UD1-251 Rev. 3/73

_LIBRARY MEMO ONLY |

ATTIK:

CHARLIE GI38¢%

SIS
CAVEUERLES541T Up &8%13-p

UAS
SPERRY UNIVACL
T - Tole CORNWALL STRLET
vARCOUVER o (
ved 1C7

R SEINTLY

COMPUTER SYSTEMS

Operating System/3 (OS/3)

Assembler

User Guide

This Library Memo announces the release and availability of Updating Package B to “SPERRY UNIVAC Operating

System/3 (0S/3) Assembler User Guide”, UP-8913.

This update provides the 8.0 release enhancements to OS/3 Assembler. The enhancements include:

L The addition of two privileged instructions (Put IORB, Get IORB)

- An additional UPSI byte setting for diagnostic errors

L Thev addition of STXIT island code (providing the capability to continue job streams when program checks

occur)

- The display of error messages on the console or workstation

L An additional warning message when using continuation characters with macroinstructions (a comma after the

last operand is checked)

Appendix A was expanded to include job control information.

Copies of Updati\ng Package B are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8913-B. To receive the complete manual, order UP-8913.

" LIBRARY MEMO AND AT TA

Mailing Lists
BZ, CZ and MZ

Mailing Lists BOO, B18, 28U and 29U
(Package B to UP-8913, 192 pages plus Memo)

Library Memo for '
UP-8913-B

RELEASE DATE:

September, 1982

SFERSR

ey %

spera v
. 1177 WEST HASTINGS ST
VANCOUVER BC V6E 2K3 CAV Operating System/3 (0S/3)
ATTN: CHARLIE GIBBS Assembler
00158 User Guide

CAVZ20BNM45541 UP 8913-a

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (08/3) Assembler User Guide’’, UP-8913.

This update discusses assembler features that are new to release 7.1. These features include:
- Added instructions: IPL and SWLS
L] A new option for the ASM listing parameter: LST=NR

] ASM, ASML, and ASMLG jproc enhancements to accept cataloged files for input, output, macro library,
COPY source code library, and alternate load library files.

The following instructions were deleted: ENQ, DEQ, STEP, and MSS.
. All other changes are corrections to, or clarifications of, material applicable prior to release 7.1.
Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete

manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8913-A. To receive the complete manual, order UP-8913.

Mailing Lists Mailing Lists DE, GZ, HA, 28U and 29U Library Memo for

BZ, CZ (less DE, {Package A to UP-8913, UP-8913
. GZ and HA) and 83 pages plus Memo)
Mz
RELEASE DATE.

September, 1981

UD1-25% Rey, F73

Mailing Lists
BZ,CZ (less DE,GZ and
HA) and MZ

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists DE, GZ, HA, 28U and 29U
(Covers and 886 pages)

Operating System/3 (0S/3)

Assembler

User Guide

This Library Memo announces the release and availability of “SPERRY uNIvac® Operating System/3 (0S/3)
Assembler User Guide”, UP-8913.

This manual describes the assembler. It covers machine instruction and data formats, assembler directives, macro/proc
usage, and assembler output.

l.ibrary Memo

ELEASE DAT

1Y

October, 1980

Assembler

@

Environment: System 80

@

SPERRY<LFUNIVAC

©1980 — SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVDO, and UNIVAC are registered

trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 5655 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

UP-8913

SPERRY UNIVAC 0S/3

ASSEMBLER

PSS 1
Update C

PAGE STATUS SUMMARY

-
ISSUE: Update C - UP-8913
RELEASE LEVEL: 8.2 Forward .
. Page Update Page Update _ . Page Update
’ Part/Section Number L i Part/Section Numt i ; Part/Section Number
s e
i Cover/Drsclamer Orig. 8 {comy) 16, 17 Orig. 11 (cont) 7 thru 11 Orig.
i 18 B 12 c
PSS 1thru 3 C 19 Orig. 13, 14 Orig®”
20 8 15 c
gPreface 1 Orig. 21 c 16 Orig.
! 2 B 22 Orig. 17 c
3 Orig. 23 B 18 Orig.
19 c
Contents 1twu3 Orig. 9 1teu 8 Orig. 20 - Orig.
4 A i 9 B 21 c
5 thru 7 Orig. 10 theu 12 Orig. 22 Orig.
8 thry 11 B 13 B 23 thru 25 c
12 thru 14 A 14 thru 29 Orig. 26 Orig.
15 thwy 18 B . 30 A 27 thry 29 c
31 twu 62 A 20 Orig.
PART 1 63 thru 80 Orig. 31 c
Title Page Orig. 81 8 32,33 Orig.
82 thny 100 Orig. 34 c
1 1 thru 11 Orig. 35 Orig.
12 8 10 1,2 Orig. 36 c
. 13 c 3thu § 8 . 37 Orig.
y 14 thry 20 %Orig. 6 thry 18 Orig. 38]
| — .19 c’ 39 thru 41 Orig.
Tz e 1 thru 10 Orig. " 20 thy 23 Orig. 42, c
: - 24 c 43 Orig.
3 1t 3 Orig. 25 thry 33 Orig. 44 c
34 B 45 Orig.
4 1 Orig. 35 thry 39 Orig. 46 c
2 -C 40 c 47 - Onig.
3thu 9 Orig. 41 Orig. 48 c
10 c 42 c 49 Orig.
11 theu 13 Orig. 43 Orig. 50 ¢
14 B8 44 c 51 Orig.
15 thru 20 Orig. 48, 46 Orig. 52 c
47 B 53 Orig.
PART 2 48, 49 Orig. 54 c
Title Page Orig. 50 B 55 Orig.
51 thru 54 Orig. 56 c
5 1.2 Orig. 55 c 57 Orig.
§ 3 c 56 thru 72 Orig. 58 c
; 4 thru 10 Orig. 73 B 59 Orig.
! 11, 12 B 74,75 Orig. 60 c
! 13.thru 18 Orig. 76 c 61 Orig.
. 19 c 77 Orig. 62 c
; . 78 c 63 Orig.
L6 < 1thru3 A 79 8 64 c
i 4 Orig. 80 [of 65 Orig.
81, 82 Orig. 66 c
PART 3 83 c €7 Orig.
Tile Page Orig. 84 thru 87 Orig. 68 [o}
88 c 69 Orig.
7 1 thru 3 B 89, 90 Orig. 70 c
.r 4.5 c 71 Orig
> 6 Orig. 1 1,2 Orig. 72 B
3 c 73 Orig
g 1 thru 13 Orig. 4,5 Orig. 74 [
14, 18 B g [od

< ==z ececal changes are dencted by an arrow {=») in the ma-gin. A downward pointing arrow (.} nex:t tc a line indicates that

N TS

£5 a lechmca: cnange n only mar /me A horlzomal arrow located between twn rnnsacitive linae inn

- za cranges pex:n at this ine and conunue until an upward po~ung arrow (1) is found. A honzontai arrow fme) pomung to a line

i ke

UP-8913 : SPERRY UNIVAC 0S/3 : PSS 2
ASSEMBLER Update C

PAGE STATUS SUMMARY

ISSUE: Update C - UP-8913
RELEASE LEVEL: 8.2 Forward

b

i Page Update . Page Update Page Update
Part/Section \ mber Level Part/Section . mber Level Part/Section \ mber Lavel
11 (cont) 75 Orig. 12 (cont) 100, 101 8 20 1thru 6 Orig.

76 c 102 Orig.
77 Orig. 103 B 21. o
78 c 104, 105 Orig. 2 thru 10 %ﬂg
79 Orig. 106 B
80 c 107 theu 111 Orig. PART 5§
81 Orig. 112 B Title Page Orig.
82 ¢ 13 Orig.
83 Orig. 114, 115 B 22 1thru 4 Orig.
84 c 116 thru 118 Orig. - '
8s Orig. - 119 B 23 1t 5 Orig.
86 c 120 thru 131 Orig. 6 thru 8 8
87 Orig. 9. 10 Orig.
88 .C 13 1 Orig. .
89 thru 91 .-Orig. 2 8 24 1thu § Orig.
92 c 3 Orig.] 8
93 Orig. 4 8 7t 12 Orig.
94 ¢ 5 Orig.
95 Orig. 67 B 25 1thru g Orig.
8 thru 12 Orig. 10 A
12 1.2 Orig. 13 8 1 Orig.
4 Orig. 14s, 14b B 26 tthu 7 Orig.
.- 5.6 B - |.I 15 Orig.
7 c 16 8 27 1 thry 16 Orig.
8 8 17,18 Orig. 17 B
9 thru 16 Orig. 19 8 18, 19 Orig.
17] 20 theu 23 Orig. 20 8
18 Orig. 24 8 21t 32 , Orig.
19 c 25 Orig. ey
20 thry 43 Orig. 26 A PART 6
a4 c 26a, 26b A Title Page Orig.
45, 46 Orig. 27 B ey
47 c 28 Orig. 28 1 thru 4 Orig.
. 48 Orig. 29 8 5 B
49 c 30 Orig. ———
50 Orig. 31 8 PART 7
51 B 32 Orig. Title Page Orig.
52 thru 59 Onig.
60 8 14 1 A 29 1 Orig.
61 QOrig. 2 A
62 B PART 4 3 Orig.
63 Orig. Title Page Orig. 4 thru 6 B
X 64 B 7.8 A
* 65 thru 67 Orig. 15 1 Orig. 8a A
68 8 9. 10 B
69 thry 72 Orig. 16 1thru 3 Orig. 10a B
73 8 11, 12 8
74 Orig. 17 1thru 9 Orig. 13 A
75 8 14 B
76 thru 81 Orig. 18 1t 4 Orig. 14a B8
82 8 15 thru 19 Orig.
83. 84 Orig. 19 1thru 9 Orig.
85. 86 8 10, 11 8 30 1t § Orig.
87 Orig. 12 1y 14 Orig.
88 8 PART 8
89 thry 99 Qrig Title Page Qrig.

All the tecrmical changes are denoted by an arrow (=) in the margi= A downward ponting arrow () nexr to a line indicates thar
techmcal cranges begin at this line and continue until an upward pointi~3 arrow (1) is found. A horizontal arrow (—) pointing to 3 line
indicates a :echmcal change in only that iine. A horizontal arrow locaieg oetween two consecutive lines indicates technical changes in both

uP-8913

PSS 3

User Comment
Sheet

SPERRY UNIVAC 0S/3
ASSEMBLER Update C
PAGE STATUS SUMMARY
~ ISSUE: Update C — UP-8913
RELEASE LEVEL: 8.2 Forward
. Page Update . Page Update . Page Update
Past/Section \imber Level Part/Section ' mber Level Part/Section \umber Level
Appendix A Ttheu 4 B8
Appendix B 1.2 8 . -
3thu 7 Orig.
Appendix C Ttwu 9 Orig.
Appendix D 1thru 3 Orig.
Appendix E 1 Orig.)
2thru 4 8 - -
5 Orig.
6.7 B
8 A
9 B
10 A
1" B
12. 13 Orig.
14 A
15 B
16 A
Appendix £ 1 thru 3 Orig.
. 4 A
5 thru 8 Orig.
Appendix G 1t 5 Orig.
index 1,2 Orig.
i 3 A
: 4 thru 7 Orig.
8.9 A
10 B
n Orig.
12 B
: 13 A
14 Orig.
15 A
16 thry 18 Orig.
19 A
20, 21 Orig.
22,23 B8
24 Orig.
25, 26 B
Ky 27 Orig.
28 B
29 A
30, 31 Orig.

Al the techn:zal cnanges are denoted by an arrow (—) in the margin. A downward pointing arrow (%) next to a line indicates that
tecanizai changes Deg = ai trus line and continue until an upward pointing arrow (1) is found. A honzonta! arrow (==} pointing 1o a line

inaicares a tecamcal cnange in only that line. A horizontal arrow located between two cor

PrEE SRR

stive lines ind)

technical changes in both

UP-8913 SPERRY UNIVAC 0S/3 Preface 1
ASSEMBLER

Preface

This manual is one of a series designed to instruct and guide the programmer in the
use of the SPERRY UNIVAC Operating System/3 (0S/3). This manual specifically
describes the OS/3 assembler and its effective use. lts intended audience is the
novice programmer with a basic knowledge of data processing, but with limited
programming experience, and the assembler programmer whose experience is limited
to systems other than Sperry Univac.

Two other manuals are available that cover OS/3 assembler; one is an introductory
manual and the other is a programmer reference. The introductory manual briefly
describes OS/3 assembler and its facilities. The programmer reference provides the
characteristics of 0OS/3 assembler in skeletal form and is intended as a quick-
reference document for the programmer experienced in the use of OS/3 assembler.

This user guide is divided into the following parts:
s PART 1. BASIC DATA AND CONVENTIONS

Introduces you to what basic assembly language (BAL) is, how the computer
stores information (data), how to locate the data required, and what forms
mathematic notations assume in computer manipulations. The general rules that a
programmer must understand to solve simple BAL problems are stated in this
part. Where the content may seem out of context to the more experienced user,
he can find such material repeated in greater detail in the following parts of this
manual. As the manual progresses, the problems and examples become
increasingly complex.

® PART 2. STORAGE AND SYMBOL DEFINITIONS

Describes and illustrates the use of storage assignments, the constants, and the
rules for symbol designations.

= PART 3. BAL APPLICATION INSTRUCTIONS

Presents the explicit and implicit formats for all the assembly language application
instructions, the rules of their use and illustrative examples.

UP-8913 SPERRY UNIVAC 0S/3 Preface 2
ASSEMBLER Update B

= PART 4. BAL DIRECTIVES

Describes and illustrates the use of all the assembler control directives.
. PART 5. BAL MACROS

Explains the macro facility for writing and using this time-saving feature of the
assembiler.

®m PART 6. ASSEMBLY LISTING

Describes what an assembly listing is, what it means, and how it is of use to
the programmer.

®» PART 7. PROGRAMMING TECHNIQUES
A series of programming techniques are presented in this part.
= PART 8. APPENDIXES

The appendixes contain figures and tables for use in explaining the text and for
general programmer reference.

Each of the foregoing parts consists of one or more sections that cover the different
aspects of the subject matter covered in each part.

Other current 0OS/3 publications for the System 80 system, referenced in this manual, will
be necessary or useful to the programmer working with the assembler.

Document name and number Description

General editor user guide/programmer Describes the general editor
reference, UP-8828

System services program user guide, Describes the librarian and linkage editor
UP-8841
Consolidated data management concepts Presents an overview of data management

and facilities user guide, UP-8825

Consolidated data management macro- Describes the data management
instructions user guide/programmer macroinstructions
reference, UP-8826

Supervisor concepts and facilities Presents an overview of the supervisor
user guide, UP-8831

user guide/programmer reference,

Supervisor macroinstructions Describes the supervisor macroinstructions .
UP-8832

UP-8913 SPERRY UNIVAC 0S/3 Preface 3
ASSEMBLER
Document name and number Description

Processor programmer reference,
UP-8881

System hardware and software
summary, UP-8868

Interactive job control user
guide, UP-8822

Workstation user guide, UP-8845

Assembler programmer reference,
UP-8914

Describes the processor

Presents an overview of the system
hardware and software

Describes interactive job control

Describes the OS/3 workstation

Describes the assembler

UP-8913 SPERRY UNIVAC 0S/3 Contents 1
ASSEMBLER

Contents
PAGE STATUS SUMMARY
PREFACE
CONTENTS
PART 1. BASIC DATA AND CONVENTIONS
1. INTRODUCTION TO ASSEMBLER LANGUAGE PROGRAMMING
1.1. CODING AN ASSEMBLER PROGRAM 1-1
1.1.1. Operation Field 1-5
1.1.2. Operand Field 1-6
1.1.3. Labe! Field 1-7
1.1.4. Comments Field 1-9
1.1.5. Sequence Numbers 1-10
1.1.6. Column 72 1-11
1.1.7. Additional Coding Rules 1-11
1.2. ASSEMBLING A PROGRAM 1-14
1.3. CREATING A LOAD MODULE 1-18
1.4. PROGRAM EXECUTION 1-20
2. DATA FORMS
2.1. DATA REPRESENTATION 2-1

2.2. BINARY REPRESENTATION 2-2

UP-8913 SPERRY UNIVAC 0S/3 Contents 2
ASSEMBLER
2.3. HEXADECIMAL REPRESENTATION 2-3
2.4, CHARACTER REPRESENTATION 2-5
24.1. Alphabetic Characters 2-5
242, Special Letters 2-6
2.43. Numeric 2-6
2431. Unpacked Format 2-6
2432, Packed Format 2-7
2.44. Special Characters 2-8
2.5. FIXED-POINT NUMBERS 2-9
2.6. FLOATING-POINT NUMBERS 2-9
3. ADDRESSING
3.1. MAIN COMPUTER STORAGE ADDRESSING 3-1
3.1.1. Instruction Addressing 3-1
3.1.2. Data Field Addressing 3-2
3.2. REGISTER ADDRESSING 3-3
4. RULES AND CONVENTIONS

4.1. READING INSTRUCTION NOTATION -
4.1.1. Assembler Application Instruction Notations 4-1
4.1.2. Notation Rules and Meanings -5
4.2, TERMS 4-8
4.2.1. Self-Defining Terms (SDT) 4-9
4.2.2. Literals 4-10
4.2.3. Symbols 4-11
4.2.4. Location Counter References 4-12
4.25. Length Attribute Reference 4-13
4.3. OPERATORS 4-13
4.3.1. Arithmetic Operators 4-14
43.2. Logical Operators 4-15
4.3.3. Relational Operators 4-15
4.4, EXPRESSIONS 4-16
4.4.1. Absolute Expressions 4-16
4.4.2, Relocatable Expressions 4-17
4.4 3. Complex Relocatable Expressions 4-18
4.4 4. Character Expressions 4-18
445, Length Attribute of Expressions 4-19
4.4.6. Character Strings 4-19

uP-8913 SPERRY UNIVAC 0S/3 Contents 3
ASSEMBLER
PART 2. STORAGE AND SYMBOL DEFINITIONS

5. STORAGE DEFINITIONS
5.1. STORAGE USAGE 5-1
5.1.1. Define Constant (DC) 5-4
5.1.2. Define Storage (DS) 5-5
5.1.3. Duplication Factor 5-5
5.1.4. Definition Type 5-6
5.1.5. Length Factor (Lp) 5-6
5.1.6. Constant Specification 5-7
5.1.7. Alignment 5-8
5.2. DEFINITION TYPES 5-8
5.2.1. Character Constants (C) 5-8
5.2.2. Hexadecimal Constants (X) 5-9
5.2.3. Binary Constants (B) 5-9
5.2.4. Packed Decimal Constants (P) 5-10
5.2.5. Zoned Decimal Constants (2) 5-10
5.2.6. Half-Word Fixed-Point Constants {H) 5-11
6.2.7. Full-Word Fixed-Point Constants (F) 5-12
5.2.8. Half-Word Address Constants (Y) 5-12
5.2.9. Full-Word Address Constants (A) 5-13
5.2.10. Base and Displacement Constants (S) 5-13
5.2.11. External Address Constants (V) 5-15
5.2.12. Floating-Point Constants (E and D) 5-156
5.3. LITERALS 5-18

6. SYMBOL DEFINITIONS
6.1. EQUIVALENT SYMBOLS 6-2
6.2. SYMBOL APPLICATIONS 6-3

PART 3. BAL APPLICATION INSTRUCTIONS

7. INTRODUCTION TO APPLICATION INSTRUCTIONS
7.1. INSTRUCTION AND FORMAT CONVENTIONS 7-1
7.2. EXPLICIT FORMS 7-6
7.3. IMPLICIT FORMS 7-6
7.4. DEFINITIONS OF FORMAT TERMS 7-6

UP-8913 SPERRY UNIVAC 0S/3 Contents 4

ASSEMBLER Update A
8. BRANCHING INSTRUCTIONS
8.1. USE OF BRANCHING INSTRUCTIONS 8-1
8.2. EXTENDED MNEMONIC CODES 8-2
8.3. BRANCH AND LINK (BAL, BALR) 8-5
8.3.1. Use of the BALR Instruction in Base Register Assignment 8-7
8.4. BRANCH ON CONDITION (BC, BCR) 8-9
8.5. BRANCH ON COUNT (BCT, BCTR) 8-13
8.6. BRANCH ON INDEX HIGH (BXH) 8-15
8.7. BRANCH ON INDEX LOW OR EQUAL (BXLE) 8-18
8.8. EXECUTE (EX) 8-20

9. DECIMAL AND LOGICAL INSTRUCTIONS

9.1. USING DECIMAL INSTRUCTIONS 9-1
9.2 DEFINING PACKED AND UNPACKED CONSTANTS

AND MAIN STORAGE AREAS : 9-3
9.2.1. Packed Decimal Constants and Main Storage Areas 9-4
9.2.2. Unpacked Decimal Constants and Main Storage Areas 9-6
9.3. ADD DECIMAL (AP) 9-8
9.4. COMPARE DECIMAL (CP) 9-10
9.5. DIVIDE DECIMAL (DP) 9-13
9.6. EDIT (ED) 9-16
9.6.1. The Edit Pattern 9-17
9.6.2. The Resulting Condition Code 9-23
9.6.3. Examples of General Usage 9-24
9.6.4. Summary 9-26
9.7. EDIT AND MARK (EDMK) 9-27

9.8. Deleted (S 5) 9-30

UP-8913 SPERRY UNIVAC 0S/3 Contents b
ASSEMBLER
9.9. MOVE CHARACTER (MVC) 9-63
9.10. MOVE CHARACTER LONG (MVCL) 9-67
9.11. MOVE NUMERICS (MVN) 9-72
9.12. MOVE WITH OFFSET (MVO) 9-75
9.13. MOVE ZONES (MVZ) 9-78
9.14. MULTIPLY DECIMAL (MP) 9-80
9.15. PACK DECIMAL (PACK) 9-82
9.16. SUBTRACT DECIMAL (SP) 9-86
9.17. SHIFT AND ROUND DECIMAL (SRP) 9-89
9.18. UNPACK DECIMAL (UNPK) 9-95
9.19. ZERO AND ADD DECIMAL (ZAP) 9-98
10. FIXED-POINT BINARY INSTRUCTIONS

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS 101
10.1.1. Half-Word Fixed-Point Constants 10-3
10.1.2. Full-Word Fixed-Point Constants 10-4
10.1.3. Address Constants 10-4
10.1.3.1. Full-Word Address Constants 10-4
10.1.3.2. Half-Word Address Constants 10-56
10.1.4. Representation of Positive and Negative

Fixed-Point Binary Numbers 10-6
10.2. ADD {A) 10-7
10.3. ADD {AR) 10-9
10.4. ADD HALF WORD (AH) 10-11
10.5. ADD IMMEDIATE (Al) 10-13
10.6. COMPARE (C) 10-15
10.7. COMPARE (CR) 10-17
10.8. COMPARE HALF WORD (CH) 10-19
10.9. CONVERT TO BINARY (CVB) 10-21
10.10. CONVERT TO DECIMAL (CVD) 10-24
10.11. DIVIDE (D) 10-27
10.12. DIVIDE (DR) 10-31

UP-8913 SPERRY UNIVAC 0S/3 Contents 6

ASSEMBLER
10.13. LOAD (L) 10-33
10.14. LOAD (LR) 10-35
10.15. LOAD AND TEST {LTR) 10-38
10.16. LOAD COMPLEMENT (LCR) 10-40
10.17. LOAD HALF WORD (LH) 10-42
10.18. LOAD MULTIPLE (LM) 10-44
10.19. LOAD NEGATIVE (LNR) 10-50
10.20. LOAD POSITIVE ‘ {LPR) 10-52
10.21. MULTIPLY (M) 10-656
10.22. MULTIPLY (MR) 10-69
10.23. MULTIPLY HALF WORD (MH) 10-61
10.24. SHIFT LEFT DOUBLE (SLDA) 10-64
10.25. SHIFT LEFT SINGLE (SLA) 10-67
10.26. SHIFT RIGHT DOUBLE (SRDA) 10-70
10.27. SHIFT RIGHT SINGLE (SRA) 10-73
10.28. STORE (ST) 10-76
10.29. STORE HALF WORD (STH) 10-78
10.30. STORE MULTIPLE (STM) 10-80
10.31. SUBTRACT (S) 10-83
10.32. SUBTRACT {SR) 10-85
10.33. SUBTRACT HALF WORD (SH) 10-88

11. FLOATING-POINT INSTRUCTIONS

11.1. INTRODUCTION 11-1
11.2. ADD NORMALIZED, LONG FORMAT {AD) 11-3
11.3. ADD NORMALIZED, LONG FORMAT (ADR) 11-6
11.4. ADD NORMALIZED, SHORT FORMAT (AE) 11-9

11.5. ADD NORMALIZED, SHORT FORMAT (AER) 11-12

UP-8913

SPERRY UNIVAC 0S/3 Contents 7
ASSEMBLER
11.6. ADD UNNORMALIZED, SHORT FORMAT (AU) 11-15
11.7. ADD UNNORMALIZED, SHORT FORMAT (AUR) 11-17
11.8. ADD UNNORMALIZED, LONG FORMAT (AW) 11-19
11.9. ADD UNNORMALIZED, LONG FORMAT (AWR) 11-21
11.10. COMPARE, LONG FORMAT (CD) 11-23
11.11. COMPARE, LONG FORMAT (CDR) 11-25
11.12. COMPARE, SHORT FORMAT (CE) 11-27
11.13. COMPARE, SHORT FORMAT (CER) 11-29
11.14. DIVIDE, LONG FORMAT (DD} 11-31
11.15. DIVIDE, LONG FORMAT (DDR) 11-34
11.16. DIVIDE, SHORT FOhMAT (DE) 11-36
11.17. DIVIDE, SHORT FORMAT (DER) 11-38
11.18. HALVE, LONG FORMAT (HDR) 11-40
11.19. HALVE, SHORT FORMAT (HER) 11-42
11.20. LOAD COMPLEMENT, LONG FORMAT {LCDR) 11-44
11.21. LOAD COMPLEMENT, SHORT FORMAT (LCER) 11-46
11.22. LOAD, LONG FORMAT {LD) 11-48
11.23. LOAD, LONG FORMAT (LDR) 11-60
11.24. LOAD, SHORT FORMAT (LE) 11-62
11.25. LOAD, SHORT FORMAT (LER) 11-54
11.26. LOAD NEGATIVE, LONG FORMAT (LNDR) 11-66
11.27. LOAD NEGATIVE, SHORT FORMAT (LNER) 11-58
11.28. LOAD POSITIVE, LONG FORMAT (LPDR) 11-60
11.29. LOAD POSITIVE, SHORT FORMAT (LPER) 11-62
11.30. LOAD AND TEST, LONG FORMAT (LTDR} 11-64
11.31. LOAD AND TEST, SHORT FORMAT (LTER) 11-66
11.32. MULTIPLY, LONG FORMAT (MD) 11-68
11.33. MULTIPLY, LONG FORMAT (MDR) 11-70

UP-8913 SPERRY UNIVAC 0S/3 Contents 8

ASSEMBLER Update B
11.34. MULTIPLY, SHORT FORMAT (ME) 11-72
11.35. MULTIPLY, SHORT FORMAT (MER) 11-74
11.36. SUBTRACT NORMALIZED, LONG FORMAT (SD) 11-76
11.37. SUBTRACT NORMALIZED, LONG FORMAT (SDR) 11-78
11.38. SUBTRACT NORMALIZED, SHORT FORMAT (SE) 11-80
11.39. SUBTRACT NORMALIZED, SHORT FORMAT (SER) 11-82
11.40. STORE, LONG FORMAT (STD) 11-84
11.41. STORE, SHORT FORMAT (STE) 11-86
11.42. SUBTRACT UNNORMALIZED, SHORT FORMAT (SV) 11-88
11.43. SUBTRACT UNNORMALIZED, SHORT FORMAT (SUR) 11-90
11.44. SUBTRACT UNNORMALIZED, LONG FORMAT (SW) 11-92
11.45. SUBTRACT UNNORMALIZED, LONG FORMAT (SWR) 11-94
12. LOGICAL INSTRUCTIONS

12.1. THE USE OF LOGICAL INSTRUCTIONS 12-1

12.2. ADD LOGICAL (AL) 12-2

12.3. ADD LOGICAL (ALR) 12-5

12.4. AND (N) 12-7

12.5. AND (NC) 12-10
12.6. AND (NI) 12-13
12.7. AND (NR) 12-16
12.8. COMPARE LOGICAL (CL) 12-19
12.9. COMPARE LOGICAL CHARACTERS (CLC) 12-22
12.10. COMPARE LOGICAL CHARACTERS LONG (cLcL) 12-25
12.11. COMPARE LOGICAL IMMEDIATE (CLl) 12-29
12.12. COMPARE LOGICAL IMMEDIATE AND SKIP (CLIS) 12-34
12.13. COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) 12-39
12.14. COMPARE LOGICAL (CLR) 12-42
12.15. COMPARE AND SWAP UNDER MASK (CSM) 12-44

12.16. EXCLUSIVE OR (X) 12-49

UP-8913

SPERRY UNIVAC 0S/3

Contents

9

ASSEMBLER Update B
12.17. EXCLUSIVE OR (XC) 12-62
12.18. EXCLUSIVE OR (Xt} 12-55
12.19. EXCLUSIVE OR {XR} 12-58
12.20. INSERT CHARACTER (IC) 12-61
12.21. INSERT CHARACTERS UNDER MASK (ICM) 12-64
12.22. LOAD ADDRESS (LA) 12-67
12.23. MOVE IMMEDIATE (MVI) 12-69
12.24. OR {O) 12-72
12.25. OR (OC) 12-75
12.26. OR (on 12-78
12.27. OR (OR) 12-81
12.28. SHIFT LEFT DOUBLE LOGICAL (SLDL) 12-84
12.29. SHIFT LEFT SINGLE LOGICAL {SLL) 12-87
12.30. SHIFT LOGICAL (SHL) 12-91
12.31. SHIFT RIGHT DOUBLE LOGICAL {SRDL) 12-99
12.32. SHIFT RIGHT SINGLE LOGICAL (SRL) 12-102
12.33. STORE CHARACTER (STC) 12-105
12.34. STORE CHARACTERS UNDER MASK . (STCM) 12-108
12.35. SUBTRACT LOGICAL (SL) 12-111
12.36. SUBTRACT LOGICAL (SLR) 12-114
12.37. TEST UNDER MASK (TM) 12-117
12.38. TEST UNDER MASK AND SKIP (TMS) 12-121
12.39. TRANSLATE (TR) 12-126
12.40. TRANSLATE AND TEST (TRT) 12-129
13. PRIVILEGED AND STATUS SWITCHING INSTRUCTIONS

13.1. GENERAL 13-1
13.2. STATUS-SWITCHING PRIVILEGED INSTRUCTIONS 13-1
13.2.1. Halt and Proceed Instruction (HPR) 13-2
13.2.2. Insert Storage Key Instruction (ISK) 13-3

UP-8913 SPERRY UNIVAC 0S/3 Contents 10
ASSEMBLER Update B

13.2.3. Load Program Status Word Instruction {(LPSW) 13-4
13.2.4. Set Storage Key Instruction (SSK) 13-5
13.2.5. Set System Mask Instruction (SSM) 13-6
13.3. INPUT/OUTPUT PRIVILEGED INSTRUCTIONS 13-6
13.3.1. Clear Channel Instruction (CLRCH) 13-7
13.3.2. Clear Device Instruction (CLRDV) 13-8
13.3.3. Enqueue 1/0 Instruction (E10) 13-9
13.3.4. Halt Device Instruction (HDV) 13-10
13.3.5. Load Channel Register Instruction (LCHR) 13-11
13.3.6. Load Directive Address Instruction {LDA) 13-12
13.3.7. Load 1/0 Address Instruction (LIA) 13-13
13.3.8. Move 1/0 Instruction {MIO) 13-14
13.3.8.1. Put IORB Instruction PRB) 13-14a
13.3.8.2. Get IORB Instruction (GRB) 13-14b
13.3.9. Start Device Instruction (SDV) 13-15
13.4. DIAGNOSTIC PRIVILEGED INSTRUCTIONS 13-15
13.4.1. Execute Diagnose Instruction (EXD) 13-16
13.4.2. RESET Instruction (RESET) 13-17
13.4.3. Store Status Instruction (STS) 13-18
13.5. INTERVAL TIMER PRIVILEGED INSTRUCTION 13-18
13.5.1. Service Timer Register Instruction (STR) 13-19
13.6. CONTROL REGISTER PRIVILEGED INSTRUCTIONS 13-19
13.6.1. Load Control Instruction (LCTL) 13-20
13.6.2. Store Control Instruction (STCTL) 13-21
13.7. RELOCATION REGISTER PRIVILEGED INSTRUCTIONS 13-21
13.7.1. Load Relocation Register Instruction (LRR) 13-22
13.7.2. Store Relocation Register Instruction (STRR) 13-23
13.8. GENERAL REGISTER PRIVILEGED INSTRUCTIONS 13-24
13.8.1. Supervisor Load Multiple instruction (SLM) 13-24
13.8.2. Supervisor Store Multiple Instruction (SSTM) 13-25
13.9. DATA CHECKING PRIVILEGED INSTRUCTION 13-25
13.9.1. Longitudinal Redundancy Check Instruction (LRC) 13-26
13.10. PROGRAM LOAD PRIVILEGED INSTRUCTION 13-26
13.10.1. |Initial Program Load Instruction (IPL) 13-26a
13.11. SWITCH LIST PRIVILEGED INSTRUCTION 13-26a
13.11.1. Switch List Scan Instruction (SWLS) 13-26b
13.12. SET PROGRAM MASK STATUS-SWITCHING

INSTRUCTION (SPM) 13-27
13.13. SUPERVISOR CALL STATUS-SWITCHING

INSTRUCTION (SVC) 13-29
13.14. TEST AND SET STATUS-SWITCHING

INSTRUCTION {TS) 13-31

UP-8913 SPERRY UNIVAC 0S/3 Contents 11
ASSEMBLER Update B
14. DELETED (LIST PRACESSING)
PART 4. BAL DIRECTIVES
15. INTRODUCTION TO DIRECTIVES
16. EQUATE AND DELETE OPERATION CODE DIRECTIVES
16.1. EQUATE (EQU) 16-1
16.2. DELETE OPERATION CODE (OPSYM) 16-3
17. ASSEMBLER CONTROL DIRECTIVES
17.1. CONDITION NO OPERATION A (CNOP) 17-2
17.2. PROGRAM END (END) 17-4
17.3. GENERATE LITERALS (LTORG) 17-5
17.4. SPECIFY LOCATION COUNTER {ORG) 17-6
17.5. PROGRAM START (START) 17-8
18. BASE REGISTER ASSIGNMENT DIRECTIVES
18.1. UNASSIGN BASE REGISTER (DROP) 18-2
18.2. ASSIGN BASE REGISTER (USING) 18-3
19. PROGRAM LINKING AND SECTIONING DIRECTIVES
19.1. COMMON STORAGE DEFINITION (COM) 19-3
19.2. CONTROL SECTION IDENTIFICATION (CSECT) 19-6
19.3. DUMMY CONTROL SECTION IDENTIFICATION (DSECT) 19-8
19.4. EXTERNALLY REFERENCED SYMBOL DECLARATION (ENTRY) 19-10
19.5. EXTERNALLY DEFINED SYMBOL DECLARATION (EXTRN) 19-11
19.6. SUBROUTINE LINKAGE 19-12
20. LISTING CONTROL DIRECTIVES
20.1. ADVANCE LISTING (EJECT) 20-2
20.2. LISTING CONTENT CONTROL (PRINT) 20-3

UP-8913 SPERRY UNIVAC 0S/3 Contents 12
ASSEMBLER Update A
20.3’. LEAVE BLANK LINES ON LISTING (SPACE) 20-5
20.4. LISTING TITLE DECLARATION (TITLE) 20-6
21. INPUT AND OUTPUT CONTROL DIRECTIVES
21.1. INPUT FORMAT CONTROL (ICTL) 21-2
21.2. INPUT SEQUENCE CONTROL (ISEQ) 21-4
21.3. REPRODUCE FOLLOWING RECORD (REPRO) 21-5
21.4. PRODUCE A RECORD (PUNCH) 21-6
21.5. INCLUDE CODE FROM A LIBRARY (COPY) 21-8
21.6. CHANNEL COMMAND WORD ({CCW) 21-9
PART 5. BAL MACROS
22. MACRO FACILITY
22.1. THE MACRO PROCESSOR 22-1
22.2. MACRO SOURCE CODE 22-2
23. MACRO DESIGN
23.1. THE MACRO DEFINITION 23-1
23.2. MACRO DEFINITION STORAGE 23-3
23.3. THE MACRO CALL INSTRUCTION 23-6
24. TWO TYPES OF MACRO DEFINITIONS
24 1. PROCS AND MACROS 24-1
24.2, CALL INSTRUCTION DESIGN 24-2
24.3. PASSING PARAMETERS TO THE BODY 24-7
25. PROC FORMAT
25.1. BASIC PROC DESIGN 25-1
25.2. REFERENCING POSITIONAL PARAMETERS IN
THE CALL 25-3

UP-8913

SPERRY UNIVAC 0S/3

Contents 13

ASSEMBLER Update A

25.3. REFERENCING KEYWORD PARAMETERS IN THE

CALL 25-4
25.4, REFERENCING SUBPARAMETERS IN THE CALL 25-7
25.5. MULTIPLE PROC NAMES AND POSITIONAL

PARAMETER O 25-9
25.6. THE LABEL ARGUMENT 25-11

26. MACRO FORMAT

26.1. BASIC MACRO DESIGN 26-1
26.2. REFERENCING POSITIONAL PARAMETERS

IN THE CALL 26-2
26.3. REFERENCING KEYWORD PARAMETERS IN

THE CALL 26-4
26.4. REFERENCING SUBPARAMETERS IN THE CALL 26-5
26.5. THE LABEL ARGUMENT 26-6

27. CONDITIONAL ASSEMBLY

27.1. SET SYMBOLS 27-2
27.1.1. Local Set Symbols 27-3
27.1.2. Global Set Symbols 27-5
27.1.3. Set Symbol Value Assignment 27-6
27.1.4. SET Statement 27-7
27.1.5. SETA Statement 27-9
27.1.6. SETB Statement 27-10
27.1.7. SETC Statement 27-13
27.1.8. Character Expressions 27-14
27.1.9. Subscripted SET Symbols 27-14
27.1.9.1. Defining Subscripted SET Symbols 27-15
27.2. BRANCHING 27-15
27.2.1. Sequence Symbols 27-15
27.2.2. Unconditional Branch (AGO) 27-16
27.2.3. Conditional Branch (AIF) 27-17
27.2.4. Define Branch Destination (ANOP) 27-18
27.2.5. Macro Definition Exit {MEXIT) 27-19
27.3. ERROR MESSAGES AND COMMENTS 27-19
27.3.1. MNOTE Message Statements (MNOTE) 27-20
27.3.2. PNOTE Message Statements (PNOTE) 27-21
27.3.3. Comments Statement ' 27-21
27.4. REPETITIVE CODE GENERATION 27-22
27.4.1. Define Start of Range (DO) 27-22
27.4.2. Define End of Range (ENDO}) 27-23
27.4.3. Conditional Assembly Control Counter (ACTR) 27-24

UP-8913 SPERRY UNIVAC 0S/3 Contents 14
ASSEMBLER Update A
27.5. ATTRIBUTE REFERENCES 27-25
27.5.1. Type Attributes 27-27
27.5.2. Length Attributes 27-28
27.5.3. Scale Attributes 27-30
27.5.4. Integer Attributes 27-30
27.5.5. Count Attributes 27-31
27.5.6. Number Attributes 27-32
PART 6. ASSEMBLY LISTING
28. ORGANIZATION OF LISTING
28.1. HEADER LINES 28-1
28.2. PREFACE 28-1
28.3. CODEDIT 28-2
28.4. EXTERNAL SYMBOL DICTIONARY LISTING 28-3
28.5. CROSS-REFERENCE LISTING 28-4
28.6. DIAGNOSTIC LISTING 28-5
28.7. EXAMPLE OF ASSEMBLY LISTING 28-5
PART 7. PROGRAMMING TECHNIQUES
29. JOB CONTROL PROCEDURES

29.1. HOW TO RUN A JOB 29-1
29.2. INTRODUCING THE SOURCE DECK 29-1
29.2.1. JOB Control Statement 29-2
29.2.2. OPTION Job Control Statement 29-2
29.3. ASSEMBLE; ASSEMBLE AND LINK-EDIT;

OR ASSEMBLE, LINK-EDIT, AND EXECUTE 29-3
29.3.1. Assemble (ASM) 29-3
29.3.1.1. ASM Jproc Call Statement 29-4
29.3.2. Assemble and Link-Edit (ASML) 29-10
29.3.2.1. ASML Jproc Call Statement 29-10
29.3.3. Assemble, Link-Edit, and Execute (ASMLG) 29-11
29.3.3.1. ASMLG Jproc Call Statement 29-11
29.4. START-OF-DATA JOB CONTROL STATEMENT (/$) 29-12
29.5, FOLLOWING THE SOURCE DECK 29-13
29.56.1. End-of-Data Job Control Statement (/*) 29-13
29.5.2. End-of-Job Control Statement (/&) 29-13
29.5.3. Terminate-the-Card-Reader Job Control

Statement (// FIN) 29-13
29.5.4. Setting the UPSI Byte 29-14

UP-8913

SPERRY UNIVAC 0S/3

Contents 15

ASSEMBLER Update B

29.6. SUMMARY OF JOB CONTROL PROCEDURE 29-14a
29.6.1. Assembly 29-14a
29.6.2. Assembly and Link-Edit 29-16
29.6.3. Assembly, Link-Edit, and Execution 29-18
29.7. RUNNING ASSEMBLER FROM A WORKSTATION 29-18

30. EXAMPLE MACRO DEFINITIONS
30.1. SMALR/LARGR PROC (POSITIONAL PARAMETER 0) 30-1
30.2. SMALL6/LARGE6 PROC (DO LOOP) 30-2
30.3. BLANK MACRO (VARIABLE INLINE EXPANSION CODE) 30-4

PART 8. APPENDIXES

A. SAMPLE PROGRAM

B. CHARACTER CONVERSION CODES

C. MATH TABLES
Cc.1. HEXADECIMAL-DECIMAL INTEGER CONVERSION C-1
Cc.2. HEXADECIMAL FRACTIONS (APPROXIMATE VALUES) Cc-7
C.3. POWERS OF 2 Cc-8
C4. POWERS OF 16 C-9

D. CHECK-OFF TABLE TERMS

E. INSTRUCTION LISTINGS

F. USE OF PARAM STATEMENT
F.1. PARAM STATEMENT F-1
F.2. SOURCE CORRECTIONS F-5
F.2.1. SEQ Statement F-6
F.2.2. REC Statement F-7
F.2.3. SKI Statement F-7

G. SYSTEM VARIABLE SYMBOLS

G.1.

