities first how IMS works, and what you (or the IMS administrator) must
do to make it work. This information is in the IMS concepts and
facilities manual, UP-9205 (current version). We also assume that
you know RPG Il. For more information about RPG Il coding,
. consult the RPG Il user guide, UP-8067 (current version).

.

UP-9206 SPERRY UNIVAC 0S/3 1-2
IMS ACTION PROGRAMMING IN RPG 1l

INTRODUCTION
Prerequisites for Throughout this manual, we assume you've read and understood
using this manual both UP-9205 and UP-8067. However, as required, we briefly

define terms and describe concepts that are directly related to
RPG Il action programming.

UP-9206 SPERRY UNIVAC 0S/3 1-3
IMS ACTION PROGRAMMING IN RPG I
IMS TERMS
. 1.3. LET’'S DEFINE SOME BASIC IMS TERMS
Action defined The term action programming comes from the fact that the unit

of work in IMS is the action. An action begins when an operator
enters a message at a terminal and ends when a response to
that message is returned. This is an important point to remember
What action programs do since the action programs you write are involved primarily with
this activity - processing input messages, performing file retrieval
or updating, and creating output messages.

An action always consists of three activities:

PROCESSING

Transaction defined A transaction is one action or a series of actions.

A simple transaction (Figure 1-1) consists of a single action.

[

INPUT MESSAGE—— { CKACCT 2-412-733
; <
cansaction
transaction S
OUTPUT MESSAGE ——

{CURRENT ACCOUNT BALANCE

PROCESSING COMPLETE¥

= $869.22.

J

TRANSACTION CODE

ACCOUNT NUMBER

Figure 1-1. A Simple Transaction. /n this example, one action program processes
the input messsage and produces an output message - the checking
account balance for the account specified and a processing complete

notice.

UP-9206

SPERRY UNIVAC 0S/3 1-4
IMS ACTION PROGRAMMING IN RPG Il

IMS TERMS

Example —~ Dialog
transaction

Transaction codes
initiate transactions

Transaction code
defined

A dialog transaction (Figure 1-2) consists of two or more related
actions.

\ TRANSACTION CODE

INPUT MESSAGE — { CUST 35567 CUSTOMER NUMBER
<
ACTION PROGRAM
< AMOUNT DUE = $79.25.
OUTPUT MESSAGE ——

ENTER PAYMENT AMOUNT $25.33
===

INPUT MESSAGE
<

ACTION PROGRAM

A NEW BALANCE IS $53.92
OUTPUT MESSAGE —
‘ *PROCESSING COMPLETE*

Figure 1-2. A Dialog Transaction. In this example, two action programs are
sequenced to produce amount due information, allow data entry, and
compute a new balance for a specific customer account.

To begin a transaction, the operator enters a 1- to 8-character
transaction code. (In single-thread IMS, the transaction code is 1
to 5 characters.) This code tells IMS the name of the action
program that will process the input message.

Transaction codes are either the entire input message or a part
of it. Transaction codes are defined to IMS at configuration time.

UP-9206 SPERRY UNIVAC 0S/3 1-5
IMS ACTION PROGRAMMING IN RPG I

TRANSACTIONS

1.4. HOW YOU STRUCTURE TRANSACTIONS

Series of action Sometimes a single action program can process the function

programs processes required. But more often than not, a series of action programs is

transaction . .
needed. In either case, we create what we call a transaction
structure.

Types of transaction Transaction structure depends on how you terminate action
termination programs. There are four major types of termination:

Normal
External succession

Delayed internal succession

b
4
4
4

Immediate internal succession

From here on, we’ll call the termination types normal termination,
external, delayed, and immediate succession.

Distinction between Using the words termination and succession in the same

termination and context can be somewhat confusing. In IMS, termination means

succession that an action program is finished processing. Whether you
specify normal termination, external, delayed, or immediate
succession, you are telling IMS that the current action program is
finished processing and is now terminating.

Succession means that although the action program is
terminating, the transaction is not complete. A successor action
program will continue processing the transaction.

Transaction complete Normal termination says that the transaction itself is complete.
No more processing occurs.

However, external, delayed, or immediate succession tells IMS
that another action program follows and will resume processing.

Figures 1-3 through 1-6 illustrate these concepts.

UP-9206

SPERRY UNIVAC 0S/3 1-6
IMS ACTION PROGRAMMING IN RPG |l

TRANSACTIONS

Normal termination

External succession

ACTION
PROGRAM

INPUT EPT——— OUTPUT
MESSAGE PECIFIES MESSAGE
NORMAL

TERMINATION

Figure 1-3. Normal Termination

Use normal termination to tell IMS that once your program
creates an output message, the transaction is complete. When
you don’'t specify the type of termination, IMS terminates
normally. The last action program in a transaction always ends
with normal termination.

INPUT ACTION OuUTPUT
MESSAGE PROGRAM MESSAGE
(1 n . (1

INPUT ACTION OUTPUT
MESSAGE PROGRAM MESSAGE
{2) {2) 2)

Figure 1-4. External Succession

Use external succession to tell IMS that the current action
program is sending an output message and terminating; however,
the transaction is not complete. When the terminal operator
enters a second input message, the action program you named
as external successor processes the second action, produces an
output message, and terminates.

UP-9206 SPERRY UNIVAC 0S/3 1-7
IMS ACTION PROGRAMMING IN RPG I

TRANSACTIONS

INPUT . ACTION OUTPUT
MESSAGE PROGRAM MESSAGE
(1 (1) (1)

OUTPUT MESSAGE ACTION OUTPUT

(1) QUEUED AS PROGRAM MESSA
INPUT MESSAGE 2) S(g) .

(2)

Figure 1-5. Delayed Internal Succession

Delayed succession Use delayed succession to tell IMS that the current action
program has processed an input message and produced an
output message; however, that message isn't going to the
terminal. Instead, it becomes the input message to the action
program you named as successor. The successor program
produces an output message that does go to the terminal and
terminates. With delayed succession, the second action program
uses the output message of the predecessor as its input
message. Even though only one input message and one output
message are seen at the terminal, internally there are two
separate actions, each with an input and output message.

INPUT ACTION ,_ ACTION OUTPUT
MESSAGE PROGRAM PROGRAM MESSAGE
(1 (1) (2) K]

Figure 1-6. Immediate Internal Succession

UP-9206

SPERRY UNIVAC 0S/= 1-8
IMS ACTION PROGRAMMING N RPG I}

TRANSACTIONS

Immediate succession

Combining transaction
structures

Use immediate succession to tell IMS that the current action
program processed an input message but is not producing an
output message. When it terminates, its successor action
program immediately takes up where processing left off,
produces an output message and terminates. In immediate
succession, there is only one input and one output message.
Thus, two action programs are processing a single action.

With these four types of termination or transaction structures
there is a good deal of flexibility in structuring transactions.
There are basically no limitations as to how you can combine
them. For example, you can specify immediate succession,
delayed succession, external succession, and finally normal
termination, all in turn (Figure 1-7).

NOTE:

Connecting lines represent
immediate internal, delayed
internal, or external succession,
or any combination of them.

TRANSACTION ACTION

PROGRAM
3

ACTION ACTION
PROGRAM PROGRAM

ACTION ACTION
PROGRAM PROGRAM
7 8

Figure 1-7. Dynamic Transaction Structure

UP-9206

SPERRY UNIVAC 0S/3 1-9
IMS ACTION PROGRAMMING IN RPG |l

ACTION PROGRAM PROCESSING

1.56. WRITING REUSABLE ACTION PROGRAMS

Action programs must be
serially reusable

RPG Il turns off
indicators and switches

Action program must
reset fields

You must write action programs so that they are serially
reusable. This allows different terminals specifying the same
transaction code to take turns using the same action programs.
As long as IMS doesn’t require the main storage space, action
programs remain there after use and aren’t reloaded each time
they are called.

RPG 1l turns off all indicators and internal switches after each
action program execution. When the same program is again
initialized for use, RPG |l sets on only the 1P indicator.

Since action programs are serially reusable, you must reset all
fields to their original value before reexecuting the program. For
example, you must blank or zero out any fields you expect to be
blank or zero since they may contain values from a previous
execution.

1.6. HOW YOUR PROGRAM TALKS TO IMS

Activation record links
action program to IMS

Interface area usage

More information on
interface areas

Layout of the
activation record
in main storage

To communicate with IMS, an action program must link itself to
IMS. This link is the activation record. The activation record
handles the control and communication of data between IMS and
your action program. The activation record can contain up to six
interface areas as shown in Figure 1-8.

Whether or not you use all six interface areas depends on the
needs of your action program. All the interface areas are
optional. In the case of the program information block, whether
or not you define it in your action program, RPG Il automatically
returns values to the status code fields after each |/O request.
We’'ll discuss these fields in Section 2.

Also, in Section 2, we’ll discuss when, why, and how you use
the interface areas.

Figure 1-8 shows how main storage looks when the action
program PROGO1 is loaded in a muitithread IMS system. The
layout of the activation record is slightly different in single-thread
IMS.

UP-9206 SPERRY UNIVAC 0S/3 1-10
IMS ACTION PROGRAMMING IN RPG 1!

AC “ION PROGRAM PROCESSING

‘MAIN STORAGE

PROGRAM
INFORMATION
BLOCK

OUTPUT
MESSAGE
AREA

CONTINUITY A
DATA AREA ACTION

PROGRAM

WORK PROGO1
AREA

INPUT
MESSAGE
AREA

DEFINED
RECORD
AREA

Figure 1-8. The Activation Record in Main Storage

Figure 1-9 shows the relationship between an action program
and its interface areas. .

ACTIVATION RECORD

PROGRAM OUTPUT CONTINUITY
INFORMATION MESSAGE DATA
BLOCK AREA AREA

INPUT DEFINED
MESSAGE RECORD
AREA AREA

Figure 1-9. The Action Program and Its Interface Areas

UP-9206

SPERRY UNIVAC 0S/3 2-1
IMS ACTION PROGRAMMING IN RPG i

ACTION PROGRAM CODING RULES

2. General Rules for Coding
Action Programs

2.1. CODING ACTION PROGRAMS

Action programs similar
to normal RPG Il programs

Scope of section

Most differences on
file description form

RPG Il form names

Coding action programs is very similar to standard RPG Il coding.
However, there are some differences since action programs
operate under the control of IMS.

In this section, the discussion centers around those coding
specifications that distinguish an action program from standard
RPG Il programs. We won't discuss the standard RPG |l coding
practices with which you are already familiar. For more
information about RPG Il coding, consult the report program
generator Il (RPG ll) user guide, UP-8067 (current version).

A sizeable part of this discussion concerns the file description
form since the major coding differences for action programs
concern this form. In addition, differences in coding for other RPG
forms are covered in this section. Where we don’t point out
differences in coding, assume that action programs conform to
the same coding rules as standard RPG Il programs. IMS coding
restrictions for all coding forms are listed in Appendix D.

In our discussion of the various coding forms, we refer to them
as the control, file description, file extension, calculations, input,
and output forms.

2.2. IDENTIFYING AN ACTION PROGRAM

‘A’ on control form
denotes action program

You denote an action program by
placing the letter A in column 74 of the
control form. It tells the compiler to
generate a program that interfaces with
IMS.

DENOTES
ACTION
PROGRAM

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

ACTION PROGRAM CODING RULES

Naming the program

Naming restrictions

Enter the program name in columns 75
through 80. This name is assigned to
your program during compilation. When
you don‘t specify a name, RPG |l
automatically assigns RPGOBJ as the
program name. However, since you will
undoubtedly have numerous action
programs, you will want to give each a
unique name.

Figure 2-1 shows the control form coding.

COMPILATION MODS
GARCA ANALYSIS
DU

PRINT COLLATING

SEQUENCE

GENERATE
o&sua CobE

INVEATED ALTEANATE |-

SUBROUTINE OR
ACTION PROGRAM

OPERATOR
CONTAROL

~OT
usEo NOT

¥
ot '
§31 et useo

useo [§3] useo

~ 2734 OR BLANK
& DOR SLANK
* D/1/4 OR BLANK

> ' OR BLANK
2 SORBLANK

NOT USED
10 14

22 26, 27 30121

uné;wzo

CCA
NAME

> S'A OR BLANK

PROGHAM
IDENTIOICATION

Figure 2-1. Coding the Control Form

The program name must conform to the following

be one to six characters;

be left-justified.

start with an alphabetic character (the remainder may be
any alphanumeric characters); and

UP-9206 SPERRY UNIVAC 0S/3 2-3
IMS ACTION PROGRAMMING IN RPG Il

ACCESSING FILES

. 2.3. DESCRIBING FILES AND INTERFACE AREAS

Define files as in Use the file description form to describe the files and the

normal RPG Il programs interface areas your action program is going to use. Describe all
the files the action program accesses just as you would in a
standard RPG Il program.

File types you can access ~ Action programs access conventional MIRAM, ISAM, DAM, and
SAM files as well as IMS defined files. (You can access IRAM
files but you must define them to the IMS configurator as MIRAM
files.) Conventional files are data files you create via OS/3 data
management. Defined files are files created by IMS from
conventional files according to user-supplied definitions. For more
information on creating and using defined files, consult the IMS
data definition and UNIQUE user guide, UP-9209 (current

version).
Where data files are You identify data files used by an action program in the ACTION
defined to IMS section of the IMS configuration and define each of your

conventional files in a FILE section. Table 2-1 summarizes the file
organization, access modes, and file types used in action
programs. See Appendix D for allowable file description form

. entries.

Table 2-1. Summary of File Types Used by Action Programs

File organizations, access
modes, and file types
used by action programs

Random Input/Update/Output”

Sequential Input

Random Input/Update/Output*®

Sequential Input

Random Input/Update/Qutput

Sequential Input

Sequential Output

Random Input/Update/Output*

Sequential Input

Random Input/Update/Output
. Sequential Output

“For output files, only ADD is allowed.

UP-9206

SPERRY UNIVAC 0S/3 2-4
IMS ACTION PROGRAMMING IN RPG |l

ACCESSING FILES

Where data files are
defined to RPG I

Accessing files in
random mode

Restrictions on file
updating

Accessing files in
sequential mode

Writing to sequential
files

Where the differences are

You define all files used by action programs on the file
description form and input/output form.

An action program can access ISAM, DAM, MIRAM, and defined
files in random mode by defining them as chained files on the file
description form (column 16).

Operating under IMS, the action program retrieves one record at
a time. Updating or deleting of the retrieved record must be done
before the next record is retrieved. Records being added to, or
deleted from, a file on which updating is being performed cannot
be added or deleted between the reading and writing of a record
that is being updated. The ADD or DEL specification in columns
16-18 of the output form performs add or delete functions.

An action program can also read ISAM, MIRAM, and defined files
in sequential mode. Define them as primary or secondary files
and use normal cycle input, or as demand files and use the READ
operation on the calculations form.

An action program can write output to a SAM file or dedicated

‘sequential MIRAM file. Sequential input files (disk or tape) are not

supported. However, you can read a disk MIRAM file sequentially
by defining it as a random file (MODE=RAN) in the FILE section
of the IMS configuration.

The major difference in coding the file description form is the use
of the interface areas or activation record. The interface areas
and how you code them are described in 2.4 through 2.19.

UP-9206 SPERRY UNIVAC 0S/3 2-5
IMS ACTION PROGRAMMING IN RPG i

INTERFACE AREAS

. 2.4. DEFINING THE INTERFACE AREAS

Activation record The activation record handles the control and communication of
data between IMS and your action program. The activation
record can contain as many as six interface areas:

Interface area names

ACTIVATION ACTION
RECORD PROGRAM

Input message area (IMA) Continuity data area (CDA)

Output message area (OMA) Work area (WA)

Program information block (PIB) Defined record area (DRA)

On the file description form, define the interface areas your action
program intends to reference. You never define a work area or a
defined record area, although these areas may be part of your
program’s activation record.

areas one data file, CUSTFIL, and four interface areas. This means that
PROGO1 intends to reference the input message area, output
message area, program information block, and continuity data
area during processing.

. Sample coding of interface Notice in Figure 2-2 that the action program PROGO1 has defined

FILE TYPE FILE PROCESSING MODE EXTENSION OR
FILE DESIGNATION KEY OR RECORD LINE COUNTER
€ND OF FILE ADORESS FIELD LENGTH cope

SEQUENCE RECORD ADDRESS TYPE
FILE FORMAT FILE ORGANIZATION

> OVERFLOW
~| @ inoicator oEvicE
sLocx | Aecoro x
cengTH | LENGTH -le XEY FIECD
« - STARTING

Example < Cocarion

TMIG . +.28] | NEMA |
UT MGG,

5.25] oM |
LB |, MPIR .

DA | . . KCDA
USTIELL DISK . .

NOT USED

1101CIU/0
PISIAICIDT

oT

HT
[k)

Figure 2-2. Defining Files and Interface Areas

UP-9206 SPERRY UNIVAC 0S/3 2-6
IMS ACTION PROGRAMMING IN RPG I

INTERFACE AREAS

Assigning interface area The interface areas are defined just like
file names any other file. You assign a unique file
name in columns 7-13 for each interface
area. This file name follows the standard
rules for file names. The file name you
assign can be the same as the interface LB |
area name. DA |,

Table 2-2 summarizes the entries you

must make.
Acceptable entries Table 2-2. Coding Interface Areas on the File Description Form. When you define
an interface area, you must make these entries on the file description
form.

16 + message
size

Any (Ve D, blank F 16 + message | *OMA
size

Any I, U D F Varies *PIB
{70 maximum)

Any I,U 0O P, S, D, blank F Saved data *CDA
size

UP-9206 SPERRY UNIVAC 0S/3 2-7
IMS ACTION PROGRAMMING IN RPG i

PROGRAM INFORMATION BLOCK

2.5. DEFINING THE PROGRAM INFORMATION BLOCK (PIB)

Purpose The program information block passes control data between IMS
and the action program after 1/O and at termination. It is a
Size predefined 145-character area. Your action program can access

only the first 70 characters. The remaining 75 characters are for
IMS internal use only.

RPG Il checks status The program information block is always present in the activation

codes record, but you don’'t need to define it unless you reference it.
After each 1I/O request, RPG Il automatically checks the status
codes and makes them available whether or not you define the
program information block.

Define PIB as input demand You define the program information block in one of two ways:
or update demand file
D as an input demand file; or

D as an update demand file

Type depends on use Choose input demand if you intend only to read it for data. If you
intend to update it, you must define it as an update demand file.

UP-9206

SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG I

2-8

PROGRAM INFORMATION BLOCK FIELDS

Summary of program
information block fields

12

13-20

21-27

28-34

35-36

37-38

39-40

41-42

43-44

45-46

13-14

15-16

17-20

Structure of the Program Information Block

Before discussing the program information block, let's take a
look at the data it contains. Table 2-3 summarizes the contents
of the program information block; subsection 2.6 is a detailed
description of the fields action programs can reference.

Table 2-3. Contents of the Program Information Block

Status-code | 47-48
Detailed-status-code 49-63
Successor-id 49-54
Termination-indicator
Lock-roliback-indicator
Transaction-id

Year 55-63
Day

Time
Data-def-rec-name
Defined-filte-name
Standard-msg-line-length 64-69
Standard-msg-number-lines
Work-area-iength
Continuity-data-input-length
Continuity-data-output-length

Work-area-inc

49-50

51-62

53-54

55-56

57-58

59-60

61-63

64

65-66

67-68

69

Continuity-data-area-inc
Success-unit-id

~ Transaction-date
Year
Month
Day
Time of day
Hour
Minute
Second
Filler
Source-terminal-chars
Source-terminal-type
Source-term-msg-line-length
Source-term-msg-number-lines
Source-term-attributes

DDP-mode

UP-9206 SPERRY UNIVAC 0S/3 2-9
IMS ACTION PROGRAMMING IN RPG i

STATUS CODES

. 2.6. HOW PROGRAM INFORMATION BLOCK FIELDS ARE USED

Status-code Status-code (positions 1-2) is a half-word binary integer value
returned by IMS indicating the completion status of a request.
Remember that RPG Il still sets *ERROR to indicate the error
condition; however, the status code provides more detailed
information. The status-code values are:

Status-code values

Successful

Invalid key or record number

End of file or unallocated optional file
Invalid request

1/0 error

Violation of data definition

Internal message control error

. Screen format error

When status-code =3 An invalid request status code is returned when IMS detects an

(invalid request) error in a request before passing the request to data
management, the control system, or the integrated
communications access method (ICAM).

When status-code =4 IMS returns an 1I/O error status code when an unrecoverable error
(l/0 error) is detected by data management, the control system, or ICAM.

When you configure You specify an error return option for each action program at
ERET—YES configuration time. If you choose to accept errors (ERET=YES

specified to the configurator), then, regardless of the status-code
value, the action program regains control when the request is
completed. When an error occurs, *ERROR is set. If you want
more information about the error, you must test for the various
status codes.

When you don’t configure If the option to reject errors is chosen or defaulted at

ERET=YES configuration time, IMS returns control to the action program only
when the status code equals 0,1,or 2. When any other status
code is returned, the action program doesn’t regain control.

UP-9206

SPERRY UNIVAC 0S/3 2-10
IMS ACTION PROGRAMMING IN RPG I

STATUS CODES

Recommendation

Detailed-status-code

Detailed-status-code
for 1/O error

Detailed status codes
for other errors

We strongly advise that you specify ERET=YES so that your
program can regain control and terminate orderly.

Detailed-status-code (positions 3-4) is a half-word binary value
returned by IMS following a request when the status code is
invalid request (3), I/O error (4), internal message control (6)
error, or screen format (7) error. The detailed status code
provides more detailed information concerning the error. IMS also
returns detailed status codes for invalid key (status code 1) when
you use defined files.

When the status code is /O error (4), the detailed status code
contains either filenameC + 2 or the error code and subcode
returned by the file access method. All file types except MIRAM
return a detailed status code of filenameC + 2. MIRAM files return
an error code (DM) and subcode. You can find these messages in
the system messages programmer/operator reference, UP-8076
(current version).

The detailed status codes for status codes 1, 3, 6 and 7 are
listed in Appendix C.

UP-9206 SPERRY UNIVAC 0S/3 2-11
IMS ACTION PROGRAMMING IN RPG I

PROGRAM SUCCESSION AND TERMINATION

Successor-id Successor-id identifies the action program that takes control

(positions 5-10) when the current program terminates. You must move the name
of the successor action program into successor-id whenever you
terminate with external, delayed, or immediate succession.

Size and name Successor-id is a 6-character field. The name you assign must be
left-justified and zero-filled.

When you specify normal When the action program uses normal termination, don’t specify
termination a value for successor-id.

Use to find cause of errors The successor-id field is also used to find and display the cause
of errors. To find the cause of an error, check the status-code
field, associate a successor-id with each possible error condition,
and assign an error code to each condition. When an error
occurs, move the error code to the successor-id field and
terminate your action program abnormally by moving A or S to
the termination-indicator field. IMS sends the error code from the
successor-id field to the terminal after abnormal termination.

Termination-indicator Termination-indicator is a 1-character value that shows the type

(position 11) of termination for the current program. (See 1.4 for a description
of the types of termination.) You select the type of termination
by moving a specific character to the termination-indicator field.

Default value When you don't move a value to termination-indicator, IMS
assumes normal termination.

Table 2-4 lists the character, type of termination it selects, and
IMS operations that take place.

UP-9206

SPERRY UNIVAC 0S/3

2-12

IMS ACTION PROGRAMMING IN RPG I

PROGRAM SUCCESSION AND TERMINATION

Termination types and
IMS operations

Table 2-4. Termination Indicators

Normal
Termination

External
Succession

Delayed
Succession

Immediate
Succession

Abnormally
withotit
Snap Dump

Abnormalty
with Snap
Dump

Table 2-5 summarizes

Output message is sent to terminal.
All resources, including current action
program, are released. When

you don’t move a value to this

field, normal termination is assumed.

Output message is sent to terminal.

Any data saved by this program is stored
in the continuity data file.

All resources, including current action
program, are released. Successor action
program is scheduled when another

input message is received from
originating terminal.

No output message goes to the terminal.
Output message is queued as input message
to. successor action program. Any

data saved by the program is stored in

the continuity data file. All

resources, including current action

program are released. Successor

action program is initiated by

normal scheduling process.

No output message goes to the terminal.
Current action program only is released.
Successor action program is immediately
initiated and IMS passes to it {intact)

the interface areas of the predecessor
program.

Sends error message to originating
terminal {includes value moved to
successor-id). All resources are released.
All files are rolled back.

Same as A except a snap dump of current
action program and its activation record

is also provided. To get a snap dump, specify
// OPTION DUMP, JOBDUMP, or SYSDUMP
in your IMS job control stream.

the

program can specify and the associated successor-id entries.

types of termination an action

UP-9206

SPERRY UNIVAC 0S/3 2-13
IMS ACTION PROGRAMMING IN RPG I

PROGRAM SUCCESSION AND TERMINATION

Table 2-5. Summary of Action Program Termination Types
and Successor-ids

Successor-d

Ignored

Termination
code

Termination code

Successor
program name

Successor
program name

Successor
program name

Termination-

A

E

D

Indicator

Involuntary termination The termination-indicator field controls voluntary termination of
action programs. Action programs can also terminate
involuntarily. Involuntary termination occurs when IMS encounters
an abnormal condition in the processing of a request issued by
an action program. Involuntary termination occurs when action
program execution causes a program check or when an execution
loop within an action program continues beyond a specified time
limit. When any of these conditions occurs, IMS sends a 3-line
message to the originating terminal and to the system console,
giving the cause of the abnormal termination. Abnormal
termination messages are listed in the system messages
programmer/operator reference, UP-8076 (current version).

Causes

. Result

Obtaining a dump A snap dump of the action program and its activation record is
performed only when // OPTION DUMP, JOBDUMP, or
SYSDUMP is specified in the job control stream for executing

IMS.

UP-9206

SPERRY UNIVAC 0S/3 2-14
IMS ACTION PROGRAMMING N RPG I

LOCK ROLLBACK

Lock-rollback-indicator
{position 12}

Default value

Holding of locks

Lock-rollback-indicator is a 1-character value, set by the action
program, that indicates the record lock and rollback functions you
want performed at action program termination. Table 2-6
summarizes the possible entries for this field.

Table 2-6. Summary of Record Locks and Rollback

Holds all locks imposed by the current action program
into the successor program.

, D Releases all pending locks set by the current action
program. Update locks are held into the successor
program.

,D, N Releases all locks for the transaction. Establishes a
new rollback point in the audit file. This is the default
value.

. D, N Releases all locks for the action or transaction. Rolls
back all updates for this action or transaction.
Establishes new rollback point in the audit file.

IMS checks the lock-rollback-indicator field at action termination
for external and delayed succession or normal termination. When
you don’t specify a value in lock-rollback-indicator, IMS assumes
the value N. Don’t confuse this with the N signifying normal
termination.

IMS doesn’t check the lock rollback indicator when you terminate
with immediate succession. All records remain locked since there
is only one action taking place in immediate succession and IMS
always holds locks for at least the length of the action.

UP-9206 SPERRY UNIVAC 0S/3 2-15
IMS ACTION PROGRAMMING IN RPG Il

LOCK ROLLBACK

Caution in using Rand H Use the R and H options only when the termination indicator is

options set to E for external succession or D for delayed succession. In
long transactions, use R and H with caution. Holding of locks
across action programs in a multithread environment can cause
deadlock. In a single-thread environment, holding locks across

Single-thread restriction actions can decrease response time. In single-thread IMS, you
can use the R and H indicators only when you specify
RECLOCK=YES in the OPTIONS section of the configuration. See
the IMS system support functions user guide, UP-8364 (current
version}.

Advantages of the N option Use the N option for long-running update transactions. The N
option releases all locks when the termination indicator is set to
E for external succession or D for delayed succession. With
normal termination, locks are always released and a new rollback
point is established. This option also establishes additional
roliback points, limits the range of rollback, and reduces the size
of the audit file. The audit file contains the before-image of
records to be updated. By limiting the number of updates in an
action program or by establishing additional rollback points in a
long-running transaction, you reduce the size of the audit file and
save disk space.

. Getting online file recovery The O option activates online file recovery to roll back files to
the previous rollback point. Use the O option for external and
delayed succession or normal termination.

Lock for update If you specify lock for update (LOCK=UP) for a particular file in
the FILE section at configuration time, IMS releases record locks
when updates are completed rather than at the end of an action.
When you use this option, IMS doesn’t save before-images in
the audit file and doesn’t roll back updates at abnormal
termination. You can use the R indicator to release locks on
uncompleted updates at the end of an action, or the H indicator
to hold locks on uncompleted updates into the next action.

UP-9206 SPERRY UNIVAC 0S/3 2-16
IMS ACTION PROGRAMMING IN RPG !l

OTHER PROGRAM INFORMATION BLOCK FIELDS

Transaction-id Transaction-id is a unique identification for a transaction. IMS

[positions 13-20) sets this value for all action programs that are part of the same
transaction. The first part is the date in Julian form; the second
part is a unique number assigned by IMS. If you require the
accurate date and time in your action program, use the
transaction-date and time-of-day under success-unit-id.

Data-def-rec-name If your action programs access a defined file, the
and defined-file-name data-def-rec-name (positions 21-27) and defined-file-name

[positions 21-34) (positions 28-34) fields name the defined file or subfile. Both are

7-character items, left-justified and blank filled. The description of
the defined file is contained in the data definition record in the
NAMEREC file.

IMS places configured When IMS schedules the first action in a transaction, it places:
values in these fields

m the data definition record specified by the DDRECORD
configurator parameter into the data-def-rec-name field; and

m the defined file name specified by the DFILE configurator
parameter into the defined-file-name field.

Passing new names to When your action program terminates in external or delayed

successor program succession and the successor program accesses a different
defined file, you can pass the new data definition record name
and defined file name to the succeeding program either by:

1. placing the new names in data-def-rec-name and
defined-file-name; or

2. placing zeros in both fields and allowing IMS to insert the
values configured for the successor action.

Using conventional files If the successor program accesses only conventional files, your

in successor program action program should place zeros in data-def-rec-name and
defined-file-name. This allows the successor program to access a
conventional file that may have contributed to the defined file
used in the previous action.

Standard-msg-line-length Standard-msg-line-length is a half-word binary integer that shows
(positions 35-36) the maximum line length for a message. IMS obtains this value
from the CHRS/LIN configurator parameter.

UP-9206 SPERRY UNIVAC 0S/3 2-17
IMS ACTION PROGRAMMING IN RPG I

OTHER PROGRAM INFORMATION BLOCK FIELDS

. Standard-msg-number-lines Standard-msg-number-lines is a half-word binary integer that
[positions 37-38) shows the maximum number of lines for a message. IMS obtains
this value from the LNS/MSG configurator parameter.

Work-area-length Work-area-length is a half-word binary integer. It contains the

[positions 39-40) size of the work area specified at configuration time. You must
configure a work area when your action program uses screen
format services. RPG Il uses this work area to store the variable
output fields while the screen is built. This all happens internally.
The action program itself doesn’t use the work area.

Continuity-data-input-length Continuity-data-input-length is a half-word binary integer. It
(positions 41-42) contains the size of the continuity data record passed by the
predecessor program.

Continuity-data-output- Continuity-data-output-length is a half-word binary integer that

length defines to the current action program the configured size of the

fpositions 43-44) continuity data area. When the current program terminates, this
field contains the size of the continuity data area passed to the
successor program.

. Work-area-inc Work-area-inc is a half-word binary integer. Move a value to this
(positions 45-46} field when you need to increase the size of the configured work
area in the successor action program. You do this because you
know the configured size will not be large enough to hold the
screen that the successor program wants screen format services
to build.

Continuity-data-area-inc Continuity-data-area-inc is a half-word binary integer. Move a

(positions 47-48) value to this field when you want to increase the configured size
of the continuity data area for the successor action program. IMS
adds this increment value to the length of the continuity data
record that the current action program is saving. It then
compares this value to the configured continuity data area size.
The larger value becomes the size of the continuity data area for
the successor action program.

Success-unit-id Success-unit-id provides a calendar date and clock time for your

{positions 49-63) action program at the beginning of each success unit. Reference
this field when your action program requires an accurate
date/time value.

uP-9206

SPERRY UNIVAC 0OS/3 2-18
IMS ACTION PROGRAMMING IN RPG I

OTHER PROGRAM INFORMATION BLOCK FIELDS

Source-terminal-type
{position 64)

Source-term-msg-line-
length
{positions 65-66)

Source-term-msg-number-
lines
{positions 67-68)

Source-term-attributes
{position 69)

Source-terminal-type is a 1-character field containing a type code
for the source terminal. The values set by IMS are:

System console

UTS 400 terminal in native mode (with or without character-protect feature)
UTS 10, DCT 500, DCT 1000, or teletypewriter

UTS 400 terminal in UNISCOPE mode with FCC-protect feature

UTS 400 text editor

UTS 400 terminal in UNISCOPE mode with character-protect feature
UNISCOPE 100 or UNISCOPE 200 terminal

Workstation or UTS 20 terminal

IBM 3270 terminal

UTS 40 terminal

Source-term-msg-line-length is a half-word binary integer that
specifies the number of characters per line for the source
terminal. For hard copy terminals, this is the configured line
length (CHRS/LIN specification in the GENERAL section of the
IMS configuration).

Source-term-msg-number-lines is a half-word binary integer that
specifies the number of lines for the source terminal. For hard
copy terminals, this is the configured number of lines (LNS/MSG
specification in the GENERAL section of the IMS configuration).

Source-term-attributes is a 1-character field defining specific
attributes of the source terminal. The values it can contain are:

Screen bypass and Katakana
Katakana character set
Nonvideo device

Screen bypass feature

None of these attributes

UP-9206

SPERRY UNIVAC 0S/3 2-19
IMS ACTION PROGRAMMING IN RPG I

OTHER PROGRAM INFORMATION BLOCK FIELDS

DDP-mode (position 70)

DDP-mode is a 1-character field that identifies the type of remote
transaction in distributed data processing. The values set by IMS
are:

Transaction was initiated because of an ACTIVATE request from an action
program {(program-initiated transaction).

Transaction was initiated by directory or operator routing (operator-initiated
transaction).

UP-9206

SPERRY UNIVAC 0S/3 2-20
IMS ACTION PROGRAMMING IN RPG I

READING THE PROGRAM INFORMATION BLOCK

2.7. HOW TO READ THE PROGRAM INFORMATION BLOCK

Defining PIB as an
input demand file

Using status codes to
determine processing

Sample file description
form coding

Column 19
(file format)

Omit block length

Columns 24-27
(record length)

To read the PIB (but not update it), define it as an input demand
file on the file description form.

Let's assume that in your action program you want to be able to
read the status-code and detailed-status-code fields, and based
on the values they contain, determine what processing is done.
Figure 2-3 shows the file specifications.

FORAM FILE TYPE FILE PROCESSING MODE

TYRE FILE DESIGNATION

END OF FILE
SEQUENCE

PAGE FILE FILE FORMAT

DITION/UNORDERED LOAD
DER OVERFLOW
PERCENTAGE IX 10!

NUMBER OF EXTENTS
| _TAPE REWIND OFTION
FiLE CONDITIONERS

K€Y OR RECORD LINE COUNT!
ADDRESS FIELD LENGTH

RECORD ADDRESS TYPE
FILE ORGANIZATION

—

> OVEAFLOW
INDICATOR oEvice

PROGRAM
USED| (DENTIFICATION

PISIRIC/DIT

e~ &
sock | mecomo x|x

HEES B
- LOCATION

33 24|35 »

1101CIUI0
B En
utug

~
<
-
>
b
=
&
&
[
3
E]
b
2
P
¥
]
=

N AN R

Figure 2-3. Defining the Program Information Block as an Input
Demand File

First, name the file. In Figure 2-3, the
fle name is PIB. Then, enter an | in
column 15 for file type and a D in
column 16 for file designation.

Enter an F in column 19 for file format.
For RPG Il action programs, the file
format entry is always F.

Omit block length (columns 20-23). If
you enter a value, it must equal record
length.

Enter 4 since status-code and
detailed-status-code are the first four
characters of the program information
block. These are the fields you want to
read. If you choose, you can reference
all 70 characters of the program information block by entering 70
for record length. By doing that, you can read any of its fields

during your action program. .

UP-9206 SPERRY UNIVAC 0S/3 2-21
IMS ACTION PROGRAMMING IN RPG |l

READING THE PROGRAM INFORMATION BLOCK

Considerations in In defining record length, specify at least -the number of
determining record length characters up to and including the field or fields in the program
information block that you want to read.

Columns 40-46 Specify *PIB. You may not enter any
{device name) other name.
Input form entries To get the values for status-code and

detailed- status-code into your action
program, you have to name these fields
on the input form (Figure 2-4). You can
assign any name you choose, provided
the position you assign to them
corresponds exactly to their position in the program information
block. Program information block fields defined on the input form
that are not read by your action program are flagged at
compilation as unreferenced.

5

2 9
1ca FIELD DESCRIPTION
AECORD IDENTIFICATION CODES FIELD

FIELD LOCATION
5 INDICATORS.

PROGRAM

POSITION

L
CHAINING FIELDS
RELATION

2ERO

MATCHING FIELOS OR
3 ORBLANK

CHARACTER

¥ CHARACTER
STACKER seLECT
DATA FORMAT P8 LR
DECIMAL POSITIONS

£ CONTROL LEVEL
F1ELD RECORD

T
&
4

53 8.

ﬁﬂ'A.‘l’xU&
EST AT

g
2
2
£y
8

b

(A

CONOITIONS ; RESULTING
INDICATORS. INDICATORS

ARITHMETIC

AND aND

OPERATION FACTOR 2

LO-L/LA/SR

ED IR
Looxur

(FACTOR 2115

O] > conNTROL LEVEL

w[2]Z

DECIMAL POSITIONS
W < HALF ADJUST

wiGH| Low feaua)
64 555 57158 59

el PIB .
STATOS, . ComMP [i,
PESTAT, , , LoMP b 1,

8 3 [Y}

$
E
2

Figure 2-4. Testing Status and Detailed Status Codes

Specify binary In column 43 of the input form, specify
fields B, because status-code and detailed-
status-code are binary fields.

UP-9206

SPERRY UNIVAC 0S/3 2-22
IMS ACTION PROGRAMMING IN RPG I

READING THE PROGRAM INFORMATION BLOCK

Specifying the READ
operation

Testing for
status codes

No end-of-file indicator
set on

In columns 47 and 51, specify the
starting and ending positions.

On the calculation form, specify the READ operation for the file
name you assigned to the program information block.

To test the status codes and detailed status codes, specify the
COMP operation for the field names you specify on the input
form. Figure 2-4 shows the coding to test for a status code of 3
and detailed status code of 6.

You may read the program information block as many times as
you want. RPG Il doesn’t set on the end-of-file indicator.

UP-9206

SPERRY UNIVAC 0S/3 2-23
IMS ACTION PROGRAMMING IN RPG i

UPDATING THE PROGRAM INFORMATION BLOCK

2.8. HOW TO UPDATE THE PROGRAM INFORMATION BLOCK

Defining PIB as an
update demand file

Updating successor-id and
termination-indicator

Sample file description
form coding

Defining record length

Device name

To update the program information block, define it as an update
demand file. There are many instances when you will need to do
this. The most common reason for updating the program
information block is to specify types of termination - normal
termination, external, delayed, or immediate succession.

Let's assume your transaction contains two action programs,
PROGO1 and PROGO2. For processing to continue when PROGO1
terminates, PROGO1 must name its successor and the type of
termination. PROGO1 does this by updating the program
information block. On the output form, it moves the name of the
successor program, PROGO2, into the successor-id field and
moves the termination code, E, D, or |, depending on the type of
termination desired, to the termination-indicator field. Now let's
take a look at how you code the file description form to allow
for this updating.

In Figure 2-5, you see how we defined
the program information block as an
update/demand file in columns 15 and
16, and entered an F for file format in
column 19. For record length, we
specified 11 since termination-indicator
occupies position 11 in the program
information block. You must specify at
least 11 character positions when
updating the termination-indicator field.

Enter *PIB in columns 40-46. You can’'t
substitute any other name in these
columns.

FILE TYPE FILE PROCESSING MOGE ¢ XTENSION O ‘RDEAED LOAD.
FILE OESIGNATION KEY OR RECOHD LINE COUNTER
END OF FILE ADORESS FIELD L ENGTH coDe

SEQUENCE RECORD ADDRESS TYPE
FILE FORMAT FILE ORGANIZA TION

> OVERFLOW

Q inmicaToR

BLOCK RECORD,

LENGTH | LENGTR “1al & [xevniewo
STARTING

NOT USED

Location | ¥

£ 38

L1

Figure 2-5. Defining the Program Information Block as an Update
Demand File

UP-9206 SPERRY UNIVAC 0S/3 2-24
IMS ACTION PROGRAMMING IN RPG I Update A

UPDATING THE PROGRAM INFORMATION BLOCK

Sample output form coding The actual updating of these fields
occurs at output. Figure 2-6 shows the
output form for PROGO1. The file name
is PIB. It matches the name assigned to
the program information block on the
file description form. We defined the
end positions for output as 10 and 11,
respectively. Position 10 is the end
position for successor-id; and 11, for
termination-indicator. In columns 45-70,
we indicated ‘PROGO2’ as the name of
the successor program and ‘I' for
immediate succession as the type of
termination. When PROGO1 terminates,
‘PROGO2’ is moved to the successor-id
field and ‘I’ to termination-indicator. IMS
then checks the fields to determine what
processing takes place next.

QUTPUT INDICATORE

FFETCH OVERFLOW DATA FORMAT

TYPE WDITIE [NEGATIV
NONE
T

END
POSITION
N

IDENTIFICATION

FiLE .
wawe 2]
le

outPUT
RECORD

[o]-| Arven
% 8 BLANK AFTER

I8 eoit cooes

7 "

o aalufs

PIR | . ..] 1.y Ll

A \ . Lol ' PROG#IR,
L Land| M3/ |

Figure 2-6. Designating a Successor Program and Type of
Termination

No READ operation You don't need to read the program information block before
updating it. RPG Il does this for you. However, you must define it
as an update demand file.

You define it as an update demand file so you can change
individual fields. If you define it as an output file, you must supply
all fields or the information contained in the fields you don’t
supply will be overlaid by blanks. Therefore, it is much easier to
define it as an update demand file.

When you specify the PIB as update demand and do not supply
input specifications, you receive a warning message that there
are no input specifications. This is only a warning message and
you need not take any action.

When reading the program information block, be aware that the
end-of-file indicator is not set on by RPG Il

UP-9206 SPERRY UNIVAC 0S/3 2-25
IMS ACTION PROGRAMMING IN RPG Il

INPUT MESSAGE AREA

2.9. DEFINING THE INPUT MESSAGE AREA (IMA)

The input message sent from the terminal goes to the input
message area where it awaits processing by the action program.
You define an input message area if your action program
references it.

Defining the input Generally, the IMA is defined as a primary input file since the
message area input message coming in from the terminal often contains data to
be processed by the action program.

Size The input message area’s size is usually specified at configuration
time. When the size isn't specified or the size specified is
inadequate, IMS allocates an area large enough to handle the
entire input message.

Control header In addition to the input message coming in from the terminal, the
input message area also contains a control header. The control
header is 16 characters long and contains data generated by IMS
related to the input message.

Format of the Input Message Area Header

Table 2-7 lists the fields that comprise the input message area
control header.

Summary of header fields Table 2-7. Input Message Area Control Header Contents

1-4 Source-terminal-id

5-12 Date-time-stamp

13-14 Text-length

15 Reserved for system use

16 Auxiliary-device-id
c1 Device = Aux1
c2 Device = Aux2
c3 Device = Aux3
ca4 Device = Aux4
Cc'5’ Device = Auxb
c'6’ Device = Aux6
c'7 Device = Aux7
c's’ Device = Aux8
c'g Device = Aux9

UP-9206

SPERRY UNIVAC 0S/3 2-26
IMS ACTION PROGRAMMING IN RPG It

INPUT MESSAGE AREA

Source-terminal-id
{positions 1-4)

Message-identifier
{positions 5-12)

Text-length
{positions 13-14)

Auxiliary-device-id
{position 16)

Input Message Header Fields

The input message area control header contains the following
items:

Source-terminal-id identifies the terminal that sent the input
message.

Message-identifier is a unique identifier for each input message.
The first part is the date; the second part is a unique number
assigned by IMS. It is given in binary integers.

Text-length is a binary half-word integer that specifies the length
of the input message text.

Auxiliary-device-id is the configured number of the auxiliary
device transmitting data to the action program. This number is
specified in the communications network definition.

UP-9206 SPERRY UNIVAC 0S/3 2-27
IMS ACTION PROGRAMMING IN RPG I

INPUT MESSAGE AREA CODING

. 2.10. READING THE INPUT MESSAGE AREA

Defining IMA as In most circumstances, the input message area is defined as a

an input file primary input file since the input message sent from the terminal
is the first data you want the action program to process.
Consequently, as soon as your action program begins
processing, RPG |l reads the input message area. Study Figure
2-7 for a moment.

Sample file description In Figure 2-7, we define the input

form coding message area as INMSG in columns
7-13, file name. You must give the
input message area a unigque name; you
can name it IMA.

Columns 15,16,24-27 We entered IP for primary input in
columns 15 and 16, respectively. The
record length entry is 48. This
designates the size of the input message
(32 characters plus an additional 16
characters for the IMA control header)
that this action program is expecting.

. Device name The entry *IMA in columns 40-46 is
required. You may not substitute any
other name.

Read once only RPG Il reads the input message area

only once. After this, any attempt to
read this area sets the end-of-file
indicator on.

1LE PROCESSING MODE EXTENSION OR
FILE DESIGNATION KEY OR HECORD LINE COUNTER
END OF FILE ADDRESS FIELD LENGTH €ooE

SEQUENCE RECORD ADDRESS T YPE
FILE FORMAT FILE ORGANIZATION

> OVEHFLOW
8 moicator
g

BLOCK RECORD

LENGTH | LENGTH KEY FIELD
I STARTING
LOCATION

7 13{ars 33 |25 8

INMSIGy |

NOT USED
5 PISIRICIDIT

a]

[y .

Figure 2-7. Defining the Input Message Area as a Primary Input File

UP-9206

SPERRY UNIVAC 0S/3 2-28
IMS ACTION PROGRAMMING IN RPG !l

INPUT MESSAGE AREA CODING

2.11. USING THE INPUT MESSAGE AREA TO PASS DATA

Defining IMA as an
update file

Saving data in the input
message area

How to pass data

Successor program using
saved data

Restrictions on reading
input message area

Define the input message area as an update file (Figure 2-8)
when you want to use it to pass data from the current action
program to its successor program.

Normally, you pass data by means of
the continuity data area. However, when
you use immediate succession, you can
pass data to the successor program in
the input message area.

To use the input message area to pass data, define it as an
update file. Then, at termination, output to the input message
area any data you want to save and pass to the successor
program. You would code this operation on the output form as
you would to do output to any file.

The successor program defines the input message area as an
input or update file depending on how it intends to use the data.
To read the data, define it as an input file. To read and update
the input message area, define it as an update file. In either case,
the data saved in the input message area of the predecessor
program is immediately available to the successor program.

Remember, you can only perform a READ operation on the input
message area once. If you try it a second time, the end-of-file
indicator is set on.

i
= :
FORM FILE TYPE .

Tvee FILE DESIGNATION KEY OR RECORD LINE COUNTER
END OF FILE ADORESS FIELD LENGTH cope

€551

SEQUENCE RECORD ADDRESS TYPE

PAGE FiLE FILE FORMAT FILE ORGANIZATION
no | Line NAME

OVERFLOW
INDICATOR DEVICE

PROGRAM
IDENTIFICATION

NOT USED
P/S/AICIONT

2
s[~| &
sLock | Recomo x| &

LENGTH | LENGTH z1a] @ [xeveEn

MEEIREIR

= Lacation [*

2 272|282 30fa1fa2f33 a3 38[39]e0 46 |a7

568

>
i
>
3
&
a
3
b

\vJ

Figure 2-8. Defining the Input Message Area as an Update
Demand File

UP-9206 SPERRY UNIVAC 0S/3 2-29
IMS ACTION PROGRAMMING IN RPG i

INPUT MESSAGE AREA CODING

Immediate succession saves When using the input message area to pass data between
interface area contents programs, you must specify immediate succession in the
termination-indicator field of the current action program. Only in
immediate succession does the input message area remain intact
between the time the first action program terminates and the
successor program begins processing. Recall that in normal
All other terminations termination, external and delayed succession, the interface areas,
release interface areas including the input message area, are released at the termination
of the current program. And in the case of external and delayed
succession, the successor program gets its own set of interface
areas. In immediate succession, however, all interface areas
remain intact. Consequently, the data saved in the input message
area of the first program is accessible to the successor program.

To save input message Remember if you want to use the input message area to pass
area data:

@ on the file description form, define it as an update file;

@ on the output form, move the data to be saved to the input
message area; and

} specify ‘I’ for immediate succession in the termination-
indicator field.

UP-9206 SPERRY UNIVAC 0S/3 2-30
IMS ACTION PROGRAMMING IN RPG i

OUTPUT MESSAGE AREA

2.12. DEFINING THE OUTPUT MESSAGE AREA (OMA)

Purpose The output message area holds the output message that your
action program generates. It remains there until it's sent to the
terminal.

Size You must define an output message area when your program

produces an output message. The maximum size of the output
message area is specified at configuration.

Control header In addition to the output message sent to the terminal, the output
message area contains a control header. This header is 16
characters long and contains data generated by IMS concerning
the output message.

UP-9206 SPERRY UNIVAC 0S/3 2-31
IMS ACTION PROGRAMMING IN RPG i

OUTPUT MESSAGE AREA FIELDS

. Format of the Output Message Area Header

Table 2-8 lists the fields that comprise the output message area
control header.

Summary of header fields Table 2-8. Output Message Area Control Header Contents

1-4) Destination-terminal-id
5-6 SFS-options
5 SFS-type
6 SFS-location
7-8 Reserved for system use
9-12 Continuous-output-code
13-14 Text-length
15-16 Auxiliary-device-id
. 15 Aux-function
16 Aux-device-no
c't Device=Aux1
c2 Device=Aux2
c'3 Device=Aux3
ca Device=Aux4
C'5’ Device=Auxb
c'e6’ Device=Aux6
c7 Device=Aux7
cs Device=Aux8
c'9 Device=Aux9

Output Message Header Fields

The output message area control header contains the following
items:

Destination-terminal-id Destination-terminal-id identifies the terminal to receive the output
(positions 1-4) message. If you don’t move a value to this field, the terminal that
sent the input message receives the output message.

UP-9206

SPERRY UNIVAC 0S/3 2-32
IMS ACTION PROGRAMMING IN RPG I}

OUTPUT MESSAGE AREA FIELDS

SFS-type
{position 5)

SFS-location
{position 6)

Continuous-output-code
{positions 9-12)

Text-length
{positions 13-14)

Auxiliary-device-id
{positions 15-16)

When you transmit an input or input/output screen using screen
format services, IMS places a value of | in SFS-type. This means
that the screen format can be used for input in the following
action. You can change the screen to an output-only screen by
placing hexadecimal zero in this field.

To build a screen format in dynamic main storage instead of in
your output message area, move C'D’ to SFS-location. Once you
build a screen format in dynamic main storage and you want to
send a message from the output message area, you must move
hexadecimal zero to this field. Screen format services is
discussed in Section 6.

Continuous-output-code is a 4-character field that the action
program uses when generating continuous output. The contents
of this field are returned to the successor program in the input
message area. Continuous output is discussed in Section 5.

Text-length is a binary half-word integer that specifies the length
of the output message. At the start of program execution, this
field contains the configured size of the output message area.
Before the output message actually goes to the terminal, RPG Il
enters a new value into the text-length field. It computes this
value by taking the end position for the last field described on
the output form, and subtracting 12 characters (16 characters for
the output message area header minus 4 bytes for the
text-length field). IMS then uses this value to determine the size
of the output message going to the terminal. This procedure is
further described in 2.14.

Auxiliary-device-id contains two fields: aux-function (15) and
aux-device-no (16). The action program moves a value to
aux-function when it generates continuous output and when it
transmits regular output messages to an auxiliary device.
Aux-device-no identifies the configured number for the auxiliary
device receiving the output message. This number is specified in
the communications network definition.

UP-9206 SPERRY UNIVAC 0S/3 2-33
IMS ACTION PROGRAMMING IN RPG I

OUTPUT MESSAGE AREA CODING

2.13. FILE SPECIFICATIONS FOR THE OUTPUT MESSAGE AREA

You can define the output messsage area as an output file or as
an update demand file.

Defining OMA as an Generally, the output message area is defined as an output file
output file since most action programs generate output messages. Figure
2-9 shows you how to do this.

FILE TYPE FILE PROCESSING MODE EXTENSION OR
FILE DESIGNATION KEY OR RECORD. LINE COUNTER
ENDOF FILE ADOHESS FIELD LENGTH 4

SEQUENCE HECORD AUDRESS TVPE
FILE FORMAT FILE ORGANIZATION

OVERFLOW

INDICATOR

8LOCK RECORD x

tenatn | LEnGTH - KEY FIELD
< STARTING

LOCATION

3 £

QT MS L

NOT USED
PISIAICIONT

7 13

*
3

Figure 2-9. Defining the Output Message Area as an Output File

Sample file description The output message area is defined as

form coding OUTMSG in columns 7-13. You must
give it a unique name; you can use the
name OMA.

Columns 15,16,19 The file type (column 15) is O for

output. Whenever column 15 contains
an O, leave column 16 blank. The
required entry in column 19 is F for file
format.

Columns 24-27 In columns 24-27, we entered 143.
This is the configured size of the output
message, including 16 characters for the
control header.

Device name In columns 40-46 (Device), *OMA is the
only acceptable entry.

UP-9206

SPERRY UNIVAC 0S/3 2-34
IMS ACTION PROGRAMMING IN RPG |l

OUTPUT MESSAGE AREA CODING

Defining OMA as an update Define the output message area as an update demand file when

demand file

Reading text-length

Reading data saved by
predecessor program

Saving data in OMA

Output message area in
immediate succession

Output message area in
delayed succession

Determining maximum
output message area
size

you want to do a READ operation on the output message area.
Generally, you read the output message area for one of two
reasons:

To determine the value in the text-length field. This field
contains the output message area size specified at
configuration. Knowing this value is important in determining
the size of the output message your action program can
create.

To get data saved there by a predecessor program using
immediate succession.

You can save data in the output message area with either
immediate or delayed succession.

With immediate succession, all interface areas of the current
action program, including the output message area, remain
intact for the successor program. The successor program
needs only to read the output message area to get this data.

With delayed succession, the output message area of the
current action program automatically becomes the input
message area of the successor program. Thus, the sucessor
program has immediate access to the saved data. If the
successor program defines the input message area as the
primary file, RPG Il reads it as soon as processing begins.

In Figure 2-10, all entries are the same
as in Figure 2-9, except for columns 15
and 16 where we defined the output
message area as an update demand file.
We did this in order to read the text-length field to see if the
configured output 'message area size can handle the
143-character output message this program generates. If the
configured size is smaller than this, a portion of the message is
lost when transmitted to the terminal.

UP-9206 SPERRY UNIVAC 0S/3 2-3b
IMS ACTION PROGRAMMING IN RPG I

OUTPUT MESSAGE AREA CODING

FILE T
FILE DESIGNATION KEY OH RECORD LINE COUNTER o
END OF FiLE ADORE S5 FIELD LENGTH CODE x100

SEQUENCE RECOHD ADDRESS TYPE OF EXTENTS
FILE FORMAT FILE ORGANIZATION

OVERFLOW

INDICATOR OEVICE

BLOCK RECORD x

LENGTH -la KEY FIELD IDENTIFICATION
< STARTING

LOCATION

NOT USED
PISIAICIONT

7 13

LUTMSG

B
3

™ 80

(<]

Figure 2-10. Defining the Output Message Area as an Update
Demand File

2.14. HOW TO CODE YOUR OUTPUT MESSAGE

RPG Il moves value When an action program generates an output message smaller

to text-length than the configured output message area size, RPG Il moves a
new value into the text-length field before the message is sent to
the terminal. Also, when an action program generates more than
one message (see Section 5), RPG Il moves a value to text-length
before each message is sent.

How output message length RPG Il uses the end position of the last field you code on the
is determined output form to determine the length of the output message. For
this reason, be sure to list last the field with the highest end
position. You must also remember to allow 16 characters for the
output message header when calculating the end position of the

first field.
Allowing for output Suppose your output message has three fields, CUSTNO, NAME,
message header and ACCT. The first field, CUSTNO, is 14 characters long, but

you must allow 16 characters for the output message header, so
you give the value 30 for the ending position of the first field.
NAME and ACCT are each 30 characters.

Example In Figure 2-11 the field ACCT has the highest value end position,
90, and is listed last on the output form. RPG Il computes the
value of text-length by taking the value 90 and subtracting 12
characters (16 for the output message area header minus 4 for
the text-length field). Consequently, when the output message
goes to the terminal, the three fields CUSTNO, NAME,and ACCT
all appear on the screen since the value in text-length was large
enough to accommodate the three fields.

