Operating System/3 (0S/3)

Assembler
Programmer Reference

(Sys'fem 30)
For Series 90 see UP- 3227

This Library Memo announces the release and availability of Updating Package A to "SPERRY®

Operating System/3 (0S/3) Assembler Programmer Reference”, UP-8914.

The Operating System/3 (0S/3) assembler translates a symbolic language into computer instructions such as
how to store data and how to retrieve it. This manual provides a quick-reference guide for the experienced

assembler programmer, summarizing the use of basic assembly language (BAL) instructions.

This update documents a change to the ICM instruction.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
recieve only the updating package, order UP-89314-D. To receive the complete manual, order UP-8914.

Mailing Lists Mailing Lists BOO, B18, 28U, and 29U.
BZ, CZ, and MZ (Package A to UP-8914,
5 pages plus Memo)

TE/R

fip

Library Memo for
UP-8914-D

RELEASE DATE:

January, 1985

Operating System/3 (0S/3)

Assembler

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to “SPERRY
Operating System/3 (0S/3) Assembler Programmer Reference”, UP-8914.

This update contains corrections or clarifications applicable to features present in the OS/3 Assembler prior to
the 8.2 release.

Copies of Updating Package C are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8914-C. To receive the complete manual, order UP-8914.

 LIBRARY MEMO ONLY | LIBRARY MEMO AND AT,

Mailing Lists Mailing Lists BOO, B18, 28U, and 28U Library Memo for
’ BZ, CZ and MZ (Package C 1o UP-8914 UP-8914-C
AN, 27 pages plus Memo)

RELEABE DATE:

UDi-257 Rev. 11/83 February, 1984

' Operating System/3 (0S/3)

Assembler

Programmer Reference

This Library Memo announces the release and availability of Updating Package B to “SPERRY UNIVAC Operating
System/3 (0S/3) Assembler Programmer Reference”’, UP-8914.

This update documents the following enhancements to the assembler for release 8.0:

u The display of final error messages on the console

u The addition of two privileged instructions (Get IORB, Put IORB)

] An additional warning message when using continuation characters with macroinstructions

This update also includes minor technical corrections to material applicable to the assembler prior to release 8.0.

Copies of Updating Package B are now available for requisitioning. Either the updating package only, or the
. complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8914—B. To receive the complete manual, order UP-8914.

Mailing Lists Mailing Lists BOO, B18, 28U, and 29U Library Memo for
BZ, CZ and MZ (Package B to UP-8914, UP-8914-B
' 98 pages plus Memo)

vt

RELEASE DATE:

September, 1982

251 Rey, 3773

UNISYS

0S/3
Assembler

Programming
Reference Manual

Copyright© 1987 Unisys Corporation

All Rights Reserved

Unisys is a trademark of Unisys Corporation.

Previous Title: OS/3 Assembler Programmer Reference

Relative to Release August 1987
Level 9.0

Printed in U S America
Priced Item UP-8914

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financiai or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, 4-SPERRY, SPERRY<4=UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and <= are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

PSS 1

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update E
PAGE STATUS SUMMARY
ISSUE: Update E — UP-8914
RELEASE LEVEL: 9.0 Forward
i Page Update i Page Update . Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
ICover E Section 2 0 B Appendix A Title Page Orig.
{cont) 91 thru 94 Orig. 1 thru 9 B
Title Page/Disclaimer E* 95 B 10 A
96 thru 98 Orig. 11 B
PSS 1 E 99 B 12 thru 14 Orig.
100 thru 109 Orig. 15 B
Preface 1 Orig. 110 B 16, 17 Orig.
111 thru 116 Orig. :
Contents 1,2 Orig. 117 A Appendix B Title Page Orig.
3 B 118 thru 138 Orig. 1 thru 5 Orig.
4 A 138a B 6,7 C
5 B 139 Orig.
6 Orig. 140 A Appendix C Title Page Orig.
7 A 141, 142 Orig. 1 thru 13 Orig.
8 thru 10 Orig. 143 B
11 C 144 thru 157 Orig. Appendix D Title Page Orig.
168 B 1,2 Orig.
Section 1 Title Page Orig. 159, 160 Orig. 3 thru b B
1 C 161 B 6 thru 8 Orig.
L2 Orig. 162 Orig.
.3 B 163 B Appendix E
4,5 Orig. 164 thru 170 Orig. Title Page Orig.
171 B 1 thru b Orig.
Section 2 Title Page Orig. 172 thru 174 Orig.
1 thru 5 Orig. 175, 176 B Appendix F Title Page Orig.
6 B 177,178 Orig. 1 thru 6 Orig.
7 thru 9 Orig. 179 A
10, 1 B 180 thru 182 Orig. Glossary Title Page Orig.
12 thru 19 Orig. 183 B 1 thru 9 Orig.
20 thru 25 C 184 thru 187 Orig. 10, 11 B
26 B 188 B 12 thru 17 Orig.
27 Orig. 189 Orig.
28 thru 31 C 190 A User Comment Form
32 thru 40 Orig. 190a A
41, 42 B 191 Orig.
43, 44 Orig. 192 B
45 B 192a B
46 thru 52 Orig. 193 thru 196 Orig.
53 A 197 B
54 thru 65 Orig. 198 thru 204 Orig.
66 A
67 B Section 3 Title Page Orig.
68 Orig. 1 Orig.
69, 70 B 2 B
70a B 3 thru 14 Orig.
71.72 B 15 B
73 C 16 Orig.
74 Orig. 17 B
75 D 18 thru 31 Orig.
76 A
76a A Section 4 Title Page Orig.
77 thru 80 Orig 1 thru 10 Orig.
81 B 11,12 8
82 thru 89 Orig. 13 thru 20 Orig.
21 B
22 thru 29 Orig.

*New pages

All the technical changes are denoted by an arrow (=) in the margin. A downward pointing arrow {4) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (1} is found. A horizontal arrow (=) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both

lines or deletions.

UP-8914 SPERRY UNIVAC 0S/3 Preface 1
ASSEMBLER

Pretface

This programmer reference manual is one in a series designed to be used as a quick-reference document for
programmers familiar with the SPERRY UNIVAC Operating System/3 (0S/3). This particufar manuai describes
the basic assembiy language (BAL) instructions, directives, and macro definition statements that ailow the user
to write assembly language programs and procedure definitions {procs).

No extensive introductory information or examples of use are provided. This type of information is presented in
the current versions of two other assembler manuals: an introduction to the assembler, UP-8030, and an
assembler user guide, UP-8913.

The information contained in this manual is presented as follows:

= SECTION 1. GENERAL INFORMATION

. Provides a brief overview of the assembler, the job control stream requirements of the assembiler, and the
conventions that must be observed when reading and writing assembler code.

. SECTION 2. BAL APPLICATION INSTRUCTIONS

Describes each of the BAL application instructions recognized by the 0S/3 assembler. These descriptions
are presented in alphabetic order by their operation code mnemonic.

. SECTION 3. BAL DIRECTIVES

Describes each of the directives that are used to controi the operation of the assembler. These directives
are also presented in alphabetic order by their operation code mnemonic.

. SECTION 4. BAL MACRO DEFINITION STATEMENTS

Describes the macro definition statements used to write and call procedure definitions. These statements
are presented in alphabetic order.

L] APPENDIXES

Contain assembler references, character set code references, math references, source corrections, and
system variable symbols helpful to the BAL programmer.

. GLOSSARY

Defines the terms, expressions, and abbreviations peculiar to the assembier.

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER

Contents 1

PAGE STATUS SUMMARY
PREFACE
CONTENTS

1. GENERAL INFORMATION
ASSEMBLER OVERVIEW
JOB CONTROL REQUIREMENTS
ASSEMBLER CODING FORM
Symbol Fieid
Operation Fieid
Operand Field
Comment Field
Continuation Column
Sequence Field
READING INSTRUCTION NOTATIONS

Assembler Application Instruction Notations
Notation Rules and Meanings

2. BAL APPLICATION INSTRUCTIONS
A
AD
ADR
AE

AER

AH

Contents

2-4
2-5

2-6

UP-8914 SPERRY UNIVAC 0S/3 Contents 2
ASSEMBLER
Al 2-7
AL 2-8
ALR 2-10
AP 2-11
AR 2-13
AU 2-14
AUR 2-15
AW 2-16
AWR 2-17
BAL 2-18
BALR 2-19
BC 2-20
BCR 2-22
BCT 2-23
BCTR 2-24
BXH 2-25
BXLE 2-26
C 2-27
cD 2-28
CDR 2-29
CE 2-30
CER 2-31
CH 2-32
CcL 2-33
cLC 2-34
CLCL 2-35
CLl 2-36
2-37

CLis

UP-8914 SPERRY UNIVAC 0S/3 Contents 3
ASSEMBLER Update B
cLm 2-38
CLR 2-40
CLRCH 2-41
CLRDV 2-42
CcP 2-43
CR 2-44
cSMm 2-45
CvB 2-46
CvD 2-48
D 2-49
DD 2-50
DDR 2-51
DE 2-52
DE@® 2-53
DER 2-54
DP 2-55
DR 2-57
ED 2-58
EDMK 2-63
EIO 2-65
N9 2-44
EX 2-67
EXD 2-69
GRB 2-70
HDR 2-70a
HDV 2-71
HER 2-72
HPR 2-73
Ic 2-74

UP-8914 SPERRY UNIVAC 0S/3 Contents 4

ASSEMBLER Update A

ICM 2-75
IPL 2-76
ISK 2-76a
L 2-77
LA 2-78
LCDR 2-79
LCER 2-80
LCHR 2-81
LCR 2-82
LCTL 2-83
LD 2-84
LDA 2-85
LDR 2-86
LE 2-87
LER 2-88
LH 2-89
LIA 2-90
LM 2-91
LNDR 2-93
LNER 2-94
LNR 2-95
LPDR 2-96
LPER 2-97
LPR 2-98
LPSW 2-99
LR 2-100
LRC 2-101
LRR 2-102

LTDR 2-103

uP-8914 SPERRY UNIVAC 0S/3 Contents 5
ASSEMBLER Update B
LTER 2-104
LTR 2-105
M 2-106
MD 2-108
MDR 2-109
ME 2-110
MER 2-111
MH 2-112
MIO 2-113
Mp 2-114
MR 2-116
MmSS 7
MvC 2-118
MVCL 2-119
MVI 2-120
MVN 2-121
MVO 2-122
MvVZ 2-123
N 2-124
NC 2-126
NI 2-128
NR 2-130
o] 2-131
oc 2-133
ol 2-135
OR 2-137
PACK 2-138
PRB 2-1382 g
RESET 2-139

uP-8914 SPERRY UNIVAC 0S/3 Contents 6
ASSEMBLER
S 2-140
sD 2-141
SDR 2-142
sDV 2-143
SE 2-144
SER 2-145
SH 2-146
SHL 2-147
SL 2-149
SLA 2-151
SLDA 2-153
SLDL 2-155
SLL 2-156
SLM 2-157
SLR 2-158
SP 2-159
SPM 2-161
SR 2-162
SRA 2-163
SRDA 2-165
SRDL 2-166
SRL 2-167
SRP 2-168
SSK 2-170
SSM 2-171
SSTM 2-172
ST 2-173
STC 2-174

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

Contents 7

STCM

STCTL

STD

STE

STEP

STH

ST™M

STR

STRR

STS

SuU

SUR

svC

SWR

™

™S

TR

TS

UNPK

Xc

X1

XR

2-175
2-176
2-177
2-178
2-179
2-180
2-181
2-183
2-184
2-185
2-186
2-187
2-188
2-189
2-190
2-191
2-192
2-193
2-195
2-197
2-198
2-199
2-200
2-202
2-203

2-204

SPERRY UNIVAC 0S/3

UP-8914 Contents 8
ASSEMBLER
3. BAL DIRECTIVES
| CCw 3-1
—

CNOP 3-2
COM 3-3
coPY 3-5
CSECT 3-6
DC (Floating Point) 3-7
DC (Standard Format) 3-9
DROP 3-10
Ds 3-11
DSECT 3-12
EJECT 3-13
END 3-14
ENTRY 3-15
EQU 3-16
EXTRN 3-17
ICTL 3-18
ISEQ 3-19
LTORG 3-20
OPSYM 3-21
ORG 3-23
PRINT 3-24
PUNCH 3-25
REPRO 3-26
SPACE 3-27
S.TART 3-28
TITLE 3-29
USING 3-30

UP-8914 SPERRY UNIVAC 0S/3 Contents 9
ASSEMBLER

4. BAL MACRO DEFINITION STATEMENTS

ACTR 4-1

AGO 4-2
AIlF | | 4-3
ANOP ' 4-4
Do ‘ 4-5
END 4-5
ENDO _ ‘ 4-7
GBL . 4-8
GBLA 4-8
GBLB ' 4-8
GBLC ‘ 4-8
LCcL 4-9
LCLA ’ 4-9 .
LCLB ' 4-9
LCLC 4-9
MACRO 4-10
Macro Call Instruction | 411
MEND 413
MEXIT 4-14
MNOTE 4-15
Model Statement . 4-186
NAME A 4-17
PNOTE 4-18
PROC 4-19
Prototype Statement 4-21
SET v 4—?2

SETA 4-25

UP-8914 SPERRY UNIVAC 0S/3 Contents 10
ASSEMBLER
SETB , 4-26
SETC ' 4-29

APPENDIXES
A. ASSEMBLER REFERENCES
B. CHARACTER SET CODE REFERENCES

C. MATH REFERENCES

FLOATING-POINT MATH C-10
Floating-Point Addition ‘ c-11
Floating-Point Division c-12
" Floating-Point Multiplication c-13

D. SOURCE CORRECTIONS

GENERAL | D-1
PARAM . ' . b-2
REC D-6
SEQ) D-7

SKi ’ D-8
E. SYSTEM VARIABLE SYMBOLS

F. ATTRIBUTE REFERENCES

Type Attributes F-2

Length Attributes F-4

Scale Attributes ’ E-5

Integer Attributes E-5

Count Attributes F-5

Number Atttributes F-6
GLOSSARY

USER COMMENT SHEET

UP-8914 SPERRY UNIVAC 0S/3 Contents 11

ASSEMBLER Update C
. TABLES
A-1 Instruction Formats A-1
A-2 Instruction Repertoire A-3
A-3 Extended Mnemonic Branch Codes A-12
A-4. Summary of Operators A-13
A-5 Comparison of Terms A-13
A—6. Characteristics of Constant and Storage Definition Type Codes A-14
A-7 PROC, MACRO, and Call Instruction Comparison A-15
A-8. Check-off Table Terms ' A-16
B-1. Punched-Card, ASCII, and EBCDIC Codes B-1
B-2. EBCDIC Chart B-6
B-3. ASCIl Character Code Chart B-7
C-1. Comparison of Numeric Expressions C-1
C-2. Hexadecimal-Decimal integer Conversion C-2
C-3. Hexadecimal-Decimal Fraction Conversion C-6
C-4. Hexadecimal Addition and Subtraction Table c-7
C-5. Powers of 16 Cc-8
C-6. Powers of 2 Cc-9
F-1. Valid Attribute Reference Applications F-2
F-2. Attributes of Symbols F-3

1. General Information

UI;-8914 SPERRY UNIVAC 0S/3 1-1

ASSEMBLER Update C

ASSEMBLER OVERVIEW

The SPERRY UNIVAC Operating System/3 (0S/3) assembler permits highly efficient, machine-instruction
programs to be written in symbolic form. The assembler consists of an instruction translator and a macro facility.
The instruction translator converts symbolic instructions to machine instructions on a one-to-one basis. The
macro facility allows a subroutine to be coded, assigned a name, stored in a permanent library, and then to be
included in a source program by a simple reference to the subroutine name in a single instruction. The macro
facility greatly reduces the amount of repetitive coding required for routines used frequently within a program or
in many different programs.

The assembler accepts source-image input from punched cards, magnetic tape, and disk. It reads source
statements and produces a relocatable object module. The object module can then be linked to other object
modules to form one load module that is suitable for loading and execution on your SPERRY system.

A set of assembler directives is provided to aid the user in program organization and in directing the course of an
assembly. All assembly runs produce a printed listing of source code, object code, label cross-references, cross-
references, and (when necessary) error diagnostics. The final error statement message, which gives the total
number of statements flagged in the assembly, is also displayed on the console upon completion of the
assembly.

JOB CONTROL REQUIREMENTS

The job control statements required to assemble, linkage edit, and execute are:

LABEL AOPERATIONA OPERAND A COMMENTS
10 13

//_TOB .ilolbinamel | . . it il NAME JOB L L
/soasmed o bt ASSEMBLE, LIINK,EXECUTE, . .
é&.l_Llln: b Caiad g b gt da i aa ey, STARTI OF DATA 1,) d (s
h WS B i TS UN U U SN U S T SN HNC VN SO Y A A YO SO NS S S U N0 SN S WY N S0 00 T AT T NN S S S O S A S B A S S O ST S
AR A (IR [T AN R B ST ET ST US S U U G UN S UG RS S ST G SIS TV A S SV U Y WSV SATE NS SR 1 SR
S, SOURCIE . . CloiDE PROGRAM (0 vt vuvu lv il
TN B Liy g v b vt s by b v Lo g e b o by v v b b e by
ol [[ETETT B SR G ST B ST A ST AT SR SR BTSN S S S ST SES AT AT GG
/1*111111 sy |||11111.lx‘1.11|||lx:1111;111E.N|D| OF DATA Ll
/& o e e END OF JOB
/i/, lFllIN.IL 111 L1 LllllAllllllllLLLAlllllllllg_‘:lolslel C:An‘anq xQEA%R I At
[N ED AT A | I P U S Y ST UD WO W00 U NN RSN S (N WG Y S0 U U S0 SNV VO ST SV ST S S0 U T U S G W [0 Y A S S0 A WO W S S S
FONES NI B | o g b o b be g b s by v b v b b s v s b s by
[N AT ST B Lsoos SN S RTINS VTR T S U0 YA S U U SN VD WO WA WO WA S Y ST S0 S SN WO FY WO GG S U N SO S N S U O
IS ST B Lot Lo b g b e b vy b sy by b b e b e Ao by
SN | I o b v b by b v v b s b s b b b e b

ASSEMBLER CODING FORM

Using an assembler coding form eases the job of writing the program, for the programmer and for the keypunch
operator, who must prepare the punched card deck from the written program. Columns 9 and 15 are ruled to
remind the programmer that the symbo! and operation fields must be terminated by at least one blank.

UP-8914 SPERRY UNIVAC 0S8/3 1-2

ASSEMBLER

Symbol Field

The first eight columns of the assembler coding form may contain a symbol. An asterisk (*) indicates that this
coding line does not contain instructions and that it contains only comments. The rules for using the symbol
field are:

1. The symbol must start in column 1.

2. The symbol must begin with an alphabetic character or special letter.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.

5. The field must be terminated by a blank.

Operation Field

The operation code is written in the operation field (columns 10 through 14). These codes specify the operation
to be performed. The rules for using this field are:

1. The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics for instructions, directives,
and procs or macroinstructions.

3. The operation field must be terminated by a blank.

4, The operation code must not start in column 1.

Operand Field

The operand field begins in column 16 and usually ends in or before column 71. The operands that form part of
the assembler statements are written in this field. The rules for using this field are:

1. The operand field is terminated by a blank that is not enclosed by apostrophes.

2. Operands may be continued onto the next line by placing a nonblank character in column 72. Up to two
continuation lines are permitted.

3. Continuation lines start in column 16.

Comment Field

Operand specification is usually completed by column 40, thus leaving columns 41 through 71 free for
comments. There must be at least one blank between the end of the operand specification and the start of the
comments. Long comments can be entered by coding an * in column 1.

uP-8914 SPERRY UNIVAC 0S/3 1-3

ASSEMBLER Update B

Continuation Column

When the operand specification is continued onto the next line, a nonblank character must be written in column
72. Do not confuse this with continuing a comment. An operand specification can be continued for a total of
three lines. The second and third continuation lines start in column 16.

Sequence Field

Columns 73 through 80 may be used for entering sequence numbers. This is done by assigning consecutive
numbers to each line of coding and is useful for reassembling the card deck if it should be dropped.

READING INSTRUCTION NOTATIONS

Throughout this manual, notations are used to describe the general forms of programmer-written and computer-
generated formats. A complete consolidated listing of all the notations is given in Appendix A.

Assembler Application Instruction Notations

There are eight forms of assembler application instructions:

RR — Register to register

RX — Register to indexed storage or storage to indexed register

RS — Register to nonindexed storage or storage to nonindexed register
SI — Storage immediate

SS — Storage to storage (type SS1)

SS — Storage to storage (type SS2)

S — Storage

SM - Storage mask

All of the assembler application instructions and other information are explained in formats that the user can
write and in the assembler format that generates the machine coding. The following assembler application move
instruction (MVC) is an SS1 type:

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] Mvc d,(l,.b,).d,(b,)

UP-8914 SPERRY UNIVAC 0S/3 1-4

ASSEMBLER
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] MVC s, {1),s2

After this application instruction is assembled, it is in the following form:

opcode | b d

32 35]36 47

Table A—1 shows the six formats as generated by the assembler in machine code, as well as the explicit and
implicit formats for the programmer coding.
Notation Rules and Meanings

The following conventions are used in application instruction, assembler directive, macroinstruction, proc, and
control statement formats:

] Optional information is enclosed in brackets [] and may be specified or omitted.
For example:
[symbol]
L] Braces { } indicate multiple options, at least one of which must be chosen.

For example:

PRINT § ON
OFF

s Braces within brackets signify that one of the options must be chosen if that operand is specified.
For example:
DATE
EXT

ID
PRE

UP-8914

SPERRY UNIVAC 0S/3 1-5
ASSEMBLER

When given a choice of multiple options, the option that\ is shaded is the defauit option and indicates the
choice that is made by the system if the user does not specify one of the options.

For examplie: e

DATE
EXT

"PRE

Uppercase letters, terms, and punctuation marks indicate information that must be coded exactly as
shown.

For example:

Mnemonic codes MVN, PACK, and CLC are uppercase.

Lowercase letters and terms indicate variables that are supplied by the user.

For example:
{[symbol]
An ellipsis, a series of three periods, indicates that a series of entries may be coded.
For example:
v r2eelnl
Keyword parameters may be coded in any order.
For example:

IOROUT=LOAD,BLKSIZE=512 RECFORM=FIXBLK
BLKSIZE=512,I0ROUT=LOAD,RECFORM=FIXBLK

Positional parameters must be coded in the order shown. Commas are required after each positional
parameter except the last. When a positional parameter is omitted from a series of positional parameters,
the comma must be retained to indicate the omission.

For example:

// JOB Q003,,30,8000,C000
// JOB Q003,,30,8000

Throughout this book, the register notations RO through R15 represent the registers O through 15.
For example:

BALR R2,R3

2. BAL Application Instructions

UP-8914 SPERRY UNIVAC 0S/3 2-1
ASSEMBLER
A
General Possible Program Exceptions
OBJECT
OPCODE cormAaT | InST. Il ADDRESSING B prROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. (8yTes) || [0 DECIMAL DIVIDE W sPECIFICATION:
- J bpecimaL oveERFLOW [0 NOTAFLOATING-POINT REGISTER
A 5A RX 4 O execuTe 0 oOP1NOTONHALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exrPONENT UNDERFLOW B 0P 2 NOT ON FULL-WORD BOUNDARY
B F AESULT- 0 SETTOO [FiXED-POINT DIVIDE Cl OP 2 NOT ON DOUBLE-WORD
8 ¢ ResuLT <o, SET TO 1 M FIXED-POINT OVERFLOW a B8OUNDARY
B \F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B iF OVERFLOW, SETTO 3 (] oPERATION 0O or 1 NOT ODD NUMBERED REGISTER
[J UNCHANGED O none
Function:

Causes the value of operand 2, a full word in main storage,

general register; the results are placed in operand 1.

to be algebraically added to operand 1, a

Expiicit Format:
LABEL AOPERATION A OPERAND
[symbol] A ry Ay (x, b,)
implicit Format:
LABEL AOPERATION A OPERAND
[symbol] A ry.5,(x,)

Operational Considerations:

L] Operand 2 must be on a full-word boundary address.

] Operand 2 must contain data in fixed-point binary format.

L] A fixed-point overflow condition is produced when a value greater than 23'—1 or —23 is reached in
operand 1 (r;). After overflow, the sign and value of the resuit are incorrect.

= The contents of operand 2 remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-2

ASSEMBLER
Floating Point
: —
General Possible Program Exceptions
orcooe | ¢ T °BJ1§°T I ADDRESSING Ml PROTECTION
?,f:':: :_NGST'_'.] OATA (INVALID SI1GN/DIGIT) | Il SIGNIFICANCE
MNEM. HEX. (syTes) || 0 DECIMAL DIVIDE l SPECIFICATION:
O oecimaL ovERFLOW Bl NOTA FLOATING-POINT REGISTER
AD 6A RX 4 O execute 0 oP1NOTON HALF-WORD BOUNDARY
W EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B e XPONENT UNDERFLOW O orP2NOT ON FULL-WORD BOUNDARY
W r nESULT -0 SETTO 0 O FIXED-POINT DIVIDE B opP 2NOT ON DOUBLE-WORD
B 5 ResuLT <0, SET TO 1 O riIXED-POINT OVERFLOW 0 BOUNDARY ;
B 15 RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE g OP 1 NOT EVEN NUMBERED REGISTER
JiF OVERFLOW, SET TO 3 (] OPERATION OP 1 NOT ODD NUMBERED REGISTER
] UNCHANGED O ~none
Function:

Causes the contents of the double word in storage specified by operand 2 to be algebraically added to the
contents of the double-word register specified by operand 1 (r,). The sum is normalized and placed in the
operand 1 (r,) register. :

Explicit Format: ‘

LABEL AOPERATION A OPERAND
L

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] AD ry.8,(x,)

UP-8914 . SPERRY UNIVAC 0S/3 2-3

ASSEMBLER
Floating Point
General . Possible Program Exceptions
OPCODE " f’:s-’fc‘"] ADDRESSING O rroTecTiON
F?,':P:T LoTH [DATA (INVALID SIGN/DIGIT) |] SIGNIFICANCE
MNEM. |HEX. @yTes) || 0 DECIMAL DIVIDE Bl sPECIFICATION:
‘ {0 cecimar oveERFLOW B NOT A FLOATING-POINT REGISTER
ADR | 2A RR "2 10O execuTe {0 oP 1 NOT ON HALF-WORD BOUNDARY
Bl EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes M EXPONENT UNDERFLOW 0 or2NOT ON FULL-WORD BOUNDARY
B r RESULT -0 SETTO o [s1XED-POINT DIVIDE O o 2NOT ON DOUBLE-WORD
B F rResuLT <0, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
B iF RESULT >0, SET TO 2 CJ FLOATING-POINT DIVIDE | OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [0 oPERATION O or1NOT 0DD NUMBERED REGISTER
| CJUNCHANGED ' . O none
Function:

Causes the contents of the double-word register specified by operand 2 (r,) to be algebraicaily added to the
contents of the double-word register specified by operand 1 (r,). The sum is normalized and placed in the
operand 1 (r,) register.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] ADR ry.r

uP-8914 SPERRY UNIVAC 0S/3 2-4
ASSEMBLER
AE
Floating Point
General Possible Program Exceptions
0PCODE | rommaT ?Nﬂs-'ﬁc" I ADDRESSING 8 PROTECTION
TYPE LOTH. [DATA (INVALID SIGN/DIGIT) | Bl SIGNIFICANCE
MNEM. 1HEX. s8yTes) || O DECIMAL DIVIDE BB SPECIFICATION:
[oecimaL oveERFLOW B NOT A FLOATING-POINT REGISTER
AE] 7A RX 4 0 execuTe 0 OF 1 NOT ON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY '
Condition Codes B EXPONENT UNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
B AcSoLT -0 SeT 100 O FIXED-POINT DiVIDE O or2nNOT ON DOUBLE-WORD
B i RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
BiF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JiF OVERFLOW, SET TO 3 O oPERATION 0O or 1 NOT ODD NUMBERED REGISTER
D UNCHANGED O none
Function:

Causes the contents of the full word in storage specified by operand 2 to be algebraically added to the
contents of a full word in the register specified by operand 1 (r;). The sum is normalized and placed in the
full word in the operand 1 (r,) register.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] AE rydy(x,,b,)
implicit Format: '
LABEL AOPERATION A OPERAND
T
[symbol] AE FyeSy (xz)

uUP-8914 SPERRY UNIVAC 0S/3 2-5
ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE OBJECT || M ADDRESSING {0 PrROTECTION
F?i';”é” Iu_héss-rTH [J DATA (INVALID SIGN/DIGIT) | Il SIGNIFICANCE
MNEM. [HEX. (8vTes) || (] DECIMAL DIVIDE B8 SPECIFICATION:
(0 becimMAL OVERFLOW NOT A FLOATING-POINT REGISTER
AER | 3A RR 2 [J execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

B iF RESULT =0, SETTO O
B r rResuLT<0,SET TO 1
B iF RESULT >0, SET TO 2
JiF OVERFLOW, SET TO 3
OJUNCHANGED

H EXPONENT OVERFLOW
M EXPONENT UNDERFLOW
[0 FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
(J FLOATING-POINT DIVIDE
0 oPERATION

000 O0OOoOm

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Causes the contents of a full word in the register specified by operand 2 (r,) to be algebraically added to a
full word in the register specified by operand 1 (r;). The sum is normalized and placed in the operand 1 (r,)
register.

Explicit and Implicit Format:

LABEL

A OPERATION A

OPERAND

[symbol]

AER

ry.fa

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-6
Update B

AH

Condition Codes

B F RESULT=0,SETTO O
B F ResuLT<O,SETTO 1
BIF RESULT >0, SET TO 2
B iF OVERFLOW, SET TO 3
[JUNCHANGED

[J EXPONENT OVERFLOW
[J exPONENT UNDERFLOW
[FIXED-POINT DIVIDE

B FIXED-POINT OVERFLOW
{0 FLOATING-POINT DIVIDE
] OPERATION

General Possible Program Exceptions
0PcoDE | romrmar ?NBSJTECT | ADDRESSING @ PROTECTION
TvPE LGTH. [] DATA (INVALID SIGN/DIGIT) | (O SIGNIFICANCE
MNEM. |HEX. gyTes) || 0 DECIMAL DIVIDE B SPECIFICATION:
(peciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
AH 4A RX 4 (O execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD

BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER

OP 1 NOT ODD NUMBERED REGISTER
NONE

O00c oomog

Function:

Causes the value of operand 2, a half word in main storage,

general register; the results are placed in operand 1.

Explicit Format:

to be algebraically added to operand 1, a

LABEL A OPERATION A OPERAND
[symbol] AH r,d,(x, b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] AH ry55(x,)

Operational Considerations:

. Operand 2 must be on a half-word boundary address.

. Operand 2 must contain data in fixed-point binary format.

L] A fixed-point overflow condition is produced when a value greater than 23'—1 or —23'is reached in
operand 1 (r,). After overflow, the sign and value of the result are incorrect.

= The contents of operand 2 remain unchanged.

UP-8914 SPERRY UNIVAC 0S8/3 2-7
ASSEMBLER
Al
General Possible Program Exceptions
0PCODE | rormarT &s;:cr]l ADORESSING M PROTECTION
TvPE LaTH. [0 oATA (INVALID 51GN/DIGIT) | (J SIGNIFICANCE
MNEM. |HEX. syTes) || 0 oeciMAL DiviDE 8 SPECIFICATION:
{0 oeciMaL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
Al | 9A sl 4 [execuTe B OP 1 NOT ON HALF-WORD BOUNDARY
{J EXPONENT OVERFLOW {1 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW T op2NOT ON FULL-WORD BOUNDARY
B F RESULT -0 SET TO O {0 FIXED-POINT DIVIDE 0 oe2noT ON DOUBLE-WORD
B r ResuLT <0, SET TO 1 M FiIXED-POINT OVERFLOW a BOUNDBARY
B F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B iF OVERFLOW, SETTO 3 [0 oreRrATION a OP 1 NOT QDD NUMBERED REGISTER
{JUNCHANGED O none
Function:

Causes the value of operand 2, immediate data, to be aigebraically added to operand 1, a half word in main
storage; the results are placed in operand 1.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] Al d, (b,)i,
implicit Format:
LABEL l AOPERATION A OPERAND
[symbol] | Al 3.z |

Operational Considerations:
- Operand 1 must be on a haif-word boundary address.
L Operand 1 must contain data in fixed-point binary format.

L] A fixed-point overflow condition is produced when a value greater than 2'5—1 or —2'5 is reached in
operand 1. After overflow, the sign and value of the result are incorrect.

L] The maximum value for operand 2 (i,) is +127 or —128.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-8

AL

Condition Codes

Ml seTToo0

B serro

@l seTTO2

B serTo3 ~

SEE OPER. CONSIDERATIONS

[J EXPONENT OVERFLOW
0 eXPONENT UNODERFLOW
[] FIXED-POINT DIVIDE

{0 rIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
{0 orerATION

General Possible Program Exceptions
OBJECT || gn ADDRESSING # PROTECTION
OPCQDE FORMAT | INST.
TYPE LGTH.] DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. |HEX. (ayTes) || 0 oecimaL pbivioe W SPECIFICATION:
O pecimaL OVERFLOW NOT A FLOATING-POINT REGISTER
Al SE RX 4 O execuTe 0P 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY
OP 2 NOT ON DOUBLE-WORD
B8OUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER

NONE

000 OomOooo

Function:

Causes the contents of operand 2, a full word in storage, to be logically added to the contents of the full
word in the operand 1 {r,) register. The sum is placed in operand 1 (r,).

Explicit Format:

AOPERATION A l

LABEL OPERAND
- P
[symbol] AL r,d,(x,,b,)
Implicit Formﬁ:
LABEL I AOPERATION A OPERAND
[symbol] AL r, S, (x,)

Operational Considerations:

] Logical addition is performed by adding all 32 bits of each operand.

L] The contents of operand 2 remain unchanged.

= Operand 2 must be a full word, in storage, on a full-word boundary.

UP-8914 SPERRY UNIVAC 0S/3 2-9
ASSEMBLER

AL

. The condition code is set:
— to zero if result is zero, with no carryout of most significant bit;
— to 1 if result is not zero, with no carryout of most significant bit;
— to 2 if result is zero, with carryout of most significant bit; or

— to 3 if result is not zero, with carryout of most significant bit.

UP-8914 SPERRY UNIVAC 0S/3 2-10

ASSEMBLER Update B
ALR
General Possible Program Exceptions
0PCODE | FoRmAT ?NB;TE.CT [] ADDRESSING O PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8vyTes) || O] DECIMAL DIVIDE 0 sPECIFICATION:
[0 pecimaL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
ALR | 1E RR 2 [exEcuTE 0O - OP 1 NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERF LOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
W ST 100 [0 FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
B seTTO1 [FIXED-POINT OVERFLOW . BOUNDARY
. SETTO 2 E] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
@ seTTO03 [] OPERATION] oP 1 NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS B noNE

Function:

Causes the contents of the operand 1 (r,) and operand 2 (r,) registers to be logically added. The sum is
placed in operand 1 (r,).

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] ALR ryfy

Operational Considerations:
. Logical addition is performed by adding all 32 bits of each operand.
. The contents of operand 2 (r,) remain unchanged.
» The condition code is set to:
— O if result is zero, with no carryout of most significant bit;
— 1 if result is not zero, with no carryout of most significant bit;
— 2 if result is zero, with carryout of most significant bit; or

— 3 if result is not zero, with carryout of most significant bit.

2-11

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING M PROTECTION
OPCODE | FORMAT | INST. n .
TYPE LGTH. Ml DATA (INVAL!D SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. evTES) || J DECIMAL DIVIDE O sPECIFICATION:
B DECIMAL OVERFLOW NOT A FLOATING POINT REGISTER

AP FA SS 6 (OJ execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

B F RESULT =0, SET TO O
B ir resuLT<0,SETTO 1
B F RESULT>0,SET TO 2
B'F OVERFLOW, SETTO 3
O UNCHANGED

[0 EXPONENT OVERFLOW
O exPONENT UNDERFLOW
[0 FIXED-POINT DIVIDE

[FIXED-POINT OVERFLOW
(O FLOATING-POINT DIVIDE
[JJ oOPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 0o0gooo

Function:

Algebraically adds the contents of operand 2 (a packed number in main storage) to operand 1 (also a
packed number in main storage). The result is stored in operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] AP d, (1, b,).d,(1,,b,)
Implicit Format:
LABEL AOPERATION A OPERAND

[symbol] AP

Operational Considerations:

5, (1,5, (1)

[] All signs and digits are checked for validity, and the sign of the result is determined algebraically.

L] A zero resuit has a positive sign when the operation is completed without overflow.

L Operand 1 and operand 2 must be packed numbers.

L When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had.

UP-8914 SPERRY UNIVAC 0S/3 2-12
ASSEMBLER

AP

. If operand 2 is shorter than operand 1, operand 2 is extended with zero digits.

u An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

a Operand 1 and operand 2 may overlap if their least significant bytes coincide. This makes it possible
to add a number to itself.

UP-8914 SPERRY UNIVAC 0S/3 2-13

ASSEMBLER
AR
General Possible Program Exceptions
OPCODE | roRMAT ?:SJECT {] ADDRESSING : 0 proTECTION
TveE LGTH. (] bATA (INVALID SIGN/DIGIT)| [J SIGNIFICANCE
MNEM. |HEX. 1 (8vTes) || (] DECIMAL DIVIDE {0 speciFICATION:
O pecimaL OVERFLOW [0 NOT A FLOATING-POINT REGISTER
AR | 1A RR 2 [J execuTe (0 ©OP1NOTON HALF-WORD BOUNDARY
[0 eXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 00 or2NOT ON FULL.WORD BOUNDARY
B r ncooiT-0 ST 100 O FiXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
B iF ResuLT <0, SET TO 1 M FiXED-POINT OVERFLOW O BOUNDARY
M iF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B F OVERFLOW, SETTO 3 {J oPERATION O or1NOT ODD NUMBERED REGISTER
DuncHanGED O none
Function:

Causes the value of operand 2 (r,) to be algebraically added to the value of operand 1 (r,). The results are
placed in operand 1.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] AR A

Operational Considerations:

L] A fixed-point overflow condition is produced when a value greater than 23'—1 or —23! js reached in
operand 1. After overflow, the sign and value of the result are incorrect.

. The contents of the register for operand 2 (r,) remain unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

AU

Floating Point

General Possible Program Exceptions
oPcooE | rormar ?:;15‘:7 §ll ADDRESSING B PROTECTION
TYPE LGTH.] DATA (INVALID SIGN/DIGIT) | Il SIGNIFICANCE
MNEM. |HEX. 8vTes) || 0 DECIMAL DIVIDE B sPeCIFICATION:
-~ {J oecimaL oveRrFLOW B NOT A FLOATING-POINT REGISTER
AU | TE RX 4 0 execuTe T ©oP 1 NOT ON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW O or2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW B or 2 NOT ON FULL-WORD BOUNDARY
B r RESULT 0 seT 100 O FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
B ¢ RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW a B8OUNDARY
B iF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
{f OVERFLOW, SET TO 3] oPERATION O or1NOT 00D NUMBERED REGISTER
[UNCHANGED O ~one
Function:

Causes the contents of the full word in storage specified by operand 2 to be aigebraically added to the
contents of a full word in the register specified by operand 1 (r,). The sum is placed in the operand 1 (ry)

register.
Explicit Format:
LABEL I A OPERATION A OPERAND
[symbol] | AU r,dy{x,,b,)
implicit Format:
LABEL I AOPERATION A ' OPERAND
[symbol] AU r,.85(x,)

Operational Consideration:

L The execution of the AU instruction is identical to that of the AE instruction, except that the sum is
not normalized before being placed in operand 1.

UP-8914

SPERRY UNIVAC 0S8/3 2-15
ASSEMBLER
AUR
Floating Point
General Possible Program Exceptions
0PcODE | rormart ?NB;TE.CT [J ADDRESSING ‘ I pROTECTION
TYPE LGTH.] pATA (1INVALID SIGN/D1GIT)] Il SIGNIFICANCE
MNEM. |HEX. 8yTes) || [DECIMAL DIVIDE B SPECIFICATION:
[0 pecimaL oveRFLOW B NOT A FLOATING-POINT REGISTER
AUR 3E RR 2 J execute 0 oP1NOT ON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 exPONENT UNDERFLOW O oranoT ON FULL-WORD BOUNDARY
B RESULT -0 SETTO o [FIXED-POINT DIVIDE 0 op2nOT ON DOUBLE-WORD
8 F ResuLT <0 SETTO 1 0 FIXED-POINT OVERFLOW o BOUNDARY
B (F RESULT >0, SETTO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
{Ji1F OVERFLOW, SET TO 3 (] oPERATION O op1NOT 0DD NUMBERED REGISTER
[UNCHANGED O none ‘
Function:

Causes the contents of a full word in the register specified by operand 2 (r,) to be alggbraicallv added to a
full word in the register specified by operand 1 (r,). The sum is placed in the operand 1 (r,) register.

Explicit and Implicit Format:

LABEL [

AOPERATION A '

OPERAND

[symbol] I AUR

Operational Consideration:

l'.‘ ,rz

] The execution of the AUR instruction is identical to that of the AER instruction, except that the sum is
not normalized before being placed in operand 1.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

AW

'Floating Point

General Possible Program Exceptions
OPCODE | rommAT ?NBSJ‘E.CT]l ADDRESSING 8 FROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | il SIGNIFICANCE
MNEM. |HEX. (8yTes) ||] DECIMAL DIVIDE M SPECIFICATION:
(J oeciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
AW | 6E RX 4 O execuTe [0 OF1NOT ON HALF.WORD BOUNDARY
B EXPONENT OVERFLOW O oP2NOT ON HALF.WORD BOUNDARY
N Condition Codes O exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B /F RESULT =0 SETTO O (0 FIXED-POINT DIVIDE 8 - or2NOT ON DOUBLE-WORD
B¢ ResuLT <0, SET TO 1 O rI1xeD-POINT OVERFLOW o BOUNDARY
. IF HESULT>°. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
(]IF OVERFLOW, SET TO 3] oPERATION 0O or1NOT 0ODD NUMBERED REGISTER
[JUNCHANGED O ~none
Function:

Causes the contents of a double word in storage specified by operand 2 to be algebraically added to the
contents of the double word in the register specified by operand 1 (r,). The sum is placed in the double
word in the register specified by operand 1 (ry).

Explicit Format:
LABEL | AOPERATION A OPERAND
[symbol] AW ry.d,(x,,by)
Implicit Format:
LABEL ‘ . AOPERATIONA l OPERAND
[symbol] AW (PN

Operational Consideration:

not normalized before being placed in operand 1 (r,).

- The execution of the AW instruction is identical to that of the AD instruction, except that the sum is

uP-8914

2-17

SPERRY UNIVAC 0S/3
ASSEMBLER
AWR
Floating Point
General Possible Program Exceptions
0PCODE | rommat ?:Sfc"'] ADDRESSING 0 rroTECTION
TYPE LGTH. (] DATA (INVALID siGN/DIGIT) | B SIGNIFICANCE
MNEM. |HEX. (8yTes) || (] DECIMAL DIVIDE B sPeciFiCATION:
: O becimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
AWR | 2E RR 2 O execuTe 0 oP1NOTONHALF-WORD BOUNDARY
B EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 0O or2NOT ON FULLWORD BOUNDARY
B FRcSoLT- 0 SeTTo 0] FIXED-POINT DIVIDE 00 or2noOT ON DOUBLEWORD
B F resuLT <0, SET TO 1 O FIXED-POINT OVERFLOW a BOUNDARY :
B 5 RESULT >0, SET TO 2 (] FLOATING-POINT DIVIOE OP 1 NOT EVEN NUMBERED REGISTER
[JiF OVERFLOW, SET TO 3 O opeERATION a OP 1 NOT ODD NUMBERED REGISTER
JUNCHANGED] nonE
Function:

Causes the contents of the double-word register specified by operand 2 (r;) to be aigebraically added to the
double-word contents of operand 1 (r;). The sum is placed in the operand 1 {r,) register.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

AWR

Operational Consideration:

ryfy

The execution of the AWR instruction is identical to that of the ADR instruction, except that the sum
is not normalized before being placed in operand 1 {r,).

UP-8914 SPERRY UNIVAC 0S/3 2-18

ASSEMBLER
BAL
General Possible Program Exceptions
0PCODE | roRMAT ?NBSJECT [] ADDRESSING (O pRoTECTION
Tvee LGTH. [J oATA (iNvALID SIGN/DIGITY| (] SIGNIFICANCE
MNEM. 1HEX. avtes) || O peCimaL DIvIDE O sPeCIFICATION: .
{J oeciMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
BAL 4 | RX 4 [execuTe [0 oOP1NOT ON HALF-WORD BOUNDARY
[0 eXPONENT OVERFLOW [0 oP2NOT ON HALF.WORD BOUNDARY
_ Condition Codes [0 exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
e] #I1XED-POINT DIVIDE 0O or2nNOT ON DOUBLE-WORD
B ::: :::3:; 2%;5512%‘: (J FIXED-POINT OVERFLOW O S8OUNDARY
CJ1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE = OF 1 NOT EVEN NUMBERED REGISTER
[J'F overFLOW, SET TO 3 [J opeRAaTION OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED B none
Function:

Loads the address of the next sequential instruction into the register in the first operand and then
branches to the location specified in the second operand. The normal sequence of instructions may be
reinstated when a return branch via r, is taken. BAL is an unconditional branch instruction.

NOTE: ' .

Bits 32 through 39 (instruction length code, condition code, and program maskj of the current program
status word (PSW) are stored in bit positions O through 7 of operand 1 (r,). The return address is stored in
bits 8 through 31 of operand 1 (ry).

Explicit Format:
LABEL AOPERATION A OPERAND
L
[symbol] BAL r,dy (x2 b,)

Implicit Format:

LABEL | AOPERATION A I OPERAND

[symbol] BAL ry Sy (%;)

UP-8914 SPERRY UNIVAC 0S/3 2-19
ASSEMBLER
General Possible Program Exceptions
OBJECT ADDRESSING 0 PROTECTION
OPCODE | FORMAT | INST. o 1D S1GN/D1GIT) | [] SIGNIFICANCE
TYPE LGTH. [] DATA (INVALID SI
MNEM. |HEX. yTes) || O DECIMAL DIVIDE [J SPECIFICATION:
{0 becimAaL OVERFLOW NOT A FLOATING-POINT REGISTER
BALR | 05 RR 2 0O execuTE OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

[Ji1F RESULT = 0, SET TO O
Oir resuLT<0,SET TO 1
OIF RESULT >0,SET TO 2
[JiF OVERFLOW, SETTO 3
B UNCHANGED

O exPONENT OVERFLOW
0 EXPONENT UNDERFLOW
O FIXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
[oPERATION

B00 00000

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Loads the relative address of the next sequential instruction into the first operand register and then
branches to the address in the second operand register. The normal sequence of instructions may be
reinstated when a return branch via r, is taken. When the second operand (r,) is zero, there is no branch
and the next sequential instruction is executed.

NOTE:

Bits 32 through 39 (instruction length code, condition code, and program mask) of the current program
status word (PSW) are stored in bit positions O through 7 of operand 1 (r,). The return address is stored in
bits 8 through 31 of operand 1 (ry).

Explicit and Implicit Format:

LABEL |

AOPERATION A |

OPERAND

[symbol] l BALR

‘ f1/12

UP-8914 SPERRY UNIVAC 0S/3 2-20

ASSEMBLER Update C
BC
General Possible Program Exceptions
0PCcODE | roRrmaT ?rfsf.c.r [] ADDRESSING O pROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT) | [0 SIGNIFICANCE
MNEM. 1HE X, (syTes) || O oECIMAL DIVIDE {0 sPECIFICATION:
(O peEcIMAL OVERFLOW 0 ®NOTA FLOATING-POINT REGISTER
BC | 47 RX 4 [execuTe (0 OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW (] OP 2 NOT ON FULL-WORD BOUNDARY
T RtSUT -0 SET o0 (] FIXED-POINT DIVIDE O or2nOT ON DOUBLEWORD
03 1F RESULT <0, SET TO 1] FIXED-POINT OVERFLOW O BOUNDARY
CJiF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[J!F OVERFLOW, SET TO 3 O oPERATION 0 or1NOT ODD NUMBERED REGISTER
@ UNCHANGED B none

Function:

Checks the specified mask (m,), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specified by operand 2; otherwise, the next sequential instruction is executed.
See Table A—3 for the list of BC formats and equivalent extended mnemonic codes.

Explicit Format: .

LABEL A OPERATION A OPERAND

[symbol] BC m, d,(x, b,)

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] BC m, s, (x,)

Operational Considerations:
] The mask, operand 1, determines the condition code setting as follows:
— An 8 produces the mask 1000,, which tests for a zero result condition code.

— A 4 produces the mask 0100,, which tests for a less than zero result condition code.

UP-8914 SPERRY UNIVAC 0S/3 2-21
ASSEMBLER Update C

o BC

— A 2 produces the mask 0010,, which tests for a greater than zero result condition code.
— A 1 produces the mask 0001,, which tests for an overflow result condition code.

— A zero produces the mask 0000,, which is equivalent to no operation.

— Any combination of 1's and O’s in the mask tests for more than one condition code.

- Any 1 bit on and tested produces the branch.

] A mask specification of 15 (1111,) produces an unconditional branch.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-22
Update C

BCR

General Possible Program Exceptions
OPCODE | FORMAT ?:SJECT [J] ADDRESSING {0 prOTECTION
TYPE LGTH. (] DATA (iNVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. (eyTes) ||] DECIMAL DIVIDE (0 SPECIFICATION:
O peciMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
BCR | 07 RR 2 O execuTe [0 OP1NOT ON HALF-WORD BOUNDARY
{0 EXPONENT OVERFLOW 00 oP2NOTON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 3 oP2NOTON FULL-WORD BOUNDARY
I F RESULT = 0 SETT0 0 [0 FIXED-POINT DIVIDE 00 oP2NOT ON DOUBLE-WORD
0 1F ReESULT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
O)1F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]1F OVERFLOW, SET TO 3 [] OPERATION 0O oP1NOT ODD NUMBERED REGISTER
B UNCHANGED W none
Function:

Checks the specified mask (m,), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specified by operand 2 (r;); otherwise, the next sequential instruction is
executed. If operand 2 {r,) is zero, no branch will take place. See Table A—3 for the list of BC formats and
equivalent extended mnemonic codes.

Implicit and Explicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

BCR

Operational Considerations:

m1 ,l'2

The mask, operand 1, determines the condition code setting as follows:

An 8 produces the mask 1000,, which tests for a zero result condition code.

A 4 produces the mask 0100,, which tests for a less than zero result condition code.

A 2 produces the mask 0010,, which tests for a greater than zero result condition code.

A 1 produces the mask 0001,, which tests for an overflow result condition code.

A zero produces the mask 0000,, which is equivalent to no operation.

Any combination of 1's and O’s in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

A mask specification of 15 (1111,) produces an unconditional branch.

UP-8914 SPERRY UNIVAC 0S/3 2-23
ASSEMBLER Update C

BCT

General Possible Program Exceptions
OPCODE | romrmar ?NB;fCT [] ADDRESSING [eroTECTION
TYPE LGTH. (0 DATA (INVALID SIGN/DIGIT} | [] SIGNIFICANCE
MNEM. HE X, eyTes) || {0 DECIMAL DIVIDE [sPECIFICATION:
[] pecimaL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
BCT | 46 RX 4 [execuTe [0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
TTiF ReSOLT - 0 SeT 10 0 O FIXED-POINT DIVIDE (0 oP2NOT ON DOUBLE-WORD
[iF RESULT <0, SET TO 1 O #1XED-POINT OVERFLOW O BOUNDARY
CliF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)1F OVERFLOW, SET TO 3 [J OPERATION 0 or1NOT ODD NUMBERED REGISTER
B UNCHANGED B nonE

Function:

Each time this instruction is executed, the value in r, is decremented by 1 and then tested to see
whether the result is equal to zero. If the result is not equal to zero, a branch takes place to the
location specified by operand 2. If the result is equal to zero, then no branch takes place and the next
sequential instruction is executed. This instruction can be used to control the number of times a loop
routine is executed.

Explicit Format:

LABEL AOPERATION A | OPERAND

[symbol] BCT ryd,(x,,b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] BCT ry.8,(x,)

UP-8914 SPERRY UNIVAC 0S/3 2-24

ASSEMBLER Update C
BCTR
General Possible Program Exceptions
0PCODE | roRMAT ?NBSJECT [] ADDRESSING {JeroTECTION
TYPE LGTH. [} DATA (INVALID SIGN/DIGIT}| [J SIGNIFICANCE
MNEM. [HEX. (8yTes) |{ (J DECIMAL DIVIDE O speciFicaTION:
[0 becimMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
BCTR | 06 RR 2 (] EXECUTE [0 ©OP 1 NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O eXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
T r RESOT =0 SETT00 (] FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
O RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
O] 1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3 [] OPERATION 0O oF1NOT ODD NUMBERED REGISTER
B UNCHANGED B none

Function:

BCTR is the RR format type of BCT and works in the same way, except the second operand (r,) is a
register rather than a storage location. The BCTR instruction is initiated by loading a value in the first
operand register {r,) to be used as a count value and a branch address into the second operand
register {r,). Each time this instruction is executed, the value in r, is decremented by 1 and then tested
to see whether the result is equal to zero. If the result is not equal to zero, a branch takes place to
the address in the second operand {r,). If the result is equal to zero, then no branch takes place and
the next sequential instruction is executed. This instruction can be used to control the number of times
a loop routine is executed. If the second operand {r,) is zero, no branch will take place.

Implicit and Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] | BCTR r

upP-8914

SPERRY UNIVAC 0S/3 2-25
ASSEMBLER Update C
BXH
General Possible Program Exceptions
OPCODE | FommAaT IONBSJTECT [[] ADDRESSING {0 pROTECTION
TyPE LGTH. [J pATA (INVALID $1GN/DIGIT}| [J SIGNIFICANCE
MNEM. 1HEX. @vtes) ||] DECIMAL DIVIDE [] sPECIFICATION:
{J DECIMAL OVERFLOW {1 NOTA FLOATING-POINT REGISTER
BXH | 86 RS 4) execuTe 0 OP1NOTONHALE-WORD BOUNDARY
[J EXPONENT OVERFLOW 0 oP2NOT ONHALF-WORD BOUNDARY
Condition Codes O EXPONENT UNDERFLOW O orP2NOT ONFULL-WORD BOUNDARY
[FIXED-POINT DIVIDE [J op2NOT ON DOUBLE-WORD
E:i zszzt; Z%‘SSEETT:%(? 0 FIXED-POINT OVERFLOW 0 BOUNDARY
O] 1F RESULT >0, SET TO 2 J FLOATING-POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
D I'F OVERFLOW, SETTO 3 (O operATION D OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED B noNE

Function:

Compares the algebraic sum of operand 1 {(r,) and operand 2 {(r;) to a value that is equal to the
number of the register specified as operand 2 (r,) or r; + 1. If the sum of operand 1 {r,) and operand
2 (r,) is less than or equal to the compare value, the next sequential instruction is executed; if the sum
is greater than the compare value, then a branch will take place to the location specified by operand
2, which is d, (b,) or S,. The value being used as the reference is always an odd-numbered register
and is specified by r, if r; is an off-numbered register, or is r, + 1 if r; is an even-numbered register.
Following the comparison, the sum is placed in operand 1. All quantities are treated as signed

integers.

Explicit Format;

LABEL AOPERATION A OPERAND
[symbol] BXH ry 234, (bz)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] BXH Ty f3.s

2

UP-8914 SPERRY UNIVAC 0S/3 2-26

ASSEMBLER Update B
BXLE
General Possible Program Exceptions
0PCODE | roRrmar ?NB;‘IF.CT [] ADDRESSING O pROTECTION
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. IHEX. @®vyTes) ||) DECIMAL DIVIDE [SPECIFICATION:
[J peciMAL OVERFLOW O NOTA FLOATING-POINT REGISTER
BXLE | 87 /s 4 [execuTe {0 oP1NOT ONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 0O op2NOT ONFULL.WORD BOUNDARY
TTF RESULT - 0. SET 10 0 O FIXED-POINT DIVIDE O or2n~NOT ON DOUBLE-WORD
C]1F REsuLT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
CliF RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [J OPERATION O op1NOT ODD NUMBERED REGISTER
B UNCHANGED B none

Function:

This instruction is the same as BXH, except that the branch is made when the sum of the first operand (r,)
and the third operand (r,) is less than or equal to the value being compared.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] BXLE ry.rg.d,(b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] BXLE Iy 3.8,

2-27

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
General Possible Program Exceptions
OBJECT || g ADDRESSING #l rrROTECTION
OPCODE | FORMAT | INST. 61 | (O SIGNIFICANCE
TYPE LGTH. [] DATA (INVALID SIGN/D}
MNEM. |HE X svTes) ||] DECIMAL DIVIDE B SPECIFICATION:
[0 pecimAaL OVERFLOW NOT A FLOATING-POINT REGISTER
c 59 RX 4 [0 execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

8 Fr, = OPERAND 2, SET TO 0
B Fr, <OPERAND 2, SET TO 1
M /F r, > OPERAND 2, SET TO 2
[J1F OVERFLOW, SET TO 3
JUNCHANGED

] EXPONENT OVERFLOW
(] EXPONENT UNDERFLOW
O FiXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
[0 FLOATING-POINT DIVIDE
(] oPERATION

o000 Oeogo

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Causes the contents of operand 1 (r) to be algebraically compared with the contents of operand 2, a full

word in main storage.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] c ry.d, (x2 ,bz)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] c 1.5, (x2)

Operational Considerations:

. The contents of both operands remain unchanged.

. Operand 2 must be on a full-word boundary.

UP-8914 SPERRY UNIVAC 0S/3 2-28

ASSEMBLER Update c
CD
Floating Point
General Possible Program Exceptions
0pcodE | cormar ?NBSJ:.CT Il ADDRESSING @ PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT} | [J SIGNIFICANCE
MNEM. [HEX. (syTes) ||) DECIMAL DIVIDE BB SPECIFICATION:
(J beEciIMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
cD 69 RX 4 [execuTe [{J OP1NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 0 or2NOT ON FULL-WORD BOUNDARY
B s or1-Ors SETTO 0 [J FiIXED-POINT DIVIDE B P 2NOT ON DOUBLE-WORD
B F or1<OP2, SET TO 1 {0 FiXED-POINT OVERFLOW 0 BOUNDARY
B \F OP1>0P2, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [] oPERATION [0 oP1NOT ODD NUMBERED REGISTER
[{JUNCHANGED 3 noNEe

Function:

Causes the contents of a double word in the register specified by operand 1 {r,) to be algebraically
compared with the contents of a double word in storage specified by operand 2. The condition code is set
by this instruction.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] CcD ry.d,(x,,b,)

implicit Format:

LABEL AOPERATION A OPERAND

[symbol] CcD ry.S,(x,)

Operational Considerations:

- n Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit is zero.

L] Operands with zero fractions compare as equal even when their signs or exponents are different.

UP-8914 SPERRY UNIVAC 0S/3 2-29
ASSEMBLER Update C

. CDR
Floating Point

General Possible Program Exceptions
0rcobe | rormar ?NB;TE.CT [] ADDRESSING (O PROTECTION
TYPE LGTH. (] DATA (INVALID SIGN/DIGIT}| [T SIGNIFICANCE
MNEM. |REx. evTes) || O pecimaL pivipe Il SPECIFICATION:
[J pecimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
COR | 29 RR 2 [] execuTe {0 OF1NOT ON HALF-WORD BOUNDARY
(] EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
T LY [FIXED-POINT DIVIDE (0 opP2NOT ON DOUBLE-WORD
B F opr1<OP2, SET TO 1] FIXED-POINT OVERFLOW 0 BOUNDARY
B F oP1>0P2, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
OJiF OVERFLOW, SET TO 3 [OPERATION D OP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED O ~none

Function:
Causes the contents of a double word in the register specified by operand 1 (r,) to be algebraically
compared with the contents of a double word in the register specified by operand 2 (r,). The condition code

is set by this instruction.

. Explicit and Implicit Format;

LABEL I AOPERATION A OPERAND

[symbol] CDR Fydly

Operational Considerations:

= Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit, is zero.

L Operands with zero fractions compare as equal even when their signs or exponents are different.

UP-8914 SPERRY UNIVAC 0S/3 2-30

ASSEMBLER Update C
CE
Floating Point
General Possible Program Exceptions
OPCODE | FoRmAT ?NBSJTECT I ADDRESSING B PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | (0 SIGNIFICANCE
MNEM. |HEX. 8yTes) || 0 DECIMAL DIVIDE @ SPECIFICATION:
(J beciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
CE | 79 RX 4 O execuTe {0 OP1NOTON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW n OP 2 NOT ON FULL-WORD BOUNDARY
W rori-or2 SETT00] FIXED-POINT DIVIDE O opP2NOT ON DOUBLE-WORD
8 iF or1<O0P2, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
B F OP1>0P2, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[]1F OVERFLOW, SET TO 3 [OPERATION O oP1NOT ODD NUMBERED REGISTER
[UNCHANGED O none

Function:

Causes the contents of a full word in the register specified by operand 1 {r,) to be algebraically compared
with the contents of a full word in storage specified by operand 2. The condition code is set by this
instruction.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] CE ryd,(x;,b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] CE ry S, (%)

Operational Considerations:

[] Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit, is zero.

. Operands with zero fractions compare as equal even when their signs or exponents are different.

Ui’-8914 SPERRY UNIVAC 0S/3 2-31
ASSEMBLER Update C

CER

Floating Point

General Possible Program Exceptions
OBJECT || (7] ADDRESSING O PROTECTION
OPCODE | FORMAT | INST. N | [J SIGNIFICANCE
TYPE LGTH. [0 DATA (INVALID SIGN/DIG!H
MNEM. |HEX. evTes) || pECIMAL DIVIDE B SPECIFICATION:
(O becimAL OVERFLOW Bl NOT A FLOATING-POINT REGISTER
CER | 39 RR 2] execuTe {1 OP1NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW] oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0O exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
BT or - 0r2 SETTO00] FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
B iF op1 <OP2, SET TO 1 O FIXED-POINT OVERFLOW 0 BOUNDARY
FOP1> OP2,SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
BirFo , O
{JiF OVERFLOW, SET TO 3] oPERATION OP 1 NOT ODD NUMBERED REGISTER
CJ UNCHANGED O none

Function:
Causes the full-word contents of the register specified by operand 1 (r,) to be aigehraically compared with
the contents of a full word in the register specified by operand 2 (r,). The condition code is set by this

instruction.

Explicit and Implicit Format:

LABEL i AOPERATION A OPERAND

[symbol] CER r,.r

Operational Considerations:

. Comparison is accomplished by the rules for normalized floating-point subtraction. The operands
are equal when the intermediate sum, including the guard digit, is zero.

s Operands with zero fractions compare as equal even when their signs or exponents are different.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-32

CH

Condition Codes

i IFr, = OPERAND 2,SET TO 0
B Fr. <OPERAND 2, SETTO 1
Bl 'F r, > OPERAND 2, SET TO 2
OiF OVERFLOW, SET TO 3
[JUNCHANGED

[J EXPONENT OVERFLOW
[0 ExPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

] FIXED-POINT OVERFLOW
[0 FLOATING-POINT DIVIDE
[} oPERATION

000 oomoo

General Possible Program Exceptions
OPCODE | FormAT loNsst‘CT i ADDRESSING Bl rrROTECTION
e LoTH.] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. THE X eyTes) || O] DECIMAL DIVIDE B SPECIFICATION:
0 oectMAL OVERFLOW NOT A FLOATING-POINT REGISTER
CH | 49 RX 4 [0 execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Causes the contents of operand 1 (r,) to be algebraicaily compared with the contents of operand 2 (a half
word in main storage), after operand 2 is expanded, by propagating the sign bit to fill a full word.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] CH r,.d,(x, b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] CH ry S, (x2)

Operational Considerations:

] The contents of both operands remain unchanged.

n Operand 2 must be on a half-word boundary.

uP-8914 SPERRY UNIVAC 0S/3 2-33
ASSEMBLER
CL
General Possible Program Exceptions
OPCODE | rormarT ?NBSJ_ECT I ADDRESSING 8 PROTECTION
TYPE LGT.;,_ {0 DATA (INVALID SIGN/DIGIT) [sIGNIFICANCE
MNEM. |HEX. 8yTes) || [J DECIMAL DIVIDE B sPECIFICATION:
O oecimaL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
cL 55 RX 4 [J execure B {J o©oP1NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW B oP2NOT ON FULL-WORD BOUNDARY
. \Fr. » OPERAND 2. SET TO 0 D FIXED-POINT DIVIDE D OP 2 NOT ON DOQUBLE-WORD
B <OPERAND 2,SET TO 1 O Fixep-POINT OVERFLOW g _BOUNDARY
1 ': > OPERAND 2. SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SETTO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
JuNcHANGED O none
Function:

Causes the contents of a full word in storage specified by operand 2 to be compared with the contents of
the register specified by operand 1 (r;). The condition code is set according to the comparison resuit.

Explicit Format:

LABEL A OPERATION A I OPERAND
[symbol] CcL r, d,(x,.b,)
Implicit Format:
LABEL L AOPERATION A | OPERAND
[symbol] cL ry .8, (%;)

Operational Considerations:

L Operands are considered unsigned binary numbers and all bit combinations are valid.

L] The contents of both operands remain unchanged.

] Operand 2 must be ona full-Wow boundary.

UP-8914 SPERRY UNIVAC 0S/3 2-34 -

ASSEMBLER
CLC
General Possible Program Exceptions
OPCODE | roAMAT ?NB;TE.CT @ ADORESSING 8 ProTECTION
TveE LoTH.] DATA (INVALID SIGN/DIGIT} | [J SIGNIFICANCE
MNEM. [HEX. (syres) || (0 DECIMAL DIVIDE | {3 speciricaTiON:
{0 pecimaL OveERFLOW 0 NOT A FLOATING-POINT REGISTER
cLc ns SS 6 O execuTe {0 or1NOT ONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 OP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW O o 2NOT ON FULL-WORD BOUNDARY |-
B irori-0P2 SETTO0 O FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
B 'F OP1 < OP2, SET TO 1 O FIXED-POINT OVERFLOW a BOUNDARY
B F OP1> OP2. SET TO 2 (0 FLOATING-POINT DIVIOE OP 1 NOT EVEN NUMBERED REGISTER
O iF OVERFLOW, SET TO 3 (] oPERATION O or 1 NOT ODD NUMBERED REGISTER
{J uNCHANGED - O ~one
Function:

Causes the contents of one area in main storage specified by operand 1 to be compared with an equal
length area in main storage specified by operand 2. The condition code is set according to the comparison
result.