&SYSECT

UP-8913 SPERRY UNIVAC 0S/3 Contents 16

ASSEMBLER Update B
G.2. &SYSLIST G-1
G.3. &SYSNDX G-2
G.4. &SYSDATE G-2
G.5. &SYSTIME G-3
G.6. &SYSJDATE G-4
G.7. &SYSPARM G-5
USER COMMENT SHEET
INDEX
FIGURES
1-1. Writing and Submitting a Program 1-2
1-2. Card Image 1-3
1-3. Assembler Coding Form 14
1-4. Coding Form and Card Image Relationship 1-5
1-5 Example of Proper Coding Techniques 1-13
1-6 COBOL Source Code 1-15
1-7. Object Code Generated from COBOL Source Code 1-15
1-8. Assembly Listing 1-16
1-9. 0S/3 Object Module Format 1-18
1-10. 0S/3 Load Module Format 1-19
1-11. Assemble, Link, and Go Operation 1-20
2-1. Determining Binary Values 2-3
2-2. Fixed-Point Number Formats 2-9
4-1. Assembler Format Relationships 4-4
4-2. Byte and Word Structure 4-7
5-1. Floating-Point Number Formats 5-17
7-1. Instruction Formats 7-2
8-1. Program Status Word Diagram 8-1

9-1 thru 9-8 Deleted (MSS)

10-1. Comparison of Binary Numbers and Values Expressed in Powers of 2 10-6

UP-8913

SPERRY UNIVAC 0S/3

Contents 17

ASSEMBLER Update B
14-1 thru 14-37 Deleted (LZST PRpCESSING)
22-1. Example of Inline Macro Expansion 22-3
23-1. Accessing a Macro Definition Submitted in the Source Deck 23-4
23-2. Accessing a Macro Definition Stored in a Library 23-5
24-1. PROC and MACRO Heading 241
24-2. PROC, MACRO, and Call Instruction Comparison 24-6
24-3. Communication between Macroinstruction and Macro Definition 24-8
24-4. Example of MACRO and PROC Definitions 24-12
TABLES
2-1 Comparison of Numeric Expressions 2-2
2-2. Hexadecimal Notation 2-4
4-1. Comparison of Terms 4-9
4-2. Summary of Operators 4-14
5-1 Characteristics of Constant and Storage Definition Types 5-2
5-2 Zero Duplication Area Examples 5-6
8-1 Extended Mnemonics and Functions 8-3
8-2 Operand 1 Mask Combinations 8-10
8-3 Branch-on-Condition Instruction by Usage 8-11
9-1 thru 9-8 Deleted (/55)
12-1. Shift Logical Mask Bits 12-92
14-1 thru 14-9 Deleted (LIST PROCESSING)
15-1. Assembler Directives 15-1
17-1. Assembler Control Directives 17-1
20-1. Listing Control Directives 20-1
27-1. Conditional Assembly Language Statements 27-1
27-2. Operator Priority 27-9
27-3. Valid Attribute Reference Applications 27-26
27-4. Type Attributes of Symbols 27-27
28-1. CODEDIT Listing Content 28-2
28-2. External Symbol Dictionary (ESD) Listing Content 28-3
28-3. Cross-Reference Content 28-4
28-4. Diagnostic Listing Content 28-5

UP-8913

SPERRY UNIVAC 0S/3

Contents 18

ASSEMBLER Update B
B-1. ASCIl (American Standard Code for Information Interchange) Character Codes B-1
B-2. EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes B-2
B-3. Punched Card, ASCII, and EBCDIC Codes B-3
Cc-1. Hexadecimal-Decimal Integer Conversion C-3
C-2. Hexadecimal Fractions c-7
E-1 Mnemonic List of Instructions E-1
E-2 Alphabetic Listing of Instructions E-5
E-3 List of Instructions by Machine Code E-1

UP-8913 SPERRY UNIVAC 0S/3 1-1

ASSEMBLER

1. Introduction to Assembler
Language Programming

1.1. CODING AN ASSEMBLER PROGRAM

An assembler language program goes through several translations from the time it is hand
coded by a programmer until it is actually inside the computer and operating. (See Figure
1—1.) The first change is the conversion of code decipherable by people, source code
written in basic assembler language (BAL), to data capable of being processed by a
computer. Although an assembler source program can reside on several types of storage
media, diskette and punched card are the two types used by the BAL programmer
operating in a System 80 environment. The source code recorded on either of these media
types is in card image format. Therefore, the guidelines for generating your BAL program
on diskette are the same as those used for preparing punched cards. Because of this
similarity, the descriptions provided in this section are discussed from the standpoint of
card images.

While source code is entered onto cards by a card punch, it is recorded onto diskette
by either of two methods, both of which involve keyboard entry. One method allows
you to prepare the diskette offline by use of the SPERRY UNIVAC Universal
Distributed System 2000 (UDS 2000). Basically, you perform the same functions on
the UDS 2000 that you would from a card punch except the card images generated
from the keyins are recorded on diskette. The second method for recording card
images onto diskette is through the use of the system console (or workstation
keyboard) and the general editor, information for which is presented in the general
editor user guide/programmer reference. In addition to diskette, the general editor can
output source code to disk.

UP-8913 SPERRY UNIVAC 0S/3 1-2

ASSEMBLER
CARD IMAGES
~| CARD PUNCH | PUNCHED CARDS
HANDWRITTEN SOURCE CODE
SPERRY<4-UNIVAC CARD IMAGES
ASSEMBLER CODING FORM
PROGRAM ___ _ _ ___ U
LABEL LOPERATIONA
! 1 L —1 UDS-2000 > @
U I B FIUTE I
S WS Ll —p- DISKETTE
L o100 | I ISR raa 1y
o | I [N]
FUNED A | ! L g b CARD IMAGES
GENERAL
EDITOR
COMPUTER LISTING
C9C6E2C1E5CS E2E3C1DYE3 FO 0S/3 ASM
—_ LOC. OBJECT CODE SOURCE

- o RESULTS

Figure 1—1. Writing and Submitting a Program

OBJECT PROGRAM IN
EBCDIC HEXADECIMAL

The coded entries in a card image are converted on a column-by-column basis to data
that can be processed by the computer. Each column represents a single unit of
information. Figure 1—2 shows a blank card image. From this figure, you can see
that it has 80 vertical columns. Each column has 12 vertical positions called rows

(rows are numbered O through 9, 11, and 12 which appear at the top portion of the
format preceding row O).

UP-8913 SPERRY UNIVAC 0S/3 1-3

ASSEMBLER
12 TWELVE PUNCH 12
1" ELEVEN PUNCH 11

000000000000000000000000000G000806000000000000000000000000000000000000000

gooo0co0
21458711 RNNNUBBINNANZBNSETARRNRIUERTBRANQOUERTRARNNLNAESRT AV RCUSEIRANRNIBHARTIING
IR R RR R R R R R R R R R R R R R AR R R R R R R R R R A R AR RN R R AR RN

22
332333333333333333333333333333333333333333
G444 4444404040404040044444044044040440000404040400444040444044400000004004000404
5555555555955555555555555555555555555565535
FB6606666666666666666666666666066
1117111111310 1 1010011011 1111911111117t 171111171111171111111111711111111117
seasbespssacaatsassoaseanoasanacoooneogeyneenneoesosssnanenngaasassssasassgasrnts
99998999999999999959999999999998999999999999999999999999999989999999989998999899
t2345678 PEEH]

FWUNNUIBTEN BN N2Z2NNBBANIN BIARVUADUSBTUANNRVNSRTANLOQRAUSHINBNTIIBHEETINRAIN

COLUMN NUMBERS

Figure 1—2. Card Image

Different entry configurations in a column represent different characters and numbers.
For instance, each decimal number (O through 9) is represented by a respective
position in the card image. If an entry is made only in row O of a column, then the
image for that column is interpreted as the value zero. Likewise, if an entry is made
only in row 1 of a column, then the image for that column is interpreted as the
value 1, and so on through row 9. Everything you code in assembly language is
based on the 80-column card image.

The card images that make up an assembler language program are entered from code
that is handwritten on an assembler coding form. (The Sperry Univac assembler
coding form is shown in Figure 1—3.) Each line on the assembler coding form has 80
positions that correspond to the 80 columns of the card image. One card image is
entered for every line of code on the assembler coding form (Figure 1—4). The lines
of code on the assembler coding form and the card images entered from the form are
called source code lines. Collectively, these source lines make a source program.

A BAL source program is written with instructions, directives, conditional statements,
and macros. They are the elements of the assembler language and each is usually
written on one source line. (Sometimes it may take more than one source line to
write a single element, but most of the time it takes only one source line for one
instruction, directive, statement, or macro.) The assembler ignores the presence of any
blank card images in the source code. A blank line will not be printed nor terminate
a sequence of continuation lines. The rules for coding assembler language source
lines are reflected on the assembler coding form. Each source line has five fields
and the assembler expects specific information to be coded in each field.

wioy buipoy id|quiassy £—| ainbl4

T T T T T T L B T N T LN E A B SR S S R e A . SR R T LENLEN B S B
TrrTgypTs AN AL T L N T N L A N SR A A (R S A S e e s S B B L B N S L LA (N B
LA A SR [ARSR IR AR ST S T A A SR LA R S S e S LA (R A S B B AL SRS SRS A B SN A T
}’v rTTyor B (LT O T L T A e N S I L N L B O S D 0 B O B T T T T
[T T | AL S T e e A S A s S A B L N L L B T LA S S B S A
T [T T[T T ™7 LA LA L AN L B 2 L L B A A M N B S O T T T TTT T
=TTy 7oy Jh AR ST Ak e A S S L B S S A N T S L B L S T TI T TTTT
TITTrOTY SN A A N e A L B L (L 0 0 [L OO S T T T T
SRARAR S S e ot (e S0 AETR S 2 I AR e Sl e L e L S S B O S S LS N O L R Ty T T
YT v T YT [TTTYTR O T T T ot Tt v T 1525000 S S S S A AN A O S B N A AL S Y NS A UL N B S A L SRR R TTT T T
T T T T T T v T LB T T T T T T T T LI A L B A S B S MR B O S N A T TTT T T
Shahannatt s B o S A ekt ot A e e e A e e 2 e e . e L LS L T T YT
TTTIUyT r“” I LN A s S S e L 0 S A S R S L R A L R N B S (L B S A T TT T Ty
Froerr 1o £1‘Fl LIS A L A L L L S B L L) N B I BN L O T TT”‘J
TTT T f SRLANLN L A e e e A R IO (L O T TT T TTY
T T T T | LA LA LA S LN N (LS I A L R LA O LA N L A M ML B L T T 17T TT T T T
LANLENLINE I S A A A N B I S A S S N e S S S 2 e e N L R AL N N S N S S AL ML B B O T T T T
rryT T LT LR S0 Skt e 0 A e e S S it S S A I At AR G S S 0 LSS I e RS S A A S LENLA A B e S B S B S
Fyy T 7T [SLJNLINE SR AN N S e) LA D S B (N L A L L S M (A L N e S B S (L B S A N L S e T TT T T T
v ey T SELANLA [LA A S S . A S S A A Ay L S S L S SN S AL S B L S SN S S S S A i TT T T
YT T T | SNLALJLAL AN L A B B B L S T L T LI O A NS B N AL N O B TTT T T T
T L"'j—T’T AL (L (. L L L L B L O B LA N B L T] T T
B B NI SN S N A LA S T A . A O B S R S A B T T T T
}—1*7' TTITIT }’TT L2 A A S S S L L N N e L e S AL AL e L B B T LANLEN INLESL SN St
[T e *1‘1 Lo SRR S e S i S B S s B S S B B S S S S TTT T T T T
T T T | SIS R S (N N B LA N L S A A B N B L L S S B B B U B B LI B B B B ¢ T T TT T T T
vy T [S0 LA S S I T A A S A A S e B 1 B I D e [0 B e S S B T T LA S B e B
[T TrT7T T TrorTT ’rr‘r‘l’"T“T_Ww#ﬁY_TT’ﬁTTW“WW‘rTjT“l—fv‘f_r' T T T T T
Ty e A ALSLS AT T S St A B 2t i e AU O S S e A e N S 0 S A A e S e Ak e B R Sl B T—[TT T PP TTOT
rrYTTT Y AL AL U A S A S (. L . L A S S 2 Bt S B A | TT T

08 U 9l o

SINIWWOD v aNvH3d0 VYNOI1VHYId0y 13ava
$3I9vd T 40 T 30vd T T TTRVQ T T T T T T T T HIWAVE D0 HE T T - - - 77 T T T NvdD0Ndd
sS31u3s
0006 WHOZ ONIOOD HITEWISSY SUAINN<-A22ITS
DYAINN

HITaWN3ISSY

€/S0 DVAINN AdY3dS €168-dN

-l

UP-8913 SPERRY UNIVAC 0S/3 : 1-5

ASSEMBLER

LABEL AOPERATIONA
1 10 16

IFSAVE START]

-/ | F SAV E START 0O
mii
|
poBoBNocooBNooNoNoooooo0000000
12345678 91001271314 1516171819207122232425262728
IRE] ERRRRER] ARRRRERRERRRERRR

220222222022222222222222222
3333333333033033333333333333
A444444444444444444444384444
5655B0555555555555555555555
GH66665666666666666666666685
1117711711111 111111711711717171117

8668082838838338388888838838
B29999999993899959999599338
123456 789 526 21

WNEZBRI13H 1781820022232
-« 0N-35081

~

Figure 1—4. Coding Form and Card Image Relationship

1.1.1. Operation Field

The easiest part of an assembler source code line to recognize is the operation field;
it begins in column 10 and ends in column 14 of the card image. The operation field
is the most restrictive field on the coding form because you must use an established
operation code. You cannot arbitrarily assign a name of your own. The operation code
you use is a mnemonic code that relates to some function. For example, A is for add,
D is for divide, and § is for subtract. The mnemonic code must be written exactly as
the instruction, directive, or statement indicates. For example, A (not AD) causes the
add operation to be performed. If you put AD in the operation field, the assembler
could not relate it to any of the assembler functions, so this would cause an error.
Each mnemonic code for instructions, directives, statements, or macros is listed with
the description of that function. The rules for using the operation field are:

1. The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics
for instructions, directives, and procs, or macroinstructions.

UP-8913 SPERRY UNIVAC 0S/3 1-6
ASSEMBLER

3. The operation field must be terminated by a blank.

4. The operation code must not start in column 1.

Examples:
LABEL AOPERATIONA OPERAND
1 10 16
1.1 MOVEPAY MVC YEARPAY ,WORK
2.| MOVEPAY MV C YEAR,WORK
3. EOJ
b, ENJOB
5. START @
6. START @
7. USINC * 6
8. USING *,6
1. Valid
2. Invalid because there are embedded blanks in the operation code MVC
3. Valid
4. Invalid because there is no such mnemonic as ENJOB
5. Valid
6. Invalid because the operation code START is not followed by a blank
7. Valid
8. Invalid because the operation code starts in column 1

1.1.2. Operand Field

The operand field is the object of the operation code. The operand field begins in
column 16 and ends in column 71. The operand field holds the data or the location
of data that is being operated on. Each item of data in the operand field is an
operand, and operands are separated by commas. For instructions, operands can be
actual data — like the decimal number 10, the name of an area where data is stored
— like STORAREA, or the actual address specifying the number of bytes the
assembler must count to get to the data — like 1108(32). Operands for instructions,
directives, statements, or macros are whatever parameters are required by the
particular operation that is being done. For instance, an add immediate instruction has
two operands. The first operand is a main storage location, and the second operand is
a byte of actual data. An add immediate instruction adds the second operand to
whatever data is located at the first operand’s address.

Al STORAREA, 14

The add operation in this example is performed on the actual data, 10, and on
whatever data is located at an area named STORAREA.

UP-8913 SPERRY UNIVAC 0S/3 1-7
ASSEMBLER

The rules for using the operand field are:
1. The operand field is terminated by a blank that is not enclosed by an apostrophe.

2. Operands may be continued onto the next line by placing a nonblank character in
column 72. Up to two continuation lines are permitted. Caution should be
exercised when using a nonblank character in column 72. As shown in the
OUTRIB RIB example (1.1.7), a comma must follow the last operand on the
continued statement if there are more operands to follow; otherwise, the
operands that follow will be treated as comments.

3. Column 16 is where a continuation line starts.

Examples:
LABEL AOPERATIONA OPERAND
1 10 16 72
1.{ NAME DC CLO9'REBEW R D' NAME IN 9 BYTES
2.{ NAME DC CLY'REBEW R D'NAME IN 9 BYTES
3. ENTRY ILE ,AYAHC NAD,NAHS,WNS,WBE , OREG, X
DNOMYAR ,N4543N11,CONST32,EQUITY,WMC, X
WDR ,WRD32 , SGAW
1. Valid

2. Invalid because the operand field is not terminated by a blank
3. Invalid because the line has an embedded blank

1.1.3. Label Field

As we mentioned, the operand field can contain data or the name of an area where
data is stored. You assign a name to an area in your program by coding a symbolic
name in the label field of the area to be accessed. Once a source line is given a
label, it can be referenced from any other location in the source program. For
example, | can name a line of code and use its name in the operand field of an

instruction.
1.1 ROUTINE Al STORAREA, 10
2. B

ROUT INE

In this example, | labeled an add instruction: ROUTINE. Then, later in my program, |
used the symbol ROUTINE to refer to that line of code. On line 2, | said, “Branch to
the area called ROUTINE, where the add instruction is located.”

UP-8913 SPERRY UNIVAC 0S/3 1-8
ASSEMBLER

A symbol in the label field of a line of code can also be used as an operand to
reference data. For example, | can write a line of code to define a constant.

LABEL AOPERATIONA OPERAND
1 10 16
TEN DC H'1g®

This line of code says, “Place the number 10 in the location named TEN.” Once the
symbol TEN is defined, it can be used as an operand to represent the value 10.

Al TEN,6

In this line of coding, I'm requesting that 6 be added to whatever data is stored at
location TEN. When you label data as | labeled the data (10), you are associating a
symbol with a value. That symbol can then be used in place of the value.

The rules for using the label field are:

1. The symbol must start in column 1.

2. The symbol must begin with an alphabetic character or special letter.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.
5. The field must be terminated by a blank.

Examples:

LABEL AOPERAT IONA OPERAND
] 10 20

BEGIN
BEGIN
WEEKS52
52WEEKS
EMPLOYEE
EMPLOYEENO
BLANKNO
BLANK NO
MOVEPAYMVCYEARPAY ,WORK

W oo~V EWN —

UP-8913 SPERRY UNIVAC 0S/3 1-9

ASSEMBLER
1. Valid
2. Invalid because the symbol does not start in column 1
3. \Valid
4. Invalid because the symbol starts with a number
5. Valid
6. Invalid because the symbol is longer than eight characters
7. Valid
8. Invalid because the symbol contains an embedded blank
9. Invalid because the symbol MOVEPAY is not followed by a blank (There must

also be a blank after the operation code MVC.)

The three fields just discussed are essential for designing an executable BAL program. The
remaining two fields, the comment and sequence fields, don’t play a role in the actual
design of a program but they are useful programming aids. The comment field is a program
documentation aid and the sequence field is a program maintenance aid. Program
documentation is as important to the programmer writing the program as it is to those who
must refer to it later. Operand specification is usually completed by column 40, thus leaving
columns 41 through 71 free for comments.

1.1.4. Comments Field

There are two ways to code comments:

1. Comments can be coded on the same line as an instruction, statement, or
directive. There must be at least one blank between the end of the operand
specification and the start of comments. If your comments exceed one source
line, place a nonblank character in column 72 and continue the remaining
comments on the next source line (at column 16).

Examples:
LABEL AOPERATIONA OPERAND ACOMMENTS
i 10 16 72
OPEN CARDFLE, (PRINT) OPEN FILES
BALR 14 ,HDRTN GO TO HEADING ROUTINE
READCARD DMINP CARDFLE ,CARWORK READ A CARD INTO WORKAREA
MVI PRINTOUT,C' ! CLEAR PRINT AREA
MVC PRINTOUT+1(131) ,PRINTOUT
cLC NUMBERIN (5) ,CUSTNO IS THE CUSTOMER NUMBER DIFFERENX

T THAN THE PREVIOUS NUMBER
BNE NEWCUST

uP-8913 SPERRY UNIVAC 0S/3 1-10
ASSEMBLER

2. Comments can be coded on a separate line. This is done by placing an asterisk
(*) in column 1 of a source line. Then your comments can be coded. If your
comments exceed one full source line, place another asterisk in column 1 of the
next source line and continue coding the remaining comments. Note that a
nonblank character is not coded in column 72 for continuation when an asterisk
is coded in column 1 of the next source line. However, if your comments exceed
one full source line, you can code a nonblank character in column 72 if you
continue the remaining comments on the next source line starting in column 16.
An asterisk must not be coded in column 1.

Example:
LABEL AOPERATIONA OPERAND
1 10 16

BALR L,

US ING * 4

OPEN CARDSIN, (CARDRIB)

* THIS PROGRAM PREPARES AN ACCOUNTS RECEIVABLE REPORT USING CARD INPUT
* AND PRINTER OUTPUT

During assembly, comments are printed but do not affect the resulting object code.
The purpose of comments is to make the program listing easier to follow and can
also highlight certain portions of the program.

1.1.6. Sequence Numbers

Columns 73 through 80 may be used for entering sequence numbers. This is done by
assigning consecutive numbers to each line of coding and is useful for reassermnbling
the card deck, if it should be dropped. It is good practice to number the lines in
multiples of 10, or even 100. This allows you to insert additional coding lines without
having to renumber the cards when they have been keypunched prior to the
modification. Some programmers use letters in addition to the numbers. This is useful
in identifying the deck from which cards have come if they have been removed for
any reason. Sequence numbers also are important in maintaining a source module. A
copy of your source module may be stored on tape, disk, or diskette and the OS/3
librarian can update and correct the source module by using the sequence numbers.
(See the system service programs (SSP) user guide.)

UP-8913 SPERRY UNIVAC 0S/3 1-11
ASSEMBLER

. 1.1.6. Column 72

Another coding feature on the assembler coding form is column 72. This column
separates the sequence field from the rest of the source line and is normally blank
unless you have to continue an operand field to the next source line. If an operand
specification is too lengthy to fit into the columns provided on a single line, the field
may be continued onto the next line. An operand field can be continued by coding
any nonblank character in column 72 and then continuing the operands on the next
line starting in column 16. It is best to avoid using the comma as a continuation -
character when the comma is being used to separate the operand fields. However, it
can be used as a continuation character when it is being used to separate operands.
If you have coded up to column 72 and the next character you have to code is a
comma separating operands, that comma must appear in column 16 of the next line
after you code a nonblank character in column 72 (even another comma may be
used).

1.1.7. Additional Coding Rules

The operand fields of an instruction, directive, or conditional statement must
completely fill all available space on a source line, starting with the first operand
specified up to and including column 71. Then a nonblank character can be placed in
column 72 and the remainder of the operand field can be continued onto the next
source line (column 16). These operand fields in an instruction or directive can be

. continued for only two additional lines.
Example:

LABEL AOPERAT IONA OPERAND

1 10 16 72

TITLE DC C'UNITED STATES GOVERNMENT PRINTING OFFICE STYLE MANUALSX
(ABRIDGED) '

EMTRY 11234567,J1234567,K1234567,L1234567,M1234567 ,M1234567,01X

234567

The operand fields of macros and procs can be coded in two different ways:

1. The operand fields can be coded in the same manner as instructions, directives,
or conditional statements, in which case they must completely fill all available
space on a source line, starting with the first operand specified up to and
including column 71. Then a nonblank character can be placed in column 72 and
the remainder of the operand field can be continued onto the next source line
(column 186).

UP-8913 SPERRY UNIVAC 0S/3 1-12
ASSEMBLER Update B

2. The operand fields can be coded to leave space between the last operand specified on
that line and the nonblank character in column 72. A comma must be placed
immediately following the last operand on that line, thereby separating it from the
following operand field on the next source line. However, if you omit the comma
immediately following the last operand on that line, and at least one blank exists
between the last operand and the nonblank character in column 72, a warning
message is issued by the assembler.

The operand fields in a macro or proc can be continued for as many lines as

necessary.
Examples:
LABEL AOPERATIONA OPERAND
1 10 16 72
OUTRIB RIB |0A1=0UTBUF ,RCFM=VARBLK,VARBLD=(13), I0RG=(12) ,TYPEFLE=0UX
TPUT,FILABL=STD
OUTRIB RIB I0A1=0UTBUF, X
RCFM=VARBLK, X
VARBLD=(13), X
I0RG=(12), X
TYPEFLE=OUTPUT, X
FILABL=STD

it is wise to develop good coding habits from the start. A neatly coded program is
easy to enter, debug, and interpret. Figure 1—5 is an example of such a program.
This example program follows the format of the coding form, has plenty of comments,
and uses sequence numbers. Don’t fall into the bad habit of jotting down instructions
and assembling them just to see if your ideas have any substance. It is much better
to sit down and evaluate the problem. First flowchart your program, and then code it
on the coding form, using plenty of comments and sequence numbers for lengthy
programs.

UP-8913 SPERRY UNIVAC 0S/3 1-13
ASSEMBLER Update K
LABEL AOPERAT IONA OPERAND ACOMMENTS
| 10 16 72 80
TITLE "FIRST PROBLEM- PROGRAM' DARGP | 8@
PROG] START ¢ DARPB269
BEGIN BALR 6,0 DARPG3 9@
USING *,6 DARPOGL AP
ZAP WORKAREA, BONUS ENTERS BONUS RATE INTO WORKAREA DARPPSES
MP WORKAREA ,WEEKS MULT BONUS BY 52 WEEKS DARPP6GP
AP WORKAREA,YEARRATE ADD BONUS TO YEARLY RATE DARPP7 88
MOVEPAY MvC YEARPAY ,WORKAREA+2 MOVE TOTAL YEARLY PAY DARSP8EP
DP WORKAREA ,WEEKS DIVIDE TOTAL PAY BY 52 WEEKS DARPFIPE
MVC WEEKPAY ,WORKAREA+| MOVE WEEKLY PAY,HOURLY RATE 1S DAR@1Pg@
* NOT CALCULATED IN THIS PROGRAM DARP1198
MVC OUTPUT (29) ,EMPLOYEE COMPLETE RECORD MOVED DAR@ 1208
E0J END OF JOB DAR®1 348
WORKAREA DS cLé RESERVE 6 BYTES OF STORAGE DARG14pP
BONUS DC PL2' 5o PACKED VALUE OF 588 IN 2 BYTES DARPISHg
WEEKS DC PL2'52} PACKED VALUE OF 52 IN 2 BYTES DAR®16@¢
YEARRATE DC PLL' | 300008 PACKED 138¢@68 1t 4 BYTES DARB1709
OUTPUT DC 23C'A¢ 23 BYTES OF BLANKS DARP1 8¢9
EMPLOYEE DS @gcL23 SYMBOL FOR NEXT 23 BYTES DAR®1 988
NAME ne CL9'REBEWARAD' REBEWARAD IN 9 BYTES DAR@2868
WORKNO DC C'A1234" A1234 IN 5 BYTES DARP2 198
YEARPAY DC PLL gt L BYTES OF PACK ZEROS DARB2288
WEEKPAY DC PL3'@! 3 BYTES OF PACKED ZEROS DARB2300
cG ne claaa 3 BYTES OF BLANKS DARB24PP
END BEGIN END OF THE PROGRAM DARP2588

Figure 1—5. Example of Proper Coding Techniques

You can, if you wish, code your assembler program in a free-form manner. The
operation, operand, and comments fields don't always have to start in column 10,
column 16, and column 41. These columns are shown on the coding form as
preferred starting positions for each field to promote formalized coding practices. One
unbreakable rule is that label field must always start in column 1. Each field after the
label field must be separated by at least one blank. So, if you only have a 3-character
label, the operation field can be coded starting in column 5 instead of column 10.
Also note that the label, operation, and operand fields must all be keypunched on the
same card. Another restriction is that the sequence numbers must always appear in
columns 73 through 80. Some examples of free-form coding are as follows:

LABEL AOPERATIONA OPERAND

1 10 16 72 80
TAG START @ DAREP| B9
BEGIN BALR 6,8 DARPB208
USING *,6 DARPE 308
ZAP WORKAREA,BONUS ENTERS BONUS RATE INTO WORKAREA DAR@SLBS
MP WORKAREA ,WEEKS, MULT BONUS BY 52 WEEKS DAR@@5 PP

UP-8913 SPERRY UNIVAC 0S5/3 1-14

ASSEMBLER

As you can see, the free-form style of coding is much more difficult to interpret than
the formalized style.

Another option is available, if the location of the fields on the supplied coding form
doesn’t suit your particular application. The assembler coding form can be changed by
using the ICTL directive (21.1). By using this directive, you can change the location of
the beginning, ending, or continuation column.

After a BAL source program is coded, it must first be assembled (and also linked)
before the program can be executed by the computer. These two functions are
separate operations and therefore they happen at different times under control of two
different computer elements. At assembly time, the assembler translates the source
program to machine code instructions, and at execution time, the hardware processor
performs the machine code instructions. Although you can interpret a source program
as if it can actually execute, the hardware processor is incapable of actually executing
this source program.

1.2. ASSEMBLING A PROGRAM

Before source code can be executed by a computer, it must be converted to machine
code. A BAL source program is converted by an assembler, and a higher-level
language, like COBOL or FORTRAN, is converted by a compiler. Whether a source
program is assembled or compiled, the output is always the same. An assembler or
compiler produces an object program (machine code}):

/

SOURCE PROGRAM

ASSEMBLER

— OR — OBJECT PROGRAM
COMPILER

The object program is a binary program that can actuate the electronic logic circuits
in the hardware processor to perform specific functions like add, subtract, or divide.
Any computer program must be in binary form before it can be stored in the
computer and executed by the processor.

Though an assembler or compiler can produce an object program, each operates
differently. Figure 1—6 shows five source lines from a COBOL program, and Figure
1—7 shows the object source code generated from the original COBOL source lines.
As you can see from Figure 1—7, a single compiler source line produces several
object code instructions. This is not true of assembler source lines (excluding
macroinstructions); each line is converted to object code on a one-for-one basis. The
object code shown in Figure 1—7 is in hexadecimal as is any object code shown in
printout form. This is because hexadecimal is easier to read and binary would take up
too much room on a printout.

UP-8913 SPERRY UNIVAC 0S/3 1-15

ASSEMBLER
1 INF Mo, SFQ. SOURCF STATEMENT 1DEN
noos8A ANy019 PROCEDURE nIVISTINN, PROGQ1
nonge nD4020 INITIALIZE, PROGOI
ngnen npa021 OPEN INPUT CnNS. pROGOI
non9y n04022 OPEN NUTPUT NENFPIL, LIST. PRQGOL
00ne2 no4023 MOVE SpACFS v0 oUr, PRaGO!

Figure 1—6. COBOL Source Code

LINF o nhsE/DISpL ANDRESS CONYENTS ofF MEWORY OPErAND ADDRFSSFS aPCNOE COMHMENTS
onnae anop9ié INTYIALIZE PARAGRAPH WEADER
ono9en np?3e 58 10 A nNac nAnOEY L OPEN
fno9ac S8 FO A NFO onnlos L
0no9s40 0S5 EF BALR
ono9t ono9u2 41 10 A Npe onnoDC La OPEN .
nnoYus 58 FO A Nny 0npOFC BAL L cOoBOL
nOO%4A 05 FF BAIR SOURCE
0no9uc 0042 SOURCE oc ¥ s
. : TATEMENT
0npey NNOYNE $8 10 A NCe nan0EC OPERATION L OPEN NAMES
Bnn9s2 58 FO A NFD onnloa CODES L
Nnoesé 0S5 EF BaLR
0no9s8 90 77 A nN9a nanlCo STM™
onne2 nnnesc 92 40 7 nno 'OBJECT Myt HOVE
AND940 02 82 7 nny 7 nGo CODE 174

Figure 1—7. Object Code Generated from COBOL Source Code

The assembler converts each source instruction directly to a line of object code.
Figure 1—8 shows a listing of an assembler program. The source code that was
submitted to the assembler is shown at the right of the listing, and the object code
generated by the assembler is shown at the left of the listing. Figure 1—8 has a
BALR assembler instruction in the second source line that uses register 6 in operand
1 and register O in operand 2. As you can see, in the object code part of this listing,
the assembler has converted the BALR source instruction to 0560,5. The 05,4 is the
machine code for a branch and link instruction; when the processor reads an 05,4, it
will perform the BALR instruction. For a listing of the machine codes for all
instruction opcodes, see Table E—1. The register numbers for the BALR source
instruction are in the second half of the object instruction.

Very rarely will high-level language programmers read object code. Their concern is
mostly with the language and the compiler. While assembler language programmers
not only have the assembler and the assembler language to contend with, they also,
if not just by sheer exposure, have to tolerate reading object code. This is because
the assembler is really only one language step from the hardware processor. The only
programming language left after assembler language is the nonsymbolic machine
language. Although assembler language is closely related to the processor, it is still a
symbolic programming language.

LoC.

060000
cacuou
gucuo2
GuCao02
rocuos
cutonc
0gculz
cucols
cucCulc
rutazz2
cucu2s
0GCO2E
CLLCU34
CuCu3a
0uCu3E

0uCuby
CUCO4y
CUCOu8
CUCO49
aocyuc
gacouso
COCUsG
oucas2
CLCUS4
rOLCUSA

nueaose
CuCuSE
£50062
Callee
00Co6A

0U0U6E
COCUsE
oulu70
guca71
ouea7r2
000074
cocare
oulu7e
QuCu7e

0uCo7s
aocu7s
geCu7C

0Gou7E
CuCu7e

0BJECT CODE

Useo

4100
F263
F2l2
F272
4F492
FCel
FAbl
D140
0205
F86%
4649
F346

4519

60F6
63CA
6005
60DE
6UDE
63CA
6GCA
6UCF
63EB
60CA
6UlA
6UfFl

6701
6007
60t6

69D5
60E9
6000
6NCA
60EB

60CA

ADDR1

gsuocce
ouoD?
0LOED

ngocce
ouocc
ouool1
COOED
0ulCC

J00F 3

0008C
oulcy

ouda2
ogeo3

ADDR2

700F8
000D3
26009
guoes
QCOED
alo}edods
nooEB
oc0D2
guocc
DOQED
ouoic
noocc

Qa0s0

QuOF3

03149
051 44

23140

> PP D

PP DTN D>

> >

LINE SOURCE STATEMENT

1 IFSAVE
BEGIN

2
3
4
S
6
7
8
9

AGAIN

8+

32+
33+
34+
35+
36+
37+
38+
39+
43+
41+
42+
43
44+
45+
4o
47
48+
49+
50 ouv
51+

START
BALR
USING
LA
PACK
PACK
PACK
cve
MP

AP
MVN
MVC
ZAP
BCT
UNPK
OPEN
CNOP
BAL
Lc

cce

ocC

1]
SVC
CNOP
MVC
[*34
CMOUT
uc

L

L

MVI
MV
SCALL
Us
Sve
oc

uce
sve
NOPR
SvVe
ORG
Sve
CLOSE
e

L

svC
EOU
cs
SvC
cohis
ENTRY

<

6yd

¥,6

13,SAVE

PRINP PRINZ
INTERP,INTERZ
TIMEP ,TIMEZ
4, TIMEP

FRINP ,INTERP
FRINP 4ROUNDEC

0S/73 ASM 83/01/03

PRINP+5(1)PRINP+6

AREA,PRINP
FRINP JAREA
4,AGAIN
ANSWER,PRINP
GUT, {OUTRIB)
Gl

lywel2

x*81"
AL3(OUT)
x*8n*

AL 3(OUTRIB)
38 ISSUE SVC
Grs

BUF (9) ,ANSWER
BUF+8 yX*FQ"*
QUT,BUF
GYLD) *
1,2A(0UT) »
U =A(BUF) =
2011, X%20° =
3(1),0 =

47

uH

239

YL1t16)
YLi(47)

25

L

28

-2

133

ouT

syteo)
13=AC0UT) LOAD
39 ISSUE svC

UH
26

ouT

SET ALIGNMENT
LOAD R13, CDIB ADDRESS
LOAD RND$, WURKAREA ADDRESS
SET FUNCTION CODE
SET FUNCTION CONTROL BYTE 1

Rl WITH FILENAME ADDRESS

Pao00%60
PaoOl1150
Pa0D1160
PG001170
P3001180
Pa001190
Paou2170

PaI0N6%0
Palo0710
PaIdN740
Palunesa
PaIuD89l
PalIng9290
P3s500810
P$SU1380
P$S0O1390
P3SU1395%
P3SD1590
P3S01650
P3501660

Pa00N280
Pa0w2020
Pa002u30

ECJOQD50
ECJUOU70

Figure 1—8. Assembly Listing

€£168-dn

HIT8WISSY
€/S0 JVAINN AHY3dS

9l-1

UP-8913 SPERRY UNIVAC 0S/3 1-17
ASSEMBLER

The symbolic language for the assembler has two basic types of operation codes. Those
that are translated directly to machine codes and those that are not. The mnemonic codes
that aren’t translated to machine codes are processed only at assembly time and do not
become part of the object program. Nonmachine code mnemonics are used to direct the
assembler when building an object program, while machine code mnemonics make up the
actual object program. Operations codes that are translated to machine codes are called
assembler instructions. For a complete listing of mnemonic instruction codes and their
counterpart machine codes, see Table E—1.

There are three categories of nonmachine code mnemonics in the OS/3 assembler
language: directives, conditional statements, and macros. Table 15—1 is a summary of
assembler directives; Table 27—1 is a summary of conditional statements; and information
on the macroinstructions available under 0S/3 is included in the applicable user guide or
programmer reference. The most commonly used macroinstruction types are data
management and supervisor. See the consolidated data management concepts and facilities
user guide, the consolidated data management macroinstructions user guide, the supervisor
concepts and facilities user guide, and the supervisor macroinstructions user guide. The
following listing shows the four elements of the assembler language and whether or not
they are converted to executable code.

1. Instructions Machine Codes/Executable Code

2. Directives

3. Conditional statements Nonmachine Codes/Nonexecutable Code
4. Macros '

As stated, the main function of the assembler is to produce an object program from a BAL
source program. The object program created by the OS/3 assembler is called an object
module and contains other information in addition to the machine code instructions
translated from your source program. This other information is generated by the assembler
so that OS/3 can recognize and process the object module. Figure 1—9 shows the format
of the OS/3 object module. The shaded area indicates where the machine code program is
located in the generated object module, and the remaining unshaded areas in the object
module are used by the linkage editor, which is an OS/3 system program that creates
another module called a load module. For further details about the contents of an objert
module, see the system service programs (SSP) user guide.

UP-8913 SPERRY UNIVAC 0S/3 1-18
ASSEMBLER

OBJECT MODULE HEADER RECORD

LINKAGE EDITOR CONTROL STATEMENTS
(OPTIONAL)

CONTROL SECTION RECORDS

EXTERNAL SYMBOL DICTIONARY (ESD)
RECORDS (OPTIONAL)

TRANSFER RECORD

LINKAGE EDITOR CONTROL STATEMENTS
(OPTIONAL)

MACHINE CODE

Figure 1—9. 0S/3 Object Module Format

1.3. CREATING A LOAD MODULE

Assembling a program is only the first step in generating an executable BAL program.
The complete process is a 3-step sequence and is generally called an assemble, link,
and go operation. This means you must assemble an object module and create (link) a
load module before you can execute (go) a BAL program. To set up an assemble, link,
and go operation, or an assemble only (if only an assembly is required), you must use
job control statements. Section 29 gives detailed information on how to run a BAL
job.

Although the object module created by the assembler contains a BAL program in
machine code form, it still isn't an executable program. To be executable (in 0OS/3)
the object module must be changed to a load module. After an object module is
generated, the assembler is no longer in control and the object module, left behind by
the assembler, is used as input for creating a load module. The next OS/3 system
program to gain control builds a load module from the object module. This system
program is called the linkage editor.

The format of the load module produced by the linkage editor is illustrated in Figure 1—10.
The shaded area indicates where the machine code program is located in the load module.
For detailed information about the contents of a load module see the system service
programs (SSP) user guide. Segments phase 1 through phase n shown in Figure 1—10
aren’t created unless you specifically do so with linkage editor control statements.
However, every load module will always have a root phase. After a load module is created,
the BAL program is ready for execution,

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

1-19

ROOT
PHASE
SEGMENT

PHASE 1
SEGMENT

PHASE N
SEGMENT
(UP TO 99)

<

\/

PHASE HEADER RECORD

AUTOMATICALLY INCLUDED
OBJECT CODE

AUTOMATIC OVERLAY CONTROL ROUTINE
(KL$OCP OR KL$OCPR)

REGION TABLE (RTAB)

TRANSFER RECORD

PHASE HEADER RECORD

TRANSFER RECORD

€
D)

{1\

PHASE HEADER RECORD

TRANSFER RECORD

Figure 1—710. 0S/3 Load Module Format

ONLY PRESENT IF REQUIRED
AND AUTOMATIC INCLUSION
FEATURE IS NOT INHIBITED

ONLY PRESENT WHEN V-CON
PROCESSING IS SPECIFIED
AND VALID V-CON
REFERENCES EXIST IN
MULTIPHASE OR MULTI-
REGION LOAD MODULES

UP-8913 SPERRY UNIVAC 0S/3 1-20
ASSEMBLER

1.4. PROGRAM EXECUTION

During the assemble and link phase, each type of BAL module is on disk, while
during the program execution phase, the machine program is stored in main storage
as a load module. Figure 1—11 shows the location of each module after assembly
time and linkage editor time. The source, object, and load modules are stored in a
disk file called the job’s run library file (YRUN). This file is an OS/3 system file,
which is used to hold each BAL module until the assembler, linkage, and execution
steps are finished.

The focal point of program execution is main storage. Once the load module is loaded
from disk to main storage, the machine instructions are fetched one at a time from
main storage by the processor. When the processor fetches an instruction, the opcode
is decoded to find out which instruction is to be executed. If the instruction is legal,
it is executed and the processor fetches another. This goes on until no machine
instructions are left in the load module.

The only codes that the processor can interpret are the machine codes for assembler
instructions. Any other codes submitted to the processor will cause an error, and the
offending program is aborted. Every machine code instruction in the BAL instruction
repertoire is supported by the microcode loaded into the control storage of the system.
It is important to realize that machine codes, and only machine codes, can drive the
hardware processor. This is the key to understanding the difference between program
execution time and assembly time. At assembly time, the assembler processes the
source program,; the processor cannot execute a source program and doesn’t see your
program until it is in machine code form.