UP-9206

SPERRY UNIVAC 0S/3 2-36
IMS ACTION PROGRAMMING IN RPG I

OUTPUT MESSAGE AREA CODING

Incorrect text length

Effect of incorrect
text length

STACKER SELECT/
£1FETCH OVERFLOW

DATA FORMAT
YYPE HIOITIE l P8 LA

AND PROGAAM

(OENTIFICATION

To]w] serone
s|o]|r| arten
® €011 CODES

% 8 BLANK AFTER

£ a7

COSTNGO |]
INAME, |
LT

Figure 2-11. Coding the OQutput Form Determines the Value in
Message Length

Now look at Figure 2-12. In this case, RPG |l looks at the end
position on the output form and determines the output
text-length field value based on position 60. RPG Il computes the
value for the text-length field using the end position 60.

STACKER SELECT/

FeFETCH OVERFLOW OUTPUT INDICATORS

DATA FORMAT
TYPE HID/T/E PBILIA

END
POSITION
I
auTeyT

RECOAD

IDENTIFICATION

3 B BLANK AFTER

slo[r] arten
8 €0IT CODES

Ez) k)

0 a3

Pl
CUST NO 1.3@

ALCT . | 1.9
AME, | 1

4]

T
]

Figure 2-12. How Placement of Output Fields Can Cause Incorrect
Message-Length Field

When the output message goes to the terminal, only CUSTNO
and NAME appear on the screen. IMS overlooks ACCT since the
text-length size wasn’t big enough. This happens even though
the configured size of the output message area is large enough to
hold the entire message. You control what goes to the terminal
by the way that you list fields on the output form.

UP-9206 SPERRY UNIVAC 0S/3 2-37
IMS ACTION PROGRAMMING IN RPG Il

OUTPUT MESSAGE AREA CODING

When program moves value |f you wish, you can move a value to the text-length field. This

to text-length value should equal the actual size of your output message plus
four characters for the text-length field itself. RPG Il doesn't
override this value no matter what you specify as the last entry
on the output form.

When text-length=0 When message-length is set to zeros, IMS puts out the message
TRANSACTION COMPLETE.

UP-9206 SPERRY UNIVAC 0S/3 2-38
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA

2.15. DEFINING THE CONTINUITY DATA AREA (CDA)

Purpose The continuity data area is used to pass data from one action
program to its successor. IMS saves this area on disk at the
termination of the predecessor action program and restores it at
the start of the successor action program. You generally define
a continuity data area when you want to pass data between
action programs.

SUCCESSOR

ACTION ACTION

PROGRAM CONTINUITY PROGRAM
PROGO1 DATA PROGO2
FILE

Size Continuity data area size is specified at configuration. How you
define it on the file description form depends on how your action
program uses it (Table 2-9).

File description form entries Table 2-9. Defining the Continuity Data Area According to How
the Action Program Uses It

Saves Data Only

Reads and Updates P.S,.D
Saved Data
Reads Saved Data Only P,S.D

In 2.16 we’ll consider an example where the continuity data area
is used in the three ways described in Table 2-9.

UP-9206 SPERRY UNIVAC 0S/3 2-39
IMS ACTION PROGRAMMING IN RPG II

CONTINUITY DATA AREA CODING

. 2.16. HOW TO USE THE CONTINUITY DATA AREA TO PASS DATA

Example Consider a case where there is a transaction that contains three
action programs - PROGO1, PROGO2, and PROGO3. When it
terminates, PROGO1 wants to pass data to PROGO2. Figure 2-13
shows how you do it.

FILE TYPE FILE PROCESS! £xT1
FILE DESIGNATION KEY OR RECORD LINE COUNTER o
ND OF FILE ADORESS FIELD LENGTM cope X101

SEQUENCE AECORD ADDRESS TYPE OF EXTENTS
FILE FORMAT FILE ORGANIZATION

> OVERFLOW

© npicaTOR DEVICE
T
LENGTH | LENGTH

PISIRIC/ONT

KEY FIELD 1DENTIFICATION
STARTING
LOCATION

g _vtiomz

13
3
28]

tJ 21]2¢

z
[‘ZA‘Q* . TEST

%

Figure 2-13. Defining the Continuity Data Area when It Saves
Data Only

Assigning file name and The file name is CDA. In column 15, the

type entry is O for output file because at

. output we want to move data to the
continuity data area.

Continuity data file When an action program terminates, in this case PROGO1, any
data in the continuity data area is moved to the continuity data
file. It is saved there until the successor program is scheduled. In
single-thread IMS, the continuity data file is AUDCONF; in
multithread IMS, it is CONDATA.

Record Iengthznd For record length we enter 240; this is
device name the size of the saved data. In columns
40-46, the required entry is *CDA.

Now, consider Figure 2-14.

UP-9206

SPERRY UNIVAC 0S/3 2-40
IMS ACTION PROGRAMMING IN RPG I

CONTINUITY DATA AREA CODING

Continuity data area as

an update file

Passing data to PROG02

Passing data to final
successor program

Continuity data area

as an input file

FILE

FILE DESIGNATION KEY OR AECORD LINE COUNTER
END OF FILE ADDRESS FIELD LENGTH caoE

SEQUENCE RECORD ADORESS TYPE
FILE FORMAT FILE ORGANIZATION

> OVERFLOW

INDICATOR DEVICE
8LOCK RECORD
Lenth | LEnGTH

PROGRAM

PISIR/CIOIT
10X 2

KEY FIELD IDENTIFICATION

STARTING | =
LOCATION

35 £

E3
4

=)

Figure 2-14. Defining the Continuity Data Area when It Reads and
Updates Saved Data

Figure 2-14 is the file description form coding for PROGO2.
PROGO2 is the middle program in this series. It is designed to
read the data saved by PROGO1 and update it. Notice the
continuity data area is defined as an update/demand file.

When IMS schedules PROGO2, it moves the data saved by
PROGO1 from the continuity data file to the continuity data area
of PROGO2. Using the READ operation, this data becomes
available to PROGO2 for updating.

When PROGO2 terminates, it passes data to its successor,
PROGO3. Figure 2-15 is the coding for the file description form
for PROGO3, the last program in the transaction.

ILE TYPE 1LE PROCESSING MODE EXTENSION OR ROEAED LOAD
FILE DESIGNATION KEY OR AECOAD LiNE COUNTER
END OF FILE ADDRESS FIELD LENGTH coDE X100
SEQUENCE ECOAD ADDRESS TYPE OF EXTENTS
FILE FORMAT FILE ORGANIZATION
5 OVERFLOW
2 NDicaToR

8 [wevereio
& | stanting
LocaTion

sLock RECORO
LEnGTH | LENGTH

B__UTIO/KIZ

€
3
28]

30 34

tad 27
A .ZHQ} "

Figure 2-15. Defining the Continuity Data Area when It Reads
Data Only

Figure 2-15 defines the continuity data area as a primary input
file. When IMS schedules PROGO3, it moves the saved data of
PROGO2 from the continuity data file to the continuity data area
of PROGO3. As soon as PROGO3 begins processing, RPG |l
begins reading this area. The transaction is complete when
PROGO3 terminates normally.

UP-9206 SPERRY UNIVAC 0OS/3 2-41
IMS ACTION PROGRAMMING IN RPG I

CONTINUITY DATA AREA CODING

Normal flow of saved data In describing this transaction, we said the saved data went to the
continuity data file. This point needs explanation. When an action
program defines a continuity data area, any data saved by that
program goes to that specific area. When the program

Continuity data file terminates, the saved data is written to the continuity data file -
AUDCONF in single-thread IMS; CONDATA in multithread IMS.
When the successor program begins processing, IMS moves the
saved data from the continuity data file to the continuity data
area of the successor program.

Saved data flow in Only in immediate succession is this process different. Since all

immediate succession interface areas, including the continuity data area, remain intact
between programs, the data stored there is not written to a
continuity data file. It remains in main storage and is immediately
available to the successor program when processing begins.

Other ways to save data We might mention again at this point that you can also use the
input and output message areas to pass data when specifying
immediate succession (see 2.11). In addition, you can use the
output message area to pass data when using delayed
succcession since the output message area becomes the input
message area of the successor program (see 2.13).

2.17. HOW TO VARY CONTINUITY DATA AREA SIZE TO SUIT AMOUNT OF
DATA PASSED

Changing continuity-data You may need to vary continuity data area size from one action

-area-inc value program to another depending on the size of the data saved. You
do this by changing the value of continuity-data-area-inc in the
program information block. You can only increase the continuity
data area size for the successor action program, not for the
current program.

How IMS determines IMS determines the continuity data area’s size at the termination
continuity data area size of each action program based on which length is larger:

the CDA length specified at configuration; or
the length specified in the continuity-data-area-inc field in the

program information block plus the actual length of the data
saved at the termination of the action program.

UP-9206

SPERRY UNIVAC 0S/3 2-42
IMS ACTION PROGRAMMING IN RPG I

CONTINUITY DATA AREA CODING

Increasing continuity
-data-area size

Updating the program
information block

Example

Moving a value to
continuity-data-area-inc

Let's consider once again a series of three action programs,
PROGO1, PROGO2, and PROGO3. Assume that the configured
continuity data area size is 1536 characters. The data you want
to pass in PROGO1 is 1500 characters. You know that PROGO2
will be passing the same data plus additional data to PROGO3.
Consequently, PROGO1 needs to increase the continuity data area
size for PROGO2, the successor program. To do this, PROGO1
must have already defined the program information block as an
update demand file on the file description form. On the output
form, you specify an increment value for this field.

Consider Figures 2-16 and 2-17.

In Figure 2-16, we defined PIB as an update demand file since
PROGO1 updates successor-id, termination-indicator, and for the
purpose of this example, continuity-data-area-inc. Recall that you
do not need to do a READ operation of the program information
block to update it. Also, notice that the CDA is an output file
with a configured size of 1536 characters.

ExXT!
FILE OESIGNATION KEY OR RECORD LINE COUNTER -
€ND OF FILE ADDRESS FIELD LENGTH €o0E 0

FIL

SEQUENCE RECORD ADORESS TYPE OF EXTENTS
FILE FORMAT FILE ORGANIZATION

OVERFLOW
INDICATOR
8LOCK RECORD
LENGTH | LENGTH

KEY FIELD
STARTING | 2
wocanion [

PISIAICION

o
I
E]
3
v
1
Z

1101CUD
\ITI0/X 2

3
)

’ 13
[PL& |,
DA |,
MA |,
MA |,

Y
L 536
. 89

.254{

8

0 Ho

Figure 2-16. Coding the File Description Form for Program PROGO1

In Figure 2-17, we show the values output to the PIB file when
PROGO1 terminates. 'PROGO2’ is moved to successor-id (end
position 10). ‘I’ is moved to termination-indicator {end position
11). The hexadecimal value °‘1F4° (500) is moved to
continuity-data-area-inc.

UP-9206 . SPERRY UNIVAC 0S/3 2-43
IMS ACTION PROGRAMMING IN RPG I

CONTINUITY DATA AREA CODING

DUTPUT INDICATORS

s
F+EETCH OVERFLOW DATA FORMAT CODES

TYPE HIDA/E P8 NEGATIVE VALUE 1N
NONE [

»
z —f
5

v =

END
POSITION
n
outeut
AECORD

FILE
NAME

[2 a
3 <
4 [

a[o]r| aFren
® £01T CODES
% & BLANK AFTER

w .
PIB |, il 1.
FENENEE I L
M i N | : 1 [

ta Lo . | 111 1 48
CPA, |, 1

]
"3 oot

Example

!

Figure 2-17. Coding the Output Form for Program PROGO1

Computing continuity-data At termination IMS examines all these fields. It compares the
-area size for successor value of the continuity data length specified at configuration
(1536) to the sum of the continuity-data-area-inc (500) plus the
length of the data saved by PROGO1 at termination. Since the
saved data (1500 characters) plus 500 is larger than 1536, IMS
increases the continuity data area size for PROGO2 to 2000

characters.
. Continuity-data-output The actual length of the saved data is specified in the
-length and continuity continuity-data-output-length field in the program information block

-data-input-length .
put-iens of the current action program. When IMS schedules the successor

program, this value is moved to continuity-data-input-length in the
program information block of the successor program.

When continuity-data When an action program terminates and the value in
-area=0 continuity-data-output-length is zero, no data is saved in the
continuity data file.

UP-9206 SPERRY UNIVAC 0S/3 3-1
IMS ACTION PROGRAMMING IN RPG I

SAMPLE TRANSACTION

3. Writing an Action Program

3.1. DIFFERENCES BETWEEN ACTION PROGRAMS AND NORMAL RPG i
PROGRAMS

In Section 2, we discussed rules for coding action programs.
You'll recall that the major difference between action programs
Using interface areas and a normal RPG |l program is coding the interface areas. These
areas are coded on the file description form. They handle all
communication between IMS and the action program.

3.2. PURPOSE OF EXAMPLES

Scope of section In this section, we present a series of action programming
examples illustrating the coding principles described in Section 2.
These examples are not complex and they emphasize the points
you need to keep in mind when designing an action program.
Let's summarize these points: ‘

signals the beginning of a

input messages and produce

output messages.

or the handling of
input and out

Key features of action @
programs

- the program information block, input
message area, output message area, and continuity data
area — handle control data passing between your program
and IMS. These areas are described in Section 2. How they
are used is one of the major topics of this section.

, you have several options:
evice independent control

screen format

’

expressions (DICE); and, field control characters (FCCs).
Using device independent expressions and field control
characters is discussed in Appendix A. Screen format
services is covered in Section 6.

UP-9206

SPERRY UNIVAC 0S/3 3-2
IMS ACTION PROGRAMMING IN RPG II

SAMPLE TRANSACTION

3.3. HOW TRANSACTIONS ARE INITIATED

Entering a transaction
code

How action programs are
scehduled

Example

A transaction begins when the operator enters a transaction
code at the terminal. This code tells IMS what action program to
schedule.

Each transaction code, and the action program that processes it,
is specified at IMS configuration. Whenever a code is entered at
a terminal, IMS checks the transaction table to determine if it's a
valid code. IMS then checks to see what action program was
configured to process this code. Once these steps are
completed, if resources are available, IMS schedules the
appropriate action program.

In our example (Figure 3-1), when the operator keys in the word
‘START’, IMS checks the transaction table to verify the code and
find the action program configured to process ‘START'. The
name of this program is RCMENU. If resources are available, IMS
schedules RCMENU; if not, the transaction code START is
queued until IMS can handle it.

RCMENU

Figure 3-1. Transaction Code Initiates IMS Transaction

3.4. SAMPLE TRANSACTION (EXTERNAL SUCCESSION)

A sample transaction

In this example, there are six action programs. The first program
generates a menu. The other five programs allow a terminal
operator to:

D enter an order; P bill the customer; and

D update the customer file; terminate the transaction

D update the order file;

UP-9206 SPERRY UNIVAC 0S/3 3-3
IMS ACTION PROGRAMMING IN RPG i

SAMPLE TRANSACTION

Summary of processing The first action program displays a menu on the terminal screen.
The terminal operator selects the operation he wants to perform
by entering the appropriate menu selection. The menu program
validates the selection and displays a template on the terminal
screen. The operator fills in the data requested and another
action program uses the data to perform the requested operation,
such as updating the customer file.

We will describe the operation of two of the action programs,
Programs RCMENU and RCMENU and RCCUST. RCMENU displays the menu screen from
RccusTt which the terminal operator selects the operation (we assume 2 -
CUSTOMER UPDATE is selected), and RCCUST updates the
customer file. We will describe the operation in detail and show
and explain the two action programs.

3.5. A DESCRIPTION OF WHAT THE SAMPLE TRANSACTION DOES

Our sample transaction begins with the entry of the transaction
code START at the terminal. The transaction consists of three
Structuring the transaction actions. Therefore, there are three input messages entered at the
terminal and three output messages generated by the action

programs. Two programs process this transaction. They are
RCMENU and RCCUST.

Execution of RCMENU RCMENU is the first action program in this transaction. The
transaction calls for two passes through this program, i.e.,
RCMENU will execute, be rescheduled, and execute a second
time. Let's look at what happens in each pass.

SRR £t

On the first pass, RCMENU:

Processing on the 1. Processes the input message coming from the terminal. On
first pass the first pass, the input message is the transaction code -
START.

2. Creates an output message that is the menu screen.

3. Reschedules itself as successor program to validate the
menu selection the terminal operator makes.

UP-9206 SPERRY UNIVAC 0S/3 3-4
IMS ACTION PROGRAMMING IN RPG I

SAMPLE TRANSACTION

On the second pass, RCMENU:

Processing on the 1. Processes the input message coming from the terminal. This

second pass time the input message is the number of the menu selection
entered by the terminal operator. In our example, the
selection made is 2 - CUSTOMER UPDATE.

2. Creates an output message that is the customer update
screen. The screen generated relates to the menu selection
made. In this case, it is a screen requesting data to update a
customer account balance file.

3. Schedules the appropriate successor action program to
process the data entered on the second output screen. In
our example, the successor program is the customer update
program RCCUST. If a different menu selection is made,
RCMENU generates the appropriate screen as an output
message and schedules the appropriate successor program
to process it.

When RCMENU terminates after the second pass, RCCUST
begins processing (we are assuming, of course, that the terminal
operator chose menu selection 2). RCCUST:

Execution of RCCUST 1. Processes the data the terminal operator enters on the
customer update screen generated as output by RCMENU on
the second pass.

2. Computes a new balance for the customer account file.

3. Updates the customer account file.

4. Creates an output message containing the new customer
balance to be sent to the terminal.

Figure 3-2 illustrates the processing for RCMENU and RCCUST.

UP-9206 SPERRY UNIVAC 0OS/3 3-5
IMS ACTION PROGRAMMING IN RPG Il

SAMPLE TRANSACTION

RCMENU
(PASS 1)

RCMENU
(PASS 2)

CUSTOMER
UPDATE

RCCUST

1 CUSTOMER
DATA AND

B ACCOUNT
: BALANCE

Figure 3-2. How RCMENU and RCCUST Process a Transaction

3.6. GENERAL OPERATION OF ACTION PROGRAMS

| Action program design Although the actual processing done by RCMENU and RCCUST

i differs somewhat, the activities involved are fundamentally the
same. The terminal sends an input message. The action program
processes it and generates an output message. The action
program then schedules a successor program, if needed, and
terminates.

Common characteristics These activities are characteristic of action programming.
Whether one or many action programs are involved, the basic
design is the same. Action programs process input messages
and generate output messages.

UP-9206

SPERRY UNIVAC 0S/3 3-6
IMS ACTION PROGRAMMING IN RPG il

RCMENU CODING

3.7. EXPLANATION OF THE CODING FOR RCMENU

Formatting output

With this general background, let's now look at the actual coding
for this transaction, beginning with RCMENU. Figures 3-3 and
3-4 show compilation of the RCMENU and RCCUST action
programs.

Note on the output form of both programs that a series of device
independent control expressions and UTS 400 field control
characters are used to format output messages sent to the
terminal. To facilitate our discussion of the action programs
themselves, we'll ignore these sequences for the time being. A
discussion of device independent codes and field control
characters can be found in Appendix A. Section 6 discusses how
action programs use screen format services to format output
messages.

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG Il

3-7

RCMENU CODING

fi 5§ 79 13 17 i) 25 2 3_N 4 % 6 5 & 8 [] [I]

RCMENUY
UNIVAC 0S/3 RPGII VERS 801007 STARY 81708711 21.28 PAGE
H ARCHENU

Jo1 FINA P F 48 SIMA

0g2 FOMA] F STy OMA

003 FPIB u F c *P 18

Je IIMA AR 2C 17 €S 18 CT 19 CA
995 1 AN 3 17 Q)

a% 1 AR 40 17 €2
an 1 AL SN 17 (3

J98 1 AA 6C 17 Cu
11] 1 AR 7C 17 5

912 1 AL 99
a1l IPIE NS 01

012 1 S 10 SCRSIC

013 1 11 11 TERMIC
dl4 OOMA 0 2C
a1s [} OR 59

6 0 U X*10UAG106°

317 [25 X*1F6CFOGEF3®

Ji8 0 49 *MENU SELECTION PFOGRAM®
019 [58 X*1FSOF9GEF3®
020 o 68 *1-0RNER ENTRY®
021 0 73 X*1FU4EFS6EF3®

22 0 91 *2-CUSTOMER UPDATE®
23 4 %6 X*1F6IFI6EF3®
024 0 111 °*I-0ROER UYPDATE®

025 [4 116 X*1F61F96EF3*

26 0 125 *84-BILLING®
427 [4 130 X*1FF1F96EF3®

Jy28 0 136 *S-svop*
029 0 183 X*LFFOF96EF3"
a3o 0 165 *ENTE® YOUP SELECTION *
031 0 173 X*1FFUDIF3F2*

J32 0 171 v
Yz3 4 176 X'1FF6F96EF3*
J34 [197 °PLACE CURSOR WERE 10 °
03s (] 276 *TRANSMIT °

06 4 211 X"1FFGEGF3FN*
g37 (4 212 *_°

8 O0MA D 42
039 0 23 x*1J000106°

040 [25 X*)IF6CFOGEF3®
081 0 42 *CUSTOMER UPCATE °*
082] 89 SPROGRAM?®
us3 0 54 X*)IFUDFOBEF2®
08y 0 77 *ENTER 5<DPIGIT CUSTCMER °*
04s 0 84 SNUMBER °

Figure 3-3. RCMENU Program (Part 1 of 2)

UP-9206 SPERRY UNIVAC 0S/3 3-8
IMS ACTION PROGRAMMING IN RPG I

RCMENU CODING

ft § 7 8 13 17 1] 2% ¥ 1B N 4 4 4« 5 5 _§ [] E 3N E

UNIVAC 0S/3 RPGII VERS 801007 START 81738711 20.28 PAGE 2
Ja6 0 89 X®1F4DEGF3IFO°
o087 [} o8 *__...*
LT} [} .99 X*1FMOEQGEF3"
0s9 0 108 X*1FSCF9GEF3®
050 0 128 *ENTER ¢ FOR PAYMENT MADE®
051 0 133 X 1FREFSLEFS®
32 0 157 *ENTER - FOR PAYMENT OWED®
us3] 162 X*1F6BFOGEF3?
Jse 0 175 ENTER + OR - °
055 0 183 X*1F63C6F3FN®
use [} 181 *_°
0s? 0 186 X®1F6BCTGEF3?®
11 0 191 X*1FUBF96EF3®
0s9 0 204 ENTEQ AMOUNT *
060 0 2°9 X*1F4BC6FIFNY
sl (4 216 .. .
J62 ¢ D 10
162 0 14 x*0000°
n64 oP1B s 20
0€es 0 OR 59
066 0 1J *RCMENU®
467 0 11 ‘E*
168 0 [3
169 0 10 *ORDENT®
feido] (4 11 °fFe
0Tl 0 3] 4
are 0 1d *RCCUST®
Q73 e 11 €
174 [s} ¢C
u’s 0 19 *ORDRUP®
376 ¢ 11 ‘€?
N7 ¢] €n
173 [} 10 *BILLS®
79 0 11 ‘€
BEL]] o 79
381 0 11 °N°
PI2
SYM3 0L TAELES
RESULTING INDICATORS
ADDRESS FI ADDRESS PI ADCRESS RI ADDRESS RI ADDRESS RI ADDRESS RI ADDRESS PRI
030118 1P uneo1s LR ucaaie Y 000C17 O} 000024 20 oron3a 30 0non3E a0
000048 SG uguos2 60 Jcpasc Jnuare 99 000N7A LD ocopss ko Jc0086 M1
€C0008? H2 00C088 H3 Jeooes & INULB A HS uJ0088 M6 oeonsc 7 000080 H8
03008E H9 00C08F U} 000090 L2 ynhedt us unu92 Us 070192 US 000094 U6
ungnes u? coc096 U8
FIELD MAMES

ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIELC ADDRESS FIELD

Figure 3-3. RCMENU Program (Part 2 of 2}

UP-9206 SPERRY UNIVAC 0S/3 3-9
IMS ACTION PROGRAMMING IN RPG I

RCCUST CODING

[s79 3 w7 a1 2 » B 3w &4 e 6356 % _w 737
UNIVAC 0S/3 RPGII VERS 801007 RCCUS T 81/08/11 20.30 PAGE 1
H ARCCUS T

col FIKA IP F 100 100 *INA

002 FOMA 0 F 250 250 *0M 4

003 FPIE uo f 70 *P1E

0G4 FCySTFIL ucC F 80R SAI . 1 DIsSK

3as 1IMA AL g1

006 1 1721 Cysy

0o? 1 22 22 SIGM 20

ous 1 23 27 AMOUNT

GOo ICUSTFIL BB 02

510 1 1 £ CusTID

011 1 6 25 NAME

012 1 26 40 ADDR

€13 1 %1 55 CITY

214 1 56 e 21p

£15 I P €1 652BALDUE

G16 1PIF NS 0]

£17 1 5 1p SCRSID

c18 1 11 11 TEPMID

tis ¢ cust CHAINCUSTFIL 30

r20 ¢ 3 GOTO END

3 c A2t SIGN coMp ver 41

nz2 C N2IN41 STON comp v-° 42

Te3 € N2INGINSG2 SE TON sC

224 ¢ s5° 60TO END

azs, < TESTN AMCLNT 61

Tz6 ¢ Ne1 SETON 70

327 ¢ 1 60T0 ENPD

js) C MOVE AMOUNT AMT ‘e

ci9 ¢ 2

nlg Cok) GALOLE SUb AMT NEWEAL 97

231 ¢ 2 EALDUF ADD AMT NEWEAL

cs2 ¢ END TAG

233 Goma) NTN3CNSQ

o34 0 AND ul 22

£3s ¢ 20 X *100ANZ00"

€36 ¢ 3C *AAME -

037 ¢ NAME 50

038) S8 X *10010300°

039 ¢ 64 "ADDRESS = °

auc ¢ ADDP 79

cal ¢ 83 ¥*160104C0°

N4z c 93 *CITY-ST - °

043 0 cITY 108

cuu ¢ 112 X*1001041E+

cus c 118 *21p - °

c46 ¢ z1p 123

047 ¢ 127 X*10040z00°

ou8 c 141 *cLp BALANCE - °

049 ¢ BALOUE 156 * , , $0. C=°

050 ¢ 160 X *10080100+

051 0 174 *IRANSACTION - °
| £52) ANT 183 * sp. ~° :

Figure 3-4. RCCUST Program (Part 1 of 2)

UP-9206 SPERRY UNIVAC 0S/3 3-10
IMS ACTION PROGRAMMING IN RPG i
RCCUST CODING
I § 79 13 17 21 25 2§ 331 3 #1 45 453 b7 &% @ 131 &
UNIVAC 0S/3 RPGII VERS 801007 RCCUS T 81708711 20.30 PAGE 2
053 0 187 X *1004010g°
05s 1] 201 °*MEw BALANCE - °*
05S [4 NENBAL 219 * vy $0. &-°
056 [223 X °10010106°
0s7 OCUSTFIL O NTON3ONSOD
058 [s] AND 53]
059 0 NEWBAL 65P
060 OOMA 0 30
061 [/} En X *100AC2900°
062 [¢] 39 *INVALIL CUSTOMER TDo
063 0 43 X *1001C106°
Co4 QOMA D 5C
065] 2C X *lgpApzoC*®
Oe6 0 32 TINVALIC SIGN®
067 (] 36 X*1001C106°
o068 00MA D 70
069 0 20 X *100ACZ00°
070 (] 34 *INVALID AMOUNT®
o7 0 38 x*'1001G176°
072 OPIB o]
o713 [11 '
PIB NOTE 132
SYMBOL TapLfFS
RESULTING INDICATORS
ADDRESS RI ADDRESS R1Y ADURESS R1 ADDPESS RIT KDLRESS RI ADDRESS RI ADDRESS R1
000014 1P 0J0C1S LR aggol 6 uo €00017 U1 oCcogle 02 n00G24A 2 oogo3we 30
0Q0U3F 41 000G40 42 000048 SO nGeos3 61 CLoos¢c 72 COCO7A LG 000085 HO
020086 H1 co0GC8T H2 QU008 6 H3 COCC89 huy CCOO8A HE 00588 Hé 0L008C H7?
000080 H8 CO008E H9 000C8F Ul nooo90 u? Tcop9l vl 700092 Uu ngco%3 us
000094 U6 000GSS U7 00009¢ Us
FIELD NAMES
ADDRESS FIELD APDRESS FIELD ADDRESS FIELD ADORESS FILLD ADDRESS FIELD
00018p SERROR coo210 cusTt 000215 SIGN C0G216 AMUUNT cooz218 CusTtIC
000220 NAME 000234 ADDR Goo243 CITY €a0252 2Z21F 000257 BALDUE
£00025C SCRSID GO0262 TERMID 00023C END C0026X AMT 000266 NEWBAL
LITERALS
ADDRESS LITERAL ADDRESS LITERAL ADDRESS LITERAL
000268 + 00026C - 000260 X*100A0200°*
000271 NAME - 00g278 X°*10010300° D0D27F ADDRESS -
00289 X*100106400° 000280 C ITY-ST - 000297 x*1001CH1E"®
Q0g298 21P - 0002A1 Xx°*1p040200°* 0002A5 OLD BALANCE -
000283 ~ym—ymafo== = 0002C3 Xx°*10080100° 0002CT TRANSACTION -

Figure 3-4. RCCUST Program (Part 2 of 2)

UP-9206 SPERRY UNIVAC 0S/3 3-11
IMS ACTION PROGRAMMING IN RPG i

RCMENU CODING DESCRIPTION

. 3.8. RCMENU - ASSIGNING A NAME TO THE PROGRAM

Every action program requires these entries on the control form:

75 80

RCMENU

Control form entries

Designates an action program

Action program name

3.9. RCMENU - DEFINING THE INTERFACE AREAS (IMA, OMA, and PIB)

|

|

! The file description form describes all interface areas your action
Define only areas used program references. The action program defines only those areas
| it intends to use. We describe in detail the use of the interface
areas in Section 2.

RCMENU uses three interface areas - the input message area

(IMA), output message area (OMA), and program information
. block (PIB). Since RCMENU does no file processing, no user files

are described; however, the interface areas are treated as files.

The following table describes the file description coding that
defines the IMA, OMA, and PIB associated with RCMENU.

Defining the input
message area (IMA)

User file name assigned to the input message area.

Primary input file. As soon as IMS schedules RCMENU, and
assigns its interface areas, it places all data entered at the
terminal in RCMENU's input message area. When RCMENU begins
executing, it immediately reads the data in the input message area
into the program.

Required entry

This is the configured size of the input message area.

You specify input message area size in the INSIZE parameter in
the ACTION section of the IMS configuration.

RCMENU isn’t expecting a message larger than 48 characters.
However, IMS does make allowances to accommodate larger
messages.

40-46 Required entry whenever defining the input message area.

UP-9206 SPERRY UNIVAC 0S/3 3-12
IMS ACTION PROGRAMMING IN RPG I

RCMENU CODING DESCRIPTION

Defining the output
message area (OMA)

User file name assigned to the output message area. You must
define an output message area if the action program creates an
output message. This area holds the output message that
RCMENU creates.

Output file

Required entry

This is the maximum size of the output message RCMENU can
generate. As coded, the program doesn’t use all 500 characters.

You specify output message area size in the QOUTSIZE parameter
in the ACTION section of the IMS configuration.

Required entry when defining the output message area

Defining the program
information block (PIB)
User file name assigned to the program information block. You
only define this interface area if you intend to read it or read and
update it in your action program. Whether or not you define it,
RPG 1l checks the status and detailed status codes fields in the
program information block after each 1/O request and makes the
values in these fields available to the action program. These
codes inform the action program if the function request made to
IMS was successful or not. If not, both the status- and
detailed-status-code fields (1~4) in the program information block
and *ERROR contain the reason for the failure.

15-16 Update demand file. Since RCMENU updates the program
information block, it must define it as an update demand file. At
output, RCMENU moves values into the successor-id and
termination-indicator fields. At action program termination,
successor-id identifies to IMS the name of the successor action
program. Termination-indicator identifies the type of termination

for the current action program.

19 Required entry

24-27 This is the entire program information block area accessible to an
action program. Other areas are for IMS use only. For a complete
list of the program information block fields you can access in your
program, see 2.5.

40-46 Required entry whenever defining the program information block

UP-9206

SPERRY UNIVAC 0S/3 3-13
IMS ACTION PROGRAMMING IN RPG I

RCMENU PROCESSING

3.10. CONTENTS OF MAIN STORAGE AFTER RCMENU IS SCHEDULED

When IMS schedules RCMENU, this is the way main storage
looks. Notice in Figure 3-5 that the three interface areas defined
by RCMENU are loaded with the action program.

PROGRAM ouTPUT INPUT

INFORMATION MESSAGE MESSAGE
BLOCK AREA AREA

RCMENU

Figure 3-5. Main Storage when IMS Schedules RCMENU

3.11. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 1)

Reading the input message
area

Contents of the input
message area — Pass 1

Only one input file is defined for RCMENU - IMA or input
message area. When RCMENU begins executing, it reads the
input message area. This area always contains a 16-character
control header (see Table 2-10 for a description of the header)
and the input message transmitted by the terminal operator. On
the first pass through RCMENU, the input message is the word
START. START is the transaction code that signals the beginning
of the transaction and identifies to IMS the name of the first
action program, RCMENU, to process this transaction.

Once RCMENU reads the input message area, it compares
positions 17, 18, and 19 to the characters S, T, and A.
Remember to always allow positions 1-16 for the input message
area header. Any input message (transaction code or other data)
entered at the terminal always starts at position 17 or some
position thereafter.

UP-9206

SPERRY UNIVAC 0S/3 3-14
IMS ACTION PROGRAMMING IN RPG I

RCMENU PROCESSING

Characters match,
RCMENU scheduled

IMA contents

Menu screen sent to OMA

IMS handles 1/0

Menu screen passed
to terminal

Summary - RCMENU
Pass 1

In this example, the characters will match since S, T, and A are
the first three letters of the transaction code that caused IMS to
schedule RCMENU. When positions 17, 18, and 19 = S, T, A,
indicator 20 is set on.

Figure 3-6 shows the contents of the input message area when
RCMENU is scheduled.

HEADER

Figure 3-6. Contents of the Input Message Area — Pass 1

Since there are no calculation specifications for this program,
when indicator 20 is on, detail output is done. The output is the
menu screen that goes to the output message area where it
remains until RCMENU terminates. No output message generated
by an action program, be it through exception, detail, or total
time output, ever goes to the terminal before the program
finishes all processing. IMS handles the actual input and output of
messages.

in this example, when RCMENU generates the menu screen,
processing is also complete. Consequently, the program
terminates, rescheduling itself with external succession, and the
menu screen is transmitted to the terminal.

So, on the first pass RCMENU processes the transaction code
START and produces a menu screen that IMS transmits to the
terminal when RCMENU terminates.

3.12. HOW RCMENU USES THE INPUT MESSAGE AREA (PASS 2)

Processing operator menu
choice

On the second pass through the program, position 17 of the
input message area is matched to the character S. It doesn’t
match. The program then tries to match position 17 with the
number 1,2,3,4, or 5. The numbers 1-5 represent possible menu
choices the terminal operator can make.

UP-9206

SPERRY UNIVAC OS/3 3-156
IMS ACTION PROGRAMMING IN RPG |l

RCMENU PROCESSING

Processing input message
area contents — Pass 2

. Indicator set on

On the second pass, RCMENU is expecting one of these numbers
in position 17 of the input message area. If the operator has
followed directions correctly, this is what the program receives. If
not, any other input entered from the terminal sets on indicator
99, which like indicator 20, retransmits the menu screen. The
operator then has another chance to make the correct entry.

Figure 3-7 shows the contents of the input message area when
the operator enters valid data.

Figure 3-7. Contents of the Input Message Area — Pass 2

When RPG |l finds the number 1,2,3,4, or 5 in position 17 of the
input message area, a specific indicator is set on and a specific
type of detail output occurs. Once again, there are no calculations
to be done. Table 3-1 summarizes the indicators set on and
resulting output, based on the menu selection made.

Table 3-1. Indicators Set On During Second Pass
through RCMENU and Resuitant Output

S, T (18), A (19) Menu screen

1 Order entry screen”

2 Customer update screen
3 Order update screen*

4 Billing screen*®

5 Stop

None of the above Menu screen

*Output coding not shown in example

UP-9206 SPERRY UNIVAC 0S/3 3-16
IMS ACTION PROGRAMMING IN RPG i

RCMENU PROCESSING

3.13. HOW RCMENU USES THE OUTPUT MESSAGE AREA

RCMENU'S output at Output for action programs is defined the same as for any RPG i
program termination program, even the output message destined for the terminal. The
important point, however, is that no output generated by an
action program goes to the terminal until the program terminates.

Two output messages Looking at the output form coding (Figure 3-3), you see that
RCMENU generates two output messages destined for the
terminal, one on each pass through the program.

Message formatting All the hexadecimal sequences interspersed among the output
fields format the message when it appears at the terminal. These
sequences are discussed in Appendix A.

Generating the Output Message — Pass 1

Screen generated for Figure 3-8 shows the output message that goes to the terminal
Pass 1 when RCMENU terminates after the first pass through the
program;

START
SPERRY UNIVAC
MENU SELECTION PROGRAM
1- ORDER ENTRY
2- CUSTOMER UPDATE
3- ORDER UPDATE
4~ BILLING
5- STOP
ENTER YOUR SELECTION []

PLACE CURSOR HERE TO TRANSMIT [)

_)

Figure 3-8. RCMENU’s Output Message — Pass 1

UP-9206

SPERRY U'NIVAC 0S/3 317
IMS ACTION PROGRAMNM.ING I' RP75 I

RCMENU PROCESSING

Screen generated for
Pass 2

Menu selections 1, 3,
and 4

Ending the transaction

Generating the Output Message — Pass 2

When the menu selection is 2-CUSTOMER UPDATE, indicator 40
is set on and RCMENU generates the output screen in Figure 3-9.
This occurs on the second pass through RCMENU.

START

SPERRY UNIVAC
CUSTOMER UPDATE PROGRAM

ENTER 5-DIGIT CUSTOMER NUMBER

ENTER + FOR PAYMENT MADE
ENTER - FOR PAYMENT OWED
ENTER + OR - _

ENTER AMOUNT

PLACE CURSOR HERE TO TRANSMIT _

- D

Figure 3-9. RCMENU’s Output Message on Pass 2 for Menu Selection 2

We have not included output message screens when indicators
30,50, and 60 are set on (menu selections 1,3, and 4). Such
screens would be designed on the order of the customer update
screen; however, they would request data relating to order entry
(1), order updating (3), or billing (4).

When No Output Message is Generated

When indicator 70 is set on (menu selection 5), we move zeros
into the text length field of the output message area. This causes
IMS at program termination to send out a standard system
message indicating that the IMS transaction is over. See Figure
3-10.

START
TRANSACTION COMPLETE

Figure 3—10. RCMENU’'s Output Message when Menu Selection ‘5-STOP’ Is Made

UP-9206 SPERRY UNIVAC 0S/3 3-18
IMS ACTION PROGRAMMING IN RPG I}

RCMENU PROCESSING

3.14. HOW RCMENU USES THE PROGRAM INFORMATION BLOCK

Updating the program The only other output file described on the output form is the

information block program information block. It shows what values ‘RCMENU
moves into successor-id and termination-indicator at output.
Successor-id occupies positions 5-10 of the program information
block and identifies to IMS the name of the successor action
program. Termination-indicator occupies position 11 and
indicates to IMS the type of termination for the current action
program. The types of termination are normal, external, delayed,
immediate, abnormal, and abnormal with snap dump. For more
information on these termination types, see 1.4.

Defining the location of Whenever you define program information block fields in your

program information action program, make sure that their beginning and end positions

block fields correspond exactly to their predefined location in the program
information block. Table 2-6 defines these locations.

Indicating successor-id Depending on what indicator is set on at output, the appropriate

and termination type values are moved to successor-id and termination-indicator in the
program information block. Table 3-2 summarizes the successor
program name and termination type when a specific indicator is
set on.

Table 3-2. Successor Programs and Type of Termination
Corresponding to Each Indicator Set On

RCMENU External
ORDENT External
RCCUST External
ORDRUP External
BILLS External
No Successor Normal {N}
RCMENU External

UP-9206 SPERRY UNIVAC 0S/3 3-19
IMS ACTION PROGRAMMING IN RPG i

RCMENU PROCESSING

IMS termination procedures VWhen output is complete, RCMENU terminates since there is no
further processing to be done. IMS then checks the output
message area and sends the message to the terminal. IMS also
checks successor-id and termination-indicator to determine if
further processing is required. When the terminal operator
receives the output message and enters data to the screen, IMS
then schedules the successor program to process it.

Determining successor On the first pass through RCMENU, the successor is RCMENU.

program and type of On the second pass, the successor corresponds to the menu

termination selection made. In our example, the successor is RCCUST - the
program that processes the customer update screen. RCMENU
terminates with external succession. This means that IMS waits
for an input message from the terminal before it schedules
RCCUST. That input is the data entered by the terminal operator
on the screen labeled SPERRY UNIVAC CUSTOMER UPDATE
PROGRAM (Figure 3-9). When IMS receives the input message, it
places it in a queue and schedules RCCUST as soon as resources
are available.

UP-9206 SPERRY UNIVAC 0S/3 3-20
IMS ACTION PROGRAMMING IN RPG Il

RCCUST CODING DESCRIPTION

3.15. EXPLANATION OF THE CODING FOR RCCUST

Earlier, we summarized what RCCUST does. To refresh your
memory before examining the code, let's review its functions:

. input data entered on the customer update screen
and validates it.

Processing for RCCUST b new balance for the customer account.
D he customer account file, CUSTFIL.
b an output message to be sent to the terminal.

3.16. RCCUST - ASSIGNING A NAME TO THE PROGRAM

Control form entries The control form entries are an
name in columns 75-80.

n column 74 and the program

3.17. RCCUST - DEFINING THE INTERFACE AREAS (IMA, OMA, PIB)

Unique set of interface areas 1 he file description form defines the three interface areas and the

for RCMENU and RCCUST one user file, CUSTFIL, referenced by RCCUST. The input
message area (IMA) is defined as in RCMENU. The only
difference is that the configured size is larger - 100 characters
(columns 24-27) - to allow for a larger input message from the
terminal. The output message area (OMA) and program
information block (PIB) are defined exactly as they are in
RCMENU. Remember, however, that although these areas are
defined identically and that RCCUST directly follows RCMENU,
RCCUST has its own unique interface areas assigned by IMS
when the program is scheduled.

Using the same interface The only time a successor program uses the same interface

areas areas as the predecessor program is when | for immediate
succession is specified in the termination-indicator field of the
predecessor program.

User file - CUSTFIL There is only one user file described for RCCUST, CUSTFIL. It is
an indexed file that will be processed randomly using its
5-character key field.

UP-9206 SPERRY UNIVAC 0S/3 3-21
IMS ACTION PROGRAMMING IN RPG I

RCMENU CODING DESCRIPTION

3.18. DEFINING THE INPUT FIELDS

Defining input fields The input form describes input fields for two files: the input
message area (IMA)} and the customer file, CUSTFIL. Like other
RPG Il programs, action programs only describe input fields they
reference in the program.

Reading the input When RCCUST begins executing, it reads the input message

message area area. Indicator O1 is set on. The input message area contains the
data entered by the terminal operator on the customer update
screen. The fields defined as CUST, SIGN, and AMOUNT come
into the program. These fields occupy positions 17 through 27 of
the input message area. The first 16 positions contain the
header. If the field SIGN contains a zero or a blank, indicator 20
is set on. Figure 3-11 shows the contents of the input message
area when RCCUST begins processing.

HEADER
SPERRY UNIVAC
CUSTOMER UPDATE PROGRAM

ENTER 5-DIGIT CUSTOMER NUMBER 12596 §
| CUST (17-21) |
| ENTER + FOR PAYMENT MADE ,

ENTER - FOR PAYMENT OWED

ENTER + OR - + SIGN (22) RCCUST

ENTER AMOUNT 20009 -
AMOUNT
PLACE CURSOR HERE TO TRANSMIT [m] (23-27)

Figure 3-11. Input Message Coming into Program RCCUST

CUSTFIL fields The input form also describes input fields for CUSTFIL. CUSTFIL
is the user data file. Ilts key field CUSTID is a 5-character field
that begins in position 1. The other five fields described for
CUSTFIL occupy positions 6-65. Notice that the field BALDUE is
a packed decimal field.

UP-9206

SPERRY UNIVAC 0S/3 3-22
IMS ACTION PROGRAMMING IN RPG I

RCMENU CODING DESCRIPTION

3.19. CALCULATIONS FOR RCCUST

Validating the customer
number field

Validating the sign field

Validating the amount field

When a payment is made

When a purchase is made

Now let’s look at the operations RCCUST performs.
Validating Input

The 5-digit customer number entered as input at the terminal is
used to chain into CUSTFIL. The customer number corresponds
to the key field CUSTID in the input message area. If the number
entered at the terminal doesn’t match any of the keys in the
index for CUSTFIL, indicator 30 is set on and detail output is
done.

Next, RCCUST compares SIGN to '+ or -'. If SIGN equals +,
indicator 41 is set on. If SIGN equals -, indicator 42 is set on. If
SIGN is not +, -, or blank (indicator 20 was set on), indicator 50
is set on and detail output is done.

Next, RCCUST tests AMOUNT to determine if it is numeric. If it
is, indicator 60 is set on; if not, 70 is set on. When 70 is on,
detail output is done. When AMOUNT is numeric (indicator 60 is
set on), RCCUST moves AMOUNT to AMT, the result field.

Computing a New Account Balance

Once the input data is validated, the following calculations take
place:

When indicator 20 or 41 is on (SIGN = blank or +), AMT is
subtracted from BALDUE. The resuit is NEWBAL. This means
that the customer made a payment to his account. The SUB
operation credits that amount to the customer’s account and
computes the new balance.

When indicator 42 is on (SIGN = -), AMT is added to BALDUE.
The result is NEWBAL. This means that the customer made
another purchase. The ADD operation adds the amount of the
purchase to the existing balance and computes the new balance.

3.20. OUTPUT CODING FOR RCCUST

Output generated for
RCCUST

Once calculations are complete, detail output occurs. Depending
on what indicators are set on, RCCUST creates an output
message. Table 3-3 shows the output message that goes to the
terminal based on what indicators are set on.

UP-9206 SPERRY UNIVAC 0S/3

3-23

IMS ACTION PROGRAMMING IN RPG I

RCMENU CODING DESCRIPTION

Table 3-3. RCCUST Indicators Set On and Resuiting Output

Output messages

NAME- SHANA GABRIEL

ADDRESS- APPIAN WAY

CITY-ST- GENEVA, OHIO
43727

OLD BALANCE - $586.25

TRANSACTION - $200.00

NEW BALANCE - $386.25

All data entered at the terminal
was valid. In this case, the

entry for SIGN was + indicating
the customer made a $200.00
payment to her account. The SUB
operation was performed and a
new account balance computed.

Reinitiating the transaction

The customer number entered at
the terminal was invalid. It didn't
match any of the keys in the
index for CUSTFIL.

INVALID CUSTOMER ID

INVALID SIGN The entry for SIGN wasn't +, -

or blank.

INVALID AMOUNT The entry for AMOUNT was either
not numeric or was less than five
digits. If the terminal operator
entered more than five digits,

RPG If truncates from the right.

Line 054 repositions the cursor so that at the end of the
transaction when the output message goes to the terminal, the

~cursor is at row 1, column 6. This positions it immediately after

the word START, the transaction code, which is still displayed at
the terminal. By simply pressing TRANSMIT, the transaction code
START is retransmitted to IMS and the whole series begins
again.

UP-9206

SPERRY UNIVAC 0S/3 4-1
IMS ACTION PROGRAMMING IN RPG Il

ADVANCED PROGRAMMING EXAMPLE

4. Writing a More Complex
Action Program

4.1. GENERAL DESCRIPTION OF SAMPLE PROGRAM

More detailed examples

A sample transaction

New features presented

Now that we've developed some familiarity with the basic design
of the action program in Section 3, we can study some more
detailed examples. The structure of the action program discussed
in this section is the same as before: it processes input
messages and produces output messages. Now, however, the
coding is somewhat more complex and introduces techniques
that can be very useful to the applications programmer.

As in the example discussed in Section 3, this transaction also
begins with a menu program, JAMENU. Because of its similarity
to the menu program described in detail in Section 3, we won't
discuss JAMENU. Instead, we’ll concentrate on its successor
program, JAADD1. Since we've already given a good deal of
attention to the basic coding of an action program in Section 3,
we won't stress those same features here. Rather we’ll
concentrate on the new action programming tools it introduces
and how they are used.

Let's begin by
introduces:

JAADD1

JAADDI uses the continuity data area to pass data between
action programs.

It also uses internal subroutines.

And, it uses screen format services to format output
messages.

It uses an error message file.

UP-9206

SPERRY UNIVAC 0S/3 4-2
IMS ACTION PROGRAMMING IN RPG I

ADVANCED PROGRAMMING EXAMPLE

4.2. A SUMMARY OF JAMENU’S PROCESSING

Processing the menu
selection

Figure 4-1 shows the output message screen JAMENU generates
on the first pass through the program.

’ 06/23/81 06:49:28 JASMENU ©2/09/81
ENTITLEMENT ACCOUNTING SYSTEM

SELECT ONE (1) OF THE FOLLOWING OPTIONS:

1. ADD A NEW CUSTOMER RECORD.
*2. UPDATE CUSTOMER NAME/ADDRESS INFORMATION.
*3. UPDATE BRANCH CUSTOMER INFORMATION.
*4. UPDATE CUSTOMER ENTITLEMENTS.
*5. DELETE A CUSTOMER RECORD.
*6. DISPLAY CUSTOMER INFORMATION.

7. LIST ALL ACCOUNTS (ON THE WORKSTATION).
8. ENTER WORKSTATION ACTIVITY RECORDS.

9. LOGOFF SYSTEM.

* INDICATES CUSTOMER NUMBER REQUIRED

MENU SELECTION: __
PLACE CURSOR TO TRANSMIT (.1 ‘

Figure 4-1. Screen Generated by JAMENU

Like RCMENU, JAMENU schedules itself as successor program
and processes the menu selection entered on the screen. In our
example, we assume the menu selection is 7. ADD A NEW
CUSTOMER. To process this menu selection, JAMENU moves
the name JAADD1 to successor-id and | to termination-indicator.
When JAMENU completes all processing, the program
terminates. IMS checks the successor-id and termination-indicator
fields and immediately schedules JAADD1.

4.3. A SUMMARY OF JAADD1, THE SAMPLE PROGRAM

The structure of the
transaction

JAADD1 is the first of two action programs required to add a
new customer and account record. JAADD1 validates the data
used in the update. Its successor program, JAADD2 validates
more data and does the actual file updating. We will discuss
JAADD1 only since the two programs are very similar. However,
we will include the coding for both programs to give you a fuller
appreciation for the entire operation. The coding, output screen
1, and output screen 2 for JAADD1 are found in Figures 4-2,
4-3, and 4-4, respectively. Figure 4-5 is the coding for
JAADD2.

