
UP-8913

5.

e

6.

7.

SPERRY UNIVAC 05/3
ASSEMBLER

PART 2. STORAGE AND SYMBOL DEFINITIONS

STORAGE DEFINITIONS

5.1. STORAGE USAGE
5.1.1. Define Constant (DC)

5.1.2. Define Storage (DS)

5.1.3. Duplication Factor
5.1.4. Definition Type
5.1.5. Length Factor (Ln)

5.1.6. Constant Specification
5.1.7. Alignment

5.2. DEFINITION TYPES
5.2.1. Character Constants (C)

5.2.2. Hexadecimal Constants (X)

5.2.3. Binary Constants (B)

5.2.4. Packed Decimal Constants (P)

5.2.5. Zoned Decimal Constants (Z)

5.2.6. Half-Word Fixed-Point Constants (H)

5.2.7. Full-Word Fixed-Point Constants (F)

5.2.8. Half-Word Address Constants (Y)

5.2.9. Full-Word Address Constants (A)

5.2.10. Base and Displacement Constants (S)

5.2.11. External Address Constants (V)

5.2.12. Floating-Point Constants (E and D)

5.3. LITERALS

SYMBOL DEFINITIONS

6.1. EQUIVALENT SYMBOLS

6.2. SYMBOL APPLICATIONS

PART 3. BAL APPLICATION INSTRUCTIONS

INTRODUCTION TO APPLICATION INSTRUCTIONS

7.1. INSTRUCTION AND FORMAT CONVENTIONS

7.2. EXPLICIT FORMS

7.3. IMPLICIT FORMS

7.4. DEFINITIONS OF FORMAT TERMS

Contents 3

5-1
5-4
5-5
5-5
5-6
5-6
5-7
5-8

5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-13
5-15
5-15

5-18

6-2

6-3

7-1

7-6

7-6

7-6

,.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

8. BRANCHING INSTRUCTIONS

8.1. USE OF BRANCHING INSTRUCTIONS

8.2. EXTENDED MNEMONIC CODES

8.3. BRANCH AND LINK
8.3.1. Use of the BALA Instruction in Base Register Assignment

8.4. BRANCH ON CONDITION

8.5. BRANCH ON COUNT

8.6. BRANCH ON INDEX HIGH

8.7. BRANCH ON INDEX LOW OR EQUAL

8.8. EXECUTE

9. DECIMAL AND LOGICAL INSTRUCTIONS

9.1. USING DECIMAL INSTRUCTIONS

9.2. DEFINING PACKED AND UNPACKED CONSTANTS
AND MAIN STORAGE AREAS

9.2.1. Packed Decimal Constants and Main Storage Areas
9.2.2. Unpacked Decimal Constants and Main Storage Areas

9.3. ADD DECIMAL

9.4. COMPARE DECIMAL

9.5. DIVIDE DECIMAL

9.6. EDIT
9.6.1. The Edit Pattern
9.6.2. The Resulting Condition Code
9.6.3. Examples of General Usage
9.6.4. Summary

9.7. EDIT AND MARK

9.8. MODIFY STORAGE AND SKIP
9.8.1. What the Instruction Can Do
9.8.2. What Operands You Supply
9.8.3. How You Specify Your Operands
9.8.3.1. Specifying Basic Operands
9.8.3.2. Specifying Destination Data Operands
9.8.3.3. Specifying Register Modification Operands
9.8.3.4. Specifying Repeat Operands
9.8.3.5. Format Summary
9.8.4. MSS Operation Conditions
9.8.5. Operational Considerations
9.8.6. Example

Contents 4

8-1

8-2

(BAL, BALA) 8-5
8-7

(BC, BCR) 8-9

(BCT, BCTR) 8-13

(BXH) 8-15

(BXLE) 8-18

(EX) 8-20

9-1

9-3
9-4
9-6

(AP) 9-8

(CP) 9-10

(DP) 9-13

(ED) 9-16
9-17
9-23
9-24
9-26

(EDMK) 9-27

(MSS) 9-30
9-31
9-36
9-37
9-38
9-41
9-41
9-43
9-44
9-58
9-60
9-60

UP-8913

14.

SPERRY UNIVAC OS/3
ASSEMBLER

LIST PROCESSING

14.1. INTRODUCTION

14.1.1. LIFO List

14.1.2. FIFO List

14.1.3. Double-ended List

14.1.4. Ring with Station

14.1.5. Priority List

14.1.6. Aged Priority List

14.1.7. Two-Level List

14.2. WHAT IS NEEDED FOR LIST PROCESSING?

14.2.1. What System 80 Provides

14.2.2. What You Must Provide

14.3. LIST CONTROL BLOCK

14.4. LIST PROCESSING INSTRUCTIONS

14.4.1. ENQUEUE

14.4.2. DEQUEUE

14.4.3. STEP QUEUE

14.5. INITIALIZING AND USING SYSTEM 80 LISTS

14.5.1. Specifying Elements

14.5.2. Specifying Lists by Type

14.5.2.1. LIFO List Usage

14.5.2.2. FIFO List Usage

14.5.2.3. Double-ended List Usage

14.5.2.4. FIFO with Station Usage

14.5.2.5. Ring with Station Usage

14.5.2.6. Priority List Usage

14.5.2.7. Aged Priority List Usage

14.6. FREE ELEMENT LIST

14.6.1. FEL Initialization

14.6.2. FEL Usage

14.7. LIST PROCESSING OPTIONS

14.7.1. Register Load/Store Option

14.7.2. Data Movement Option

14.8. LIST CONTROL PROGRAM

14.8.1. LCP Format

14.8.2. LCP Instructions

14.8.2.1. NO-OP LCP Instruction

14.8.2.2. MASKED TEST LCP Instruction

14.8.2.3. LOGICAL COMPARE LCP Instruction

14.8.2.4. MASK AND COMPARE LCP Instruction

14.8.2.5. LOAD REGISTERS LCP Instruction

14.8.2.6. STORE REGISTERS LCP Instruction

14.8.2.7. MOVE DATA OUT LCP Instruction

14.8.2.8. MOVE DATA IN LCP Instruction

14.8.2.9. STEP STATION LCP Instruction

14.8.2.10. INIT STATION LCP Instruction

14.8.2.11. SWITCH LIST SCAN LCP Instruction

14.8.3. Initializing and Calling List Control Programs

Contents 11

14-1
14-1
14-4
14-7
14-7
14-10
14-13
14-15

14-17
14-18
14-18

14-18

14-24

(ENO) 14-25

(DEO) 14-27

(STEP) 14-29

14-31
14-31
14-31
14-31
14-33
14-34
14-35
14-35
14-36
14-38

14-39
14-41
14-41

14-42
14-42
14-44

14-46
14-47
14-50
14-50
14-50
14-51
14-52
14-53
14-55
14-56
14-57
14-58
14-59
14-61
14-62

UP-8913

14.9.

SPERRY UNIVAC OS/3
ASSEMBLER

LIST PROCESSING EXAMPLE

PART 4. BAL DIRECTIVES

15. INTRODUCTION TO DIRECTIVES

16. EQUATE ANO DELETE OPERATION CODE DIRECTIVES

16.1. EQUATE (EQU)

16.2. DELETE OPERATION CODE (OPSYM)

17. ASSEMBLER CONTROL DIRECTIVES

17.1. CONDITION NO OPERATION (CNOP)

17.2. PROGRAM END (END)

17.3. GENERATE LITERALS (LTORG)

17.4. SPECIFY LOCATION COUNTER (ORG)

17.5. PROGRAM START (START)

18. BASE REGISTER ASSIGNMENT DIRECTIVES

18.1. UNASSIGN BASE REGISTER (DROP)

18.2. ASSIGN BASE REGISTER (USING)

19. PROGRAM LINKING AND SECTIONING DIRECTIVES

19.1. COMMON STORAGE DEFINITION (COM)

19.2. CONTROL SECTION IDENTIFICATION (CSE CT)

19.3. DUMMY CONTROL SECTION IDENTIFICATION (DSECT)

19.4. EXTERNALLY DEFINED SYMBOL DECLARATION (ENTRY)

19.5. EXTERNALLY REFERENCED SYMBOL DECLARATION (EXTRN)

19.6. SUBROUTINE LINKAGE

20. LISTING CONTROL DIRECTIVES

20.1. ADVANCE LISTING (EJECT)

20.2. LISTING CONTENT CONTROL (PRINT)

Contents 12

14-63

16-1

16-3

17-2

17-4

17-5

17-6

17-8

18-2

18-3

19-3

19-6

19-8

19-10

19-11

19-12

20-2

20-3

e

UP-8913

G.2.

G.3.

&SYS LIST

&SYSNDX

SPERRY UNIVAC OS/3
ASSEMBLER

G.4. &SYSDATE

G.5. &SYSTIME

G.6. &SYSJDATE

G.7. &SYS PARM

USER COMMENT SHEET

INDEX

FIGURES

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
1-9.
1-10.
1-11.

2-1.
2-2.

4-1.
4-2.

5-1.

7-1.

8-1.

9-1.
9-2.
9-3.
9-4.

9-5.
9-6.
9-7.
9-8.

10-1.

Writing and Submitting a Program

Card Image
Assembler Coding Form
Coding Form and Card Image Relationship
Example of Proper Coding Techniques

COBOL Source Code
Object Code Generated from COBOL Source Code

Assembly Listing
OS/3 Object Module Format
OS/3 Load Module Format
Assemble, Link, and Go Operation

Determining Binary Values
Fixed-Point Number Formats

Assembler Format Relationships
Byte and Word Structure

Floating-Point Number Formats

Instruction Formats

Program Status Word Diagram

Basic MSS Execution
MSS Execution with Destination Feature
MSS Execution with Register Modification Feature
MSS Execution with Repeat Feature
Operand 2 Format
Destination Operand Fields
Repeat Fields
Format Fields

Comparison of Binary Numbers and Values Expressed in Powers of 2

Contents 17

G-1

G-2

G-2

G-3

G-4

G-5

1-2
1-3
1-4
1-5
1-13
1-15
1-15
1-16
1-18
1-19
1-20

2-3
2-9

4-4
4-7

5-17

7-2

8-1

9-31
9-33
9-34
9-35
9-38
9-45
9-45
9-46

10-6

UP-8913

14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
14-9.
14-10.
14-11.
14-12.
14-13.
14-14.
14-15.
14-16.
14-17.
14-18.
14-19.
14-20.
14-21.
14-22.
14-23.
14-24.
14-25.
14-26.
14-27.
14-28.
14-29.
14-30.
14-31.
14-32.
14-33.
14-34.
14-35.
14-36.
14-37.

22-1.

23-1.
23-2.

24-1.
24-2.
24-3.
24-4.

LIFO List

SPERRY UNIVAC OS/3
ASSEMBLER

Adding and Removing Elements from a LIFO List
The Two Types of FIFO Lists

Adding and Removing Elements in FIFO Lists
FIFO List with Station

Ring List with Station

Adding and Removing Elements from a Ring List
Priority List

Adding to a Priority List
Level Stations

Initialized Aged Priority List
Aged Priority List after Table 14-1 Operations
Two-Level List
LCB Format

Specifying an Element in an LCB
Initializing LIFO LCB
Initializing FIFO LCB

Initializing LCB for FIFO with Station
Ring List Initialization
Priority List Initialization

Aged Priority List Initialization
Enqueueing and Dequeueing with FEL
Register Load/Store Option

LCB Fields for Data Movement Option
Registers for Data Movement
LCP Instruction Format
NO-OP Format
MASKED TEST Format
LOGICAL COMPARE Format
MASK AND COMPARE Format
LOAD REGISTERS Format
STORE REGISTERS Format
MOVE DAT A OUT Format
MOVE DATA IN Format
STEP STATION Format
INIT STATION Format
SWLS Format

Example of lnline Macro Expansion

Accessing a Macro Definition Submitted in the Source Deck
Accessing a Macro Definition Stored in a Library

PROC and MACRO Heading

PROC. MACRO, and Call Instruction Comparison
Communication between Macroinstruction and Macro Definition
Example of MACRO and PROC Definitions

TABLES

2-1. Comparison of Numeric Expressions
2-2. Hexadecimal Notation

4-1. Comparison of Terms
4-2. Summary of Operators

Contents 18

14-2
14-3
14-4
14-5
14-7
14-7
14-8
14-10
14-11
14-12
14-13
14-15
14-16
14-19
14-32
14-33
14-34
14-35
14-36
14-37
14-39
14-40
14-42
14-44
14-45
14-47
14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59
14-61

22-3

23-4
23-5

24-1
24-6
24-8
24-12

2-2 • 2-4

4-9
4-14

UP-8913

5-1.
5-2.

8-1.
8-2.
8-3.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.

12-1.

14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
14-9.

15-1.

17-1.

20-1.

27-1.
27-2.
27-3.
27-4.

28-1.
28-2.
28-3.
28-4.

B-1.
B-2.
B-3.

C-1.
C-2.

E-1.

e E-2.
E-3.

SPERRY UNIVAC OS/3
ASSEMBLER

Characteristics of Constant and Storage Definition Types
Zero Duplication Area Examples

Extended Mnemonics and Functions
Operand 1 Mask Combinations
Branch-on-Condition Instruction by Usage

Edit Instruction Operation
MSS Operations
Format Code Values for Operand Types

Op Type Values
Format Code Values for Register Modification

MX Values
MSS Operations and Conditions

Shift Logical Mask Bits

Operations with Aged Priority List
List Type Values
Permissible Element/List Type Combinations
List Head Type Values
Stations Used by LCP Instructions
CT Match/Mismatch Table
Program Control Under LCP Fields
INIT STATION Effects on Stations
Initializing LCB Registers for LCP Execution

Assembler Directives

Assembler Control Directives

Listing Control Directives

Conditional Assembly Language Statements
Operator Priority
Valid Attribute Reference Applications
Type Attributes of Symbols

CODEDIT Listing Content
External Symbol Dictionary (ESD) Listing Content
Cross-Reference Content
Diagnostic Listing Content

ASCII (American Standard Code for Information Interchange) Character Codes
EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes

Punched Card, ASCII, and EBCDIC Codes

Hexadecimal-Decimal Integer Conversion
Hexadecimal Fractions

Mnemonic List of Instructions
Alphabetic Listing of Instructions
List of Instructions by Machine Code

Contents 19

5-2
5-6

8-3
8-10
8-11

9-26
9-32
9-40
9-40
9-42
9-43
9-58

12-92

14-14
14-20
14-20
14-21
14-46
14-48
14-49
14-60
14-62

15-1

17-1

20-1

27-1
27-9
27-26
27-27

28-2
28-3
28-4
28-5

B-1
B-2
B-3

C-3
C-7

E-1
E-5
E-11

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Register 1 after execution of EDMK instruction:

000010000 000010000 000010000 101111011 binary

O I O O I O O I 0 B I B hex

address of 1st significant digit

Register 1 after execution of S instruction:

0000 I 0000 0000 10000 0000 10000 1011 11010 binary

O 1 0 O I O O I 0 B I A hex

address of byte to the left of
1st significant digit

Edited result after execution of MVI instruction:

1st
significant

$ digit
~

9-29

0100}000 0101-: 1010 1111!0010 011oi1011 1111:0100 1111 lo101 1111 :0111 0100 :1011 1111 :0001 1111-Joooo

4 I 0 5 I B F I 2 6 1· B F I 4 F I 5 F I 7 4 I B F I 1 F I 0
I _l l l I j j l j _l

In this example, the edit mask is moved into a 10-byte field labeled PATTERN.
The address of the position where the insert character is to be placed (in the
absence of significant digits before the significance starter) is loaded into register
1. Then DATA, containing the packed number, is edited and the result is placed
in PATTERN. The address of the first significant byte (in this example, 2 is
significant) replaces the content of register 1. Then a full word containing the
decimal value 1 is subtracted from the content of register 1, therefore moving
one byte to the left. The MVI instruction moves the dollar sign into the byte
addressed by the content of register 1.

binary

hex

UP-8913

MSS

SPERRY UNIVAC OS/3
ASSEMBLER

9-30

9.8. MODIFY STORAGE AND SKIP (MSS)

OPCODE

MNEM. HEX.

General

FORMAT
TYPE

MSS E3 SS

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2
• SET TO 3
0UNCHANGED

OBJECT
INST.
LGTH.
(BYTES)

6

Possible Program Exceptions

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

• OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

• . OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

• SEE OPERATIONAL CONSIDERATIONS

0 NONE

The modify storage and skip (MSS) instruction performs an operation that you specify
by immediate operand 1 (i,) on two operands indirectly specified by main storage
operand 2. Depending on the result, program control may then pass to the next
sequential instruction or to another location, called the skip location, which is offset
from the instruction following the MSS instruction by a displacement value you
specify in immediate operand 3 (i 3). You can put the result of the operation in the
main storage location or register specified by operand 1.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] MSS

Implicit Format:

LABEL fl OPERATION b. OPERAND

[symbol] MSS

The i1 and i3 fields shown in the previous two formats roughly correspond to the 11 and 13

fields of other SS-type instructions. The i1 value is assembled, unchanged in value, into bits
8-11 of the MSS object instruction and the i3 value is assembled, likewise unchanged in
value, into bits 12-15. The rest of the operand fields are assembled according to the rules
for SS-type instructions.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9.8.1. What the Instruction Can Do

The MSS instruction can:

9-31

1. perform an arithmetic, data movement, or logical operation on two source
operands, either of which can be in main storage or a register;

2. depending on the operation result, branch either to the next sequential instruction
or go to the skip location as determined by the i3 operand;

3. optionally store the operation result to a destination operand, either in main
storage or a register, specified by operand 1;

4. optionally modify up to two additional registers each time the operation is
performed; and

5. repeat steps 1 through 4.

At its simplest, the MSS instruction proceeds as shown in Figure 9-1.

SOURCE
OPERAND

GO TO NEXT
SEQUENTIAL
INSTRUCTION

EXECUTE MSS

OPERATION

NO YES

Figure 9-1. Basic MSS Execution

SOURCE
OPERAND

GO TO SKIP
LOCATION

As Figure 9-1 shows, the MSS instruction fetches two operands and performs an
operation on them that you specify by operand i1 • The operations available to you with MSS
are shown in Table 9-2. Each operation tests for a condition. If that condition is not met,
program control passes to the next sequential instruction after MSS. If the condition is met,
however, program control skips forward a number of half words beyond the next sequential
instruction, to the skip location, and continues with the instruction found there. The number
of half words skipped is given by the absolute value i3 and it can range from 0 to 15 half
words (30 bytes).

UP-8913

ii Value

0

1

2

3

4

5

6

7

8

9

A

B

c

D

SPERRY UNIVAC OS/3
ASSEMBLER

Table 9-2. MSS Operations

Mnemonic Description

ADDZ Add and compare for zero res u It

ADDNZ Add and compare for nonzero result

SUBZ Subtract and compare for zero result

SUBNZ Subtract and compare for nonzero result

MCE Move and compare for equal result

MCNE Move and compare for unequal result

MCLE Move and compare for less than or equal

MCH Move and compare for greater than result

ANDZ AND operands and test for zero result

ANDNZ AND operands and test for nonzero result

XORZ XOR operands and test for zero resu It

XOR NZ XOR operands and test for nonzero result

ORZ OR operands and test for zero result

ORNZ OR operands and test for nonzero result

9-32

result

As you can see, each of the operations in Table 9-2 tests its result for a certain
condition. Program flow depends on whether the result does or does not satisfy that
condition. If the condition is satisfied, the i3 displacement is added to the current
program status word {PSW), in effect causing a branch to the resulting location. If the
condition is not met, program control passes to the next sequential instruction. What
the conditions are and how they are met is described in 9.8.4.

Besides the basic functions described so far, you can optionally put the operation
result in a destination operand as shown in Figure 9-2.

•

UP-8913

SOURCE
OPERAND

GO TO NEXT
SEQUENTIAL
INSTRUCTION

NO

SPERRY UNIVAC OS/3
ASSEMBLER

EXECUTE MSS

OPERATION

YES

Figure 9-2. MSS Execution with Destination Feature

SOURCE
OPERAND

GO TO SKIP
LOCATION

9-33

The destination operand of Figure 9-2 can be a register or a location in main
storage. In addition to this feature, you can modify one or two additional registers
(Figure 9-3):

UP-8913

SOURCE
OPERAND

GO TO NEXT
SEQUENTIAL
INSTRUCTION

SPERRY UNIVAC OS/3
ASSEMBLER

EXECUTE MSS

OPERATION

PUT
RESULT IN

DESTINATION
OPERAND

YES

Figure 9-3. MSS Execution with Register Modification Feature

SOURCE
OPERAND

GO TO
SKIP

LOCATION

9-34

Finally, you have the option of repeating the MSS operation as shown in Figure 9-4.