SOURCE
MODULE

ASSEMBLER MAIN STORAGE PROCESSOR
FETCH NEXT
€700 C560 4510 INSTRUCTION
MACHINE CODE
MODULE 0219 D 00A MACHINE
9 D213 600 INSTRUCTION CONTROL LOGIC
61C6 OO0OED 6156

LINKAGE
EDITOR

LOAD
MODULE

N

Figure 1—11. Assemble, Link, and Go Operation

UP-8913 SPERRY UNIVAC 0S/3 21
ASSEMBLER

2. Data Forms

2.1. DATA REPRESENTATION

Computer data is stored in special code combinations used to represent all the
characters and numerical data needed for problem solving. The smallest area the
computer can move or manipulate is called a byte, which is composed of eight units
called bits. Each bit is either a 1 or a O; thus, a byte representing the letter M would
look like this:

1BYTE
1

|
1101 | 0100

i
0 3,4 7

Bits are numbered from left to right, with the leftmost bit referred to as the zero bit
or the most significant bit (MSB). The rightmost bit in this byte is the number seven
bit. The rightmost bit in any field, no matter how long, is also referred to as the least
significant bit (LSB). Two contiguous bytes are called a half word; four are called a
full word; and eight are a double word. When you manipulate several bytes as a
string, the leftmost byte is called the most significant byte (MSB), and the rightmost
byte is the least significant byte (LSB). Additional information on bit and byte structure
is given in 4.3.2.

Table 2—1 comprises different methods of organizing and referencing numeric data as
you would use them in data processing.

T . 1
UP-8913 SPERRY UNIVAC 0S/3 2-2
ASSEMBLER
Table 2—1. Comparison of Numeric Expressions
Decimal
Examples
Type of Number xamp Values
Character form (unpacked) F: 51 F4 0 Fj., 0 500
1 [
T T
Zoned decimal (+) FIs|Fto c} 0 +500
1 1 F -
T T T
Zoned decimal (—) F : 5|F ;0 Dll 0 —500
- |
I L
Packed decimal (+ only) 5 i ol o : F +500
T T
Packed decimal, signed (+) 510]0)C +500
1 L
. . i L
Packed decimal, signed (—) 5Jl o}]o ! D —500
T
Hexadecimal (+ only) ot 11]F |l 4 +500
. T T T
Floating point {+) ar3|1iF|a ; 01010 +500
1
. R M 1 [1
Floating point (—) cl!3l11Fjai01010 —500
! | A 1 1
1
Binary (+ only) 0000 | 0001 | 1111 I 0100 +500
I
Binary (+ only) 1M i 1110 0000 } 1100 +66,036
T
Fixed point (+) 0000 E 0001 111 | 0100 +500
T T
Fixed point {(—} 1111 : 1110 ooooJ| 1100 —500

2.2. BINARY REPRESENTATION

In binary language, the same principles are followed as in decimal language. In
decimal language (base 10), the number 251 is a combination of three values:

2 § 1
1 1 a value of one unit
50
+ 200 5 the value of five 10's
21 2 the value of two 100's

In binary (base 2), the rightmost digit has the decimal value of 1; the digit to its left
has a decimal value of 2, the next is 4, then 8, and so on to the most significant bit,
which in one byte, has the decimal value of 128. You determine the total value of a
binary number by adding the decimal value of each “on” bit (1), as illustrated in
Figure 2—1.

uP-8913 SPERRY UNIVAC 0S/3 2-3

ASSEMBLER
1
1
o 0 o0 o : 0o 0 o 1 This has a decimal value of 1.
4 1
=T
0 0 0 o010 1 0 1 This equals the sum of 4 and 1 (or 5).
1
8 4 2
!
o 0 0 o Il 1 1 1 0 This equals the sum or 8, 4, and 2 {or 14).
T
1 1 1 LI I I 1 1 This decimal value adds to 255, which is the maximum
T I 'y “ 1 4]] \ value for one byte. The maximum value for a half byte
128 T r { (4 bits) is 15.
64
32
16
8
4
2
1

Figure 2—1. Determining Binary Values

Starting with the value of zero, a full byte represents a total of 256 different codes
(B.1) and a half byte represents 16 codes. Since binary notation is unwieldy, most
notations are written and computer-printed in other forms.

2.3. HEXADECIMAL REPRESENTATION

Using base 16 values, there are 256 hexadecimal codes in one byte. The hexadecimal
notations consist of the numbers O through 9 and the letters A through F. In this
way, we can represent the maximum decimal value of a half byte, which is 15, by
one hexadecimal notation, which is F (Table 2—2). In B.1, the relationship of the
binary, decimal, and hexadecimal codes for a full byte is shown.

Hexadecimal representation is an outgrowth of decimal and binary representation of
data. In decimal, the base used is 10; therefore, the decimal number 251 is in
actuality:

2 51

LN

2x102+5x 10" +1x 10°
which is the same as saying:

(2 x 100) + (6 x 10) + (1 x 1) = 2561

UP-8913 SPERRY UNIVAC 0S/3 2-4
ASSEMBLER

If we take this same number, 251, and show it in binary notation (that is, use the
base 2), it would look like this for one byte:

1
1111 :1011

This is the same as:
(1 x27) + (1 x 28) + (1 x 2%+ (1 x24+(1 x23)+(0x22)+(1x2‘)+(1 X 29)
or:
(1x128) + (1 x 64) + (1 x32)+ (1 x16) + (1 x8)+(0x4)+(1x2)+(1 x 1) =251

Hexadecimal notation reduces the time and Space needed to read or write the codes
represented by a full byte of binary information. Because 16 is the base, to convert
binary data to hexadecimal data, divide the binary representation of the decimal
number into groups of four bits and pad to the left as necessary to obtain a full
grouping of four bits. Thus, taking the binary representation of the decimal number
251 and breaking it up into groups as just described, we get:

1
1111:1011

Binary = decimal value 251
1 o
185 x 16")+ (11x 16
Decimal () = decimal value 251
¥
Hexadecimal F : B = decimal value 251

Table 2—2. Hexadecimal Notation

Binary Decimal Hexadecimal
Half Byte Value Code
0000 (o] 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
o111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 (o
110 13 D
1110 14 E
1111 15 F

UP-8913 SPERRY UNIVAC 0S/3 2-5
ASSEMBLER

2.4. CHARACTER REPRESENTATION

There are 256 possible bit combinations that can be stored in a byte. By convention,
certain bit combinations are used to represent the letters, numerics, and special
characters that are used to convey information in written form. In B.1 are listed the
hexadecimal equivalents of the characters used to write programs. It is also pointed
out in this document that only certain characters are used in statement formats. To
aid in the specification of permissible characters, the overall character set of the
assembler is divided into the following classes:

® Alphabetic set:
— Alphabetic characters: the uppercase letters A through Z
— Special letters: ? $ # @

Numeric characters: 0 through 9

m Special characters: + - * / , = A (blank) () . & " > <

2.4.1. Alphabetic Characters

The letters A through Z are alphabetic characters and part of the alphabetic set. The
following table shows the hexadecimal representation, which is one byte long, for
each of the uppercase letters. (Also see B.2))

Alphabetic Hexadecimal Alphabetic Hexadecimal
Character (EBCDIC) Code Character (EBCDIC) Code

A c1 N D5

B c2 0 D6

Cc C3 P D7

D c4 Q D8

E C5 R D9

F Ccé S E2

G c7 T E3

H c8 U E4

I C9 \ ES

J D1 w E6

K D2 X E7

L D3 Y ES

M D4 z E9

uP-8913 SPERRY UNIVAC 0S/3 2-6
ASSEMBLER

2.4.2. Special Letters

The following special letters are part of the alphabetic set and usually follow the
same rules as the letters mentioned in 2.4.1. The hexadecimal representation for
these special letters are listed in the following table (also see B.2):

Special Hexadecimal
Letters (EBCDIC) Code

6F
58
78
7C

®= o~

2.4.3. Numeric

As previously noted, all characters are coded in a full byte (eight bits), and this is
also true for the character forms (unpacked) of numbers. Numbers written in this
form, just as letters and other characters, can be moved from one location in main
storage to another and can be sequenced, compared, and treated in other ways; but
mathematical operations can not be performed on unpacked numerics. To do
mathematical operations, the values must be in binary or packed decimal form.
Unpacked and packed numeric formats are explained in 2.4.3.1 and 24.3.2. All
numeric forms are shown in Extended Binary Coded Decimal Interchange Code
(EBCDIC). For the American Standard Code for Information Interchange (ASCIl), see
B.3.

2.4.3.1. Unpacked Format

Unpacked (printable) numeric characters are coded in a full byte and are easily
recognized because the first half of the coded byte is the hexadecimal code F. The
decimal digit 5 is represented in a byte as F5. The F half of the byte (bits O through
3) is the zone field, and the 5 (bits 4 through 7) is in the digit field. Numeric data
must be in this unpacked format to be output to a printer unit.

-

zone digit

UP-8913 SPERRY UNIVAC 0§/3 2-7
ASSEMBLER

The following shows the hexadecimal 1-byte unpacked code for each decimal digit.

Decimal Hexadecimal
Digit (EBCDIC) Code
0 FO
1 F1
2 F2
3 F3
4 F4
5 F5
6 F6
7 F7
8 F8
9 F9

Examples of decimal digits and their unpacked byte equivalents are shown here.

| 1
52 fiils 2 bytes Fi15 F12
1 1
T i)
107 fills 3 bytes Fli FI1O|F 17
1 1 |
T 1 T T
0024 filis 4 bytes FI1O|FI1O0}FI2]|F1| 4
1 I 1 i

2.4.3.2. Packed Format

As you can see, unpacked format involves a considerable waste of main storage
space. When numbers are to be processed, they can be converted to packed format
by means of the PACK instruction, prior to processing. In packed format, the zone
fields are stripped away and the number is stored as follows:

byte 1 byte 2

1
|
digit digit 1 sign
|
1

Thus, in packed format, only two bytes are needed to store the decimal number 107.
This results in considerable savings in main storage space. After mathematical
operations on a packed number, the sign C indicates a positive value and the sign D
a negative value in EBCDIC.

T
1t10171C¢C +107 (signed)
-1
T T
110]|71D —107 (signed)
1 1
T T
110 }7 : F unsigned (assumed positive)
b}

UP-8913 SPERRY UNIVAC 0S/3 2-8

ASSEMBLER

The following program extract shows how the PACK instruction is used. (See 9.14)

PACK AREA1,NO1 Area NO1 is packed into AREA1.
AP AREA1,ONE A sign code is produced.

NO1 DC c'123

AREA1 DS CL2

ONE DC PL'1’

After these operations, the two main storage areas will look like this:

1

n
N
mn
w

NO1 F

AREA1 1 2

»H

(9}

The hexadecimal code C in AREAT1 indicates that the value is positive. If the value is
to be indicated as a negative value, a hexadecimal code of D would be in this field.

2.4.4. Special Characters

The following 14 special characters are not part of the alphabetic set (2.4.1), special
letters (2.4.2), nor are they numeric (2.4.3). They have special uses, and rules are
covered in this user guide when required. Following are listed the special characters
with their hexadecimal codes for reference. (Also see B.2)

Special Hexadecimal Special Hexadecimal
Character (EBCDIC) Code Character {EBCDIC) Code
+ 4E (left 4D

parenthesis

- {minus) 60) right 5D

parenthesis

* 5C . {period) 48
/ 61 & 50
, {comma) 6B ‘ (prime) 7D
= 7E > 6E
A (blank) 40 < 4C

UP-8913 SPERRY UNIVAC 0S/3 2-9
ASSEMBLER

2.5. FIXED-POINT NUMBERS

Each fixed-point number is represented in one of three fixed-length binary formats
composed of a single positive or negative sign bit followed by a number field (Figure 2—2).
When the sign bit is O, the number represents a positive value; when 1, the number
represents a negative value. Negative numbers are represented in twos complement
notation, which is derived by inverting each bit of the binary number and adding 1 to the
result of the inversion. For additional information on fixed-point numbers, see 2.1, 5.2.6,
5.2.7, and Section 10.

HALF WORD

:

N NUMBER FIELD

0|1 15
FULL WORD

$

5 NUMBER FIELD

of 1 31
DOUBLE WORD

H

5 NUMBER FIELD

o1 63

Figure 2—2. Fixed-Point Number Formats

2.6. FLOATING-POINT NUMBERS

The assembler provides floating-point arithmetic operations as an optional hardware
feature. Floating-point arithmetic operations involve a fraction and an exponent. For
example:

217,000 can be expressed as 0.217 x 108
296,000 can be expressed as 0.296 x 10¢
In fixed-point arithmetic, add:
217,000
+ 296,000

513,000

UP-8913 SPERRY UNIVAC 0S/3 2-10

ASSEMBLER

In floating-point arithmetic, add:
0.217 x 108
+ 0.296 x 106

0513 x 108
where:
0.513 is the fraction and 106 is the exponent.

In floating-point notation, the fraction is added and the exponent is retained. The
example uses decimal floating-point; the assembler uses hexadecimal floating-point. In
hexadecimal floating-point notation, the biased exponent is expressed in excess-64
binary notation; the fraction is expressed as a hexadecimal number having an
arithmetic point to the left of the most significant digit. The quantity expressed by the
full floating-point number is the product of the fraction and the number 16 raised to
the power minus 64 of the biased exponent (fraction x 16n64). For additional
information on floating-point numbers, see 5.2.12 and Section 11.

characteristic mantissa
{exponent) {fraction)

Z0—-w

UP-8913 SPERRY UNIVAC 0S/3 3-1
ASSEMBLER

3. Addressing

Each full byte (eight bits) of main storage is numbered in sequence starting with
000000. With the assembler, the address of each instruction is calculated and you
can refer to it by its real address or by a symbolic notation assigned to it. The
assembly listing shows these addresses in their hexadecimal form. The computer also
contains 16 registers that can be used for addressing and storage. The many types
and uses of addressing are covered in detail in the following parts of this user guide.

3.1. MAIN COMPUTER STORAGE ADDRESSING

Iif you wish to refer to some other part of your program, you assign a symbol to that
location and the assembler translates this to the real main storage address.

3.1.1. Instruction Addressing

Your program may contain the move instruction MVC:

LABEL AOPERATIONA OPERAND
1 10 16
MOVES MvC MYAREA,YOURAREA

Even though the main storage for this application instruction is O0O008A, you could
return (branch) to this instruction by writing:

B MOVES

This type of referencing a location in a program is called symbolic addressing. It is a
time saver and helps eliminate many errors.

UP-8913 SPERRY UNIVAC 0S/3 3-2

ASSEMBLER

3.1.2. Data Field Addressing

As noted in 1.2, storage and data areas are defined for later reference. The following
list shows assembler-generated addresses, the symbolic addresses assigned by you,
and the storage areas.

Assembler-Generated Symbolic

Address Address Definition
000048 WKAREA1 DS CL41
000071 WKAREA2 DS CcL16
000081 MYAREA DS oCL121
000081 OUTPUT1 DS oCL121
000081 NEWAREA1 DS cLa1
0000AA NEWAREA2 DS CL80
0000FA YOURAREA DS ocL121
000OFA INPUT1 DS 0oCL121
O00OFA COUNTS DS ocL3
00O0OFA COUNTS DC CL1'5
O00OFB COUNT12 DC cL2'12
0000FD DS cL118

The first work area shown, WKAREA1, has the hexadecimal location 000048 and is
41 bytes long. The hexadecimal value of 41 is 29, which added in hexadecimal
produces the next hexadecimal location 000071. The next areas, MYAREA and
OUTPUT1, show how we can assign different symbols to the same area. They do not
take up main storage space and thus have the same address as NEWAREA1, which is
16 bytes from the start of the last address. The hexadecimal value of 16 is 10; thus,
the address of NEWAREA1 is 000081. This address plus 41 bytes (hexadecimal 29)
produces the next address, OO00AA.

The use of either the symbol MYAREA or OUTPUT1 calls for the same 121 bytes
following them in storage. The zero placed in front of the CL instructs the assembler
to assign a location for these symbols but not to reserve any storage for them. The
remaining six instructions show how this can be done with constants (DC) as well.
The symbol COUNTS is an example of a symbol reference within another symbol
reference.

UP-8913 SPERRY UNIVAC 0S/3 3-3
ASSEMBLER

3.2. REGISTER ADDRESSING

There are 16 general registers (0 through 15). Each register consists of 32 bits which
is equivalent to a full word. Any register can be used in RR, RS, or RX type
instructions. Any register can also be used in base register assignment. However,
most |/0 operations use registers 14, 15, 0, and 1. So, if you use any one of these
registers and then perform either input or output, the original data in these registers
is destroyed. You can use these registers, though, by saving their contents prior to
the execution of an |/O operation and restoring their contents after the execution of
an 1/0 operation.

UP-8913 SPERRY UNIVAC 0S/3 4-1
ASSEMBLER

4. Rules and Conventions

4.1. READING INSTRUCTION NOTATION

Notations are used throughout this manual to describe the general forms of
programmer-written and computer-generated formats. A consolidated listing of all the
notations is included in Figure 7—1. This section includes the definitions of terms.

4.1.1. Assembler Application Instruction Notations

There are eight forms of assembler applications instructions:

‘ RR — Register-to-Register
RX — Register-to-Indexed-Storage or Storage-to-lndexed-Register
RS — Register-to-Nonindexed-Storage or Storage-to-Nonindexed-Register
SI — Storage Immediate
SS — Storage-to-Storage (Type SS1)
SS — Storage-to-Storage (Type SS2)
S — Storage

SM — Storage Mask

Assembler application instructions provide the format for handwritten coding that, in
turn, leads to the assembler format that generates the machine coding. The assembler
application move instruction (MVC) illustrated is an SS1 type. The coding follows.
Definitions of the explicit and implicit formats are provided in Section 7.

UP-8913 SPERRY UNIVAC 0S/3

4-2
ASSEMBLER Upita
Explicit Format:
LABEL AOPERATION A OPERAND
[symbol] MVC d,(l,.b,)d, (bz)
Implicit Format:
LABEL AOPERATION A OPERAND
[symbol] MvC s, (L),
On the coding sheet, it could look like this:
LABEL AOPERATIONA OPERAND
1 10 16
OUThL MVC AREA(37) ,NETPAY
where:
[symbol]

The brackets around symbo/ mean OUT4 is optional.

MVC
Is the mnemonic opcode for the move instruction.
AREA(37)

Is the first operand: d, §.,b;) or s, (I;) AREA is the address d,(b;) or symbol
s; and (37) is the length (l;) of the receiving field to be filled.

NETPAY
Is the second operand: d,(b,) or s,.

uP-8913 SPERRY UNIVAC 0S/3 4-3
ASSEMBLER

After this application instruction is assembled, it is in the following form:

opcode |1 b1 d1
0 718 15|16 19 {20 31

b2 d2
32 35(36 47

And could have the generated machine code:

D2 24 44FC 4AA6
where:

D2
Is the operation (opcode) for the mnemonic MVC.

24

Is the hexadecimal coding for the length (l;), which is 37 bytes long but
assembled as 37—1 or 36.

Is the base register b; used for the first operand.

4FC
Is the displacement d, used for the first operand.

4AA6
Is the base b, and displacement d, address of the second operand NETPAY.

The generated machine code is expressed in hexadecimal form. Knowing the
organization of the machine code format can help you when the written coding does
not generate the values you intended. Such knowledge helps in finding errors in the
results of a program. (See Figure 4—1).

UP-8913 SPERRY UNIVAC 0S/3 4-4

ASSEMBLER
) [symbol} od d,l,.b), \\d, b}
Instruction « oo opcode 1717 2772
Format
Object Code opcode) by dy o, d,
Format o 708 15{16 1920 3132 35|36 47]
Source Code qyT4 Mve AREA(37),NETPAY
Example ‘e - \‘\(." /
Object Code ll /
Printout ""L'\

0003F6 D2 24 44FC 4AAB

where:
0003F6
Is the address of the instruction symbol, QUT4.
D2
Is the numeric operation code for the mnemonic, MVC.
24
Is the 37-byte length (), value 37—1.
4
Is the base register (b,) for the first operand, AREA.
4FC
Is the displacement for the first operand, AREA. This displacement plus the contents of the base register yield the
starting address of the first operand.
4 and AA6

Specify the base register and the displacement for the second operand, NETPAY.

Figure 4—1. Assembler Format Relationships

UP-8913 SPERRY UNIVAC 0S/3 4-4a

ASSEMBLER
Consider another instruction:
LABEL I A OPERATION A | OPERAND
[symbol] I L ' 6,GROSSPAY (5)
where:
L
Is the mnemonic opcode for the load instruction.
6

Is the first operand register r,.

GROSSPAY (5)
Is the second operand in the form sy(x,).

After this application instruction is assembled it may generate the following machine code:

58654012
where:
58
Is the opcode for the load instruction.
6
Is the register r; used for the first operand.
5
Is called the index register and is part of the second operand (x,).
4012

Is the base b, and displacement d, for the second operand address GROSSPAY.
For a discussion of how the processor uses the base register, index register, and
displacement of an operand to form main storage addresses, refer to the current
version of the processor programmer reference.

Figure 7—1 shows the formats of the eight application instructions as generated by
the assembler in machine code, as well as the explicit and implicit formats for
programmer coding. Examples of the implicit coding format using symbols and the
explicit format are included in following sections for each assembler application
instruction. More detailed information on the use of the assembly listing is in Section

28.

UP-8913

SPERRY UNIVAC 0S/3 4-5
ASSEMBLER

4.1.2. Notation Rules and Meanings

The following conventions are used in application-instruction, assembler-directive,
macroinstruction, proc, and control-statement formats:

Optional information is enclosed in brackets [] and may be specified or omitted
as in the use of [symboll].

Braces { } indicate multiple options, at least one of which must be chosen, as in
the following directive.

For example:

PRINT [ON l
OFF

Braces within brackets signify that one of the options must be chosen if that
operand is specified.

For example:

[{}]

When given a choice of multiple options, the option that is shaded is the default
option and indicates the choice that will be made by the system if you do not
specify one of the options.

For example:

DATE
EXT

PRE

Uppercase letters, terms, and punctuation marks indicate information which must
be coded exactly as shown. Also, mnemonic codes (such as MVN, PACK, and
CLC) are in uppercase letters.

Lowercase letters and terms indicate variables (such as [symbol], r, d, b, and e)
which are supplied by you.

An ellipsis, a series of three periods, indicates that a series of entries may be
coded, as in the directive DROP r,[rs,....Fn]

UP-8913

SPERRY UNIVAC 0S/3 4-6
ASSEMBLER

Keyword parameters may be coded in any order.
For example:

IOROUT=LOAD,BLKSIZE=512,RECFORM=FIXBLK
BLKSIZE=512,I0ROUT=LOAD,RECFORM=FIXBLK

Positional parameters must be coded in the order shown. Commas are required
after each positional parameter except the last. When a positional parameter is
omitted from a series of positional parameters, the comma must be retained to
indicate the omission.

For example:

X'03',0UTP,X'00°,132 (operand field of CCW)
&P,3,&KEY1=,&KEY2=,&KEY3=(operand field of macro statement in proc format)

Names of directives and instructions in text are shown in lowercase italics.
For example:
add, move, load, branch and link, store

Throughout this manual, the register notations RO through R15 represent the
registers O through 15.

For example:

BALR R2,R3

The handwritten program, usually on the assembler coding form, is called the source
program; the card images containing this coding are still called the source program. The
source program is assembled, and the assembler usually produces a translation of the
source program into machine code; this deck is called the object program. A printed listing
of the assembled program, called the assembly listing, shows the source coding with its
associated assembled machine coding.

The smallest unit of information in basic assembly language (BAL) is the bit. Eight

bits

make a byte and two bytes form a half word. Four bytes are a full word and

eight bytes comprise a double word. Figure 4—2 shows the relationships between

bits,

bytes, and words. Bits O through 7 form the high-order byte or MSB, and bits 56

through 63 form the low-order byte or LSB in a double-word storage area.

UP-8913

SPERRY UNIVAC 0S/3

ASSEMBLER

4-7

L58

1100

0100 1101

1001 0100

00900 1110
23{24

0110

31132

1100

ot10t

t100

0010

47148

1100

0101

110t

1001

18YTE

HALF WORD

18YTE

1BYTE

18YTE

HALF WORD

FULL WORD

The following short definitions should be useful for the new programmer.

Source program

DOUBLE WORD

Figure 4—2. Byte and Word Structure

Programmer-produced

Source cards

Keypunch output

Source deck

Keypunch output

Source code

Keypunch, disk, or diskette output

Machine code

Assembler-generated

Object program

Assembler output

Assembly listing

Assembler output to printer

Bit

One binary digit

Byte

Eight binary digits

UP-8913 SPERRY UNIVAC 0S/3 4-8
ASSEMBLER

8 Half word

Two bytes
® Full word

Four bytes
® Double word

Eight bytes
= MSB

Most significant bit or byte, leftmost
= |SB

Least significant bit or byte, rightmost
8 High order

Leftmost data, byte, or bit

L] Low order

Rightmost data, byte, or bit

4.2. TERMS

Terms represent values coded by the programmer or computed by the assembler.
There are five classes of terms recognized by the assembler:

= Self-defining terms (SDT)

B Lliterals

L Symbols

®m Location counter references

L] Length attribute references

UP-8913 SPERRY UNIVAC 0S/3 4-9
ASSEMBLER

Self-defining terms are fixed values the programmer codes such as
33,P'591°,X'OF’,B'11100110°, or C’'EBW". Literals can have their value specified by the
programmer and their location decided by the assembler and could look like,
=X'FO',=C'A",=P'—1’, or =B’00001000° as used in storage-to-storage instructions (e.g.,
CLC TAGA,=C'A’). Symbols, location counter references, and length attribute
references are assigned values by the assembler. (See Table 4—1.)

Table 4—1. Comparison of Terms

Term Examples

SDTs cui AREA10, 10

L] Can be used in the 1st or 2nd ﬁD_'VI’
operands. MVI AREAB, X'C2'

n May be used in application ?ﬁ
instructions and in assembler MvC Q&RS)B(RS)
directives. SDT SDT SDT

Literals MVC AREA10,=C'10’

L] May not be used in assembler Literal
directives. MvC AREA10,=X'F1F0Q’

] Literals are preceded by an Literal
equal (=) sign. CcLC ONSW,=B'11111111"

Literal

Symbols for constants AREA10 DS CL2

a May be used in the 1st or 2nd NO10 DC C'10
operands. MOVE10 MVC AREA10,NO10

™ May be .used in application m
instructions and in assembler
directives.

4.2.1. Self-Defining Terms (SDT)

Self-defining terms (SDT) are terms that represent fixed values. They are presented by
the programmer in a form that is easily recognized and its value is understood
without the need for computation. SDTs are not relocatable; they can be used to
specify immediate data, registers, addresses, and masks. They can be used in
assembler directives as well as in application instructions and can be part of an
expression. The size of an SDT depends on where it is used. When used to designate
a register you cannot exceed a value of 15. After conversion by the assembler to a
binary format, the value is right-justified and filled with binary zeros on the left to fit
the designated field. SDTs can be represented in binary, hexadecimal, decimal, or
character form. (See 5.2.)

UP-8913

SPERRY UNIVAC 0S/3 a-10
ASSEMBLER Updzled

When a 24-bit hexadecimal, binary, or character SDT has a 1 in the sign bit position

the

SDT will be treated as a negative term in the evaluation of an arithmetic

expression.

The

A binary SDT consists of a series of up to 24 zeros and ones enclosed in apostrophes
and preceded by the letter B (e.g., B°'101°, B’11110000’, B'00101°). The field is filled
with high order zeros when necessary.

A hexadecimal SDT consists of up to six hexadecimal digits enclosed in apostrophes
and preceded by the letter X (e.g., X'’FO’, X'C1’, X’F1FOFQ’). Each hexadecimal digit
represents a half byte of information.

A decimal SDT is an unsigned decimal number consisting of up to eight digits having a
value of O through 16,777,215 (224—1) (e.g., O, 32, 16000000). This number is
converted by the assembler to a binary value occupying one, two, or three bytes.

A character SDT consists of up to 3 characters of the 256 valid characters of which
only 63 are printable. (See Appendix B, Table B—1.) The characters must be enclosed
in apostrophes and preceded by the letter C (e.g., C'A’, C'ABC’, C'123’, C'A1’). Each
ampersand or apostrophe to be included in a character representation must be
indicated by a double ampersand or double apostrophe, respectively. In this case there
may be more than three characters within the apostrophes which delimit the SDT (e.g.,
C'3"”S’ produces 3'S; C'A&&B’ produces A&B).

following four examples all produce the same internal bit pattern of 11110001 in

the one byte area called AREA:

Decimal G-I AREA, 241
Hexadecimal .Gk V! AREA, X'F1’
Character _CH MYI AREA, C'1’

Binary ~erT i/ AREA, B'11110001°

4.2.2. Literals

Literals are terms that represent data in the source coding (see 5.3). The assembler
replaces the value of the original literal in the literal table (pool) with the address of
the main storage location. In the following example the literal =C'AA’ will be replaced
in this instruction by the address of a 2-byte area in the literal table containing the
binary value 11000001 11000001.

MOVEAA MVC TESTSW,=C'AA’

UP-8913 SPERRY UNIVAC 0S/3
ASSEMBLER

When the assembler recognizes a literal in the source code, it searches the table of
literals that have been previously encountered. If a duplicate is found, then the
relocatable address of the literal in the table replaces the original literal in the source
code. If a duplicate is not found, then the value of the original literal is entered into
the table and its address replaces the source code specification. Literals are similar in
form to the operands of DC and DS statements.

A literal may be used in any machine instruction that specifies a storage address,
except that the literal may not be specified as the receiving field operand of an
instruction that modifies storage. Literals may not be specified in address constants,
shift instructions, or I/0O instructions. Literals must always appear as the complete
operand specification. They cannot be combined with other terms, nor with an explicit
base register specification. ‘S’ type constants may not be used as literals.

4.2.3. Symbols

A symbol is a group of up to eight alphanumeric characters. The left, or leftmost,
character must be alphabetic. Special characters or blanks may not be contained
within a symbol. (See Section 6.) The following are examples of valid symbols:

\ CARDAREA
GS279 RSINTRN
BOB BD#4

The following are not valid symbols for the reasons stated:

READ ONE Embedded blank
SPEC'L Special character used
6AGN First character not alphabetic

Two other categories of symbols are available in the macro language and conditional
assembly statements. They are variables and sequence symbols. These categories of
symbols are defined and discussed in detail in Section 6 and in 27.2.1.

The assembler associates three attributes with each symbol it processes. These
attributes are value, length, and relocatability. Symbols defined by the EQU directive
adopt the attributes of the expression in the operand field of the statement. (See
Section 16.)

SPERRY UNIVAC 0S/3 4-12
ASSEMBLER

UP-8913

a Value Attribute

A symbol is assigned a value, or defined, when it appears in the label field of
any source code statement other than a comment. A symbol appearing in the
label field of an EQU or ORG directive is assigned the value of the expression in
the operand field. In all other cases the value assigned is the current value of
the location counter after the adjustment to a half-word, full-word, or double-
word boundary (5.1.7), if necessary. The value is assigned to the current label
before the location counter is incremented for the next instruction, constant, or
storage definition. Thus, if a symbol appears in the label field of a statement
defining an instruction, constant, or storage area, the symbol is assigned a value
equal to the storage area address of that instruction, constant, or storage area.

The value of a symbol must lie in the range —223 through 223—1,
® Length Attribute

The length attribute of a symbol is the number of bytes assigned to the
instruction, constant, or storage area involved. For example, the label of a 2-byte
instruction has a length attribute of 2 and the label of a DS statement reserving
200 bytes would have a length attribute of 200. Symbols equated to location
counter references or absolute value representations usually have a length
attribute of 1. The duplication factor (constant or storage area) has no effect on
the length attribute. (See 5.1.3))

The maximum length attribute that can be generated by the assembler is 65,5636.

u Relocatability Attribute

A symbol may either be absolute or relocatable. Values which are assigned to
symbols defined in the label field of a source code line representing an
instruction, constant, or storage definition, are relocatable. A relocatable symbol is
a symbol whose address would change by a given number of bytes if the
program in which it appears is relocated the same number of bytes from its
originally assigned address. Relocatable symbols are assigned values relative to
the location counter. Decimal, character binary, and hexadecimal representations
are all absolute terms and have a relocation attribute of O.

4.2.4. Location Counter References

A location counter is maintained by the assembler for each control section created by
the programmer. Each counter contains the next available location for the associated
control section. After the assembler processes an instruction or constant, it adds the
length of the instruction or constant processed to the correct location counter. The
maximum value that the location counter can achieve is 223—1.

UP-8913 SPERRY UNIVAC 0S/3 4-13

ASSEMBLER

Each instruction must have an address which is a multiple of two bytes. This type of
address is said to fall on a half-word boundary. If the value of the location counter is
not a multiple of 2 when assembling such an instruction, a 1 is added to the location
counter before assigning an address to the current statement. Storage locations
reserved in this way receive binary O's when the program is loaded. Certain constants
must be aligned to a half-word, full-word, or double-word boundary. Again the
location counter is adjusted to the boundary, and the storage locations which were
bypassed receive binary O's when the program is loaded unless the adjustment
occurred as a result of a DS or ORG directive.

The current value of the location counter, under which the program is currently being
assembled, is available for reference by the programmer. It is represented by the
special asterisk character (*). If the asterisk is written as a term in an address
constant or in an instruction operand expression, this character is replaced by the
storage address of the leftmost byte allocated to that instruction or constant. Care
must be taken to ensure that all such implied references are specified appropriately in
individual expressions since the character asterisk (*) may also be used to indicate the
multiply operator during the evaluation of expressions.

An instruction may address data or other instructions in its immediate vicinity in
terms of its own storage address. This is one kind of relative addressing and it is
achieved by an expression of the form *+n or *—n where n is the difference in
storage addresses of the referencing instruction and the instruction or data being
accessed. Relative addressing is always in terms of bytes and not in terms of words
or instructions.

A location counter reference may not be made in a statement which requires the use
of a predefined symbol, with the exception of the EQU and ORG directives.

4.25. Length Attribute Reference

The length attribute of a symbol is referenced as a term in an expression by writing
L’ followed by the symbol. Thus if the symbol STOREND is the name of a full-word
field,

L'STOREND

would be considered a term and it would have a value of 4. (See 5.1.5.)

4.3. OPERATORS

There are 12 operators in the assembler language (Table 4—2) which designate the
method and sequence to be employed in combining terms or expressions. Blanks are
not permitted within an expression. Evaluation of an expression begins with the
substitution of values for each term. The operations are then performed from left to
right in hierarchical order as listed in Table 4—2. The operation with the highest
hierarchy number is performed first; operations with the same hierarchy number are
performed from left to right.

UP-8913 SPERRY UNIVAC 0S/3 4-14
ASSEMBLER Update B
-» Parentheses can be used to alter the hierarchy of evaluation. Multiplication by O equals O. .

‘ The 12 operators are divided into three classes: arithmetic operators, logical operators, and
| relational operators. More detailed descriptions of these operators are provided in 4.3.1,
4.3.2, and 4.3.3.

Table 4—2. Summary of Operators

Classification Operator Description Hierarchy
Arithmetic Operators */ A*/B is equivalent to A28 6
/! Covered quotient, A//B is .8

equivalent to (A+B—1}/8

/ A/B means arithmetic quotient 5
. of A and B.

* A*B means arithmetic product 5
of A and B.

- A—B means arithmetic difference 4

of A and B.
+ A+B means arithmetic sum of 4
A and B.
Logical Operators e A**B means Logical Product 3

AND of A and B.

++ A++B means Logical Sum OR 2
of A and B.
—_ A——B means Logical Difference 2

XOR of A and 8.

Relation Operators = A=B has value 1 if true; 1
has value O if false.

> A>B has value 1 if true; 1
has value O if false.

< A<B has value 1 if true; 1
has value O if false.

4.3.1. Arithmetic Operators

The symbols +, —, *, /, //, */ represent the six arithmetic operators. The intrinsic
meanings of +, —, *, and / are the usual ones; that is, + indicates addition,
indicates subtraction, *indicates multiplication, and / indicates division.

-> The operator // denotes a covered quotient where A//B is equivalent to (A+B—1)/B. A
covered quotient is equal to regular binary division except that if there is a remainder, a 1
is added to the regular quotient.

The operator */ denotes a binary shift left or right. A*/B indicates a left shift and is
equivalent to A*2 B | A*/(—B) indicates a right shift and is equivalent to A/28 .

UP-8913 SPERRY UNIVAC 0S/3 4-15

ASSEMBLER
4.3.2. Logical Operators
The symbols **, ++4, and —— are the three logical operators. The characters **
represent the logical product (AND), and characters ++ represent the logical sum
(OR), and the characters —— represent the symmetric difference (exclusive OR).

Each bit of the first term is compared with its corresponding bit in the second term
and the result of the comparison is placed in the corresponding position in the
resulting term. (See Section 12.) The result of the bit comparison for each operator is:

[AND| 0R XOR
A**B Result A++B Result A--B Result
11 1 11 1 11 0
1 0 0 1 0 1 10 1
0 1 0 0o 1 1 01 1
0 0 0 0 0 0 0 0 0

4.3.3. Relational Operators

The three relational operators are the equals operator =, the greater than operator >,
and the less than operator <.

The equals operator is used to compare the value of two terms or expressions. If the
two values are equal, the assembler assigns a value of 1 to the expression;
otherwise, a value of O is assigned.

The greater than operator makes a comparison between two terms or expressions. |f
the value of the first (left) term is greater than the value of the second (right) term,
than a value of 1 is assigned to the expression; otherwise, a value of O is assigned.

The less than operator compares the value of the first (left) expression or term with
the second (right) expression. If the value of the first expression is less than the
value of the second one, then a value of 1 is assigned to the expression; otherwise,
a value of O is assigned.

For the expression A+B>C, if the expression A+B has a value greater than a value of
C, then the assembler assigns a value of 1 to the expression; otherwise, a value of O
is assigned.

A relational expression consists of a relational operator and its two operands. The
operands in a relational expression may be either two character expressions (4.4.5) or
two arithmetic expressions. A character expression may not be compared to an
arithmetic expression. Character expressions are valid only on conditional assembly
directives.

UP-8913 SPERRY UNIVAC 0S/3 4-16
ASSEMBLER

Since the evaluation of a relational expression yields an arithmetic result, a relational
expression may be used as a term in an arithmetic expression.

4.4. EXPRESSIONS

An expression consists of one or more terms connected by operators. A leading minus
sign is allowed to produce the negative of the first term. Each term in the expression
may be either a relocatable term or an absolute term. A term is absolute if its value
is not changed by program relocation. A term is a relocatable term if its value is
changed by program relocation. Two relocatable terms may be considered to be paired
if they have opposite signs and have the same relocatability attribute (that is, appear
in the same control section).

Evaluation of expressions obeys the following rules:

® Multiplication and division of a relocatable term by an absolute 1 or multiplication
of an absolute 1 by a relocatable term produces a relocatable term.

® Multiplication of any term by absolute O yields absolute O as a result.

= |f a relocatable term enters any multiply or divide operation other than the preceding,
an error flag is given.

® The number of unpaired relocatable terms at any point in the evaluation must not
exceed 16.

a Intermediate results of the expression evaluation are full 32-bit values; however,
the final result is the truncated rightmost 24 bits.

Three types of expressions, absolute, relocatable, and complex relocatable obtain
various characteristics from the term or terms which compose them. These three
types of expressions are discussed in 4.4.1 through 4.4.6.

4.4.1. Absolute Expressions

An absolute expression is an expression whose value is unchanged by program
relocation. The absolute expression can be an absolute term or any combination of
absolute terms. Arithmetic operators are permitted between absolute terms.

Examples of absolute terms are: a symbol which has an absolute value, a self-
defining term or a length attribute reference.

Relocatable terms alone or relocatable terms in combination with absolute terms can
be contained within an absolute expression. This type of absolute expression requires
that each relocatable term be paired with another relocatable term which has the
opposite sign and the same relocatability attribute. The paired terms need not be
contiguous.

UP-8913 SPERRY UNIVAC 0S/3 4-17
ASSEMBLER

The effect of relocation is canceled by the pairing of relocatable terms with the same
relocatable attribute and opposite signs. The absolute expression is thereby reduced to
a single absolute value.

The following are examples of absolute expressions:

A

A+A—A

A—A+A+A

R+A—R

R—R+A

(R—R)*A

A*A
where:

A

Is an absolute term.
R

Is a relocatable term.

4.4.2. Relocatable Expressions

A relocatable expression is an expression whose value changes with program
relocation. All relocatable expressions must be positive values.

Relocatable terms alone or relocatable terms in combination with absolute terms can
be contained within a relocatable expression.

Either type of relocatable expression requires the following conditions:
m All but one relocatable term must be paired.
® A minus sign must not precede the unpaired (remaining) relocatable term.

m FEach pair of relocatable terms must have opposite signs and the same
relocatability attribute.

m The paired relocatable terms do not have to be contiguous.

UP-8913 SPERRY UNIVAC 0S/3 4-18
ASSEMBLER

Using the preceding requirements, a relocatable expression is thereby reduced to a single
relocatable term. The following are examples of relocatable expressions:

R

R/1

R+A or A+R
R—R+R
R—A

R*1 or 1*R

where:

A
Is an absolute term.

Is a relocatable term.

4.4.3. Complex Relocatable Expressions

A complex relocatable expression is an expression that contains 2 to 16 unpaired
relocatable terms or a negative relocatable term in addition to any absolute or paired
relocatable terms.

A complex relocatable expression may be written only in the operand field of either
an A-type or Y-type address constant. (See 5.2.8 and 5.2.9)

Some examples of complex relocatable expressions are:

A—R
—R/1
A—R—R+R—R

where:

A
Is an absolute term.

Is a relocatable term.

4.4.4. Character Expressions

A character expression is either a character string, a character substring, or a
concatenation of strings or substrings. Character expressions are used as the operand
of a SET or SETC statement or as terms in a SETB, SET, AIF, or DO relational
expression. Any character string is considered to be greater in value than any shorter
character string. A character expression may have a length of up to 127 characters.

UP-8913 SPERRY UNIVAC 0S/3 4-19

ASSEMBLER

4.45. Length Attribute of Expressions

The length attribute of an expression is determined by the assembler and it is a
function of the leading term of the expression. If the first term of an expression is an
absolute value, a length attribute of one byte is assigned to the expression. If the
leading term is a symbol, the number of bytes attributed to the expression is the
same as the length attributed to the symbol. Thus, if TAG appears in the label field
of an LH (load half word) instruction, it would have a length attribute of 4 since LH
is a 4-byte instruction. In referencing the same label, the expression TAG+195 also
has a length attribute of 4, but the expression 195+TAG has a length attribute of 1
because the leading term is a decimal self-defining term.

4.4.6. Character Strings

A character string is at least one of the 256 valid characters enclosed by apostrophes.
A character string, unlike a character self-defining term, is not converted and treated
as a binary value. The value of a character string is determined by its length. Any
character string is greater in value than any shorter character string. Rules for writing
character strings are:

® Two apostrophes must be written within a character string to represent one
apostrophe. The two apostrophes are replaced by a single apostrophe.

= Two ampersands must be written within a character string to represent one
ampersand. A single ampersand within the character string is interpreted as the
first character of a variable symbol.

A character substring is a valid character string followed by two arithmetic
expressions separated by a comma and enclosed in parentheses. The format is:

character string (e,.e;)

where:
€4
Specifies the leftmost character of the original string to be included in the
substring.
€,

Specifies the number of characters to be in the substring.

The expressions e; and e, must be valid SET expressions. (See 27.1.4.) If there are
fewer characters (than the number specified by e,) remaining after character number
e; in the string, the resultant substring is shortened to include only valid characters
of the original string. A null character string results if e, is greater than the number
of characters in the original string.