UP-9206 SPERRY UNIVAC 0S/3 4-3
IMS ACTION PROGRAMMING IN RPG I

JAADD1 CODING

h 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77_80}

ADD NEW CUSTOMLR SOR JAADD

UOD01H AJAADD]
ey d et e et *JAADDY
0C503F = THIS PROGRAM IS THE 1ST OVERLAY TO BE CALLED IF THE MFNU *JAADD]
CO0N4fF = SELECTION WAS TO ADD A CUSTOMER RECORDe THE 1ST TIME THRy, *JAADD?
GOCOS5F » THE °*JATADD1* SCRFEEN WILL BE PUT OUT AND THIS PROGRAM WILL aJAADD]
CCUC6F = SUCCEED TO ITSELF, AFTER THF SCREEN IS TRANSMITTED BACK 1IN, *JAADD?
AQCC"7F= THE CUSTOMER NUMBER AND ACCOYNT CODES ARE CHECKED FOR *JAADD
O0CC8F» VALIDITY (ASSUMING THE W/S OPERATOR DIDN®T WANT TO PETUPN *JAADD]
COGr9F TO THF MENU), IF THE CATA IS GOOD THE NEXT OVERLAY WILL *JAADD1
JrglpFe 37 CALLED TC DO THE ACTUAL ADDING OF THT RECORDS. *JAADPD!
e B it e *JAADD1Y
JPD12F# *JAADDY
UJC13F* I- -Co====-=-- FUNCTTION CF INDICATORS *JAADDY
w"G14F e . *JAADPD?
IR IR el i ket e L LR e ettt D bbb *JAADD]
Cul6Fae 1 PROGRAM INFIORMATION BLOCK JAADD?
GPG17t 7 INCUT MESSAGE AREA JAADD)
27C18Fs 2 CONTINUITY DATA aAPEA JAADD)
GNLU1SFs UG CUSTOMER MASTER RECORD JAADD?
ON020F % LS CUSTOMER PECCRC DELETFD JAADPD]
JNS21Fx LF ACCOUNT CROSS~REFFRENCE RECORD JAADD
OPCR2F P SYSTE™ CONTROL ERROR TEXT RECORD JAADDY
Unso3cs L9 ERROR TFXT RECCRD DELETED JAANDY
LT024F = T 1ST TIMF THRU PFOGRAM (CALLSD 3Y JAMENU) JAADD?
CTL25F s 71 2ND TIME THPU PRGGRAM JAADD1
07CP6F s 79 ®/5 OPEOATGR CHOSF T0 RETURN TO THE MENU JAADD?
GCLZTF e [GENFRAL PUKRPOSE INDICATOR - LOCAL USASE JAADD
OTL28F* £5 CUSTOMER NUMBER ZERO AND/OR ACCOUNT CODE RLANK JAADD1
GhUR9 . £6 CUSTOMER NUMBER ALREADY EXISTS IN CUSTMST JAADD1
LNCIoF £7 ACCOUNT CODE ALPEADY EXISTS IN XREF1 JBANDL
COLILFx £3 GTNTRAL EPROR INCICATOR JAADD?
Lrg3ers oz SYSTEM CONTROL PECORPD NOT FOUND JAADD
WC3F % JAADPD1
CNO34FPIE gn F 70 *PTE JAAPD?
LPGISFIMA 1P F 135 =IMA JAADDY
INCIEFOmA 2 F 4396 HOMA JAADDI?
30C37FCraA JrF 148 “CCA JAADD?
GTG3BFCUSTHMST IC F 2t8g 2569 AAT 9 nISc S JAADD?
SPGI9FXREF L IC F 10 13F 4AT 7 DISC S JAADD!?
GOUUGFSYSOTL IC F 64 64P €FAT 1 nISC S JAADD!?
CIoLlIPIG NSOl JAADD1
arpuzlI 49 S4NPBDATE JRADD?
UNC43T S5 6UCPBTIME JAADD
CPLU4TIIvA NS LZ JAADD!?
“NLesT 17 23 IMACCT JAADD!
3hi9t 3 RE"EKRKAE 34481
srguel 62 81 IVMADRI1 JAADDY
PlalvLE" B ¢ R2 131 IMADR2 JAANDI
GOC80T 172 116 IMCITY JAADPD
300517 117 118 IMSTE JAADD]

Figure 4-2. Action Program JAADD1 {Part 1 of 5)

UP-9206

SPERRY UNIVAC 0S/3 4-4
IMS ACTION PROGRAMMING IN RPG I
JAADD1 CODING
r 5 7 9 13 17 1 25 29 33 37 41 45 49 53 57 61 65 69 73 77 ﬂ]
Lous21 119 1230IM21P JAADD]
nrGS3T 124 1260IMAREA JAADD1
500541 127 1330IMPHON JAADDL
J0GsS T 134 134 IMMENU JAADDY
0N0361T 135 135 IMXMIT JAADD}
OCS7TChA NS LT JAADD1
CNOS8T 1 4 CPPSWD JAADD!
onGs9l 5 29 CDMSEL JAADDY
LroepT 35 359CDCUST JaahD1
0m3611 36 3% cOACCT JAADD1
cnpe2T 40 4QNCDPASS JAADDI
SNLE3T 4l 41 CpSTAT JAADD1
CnobuT 42 47 CDCPGM JAAPDYL.
CFUBSTCUSTMST NS Ub 756NTD Jaalp!
T 0R us JAADDY
ceLeTl 1 4 CMACCT JAADD?
JN0ESIXREFL NS (€ JAADD1
LNGEST 1 60X1CUST JAADD1
LILTSISYSOTL NS o® 6UNCD JaADDY
SPET1T (I JAADD1
5721 7 56 SCE®R JAADD?
ng73°c FXSR SENTRY oHHICH PASS? JAADLD?
VS Y . 60T0 BUILD o187 JAADD1
L0T5¢C TMVENY comp s 79«RETURM TO JAADPD?
I0076C T3 %076 RETURN oMENII? JAADD]
oru?Te TXSR SCUST eCUSTH/ACCT JAAPDY
LPLTAC NQY G0TO BUILD SVALID® YES JAADDY
SriToC FXSR §ERPOR oNO BET ¥SE JAAND?
JILRLC GOTO RETURN JAADDY
LrL81c 2JILD TAG JAADD?
10820 READ PIE JAADDI
LPCR3C MOVE PRDATE WEK 6N JAADD1
CToRLC EXSR §PEFDT oMAKF DATE MDY JAANDI
Uraese MOVE WRKEN PRUATE JAADDY
L0Us6C RETUPK TAG JAADD]
Tmae7c EXCPT JAANPD1
LOSEBC JAADDI
CRCB9CH DEFINT WOPK ACEAS JAADDY
UNC9CC # JAADD]
SPC91CLFNLR MOVE X'4r® WRK2 2 JAAND1
{"G92CLPNLR MOVE X'4n® WOK Y 4 JAADDY
3NC93CLENLR MOVE X°*47s WRKS 6 JaanD1
SALS4CLONLR VOVE Xx'4n° WEKSJ S0 JAADD1
COCISCLENLR VOVE X'40° BLNKS 256 JAADD?
SCLUO6CLRNLR MOVE XYFF? WRK6N 60 JAADD1
50970 » JAADD1
LNU9BCx CHICK CDA FOR NUMBER OF TIMES THRU THIS CODE JAADD?
LrN99(Cw JAADDY
unirtacse TENTPY BEGSF JAADD1
Sr1N1CSE SETOF 737189 JAADDY
T102CSR READ CDA JAADD1

Figure 4-2. Action Program JAADD1 (Part 2 of 5)

UP-9206

SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG i

4-5

JAADD1 CODING

Figure 4-2. Action Program JAADD1 (Part 3 of 5)

i § 7 9 13 17 21 25 29 33 37 41 45 49 53 51 61 6 69 73 77 80
G01B3CSR COPASS COMP O 7041ST TIMF JAADDY
J7104CSP 79 MOVE 1 COPASS JAADDL
87105CSP 79 G0TO SENTEX JAADDY
GO1N6CSP COPASS cCoOMP 1 71 JAADD1
CN10TCSR SENTEX ENDSP JAADD1
LN108Ce JAADD1
L01N9C* CHECK CUSTOMER MASTFR + ACCOUNT X-REFERENCE FOR DUPLICATES JAADD1
4df116Cw JAADDY
20111€89 TCUST BEGSR JAADDI
£N112CSR <ETOF 858687 JAAND1
UN113CSR IMACCT COMP X'y4r® BSeFIELDS JAADDY
UPL114CSRNSS TMCUST COMP G 85 «MANDATORY JAADDI
G7115CSR 85 G070 SCUSEX JAADDY
L"116CSP TMEUST CHAINCUSTMST 80 «DUPLICATE® JRADDY
GO117CSPNED SETON 86 e YES JAADD1
LT11BCSP TMACCT CHAINXPET 2y oAFCT CODE JRADDY
LAL19CSPNGG SETON 87 +DUPLICATE? JAADD1
40123Cs8 ICUSFX TAG JAADD)
GN121C5F &% JAADDI
JM122C0F 26 JAAND1
rr123CCF A7 SETON) «EPROP? JAANDY
LNL26CSR ENDSD JAAND]
JT105Cs JAADDY
SP176Cx 6T §FRCR MFSTSAGE FQR EPRCR OVEFLAY SCREEN JAAND)
LCITTCw JAADDI
nrizacsr TERROR Rzrse JAADDY
LT12905P MOVEL'EM® WRKY JAADDY
37130C3E RS MOVE *l%t WPKG JAADDI
UF121CSP 85 MQVE 06" WRKY JAADD)
Jh1TZCsE 27 MGVE s WR K4 JAADD?
40173786 MOVELWRKE WRKS JAARDI
cr134esR WEK 6 CHAINSYSCTL 90 JRAPDI
C"135CSF MOVE X*L~3€* OMTEXL 2 «TEXT LENGTH JAADD!
C176CSP CNDSR JAADD]
Inr137Cw JAAND]
LM13I80x RTFORMAT DATE FIELD FFOM YM. TG MrY JAAPDY
J0139Cx JAADD?
r1140CSP TREFNT scrsl JAADD1Y
JN1L1rSR MOVELWFKON WRK? «SAVE YEAR JAAPD?
G518zeSE LRKEN wyLT 113 NRKON «SHIFT LFFY JAADDY
U"143CSP VOVE WOKZ WRK6N oNOW MMDNYY JAADD1
SD1u4CSP FNDSR JAADD1
CN1LE0K JAADD1
2714608 SOME FIPCR MAS OCCURED - PUT OUT FRROR OVERLAY SCREEN JAADDY
url870w JAARD1
LN14sCPIS £ £7? JAADDY
on1u9n 10 *JAMENU® JAAPD?
L31550 11 °E* JAADDI
LP15100MA £ 89 JAADD1
LN1820 M8 "JATZOR® JAADDY
3r1%30% QVERRIOE TEXT LENGTH JAADD1

UP-9206) SPERRY UNIVAC 0S/3 4-6
IMS ACTION PROGRAMMING IN RPG i

JAADD1 CODING

W s 79 13 17 21 25 29 33 37 41 45 49 53 57 61 656 69 713 77 80

gnNisuo OMTE XL 14 JAADD1
GN1ss50 N9OQSCERP 66 JAADD]
L1560LCA £ 89 JAADDY
£a1570 yp 0 JAADDI
on1580 41 X°FF°* JAADD?
531590 47 *JAADD]® JAAND]
u01600% JAADD1
0N1610% 1ST PASS =~ CALL YOURSELF AND PUT OyT 1ST ADD SCREEN JAADD?
CN1420= JAADD!
Jr1e30P1Ib z T3 JAADD]
CNl64C 1¢ *JAAUDL® JAADD!
15650 11 *E* JAADD!
Gn166C0OMA E T4 JAADD
L7167 K& *JATADDL® JAADD1
Cr1REQ PBRATE 22 JAAND1
201490 PETIME 28 JAADDY
S5N173CCCA 3 73 JAADD!
L171cC CDPASS 4 JAADD?
L7172¢C 41 x*une JAADPDI?
ar173c 47 *JAADDL® JAADD?
CT1740w JAADPD]
"1750% 1 SUESS THE GOFEPATIF WANTS TO GC FACK TO THE MENUees Ox, T WILL JAADDI]
N1760s JAADPD?
wN1770P Ik < 79 JAADDY
sN17eC 16 *JAMENU® JAADPD?
J71790 11 1 JAAND]
LG1RATOCNA £ 79 JAAND1
171810 by *r JAADDY
401R2C 41 x*.C° JAADD?
L1730 47 *JAALDL? JAADD?
718Ul JAADDY
UC1F50% EVEPYTHING LCOKS CK - CALL NEXT OVERLAY JAADDY
o716 JAADPDY
ST187CR TR T TINTINESG JAADDI
Ead -3:-1¢ 1. *JaapDp2? JAADD!?
Jrl8sn 11 *¢g° JAAPD]
L719L00MaA z TINTONED JAADD?
L7iel1d K8 *JAZADD2® JAADDI
Jnleze PENATE 22 JAAND!
{7163C PETIME 28 JAADD!
cCis40CnA £ TINTSNEY JAADD?
cnlese IMCUST 35 JAADDI
Lr1960 IMACCT 29 JAADD]
In157¢ COPASS 40 JaADPD!?
L1980 41 x*coee JAADDY
L1790 47 *JAADDL® JAADD?
L7eroe IMNAME r2 JAADPD]
Srarie TMADR] 1n2 JAADDY
ul2ra2c IMADR2 122 JAADD!
arz223o IMCITY 137 JAADD?
sn2tac IMSTE 139 JAADD]

Figure 4-2. Action Program JAADD1 (Part 4 of 5)

‘

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG II

4-7

JAADD1 CODING AND OUTPUT

21

25 29 33 37 41 45 49 53 57 61 65 69 73 77_80)
IMZ2IP 142P JAADD?
TMAREA l144pP JAAPDY
TMPHON 148P JAADD]

Figure 4-2.

Action Program JAADD1 (Part 5 of 5)

96/23/81 86:49:28

MENU SELECTION 1
THIS SELECTION ADDS A CUSTOMER
NAME AND ACCOUNT RECORDS.
ACCOUNT NUMBER:
CUSTOMER NUMBER: ______
NAME :
ADDRESS (LINE 1): _____________
ADDRESS (LINE 2):
CITY/STATE/2IP: ____
TELEPHONE NUMBER: (_

JASADD

92/99/81

ENTER 'M' TO RETURN TO THE MENU: _
PLACE CURSOR HERE TO TRANSMIT -->[_]

_)

Figure 4-3. Output Generated by JAADD1 on First Pass

96/23/81 06:49:28 JASADD2 ©2/09/81
MENU SELECTION 1

THIS SELECTION ADDS CUSTOMER

NAME AND ACCOUNT RECORDS
BRANCH NUMBER:
SALESMAN NUMBER:
PROJECT MANAGER:
ACCOUNT CONTACT:

DATES

CONTRACT CONVERSION PROPOSED SYSTEM
SIGNED STARTED COMPLETION INSTALLED
I _d__f__ Y S S A Y S

PLACE CURSOR HERE TO TRANSMIT -->[_]

_J

Figure 4-4. Output Generated by JAADD1 on Second Pass

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG i

JAADD2 CODING

Figure 4-5. Action Program JAADD2 (Part 1 of 4)

AJAADD?2
*JAADD2
*JAADD2
*JAADD2
*JAADD?
=JAADD?2
*JAADD2
*JAADD2
*JAADD2
*JAADD?
*JAADD2

JAADD?
JAADD2
JAAPD?
JAADD?
JAADD?
JAADD?
JAADD?
JAADD?2
JAADD?
JAADD?
JAADD?
JAAND?
JAADD2
JAAND?
JAADDD
JAADD?
JAADD?
JAADRD?
JAADPD?
JAADD?

] 5 7 9 13 17 21 25 29 33 37 a1 45 49 53 57 61 65 69 73 77 80]
ADD NEW CUSTOMER (PART 2) SoP JAADD?2
00001 H

(T le]ol R e e e LD DL DR Ly b Lt D Dt L T
00003Fs=s THIS PROGRAM IS CALLED 8Y JAADDls IT TAKES THF DATA THAT WAS
00004F=* ENTERFD ON THE °*JUA¢ADD}® SCREEN FROM THE CDA PLUS ANY DATA
0000SF» ENTERED ON THIS SCREEN (*JAADD2*) AND ADDS A CUSTOMER MASTEP
00006F = AND ACCOUNT CROSS REFEREFNCE RECORDe THE PROGRAM THEN CALLS
00007F = THE MENU OVERLAY.

1 La el] R et D L T e DL R e
O0009Fs

00010F% - =-Ceweee-- FUNCTTION 0O F INDICATORS
00011F=*

00012F#-crerccce e ccc e e s e mrm e r e e rc e m e m e e e e e e e -
00013F* ©1 PROGRAM INFORMATION BLOCK

00014F% Q2 INPUT MESSAGE AREA

00015Fs L3 CONTINUITY PATA AREA

gnQl16F* Gu CUSTOMEP MASTER RECORD

00017F= (5 CUSTOMER MASTER RECORD (DELETED)

Q0018Fs (06 ACCOUNT CROSS-REFERENCE RECORD

O0p19F= (8 SYSTEM CONTROL RECORD

00020F= (9 SYSTEM CONTROL RECORD (DELETED)

00021F=» 63 WRITE CUSTOMER MASTER RECORD

CO022F» 61 WRITE ACCOUNT CROSS-REFERENCE RECQRD

00023F = 63 RETURN TO MENU AFTER ADDS

00024F = 83 GENERAL PURFOSE INDICATCR - LOCAL USAGE
D0Q2S5F#* 86 CUSTOMER NUMBER ALREADY EXISTS IN CUSTMSY
00026F = 87 ACCOUNT CODF ALREADY EXISTS IN XREF?

D0Q027F = 89 GENERAL ERROR INDICATOR

0C028F» 93 SYSTEM CONTROL RECORD NOT FOUNp

00029F =

0Co30FPIB up F 144 4P1IB

OQCO31FIM, IP F 135 *IMA

DO032FOMA 0 F 4305 *OMA

UD0D33FCDA uo F 1u8 *CDA

OCO34FCYSTMST UL F 256 2S6R 6AT 9 DISC S A
O0035FXREF1 Uuc F 1y 13% 4Al 7 DISC S A
gnN0eFSYSCTL IC F A4 64D BAT 1 DISC S

Q00371P1IB NS @1

000381 49 S4NPRDATC

ono39IIMA NS 0?2

oopu01 17 23L2IMBRAN

Gogu411 21 26 7IMSLSM

00Qu21 27 S1 IMPMGR

gCco437 52 86 IMCCNT

0ngas I 97 9Z0GIMSIGN

a00451 93 937 IMCONV

0046 S9 1243IMCOMP

CoGu7I 105 11G0OIMINST

goousI 111 1163IMRFuU

LNou9Y 117 117 IMXMIT

gogsgICctA NS u?

ongs1I 1 4 CDPSWD

UP-9206 SPERRY UNIVAC 0S/3 4-9
IMS ACTION PROGRAMMING IN RPG II

JAADD2 CODING

|
i 5 79 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77_ 80|
oogsa2I 5 2% CDMSEL JAADD?
000531 IC 350CDCUST JAADD2
000541 36 39 CDACCT JAARD?
000551 40 400CDPASS JAADD2
0ogSe6r 41 41 CDSTAT JAADPD?
000571 42 47 CDCPGM JAADD?
0Nn0s8Is END OF STANDARpD CDA FIELDS JAADD2
000597 48 82 CDNAME JAADD?
000601 83 172 CDADR1 JAADD?
000611 103 122 CCADR2 JAADD?
000621 123 137 CDCITY JAADD?2
000631 138 139 CDSTE JAADD?
000641 P 1u4g 16203¢C21P JAADD?2
000657 P 143 144DCDAREA JAAND?
000661 P 145 148NCDPHON JAADD?2
UND6TICUSTMST NS (U6 256NCD JAADD?
Up068I OR 133) JAADD2
000691 9 14nCMCUST JAADD?
OO07QIXREF1 NS G6 JAADD?
ong711Y 1 6 X1CUST JAADD?
000T72ISYSCTL NS URrR 6U4NCD JAADD?
000731 OR Go JAADD?
ong74I 7 31 SCERR JAADRD?
00075C READ PIB JAADD?
unad76c S AD CDA JAADD?
g0p717¢C EXSR $CUST «DUPLICATE JAADD?
Uou78C N63 GOTO ERROR «CUSTOMEPH? JAADD?
gro79c EXSR $PUT oNO DMOUT JAAPD?
00o8ac EXSR $XREF1 oNOW X-RFF JAADD?
. unosl1c N6l rFOTO EFROR JAADD?
gogsac EXSR $PUT JAADD?
anossc SETON 63 «CALL MENU JAADD2
gnosusc GO0T0 RETURN JAADPD?
groasc FRPOP TAG JAAPD?
gnousec SETON 89 JAADD?2
g0o87cC EXSR $gRROR oGET TFxT JAAND?
ongesc RETURN TAG JAADD?
uoossc EXCPT JAAPD?
0009%0C=» JAADD?
UN091Cx DEFINE WORK AREAS JAADD?
J092Cx* JAADD?
NPC93CLPNLR MOVE X'4T* WPK? Z JAADD?
COC94CLRNLR MOVE X*une WRKY 4 JAADD?
CrLL95CLRNLR MOVE X470 wRKH 5 JaalD?
GCUY6CLANLR MOVE X'uC? BLNKS <cSb JAADD?
COC9TCLRNLR MOVE XTFC? WRKSN L7 JAAPD?
CCU9BCLANLR MoV X'F2* WRKSEN 6" JAADD?
CRCo9Cw JMADD?
G0100C* CHZCK CUSTOMES MASTER + ACCCUNT X-REFERENCE FCR DUPLICATES JAAND?
JC1n1C» JBADPD?
GC122CSR TCUST CECS? JAADPD?

Figure 4-5. Action Program JAADD2 (Part 2 of 4)

UP-9206

SPERRY UNIVAC 0OS/3
IMS ACTION PROGRAMMING IN RPG I

4-10

JAADD2 CODING

Figure 4-5. Action Program JAADD2 (Part 3 of 4)

I 5 7 9 13 17 2t 25 29 33 37 41 45 49 53 57 6165 69 73 77 80
Q01C3CSR CDCUST CHAINCUSTMST €Q JAADD?2
D0104CSRN6U SETON B6 JAADD?2
80105CSR ENDSR JAADD?
C0106Cs JAADD?
g0107CSR $XREF1 REGSR JAADD?
gol108CsSP CDACCT CHAINXREF] €1 JAADD?Z
O0109CSRN61 SETON 87 JAADD?
U0110CSR ENDSR JAADD?
00111C» JAADD?
00112C% ADD CUSTOMER OR ACCOUNT CROSS-REFERENCE RECORP JAADD?
On113C» JAADD?
00114CSP TPUT REGSR JAADD?
00115CSR EXCPT JAADD?
g0116CSR SZTOF 6361 JAADD?
J0117CSR ENDSR JAADD?
gC118C» JAADD?
00119C» GET ERROR MFSSAGE FOR ERROR OVERLAY SCREEN JAADD?
00120C=» JAAPD?
O0121CSKR tEPROR BEGSR JAADD?
GN122CsSR MOVEL*EM"* WRK4 JAAND2
g0123CSR 86 MOVE *C6° WRKY JAADD?
U0124CSR 87 MOVE °*n7°* WRKUY JAADD?
00125CSR MOVELWRKY WRKE JAADD?
00126CSR WRKE CHAINSYSCTL Qg JAAPD?
LO127CSR MOVE X*(026° OMTEXL 2 o TEXT LENGTH JAADD?
Q0128CSR ENDSP JAADD?
0N1290= JAADD?
0013C0% SOME FRPOR HAS OCCURED - PUT OUT ERROR OVERLAY SCRFEN JAADD?
001310» JAAND?
gol1320pP 1B g e9 JBADD?
9921330 10 "JAMENY® JAADD2
001340 11 *7° JAARD?
on13csooma T e9 JAADD?
gn1360 K8 YJUASERR® JRADD?
OC1370% OVERRIDF TEXT LENZTH JAADD?
001380 OMTEXL 14 JAADD?
001390 NOUSCERF 656 JAADD?
anlscocna £ &S JAADD?
001410 ay 'ne JAADRD?
0n1.420 41 X'FF?* JAADD?
oniu3o 47 *JAAGDZ* JAADD?
a0luycx JAADD?
CC1450% ADD CUSTCMER MASTER + X-REFERENCE RECORCS JAADRD?
001460% JAAND?
0C1470CUSTMST ZADD 63 JAADD?
uniusoe CoACCT 4 JAADD?
G0lu90 IMARRAN & JAADD?
gnisge cocusT 14 JAAPD?
GCl510 COMAME 49 JAADD?
arisz2o0 CLACRI [] JAAND?
ull153¢0 CorDP2 R9 JAADD?

UP-9206 SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG Il

4-11

JAADD2 CODING

Figure 4-5. Action Program JAADD2 (Part 4 of 4)

I 5 7 9 13 17 21 25 29 33 37 41 45 49 73 7780}
001540 CDCITY 10y JAADD2
001550 COSTE 106 JAADD?
001560 cozIP 109pP JAADD?
001570 CDAREA 111P JAADD?
001580 CDPHON 115P JAADD?
001590 IMCONT 15¢C JAADD?
001600% POSITION 151 UNUSED JAADD?2
001610 IMSLSM 155P JAADD?
001620 IMPMGR 180 JAADD?
001630 IMSIGN laypP JAADD?
001640 IMCONV 188P JAADD?
001650 IMCOMP 192P JAADD?
001660 IMINST 196P Jaalhp?2
po1670 IMRFU 200P JAADD?2
001680% ENTITLEMENTS JAADD?
go1690 WRKSN 203P JAADD?
001700 WRKSN 2C6P JAADD?2
go1710 WRKSN 2Ne9P JAADD?
001720 WRKSN 212P JAADD?2
oni1730 WRKSN 215P JAADD?
Q01740 WRKSN 218P JAADRD2
gn17s0 WRKSN 221P JAADD?
g01760 WRK SN 224P JAADD?2
go1770 WRKSN 227P JAADD?
001780 WRKgN 23uP JAADD?
gni1790 WRKSN 233p JAADD?
co18p00 WRKGN 2X6P JAADD?
001810« POSTTIONS 227 - 251 UMUSED JAADD?2
Qo1820 FBLDATE Z55P JAADD2
a01830 256 ‘A JAADD?
ON184OXFEFL EADD [JAADD?2
ucisso COCuST 6 JAADD?2
uD1860 CDACCT 1u JAADD?
GN1870« JAADD?
G01880% RETURN TO THE MENU AFTER ADR JAADD?2
CNiB90x JARARD?
ut1900P1IE e 63 JAADD?
gCc1910 10 *JAMENU? JAADD?
gol1920 11 °*1° JAADPD?
071930CDhA £ 63 JAADD?
001940 4y N JAADD?
L0D1950 41 x*ur® JAAND?
G11960 *JapbD2 JAADPD?

UP-9206

SPERRY UNIVAC 0OS/3 4-12
IMS ACTION PROGRAMMING IN RPG i

JAADD1 PROCESSING

Processing for the
first pass

Processing for the
second pass

There are two passes through JAADD1. Let’'s summarize what
happens in each pass.

Reads data saved by JAMENU.
Reads the program information block for data.

Calls screen format services to create the output message
screen, JASADD1.

Schedules itself as successor program.

Reads data entered on the JASADD1 screen.

Reads data saved by JAADD1 on the first pass through the
program.

Validates data entered on the JA$ADD1 screen and
diagnoses errors.

Calls on screen format services to create the output
message screen, JASADD2.

Schedules JAADD2 as successor program and passes data
to it to do the actual adding of the customer and account

records.

Designing IMS transactions Once again you see the same basic design that we saw in
Section 3 - a series of action programs all handling input,
processing, and generating output. Perhaps you've also noticed
that the action programs we're discussing are designed to
accomplish one or two fundamental activities. It's better to link a
series of action programs together to accomplish many small
tasks than it is to try to incorporate all these tasks into a single

program.

UP-9206 SPERRY UNIVAC 0S/3 4-13
IMS ACTION PROGRAMMING IN RPG Il

JAADD1 PROCESSING

Objectives of IMS In most user environments IMS is chosen for its interactive
capabilities and fast throughput. To maintain speed and a
conversational atmosphere, design your action programs to
perform clearly defined tasks and to yield appropriate and quick
responses.

You'll see that these goals of speed and conversational
atmosphere are at the forefront in the design of all action
programs presented in this manual.

UP-9206 SPERRY UNIVAC 0S/3 4-14
IMS ACTION PROGRAMMING IN RPG Il

CONTINUITY DATA AREA CODING

4.4. USING THE CONTINUITY DATA AREA

Now let's focus our attention on the new features of action
programming that JAADD1 introduces (Figure 4-2).

File Description Form (CDA)

JAADD1 uses four interface areas. We've already shown you
ways to define the program information block, input message
area, and output message area in Section 2; and in Section 3,
we demonstrated how these areas are used. The use of the
continuity data area, however, is hew.

Purpose of continuity An action program defines a continuity data area in order to read

data area and/or update data saved there by the predecessor program or
to pass data itself to a successor program. JAADD1 uses the
continuity data area to read data saved by JAMENU, to update
it, and to pass the updated data to the successor program.

Here is a description of how JAADD1 defines the continuity data
area in order to use it in the ways we just described:

Defining the continuity
data area

User name assigned to the continuity data area

Update demand file. Since JAADD1 intends to read the continuity
data area to get data passed by JAMENU and to update it, it
must define it as an update demand file. There are many other
ways to define the continuity data area depending on how you
intend to use it. See 2.15 for a detailed discussion of the entries
you can make in columns 15 and 16.

19 Required entry

24-27 This is the configured size of the continuity data area for
JAADD1. JAADD1 can pass 148 characters of data to its
successor program. An action program can increase the size of
the continuity data area of the successor program by moving a
new value into the field continuity-data-area-inc in the program

information block at output time. See Section 2.

40-46 Required entry whenever defining the continuity data area

Input Form Coding (CDA)

Seven fields contain As you would expect, the input form describes all input fields

data passed by JAMENU referenced by JAADD1. Notice, however, that for the continuity
data area there are seven defined fields. They contain data
passed by JAMENU.

UP-9206 SPERRY UNIVAC 0S/3 4-15
IMS ACTION PROGRAMMING IN RPG i

CONTINUITY DATA AREA CODING

Data passed by JAMENU Table 4-1 lists the continuity data area fields passed by JAMENU
to JAADD1 and their contents when JAADD1 begins processing.

Table 4-1. JAADD1 Continuity Data Area

CDA contents

1-4 The transaction code that initiated the [IMS
transaction.

5-29 The menu selection made by the terminal operator.

30-35 When JAADD1 begins executing, this field contains
only zeros. JAADD1 uses this field on the second
pass through the program.

36-39 When JAADD1 begins executing, this field contains
only zeros. JAADD1 uses this field on the second
pass through the program.

40-40 JAADD1 uses this field to determine which pass it is
through the program.

41-41 This field contains a zero when there is no error
condition.

) 42-47 This field contains the name of the current action
program.
Defining the program The input form also defines fields for the program information
'f’_’f;’;mat'o" block input block (PIB) and input message area (IMA). The two program
1elas
information block fields defined correspond to transaction-date
and time-of-day. For a complete listing of program information
block fields, see Section 2. The fields defined for the input
message area correspond to data entered on the JA$ADD1
screen and enter the program on the second pass.
Calculation Form (CDA)
Using $ENTRY to When JAADD?1 begins processing, it calls upon subroutine
read CDA $ENTRY. This subroutine reads the continuity data area. The

continuity data area contains data saved by JAMENU. The
Determining which pass purpose of reading the continuity data area first is to determine
through JAADD1 whether it is the first or second pass through the program. This
information is contained in the field CDPASS. On the basis of
whether CDPASS contains a zero (first pass} or 1 (second pass),
all processing is determined.

Using the continuity data When CDPASS=0, indicator 70 is set on and 1 is moved to the

area to control processing fie]ld CDPASS. When CDPASS=1 initially, indicator 71 is set on.
. Indicator 70 triggers processing for the first pass through the
program. Indicator 71 triggers processing for the second pass.
The continuity data area is not used again until output is done.

UP-9206

SPERRY UNIVAC 0S/3 4-16
IMS ACTION PROGRAMMING IN RPG I

CONTINUITY DATA AREA CODING

Updating the continuity
data area at output

Output Form (CDA)

Table 4-2 summarizes how JAADD1 updates the continuity data

area when output occurs. All
area is passed to the successo

Table 4-2. Summary of JAADD1

data saved in the continuity data
r program.

Continuity Data Area Update at Output

CDPASS

1

Pass 1 through JAADD1 is complete.

CDSTAT=0

No error condition occurred.

CDCPGM=JAADD1

Name of the current program

CDPASS=0

Pass 2 through JAADD1 is complete. CDPASS
is reinitialized to zero since all RPG Il action
programs are serially reusable.

CDSTAT=0

No error condition occurred.

CDCPGM=JAADD1

Same as for indicator 70

All fields between
lines 195 and 207
are written.

These fields contain the data entered on the
JASADD1 screen and validated on the second
pass through JAADD1. Notice that the location
of IMCUST and IMACCT correspond to CDCUST
and CDACCT described on the input form. This
data is used in the updating of the CUSTMST
and XREF1 files in program JAADD2.

CDPASS=0

Indicator 79 signifies the operator entered M on
the JASADD1 screen. This means the operator
wants to return to the menu. Consequently,
CDPASS must be reinitialized to zero.

UP-9206

SPERRY UNIVAC 0S/3 4-17
IMS ACTION PROGRAMMING IN RPG I

INTERNAL SUBROUTINES

' 4.5. USING INTERNAL SUBROUTINES

Avoid repetitious code

Reading the program
information block for
data

Defining program
information block size

Executing $REFDT

Reformatting a field

We already briefly touched upon JAADD1's use of internal
subroutines when we discussed $ENTRY. Using internal
subroutines is a common tool of most RPG Il programmers. It
avoids tedious repetition of code. Action programs code internal
subroutines in the same way as other RPG Il programs.

JAADD1 uses four internal subroutines in all. We discussed
$ENTRY, which reads the continuity data area and determines
which pass it is through the program. The other three
subroutines are $CUST, $ERROR, and $REFDT. Let's start with
the last one first.

Subroutine $SREFDT

Before talking about subroutine $REFDT, let's establish some
necessary background information. In all the action programs
we’'ve discussed so far, we defined the program information
block (PIB) as an update demand file on the file description form.
We did this to move values into successor-id and
termination-indicator when doing output. Other than that, the
programs didn't use the program information block. JAADD1,
however, does. That explains why the program information block
is also defined on the input form. JAADD1 references the fields
PBDATE and PBTIME. These fields correspond to
transaction-date (positions 49-54) and time-of-day (positions
55-60) in the program information block.

On lines 082-084 of Figure 4-2, JAADD1 reads the program
information block. This brings all program information block fields
into the program. The reason all 70 positions of the program
information block become available to JAADD1 is because they
were defined on the file description form in record length.

Now JAADD1 moves PBDATE to a field called WRK6N and
executes subroutine $REFDT.

The purpose of this subroutine is to reformat transaction-date. Its
present format in the program information block is yymmdd. The
SREFDT subroutine moves the two leftmost characters (yy) in
WRK6N to WRK2 (a 2-position field). It then multiplies WRK6N
(containing mmdd) by 100 producing a result field mmdd0O. The
$REFDT subroutine then moves WRK2N {(containing yy) back to
WRK6N. The result is a reformatted date, mmddyy.

UP-9206

SPERRY UNIVAC 0S/3 4-18
iIMS ACTION PROGRAMMING IN RPG Il

INTERNAL SUBROUTINES

PIB is useful

Validating data

Use screen formats or
action program

When data is invalid

When errors occur

Used to send error
messages to terminal
operator

There is nothing particularly unique about this subroutine. The
reason we presented it is to point out that there is much data in
the program information block that action programs can put to
very good use. This was simply one example.

Subroutine $CUST

The second internal subroutine $CUST validates the data entered
on the JASADD1 screen. Due to the conversational nature of
IMS, there is a continual exchange of data taking place betweeen
IMS and the terminal. As a resuit, there must be a means for
checking the validity of the data the action program receives.
Screen format services provides a certain amount of validation of
terminal operator entries. However, if you aren’t using screen
format services or if your application requires special validation
procedures, the action program must do it. JAADD1 uses the
subroutine $CUST to do this. This subroutine executes only
during the second pass through the program (when indicator 71
iS set on).

First, the values entered (at the terminal) in fields IMCUST and
IMACCT are compared to zeros. If they don’t contain zeros, the
value IMCUST is checked against the index for user file
CUSTMST, and the value IMACCT against the index for file
XREF1. If no key is found for either value, processing continues.
Otherwise, if IMCUST or IMACCT are zeros or if a key already
exists with the same value as IMCUST or IMACCT, then
indicators 85,86, or 87 are set on accordingly. Each of these
indicators in turn sets on indicator 89, the general error indicator.

Subroutine $ERROR

When indicator 89 is set on, before output takes place, a third
internal subroutine takes control; it is $ERROR. Again, here is a
little background information before discussing this subroutine.

Notice that on the file description form (line 040) we defined a
user file, SYSCTL. This MIRAM file contains a series of
user-created error messages to be sent to the terminal operator
at program termination when an error condition occurs. In this
way, terminal operators are kept aware of the status of their
requests. The internal subroutine, $ERROR, uses the SYSCTL file.

UP-9206 SPERRY UNIVAC 0S/3 4-19
IMS ACTION PROGRAMMING IN RPG i

INTERNAL SUBROUTINES

. 4.6. USING AN ERROR MESSAGE FILE

Creating a user error file When indicator 89 is set on, $ERROR takes control. Depending
on which specific error indicator is set on (85,86,87), RPG Il
creates a key that is used to chain into the SYSCTL file. This file
contains error messages related to specific errors that can occur
during JAADD 1's processing cycle.

Table 4-3 summarizes the error indicators that can be set on
when JAADD1 is executing, the key that $ERROR creates, and
the error message that goes to the terminal when the program
terminates:

Table 4-3. Summary of Error Indicator and Error Messages for JAADD1

Error messages

generated i :
CUSTOMER NUMBER ZERO AND/OR ACCOUNT CODE
BLANK. PLEASE ENTER AGAIN.
EMOB0OO | CUSTOMER NUMBER ALREADY EXISTS IN
CUSTOMER MASTER FILE. PLEASE ENTER AGAIN.
EMO700 | ACCOUNT CODE ALREADY EXISTS IN X-REFERENCE
FILE. PLEASE ENTER AGAIN.
Selecting error message As we mentioned earlier, indicators 85, 86, and 87 all set on

indicator 89. When output is done for indicator 89 (general error
indicator), the error message identified by the $SERROR subroutine
(Table 4-3) is sent to the terminal. These messages make it easy
for the terminal operator to see the cause of the error and to
correct the mistake and try again.

UP-8206 SPERRY UNIVAC 0S/3 4-20
IMS ACTION PROGRAMMING IN RPG Il

SCREEN FORMATTING

4.7. USING SCREEN FORMAT SERVICES

We have now talked about using the continuity data area,
internal subroutines, an error file, and displaying error messages
at the terminal. That leaves one other feature of JAADD1 to
discuss — using screen format services.

You've probably noticed that the output coding for JAADD1
No DICE or FCCs required contains none of the hexadecimal sequences so prevalent in
RCMENU and RCCUST. JAADD1 formats all its output screens
using screen format services. This is by far the easist way to
format your output messages. The coding required is minimal.

Coding needed to build Lines 151-152, 166-167, 190-191 show the coding needed to

screens build three different screens in the output message area. Which
screen is built depends on which indicator is set on. When
indicator 89 is set on, the error screen JASERR is built. When

Screen control indicator 70 is set on, JASADD1 is built, and when indicator 71
is set on, JASADD2 is built. Figures 4-3 and 4-4 show the
screens JASADD1 and JASADD2. Figure 4-6 illustrates a typical
error screen when indicator 89 is set on.

©6/23/81 06:49:28 JASADD1 ©2/09/81

MENU SELECTION 1

THIS SELECTION ADDS A CUSTOMER

NAME AND ACCOUNT RECORDS.
ACCOUNT NUMBER:
CUSTOMER NUMBER: ______
NAME:
ADDRESS (LINE 1>: ____________________
ADDRESS (LINE 2>: ____________________
CITY/STATE/ZIP: o o oo
TELEPHONE NUMBER: (___»

ENTER ‘M' TO RETURN TO THE MENU: _
PLACE CURSOR HERE TO TRANSMIT -->[_]

ACCOUNT CODE ALREADY EXISTS IN X-REFERENCE
FILE. PLEASE ENTER AGAIN.

Figure 4-6. Error Screen Generated for Program JAADD1

Work area required To use screen format services, you must configure a work area,
although you don’t define a work area in your action program.
The work area is specified in the ACTION section of the IMS
configuration (WORKSIZE=n).

UP-9206 SPERRY UNIVAC 0S/3 4-21
IMS ACTION PROGRAMMING IN RPG Ii

SCREEN FORMATTING

When an action program is ready to create a screen, RPG Il

Moving variable fields moves all variable fields in the output message area to the work

to work area area before it calls upon screen format services to generate the
screen. The screen format generator then uses the output
message area to build the entire output screen. When the screen
is complete, the variable fields are returned to the output
message area to await program termination. At that point, the
entire contents of the output message area (screen and variable
fields) are transmitted to the terminal.

Coding for screen To use screen format services, you must enter on the output
format services form:

P a Kin position 42;

9 the number of characters in the screen format name in

position 43; and
/_\

-

P the format name beginning in position 45.

When listing the variable fields to be output to the screen,
Listing output fields in remember to list them in the order in which the screen format
. ?;f;;f’;icetgzoeyscme" generator is expecting them - that is, in the order they are
defined in the screen format. Also, the first variable field cannot
occupy a position before position 17. The first 16 positions
always contain the output message area header.

For a complete discussion of how action programs can use
screen format services, see Section 6.

UP-9206 SPERRY UNIVAC 0S/3 5-1
IMS ACTION PROGRAMMING N RPG II

MULTIPLE OUTPUT MESSAGES

5. Special Types of Output Messages

Sections 3 and 4 Sections 3 and 4 presented several examples of action programs

(summarized) performing the fundamental processes of accepting input from
the terminal, processing that input, and producing output. They
showed convenient programming techniques for accomplishing
these activities. After you've studied these examples, you should
be able to write simple action programs.

5.1. DIFFERENT TYPES OF OUTPUT MESSAGES

In this section, we describe additional capabilities that IMS
provides for generating output messages. As you become more
experienced, you will find these capabilities very useful. They are
the ability to:

multiple output messages;

uninterrupted output messages to a terminal or

auxiliary device attached to the terminal (continuous output);
Types of output

a transaction at a terminal other than the source
“terminal (output-for-input queueing); and

messages to another terminal (message switching).

5.2. GENERATING MULTIPLE OUTPUT MESSAGES

Definition When an action program generates more than one output
message, we call it multiple output.

Example Program LSTLIM (Figure 5-1) demonstrates how an action
program generates multiple output messages.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG It

5-2

MULTIPLE OUTPUT MESSAGES

I § 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 80|

H ALSTLIM
Fe

Fe LIST STOCKS BETWEEN LIMITS INPUT FROM IMS INPUT

Fe TESTS MULTIPLE QUTPUT USING CALL SEND

Fs AND LIMITS PROCESSING

oc1 FINPUT 1P F 30 ®IMA

002 FSTOCKS ID F BOL 3AI 1 DISK S

003 FOUTPUT 0 F 96y *OMA

ook E A 14 8n

05 TINPUT AA 01

% I 21 23 LOWLIM

on? 1 25 27 HGHLIM

008 ISTOCKS AA @2

009 1 1 3 KEY

010 1 1 8u RECORD

o1 4 LOWLIM SETLLSTOCKS SET KEY TO LOW LIMIT

012 c 2-AD01L I 2n INITIALIZE ARPAY

Ce DISPLAY SCREENS OF 10 RECORDS EACH

913 C o LOOP TAG

014 ¢ READ STOCKS 20

015 ¢ N2y KEY COMP HGHLIM 2u ALSO SET IF HIGH

01le C N20 MOVE RECORD Ayl

o7 [. 1 ADD 1 I

o018 c . 1 COMP 11 3y

019 c s 30 EXCPT

02y c . Z-ADD1 1

821 € N2g GOTO LOOP

Ce DISPLAY RESIDUAL SCREEN

022 c 1 coMP 1 (™

023 C N4O EXCPT

024 0QUTPUT & 0

025 0 oR 20

026] 20 X'l7u30201e

027 0 26 *SYmBOL®

0238 0 32 *NAME’

a9 0 55 *RANGE®

02 0 65 *PRICE®

('R 0 75 *CHANGE®

22 0 85 *X CHANGE®

023 0 95 *EXCHANGE®

034 0 104 Xx'10G30301°

B35 0 A B 904

SYMBOL TABLES

RESULTING INDICATORS
ADDRESS RI ADDRESS RI ADDRESS RI ADDRESS R ADDRESS RI ADDRFSS PI ADDRFSS PI
gnNoo1s 1P 002015 L] 323316 30 300317 01 wtgnie 92 uronzs 2p ShEn3e 7
onuo3c ag uoonTA LJ 000085 HO U0008s H1 000087 H2 UrUreR K3 orprse by

Fe

Figure 5-1.

Multiple Output Message Program (LSTLIM)

UP-9206 SPERRY UNIVAC 0S/3 5-3
IMS ACTION PROGRAMMING IN RPG Il

MULTIPLE OUTPUT MESSAGES

What LSTLIM does LSTLIM sequentially processes an indexed file, STOCKS,
containing stock records. The terminal operator enters as input
low and high limit values that determine where processing of the
file begins and ends. When LSTLIM receives these values, it
begins reading STOCKS at the low limit and continues until the
high limit is exceeded or the end of file is reached. When the
program terminates, the records read are displayed at the
terminal in groups of 10.

Coding the File Description Form

Lines 001-003 contain the file description form coding for the
program. The operations performed are:

File definition

LSTLIM uses the input message area defined as the primary file, INPUT.

LSTLIM also uses an input demand file, STOCKS. STOCKS is an indexed file
containing 80-character records on disk. L in column 28 means the file is
processed sequentially within limits. The 3-character key {(columns 29-30} is
alphanumeric (column 31) and begins in position 1 (column 35-38).

LSTLIM uses the output message area defined as the output file, OUTPUT.

Coding the File Extension Form

Line 004 contains the file extension form coding for the program.
The operation performed is:

Array definition

Array A, defined in column 27, holds the stock records processed. When full,
the array contains ten 80-character records.

Coding the Input Form

Lines 005-010 contain the input form for coding the program.
The operations performed are:

Input field definition The LOWLIM field (positions 21-23 in the input message area) defines the
lower limit used in processing the file, STOCKS. Positions 1-16 contain the
input message area header; positions 17-19 contain the transaction code,

STK; and positions 20 and 24 contain spaces.

Operator entries The HGHLIM field (positions 25-27 in the input message area) defines the
upper limit used in processing the file, STOCKS. When initiating the
transaction, the operator enters the transaction code, the low limit, and the
high limit. Since LOWLIM and HIGHLIM are the only input fields that LSTLIM

references, they are the only ones defined on the input form.

Key definition The STOCKS file contains 80-byte records that begin with a 3-byte key.

UP-9206 SPERRY UNIVAC 0S/3 5-4
IMS ACTION PROGRAMMING IN RPG I

MULTIPLE OUTPUT MESSAGES

Coding the Calculations Form

Lines 011-023 contain the calculations for the program. The
operations performed are:
Calculation form coding

LSTLIM uses the input field LOWLIM to set the lower limit for processing the
file, STOCKS.

The array index () is set to 1.

The LOOP operation processes 10 STOCKS records before exception output
is done.

RPG Il begins reading STOCKS at the lower limit (LOWLIM). If end-of-file is
reached, indicator 20 is set on and processing continues at line 022.

If the end-of-file condition is not met, the field KEY is compared to HGHLIM
to determine if the high limit for file processing was exceeded. If KEY is
greater than HGHLIM, indicator 20 is set on and processing continues at line
022.

If the end-of-file condition doesn’'t occur or high limit isn't exceeded, the
record is moved to array, ARY.

The array index is incremented by 1.

The array index is compared to 11 If | equals 11, the array contains 10
records. Indicator 30 is set on.

When indicator 30 is set on, exception output is done. The 10 elements in
the array are moved to the output message area. However, this output
message doesn't go to the terminal until LSTLIM terminates. Once the
contents of the array are moved to the output message area, the array is
blanked out to allow it to receive another set of 10 records.

After exception output is done, processing resumes at line 020 and the array
index is reinitialized to 1. Record processing begins to create another array of
data.

When | is less than 11, indicator 30 is not set on. Processing returns to
LOOP to read another record (line 013). This continues until the array is full,
end-of-file condition is reached, or high limit is exceeded.

When indicator 20 is set on by the end-of-file condition or by exceeding the
high limit for file processing, the array index is compared to 1. If it is greater
than 1, exception output occurs.

UP-9206 SPERRY UNIVAC 0S/3 5-5
IMS ACTION PROGRAMMING IN RPG i

MULTIPLE OUTPUT MESSAGES

Coding the Output Form

Lines 024-035 contain the output form coding for LSTLIM. The
operations performed are:

Output form coding

The output message area is OUTPUT. Exception output to the output
. message area occurs when the array contains 10 records (indicator 02 is set
on) or when the array is partially full and indicator 20 is set on.

The first output field is a 4-character device independent code (DICE)
sequence ending in position 20. (The output message area header occupies
. the first 16 positions.) The DICE code sequence positions the cursor at line 2,
position 1 on the terminal screen.

Heading data is displayed.

This DICE sequence repositions the cursor at line 3, position 1.

- The 800-character array (10 records, 80-characters each) is displayed using
~ blank after. Blank after reinitializes all elements of the array to zeros or blanks.
. This is needed because the array may be used many times during execution
of the program depending on how many stock records are processed. When
processing is complete, the array is again blanked out. This is needed
because action programs are serially reusable.

LSTLIM generates as As you can see, LSTLIM can generate as many output messages
many messages as needed 35 needed. The low and high limits entered as input by the
terminal operator are the sole determinants of the number of

output messages - groups of 10 records each - that are
generated.

5.3. HOW MULTIPLE OUTPUT MESSAGES ARE PROCESSED

The important point to remember regarding to multiple output
messages, just as with any output message generated by an
action program, is that none of the messages go to the terminal
until the action program terminates. To understand what happens
When messages between the time these output messages are generated and
are transmitted when they actually appear on the terminal screen, let's use the
action program LSTLIM once again and supply input data.

The input message entered is:

Terminal input STK is the transaction code. It identifies
to IMS the program LSTLIM that
processes this transaction. The entries
EEC and MAN define the lower and
upper limits respectively, for processing
the file, STOCKS.

UP-9206

SPERRY UNIVAC 0S/3
iIMS ACTION PROGRAMMING IN RPG Il

5-6

MULTIPLE OUTPUT MESSAGES

First output message

Second output message

CALL SEND

Moving array contents

Queueing messages

Reading last records
in range

Let's assume that there are 27 records
in STOCKS that fall between these
limits. The first time LSTLIM does
exception output, the 10 records
processed are moved from the array to
the output message area. Each time
exception output is complete, the array
is blanked.

When control returns to the program,
the program reinitializes the array index
to 1 and processes 10 more records.
Indicator 30 is set on, signaling more
exception output.

When the second request to do
exception output is received and the
output message area already contains
data, RPG Il issues a SEND function call.
IMS takes the contents of the output
message area and moves it to an ICAM
(communications) queue. Note that the
first set of 10 records was not sent to
the terminal. The output message area
is now free to receive the exception
output. The second set of 10 records in
the array is now moved to the output
message area.

Up to now, 20 records were processed.
LSTLIM generated two output
messages, neither of which was sent to
the terminal. The second message is in
the output message area; the first, in an
ICAM queue.

Once again your program reads
STOCKS. After seven additional records
are processed, indicator 20 is set on.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG II

5-7

MULTIPLE OUTPUT MESSAGES

Final output message

CALL RETURN

Output to the terminal

Operator action

The high limit for file processing has
been exceeded. The array index is
compared to 1. it is 8. This signais
more exception output. Again RPG i
checks the output message area. It
contains data. The SEND function call is
repeated and the contents of the output
message area (the second set of 10
records) is moved to the ICAM queue
where the first set of 10 records is
waiting. Now the output message area
receives the seven records in the array.

At this point, processing is complete.
When the action program terminates,
RPG Il issues a call to the IMS RETURN
function. IMS moves the last output
message (the seven records) to the
ICAM queue and begins transmitting
output to the terminal.

The data is sent to the terminal in the
order that LSTLIM generated it - that is,
the first screen of 10 records, the
second screen of 10 records, and
finally, the third screen of 7 records.

After the first screen is transmitted, the
message waiting light alerts the terminal
operator that there is more output.
When ready, the operator acknowledges
the signal by pressing the MSG WAIT
key and the next screen of 10 records
is sent to the terminal. This process
continues until all output generated by
the program is sent to the terminal. The
transmission of each output message
after the first is preceded by the
message waiting light and the operator
pressing the MSG WAIT key.

UP-9206

SPERRY UNIVAC 0S/3 5-8
IMS ACTION PROGRAMMING IN RPG I

MULTIPLE OUTPUT MESSAGES

Message handling

Operator responses to
multiple output

Whenever the action program creates
more than one output message - using fsiwdba
exception, detail, or total time output -

RPG Hl and IMS handle the output in the
manner just described. All output
messages, except the final one, are
transmitted using the SEND function.
The last output message is always

.transmitted using a RETURN function

when the program terminates.

Table 5-1 shows how the terminal operator is informed of
multiple output and how the operator acknowledges that output.

Table 5-1. Indicating and Accepting Multiple Output Messages

Display {except IBM 3270) | Message waiting light Press message waiting key.

Hard copy (except /CMW or other 4-character message* Press CTRL/G, then press CTRL/C.
DCT 1000}

IBM 3270 Message waiting light or /CMW* Press PA1 key.

DCT 1000 Message waiting light Press CTRL/G, then XMIT.

*This message is defined by the MSGWAIT operand of the TERM macro in the ICAM network definition.
The default is /CMW.

Requirement when using
SEND function

Disk queueing

Message queueing

Multiple output
message limitations

If the action programs you write use the SEND function, you
must specify the UNSOL=YES parameter in the OPTIONS section
of the IMS configuration. If the SEND function is used frequently,
you should also include disk queueing for output messages when
defining your communications network (ICAM). When you specify
disk queueing, IMS queues output messages generated by an
action program on disk each time the SEND function occurs.
These messages are sent to the terminal when the program
terminates. Disk queueing allows for more productive use of main
storage.

If you want to examine each screen of data containing output,
issuing multiple output messages is a good idea. You should not
use it, however, as a substitute for obtaining lengthy output
messages because the operator wastes considerable time
pressing the MSG WAIT key to obtain the entire output.
Instead, use the continuous output feature discussed in 5.4
through 5.12.

UP-9206 SPERRY UNIVAC 0S/3 5-9
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT

5.4. GENERATING CONTINUOUS OUTPUT

Definition The second capability involving output messages is the ability to
transmit a series of output messages to a terminal or more
commonly to an auxiliary device attached to the terminal without
operator intervention. This is called continuous output.

Useful for lengthy reports This capability is very useful when you want to print lengthy
reports at an interactive terminal.

Specifying continuous To use continuous output, you must specify CONTOUT=YES in

output in IMS the OPTIONS section of your IMS configuration.
configuration

5.5. DEVICES THAT CAN RECEIVE CONTINUQUS OUTPUT

Terminals and auxiliary Action programs can direct continuous output to hard copy

devices supported terminals or to auxiliary devices (printer, tape cassette, or
diskette) at display terminals. For a complete list of terminals and
auxiliary devices supported by IMS, see the IMS system support
functions user guide, UP-8364 (current version).

5.6. CODING FOR CONTINUOUS OUTPUT

Specifying continuous To distinguish a continuous output message from other output

output in program messages, an action program moves a special value to the
aux-function field (position 15) of the output message area
header. You move this value at the same time as you generate
your output message. When the program terminates, IMS checks
this field and recognizes that the message generated is a
continuous output message.

Specifying continuous If that message is to go to an auxiliary device, as opposed to
3”‘7?“‘ to auxiliary just going to the display terminal, the program also moves a
evices

value to the aux-device-no field (position 16) of the output
message area header when generating the output message. This
value informs IMS which device receives the continuous output
message. You assign a unique number to each auxiliary device
when you define your communications network.

Aux-function field settings Table 5-2 summarizes the settings for the aux-function field
when transmitting continuous output to a terminal or to an

auxiliary device. You find those values in columns 6 and 7 of
Table 5-2.

UP-9206 SPERRY UNIVAC 0S/3 5-10
IMS ACTION PROGRAMMING IN RPG |l

CONTINUOUS QUTPUT

Table 5-2. Settings for Aux-Function Field of the Output Message
Header (Print/Transfer Options)

X C3 C 00

X Print Mode X F3 3 FO 0
X 5 5 F2 2

Print Transparent X £7 7 F4 4

X F9 9 F6 [

Print Form (ESC H) X Cl A D1]

X [} F D6 4}

Transter All (ESC G) X C2 B D2 K

X c7 G D7 P

Transfer Variable X C4 D D4 M

(ESC Py X 8 H D8 Q
Transfer Changed X €5 £ D5 N

(ESC) X 8 Y F8 8

Directing Continuous Output to a Terminal

Continuous output for the Looking at the columns labeled Continuous Qutput in Table 5-2,

terminal you notice that if you're sending continuous output to the
terminal (primary device), you move the character C or a
hexadecimal C3 to the aux-function field. Figure 5-2 shows how
you code the output form to send continuous output to the
terminal.

STACKER SELECT,
£ FETCH OVERFLOW

OUTPLT INDICA TORS .
e CO0ES €RO
Dava fOAMAT _cone: comans |7
TYPE DT E I PBLRA NEULATIVE VALUE INDICATION | | (cerrpy, | BALANCE
NONE T cR | B TOPAINT
VEs
Yes |
[
NO

ann
eND - -

PONTION
i~
outeut
HECORL

o[e
2 B BLANK AFTEH

s

OUT PUT, | i

T R

L MESSAGE
TEXT

Figure 5-2. Coding a Continuous Output Message for the Terminal

UP-9206 ’ SPERRY UNIVAC 0S/3 5-11
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT

. Directing Continuous Qutput to an Auxiliary Device
Continuous output for When you are transmitting continuous output to a COP, TP,
an auxiliary device cassette, or diskette auxiliary device, Table 5-2 illustrates that

there are numerous values you can move to the aux-function
field. The value you choose depends on the print or transfer
option you want.

Print and transfer options ~ Table 5-2 lists the print and transfer options you can select and
their corresponding values. Table 5-3 further defines these
options.

These print and transfer options can be used to transmit
messages to auxiliary devices whether or not you're using the
continuous output feature. Also, some auxiliary functions aren’t
allowed if you use screen format services. See Table 6-2.

Table 5-3. Print and Transfer Options

Print Mode Message transmitted has the same format as the terminal
. screen. Cursor return sequences for the screen apply.

Print Transparent Message transmitted is independent of the terminal screen
format. Whatever format you incilude with your message
applies.

Print Form (ESC H) Message transmitted contains all unprotected characters

from the start-of-entry {SOE or home position) to the cursor.
Field control characters are suppressed.

Transfer All (ESC G) Message transmitted to the auxiliary device contains all
characters from the start-of-entry character to the cursor
including field control character sequences.

Transfer Variable (ESC F) Message transmitted to the auxiliary device contains only
the unprotected characters between the start-of-entry
character and the cursor including field control character
sequences.

Transfer Changed (ESC E) Message transmitted to the auxiliary device contains only
the changed characters between the start-of-entry and the
cursor including FCC sequences.

UP-9206

SPERRY UNIVAC 0S/3 5-12
IMS ACTION PROGRAMMING IN RPG i

CONTINUOUS OUTPUT

Definition of print
transparent mode

Using transparent mode

Print transparent mode
with UNISCOPE 100

With other display terminals

Definition of print mode

Space suppression

Identifying the auxiliary
device

One of the more commonly used options is print-transparent
mode. In this mode, although the continuous output message
generated goes through the logic of the primary device, its
format is independent of the terminal screen format. Only device
independent code (DICE) sequences and field control characters
(FCCs) you use to format the continuous output message apply.
The cursor return characters normally inserted by the terminal are
not transmitted. Thus, the length of the lines written to the
auxiliary device is independent of the line length of the screen.

When using print-transparent mode with a UNISCOPE 100
display terminal, make sure that the output message generated
doesn’t exceed screen capacity. If it does, the excess lines wrap
around and overlay the first few lines. Since the message on the
screen is the message sent to the auxiliary device, the
transmitted result is a message beginning with the excess lines
instead of the original lines. The same consideration applies to all
display terminals; however, the larger screen capacity of most
terminals makes wraparound less likely.

In print mode, the continuous output message transmitted to the
auxiliary device has the same format as the screen - that is,
cursor return characters apply. For further details on print-mode
and print-transparent mode, refer to the UNISCOPE programmer
reference, UP-7807 (current version), and the UTS 400
programmer reference, UP-8359 (current version).

When you choose either print or transfer options, you can allow
or inhibit space suppression (see Table 5-2). When you specify
allow space suppression, the remote device handler suppresses
all nonsignificant spaces in the output message. When you
specify inhibit space suppression, the remote device handler
changes all spaces to DC3 characters making it necessary to
strap the printer to space when it receives a DC3 character in the
output message text.

As we already noted, when you're transmitting continuous output
to an auxiliary device, you must also move a value to the
aux-device-no field. The value you move to the aux-device-no
field identifies that auxiliary device. Each auxiliary device attached

to a terminal has a specific number as defined in the
communications network definition.

UP-9206

SPERRY UNIVAC 0S/3 5-13
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT

Example

Let's assume you want to transmit continuous output to a
cassette using the transfer-all option. You would specify
hexadecimal C2 or the character B in the aux-function field. In
aux-device-no, you would put the value configured for the
auxiliary device to which you are directing continuous output.
Figure 5-3 shows how the coding might look:

STACKER SELECT/
OUTRUT INDICA TOR:
#=FETCH OVERFLOW OATA FORMAT COOES com
TVPE HIOIT/E I ‘[PBILA VALUE INDICATION | usenTeD
AND AND
eno vis vES
YES

POSITION "o ves
L7 7]

FLE
NAME

)
outPuT
RECORD

CONSTANT OR £D!T WORD
7

o0, TMS,

NP

[G[=[F] arven

y by

Figure 5-3. Coding a Continuous Output Message for an Auxiliary Device with the
Transfer-All Option

5.7. WRITING A CONTINUOUS OUTPUT PROGRAM

Using the aux-function
field

You write an action program to generate continuous output as
you would any action program. However, there are some special
and very important considerations to take into account.

First, as we described in 5.6, if you're transmitting continuous
output to the terminal, on the output specifications form you
must move hexadecimal C3 or the character C to the
aux-function field (position 15) of the output message area
header (see Figure 5-2). This informs IMS at action program
termination that this program generated a continuous output
message. It is not very common to direct continuous output to a
terminal exclusively.