•

UP-8913

SOURCE
OPERAND

MODIFY A REGISTER
(OPTIONAL)

MODIFY A REGISTER
(OPTIONAL)

SPERRY UNIVAC OS/3
ASSEMBLER

NO

YES

EXECUTE MSS

OPERATION

PUT
RESULT IN

DESTINATION
OPERAND

GO TO NEXT
SEQUENTIAL
INSTRUCTION

YES

Figure 9-4. MSS Execution with Repeat Feature

9-35

SOURCE
OPERAND

GO TO
SKIP

LOCATION

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-36

If the operation condition is satisfied, the instruction skips to the main storage
location specified by i3 . If the condition is not satisfied, the instruction will decrement
the repeat count (whose initial value you supply) by 1. If after this the count remains
nonzero, control returns to the MSS operation and the process is repeated using the
updated data in the operands. If the count reaches zero, control passes to the next
sequential instruction. If during a repetition, the operation condition is satisfied,
regardless of the repeat count value, program control passes to the skip location
specified by i3 .

You can code an MSS instruction using any combination of the features described in
Figures 9-2 through 9-4.

9.8.2. What Operands You Supply

This section describes the format of the data you use in the MSS instruction. Exactly
how you specify this data is described in 9.8.3; what you see here is an expansion of
the MSS operations and capabilities previously described.

At a minimum, you need to specify the MSS operation, its two operands, and the skip
location (Figure 9-1).

• Operation

Fourteen operations are available as described in Table 9-2. All operations use
all the bits in each operand. They are descibed in more detail in 9.8.4.

• Operands

The MSS instruction always uses two source operands: one named the primary
source data (PSD), and the other the secondary source data (SSD). They can both
reside in main storage, both in registers, or one in main storage and one in a
register. Both operands are equal in length, and can be one, two, three, or four
bytes long. The operands are aligned as follows:

specified
location

i

M•;o """'' I _____ ..__ ____ __._ _____ _,__ ____ __.
1 byte
2 bytes~~~~~~~~~~~-
3 b~es~~~~~~~~~~~~~~~~___.
4 b~es~~~~~~~~~~~~~~~~~~~~~~.-

UP-8913

Register

SPERRY UNIVAC OS/3
ASSEMBLER

9-37

1 byte_ __________ 2 bytes
...._ ________________ 3 bytes

...._______________________ 4 bytes

Multibyte MSS operands in main storage occupy contiguous bytes starting at the
specified location and no half-word or full-word boundary alignment is necessary.
In a register, the low order byte of an operand must always be aligned with the
low order eight bits of the register. The two source operands may overlap.

• Skip Location

Specified by i3, this half byte of data represents the number of half words by
which program control skips if the operation condition is met. Up to 15 half
words (30 bytes) can be specified, and all skips must be in a forward direction.

If you want to keep the result of your MSS operation (Figure 9-2), you need to
specify a destination data (DD) operand. You do this using the operand 1 address of
your MSS source instruction. The operand can be stored in main storage, at the
operand 1 address, or it can be put in a register specified by the b1 field (in which
case the d1 value is ignored). The DD length is equal to that of the two source
operands and its alignment within main storage or a register follows the same rules
that they do. It can, in fact, overlap one or both of the source operands.

If you want to modify additional registers, you can specify up to two of them. For
each one, you may also need to specify a register modification value (RMV), a 16-bit
integer that is added to or subtracted from its modified register.

If you want to repeat the MSS operation, you need to specify an initial value for the
repeat count. The count can reside in main storage, in which case it is 8 bits long,
or it can occupy 32 bits in a register.

9.8.3. How You Specify Your Operands

To complement the operands of the MSS source instruction, you use a 4-word area
in main storage to specify exactly how you want the instruction to execute. The area,
which you must align on a double-word boundary, is addressed by operand 2. Fields
within the operand 2 area specify the source operands, if and how the MSS operation
is to repeat, if and how registers are to be modified, and so on. The basic format of
operand 2 is shown in Figure 9-5.

UP-8913

WORD 0 4

0
OP FORMAT

R S TYPE CODE

R1 R2

8

SPERRY UNIVAC OS/3
ASSEMBLER

12

BIT

16 20

PRIMARY SOURCE DATA

MODIFY MODIFY
RX RY

2 RMV1

3 SECONDARY SOURCE DATA

Figure 9-5. Operand 2 Format

9-38

24 28 31

REPEAT COUNT

9.8.3.1. Specifying Basic Operands

To use the simplest form of the MSS instruction (Figure 9-1) you need to specify the
source operands as follows:

• Primary Source Operand

You can specify the primary source operand using word 0 in one of three ways:

1. Within a register, called the primary source data register (PSDR), specified in
word 0:

Bit IO t:J6 19 311 ,___________________ _ ____________ ,
Word 0 L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ PSDR ______ --_____ J

2. At a main storage address given in RX form by the primary source base register
(PSBR) and the primary source data displacement (PSDD):

Bit ~-----------------116 19120 311

Word 0 : PSBR PSDD
L- - -- - - - -- - - - - - - -_ ______________ _.

3. Or, at a main storage location whose 24-bit address is contained in the
logical primary source data address (LPSDA):

Bit ~------ --18 311
Word 0 : LPSDA

L- ----- - --------------------------

UP-8913

•

SPERRY UNIVAC OS/3
ASSEMBLER

9-39

Secondary Source Operand

You can specify the secondary source data using word 3 in one of four ways:

1. Within a register, called the secondary source data register (SSDR); specified
in word 3:

Bit ~----------------~6 19 ___________ !~
: SSDR :

L--------- ------ - ---------- - - ...J
Word 3

2. At a main storage address given in RX form by the secondary source base register
(SSBR) and the secondary source data displacement (SSDD):

Word 3 L=~-~ ~ ~ ~ = = == = ~ ~ -_ -~~ J'_s_s_s_B_R_1_9 l 2_o _____ s_s_oo _____ 3_.1 I Bit

3. At a main storage location whose 24-bit address is contained in the logical
secondary source data address (LSSDA):

Bit ~ _______ -18 311

~~3: ~M

L------ - -'-----------------------~
4. Or, as immediate data, from one to four bytes in length:

Bit

lo
1 • I" 124 311 Word 3

I
I

1 byte

2 bytes

3 bytes

4 bytes

Note that byte alignment for PSD immediate data follows the same rules as
alignment within a register.

• Format Code

Because you can specify the PSD in one of 3 ways and the SSD in one of 4 ways, this
results in 1 2 possible format combinations. You must, therefore, specify to the MSS
instruction which one of these 12 combinations it is to operate with. You do this with
the format code, bits 4-7 of word 0. Its possible settings are shown in Table 9-3.

UP-8913

Format

SPERRY UNIVAC OS/3
ASSEMBLER

Table 9-3. Format Code Values for Operand Types

Code (Hex) PSD Type SSD Type

0 Logical Base/displacement

1 Logical Logical

2 Logical Immediate

3 Logical Register

4 Register Base/displacement

5 Register Logical

6 Register Immediate

7 Register Register

8 Base/displacement Base/displacement

9 Base/displacement Logical

A Base/displacement Immediate

B Base/displacement Register

9-40

• Operand Type (Op Type)

You use this field, located in bits 2 and 3 of word 0, to specify the length of the
source operands with which the MSS instruction is to operate. If you specify a
destination operand, this field specifies its length also. Its possible values are as
listed in Table 9-4.

Table 9-4. Op Type Values

Binary Value Operand Length (bytes)

00 1

01 2

10 3

11 4

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-41

9.8.3.2. Specifying Destination Data Operands

To store the result of an MSS operation, as in Figure 9-2, you need to use the
following operands:

• Store Indicator (S)

Located in word 0, bit 1, this 1-bit field lets you specify whether or not the
operation result is to be stored in the destination operand. You put a 1 in this
field to indicate storage, or a zero to suppress storage.

• Destination Data Format (DDF)

You use this 1-bit field in word 1, bit 18 to indicate whether the operation result is to
be put in a register or in main storage. You specify a zero to indicate result storage in
the main storage location specified by the operand 1 base/displacement address. You
put a 1 in this field to indicate that the result is to go directly in the register specified by
b1 in operand 1 (ignoring the d1 field). Regardless of the setting of this field, no storage
occurs if the store indicator is set to 0.

9.8.3.3. Specifying Register Modification Operands

You can specify one or two additional registers to be modified as in Figure 9-3.
Each of these registers, called register X (RX) and register Y (RY), can be specified in
the operand 2 area as a source operand base register or as a separate register. In
operation these registers are modified once for each execution of the MSS operation
that does not meet the operation's conditions. You can specify the initial values of RX
and RY. You can specify the values used to modify these registers with one or two
register modification value (RMV) fields. Finally, you can use the modify register
(MX/MY) fields to specify exactly how modification is to take place.

• Primary Source Base Register (PSBR)

This register, discussed earlier, can be modified using the MODIFY and RMV
fields. You can use this feature to modify the effective address of the primary
source field, causing it to address successive areas of main storage for each
execution of the MSS operation. Base register 0 always has a zero value for
address computation purposes, but the other 15 registers can be used for address
modification.

• Secondary Source Base Register (SSBR)

This register can be modified in the same way as the PSBR described earlier.

• Modification Register 1 (R1)

You can specify that a register other than a source base register be modified.
You do so by putting the register number in this 4-bit field at word 1, bits 0--3.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-42

• Modification Register 2 (R2)

You can specify that a second register other than a source base register be
modified. You do so by putting the register number in this 4-bit field at word 1,
bits 4-7.

• Register Modification Value 1 (RMV1)

You can modify RX or RY by adding or subtracting this 16-bit field contained in
word 2, bits 0-15.

• Register Modification Value 2 (RMV2)

In addition to RMV1, you can specify a second 16-bit field to be added to or
subtracted from RX or RY. This field is contained in word 2, bits 16-31.

• Format Code

In addition to specifying source data formats, the format code specifies which two
registers are to be modified, according to Table 9-5.

Table 9-5. Format Code Values for Register Modification

Format Code Register X Register Y

0 R1 SSBR

1 R1 R2

2 R1 R2

3 R1 R2

4 R1 SSBR

5 R1 R2

6 R1 R2

7 R1 R2

8 PSBR SSBR

9 PSBR R2

A PSBR R2

B PSBR R2

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-43

• Modify Register X (MODIFY RX)

This 4-bit field in word 1, bits 8-11, permits you to specify exactly how register
X is to be modified, according to Table 9-6.

Table 9-6. MX Values

MX Value Register Modification

0 No modification

1 Increment RX by 1

2 Decrement RX by 1

3 Add RMV1 value to RX

4 Subtract RMV1 value from RX

5 Add RMV2 value to RX

6 Subtract RMV2 value from RX

7-F Not used

• Modify Register Y (MODIFY RY)

You use this 4-bit field at word 1, bits 12-15, to specify exactly how RY is to
be modified. Register Y modifications and their values are the same as the
MODIFY RX values given in Table 9-6.

Note that you can modify one register alone if you want: simply enter 0 for the
MODIFY field of the other register. Entering 0 in both MODIFY fields prevents
any register modification from taking place.

9.8.3.4. Specifying Repeat Operands

To repeat your MSS operation (Figure 9-4), you must specify the following fields:

• Repeat Indicator (R)

This 1-bit field in word 0, bit 0 of the operand 2 area indicates whether or not
the MSS instruction is to repeat its specified operation. Coding a 0 in this field
causes the MSS operation to execute exactly once, then terminate. Coding a 1
causes the MSS operation to be repeated according to the repeat count.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-44

• Repeat Count

This field holds a positive binary number that is decremented by 1 after each
repetition of the MSS operation that does not satisfy the operation condition. If this
quantity reaches zero, the MSS instruction terminates and thereby passes control to
the next sequential instruction. A repeat count of 0 causes a single execution of the
MSS operation. A repeat count of n causes n+1 executions as long as no execution
satisfies the operation condition. You can specify the count one of two ways: either as
an 8-bit field within the operand 2 area;

Bit

Word 1

~ - +2_4 ______ 31-1
I
I
I

repeat count

L-------- - -- --- - ----- - ------ --'-----------"

or, as a 32-bit register specified by a 4-bit field within the operand 2 area:

Bit 10 28 31
r---------------------------------~~
1 repeat

Word 1 1 ooum
1 register
L-- ------ - -- - -- - -- - - - - ---- - - -- -L------'

If the repeat count is the 8-bit quantity contained in word 1 (bits 24-31 of operand 2)
that value will not change during MSS execution. If, however, the repeat count is
contained in a general register, it will be decremented by 1 for each repetition as
previously described.

• Repeat Count Register Indicator (RR)

You use this 1-bit field at word 1, bit 19 to indicate whether the repeat count is
contained in the operand 2 area at word 1, bits 24-31 (RR=O) or in the general
register specified in word 1, bits 28-31 (RR=1).

9.8.3.5. Format Summary

To help you select the one you want to use, all operand 2 formats and their fields
are summarized in the following three illustrations. Figures 9-6 and 9-7 show the
formats for the destination operand and repeat features, respectively; these can be
used in all other formats. Figure 9-8 shows the 12 format codes and summarizes
the fields unique to each:

• Primary Source Data (PSD)

• Secondary Source Data (SSD)

• Modification Fields (MODIFY)

UP-8913

WORD 0 4

0 l sJT$~E
2

3

WORD 0 14

0
RI

2

3

JS

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

j12 p 6

l~l

120

Figure 9-6. Destination Operand Fields

BIT

is 112 116 120

I~J

Figure 9-7. Repeat Fields

9-45

124 128 31

124 128 31

J 1 REGISTER
COUNT

UP-8913

WORD

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE 0

BIT

Figure 9-8. Format Fields (Part 1 of 12)

9-46

PSD

SSD

MODIFY

UP-8913

WORD

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE

BIT

Figure 9-8. Format Fields (Part 2 of 12)

9-47

PSD

SSD

MODIFY

UP-8913

WORD

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE 2

BIT

Figure 9-8. Format Fields (Part 3 of 12)

9-48

PSD

SSD

)
IMMEDIATE
DATA

MODIFY

UP-8913

WORD

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE 3

BIT

Figure 9-8. Format Fields (Part 4 of 12)

9-49

PSD

SSD

MODIFY

UP-8913

WORD 4 8

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE 4

BIT

20

Figure 9-8. Format Fields (Part 5 of 12)

24

9-50

28 31

PSD

SSD

MODIFY

UP-8913

WORD 4 8

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE 5

BIT

20

Figure 9-8. Format Fields (Part 6 of 12)

24

9-51

28 31

PSD

SSD

MODIFY

UP-8913

WORD 4 8

0

2

3

0

2

3

0

2

3

12

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE 6

BIT

20

Figure 9-8. Format Fields (Part 7 of 12)

24 28 31

9-52

PSD

SSD

)
IMMEDIATE
DATA

MODIFY

UP-891::!

WORD 4 8

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE 7

BIT

20

Figure 9-8. Format Fields (Part 8 of 12)

24

9-53

28 31

PSD

SSD

MODIFY

UP-8913

WORD 4 8

0

2

3

0

2

3

0

2

3

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE 8

BIT

Figure 9-8. Format Fields (Part 9 of 12)

9-54

PSD

SSD

MODIFY

UP-8913

WORD 4

0

2

3

0

2

3

0

2

3

8

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE 9

BIT

Figure 9-8. Format Fields (Part 10 of 12)

9-55

PSD

SSD

MODIFY

UP-8913

WORD 4

0

2

3

0

2

3

0

2

3

8 12

SPERRY UNIVAC OS/3
ASSEMBLER

FORMAT CODE A

BIT

Figure 9-8. Format Fields (Part 11 of 12)

9-56

PSD

SSD

)
IMMEDIATE
DATA

MODIFY

UP-8913

WORD

0

2

3

0

2

3

0

2

3

4 8

SPERRY UNIVAC OS/3
ASSEMBLER

12

FORMAT CODE B

BIT

Figure 9-8. Format Fields (Part 12 of 12)

9-57

PSD

SSD

MODIFY

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9.8.4. MSS Operation Conditions

9-58

The result of each MSS operation is tested to determine if it satisfies a condition
implicit in the operation itself. The test uses the condition code, which each operation
always sets according to the result. MSS operations are divided into three classes:
arithmetic, move, and logical operations. The result of an arithmetic instruction is
tested for a zero or nonzero result and for a carry out of its high order digit. The
operands of a move operation are compared, and the PSD operand is moved to the
DD operand if that option is enabled. The result of a logical operation is compared for
zero or nonzero and, if enabled, is moved to the DD operand. Table 9-7 lists all
MSS operations together with their possible results, condition code settings, and next
instruction locations.

Table 9-7. MSS Operations and Conditions (Part 1 of 2)

ARITHMETIC OPERATIONS

This
this If you get

. this and the next

I this mm. LI'"· . JTfi™'l!IY
performs is set . is:

ADDZ Adds PSD and SSD, then VALUE CARRY -- --tests for zero result. zero no 0 Skip location
zero yes 2 Skip location
not zero no 1 Next sequential location
not zero yes 3 Skip location

ADD NZ Adds PSD and SSD, then zero no 0 Next sequential location
tests for nonzero zero yes 2 Next sequential location
result. not zero no 1 Skip location

not zero yes 3 Next sequential location

SUBZ Subtracts SSD from zero yes 2 Skip location
PSD, then tests for not zero no 1 Skip location
zero result. not zero yes 3 Next sequential location

SUB NZ Subtracts SSD from zero yes 2 Next sequential location
PSD, then tests for not zero no 1 Next sequential location
nonzero result. not zero yes 3 Skip location

UP-8913

Operation

MCE

MCNE

MCLE

MCH

ANDZ

AND NZ

ORZ

ORNZ

XORZ

XOR NZ

SPERRY UNIVAC OS/3
ASSEMBLER

9-59

Table 9-7. MSS Operations and Conditions (Part 2 of 2)

MOVE OPERATIONS

Function Result Condition Code Instruction Location

Compares PSD and PSD=SSD 0 Skip location
SSD for equality, then PSD<SSD 1 Next sequential location
optionally moves PSD PSD>SSD 2 Next sequential location
to DD.

Compares PSD to SSD PSD=SSD 0 Next sequential location
for inequality, then PSD<SSD 1 Skip location
optionally moves PSD>SSD 2 Skip location
PSD to DD.

Compares PSD to SSD PSD=SSD 0 Skip location
for PSD,;;;;ssD. then PSD<SSD 1 Skip location
optionally moves PSD PSD>SSD 2 Next sequential location
to DD.

Compares PSD to SSD PSD=SSD 0 Next sequential location
for PSD>SSD, then PSD<SSD 1 Next sequential location
optionally moves PSD PSD>SSD 2 Skip location
to DD.

LOGICAL OPERATIONS

Performs logical AND zero 0 Skip location
for PSD and SSD, not zero 1 Next sequential location
then tests for zero
result.

Performs logical AND zero 0 Next sequential location
for PSD and SSD, not zero 1 Skip location
then tests for nonzero
result.

Performs logical OR zero 0 Skip location
for PSD and SSD, not zero 1 Next sequential location
then tests for zero
result.

Performs logical OR zero 0 Next sequential location
for PSD and SSD, not zero 1 Skip location
then tests for nonzero
result.

Performs logical XOR zero 0 Skip location
for PSD and SSD, not zero 1 Next sequential location
then tests for zero
result.

Performs logical XOR zero 0 Next sequential location
for PSD and SSD, not zero 1 Skip location
then tests for nonzero
result.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-60

Note that when the repeat option is enabled, program control may not immediately
pass to the next sequential instruction even if the operation condition is not satisfied.
If the repeat count is greater than zero, program control passes right back to the
MSS operation as in Figure 9-4.

9.8.5. Operational Considerations

• The operand 2 area must lie on a double-word boundary or else a specification
exception will result.

• i1 must be specified as a self-defining term within the range O-D16, or else an
operation exception will result.

• The format code (word 0, bits 4-7 of the operand 2 area) must be within the
range 0-816 or else a specification exception will result.