UP-8913 SPERRY UNIVAC 0S/3 4-20
ASSEMBLER

Example:
‘PREDEFINED’ (4,6)
will produce the character substring
‘DEFINE’
Concatenation is the joining together of:
® two character strings;
® two character substrings; or
B a character string and a character substring.
A period designates concatenation into a single string of characters.
Example:
‘PRE’.’'DEFINE’ produces
‘PREDEFINE’

When a substring is to be concatenated with a following character string, the period
may be omitted and concatenation is assumed.

PT 2. STORAGE. AND svmaot.
o nemmnons LN

uP-8913 SPERRY UNIVAC 0S/3 5-1
ASSEMBLER

5. Storage Definitions

In almost all programs, inclusion of constant value is required for mathematical
computation, headings for reports, and values or codes for comparisons. You also
reserve storage for work areas, record keeping, and save areas. Two methods used to
produce constants or reserve storage are:

m define constant — DC

8 define storage — DS

5.1. STORAGE USAGE

There are 13 definition types used to describe the type and format of storage used.
Table 5—1 lists the characteristics of each of these storage notations. All the
definition types shown are valid for both DC and DS statements. Except for floating-
point constants (2.9, 5.2.12, and Section 11), the formats of both statement operands
are similar, as follows:

LABEL AOPERATION A OPERAND
[symbol] DC [d]t(L,]{ (z)}
[symbol] DS [dtL,] [(z)]
where:
[symbol]
Is up to eight characters.
d
Is the duplication factor in decimal.
t

Is the definition type. (See Table 5—1.)

UP-8913

SPERRY UNIVAC 0S/3

ASSEMBLER

5-2

Is the explicit length factor in decimal.

C
Is the constant specification for data.
(c)
Is the constant specification for an address.
Table 5—1. Characteristics of Constant and Storage Definition Types
. Length in Bytes
Type | Constant or . Source Code Storage Truncation = _
Alignment g o Format Paddi i Minimum] Maximum
Code | Storage Type Specification or or Padding | implied | "¢, jicit | Explicit *
C Character None Characters C’'| Character Right Variable 1 256 (DC)
65,535 (DS)
X Hexadecimai None Hexadecimal] X' ‘| Hexadecimal Left Variable 1 256 (DC)
digits 65,535 (DS)
B Binary None Binary B° | Binary Left Variable 1 256
digits
P Packed None Decimal P* "1 Packed Left Variable 1 16
decimal digits decimal
Y4 Zoned decimal| None Decimal Z''| Character Left Variable 1 16
digits
H Half word, Half word Decimal H' " | Fixed-point Left 2 1 8
fixed point digits binary
F Full word, Full word Decimal F' | Fixed-point Left 4 1 8
fixed point digits binary
Y Haif-word Half word Expression Y(}){ Binary Left 2 1 2
address
A Full-word Full word Expression A()} Binary Left 4 1 4
address
S Base and Half word One or two S()| Base and None 2 2 2
displacement expressions displacement
v External Full word Relocatable V()| Binary Left 4 3 4
address symbol
E Full word, Full word Decimal £ ' | Floating- Right 4 1 8
floating point digits point binary
normalized
D Double word, | Double word|] Decimal D’} Floating- Right 8 1 8
floating point digits point binary
normalized

*The maximum explicit length in bytes is that total tength produced by the explicit length factor times the duplication factor.

UP-8913 SPERRY UNIVAC 0S/3 5-3

ASSEMBLER Vet
. Following are DC-statement and DS-statement examples showing the use of the

subfields, which must appear in the order stated and must not be separated by
blanks.

LABEL AOPERATIONA OPERAND

] 10 16

-» WRD32 DcC 3CL9 ' CONSTANTS'
EQUITY DS 3(‘L£2

Se—— —
4

duplication factor

definition symbot

length factor

constant specification

det .o fin e bof

UP-8913

SPERRY UNIVAC 0S/3 5-4
ASSEMBLER

DC

5.1.1.

Define Constant (DC)

The define constant (DC) statement is processed by the assembler and the constant
specification is translated into object code representing the required values. The
maximum explicit length for a DC is 256 bytes. (See Table 5—1 for C, X, and B

types.)
The following five examples show the use of the subfields in a DC statement.
LABEL AOPERATIONA OPERAND
1 10 16
1. | N4543 DC Cc'4543!
2. | NAD DC 2C'4543!"
3. | NAHS DC CL2'L4543!
L, | wRD DC 2CL2' 4543
5.]L591 DC 5CL1'4543"
1. Four bytes containing: FE 4| F i 5| F E a|F i 3
N4543 has a length attribute of four bytes, the number of bytes assigned the
value ‘4543".
2. Eight bytes containing: Fi4 FES Fi4 Fis FE4 Fi 5 FE4 FES
NAD also has a length attribute of four bytes, as called for by the value
‘4543’, even though the duplication factor calls for two such fields of four
bytes each.
3. Two bytes containing: Fi 4 FE 5
NAHS has a length attribute of two bytes, as specified by the length
modifier, and only two bytes of storage are used. The digits 4, 3 are ignored.
4. Four bytes containing: F! 4 Fi 5] F ; 4 |F i 5
WRD also has a length attribute of two bytes, as specified by the length
modifier, but two fields of two bytes each are used because of the
duplication factor of 2. The digits 4, 3 are ignored.
5. Five bytes containing: FE 4| F i alF E a|F i 4 |F i 4

L591 has a 1-byte length attribute, as specified by the length modifier of 1.
There are five 1-byte fields, as called for by the duplication factor. The digits
5, 4, 3 are ignored.

UP-8913 SPERRY UNIVAC 0S/3 5-5
ASSEMBLER

DS

5.1.2. Define Storage (DS)

The define storage (DS) statement is processed by the assembler and the constant
specification is translated into reserved storage. The maximum explicit length for a DS
is 65,5635 bytes. (See Table 5—1 for C and X types.) The following five examples
show the use of the subfields in a DS statement. Only the number, not the content,
of the bytes reserved by a DS statement is determined by the assembler.

LABEL AOPERATIONA OPERAND
1 10 16

1. |ILE DS C'4543"

2. |AYAHC DS CLA4

3. |DNOMYAR DS 2CL4

L, | REBEW DS 5CL1

5. IOREG DS 3C'ANO. A

1. ILE reserves a 4-byte field with a length attribute of 4.
2. AYAHC produces the same result as line 1.

3. DNOMYAR reserves eight bytes composed of two fields of four bytes each.
The length attribute of DNOMYAR is 4.

4. REBEW reserves five bytes of storage consisting of five fields of one byte
each. The length attribute here is 1.

5. OREG reserves 15 bytes of storage. The constant field defines a 5-byte field,
and the duplication factor calls for three of these fields. The length attribute
of OREG is b.

5.1.3. Duplication Factor

The duplication factor designates the number of identical constants or areas to be
generated. An unsigned decimal value is used to specify the duplication factor. If no
duplication subfield is used, the assembler assumes a factor of 1. A duplication factor
of zero generates neither a constant nor a storage area and, if no length factor is
- specified, the location counter will provide the proper boundary alignment and assign
the location counter value to the symbol used. A duplication factor of zero is not
permitted with literals. (See Table 5—2 for an example of the use of the zero
duplication factor.) Note that, even though the duplication factor can change the size
of the storage area used, the use of the duplication factor does not change the length
attribute of the field. (See 5.1.5.) The maximum value of the duplication factor is 256.

UP-8913 SPERRY UNIVAC 0S/3 5-6
ASSEMBLER

Table 5—2. Zero Duplication Area Examples

Address Symbol Operation Operand
000D48 WKAREA1 DS CL41
000D71 WKAREA2 DS CcL16
000D81 WBE DS ocL121
000D81 OUTPUT1 DS OCL121
000D81 NEWAREA1 DS CL41
O00DAA NEWAREA2 DS CL8C
O00DFA SGAW DS oCL121
OOODFA INPUT1 DS ocL121
QOODFA COUNTS DS oCL3
OOODFA COUNTS DC cL1'5
O00DFB COUNT12 DC cL212’
OOODFD DS cL118

The first work area shown, WKAREA1, has the hexadecimal location 0000D48 and is
41 bytes long. The hexadecimal value of 41 is 29, which is added in hexadecimal to
produce the next hexadecimal location, O00D71. (See C.1.) The next areas WBE and
OUTPUT1 show how we can assign different symbols to the same area. They do not
take up storage space and so would have the same address of NEWAREA1, which
you can see is 16 bytes away from the start of the last address. The hexadecimal
value of 16 is 10, making the address of NEWAREA1 000D81. Now plus 80 bytes
(hexadecimal 50) produces the address OOODFA.

5.1.4. Definition Type

The definition-type symbol is required for both DC and DS statements to determine
the alignment (5.1.7), padding, truncation, storage form, and implied length. (See 5.2
and Table 5—1 for the characteristics of the 13 types used.)

5.1.6. Length Factor (L,)

The length factor designates the explicit value of the length attribute of a field
generated by a DS or DC statement. The letter n represents either an unsigned
decimal self-defining term or a positive absolute expression enclosed within
parentheses. If any symbols are used in the expression, they must be previously
defined. The length attribute of a field used in an assembler instruction determines
the number of bytes generated for either that constant or reserved field. The
maximum value of the length factor (n) is 65,536. Examples follow:

UP-8913 SPERRY UNIVAC 0S/3 5-7

ASSEMBLER
LABEL AOPERATIONA OPERAND
1 10 16
1. | VNS DC C'LENGTH ATTRIBUTE'
2. | YAR DS CL16
3. | WDR DS 2CL16
L, | sGAwW DC CL16'LENGTH'
5.] STOR DC CL16

Examples 1 through 5 all have a length attribute of 16 bytes. The length factor is not
required in example 1 because the constant specified is 16 bytes long. The length
attribute of the receiving field in examples 2 through 5 is a vital element of the
instruction. (See 12.18.)

When used, the length factor must follow the character L. The maximum and
minimum values that may be explicitly specified are shown in Table 5—1 for all
definition types. Constants that do not agree with the specified length are padded or
truncated to the left or right, as shown in Table 5—1.

NOTE:

Boundary alignment is not provided when a length factor is specified.

5.1.6. Constant Specification

The constant specification determines the constant, or storage to be generated. When
an apostrophe or ampersand is included in the constant specification, double
apostrophes or ampersands are used to indicate the inclusion of these characters in
the constant.

Examples:
1.}]YAR DC C'ENTER NUMBER ''4N'' HERE'
2. 1LG591 DC C'ENTER THE NUMBER 51g&91!

This will produce 22 bytes as follows:

1. ENTER NUMBER ‘4N’ HERE

2. ENTER THE NUMBER 51&91

The constant may take the form of data or an address, as shown in Table 5—1.

Data Constant Address Constant

‘JUNE 15’ (AREAT1)

UP-8913 SPERRY UNIVAC 0S/3 5-8
ASSEMBLER

5.1.7. Alignment

Machine instructions are aligned on half-word boundaries; constants may be aligned
on a half word, full word, double word, or no boundary. (See Table 5—1.) When a
length factor is specified in the DC or DS statement, no alignment is provided. A
duplication factor of zero does not generate a constant or storage area but, for some
types of constants, it forces a boundary alignment when no length is stated. This
provides a method for obtaining boundary alignment before generating a constant that
is not automatically aligned by the assembler. Bytes skipped to align constants are
zero filled; bytes skipped to align storage areas are not.

5.2. DEFINITION TYPES

Data definition types generate absolute values or storage through the assembler
interaction. There are 13 types, as shown in Table 5—1 and described in more detail
in 5.2.1 through 5.2.12. (Also see 2.1))

5.2.1. Character Constants (C)

The character C is used to specify character constants and can produce up to 256
bytes for a DC and 65,535 bytes for a DS statemnent. All of the 256 valid card
punch combinations can be used, but only 48 or 64 characters are printable,
depending on the print set available. When the length factor does not agree with the
constant specification, padding or truncating takes place on the right. Padding takes
place with blanks. (See 2.1 and 2.4.))

LABEL AOPERATIONA OPERAND
1 10 16

1. | PADDING DC CL1@'CONSTANT'

2. | TRUNCAT DC CL5'CONSTANT!'

3.1 NORMAL DC C'CONSTANT'

1. Produces: CONSTANTAA(ten bytes)
2. Produces: CONST (five bytes)
3. Produces: CONSTANT (eight bytes)

A pair of ampersands is needed to specify a single ampersand constant. A pair of
apostrophes is needed to specify a single apostrophe constant.

UP-8913 SPERRY UNIVAC 0S/3 5-9
ASSEMBLER

5.2.2. Hexadecimal Constants (X)

The character X is used to specify hexadecimal constants and can produce up to 256
bytes for a DC and 65,535 bytes for a DS statement. Each byte contains two
hexadecimal digits. When the length factor does not agree with the constant
specification, padding or truncating takes place on the left. Padding takes place with
hexadecimal zeros. (See 2.1 and 2.3))

LABEL AOPERAT IONA OPERAND
| 10 16

1.1 PADDING DC XL7'CLCED5F3FA!

2.1 TRUNCAT DC XL4*CUCEDSF3FA

3.1 NORMAL DC X'CLCED5SF3FA!
1. Produces: o:'o oio ci4 CiE DES Flas FEA 7 bytes
2. Produces: c i E| D i 5| F i 3|F ;A 4 bytes
3. Produces: CE" CEE DES Fia[Fia 5 bytes

5.2.3. Binary Constants (B)

The character B is used to specify binary constants and can produce up to 256 bytes.
When the length factor does not agree with the constant specification, padding or
truncating takes place on the left. Padding is done with binary zeros. The constant
specification consists of only the numerals O and 1. (See 2.1 and 2.2))

1.[PADDING DC BL2'@118"

2.1 TRUNCAT DC BLI'1gdd11188110"

3.1 NORMAL DC B'11164118"
1. Produces: 0000 E 0000 0000 0110 2 bytes
2. Produces: 1110 | 0110 | 1byte

1110 0110 1 byte

-] fom] |-

3. Produces:

UP-8913 SPERRY UNIVAC 0S/3 5-10
ASSEMBLER
5.2.4. Packed Decimal Constants (P)

The character P is used to specify signed packed decimal constants. It can produce up
to 16 bytes. When the length factor does not agree with the constant specification,
padding or truncating takes place on the left. Padding is done with hexadecimal zeros.
The decimal constant is written as a signed or unsigned number. If unsigned, the
number is assumed to be plus. A positive number is assembled with a hexadecimal C
in the four least significant bits; a negative number has a D in this location. The
maximum of 16 bytes can contain 31 decimal digits plus the sign. (See 2.1 and

24.3)
LABEL AOPERATIONA OPERAND
| 10 16
1.}PLUS DC P'+4543"
2.] NEG DC pi-4543!
3. | UNSIGNED DC P'45h3!
L. |PADDING DC PLL'+4543"
5.] TRUNCAT DC PL2Y=-4543!
6. ODDNUN DC P'14543"
1. Produces: 1 T 1
0 :4 5 : : 3 bytes
2. Produces: 0 i al|ls! | 3 bytes
1 i
3. Produces: 0 E4 5 E E 3 bytes
ab
4. Produces: |0 50 0 54 5 i E Ve
: I 2 bytes
. 5 1]
5. Produces: | JI : 3 bytes
6. Produces: [i

5.2.5.

The character Z is used to specify zoned decimal constants. It can produce up to 16
bytes. When the length factor does not agree with the constant specification, padding
or truncating takes place on the left. Padding is done with zoned zeros (FO). A plus or
unsigned number is assembled with a C in the zone half of the rightmost byte; a
negative number will have a D in this location. (See 2.1.)

vieswh —
v = s =

Zoned Decimal Constants (Z)

. [pLus DC

NEG DC
UNSIGNED DC
PADDING DC
TRUNCAT DC

Z'+4543"
Z'-4543"
Z' 4543
ZL5'+4543!
ZL3'~4543¢

UP-8913

SPERRY UNIVAC 0S/3

5-11

ASSEMBLER Update B
1. Produces: E i 4 FT F E P E 3 4 bytes
2. Produces: F }La F i F E D E 3| 4bytes
3. Produces: Fia|Fis[Fiafcial 4bye
4. Produces: | F E ol F ': al F i F i c ': 3| Sbytes
5. Produces: Fis|F E P i 3] 3bvtes
NOTE:
A zoned decimal number is also known as a signed unpacked number. (See

2.4.3.1 and 2.4.3.2.)

* 5.2.6. Half-Word Fixed-Point Constants (H)

The character H is used to specify half-word fixed-point constants. It can produce up to 8
bytes. If no length factor is specified, the length attribute equals the implied length of 2
bytes. Padding or truncating takes place on the left. Padding is done with the sign of the
value, binary O for a positive number and binary 1 for a negative number. The constant
specification may not contain over five significant decimal digits nor a value greater than

+32767 (2'5—1) or less than —32768 (—21'5).

Unsigned values are treated as positive

values. The data is aligned on a half-word boundary if no explicit length is specified;
otherwise no alignment takes place. (See 2.1, 2.5, and Section 10.)

LABEL AOPERATIONA OPERAND
1 10 16
1.] PLUST DC HL1'+57!
2.{ PLUS2 DC H!'57!
3.] NEGI DC HL1'=57!
L.] nNEG2 DC HY=57?
{+) sign bits—;
1. Produces: 0011 :. 1001 1 byte
e
2. Produces: 0000 ': 0000 | 0011 i 1001 2 bytes
(—) sign bits_¢
3. Produces: 1100 E 0111 1 byte
4. Produces: 1111 1 1111 1100 1 0111 2 bytes
I

UP-8913 SPERRY UNIVAC 0S/3 5-12
ASSEMBLER Update B

5.2.7. Full-Word Fixed-Point Constants (F)

The character F is used to specify full-word fixed-point constants. It can produce up to
eight bytes. If no length factor is specified, the length attribute equals the implied length of
four bytes. Padding or truncating takes place on the left. Padding is done with the sign of
the value, binary O for a positive number and binary 1 for a negative number. The constant
specification may not contain over 10 significant decimal digits nor a value greater than
+2,147,483,647 (23'—1) or less than —2,147,483,648 (—23'). Unsigned values are
treated as positive values. The data is aligned on a full-word boundary if no explicit length
is specified; otherwise no alignment takes place. (See 2.1, 2.5, and Section 10.)

LABEL AOPERATIONA OPERAND
] 10 16
1.|PLUS2 DC FL2'+271!
2.1 PLUSH DC F'2711
3.[NEG2 DC FL2'=-271?
L.| NEGA DC F'=271!
Signbits—-—‘
1. Produces: 0000 i 0001 0000 i 1111 2 bytes
rl ~~ .
2. Produces; 0000 | 0000 | 0000 i 0000 | 0000 ; 0001 0000 | 1111 4 bytes
L
Sign bits
3. Produces: 111 E 1110 | 1111 | o001 2 bytes
]
4. Produces: 11111 1 1111 1 1111 1111 1 1110 | 1111 1 0001 4 bytes
]]]

5.2.8. Half-Word Address Constants (Y)

The character Y is used to specify half-word address constants. It can produce up to two
bytes. If no length factor is specified, the length attribute equals the implied length of two
bytes. Padding or truncating takes place on the left. Padding is done with binary zeros. A
length factor of one byte may be specified for absolute expressions only. The expression
may be a positive or negative absolute value or a relocatable symbol representing the
address of an instruction or item of data within the program. Alignment is on a half-word
boundary if no explicit length is stated; otherwise no alignment takes place. The maximum
value that can be specified is 2'5—1 (32,767).

1. [wro DC Y (EQUITY)
2. | wBE DC YL1(9)
3. JwMC DC Y(9)

UP-8913 SPERRY UNIVAC 0S/3 5-13

ASSEMBLER

1. Produces a 2-byte area containing the address of the instruction EQUITY.

2. Produces: 0000 1001 1byte

T R

1
0000 : 0000 0000 1001 2 bytes

3. Produces:

5.2.9. Full-Word Address Constants (A)

The character A is used to specify full-word address constants. It can produce up to
four bytes. If no length factor is specified, the length attribute equals the implied
length of four bytes. Padding or truncating takes place on the left. Padding is done
with binary zeros. Length factors of one or two bytes may be specified for positive or
negative absolute values. The maximum value that can be specified is 23'—1
(2,147,483,647). Alignment is on a full-word boundary if no explicit length is
specified; otherwise no alignment takes place.

LABEL AOPERATIONA OPERAND
| 10 16

1. | WRD DC A(VALLEY)

2. | WBE DC AL1(9)

3. | WMC DC AL2(9)

1. Produces a 4-byte area containing the address of the instruction VALLEY.

2. Produces: 0000 | 1001 1 byte

1001 2 bytes

1
3. Produces: | 0000 t 0000 } 0000

5.2.10. Base and Displacement Constants (S)

The character S is used to specify base and displacement constants. It can produce a
2-byte area. The only length factor that may be specified is 2. No padding or
truncating can take place. Alignment is on a half-word boundary when the length
factor is not used. Neither negative values nor literals may be used. This instruction
produces a 2-byte area, as follows.

1BYTE 1BYTE
P T o™i —
I [
| |
| I
0 3l4 718 1 16
m/v\/v
BASE
REGISTER D'S:;'-:gﬁ_“s"fm
(4 BITS)

UP-8913 SPERRY UNIVAC 0S/3 5-14
ASSEMBLER

The first four bits (half byte) contain the number of the base register used in this
constant. The next 12 bits contain the value of the displacement to be added to the
value in the register to produce the full address of the constant.

In the following example, in line 1, the value 5000 will be placed in register number
9 at execution time. (See 19.2 for the USING directive.)) In line 2, assume the
program has produced the address of 5025 to be assigned to the instruction called
ELI, and this instruction is 25 bytes away from the area covered by register number
9. The instruction CHAYA, line 3, specifies the address of ELI, which is register
number 9 (value 5000) plus a displacement of 25 bytes to give 5025. The instruction
REBEW does not use an address symbol but explicitly states the displacement, 25
bytes, and register number 9.

Examples:
LABEL AOPERATIONA OPERAND
] 10 16
START
USING 5303 ,9
ELI DC C'CONSTANT!
CHAYA DC S(ELY)
REBEW DC S(25(9))

The constants produced in lines 3 and 4 show the hexadecimal values of the base
register and the displacement as follows:

] i
| I
9 , 0 1 : 9
1
0 ala 7{8 | 15
BASE DISPLACEMENT

REGISTER

UP-8913 SPERRY UNIVAC 0S/3 5-15
ASSEMBLER

5.2.11. External Address Constants (V)

The character V is used to declare references to special external symbols. The
constant must be used to reference an executable instruction which is external to the
program. The reference symbol need not be identified by an EXTRN statement. (See
19.5))

The only length factors that may be specified are 3 or 4. If no length factor is used,
the length attribute equals the implied length of four bytes and alignment will be on
a full-word boundary.

Padding or truncating takes place on the left. Padding is done with hexadecimal zeros.

The specification of a symbol in the operand field of a type V constant does not
constitute a definition of the symbol.

Until the program containing the external symbol is linked to the program with the V
type constant, the value of the assembled constant is composed of hexadecimal zeros.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
LODGE DC V(TRAVEL)

As the address value of this DC instruction (TRAVEL) is externally defined, the
following constant is generated.

1 T v 1
0310/ 010}010]|011O
- 1 1 !

5.2.12. Floating-Point Constants (E and D)

The format of floating-point constants differs from the standard format of the DC
statement (56.1) in that an additional subfield (the scale modifier) may appear. The
format for floating-point constants is as follows:

LABEL l AOPERATION A I OPERAND
[symbol] DC [d]lt[L,][S+n] ‘c[Etn]’

UP-8913 SPERRY UNIVAC 0S/3 5-16
ASSEMBLER

where:
d
Is the duplication factor.
t
Is the definition type (E, full word; D, double word).
Ln
Is the explicit length factor in decimal.
S+n
Is the scale modifier.
‘c[ELn]’

Is the constant specification with optional exponent.

The subfields must be written in the order given. The d, t, and Lp subfields are
discussed in 5.1. The scale modifier must be a positive signed or unsigned decimal
number. If the sign is omitted, a positive value is assumed. The scale modifier is
applied to a number after it has been converted to internal format.

Two types of floating-point constants are available: full word (E) and double word (D).
The implied length of an E type constant is four bytes; if the length modifier is
omitted, full-word boundary alignment is assigned. The implied length of a D type
constant is eight bytes; if the length modifier is omitted, double-word boundary
alignment is assigned. In either case, an explicit length modifier of from one to eight
bytes may be specified.

A floating-point number is written as a decimal number. It can be an integer (110), a
fraction (0.75), or a mixed number (110.75). The floating-point number may be
followed by an optional exponent represented by an E, a sign, and a decimal number,
respectively. In the absence of a sign, a plus sign is assumed.

The exponent for a constant is that power of 10 by which that constant will be
multiplied before its conversion to internal format. This exponent value may range
from —85 to + 75.

The machine representation of the constant consists of a hexadecimal fraction
(mantissa) and a hexadecimal exponent (characteristic). The decimal point is assumed
to be at the left of the leftmost digit of the fraction. The characteristic represents the
power of 16 by which the fraction must be multiplied to obtain the value of the
constant. The machine format is shown in Figure 5—1.

UP-8913 SPERRY UNIVAC 0S/3 5-17
ASSEMBLER

(SHORT FORMAT)

S
FULL ! characteristic mantissa
WORD S {exponent) {fraction)
0 |1 718 6 hexadecimal digits 31
(LONG FORMAT)
$.
DOUBLE characteristic mantissa
WORD S {exponent) (frac?non) .
o |1 718 14 hexadecimal digits 63
where:
SIGN
is the O bit, the sign of the mantissa.
CHARACTERISTIC
Is a 7-bit binary number (signed and biased by the hexadecimal value 40,¢, decimal value 84) reflecting the scaling of
the floating-point number.
MANTISSA
Is the fraction after the constant has been converted to its machine representation; scaling is performed if specified.
Figure 5—1. Floating-Point Number Formats
Example:

The floating-point value is the product of the mantissa (fraction) and the base 16
raised to the power of the biased characteristic (exponent) after the exponent has

been reduced by 64. The decimal number 255 will generate the floating-point
number 42FFO000.

LABEL A OPERATION A OPERAND

[symbol] DC E‘255’

Decimal 255 = the fraction X16. The floating-point number shown in hexadecimal
form is 42FFO000.

In this example:

n = hexadecimal 42 (decimal value 66) fraction = .FFOOOO (decimal value .9961
from Table C—2). Therefore, 42FFO000 equals:

9961 X 1666-64
or .9961 X 16,
or .9961 X 256
or 255

UP-8913 SPERRY UNIVAC 0S/3 5-18
ASSEMBLER

If scaling is not specified, the fraction is hexadecimally normalized; that is, all
leading hexadecimal zeros are removed, and the characteristic is adjusted by 1
for each zero removed. Rounding is then performed, and the number is
assembled into the field as specified by the explicit or implicit length. Negative
fractions are carried, not in twos complement, but in true representation.

The scale modifier must be a positive value from O to 14. This modifier specifies
the number of hexadecimal positions (four bits}) the number is shifted to the
right. Scaling provides an unnormalized floating-point number. The characteristic
is adjusted to reflect the number of hexadecimal positions the number has been
shifted. If any hexadecimal positions are lost, rounding occurs in the rightmost
hexadecimal position retained.

Examples:

Normalized number, i
value 255. i

Unnormalized number,
value 2565.

o
o
o

Unnormalized number,
value 255.

See 2.6, Section 11, and Appendix C.

5.3. LITERALS

A literal is a representation of data within a source code statement and can be coded
in the sending field of either operand. A literal is simply a constant coded with an
equal sign followed by a type code and a nominal value enclosed within single
quotation marks.

The method of describing and specifying a constant as a literal is almost identical to
the method of specifying it in the operand field of a DC statement. When a literal is
assembled, the data is stored in a “literal pool” which is a special area in main
storage where all literals are placed. The address of that storage field in the literal
pool is then placed in the operand field of the assembled statement.

If two identical literals occur within one literal pool, only the first literal is stored.
The permissible use of literals are:

® Any type of data can be used to specify a literal.

= Only one reference to the same literal in a coding statement can be made.

® A literal is always in the sending field of an operand.

UP-8913 SPERRY UNIVAC 0S/3 5-19
ASSEMBLER Upgile

m Literals are relocatable because the address (not the literal itself) is assembled in
the coding statement.

® Literals can be self-defining terms which are recognized by the absence of the
equal sign, also referred to as immediates.

® Duplication factors can be used in the specification of literals and are expressed
only by unsigned decimal values except zero.

® length attributes can be used in the specification of literals and are expressed
only by unsigned decimal values.

The nonpermissible use of literals are:

® A literal can never be used in the receiving field of an operand.

m A literal cannot be combined with other terms.

n It cannot be specified within the parenthesis of an address constant.
® |t cannot be specified in a shift instruction, or an 1/0 instruction.

® A literal cannot have an explicit base or an explicit index.

®m Absolute (with all terms previously defined), relocatable, or complex relocatable
expressions cannot be used as either duplication factors or length attributes.

Example:
LOC. OBJECT CODE ADDR1 ADDR2 LINE SOURCE STATEMENT
000000 1 STC START ©
000000 0530 2 BEGIN BALR 3,0
000002 3 USING *,3
000002 58B0 3016 00018 L L 11,AMTIN
000006 5ABO 301E 00020 5 A 11,=F'g!
00000A 42B0O 301A 0001C 6 STC 11,STOR
7 DUMP
00000E A 8+ DS OH
A 9+:‘:
A 10+* THE DUMP PARAMETER IS A 1-4 BYTE HEX CODE
A 11+
00000E 1700 A 12+ XR 0,0 CLEAR DUMP CODE
000010 OAIB A 13% SvC 27 DUMP SVC
000014 14 DS F
000018 0000088C 15 AMT!N DC F'2236"
00001C FOLohoko 16 STOR DC CL4'o!
000000 17 END BEGIN
000020 00000005 18 =F'sg!

On line 5 of the sample program, a literal is used in the sending field of operand 2.
The equal sign is used followed by the type code (which in this case is F, full word)
and the nominal value enclosed in single quotation marks. Note that the object code
produced when the literal is assembled is the address (00020) of the field in the
literal pool where that literal was placed. Line 18, under object code, shows the
literal actually generated.

UP-8913

SPERRY UNIVAC 0S/3 6-1
ASSEMBLER Update A

6. Symbol Definitions

Byte locations in main storage are numbered consecutively starting with zero. Each
number is considered the address of the byte of data stored at that location. A group
of consecutive bytes is addressed by the leftmost byte. A symbol appearing in the
label field of a statement defining an instruction, constant, or storage area is assigned
the address value of the first byte of the source statement with which the symbol is
associated. The following rules apply to the general use of symbols.

a Must start in column 1

8 Must start with an alphabetic character or special letter

] Must consist of only alphabetic characters, numeric characters, and special letters

a Must not be longer than eight characters

B Must not include a space (blank) or other special character

8 Must be followed by a blank

Example of valid label field symbols:

LABEL AOPERATIONA OPERAND
] 10 16

W DC P'LP69!

NLSL3 DS PLL

DNOMYARD DC
CASHSOUT BALR

c'508'
R5,8

UP-8913 SPERRY UNIVAC 0S/3 6-2

ASSEMBLER Update A

Examples of invalid symbols:

LABEL AOPERATIONA OPERAND

1 10 16
1 EQUITY DC Priug2?
2.] 4543 DS L4
3.] READ ONE PACK OPER} ,0PER2
L.} CONSISTORY DC c'sg’

—

Invalid because symbol does not start in column 1
2. Invalid because symbol does not start with an alphabetic character or special letter
3. Invalid because symbol contains a special character (space)

4. Invalid because symbol is longer than eight characters

6.1. EQUIVALENT SYMBOLS

To make a program more meaningful, the programmer may use more than one
symbol to represent the same value or location. The same output area could be called
NURECORD (in one place) and OUTPUT1 in another part of the program. The EQU
directive (Section 16) can be used, as shown in this section, to equate these symbols.
An EQU may be used to equate any symbol to any other symbol or to a value. Only
the operands may declare expressions.

NURECORD EQU QUTPUT!
R@ EQU g

R1 EQU 1

R2 EQU 2

R3 EQU 3

R12 EQU 12

R13 EOU 13

Rk EQU 14

R15 EQU 15

UP-8913 SPERRY UNIVAC 0S/3 ' 6-3
ASSEMBLER Update A
. After the EQU directive, a register instruction could be written in any of the following
ways:
LABEL AOPERATIONA OPERAND
1 10 16
ADD AR 1,2
ADD AR R1,R2
LOAD LA 5,2(5)
LOAD LA R5,2(R5)
MOVE MVC WKAREA,REC
MOVE MVC 15(7,9),5(19)
MOVE MVC 15(7,R9),5(R18)
NOTE:

Throughout, the register notations (RO through R15) represent the registers O through 15.

6.2. SYMBOL APPLICATIONS

Symbols are used not only to identify storage areas and constants but also to locate
instructions in the program. In the following example, the branch instruction with the
symbol RETURN calls for a branch to the location CONSIS32 under certain conditions.
instruction called TRAVEL branches around the nonexecutable DC
constants to the location SQUARE.

. The branch

BEGIN

CONS 1532

TRAVEL
WMC
WRD32

SQUARE

TITLE
START
BALR

US ING

MVC

DC
DC

'SYMBOL USE'

R3,RP
* R3

VALLEY,CONSISTO

SQUARE
c [} 365 [}
c |32|

R2,R4

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

6-4

LABEL AOPERAT |ONA OPERAND

i 10 16

RETURN BC 7,CONS1532

MASTER CLC WEEKS52,=P 52"
E0J

RO EQU)

R2 EQU 2

R3 EQU 3

R4 EQU b

REBEW DC P14+52"

WEEKS52 EQU REBEW

VALLEY DS cL32

CONSISTO DS XL32
END BEGIN

The EQU directives show how to use the symbol WEEKS52 for REBEW,; also RO, R2,

R3, and R4 for registers 0, 2, 3, and 4.

Through the ‘extensive use of symbols and the assembly listing cross-reference, you
can trace every use of a data area or instruction routine. (See 28.5.)

UP-8913 SPERRY UNIVAC 0S/3 7-1
ASSEMBLER Update B

7. Introduction to Application
Instructions

7.1. INSTRUCTION AND FORMAT CONVENTIONS

Certain conventions have been adopted in this manual for specifying instruction,
directive, macro, proc, and control-statement formats. The following describe these
conventions.

There are eight types of assembler application instructions:

RR — Register-to-register

RX — Register-to-storage-indexed or storage-to-register-indexed

RS — Register-to-storage-nonindexed or storage-to-register-nonindexed
. S| — Storage immediate

SS — Storage-to-storage (Type SS1)

SS — Storage-to-storage (Type SS2)

S — Storage
SM — Storage mask

Figure 7—1 illustrates the source code and object code formats for each of these
instruction types. (Also see Section 4.)

Source Code instruction Format Object Code Instruction Format
Type First Halt Word Second Half Word Third Half Word
Explicit Form Implicit Form Byte 1 Byte 2 Bytes 3and 4 Bytes 5 and 6
0 718 1112 15 |16 19 |20 31 |32 35 |36 47
1] }
reg reg | i
op 1 op 2]
RR [symbol] opcode r1,r2 @ [symbol] opcode rfay - N
opcode N I n \
!
* 1) reg) address | |
A @) | : op 1) operand 2 |
X [symbol) opcode r1,d2 (xz,bz) [symbol] opcode PN |)
opcode r l X, b2 | d2
I
| reg reg ! address : |
@ | op1 op3 operand 2
I '] |
RS [symbol] opcode I .d2 (bz) [symbot] opcode LR | — o | —— i)
* opcode 8 J [bz I d2 :
l immediate address \ :
d 1 |
s8I [symbol] opcode d (b, i, (symbol] opcode's. i, ! Poerend) et l
opcode I i b, l . d, i
| . address | |
f operand 2 ! |
s [symbol] opcode d, (b)) [symbol] opcode s, I ' /—\Z_,\ ! |
;
opcode l bz l d2 I
T +
: length i address { addre;sz
1and op 2 i rand 1 1 Operar
[symbol] opcode d, (I,b,) ,d2 (bz) [symbol} opcode s1(l),52 ! o P - \ Aﬁm | — A tti——
s opcode -1 b, l d, bz] dz
" length i address | address
1 I op? op 2 ' operand 1 | operand 2
[symbo!] opcode d1 (I1,b1),d2(I2,b2) {symbol] opcode s1(l.'),52(12) i [N e e e i—— | A i—__
opcode I-1 | 1,=1 b,] d, b, ' d,
i | immediate : immediate displacement I address
. . operand 2 mask 3 4 1 operand 1 |
SM {symbol] opcode d1(b1),12,m3,rj4 [symbol] opcode s1,|2,m3,d‘ | [— — | ~ o —— e N — A~ irian_ |
opcode i2 my _ d, b, d \
* 0 718 11 112 15 116 19 120 31 132 35 136 47
NOTES:
@ The RR instruction has three other forms: @ The RS instruction has two other forms:
[symbol] opcode i, for the SVC instruction; the RS shift instructions are written without use of the r, operand, in the form:
[symbol] opcode r, for the SPM instruction; and [symbol] opcode ry,d,(b,); and
[symbol] opcode m,.r, for the BCR instruction. some RS instructions such as ICM and CLM are written in the form:
@ The RX instruction BC is written in the form: {symbol} opcode r,, m;, d, (b;).

{symbol] opcode m,, d, (x,, b,).

Figure 7—1. Instruction Formats (Part 1 of 2)

£168-dN

H3N18N3SSY
€/S0 OVAINN AHY3dS

g aepdn
L

UP-8913 SPERRY UNIVAC 0S/3 7-3

ASSEMBLER Update B
Characters Meaning
OPCODE The application instruction operation code.
" The number of the general register containing operand 1
) The number of the general register containing operand 2
g The number of the generai register containing operand 3
X, The number of the general register containing an index number for operand 2 of the RX instruction
i1 The immediate data used as operand 1 of the SVC instruction
i2 The immediate data used as operand 2 of an Sl instruction

| The length of the operands as stated in source code*

I,| The length of operand 1 as stated in source code*

I2 The length of operand 2 as stated in source code*

b1 The number of the general register containing the base address for operand 1
b2 The number of the general register containing the base address for operand 2
d1 The displacement for the base address of operand 1

d2 The displacement for the base address of operand 2

d4 The displacement used as operand 4 of an SM instruction

m, The mask used as operand 1 -
my The mask used as operand 3 of an SM instruction

op, Operand 1

op, Operand 2

op, Operand 3

54 The symbol used to identify operand 1 in the implicit format

s, The symbol used to ident{fy operand 2 in the implicit format

*In source code, the length you specify is 1 greater than the object code length. The reason for this is that 0 is the first length
count, not 1. For example, | can,address a maximum length of 256, but in actuality, | get O through 255 bytes. The assembler
makes a reduction of 1 in the length when converting source code to object code.

Figure 7—1. Instruction Formats (Part 2 of 2)

UP-8913 SPERRY UNIVAC 0S/3 7-4
ASSEMBLER UM?B »

An instruction is an executable statement for operations involving data. The assembler .
instructions are two, four, or six bytes in length. (See Figure 7—1.) in a 2-byte (RR)
instruction, the registers are referenced for both operands. A 4-byte (RS) instruction
references a register for the first operand and main storage for the second operand. A

4-byte (RX) instruction references registers for the first and second operands and main

storage for the third operand. A 4-byte immediate operand (Sl) instruction references

main storage for the first operand and immediate data for the second operand. A 6-

byte (SS) instruction references main storage for both operands.

NOTE:
All instructions are aligned by the assembler on a half-word boundary.

The implied length field may be applicable with the SS1 and SS2 type instructions. if
no length is specified in an SS1 type instruction, the length attribute of the first
operand is assembled into the length field of the instruction. The length attribute of
an operand is the length attribute of the expression used to define the storage
location. The SS2 type instruction contains a length field for each operand; however,
neither, either, or both length fields may be implied. In every case, the assembler
puts the operand lengths, implied or specified, into the length fields.

The following are examples of implied and explicitly stated lengths.

LABEL AOPERATIONA OPERAND
1 10 16
NUMBER12 DC ZL12'+@"
NUMBER7 DC Z'1234567!
1.]PAD PACK NUMBER12,NUMBER7
2.]FILLUP PACK NUMBER12(4) ,NUMBER7
3. | TRUNCATE PACK NUMBER12 (4) ,NUMBER7(3)

Instruction 1 (PAD) packs all seven digits and the sign of operand 2 (NUMBER7) into
four bytes of operand 1 (NUMBER12), then zero fills the remaining eight bytes of the
implied fieid of 12 bytes. Instruction 2 (FILLUP) packs all seven digits and the sign of
operand 2 into the explicit four bytes of operand 1. Instruction 3 (TRUNCATE) packs
only the explicitly stated three digits and the sign of operand 2 into the explicit four
bytes of operand 1. Labeled instructions themselves are assigned implied lengths
based on instruction type.

There are six basic ways to explain how an assembler application instruction is
written: the implicit format, the implicit source code example, the explicit format, the
explicit source code example, the object code format, and the object code example.
The first four methods are shown for each instruction in this part of the user guide,
as the subject of object code formats covered in 4.3.1, and are discussed again in
assembly listings (Part 6). The following shows how the move character instruction is
written.

UP-8913 SPERRY UNIVAC 0S/3 75
ASSEMBLER Updsda
A
® |mplicit source code:
Format:
LABEL | AOPERATION A | OPERAND
[symbol] ‘ MvC s, (l)s,
Example:
LABEL AQOPERAT I ONA OPERAND
1 10 16
MOVES' MVC LODGE ,MASTER)
MOVE32 MVC LODGE (32) ,MASTER
® Explicit source code:
Format:
LABEL | AOPERATION A l OPERAND
[symbol] I MVC l d, (1b,),d, (b,)
Example:
52
MOVE32 MVC #2(8,R2),3(R3)
® Object code:
Format:
opcode Iy b, d, é
0 7]8 15 |16 19|20 31
by dp
32 3536 47

Example as shown on an assembly listing:

OOODF5 D2 1F 20F1 30FC

UP-8913 SPERRY UNIVAC 0S/3 7-6
ASSEMBLER

7.2. EXPLICIT FORMS .

The first line is how the explicit format is expressed, and the second line is an
example of how you might write the explicit source code form of the add instruction.

Explicit Format:

LABEL l AOPERATION A OPERAND
[symbol] A r,d,(x,.b,)
ADDREC A R2,32(R3,R5)

7.3. IMPLICIT FORMS

The first line is how the implicit format is expressed, with the following one or more
lines being examples of how you might write the implicit source code forms of the
add instruction using symbols to represent registers and data areas.

Implicit Format:

LABEL A OPERATION A OPERAND
[symbol] A ry$,(x,)
ADDFOR A R2, PAYSUM
ADDREG A R2, PAYSUM(R3)

7.4. DEFINITIONS OF FORMAT TERMS

Figure 7—1 explains all the terms used in describing the explicit and implicit forms of
the instructions. The following additional explanations will help you to understand the
implicit and explicit forms of programming coding.

m The general registers ry, r,, or rz are shown in the RO through R15 form.

m The index register x, and the base registers b; and b, are also shown in the RO
through R15 form.