UP-9206

SPERRY UNIVAC 0OS/3 5-14
IMS ACTION PROGRAMMING IN RPG Il

CONTINUOUS OUTPUT

Using the aux-device-no
field

Example

Continuous output
limitations

Effect of different
terminal screen sizes

How to generate
lengthy messages

If you're transmitting the continuous output message to an
auxiliary device attached to the terminal, you move a value to the
aux-function field specifying the print or transfer option you
select. Table 5-2 summarizes these options. In addition, you
enter in the aux-device-no field (position 16) of the output
message area header, the number configured for the auxiliary
device. To illustrate these procedures, Figure 5-4 shows the
output form coding to generate continuous output to a printer
using the print transparent option with inhibit space suppression
when the program terminates.

OUTPUT INDICATORS . 4
OATA FORMAT copEs

TYPE HIOT/E PIBILIR NEGATIVE VALUE INGICATION
NONE <R

F=FETCH OVERFLOW

COMMAS
INSERTED

EnD T Y 7 VES

POSITION
"

FILE
NAME

7 [} [3
£l T ©
] [} u

N
outeuT
AECORD

G[o]r werer

7

PUT MSG

N B

paaa s laa . TEXY |

Figure 5-4. Coding a Continuous Output Message for a Printer with Print
Transparent and Inhibit Space Suppression

Second and most important, an action program can generate only
one continuous output message. This message can be as large
as the screen capacity of the terminal receiving the message will
allow. Of course, this varies depending on the type of terminal or
workstation you're using. Whether the message is destined for
the terminal or for an auxiliary device, it always passes through
the terminal screen first. If the message is larger than the screen,
it wraps around, and when transmitted to the auxiliary device,
the beginning of the message is lost. Consequently, the size
restrictions for the terminal also apply to transmitting continuous
output to an auxiliary device.

The term continuous output, by its very nature, suggests lengthy
output messages. If an action program can produce only one
continuous output message and the largest message can only be
the size of a screen, you're undoubtedly wondering how we
generate long messages.

UP-9206

SPERRY UNIVAC 0S/3 5-15
IMS ACTION PROGRAMMING IN RPG Il

CONTINUOUS OUTPUT

Continuous output and
successor programs

How a lengthy message
is generated

No operator intervention

Naming a successor
program

External succession
required

Input message to
successor program

Transmitting the
continuous input
message

Other message types
and continuous output

That brings us to the third point: to continue generating
continuous output, an action program must name a Successor.

The key is that the first program generates its continuous output
message and names a successor program to continue generating
continuous output. That program, in turn, names a successor and
so on, and so forth. One program could reschedule itself
numerous times or the successor program could be a different
program.

Once you identify an output message to IMS as continuous
output, the message is transmitted to the terminal or auxiliary
device and the successor program is scheduled to continue
generating continuous output. There is no need for operator
intervention. This is how lengthy reports can be printed at an
interactive terminal.

To name a successor, the action program moves the successor’s
name to the successor-id field (positions 5-10) of the program
information block when the program terminates. This is the same
procedure any action program follows for naming a successor.

The fourth consideration is that the action program must also
move an E (for external succession) to the termination-indicator
field {position 11) of the program information block when the
program terminates in order to continue generating continuous
output.

The reason for specifying external succession (E) as opposed to
other types of termination is that when continuous output takes
place, IMS generates a 5-character message that is sent as input
to the successor program. This program must be prepared to
accept that input. External succession means that the successor
action program is ready to accept an input message.

The fifth and final point to remember when generating continuous
output is that this message must be the final message the action
program creates - that is, it must be transmitted using the IMS
RETURN function when the action program terminates. You can’t
use the SEND function to transmit a continuous output message.

This does not mean, however, that an action program generating
continuous output is restricted from using the SEND function
altogether. The program can generate as many output messages
as it chooses prior to creating the continuous output message.
All the prior messages are transmitted using the SEND function.
However, the continuous output message must be the last
message generated and consequently, transmitted using the
RETURN function.

UP-9206

SPERRY UNIVAC 0S/3 5-16
IMS ACTION PROGRAMMING IN RPG It

CONTINUOUS OUTPUT

Handling output messages

Summary

You recall that when an action program generates multiple output
messages, all the messages except the last are transmitted using
the SEND function. The last output message generated by an
action program is always transmitted as a RETURN function. For
more detailed information on how output messages are handled,
see 5.3.

An action program execution can generate one continuous
output message only.

The continuous output message can’t exceed screen size.

To continue generating continuous output, you specify a
successor program and external succession.

The continuous output message must be the final message
the program generates.

4
b
b
4

UP-9206 SPERRY UNIVAC 0S/3 5-17
IMS ACTION PROGRAMMING IN RPG I

IMS DELIVERY CODE

. 5.8. THE IMS DELIVERY CODE

Identifies input message ~ WWhenever an action program generates a continuous output
message, its successor program receives from IMS a 5-character
input message. The first four characters contain the value placed
in the continuous-output-code field (positions 9-12) of the output
message area header by the previous program. Placing a value in
this field is optional. Generally, this code identifies the previous
program in some way. lf the program doesn’t move a value to
this field, then it contains binary zeros.

Defining the delivery code ~ The fifth character of the input message is the important one. It
is a delivery code. The delivery code indicates whether ICAM
successfully delivered the continuous output message to its
destination or not.

Indicating a value in Figure 5-5 shows how you code to move a value to the
thedco'f{‘il’;l”ity"’“ti’"' continuous-output-code field, and Figure 5-6 demonstrates how
-coae Trie.

IMS returns this value and the delivery code to the successor
action program.

STACKER SELECT/
F<FETCH OVERFLOW

. am

CODES
TVPE HIO/T/E NEGATIVE VALUE INDICATION
NONE [
1 Y pl ves PROGRAM
IDENTIFICATION

CoMMAS |
INSERTED

FILE
NAME

rl afTER

7 [} K
3 c ©
. D W

CONSTANT OR €01T WORD

, A
o T PIVT . ol
pa ol 2L PECCV L

R
PP o AT I

e

N e . MR S

!
I
1
PRI B A D WP RPN |
1
1

11 3 I 11 - BUN SRS U N] Ao AqUTPAU.T
PR] 3 i IAlllAlllM.ELsJEAQEL
N ooty TEXT |

I S——

Figure 5-5. Coding to Move a Value to Continuous-Output-Code

UP-9206

SPERRY UNIVAC 0S/3 5-18
IMS ACTION PROGRAMMING IN RPG i

IMS DELIVERY CODE

ACTION
PROGRAM

SUCCESSOR
PROGRAM

Figure 5-6. Input Message Returned to Successor Program in Continuous Output
Transaction

How continuous-output-code Figure 5-5 shows that the value moved to

field is used

Specifying continuous
output for auxiliary
devices

Continuous output status

Continuous output
status codes

continuous-output-code is ECC1. ECC1 identifies the program
generating the message. When the action program terminates,
the continuous output message generated is transmitted. When it
is received and acknowledged by the destination terminal, IMS
schedules the successor action program and the value ECC1 plus
the delivery code acknowledgment from ICAM are sent as input
to the successor program. The value ECC1 comes into the
successor program in the input message area in positions 17-20.
The delivery code comes into the program in position 21.

The other two output fields coded in Figure 5-5, aux-function
and aux-device-no, respectively, indicate that the continuous
output message generated by this action program went to an
auxiliary device attached to the terminal. The message is sent
using print-mode with space suppression. The configured number
for the auxiliary device is 3.

Obviously, the fifth character of the input message is the one of
particular interest to the successor action program. It contains a
value indicating the status of the continuous output message sent
by the predecessor program. If the continuous output message
was successfully delivered, the hexadecimal value 81 is returned
to the successor action program. If the lowercase-to-uppercase
translation option was specified for this action program at IMS
configuration, the value 81 is translated to the character A. Any
other value returned in the fifth character of the input message
indicates the continuous output message was not successfully
delivered. Tables 5-4 and 5-5 summarize the output delivery
notice status codes that can be returned to an action program.

UP-9206

SPERRY UNIVAC 0S/3 5-19
IMS ACTION PROGRAMMING IN RPG Il

IMS DELIVERY CODE

Output delivery notice

status codes

Table 5-4. Output Delivery Notice Status Codes Returned by IMS

Successful output Yes Yes Yes, Yes, 810
completion regardless regardless
of delivery of delivery

Line down or Yes Yes Yes Yes 11
disconnected.
Message deleted
by IMS.

Terminal Yes Yes No No 12
marked down.
Message deleted
by IMS.

Auxiliary Yes No No No 40
device down.
Message deleted
by IMS.

Output may be
addressed to the
primary device.

Missing or Yes Yes Yes Yes 110
invalid destination
or auxiliary
specification

in header

No ICAM Yes Yes Yes Yes 850
network buffer
available®

Disk error Yes Yes Yes Yes 860

Invalid output Yes Yes Yes Yes 8710
butfer length

NOTES:

O)

The hexadecimal value 81, indicating successful output completion, is translated to
the character A if the lowercase-to-uppercase translate option is specified for
messages input to the successor action. Similarly, the hexadecimal values 84
through 87, indicating error conditions, are translated to the characters D through G
if the translate option is specified.

When a terminal is marked down, input solicitation (polling} by ICAM continues
automatically. When ICAM receives input from the down terminal, that terminal is
marked up and the input is scheduled for IMS.

If this condition exists, a user action program can try to re-send the last continuous
output message.

UP-9206

SPERRY UNIVAC 0OS/3
IMS ACTION PROGRAMMING IN RPG Il

5-20

IMS DELIVERY CODE

Auxiliary device condition
codes

Table 5-5. UNISCOPE and UTS Auxiliary Device Condition Codes

Ready (good) status 41
but COP/TP write

function inoperative

Device out of paper, 42
inoperative, or in

test mode

Data error on TCS 43
Device is not 44

responding; it may

be disconnected, or

a read of unwritten

tape may have occurred.

UP-9206

SPERRY UNIVAC 0S/3 5-21
IMS ACTION PROGRAMMING IN RPG Il

CONTINUOUS OUTPUT RECOVERY

5.9. RECOVERY CONSIDERATIONS WITH CONTINUOUS OUTPUT

Recovery and restart action Recovery and restart processing are the responsibility of your

program responsibilities

Operator reinitiates
output after error
correction

Program or operator
can control output

Function keys

Terminal type affects
recovery

Polled device
acknowledgment

Nonpolled device
acknowledgment

action program. When the successor action program receives an
unsuccessful delivery notice, it can continue processing
continuous output or terminate the transaction. When the
successor program continues processing, it can send a regular
output message to the terminal requesting assistance and then
terminate with external succession. Note that when a continuous
output message is unsuccessfully sent to an auxiliary device, only
that device is marked down. You can still send output to the
primary device.

After the error condition is corrected, the terminal operator can
send an input message to the successor program to reinitiate the
continuous output transaction. In this case, the successor
program must be prepared to accept input from the terminal
when necessary, as well as the delivery notice returned by IMS.
You should consider this possiblity when designing your action
programs.

Both operator-entered input and delivery notice input can cause
attempts to schedule the successor continuous output program.
If operator-entered input exists, IMS processes that input and
discards the delivery notice. You should, therefore, code your
action program to handle keyboard input that can end,
temporarily break, and resume a continuous output transaction.
The best way to interrupt continuous output is to use function
keys as keyboard input. Function keys are faster to use because
they are never locked.

When a delivery attempt is unsuccessful, there are a number of
recovery options. In planning recovery, however, it's important to
realize the difference between polled and nonpolled devices with
respect to unsuccessful delivery notices.

The DCT 1000, UNISCOPE 100 and 200, and UTS terminals are
polled devices and transmit an acknowledgment to ICAM after
receiving a continuous output message; the nonpolled devices,
TELETYPE* and DCT 500 terminals, do not. For nonpolled
devices, a delivery notice is automatically generated; it always
indicates successful delivery regardless of whether or not the
output message was successfully delivered. Only a line-down
condition returns an unsuccessful delivery notice.

*Trademark of Teletype Corporation

UP-9206

SPERRY UNIVAC 0S/3 5-22
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT RECOVERY

Problem caused by
nonpolled devices

Some errors
not related to
terminal type

Consequently, IMS almost always receives a successful
completion status from ICAM when a message is delivered to a
nonpolled device. IMS sends this delivery code to the successor
action program which, in turn, generates more continuous output.
As you can see, this is a situation to be avoided. So, in critical
parts of continuous output applications, avoid using nonpolled
devices.

Certain error conditions (the last four entries in Table 5—4) are
detected by ICAM before the message is sent to the terminal.
These errors return an unsuccessful delivery notice regardless of
the device type.

UP-9206 SPERRY UNIVAC 0S/3 5-23
IMS ACTION PROGRAMMING IN RPG i

CONTINUOUS OUTPUT PROGRAM SALES2

5.10. A SAMPLE CONTINUOUS OUTPUT PROGRAM

Example So far we have presented a great deal of information concerning
continuous output. Now let's look at an action program that
generates continuous output. The program we will use is the
second in a series of three action programs that make up a
continuous output transaction. Let’s begin by
the first program, SALES 1, does:

What SALES1 does m Updates a file, SLSST

m Saves data used in updating the file in the continuity data
area

m Generates a continuous output message giving branch sales
data

m Names a successor program to continue generating
continuous output

] Terminates with external succession

The successor program is SALES2. Figure 5-7 contains the
. coding for SALES2. The SALES2 successor program:

What SALES2 does m receives the 5-character input message generated by IMS;

m interrogates the fifth character of this message (delivery
code);

B generates a continuous output message;
B names a successor program; and

® terminates with external succession.

UP-9206 SPERRY UNIVAC 0S/3 5-24
IMS ACTION PROGRAMMING IN RPG Il
CONTINUOUS OUTPUT PROGRAM SALES2
I § 7 9 13 17 21 25 29 33 37 41 45 49 §3 §7 61 85 69 73 77 80
UNIVAC 0S/3 RPGII VERS 801037 SALES2 81/07/02 G004
H BSALFS?
uCi FPIB uo F 69 *PIB
ire FIMA 1P f 100 *IMA
in3 FCOA Ic F 250 +CDA
SC4 FOMA 0 F 6CO *OMA
ul TIMA AA 01}
Jle I 21 21 DELVCD
ae JCOA B8 L2
jadog} I 1 25 CNAME
arce I 26 SO SRNAME
Jlu 1 51 70 CADOR
9:1 1 71 85 cCITY
Sle b 86 9u C7Z1P
J13 I 91 94 BRNUM
214 T 9% 114 BRADDR
Jls T 115 129 BRCITY
Jlo T 120 134 BRZIP
L7 1 135 140 INVCE
cls I 141 146 DLDATE
al9 IPIB cc G2
62 1 1 2 STCoDE
31 I 3 4 DETCODE
itz c DELVCD COMP x°*81°* 236000 DELTIVFRY
03 c DELVCD COMP X°41° 3UCOP TUPNFD OFF
a0y c pELVCD COMP X'42° 4G5CO0P OUT OF PAPFR
325 C N2O GCTO END
ulé c READ CDA
221 c END TAG
ulé 2OMA 0 ne 2¢
329 ¢ K8 °*PRINTOUT®
30 0 12 *SALL"
471 2 g '
32 o] 16 *1°
373 0 CNAME 41
L4 0 CADDR 61
32t 0 CCITY 7€
176 o} czip 21
JT7 [ARNUM 85
3Te ¢ BRADDR 1ns
L7y o SRCITY 120
Leg 0 BRZIP 125
clil o} INVCE 131
st c DLDATE 137
J43 ¢ SRNAME 162
sy [+} D reNge
L 0 K8 YERRORFMT®
280 4 23 35 *TURN PRINTER ON ¢
47 ¢ 4g 35 *RESET PAPER TO HOME®
e 0 58 *HIT TRANSMIT TO RESTART®
J49 OPTB D b3
3L 0 11 vEe
aril ¢} N20 10 °*SALESL®
[y 4] 2¢ 10 *SaLEsz2*

Figure 5-7. Continuous Output Program SALES2

UP-9206 SPERRY UNIVAC 0S/3 5-25
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM SALES2

Continuity data area On the file description form coding, notice that there are four
interface areas. These should be very familiar to you by now.
The continuity data area contains data passed by SALES1, the
predecessor action program. This is the data that SALES2 will
use to generate its continuous output message when the
program terminates. You recall that an action can generate only
one continuous output message and that message cannot be

Interaction between larger than the terminal screen size. SALES1 generated one

SALEST and SALES2 continuous output message; but there is still more data to
transmit. So, it scheduled SALES2 as successor to continue
generating continuous output.

This form defines input fields. Notice there are several fields
defined for the continuity data area. These fields contain data
passed by SALES1.

In addition, there is one field defined for the input message area,
Describing the delivery code DELV. DELV contains the delivery code returned by IMS.
. Whenever an action program generates continuous output (in this
case the first program in the transaction, SALES1), IMS returns a
5-character code as input to the successor program. The fifth
Successful completion character or delivery code indicates whether the first continuous
output was successfully delivered or not. Every successor
program in a continuous output transaction must be prepared to
receive this code.

In our example, the first four characters of the input message
returned by IMS are SLS1 - the value moved to the
Continuous-output-code continuous-output-code field (positions 9-12) of the output
field message area header by action program SALES1. This value
comes into the input message area of SALES2 in positions
IMA header 17-20. The input message area header occupies positions 1-16.
The action program, SALES2, doesn’t define positions 1-20
because these fields are not referenced in the program. However,
Delivery code position it does define position 21 since this position contains the delivery
code generated by IMS, indicating whether the continuous output
message created by SALES1 was successfully delivered or not.
Before SALES2 generates a continuous output message of its
own, it must determine if the first message was transmitted
successfully. It does this by interrogating the delivery code. -

UP-9206

SPERRY UNIVAC 0S/3 5-26
IMS ACTION PROGRAMMING -IN RPG I

CONTINUOUS OUTPUT PROGRAM SALES2

Interrogating the delivery
code

Unsuccessful delivery/
printer off

Unsuccessul delivery/
printer out of paper

Effect of printer
inoperative delivery
codes

Request for operator
intervention

On the calculation form, the three COMPARE operations
interrogate the delivery code to determine what processing
occurs next. When DELV equals hexadecimal 81, the first
continuous output message was successfully delivered. When
this value is returned to the program, indicator 20 is set on and
SALES2 generates continuous output.

When DELV equals hexadecimal 41, the first continuous output
message was not successfully delivered because the printer was
not turned on. When this value is returned to the program, RPG Il
sets on indicator 30 and SALES2 does not generate continuous
output.

When DELV equals hexadecimal 42, once again the first
continuous output messsage was not successfully delivered
because the printer was out of paper. When this value is
returned to the program, indicator 40 is set on and SALES2 does
not generate a continuous output message.

To reiterate, when DELV equals hexadecimal 41 or 42, SALES2
does not generate continuous output since the initial continuous
output message generated by SALES1 was not successfully
delivered. Instead, SALES2 calls SALES1 as its successor
program to attempt retransmitting the first continuous output
message. You'll recall that the values 81, 41 and 42 were
described in Tables 5-4 and 5-5b.

In addition, when the delivery code indicates an unsuccessful
attempt to deliver the first continuous output message, SALES2
generates a regular output message (not continuous output) that
is sent to the terminal operator. When indicator 40 is set on, the
message sent is: RESET PAPER TO HOME. When indicator 30 is
set on, the message sent is: TURN PRINTER ON. By doing this,
SALES2 instructs the terminal operator to correct the situation
that prevented the initial transmission of SALES1's continuous
output message.

UP-9206 SPERRY UNIVAC 0S/3 5-27
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM SALES2

Continuous output message VWhen indicator 03 is set on, (SALESTS continuous output

generation message was successfully delivered) and SALES2 generates a
continuous output message of its own. This message is
transmitted as a CALL RETURN when the program terminates.

Naming a successor program SALES2 specifies its successor program, SALES3, by moving
that name to the successor-id field (positions 5-10) of the
program information block. SALES3, which is not presented in
this manual, is designed similar to SALES2 and continues
generating continuous output.

Passing the continuous In addition, when indicator 10 is set on, RPG Il moves the

output code continuous output code SLS2 to positions 9-12 of the output
message area header. This code is transmitted as input by IMS
to the successor program (SALES3) in positions 17-20 of the
input message area, along with the delivery code indicating
whether SALES2’s continuous output message was successfully
delivered or not.

Print mode specification The number 3 in position 15 (aux-function field) of the output
message area indicates that this output message is transmitted
as continuous output using the print-mode option. Print-mode
means that the output message takes on the same format as the
terminal screen, that is, cursor return characters for the screen

apply.
Auxiliary device The number 1 in position 16 (aux-device-no) of the output
specification message area indicates the continuous output is sent to an

auxiliary device attached to the terminal. In our example, that
device is a COP printer. The number 1 identifies the device as it
was defined in the communications network definition.

Termination When SALES2 terminates with external succession (E in the
termination-indicator field), the continuous output message is
transmitted to the terminal. It is transmitted as a CALL RETURN
by IMS.

Output to the printer Figure 5-8 shows the continuous output message generated by
SALES2 as it appears on the terminal screen before being
transmitted to the printer.

UP-9206

SPERRY UNIVAC 0OS/3 5-28
IMS ACTION PROGRAMMING IN RPG |l

CONTINUOUS OUTPUT PROGRAM SALES2

Terminal screen size
limits message size

6/26/81 ‘

I CENTER CITY SUPPLY €O. !
.1 3572 FRANKLIN DRIVE
© MONROE, NH 72480

BRANCH: 7531
WASHINGTON LANE
CUPERTINO CA 37121

INVOICE: 362418
DELIVERY DATE: 7/31/81

SALES REPRESENTATIVE: GRACE A. MICHELLI

Figure 5-8. Continuous Output Generated for SALES2

You may have noticed that the continuous output message
generated by SALES2 is rather small. The reason for this is that
the installation implementing this application program uses
UNISCOPE 100 display terminals. Their relatively small screen
size demanded small messages. In the following action program,
you'll notice the continuous output messages generated are much
longer. The installation using this application uses UNISCOPE 200
display terminals.

UP-9206 SPERRY UNIVAC 0S/3 5-29
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

. 5.11. ANOTHER SAMPLE CONTINUOUS OUTPUT PROGRAM

Example The second example of a continuous output program is NCSC. It
is quite lengthy; but its design is very similar to the program
SALES2 described in 5.10. For that reason, we will point out
only the new coding features it introduces. The coding for NCSC

is in Figure 5-9.
f 5 7 9 1317 A 25 29 33 371 4 45 49 63 & 616569 33 77 80
UNIVAC 0S/2 RPGII VERS 781109 COMPIMS - 81/03/18 08.29 PAGE 1
H < ANCSC

001 01 010 FCRT P F 80 ®IMA
an2 01 030 FOMLADER IC F 5N5R 7AI 1 BISC S
003 Gi 030 FCUSTMST IC F 249R SA1l 1 DIsC s
004 01 032 FNSHPCPY ID F 378L13A1 1 Disc S
005 J1 533 FPDETAIL UC F 378R13A1 1 DISC s
006 31 Q4D FPI3 ue F 43 «PIB
oo7? 01 D50 FCOA up F E1) *CDA
ace 01 06C FoMa 0 F 1920 #OMA

J1 Ob0 F= NORTH CAROLINA SHOP COPY PROGRAM
009 J2 010 € ITM™ 4 3
010 32 020 E QTY 4 30
0t1 02 N30 € MOG 4 10
a1z 02 G40 E DFS 4 1€
013 02 950 E MAT 4 1
01y 33 010 € HP 4 4
015 3% 020 € VLT 4 60
016 0% 030 E TYP 4 s
017 03 040 E RP™ 4 4 0
cis8 03 0S50 € PLT 4 50
g9 04 010 € TAG 4 20
02y Ju 020 € MTR 4 19
021 J4 030 € uD 4 10
022 o4 Qu0 F sP 4 10
023 G4 050 E BLT 4 10
024 35 010 € SHF U6
325 35 020 ¢ BOR 4 6
Q2¢ 3¢ 020 K AC1 T
uz27 35 040 E AC2 4 4
028 05 050 € ac3 4 4
029 06 010 € ACH 4 4
a3g 06 020 E aCS 4 u
a31 Js 330 E ACS 4 u
032 36 040 E ACT 4 4
032 e 0S50 € ACS 4 oy
03y G?7 C10 E ACY 4 4
n3s 97 nN20 £ NDT 4 60
036 07 030 E Ds 4 10
037 37 Qu0 f sI2 4 2
038 C? @sC € SCH 4 u Q0
03y 37 260 F PRP 4 1G
o4c a7 070 E LT T
o4l 07 075 CoE Y 2
Qu2 s 02 070 € TABFRT & 5 1 TABNME 12
gu3 S 31 230 E TABCRD & 12 2 TABNAM 16
ouu 12 Q40 € TABOMT & 6 2
ous S 08 010 ICRT AA D1 17 CN 18 CC 19 CS
nu6 pe a2n 1 17 20 PROG
va7 Je 021 1 22 28 START
ous o’ 021 1 AB 07
gu9 Js 0%S I 21 21 DLvCD
050 39 010 IOHEADER CC 03
0s51 09 D30 1 8 12 CUSTNO

. Figure 5-9. Continuous Output Program NCSC (Part 1 of 9)

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG |l

5-30

CONTINUOUS OUTPUT PROGRAM NCSC

052
053
054
05%
056
057
USs
059
062
[+1-9
062
t63
O6u
065
966
g67
a68
Ges
078
671
c72
G673
J74
075
07¢
077
078
Q79
080
g8t
ogz
ces
084
085
086
o87
086
gRe
a%a
091
692
092
a9k
895
096
097
098
0%9
100
101
102
103
104
10%

UNIVAC

I 5§ 7 9 13 1 21 25 29 33 37 M 45 43 53 [1] 81 85 88 73 n iﬂ
05/2 RPGII VERS 781109 COMPIMS 81703718 08.29 PAGE
040 I 14 1900RDATE
nso I 36 38 REPONE
0e0 I 43 4S5 REPTWO
Q70 1 S0 S5 REPORD
080 1 56 56 FRT
095 1 57 58 HDCRED
0%0 I 113 127 CSTORD
100 1 128 157 SNAME
110 1 158 187 SADRS!
120 1 188 217 SADRS2
130 1 218 247 SCTyY
140 I 250 309 SNOTES
152 1 310 369 MNOTES
185 1 370 429 FNOTES
156 1 43C 4S54 REPNME
Des I 455 469 REQRED
067 1 470 484 VvIA
07C 1 491 492 PH
C7s 1 493 494 KY
08C I 495 496 wV
085 I 497 498 NC
09G 1 459 S00 AS
162 I1CUSTMST GD Ou
170 1 11 32 NAME
18C I 33 Su4 ADRESI
190 I SS 76 ADRES?Z
200 I 77 93 CTysSTaA
200 1 116 120 ZIPCDE
040 INSHPCPY BB 32
CSG I 1 13 KEY
050 1 1 7 ORDNO
nss i 1 2 YR
CSe I 3 7 NO
geC 1 8 10 PRODCD
065 1 1 10 ORDPRD
070 1 11 13 ITEM
0g0 T 14 1T70QUANT
09C 1 18 27 MODEL
100 1 28 31 HRSPuR
115 1 Iz 37 MTRCDE
2C 1 38 380FLANT
130 1 19 4] SRTCDE
140 1 42 450SCHDTE
150 1 48 49 NOCODE
385 1 97 98 CRCODE
185 1 109 11COPOINTS
leC 1 117 1220VO0LT
170 1 123 127 TYPE
180 1 128 128 MATERL
190 1 129 1320RPMS
010 I 138 147 MOTPLY
020 1 148 157 DRVPLY
030 1 158 167 BELT
G40 I 168 173 SHAFTY

Figure 5-9. Continuous Output Program NCSC (Part 2 of 9)

2

UP-9206 SPERRY UNIVAC 0S/3 5-31
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

[t 5§ 71 9 13 17 21 25 29 33 37 [1] 45 43 53 57 61 65 6 13 77 80
UNTVAC 0S/3 RPGII VERS 781109 COMPIMS 81/03/18 08,29 PAGE 3
106 08 0S50 1 174 183 MOTOR
107 08 06C I 184 193 DSCODE
108 08 070 I 194 197 ACCl
109 08 080 I 198 201 ACC2
110 a8 090 1 202 205 AC(C3
111 a8 100 1 206 209 ACCH
112 28 110 1 210 213 ACCS
113 a8 120 1 214 217 AccCe
114 J8 130 I 218 221 AcCC7
118 08 140 1 222 225 ACCS
11le G8 145 1 226 229 ACCO
117 08 150 1 230 249 TAGNO
118 C8 1¢C T 250 309 NOTES
119 0g 163 I 316 321 BORE
120 g8 165 1 330 344 DESCRP
121 78 166 1 345 346 SIZE
122 08 170 1 347 356 PROP
122 ce 180 1T 3€7 360 LTCODE
124 a8 185 1 367 376 TDIM
125 08 200 IPDETAIL GG 08
126 o8 21C I 361 366CRUNDTE
127 iC Cl0 IPIB EE 0S
128 10 020 I 1 2 STAT
129 10 030 1 3 4 DSTAT
13C 10 C40 1 11 11 TERMD
121 16 066G ICDA FF 06
132 10 070 Y 1 13 KLYl
133 10 c&0 1 1 10 ORD
134 10 100 1 11 13 LINE
135 10 110 1 14 14 HEAD
136 1t 115 1 15 16 LSTREC
137 11 CO4 C SETOF 656667
138 11 0G5 C (43 SETON 10
135 S 10 090 € ND) oLvCD COMP x*81° 10MESSAGE CO4P.
140 10 €95 C sN10 GOTO END
141 11 00S C READ PIB
142 11 010 C READ CDa
143 S 10 ClS C LSTREC COMP *EF° 23END OF FILE ?77?
luy 10 0le C 23 SETON 24
145 10 617 C 24 GOTO END
14¢ 10 02 ¢ c1 MOVELSTART KEY1
147 10 03 € * MOVE ° * KEY?
148 10 04 C * MOVE * HEAD
49 C KEY1 . SETLLNSHPCPY
150 C Z-ADD1 A 10
151 c HEAD comMp 1 656766
152 C 67 . READ NSHPCPY 25MORE DATA ??
153 C 67 ORONO CHAINCHEADER 6969
154 C * FRT LOKUPTABFRY TABNME 35
155 C s 35 MOVE TABNME FRINME 12
156 C 6TN69 CUSTNO CHAINCUSTMST 6868
187 c » HJICRED LOKUPTABOMT TSNO ADDRESS??
158 c * 75 HOCRED LOKUPTABCRO TABNAM 60CRED STATUS??
159 C MOVE TABNAM CREDIT

Figure 5-9. Continuous Output Program NCSC (Part 3 of 9)

UP-9206 SPERRY UNIVAC 0S/3 5-32
IMS ACTION PROGRAMMING IN RPG i

CONTINUOUS OUTPUT PROGRAM NCSC

I 5 7 9 13 17 21 25 23 33 37 M 45 49 53 §1 61 65 63 73 17 80
UNIVAC 0S/3 RPGII VEPS 781109 COMPIMS 81/03/718 08.29 PAGE
160 11 0&Q C 67 GOTO FIN
161 11 116 C LooP TAG
162 11 120 € Ne7 READ NSHPCPY 25MORE DATA ??
163 11 123 C * ORD CGMP GRDPRD 20MORE DATA ??
164 $ 07 115 C = 2C ORDNO CHAINOHEADER 6969
165 C7 120 € L] CRCODE LOKUPTABCRD TABNAM 60CREDIT STATUS
16¢ 07 130 C s 60 MOVE TABNAM CREDIT 16
167 S 02 0%0 C N6&7 20 POINTS MULT GQUANT TPTS 60
168 32 060 C » TDIM coup ° ' 40
169 g2 070 C #N40 MOVE TDIM DSCODE
170 11 125 € 25 GOTG END
171 11 140 C 20 MOVE ITEM ITM, A
172 11 150 C ® MCVE QUANT STY,A
173 11 16C C ¥ MOVE MODEL MOD,A
174 11 170 C = MOVE DESCRP DES,A
175 11 18C € ® MOVE MATERL MAT,A
176 12 610 C a MOVE HRSPWR HP, &
177 12 C2C € ® MOVE VOLT VLT, A
176 12 Gi0 C] MOVE TYPE TYP,A
179 12 046 € * MOVE RPMS RPM, A
186G 12 650 C @ MOVE PLANT PLT,A
181 12 060 C * MOVE TAGNO TAG,A
182 12 €70 ¢ ® MOVE MOTOR MTR A
182 2 08C C ® MOVE MOTPLY MP LA
184 12 09C C * MOVE DRVPLY SPyA
18¢ 12 1G6C ¢ " MOVE BELT BLT,A
166 12 110 € * MOVE SHAFT SHF , A
187 12 115 ¢ * MOVE BORE BOR, A
188 12 120 ¢C « MOVE DSCODE DS,A
189 12 130 ¢ * MOVE ACC1 ACL,A
156G 12 140 € % MOVE ACC2 ACZ,A
191 12 1%C ¢ * MOVE ACC2 AC3,8
192 12 16C ¢ » MOVE ACC4 ACU, A
193 12 17C € * MOVE ACCS ACS,A
194 12 180 ¢ = MOVE ACCSE AC6,A
195 12 19C € « MOVE ACC7Y AC7,A
196 S Ul 177 ¢ ® MOVE ACCS8 ACB,A
197 13 C16 € * MOVE ACCY AC9yA
198 T 0z0 C * “CVE NOTES . NOT, A
199 13 C30 C L MOVE SIZE SIZ,A
200 13 Cu0 C = MOVE SCHDTE SCH,A
201 17 Q4S5 C * MOVE PRCP PRP, A
2c2 13 050 ¢ % MOVE LTCODE LT,A
ic2 13 055 € » MOVE NOCODE COE, A
2Cu 13 055 C = KEY CHAINPDETAIL 9999
205 13 £56 C ® EXCPT
206 13 260 C % A COMP 4 83
207 13 cel ¢ = 8C A ADD 1 A
208 13 C8C C * GOTO LOOP
209 13 090 C 2GNBONGT READ NSHPCPY 25MORE DATA ??
21C 12 100 € = ORD COMP ORDPRD 20MORE DATA ??
211 2110 € 25 GOTO END
212 13 150 ¢ FIN TAG
213 S 13 110 C MOVE KEY NXTKEY 13 SAVE NEXT RECRD

Figure 5-9. Continuous Output Program NCSC (Part 4 of 9)

UP-9206 SPERRY UNIVAC 0S/3 5-33
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

fi § 79 13 17 21 2% - 29 3 37 a1 45 49 53 57 6165 e 73 71 89
UNIVAC 0S/3 RPGII VERS 781109 COMPIMS 81703718 08,29 PAGE s
21 13 115 € END TAG
215 13 160 C 1TM,1 COMP * . 2626
21¢ 12 17C ¢ 1TM,2 CoMp * ’ 27127
217 13 1680 € 1TM,3 coMp * ' 2828
21E 12 150 C ITM,4 coMP ¢ ' 2929
1y 14 OGO OPDETAIL E 2CN99
220 14 C02 © UMONTH 362
221 1¢ GG4 0O uDaAY 264
222 14 0Ge © UYEAR 366
223 24 050 OOMA D N1D 07
224 S 24 C2C 0 20 x*1004A0102°
22% 24 035 0 45 *»«xxMESSAGE INCOMPLETE®#x*
2z 24 €37 0 49 x°*10064G102°*
221 24 Q40 O 73 *D0 ONE OF THE FOLLOWING °*
22¢& 24 043 0 7 *PRINTER CONDITIONS EXIST®
229 24 Cu45 ¢ 101 x°*10040102°
21C 24 0SC © 125 *1) OUT OF FORMS '
231 24 ©§S5 ¢ 129 x*10040102°
232 24 060 © 153 *2) FORMS UAMMED .
233 24 065 © 157 x*10040132°
234 24 G76 © 181 *3) POWER NOT ON ’
21¢ Zs 075 ¢ 185 x*100Q40102*
236 24 080 © 209 °*CORRECT PROBLEM AND RE- °*
237 24 085 O 218 °*START JOB*
235 S J4 010 COMA] 67N24 10
239 14 011 © 16 *71°
240 14 c2C ¢ 20 x*100A0101°
2u1l 14 €30 ¢ REPONE B 23
242 14 Q4C 0 24 *7°
243 14 0SG 0 REPTWO 27
2u4 14 D60 © REPGRD 35
245 14 C7C © REPNME 62
2ue 14 068G € URDATEY 72
247 14 83 € FRINME 8¢
2u8 14 C85 0 YR 91
249 14 g9C © 92 -
280 14 095 0 NO 97
251 14 130 0 105 x*10040100°
2582 14 11C © CSTORD 121
253 14 120 G VIA 140
254 14 130 0 REQRED 167
258 14 132 0 1T v
256 14 135 0 PROGCD 177
257 14 137 © 178 *)°*
258 14 140 € 182 x'10040101°
259 14 150 0 SNOTES 242
260 14 160 ¢ 246 X°*10040201°*
261 14 170 © MNOTES 306
262 14 180 0 310 x*10040201°
Je? 1t 1€ 0 FNOTES 370
264 14 200 © 374 x*10040302°
265 s s clc o NAME 396
266 15 020 © NTS SNAME uy2
261 15 025 0 75 439 °*CALL MIKE BOHRER BEFORE®

Figure 5-9. Continuous Output Program NCSC (Part 5 of 9)

UP-9206

SPERRY UNIVAC 0S/3 5-34
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

268

317
318
319
320
321

UNTVAL

[§ 7 9 13 1721 25 29 33 31 &1 45 49 53 57 61 65 69 73 77 80
0S/3 RPEII VERS 781109 COMPIMS 81/03/18 08.29 PAGE 6
026 © 75 448 *SHIPPING®
n3g o 452 X°*10040002°
neg ¢ ACRES1 474

0sC © NTS SADRS1 520

055 0 75 60 CREDIT B 510

060 © 530 x'10040002°
c70 0 ACRES2 552

38C © NTS SADRSZz 598

Uso o 608 X*10040002°
1006 0 CTYSTA 625

105 © ZIPCDE 631

110 © NTS SCTY 675

120 © 686 X'10040400°
N1 0CvA 0 66N24 10

G110 OR 65N24 10

r11 o 16 *71°

02C ¢ 26 X*100e0C02°
n3c ¢ 26 ITM,1 8 24

o40 ¢ 26 QTY,1 z8 29

csc o 26 M0D,1 B 40

CeC 0 26 DES,1 8 58

n70 0 26 MAT,1 B 62

Cec © 26 HP,1 B 68

090 0 26 vLT,1 8 77 * 0/ 4
100 0 26 TYP,1 B8 83

11C © 26 RPM,1 ZB 58

115 0 2e SCH,1 YB 96

126 © 100 Xx*13040002°
125 0 26 LT,1 B 104

132 0 26 DS,1 B 115

14C © 26 MTR,1 B 127

150 0 26 MP,1 B 14D

155 © 26 141 -

16C 0 2 SHF,1 B 147

170 0 26 SPy1 B 159

1€0 © 26 160 *-*

150 0 26 80R,1 B 166

200 © 26 BLT,1 B 176

ci0 ¢ 182 x°*10040002°
gze o 26 SIZ,1 B 184

n3o o 26 AC1,1 B 188

C4C 0 2 AC3,1. B 193

650 0 26 AC4,1 B 198

Ced 0 26 ACS5,1 B 203

C7C 0 26 AC6,1 B 208

£83 0 26 AC7,1 B 213

oen o 26 ACB,1 B 218

160 ¢ 2¢ AC9,1 B 223

105 © 26 PRP,1 B 234

110 0 26 241 'TAG:"

120 0 26 TAG,1 B 261

130 0 265 X*10040008°
140 0 26 NOT,1 B 325

143 0 26 329 't

Figure 5-9. Continuous Output Program NCSC (Part 6 of 9)

UP-9206 SPERRY UNIVAC 0S/3 5-35
IMS ACTION PROGRAMMING IN RPG Il

CONTINUOUS OUTPUT PROGRAM NCSC

[t § 79 13 17 21 25 29 33 37 # 45 L) §3 8§ 61 [] [] 13 77_8%
UNIVAC (S/3 PPGII VERS 781109 COMPIMS 81/03718 08.29 PAGE 7
322 17 145 O 26 CDE,1 B 331
322 17 187 0 26 332 *)
324 17 150 © 337 x*10040002°
328 18 030 0 27 ITM,2 B 341}
326 15 040 © 27 QTv,2 2B 346
327 18 050 0 27 M0b.,2 8 357
328 18 C60 O 27 DES,2 B 375
329 18 070 0 27 MAT,2 B 379
330 18 080 O 27 HP 42 3 385
331 18 09C © 27 VeT,2 8 394 * 07 /7 °
332 18 100 0 27 TYP,2 8 400
332 18 11C © 27 RPM,2 28 405
334 i6 115 0 27 SCHy2 Y8 413
338 18 120 0 417 X*10040002°
32 18 125 0 217 LT,z B 421
337 18 13C 0 27 0S,2 B 432
338 18 140 C 27 MTR,2 B 4uu4
329 18 15C 0 27 Mp,2 B 4%7
340 18 155 0 27 4586 *-*
34} - 18 160 0 2 SHF,2 B 464
342 18 176 0 27 5P,2 8 47¢
343 16 180G © 27 477 *-*
3uy 18 190 0 27 30R,2 3 483
s 18 20C 0O 27 BLT,2 8 49l
346 1$ Gi0 O 499 Xx*'100u40002°
347 19 020 9 27 $12,2 8 501
3ug 19 020 0 217 ACl,2 B 505
349 19 045 0 27 AC3,2 B8 510
35¢C 16 050 0 27 AC4,2 & 515
381 i9 Gell 0 27 ACS,2 3 520
352 1% 07C¢ © 27 AC6,2 B 525
353 19 080 0 27 AC?7,2 B 530
354 19 ¢c9C 0 27 ACB,2 B 535
355 16 150 ¢ 27 aL9,2 5 540
350 19 105 0 27 PRP,2 B8 551
357 19 11C 0 27 558 'TAG:*
358 19 120 0 27 TAG,2 B 578
2c9 19 130 0 582 x*100u4g008"*
el 16 140 O 27 NOT,2 B 642
361 19 143 0 27 646 *(°
362 19 14S 0 217 CDE,2 3 6ud
363 19 147 0 217 649 *)°*
364 19 1€0 0 656 x°10040002°
365 2o cit ¢ 28 ITM,3 B 660
366 20 04C © 28 CTY,3 2B 665
367 26 GSC 0 28 MOD,3 B 676
368 2C 060 .0 28 DES+3 B 694
369 20 ©I10° 0 28 MAT,3 B 698
370 20 n8o 0 28 HP.3 8 704
371 20 0%0 C 28 vLT,3 8 7113 * 0/ 7/ °
3712 20 100 0 28 TYP,3 B 719
373 20 110 © 28 RPM,3 ZB 724
374 zC 11€ 0 28 SCH,3 YB 732
375 20 12C ¢ X*10040002°

Figure 5-9. Continuous Output Program NCSC (Part 7 of 9)

UP-9206 SPERRY UNIVAC 0S/3 5-36
IMS ACTION PROGRAMMING IN RPG I
CONTINUOUS OUTPUT PROGRAM NCSC
Ir 5 7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 80
UNIVAC 0°/3 PPGII VERS 781109 COMPIMS 81/03/18 08.29 PAGE 8
376 20 1285 © 28 LT,3 B 740
377 20 120 0 28 0S,3 8 751
37¢ 20 140 © 2 MTR,3 3 763
275 26 15C © 28 MP,3 B 776
80 2L 158 © 28 777 -0
281 26 160 © 26 SHF,3 3 783
382 20 17C ¢C 28 SPy3 B3 795
383 20 180 0 28 796 *-°
384 20 196G 0 28 B0R,3 B 802
285 20 2c0 ¢ 28 BLT,3 B 812
386 21 010 © €18 Xx'10040002°
387 21 02G © 28 s12,3 B 820
188 21 02C 0 23 AC1,3 8 824
389 21 040 O 2 AC3,3 B8 829
290 21 GSC © 28 8C4,3 B Ry
391 21 060 © 24 AC5,3 8 839
392 21 07C © 28 AC6,3 B &uuy
393 21 080 o 28 AC7,3 3 8u9
264 21 GsO ¢ 2 AC8,3 B 854
395 21 106G 0 28 AC9,3 B 859
396 21 105 © 28 PRP,3 8 870
397 21 110 ¢ 28 877 *TAG:*
39& 21 120 0 28 TAG,3 3 897
399 21 120 © 901 X'10040008°
40U 21 140 ¢© 28 NOT,3 B 961
401 21 143 © 28 965 't
402 21 145 0 28 CDE,3 B 967
453 21 147 0 28 968 ')
40y 21 156 0 972 x'1004p002°
405 22 030 0 29 1TM,4 B 976
406 22 040 © 29 0Ty, 2B 981
607 22 U0 O 29 MGD.4 B 992
408 22 C6C ¢ 29 DES,4 31012
409 22 070 0 29 MAT,4 R1014
41C 2z Ce0G O 29 RP, 4 B1020
411 22 0%0 © 29 VLT,4 81029 * 0/ / *
412 22 1CC © 29 TYP,u B1035
413 22 11Cc O 29 RPM, 4 ZB104O
4lu 22 115 0 29 SCH,4 Y31043
415 22 120 0 1052 x'10040002°
4le 22 125 0 29 LT,4 B10S6
417 22 130 0 29 DS 4 81067
418 22 140 © 29 MTR,4 B1079
4519 22 15C 0 29 MP Ly 81092
420 22 150 0 29 1093 *-°*
42 Z2 160 © 29 SHF ,4 B1099
422 22 11C © 29 SP, 4 B1110
423 22 180 © 29 1111 *-*
424 22 150 b 29 BOR,4 B1117
425 22 200 0O 2 BLT,4 B1127
426 23 010 O 1133 Xx*10040002°
427 23 020 0 29 sI1Z,4 B1135
428 23 630 0 29 ACl,4 B1139
429 23 040 0 29 aC3,4 Blluw

Figure 5-9. Continuous Output Program NCSC (Part 8 of 9)

UP-9206

SPERRY UNIVAC 0S/3 5-37
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

43¢
471
432
433
43y
435
43¢
437
436
43¢
440
4yl
42
443
G4y
445
[T
447
448
449
450
451
452
4532
454
45%
45¢
457
458
459
460
461
462
463
46u
468
466
ue7
468
469
477G
471
472
473
474
475
476
417
478
479
480
481
482

h

5§ 78 13 17 21 25

29 33 37 41 45 49 53 57 61 65 8 73 7788

UNTVAC 0S/3

23 050
23 060
23 070
23 080
27 0%cC
23 100
27 1CR
23 11¢C
23 120
<3 130
23 140
23 143
145
147
15C
181

152

155
23 156
23 157
23 158
23 159
23 160
23 182
22 1€2
23 162
22

23

L¥]
[}

NN NN N
[V IR A S PR V)

1¢2

3 15%

23 leés
23 ie7
2% 168
23 169
23 170
23 172
I 172

23 172
23 172
22 172
24 C16
24 G206
24 G392
24 035
24 Ju0
19 0ol
19 070
19 &g
19 090
19 100
19 10S
19 110
19 150
1Z 120
12 13C

PPGII VERS 781109

COMPIMS 81/03718 08.29 PAGE 9

0 29 ACH,4 B1]lu9

0 29 AZS,4 Bl154

0 29 AC6.4 B1159

(4] 29 AC7,4 Blleu

4] 29 ACB,4 B1169

c 29 AC9,4 81174

0 29 PRP,4 381185

0 29 1192 °*TAG:*

0 29 TAG,4 31212

¢ 1216 x*10040008°

0 29 N3T,4 Bl27e

] 29 1280 °*(°*

0 29 cot,4 B1282

c 29 1263 *)°

c 20 1287 X'10060001"°

0 65N2C 1287 x*10040202°

[¢] 66N20 1287 x*10041202°

[¢] 65N22 1363 *CREDIT STATUS °*
0 65N20 13¢7 x*10040002°

0 65N20 CREDIT 31443

0 6EN2C 1447 X*10040002°

0 65N230 1523 *OTHER LOCATIONS®
0 65N20 1527 x*10040002°

4] 65N20 PH B1591

0 65N20 KY B1594

0 65N20 wv B1597

0 65N20 NC B1603

0 66N20 1363 *CREDIT STATUS °*
] 66NZh 1367 x*10040002°

o] 56N20 CREDIT 381443

0 66N2D 1447 x*10040002°*

¢ 66N20 1523 °*OTHER LOCATIONS®
] 66N20 1527 x*100u40002°

0 66N22 PH 81591

° 66N21 KY 81594

o 66N20 Wwv 81597

0 66N20 NC B1600

0 EEN20 AS 81603

ooMaA 0 a8

0 20 x*100#0102°"

0 45 *END OF SHOP COPJIES °
] 72 *LOAD BILLS OF LADING AND®
0 94 *ENTER PROGRAM (NCBL) °
0CDA D 06 13

0 NXTKEY 13

o] N6T 1 v

0 67 14 *1°

2 20 66 14 *2°

0 25 16 °EF?

oPI3 D 0s

o] N24 10 11 *'c*

c 24 10 11 °N°

0 N1D 11 °*N°

Figure 5-9. Continuous Output Program NCSC (Part 9 of 9)

UP-9206

SPERRY UNIVAC 0S/3 5-38
IMS ACTION PROGRAMMING IN RPG i

CONTINUOUS OUTPUT PROGRAM NCSC

Output message returned
by unsuccessful delivery

Issues error message
to operator

Different continuous
output messages

Saving the key of
next record

Receiving control from
previous action program

Lines 223-237 of Figure 5-9 show the output message that
action program NCSC generates when the delivery notice
returned to the program indicates that the previous continuous
output message was not successfully delivered. Notice that this
message instructs the terminal operator to examine the printer
for what could be causing the difficulty.

Also notice that NCSC generates two different continuous output
messages - lines 238-280 and 281-467 - depending on which
indicators are set on or off, and that the continuous output
messages created are quite lengthy. The only limitation on the
size of the message is the screen size of the primary device to
which the auxiliary is attached. These messages are being
transmitted to a UNISCOPE 200 display terminal.

Note that the program uses the continuity data area to save the
key of the next record to be processed (line 474) when the
program succeeds to itself (line 480). This is a particularly useful
tool when the continuous output being generated is producing a
report that prints the contents of an entire file. When the
successor program is scheduled, it reads the continuity data area.
It then does a SETLL using the key saved in the continuity data
area. In this way, the successor program begins processing the
file at the point where the predecessor action program left off.

Here is an example of the printed output generated by NCSC:

UP-9206 SPERRY UNIVAC 0S/3 5-39
IMS ACTION PROGRAMMING IN RPG I

CONTINUOUS OUTPUT PROGRAM NCSC

FRANKLIN SUPPLY COMPANY
2552 2nd. Street / Baltimore, Md. (215) 762-8800

Rep's. No. Rep. Ord. No. | Representative’'s Name: Order Date: Freight: Penn. Order No.
#91 PHILA. SALES $3/93/81 PREPAID
Customer Order No.: Ship Via: Delivery Requested:
19009 B/W RUSH (DMX)

SPECIAL INSTRUCTIONS:

MARK FOR:

REMARKS:

SOLD TO: CONSIGNED TO:
J. P. KRANTZ & SON J. P. KRANTZ & SON
1662 MEADOWBROOK ROAD 1662 MEADOWBROOK ROAD
CARSON, DELAWARE 76248 CARSON, DELAWARE 76248

_ DS1(A-1) T 9A/FI Lve25-1/2" 6.6A-578™ 41248
198DD ABS AP TAG:EF-7,24
115/1/6¢
DS1(A-1) 9A/F1 1vpP25-1/2" . 6.0A-5/8" 41249
19BDD ABS AP TAG:EF-1¢

115/1/69
9A/F1 1VP25-1/2" 6.0A-5/8" 41240
G .

P 1 | BB45 DOMEX A 1/6 | 115/1/68 762 | $3/38
DS1(A-1) 9A/F1 1vp25-1/2" 41,220
19BDD ABS AP

DSI(A-1) 6.PA-5/8"
19BDD ABS AP TAG:EF-15
: DS1(a-1) 9A/F1 1vpP25-1/2" 5.9A-5/8" 41229
19BDD ABS AP TAG:EF-16, 17

4.5A-5/8"
TAG:EF-21

21A/F1

115/1/6¢
DS1(A-1) ~ 9A/F1 1vp25-1/2" 6.0A-5/8" 41240
19BDD ABS AP

UP-9206

SPERRY UNIVAC 0S/3 5-40
IMS ACTION PROGRAMMING IN RPG i

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

5.12. CONTINUOUS OUTPUT AND CASSETTE/DISKETTE USE

Functions available

Use

Most options used
only with
continuous output

You can read and write, search, or position data on cassette and
diskette auxiliary devices by using the continuous output feature.
To do this, you move a value to the aux-function and
aux-device-no fields of the output message area header just as
you do when generating a continuous output message to an
auxiliary device. Table 5-6 summarizes the settings for the
aux-function field when reading from cassettes or diskettes.
Print/transfer options in Table 5-2 also apply to cassette/
diskette.

Table 5-6. Settings for Aux-Function Field of Output Message Header
(Read/Search Options)

X Read D9 R
Read Transparent E2 S
Search and Read E3 T
Search and Read E5 \%
Transparent
Report Address E6 w
Backward One D3 L E7 X
Block
Search and E9 V4 E4 U
Position

Table 5-6 shows that all the options specified, except
backward-one-block and search and position, must be used with
the IMS continuous output feature. Backward-one-block and
search and position can be used with continuous output and
regular output by simply moving the appropriate value to the
aux-function and aux-device-no fields.

UP-9206 SPERRY UNIVAC 0S/3 5-41
IMS ACTION PROGRAMMING IN RPG I}

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

Input options There are four input options used with cassette/diskette: read,
read transparent; search and read; and search and read
transparent. The continuous output feature must be used with all
these input options:

reads a block of data from the

Read option

cassette/diskette to the terminal screen. When you specify
this option, don't put any message text in the output
message area. Also, you must move the value 4 to the
text-length field (positions 11-14) of the output message
area header.

Read transparent option reads a block of data from the

cassette/diskette, and the remote device handler deletes the
SOE cursor sequence, carriage return codes, and DICE
codes.

reads a block of data from the
cassette/diskette only if a search argument specified in the
message text of the output message area was satisfied.
When the argument is satisfied, the block of data is moved
to the terminal screen. Your search argument may be in one
of three search and read modes. Table 5-7 shows the
formats for these modes. When you use the search and read
option, only the contents of the output message area
message text should be the search argument in the mode
you choose.

Search and read option

Search and read transparen
option

except that the
remote device handler removes all DICE sequences, SOE
cursor sequences, and carriage return characters from the
input message.

UP-8206 SPERRY UNIVAC 0OS/3 5-42
IMS ACTION PROGRAMMING IN RPG li

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

Table 5-7. User Message Text for Searching Cassette/Diskette

Permissible search and
read arguments

Ataaaa Mode search to position the tape to a particular
or address and then read one block, where A, 1, or
1taaaa a is constant, and:

or t

ataaaa Is the track address (1 or 2).

aaaa
Is the address where the tape is to be positioned.

Btaaaa/c . . . ¢ Mode search to position the tape to a particular
or address, search for a specific character string,
2taaaa/c . . . ¢ and read one block, where B, 2, or b is constant,
btaaaa/c . . . ¢ t

Is the track address {1 or 2).
aaaa
Is the block address.

c...c

Is the character string. Up to 16 characters can be
specified.

Ct/lc...¢c Mode search to find the specified character

or string, where C, 3, or c is constant, and:

3tjc. .. ¢ t

or Is the track address (1 or 2).

ct/c...c c...cC
Is the character string. Up to 16 characters can be
specified.

The search starts at the present tape position.

displays the address of the
cassette/diskette device on the terminal screen. To use this
option, you must use the continuous output feature and must
specify the value 4 in the text-length field (positions 13-14) of
the output message area header.

Report address option

The two other options available for cassette/diskette are the
search-and-position and backward-one-block options. Only these
two options can be used with both continuous and regular output
messages:

Search-and-position option B positions the

cassette/diskette to the block requested in the search
argument that your action program supplies in the output
message text. Your output message text cannot contain any
other entries.

repositions the
The aux-device-no
field must be set and the text-length field in the output
message area must be 4.

Backward-one-block option W

UP-9206 SPERRY UNIVAC 0S/3 5-43
IMS ACTION PROGRAMMING IN RPG Ii

CONTINUOUS OUTPUT WITH CASSETTE/DISKETTE

Continuous output message When performing these functions, you can also insert into the

identifier code 4-character continuous-output-code field (positions 9-12) of the
output message area header a code that identifies the continuous
output message you generated. This code is, as you know from
our discussion of IMS delivery codes (5.9), returned to the
successor program as part of a b-character input message. If you

If no code specified do not specify a code, the first four characters of the input
message contain binary zeros.

Using the continuous- The continuous-output-code field assumes special importance

output-code field when you use any of the four input options or the report address
option for cassettes and diskettes. When you specify one of

Delivery notice only for these options in your action program, a delivery notice is

unsuccessful transmission rgtyrned to the successor program only if the message was not
successfully delivered. Otherwise, there is no input to the
successor program until a message is transmitted from the
cassette/diskette via the terminal screen, or until the
auto-transmit feature is set on to allow data to be transmitted
from the cassette/diskette. '

Screen bypass and the When using a screen bypass terminal, you must first set the

AUTO-TRANSMIT feature control page for that terminal to take advantage of the
auto-transmit capability. If this is not done for any of these five

Effect of not setting options and a successful delivery notice is returned by the

control page cassette/diskette device, the screen bypass terminal will stay in
the interactive mode because no message is sent to IMS.