Explicit Format:

LABEL I AOPERATION A OPERAND

[symbol] cLC d,{1,b,).d,(b,)

implicit Format:

LABEL I AOPERATION A | OPERAND

[symbol] | CLC s, ()5,

Operational Considerations:
= The | specification of operand 1 specifies the iength of both operands.
L Operands are considered unsigned binary numbers and éll bit combinations are valid.
] The contents of both operands remain unchanged.
L] The instruction is processed from left to right, byte by byte.

L] If the number of bytes to be compared is not explicitly shown in operand 1, then the number will be ‘t
equal to the length attribute of operand 1.

SPERRY UNIVAC 0S/3

UpP-8914 2-35
ASSEMBLER
® cLCL
General Possible Program Exceptions
0PCODE | rormat ?:;:CT fl ADDRESSING M PROTECTION
TYPE LGTH. (] pATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. |HEX. (8yTes) || (] DECIMAL DIVIDE Il SPECIFICATION:
O becimat OVERFLOW O NOT A FLOATING-POINT REGISTER
CLCL | OF RR 2 [J execuTe {0 OF 1 NOT ON HALF-WORD BOUNDARY
(0 exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B rori-ors ceT 00 O FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
B F or 1<oP 2"SET TO 1 O FIXED-POINT OVERFLOW a BOUNDARY
B IF OP 150P 2, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SETTO 3 D OPERATION . D OP 2NOT EVEN NUMBERED REGISTER
JUNCHANGED O none
Function:

Causes the contents of one area in main storage, specified by operand 1, to be compared with another area
in main storage specified by operand 2. The condition code is set according to the comparison resuit. The
two main storage areas need not be equal in length; if not, operand 2 specifies an immediate padding byte,
which is added to the shorter main storage area.

' Explicit and Implicit Formats:

LABEL I AOPERATION A

OPERAND

[symbol] CLCL

Operational Considerations:

172

L Operand 1 must specify the even-numbered register of an even-odd register pair in which the even-
numbered register specifies the operand 1 address and the odd-numbered register the operand 1

length.

L] Operand 2 must specify the even-numbered register of an even-odd register pair in which the even-
numbered register specifies the operand 2 address and the odd-numbered register the operand 2
length and the padding byte.

a Operands are considered unsigned binary numbers and all bit combinations are valid.

L The instruction compares main storage left to right, byte by byte.

upP-8914 SPERRY UNIVAC 0S/3 , 2-36

ASSEMBLER
CLI
General Possible Program Exceptions
OPCODE | rommAT ?NBSJ:CT il ADDRESSING W PROTECTION
TYPE LGTH. [J bATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. @vTes) |} 0 oecimaL pivioe O speciFICATION:
O oecimaL oveRFLOW 0 NOTA FLOATING-POINT REGISTER
CLI | 95 Sl 4 O execuTe {3 OP 1 NOT ON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY -
Condition Codes 0O exPONENT UNDERFLOW 00 or2NOT ON FULL-WORD BOUNDARY
B F OrERAND 1= I SeTToo [0 FiIXED-POINT DIVIDE 0 op2nNOT ON DOUBLE-WORD
M iF OPERAND 1 < i3, SET TO 1 O FIXED-POINT OVERFLOW 0 BOUNDARY
. IF OPERAND 1> 1., SETTO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJ!F OVERFLOW, SET TO 3 [J oPERATION 0O oP 1 NOT ODD NUMBERED REGISTER
O UNCHANGED O none
Function:

Causes the cohtents of one byte in main storage specified by operand 1 to be compared with the one byte
of immediate data specified in operand 2. The condition code is set according to the comparison resuit.

Explicit Format:

uaen.. l A OPERATION A I OPERAND

[symbol] | - CLI d, (b,).i,

Implicit Format:

LABEL AOPERATION A , OPERAND

L
{symbol] CLI 8, /iy

Operational Considerations:
L] Operands are considered unsigned binary numbers and all bit combinations are valid.
L] Operands are one byte in length.

s The contents of operand 1 remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-37
ASSEMBLER.
General Possible Program Exceptions
OBJECT ||] ADDRESSING [SIGNIFICANCE
OPCODE | FORMAT | INST. (] DATA (INVALID SIGN/DIGIT) | Il sPECIFICATION:
TYPE | LGTH. (] DECIMAL DIVIDE)
MNEM. {HEX.] - (BYTES) g NOT A FLOATING-POINT REGISTER

DECIMAL OVERFLOW OP 1 NOT ON HALF-WORD BOUNDARY
cLIS | Et M 6 O execuTe OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes

WMiFoP2=0P3,SETTOO
W iF or 2<0OP 3,SET TO 1
il IF OP 2>>0P 3, SET TO 2
J 'F OVERFLOW, SET TO 3
[JuNcHANGED

(0 EXPONENT OVERFLOW
[0 exPONENT UNDERFLOW
[FIXED-POINT DIVIDE

[FiXED-POINT OVERFLOW
{0 FLOATING-POINT DIVIDE
J oPERATION

B PROTECTION

OP 2 NOT ON FULL-WORD BOUNDARY
OP 2 NOT ON DOUBLE-WORD
BOUNDARY .

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER

LOW-ORDER BIT OF OP1 DISPLACE-
MENT MUST BE ZERO

BROO QO0O00

Function:

Causes a byte in main storage addressed by operand 1 to be compared with operand 2, a byte of immediate
data. The condition code is set according to the resuit. A mask specified in operand 3 uses the condition
code to determine whether program control passes to the next sequential instruction or to another location
specified in operand 4 as an offset from the next sequential instruction.

Explicit Format:

LABEL l AOPERATION A i OPERAND
[symbol] cLis d, (b,)i,.m,.d, : -
Implicit Format:
LABEL | AOPERATION A OPERAND
[symbol] CLIS $14p.m, d,

Operational Considerations:

= The offset field, which must be an even number, is 12 bits long and can range from —2048 decimal
bytes to +2046 decimal bytes.

. The user can code the offset as an absolute or relocatable expression.

] The user must specify both the mask and the immediate byte as self-defining terms.

uP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-38

CLM

General Possible Program Exceptions
0PCODE | rommar ?:;E.CT H ADDRESSING M rrOTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT! | [J SIGNIFICANCE,
MNEM. |HEX. 8yTes) || J DECIMAL DIVIDE {] SPECIFICATION:
O oecimaL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
Clm | 8D RS 4 0 execuTe O ©F 1 NOT ON HALF-WORD BOUNDARY
0 exPONENT OVERFLOW 0 oP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
Birori-0r2 SeTT00 [0 FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
B op 1<OP 2, SET TO 1 {0 FIXED-POINT OVERFLOW o 8OUNDARY
B ¥ OP 10P 2, SET TO 2 [0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
CJUNCHANGED {J none
Function:

Causes some or all of the operand 1 register to be compéred with contiguous data in main storage starting
at the operand 2 address. A mask specified by operand 3 determines how much of the operand 1 register
takes part in the comparison. The condition code is set according to the resuit.

Explicit Format:

LABEL l A OPERATION A l OPERAND
[symbol] cLm rymy,dy (b,)
implicit Format:
LABEL ' A OPERATION A OPERAND
[symbol] CLM r,.m,.s,

Operational Considerations:

s The operand 3 mask determines which bits in the operand 1 register take part in the comparison, as

follows:

— An 8 produces the mask 1000,4, causing bits 0—7 to be compared.

— A 4 produces the mask 01004, causing bits 8—15 to be compared.

— A 2 produces the mask 00104, causing bits 16—23 to be compared.

— A1 broduces the mask 0001,4, causing bits 24—31 to be compared.

UP-8914 SPERRY UNIVAC 0S/3 2-39
ASSEMBLER

. Each comparison treats its data as unsigned binary data.

- Comparison proceeds left to right, byte by byte.

® The operand 3 mask must be a self-defining term ranging from Q to 15.

UP-8914- SPERRY UNIVAC 0S/3 2-40

ASSEMBLER
CLR
General Possible Program Exceptions
0PCODE | roRMAT ?:;fm [] ADDRESSING O prOTECTION
TveE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8yTes) |] [DECIMAL DIVIDE [0 SPECIFICATION:
O pecimaL OVERFLOW {0 NOT A FLOATING-POINT REGISTER
CLR | 15 RR 2 [execuTe [0 ©oF1NOT ON HALF.WORD BOUNDARY
{0 EXPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exrPoNENT UNDERFLOW O oP 2 NOT ON FULL-WORD BOUNDARY
Wir - SeTT00 [FIXED-POINT DIVIDE 0O oP2NOT ON DOUBLE-WORD
Wirr <A seTTO 1 [0 Fixep-POINT OVERFLOW g BOUNDARY
- IF r1 >72, SET TO 2 D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
{QFf OVERFLOW, SETTO 3 (J oreRaTION OP 1 NOT ODD NUMBERED REGISTER
O UNCHANGED W none
Function:

Causes the contents of the operand 1 (r,) register to be compared with the contents of the operand 2 (ry)
register. The condition code is set according to the comparison resuit.

Explicit and Implicit Format:

LABEL ' AOPERATION A OPERAND

[symbol] | CLR oty

Operationa! Considerations:

L Operands are considered unsigned binary numbers and all bit combinations are valid.

] The contents of both operands remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-41
ASSEMBLER Update B
CLRCH
General Possible Program Exceptions
0PcODE | ronmar ?NBSJECT J ADDRESSING ll PROTECTION
TvpE LGTH. [] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. 1HEX. (8yTes) || O DECIMAL DIVIDE B SPECIFICATION:
(] beECIMAL OVERFLOW [J NOTAFLOATING-POINT REGISTER
CLRCH |9F02 S 4] execuTe [0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
Bocr 100 [J FIXED-POINT DIVIDE B oP2NOT ON DOUBLE-WORD
P 0 FIXED-POINT OVERFLOW O BOUNDARY
C] SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
() seT 103 B OPERATION] oP1NOT ODD NUMBERED REGISTER
[JUNCHANGED O ~one

Function:

Allows a pending 1/0 interrupt on a channel interruption queue to be dequeued.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] CLRCH d,(b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] CLRCH S,

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-42
Update B

CLRDV

Condition Codes

MseTT00
W seT 1O
BseTT02
BMseTT03
[JUNCHANGED

7] EXPONENT OVERFLOW
[0 EXPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
O FLOATING-POINT DIVIDE
[l CPERATION

General Possible Program Exceptions
OBJECT
OPCODE FORMAT | INST. [ADDRESSING B PrOTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. |HEX. (BYTES) D DECIMAL DIVIDE . SPECIFICATION:
(0 beciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
CLRDV IQDXZ RS 4 [execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD

BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER

OP 1 NOT ODD NUMBERED REGISTER
NONE

ooao oaoog

Function:

Dequeues one or more directives from the device directive queue.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] CLRDV r ,d2 (b2)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] CLRDV ry S,

UP-8914 SPERRY UNIVAC 0S/3 2-43
ASSEMBLER
General Possibie Program Exceptions
OBJECT
ADDRESSING B PROTECTION
OPCODE FORMAT | INST. n
Tvpe LGTH. CATA INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM |HEX. ayTEs) 1] (] DECIMAL DIVIDE (O srecifFICATION:
{0 oecimAL oveERFLOW NOT A FLOATING-POINT REGISTER

cP | FO S8] O execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

B /FoP1=0P2,SETTOO
B iFoP1<OP2, SETTO 1
I iFOP1>0P2,SET TO 2
O1F OVERFLOW.SET TO 3
JUNCHANGED

(0 eXxPONENT OVERFLOW
O exPONENT UNDERFLOW
[FiXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
O FLOATING-POINT DIVIDE
(] oPERATION

000 Oo0oooo

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT QDD NUMBERED REGISTER
NONE

Function:

Compares the contents of two storage areas to see whether they are algebraically equal, operand 1 is
higher, or operand 1 is lower. The condition code is set to reflect the results of this compare. A branch
instruction is usually used after the compare instruction.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] | cCP d,{i,.b,).d,(l,b,)
Implicit Format:
LABEL ' AOPERATION A l OPERAND

[symbol] l cP

Operational Considerations:

' 5, (1,),5,(1,)

L] All signs and digits are checked for validity, and comparison proceeds from right to left.

L] If the operand fields are unequal in length, the shorter field is extended with zero digits.

L Operands with zero values and unlike signs compare as equal.

- All valid codes representing the same sign are considered equal.

L] Operand 1 and operand 2 may overlap if their least significant bytes coincide.

L The contents of both operands remain unchanged.

uUP-8914 SPERRY UNIVAC 0S/3 2-44
ASSEMBLER
CR
General Possible Program Exceptions
orcooe | pormar ?:;:CT [] ADDRESSING O proTeCTION
TYPE LGTH. [PATA (INVALID S1GN/OIGITY| {J SIGNIFICANCE
MNEM. JHEX. sytes) || [DECIMAL DIVIDE {J speciFIcCATION:
O oecimaL oveRFLOW {0 NOT A FLOATING.POINT REGISTER
CR | 19 RR 2 O execuTe 0 oP1NOTON HALF-WORD BOUNDARY
30 eXPONENT OVERFLOW 0 oF 2 NOT ON HALF-WORD BOUNDARY
Condition Codes {0 exPONENT UNDEAFLOW O or2NOT ON FULL-WORD BOUNDARY
B ore stTT00] FIXED-POINT DIVIOE 0O op2noTONDOUBLEWORD
e r: <32 SET TO 1 O FIXED-POINT OVERFLOW a B8OUNDARY
Bir > seTTo2 (] FLOATING-POINT DIVIDE 2 OP 1 NOT EVEN NUMBERED REGISTER
O IF OVERFLOW, SET TO 3 0 oreRaTION OP 1 NOT 00D NUMBERED REGISTER
0 uncHANGED | none

Function:

Causes the contents of operand 1 (r,) to be algebraically compared to operand 2 (rz).‘

Explicit and Implicit Format:

LABEL l AOPERATION A

OPERAND

[symbol] CR

Operational Consideration:

Ty ,l’.‘.

. The contents of both registers remain unchanged.

UpP-8914 SPERRY UNIVAC 0S/3 2-45
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING @ PROTECTION
OPCODE FORMAT | INST. u
TYPE LoTH (] DATA (INVALID SIGN/DIGIT) | [0 SIGNIFICANCE
MNEM. [HEX. eyTEs) ||] DECIMAL DIVIDE B SPECIFICATION:
[] bECIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
CSM B9 RS 4 [execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

BMIFOP1=0P2,SETTOO
B iFor1<oP2,SETTO 1

B iF OP 1>0P 2, SET TO 2

[J\F OVERFLOW, SET TO 3
JUNCHANGED

O EXPONENT OVERFLOW
(0 EXPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
] oPERATION

omm OmRO0CO

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 3 NOT EVEN NUMBERED REGISTER
NONE

Function:

Causes some or all of a full word in main storage addressed by operand 2 to be logically compared with
some or all of the odd-numbered register contained in the even-odd register pair specified by operand 1,
according to a mask contained in the operand 1 even register. The condition code is set according to the
result. Then, if the two operands are equal, the instruction replaces some or all of the operand 2 field with
data taken from the odd-numbered register contained in the even-odd register pair specified by operand 3.
The even-numbered operand 3 register contains a mask that controls data replacement.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] CSm ry.r3.d,(b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] CSM ryM3.8,

Operational Considerations:

- Within the operand 1 and operand 3 masks, a 1 bit causes its corresponding bit in the odd-numbered
register to take part in the current operation, whether comparison or data replacement. A zero bit
causes its corresponding bit to be ignored.

" Both r, and r; must be specified as even registers.

] Operand 2 must reside on a full-word boundary.

uP-8914

SPERRY UNIVAC 0S§/3
ASSEMBLER

2-46

CcvB

Condition Codes

[0 EXPONENT OVERFLOW
) EXPONENT UNDERFLOW

[JiF RESULT = 0,SET TO O
O1F rResuLT <0, SET TO 1
D iF RESULT >0, SET TO 2
C]'F OVERFLOW, SET TO 3
B UNCHANGED

B FIXED-POINT DIVIDE

] FIXED-POINT OVERFLOW
O FLOATING-POINT DIVIDE
[J oPERATION

000 s0Oooa

General Possible Program Exceptions
OBJECT || my ADDRESSING B PROTECTION
OPCODE FORMAT | INST.] SIGNIFI
TvPE LGTH. i DATA (INVALID SIGN/DIGIT) s CANCE
MNEM. 1HE X (BYTES) || [DECIMAL DIVIDE B SPECIFICATION:
[0 oecimAaL OVERFLOW NOT A FLOATING-POINT REGISTER
CvB 4F RX 4] ExecuTE OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Converts the packed decimal number in operand 2, a double word in main storage, to a fixed-point signed

binary number, which

Explicit Format:

is placed in operand 1 {(r,).

LABEL AOPERATION A OPERAND
[symbol] CVB r,.d, (x2 b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] cvB ryS,(x,)

Operational Considerations:

in main storage.

binary number.

Operand 2 is a 15-digit packed signed decimal number in a doubie word on a double-word boundary

Operand 2 is checked for valid digits and sign code before conversion to a fixed-point, 32-bit signed

UP-8914 SPERRY UNIVAC 0S/3 2-47
ASSEMBLER

cvB

L The maximum number that can be converted and still contained in a 32-bit register is 2,147,483,647
(23—1). The minimum number is —2,147,483,648 {—23'). For decimal numbers exceeding this
range, the 32 least significant bits are stored in the first operand location and a fixed-point divide
exception is generated. ‘

L] If operand 2 is negative, the result will be in twos compiement notation.

L] The contents of operand 2 remain unchanged.

UP-89214

SPERRY UNIVAC 0S/3
ASSEMBLER

2-48

CvD

Condition Codes

CJ1F RESULT = 0. SET TO 0
O:f ReEsULT <0, SET TO 1
O1F RESULT > 0. SET TO 2
OJiF OVERFLOW, SET TO 3
B UNCHANGED

(J eXPONENT OVERFLOW
[0 exPONENT UNDERFLOW
[0 FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
(O FLOATING-POINT DIVIDE
O oreraTION

e
General Passible Program Exceptions
OPCODE OBJ:-CT B ADORESSING #l PROTECTION
F?:;‘:T :_’ésn" [J oATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. LHEX, (8yTes; |} (] DECIMAL DIVIDE Bl SPECIFICATION:
O oeciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
Cvo | 4E RX 4 O execute OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 w0000

Function:

Converts the fixed-point signed binary number in operand 1 (r,) to a packed decimal number, which is
placed in operand 2, a doubie word in main storage.

Explicit Format:

LABEL l

A OPERATION A OPERAND -
[symbol] cvD ry gy (x, ,bz)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] cVvD ry Sy (%)

Operational Considerations:

e Operand 1 is a fixed-point, 32-bit signed binary number in a register.

L] Operand 2 is a 15-digit packed signed decimal number in a double-word main storage location on a
double-word boundary.

L The contents of operand 1 remain unchanged.

uP-8914 SPERRY UNIVAC 0S/3 2-49
ASSEMBLER

General Possible Program Exceptions
opcoDE | FORMAT ?:;$,CT f] ADDRESSING ‘ B PROTECTION
TerE LGTH. [J DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. JHEX. . sytes) || [J DECIMAL DIVIDE B SPECIFICATION:
O DECIMAL OVERFLOW {0 NOT A FLOATING-POINT REGISTER
D 50 RX 4 O execuTe ' 0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O EXPONENT UNDERFLOW M oP2NOT ON FULL-WORD BOUNDARY
TTir RESULT = 0. 56T 70 0 Il FIXED-POINT DIVIDE 0O or2noOT ON DOUBLEWORD
O3 iF ResuLT <o, SET TO 1 O FiIXED-POINT OVERFLOW - B8OUNDARY
D 'F RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CliF OVERFLOW, SET TO 3 [J oPERATION O oF 1 NOT ODD NUMBERED REGISTER
B UNCHANGED 0O none
Function:

Causes the value in the even-odd pair of registers specified by operand 1 (r,) to be divided by the full-word
operand 2 (the divisor). The quotient and remainder are placed in the operand 1 registers.

Explicit Format:

‘ LABEL AOPERATION A OPERAND
[symbol] D r,d, (x2 b,)

Implicit Format:

LABEL I A OPERATION A OPERAND

{symbol] D ry Sy ("z)

COperational Considerations:

. Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register
pair. The operand 1 field of the instruction must specify an even-numbered register. The 32-bit
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered
register, respectively.

L Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain
unchanged after execution.

s The sign of the quotient is determined algebraically, and the remainder assumes the sign of the
dividend. A zero quotient or zero remainder is always positive.

. L] When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception
occurs, no division takes place, and the dividend remains unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-50
ASSEMBLER
Floating Point
General. Possible Program Exceptions
OPCODE | rommAT ?NBS:'ECT [l ADDRESSING fl rROTECTION
TYPE LGTH [DATA (1NVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. IHEX. svyTes) || O pecimaL pivioe B SPECIFICATION:
J oecimAL OVERFLOW B NOT A FLOATING-POINT REGISTER
DD (6D RX 4 0 execuTe 0 OP1NOTON HALF-WORD BOUNDARY
- Hl EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
-CTF T ——,] FIXED-POINT DIVIDE B or2NOT ON DOUBLE-WORD
e RESULT <0, SET TO 1 {0 FIXED-POINT OVERFLOW o BOUNDARY
OJ1F RESULT >0, SET TO 2 B FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SETTO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED 3 none
Function:

C}-Juses the doubie-word contents of the operand 1 (r,) register to be divided by the contents of the double
word in storage specified by operand 2. The normalized quotient is placed in the register specified by
operand 1 (r,). Any remainder is not preserved.

Explicit Format:

LABEL ! AOPERATION A OPERAND
[symbol] DD rydy(xy,by)
Impiicit Format:
LABEL ' AOPERATION A OPERAND
[symbol] DD ry.Sy(x,)

2-51

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
N Floating Point
Sy
General Possible Program Exceptions
OBJECT
0pPcoDE | rormat | INST [] ADDRESSING 0 eroTECTION
TvPE LGTH [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8vTes) |} 0O oecimaL pivine Bl SPECIFICATION:
{0 pecimaL ovERFLOW B NOT A FLOATING-POINT REGISTER
DOR | 2D RR 2 O execuTe 0 oP1NOTONHALF-WORD BOUNDARY
B EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW 0O o2 NOT ON FULL-WORD BOUNDARY
T]1F RESULT = 0. SET TO 0 [FIXED-POINT DIVIDE 3 op2NOT ON DOUBLE-WORD
0 i¢ resuLT <o, SET TO 1 3 FIXED-POINT OVERFLOW o BOUNOARY
D IF RESULT >0, SET TO 2 . FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
JiF OVERFLOW, SETTO 3 0O orerAaTION a OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the double-word contents of the operand 1 (r,) register to be divided by the double-word contents of
the operand 2 (r,) register. The normalized quotient is placed in the operand 1 (r,) register. Any remainder

is not preserved.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

DDR

Fy.F2

UP-8914 SPERRY UNIVAC 0S/3 2-52

ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE | ronm 0:-'1?‘37) ADDRESSING M PROTECTION
%pé" 'LGST':, (] oATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. JHEX, (eyTes) || [0 DECIMAL DIVIDE B SPECIFICATION:
[J oecimaL oveRFLOW il NOT A FLOATING-POINT REGISTER
DE {70 | RX 4 0O execute (0 ©P 1 NOT ON HALF.WORD BOUNDARY
B EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW B OP2NOTON FULL-WORD BOUNDARY
T ir RESOLT - 0. 5eT 1o 0 [0 FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
CJiF resuLT <o, SET TO 1 O FIXED-POINT OVERFLOW A BOUNDARY
CJ1F RESULT >0, SET TO 2 H FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C11F OVERFLOW, SET TO 3] oPeRATION 0O or 1 NOT OOD NUMBERED REGISTER
Bl UNCHANGED {7 none
Function:

Causes the full-word contents of the operand 1 (r,) register to be divided by the full-word contents of a full
word in storage specified by operand 2. The normalized quotient is placed in a full word in the operand 1
(ry) register. Any remainder is not preserved.

Explicit Format: S .

LABEL AOPERATION A OPERAND
[symbol] DE r,.d,(x,,b,)
Implicit Format: .
LABEL AOPERATION A OPERAND
[symbol] DE r,5,(%,)

UP-8914 SPERRY UNIVAC 0S/3 2-53

ASSEMBLER
- DEQ
General Possible Program Exceptions
OPCODE | FommAT ?NB;15CT H ADDRESSING O proTECTION
Tere | Lo [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. @vTes) || O DECIMAL DiVIDE B sPECIFICATION:
O pecimaL oveRFLOW 0 NOTA FLOATING-POINT REGISTER
DEQ | B4 Si 4 O execute B 0P 1NOT ON FULL-WORD BOUNDARY
D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes O exponent unperrLow |0 o 2 NOT ON FULL-WORD BOUNDARY
TEY [0 FIXED-POINT DIVIDE 0O op2NOT ON DOUBLE-WORD
B seTTO1 [0 FIXED-POINT OVERFLOW O BOUNDARY
W seTT02 O eLoaTING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
W seTTO3 l OPERATION 00 op1NOT ODD NUMBERED REGISTER
] UNCHANGED O nowne

Function:

Remoaves an element from a list whose list control block is addressed by operand 1 . An 8-bit mask specified
by operand 2 enables certain list processing options. The condition code is set according to the resuit.

" Explicit Format:

LABEL | A OPERATION A ! OPERAND
[symbol] l DEQ i d, (b,).i,

Implicit Format:

LABEL l AOPERATION A ’ OPERAND

[symbol] DEQ S,y

Operational Considerations:
a Operand 1 must address a main storage location that lies on a full-word boundary.

[] Operand 2 sets bits 8—15 of the object instruction as follows:

— Bits 8—9: set to 00, if the newly dequeued element is simply to be removed; set to 01, if the
element is to be added to the free element list. :

- Bits 10—11: unused; must be set to O.
- Bit 12: set to 1 to enable the data movement option; otherwise set to 0.

— Bits 13—15: control the register load option.

UP-8914 ' SPERRY UNIVAC 0S/3 2-54

ASSEMBLER
Floating Point
° ey
General Possible Program Exceptions
-OBJECT
OPCORE | roRMAT ?NST. [ADDRESSING {0 proTECTION
TYPE LGTH. [} DATA (INVALID SIGN/DIGIT) | {J SIGNIFICANCE
MNEM. |HEX. 8yTes) || oeciMaL DIvIDE B sPECIFICATION:
(0 oecimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
DER | 3D RR 2 O execuTe 0 oP1NOT ON HALF-WORD BOUNDARY
I EXPONENT OVERFLOW] oP2NOT ON HALF-WORD BOUNDARY
Condition Codes BB EXPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
T AeSULT = 0. SET 100 (0 FIXED-POINT DIVIDE O or2nOT ON DOUBLE-WORD
01 resuLt <o, SET TO 1 O FixeD-POINT OVERFLOW O BOUNDARY
OJ1F RESULT >0, SET TO 2 B FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3 (] oPERATION 0O or 1 NOT ODD NUMBERED REGISTER
l UNCHANGED O none
Function:
Causes the full-word contents of the operand 1 (r,) register to be divided by the full-word contents of the
operand 2 (r,) register. The normalized quotient is placed in a full word in the operand 1 (r,) register. Any
remainder is not preserved.
Explicit and Implicit Format: '

LABEL ! AOPERATION A OPERAND

[symbol] DER ryofy

uP-8914 SPERRY UNIVAC 0S/3 2-55
ASSEMBLER

® o | DP

General : Possible Program Exceptions
OPCODE | FonmarT ?:sj;:.ﬂ Jl ADDRESSING M PROTECTION
TYPE LGTH. M DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. svres) || Ml DECIMAL DIVIDE B sPeCIFICATION:
(J peciMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
op FD S8 § {J execuTe O oP1NOT ON HALF-WORD BOUNDARY
O exPONENT OVERFLOW 00 ©P2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 exPONENT UNDERFLOW O or2NOT ON FULL-WORD BOUNDARY
TITF RESOLT -0 SeT 0 0 O FIXED-POINT DIVIDE O or2NOT ONDOUBLE-WORD
O ¢ rResuLT <o, SET TO 1 O FIXED-POINT OVERFLOW a BOUNDAEY
CliF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
JiF OVERFLOW, SETTO 3 [J oreRrAaTION QO OP 1 NOT ODD NUMBERED REGISTER
ll UNCHANGED 0 none
Function:

Causes the contents of operand 1 (the dividend) to be divided by the contents of operand 2 (the divisor). The
quotient and remainder are placed in the operand 1 location.

Explicit Format:

LABEL I A OPERATION A ove.nmo
[symbol] | DP d, (I, b,).d,(L,,b,)
Implicit Format: g
LABEL l A OPERATION A | OPERAND
[symbol] | DP 5, (1,).5,(1,)

Operationai Considerations:
] All signs and digits are checked for validity.
» The quotient and remainder occupy the entire operand 1 field. The remainder is right-justified in the
field, carries the sign of operand 1, and is equal in size to operand 2. The quotient, carrying the

algebraically determined sign, is right-justified in the rest of the field.

. The maximum dividend (operand 1) size is 31 digits and sign. The maximum quotient size is 29 digits
and sign. The smallest remainder is one digit and sign. The maximum divisor is 15 digits.

uP-8914

"SPERRY UNIVAC 0S/3 2-56
ASSEMBLER

DP

Operand 1 and operand 2 fieids may overlap if their ieast significant bytes coincide.

If the number of quotient digits exceeds the size of the quotient field or if division by zero is
attempted, a decimal divide exception results; the divisor and dividend remain unchanged in their
storage locations,

A decimal divide exception occurs if the dividend does not have at least one leading zero. The
condition for a decimal divide exception can be determined by aligning the ieftmost digit of the divisor
(operand 2) field with the leftmost less 1 digit of the dividend (operand 1) field and performing a
subtraction. If, after alignment, the divisor is less than or equal to the dividend, a decimal divide
exception is indicated.

A specification exception indicates the divisor exceeds 15 digits or operand 1 is not longer than
operand 2.

UP-8914 SPERRY UNIVAC 0S/3 2-57
ASSEMBLER
® | DR
Sy
General Possible Program Exceptions
OPCODE 'FORMAT ?:SJSCT [J AODRESSING O prROTECTION
‘ TvPE LGTH.] oATA (INVALID SIGN/OIGIT)| [SIGNIFICANCE
MNEM. |HEX. (8yTes) || O DECIMAL DIVIDE Bl SPECIFICATION:
[0 opeciMmaL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
DR 1D RR 2 [J execuTe O oP1NOT ON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
=s Ml FIXED-POINT DIVIDE 0 op2noOT ON DOUSLE-WORD
8 :: :::‘dt: 2%'55211;%2 (] FIXED-POINT OVERFLOW - BOUNDARY
D 1€ RESULT)O. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D {F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
8 UNCHANGED O none
Function:

Causes the value in the even-odd registers specified by operand 1 (r,) to be divided by the value in the
register (the divisor) specified by operand 2 (r,). The quotient and remainder are placed in the operand 1

registers.
‘ Explicit and Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] DR o

Operational Considerations:

L] Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register
pair. The operand 1 field of the instruction must specify an even-numbered register. The 32-bit
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered
register, respectively.

- Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain
unchanged after execution.

L] The sign of the quotient is determined algebraically and the remainder assumes the sign of the
dividend. A zero quotient or zero remainder is always positive.

L When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception
occurs, no division takes place, and the dividend remains unchanged.

. A specification exception occurs if r, specifies an odd-numbered register.

UP-8914 SPERRY UNIVAC 0S/3 2-58

ASSEMBLER
ED
General Possible Program Exceptions
oPcoDE | rommat ?:s""rECT] ADDRESSING B PROTECTION
TvPE LGTH. § DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. 1HEX. (ByTeES) |} [DECIMAL DIVIDE {J specirFicaTiON:
O oecimAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
ED DE SS 6 [J execuTte [0 oP1NOTONMALF-WORD BOUNDARY
[J EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [exPONENT UNDERFLOW 0O or2NOT ON FULL.WORD BOUNDARY
R] FIXED-POINT DIVIDE 0 or2NOT ON DOUBLE-WORD
M seT To 1 [0 FIXED-POINT OVERFLOW o BOUNDARY
B seT o2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O seTTo3) oPERATION 00 oP 1 NOT OOD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS 0 none

Function:
Causes the packed data specified by operand 2 to be unpacked and edited under the control of a mask
(pattern) specified by operand 1. The resuit is placed in the main storage location specified by operand 1.
This instruction can produce the following types of results:

L] Zero suppression
Ex: 00173 — 173

s Character protection
Ex: 000453 — ***4.53

L] Punctuation
Ex: 123400 — $1,234.00

L] Multiple field editing
Ex: 12531468 — 12.53AA14.68

Explicit Format:

LABEL ’ AOPERATION A ‘ OPERAND
[symbol] ED d,(1b,).d,(b,)
Implicit Format:
LABEL l AOPERATION A ' OPERAND

[symbol] ED s, (s,

P

UP-8914

SPERRY UNIVAC 0S/3 2-59
ASSEMBLER

ED

Operational Considerations:

For every digit in the source field, operand 2, there must be an equal number of digit select
characters, significance start characters, or a combination of both in the pattern.

The significance indicator, referred to as the S switch, indicates by its on or off state the significance
or nonsignificance, respectively, of subsequent operand 2 digits or message characters. Significant
operand 2 digits replace their corresponding digit select or significance start characters in the result.
Significant message characters remain unchanged in the resuit.

The S switch is turned off when the edit instruction starts and when a sign code of “C” (+) is
reached; and it is turned on when the first significant (nonzero) digit is reached.

When the S switch is off, zeros to be transferred from operand 2 are suppressed and the fill character
is inserted in the corresponding operand 1 position. When the S switch is on, any zero to be
transferred from operand 2 is unpacked into the corresponding operand 1 position. At the beginning
of execution, the S switch is off.

Editing includes sign and punctuation control and the suppression and protection of leading zeros. It
also facilitates programmed blanking for all zero fields. Several fields may be edited in one operation,
and numeric information may be combined with text.

The instruction proceeds from left to right.

Operand 2 data must be in packed format and must contain valid numerics and sign codes.

The original contents of operand 1 is the mask, the pattern which controls the edit process.

Depending on the edit requirements, some or most of the bytes originally in operand 1 are replaced

by data from operand 2. The mask is expressed in unpacked format and may consist of any

combination of 8-bit characters.

As the mask is scanned from left to right, one of three things happens to each mask character:

-~ An operand 2 digit is expanded to a zoned character. The zoned character replaces the mask
character. When the operand 2 digit is stored as the result, its code is expanded from packed to
unpacked format by attaching a generated zone code.

- The mask character is left unchanged.

— A fill character is stored in the result. The fill character is taken from the first byte position of

the mask. The choice of this character is not dependent upon the editing function initiated by
this code. The editing function occurs after the code has been assigned as a fill character.

UP-8914

SPERRY UNIVAC 0S/3 2-60
ASSEMBLER

ED

Each mask character is replaced by a resuilt character that depends on three conditions:
1. the digit obtained from operand 2;
2. the mask character; and

3. the S switch status.

When a digit select or significance start byte is found in the mask, the S switch and an operand 2
digit are examined. This resuits in either the unpacked operand 2 digit or the fill character replacing
the mask character. A valid decirnal digit (if the mask byte is a significance start) or nonzero decimal
digit {if the mask byte is a digit select) sets the S switch to on if the operand 2 byte does not contain a
plus code in the four least significant bit positions.

The fill character is the I.eftmost character of the edit mask (operand 1). Any valid hexadecimal value
(B.2) may be used as a fill character. This character is retained for the editing which follows. This
position does not receive a digit from the operand 2 data.

The digit select byte is a character in the operand 1 mask represented by EBCDIC code 20. If the
digit select byte is encountered and the S switch is on, any digit, O through 9, is unpacked to
replace the digit select byte. If the S switch is off, the operand 2 digit is examined and only nonzero
digits are unpacked into operand 1. The fill character replaces the digit select byte if the examined
digit is zero. The S switch is turned on when the first nonzero operand 2 digit is encountered; this
allows succeeding zeros from operand 2 to be included in the resuit.

The significance start byte is represented in the edit mask by EBCDIC code 21. The significance start
byte performs the same function as the digit select byte except the significance start byte turns the S
switch on, regardless of the value of the current operand 2 digit. Once the S switch is on, it remains
on for all succeeding digits; however, the current digit is not affected. The S switch may be turned
off by a field separator byte or by a positive sign code within operand 2.

Any other symbol or data in the operand 1 edit mask, as represented by hexadecimal codes, is
retained unchanged if the S switch is on. If the S switch is off, this other data is replaced by the fill
character. During this operation, the digit of operand 2 is neither accessed nor addressed-advanced.

The sign of operand 2, positive or negative, must be a value greater than binary 9 (1002,). Any
hexadecimal value A through F is acceptable. The sign itself is not moved to operand 1; instead, a
sign indicator, such as a minus sign or letters CR, is either deleted from or retained in operand 1,
depending on the sign of operand 2.

The sign of operand 2 also affects the S switch. A positive sign turns the S switch off, thus causing
the following characters in operand 1 to be replaced by the fill character. A negative sign leaves the
S switch unchanged.

uP-8914

SPERRY UNIVAC 0S/3 2-61
ASSEMBLER

ED

If the fill character is a blank, if no significance start byte appears in the mask, and if operand 2 is all
zeros, the editing operation bianks the result field.

Overlapping operand 1 and operand 2 fields produces unpredictable resuits.

The length specification (I} in the object instruction specifies the length of the mask {operand 1). The
length of the mask can be determined as:

— one byte for the fill character;
— one byte for each digit select byte, significance start byte, and field separator byte; and
— one byte for each message character.

Usually, operand 2 is shorter than operand 1 because a zone (a half byte) and a numeric (a fuil byte)
are inserted in the resuit for each operand 2 di_git. The total number of digit-select and significance
start bytes in the mask must equal the number of operand 2 digits to be edited.

If operand 2 containing unpacked data is to be edited, it must first be packed by the PACK instruction.
In packing an odd number of bytes, an odd number of digit positions and the sign are produced. In
packing an even number of bytes, an odd number of digit positions and the sign are produced. The
extra digit position in the latter case is zero and is the most significant position in operand 2. The
extra position must be provided for in the mask by specifying an extra DSB or SSB. Space, asterisk, or
other character fill occurs and may be dropped when transferring the edited operand to output. -

Muitiple-field editing operations are indicated by the presence of one or more field separator bytes
(EBCDIC code 22). The field separator byte identifies the individual fields in this operation and is
always replaced in the mask with a fill character. The S switch is always off after the field separator
byte is encountered. |If field separators are not indicated by the mask, the entire operand 2 is
considered one field.

The condition code, reflecting the status of the last source field edited, is set:
— to zero when all of the operand 2 digits in the last field are zero; if the mask of the last field has
no significance start or digit select bytes, the operand 2 digits are not examined and the

condition code is set to zero;

— to 1 when a nonzero operand 2 digit is detected and the S switch is set after the last mask digit
is examined; or

— to 2 when a nonzero operand 2 digit is detected and the S switch is off after the last mask digit
is examined.

Code 3 is not used.

UP-8914 SPERRY UNIVAC 0S/3 2-682
ASSEMBLER

ED

L The operation of the edit instruction is summarized in the following tabie.

Mask (Operand 1) | EBCDIC | S Switch | Data (Operand 2) g““"‘:ﬂ :‘s‘“'?‘“: |
Character Code Status Character (Operand 1) witc
Character Status
Fill character Any Off Not examined None Off
Digit select 20 On Digit Digit On*
byte
Off Nonzero Digit On*
Off Zero Fill Off
character
Significance 21 On Digit Digit On*
start byte
Off Nonzero Digit On*
Off Zero Filt On*
character
Message Any except . On Not examined Moessage On*
character 20, 21, 22 character
Off Not examined Fill off
character
Field 22 On Not examined Fill off
separator byte _ character
oft Not examined - Fill Off
character

*Sign detection {examined simultaneously with operand 2 digit) affects the S switch as follows:

1. A plus or minus sign detected as a most significant digit causes a data exception.
2. A plus sign detected as a least significant digit causes the S switch to be turned off.
3. A minus sign has no effect on the S switch.

L] If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1.

2-63

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
EDMK
General Possibie Program Exceptions
0PCODE | rommaT ?NBSJ:CT) ADDRESSING B PROTECTION
TvPE LGTH. B DATA (INVALID SIGN/01GIT) | (] SIGNIFICANCE
MNEM. THEX. (gvTes) ||) DECIMAL DIVIDE {3 sPeCIFICATION:
(T peciMaL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
EDMK | DF | S5 6 [0 execuTe] oF 1 NOT ON HALF-WORD BOUNDARY
{0 EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (] exPONENT UNDERFLOW [0 oP2NOTON FULL-WORD BOUNDARY
0 FIXED-POINT DIVIDE 0O or2nOT ON DOUBLE-WORD
=:z :gz‘dtl '<?J' ssi:-:%(: {J FIXED-POINT OVERFLOW D‘ BOUNDARY
B F RESULT Do, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJ/F OVERFLOW, SET TO 3 O] opERATION T or 1 NOT ODD NUMBERED REGISTER
uncHANGED O ~none
Function:

This instruction is identical to the edit (ED) instruction, except for the additional function of placing the
address of the first significant result digit in register 1. This is done to permit the use of a floating $
character or other character in the result field.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] EDMK. d,(1,b).d,(b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] EDMK 5, ()5,

Operational Considerations:

] The edit and mark (EDMK) instruction is identical to the edit (ED) instruction, except that EDMK
inserts the resulting address of the first significant character in the low-order 24 bits of general

register 1.

This insertion occurs whenever the resuit character is a zoned source digit and the
significant switch is zero before examination of the digit.

UP-8914

SPERRY UNIVAC 0S/3 2-64
ASSEMBLER

EDMK

The edit and mark instruction facilitates the programming of floating currency-symbol insertion. The
character address inserted in general register 1 is one more than the address where a floating
currency sign would be inserted. The branch on count (BCTR) instruction, with zero in the R2 fieid,
may be used to reduce the inserted address by 1.

The character address is not stored when significance is forced. To ensure that general register 1
contains 3 valid address when significance is forced, it is necessary to place into the register
beforehand the address of the pattern character that immediately follows the significance starter.

When a single instruction is used to edit several fields, the address of the first significant resuit
character of each field is inserted into bit positions 8 through 31 of general register 1. Only the
address of the first significant character of the last field is available after the instruction is completed.

If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equai
to the length attribute of operand 1. :

SPERRY UNIVAC 0S/3

UP-8914 2-65
ASSEMBLER
EIO
General Possible Program Exceptions
0PCODE | FoRMAT ?NBsJ-f_CT I ADDRESSING M PROTECTION
TvPE LoTh. || O PATA UINVALID SIGN/DIGIT) {J SIGNIFICANCE
MNEM. [HEX. syTes) || (] DECIMAL DIVIDE H SPECIFICATION:
{J oecimaL oveERFLOW 0 NOTA FLOATING-POINT REGISTER
El0 | EO Ss 6 O execute 0 oF1NOTON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 0 op2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B ocr 100 {J FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
BseTro1] FIXED-POINT OVERFLOW 0 BOUNDARY :
M seTTo2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
BseTT03 B OPERATION O or 1 NOT 00D NUMBERED REGISTER
[JUNCHANGED O none
L=
Function:

Causes an 1/0 request block to be enqueued on a device directive dueue.

Explicit Format:

LABEL |

AOPERATION A » OPERAND
[symbol] - ElO d, (i, .,b,).d,(r, b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] EIO s, (i)s,(r,)

UP-8914 SPERRY UNIVAC 08/3 2-66

ASSEMBLER
ENQ
General Possible Program Exceptions
OPCODE | FormAT ?h?st'CT B ADDRESSING M PROTECTION
TYPE LGTH. [J oATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX.) @vyTes) |} DECIMAL DiviDE 8 SPECIFICATION:
O oecimaL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
ENQ | B3 s 4 [J execuTe OP 1 NOT ON FULL-WORD BOUNDARY
0 EXPONENT OVERFLOW 3 oP2NOT ON HALF-WORD BOUNDARY
Condition Cades [exPONENT UNDERFLOW O op2NOT ON FULL-WORD BOUNDARY
T 3 FIXED-POINT DIVIDE 0 op2nOT ON DOUBLE-WORD
o ::I Ig ? [3J FIXED-POINT OVERFLOW O BOUNDARY
B seT 7o 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
WMseETTO3 [J oPERATION O op 1 NOT ODD NUMBERED REGISTER
[J UNCHANGED O none

Function:

Adds an element to a list whose list control block is addressed by operand 1. An 8-bit mask specified by
operand 2 enables certain list processing options. The condition code is set according to the result.

Explicit Format:

LABEL l AOPERATION A l OPERAND

[symbol] - ENQ d, (b,)i,

Implicit Format:

LABEL ' A OPERATION A OPERAND

[symbol] ENQ 844y

Operational Considerations:
- Operand 1 must address a main storage location that lies on a full-word boundary.
L] Operand 2 sets bits 8—15 of the object instruction as follows:

— Bits 8—9: set to 00, if the element is to be simply added; set to 01, if the element is to be taken
from the free element list.

— Bits 10—11: unused; must be set to 0.

— Bit 12: set to 1 to enable the data movement option; otherwise set to O.

- Bits 13—15: control the register store option.

UP-8914 SPERRY UNIVAC 0S/3 2-67
ASSEMBLER Update B
EX
General Possible Program Exceptions
OPCODE CORMAT IONBSJTE4CT [l ADDRESSING 8l PROTECTION
TyPE LGTH. [] DATA (INVALID SIGN/D1GIT) | [J SIGNIFICANCE
MNEM. THEX. (8yTEs) || [J DECIMAL DIVIDE B SPECIFICATION:
[J bECIMAL OVERFLOW [NOTAFLOATING-POINT REGISTER
EX | 44 RX 4 B execuTe O ©P1NOTONHALF-WORD BOUNDARY
(0 EXPONENT OVERFLOW B OF2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exrPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
T mEsUiT o0 seT 00 [J FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
O RESULT<°"SET TO 1 (0 FIXED-POINT OVERFLOW 0 BOUNDARY
Ol 1F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]iF OVERFLOW, SET TO 3 (] OPERATION 0 oP1NOT ODD NUMBERED REGISTER
il SEE OPER. CONSIDERATIONS O nonE

Function:

Used to branch to a nonsequential instruction, then to execute it, with or without modification, and then to
return to the normal sequence of instructions.

If operand 1 is O, the instruction at the operand 2 address, specified by d, (x,, b,), is executed without
modification. If operand 1 (r;) is the range 1—15, the contents of r, are used to modify the subject
instruction when that instruction is staticized.

When r, is nonzero, modification of the operand 2 instruction proceeds as follows: A logical addition (OR)
is performed on the contents of bits 24 through 31 of r, and bits 8 through 15 of the operand 2 instruction.
The result replaces bits 8 through 15 of the operand 2 instruction. The rules of operation for logical
addition are illustrated by the following truth table:

Operand 1 Operand 2 Result
0 0 0
0 1 1
1 0 1

The subject instruction is executed as if it were in the normal instruction sequence except that the
instruction length code and updated instruction address fields of the current program status word (PSW)
reflect the execute instruction. The subject instruction itself is never modified permanently in main
storage, and the subject instruction cannot be another execute instruction.

UP-8914 SPERRY UNIVAC 0S/3 2-68
ASSEMBLER

EX

Normally, instruction sequencing continues with the instruction following the execute instruction.
However, if the instruction at the operand 2 address is a successful branch instruction, the instruction
address field of the current PSW is replaced by the branch address, and instruction sequencing continues
with the instruction located at the branch address. If the operand 2 instruction is branch and link or branch
and link external, the instruction address stored in the link register is that of the instruction following the
execute instruction.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] EX r,d,(x,,b,)

Implicit Format;

LABEL AOPERATION A OPERAND

[symbol] EX ry8,(x,)

Operational Considerations:

. If an interrupt occurs after the completion of the subject instruction, the old PSW contains the
address of the instruction following the execute instruction or the branch address.

u The condition code may be set by the instruction at the operand 2 address.
. Possible program exception:

— Specification exception (The address specified by operand 2 is an odd-numbered address.)
NOTE:

A program exception condition can be caused by the execute instruction or the instruction specified in the
execute /nstruction.

2-69

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update B
EXD
General Possible Program Exceptions
OBJECT
0PcODE | rormat | ner Ml ADDRESSING M PROTECTION
TYPE LGTH. (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HE X, (8yTes) || O pECIMAL DIVIDE B SPECIFICATION:
[J becimAL OVERFLOW [J NOTAFLOATING-POINT REGISTER
EXD (3300 § 4 B execuTE [0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
[] FIXED-POINT DIVIDE 00 opP2NOT ON DOUBLEWORD
LliF mESULT = 0.SET TO 0 {0 FIXED-POINT OVERFLOW BOUNDARY
Oi1F resuLT<0,SETTO 1 0O
O)1F RESULT >0, SET TO 2 [] FLOATING POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
J1F OVERFLOW, SET TO 3 l OPERATION O op1NOT 0DD NUMBERED REGISTER
M sEE NOTE O nonNe
Function:

The diagnostic instruction at the operand 2 location in main storage is executed.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] EXD d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] EXD s,

NOTE:

Condition code may be set by the subject diagnostic or special function.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-70
Update B

GRB

Condition Codes

B F RESULT=0,SETTO O
B r ResuLT<0,SETTO 1
OF RESULT >0, SETTO 2
[JIF OVERFLOW, SETTO 3
[JuNCHANGED

[J EXPONENT OVERFLOW
[0 ExPONENT UNDERFLLOW
[FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
(] FLOATING-POINT DIVIDE
Il OPERATION

000 oooaoao

General Possible Program Exceptions
OBJECT || my ADDRESSING O proTECTION
OPCODE FORMAT | INST.
TYPE LGTH () DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX, (svyTes) || O] DECIMAL DIVIDE O speciFicaTION:
: [0 beciIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
GRB | 0B RR 2 [0 execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Moves the IORB specified by operand 2 (r,) to the IORB pool specified by operand 1 (r,).

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

GRB

PELL)

UP-8914 SPERRY UNIVAC 0S/3 2-70a
ASSEMBLER Update B

HDR

Floating Point

General Possible Program Exceptions
OBJECT | — ADDRESSING (] PROTECTION
OPCODE FORMAT | INST.
Tvpe LoTH. [] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HEX. eyTES) || [J DECIMAL DIVIDE B SPECIFICATION:
[0 beciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
HDR | 24 RR 2 [EXecCUTE [0 oP1NOT ONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 ©P2NOT ON HALF-WORD BOUNDARY
Condition Codes M EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
[J FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
%:E 2::83 :<%’SSEE:.TTOOC: 0 FIXED-POINT OVERFLOW 0 BOUNDARY
0] 1F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
(JIF OVERFLOW, SET TO 3 (] oPERATION 0 op1NOT ODD NUMBERED REGISTER
B UNCHANGED O none

Function:

Causes the double-word contents of the operand 2 (r,) register to be divided by 2. The normalized quotient
is placed in the double-word operand 1 (r,) register.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] HDR reefy

Operational Considerations:

u The fraction of operand 2 (r,) is shifted right one bit position. The least significant bit of the fraction is
placed into the most significant bit position of the guard digit, and the vacated fraction bit position is filled
with zero. The intermediate result is normalized and placed in the operand 1 (r,) location.

u When normalization causes the exponent to become less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current program status word (PSW) is 1, the exponent of
the result is 128 greater than the correct value. If the exponent underfiow mask bit of the current PSW is
zero, the result is made true zero.

L When the fraction of operand 2 (r,) is zero, the result is made a true zero, a normalization is not attempted,
and a significance exception does not occur.

2-71

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER UpdateﬁE
General Possible Program Exceptions
OBJECT
ADDRESSING B PROTECTION
OPCODE FORMAT | INST. n
TvpE LGTH [} DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. THEX. (syTEes) || [0 OECIMAL DIVIDE [sPECIFICATION:
[0 beciMAL OVERFLOW NOT A FLOATING-POINT REGISTER

HDOV |9E01 S 4 (] exeECUTE OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

BseTT00
B serTo1
BMseETTO 2
M seETTO3

[JUNCHANGED

(J EXPONENT OVERFLOW
[EXPONENT UNDERFLOW
[0 FIXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
] OPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 O00o0go

Function:

Causes the current /0 operation at the addressed 1/0 device to be stopped.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] HDV d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] HDV s,

UP-8914 SPERRY UNIVAC 0S/3 2-72

ASSEMBLER Update B
HER
Floating Polint
General Possible Program Exceptions
OPCODE CORMAT ?NBSJTE.CT [] ADDRESSING (0 pPROTECTION
TYPE LGTH. (] bATA (INVALID SIGN/DIGIT)| (] SIGNIFICANCE
MNEM. [HEX. (8vTes) || 0 DECIMAL DIVIDE B SPECIFICATION:
(0 DECIMAL OVERFLOW B NOTAFLOATING-POINT REGISTER
HER 34 RR 2 [execuTe O OP 1 NOT ON HALF-WORD BOUNDARY
[EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
[0 FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
8 :i :E:St: Z%'s;i:,tr%g O FIXED-POINT OVERFLOW O BOUNDARY
C]iF RESULT >0, SET TO 2 0] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3. [] OPERATION 0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED O noNEe

Function:

Causes the full-word contents of the operand 2 (r,) register to be divided by 2. The normalized quotient is
placed in the full word in the operand 1 (r;) register.

Explicit and Implicit Format:

LABEL AOPERATION A | OPERAND

[symbol] HER l rr,

Operational Considerations:

= The fraction of operand 2 (r,) is shifted right one bit position. The least significant bit of the fraction
is placed into the most significant bit position of the guard digit, and the vacated fraction bit position
is filled with zero. The intermediate result is normalized and placed in the operand 1 (r,) location.

L When normalization causes the exponent to become less than zero, an exponent underflow condition
exists. |f the exponent underflow mask bit of the current program status word (PSW) is 1, the
exponent of the result is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is zero, the result is made true zero.

L When the fraction of operand 2 (r,) is zero, the resuilt is made a true zero, normalization is not
attempted, and a significance exception does not occur.

UP-8914

Condition Codes

(JF RESULT = 0, SET TO 0
[Jir rREsuLT<0,SET TO 1
O f RESULT >0, SET TO 2
OIF OVERFLOW, SET TO 3
B UNCHANGED

[J EXPONENT OVERFLOW
0O exPONENT UNDERFLOW
[FIXED-POINT DIVIDE

[0 FIXED:POINT OVERFLOW
[J FLOATING-POINT DIVIDE
B oFeRATION

SPERRY UNIVAC 0S/3 2-73
ASSEMBLER Update C

General Possible Program Exceptions
OPCODE OBJECT ||] ADDRESSING O erOTECTION

F??';”;T :_":ESTTP'{ [DATA (INVALID SIGN/DIGIT} | [J SIGNIFICANCE

MNEM. THE X (8vTES) || [DECIMAL DIVIDE [SPECIFICATION:
[0 peciMAL OVERFLOW NOT A FLOATING-POINT REGISTER

HPR | 99 SI 4 O execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 ooooo

Function:

Halts the processor. An operator start/run response sets the location counter to the specified operand
1 address and initiates execution.

Explicit Format;

LABEL A OPERATION A OPERAND
[symbol] HPR d, (b’). i,
HALTHERE HPR 0(5),81
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] HPR S ,i2
HPR TAG X‘FF*

UP-8914 SPERRY UNIVAC 0S/3 2-74

ASSEMBLER
IC
General Possible Program Exceptions
OPCODE | FoRmAT ?ﬁ;ﬁ” I ADDRESSING | M eROTECTION
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. IHEX. (8yTes) || [J DECIMAL DIVIDE (] SPECIFICATION:
{0 pecIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
ic |4 RX 4 [execuTe O OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
TTIr RESOLT -0 ST 100 [} FIXED-POINT DIVIDE [0 or2NOT ON DOUBLE-WORD
[iF RESULT <0, SET TO 1 O FiIXED-POINT OVERFLOW 0 BOUNDARY
O] 1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C1F OVERFLOW, SET TO 3] OPERATION 00 or 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes one byte from the area in main storage specified by operand 2 to be moved into the least significant
eight bits of the operand 1 (r,) register.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] iCc r,.d, (x2 ,bz)

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] ICc ry.8,(%,)

Operational Considerations:
= The contents of operand 2 remain unchanged.
= The contents of the most significant 24 bits of the operand 1 {r;) register remain unchanged.

L] Operand 2 may be an area in main storage defined as longer than one byte, but only one byte will be
moved.

UP-8914 SPERRY UNIVAC 0S/3 2-75
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING B PROTECTION
OPCODE FORMAT | INST. u
TyPE LGTH [] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HEX. (8yTEs) || [J DECIMAL DIVIDE [J SPECIFICATION:
(] DECIMAL OVERFLOW & NOT A FLOATING-POINT REGISTER
ICM | BF RS 4 (] execuTE O OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW Od OP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes (] EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
O FIXED-POINT DIVIDE O OP 2 NOT ON DOUBLE-WORD
WM seTTOO BOUND
W seT O 1 (] FIXED-POINT OVERFLOW O ARY
B seT 02 [] FLOATING.POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
ClseETTO3 [] OPERATION O OP 1 NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS O none

Function:

Causes data from contiguous main storage bytes starting at the operand 2 address to be inserted into the
operand 1 register according to a mask specified in operand 3.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] ICM r,.m,d,(b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] ICM r,,m,s,
Operational Considerations:
u Operand 2 need not reside on a full-word boundary.
. Operand 3 must be specified as a self-defining term.
u The condition code is set to:

— O if all inserted bits or the mask is zeros;

— 1 if the first bit of the inserted field equals 1; or

— 2 if the first bit of the inserted field is zero, but not all inserted bits are zeros.

Condition code 3 is not used.

UP-8914 SPERRY UNIVAC 0S/3 2-76

ASSEMBLER Update A
General Possible Program Exceptions
OBJECT
ADDRESSING [J pPRoOTECTION
OPCODE FORMAT | INST. 0
TYPE LGTH. [0 oATA (INVALID SIGN/DIGIT) |] SIGNIFICANCE
MNEM. [HEX, (8vyTes) || 0 DECIMAL DIVIDE {3 SPECIFICATION:
(0 beEciIMAL OVERFLOW a NOT A FLOATING-POINT REGISTER
IPL 18303 S 4 [J eXECUTE 0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O OP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
T iF RESULT - 0. SETT0 0 [J FIXED-POINT DIVIDE O OP 2 NOT ON DOUBLE-WORD
e RESULT < 0. SET TO 1 O FIXED-POINT OVERFLOW 0 BOUNDARY
ClIF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O] 'F OVERFLOW, SET TO 3 B OPERATION O OP 1 NOT ODD NUMBERED REGISTER
8 UNCHANGED O none
Function:
Causes an initial program load (IPL) operation to occur.
Explicit and Implicit Format:
LABEL A OPERATION A OPERAND

[symbol] IPL dy (by)

UP-8914

2-76a

SPERRY UNIVAC 0S/3
ASSEMBLER Update C
ISK*
General Possible Program Exceptions
OPCODE | FoRmAT ?:;f.c*r [ADDRESSING 0 pROTECTION
TYPE LGTH. (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8yTes) || [J DECIMAL DIVIDE B SPECIFICATION:
(] peECIMAL OVERFLOW O NOTA FLOATING-POINT REGISTER
I1SK 09 RR 2 0O execuTe O oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O eXPONENT UNDERFLOW [0 oP2NOT ON FULL-WORD BOUNDARY
T]1F RESULT = 0. SET TO 0 O FIXED-POINT DIVIDE 0O op2nNOT ON DOUBLE-WORD
OiF resuLT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
0)iF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
0IF oveERFLOW, SET TO 3 Bl OPERATION O opP1NOTODD NUMBERED REGISTER
B UNCHANGED O ~none

Function:

Inserts into the least significant bits of operand 1 the protection key assigned to the location
addressed by operand 2.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND
[symbol] ISK .
INKET ISK 34

UP-8914 SPERRY UNIVAC 0S/3 2-77

ASSEMBLER
e
General Possible Program Exceptions
0PCODE | romrmaT F’NB;ECT B ADDRESSING # rROTECTION
?’vpe Lars (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. IHEX. 8yTes) || 0 DECIMAL DIVIDE W sPECIFICATION:
(O oecimaL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
L 58 RX 4 O execuTe 0 ©oP1NOTONHALF WORD BOUNDARY
[J EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {J ExPONENT UNDERFLOW B oF 2 NOT ON FULL-WORD BOUNDARY
ST Y 0 FIXED-POINT DIVIDE O or2nNoTONDOUBLE WORD
0 1¢ ResuLT <o, SET TO 1 O FixeDPOINT OVERFLOW O BOUNDARY
CiF RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT QDD NUMBERED REGISTER
B UNCHANGED {0 none
Function:

Causes the contents of operand 2, a full word in main storage, to be placed in the operand 1 register {r,).

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] L r,.d,(x,,b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] L ry.8,(x,)
Operational Considerations:

. Operand 2 is a full wora in main storage on a full-word boundary.

] The contents of operand 2 remain unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-78

General Possible Program Exceptions
OPCODE | roRmAT ?NB;SCT (] ADDRESSING Q) rroTECTION
TvPE LGTH. [DATA (UNVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. 8yTeEs) || (0 DECIMAL DIVIDE O seeciFicaTiON:
{J oecimaL OVERFLOW {0 NOTAFLOATING-POINT REGISTER
LA | & RX 4 O execuTe I OP1NOTON HALF-WORD BOUNDARY
{0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD S8OUNDARY
Condition Codes [0 eXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
[0 FIXED-POINT DIVIDE {0 oep2n~OT ON DOUBLEWORD
8 :: :Z:ﬂtl 2%"5:52:%2 O FIXED-POINT OVERFLOW 0 BOUNDARY
C)1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
OtF OVERFLOW, SETTO 3 (0 oPeRATION O or1NOT ODD NUMBERED REGISTER
M UNCHANGED 8 none
Function:

Causes the main storage address or the seif-defining term specified by operand 2 to be loaded into the
least significant 24 bits of the operand 1 (r,) register. The eight most significant bits of the operand 1 (r)

register are set to zeros.

Explicit Format:

LABEL AOPERATION A OPERAND
L
[symbol] I LA ry 3 (x5, ,)
implicit Format:
LABEL l AOPERATION A OPERAND
ryeS2

[symbol] l LA

Operational Considerations:
n The generated address is not checked for validity.
. The contents of operand 2 remain unchanged.

- If only the x, or b, register is used and is the same as the operand 1 (r,) register, the content of the
operand 1 (r,) register is incrémented by the decimal value d,.

L If operand 2 is expressed as a decimal value without the reference of any register, then operand 1 (r,)
is loaded with the operand 2 decimal value.

UP-8914 SPERRY UNIVAC 0S/3 2-79
ASSEMBLER
Floating Point
General Possible Program Exceptions
BJECT
OPCODE | FoRMAT IONST {] ADDRESSING O rroTeCTION
Tvre LGTH [J DATA (INVALID SIGN/DiGIT) | [J SIGNIFICANCE
MNEM. [HEX. 8yTes) || [0 DECIMAL DIVIDE B SPECIFICATION:
(0 oeciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
LCOR | 23 AR 2 O execuTe {J OP1NOT ON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW O or2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW O or2NOT ON FULL-WORD BOUNDARY
B rAtsULT 0 SeTTo0 [0 FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
B iF ResuLT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
B F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
OF overFLOWw, SET TO 3 O operATION O or1NOT 0DD NUMBERED REGISTER
uncHanGED 3 none
Function:

Causes the sign of the double-word contents of the operand 2 (r,) register to be reversed. The result is

placed in the double-word operand 1 (r,) register.

Explicit and Implicit Format;

LABEL l AOPERATION A

OPERAND

[symbol] LCDR ey

Operational Considerations:
. The exponent and fraction are not changed.

. The contents of operand 2 {r,) remain unchanged.

uUP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

LCER

Floating Point
General Possible Program Exceptions
orcodE | Fommat ?:;ECT [] ADDRESSING {J pROTECTION
TvPE LOTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. svytes) || DECIMAL DIVIOE 8 SPECIFICATION:
{0 oecimaL OVERFLOW @ NOT A FLOATING-POINT REGISTER
LCER {33 | RR 2 {0 execure O o©oP1NOTONHALF-WORD BOUNDARY
0 exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 EXPONENT UNDERFLOW 0O 0P 2NOT ON FULL-WORD BOUNDARY
B s tsUT o serTo0 (J FIXED-POINT DIVIDE 0 or2nOT ON DOUBLEWORD
B i rResuLT <0, SET TO 1 O FIXED-POINT OVERFLOW) BOUNDARY
B IF RESULT > 0-SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
i oveRFLOW, SET TO 3 O oPERATION O oF 1 NOT ODD NUMBERED REGISTER
CJUNCHANGED O none
Function:

Causes the sign of the full-word contents of the operand 2 (r,) register to be reversed. The result is placed
in the full-word operand 1 {r,) register.

Explicit and implicit Format:

LABEL '

AOPERATION A

OPERAND

[symbol]

LCER

Operational Considerations:

ryf2

» The exponent and fraction are not changed.

L] The contents of operand 2 (r;) remain unchanged.

SPERRY UNIVAC 0S/3

2-81

UP-8914
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT 1| I ADDRESSING B PROTECTION
OPCODE FORMAT | INST.
TYPE LGTH [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX, (8yTes) || [J DECIMAL DIVIDE Il SPECIFICATION:
(] beEciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
LCHR |9F03 s 4 [execuTE OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

BMseTTo0
BseTTo1
BseTTO02
BseETTO3

CJUNCHANGED

[J EXPONENT OVERFLOW
0 exPONENT UNDERFLOW
[FIXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
J orPERATION

o0o0 Ooogdao

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Loads the addressed channel with the partition code and offset for its associated channel control block.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] LCHR d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] LCHR s

UP-8914 SPERRY UNIVAC 0S/3 2-82

ASSEMBLER
LCR
General Possible Program Exceptions
0PCODE | rommaT ?NBSJ:CT [] ADDRESSING O eroTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. THEX. (8vTes) || J DECIMAL DIVIDE [sPECIFICATION:
{0 pecimMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
LCR | 13 RR 2 (] execuTe [0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
BT nESULT -0 SETTO o [J FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
B F ResuLT <0, SET TO 1 B FIXED-POINT OVERFLOW 0 BOUNDARY
B Ik RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B 'F OVERFLOW, SET TO 3 [0 OPERATION 00 orP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED O none

Function:

Causes the twos complement of the value of the contents of the operand 2 register (r;) to be placed in the
operand 1 (r,) register.