L] The terms s; and s, represent the use of a symbol (4.2.1 and Section 6) in the
first or second operand.

® The displacement d, or d, is a decimal value which is combined with the value
in some base register.

® A checkoff table is included for each applicable instruction in the text. '
Explanations of the program exceptions are provided in Appendix D.

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

8-1

8. Branching Instructions

8.1. USE OF BRANCHING INSTRUCTIONS

Branching instructions are used to alter the normally sequential execution of
instructions by branching out of sequence to link to a subroutine, make a decision, or
control looping. The operand 2 field of each branching instruction refers to the
address (branch to) of the instruction to be executed immediately after the branching
instruction. The branch-to address in operand 2 is stored in bits 40—63 of the
current program status word (PSW) (Figure 8—1). The PSW is a double word
containing the address of the next instruction and various other control fields. In
general, the PSW is used to control instruction sequencing and to hold and indicate
the status of the system in relation to the program currently being executed. (See the
processor programmer reference for a complete description of the PSW.)

RELOCATION INTERRUPT
SYSTEM MASK REGISTER MODE KEY CODE
s(s|s|s|s s|s|s
plp|Pir|P plPiP|P
Elt [m|AlA|A]AlA alPlP|w|A|A|A|E
o) R|R|{R|R|R Rls RIR{R|R
E{E|E|E|E E|E|E
o[1[2|3]a|5]6(7][8 11{12{ 13 14{ 15] 16{17{ 18 19| 20 23 | 24 31
BYTE 0 1 2 3
PROGRAM
MASK INSTRUCTION ADDRESS
ic [cc |Blo|E]s
32 33|34 35| 36| 37| 38| 39| 40 63
BYTE 4 5 6 7
——
Condition \—’-\N
Code

Address of the next instruction
to be processed (branch to)

Figure 8—1. Program Status Word Diagram

UP-8913 SPERRY UNIVAC 0S/3 8-2
ASSEMBLER

While the program is executing, it utilizes the PSW (called the current PSW), which is
stored in the supervisor portion of the operating system. Before a branch out of the
sequence of the program to a new location, the present location of the program is
stored in the PSW. That PSW (called the old PSW) is saved, and the program uses a
new PSW (current) to keep track of pertinent program information. In other words, the
old PSW holds the place in the program if you want to return to where you were
before branching to a routine or instruction in another area, and the current PSW
keeps track of the running program regardless of where you branched.

For an explanation of the checkoff table exceptions, see Appendix D.

8.2. EXTENDED MNEMONIC CODES

General Possible Program Exceptions
OBJECT ||] ADDRESSING (JrrROTECTION
OPCODE FORMAT | INST. G [] SIGNIFICANCE
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) SIGNIFICANC
MNEM IHEX 8yTes) || [J DECIMAL DIVIDE [specIFicaTION:
[J beciMAL OVERFLOW a NOT A FLOATING-POINT REGISTER
See Table 8—1.] RX & RR 20rd [J execuTe O OP 1 NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O OP 2 NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW g OP 2 NOT ON FULL-WORD BOUNDARY
5 [FIXED-POINT DIVIDE a OP 2 NOT ON DOUBLE-WORD
T= T 1O
0 ::Z :EztjtT <%’ SsiT TO°1 [J FIXED-POINT OVERFLOW BOUNDARY
' . 0 oP 1 NOT EVEN NUMRERED REGISTER
[]1F RESULT >0, SET TO 2 (J FLOATING-POINT DIVIDE O
[JIF OVERFLOW, SET TO 3 [] OPERATION OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED 8 none

The extended mnemonic codes are used like the branch on condition (8.4) instruction.
Extended mnemonics are the shorthand version of the branch on condition (BC)
instruction. They are easy to use because you do not need to remember the decimal
value that is associated with the operand 1 mask of the branch on condition
instruction. You merely remember the mnemonic. The extended mnemonics create the
mask value, which tests the condition code. If the specific condition or conditions you
want to branch on exist, a branch is made to the address specified in operand 2.

Before a branch is made, the address of the running program is saved, thus enabling
you to return to that point if desired. It is a good idea to familiarize yourself with the
branch on condition instruction and Table 8—1 before you use the extended
mnemonics.

Table 8—1 is a listing of the extended mnemonic codes. The hexadecimal operation
codes (with mask) and functions, categorized by instruction type, are grouped
according to use. Also included are the branch on condition (BC) instruction
equivalents. An example of a handwritten coding form follows.

UP-8913 SPERRY UNIVAC 0S/3 8-3
ASSEMBLER
. Example:

LABEL AOPERAT 1 ONA OPERAND
1 10 16

1. cP A,B

2. BE EQUAL

3. BL LOW

BH HIGH

LOW AP A,B
A DC Py
B DC P's!

1. The compare decimal (CP) instruction compares the packed decimal contents
of A against the packed decimal contents of B. Based on the results, the
condition code in the PSW is set to 1 (operand 1 < operand 2).

The next sequential instruction executed is branch if equal (BE). The mask (8)
tests for condition code O (operand 1 = operand 2). Since the condition is
not O, no branch is made, and the next sequential instruction is executed.

3. Since no branch was made, the next sequential instruction executed is
branch if low (BL). The mask (4) tests for condition code 1 (operand 1 <
operand 2). Since the condition code is 1, a branch is made to the operand
2 address (LOW). In this example, LOW is the address of an add decimal
instruction, which is the instruction executed after the BL instruction.

Note that the next sequential instruction is branch if high (BH), but it is not
executed after the BL instruction.

Table 8—1. Extended Mnemonics and Functions (Part 1 of 2)
RR-Type Instructions RX-Type Instructions BC Equivalent
. Hexadecimal i Hexadecimat - Function

Mnemonic R Mnemonic . Explicit

Operation Operation

Code Code Form
Codta/m1 Code/m1
Used to Branch Around Nonexecutable Assembler Instructions and Diroctivds

BR 07 F - - BCR 15,r2 Branch unconditionally
NOPR 070 - - BCR O,r2 No operation
- - 8 47 F BC 15,d2(x2,b2) Branch unconditionally
- - NOP 470 BC O,dz(xz,bz) No operation

UP-8913 SPERRY UNIVAC 0S/3 8-4
ASSEMBLER
Table 8—1. Extended Mnemonics and Functions (Part 2 of 2)
RR-Type Instructions RX-Type Instructions BC Equivalent
X Hexadecimal R Hexadecimal . Function
Mnemonic o " Mnemonic o " Explicit
Code peration Code peration Form
Code/m.l (:ode/m1
Used After Comparison Instructions
BHR 072 BH 472 BC 2,d2(x2,b2) Branch if high
BLR 074 BL 474 BC 4,d2(x2,b2) Branch if low
BER 078 BE 478 BC 8,d2(x2,b2) Branch if equal
BNHR 07D BNH 47D BC 13,d2(x2,b2) Branch if not high
BNLR 078 BNL 47 B BC 11,d2(x2,b2) Branch if not low
BNER 077 BNE 477 BC 7,d2(x2,b2) Branch if not equal
Used After Test-Under-Mask Instructions
BOR 071 BO 47 1 BC 1,d2(x2,b2) Branch if all ones
BZR 078 BZ 478 BC 8,d2(x2,b2) Branch if all zeros
BMR 074 BM 474 BC 4,d2(x2,b2) Branch if mixed
BNOR 07 E BNO 47 € BC 14,d2(x2,b2) Branch if not all ones
BNZR 077 BNZ a77 BC 7,d2(x2,b2) Branch if not all zeros
BNMR 078 BNM 47 8B BC 11,d2(x2,b2) Branch if not mixed
Used After Arithmetic Instructions

BOR 071 BO 471 BC 1,d2(x2,b2) Branch if overflow
BZR 078 BZ 478 BC 8,d2(x2,b2) Branch if zero
BMR 074 BM 474 BC 4,d2(x2,b2) Branch if minus
BPR 072 BP 472 BC 2,d2(x2,b2) Branch if positive
BNOR 07 E BNO 47 E BC 14,d2(x2,b2) Branch if not overflow
BNZR 077 BNZ 477 BC 7,d2(x2,b2) Branch if not zero
BNMR 078 BNM 47 B BC 11,d2(x2,b2) Branch if not minus
BNPR 07D BNP 47D BC 13,d2(x2,b2) Branch if not positive

UP-8913 SPERRY UNIVAC 0S/3 8-5
ASSEMBLER

® BAL

BALR

8.3. BRANCH AND LINK (BAL, BALR)

General Paossible Program Exceptions
0PCODE | roRmaT ?NBSJTECT (] ADDRESSING O prOTECTION
TYPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HEX. (8yTes) || O DECIMAL DIVIDE [0 sPeciFICATION:
—BAL .5 ’Y 3 [pEcIMAL OVERFLOW 0 NOTA FLOATING-POINT REGISTER
BALR | 05 AR 2 [execuTe O ©OP1NOT ON HALF-WORD BOUNDARY
— [0 EXPONENT OVERFLOW 0 op2 NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW (O oP2NOT ON FULL-WORD BOUNDARY
] FIXED-POINT DIVIDE (0 oP2NOT ON DOUBLE-WORD
8 :,i 22:35 2%’55?;,:%2 O FIXED-POINT OVERFLOW O BOUNDARY
CJ1F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)IF OVERFLOW, SET TO 3 (] OPERATION O or1NOT ODD NUMBERED REGISTER
8 UNCHANGED I M none

The branch and link (BAL and BALR) instructions alter the normally sequential
execution of instructions by branching to an address you specify in operand 2. The
instruction located at that address is the next instruction executed after the branch

. and link instruction. Before the branch is made, the address of the next sequential
instruction (current location) is saved in the operand 1 register to enable you to
return to the location where you were before branching.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] BAL r,.d, (x,,b,)
[symbol] BALR r.r

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] BAL .S, (xz)

UP-8913 SPERRY UNIVAC 0S/3 8-6
ASSEMBLER
Example 1 (BAL):
LABEL AOPERAT I ONA OPERAND
1 10 16
1. BAL 6 ,BRANCHTO
A,B

2.| NEXTSEQ AP

3.| BRANCHTO CP A,B
A DC P'é65L!
8 DC P'123!
1. In this coding example, the BAL instruction alters the sequential execution

of instructions by causing a branch to an area in main storage labeled
BRANCHTO. Before the branch, the address of the next sequential instruction
is stored in register 6 (location of NEXTSEQ).

2. Since a branch took place, the normally sequential execution of the add
decimal (AP) instruction (NEXTSEQ) is skipped.

3. This compare decimal (CP) instruction is processed immediately following the
BAL instruction, since its label (BRANCHTO) is the branch-to address
(operand 2) of the BAL instruction.

Example 2 (BALR):
1. LA 4 ROUTINE
2. BALR 6,4
NEXTSEQ AP A,B
ROUTINE Cé NUM,=P'15!
BL LOW
BH HIGH
NUM Dé prag!

UP-8913 SPERRY UNIVAC 0S/3 8-7
ASSEMBLER

1. This load address (LA) instruction puts the address of an instruction labeled
ROUTINE (CP) into register 4.

2. The BALR instruction stores the address NEXTSEQ in register 6, then
branches to the branch address in register 4. Since register 4 is the address
of ROUTINE, the instruction following the BALR instruction is compare
decimal (CP).

Operational Considerations:

B You may specify any of the general registers (O through 15) as operand 1 in both
the BAL and BALR instructions, and any of these registers as operand 2 of the
BALR instruction.

® The address of the instruction following the BAL or BALR instruction is placed in
the operand 1 register. Then the branch to the address specified in operand 2 is
made.

® [f you specify O in the operand 2 register of a BALR instruction, it means you
are not specifying a branch-to address, and, therefore, no branch takes place. The
instruction executed after the BALR is the next instruction in sequence.

8.3.1. Use of the BALR Instruction in Base Register Assignment

The BALR instruction is used in conjunction with the USING directive (see 18.2) to
assign a base address to a register. This address becomes the starting address of
your program. The BALR instruction and the USING directive must be coded in the
following order:

LABEL AOPERATIONA OPERAND
1 10 16
BASEREG START @
BEGIN BALR 3,0
USING *,3
OPEN INFILE, (INRIB)
READ DM INP INFILE

The BALR instruction in this example stores the address of the next sequential instruction
(OPEN) in register 3. No branch takes place since O is specified as operand 2. Logically, the
address of the USING directive should be stored in register 3, since that is the next
instruction. However, USING is a directive and not an executable instruction. Directives are
information to the assembler only. They do not generate any object code nor increase the
location counter. Therefore, OPEN is the next executable instruction following the BALR
instruction.

UP-8913 SPERRY UNIVAC 0S/3 8-8
ASSEMBLER

The USING directive tells the assembler that register 3 is going to be used as the
base register for this program. Register 3 can accommodate a program up to 4096
bytes in length. If your program is larger than this, additional base registers can be
assigned. (See 18.2.) Operand 1 tells the assembler at what point in your program
your base register should start being used. The asterisk (*) means “‘start now”. So,
operand 1 indicates starting now, all addresses of the following instructions will use
the register specified by operand 2 (in this case, 3) as the base register.

In the following printout example, an LA instruction (line 3) is coded after the BALR
instruction, causing an addressability error. The BALR instruction (line 2) stores the
address of the next sequential instruction (LA) in register 3. No branch takes place
since O is specified as the operand 2 register. At location counter 000002, no object
code was generated for the LA instruction because the assembler does not assemble
an erroneous instruction. It does, however, increase the location counter by the
number of bytes that the instruction occupies. Now, register 3 contains the address of
the LA instruction at 000002 but the USING directive (line 4) tells the assembler that
starting at location counter 000006, all succeeding instructions will use register 3 as
the base register. The USING directive assumes that register 3 contains the address
at location counter 000006 but in reality contains the address at location counter
000002. So, all the addresses of every instruction and label in this program will be
calculated as being four bytes more than its actual location. Therefore, the BALR
instruction and USING directive must always refer to the same address so that the
base and displacement values can be accurately calculated.

Example:
LOC. OBJECT CODE ADDR1 ADDR2 LINE SOQURCE STATEMENT 0S/3 ASM 80/01/03
cgcooo 1 FSTUSING START ¢
Co000u 0530 2 BEGIN EALR 3,0
0UC002 4170 0000 ngaie 3 LOAD LA TyLIST
*%% LRROR »%»
GoCG0s 4 USING #,3
S OPEN PRINT,(PRINTRIB)
cocaoe G739 A 6+ CNOP (o4 Paoo09%60
000008 45:0 300 00014 A T+ BAL lyse]2 Pa001150
cotaoc 81 A 8+ 3] x*81°* P&001160
CoCo00 000020 A 9 oc AL3(PRINT) P&LOGLILT70
gotolo 80 A 10+ [s] X*8g0* PSOC1180
00CU11 J0u04C A 11+ [+] AL3{PRINTRIB) Pa001190
COCO1l4 yA26 A 12+ Sve 38 1ISSUE SvC pPacazi7o
cacole 14 LIST oS acLle

i6

25

26 PRINT coIB

33 PRINTRIB RIb I0A1=0UTPUT,BFSZ2=120

UP-8913 SPERRY UNIVAC 0S/3 8-9
ASSEMBLER

BC
BCR

8.4. BRANCH ON CONDITION (BC, BCR)

General Possible Program Exceptions
OPCODE | FoRmAT ?NBSJTECT [] ADDRESSING O proTECTION
TYPE LGTH. (J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
mnem. JHex. 8yTeEs) || O DECIMAL DIVIDE O SPECIFICATION:
—BC .V} AX) [J beciMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
BCR 7 RR 2 O execuTe 0 oP1NOT ONHALF-WORD BOUNDARY
O EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
[J FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
E :i 22:33 2%’55?;:%(1 [0 FIXED-POINT OVERFLOW a BOUNDARY
OF RESULT >0, SET TO 2 [0 FLOATING-POINT DIVIDE O OP 1 NOT EVEN NUMBERED REGISTER
D IF.OVERFLOW, SETTO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER
Bl UNCHANGED B ~none

The branch on condition (BC and BCR) instructions change program sequence based
on the condition code setting of the PSW. You specify in the operand 1 mask a
decimal value that tests the condition code to see whether the branch-causing
condition exists. If the condition of the branch does exist, a branch is made to the
operand 2 address you specify in the branch on condition instruction. If the condition
of the branch does not exist, no branch takes place, and the next sequential
instruction is executed.

Explicit Format:

LABEL J AOPERATION A ’ OPERAND
[symbol] BC m,,d,(x,,b,)
[symbol] BCR m,,r,

implicit Format:

LABEL 1 AOPERATION A | OPERAND
[symbol] BC m,,s,(x,)
[symbol] BCR m,,r,

The condition code, bits 34—35 of the PSW, reflects the result of an instruction
executed prior to the branch on condition instruction. There are four possible condition
code settings:

if result = Q, set to O.

If result < O, set to 1.

UP-8913 SPERRY UNIVAC 0S/3 8-10
ASSEMBLER

If result > 0, set to 2.
If overflow, set to 3.

The decimal values that can be specified in the operand 1 mask are O through 15,
each of which has a 4-bit binary representation.

B The decimal value 8 (1000) tests for condition code O.
® The decimal value 4 (0100) tests for condition code 1.
®8 The decimal value 2 (0010) tests for condition code 2.
m The decimal value 1 (0001) tests for condition code 3.

Note that only one bit is set for each condition. When more than one bit is set in the
4-bit binary configuration, it is possible to test for multiple conditions.

8 4 2 1 decimal
1 o] 1 o binary
X
m
8 + 2 = 10

The decimal value 10 tests for:
1. condition code O (resuit is equal to zero);, and
2. condition code 2 (result is greater than zero).

Table 8—2 lists the 16 values and each condition code it tests.

Table 8—2. Operand 1 Mask Combinations

Mask Results
Possible Combinations of Branches on Causi

. . ausing
Decimal Binary Condition Codes Condition Code Branch
Value Value

0 0000 * no operation None

1 0001 1 = 3 Overflow

2 0010 2 = 2 >0

3 0011 3 =2+1 2,3 >0 or overflow

4 o100 4 = 1 <o

5 0101 5 =4+1 1,3 <0 or overfiow

6 0110 6 =4+2 1,2 #0

7 0111 7 =4+2+1 1,2,3 #0 or overflow

8 1000 8 =8 0 =0

9 1001 9 =8+1 0,3 = 0 or overflow

10 1010 10=8+2 0,2 =0

1 1011 1M1=8+2+1 0,23 =0 or overflow

12 1100 12=8+4 0,1 <0

13 1101 13=8+4+1 0,1,3 <0 or overflow

14 1110 14=8+4+2 0,1,2 Any value

15 111 15=8+4+2+1** 0,1,2,3 Any value or overfiow

*No condition code is tested and no branch takes place. The next sequential instruction is executed.

**Unconditional branch

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

8-11

Table 8—3 lists the explicit format of the BC instruction with different mask values

and their relation to the condition tested.

Table 8—3. Branch-on-Condition Instruction by Usage

Hexadecimal . .

O tion Mnemonic Explicit Function

pera Code Format
Code m,
Used to Branch Around Nonexecutable Assembler Instructions and Directions .
07 F BCR 15,r2 Branch unconditionally
070 BCR O,r2 No operation
47 F BC 15,d2(x2,b2) Branch unconditionally
470 BC 0,d2(x2,b2) No operation
Used After Comparison Instructions
47 2 BC 2,d2(x2,b2) Branch if high
47 4 BC 4,d2(x2,b2) Branch if low
478 BC 8,d2(x2,b2) Branch if equal
47 D BC 13,d2(x2,b2) Branch if not high
47 B 8C : 11,d2(x2,b2) Branch if not low
477 BC 7d,(x,,0,) Branch if not equal
2'7272
Used After Test-Under-Mask Instructions
a7 1 BC 1,d2(x2,b2) Branch if all ones
478 BC 8,d2(x2,b2) Branch if all zeros
47 4 BC 4,d2(x2,b2) Branch if mixed
47 E BC 14,d2(x2,b2) Branch if not all ones
477 BC 7,d2(x2,b2) Branch if not all zeros
47 B BC 11.d,(x,,b,) Branch if not mixed
27272
Used After Arithmetic Instructions

47 1 BC 1,d2(x2,b2) Branch if overflow
478 BC 8,d2(x2,b2) Branch if zero
474 BC 4,d2(x2,b2) Branch if minus
472 BC 2,d2(x2,b2) Branch if positive
47 E BC 14,d2(x2,b2) Branch if not overflow
477 BC 7,d2(x2,b2) Branch if not zero
47 B B8C 11,d2(x2,b2) Branch if not minus
47 D BC 13,d2(x2,b2) Branch if not positive

Operational Consideration:

You can specify any of the general registers (2 through 12) as operand 2 of the

BCR instruction.

UP-8913 SPERRY UNIVAC 0S/3 8-12
ASSEMBLER
Example (BC):

LABEL AOPERATIONA OPERAND
1 10 16

I. cP A,B

2. BC 2,HIGH

3. BC L Low

L, BC 8,EQUAL

5.] EQUAL AP A,C
A DC P'65@!
B DC P'65@"
c DC P!

In this example, two packed decimal values are compared. After the result is
obtained, the condition code is stored in the PSW. The branch instructions are
executed sequentially, and when the proper condition for the branch-on condition
exists, a branch to the operand 2 address takes place.

1.

Operands 1 and 2 compare equally since both A and B contained the packed
decimal 650. The condition code is set to O.

The operand 1 mask 2 tests for condition code 2. Since the condition code is
not 2 {(operand 1 > operand 2), the next sequential instruction is processed.

The operand 1 mask 4 tests for condition code 1. Since the condition code is
not 1 (operand 1 < operand 2), the next sequential instruction is processed.

The operand 1 mask 8 tests for condition code 0. Since the condition code is
O (operand 1 = operand 2), a branch to the address of operand 2 (EQUAL)
takes place.

Since the add decimal instruction has the label EQUAL, that is the
instruction executed after the branch-on condition regardless of the
sequential instructions in between.

UP-8913 ' SPERRY UNIVAC 0S/3 8-13
ASSEMBLER

() BCT

BCTR

8.56. BRANCH ON COUNT (BCT, BCTR)

General Possible Program Exceptions
orcobE | rormar ?NBSJfCT [] ADDRESSING 0O proTECTION
i LaTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. 8yTES) || [0 DECIMAL DIVIDE [0 sPECIFICATION:
BCT a5 AX)} [J becimAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
BCTR | 06 RR 2 [0 execute O oP1NOTONHALF-WORD BOUNDARY
[] EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes {J EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
[] FIXED-POINT DIVIDE 00 oP2NOT ON DOUBLE-WORD
E’]:i 2228‘[1 2%’2211%(: (] FIXED-POINT OVERFLOW 0 BOUNDARY
O] 1F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JF OVERFLOW, SET TO 3 [] oPERATION L) o1 NOTODD NUMBERED REGISTER
B UNCHANGED B none

The branch on count (BCT and BCTR) instructions branch to the same instruction or
routine a number of times (loop). Normally, before you execute a branch on count
instruction, you load one of the general purpose registers with a value (the count)
that refers to the number of times you want to loop to an instruction or routine. You
. specify the register containing the counter as operand 1 in your branch on count
instruction. Each time the branch on count instruction is executed, the operand 1
register is decremented by one. Then the register is checked for a value of zero. If
zero is not found, a branch to the instruction at the operand 2 address takes place. If
the counter is 0O, no additional branching takes place, and the next sequential
instruction is executed. You can use the BCTR instruction to decrement the counter
register (operand 1) without branching, by specifying the operand 2 register as O.
When BCTR is executed, the value in the operand 1 register is decremented by 1, but
since no branch address is supplied, the next sequential instruction is executed.

Explicit Format:

LABEL I A OPERATION A ‘ OPERAND
[symbol] BCT ry,dylx,, b,)
[symbol] BCTR r.r,

Implicit Format:

LABEL ' A OPERATION A I OPERAND

[symbol] , BCT ‘ ry. Sy(x,)

. [symbol]

BCTR ry.r

UP-8913 SPERRY UNIVAC 08/3 8-14

ASSEMBLER Update B
Example:
LABEL AOPERATIONA OPERAND
1 10 16
1. SR 6,6
2. LA 6,10
3.| BRANCHTO AP SUM,AMOUNT
L, BCT 6,BRANCHTO
NEXTSEQ MP SUM,VALUE
AMOUNT DC Pi15g!
SUM DC PL3'@"

This coding example adds AMOUNT (150) to SUM 10 times and stores the result
in SUM (3-byte field).

1. The subtract (SR) instruction subtracts the operand 2 register value from the
operand 1 register value and puts the result in operand 1. In this case,
register 6 is subtracted from itself, thus making it 0. It is a good idea to
clear a register before using it.

2. The Joad address (LA) instruction loads a count of 10 into register 6.

3. The add decimal (AP) instruction adds the packed decimal value in AMOUNT
(150) to whatever is stored in SUM and stores the answer in SUM. SUM is
defined as a packed decimal constant containing 0. After the AP instruction
is executed once, SUM contains 150.

4. The BCT instruction subtracts 1 from register 6. Since register 6 now
contains 9, the AP instruction labeled BRANCHTO is executed again. After
the AP is executed twice, SUM contains 300. The BCT instruction executes
nine more times until the counter (register 6) is 0. On the 10th attempt, no
branch takes place, and NEXTSEQ is executed.

Operational Considerations:

= The maximum value you can specify in the operand 1 counter register is 232,

® You can specify any of the general registers (0 through 15) as operand 1.

® You can specify the operand 2 register of the BCTR instruction as O if you want
to decrement the operand 1 counter register by 1 without causing a branch.

When you specify O in operand 2, the next sequential instruction of your program
is executed following the BCTR.

®m The branch-to address in operand 2 is determined before the operand 1 register
is decremented.

UP-8913 SPERRY UNIVAC 0S/3 8-156
ASSEMBLER Update B

. BXH

8.6. BRANCH ON INDEX HIGH (BXH)

General Possible Program Exceptions
0PCODE | rORMAT ?Naé':CT [] ADDRESSING O PROTECTION
TYPE LGTH. [0 DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HEX. svTes) || OJ DECIMAL DIVIDE {0 sPECIFICATION:
O bec!MAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
BXH | 86 RS 4 [execuTe 0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 exPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
[0 FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
E]l:i 2?23::11: Z%,ssi:jr%(z (] FIXED-POINT OVERFLOW 0 BOUNDARY
OJIF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[IF OVERFLOW, SET TO 3 [J oPERATION U 0P 1NOT ODD NUMBERED REGISTER
B UNCHANGED @ ~noNE -

The branch on index high (BXH) instruction algebraically compares the sum of the
operand 1 register and operand 3 register to either the operand 3 register or one
greater than the operand 3 register (comparand register). if the sum is greater than
the content of the comparand register, a branch to the instruction located at the

. operand 2 address takes place. If a greater than condition does not exist, your
program continues processing with the instruction following the BXH instruction. The
sum is always placed in the operand 1 register after the comparison.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] BXH r.rs.d, (bz‘)

Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] BXH o f3.8,

UP-8913 SPERRY UNIVAC 0S/3 8-16
ASSEMBLER

This instruction algebraically adds the content of the operand 1 register to the content
of the operand 3 register. The sum is algebraically compared to the content of an
odd-numbered register (which can be the same as the operand 3 register) or a
register that is one larger than the operand 3 register. If the sum is greater than the
content of the odd-numbered register it is being compared to, a branch to the
instruction located at the operand 2 address takes place. If the sum is less than or
equal to the content of the odd-numbered register it is being compared to, the
program continues processing with the instruction following the BXH instruction.
Following the comparison, the sum is placed in operand 1. Usually, the BXH
instruction is executed several times (depending on program logic) until the content of
the operand 1 register is greater than the odd-numbered register it is being compared
to. Then the branch to the instruction located at the operand 2 address takes place.

Operational Considerations:
m Any of the general registers (0 through 15) can be used as operands 1 and 3.

® Any odd-numbered register either equal to operand 3 or one greater than
operand 3 can be used as the comparand register.

® QOperand 2 can be any location in main storage.

® The rules of algebra apply to both the addition and the comparison operations.

® The condition code remains unchanged. .
Example:
LABEL AOPERAT [ONA OPERAND
1 10 16
LA 3,4
LA L,ip
LA 5,11
BXH 3,4,L00P
AP CARDIN,=P'5@@'
LOOP cpP CARDIN ,MAX I MUM
CARDIN DC PL3'B"

MAXIMUM DC PL3 ' 19000

UP-8913 SPERRY UNIVAC 0S/3 8-17
ASSEMBLER

Registers 3 and 4 before execution of BXH instruction:

I 1) ¥ 14
0000 ,0000 0000 ! 0000 0000 0000 000020100 OOOOEOOOO 0000

H i
0000|0000 ;0000|0000 {1010 binary
'

]
oooio oo f|o! a o, ofo
1 L L

R
o
(=}
o

OiA hex

Register 5 (comparand register) before and after execution of BXH instruction:

: T ;
0000 :0000 {0000 0000 [0000 {0000 0000} 1011 binary

1

I
oioo:oooos hex
L

Registers 3 and 4 after execution of BXH instruction:

T T T T L T T T
0000 |0000 | 0000 0000 {0000 0000|0000 1110 00000000 0000 {0000 0000 {0000| 0000 ;1010 binary
N 1 . ']]
3 1 ¥ ' ' N v
0. 0 oio oioflolE o!o|lojo|loio}lo}aA hex
1 1 1 2 1 1]

In this example, the decimal value 4 is loaded into register 3, the decimal value of 10
is loaded into register 4, and the decimal value of 11 is loaded into the comparand
register 5. When the BXH instruction is executed, the contents of registers 3 and 4
are algebraically added together, the sum being decimal value 14 (hexadecimal E). The
sum is algebraically compared to the content of register 5 and then placed in register
3. Since the sum is greater than the content of register 5, a branch to the instruction
labeled LOOP takes place. There, the content of CARDIN is compared to the content
of MAXIMUM.

UP-8913 SPERRY UNIVAC 0S/3 8-18
ASSEMBLER Update B

BXLE

8.7. BRANCH ON INDEX LOW OR EQUAL (BXLE)

General Possible Program Exceptions
oPCODE | rommar ?NBSJTE.CT [] ADDRESSING O PROTECTION
TvpE LOTH, [} DATA (INVALID SiGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8vTes) || 0 DECIMAL DIVIDE [] SPECIFICATION:
[J DECIMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
BXH | 87 RS 4 [J execuTe [0 oOP1NOTON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes O ExPONENT UNDERFLOW Q OP 2 NOT ON FULL-WORD BOUNDARY
T r RESOLT = 0. 5T 10 0 0 FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
e RESULT<0’, SET TO 1 {J FIXED-POINT OVERFLOW 0 BOUNDARY
OJ1F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [] OPERATION 0 oP1NOT ODD NUMBERED REGISTER
B UNCHANGED B none

The branch on index low or equal (BXLE) instruction algebraically compares the sum
of the operand 1 register and operand 3 register to either the operand 3 register or
one greater than the operand 3 register (comparand register). If the sum is less than
or equal to the content of the comparand register, a branch to the instruction located
at the operand 2 address takes place. If a less than or equal to condition does not
exist, the program continues processing with the instruction that follows the BXLE
instruction. The sum is always placed in the operand 1 register after the comparison.

Explicit Format:

LABEL | A OPERATION A OPERAND

[symbol] BXLE r.rs.d, (b

o)

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] BXLE P P

uP-8913 SPERRY UNIVAC 0S/3 8-19
ASSEMBLER

This instruction algebraically adds the content of the operand 1 register to the content
of the operand 3 register. The sum is algebraically compared to the content of an
odd-numbered register, which can be the same as the operand 3 register, or a
register that is one larger than the operand 3 register. If the sum is less than or
equal to the content of the odd-numbered register it is being compared to, a branch
to the instruction located at the operand 2 address takes place. If the sum is greater
than the content of the odd-numbered register it is being compared to, the program
continues processing with the instruction following the BXLE instruction. Following the
comparison, the sum is placed in operand 1. Usually, the BXLE instruction is executed
several times (depending on program logic) until the content of the operand 1 register
is less than or equal to the odd-numbered register to which it is being compared.
Then the branch to the instruction located at the operand 2 address takes place.

Operational Considerations:
® Any of the general registers (O through 15) can be used as operands 1 and 3.

B Any odd-numbered register either equal to operand 3 or one greater than
operand 3 can be used as the comparand register.

® Operand 2 can be any location in main storage.
8 The rules of algebra apply to both the addition and the comparison operations.

® The condition code remains unchanged.

Example:
LABEL AOPERATIONA OPERAND
] 10 16
L 4 ,VALUEI
L 5,VALUE2
BXLE L,5,BRANCHTO
NEXTSEQ AP A,B
BRANCHTO CP A,B
VALUE! DC F'-3
VALUE2 DC F'ig!
A DC PLL 286"
B DC PL2'16!

In this example, the values —3 and +10 are loaded into registers 4 and 5,
respectively. The BXLE instruction compares the sum of the content of registers 4
and 5 (+7) to the content of the comparand register, register 5. Since +7 is less
than 10, the branch is taken. The next instruction executed (CP) is located at
BRANCHTO.

UP-8913

SPERRY UNIVAC 0S5/3
ASSEMBLER

8-20
Update B

8.8. EXECUTE (EX)
General Possible Program Exceptions
OPCODE OBJECT || my ADDRESSING B PROTECTION
F??{'::T :_“(‘SSTT.;. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. @yTes) || O DECIMAL DIVIDE B SPECIFICATION:
O becIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
EX |44 RX 4 M execuTe OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

[0 EXPONENT OVERFLOW
O exPONENT UNDERFLOW

[Jir RESULT =0, SET TO O
Oir resuLT<0,SETTO 1
J'F RESULT >0, SET TO 2
OiF OVERFLOW, SETTO 3
SEE OPER. CONSIDERATIONS

O FIXED-POINT DIVIDE

O FIXED-POINT OVERFLOW
[] FLOATING-POINT DIVIDE
[J oPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 oomoaq

The execute (EX) instruction is used to branch to an instruction elsewhere in your
program, execute it with or without having modified it temporarily, and then branch
back to the instruction following the EX instruction.

Explicit Format:

LABEL l

L

A OPERATION A OPERAND
[symbol] l EX l r,,dy(x,, b,)
Implicit Format:
LABEL l AOPERATION A I OPERAND
[symbol] l EX ‘ ry.Sp(x,)

The address specified by operand 2 is the address of the instruction to which you
branch following the EX instruction. This instruction, specified by operand 2, is called
the subject instruction. The operand 1 register determines whether or not change will
be made to the subject instruction before execution. If register O is specified as the
operand 1 register, no change is made to the subject instruction and it is executed
following the EX instruction as if it were the next sequential instruction.

UP-8913 SPERRY UNIVAC 0S/3 8-21
ASSEMBLER [hdile ¢

On the other hand, if any register other than zero is specified, bits 8 through 15 of
the subject instruction are changed. This change is accomplished by the logical
addition OR on the contents of bits 24 through 31 of the operand 1 register that you
previously loaded and the contents of bits 8 through 15 of the subject instruction.
(See logical OR instruction.) The result is placed in bits 8 through 15 of the subject
instruction. The contents of the operand 1 register remain unchanged. Moreover, the
change to the subject instruction is temporary and effective only during this execution
of the subject instruction.

The instruction address and instruction length of the current PSW is changed by the
execution of the EX and subject instruction. Normally, instruction sequencing
continues with the instruction following the EX instruction. However, if the subject
instruction is a successful branch instruction, the instruction address of the current
PSW is replaced by the branch address and instruction sequencing resumes with the
instruction address specufled by the branch If the subject instruction |s a BAL or
BALR, -i i

ink .register. The shaded portion of each mstructlon shows what portlon of it the
operand 1 register affects. . ‘ , y
"ff?~) /f‘n,/f;~\:)vis';/<~,w;/i bs L“ i’ﬂ/w {# ﬁ?f/'/w;,

EX instruction: ot The insteneTicn ‘[d;/(“Af-"";'j‘ ’1 ""(ff/N iR,

opcode r1 Xy b d

Subject instruction is RR type:

19} 20 31

19] 20 31

UP-8913

SPERRY UNIVAC 0S/3 8-22
ASSEMBLER

Subject instruction is SS Type 1:

31| 32 35 | 36 47

3132 35 36 47

31} 32 35|36 47,

Operational Considerations:

It isn't a good idea to alter instructions, but if it's absolutely necessary, you can
use the EX instruction for that purpose.

You can specify any of the general registers (O through 15) as operand 1.

Before the EX instruction causes a branch to the address you specify in operand
2, the current program address is stored in the PSW. Unless the branch to
instruction (operand 2) is a successful branch instruction, sequential instruction
execution follows execution of the subject instruction.

If a program interrupt occurs after completion of the subject instruction, the old
PSW contains either the address of the instruction following the EXECUTE or, in
the case of a successful branch, the branch address. The current PSW contains
the address of the instruction causing the interrupt (i.e., the operand 2 address in
the EX instruction, or the branch-to address if a successful branch occurred
before the interrupt).

If the subject instruction is another EX instruction, a program exception occurs.

A program exception can be caused by either the EX instruction itself or by the
subject instruction.

The condition code can be set by the subject instruction.

UP-8913 SPERRY UNIVAC 0S/3 8-23
ASSEMBLER Update B
Example:
LABEL AOPERAT IONA OPERAND
1 10 16
L b,=F'3"
EX 4, MOVE
MOVE MVC #(d,5), INPUT
DS oH
INPUT DS cL8g
MOVE before execution 1 2 3and 4 5and 6

of EX instruction and
after execution of MVC D2 | 0 5 0 3 321

Register 4 before and : T : :
after execution of EX 0000, 0000 | 0000 | 0000 | 0000 0000 | 0000 0011

instruction: /—-—31

MOVE instruction during
execution of MVC

D2 | 3 5 0 3 321

instruction:

In the preceding coding example, register 4 is loaded with a value of 3. The EX
instruction is executed. Register 4 indicates that change will be made to the subject
instruction (MOVE). A branch is made to the subject instruction and a logical addition
OR is performed on the contents of bits 24 through 31 of register 4 and the contents
of bits 8 through 15 of the MVC instruction. The result is placed in bits 8 through 15
of the MVC instruction only for the duration of this execution of the MVC instruction.
After execution of the MVC instruction is completed, a branch is made back to the

instruction following the EX, and processing continues.

UP-8913 SPERRY UNIVAC 0S/3 9-1
ASSEMBLER

9. Decimal and Logical Instructions

9.1. USING DECIMAL INSTRUCTIONS

Decimal instructions perform arithmetic calculations on data located in main storage,
using storage-to-storage instruction format. You must put decimal numbers into main
storage before attempting to use them in mathematical calculations. Storage-to-storage
instructions do not allow the use of general registers for calculations, since registers
handle binary, not decimal, numbers. Decimal instructions are slower than instructions
that use general registers (binary arithmetic, floating-point, etc.), because two main
storage locations (specified in the operand fields) are accessed each time a decimal
instruction is executed.

In assembly language, decimals are expressed in either unpacked or packed format.
Format refers to the way bits represent decimal numbers. Unpacked format is the
standard form in which numbers are brought in to the system (input), and sent out
from the system (output). Packed format is the standard form in which numbers are
used in mathematical calculations.

Numbers written in unpacked format are movable from one location in main storage
to another and are printable on input and output devices. Arithmetic operations,
however, can only make use of packed decimal numbers. Therefore, you must pack
each number before you use it. In turn, you must then unpack the number before you
output it (either to a printer or any other character sensitive device).

Unpacked format uses eight bits to represent a decimal number. The leftmost four bits
are the zone field, and the rightmost four bits are the decimal digit in binary.

zone digit

The zone portion of 2 number is always a binary 1111 which is a hexadecimal F. The
F in the zone field indicates that any decimal digit (0—9) in the digit field is a
numeric character in EBCDIC (Extended Binary Coded Decimal Interchange Code).
These relationships are shown in the following chart.

UP-8913 SPERRY UNIVAC 0S/3 9-2

ASSEMBLER
Decimal Hexadecimal Binary
Digit (EBCDIC) Code Code

0 FO 11110000

1 F1 11110001

2 F2 11110010

3 F3 11110011

4 F4 11110100

5 F5 11110101

6 F6 11110110

7 F7 11110111

8 F8 11111000

9 F9 11111001

Since decimal operations require the number you use to be in packed format, the
decimal numbers must be defined as packed constants or converted from unpacked to
packed format. To convert from unpacked to packed format, use the pack decimal
(PACK) instruction. The PACK instruction removes the zone bits of the unpacked
decimal, thus expressing the same value in fewer bytes of main storage.

In both unpacked and packed formats, the sign is expressed in the rightmost byte
which is the zone portion in unpacked format and the rightmost digit portion in
packed format.

The hexadecimal numbers A through F can be sign values that are either positive or
negative, and are used in either ASCIl or EBCDIC mode. A hexadecimal A and B are
used for output of data in ASCIl mode only. A represents a positive value and B
represents a negative value.

A hexadecimal C, D, and F are all used for internal processing in EBCDIC mode. C
represents a positive value, D represents a negative value, and F represents an
unsigned number which is assumed positive. If you attempt to print an unpacked
decimal number with hexadecimal C or D as the sign value, an alpha character is
printed for the rightmost byte instead of a decimal digit. Hexadecimal C and D must
be changed to hexadecimal F either through the ED or Ol instruction to print the
correct value.

A hexadecimal F is used for output of data in EBCDIC mode and represents an
unsigned number which is assumed positive.

The following illustrations represent a 3-digit decimal number in both packed and
unpacked format. Notice the positions of the zone and digit portions:

Unpacked Format:

zone | digit { zone | digit | sign | digit

Nty \,\/\/\’W
byte 1 byte 2 byte 3

UP-8913 SPERRY UNIVAC 05/3 9-3

ASSEMBLER

Packed Format:

digit | digit } digit] sign
N e\t
byte 1 byte 2

These illustrations represent the decimal number +456 in both packed and unpacked
format.

. byte 1 byte 2 byte 3
Unpacked:
T T T
F 1 4 F 1 5 C1l 6
1
Packed: 4 l 5 6 | C
il L
N\
byte 1 byte 2

There is a zone portion for every digit and one sign value in unpacked format and
only digits and one sign value in packed format. Notice the number of bytes the
unpacked format occupies in contrast to the packed format. The decimal number +456
occupies three bytes when unpacked and only two bytes when packed. The sign value
hexadecimal C indicates that 456 is a positive number.

9.2. DEFINING PACKED AND UNPACKED CONSTANTS AND MAIN STORAGE
AREAS

You can specify packed or unpacked constants and reserve areas in main storage
destined to hold packed decimal values by using the define constant (DC) and define
storage (DS) statements. Their format is:

LABEL A OPERATION A OPERAND
[symbol] DC [d] {;} [Ln] ‘¢’
[symbol] DS [d] { ; } [Ln] [‘¢’]
Duplication factor J ‘
Definition type |

Length factor
Constant specification

In this format, symbol is an optional predefined label that names the location of the
constant or main storage area. The symbol’s main storage address is the address of
the leftmost byte of the constant or main storage area specified in the operand field.
Relative addressing (symbol + 4) is acceptable.