Importance of continuous ~ Because a successor action program may receive as input either

output message code a delivery notice error or an input message from the cassette or
diskette, the CONT-OUTPUT-CODE specified by the predecessor
action program should be easily distinguished from the first four
characters of any input message being read from the cassette or
diskette. In this way, the successor program determines what
type of input message it receives (i.e., delivery notice error or
input message text) and processes it accordingly. In either case,
the successor action program must be capable of handling both
unsuccessful delivery notices and standard input messages.

UP-9206

SPERRY UNIVAC 0OS/3 5-44
IMS ACTION PROGRAMMING IN RPG Il

OUTPUT-FOR-INPUT QUEUEING

5.13. INITIATING A TRANSACTION AT ANOTHER TERMINAL
(OUTPUT-FOR-INPUT QUEUEING)

Definition

Configuration requirement

The third special capability of an output message generated by
an action program is to initiate a transaction at another terminal.
We call this output-for-input queueing. It means that an output
message generated by that program is queued as input to a
terminal other than the source terminal. This terminal is identified
by the action program generating the output message. This
output message is, in fact, a transaction code that intitiates a
transaction at the distant terminal. Figure 5-10 illustrates how
this happens.

ACTION
PROGRAM

Figure 5-10. Generating Qutput Message Using Output-for-Input Queueing

To use output-for-input queueing, specify CONTOUT=YES in the
OPTIONS section of the IMS configuration.

When you configure CONTOUT=YES, IMS automatically includes
support for unsolicited output.

5.14. HOW YOU CODE USING OUTPUT-FOR-INPUT QUEUEING

Use CALL SEND to
transmit output message

Identifying the terminal
receiving output message

You must transmit any output message that initiates a
transaction at a different terminal as a CALL SEND. In addition,
your action program moves the hexadecimal value C9 or the
character | to the aux-function field (position 15) of the output
message area header. This value tells IMS to queue the output
message generated as input to another terminal. You identify the
terminal receiving the input by moving its configured value to the
destination-terminal-id field (positions 1-4) of the output message
area header. The configured value was specified during
communications network definition. Figure 5-11 shows the
coding required to accomplish these functions.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG Il

5-45

OUTPUT-FOR-INPUT QUEUEING

Transaction code initiates
new transaction

Effect of abnormal
termination

Effect of busy destination
terminal status

Indicating errors to
originating program

Reporting output message
errors

STACKER SELECT/
FaFETCH OVERFLOW

o v

| CODES commas | ZER0 ACTION

TYPE WOIT/E g NEGATIVE VALUE INDICATION | | yseprep | BALANCE REMOVE

| NONE cA TO PRINT PLUS SIGN

A 1 YES . |EDITDATE
FIELD

B X
[Y
[} ™

FILE ™
nave 2]

[e

SUPPRESS

Jolm| serone

CONSTANT DR EDIT WORD
7 "

oUT FILLE

s v b g sl

i - N Y AL T
Output-for-input queuein
F X P N it s

I W S WS NS S
Destination-terminal-id

FENES B

il L

Transaction code
PXREFA o U

FENTES B

Figure 5-11. Coding an Output Message with Output-for-Input Queueing

The only other requirement is that the output message contains
the transaction code that initiates the new transaction at the
destination terminal. This code, and any other output generated
along with it, is queued immediately as input to the destination
terminal.

If, after issuing the CALL SEND using output-for-input queueing,
the action program terminates abnormally, the new transaction is
still generated at the destination terminal.

if the destination terminal is in interactive mode when the SEND
function is executed, that is, an IMS transaction is already in
progress, or if it already has outstanding input messages queued
for it, a new transaction can’t be scheduled. In this case, the
action program issuing the SEND function receives an

unsuccessful status-code in the program information block. See
5.17.

When an action program generates an output message and
requests that it be queued as input to another terminal, IMS
validates the output message area header and the status of the
destination terminal identified to receive the message. Validation
errors are indicated to the originating action program by values
returned to the status-code and detailed-status-code fields in the
program information block. Any errors found while scheduling the
next transaction are reported directly to the destination terminal.
Errors found in the action program processing the new
transaction at the destination terminal are reported to that action
program. As a result, this program must be prepared to handle
such error conditions, and if necessary, to report these
conditions to the originating terminal.

UP-9206

SPERRY UNIVAC 0S/3 5-46
IMS ACTION PROGRAMMING IN RPG I

OUTPUT-FOR-INPUT QUEUEING

Error codes

Termination restrictions

For a complete listing of error codes that IMS returns to the
status-code and detailed-status-code fields of your action
program following the SEND function, see Table 5-7.

Generally, a program that generates output using the
output-for-input queueing option terminates with normal
termination; however, it can specify external succession. It can't
terminate with delayed succession.

5.15. OUTPUT-FOR-INPUT QUEUEING WITH CONTINUOUS OUTPUT

Create records at terminal - It is fairly common to use the output-for-input queueing and

print them at another

continuous output options together. For instance, one transaction
could create the records you want printed and write them to a
MIRAM file. The last stage of this transaction generates an
output message using output-for-input queueing at a destination
terminal where the printing of the records is actually done. The
transaction initiated at the destination terminal reads the MIRAM
file and prints the message as continuous output.

5.16. OUTPUT-FOR-INPUT QUEUEING WITH A SCREEN BYPASS DEVICE

Screen bypass

Only means of entering
input

Another situation where you can use the output-for-input
queueing is with a screen bypass device on Universal Terminal
System (UTS) terminals. This device is defined to the
communications network (ICAM) as a logical terminal. However,
it has no physical medium for entering input. The only way to
access a screen bypass device is to use the output-for-input
queueing option. Another terminal in the IMS network generates
(through an action program) an output message that initiates a
transaction at the screen bypass device. This could be a
continuous output transaction, and a report could be generated
as output on a printer attached to the screen bypass device.

UP-9206 SPERRY UNIVAS: 0S/3 5-47
IMS ACTION PROGRAMMING IN RPG i

MESSAGE SWITCHING

. 5.17. MESSAGE SWITCHING

SWTCH transaction IMS provides a special action program that switches messages
from one terminal to another. You need only to enter the
transaction code SWTCH at any terminal in your IMS network,
identify the destination terminal for the message, and key in the
message itself. IMS handles the rest. For more information about
this and other terminal commands, consult the IMS terminal users
guide, UP-9208 (current version).

Action program initiated The message switching capability we're interested in here is one

message switching that operates from within your own user action program. For
instance, an action program could direct error messages to the
master terminal when the originating terminal is unable to handle
the error. Or, take the case of an action program that initiates a
transaction at a distant terminal. The distant terminal could send
the originating terminal a message indicating the transaction was
initiated or, as the case may be, successfully completed.

Required coding To send messages to other terminals, an action program must
move a value to the destination-terminal-id field (positions 1-4} in
the output message area header. Figure 5-12 shows the coding

. to send a message to another terminal.

Sending messages to the You can send a message to the system console or master

console workstation if console support is configured. To send a message
to the console or master workstation, enter the name “1CNS’ in

Message size restriction the destination-terminal-id field. When you send a message to
the console, your message may not exceed 120 characters. For
more information about the system console and master
workstation, see the IMS terminal users guide, UP-9208 (current
version).

OUTPUT INDICATORS >
DATA FORMAT CODES B
PBILA NEGATIVE VALUE INDICATION | |
cR

STACKER SELECT/
FrFETCH OVERFLOW

TYPE WID/T/E

3
-
S

END
POSITION

FILE
NAME

N
outPUT
RECORD

Tor[meven

§_ED!T CODES
% 8 BLANK AFTER

’ 1
OUTPIVT, | L.
NI PR s L LM SAB e
TS B Y | T ,_L.J_KA& P ERRORFMT, | |
PSS EMP NUJ 2| FUNRNY

a0 «

&
TE (8 ~ not

Figure 5-12. Coding for Message Switching

UP-9206

SPERRY UNIVAC 0S/3 5-48
IMS ACTION PROGRAMMING IN RPG i

MESSAGE SWITCHING

How IMS handles message
switching

When transaction
terminates abnormally

Configuration requirements

IMS transmits the message destined for the distant terminal or
console by using the SEND function. The message does not go
to the destination terminal until the program terminates. In this
respect, message switching is handled no differently by IMS than
any other output message. (See Figure 5-13.)

INITIATES
IMS ACTION

TRANSACTION | PROGRAM
TERMINATES

Figure 5-13. Generating Switched Output Message

If the transaction is terminated abnormally or canceled before the
action program that generated the messages terminates, all
output messages generated are deleted from the output message
queue and no messages are delivered. IMS sends a message
only to the originating terminal indicating the reason for
termination.

As we previously mentioned when discussing the SEND function,
you should specify disk queueing when generating vyour
communications network if your action programs use the SEND
function frequently. Also, you must specify the UNSOL=YES
parameter in the OPTIONS section of the IMS configuration to
use the SEND function.

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

5-49

SEND FUNCTION STATUS CODES

5.18. THE IMS SEND FUNCTION AND IMS STATUS CODES

Selecting notification of In this section, you have seen how many of the output messages

successful SEND function generated are transmitted using the
Whenever the SEND function takes place,

IMS SEND function.

if you have specified

ERET=YES in the IMS configuration, then IMS notifies the action
program whether or not the SEND function was successful. It

does this by placing binary values in

the status-code and

detailed-status-code fields of the program information block.
When control returns to the action program, you should
interrogate these fields to determine the status of the CALL

SEND.

PIB needed to determine TO interrogate the status and detailed status code fields, you

SEND function result must define the program information block

on the file description

form. Also, you must define the two fields and their location on
the input form. Status-code occupies positions 1-2 of the
program information block; detailed-status-code occupies

positions 3-4.

Action program checks After the SEND function takes place, the program should read the

SEND status
not the SEND was successful. These

status and detailed status code fields to determine whether or

fields are extremely

important to a programmer when debugging action programs.
Debugging is discussed in detail in Section 7.

Result of not being notified If you don't specify ERET=YES, and the CALL SEND isn't
of unsuccessful SEND successful, the action program does not regain control and IMS

function

abnormally terminates your action program. We strongly

recommend that you always configure ERET=YES.

Status codes Table 5-8 lists the values that IMS can return after the SEND

function takes place.

Trace values IMS returns trace values to the status-code and detailed-
status-code fields when ERET=YES is configured.

UP-9206

SPERRY UNIVAC 0S/3

5-50

IMS ACTION PROGRAMMING IN RPG Ii

SEND FUNCTION STATUS CODES

Table 5-8. Status Codes and Detailed Status Codes Returned

Following the Send Function

Successful

Parameter error

UNSOL=YES or CONTOUT=~YES wasn't
configured, or no process files were created in
ICAM network definition.

Returned when output-for-input queueing is
requested and:

destination terminal is in interactive mode;

destination terminal has an input message
on queue;

ZZHLD or ZZDWN command was entered
for destination terminal;

destination terminal is marked physically
down to ICAM; or

IMS can't allocate a main storage buffer
{(multithread only); INBUFSIZ specifi-
cation is inadequate.

Destination terminal physically or logically down;
message queued

Invalid destination terminal, auxiliary device, or
auxilary function specified

No ICAM network buffer available

Disk error, or recoverable system error on output
message to console

invalid length specification

Detailed status code=2 IMS returns a status code of 6 and a detailed status code of 2
only when you use the SEND function to initiate a transaction at

another

terminal

(output-for-input queueing). The conditions

causing this error are not permanent. The output message header
is valid, and you may be able to retransmit the same message
successfully at a later time.

UP-9206 SPERRY UNIVAC 0S/3 ‘ 5-51
IMS ACTION PROGRAMMING IN RPG Ii

SEND FUNCTION STATUS CODES

. Detailed status code—3 Some of the conditions causing a detailed status code of 3 (with
status code 6) are the same as those for a detailed status code
of 2. However, this error is returned when you use the SEND
function for message switching, not output-for-input queueuing.
In this case, the message sent is queued for the destination
terminal and is automatically transmitted when the terminal is
operational.

Detailed-status-code =4 On the other hand, when internal message control returns the
detailed-status-code value 4 after the SEND function, this means
that the contents of the output message area header are not
valid. Any effort to retransmit the same message is unsuccessful.

When this value is returned, check your action program for one
of the following errors:

(positions 1-4) of the
output message area header is not a valid configured
terminal identification.

(position 16) of the output

message area header is invalid.

position 15) of the output message
area header contains the hexadecimal value C3, F3, or F7,
indicating that the program attempted to generate continuous
output. You cannot transmit continuous output as a CALL
SEND; it must always be transmitted as a CALL RETURN when
the program terminates (5.7). If the message was addressed to
the system console (destination-terminal-id 1CNS), only the
hexadecimal values 00 or C9 are acceptable.

UP-8206

5-52

SPERRY UNIVAC 0OS/3
IMS ACTION PROGRAMMING IN RPG Il

LINE DISCONNECT

5.19. DISCONNECTING A LINE FROM AN ACTION PROGRAM

Purpose

Configuration requirements

Available only for
dedicated networks

Aux-function value, X'‘C3’

Use external succession and B

HANGUP successor-id

HANGUP, IMS action
program

Delivery notice before
scheduling

The line disconnect feature allows an action program to
disconnect a single-station dial-in line following the delivery of its
output message to enable another terminal to dial in on the same
line. To use the line disconnect feature, you must include the
continuous output capability in your configuration by specifying
CONTOUT=YES in the OPTIONS section. The line disconnect
feature is available only in a dedicated ICAM network, not a
global network.

To disconnect a line after message transmission, the action
program must:

m place a continuous output flag
(X'C3’) in the aux-function byte
{position 15) of the output message
header; and

succession with
‘'HANGUP’ as the successor by
setting the termination-indicator
(position 11) in the program
information block to E and the
successor-id (position B) to
'HANGUP'.

specify external

' LHJAINIG lu IPI I

HANGUP is an action program supplied by IMS that terminates
with a special code causing IMS to issue a line release/line
request sequence to ICAM to disconnect the line.

After the output message is sent, no further input is required
from the terminal operator. IMS waits for ICAM notification of
message delivery before scheduling the external successor,
HANGUP. In this way, delivery of the message prior to the line
disconnect is ensured.

Figure 5-14 shows the output specification form coding used to
disconnect a line from an action program.

UP-9206

SPERRY UNIVAC 0S/3 5-563
IMS ACTION PROGRAMMING IN RPG I

LINE DISCONNECT

STACKER SELECT/ -
OUTPUT INDICATORS
F<FETCH OVERFLOW DATA FORMAT CO0ES

s] ¢
PigLA NEGATIVE VALUE INDICATION

TYPE HIOTIE l

anD

£ND
POS(TION
w~
outPuT
RECORD

B BLANK AFTER

-1
<]
3
g

a0 43

-

Pl

4

| 1 .1®

1
T

Ll

Figure 5-14. Coding a Line Disconnect from an Action Program

UP-9206

SPERRY UNIVAC 0S/3 5-54
IMS ACTION PROGRAMMING IN RPG i

SYSTEM CONSOLE

5.20. SENDING MESSAGES TO THE SYSTEM CONSOLE

Configuring
console support

Terminal-id is
1CNS

When IMS session
has a master
workstation

Types of output
you can send

Auxiliary devices
not supported

Message length
restriction

No screen formats

Messages not edited

No message waiting
signal

Your action program can send output messages to the system
console if console support is configured. You configure console
support by specifying OPCOM=YES in the OPTIONS section of
the IMS configuration or by not specifying a master terminal in
any TERMINAL section.

place the terminal-id 1CNS in th
destination-terminal-id field (positions 1-4
of the output message header.

Sometimes an IMS session has a master workstation associated
with it. A master workstation is a workstation from which the
IMS start-up job control stream is entered, or it may be defined
in the job control stream. When there is a master workstation
and you use the destination-terminal-id 1CNS, your output
message goes to the master workstation instead of the console.
When the master workstation logs off or is disabled, then the
message goes to the console.

You can send normal output, multiple output, switched output,
continuous output, and output-for-input queueing messages to
the system console. However, there are certain restrictions on
output to the console:

You cannot send output to an auxiliary device at the system
console. The only auxiliary function settings you can use are
hexadecimal 00, C3 (continuous output), or C9
(output-for-input queueing).

% The maximum length of the output message is 120
characters, not including the output message header.
Additional characters are truncated.

Because of the message length restriction, you cannot output
a screen format to the console.

Output messages are not edited. DICE functions, FCCs, and
other control characters appear as blanks, or in a few cases
as printable characters.

@ There is no message waiting signal. Switched and multiple
output messages are sent out immediately.

UP-9206

SPERRY UNIVAC 0S/3 5-55
IMS ACTION PROGRAMMING IN RPG I

SYSTEM CONSOLE

Auxiliary device
error

When console
is down

Switched and
continuous output
messages

Other output
messages

Error Returns on Output to the Console

IMS returns a status code of 6 and detailed status code of 4
when you attempt to send output to an auxiliary device at the
system console. These are the same codes IMS returns when
you have an invalid destination-terminal-id, auxiliary device, or
auxiliary function specification on output messages to regular
terminals.

When your output message can't be delivered because the
console is physically or logically down, the action IMS takes
depends on the type of output message.

% With a switched message, IMS returns a status code of 6
and detailed status code of 6. With a continuous output
message, IMS returns a delivery notice status of X'86°.
These codes indicate recoverable system errors.

@ With other types of output messages (such as normal output
in response to input from the console), IMS returns a
successful status code of O. The reason IMS does this is
that an error status would cause a “TRANSACTION
CANCELLED"" message to be sent to the console, and this
could cause an abnormal termination of the IMS session.

UP-9206 SPERRY UNIVAC 0S/3 6-1
IMS ACTION PROGRAMMING IN RPG i Update A

SCREEN FORMAT SERVICES REQUIREMENTS

6. Using Screen Format Services
To Format Messages

6.1. DISPLAYED FORMATTED SCREENS

In Section 4, we briefly discussed using screen format services
to format output messages. The sample action program JAADD1
used screen format services to generate its output screens.

because the screens are predefined using the screen format
generator. You don’t have to include device control characters in
your action program. In addition, screen format services does

. validity checking of input data, thereby reducing the amount of
input validation you must do in your action program.

6.2. DEVICES SUPPORTING SCREEN FORMAT SERVICES

Terminals supporting You can direct screen formats to any display terminal supported

screen formats by IMS except the IBM 3270 terminal, and also to auxiliary
devices attached to display terminals. UNISCOPE 100 and
UNISCOPE 200 terminals must have the screen protection
feature, and UTS 400 terminals operating in native mode must
have the PROTECT/FCC switch set to FCC and the control page *

Local workstation set to XMIT VAR. For local workstations, specify a line buffer

consideration length of at least 900 words on the LBL option of the ICAM
network definition.

|
\
Saves programming effort With screen format services, generating output screens is easy

6.3. GENERATING SCREEN FORMATS

Screen formats generated You define your screen formats offline from IMS by executing the
offline screen format generator. (See the screen format services
concepts and facilities, UP-8802 (current version}.) When you
create each screen format, you assign a unique name to it. The
Formats stored for later use Screen format generator stores the formats in the system screen
. format library YFMT or other MIRAM disk file. The screen
formats for an IMS session may reside in one or two screen
format files.

UP-9206

SPERRY UNIVAC 0S/3 6-2
IMS ACTION PROGRAMMING IN RPG Il

SCREEN FORMAT SERVICES REQUIREMENTS

NOTE:

To use screen format services, you must generate a supervisor in
consolidated data management (COM)} or mixed mode. However,
you can configure IMS in either COM or DTF mode. See the IMS
system support functions user guide, UP-8364 (current version).

6.4. CONFIGURATION REQUIREMENTS

Affected parameters

Number of terminals using
screen formats

Number of resident
screen formats

Work area required

Determining size

When using screen format services, you must give special
consideration to four parameters at IMS configuration:

the parameter;

the parameter;

the parameter; and

the

You must include the SFS parameter in the OPTIONS section of
your IMS configuration. With this parameter, you specify the
maximum number of terminals that will use screen formats at the
same time. Be sure to specify a large enough number of
terminals. A screen format is considered in use at a terminal
from the time the operator requests it until the format is
displayed, input entered, and the input acknowledged.

With the RESFMT parameter, also in the OPTIONS section,
specify the number of screen formats you want retained in main
storage between calls to screen format services. The default is 1
for single-thread IMS and 3 for multithread.

You must configure a work area for each action program using
screen format services. The RPG Il action program itself does not
use this area, but the compiler does. You include the WORKSIZE
parameter in the ACTION section of the configuration. Its format
is WORKSIZE=n. The n denotes work area size. The size you
specify must be large enough to accommodate all variable output
data generated by the action program plus 99 bytes for the RPG
Il indicators.

UP-9206 SPERRY UNIVAC 0S/3 6-3
IMS ACTION PROGRAMMING IN RPG Il

SCREEN FORMAT SERVICES REQUIREMENTS

Maximum OMA size Specify the OUTSIZE parameter in the ACTION section of the
configuration {(OUTSIZE=n). The n denotes the maximum size of
the output message area for a particular action.

- Where the screen format When you request a screen format in your action program, you

is built have it built in the output message area or in dynamic main

Using output message area Storage. |f you use the output message area, it must be large
enough to handle the screen format buffer constructed by the
screen format coordinator. This buffer contains all variable output
data, display constants, and device control characters. See the
IMS system support functions user guide, UP-8364 (current
version) for information on calculating the size of the output
message area.

Using dynamic main storage The advantage of building the screen format in dynamic main
storage is that you don’'t have to calculate the size needed for
the format buffer. You must still allocate an output message area
large enough to contain the output message header and your
variable data fields. The OUTSIZE=STAN specification will give
you an adequate output message area size.

When OUTSIZE is When the action program requests a screen format and the

insufficient output message area is not large enough to contain the format
buffer, IMS returns an error code in the status fields of the
program information block. IMS also places the output message
area size required in the text-length field (positions 13-14) of the
output message area header.

6.5. REQUIREMENTS AT IMS START-UP

Device assignment sets When using screen format services, you must include a device
assignment set for each screen format file in the job control
LFD names stream at IMS start-up. Use the LFD name TCO1FMTF for the

primary file and TCO2FMTF for the secondary file, if there is one.

Figure 6-1 illustrates the steps required to create and use screen
formats with IMS.

UP-9206 SPERRY UNIVAC 0S/3 6-4
IMS ACTION PROGRAMMING IN RPG i

SCREEN FORMAT SERVICES REQUIREMENTS

CREATE SCREENS
USING 0S/3
SCREEN FORMAT
GENERATOR

WRITE ACTION SCREEN
PROGRAMS USING FORMAT
SCREEN FORMATS FILE 1

CONFIGURE IMS
WITH SFS, RESFMT,
OUTSIZE, AND
WORKSIZE PARAMETERS

PROCESS
TRANSACTIONS

START UP IMS
WITH DEVICE
ASSIGNMENTS FOR
SCREEN FORMAT
FILES

Figure 6-1. Creating and Using Screen Formats

UP-9206 SPERRY UNIVAC 0S/3 6-5
IMS ACTION PROGRAMMING IN RPG I

SCREEN FORMAT PROCESSING

6.6. HOW IMS HANDLES SCREEN FORMATTED MESSAGES

Retrieves screen format When your action program requests a particular screen format,
IMS retrieves the format from the screen format file and places it
in the output message area or in dynamic main storage. (When
you assign two screen format files, IMS checks TCO1FMTF first,
then TCO2FMTF.)

Variables moved to work ~ The variables in the output message area are moved to the work

area area defined at configuration. The variables remain there for as
long as it takes the screen format coordinator to construct the
screen in the buffer area.

Display contents moved The screen format coordinator places the output display
to screen buffer constants of the format into their respective locations within the
screen buffer. These constants are always protected.

Variables moved to When the screen is built, the screen format coordinator inserts
screen buffer the variable data from the work area into the appropriate
locations in the screen buffer.

Screen displayed on When the program terminates, the screen format and variable
terminal data are transmitted to the terminal.
Example Figure 6-2 shows an output screen containing display constants

and variable data. Underlines represent input fields.

PERSONAL CREDIT REPORT '

NAME : JOHN DOE

ADDR:1552 MAIN ST. STATE:PA ZIP: 19149
ACCOUNT NO:193-A564

BALANCE:350.00

PAYMENT: DATE:__/__/

e

Figure 6-2. Output Screen Format with Display Constants, Variable
Data, and Input Fields

Using input and output Any field you define as input, or both input and output, in your

screens action program is an unprotected field. This means that the
terminal operator is free to change that field when making entries
on the screen format. It is protected if you define a variable data

Example field as output only when you build a screen buffer. In Figure
6-3, the terminal operator has changed the address field and
entered a payment amount and date.

UP-9206

SPERRY UNIVAC 0S/3 6-6
IMS ACTION PROGRAMMING IN RPG I

SCREEN FORMAT PROCESSING

PERSONAL CREDIT REPORT

NAME: JOHN DOE

ADDR:224 PINE ST. STATE:PA ZIP:19102
ACCOUNT NO:193-A564

BALANCE:350.00

PAYMENT :25.09 DATE:12/23/80

——

Figure 6-3. Input Screen Format with Display Constants and
Changed Input Fields

Output-only screens required \When your action program terminates with delayed succession or

for: delayed succession
continuous output
message switching

Function keys cancel

screens

When multiple screens are
generated

uses continuous output, IMS forces the screen format to be
output only. Also, you must use an output-only format for any
screen formatted output message switched to a different
terminal.

The message wait key and function keys cancel any screen
format currently effective at the terminal.

An action program may send multiple formatted messages to the
originating terminal; however, only the last format may be used
for entering data as input to the successor program.

6.7. USING FORMATTED SCREENS FOR INPUT

Checking input for terminal
commands

All commands cancel
screens except
ZZRSD

Results when ZZRSD is

entered

When an invalid transaction
code is entered

When the terminal operator fills in input data, the data is
validated before IMS passes control to the successor program.
IMS checks the message for terminal command input before
requesting the screen format coordinator to validate the entries.
If the input message contains a terminal command other than
ZZRSD, IMS processes it accordingly and cancels any screen
format currently effective at the terminal.

Normally, ZZRSD causes the last output message to be sent
again, thus retaining the current screen format. However, if the
screen format is built in dynamic main storage instead of the
output message area, it can’t be sent again and the screen
format is canceled. The terminal operator receives a NO MSG IN
QUEUE message and can’t enter input on the formatted screen.

When the input message contains a transaction code, IMS
verifies the code and if it is invalid, sends the message back to
the terminal and blinks the transaction code. This does not
cancel the screen format currently effective at the terminal.

JP-9206 SPERRY NIVA(0S/3 6-7
IMS AC’\ION FROGRAMIAING IN RPG I

3CREEN FORMAT PROCESSING

Validating input data When the input message does not contain a terminal command
or invalid transaction code, IMS requests the format coordinator
to validate the message. If the input data filled in by the terminal
operator is valid, IMS places only that data into the input

No other editing message area of the successor action program. IMS does not

performed on input perform any other editing on this input. Your action program then
begins processing.

When input data is invalid \When some of the input data is invalid,
the screen format coordinator blinks the
invalid fields. The terminal operator can
correct the input until the retry count
specified at screen format generation
time is exhausted. (See screen format
concepts and facilities, UP-8802.)

Error codes returned for Once the retry count is exhausted, the successor program

invalid data receives control. At that point, the program information block
contains a status code of 7 and a detailed status code of O. (See
Table 6-1 for a description of error codes returned when using
screen format services.)

Specifying type of In order for the successor program to receive this data, the

termination predecessor action program must specify E in the
termination-indicator field (position 11) of the program
information block. If that program terminated with normal
termination (N in the termination-indicator field), the first input
field entered on the screen format must be a valid transaction
code that will schedule the appropriate action program to
process the input data.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

SCREEN FORMAT CODING

6.8. CODING REQUIRED TO USE SCREEN FORMAT SERVICES

Output form coding

Required entries

To build screen in
dynamic main storage

Example

To use a formatted screen, you make the following entries on

the output form:
D The character K in column 42

P Length of the screen format name
in column 43

D Screen format name itself in
columns 45-70

To build the screen format in dynamic
main storage, move ‘D’ to the
SFS-location field (position 6) of the
output message header.

Figure 6-4 illustrates how you code the output form to build a
screen format containing variable data in dynamic main storage.

STACKER SELECT/

ATOR!
F-FETCH OVERFLOW QUTPUT INDICATORS

VPE HIDTIE I

FILE

+—s
N
R

s[> [ofe]
Sim| serome
TSI] arren

15

132 il

® €017 COOES

F @ BLANK AFTER

PigLIA

DATA FORMAT

CODES

c
NEGATIVE VALUE INDICATION

£ND
POSITION
w
ouTPyY
RECORD

40 Q

NONE | Ci
—

TR

LdoLa L

R Y

BRANCH

[RO

Ll
R

24|

|1 Kb

QUART |
RUART 2|
RUART S
U ART M|
TSALES

a1

(BN

i

PR,
v b

SO

1 RUOTA,

ESULT

1

ol

Figure 6-4. Coding the Output Form to Use Screen Format Services

UP-9206 SPERRY UNIVAC 0S/3 6-9
IMS ACTION PROGRAMMING IN RPG II

SCREEN FORMAT CODING

Defining the screen format You indicate that you are using a screen format on the first field
description for the output file. Only one screen format is allowed
for each output record. In Figure 6-4, the output file is OMA. As
you notice, the screen format is the first field description for the
file. The character K in column 42 indicates you are using screen
format services. The number 6 in column 43 is the length of the
format name. MRKT82 is the format name as it was defined at
screen format generation.

List variable output data You must list the variable fields in the order that the screen

in receiving order format expects to receive them. The first field always begins
after position 16. You must allow 16 positions for the output
message area header.

Figure 6-5 shows the screen format described in Figure 6-4 as it
appears at the terminal.

MARKETING SUMMARY '82

COLONIAL STEEL CORPORATION
BRANCH: 7018

. SALES SUMMARY
QUARTER 1: $345,678,721 QUARTER 3: $322,628,456
QUARTER 2: $299,799,838 QUARTER 4: $349,798,951

TOTAL SALES: $1,317,905,966
YEARLY QUOTA: $1,288,988,955
RESULTS: $28,916,971 +

L _J

Figure 6-5. Output Screen Display for Figure 6-4.

Handling screen formatted IMS handles output messages that use screen format services

output just like any other output message. They can be transmitted
using the SEND or RETURN function. However, they do not
appear at the terminal until the action program terminates. The
terminal operator may then enter data, which is verified and
stored in the successor program’s input message area.

UP-9206 SPERRY UNIVAC 0OS/3 6-10
IMS ACTION PROGRAMMING IN RPG it

SCREEN FORMAT CODING

6.9. GENERATING AN OUTPUT SCREEN WITH NO VARIABLE DATA

When there is no variable When an action program generates an output screen with no

output data variable fields, such as an error message screen, you must move
zeros to the text-length field of the output message area header
before specifying the screen format. Figure 6-6 shows how you
code the output form to do this.

STACKER SELECT/
F~FETCH OVERFLOW

QUTPUT INDICATORS

DATA FORMAT CODES <
TYPE HID/T/E PiBILIA VALUE INDICATION
[

END
POSITION

FILE
NAME

RECORD

ofr[arren
g EDIT CODES
B B BLANK AFTER

7 “

o«
VT PloT, . I 2
Ly N | I
30N S

| K8 | ERRORFMT/, |
[NO

L VAI!IA!LEl_LL_l_L_‘_le
L DATA

PRI !

baa

Figure 6-6. Coding for a Formatted Screen without Variable Output Data .

UP-9206 SPERRY UNIVAC 0S/3 6-11
IMS ACTION PROGRAMMING IN RPG I

SCREEN FORMAT ERRORS

. 6.10. ERROR CODES RETURNED BY IMS

Errors return status codes VWhen IMS encounters a problem while using screen format

to PIB services, it returns values to the status-code and
detailed-status-code fields of the program information block.
Table 6-1 lists and describes these values.

Table 6-1. Error Codes Returned by IMS when Using Screen Format Services

Named format can't be found

Screen format services not configured

nvalid terminal name or type

Validation error; all error fields within variable data area are replaced by hexadecimal F's.

Format area not large enough. The OUTSIZE =n specification wasn't large enough to handle
screen format, variable data, and device control characters. IMS returns the correct output
message area size to the text-length field (positions 13-14) of the output message area
header.

Variable data area not large enough. The WORKSIZE=n specification wasn’t large enough
to handle the variable data plus the 99 bytes for RPG Il indicators.

Insufficient number of terminals was configured.

Variable data specified for input format is invalid.

Format width is greater than screen width.

Fatal error {I/O error)

Screen format incorrectly generated

System error

Inadequate main storage available in system; or format contains protected fields and
terminal doesn’t have protect feature or isn’t in protect mode.

Screen format services error

Action program processing DDP transaction attempted to send screen format to initiating
action program.

See Appendix C for a complete listing of status and detailed
status codes in hexadecimal.

UP-9206

SPERRY UNIVAC 0S/3 6-12
IMS ACTION PROGRAMMING IN RPG |l

SCREEN FORMATS AND AUXILIARY DEVICES

6.11. TRANSMITTING FORMATTED SCREENS TO AN AUXILIARY DEVICE

Setting output message
header fields

Aux-function field entries

Example

You can output a screen format to an
auxiliary device - printer, cassette, or
diskette — attached to a display terminal.

To output a screen format to an auxiliary device, you move a
value to the aux-function (position 15) and the aux-device-no
(position 16) of the output message area header before
specifying the screen format required.

Table 6-2 lists the values you move to the aux-function field to
accomplish this. Different values are specified for the aux-function
field depending on whether the action program is using
continuous output or not.

Figure 6-7 shows the coding to transmit a formatted screen to a
printer attached to a UTS 400 display terminal using print mode
with space suppression. The action program involved is not
generating continuous output.

QUTPUT INDICATORS -

DATA FORMAT CODES

TYPE HIDT/E PiBiLA NEGATIVE VALUE INDICATION

NONE cA
v

FiFETCH OVERFLOW

END
POSITION
w

FILE
NAME

ouTPuT
RECORD

[o]r] arrer

® €017 CODES
B 8 BLANK AFTCR

2
OUT PIUT,
NI G i L P

M i " TR . X R

T G " Ly Y uPE I

N 1 P ‘PRNTOWT, | |
U B

QUTPUT

MU I - 4DATA

M . s s e

Figure 6-7. Coding to Transmit Formatted Screen to a Printer

NOTE:

When you build a screen in dynamic main storage, all values,
including auxiliary device numbers and functions, must be present
in the output message header before the call is issued to screen
format services. If any header values (except SFS-options) are
changed after the call to screen format services, the new values
are ignored.

UP-9206 SPERRY UNIVAC 05/3 6-13
IMS ACTION PROGRAMMING IN RPG i

SCREEN FORMATS AND AUXILIARY DEVICES

Table 6-2. Print/Transfer Options for Writing of Screen Formats to Auxiliary Devices

=

Print Mode X F3 3 FO 0 X X
(recommended)@ (recommended)
X 5 5 F2 2 X X
(recommended)% (unpredictable
output at screen
and auxiliary
device)

Print X F7 7 F4 4 X@@ X@
Transparent
X S 9 F6 6 X@® X

(unpredictable
output at screen
and auxiliary
device)

Print Form X Cl A D1 J X@ X@
(ESC H)
X C6 F D6 0 X® X@

Transfer X C2 B D2 K X @
Al (recommended)
(ESC &)

X C7 G D7 P X® X©

Transfer X c4 D D4 M XQ> X®

Vanable
(ESC F) X c8 H D8 Q X@ X@
Transfer X Ch £ D5 N X (field control X@
Changed characters not
(ESC E) supported)
X 8 Y F8 8 X (field control X®
8 characters not
supported)
LEGEND:

Printer - same format as screen

Printer - same information as screen; no carriage returns

Cassette/diskette - same format as screen; no field control characters
Cassette/diskette - same format as screen; only records unprotected fields

Cassette/diskette ~ same format as screen; records all fields and all field control characters

O)
@
®
O)
®
®

Cassette/diskette - not available

UP-9206

SPERRY UNIVAC 0S/3 7-1
IMS ACTION PROGRAMMING IN RPG Il

DDP REQUIREMENTS AND TERMS

7. Action Programming in a
Distributed Data
Processing Environment

7.1. BASIC DDP REQUIREMENTS AND TERMINOLOGY

DDP requirements

DDP terminology

IMS handles distributed data processing (DDP) transactions
through the IMS transaction facility. To use distributed data
processing with IMS, you must include the IMS transaction
facility in your software at each OS/3 system and must configure
multithread IMS at each system. Also, you must define a global
ICAM network that supports distributed data processing and
include a LOCAP section in the IMS configuration for each IMS
system where you want to route transactions or which will route
transactions to you. Consult the IMS system support functions
user guide, UP-8364 (current version) for configuration and
network definition requirements.

Let's define some terms we’ll be using throughout the discussion
of DDP transaction processing:

LOCAL TRANSACTION

Transaction that is processed at the same IMS system
where it is initiated

REMOTE TRANSACTION

Transaction that is initiated at one IMS system and
processed at another

PRIMARY IMS

IMS system where a remote transaction is initiated. In our
Hlustrations we call this system IMS1.

¥

UP-9206 SPERRY UNIVAC 0S/3 7-2
IMS ACTION PROGRAMMING IN RPG II

DDP REQUIREMENTS AND TERMS

SECONDARY IMS

IMS system where a remote transaction is processed.
The action programs processing the transaction and any
files they access are located here. In our illustrations we
call this system IMS2.

LOCAL IMS

Your IMS system, regardless of whether your system is
primary or secondary for a particular transaction

REMOTE IMS

IMS system at another computer

LOCAP-NAME

The 4-character label of a LOCAP macroinstruction in
your ICAM network definition, identifying a local or
remote IMS system

UP-9206

SPERRY UNIVAC 0S/3 7-3
IMS ACTION PROGRAMMING IN RPG I

ROUTING DDP TRANSACTIONS

. 7.2. HOW IMS ROUTES REMOTE TRANSACTIONS

Transaction routing types

Operator-initiated
transaction

There are three different ways in which the primary IMS can
route a transaction to a secondary system:

D”irectory routing

The terminal operator enters a transaction code that identifies a
transaction at a secondary system. The transaction code is defined in the
configurator TRANSACT section.

Operator routing

The terminal operator prefixes the transaction code with a route character
{followed by a period) that routes the transaction to a secondary system.
This route character is defined in the configurator LOCAP section or in a

PARAM job control statement at IMS start-up.

Action program routing

The terminal operator enters a transaction code that initiates a transaction
at the primary system. The action program processing this local
transaction issues an ACTIVATE function call to initiate a transaction at a

secondary system. Action programs initiating remote transactions are

written in COBOL or basic assembly language (BAL).

From the programmer’s viewpoint, directory and operator routing
are the same, because they are both initiated by a terminal
operator. Once the transaction is routed to the secondary
system, an action program or series of action programs at that
system interacts with the terminal operator the same way as in a
local transaction. No action programs are involved at the primary
system.

UP-9206

SPERRY UNIVAC 0S/3 7-4
IMS ACTION PROGRAMMING IN RPG Il

ROUTING DDP TRANSACTIONS

Program-routed transaction

ACTION
PROGRAMS

With action program routing, action programs at the secondary
system don’t interact directly with the terminal operator. They
return a message to the initiating action program or its
successor, which in turn, outputs a message to the terminal
operator.

ACTION ACTION
PROGRAMS PROGRAMS
(COBOL OR BAL)

UP-9206 SPERRY UNIVAC 0S/3 7-5
IMS ACTION PROGRAMMING IN RPG I

PROCESSING DDP TRANSACTIONS

7.3. PROCESSING A REMOTE TRANSACTION

As an RPG Il programmer, you may be writing action programs at
a secondary IMS to process transactions initiated by an operator
or an action program at a primary IMS system.

ACTION
PROGRAMS

Similar to processing There is little difference between the way you process a remote
local transaction transaction and the way you process a local transaction. You can
. probably use the same action programs to process both local
. and remote transactions.

Receiving input message When the transaction begins, you receive an input message
starting with a 1- to 8-character transaction code, just as with a
local transaction.

Determining input You can determine the source of the input message by testing
message source the DDP-mode field of the program information block and the
source-terminal-id field of the input message header.

DDP-mode field The DDP-mode field (position 70 of the program information
block) contains the value ‘R° when the transaction is
operator-initiated (either directory routing or operator routing). It
contains the value ‘A" when the transaction is initiated by an
action program. When a transaction is local, the DDP-mode field
contains zeros. This field has other possible values but they
apply to action programs at the primary IMS system.

Source-terminal-id field When an action is scheduled to process a transaction at a
secondary IMS, the source-terminal-id field (positions 1-4 of the
input message header) contains the locap-name of the IMS
system originating the transaction rather than a terminal-id. You
can’t test for the actual terminal initiating a remote transaction.

UP-9206

SPERRY UNIVAC 0S/3 7-6
IMS ACTION PROGRAMMING IN RPG I

PROCESSING DDP TRANSACTIONS

General restrictions

SEND function restriction

Continuous output
restriction

Auxiliary device
restriction

There are a few general restrictions on processing remote
transactions. (There are . several additional restrictions for
program-initiated remote transactions, which we’ll discuss a little
later.)

You can’t use the ‘to output a message to the
originating terminal (or any terminal at the remote IMS).
However, you can use the SEND function to output a
message to a terminal at your local IMS. (See 5.17.)
Afterwards, clear the destination-terminal-id field (positions
1-4 of the ouput message header) or move the source
locap-name to that field before sending an output message
to the originating terminal.

You can’t sen to the originating terminal.
Again, you can use the SEND function to initiate continuous
output at a local terminal using output-for-input queueing.

You can’'t send output to an ttached to the
originating terminal. However, you can send output to an
auxiliary device at a local terminal using the SEND function.

UP-9206 SPERRY UNIVAC 0S/3 7-7
IMS ACTION PROGRAMMING IN RPG Il

OPERATOR-INITIATED TRANSACTIONS

7.4. PROCESSING AN OPERATOR-INITIATED REMOTE TRANSACTION

With the few exceptions we’ve already mentioned, you process

an operator-initiated remote transaction the same way as a local
transaction.

Action program You can use any type of action program succession with

succession operator-initiated transactions. Once the transaction begins, the
IMS transaction facility establishes a communications link which
stays in effect until the transaction ends. When you use external
succession, the terminal operator receives and responds to your
output messages without entering any additional codes.

Figure 7-1 illustrates a remote dialog transaction, using both
internal (either immediate or delayed) and external succession.

ACTION
PROGRAM

| ACTION
PROGRAM |

2

ACTION
PROGRAM ¢}
3

Figure 7-1. Processing an Operator-Initiated Remote Dialog Transaction

Screen format services You can use screen format services with operator-initiated
in DDP remote transactions. {See 7.6.)

UP-9206

SPERRY UNIVAC 0S/3 7-8
IMS ACTION PROGRAMMING IN RPG I

PROGRAM-INITIATED TRANSACTIONS

7.5. PROCESSING A PROGRAM-INITIATED REMOTE TRANSACTION

Considerations and
restrictions

Output message
formatting

Screen formatting
restriction

Allowable termination
types

When a remote transaction is initiated by an action program, you
send an output message back to the originating action program’s
successor. That action program in turn outputs a message to the
terminal operator.

Because your output message goes to an action program rather
than to a terminal, there are a few additional considerations and
restrictions:

~you don't need control characters. Of course,
you may want to use the same output message for either
operator- or program-initiated transactions. In this case, the
action program receiving your message must be prepared to
receive your control characters.

you return to the originating action program or its successor.
However, you can use the SEND function to display a screen
format at a local terminal.

; you return an
output message to th ginating action program’s
successor. You can’'t use external succession. You can,
however, use immediate or delayed internal succession and
have your successor program return the output message
(Figure 7-2).

ACTION . ACTION
PROGRAM ROGRAM
A 1

ACTION | . | _ Ll acTion

PROGRAM PROGRAM
B 2

Figure 7-2. Processing a Program-Initiated Remote Transaction

UP-9206 SPERRY UNIVAC 0S/3 7-9
IMS ACTION PROGRAMMING IN RPG Il

DDP AND SCREEN FORMAT SERVICES

7.6. USING SCREEN FORMAT SERVICES TO PROCESS REMOTE
TRANSACTIONS

Displaying screen format ~ \When your action program processes an operator-initiated

at initiating terminal remote transaction, you can use screen format services to
display a screen format at the initiating terminal (or at an auxiliary
device attached to that terminal).

TRANSACTI CODE ACTION . SCREEN

4 PROGRAM FORMAT
FILE

SCREEN FORMAT

Displaying screen format ~ \Whether the remote transaction is operator-initiated or
. at local terminal program-initiated, you can use the SEND function to display a

screen format at a terminal (or auxiliary device) attached to your
local IMS system.

TRANSACTION CODE

P

ACTION SCREEN
PROGRAM FORMAT

FILE

UP-9206

SPERRY UNIVAC 0S/3 7-10
IMS ACTION PROGRAMMING IN RPG I

DDP AND SCREEN FORMAT SERVICES

identifying local terminal

Limitations of SEND
function

Termination types allowed

Receiving formatted input

To display a screen at a terminal attached to your local IMS
system, move the terminal<id to the destination-terminal-id field
(positions 1-4 of the output message header). Remember, you
can display only an output format when you use the SEND
function. Afterwards, clear the destination-terminal-id field or
move the locap-name of the primary IMS to that field before
sending an output message to the source terminal.

When you display an input/output screen format at the source
terminal (at the remote system), you can terminate your program
normally or with external succession. We recommend external
succession.

When the terminal operator at the remote system enters input on
the screen format, the successor program you name at your local
IMS system (which could be the same action program) takes
control and receives the input.

ACTION
PROGRAM
1

ACTION
PROGRAM
2

UP-9206

SPERRY UNIVAC 0S/3 8-1
IMS ACTION PROGRAMMING IN RPG Il

PREPARATION FOR ONLINE PROCESSING

8. Compiling, Linking, and
Storing Action Programs

8.1. PREPARING ACTION PROGRAMS FOR ONLINE PROCESSING

What you must do

Scope of section

After you write an action program,

Compile the action program (8.1).
Link edit the program to create a load module (8.2).

Store the program in the appropriate load library (8.3).

Identify the program to IMS in a PROGRAM section of the configuration.
(See the IMS system support functions user guide, UP-8364 (current
version).)

Identify the load library in the job control stream at IMS start up, unless
programs are stored in the system load library, YLOD. (See UP-8364.)

This section tells you how to compile and link your action
programs and where to store them for use during the online IMS
session. For additional information on the job control statements
and procedures shown in the examples, refer to the current
versions of the job control user guide, UP-8065, and the RPG i
user guide, UP-8067.

UP-9206

SPERRY UNIVAC 0S/3 8-2
IMS ACTION PROGRAMMING IN RPG I

COMPILING ACTION PROGRAMS

8.2. COMPILING ACTION PROGRAMS

Action programs compiled
like any other program

Using RPG jproc with
embedded input

Using RPG jproc with filed
source program

You compile action programs the same way as other RPG Il
programs, using the RPG job control procedure (jproc) or the
EXEC RPGII job control statement. Don’t use the RPGL jproc to’
compile and link an action program.

Figures 8-1 and 8-2 show two ways of compiling an action
program using the RPG jproc. In Figure 8-1, the source program
is embedded in the job control stream.

// JOB PROG1
// RPG
/%

source program

Figure 8-1. Compiling an Action Program Using Jproc and Embedded
Source Program

In Figure 8-2, the source program, MYPROG, is filed in the
system source library, YSRC. When the source program is
filed in a library, you identify the module name in the label field of
the RPG jproc. The IN parameter gives the location of the source
module - in this case, the system source library.

// JOB PROG2
//MYPROG RPG IN=(RES)

/&
// FIN

Figure 8-2. Compiling an Action Program Using Jproc and Filed Source Program

UP-9206 SPERRY UNIVAC 0S/3 8-3
IMS ACTION PROGRAMMING IN RPG i

COMPILING ACTION PROGRAMS

Usng standard job control Figure 8-3 uses the EXEC RPGII job control statement and takes |
with embedded input source input from the job control stream. You must allocate a
printer and two work files for the compiler.

// JOB PROG3

// DVC 206 // LFD PRNTR
// WORK1

// WORK2

// EXEC RPGII

/%

- source program

Figure 8-3. Compiling an Action Program Using Standard Job Control and
Embedded Source Program

. Using standard job control Figure 8-4 also uses the EXEC RPGIl job control statement. In
with filed source program this case, the source program is filed in a user source library,
SRCIN. You identify the source module and library in a PARAM
statement and must also include a device assignment set for the

source library.

// JOB PROG4

// DVC 20 // LFD PRNTR

// DVC 50 // VOL DISK®1 // LBL SRCLIB // LFD SRCIN
// WORK1

// WORK2

// EXEC RPGII

// PARAM IN=MYPROG/SRCIN

/&

// FIN

Figure 8—4. Compiling an Action Program Using Standard Job Control and
Filed Source Program

UP-9206

SPERRY UNIVAC 0S/3 8-4
IMS ACTION PROGRAMMING IN RPG I

LINKING ACTION PROGRAMS

8.3. LINK EDITING ACTION PROGRAMS

LINK jproc format

Format for naming load
module

LINK jproc example

Using standard job control

After you obtain a clean action program compilation, you must
link edit the program and store it in the appropriate load library.
We discuss load libraries in 8.4.

You can use the LINK job control procedure or the EXEC
LINKEDT job control statement. On the LINK jproc, you must
specify the OUT parameter to store the action program in a load
library:

// LINK action-program-name, OUT={(vol-ser-no,label)
(RES,YLOD)

For example:

// LINK MYPROG,OUT=(RES,$YSLOD)

If you want to give your action program load module a different
name than the object module, use this format:

//load-module-name LINK object-module-name, 0UT={(vol-ser-no,label)
(RES,$YSLOD)

Figure 8-5 uses the jproc to link edit an object module called
MYPROG and create a load module called CREDIT. Output is to
LOADLIB. You don't need a device assignment for LOADLIB
because the LINK jproc generates it from your OUT specification.

// JOB LINK
//CREDIT LINK MYPROG,OUT=(IMSVOL,LOADLIB)

/&
// FIN

Figure 8-5. Link Editing an Action Program Using Jproc

When you execute the linkage editor using standard job control,
you need a LOADM statement to name the load module and
INCLUDE statements for the action program object module and
the IMS link module, ZF#LINK.

o

UP-9206

SPERRY UNIVAC 0S/3 8-5
IMS ACTION PROGRAMMING IN RPG i

LINKING ACTION PROGRAMS

. Example using

EXEC LNKEDT

Compile and link example
using jprocs

Compile and link example
using standard job control

Figure 8-6 shows a standard job control stream for the linkage
editor. The linkage editor requires a printer file and one work file.
You can omit the printer file if you assigned one to the compiler
in the same job control stream. Output is to the system load
library, YLOD; a device assignment is not needed for this file.

// JOB LNKEDT
// DVC 20 // LFD PRNTR
// WORKA1
// EXEC LNKEDT
// PARAM OUT=3Y$LOD
/%
LOADM CREDIT
INCLUDE MYPROG
INCLUDE ZFH#LINK,Y0BJ

Figure 8-6. Link Editing an Action Program Using Standard Job Control

Figure 8-7 shows a job control stream for compiling and linking
an action program, using both the RPG and LINK jprocs. The
action program is stored in the LOAD action program library (see
8.4). The LINK jproc generates a device assignment for the load
library.

// JOB RPGL1

//MYPROG RPG IN=(RES)

//CREDIT LINK MYPROG,O0UT=(IMSVOL,LOAD)
/&

// FIN

Figure 8-7. Compiling and Linking an Action Program Using Jprocs

Figure 8-8 shows a job control stream for compiling and linking
an action program, using standard job control. A device
assignment set is required for the output file, LOADLIB.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG Il

8-6

LINKING ACTION PROGRAMS

1/
1/
/!
1/
1/
1/

/*
//
//
//
/%

JOB RPGLZ

DVC 20 // LFD PRNTR
DVC 50 // VOL IMSvOL
WORK 1

WORK?2

EXEC RPGII

// LBL LOADLIB

source program

WORK 1
EXEC LNKEDT
PARAM OUT=LOADLIB

LOADM CREDIT
INCLUDE MYPROG
INCLUDE ZF#LINK,YSOBJ

Job Control

// LFD LOADLIB

Figure 8-8. Compiling and Linking an Action Program Using Standard

UP-9206

SPERRY UNIVAC 0S/3 8-7
IMS ACTION PROGRAMMING IN RPG I

STORING ACTION PROGRAMS

8.4. STORING ACTION PROGRAMS IN A LOAD LIBRARY

One library for action
programs

When you use fast load
feature

Improves performance

Fast loading requires
LOAD library

Action programs loaded
from fast load file

When you do not use
fast load feature

When you link edit an action program, you must specify the load
library where you want it stored. IMS has specific requirements
for storing action programs.

The first requirement is that all your action programs must reside
in the same load library.

The load library you choose depends on whether or not you
configure the fast load feature by specifying FASTLOAD=YES in
the OPTIONS section of your IMS configuration. (See the IMS
system support functions user guide, UP-8364 (current version).)
The fast load feature improves online performance in applications
with large action programs or frequent action program loading.

If you configure fast loading, place all action programs in a
separate action program load library in unblocked format. You
assign this library at IMS start-up with the LFD-name LOAD. At
start-up, you also assign the fast load file, LDPFILE. The first
time a transaction calls on a particular action program, IMS
copies the program from LOAD to the LDPFILE. After that, action
programs are loaded from LDPFILE.

If you don't want fast loading, store your action programs in
either of two libraries (but all in the same library):

the system load library, YLOD; or
the library containing your online IMS load module. This

library is identified at configuration time by the LIBL
parameter of the IMSCONF jproc.

UP-9206

SPERRY UNIVAC 0S/3 8-8
IMS ACTION PROGRAMMING IN RPG I

REPLACING ACTION PROGRAMS

8.5. REPLACING ACTION PROGRAMS IN THE LOAD LIBRARY DURING ONLINE

PROCESSING

How to replace programs

Fast load requirement

Recompile and link example

ZZPCH command

Adding action program
to library

You can replace action programs in the load library while IMS is
online, whether or not you use the fast load feature.

You replace an action program in the YLOD, LOAD, or other
load library by recompiling and relinking or by applying a patch
(COR). For an explanation of the COR function, see the system
service programs user guide, UP-8062 (current version).

When you use the fast load feature, you must insert the
statement:

// DD ACCESS=EXCR

in the device assignment set for the LOAD library in the compile
and link or COR job control stream.

The job control stream in Figure 8-9 recompiles and links an
action program for output to the LOAD file. This example
assumes you use the fast load feature.

// JOB RECOMP

// DVC 50 // VOL IMSVOL // DD ACCESS=EXCR // LBL LOAD // LFD LOAD
//MYPROG RPG IN=(RES)

//CREDIT LINK MYPROG,QUT=(IMSVOL,LOAD)

/8

// FIN

Figure 8-9. Recompiling and Linking an Action Program During Online Processing

After replacing the action program in the load library, issue the
ZZPCH master terminal command. The next time a transaction
calls on the action program, IMS loads the new version from the
load library. When you use the fast load feature, IMS copies the
new version to the LDPFILE. The ZZPCH master terminal
command is described in the IMS terminal users guide, UP-9208
{current version).

Follow the same procedure to add an action program to the load
library that is missing at start-up. Of course, the program must
be defined in a PROGRAM section of the IMS configuration.

UP-9206 SPERRY UNIVAC 0S/3 8-9
IMS ACTION PROGRAMMING IN RPG I

REPLACING ACTION PROGRAMS

ALTER statement restricted When you use the fast load feature, do not use ALTER

when using fast loading statements in the job control stream at IMS start-up. When you
do not use fast loading, you can insert ALTER statements in the
start-up job control stream to make temporary changes to action
programs.

UP-9206 SPERRY UNIVAC 0S/3 ‘ 9-1
IMS ACTION PROGRAMMING IN RPG i

DUMP CONDITIONS

9. Debugging an Action Program

| As often as we might wish that nothing would ever go wrong
with our programs, in reality that never seems to be the case.
Since action programs can’t use the generate-debug capability
available to other RPG Il programs, it is important to be able to
debug your action program using the snap dump feature provided
by IMS.

9.1. CONDITIONS FOR A SNAP DUMP

. What causes a snap IMS provides a snap dump under three conditions:
dump

% An action program voluntarily terminates abnormally by
moving S to the termination-indicator field (position 11) in
the program information block.

5 An action program terminates abnormally due to a program
check.

% An action program terminates abnormally due to a
timer-check (time-out due to a loop in the action program).

9.2. TYPES OF SNAP DUMPS

Edited and unedited snap IMS provides both edited and unedited snap dumps. In
dumps single-thread IMS, an edited snap dump is a standard feature.
Multithread IMS users must specify SNAPED=YES in the
OPTIONS section of the IMS configuration to obtain an edited
snap dump. The configurator then includes the module
ZG#SNAPM that provides the edited directory for the snap dump.