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] LCR ryJf,

Operational Considerations:
L] The twos complement of the second operand is placed in the first operand location.

u A fixed-point overflow condition exists when the maximum negative number is complemented; the
number remains unchanged. Zero remains unchanged under complementation.

L] Operand 2 (r,) remains unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-83
ASSEMBLER
LCTL
General Possible Program Exceptions
OBJECT 1| m ADDRESSING B PROTECTION
OPCODE FORMAT | INST. ‘
TYPE LaTH. JpATA (InvALID SIGN/DIGITH (O SIGNIFICANCE
MNEM. IHEX. (8vTeEs) |§ O DECIMAL DIVIDE M SPECIFICATION:
O pecimAL OVERFLOW - 0 NOT A FLOATING-POINT REGISTER
LCTL | B7 RS 4 O execuTe 0 OF 1 NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [exPoONENT UNDERFLOW B oP 2 NOT ON FULL-WORD BOUNDARY
"DL": Py —— O FIXED-POINT DIVIDE O or2n~OT ON DOUBLE-WORD
C]1F RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
O iF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D {F OVERFLOW, SETTO 3 . OPERATION D OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Loads the contro! registers starting with the operand 1 register and ending with the operand 3 register
from contiguous full words in main storage starting at the operand 2 address.

Expticit Format:

LABEL AOPERATION A I OPERAND
[symbol] LCTL ryd3.d,(b,)
Implicit Format:
LABEL l AOPERATION A OPERAND
[symbol] LCTL rda5,

UP-8914 SPERRY UNIVAC 0S/3 2-84
ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE ’OBJECT i} ADDRESSING B PROTECTION
Fgrsr:'r Vo [] DATA (INVALID SIGN/DIGIT) | [T] SIGNIFICANCE
MNEM. lHEX. 8ytes) || (] DECIMAL DIVIDE 8 SPECIFICATION:
O pecimaL ovERFLOW B NOT A FLOATING-POINT REGISTER
LD |68) RX 4 O execuTte 0 OF 1 NOT ON HALF-WORD BOUNDARY
: [J ExPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exponeNT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
T AeSULT = 0 ST 100 {J F1XED-POINT DIVIDE B or2NOT ON DOUBLE-WORD
£l ¢ ResuLT <o, SET TO 1 (] FixeD-POINT OVERFLOW o BOUNDARY
OJ1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJtF OVERFLOW, SET TO 3 0 oreraTiON a OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the contents of a double word in storage specified by operand 2 to be placed in the doub]e word in

the operand 1 (r,) register.

Explicit Format:

LABEL AOPERATION A OPERAND
R
[symbol] LD ry.d,(x;,by)
Implicit Format:
LABEL | AOPERATION A OPERAND
[symbol] LD PENN

Operationat Consideration:

a The contents of operand 2 remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-85

ASSEMBLER
: LDA
General Possible Program Exceptions
OPCODE | rormar ?f;f.m [l ADDRESSING #l rROTECTION
TYPE LGTH. [0 oATA (INvALID SIGN/DIGITY | [] SIGNIFICANCE
MNEM. IHEX. 8yTes) || O DECIMAL DIVIDE [0 sPeciFiCATION:
[0 oecimaL OVERFLOW O NOTA FLOATING-POINT REGISTER
LDA | 51 RX 4 [execuTe {0 OF1NOT ON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 3 o 2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW] OP 2 NOT ON FULL-WORD BOUNDARY
E’F YT —— [J FIXED-POINT DIVIDE 0 or2NOT ON DOUBLE-WORD
01 iF mesuLT <o, SET TO 1 [0 FiIXED-POINT OVERFLOW o BOUNDARY
OiF RESULT >0, SET TO 2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
JtF OVERFLOW, SET TO 3 OPERATION O op1NOT 0DD NUMBERED REGISTER
Bl UNCHANGED O none
Function:

Loads the address of a directive, in logical address form, in the operand 1 register. The directive address is
located in main storage as specified by operand 2.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] LDA r,.d,(x,,b,)

Implicit Format:

LABEL AOPERATION A OPERAND
[symbol] - LDA r,.S,(x;)

uUP-8914 SPERRY UNIVAC 0S/3 2-86

ASSEMBLER
Floating Point
General Possible Program Exceptions
oPcoDE | ronm OB{:-CT [] ADDRESSING 0 proTECTION
3:,:7 L"‘;H [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. evTes) || O oEciMaL DiviDE]l SPECIFICATION:
| O becimaL OvERFLOW B NOT A FLOATING-POINT REGISTER
LDR | 28 RR 2 O execuTe {0 OP 1 NOT ON HALF-WORD BOUNDARY
0 eXPONENT OVERFLOW 0 op2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
T iF RESULT =0 SET T0 0 [FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
0] 1r ResuLT <o, SET TO 1 O FIXED-POINT OVERFLOW O 8OUNDARY
D IF RESULT)O, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED HEG!STE?
CliF OVERFLOW, SET TO 3 O oPERATION O op 1NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the contents of the double word in the operand 2 {r,} register to be placed in the double word in the
operand 1 (r,) register.

Explicit and implicit Format:

LABEL A OPERATION A& OPERAND

[symbol] LDR Iy,

Operational Consideration:

» The contents of operand 2 {r,) remain unchanged.

SPERRY UNIVAC 0S/3

2-87

UP-8914
ASSEMBLER
LE
Floating Point
General Possible Program Exceptions
OPCODE | roRMAT ?NBSJ:CT [l ADDRESSING) PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. JHEX. 8yTes) || DECIMAL DIVIDE #l SPECIFICATION:
(] oecimaL ovERFLOW Bl NOT A FLOATING-PO!NT REGISTER
LE B RX 4 O execuTe [0 o©OP1NOT ON HALF.WORD BOUNDARY
[0 eXPONENT OVERFLOW O 0P 2NOT ON HALF-WORD BOUNDARY
Condition Codes O exroNeNT UNDERFLOW B 0P 2 NOT ON FULL-WORD BOUNDARY
T r REsOLT =0 scT 700 [0 FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
0 iF RESULT <O, SET TO 1 [0 FIXED-POINT OVERFLOW o BOUNDARY
Cl1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJ1F OVERFLOW, SET TO 3 (] OPERATION O oP1NOT ODD NUMBERED REGISTER
Ml UNCHANGED O ~one
Function:

Causes the contents of a full word in storage specified by operand 2 to be placed in a full word in the
operand 1 {(r,) register.

Explicit Format:

LABEL l

AOPERATION A l

OPERAND
[symbol] LE rydy(xy,b,)
implicit Format:
LABEL AOPERATION A OPERAND
-—
[symbol] LE ry.8,(x,)

Operational Consideration:

L The contents of operand .2 remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 . 2-88

ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE . OBJECT |] ADDRESSING (0 prOTECTION
?.ﬁ':':T ':;s:,_'] DATA (1INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. ayTes) || (J DECIMAL DIVIDE M SPECIFICATION:
O peciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER ’
LER | 38 RR 2 O execute {1 oP1NOT ON HALF.WORD BOUNDARY
[0 exPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
TI1F RESULT =0 SeT 700 [FiIXED-POINT DIVIDE O or2noOT ONDOUBLEWORD
O ¢ ResuLT <0, SET TO 1 [0 FixeD-POINT OVERFLOW o BOUNDARY
0 1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE 3 OP 1 NOT EVEN NUMBERED REGISTER
(JI1F OVERFLOW, SETTO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER
Bl UNCHANGED O none
Function:

Causes the contents of a full word in the operand 2 (r,) register to be placed in a fuil word in the operand 1
(ry) register. :

Explicit and Implicit Format:

LABEL I AOPERATION A OPERAND

[symbol] | LER ryola

Operational Consideration:

L] The contents of operand 2 (r,) remain unchanged.

2-89

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
General Possible Program Exceptions
OBJECT || | ADDRESSING M PROTECTION
OPCODE FORMAT | INST.
TvPE LoTH [DATA (INVALID SIGN/DIGIT) | {] SIGNIFICANCE
MNEM. 1HEX. (syTes) ||] PECIMAL DIVIDE W SPECIFICATION:
(0 bECIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
LH 48 RX 4 [0 execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

(JtF RESULT =0, SET TO 0
Oir resuLT <0, SET TO 1
O1F RESULT >0, SET TO 2
JIF oOVERFLOW, SET TO 3
B UNCHANGED

O EXPONENT OVERFLOW
O EXPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

(] FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
[] oPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 aomaag

Function:

Causes the contents of operand 2, a half word in main storage, to be expanded and placed in the operand 1

register (ry).

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] LH ry.d,(x,,b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] LH ry .S, (x2)

Operational Considerations:

L Operand 2 is a half word in main storage on a half-word boundary.

. The contents of operand 2 remain unchanged.

n Operand 2 is placed in the register of operand 1 (r;) and then is expanded to a full word by
propagating the sign bit through the most significant bits.

UP-8914 SPERRY UNIVAC 0S/3 2-90

ASSEMBLER Update B
LIA
General Possible Program Exceptions
OPCODE | FomMAT ?NBSJTE.CT [] ADDRESSING O PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTEes) || [0 DECIMAL DIVIDE @ SPECIFICATION:
(O oecimAaL OVERFLOW {0 NOTAFLOATING-POINT REGISTER
LIA | 61 RX 4] exECUTE (0 ©OP1NOTON HALF-WORD BOUNDARY
(0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW 00 oP2NOTONFULL-WORD BOUNDARY
T r Reo0iT = 0. SETT0 0 [J FIXED-POINT DIVIDE 00 oP2NOT ON DOUBLE-WORD
O} iF ResuLT <0, SET TO 1 [0 FIXED-POINT OVERFLOW BOUNDARY
CJ1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE 0 oP1NOTEVEN NUMBERED REGISTER
C]IF OVERFLOW, SET TO 3 B OPERATION 0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED O NnoNE

Function:

Translates the 24-bit absolute address specified by operand 2 into directive address format and loads that
address into the operand 1 register.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] LIA r,.d,(x,.b,)

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] LIA ryS, (x,)

|
.1

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-91

LM

General Possible Program Exceptions
OPCODE OBJECT || g ADDRESSING B PROTECTION
FORMAT | INST.
TvPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. 1HEX. (syTes) || 0 DECIMAL DIVIDE 8l SPECIFICATION:
0 oecimaL ovERFLOW (0 NOT A FLOATING-POINT REGISTER
M 98 RS 4 O execuTe 0 oP1NOTONHALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
TT i nesoLT 0 SeTTo 0 [J FIXED-POINT DIVIDE O or2NOT ON DOUBLE WORD
0 iF ResuLT <o, SET TO 1 (0 FIXED-POINT OVERFLOW A BOUNDARY
D IF RESULT >°' SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
J1F OVERFLOW, SET TO 3 (J oPeRATION O or2NOT ODD NUMBERED REGISTER
B UNCHANGED {0 none
Function:

Causes the contents of operand 2, one or more full words in main storage, to be placed in the registers of
operand 1 (r,) through operand 3 (r3).

Explicit Format:

LABEL] A OPERATION A OPERAND
[symbol] LM ryfy.d, (bz)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] LM ryF3.8,

Operational Considerations:

The general registers, starting with the register specified by operand 1 (r,}) and ending with the
register specified by operand 3 (r,), are loaded with full words from main storage, beginning with the
address specified by operand 2 .

The régisters are loaded in ascending numeric sequence, beginning with the register specified by
operand 1 (r;) and continuing through the register specified by operand 3 (rj).

UP-8914 SPERRY UNIVAC 0S/3 2-92
ASSEMBLER

LM

s One register may be loaded by specifying the same register for both operand 1 (r,) and operand 3 (r;).

[] If the register specified by operand 3 (r;) is lower than the register specified by operand 1 {r,), then
the register specified by operand 1 {r,) and all registers with a number greater than operand 1 {r,)
plus the register specified by operand 3 (r;) and all registers with a number less than operand 3 (r;)
are loaded.)

= The contents of operand 2, in main storage, remain unchanged. Operand 2 must be on a full-word
boundary.

uP-8914 SPERRY UNIVAC 0S/3 2-93

ASSEMBLER -
Floating Point
General Possible Program Exceptions
OBJECT
0PcODE | rormar | 1NST [ADDRESSING [JeROTECTION
- Tvre LGTH [DATA (INVALIO SIGN/DIGIT}H| [0 SIGNIFICANCE
MNEM. [HEX. (ayTes) || O OECIMAL DIVIDE B sreciFicaTION:
(J beciMAL OVERFLOW B NOTA FLOATING-POINT REGISTER
LNDR | 21 RR 2 O execuTe (O oP1NOTON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW O 0P 2NOT ONFULL-WORD BOUNDARY
B r nESULT- 0 5eT 100 O FIXEO-POINT DIVIDE 0 o 2nNOT ON DOUBLE-WORD
B \F RESULT <o SET TO 1 [FIXED-POINT OVERFLOW o BOUNDARY
CJIF RESULT D0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)1F OVERFLOW, SET TO 3 [J oPERATION 0 or 1 NOT OOD NUMBERED REGISTER
O uncHanGED . O nowne
Function:

Causes the sign of the double word in the operand 2 (r;) register to be made negative. The resuit is placed
in the double-word register specified by operand 1 (r,).

Explicit and Implicit Format:

LABEL] A OPERATION A OPERAND

[symbol] LNDR ryfy

Operational Considerations:
L] Operand 2 (r;) is made negative even if the fraction is zero.
» The exponent and fraction are not changed.

] The contents of operand 2 (r;) remain unchanged.

up-8914 SPERRY UNIVAE OS/3 2-94
ASSEMBLER
Flosting Point
~
g General Passible Program: Exceptions
OPCODE | OBJECT || ADDRESSING (I prOTECTION:
| ngr:T] T:.:H I (] DATA UNVALID SIGN/DIGIT) | (] SIGNIFICANCE
- MNEM. [HEX. (8¥TeS): || [0 DECIMAL DIvIDE BB SPECIFICATION:
.0 oecIMAL OVERFLOW ‘Ml NOT A FLOATING-PUINT REGISTER |
LNER | 31 AR 2 [[J execuTe '] ©OF1NOT ON HALF-WORD BQUNDARY
{J ExPONENT OVERFLOW [J op2NQT ON HALF-WORD BOUNDARY
Condition Codes | O exPONENT UNOERFLOW 0 or2NOTONFULL-WORD BOUNDARY
"B r AtSOLT- 0 SeT 00 | [J FIXED-PQINT DIVIDE I orp2nOT ONDOUBLE-WORD
@81 RESULT <0.SETTO 1 1O FixED-POINT OVERFLOW o BOUNDARY
] DiF RESUL‘E>°. SETTQ 2 ! D FLOATING-POINT DIVIDE 1 . OF 1 NOT EVEN NUMBERED REGISTER !
' CJIF OVERFLOW, SET TO 3 ' operaTION. O or 1 NOT CDD NUMBERED REGISTER
' JuncHAaNGED 1 (0 none
Functiom:

Causes the sign of a fuil word in the operand 2(r;} register to. be made negative. The result is placed in a
full worg in: the register specified by operand T (ry).

Explicit and Implicit Format

LABEL A OPERATION A f

fsymbot} .LNER -,

Qperational Considerations:
= Operand 2 (r,) is made negative even if the fraction is zero.
- The exponent and fraction are not changed.

= The contents of operand 2 (r,) remain unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-95
“Update B

LNR

Possible Program Exceptions

General
OBJECT
OPCODE FORMAT | INST.
TYPE LGTH.
MNEM, |HEX. (BYTES)
LNR " RR 2

Condition Codes

B iF RESULT = 0, SET TO 0
B iFresuLT <0, SETTO1
(J1F RESULT >0, SET TO 2
[JtF OVERFLOW, SET TO 3
O UNCHANGED

(] ADDRESSING »
(] DATA (INVALID SIGN/DIGIT)
(] bECIMAL DIVIDE

(] DECIMAL OVERFLOW

O execuTe

[J EXPONENT OVERFLOW

(J EXPONENT UNDERFLOW

(O FIXED-POINT DIVIDE

(O FIXED-POINT OVERFLOW
() FLOATING-POINT DIVIDE
O orErATION

O proTECTION
[sIGNIFICANCE
(O SPECIFICATION:

BO0O ddooda

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Causes the twos complement of the absoiute value of the contents of the operand 2 and register (r,) to be
placed in the operand 1 (ry) register.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

{symbol]

LNR

Operational Considerations:

The twos complement of the absolute value of the second operand (r,) is placed in the first operand

(ry) location.

The operation complements positive numbers; negative numbers and zero remain unchanged.

Operand 2 (r;) remains unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-96

LPDR

Floating Point

General Possible Program Exceptions
0rcoE | rormar ?NB;$.CT [] ADDRESSING O PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTes) |{ {0 DECIMAL DIVIDE #l SPECIFICATION:
[J becimAL OVERFLOW B NOTAFLOATING-POINT REGISTER
LPDR | 20 RR 2 [execuTe 1 OP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOTONHALF-WORD BOUNDARY
Condition Codes 0O exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B ir RESULT - 0. SETT0 0 (0 FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
O F RESULT <d' SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
Bl F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
(JIF OVERFLOW, SET TO 3 [] OPERATION O oP1NOT ODD NUMBERED REGISTER
[J UNCHANGED O ~none

Function:

Causes the sign of the double word in the operand 2 (r,) register to be positive. The result is placed in the
double word of the operand 1 (r,} register.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

LPDR

Operational Considerations:

Fyfg

= The exponent and fraction are not changed.

= The contents of operand 2 (r;) remain unchanged.

UP-gg9T14 SPERRY UNIVAC 0S/3 2-97
ASSEMBLER
Floating Point
General Possible Program Exceptions
. OBJECT PROTECTION
OPCODE | FORMAT | INST. () ADDRESSING =
TYPE LGTH [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX (8vTEs) || (O DECIMAL DIVIDE H SPECIFICATION:
{0 oecimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
LPER | 30 RR 2 0O execuTe 0O OF 1 NOT ON HALF-WORD BOUNDARY
) exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B 'F RESULT = 0, SET TO 0 [FIXED-POINT DIVIDE 00 or2nNOT ON DOUBLE-WORD
O iF RESULT <o SET TO 1 {0 FIXED-POINT OVERFLOW o BOUNDARY
. If RESULT >°. SET TO 2 D FLOATING-POINT DIVIDE D OP 1t NOT EVEN NUMBERED REGISTER
[J1F OVERFLOW, SET TO 3 [J orerAaTION OPF 1 NOT ODD NUMBERED REGISTER
O UNCHANGED O none
Function:

Causes the sign of a full word in the operand 2 (r,) register to be positive. The result is placed in a full word

of the operand 1 (r,) register.

Explicit and Implicit Format:

LABEL l

AOPERATION A

OPERAND

[symbol]

LPER

Operational Considerations:

fy.h2

L The exponent and fraction are not changed.

. The contents of operand 2 (r;) remain unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-98

LPR

General Possible Program Exceptions
0PcoDE | rormat S:;f” [] ADDRESSING 0 rrRoTECTION
TvPE LGTH. (] oATA (INVALID SIGN/DIGIT) | (3 SIGNIFICANCE
MNEM. HEX. 8vyTeS) || DECIMAL DIVIDE [J speciFicATION:
[0 oecimaL overFLOwW [0 NOTA FLOATING-POINT REGISTER
LPR | 10 RR 2 O execuTe] oOP1NOT ON HALF.WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 orP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
TN [0 FIXED-POINT DIVIDE 0O or2n0OT ON DOUBLE-WORD
CliF resuLT <0, SET TO 1 B FiIXED-POINT OVERFLOW 0 BOUNDARY
B F RESULT Do, SET TO 2 [J FLOATING-POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
B 'F OVERFLOW, SET TO 3 (] oPERATION O op 1 NOT ODD NUMBERED REGISTER
O UNCHANGED 0 none
Function:

Causes the absolute vaiue of the contents of the operand 2 register (r;) to be placed in the operand 1 {r,}

register.

Explicit and Implicit Format:

LABEL ‘

AOPERATION A

OPERAND

{symbol]

LPR

Operational Considerations:

Fy k2

. Positive numbers remain unchanged. When the second operand (r,) is negative, the twos
complement is placed in the first operand {r,} location.

] A fixed-point overflow condition exists and the number remains unchanged when the maximum
negative number is complemented.

s Operand 2 (r,) remains unchanged.

2-99

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING B PROTECTION
OPCODE FORMAT | INST. u
TYPE LoTH [DATA (INVALID SIGN/DIGIT) { [J SIGNIFICANCE
MNEM. |HEX. syTes) || [J DECIMAL DIVIDE l SPECIFICATION:
[0 oecimaL ovERFLOW 0 NOTA FLOATING-POINT REGISTER
LPSW | 82 S 4 O execuTe (0 0P 1NOT ON HALF-WORD BOUNDARY
(0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
[FIXED-POINT DIVIDE B 0P 2 NOT ON DOUBLE-WORD
[Oif RESULT = 0,SET TO O BOUNDAR
[JiF RESULT <0, SET TO 1 [J FIXED-POINT OVERFLOW O UNDARY
0JiF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O1F OVERFLOW, SET TO 3] OPERATION 00 o1 NOT ODD NUMBERED REGISTER
fl SEE NOTE O none

Function:

Repiaces all or part of the current PSW.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] LPSW d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
{symbol] LPSW s,

NOTE:

Condition code is set as specified in the new PSW loaded.

UP-8914 SPERRY UNIVAC 0S/3 2-100

ASSEMBLER
LR
General Possible Program Exceptions
0PCODE | rormaT ?NBSJ:.CT (] ADDRESSING 0O proTECTION
TYPE LGTH.] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8vTes) || [J DECIMAL DIVIDE [sPECIFICATION:
[J becIMAL OVERFLOW {0 NOTA FLOATING-POINT REGISTER
LR 18 RR 2 [0 execuTe (0 ©OP1NOT ONHALF-WORD BOUNDARY
O exPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J eXPONENT UNDERFELOW 0O OP 2 NOT ON FULL-WORD BOUNDARY
TIir RESGLT - 0. 5cT 70 0 [FIXED-POINT DIVIDE O op2NOT ON DOUBLEWORD
Oie RESULT<O’, SET TO 1 [J FIXED-POINT OVERFLOW 0 BOUNDARY
CJ1F RESULT >0 SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 (] OPERATION 0 oP1NOT ODD NUMBERED REGISTER
Bl UNCHANGED B none

Function:

Causes the contents of the register specified by operand 2 (r,) to be loaded into the register specified by
operand 1 {r,).

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] LR o,

Operational Considerations:

» The contents of the register specified by operand 2 (r,} are loaded into the register specified by
operand 1 (r,).

L] The contents of the register specified by operand 2 (r;) remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-101

ASSEMBLER
LRC
General Possible Program Exceptions
OPCODE | roRmAT ?h?;E‘CT I ADDRESSING B PROTECTION
TvPE LGTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. |HEX. (8vTes) || (] DECIMAL DIVIDE B SPECIFICATION:
O pecimAL OvERFLOW 0 NOTA FLOATING-POINT REGISTER
LRC |330E § 4 O execuTe O orF1NOTON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 exPONENT UNDERFLOW 00 oP2NOT ON FULL-WORD BOUNDARY
ST (0 FIXED-POINT DIVIDE O opP2NOT ON DOUBLE-WORD
BseTTo1 [0 FIXED-POINT OVERFLOW - BOUNDARY
[Clserto2 O FLOATING-POINT DIVIDE OP 2 NOT EVEN NUMBERED REGISTER
OserToa Bl OPERATION O or1NOT 0DD NUMBERED REGISTER
0 uncHANGED O none

Function:
Calculates the parity on corresponding bits of every byte in a data block.

Explicit Format:

LABEL , AOPERATION A l OPERAND

[symbol] l LRC d,(b,)

Implicit Format:

LABEL AOPERATION A l OPERAND

[symbol] - LRC s

.UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-102

LRR

General Possible Program Exceptions
0PCODE | rormar ?&fﬂ il ADDRESSING M PROTECTION
TVvPE LOTH. [J DATA (INVALID SIGN/DIGIT} | [J SIGNIFICANCE
MNEM. THEX. 8vTes) 1| (J DECIMAL DIVIDE . ll SPECIFICATION:
[pecimaL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
LRR | A3 RS 4 {7 execuTe 3 OP 1 NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Cades 0 exPONENT UNDERFLOW B 0P 2 NOT ON FULL-WORD BOUNDARY
TTiF RESULT -0 SeT 100] FiXED-POINT DIVIDE 0 or2nNOT ON DOUBLE-WORD
O+ resuLT <0, SET TO 1 [#1xED-POINT OVERFLOW O 8OUNDARY
C]1F RESULT >0, SET TO 2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJ1F OVERFLOW, SET TO 3 @ OPERATION O or1NOT ODD NUMBERED REGISTER
B UNCHANGED O none .
Function:

Loads the relocation register specified by operand 1 with data taken from the full word in main storage

specified by operand 2.

Explicit Format:

LABEL l A OPERATION A OPERAND
[symbol] LRR r,.d, (b,)
Implicit Format
LABEL ‘ AOPERATION A OPERAND
[symbol] LRR s,

SPERRY UNIVAC 0S/3 2-103

uP-8914
ASSEMBLER
Floating Point
iy
General Possible Program Exceptions
OBJECT
0PCODE | romrmat | ror [] ADDRESSING O proTECTION
TvPE LGTH [J oaTa (INVALID SIGN/OtGIT) | (J SIGNIFICANCE
MNEM. [HEX. @vTes) || [DECIMAL DIVIDE B SPECIFICATION:
(0 becimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
LTOR | 22 RR 2 O execute O oP1NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW 0 op2NOT ON FULL-WORD BOUNDARY
B r REsULT -0 seTTO 0 [J FiXED-POINT DIVIDE 0O op2nNOT ON DOUBLE-WORD
1 AESULT <0, SET TO 1 O FiIXED-POINT OVERFLOW o BOUNDARY
BIF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
CJ1F OVERFLOW, SET TO 3] oPERATION O or 1 NOT ODD NUMBERED REGISTER
| JUNcHANGED [0 none
Function:

Causes the double-word contents of the operand 2 (r,) register to be placed in the doubie-word operand 1
(r,y) register. The condition code is set by this instruction.

Explicit and Implicit Format:

LABEL I

AOPERATION A

OPERAND

[symbol]

LTDR

Operational Considerations:

Fyf2

L] The contents of operand 2 (r,) remain unchanged.

. When the same register is specified by operand 1 (r;) and operand 2 (r,), the operation is equivailent
to a test without data movement.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-104

LTER

Floating Point
General Possible Program Exceptions
oPcoDE | rormat IONBSJ‘fCT (] ADDRESSING {0 prROTECTION
TYPE LOTH. [oATA (INvALID SIGN/DIGIT) | [T SIGNIFICANCE
MNEM. [HEX. (8vTEs) |i J DECIMAL DIVIDE B SPECIFICATION:
O oecimaL OVERFLOW B NOT A FLOATING-POINT REGISTER
LTER | 32 RR 2 O execuTe O oP1NOT ON HALF.WORD BOUNDARY
{J eXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0O exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B r nesULT- 0 ScT 100 [FIXED-POINT DIVIDE D. OP 2 NOT ON DOUBLE-WORD
B resuLT <0, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
B iF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O IF OVERFLOW, SET TO 3 [J oPERATION 0 or1NOT 0OD NUMBERED REGISTER
CJUNCHANGED O none
Function:

Causes the contents of a full word in the operand 2 (r,) register to be placed in a full word in the operand 1

{r,) register. The condition code is set by this instruction.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol] LTER

Operational Considerations:

Fyf2

L] The contents of operand 2 {r,) remain unchanged.

. When the same register is specified by operand 1'(r,) and operand 2 (r,), the operation is equivaient
to a test without data movement.

‘UPg914 SPERRY UNIVAC 0S/3 2-105
ASSEMBLER

‘) ' LTR

General Possible Program Exceptions
: O8JECT [| 1 ADDRESSING {0 eROTECTION
OFCODE | FORMAT | INST. 0 SIGN/01GIT) | [] SIGNIFICANCE
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT)
MNEM. JHEX. (syTes) || O DECIMAL DIVIDE] SPECIFICATION:
[pecimat OVERFLOW 0 NOT A FLOATING-POINT REGISTER
LTR 12 RR 2 [0 execuTe 0 oP1NOTON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O] EXPONENT UNDERFLOW 0 o 2NOT ON FULL-WORD BOUNDARY
B r AeSULT- 0 SETTO 0 [FiXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
B ReESULT <0, SET TO 1 O FiXED-POINT OVERFLOW o BOUNDARY
8 F RESULT >0, SETTO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
JiF OVERFLOW, SET TO 3 [oPeRATION O or 1 NOT ODD NUMBERED REGISTER
{J UNCHANGED B none
Function:

Causes the contents of the register specified by operand 2 (r,) to be loaded into the register specified by
operand 1 (r,) and the condition code to be set to reflect the value contained in the registers.

. Explicit and Implicit Format;
(.

LABEL l A bPERAﬂON A OPERAND

[symbol] LTR A

Operational Considerations:

L] The contents of the register specified by operand 2 (r,) are loaded into the register specified by
operand 1 (ry).

- The contents of the register specified by operand 2 (r,) remain unchanged.

uP-8914 SPERRY UNIVAC 0S/3 2-106

ASSEMBLER
M
General Paossible Program Exceptions
0PCODE | FomMAT ?NBS{ECT I ADDRESSING B PROTECTION
TYPE LGT"" [J DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. yres) || 0 ceciMaL pivioe 8 sPeCIFICATION:
[0 oecimaL overFLOW O NOT A FLOATING-POINT REGISTER
M 5C RX 4 [0 execuTE 0 oP1NOTON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 0 opP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
-5 RESULT- 0 SETTOo 0 FIXED-POINT DIVIDE O or2n0T ON DOUBLE-WORD
0115 ResuLT <o, SET TO 1 {10 FixeD-POINT OVERFLOW s BOUNDARY
D {F RESULT >°. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJiF OVERFLOW, SET TO 3 [J oPERATION 0 oF 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the contents of the odd register of the even-odd pair specified by operand 1(r,) to be multiplied by
the contents of operand 2, a. fuil word in main storage. The product is placed in the even-odd pair of
registers specified by operand 1 (r,).

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] M r,d, (x, ,bz)

Implicit Format:

LABEL l AOPERATION A I) OPERAND

[symbol] M ry S, (%;)

Operational Considerations:
s Both operands are treated as fixed-point, 32-bit signed integers.
[] The contents of operand 2, the muitiplier in a full word in main storage, remain unchanged.

- The product is treated as a 64-bit, fixed-point signed integer and occupies an even-odd register pair
specified by operand 1 (r,).

UP-8914 SPERRY UNIVAC 0S/3 2-107
ASSEMBLER

. The muitiplicand is first loaded into the odd-numbered register of the even-odd pair specified by
operand 1 (r,). The content of the even-numbered register is ignored until replaced by the most
significant 32 bits of the product.

] The sign of the product is determined algebraically.

L] A specification exception results if operand 2 is not on a full-word boundary and also if operand 1 (r,)
specifies an odd-numbered register.

uUP-8914 - SPERRY UNIVAC 0S/3 2-108

ASSEMBLER
Flosting Point
General Possible Program Exceptions
OPCODE | FoRMAT ?NBSJ‘IFCT i ADDRESSING B PROTECTION
TYPE LGTH {0 DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. JHEX. 8vTes) || O DECIMAL DIVIDE BB SPECIFICATION:
O oecimaL OVERFLOW B NOTA FLOATING-POINT REGISTER
MD | 6C RX 4 O execuTe O oOP1NOT ON HALF-WORD BOUNDARY
l EXPONENT OVERFLOW O op2NOT ON HALF-WORD BOUNDARY
Condition Codes M =XPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
TI'F AESULT - 0. SETTO O [0 FIXED-POINT DIVIDE B 0P 2NOT ON DOUBLE-WORD
01k RESULT <0 SET TO 1 O rFIXED-POINT OVERFLOW o BOUNDARY .
O)iF RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJiF OVERFLOW, SET TO 3 [oreRATION O of 1 NOT COD NUMBERED REGISTER
Bl UNCHANGED 0 none
Function:

Causes the contents of the double word in the operand 1 {r,) register to be mulitiplied by the contents of a
double word in main storage specified by operand 2. The normalized product is placed in the double word
of the operand 1 (r,) register.

Explicit Format: l

LABEL AOPERATION & OPERAND

[symbol] MD r,.dy(x,,b,)

implicit Format:

LABEL | AOPERATION A OPERAND

[symbol] MD - ry85(x;)

* UP-8914 SPERRY UNIVAC 0S/3 2-109
ASSEMBLER
Floating Point
General Possible Program Exceptions
OBJECT
orcobE | rormat | IneT. (] ADDRESSING O eroOTECTION
TYPE LGTH [J DATA (INVALID SIGN/DIGIT) | (J SIGNIFICANCE
MNEM. [HEX. (8yTES) || [J DECIMAL DIVIDE B SPECIFICATION:
[0 pEciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
MDR | 2C RR 2 [0 ExECUTE 0 OP1NOTON HALF-WORD BOUNDARY
l EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B £XPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
T F AESULT =0 SET 700 {0 FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
[J1E RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
ClIF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJiF OVERFLOW, SET TO 3 [OPERATION 0 or1NOT ODD NUMBERED REGISTER
B UNCHANGED {0 none
Function:

Causes the contents of the double word in the operand 1 (r,) register to be muiltiplied by the contents of the
double word in the operand 2 (r,) register. The normalized product is placed in the double word of the
operand 1 {r;) register.

Explicit and Implicit Format:

LABEL

A OPERATION A

OPERAND

[symbol]

MDR

f/f2

by

UP-8914 SPERRY UNIVAC 0S/3 2-110 - .

ASSEMBLER Update B
ME
Floating Point
General Possible Program Exceptions
OPCODE FORMAT ?NB;f,CT] ADDRESSING 8 PROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HE X, @vTes) ||] DECIMAL DIVIDE B SPECIFICATION:
[0 becimaL OovERFLOW B NOT A FLOATING-POINT REGISTER
ME | 7C RX 4 [JexecuTe [J OF1NOT ON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW] OP 2 NOT ON FULL-WORD BOUNDARY
T ir RESGLT -0 SET 1o 0 [] FIXED-POINT DIVIDE [0 opP2NOT ON DOUBLEWORD
O RESULT<0', SET TO 1 [J FIXED-POINT OVERFLOW 0 BOUNDARY
O]t RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[]!F OVERFLOW, SET TO 3 [) OPERATION 0 oP1NOT ODD NUMBERED REGISTER
l UNCHANGED [none

Function:
Causes the contents of a full word in the operand 1 (r;) register to be multiplied by the contents of a full
word in main storage specified by operand 2. The normalized product is placed in a full word of the operand

1 {r,) register.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] ME r,.d,(x,.b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] ME ry .Sy (xz)

UP-8914 SPERRY UNIVAC 0S/3 2-111
ASSEMBLER
- MER
Floating Point
General Possible Program Exceptions
0PCODE | FommAT ?:;E.CT [ADDRESSING O prOTECTION
TvPE LGTH.] DATA (INVALID SIGN/DIGIT}| [J SIGNIFICANCE
MNEM. |HEX. (8yTes) || [0 DECIMAL DIVIDE B SPECIFICATION:
O pecimaL OVERFLOW B NOTA FLOATING-POINT REGISTER
MER | 3C RR 2 [0 execute O oP1NOTONHALF-WORD BOUNDARY
I EXPONENT OVERFLOW _ O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B £ XPONENT UNDERFLOW O oP2NOTON FULL-WORD BOUNDARY
T ReSoLT - 0.5eT 100 O rixED-POINT DIVIDE 0 oP2NOT ON DOUBLE WORD
CliF resuLT <0, SET TO 1 {J FIXED-POINT OVERFLOW O BOUNDARY :
CliF RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)iF OVERFLOW, SET TO 3 [J oPERATION O oP 1 NOT ODD NUMBERED REGISTER
8 UNCHANGED O none
Function:)

Causes the contents of a full word in the operand 1 (r,) register to be multiplied by the contents of a full
waord in the operand 2 (r,) register. The normalized product is placed in a full word in the operand 1 (ry)

register.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

MER

Ty /Fa

UP-8914 SPERRY UNIVAC 0S/3 2-112 -

ASSEMBLER
MH
General Possible Program Exceptions
0PcOE | roRmMAT ?NBSJ‘E.CT il ADDRESSING M PROTECTION
Tvpe LGTH.] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (ByTtes) || J DECIMAL DIVIDE Ml SPECIFICATION:
O oeciMAL OVERFLOW [0 NOTAFLOATING POINT REGISTER
MH | 4C RX 4 O execuTe 0 oF1NOTONHALF-WORD BOUNDARY
] exPONENT OVERFLOW B oF2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW [0 oP2NOTON FULLWORD BOUNDARY
_D O FIXED-POINT DIVIDE O OP 2 NOT ON DOUBLE-WORD
0 :2 ::23";: 2%’_5:52.:%2 O FIXED-POINT OVERFLOW g BOUNDARY
D IF RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)iF OVERFLOW, SET TO 3 (] OPERATION O op 1 NOT DD NUMBERED REGISTER
8 UNCHANGED » {J nonNe

Function:

Causes the contents of the register specified by operand 1 (r,) to be multiplied by the contents of operand
2, a half word in main storage. The product is placed in the register specified by operand 1 {(r,).

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] MH r,.d, (x2 b,)

Implicit Format:

LABEL AOPERATIONA OPERAND

[symbol] MH ry S5y (%,)

Operational Considerations:

L Operand 2 is expanded after being read from storage; then both operands are treated as fixed-point,
32-bit signed integers.)

L The contents of operand 2, the muitiplier, a half word in main storage, remain unchanged.

] The sign of the product is determined algebraically.

L] If the muitiplication results in a product that exceeds 32 bits, the high-order bits are ignored but the
overflow condition is not indicated. The sign and value of the product may not be correct after

overflow.

] A specification exception will result if operand 2 is not on a half-word boundary.

upP-8914 SPERRY UNIVAC 0S/3 2-113
ASSEMBLER
General Possible Program Exceptions
OBJECT
0rcooe | rormar | inoT I ADDRESSING M PROTECTION
TYPE LGTH] oaTta (nvaLiD sigN/DIGIT) . siaNIFIcaNcE
MNEM. JHEX. (8yTES) || [J DECIMAL DivIDE M sPeECIFICATION:
{0 oeciMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
mio | 31 RS 4 0 execuTe O ©OP 1 NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW O op2NOTON FULL-WORD BOUNDARY
Bocrr00 [0 FIXED-POINT DIVIDE 00 o 2NOT ON DOUBLE-WORD
BT To1 [0 FIXED-POINT OVERFLOW BOUNDARY
W serTo2 O] FLOATINGPOINT DIVIDE | OP 1 NOT EVEN NUMBERED REGISTER
MseT 1O 3 I8 OPERATION ‘10 oP 1 NOT ODD NUMBERED REGISTER
O UNCHANGED 0O ~none
Function:

Moves directives to and from a directive pool and moves buffers to and from a buffer pool.

Explicit Format:

A OPERATION A '

LABEL OPERAND
[symbol] "] [o) ryfy.d,(b,y)
Implicit Format:
LABEL l AOPERATION A OPERAND
[symbol] MIO

FyF3:5;

UP-8914 SPERRY UNIVAC 0S/3 2-114

"ASSEMBLER
MP
General Possible Program Exceptions
0Pco0E | rormar ?NBSJ1§°T I AODRESSING #l PROTECTION
TYPE LGTH. gl DATA (INVALID SIGN/0IGIT) | [J SIGNIFICANCE
MNEM. IHEX. 8yTes) || 0 DECIMAL DIVIDE M SPECIFICATION:
[0 pecimaL oveRFLOW 0 NOTA FLOATING-POINT REGISTER
MpP FC| SS 6 [execuTte [0 oP1NOTON HALF-WORD BOUNDARY
] eXPONENT OVERFLOW 0 oP2NOT ONHALF-WORD BOUNDARY
Condition Cades [0 exPONENT UNDERFLOW] OP 2 NOT ON FULL-WORD BOUNDARY
T] P T — (] FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
O iF RESULT <0, SET TO 1 [0 FIXED-POINT OVERFLOW o BOUNDARY
CJ1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]'F OVERFLOW, SET TO 3 [] OPERATION O or1NOT ODD NUMBERED REGISTER
B UNCHANGED O none

Function:

Causes the contents of operand 1 to be multiplied by the contents of operand 2. The product is placed in
the operand 1 location.

Explicit Format:

LABEL AOPERATION A OPERAND

—

[symbol] | MP d, (I, b,).d,(l,,b,)

Implicit Format:

LABEL l AOPERATION A | . OPERAND

[symbol] | MP s, (1) .5, (1,)

Operational Considerations:
L] All signs and digits are checked for validity, and the sign of the product is determined aigebraicaily.
. Operand 1 must be ionger than operand 2.
] Operand 1 and operand 2 may overlap if their least significant bytes coincide.

] The size of the multiplier {operand 2) cannot be more than 15 digits and sign.

UP-3914 SPERRY UNIVAC 0S/3 2-115
ASSEMBLER

MP

L] The number of digits in the product is equal to the number of digits in the operands; therefore, the
multiplicand (operand 1) must have a field of most significant zero digits to equal, in size, operand 2.
The maximum product size is 31 digits. At least one most significant digit of the product field is zero.
8 - Data exception indicates one or more of the following conditions:

- Invalid sign or digit code

— Operand 1 has insufficient high-order zero digits.

— Incorrect overiap

UP-8914 SPERRY UNIVAC 0S/3 2-116

ASSEMBLER
MR
General Possible Program Exceptions
0pcoDE | roRMAT ?:s"ic" [] ADDRESSING O PROTECTION
TYPE LoTH. [J DATA (INVALID SIGN/D1GIT) | {J SIGNIFICANCE
MNEM. [HEX. (8yTes) || (J DECIMAL DIVIDE : B SPECIFICATION:
‘ [oecimAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
MR | 1C RR 2 [0 execuTe {0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
T]1F RESULT = 0, SET 10 0 [J FiXED-POINT DIVIDE O or2nNoOT ON DOUBLEWORD
)ik ResuLT <6' SET TO 1 [F1XED-POINT OVERFLOW - BOUNODARY
O)iF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
J!F OVERFLOW, SETTO 3 J oPERATION a OP 1 NOT ODD NUMBERED REGISTER
Bl UNCHANGED O none
Function:

Causes the contents of the odd register of the even-odd pair specified by operand 1 (r,) to be muitiplied by
the contents of the register specified by operand 2 {r;). The product is placed in the even-odd pair of
registers specified by operand 1 (ry).

Explicit and Implicit Format: .

LABEL AOPERATION A OPERAND

[symbol] MR .,

Operational Considerations:
s Both.operands are treated as fixed-point, 32-bit signed integers.
] The contents of operand 2 (r;), the muiltiplier, remain unchanged.

] The product is treated as a 64-bit, fixed-point signed integer and occupies an even-odd register pair
specified by operand 1 {ry).

] The muitiplicand is first loaded into the odd-numbered register of the even-odd pair specified by
operand 1 (r,). The content of the even-numbered register is ignored until replaced by the most
significant 32 bits of the product.

. The sign of the product is determined algebraically.

L] A specification exception results if opérand 1 (r,) specifies an odd-numbered register.

’

o

uP-8914 SPERRY UNIVAC 0S/3

ASSEMBLER

2-117

MSS

General Possible Program Exceptions

OBJECT ADDRESSING
OPCODE FORMAT | INST. N

TYPE LGTH.
MNEM. {HEX. (8yTes) || (] DECIMAL DIVIDE
[J oecimAL OVERFLOW
Mss E3 ss] D EXECUTE

] EXPONENT OVERFLOW
[0 exPONENT UNDERFLOW
O FIXED-POINT DIVIDE

Condition Codes

=::: :::g? [J FIXED-POINT OVERFLOW
M sETTO2 {J FLOATING-POINT DIVIDE
BseErTO3 B OPERATION

O uNCHANGED

] DATA (INVALID SIGN/DIGIT)

B PROTECTION

] sIGNtFICANCE

B SPECIFICATION:

NOT A FLOATING-POINT REGISTER
OP 1 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 eoooa

" Function:

Performs an operation specified by operand 1 on two operands indirectly specified by operand 2. The resuit
is optionally put in the location specified by operand 1. The condition code is set according to the resuit.
Program control, depending on the result, then passes either to the next sequential instruction or skips
forward the number of half bytes specified by immediate operand 3, continuing with the instruction found

there.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] MSS d1 (i1 ,b1),dz(is,bz)
Implicit Format:
LABEL l AQPERATION A OPERAND
[symbol] MSS s, (i1).52 (i3)

Operational Considerations:

- The immediate byte of operand 1 must be specified as a self-defining term within the range 0,s—Bs.

L] Operand 2 must lie on a full-word boundary.

L) Operand 3 can be specified as an absolute or relocatable expression. In neither case, however, must

it exceed 15 half words (30 bytes) in value.

SPERRY UNIVAC 0S/3
ASSEMBLER

UP-8914

2-118

MVC -

| Possible Program Exceptions

 General
orPcobE | rormar IONBSJ'E.CT] ADDRESSING M rPROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) |] SIGNIFICANCE
MNEM. |HEX. (syTes) || [J DECIMAL DIVIOE O sPeCIFICATION:
O oecimaL OVERFLOW O NOT A FLOATING-POINT REGISTER
Mve | D2 Ss 6 O execuTe ‘ (O OP1NOTON HALF-WORD BOUNDARY
{J EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes J exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
TI'F RESULT =0 Sc7 T0 0 J FIXED-POINT DIVIDE O op2n~nOT ON DOUBLE-WORD
0 iF rResuLT <0, SET TO 1 0 FIXED-POINT OVERFLOW O BOUNDARY
D IF RESULT >°, SET TO 2 D FLOATING-POINT DIVIDE OP 1t NOT EVEN NUMBERED REGISTER
[J1F ovERFLOW, SET TO 3 O oreraTION O o 1 NOT 0DD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the contents of the field in main storage specified by operand 2 to be placed in the field in main

storage specified by operand 1.

Explicit Format:

AOPERATION A

LABEL l OPERAND
[symbol] MvC d1 (l,l::1),d2 (bz)
implicit Format:
LABEL ! AOPERATION A OPERAND
[symbol] MVC s, () Sa

Operational Considerations:

[] The transfer proceeds from left to right.

[] The number of bytes transferred is specified by 1 in operand 1.

] The contents of operand 2 remafn unchanged unless operand 1 and operand 2 overlap.

L] if the number of bytes to be moved is not expiicitly shown in operand 1, then the number will be

equal to the length attribute of operand 1.

2-119

UP-8914 SPERRY UNIVAC 0S8/3
ASSEMBLER
MVCL
General Possible Program Exceptions
0rCODE | rormar ?NBSJfCT @l ADDRESSING M PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. [HEX. syTes) || 0 pECIMAL DIVIDE B sPeECIFICATION:
O peciMAL OVERFLOW [J NOTAFLOATING-POINT REGISTER
MVCL | OE RR 2 J execuTe O o©oP1NOT ON HALF-WORD BOUNDARY
[J ExPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW 0 or2NOT ON FULL-WORD BOUNDARY
B ror -OF2 557100 [0 FIXED-POINT DIVIDE O or2nNOT ON DOUBLE-WORD
8 iF op 1<OF 2, SET TO 1 [J FIXED-POINT OVERFLOW - BOUNDARY
B IF OP 1350P 3. SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
MseTTo3 {0 oPERATION 0 OP 2 NOT EVEN NUMBERED REGISTER
[JUNCHANGED J none
Function:

Moves data from the main storage area specified by operand 2 to the main storage area specified by
operand 1.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbot]

MvCL

Operational Considerations:

F1.F2

L] Operands 1 and 2 must each specify the even-numbered register of an even-odd register pair. Within
each operand, the .even-numbered register contains the operand address, and the odd-numbered
register, the operand length.

L] When operand 2 is shorter than operand 1, a-padding byte contained in operand 2 fills the remaining
area of operand 1. When operand 2 is longer than operand 1, only as much of operand 2 as equals
operand 1 in length is moved, starting at the operand 2 address.

» The instruction proceeds left to right, byte by byte.

] The instruction terminates, setting the condition code to 3, if destructive bverlap would otherwise
occur, that is, if a main storage location would be used as an operand 2 source byte after acting as an
operand 1 destination byte.

UP-8914 SPERRY UNIVAC 0S/3 2-120
ASSEMBLER
Ty
General Paossible Program Exceptions
OBJECT
ADDRESSING il PROTECTION
OPCODE FORMAT | INST. |
TYPE LGTH. (] OATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. (syTes) || OJ DECIMAL DIVIDE (] spectFICATION:
[J oecimaL ovERFLOW [0 NOTA FLOATING-POINT REGISTER
Mvi | 92 si 4 [execuTe 0 ©OF1NOT ON HALF-WORD BOUNDARY
] eEXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW [0 oP2NOT ON FULL-WORD BOUNDARY
= [FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
[Jie ResuLT - 0.5ET 10 0 (J FIXED-POINT OVERFLOW BOUNDARY
L)1 ResuLT <o, sET TO 1 i O orinoTE NUMBERED REGISTER
Clie RESULT >0, SET TO 2 (0 FLOATING-POINT DIVIDE g OT EVEN NUMBERED S
O 1iF OVERFLOW, SET TO 3 {0 orerAaTION OP 1 NOT ODO NUMBERED REGISTER
B UNCHANGED O ~none
Function:

Causes the one byte of data used in the instruction as operand 2 to be moved into the one byte of main

storage specified by operand 1.

Explicit Format:

LABEL |

AOPERATION A OPERAND
[symbol] MVi d, (b,)i,
Implicit Format:
LABEL ' AOPERATION A OPERAND
[symboli] Mvi 844y

Operational Considerations:

s The immediate data in the instruction, operand 2, must specify one byte of data.

L] The length attribute of the field specified by operand 1 may be longer than one byte, but only the one
byte addressed by operand 1 will be replaced by the immediate data (operand 2).

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-121

MVN

General Possibie Program Exceptions
0PCO0E | rormat '?:s-'_fc" I ADDRESSING M PROTECTION
TYPE LGTH.] oATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
mnem. lHEx.] (ayTes) |} (0 DECIMAL DIVIDE O speciFICATION:
[0 peciMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
MVN | D1 SS 8 O execuTe 0 oP1NOTON HALF-WORD BOUNDARY
(] eEXPONENT OVERFLOW [0 oOP2NOT ON HALF-WORD BOUNDARY
Condition Codes (O exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
-ﬁu: YT —— [0 FIXED-POINT DIVIDE O orp2noOT ON DOUBLE-WORD
[31F ResuLT <0, SET TO 1 O FIXED-POINT OVERFLOW O B8OUNDARY
D 'F RESULT>O. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]!F OVERFLOW, SET TO 3 O opERATION O or 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O ~none
Function:

Causes the least significant four bits (the digit or numeric field) of each byte specified by operand 2 to be
moved to the least significant four bits of each byte of operand 1.

Explicit Format:

umsn.l

AOPERATION A |

OPERAND
[symbol] | MVN d, (Lb,).d, (b,)
Implicit Format:
LABEL AOPERATIONA OPERAND
—
[symbol] MVN 5, (),

Operational Considerations:

. The four most significant bits of each byte (zone field) remain unchanged.

= The contents of operand 2 remain unchanged unless there is overlapping.

= Overlapping of operands is permitted.

L] The number of bytes transferred is specified by 1 in operand 1.

L If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be
equal to the length attribute of operand 1.

uP-8914 SPERRY UNIVAC 0S/3 2-1 22

ASSEMBLER
MVO
General : Possibile Program Exceptions
OPCODE | rormaT ?NB;E.CT I AODRESSING M rROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTes) || (] DECIMAL DIVIDE {J speciFicaTION:
0 oecimaL OVERFLOW O NOT A FLOATING-POINT REGISTER
MVO | F1 SS 6 O execuTre O oP1NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW O or2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 ExPONENT UNDERFLOW 00 oP2NOT ON FULL-WORD BOUNDARY
El '\F RESULT = O, SET TO 0 D FIXED-POINT DHVIDE D OP 2 NOT ON DOUSBLE-WORD
i rResuLT <o, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
5)1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Moves the contents of operand 2 to operand 1 with a 4-bit (half-byte) shift to the left.

Explicit Format;

LABEL A OPERATION A OPERAND

[symboll | MVO d, {1,.b,).d,(l,,b,)

Implicit Format:

LABEL I AOPERATION A . OPERAND
[symbol] MVvO s, ()5, {1,)

Operational Considerations:
| This instruction proceeds from right to left.
L] The operands are not checked for valid codes.

] Overlapping fields may occur. Unless the operands overlap, operand 2 and the least significant four
bits of operand 1 remain unchanged.

L If the second operand is exhausted before the first operand, the remaining first operand field is zero
filled. If the result exceeds the capacity of the first operand field, the remaining digits of the second
operand are ignored. This operation, in effect, prefixes the least significant digit or sign of the first
operand with the digits of the second operand.

UP-8914 SPERRY UNIVAC 0S/3 2-123

ASSEMBLER
' MVZ
o)
General Possible Program Exceptions
0PCODE | FormarT ?:sfc"' Il ADDRESSING 8 rrOTECTION
TYPE LGTH. (] DATA (INVALID SIGN/D1GIT) | [SIGNIFICANCE
MNEM. |HEX. (8yTes) ||] DECIMAL DIVIDE O speciFicaTION:
[oecimat ovERFLOW 0 NOT A FLOATING-POINT REGISTER
MVZ | D3 s 8 [0 execure (0 OP 1 NOT ON HALF-WORD BOUNDARY
(] EXPONENT OVERFLOW O op2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
Tl AESoLT =0 SeT 7o 6 [0 FIXED-POINT DIVIDE O or2noT oNDOUBLE-WORD
01k REsULT <O, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
OF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[J)1F OVERFLOW, SET TO 3] oreraTION O or 1 NOT 0DD NUMBERED REGISTER
i UNCHANGED O none
Function:

Cadses the most significant four bits (the zone field) of each byte specified by operand 2 to be moved to the
most significant four bits of each byte of operand 1.

Explicit Format:

' LABEL l AOPERATION A OPERAND

[symbol] | MvZ d, (b,).d, (b,)

Implicit Format:

LABEL l AQPERATION A l ' OPERAND

[symbol] MvZ s, (I).s,

Operational Considerations:
L] The four least significant bits of each byte (digit field) remain unchanged.
] The contents of operand 2 remain unchanged unless there is overlapping.
s Overlapping of operands is permitted.
] The number of bytes transferred is specified by | in operand 1.

: s If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be
‘ . equal to the length attribute of operand 1.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-124

General Possible Program Exceptions
OPCODE | FoRMAT ?NB;ﬁCT I ADDRESSING M PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. syTES) || O DECIMAL DIVIDE i SPECIFICATION:
O oecimaL oveRFLOW O NOT A FLOATING-POINT REGISTER
N 54 RX 4 [J execute [0 oP1NOT ONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 exPONENT UNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
B r AteOiT oo SETTo o O FiXED-POINT DIVIDE 00 or2NOT ON DOUBLE-WORD
B ¢ RESULT %0, SET TO 1 [0 FIXED-POINT OVERFLOW o BOUNDBARY
CJ1F AESULT >0, SET TO 2 (3 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CliF OVERFLOW, SET TO 3] oPERATION O op1NOT ODD NUMBERED REGISTER
JuUNCHANGED [J none
Function:

Causes a logical full-word AND operation to be performed on the contents of operand 1 (ry) and operand 2.
The result is stored in the operand 1 (r,) register. Operand 2 is a full word in main storage.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] | N ry.dy(x,.b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] N ry.55(%,)
Operational Considerations:
L] If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be

1. If either bit is zero, the resuitant bit will be zero.

L The rules of operation for logical AND (N) are illustrated by the following truth tabie:

UP-8914 SPERRY UNIVAC 0S/3 2-125
ASSEMBLER

ﬁcsult
Operand 1 Operand 2 © d 1)
0] [+]
0 1 0
1 [+) 4]
1 1 1

L] It is possible to clear selected bits in operand 1 (r,) by specifying zeros in the corresponding bit
positions of operand 2.

L Operand 2 must be on a full-word boundary.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-126

NC

General Possible Program Exceptions
0PCODE | FormAT :-LB;_ECT] ADDRESSING 8 PROTECTION
TePE LoTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. |HEX. 8yTes) || 0 OECIMAL DIVIDE {0 speciFicaTION:
O oecimaL ovERFLOW 0 NOTA FLOATING-POINT REGISTER
NC | D4 $s 6 {3} execuTe 0 OP 1 NOT ON HALF-WORD BOUNDARY
] eEXPONENT OVERFLOW 0 or2NOT ON HALF-WORD BOUNDARY
Condition Codes O EXPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
I Y {J FIXED-POINT DIVIDE O or2noT ON DOUBLE-WORD
B ¢ RESULT #0, SET TO 1 O FIXED-POINT OVERFLOW a BOUNDARY
. CJiF RESULT >0, SET TO 2] FLOATING-POINT DIVIDE = OP 1 NOT EVEN NUMBERED REGISTER
D I{F OVERFLOW, SETTO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER
[uncHANGED O none
Function:

Causes a logical AND operation to be performed on the contents of operand 1 and operand 2. Both
operands are located in main storage. The resuit is stored in operand 1.

Explicit Format:

LABEL I AOPERATION A OPERAND
[symbol] NC d, (I,b1),d2 (bz)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] NC s, (D Sy

Operational Considerations:

] If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resuitant bit will be
1. If either bit is zero, the resuitant bit will be zero.

L The rules of operation for logical AND (NC) are illustrated by the following truth table:

UP-8914

SPERRY UNIVAC 0S/3 . 2-127
ASSEMBLER

NC

Resuit
Operand 1 Operand 2 © "
1] 0
1 0
1 0 0
1 1 1

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions
of operand 2.

The number of bytes involved in the AND instruction is specified by | in operand 1.

if the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1.

UpP-8914 SPERRY UNIVAC 0S/3 2-128
ASSEMBLER
NI
General Possible Program Exceptions
OPCODE | roRMAT ?:SJ_E.CT I8 ADDRESSING B PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. sytes) || [0 pECIMAL DIVIDE (O sPeCIFICATION:
O oecimaL OVERFLOW [0 NOT A FLOATING-POINT REGISTER
NI |94 Si 4 0O execuTe [0 OP 1 NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O expPoNENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
T EY) O FiXED-POINT DIVIDE 00 op2noOT ON DOUBLE-WORD
8 \F RESULT %0, SETTO 1 O FIXED-POINT OVERFLOW 0 BOUNDARY
D \F RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJiF OVERFLOW, SET TQ 3] oPERATION O op 1 NOT ODD NUMBERED REGISTER
| JuNcHANGED O none
Function:

Causes a logical AND operation to be performed on the contents of operand 1 {(a byte in main storage) and
operand 2 (a byte of immediate data in the instruction). The resuit is stored in operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND
[symboi] NI d, (b,),i,
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] Ni $ydy

Operational Considerations:

] If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resuitant bit will be
1. If either bit is zero, the resulitant bit will be zero.

L] The rules of operation for logical AND (NI} are illustrated by the following truth table:

uP-8914 SPERRY UNIVAC 0S/3 . 2-129
ASSEMBLER

NI

Result
Operand 1 Operand 2 {Operand 1)
o 0
1 0
1 0 1]
1 1 1

L] It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions
of operand 2.

UP-83914 SPERRY UNIVAC 0S/3 2-130

ASSEMBLER
NR
General Possible Program Exceptions
0PCODE | roRMAT ?NBS-’E.CT [] ADDRESSING J PROTECTION
TYPE LGTH. [0 DATA (INVALIO SIGN/DIGIT) | {J SIGNIFICANCE
MNEM. |HEX. syTes) || [J DEC:MAL DIVIDE {0 seeciricaTiON:
[oecimaL oveRFLOW] NOT A FLOATING-POINT REGISTER
NR 14 RR 2 O execute] ©oP1NOT ON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW] OP2NOTON FULL-WORD BOUNDARY
BrRESOT- 0T T00 O FixED-POINT DIVIDE 0 op2nNOT ON DOUBLE-WORD
B iF RESULT #0,SET TO 1 O FIXED-POINT OVERFLOW g BOUNDARY
C]1F RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CiF OVERFLOW, SET TO 3] OPERATION] ©OP1NOTODD NUMBERED REGISTER
J UNCHANGED B none
Function:

Causes a logical AND operation to be performed on the contents of the registers specified by operand 1 {r,)
and operand 2 (r;). The resuit is stored in operand 1 {r,).

Explicit and Implicit Format:

LABEL ‘ AOPERATION A OPERAND

[symbol] NR (P

Operational Considerations:

] If the corresponding bit positions in both operand 1 (r;) and operand 2 (r,} contain |, the resultant bit
will be 1. If either bit is zero, the resuitant bit will be zero. ’

] The rules of operation for logical AND (NR) are illustrated by the following truth table: -

. Resuit
Operand 1 Operand 2 {Operand 1)
0 (/] [s]
4] 1 1]
1 [+] [¢]
1 1 1
s It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions

of operand 2.

UP-8914 SPERRY UNIVAC 0S/3 2-131
ASSEMBLER
® o
General Possible Program Exceptions
OPCODE OBJECT |} g ADDRESSING @ PROTECTION
FORMAT | INST. :
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. THEX. (8yTes) || (] DECIMAL DIVIDE . # SPECIFICATION:
: [J oecimaL ovERFLOW 3 NOT A FLOATING-POINT REGISTER
0 |56 RX 4 0 execuTe {0 OP 1 NOT ON HALF-WORD BOUNDARY
;] EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
| Condition Codes (0 exPONENT UNDERFLOW B or2NOT ON FULL-WORD BOUNDARY
| T ITRTILTY O FIXED-POINT DIVIDE O or2noT ON DOUBLE-WORD
B \F RESULT #0, SET TO 1 [J FIXED-POINT OVERFLOW 0 BOUNDARY
OJ1F RESULT >0, SET TO 2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]iF OVERFLOW, SET TO 3 [] oPERATION O op1NOT ODD NUMBERED REGISTER
CJuNCHANGED {J none
Function:

. Explicit Format:

Causes a logical OR operation to be performed on the contents of operand 1 (r,} and operand 2, a full word
in main storage. The result is stored in operand 1 ().

OPERAND

Operationai Considerations:

LABEL AOPERATION A
[symbol] 0] r,.dy(x,.b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] 0 r,8,(x,)

= A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

L] The rules of operation for logical OR (O) are illustrated by the following truth table:

UP-8914 SPERRY UNIVAC 0S/3 2-132
ASSEMBLER -

Result
Operand 1 Operand 2 {Operand 1)

L] Operand 2 must be on a full-word boundary.

upP-8914 SPERRY UNIVAC 0S/3 2-133
ASSEMBLER
oC
General Possible Program Excaptions
OPCODE | poRMAT ?:;_E.CT I} ADDRESSING B PROTECTION
TYPE LOTH. (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8vTes) || (] DECIMAL DIVIDE {0 sPECIFICATION:
{0 pecimAL OVERFLOW [0 NOT A FLOATING-POINT REGISTER
oc 1] Ss 6 O execuTe 0O oP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O or2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
W7 AteULT -0 SETTO0 [FIXED-POINT DIVIDE 0O or2noOT ON DOUBLE-WORD
e nssu:.T#d, SETTO 1 O FiXED-POINT OVERFLOW o BOUNDARY
D |\F RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D 1 OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
O uNcHANGED O none
Function:

Causes a logical OR operation to be performed on the contents of main storage specified by operand 1 and
operand 2. The resuit is stored in operand 1.

Explicit Format:

A QPERATION A I

LABEL OPERAND
[symbol] | OC l d, (1b,).d, (b,)
Implicit Format:
LABEL A OPERATION A , OPERAND

[symbol] ocC

Operational Considerations:

5, (l),s2

L] A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero. ’

L] The rules of operation for logical OR (OC) are illustrated by the following truth table:

UP-8914 SPERRY UNIVAC 0S/3 2-134
ASSEMBLER)

oc

Resuits
Operand 1 Operand 2 {Operand 1)
E 0 0 0
1 1
1 0 1
1 1 1

. The number of bytes used is specified by | in operand 1.

L] If the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1.

UP-8914 ‘ SPERRY UNIVAC 0S/3 2-135
' ASSEMBLER

General Possible Program Exceptions
oPcoDE | rommarT IONBSJ‘E.CT Jl ADDRESSING B PROTECTION
Tyee LOTH.] DATA (INVALID SIGN/DIGIT) | [T SIGNIFICANCE
MNEM. [HEX. yTes) || pECIMAL DIVIDE {0 SPECIFICATION:
{0 pecimaL OVERFLOW C0 NOTA FLOATING-POINT REGISTER
ol 96 Si 4 {0 execuTe {0 ©OP1NOTON HALF-WORD BOUNDARY
{J EXPONENT OVERFLOW 3 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [exPONENT UNDERFLOW {0 oP2NOTON FULL-WORD BOUNDARY
B F RESULT -0 SeTTO0 [0 FIXED-POINT DIVIDE O oe2NOT ON DOUBLE-WORD
W RESULT#EO', SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY)
CliF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
- D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT QDD NUMBERED REGISTER
OuNcHANGED O none
Function:

Causes a logical OR operation to be performed on the contents of operand 1 (a byte in main storage) and
operand 2 (a byte of immediate data in the instruction). The result is stored in operand 1.

‘ Explicit Format:

LABEL i A OPERATION A OPERAND

[symbol] 0] d, (b,)i,

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] o]] Sy

Operational Considerations:

L A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

UP-8914 SPERRY UNIVAC 0S/3 2-136
ASSEMBLER

Ol

s The rules of operation for logical OR (Ol) are illustrated by the following truth table:

Operand 1 Operand 2 (Openm;)
0 0
1
1 [} 1
1 -1 1

2-137

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
General .Possible Program Exceptions
OBJECT : PROTECTION
OPCODE | FORMAT | INST. [] ADDRESSING o c
TvPE LGTH [DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. [HEX. svyTes) || [J DECIMAL DIVIDE [sPeCIFICATION:
O oecimAaL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
OR 16 RR 2 O execuTe 0 oP1NOTONHALF-WORD BOUNDARY
(] eXPONENT OVERFLOW 0 0P 2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW 00 oP2NOT ON FULL.WORD BOUNDARY
B orrcsoT-oscTTo0 O FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
B \F RESULT #0, SET TO 1 O FiIXED-POINT OVERFLOW a BOUNDARY :
‘CJ1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE 0 OF 1 NOT EVEN NUMBERED REGISTER
[Ji1F ovERFLOW, SET TO 3 [J oPERATION OF 1 NOT ODD NUMBERED REGISTER
CJUNCHANGED B none
Function:

Causes a.logical OR operation to be performed on the contents of the registers specified by operand 1 (r,)
and operand 2 (r;). The result is stored in operand 1 (r,).