• The MODIFY RX and MODIFY RY fields (word 1, bits 8-15) must both be within
the range 0-6 or else a specification exception will result.

• Due to all these possible exceptions, you should put binary O's in all operand 2
fields that are not used.

9.8.6. Example

LABEL dOPERATIONA OPERAND
1 10 16

-

1 LA B,CDBUFF CDBUFF: Biil-BYTE BUFFERo
2 MVI MSSCNTRL+7,79 SET REPEAT COUNT TO 79 (B0-1).
3 MSS 0(5) ,MSSCNTRL(2)
4 ~" MSS OP 1 : FUNCTION: MCNE -- WILL REPtAT UNTIL NONBLANK IS FOUND.
5 ;"' OP 2: MSSCNTRL CONTROLS MSS EXECUTION.
6 ·k OP 3: SKIP LOCATION: 2 HALF-WORDS PAST NEXT SEQ. INST.
7 ALLBLANK B LOCl THIS BRANCH TAKEN IF ENTIRE
B ;~ BUFFER IS BLANK_
9 NOTBLANK B LOC2 THIS BRANCH TAKEN IF A NONBLANK

10 ,., CHARACTER IS FOUND IN BUFFER;
11 i'\ RB CONTAINS ADDRESS OF FIRST
12 * NONBLANK.
13
14
15 OS lllD
16 MSSCNTRL DC B1 101/llllllllllll' WORD lll:ENABLE REPEAT AND FMT. CODE A.
17 DC X1 11llll 1 NOT USED o
lB DC X1 B011l0 1 PSD ADDRESS IN lll(B) FORMo
19 DC X1 B0 1 WORD l:RX REGISTER IS RB.
20 DC x• 10 1 MODIFY RX: INCREMENT RB BY 1.
21 DC X1 011l011l 1 USE BITS 24-31 AS REPEAT COUNT.
22 DC F1 11l 1 WORD 2:NOT USED.

UP-8913 SPERRY UNIVAC OS/3 9-61
ASSEMBLER

LABEL aoPERATIO~ OPERAND
1 10 16

23
24 '~
25 *
26 CDBUFF

DC

DS CL80

WORD J:IMMEDIATE BYTE (B[ANK)--IN
LOW-ORDER BYTE; 015 IN
REMAINING BYTES.

In this example, we use a MSS instruction to scan an 80-byte field in main storage
starting at CDBUFF. If the scan finds a nonblank character, MSS execution terminates
immediately, with register 8 containing the address of the nonblank character and
program control passing to the branching instruction at line 9. If the 80-byte CDBUFF
area contains all blanks, program control passes to the branch instruction at line 7.

Let's assume that CDBUFF is located at address 1000 and contains the following:

1000 1004 1008 104F

6 6 6 6 T E S T 6 6 6 6

I 40 I 40 I 40 I 40 I E3 I C5 I E2 I E3 I 40 I 40 ~) 40 I 40 I
t

CD BUFF

The four full words at MSSCNTRL control MSS execution. Looking at lines 16-23,
you can see that we are enabling the repeat option using as the repeat count the
data in word 1, bits 24-31. Other fields indicate that:

• we _are using single bytes as operands;

• the PSD operand is in main storage, addressed using zero displacement and a
base register of 8;

• the SSD operand is a byte of immediate data that has a value of X'40'; and

• each unsuccessful execution of the MSS operation causes register 8 to be
incremented by 1 .

In line 1, we load register 8 with the CDBUFF address and in line 2 set the repeat count to
79 (X'4F') by inserting that value in the MSSCNTRL repeat count field (during processing the
repeat count field in MSSCNTRL will not change, but the repeat count itself will be
decremented):

Register 8: I 00001000 I Repeat count: ~

At line 3, we execute the MSS instruction, using the MCNE function to compare the
PSD and SSD operands, and branching to skip location NOTBLANK if the two
operands are not equal.

UP-8913

The

SPERRY UNIVAC OS/3
ASSEMBLER

following illustration shows the action of MSS:

Register 8: 100+010001 Repeat count 0

(
1000~ MCNE (1Q]

(PSD) I (SSD)
Cycle 1 EQUAL

l @] Register 8: I 00001001 I Repeat count

t

~'· 2 (

1001 [ill MCNE [1Q]
(PSD) I (SSD)

EQUAL

Register 8: 100+010021 l Repeat count l4ol

~,,, 3 (

1002~ MCNE [1Q]
(PSD) I (SSD)

EQUAL

1000010031 ! I 4cl Register 8: Repeat count

t
1003~ MCNE [ill

(PSD) (SSD) ~,,, 4 (EQUAL

Register 8: 1000010041 ! Repeat count ~
t

l4ol 1004~ MCNE
(PSD) I (SSD)

NOT EQUAL
Cycle 5 t

EXIT FROM
MSS TO

NOTBLANK

9-62

For four cycles (1-4), the MSS instruction compares its immediate byte SSD with the
PSD addressed by register 8, and finds them equal. Because this does not satisfy the
condition imposed by MCNE, the instruction, at each cycle, increments the register 8
contents by 1 and reduces the repeat count, also by 1. This way, MSS addresses
successive bytes CDBUFF, CDBUFF+1, CDBUFF+2, etc.

At cycle 5, however, the PSD byte is found unequal to the SSD byte, thus satisfying
the MCNE condition. Both register 8 and the repeat count are left unchanged and
program control passes to skip location NOTBLANK. At this time, register 8 points to
CDBUFF+4, the first nonblank character MSS found.

Note that if all bytes were blank up to CDBUFF+79 (at address 104F), MSS would
then reduce its repeat count to zero thus causing program control to pass to the next
sequential instruction, ALLBLANK. This is the mechanism we use to limit the MSS
scan to just the 80 bytes required.

UP-8913

14.1. INTRODUCTION

SPERRY UNNAC OS/3
ASSEMBLER

14-1

14. List Processing

Certain System 80 instructions allow you to create and manipulate linked lists. With these
instructions you can add new members or elements to a list, remove existing elements,
and even scan an entire list, performing logical or data movement operations as you go.
You do not have to develop extensive software to handle lists because many list
processing functions are now available to you in System 80 hardware. All you need to do
is specify the parameters within which list processing is to take place, and the System 80
instructions do the rest. In this section we give a general overview of what types of lists
you can use and the rules that govern their use. In 14.4 and 14.5 we explain in detail how
to use the System 80 instructions that manipulate these lists.

All lists processing instructions deal with linked lists. These types of lists each consist of
zero, one, or more than one element, which in turn contain data and one or two pointers.
A pointer is a full word that contains the address of a logically adjacent element; we say
that it points to that element. Each element points to at least one other element, and a
separate structure called a list head points to either end of the list, thus defining and
controlling the list. In the discussion that follows we use the terms forward and backward
pointers to distinguish between the two pointers an element .may have. For those lists
having only one pointer it is considered a forward pointer.

14.1.1. LIFO List

One type of list is called a last-in-first-out (LIFO) list (Figure 14-1), sometimes called a
stack.

UP-8913

LIST HEAD

.-' ADDRESS OF A bLf1
,_, ADDRESS OF C

1--i

SPERRY UNIVAC OS/3
ASSEMBLER

A B

ADDRESS OF B

IL
ADDRESS OF C

ADDRESS OF
LIST HEAD ADDRESS OF A

DATA DATA

'-- BACKWARD POINTER - ONE FULL WORD LONG

.____
-FORWARD POINTER ONE FULL WORD LONG

Figure 14-1. LIFO List

14-2

c J ADDRESS OF

rL LIST HEAD f-,

ADDRESS OF B

DATA

Each element has two pointers: the forward pointer which points to the next element in
logical sequence, and the backward pointer which points to the previous element. All
pointers to an element generally point to the forward pointer field of that element. Note
that following the forward pointers from element to element takes us all the way around
the list in one direction; following the backward pointers takes us around in the opposite
direction. Note also that the DATA field in each element plays no role in organizing a list.
We drop the DATA label from subsequent illustrations with the understanding that a data
field of your choosing can be present in any element. We also, in subsequent illustrations,
label pointers simply with the name of the element to which they point with the
understanding that they actually contain that element's address.

We call the list in Figure 14-1 a LIFO list because of how we can add or remove
elements. As Figure 14-2 shows, elements are added and removed from only one end of
the LIFO list, the way you would put dinner plates on a stack or remove them from the
stack. If the other three elements of the list had been removed after element D, it would
be in this order: A B C. Note that element D is not physically inserted in, or removed from,
the list. Rather, it gets new pointers to the list head and to element A. The list head and
element A pointers in turn now point to the newly added element so that it occupies the
first position on the list. Pointers thus make possible a wide variety of list processing
operations that take little processing time because the elements themselves do not have to
be shifted around in main storage; only their pointers are changed.

UP-8913

UST HEAD

D

c

LIST HEAD

A

c

D

SPERRY UNIVAC OS/3
ASSEMBLER

A

w_r A B

rt_ rL LH D
t-

r

<:J.
1-------,
I I
I I
I I
I D I
I I
I I
I I
I I
I I
L------.-J

a. Adding an element

A
.---------,

FL I I L..+. B
I I

I-' I I I
I r--1 LH

!---, I I I D

t-i I I
I I
I I
I I
I I L _________ J

~

D

b. Removing an element

B

c

A

B

c

A

Figure 14-2. Adding and Removing Elements from a LIFO List

14-3

c

f---1 I-LH n_ 1-i

B

c

ru LH I-
t-

B

UP-8913

14.1 .2. FIFO List

SPERRY UNIVAC OS/3
ASSEMBLER

14-4

Other types of lists are available with System 80. One is the first-in-first-out (FIFO) list,
sometimes called a queue. It comes in two forms as shown in Figure 14-3.

LIST HEAD A B c
' u- B c 0 I-

A

c t--

a. Forward-linked FIFO list

LIST HEAD A B c

UI
1--B

ri_
c

f1_
LH I-

A LH A B
I-

c I-

b. Double-linked FIFO list

Figure ·14-3. The Two Types of FIFO lists

The forward-linked elements each point to the next element in the list except for element
C; that element has a pointer of 0 which indicates that it is the last element in the list. List
head pointers indicate the first and last elements. The double-linked FIFO list looks exactly
like the LIFO list shown in Figure 14-1. FIFO lists, however, are handled differently.

As you can see from Figure 14-4, elements are added at one end of a FIFO list and
removed from the other end, the one closest to the list head. Elements thus appear to
move toward the list head much as customers move towards a teller's window in a bank.

UP-8913

LIST HEAD

A

D

A

lJl
B

1---i

LIST HEAD

A b!J
I-

c ~

SPERRY UNIVAC OS/3
ASSEMBLER

B

t---1 c t-

a. Adding to a forward-linked list

A B

B n_ c

LH A

b. Adding to a double-linked list

14-5

c D

0 r--- 0 i..,

~
r------ --1
I I
: I
I I
I I
I I
I I
I I
I I
I I L ______ - _J

c

1--ru LH f-,

B

- ~
r--------,
I I
I I
I I
I c l
t I
t I
I I
I I
I I L ______ _J

Figure 14-4. Adding and Removing Elements in FIFO Lists (Part 1 of 2)

UP-8913

LIST HEAD

B

D

f--

f--

r----- --,
I I
I I

I I
I I
I I
I I
I I
I I
I I
I I L _______ J

~

A

SPERRY UNIVAC OS/3
ASSEMBLER

L
B

c

c. Removing from a forward-linked list

LIST HEAD L B
,..---------,
I I c I I

~
I I

B I I ..-- LH I-- I I
I I

D t-- I I
I I
I I
I I
L------- _J

~

A

d. Removing from a double-linked list

c

D

rL

Figure 14-4. Adding and Removing Elements in FIFO Lists (Part 2 of 2)

14-6

D

0 I-

c

LH I::
B

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-7

One variation on the FIFO list is the use of a special pointer called a station, located in the
list head. In Figure 14-5 you can see that the station in the list head is pointing to the
middle element of the list. While the other list head pointers must point to the end
elements of a list, the station is under no such constraint. System 80 instructions can
move the station back and forth, altering its value so that it points to different elements.
Its only constraints are that it can move but one element position at a time and that it is
limited to forward movement in a forward-linked list. Otherwise, however, you can move it
from end to end in a list.

LIST HEAD A B c

Lr B f[c ffl LH 1-,

A LH A B

c 1--

.-. B n
L-. TAT S ION

Figure 14-5. FIFO List with Station

14.1.3. Double-ended List

A double-ended list or queue is a double-linked list whose structure is similar to that of a
FIFO list. Unlike a FIFO list, you can add or remove elements at either end of the list.

14.1 .4. Ring with Station

Another type of list is the ring list with station as shown in Figure 14-6.

LIST HEAD A B c

I-
'- B n: c

rG
A 1-

c A B
1--

B ~ .

Figure 14-6. Ring List witn Station

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-8

In a ring list, each element points to its two logically adjacent elements and all the
elements together form an endless loop. The list head controls the ring using only its full­
word station. As Figure 14-7 shows, no other control is needed.

FIRST STEP

LIST HEAD B c -

,.....-, c ~ D 1--i

l1J
h

....- A B

c I-'

A D r-------,
I

I 1
I
I

~ I-
B u- A

r
I--0 c

I D
I
I
I I
I I L _______ _J

SECOND STEP

LIST HEAD B c
i-

~ c n_ D

""""' ,...... A B

D I-

A D

L+ I-
'--- B

ITT
A

D c ~

a. Adding an element

Figure 14-7. Adding and Removing Elements from a Ring List (Part 1 of 2)

UP-8913

FIRST STEP

LIST HEAD

..-
,....-

D

._
"---

SECOND STEP

LIST HEAD

,_.
c 1-- ,....-

OR

LIST HEAD

'-l

A Ul

SPERRY UNIVAC 05/3
ASSEMBLER

B c

I-c

1L
A

I-

A B

A

I-
r-------1

B t I
I I
I I

c f-- I I
I I
i I
I I
I I
I I
I I
L-------J

B c
1-- I-c

IL
A I-

A B

A

B

c

b. Removing an element

Figure 14-7. Adding and Removing Elements from a Ring List (Part 2 of 2)

14-9

D

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-10

The station determines where elements are added or removed. When you add a new
element, it becomes the next element from the one to which the station currently points
(Figure 14-7a, step 1). Then, the station is moved so that it finally points to the newly­
added element (step 2). When you remove an element it is the element to which the
station currently points (Figure 14-7b, step 1). After the element is removed, the station
is moved either to the previous (backward pointer) element or the next (forward pointer)
element (step 2) depending on how you specify the instruction that removes the element.
See 14.5.2.5 for more information.

14.1.5. Priority List

If you want to arrange elements in a list according to some priority where certain
elements are more readily available than others, you can use a priority list. Unlike
previously described lists, this type does not consist of a single string of elements. Instead,
it appears as in Figure 14-8.

LIST HEAD

r--

BIT MAP - 10010000

TABLE AOORESS

LIST HEAD

TABLE

A

c

0

FORWARD POINTER
ADDRESS

0

FORWARD POINTER
ADDRESS

E

F

A B c PRIORITY

1---- B 1----j c 1--- 0 ...-
0

I-

D

B1
E F

1----j
F .-1 0

2

3

11_

Figure 14-8. Priority List

As you can see from Figure 14-8, list control functions are split between the list head
and a separate list head table, both in main storage. Entries within the table each point to
a forward-linked FIFO list. The entries are arranged by priority with the first entry (priority
0) having highest priority. Within the list head, a pointer points to the first entry of the
table. Above the pointer lies a bit map, a string of bits each of which corresponds to a
table entry. A 1 bit means its table entry controls a list with one or more elements, an 0
bit means its table entry controls an empty list. The first bit corresponds to priority 0, the
second bit to priority 1, etc. Thus, the bit map in Figure 14-8 indicates that priority levels
0 and 3 control nonempty lists, while priority levels 1 and 2 point to empty lists. As you
can see, an empty list entry always has a forward pointer value of 0 and a backward
pointer set to the address of the entry itself.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-11

Because more than one priority may be available, you must specify a priority when you
add an element to a priority list. If, for example, you want to add an element at priority 1
of the list in Figure 14-8, the resulting list would look like this (Figure 14-9);

LIST HEAD

r-

11010000

TABLE ADDRESS t--

LIST HEAD
TABLE

A

c

D

D

r--
i---..,

t--

t-

A B c

B t----1 c r---- 0
..-!

D

[0 ~ r--------1
'---- 0 I I

¢
I I
I I
I D

I
E 1---i

I I I
I I
L _______ _J

F

E F

L+- F '-1 0
~

Figure 14-9. Adding to a Priority List

Note that the new element in Figure 14-9 becomes the first and only entry at priority 1 in
the list head table. Note, also, that the bit map is updated from the one in Figure 14-8 to
reflect the new status of priority 1 .

You can remove an element from a specific priority level or you can remove it from the
highest priority for which a list exists. In either case, the element pointed to by the
forward element pointer in the table entry is the one removed from the priority. If, for
example, you remove an element from priority level 3 in Figure 14-9, element E will be
the one removed.

You can specify two level stations in the list head (Figure 14-10).

UP-8913

LIST HEAD

r
STATIONS 1113 I-

11010000

TABLE ADDRESS I-

,_.

'-

[
L--..

LIST HEAD
TABLE

A

c

[I

D

0

E

F

SPERRY UNIVAC OS/3
ASSEMBLER

A

B

1-----.

I--

I-
D

L.-
'--- 0

t--

E

~ F

Figure 14-10. Level Stations

14-12

B c

1--1 c r-- 0

F

~

r--- 0

Level stations act much like the stations shown with FIFO and ring lists. They allow you to
refer to specific parts of the list. Level stations, however, indicate only priority levels in the
list head, never specific elements in the list. You can use one station or the other for they
operate independently.

You can use a level station to step through a list. When you step forward, you step within
a priority from the first to the last element. Then you advance to the next lower priority
having a list and continue with its first element. To step backwards (available only with
double-linked lists) you proceed from last element to first in a priority level, then move to
the next higher priority level with a nonempty list and continue with its last element. Thus,
beginning with a level station set to priority 0, you can step forward through the list in
Figure 14-10 as follows: AB CD E F.

Although the lists in Figures 14-8 through 14-10 have used forward-linked FIFO lists at
each priority level, you are not restricted to using that type. The list head table entries can
control any other type of list we have discussed so far - even other priority lists (see
14.1. 7). The only restriction is that all priority levels in a list must control the same kind of
list.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-13

14.1.6. Aged Priority List

The aged priority list is an extension of the priority list in which a hardware algorithm
determines which priority level is used to add or remove an element. When you add an
element, the priority you specify only indirectly determines where in the list that element
goes. When you remove an element, you do not specify a priority level at all; rather, the
algorithm determines which level has highest priority. That levers first element is then
removed. The algorithm has been designed to, in effect, move low-priority elements to
higher and higher levels as they age in the list. We measure an element's age in terms of
list activity: the more elements are added and removed, the higher a specific element's
priority rises until it becomes the element that is eligible for removal.

The list head and table for an aged priority list is initialized as shown in Figure 14-11.

LIST HEAD

N B

0000

TABLE ADDRESS

UST HEAD
TABLE

0

0

0

0

Figure 14-11. Initialized Aged Priority List

Figure 14-11 shows an aged priority list whose table entries each point to an empty
forward-linked FIFO list. Two new fields distinguish this from the priority lists discussed in
14.1.5 .. Located in the list head, they are called the B and N fields. As elements are added
and removed these two fields are updated, and they help determine what priority is used
at any tiem. The algorithms used are shown, where:

P is the priority you specify when adding an element;

I is the list head table entry at which the new element is actually added;

B is the B field shown in Figure 14-11, a bit map pointer; and

N is the N field in Figure 14-11, and contains the number of priority levels currently
controlling nonempty lists.

UP-8913

• Adding an Element

SPERRY UNIVAC OS/3
ASSEMBLER

1. The hardware sets I equal to B+N+P.

14-14

2. If priority level I previously had no elements, the hardware increases N by 1 and sets
the appropriate bit in the bit map to 1 .

3. The new element is added at priority I.

• Removing an Element

1. The hardware searches the bit map from the position given by B until it finds a bit set
to 1.

2. The hardware then sets B to the position of the 1-bit just found and removes the first
element at that priority level.

3. If this action removes the only element at the level, the corresponding bit in the bit
map is set to 0 and N is reduced by 1.