UP-9206 SPERRY UNIVAC 0S/3 9-2
IMS ACTION PROGRAMMING IN RPG Il

SNAP DUMP LAYOUT

9.3. LAYOUT OF A SNAP DUMP

Snap dump layout Figure 9-1 illustrates the general layout of an IMS snap dump.
This same general layout applies to both single-thread and
multithread IMS.

EDITED HEADERS

ACTION PROGRAM LOAD AREA

RN
TTTTTTTTTTTTT

THREAD CONTROL BLOCK (THCB)

TTTTT1 711711

Figure 9~1. Layout of a Snap Dump

Snap dump general areas ~As you can see, a snap dump is broken down into six general
areas: edited headers, IMS and action program registers,
interface areas, action program load area, thread control block
(THCB}, and terminal control table (TCT).

UP-9206 SPERRY UNIVAC 05/3 9-3
IMS ACTION PROGRAMMING IN RPG il

SNAP DUMP LAYOUT

Header data Edited header areas contain: (1) data about which action program
was running at the time of the snap; (2) an allocation map that
provides the relative addresses of areas of interest within the
snap dump; and, (3) a general statement of why the snap dump
occurred - e.g., ACTION PROGRAM REQUESTED ABNORMAL
TERMINATION.

Register section The next section contains registers. There's one or two sets of
registers depending on the reason for the snap dump.

Registers saved by a If you voluntarily terminated your action program by moving S to

voluntary snap the termination-indicator field of the program information block,
the snap dump contains one set of registers. These are IMS
registers. They are of little use to an IMS action programmer. To
find the registers belonging to your action program, you must go
to relative location PIB + 4C,s which contains a full word
forward pointer. This word is the address of the SAVE area that
contains your action program’s registers. Go to this address and
advance three full words. The next full word is register 14, then
15, then registers 0O-12. Figure 9-3 illustrates these fields.

Registers saved by an If, on the other hand, IMS terminated your action program due to
. involuntary snap a program check or time-out, the snap dump contains two sets
of registers, IMS and user action program registers. The user

registers are labeled so they are easily identifiable. In addition, a
duplicate set of user registers can be found at location PIB +
44,c. At this location in the program information block, you’ll find
the 16-byte program status word indicating the address of the
instruction immediately following the one that caused the
abnormal termination. Also, right after the progam status word
are the action program’s 16 registers (O-F).

Interface areas Following the register section, you find the interface areas -
program information block, output message area, input message
area, work area, continuity data area, and defined record area.

Program area The next section of the snap dump is the action program load
area. It contains the executable load module that was output by
the OS/3 linker.

Thread control block Following the action program area is a section used for the
action program’s thread control block. In the thread control
block, most pointers and flags required to control the user
environment are stored for use by IMS and indirectly by the user
action program.

UP-9206 SPERRY UNIVAC 0S/3 9-4
IMS ACTION PROGRAMMING IN RPG |l

SNAP DUMP LAYOUT

Figure 9-2 illustrates the relationship between the IMS thread
control block and the user interface areas for both single-thread
and multithread IMS.

IMS SINGLE-THREAD

PROGRAM INFORMATION BLOCK
(PIB)

OUTPUT MESSAGE AREA
(OMA)

INPUT MESSAGE AREA
{IMA)

WORK AREA (WA)

CONTINUITY DATA AREA
{CDA)

DEFINED RECORD AREA
(DRA)

IMS MULTITHREAD

PROGRAM !INFORMATION BLOCK
(P1B)

OUTPUT MESSAGE AREA
(OMA)

CONTINUITY DATA AREA
(CDA)

WORK AREA (WA)

INPUT MESSAGE AREA
(IMA)

DEFINED RECORD AREA
(DRA)

Figure 9-2. Relation between THCB and Interface Areas

Single and multithread You will notice that there are pointers within the thread control
main storage layout block that point to each interface area. The differences between
differences

single-thread and multithread IMS in this area are only in the
location of these pointers and in the relative order of the
interface areas themselves.

Terminal control table The last section in the snap dump is the terminal control table.
The data in this area is relevant to the terminal that initiated the
action and is the least useful section of the dump to the IMS
programmer.

UP-9206 SPERRY UNIVAC 0S/3 9-5
IMS ACTION PROGRAMMING IN RPG i

ANALYZING A SNAP DUMP (FIGURE 9-3)

9.4. ANALYZING A SNAP DUMP

“Now we’ll discuss in detail Figure 9-3, which is a sample RPG I
snap dump.

The action name is RCCUST and the current program processing
that action is also RCCUST. The term-id {terminal identification)
for this transaction is WS1. This is the way the workstation that
initiated the transaction was defined in the communications

Allocation map addresses ~ network definition. The allocation map that follows contains the
beginning and end locations as well as the lengths of user
interface areas, and other areas included in the snap dump. The
locations refer to relative addresses. Relative addresses are
printed on the far left side of the snap dump.

No work area or continuity The directory in Figure 9-3 shows that there are no addresses

data area for the work area (WA) or continuity data area (CDA). The
reason for this is that these areas were not given values in the
configuration.

THCB addresses If you aren’t using an edited snap dump, that is, if it contains no
directory listing, it's still quite easy to locate all the action
program’s interface areas. Go directly to the thread control

. Location of interface block, which is at location DO,s. The first five full words (40
areas bytes) contain the relative addresses of the program information

block, input message area, work area, output message area,
continuity data area, and action program load area, in that order.

Reason for snamp dump Following the allocation map on Figure 9-3 is the reason for the
snap dump: ACTION PROGRAM REQUESTED ABNORMAL
TERMINATION. Voluntary termination results when an action
program moves S to the termination-indicator field (position 11)
of the program information block.

One set of registers The register section contains only one set of registers because
the action program terminated voluntarily. These are IMS
registers. To find RCCUST's registers, go to relative location PIB
+ 4C,s. At that location, you find a fuill-word address of
RCCUST'S save area. The save area contains the action program
registers.

SAVE area The save address is B484,5,. Once at this address, which is in
the action program load area, advance three full words. At
location B490,s you will find register 14, and in the subsequent
full words, registers 15 and 0-12, respectively.

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG i

ANALYZING A SNAP DUMP (FIGURE 9-3)

rus_tae
i
’ I WS 90

ST R PN T .

SN AP pume

ACTION NAME! RCCUSTOO

CUURRENT ACT1IOM PROGRAM? RPCCUSTOO

.. ALLOCATIUN MAP

e

FROH 10 LEMGTH
00p0AODN
00004A298
ago0uoDa
0000AN90
00000000
DOOOAZRP
0000GNDN
000000FC
NOOOUYRO

000naneF
00004283
00000000
00004297
00LUN000
Qouocz2s?
00UN0243
GDOONOFF
NONQNAYD

Uuo00090
unnoooiLc
Longnyno
conoo208
ouoooQno
aonozoco
unonoLz?y
uuogooto
onrgnaocH

CAUSE OF SMap pUuP:

BY ImMS/%90 AT GO4164

0=7 00001300 OCODOYAIR DUUIFCIC

8=F 60003096 AOCDH4202 OuUNOD9BL

064000 TO O&6A2B8

STATUS CODE
DET-ST-CODE

p907¢7F0 F2rdeos] unstunsl

C0AN20-0000ND50 00180000 wONCOOND (rﬁ‘é';sé:

onpoRYad

COAQGC=-000000CE CCDORYAY 4DOGCOONN nnnYur(C

SOURCE-TERMINAL.-ID

lBDAn”OOOOSDODIB DDndkﬂDD oponrocon

AD8D=-00000960 00000DDD LOOOAOOO 00000000
I0ACAD=404049040 %040404%0 40404040 40404040
*ses 0b6ADCO TO

06A280 SAME AS ABOVE

IMA

260-40404040 404904040 40404040 4040404Q

TERM=ID;

ACYIDN PROGRAM

BDLIMUHH el

0oNGANNG

SAVE address

10 et atatntat ettt atatalagatatalobatasetatn

DATE: vi/o4/s07

451 THANS=IDS VBS1VVEI0LZYDONUY TIME: fuisuilé

AREA=NAME

PROGHAM INFORMATION GLOCK
INPUT HESSAGL AREA ([MA)
WORK AREA (WA}

QUTPUT MESSAGE AREA (OMA)
CONTINUITY DATA AREA (CDA)
ACTIUN FROGHRAM LOAD AREA
THREAD CONTROL BLOCY (THCBI
FILE ALLOCATION Map
TER™|NaL CONTROL TARLE

(Pl

(TeT

RESUESTED AshipRMAL TERMINATION

Oroud43C 00004588 UOUOODS9Y wWUONGSHU

0n0U0980 OUUDYTEL ANUU%Y24% DULO3DY0

SUCCESSOR-ID
TERMINATION-INDICATOR
LOCK-ROLLBACK-INDICATOR

©2400091 U0r000N0 GCOU0DCO OUDUNODU 04.eeRPGULUSNese/ ol ,sasossscsonae=bAllON

[reriFurs sardeiro Fsrurirs]vooun ek teerd 10407 1ULUIY, . u-06A020

OUUNCIBE DDOUBYDY DPONY I8 DUOUNUUD ®ebessocssscessarcrsocsresMisnssnea=nbAlYD
ANUAZ Al NOr1FCeC ONNZsbB OUDUZEE

1
DATE TIME

ohe

SOURCE-TERMINAL-ID

sesseagocsersssNeseU=N6AUS0

DESTINATION-TERMINAL-ID
CONT-OUTPUT-CODE
TEXT-LENGTH

SFS OPTIONS

[ese2Fiso uooohouuh)nonoooololrcbouu ®eretosararsessssdSl sosscnsassesaBbAUBO

=06A0AD

SOURCE-TERMINAL-ID

404040490 40404040 00510061 WSl ses/=D6A280

'04240-02530c0% [001docoo [FirirFiFt Fi4EFOFO

FIFOFOMO FOD6O7¢F 05 ®esssereciillI*D010n Deese =C6A2A0

SNAP 06A2BR YO | D4C2BS

TEXT-LENGTH

Figure 9-3.

Sample RPG Il Snap Dump (Part 1 of 2)

UP-9206 SPERRY UNIVAC 0S/3 9-7
IMS ACTION PROGRAMMING IN RPG II

ANALYZING A SNAP DUMP (FIGURE 9-3)

ACTION PROGRAM

288-05F058F0 FOD4O7FF DONOB404 0DPD0OCOD 00000000 ODDOFOFU 00000000 OCOUOODD ®¢Ge00asus

10A2D8 - 00 0O 0o 00000000 00000000 0000V000 OUUONOUD ®eeesescovarsssssscanssascnssansa=064208

®oe® ([HLA2FB TO D06A318 SAME AS ABOVE

*ERROR

00A458-00000000 O00DOR3I2 0DOO0OOOD 0QAOODDOO (E£3000308[0000B3IA0 00008100 OODUN2FB ®esecescccrssvoseTonssrascsccscse=06A458

filename-CUSTFIL

JOAFD8-00008896 DDOOC280 00NOBABO 0NOOBB78 [CIE4E2EI CACIDIND 0000BOOZ 20CH0000 ®scevoeBoearensssCUSTFIL coseeaFoe~D6AFDE

10AFF8-00010005 |[FIFIFIF}] FIBERGOD ©DOOOCCD 00000000 00000000 O0DDOODO0 00000000 ®seselllilisecocsssscons eee=D6AFFS

RECORD KEY B002

SAVE ADDRESS ——s —+s REGISTER E F

L tr—-—J—-gi] s .
J0B478-705292F0 308592D2 3180D609 |30853085] 0000A044 000001AC|{4000B896]|000U4148|®eseDeseKosDasoacesscnsne cocrses=06B478

. ! ol : -
noswa-buoouooa[ooouounulounmzvelonnmzeel 1000284 00004000 000nD288] 0000B7L8]eerereeerinerniineiiieieiikeenor-0s8Y98
T T T T T T T

0o 1 2 3 4 5 [] 7

msuu-‘oouanouoIoonoa|ou]oono‘ouIuouoesvz{ouuoaauloooosunq 60008764 90ECDOOC a4 T g Y1 L 113

| I
8 9 A B C

PARAME,TER LIST

0C118=7452tAFF SBEOD7414 OG7FEC2CT 6n00BIBE 1bOODAFEB 00008002 CUOOAFfQJDODDUOOO ®esvenasecsBBTesevsaYooeveenacaes=DbCllE

THCB DIRECTORY FOR UNEDITED SNAP DUMP
PIB IMA WA OMA cDA
pnp0-{00004000] 60004298 [00n60000[00004090] 00000000 00004288|C00ODF9A DBODNUOD #esesssesresesnsercsesasscsasssss=060000

00070*00000000 00000000 QONPOGOOO 00000000 ‘DOD|F7DC 0001FC9C 00000000 O00U0T8D ®eacecesesccescssanelasncsarccsess=04COF0

00110-00000: THCB+20285| 04000000 0n00C000 0000AUUD 00000188 THCB+74 00000000 ®«.des cisesdesscasses=060110
Sy

'00130-00000000 00000000j 00000000 0G0DONO0 uoooouua[bsoooqu‘ogpppjza»uoouclza]-...........................v..n.-usnllo

FILE ALLOCATION MAP

Figure 9-3. Sample RPG Il Snap Dump (Part 2 of 2)

UP-9206

SPERRY UNIVAC 0OS/3 9-8
IMS ACTION PROGRAMMING IN RPG I

ANALYZING A SNAP DUMP (FIGURE 9-3)

9.5. THE PROGRAM INFORMATION BLOCK (PIB)

Locating the status codes

Locating the successor-id
field

Locating *ERROR

Interpreting error codes

Finding Your Error

The program information block begins at address OAQQ. The first
word (4 bytes) contains the status-code and det-status-code
fields. IMS returns values to these fields indicating the result of
action program function calls. If the function call is successful,
these fields contain zeros. In Figure 9-3, however, you see that
the function call made to IMS was not successful. The value 034
in status-code indicates the action program made an invalid
request. The OB, in det-status-code indicates that the file
requested in the function call was not assigned to this action at
IMS configuration. To find out exactly which file is involved, you
must consult the parameter list address in the thread control
block. We will discuss how this is done very shortly.

For a complete listing of the values IMS returns in the
status-code and det-status-code fields, see 2.6.

Looking further into the snap dump at relative location PIB + 4,
you find the successor-id field. Notice that this field contains
‘RPG020°. Whenever RPG Il encounters an error, it places the
appropriate error code in the successor-id field prior to requesting
the snap. RPGO20 indicates an indexed file error. For a complete
listing and description of error codes, consult OS/3 system
messages, UP-8076 (current version).

A further statement of the error condition can be found in the
field, *ERROR. RCCUST's link relative location or link-org is O and
*ERROR is displaced 1BO,¢ into it. To locate *ERROR, we take the
start location for the action program load area that the allocation
map tells us is A2B8;s and add 1BOss to it. This gives us
location A468,¢ or *ERROR. At this location in the snap, we find
E3,6 in the first byte and 03,5 and OB,4, respectively, in the third
and fourth bytes. You will recognize 03,6 and OB, as the
status-code and det-status-code fields. The E3,¢ (character T)
can be found in OS/3 system messages, UP-8076 (current
version) and is defined as an RPG020 error.

At this point, it's obvious that the wrong file name was used for
I/O or the file requested is not available to this action program.
In our example, the file CUSTFIL to which the function call was
made wasn’t configured for use by action RCCUST.

UP-9206 SPERRY UNIVAC 0S/3 9-9
IMS ACTION PROGRAMMING IN RPG I

ANALYZING A SNAP DUMP (FIGURE 9-3)

Finding Other Data in the Program Information Block

Locating the Still in the program information block, at relative location PIB +

termination-indicator field A, s the field termination-indicator. It contains an E2,4
(character S) for snap dump. The value in this and any other
program information block field varies depending on the action
program and whether the program terminated voluntarily or
involuntarily.

Locating the Relative location PIB +B;s is the lock-rollback-indicator field. It

lock-rollback-indicator field cqontains D5,¢ (character N), which is the default value. The value
N establishes a new rollback point in the audit file (before-images
of records to be updated) and releases all locks for this
transaction.

Locating other PIB fields By comparing the program information block fields listed in Table
2-6 to the program information block area of the snap dump,
you can see exactly what values all these fields contained when
the dump occurred. For your convenience, we have noted a few
of these fields in Figure 9-3: transaction-date (810407),
time-of-day (105014), and source-terminal-type (E6:¢ or W for
workstation).

Entire PIB displayed All 145-character positions of the program information block are

displayed. Remember, however, that only the first 70 positions
are accessible to your action program.

9.6. THE OUTPUT MESSAGE AREA

Locating the Using the allocation map, we see the output message area

destination-terminal-id field hegins at address A090,¢. This area contains the 16-byte header
and the output message generated by the action program. Since
RCCUST terminated abnormally before generating an output
message, the output message area contains spaces. However,
the header data is displayed. The first word contains the
destination-terminal-id field. This indicates the destination of the
output message had the program not terminated abnormally.
Note that this value is the same as the value in
source-terminal-id, which occupies the first word of the input
message area.

uP-9206

SPERRY UNIVAC 0S/3 9-10
IMS ACTION PROGRAMMING IN RPG Il

ANALYZING A SNAP DUMP (FIGURE 9-3)

Locating the
message-length field

Also, in the output message area at location AO9C, or OMA +
Cs¢ is the 2-byte message-length field. This field indicates the
size of the output message to be generated.

Since RCCUST doesn’t use screen format services and it isn't a
continuous output program, relative locations A094,; and
A098,6, respectively, contain zeros.

9.7. THE INPUT MESSAGE AREA

Locating the input message The input message area begins at relative address A298.,. its

contents include the input message area header (16 bytes) and
the input data entered by the terminal operator. The terminal
input starts at IMA + 11 or A2A8. The terminal operator
entered the customer number 11111 (F1F1F1F1F1), a plus (+)
sign (4E), and AMOUNT $1.00 (FOFOF1FOF0O). These entries
correspond to the data requested by the screen format shown in
Figure 3-11.

9.8. ACTION PROGRAM LOAD AREA

Largest section of dump

Using the thread control
block

Since there is no continuity data area, work area, or defined
record area for this particular action program, we will now
discuss the program load area. This is by far the lengthiest
section of the snap dump. Since data contained in the thread
control block is essential to interpreting the program area, we
will discuss the two areas at the same time.

In this example, the thread control block is at location DO,g. It
contains the addresses of all the interface areas and the action
program load area. This data is of value only if you're using an
unedited dump. However, the thread control block does contain
other information very useful to the IMS programmer.

UP-9206 SPERRY UNIVAC 0S/3 9-11
IMS ACTION PROGRAMMING IN RPG i

ANALYZING A SNAP DUMP (FIGURE 9-3)

Locating the file allocation = At THCB + 20: or in our example location FO,s, there are four

map full words used for a file allocation bit map. To use this bit map,
you must realize that four full words contain 128 bits. IMS uses
these bits to indicate which specific files a user action program
can access - one file per bit. The file allocation map for
multithread IMS is 8 full words long (256 bits).

When bits are set off In Figure 9-3, no bits are on at location FO. Consequently,
RCCUST could not access any files. If you recall, the
det-status-code field already informed us that the file wasn't
defined at IMS configuration. However, in cases where this same
problem doesn’t exist, the file allocation map can be very
valuable in determining exactly which files are being accessed by
an action program.

When bits are set on For example, if the high order bit was on, the action program
could access one file - the first file configured. If additional bits
were on, additional files could be accessed. These bits are
maintained in the same relative order as the actual files were

configured.

THCB + 74 Moving to relative location 144 or THCB + 74, we find three
words that in most instances are very useful for debugging
purposes:

0O300003A 000004E8 0000C128

Determining the last The first of these words needs to be broken down into individual

function call bytes. Byte O (03) indicates the number of parameters passed on
the last CALL function made by the action program. Bytes 1 and
2 are not used. Byte 3 (3A) indicates what CALL function was
issued. In this case, it was a GETUP function with three
parameters passed.

Although the RPG Il action program appears to access files
normally without issuing function calls, RPG Il is in fact, issuing
these calls to IMS.

Table 9-1 lists all the IMS function calls and their corresponding
hexadecimal values for use in debugging your action program.

UP-9206

SPERRY UNIVAC 0S/3 9-12
IMS ACTION PROGRAMMING IN RPG I

ANALYZING A SNAP DUMP (FIGURE 9-3)

Hexadecimal equivalent for
function calls

Locating the DTF

Locating the parameter list

Table 9-1. Hexadecimal Equivalents for Function Calls

06 RETURN
OA SEND
26 ESETL
2A SETL
2E INSERT
32 DELETE
36 PUT
3A GETUP
3E GET
4A SNAP
8E SUBPROGRAM

The second word of this 3-word group is the relative address of
the DTF referenced by the function call if it was an /O function.
This address is not within the range of the user snap dump and
is useful only when a job dump is available.

The last word of the group is the address of the parameter list
that was passed for the function. In our example, the relative
address of the parameter list is C128,5. This address is in the
action program load area. Since three parameters were passed in
the call, the next three full words are the addresses of those
parameters. The first address is the file name. It's at location
AFE8,¢ in the program area. At this location, we find a 7-byte
constant, CUSTFIL, which was the file RCCUST attempted to
access. The second and third addresses are B0O02,; and AFFC,q,
respectively. Address B002,¢ points to the location into which
the CUSTFIL record was to be read. As you can see, there is no
record in this location since the GETUP was never accomplished.
The third address, AFFC., points to the location that contains
the record key, FIF1F1F1F1. Both of these locations are in the
user program area.

UP-9206 SPERRY UNIVAC 0S/3 9-13
IMS ACTION PROGRAMMING IN RPG I

SINGLE AND MULTITHREAD SNAPS

. 9.9. SINGLE AND MULTITHREAD SNAPS

Order of interface areas There are two major differences between single-thread and
multithread snap dumps. First, the order of the interface areas is
different. In single-thread, it is: program information block; output
message area; input message area; work area; continuity data
area; and, defined record area. On muitithread, it is: program
information block; output message area; continuity data area;
work area; input message area; and, defined record area. Since
the allocation map in an edited dump points directly to these
areas, there should be no difficulty in locating them in either
single or multithread IMS.

Different DSECTs The second major difference concerns the thread control block.
The format for single-thread and multithread is totally different.
Figures 9-4 and 9-5 provide listings of the thread control block
DSECTs for both single-thread and multithread IMS. You will see
by examining these figures that although the format is different,
the data they contain is basically the same.

UP-9206 SPERRY UNIVAC 0S/3 9-14
IMS ACTION PROGRAMMING IN RPG II

SINGLE-THREAD THREAD CONTROL BLOCK

LOC. LINE SOURCE STATEMENT
A99T7 9+ LMaDTHCB
goonoo B9940+ZTHDTHCH DSECT
B998 |+
B9982+¢ THREAD CONTROL BLOCK / SYSTEM Ii-ORMATION BLOCK
BG83+
H9984+e THREAD CONTROL SECTIUN
B99B5+e
B9986+»
59987+ INSERTED EQU'S Tu MATCH 05/7 NAMES
89988+
8g0n0Q B9yn9+2ZTaTPIBA cWu .
goonoo B9990+ZTHKPIBA (S A PROGRAM JNFORMATION BLOCK ADDR
900004 B999LI+2ZTHTIMA EQU .
090004 B9992+2ToHIMA (S A INPUT MESSAGE AREA ADDR
%qonos B99Y3I+ZTHTWA LQu .
800008 BIII4+2ZTHHWA DS A NORK ARE4 ADDR
89000C BOGYS+ZTHTOMA EQuU .
%0000¢C BIYP6+2THHOMA US A OUTPUT MESSAGE ARtas AULDR
000019 39997+2T8TCCA EQu .
coonlio B9998+ZTH#HCDA DS A CONTINUITY DATA AREA ADDR
290014 BIIYI+ZTHIDRMA E U .
Coool4 BOOD0+2Tu#HDKA US A DEFINEu KECORD ARta ADDR
Sno3nis BOCO1+2TuDOKEC EQU .
2gonis B0002+2T®#HDDRA DS F OATA DEFINITION RLCORD ADOR
taonic BOCO3+ZTBSUBFL Ewy .
G3001cC s0CCY4+ZTRHDFA S F DEFINED FILE/SUBFILE pKT ADDR
800029 BCCO5+ZTaTFAM wqu .
000029 BDCC6+ZTuHFAM DS 4F FILE ALLOCATION AP
0goo01¢ BOSCG7+ZTRHNUMF biyu s~ZTuHFAM FILE ALLOCATION MAP LENGTH
000030 - BpCOB+ZTATATA EQU s
0ooo0aco BOCO9+2ZTRHATA DS F ACTION CONTROL REC PTR
080034 BECLIO+ZTHTPYA LAy .
830034 BOCL1+2Ta#HPTA U>S F PROW CONTROL TABLt REC PTR
200034 BOC12+ZTaTPTA] US F
Snon3c BOCL13+42TaYTTA bau .
8003n3cC BOGI4+2TENTTA DS F TERM CONTROL TAB kgC PIR
2¢on40 BCC1I5+ZTaK10AY DS F START OF VARIABLE 1/0 AREA
80on4y BO2L6+2ZTRHPLA S F PROWRAM LOAD AREA ADDRESS
Gogn4s BOG17+2ZTanRIQP 0S5 F BYPASS INTEKRUPT UEUE PTk
BOClB+e
BOG19+e EQUATES FOR IST BYTE OF LTaHBiQP
300008 80020+2Zd8SOLSH EQU x*U8* SHUTPOWN IN PROCESS
Sooo04 ED0221+ZB8SOLAS tyy X'04* AUTOMATIC STATUS
020n02 A0T22+788S0LCO EQU X*02¢ ZZUP/7ZDWN COMMAND OUTSTANDING
foonot BOC23+Z288S0LSTY eqQu x*01* SHUTLOWN TIMER
BOCZ24+»
0gecns4c ACC25+2ZTHHRIQL LS xL1l BYPASSED INTERRupT QUEUL LENGTH
200040 BCC26+ZABUSER Ewuy .
200040 03 wCCLZ7+ZTHUSER uC X'U* o USER FLAG
BOC 26+
80029+ MUST ALWAYS HBE ON Oupn BYTE bOUNDARY

Figure 9-4. Single-thread Thread Control Block (Part 1 of 4)

UP-9206

SPERRY UNIVAC 5/3
IMS ACTION PROGRAMMING IN RPG I

9-15

SINGLE-THREAD THREAD CONTROL BLOCK

LOC.

BgOn4E
000N4E

Coonsy
toooue
8000290
Cooolin
goono8
Ogono4
000002
0co001

CO004F
¢ngnao
Soon4o
0gon22
800019
200nG8
000004
0gonc?2
eoons?g

Coon74
€00074

gogn7a
290078
8gan7c
tegnrc
COGNRT
200087
IngnRC
toon9s

TICNo
teenoc

LINE
BOC30+s
BOCS1+»
BOC32+»
BOC33+0
BOC3I4es
BQJ35+ZT8TIND
B80C36+2ZTHHIND
B80C37+e
80C 38+
BOC 39+
BOCHU+ZTBHINSP
oCCU41+ZTaHINER
BACH2+2TaHIND]
B8OC43+2TaHINEQ
BOCHY4+ZToHINEX
BOC4S+ZTEHINCN
BOOH46+ZTHHINIR
BOCH7+2TayINUP
BOCHE+
BNCY4Q+ZTHSYIND
60050+ZT#ILISTY
BOCS1+ZT8TGHMRD
BOCS2+ZT8TRSD
83353+2Ta8yTOUuT
BNTOLY+ZTRESETL
BCTS%B+ZTB8USET X
BANS6+2TRZZIOPN
BCC57+2T8PSSK
BTC58+»
BlCNLY+e
BOCHG+»

kWit
Ls

EJUATES

LGy
Eull
EGWy
LGy
[NV
EQu
LQuy
EQu

usS

t @y
tdy
£EQyY
bWy
£EQu
[RY)
Eay
;S

SQURCE STATEMENT

80 ~ 1/0 HAS OCCUKRED
40 - INITga_ SETTINGg FOR USER
00 = IMS ACTIVE

- COUNT FOR TOTA; TIME
*
Xt 1

CONTROL INDICATURS

FOR ZTaHIND

SNAP INDICATON

ERROn RETURN

DELAYED INTERii. L SUCCESSION
EXPLICIT OUTPUT

EXTEKNAL SUCCcSSION

CANCELLED

INTERNAL REWUEST TO FILE MGMT
UPDATE PLRFORMED gY THIS ACTl1oN

Xts0
X'40¢
X*20¢
X'1Ge
X'UBe
X*U4e
X202
XUl

Xx1.1 CONTROL INOICATURS

X'o0r INTExRUPT IST IF SET

x'40¢ o (F ON INpICATES READ FROM TOMFOLE
X*'20* o HRESEND = NU

X*15s USER TIME QUT

x'0B
Xty
x 320
9F

USt 1HE TEXT 4 UMA ALTHUUGH TrANS WAS CNC
INGICATES TO anlTk ZZOPN TERM, RECORD

FILE MANAGEMENT ENTRIES

-

BYTE O 18 OF PARAWS

BYTe 3 ; FUNCTIOW CODE

JNPROTECTEDL DTF AuDK

PARSM L15T AUDR

*» T 4T 8

38 FILE 1GaT wORK AcFA
A TCYT ADLE OF DMS RuN=UNIT
A UMS = OM(_A ADDKRESDLH

DATA MLNAGEMENT (AVE AREA
IMTERMaL REWUEST SAVE AREA

| 4F
18F

bOCO1+ZTATFC twl
BAC62+ITBRFC ¢S
RRToles
ROG64+LT&TUPDA EwU
BODKS+ITRHUPLA US
BR3oé6+2T8TCK [
HOC&7+ZTaREPLA oS
BT ou+.Ta8TF WA Ldy
D369+ 7 TaHF WA LS
82" 7C+ZT8DOMSL .S
SAC71+ZToDMCA LS
b3 2+e

BOL73+s SAYE AxEAS
BT T74es

BOTTh+e

RO/ 64
s0C/7+«Z18HSALUN U
HN27u+ZT8HSALlR 0S
b7 9+

BOCHGH 5YSTeM

sNTd]+e

THFOQRMATION S CTION

Figure 9-4. Single-thread Thread Control Block (Part 2 of 4)

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG il

SINGLE-THREAD THREAD CONTROL BLOCK

LOCe L INE SOUKCE STATEMENT
000124 BOQB2+ZBuSTIDY LS F TRANSACTION CODE T.BLE
000128 ©B0083+ZBuSACT S ACTION CUNTROL TApLE

n

00012C BOCB4+IBBSFCT DS ¥ PROGRAM CONTROL TABLE
CO00130 o©0085+488SFCT] DS F FILE CONTROL TaABLL INDEX
000134 BOCB6+IBASTERM ULS F TERMINAL CNTL TtBL ADDR
000138 BODB7+ZBaSDCT] DS F DEF FILE CONTROL TABLE
80013C BOGC38+IB8SFADR LS F IMS LOAD ADDRESS
000143 oCDB9+ZBHSAVAL uS F AVAILAgLE LIST ADukESS
000144 BO0O90+ZBESTCS DS F TERMe CONTROL SECTION
000148 ©BOOY1+ZB8u2SIMB DS F INPUT MESSAGE BUFFER
00014C BOD92+ZBRSI0AE DS F 1/0 AREA END ADDR
00015C BOO93+ZBaSFSAD US A ADDR IMS SESSION STATISTI(CS
000154 ©B0094+28B8L0UTHM LS H LARGEST OQUTPUT MSue
000156 BOO9S+ZBHLINM 0S H LARGEST INPUT MSG.
000158 BODL6+ZB3LOMT] 0S 4C LARGEST OUTPUT MSGe=TERM IDe NAME
800015C BOO97+ZbaLIMTL LS 4C LARGEST INPUT MSGe=TERM IDe NAME
000160 B80098+ZBESHMLL DS H STANDARD MESSAGE LINE LENGTH
000162 B0ODY9+ZBUSMNL uS H STANDARD MESSAGE WUMBER OF LINES
000164 BC120+ZBBSINBL uS H INPUT MESSAGE BUFFER LENGTH
000166 d0101+2ZB8TMCCA LS H NUMBER OF TERMS Iiiv ICAM CCA
000148 BRBO102+2BaSTOUF uS XLl o USER TIMEOUT F AG
000169 RBNID3+ZBUSOLOF uS xL1 CONTRO_ INDICATURS FOR AUDIT
BC10Y4s+e
BO125+s EQUATES FOR ZBaSOLUF
000080 BO104+Z2b8SO0LUP EQU X'80¢ UPDATING PERMITTED
000042 ©O1J7+ZB8SOLA]l EQU Xx*40% AUDIT MODULE INCLUDED
BO1Dg+e (BEF 1IMAGES,

000023 B0109+208SOLNKG Egu X?20¢ KROLLBACK PROGRAM / FILE DOWN
000010 RO110+ZB1SOLSU EQU X*10v SUPPRESS UPDATES

000008 BG111+Zo850LTE EQU X'08¢* REFORE IMAGLS TRACED

000N04 BN112+ZR8SOLTA EQU Xx*04s AFTER IMAGES IRACED

000002 8C113+Z88SO0LT} EQU Xx*020 INPUT MESSAGES TRACED

000001 B8O0114+Z88SOLTE EQU X'Q1v 1/0 ERROR TRACE FILE

: BO11G+»
00016C 80116+ us 0F
BOL17+s
00016C BNiI18+ZusFLGl DS X o FLAGI OF STARTUP

000NBZ BOI19+ZbuSTRIN EwU X*'80* o STARTUP ACTIivE
000040 b0D120+ZBBTCRSH EtwU X*40% +*TRCFILE=CRASH
B00N20 &N121+ZB8TEXT ctwu X*20% «*TRCFILE=EXT

000160 BO122+ZB8FLG2 0S X oFLAG FOR TOMF]LE

000082 o0123+ZE88TOMUP QU A'80¢ o TOMFILE CONF jJQURED
000N01 ©BO124+ZB8TNMER EuWu X*3ly o ERROR ON TOi1 FILE
000002 HNI25+Zo8TOMNT LQu x*02' +» DO NOT TRACtL TOMFILE
CD016E ©wC126+288FLG3 uS ¥ «FLAG FOr TYPE OF LESTART
000001 RBO127+2B814DCL EWU £'0J1* +START=CLEAN

CO0002 KN128+ZBRINDWA WU X*02¢ «STARTawARM

2C0004 BO129+2ZBBINDCO Ewu x'J4 +START=(O0OLV

C00146F 30130+2ZBAFLGY DS X DMS FLAG RYTE

000083 DRO131+4881MSDM Edu x*83¢ 1MS nAS MADE a REQUEST TO DMS
000040 8B7132+Z88DMSDC WU A*43r DMS HAS TERMInNATED
000020 BC133+4288DMSRU EJGU x*'203% DMS KUN=UNIT exISTs

Figure 9-4. Single-thread Thread Control Block (Part 3 of 4)

UP-9206 SPERRY UNIVAC 0S/3 9-17
IMS ACTION PROGRAMMING IN RPG i
SINGLE-THREAD THREAD CONTROL BLOCK
LOCe L INE SOURCE STATEMENT
000012 BD134+28#IMSNA EqU X*10* IMS WOT ALLOWE~ ACCESS TO DMS
000NG8 BRI 35+ZB8DMSNA EQU Xx*08% DMS |S NOT THLRE
000173 RO136+2ZIBRFLGS US XLl
000082 BC137+IB8KAT EQU X*80* KATAKANA CONFiGURED
000040 BD138+268STATS tQu X*4Ce STATISTICS AT SHUTDOWN
900025 BC139+2ZB8SFSEN EQU X*'20Y SFS EMABLED
¢QON0CE ©BO140+ZB8GLH Ewy X*08* GLOBAL NETWORK
€00N04 goI41+Z88DED EQU Xx'04¢ DEDICATED NETwnRK
000171 BO142+ LS XL3 UNUSED
600174 BOI43+Z82LPCT DS F LAST PCT ADULRESS
000178 osC144+Z88LACT DS F LAST ACT ADDRESS
00017C B0145+ZB8LAD LS F LAST LOAyL AREA ADunESS
000180 o0l46+28aNLST S H INTLIST=N VALUE
000182 89147+ ¢S xL2 UNUSED
000184 BD148+2CHCCA uS F CCA NAME
000188 ©80149+ZCHLOCAP S F LOCAP NAME
00018C u0150+Z88MDICE S F OICE-SCREEN CLEAR/.SG POSITION)
800190 HOISLI+ZbuytoEF S A POINTER 10 TRIDT 10 PROCESS UNDEF.TRANSeCONES
CQ0194 §nNiL2+42ZRUDATE DS F TODAY'S LATE
000198 bsC153+Zb8BSESLN 0S F LENSTH=SESSION TAolE=2STAT
CBO19C HBCIS44ZQATHFIN US OF o THIS TAG MUST STAY AT END
00019C BO155+ZTHHLEN EQU s=7ZTyUTHCE LENGTH OF THCH
00019C BO156+ZTHTLEN EQu ZTaHLEN
000000 gn157+2CH]1P CseCy

Figure 9-4.

Single-thread Thread Control Block (Part 4 of 4)

UP-9206

SPERRY UNIVAC 0S/3 9-18
IMS ACTION PROGRAMMING IN RPG Ii

MULTITHREAD THREAD CONTROL BLOCK

LOCe

600000
600000
00004
000008
000009
000004
000004
000008

00000C
0oo010
0ooo14
g0poo18
Opoolic
ogoo20
000024
0ooo2s
0o002¢C
8opo030
000034
So0020
000054
800058
00005¢C
000060
000064
800068
00006¢C
000074

geoo7s
2g0076
toonze
Co0074A

LINE SOURCE

2628
2629

A2630+2T8DTHCH
A2631+7TRTHQPT
A2632+7TaNTHCS
A2633+IT8THURF
A2634+ZTHTHRDF
A2635+2TupwaAlT
A2636+2THREGRS
A2637+2TH]1ECHB]
A2638+e
A2639+»
A2640+
A2641+ZTHTHSVR
A2642+ZTBTHRAD
A2643+7TBTPIBA
A2644+2TRTIMA
A2645+ZTHRTWA
A2646+2TRTOMA
A2647¢7T8TCDA
A2648+2ZTHTDRMA
A2649¢1T8DDREC
A2650+ZTasUBFL
A2651+ZTHTFAM
A2652+7T8TNUMF
A2653+2TRTATA
A26549+7THTPTA
A2655+ZTHTPTA|
A2656+ZTuTTTA
A2657+7TuyIMB
A2658¢2T8TEDIT
A2659+2TBTRID
A2660+2TaTIND
A266)+»
A2662+0
A2663+s
A26644+0
A2665+0
A2666+
A266T7+0
A2668+0
A24L69+s
A2670+»

A267 1+

A267 2+
A2673+#

A267 4+
A2675+7THTERS
A2676+ZTHTES
A2677+2CRSFSSC
A2678+2CB]TLN

STATEMENT
PRINT GEN
ZMaDTHCB
DSECT
DS F ¢ NEXT THREAD IN QUEUE POINTER
vs F o NEXT THREAD FOR SCHEDULING
Vs X o URGENT FLAG 0 - ROUTINE
Vs X « THREAD READY FLAG | = READY
DS OX 81T O INITIAL THREAD WAIT FLAG = wAIT
DS X BIT 7 RESTORE REGISTER FLAG 0 ~- YEgS
DS X BIT O CANCEL FLAG | = CANCEL
BIT 2 OUTPUT MESSAGE GENERATED BY 7GS8MTMSO
BIT 3 INTERNAL CANCEL INITIATED
bIT 7 JECH FLAG 1 = 3wORD
DS F ¢« THREAD SAVE AREA REGISTER
us F o THREAD RETURN AURnRESS
us A PROGRAM INFORMATIUN BLOCK ADDR
DS A INPUT MESSAGE AREA ADDR
LS A WORK AREA ADULR
LS A OUTPUT MESSAGE ARta ADDR
LS A CONTINUITY DATA AxgA ADDR
Ls A DEFINED RECORD ARLA ADDR
us A DATA DEFINITION RECOKRD ADDR
LS A DEFINED FILE SuB=fF ILE DESC ADDR
usS 8F FILE ALLOCATION MaP
£EQu s=ZTaTFAM FILE ALLOCATION MAP LENGTH
DS A ACTION CUNTROL TAuLE RECORD ADDR
LS A PROGRAM (ONTROL TABLE RECORD ADDR
LS F
LS A TERMINAL CONTROL TABLE RECORD ADpDR
0s A INPUT MSG BUFFER aDDR
us A EDIT TABLE ADDR
VS CL8 TRANSACTION 1D
us xL1 CONTROL INDICATuURS
glT O TERMINATION TYPE 0 NORMAL
1 ABNORMAL
BlT 2 ERROR RETURN 0 NO
1 YES
81T 3=4 INTERNAL MESSAGE CONTROL:
00 END ACTION gR END TRANSACTION
ol EXPLICIT QuTPUT
10 DELAYED INTERNAL SUFCESSION
i1 CANCELLED
BIT S INTERNAL REQUEST INDIC FaR FM
0 NO
1 YES
sIT 6 OUIPUT [N PROCESS
slT 7 OUIPUT wWAITED
LS X ERROR CODE NUMBLR
US H RELATIVE ACT RECOnn ADDR
s H INPUT sTATUS BYTE COUNT
Us xLl xTIOnw FLD LEN CIR=INVALID TRANSACTION

Figure 9-5. Multithread Thread Control Block (Part 1 of 2)

UP-9206

SPERRY UNIVAC 05/3

9-19

IMS ACTION PROGRAMMING IN RPG ||

MULTITHREAD THREAD CONTROL BLOCK

LOC.
tooo7s

Cooos4
egooss
tgoosc

000099
600094

80goo9e
0000A4
000000
200000
0000F 8
0000FC
2oo118
00016C
00018C
cogi80
000184
800188
000188
tooo4p
000004
00001}
0001BC
dopi1ce
0001C4
8001C8
0po1cC8
0000090

LINE
A2679+2C8SFSID DS

SOURCE STATEMENT
CLé SUCCESSOR=-ID FOR REBUILD

A2680+% FILE MANAGEMENT ENTRIES

A268)+e
A264B2+2T8THA LS
A2683+2TRTRPLA DS
A2684+ZTRIFC vs
A2685+»

A2686+2T2TUPDA DS
A2687+ZT8TCR DS
A2688+s OTHER
A2689+2TRTFWA DS
A2690+2T8TSAV] DS
A2691+¢2ZT8TSAV2 0S

A2692+218SAVS EQu
A2693+72TusAVES EQu
A2694+ 0s

A2695+2T8TSAVY LS
A2696+ZTHTSAV] LS
A2697+7A8PSSK 0S
A2698+ZTHTFLA DS
A2699+7ZTHTF L DS
A2700+ZTnTF2 DS
A2701+42TaSYIND EQU
A2702+2T8TOMRD EQu
A2703+ZTm72720PN EQU
A2704+2T8uRDF Ewu
A27C5+2TayDMCA DS
A2706+4Z2Ta1DMCA LS
A2707+12TusSIBA s
A2708+ DS
A2709+ZTHTLEN EQuU
A2710+Z080UTMT

Figure 9-5.

CSECT

PARAMETER LIST FOR SUBTASK

A BEGIN aADpR

A REQUEST PARAM LIST ADDR
A BYTE O -

&8 OF PARALS |

A UNPROTECTED DTF AupR
A COVER REoG

3A WORK AREA
11A SAVE AREA 1

11A

ZTHTSAV2 SAVE AREA b
ZT8SAV5+40

7F 10

18A SAVE AREA 4
11A SAVE AREA 3

9F

F REQUIRED BY

IRAM

F APPLeMANAG.
F FLAG BYTE
ZT8TF2 FLAGS

X400
X*04r
X0l

A ImMs

INDICATES TOM EAD .
INDICATES YO wRITE 2ZOPN TERM, RECORD
MIRAN
A USER PROGRAM DMCA ADDRESS
INTExNAL DMCA ADDRESS

RE=READ FLAG

F SIy ADDRESS

OF

¢=ZTuDTHCB LENGTH OF CONTROL BLOCK

N LIST
BYTE 3 - FUNCTION COnRE

Multithread Thread Control Block (Part 2 of 2)

UP-9206

SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG I

9-20

TERMINAL CONTROL TABLE

Terminal control table

The terminal control table for single and multithread IMS is also a
valuable debugging aid. Figure 9-6 shows this table.

LOCe

000000

200000
000004
cooo08
00000C
gooole
000014
goontis
000014
0goolB
000018

Gooo080
000040
¢ooo020
000010
000008
Gooo04
0oono2
0ooo00!
800001

oonicC

teooap
0ooo4C
000020
000010
000008
Ceoo04
000002
000001

Gooo10
Geoo!lD

Sooosee
coon42
800022
2gon1¢C
toonos

€00004
8gonc2

LINE SOURCE

2712
A2713+42C8pTCT
A27 14+»
A2715+2C8L INK
A2716+2CaTI1D
A2717+Z2CuTAL
A2718+Z2ZCuTALY
A2719+Z2CaTTTA
A2720+2CuTESR
A2721+2CaTCOL
A2722+2CHBTLN
A2723+72C8TTST
A272442CHBTST
A2725+%
A2726¢»
A27274+¢
A2728+2CaTTLSTY
A2729+2CHTTTHMD
A2730+2C8YTUM
A2731+4ZCBTYTDWN
A2732+42CuTTHLD
A2733+72CnTTUT
A2734+2CHTMWR
A2735+2CaTMTC
A2736472C8TOMW
A2737+»
A2738+2CaTSTI
A2739+
A2740+s»
A274)+e
A2742+ZCRTITIM
A2743+2CaTTNT
A2744+2(nTALTS
A2745+2(8TTRC
A2746+2CBTTMWS
A2747+2CoTTBTH
A2748+2CBTTRP
A2749+2C8TTMS
A2750++
A2751+2C8T572
A2752+Z(8TPRSF
A2753+¢
A2754++»
A2755+8
A2756+2C8TTUNS
A2737+2C8TTREL
A2758+42CaTPKMQ
A2759+2CuTPRMP
A2760+2C8TTSTA
A2761+42CHTCONTY
AZ2762+2Ca8TDELN

Figure 9-6. Single-thread and Multithread Terminal Control Table {Part 1 of 5)

STATEMENT

IMadTCT

DSECT

s
s
bs
DS
Ls
DS
0s
DS
Vs
EQy

LQu
EQuU
Ewy
EQu
£Qu
EQu
EQuU
EQu
EQU

EQuU

EQu
EQU
EQu
LQU
EQu
LQu
tQu
Ewy

EQU
LU

LQu
[S°13]
EQuU
tdu
£
LWy
Ewy

LA S X}

F ACT

TERMINAL CONTRAL TABLE RECORD esee

LINK TOo NEXT T¢T IN QUEUVE

xL4% TERMINAL ID

F REL ADDR SOURCE TCT

{0S/3)

F REL ADDR ALTERNATEL TCT {0S/3)
F CORRESPONDING TTT ADOURESS
F SUCC ACT REL ADDR = ROLLBACK

X

CONTINUITY DATA LENGTH

XL1 LINE NUMBER
xL7 STATuUS BYTES
ZCHTTST

X*80¢
X'40¢
X*20
X*10"
x*08
X*04r
X002
x*'01e
x*01¢

EQUATES FOR ZCuTTST/ZCnTST

LAST T1C7Y

TEST MODE

URGENT MESSAGE, ACTION

TERMINAL DOWN

HOLD TERMINAL

URGENT TERMINA,

MSG wAIT (FOR ZZTST) RECEIVED
MWRITE FOR ZZTsT (SINLGE THREap)
OUTSTANDING MwRITE (MULT1l THREAD)

2CaTST+1,]

x*80¢
x40
x*20
X*10¢
X081
x*u4e
x*'02
X0l

EQUATES FOK ZCaYSTI

INTERACTIVE MuDE

MASTER TERMINAL
ALTEKNATE TERM SPECIFIED
ROLLBACK COMPLFTE

IMS SENT MSG walT

BATCH TERMINAL

ROLLBACK IN PrOCESS

MSG 70 ORIG TERM SENT

2CBTISTI+],
2CaTgT12

X'8C¢
x*40
X120
X*'10
x'08¢
X104
X*02¢

FGQUATES FOR ZCaTST2

MWRITE ISSUED FROM ZOBUNSMT MOpDULE
RELEASE BUFFEn AT MWRITE COMPL

MSG IN QUEUE

MSG [N PROCESS>

SEND AUTO STAT,;S MESSAGE
COMT|NUOUS OUIpUT REQUESTED

DEL ~NOTICE = ACTION Tu BE SCHED

UP-9206

SPERRY UNIVAC 0S/3 9-21

IMS ACTION PROGRAMMING IN RPG i

TERMINAL CONTROL TABLE

LOCo
000001

CoonlE

800080
000040
000020
000010
000008
000004
000002
000001

gooo!lF

Cgoose
0go040
ggoo2o
000010
Coooos
6ooo004
g0002
000001

08goo20

000080
800040
0ooo40
000020
8000290
Ooonole
Cooo08
000004
000008
00004
800002
Ceoo001

000021

Ocoosal
0goo4e

LINE
A2763+72C8T01Q
A2764+0
A2765+ZC8TST3
A27645+s
A2767+0
A2768+¢
A2769+2C8TTDR
A2770+2CoTTQNE
A277)1¢ZC8THDRS
A2772+2C8TIDN
A2773+2CHTIGM
A2774¢2C8CO]P
A2775+ZCaoTNRODY
A2776+ZCBTUNAC
A2777+9
A2778+¢
A2779+2CBTSTH
A2780++
A278]+s
A2782+9
A2783+2C8ERMEX
A2784+7CnSFSRY
A2785+¢2C8ABTDY
A27846+2CHDYTWD
A2787+7CasSIGN
A2788+2CuATTR]
A2789+ZICBCONSL
A2790+¢IC8BCNTRD
A27F 1+
A2792+2CuTSTS
A2793+#
A2794+¢
A2795+»
A2796+ZCHIMPRY
A2797+2CuDEPND
A2798+4+ZCapDEPRT
A2799+2CapMSUP
A2800+2CaaND
A2801+¢2CryBPND
A2802+ZC8DMSRD
A2803+7CapMSUB
A2804+7C8UPDRU
A2805+2CryPLTD
A2806+Z2CHTCALL
A2807+ZC8BDMSDR
A2808+e
A2R09+2(CuTS5T6
A2810+e
A281]+»
A2812+»
A2813+Z2CHpMSER EQuU
A2514+Z(B8WkrKl EQu

EQuU
twu
EQUATES

EQU
EQU
EQU
Ewy
EQu
EQGU
EQuU
tQu

LGy
EQUATES

EQu
EQuU
EQu
EQU
EQu
EQu
EQu
Ewu

EQy
EQUATES

EQuU
EWy
EQU
EQuy
EWu
EQU
EQu
eEwu
tQu
tdu
EWy
EQu

EG@u

EQUATES

SOURCE STATEMENT

X'01

OUTPUY GENERATED FOR INPUT QUEUING

1C8TST2+1,1

FOR ZCuTST3

x*&60
X*400
x*20
X*10
x*08¢
X'04s
X*02¢
x*'Q1e

DISCONNECT REWUESTED (S/T)
TERMINAL'S LOa QUEUE NOT EMPTY
OUTPUT HEADER cAVED
INTERNAL DELIVERY NOTICE
IMS GENERATED ERROR MSG
CONTINUOUS OUIPUT I[N PROCESS (M/T)
NO I1MS READY MSG TO THIS TERMINAL
SEND UNSOLICITED QUTPUT INDICATOR
FOR SWITCHED MESSAGES AT ACTION END

ZCaTsT3+1,])

FOR ZCaTST4

X'&0
X*40
X*20
x*10°
X*08¢
X004
x*02»
xX*01le

ICBTST4+],)

A/M GENERATED ERROR MSGe

REBUILD ALLOWED BY A/P

ABORT DYNAMIC SESSION

ABORT TERM WIaNDOW

SIGN ON FOR DYNAMIC SESSION

TERM HAS CONFIGe ATTRIBUTES

CONSQLE TERMINAL

OUTSTANDING TCS/DISKETTE READ FUNCTION

DMS FLAGS

FOR ZCa1STS

x*80¢
x40
X'40
X*200
x*20¢
x'1i0
X080
X'04
x*08¢
X*04r
x*'02
x*01

2C8TST541,)

ISSUED IMPACT
DEPART PENDING
ACTION ISSUED nEPART

ISSUED DSM OPeN FOR UPDATE
BOUND/UNBOUND STATE

UNBInD PENDING

DMS FOKCED UEFART wlTH ROLLBACK

DMS wUN UNIT UNBOUND

OPENED FOR UPUATE IN THIS RUN=yNIT
UPDATING RUN=UNIT [N THIS SUCCESS UNIT
FUNCTION CALL/TERMINATION CALL

DMS REQUEST VIA DeReM,

FOR ACTION

OMS FLAWS EXTENSION

FOR ZCuTST6

x*680
x*40

DMS ERROR [N KUN=UNIT
TEMPORAKY FLAG #}

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 2 of 5)

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING [N RPG I

9-22

TERMINAL CONTROL TABLE

LOC. LINE SOURCE STATEMENT

000020 A2815+ZC8WRKZ EQU X*20* TEMPORARY FLAG 82

000010 A28146+ZC8TTMDF EQuU x*10* MOEFER ISSUED OR THIS TERMINAL
A2817¢¢ THE FOLLOWING STATUS BYTE TAGS ARE NOT CLEARED wHEN A G OBAL
A2818+¢ NETWORK DYNAMIC TERMINAL DOES A S$SSSOFF

A2819+s 2CaTTLSTY
A2820Q+¢# ICaTTUT
A282] +» ZCuTTMT
A2822+» 2ZC8TNRDY
A2823+» 2CuTUNAC
A2824+e ZCrATTRI
A2B825++
A2826¢
000022 A2827+2C8DDPST 0S X DDP STATUS BYTE
A2828+¢
A2B829+» EQUATES FOR ZCaDDPST
A2830+e

000080 A2831+ZCBREMTR EQU X*80¢ REMOTE TRANS

000040 A2832+ZCBFSOUT EQU X*40¢* FIND SESSION U, TSTANDING
000020 A2833+2C8PSEDOD EQU X'20¢ PSEUDPO TCT

000010 A2834+ZCapDPOT EQU x*10¢* MWRITE FOR DDP

A2835¢0

000023 A2836+ZCBDDPMD LS X ODP MODE
A2837+»
A2838¢e EQUATES FOR ZCuDDP MODE
A2839+0

8oo0D® A2B40+ZCBDTR tQu C'k* DIRECTORY TRANS. ROUTING

0o00C1 A2841+7ICBPTRA EQU C'A' PROGRAM TRANS. ROUTING = ACTIVATE
0000C3 A2842+2C8PTRC EQuU C'C* PROGRAM TRANS, ROUTING = ABORT/CANCEL
0000CS A2843+4ZCaPTHE EQU C'E* PROGRAM TRANS, ROUTING = END

A284Y4+»
000024 A2845+ZCHSFLAG DS XLl GENEKAL SFS FLAGL BYTE
A2844+s
A2847+e EQUATES FOR ZCuSFLAG
AZ2B48e0

000080 A2B49+ZCHINFMT EWy x'8C* INPUT FORMAT
000040 A28S0+ZCHDYNM EQU X*4G* DYNAMIC MEMORY
900020 A2851+ZCasFBTL QU X*20% SFS FLAG |
000010 A2852+ZCHiTCF EQU X*10* INVALID XYION
000008 A2853+ZCuSFBT2 EGU x'08' SFS FLAG 2

A2854+
000025 A2855+4ZCaSFIRC LS xtl SFS INPUT RETRY ,~OUNT
A2856+
000026 A2857+ DS xL2 UNUSED
00D028 A2858+2CHTRCTA DS A TRCT ADDR
00002C A2B59+2CHTQE 0s F CANCEL LINK
000030 A2860+ZC8PRFT DS F DISFL TN PROCESS FILE TABLE
690034 A2861+2CuPQCNT US H PRUCESS GUEUE COUNT
000036 A2862+ZCHMQCNT ©S xL1 LAST ICAM SVC
000037 A2863+4ZCRTDELS US XLl DELIVERY NOTICE gTATUS
000038 A2864+2CHLGCNT DS H LOW QUEUE COUNT
CO003A A2856L5+ZICH8TIN LS # TOTAL INPUT COUNT
00003C A2864+2CuaTINT s H TRANSe INPUT COUNT

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 3 of 5)

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG II

9-23

TERMINAL CONTROL TABLE

LOCe»
00003E
000040
Coo044
800048
CO004A
0o004C
Cooos0
00052
000054

Cooo54
¢ooo56
000058
00005¢C
000060
000064
€oonés
€0006C
000070
toon74
0coo7c¢
cooo08o
000084
800088
0ooo88
800090
000092
000094
0poo9s
0o00nB8

Coo0008
Cooooe
Coo0ED

8o00E!
0poonEs
COO0EF
8gooFC

0000FT
GgooofF D
CoonfF2

‘G000F4
CO00F 6
0ponF8
CO00F9
0000FA

3000F8
0o00F8

LINE SOURCE STATEMENT

A2867+2C8TTCM DS H TERM COMMAND COUNT

A28468+7CHTINCH DS F TOTAL NOe. INPUT C,ARS.
A2B69+ZCBTOTCH DS F TOTAL NO. OUTPUT C(HARSs
A2870+2C8T0C vs H TOTAL QUTPUT COUNI

A2871+42C8TOMS?2 DS H SOURCE TERM O/P MSGe SIZE
A2872+ICuTON [F TIMER LINK

A2873+Z2CuIML vs H INPUT MESSAGE LENGTH

A28749+2Cn0oML LS H OUTPUT MESSAGE LENGTH

A2B75+Z2ZCuTML DS H TIMER MESSAGE LENGTYH (0S/3 MeTs)
A2876+e 0S/3 SeTe USES ZC8COSeQ INSTEAL OF 2CmTML
A2877+2C8COSEw EQu ZCaTmt C/70 SEW COUNT (0S/3 SeTe ONLY)
A2878+2C8DML DS H DDP MSGe LENGTH

A2879+7CRIBF LS A INPUT BUFFER ADDK

A28B0+2CnORF DS A QUTFUT BUFFER ADDN

A2881+2C8TRF vs A TIMER BUFFER ADDk

A2882+7ICRDBF DS A DDP BUFFER ADDn

A2883+.C8DPREL DS A DDP BUFFeR RELEASt ADDR
A2884+2CBTDELC DS XL4 USER CONTINUOUS ~UTPUT CODE
A2885+4ZCusFSTC US A SFSs TERMINAL CLAS> ENTRY ADDR
A28B6+ZCuaSFSFN US CL8 SFS FORMAT NaAME
A2887+ZCuSESAD DS A SESSION STAT TABL:L ADDR
A2888+2C8SESID DS F SESSION 1D
A288B9+ZC8TDMEM DS F SFS DYNAMIC MEMORY ADDR
A2890+ZC8TTRID LS CL8 TRANS 1D (INITIaA, DATE/TIME)
A2891+2C8TRID EQu ZCsTTRID OS/% TAG

A2892+ZCBDLCNT LS H IMC DEADLOCK DETECTION COUNT
A2893+ DS H UNUSED

A2B94+1CuTCh () A THREAD CONTROL BLUCK ADDR
A2895+ZCnTLI vs 8F TRANS LOCK INDICATOR
A28F6+7ICRTAUM vS 8F AUDITED UPDATE MaP
A2897+wee ZCuTLI AND ZC8TAUM MUST AGREE A1TH ZTHTNUMF IN THE THCB
A28B98¢ZCBTTEXT LS CL8 TRANSLATED TERM ¢cMU/TRANS CODE
A2899+ZICRBTCODE EQuU 2CaTTEXT 0Ss/4 TAG
A2900+ZCaTDDRC DS cLl DDR NAME 10 CHAX (HIGH BYTE = xegD?)
A29C1+ses THE ABOVE FIELD IS DEFINED IN Ug/4 BUT NOT TAGGED
A2902+2C8TDDORN DS CL7 DATA DEF REC NAnF
A2903+ZC2TDFN LS CL7 DEFINED FILE NAWE
A2904+ DS X UNUSED
A2905+ZC8oTES LS F SucC ACT RECORD RulLATIVE ADDR
A290 4L+ MULTI=-THKEAD SYSTEMS USE z2C#cS & ZCaCDC IN PLACE OF ZenTES
A2907+ ORG ZC8TES

A2908+2CRES LS H SUCC ACT RECORD Rij ATIVE ADDR
A2909+2CucOL DS H CONTINUITY DATA LeNGTH
A291(0+s
A2911+2CuwAl LS H WORK AREA INC
A2912+2CucDI uUsS W CONTINUITY UATA AnREA jNC
A2913+2CaTTTN DS xtl TCT RECORLD NUMBLR
A29 14+ LS xL1 yUNUSED

A291S+ vs H UNyUSED

A291 6+ MULTI-THREAD yYSES Z(uCDK & ZCuCES INSTEAD OF 7CaTTTN 5 ZCuTINT
A2917+ ORG ZCaTTTIN

A2918+ZCH(DK

w5

H TCT RECORD NUMBER

Figure 9-6. Single-thread and Muitithread Terminal Control Table (Part 4 of 5)

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG |l

9-24

TERMINAL CONTROL TABLE

LOCe LINE SOURCE STATEMENT

0D00OFA A2919+ICHCES oS H SUCC ACT REL ADDR _ ROLLBACK

BGO00FC A2920+ZCs8SCFR 0S xL4 COUNT FIELD FOR ROLLBACK
A292]1 +e

000100 A2922+2C8TTIR DS XLl TERM IND FOR ACTION PROG USING ROLLBACK

000100 A2923+ICHTIR EQu 2C8TTIR 0S/4 TAG

000100 A2924+ ORG 2CaT R

000100 A2925+2ZCHTRWA DS F TRACE WORK AREA

000104 A2926+ICHFBPA DS H ¢ FIRST 8LOCK OF FARTITION

000106 A2927+ZCHCBPA DS H * CURRENTLY ACCESSED BLOCK

000108 A2928+ZC®LBPA US H ¢ LAST BLOCK OF PARTITION

00010A A2929+2C8NRBCB DS H e# OF REMeBYTES In CURRe BLOCK
A2930+s

000)0C A2931+ZCRTLNAM DS CL4 LINE NaAME

000110 A2932+ICHTCHAR DS CL4 TERMINAL CHARACTeRISTICS

000110 A2933+2CaTTSL EQuU ZC8TCHAR SCREEN LENGTH
000111 A2934+IC8TTSW EQU ZCuTYSL+l SCREEN WIULTH
000112 A2935+2CaTTTYP EQU ZCSTTSW+) TERMINAL TYPE
A2936ee
A2937+e EQUATES FOR ZCuTTTYP
A2938+e
000000 A2939+ZCHTTINFC EQU x*00* U100/U200/UTSIA/TYTY
000080 A2940+ZC#TT4PR EQU X*'80°* UTS400 PR
000040 A2941+2CBTT4UZ2 EQU X*40¢ UTS400 CP (U2 MODE)
000020 A2942+ZCBTTHU4 EQU X'20* UTS400 CP (U4 MODE) OR UTS40Q
000010 A2943+¢2CaTT327 EQU Xx*'10* IBM 3271
000008 A2944+2CBTTU4C EQU Xx?08y UTSHO
000004 A2945+ZCs8TTU20 EQU X*04r UTSZ0
000002 A2946+Z2CH8TT40T7 tQu X'02¢ UTSY400 TEXT ELtTOR

A2947+»
CO0113 A2948+ZCHTTATT EQU ICuTTTYP+] TERMINAL ATTRIBUTES
A2949+e
A2950+¢ EQUATES FOR ZCaTTATT
A295] +»

000080 A2952+ZCH8TTKAN EQU X*80¢ KATAKANA

000040 A2953+ZCaTTNV] EQU x*40¢ NON=-vIDEO

000020 A2954+2CBTTSBT EQuU Xx*20* SCREEN BYPASS

000010 A2955+Z(HTTPKT EQU X*10' PACKET PDN TErnmINAL

000008 A2956+¢ZCHTTCST EQU Xx*'08¢ CIRCUIT SWITCH POUN TERMINAL
000004 A2957+2CHTTCCT EQU x*'04r TERMINAL ON CLUSTER CONTROLLER

A2958+
000114 A2959+ZCRTINEK US F SFS ERROK FIELD
000118 A2960+2CuTRIDA DS A PYR TO TRIDT ENTRY FOR CURRENT TRANSACTION
0C011C A2961+2CHALTID LS F ALTERNATE TERM ID
000120 A2962+4ZCBTFIN LS CF THIS MUST ALWAYS oE AT END

000120 AZ2963+ZCa8TLEN Eau *=2CaDTCT
000000 A2964+Z08BQUTMT (SECT

Figure 9-6. Single-thread and Multithread Terminal Control Table (Part 5 of 5)

UP-9206

SPERRY UNIVAC 0S/3 9-25
IMS ACTION PROGRAMMING IN RPG H

LINK MAP

9.10. OTHER DEBUGGING RESOURCES

Link map and symbol
table

Module RCCUST and
P?IMS000

Module ZF#LINK

Module P?SERIAL

Module P?SPLO00O and
P?IMSIX0

Module P?IMSEQO and
P?IMSD0OO

*ERROR field

To find the cause of an action program snap dump requires the
use of both the snap dump and user action program compile and
link. Very briefly, we'd like to point out data in the link map and
symbol table of your action program useful in debugging. Figures
9-7 and 9-8 show the link map and symbol table for RCCUST.