UP-8913 SPERRY UNIVAC 0S/3 94

ASSEMBLER

The duplication factor d is a decimal number that tells the assembler how many times
you want the constant reproduced or how many areas of the same length you want
reserved in main storage. Specifying the duplication factor saves you the time of
defining the same constant or area more than once.

The definition type is P for packed or Z for zoned (unpacked), which indicates the type
of constant or main storage area you are specifying. There are other definition types
available, but are used for other applications (Table 5—1).

The length factor Ln specifies the number of bytes of storage reserved for a constant
(DC) or an area to be used in your program (DS). If no length is specified, the
assembler assigns the length of the constant specified within apostrophes. By
explicitly specifying a length, you can determine the lengths of all the fields in your
program regardless of how large or small your constants are.

The constant itself (c) is enclosed in apostrophes. In the case of a DS statement, the
constant you enclose in the apostrophes is not actually generated, but its length
determines the length of the main storage area allocated. Embedded blanks cannot be
used in packed and zoned type constants.

9.2.1. Packed Decimal Constants and Main Storage Areas

When you specify packed decimal constants, the character P is the definition type in
the operand field. Packed decimal constants can be up to 31 decimal digits (16 bytes)
and can be signed or unsigned. If unsigned, the value is assumed to be positive. The
address of the symbol you put in the label field is the address of the constant you
define in the operand field. When you specify a packed decimal constant, the actual
decimal value you specify is placed into main storage.

Example:
LABEL AOPERATIONA OPERAND
1 10 16

1.} NUMI DC P'+4563"'

2.1 NUM2 DC PL3'123!

3.1 NUM3 DC 2PL2'123!

1. This coding statement produces this packed decimal constant in main
storage. The 3-byte length is implied since three bytes are needed to hold
the constant and its sign.

- ==

UP-8913

SPERRY UNIVAC 0S/3 9-6
ASSEMBLER

This coding statement produces this packed constant in main storage. In this
case, the 3-byte length isn’'t needed to hold the constant, but since a length
of three is specified, three bytes are allocated. The number is right-justified
and thus the most significant unused bytes are zero-filled.

—
31 C

o

o v o of
o
-
N

This coding statement produces two consecutive, duplicate 2-byte constants
in main storage.

T
11 2 31 ¢c|]112}]31C

R
|
1

The character P also is the definition type for defining packed decimal storage areas
(i.e., areas destined to hold packed decimal data). The address of the symbol you put
in the label field is the address of the constant you define in the operand field. No
actual constant is placed into the area you reserve, and the area is not cleared of
any data it may already contain. You are merely reserving a main storage area for

future use.
Example:
LABEL AOPERAT I ONA OPERAND
1 10 16
1.| NUML DS P'+4563"
2,] NUM5 DS PL2
3.1 NUM6 DS PLI'6!
1. This coding statement reserves a 3-byte area in main storage. The statement

3.

does not put the packed decimal +4563 into that area but merely reserves
an area large enough to hold it.

This coding statement reserves a 2-byte area in main storage. It does not
clear the area or put anything into it.

This coding statement reserves a 1-byte area in main storage.

if you intend to reserve a packed storage area for mathematical calculations in either
of these three ways, move zeros into the specified storage area to clear it of any
leftover data from another program. This will ensure that mathematical calculations
are performed correctly.

UP-8913 SPERRY UNIVAC 0S/3 9-6
ASSEMBLER

9.2.2. Unpacked Decimal Constants and Main Storage Areas

When you specify unpacked decimal constants, the character Z is the definition type
in the operand field. Unpacked decimal constants can be up to 16 decimal digits (16
bytes) and can be signed or unsigned. If unsigned, the value is assumed to be
positive. The address of the symbol you put in the label field is the address of the
constant you define in the operand field. When you specify an unpacked decimal
constant, the actual decimal value you specify is placed into main storage as digits
with zone fields of hexadecimal F.

Example:
LABEL AOPERATIONA OPERAND
] 10 16

1.1 [symbol] DC 2'+4563!

2.| [symbol] DC ZL5'123"

3.| [symbol] DC 22L3'123!

1. This coding statement produces this unpacked decimal constant in main
storage. The 4-byte length is implied since four bytes are needed to hold the
unpacked constant with zones and sign.

F 1l 4 Fjl
L [

|
5 F 6 C:S

2. This coding statement produces this unpacked decimal constant in main
storage. In this case, the 5-byte length isn't needed to hold the constant, but
since a length of five is specified, five bytes are allocated. Note that the C in
the rightmost byte represents a signed positive value.

3

F

—_
|
|

1
i R
o [Flo|Fl1|Fi2]c

T
1
I

3. This coding statement produces two consecutive 3-byte constants in main
storage.

L 1 T I
1 Fl 2]c1l 3 | F11 F 12 tc1! 3

F 1
1 i .] 1

The character Z also is the definition type for defining unpacked decimal main storage
areas (i.e., area destined to hold unpacked decimal data). The address of the symbol
you put in the label field is the address of the main storage area you define in the
operand field. No actual constant is placed into the area you reserve, and the area is
not cleared of any data it may already contain. You are merely reserving a main
storage area.

UP-8913 SPERRY UNIVAC 0S/3 9-7

ASSEMBLER
Example:
LABEL AOPERATIONA OPERAND
1 10 16
1.] ZNUMI DS Z'4543"
2.] ZNUM2 DS ZLh
3.1 ZNUM3 DS 2ZL4

1. This coding statement reserves a 4-byte area in main storage. The actual
unpacked decimal constant 4543 is not placed into the reserved area by this
statement.

2. This coding statement also reserves a 4-byte area in main storage.

3. This coding statement reserves two consecutive 4-byte areas in main storage.

uP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

AP

9.3. ADD DECIMAL (AP)

General Possible Program Exceptions
0PCODE | rommar ?NBSJTE.CT I ADDRESSING @ PROTECTION
TYPE LGTH. ll DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HE x. (8yTes) || [J DECIMAL DIVIDE [0 sPECIFICATION:
B beciMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
AP FA SS 6 [J execuTE 0 OP 1 NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW [J oP2NOT ONHALF.WORD BOUNDARY
Condition Codes [0 ExPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
B s ntsoiT-oserTo0 [J FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
B FResuLT <0" SET TO 1 [J FIXED-POINT OVERFLOW 0 BOUNDARY
B F RESULT >0, SET TO 2 [] ELOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
MF OVERFLOW, SET TO 3 [J OPERATION 0 or1NOT ODD NUMBERED REGISTER
(JUNCHANGED O ~one

The add decimal (AP) instruction algebraically adds the packed decimal contents of

operand 2 (the sending field) to the packed decimal contents of operand 1

(the

receiving field). The sum is stored in operand 1 and is filled, a byte at a time, from

right to left.

Explicit Format:

LABEL ‘

A OPERATION A

OPERAND

[symbol] }

Implicit Format:

LABEL |

AP

A OPERATION A ‘

OPERAND

[symbol] I

Operational Considerations:

AP

s, (1)), (15)

s The value and sign of the sum are algebraically, not logically, calculated.

® Since the sum is stored in the operand 1 location and if the length of the sum
is greater than the length of operand 1, the leftmost digits of the sum are

truncated.

UP-8913 SPERRY UNIVAC 0S/3 9-9
ASSEMBLER Update B
Example:
LABEL AOPERAT IONA OPERAND
i 10 16
AP A,B
A nC p'2!
B DC p'g!
A before AP execution: 2 1 ¢C
B before and after AP execution: 9 1 C
]
A after AP execution: 11 c
1

As shown, the entire sum (11) does not fit into the one byte allocated in operand 1,
so the leftmost digit of the sum is lost. If the operand field of the DC statement
defining A is changed to PL2°2°, two bytes are allocated for the sum, and the correct
2-byte sum fits into the allocated area. If the sum does not fill the length specified in
operand 1, zeros fill the remaining leftmost bytes of operand 1. A zero sum is positive
as long as the length of operand 1 is large enough to hold the entire sum (i.e., no
leftmost digits are lost). If the sum is zero and the leftmost digits are lost, the sign is
the sign of the sum before the digits were lost. It is possible to double a number
(add it to itself) when the rightmost bytes of operands 1 and 2 have overlapping bytes

in main storage.

Example:

A before AP execution:

A after AP execution:

The entire contents of A is extracted, doubled, and the answer returned to the same field.

AP A,A
DC P'1234!
byte 1 byte 2 byte 3
D N Y
0 ‘l 1 2 3 4 C
L
1] T
0 | 2 4 | 6 8 I C
I 1 |

This destroys the original contents of A.

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

9-10

CP

9.4. COMPARE DECIMAL (CP)

General Possible Program Exceptions
OPCODE | rommaT ?NBSJ:.CT) ADDRESSING ll PrROTECTION
TvpE LGTH. Il DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HE X (8vTes) || O DECIMAL DIVIDE [J sPECIFICATION:
O becIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
cP | F8 $S 6 [J execuTe [0 ©OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 oP2NOT ONHALF-WORD BOUNDARY
Condition Codes [EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY
B r OF ~Or2 SETTO 0 [FIXED-POINT DIVIDE [l opP2NOT ON DOUBLE-WORD
B F op <°P2’, SET TO 1 [FIXED-POINT OVERFLOW O BOUNDARY
B i OFt >0P2. SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [J OPERATION U op 1 NOT 0DD NUMBERED REGISTER
[JUNCHANGED O ~onEe

The compare decimal (CP) instruction is used to compare operand 1 to operand 2,
byte-by-byte from right to left. The result determines the setting of the condition code.

(See 8.1))

Explicit Format;

A OPERATION A '

LABEL l OPERAND
[symbol] \ cP ‘ d,(l,.,b,).d,(l,,b,)
Implicit Format:
LABEL | A OPERATION A | OPERAND
[symbol] | P | 5,01,)5,0,)

Based on the comparison result, the condition code of the program status word (PSW)

is set to 1 if operand 1

is less than operand 2, to 2 if operand 1

is greater than

operand 2, and to O if operands 1 and 2 are equal.

UP-8913 SPERRY UNIVAC 0S/3 9-1
ASSEMBLER

The condition code is part of the PSW, a double-word register that holds information
pertinent to instruction execution. The instruction executed following the CP
instruction depends on the condition code setting. The four condition code settings are
as follows:

Condition Code Bit Configuration
(Decimal Value) (Bits 34-35 of PSW)
0 00 = test value is binary 8 (1000)
1 01 = test value is binary 4 (0100)
2 10 = test value is binary 2 (0010)
3 11 = test value is binary 1 {0001)

Operational Considerations:

m The CP instruction compares the rightmost byte of the operands first, and then
works to the left one byte at a time.

m If operand 1 is shorter than operand 2, or operand 2 is shorter than operand 1,
zeros fill the leftmost bytes of the shorter operand, thus making the operands the
same length during the comparison. Even though zeros are added, neither
operand is permanently changed by the instruction.

® Any zero compares equal to another zero regardless of their signs.

m Positive signs compared to each other compare as equal; and the same holds
true for negative signs.

m |t is possible to compare a decimal, or part of a decimal to itself, or part of itself,
by overlapping the location of the rightmost bytes of the operands in main

storage.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
cP A+2(2) ,A+3(1)

A ISC PLL'1234567"

UP-8913 SPERRY UNIVAC 0S/3 9-12

ASSEMBLER
Operand 1
R w
A before and after execution T P ST, P
of CP instruction; - 1 X ! 1
N~
Operand 2

In this example, the packed decimal contents of operand 1 are compared to the
packed decimal contents of operand 2. Operands 1 and 2 have overlapping rightmost
bytes. The processor temporarily adds a byte of zeros to operand 2 since operand 2
has fewer bytes than operand 1. After the CP instruction is executed, the condition
code is set to 2 because operand 1 is greater than operand 2.

UP-8913 SPERRY UNIVAC 0S/3 9-13

ASSEMBLER Update B
DP
9.5. DIVIDE DECIMAL (DP)
General Possible Program Exceptions
OPCODE | roRrMAT ?NBSJTE.CT [l ADDRESSING M PROTECTION
TYPE LGTH. B DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8yTes) || M DECIMAL DiVIDE Il SPECIFICATION:
(O beciMAL OVERFLOW [NOTAFLOATING-POINT REGISTER
DP FD SS 6 [J execuTe [0 oP1NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW 0 ©OP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
TIiF RESULT = 0. 5e7 10 0 [0 FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
CliF RESULT <0, SET TO 1 [FIXED-POINT OVERFLOW O BOUNDARY
C]iF RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [] OPERATION O oP1NOT ODD NUMBERED REGISTER
B UNCHANGED [J nonE

The divide decimal (DP) instruction divides the packed decimal contents of operand 1
(dividend) by the packed decimal contents of operand 2 (divisor). The result (quotient
and remainder) is stored in operand 1 (the receiving field) which is filled from right to
left.

Explicit Format:

LABEL l A OPERATION A OPERAND

symboll | DP d, (I, b,).d, (l,.b,)

Implicit Format:

LABEL l A OPERATION A I OPERAND

[symbol] ’ DP s, (13).5,(1,)

Operational Considerations:

® Operand 1 contains both the quotient and the remainder after the DP instruction is
executed. Since operand 1 is the receiving field for the result, it consists of two side-by-
side fields. The remainder with sign occupies the rightmost field, and the quotient with
sign occupies the leftmost field. The leftmost byte of the quotient is the address
specified by operand 1, and the rightmost byte of the remainder is the rightmost byte
specified by operand 1. ‘

m The quotient with sign and the remainder with sign are determined algebraically.
The sign of the remainder takes its sign value from the sign of the dividend.

UP-8913

SPERRY UNIVAC 0S/3 9-14
ASSEMBLER

® The length of the dividend is restricted to 16 bytes and must have at least one
leading zero in the leftmost portion. As a result, the most significant digit is
always zero. The length of operand 1 should be sufficient to hold the quotient,
the remainder, and their signs.

s The divisor length is restricted to eight bytes. The operand 2 field, which holds
the divisor, is unchanged after the DP instruction is executed.

m The length of the quotient is restricted to 15 bytes. This length is equal to the
number of bytes needed to hold the dividend with sign and the divisor with sign
(operand 1 + operand 2).

®8 The length of the remainder must be at least one byte. The length of the
remainder is the length of the divisor and is therefore restricted to eight bytes.

® |f the result is larger than the length specified for operand 1, or if you attempt to
divide by zero, a decimal divide program exception occurs.

® If you want to reuse operand 1 for further mathematical calculations, you must
move a packed field of zeros into the specified area to clear it of any leftover
data.

8 In fixed-point instructions, it is your responsibility to keep track of assumed
decimal points. To add or delete decimal places, you can multiply or divide by
powers of 10. You can also use the move with offset (MVO) instruction (see 9.9)
to drop any number of leftmost digits you specify.

Example:

LABEL AOPERATIONA OPERAND
1 10 16
DP NUM1T ,NUM2
NUMI DC PL3'234'
NUM2 DC pi2!
leading
zeros dividend
NUM1 before execution Packed
of DP instruction: o1 o] 21 3] a1 ¢ decirral
. I - number
NUM2 before and after o .
. . . 1 'acked
execution of DP instruction: 2.1 ¢C decimal
! number
. quotient . remainder
NUM 1 _after e>_<ecut|on » | Two packed
of DP instruction: 1 b1 71 ¢clo lc decimal

numbers

UP-8913 SPERRY UNIVAC 0S/3 9-156
ASSEMBLER

In this example, the packed decimal content of NUM1 is divided by the packed
decimal content of NUM2. The result (quotient and remainder) replaces NUM1. Note
the dividend is a 3-byte field containing leading zeros. Its length is calculated by
adding the actual number of bytes required to hold the data in NUM1 (two bytes) and
NUM2 (one byte) which gives a total of three bytes for the dividend. Since the divisor
is one byte, the remainder also is one byte. Note that the remainder with sign
occupies the rightmost byte of NUM1 and the quotient with sign occupies the
remaining (leftmost) portion of NUM1.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
pP NUM3 , NUML
NUM3 DC PLL4'6LG!
NUML DC p'35!
dividend
M
leading zeros Packed
NUMS3 before execution T . T T decimal
of DP instruction: 0 0| 0,0]6 4| s1c number
divisor Packed
NUM4 before and after T decimal
execution of DP instruction: o3| src number
quotient remainder Two packed
NUMa3 after execution T i T T decimal
of DP instruction: oyt 8rcjor1 6, c numbers

In this example, the packed decimal content of NUM3 is divided by the packed
decimal content of NUM4. The result is placed in NUM3. The length of operand 1 is
calculated by adding the actual number of bytes required to hold the data in NUM3 (2
bytes) and NUM4 (2 bytes) which gives a total of four bytes for the dividend. In this
example there also is a remainder of 16 that occupies the same number of bytes as
the divisor and is located in the rightmost portion of operand 1.

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

9-16

9.6. EDIT (ED)
General Possible Program Exceptions
OBJECT
0PCODE | rormat | IneT. I ADDRESSING B PROTECTION
TYPE LGTH Il PATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTes) || [DECIMAL DivIDE [0 sPECIFICATION:
[J becimaL OVERFLOW O NOT A FLOATING-POINT REGISTER
ED DE SS 6 {(J EXECUTE O OP 1 NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW (0 oP2NOT ONHALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW ad OP 2 NOT ON FULL-WORD BOUNDARY
WscT 700 O FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
B seT o1 [0 FIXED-POINT OVERFLOW BOUNDARY
W seT 702 [] FLOATING-POINT DIVIDE 0 oP1NOTEVEN NUMBERED REGISTER
C]seT 7o 3 [J OPERATION {3 oP1NOT ODD NUMBERED REGISTER
SEE OPER. CONSIDERATIONS {1 none

The edit (ED) instruction unpacks and modifies packed operand 2 data so that the
printed output received is printed the way you want it displayed. This modification is
controlled by the operand 1 edit pattern.

Explicit Format:

LABEL l

AOPERATION A l

OPERAND
[symbol] i ED ‘ d,(l,.b,),d,(b,)
Implicit Format:
LABEL l AOPERATION A | OPERAND
[symbol] \ ED ‘ s, (s,

The contents of operand 2 must be a packed decimal number. Operand 1 contains the
edit pattern which consists of EBCDIC character codes. It is the pattern of EBCDIC
character codes you specify that determines how results are displayed. The edit
pattern can rearrange, delete, select, or insert any needed data, symbols, or characters
in the operand 2 data. The edited result (unpacked and modified operand 2 data)
replaces the operand 1 edit pattern.

UP-8913 SPERRY UNIVAC 0S/3 9-17
-ASSEMBLER

Operational Considerations:

s The length of the operand 1 edit pattern is almost always longer than operand 2
because operand 1 is in unpacked format while operand 2 is in packed format.

m The edited result replaces operand 1, thus permanently destroying the edit
pattern. If you intend to reuse the edit pattern, then it must be saved or moved
prior to the execution of the ED instruction.

m The total number of significance starters and digit selectors in operand 1 must
equal the total number of digits in operand 2.

® |f there is no significance starter in operand 1, all zeros in operand 2, and the
fill character is hexadecimal 40, the resultant field is blank.

m The condition code reflects only the last field edited or the field after the last
field separator.

m The S switch reflects the sign of the last byte in operand 2. A plus sign detected
as the least significant digit turns the S switch off. A minus sign has no effect
on the S switch, and a plus or minus sign detected as the most significant digit
causes a data exception.

® The sign of operand 2 is converted to hexadecimal F when edited, regardiess of
whether it is a hexadecimal C or F (positive), or a hexadecimal D (negative).

9.6.1. The Edit Pattern

The operand 1 edit pattern may consist of five types of pattern characters:

8 Fill character

® Digit selector

®m Significance starter

8 Message character

m Field separator

The fill character, in all cases, is the leftmost byte of operand 1. It is any EBCDIC

character code you choose. The EBCDIC character code specified is the first byte of

the edited result, and replaces (or fills in) certain pattern characters corresponding to

any nonsignificant operand 2 digits. (The significant digits are the digits 1 thru 9. Zero

is the only nonsignificant digit but becomes significant when it follows a significant

digit or the significance starter (hexadecimal 21)). The edited result replaces the

operand 1 edit pattern. Some of the more commonly used fill characters are
hexadecimal 40 (blank), hexadecimal 5B (dollar sign), and hexadecimal 5C (asterisk).

UP-8913 SPERRY UNIVAC 0S/3 9-18
ASSEMBLER

The digit selector is the EBCDIC character code 20. For every digit in operand 2,
there must be a corresponding hexadecimal 20 in the operand 1 edit pattern. Every
significant digit in operand 2 replaces its corresponding digit selector in operand 1. If
there is a nonsignificant digit in operand 2, the fil character replaces its
corresponding digit selector.

Example:
LABEL AOPERAT I ONA OPERAND
1 10 16
ED PATTERN] ,ANSWER]
PATTERN1 DC X'h@2p2029"
ANSWERT DC p'253!
fill
PATTERN1 before execution character digit selectors

of ED instruction: T
a4 ' o 2

o
N
(=)
N
- —
o

\
\

Edit pattern

ANSWER1 before and after
execution of ED instruction: 2

[&]
w
(o]

Packed decimal number

/

Edited result

PATTERN1 after execution of 4 B
ED instruction:

o
mn
e =
N
n
ot
n
- — o
w

253 Printed output
Printed edit result looks
like this:

Note that in PATTERN1 there is a corresponding hexadecimal 20 for every digit in
ANSWER1. The edit pattern (operand 1) is examined one byte at a time and operand
2 is examined one digit at a time. The fill character remains as the first byte of the
edit result (operand 1), and the succeeding pattern characters (in this example, the
digit selectors) are replaced by unpacked operand 2 digits.

Example:

ED PATTERNZ ,ANSWER2

PATTERN2 DC X'Lh@292020"
ANSWER2 DC P'26!'

UP-8913 SPERRY UNIVAC 0S/3 9-19

ASSEMBLER
fil
. character digit selectors
PATTEBNZ before execution
of ED instruction: T T T Y
4 1 0 2 : 0 2 i 0 2 : 0 Edit pattern

ANSWER2 before and after J/I ,/,'/
execution of ED instruction: 0 ! 2 6 1 C Packed decimal number

I
PATTERN2 after execution a4l ol a E 0 F 2 F { 6 Edited result
of ED instruction: \\ '//

Printed edit result looks
like this:

Printed output

In this example, note that ANSWER2 is padded to the left with a zero. Zero is
considered a nonsignificant digit because it precedes any significant digits. Therefore,
the fill character hexadecimal 40 replaces the second byte of the edit result, because
zero corresponds to the first digit selector. The other packed operand 2 digits are
unpacked and replace the remaining digit selectors. This method of changing lead
zeros to blanks is called zero suppression.

The significance starter is the EBCDIC character code 21. You need to specify only
one hexadecimal 21 for each field to be edited. Every hexadecimal 21 must
correspond to a digit in operand 2. When a hexadecimal 21 is examined in an edit
pattern, it is replaced with its corresponding digit in operand 2 and then turns on the
significance start switch (S switch). The significance start switch is an internal switch
that when turned on forces all of the following pattern characters either to remain or
be replaced in the edit result. In effect, the only conditions that force the S switch on
are a hexadecimal 21 or a significant digit. On the other hand, the S switch is turned
off after a digit in operand 2 is examined whose sign is positive and located in the
rightmost four bit positions of a field. A negative sign does not affect the S switch.
Whether the sign is positive or negative, all results are printed as positive values.

Example:
LABEL AOPERATIONA OPERAND
) 10 16
ED PATTERN3 ,ANSWER3
PATTERN3 DC X '4g2128202928"

ANSWER3 DC PL3'248"

UP-8913 SPERRY UNIVAC 0S/3 9-20

ASSEMBLER
fill significance
character starter digit selectors

PATTERN3 before execution e ~Ae

. o T
of ED instruction: 4,L0 2511 2}0 2io 2!0 210
~r l 1
T~ \ / // Mtpanern
ANSWER3 before and after 010l 21als e Packed decimal
execution of ED instruction: ! l - number

! 1

I 4 F 1 8

| §
Edited result

PATTERN3 after execution |4 o [a1 0| F i 0| F
of ED instruction: 4

Printed edit result looks
like this:

Printed output

The fill character remains as the first byte of the edit result, and also replaces the
significance starter because its corresponding digit in ANSWER3 is a nonsignificant
zero. Now, the S switch is turned on and the second zero in ANSWER3 becomes
significant. It replaces its corresponding digit selector with a zero. The succeeding
operand 2 digits are unpacked and replace the remaining digit selectors.

The message character can be any EBCDIC character code except hexadecimal 20, 21,
or 22. If the message character follows a significant digit or the significance start
switch (hexadecimal 21), the message character remains as part of the edited resuit
(operand 1). On the other hand, if the message character precedes a significant digit
or a hexadecimal 21, it is replaced by the fill character. Some of the most commonly
used message characters are hexadecimal 6B {(comma) and hexadecimal 4B (decimal
point).

Example:
LABEL AOPERATIONA OPERAND
1 10 16
ED PATTERNL ,ANSWERL
PATTERN4 DC X'5B2@2@6B2@2 120482020

ANSWERL DC P'1326¢0"'

uP-8913 SPERRY UNIVAC 0S/3 9-21

ASSEMBLER

PATTERNA4 before execution
of ED instruction:

finl digit message digit significance digit message digit
h lectors character selector starter k

2 ; | iR
Edit pattern
ANSWER4 before \

and after l“E‘J ! |5]i°

execution of 1

ED instruction: / \ \\\\\
PATTERN4 after 5 a : B | F { o| F
execution of ED | '

instruction:

o
(2]

0

T
3 F 2 F
]

P

IG
IOIOT

Printed edit result looks
like this:

Printed output

In this example, hexadecimal 5B (dollar sign) is used as the fill character. It remains
as the first byte of the edited result and also replaces the second byte because the
second byte's digit selector corresponds to a nonsignificant zero. The digit 1 in
ANSWER4 replaces the third byte and the message character hexadecimal 6B remains
because it follows a significant digit. The digits 3, 2, and 6 in operand 2 replace their
corresponding pattern characters, the message character hexadecimal 4B remains and
the trailing zeros in ANSWER4 replace their corresponding pattern characters.

Note the position of the significance starter hexadecimal 21. In this example, the S
switch is turned on by the first significant digit. Therefore, when this hexadecimal 21
is examined, it is replaced with its corresponding digit in ANSWER4. Now, suppose
the edit pattern remains the same and operand 2 is changed to look like this
example:

Example:
LABEL AOPERATIONA OPERAND
1 10 16
ED PATTERNS ,ANSWERS
PATTERN5 DC X'5B2@2@6B2021284B2¢24"

ANSWER5 DC PL4' 75!

UP-8913 SPERRY UNIVAC 0S/3 9-22

ASSEMBLER
PATTERNS before execution
of ED instruction:
fill digit message digit significance digit message digit
character s selectors character selector starter selector character selector
I

5 B 2

——

T T I
o210 z;o 4t |2

0 21 o
1

) dit pattern
ANSWERS before \\ ///{
and after :

b~ —f

T
execution of 0 : oo 7 5 E CW Packed decimal number

0 i 0
ED instruction: /// \\ \
PATTERNS after

I T ™
1 1 |
]

T
B Fl 7 F
1

1]
B 5§18 5 1 B 5
| |

- ——

execution of ED e EE Bl F,o0|a 5
P'rintec_i edit result looks LN e 1
like this: $ $ §$ $ s o . 7 5

Printed output

The significance starter (hexadecimal 21) is placed in the sixth byte of PATTERNS so
that the S switch is turned on to force the display of bytes 7 through 10. As a
result, the least significant dollar integer, the decimal point, and the cents are always
represented no matter how small or large the value of operand 2 is. .

The field separator is the EBCDIC character code 22. It is used to separate two or
more contiguous fields. These fields must be packed decimal numbers in operand 2
and located in consecutive order in main storage. The fill character you specify
replaces all field separators. As soon as a hexadecimal 22 is examined, the S switch
is turned off and the field separator is replaced with the fill character.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
ED PATTERNG ,ANSWER6
PATTERN6 DC X'h@20212022222¢21202222214B2¢2¢"

ANSWER6 DC P'123c@ddc2d¢acC

UP-8913 SPERRY UNIVAC 0S/3 9-23

ASSEMBLER

PATTERNG before execution
of ED instruction:

character r . selector
PN S Y e, ———

zlolziuJ

ANSWERS before //

and after Packed decmet namber
execution of
ED instruction:

PATTERNGafter[4‘01rE| F!z[f!a]q!n 4‘:014'}0[4!0]FE0 ‘:L"l'x:i[j;l.iBIF?o]FioJ
2/

execution of cos
ED instruction:
\ 7

.) L W T 7 7 7 7
Printed edit result I ooz s 0 O
looks like this:

Printed output

In this example, ANSWER6 contains three packed contiguous fields each separated by
two field separators (hexadecimal 22). Since the fill character specified is hexadecimal
40, that character is used as the fill character for all fields, and also replaces each
field separator in the edit pattern. Remember that the S switch is turned off as soon
as a hexadecimal 22 is examined. This causes any leading zeros in succeeding fields
to be nonsignificant digits.

9.6.2. The Resulting Condition Code

All operand 2 digits examined are tested for condition code O. The sign of the last
packed field edited, and whether or not all the digits in that field are zeros, are
recorded in the condition code setting when execution of the ED instruction is
completed.

The condition code is set to O when:

® all digits in the last field edited in operand 2 are zeros;

® the edit pattern has no digit selectors or significance starters causing operand 2
digits not to be examined;

® the last character in the edit pattern is a field separator; and

® the edit pattern has no digit selectors or significance starters after the last field
separator.

The condition code is set to 1 when;

® the last field edited is not all zeros but the S switch is on. This indicates the
value of the last field edited is less than zero, because a negative sign does not
affect the S switch.

UP-8913 SPERRY UNIVAC 0S/3 9-24

ASSEMBLER

The condition code is set to 2 when;

® the last field edited is not all zeros but the S switch is off. This indicates the
value of the last field edited is greater than zero, because a positive sign turns
the S switch off.

9.6.3. Examples of General Usage

The following examples are more commonly used and can be applied in practical
situations. The first example shows how a nonblank fill character is used.

Example:
LABEL AOPERATIONA OPERAND
1 10 16

ED PATTERN7 ,ANSWER7

PATTERN? [.)C X'5C2@202028208"

ANSWER7 DC P'12345"
PATTERN7 before fill
execution of ED character digit selectors
instruction:

! ' 1 I ! Edit

: ° 2 l ° 2 ! 0 2 } 0 : 0 pattern
ANSWER? before and NI
after execution of) 5 1 C decimal

1 L number

ED instruction:

\\' 3<\\~\.

PATTERN7 after ; T I g
execution of ED 5 1 C i3 | Fila |F 5 res:JtIt
instruction:

Printed edit result .]) 3 A .

Printer
output

looks like this:

All results, whether positive or negative, are printed as positive results. By using
message characters in the edit pattern, you can indicate whether a field in operand 2
is positive or negative. These message characters should be the last pattern
characters in the edit pattern for each corresponding field in operand 2. If the value
of operand 2 is negative, message characters placed to the right of the rightmost digit
selector remain as part of the edit result. Since a negative sign in the rightmost four
bit positions does not affect the S switch, the message characters become significant.
However, if the value of operand 2 is positive, the message characters are replaced
by the fill character.

UP-8913 SPERRY UNIVAC 0S/3 9-25
ASSEMBLER

Since a positive sign in the rightmost four bit positions turns the S switch off, the
' message characters become nonsignificant. You can specify any character or any
number of characters to indicate a negative number, but the most commonly used are
hexadecimal C3D9 (CR), hexadecimal C3C2 (DB), and hexadecimal 60 (—). The
following example illustrates editing a negative number using the minus sign.

Example:
LABEL AOPERAT | ONA OPERAND
| 10 16
ED PATTERN9,ANSWER9
PATTERN9 DC X'hg202020282064¢"
ANSWER9 DC P'-1234¢
PATTERN9 before fill message
: character digit selectors character
gxecutu?n of ED ——
instruction: T = T F 1 T i ¥ 7 T T T Edi
alo|2t1to|l2tol2i10]2tofl210]61l0 pat't‘em
ANSWERS before '
. and af_ter execution I T T Packed
of ED instruction: 0 | 1 2 { 3 4 i D decimal
1 number
PATTERNY after
. T N
gxecutuqnofED 410|440 Fj1|Fi12|Fi13]F ;a6 of Edtd
instruction: result
Printed edit result)) 3 4
looks like this: - Printed

output

The following example illustrates date-field editing. Here, message characters are
inserted into a 5- or 7-digit field. The most commonly used message characters for a
date field are hexadecimal 61 (slash), hexadecimal 60 (hyphen), and hexadecimal 40

(blank).
Example:
ED PATTERNA ,ANSWERA
® PATTERNA DC X' 4p202120612020612020"
ANSWERA DC P'122576"

UP-8913

SPERRY UNIVAC 0S/3 9-26
ASSEMBLER
fill digi ignifi digi igi .
PATTERNA before e wowor s saner charocr wewior s e

e,

[«

execution of ED
instruction:

Tl

ANSWERA before and

after execution of ED 0

instruction:

PATTERNA after

Edit pattern

Packed decimal
number

. T ! T T T T | I T
gxecuthnofED L4:OI4:OJF11[F:2|6:‘]F:21F1516:1 IFL7TF_ES
instruction: / Edited

result
Printed edit result looks \ \ 1 \ } T 7 7 7
like this: e 7o 8| Prine
9.6.4. Summary

Table 9—1 summarizes and combines the information in this section to provide a

clear and concise picture of the ED instruction and its functions.

Table 9—1. Edit Instruction Operation
Previous Decimal Sign of Least Resulting Resuliting
g‘h‘ao":"“d n Eg:‘?'c Switch (Operand 2) Significant Byte {Operand 1) Switch
racter e Status Digit {Operand 2} Character Status

Fill character Any Off Not examined * Fill character Off
Digit selector 20 Off 0 * Fill character Off
Off 1-9 * Digit On

Off 1-9 Positive Digit Off

Off 1-9 Negative Digit On

On 0 * Digit On

On 1-9 * Digit On

On 1-9 Positive Digit Off

On 1-9 Negative Digit On

Significance starter 21 Off 0 * Fill character On
Off 1-9 d Digit On

On 4] * Digit On

On 1-9 * Digit On

Message character Any except Off Not examined * Fill character Off
20,21,22 Off Not examined Positive Fill character Off

On Not examined * Message character On

On Not examined Positive Fill character Off

On Not examined Negative Message character On

Field separator 22 Off Not examined * Fill character Off
On Not examined * Fill character Off

*Not applicable

uP-8913 SPERRY UNIVAC 0S/3 9-27

ASSEMBLER
EDMK
9.7. EDIT AND MARK (EDMK)
General Possible Program Exceptions
OPCODE | FoRMAT ?NBSJ‘E.CT fl ADDRESSING #l PROTECTION
TvPE LOTH. [l DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. (8yTEs) || O OECIMAL DIVIDE [sPeCIFICATION:
[0 peciMAL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
EDMK | DF S$s 6 (0 EXECUTE O oP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B - (] FIXED-POINT DIVIDE (0 opP2NOT ON DOUBLE-WORD
] :z ::E:gt; 2%:?;:%01 [0 FIXED-POINT OVERFLOW a BOUNDARY
B \F RESULT >0, SET TO 2 C] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D”: OVERFLOW, SET TO 3 DOPERAT|ON D OP 1 NOT ODD NUMBERED REGISTER
CJUNCHANGED O nonE

The edit and mark (EDMK) instruction operates like the edit (ED) instruction except
that it also saves the address of the first significant byte and places it in register 1.

Explicit Format:

LABEL AOPERATION A OPERAND

[symbol] EDMK d,(l,b,),d,(b,)

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] EDMK s, (), s,

Operational Considerations:

® The EDMK instruction operates like the ED instruction (see 9.6). After the packed
content of operand 2 is edited and the unpacked result stored in operand 1, the
address of the first nonzero character is placed in general register 1.

] if the field to be edited contains no significant digits until after the significance
starter, no address is moved into register 1, and the move instruction following
the EDMK instruction will be using the incorrect address (or whatever value) that '
is in register 1.

UP-8913

SPERRY UNIVAC 0S/3 9-28
ASSEMBLER

® To avoid having an incorrect address in register 1 because no significant digits
exist before the significance starter, load register 1 with the address of the
position where you want the insert character to be placed.

m |f a field to be edited contains multiple fields, the address of the first significant
byte in each field replaces the one before. So in effect, the address of the first
significant byte in the last field is the final result.

m The EDMK instruction is a featured instruction. An operation program exception is
caused if you use this instruction and the processor does not have the control
feature installed.

m This instruction is used to insert a character in several places throughout the
output display. For example:

$6.25
$86.00
$2.34
$724.11
The location of the dollar sign is predictable in that it appears at the left of the
first significant digit on each line. The decimal point position also is predictable
as the third character from the right. The proper positioning of a dollar sign or
other message character is ensured by using the EDMK instruction.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
MVC PATTERN,MASK
LA 1,PATTERN+7
EDMK PATTERN,DATA
S 1,=F'1!
MV g(1),c's
PATTERN DS cLig
MASK DC X'h4p2p2068202@¢214B2028"
DATA DC P'@245718"

Register 1 before execution of EDMK instruction:

1 1 1 i
0000|OOOO 0000|0000 0000' 0000 1100'0000 binary

[] I 1
o6jJo i o0o|o o}]c,oO hex
1]] I

w

address of PATTERN+7

0

9-29

UP-8913 SPERRY UNIVAC 0S/3
ASSEMBLER
Register 1 after execution of EDMK instruction:
T T T T
0000, 0000|0000} 0000|0000 0000 [10111011 binary
ol ololo|lolo]|e!es hex
| L |]
address of 1st significant digit
Register 1 after execution of S instruction:
| { I T
000000000000, 6000 |0000 |0000 (1011|1010 binary
0'ojlolololo|e!a hex
| l ! !
address of byte to the left of
1st significant digit
Edited result after execution of MVI instruction:
1st
significant
$ digit
M’-\/\/\,\
| | 1 | | | |] ! | .
o1oo|oooo o1o1|1o1o 1111|oo1o 0110 1011 [1111,0100 1111 l0101 11110111 o1ool1o11 11110001 11110000 | binary
41 0|5 1B Fl 2 6 1'B|F I a F;S F:7 4:3 F:1 Fl O hex
)] l] 1 |

In this example, the edit mask is moved into a 10-byte field labeled PATTERN.
The address of the position where the insert character is to be placed (in the
absence of significant digits before the significance starter) is loaded into register
1. Then DATA, containing the packed number, is edited and the result is placed
in PATTERN. The address of the first significant byte (in this example, 2 is
significant) replaces the content of register 1. Then a full word containing the
is subtracted from the content of register 1, therefore moving
one byte to the left. The MVI instruction moves the dollar sign into the byte

decimal value 1

addressed by the content of register 1.

UP-8913 SPERRY UNIVAC 0S/3 9-30 thru 962
ASSEMBLER Update A

DELETION

Pages 9—30 through 9—62, Figures 9—1 through 9—8, and
Tables 9—1 through 9—7 have been deleted.

MSS

(] s ay e —iee o
;\Ifﬂzéi‘a'ﬁ;) THT s il)

UP-8913 SPERRY UNIVAC 0S/3 9-63

ASSEMBLER
MVC
9.9. MOVE CHARACTER (MVC)
General Possible Program Exceptions
OBJECT || my ADDRESSING @ FROTECTION
OPCODE FORMAT ”‘:35;"4 [0 DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. [HEX. TYPE :"BYTE'S, [pECIMAL DIVIDE [SPECIFICATION:
[0 beEcimAL OVERFLOW O NOT A FLOATING-POINT REGISTER
MVC | D2 S 6 [] execuTe [1 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oF2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
[#IXED-POINT DIVIDE 0 op2nNOT ON DOUBLE-WORD
E]]:i ziztjt; 2%:‘;1;%‘1 O FIXED-POINT OVERFLOW O BOUNDARY
C1F RESULT >0, SET TO 2 0O FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
CJIF OVERFLOW, SET TO 3 [] OPERATION O of1NOT ODD NUMBERED REGISTER
B UNCHANGED . O none

The move character (MVC) instruction moves the contents of one area in main storage
(operand 2) into another area in main storage (operand 1). The length of operand 1
determines the number of bytes moved.

Explicit Format:

LABEL | A OPERATION A ' OPERAND

[symbol] l MVvC l d,(Lb,)d,(b,)

Implicit Format:

LABEL I AOPERATION A I OPERAND

[symbol] | MvCc \ s, (s,

The move. character instruction moves data referenced by operand 2 (the sending field)
to the location referenced by operand 1 (the receiving field). Data is moved a byte at
a time from left to right. The length of operand 1, whether implied or explicit,
determines the number of bytes to be moved.

Operational Considerations:

8 The instruction moves one byte at a time, processing from left to right through
each field.

® The length of operand 1 determines the number of bytes moved. It can be either
implied or explicit.

UP-8913 SPERRY UNIVAC 0S/3 9-64
ASSEMBLER

® When using operands with overlapping bytes, the results are often unpredictable.

8 One character can be propagated through an entire field if the sending field
begins with the first byte of a field and the receiving field begins with the
second byte of that same field.

® Any type of data can be specified in an MVC instruction.

Example:
LABEL AOPERAT I ONA OPERAND
1 10 16
MVC RECEIVE] ,SENDI
RECEIVEY DC CLS'DIGIT' .
SENDI DC CL5'SALES'
RECEIVE1 before
execution of MVC ? || T 'l T‘ Alpha characters
instruction: Hexadecimal
¢ :4 CLQ 0{7 0:9 E :3 {EBCDIC mode)
SEND1 before and after S A L E S Alpha characters
execution of MVC T T T T T '
instruction: E | 2 c! 1 D l 3 c!s E V2 r;;(ﬁ%r::,de)
t
RECEIVE1 after s A L E s Alpha characters
execution of MVC T T T T T '
. I | 1 Hexadecimal
instruction: E : 2 | ¢ L1 pi13|c 5 |E ! 2 (EBODIC mode)

In this example, the content of operand 2 is moved into operand 1. Since it is an
even move (a b-byte field to a 5-byte field), the content of SEND1 completely overlays
the content of RECEIVE1. Note that no length is specified for operand 1 and, as a
result, the implied length is applied.

Example:

MVC RECEIVE2(5) ,SEND2

RECEIVE2 DC CL7'JANUARY'
SEND2 DC CL5'MARCH!