Explicit and implicit Format:

LABEL

AOPERATION A

OPERAND

[symboli]

OR

Operational Considerations:

172

A bit position in the resuit is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

The rules of operation for logical OR (OR) are illustrated by the following truth tabie:

Operand 1 Operand 2 (Om 1
0 (1]
1 0 1
1 1 1

UP-8914 SPERRY UNIVAC 0S/3 2-138
ASSEMBLER
PACK
General Possible Program Exceptions ,
OPCODE | FoRMAT ?NBSJE‘CT B ADDRESSING B PROTECTION
TvPE LaTH. [] DATA (INVALID SIGN/D1GIT) | [SIGNIFICANCE
MNEM. |HEX. 8vTes) || (] DECIMAL DIVIOE O sPeCIFICATION:
- {0 oecimaL oveRFLOW 0 NOTA FLOATING-POINT REGISTER
PACK | F2 SS] O execuTe O OFP 1 NOT ON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW [0 ©P2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW O oP 2 NOT ON FULL-WORD BOUNDARY
T Y (] FIXED-POINT DIVIDE 0O op2nOT ON DOUBLE-WORD
B¢ rResuLT <0, SET TO 1 'O FIXED-POINT OVERFLOW a SOUNDARY
Cl1F RESULT Do, SET TO 2 O] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJtF OVERFLOW, SET TO 3 O opeRAaTION 0 op1NOT ODD NUMBERED REGISTER
] UNCHANGED O ~one
Function:

Converts the contents of operand 2 from the unpacked format to the packed format, which is placed in
operand 1.

Explicit Format:

LABEL A CPERATION A OPERAND
-
[symbol] PACK d, (i, ,b,1.d,(l,,b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] PACK s,{1,)5,(1,)

Operational Considerations:

[] This instruction proceeds one byte at a time from right to left. The first byte operated on has its sign
and digit reversed. (An F4 becomes 4F.) Each byte from then on has its zone removed and the digit
half of the byte packed into the receiving area.

= If operand 2 does not completely fill operand 1, the remaining operand 1 field is zero filled.

L If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

- The operands are not checked for valid codes.

L Overlapping fields may occur; each resuitant byte is processed after each operand byte.

UP-8914 SPERRY UNIVAC 0S/3 2-138a
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING [J PROTECTION
OPCODE FORMAT | INST. |
TYPE LGTH [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. [HEX. (BYTéS) [] DECIMAL DIVIDE [] SPECIFICATION:
[J pecIMAL OVERFLOW NOT A FLOATING-POINT REGISTER

PRB oc RR 2 [0 execuTE OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

[JIF RESULT =0, SET TO 0
Oir rResuLT <0, SET TO 1
0iF RESULT >0, SET TO 2
[(JtF OVERFLOW, SET TO 3
B UNCHANGED

[EXPONENT OVERFLOW
[J EXPONENT UNDERFLOW
[0 FIXED-POINT DIVIDE

(J FIXED-POINT OVERFLOW
[0 FLOATING-POINT DIVIDE
M OPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

oooO agoao

Function:

Moves the IORB specified by operand 2 (r,) to the IORB pool specified by operand 1 (r;}.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

{symbol]

PRB

F1:F2

SPERRY UNIVAC 0S/3

UP-8914 2-139
ASSEMBLER
' ‘ RESET
General Possible Program Exceptions
oPcoDE | rormAT IONBSJECT (] ADDRESSING 0 proTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | {J SIGNIFICANCE
MNEM. |HEX. 8ytes) || [DECIMAL DIVIDE M SPECIFICATION:
0 oecimaL OVERFLOW O NOT A FLOATING-POINT REGISTER
RESET | 8301 S 4 O execuTe O oP1NOTON HALF-WORD BOUNDARY
- 0 EXPONENT OVERFLOW [0 0P 2NOT ON HALF-WORD BOUNDARY
Condition Codes 0O ExPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
W et 100 [0 FIXED-POINT DIVIDE O op2noOT ON DOUBLE-WORD
O seTTO 1 O FIXED-POINT OVERFLOW o BOUNDARY
0 seT 70 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
@ seETTO3 Bl oPERATION O oP 1 NOT ODD NUMBERED REGISTER
| O UNCHANGED [J none

Function:

~Resets selected areas of the processor.

Explicit Format:

. LABEL AOPERATION A OPERAND
[symbol] RESET d2 (b2)
INST3 RESET 44(3)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] RESET s,
INST3 RESET PLACE1

uP-8914 SPERRY UNIVAC 0S/3 2-140

ASSEMBLER
S
General Possible Program Exceptions
0PCODE | Fommart ?NBS-‘:CT ADDRESSING Bl PROTECTION
TvPe LGTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. [HEX. syTes) || O oeEcimaL DivipE 8 SPECIFICATION:
{0 pecimAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
S |58 RX 4 {J execuTe [J ©OP1NOTON HALF-WORD BOUNDARY
(] EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 EXPONENT UNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
B r ASUT o stTTo0 O FIXED-POINT DIVIDE 0 op2nOT ON DOUBLE-WORD
B F rResuLT <0, SET TO 1 FI1XED-POINT OVERFLOW . B8OUNDARY
B iF RESULT >0, SET TO 2] FLOATING-POINT DIVIOE .OP 1 NOT EVEN NUMBERED REGISTER
B F OVERFLOW, SET TO 3 [] oPERATION O oP1NOT ODD NUMBERED REGISTER
CJUNCHANGED 0 none
Function:

Causes the contents of operand 2, a fuil word in main storage, to be subtracted from the tontents of the
register specified by operand 1 (r,). The results are placed in the operand 1 (r,) register.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] S rydy(x,,b,)

Implicit Format:

LABEL l AOPERATION A l OPERAND

[symbol] S ry .Sy

Operational Considerations:

- The subtraction is performed by converting the number in operand 2 into a signed twos complement
binary number and then algebraically adding it to the vaiue in operand 1 {ry).

- The maximum fixed-point number that can be contained in a 32-bit register is 2,147,483,647(231~1).
The minimum number is —2,147,483,648(—23'), For decimal numbers outside this range, an
overflow condition is produced.

L] Operand 2 must be on a full-word boundary.

s The contents of operand 2 are not changed by the subtract (S) instruction.

2-141

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE a °BJ:CT il ACDRESSING H PROTECTION
F?rv'::T 'L"ésﬂ“ [oATA (INVALID SiGN/BIGIT) | ll SIGNIFICANCE
MNEM. [HEX. (8vres) || (] DECIMAL DIVIDE M SPECIFICATION:
J vecimaL OVERFLOW M NOT A FLOATING-POINT REGISTER
SD 68 RX 4 0O execuTe O opF 1 NOTON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW 0 op2NOT ON FULL-WORD BOUNDARY
B r RCSULT -0 SeTT00 O FIXED-POINT DIVIDE B or2NOT ON DOUBLE-WORD
-
B iF ResuLT <0, SET TO 1 [FIXED-POINT OVERFLOW o BOUNDARY
.lF RESULT>0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJiF OVERFLOW, SETTO 3 O operaTION O or 1 NOT 0OD NUMBERED REGISTER
CJuncHANGED 0 none
Function:

Causes the contents of a double word in main storage specified by operand 2 to be algebraicaily subtracted
from the contents of the double-word register specified by operand 1 (r,). The normalized difference is

placed in the operand 1 {r,) register.

Explicit Format:

.«‘"

LABE:L ' AOPERATION A | OPERAND
[symbol] SD rdy(xy,b,)
implicit Format:
LABEL I AOPERATION A OPERAND
{symbol] SD r,.8,(x,)

Operational Consideration:

s The execution of the SD instruction is identical to that of the AD instruction, except that the sign of
operand 2 is reversed before addition.

UP-8914 SPERRY UNIVAC 0S/3 2-142

ASSEMBLER
SDR
Fioating Point
General Possible Program Exceptions
OPCODE | roRmAT ?:sJTE.CT [] ADDRESSING O pROTECTION
TvPE LGTH. O oaTAa (INVALID SIGN/D1GIT) | ll SIGNIFICANCE
MNEM. |HEX. (s8vtes) || 0 DECIMAL DIVIDE W SPECIFICATION:
O peciMAL OVERFLOW B NOTAFLOATING-POINT REGISTER
SDR | 2B RR 2 O execuTe [J oP1NOTONHALFWORD BOUNDARY
B EXPONENT OVERFLOW {3 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW {0 opP2NOT ON FULLWORD BOUNDARY
Brrcso.T-0scTTo0 (O FiXED-POINT DIVIDE 0O o 2NOT ON DOUBLE-WORD
B = RESULT <O, SET TG 1 O FIXED-POINT OVERFLOW o BOUNDARY
8 F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3 [] oPERATION 0 or 1 NOT ODD NUMBERED REGISTER
] UNCHANGED 0 none

Function:

Causes the contents of the double-word register specified by operand 2 (r,) to be algebraically subtracted
from the contents of the double-word register specified by operand 1 (r;). The normalized difference is
placed in the operand 1 (r,) register. -

Explicit and implicit Format:

LABEL AOPERATION A OPERAND

[symbol] SDR ryfy

Operational Consideration:

. The execution of the SDR instruction is identical to that of the ADR instruction, except that the sign
of operand 2 (r,) is reversed before addition.

UP-8914

SPERRY UNIVAC 0S/3 2-143
ASSEMBLER Update B

SDV

General

OPCODE FORMAT
TYPE

MNEM. IHEX,

SDV {9c02]

Condition Codes

B seTT00
BseTT01
MseETTO2
BseTTO3
[J UNCHANGED

Function:

Possible Program Exceptions

OBJECT || m ADDRESSING B PROTECTION

:_’\clsSTTH [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE

(8yTEs) || [J DECIMAL DIVIDE M SPECIFICATION:
[0 opecimAaL OVERFLOW [0 NOTAFLOATING-POINT REGISTER

4 [J execuTEe [J oP1NOTONHALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oOP2NOT ON HALF-WORD BOUNDARY
[J EXPONENT UNDERFLOW 0 oP2NOT ONFULL-WORD BOUNDARY
[J FIXED-POINT DIVIDE B ©or2NOT ON DOUBLE-WORD
(] FIXED-POINT OVERFLOW BOUNDARY
[] FLOATING.POINT DIVIDE 0O opP1NOT EVEN NUMBERED REGISTER
@l OPERATION 0O opP1NOT ODD NUMBERED REGISTER
O ~onEe

Enqueues a device on the designated channel device initiation queue for subsequent 1/0 operations.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] SDV d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] sShv s

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-144

SE

Floating Point

Condition Codes

B iF RESULT=0,SETTO 0
B ir RESULT <0, SETTO 1
B :F RESULT >0, SET TO 2
JiF OVERFLOW, SET TO 3
[JUNCHANGED

B EXPONENT OVERFLOW
B EXPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
] FLOATING-POINT DIVIDE
[oPerRATION

000 OmO0O.m

General Possible Program Exceptions
OBJECT || my ADDRESSING M PROTECTION
OPCODE - | FORMAT | INST.
TyPE LGTH [0 oATA (INVALID SIGN/DIGIT) | [ll SIGNIFICANCE
MNEM. THE X, (8yTEs) ||] DECIMAL DIVIDE B sPeECIFICATION:
(0 beciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
SE 78 RX 4 [execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Causes the contents of a full word in main storage specified by operand 2 to be algebraically subtracted
from a full word in the register specified by operand 1 (r,). The normalized difference is placed in the

operand 1 (ry) register.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] SE rydy(x,,b,)
Implicit Format:
LABEL A OPERATION A | OPERAND
[symbol] SE ry S, (x;)
Operational Consideration:
L] The execution of the SE instruction is identical to that of the AE instruction, except that the sign of

operand 2 is reversed before addition.

UP-8914 SPERRY UNIVAC 0S/3 ’ 2-145

ASSEMBLER
Floating Point
General Possibie Program Exceptions
OBJECT A N PROTECTION
OPCODE | FORMAT | INST. CJ ADDRESSING O proTecTio
TYPE LGTH [oATA (1INvALIO SIGN/DIGIT) | Il SIGNIFICANCE
MNEM. [HEX. (8vyTes) || (J DECIMAL DIVIDE Wl SPECIFICATION:
- (] peEciMAL OVERFLOW B NOT A FLOATING-POINT REGISTER
SER 38 RR 2 O execuTe 0 oP1NOTON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes B EXPONENT UNDERFLOW 1 oP2NOT ON FULL-WORD BOUNDARY
B acooLT o0 SETTOO [J FIXED-POINT DIVIDE O or2noOT ON DOUBLE-WORD
I RESULT <0, SET TO 1] FIXED-POINT OVERFLOW o BOUNDARY
. \F RESULT >°' SET TO 2 D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
O1F OVERFLOW, SETTO 3 (] oPERATION OP 1 NOT ODD NUMBERED REGISTER
. CJUNCHANGED 0 none
Function:

Causes the contents of a full word in the operand 2 (r,) register to be aigebraically subtracted from a full
word in the operand 1 (r,) register. The normalized difference is placed in a full word in the operand 1 {r,)

register. :
. Explicit and Implicit Format:
LABEL ' AOPERATION A OPERAND
[symbol] SER - rr,

Operational Consideration:

= The execution of the SER instruction is identical to that of the AER instruction, except that the sign of
operand 2 is reversed before addition.

uP-8914 SPERRY UNIVAC 0S/3 2-146
ASSEMBLER

SH .

2y
General Possible Program Exceptions
OPCODE | rormar ?NBSJ'S,CT Bl ADDRESSING W PROTECTION
TypE LGTH. (0 OATA (INVALID SIGN/DIGIT; | [J SIGNIFICANCE
MNEM lHEX. (gytes) || O DECIMAL DIVIDE Ml SPECIFICATION:
O becimaL OVERFLOW T NOTA FLOATING-POINT REGISTER
SH 48 RX 4 O execuTte O OP 1 NOT ON HALF-WORD BOUNDARY
) EXPONENT OVERFLOW B 0P 2NOTONHALF-WORD BOUNDARY
Condition Codes 3 exPONENT UNDERFLOW 0 oP2NOTON FULL-WORD BOUNDARY
B rcooT o serTo0 [0 FIXED-POINT DIVIDE 0O op2nNOT ON DOUBLE-WORD
B F resuLT <o, SET TO 1 B FIXED-POINT OVERFLOW a BOUNDARY
| B RESULT S0 sET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B 'F OVERFLOW, SET TO 3 (] OPERATION 0O or 1 NOT ODD NUMBERED REGISTER
{CJUNCHANGED O none

. Function:

Causes the contents of operand 2, a half word in main storage, to be subtracted from the contents of the
register specified by operand 1 (r,). The resuits are to be placed in the operand 1 (r;) register.

Explicit Format:

LABEL AOPERATION A i OPERAND

[symbol] SH rydyix, by}

Implicit Format:

LABEL AOPERATION A) OPERAND

[symbol] SH ry .Sy ix

22)

Operationai Considerations:

= The subtraction is performed by converting the number in operand 2 into a signed twos complement
binary number, expanded to a full word, and then algebraicaily adding it to the value in operand 1 (r,).

] The maximum fixed-point number that can be contained in 32-tit register is 2,147,483,647(23'—1);
the minimum number is —2,147,483,648(—2%). For decimal numbers outside this range, an
overflow condition is produced.

] Operand 2 must be on a half-word boundary.

. The contents of operand 2 are not changed by the subtract half word (SH) instruction.

UP-8914 SPERRY UNIVAC 0S/3 . 2-147
ASSEMBLER

4 , st

Generail . - Possible Program Exceptions
0PCODE | rommart ?;;$.CT (] ADDRESSING O eroTECTION
TveE LGTH.] DATA (INVALID SIGN/DI1GIT) | (O SIGNIFICANCE
MNEM. |HEX. (8yTES) ||] DECIMAL DIVIDE Bl SPECIFICATION:
- [J oeciMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
SHL | 9B RS 4] execuTte 0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O opP2NOT ON HALF-WORD BOUNDARY
Condition Codes (] exPONENT UNDERFLOW O o 2NOT ON FULL-WORD BOUNDARY
T [J FIXED-POINT DIVIDE 0 or2noOT ON DOUBLE-WORD
W seTTo1 [FixED-POINT OVERFLOW - B8OUNDARY
W seTTO2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
MseTTO3 [] oPERATION O or 1 NOT ODD NUMBERED REGISTER
[J UNCHANGED O none

Function: ‘

Shifts the operand 1 reéister or even-odd register pair right or left by the number of bits specified in bits
26—31 of the effective operand 2 address.

. Explicit Format:
{

LABEL AOPERATION A OPERAND

[symbol] SHL r,.my.d,(b,)

Implicit Format:

LABEL l AOPERATION A l OPERAND

. [symbol] I SHL rym,s,

Operational Considerations:

L Operand 3, bits 12—15 of the object instruction, forms a 4-bit mask that controls SHL operation as
follows:

— Bit 12 (X000): set to O for a noncircular shift; set to 1 for a circular shift.
— Bit 13 (OX00): set to O for a left shift; set to 1 for a right shift.
— Bit 14 (00XO0y). set to O to shift a single register; set to 1 to shift an even-odd register pair.

. v — Bit 15 (000X): set to O to shift in O’s; set to 1 to shift in 1's.

UP-8914 SPERRY UNIVAC 0S/3 2-148
ASSEMBLER

SHL

a For an even-odd register pair, the user must specify the even-numbered register as operand 1.

] Operand 2 can be specified as a self-defining term.

uP-8914 SPERRY UNIVAC 0S/3 2-149
ASSEMBLER
, SL
.
Generai ; Possible Program Exceptions
OPCODE | FORMAT ?:st.CT] ADORESSING 8l PROTECTION
Tere LOTH. [0 pATA (invaLiD siGN/o1GiT) | [] SIGNIFICANCE
MNEM. THEX. @yrtes) || (] DECIMAL DIVIDE B SPECIFICATION:
0 peciMAL OVERFLOW {1 NOTA FLOATING-POINT REGISTER
SL | 5F RX 4 J execuTe {0 oOP1NOTON HALF-WORD BOUNDARY
3 eXPONENT OVERFLOW 3 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [EXPONENT UNDERFLOW B oP2NOT ON FULL-WORD BOUNDARY
ST Too (J FIXED-POINT DIVIDE O op2nNoOT ON DOUBLE-WORD
B serTo 1 [FiIXED-POINT OVERFLOW 0 BOUNDARY
W serTo2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
WseT 103 (] oPERATION O o 1NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS 0O none

Function:

Causes the contents of a full word in main storage specified by operand 2 to be subtracted logically from

‘ Explicit F

Implicit F

the contents of the operand 1 (r,) register. The difference is placed in operand 1 {r,).
ormat:
LABEL AOPERATION A OPERAND
[symbol] SL r,.dy(x,.b,))
ormat:
LABEL A OPERATION A ’ OPERAND
[symbol] SL 1y 5 (x,)

Operational Considerations:

The subtraction is performed by adding the twos complement of operand 2 to operand 1.
All 32 bits of both operands are used.
The contents of operand 2 remain unchanged.

Operand 2 must be on a full-word boundary.

UP-8914 SPERRY UNIVAC 0S/3 2-150
ASSEMBLER

st

- The condition code is set:
— to 1 if result is not zero (no carryout of most significant bit position);
— to 2 if resuit is zero (carryout of most significant bit position); or
— to 3 if result is not zero (carryout of most significant bit position).

Code 0 is not used. A zero difference cannot be obtained without a carryout of the most significant bit
position.

uP-8914 SPERRY UNIVAC 0S/3 2-151

ASSEMBLER
SLA
General " Possible Program Exceptions
0PCODE. | rommAT ?NBSJf‘CT [] ADDRESSING {0 eroTECTION
TvpE LGTH. O DATA (INVALID SIGN/D1GIT | [SIGNIFICANCE
MNEM. |HEX. syTes) || 0 DECIMAL DIVIDE {1 speciFicaTION:
[0 oecimaL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
SLA | 8B RS 4 {J execuTe 0 OF 1 NOT ON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPoNeNT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B r RtooLT- 0 SETTo0 [FIXED-POINT DIVIDE 0O or2nOT ON DOUBLEWORD
B ResuLT <°" SET TG 1 I FIXED-POINT OVERFLOW o BOUNDARY
B (F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
#iF OVERFLOW, SET TO 3 [J OPERATION O or 1 NOT ODD NUMBERED REGISTER
CJUNCHANGED 0 none
Function:

Causes the 31-bit integer field in the register specified by operand 1 (r,) to be shifted left the number of bit
positions specified by the six low-order bits of the second operand (s,) address.

Explicit Format:

LABEL | AOPERATION A ' OPERAND

[symbol] SLA r,d,(b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] SLA ry oS

2

Operational Considerations:

L The 31-bit integer of the first operand (r,) is shifted left the number of bit positions specified by the
low-order six bits of the second operand address.

a The vacated low-order bit positions of the register are zero filled. The sign bit of the register remains
unchanged.

] If a bit unlike the sign bit is shifted out of the high-order numeric bit position, a fixed-point overflow
condition exists.

UP-8914

SPERRY UNIVAC 0S/3 2-152
ASSEMBLER

SLA

For numbers with an absoiute value of less than 239, a left shift of one bit position is equivalent to
muitiplying the number by 2.

A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of —231.

A zero shift value provides a sign and magnitude test.

uP-8914 SPERRY UNIVAC 08/3 2-183

ASSEMBLER
. SLDA
General Possible Program Exceptions
orcove | rommat ?,\?SJECT [] ADDRESSING 0O rroTECTION
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. |HEX. sytes) || [DECIMAL DIVIDE B SPECIFICATION:
{J oecimaL overFLOW [0 NOTA FLOATING-POINT REGISTER
SLDA | 8F RS 4 '(J execuTe 0 oP1NOTONHALF-WORD BOUNDARY
[J eXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exrPoNENT UNDERFLOW 0 6P 2NOT ON FULL-WORD BOUNDARY
BT AtSULT- 0 SETTO0 [FIXED-POINT DIVIDE 0 orp2nOT ON DOUBLE-WORD
B iF resuLT <o, SET TO 1 B FIXED-POINT OVERFLOW - BOUNDARY
i B F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
MIF OVERFLOW, SETTO 3] oPERATION O OP 1 NOT QDD NUMBERED REGISTER
[JUNCHANGED 0O none
Function:

- Causes the 63-bit integer field in the pair of registers specified by operand 1 (r,) to be shifted left the
number of bit positions specified by the six low-order bits of the second operand (s,) address.

. Explicit Format:
4

LABEL AOPERATION A OPERAND

[symbol] | SLDA r, dy (b,)

Implicit Format:

LABEL - AOPERATION A OPERAND

[symbol] SLDA Fy Sy

Operational Considerations:
. Operand 1 (r;) must refer to an even-numbered register of an even-odd register pair.
L The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit
integer. The vacated low-order bit positions of the odd register are zero filled. The sign bit of the even

register remains unchanged.

L] If a bit unlike the sign bit is shifted out of the high-order numeric bit position of the even register, a
fixed-point overflow condition exists. :

UP-8914 SPERRY UNIVAC 0S/3 2-154
ASSEMBLER

SLDA

. A zero shift value in the double-shift operations provides a double-length sign and magnitude test.

L For numbers with an absoiute value of less than 230, a left shift of one bit position is equivalent to
multiplying the number by 2. :

L Shifting 63 bits causes the entire integer to be shifted out of the registers. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of —23'.

uP-8914 SPERRY UNIVAC 0S/3 2-1565
ASSEMBLER
SLDL
General Possible Program Exceptions
OPCODE | roRMAT ?:s-':cr [] ADDRESSING (O prROTECTION
TvPE LGTH.] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. IHEX. 8vtes) || [0 DECIMAL DIVIDE I SPECIFICATION:
(0 peciMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
SLOL | 8D RS 4 J execuTe (0 OP1NOTON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 0 op2NOT ON HALF-WORD BOUNDARY
Condition Codes J exPONENT UNDERFLOW 0 oP2NOTON FULL-WORD BOUNDARY
Tl'F RESULT = 0. ST 10 0] FIXED-POINT DIVIDE {0 oP2NOT ON DOUBLE.-WORD
C)ie resuLT <o, SET TO 1 0 FIXED-POINT OVERFLOW BOUNDARY
O 1F rRESULT >0.SET TO 2 {0 FLOATING-POINT DIVIDE B or 1 NOT EVEN NUMBERED REGISTER
O overFLOW, SET TC 3 [J oPERATION 0O op 1NOT 0OD NUMBERED REGISTER
M UNCHANGED O none
Function:

Causes the contents of the double word in the pair of registers specified by operand 1 (r,) to be shifted left
the number of bit positions specified by the least significant six bits of the operand 2 address.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] SLDL r,d,(b,)
Implicit Format:
LABEL l AOPERATION A OPERAND
[symbol] SLDL ry s,

Operational Considerations:

L The vacated least significant bit positions of the registers are zero filled.

a Bits shifted out of the even-numbered register are lost.

L Operand 1 {r,) must refer to the even-numbered register of an even-odd register pair.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-156

SLL

General Possible Program Exceptions
0PCODE | rommar ?NBS-‘:CT {] ADDRESSING. O rrOTECTION
TvPE LGTH. {J OATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. |HEX. i8yTes) |} 3 DECIMAL DIVIDE (QJ speciFicaTiON:
D DECIMAL OVERFLOW G NOT A FLOATING-POINT REGISTER
SLL 89 RS 4 {J execuTe [0 oP1NOTONHALFWORD BOUNDARY
: 0 exPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW O OP 2 NOT ON FULL WORD BOUNDARY
T F RESULT -0 seT 70 0 [0 FIXED-POINT DIVIDE 0 oep2nOT ON DOUBLE-WORD
Clie ResuLT <0" SET TO 1 {J FIXED-POINT OVERFLOW O 8OUNDARY .
[iF RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)!F OVERFLOW. SET TO 3 (] oPERATION O or 1 NOT ODD NUMBERED REGISTER
B UNCHANGED B none
Function:

Causes a full word in operand 1 {r;} to be shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address.)

Explicit Format:

LABEL AOPERATION A I OPERAND
[symbol] SLL ' r,.d,(b,)
Implicit Format:
LABEL l A OPERATION A ’ OPERAND
[symbol] SLL Ty S,

Operational Considerations:

] The vacated least significant bit positions of the register are zero filled.

- Bits shifted out of the register are lost.

2-157

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
SLM
General Possible Program Exceptions
opcooe | romrmar IONBSJ'IECT Il ADDRESSING Ml FROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT) | (J SIGNIFICANCE
MNEM. lHEX. (8vTes) || (0 DECIMAL DIVIDE [0 SPECIFICATION:
(] beEcimAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
SLM B8 RS 4 [] ExecuTE 0 oP1NOTONHALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O EXPONENT UNDERFLOW [| OP 2 NOT ON FULL-WORD BOUNDARY
TI1F RESULT = 0. 56T 10 0 [0 FIXED-POINT DIVIDE (0 oP2NOT ON DOUBLE-WORD
O e RESULT<0l, SET TO 1 [FiXED-POINT OVERFLOW a BOUNDARY
[J1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
(]'F OVERFLOW, SET TO 3 B OPERATION (0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED O nonNE

Function:

Causes the contents of operand 2, one or more full words in main storage, to be placed in the problem
registers of operand 1 (r;) through operand 3 (r3).

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] SLM r,.ry.d, (b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] SLm ryf3:S,

UP-8914 SPERRY UNIVAC 0S/3 2-158
ASSEMBLER Update B
SLR
General Possible Program Exceptions
0PCODE | rormar IONBSJ'ECT [] ADDRESSING O prOTECTION
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8YTes) || [J DECIMAL DIVIDE (1 sPECIFICATION:
(O oeciMAL OVERFLOW [0 NOT A FLOATING-POINT REGISTER
SLR | 1IF RR 2 [J execuTe [0 OP1NOTONHALF-WORD BOUNDARY
[EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O EXPONENT UNDERFLOW [0 . opP 2 NOT ON FULL-WORD BOUNDARY
T ser 100 [FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
B seT 701 O FIXED-POINT OVERFLOW 0 BOUNDARY
W seT o2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
W seTTo3 [) OPERATION [0 oF1NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS 8 none

Function:

Causes the contents of the operand 2 {r,) register to be subtracted logically from the contents of the
operand 1 (ry) register. The difference is placed in operand 1 (ry).

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] SLR ryofy

Operational Considerations:

The subtraction is performed by adding the twos complement of operand 2 to operand 1.
All 32 bits of both operands are used.

The contents of operand 2 remain unchanged.

The condition code is set to:

— 1if result is not zero (no carryout of most significant bit position);

— 2 if result is zero (carryout of most significant bit position); or

— 3 if result is not zero (carryout of most significant bit position).

Code O is not used. A zero difference cannot be obtained without a carryout of the most significant bit
position.

UP-8914 SPERRY UNIVAC 08/3 2-159

ASSEMBLER
SP
General Possible Program Exceptions
OPCODE | romrmaT 'ONBSJE.CT B ADDRESSING M PROTECTION
TvPE LoTH. 8l DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8yTES) || [0 DECIMAL DIVIDE (3 sPectFICATION:
B DECIMAL OVERFLOW 7] NOTAFLOATING-POINT REGISTER
SP FB SS 6] eEXECUTE] OP1NOTON HALFWORD BOUNDARY
7] EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B s RESULT -0 SeT o0 (] FIXED-POINT DIVIDE O op2nOT ON DOUBLE-WORD
1 RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW o BOUNDARY
B \F RESULT >0, SET-TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
. IF OVERFLOW, SETTO 3 G OPERATION D OP 1 NOT ODD NUMBERED REGISTER
[UNCHANGED J nonNe ’
Function:

Subtracts the contents of operand 2 from the contents of operand 1. The results are placed in operand 1.

Explicit Format:

LABEL - ' A OPERATION A OPERAND

[symbol] | sP d, (1,.,b,).d,(1,,b,)

implicit Format:

LABEL l AOPERATION A OPERAND

[symbol] SP s, {1;).s,(1,)

Operational Considerations:

L] Subtraction is accomplished by reversing the sign of operand 2 and performing a decimal add. The
contents and sign of operand 2 are not affected by this operation.

- All signs and digits are checked for validity, and the sign of the result is determined algebraicaily.
= A zero result has a positive sign when the operation is completed without overflow.

a When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had.

UP-8914 SPERRY UNIVAC 0S/3 2-160
ASSEMBLER

SP

L] if operand 2 is shorter than operand 1, operand 2 is extended with zero digits.

L] An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

. Operand 1 and operand 2 may overlap if their least significant bytes coincide. Incorrect overlay wiil
cause a data exception.

UP-8914 SPERRY UNIVAC 0S/3 2-161
ASSEMBLER Update B

SPM

General Possible Program Exceptions
OPCODE | rormaT ?N?SJECT [] ADDRESSING O proTECTION
YPE LGTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTes) || [J DECIMAL DIVIDE O SPECIFICATION:
O peciMAL OVERFLOW O NOTA FLOATING-POINT REGISTER
SPM | 04 RR 2 [0 execuTe O oP1NOTONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW (0 oP2NOTONFULL-WORD BOUNDARY
B oc 100 [J FIXED-POINT DIVIDE O oP2NOT ON DOUBLE WORD
B sET o1 O FIXED-POINT OVERFLOW O BOUNDARY
W seT 1o 2 O FLOATING.POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
WseETTO3] oPERATION 0 op1NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS W none

Function:

Causes the program mask field (bits 34 through 39) of the current program status word (PSW) to be
changed according to the contents of operand 1 (ry).

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] SPM r

Operational Considerations:

L Bits 2 through 7 of the full-word contents of operand 1 {r,) replace the program mask field (bits 34
through 39) of the current PSW.

u Bits O, 1, and 8 through 31 of r; are ignored.

= The condition code is set equal to bit positions 2 and 3 of the first operand.

UP-8914 SPERRY UNIVAC 0S/3 2-162

ASSEMBLER
SR
General Possible Program Exceptions
0PCODE | roRMAT ?NB;ECT [] ADDRESSING {] pROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. 1HE x. (8vTes) || [] DECIMAL DIVIDE [0 sPECIFICATION:
(0 peciMAL OVERFLOW [J NOTAFLOATING-POINT REGISTER
SR 1B RR 2 [J execuTe O OP 1 NOT ON HALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B r rcsoiT oSt To o [0 FIXED-POINT DIVIDE 0 or2NOT ON DOUBLEWORD
8 F RESULT <0, SET TO 1 B FIXED-POINT OVERFLOW 0 BOUNDARY
B F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
BlF OVERFLOW, SET TO 3] OPERATION 00 oP1NOTODD NUMBERED REGISTER
[JUNCHANGED (0 none

Function:

Causes the contents of the operand 2 (r;) register to be subtracted from the contents of the operand 1 {(r,)
register. The results are placed in the operand 1 (r,) register.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] SR ry oy

Operational Considerations:

» The subtraction is performed by converting the number in operand 2 (r,) into a signed twos
complement binary number and then algebraically adding it to the value in operand 1 (r;).

= The maximum fixed-point number that can be contained in a 32-bit register is 2,147,483,647(23'—1);
the minimum number is —2,147,483,648(—23'). For decima! numbers outside this range, an

overflow condition is produced.

L] The contents of operand 2 (r;) are not changed by the subtract (SR) instruction.

UP-8914 SPERRY UNIVAC 0S/3 2-163
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT
ADDRESSING O rPROTECTION
OPCODE FORMAT | INST. O
TvPE LGTH. [J DATA (INVALID SIGN/DI1GIT) | (] SIGNIFICANCE
MNEM. lHEX, (8vTes) || (] DECIMAL DIVIDE [0 sPeCIFICATION:
0 oeciMAL OVERFLOW NOT A FLOATING-POINT REGISTER

SRA | 8A RS 4 [ExecuTE OF 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

B iFf RESULT =0, SETTO O
B irresuLT <0, SETTO 1
B F RESULT >0, SET TO 2
[OJiF OVERFLOW, SET TO 3
O UNCHANGED

[J EXPONENT OVERFLOW
[J EXPONENT UNDERFLOW
(] FIXED-POINT DIVIDE

J FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
] oOPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NCT ODD NUMBERED REGISTER
NONE

BO00 0O00OQao

Function:

Causes the 31-bit integer field in the register specified by operand 1 (r) to be shifted right the number of
bit positions specified by the six lower bits of the second operand (s,) address.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] SRA ry.d, (bz)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] SRA ry S,

Operational Considerations:

. The 31-bit integer field of the first operand (r;) is shifted right the number of bit positions specified by
the low-order six bits of the second operand address. The sign bit remains unchanged.

L The bits shifted out of the low-order bit position of the register are lost; the vacated high-order bit
positions of the register are sign filled.

UP-8914

SPERRY UNIVAC 0S/3 2-164
ASSEMBLER

SRA

A right shift of one bit position is equivalent to division by 2 with rounding downward. When an even
number is shifted right one position, the value of the field is that obtained by dividing the value by 2.
When an odd number is shifted right one position, the value of the field is that obtained by dividing
the next lower number by 2. For example, 5 shifted right by one bit position vields +2, whereas —5
yields —3.

A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer
field of a positive number has been shifted out, the register contains a value of zero. For a negative

number, the register contains a value of —1.

A zero shift value provides a sign and magnitude test.

UP-8914 SPERRY UNIVAC 0S/3 2-165
ASSEMBLER
SRDA
General Possible Program Exceptions
0rcoBE | rormat ?Nss-’icr 7] ADDRESSING [prOTECTION
. TYPE LGTH [l DATA (INVALID SIGN/DIGIT)| (T SIGNIFICANCE
MNEM. |HEX. isvies' || [0 DECIMAL DIVIDE B srecCIFiCATION:
{TJ beEciMAL OVERFLOW {0 NOTAFLOATING-POINT REGISTER
SRDA | 8E RS 4 JexecuTe 0 OP1NOTON HALF WORD BOUNDARY
[J EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes T exPONENT UNDERF LOW O oP2NOT ON FULL-WGRD BOUNDARY
B rRcooiT oo ST To0 {J FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
B¢ ResuLT <O, SET TO 1 [FIXED-POINT OVERFLOW - BOUNDARY
BF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D”: OVERFLOW, SET TO 3 D OPERATION a OP 1 NOT ODD NUMBERED REGISTER
O uNcHANGED O none

Function:

Causes the 63-bit integer field in the pair of registers specified by operand 1 {r;} to be shifted right the
number of bit positions s_pecified by the six low-order bits of the second operand (s,) address.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] | SRDA ry.dy (b))
implicit Format:
LABEL AOPERATION A OPERAND
[symbol] SRDA r,.5,

Operational Considerations:

Operand 1 (ry) must refer to an even-numbered register of an even-odd register pair.

The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit
integer. The bits shifted out of the low-order bit position of the odd register are lost; the vacated high-
order bit positions of the register pair are sign filled.

A right shift of one bit position is equivalent to dividing the number by 2, without a remainder.

Shifting 63 bits causes the entire integer to be shifted out of the register. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of —1.

A zero shift value in the double-shift operations provides a double-length sign and magnitude test.

upP-8914 SPERRY UNIVAC 0S/3 2-166

ASSEMBLER
SRDL
Sy
General Possible Program Exceptions
0PCODE | Formar IONBSJ’E.CT [] ADDRESSING O rroTECTION
TvpE LoTh. [J DATA (INVALID SIGN/D1GIT) | (] SIGNIFICANCE
MNEM. THEX. 18yTes) ||) DECIMAL DivIDE M SPECIFICATION:
[J oeciMAL OVERFLOW {1 NOTA FLOATING-POINT REGISTER
~ | SROL } 8C RS 4 [] execuTe 0 ©oP1NOTON HALF.WORD BOUNDARY
[EXPONENT OVERFLOW 0 op2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW 0O oP2NOT ON FULL-WORD BOUNDARY
AT Y [FIXED-POINT DIVIDE 0O or2NOT ON DOUBLE-WORD
CJiF rResuLT <0, SET TO 1 O FIxED-POINT OVERFLOW n BOUNDARY
CJ1F RESULT >0, SET 70 2] FLOATING. POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
D|; OVERELOW. SET TO 3 [] OPERATION O OP 1 NOT ODD NUMBERED REGISTER
) UNCHANGED : {J none
Function:

Causes the contents of the double word in the pair of registers specified by operand 1 (r,) to be shifted right
the number of bit positions specified by the least significant six bits of the operand 2 address.

Explicit Format:

-

LABEL AOPERATION A OPERAND

[symbol] | SRDL r, .dy (b,)

Implicit Format:

LABEL l AOPERATION A l OPERAND

[symbol] SRDL rysS,

Operational Considerations:
L] The vacated most significant bit positions of the registers are zero filled.
L] Bits shifted out of the odd-numbered register are lost.

= Operand 1 (r,}) must refer to the even-numbered register of an even-odd register pair.

UP-3914 SPERRY UNIVAC 0S/3 2-167

ASSEMBLER
SRL
General . Possibie Program Exceptions
0PCODE | fommAT ?NBS-'EICT] ADDRESSING ‘ O PROTECTION
TYPE LGTH. {J pATA (iINVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. syTes) || 0 DECIMAL DIVIDE (O speciFicaTION: ‘
(0 oecimaL OVERFLOW {0 NOTAFLOATING-POINT REGISTER
SAL | 88 RS .8 (] execuTe [0 P 1NOTON HALF-WORD BOUNDARY
[exPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW] OP 2 NOT ON FULL-WORD BOUNDARY
DT mecoiT - 0 scr 700 O Fixep-POINT DIVIDE O or2 NOT ON DOUBLE-WORD
Cl ¢ ResULT <0, SET TO 1 O FixED-POINT OVERFLOW O BOUNDARY
D \F RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
Cl1F OVERFLOW, SET TO 3] oPERATION O oP 1 NOT ODD NUMBERED REGISTER
M) UNCHANGED B none
Function:

Causes a full word in operand 1 {ry) to be shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] SRL : r, d,(b,)

Implicit Format:

LABEL | ~ AOPERATION A OPERAND

[symbol] SRL ry Sy

Operational Considerations:
s The vacated most significant bit positions of the register are zero filled.

» Bits shifted out of the register are lost.

UP-8914 SPERRY UNIVAC 0S/3 2-168

ASSEMBLER
SRP
General Possible Program Exceptions
0rcoDE | rommat ?NBS-’_:_E.CT Il ADDRESSING 8l PROTECTION
TyPe LaTh. #l DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. syTes) || O oecimaL biviDE O speciFicaTiON:
B DeciMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
SRP | FO s 6 O execuTe 0 OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW O oP2NOTON FULL-WORD BOUNDARY
]] FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
] " ;::Stl 2%'55?;:.%‘: J FIXED-POINT OVERFLOW g BOUNDARY
B RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OF 1 NOT EVEN NUMBERED REGISTER
Il 'F OVERFLOW, SET TO 3 J oreraTION U op 1 NOT ODD NUMBERED REGISTER
JuNcHANGED J none
Function: ‘

Shifts a packed decimal number whose main storage location is addressed by operand 1 in the direction
and the number of bytes specified by operand 2. For right shifts, the instruction rounds the decimal resuit
according to the byte of immediate data contained in immediate operand 3.

Explicit Format: . ‘

LABEL I AOPERATION A OPERAND

[symbol] SRP d (1,.b,).d,(b,) i,

Implicit Format:

LABEL l AOPERATIONA | OPERAND

[symbol] SRP s, (1,)8,.i5

Operational Considerations:

= Operand 2 forms an effective address, the low-order six bits of which specify the direction and extent
of the shift. These six bits are taken as a digit, the high-order bit of which specifies the direction of
the shift: O for a left shift, 1 for a right shift. The absolute vaiue of the integer determines the number
of bytes to be shifted. Shifts can range from a left shift of 31 bytes to a right shift of 32 bytes.

a The low-order four bits of the operand 1 area in main storage are unchanged by this instruction; data
is shifted in or out from the high-order four bits of the low-order byte addressed.

UP-8914 SPERRY UNIVAC 0S/3 2-168
ASSEMBLER

SRP

] Zeros are shifted in to replace vacated digits.

s For a right shift, the value contained in immediate operand 3 is added to the last digit shifted out. A
carry may result, in effect rounding the remaining data up to the next whole integer. Usual values for
operand 3 are O (no rounding) and 5 (rounding). '

- Operand 2 may be a self-defining term.

UP-8914 SPERRY UNIVAC 0S/3 2-170

ASSEMBLER
ssK* ’
General Passible Program Exceptions
OBJECT || ADDRESSING O PROTECTION
oPCODE FORMAT | INST.
TYPE LGTH (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. JHEX. svTesy || 0 DECIMAL DIVIDE 8l sPeCIFICATION:
[0 oecimacL overrFLOw 0 NOTAFLOATING-POINT REGISTER
SsK | 08 RR 2 [J execuTe 1 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW 0 op2nNOTON FULLWORD BOUNDARY
DT ResoiT- o sev 100 [J FIXED-POINT DIVIDE 0O oe2NOT ON DOUBLE WORD
CliF resuLt <o, SET TO 1 [0 FiXED-POINT OVERFLOW 0 8OUNDARY
Cl/F RESULT >0, SET TO 2 O] FLOATING-POINT DIVIDE g OP 1 NOT-EVEN NUMBERED REGISTER
{J1F OVERFLOW, SET TO 3 Bl OPERATION OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED 0O ~nowne
Function:

Specifies storage protection biocks of 512 bytes or 1024 bytes.

Explicit and Implicit Format:

LABEL ’ AOPERATION A OPERAND

[symbol] SSK rely

*SSK is a featured instruction. If this instruction is issued to a processor that does not have the control feature installed,
an operation exception will result.

UP-8914 SPERRY UNIVAC 0S/3 2-171
ASSEMBLER Update B
SSM
General Possible Program Exceptions
0pcoDE | FormaT ?NBSJECT I ADDRESSING #l PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. JHEX. (8yTEs) || O DECIMAL DIVIDE [0 sPECIFICATION:
O DECIMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
SSM 80 S 4 [0 execuTe 0 oP1NOTONHALF-WORD BOUNDARY
[(J EXPONENT OVERFLOW O orP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 eXxPONENT UNDERFLOW 0 orP2NOT ON FULL-WORD BOUNDARY
TT1r RESULT - 0. SET 100 [0 FIXED-POINT DIVIDE 0 or2NOT ON DOUBLE-WORD
[1F RESULT <0, SET TO 1 [0 FIXED-POINT OVERFLOW O BOUNDARY
C]1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW, SETTO 3 . OPERATION U OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED 0 none

Function:

Causes the system mask of the current PSW to be replaced by the first half word of the first operand

(bits 0—7).

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] SSM d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] SSM 3

t 4

UP-8914 SPERRY UNIVAC 0S/3 2-172

ASSEMBLER
SSTM
General Possible Program Exceptions
0PCODE | fommaT IONBSJT"E.CT [ADDRESSING @ PROTECTION
TYPE LGTH. (] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. THEX. (8yTes) ||] DECIMAL DIVIDE [] sPECIFICATION:
[] beEciIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
SSTM | BO RS 4 [execuTe [J oP1NOTONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW O oP2NOT ONHALF-WORD BOUNDARY
Condition Codes] EXPONENT UNDERFLOW | OP 2 NOT ON FULL-WORD BOUNDARY
O] - [J FIXED-POINT DIVIDE (0 oP2NOT ON DOUBLE-WORD
D:i zézﬂtl %%’SSZ:.:.OO‘: [FIXED-POINT OVERFLOW O BOUNDARY
D)IF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3 B OPERATION (0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED [J nonNEe

Function:

Causes the contents of the registers specified by operand 1 {r;) through operand 3 {r;) to be stored in
operand 2, one or more full words in main storage.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbot] SST™M ryf3.d,(b,)

Implicit Format:

LABEL ‘ AOPERATION A OPERAND

[symbol] SSTM ryf3iSy

UP-8914 SPERRY UNIVAC 0S/3 2-173
ASSEMBLER
ST
General Possible Program Exceptions
OPCODE | roRMAT ?{:SJ:CT] ADDRESSING Bl PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [[] SIGNIFICANCE
MNEM. [HEX. 8yTes) || O DECIMAL DIVIDE I SPECIFICATION:
(0 oeciMAL OVERFLOW {0 NOTAFLOATING-POINT REGISTER
ST 50 RX 4 O execuTe O oP1NOT ONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW {3 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW] OP 2 NOT ON FULL-WORD BOUNDARY
T Y [J FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
e RESULT <0, SET TO 1 O FIXED-POINT OVERFLOW o 8OUNDARY
CliF RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
JIF OVERFLOW, SET TO 3 (] oPERATION 0 op 1 NOT ODD NUMBERED REGISTER
8 UNCHANGED O none
Function:

Causes the contents of the operand 1 (r,) register to be stored in operand 2, a full word in main storage.

Explicit Format:

LABEL I AOPERATION A | OPERAND
[symbol] ST r,dy(x,,b,)
Implicit vFormat:
LABEL l A OPERATION A ' OPERAND
[symbol] ST r, '32("2’

Operationai Considerations:

L The contents of the operand 1 (r,) register are not changed by the store (ST) instruction.

L Operand 2, a full word in main storage, must be on a full-word boundary.

L] Operand 1 is the sending field; operand 2, the receiving field.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-174

STC

General Possible Program Exceptions
OPCODE | rommaT ?:;E.CT I ADDRESSING B PROTECTION
TYPE LGTH.] DATA (INVALID SIGN/DIGIT) | O SIGNIFICANCE
MNEM. |HEX. (sytes) || (0 oECiMAL DIVIDE {0 speciFicCATION:
O oecimaL overFLOW 0 NOTA FLOATING-POINT REGISTER
STC | 42 RX 4] execuTe O oP1NOT ON HALF-WORD BOUNDARY
[0 exPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 eXPONENT UNDERFLOW 00 op2NOT ON FULL-WORD BOUNDARY
T11F RESULT = 0,567 T0 0 O FiXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
C)iF resuLt <o, SET TO 1 [0 FiXED-POINT OVERFLOW 0 BOUNDARY
[Jif RESULT >0, SET TO 2 O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
{JIF OVERFLOW, SET TO 3 [J oreRATION O oF 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the least significant eight bits of the operand 1 (r,) register t6 be stored in a byte of main storage

specified by operand

Explicit Format:

2.

LABEL A OPERATION A OPERAND
[symbol] STC ry.dy(x,.b,)
Implicit Format:
LABEL l A OPERATION A | OPERAND
[symboi] STC ry Sy(x,)

Operational Considerations

The contents of operand 1 (r,) remain unchanged.

2-175

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update B
General Possible Program Exceptions
OBJECT || gy ADDRESSING B PROTECTION
OPCOPE FORMAT | INST. 1T} | [J SIGNIFICANCE
TYPE LGTH. [J DATA (INVALID SIGN/DIG
MNEM. [HEX. (8vTes) || 0 DECIMAL DIVIDE [sPECIFICATION:
(0 peciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
STCM | BE RS 4 [J execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

[(JiF RESULT = 0, SET TO 0
OiF resuLT <0, SET TO 1
OIF RESULT >0, SET TO 2
O IF OVERFLOW, SET TO 3
B UNCHANGED

(0 EXPONENT OVERFLOW
[0 EXPONENT UNDERFLOW
[FIXED-POINT DIVIDE

[0 FIXED-POINT OVERFLOW
(0 FLOATING-POINT DIVIDE
[J oPERATION

OO0 ooooo

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Function:

Stores some or all of the contents of the operand 1 register to the main storage location starting at the

operand 2 address.

Explicit Format:

The mask specified by operand 3 controls the storage operation.

LABEL A OPERATION A OPERAND
[symbol] STCM r,.m,.d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] STCM r,,mg.s,
Operational Considerations:
L] Operand 2 need not reside on a full-word boundary.

= Operand 3 must be specified as a self-defining term.

UP-8914 SPERRY UNIVAC 0S/3 2-176

ASSEMBLER Update B
STCTL
General Possible Program Exceptions
0PCODE | FommarT ?NB;TE-CT [l ADDRESSING 8 PROTECTION
TYPE LGTH. (] DATA (iINVALID SIGN/DIGIT) | [(J SIGNIFICANCE
MNEM. IHEX. igyTes) || 0 DECIMAL DIVIDE B SPECIFICATION:
[J becimaL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
STCTL | B6 RS 4 (0 execuTe [0 OP1NOTONHALF-WORD BOUNDARY
[J EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 ExPONENT UNDERFLOW 8 OP 2 NOT ON FULL-WORD BOUNDARY
T IF RESULT - 0 SET 10 0] FIXED-POINT DIVIDE 00 opP2NOT ON DOUBLE-WORD
Chir RESULT<0"SET 101 [] #IXED-POINT OVERFLOW O BOUNDARY
ClIF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[]iF OVERFLOW, SET TO 3 B OPERATION 0 oP1NOT ODD NUMBERED REGISTER
8 UNCHANGED O none

Function:

Stores the control registers starting with the operand 1 register and ending with the operand 3 register to
contiguous full words in main storage starting at the operand 2 address.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] STCTL r,rs.d, (b2)

Implicit Format:

LABEL AOPERATION A OPERAND
[symbol] STCTL ryf3.S,

2-177

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
STD
Floating Point
General Possible Program Exceptions
OPCODE OBJECT || oy ADDRESSING B PROTECTION
FORMAT | INST.
TveE LoTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8yTes) || (] DECIMAL DiViDE 8 SPECIFICATION:
0 pecIiMAL OVERFLOW B NOT AFLOATING-POINT REGISTER
STD | 60| RX 4 J execuTe {0 OP 1 NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW {0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
TIF RESULT = 0 SETTO 0 O FIXED-POINT DIVIDE B oF 2 NOT ON DOUBLE-WORD
O iF RESULT <0, SET TO 1] FIXED-POINT OVERFLOW O BOUNDARY
D {F RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 ‘NOT EVEN NUMBERED REGISTER
C)iF OVERFLOW, SET TO 3] oPERATION O o 1 NOT OOD NUMBERED REGISTER
B UNCHANGED I nownE
Function:

Causes the contents of the register specified by operand 1 (r;) to be placed in a double word in main

storage specified by operand 2.

Explicit Format:

‘A OPERATION A

LABEL OPERAND
N
[symbol] STD r,d,(x,.b,)
Implicit Format:
LABEL ' AOPERATION A l OPERAND
[symbol] STD ryS,(x,)

Operational Considerations:

s The contents of the operand 1 (r,) register remain unchanged.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-178

STE

Floating Point
General Possible Program Exceptions
0PCODE | FoRMAT ?NBS-‘ECT I ADDRESSING W FROTECTION
TvPE LGTH.] 0ATA (iINVALIO SIGN/OIGIT) | [] SIGNIFICANCE
MNEM. |HEX. svTes) || 0 cecimaL Divioe B SPECIFICATION:
O oecimaL oveERFLOW B NOTA FLOATING-POINT REGISTER
STE | 70 RX 4 O execuTe 0 oOP1NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW 0 or2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW B orP2NOTON FULL-WORD BOUNDARY
TT i AesOLT - 0. 5e7 100 {J FIXED-POINT DIVIDE 0O or2NOT ON DOUBLEWORD
EiF RESULT <o, SET TO 1 O FIXED-POINT OVERFLOW 0 8OUNDARY
Cli¢ RESULT >0, SET TO 2 J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJ1F OVERFLOW, SET TO 3 [oPERATION O op1NOT ODD NUMBERED REGISTER
B UNCHANGED O none
Function:

Causes the contents of a full word in the register specified by operand 1 (r;) to be placed in a full word in
main storage specified by operand 2.

Explicit Format:

LABEL ‘ AOPERATION A OPERAND
[symbol] STE ry.d, (xy,b,)
Implicit Format:
LABEL l AOPERATION A OPERAND
[symbol] STE ry.8,(x,)

Operational Consideration:

L] The contents of the operand 1 (r,) register remain unchanged.

UP-8914 SPERRY UNIVAC 0S/3 2-179
ASSEMBLER
STEP
General Possible Program Exceptions
0PCODE | rommar ?NBS-'ECT g ADDRESSING #l PROTECTION
TerE LaTh. [] DATA {INVALID SIGN/DIGIT)| [SIGNIFICANCE
MNEM. [HEX. syTes) || O peECIMAL DIVIDE B SPECIFICATION:
, 0 pecimaL OVERELOW [0 NOTA FLOATING-POINT REGISTER
STEP | BS sl 4 0 execuTe [0 OP1NOT ON HALF-WORD BOUNDARY
(] EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW B 0P 1 NOT ON FULL WORD BOUNDARY
Bosr 00 {J FIXED-POINT DIVIDE 0 or2nNOT ON DOUBLE-WORD
M seTTO 1 O FixXED-POINT OVERFLOW O BOUNDARY
W seT 102 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
W seTT03 0 opeRATION 0 op1NOT ODD NUMBERED REGISTER
(] UNCHANGED {3 none

Function:

Moves the specified station one position forward or backward in the list whose list control block is
addressed by operand 1. This instruction can aiso call a list control program.

Explicit Format:

LABEL ’ AOPERATION A l OPERAND
[symbol] I STEP l d, (b,)i,
Implicit Format:
LABEL I A OPERATION A ' OPERAND
{[symbol] STEP S, /iy

UP-8914 SPERRY UNIVAC 0S/3 2-180

ASSEMBLER
STH
General Possibie Program Exceptions
oPCODE | rormAT ?Nasfc" f} ADDRESSING Ml PROTECTION
TyPE LGTH. [J bATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. eyTes) || O DECIMAL DIVIDE Bl SPECIFICATION:
{J oecimaiL overFLOW 0 NOTA FLOATING-POINT REGISTER
STH | & RX 4 {0 execuTe {0 OP 1 NOT ON HALF-WORD BOUNDARY
(0 EXPONENT OVERFLOW B oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exronNeNT uNDERFLOW O op2NOT ON FULL-WORD BOUNDARY
Tj?aesux.r g ;-o >] FIXED-POINT DIVIDE 8O op2noOT ON DOUBLE-WORD
O i¢ ResuLT <o, SET TO 1 O FiXED-POINT OVERFLOW 0 BOUNDARY
CJ1F RESULT >0, SET TO 2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)iF OVERFLOW, SET TO 3 (] OPERATION 0O or 1 nOT ODD NUMBERED REGISTER
B UNCHANGED O ~none
Function:

Causes the least significant 16 bits of the operand 1 (r,) register to be stored in operand 2, a half word in
main storage.

Explicit Format:

LABEL AOPERATION A I OPERAND

[symbol] ’ STH ey (X, b,)

Implicit Format:

LABEL | AOPERATION A l OPERAND
[symbol] STH ryS,(x,)

Operational Considerations:
] The contents of the operand 1 (r,) register are not changed by the store half word (STH) instruction.
- Operand 2, a half word in main storage, must be on a half-word boundary.

n Operand 1 is the sending field, operand 2 the receiving field.

UP-8314 SPERRY UNIVAC 0s/3 2-181

ASSEMBLER
STM
General Possible Program Exceptions
OPCODE | FormAT ?NBSJTECT Bl ACDRESSING # PROTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | (J SIGNIFICANCE
MNEM. [HEX. svTes) || O] DECIMAL OIVIDE 8 SPECIFICATION:
O peciMAL OVERFLOW (0 NOTA FLOATING-POINT REGISTER
ST™M | 920 RS 4 0 execute O - oOP 1 NOT ON HALF-WORD BOUNDARY
' (J EXPONENT OVERFLOW 0O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW # 0oP 2 NOT ON FULL-WORD BOUNDARY
-EI TP —— [FIXED-POINT DIVIDE O op2nOT ON DOUBLE-WORD
CJ1F resuLT <0, SET TO 1 [FiIXED-POINT OVERFLOW o BOUNDARY
CliF RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE 5 OP 1 NOT EVEN NUMBERED REGISTER
[JtF ovERFLOW, SET TO 3 [J oreraTION OP 1 NOT OO0 NUMBERED REGISTER
B UNCHANGED ‘0 none
Function:

Causes the contents of the registers specified by operand 1 (r,) through operand 3 (r;) to be stored in
operand 2, one or more full words in main storage.

Explicit Format:

LABEL | AOPERATION A OPERAND

[symbol] ST™M r, r3.d,(b,)

Implicit Format:

LABEL ‘ AOPERATION A | OPERAND
[symbol]. ST™M rq/F3.8,

Operational Considerations:
[] The contents of the general registers starting with the register specified by operand 1 (r,} and ending
with the register specified by operand 3 {r;) are stored in one or more full words in main storage
beginning with the address specified by operand 2 (s,).

. The registers are used in ascending numeric sequence beginning with the register specified by
operand 1 (r,) and continuing through the register specified by operand 3 (r3).

s One register may be stored by specifying the same register for both operand 1 (r,) and operand 3 (r;).

SPERRY UNIVAC 0S/3 2-182

uP-8914
ASSEMBLER
STM

L if the register specified by operand 3 (r;) is lower than the register specified by operand 1 (r,) then the
register specified by operand 1 (r,) and all registers with a number greater than operand 1 (r,), plus
the register specified by operand 3 (r;) and ail registers with a number less than operand 3 (ry), are
stored.

] The contents of all registers used remain unchanged.

L] Operand 2 (s,) must be on a full-word boundary.

UP-8914 SPERRY UNIVAC 0S/3 2-183
ASSEMBLER Update B

STR

General Possible Program Exceptions
OBJECT || m ADDRESSING O proTECTION
OPCODE FORMAT | INST.
TYPE LGTH [DATA (INVALID SIGN/DIGIT}| [J SIGNIFICANCE
MNEM. lHEX. (8yTes) || O DECIMAL DIVIDE B SPECIFICATION:
[0 pecimAL OVERFLOW {J NOTAFLOATING-POINT REGISTER
STR | 03 RR 2 O execuTe [0 OF1NOT ON HALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes D EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B o 700 [0 FIXED-POINT DIVIDE 0 op2nOT ONDOUBLE.WORD
W seT o0 O FIXED-POINT OVERFLOW BOUNDARY
W sET 0 2 [] FLOATING-POINT DIVIDE 0 opP1NOTEVEN NUMBERED REGISTER
W seTTO3 B OPERATION 00 op1NOT ODD NUMBERED REGISTER
O ~none
Function:
Controls internal timer register.
Explicit and Implicit Format:
LABEL AOPERATION A OPERAND

[symbol] STR ry.

UP-8914 SPERRY UNIVAC 0S/3 2-184

ASSEMBLER
STRR
General Possible Program Exceptions
orcoe | rormar ?NBSfCT I ADDRESSING B PROTECTION
TYPE LGTH. [DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8yTes} ||] DECIMAL DIVIDE B SPECIFICATION:
[becIMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
STRR | A2 RS 4 O execuTe [0 OP1NOTONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW [| OP 2 NOT ON FULL-WORD BOUNDARY
& [FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
0 ::: 252&: 2%;';1%‘: [FIXED-POINT OVERFLOW 0 BOUNDARY .
O] 1F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O)IF OVERFLOW, SET TO 3 B OPERATION (0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED 0 nonNE

Function:
Stores the relocation register specified by operand 1 to the main storage full word specified by operand 2.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] STRR r,.dy(b,)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] STRR r.S,

2-185

uP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
STS
General Possibie Program Exceptions
0PCODE | rormaT '?S-’_ECT J ADDRESSING I PROTECTION
TveE LoTH. [] DATA (INVALID SIGN/DIGIT) | (] SIGNIFICANCE
MNEM. [HEX. 8yres) || CJ DECIMAL DIVIDE W SPECIFICATION:
D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
STS (8302 $ 4 J execuTe {0 ©oP1NOT ON HALF-WORD BOUNDARY
[EXPONENT OVERFLOW 00 oP2NOT ONHALF-WORD BOUNDARY
Condition Codes [0 exrPONENT UNDERFLOW 0 oP2NOTON FULL-WORD BOUNDARY
T TF RESULT o SeTT00 [J FIXED-POINT DIVIDE B orP2NOT ON DOUBLE-WORD
0 1¢ resuLT <o, SET TO 1 0] FIXED-POINT OVERFLOW a BOUNDARY
D I'F RESULT>0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
(317 OVERFLOW, SET TO 3 B OPERATION 00 or 1 NOT ODD NUMBERED REGISTER
B UNCHANGED I none
Function:

Stores the contents of processor hardware areas (registers, etc) into main. storage starting at the

operand 2 |ocation.

“' Explicit Format:
LABEL | AOPERATION A ! OPERAND
[symbol] STS d2 (bz)
implicit Format:
LABEL ! AOPERATION A OPERAND
[symbol] STS 5,

uP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-186

SU

bFloaung Point

General Possible Program Exceptions
0PcoE | rormar ?:;_ECT) ADDRESSING B PROTECTION
TYPE LoTH. [J oATA (INvALIO S1GN/01GIT) | Il SIGNIFICANCE
MNEM. [HEX. @®vTes) || 0] DECIMAL DIVIDE Ml SPECIFICATION:
: O oecimaL ovERFLOW B NOT A FLOATING-POINT REGISTER
su F RX 4 O execuTe 0 o©OP 1NOT ON HALF-WORD BOUNDARY
M EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J expronenT UNDERFLOW B oF 2 NOT ON FULL-WORD BOUNDARY
B AcSULT -0 SeTT00 [FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
M F ReSULT <0, SET TO 1 0 FIXED-POINT OVERFLOW O BOUNDARY '
B 1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
0 'F OVERFLOW,. SET TO 3 {JJ oPERATION O or1NoT 00O NUMBERED REGISTER
| O uncHAaNGED O ~none
Function:

Causes the contents of a full word in main storage specified by operand 2 to'be aigebraicaily subtracted
from the contents of a full word in the register specified by operand 1(r,). The difference is placed in a full
word in the operand 1 (ry) register.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] I SuU ryd,(x,,b,)
implicit Format:
LABEL l AOPERATION A l OPERAND
[symbo!] su ry85(%5)

Operational Consideration:

] The execution of the SU instruction is identical to that of the AU instruction, except that the sign is

reversed before addition.

UP-8914 SPERRY UNIVAC 0S/3 2-187
ASSEMBLER
SUR
Floating Point
General Possible Program Exceptions
0PCODE | FoRMAT ﬁ\?;f” (] ADDRESSING [0 proTECTION
TYPE LGTH. [0 bATA (INVALID SIGN/DIGIT) | [l SIGNIFICANCE
MNEM. JHEX. 8vyTes) || [0 DECIMAL DIVIDE B sPECIFICATION:
[becimAL ovERFLOW B NOT A FLOATING-POINT REGISTER
SUR 3F RR 2 [0 execuTe 0 OP 1 NOT ON HALF-WORD BOUNDARY
W EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 eXxPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
] FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
=:£ 25:35 Q%EZTTTTZC: [0 FIXED-POINT OVERFLOW O BOUNDARY
B \F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED BEGISTER
O'F OVERFLOW, SETTO 3 [0 oPERATION a OP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED O none
Function:

Causes the contents of a full word in the operand 2 (r,) register tc be algebraically subtracted from a full
word in the operand 1 (ry) register. The difference is placed in a full word in the operand 1 (r;} register.

Explicit and Implicit Format:

LABEL

A OPERATION A

OPERAND

[symbol]

Operational Considerations:

SUR

o,

n The execution of the SUR instruction is identical to that of the AUR instruction, except that the sign is

reversed before addition.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-188
Update B

}

SVC

Possible Program Exceptions

General
OBJECT
OPCODE FORMAT | INST.
TYPE LGTH.
MNEM. {HEX. (BYTES)
SVC | 0A RR 2
Condition Codes
B seT 100
M seTT01
B sETTO?2
BseT 103
SEE OPER. CONSIDERATIONS

[] ADDRESSING
] DATA (INVALID SIGN/DIGIT)
(] DECIMAL DIVIDE

(] beECIMAL OVERFLOW

[0 execuTe

{J EXPONENT OVERFLOW

O exPONENT UNDERFLOW

3 FiIXED-POINT DIVIDE

] FIXED-POINT OVERFLOW

] FLOATING-POINT DIVIDE

(J oPERATION

O eprOTECTION
O SIGNIFICANCE
[(J sPECIFICATION:

BOO O0OO0OO

b4
e}
z
m

NOT A FLOATING-POINT REGISTER

OP 1 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER

Function:

Causes the interrupt code field (bits 24 through 31) of the current program status word (PSW) to be
changed according to the contents of operand 1, a byte of immediate data in the instruction.

Explicit and Implicit Format:

LABEL

AOPERATION A

OPERAND

[symbol]

SvC

Operational Considerations:

A supervisor call interrupt request is generated.

When the interrupt is granted, the contents of operand 1 (i,) are stored as the interrupt code (bits 24
through 31) in the current program status word (PSW). The current PSW is stored in the supervisor
call old PSW location, and the contents of the supervisor call new PSW location replace the current

PSW.

The condition code is set equal to bits 34 and 35 of the supervisor call new PSW. It remains
unchanged in the old PSW.