To show the practical effect of these algorithms, Table 14-1 presents a sequence of
operations performed on the list of Figure 14-11. The ADD column shows the names of
new elements and the priority at which we request they be added. The REMOVE column
shows the elements actually removed when requested. For each time interval (t), the
values of B and N are shown before and after (B t+l, N 1+ 1) the operation performed during
that interval. We initialize B and N to zero.

Table 14-1. Operations with Aged Priority list

TIME ADD REMOVE Bt Nt I 8t+1 Nt+1

t=O -A(P=2) 0 0 2 0 1

t=l B(P=O) 0 1 1 0 2

t=2 C(P=2) 0 2 4 0 3

t=3 D(P=l) 0 3 4 0 3

t=4 B(P=O) 0 3 - 1 2

t=5 E(P=O) 1 2 3 1 3

t=6 A(P=2) 1 3 - 2 2

t=7 E(P=O) 2 2 - 3 1

Figure 14-12 shows the status of the list immediately after the ADD operation at t=5.

UP-8913 SPERRY UNIVAC OS/3 14-15
ASSEMBLER

LIST HEAD
LIST HEAD TABLE A

..-. 0 r--1 0

[
IN=3IB=11 (REQUESTED

PRIORITY 2)
0011100 I-' [0

TABLE ADDRESS
E

A I- ~ 0

A lo-
(REQUESTED
PRIORITY 0)

E 1--

E 1-- c D

c t---J D I--- 0 ,.-.
D I-

-
Figure 14-12. Aged Priority List after Table 14-1 Operations

In Table 14-1 we specify that elements A, B, C, and D are to be added at priorities 2, 0,
2, and 1, respectively. However, they get added at priorities 2, 1, 4, and 4, all successive
values of I. Note that element A is removed before element E, even though we gave A a
lower priority (2) than E (0). The difference is that we added A at t=O but waited until t=5
to add E. The hardware algorithms ensure that if A stays in the list long enough it will
become eligible for removal before E does, regardless of the relative priorities we give
them. To familiarize yourself with aged priority lists you should work through the sequence
of Table 14-1 to assure yourself that Figure 14-12 is correct.

Like a priority list, you can control any other type of list from an aged priority list; all such
lists need only be the same type. Unlike a priority list, however, you can neither use level
stations with nor step through an aged priority list.

14.1.7. Two-Level List

As discussed earlier, priority and aged priority list heads can control other lists, even other
priority and aged priority lists. These are called two-level lists because each element in the list
is controlled through two priority levels. A typical two-level list is shown in Figure 14-13.

MAX

BIT M ~

e

PRIMARY
LIST HEAD

j_

2 J 2 J
101 ..

SECONDARY LIST
HEAD ADDRESS

r-

t--'

r--

SECONDARY
LIST HEAD

MAX N

1 12
11

TABLE ADDRESS

1 Io
00 ...

TABLE ADDRESS

31 3
1101 ...

TABLE ADDRESS

:NT t ATP=@, 3

r-

I-

I--

I-

i...-

..--.

LIST HEAD
TABLES

A

B

c

c

0

0

D

D

E

G

0

H

H

1--

1--

fJ1
D
D~

~

I--

I----'

1---

0
ur

Figure 14-13. Two-Level List

e

A B

B ~ 0

c

0

D

0

E F

I--F G
r-+"

H

0

0

-

c
" 00
«> -w

en
" m

l> ~
en -<
enc mz s: -
lE ~ mn
:0 0

en
" w

""' I -O>

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-17

Figure 14-13 shows a typical two-level priority list. The primary list head points to a
three-member secondary list head instead of to the list head table seen in single-level
lists. The MAX field in the primary list head defines the highest-numbered (lowest) priority
the secondary list head can have. In Figure 14-13, the MAX value of the primary list
head is 2, indicating a maximum of three levels in the secondary list head.

Within the secondary list head, entries are three full words long and have the same format
as the three full words we highlight in the primary list head; that is, each has a MAX field,
an N field, a bit map, and a pointer to its own list head table. These fields completely
define their list head tables which, in turn, completely define their lists.

To add an element you specify a primary and a secondary priority. To add element H in
Figure 14-13, for example, we specify a primary priority of 2 and a secondary priority of
3. As a result, H is entered in the same list head table as elements D, E, F, and G, but has
its own priority.

List head tables in a two-level list must control FIFO lists and no other types. Therefore, a
new element J at primary level 0, secondary level 1, would be added immediately
following element C.

Because only FIFO lists are allowed with two-level priority lists, the element removed from
a given priority level is always the one pointed at by the forward pointer of the priority's
table entry. You can optionally specify either a primary or secondary (or both) priority for
element removal. When one is not specified, the highest priority pointing to a nonempty
list or secondary list head is used. Thus, if you do not specify any priority, the elements in
Figure 14-13 are removed in this order: AB C D E F G H. The same sequence is followed
if you step a level station forward through the list.

Figure 14-13 shows a priority list head pointing to three other priority list heads. You can
construct two-level lists in which the secondary list head defines any type of list we use.
In the most general case, the primary list head selects the secondary list head entry it
points to according to its type (priority or aged priority) and the secondary entry then
selects its list head table entry according to its type. The only restriction on a secondary
list head is that all its entries must be of the same type.

14.2. WHAT IS NEEDED FOR LIST PROCESSING?

As mentioned previously, System 80 instructions give you the capability of handling list
types from simple to complex. Now that you know what lists you can use, we outline here
what you need to do to set up lists and list processing programs.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-18

14. 2. 1. What System 80 Provides

Given proper initialization, three System 80 instructions can build and manipulate any of
the list types discussed in 14.1:

• Enqueue

Adds a new element to a list by altering pointers within the element and the list.
Options include data movement and register storage.

• Dequeue

Removes an element from a list by altering pointers within the element and the list.
Options include data movement and register loading.

• Step Queue

Uses element or level stations to move forward or backward in a list. Options include
execution of a subprogram designed for element manipulation.

14.2.2. What You Must Provide

For each list you must reserve an area in main storage for its elements and for its list
head. In System 80, a list head is part of a structure called a list control block (LCB).
Besides the pointers, table addresses, bit maps and other fields we have discussed, LCB
fields define the elements you use, determine how list operations are to execute, and
enable the options available with each list processing instruction. In 14.3, we discuss the
LCB format; in 14.4, the System 80 list processing instructions in detail; in 14.5, how to
initialize and manipulate System BO-supported lists; and in 14. 7, how to use the list
processing options.

14.3. LIST CONTROL BLOCK

The format of the LCB is shown in Figure 14-14.

The LCB must be on a full-word boundary. All shaded fields must be set to zero. The
following explains the use of each LCB field:

• List Type (word 0, bits 0-3)

You use this field to specify the type of list the LCB controls. Permitted values are
shown in Table 14-2.

UP-8913

e

WORD 0

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

UST
TYPE

r,

4

ELEMENT
TYPE

8

SPERRY UNIVAC OS/3
ASSEMBLER

12

LIST
CONTROLS

BIT

16
LIST

HEAD
TYPE

LIST IDENTIFICATION

20

DATA AREA SIZE

MINIMUM ELEMENT THRESHOLD

MAXIMUM ELEMENT THRESHOLD

CURRENT ELEMENT COUNT

LIST HEAD FIELDS

(SPECIFIC FIELDS DETERMINED BY

TYPE LIST USED)

24 28

OFFSET TO
PRIORITY STORAGE

OFFSET TO GENERAL
REGISTER SAVE AREA

OFFSET TO
DATA AREA

FREE ELEMENT LCB ADDRESS

Figure 14-14. LCB Format

14-19

31

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table 14-2. List Type Values

Value List Type

0 FIFO

1 FIFO with station

2 LIFO

3 Double-ended

4 Ring with station

6 Priority

7 Aged Priority

14-20

• Element Type (word 0, bits 4-7)

You use this field to specify the number of pointers each element in your list uses.
The only permitted values are binary 0 for forward linkage and binary 1 for double
linkage. Only certain combinations of list and element types are permitted in System
80; these are shown in Table 14-3.

Table 14-3. Permissible Element/List Type Combinations

Element Type
List Type

Forward Linkage Double Linkage

FIFO p p

FIFO with station p p

LIFO NP p

Double-ended NP p

Ring with station NP p

Priority List head table entry

Aged priority List head table entry

l
LEGEND:

P = permitted
NP = not permitted

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-21

• List Controls (word 0, bits 8-15)

You use this eight-bit field to control certain functions and options of the ENQUEUE,
STEP QUEUE, and DEQUEUE instructions:

Bit 8 is a list lock. A list processing instruction sets this lock to 1, which
effectively prevents other instructions from accessing the list while execution
continues.

Bit 9 controls the accessibility of the list. When it is set to 0, only programs
running under the supervisor state (program status word (PSW) bit 14 set to 0)
can use the list. When bit 9 is set to 1, programs running under either supervisor
or problem states can use this list. For your programs you should set this bit to 1.

Bit 10 determines where a station is moved after a DEQUEUE instruction. If you
DEQUEUE an element to which the station is currently pointing, the instruction
resets the pointer forward to the next element (bit 10=1) or backward to the
previous element (bit 10=0).

Bit 11 is not used and must be set to 0.

Bit 12 controls the data movement option. For its use refer to 14. 7 .2.

Bits 13-15 are used with the register load/store option. For their use refer to
14.7.1.

• List Head Type (word 0, bits 16-19)

When you use a priority or aged priority list you must use this field to specify what
type of entry goes in the list head table (or secondary list head for two-level lists).
Table 14-4 shows the permitted settings for this field, as well as the size in full
words of each type of entry.

Table 14-4. List Head Type Values

Value List Type Table Item Length
(full words per entry)

0 FIFO 2

1 FIFO with station 3

2 LIFO 2

3 Double-ended 2

4 Ring with station 1

6 Priority 3

7 Aged priority 3

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-22

Using Table 14-4 you can determine that the list head value for the priority list in Figure
14-9 would be 0 (FIFO), while the value for the priority list in Figure 14-13 would be 6
(priority list head).

• r3 (word 0, bits 20-23)

You use this 4-bit field to specify the even register of an even-odd register pair. If you
want to add a specific element to the list, you put its address into bits 8-31 of the
even-numbered register, putting zeros into bits 0-7. And when you remove an
element, you can, under certain conditions, specify the element you want to remove
even if it is not normally the element affected. For example, if it lies in the middle of a
FIFO list, you simply put its address into the even-numbered register. For all
DEQUEUE operations the address of the newly removed element is placed in the
even-numbered register.

The odd-numbered register of the pair holds the priority values you use when
manipulating a priority or aged priority list. Bits 8-15 hold the primary value and bits
24-31 hold the secondary value (if one is used). The maximum values for either field
is decimal 255 (FF16).

• r 4 (word 0, bits 24-27)

You use this 4-bit field to specify an even-odd register pair that you use with the data
movement option. For more information refer to 14.7.2.

• r5 (word 0, bits 28-31)

You use this 4-bit field to specify an even-odd register pair that is primarily used in
list control programs. For more information refer to 14.8.

• List ldentif ication (word 1 , bits 0-31)

You can use this full word to identify the LCB and its list by putting any data you wish
into it.

• Component Linkage (word 2, bits 0-3)

You use this 4-bit field to specify what type of linkage you want. Its permitted values
are:

1 for logical address format; or

2 for 1/0 directive format.

For programs running in the problem state you would specify 0. In that format each
pointer occupies a full word of the element with bits 0-7 containing zeros and bits
8-31 containing the 24-bit logical address of the element (or list head) to which it is
pointing.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-23

e . r,lr2 (word 3, bits 0-7)

You use these two fields (r1 - bits 0-3, and r2 - bits 4-7) with the register
load/store option. For more information, see 14.7.1.

• Pointer Type (word 4, bits 0-3)

You use this 4-bit field to specify the type of linkage you want in your list. Its value
should be the same as that of the COMPONENT LINKAGE field previously discussed.

• Offset to Next Element Pointer (word 4, bits 4-15)

You use this 12-bit field to specify the offset, in bytes, from the beginning of the
element to the first byte of its next (forward) element pointer. This offset must result
in a pointer that resides on a full-word boundary. The maximum permitted offset is
4095 (FFF16) bytes.

• Offset to Previous Element Pointer (word 4, bits 20-31)

You use this 12-bit field the same way as the NEXT ELEMENT POINTER offset, except
that this offset specifies the location of the previous (backward) element pointer if one
is used. The location must be on a full-word boundary and the maximum permitted
offset is 4095 (FFF16) bytes.

e • Numeric Field Size (word 5, bits 16-19)

You use this field to specify the size of the priority field (or fields) used in each priority
list head. The only acceptable value is 0, indicating a size of one byte.

• Offset to Priority Storage (word 5, bits 20-31)

You use this 12-bit field to specify the offset from the start of an element to its
priority save area. Every time you add an element to a priority list, the ENQUEUE
instruction puts the priority value (or values) of that element in its priority save area.
The maximum permitted offset is 4095 (FFF16) bytes.

• Offset to Floating-Point Register Save Area (word 6, bits 4-15)

You use this field with the register load/store option. For more information, refer to
14.7.1.

• Offset to General Register Save Area (word 6, bits 20-31)

You use this field with the register load/store option. For more information, refer to
14.7.1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-24

• Data Area Size (word 7, bits 4-15)

You use this field to specify, in bytes, how large a data area your element is to have.
The maximum permitted size is 4095 (FFF16) bytes.

• Offset to Data Area (word 7, bits 20-31)

You use this field to specify where in an element its data area is to start. You specify
this as an offset, in bytes, from the start of the element. The maximum permitted
offset is 4095 (FFF16) bytes.

• Minimum Element Threshold (word 8, bits 0-31)

You use this 32-bit field to specify a minimum number of elements in your list. If the
CURRENT ELEMENT COUNT field drops to this value, the condition code is set to
indicate an underflow condition (see 14.4.2).

• Maximum Element Threshold (word 9, bits 0-31)

You use this 32-bit field to specify a maximum number of elements in your list. If the
CURRENT ELEMENT COUNT field increases to this value, the condition code is set to
indicate an overflow condition (see 14.4.1).

• Current Element Count (word 10, bits 0-31)

The list processing instructions use this 32-bit field to indicate how many elements
are currently in a list. It must be initialized to zeros.

• List Head Fields (words 12-14)

You use these fields to point to and control your list. These fields have different
formats for different types of lists. Refer to 14.5.2 for the particular format you want
to use.

• Free Element LCB Address (word 15, bits 0-31)

You use this pointer when you use a free element list (FEL). Refer to 14.6 for more
information.

14.4. LIST PROCESSING INSTRUCTIONS

We discuss here the three System 80 instructions that you use for list processing. We do
not discuss their options here; refer to 14. 7 for more information on them.

UP-8913

14.4.1. ENQUEUE (ENQ)

SPERRY UNIVAC OS/3
ASSEMBLER

14-25

ENQ

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

ENQ 83 SI 4 D EXECUTE • OP 1 NOT ON FULL-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D
• SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED D OTHERS, SEE TEXT

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] ENQ

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] ENQ

This instruction adds an element to the list whose LCB is addressed by operand 1. i2 is an
immediate operand, a self-defining term that is assembled into an 8-bit control field
occupying bits 8-15 of the object instruction. The bits in the i2 field have the following
functions:

• Bits 8-9

You use these bits to determine the source field of the element. You specify 002 to
indicate that the even-numbered register of the LCB r3 field contains the address of
the element. You specify 01 2 to indicate that the element is to come from the free
element list (see 14.6); in this case the instruction itself loads the even-numbered r3

register with the address of the newly added element.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-26

• Bit 10

For a double-ended list, you use this bit to specify the end of the list to which you
want to add the new element. To add to the left (first element) end, specify 1, to the
right end, a 0. For all other list types, this bit must be set to 0.

• Bit 11

This bit must be set to 0 or a specification exception will occur.

• Bit 12

You can enable the data movement option (see 14. 7.2) by setting both this bit and bit
12 of LCB word 0 to 1.

• Bits 13-15

You can enable the register load/store option and specify how it is to execute by
setting these three bits, on which a logical AND function is performed with bits
13-15 of LCB word 0, and the resulting three bits determine how the option is to
run, as explained in 14.7.1.

Condition Code:

After execution of the ENQUEUE instruction:

• The condition code is set to 0 if the element is successfully added to the list.

• The condition code is set to 1 if the updated CURRENT ELEMENT COUNT of the LCB
reaches the MAXIMUM ELEMENT THRESHOLD value. This result only sets the
condition code; further enqueueing is possible until the current count reaches a value
of FFFFFFFF16 (4,294,967 ,29510) elements.

• The condition code is set to 2 if the list is currently unavailable (its LOCK CONTROL
bit set to 1).

• The condition code is set to 3 if the enqueue operation is unsuccessful. This can
happen if you try to add an element to a list that already contains the maximum
allowable number of elements (FFFFFFFF16 or 4,294,967,29510), remove an element
from an empty free element list for enqueueing, or cause an aged priority list to
contain more nonempty priority levels than its maximum allows.

UP-8913

14.4.2. DEQUEUE (DEQ)

SPERRY UNIVAC OS/3
ASSEMBLER

14-27

DEQ

General Possible Program Exceptions

OBJECT • ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
DEO 84 SI 4 D EXECUTE • OP 1 NOT ON FULL-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• SET TO 1
D FIXED-POINT OVERFLOW BOUNDARY

• SET TO 2 0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

.SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED • OTHERS - SEE TEXT

Exp I icit Format:

LABEL ~OPERATION~ OPERAND

[symbol) DEO

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] DEO

This instruction removes an element from the list whose LCB is addressed by operand 1. i2

is an immediate operand, a self-defining term that is assembled into an 8-bit control field
occupying bits 8-15 of the object instruction. The bits in the i2 field have the following
functions:

• Bits 8-9

You use these bits to determine how to remove the element. You code a 002 to simply
remove the element and place its address in the even-numbered r3 register. You code
a 01 2 to indicate that the newly dequeued element is to be added to the free element
list (see 14.6).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-28

• Bit 10

For a double-ended list, you use this bit to specify the end of the list from which you
want to remove the element. To remove from the left (first element) end, specify a 1,
from the right (last element) end, a 0. For all other list types this bit must be set to 0.

• Bit 11

This bit must be set to 0 or a specification exception will occur.

• Bit 12

You can enable the data movement option (see 14.7.2) by setting both this bit and bit
1 2 of LCB word 0 to 1 .

• Bits 13-15

You can enable the register load/store option and specify how it is to execute by
setting these three bits, on which a logical AND function is performed with bits
13-15 of LCB word 0, and the resulting three bits determine how the option is to
run, as explained in 14.7.1.

Condition Code:

After execution of the DEQUEUE instruction:

• The condition code is set to 0 if the element is sucessfully dequeued.

• The condition code is set to 1 if the updated CURRENT ELEMENT COUNT of the LCB
reaches the MINIMUM ELEMENT THRESHOLD value. This result only sets the
condition code; further dequeueing is possible until the current count reaches a value
of 0. If you use a free element list, its CURRENT ELEMENT COUNT field is increased
by 1 for each element dequeued; if that value reaches the MAXIMUM ELEMENT
THRESHOLD value of the free element list, the condition code is set to 1. See 14.6 for
more information.

• The condition code is set to 2 if the list is currently unavailable (its lock control bit is
set to 1).

• The condition code is set to 3 if the dequeue operation is unsuccessful. This can
happen if you try to remove an element from an empty list or add a newly-removed
element to a free element list that already contains the maximum allowable number
of elements (FFFFFFFF16 or 4,294,967,29510 elements).

UP-8913

14.4.3. STEP QUEUE (STEP)

SPERRY UNIVAC OS/3
ASSEMBLER

14-29

STEP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

STEP 85 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 1 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Explicit Format:

LABEL f:.OPERATION f:. OPERAND

[symbol] STEP

Implicit Format:

LABEL f:. OPERATION f:. OPERAND

[symbol] STEP

This instruction moves a station forward or backward one position (forward only in a
forward-linked list). It optionally calls a list control program (LCP) of your own design
(14.8). The LCB of the list you use is addressed by operand 1. i2 is an immediate byte, a
self-defining term that is assembled into an 8-bit control field in bits 8-15 of the object
instruction. The bits in the i2 field have the following functions:

• Bits 8-9

You determine the specific STEP QUEUE function you want with these bits. Possible
values are:

002 meaning move the selected station forward one position;

01 2 meaning move the selected station backward one position;

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-30

102 meaning execute an LCP with forward station movement if necessary; or

11 2 meaning execute an LCP with backward station movement if necessary. If
you specify 002 or 01 2 for a list that has no station, a specification exception will
result. If you specify 102 or 11 2 for such a list, the instruction uses the even­
numbered r3 register as a station. See 16.8 for more information on LCPs.