UP-8913 SPERRY UNIVAC 0S/3 9-65
ASSEMBLER
RECE'VEZ befOl'e J A N U A R Alpha characters
execution of MVC Hexadecimal
. . ex }Cimal
Instructlon: D 1 [o] 1 D 5 E L} C 1 D 9 E 8 (EBCDIC mode)
SEND2 before and after M A R (o} H Alpha characters
gxecuthn of MVC o e 1. 1. .. . Hexadecimal
instruction: (EBCDIC mode)
/ / / / S
operand 1
ata
A_/_A
RECEIVE2 after M A R [H R Alpha characters
gxecutlgn of MVC o alc 1]o slec slc alo ofe Hexadecimal
instruction: {EBCDIC mode)

In the preceding example, an explicit length of 5 is specified for operand 1. The 5
determines that RECEIVE2 will accept only five bytes from SEND2. The five bytes from
SEND2 are moved to RECEIVE2 filling operand 1 from left to right. As you can see,
five bytes of SEND2 (MARCH) are moved to the first five bytes of RECEIVE2 (JANUA).
Note that the last two bytes of RECEIVE2 still remain.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
MVC TOTAL(2) ,ANSWER+1
TOTAL DC PL4'@!
ANSWER DC PL3'128!
HEADING ©DC CLI9'TOTAL SALES FOR MAY'

TOTAL before execution

of MVC instruction:

ANSWER before and after
execution of MVC instruction:

TOTAL after execution

of MVC instruction:

Packed decimal
number

Packed decimal
number

Two packed
decimal numbers

UP-8913 SPERRY UNIVAC 0S/3 9-66
ASSEMBLER

Since the concerned number occupies the second and third bytes of ANSWER, relative
addressing (ANSWER + 1) is used to address the second byte, and avoid the first
byte of zeros. Note the number of bytes moved is restricted to two by using an
explicit length in operand 1. If an explicit length is not specified, four bytes would be
moved to TOTAL since it is a 4-byte field. Bytes two and three of operand 2, plus the
first two bytes of data contiguous to operand 2 (in this case the letters TO of
HEADING), would be moved to TOTAL.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
MVC FIELD+1(3),FIELD
FIELD DC cLh4 1234
FIELD before execution Hexadecimal

F 11 F 2] F 3| F a4

of MVC instruction: (EBCDIC mode)
FIEN
FIELD after byte 1 is BN _
. 1 F 3 F 4 Hexadecimal
moved: F o1 F (EBCDIC mode)
FIELD+1
FIELD after byte 2 is Hexadecimal
moved: N N R R B e
FIELD+1 \
fter is Hexadecimal
frl‘iteDda ter byte 3 F ! F ! F ! F ! {EBCDIC mode)

final result

As indicated, F1 is propagated through the entire field. This can be done using any
character. If a hexadecimal 40 is used, the resultant field is EBCDIC blanks. If a
hexadecimal FO is ‘used, the resultant field is EBCDIC zeros. To propagate one
character through an entire field, the sending field (operand 2) must begin with the
first byte of that field and the receiving field (operand 1) must begin with the second
byte of that same field. The move is processed from left to right. When operands 1
and 2 overlap, the end result is obtained by processing the operands one byte at a
time, and putting each result byte immediately after the byte just obtained.

UP-8913 SPERRY UNIVAC 0S/3 9-67
ASSEMBLER

® | MVCL

9.10. MOVE CHARACTER LONG (MVCL)

General Possible Program Exceptions
OBJECT || g ADDRESSING B PROTECTION
OPCODE FORMAT | INST. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
TYPE LGTH.
MNEM. [HEX (8yTes) || [J DECtMAL DIVIDE B SPECIFICATION:
[0 peciMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
MVCL | OE AR 2 [execuTE 1 oOP1NOTON HALF-WORD BOUNDARY
(] EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes] EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B For1-OF2 SETTOO [J FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLEWORD
1= ,
Bk op1<OP2 SETTO 1 (O FIXED-POINT OVERFLOW BOUNDARY
g B 0P 1 NOT EVEN NUMBERED REGISTER
Bl iFor1>0P2,SETTO2 [FLOATING-POINT DIVIDE
WseTT03 (] OPERATION 0 oP2NOT EVEN NUMBERED REGISTER
[0 UNCHANGED O nonEe

The move character long (MVCL) instruction moves data from the main storage area

specified by operand 2 to the main storage area specified by operand 1. Operands 1

and 2 can have different lengths; where operand 2 is shorter than operand 1, a
. padding character contained in operand 2 is inserted in all remaining bytes of operand
1.

Explicit and Implicit Formats:

LABEL ’ A OPERATION A I OPERAND

[symbol] MVCL r,.r

The MVCL instruction uses two even-odd register pairs to specify operands 1 and 2.
Both have basically the same format: the even-numbered register contains the
operand address in bits 8—31, while the odd-numbered register contains the operand
length, also in bits 8—31. The operand 2 odd-numbered register differs from the other
three registers in that it contains a padding byte in bits 0—7. When operand 1
exceeds operand 2 in length, the padding byte is moved in all remaining low order
(rightmost) bytes of operand 1. When the operand 2 length exceeds the operand 1
length, operand 1 determines the number of bytes to be moved. The following chart
summarizes register usage with the MVCL instruction:

UP-8913 SPERRY UNIVAC 0S/3 9-68

ASSEMBLER
Operand 1 0 78 L, 31
even-numbered register 00000000 address S {

11
odd-numbered register 00000000 length {
Operand 2 .
even-numbered register 00000000 address {

'

) pad
odd-numbered register byte length

The MVCL instruction differs from MVC in that it can move more than 256 bytes per
instruction. In action, it begins by moving the high order (leftmost) byte of operand 2
to the high order byte of operand 1. Execution continues byte by byte proceeding from
left to right. If more than 256 bytes are to be moved, the instruction breaks execution
down into units of operation, each unit moving 256 bytes at a time. Interrupts are
allowed between units; the MVCL instruction always responds by updating the
contents of its registers so that execution can resume exactly where it was
interrupted. After execution of the entire instruction is finished, the four registers
have the following contents:

® QOperand 1 even-numbered register: original operand 1 address incremented by
original operand 1 length.

m Operand 1 odd-numbered register: 00000000 .

® QOperand 2 even-numbered register: original operand 2 address incremented by
number of bytes moved from operand 2 (not including padding bytes).

® Operand 2 odd-numbered register. original operand 2 length decremented by
same number of bytes as that added to operand 2 address.

The main storage areas defined by operands 1 and 2 can overlap except for one case:
where a byte of main storage is used as an operand 2 source byte after being used
as an operand 1 destination byte. This action is called destructive overlap. As one of
its first actions, the MVCL instruction determines from its operands if destructive
overlap is going to occur. If it is, the instruction sets the condition code to 3, moves
no data, and terminates.

Operational Considerations:
= Both'operands 1 and 2 must be specified as even-numbered registers.
® You can use the MVCL instruction to clear memory. To do so you set both the

operand 2 length and padding byte to zero, in effect putting all zeros into the
operand 2 odd-numbered register.

uP-8913 SPERRY UNIVAC 0S/3 9-69
ASSEMBLER
m |f the destination field contains the MVCL instruction, the processor may attempt

to fetch it in mid-execution. If this happens after the instruction has been written
over, the results will be unpredictable.

If you specify an operand 1 length of zero, the MVCL instruction simply sets the
condition code and terminates.

If you specify the same register for r, and r,, the MVCL instruction acts as if you
had specified two different register pairs having identical contents. In this case,
condition code O is set.

Do not treat the MVCL instruction simply as an extended version of the MVC
instruction; certain legal MVC instructions, for example, MVC BYTE+1(2),BYTE, cannot
be recoded using MVCL without causing destructive overlap.

Condition Code:

After execution of the MVCL instruction, the condition code is set:

m to O if the operand 1 and operand 2 lengths are equal;
m to 1 if the operand 1 length is less than the operand 2 length;
® to 2 if the operand 1 length is greater than the operand 2 length; or
® to 3 if no data movement occurs because of destructive overlap.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
1 LA 2,AREA1+2 OPERAND 2 ADDRESS
2 LA 3,4 OPERAND 2 LENGTH
3 LA 6 ,AREA2 OPERAND 1 ADDRESS
4 LA 7,8 OPERAND 1 LENGTH
5 0 3,PADBYTE PAD BYTE IN OPERAND 2
6 MVCL 6,2
DS OF
AREA1 DC XL8'3794274B11328E97"
AREA2 DC XL8'B9DAFBLA171894EF"
PADBYTE DC Xth Lpogoose’

UP-8913 SPERRY UNIVAC 0S/3 9-70
ASSEMBLER

in this example, the MVCL instruction moves data from within the double word at
AREA1 to within the double word at AREA2. Assuming that AREA1 is at location
100, the move can be illustrated as follows:

AREA1 AREA2
100 l 104 108 l 10C

37 | 94 27 | 4B | 32 | 8E | 97 B9 | DO | 00 | 4A | 17 18 | 920 EF

e >3 L -
v

source destination
data data

The four LA instructions in lines 1—4 load information into register pairs 2—3 and
6—7, which describe the operands to be used by the MVCL instruction at line 6. The
OR instruction at line 5 puts a hexadecimal 40 into the eight high order bits of the
operand 2 length register, thus making it the padding character. Before execution of
the MVCL instruction the registers contain:

Register 2 | 00000102 Register 3 | 40000004

Register 6 { 00000108 Register 7 | 00000008

The MVCL instruction at line 6 acts on main storage locations 100—10F as follows:

AREA AREA2
100} 104

37 94 27 48 1 32 8E

The MVCL instruction moves four bytes from AREA1+2 to AREA2. Because the
destination field is eight bytes long, the remaining four bytes are filled with the pad
byte in register 3. After execution of the instruction, the condition code is set to 2
and the registers used contain:

Register 2 | 00000106 Register 3 |4ooooooo
Register 6 | 00000110 Register 7

uP-8913 SPERRY UNIVAC 0S/3 9-71

ASSEMBLER
Example:
LABEL AOPERATIONA OPERAND
1 10 16
1 LA 4, CSECT1
2 LA 5,2048
3 LA 8,CSECT-1
4 LA 9,8
5 MVCL 4,8

In this example the MVCL instruction is used to clear a 2048-byte area in main
storage starting at CSECT1. After execution of the instructions in lines 1—4, and
assuming that CSECT1 is at location X'100°, registers 4—5 and 8—9 contain:

Register 4 | 00000100 Register 5 I 00000800

Register 8 | OOOOOOFF Register 9 | 00000000

Registers 4 and 5 contain the location and length of the destination field. Register 8
contains the location of the byte immediately preceding CSECT1; in this case it could
contain any valid address that does not cause destructive overlap. Register 9 specifies
O for both the source length and the padding byte. When the MVCL instruction at
line 5 is executed, the zero source length causes the instruction immediately to move
pad bytes of O into CSECT1, CSECT1+1, CSECT1+2, and so on. The destination
length of 2048 bytes forces the instruction to move zeros into all 2048 bytes of the
destination field, thus clearing it. After execution is finished, the condition code is set
to 2 and the registers contain:

Register 4 | 00000900 Register 5 | 00000000
Register 8 | OOOOQOFF Register 9 | 00000000

Notice that the operand 2 address in register 8 has not changed. No bytes have been
moved from the source area in main storage; rather, the source bytes have come
from the pad byte contained in operand 2.

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

9-72

MVN
9.11. MOVE NUMERICS (MVN)
General Possible Program Exceptions
OPCODE | roRrmAT ?NB;‘E.CT @l ADDRESSING B PROTECTION
TYPE LoTh. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. lHEX. evTes) || (] DECIMAL DIVIDE {0 sPeCIFICATION:
[J oeciMAL OVERFLOW 3 NOT A FLOATING-POINT REGISTER
MVN | D1 SS 6 (0 execuTe O OP 1 NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes] exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
& [J FIXED-POINT DIVIDE 00 oP2NOT ON DOUBLE-WORD
D:i 25:3:?1 2%;?;1%‘: [FIXED-POINT OVERFLOW 0 BOUNDARY
O] 1F RESULT >0, SET 10 2 [] FLOATING.POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C)If OVERFLOW, SET TO 3 [] OPERATION 0 op1NOT ODD NUMBERED REGISTER
B UNCHANGED O nonNE

The move numerics (MVN) instruction moves the low order four bits (digit portion} of
each byte in operand 2 into the corresponding low order four bits of each byte in
operand 1. The high order four bits (zone portion) of each byte in operand 1 remain
unchanged. This instruction operates from left to right.

Explicit Format:

LABEL A OPERATION A OPERAND
[symbol] MVN d,(l,b,).d,(b,)
Implicit Format:
LABEL A OPERATION A OPERAND
[symbol] MVN s,{l.s,

Operational Considerations:
® Any type of data can be specified in both operands 1 and 2.
® The condition code remains unchanged.

® The high order bit positions of each byte in operand 1 remain unchanged.

bit positions of each byte in TOTAL1 remain unchanged.

UP-8913 SPERRY UNIVAC 0S/3 9-73
ASSEMBLER
Example:
LABEL AOPERAT I ONA OPERAND
1 10 16
MVN TOTAL1+2(3) ,SUBTOTI
TOTALI DC ZL5'12123"
SUBTOT1 DC ZL3'345!
TOTAL1+2
TOTAL1 bef ' = T T
-1 betore 111110001 | 1111} 0010 1111!0001 111110010 |1111 ;0011 Binary
execution of MVN 1 ! |
instruction: Fta | rt2|ri1|et2]e a3 hexadecimal
‘ 1 1 L t i (EBCDIC mode)
SUBTOT1 before and 1111‘-Loo11 0000 10100 1111}0100 Binary
after 9xecut|9n of Elg E H 4 E ; 5 hexadecimal
MVN instruction: lJ\\\ (EBCDIC mode)
TOTAL1 after 111110001 | 1111 0010 [1111 10011 111150100 1111} 0101 Binary
execution of MVN lL —+ } t : hexadeimal
. . | xadecima
instruction: Py ' jF 2 fF Y3 F a]F IS (EBCDIC mode)
In this example, the low order four bit positions of each byte in SUBTOT1 are moved
into the low order four bit positions of bytes 3, 4, and 5 of TOTAL1. The high order

Example:
1. AP RESULT,=P'5@"
2. MVN RESULT+2(1) ,RESULT+3
MVC BUFFER,SPACES

3. MVC BUFFER(3) ,RESULT
RESULT DC PL4'1234567"
BUFFER DS CL5
SPACES DC cLs !

UP-8913 SPERRY UNIVAC 0S/3 9-74

ASSEMBLER
RESULT before execution ! 1 H !

I) .
of AP instruction: 1 '1 2 3 : 4 5 ! 6 7 E C Packed decimal number

T T
Operar.‘d 2 befor? and after o! s 0} C Packed decimal literal
execution of AP instruction: i i

i T T T

RESUL.T after _executlon 1 2 3! 4 6 1 1 71 C Packed decimal number
of AP instruction: i 1 1

RESULT+2 (operand 1)
. RESULT+3 (operand 2)
RESULT before execution

]
of MVN instruction: 1 ; 2 3., 4| 61 1 71 ¢ | Packed decimal number

- -
=

RESULT after execution 11 2] 31 4| 61 ¢ 71 ¢ | Packed decimal number
of MVN instruction: 1 1 i N

In this example, the MVN instruction is used in rounding numbers. In the first line of
code, the literal fifty (50) is added to the contents of RESULT to round the number to
the first two decimal places.

Then, the low order four bits of byte 4 in RESULT are moved to the low order four
bits of byte 3 in RESULT. When the MVN instruction is completed, the sign is moved
to the right of the first two decimal places that were just rounded. The last byte of
RESULT is ignored when the MVC instruction is executed. The location named
BUFFER contains the final result.

blanks

BUFFER before execution T T T T) .

f MVC i tion: 4 ' o 4 10 al o 4o alo Hexadecimal

o instruction: | i ' i | (EBCDIC mode)

blank
N\.’\
. : |

BUFFER -after e;ecutlon 11 2 3 14| s ! c| a ! 0 Packed decimal
of MVC instruction: { 1 n 1 number

UP-8913 SPERRY UNIVAC 0S/3 9-75

ASSEMBLER

MVO

9.12. MOVE WITH OFFSET (MVO)

General Possible Program Exceptions
OPCODE CORMAT IONBSJTECT [l ADDRESSING M PROTECTION
TvPE LoTH. [] DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. lHEX. (8vTEs) ||] DECIMAL DIVIDE [speciFicATION:
[J bECIMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
Mvoe | F1 S 6 [J EXECUTE [0 ©OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
(] FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
E:E 2523::1 2%'8321:.%(1 [FIXED-POINT OVERFLOW O BOUNDARY
C]IF RESULT >0, SET T0 2 [] FLOATING-POINT DIVIDE . OP 1 NOT EVEN NUMBERED REGISTER
[]'F OVERFLOW, SET TO 3 [] OPERATION OP 1 NOT ODD NUMBERED REGISTER
B UNCHANGED O nonE

The move with offset (MVO) instruction moves the contents of operand 2 into operand
1 offsetting the data one half-byte to the left during the move.

Explicit Format:

LABEL | A OPERATION A ' OPERAND

symbol] | MVO | d,01,.b,).d, (1,.b,)
Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] MVO s,(15).s,(1,)

The MVO instruction operates from right to left. Data from operand 2 (the sending
field) is moved into operand 1 (the receiving field) but offset one half-byte to the left.
The low order four bits of the rightmost byte in the receiving field remain unchanged.
If operand 2 data does not completely fill operand 1, the leftmost unfilled bytes of
operand 1 are padded with zeros. However, if the operand 2 field is larger than the
operand 1 field, the leftmost bytes of operand 2 are truncated. The MVO instruction is
most commonly used in rounding packed decimal numbers to an odd number of digits.

Operational Considerations:

8 Usually, the MVO instruction operates on packed decimal fields; however,
unpacked fields can be specified.

uP-8913 SPERRY UNIVAC 0S/3 9-76
ASSEMBLER
® Padding of zeros to the left and truncation to the left can occur.
® Condition code remains unchanged.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
MVO FIELDI,FIELD2
FIELD] DC XLU'FFFFFFFF!
FIELD2 DC XL3'AABBCC'
FIELD1 b_efore e?(ecution i 1111:1111 1111:1111 1111:1111 Binary
Of MVO instruction: : i i | hexadecimal
F ; F F ! F F : F F : F characters
FIELD2 before and after 1010:1010 1011 :1011 1100 11100 Binary
execution of MVO instruction: ! | . ! o 1o ic hexadecimal
1 | characters
T T] I .
. 0000 | 1010 1010 1011 {1011 ;1100 [1100 } 111
FIELD1 after execution l ' ! | :'Z:Zcimal
of MVO instruction: 0 : Al A ;B B1C |cC ; F c:araceters

In this example,

the content of FIELD2 is moved (starting from right to left) into

FIELD1 offset by one half-byte to the left. The low order four bits of the rightmost
byte of FIELD1 (1111, or hexadecimal F) remain unchanged.

Each half-byte of FIELD2 fills its corresponding half-byte of FIELD1.
four bits of the leftmost byte of FIELD1 are padded with binary zeros since the

operand 1 field is larger than operand 2.
Example:

MVO PRICE,PRICE(2)

PRICE DC P137254 "

The high order

UP-8913 SPERRY UNIVAC 0S/3 9-77
ASSEMBLER

' operand 1

operand 2
PRICE before execution T T T .
of MVO instruction: 37218]anc Packed decimal number
\ \ \\\\ assumed decimal point
PRICE after execution 0 i 3 | 7 E 2 |l s E c

of MVO instruction:

In this example, the MVO instruction is used in rounding packed decimal numbers. An
explicit length is specified for operand 2 and both operands have overlapping bytes. If
all decimal places are needed in the final result, then this rounding technique is not
useful. The purpose of this MVO instruction is to move the final result (dollars and
. cents) next to the sign so that it can be edited and printed. Note the decimal number
4 in the high order four bits of the rightmost byte of operand 1 is replaced with the
decimal number 5 and binary zeros are padded in the high order four bits of the
leftmost byte of operand 1.

UP-8913 SPERRY UNIVAC 0S/3 9-78

ASSEMBLER
MVZ
9.13. MOVE ZONES (MV2)
General Possible Program Exceptions
OPCODE | FoRmAT ?NBSJ‘S.CT i ADDRESSING B PROTECTION
TYPE LGTH. [] bATA (INVALID SIGN/D1GIT) | [J SIGNIFICANCE
MNEM. THEX. (8yTes) || 0 DECIMAL DIVIDE O sPECIFICATION:
O pecimAaL OVERFLOW (0 NOTA FLOATING-POINT REGISTER
Mvz | D3 SS 6 [J execuTe 0 OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes] EXPONENT UNDERFLOW 0 oP2NOT ON FULL-WORD BOUNDARY
] - (] FIXED-POINT DIVIDE O oP2NOT ON DOUBLE-WORD
0 :i g:zst; 2%'58'2:..;%(: [FIXED-POINT OVERFLOW 0 BOUNDARY
CJ1F RESULT D0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]IF OVERFLOW, SET TO 3 [] OPERATION 0 o1 NOT ODD NUMBERED REGISTER
B UNCHANGED O ~none

The move zones (MVZ) instruction moves the high order four bits (zone portion) of
each byte in operand 2 into the corresponding high order four bits of each byte in
operand 1.

Explicit Format:

LABEL l AOPERATION A | OPERAND

[symbol] | MVZ | d,0b,).d, (b,)

implicit Format:

LABEL | A OPERATION A | OPERAND

fsymbol] | MVZ | s,

This instruction operates from left to right. The low order four bits of each byte in
operand 1 remain unchanged. If the operand 2 field is larger than operand 1, the
zone portions of the leftmost bytes of operand 2 are truncated. On the other hand, if
the operand 1 field is larger than operand 2, the zone portions of the leftmost bytes
in operand 1 remain unchanged.

Operational Considerations:

®m The contents of both operands should contain zoned numeric fields; however, any
type of data can be specified.

® The low order four bits of each byte in operand 1 remain unchanged.

UP-8913 SPERRY UNIVAC 0S/3 9-79
ASSEMBLER

m QOperands 1 and 2 can have overlapping bytes.

B The condition code remains unchanged.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
MVZ NUMPOS ,NUMNEG
NUMPOS DC ZL3'456"
NUMNEG DC XL3'FOF@D@’

T T T
i 1111 {0100 | 11110101 | 11001 0110 i
NUMPOS before execution o ' X :;’;?;‘;f:ﬂ;dber
- . . |
of MVZ instruction: Fie |Fis|c ; 6 (positive)
11110000 {11111 0000] 11011 0 i
NUMNEG before and after 111 ! 110110000 3'"?“’ |Z°“°db
. . . ! + 1 lecimal number
execution of MVZ instruction: F 1o E : o | b i 0 (negative)
1111'0100 1111I0101 1101:0110 Bi ed
NUMPOS after execution : ! L d::,r,:;.z z:mbe,
of MVZ instruction: F : 4 F : 5 D } 6 {negative)

In this example, the zone portions of each byte in NUMNEG are moved into the
corresponding zone portions of each byte in NUMPOS. As a result, the sign is
changed from positive to negative by moving a hexadecimal D into the high order four
bits of the rightmost byte of NUMPQS. The other two zone portions are replaced with
the same hexadecimal value.

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

9-80

MP

9.14. MULTIPLY DECIMAL (MP)

General Possible Program Exceptions
OPCODE | rormart ?NB;ECT Il ADDRESSING @ PROTECTION
TYPE LoTr. || H DATA (INVALID SIGN/DIGIT) [siGNIFICANCE
MNEM. |HEX. svTes) ||] DECIMAL DIVIDE B SPECIFICATION:
[J pecimaL oveERFLOW [0 NOTAFLOATING-POINT REGISTER
MP FC SS 6 {J execuTe [0 oP1NOTONHALF-WORD BOUNDARY
[EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
] [0 FIXED-POINT DIVIDE O op2NOT ON DOUBLEWORD
0 :z 2::3'{; Z%’Ss?;i%(: (] FIXED-POINT OVERELOW O BOUNDARY
ClIF RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
O)iF OVERFLOW, SET TO 3 [] OPERATION O op1NOT ODD NUMBERED REGISTER
Il UNCHANGED O none

The multiply decimal (MP) instruction algebraically multiplies the packed decimal
contents of operand 2 (multiplicand) by the packed decimal contents of operand 1
(multiplier) and stores the result (product) in operand 1. The receiving field (operand 1)
is filled from right to left.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] mpP

Implicit Format:

AOPERATION A l OPERAND

LABEL | 4
l s, (1)s,(1,)

[symbol] ‘ MP

Because the result replaces operand 1, you must ensure that the operand 1 field is
large enough to hold the product. This is determined by adding the number of bytes
required to hold the multiplicand to the number of bytes required to hold the
multiplier.

length of +
multiplicand

length of =
multiplier

length of
operand 1 (product)

if you use this rule, the multiplicand will have at least as many high order zeros as
the number of digits in the multiplier. These high order zeros prevent overflow from
occurring in the final result.

UP-8913 SPERRY UNIVAC 0S/3 9-81

ASSEMBLER Update B

The multiplier (operand 2) can be up to 8 bytes long which can consist of 15 digits
and a sign. The resultant product (operand 1) can be up to 16 bytes long which can
consist of 31 digits and a sign.

Example:
LABEL AOPERATIONA OPERAND
1 10 16 ‘
MP HOURS ,RATE

HOURS DC PLL4 LG

RATE 0C PL2'5¢@"

HOURS before execution T r T T

of MP instruction: 0 ; 0 0 : 0 0 : 4 0 : c Packed decimal number

RATE before and after T T _

execution of MP instruction: 510jotrtc Packed decimal number
ZZssumed decimal point

HOURS. after efxecution 0 : 0 2 { o 0 : 0 0 : C Packed decimal number

of MP instruction:] 1 i i

4 assumed decimal point

In this example, the length of operand 1 is determined by adding the number of bytes
required to hold the packed decimal 40 (2 bytes) to the number of bytes required to
hold the packed decimal 500 (2 bytes) which gives the total of 4 bytes. Then the
multiplication operation takes place operating from right to left. The product replaces
HOURS and the sign is determined algebraically. (In this example, positive x positive
= positive.)

Operational Considerations:
®m The operand 1 field must be large enough to hold the product.

m The operand 2 field is limited to 8 bytes in length and the operand 1 field is
limited to 16 bytes in length.

m Since a symbolic name references the leftmost or high order portion of a location
in main storage, overlapping bytes can exist in the rightmost bytes only.

If overlapping bytes exist in the leftmost portion, the number of bytes required to hoid
the multiplicand and the multiplier will be larger than the receiving field.

m The condition code remains unchanged.

m Multiplication by powers of 10 adds decimal places to a specified value.

UP-8913 SPERRY UNIVAC 0S/3 9-82

ASSEMBLER
PACK
9.15. PACK DECIMAL (PACK)
General Possible Program Exceptions
0PCODE | FormAT ?NBSJ':'E.CT [l ADDRESSING @ PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. @®yTes) || J DECIMAL DIVIDE (] SPECIFICATION:
[J bECIMAL OVERFLOW O NOTA FLOATING-POINT REGISTER
PACK | F2 §S 6 O execuTe O ©OP1NOT ONHALF-WORD BOUNDARY
] EXPONENT OVERFLOW O oP2NOT ONHALF-WORD BOUNDARY
Condition Codes 0 exPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
TIiF RESULT = 0 SETT0 o O] FIXED-POINT DIVIDE 0 oP2NOT ON DOUBLE-WORD
OiF RESULT<0“ SET TO 1 [J FIXED-POINT OVERFLOW O BOUNDARY
C)iF RESULT >0, SET TO 2 O] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
D”: OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER
#l UNCHANGED O ~none

The pack decimal (PACK) instruction converts data in operand 2 from unpacked format
to packed format. (See 9.1.) The result replaces operand 1.

Explicit Format:

LABEL | A OPERATION A l OPERAND

[symbol] | PACK ‘ d, (I,, b)), d, (I, b))

Implicit Format:

LABEL J AOPERATION A l OPERAND

[symbol] ’ PACK l s, (1), s, (1)

Any data that is to be used in decimal arithmetic must be stored in packed decimal
format before any arithmetic operations are performed. After your calculations are
processed, packed data must be changed back to unpacked (zoned decimal) format to
be sent to the printer or any other character sensitive device. Remember, when data
is input from an external device (i.e., card reader), the data is stored in zoned decimal
format. Operand 2, the sending field, is defined as a character type or zoned type
field. Operand 1, the receiving field, is defined as a packed field and should contain
enough bytes to receive all digits (plus the sign) from operand 2.

The formula for computing the number of bytes required to receive unpacked operand
2 data is:

number of bytes required for
(Number of byte; of operand 2) + L packed operand 1 field (round

upward to the nearest byte)

UP-8913

SPERRY UNIVAC 0S/3 9-83
ASSEMBLER

When the PACK instruction is executed, all zones in operand 2 are ignored except the zone
in the rightmost byte. That zone portion (the sign) and the digit portion are reversed and
placed in the rightmost byte of operand 1. Each digit in operand 2 is placed in operand 1
next to the rightmost byte, filling in from right to left. Any unfilled bytes or half bytes that
are part of the specified length for operand 1 are zero-filled. Any unfilled bytes that are not
part of the specified length for operand 1 remain unchanged.

Operational Considerations:

® Operand 2 data should be in zoned decimal format.
® Operand 1 should contain enough bytes to receive all digits (plus the sign) from
operand 2.
® This instruction operates from right to left.
® Any unfilled bytes or half bytes that are part of the specified length for operand 1 are
zero-filled.
® Any unfilled bytes that are not part of the specified length for operand 1 remain
the same.
® Specification of a length attribute for operands 1 and 2 is optional.
® The condition code remains unchanged.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
PACK AMTP(3) ,AMT (4)
AMT DC ZL4* 1234
AMTP DC PL3'@'
AMTP before execution T T —
of PACK instruction: 010} 010} 01 C Packed decimal number

AMT before and after

execution of PACK F 1] F1 2] F 1 3 c | 4| 2onedorunpacked
instruction: L ! ! ' decimal number
AMTP after execytion ::::d 4] : 1 2 = 3 4 : (o} Packed decimal number
of PACK instruction: 1 1]

UP-8913 SPERRY UNIVAC 0S/3 9-84
ASSEMBLER

In this example, the content of AMT (a 4-byte zoned decimal number) is packed into
AMTP (a 3-byte packed field of zeros). The sign and digit portions of the rightmost
byte of AMT are reversed and placed in the rightmost byte of AMTP. Then the next
digit (3) is placed next to the left of the rightmost byte. Then digit 2 is placed to the
left of digit 3 and digit 1 is placed to the left of digit 2. The high order four bits of
the leftmost byte are zero-filled. As you can see in this example, two decimal digits
occupy a single byte with the exception of the rightmost (sign) byte. Note that a
length attribute is specified for both operands in the examples. The length attribute
can be omitted but it is suggested it be included for clarity.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
PACK AMOUNT IN+1(2) ,AMOUNTIN(3)
AMOUNTIN DC c'768*
AMOUNTIN+1
AMOUNTIN before execution Fr 2l elel £ 8 .
of PACK instruction: 1 l { Zoned decimal number
N\
T T 7%
F } 7 F : 6 8 : F Zoned decimal number
AMOUNTIN during execution : : I :
of PACK instruction: F : 7 F : 6 8 : F Zoned decimal number
AMOUNTIN after execution F17 |7 e | § | ¢ | Partzonedand part
of PACK instruction: ' L L packed decimal number

This example shows that the content of AMOUNTIN (a 3-byte zoned decimal field) is
packed into part of itself (AMOUNTIN+1, a 2-byte zoned decimal field). The zone
portion (F) and digit portion (8) of the rightmost byte of AMOUNTIN are reversed and
placed in the rightmost byte of AMOUNTIN+1. The digits 6 and 7 are placed to the
left of the rightmost byte, 6 in the low order four bits and 7 in the high order four
bits. Because the leftmost byte of AMOUNTIN is not part of the resultant field, that
byte remains unchanged. Since AMOUNTIN is now a part zoned, part packed field,
you should move the packed decimal number to another field before performing any
mathematical calculations. Note that packing a number into itself is not considered
good practice since results are often unpredictable.

UP-8913 SPERRY UNIVAC 0S/3 9-85
ASSEMBLER
Example:
LABEL AOPERATIONA OPERAND
| 10 16
PACK INVAMT (5) , INVAMT (5)
INVAMT DC ZL5'-528p0"
INVAMT before execution T T T I T Zoned decimal
|
of PACK instruction: PP 2 FiB8 Fio]P 0] numbe
Pra
I L | i !
Fi1s| F12]|Fi18|Fto]|]o:pD
1 1 i 1
1
] T T T 1
F s | F | 2 | F I 8 | Fiofo ! D
INVAMT during l l , . | l
execution of Fi1868 | F1 2] F.8]8 0 o;o
PACK instruction: : l : Jl :
F15]| F : 2| Fi12]|810}0 1D
i 1 H i 1
T T T | T
F1 5} F12}85 12}{80)}0 1D
1 1 I 1 I
INVAMT after execution T J T ¥ T Packed decimal
of PACK instruction: S A B P O {5 1218910 0 number

The content of INVAMT (a 5-byte zoned field) is packed into itself. The zone portion
(D) and the digit portion (0) of the rightmost byte are reversed and returned to the
same byte. The remaining zones are ignored. The remaining digits are placed in
INVAMT starting next to the rightmost byte and filling each half-byte from right to
left. Because the full length of operand 1 is specified, the remaining unfilled bytes are

zero-filled.

UP-8913 SPERRY UNIVAC 0S/3 9-86

ASSEMBLER
SP
9.16. SUBTRACT DECIMAL (SP)
General Possible Program Exceptions
0PCODE | rormart ?NBSJ:.CT Il ADDRESSING B PROTECTION
TYPE LOTH. Il CATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. IHEX. (8yTes) || 0 DECIMAL DIVIDE (] SPECIFICATION:
8l DECIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
sp FB SS 6 (] execuTe 0 oP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW [0 or2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW 0 oP2NOT ON FULLWORD BOUNDARY
B AcSULT -0 SeTI00 [J FIXED-POINT DIVIDE 0 orP2NOT ON DOUBLE-WORD
11 HESULT<°',SET TO 1 O FIXED-POINT OVERFLOW O BOUNDARY
B F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
B IF OVERFLOW, SET TO 3 [J OPERATION OP 1 NOT ODD NUMBERED REGISTER
O UNCHANGED O ~none

The subtract decimal (SP) instruction algebraically subtracts the packed decimal
contents of operand 2 from the packed decimal contents of operand 1 and stores the
result in operand 1.

Explicit Format:

LABEL i AOPERATION A l OPERAND

[symbol] l SP l d,(l,,b,).d,(1,,b,)

Implicit Format:

LABEL l A OPERATION A | OPERAND

[symbol] ' sP ‘ s, (1,)5,(1,)

Operand 1 (minuend) and operand 2 (subtrahend) must be in packed decimal format.
The operand 1 field should be equal and in most cases larger than the size of
operand 2. If operand 1 is too short to contain the result (difference), an overflow
condition occurs. Subtraction is algebraic, concerning the signs and digits of both
operands. If the sign of operand 2 is negative, it is treated as positive; if positive, it is
treated as negative. Then, both operands are added together and the result is placed
in operand 1. The sign of the difference is determined by the rules of algebra. If the
result is smaller than the operand 1 field, any unfilled leftmost bytes are zero-filled.
On the other hand, if the result is larger than the operand 1 field, the leftmost bytes
of the result are truncated.

UP-8913 SPERRY UNIVAC 0S/3 9-87
ASSEMBLER

. Operational Considerations:
® Operands 1 and 2 must be in packed decimal format.

® The length of operand 1 should be equal to or larger than the length of operand
2.

8 Subtraction is algebraic.

Example:
LABEL AOPERATIONA OPERAND
] 10 16
sp GROSS (3) ,DEDUCT(3)

GROSS DC P'20008"

DEDUCT DC P'6g27"'

GROSS before execution | | Packed decimal number
‘ of SP instruction: 212125291 % 1€ (essumeddecimal point

DEDUCT before and after o : 6 0 I 2 7 : ¢ .Packed decimal number

execution of SP instruction: H M : (assumed decimal point)

GROSS after execution 1 13| gt 7| 3 1 ¢ | Packeddecimal number

of SP instruction: ! X ! (assumed decimal point)

In this example, the content of DEDUCT is subtracted from the content of GROSS.
The result replaces GROSS and, in this example, completely fills the operand 1 field.
The signs of both operands are positive which produces a positive result.

Example:

SP FIELD,FIELD+2(2)

FIELD DC P16249311 "

operand 1

D

T T T
3 ; 1 11 C Packed decimal number

i 1

FIELD before execution
of SP instruction:

operand 2
. {assumed decimal point)

FIELD after execution
of SP instruction:

(=]

b = of
N
H
©

Packed decimal number

e some cuarnf
—

N
H
o
o
.
o
;

UP-8913 SPERRY UNIVAC 0S/3 9-88

ASSEMBLER

Here is an example of setting the rightmost part of a field to zeros. The contents of
FIELD + 2 (a 2-byte field) are subtracted from the contents of FIELD (a 4-byte field).
The result replaces the rightmost two bytes of FIELD. The signs of both operands are
positive and by the rules of algebra produces a positive result. This instruction
operates from right to left. The SP instruction starts with the rightmost bytes of both
operands regardless of the differences in length. If you are concerned with whole
numbers only, you may want to zero-fill any undesired decimal places. This SP
instruction is used as a method to zero-fill any decimal places to the right of the
decimal point.

Example:
LABEL A OPERATIONA OPERAND
1 10 16
SP QTY, ITEMS
qQTY DC p'-25"
ITEMS DC pri2!
. i
QTY before execution o 12 5 : D Packed decimal number

of SP instruction: I |

|]

ITEMS_before an_d after i 0 1 2 1C Packed decimal number
execution of SP instruction: L 1
i | I

ary after exegutlon 0o 1 3 7 I D Packed decimal number
of SP instruction; 1 i

The SP instruction subtracts the contents of ITEMS (a 2-byte field) from the contents
of QTY (a 2-byte field). The result replaces QTY and a zero fills the leftmost unused
half-byte. The signs are different, however. Operand 2 is unsigned and assumed to be
positive. Since the sign of operand 2 is positive, it is treated as negative. Now, both
operands 1 and 2 are negative and are added together. The sign of the result is
negative since the rules of algebra determine that the sign of the operand with the
highest absolute value (in addition and subtraction) determines the sign of the result.

UP-8913 SPERRY UNIVAC 0S/3 9-89

ASSEMBLER

SRP

9.17. SHIFT AND ROUND DECIMAL (SRP)

General Possible Program Exceptions
OPCODE | roRrmAT ?NB;:.CT Jl ADDRESSING B PROTECTION
TYPE LaTH. Il OATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNeEM. [HEX. (8yTes) || O DECIMAL DIVIDE [0 SPECIFICATION:
B DECIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
SRP | FO 88 6 [] execuTe 0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW [0 oP2NOT ONHALF-WORD BOUNDARY
Condition Codes [exPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
[FIXED-POINT DIVIDE 00 oP2NOT ON DOUBLE-WORD
=:£ zizﬂtl 2%'53111%01 [FIXED-POINT OVERFLOW O BOUNDARY
B \F RESULT >0, SET TO 2 [J FLOATING-POINT DIVIDE . OP 1 NOT EVEN NUMBERED REGISTER
8 'F OVERFLOW, SETTO 3 [] oPERATION OF 1 NOT ODD NUMBERED REGISTER
[(JUNCHANGED O none

The shift and round decimal (SRP) instruction shifts a packed decimal number in main
storage, specified by operand 1, according to specifications contained in operand 2.
For right shifts, the instruction rounds the decimal result according to the byte of
immediate data contained in is. ‘

Explicit Format:

LABEL | A OPERATION A l OPERAND

[symbol] l SRP I d, (I,,b;).d,(b,),i,
Implicit Format:

LABEL l A OPERATION A | OPERAND

[symbol] ’ SRP I s, (l,),s.‘_,,i3

Operand 1 addresses a packed decimal number, the length (in bytes) of which is specified by
1. The SRP instruction can shift operand 1 left or right. Only the numeric portion of operand
1 participates in the shift; the sign does not change, although a sign digit of F is changed to
C by the instruction. The resulting number replaces operand 1; zeros are shifted in to
replace vacated digits.

UP-8913 SPERRY UNIVAC 0S/3 9-90

ASSEMBLER

Operand 2 specifies the number of half-bytes (packed decimal digits) to be shifted and
the direction of the shift. This information is taken from the low order six bits of
operand 2, which are treated together as a signed integer in twos complement form.
The integer can range in value from —32 (100000,) to +31 (011111,), where a
positive number indicates a shift to the left and a negative number a shift to the

right. Thus the integer:
000001 | (1)

specifies a 1-digit shift to the left while the integer

111101 | (—3)

whose twos complement is 3, indicates a 3-digit shift to the right.

Operand 3 contains the rounding factor used during right shifts. The factor is
decimally added to the last (or leftmost) digit shifted out of operand 1. Both factor and
digit are treated as positive. If this addition generates a carry digit, it is added to the
low order digit remaining in operand 1 (not the sign). Depending on the number in
operand 1, the carry may in turn generate other carry digits to its left. The rounding
factors generally used are: O for no rounding, and 5 for rounding. All digits shifted
out of operand 1 are lost.

Operational Considerations:

m Operand 1 must be a packed decimal number, the low order half-byte containing a C,
D, or F, or else a data exception will result. The sign remains unchanged but the SRP
instruction changes a sign digit of F (unsigned positive) to a sign digit of C (signed
positive).

m If operand 2 is an explicit address with a base register (b,) other than O, the SRP
instruction first calculates the address by adding the register contents to the
displacement (d,) then extracts its low order six bits to determine how to shift
operand 1. For an explicit address using O as its base register, the six bits are
taken directly from bits 42—47 of the SRP object code.

® You can specify operand 2 as an explicit address or as a symbol.

m For a right shift, you must specify operand 3 as a self-defining term; the usual
values are O or 5. For left shifts, operand 3 is ignored.

m For a specified length 1, the object code contains the value 1—1 in bits 8—11.
You can specify a maximum length of 16 bytes or 31 packed digits, plus sign.

UP-8913

SPERRY UNIVAC 0S/3

9-91

ASSEMBLER

Condition Code:

After execution of the SRP instruction, the condition code is set;

®» to O if operand 1 is zero;

m to 1 if operand 1 is less than zero;

® to 2 if operand 1 is greater than zero; or
m to 3 if one or more nonzero digits

is shifted out of the high order end of

operand 1; this can only occur during a left shift. If the decimal overflow mask
bit (bit 37) of the PSW is set to 1, an overflow generates a decimal overflow
exception in addition to setting the condition code to 3.