2-189

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER
Floating Point
General Possible Program Exceptions
OPCODE MAT OBSJTECT I ADDRESSING B PROTECTION
F?':PEA ‘::;TQ] DATA (INVALID SIGN/DIGIT) | [l SIGNIFICANCE
MNEM. [HEX. syves) }| [0 oeciMAL DIVIDE Ml SPECIFICATION:
{0 oecimAL OVERFLOW B NOTA FLOATING-POINT REGISTER
SwW 6F RX 4 [execuTe O o©oF1NOTON HALF-WORD BOUNDARY
B EXPONENT OVERFLOW {3 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B AEsoLT 0 SeTTOo0 [J FIXED-POINT DIVIDE B or 2NOT ON DOUBLE-WORD
@ = resuLT <O, SET TO 1 [0 FIXED-POINT OVERFLOW o BOUNDARY
B iF RESULT >0, SET TO 2] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
{JiF ovERFLOW, SETTO 3 (] oPERATION O or 1 NOT 00D NUMBERED REGISTER
| CJuncHANGED O none
Function:

Causes the contents of a double word in main storage specified by operand 2 to be algebraically subtracted
from the contents of the double word in the register specified by operand 1 (r,). The difference is placed in
the double-word operand 1 (r,) register.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] ‘ SW ry.d,(x,,by)
Implicit Format:
LABEL AOPERATION A OPERAND
AR
[symbol] sw F182(%;)

Operational Consideration:

L The execution of the SW instruction is identical to that of the AW instruction, except that the sign is

reversed before addition.

UP-8914 ‘ SPERRY UNIVAC 0S/3 2-180

ASSEMBLER
Floating Point
General Passible Program Exceptions
OBJECT
0PCODE | rormaT | InST (] ADDRESSING O eroTECTION
TvPE LGTH [J oAaTA (INvALID SiGN/O1GIT) | I SIGNIFICANCE
MNEM. |HEX. syTes) || 0 DECIMAL DIVIDE B SPECIFICATION:
O oecimAL OVERFLOW " {H NOT A FLOATING-POINT REGISTER
SWR | 2F RR 2 O execuTe 0 oP1NOTONHALF-WORD BOUNDARY
I EXPONENT OVERFLOW 3 oP2NOT ON HALF-WORD BOUNDARY
-~ Condition Codes (3 EXPONENT UNDERFLOW O op2NOT ON FULL-WORD BOUNDARY
B r REsULT -0 SeTTOO O FIXED-POINT DIVIDE 0 op2NCT ON DOUBLE-WORD
o RESUtT <0, SET TO 1 O FIXED-POINT OVERFLOW a BOUNDARY
D IF OVERFLOW, SETTO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED 0 none
Function:

Causes the contents of the double word in the operand 2 (r,) register to be aigebraically subtracted from
the double-word contents of the operand 1 {(r,) register. The difference is placed in the double-word
operand 1 (r,) register.

Explicit and implicit Format:

LABEL AOPERATION A OPERAND

[symbol] ‘ SWR Fyohy

Operational Consideration:

- The execution of the SWR instruction is identical to that of the AWR instruction, except that the sign
is reversed before addition.

UP-8914 SPERRY UNIVAC 0S/3 2-191
ASSEMBLER
™
General Possible Program Exceptions
OPCODE FORMAT IONBsJTE.CT] ADDRESSING B PROTECTION
TYPE LGTH. (] DATA (iINVALID SIGN/DIGIT) | [[] SIGNIFICANCE
MNEM. 1HEX. @vyTes) || [] DECIMAL DIVIDE O sPECIFICATION:
[0 becimAL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
™ 91 Si 4 O execuTe [0 oP1NOT ONHALF-WORD BOUNDARY
[EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
Bocr 100 [0 FiXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
W sET TO 1 [0 FIXED-POINT OVERFLOW O BOUNDARY
C]SeT 70 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B seTT03 [] OPERATION 0O op 1 NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS O none

Function:

Causes one byte in main storage specified by operand 1 to be tested for 1 bits according to the 8-bit mask
specified in operand 2. The condition code is set to reflect the results of the test.

Explicit Format:

LABEL AOPERATION A OPERAND
[symbol] ™ d, (b1)i,
Implicit Format:
LABEL I AOPERATION A OPERAND
[symbol] ™ S, iy

Operational Considerations:

The 1 bits of the immediate operand 2 are used to test the bits of operand 1.

The contents of operand 1 remain unchanged.

The condition code is set:

to zero if all the 1 bits in the mask match zero bits in the byte tested or if all the bits in the mask

are zero,

to 1 if some of the 1 bits in the mask match zero bits in the byte tested; or.

to 3 if all the 1 bits in the mask correspond with 1 bits in the byte tested.

Code 2 is not used.

UP-8914 SPERRY UNIVAC 0S/3 2-192

ASSEMBLER Update B
General Possible Program Exceptions
OBJECT Il ADDRESSING B SIGNIFICANCE
OPCODE | FORMAT | INST. [] DATA (INVALID SIGN/DIGIT) | [l SPECIFICATION:
TYPE LGTH.
[DECIMAL DIVIDE a NOT A FLOATING-POINT REGISTER
MNEM. |HEX. (BYTES)
[0 beciMAL OVERFLOW [J OP1NOTONHALF-WORD BOUNDARY
™S E2 M G [J ExecuTE O OP 2 NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW [0 oP2NOTON FULL-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW O OP 2 NOT ON DOUBLE-WORD
[FIXED-POINT DIVIDE BOUNDARY
M seTTOO [FIXED-POINT OVERFLOW O OP 1 NOT EVEN NUMBERED REGISTER
Ezg;"_g; (] FLOATING-POINT DIVIDE [J oP1NOTODDNUMBERED REGISTER
MscTT03] OPERATION | LOW-ORDER BIT OF OP 4 MUST BE
SEE OPER. CONSIDERATIONS B PROTECTION ZERO.
Function:

Causes a byte in main storage addressed by operand 1 to be tested against operand 2, a byte of immediate
data. The condition code is set according to the result. A mask specified in operand 3 uses the condition
code to determine whether program control passes to the next sequential instruction or to another location
specified in operand 4 as an offset from the next sequential instruction.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] TMS d, (b,)iy m,.d,

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] TMS Sqdy.Mmy.d,

Operational Considerations:

. The offset field, which must be an even number, is 12 bits long and can range from —2048 decimal
bytes to +2046 decimal bytes.

L The user can code the offset as an absolute or relocatable expression.

L] The user must specify both the mask and the immediate byte as self-defining terms.

uP-8914

SPERRY UNIVAC 0S5/3
ASSEMBLER

2-192a
Update B

The condition code is set to:

— 0 if all selected bits or the mask is zeros;

— 1 if the selected bits are mixed {(some zeros, some 1's); or
— 3 if all selected bits are 1’s.

Condition code 2 is not used.

™S

UP-8914 SPERRY UNIVAC 0S/3 2-193
ASSEMBLER
TR
General Possible Program Exceptions
0PCODE | FoRmAT ?NB;SCT Jl ADDRESSING @l PROTECTION
. TYPE LGT;'_ (] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. ®vyTes) || 0 DECIMAL DIVIDE [sPeciFicaTION:
O necimaL OVERFLOW [0 NOT A FLOATING-POINT REGISTER
TR 114 SS 8 O execuTe O oP1NOTON HALF-WORD BOUNDARY
0 eXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW 0 0P 2NOTON FULL-WORD BOUNDARY
"E“: RESULT = 0.SET 70 0 O FIXED-POINT DIVIDE O op2nOT ON DOUBLE-WORD
CliF ResuLT <0, SET TO 1 3 FIXED-POINT OVERFLOW o BOUNDARY
0] iF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D IF OVERFLOW. SETTO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
il UNCHANGED 0O none
Function:

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand
2. As a resuit, operand 1 will contain data copied from the operand 2 table.

Explicit Format:

raseL |

A OPERATION A OPERAND
[symbol] | TR d, (1,b,).d, (b,)
Implicit Format:
LABEL I AOPERATION A OPERAND
[symbol] TR s, (1) Sy

Operationai Considerations

] The 8-bit code of each character of operand 1 is used as an index to the base table address specified
by operand 2. The character code located at this address 8-bit code value of operand 1 plus dy(b,) is
transferred from the table to the character position of operand 1. Thus, the original 8-bit code of
operand 1 is replaced.

n Translation continues until ali characters specified by the length (l) have been transiated.

] The contents of the table are not changed unless overlap occurs.

UrP-8914 SPERRY UNIVAC 0S/3 2-194
ASSEMBLER
TR
] If the number of bytes- to be translated is not explicitly shown in operand 1, then the number will be

equal to the length attribute of operand 1.

The programmer may place whatever values are required into the 256-byte translate table. When it is
known what kind of bit configurations are expected as input (each unique configuration produces an
address pointing to a unique table address), the desired value may be placed in the table to produce a
transiation.

UP-8914 SPERRY UNIVAC 0S/3 2-195

ASSEMBLER -
e ™
General ' Possible Program Exceptions
OBJECT
OPCODE cormat | et Il ADDRESSING B PROTECTION
TYPE LGTH [J DATA (INVALID SIGN/O1GIT) | [J SIGNIFICANCE
MNEM. [HEX. evTes) || J oecimaL pivioe O sPECIFICATION:
O pecimaL OVERFLOW O NOT A FLOATING-POINT REGISTER
TRT | DD SS 6 O execuTe 0 oP1NOT ON HALE-WORD BOUNDARY
[0 eEXPONENT OVERFLOW O oP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
-i SET T0 0 [0 FIxED-POINT DIVIDE O oP2nNOT ON DOUBLE-WORD
W seTT01 [0 FIXED-POINT OVERFLOW BOUNDARY
@ seTTo2 (] FLOATING-POINT DIVIOE O op1NOT EVEN NUMBERED REGISTER
OseTro3 [J oPeRATION ‘ O or 1 NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS O none

Function:

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand 2.
The resuitant data in the table will be tested and condition code set.

Explicit Format;

LABEL I AOPERATION A OPERAND

[symbol] | TRT d,{1,b,).d, (b,)

lmp\icit Format: -

LABEL | AOPERATION A l OPERAND

[symbol] TRT s, (s,

Operational Considerations:

L The translate and test (TRT) instruction searches the table in the same manner as the trans/ate (TR)
instruction.

s The selected byte (resuit byte) in the translate table is examined and tested for an all-zero pattern. If
the result byte is all zeros, it is ignored and the translate operation is continued. If the result byte is
nonzero, the address of the corresponding operand 1 byte is stored in the least significant 24 bit
positions of general register 1, the result byte is stored in the least significant 8-bit positions of
general register 2, and the operation is terminated.

Uup-8914

SPERRY UNIVAC 0S/3 2-196
ASSEMBLER

TRT

The contents of both operands remain unchanged.

If the maximum number of bytes to be translated is not explicitly shown in operand 1, then the
number will be equal to the length attribute of operand 1.

The condition code is set:

— to zero if all resuit bytes are zero;

— to 1 if the result byte corresponding to any except the last operand 1 byte is nonzero; or
— to 2 if the result byte corresponding to the last operand 1 byte is nonzero.

Code 3 is not used.

2-197

Condition Codes

BseTToo0
WseT 101
Osert02
OseTto3
SEE OPER. CONSIDERATIONS

{J EXPONENT OVERFLOW
[l exPONENT UNDERELOW
[J FIXED-POINT DIVIDE

T FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
[] oPERATION

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER Update B
General Possible Program Exceptions
] OBJECT || g ADDRESSING # PROTECTION
OPCODE | FORMAT | INST. INVAL p161T] [J siIGNIFICANCE
Tvre LoTH [} DATA {INVALID SIGN/DIGI 5
MNEM. THE X (8vTes) || O DECIMAL DIVIDE [SPECIFICATION:
] DECIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
18 93 S 4 T execuTe OP 1 NOT ON HALE-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Oooo oogca

Function:

Causes the operand, a byte in main storage, to be read and bit position O to be tested. After the byte is
tested and the condition code is set, all the bits in this indicator byte are set to 1. The byte indicated by the
operand can be used as an indicator switch that is tested and set to all binary 1°'s by this instruction and
then reset to binary O’s by some other instruction.

Explicit Format:

AOPERATION A '

LABEL OPERAND
[symbol] TS I d, (b,)
Implicit Format:
LABEL A OPERATION A | OPERAND
[symbol] TS s,

Operational Considerations:

L Only the first bit of the operand is tested to determine the condition code.

] All eight bits of the operand are set to binary 1's after the condition code is set.

] The condition code is set as follows:

— O if bit position O is zero; or

— 1.if bit position O is 1.

UP-8914

SPERRY UNIVAC 0S§/3
ASSEMBLER

2-198

UNPK

Condition Codes

[OJir RESULT =0, SET TO O
Oir resuLT <0, SET TO 1
[JiF RESULT >0, SET TO 2
[J1r OVERFLOW, SETTO 3
B UNCHANGED

(] EXPONENT OVERFLOW
O EXPONENT UNDERFLOW
[J FIXED-POINT DIVIDE

(] FIXED-POINT OVERFLOW
(] FLOATING-POINT DIVIDE
] oPERATION

General Possible Program Exceptions
0pcoDE | rommar ?NBSJ‘II::CT @l ADDRESSING B PROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT)| (J SIGNIFICANCE
MNEM. lHEX (8YyTes) || O DECIMAL DIVIDE [] sSPECIFICATION:
[pecimMAL OVERFLOW NOT A FLOATING-POINT REGISTER
UNPK | F3 $S 6 [0 execuTe OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 0040oo

Function:

Converts the contents of operand 2 from a packed format to an unpacked format, which is placed in

operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND
-
[symbol] UNPK d, (1,,b,),d,(1,.b,)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] UNPK s, {1,).s,(1,)

Operationai Consideration:

L This instruction proceeds one byte at a time from right to left. The first byte operated on has its sign
and digit reversed (a 4C would become C4). Each half byte from then on is moved to the next left digit
field, and an F is placed in the zone field of the receiving byte (EBCDIC notation).

L Any unfilled bytes that are part of the specified length for operand 1 are zero filled.

s Operand 2 data should be in packed decimal format.

L] Operand 1 should contain enough bytes to receive all digits, a zone for each digit, and a sign from

operand 2.

. Specification of a length attribute for operands 1 and 2 is optional.

UP-8914 SPERRY UNIVAC 0S/3 2-199
ASSEMBLER
X
General Possible Program Exceptions
OPCODE | rormaT :-":S-'ECT] ADDRESSING Ml rROTECTION
TYPE LGTH. [} DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. svtes) || (] peEciMaL o1vipe 8 SPECIFICATION:
0 oeciMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
X 57 RX 4 0 execuTe [J OF 1 NOT ON HALF-WORD BOUNDARY
{0 EXPONENT OVERFLOW 0 orP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exroNeENT uNDERFLOW B 0P 2NOT ON FULL-WORD BOUNDARY
{J FIXED-POINT DIVIDE O or2NOT ON DOUBLE-WORD
BT o0 || O nxeosonr ovenecow | Sounoany
CJIF RESULT >0, SET TO 2 0] FLOATING-POINT DIVIOE g OP 1 NOT EVEN NUMBERED REGISTER
J1r OvERFLOW, SETTO 3 (J oreRATION OP 1 NOT ODD NUMBERED REGISTER
JUNCHANGED £ none
Function:

Causes a logical exclusive OR operation to be performed on the contents of the operand 1 {r,) register and
the full word in main storage specified by operand 2. The result is placed in operand 1 (ry).

Explicit Format:
LABEL L AOPERATIONA OPERAND
[symbol] X r,.dy(x,,b,)
Implicit Format: "
LABEL ‘ AOPERATION A OPERAND
[symbol] X r,5,(x,)

Operational Considerations:

A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the resuit is set to zero.

The rules of operation for the exclusive OR (X) operation are illustrated by the following truth table:

Operand 1 Operand 2 (OResult n
1] [+] (4]
1 o 1
0 1
1 1 0

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

2-200

XC

General Passible Program Exceptions
OBJECT DRESSING PROTECTION
OPCODE FORMAT | INST. | Ao u
TYPE LGTH [pATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. HEX (svTes) || [oECIMAL DIVIDE (O speciFICATION:
O pecimaL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
Xc |07 SS 6 0O execuTe 0 ©OP1NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW 00 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O exPONENT UNDERFLOW O oP2NOT ON FULL-WORD BOUNDARY
B n pPYPTE— O FIXED-POINT DIVIDE O or2nNOT ON DOUBLE-WORD
.:: Rg:gt:;go' SET TO 1 O FiIXED-POINT OVERFLOW o 8OUNDARY
O iF ResuLT >0, SET TO 2 [FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
J1F OVERFLOW, SET TO 3 (J oPERATION OP 1 NOT ODD NUMBERED REGISTER
JUNCHANGED O none
Function:

Causes a logical exclusive OR operation to be performed on the contents of the areas in main storage
specified by operand 1 and operand 2. The result is placed in operand 1.

Explicit Format:

LABEL | AOPERATION A OPERAND
[symbol] XC d, (Lb,).d,(b,)
Implicit Format:
LABEL l AOPERATIONA OPERAND
[symbol] Xc s, (l).s,

Operational Considerations:

» A bit position in the result is set to 1 if the corresponding bit positions in the operands are uniike;
otherwise, the bit position in the result is set to zero.

] The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Result
Operand 1 | Operand 2 | o P00)
0 0
1 1
0 1 1
1 1 0

UP-8914 : SPERRY UNIVAC 0S/3 2-201
o ASSEMBLER

] The number of bytes used in each operand is specified by ! in operand 1.

] if the number of bytes to be used in each operand is not explicitly shown in operand 1, then the
number will be equal to the length attribute of operand 1.

uP-8914 SPERRY UNIVAC 0S/3 2-202

ASSEMBLER
X1
General Possible Program Exceptions
OPCODE | FoRMAT ?S;TE‘CT] ADDRESSING #l PROTECTION
TYPE LoTH. (] DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. [HE X. (8vTes) || O DECIMAL DIVIDE O speciFicaTiON:
(O oecimaL OVERFLOW 0 NOTAFLOATING.POINT REGISTER
X1 97 St 4 O execuTe O oP1NOT ON HALF WORD BOUNDARY
[J EXPONENT OVERFLOW 00 oP 2NOT ON HALF WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW [0 or2NOT ON FULL WORD BOUNDARY
B r RESULT - 0 SET 100 [J FIXED-POINT DIVIDE O oe2nOT ON DOUBLE WORD
B iF RESULT #0, SET TO 1 [0 FIXED-POINT OVERFLOW a BOUNDARY
OJ1F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE O OP 1 NOT EVEN NUMBERED REGISTER
D“: OVERFLOW, SET TO 3 D OPERATION OP 1t NOT ODD NUMBERED REGISTER
JUNCHANGED TJ none
Function:

Cauﬁes a logical exclusive OR operation to be performed on the contents of operand 1 (a byte in main
storage) and operand 2 (a byte of immediate-data in the instruction). The result is placed in operand 1.

Explii:it Format:

LABEL AOPERATIONA OPERAND
[symbot] | X d,(b,)i,

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] X1 Sy 4y

Operational Considerations:

] A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the resuit is set to zero.

a The rules of operation for the exclusive OR (XI) operation are illustrated by the following truth table:

Result
Operand 1 Operand 2 {Operand 1)

0 0 [
1 0 1
0 1 1

uP-8914 SPERRY UNIVAC 0S/3 2-203

ASSEMBLER
/ XR
General Possible Program Exceptions
0pcodE | rormaT ?Nasfc" [] ADDRESSING _ O rroTECTION
TYPE LG““_ [DATA {INVALID SIGN/DIGIT) 0 sIGNIFICANCE
MNEM, |HEX. (BY TES) [0 oecimaL DIVIDE .] sPECIFICATION:
. 0 oecimaL ovERFLOW O NOTA FLOATING-POINT REGISTER
XR 17 RR 2 [J execuTe O OP 1 NOT ON HALF-WORD BOUNDARY
O EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
B iF RESULT - 0, SET TO 0 [0 FIXED-POINT DIVIDE {0 or2nOT ON DOUBLE-WORD
B iF RESULT #0, SET TO 1 [0 FIXED-POINT OVERFLOW a BOUNDARY
D IF RESULT >0, SET TO 2 D FLOATING-POINT DIVIDE D OP 1t NOT EVEN NUMBERED REGISTER
DlF OVERFLOW, SETTO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER
] UNCHANGED B none
Function:

Causes a logical exclusive OR operation to be performed on the contents of the registers specified by
operand 1 (r;) and operand 2 (r,). The result is placed in operand 1 {r,).

. Explicit and Implicit Format:

LABEL l AOPERATION A OPERAND

[symbol] XR ' ryFy

Operational Considerations:

s A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlilie;
otherwise, the bit position in the result is set to zero.

» The ruies of operation for the exclusive OR (XR) operation are illustrated by the foliowing truth tabie:

Result
Operand 1 Operand 2 {Operand 1)
[+] 0 [4+]
1 [+] 1
o] 1 1
1 1 o

uP-8914 SPERRY UNIVAC 0S/3 2-204

ASSEMBLER
ZAP
General Possible Program Exceptions
oPcO0E | rommat ?Nss-‘ﬁc'f I} ADDRESSING 8 rROTECTION
TYPE LGTH. Il DATA (INVALIO SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. 8yTes) || O DECIMAL DIVIDE 0 speciFicATION:
B DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
ZAP | F8 SS 8 0 execuTe 0 oP1NOTONHALF-WORD BOUNDARY
(J EXPONENT OVERFLOW O of2NOTON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW O oP2NOTON FULL-WORD BOUNDARY
5 [J FIXED-POINT DIVIDE- 0O op2noOT ON DOUBLE-WORD
.:; ﬁ::gt: 2%'5;_:.1;%‘: O FIXED-POINT OVERFLOW 0 BOUNDARY
8 1F RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
Il iF OVERFLOW, SET TO 3 {J oreraTION O or 1 NOT 0DD NUMBERED REGISTER
O uNcHANGED 0 none
Function:

Clears operand 1 to zeros and adds the value of operand 2. Replaces operand 1 with the value of operand 2.

Explicit Format:

LABEL l AOPERATION A OPERAND

N [symbo.] ZAP d1 “1 ,b1)'d2 ('2 :bz)

Implicit Format:

LABEL l AOPERATION A | OPERAND

[symbol] ZAP s, {1,).s,(1,)

Operational Considerations:
L] Equivalent to AP with zero in operand 1. Sign digit is generated.
L Checks operand 2 sign and digits for validity.

L Decimal overflow condition exists when operand 2 value will not fit in operand 1. Most significant
digits are truncated.

. Zero result has positive sign. When overflow occurs, zero result has sign of operand 2.

. Operand 2 is zero extended when it does not fill operand 1.

- Operands 1 and 2 may overlap if least significant bytes coincide, or if least significant byte of operand
1 is to the right of the least significant byte of operand 2.

3. BAL Diréctives

UP-8914 SPERRY UNIVAC 0S/3 3-1
ASSEMBLER

. cCw

Function:

Defines and generates an 8-byte channel command word aligned on a double-word boundary.

Format:
LABEL | A OPERATION A | OPERAND
[symbol] | CCw . op, ,0p, ,0P;,0p,
where:
op,
Is the command code specifying the operation to be performed.
op,
Is the address of the first byte in main storage of the data being controlled.
ops

is the flag control indicating the options desired.

. op,

Is the byte count indicating the number of bytes of data to be controlled.

UP-8914 SPERRY UNIVAC 0S5/3 3-2
ASSEMBLER Update B

CNOP

Function:

Adjusts the location counter to a half-word, full-word, or double-word storage boundary without initiating
any other operation.

Format:
LABEL AOPERATION A OPERAND
unused CNOP a,,a,
where:
a, and a,

Are absolute expressions consisting of predefined terms.
Operational Considerations:
The first expression in the operand field indicates a byte to which the location counter must be set. Legal

values for the first expression are zero and 2 for full-word boundary alignment and zero, 2, 4, and 6 for
double-word boundary alignment, as follows:

L] Zero indicates a full-word or double-word boundary.

] A 2 indicates the second byte (first haif word) past the boundary.

L] A 4 indicates the fourth byte (second half word) past a double-word boundary.
a A 6 indicates the sixth byte (third half word) past a double-word boundary.

Permissible values for the second expression are 4 and 8, indicating that the adjustment is relative to a
full-word or double-word boundary, respectively.

If the location counter is already set to the indicated byte, the CNOP has no effect. When alignment is
needed, one, two, or three no-operation instructions are generated to increment the location counter to the
proper half-word boundary and to ensure correct instruction processing. All terms must be predefined.

uP-8914 SPERRY UNIVAC 0S/3 ‘ 3-3
ASSEMBLER

COM

Function:

Enables the programmer to define a control section to be used as a common storage area for two or more
separately assembled routines. The format of the common section may be described by DS and DC
directives. Labels appearing within the sections are defined. Like a dummy control section, no data or
instructions are assembled in a common section. it has a separate location counter with an initial value of
zero. Data may be entered into a common section only by execution of a program that refers to it. DC
instructions act as DS instructions in the COM area because neither instructions nor constants in a
common storage area are assembled. Labels defined in a common section are not subject to the
restrictions imposed on dummy section labels.

One assembly can define only one common section. However, several COM directives may appear among
the source statements. Each COM directive after the first defines a continuation of the common section
previously described. When several routines defining common storage are linked, the resulting module
contains only one section corresponding to the common sections in the input modules. The length of this
section is the length of the largest like common section in the input modules.

Format:

LABEL l AOPERATION A I OPERAND
T

[symbol] l COM

unused

Operational Considerations:

If the common section is unlabeled, the area is addressed by referencing the label of a statement within
the common section with a USING directive. '

If more than one object module element refers to a common storage area with the same name, the
references are to the same storage area. Only one common storage area is allocated within a load module
to satisfy ail object module requests for common storage areas with the same name. The size of a common
storage area in a load module is determined by the maximum size requested by any object module for
common storage with that name. Blank common storage areas are allocated in the same way.

In a muitiphase load module, common storage areas are not normally overiaid.

The following rules apply to the use of common storage:

— An entry point cannot have the same name as a labeled common storage area inciuded in the load
module.

— When the linkage editor includes module elements (CSECT or COM) with the same name as a labeled
common storage area, that section is treated as a block data subprogram (i.e., to initialize values of
labeled common blocks) and is loaded into all or a portion of the common storage area. A block data
subprogram is loaded when the phase in which it was included is loaded. Blank common cannot be
initialized during loading unless the text encountered is for that COM ESD.

UP-8914

SPERRY UNIVAC 0S/3) 34
ASSEMBLER

cOom

If an object module has requested common storage, the partiai inclusion of a single control section
from that object module will cause the common storage area defined to be included also, regardless
of whether or not the inciuded control section refers to that common storage name. For further
information, see the linkage editor portion in system service programs (SSP) user guide, UP-8062
(current version).

uP-8914 SPERRY UNIVAC 0S/3 3-5
' ASSEMBLER

COPY

Function:

Causes the source module identified in the operand field of the COPY directive to be included directly into
the source program being assembled.

Format:
LABEL l AOPERATION A l OPERAND
unused copy symbol
where:
‘symbol

Identifies the code to be copied by the assembier. Onlj one symbol may be used.
Operational Considerationg:

The assembler places the source code, identified by the operand, immediately after the COPY directive.
This source module may not include any COPY, END, ICTL, MACRO, MEND, NAME, or PROC directives.
Statements included in the program by a COPY directive are assumed to be in standard format regardless
of any ICTL directives in the program.

UP-8914 SPERRY. UNIVAC 0S/3 . 3-6
ASSEMBLER

CSECT ’

Function:

Indicates the initiation or continuation of a control section.

Format:

LABEL I AOPERATIONA OPERAND

[symbol] l CSECT ' unused

Operational Considerations:

The symbolic name of the control section defines an entry point of the program being assembied. This
symboi must not appear as a symbol for any other source statement except the START directive of its
control section or another CSECT directive to indicate continuation of the coding in the same control
section.

Each control section is adjusted to begin on a double-word boundary. The value of the symbol is the
address of the first byte of the control section and has a length attribute of 1.

If the symbol is blank, the CSECT directive is a continuation of coding for an unnamed control section. If
the symbol is blank and is not preceded by an unnamed control section, the CSECT initiates an unnamed
control section. Only one unnamed control section is permitted in a module.

UP-8914

SPERRY UNIVAC 05/3 3-7
ASSEMBLER

Function:

DC

Fioating Point

Defines the value of a floating-point number and has a program storage location assigned to it. The format
of floating-point constants differs from the standard format of the DC statement in that an additional

Format:

subfield may appear — the scale modifier.

S,
.

LABEL AOPERATION A OPERAND

where:

S+n

[symbol] DC [d] t{L,)[S+n] ‘c[Exn]’

[symbol]

Is up to eight characters.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal value is used to specify the duplication factor. If no duplication subfiaid is used, the
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assign the location counter value to the symbol used. A duplication factor of
zero is not permitted with literals. Even though the duplication factor can change the size of the
storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required to determine the alignment, padding, truncation, storage form,
and implied length. (See Table A—6 for the characteristics of the E and D types.}

Is the explicit length factor in decimal. Two types of floating-point constants are available: full word
(E) and double word (D). The implied length of an E type constant is four bytes; if the length modifier
is omitted, full-word boundary alignment is assigned. The implied length of a D type constant is sight
bytes; if the length modifier is omitted, double-word boundary alignment is assigned. In either case,
an explicit length modifier of from one to eight bytes may be specified.

is the scale modifier and must be positive signed or unsigned decimal number. If the sign is omitted,
a positive value is assumed. The scale modifier is applied to a number after it has been converted to
internal format. ‘

uP-8914 SPERRY UNIVAC 0S/3 ‘ 3-8
ASSEMBLER

DC
Flosting Point

‘{ELn]
Is the constant specification with optional exponent. A floating-point number is written as a decimal
number which may be an integer (110), a fraction (75), or a mixed number (110.75). The floating-
point number may be followed by an optional exponent represented by an E, a sign, and a decimai
number, respectively. In the absence of a sign, a pius sign is assumed. The exponent for a constant is
that power of 10 by which that constant will be muitiplied before its conversion to internal format.
This exponent value may range from —85 to +75.

Operational Considerations:

The machine representation of the constant consists of a hexadecimal fraction (mantissa) and a
hexadecimal exponent (characteristic). The arithmetic point is assumed to be at the left of the leftmost digit
of the fraction. The characteristic represents the power of 18 by which the fraction must be multiplied to
obtain the value of the constant. The machine format is as follows:

" (SHORT FORMAT)
FULL z' charscteristic mantisse
WORD | 0 (exponent) {fraction)
ol 1ls 8 hexadecimal digits 31
{LONG FORMAT)
f ; i mantisss
38:?:"5 E (oxponm‘gc {fraction)
0 718 14 hexadecimai digits 63
where:
sign
Is the zero bit, the sign of the mantissa.
characteristic .
Is a 7-bit binary number {signed and biased by the hexadecimal value 40,,, decimal value 64)
reflecting the scaling of the floating-point number.
mantissa
Is the fraction after the constant has been converted to its machine representation; scaling is
performed if specified.
NOTE:

The floating-point value is the product of the mantissa (fraction) and the base 16 raised to the power of the
biased characteristic (exponent) after the exponent has been reduced by 64.

UP-8914 . SPERRY UNIVAC 0S/3 3-9
ASSEMBLER

DC

Standard Format

Function:

Defines the value of a decimal number, an alphanumeric expression, or address constant and has a
program storage location assigned to it.

Format:

LABEL AOPERATION A OPERAND

[symbol] ’ DC [dltiL,]{ (?:)}

where:

[symbol]
Is up to eight characters long.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal vaiue is used to specify the duplication factor. If no duplication subfieid is used, the
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assigns the location counter value to the symbol used. A duplication factor
of zero is not permitted with literals. Even though the duplication factor can change the size of the
storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required for both DC and DS statement to determine the alignment,
padding, truncation, storage form, and implied length. (See Table A—6 for the characteristics of the
13 types used.)

The length factor designates the explicit value of the length attribute of a fieild generated by a DS or
DC statement. The length attribute of a field used in an assembler application instruction determines
the number of bytes invoived in that instruction. The maximum value of the length factor is 256.
Boundary alignment is not provided when a length factor is specified.

‘e’ or (c)
The constant specification determines the constant, or storage, to be generated. When an apostrophe
or ampersand is included in the constant specification, double apostrophes or ampersands are used
to indicate the inclusion of these characters in the constant. The constant may take the form of data
or an address, as shown in Table A—6.

UP-8914 SPERRY UNIVAC 0S/3 3-10
ASSEMBLER

DROP

Function:
Informs the assembier that the registers specified are no longer available for base register assignment.

Format:

LABEL l AOPERATION A I OPERAND

unused DROP ry [ty]

where:

21 P Y | .
Specifies that the declared registers (0 through 15) are no longer available for base register
assignment.

Operational Considerations:

Registers previously made available for base register assignment may be dropped and made available
again in a USING directive. The value assumed to be in a basa register may be changed by coding another
USING directive without an intervening drop of that register.

UP-8914

SPERRY UNIVAC 0S8/3 3-1
ASSEMBLER

Function:

DS

Defines storage to be used as work areas, to hold data, and to function as input and output areas. The
storage areas are assigned program locations.

Format:

LABEL . AOPERATION & OPERAND

[symbol] DS [d1tiL,] [(f:)]

where:

symbol

(}

Is up to eight characters long.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, the
assembler assumes a factor of 1. A duplication.factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assigns the location counter value to the symbo! used. A duplication factor
of zero is not permitted with literals. Even though the duplication factor can change the size of the
‘storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required for both DC and DS statements to determine the alignment,
padding, truncation, storage form, and implied length. (See Table A—6 for the characteristics of the
13 types used.)

The length factor designates the explicit value of the length attribute of a field generated by a DS or
DC statement. The length attribute of a field used in an assembler application instruction determines
the number of bytes involved in that instruction. The maximum value of the length factor is 256.

‘e’ or (c)

The constant specification determines the constant, or storage, to be generated. When an apostrophe
or ampersand is included in the constant specification, double apostrophes or ampersands are used
to indicate the include of these characters in the constant. The constant may take the form of data or
an address, as shown in Table A—6.

NOTE:

The maximum explicit length for a DS is 65,5635 bytes. (See Table A—6 for C and X types.) Only the
number, not the content, of the bytes reserved by a DS statement is determined by the assembler.

uP-8914 SPERRY UNIVAC 0S/3 3-12
ASSEMBLER

DSECT

Function:

Defines a data storage area permitting one or more programs to use indirect symbolic addressing for the
same record items.

Format:

LABEL AOPERATION A OPERAND

[symbol] DSECT unused

Operational Consideration:

Storage is not reserved by a DS directive within a dummy control section, and the data and instructions
appearing in a dummy control section do not become part of the assembled program. A separate location
counter with an initial value of zero is kept for each dummy control section. More than one DSECT directive
with the same symbol may appear in a module. The first DSECT directive initiates the dummy control
section, which is continued by the remaining DSECT directives. .

Symbols of statements in a dummy control section are called dummy section symbols. The following rules
must be observed in using and assigning dummy section symbols:

s An unpaired dummy section symbol may appear only in an expression defining a storage address for
a machine instruction or an S-type constant.

s A base register may not be specified for an address field containing an unpaired dummy section
symbol. ’

- The programmer must ensure that the appropriate value is loaded into the register specified in the
USING statement.

To guarantee alignment between the actual storage area and the dummy control section, the user should
align the storage area to a double-word boundary.

UP-8914 SPERRY UNIVAC 0S/3 3-13
ASSEMBLER

EJECT

Function:

Causes the assembler to continue the assembly listing on the top of the next page.

Format:

LABEL AOPERATION A OPERAND

unused EJECT unused

Operational Considerations:
If the nextlline' of the listing causes a page change, the EJECT directive has no effect.

When the EJECT directive is encountered, the printing form is skipped to the next page. If a title has been
previously specified, the title is printed on the new page. An EJECT directive appearing in a source code
macro definition causes the form to be skipped whenever the definition is listed and each time the macro is

generated.

The assembler will advance the assembly listing to a new sheet whenever a sheet is full. However, if the
programmer would like each new logical part or subroutine to start at the top of a new sheet, the EJECT
directive can be used whenever starting a new sheet is desired.

The EJECT directive itself is never printed.

uP-8914 SPERRY UNIVAC 0S/3

ASSEMBLER
END
Function:
Indicates the end of a source program.
Format:
LABEL l AOPERATION A I OPERAND
[symbol] END ’ [e]
1
-~
whaere:
e

Is a relocatable expression.
Operationél Considerations:

The END directive must be the last statement in the source program. An expression in the operand field
designates the point in the program where control may be transferred after the program is loaded.

UP-8914 SPERRY UNIVAC 0S/3 3-156

ASSEMBLER Update B

ENTRY

Function:

Declares to the assembler those symbols defined by the module being assembled that may be referenced
by other modules.

Format:

LABEL A OPERATION A | OPERAND

unused ENTRY symbol[,symbol,...,symbol]

Each symbol in the operand field is declared to be defined in this module. Their names and assigned values
are included in the output of the assembler as external reference records.

UP-8914 SPERRY UNIVAC 0S/3

ASSEMBLER

EQU

Function:

Defines the length and value of a symbol using another symbol as all or part of the definition.

Format:

AOPERATION A OPERAND

e[,al]

where:

Is an absolute or relocatable expression.

. Is an absolute expression.

All symbols must be predefined.

Operational Considerations:

The symbol in the label field is defined as the value of the first expression in the operand. The maximum
values are —223 to 223—1. The length attribute of the symbol is equal to the second expression (a) if
explicitly stated. If the second expression (a) is omitted, the symbol will have the length attribute of the first

term in the first expression {e). If the first term is an * or a self-defining term, the length attribute of the
symbol is 1.

UP-8914 SPERRY UNIVAC 0S/3 3-17
ASSEMBLER Update B

EXTRN

Function:

Declares to the assembler those symbols used in the module being assembled that are defined in a
different module.

Format:

LABEL A OPERATION A OPERAND

unused EXTRN symbol[,symbol,...,symbol]

Operational Considerations:

Each symbol in the operand field is declared to be a symbol defined in some other module. The symbolic
name and the external symbol identification assigned by the assembler are input to the linkage editor as an
external definition record. Each reference to the externalized symbol creates an appropriate relocation
mask to allow reference resolution at linkage editor time. When an EXTRN and a definition for an identical
symbol appear in the same assembly, the EXTRN reference is discarded automatically, and the definition is
accepted regardless of the order of appearance of either item.

uP-8914 SPERRY UNIVAC 0S/3 3-18
ASSEMBLER

ICTL

Function:

Specifies new values for the begin, end, and continue columns. Normally, a source statement begins in
column 1 of the coding form and ends in column 71. If a continuation statement is needed, a character is
written in column 72, and the statement continues in column 16 of the following line.

Format:
LABEL | A OPERATION A l OPERAND
unused i icTL ‘ (b] Le] Le]
where:
b
Is an unsigned decimal integer specifying the beginning column. It must be between 1 and 75.
e
Is an unsigned decimal integer specifying the ending column. It must be greater than orequaltob+5. .
c

Is an unsigned decimal integer specifying the continuation column. It must be greater than or equal
to b and less than e. The line is continued starting in the column specified by c.

if b is omitted, it is assumed to be 1. If e is omitted, it is assumed to be 71. If ¢ is omitted or if e equais 80,
continuation records are not allowed.

Operational Considerations:

There can be only one ICTL directive in a source code module and it must immediately precede or follow
any program-defined macro definitions. The ICTL directive applies only to those source statements that
follow it. All library macro definitions are assumed to have normal output format. If the ICTL appears before
the START card and it is incorrect, the assembly is terminated. When an ICTL appears out of sequence
{must be first statement following START card), the ICTL terminates the assembly.

uP-8914 SPERRY UNIVAC 0S/3 3-19

ASSEMBLER

ISEQ

Function:

Informs the assembler which columns of the source statement contain the field used for checking the
sequence of statements and controls the initiation and termination of sequence checking.

Format:

LABEL AOPERATION A OPERAND
unused ISEQ Lr '

where:

|
Is a decimal integer specifying the leftmost column of the field to be used for the sequence check.

Is a decimal integer specifying the rightmost column of the field to be used for the sequence check; r
must be greater than or equal to |.
Opaerational Considerations:

Columns to be checked should not fall between the beginning and ending input columns specified for the
program.

The sequence check begins with the first source statement after the first ISEQ directive and is terminated
by an ISEQ directive with a blank or invalid operand field.

Sequence checking is not performed on statements generated from macro definitions or on statements
inserted -into the source code via a COPY directive.

if no ISEQ directive is supplied, no sequence checking occurs.

UP-8914 SPERRY UNIVAC 0S/3 3-20
ASSEMBLER
LTORG
Function:

Generates all literals previously defined into a data pool within the source program.

Format:

LABEL l AOPERATION A l OPERAND

[symbol] l LTORG unused

Operational Considerations:

The literals are pooled following the occurrence of the LTORG directive. A symbol in the label field
represents the first byte of the generated literal pool and is assigned a length attribute of 1. LTORG
directives may not appear within a dummy control section or in a blank common storage area. If there are
no LTORG statements in a program and literals are specified, or if any literals are specified after the last
LTORG directive in a program, these literals are pooled at the end of the first control section. The
programmer then must ensure that a valid base register is available to address the locations in the literal

pool.

Literals are placed in the literal pool according to their total length (duplication factor muitiplied by the
length of the constant). The literal pool consists of four sections:

1. Literals with total lengths that are muitipies of double words (eight bytes)

2. Literals with total lengths that are muitiples of full words (four bytes)

3. Literals with total lengths that are multiples of half words

4, . Any remaining literals

Within each pool section, the literals are stored in order of occurrence. Before the literal pool is generated,
the location counter is adjusted to a double-word boundary. If two control sections are assembled together
and an LTORG is not included in the second or following sections, then all the literals defined in all the
sections will be pooled in the first section and may subsequently be available only to that first section. To

ensure that each linked control section can use the literals declared by it, an LTORG can be used within
each control section.

UP-8914 SPERRY UNIVAC 0S8/3 , 3-21
‘ ASSEMBLER

‘ | | "~ OPSYM

Function:

The delete operation code {OPSYM) directive permits the user to teil the assembler not to accept a certain
mnemonic operation code.

Format:
LABEL AOPERATION A OPERAND
A
mnemonic OPSYM unused
opaeration
code

After the OPSYM directive is used to declare a mnemonic code as unacceptable, the assembler will not
generate the normal object code for that mnemonic if it appears after the OPSYM. The user is then free to
use the declared mnemonic another way, for example, as the mnemonic code of a macro prototype
statement.

’ The OPSYM directive cannot be used from within a PROC/MACRO or from within code generated as a
result of conditional assembly statements.

UP-8914 SPERRY UNIVAC 0S/3 - 3-22
ASSEMBLER

OPSYM

Example:

LABEL 3 OPERATIOND OPERAND
10 16

= e
o IMACRE L e
b Lo | RQUANT &@2,.&3UM | , ., 1 i,
| - Ly '13|:1_&1QUAN|T1IJ [ORTSN A AU T VAT SO 0 SN N U B A A T A
s b Alnnn 1134{1&&2711:111:L1L1L1|lallLLLnLlln
o ptsr o [i3,&80M 1

IR S S U B @1 [UT SR T T OO ST T T T N T U S S U M A EOT W B SO SN I N N T A SR O

W
X
R

O =
L

Ao 1 JISTARTIIO v b by b b
AL 1 JOPSYM L e T
NTETEI PO B KT N ST NN P UT R I IS I
a1 1l S RN PUSC AT UNT AR RIS U T WO A TOC YU WA N O NC TN AU TNV E B A UK N G T AN Y
AT I B T B T BT ST PRI ST AN AT AT AR
aearcH | WA, PAY RATSE TOTAL L o 1w L w ity
N D B TS B DN TN ST BT IR IR O
NP T B T AT BT SRR BTN (U AT ST O
TR ER A I AN NN TN (N W N VU0 Y I SN U W NN Y WNVYNS NAC T AN OO VO N W N T S N A N

‘O'LJ;LILL END | pa o v boevovg boyopn o by by gt by i

In this example, the program is preceded with a macro definition that is used in the program. Line 2 contains the
mnemonic code A, which is the mnemonic operation code for an add full-word instruction. Before the A macro
can be called into the program, an OPSYM directive must be used to tell the assembler not to recognize A as the
add full-word mnemonic. The OPSYM directive must come before the line of code that references the macro;
that is, line 8 must precede line 9.

uP-8914 ' SPERRY UNIVAC 0S/3 3-23
ASSEMBLER

r{'/‘/ ' ORG
Function:
Sets or resets the location counter to a specified value.
Format:
LABEL AOPERATIONA OPERAND
N
[symbol] ORG (o]
where:
e
Is a relocatable expression.
Operational Considerations:;
The location counter is set to the value of the expression in the operand field. When no expression is
4 v present, the location counter is set to the highest location previously assigned in that control section. A

symbol in the label field has the same value as the expression in the operand field and is assigned a length
attribute of 1. The expression in the operand field must be relocatabie. its value must represent an address
in the same control section in which the ORG occurs. This address value must be equal to or greater than
the initial setting of the current location counter. If the expression is in error, the ORG directive is ignored
and the line is flagged. All terms in the expression must be predefined.

The ORG directive permits the location counter to be set to a value not on a half-word boundary.

Bytes of storage reserved with an ORG directive are not set to zero or cleared when the program is loaded.

UP-8914 SPERRY UNIVAC 0S/3 ’ 3-24
ASSEMBLER

PRINT

Function:
Controls the contents of the assembly listing.

Format:

LABEL AOPERATION A ' OPERAND

unused PRINT | [{g’f,:}][{NOGEN }] [

]| {5oveie)]

where:

Specifies the listing is to be printed.

OFF
Specifies that no listing is printed.

GEN
Specifies that lines generated by a macroinstruction are printed.

NOGEN
Specifies that lines generated by a macroinstruction are not printed, except that the macroinstruction
and any MNOTE messages generated are printed.

DATA
Specifies that all characters of each constant representation are printed.

NODATA:) :
Specifies that only the first eight characters of each constant representation are printed.

SINGLE:
Specifies that the source listing is single-spaced.

DOUBLE
Specifies that the source listing is double-spaced.

Operational Considerations:

if a PRINT directive specifies OFF plus other parameters, the other specifications are not effective until a
PRINT directive is encountered that specifies the listing facility is to be turned ON. The options provided by
a PRINT directive are keyword (not positional) parameters; therefore, the comma is not required if a
paramater is omitted. The initial print condition of assembly printing is ON, GEN, NODATA, SINGLE. This
condition remains until the first PRINT directive changes it. PRINT directives may change from only one to
all of the parameters; any unspecified parameters remain in their previous condition. A PRINT directive
may not appear in a macro definition.

UP-8914 ' SPERRY UNIVAC 0S/3 3-26

ASSEMBLER

PUNCH

Function:

Produces a record at assembly time. This directive is used to produce job control card images to precede or
succeed.the object module; it eliminates the necessity of manually inserting them.

Format:
LABEL AOPERATION A I OPERAND
unused l PUNCH ‘e, ,...,c“'
where:
Cyoene,Con

Represents a string of up to 80 characters produced as a record in the object code output.
Operational Considerations:
The following conditions apply to characters in the operpnd field.
L Up to 80 characters, including spaces, may be specified within the apostrophes.
a An apostrophe within the operand must be specified as a pair of apostrophes.
L] An ampersand within the operand must be specified as a pair of ampersands.
L] Spbces must be used to separate fields.

L in counting the 80 characters, a pair of ampersands or apostrophes written to express a single
apostrophe, or ampersand, counts as one.

A PUNCH directive prior to the first control section of the program produces records prior to.the first control
section, and all others produce records after the last control section.

Variable symbol substitution is performed within the operand field.

Although the PUNCH directive may be included anywhere in the program, it may not be used before macro
definitions.

UP-8914 SPERRY UNIVAC 0S/3

3-26
ASSEMBLER

REPRO

Function:

Reproduces a record in its entirety (columns 1 through 80) during assembly time. This directive is useful in

producing job control card images to precede or succeed the object moduie and eliminates the necessity of
manually inserting them.

Format:

LABEL AOPERATION A OPERAND

unused REPRO unused

Operational Considerations:

This directive causes the contents of the following source record to be reproduced as a record in the
assembler output. Each REPRO diredtive produces one record; up to 80 bytes are reproduced.

A REPRO directive prior to the first control section of the program produces records prior to the first controt
section, and all others produce records after the last control section.

All REPRO directiveé following the declaration of the first CSECT (START) produce records that appear after

the object module transfer record. Although this directive may be included anywhere in the program, it
cannot be used before a macro definition.

No substitution for variable symbolis occurs in the record thus produced.

UP-8914 ' SPERRY UNIVAC 0S8/3 3-27
ASSEMBLER

- SPACE

Function:

Advances the paper in the printer a specified number of lines. The operand field contains an unsigned

decimal integer specifying the number of lines the paper is to be advanced. If no operand is coded, one line
will be spaced.

Format:

LABEL , AOPERATION A l OPERAND

unused ' SPACE l il

where:

Is an unsigned decimal integer.

UP-8914 SPERRY UNIVAC 0S/3 3-28
ASSEMBLER

START _

Function:

-

Defines the program name, the name of the first control section, and the initial location counter value.

Format:
LABEL | AOPERATION A | OPERAND
[symbol] START [a]
where:
a

Is an absolute expression.
Operational Considerations:
A symbol in the label fieid becomes the name of the first or only control section in the program. if the labe!

field is blank, an unnamed control section is begun. All statements following the START directive are
assembied as part of the control section until another unique control section definition is encountered.

The label field of a CSECT directive, which contains the same name as the label field of the START
directive, identifies the continuation of the control section. A blank label field in the CSECT directive
identifies the continuation of an unnamed control section that began with an unnamed START directive.

The symbol in the label field of the START directive aiso identifies or names the object program. if the
START directive is unnamed, the object module is assigned the name ASMOBJ. The symbol must be a
valid symbol. It is an automatic entry point and has a length attribute of 1. The START directive must not be
preceded by any statements that would initiate a control section.

The seif-defining term in the operand fieid of the START directive establishes the initial location counter
value for the first control section. If the self-defining term represents a value that is not a muitiple of 8, the
START directive is flagged and the location counter set to the next higher muitiple of 8. If the operand is
omitted, the initial control section is assigned a location counter value of zero.

UP-8914 SPERRY UNIVAC 0S/3 3-29
ASSEMBLER

TITLE

Function:

Provides data for the heading of each page of the assembler listing and advances the printer form to a new

page.
Format:
‘LABEL AOPERATION A OPERAND
unused TITLE e
’
where:
c

Is a heading of up to 100 charaéters enclosed in apostrophes.
Operational Considerations:
q The following conditions apply to characters in the operand field:
L Any éharacter may be specified, including spaces, within the defining apostrophes.
a An apostrophe within the operand must be specified as a pair of apostrophes.
L] An ampersand within the operand must be §pecifiod as a pair of ampersands.
® Spaces may be specified freely to separate heading words.

More than one TITLE directive is permitted in a program. A TITLE directive provides the heading for all
pages in the listing that succeed it.

UP-8914 SPERRY UNIVAC 0S/3 3-30
ASSEMBLER

USING

Function:

informs the assembler that a specified register is available for base register assignment and will contain a
specific value at execution time. The value must be loaded by the program into the base register that the
USING directive specifies. The assembler maintains a USING table of the specified registers.

Format:
LABEL l A OPERATION A I OPERAND
unused ! USING vry Lt]
where:
v .
Is the value assumed to be in the first specified register at execution time. This value may be
relocatable or absolute. Literals are not permitted.
fj[.-..,'"]

Specifies that the declared registers (O through 15) will be used as base registers loaded at execution
time. These register numbers do not necessarily have to be assigned in ascending sequence.

Operational Considerations:

The first register specified after v is assigned the value of v; the next register is assigned the value of the
first register plus 4096; the next register is assigned the value of the second register plus 4096; and so on
through all the registers specified. A USING directive may specify a single register or a group of registers,
or the registers may be specified by individual USING directives.

Register 0 may be specified as a valid base register; however, the assembler assumes that it aiways
contains the value O and calculates displacement as if the operand were zero. Register O must be the
operand specified by r,, and any registers specified in the operand field following register O are assumed to
contain increments of 4096 from zero.

When v is absolute, the indicated registers may be used to process only absolute effective addresses.

When v is relocatable, the indicated registers can be used to process only relocatable effective addresses.
The registers ry,...,rn are used to process only those addresses in the same control section as the address
represented by v.

The value specification in a USING directive sets the lower limit of an address range; the upper limit is
automatically set 4095 bytes above the lower limit. The upper limit of a USING directive may be set less
than 4095 bytes by being overlapped by the lower limit of another USING directive.

The range specified by a USING directive is used by the assembler to assign base register and
displacement vaiues to those effective operand addresses that fall within that range.

UP-8914

SPERRY UNIVAC 05/3 3-31
ASSEMBLER

USING

If an operand address is specified as an effective address instead of a base register and displacement
specification, the assembler searches the USING table for a value yielding a displacement of 4095 or less;
if there is more than one such value, the value that vields the smallest displacement is chosen. If no value
yieids_a valid displacement, the operand address is set to zero, and the line is flagged with an error
indication. If more than one register contains the value yielding the smallest displacement, the highest
numbered register is selected.

4. BAL Macro Definition Statements

UP-8914 SPERRY UNIVAC 0S/3 4-1
ASSEMBLER
ACTR
Function:
The ACTR statement is used to limit the number of AGO, AIF, GOTO, AGOB, AIFB, and DO statements that
may be processed by the assembler either within a macro or within the source program.
Format:

LABEL AOPERATION A . OPERAND

unused ACTR SETA expression

Operational Considerations:

The ACTR statement must be written immediately following the focal and global symbol declarations in
@ither the source program or in a macro definition. There can be a separate ACTR statement in the source
program and in each macro definition.

The value of the expression in the operand field may be any positive value from 1 to 223—1. The value
specified in the operand field causes a counter to be set to that value. This counter is decremented by 1 for
each AGO, AGOB, or GOTO statement that is processed for each AIF or AIFB statement whose evaluation
resulted in a true condition and for each time that the range of a DO statement is generated.

if the counter is zero prior to decrementing, the following occurs, If a macro is being processed, its
processing and that of any macros above it in a nest are terminated. The next statement to be processed is
in the source code following the macroinstruction that initiated the nest. If the source code is being
processed (outside a macro definition), an END directive is generated. The assembly continues with only
that portion of the program generated thus far.

If an ACTR statement is not written, the value of the counter is 4096,;.

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER

4-2

AGO

Function: .

Unconditionally alters the sequence of source statement processing.

Format:
LABEL ’ AOPERATION A I OPERAND
S, AGO .
[] { AGOB &
GOTO
where:;
AGO
Defines the operation.
-8
Is a sequence symbol.
-8

Is a sequence symbol defined in a following source code statement.

Operational Considerations:

The label fieid of the AGO statement may contain a sequencé symbol. AGOB or GOTO.may be used in lieu
of AGO in the operation field. The sequence symbol in the operand field is the symbol of the next
statement to be processed. Branching forward or backward from the AGO statement is permitted.

When an AGO statement is used in a macro definition, the sequence symbol specified in the operand field

must appear in the label field of another statement in that macro definition.

uP-8914 SPERRY UNIVAC 0S/3 4-3
ASSEMBLER

AIF

Function:

Conditionally alters the sequence of source statement processing.

Format:
LABEL ' AOPERATION A | OPERAND
ey |
]
[] I {AIFB L
where: s
8
Is a sequence symbol.
AlF
Defines the operation.
{b)
Is a SETB logical expression enclosed in parentheses.
kA

Is a sequence symbol defined in a source code statement.
Operational Considerations:

The label field of the AIF statement may contain a sequence symbol. AIFB is penﬁitted instead of AIF in the
operation code field. ‘

Any logical expression permitted in the operand field of a SETB statement is valid in the operand field of
the AIF statement except a O or a 1 enclosed in parentheses. The sequence symbol in the operation fieid
must be written immediately after the parenthesis terminating the logical expression.

If, after the logical expression has been evaluated, the condition is true (a value of 1), you branch to the
statement specified by the .s, portion of the operand. If the condition is false (a value of O), the statement in
the source code following the AIF statement will be the next statement to be processed. Branching either
forward or backward from the AlF statement is permitted. When an AlF statement is written in 8 macro
definition, the sequence symbol specified in the operand field must appear in the label of another
statement within that macro definition.

UP-8914 SPERRY UNIVAC 0S5/3 4-4
’ ASSEMBLER :

ANOP

Function:

Enables branching. If .a branch is necessary and no statement within the source code supplies the branch
destination in its label field, an ANOP statement can be coded to provide a label to which to branch.

Format:
LABEL I AOPERATIONA ' OPERAND
A
s { ANOP } unused
LABEL :
where:
.8
Is a sequence symbol.
ANOP

Defines the operation.
Operational Considerations:
The label fieild must contain a sequence symbol.

When the label field of a statement that is desired as a branch destination point aiready contains a symbol
or variable symbol, the branch destination is indicated by preceding the statement by an ANOP statement.

LABEL is an acceptable synonym for ANOP in the operation field.

UP-8914 SPERRY UNIVAC 0S8/3 4-5
ASSEMBLER
DO

Function:

Defines the starting point of the code and the numbers of times it is to be generated.
Format:

LABEL | AOPERATION A OPERAND

[&varisymb] DO a
where:

&varisymb

Is an optional variable symbol.

DO
Defines the operation.

is a valid SETA expression or a valid SET expression written in a macro definition in proc format.

Operational Considerations:

The expression in the operand field indicates the number of times the source code statements following
the DO statement are produced in the object code. All lines of coding appearing between a DQ statement
and its associated ENDO statement are generated. The value of the expression in the operand fieid may be
any value from O to 223—1. If the value of the expression is negative, the DO statement is flagged and
ignored (that is, treated as if the value has been a 1).

The set of statements between the DO statement and its associated ENDO statement are said to be within
the range of the DO statement. Any valid source code statement may be within the range of a DO
statement, including other DO statements with their corresponding ENDO statements. DO statements may
be nested up to 10 leveis.

A variable symbol may be entered in the label field of the DO statement. When the variable symbol in the
label field is specified, it is used as a counter for the number of times a set of lines within the range of a
DO statement has been generated. The value of this variable symbol is 1 the first time through the set of
statements; 2 the second time through; and so forth. It is referenced in the same manner as a SETA
symbeol.

if a DO statement is within the range of another DO statement and the nested DO statement is reentered,
its count begins at 1 again. The value of the variable symbol in the label field of the DO statements is
available to the statements following the ENDO statement even if the operation of the DO statement cycle
is interrupted.

If an AGO, AGOB, GOTO, AIF, or AIFB statement outside the range of a DO statement resuits in an
assembler branch to a sequence symbol inside the range of the DO statement, processing continues with
the statement defining the sequence symbol. Processing proceeds from that point as though the DO
statement operand had had a value of 1.

UP-8914 SPERRY UNIVAC 0S/3 4-6
ASSEMBLER

END

Function:
Signifies the ;nd of a macro definition in PROC format.

Format

LABEL l AOPERATION A l OPERAND

unused l END unused

Operational Considerations:

Aﬁ END statement signals the end of a macro definition. The assembler pairs each END statement with the
most recently encountered unpaired PROC statement. The statements between paired PROC and END
statements are defined as the body of a macro definition.

UpP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER

4-7

Function:
Indicates the end of the range of a DO statement.

Format

LABEL l AOPERATION A l

ENDO

OPERAND

unused ENDO unused

Operationai Considerations:

DO and ENDO statements must bé paired. For every DO statement, there must be an ENDO statement to
define the end of the range.

UP-8914 SPERRY UNIVAC 0S/3 4-8
: ASSEMBLER

GBL

GBLA
GBLB
GBLC

Function:

Declares global set symbols. The declarative chosen determines the range of values to which the set
symboi may be set and the type of SET statement used to assign the values.

Global set symbols are initialized only once and are used to pass vaiues back and forth between macro
definitions. A giobal set symbol declared at the source code level is available to all macro definitions in
which it is aiso declared.

Format
LABEL AOPERATION A OPERAND
unused GBL s, 185,008,]
GBLA
GBLB
GBLC
where:
GBL
Declares a generai-purpose global set symbol.
GBLA
Declares an arithmetic global set symbol.
GBLB
Declares a Boolean global set symbol.
GBLC
Declares a character global set symbol.
$1,82,+...8n

Are set symbol names.
Operational Considerations:

The operand field of the global set declaration may contain one or more set symbols. A giobal set symbol is
considered defined when declared. It is initialized only once, that is, the first time it is declared. With
subsequent declarations in other contexts, the global set symbol is available for use but is not reinitialized.
A set symbol must be declared before it is available for use. A set symbol declared by a GBLA or GBLB
statement is assigned an initial value of zero. A set symbol declared by a GBLC or GBL statement is
assigned an initial value of a null character string.

If a set symkbol is declared as a global set symbol in more than one macro definition, it must be declared
with the same statement code in each macro definition.

UP-8914 SPERRY UNIVAC 0S/3 4-9
ASSEMBLER

LCL

LCLA

- LCLB
| LCLC

Function:

Declares local set symbols. The declarative chosen determines the values to which the set symbol may be
set and the type of SET statement used to assign the values. A local set symbol is available for use only in
the macro definition in which it is declared.

Format:
LABEL AOPERATIONA OPERAND
-
unused LCcL - 8, [.8550-08,]
LCLA
LCLB
LcLC
where:
LCL
Declares a general-purpose local set symbol.
LCLA .
Declares an arithmetic local set symbol.
LCLB
Declares a Boolean local set symbol.
LCLC
Declares a character local set symbol.
$.92,....8n

Are set symbol names.
Operational Considerations:
The operand field of the local set declaration may contain one or more set symbol names. A Ioéal set
symbol is considered defined when declared. A set symbol declared by an LCLA or LCLB statement is

assigned an initial value of zero.

A set symbol declared by an LCLC or LCL statement is assigned an initial vaiue of a null character string.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

4-10

MACRO

Function:

Designates the start of a macro definition written in macro format.

Format:

LABEL AOPERATION A

OPERAND

unused MACRO unused

Operationa! Considerations:

This statement may be used only in macro definitions written in macro format.

A macro definition written in macro format consists of the following elements in the order specified:

1.

2.

MACRO statement (heading)
Prototype statement (macroinstruction format)
Model statements {optional)

MEND statement (trailer)

UP-8914 SPERRY UNIVAC 0S/3 4-11
ASSEMBLER Update B

. Macro Call Instruction

Function:
Causes a precoded set of assembler instructions {a macro definition) to be inserted into a source program
at the point where the macro call instruction is located. The macro definition that is inserted into the

source program is identified in the operation field of the macro call instruction.

Format:

LABEL A OPERATION A OPERAND

[symbol] call-name [p1 . T s B]

If a symbol appears in the label field of a macroinstruction, it must be explicitly defined in the
corresponding macro definition.

The operation field of the macro call instruction contains a symbol that is the name of a macro definition
stored in a library or being assembled with the program source code. The operation field calls the desired
macro definition. The operand field may contain from O through 252 operands separated by commas. Each

. operand of the macro call instruction is either a positional or keyword parameter that specifies a value
passed to the corresponding symbolic parameter references in the macro definition.

The value of a positiohal parameter is identified by the position it holds in the operand field. Given a macro
definition that expects four positional parameters to be specified, the operand field of the macro call
instruction normally has the form:
P1.P2,P3.Pa
An omitted operand must be indicated by writing both commas that separated it from the string.
If the second and third operands are omitted, the form of the operand fieild of the macro call instruction is:
P1...Pa
If the final parameters are the ones to be omitted, the commas following the last operand specified may be
dropped. If the macro definition were to be called by using only the second of four parameters, the operand

field of the macro call instruction has the form:

P2

UP-8914

SPERRY UNIVAC 0S/3 4-12
ASSEMBLER Update B

Macro Call Instruction

A macro definition may specify that some or all of its parameters are keyword parameters. The
specification of a keyword parameter consists of the keyword followed by an equal sign, followed by the
value being specified for the parameter. Keyword parameters are separated by commas and may be
specified in any order. Consecutive commas are not required to indicate omission of a keyword parameter
specification. Keyword parameters have the form:

a=b,,c=d,,e=f;
or

¢=d,,a=b,,e=f;
A macro definition having both positional and keyword parameters is called a mixed-mode macro
definition. The operand field of a mixed-mode macroinstruction must contain any positional parameter
specifications followed by the keyword parameter specifications being supplied. The last positional

parameter specified is followed by a comma, followed by the first keyword parameter specification. Mixed-
mode parameters have the form:

P rp21p31p4ra=b1 ,C=d2,e=f3

Operational Considerations:

Each of the macro call instruction operands consists of 1 to 127 characters, with the character string
satisfying the following conditions:

= May include one or more sequences of characters enclosed in single apostrophes. The apostrophes
enclosing each character sequence are paired. Paired apostrophes may appear within paired
apostrophes.

n May include a single apostrophe outside paired apostrophes if written as part of the following
sequence: any special character except an ampersand, the letter L, an apostrophe, and a letter.

L] May include an ampersand as the first character of a variable symbol if the ampersand is a single
ampersand or the last ampersand of a string containing an odd number of ampersands.

L] May include paired parentheses outside paired apostrophes. To determine pairing, a left parenthesis
is paired with the immediately following right parenthesis (that is, no parentheses between them).
Additional pairs are determined by ignoring the first pair and reapplying the rule.

L] May inciude an equal sign only as the first character of an operand or within paired parentheses or
paired apostrophes.

L] May include a comma as a character in a string if the comma is enclosed in paired parentheses or
paired apostrophes. A comma standing alone is interpreted as the end of an operand.

= May include a blank within paired apostrophes. A blank not enclosed in apostrophes terminates the
operand field.

NOTE:

Operands can be coded on more than one line through the use of a continuation character in column 72. If
a line is to be continued, the last operand on that line must be followed by a comma. A warning message is
issued if a comma is not included.

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER

4-13

Function:

Signifies the end of a macro definition written in macro format.

Format:

LABEL AOPERATIONA OPERAND

MEND

unused MEND unused

Operational Considerations:

This statement is allowed only once in each macro definition, and it must be the last statement of the

definition.

UP-8914 SPERRY UNIVAC 0S/3 4-14
ASSEMBLER

MEXIT

Function:

Indicates to the assembler that the processing of a macro definition should be terminated before ending
normally with a MEND statement. This statement is used when it is necessary to process only one section
or operation of a macro definition rather than the entire macro definition.

Format:

LABEL l AOPERATION A | OPERAND

unused MEXIT unused

Operational Considerations:

When MEXIT is encountered, the assembler terminates processing the macro definition and processes the
statement in the source program following the macro call instruction that called the macro definition

containing the MEXIT.

A second macroinstruction with different operands may request the processing of different portions of the .
macro definition containing the MEXIT.