• Bit 10

If you are using a priority list you select the priority station (primary station if using a
two-level list) you want modified: 0 for level station 1 or 1 for level station 2.

• Bit 11

If you are using a two-level priority list you select the secondary priority station you
want modified with this bit: 0 for level station 1 or 1 for level station 2.

• Bits 13-15

If you are moving a station (bit 8 set to 0), you must set all these bits to 0. If you are
executing an LCP (bit 8 set to 1), you can use these bits as described in 14.8.2.5 and
14.8.2.6.

There are restrictions on the use of the STEP QUEUE instruction. You cannot use it with
an aged priority list. For all other list types you can step in at least one direction, forward.
To step backwards, though, your list must be double-linked or a specification exception will
result.

Condition Code:

After execution of the STEP QUEUE instruction the condition code is set:

• to 0 if the step is successful;

• to 2 if the list lock is set, making the list unavailable; or

• to 3 if the step is unsuccessful; this can happen because the list is empty or because
the station has already moved as far as possible in the direction you want, for
example, forward past the last element in a FIFO list.

If you execute a list control program it can further modify the condition code; see 14.8.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14.5. INITIALIZING AND USING SYSTEM 80 LISTS

14-31

Having outlined System 80 list and LCB formats, we show in this section how you must
initialize each type of list. In addition, we show how you can use the ENQUEUE,
DEQUEUE, and STEP QUEUE instructions with each.

14.5.1. Specifying Elements

For every type of list, you have to specify the format of its elements using the LCB of the
list. In specifying the format of an element, you must distinguish between the element's:

• pointers;

• optional register save areas (see 14. 7 .1);

• priority save area (for priority lists); and

• data area.

You should put element pointers in one contiguous block, save areas in another block, and
data area in a third. Doing this will help prevent the accidental alteration of data that could
ruin a list. An example of laying out an element is shown in Figure 14-15.

In Figure 14-15, each area in the element to the left is specified by a corresponding field
in the LCB shown to the right. These take the form of offsets from the first byte of the
element. In addition, the linkage type field in word 4, bits 0-3 is set to binary 1 indicating
that both pointers in the element are 24-bit logical addresses. Also, the length of the data
field is shown in word 7, bits 14-15. To confirm that the LCB is initialized correctly, refer
to the LCB format of Figure 14-14.

14.5.2. Specifying Lists by Type

We show here how you correctly initialize an LCB for each of the different types of System
80 lists. We also summarize how you can use the ENQUEUE, DEQUEUE, and STEP
QUEUE instructions with each type.

14.5.2.1. LIFO List Usage

To initialize a LIFO list, you initialize its LCB as shown in Figure 14-16.

BYTE
OFFSET

0000

0004

OOOB

004B

ELEMENT

FULL WORD

NEXT ELEMENT POINTER

LAST ELEMENT POINTER

GENERAL
REGISTER

SAVE AREA

FLOATING­
POINT

REGISTER
SAVE AREA

0068 I PRIMARY I SECONDARY

006C

DATA

OOFC l I

e

LCB

BIT

4 12 WORD I 0 I I I I I I I I 31 8 16 20 24 28

0

2

3

4 0 0 0 0 0 4

5 0 6 ~
6 0 4 8 0 0 8 I

0 9 4 0 6 c I

8

9

11

12

13

14

15

Figure 14-15. Specifying an Element in an LCB

e -

I

c
-0
00
tO
~

w

en
-c
m

l> ~
I en -<

en c
mz

,s:: <
~ l>
m n
:0 0

en
'-w

""" I
w
N

UP-8913

WORD 0 4 8

0 2 1

11

12

13

14 0

15

J12

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

J16 J20

ADDRESS OF LCB WORD 12 (LCB + 48)

ADDRESS OF LCB WORD 12 (LCB + 48)

Figure 14-16. Initializing LIFO LCB

14-33

124 128 31

-

)

LIST HEAD
TABLE ENTRY

0

The list head type in word 0, bits 0-3 must be 2. The element type in bits 4-7 must be
binary 1. The address of word 12 must be placed in words 12 and 13. Word 14 must be
set to all zeros. If the LIFO list is being controlled by a list in a priority list, the first entry of
its list head table, which corresponds to LCB words 12 and 13, must be initialized with the
entry's address in both of its full words.

You can only add new LIFO elements between the list head and its first element. If you
put zeros into the even-numbered r3 register and remove an element from a LIFO list, it is
the first element that gets removed. If, however, the even-numbered r3 register contains
the address of any element in the list, that element is the one removed by a DEQUEUE
instruction. You can use the even-numbered r3 register as a station in STEP QUEUE
operations; if you initialize it with the address of any element, STEP QUEUE replaces it
with the address of the next or previous element depending on the direction of the step.

14.5.2.2. FIFO List Usage

To initialize a FIFO list you initialize its LCB as shown in Figure 14-17.

UP-8913

WORD 0 4 8

0 0 0/1

.....

11

12

13

14 0

15

J12

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

J16 J20

01 ADDRESS OF LCB WORD 12 (LCB + 48)

ADDRESS OF LCB WORD 12 (LCB + 48)

Figure 14-17. Initializing FIFO LCB

14-34

J24 128 31

--

)

LIST HEAD
TABLE ENTRY

0

Word 0, bits 0-3 of the LCB must contain 0. Bits 4-7 of word 0 can contain either 0
(forward linkage) or 1 (double linkage). If the list is forward-linked, word 12 must contain
all zeros; if double-linked, it must contain the address of word 12. Word 13 must always
be initialized with the address of word 12. Word 14 must contain all zeros.

If the FIFO list is controlled by a list head table entry, that entry is two full words long; the
first word must contain all zeros (for forward-linked lists) or the address of the table entry
(for double-linked lists). The second word must contain the address of the first word.

You can add an element to a FIFO list only at the end of the list farthest away from the list
head. When you use the DEQUEUE instruction it is usually the first element that is
removed. In this case you put all zeros into the even-numbered r3 register. If the list is
double-linked, however, you can remove any element by loading the even-numbered r3

register with the element address, then executing DEQUEUE. You can also use the even­
numbered r3 register as a station using STEP QUEUE to move the station one element
forward or backward.

14.5.2.3. Double-ended List Usage

You initialize a double-ended list in much the same way as a double-linked FIFO list
(Figure 14-17). The only difference is that the value you enter in word 0, bits 0-3 must
contain a 3 to indicate this type of list. If the double-ended list is controlled by a list head
table, its entry is two full words long. You can add or remove elements at either end of the
list. You can also remove any element in the list by loading the even-numbered r3 register
with the element address before executing DEQUEUE. Additionally, you can use the even­
numbered r3 register as a station, moving it back and forth through the list, one element at
a time, with STEP QUEUE.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14.5.2.4. FIFO with Station Usage

14-35

To initialize a FIFO list with station you initialize its LCB as shown in Figure 14-18.

WORD 0 4

0 1 0/1

"""- -
11

12

13

14

15

BIT

8 112 116 120 124

0/ADDRESS OF LCB WORD 12 (LCB + 48)

ADDRESS OF LCB WORD 12 (LCB + 48)

01 ADDRESS OF LCB WORD 12 (LCB + 48)

Figure 14-18. Initializing LCB for FIFO with Station

128 31

-

LIST HEAD
TABLE ENTRY

Word 0, bits 0-3 of the LCB must contain 1. Bits 4-7 can be either O (forward linkage) or
1 (double linkage). Word 13 is always set to the address of word 12. Depending on the
element type, words 12 and 14 must both be set to zeros (forward linkage) or both to the
word 12 address (double linkage). If a list head table entry controls the FIFO list it is three
full words long and corresponds to words 12-14 of the LCB. If a word in the entry is not
set to 0, you must set it to the address of the entry.

You add and remove elements in this type of list the same way you do for a FIFO list
(14.5.2.2). Here, though, the station no longer occupies the even-numbered r3 register, but
now is included in the LCB as word 14. You can, therefore, use the STEP QUEUE
instruction to move the station forward or backward in the list.

14.5.2.5. Ring with Station Usage

To initialize a ring list you initialize its LCB as shown in Figure 14-19.

UP-8913

WORD 0 4

0 4 1

.......

i---
11

12 0

13 0

14 0

15

8 j12

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

J16 J20

Figure 14-19. Ring List Initialization

124 128 31

____,

0

0

0

14-36

)
LIST HEAD
TABLE ENTRY

Word 0, bits 0-3 must contain 4. Bits 4-7 must contain 1. Words 12-14 must all be
initialized to zeros; if a list head table entry controls a ring list, that entry is one full word
long and must also be initialized to zeros.

Word 12 of the LCB is the station a ring list uses. You add an element immediately after
the one to which the station points. You usually remove the element to which the station
points, but you can remove any element in the list by putting its address in the even­
numbered r3 register before executing DEQUEUE. After an ENQUEUE operation the station
points to the newly-added element. If you dequeue the element the station points to, the
station will be reset to the element immediately before (backward pointer) or after (forward
pointer) it, depending on the setting of LCB word 0, bit 10 (O=backward, 1 =forward). If you
remove an element other than the one the station points to, the station remains at its
present position. You can move the station forward or backward using the STEP QUEUE
instruction.

14.5.2.6. Priority List Usage

To initialize a priority list, you initialize its LCB as shown in Figure 14-20.

UP-8913

WORD 0 4 8

0 6 0/1

11

12 MAX PRIORITY 1 0

13

14 0 0 I
15

J12

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

116 J20

0 I 0

BIT MAP OR BIT MAP ADDRESS

0

TABLE ADDRESS

J24

1

Figure 14-20. Priority List Initialization

J28

0 0

31

14-37

LIST HEAD
TABLE ENTRY

Word 0, bits 0-3 must have a value of 6. Bits 4-7 can have a value of 0 (forward
linkage) or 1 (double linkage). The rest of the LCB in Figure 14-20 is initialized as follows:

• Word 1 2, bits 0-7

You put the highest-numbered priority your list can have in this field; a maximum
value of 25510 is permitted.

• Word 12, bits 8-15

This field is the N field, the number of priority levels currently supporting lists.
Initialize this field to 0.

• Word 12, bits 16-23

This field is level station 1, accessible from the STEP QUEUE instruction. Initialize this
field to 0.

• Word 1 2, bits 24-31

This field is level station 2, accessible from the STEP QUEUE instruction. Initialize this
field to 0.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-38

• Word 13, bits 0-31

If you specify at most 32 priorities (word 12, bits 0-7 having a value between 016

and 1 F16) this full word comprises the bit map. The high order (leftmost) bit
corresponds to priority 0, the next bit to priority 1, etc. If the number of priorities is in
the range of 33-256 (word 12, bits 0-7 having a value between 2016 and FF16) you
must specify a bit map elsewhere in main storage, putting its 24-bit address in word
13. In this case the map must occupy an even number of full words and reside on a
full-word boundary. In all cases the bit map must be initialized to all zeros.

• Word 14, bits 8-31

You use this 24-bit field to contain the address of the first byte of the list head table
this LCB controls. The list head table must be on a full-word boundary.

You add elements at a priority that you specify using the primary and (if used) secondary
level stations contained in the odd-numbered r3 register. Register bits 8-15 contain the
primary station, bits 24-31 contain the secondary station, and the remainder of the
register contains zeros. At the selected priority level, the element is enqueued at the front
of the list (for LIFO lists), the back of the list (for FIFO lists), or the element station (for ring
lists).

You can also remove elements from specific levels by specifying the levels in the odd­
numbered r3 register. At all priority levels, for all types of lists, it is the first element that is
removed. You cannot specify that a particular element be removed, only the priority at
which the element resides.

You can manipulate the two level stations of a priority list using the STEP QUEUE
instruction. Unlike other types of lists, STEP QUEUE moves level stations so that they point
to priority levels, never to individual elements.

14.5.2.7. Aged Priority List Usage

To initialize an aged priority list you initialize its LCB as shown in Figure 4-21.

UP-8913

WORD 0 4 8

0 7 0/1

11

12 MAX PRIORITY l
13

14 0 0 I
15

0

112

SPERRY UNIVAC OS/3
ASSEMBLER

BIT

J16 J20

0 1 0

BIT MAP OR BIT MAP ADDRESS

0

TABLE ADDRESS

J24

1

Figure 14-21. Aged Priority List Initialization

J28

0 0

31

14-39

LIST HEAD
TABLE ENTRY

Word 0, bits 0-3 must have a value of 7. Bits 4-7 must have a value of binary 1 if the
LCB controls a two-level list; otherwise, it can have a value of 0 (forward linkage) or 1
(double linkage). Words 12-14 must be initialized with the same values as a priority list
(14.5.2.6). Likewise, an aged priority list can be controlled from another LCB, in which
case its list head table has entries three words long; these must be initialized in the same
manner as words 12-14 of the LCB in Figure 14-21. Wherever it resides, the bit map
must be set to all zeros.

To add an element you specify its primary and (if used) secondary priority value in the odd­
numbered r3 register; these determine indirectly the priority at which the new element will
actually be enqueued. When you remove an element from an aged priority list you do not
specify a priority; the hardware algorithms included with DEQUEUE do that for you and
return the address of the newly dequeued element in the even-numbered r3 register.
Likewise, you cannot use stations to point to individual priorities; you, therefore, cannot
use the STEP QUEUE instruction on an aged priority list.

14.6. FREE ELEMENT LIST

The free element list (FEL) is a collection of elements in main storage not linked to any
other list. Like other lists, it has a 16-word LCB. Unlike other lists, however, you do not
directly manipulate it. Instead, it exists to provide a storage area from which other lists can
add new elements and to which newly dequeued elements can go. One list can use one
FEL, but a single FEL can, under certain conditions, be used by more than one list.

Using a FEL is simple. Figure 14-22 shows a list called MAIN and its associated FEL.
MAIN is a forward-linked FIFO list, while the FEL is set up as a LIFO list.

UP-8913

WORD

12

13

15

12

13

15

12

13

15

MAIN A

[1 .-- B

FIFO LIST
LCB

A t--

B

SPERRY UNIVAC OS/3
ASSEMBLER

B

1----1
r+- 0

r-1

14-40

FEL

LIFO LIST 1
LCB

LH

LH

ADDRESS OF FEL LCB

a. List MAIN and its free element list

MAIN B FEL A

l l
,--------,
I I r; 0 I I
1---------1
I I

I I
I I

J }? LH I-
('

LH

I I
I I
L ___ T ___ J

B

l B
I

A ~ !---"
A _i

I I
I I
I I

LCB ADDRESS I I

L--------------------~
b. Dequeueing an element from MAIN

MAIN B A FEL

I 1 rl t--1 r-A rl 0

r--------,
I

I I
;----- ---;
I I

i 1
t--------~
I I

B 1---' T
I I
I I
I I

LH

A I
I
I
I

LCB ADDRESS I
I

L ___ l ___ _J

I
I
I
I

LH

L _ --- - - - -- _____ _J

c. Enqueueing an element on MAIN

Figure 14-22. Enqueueing and Dequeueing with FEL

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-41

Figure 14-22a shows that MAIN has two elements, A and B, each containing a single
forward pointer. In Figure 14-22b we see how an element is removed from MAIN. Here it
is element A; the DEQUEUE instruction resets pointers so that element B alone occupies
the MAIN list. But the section of main storage that was element A is not simply discarded.
Instead, a separate ENQUEUE-type operation links A to the FEL as its first and only
element. Notice that A now has two pointers, forward and backward. The FEL LCB
determines where these lie within the element, and their location bears no relation to that
of the single pointer earlier contained in A. The FEL simply treats element A as a section
of main storage linked to other sections, all of which are available for use by list MAIN.

Figure 14-22c shows how the ENQUEUE instruction restores a FEL element to list MAIN.
Again, element A is involved; a DEQUEUE-type operation removes it from the FEL and
element A gets its old forward pointer back as it is linked into place behind element B (this
being a FIFO list, remember). Throughout all this, the two LCBs are linked by a pointer in
MAIN's LCB (word 15) that points to its related FEL LCB.

To use a FEL, you must know how to initialize it and how to call upon it during program
execution.

14.6.1. FEL Initialization

You initialize the FEL much as you would any list, keeping in mind that the size of its
elements must be the same between the FEL and its associated list or lists.

You can make the FEL any type of list you wish, but a LIFO or FIFO list is often best for
your purposes; they permit you to specify both a maximum number of FEL elements and a
limit to the main storage taken up by the FEL. In addition, you can place FEL pointers
wherever you wish within its elements. The only restriction is that the FEL element size
must equal that of the list or lists using the FEL.

Because FEL elements are merely blocks of main storage that other lists use, you will not
likely use the data area, the register load/store option, or the data movement option. The
only register you are likely to use is the even-numbered r3 register which you initialize
with the address of the first FEL element to be enqueued or dequeued. Before using the
FEL, you must put the 24-bit address of its LCB in word 15, bits 8-31 of each LCB that is
to use the FEL.

14.6.2. FEL Usage

You can use a FEL to add or remove an element from your list. Since the FEL determines
what element is to be linked or unlinked from your list, you do not specify an element
address in the even-numbered r3 register of your list's LCB. Instead, you load that register
with all zeros and set bit 9 of your ENQUEUE or DEQUEUE instruction to 1. The condition
code is set as described for the instructions (14.3.1 and 14.3.2).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14. 7. LIST PROCESSING OPTIONS

14-42

In addition to adding and removing elements, the System 80 list processing instructions
give you the ability to manipulate registers and move main storage data whenever you add
or remove an element.

14.7.1. Register Load/Store Option

By setting certain bits in your ENQUEUE or DEQUEUE instruction, you can move data
between a selected set of registers and a save area in your list element. The options
available to you are shown in Figure 14-23.

NEW
ELEMENT

Q
ENQUEUE A B REGISTERS

l 1 B

A
}~{

B

Figure 14-23. Register Load/Store Option

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-43

As Figure 14-23 shows, you can store the contents of certain registers into an element
just before it is added to a list. Conversely, you can load certain registers from an element
just after it is removed from the list.

The re~fisters that can be used include:

• Some or all of the 16 problem general registers

• Some or all of the 16 supervisor general registers

• All 4 floating-point registers

To load or store general registers in an element, you must reserve a save area of 16 full
words in the element, on a word boundary whose offset from the start of the element you
specify in LCB word 16, bits 20-31. To load or store floating-point registers, you must
reserve four double words in the element, on a double-word boundary whose offset from
the start of the element you specify in LCB word 6, bits 4-15.

If you load or store the floating-point register set. all four registers (0, 2, 4, and 6) are
involved. For the general registers, though, you use the r1 and r2 fields in the LCB to
specify which registers you use. Registers are loaded or stored starting with the r1

register, continuing through consecutively-numbered registers, and ending with the r2

register. If r1 is greater than r2 the registers are processed in this order: r1 , .•. ,15,0, ... ,r2 . If r1

equals r2 only that register is used. Register 0, if used, is always associated with the first
word of the save area, register 1 with the second word, and so on.

You determine the actual load/store function performed by the instruction you use and the
bits within the instruction you specify:

ENQUEUE Instruction:

• If you set both LCB word 0, bit 13 and ENQUEUE bit 13 to 1, the general register
series defined by r1, r2 , and bit 14 is stored in the general register save area of the
element to be enqueued. If either or both bits are set to 0, the general registers are
not stored.

• If you set either LCB word 0, bit 14, or ENQUEUE bit 14, or both bits to 0, the general
registers to be stored are taken from the problem register set. If you set both bits to 1,
the registers are taken from the supervisor register set.

• If you set both LCB word 0, bit 15 and ENQUEUE bit 15 to 1, you cause all four
floating-point registers to be stored to the floating-point register save area of the
element to be enqueued. If either or both bits are 0, this option will not be enabled.

UP-8913

DEQUEUE Instruction:

SPERRY UNIVAC OS/3
ASSEMBLER

14-44

• If you set both LCB word 0, bit 13 and DEQUEUE bit 13 to 1, the general register
series defined by r1, r2 , and bit 14 is loaded from the general register save area of the
element just dequeued. If either or both bits are 0, the registers are not loaded.