Looking at Figure 9-7, the first object module is RCCUST and its
Ink-org is 0. Following RCCUST is P?IMS000. This object module
handles initiation and termination procedures for the action
program. It also handles communication between the program
and the interface areas. Its Ink-org is 12A0.

The third object module is ZF#LINK. This module provides the
interface between action program function calls and IMS. Its
Ink-org is 14F8.

The object module P?SERIAL is responsible for making the RPG Il
action program serially reusable. It clears all switches and
indicators prior to an action program getting control. However,
the RPG Il programmer must reset all fields and arrays prior to
program execution. The important point to remember is that RPG
Il action programs must be serially reusable since IMS doesn’t
reload a program if it's already in main storage.

The next two object modules included in Figure 9-7 are
P?SPLOOO and P?IMSIXO. They provide I/O interfaces between
IMS and the RPG Il action program. P?SPLOOO handles all general
I/0 interface needs and P?IMSIXO0 handles all requests to indexed
files.

Two other object modules not present in Figure 9-7 but which
could have been included are: P?IMSEQO, which handles
sequential file requests; and P?IMSDOO, which handles DAM file
requests. Which modules are actually included depends upon the
specific 1/0 design of the action program.

Figure 9-8 shows the symbol table for RCCUST. The important
data it contains is the location of *ERROR at relative location
1B0O.

UP-9206

SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG I

9-26

LINK MAP

DATE= 81/0

SEMREDDEDe
¢EMBEDDEDe
¢EMREDDED
#EMREDDEDs
SEMAEDDFDe

SYMROL «

ADDKY
CLOSE
DELKY
ENDCRL
FIND
GETL0AD
IMA
KESRES
OPEN
P2IMA
P20MA
P3SPLOOO
RCCysST
RDIDCL
RDKEYC
RDKYI
ROSQC
RDSQIC
RDSRC
REBUILD
SEND
SNAP
STCRL
SUBPROG
XRAIINS

PHASE NAM
RCCUSTOO

4/07

124
’8

TYPE.

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
CSECTY
CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

E TRANS ADDR

TINE~

CONTROL STREAM ENCOUNTERED

PARANM

PHAS

ROOT
ROOT
ROOT
ROOY
ROOT
ROOT
ROOT
ABS

ROOT
ROOT
ROOY
ROOY
ROOT
ROOT
ROOT
ROOT
ROOT
ROOT
ROOY
ROOT
ROOY
ROOTY
ROOT
ROOY
ROOT

NODE =

10,36

L
- 80/05/28 1%+42 =

« 80/02/09 23403 -

UNIVAC SYSTEM 0S/3 LINKAGE EDITOR

#ss START OF AUTO=INCLUDED ELEMENTS =
®es END OF AUTO=INCLUDED ELEMENTS =
- 81/04/07 10435 -

AND PROCESSED AS FOLLOWS-

ourTeLQD
LOADM RCCUST
INCLUDE RCCUST
INCLUDE P7IMS000,35Y808y
INCLUDE ZFaLINK,SYSOBY
INCLUDE PP?SERIAL.SYS0By
INCLUDE P?SPLOOO,SYSOBY
INCLUDE P?INSIX0,S5Y$5084
SDEFINITIONS DICTIONARYS
Es ADDRESS. SYnaoLe TYPEe PHASEs ADDRESS.
000018AY ARETURN ENTRY ROOT 000018€E8
0oopivic CHMDRE ENTRY RoOOT 000018E0
0gD018AS DLADR ENTRY ROOT 0DDO0OLBFC
0oop18DC ESETL ENTRY ROOY 00001908
00001920 FREE ENTRY ROOT 0000190¢C
Cooo18%8 GETUP ENTRY ROOT O00018F4
CgoooDie INSERTY ENTRY ROOT 00001900
0D001F6A LNKCP ENTRY RoOOY 0000I8AC
00001918 OPENF ENTRY ROOTY Opooivle
00001764 P?IMSIX0 CSECT ROOV 00001458
0000150€ P?P18 ENTRY ROOY 0poo1i7Ca
0c0019%E0 Ple ENTRY RoOOY 00000028
00000000 ROID ENTRY ROOT 000018F0
0go0019%920 ROIDL ENTRY ROOT 000018F4
0poola%o ROKEYCL ENTRY ROOT 0000188¢C
Goon188¢ ROKYIC ENTRY ROOY Qoooi1888
Gpon191cC RDSQCL ENTRY ROOT 00001914
Ooon18EY ROSQL ENTRY ROOT 000DI90C
oooonieio RDSRCL ENTRY ROOT 000010E8
00001890 RELREC ENTRY ROOT 00001910
00001924 SETL ENTRY ROOT D00OL904
000018EY SsLocCk ENTRY RoOOT Ogooleno
00001808 STLNY ENTRY ROOT 00001904
00001840 UNLOCK ENTRY ROOT 00001919
00001894 IFSLINK CSECT RooT 0o00)8es
oo ALLOCATION MAP o
LOAD MODULE ~ RCCUSY SI1Ze = O00DO1Fea
FLAG LABEL TYPE €510 LNK ORG
RoOT 00000000
RCCUST oBJ
L RCCUST CSECT [} 00000000
117} ENTRY o1 oooooDis
ona ENTRY [00000020
PIB ENTRY 01 00000028
TRF 01
2115000 osJ
P?IM5000 CSECT 01 00001530
P70NA ENTRY 01 0000150E
PRINA ENTRY 01 00001764
P?CDA ENTRY ot 0000179
PIPIB ENTRY ol ooooi7cs
ZFsLINK 0By
ZFSLINK CSECT 01 0ooolsses
XR3INS ENTRY 01 00001894
BUILD ENTRY 01 ooo00l8ac
REBUILD ENTRY 01 00001890
GET ENTRY 01 0oo018F0
GETUP ENTRY 01 0000186F4%
PUT ENTRY 01 000018F8
DELETE ENTRY o1 00001 8FC
INSERT ENTRY 01 00001900
SETL ENTRY 01 00001904
ESETL ENTRY 01 00001908
FREE ENTRY 01 00001 90¢
RELREC ENTRY 0} vooD19%10
UNLOCK ENTRY 01 00001914
OPEN ENTRY 01 00001i918
cLOSE ENTRY .1 0000191¢
FIND ENTRY oi 0000920
SEND ENTRY oi 00001924
RETURN ENTRY 01 0oD01928
ARETURN ENTRY 01 00001 8ES
SNAP ENTRY 01 00001 8EY

SYMBOL.

BUILD
DELETE
DLKCP
ESLNT
GEY
GTADR
KESALP
omMA
P2COA
P?1M5000
P?SERIAL
PUY
RDIDC
RDKEY
RDKEYL
ROSQ
RDSael
RDSR
RDSRL
RETURN
SETLOAD
SSUNLK
sus
WR1D

HIADDR
D0UCIF69

00001683

oouole?y

Figure 9-7. Link Map for RCCUST (Part 1 of 2)

TYPEe PHASE.
ENTRY ROOT
ENTRY RONT
ENTRY ROOT
ENTRY RONT
ENTRY ROOT
ENTRY ROQT
ENTRY ABs
ENTRY ROOTV
ENTRY ROOT
CSECT RooT
CSECT ROnT
ENTRY ROOT
ENTRY ROoOT
ENTRY RONT
ENTRY ROOTY
ENTRY RO0T
ENTRY ROOT
ENTRY ROOT
ENTRY ROOT
ENTRY RONT
ENTRY ROOT
ENTRY RONT
ENTRY ROOT
ENTRY RONT
LENGTH
00C01F6a
DEFERREN
©20000153nee
00000354
000000FD

VER8OO403

ADDRESS .

Voogoisac
Q0OD18FC
dgools880
0Qo01908
0oQoliefFo
0go01900
00001Fb6A
VG000020
00001796
60001530
0yoo1978
Quoo18F8
0u001924
oguol18B4
ouo0less
ypoolece
opgolecc
ogaolaco
000018CH
Oooo1928
Quoois9ec
Qoo0l16D4
00001840
QuoOi8F8

08y ORG

ULuo0o0000
0goooo18
Upooao20
Goooop2s
¢yo00o000

01000000
0U0000AE
00000234
00000264
Quoo0298

00000000
Goooo00C
U0000004
ouoogo08
ou0000e8
V0oD0QsC
vopooo7o
Ovoooa74
Ogoooo78
oooooQ7C
Uoooo080
Ooopoos4
dugoooss
0ugo008C
ogoooovo
00000094
upQoog9s
00900009¢C
000000A0
00000040
000000SC

UP-9206

SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG II

9-27

LINK MAP

PHASE NAME TRANS ADDR FLAG LABEL

suB
ROSGL
RDIOC
ROIDCL
ROSQC
ROSQCL
ROSRC
RDSRCL
RDSQIC
ROKEYC
RDKEYCL
ROKYIC
GTADR
DLADR
ADDKY
DELKY
LNKCP
DLKCP
WRID
ROID
ROIOL
RDKEY
ROKEYL
ROKY1
RDSR
RDSRL
RDSQ
ROSQI
STLNT
ESLMY
SSLOCK
SSUNLK
STCRL
ENDCRL
CMDRB
OPENF
SUBPROG
SETLOAD
GETLOAD

- 79708708 18.03 = P?SERIAL
P?SERIAL

= 79/08/08 17.58 « P?SPLOOO
P?SPLOOD

= 80/03/21 16450 » P?INSIX0
P?2IMSIX0

00000000

B = BLK DATA CSECT D = AUTO=DELETED
L = DEFERRED LENGTH ¥ = MULTIPLY DEFINED
S « SHARED ITEM U = UNDEFINED REF
SANY OTHER CODES REPRESENT PROCESS ERRORSe

LINk EDIT OF "RCCUST? CoMPLETED
OATE= 81/04/07 TIME=- 10,37
ERRORS ENCOUNTERED=- G000 UPSI~ X*40°

TYPE ESID
ENTRY [.]]
ENTRY [1}]
ENTRY 01
ENTRY [:}]
ENTRY 01
ENTRY o1
ENTRY 1]
ENTRY [:7]
ENTRY 01
ENTRY 01
ENTRY o1
ENTRY ay
ENTRY o1
ENTRY (7]
ENTRY 01
ENTRY 01
ENTRY 01
ENTRY [}
ENTRY [+1]
ENTRY [3}
ENTRY 01
ENTRY 01
ENTRY 01
ENTRY o1
ENTRY 01
ENTRY []]
ENTRY 01
ENTRY o1
ENTRY 01
ENTRY o1
ENTRY o1
ENTRY (3]
ENTRY ot
ENTRY 01
ENTRY o1
ENTRY 01
ENTRY 1]
ENTRY ot
ENTRY [:3]
0BJ

CSECY [T}
oBJ

CSECT o)
osJ

CSECT 1]

FLAG CODES =
E = EXCLUSIVE ‘A
N = NOT INCLUDED
¥ = vCON ITEM

REF

LNK ORG HIADDR
00001840
0000190¢
0000t 924
00001920
ooool9lc
00001914
0op0i?io0
000018ES
000018€4
00001890
0000l88cC
oopolsss
00001900
000018FC
000018a4
00D0l18A8
000018AC
00001880
Q00018F8
000018F0
QO00018F4
ogooise4
ooool888
Qo000i88C
000018CO0
0000)8CH
aooolacs
oooolecc
00001904
00001908
ooooispo
00001804
00001808
0000180C
00001 8E0
0go019i8
00001840
0000189¢C
00001898

00001978 000019DF
00001 9€0 0000LAS?

0000iA58 O000IF69

G = GENERATED EXTRN
P = PROMOTED COMMON

Figure 9-7. Link Map for RCCUST (Part 2 of 2)

LENGTH 0BJ ORG
00000018
Jooooo84
000000%C
00000098
0op0o094
ouwooosec
ooooogss
00000060
0u0000SC
00000008
00000004
0Oooo0000
0uo00078
Oupoou74
Gooooci1C
00000020
0uo00u24
ogo0oOo28
uuooou70
00000068
0000006C
0go00o02C
00000030
000000234
Goooonas
0000003C
00000040
0000009y
ooooao7C
00000080
00000048
0000004C
00000050
00000054
00000058
00000090
00000018
00000014
00000010

0000006A 00000000
0000007a 0ooooo00

00000512 00000000

I = INCLUSIVE °*V*® REF
R = SHARED REC PRODUCED

UP-9206 SPERRY UNIVAC 0S/3 9-28
IMS ACTION PROGRAMMING IN RPG i
SYMBOL TABLE
P1B) NOTE 132
SYMBOL TABLES
RESULTING INDICATORS
ADDRESS RI ADDRESS R} ADDRESS RI ADDRESS R} ADDRESS R1 ADDRESS RI ADDRESS Ri
000014 1P 000015 LR 000016 00 000017 01 000018 02 00002A 20 000034 30
00003F 41 000040 42 000048 SO 000053 61 00005¢ 70 00007A LO 000085 Hy
000086 M1 000087 H2 000088 H3 000089 H4 00008A HS 000088 Hs 00nUBC H7
000080 He 00DOBE M9 00008F U1 000090 U2 000091 U3 000092 U4 000093 Us
000094 Us 000095 U7 000096 U8
FIELD NAMES
ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIE(D
DODIBC eERROR 000210 CUST 000215 SIGN 000216 AMOUNY 000218 CuSTID
000220 NAME 000234 ADOR 000243 CITy 000252 1P 000257 BALDUE
80020C END 00025C AMT 00025F NEWBAL
LITERALS
ADDRESS LITERAL ADDRESS LITERAL ADDRESS LITERAL
000265 + 000266 = 000267 X'00D3*
800269 X'100A0200° 000260 NAME - 000277 X*10010300°
000278 ADDRESS = 000285 X*10010400° 000289 CI1TY=5T =
000293 X*1001041E" 000297 1P - 000290 X*)0040200°
0002A1 OLD BALANCE = 00024AF R A 00028F X*10040100°*
0002C3 TRANSACTION = 000201 femnen 0002DA NEW BALANCE -
0D02ZES semmymmnan/onn -
s10 cusTio NOTE 205
000 NOTE 1ls
LITERALS
ADDRESS LITERAL ADDRESS LITERAL ADDRESS LITERAL
000388 X'10010106° 00038C RCMENU 000392 ©
000393 INVALID CUSTOMER [D 0003A6 INVALID SIGN 000382 INVALID AHOUNT
NOTE 115 THE NUMBER OF SYMBOLS USED IN THIS PROGRAM CAUSED THE COMPILER TO RUN LESS
EFFICIENTLY THAN IF AN INCREASED MEMORY SIZE WERE ALLOCATED.
NOTE 132 NO INPUT AND/OR OUTPUT SPECIFICATIONS FOUND FOR THIS FILE.
NOTE 205 WARNING: FIELD NAME 1S UNREFERENCED.

Figure 9-8. Symbol Table for RCCUST

UP-9206 SPERRY UNIVAC 0S/3 A-1
IMS ACTION PROGRAMMING IN RPG i

MESSAGE FORMATTING

Appendix A. Using Device Independent
Control Expressions and
Field Control Characters

A.1. GENERAL

Using DICE for formatting You use device independent control expressions (DICE) to format
input and output messages handled by action programs. These
codes control various operations, such as cursor positioning and
carriage return, on the terminal screen.

Scope of section This appendix supplies all DICE sequences and their
interpretations, and describes how to use them in formatting
messages. In addition, it presents limited information concerning
the use of field control characters.

A.2. FORMATTING MESSSAGES

There are numerous methods for formatting output messages.
The action program can use:

Other ways to format % Screen format services. For a complete discussion of how to
messages use screen format services, see Section 6.

@ Device independent control expressions

P Format control expressions with UNISCOPE 100 and 200
display terminals

@ Field control characters (FCCs) with workstations and
Universal Terminal System terminals

UP-9206

SPERRY UNIVAC 0S/3 A-2
IMS ACTION PROGRAMMING IN RPG i

MESSAGE FORMATTING

DICE and FCCs

Format control expressions

Use of format control
expressions

Handling DICE sequences

Functions performed

This appendix supplies information on DICE sequences and how
to use them. We will also include limited information concerning
field control characters since one program, RCMENU, presented
in Section 3 of this manual uses this type of formatting. For
detailed information concerning format control expressions,
consult the UNISCOPE display terminal programmer reference,
UP-7807 {current version).

When a program uses format control expressions, it must include
a different formatting routine for each type of terminal receiving
the output. Figure A-1 illustrates this.

OUTPUT TEXT AND CONTROL CHARACTERS

’ TEXTL ATEXT ' . TEXTPATEXT ’

PRggiiM Réx”og
HANDLERS
’ TexT||||brexT ' ’ Text|||| [rexT ' ‘
LEGEND:

Terminal-Oriented
Control Characters

Figure A-1. Using Terminal-Oriented Control Characters to Format Messages

Using DICE sequences to format messages eliminates this
problem. The remote device handler converts DICE sequences to
control characters for each destination terminal, regardless of
type. Some of the control character functions are:

] cursor movement to the first space of a new
line

] - cursor to the home position of a new page

n - cursor to the beginning of the same line

[to a specific row and column on a

UP-9206 SPERRY UNIVAC 0S/3 A-3
IMS ACTION PROGRAMMING [N RPG I

MESSAGE FORMATTING

DICE placement You can place DICE sequences anywhere in a message. As you
can see in Figure A-2, DICE sequences simplify message
formatting.

OUTPUT TEXT AND DICE

‘ TEXT TEXT ' . /TEXT TEXT .

USER REMOTE

DEVICE
PROGRAM
Coding with DICE HANDLERS

’ TEXT||||]TEXT .

LEGEND:

| [m-m @ DICE Characters
—— ——

Terminal-Oriented
Control Characters

Figure A-2. Using Dice Sequences to Format Messages

Using input DICE For input, control characters received in a message are converted
into DICE sequences by the remote device handler. For certain
terminals, your program can analyze these sequences to
determine cursor position. In addition, input DICE is handy for
message switch applications because control characters in each
input message are converted to DICE sequences. The remote
device handler converts these sequences into the appropriate
control characters for the destination terminal.

Stripping DICE When you specify EDIT=c or EDIT=tablename in the ACTION
section of the IMS configuration, input DICE is stripped from your
input message. You should specify EDIT=c or EDIT =tablename
in your IMS configuration. (Specify EDIT=tablename only when
you generate an edit table for the action. See Appendix B.)

UP-9206

SPERRY UNIVAC 0S/3 A-4
IMS ACTION PROGRAMMING IN RPG Il

MESSAGE FORMATTING

A.3. DICE AND ICAM

Defining DICE at network
definition

DICE=(ON) is
recommended

You can turn DICE on or off when vyou define your
communications network with the DICE operand of the TERM
macroinstruction.

DICE:(ON)
OFF

where:
DICE=(ON)
The remote device handler creates input DICE according
to your input terminal cursor movements: DICEs are
created automatically.
DICE=(OFF)

The remote device handler doesn’t create input DICE.

The default is DICE=(ON). We recommend that you specify
DICE=(ON) or omit this operand because many IMS features
require the use of input DICE. Certain terminal commands and

IMS transaction codes aren’t available when vyou specify
DICE=(OFF).

See ICAM concepts and facilties, UP-8194 (current version), for
a detailed explanation of input DICE creation, and the IMS system
support functions user guide, UP-8364 (current version), for
specific IMS considerations.

UP-9206 SPERRY UNIVAC 0S/3 A-5
IMS ACTION PROGRAMMING IN RPG Ii

DICE SEQUENCES

. A.4. THE FORMAT OF DICE SEQUENCES

DICE format The format of a DICE sequence is:

select function
character code

m field n field

where:

select character
Is a hexadecimal character (10) designating the start of
a DICE sequence.

function code
Defines the device control sequence that is recognized
by the remote device handiers on input. On output, this
code is a 1-character field defining the operation to be
performed on the text message. DICE function codes are
listed in Table A-1.

m field and n field
These fields are treated as parameters to the DICE
function code. Their actual definition varies and is
. determined by the individual DICE macroinstruction.
Generally, m relates to vertical positioning and n refers
to horizontal positioning.

Text message alignment These fields may be expressed in absolute values (m,
and n,) or relative displacement values (m_and n). The
absolute values align the text message to the actual
location (row and column) on a page or screen. The
relative displacement values give a relative location from

Cursor movement the present position of the cursor, that is, move cursor
two rows down and one column to the right. All values
are expressed in hexadecimal notation.

UP-9206 SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG Il

DICE INTERPRETATION

Table A-1 llustrates all the
commands and their explanation.

DICE commands possible

DICE

input/output

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 1 of 4}

I0MBEG Beginning 08,5 | {00 | 00 [Carriage return |Not used Not used Not used
of current N
line control 4
U
T
0 |m | n |Carriage return | Move cursor to Advance m lines. m line feeds and n
1] f followed by m |beginning of current spaces to the right.
T line feeds and | line. Then move
P n spaces to the|cursor m lines down
u right and n columns to
T the right.
ZOHTABS Set tab stop 09,4 I |— [— |Not used Not used Not used Not used
at an N
absolute P
position 4 u
T
0 ain No line feed, {Set tab stop at row |Advance m lines. Not used
1] space to right. {m and column n.
T
[
u
T
I0#FORMA | Forms control 0As I |— | —|Not used Not used Not used Not used
with clear; N
protected/ P
unprotected u
data 7 | J
0 [m_{n_[|Action is Mave cursor to row |Action is opnonal@ Action is optlonal.@
U 8 optmnal.@ m and column n
T and clear pro-
P tected/unprotected
U data to end of
T screen.
ZO#ERSIN | Erase to 0By I [— | — INot used Not used Not used Not used
end of line N
P
U
T
0 n_|No action Cursor does not Advance 0 lines. Not used
u afa move. Unprotected
T data to the end of a
4 line or to the end
u of the first unpro-
T tected field is
cleared, whichever
comes first.
204POS New line controt 04,5 { |00 | 00 |Carriage return, {Cursor return INot used Not used
N line feed
P
u
T
0 m' n_|Carriage return, {Move cursor to iAdvance {m+1) Line feed, followed
u line feed, fol- |beginning of next [lines. by m line feeds and
T lowed by m line|line. Then move n spaces to the
P feeds and n cursor m lines right.
U spaces to the |down and n col-
T right. umns to the right

UP-8206

SPERRY UNIVAC 0S/3

IMS ACTION PROGRAMMING IN RPG I

A-7

DICE INTERPRETATION

Table A-1.

DICE Input/Output Commands, Codes, and Device
Interpretation (Part 2 of 4)

i

Z0#POSC New line control 055 I |— | — |Not used Not used WNot used Not used
with clear N
P
U
T
0 [m |n |Carriage return, |Same as 04, ex- [Advance (m+1) Line feed, followed
U | "| "|tine feed, fol- |cept area between |ines. by m line feeds and
T lowed by m line|start and end posi- n spaces to the right
P feeds and n tions is cleared.
U spaces to the
T nght
Z0#CUR Current position 06,5 i |01 | 00|Line feed Line feed End of input card | Not used
control N
P
U
T
0 [m In |m line feeds {Move cursor m lines [Advance m lines Insert n spaces It
u f and n spaces toldown and n columns| nonsignificant space
T the right to the right suppression Is allowed.
P If not, insert n DC3
u characters; m_is not
T interpreted.
Z0#CURC Current position 0746 I |— | —{Not used Not used Not used Not used
control N
with clear P
u
T
0 |m |n im line feeds Insert n spaces if |Advance m lines. Insert n spaces if
U "l "and n spaces tof nonsignificant space nonsignificant space
T the nght suppression 1s suppresston ts allowed.
P allowed. It not, insert If not, insert n DC3
u n DC3 characters; m characters, m s not
T 15 not mterpreted_@ interpreted.
ZQHCOORD | Set coordinates 01y I |m | n |Not used m and n represent |Not used Not used
N the start-of-entry
P (SOE) cursor
U coordinates.
T
0 Ena n Action is Move cursor to row [Action is optional () Action is optional,@
u optronal.@ m and column n.
T
P
u
T
ZOKFORM Forms control 02,5 I 101 | 01 iForm feed Form feed Not used Not used
N
P
U
T
0 {m_[n_[Form feed, Move cursor to row [Top of form and Form feed, hine feed,
U a2 carriage return, fm and column n. [advance to line m |and advance to
T and advance to (m-1 line feeds) line m and column
P line m and n (m—1 line feeds
U column n (m-1 and n—1 spaces to the
T line feeds and right}
n—1 spaces to
the right)

UP-9206

SPERRY UNIVAC 0S/3 A-8
IMS ACTION PROGRAMMING IN RPG Il

DICE INTERPRETATION

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 3 of 4) '

2Z04FORMC | Forms control 03,5 | |— | — {Not used Not used INot used Not used
with clear N
unprotected P
data u
T
0 |m Action is Maove cursor to row jAction is opllonal@ Action is optional.@
v | optional. @ m and column n,
T and clear unpro-
4 tected data to
U end of screen.
1
NOTES:

Q)

Most character-oriented terminals can be strapped to handle the carriage return {CR)
character and the line feed (LF) character as follows:

] CR
1. print mechanism moves to beginning of the same line; or
2, print mechanism moves to the beginning of the same line followed by a
line feed.
] LF
1. line feed {no column change); or
2. line feed followed by return of the print mechanism to the beginning of

the new line.

To achieve device independence between terminal types, the character-oriented
terminals must use the first option for CR and the first option for LF if the device
macroinstruction is ZO#CUR or ZO#BEG.

Use the first option when the character-oriented terminals are a part of a message
switch environment.

Certain terminals do not have a form feed capability (i.e., some teletypewriters). For
these terminals, the DICE expressions that specify form feed will line feed.

The set coordinates macroinstruction (ZO#COORD) or the forms control with clear
macroinstruction (ZO#FORMC), when acted upon by character-oriented or
page-printing terminals, will vary in its action, depending on the usage of the DICE
keyword parameter of the TERM macroinstruction at network definition time:

TERMDICE? FORMS

When FORMS is specified, the set coordinates macroinstruction is interpreted as the
forms control macroinstruction.

When NEWLINE is specified, the set coordinates macroinstruction and the forms
control with clear macroinstruction result in a carriage return, line feed for
character-oriented terminals, or advance one line for page-oriented terminals; m and
n are not interpreted.

When the DICE parameter is not specified, the default option is NEWLINE.

UP-9206

SPERRY UNIVAC 0S/3 A-9
IMS ACTION PROGRAMMING IN RPG i

DICE INTERPRETATION

Table A-1. DICE Input/Output Commands, Codes, and Device
Interpretation (Part 4 of 4)

@ The UNISCOPE display terminal suppresses nonsignificant spaces on each line

(except for the line containing the cursor) when text is transmitted to the processor
or printed locally on the COP or TP.

Your program may send data to the UNISCOPE screen containing significant blank
segments that include the last column of the screen. If this data is transmitted from
the terminal to the processor or is printed locally on the COP or TP, the blank
segments must consist of nonspace characters that are nondisplayable. The DC3
character meets these qualifications. The ICAM interface provides your program
with the capability to prevent nonsignificant space suppression on the UNISCOPE
display terminal. The '‘current position control with clear” is the only DICE
macroinstruction that can perform a clear function if your program is preventing
nonsignificant space suppression.

NOTE:

The ASCII-to-EBCDIC translation table is modified so that the DC3 character is
translated to space 40, for input from the UNISCOPE display terminal.

@ Using DICE function code 09, for setting a tab stop, m=0 and n=0 results in a

tab stop being placed at the current cursor location (no cursor positioning is
performed). This applies to UNISCOPE and UTS devices only. For teletypewriters
and DCT 500 terminals, a space character is inserted.

When m or n is greater than the maximum allowable m or n, action varies
depending on the remote terminal:

] UNISCOPE display terminals - wraparound occurs on the screen.

L] Character-oriented terminals - gives different results depending on device
characteristics.

A.5. INTERPRETING DICE SEQUENCES

Device independent

Factors controlling
interpretation of
DICE sequences

When using DICE, your program doesn’t need to be aware of the
terminal type. A particular DICE denotes the same positioning on
any terminal. There are some exceptions that result from terminal
limitations.

The interpretation of a DICE by the remote device handler is
controlled ‘by:

% DICE function code
DICE m and n fields

b
D The terminal involved
b

The particular device on the terminal being used

UP-9206

SPERRY UNIVAC 0S/3 A-10
IMS ACTION PROGRAMMING IN RPG I

DICE INTERPRETATION

Terminals supporting DICE

Hard copy,
character-oriented devices

Hard copy, page
printer devices

CRT terminals

DICE primary devices

The remote device handlers currently provide device-independent
support for three classes of remote terminal devices:

1.

Hard copy character-oriented devices, such as the SPERRY
UNIVAC Data Communications Terminal 475 (DCT 475),
Data Communications Terminal 500 (DCT b500), Data
Communications Terminal 524 (DCT 524), and Data
Communications Terminal 1000 (DCT 1000), and TELETYPE
teletypewriter models 28, 32, 33, 35, 37.

Hard copy page printer type device, such as the SPERRY
UNIVAC 1004 Card Processor System, Data
Communications Terminal 2000 (DCT 2000), and
9200/9300 Systems, and the IBM 2780.

CRT-type terminals, such as the UNISCOPE 100 and 200
and the UTS 400 Display Terminals.

Table A-2 defines the primary output device and the primary
input device for each terminal type.

Table A-2. DICE Primary Devices

Character-oriented terminals Printer Keyboard
Page printing terminals Printer Card reader
CRT terminals Screen Keyboard

Auxiliary devices supported In addition to the specified primary devices, each terminal has the
ability to support one or more auxiliary devices. The auxiliary
devices suggested by each terminal are listed in Table A-3.

&

UP-9206

SPERRY UNIVAC 0S/3 A-11
IMS ACTION PROGRAMMING IN RPG |l

DICE INTERPRETATION

UNISCOPE » Tape cassette (TCS)

Table A-3. DICE Usage for Auxiliary Devices

i

DICE is applied to the
u Communications output COP.

printer (COP)
[] 800 terminal printer (TP)

DCT 1000 n Card reader/card punch DICE is applied as if the
[] Paper tape reader/punch output/input is to/from

the primary device, even

DCT 500/TTY u Paper tape reader/punch though it is for the
auxiliary

DCT 524 [] Tape cassette (TCS) in paper device. @

tape read and write only

Batch terminals [] Punch DICE is used for
end of network buffer
sentinel.
No forms control action
is taken.

NOTES:

@

When the print transparent option is not used, DICE is applied to the UNISCOPE
screen even though the output is sent to an auxiliary device of the UNISCOPE
terminal. In this case, the format of the data printed on the COP or TP is identical to
the screen format. Nonsignificant space suppression by the UNISCOPE terminal may
have to be prevented to keep the formats identical.

The full capability of DICE cannot be applied to the COP because of hardware
characteristics. All data to a UNISCOPE auxiliary device passes through the
UNISCOPE terminal. When DICE is applied to the COP, the use of print transparent
mode means that no carriage returns are transferred to the COP. Line feeds and
form feeds take a storage position in the UNISCOPE storage and are nondisplayable.
These characters are passed to the COP where:

[] an LF causes a line feed foliowed by return of the print mechanism to the
beginning of the new line; and

u an FF causes a page eject and positioning of the print mechanism at the
beginning of the first line of the form.

The COP has no tabbing capability.

These characteristics are reflected in the interpretation of DICE output function
codes for the COP as shown in Table A-2.

For messages sent to a UNISCOPE auxiliary device with transparent transfer, the
cursor to home (ESC e) sequence is inserted at the beginning of the text by the
RDH.

The control characters that are generated from the DICE macroinstructions are
always created for the primary device of a character-oriented device, even though
your program is sending to an auxiliary device. The message and these control
characters (carriage returns, line feeds, form feeds, and spaces) will be
punched/written by the output auxiliary device that was specified by your program
or was switch-selected by the terminal operator. If the punched/written data is later
read by the terminal’s input auxiliary device, the carriage returns, line feeds, and
form feeds are converted to input DICE as specified in Table A-1.

UP-9206

SPERRY UNIVAC 0S/3 A-12
IMS ACTION PROGRAMMING IN RPG il

CODING DICE SEQUENCES

A.6. USING DICE IN AN RPG 1l ACTION PROGRAM

Coding DICE sequences

Example

To format an output message, you enter DICE sequences on the
output form in columns 45-70, along with the message text. The
remote device handler takes the DICE sequence and converts it
into the form required by the destination terminal. The
4-character DICE sequence determines how the output message
looks when it appears at the terminal. The DICE sequences
themselves never appear on the terminal screen.

Figure A-3 shows how an action program generates a formatted
output message using DICE sequences. Figure A-4 shows how
the message looks when it appears at the terminal.

STACKER SELECT/ v
FrFETCH OVERFLOW CODES 2ER0

commas
TYPE WIOMTIE o WEGATIVE VALUE INDICATION | et mrep | PALANCE
NONE R 0 PRINT

Y 7 YES

[L3
T v
) ™

FILE —
B

e

o [wven

%' BB RC2B7,]

‘ON THE OUTPUT, EorRM' | |

| X\ P@dB122.7 o L
\TO FOIRMAT. YouR'’ :

Figure A-3. Using DICE to Format an Output Message

COLUMN 30 3234 38
o — |] ~
10 YO SE DICE SEQUENCES
12 - N|THE|OUTPUT FORM
14 TO FORMAT YOUR
16 MESSAGE

Figure A-4. How DICE Formatted Message in Figure A-3 Appears at the Screen

UP-9206

SPERRY UNIVAC 0S/3 A-13

IMS ACTION PROGRAMMING IN RPG I

CODING DICE SEQUENCES

A-3.

Description of DICE
sequences (Fig. A-3)

100A0A1E

Here is a brief description of the DICE sequences used in Figure

The select character 10 signals the start of the DICE sequence.

The function code (OA) clears all protected and unprotected data from
the terminal screen.

The m field (OA) and the n field {1E} position the cursor to row 10,
column 30. Notice that the end position for the DICE sequence is 20.
Remember that the DICE sequence is a 4-character code and that the
output message area header occupies positions 1-16.

10010C20

The select character 10 is always the same and signals the start of the
DICE sequence. The function code (O1) sets coordinates as directed by
the m and n fields of the DICE sequence.

The m field {OC) and the n field (20) position the cursor at row 12,
column 32.

10040122

The select character is the same as before. The function code (04)
moves the cursor to the beginning of the next line and then sets the
coordinates as directed by the m and n fields.

The m field (01} and the n field (22) position the cursor one row below
where it presently is and in column 34.

10080226

The select character is again the same. The function code (08) returns
the cursor to the beginning of the current line. The m field (02) and the
n field (26) position the cursor two lines below the current line and in
column 38.

UP-9206 SPERRY UNIVAC 0S/3 A-14
IMS ACTION PROGRAMMING IN RPG Il

FIELD CONTROL CHARACTERS

A.7. USING FIELD CONTROL CHARACTERS
The FCC sequence format is:

Field control character format FCC SEQUENCE

Characters in the FCC sequence are defined as follows:

Defining FCC characters

Is the control character that signals the start of an FCC
sequence. It corresponds to a hexadecimal 1F.

Is the number of the row in which the FCC is placed.

Is the number of the column in which the FCC is placed.

Is the hexadecimal value placed in the sequence to
define bits 4, 5, 6, and 7 of the FCC. Table A-4 lists
the hexadecimal codes you can use.

Is the hexadecimal value placed in the sequence to
define bits O, 1, 2, and 3 of the FCC. Table A-5 lists
the hexadecimal codes you can use.

Table A-4. Hexadecimal Codes Used as M in the FCC Sequence (Part 1 of 2)

0 30 Tab stop, normal intensity, changed field*

1 31 Tab stop, display off (no intensity), changed field*
2 32 Tab stop, low intensity, changed field*

3 33 Tab stop, blinking display, changed field*

4 34 Tab stop, normal intensity

5 35 Tab stop, display off (no intensity)

6 36 Tab stop, low intensity

7 37 Tab stop, blinking display

8 38 Not tab stop, normal intensity, changed field*

UP-9206 SPERRY UNIVAC OS,3 A-15
IMS ACTION PROGRAMMING IN RPG I

' FIELD CONTROL CHARACTERS

Table A-4. Hexadecimal Codes Used as M in the FCC Sequence (Part 2 of 2)

9 39 Not tab stop, display off (no intensity), changed field*
3A Not tab stop, low intensity, changed field*
3B Not tab stop, blinking display, changed fieid*

< 3C Not tab stop, normal intensity

= 3D Not tab stop, display off {no intensity)

> 3E Not tab stop, low intensity

? 3F Not tab stop, blinking display

* Normally, when an FCC is generated by the host processor, the changed-field designator
is cleared. However, the host processor can generate individual FCCs with the
changed-field designator set; this capability may be used for selective transfer or
transmission of fields which were not in fact changed by the terminal operator. By
sending an ESC u code to the terminal in a text message, the host processor can clear
the changed-field designators in all FCCs without regenerating each FCC and without
altering the data within the fields.

Table A-5. Hexadecimal Codes Used as N in the FCC Sequence

0 30 Any input allowed

1 31 Alpha only allowed

2 32 Numeric only allowed

3 33 Protected (no entries and no changes allowed)
4 34 Any input allowed, right-justified

5 35 Alpha only allowed, right-justified

6 36 Numeric only allowed, right-justified

For detailed information on using field control characters,
consult the UTS 400 programmer reference, UP-8359 (current
version).

UP-9206 SPERRY UNIVAC 0S/3 B-1
IMS ACTION PROGRAMMING IN RPG Il

EDIT TABLE GENERATOR CODING RULES

Appendix B. Generating Edit Tables

B.1. PURPOSE

The edit table generator offers a convenient means for
converting unformatted input received from terminal operators
into fixed formats required by action programs and checking this
input for types of data, value ranges, and presence of required
fields.

Edit table generator output The output of the edit table generator is written to the named
record file (NAMEREC). From there it is loaded at the
. appropriate time by IMS. Each edit table is associated with a
particular action at configuration time via the EDIT parameter in
an ACTION section. The edit table utility can be run either
before or after configuration, but the NAMEREC file must be
previously initialized.

B.2. STATEMENT CONVENTIONS AND CODING RULES FOR EDIT TABLE
GENERATOR INPUT

Edit table generator input INnput to the edit table generator is in the form of keyword
parameters parameters that define the edit table, the fields you want edited,
and the edit criteria for each field.

Statement conventions In the format for edit table parameters, these conventions are
observed:

Capital letters represent entries that must be coded exactly
as shown.

Lowercase words are generic terms representing data that
you must supply.

Entries within braces represent choices, of which you select
one.

UP-9206

SPERRY UNIVAC 0S/3 B-2
IMS ACTION PROGRAMMING IN RPG i

EDIT TABLE GENERATOR CODING RULES

Sequence numbers

Where to code parameters

Spanning lines

Data within brackets represents optional entries.

Shaded entries are default values.

To code input to the edit table generator, apply the following
rules:

1. Input entries must contain sequence numbers in columns 77
through 80, in ascending order. The lowest permissible
sequence number is 0001,

2. Parameters can be coded in any column between 1 and 76.
Blanks are ignored and are permitted anywhere in the edit
table definition.

Example:
1 Q1 77 80
SEP=;ETAB=ETABTST;KEY=1;P0S=0;MAN=Y;LEN=5; 0100
KEY=2;FIL= ;JUS=L;LEN=15;MAN=Y;TYP=A;P0S=5; 0200
KEY=3;FIL= ;JUS=L;LEN=20;P0S=20;TYP=M;; 0300

3. Specifications for an edit table and for each field can span
more than one line. However, a keyword and its value must
be contained on one line.

Example:
INCORRECT CORRECT
SEP=;ETAB=ETABTST;KEY=1;P0S= 0100 SEP=;ETAB=ETABTST;KEY=1;P0S=0; 0100
©;MAN=Y; LEN=5;MAN=Y;LEN=5;; 0200

KEYWORD AND VALUE
NOT ON SAME LINE

UP-9206 SPERRY UNIVAC 0O</3 B-3
IMS ACTION PROGRAMMING IN RPG Il

EDIT TABLE GENERATOR CODING RULES

New line 4. A new edit table specification must start on a new line. Each
field need not begin on a new line.

Example:
INCORRECT CORRECT
SEP=;ETAB=ETABTST;KEY=1;P0S=0; @108 | SEP=;ETAB=ETABTST;KEY=1;P0S=0; 0100
MAN=Y; LEN=5; ©200 | MAN=Y;LEN=5;KEY=2;FIL= ;JUS=L; 2200
KEY=2;FIL= ;JUS=L;LEN=15;MAN=Y; 0300 | LEN=15;MAN=Y;TYPNA;P0S=5;; 2300
TYP=A;POS=5;;SEP= ETAB=TABL1, @400 | SEP=,ETAB=TABL1,KEWI,LEN=20, 2400
KEY=1,LEN=2¢,POS:3377\\\\\> 9500 | pos=2e,, 0500
NEW EDIT TABLE NOT NEW FIELD NEED NOT
SPECIFIED ON NEW LINE START ON NEW LINE

Field separator character 5. The field separator character specified by the SEP keyword
parameter must be used as the field separator throughout
the edit table specification, as well as the input message to
be edited. Double separator characters indicate the end of

Changing separator character the edit definition. A new edit table can establish a different
separator character.

. Example:

INCORRECT CORRECT

SEP=;ETAB=ETABTST,KEY=1,P0S=0; 0100 SEP=;ETAB=ETABTST;KEY=1;P0S=0; 0100
MAN=Y; LEN=5; 200 MAN=Y;LEN=5;; 0200
\ SEP=.ETAB=TABL4.KEY=1.P0S=0. 0300
END OF EDIT SAME FIELD MAN=Y . LEN=S= 0400

DEFINITION SEPARATOR

NEEDS DOUBLE NOT USED ESTABLISHES A NEW
SEPARATOR THROUGHOUT SEPARATOR CHARACTER
EDIT TABLE
DEFINITION

UP-9206 SPERRY UNIVAC 0S/3 B-4
IMS ACTION PROGRAMMING IN RPG I

EDIT TABLE GENERATOR CODING RULES

Order of parameters 6. The SEP, ETAB, and KEY parameters must be coded in the
prescribed order; the remaining keyword parameters can be
specified in any order. SEP and ETAB are coded once for
each edit table. The remaining parameters are repeated for
each field in the input message to be edited.

INCORRECT CORRECT

SEP=;P0S=0;LEN=5;KEY=1; 2100 SEP=;ETAB=ETABTST;KEY=1;P0S5=0; 8100
ETAB=ETABTST;7 MAN=Y;LEN=5;; 0200

ETAB AND KEY PARAMETERS
DON'T IMMEDIATELY FOLLOW
SEP

Numeric values 7. Numeric values are positive unless preceded by a minus sign
(-). The plus sign (+) is not permitted in numeric values.

Example:
INCORRECT CORRECT
SEP=;ETAB=TABL1;KEY=1;LEN=5; 0100 SEP=;ETAB=TABL1;KEY=1;LEN=5; 0100
POS=0;MAX=+200000;MIN=-1;; 0200 POS=0;MAX=20000;MIN=-1;; 0200
PLUS SIGN

NOT ALLOWED

NUMBER OF CHARACTERS
EXCEEDS LENGTH GIVEN
IN LEN PARAMETER

UP-9206 SPERRY UNIVAC 0S/3 B-5
IMS ACTION PROGRAMMING IN RPG i

EDIT TABLE GENERATOR INPUT

B.3. EDIT TABLE GENERATOR PARAMETERS

Input parameter format The input parameters you give to the edit table generator should
follow this format:

SEP=separator-character
ETAB=tablename
KEY={keyword }

position
LEN=fijeld-length
POS=starting-position
[FIL=fill-character]

4]
]

[MAX=maximum-value]
[MIN=minimum-value]
YP=/A

Separator character The separator parameter specifies the field separator character
for both the edit table definition and the input message to be
edited. It cannot be a blank, equal sign, or minus sign. This
parameter is required, must be the first entry on the first line of
the edit table definition, and can be specified only once per edit
table.

(SEP)

Edit table name The edit table name parameter names the edit table and must

(ETAB) immediately follow the SEP parameter. This specification
associates the edit table with an action at configuration, via the
EDIT =tablename option in the ACTION section.

UP-9206

SPERRY UNIVAC 0S/3 B-6
IMS ACTION PROGRAMMING IN RPG I

EDIT TABLE GENERATOR INPUT

Key field identification
(KEY)

Positional fields

Keyword fields

Edited field length
(LEN)

The key field parameter identifies the input message field for
which edit criteria are specified in subsequent parameters and
must be the first parameter specified for each field. The edit
table generator associates all subsequent specifications with this
field until it encounters another KEY parameter. Input fields can
be positional or keyword. Positional fields precede keyword
fields.

KEY =position specifies the relative position of the field as it
appears in the input message. Positional fields must be defined in
numeric order, starting with 1.

KEY=keyword specifies a 1- to 3-character alphanumeric
identification. The first character must be alphabetic for a
keyword field in the input. The terminal operator enters keyword
fields in the form keyword=data. For example, when you specify
KEY=O0LD, the terminal operator might enter OLD=57500 for
this field. Once a keyword field is identified in the edit table
definition, all subsequent fields must be defined as keyword
fields.

Figure B-1 shows the correct coding for positional and keyword
parameters to the edit table generator.

EP=;ETAB=TABL1;KEY=1};P0S=0;MAN=Y; LEN=5;

-[KEY=2); FIL= ;JUS=L;LEN=15;MAN=Y;TYP=A;P0S=5;
EY=NEW;FIL= ;JUS=L;LEN=10;P0S=20;TYP=M;

Figure B-1. Edit Table Parameter Description with Positional and Keyword
Parameters

The length parameter specifies the length of the edited field and
is a required parameter. You may specify a maximum of 255
characters for alphanumeric fields and four characters for binary
fields. Ten characters is the maximum length for numeric fields
unless you specify both MIN and MAX parameters for this field.
If you identify a numeric field in the action program as packed
decimal, you can specify up to 16 characters in the LEN
parameter.

UP-9206 SPERRY UNIVAC 0S'3 B-7
IMS ACTION PROGRAMMING IN RPG i

EDIT TABLE GENERATOR INPUT

NOTES:

~-a

Field-length longer than If the field-length is larger than the width of the screen on

screen width which data is to be entered, IMS removes the DICE code at
the end of each line of terminal input and replaces it with a
blank character. You must provide for these additional blank
characters in the action program and include them in the
field-length specified by the LEN parameter.

Binary and packed field 2. The length specified for binary (TYP=B) and packed

lengths (TYP=P) fields is the maximum length for the field in the
input message, not the length of the field in your program.
For example, if a field is defined as packed with a LEN=3,
the largest number the terminal operator can key in is 999,
even though 1000 may be represented in a packed field in 3
bytes.

Transaction codes under 3. If the transaction code (the first TRANSACTION CODE IS PAY

five characters field in the input message) is less SO OPERATOR ENTERS
than five characters, the terminal
operator must key in a space
before entering the separator
character for the next field. You
must include the space in the
field-length specified by the LEN

parameter.
Transaction code field The length of the first field can be greater than five
larger than five characters characters, but only the first five characters are used in the

transaction code. The LEN parameter should specify the
actual length of the field.

Field starting position The starting position parameter specifies the starting position of
(POS) this field as it appears in the edited message and is a required
parameter. The first field starts at O.

UP-9206

SPERRY UNIVAC 0S/3 B-8
IMS ACTION PROGRAMMING IN RPG Il

EDIT TABLE GENERATOR INPUT

Fill character
identification (FiL)

Field justification
Jus)

Mandatory field
(MAN)

Maximum value limitation
(MAX)

Minimum value limitation
(MIN)

The fill character parameter optionally specifies the fill character
inserted in the edited field when the data the terminal operator
enters as input is shorter than the field-length specified by the
LEN parameter. The default fill character is O. If you want to fill
with spaces (X'40°), code either FIL= or FIL=A; i.e., you can
include or omit a space before the separator character for the
next field. Binary fields are always filled with binary zeros;
therefore, this parameter is ignored if specified for a binary field.

JUS=L left-justifies this field in the edited message. Binary and
packed fields are always right-justified; therefore, this parameter
is ignored if specified for binary or packed fields.

JUS=R right-justifies this field in the edited message and is the
default assumed.

MAN=N indicates that this field is not mandatory in the edited
message for input to be acceptable.

MAN=Y indicates that this field is mandatory in the edited
message.

The maximum value parameter specifies the maximum value
allowed for the field in the input message. This parameter applies
only to numeric fields. The highest value allowed is 2 to the
thirty-first power minus 1 (23'-1). The number of characters in
this value must not exceed the length specified by the LEN
parameter.

The minimum value parameter specifies the minimum value
allowed for the field in the input message. This parameter applies
only to numeric fields. The lowest value allowed is minus 2 to
the thirty-first power minus 1 (-(23'-1)). The number of characters
in this value must not exceed the length specified by the LEN
parameter.

UP-9206 SPERRY UNIVAC 0S/3 B-9
IMS ACTION PROGRAMMING IN RPG I

EDIT TABLE GENERATOR INPUT

Data type (TYP) The type parameter describes the type of data to be contained in
the edited field.

TYP=A specifies alphabetic data. A field defined to the editor as
alphabetic is treated as an alphanumeric field.