UP-8914 SPERRY UNIVAC 0S/3 4-15
ASSEMBLER

& ’ MNOTE

Funcuon:

Generates an error message (which indicates how dangerous an error is) or a comment (which supplies
information). An MNOTE statement is used in a macro definition or in source code statements.

Format:
LABEL A OPERATION A OPERAND
unused MNOTE ‘m’
A'lml
S,'m’
4 ')

in this format, these can be specified: a message enclosed in apostrophes, a comma followed by a3 message
enclosed in apostrophes, a severity code followed by a message, or an asterisk followed by a message. In all
cases, the message is printed in the assembly listing source code. The severity code indicates the danger of the
' ’ error that occurred. The severity code is a decimal value of O to 255. If a severity code of 1 is to be indicated, the
user leaves a blank space (A) followed by the error message, enclosed in apostrophes. An asterisk used as the
" severity code indicates that the message following it is informational and not an error. As mentioned before, any
of these specifications causes the message to be printed in the assembly listing. Also, MNOTE lines are flagged
as errors and listed in the diagnostics portion of the assembly listing if they do not have an asterisk in operand 1.
Messages preceded by an asterisk are not flagged or listed in the diagnostics because they are not errors.

Variable symbols can be used as operands in an MNOTE statement.

UP-8914 SPERRY UNIVAC 0S/3 4-16
ASSEMBLER

Model Statement

Function:

Model statements are between the NAME and END statements in 8 proc and between the prototype and
MEND statements in a macro. The mods! statements define the pattern of operations to be performed at
assembly. Model statements do not gensrate object code.

Format:
LABEL "~ AOPERATION & : OPERAND
variable symbol i
ssquencs symbol mnemonic code operands
symbol - J

Operational Considerations:

The Isbel field cannot contain an asterisk,

The operation field can contain the mnemonic operation code of an assembler instruction, directive, or
macro definition. The field can aiso contain a variable symbol if a different operation is to be generated
each time the macro is called. The variable symbol is restricted to seven characters, preceded by an
ampersand. The operation field cannot contain the mnemonic codes END, ICTL, ISEQ, or PRINT.

The operand fisid can contain symbols or variable symbols. The size of the fisld, after the variable values
are sybstituted, is up to 240 characters.

UP-8914 SPERRY UNIVAC 0S/3 4-17
- ASSEMBLER

NAME

Function:

Supplies the mnemonic operation code by which a macro definition in proc format is referenced. The label
field of this statement supplies the name of the macro definition in which it appears.

Format:

LABEL AOPERATION A OPERAND

call-name NAME pos-0

The cail-name symbol in the label field of the NAME statement identifies the mnemonic operation code by
which the macro definition may be referenced. This symbol must be unique; it may not be the same as the
mnemonic operation code of a machine, assembler directive, or assembler instruction or duplicate the
mnemonic operation code associated with any other macro definition in the source program.

in the operand field, pos-O can be a decimal or alphanumeric value but it cannot be a variable symbol. The
value in the operand field of the NAME statement is referenced as positional parameter O by using the
same symbolic parameter indicated in oeprand 1 of the PROC statement. The value can be varied for
positional parameter O by using multiple NAME statements.

Operational Considerations:

At least one NAME statement is required for each macro definition, but more than one may be written.
Each NAME statement specifies a different name {(symbol) by which the macro definition may be
referenced. The NAME statement must be written immediately after the PROC statement. When more than
one NAME statement follows the PROC statement, only the operand of the NAME statement containing
the symbol used to reference the macro definition is available to the body of the definition.

Muitiple NAME statements allow the programmer to specify a different parameter for each NAME
statement and to select the parameter by referencing that particular NAME statement.

UP-8914 SPERRY UNIVAC 0S/3 . 4-18
ASSEMBLER :

PNOTE

Function:

Generates an error message or a comment. A PNOTE statement is used in a macro definition or a source
code statement. :

Format:
LABEL - AOPERATIONA OPERAND
.
unused PNOTE {' } m’
oep ’

In this format, there are two operand fields. In the first field, an asterisk can be specified to indicate that the
message is informational and not an error, or a character expression can be specified containing up to six
characters. The second operand field contains the message. it can contain up to 79 characters. Regardiess of the
choice made for the first operand, the message is printed in the assembly listing source code. If it does not
contain an asterisk as operand 1, a PNOTE statement is flagged as an error, and listed in the diagnostics portion
of the assembly listing. If there is an asterisk in the first operand field, the line is not flagged or listed in
diagnostics. This is done because an asterisk indicates that the message is not an error.

Variable symbols can be used as operands in a PNOTE statement.

"

UP-8914 SPERRY UNIVAC 0S/3 4-18
. ASSEMBLER

PROC

Function:

Designates the start of a macro definition written in proc format.

Format:
LABEL ‘ A OPERATION A I OPERAND
[&symbol] | PROC - [&pos,n] [&key, =.... &key, =]
where:
&symbol
is a variable symbol referring to the label of the macroinstruction.
&pos,n

Is a variable symbol used in the body of the PROC to reference positional parameters in the call
instruction. The n is a decimal number indicating how many positional parameters there are.

&key,=,....&key ,, =

Specifies the keyword parameters. (If only keyword parameters are specified, commas must be coded
in operands 1 and 2.)

Operational Considerations:
A macro definition written in proc format consists of the following elements in the order specified,
1. PROC statement (heading)
2. NAME statements
3. Model statements (optional)
4. END statement (trailer)

Macro definitions may contain either a macro or a proc format within a definition, but not both.

UP-8914 SPERRY UNIVAC 0S/3 4-20
ASSEMBLER

PROC

The functions of the PROC statement are:
- to designate the beginning of a macro definition;
L] to identify the variable symbol if any, that refers to the label of the macroinstruction;

L to specify the maximum number of positional parameters in the macroinstruction cailling a macro
N definition;

. to identify the variable symbols to be used to address the positional and keyword parameters in the
operand field of the macroinstruction; and '

L] to optionally specify a default value for each keyword. Values assigned to keyword paramseters are
set to nulil if nothing follows the equal sign. if a default setting is provided, the respective keyword is
set to that value when the proc is called. The setting then remains unchanged if the keyword is not
specified with an appropriate value on the call line.

UP-8914 SPERRY UNIVAC 0S/3 4-21
ASSEMBLER Update B

. Prototype Statement

Function:

Provides the mnemonic operation code by which a macroinstruction may call a macro definition written in
macro format. It names the macro definition. The prototype statement specifies the names of the positional
parameters in the macroinstruction that call the macro definition containing the prototype statement.

Format:
LABEL AOPERATION A OPERAND
&symbol call-name &pos, ,...,&posn ,&key1 =,...,&keym =
where:
&symbol
Is a variable symbol that refers to the symbol in the label field of the macro call instruction.
call-name
. Is the symbol that is the name of the macro definition.

&pos;,....&pos,
Are variable symbols used as positional parameters.

&key,=,...,&key,, =
Are variable symbols used as keyword parameters.

Operational Considerations:

if the label field of the prototype statement is blank, or if the variable symbol specified does not also appear
in the label field of a model statement generated by the macro definition, the symbol in the label field of the
macroinstruction will not be defined when the macro is generated. This symbol must not duplicate the
name of any parameter or set symbol defined within the prototype statement.

The operand field of the prototype statement contains the names of all the symbolic parameters that may
be coded for the macro. Zero through 252 positional and keyword parameters are permitted in the operand
field. If the macroinstruction contains a mixture of both positional and keyword parameters, the names of
all the positional parameters must precede the names of the keyword parameters. The names of the
positional parameters must appear in the order specified in the operand field of each macro cali
instruction.

Within the operand field of the prototype statement, the entry defining a positional parameter consists
entirely of the variable symbol that names the parameter. The entry for a keyword parameter consists of
the variable symbol naming the parameter, followed by an equal sign. The equal sign may be optionally

. followed by a string of characters specifying a default value for that parameter. If no specification for the
parameter is supplied in the macro call instruction, the default value is the value supplied for a reference to
that parameter within a macro definition. The default value must be written following the rules for
macroinstruction operands. As many continuation lines may be used as required to contain the symbolic
parameters and the desired comments.

UP-8914 SPERRY UNIVAC 0S/3 4-22
ASSEMBLER

SET

Function:

Assigns either an arithmetic or character string value to a variable symbol declared by an LCL or GBL

statement.
Format:
LABEL A OPERATION A | OPERAND
&s SET a
C
where:
&s

Is a set symbol declared by LCL or GBL.

SET
Defines the operation.

Is a valid arithmetic expression.

Is a valid character expression.

Operational Considerations:

When the operand of the SET statement contains an arithmetic expression, the value of the expression
may range from —223 to +223—1. When the operand of the SET statement contains a character expression,
the maximum length that may be specified is eight characters.

If a SET variable symbol is assigned a character value, a reference to the SET symbol yields the same result
as a reference to SETC symbol assigned the same character value. Similarly, if a SET variable symbol is
assigned an arithmetic value, a reference to the SET symbol yields the same result as a reference to a
SETA symbol assigned the same value. A SET variable symbol with a character value may be reassigned
an arithmetic value, and vice versa.

A SET expression is a SETA expression allowing the use of the operators >, <,=, **, and ++ in the SET
expression when an arithmetic operator is valid. The characters ** represent the logical product AND, and
the characters ++ represent the logical sum OR.

uP-8914

SPERRY UNIVAC 0S/3 4-23
ASSEMBLER

SET

Each bit of the first term is compared with its corresponding bit in the second term, and the resuit of the
comparison is placed in the corresponding position in the resuiting term. The result of the bit comparison
for each operator is:

AND OR

A**B Result A++8 . Resuit

1 1 1 1 1 1

1 0 0 1 0 1
1 0 0 1 1 ’
0 0 0 0 0

The three reiational operators are the equal (=) operator, the greater than (>) operator, and the less than
(<) operator: :

Compares the value of two terms or expressions. If the two vaiues are equal, the assembler
assigns a value of 1 to the expression. If the values are not equal, a zero value is assigned.

>
Compares two terms or expressions. If the value of the first {left) term is greater than the value
of the second {right) term, a value of 1 is assigned to the expression. If the value of the second
term is greater than the value of the first term, a zero value is assigned.

<

Compares the value of the first (left) expression or term with the second (right) expression or
term. If the value of the first expression or term is less than the value of the second, a value of
1 is assigned to the expression. If the value of the second expression or term is less than the
value of the first, a zero value is assigned.

Given the expression A+8 > C, if the expression A+B has a greater value than the value of C, the
assembler assigns a value of 1 to the expression. If the value of C is greater than the vaiue of A+B, a zero
value is assigned.

Since the value of a relational or logical expression is arithmetic, the expression may be used as a term in
an arithmetic expression. The following chart shows operator priority.

UP-8914] SPERRY UNIVAC 0S/3 4-24

ASSEMBLER
SET
Operator Hierarchy
- J 5
+— 4
26 3
++ 2
N <>= 1

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symboi. SETA, SETB, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

UP-8914

SPERRY UNIVAC 0S/3 4-25
ASSEMBLER

SETA

Function:

Assigns an arithmetic value to a variable symbol that was declared by an LCLA or GBLA statement.

Format:
LABEL I AOPERATION A I OPERAND
&s SETA a
where:
&s
Is a set symbol declared by either LCLA or GBLA.
SETA
Defines the operation.
a

Is a valid SETA term or an arithmetic combination of valid SETA terms.

Operational Considerations:

A valid SETA term is:

. a self-defining term; or

e 8 variable symbol with an arithmetic value; or

s a character value consisting of one to eight decimal digits.

The arithmetic operators used in writing SETA expressidns are +, —, *, and /. The expression may not_
begin with an operator. Two operators or two terms may not succeed one another.

The rules of precedence for the evaluation of a SETA arithmetic expression are the same as stated for a
SET statement. The value of a SETA expression may range from —223 to 2231,

When the SETA symbol is used in an arithmetic expression, the arithmetic value of the symbol is
substituted for the symbol. If the SETA symbol is used in another context, the arithmetic value of the SETA
symbol is converted to a decimal integer with leading zeros removed. A leading minus sign will be
retained. This decimal value is then substituted for the SETA symbol. If the value of the SETA symbol is
zero, a single zero is substituted. '

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

UP-8914] SPERRY UNIVAC 0S/3 4-26
ASSEMBLER

SETB

Function:

Assigns a binary value of O or 1 to a variable symbo! that was declared by an LCLB or GBLB statement.

Format:
LABEL ‘ AOPERATION A l OPERAND
&s SETB b
where:
&s
Is a set symbol declared in either LCLB or GBLB.
SETB
Defines the operation.
b

Is a valid logical expression, a O or a 1, that must be enclosed in parentheses.

Operational Considerations:

The logical expression in the operand field may have a value of éither 0 (faise) or 1 (true), and the set
symbol specified in the name field of the set statement is assigned the resultant binary value. The logical
expression may consist of a single term or logical combination of terms.

The permissible terms are:

[] a SETB arithmetic relational expression;

» a SETB character relational expression; and

L] a SETB symbol.

The SETB logical operators that may be used to combine the terms are B8, B, and B. The logical expression

must not contain two terms in succession. Two operators may appear in succession if the first operator is

either B8 or W, and the second operator is illl. Only the operator M is allowed prior to the first term of the
expression.

UP-8914 SPERRY UNIVAC 05/3 4-27
ASSEMBLER -

SETB

A SETB arithmetic relational expression consists of two arithmetic expressions connected by a SETB
relational operator. A SETB character relational expression consists of two character strings connected by
a SETB relational operator. The SETB relational operators are:

Operator Meaning

NE Not equal

EQ Equal

LT Less than

LE Less than or equal
GT Greater than

GE Greater than or equai

The arithmetic expression that may be used as a term in the SETB arithmetic relational expression is
defined under the SETA statement. The rules under the SETC statement define the format of the character
string that may be used in a SETB character relational expression, If two character strings are of unequal
length, the shorter will always compare less than the longer, regardiess of actual vaiue. The maximum
length of character strings that may be compared is 127 characters.

in writing SETB expressions, the SETB relational or logical operators must be preceded and followed by at
least one blank or other special character. The relational expression may be optionally enclosed in
parentheses.

The procedure for evaluating a SETB expression is:

] Each term (SETB symbol, SETB arithmetic expression, or SETB character expression) is evaluated and
given a value of either 1 (true) or Q (faise).

® Evaluation is from left to right. The weight of the logical operators is:

B = 1
m = 2
m = 3

Therefore, B is performed prior to BN, and &8 is performed prior to B.

If a SETB variable symbol is used in the operand field of a SETA or DO statement, or in an arithmetic
relation (in either a SETB or AIF term), the binary values O and 1 are converted to the arithmetic values +0
and +1.

if the SETB variable symbol is used in the operand field of a SET statement, the value substituted is
dependent on the context. in an arithmetic expression, +1 or +0 is substituted. In a character expression,
the character values 1 and O are substituted.

UP-8914 o - SPERRY UNIVAC 0S/3 4-28
ASSEMBLER

SETB

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

uP-8914 SPERRY UNIVAC 0S/3 4-29
ASSEMBLER -

SETC

Function:

Assigns a character value to a variable symbol that was declared by an LCLC or GBLC statement.

Format:
LABEL AOPERATION A OPERAND
&s SETC c
r 4
where:
&s
Is a set symbol declared by either LCLC or GBLC.
SETC
Defines the operation.
c

Is a valid SETC operand.
Operational Considerations:
A SETC operand must be a character expression.

_ The maximum length of the value that may be specified for a SETC symbol is eight characters. If more than
eight characters are specified, only the leftmost eight characters are used by the assembler.

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may

be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

Appendix A. Assembler Refe,rénces

0]

The RR instruction has three other forms:
[symbol] opcode i, for the SVC instruction;
{symbol] opcode r, for the SPM instruction; and

{symbol] opcode m,,r, for the BCR instruction.

@

The RX instruction BC is written in the form:

[symbol] opcode m,,d;(x,,b,).

®

The RS instruction has two other forms:

the RS shift instructions are written without use
of the r; operand, in the form:

[symbol] opcode r,,d,(b,)

and some RS instructions, such as ICM and CLM,

are written in the form:

{symbol] opcode r;,mj,d,(b,).

Table A—1. Instruction Formats (Part 1 of 2)
Source Code Instruction Format Object Code Instruction Format
Type First Half Word Second Half Word Third Half Word
: Explicit Form Implicit Form Byte 1 Byte 2 Bytes 3 and 4 Bytes 5 and 6
0 718 1112 15 {16 19 120 31 |32 35 l36 47
!))
reg reg 1 |
opt op 2 |
RR {symbol] opcode r1,r2® [symbol] opcode LI —~ s —
opcode 8 I r i
| reg : address l |
— @) | op 1) operand 2
RX [symbol] opcode rydy (xz,bz) [symbol] opcode r s, (x,)}) [— | I
opcode r I X, b2 l dz .
) l |
| reg reg ! address)]
— \ | op 1 op3 operand 2 | '
RS [symbol] opcode Ty Mg ,dz (bz)@ {symbol] opcode T3, | —~ o ——— —— }
opcode N l 5 b2 I cl2 :
! immediate : address) :
1 |
i Si [symbol] opcode d1(b1),i2 [symbol] opcode s1,i2 ! : ,_\(’pii]f/__\ ! /,_\?m_’_\ | l
f [}
opcode | [b‘ I d N |
T
| t . address 1 |
! ! operand 2 !
S {symbol] opcode d,, (b)) [symbol] opcode 5o I | : A-e/\/—\ ! :
I I
opcode l opcode l b, l d, l
L T
: length i address | addressz
1andop 2 operand 1 I operand
[symbol) opcode d1 (I,b]) ,d2 (bz) [symbol] opcode s1(l),s2 | -op an p__ : /__De/\/_\ | —— e mmi——e
s opcode 1-1 b) I d ' b2 (:I2
' : length i address | address
| 1 op 1 op 2 | operand 1) operand 2
{symbol] opcode d1 (I1,b1),d2(I2,b2) {symbol!] opcode s,(l1),52(12) | [— e — e —
opcode -1 I2—1 b| J d, b2 T d2
i | immediate | immediate displacement 1 address
i R operand 2 | rmask 3 4] operand 1 |
SM (symbol} opcode d1(b1),l2,m3,d4 [symbol] opcode 51,|2,m3,d4 | | — I L — e] o — i |
opcode i 2 m, d n b d1
* 0 718 11 |12 1s 116 19 120 31 32 35 136 47
NOTES:

HITANW3SSY
€/S0 JVAINN AHY3dS

g e1epdn

168-dNn

-V

UP-8914 SPERRY UNIVAC 0S/3 A-2
ASSEMBLER Update B

Table A—1. Instruction Formats (Part 2 of 2)

Characters Meaning

OPCODE The application instruction operation code.

. The number of the general register containing operand 1

T, The number of the general register containing operand 2

ra The number of the general register containing operand 3

X, The number of the general register containing an index number for operand 2 of the RX instruction
i‘| v The immediate data used as operand 1 of the SVC instruction

i2 The immediate data used as operand 2 of an Sl instruction

t The length of the operands as stated in source code*

I1 The tength of operand 1 as stated in source code*

32 The length of operand 2 as stated in source code*

b1 The number of the general register containing the base address for operand 1
b2 The number of the general register containing the base address for operand 2
d1 The displacement for the base address of operand 1

d2 The displacement for the base address of operand 2

d4 The displacement used as operand 4 of an SM instruction

m, The mask used as operand 1

m, The mask used as operand 3 of an SM instruction

op, Operand 1

op, Operand 2

opg Operand 3

54 The symbol used to identify operand 1 in the implicit format

S, The symbol used to identify operand 2 in the implicit format

*This is coded as the true source code length of the operand, not the length less 1, as assembled in the object code. The
assembler makes a reduction of 1 in the length when converting source code to object code.

UP-8914 SPERRY UNIVAC 0S/3 A-3
ASSEMBLER Update B
Table A—2. Instruction Repertoire (Part 1 of 9)
Listing by Mnemonic Code
Mnemonic Instruction Name Machine Byte - VSource Code For@at —
Code Length Explicit Implicit
A Add 5A 4 r1,d;(%2,b,) r1Sa(Xz)
AD Add normalized, long B6A 4 ry,d2(X5,bs) ry,S(Xz)
ADR Add normalized, long 2A 2 r,ry r.r
AE Add normalized, short 7A 4 ry,da(x,,b,) r1,82(x;)
AER Add normalized, short 3A 2 ry,ry r,r
AH Add half word 4A 4 ry,d5(x5,b,) r1,82(X;)
Al Add immediate 9A 4 dq(by).i; S1,ip
AL Add logical 5E 4 ry,da{xy,by) ry.,8,(x;)
ALR Add logical 1E 2 rr ry.r
AP Add decimal FA 6 dy(ly,dy),dy(l,, by} sq(h),82(15)
AR Add 1A 2 .l .1
AU Add unnormalized, short 7E 4 ry,da(x,,b,) ry,8,(x5)
AUR Add unnormalized, short 3E 2 r.r ry.7y
AW Add unnormalized, long 6E 4 ri.daix,,b,) r1.,Sa(xz)
AWR Add unnormalized, long 2E 2 r.r r.r
BAL Branch and link 45 4 r1,d;(x2,b,) r1.82(X2)
BALR Branch and link 05 2 rry r.r
BC Branch on condition 47 4 i,dy(xz,b,) i,52(%5)
BCR Branch on condition 07 2 i,ry i,ry
BCT Branch on count 46 4 ry,d,{x,,b,) r1,52(X,)
BCTR Branch on count 06 2 r.r r.r
BXH Branch on index high 86 4 r1.r3.da(bs) r1.73.S;
BXLE Branch on index low or equal| 87 4 ry,r3,dy(bs) ri.r3,S;
(o Compare algebraic 59 4 r1,d5(x2.b,) r1.82(%z)
cD Compare, long 69 4 11.d5(x,b,) 11,82(%;)
CDR Compare, long 29 2 r.ry r.r
CE Compare, short 79 4 r1,S2(Xs,b7) ry,82(xz)
CER Compare, short 39 2 r.r; r.r
CH Compare half word 49 4 ri,dy(x,.b,) r1,S2(%;)
CL Compare logical 55 4 ry,da{x,,b,) r1.82(Xs)
CLC Compare logical D5 6 dy,({Lby),ds(b,) sq(l), s,
CLCL Compare logical characters OF 2 r,r; ry,ry
long
CLl Compare logical immediate 95 4 di.(by).iy Sq,ip
CLIS Compare logical immediate E1 6 dq(by).ig,ma,dy Sy,i2,M3,8,
and skip
CLM Compare logical characters BD 4 ry,ms,dy(b,) r;,ms,s,
under mask
CLR Compare logical 15 2 r.,r r.r
CLRCH Clear channel 9F02 4 {Privileged) (Privileged)
CLRDV Clear device 9DX2 4 (Privileged) (Privileged)
cP Compare decimal F9 6 di(l;,bq),d5(l5,by)} sq(l1),82(12)
CR Compare algebraic 19 2 Iyry r.r
CSM Compare and swap under B9 4 rq.73,d4(b,) ri,F3,82
mask
cvB Convert to binary 4F 4 ry.d,(X,,b,) r1,82(%z)
CvD Convert to decimal 4E 4 ry,d,(x;,b,) r1,82(X,)
D Divide 5D 4 r1.d2(x,,b,) r1,82(x;)
DD Divide, long 6D 4 r1,d5(X2,b;) ry.S2(%;)
DDR Divide, long 2D 2 r,r, r,r
DE Divide, short 7D 4 r1,da2(x2,b,) r1.82(X5)
DER Divide, short 3D 2 r.,r; r.r
DpP Divide decimal FD 6 d|(|1,b1),d2(|2'b2) 51('1),,52“2)
DR Divide 1D 2 r.r r.r;
ED Edit DE 6 dq(l,by),dy(b;) si{l).s;
EDMK Edit and mark DF 6 dy{l,by),dy(b,) s¢{l),s,
E!IO Enqueue 170 EO 6 (Privileged) (Privileged)

by

UpP-8914 SPERRY UNIVAC 0S/3 A-4
ASSEMBLER Update B
Table A—2. Instruction Repertoire (Part 2 of 9)
Listing by Mnemonic Code
Mnemonic Instruction Name Machine Byte Source Code Format
Code Length Explicit Implicit
EX Execute 44 4 ry,d5(x5.b5) ry,S5(xz)
EXD Execute diagnose 8300 4 (Privileged) (Privileged)
GRB Get IORB OB 2 (Privileged) (Privileged)
HDR Halve, long 24 2 ry,r, M.r
HDV Halt device 9EO1 4 (Privileged) (Privileged)
HER Halve, short 34 2 .1, r.r
HPR Halt and proceed 99 4 (Privileged) (Privileged)
ic Insert character 43 4 ry.d,(x,,b,) r1,8,(%p)
ICM Insert characters under mask | BF 4 ry,ms,da(b,) ry,M3,$,
IPL initial program load 8303 4 (Privileged) (Privileged)
ISK* Insert storage key 09 2 (Privileged) (Privileged)
L Load 58 4 r1,d2{x5,bs) ry,8,(%3)
LA Load address 41 4 r1.d,(x2.b7) r1,82(xz)
LCDR Load complement, long 23 2 r.r [)
LCER Load complement, short 33 2 r,r r.r
LCHR Load channel register 9F03 4 (Privileged) {Privileged)
LCR Load complement 13 2 r.r I,
LCTL Load control B7 4 (Privileged) (Privileged)
LD Load, long 68 4 ry.dy(x,,b,) r.Sa(X;)
LDA Load directive address 51 4 (Privileged) (Privileged)
LDR Load, long 28 2 .l r.r
LE Load, short 78 4 ry.da(x,,by) r1.S2(X;)
LER Load, short 38 2 ., n.r
LH Load half word 48 4 r1.d5(x5,b,) r1.85(x5)
LIA Load |/0 address 61 4 (Privileged) {Privileged)
LM Load multiple 98 4 11,73,d5(b,) 1.r3,8;
LNDR Load negative, long 21 2 .1 ry,r,
LNER Load negative, short 31 2 r,r, r.r
LNR Load negative 11 2 r.r; r,r
LPDR Load positive, long 20 2 r.ro r.r
LPER Load positive, short 30 2 ry.r; ry,fo
LPR Load positive 10 2 ry.ro r.r
LPSW Load program status word 82 4 (Privileged) (Privileged)
LR Load 18 2 r,r, ry.r,
LRC Longitudinal redundancy 830E 4 (Privileged) (Privileged)
check

LRR Load relocation register A3 4 (Privileged) (Privileged)
LTDR Load and test, long 22 2 T, r.r
LTER Load and test, short 32 2 r,r r.r
LTR Load and test 12 2 r.ry e,
M Multiply 5C 4 ry,d,(x,.b,) r1.85(x,)
MD Multiply, long 6C 4 ri.d,(x,,b,) ry,Sa(X5}
MDR Multiply, long 2C 2 ry,r, ry.fy
ME Multiply, short 7C 4 ry,d5(X5,b,) r.S5(%;)
MER Multiply, short 3C 2 . ry.f
MH Multiply ha!f word 4C 4 ry,dy{x5,b,) ry,$2(%)
MIO Move 1/0 81 4 (Privileged) (Privileged)
MP Multiply decimal FC 6 dy(ly,by),dyll5,bs) s1(ly),85.(15)
MR Multiply 1C 2 r.ry .0
MVC Move characters D2 6 d,{l,b,).d5(b,) sq{l).s;
MVCL Move character long OE 2 r.r ry.r,
MvI Move immediate 92 4 dy(bs).i; Sy.ip
MVN Move numerics D1 6 dy(1,b,).dy(b,) si(l).s;
MVO Move with offset F1 6 dy{l,,by).d,(15.b,) s1{1),5,(15)
Mvz Move zones D3 6 d,(Lb;).do(b,) si{l).s;
N AND logical 54 4 ry.d5(x5,by) ry.Sa(xz)
NC AND logical D4 6 dq(l1,b;).dy(b,) s(l).s;
NI AND logical immediate 94 4 dy(bq)is Si.ip
NR AND Iogical 14 2 r.r T

UP-8914 SPERRY UNIVAC 0S/3 A-5
ASSEMBLER Update B
. Table A—2. Instruction Repertoire (Part 3 of 9)
Listing by Mnemonic Code
. o N Machine Byte Source Code Format
Mnemonic Instruction Name Code Length Explicit —
0 OR logical 56 4 r1.d;(x2,b,) ry,82(%;)
ocC OR logical D6 6 dq{l,by),ds(b,) sy(l).s,
Ol OR logical immediate 96 4 dy(by).i, Sy.ip
OR OR logical 16 2 r.r r.r
PACK Pack | F2 6 di(l4.by).ds(l,,by) s1(l1),85(15)
PRB Put IORB ocC 2 (Privileged) (Privileged)
RESET Reset . 8301 4 (Privileged) (Privileged)
S Subtract 5B 4 r1,d2(x2.by} r1.82(x;)
SD Subtract normalized, long 68 4 ry.da(x,,b,) r1.82(X;)
SDR Subtract normalized, long 28 2 r,r r.r
Sbv Start device 9C02 4 (Privileged) (Privileged)
SE Subtract normalized, short 7B 4 r1,d2(X5,b,) r1,52(x))
SER Subtract normalized, short 38 2 r.r; .0
SH Subtract half word 4B 4 ry,d,(X,,b,) ry,82(%;)
SHL Shift logical 9B 4 r1.mg,dy(b,) ry,M3,S;
SL Subtract logical 5F 4 r1.da(X2,b,) ry,S2(x2)
SLA Shift left single algebraic 8B 4 r1,da(bs) .Sz
SLDA Shift left double algebraic 8F 4 r1.da(by) r.s;
SLDL Shift left double logical 8D 4 ri.dy(by) r,S;
SLL Shift left single logical 89 4 ry,da(by) .82
SLM Supervisor load multiple B8 4 (Privileged) (Privileged)
SLR Subtract logical 1F 2 . r.rn
SP Subtract decimal FB8 6 dq(11,by).d5(15,b,) silhi).sa(ly)
SPM Set program mask 04 2 f r
. SR Subtract iB 2 .0y r.r
SRA Shift right single algebraic 8A 4 ri,dy{b,) r.s;
SRDA Shift right double algebraic 8E 4 ry,dy(b,) 1.5z
SRDL Shift right double logical 8C 4 ri.da(by) .S,
SRL Shift right single logical 88 4 ry.dy(b;) .S,
SRP Shift and round decimal FO 6 dq(l1,b1).dz(bo)is $1(l),8,.13
SSK* Set system key 08 2 (Privileged) (Privileged)
SSM Set system mask 80 4 (Privileged) (Privileged)
SSTM Supervisor store multiple BO 4 (Privileged) (Privileged)
ST Store 50 4 r1,da(x,b,) r.82(x;)
STC Store character 42 4 r1,da(X5,b,) ry.82(xz)
STCM Store characters under mask | BE 4 ry,m3,d,(b,) r.ms.s,
STCTL Store control B6 4 (Privileged) (Privileged)
STD Store long 60 4 r1.d5(X2,b,) r1.82(%,)
STE Store short 70 4 ry.da(x,,b,) r1.52(%5)
STS Store status 8302 4 (Privileged) (Privileged)
SuU Subtract unnormalized, short | 7F 4 ry,da(%,,bs) r.S3(x,)
SUR Subtract unnormalized, short | 3F 2 r.ry r.r
SvC Supervisor call OA 2 i i
SwW Subtract unnormalized, long | 6F 4 ry.dy{x,,b,) ry.82(x,)
SWLS Switch list scan 830F 4 (Privileged) (Privileged)
SWR Subtract unnormalized, long 2F 2 ry,ry r.,rn
™™ Test under mask 91 4 d(bq).i; Sy,ip
TMS Test under mask and skip E2 6 di(by)i, ms,d, Sy,i,My,8,
TR Translate DC 6 d1(1,b4).dy{by) s(1).s,
TRT Transiate and test DD 6 d,(l,by),ds(b,) s¢{l).s,
TS Test and set 93 4 dy(b,) S,
UNPK Unpack F3 6 dy(h,by).da(l5,by) s1{l1),s5(12)
X Exclusive OR 57 4 r1.d,(x2,b,) ry,82(%;)
XC Exclusive OR D7 6 d,{1,b),do(B,) s4(l),s,
Xl Exciusive OR, immediate 97 4 dq(b,),i, S0z
. XR Exclusive OR 17 2 ry,ry r.r
ZAP Zero and add decimal F8 6 d(hy.by).da(15,b,) $1{h).s2(l2)

*Micro expansion feature

UP-8914 SPERRY UNIVAC 0S/3 A-6
ASSEMBLER Update B

Table A—2. Instruction Repertoire (Part 4 of 9)

Listing by Alphabetic Instructions

Instruction Name Machine Code Mnemonic
Add 1A AR
Add 5A A
Add decimal FA AP
Add half word 4A AH
Add immediate 9A Al
Add logical 1€ ALR
Add logical 5€ AL
Add normalized, long 2A ADR
Add normalized, long 6A AD
Add normalized, short 3A AER
Add normalized, short 7A AE
Add unnormalized, long 2E AWR
Add unnormalized, long 6E AW
Add unnormalized, short 3E AUR
Add unnormalized, short 7E AU
AND 14 NR
AND 54 N
AND 94 Ni
AND D4 NC
Branch and link 05 BALR
Branch and link 45 BAL
Branch on condition 07 BCR
Branch on condition 47 BC
Branch on count 06 BCTR
Branch on count 46 BCT
Branch on index high 86 BXH
Branch on index low or equal 87 BXLE
Clear channel — privileged 9F02 CLRCH
Clear device — privileged) 9DX2 CLRDV
Compare 19 CR
Compare 59 C
Compare and swap under mask B9 CSM
Compare decimal F9 CcP
Compare half word 49 CH
Compare logical 15 CLR
Compare logical 55 CL
Compare logical 95 CLI
Compare logical D5 CLC
Compare logical characters under mask BD CLM
Compare logical immediate and skip E1 CLIS
Compare logical characters long OF CLCL
Compare, long 29 CDR
Compare, long 69 CD
Compare, short 39 CER
Compare, short 79 CE
Convert to binary 4F CVB
Convert to decimal 4E CVvD
Divide 10 DR
Divide 5D D
Divide decimal FD DP
Divide, long 2D DDR
Divide, long 6D DD
Divide, short 3D DER
Divide, short 7D DE
Edit DE ED
Edit and mark DF EDMK

uP-8914 SPERRY UNIVAC 0S/3 A-7
ASSEMBLER Update B
Table A—2. Instruction Repertoire (Part 5 of 9)
Listing by Alphabetic Instructions
Instruction Name Machine Code Mnemonic
Enqueue 1/0 — privileged EO EIO
Exclusive OR 17 XR
Exclusive OR 57 X
Exclusive OR 97 Xi
Exclusive OR D7 XC
Execute 44 EX
Execute diagnose — privileged 8300 EXD
Get I0RB — privileged 0B GRB
Halt and proceed — privileged 99 HPR
Halt device — privileged 9EO1 HDV
Halve, long 24 HDR
Halve. short 34 HER
Initial program load — privileged 8303 IPL
Insert character 43 IC
Insert characters under mask BF ICM
Insert storage key — privileged 09 {FISK
Load 18 LR
Load 58 L
Load address 11 LA
Load and test 12 LTR
Load and test, long 22 LTDR
Load and test, short 32 LTER
Load channel register — privileged 9F03 LCHR
Load complement 13 LCR
Load complement, long 23 LCDR
Load complement, short 33 LCER
Load control — privileged B7 LCTL
Load directive address — privileged 51 LDA
Load half word 48 LH
Load 1/0 address — privileged 61 LIA
Load, long 28 LDR
Load. long 68 LD
Load multiple 98 LM
L.oad negative 1 LNR
Load negative, long 21 LNDR
Load negative, short 31 LNER
Load positive 10 LPR
L.oad positive, long 20 LPDR
L.oad positive, short 30 LPER
Load PSW — privileged 82 LPSW
Load relocation register — privileged A3 LRR
Load, short 38 LER
Load, short 78 LE
Longitudinal redundancy check — privileged 830E LRC
Move 92 MVI
Move D2 MVC
Move |/0 — privileged 81 MiO
Move characters long OE MVCL
Move numerics D1 MVN
Move with offset F1 MVO
Move zones {Native and 9200/9300 Modes) D3 MVZ
Multiply 1C MR
Multiply 5C M
Multiply decimal FC MP
Multiply half word 4C MH
Multiply, long 2C MDR
Multiply, long 6C MD
Multiply, short 3C MER
Multipy, short 7C ME
OR 16 OR
OR 56 (0}

uprP-8914 SPERRY UNIVAC 0S/3 A-8
ASSEMBLER Update B
Table A—2. Instruction Repertoire (Part 6 of 9)
Listing by Alphabetic Instructions
Instruction Name Machine Code Mnemonic
OR 96 (o]
OR (Native and 9200/9300 Modes) D6 ocC
Pack F2 PACK
Put {ORB — privileged ocC PRB
Reset — privileged 8301 RESET
Service timer register — privileged 03 STR
Set program mask 04 SPM
Set storage key — privileged 08 (F)ISSK
Set system mask — privileged 80 SSM
Shift and round decimal FO SRP
Shift left double 8F SLDA
Shift left double logical 8D SLDL
Shift left single 8B SLA
Shift left single logical 89 StL
Shift logical 9B SHL
Shift right double 8E SRDA
Shift right double logical 8C SRDL
Shift right single 8A SRA
Shift right single logical 88 SRL
Start device — privileged 9C02 Sov
Store 50 ST
Store character 42 STC
Store characters under mask BE STCM
Store control — privileged B6 STCTL
Store half word 40 STH
Store, long 60 STD
Store multiple 90 ST™M
Store relocation register — privileged A2 STRR
Store, short 70 STE
Store status — privileged 8302 STS
Subtract 1B SR
Subtract 5B S
Subtract decimal FB SP
Subtract half word 4B SH
Subtract logical 1F SLR
Subtract logical 5F SL
Subtract normalized, long 2B SDR
Subtract normalized, long 6B SD
Subtract normalized, short 3B SER
Subtract normalized, short 7B SE
Subtract unnormalized, long 2F SWR
Subtract unnormalized, long 6F SW
Subtract unnormalized, short 3F SUR
Subtract unnormalized, short 7F SuU
Supervisor call 0A SvC
Supervisor load multiple — privileged B8 SLM
Supervisor store multiple — privileged BO SSTM
Switch list scan — privileged 830F SWLS
Test and set 93 TS
Test under mask 91 ™
Test under mask and skip E2 ™S
Translate DC TR
Translate and test DD TRT
Unpack F3 UNPK
Zero and add F8 ZAP

NOTE:

Tag symbol (F) before mnemonic indicates instructions that are added as features.

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

A-9
Update B

Table A—2. Instruction Repertoire (Part 7 of 9)

Listing by Machine Code

Machine Code Mnemonic Instruction Name
03 STR Service timer register — privileged
04 SPM Set program mask
05 BALR Branch and link
06 BCTR Branch on count
07 BCR Branch on condition
08 (F)SSK Set storage key — privileged
09 (F)ISK Insert storage key — privileged
0A SVvC Supervisor call
0B GRB Get IORB — privileged
ocC PRB Put IORB — privileged
OE MVCL Move characters long
OF CLCL Compare logical characters long
10 LPR Load positive
1M LNR Load negative
12 LTR Load and test
13 LCR Load complement
14 NR AND
15 CLR Compare logical
16 OR OR
17 XR Exclusive OR
18 LR Load
19 CR Compare
1A AR Add
1B SR Subtract
1C MR Multiply
1D DR Divide
1E ALR Add logical
1F SLR Subtract logical
20 LPDR Load positive, long
21 LNDR Load negative, long
22 LTDR Load and test, long
23 LCDR Load complement, long
24 HDR Halve, long
28 LDR Load, long
29 CDR Compare, long
2A ADR Add normalized, long
2B SDR Subtract normalized, long
2C MDR Multiply, long
2D DDR Divide, long
2E AWR Add unnormalized, long
2F SWR Subtract unnormalized, long
30 LPER Load positive, short
31 LNER Load negative, short
32 LTER Load and test, short
33 LCER Load complement, short
34 HER Halve, short
38 LER Load, short
39 CER Compare, short
3A AER Add normalized, short
3B SER Subtract normalized, short
3C MER Multiply,short
3D DER Divide, short
3E AUR Add unnormalized, short
3F SUR Subtract unnormalized, short
40 STH Store half word
41 LA Load address
42 STC Store character
43 IC Insert character
44 EX Execute
45 BAL Branch and link
46 BCT Branch on_count

Po¥

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

A-10
Update A

Table A—2. Instruction Repertoire (Part 8 of 9)

Listing by Machine Code
Machine Code Mnemonic Instruction Name
47 BC Branch on condition
48 LH Load half-word
49 CH Compare half-word
4A AH Add half-word -
4B SH Subtract half-word
4C MH Multiply half-word
4E CvD Convert to decimal
4F CvB Convert to binary
50 ST Store
51 LDA Load directive address — privileged
54 N AND
55 CL Compare logical
56 0 OR
57 X Exclusive OR
58 L Load
59 C Compare
5A A Add
5B S Subtract
5C M Multiply
5D D Divide
BE AL Add logical
5F SL Subtract logical
60 STD Store, long
61 LIA Load I/O address — privileged
68 LD Load, long
69 CD Compare, long
BA AD Add normalized, long
68 SD Subtract normalized, long
6C MD Multiply, long
6D DD Divide, long
6E AW Add unnormalized, long
6F SW Subtract unnormalized, long
70 STE Store, short
78 LE Load, short
79 CE Compare, short
7A AE Add normalized, short
7B SE Subtract normalized, short
7C ME Multiply, short
7D DE Divide, short
7E AU Add unnormalized, short
7F SuU Subtract unnormalized, short
80 SSM Set system mask — privileged
81 MiO Move /0 — privileged
82 LPSW Load PSW — privileged
8300 EXD Execute diagnose — privileged
8301 RESET Reset — privileged
8302 STS Store status — privileged
8303 {PL Initial program load — privileged
830E LRC Longitudinal redundancy check — privileged
830F SWLS Switch list scan — privileged
86 BXH Branch on index high
87 BXLE Branch on index low or equal
88 SRL Shift right single logical
89 SLL Shift left single logical
8A SRA Shift right single
8B SLA Shift left single
8C SRDL Shift right double logical
8D SLDL Shift left double logical
8E SRDA Shift right double
8F SLDA Shift left double
90 ST™M Store_multiple

UP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

A-11
Update B

Table A—2. Instruction Repertoire (Part 9 of 9)

Listing by Machine Code

Machine Code Mnemonic Instruction Name

91 ™ Test under mask
92 MvI Move immediate
93 TS Test and set
94 NI AND
95 CLi Compare logical
96 Ol OR
97 Xl Exclusive OR
98 LM Load multiple
99 HPR Halt and proceed — privileged
9A Al Add immediate
9C02 SHL Shift logical
9DX2 Sbv Start device — privileged
9D CLRDV Clear device — privileged
9EO1 HDV Halt device — privileged
9F02 CLRCH Clear channel — privileged
9F03 LCHR Load channel register — privileged
A2 STRR Store relocation register — privileged
A3 LRR Load relocation register — privileged
BO SSTM Supervisor store multiple — privileged
B6 STCTL Store control — privileged
B7 LCTL Load control — privileged
B8 SLM Supervisor load multiple — privileged
B9 CSM Compare and swap under mask
BD CLM Compare logical characters under mask
BE STCM Store characters under mask
BF ICM Insert characters under mask
D1 MVN Move numerics
D2 MvC Move
D3 Mvz Move zones (Native and 360/20 Modes)
D4 NC AND (Native and 9200/9300 Modes)
D5 CLC Compare logical
D6 ocC OR (Native and 9200/9300 Modes)
D7 XC Exclusive OR
DC TR Translate
DD TRT Translate and test
DE ED Edit
DF EDMK Edit and mark
EO EIO Enqueue 1/0 — privileged
E1 CLis Compare logical immediate and skip
E2 TMS Test under mask and skip
FO SRP Shift and round decimal
F1 MVO Move with offset
F2 PACK Pack
F3 UNPK Unpack
F8 ZAP Zero and add
F9 cp Compare decimal
FA AP Add decimal
FB SP Subtract decimal
FC MP Multiply decimal
FD DP Divide decimal

NOTE:

Tag symbol (F) before mnemonic indicates instructions that are added as features.

UP-8914 SPERRY UNIVAC 0S/3 A-12
ASSEMBLER
Table A—3. Extended Mnemonic Branch Codes
RR-Type Instructions RX-Type Instructions BC Equivalent
Mnemonic | Hexadecimal Mnemonic Hexadecimal Explicit Function
Code Operation Code Operation Form
Code m, Code m 1
BR 07 F - - BCR 15,r2 Branch unconditionally
NOPR 070 - - BCR O,r2 No operation
- - B 47 F BC 15,d2(x2,b2) Branch unconditionally
- - NOP 470 BC O'dz(xz'bz) No operation
Used after Comparison Instructions
BHR 07 2 BH 47 2 BC 2,d2(x2,b2) Branch if high
BLR 074 BL 474 BC 4,d2(x2,b2) Branch if low
BER 078 BE 478 B8C 8,d2(x2,b2) Branch if equal
BNHR 07D BNH 47D BC 13,d2(x2,b2) Branch if not high
BNLR 078 BNL a47B BC 11,d2(x2,b2) Branch if not low
BNER 077 BNE 477 BC 7,d2(x2,b2) Branch if not equal
Used after Test-Under-Mask Instructions
BOR 07 1 BO 47 1 BC 1,d2(x2,b2) Branch if all ones
BZR 078 BZ 478 BC 8,d2(x2,b2) Branch if all zeros
BMR 074 BM 47 4 BC 4,d2(x2,b2) Branch if mixed
BNOR 07 E BNO 47 E BC 14,d2(x2,b2) Branch if not all ones
BNZR 077 BNZ 477 BC 7,d2(x2,b2) Branch if not all zeros
BNMR 078 BNM 47 B BC 11,d2(x2,b2) Branch if not mixed
Used after Arithmetic Instructions

BOR 071 BO 471 BC 1,d2(x2,b2) Branch if overflow
BZR 078 BZ 478 BC 8,d2(x2,b2) Branch if zero
BMR 074 BM 47 4 BC 4,d2(x2.b2) Branch if minus
BPR 072 BP 472 BC 2,d2(x2,b2) Branch if positive
BNOR 07E BNO 47 E BC 14,d2(x2,b2) Branch if not overflow
BNZR 077 BNZ 477 BC 7,d2(x2,b2) Branch if not zero
BNMR 078 BNM 47 8B BC 11,d2(x2,b2) Branch if not minus
BNPR 07D BNP 470D BC 13,d2(x2,b2) Branch if not positive

UP-8914

SPERRY UNIVAC 0S/3 A-13
ASSEMBLER
Table A—4. Summary of Operators
Classification Operator Description Hisrarchy
-
Arithmetic operators */ A*/B is equivalent to A28
7 Covered quotient, A//B is
squivalent to (A+B~—1)/8
/ A/B means arithmetic quotient
of A and B,
b A*B masns arithmetic product
of A and B.
- A—B8 means srithmaetic difference
of A and B.
+ A+B means arithmetic sum of
A and B.
Logical operstors hid A**B mesns logical product
of A and B.
++ A++B means logical sum
of A and B.
—-— A——B means logical differance
of.A and B.
Reistional operators = A=B has vaiue 1 if true;
has value O if faise.
> A>B8 hesvalue 1 if true;
has vaiue O if faise,
< A<B hasvalue 1if true;
has value O if faise.
Table A—5. Comparison of Terms
Term Examples
SDTs cL! AREA10, 10
[] Can be used in the st or 2nd SOT
operands MVi AREAB, X'C2
] May be used in application SOT
instructions and in assembler MVC 33 (10RS5) 3(R8)
directions SOT SDT SDT
Literals MVC AREA10,=C'10’
™ May only be used in the last Litersl
operand MVC AREA10,=X'F1FQ’
a May not be used in assembler Literal
directives cLc ONSW,=B8°11111111°
a Are preceded by an Literal
‘ equal (=) sign
Symbols for constants AREA10 DS CL2
L May be used in the 1st or 2nd NO10 pCcc'to
operands MOVE10 MVC AREA1O,NO10
s May be used in application e—— e—
instructions and in assembler 4 ts
directives

UP-8914 SPERRY UNIVAC 0S/3 A-14
ASSEMBLER
Table A—6. Characteristics of Constant and Storage Definition Type Codes
Length in Bytes
S Stora Truncatio
gz:. s‘::;“:': or Alignment smf::: Formg: o:u Paddin: . Minimum| Maximum
° 9 Type Implied | ‘Explicit | Explicit*
C Character None Characters C’'{ Character Right Variable 1 256 (DC)
65,535 (DS) -
X Hexadecimal | None Hexadecimal| X'‘] Hexadecimal Left Variable 1 256 (DC)
digits 65,535 (DS)
B Binary None Binary 8°°| Binary Left Variable 1 256
digits
P Packed decimal | None Decimal P’} Packed Left Variable 1 16
digits decimal
F4 Zoned decimal| None Decimal Z ' | Character Left Variable 1 16
digits :
' 4
H Half word, Half word Decimal H' "] Fixed-point Left 2 1 8
fixed point digits binary
F Fuil word, Fuil word Decimal F' ' | Fixed-point Left 4 1 8
fixed point - digits binary
Y | Hatt-word Half word | Expression | Y()| Binary Left 2 1 2
address
A Full-word Fulf word Expression A{})] Binary Left 4 1 4
address
S Base and Haif word One or two S()| Base and None 2 2 2
displacement expressions displacement
V | External Fuil word Relocatable V()| Binary Left 4 3 4
address symbol
E Full word, Full word Decimal E' ' | Floating- Right 4 1 8
floating point digits point binary
normalized
D Double word, | Double word| Decimal D’ *| Fioating- Right 8 1 8
floating point digits point binary
normalized

*The maximum explicit length in bytes is that total length produced by the explicit length factor times the duplication factor.

UP-8914 SPERRY UNIVAC 0S/3 A-15
ASSEMBLER Update B

Table A—7. PROC, MACRO, and Call Instruction Comparison

PROC CONSTRUCTION

LABEL AOPERATIONA OPERAND
HEADING [&symbol] PROC [&pos,n] [&key,=....&key =]
call-name NAME [pos-0]
BODY symbol mnemonic-code operands
&symbol
symbol
mnemonic-code operands
TRAILER unused END unused

MACRO CONSTRUCTION

LABEL AOPERATIONA OPERAND
unused MACRO unused
HEADING
[&symbol] call-name [:&pos,l ,...,&posn] [,&key1=,...,&keym=]
BODY symbol mnemonic-code operands
&symbol
symbol
mnemonic-code operands
TRAILER unused MEND unused
CALL INSTRUCTION FORMAT
LABEL | A OPERATION A | OPERAND

[symbol] ‘ call-name ‘ [p1,p2,...p252]

UP-8914 SPERRY UNIVAC 0S/3 A-16
ASSEMBLER

Table A—8. Check-off Table Terms

General Possible Program Exceptions
0PCODE | FoRmaT ?NBSJTEACT [] ADDRESSING O PROTECTION
TYPE LGTH. (J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM |HEX. (syTes) || (] DECIMAL DIVIDE {0 sPECIFICATION:
[peciMAL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
O execuTe [0 o©OP1NOTONHALF-WORD BOUNDARY
(J EXPONENT OVERFLOW [J oP2NOTON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
(7 FIXED-POINT DIVIDE 0 op2NOT ONDOUBLE-WORD
E:E ggzztl =<%,SSEE:'1;C())C: [J FIXED-POINT OVERFLOW O BOUNDARY
O 1F RESULT >0, SET TO 2 7] FLOATING.POINT DIVIOE OP 1 NOT EVEN NUMBE RED REGISTER
[JIF OVERFLOW, SET TO 3 [] OPERATION 0 oP1NOT ODD NUMBERED REGISTER
[UNCHANGED {0 none

Explanation:

] Addressing
A storage location outside the range of the installed storage is referenced by a program-specified address.
. Data

— An invalid sign or digit code is detected in decimal operands.

— Fields in decimal arithmetic overlap incorrectly.

-— The first operand of the multiply decimal instruction does not have a sufficient number of high-order
zero digits.

L] Decimal Divide

The quotient of a divide decimal instruction exceeds the capacity of the quotient part of the first operand
field.

L Decimal Overflow

The result of an add decimal, subtract decimal, or zero and add instruction exceeds the capacity of the first
operand location.

L] Execute
The subject instruction of an execute instruction is an execute instruction.
L Exponent Overflow
The final characteristic resulting from a floating-point arithmetic operand exceeds 127.

= Exponent Underflow

The final characteristic resulting from a fioating-point arithmetic operation is less than zero.

uP-8914 SPERRY UNIVAC 0S/3 A-17
ASSEMBLER

Explanation:
[] Fixed-Point Divide

The quotient of a fixed-point divide operation exceeds the capacity of the first operand (including division by
zero), or the result of a convert to binary instruction exceeds 31 bits.

. Fixed-Point Overflow
A fixed-point add or subtract operation exceeds the capacity of the first operand field.
.- Floating-Point Divide
The divisor fraction in a floating-point divide operation is equal to zero.
L] Operation

An illegal operation has been attempted or an operation using a noninstalied processor feature has been
attempted.

] Protection

A storage protection violation occurs on a program-generated address, when the protection feature is
installed.

L Significance

The final fraction resulting from a floating-point addition or subtraction is equal to zero.
] Specification

- The unit of information referenced is not on an appropriate boundary.

- An invalid modifier field is specified in the STR instruction.

— The R; field of an instruction that uses an even/odd pair of registers (64-bit operand) does not specify
an even register.

— A floating-point register other than 0, 2, 4, or 6 is specified.
— A multiplicand or divisor in decimal arithmetic exceeds 15 digits and sign.

— The first operand field is shorter than, or equal in length to, the second operand in decimal multiply
and decimal divide instructions.

Table A—1. Instruction Formats (Part 1 of 2)

Source Code instruction Format Object Code fnstruction Format
Type First Half Word Second Half Word Third Half Word
Explicit Form Implicit Form Byt 1 Byte 2 Bytes 3and 4 Bytes5and 6
0 1|8 12 15 f16 19 120 3 35 |36 3]
- ! reg reg
1 op 2
RR (symbol) opcoder s, 0} [symbol) opcode r..r, : . — e
opcode o r [
rag address
opt operand 2
RX fsymbol} opcode rpdy {x .0, {symbol} opcode 'l"z"‘z’ R/
opcode 0o l X, b, I d,
reg reg address
op1 a3 operand 2
RS [symbot) opcoder, v, d, tbzl® {symbol] opcode r 1.8, ~ o —
opcode ‘5 [[b, j dz
immadiate addrass H !
cand 1
st {symbol] apcode d, 16,11, {svmbol) opcode s .1, _pend o
opcode [N b‘ I d'
nd 2 '
s {symbol) opcods d, (b,) fsymbol) opcode s, I I s
opcode opcode o, | 4y
length address '“’;‘2
tand op 2 operand 1 oparan,
fsymbol] opcoded, (1.} .4, tb,) | lsymboll opcode s, tihs, e e — e e
s opcode -1 b,] d, b, l d,
H length address | address
op 1 op 2 opersnd 1 t i operand 2
{symbol) opcode d' (Il,b'l.d:(lz,b’l {symbol} opcode |||I|),12(I2) — e ———— [
opcode s b, q, [v, | q,
T
di i di displacement 1 address
operand 2 mask 3 4] operand 1]
M [symbol] opcode d, (b)}, .m d, [symbol) opcodes i m.d s i N P N R e
opcode i M3 T d, b, I d, I
0 TR ishs 19 20 R ED 35 s [T
NOTES: ‘
@ The RS shift is are writ vith use of the 3 operand, in the form:

(1) The AR instruction has two other forms:

fsymbot) opcode i for the SVC snd SRF Instruction, and

{symbol] opcode fy for the SPM instruction.

[symbol] opcode r',dzibz)

Some St instructions, such as HIO snd T10, do not use sn lz tield. They are written in the form:

fsymbol] opcode d,ib,)

168-dN

431GWISSY
£/S0 DVAINN AHH3dS

i-v

UP-8914 SPERRY UNIVAC 0S/3 A-2
ASSEMBLER

‘Table A—1. Instruction Formats (Part 2 of 2]

Characters Meaning

OPCODE The application instruction operation code.

s The number of the general register containing operand 1

s The number of the general register containing operand 2

r3 The number of the general register containing operand 3

x, The number of the general register containing an index number for operand 2 of the RX instruction
i1 The immediate data used as operand 1 of the SVC instruction

.'2 The immediate data used as operand 2 of an S! instruction

! The iength of the operands as stated in source code*

I 3 The length of operand 1 as stated in source code*

12 The length of operand 2 as stated ir; source code®

b' The number of the general register containing the base address for operand 1
l:;2 The number of the general register containing the base address for operan;i 2
d1) The dispiacement for the base address of operand 1

dz The displacement for the base address of operand 2)
d, The displacement used as operand 4 of an SM instruction

m, The mask used as operand 3 of an SM instruction

op, Operand 1

op, Operand 2

op, Operand 3

s, The symbol used to identify operand 1 in the implicit format

sy The symbo! used to identify operand 2 in the implicit format

*This is coded as the true source code length of the operand, not the length less 1, as assembled in the object code. The
assembier makes a reduction of 1 in the length when converting source code to object code.