• If you set either LCB word 0, bit 14, or DEQUEUE bit 14, or both bits to 0, the general
registers to be loaded are taken from the problem register set. If you set both bits to
1, the registers are taken from the supervisor register set.

• If you set both LCB word 0, bit 15 and DEQUEUE bit 15 to 1, you cause all four
floating-point registers to be loaded from the floating-point register save area of the
element just dequeued. If either or both bits are 0, this option will not be enabled.

14.7.2. Data Movement Option

When you enqueue an element, you have the option of moving a contiguous block of data
from elsewhere in main storage into the data area of that element. This action takes place
before the element is enqueued and after it is removed from its FEL, if one is used.

When you dequeue an element, you have the option of moving a contiguous block of data
from the data area of that element to a location elsewhere in main storage. This takes
place after the element is dequeued and before it is added to the FEL, if one is used.

We call the contents of the element data area element data. We call the data located
elsewhere external data. Fields in the LCB govern data movement as shown in Figure
14-24.

BIT

WORD

0

0 14 is 12 j16 J20 24 28 31

oJ r 4 rs

L---' --
Figure 14-24. LCB Fields for Data Movement Option

Word 0, bit 12 contains the D field, which enables data movement. The r4 and r5 fields
specify two even-odd register pairs that have the following format (Figure 14-25).

UP-8913

WORD 0 J4

SPERRY UNIVAC OS/3
ASSEMBLER

8 J12

EVEN-NUMBERED 0------0
REGISTER

ODD-NUMBERED
REGISTER

OFFSET IN DATA AREA

r
5

ODD-NUMBERED SEQUENCE CODE
REGISTER

14-45

BIT

J16 120 124

EXTERNAL DATA ADDRESS

BYTE COUNT

NOT USED

Figure 14-25. Registers for Data Movement

J28

As Figure 14-25 shows, you put the address of the external data in bits 8-31 of the
even-numbered r4 register. You use bits 0-15 of the odd-numbered r4 register to specify
where in the element your element data lies; this value represents the offset of the first
byte of your element data, in bytes, from the start of the data area. (Remember that the
data area, in turn, is located as an offset within the element in word 7, bits 20-31 of the
LCB). You put the number of bytes to be moved in bits 16-31 of the odd-numbered r4

register. The data movement option uses the odd-numbered r5 register which you must
initialize to zeros.

Data movement occurs from left to right, starting with the first bytes at source and
destination locations. Before movement begins, the hardware checks the element data and
byte count fields to make sure you do not go beyond the limits of the element. If you do, a
specification exception will occur.

To move data into an element to be enqueued, you must set both LCB word 0, bit 12 and
ENQUEUE bit 12 to 1. Any other setting of these bits prevents data movement from
occurring. The external data remains unchanged by the move.

To move data out of an element that is dequeued, you must set both LCB word 0, bit 12
and DEQUEUE bit 12 to 1. Any other setting of these bits prevents data movement from
occurring. The element data remains unchanged by the move.

31

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14.8. LIST CONTROL PROGRAM

14-46

In 14.4.3, we discussed how the STEP QUEUE instruction causes element or priority
stations to move forward or backward in a list. Normally, STEP QUEUE moves a station
from one element/priority level to the next and stops there. But a set of hardware
operations is available to you which lets you use STEP QUEUE to perform logical
operations, load or store registers, or move data in or out of an element. In addition, you
can repeat these operations for successive elements in a list stopping only at the end of
the list or when a condition you set is satisfied. These operations make up a machine
instruction subset, and a sequence of them makes up a list control program (LCP) that you
execute from a STEP QUEUE instruction. In the discussion that follows, we use the term
current element to refer to the element currently pointed to by your selected station.

The list control program can cause an element or priority level station to be moved, usually
after every instruction in the program is executed. Table 14-5 shows what LCB or LCB­
related fields act as station for each list type.

Table 14-5. Stations Used by LCP Instructions

List Type Station Used

FIFO r3 even-numbered register

LIFO r3 even-numbered register

FIFO with station Station

Double-ended r3 even-numbered register

Ring Station

Priority Level station 1 /Level station 2

Aged priority No station for step queue

Note that a priority list can use one of two level stations (LCP word, 12 bits 16-31). As
you will see, you select the station to be moved using the STEP QUEUE instruction that
executes the list control program. Note, too, that an aged priority list does not support
stations at all, so no list control program can manipulate it.

You always execute a list control program from a STEP QUEUE instruction. After the list
control program finishes, program control passes to the next instruction immediately
following STEP QUEUE. We first show how to put an LCP together, then how to call it
with STEP QUEUE.

UP-8913

14.8.1. LCP Format

SPERRY UNIVAC OS/3
ASSEMBLER

14-47

A list control program consists of a series of LCP instructions in main storage, each of
which is four full words long. The list control program must be on a full-word boundary.
Figure 14-26 shows the basic format of all LCP instructions.

WORD 0 4 8

S L
E V
Q L

OP CONDITION
CODE TEST 0

c
c

BIT

16 20 24

BYTE COUNT

OFFSET TO DATA BRANCH OFFSET

2 IMMEDIATE OPERAND 1

3 IMMEDIATE OPERAND 2

Figure 14-26. LCP Instruction Format

The following list explains the fields in Figure 14-26 by function:

• Op Code (word 0, bits 4-7)

28 31

This 4-bit field determines which LCP instruction this is. Permitted entries, all of
which are discussed in detail in 14.8.2, are:

Op Code

00
01
02
03
04
05
06
07
08
09
OA

Instruction

NO-OP
MASKED TEST
LOGICAL COMPARE
MASK AND COMPARE
LOAD REGISTERS
STORE REGISTERS
MOVE DATA OUT
MOVE DATA IN
STEP STATION
INITIALIZE STATION
SWITCH LIST SCAN

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-48

• Condition Code (word 0, bits 14-15)
Condition Test (word 0, bits 8-11)
Sequence Control (word 0, bits 0-1)

When an LCP instruction completes its function, it sets its condition code (CC) field
according to the result. Together with the condition test (CT) and sequence control
(SEQ) fields (which you set), it determines where program control passes when the
instruction finishes.

This process takes place in two steps. First, the hardware compares the CC field to
your CT field, to yield one of two results: either a CT match or a CT mismatch. Table
14-6 shows what field settings produce what results ("X" indicates a bit position
whose value does not affect the result).

Table 14-6. CT Match/Mismatch Table

If the CC field ... and you set the
... the result is: is set to ... CT field to ...

00 1XXX CT Match
00 oxxx CT Mismatch
01 X1XX CT Match
01 xoxx CT Mismatch
10 XX1X CT Match
10 XXOX CT Mismatch
11 XXX1 CT Match
11 xxxo CT Mismatch

As the next step, the hardware compares the CT match/mismatch to the sequence
code (SEQ) that you set. The resulting action is shown in Table 14-7.

Do not confuse the CC field of an LCP instruction with the condition code contained
in the PSW. As Table 14-7 shows, the CC field will replace the PSW condition code
under certain conditions. However, there is only one PSW condition code, while a CC
field exists in each instruction of your LCP.

• Branch Offset (word 1, bits 16-31)

You use this field to direct LCP program control to the next logical instruction. This
field represents the offset of the destination instruction from the start of the LCP.
Together with the CC, CT, and SEQ fields, this field may be used by every LCP
instruction in the set. If your program logic includes a branch from the current LCP
instruction to any LCP instruction other than the next sequential one, you must use
this field. Because LCP instructions are 16 bytes long, values placed in this field must
be evenly divisible by 16. You can branch in a forward direction (increasing address)
only. The maximum permitted offset is 408010 (FF016) bytes.

UP-8913

If the SEQ
value is:

00

01

10

11

SPERRY UNIVAC OS/3
ASSEMBLER

14-49

Table 14-7. Program Control Under LCP Fields

... you get this result with a:

CT Match CT Mismatch

The hardware replaces the condition Same result as a CT match
code field in the program status word with SEQ value 00.
(PSW) with the CC value of the instruc-
tion. Execution of the STEP QUEUE instruc-
tion that called this list control
program immediately ends.

The hardware moves the selected station Program control passes to the
in the direction you specify in next sequential LCP instruction
STEP QUEUE bit 9. If the step is without station movement.
unsuccessful, control passes to the
next logical LCP instruction {see
BRANCH OFFSET). If the step is
successful, control passes back to
the first instruction in your list
control program.

Program control passes to the next The hardware moves the selected
logical LCP instruction {see BRANCH station in the direction you
OFFSET) without station movement. specify by STEP QUEUE bit 9. If

the step is unsuccessful, control
passes to the next sequential
LCP instruction. If the step is
successful, control passes back to
the first LCP instruction in the
list control program.

Program control passes to the next Program control passes to the
logical LCP instruction {see next sequential LCP instruction.
BRANCH OFFSET).

• Offset to Data (word 1, bits 0-15)

Certain LCP instructions require the list control program to access data within the
current element. You specify where the data is by using this field as an offset from
the first byte of the element data field (LCB word 7, bits 20-31) to the first byte of
the data to be accessed.

• Immediate Operands (words 2 and 3)

Certain LCP instructions use immediate data contained within these two words. More
detailed information can be found under each individual instruction.

• Byte Count (word 0, bits 16-31)

You use this field with some LCP instructions to specify how many bytes of data are
to be processed.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

• Level Station (word 0, bits 2-3)

14-50

You use this field (LVL) with some LCP instructions to specify what element or priority
station they are to use in stepping operations.

14.8.2. LCP Instructions

Here we discuss the LCP instructions individually. For each instruction, we show the LCP
format, describe its function, explain what condition code it sets with what results, and
include other information you may need to use it.

14.8.2.1. NO-OP LCP Instruction

The NO-OP LCP instruction (Figure 14-27) performs no function by itself, serving instead
as a termination instruction, a branching instruction, or a common destination point for
branches from elsewhere in a list control program.

BIT

Figure 14-27. NO-OP Format

The NO-OP instruction sets its CC field to 002 if the operation is successful; no other CC
values are used. Program control then passes to the location determined by the CC, CT,
SEQ, and BRANCH OFFSET fields, as shown in Tables 14-6 and 14-7.

14.8.2.2. MASKED TEST LCP Instruction

The MASKED TEST LCP instruction tests one to four contiguous bytes of data in the
current element against an immediate mask contained in the LCP instruction (see Figure
14-28). The instruction sets its CC field according to the result.

UP-8913

4

2

3

8

CT

SPERRY UNIVAC OS/3
ASSEMBLER

c
c

BIT

16

OFFSET TO DATA

IMMEDIATE MASK

20

Figure 14-28. MASKED TEST Format

14-51

24 28 31

BYTE COUNT

BRANCH OFFSET

This instruction works much like the TEST UNDER MASK instruction. You specify the
number of bytes to be tested in the BYTE COUNT field. Permitted values for this field are
binary 1-4. You specify the element location of the first element byte to be tested in the
OFFSET TO DATA field; this value represents the offset from the start of the element data
area to the first tested byte.

The IMMEDIATE MASK field holds up to four bytes of data. Bits within the mask that are
set to 1 cause their corresponding bits in the element data field to be tested. Mask bits set
to 0 cause the instruction to ignore their corresponding element bits. The instruction
begins with the high order (left-most) mask byte and proceeds left to right for as many
bytes as you specify. After the test is finished, the instruction sets its CC field. Program
control then passes to the location determined by the CC, CT, SEQ, and BRANCH OFFSET
fields, as shown in Tables 14-6 and 14-7. The CC field is set:

• to 002 if all tested bits are 0 or if all bits in the mask (up to the number specified in
BYTE COUNT) are 0;

• to 01 2 if some tested bits are 0 and some 1; or

• to 11 2 if all tested bits are 1.

14.8.2.3. LOGICAL COMPARE LCP Instruction

The LOGICAL COMPARE LCP instruction (Figure 14-29) logically compares one to four
contiguous bytes of data in the current element against an immediate operand contained
in the instruction. The instruction sets its CC field according to the result.

UP-8913

4

2

3

8

CT

SPERRY UNIVAC OS/3
ASSEMBLER

c
c

BIT

16

OFFSET TO DATA

IMMEDIATE DATA

20 24

BYTE COUNT

BRANCH OFFSET

Figure 14-29. LOGICAL COMPARE Format

14-52

28 31

This instruction works much like the COMPARE LOGICAL instruction. You specify the
number of bytes to be compared, from 1 to 4 bytes, in the BYTE COUNT field. You specify
the location of the element operand by setting the OFFSET TO DATA field to the offset
from the start of the element to the first byte of the operand.

The IMMEDIATE DATA field holds up to four bytes of operand data. Comparison starts
between the first element byte and the leftmost byte of the IMMEDIATE DATA field, and
proceeds left to right for as many bytes as the BYTE COUNT field specifies. For comparison
purposes, all data is treated as binary and unsigned.

After the comparison operation is finished, the instruction sets its CC field. Program
control passes to the location determined by the CC, CT, SEQ, and BRANCH OFFSET fields
as shown in Tables 14-6 and 14-7. The CC field is set:

• to 002 if the immediate data and the element data are equal;

• to 01 2 if the immediate data is less than the element data; or

• to 102 if the immediate data is greater than the element data.

14.8.2.4. MASK AND COMPARE LCP Instruction

The MASK AND COMPARE LCP instruction (Figure 14-30) logically compares one to four
bytes of data in the current element against an immediate operand in the instruction. The
comparison is governed by an immediate mask also contained in the instruction. The
instruction sets its CC field according to the result.

UP-8913

4

2

3

8

CT

SPERRY UNIVAC OS/3
ASSEMBLER

c
c

BIT

16

OFFSET TO DATA

IMMEDIATE MASK

IMMEDIATE OPERAND

20 24

BYTE COUNT

BRANCH OFFSET

Figure 14-30. MASK AND COMPARE Format

14-53

28 31

This instruction works much like a COMPARE LOGICAL CHARACTERS UNDER MASK
instruction. You specify the number of bytes to be compared, from 1 to 4 bytes, in the
BYTE COUNT field. You specify the location of the element operand by setting the OFFSET
TO DATA field to the offset from the start of the element data area to the first byte of the
operand. You specify the operand bits that are to be compared using the IMMEDIATE
MASK field. A 1 bit in the mask causes the instruction to compare the corresponding bits
in the element and immediate operands. A zero bit causes the instruction to ignore the
corresponding operand bits.

The IMMEDIATE OPERAND and IMMEDIATE MASK fields can hold up to four bytes each.
Masking and comparison begin with the leftmost byte in each field and proceed left to
right for as many bytes as the BYTE COUNT field specifies. For comparison purposes, all
data is treated as binary and unsigned.

After the comparison operation is finished, the instruction sets its CC field. Program
control passes to the location determined by the CC, CT, SEQ, and BRANCH OFFSET fields
as shown in Tables 14-6 and 14-7. The CC field is set:

• to 002 if the masked element data is equal to the masked immediate data;

• to 01 2 if the masked immediate data is less than the masked element data; or

• to 102 if the masked immediate data is greater than the masked element data.

14.8.2.5. LOAD REGISTERS LCP Instruction

The LOAD REGISTERS LCP instruction (Figure 14-31) loads any or all of a selected set of
registers from the register save areas of the current element.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

BIT

Figure 14-31. LOAD REGISTERS Format

14-54

The LOAD REGISTERS instruction acts much like the register load option of the DEQUEUE
instruction. In fact, it is controlled by the same portion of the STEP QUEUE instruction (bits
13-15) that the DEQUEUE option is. It also uses the same fields of the LCB and its
elements. The only difference is that with LOAD REGISTERS you can load from any
element in your list, not just the one you have just removed. The following list explains
how to enable and control the LOAD REGISTER instruction once you call it in your list
control program:

• STEP QUEUE bit 13 - LCB word 0, bit 13

To enable the loading of general registers from the general register save area of the
current element (addressed by LCB word 6, bits 20-31) you must set both these bits
to 1.

• STEP QUEUE bit 14 - LCB word 0, bit 14

To load from the supervisor register set, specify a 1 in both bits. Otherwise, the
problem register set will be used.

• STEP QUEUE bit 15 - LCB word 0, bit 15

To enable the loading of all four floating-point registers from their save area
(addressed by LCB word 6, bits 4-15) you must set both these bits to 1.

• r1/r2 (LCB word 3, bits 0-7)

These two fields specify the range of general registers, supervisor or problem, to be
loaded. Loading begins with the r1 register, continues through consecutively­
numbered registers, and ends with r2 • If r1 equals r2 only that register is loaded. If r1

is greater than r2 loading proceeds in this order: r1, ... , 15,0 ... ,r2 . If specified, register 0
is always loaded from the first save area word, register 1 from the second word, etc.

After the load operation is finished, the instruction sets its CC field to 002 . Program control
passes to the location determined by the CC, CT, SEQ, and BRANCH OFFSET fields as
shown in Tables 14-6 and 14-7.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-55

14.8.2.6. STORE REGISTERS LCP Instruction

The STORE REGISTERS LCP instruction (Figure 14-32) stores any or all of a selected set
of registers to the register save area of the current element.

BIT

Figure 14-32. STORE REGISTERS Format

The STORE REGISTERS instruction acts much like the register store option of the
ENQUEUE instruction. In fact, it is controlled by the same portion of the STEP QUEUE
instruction (bits 13-15) that the ENQUEUE instruction is. It also uses the same fields of
the LCB and its elements. The only difference is that with STORE REGISTERS you can
store to any element in your list, not only the one just added. The following list explains
how to enable and control the STORE REGISTERS instruction once you call it in your list
control program.

• STEP QUEUE bit 13 - LCB word 0, bit 13

To enable the storage of general registers to the general register save area (addressed
by LCB word 6, bits 20-31) you must set both these bits to 1.

• STEP QUEUE bit 14 - LCB word 0, bit 14

To store data from the supervisor register set, specify a 1 in both bits. Otherwise, the
problem register set is used.

• STEP QUEUE bit 15 - LCB word 0, bit 15

To enable the storage of all four floating-point registers to their save area (addressed
by LCB word 6, bits 4-15) you must set both these bits to 1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-56

• r1/r2 (LCB word 0, bits 0-7)

These two fields specify the range of general registers to be stored. Storage begins
with the r 1 register, continues through consecutively-numbered registers, and ends
with the r2 register. If r1 equals r2 only that register is stored. If r1 is greater than r2

storage proceeds in this order: r 1, ... , 15,0, ... ,r2 . If specified, register 0 is stored at the
first word of the save area, register 1 at the second word, etc.

After the storage operation is finished, the instruction sets its CC field to 002 . Program
control passes to the location determined by the CC, CT, SEQ, and BRANCH OFFSET fields
as shown in Tables 14-6 and 14-7.

14.8.2.7. MOVE DATA OUT LCP Instruction

The MOVE DATA OUT LCP instruction (Figure 14-33) moves data from within the data
area of the current element to another main storage location.

BIT

0

BRANCH OFFSET

2 DESTINATION OPERAND

3 SOURCE OPERAND

Figure 14-33. MOVE DATA OUT Format

This instruction acts much like the data movement option available with the DEQUEUE
instruction. As with DEQUEUE, you specify the location of the source operand as the offset
of its first byte from the first byte in the current element's data area; this offset goes into
bits 0-15 of the odd-numbered r4 register. The destination address goes into bits 8-31 of
the even-numbered r4 register. Bits 16-31 of the odd-numbered r4 register hold the
number of bytes to be moved up to a maximum of 4095 bytes.

You have the choice of controlling data movement using the current contents of the r 4

register pair or using data you load into the registers before data movement begins, data
you specify in words 2 and 3 of the LCP instruction. To use the registers unchanged, put
all zeros into word 2 of the instruction. To alter the registers, put the data you want to go
in the even-numbered register in word 2 and the odd-numbered register data in word 3.
Making word 2 a nonzero value triggers a register load routine that loads words 2 and 3
into the r 4 register pair, then uses this new data to control data movement.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-57

After the data movement operation is finished, the instruction sets its CC field to 002 .

Program control then passes to the location determined by the CC, CT, SEQ, and BRANCH
OFFSET fields as shown in Tables 14-6 and 14-7.

14.8.2.8. MOVE DATA IN LCP Instruction

The MOVE DATA IN format is shown in Figure 14-34.