TYP=B specifies binary data.
TYP=M specifies alphanumeric data and is the default value.
TYP=N specifies numeric data.

TYP=P specifies packed decimal data.

UP-9206

SPERRY UNIVAC 0S/3 B-10
IMS ACTION PROGRAMMING IN RPG i

EDIT TABLE GENERATOR EXECUTION

B.4. EXECUTING THE EDIT TABLE GENERATOR

Job control stream

When execution is
successful

Duplicate edit table name

Errors in edit table
generation

Once you code input parameters describing the edit table format
and the NAMEREC file is initialized, you can execute the ZH#EDT
edit table generator using the control stream illustrated in Figure
B-2.

/ DTI'

/ DVC 20 // LFD PRNTR

/ OPTION DUMP

/ DVC 50 // VOL DS9999 // LBL NAMEREC,DS9999 // LFD NAMERE
- // EXEC ZHHEDT

/%

input parameters

Figure B-2. Sample Execution of Edit Table Generator

If the input definition is acceptable, the generated edit table is
written to the NAMEREC file and the following message is
issued;

tablename ADDED

If the edit table has the same name as a table already existing in
the NAMEREC file, the new edit table replaces the existing table,
and the following message is issued:

TABLE ADDED, DUPLICATE DELETED

If errors cause rejection of the edit table, the following message
is issued:

tablename REJECTED

UP-9206

SPERRY UNIVAC 0O</3 B-11

IMS ACTION PROGRAMMING IN RPG I

EDIT TABLE GENERATOR EXECUTION

UPSI byte values

Another way to determine edit table errors is to look at the UPSI
byte. The following UPSI byte values pertain to the edit table
error status:

00 No errors

40 Warning. ZH#EDT continues processing edit table input
parameters but no edit table is built.

80 Fatal error. Edit table processing terminates.

UP-9206

SPERRY UNIVAC 0S/3 B-12
IMS ACTION PROGRAMMING iN RPG I

EDIT TABLE GENERATOR ERRORS

B.5. ERROR PROCESSING

Warning errors

Fatal errors

Error message format

When the edit table generator encounters a file I/O error or
certain types of input errors, it terminates and prints a message
in the output listing. The resulting value in the UPSI byte is 80.
Most types of input errors do not cause termination. Processing
and validation continues, but an error message is printed and the
edit table is rejected. Input specifications for the edit table
generator are not printed in the output listing. This type of error
results in an UPSI byte value of 40.

If an 1/O error occurs while reading input to the edit table
generator, the following message is issued, and the program
terminates with an UPSI byte value of 80:

INPUT READ ERROR, SCAN TERMINATED

If an error occurs while opening, reading, or closing the named
record file, the following error message is issued and the
program terminates with an UPSI byte value of 80:

FILE ERROR, SCAN TERMINATED

Errors in the input statements are reported in the following
format:

nnnn cc error-message-text

where:
nnnn
Is the sequence number in columns 77 through 80 of
the card containing the error.
cc

Is the column number of the beginning of the input text
that is in error. This column number is suppressed if the
error is detected during final validation of all parameters
for a given field.

error-message-text
Is the description of the error as listed in Table B-1.

UP-9206 SPERRY UNIVAC 0OS/3 B-13
IMS ACTION PROGRAMMING IN RPG |l

EDIT TABLE GENERATOR ERRORS

Error message example An example of an input statement error and the resultant error
message follows:

Input:
SEP=,ETAB=EDIT1,KEY=1,LEN=5,P0S=0, JUS=X,MAN=Y, 0002
Error message:

0002 39 JUSTIFICATION ILLEGAL

Table B-1 lists alphabetically the message texts inserted into the
input statement error message. In each case, processing
continues, unless otherwise indicated in the explanation column.

Table B-1. Edit Table Diagnostic Messages (Part 1 of 2)

B TYPE LENGTH GR THAN 4 Four characters (one full word) is maximum

CARDS NOT IN SEQUENCE Scan terminated, run aborted”
. DOUBLE SEPARATOR MISSING Warning only; end-of-file encountered while

searching for separator

DUPLICATE NAME Duplicate name for nonpositional field

FIELD NOT ACCEPTED, KEYS STARTED Positional parameters not allowed after
nonpositionals started

FIELD NOT IN SEQUENCE Positional parameters must be in sequence

FILLER MUST BE SINGLE CHARACTER Self-explanatory

ILLEGAL FIELD TYPE Only A, B, M, N, or P accepted

INVALID MAN SPECIFICATION Only Y or N accepted

INVALID NAME Name too long or contains invalid characters

INVALID SEPARATOR Scan terminated, run aborted; = and - are not
allowed as separators”

JUSTIFICATION ILLEGAL Only R or L accepted

KEYWORD ETAB MISSING Self-explanatory

KEYWORD INVALID Self-explanatory

KEYWORD KEY = MISSING Self-explanatory

. KEYWORD SEP= MISSING Scan terminated, run aborted”
LEN OR POS EXCEEDS MAX Maximum length is 255; maximum position is

32,767

UP-9206 SPERRY UNIVAC 0S/3 B-14

IMS ACTION PROGRAMMING IN RPG Il

EDIT TABLE GENERATOR ERRORS

Table B—-1. Edit Table Diagnostic Messages (Part 2 of 2)

LEN OR POS MISSING

Required parameters

LEN ZERO

Length must be at least 1

MAX OR MIN ABSOLUTE VALUE
TOO LARGE

23'-1 is largest absolute value allowed

N TYPE LENGTH GR THAN 10

Ten characters is maximum unless MAX and
MIN both specified

NO DEFAULT FOR THIS FIELD

Parameter value must be specified

NO FIELDS DEFINED

Empty table not allowed

P TYPE LENGTH GR THAN 16

Sixteen characters maximum for packed
decimal field

REPEATED FIELD

Parameter already specified

SEPARATOR CHARACTER MISSING

Self-explanatory

SEQUENCE NUMBER NOT NUMERIC

Scan terminated, run aborted*

= SIGN MUST FOLLOW KEYWORD

Self-explanatory

TOO MANY FIELDS

Scan terminated, run aborted; output buffer
overflow”

XXX OVER_LAPS yyy

Warning only; overlapping fields permitted

* These errors set the UPSI byte to 80; all other errors in this table result in an UPSI

byte value of 40.

UP-9206 SPERRY UNIVAC 0O£/3 B-15
IMS ACTION PROGRAMMING IN RPG i

ENTERING INPUT MESSAGE

B.6. ENTERING INPUT MESSAGES FROM TERMINAL

When the terminal operator enters an input message for which
you've generated an edit table, an IMS component called the
expanded input editor processes it. The following considerations
apply when entering input messages from the terminal:

Transaction code first ® When an input message contains a transaction code, the
transaction code must always be the first field. if the
transaction code is less than five characters, enter a space
before keying in the separator character.

Beginning positional fields ® Positional fields begin with the first nonblank character and
extend to the next separator. Positional fields must appear
in the same order as specified in the edit table definition. If

Omitting positional fields you omit a positional field, enter an additional separator
character in its position. A positional field entered as input
may not contain an equal sign.

Keyword fields m Keywords must be followed by an equal sign with no
intervening blanks. Data starts immediately after the equal
sign and extends to the next field separator.

Invalid plus sign ® Numeric values are positive unless preceded by a minus
sign. The plus sign (+) is an invalid character.

Error messages screen m Error messages are displayed on the first line of the display

placement terminal; therefore, we recommend that you start input
messages on the second line so that the input is not erased
by an error message.

Continuing fields m If you continue fields from one line to another, IMS
removes the DICE code at the end of each line and replaces
it with a blank character, which it sends to the action
program as part of the data. Always enter on one line
fields that don’t exceed the width of the screen. If a field
exceeds the screen width and must be continued from one
line to another, avoid splitting a word between lines.

Ending input with positional ® If the terminal input ends with a positional parameter (no

parameters keyword parameters are specified), enter a separator
character at the end of the input message; otherwise, the
input message could be partially deleted. A correct terminal
entry is:

INFOR,BIOLOGY,CLASS2,MARY J. BLISS,

When terminal input ends with a keyword parameter, this is not
necessary.

UP-9206 SPERRY UNIVAC 0S/3 B-16
IMS ACTION PROGRAMMING IN RPG Il

SAMPLE EDIT TABLE APPLICATION

B.7. SAMPLE EDIT TABLE APPLICATION USING POSITIONAL AND KEYWORD
PARAMETERS

Example edit table input Figure B-3 and Table B-2 describe sample input to the edit table
generator for an accounts receivable application and the format in
which the edited input is delivered to the action program.

SHIP
ADDRESS AMOUNT NUMBER

SEP=,ETAB=EDIT1,KEY=1,LEN=5, POS=0, MAN=Y,
KEY=2,LEN=20, POS=5, FIL=,JUS=L,MAN=Y,
KEY=3,LEN=40,P0S=25,FIL= ,JUS=1,

Figure B-3. Sample Input to Edit Table Generator and Format of Input Delivered to
Action Program

Table B-2. Description of Sample Input to Edit Table Generator (Part 1 of 2)

SEP=, The field separator is a comma for both the edit
specification and input from the terminal.

ETAB=EDIT1 The edit table name is EDIT1.

KEY=1 The first field described is positional. It must be the first
field in the input message.

LEN=5 The edited field is five characters long.

POS=0 In the edited message the field begins in position O.

MAN=Y The field must be present for the message to be
acceptable.

KEY=2 The field is positional. It must be the second field in the

input message.

LEN=20 The edited field is 20 characters long.

POS=5 In the edited message the field begins in position 5.

FlL= The field is to be blank filled in the edited message.

Jus=L The field is to be left-justified in the edited message.

acceptable.

MAN=Y The field must be present for the message to be .

UP-9206

SPERRY UNIVAC 0S/3 B-17
IMS ACTION PROGRAMMING IN RPG I

SAMPLE EDIT TABLE APPLICATION

Table B-2. Description of Sample Input to Edit Table Generator (Part 2 of 2)

KEY=3 The field is positional. It must be the third field in the input
message.

LEN=40 The edited field is 40 characters long.

POS=25 In the edited message the field begins in position 25.

FIL= The field is to be blank filled in the edited message.

Jus=L The field is to be left-justified in the edited message.

KEY=AMT The field is a keyword field. AMT=n must be specified in
the input message.

LEN=4 The edited field is four characters long.

POS=65 In the edited message the field begins in position 65.

MIN= 1000 The minimum level allowed for the message to be
acceptable is $10.00 (entered as 1000).

TYP=B In the edited message the field is to be converted to binary.

MAN=Y The field must be present for the message to be
acceptable.

FIL=0 The field is to be zero filled in the edit message. (This
parameter could have been omitted.)

JUS=R The field is to be right-justified in the edited message. (This
parameter could have been omitted.)

KEY=SN The field is a keyword field.

LEN=6 The edited field is six characters long.

POS=69 In the edited message, the field begins in position 69.

FIL= The field is to be blank filled in the edited message.

JUS=R The field is to be right-justified in the edited message. (This

parameter could have been omitted.)

End of edit definition.

UP-9206

SPERRY UNIVAC 0S/3 B-18
IMS ACTION PROGRAMMING IN RPG I

SAMPLE EDIT TABLE APPLICATION

Terminal input

Edited message received
by action program

Terminal input

Edited message received
by action program

Explanation

Terminal input

Output message

Explanation

The following examples show freeform input from the terminal
and the resulting messages sent to the action program in
accordance with the edit table specifications or, in case of error,
the output message displayed at the terminal. Note that in the
edited messages, the 4-character binary field specified for the
AMT entry is represented by an underlined, 4-hexadecimal-digit
field. Spaces between each delimiter and the first character of
the next field are ignored.

Example 1:

PAYMT, JOHN D. SMITH,1112 BREEZE DR. PHILA.PA. 19160,
AMT=2500,SN=123456

PAYMTJOHNAD . ASMITHAAAAAAATT12ABREEZEADR. APHILA. APA.
A1916DALAAAAANANADICE123456

Example 2:

PAYMT,JOHN D. SMITH, ,SN=123456,AMT=2500

PAYMTJOHNAD.ASMITHAAAAAAAAANAAAAAAALLAADAAANALAANN
AAALAAAANNAAADADADLLLLLDICELT123456

The address field wasn’t specified as mandatory in the edit
table input and is omitted here; an additional comma is
coded in its position. The AMT and SN fields are keyword
fields and need not be entered in the order defined in the
edit table input.

Example 3:

PAYMT ,JOHN D. SMITH,1112 BREEZE DR. PHILA. PA. 19160,
AMT=2500, SN=123456

ILLEGAL INPUT

The transaction code field is longer than the LEN
specification.

UP-9206

SPERRY UNIVAC 0S/3 B-19
IMS ACTION PROGRAMMING IN RPG I

SAMPLE EDIT TABLE APPLICATION

Terminal input

Output message

Explanation

Terminal input

Output message

Explanation

Example 4:

PAYMT,JOHN D. SMITH,1112 BREEZE DR. PHILA. PA.19160,
AMT=700,SN=123456

AMT IS BELOW MIN

Edit table specifies AMT must be at least 1000.
Example 5:

PAYMT, JOHN D. SMITH,1112 BREEZE DR. PHILA. PA. 19160,
SN=123456

AMT MISSING

AMT was specified as mandatory.

UP-9206 SPERRY UNIVAC 0S/3 Cc-1
IMS ACTION PROGRAMMING IN RPG il

STATUS AND DETAILED STATUS CODES

Appendix C. Summary of IMS
Error Codes

This appendix presents all the error codes returned by IMS as a
result of function calls made by action programs.

Completion status codes Table C-1 lists and defines the values returned to the
status-code field of the program information block. This value
indicates the completion status of the function request.

Defined record management Table C-2 lists and describes values returned to the
status codes detailed-status-code field with status code 1 (invalid key) when
errors occur on a defined file.

Invalid request status codes 1able C-3 lists and describes values returned to the
detailed-status-code field when the status code returned is 3
(invalid request).

Internal message control Table C-4 lists and describes values returned to the
status codes detailed-status-code field when the status code returned is 6
(internal message control error).

Screen formatting status Table C-b lists and describes values returned to the
codes detailed-status-code field when the status code is 7 (screen
format services error).

UP-9206 SPERRY UNIVAC 0S/3 C-2
IMS ACTION PROGRAMMING IN RPG i

STATUS CODES

Table C-1. Values Returned to the Status-Code Field after Function Requests

Successful

Invalid key or record number

End of file or unallocated optional file

invalid request

/0 error

Violation of data definition

internal message control error

Screen format error

UP-9206 SPERRY UNIVAC 0S/3 C-3
IMS ACTION PROGRAMMING IN RPG |I

DEFINED FILE ERROR CODES

Table C-2. Detailed Status Codes for Defined Record Management Errors
(Invalid Key — Status Code 1)

No identifier supplied Insert an IDENTIFIER statement in
the item definition.

Identifier too long Identifier may be from 1 to 30
alphanumeric characters long.

Identifier out of range Value entered at terminal isn't in
range of VALUE clause specified.

UP-9206 SPERRY UNIVAC 0S/3 c-4
IMS ACTION PROGRAMMING IN RPG i

INVALID REQUEST ERROR CODES

Table C-3. Detailed Status Codes for Invalid Requests (Part 1 of 2)

Incorrect number of parameters Please submit a software user
report (SUR) or contact your
Sperry Univac representative.

Function code out of legal Please submit a SUR or contact
range your Sperry Univac representative.

Incorrect parameter value Please submit a SUR or contact
your Sperry Univac representative.

>

Shared record not in use by This code does not apply to user
this transaction action program requests.

File not defined A file named in a request to IMS
was not defined at configuration.

File not open A file named in a request to IMS
was closed by the master terminal
(ZZCLS) or by data management as
the result of an unrecoverable error.

Function invalid for type The function specified in a

of file request to IMS is not valid for

the type of file named. For

example, a SETLL for a nonindexed file.

Record(s) not locked Please submit a SUR or contact
your Sperry Univac representative.

Function sequence for an Input did not precede output.
update operation is invalid

lllegal function requested The requested function is not
consistent with the DTF or RIB
parameters in the configuration.

File not assigned to this Same as code 05
action

Required module not included A request was made to IMS that
in configuration required a module not included in
the IMS load module at
configuration.

Capacity exceeded on ADD A request was made to add a record
operation to a MIRAM or ISAM file, but there
wasn’'t sufficient space.

Insufficient space in main User must allocate more main
storage storage space.

Update not permitted in A request was made to perform some
configuration update function, but this update
was disallowed at configuration.

UP-9206 SPERRY UNIVAC 0S/3 C-5
IMS ACTION PROGRAMMING IN RPG I

INVALID REQUEST ERROR CODES

. Table C-3. Detailed Status Codes for invalid Requests (Part 2 of 2)

Update suppressed for files

The requested update is not
permitted because of an |/O error
in the audit file, a file used for
online recovery.

Trace file down File recovery is not operational;
no updates are allowed. Only file
displays are allowed.

Record locked by another Under single-thread, an action
transaction (single-thread tried to add or update a record,
only) but the record was already locked

by another transaction.

UP-9206

SPERRY UNIVAC 0S/3 C-6

IMS ACTION PROGRAMMING IN RPG I

INTERNAL MESSAGE CONTROL ERROR CODES

Table C-4. Detailed Status Codes for Internal Message Control Errors {Status Code 6)

Rl

Destination terminal
busy, on hold, or down

Output-for-input queueing was requested and
1. destination terminal is in interactive mode;
2. destination terminal has an input message on queue;

3 ZZHLD or ZZDWN command was entered for destination

terminal;
4. destination terminal is marked physically down to ICAM; or
5. IMS cannot allocate main storage buffer (multithread only;

INBUFSIZ specification inadequate.

Destination terminal
physically or logically
down; message queued

SEND function was issued for message switching. Message is
queued at destination terminal and is transmitted when terminal
becomes operational.

invalid specification
in output message header

Invalid destination terminal-id or auxiliary-device-id; or, aux-function
field contains X'C3", X'F3’, or X'F7" {(not vahd with SEND function)

No ICAM network buffer
available

Insufficient buffer space was allocated in ICAM network definition

Disk error, or recoverable
system error on output
to console

Output error occurred on attempt to write a message to disk; error
was passed to IMS by ICAM. On output to console, this error
occurs when console is physically or logically down.

Invalid length specification

In delayed internal succession or output-for-input queueing, output
message length was larger than the input buffer pool.

~ UP-9206 SPERRY UNIVAC 0S/3 c-7
IMS ACTION PROGRAMMING IN RPG I

SCREEN FORMATTING ERROR CODES

Table C-5. Detailed Status Codes for Screen Formatting Errors (Status Code 7)

Validation error; all error Variable data fields don’t
fields in variable data area match specifications at
are replaced by hexadecimal F's. | screen format generation.

Format area not large enough; OUTSIZE=n specification

IMS places actual length in ACTION section of

required for format in the configuration isn’t large
text-length field enough.

Variable data area not large WORKSIZE=n specification in
enough ACTION section of configuration

isn’t large enough.

Screen format can’t be SFS=n specification in

displayed because no terminal OPTIONS section of

slots are available configuration isn’t large

enough.

Variable fields specified for Screen format was designed

input-only format for input only.

Format dimensions are greater Screen format is larger

than screen dimensions than source terminal screen.
. Fatal error; 1/O error reading Get DM error message from

format file console; refer to system

messages programmer/reference,
UP-8076 (current version).

Data description in action Screen format was
program doesn’t match screen incorrectly generated.
format generation

SFS failed System error; take dump and
write software user report
{SUR). Can also occur if format
contains protected fields and
terminal doesn’t have protect
feature or isn’t in protect

mode.
SFS failed during input Inadequate main storage in
conversion system; or format contains

protected fields and terminal
doesn’t have protect feature or
isn’t in protect mode.

IMS error Take IMS job dump and submit SUR.
Screen format can’t be Action program processing
transmitted because this DDP transaction attempted

is a program-initiated to send screen format to

DDP transaction. initiating action program.

UP-9206

SPERRY UNIVAC 0S/3 D-1
IMS ACTION PROGRAMMING IN RPG I

ACTION PROGRAM CODING RESTRICTIONS

General coding restrictions

Coding restrictions for
random files

Coding restrictions for
sequential files

Appendix D. Action Program
Coding Restrictions

Table D-1 is a summary of coding restrictions for all the RPG Il
coding forms.

Table D-2 summarizes allowable entries on the file description
form for random access, MIRAM, ISAM, DAM, and defined files.

Table D-3 summarizes allowable entries on the file description
form for sequential MIRAM and SAM files.

UP-9206 SPERRY UNIVAC 0S/3 D-2
IMS ACTION PROGRAMMING IN RPG i

ACTION PROGRAM CODING RESTRICTIONS

Table D-1. IMS Restrictions for RPG |l Coding

H Control card specifications 8 Error analysis dump
9 Operator control
15 Generate debug code
41 First page forms alignment

F File description specifications 15 File type (C and D not allowed)
16 Table and array file designation (T)®
20-23 Block length (Same as record Iength)@
32 File organization:

ADDROUT (D)O

Record address (blank)®

Additional 1/0 areas®@

Sequential MIRAM and SAM tape/disk input files
ISAM and indexed MIRAM output files

40-46 Device:

CTLRDR
READER

CRP

PUNCH
CONSOLE
PRINTER
WORKSTATION
REMOTE FILES

53 Labels®
54-59 Name of label exit option®@
60-65 Size of ISAM index entry@

66 Unordered load
67 Cylinder overflow space percentage®
68-69 Number of extents®@
70 Tape rewind®
71-72 File conditioners (U1-U8)
E Extension specifications@ 9-10 Chaining {C1-C9) tables or arrays
| Input format specifications 19-20 Spread card feature (TR}
42 Stacker select
C Calculation specifications 28-32 Display operation (DSPLY)}
0 Output format specifications 16 Stacker select
T Telecommunications specifications| - -
NOTES:

® Used only with nonindexed MIRAM and DAM files.

@ Ignored by RPG It compiler; must be specified in IMS configuration.

UP-9206 SPERRY UNIVAC C./3
IMS ACTION PROGRAMMING IN RPG Il

D-3

ALLOWABLE FILE DESCRIPTION SPECIFICATIONS

Table D-2. Allowable File Description Specifications for ISAM, MIRAM, DAM,

and Defined Files

File description form
entries for ISAM, MIRAM,
DAM, and defined files

Form Type (Column 6)

F

File Name (Column 7-13)

User-defined name

File Type (Column 15)

I, U orO

File Desgination {Column 16)

S,R C,D,orP

Format (Column 19)

F

Record Length (Column 24-27)

User’s record size

Mode of Processing (Column 28)

L, R, or blank

Key Field Length (Column 29-30)

01-99

Record Address Type (Column 31)

A orP
R
Blank

File Organization (Column 32)

|
D
Blank

Key Field Start Position
{Column 35-38)

0001-99990)

Device (Column 40-46)

Must be disk device

File Addition (Column 66)

Blank or A

NOTES:
(@ Indexed files
@ Nonindexed (relative) files

@ Sequential processing

UP-9206 SPERRY UNIVAC 0S/3 D-4
IMS ACTION PROGRAMMING IN RPG |l

ALLOWABLE FILE DESCRIPTION SPECIFICATIONS

Table D-3. Allowable File Description Specifications for Sequential MIRAM
and SAM Output Files

File description form
entries for sequential

MIRAM and SAM files Form Type (Column 6) .
File Name (Column 7-13) User-defined name
File Type (Column 15) (0]
Format (Column 19) F
Record Length (Column 24-27) User's record size
Overflow Indicator (Column 33-34) May be specified for line counter files
‘ Line Counter (Column 39) Blank or L
Device {Column 40-46) Must be disk or tape device

UP-9206 SPERRY UNIVAC 0S/3 Index 1
IMS ACTION PROGRAMMING IN RPG I
Index
Term Reference Page Term Reference Page
Activate function 15 7-8
Fig. 7-2 7-8
Abnormal termination - :
after SEND function 5.14 -4 Activation record
involuntary 26 2-13 description 16 1-9
voluntary 26 13 main storage layout 1.6 1-9
Table 2-4 2-12 .
Allocation map
Absolute addresses Fig. 9-1 9-2 contgntsl 9.4 9-5
locating in snap dump 9.8 9-11
Action 1.3 1-3
Array, example of use 5.2 5-3
i i 53 5-6
Action program routin 1.2 7-3
Pree ; Fig. 5-1 5-2
Action programs)
coding description 2.1 2-1 Auto transmit feature 5.12 5-43
coding restrictions Table D-1 D-2
Appendix D Aux-device-no field, OMA
compile 8.2 8-2 continuous output use 5.6 5-9
Fig. 8-3 8-3 description 2.12 2-30
Fig. 8-4 8-3 '
debugging Section 9 Aux-function field, OMA
differences from other RPG Il continuous-output use 5.6 5-9
programs 3.1 3-1 description 2.12 2-31
example execution 36 3-§ print/transfer options 5.6 5-11
Fig. 3-3 3-7 read/search options 5.12 5-40
identification 2.2 2-1 settings Table 5-2 5-10
internal subroutines, use 45 4-17 Table 5-3 5-11
link 8.3 8-4
Fig. 8-6 8-5 Auxiliary device
Fig. 8-7 8-5 aux-device-id field 212 2-31
load area in snap dump 98 9-10 aux-function field settings Table 5-2 5-10
Fig. 9-1 9-2 condition codes Table 5-5 5-20
preparations for onfine processing 8.1 8-1 continuous output 5.6 5-11
processing 3.6 3-5 identification 5.6 5-12
recompiling 85 8-8 supported 5.6 5-9
reusable code 15 1-9 supporting DICE codes Table A-3 A-11
scheduling 3.3 3-2 transmitting formatted screens 6.11 6-12
store 84 8-7
Fig. 8-9 8-8 Auxiliary-device-id, IMA header 2.9 2-25
using screen formats 42 4-1

UP-9206 SPERRY UNIVAC 0S/3 Index 2
IMS ACTION PROGRAMMING IN RPG i
Term Reference Page Term Reference Page
B Compiling and linking action programs Section 8
Backward-one-block option, Console, sending messages 5.20 5-54
cassette/diskette 5.12 5-42
Continuity data area
Binary or packed field lengths, edit as input file 2.16 2-40
table generator B.3 B-7 continuity-data-input-length 2.6 2-17
continuity-data-output-length 26 2-17
definition 2.15 2-38
Table 2-9 2-38
file 2.16 2-41
flow of saved data 2.16 2-41
input form coding 14 4-14
C passing data 2.16 2-39
purpose 44 4-14
Calculations size for successor 2.17 2-43
continuous output example 5.10 5-26 update file 2.16 2-40
for continuity data area 44 4-15 Fig. 2-14 2-40
for multiple output messages 5.2 5-4 updated at output 44 4-16
sample program calculations 319 3-22 use, example 44 4-14
used to control processing 44 4-15
Cassette/diskette varying size 2.17 2-41
print/transfer options 5.6 5-11 Fig. 2-3 2-20
read/search options Table 5-6 5-40
5.12 5-40 Continuity-data-area-inc, PIB
search arguments Table 5-7 5-42 description 2.6 2-1
moving value 217 2-42
CDA See continuity
data area. Continuity-data-input-length, PIB
description 26 2-7
Coding for action programs determining value 2.17 2-41
calculation form 3.19 3-22
CDA size specification on output Continuous output
form Fig. 2-17 2-43 cassette/diskette 512 5-40
control form program-id 2.2 2-1 cassette/diskette search arguments Table 5-7 5-42
file description specifications 2.1 2-1 coding 5.6 5-9
input message, pass data 2.11 2-28 configuration specification 5.4 5-9
Fig. 2-8 2-28 continuous-output-code field 5.8 5-18
input message area, reading 2.10 2-27 delivery code 58 5-18
Fig. 2-7 2-27 devices receiving 55 5-9
interface areas 2.3 2-3 example program 5.11 5-29
naming action programs 2.2 2-2 Fig. 5-9 5-29
output form 3.20 3-22 example program (SALES2) 5.10 5-24
output message area, file Fig. 5-7 5-24
description 2.13 2-33 example with print transparent
Fig. 2-9 2-33 and inhibit space suppression Fig. 5-4 5-14
output message area, output example with transfer all option Fig. 5-3 5-13
form coding Fig. 2-11 2-36 function key use 5.9 5-21
Fig. 2-12 2-36 generating messages 54 5-9
program information block 25 2-7 5.10 5-27
2.7 2-20 input message return to successor
2.8 2-23 program Fig. 5-6 5-18
screen format coding 47 4-20 limitations 5.7 5-14
message transmission 5.7 5-15
Communications output printer, receiving output-for-input queueing 5.15 5-46
DICE codes Table A-1 A-6 output only screens 6.6 6-6
print/transfer options Table 5-3 5-11
program example 5.10 5-23
511 5-29

UP-9206 SPERRY UNIVAC 0S/3 Index 3
IMS ACTION PROGRAMMING IN RPG i
. Term Reference Page Term Reference Page
Continuous output (cont) D
read/search options Table 5-6 5-40
recovery 5.9 5-21 Data-def-rec-name 26 2-16
restrictions for use with DDP 13 1-6
status codes 58 5-18 Data files See files.
SUCCeSSOr program 5.7 5-15
5.10 5-27 Data type B3 B-9
terminal screen size 5.10 5-28
termination 5.10 5-27 Date-time stamp, IMA header 29 2-25
to terminal 5.6 5-10
Fig. 5-2 5-10 DDP-mode field, PIB 26 2-19
used with cassette/diskette 5.12 5-40
using aux-device-no field 5.7 5-14 Debugging See dump,
using aux-function field 5.7 5-13 snap.
Continuous-output-code, OMA Defined file name 26 2-16
description 2.12 2-32
how used 5.8 3-18 Defined files, identifying 2.6 2-16
Fig. 5-5 -17
passing it 5.10 5-27 Defined record area (DRA) Fig. 1-9 1-10
when not specified 512 5-43
: Delayed internal succession
CONTOUT parameter, IMS configuration description 1.4 1-5
continuous output 54 5-9 output only screens required 6.6 6-6
output-for-input queueing 5.13 5-44
. Delivery notice code, continuous output
Control form before line disconnect 5.19 5-52
coding 22 2-2 definition 5.8 5-17
entries 38 3-11 interrogation 5.10 5-26
status returned Table 5-4 5-19
cop See communications status returned for auxiliary
output printer. devices Table 5-5 5-20
unsuccessful 5.10 5-23
CRT devices, receiving DICE codes A5 A-10
Table A-1 A-6 Destination-terminal-id, OMA
description 2.12 2-31
locating in snap dump 9.6 9-9
Detailed status codes
defined record management
(status code-1) Table C-2 C-3
internal message control
(status code-6) Table C-4 C-6
invalid requests (status code-3) Table C-3 C-4
1/0 error (status code-4) 2.6 2-9
location in snap dump 9.5 9-8
reading 2.1 2-22
screen formatting (status code-7) Table C-5 c-7
Device independent control expressions
auxiliary devices Table A-3 A-11
coordinate value interpretations Table -A-1 A-6
description Al A-1
. formats Ad A-5
) functions Table A-1 A-6
functions performed A2 A-2

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG i

Term Reference Page Term Reference Page .
Device independent control expressions (cont)
interpretation A5 A-9 edited 9.2 9-1
macroinstructions Table A-1 A-6 error code interpretation 9.5 9-8
primary devices Table A-2 A-10 finding error in PIB 95 9-8
stripping A2 A-3 function call, determining last 938 9-11
terminals supporting AS A-10 function calls, hexadecimal
use in action program A6 A-12 equivalent Table 9-1 9-12
Fig. A-3 A-12 interface area, order 9.9 9-13
Fig. A-4 A-12 locating *ERROR in snap dump 9.5 9-8
use in message formatting A2 A-1 Fig. 9-8 9-28
use with ICAM A3 A-4 main storage layout 9.3 9-2
parameter list location 9.8 9-12
Dialog transaction 13 1-4 PIB field locations 95 9-9
registers saved by involuntary
DICE See device snap 9.3 9-3
independent control registers saved by voluntary snap 9.3 9-3
expressions. sample Fig. 9-3 9-6
save area 94 9-5
Directory routing 12 7-3 single and multithread formats 9.9 9-13
status code location 9.5 9-8
Disconnecting line from action program See line successor-id field location 9.5 9-8
disconnect. terminal control table Fig. 9-6 9-20
termination indicator field
Diskette/cassette location 9.5 9-9
auto-transmit feature 512 5-43 termination indicator to obtain
print/transfer options 5.6 5-11 dump 26 2-11
read/search options 5.12 5-41 thread control block Fig. 9-4 9-14
Tabie 5-6 5-40 Fig. 9-5 9-18
search arguments Table 5-7 5-42 thread control block use 99 9-13
types 9.2 9-1
Display constants, output to screen 6.6 6-5 use of input message area 9.7 9-10
Fig. 6-2 6-13 use of output message area 9.6 9-9
use of program load area 9.8 9-10
Distributed data processing
action program requirements 1.1 7-1 Dynamic main storage
action program succession 7.4 7-7 building screen 6.8 6-8
local IMS 11 7-2 Fig. 6-4 6-8
locap name 7.1 7-2 description 6.4 6-2
operator-initiated remote
transaction 74 1-1
primary IMS 7.1 7-1
program-initiated remote
transaction 15 7-8
remote IMS 7.1 1-2
remote transactions 1.3 7-5
routing remote transactions 1.2 7-3
secondary IMS 7.1 7-2
terminology 11 7-1
DTF, locating in snap dump 9.8 9-12
Dump, snap
allocation map 9.4 9-5
analysis 9.4 9-5
conditions 9.1 9-1
debugging resources 9.10 9-25

. Term

UP-9206 SPERRY UNIVAC 0S/3 index 5
IMS ACTION PROGRAMMING IN RPG I
Reference Page Term Reference Page
E ETAB See edit
table name.
Edit table generator
coding for input B.2 B-1 Examples of action programs
description B.1 B-1 JAADDI program (file update and
diagnostic messages Table B-1 B-13 internal subroutines 4.3 4-2
duplicate edit table name B4 B-10 JAMENU program (screen updates) 4.1-2 4-2
entenng input messages from LSTLIM program (multiple output
terminal B.6 B-15 message) Fig. 5-1 5-2
error processing 8.5 B-12 Fig. 5-2 5-10
execution B.A 8-10 NCSC program (continuous output) Fig. 5-9 5-29
parameters B.3 B-5 Fig. 5-10 5-44
sample parameter description Fig. B-1 B-6 RCCUST program (file update) 35-.20 3-3
transaction codes smaller/larger RCMENU program 35-13 3-4
than five characters B.3 B-7 SALES2 program (continuous output) 5.10 5-23
UPSI byte values B.4 B-11 Fig. 5-7 5.24
use of positional and keyword transaction with external succession 34-9 3-2
parameters B.7 B-16
_ External succession
Edit table name B.3 B-5 description 14 1-5
. , sample program 34 3-2
Edited directory, snap dump 9.2 9-1 to continue generating continuous
o output 51 5-15
Edited field length B.3 B-6
ERET parameter
configured 2.6 2-9
specified when using SEND function 5.18 5-49
Error codes, IMS Appendix C
See also status codes and detailed
status codes.
Error message file F
generating error messages 46
sample use 4.6 Fast load feature
fast load file 8.4 8-7
Error messages, displaying 47 4-20 store action programs 84 8-7
Error processing FCC See field
detailed status codes 2.6 2-10 control characters.
ERET configurator parameter 2.6 2-9
*ERROR field 9.10 9-25 Field control characters
*ERROR location 9.5 9-8 ASCIl characters used Table A-4 A-1
output-for-input queueing 5.14 5-44 . Table A5 A-1l
status codes 26 2-9 format A7 A-14
See also dump, error codes, use in action programs A7 A-14
status codes, or detailed
status codes. Field justification, edit table generator B.3 B-8
Error status Field separator character, edit table
codes Appendix C generator B.2 B-8
how to determine 2.6 2-9
Field starting position, edit table
generator B.3 B-7
FIL B.3 B-5

UP-9206 SPERRY UNIVAC 0S/3 Index 6
IMS ACTION PROGRAMMING IN RPG I
Term Reference Page Term Reference
File description specifications |
altowed for ISAM, MIRAM, DAM,
and defined files Table D-2 D-3 IMA See input
allowed for sequential MIRAM and message area.
SAM output files Table D-3 D-4
coding action programs 23 2-3 Immediate internal succession
coding restrictions Table D-1 D-2 description 14 1-8
continuity data area 4.4 4-14 saves interface areas 2.11 2-29
continuous output sample program 5.10 5-25
input demand file 27 2-20 Indicators, RPG H, setting 3.12 3-15
input message area 2.9-.11 2-25 Table 3-1 3-1
multiple output messages 5.2 5-3
output message area 2.12-.14 2-30 Initiating transactions 3.3 3-2
update demand file 2.8 2-23
input demand file
File extension form continuity data area 2.16 2-40
coding restrictions Table D-1 D-2 input message area 29-11 2-25
multiple output messages 52 5-3 program information block 2.7 2-20
25 2-1
Fites sample file description form
accessible 23 2-4 coding 21 2-20
accessing sequential files 2.3 2-3 sample” input form coding 27 2-21
allowable file description entries Appendix D
assigning interface area file names 2.4 2-6 Input fields, entered on screen format 6.6 6-5
coding restrictions Table D-1 D-2 Fig. 6-2 6-5
defined, identification 2.6 2-16
describing in action program 2.3 2-3 Input message
PIB file type depends on use 25 2-7 formatted screens for input 6.7 6-7
types used by action programs Table 2-1 2-3 formatting using DICE A2 A-3
updating restrictions 2.3 2-4 locating in snap dump 9.7 9-10
receiving in remote transaction 1.3 7-5
Fill character identification, edit returned to successor in
table generator B.3 B-8 continuous output Fig. 5-6 5-18
Formatted screens See screen Input message area
format services. auxiliary-device-id 29 2-26
control header format Table 2-7 2-25
Function calls date-time stamp 29 2-25
determining last from snap dump 9.8 9-11 defining as input file 29 2-25
error returns Appendix C definition 29 2-25
hexadecimal equivalents Table 9-1 9-12 input fields, defined 3.18 3-21
passing data 2.11 2-28
Function keys, used in continuous ocutput 59 5-21 reading 2.10 2-21
311 3-13
sample use 3.11-.12 3-13
snap dump 9.7 9-10
source-terminal-id 2.9 2-26
text-length 29 2-26
H Input options, cassette/diskette
read 5.12 5-41
Header, control See program read transparent 5.12 5-41
information search and read 5.12 5-41
block, input search and read transparent 5.12 5-41
message area,
or output -

message area.

UP-9206

SPERRY UNIVAC (3/3 index 7
IMS ACTION PROGRAMMING IN RPG Il
. Term Reference Page Term Reference Page
Input specifications form Job streams See job
coding restrictions Table D-1 D-2 control.
continuity data area 4.4 4-14
continuous output 5.10 5-25 JUS specification, edit table generator B.3 B-8
multiple output messages 5.2 5-3
interface areas
action program 1.6 1-9
activation record 1.6 1-9
coding 2.3 2-3 K
continuity data area 2.15 2-38
defined record area 16 19 KEY field identification, edit table
definition 24 2-5
example coding, RCCUST 3.17 3-20 generator B.3 B-6
gigzg:zscgg;ir:ﬁ,ngRCMENU ;:g_.” g:i} KEY specification, edit table generator B.3 B-5
input message area 2.9 2-25
fayout in snap dump 9.3 9-3
Fig. 9-1 9-2
order in snap dump 9.9 9-13
output message area 2.12 2-31
program information block 25 2-1
relationship to thread control L
block Fig. 9-2 9-4
LEN specification, edit table generator B.3 B-6
. Internal subroutines 45 4-17
» Line disconnect
Internal succession coding example 515 5-46
delayed 14 1-7 delivery notice before 519 5-52
immediate 14 1-8 description 519 5-52
fnvalid request Link jproc 83 8-4
detailed status codes Appendix C Fig. 8-5 8-4
status code 3 2.6 2-9
Link map, for debugging 9.10 9-25
1/0 error, status code 4 26 2-9 Fig. -7 9-26
Load module, naming 8.3 8-4
Local IMS, definition 71 7-1
Locap name, definition 7.1 7-1
J Lock-rollback indicator, PIB
default vaiue 2.6 2-14
Job control description 2.6 2-9
compile and link action program fFig. 8-7 8-5 focating in snap dump 9.5 9-9
Fig. 8-8 8-6 online file recovery 2.6 2-15
compiling action program Fig. 8-1 8-2
Fig. 8-2 8-2 Locking
Fig. 8-3 8-3 for update 2.6 2-15
Fig. 8-4 8-3 hoiding locks 2.6 2-14
edit table generator execution Fig. B-2 B-10 online file recovery 2.6 2-15
. fink editing action program Fig. 8-5 8-4 record 2.6 2-14
- Fig. 8-6 8-5 releasing locks for action Table 2-6 2-14
recompiling and linking action releasing locks for transaction Table 2-6 2-14
program Fig. 8-9 8-8 rollback indicators Table 2-6 2-14

UP-9206 SPERRY UNIVAC 0S/3
IMS ACTION PROGRAMMING IN RPG I

Term Reference Page Term Reference Page .
M o
MAN, specification edit table generator B.3 B-8 OMA See output
message
Mandatory field, edit table generator B.3 B-8 area.
Master workstation 5.20 5-54 Operator routing 72 7-3
MAX specification, edit table generator B.3 B-8 Qutput-for-input queueing
coding 5.14 5-45
Maximum value limitations, edit table coding example Fig. 5-12 5-47
generator B.3 B-8 configuration 5.13 5-44
definition 5.13 5-44
Message-length field, locating in identifying terminal for output
snap dump 9.6 9-10 message 5.14 5-44
initiating transaction at another
Message size specification 2.6 2-16 terminal 5.16 5-46
with continuous output 5.15 5-46
Message switching with screen bypass device 5.16 5-46
coding required 5.17 5-47
Fig. 5-13 5-48 Output message area (OMA)
output only screens required 6.6 6-6 building screen formatted messages 6.4 6-3
switch transaction 517 5-47 coding 214 2-35
continuous-output-code 2.12 2-32
MIN specification, edit table generator B.3 B-8 control header format Table 2-8 2-31
definition 2.12 2-30
Minimum value limitations, edit table destination-terminal-id 212 2-31
generator B.3 B-8 file specifications 2.13 2-33
sample use 313 3-16
Multiple output messages SFS-location 212 2-32
operator response 5.3 5-8 SFS-type 2.12 2-32
sample use 5.2 5-1 snap dump 9.6 9-9
53 5-5 text-length 2.12 2-32
Fig. 5-1 5-2
using SEND function 5.3 5-6 Output message header
field descriptions 2.12
Multithread snaps See thread format and contents Table 2-8
control
block. Output messages
continuous output 5.4-.12 5-9
continuous output recovery
returned on unsuccessful
delivery notice code 5.9 5-21
511 5-38
N delivery notice status codes Table 5-4 5-19
determining output message length 2.14 2-35
Naming programs 2.2 2-2 for input queueing 5.13 5-44
formatting using DICE or FCC A2 A-1
Nonpolled device acknowledgment 59 5-21 generating multiple 5.2 5-1
5.3 5-5
Normal termination 1.4 1-6 line disconnect 5.19 5-52
multiple, generating 5.2 5-1
multiple, processing 5.3 5-5
output-for-input-queueing 5.14-.16 5-43
queueing 5.3 5-6

UP-9206 SPERRY UNIVAC 0S/3 Index 9
IMS ACTION PROGRAMMING IN RPG |l

. Term Reference Page Term Reference Page
Output messages (cont)
recovery with continuous output 5.9 5-21 Print transparent with UNISCOPE 100 5.6 5-12
sample coding 3.20 3-22
sample generation 313 3-16 Printer
sample output coding 3.20 3-23 continuous output 5.5 5-8
screen formatted 6.6 6-5 effect with inoperative delivery
switching 5.17 5-47 notice code 5.10 5-26
to system console 5.20 5-54 writing formatted screens 6.11 6-12
types 5.1 5-1
when none generated 3.13 3-17 Program information block (PIB)
coding forms for updating 2.8 2-24
Output specifications form Fig. 2-5 2-23
continuous output 5.10 5-26 Fig. 2-6 2-24
multiple output messages 5.2 5-5 contents (format) Table 2-3 2-8
sample use 5.13 5-44 continuity-data-area-inc 2.6 2-17
screen format messages 6.6 6-5 continuity-data-input-length 26 2-17
continuity-data-output-length 2.6 2-17
data-def-rec-name/defined filename 26 2-16
DDP mode 2.6 2-19
DDP-mode field 7.3 7-5
defining fields 3.14 3-18
definition 25 2-1
device name 2.7 2-21
input form entries for reading 2.7 2-21
lock-rollback indicator 2.6 2-14
purpose and use 2.6 2-9
. P read 2.7 2-20
reading 2.1 2-20
Packed or binary field lengths, edit sample use 3.14 3-18
table generator B.3 B-7 setting successor-id and
termination type 3.14 3-18
Parameter list, snap dump 9.8 9-12 snap dump 95 3-8
source-term-attributes 2.6 2-18
Passing data source-term-msg-line-length 2.6 2-18
continuity data area 216 2-39 source-term-msg-number-lines 2.6 2-18
input message area 211 2-28 source-terminal-type 2.6 2-18
output message area 214 2-35 standard-msg-line-length 2.6 2-16
standard-msg-number-lines 2.6 2-17
PIB See program status code and values 2.6 2-9
information success-unit-id 26 2-17
block. successor-id 2.6 2-17
termination indicator 2.6 2-11
Polled device, acknowledgment 5.9 5-21 testing status/detailed status
codes Fig. 2-4 2-21
POS specification, edit table generator B3 B-7 transaction-id 26 2-16
update 2.8 2-24
Primary IMS, definition 71 7-1 3.14 3-18
updating 2.8 2-23
Print form (ESC H) Table 5-3 5-11 work-area-inc 26 2-17
work-area-length 2.6 2-17
Print mode Table 5-3 -
56 5-11 Program name, assigning 3.8 3-11
3.16 3-20
. Print/transfer options Table 5-3 5-11
Print transparent mode 5.6 5-12
Table 5-3 5-11

UP-9206 SPERRY UNIVAC 0S/3 Index 10
IMS ACTION PROGRAMMING IN RPG i
Term Reference Page Term Reference Page '
S
Queueing messages 5.3 5-6 Sample action programs See
examples
of action
programs.
Save area, snap dump 9.4 9-5
Saving data
Read option, cassette/diskette 5.12 5-41 continuity data area 2.16 2-41
input message area 2.11 2-28
Read/search options output message area 2.13 2-34
description 5.12 5-40
settings for aux-function field Table 5-6 5-40 Scheduling programs, contents of
main storage 3.10 3-13
Read transparent option 5.12 5-41
Screen bypass
RCCUST sample program 3.15-.20 3-20 output-for-input queueing 5.16 5-46
with cassette/diskette 5.12 5-43
RCMENU sample program 35-.13 3-3
Screen format services
Record key, saving next 5.11 5-38 coding required 6.8 6-8
coding to build screens 47 4-20
Record length, for PIB 2.7 2-20 6.8 6-8
Fig. 4-2 4-3
Record locking 2.6 2-14 configuration requirements 6.4 6-2
devices used 6.2 6-1
Register section, snap dump dispiaying screen formats 6.1 6-1
location 9.3 9-3 distributed data processing 1.6 7-9
more than one set 9.3 9-3 error codes 6.10 6-11
one set 9.3 9-3 Table 6-1 6-11
9.4 9-5 formatted screens for input 6.7 6-6
function keys to cancel screens 6.6 6-6
Relative main storage addresses Fig. 9-1 9-2 generated offline 6.3 6-1
9.3 9-2 generating screen formats 6.3 6-1
IMS start-up requirements 6.5 6-3
Remote IMS, definition 7.1 7-1 invalid input 6.7 6-7
output screen with no variable data 6.9 6-10
Remote transactions See OUTSIZE parameter 6.4 6-3
distributed print/transfer options, to aux
data devices Table 6-2 6-13
processing. processing remote transactions 1.6 7-9
RESFMT parameter 6.4 6-2
Report address option, cassette/ sample use 47 4-20
diskette, continuous output 5.12 5-42 screen format file 16 7-9
screen formatted messages,
Return function processing 6.6 6-5
continuous output 5.7 5-16 screen with no variable data 6.9 6-10
fast output message 53 5-7 Fig. 6-7 6-12
sending formatted screens to
Rollback, specifying 2.6 2-14 aux-device 6.11 6-12
SFS-options field, OMA 2.12 2-32
Routing SFS parameter 6.4 6-2
action program 1.2 7-3 storing formats for later 6.3 6-1
directory 7.2 7-3
operator 1.2 7-3

UP-9206

SPERRY UNIVAC 0S/3 Index 11
IMS ACTION PROGRAMMING IN RPG Il
Term Reference Page Term Reference Page
Screen format services (cont)
variable output data 6.6 6-5 Snap See dump.
6.8 6-9
' 6.9 6-10 Source-term-attributes 26 2-18
work area required 417 4-20
6.4 6-2 Source-term-msg-line-length 2.6 2-18
Screen formatted messages See Source-term-msg-number-lines 2.6 2-18
screen
format Source terminal, specifying
Services. characteristics 2.6 2-18
Search and position option, cassette/ Source-terminal-id, IMA header
diskette 5.12 5-42 description 29 2-25
] use for processing remote
Search and read option, cassette/ transaction 73 7-5
diskette 512 5-41
Source-terminal-type 2.6 2-18
Search and read transparent, cassette/
diskette 5.12 5-A1 Space suppression 5.6 5-12
Secondary IMS 71 7-2 Standard-msg-fine-length 2.6 2-16
SEND function Standard-msg-number-lines 26 2-17
configuration requirement 53 5-8
continuous output program 5.7 5-15 Start-up, IMS, screen format
description and status codes 5.18 5-49 requirements 65 6-3
message switching 5.17 5-48
multiple output messages 53 5-6 Status codes
output-for-input queueing 5.14 5-44 invalid request 26 2-9
restrictions, use for remote IMS 13 1-6 1/0 error 26 2-10
status codes 5.18 5-49 location in snap dumps 9.5 9-8
Table 5-8 5-50 output delivery notice Table 5-4 5-19
successful 5.18 5-49 SEND function 5.18 5-49
) values and interpretation 26 2-9
SEP specification, edit table generator B.3 B-5 Table C-1 C-2
Separator character, edit table Subroutines, internal 45 4-17
generator B.3 B-5
Success-unit-id 26 2-17
Serially reusable code
resetting fields 15 1-9 Succession, types 14 1-5
turning off indicators and switches 1.5 1-9 _
Successor-id
SFS-location, OMA header 2.12 2-32 locating in snap dump 95 9-8
processing errors 2.6 2-11
SFS-options field, OMA 2.12 2-32 updating 28 2-23
use 2.6 2-17
SFS-type, OMA header 212 2-32 with termination indicators Table 2-5 2-13
Simple transaction 1.3 1-3 Successor program
continuous output 5.7 5-1
Single-thread, snap dump 9.9 9-13 IMS delivery code 58 5-1
See also thread control block. naming 2.6 2-1
using saved data 2.11 2-2
See also successor-id.

UP-9206 SPERRY UNIVAC 0S/3 Index 12
IMS ACTION PROGRAMMING IN RPG I
Term Reference Page Term Reference Page
Switching messages Termination indicator
configuring disk queueing 5.17 5-48 default 2.6 2-11
description 5.17 5-47 involuntary 26 2-13
output only screens required 6.6 6-6 locating in snap dump 9.5 9-9
SEND function 5.18 5-49 termination types and successor-id Table 2-5 2-13
status codes for SEND function 5.18 5-49 updating 2.8 2-23
Table 5-8 5-50 values and interpretations Table 2-4 2-12
SWTCH transaction code 5.17 5-47 See also termination.
to console 5.17 5-47
Fig. 5-13 5-48 Terms, IMS 13 1-3
SWTCH action program 5.17 5-47 Text-length field, OMA
description 2.12 2-32
Symbol table, for debugging Fig. 9-8 9-28 effect of incorrect length 2.14 2-36
field in IMA header 29 2-26
System console 5.20 5-54 field in OMA header 2.12 2-32
moving value 2.14 2-37
reading 2.14 2-35
when zero 2.14 2-37
Thread control block (THCB)
multithread format Fig. 9-5 9-18
T relationship to interface areas Fig. 9-2 9-4
single-thread format Fig. 9-4 9-14
Terminal control table, single and use, snap dump 9.8 9-10
multithread format Fig. 9-6 9-20
Transaction code
Terminal printer (TP) definition 13 1-3
continuous output 55 5-9 initiates transaction 33 3-2
receiving DICE codes Table A-1 A-6 Fig. 3-1 3-2
invalid, entered on input screen 6.7 6-6
Terminals smaller or larger than five
continuous output 55 5-9 characters, edit table generator B.3 B-7
displaying screen formats 6.6 6-5
entering input messages for edit Transaction-id 26 2-16
table generation B.6 B-15
identifying local, for remote Transactions
transactions 76 7-10 abnormal termination, message
screen bypass 5.16 5-46 switching 5.13 -4
supporting DICE codes AS A-10 codes 13 1-4
combined structures 14 1-8
Termination completion 14 1-5
abnormal Table 2-4 2-12 dialog 13 1-4
allowable for program-initiated ending 3.13 3-17
remote transactions 75 7-8 external succession example 34 3-2
continuous output 5.7 5-13 function 35 3-3
definition 14 1-5 initiating at another terminal 5.13 5-44
delayed internal succession 1.4 1-7 identification 2.6 2-16
external succession 1.4 1-6 initiation 33 3-2
immediate internal succession 1.4 1-8 local 11 7-1
IMS 3.14 3-19 operator-initiated 1.2 7-3
indicator to obtain dump 2.6 2-13 74 7-7
involuntary 26 2-13 program-initiated 1.2 7-4
normat 1.4 1-6 1.5 7-8
specifying type 26 2-11 remote 71 7-1
7.2 7-3

UP-9206

. Term

SPERRY UNIVAC 0S/3 Index 13
IMS ACTION PROGRAMMING IN RPG Il
Reference Page Term Reference Page
Transactions (cont)
sample processing 35 3-3 User files
Fig. 3-2 3-5 describing 23 2-3
simple 13 1-3 types 2.3 2-3
structure 43 4-2 updating 2.3 2-4
14 1-5
Transfer alt (ESC G) 5.6 5-1
Table 5-2 5-1
Transfer changed (ESC E) 5.6 5-11
Table 5-2 5-1
Transfer variable (ESC F) 5.6 5-1
Table 5-2 5-1
TYP specification, edit table generator B.3 B-9 Variable data
moved to screen buffer 6.6 6-5
moved to work area 6.6 6-5
receiving order 6.8 6-9
screen with no variable data 6.10 6-11
Table 6-1 6-11
U Voluntary abnormal termination
with snap dump Table 2-4 2-12
UNISCOPE 100 display terminal, without snap dump Table 2-4 2-12
printing continuous output 5.6 5-12
UNSOL parameter, IMS configuration
multiple output messages 53 5-8
output-for-input-queueing 5.13 5-44 ,
Unsolicited output
multiple output messages 53 5-8
output-for-input queueing 5.13 5-44
Update demand file
continuity data area (CDA) 2.16 2-40 Work area 1-20
defining record length 28 2-23 configuring , A7 i
device name 28 9.3 screen format services 4.7 4-20
file description form coding 28 2-23)
input message area (IMA) 211 2-28 Work-area-increment 26 -1
output form coding 28 2-24
output message area (OMA) Fig. 210 2-35 Work-area-length 26 -1
READ operation 2.8 2-24
updating, PIB 2.8 2-23
updating successor-id 2.8 2-23
updating termination-indicator 2.8 2-23
Updating
continuity data area (CDA) 44 4-16
program information block 2.8 2-23
successor-id 28 2-23
termination indicator 2.8 2-23
user files 23 2-4]
ZZPCH command, use after recompile 8.5 8-8
UPST byte values, edit table generator B4 B-11

Cut along line.

— e e e o — . — . —— . e e ———— — — — — ——tmn - —— — — m— — — — — a— p— o — ——— . p— — —— — —— — — apac | o -

SPERRY == UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title}

(Doecument No.) {Revisfon No.) (Updaté No.)

Comments:

From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

]
I
I
I
I
|
!
I
|
I
I
I
I
|
I
I
I
|
I
|
I
I
» I
|
I
NO POSTAGE |
‘ I
|
|
I
I
|
|
I
|
I
I
I
I
|
I
I
I
|
|
I
I

-]
NECESSARY
IF MAILED
IN THE
UNITED STATES
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

I o
POSTAGE WIiLL BE PAID BY ADDRESSEE] S

|

]

SPERRY UNIVAC —

T

ATTN.: SYSTEMS PUBLICATIONS I ———

R

]

S

P.O. BOX 500]

BLUE BELL, PENNSYLVANIA 19424 L]

Cut along line,

I
I
I
|
|
I
I
|
I
|
I
I
I
!
|
|
I
|
|
I
I
I
|
I
I
I
|
|
I
I
I
|
I
I
|
|
I
|
|
|
I
!

SPERRY==LINIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) {Revision No.) (Updaté No.)

Comments:

From:

(Name of User}

{Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

I " “ I NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

1nd

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