UP-8914 SPERRY UNIVAC 08/3 ‘ A-3
ASSEMBLER
Table A—2. Instruction Repertoire (Part 1 of 9}
Listing by Mnemonic Code
Mnemonic Instruction Name Machine Byte Source Code Fon\jat -
Code Length Explicit Implicit
A Add BA 4 £1,02{X2,b5) 1Sa(Xz)
AD Add normalized, long 6A 4 r1.dy(x2,b,) ry.Sa(x;)
ADR Add normalized, long 2A 2 ry,ra 1.0
AE Add normalized, short 7A 4 r1.0a{x2,b,) 1.52(%,)
AER Add normalized, short 3A 2 .0 r.r
AH Add half word 4A 4 r1.d2(X2.5,) r1,S3(%p)
- Al Add immediate 9A 4 dq{by)iis Sy.ip
AL Add fogical 5E 4 ry,dy(X2,by) r1.87(Xs)
ALR Add logical 1E 2 1203 r.r
AP Add decimal FA 6 dy(l;.d,).d,(15,b,) syll1)sally)
AR Add 1A 2 r.r 1.y
AU Add unnormalized, short 7€ 4 7y,da{Xz,b,) £1.52{Xg)
AUR Add unnormalized, short 3E 2 r.r2 i rry
AW Add unnormalized, long 6E 4 ry.da{x5,b,) £1.,82(%z)
AWR Add unnormalized, long 2E 2 1.1 n.ry
BAL Branch and link 45 4 ry,d3(X2,b,) r1.,82(%y)
BALR Branch and link 05 2 12 ry.ry
BC Branch on condition 47 4 i,da(x9,b,) i,S2(x3)
BCR Branch on condition 07 2 i.fy ifa
BCT Branch on count 46 4 r1.da(X3,b,) 1.52(%2)
BCTR Branch on count 06 2 .2 t1.h2
BXH Branch on index high 86 4 ry.F3.da(b;) r1.13,8;
BXLE Branch on index low or equai| 87 4 ry.r3.d;(bs) r1.l3,82
[of Compare algebraic 59 4 ry.da(x,,b,) 1,82(%2)
CcD Compare, long 69 4 r1.da{x2,b,) t1.82(%z)
CDR. Compare, long 29 2 r.r 1.2
CE Compare, short 79 4 T1.52(%2,b,) r1.S2(%z)
CER Compare, short 39 2 ry.r; : .02
CH Ccmpare half word 49 4 ry,da{Xz,b,) . r1.52(x,)
CL Compare logical 55 4 ry,d3(x2,b,) .83(%z)
cLe Compare fogical DS 8 dy.(Lby), da(by) si{l).s2
CLCL Compare logical characters OF 2 .02 r.ra
long
cLl Compare logical immediate 95 4 dy.(b1).i; S1.ia
CLIS Compare logical immediate El 8 dy(b,)iz,ma,d Sy,i,My,Se
and skip
ClMm Compare logical characters BD 4 r1,My,dy(by) .My, S,
under mask
CLR Compare logical 15 2 .0 (¥
CLRCH Clear channel 9F02 4 (Privileged) (Privileged)
CLRDV Clear device 90 4 (Privileged) (Privileged)
cP Compare decimal F9] di(ly.by).da(l2.b,) s1(h).s2(1)
CR Compare algebraic 19 2 ne .72
CSM Compare and swap under B9 4 ry.Fa,da{by) 1.03,52
mask
cve Convert to binary 4F 4 r1.03(x3,b,) ry.82(%2)
CvD Convert to decimal 4E 4 r1.0a(xa,bq) 1.52(%3)
o Divide 5D 4 ry.da(x2,b,) r1,S2(X2)
DD Divide, long 6D 4 r1.da(x2,b,) r1.82(%;)
DDR Divide, long 2D 2 1,03 n.r;
DE Divide, short 70 4 r1.02(x2,b;) r1,52{%z)
DEQ Dequeue B4 4 dy(b1)iiz S1.i2
DER Divide, short 3D 2 .02 r.ra
DP Divide decimal FD 6 d|(|| ,b1),dg('z-bz) s!('l)0»32"2)
DR Divide 1D 2 .2 f.r2
ED Edit DE 6 dy(L.by).d;(by) si{l).sy
EDMK Edit and mark DF 6 dy{1.by).dy(by) sy(1).5,
EI0 Enqueue 1/0 E£0 6 {Privileged) {Privileged) _

UP-8914 SPERRY UNIVAC 0S/3 A-4
ASSEMBLER

Table A—2. Instruction Repertoire (Part 2 of 9}

Listing by Mnemonic Code

" . \ o N Machine Byte Source Code Format

nemonic nstruction Name Code Length —— ——
ENQ Enqueue 83 6 dy(by}.ia Sy,ip
EX Execute 44 4 r1.d,(x,,b,) r1.82(%p)
EXD Execute diagnose 8300 4 (Privileged) (Privileged)
HDR Halve, long 24 2 r.r r1.r2
HDV Halt device 9E 4 {Privileged) (Privileged)
HER Halve, short 34 2 .5 r.f
HPR Halt and proceed 99 4 {Privileged) {Privileged)
IC Insert character 43 4 r1.da(X2.0;) r1,52(%;)
ICM insert characters under mask | BF 4 r1.M3,d5(by) f1.M,,S,
1SK* Insert storage key 09 2 (Privileged) {Privileged)
L Load 58 4 ri.da{x2.b,) r1,S2(xz)
LA Load address 41 4 r1,d2(x2,b;) r1.S2(x;)
LCDR Load complement, long 23 2 r,r 1.0,
LCER Load complement, short 33 2 r.r ry,r
LCHR Load channel register 9FQO3 4 (Privileged) {Privileged)
LCR Load complement 13 2 r.ry rrfy
LCTL Load controf B7 4 (Privileged) (Privileged)
LD Load, long 68 4 fy,d:{x2,b;) r1,82{x3)
LDA Load directive address 51 4 (Privileged) (Privileged)
LDR Load, long 28 2 r.ry Mry
LE Load, short 78 4 rq,dy(X2.B,) r1.52(x,)
LER Load, short 38 2 1,1 F1,f2
LH Load haif word . 438 4 r1.dai%2.ba) 1y.52(%,)
LIA Load 1/0 address 61 4 (Privileged) {Privileged)
LM Load multiple 98 4 ry.73.d2(b3) M.M3,8;
LNDR Load negative, long 21 2 ry.f2 r.r
LNER Load negative, short 31 2 1.0y r.ry
LNR Load negative 11 2 ri.fy f1.l2
LPDR Load positive, long 20 2 r.fa f.fy
LPER Load positive, short 30 2 ry.r2 M.y
LPR Load positive 10 2 . r.ry
LPSW Load program status word 82 4 (Privileged) {Privileged)
LR Load 18 2 r.r rn.r
LRC Longitudinal redundancy 830E 4 (Privileged) (Privileged)

check

LRR Load relocation register A3 4 (Privileged) (Privileged)
LTDR Load and test, long 22 2 1,02 1,72
LTER Load and test, short 32 2 ry.ra : r.r
LTR Load and test 12 2 .0, 1
M Multiply 5C 4 11.d;(x2,b3) r1,S3(X}
MD Muitiply, long 6C 4 r1,02(X2.b,) 11,852{%z)
MDR Muitiply, long 2C 2 r.f r.r
ME Multiply, short 7C -4 r1,d(x3,b7) 1.S2(X2)
MER Multiply, short 3C 2 r.r 1.l
MH Mulitiply half word 4c 4 r1,d2(x2,b,) r1.82(Xg)
MIO Move I/0 81 4 {Privileged) (Privileged)
MP Muitiply decimal FC 6 dy(ly.by),da(l,,.by) Sy{ly).52.415)
MR Multiply 11c 2 r.ry f.h2
MSS Modify storage and skip E3 6 dy{iy.b1).dy(is,by) S1.{i1).82(i3)
MVC Move characters D2 6 dy{l,by).dy(b,) sy(l).s;
MVCL Move character long OE 2 r.r, rf
Mwvi Move immediate 92 4 dq{by).is S1.iy
MVN Move numerics D1 6 d,y(l.by),d,(b,) si{l).s;
MVO Move with offset F1 6 di(h,bs).da(l2.b2) $1{h).s5(lp)
MvzZ Move zones D3 6 dy(1.,by).d4(b,) sy{l).s,
N AND iogical 54 4 £3.05(x2.b,) r1.82(%;)
NC AND logical D4 6 di{l.by).dy(by) sy(l).s,
NI AND logical immediate 94 4 dy{by).ia $y.iz
NR AND logical 14 2 _N.re n.r;

UP-8914 SPERRY UNIVAC 0S/3 A-5
ASSEMBLER
Table A—2. Instruction Repertoire (Part 3 of)
Listing by Mnemonic Code
Mnemoni Instruction Name Machine Byte Source Code Forma
emanic Code Length Explicit implicit
¢} OR logical 56 4 r1.da(x2,b;) 11,82(%2)
ocC OR logical D6 6 d,{l,b,},da(b,) sy(l).s,
‘ol OR logical immediate 96 4 dylby).i, St
OR OR logical 16 2 r.r f1.fy
PACK Pack F2 6 dy{ly,by).d;(l2,b,) si{h),s2(lp)
RESET Reset 8301 4 -(Privileged) (Privileged)
S Subtract 5B 4 ry ,dz(Xz,bz) £ ,Sz(Xz)
SD Subtract normalized, long 6B 4 ry,da(Xx5,b4) 11,52(x2)
SDR ‘Subtract normalized, long 2B 2 r.ry r.r2
Sbv Start device aC 4 (Privileged) (Privileged)
SE 1 Subtract normalized, short 7B 4 ry,dalx;,0,) ry.S2{X3)
SER Subtract normalized, short 3B 2 ry,f7 r.ry
SH Subtract half word 48 4 r1.da(x2,b,) T1,S2(Xz)
SHL Shift logical 98 4 r1.M3,da(b,) r.msS; -
SIO Start 1/0 9C 4 (Privileged) (Privileged)
SL Subtract logical 5F 4 r1.da(x2,b,) r1,82(%2)
SLA Shift left single algebraic 88 4 ry,dafby) 1.8z
SLDA Shift left double algebraic 8F 4 ry,da(ba) n.s;
SLDL Shift left double logical 8D 4 ry.daby) - r.S;
SLL Shift left single logical 89 4 ry,da(b,) rn.s;
SLM Supervisor joad muitiple B8 4 {Privileged) (Privileged)
SLR Subtract logical 1F 2 .0 r.n
SP Subtract decimal FB 6 d|(l1,b1),dz(lz.bz) S|(I|).s:(lz)
SPM | Set program mask 04 2 Ty ry -
SR Subtract 18 2 ry.ra .5
SRA Shift right single algebraic 8A 4 ry,da(bs) .82
SRDA Shift right double algebraic 8E 4 ry.dabs) .82
SRDL Shift right double logicai 8C 4 ry,da(b,) 1,52
SRL Shift right single logical 88 4 1,da(by) 1.5
SRP Shift and round decimal FO 6 dy{l1,by).da(bo)ia $r{h)iy
SSK* Set system key o8 2 (Privileged) (Privileged)
SSM Set system mask 80 4 (Privileged) {Privileged)
SST™M Supervisor store muitiple 80 4 {Privileged) (Privileged)
ST Store 50 4 ry,d3(X2,b7) r1.82(%y)
STC Store character 42 4 ry,d2(x2,b7) 1.54(%3)
STCM Store characters under mask | BE 4 ry,Ma,dy(b,) £1.My,S,
STCTL Store control B6 4 (Privileged) (Privileged)
STD Store long 60 4 r1.dz(x2,b,) r1.82(%2)
STE Store short 70 4 Py, da{x,,ba) r1.82(x2)
STEP Step queue 85 4 dy({by).iz Sy.ip
SuU Subtract unnormalized, short | 7F 4 ry,da{X2,b2) r1/82(x%2)
SUR Subtract unnormalized, short | 3F 2 r.ra .02
SvC Supervisor call 0A 2 i i
SwW Subtract unnormalized, long | 6F 4 ry,da(x3,bq) r1,82(X2)
SWR Subtract unnormalized, long | 2F 2 r.r2 .02
™ Test under mask 91 4 dy(by).ia Sy.iz
™S Test under mask and skip E2 6 dq(bs)iz, ma.de S1.i2,Ma. 84
TR Translate DC 6 dy{L.by},dy(b;) si{l)s,
TRT Translate and test DD 6 dy{l.by).do(b,) si(l).s,
TS Test and set 93 4 d,(by) Sy
UNPK Unpack F3 6 dy{h,b1).da(l3,by) $1(h).salha)
X Exclusive OR 57 4 r1.d2(x,.0,) 1.52(%z)
XC Exclusive OR D7 6 dy{l.by),dy(B,) sy(l).s,
Xi Exclusive OR, immediate 97 4 dy(by)iy S1.ia
XR Exclusive OR 17 2 .02 [a¥]
ZAP Zero and add decimal F8 6 dq(l1.by).dy(12,by) s1{ly),S2{l2)

*Micro expansion feature

UP-8914 . SPERRY UNIVAC 0S/3 A-6
ASSEMBLER

Table A—2. Instruction Repertoire (Part 4 of 9)

Listing by Alphabetic Instructions
Instruction Name Machine Code Mnemonic
Add 1A AR
Add 5A A
Add decimal FA AP
. Add half word 4A AH
Add immediate 9A Al
Add immediate {A6) Al
Add logical 1E ALR
Add logical 5E AL
Add normalized, long - 2A ADR
Add normalized, long 6A AD
Add normalized, short - 3A AER
Add normalized, short 7A AE
Add unnormalized, long 2€ _| AWR
Add unnormalized, long 6E AW
Add unnormalized, short 3E AUR
Add unnormatized, short 7€ AU
AND 14 NR
AND 54 . N
AND 94 - LN
AND Da NC
Branch and link 05 ‘ BALR
Branch and link 45 BAL
Branch on condition 07 ' BCR
Branch on condition 47 BC
Branch on count 06 BCTR
Branch on count ’ : 46 BCT
Branch on index high i1 86 BXH
Branch on index low or equai 1 87 R BXLE
Clear channel — privileged 9F02 CLRCH
Clear device — privileged 9D CLRDV
Compare 19 CR
Compare 59 C
Compare and swap under mask 89 CSM
Compare decimal F9 cP
Compare haif word 49 CH
Compare logical 15 CLR
Compare logical 55 CcL
Compare logicai 95 CL}
Compare logical D5 CLC
Compare logical characters under mask BD cimMm
Compare logical immediate and skip E1 CLIS
Compare logical characters long OF CLCL
Compare, long 29 CDR
Compare, long 69 - cD
Compare, short 39 CER
Compare, short 79 CE
Convert to binary aF CcvB
Convert to decimal . 4E CvD
Dequeue B4 DEQ
Divide . 1D DR
Divide 5D D
Divide decimal ’ FD DP
Divide, long 2D DDR
Divide, long 6D Do
Divide, short 3D DER
Divide, short 70 DE
- Edit DE ED
Edit and mark DF EDMK
Enqueue B3 ENQ

UP-8914

SPERRY UNIVAC 0S/3

Table A—2. Instruction Repertoire (Part § of 9)

Listing by Alphabetic Instructions

{nstruction Name Machine Code Mnemonic
Enqueue 1/0 — privileged £0 [3]e}
Exclusive OR 17 XR
Exclusive OR 57 X
Exclusive OR 97 X1
Exclusive OR D7 XC
Execute 44 EX
Execute diagnose — privileged 8300 EXD
Halt and proceed — privileged 99 HPR
Halt device — privileged 9EO1 HDV
Halve, long 24 HOR
Halve. short 34 HER
insert character 43 IC
Insert characters under mask BF ICM
Insert storage key — privileged 09 {FiSK
Load 18 LR
Load 58 L
Load address 41 LA
Load and test 12 LTR
Load and test, long 22 LTDR
Load and test, short 32 LTER
Load channel register — privileged 9F03 LCHR
Load complement 13 LCR
Load complement, long 23 LCDR
Load complement, short 33 LCER
Load controt — privileged 87 LCTL
Load directive address — privileged 51 LDA
Load half word 48 LH
Load 170 address — privileged 61 LIA
Load, long 28 LDR
Load. long 68 LD
Load mulitiple 98 M
Load negative 11 LNR
Load negative, long 21 LNDR
Load negative, short 31 LNER
Load positive 10 LPR
Load positive, long 20 LPDR
Load positive, short 30 LPER
Load PSW — privileged 82 LPSW
Load relocation register — privileged A3 LRR
Load, short 38 LER
Load, short 78 LE
Longitudinal redundancy check — privileged 830 LRC
Modify storage and skip E3 MSS
Move 92 MV
Move D2 MVC
Move /0 — privileged 81 Mio
Move characters long OE MVCL
Move numerics D1 MVN
Move with offset F1 MVO
Move zones (Native and 9200/9300 Modes) D3 MvzZ
Multiply 1c MR
Muitiply 5C M
Muitiply decimal FC MP
Multiply haif word 4C MH
Multiply, long 2C MDR
Muttiply, long 6C MD
Muitiply, short 3C MER
Muitipy, short 7C ME
OR 16 OR
OR 56 (0]

UP-8914 SPERRY UNIVAC 0S/3 A-8
ASSEMBLER

Table A—2. Instruction Repertoire (Part 6 of 9)

Listing by Alphabetic Instructions
Instruction Name - Machine Code Mnemonic

OR 96 o]l
OR {Native and 9200/9300 Modes) D6 ocC
Pack F2 PACK
Reset — privileged 8301 . RESET
Service timer register — privileged 03 STR
Set program mask 04 SPM
Set storage key — privileged 08 {F)ISSK
Set system mask — privileged 80 SSM
Shift and round decimal FO SRP
Shift left double 8F SLDA
Shift left double logical 8D SLDL
Shift left single 88 SLA
Shift left single logicai 89 SLL
Shift logical 9B SHL
Shift right double 8t SRDA
Shift right double logical 8C SRDL
Shift right single 8A SRA
Shift right single logical 88 SAL
Start device — privileged 9C02 sbv
Step queue ‘ 85 STEP
Store 50 ST
Store character 42 STC
Store characters under mask BE STCM
Store contro} — privileged B6 STCTL
Store, long 60 STD
Store haif word 40 STH

- Store muitiple 90 ST™M
Store relocation register — privileged A2 STRR
Store, short 70 STE
Store status — privileged 8302 STS
Subtract 18 SR
Subtract : 58 S
Subtract decimal F8 sP
Subtract haif word . 48 SH
Subtract logical 1F SLtR
Subtract logical S5F SL
Subtract normalized, long 28 SOR
Subtract normalized, long 68 SD
Subtract normalized, short 38 SER
Subtract normalized, short 78 SE
Subtract unnormalized, long 2F SWR
Subtract unnormalized, long 6F swW
Subtract unnormalized, short 3F SUR
Subtract unnormalized, short 7F su
Supervisor cail 0A svC
Supervisor load multiple — privileged B8 SLM
Supervisor store muitiple — privileged BO SSTM
Test and set 93 TS
Test under mask 91 ™
Test under mask and skip E2 ™S
Translate DC TR
Transiate and test ’ DD TRT
Unpack) F3 UNPK
Zero and add F8 ZAP

NOTE:

Tag symbol (F) before mnemonic indicates instructions that are added as features.

UP-8914 SPERRY UNIVAC 08/3 . A-9
ASSEMBLER

Table A—2. Instruction Repertoire (Part 7 of 9)

Listing by Machine Code
Machine Code Mnemonic Instruction Name
03 STR Service timer register — privileged
04 SPM Set program mask
05 BALR Branch and link
06 BCTR Branch on count
07 BCR Branch on condition
o8 (F)ISSK Set storage key — privileged
09 (FISK Insert storage key — privileged
0A svC Supervisor call
OE MVCL Move characters long
OF CLCL Compare logicai characters long
10 LPR Load positive '
1 LNR ‘ Load negative
12 LTR Load and test
13 LCR Load complemerit
14 NR AND
15 CLR Compare logical
16 OR OR
17 XR Exclusive OR
18 LR Load :
19 CR Compare
1A AR Add
18 SR Subtract
1C MR Muiltiply
1D DR Divide
1E ALR Add logical
1F SLR Subtract logical
20 LPDR Load positive, long
21 LNDR Load negative, long
22 LTDR Load and test, long
23 LCDR L.oad complement, long
24 HDR Halve, long
28 LDR Load, long ?
29 CDR Compare, long |
2A ADR . Add normalized, long
2B SDR Subtract normalized, long
2C MDR Mutltiply, long
2D DDR Divide, long
2E AWR Add unnormalized, long
2F SWR Subtract unnormalized, long
30 LPER Load positive, short
31 LNER Load negative, short
32 LTER Load and test, short
33 LCER L.oad complement, short
34 HER Halve, short
38) LER Load, short
39 CER Compare, short
3A AER Add normalized, short
3B SER Subtract normalized, short
3C MER Muitiply,short
30 DER Divide, short
3E AUR Add unnormalized, short
3F SUR Subtract unnormalized, short
40 STH Store haif word
41 LA Load address
42 STC Store character
43 [Insert character
44 EX Execute
45 BAL Branch and link
46 _8CT Branch on count

UP-8914

SPERRY UNIVAC 0S/3 A-10
ASSEMBLER

Table A—2. Instruction Repertoire (Part 8 of 9)

Listing by Machine Code
Machine Code Mnemonic Instruction Name
47 8C Branch on condition
48 LH Load half-word
49 CH Compare half-word
4A AH Add haif-word
48 SH Subtract haif-word
4C MH Muitiply half-word
4E CVvD Convert to decimal
4F cvB Convert to binary
50 ST Store
51 LDA Load directive address — privileged
54 N AND
85 CcL Compare logical
56 0 OR
57 X Exclusive OR
58 L Load
59 Cc Compare
5A A Add
58 S Subtract
5C M Muitiply
5D D Divide
5E AL Add logical
5F SL Subtract logical
60 STD Store, long
81 LIA Load 1/0Q address — privileged
68 LD Load, long
69 . co Compare, long
6A AD Add normalized, long
68 SD Subtract normalized, long
6C MD Multiply, long
6D DD Divide, long
6E AW Add unnormalized, long
6F Sw Subtract unnormalized, long
70 STE Store, short
78 LE Load, short
79 CE Compare, short
7A AE Add normalized, short
78 SE Subtract normalized, short
7C ME Muitiply, short
7D DE Divide, short
7€ AU Add unnormalized, short
7F Su Subtract unnormalized, short
80 SSM Set system mask — privileged
81 MIO Move 170 — privileged
82 LPSW Load PSW — privileged
8300 EXD Execute diagnose — privileged
8301 RESET Reset — privileged
8302 STS Store status — privileged
830E LRC Longitudinal redundancy check — privileged
86 BXH Branch on index high
87 BXLE Branch on index low or equal
88 SRL Shift right single logical
89 SLL Shift left single logical
8A SRA Shift right single
88 SLA Shift left single
8C SRDL Shift right double logical
8D SLDL Shift left double logical
8E SRDA Shift right double
8F SLDA Shift left double
90 ST™M Store multiple

- Appendix B. Character Set Code References

UP-8914 SPERRY UNIVAC 0S8/3 B-1
ASSEMBLER

Table B—1. Punched-Card, ASCIl, and EBCDIC Codes (Part 1 of 5)

Printed Card Ascit : EBCDIC
Character Symbol Punches Hexadecimal | Decimal | Hexadecimal | Decimal
Letters ‘

Uppercase A A 12-1 41 65 c1 193
Uppercase B 8 12-2 42 66 c2 194
Uppercase C c 12-3 43 67 - c3 195
Uppercase D D 12-4 4 68 ca 196
Uppercass E E 12-5 | 45 69 [oi} 19i
Uppercase F F 12-6 46 70 Ccé 198
Uppercase G G 12-7 47 - YAl c7 199
Uppercase H ‘ H 12-8 48 72 cs8 200
Uppercase | I 12-9 49 | 73 c9 201
Uppercase J J 11—t 4A 74 D1 209
Uppercase K : K 1-2 a8 ‘ 75 D2 210
Uppercase L L 11-3 4C 76 D3 2m
Uppercase M M 11-4 4D 77 Da 212
Uppercase N N 11-5 : 4E - 78 05 213
Uppercase O o] 11-6 4F 79 Dé 214
U:;o.rcae P 14 11-7 50 80 D7 2185
Uppercase Q Q 11-8 51 81 08 216
Uppercase R R 11-9 52 82 09 f1 7
Uppercase S S 0-2 83 83 E2 226
Uppercase T T 0-3 54 84 E3 227
Uppercase U U 0-4 55 85 E4 228
Uppercase V v 0-5 656 86 €5 229
Uppercase W w 0-6 57 87 E6 230
Uppercase X X 0-7 . 58 88 E?7 23
Uppercase Y Y 0-8 59 89 ES 232
Uppercass 2 ‘ 4 0-9 SA 90 E9 233
Lowercase a a 12-0-1 61 97 81 i 129
Lowercase b b 12~-0-2 62 98 82 130
Lowercase ¢ c 12-0-3 63 99 83 131

UP-8914 SPERRY UNIVAC 0S/3 B-2
ASSEMBLER

Table 8—1. Punched-Card, ASCH, and EBCDIC Codes (Part 2 of 5}

Printed Card ASCIt £8CDIC

Character Symbol Punches Hexadecimal Decimai Hexadecimal | Decimai
Lowercase d d 12-0-4 64 100 84 132
Lowercase e e 12-0-§ 65 101 85 133
Lowercase 1 f 12-0-6 66 102 86 L 134
Lowercase g g 12-0-7 67 103 87 135
Lowercase h h 12-0-8 68 104 88 136
Lowercase i i 12-0-9 69 106 89 137
Lowercase j j 12-11-1 6A 106 91 145
Lowercase k k 12-11-2 68 107 92 146
Lowercase | | 12-11-3 6C 108 | 93 147
Lowercase m m 12-11-4 60 109 94 148
Lowercase n n 12-11-5 6E 1Mo - ‘ 95 149
Lowercase o o 12-11-6 6F 11 96 150
Lowercase p p 12-11-7 70 112 97 151
Lowercase q a 12-11-8 7 13 98 152
Lowercase r 12-11-9 72 114 99 163
Lowercase s . s 11-0-2 73 115 A2 ‘ 162
Lowercase t t 11-0-3 74 116 A3 T 163
Lowercase u " 11-0-4 75 117 A4 164
Lowercase v v 11-0-5 76 118 AS 165
Lowercase w w 11-0-6 77 119 A6 166
Lowercase x x 11-0~7 78 120 A7 167
Lowercase y y 11-0-8 79 121 A8 168
Lowercase z z 11-0-9 7A 122 A9 16.9

Numerals

(] 0 o] 30 48 FO 240
1 1 , 1 3 a9 £1 241
2 2 2 32 50 F2 242
3 3 3 33 51 F3 243
4 4 4 34 52 Fa 244
s 5 5 35 53 Fs5 245
6 6 6 36 54 F6 246

UP-8914 SPERRY UNIVAC 0S/3 B-3
. ASSEMBLER

Table 8—1. Punched-Card, ASCIl, and EBCDIC Codes (Part 3 of 51_

Charactor Printed " Card Asclt - EBCDIC
Symbol Punches Hexadecimal | Decimsl | Hexadecimal | Decimal

7 7 7 37 55 F7 247

8 8 8 38 56 F8 248

9 9 9 39 57 F9 249

Symbols

Exctamation point ! 12-8-7 21 3 SA44F 92
~ Quotation mark, dieresis * 8-7 | 22 34 7F 127
Number sign, pound sign ’ = 8-3 23 35 78 123
Dotiar sign - $ 11-8-3 24 36 55)
Percent sign % 0-8-4 25 37 6C 108
Ampersand & 12 26 338 50 80
Apostrophe, acute accent | ’ 8-5 27 39 -70 125
Opening parenthesis { . 12-8-8 28 40 40 77
Closing parenthesis) 11-8-5 29 41 8D 93
Asterisk * 11-8-4 2A 42 5C 92
Ptus sign + 12-8-6 28 43 4E 78
Comma, cedilla . 0-8-3 2C 44 68 107
Minus sign, hyphen - 1 20 45 60 96
Period, decimal point . 12-8-3 2€ 46 48 75
Slash, virguie, solidus / 0-1 2F 47 61 97
Coion : 8-2 3A 58 7A 122
Semicolon ; 11-8-6 38 59 13 94
Less than < 12-8-4 3c 80 4C 76
Equal sign = 8-6 30 61 7€ 126
Greater than > 0-8-6 3E 62 6E 110
Question mark ? 0-8-7 3F 63 6F 11
Commercial at symbol @ 8-4 40 64 7C 124
Opening bracket t 12-8-2 58 91 4A 74
Closing bracket } 11-8-2 50 93 SA 90
Reverse slash \ 0-8-2 5¢ 92 €0 224
Circumflex A 11-8-7 5€& 94 5F 95

UP-8914 SPERRY UNIVAC 0S/3 8-4
ASSEMBLER
Table B—1. Punched-Card, ASCIl, and EBCDI& Codas (Part 4 of 5}
 Printed Card AscH EBCDIC

Character Symbol Punches Hexadecimal | Decimal | Hexadecimal | Decimal

Underline -_ 0-8-5 5F 95 60 109

Grave accent ' 8-1 60 96 79 121

Opening brace l 12-0 78 123 o 192

Closing brace } 11-0 70 125 Do 208

Vertical line | 12-11 7C 124 |/F 6A 79106

Qveriline, tiide ~ 11-0-1 7€ 126 Al 161

Card ASCHt €BCDIC
Character Punches Hexadecimal ' | Decimal | Hexadecimal | Decimal
Nonprintable Characters

ACK {Acknowiedge) 0-9-8-6 06] 2€ 46
BEL (Beil) 0-9--8-7 07 7 2F 47
8S (Backspace) 11-9-6 08 8 16 22
CAN (Cancel) 11-9-8 18 24 18 24
CR (Carriage return) 12-9-8-~-5 0D 13 00 13
DC1 (Device control 1) 11=9-1 1" 17 11 17
DC2 (Device controi 2) 11-9-2 12 18 12 18
DC3 (Device controi 3) 11-9-3 13 19 13 19
DC4 {Device controi 4) 9-8—4 14 20 3C 60
DEL (Delete) 12-9-7 IF 127 07 7
DLE (Data link escape) 12-11-9-8-1 10 16 10 16
DS (Digit select) 11-0-9-8-1 80 128 20 32
EM {End of medium) 11-9-8~1 19 25 19 25
ENQ (Enquiry) 0-9-8-5 0s 5 20 45
E0T (End of transmission) 9-7 04 4 37 55
ESC (Escape) 0-9-7 18 27 27 39
ETB (End of transmission biock) 0-9-6 17 23 26 38
ETX (End of text) 12-9-3 03 3 03 3
FF (Form feed) 12-9-8-4 ocC 12 oc 12
FS (File separator) 11-9-8-4 1C 28 1C 28

UP-8914 SPERRY UNIVAC 0S/3 B-5
ASSEMBLER

Table B—1. Punched-Card, ASCIl, and EBCDIC Codes (Part 5 of 5)

Charscter Card ASCH EBCDIC
Punches Hexadecimal Decimat Hexadecimal | Decimal
FS (Field separator) 0-9-2 82 130 22 34
GS (Group separator) 11-9-8-5 1D 29 10 29
HT (Horizontal tabulation) 12-9-5 09 9 05 5
LF (Line feed) 0-9-5 0A 10 25 37
NAK (Negative acknowledge) 9-8-5 15 21 3D 61
NUL (Nul) 12-0-9-8-1 00 0 00 0
RS (Record separator) 11-9-8-6 1E 30 1€ 30
S! {Shiftin) 12-9-8-7 OF 15 OF 15
SO {Shift out) 12-9-8-6 0E 14 OE 14
SOH (Start of heading) 12-9-1 01 1 01 1
SOS (Significance start) 0-9-1 81 129 21 33
SP (Space) 20 32 40 64
STX (Start of text) 12-9-2 02 2 02 2
SUB (Substitute) 9-8-7 1A 26 3F 63
SYN (Synchronous idle) 9-2 16 22 32 50
US (Unit separator) 11-9-8-7 1F 31 1F 31
VT (Vertical tabulation) 12-9-8-3 08 11 08 1

UP-8914 SPERRY UNIVAC 0S/3 B-6
ASSEMBLER Update C
Table B~2. EBCDIC Chart

o (112 |3|4| 5|6 |7|8|9|A|{B|C|DI|E]F
o | nuL|ote |ps® SPi & |- » 0
1 SOH [DC1 sog) / A |J 1
2 | STX|DC2 [FS®|SYN B |K [s |2
3 | ETX|DC3 c (L [T |3
4 ® D M |U |4
5 | HT LF E [N |V |5
6 BS |[ETB F [0 |w |6
7 | pEL ESC |EOT G [P [x |7
8 CAN H [a [y |8
9 EM I R |z |9
A [¢]@1 L@
B | VT . $ |, |#
c | FF [Fs® pcaj< | * (% |@
p | cr |6s®|ena [Nak (| |[—
e | s0®|rs®|ack + | > | =
F | 910 |us®|se®|sus @!i?—:@ ? |-

NOTES:

Some graphic card code and hexadecimal assignments may differ depending on the device, language,
application, and installation policy.

®

DS, SOS, FS are the control characters for the EDIT instruction and have been asigned for ASCIl mode
processing so as not to conflict with the corresponsing character positions previously assigned in the
EBCDIC chart. As these characters are not outside the range as defined in American National Standard,
X3.4 - 1968, they must not appear in external storage media, such as ANSI standard tapes. This
presents no difficulty due to the nature of the EDT instruction.
The following optional graphics can be substituted in the character set:

A for]

Ifor 1
For 63-character printers, the foliowing substitution is made:

\ for |

The following substitutions are made for the UTS 400 handler:

SPROT for SO FCC for US
EPROT for Sl Mw for BEL
SB for FS 1 for |
EB for GS 1 for]
SOE for RS

DC4 for the UTS 400 handler.

UP-8914

SPERRY UNIVAC 0S/3

ASSEMBLER

B-7
Update C

NOTES:

Table B-3. ASCIl Character Code Chart

o |1 [2|3|4a|5|g |7
o |nu|oefsp|l 0o {e@|P | p
1 SOH| DC1[1®] 1 Alalga q
2 |stx{pc2i« | 2 | B |R |b |p
3 |eTx|pC3|# | 3 | C|s 5
4 |eoT|Dc4is | 4 | D [T |4 |t
5 |ENQ|NAKI% | 6 [E | U | o |y
6 |ACK|SYN(& | 6 [F [V [£ |y
7 |BELIETB|" | 7 | G | W[, [y
8 |BS [CAN[{ 8 | H | X | h |x
9 |HT |EM |) [9 |1 | Y | |y
A CJLFIsuB|t |2 | U | Z | |,
B (vT(esc|+ | [k [[k |{
C |FF|Fs [, | <{L |\ |] {
D |[CR|GS |- | =M [] [p }
E [so|Rs |. | > | N | AQ v
F st jus [/ |? [0]| -], [DEL

N ——

@

Some graphic card code and hexadecimal assignments may differ depending on the device,
language, application, and installation policy.

@

Control Character Mnemonics

ACK
BEL
BS
CAN
CR
DC1
DC2
DC3
DC4
DEL
DLE
Ds
EM

T lforA

| for 1

‘Acknowledge
Beli

Backspace
Cancel

Carriage return
Device control 1
Device control 2
Device control 3
Device control 4
Delete

Data link escape
Digit select

End of medium

The following optional graphics can be substituted
in the following set:

ENQ -
EOT -
ESC -
ETB —
ETX —
FF -
FS -
Gs -
HT -
LF -
NAK —
NUL -
RS

Enquiry
End of transmission
Escape

End of transmission block
End of text

Form feed

Field separator

Group separator
Horizontal tab

Line field

Negative acknowledge
Null

Record separator

Printable 63-character set

Sl -
sO -
SOH -
SOs -
sp: -
STX -
suB -
SYN —
us -
vT -

Shiftin

Shift out

Start of heading
Start of significance
Space

Start of text
Substitute
Synchronous idle
Unit separator
Vertical tab

| Appendix C. Math References

uP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

c-1

Table C—1. Comparison of Numeric Expressions

Type of Number Exampies Decimal
Vaiues

Character form (unpacked) F E SIF| 0} F i 0 500
Zoned decimal {+) F i s|F i 0 ci 0 +500
Zoned decimal (—} F:TS F i 0 oi 0 —500
Packed decimal (+ only) 5 :r ofo : F +500
Packed decimal, signed (+) 5 ; 010 i C +500
Packed decimal, signed (—) 5 E oo E D ~500
Hexadecimal (+ only} ol1]F E 4 +500
Floating point (+) s :Ls 1 ! Flalofo i 0 +500
Floating point (—) c : 3l E'F 4ai0 E 0io —500
Binary (+ only) 0000 i 000t [1111 E 0100 +500
Binary (+ only) 1 E 1110 | oooo i 1100 +65,036
Fixed point (+) 0000 E 0001 1111 }r 0100 +500
Fixed point (—) 1111t 1110 | 0000 | 1100 —500

uP-8914 SPERRY UNIVAC 0S/3 c-2
ASSEMBLER
Table C—2. Hexadecimal-Decimal integer Conversion (Part 1 of 4)

o 1 2 | ™3 4 8 6 7 8 9 A 8 c o E F
00 | 0000 0001 0002 0003 0004 0005 0008 0007 0008 0009° 0010 0011 0012 0013 0014 0015
o1 0018 0017 0018 0018 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 | 0032 0033 0034 0038 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03 | 0048 0049 0060 0081 0062 0053 0054 0085 0056 0057 0058 | 0058 0060 0061 0062 0063
[+] 00684 0065 0068 0087 0088 0063 0070 00N 0072 0073 0074 0075 0076 0077 0078 0079
08 § 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0082 0093 | 0094 0095
08 | 0096 [0097 | 0098 | 0099 | 0100 | 0100 | 0102 | 0103 | 0104 | 0105 | 0106 | o107 | 0108 | oto8 | 0110 | ot
o7 0112 0113 o114 ons 0116 0117 0118 0119 0120 o 0122 0123 0124 0125 0126 0127
08 | 0128 0129 0130 013t 0132 N33 0134 0138 0138 137 0138 0139 0140 o 0142 0143
09 | 0144 0148 0148 0147 0148 0149 0150 0151 0152 0183 0154 0155 0156 0157 0168 0159
0A | 0160 0161 01682 0163 o164 01656 0168 0167 o188 0189 0370 on 0172 0173 0174 0175
o8| 01786 | 0177 | o178 | 0179 | 0180 | o181 | 01832 § 0183 | o184 | 0185 | 0186 | 0187 | 0188 | 0189 | 01%0 | oO1MN
oc | 0192 0183 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
00| 0208 | 0200 | 0210 | 0211 | 0212 | 0213 | 0214 | 0218 | 0216 | 0217 | 0218 | 0219 | 0220 | 0221 | 0222 | 0223
0E | 0224 0225 0226 0227 0228 0229 | 0230 0231 0232 0233 0234 0235 0238 0237 0238 0239
OF | 0240 0241 0242 0243 0244 0246 0246 0247 0248 0249 0250 0251 0282 0253 0254 0255

] 1 2 3 4 8 8 7 8 9 A 8 [o] 0 E F
10 | 0258 0287 0288 0259 0280 0261 0262 0283 0264 0265 0268 0287 0268 0269 0270 ozn
1" 0272 0273 0274 0278 0276 277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0289 0290 0201 0292 0293 0294 0298 0208 0297 0298 0299 0300 0301 0302 0303
13 | 0304 0308 0306 0307 0308 0309 0310 o311 0312 0313 314 0315 0316 0317 0318 0319
14 | 0320 0321 0322 0323 0324 0328 328 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 | 0382 0353 03564 0366 0358 0357] 0358 0359 0360 0361 0362 0363 0364 0365 0366 Q367
17 | 0d68 0369 0370 o3an 0372 0373 o374 0375 0376 aa7? 0378 0379 0380 0381 0382 0383
18 | 0384 0388 0388 0387 0388 0380 0390 0391 0392 10393 0394 0395 0396 0397 0398 0399
19 | 0400 0401 0402 0403 0404 0405 0408 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A | 0418 0417 o418 0419 0420 o421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
18 | 0432 0433 | 0434 0435 04368 | 0437 0438 0439 0440 0441 0442 03 0444 0445 0446 0447
1C | Oas8 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0482 0463
10 | 0464 0485 0466 0487 0488 0480 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1€ | 0480 0481 0482 0483 0484 0488 0488 0487 0488 0489 0490 0491 0492 0493 0494 0485
1F | 0«08 0497 0488 0499 0500 0501 0502 0503 0504 0506 0508 0507 0508 0509 0510 o511

] 1 2 3 4 -] [} 7 8 -] A 8 o] 3] € F
20 | 0512 0813 0514 0818 os18 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
4 0528 0529 0830 083t 0632 0533 0534 0836 0538 0837 0538 0539 0540 0541 0542 0543
22 | 0844 0548 0546 0547 0548 0549 0550 0551 0562 0563 0554 0555 0556 0557 0558 0559
23 | 0%60 0561 0862 0663 0564 0586 0688 0567 0868 0569 0570 0571 0572 0573 0574 0575
24 | 0578 0677 0578 0579 0680 0581 0582 0583 0584 0585 0586 0587 0588 0589 0580 0591
2 | 0892 0%03 0504 0595 0556 0597 0598 0599 0600 0601 0802 0603 0604 0605 0606 0807
28 | 0608 0609 0610 0811 0812 0813 0G4 0615 0818 0617 0818 0819 0620 0821 0622 0623
7 | o824 0828 0826 0827 0828 0829 0830 0831 0832 0633 0834 0835 0838 0837 0638 0639
28! 0840 0841 0842 0843 0844 0845 0646 0847 0648 0849 0650 0861 0652 0663 0654 0855
2 | 0668 0687 0658 0659 0860 08861 0662 0663 0664 0665 0866 0667 0668 0669 0870 0671
2A | 0872 0873 0674 0875 0676 0877 0878 0679 0680 0681 0882 0683 0684 0685 0686 0687
2 | osas 0688 0690 0801 0682 0893 0604 0896 0896 0897 0698 0699 0700 0701 0702 0703
2] 0704 | 0706 | 0708 | 07207 | 078 | o709 | 0710 | 0711 | 0792 | 0713 | o714 | o5 | o716 | on7 | on8 | one
20| 0720 [1774] 0722 0723 0724 0725 0728 0727 0728 0729 0730 0731 0732 0733 0734 Q735
26| 0738 | 0737 | 0738 | 0739 | 0740 | 0741 | 0742 | 0743 | 0744 | 0745 | 0746 | 07247 | o748 | 0749 | o750 | o751
¥ 0762 0753 0754 0755 0758 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

o 1 2 3 4 S 8 7 8 9 A 8 C D E F
0 | 0768 0768 07170 o 0772 0773 o4 Q778 orne o 0778 ore 0780 o781 0782 0783
n 0784 o785 0788 o787 o788 0789 0790 o7 0792 0793 0794 Q795 0796 0797 0798 0799
32 | oeoo 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
3| oeis 0817 0818 0819 0820 oan 0822 0823 0824 0826 0826 0827 0828 0829 0830 0831
4 | 0832 0833 0834 083s 0836 0837 0838 083 0840 0841 0842 0843 0844 0845 0846 0847
35 | O848 0849 0850 0851 0852 0883 0854 0865 0856 0857 08s8 0859 | 0860 0861 0862 0863
3B | 0o8se 0885 0866 0867 0868 0068 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0833 0894 0895
38 | 0896 0897 0808 0809 0800 0901 0902 | 0903 0904 0905 0906 0907 0908 0909 0910 0911
» 0912 0913 0914 0915 0916 0017 0918 0919 0920 0921 0922 0923 0924 0928 0926 0927
3a| 0028 | 0029 | 0830 | 0931 | 0932 | 0933 | 0834 | 0835 | 0936 | 0937 | 0938 | 0939 | 0940 | 0941 | 0042 | 0943
B | 0944 0045 0948 047 0948 0949 0950 0951 0962 0953 0854 0955 0966 0957 0958 0959
3C | 0e60 0061 0082 0083 0964 0965 0968 09687 0988 0969 0970 0971 0972 0973 0974 0975
D | 0076 0977 0978 0979 0980 0981 0982 0983 0984 0985 0988 0987 0988 0989 0990 0991
3| 0092 | 0993 | 0994 | 0995 | 0996 | 0997 | 0988 | 0999 | 1000 } 1001 1002 | 1003 | 1004 | 1008 | 1006 | 1007
| 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1016 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 1022 | 1023

UP-8914 SPERRY UNIVAC 0S/3. | c-3
ASSEMBLER :

Table C—2. Hexadecimal-Decimal Integer Conversion (Part 2 of 4)

1024 1028 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
1040 1041 1042 1043 1044 1046 1046 1047 1048 1049 1050 108 1082 1083 1064 1085
1056 1087 1058 1059 1060 1081 | 1082 .| 1063 1064 1065 1086 1087 1068 1068 1070 on
1072 1073 1074 1078 1078 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
1088 1089 1090 1081 1092 1083 1094 1095 1096 1097 1098 1099 1100 101 1102 1103
1104 1105 1108 1107 1108 1109 1110 1111 1112 1113 1114 1115 1118 117 1118 19
1120 "2 1122 1123 1124 11285 1128 127 1128 1129 1130 3 132 1133 1134 1138
1138 1137 | 1138 139 1140 1141 1142 1143 1144 1148 1146 1147 1148 1149 1150 11861
1153 .| 1154 1156 1166 1157 1158 1159 1160 1161 1162 1163 1164 1165 1168 1167
‘1168 1169 17 | ‘1m 172 173 1174 1178 1178 177 1178 17”9 1180 1181 1182 1183
1184 1186 1186 1187 1188 1189 1190 1191 1192 1193 1194 1198 1196 1197 1198 1199
1200 1201 1202 1203 1204 1208 1208 1207 1208 1209 1210 1211 1212 1213 1214 1215
1218 1217 1218 219 1220 2 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
1232 1233 1234 1238 1238 1237 1238 1238 1240 1241 1242 1243 1244 1245 1248 1247
1248 1249 1250 125t 1262 1263 1254 1265 1266 1267 1258 1289 1260 1261 1262 1263
1264 12685 1266 1267 1268 1269 1270 172n 1272 1273 1274 1275 1276 1277 1278 1279

nhsaBBBBLBERBASS
3

[} 1 2 3 4 L 8 7 8 9 A B c D E F
50 | 1280 1281 1282 1283 1284 1285 | 1288 1287 1288 1289 1280 1291 1292 1293 1294 1296
$ 1296 1297 1298 1299 1300 1301 1302 1303 1304 1308 1308 1307 1308 1309 1310 131
62| 1312 1313 | 1314 1315 1316 1317 1318 1319 1320 | 1321 1322 1323 1324 1325 1328 1327
831 1328 1329 1330 13 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 | 1344 1345 1346 1347 1348 1349 1350 1381 1362 1353 1354 1355 1356 1367 1368 1359
56 | 1360 1361 1362 1363 1384 | 1365 1366 1367 1368 1369 1370 137N 1372 1373 1374 1378
56 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1388 1387 1388 1389 1390 1391
§7 § 1392 1393 1304 1395 1208 1397 1398 1399 1400 1401 1402 1403 1404 1405 1408 1407
58 | 1408 1409 1410 1411 1412 1413 1414 1418 1418 1417 1418 1419 1420 1421 1422 1423
69 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1438 1438 1437 1438 1439
5A | 1440 1441 1442 1443 1444 1448 1448 1447 1448 1449 1450 1451 1452 1463 1464 1465
88 | 1456 1457 1458 1459 1480 1461 1462 1483 1484 1465 1468 1487 1468 1469 1470 147N
5C | 1472 1473 1474 1475 147¢ 1477 1478 1479 1480 1481 1482 1483 1484 1485 1488 1487
6D ! 1488 1489 1480 1491 1492 1493 | - 1494 148% 1496 | 1497 1498 1499 1500 1601 1802 1503
SE | 1504 1508 1506 1507 1508 1509 1610 1811 1512 1513 1614 1515 | 1516 1517 1518 1519
5F | 1520 1521 1622 1523 1524 1528 1626 1527 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 [} 7 8 9 A 8 [+ D E F
80 | 15368 1537 1638 1639 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1560 1681
8t 1562 1553 1554 1556 1558 1887 1558 1569 1560 1561 1562 1583 1564 1565 1566 1567
62 | 1568 1569 1570 15N 1872 1673 1574 1878 1576 1577 1578 1579 1580 1581 1582 1583
63 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1695 1696 1587 1598 1589
64 1 1600 | 1801 1602 1603 1604 1805 1606 1607 1608 1809 1610 1611 1612 1613 1614 1815
85 | 1618 1817 1818 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1829 1630 1631
68 | 1632 1633 1634 1638 1638 1637 1638 1639 1640 1641 1642 1643 1844 1845 1646 1847
67 | 1648 1649 1650 1681 1652 1653 1654 1855 18568 1657 1658 1659 1660 1661 1662 1683 -
68 | 1684 1865 1668 1687 1668 1669 1670 1871 1672 1673 1674 1678 1676 1677 1678 1679
@ | 1680 1681 1682 1883 1684 1685 1688 1687 1688 1689 1680 1691 1692 1693 1604 1695
8A | 16068 1687 1698 1699 1700 1701 1702 1703 1704 1708 1706 1707 1708 1709 1710 1
&l 1m2 1713 1714 1718 1ms 177 1718 1m7ms 1720 12 1722 1723 1724 1728 1728 1727
6C}i 1728 1729 1730 1™ 1732 1733 1734 1738 1736 1737 1738 1739 1740 1741 1742 1743
6D | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1783 1754 1785 1756 1757 1768 1759
6E | 1760 1761 1782 1783 1764 1765 1768 1787 1768 1769 1770 177 1772 1773 1774 1778
6F | 1776 T 1778 1779 1780 178 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

0 1 2 3 4 5 [} 7 8 9 A] c o] E F
7| 1792 1793 1794 1798 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
n 1808 1809 1810 1811 1812 1813 1814 1815 1818 1817 1818 1819 1820 1821 1822 1823
T2 | 1824 1826 1826 1827 1828 1829 1830 1831 1832 1833 1834 1836 1838 1837 1838 1839
73 | 1840 1841 1842 1843 1844 1846 1848 1847 1848 1849 1850 1861 1852 1863 | 1864 1885
74 | 1858 1867 1858 1869 1860 1881 1862 1863 1864 1865 1866 1867 1868 1869 1870 181
7% 1872 1873 1874 1878 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
7% | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77§ 1904 1908 1908 1907 1908 1909 1910 1911 1912 1913 1914 1916 1918 1917 1918 1919
7| 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
7] 1938 1937 1938 1939 1940 1941 1942 1943 | 1544 1845 1846 1947 1948 1949 1960 1951
7A | 1952 1953 1964 | 1988 1956 1987 1968 1968 1960 1961 1962 1963 1964 1966 1966 1967
m | 1968 1969 1970 oM 1972 1973 1974 1978 1976 1977 1978 1979 1980 1981 1982 1983
7C| 1984 1988 1986 1987 1988 1989 1990 1991 1992 1993 1994 1998 1998 1997 1998 1999
70 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E| 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F | 2032 2033 2034 20356 2038 2037 2038 2039 2040 2041 2042 2043 2044 2045 2048 2047

UP-8914 SPERRY UNIVAC 0S/3 c-4
ASSEMBLER

Table C—2. Hexadecimal-Decimal Imteger Conversion [Part 3 of 4}

2049 2050 2061 082 2083 2054 2065 2058 2057 2058 2089 2060 2061 2062 2063
2068 2068 2087 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

2097 2088 2089 2100 2101 2102 2103 2104 208 2108 no7 2108 2109 2210 21
2113 2114 215 2118 2117 2118 2119 2120 2721 2122 2123 2124 2128 2126 2127
029 2130 2131 2132 2133 134 2138 2136 2137 2138 2039 2140 2141 2142 2143
2145 2148 2147 2148 2149 2150 nst 2082 2183 2154 2155 2156 2187 2158 2159
2181 2162 2183 2164 2165 2168 2167 2168 2169 2170 a7 2172 273 2174 2178
an 278 2779 2180 2181 2182 2183 2184 2186 2188 2087 2188 2189 2190 2191

2209 no 201 2212 213 24 216 2218 rzivg 18 219 2220 2 | 22 2223
2241 2242 2243 2244 2245 2248 2247 2248 2249 2250 2251 2252 2283 2264 2255

2259 22680 2261 2282 263 2264 265 2268 2867 268 269 2270 227
275 2276 2277 2278 2279 2280 2281 2282 2283 2284 22886 2286 2287

BB BRIBRRBA2S

2 2292 2293 2294 2296 2296 2297 2298 2299 2300 2301 2302 2303

2307 2308 2309 310 M 12 2313 2314 2315 6 2317 2318 2319

0

2048

2064

2080

2096

2112

2128

2144

2160

n76

2192 2193 2194 2198 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

2208

2224

2240

2266 268

2272 2274

2288 2290

0 2

2304 2308

2320 32 2322 | 2323 2324 2325 2328 277 2328 2329 2330 N 2332 2333 2334 2335

2338 2338
2354
370
2388
2402

zn 2372 273 2374 2375 378 2377 2378 2379 2380 2381 2382 2383

2403 | 2404 | 2406 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
2420 241 2422 2423 2424 2425 2426 2427 2428 2429 2430 24N

%
e
@
2
~
2
2
®
]
2
@

T ernm
3

2434 2435 2438 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
2448 2449 2460 2451 2452 2463 2454 2485 2456 2457 2458 2459 2460 2461 2462 2463
2484 24886 2468 2467 2468 2469 2470 24N 2472 2473 2474 2475 2476 2477 2478 2479
2480 2481 2482 2483 2484 2485 24868 2487 2488 2489 2490 2491 2492 | 72483 2494 2495
2498 2497 2498 2499 2500 2501 2502 2503 2504 2508 2506 2507 2508 2509 2610 BN
2512 2513 2514 518 2518 817 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
2528 | 2529 2830 25 2532 2533 2534 253% 2536 2537 2528 2539 2540 2541 2542 2543
2544 2545 2548 2547 2548 2649 2550 2551 2562 2563 2554 2655 2556 2857 2558 2569
0 1 2 3 4 5] 7 8] A 8 c D E F
AQ | 2660 2561 2562 2583 2584 2565 2668 2667 2568 2569 2570 2571 2672 2573 2574 2575
Al 25786 2577 2678 2579 2580 2581 2582 2583 2684 2586 2586 2587 2588 2689 2590 25901
A2 | 2892 2503 2564 2585 2596 2897 2588 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 | 2808 2609 2610 | 2611 2812 2813 2814 2815 2616 2617 2618 2619 2620 vyl 2822 2623
A4 | 2624 2825 2626 2627 2828 2629 2830 263 2832 2633 2834 2638 2636 2637 2638 2639
AS | 2640 24 2642 2643 2844 2645 2646 2647 2648 2649 2650 2651 2852 2653 2654 2655
A8 | 2856 2857 2858 2659 2860 2661 2662 2683 2664 2865 2886 2667 2668 2669 2870 2671
A7 | 2872 2873 2674 2875 26768 2877 2878 2879 2680 2881 2682 2683 2684 2685 2686 2687
A8 | 2888 2689 2690 2691 2682 2683 2694 2695 2896 2697 2698 2699 2700 2701 2702 2703
A9 | 2704 2708 2708 2707 2708 2709 2710 m 2n2 n3 2714 ms 2716 m? 2718 2719
AA | 2720 an 2722 27123 2724 2728 2728 7 2728 2729 2730 P13 2732 2733 274 2735
AB | 2738 2737 2738 2739 2740 2741 2742 2743 2744 2745 2748 2747 2748 2749 2750 2751
ACO| 2752 2783 2754 2756 2758 2757 2768 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO| 2768 2769 2770 m 2772 2773 2774 2775 2778 2777 2778 2779 2780 2781 2782 2783
AEOQ{ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO| 2800 2801 2802 2803 2804 28056 2806 2807 2808 2809 2810 2811 2812 283 2814 2815
0 1 2 3 4 5 6 7 8 9 A 8 c] E F
80 | 2816 817 2818 819 2820 -4} 2822 2823 2824 28285 2826 2827 2828 2820 2830 2831
8t | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 | 2848 2849 2860 2861 2852 2853 2854 2885 2856 2057 2858 2859 2860 2861 2862 2863
83 | 2864 2865 2866 2887 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
84 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 289 2892 2893 2894 2895
BS | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2810 2911
86 | 2912 2913 2014 2915 2916 217 2918 2919 2920 2321 2922 2923 2924 2925 2926 2927
87 | 2928 2929 2930 2931 2932 2933 2034 2938 2938 2937 2938 2939 2940 2941 2942 2943
88 | 2944 2945 2946 2947 2948 2949 2950 2951 2982 2953 2954 2965 2956 2957 2968 2959
B9 | 2960 2961 2962 2963 2964 2965 2968 2967 2968 2969 2970 27 2972 2973 2974 2975
BA | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 29689 2990 2981
88 | 2992 2993 2994 2095 2996 2997 29098 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC | 3008 3009 3Jo1o 3011 3012 3013 3014 3018 3016 3017 3018 3019 3020 3021 3022 3023
BD | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE | 3040 3041 3042 3043 3044 3045 3048 3047 3048 3049 3050 3081 3052 3053 3054 3055
8F | 3056 3067 3058 3059 3080 3081 3062 3063 3064 065 3066 3067 3068 3069 3070 3071

UP-8914 SPERRY UNIVAC 0S/3 : C-5
ASSEMBLER) ’

Table C—2. Hexadecimal-Decimal Integer Conversion (Part 4 of 4)

0 1 2 3 4 5 6 7 87T o9 A B c D E F

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3088 3087
3088 3089 3080 3091 3092 3093 3094 3095 3098 3097 3098 3099 3100 | 310t 3102 3103 -
3104 3106 3106 3107 3108 3109 3110 3111 3112 3113 3114 31185 3118 3mnz 3118 319
3120 312 3122 3123 3124 3128 31268 3127 3128 N»s 3130 | 313t N3 3133 3134 3138
3136 N37 3138 3139 3140 3141 3142 3143 3144 3145 3148 3147 3148 3149 3150 3181
3152 31583 3154 3158 3156 3157 3158 3159 3160 3181 3162 3163 3164 3165 3188 3167
3188 3169 3170 3171 3172 3173 3174 3178 3176 3177 n7g 37 3180 g 3182 3183
3184 3186 3188 3187 3188 3189 3180 3191 3192 3193 3194 3195 3196 3197 3198 3198
3201 | 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
3218 3217 kvak:] 3219 3220 kr73l 3222 v oal 3224 3225 3226 3227 3228 3229 3230 3231
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3246 3246 3247
3248 3249 3250 3269 3262 3253 3264 3258 3256 3257 3258 3259 3260 3261 3262 3263
3264 3265 3266 3267 3268 3269 3270 Ixn 3272 3273 3274 3278 3278 3277 3278 3279
3280 3281 3282 3283 3284 3286 3286 3287 3288 3289 3290 329 3292 3293 3294 3296
3296 3297 3298 3299 3300 3301 3302 3303 3304 3308 3306 3307 3308 3309 3310 3N
™2 3313 3314 3315 3316 3317 3318 319 3320 3321 B22 3323 3324 k25 3326 3327

228380288988880°28

D1 | 44 3346 3346 3347 3348 3349 3350 3351 3352 3363 3354 3385 3356 2387 3358 3369
02 | 3360 3361 3362 3363 3364 3366 366 3387 3368 3369 370 3N R72 73 3374 3378

D3 | 3376 3377 3378 3379 3380 | 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3408 3407
D5 | 3408 3408 3410 3411 3412 3413 K14 3415 16 K17 3418 3419 3420 347 3422 3423
D8 | 424 3426 3426 3427 3428 3429 3430 3431 3432 3433 3434 3436 3436 3437 3438 3439
D7 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3462 3453 3464 465
D8 | 3468 3457 3458 3469 3460 3461 3482 3483 3464 3465 3466 3467 3468 3489 3470, 3471
DS | 3472 3473 3474 3478 3476 477 3478 3479 3480 3481 82 3483 3484 3485 3488 3487
DA | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3603
D8 | 3504 3508 3506 3507 3508 3509 3510 BN 3B12 3513 3514 3518 3518 3517 3518 3519
DC | 3520 3521 3622 3523 |. 3524 3525 3526 3527 3528 3529 3830 3631 3832 3533 3534 3636
DO | 3538 3537 3538 3539 3540 3541 3642 3643 3544 3545 3546 3547 3548 3549 3560 3561
DE | 3562 3553 3554 3565 3566 3857 3558 3669 3560 3561 3562 3583 3564 3585 3566 3567
DF | 3588 3569 3570 3571 3872 3673 3574 3575 3576 3577 3578 3879 3580 3581 3582 3583
0 1 2 3 4 § 6 7 8 9 A B [+ D E F
EQ | 3584 3585 3686 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3588 3599
E1 | 3800 3801 3602 3603 3804 3605 3606 3607 3609 3810 B1 3812 3613 3614 3B16

E2 | %18 3817 818 819 3620 3821 3622 823 825 3826 627 3829 3630 3631
€3 | 3832 3633 3634 3636 3638 3837 3639 3641 3642 3643 3645 3646 3647
E4 | 2848 3649 3650 3651 3652 3653 3666 857 3658 3669 3661 3662 3663
ES | 3664 3665 3666 3687 3668 3669 8671 673 3674 875 3877 3878 3879
E8 | 3880 3681 3882 3683 3684 3685 3687 3889 3690 3691 3603 3694 3095
€7 § 3896 3697 3698 3699 3700 3701 3703 3708 3706 3707 3709 3710 3711

EB | 3712 N3 N4 ans 3716 3Nn?
ES | 3728 3729 3730 N 3732 3733
EA | 3744 3746 3746 3747 3748 3749
EB | 3760 3761 3762 3763 3764 3765

3Ing
3735
3761
3767

3727
3743
3789
3778

3737 3738 3739
3753 3754 3755
3769 3770 Im
3788 3786 3787
ED | 3792 3793 3794 3795 3796 3797

3810 3811 3812 3813
EF | 3824 3828 3826 3827 3828 3829

3799
3815
3831

3807

g
g

3817 3818 3819

3
3
i
H EEFR R
3

FO | 3840 3841 3842 3843 3844 3845
38N
F2 | 3872 3873 3874 3878 3876 3877 3887

F3 | 3888 3889 3890 3891 3892 3893

3881 3882 3883 3884 3885

3913 3914 D15 3016 3917
3929 3830 331 3932 33133
3845 3046 B47 3948 3949
3961 62 3363 3864 3965
B77 878 379 3980 3981
3993 3994 998 3996 097
4009 4010 4011 4012 4013 4014 4015
4031
4047

3919
FS | /20 ;N 3922 923 3924 3925
F6é | 336 3937 3938 339 3940 3941
F7 | 82 3953 3954 955 3966 3957
F8 | W68 3869 3970 n 3972 3973
F9 | 3984 3985 3986 987 3988 3089
FA | 4000 4001 4002 4003 4004 4005
F8 | 4016 4017 4018 a9 4020 4021
FC | 4032 4033 | 4034 4035 4036 4037

3951
3967

FE | 4064 4065 4066 4087 4068 4069
FF | 4080 4081 4082 4083 4084 40856

4073 4074 4075 4076 4077
4089 4090 4081 4092 4093

;

:

8

g

§
§3888

;

UP-8914 SPERRY UNIVAC 0S/3 ' c-6
ASSEMBLER

Table C—3. Hexadecimal-Decimal Fraction Conversion

First Digit Second Digit Third Digit Fourth Digit
Hex. Decimai Hax. Decimal Hex. Decimai Hex. Decimal
0 0000 00 0000 0000 | .000 0000 0000 0000 | .0000 | .0000 0000 0000
1 0628 01 0039 0625 | .001 0002 4414 0625 | 0001 | 0000 1525 8789
2 1250 02 0078 1250 | .002 0004 8828 1250 | .0002 | .0000 3081 7578
3 1875 03 D117 1875 | .003 0007 3242 1875 | .0003 | .0000 4577 6367
4 2500 04 0166 2500 } .004 0009 7656 2500 | 0004 | 0000 6103 5156
5 3125 05 0195 3125 | .006 0012 2070 3125 | 0005 | 0000 7629 3845
8 3750 08 0234 3150 | .008 0014 6486 3750 | 0006 | 0000 9155 2734
7 A375 07 0273 4375 | .007 0017 0898 4375 | .0007 | .0001 0681 1523
8 5000 08 0312 5000 | .008 0019 5312 5000 | 0008 | .0001 2207 0313
9 5625 09 0351 5626 | .009 0021 9726 5625 | 0009 | 0001 3732 9102
A 8250 T 0A 0380 6250 00A 0024 4140 6250 000A | .0001 5258 7891
B 8875 08 0428 6875 | .00B 0026 8554 6875 | .000B | .0001 6784 6680
c .7500 oc .0468 . 7500 | .00C 0029 2968 7500 | .000C | .0001 8310 5469
D 8126 oD 0807 8126 | .00D 0031 7382 8125 | 000D | .0001 9836 4258
E 8750 OE 0548 8750 | .00E 0034 1796 8750 | .000E | .0002 1382 3047
F 9378 OF 0885 9375 | .00F 0036 6210 9375 | .000F | .0002 2888 1836

To convert a 4-digit (2-byte) hexadecimal fraction to a decimal fraction, add the values shown in the above table
for each of the hexadecimal digits to be converted as iflustrated below. The hexadecimal fraction .B5A1 equals
the approximate decimal fraction .70948791 from the above table.

B _ from the table equais .8875 -
.05 from the table equais 019563125 ' :
.00A from the table equals .002441406250

.0001 from the table equais .000015258789

.B6A1 - equais the sum .709487915039

NOTE:

All values listed are approximate values.

Table C—4. Hexadecimal Addition and Subtraction Table

01 02 03 o4 o5)o06s 07 08 03 0B__OC_ 0D OE OF] 10 11 12 13 14 15 17 18 19 18 1D 1E
01 [02 03 04 05 06|07 08 09 OA OC 0D OE OF 10] 11 12 13 14 16 18 18 19 1A ~1C G 01
02]03 0¢ 06 068 07 j08 00 OA OB 00 OE OF 10 $1}12 13 4 15 186 17 19 1A 18 10 IF 20 02
03 jos 05 06 07 08|09 OA 0B OC OE OF 10 11 1213 14 156 18 17 18 1A 18 1C 1E 20 2 03
o4 Jos 08 07 08 09 |OA OB OC OD OF 30 11 12 13[4 165 16 17 18 19 18 1C 1D 1F 2 22 04
o5 o6 07 08 09 OA|jOB OC OD OF 10 11 12 13 1415 18 17 18 19 1A I 1D 1E 20 2 = 05
08 |] 07 08 09 OA OB | OC OD OF OF 11 12 13 14 15|18 17 18 19 A 1B 1D 1E F 21 23 24 06
07 108 08 OA OB OC| OD OE OF 10 12 13 14 16 16] 17 18 19 1A 18 1C 1€ IF 20 2 4 X 07
08 |]os oA o8B oc OD|jOE OF 10 1 13 14 15 18 127]18 19 1A 1B I1IC 1D tF 20 2 3 % 2 08
09 |]OA OB OC OD OE | OF 10 11 132 4 156 16 17 18|19 1A 1B 1IC 1D 1IE 20 21 2 2 % 7 09
OAjJos oc oD o ofF 10 u_ 12 3 165 16 17 18 19| 1A 1B 1IC_ 1D _1E _IF 28 22 23 26 27 28 0A
odafoc oD O OF 10] 11 12 13 14 16 17 18 19 1A] 8 1C D 1E F 20 2 23 A 26 s 2 08
ocjop OE OF 10 11|12 13 14 15 17 18 19 1A B}l1I1C 1D 1€ F 20 2 3 24 25 27 2 2A oc
oD J]OoE OF 10 1 12§13 14 15 18 18 19 1A 18 1c|lwo E F 20 2n 22 4 B 2 2 2A 28 0D
OEJOF 10 11 12 13|14 5 18 17 19 1A 1B 1IC WD]1E ¥ 20 2 2 1 2% 2 27] 8 2 0E
OF | 10 11 12 13 14 {15 16 17 18 1A 18 1IC 1D 1EJ1IF 20 21 22 23 2 2 27 » 2A 2 2 OF
0] 11 12 13 14 15| 16 17 18 19 18 IC D 1E IF| 20 21 22 23 24 26 27 28 29 28 20 2 10
1M]2 13 14 16 16} 17 18 18 1A IC 1D 1E F 20|21 22 22 24 2 2 28 29 2A b € 2F "
1213 4 15 186. 1727|118 19 1A 18 1ID 1E WF 20 N |2 23 4 25 '8 2 28 2A 28 n F 30 12
131 15 18 17 8]1w® 1A 1B 1IC 1€ 1IF 20 21 2] 23 4 2 28 27 28 2A 28 2 26 36 3 13
4]16 16 17 18 19| 1A 1B I1C 1D 1 20 2 22 23|24 23 28 22 288 2 28 2¢ 20 2F n 32 14
15 16 17 18 18 1Al 18 1IC__ 1D 1E 20 21 2 23 24]2% 26 27 28 2 2 2 20 2 30 32 33 16
1617 18 19 1A 18] 1IC 1D IE 1IF 22 2 23 4 2126 27 28 29 24 8 200 26 2F 31 33 34 16
17|18 18 1A 18 1| D 1E F 20 2 22 M4 2% 26|27 2 29 22 2 2¢ € 2F 0 32 34 35 17
Bl 1A 18 1 D] IF 20 2 23 24 2% 2 22|28 22 2o 2 2 2 2F 30 3 33 3 36 18
w|]1A B8 1€ 1D E|]IF 20 N n M4 2% 2 27 28|29 22~ 8 2¢ 20 2% 3 31 32 34 6 37 19
iA{B 1c D 1E 1Fl20 2 2 23 25 26 27 28 20| 2A 28 2 20 26 2F 31 32 33 35 37 38 1A
1Bl IC 1D E 1F 20[21 22 23 4 2 27 28 20 2A| 28 2 20 2€ 2F 30 32 33 34 36 3 39 18
ic]1wo 1€ F 20 2|2 B M B 27 28 290 2A W] 2¢ 20 22 2 30 3 33 34 35 37 39 3A 1c
WD]IE F 20 21 2|23 24 25 26 28 29 2A 28 2| 220 2 2 30 31 32 34 35 36 38 3A 38 1]
iEj1F 20 21 2 ZB| 24 22 2 22 28120 24 28 2 2| 26 2F 30 3t 32 33 3 38 37 39 38 3C 1E
WF 120 21 22 23 4] 2% 26 27 28 29 |2a 28 2¢ 20 26| 2F 30 31 32 33 34 3 37 38 3A ac 3 1F
1 2 3 4 5B | 6 7 8 9 A B C D E F 10 11 12 13 14 15 7 18 19 18 1D 1E

v168-dN

H3N18N3SSY
£/30 OVAINN AHH3dS

L-J

upP-8914 SPERRY UNIVAC 0S/3 c-8
ASSEMBLER

Table C—5. Powers of 16

Ty
16" n
1 0
16 1
266 2
4 096 3
65 636 4
1 048 576 5
16 777 216 6
268 436 456 7
4 294 967 296 8
68 79 476 736 9
1 009 511 627 776 10
17 502 188 044 416 1
281 478 976 710 656 12
4 503 599 627 370 496 13
7”2 067 504 037 927 936 14
1 162 N 504 608 848 976 15

These powers of 16 are especiaily useful in determining the value of floating-point numbers.

c-9

Powers of 2

ASSEMBLER

SPERRY UNIVAC 0S/3
Table C—6.

- UP-8914

-85 §

o8 S8Z8E 8

- e%¥R 3888 B

~¢88 F98C BEEL &

-e% BE3R §IFR 3878 §

-8 §585 ZEER BAER BEEE R

-~ eBHE B83] ¥RSR 883¥ RI8Y R

-e85 $858 EH2® RIZR 3588 ZRER §

8% BGBY ZPRR 3INe® R3INe EIRE sRE: 8

-8 BFBE BABI SBSR 353® RESY RZ8E hEs 8

-~ s8§% $838: BBz SSRZ BR3E BE88 B888 8888 8

~e85 BYB9 IVEE SEEE 2888 8888 8888 5888 8888 8

+|o285 9338 2388 3338 3332 2998 9299 2888 38%% BR%f 8

ornm vmeor woor wowyw ec®e RENR IREK BR85S B3R 8GR 9

TNYe 2838 RI3Y BO3R BEIR BU3R YRR ¥S5F RB3IY RLIY OR
Tt OYeRR BRRY 3§38 RIEZ BBRY R38R fEis

: TNYe =8BB3 RBEY AYRB RYER S

-~ 48"“ “”mw

uP-8914 SPERRY UNIVAC 0S/3 c-10
ASSEMBLER

FLOATING-POINT MATH

The floating-point instruction set is added to the instruction repertoire as part of the floating-point control
feature. An operation exception results if a floating-point instruction is issued to a processor in which the
floating-point control feature has not been instalied.

The floating-point instruction set provides for loading, adding, subtracting, comparing, multiplying, dividing,
storing, and sign control of short or long format floating-point operands. Four double-word floating-point
registers are provided to accommodate storing and loading of results and operands. These registers are
numbered OQ, 2, 4, and 6. The specification of any other register number results in a specification exception. For
long format operands, the entire double-word register is invoived in the operation. For short format operands,
excluding the product in the short format multiply (ME) instruction, onily the most significant word of the double-
word register is involved in the operation. The least significant word remains unchanged. Separate instructions
are provided for operations with long and short format operands.

'Each operand is treated as a floating-point number consisting of a biased exponent (characteristic) and a signed
fraction (mantissa). The biased exponent is expressed in excess-64 binary notation; the fraction is expressed as a
hexadecimal number having an arithmetic point to the left of the high-order digit. The quantity expressed by the
full floating-point number is the product of the fraction and the number 16 raised to the power of the biased
exponent minus 64 (fraction times 16"—84), '

-A quantity may be represented with the greatest precision by a floating-point number of a given fraction length
when the number is in a “normalized” form. A normalized floating-point number has a nonzero, high-order
hexadecimal fraction digit.

An exponent overflow exception develops if, in the result of a floating-point instruction, the characteristic of the
result exceeds 127 and the fraction of the result is not zero. An exponent underflow exception develops if the
characteristic is less than zero and the fraction of the resuit is not zero. An exponent overflow exception causes
a program interruption. An exponent underflow exception causes a program interruption if the exponent
underflow mask bit of the current PSW is 1.

A floating-point number having a zero characteristic, a zero fraction, and a positive (zero) sign is said to be a
“true zero”’ number.

The floating-point instructions are available in RR and RX formats. Therefore, at least one of the operands is
contained in one of the floating-point registers. The other operand is located in the same or another register or in
main storage. Each main storage address may be specified as relative or absolute.

To increase the precision of certain computations, an additional least significant digit, the guard digit, is carried
within the hardware in the intermediate result of the following operations: add-normalized, subtract-normalized,
add-unnormalized, subtract-unnormalized, compare, halve, and muitiply. In the execution of add-normalized,
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a right shift of
the fraction is required to equalize two exponents, the last hexadecimal digit to be shifted out of the least
significant digit position of the fraction is saved by the processor hardware as the guard digit. The shifted
fraction, including the guard digit, is used in computing the intermediate resulit. in the halve instruction, the least
significant bit position of the fraction is saved as the 15th digit of the fraction of the intermediate product. If the
intermediate result is subsequently normalized, the guard digit is shifted left to become part of the normalized
fraction.

uP-8914 SPERRY UNIVAC 0S/3 c-1
ASSEMBLER
SHORT FORM FLOATING-POINT NUMBER
H characteristic mantissa
g (exponent) {fraction)
1 7{8 31
LONG FORM FLOATING-POINT NUMBER
: characteristic mantissa
? (exponent) (fraction)
1 718 63

Floating-Point Addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are equal, the
fractions are added to form an intermediate sum. If the exponents are unequal, the smaller exponent is
subtracted from the larger. The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaliler exponent. Each hexadecimal digit shift to the right causes the

exponent to be increased by 1. After equalization, the fractions are added to form an intermediate sum.