BIT

0

BRANCH OFFSET

2 SOURCE OPERAND

3 DESTINATION OPERAND

Figure 14-34. MOVE DATA IN Format

This instruction acts much like the data movement option available with the ENQUEUE
instruction. As with ENQUEUE, you specify the location of the destination operand as the
offset of its first byte from the first byte in the current element's data area; this offset goes
into bits 0-15 of the odd-numbered r4 register. The sourr,e address goes into bits 8-31
of the even-numbered r4 register. Bits 16-31 of the odd-numbered r4 register hold the
number of bytes to be moved, up to a maximum of 4095 bytes.

You have the choice of controlling data movement using the current contents of the r4

register pair or using data you load from words 2 and 3 of the instruction, just as in the
MOVE DATA OUT instruction. To use the r4 data unchanged, put all zeros into word 2.
Otherwise, a nonzero word 2 value causes words 2 and 3 to be loaded to the r4 register
pair before data movement begins.

After the data movement operation is finished, the instruction sets its CC field to 002 •

Program control then passes to the location determined by the CC, CT, SEQ, and BRANCH
OFFSET fields as shown in Tables 14-6 and 14-7.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14.8.2.9. STEP STATION LCP Instruction

14-58

The STEP STATION LCP instruction (Figure 14-35) moves a station you select one
position in the direction you specify. You can only use this instruction with priority lists;
therefore, it has the effect of moving the selected station from one list head table entry to
the next priority level above or below it.

BIT

Figure 14-35. STEP STATION Format

You select the priority station you want moved by a combination of parameters in and out
of the LCP instruction. You use the LVL field to specify whether you are moving a primary
level or secondary level station for a two-level list. Permitted values are:

• 002 for a primary level station; or

• 01 2 for a secondary level station.

For a one-level station you always specify a LVL value of 002 .

Bit 9 of the STEP QUEUE instruction that calls the list control program determines the
direction of station movement. Permitted values are:

• 02 for forward movement (decreasing priority); or

• 12 for backward movement (increasing priority).

As you have seen, each priority list head has two stations you can move.

You use the STN field, bits 10 and 11 of the STEP QUEUE instruction, to specify the
station you want. Permitted values are:

• OX2 for primary level station 1;

• 1 X2 for primary level station 2;

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

e • X02 for secondary level station 1; or

• X1 2 for secondary level station 2.

14-59

The X character indicates a bit position whose value does not affect station selection. If
you specify a LVL value of 002 , for example, you need specify only STN values OX2 or 1X2
as bit 11 (secondary level) is now irrelevant.

After execution of the step function the instruction sets its CC field according to the result.
Possible settings are:

• 002 for a successful step operation; or

• 01 2 for an unsuccessful step operation, usually caused by attempting to step a station
beyond one end of a list.

Program control passes to the location determined by the CC, CT, SEQ, and BRANCH
OFFSET fields as shown in Tables 14-6 and 14-7.

14.8.2.10. INIT STATION LCP Instruction

The INIT STATION LCP instruction (Figure 14-36) causes the station you select to point to
the first or last element in a list.

BIT

Figure 14-36. /NIT STATION Format

This instruction uses some of the same fields as the STEP STATION instruction. Unlike it,
however, you can use INIT STATION with every type of list except aged priority. Table 14-8
shows, for every permitted type of list, what element or priority level a station points to after
this instruction is executed.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table 14-8. /NIT STATION Effects on Stations

Step Direction
List Type

Forward Backward

LIFO* First element Last element
FIFO* First element Last element
Double-ended* First element Last element
FIFO with station First element Last element
Ring with station Current element Current element
Priority Priority 0 Lowest priority

(equal to MAX)
Aged priority Not used

*Even-numbered r3 register used as station

14-60

Note that specifying a forward direction means that the station is set to point to the first
element you would encounter while scanning from a list head in the forward direction.
Similarly, a backward direction means the station is set to point to the first element you
would encounter scanning backward pointers from the list head - even though that same
element is the last one you would find in a forward scan.

For our purposes we distinguish a priority station, an 8-bit field used only with priority and
aged priority lists, from an element station, a 24-bit field containing the address of an
element. You select the type of station you are initializing using the LVL field. Permitted
values are:

• 002 for a primary level priority station;

• 01 2 for a secondary level priority station; or

• 102 for an element station.

For a one-level priority list you must specify an LVL value of 002 .

Because you have two stations in a priority list head, you must select the station you want
to initialize. You do this using bits 10 and 11 of the STEP QUEUE instruction. Permissible
values are:

• OX2 for primary level station 1;

• 1 X2 for primary level station 2;

• X02 for secondary level station 1; or

• X1 2 for secondary level station 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-61

You choose the direction of initialization (the step direction of Table 14-8) using bit 9 of
STEP QUEUE. Permitted values are:

• 02 for forward initialization; or

• 12 for backward initialization.

After the initialization operation is finished, the instruction sets its CC field:

• to 002 if the operation is successful; or

• to 01 2 if the operation is unsuccessful, usually caused when the instruction
encounters an empty nonpriority list.

Program control passes to the location determined by the CC, CT, SEQ, and BRANCH
OFFSET fields as shown in Tables 14-6 and 14-7.

14.8.2.11. SWITCH LIST SCAN (SWLS) LCP Instruction

The SWITCH LIST SCAN (SWLS) instruction (Figure 14-37) is a modification of the MASK
AND COMPARE LCP instruction (14.8.2.4) that is used with the supervisor switch list.

4

2

3

8

CT

OFFSET TO DATA

c
c

BIT

16

IMMEDIATE MASK

IMMEDIATE OPERAND

Figure 14-37. SWLS Format

20 24 28 31

BYTE COUNT

BRANCH OFFSET

The SWLS instruction acts much like the MASK AND COMPARE instruction in that it
logically compares 1 to 4 bytes of data contained in the IMMEDIATE DATA field against an
equal number of bytes in the current element data area, at a location specified by the
OFFSET TO DATA field. Like MASK AND COMPARE, too, this instruction uses a mask in
the IMMEDIATE MASK field in such a way that 1 bits in the mask cause a comparison
between their corresponding bits in the immediate operand and element fields, while 0
bits in the mask cause their corresponding bits to be ignored. And like MASK AND
COMPARE, the BYTE COUNT field determines the number of bytes to be compared; if
fewer than four bytes are specified, the instruction begins its operation with the leftmost
byte and proceeds left to right.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-62

The differences between the MASK AND COMPARE and SWLS instructions lie in the logic
each follows after the comparison operation is finished. First, the SWLS instruction sets
its CC field:

• to 002 if the masked element operand equals the masked immediate operand, the
mask equals 0, or the element operand equals 0, regardless of mask or comparison
values;

• to 01 2 if the masked immediate data is less than the masked element data; or

• to 102 if the masked immediate data is greater than the masked element data.

Program control passes to the location determined by the CC, CT, SEQ, and BRANCH
OFFSET fields. This happens as described in Table 14-6 and 14-7 - but with one
exception: if a condition occurs that would cause a step to the next (or previous) element,
the instruction does not pass program control back to the first instruction in the list control
program. Rather, the instruction repeats itself, the station pointing now to the next
element in the list. All other conditions are handled as shown in Tables 14-6 and 14-7.

14.8.3. Initializing and Calling List Control Programs

Much of the work involved in designing list control programs lies in the logic they must
follow. Keep in mind that an LCP instruction is always four words long and that you can
branch any number of instructions forward using the BRANCH OFFSET field; but you can
branch backward to one location only, the first instruction in the list control program.
Remember, too, that once you execute a list control program from a STEP QUEUE
instruction, all STEP QUEUE control bits (bits 8-15) remain in effect and unchanged
throughout execution.

Once you have designed your list control program, you must link it with the STEP QUEUE
instruction that is to execute it. You do this using your list's LCB. Table 14-9 explains
how to do this and initialize other important fields also.

Table 14-9. Initializing LCB Registers for LCP Execution

LCB Field Initialize With

Even-numbered The address of the first LCP instruction, called
r5 register the base address

Odd-numbered All zeros; this is the current LCP offset, which
r 5 register LCP instructions use as a location counter.

Even-numbered Current element address, which must be used with
r3 register LIFO or FIFO lists not using a separate station.

This is usually set for you by previous list
processing instructions.

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-63

To execute your list control program, you execute a STEP QUEUE instruction with bit 8 set
to 1. Other fields within STEP QUEUE are used by LCP instructions themselves, and their
use is discussed for each instruction. In general, you should set those bits in STEP QUEUE
and your LCP instructions to 0 that you do not otherwise need to set to 1.

14.9. LIST PROCESSING EXAMPLE

Here we show how we can use list processing instructions to manipulate a list of our own
creation. The coding we use follows:

1. QBEGIN BALR 12,0
2. USING ~~' 12
3. LA 6, ELEMENTS
4. ENQ LCBLOCK,0
5. LA 6,88(6)
6. ENQ LCBLOCK,0
7. LA 6,88(6)
8. ENQ LCBLOCK,0
9. STEP LCBLOCK,B'01000000 1

10. L 6, LCBLOCK+56
11. DEQ LCBLOCK,0
12. LA 6,0
13. DEQ LCBLOCK,0

14. ORG QBEG I N+X I 2000 I
15. LCBLOCK DC X' 11400600'
16. DC C'LIST'
1 7. DC XI 10000000 I
18. DC F'0'
19. DC XI 10 1

20. DC AL3(4)
21. DC 2F'0'
22. DC H' 80'
23. DC H'8'
24. DC FI 1 ' 1 0 I
25. DC 2F' 0'
26. DC 3A (LC BLOC K+48)
27. DC F' 0'

28. ORG QBEGIN+X'3000'
29. ELEMENTS EQU "'

SET R6 TO ELEMENT ADDRESS
ENQUEUE A
SET R6 TO NEXT ELEMENT ADDRESS
ENQUEUE B
SET R6 TO NEXT ELEMENT ADDRESS
ENQUEUE C
MOVE STATION BACKWARDS TO B
SET R6 TO ADDRESS OF B
DEQUEUE B
CLEAR R6
DEQUEUE FIRST ELEMENT (A)

WORD 0
WORD 1
WORD 2
WORD 3
WORD 4 BITS 0-7
WORD 4 BITS 8-31
WORD 5-6
WORD 7 BITS 0-15
WORD 7 BITS 16-31
WORDS 8-9
WORDS 10-11
WORDS 12-14
WORD 15

To learn what the instructions at lines 1-13 do, we should first analyze the LCB they all
use. The LCB defined by lines 15-27, LCBLOCK, begins at location 2000 (the ORG directive
at line 14). The following chart shows LCBLOCK, initialized according to the rules for FIFO
lists; shaded areas represent unused fields.

UP-8913

ADDRESS

2000

2004

2008

200C

2010

2014

2018

201C

2020

2024

2028 10

202C 11

2030 12

2034 13

2038 14

203C 15

SPERRY UNIVAC OS/3
ASSEMBLER

14-64

.---------------------------- LIST TYPE FIFO WITH STATION

.-------------------------ELEMENT TYPE DOUBLE LINKED

.------------------CONTROLS: MOVE STATION FORWARD AFTER DEQUEUE
PROCESS LIST IN PROBLEM STATE

0

LIST IDENTIFICATION: EBCDIC 'LISr

COMPONENT LINKAGE TYPE LOGICAL ADDRESS

POINTER TYPE LOGICAL ADDRESS

FORWARD POINTER C)FFSET (0000)

BACKWARD POINTER OFFSET 100041

DATA AREA OFFSET (0008)

MINIMUM ELEMENT THRESHOLD· 1

FORWARD POINTER

BACKWARD POINTER

data

I
ELEMENT FORMAT

A MAXIMUM ELEMENT THRESHOLD 10

0 CURRENT COUNT INITIALIZED TO 0

FORWARD POINTER LCB WORD 12 ADDRESS

BACKWARD POINTER LCB WORD 12 ADDRESS

STATION LCB WORD 12 ADDRESS

DATA
LENGTH
00501]~'

The list elements are simple 88-byte sections of main storage, each containing one forward
pointer, one backward pointer, and an 80-byte data area. The LOAD ADDRESS instruction
at line 3 puts the address of ELEMENTS, the first element to be enqueued, in register 6, the
even-numbered r3 register. Assume that ELEMENTS is at location 3000; register 6 will be
set as follows:

Register 6 00003000

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-65

The ENQUEUE instruction at line 4 adds the element at location ELEMENTS to the list
(element A). After execution of the ENQUEUE, the condition code is set to O and the list and
element A are updated as follows:

BIT

LCBLOCK

10

ADDRESS

ADDRESS 11

2030 12

2034 13

0

0 0

2038 14 I 0 0 0 0 0 0

3000§} 3004 ELEMENT

3008 A

3054 I data I

REGISTER 6 00003000

Only LCB word 10 (CURRENT COUNT), 12 (forward pointer), 13 (backward pointer), and 14
(station) are changed by ENQUEUE. Register 6 remains set to the address of element A. In
line 5, we prepare for the next list processing operation by making register 6 point to
another section of main storage at ELEMENT +88, which is to be element B:

Register 6 I 00003053

At line 6, the next ENQUEUE instruction adds element B to the list, leaving the condition
code set to 0 and updating the list as follows:

LC BLOCK

10

ADDRESS 11

2030 12

2034 13

BIT

AO DRESS

3000

3004

3008

3054

t...__o~~-o~~~o~~-o--~--~~-o----~---~ ~
Reg1s1er6~

30AC

3 0 5 8 i=-
2 0 3 0

data

2 0 3 0 14
3 0 0 0 t--

[data

As before, register 6 remains unchanged by the operation although the instruction creates
new links between LCBLOCK and its two elements. Note that element B is the last element
you would encounter if you follow the forward pointers from LCBLOCK through its
elements. This is true no matter where in main storage you put element B; as long as it does
not overlap other list elements, it can lie anywhere in relation to the LCB or to other
elements. Note also that the station in word 14 points to element B; it does so because B is
the element most recently added to the list.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14-66

We wish to add a third element, called element C. To do this we set register 6 to point to
address ELEMENTS+176 (line 7) and execute ENQUEUE once again (line 8). After
execution, the condition code remains set to 0 and the list is updated as follows:

BIT

LCBLOCK

3 0 5 8 1-i

2 0 3 0

10 data

ADDRESS 11 3 0 B 0 ~
2030 12 3 0 0 0

3060

2034 13
data

30AC

3080 2 0 3 0

3084 3 0 5 8 t---'

3088

3104

data J
As you can see, the station points to element C when the ENQUEUE instruction in line 8
finishes. The CURRENT COUNT field (LCB word 10) holds a value of 3, representing the
three elements the list now contains.

The next instruction, at line 9, is a STEP QUEUE in which we set bit 9 of its object code to 1;
this indicates that the station is to be moved backward, pointing to the previous element in
the list. By following the element C backward pointer shown, we can see that the station
now points to element B:

LCB word 14: I 00003058

The condition code is set to 0, indicating a successful step. Except for the station, no fields
in the list are changed by STEP QUEUE. In lines 8 and 9, we remove an element from the
list. We first load the station pointer, currently pointing to element B in register 6. Because
the even-numbered r3 register (6) now contains a nonzero value, the instruction interprets it
as the address of the element to be removed, element B. The list is updated as follows:

UP-8913

LCBLOCK

10

ADDRESS 11

2030 12

2034 13 0 0

0 0 0 0

BIT

SPERRY UNIVAC OS/3
ASSEMBLER

0 0

L------------------------------·---
Register 6 00003058

3084

3088

3104

14-67

3 0 8 0 ~
2 0 3 0

§
data

} <~<ITT

} ,,:::.:.:,
2 0 3 0 I-
3 0 0 0 t--

l data

J
As you can see, register 6 continues to point to element B, now removed from the list. Note
that the pointers of elements A and C now point to each other, neither of them to B. Note
also that the station now points to the element preceding the one removed (as directed by
LCBLOCK word 0, bit 10). The condition code is set to 0, and the CURRENT COUNT FIELD is
reduced by 1 .

We wish to perform one more operation, to remove the first element in the list. To do so, we
first put all zeros in register 6 (using the LOAD ADDRESS instruction of line 12). This action
ensures that it is the first element that is removed by the DEQUEUE instruction of line 13.
That instruction updates the list as follows:

BIT

LCBLOCK

0

10

11

12

13

~}ELEMENT
~ (DEQ~EUED)

~}ELEMENT ~ (DEQ~EUED)
data

2 0 3 0

2 0 3 0

Register 6 00003000
3104

Note that register 6 is set to point to element A, the first element of the list and the one
removed. All pointers now connect the LCB with element C alone. The CURRENT COUNT
field is reduced to 1, which is the value we placed in the MINIMUM ELEMENT
THRESHOLD field of the LCB. Consequently, the condition code is set to 1 (underflow).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Appendix E.

E-1

Instruction Listings

Included in this appendix are alphabetic listings of the mnemonic codes (Table E-1) and
instruction names (Table E-2) and a numeric list of the machine codes (Table E-3).

Table E-1. Mnemonic List of Instructions (Part 1 of 4)

Source Code Format
Mnemonic Instruction Name

Machine Byte
Code Length

Explicit Implicit

A Add 5A 4 r, ,d2(X2,b2) r,s2(x2)
AD Add Normalized, Long 6A 4 r 1 ,d2(X2,b2) r,,s2(X2)
ADR Add Normalized, Long 2A 2 r1 ,r2 r1,r2
AE Add Normalized, Short 7A 4 r 1 ,d2(X2,b2) r,,s2(x2)
AER Add Normalized, Short 3A 2 r1,r2 r1,r2
AH Add Half Word 4A 4 r 1 ,d2(X2,b2) r,,s2(X2)
Al Add Immediate 9A 4 d,(b,),i2 s,,i2
AL Add Logical 5E 4 r 1 ,d2(X2,b2) r,,s2(X2)
ALR Add Logical 1E 2 r1 ,r r1,r2
AP Add Decimal FA 6 d1(11 ,b,),d2ll2.b2) s,(l,),s2(12)
AR Add 1A 2 r1 ,r2 r1,r2
AU Add Unnormalized, Short 7E 4 r 1 ,d2(X2,b2) r,,s2(x2)
AUR Add Unnormalized, Short 3E 2 r1,r2 r1,r2
AW Add Unnormalized, Long 6E 4 r 1 ,d2(X2,b2) r,,s2(X2)
AWR Add Unnormalized, Long 2E 2 r1,r2 r1 ,r2
BAL Branch and Link 45 4 r 1,d2(xvb2) r1,S2(X2)
BALR Branch and Link 05 2 r1,r2 r1,r2
BC Branch on Condition 47 4 i,d2(X2,b2) i,S2(X2)
BCR Branch on Condition 07 2 i,r2 ih
BCT Branch on Count 46 4 r 1 ,d2(X2,b2) r,,s2(x2)

BCTR Branch on Count 06 2 r1,r2 r1,r2
BXH Branch on Index High 86 4 r,,r3,d2(b2) r1,r3,s2

BXLE Branch on Index Low or Equal 87 4 r,,r3,d2(b2) r1,r3,s2

c Compare Algebraic 59 4 r 1 ,d2(X2,b2) r1,S2(X2)
CD Compare, Long 69 4 r, ,d2(Xvb2) r,,s2(X2)
CDR Compare, Long 29 2 rl,r2 r1 ,r2
CE Compare, Short 79 4 r 1 ,d2(X2,b2) r,,s2(X2)

CER Compare, Short 39 2 r1 ,r2 r1 ,r2
CH Compare Half Word 49 4 r 1 ,d2(X2,b2) r,,s2(X2)

CL Compare Logical 55 4 r, ,d2(X2,b2) r,,s2(X2)

UP-8913

Mnemonic

CLC

CLCL

cu
CLIS

CLM

CLR

CLRCH

CLRDV

CP

CR

CSM

CVB

CVD

D

DD

DOR

DE

DEQ

DER

DP

DR

ED

EDMK

EIO

ENO

EX

EXD

HOR

HOV

HER

HPR

IC

ICM

ISK

L

LA

LCDR

LCER

LCHR

LCR

LCTL

LO

LOA

LOR

LE

LEA

LH

LIA

SPERRY UNIVAC OS/3
ASSEMBLER

E-2

Table E-1. Mnemonic List of Instructions (Part 2 of 4)