A cariy-over digit of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an exponent
overflow condition occurs, the resulitant floating-point number consists of a normalized and correct fraction, a
correct sign, and an exponent which is 128 less than the correct value.

" Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a possible carry-over digit. If
any most significant digits of the intermediate sum are zero, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled, and the exponent
is reduced by the number of shifts. if normalization is unnecessary, the guard digit is 1.

- Exponent Underflow

it normalization causes the exponent to become less than zero, an exponent underflow condition resuits. If
the exponent underflow mask bit (38) of the current program status word (PSW) is 1, the resuitant floating-
point number has a correct and normalized fraction, a correct sign, and an exponent that is 128 more than
the current value. if the exponent underflow mask of the current PSW is zero, the result is a true zero.

uP-8914 SPERRY UNIVAC 0S/3 c-12
. ASSEMBLER

. Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception occurs. if the
significance mask bit (39) of the current PSW is 1, the result is not normalized and the exponent remains
unchanged. If the significance mask bit of the current PSW is zero and the intermediate sum is zero, the
result is made a true zero. Exponent underflow cannot occur for a zero fraction.

a Sign

The sign of an arithmetic resuit is determined algebraicaily. The sign of a result with a zero fraction is
always positive.

Floating-Point Division

Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient exponent
is obtained by subtracting the exponents of the two operands and increasing the difference by 64.

Both operands are normalized before division. Consequently, the intermediate quotient is correctly normalized or
a right shift of one digit position may be required. The exponent of the intermediate result is increased by 1 if the
shift is necessary. All operand 1 (r;) fraction digits are used in forming the quotient, even if the normalized
operand 1 fraction is larger than the normalized operand 2 fraction.

If the final quotient exponent exceeds 127, an exponent overflow exception resulits. The quotient consists of the
correct and normalized fraction, a correct sign, and an exponent that is 128 less than the correct value.

if the final quotient exponent™is less than zero, an exponent underflow condition exists. if the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct sign,
and an exponent that is 128 greater than the correct value. If the exponent underflow mask bit of the current
PSW is zero, the resuit is made a true zero. Underflow does not apply to the intermediate resuit or the operands
during normalization. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit of the current PSW is 1. '

Attempted division by a divisor with a zero fraction leaves the dividend unchanged, and a program exception for
floating-point divide occurs. When division of a zero dividend is attempted, the quotient fraction is zero. The
_ quotient sign and exponent are made zero and give a true zero resuit. No program exceptions occur.

UP-8914 SPERRY UNIVAC 0S/3 : c-13
ASSEMBLER

Floating-Point Multiplication

Floating-point muitiplication consists of exponent addition and fraction multiplication. The exponent of the
intermediate product is obtained by adding the exponents of the two operands and reducing the sum by 64.

Both operands are normalized before muitiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit before normalization.

If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resuitant floating-
point number consists of a correct and normalized fraction, a correct sign, and an exponent that.is' 128 less than
the correct value. The overflow condition does not occur for an intermediate product exponent exceeding 127 if
the final exponent is brought within range during normalization.

if the final product exponent is less than zero, an exponent underflow condition exists. if the exponent underflow
mask bit (38) of the current PSW is 1, the resultant floating-point number has a correct and normalized fraction,
a correct sign, and an exponent that is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is zero, the result is made a true zero. When an underflow characteristic becomes less than
zero during normalization before multiplication, an underflow exception is not recognized.

When all digits of the intermediate product are zero, the result is made a true zero.

When the resuiting fraction is zero, a program exception for exponent underflow or overflow does not occur.

Appendix D. Source Corrections

UP-8914 SPERRY UNIVAC 0S/3 D-1 o
) ASSEMBLER

GENERAL

The OS/3 assembler supports a source module correction routine. This routine is the same as the one used in
the librarian. The correction deck is interchangeable between the assembler and the librarian except the
librarian also uses the added COR control statement. The corrections made to the source module are temporary.
The corrections are specified by the presence of both the source module input {(//APARAMAIN=module name or
the IN=(vol-ser-no, label) for the jproc call), and the correction records in the job control stream. These records

must be within the data delimiters {/$ and /*). If there are no records between the data delimiters, no source
correction is performed.

There are three control statements associated with the correction routine: sequence (SEQ), recycle (REC), and
skip (SKi). To make the source module corrections, the actual source record to be inserted is used as the
correttion card with the same sequence number as the record to be replaced. Insertions are performed by using
at least one correction card (always the first card) with a sequence number falling between the sequence
numbers of the records between which the insertion is to be made. Any number of unsequenced correction
cards may then follow the first sequence card. Deletions are performed by bypassing one or more original source
module records in the old data set, thus eliminating them from being written on the new data set. The SKi and
REC statements are used for this function. '

UP-8914 SPERRY UNIVAC 0S/3 D-2
ASSEMBLER

PARAM

The PARAM statement specifies the assembler processing options in effect at assembly time and alters the
standard defauit options. If the user does not specify assembler options in the job controi stream, the assembler
functions as follows:

L] Searches only the system source library file (YSRC) for any source module or copy code referenced

L Searches only the system macro library file (YSRC) for any macro references

. Stores the object module produced in the job run library file (SY$SRUN)

. Prints the source code, object code, cross-references, and diagnostic listings

The value of &SYSPARM is equal to a null string. Columns 1 and 2 must contain siashes, followed by at least
one blank column, and then PARAM followed by at least one blank column. Multiple options are supported for

each option separated by commas. The end of the selected options is indicated by a blank column following the
last option. All options selected are printed preceding the assembly listing.

Format:

1 10
B filename1) [(filename2

// APARAM A COPY= { (N) } /{_ (N) }

$YSSRC YSSRC

i filename
h,lN=modulename [/ W&RG}]]
B filename1 filename2
e {
B s
AT {21 Ll Lol)
B filename
LOuUT= { (N) }

o {0

:,SYSPAR M= {xg‘;m}]

UP-8914

SPERRY UNIVAC 0S/3 D-3
ASSEMBLER Update B

PARAM

The parameter definitions are as follows:

COPY=
Enables up to two files to be identified as source code module libraries or specifies that no files are to
be searched for source code modules. If this option is omitted, YSRC is assumed and is the only
file searched for source code module references. Only source code modules can be copied; the
source code must be in the standard format and may not contain any COPY, ICTL, MACRO, PROC, or
MEND directives.

filename1
Specifies that the file identified as filename1 is searched first for source code modules referenced
and, if not found there, then YSRC is searched: filename is any name the user specifies or the
system source library. If filename1 = filename2, then COPY = filename1 will generate the same files
to be searched as COPY = /filename2, except that, in the first case, the order in which the files are
searched is filename1l and then $YSSRC; whereas, in the 2nd case, the order is YSRC and then
filename2.

filename1 /filename2
Specifies that the file identified as filename1 is searched first. Then, the file identified as filename2 is
searched for source code modules referenced. When two filenames are specified for this parameter,
the YSRC file is not searched.

filename1/(N)
Specifies only the file identified as filename1 is searched for source code modules referenced, as
stated above: If filenamel = filename2, then COPY=filename1/(N) is the same as COPY =
{N)/filename2, with only one file searched in either case.

(N)
Specifies no files, not even YSRC, are searched for source code modules referenced. COPY =
{N}/(N) is the same as COPY=(N).

IN=
Identifies the name of the source module that is to be assembled and the file in which it resides. If
this option is omitted, the source code must be in the control stream.

modulename
Specifies the name of the source module and directs the assembler to search the YSRC file for the
module; modulename is the name of the source module and is up to eight characters.

modulename/filename
Specifies the name of the source module and the file in which it resides; filename is any name you
supply or the system source library.

LIN=
Enables up to two files to be identified as macro source files or no files to be searched for macro
references. If this option is omitted, YSMAC is assumed and is the only file searched.

filename1

ldentifies the file that is searched for macro references and, if not found there, then YMAC is
searched; filename is any name or the name of the system macro library.

filename1 /filename2
Identifies the two files that are searched for macro references. The file identified as filenamet1 is
searched first, followed by the file identified as filename2. The YMAC file is not searched.

UP-8914

SPERRY UNIVAC 0S/3 D-4
ASSEMBLER Update B

PARAM

filename1/(N)

Specifies only the file identified as filename1 is searched for macro references.

(N)

Specifies no files, not even YMAC, are searched for macro references.

LST=

Indicates the type of listing desired. If this option is omitted, source, object, cross-reference, and
diagnostic listings are printed.

A single specification requiring no parentheses.

{[s1)...[.sq))

Any s in the series is one of the following:

NC

Specifies that cross-reference listings are suppressed.

ND

Specifies that diagnostic listings are suppressed.

NR

Specifies that the cross reference listing is to contain only those symbols that have at least one
reference each. If specified with the NC option, that option overrides NR.

Specifies that all output listings are suppressed.

DBG

Specifies a proc or macro debug mode feature within the 0S/3 assembler. When the feature is
selected, the output listing shows the following:

Results of the expansion of any proc or macro called within the user program, including
any conditional assembly directives processed as the result of the expansion itself.
Source coding {constants, directives, and instructions) is listed twice and shows any
appropriate substitutions. Any statements causing error diagnostics show the exit line in
error.

A proc or macro that produces error diagnostics at the time it is encoded is listed
following the END directive; e.g., system errors. A proc or macro is encoded once, but may
be called multiple times.

if an error is detected at both expansion and encoding time, it appears two or more times.
Errors detected only at encoding time appear once following the END directive.

All lines flagged (regardless of their order or appearance) are shown in the diagnostic
summary list. Lines flagged at encoding time may or may not be flagged at expansion
time.

When this feature is not selected, any errors detected during proc or macro expansion may not
show the exact line in error, but rather the vicinity ot the item which is flagged.

UP-8914 SPERRY UNIVAC 0S/3 D-5
ASSEMBLER Update B
PARAM

OouUT=
Enables the user to specify the file that is to be used to store the object module output by the
assembler. If this option is omitted, the object module is generated and stored in YRUN, the
system-run library.

filename
Identifies the file that is used as the output file by the assembler; filename is any name or the job run
library.

(N)
Specifies that no output file is used by the assembler and, thus, no object module is generated.

RO=
Permits the user to optionally flag all base/displacement fields of instructions that yield absolute
values less than 4096 (1000,). Each statement is flagged with an “ADDRESSABILITY” error
message.

SYSPARM=
Specifies the equivalent of a global SETC symbol, with the value specified in this option. If this option
is omitted, the value of &SYSPARM is a null string.

‘string’

Specifies a string of one to eight characters enclosed in apostrophes. An apostrophe within the string
is represented by two apostrophes but only counts as one in determining the length of the string.

Operational Consideration:

The value established by SYSPARM is available within the assembly, both outside of and within macro
definitions. This parameter is referenced as &SYSPARM within assembly statements. Any error in this
specification directs the assembler to ignore the specification, and an appropriate error message is printed
on the output printer.

UP-8914 SPERRY UNIVAC 0S/3 D-6
ASSEMBLER

REC

Function:

Causes the record pointer for the input module to be repositioned back to the first record in the module. In
conjunction with the SKi control statement, it allows rearranging of major segments of the input module.
When a REC control statement is brocessed, records are read from the input module up to and including
the record whose sequence number matches the sequence number in the REC control statement field.
Then, the record pointer for the input module is reset to the first record in the module. If the sequence field
of the REC control statement is blank, repositioning of the record pointer takes place immediately.

Format:
73
LABEL AOPERATION A OPERAND SEQUENCE
ignored REC unused [last-sequence-no.]
Parameters:

last-sequence no.
One to eight alphanumeric characters identifying the sequence number of the last input record to be
read from the input module.

If omitted, the repositioning function takes place immediately.
NOTES:

1. Records are replaced one at a time by writing a source statement with a sequence number matching
the sequence number of the record to be replaced.

2. Records are inserted by writing source correction statements with sequence numbers that fall
between the sequence numbers of the input records between which insertion is to take place. Blank
sequence fields cause an insertion to take place immediately.

UP-8914 SPERRY UNIVAC 0S/3 D-7
ASSEMBLER

SEQ

Function:

Specifies the starting position and the length of the sequence field. if the sequence field is omitted, column 73
is assumed to be the first column of the sequence field, which continues to the maximum of eightcharacters.

Format:
73
LABEL AOPERATION A OPERAND | SEQUENCE
,» § column position }, {content }
unused SEQ { 73 00000000
Parameters:

column position
Specifies the first column position in the source record where the sequence field begins.

If omitted, column 73 is assumed to be the first column of the sequence field.

content
One- to eight-character value. The length of this value determines the length of the sequence field.

NOTES:
1. Card column 1 must be blank if the sequence field does not start in card column 1.

2. The SEQ card always is the first card in the correction routine.

UP-8914 SPERRY UNIVAC 0S/3
ASSEMBLER

D-8

SKi

Function:

Allows one or more original input module records to be bypassed. Records are read from the input module
until a sequence number is detected that matches the sequence number of the SKI command. The skip
operation is started and continues until a sequence number that matches the operand field of the SKi
command is detected. If the sequence field of the skip command is blank, the function is started

immediately.
Format:
73
LABEL A OPERATION A OPERAND SEQUENCE
ignored | SKI last-sequence-no. [starting-sequence-no.]
Parameters:
last-sequence-no.

One to eight alphanumeric characters identifying the sequence number of the last input module

record to be bypassed.

starting-sequence-no.

One to eight alphanumeric characters identifying the sequence number of the first source module

record to be bypassed.

If omitted, the skip operation is started immediately, starting with the input module record that immediately

follows the last record operated on.

Appendix E. System Variable Symbois

UP-8914 SPERRY UNIVAC 0S/3 E-1
ASSEMBLER :

System variable symbols automatically generate values or character strings at assembly time. There are seven
system variable symbols: &SYSECT, &SYSLIST, &SYSNDX, &SYSDATE, &SYSTIME, &SYSJDATE, and
&SYSPARM. The following paragraphs contain the functions of each system variable symbol.

&SYSECT is a system variable symbol used to represent the name of the control section containing a
macroinstruction.

&SYSECT is assigned a value for each inner and outer macroinstruction processed by the assembler. This value
is the name of the control section containing the macroinstruction. If &SYSECT is referenced in a macro

* definition, its substituted value is the name of the last CSECT, DSECT, or START directive that occurred prior to
the macroinstruction. If a named CSECT, DSECT, or START directive did not appear prior to the macroinstruction,
&SYSECT is assigned a null character value during the processing of the macro definition called by the macro
call instruction.

Any CSECT or DSECT directives processed within a macro definition affect the value of &SYSECT for any
subsequent inner macroinstructions in the definition and for any outer and inner macroinstructions that occur
outside the current nest of macro definitions. However, the value of &SYSECT remains constant during the
processing of a given macroinstruction, and it is not affected by CSECT or DSECT directives or inner
macroinstructions occurring in that macro definition.

&SYSLIST is a system variable symbol.

Within a macro definition in macro format, each positional parameter may be referenced by a name; however,
each positional parameter need not be named in the macro prototype statement and may be referenced in terms
of its position within the macroinstruction operand field by writing the system variable symbol &SYSLIST
followed by an expression in parentheses. The value of the expression identifies the position of the parameter in
the operand field. The expression may be a SETA symbol or a self-defining term. Therefore, if a macro definition
prototype statement has the operand field:

&A,&B,&C

the first positional parameter is referenced either as &A or &SYSLIST(1), the second is referenced sither as &B
or &SYSLIST(2), and the third positional parameter is either &C or &SYSLIST(3), and so on. This capability, which
is used to index through the positional parameters, treats each parameter in the same way.

A null character string is generated in place of &SYSLIST(m) if m is zero or greater than the number of positional
parameters supplied in the macroinstruction.

The system variable &SYSLIST may not be used in a mixed-mode (positional and keyword parameters included)
macro definition. Lo

&SYSNDX is a system variable symbol.

The assembler maintains a counter that is incremented by 1 each time the assembler encounters a
macroinstruction. The value of this counter within the first macro is 1. The current value of this counter is
supplied as the 4-digit character value of the system variable symbol &SYSNDX each time a macroinstruction is
encountered. A macro definition that defines labels within the code it generates and that may be called more
than once in a single assembly generally creates duplicate definitions of the same label. To avoid this problem,
the system variable symbol &SYSNDX may be used as a suffix on. the labels defined by the macro definition, so
that each time the macro definition is called, it will define a different set of labels.

UP-8914 SPERRY UNIVAC 0S/3 E-2

ASSEMBLER

&SYSDATE is a system variable symbol, which can be referenced in the user program text or within a macro
definition to generate the date the user program is assembled. the date is produced in the user assembly listing
as a character string representing the month, day, and year {mm.,/dd/yy) the program was assembled. If the user:
1. assembles a program;

2. stores it in a library; and

3. retrieves the assembied program for execution at a later date —

any &SYSDATE reference in the user program references the original assembly date, not the current date when
the user program is executed.

The user specifies &SYSDATE as either an operand in a source code statement, which defines a constant (DC),
or an operand field literal.

Example:
LABEL AOPERATIONA OPERAND A
10 16
mrt
FERT AR TN A A el yoay [WIS NN N S ST ST T N NN T VAN A S W UT S AT SN S U U B NN B A
sty Y et b e b Y b e b
FE AR BN el gy o bt e e by by vy e b g b by 1
ASMDAME, LI ICRSYSDATE? L v 08 b b 1
IR B Lo i U AT RN VR N0 W ST T U N VY RN RT SN I TS W T AR BN SO AT S T U B S MOC U I

When this line of source code is assembled, the object code contains the current date.

The user can aiso use the &SYSDATE system variable symbol as a literai.

Example:
NPEPETE BT B K P TN ST R S AT AT BT T BT A I
PSS A B TR TN BT ETUT Sl AN TN SYET R EN BTG ET T SRR
TR I A ed 40 T ER SR BN T UE RV SN B TSR A R W S S S S N T A
T \Y/ o F, CPRIYIDATES | v v L
PR I I e g b L by b by

When this line of source code is executed, the assembly date is moved into a main storage .area called BUF.
&SYSTIME is a system variable symbol, which can be referenced either in the user program text or within a
macro definition, to generate the time of day the user program is assembled. The date is produced in the user
assembly listing as a character string representing the hour, minute, and second (hh.mm.ss) the assembly was
run. If the user:

1. = assembles a program;

2. stores it in a library; and

3. retrieves the assembled program for execution at another time —

UP-8914 SPERRY UNIVAC 0S/3 . E-3
ASSEMBLER :

any &SYSTIME reference in the user program references the original assembly time, not the current time of
execution.

The user specifies &SYSTIME as either an operand m a source code statement, which defines a constant (DC), or
an operand field literal.

Example:
LABEL AOPERATIONA OPERAND ‘ A
1 .10 16
mm#
- : .

ENE NN W B Ve g TN BN U NE R T DY AR I N DY S SIS S S S U SN S A I A

ll'l‘]' .llll J_]_LIIIIIJIIIIJIJLIIIIlllIlLlle
" 1 boag bl B AR SRS YN U0 VONS UNAN UK YOO N A N OO S WO N SO N N DO S WU S W AN SR W

FE:ALLLME DG C.'.&‘é!lﬁT.I.MLEliL v o boe e v o b g b g 4

rlllllJl Lot ATEI T N B W W N B N A RTINS A Y B S A S A R R N N S Y B A

When this line of source code is assembled, the object code contains the current time.

The user can also use the &SYSTIME system variable symbol as a literal.

Example:
. IUNE TN N W W il I W Y PTYEE S U0 (U T S U A S WA NN U U0 W YA Y NN SO U A TN TN Y W ST WY O O
AT AN IR M IR e g e bev v b ot g by g b g by
paaat e o) i R | e oo by bor g by g L o b
s a1 b L ME,J_MS\ASLTLNLE IS S BN EN AR N S TR O N A
NPT AT B NETIC RN BN ST AN A TN DY BN AT T D NN A A Ol S SN NE NI A S A A A A

When this line of source code is executed, the assembly time is moved into a main storage area called BUF.
&SYSJDATE is a'system variable symbol, which can be referenced either in the user program text or within a
macro definition, to generate the Julian date when the user program is assembled. The date is produced in the
user assembly listing as a character string representing the month, day, year, and Julian value — day of the year
(mmddyijjj) the assembly was run. If the user:

1. assembles a program;

2. stores it in a library; and

3. retrieves the assembled program for execution at another time —

any &SYSJDATE reference in the user program references the Julian date of the original assembly.

The user specifies &SYSJDATE as either an operand in a source code statement, which defines a constant (DC),
or an operand field literal.

UP-8914 SPERRY UNIVAC 0S/3 E-4

ASSEMBLER
Example:
LABEL AOPERATIONA OPERAND A
10 16

} I W N | I it .l . | i L1 1 1 l | 1 L l I 1 1 LL 1] l Il 11 l 1.1 i1 l i
1o b i T 'RV A H TSR U VN N S ST SN SO WY ST WY S N NN NN N N S S O R
1 | S l L1 .Ll 1 1 i i1 " l L 1 1 L l i L4 1 l i1 1] I 1 1 1 1 l i L bl l L
IM!AIT:E DC L '&'KIQNISJDAaTEIJ RS B U R N T BN S N S N S S T O
a g b Lt P Y WA S SR WO NS N SN NE WO SN A WA S AN U T U TN W U A S T SN M A

When this line of source code is assembled, the object code contains the Julian date.

The &SYSJDATE system variable symbol can also be used as a literal.

Example:
NN N § A |1|1|1|1.1|L14:l111111L111111111
FENER NN TN 16 b IR I W0 SN A T VA0 WAV EN VN VT SN AN ST WO SN T Y S S N S N A NS B
PN I B B U | b ETER N1 v b v v b e b v g by e e by by
—ted 1L l L ‘IMVAI = ! 3 IDIAATI_EA,A [T B O T 1 il lLlI
i doaa } Ll AR NO VA (Y U VOO OO N N TN YA A Y A U A T OO ST VNG VY VA WL ST T G Y U

When this line of source code is executed, the Julian date is moved into a main storage area called BUF.
&SYSPARM is a system variable symnbol, which can be referenced either in the user program text or within a

macro definition, to generate an 8-byte null character string at assembly time. The string is initially null but can
be varied by using the PARAM statement (Appendix D) as follows:

LABEL AOPERATION A OPERAND

//APARAMA SYSPARM='string’

By using the PARAM statement, the user can specify a string of up to eight characters, enclosed in apostrophes.
Once the user has altered the value of &SYSPARM, any references to &SYSPARM produces the character string
specified in the PARAM statement, not a null character string.

To reference the &SYSPARM system variable symbol, the user specifies &SYSPARM as either an operand in a
source code statement, which defines a constant (DC), or an operand field literal.

Example:
t a1y L4 T UATSR I T TSR VAT T NN ST T WA N WA N VAU N T WOT SR N W S O O O
LIIIIIL .llll ILIL[JLLAI_llLllLLlllllLlllllll‘l
RN B hd B BN TS N O AU T S WU N NN SC WO SN N A0 VA 0 A S AU AU NS N AN R M

EIUILSIIEQNL%DLCLLl MMA_@M’!LIlLlllLlllllLllllll

hd BEENUN] IR R EE T N U B R A B S S S S A U AN T NN B Y U A A A

IR EEEE I

UP-8914 SPERRY UNIVAC 0S/3 E-5 .

ASSEMBLER

When this line of source code is assembled, the object code contains an 8-byte null character string.

The user can also use the &SYSPARM system variable symbol as a literal.

Example:
LABEL AOPERATIONA OPERAND A
L _ 16
v v b i I 5T YN S S IO TN TN S T A A N S A WU T VU S Y U U OO S Y S Y WA I OO
||||‘l|| wE RTINS N N SATINS TS NN A NS Y A N UNE STYUN Wk ST SRV TR S AU HAT U SIS P W SN ST U B
a1 v b BT IR VAR NS 0 ST S A Y SO AN A NN VAT SO ST S ST VTSN WU AU VT S U
N BT A WPARHIJ'I_Lllllllllllll

If the user does not precede this source code statement with a PARAM statement when this line of source code
is executed, an 8-byte null character string is moved into a main storage area called BUF.

Appendix F. Attribute References

UP-8914 SPERRY UNIVAC 0S/3 F-1
ASSEMBLER

The assembler assigns certain attributes to symbols and macro call operands that the user may refer to in
conditional assembly statements. These attributes are: type (T), length (L), scale (S), integer {l), count {K), and
number (N).

The user can specify attributes in conditional assembly statements to control logic, which (in turn) can contro}
the sequence and contents of the inline expansion code generated from model statements. Each kind of attribute
has a specific purpose, which determines when it can be used.

Format:
LABEL AOPERATION A OPERAND

[symboi] conditional T
assembly \L

operation S {symbol }

code 1 .&symbol

K
N

The attribute notation (T, L, S, I, K, or N) denotes which attribute of a symbol or parameter the user is using. The
symbol or parameter is a reference to the data or fieid that possesses the attribute. The operation code must be a
conditional assembly operation code except when the length attribute is being used.

The origin of an attribute value is always either a symbol or parameter. Table F—1 gives the restrictions for using
a symbol or parameter as the reference to obtain a particular data attribute. Whether a symbol or parameter can
be used in an attribute reference depends on where the reference is made. If an attribute reference is made in
macro source code (from inside a macro definition), a symbol may be referenced for any data attribute except K
or N. A symbol cannot be used in a count or number attribute reference in macro source code because when K
or N is used inside a macro definition the only data that can be referenced is an operand field in the
macroinstruction call. To reference an operand field to obtain the K or N attribute, a symbolic parameter or
&SYSLIST can be used; this also applies to the T, L, S,.and | attributes. A SET symbol and the system variabie
symbols listed in Table F—1 can only be used in the T and K attribute references when in macro source code.
The user can get all but K or N attributes of a symbol! in program source code, along with all of the other
attributes, by using the symbol in the attribute reference. Macroinstruction operands cannot be referenced from
program source code; therefore, a symbolic parameter or &SYSLIST cannot be part of an attribute reference in
program source code. However, 2 SET symbol and the system variable listed in Table F—1 can be used in an
attribute reference in program source code.

UP-8914 SPERRY UNIVAC 0S/3 - F-2
ASSEMBLER

Table F~1. Vaiid Attribute Refersnce Applications

ATTRIBUTE
REFERENCE LOCATION
rlels |1 | x |nN
Viviviv Symbol
v v Set Symbol
\/ \/ \/ \/ \/ \/ Symbolic Parameter Macro
Sourcs
VIivivI V]V |V |asysust Cods
&SYSNDX, &SYSPARM,
v v &SYSJIDATE, &SYSECT,
and &SYSTIME
vViviviyv Symbol
Program
Vv v SET Symbol Source
Code
v v &SYSPARM, &SYSDATE,
&SYSJDATE, and &SYSTIME

V= Valid Applicstion

There are two requirements that must be met before using symbols in attribute references. First, the symbol
must appear either in the operand field of an EXTRN directive used outside of a macro, or in the label field of at
least one assembler directive or instruction outside a macro. Second, there must not be any variable symbol in
the source line in whose label field the symbol appears. In regards to the call operand attributes, the user must
abide by the following criteria; the same as previously mentioned, with the addition that the operand must be a
symbol and it may not be one generated by variable symbol replacement. The attributes of the operand are really
the attributes of the symbol itself. A nested call operand may be a symbolic parameter whose attributes are then
the same as the corresponding outer operand. The user can not use a length attribute if the type attribute is J,
M, N, O, T, orU. .

Since a call operand may be a sublist, the user can aiso refer to attributes of a sublist or each individual
parameter in the sublist. When the user refers to these attriubtes, they will be assigned the same value as the
first parameter in the sublist. ’

The user can refer to attributes on conditional directives both inside and outside of macros. Symbols that appear
in the label field of instructions generated by a macro are not assigned attributes.

Type Attributes

The user can use the type attribute to test for the characteristic of the operand or symbol. This is done by writing
a T’ followed by the symbol or symbolic parameter to be tested. This can also be used in SETC directive operand
fields or as character expressions in SETB and AIF directive operand fields. Table F—2 summarizes the type
attributes and the circumstances under which they are produced.

upP-8914

SPERRY UNIVAC 0S/3
ASSEMBLER

F-3

Table F—2. Attributes of Symbols (Part 1 of 2)

Symbol Length .
g L. Alignment
Type Definition Specification ‘on
A Type A address implied Full word
constant
8 Binary constant implied or Not applicable
explicit
C Character Implied or Not applicable
constant explicit
D Doubie-word Implied Double word
floating-point
constant
E Full-word tmplied Full word
floating-point
constant
F Full-word implied Full word
fixed-point
constant
G Fixed-point Explicit Not applicable
constant
H Half-word {rplied Haif word
fixed-point.
constant
f Machine instruction Implied Half word
J Control section Not applicable Doubie word
name
K Floating-point Explicit Not applicable
constant
M Macroinstruction Not applicable Not applicable
N (D) | self-defining term Not applicable Not applicable
o @ Omitted operand Not applicable Not applicable
P Packed decimal Implied or Not applicable
constant explicit
R Unaligned address Explicit Not applicable
constant {A, S, V,or Y}
S Type S address Implied Half word
constant
T Externat symbol Not applicable Not applicable
U @ Type not available Not applicabie Not appiicable

UP-8914 SPERRY UNIVAC 0S/3 F4
ASSEMBLER
Table F—2. Attributes of Symbols (Part 2 of 2)
Symbol Length - . :
e Type Definition Specification Alignment
v Type V address Implied Full word
constant
w CCW statement implied Doubie word
X Hexadecimali Explicit or Not appiicable
" constant implied
Y Type Y address Imptied Half word
constant
4 Zoned decimal Explicit or Not applicable
constant implied
NOTE:

(@ This attribute is produced only for macroinstruction operands.

@ Type cannot be assigned. It is produced for inner and outer macroinstruction
operands that cannot be assigned any other attribute, as well as for literals
appearing as macroinstruction operands, symbols appearing in the label field of
LTORG, ORG, or EQU directives, symbols appearing more than once in a source
statement label field, and symbols appearing in the label field of DC or DS directives
containing expression or variabie symbols in the modifier subfields. The latter is true
even if the modifier subfield expression consists solely of self-defining terms.

Length Attributes

The user can reference the length attribute by writing an L’ followed by the symbol or parameter whose attribute
the user wants. The length attribute has a numeric value, which refers to the number of bytes assigned by the
assembler to a data field. If the length attribute value is required for conditional (preassembly) processing, the
symbol specified in the attribute reference must appear in the label field of a statement in open source code. The
operand field of that statement must contain a self-defining term.

The length modifier or length field must not be coded as a multiterm expression because the assembier does not
evaiuate this expression until assembly time.

When the length attribute is used in éonditionlal assembly statements, it can be specified only within an
expression. Examples: L'&P(4), L'&VARY(1,2), L'&SYSLIST(5).

When a length attribute reference is specified in open source code, it is not available for use in conditional
assembly statements.

UP-8914 SPERRY UNIVAC 0S/3 F-5
ASSEMBLER

An L’ cannot be generated directly by a macro or proc. It-can be done indirectly as follows:

LABEL AOPERATIONA OPERAND A

10 16 .
TR W N A __J&A(:ng;&11|i‘1|1|L1L14[1|}'1|1111[1
M ET.C (121’1-1111:1 oo o b e p bww o by g pa by
g;&lll_Ll 5511',Q ‘.ll—l’ll|ll_Ll_L_LlllllllllllIllLlllu

lllll_LL

\/lCI_L AIBALHCXIE&A)L;I& YR R T N N WU S S N0 W TN N SN S O S W M AR

After generation, this would result in
MVC Z(L2).X
Scale Attributes

The user can reference scale attributes of variable symbols by coding an S’ followed by the desired symboi.
Scaling attributes are available only for labels of statements defining fixed-point or floating-point constants. This
restricts them to H, F, D, E, P type Z, type K, and type G constants in the 0S/3 assembler. The scaling attribute is
the value the user has assigned for the scale modifier of a fixed-point or floating-point constant. This modifier is
an integer used to assign a number of bits in an unnormalized constant for the fractional portion of the constant.
For example, the scale modifier of a DC statement such as HF8°—19.788" would be 8, since it is specifying eight
bits for the fractional part of the number. For decimal constants, the scaling attribute is the number of decimal
digits to the right of the decimal point. ‘

Integer Attributes

An integer attribute can be written with an I’ followed by the symbol the user wishes. An integer attribute is
computed from length and scaling attributes and is thus also applicable only to a symbol that is the label of a
statement defining fixed-point or floating-point constants (F, H, D, E, P, type Z, type K, and type G). A fixed-point
integer attribute is equal to eight times the length attribute, minus the scaling attribute, minus 1 (1'=8*
L—S8'—1). For floating-point, the user obtains the integer attribute by subtracting 1 from the length attribute,
muitiplying by 2, and subtracting the scaling attribute (I'=2*(L'—1)—S").

A haif-word, fixed-point constant (H) would have a length attribute of 2 (L'=2) and a scale attribute specified as 4
(S'=4). Therefore, the integer attribute would be (8x2}—8-—1=7. A full-word, fixed-point constant would have a
length of 4 (L'=4) and a scale attribute specified here as 12 (§'=12). The integer attribute, in this case, would be
(8x4)—12—1=19.

Since E is a floating-point full word, its length attribute is 4 (L'=4). The scale attribute is specified to be 3 (S'=3).
Thus, the integer attribute is 2(4—1--3=3. When we have a floating-point, double-word constant (D), its length
attribute is 8 (L'=8). The scale attribute is shown to be 6. The integer attribute can then be computed as
2(8—1)—6=8. For decimal constants, the integer attribute is the number of decimal digits to the left of the
decimal point. '

Count Attributes

The user can use the count attribute of a call operand to reference the number of characters in the operand,
excluding commas. This attribute is determined after substitution of any variable symbols; that is, it uses the
replacement characters rather than the variable symbol to determine the count attribute. The count attribute can
be used in SETA or DO operand fields, and in relational expressions of SETB and AIF operands that are within a
macro.

UP-8914

SPERRY UNIVAC 0S/3 F-6 -
ASSEMBLER

if the operand selected is a sublist, the count attribute will include the parentheses and commas within the

sublist.

Number Attributes

For call operands, the user can also reference the number of operands in an operand sublist. The number
attribute can be referenced by writing an N’ followed by the symbol or parameter whose attribute is wanted. This
number is equal to 1 plus the number of commas separating or indicating the omission of operands in the
sublist. This attribute is available in SETA, DO, SETB, or AlF directives.

If an operand is not a sublist, the number attribute is 1. if an operand is omitted, its value is O.

Example:
LABEL AOPERATIONA . OPERAND A COMMENTS
10 1

1 aala m;.“ ?AALRA.LM}L.‘: sbocnalaca s beaaadr oo baiae s by v baa
mm_l_.z-_.NME..,..LAL.L(JAAL_AJ.AAAAlAL.l'u]AAll!AA.LA[A;AIIAA.AA(;JA
F.DWILAM [GTR: TES OF_MACRS INSTRUCTION DPERAND . 1 ... lii.
% THIS KR IS NOT GENERATED o lin talawcilasa il sanloan

e o I GLA b L
AR AN BN CLe ;TQAIAAA.IL"AALAJAIIA_LJ_AJ_L,LJ_.L_J__LIL_.L.A_._;.gl;,,..;
I8 1 JA.

1'8?PAIRAM(JL§L L.L..LJ‘—LJ..L_L;J_L_LA_<J | ST ST NPT B
' i L..I._J_A_L_'LJ_J—-L.L._L_L.L.;..J.‘ \L..L s alasaa oo
'

sl s b g b oo be e leacadaa

'*K.mm(lll)llllllllllllAllLLLJ["JIIIIJIL;LL

L' SPARAMO). | FUNTUE S W VU U ST S N U SU R RO S (T PRI (NP UGN A ST

1. &PARAM(‘l)l ot baccacc bacacrada sea b aa vl s doean

C' RPARAM(I1). . THIS. I8 THE OPERAMD. . o, tuodins

NOELQ), o 1. LENGTH ATTRIBUTE QOF _PARAM 1. ..,

Y(&AKQ). . . 1., COUNT ATTRIBAUTE OF PARAM

N (&IO), .1, INTEGER ATTRIBUTE OF PARAM | . . .

V(&SQ), . . .1, . SCALE ATTRIBUTE OF PARAM .. L. ..

M(ANQ), .. 1. NUMBER OF OPERAMDA IN SUBLIST .

CL'MLLJMEATIWMTE DFI. ?ARAM [1 [S

[
PR W Ul A T SR WY VS AT E S A W U GV Y SO S [N RIS U I ST ST SR Y i

Glossary

uP-8914 SPERRY UNIVAC 0S/3 Glossary 1
" ASSEMBLER
absolute expression -

An expression whose value is unchanged by program relocation. The absolute expression can be an
absolute term or any combination of absolute terms. Arithmetic operators are permitted between absolute
térms.

Examples of absolute terms are: a symbol that has an absolute value, a self-defining term, or a length
attribute reference.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within
an absolute expression. This type of absolute expression requires that each relocatable term be paired with
another relocatable term that has the opposite sign and the same relocatability attribute. The paired terms
need not be contiguous.

The effect of relocation is canceled by the pairing of relocatable terms with the same relocatable attribute
and opposite signs. The absolute expression is thereby reduced to a single absolute vaiue.

e
'
|

The following are absolute expressions:

A

A+A—A
A—~A+A+A
R+A-R
R-—R+A
{R—R)*A
A*A

where:

A
Is an absolute term.

is a reiocatable term.

advance listing (EJECT)
Controlled by the EJECT directive.

UP-8914

SPERRY UNIVAC 0S8/3 Glossary 2
ASSEMBLER °

arithmetic operators -

C

The symbols +,—,*,/,//,*/. The intrinsic meanings of +,—,*, and / are the usual ones; that is, +, indicates
addition, — indicates subtraction, * indicates multiplication, and / indicates division.

The operator // denotes a covered quotient where A//B is equivalent to (A-+B—1)/B. A covered quotient
is equal to regular binary division except that, if there is a remainder, a 1 is added to the regular quotient.

The operator */ denotes a binary shift left or right. A*/B indicates a left shift and is equnvalent to
A*28, A*/(—-B) indicates a right shift and is equivalent to A/2B.

character expression

A character string, a character substring, or a concatenation of strings or substrings. The maximum length
of a character expression is 127 characters. Character expressions are used as operands of SET and SETC
statements and as terms in a SETB relational expression.

A character string is at least one of the 258 valid characters enclosed by apostrophes. A character string,
unlike a character self-defining term, is not converted and treated as a binary value. The value of a
character string is determined by its length. Any character string is greater in vaiue than any shorter
character string. Rules for writing character strings are:

L] Two apostrophes must be written within a character string to represent one apostrophe. The two
apostrophes are replaced by a single apostrophe when the string is printed.

] Two ampersands must be written within a character string to represent one ampersand. Both
ampersands are retained as part of the character string. A single ampersand within the character
string is interpreted as the first character of a variable symbol.

A character substring is a valid character string followed by two arithmetic expressmns separated by a
comma and enclosed in parentheses. The format is:

character string (e,,8;)
where:

(-2 :
Specifies the leftmost character of the original character string to be included in the substring.

e
Specifies the number of characters to be in the substring.

The expressions e, and e, must be valid SETA expressions. If there are fewer characters (than the number
specified by e,;) remaining after character number e, in the string, the resultant substring is shortened to
include only valid characters of the original string. A null character string resulits if e, is greater than the
number of characters in the original string.

UP-8914 . SPERRY UNIVAC 0S/3 Glossary 3
ASSEMBLER

character set
The overall character set of the assembler. This set is divided into the foilowing classes:

Alphabetic set:
Alphabetic characters: the uppercase letters A through Z
Speciai letters: ? $ # @ |

Numeric characters: O through 9

Special characters : + — * / , = A (blank) {}) . & "> <

comments statement
A statement that, when written within a source code statement, causes the assembler to generata
comments on the output listing. This type of comments statement is written with an asterisk in column 1
of the assembier coding form followed by the comment. To continue a comment on the following line,
column 72 must contain X.

A special form of the comments statement is also available for use within macro definitions. This form is
used to include comments in a macro definition that are not to be generated in the output listing. This type
is written with a period in column 1 of the assembler coding form, followed by an asterisk (*) in column 2,
followed by the comment.

’ Neither form of comments statement may be created by substitution for variable symbols. Substitution for
variable symbols is not performed on comment lines.

Three statements are available for listing comments, error messages, or internal references. The PNOTE
message statement may be used in either a macro definition or at the source code level. The MNOTE
message statement may be used only in a macro definition. If either of these statements is generated by a
macro definition, the statement will be printed, even if the NOGEN option of the PRINT statement is in
effect. The comments statement may be used in macro definition form or in source code level forn’;n.

common storage definition
A common storage area for two or more separately assembled routines.

compiex relocatable expressions

An expression that contains either 2 to 16 unpaired relocatable terms or a negative relocatable term in
addition to any absolute or paired relocatable terms.

A complex relocatable expression may be written only in the operand field of either an A-type or Y-type
address constant. ‘

Some complex relocatable expressions are:
A—R
—R/I
A—R—R+R—R

where:

A
‘ Is an absolute term.

Is a relocatabile term.

UP-8914 SPERRY UNIVAC 0S/3 Glossary 4
ASSEMBLER

concatenation -
The joining together.of:

. two character strings;
a two character substrings; or
» a character string and a character substring.

A period designates concatenation intc a single string of characters. When a substring is to be
concatenated with a following character string, the period may be omitted and concatenation is assumed.

conditional assembly
Statements used by the programmer to direct the assembler to:

L exclude lines of code from the assembler output;
L include a set of lines more than once in the assembiy output; or

L establish and alter values to determine whether a set of lines should be included in the output listing.

Conditional assembly statements are used to control the pattern of coding generated within a macro
definition and to define and assign values to set symbols that can be used to vary parts of generated
statements.

conditional branch (AlF)
The statement that conditionaily aiters the sequence of source statement processing.

control section identification (CSECT) _
The directive that indicates to the assembler the initiation or continuation of a control section.

D

define branch destination (ANOP)
The statement that facilitates branching by supplying a symbol in its label field.

define end of range (ENDO)
The statement used to indicate the end of the range of a DO statement.

define start of range (DO) ,
The statement that defines the starting point of the code and the number of times it is to be generated.

diagnostic listing
A listing of error statements. The diagnostic listing follows the assembly listing and contains a detailed
accounting of any errors that occurred in the assembly. The listing contains the line number of the
statement in which the error occurred, the error code, and a message indicating the cause of the error. The
messages are listed in the order in which they occurred. A diagnostic listing is optional and can be
suppressed by using the PARAM statement with the LST=ND option in its operand field. The PARAM
statement also provides the LST=DBG option for debugging a macro definition.

uP-8914

SPERRY UNIVAC 0S/3 i Glossary 5
ASSEMBLER

When a macro definition is retrieved from a library, the END statement is flagged if an error occurs during
macro expansion. To obtain a diagnostic listing of the macro statement containing the error, the user must
use the LST=DBG option. If the macro definition is part of the source program, actual source statements
are flagged if they contain errors. Each error is then listed in the diagnostic listing.

dummy control section identification (DSECT)

E

The directive that indicates to the assembler the areas defined in other modules.

expression

F

One or more terms connected by operators. A leading minus sign is allowed to produce the negative of the
first term. Each term in the expression may be either a relocatabie term or an absolute term. A term is
absolute if its value is not changed by program relocation. A term is a relocatable term if its value is
changed by program relocation. Two relocatabie terms may be considered to be paired if tﬁey have opposite
signs and have the same relocatibility attribute (that is, appear in the same control section).

Evaluation of expressicv'ns obeys the following rules:

L Multlphcauon and division of a relocatable term by an absolute 1 or multiplication of an absolute 1 by
a relocatable term producses a reiocatable term.

L Multiplication of any term by absolute Q yields absolute O as a resuit.

L] If a relocatable term enters any multiply or divide operation other than the above, an error flag is
given and the result is treated as absolute.

a The number of unpaired relocatable terms at any point in the evaluation must not exceed 16.

] Intermediate results of the expression evaluation are full 32-bit values; however, the final resuilt is
the truncated rightmost 24 bits.

Three types of expressions — absolute, relocatable, and complex relocatable — obtain various
characteristics from the term or terms that compose them.

fixed-point number

A number represented in one of three fixed-length binary formats composed of a single positive or negative
sign bit followed by a number field. When the sign bit is 0, the number represents a positive value; when 1,
the number represents a negative value. Negative numbers are represented in twos compiement notation,
which is derived by inverting each bit of the binary number and adding 1 to the result of the inversion.

HALF WORD
:
i number fisid
o1 : 15
FULL WORD
H
¢ number fieid
o] 1 31

UP-8914 SPERRY UNIVAC 0S/3 Glossary 6
ASSEMBLER

DOUBLE WORD

number field
1] » 63

o za-w

G

GBL
A general purpose global set symbol.

GBLA |
An arithmetic global set symbol.

GBLB A
A Boolean global set symbol.

GBLC
A character giobal set system.

generate literals (LTORG) .
The directive that causes the assembier to generate literals previously defined.

H

high order
Leftmost data; most significant byte or bit.

include code from a library (COPY)
The directive that includes code into the source program.

input format control (ICTL)
The directive that specifies new values for the begin, end, and continuation columns.

input sequence control (ISEQ)
The directive that informs the assembier what columns contain the sequence information.

L

LCL
A general purpose local set symbol.

LCLA
An arithmetic local set symbol.

LCLB
A Boolean local set symbaol.

LCLC
A character local set symbol.

UP-8914

SPERRY UNIVAC 0S/3) Glossary 7
ASSEMBLER

leave blank lines on listing (SPACE)

length attribute of expressions

The directive that causes the assembler to advance the paper in the printer.
b

An attribute that is determined by the assembler and is a function of the leading term of the expression. If
the first term of an expression is an absolute value, a length attribute of one byte is assigned to the
expression. If the leading term is a symbol, the number of bytes attributed to the expression is the same as
the length attributed to the symbol. Thus, if TAG appears in the label field of an LH (load half word)
instruction, it would have a length attribute of 4, since LH is a 4-byte instruction. in referencing the same
label, the expression TAG+195 also has a length attribute of 4, but the expression 195+TAG has a length
attribute of 1 because the leading term is a decimal self-defining term. ‘

length attribute of symbois

The number of bytes assigned to the instruction, constant, or storage area involved. For example, the label
of a 2-byte instruction has a length attribute of 2, and the label of a DS statement reserving 200 bytes
would have a length attribute of 200. Symbols equated to location counter references or absolute value
representations usually have a length attribute of -1. The duplication factor (constant or storage area) has
no effect on the length attribute.

The maximum length attribute that can be generated by the assembler is 256 bytes; however, a DS may be
used to reserve more than 256 bytes of storage. ’

" The length attribute of a symbol may be referenced as a term in an expression by writing L’ followed by the

symbol. Thus if the symbol STOREND is the name of a full-word field,

L'STOREND

would be considered a term and would have a length of four bytes.

listing content control (PRINT)

The directive that controls the contents of the assembly listing.

literals

Terms that represent data in the source coding. The assembier replaces the literal with the address of the
main storage location, in the literal table, of the value of the original literal. In the following example, the
literal =C°'AA’ will be replaced in this instruction by the address of a 2-byte area in the fiteral table
containing the binary value 11000001 11000001.

MOVEAA mvc TESTSW,=C’'AA’

When the assembler recognizes a literal in the source code, it searches the table of literals that have been
previously encountered. If a duplicate is found, then the relocatable address of the literal in the table
replaces the original literal in the source code. If a duplicate is not found, then the value of the original
literal is entered into the table and its address replaces the source code specification. Literals are similar in
form to the operands of DC and DS statements.

A literal may be used in any machine instruction that specifies a storage address, except that the literal
may not be specified as the receiving field operand of an instruction that modifies storage, i.e., a literal may
be used only as the last operand of an application instruction. Literals may not be specified in address
constants, shift instructions, or 1/0 instructions. Literals must always appear as the complete operand
specification. They cannot be combined with other terms, nor with an explicit base register specification.

uP-8914

SPERRY UNIVAC 0S/3 Glossary 8
ASSEMBLER

location counter reference

A reference maintained by the assembler for each control section created by the programmer. Each
counter contains the next available location for the associated control section. After the assembler
processes an instruction or constant, it adds the iength of the instruction or constant processed to the
correct location counter. The maximum value that the location counter can achieve is 223—1,

Each instruction must have an address that is a muitiple of two bytes. This type of address is said to fall on
a half-word boundary. If the value of the location counter is not a muitiple of 2 when assembling such an
instruction, a 1 is added to the location counter before assigning an address to the current statement.
Storage locations reserved in this way receive binary 0’s when the program is loaded. Certain constants
must be aligned to a half-word, full-word, or double-word boundary. Again the location counter is adjusted
to the boundary, and the storage locations that were bypassed receive binary O’'s when the program is
loaded, unless the adjustment occurred as a result of a DS or ORG directive.

The current value of the location counter, under which the program is currently being assembled, is
available for reference by the programmer. It is represented by the special character* (asterisk). If the
asterisk is written as a term in an address constant or in an instruction operand expression, this character
is replaced by the storage address of the leftmost byte allocated to that instruction or constant. All such
implied references must be specified appropriately, since the asterisk (*) is also used as an arithmetic
operator to indicate muitiplication.

logical operators

The symbols **, ++, and ——. The characters ** represent the logical product (AND), the characters ++
represent the logical sum (OR), and the characters —— represent the symmetric difference, exclusive OR

(XOR).

Each bit of the first term is compared with its corresponding bit in the second term, and the resuit of the
comparison is placed in the corresponding position in the resulting term. The resuit of the bit comparison
for each operator is:

AND] | OR] XOR
A**B Result . A++B Resuit A--8 Result
1 1 1 1 1 1 11 0
10 0 1 0 1 10 1
0 1 0 0 1 01 1
00 0 0 O 0 00 0
low order

Rightmost data; least significant byte or bit.

LS8

Least significant bit or byte, rightmost.

-

upP-8914

SPERRY UNIVAC 0S/3 Glossary 9
ASSEMBLER

macro definition
A formalized pattern of code written once if a certain series of instructions (e.g., a routine) is needed more
than once in a program or associated:programs. The macro definition may be stored in a library for later
use or submitted for assembly with the source code deck.

Macro definitions may be prepared in one of two separate formats: macro or proc. The elements of the
macro and proc format types may not be mixed within a macro definition, however, macro definitions of
both types are permitted within a program. Macro definitions contained in the source program may be
preceded only by comment statements and the following assembler directives: ICTL, ISEQ, TITLE, SPACE,
EJECT, and PRINT. Any of these directives except ICTL may appear between macro definitions. A macro
definition within a macro definition (nesting) is not permitted in either the macro or the proc format.

model statements

The statements in a macro definition from which machine and assembler instructions are generated.
Model statements contain from one to four entries, as follows:

mMsB

The label field may contain a symbol, a variable symbol, or a sequence symbol, depending on the
operation defined. Comment statements may not be created by substitution for variable symbols.

The operation field may contain any machine, assembler, or macro instruction mnemonic code except
END, ICTL, ISEQ, or PRINT.

Either ordinary symbols or variable symbols may be written in the operand field. The size of this field
may not exceed 240 characters after substitution.

The comments field may contain any combination of characters; however, substitution for variable
symbols is not performed on this field by the assembler. Comments are written in the format of the
statement the model represents.

A macroinstruction that is a model statement within a macro definition is called an inner
macroinstruction, while a macroinstruction in the source module is called an outer macroinstruction.
A macroinstruction that appears in a macro definiton corresponding to an outer macroinstruction is
called a second-level macroinstruction. A macroinstruction that appears in the macro definition
corresponds to a second-level macroinstruction. Macroinstructions within macro definitions are
nested. The number of levels to which macroinstructions may be nested in an assembly depends
upon the amount of main storage available to the assembiler.

Because COPY statements within a macro definition are processed prior to the generation of code

from a macro definition, they are not considered to be model statements nor are they ever processed
as such.

Model statements within a macro definition in proc format obey the same rules as model statements
in macro format.

Most significant bit or byte, leftmost.

UP-8914 SPERRY UNIVAC 0S/3 Glossary 10 - -
ASSEMBLER Update B

O

operators
The 12 mathematical functions in the assembler that designate the method and (implicitly) the sequence to
be employed in combining terms or expressions. Evaluation of an expression begins with the substitution
of values for each term. The operations are then performed from left to right in hierarchical order. The
operation with the highest hierarchy number is performed first; operations with the same hierarchy
number are performed from left to right.

Parentheses may be used to alter the order of evaluation. Multiplication by O equals O. The 12 operators
are divided into three classes: arithmetic operators, logical operators, and relational operators.

P

privileged instructions
Instructions used by the operating system when the processor is in the supervisor state. If an application
program (user program) attempts to execute a privileged instruction, a program exception interrupt will
occur because the processor will be in the problem state. The following are the privileged instructions for
the SPERRY UNIVAC Operating System/3 (0S/3).

] Clear channel (CLRCH)
. Clear device (CLRDV)

» FEnqueue I/0 (EIO)

L Execute diagnose (EXD)

n Get /ORB (GRB)

» Halt and proceed (HPR)

» Halt device (HDV)

L Initial program load (IPL)

» Insert storage key (I1SK)

L] Load channel register (LCHR)

s Load contro/ (LCTL)

] Load directive address (LDA)

L Load 170 address (LIA)

L] Load program status word (LPSW)
L Load relocation register (LRR)

= Longitudinal redundancy check (LRC)

L Move 170 (MIO)

= Put IORB (PRB)

L Reset (RESET)

UP-8914

SPERRY UNIVAC 0S/3 Glossary 11
ASSEMBLER Update B

L] Scan switch list (SWLS)
L] Service timer register (STR)

L] Set storage key {(SSK})

L] Set system mask {(SSM)

= Start device (SDV)

L] Store control (STCTL)

L Store relocation register (STRR})
= Store status (STS)

L Supervisor load multiple (SLM)

L Supervisor store multiple (SSTM)

program status word (PSW)

A special register containing information on the status of the program being run. The PSW contains the
condition code, interrupt code, and the address of the next executable instruction. See status switching
instructions.

PSW

R

See program status word.

relational operators

The equals symbol (=), the greater-than symbol (>}, and the less-than symbol ().

The equals operator is used to compare the value of two terms or expressions. If the two values are equal,
the assembler assigns a value of 1 to the expression; otherwise, a value of O is assigned.

The greater-than operator makes a comparison between two terms or expressions. If the value of the first
(left) term is greater than the value of the second (right) term, then a value of 1 is assigned to the
expression; otherwise, a value of O is assigned.

The less-than operator compares the value of the first (left} expression or term with the second (right)
expression. If the value of the first expression is less than the value of the second one, then a value of 1 is
assigned to the expression; otherwise, a value of O is assigned.

For the expression A+B>C, if the expression A+B has a value greater than a value of C, then the
assembler assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

A relational expression consists of a relational operator and its two operands. The operands in a relational
expression may be either two character expressions or two arithmetic expressions. A character expression
may not be compared to an arithmetic expression. Character expressions are valid only on conditional
assembly directives.

Since the evaluation of a relational expression yields an arithmetic result, a relational expression may be
used as a term in an arithmetic expression.

UP-8914 SPERRY UNIVAC 0S/3 Glossary 12
ASSEMBLER

relocatability attributes

Values that are assigned to symbols defined in the label field of a source code line representing an
instruction, constant, or storage definition. A relocatable symbol is a symbol whose address would change
by a given number of bytes if the program in which it appears is relocated the same number of bytes from
its originally assigned address. Relocatable symbols are assigned values relative to the location counter.

Decimal, character, binary, and hexadecimal representations are all absolute terms and have a relocation
attribute of Q.

relocatable: expressions

An expression whose value changes with program relocation. All relocatable expressions must be positive
values.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within a
relocatable expression.

Either type of relocatable expression requires the following conditions:
L] All but one relocatable term must be paired.

L A minus sign must not precede the unpaired (remaining) relocatable term.

L] Each pair of relocatable terms must have opposite signs and the same relocatability attribute.

] The paired relocatable terms do not have to be contiguous.

Using the above requirements, a relocatable expression is thereby reduced to a single relocatable term. .
The following are relocatable expressions:

R

R/}

R+A or A+R
R—R+R
R—A

R*l or I*R

where:

A
Is an absolute term.

Is a relocatable term.

reproduce following record (REPRO)

The directive used to reproduce a record in the assembler output.

N

uP-8914

SPERRY UNIVAC 0S/3 Glossary 13
ASSEMBLER

S

SDT -,

self-

See self-defining terms.

defining terms (SDT)

Terms that represent fixed values. They are presented by the programmer in a form that is easily
recognized and that has a value understood without the need of computation. SDTs are not relocatable;
they can be used to specify immediate data, registers, addresses, and masks. They can be used in
assembler directives, as well as in application instructions, and can be part of an expression. The size of an
SDT depends on where it is used. When used to designate a register, it cannot exceed a value of 15. After
conversion by the assembler to a binary format, the value is right-justified and filled with binary zeros on
the left to fit the designated field. SDTs can be represented in binary, hexadecimal, decimal, or character
form,

When a 24-bit hexadecimal, binary, or character SDT has a 1 in the sign bit position, the SDT will be
treated as a negative term in the evaluation of an arithmetic expression.

L] A binary SDT consists of a series of 24 zeros and ones enclosed in apostrophes and preceded by the
letter B (e.g., B'101',B°11110000°,B°00101°).. The field is filled with high order zeros when
necessary. v

L] A hexadecimal SDT consists of up to six hexadecimal digits enclosed in apostrophes and preceded by
the letter X {e.g., X'FO',X'C1" X'F1FOFQ’). Each hexadecimal digit represents a haif byte of
information. ’

L] A decimal SDT is an unsigned decimal number consistina of up to eight digits havina a value of O
through 16,777,215 (224—1) (e.g., 0, 32, 16000000). This number is converted by the assembler to a
binary value occupying one, two, or three bytes.

] A character SDT consists of yp to 3 characters of the 256 valid characters, of which only 63 are
printable. The characters must be enclosed in apostrophes and preceded by the letter C (e.g., C'A’,
C’ABC’, C'123’, C’'At’). Each ampersand or apostrophe to be included in a character representation
must be indicated by a double ampersand or double apostrophe, respectively. In this case, there may
be more than three characters within the apostrophes that delimit the SDT {e.g., C'3"’S’ produces 3'S;
C’A&&B’ produces A&B).

set symbol

A type of variable symbol. The rules for writing set symbols are the same as for other variable symbols:

a An ampersand (&) is followed by an alphabetic character followed by up to six additional characters ‘
(total maximum characters: 8)

L] If the ampersand is omitted, the assembier interprets the character string as a symbol and not as a
set symbol.

Because set symbols are evaluated in the macro generation phase of the assembler, they may be used as
counters, switches, or values to control the sequence of code generated. Unlike an ordinary symbol, the
value assigned to a set symbol may be altered during assembly. A set symbol may be either global or tocal.
A giobal set symbol, once declared and given a value by a SET statement, retains the same value until that
value is changed by another SET statement. A local set symbol is defined only within the macro definition
in which it is declared. The value of a local set symbol within one macro definition is not affected by the
declaration of either a global or local set symbol with the same name in another macro definition.

UP-8914 SPERRY UNIVAC 0S/3 ‘ Glossary 14
ASSEMBLER

Do not use &SYS as the first four characters of any symbol because they are reserved for the use of system
variable symbols.

Set symbols must be declared after macro prototype or NAME statements and before being referenced.

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to deciare the set symbol.

- SETA

Assigns values to set symbolis declared in either LCLA or GBLA.
= SETB

Assigns values to set symbols declared in either LCLB or GBLB.
s SETC

Assigns values to set symbols declared in either LCLC or GBLC.
= SET

Assigns values to sét symbols declared in either LCL or GBL.

icial characters

The 14 special characters that are not part of the alphabetic set, are not special letters, and are
numerais. The special characters with their hexadecimal codes are:

Special Hexadecimal Special Hexadecimal
Character (EBCDIC) Code Character {EBCDIC) Code
+ ' 4E (left 4D

' parenthesis
- (minus) 60 } right 5D
parenthesis
. 5C . (period) 48
/ 61 & 50
. (comma) 68 * {prime) 70
= 7€ > 6E
A (blank) 40 < 4C

special letters
The four special letters are:

Hexadecimal
Special Letters (EBCDIC) Code

6F
58
78
7C

@%fh'\l

uP-8914 SPERRY UNIVAC 0S/3 Glossary 15
ASSEMBLER

specify location counter (ORG)
The directive that sets or resets the location counter to a specified value.

status switching instructions
The instructions that provide the capability of altering processor operating characteristics. The set program
mask (SPM) and supervisor call (SVC) instructions replace part of the current program status word (PSW).

The format of the PSW is:

INTERRUPT

SYSTEM MASK KEY MODE CODE
sis|s|s|s
piplPiPlP ,‘°; § P
eilImlalAJA]A|A plep alals
ol |rIR|R|R|R Alels |Yia|aIMIE
E E|E|E|E EIE
oj1]2}3jajs]ei7]|s8 11§ 12| 13 14} 15} 16[17| 1819} 20 23 | 24 C3
PROGRAM
MASK INSTRUCTION ADDRESS
nc{cc |{B|piels
32 33|34 38| 36{37]38] 39| 40 63

For information on the format, description, and use of the PSW, see the processor programmer reference
{current version).

The test and set (TS) instruction is used to contrql a byte in main storage to act as an indicator.
symbols : ‘

Identifications appearing in the label field of a statement defining an instruction, constant, or storage area

that are assigned the address vailue of the first byte of the source statement with which the symbol is

associated. The following rules apply to the use of symbols as labels.

s Must start in column 1

L Must start with an alphabetic character or special letter

L] Must consist of only aiphabetic characters, numeric characters, and special letters.

L] Must not be longer than eight characters.

L] Must not include a space (blank) or other special character

= Must be followed by a blank

The assembler associates three attributes with each symbol it processes. These attributes are vaiue,

length, and relocatability. Symbols defined by the EQU directive adopt the attributes of the expression in

the operand field of the statement.

Once symbols are defined in the label field, they can be used as operands to represent the value that was
defined.

UP-8914

SPERRY UNIVAC 0S/3 Glossary 16
ASSEMBLER

T

terms

U

Vaiues coded by the programmer or computed by the assembler. There are five classes of terms recognized
by the assembler.

] Self-defining terms (SDT)

- Literals

» Symbols

= Location counter references

= Length attribute references

Self-defining terms are fixed values the programmer codes, such as 33,P'5691'X'OF',B'11100110’, or
C’EBW'. Literals can have their value specified by the programmer or computed by the assembler and couid
look like =X'FO’,=C'A’, =P'—1’, or =B'00001000" as used in storage-io-storage instructions {e.g., CLC

TAGA,=C'A’). Symbols, location counter references, and length attribute references are assigned values by
the assembler.

unassign base register (DROP)

The directive that informs the assembler-specified registers are no longer available for base register
assignment.

unconditional branch (AGO)

v

The statement that unconditionally alters the sequence of source statement processing.

value attribute

The value assigned a symbol when it appears in the label field of any source code statement other than a
comment. A symbol appearing in the label field of an EQU or ORG directive is assigned the value of the
expression in the operand field. In all other cases, the value assigned is the current value of the location
counter after the adjustment to a half-word, fuli-word, or double-word boundary, if necessary. The value is
assigned to the current label before the location counter is incremented for the next instruction, constant,
or storage definition. Thus, if a symbol appears in the label field of a statement defining an instruction,
constant, or storage area, the symbol is assigned a value equal to the storage area address of that
instruction, constant, or storage area.

The value of a symbol must lie in the range —223 through 223—1.

variable symbol

A symbol consisting of two to eight characters; the first is an ampersand (&), the second is a letter (A
through Z) or a special character (? $ # @), and each of the remaining characters is a letter, special
character, or digit (O through 9).

uP-8914

SPERRY UNIVAC 0S/3 Glossary 17
ASSEMBLER

A variable symbol may be:
L a symbolic parameter;

L] a set symbol;

the label of a DO statement; or

L] a system variable symbol.

Variable-symbol parameters represent either the label or one of the operands of the macroinstruction by

- which the macro definition was named.

The following ruies apply to the use of variable symbols:

= A variable symbol may not be used to generate a new sequence symbol, a SET symbol, a parameter,
or a system variable symbol.

] A variable symbol may not be used in the label or operand field of an END,‘ ICTL, ISEQ, COPY, or
PRINT directive.

L] No variable-symbol replacement is performed on the line following a REPRO directive.

- Variable-symbol replacement must not produce leading blanks in the label or operand fields.

A variable symbol may appear in a statement concatenated (joined) with other variable symbols or
characters. [f a variable symbol is immediately followed by a letter, digit, left parenthesis, or period, a
period must be written after the variable symbol to distinguish the variable symbol from the characters that
follow it. The variable symbol and the period following it are replaced by the characters representing the
value of the variable symbol. The period does not appear in the printed statement. If a period is between a
character string (not in quotes) and a variable symbol (inf that order) the period is considered part of the
character string and will appear in the printed statement.

"

The period after the variable symbol is optional if the variable symbol terminates with a right parenthesis or
is followed by another variable symbol or a special character other than a left parenthesis or a period.

cuT

<L
B e

SPERRY

USER COMMENT SHEET

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

{Document Title)

(Document No.) {Revision No.) {Update No.)

Comments:

From:

{Name of User)

{Business Address)

Fold on dotted iines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

L)
NO POSTAGE
NECESSARY
IF MAILED
IN THE
. UNITED STATES
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.
POSTAGE WILL BE PAID BY ADDRESSEE ———
L~ - "
SPERRY CORPORATION —
L "
A
ATTN.: SOFTWARE SYSTEMS PUBLICATIONS —————
L "

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

" cut

o
=
=)
<
L
©
o
3
[&]

1

I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
I
I
|
I
I
I
|
I
|
I
|
|
I
|
|
|
|
I
|
|
|
|
|
|
I
I
!

SPERRY < LINIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) {Revision No.) (Updaté No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A))
Thank you for your cooperation

I II II I NO POSTAGE

NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

iRpte)

QT

<= sPERRY

USER COMMENT SHEET

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

{Document Title)

(Document No.} (Revision No.) {Update No.}

Comments:

From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A\)
Thank you for your cooperation

FOLD __

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY CORPORATION

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

cuT

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

{Document Title)

(Document No.) {Revision No.} (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. {(No postage is necessary if mailed in the U.S.A\)
Thank you for your cooperation

“ | | || NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY CORPORATION
| ATTN: SYSTEM PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19422-9990

UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order biank.

(Document Title)

{Document No.)

Comments:

From:

(Revision No.) {Update Level)

{Name of User)

{Business Address)

Foid on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A\)

Thank you for your cooperation

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation

E/MSG Product Information Development
PO Box 500 C1-NE6

Blue Bell, PA 19422-9990

|| I | ” NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