Source Code Format

Instruction Name
Machine Byte

Code Length
Explicit Implicit

Compare Logical 05 6 d,,(l,b,),d2(b2) s,(l),s2
Compare Logical Characters Long OF 2 r1,r2 r1,r2
Compare Logical Immediate 95 4 d,(b,),i2 s,,i2

Compare Logical Immediate and Skip El 6 d,(b,),i2,m3,d4 s1,i2,m3,s4

Compare Logical Characters Under Mask BO 4 r 1,m3,d2(b2) r1,m3,s2
Compare Logical 15 2 r1 ,r2 r1,r2
Clear Channel 9F02 4 (Privileged) (Privileged)

Clear Device 90 4 (Privileged) (Privileged)

Compare Decimal F9 6 d,(l,,b,),d2(l2.b2) s,(l,J,s2!12l

Compare Algebraic 19 2 r1 ,r2 r1 ,r2
Compare and Swap Under Mask B9 4 r,h,d2(b2) r1,r3,s2
Convert to Binary 4F 4 r, ,d2(X2,b2) r,,s2(X2)

Convert to Decimal 4E 4 r, ,d2(X2,b2) r,,s2(x2)

Divide 50 4 r 1.d2(X2,b2) r,,s2(x2)

Divide, Long 60 4 r 1.d2(X2,b2) r,,s2(x2)

Divide, Long 20 2 r1,r2 r1,r2
Divide, Short 70 4 r 1.d2(X2,b2) r,,s2(X2)

Dequeue B4 4 d,(b,),i2 S1,i2
Divide, Short 30 2 r, .r2 r1,r2
Divide Decimal FD 6 d,(l,,b,),d2!12.b2) s,(l,J .. s2(12)

Divide 10 2 r1,r2 r1 ,r2
Edit DE 6 d,(l,b,).d2(b2) s,(l),s2
Edit and Mark OF 6 d,(l,b,).d2(b2) s,(l),s2
Enqueue 1/0 EO 6 (Privileged) (Privileged)

Enqueue B3 6 d,(b,),i2 S1,i2
Execute 44 4 r 1.d2(X2,b2) r1,s2(x2)

Execute Diagnose 8300 4 (Privileged) (Privileged)

Halve, Long 24 2 r1,r2 r1,r2
Halt Device 9E 4 (Privileged) (Privileged)

Halve, Short 34 2 r1 ,r2 r1,r2
Halt and Proceed 99 4 (Privileged) (Privileged)

Insert Character 43 4 r 1.d2(X2,b2) r,,s2(x2)
Insert Characters Under Mask BF 4 r,,m3,d2(b2) r1,m3,s2
Insert Storage Key 09 2 (Privileged) (Privileged)

Load 58 4 r 1.d2(X2,b2) r,,s2(X2)
Load Address 41 4 r 1.d2(X2,b2) r,,s2(x2)
Load Complement, Long 23 2 r1 ,r2 r1,r2
Load Complement, Short 33 2 r1 ,r2 r1,r2
Load Channel Register 9F03 4 (Privileged) (Privileged)
Load Complement 13 2 r1,r2 r1 ,r2
Load Control B7 4 (Privileged) (Privileged)
Load, Long 68 4 r, ,d2(X2,b2) r,,s2(x2)
Load Directive Address 51 4 (Privileged) (Privileged)
Load, Long 28 2 r1,r2 r1 ,r2
Load, Short 78 4 r 1.d2(X2,b2) r,,s2(X2)
Load, Short 38 2 r1,r2 r, ,r2
Load Half Word 48 4 r, ,d2(X2,b2) r,,s2(X2)
Load 1/0 Address 61 4 (Privileged) (Privileged)

UP-8913

Mnemonic

LM

LNDR

LNER

LNR

LPDR

LPER

LPR

LPSW

LR

LRC

LRR

LTDR

LTER

LTR

M

MD

MDR

ME

MER

MH

MIO

MP

MR

MSS

MVC

MVCL

MVI

MVN

MVO

MVZ

N

NC

NI

NR

0

oc
01

OR

PACK

RESET

s
SD
SOR

SDV

SE

SER

SH

SHL

SPERRY UNIVAC OS/3
ASSEMBLER

E-3

Table E-1. Mnemonic List of Instructions (Part 3 of 4)

Machine
Source Code Format

Instruction Name
Byte

Code Length
Explicit Implicit

Load Multiple 98 4 r,,r3,d2(b2) r1,r3,s2
Load Negative, Long 21 2 r1,r2 r1,r2
Load Negative, Short 31 2 r1 ,r2 r1,r2
Load Negative 11 2 r1 ,r2 r1 ,r2
Load Positive, Long 20 2 r1 ,r2 r1,r2
Load Positive, Short 30 2 r1,r2 r1,r2
Load Positive 10 2 r1,r2 r1,r2
Load Program Status Word 82 4 (Privileged) (Privileged)

Load 18 2 r1,r2 r1,r2
Longitudinal Redundancy Check 830E 4 (Privileged) (Privileged)

Load Relocation Register A3 4 (Privileged) (Privileged)
Load and Test, Long 22 2 r1,r2 r1,r2
Load and Test, Short 32 2 r1 ,r2 r1,r2
Load and Test 12 2 r1,r2 r1,r2
Multiply 5C 4 r, ,d2(X2,b2) r,,s2(x2)
Multiply, Long 6C 4 r, ,d2(X2,b2) r,,s2(x2)
Multiply, Long 2C 2 r1 ,r2 r1,r2
Multiply, Short 7C 4 r 1.d2(X2,b2) r1,s2(x2)

Multiply, Short 3C 2 r1,r2 r1,r2
Multiply Half Word 4C 4 r, ,d2(X2,b2) r,,s2(X2)
Move 1/0 81 4 (Privileged) (Privileged)

Multiple Decimal FC 6 d,(l, ,b,),d2!12.b2) s1(11),s2(l2)

Multiply 1C 2 r1,r2 r1,r2
Modify Storage and Skip E3 6 d,(i,,b,).d2(i3,b2) s,(i,),s21ial

Move Characters D2 6 d,(l,b,),d2(b2) S1(l),S2

Move Character Long OE 2 r, ,r2 r1,r2
Move Immediate 92 4 d,(b,),i2 s1,i2
Move Numerics D1 6 d,(l,b,),d2(b2) S1(l),S2

Move With Offset Fl 6 d,(l,,b,).d2(l2.b2) s,(l,),s2!12l

Move Zones D3 6 d, (l,b,),d2(b2) s1(1),s2

AND Logical 54 4 r, ,d2(X2,b2) r,,s2(X2)

AND Logical D4 6 d,(l,b,),d2(b2) s1(1),s2

AND Logical Immediate 94 4 d,(b,),i2 s,,i2

AND Logical 14 2 r1,r2 r1,r2
OR Logical 56 4 r, ,d2(X2,b2) r1,s2(x2)

OR Logical D6 6 d,(l,b,),d2(b2) s1(1),s2

OR Logical Immediate 96 4 d,(b,),i2 s,,i2

OR Logical 16 2 r1 ,r2 r1 ,r2
Pack F2 6 d,(l, ,b,),d2!12,b2) s,(11),s2!12l

Reset 8301 4 (Privileged) (Privileged)

Subtract 58 4 r,,s2(X2) r,,s2

Subtract Normalized, Long 68 4 r, ,d2(X2,b2) r,,s2(x2)

Subtract Normalized, Long 2B 2 r1,r2 r1,r2
Start Device 9C 4 (Privileged) (Privileged)

Subtract Normalized, Short 78 4 r, ,d2(X2,b2) r,,s2(x2)

Subtract Normalized, Short 38 2 r1,r2 r1,r2
Subtract Half Word 48 4 r 1 ,d2(X2,b2) r1,s2(x2)

Shift Logical 98 4 r 1,m3,d2(b2) r1,m3,s2

UP-8913

Mnemonic

SL

SLA

SLDA

SLDL

SLL

SLM

SLR

SP

SPM

SR

SRA

SRDA

SRDL

SRL

SRP

SSK

SSM

SSTM

ST

STC

STCM

STCTL

STD

STE

STEP

STH

STM

STR

STRR

STS

SU

SUR

SVC

SW

SWR

TM

TMS

TR

TRT

TS

UNPK

x
xc
XI

XR

ZAP

SPERRY UNIVAC OS/3
ASSEMBLER

E-4

Table E-1. Mnemonic List of Instructions (Part 4 of 4)

Source Code Format
Instruction Name

Machine Byte
Code Length

Explicit Implicit

Subtract Logical 5F 4 r 1.d2(X2,b2) r1,S2(X2)

Shift Left Single Algebraic 8B 4 ri.d2(b2) r1,S2

Shift Left Double Algebraic 8F 4 r1.d2(b2) ri.S2
Shift Left Double Logical BD 4 r1.d2(b2) ri.S2

Shift Left Single Logical 89 4 r1.d2(b2) r1,S2

Supervisor Load Multiple B8 4 (Privileged) (Privileged)

Subtract Logical 1F 2 r1.r2 r1.r2
Subtract Decimal FB 6 d1(l1.b1).d2(l2.b2) S1(l1),S2(12)

Set Program Mask 04 2 r1 r1
Subtract 1B 2 r1.r2 r1.r2
Shift Right Single Algebraic 8A 4 r1.d2(b2) r1,S2

Shift Right Double Algebraic 8E 4 r,,d2(b2) ri.S2
Shift Right Double Logical BC 4 r,,d2(b2) r1,s2
Shift Right Single Logical 88 4 r,,d2(b2) r1,s2
Shift and Round Decimal FO 6 d,(1,,b,).d2(b2).i3 s,(l,),s2.ia

Set System Key 08 2 (Privileged) (Privileged)

Set System Mask 80 4 (Privileged) (Privileged)

Supervisor Store Multiple BO 4 (Privileged) (Privileged)

Store 50 4 r 1.d2(X2,b2) ri.S2(X2)
Store Character 42 4 r 1.d2(X2,b2) r1,S2(X2)
Store Characters Under Mask BE 4 r1.m3,d2(b2) ri.m3,s2
Store Control B6 4 (Privileged) (Privileged)

Store Long 60 4 r 1.d2(X2,b2) r1,S2(X2)
Store Short 70 4 r 1.d2(X2,b2) r1,S2(X2)
Step Queue B5 4 d1(bi),i2 Si.i2
Store Half Word 40 4 r 1.d2(X2,b2) ri.S2(X2)
Store Multiple 90 4 r1,r3,d2(b2) r1.r3,S2
Service Timer Register 03 2 (Privileged) (Privileged)

Store Relocation Register A2 4 (Privileged) (Privileged)
Store Status 8302 4 (Privileged) (Privileged)
Subtract Unnormalized, Short 7F 4 r 1.d2(X2,b2) r1,S2(X2)
Subtract Unnormalized, Short 3F 2 r1 .r2 r1 .r2
Supervisor Call OA 2 i i
Subtract Unnormalized, Long 6F 4 r 1.d2(X2,b2) r1,S2(X2)
Subtract Unnormalized, Long 2F 2 r1 .r2 r1 ,r2
Test Under Mask 91 4 d1(bi),i2 S1,i2
Test Under Mask and Skip E2 6 d1(b1), ivm3,d4 S1,i2,m3,S4
Translate DC 6 d1(l.b1).d2(b2) S1(l),S2
Translate and Test DD 6 dl (l.b1).d2(b2)
Test and Set 93 4 dl (bl) .,
Unpack F3 6 d111, .b,),d2(12,b2) s1 (1 1),s2

(1
2

)

Exclusive OR 57 4 r 1 'd2(x2,b2) r1 ,s2 (x
2

)

Exclusive OR 07 6 d1 (l,b,),d2(b2) s, (I) ,S2
Exclusive OR, Jmmediate 97 4 d, lb,).i2 s1,i

2
Exclusive OR 17 2 r 1,r 2

r 1,r 2
Zero and Add Decimal F8 6 d, (I, ,b,) ,d2(12,b2) s1 (1 1),s2

(1
2

)

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 1 of 6)

Instruction Name Machine
Code

Mnemonic

Add 1A AR

Add SA A

Add Decimal FA AP

Add Half Word 4A AH

Add Immediate 9A Al

Add Immediate A6 Al

Add Logical 1E ALR

Add Logical SE AL

Add Normalized, Long 2A ADR

Add Normalized, Long 6A AD

Add Normalized, Short 3A AER

Add Normalized, Short 7A AE

Add Unnormalized, Long 2E AWR

Add Unnormalized, Long 6E AW

Add Unnormalized, Short 3E AUR

Add Unnormalized, Short 7E AU

AND 14 NR

AND S4 N

AND 94 NI

AND D4 NC

Branch and Link OS BALR

Branch and Link 45 BAL

Branch on Condition 07 BCR

Branch on Condition 47 BC

Branch on Count 06 BCTR

Branch on Count 46 BCT

Branch on Index High 86 BXH

Branch on Index Low or Equal 87 BXLE

Clear Channel - Privileged 9F02 CLRCH

E-S

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 2 of 6)

Instruction Name Machine Mnemonic
Code

Clear Device - Privileged 9D CLRDV

Compare 19 CR

Compare 59 c

Compare and Swap Under Mask B9 CSM

Compare Decimal F9 CP

Compare Half Word 49 CH

Compare Logical 15 CLR

Compare Logical 55 CL

Compare Logical 95 cu

Compare Logical D5 CLC

Compare Logical Characters Under Mask BD CLM

Compare Logical Immediate and Skip E1 CLIS

Compare Logical Characters Long OF CLCL

Compare, Long 29 CDR

Compare, Long 69 CD

Compare, Short 39 CER

Compare, Short 79 CE

Convert to Binary 4F CVB

Convert to Decimal 4E CVD

Dequeue B4 DEQ

Divide 1D DR

Divide 5D D

Divide Decimal FD DP

Divide, Long 20 DOR

Divide, Long 60 DD

Divide, Short 30 DER

Divide, Short 70 DE

Edit DE ED

Edit and Mark OF EDMK

Enqueue 83 ENQ

E-6

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 3 of 6)

Instruction Name Machine Mnemonic
Code

Enqueue 1/0 - Privileged EO EIO

Exclusive OR 17 XR

Exclusive OR 57 x

Exclusive OR 97 XI

Exclusive OR 07 xc

Execute 44 EX

Execute Diagnose - Privileged 8300 EXD

Halt and Proceed - Privileged 99 HPR

Halt Device - Privileged 9E01 HOV

Halve, Long 24 HOR

Halve, Short 34 HER

Insert Character 43 IC

Insert Characters Under Mask BF ICM

Insert Storage Key - Privileged 09 ISK*

Load 18 LR

Load 58 L

Load Address 41 LA

Load and Test 12 LTR

Load and Test, Long 22 LTDR

Load and Test, Short 32 LTER

Load Channel Register - Privileged 9F03 LCHR

Load Complement 13 LCR

Load Complement, Long 23 LCDR

Load Complement, Short 33 LCER

Load Control - Privileged B7 LCTL

Load Directive Address - Privileged 51 LOA

Load Half Word 48 LH

Load 1/0 Address - Privileged 61 LIA

Load, Long 28 LOR

Load, Long 68 LO

E-7

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 4 of 6)

Instruction Name Machine Mnemonic
Code

Load Multiple 98 LM

Load Negative 11 LNR

Load Negative, Long 21 LNDR

Load Negative, Short 31 LNER

Load Positive 10 LPR

Load Positive, Long 20 LPDR

Load Positive, Short 30 LPER

Load PSW - Privileged 82 LPSW

Load Relocation Register A3 LRR

Load, Short 38 LER

Load, Short 78 LE

Longitudinal Redundancy Check - Privileged 830E LRC

Modify Storage and Skip E3 MSS

Move 92 MVI

Move 02 MVC

Move 110 - Privileged 81 MIO

Move Characters Long OE MVCL

Move Numerics 01 MVN

Move With Offset Fl MVO

Move Zones 03 MVZ

Multiply 1C MR

Multiply 5C M

Multiply Decimal FC MP

Multiply Half Word 4C MH

Multiply, Long 2C MOR

Multiply, Long 6C MD

Multiply, Short 3C MER

Multiply, Short 7C ME

OR 16 OR

OR 56 0

E-8

•

UP-S913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic listing of Instructions (Part 5 of 6)

Instruction Name Machine Mnemonic
Code

OR 96 01

OR D6 QC

Pack F2 PACK

Reset - Privileged S301 RESET

Service Timer Register - Privileged 03 STR

Set Program Mask 04 SPM

Set Storage Key - Privileged OS SSK*

Set System Mask - Privileged so SSM

Shift and Round Decimal FO SRP

Shift Left Double SF SLDA

Shift Left Double Logical SD SLDL

Shift Left Single SB SLA

Shift Left Single Logical S9 SLL

Shift Logical 9B SHL

Shift Right Double SE SRDA

Shift Right Double Logical SC SRDL

Shift Right Single SA SRA

Shift Right Single Logical SS SRL

Start Device - Privileged 9C02 SDV

Step Queue B5 STEP

Store 50 ST

Store Character 42 STC

Store Characters Under Mask BE STCM

Store Control - Privileged B6 STCTL

Store Half Word 40 STH

Store, Long 60 STD

Store Multiple 90 STM

Store Relocation Register - Privileged A2 STRR

Store, Short 70 STE

Store Status - Privileged S302 STS

E-9

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-2. Alphabetic Listing of Instructions (Part 6 of 6)

Instruction Name Machine Mnemonic
Code

Subtract 1B SR

Subtract 5B s

Subtract Decimal FB SP

Subtract Half Word 4B SH

Subtract Logical 1F SLR

Subtract Logical 5F SL

Subtract Normalized, Long 2B SOR

Subtract Normalized, Long 6B SD

Subtract Normalized, Short 3B SER

Subtract Normalized, Short 7B SE

Subtract Unnormalized, Long 2F SWR

Subtract Unnormalized, Long 6F SW

Subtract Unnormalized, Short 3F SUR

Subtract Unnormalized, Short 7F SU

Supervisor Call OA SVC

Supervisor Load Multiple - Privileged B8 SLM

Supervisor Store Multiple - Privileged BO SSTM

Test and Set 93 TS

Test Under Mask 91 TM

Test Under Mask and Skip E2 TMS

Translate DC TR

Translate and Test DD TRT

Unpack F3 UNPK

Zero and Add F8 ZAP

*Added as a feature.

E-10

•

UP-8913

•
SPERRY UNIVAC OS/3

ASSEMBLER

Table E-3. List of Instructions by Machine Code (Part 5 of 6)

Machine Code Mnemonic Instruction Name

93 TS Test and Set

94 NI AND

95 cu Compare Logical

96 01 OR

97 XI Exclusive OR

98 LM Load Multiple

99 HPR Halt and Proceed - Privileged

9A Al Add Immediate

9B SHL Shift Logical

9C SDV Start Device - Privileged

90 CLRDV Clear Device - Privileged

9E01 HOV Halt Device - Privileged

9F02 CLRCH Clear Channel - Privileged

9F03 LCHR Load Channel Register - Privileged

A2 STAR Store Relocation Register - Privileged

A3 LRR Load Relocation Register - Privileged

BO SSTM Supervisor Store Multiple - Privileged

B3 ENQ Enqueue

B4 DEQ Dequeue

B5 STEP Step Queue

B6 STCTL Store Control - Privileged

B7 LCTL Load Control - Privileged

B8 SLM Supervisor Load Multiple - Privileged

B9 CSM Compare and Swap Under Mask

BD CLM Compare Logical Characters Under Mask

BE STCM Store Characters Under Mask

BF ICM Insert Characters Under Mask

01 MVN Move Numerics

02 MVC Move

03 MVZ Move Zones

E-15

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Table E-3. List of Instructions by Machine Code (Part 6 of 6)

Machine Code Mnemonic Instruction Name

04 NC AND

05 CLC Compare Logical

06 QC OR

07 xc Exclusive OR

DC TR Translate

DD TAT Translate and Test

DE ED Edit

OF EDMK Edit and Mark

EO EIO Enqueue 1/0 - Privileged

E1 CLIS Compare Logical Immediate and Skip

E2 TMS Test Under Mask and Skip

E3 MSS Modify Storage and Skip

FO SAP Shift and Round Decimal

F1 MVO Move With Offset

F2 PACK Pack

F3 UNPK Unpack

F8 ZAP Zero and Add

F9 CP Compare Decimal

FA AP Add Decimal

FB SP Subtract Decimal

FC MP Multiply Decimal

FD DP Divide Decimal

*Added as a feature.

E-16

•