Example:
LABEL AOPERATIONA OPERAND
] 10 16
1 LA 9,3
2 SRP PNUM1(3),8(9),8
PNUM1 DC PL3'41@837"

In this example, the 3-byte packed decimal field PNUM1 has the value:

PNUM1 41

03 | 7C

The LA instruction in line 1 puts a value of 3 into register 9. The SRP instruction in line 2

uses operand 2 to form an address of:

Operand 2 address

.of which the low order six bits are:

00000003

o

0011

UP-8913 SPERRY UNIVAC 0S/3 9-92

ASSEMBLER
The value thus obtained is +3 which indicates a left shift of 3 digits. Following .
PNUM1 through its shifts:
0
{
First shift !— 10 37 ocC {condition code 3 set)
4
lost
l 0
{
Second shift l_ 03 70 ocC
1
lost
’ 0
{
Third shift 37 00 ocC {condition code 2 set)
0
lost
|

we get the final PNUM1 value of +37000. Notice that the C (positive) sign remains
unchanged throughout. Notice also that a decimal overflow sets condition code 3
(@assuming here that the decimal overflow exception is prevented) and that a positive
result sets condition code 2. Operand 3 plays no part in this shift. ‘

Example:
LABEL AOPERATIONA OPERAND
] 10 16
SRP PNUM2(4),61,5
PNUM2 DC PL4'-47998¢7"

In this example, the 4-byte packed decimal field PNUM2 has the value:

PNUM2 47 99 80 7D

uP-8913 SPERRY UNIVAC 0S/3 9-93
ASSEMBLER

Operand 2 in the SRP instruction yields an effective address of:

0000003D
the low order six bits of which are:
3 D
I
111 1101
]

The twos complement of this integer is 3 so the value represented is —3, indicating a right
shift of 3 digits. First, the SRP instruction performs two digit shifts in which the shifted-out
digits are simply lost: '

0

First shift I—~ 04 79 98 oD

\'-—-

lost

o |

Second shift I—‘ 00 47 99 8D

After the third and final shift, the resulting number is rounded according to the
rounding factor:

0
Third shift |—— 00 04 79 9?
|
l—-»S {last digit shifted out)
+ 5 {rounding factor)
ety
9
+1 (first carry digit)
First carry 00 04 79 oD
}
9 /
+1 (second carry digit)
Second carry 00 04 ZO oD
A
/
+1 (third carry digit)
‘ Third carry 00 04 80 oD

(no more carry digits}

UP-8913 SPERRY UNIVAC 0S/3 9-94
ASSEMBLER

When the final digit (8) is shifted out, it is added to the i3 rounding factor, 5. The
sum of 13 has a carry digit which is added to the low order digit of operand 1. This
action generates another carry digit which, when added to the next higher operand 1
digit, generates a third-carry digit. Because that digit, when added to the third
operand 1 digit, does not generate another carry digit, the SRP instruction ends there.
The condition code is set to 1 to indicate a negative result.

UP-8913 SPERRY UNIVAC 0S/3 9-95
ASSEMBLER

UNPK

9.18. UNPACK DECIMAL (UNPK)

General Possible Program Exceptions
orcooE | rormar ?NB;TE.CT fl ADDRESSING M PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. HEX. eyTes) || (] DECIMAL DIVIDE (] sPECIFICATION:
[0 becIMAL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
UNPK | F3 SS 6 [0 execuTe [0 oF1NOTON HALF-WORD BOUNDARY
0 EXPONENT OVERFLOW 0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes 0 EXPONENT UNDERFLOW | OP 2 NOT ON FULL-WORD BOUNDARY
TTiF ReSULT - 0. SET 700 [0 FIXED-POINT DIVIDE [0 oP2NOT ON DOUBLE-WORD
OF RESULT <0, SET TO 1 (J FIXED-POINT OVERFLOW 0 BOUNDARY
CliF RESULT >0, SET TO 2 (] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
C]iF OVERFLOW, SET TO 3 [OPERATION 0O oP1NOT ODD NUMBERED REGISTER
B UNCHANGED [0 none

The unpack decimal (UNPK) instruction converts data in operand 2 from packed format
to unpacked (zoned decimal) format. (See 9.1.) The result replaces operand 1.

Explicit Format:

LABEL l A OPERATION A l OPERAND

[symbol] l UNPK l d, (i, .b,)d,(l,,b,)
Implicit Format:

LABEL l AOPERATION A l OPERAND

[symbol} ’ UNPK l s, (13).5,(1,)

Data that is to be printed or sent to any other character-sensitive device must be
stored in zoned decimal format. Operand 2, the sending field, is defined as a packed
field. Operand 1, the receiving field, is defined as a character type or zoned type field.
Operand 1 should contain enough bytes to receive all digits, a zone for each digit,
and the sign from operand 2.

The formula for computing the number of bytes required to receive packed operand 2
data is:

(Number of bytes of operand 2) x 2 —1= number of bytes required
for unpacked operand 1
field.

UP-8913 SPERRY UNIVAC 0S/3
ASSEMBLER

9-96

The UNPK instruction reverses the zone and digit portion (the sign) of the rightmost
byte of operand 2 and places it in the rightmost byte of operand 1. Each half byte of
operand 2 is moved to a digit portion and a hexadecimal F (binary 1111) fills each
zone portion in operand 1. The move takes place from right to left, consecutively. Any
unfilled bytes that are part of the specified length for operand 1 are zero-filled. If the
operand 1 field is too short, the leftmost bytes of operand 2 are truncated.

Operational Considerations:

m QOperand 2 data should be in packed decimal format.

® Operand 1 should contain enough bytes to receive all digits, a zone for each

digit, and the sign from operand 2.

® This instruction operates from right to left.

8 Any unfilled bytes that are part of the specified length for operand 1 are zero-

filled.

m Specification of a length attribute for operands 1 and 2 is optional.

® The condition code remains unchanged.

Example:
LABEL AOPERAT|ONA OPERAND
] 10 16
UNPK TOTALU(3) ,TOTALP(2)
TOTALU DS cL3
TOTALP DC P'125"

TOTALU before execution

6 Dt 2 Leftover data from a previous page

5 1 C Packed decimal number

2 c !5 Unpacked decimal number

of UNPK instruction: 5 E cl 71
TOTALP before and after T ;
execution of UNPK instruction: '
TOTALU after execution F : 1| e
of UNPK instruction: 1

UP-8913 SPERRY UNIVAC 0S/3 9-97
ASSEMBLER

The UNPK instruction changes the packed format of TOTALP to unpacked format and
places the result in TOTALU. The zone (5) and digit (C) porticns of TOTALP are
reversed and placed in the rightmost byte of TOTALU. The digit 2 fills the digit
portion and a hexadecimal F fills the zone portion next to the rightmost byte. Then
the digit 1 fills the digit portion and a hexadecimal F fills the zone portion to the left
of the byte just filled. As you can see, the field requiring 2 bytes to store the original
packed data now requires 3 bytes to store the same data but in unpacked format.
Note that a length attribute is specified for both operands, although it can be omitted.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
UNPK TOTAMT , TOTAMT
TOTAMT DC P'1234!

TOTAMT before execution : Y T .
of UNPK instruction: 0 | 1 2 ; 3 4 '1 (o] Packed decimal number

TOTAMT during execution T T T
of UNPK instruction: | I]

I F F 3 cC | 4

TOTAMT after execution £ | '
of UNPK instruction: L 1 1

The UNPK instruction reverses the zone (4) and digit (C) portions and returns it to the
same byte. The next half byte (3) replaces the digit portion and a hexadecimal F fills
in the zone portion next to the half byte just filled. No length attributes are specified,
so the implied lengths are used. As you can see, the result received is not the result
expected. So, remember that unpacking a number into itself is not considered good
practice because some results are often unpredictable.

UpP-8913 SPERRY UNIVAC 0S/3 9-98
ASSEMBLER

ZAP

9.19. ZERO AND ADD DECIMAL (ZAP)

General Possible Program Exceptions
oPcODE | rormar ?NBSJ:.CT [l ADDRESSING Ml PROTECTION
TYPE LGTH. B OATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. [HEX. (evTEes) || (] DECIMAL DIVIDE (0 sPeECIFICATION:
Il bECIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
ZAP | F8 $S 6] execuTE [0 oP1NOTON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B r neSULT -0 sETTo o [J FIXED-POINT DIVIDE 80 op2NOT ON DOUBLEWORD
o RESULT<0', SET TO 1 [OJ FIXED-POINT OVERFLOW O BOUNDARY
W5 RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
Ml IF OVERFLOW, SET TO 3 [] OPERATION 0 op1NOT ODD NUMBERED REGISTER
[UNCHANGED O ~nonEe

The zero and add decimal (ZAP) instruction moves a packed field of zeros into operand
1 and then adds the packed contents of operand 2 to the packed field of zeros in
operand 1. The result replaces operand 1.

Explicit Format:

LABEL | AOPERATION A I OPERAND

[symbol]] ZAP l d,(l,,b,)d,(l,.b,)
implicit Format:

LABEL I AOPERATION A l OPERAND
[symbol] | zAP | spl13)s,015)

This instruction operates in the same manner as the add decimal (AP) instruction
except that a packed field of zeros is moved into operand 1 before the addition
occurs. The sign of the packed field of zeros is positive. After the addition takes place
the resuitant sign is the same as operand 2. If operand 2 does not have a valid sign
in the low order four bits, a data exception occurs. If an overflow condition occurs
and the leftmost bytes are truncated, a zero result still has the sign of operand 2. In
effect, the ZAP instruction replaces operand 1 with the contents of operand 2. The
length of operand 1 should be the same as, or larger than, the length of operand 2.
if the operand 1 field is not sufficient to receive all of operand 2, an overflow
condition occurs. Operands 1 and 2 can have overlapping bytes when the rightmost
byte of operand 1 coincides with, or is to the right of, the rightmost byte of operand
2, provided a valid sign exists in the low order four bits of operand 2.

UP-8913 SPERRY UNIVAC 0S/3 9-99
ASSEMBLER

Operational Considerations:
m Operand 2 must be in packed decimal format.

s If the length of operand 2 is larger than the length of operand 1, the leftmost
digits of operand 2 are truncated.

= |f the length of operand 1 is larger than operand 2, the leftmost digits of operand
1 are zero-filled.

®8 Operand 2 must have a valid sign in the low order four bits.
Example:

LABEL AOPERATIONA OPERAND
1 10 16

ZAP TOTAMT, YTDAMT

TOTAMT DC P'528416'
YTDAMT DC P'215!'

TOTAMT before execution .
of ZAP instruction: VI 2

8 4 1 6 | c | Packed decimal number

N

1 5 C Packed decimal number

execution of ZAP instruction:

TOTAMT after execution olol o
of ZAP instruction:

0 2

]
|
i
YTDAMT before and after T
1
|
: 1 51 C Packed decimal number

el e

In this example, the ZAP instruction moves a packed field of zeros into TOTAMT and
then adds the contents of YTDAMT to TOTAMT. As you can see, the contents of
YTDAMT now replaces the contents of TOTAMT. In this sample program, TOTAMT
contains a year’s total amount of sales, while YTDAMT contains the accumulative
amount of sales. At the end of 12 months, when the maximum amount of sales for
the year is reached, TOTAMT must be cleared to zero, so that the amount of sales
for the first month of the next year can be accumulated.

Example:

MVC CALC+1 (1) ,=P")"
ZAP CALC+1(2) ,CALC(2)

CALC DC P'2512h’

UP-8913 SPERRY UNIVAC 0S/3 9-100
ASSEMBLER
CALC before execution : 5) :) s : Packed decimal mumber
« N ac ectimal n
of MVC instruction: I] 1
operand 1
w
CALC after execution : s | 1 : c |l a |[
of MVC instruction:]]]
———— i
d2
operand 2 opelran T
2 : 5 1 1 C {stored)
1
. . : |
CALC during execution t 5|0 0] o1 Packed field of zeros
of ZAP instruction: 1 I 1
CALC after execution ! ! l)
. . 21 5 2 | 5 11 Packed decimal number
of ZAP instruction:; 1] i

In this example, operands 1 and 2 have one overlapping byte. The rightmost byte of
CALC+1(2) (operand 1) is to the right of the rightmost byte of CALC(2) (operand 2).
When the ZAP instruction is executed, a packed field of zeros with a positive sign is
moved into operand 1. Then, the contents of operand 2 that has been saved prior to
the execution of the ZAP instruction is now added to the packed field of zeros. In
effect, the contents of operand 2 now replace the contents of operand 1.

UP-8913 SPERRY UNIVAC 0S/3 10-1
ASSEMBLER

10. Fixed-Point Binary Instructions

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS

If the fixed-point binary instruction set (RX, RR, or RS) is compared to the decimal
instruction set (SS or Sl), you will discover that the difference between storage-to-
storage type instructions and register type instructions is the location of the
instruction operands. Both operands for decimal instructions are contained in main
storage, while the operands for fixed-point instructions are either both in the
processor or one in the processor and one in main storage. Any instruction operands
located in main storage are transferred to the processor before execution. In fixed-
point binary instructions, the RR type requires no transfer of operands, while the RX
and RS types require transfer of only one. In decimal instructions, both operands are
always transferred. This explains why execution time of fixed-point binary instructions
is faster than execution time of decimal instructions.

Execution time gained by arithmetic binary instructions over decimal instructions is
lost, however, in the data conversion process. Both instruction sets must convert card
input data in zoned decimal format (EBCDIC) to a data format acceptable to the
instruction set. Decimal instruction input data must be converted to packed decimal
format; fixed-point binary instruction input data must be converted to binary format.

Conversion to packed format is faster than conversion to fixed-point binary format
because binary conversion requires an additional instruction that has a slower
execution time. To get input data into packed format, you use the PACK instruction; to
output packed data, you must first unpack it with the UNPK or ED instruction. When
converting input data to binary, the data must be packed first, then converted to
binary (using the convert to binary (CVB) instruction). On output, data must be
converted to packed decimal (using the convert to decimal (CVD) instruction) and then
converted to unpacked or zoned decimal format. For input conversion, fixed-point
binary instructions execute slower than decimal instructions. For a comparison of the
execution times for decimal and fixed-point instructions, see the system hardware and
software summary.

UP-8913 SPERRY UNIVAC 0S/3 10-2
ASSEMBLER

Fixed-point instructions should be used in programs having less input data and more
arithmetic calculations, whereas decimal instructions should be used in programs
having more input data and less arithmetic calculations. This is why binary
instructions are used in the design of FORTRAN compilers and decimal instructions
are used in the design of COBOL compilers.

There are 16 general registers located inside the processor that can be used as
operands in fixed-point instructions. A decimal number (O through 15) is used to
reference a register. This is similar to using labels when referencing main storage
locations.

For all fixed-point instructions, operand 1 always references a register with the
exception of the add immediate (Al) instruction, whose operands both reference main
storage locations. The operand 1 register is usually the receiving field or resultant
field after an instruction is executed. For the store (ST) and convert to decimal (CVD)
instructions, however, operand 2 (a main storage location) is the resultant field. In
fixed-point instructions, operand 2 references either a register (RR), or a main storage
location (RX or RS). The compare instructions do not have a resultant field, since they
test already existing conditions and have no effect on operands 1 and 2.

To bring data from main storage into a register, it must be compatible with the
structure of the register. A register is four bytes in length and uses 32 binary bits to
represent a signed binary number. The high order bit position represents the sign. A
binary 1 in the high order bit position represents a negative number, whereas a
binary O in the high order bit position represents a positive number.

REGISTER (4 bytes)

o ZO~w

1 31

There are two ways to create data in fixed-point binary format:

1. Use the convert to binary (CVB) instruction to convert a packed decimal number
to a fixed-point binary number which is placed in a register.

2. Use the define constant (DC) statement to create a constant that is defined as a
half word, full word, or double word, or a constant that is aligned on a half-
word, full-word, or double-word boundary. This constant is then placed in a
register through execution of another instruction [i.e., Add (A), Load (L), Subtract

(S).

UP-8913 SPERRY UNIVAC 0S/3 10-3
ASSEMBLER Update B

HALF WORD (2 bytes)

S
1
G
N
0 1 15
FULL WORD (4 bytes)
S
1
G
N
o1 31
DOUBLE WORD (8 bytes)
S
|
G
N
0l] 63

As shown, these formats are compatible with the formats of registers. Since registers
are full words (4 bytes), only full words or half words in main storage (or other
registers) can be specified as operand 2. When a half word value in main storage is
specified as operand 2, a full 4 bytes are used when that instruction is executed.
Operand 2 is expanded to 32 bits by propagating the sign bit value through the 16
high order bit positions. Expansion occurs after the operand is obtained and before
insertion, comparison, or any mathematical calculations are performed with the
register.

10.1.1. Half-Word Fixed-Point Constants

The character H is the definition type used for defining half-word fixed-point constants in
main storage. The constants associated with this definition type must be enclosed within
apostrophes, cannot exceed more than five decimal digits, and cannot have a value greater
than +32767 (2'5—1) or less than —32768 (—2'5). Half-word constants are two bytes in
length and aligned on a half-word boundary. If the constant specified does not occupy the
full two bytes, it is right-justified and the high order unused bits are filled with the sign
bit. Duplication factors can be used and the nominal value can be a signed or unsigned
decimal number. Because the length of a half word is always two bytes, no length factor is

required. If a length factor is specified, half-word boundary alignment is ignored and the
specified length is allocated.

Example:
LOC. OBJECT CODE L INE SOURCE STATEMENT
000002 39 L pLUSI DC HL1'+57"
000003 00
000004 0039 5 PLUS2 DC H'G7!
000006 C7 6 NEGI DC HL1'-57!
000007 00
000008 FFC7 7 NEG2 DC H'-57'

UP-8913 SPERRY UNIVAC 0S/3 10-4

ASSEMBLER Update B

10.1.2. Full-Word Fixed-Point Constants

The character F is the definition type used for defining full-word fixed-point constants in
main storage. The constant associated with this definition type must be enclosed within
apostrophes, cannot exceed more than 10 decimal digits, and cannot have a value greater
than +2,147,483,647 (23'—1) or less than —2,147,483,648 (—23'). Full-word constants
are four bytes in length and aligned on a full-word boundary. If the constant specified does
not occupy the full four bytes, it is right-justified and leftmost unused bits are filled with
the sign bit. Duplication factors can be used and the nominal value can be a signed or
unsigned decimal number. Because the length of a full word is always four bytes, no
length factor is required. If a length factor is specified, full-word boundary alignment is
ignored and the specified length is allocated.

Example:
LoC. OBJECT CODE LINE SOURCE STATEMENT
00000A 010F 8 PLUS3 DC FL2'+271"!
00000C 0000010F 9 PLUSK DC F'271"
000010 FEF] 10 NEG3 DC FL2'-271!
000012 0000
000014 FFFFFEF] 11 NEG4 DC F'-271"

10.1.3. Address Constants

Address constants are storage addresses that are stored as constants by using DC
statements. Address constants are used to initialize base registers; thereby, providing
communication between control sections of a multisection program. Unlike other types of
constants, an address constant is enclosed within parentheses. If more than one address
constant is specified, they are separated by commas, and the entire sequence is enclosed
within parentheses. There are two types of address constants: half word (Y) and full word
(A).

10.1.3.1. Full-Word Address Constants

This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of four bytes and is full-word boundary aligned. You cannot
specify a value greater than +2,147,483,647 (23'—1) or less than —2,147,483,648 (—231).
To generate full-word address constants, use the DC statements with the character A as
the definition type and the expressions specified enclosed within parentheses. You can
also generate full-word address constants as literals. The address of these expressions are
stored in consecutive full words in main storage. However, if a length factor is specified,
full-word boundary alignment is ignored and the specified length is allocated.

UP-8913 SPERRY UNIVAC 0S/3 10-5

ASSEMBLER Update B

. Example:

LOC. OBJECT CODE ADDRT ADDR2 LINE SOURCE STATEMENT

000002 5 TAG DS cL3

000005 6 HOURS DS cL2

000007 7 RATE DS CLY

000008 8 PAY DS cL3

00000E 9 LABEL DS cLé6

000014 10 TAGI DS cL3

000017 11 BUF DS cLL

000018 12 TAG2 DS cL3

00001E 13 ADLIST DS cL20

000032 0000

000034 0000006A 14 ADCONI DC A(106,TAG,*+526)

000038 00000002

00003C 0000024A

000040

000040 00000007 15 ADCON2 DC A(RATE,HOURS, PAY)

000044 00000005

000048 00000008

00004C

00004C 9858 3056 00058 16 ADCON3 LM 5,8,=A(88,LABEL, TAG|-TAG2,BUF+64}

000050 0000001E 17 ADCON4 DC A(ADLIST)

10.1.3.2. Half-Word Address Constants

. This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of two bytes and is half-word boundary aligned. You cannot
specify a value greater than +32767 (2'5—1) or less than —32768 (—2'5). To generate
half-word address constants, use the DC statements with the character Y as the definition
type and the expressions specified enclosed within parentheses. You can also generate
half-word address constants as literals. The addresses of these expressions are stored in
consecutive half words in main storage. However, if a length factor is specified, half-word

boundary alignment is ignored and the specified length is allocated.

Example:

LOC. OBJECT CODE LINE SOURCE STATEMENT

000002 500C 5 VALUE DC PL2'500"

000004 00000001 6 NUM DC F'ye

000008 F3F6F2 7 POS DC X'F3F6F2!

00000B 60 8 NEG DC cLy'-8

00000C F6F2F4F7CO 9 ZONE DC ZL5'62470"

000011 00

000012 000B 10 ADCONY! DC Y (NEG,POS)

000014 0008

000016

000016 0116 11 ADCONY2 DC Y (*+256,600)

000018 0258

00001A 0008 12 ADCONY3 DC Y (VALUE+6)

00001¢C

00001C 00139000A 13 ADCONYL4 DC Y (25,Z0NE-VALUE ,NUM,POS+4)
. 000020 000k

000022 000C

000024

UP-8913 SPERRY UNIVAC 0S/3 10-6
ASSEMBLER

10.1.4. Representation of Positive and Negative Fixed-Point Binary Numbers

Binary ones and zeros, with relation to their positions in a string of bits, represent
values expressed in powers of two (see Appendix C.3). The powers of two increase
from right to left (Figure 10—1). A zero (0) bit indicates no value and a one (1) bit
indicates that a value exists. By adding all the powers of two that correspond to one
bits, you can determine the decimal equivalence for a positive binary number. A zero
bit in the high order bit or any unused high order bits signify a positive binary
number.

+ sign

U T T
0100111010{1100!0101
1 1 M

0 78 15
(powers :
of two) 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
(binary O 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1
configuration) | I_ 1 (20)
4 (29
64 (25
A 128 (27))
512 (29)
2048 (211
4096 (219
6853 (decimal
equivalent)

Figure 10—1. Comparison of Binary Numbers and Values Expressed in Powers of 2

Negative binary numbers are indicated by a one bit in the high order bit position or
any unused high order bit positions. The remaining portion contains the negative
binary number but in twos complement form. To change a positive binary number into
twos complement form:

] reverse the bits; and

® add one to the rightmost or low order bit position:

0001101011000101 positive binary number
(decimal + 6,853)
1110010100111010 reversed bits
+1 add 1
1110010100111011 binary number in twos complement form

(decimal — 6,853)

UP-8913 SPERRY UNIVAC 0S/3 10-7

ASSEMBLER
A
10.2. ADD (A)
General Possible Program Exceptions
OPCODE FoRMAT ?NBSJTECT B ADDRESSING B PROTECTION
TvPE LGTH. [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. 1HE X (gvTES) || [] DECIMAL DIVIDE I SPECIFICATION:
[bECIMAL OVERFLOW O NOT A FLOATING-POINT REGISTER
A 5A RX 4 [0 execuTe (] o©P1NOTONHALF-WORD BOUNDARY
[EXPONENT OVERFLOW [J oOP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW | OP 2 NOT ON FULL-WORD BOUNDARY
- 0 FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
=:£ gizzg 2%'35?;1%2 M FIXED-POINT OVERFLOW 0 BOUNDARY
B iF RESULT >0 SET TO 2 [] FLOATING POINT DIVIDE . OP 1 NOT EVEN NUMBERED REGISTER
B F OVERFLOW, SET TO 3 [] OPERATION OP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED O ~onNEe

The add (A) instruction algebraically adds the full-word main storage contents of
operand 2 to the contents in the operand 1 register and stores the sum in operand 1.

Explicit Format:

LABEL ‘ A OPERATION A 1 OPERAND

[symbol] l A ry.dy(x;,b,)

Implicit Format:

LABEL l A OPERATION A l OPERAND

[symbol] ‘ A l rys8,(x;)

Operational Considerations:
® Any of the general registers (O through 15) can be used as operand 1.

m Operand 2 must either be defined as a full word or aligned on a full-word
boundary.

s [|f the sum exceeds 31 bit positions, an overflow condition occurs.

UP-8913 SPERRY UNIVAC 0S/3 10-8

ASSEMBLER
Example:
LABEL AOPERATIONA OPERAND
1 10 16
SR 6,6
A 6,FULLWORD
FULLWORD DC F'+271°

Register 6 before execution of A instruction:

| i I |
0000000010000 | 0000 | 0000 0000 | 0000 , 0000 binary
| +

¢ } t
o:oooo;ooo hex

FULLWORD before and after execution of A instruction:

L
T

1 0| F hex
1

] | T
00000000 {0000 | 0000 0000:0001 00001111 binary
i 1

0 0

T T
o! o 0 |
{ 1

Register 6 after execution of A instruction:

] H T T
000010000 0000;0000 000010001 [000011111 binary
1 | 1
1
|
L

T T T
o:o ol of| o1 1 O:F hex
! !

in this example, the SR instruction subtracts the content of register 6 from itself,
clearing it to zero. Then the content of FULLWORD is added to the content of register
6. The result replaces the content of the operand 1 register.

UP-8913 SPERRY UNIVAC 0S/3 10-9

ASSEMBLER
AR
10.3. ADD (AR)
General Possible Program Exceptions
oPCODE | rormat ?NB;TE.CT [] ADDRESSING O proTECTION
TYPE LoTH. [] DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. [HEX. 8yTEes) || (] DECIMAL DIVIDE [SPECIFICATION:
O beECIMAL OVERFLOW 0 W~NOTA FLOATING-POINT REGISTER
AR 1A RR 2 [J ExecuTE] OP 1 NOT ON HALF-WORD BOUNDARY
[] EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [J EXPONENT UNDERFLOW [0 oP2NOT ON FULL-WORD BOUNDARY
B AtooLT -0 SETTO 0 [J FIXED-POINT DIVIDE O opP2NOT ON DOUBLE-WORD
B iF RESULT <0, SET TO 1 B FiIXED-POINT OVERFLOW O BOUNDARY
B \F RESULT >0 SET TO 2 O] FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B F OVERFLOW, SET TO 3 [] oPERATION O op1NOT ODD NUMBERED REGISTER
CJUNCHANGED O none

The add (AR) instruction algebraically adds the contents of the operand 2 register to
the contents of the operand 1 register and stores the sum in operand 1.

Explicit and Implicit Format:

LABEL ' AOPERATION A | OPERAND

[symbol] ’ AR ’ ryoly

Operational Considerations:
® Any of the general registers (0O through 15) can be used as operands 1 and 2.

s |If the sum exceeds 31 bit positions, an overflow condition occurs.

Example:
LABEL AOPERATIONA OPERAND
1 10 16
L 5,NUMI
L 6 ,NUM2
AR 5,6
NUMI DC Fra2!

NUM2 DC F'16'

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

10-10

Register 5 before execution of AR instruction:

1
000010000
]

I
000010000

I
0000,

0000

T
000110110
|

ol o
1

T
ol o
1

0

O

0

1
11 6
i

Register 6 before and after AR instruction:

T
00000000

|
0000|0000

0000

0000

I
00010000
[l

0 0

0 0

0

L]
i
il
T
|
1

0

11 0
1

Register 5 after execution of AR instruction:

0000 :oooo

T
000010000
1

T
00001

0000

T
0010:0110

ol o0
1

ol o
1

0!
|

0

2 6

In this example, the contents of NUM1 is loaded into register 5 and the contents of
NUM2 is loaded into register 6. Then, the contents of register 6 is added to the
contents of register 5. The result is placed in register 5 (operand 1). Notice that both

NUM1 and NUM2 are full words.

binary

hex

binary

hex

binary

hex

UP-8913 SPERRY UNIVAC 0S/3 10-11

ASSEMBLER
AH
10.4. ADD HALF WORD (AH)
General Possible Program Exceptions
OPCODE FORMAT ?NB;$CT W ADDRESSING B PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT)| [J SIGNIFICANCE
MNEM. |HEX. (8YTEs) || (] DECIMAL DIVIDE B SPECIFICATION:
[J bECcIMAL OVERFLOW [0 NOTAFLOATING-POINT REGISTER
AH 4A RX 4 [0 execuTe {0 oP1NOTONHALF-WORD BOUNDARY
[J EXPONENT OVERFLOW M or2NOT ON HALF-WORD BOUNDARY
Condition Codes {0 EXPONENT UNDERFLOW O OP 2 NOT ON FULL-WORD BOUNDARY
[FIXED-POINT DIVIDE 00 op2NOT ON DOUBLE-WORD
=:£ 25:3::: 2%;'21:%2 B FIXED-POINT OVERFLOW O BOUNDARY
Blif RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE O OP 1 NOT EVEN NUMBERED REGISTER
Bl \F OVERFLOW, SET TO 3 [] OPERATION OP 1 NOT ODD NUMBERED REGISTER
[JUNCHANGED (J nonNe

The add half-word (AH) instruction algebraically adds the contents of operand 2 to the
contents of the operand 1 register and puts the sum in operand 1.

Explicit Format:

LABEL I AOPERATION A I OPERAND

[symbol] I AH ‘ r,.d, (x2 b,)

Implicit Format:

LABEL l A OPERATION A l OPERAND

[symbol] I AH I ry8,(x,)

Operand 2 is two bytes in length (16-bit signed integer) and is located in main
storage. Before operand 2 is added to the operand 1 register, operand 2 is temporarily
expanded to 32 bits by propagating the sign bit through the high order 16 bit
positions. Then all 32 bits of operand 2 are added to the 32 bits of operand 1. The
result is placed in operand 1. If the sum exceeds 31 bits, an overflow condition
occurs.

Operational Considerations:
® Operand 2 must be either defined as a half word or half-word boundary aligned.
® Any of the general registers (O through 15) can be used as operand 1.

m A fixed-point overflow condition can occur.

UP-8913 SPERRY UNIVAC 0S/3 10-12

ASSEMBLER
Example:

LABEL AOPERAT1ONA OPERAND
I 10 16

L 5, FULLWORD

AH 5. HALFWORD
FULLWORD DC Fr32
HALFWORD DC H'16!

Register 5 before execution of AH instruction:

i | I
00000000 {0000 0000|0000 | 0000|0010 ;0000 binary

0 hex

b 4

o! o ol o] o] o 2
1 1 1

HALFWORD before and after execution of AH instruction:

before expanding to 32 bits
. ™
T oI "T T T i
10000 ; 0000 {0000 {0000 | 0000 ; 0000 | 0001 10000 binary
1 i i i
f T T +
1 0 O L ol o ol 0 1
I U SR - 1

I

after expanding to 32 bits

(1] hex

ho s = e

Register 5 after execution of AH instruction:

T H | !
0000 | 0000 (0000 10000 | 0000 ;0000{0011 :0000 binary
1 1

ooo:o o{o 3}0 hex

|
i

In this example, the content of FULLWORD is loaded into register 5. Then the content
of HALFWORD is added to the content of register 5. The result is placed in register 5
(operand 1). If the sum exceeds 31 bits, an overflow condition occurs.

uP-8913 SPERRY UNIVAC 0S/3 10-13

ASSEMBLER
Al
10.5. ADD IMMEDIATE (Al)
General Possible Program Exceptions
0PCODE | romrmar IONBSJTECT]} ADDRESSING B PROTECTION
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. (8vTEs) || (] DECIMAL DIVIDE B SPECIFICATION:
[J peEcIMAL OVERFLOW [J NOTAFLOATING-POINT REGISTER
Al 9A si 4 [ExXECUTE 8l OP1NOTONHALFWORD BOUNDARY
] EXPONENT OVERFLOW (0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW (J. oP2NOT ONFULL-WORD BOUNDARY
B r oo o ST o0 [] FIXED-POINT DIVIDE 0 op2NOT ON DOUBLE-WORD
B r ResuLT <O, SET TO 1 B FiIXED-POINT OVERFLOW O BOUNDARY
B \F RESULT >0 SET TO 2 [] FLOATING POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
B 'F OVERFLOW, SET TO 3 [] OPERATION J oP1NOT ODD NUMBERED REGISTER
[J UNCHANGED O ~oNE

The add immediate (Al) instruction algebraically adds the 1-byte immediate data in
operand 2 to the half word value in operand 1. The sum is placed in operand 1.

Explicit Format:

LABEL | AOPERATION A | OPERAND

[symbol] ’ Al ’ d, (b,)i,

Implicit Format:

LABEL l A OPERATION A | OPERAND

[symbol] l Al Sq 4y

Operand 1 must be either defined as a half word or is half-word boundary aligned.
Operand 2 must be a 1-byte self-defining term. Before operand 2 is added to the half
word in operand 1, operand 2 is temporarily expanded to 16 bits by propagating the
sign bit through the high order 8 bit positions. Then all 16 bits in operand 2 are
added to the 16 bits in operand 1. The result is placed in operand 1. If the sum
exceeds 15 bit positions, an overflow condition occurs.

UP-8913 SPERRY UNIVAC 0S/3 10-14
ASSEMBLER

Operational Considerations:

® Operand 1 must be either defined as a half word or aligned on a half-word
boundary.

8 During execution of the Al instruction, operand 2 is temporarily expanded to 16
bit positions. The leftmost eight bits are the same as the sign bit.

® Operand 2 must be a 1-byte, self-defining term (see 4.4).

B You may not specify an immediate value greater than +127 (27—1) or less than
—128 (—27) in operand 2.

s |f the sum exceeds 15 bit positions, an overflow condition can occur.

Example:
LABEL AOPERAT IONA OPERAND
1 10 16
Al STORAGE, 1
STORAGE DC H'3!

STORAGE before execution of Al instruction:

| 1
0000 {0000 |0000 10011 binary
I

ol o 0
1

3 hex

Operand 2 immediate before and after execution of Al instruction:

T
0000 :0001 binary

0: 1 hex

STORAGE after execution of Al instruction:

T T
0000 10000 0000 10100 binary
] |

ol o ol 4 hex
1 1

In this example, the immediate value in operand 2 is added to the half-word value in
STORAGE. The result replaces the contents of STORAGE.

UP-8913 SPERRY UNIVAC 0S/3 10-15

ASSEMBLER
C
10.6. COMPARE (C)
General Possible Program Exceptions
0PCODE | rormaT ?NB;ﬁCT i ADDRESSING BB PROTECTION
PR Lorh. [] DATA (INVALID SIGN/DIGIT) | [] SIGNIFICANCE
MNEM. |HEX. (svtes) || O bECIMAL DIVIDE [SPECIFICATION:
00 becIMAL OVERFLOW (0 NOTA FLOATING-POINT REGISTER
¢ 59 RX 4 O execuTe 0 oF1NOTON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW O oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [0 EXPONENT UNDERFLOW B 0oP2NOTON FULL-WORD BOUNDARY
B rr S OFERAND 2 SETTO0 [FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
| e+ <operanp 2, sET TO 1 [FIXED-POINT OVERFLOW 0 BOUNDARY
B 'F 1| > OPERAND 2, SET T0 2 [] FLOATING.POINT DIVIDE g OP 1 NOT EVEN NUMBERED REGISTER
{JIF OVERFLOW, SET TO 3 [J OPERATION OP 1 NOT ODD NUMBERED REGISTER
[J UNCHANGED 3 none

The compare (C) instruction algebraically compares the contents in the operand 1
register to the full word in operand 2. The result determines the setting of the
condition code. (See condition code settings, 8.4.)

Explicit Format:

LABEL J A OPERATION A I OPERAND

[symbol] ' Cc I r,d,(x,.b,)

Implicit Format:

LABEL L AOPERATION A i OPERAND

[symbol] ‘ Cc ‘ r,S,(x,)

The operand 1 register is compared to a 32-bit signed integer (operand 2) located on
a full-word boundary in main storage. The result of the comparison determines the
setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

if operand 1 = operand 2, set to O.

If operand 1 < operand 2, set to 1.

If operand 1 > operand 2, set to 2.

UP-8913 SPERRY UNIVAC 0S/3 10-16

ASSEMBLER
Usually, a conditional branch instruction tests the resulting condition code for an
equal to zero, less than zero, or greater than zero condition. If the condition is met, a .

branch takes place. If not, the program continues processing as shown in the
following coding instruction.

Operational Considerations:
= Any of the general registers (0O through 15) can be used as operand 1.

® QOperand 2 must be either defined as a full word or aligned on a full-word
boundary.

® Neither operand is changed by the execution of the instruction.

Example:

LABEL AOPERATIONA OPERAND
1 10 16

SR 7,7

L 5 ,AMOUNT

c 5,FULLWORD

BE ROUT INE

A 6,=F'1"'
ROUTINE AR 7,5
FULLWORD DC F'32°'
AMOUNT DC F'32!

Register 5 before and after execution of C instruction:

T T T
(X)OO{OOOO 0000 ;0000|0000 ; 0000 | 0010 |0000 binary

0 hex

|- = 4
b

ol of oo} 04 O 2
1 1

FULLWORD before and after execution of C instruction:

ooooioooo 0000 {0000 oooo:oooo oo1o:oooo binary
ol o]l o' o] or o] 2" o hex
1 1 1 S
In this example, the full word in AMOUNT is loaded into register 5. Then, the content ‘
of register 5 is compared to the full word in FULLWORD. Since they compare equally,

the condition code is set O and a branch to the instruction labeled ROUTINE takes
place. If they do not compare equally, the A instruction foliowing the BE instruction is
executed and the program continues processing.

UP-8913 SPERRY UNIVAC 0S/3 10-17
ASSEMBLER

. CR

10.7. COMPARE (CR)

General Possible Program Exceptions
OPCODE OBJECT 1| [ADDRESSING O proTECTION
FORMAT | INST.
TYPE LGTH. [] DATA (INVALID SIGN/DIGIT) | [0 SIGNIFICANCE
MNEM. [HEX. (8yTEs) || (] DECIMAL DIVIDE [0 sPECIFICATION:
[J beciMAL OVERFLOW [0 NOTA FLOATING-POINT REGISTER
CR | 19 RR 2 0 execuTe (0 OP1NOT ON HALF-WORD BOUNDARY
[0 EXPONENT OVERFLOW [0 oP2NOT ON HALF-WORD BOUNDARY
Condition Codes [eXxPONENT UNDERFLOW 0 oP2NOTON FULL-WORD BOUNDARY
n [J FIXED-POINT DIVIDE O op2NOT ON DOUBLE-WORD
] :i 22233 2%‘88211;00(: [OJ FIXED-POINT OVERFLOW O BOUNDARY
B F RESULT >0, SET TO 2 [FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER
[]!F OVERFLOW, SET TO 3 [J OPERATION O op1NOT ODD NUMBERED REGISTER
J UNCHANGED B nonNe

The compare (CR) instruction algebraically compares the contents in the operand 1
register to the contents in the operand 2 register. The result determines the setting of
the condition code. (See condition code settings, 8.4.)

Q Explicit and Implicit Format:
LABEL I AOPERATION A] OPERAND
[symbol] ' CR l r,r

The 32 bits of operand 1 are compared to the 32 bits of operand 2. The result
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand 1 = operand 2, set to O.

if operand 1 < operand 2, set to 1.

If operand 1 > operand 2, set to 2.
Usually, a conditional branch instruction tests the resulting condition code for an
equal to, less than, or greater than condition. If the condition is met, a branch takes
place accordingly. If not, the program continues processing as shown in the following
coding instruction.
Operational Considerations:
® Any of the general registers (O through 15) can be used as operands 1 and 2.

a Neither operand is changed by the instruction.

UP-8913 SPERRY UNIVAC 0S/3 10-18
ASSEMBLER
Example:
LABEL AOQPERATIONA OPERAND
1 10 16
SR 7,7
L 5,AMOUNT
L 6,VALUE
CR 5,6
BH ROUTINE
AR - 7,5
ROUTINE Al ERCNT, |
AMOUNT DC F'32!
VALUE DC F'32'
ERCNT DC H'@'

Register 5 before and after execution of CR instruction:

L
0000 |0000

1
0000 10000

1

1
00000000

0010,0000

.

0 0

T
|
i

o" o0
1

}
o' 0O
1

i
21 0
I

binary

hex

Register 6 before and after execution of CR instruction:

000010000

L]
000010000

Ll
000010000

0000|0000

o1 0
1

o1 0
1

o1 0

2 0

Ll
|
I
T
|
1

binary

hex

In this example, the full word in AMOUNT is loaded into register 5 and the full word
in VALUE is loaded into register 6. Then the content of register 5 is compared to the
content of register 6. Since they compare equally, the condition code is set to O. The
next branch instruction (BH) tests for a greater than (high) condition. Since both
registers compare equally, no branch is taken and the instruction following the BH
instruction (AR) is executed and the program continues processing.

UP-8913 SPERRY UNIVAC 0S5/3 10-19
ASSEMBLER Update B

. CH

10.8. COMPARE HALF WORD (CH)

General Possible Program Exceptions
oPCODE | FormaT ?NBSJTE.CT ADDRESSING M PROTECTION
TvpE LoTH. [J DATA (iINVALID SIGN/DIGIT) | [SIGNIFICANCE
MNEM. [HEX. (8yTes) |} [J DECIMAL DIVIDE B SPECIFICATION: -
[pecimAL OVERFLOW 0 NOTAFLOATING-POINT REGISTER
CH | 49 RX 4 (O execuTe 0 OP1NOT ON HALF-WORD BOUNDARY
] EXPONENT OVERFLOW B OF2NOT ON HALF-WORD BOUNDARY
Condition Codes [J ExPONENT UNDERFLOW a OP 2 NOT ON FULL-WORD BOUNDARY
B - - OPERAND 2 SETTO0 O FIXED-POINT DIVIDE 0O opP2NOT ON DOUBLE-WORD
B F . <OPERAND 2, SET TO 1 {0 FIXED-POINT OVERFLOW 0 BOUNDARY
Wl IF r, > OPERAND 2, SET TO 2 [J FLOATING-POINT DIVIDE O OP 1 NOT EVEN NUMBERED REGISTER
[JIF OVERFLOW, SET TO 3 [] OPERATION OP 1 NOT ODD NUMBERED REGISTER
[UNCHANGED 1 Nnone

The compare half word (CH) instruction algebraically compares the contents in the
operand 1 register to the half word in operand 2. The result of the comparison
determines the setting of the condition code.

. Explicit Format:

LABEL | A OPERATION A | OPERAND

[symbol] ‘ CH ‘ r,d,(x,b,)

Implicit Format:

LABEL \ AOPERATION A | OPERAND

[symbol]] CH ‘ r,$,(x,)

Operand 2 is two bytes in length (16-bit signed integer) and is located in main
storage. Before operand 2 is compared with the operand 1 register, operand 2 is
temporarily expanded to 32 bits by propagating the sign bit through the high order 16
bit positions. Then all 32 bits of operand 1 are compared to the 32 bits in operand 2.
The result determines the setting of the condition code, bits 34 and 35 of the PSW.
(See 8.1))

If operand 1 = operand 2, set to O.

. If operand 1

If operand 1

operand 2, set to 1.

VoA

operand 2, set to 2.

uP-8913 SPERRY UNIVAC 0S/3 10-20
ASSEMBLER

Usually, a conditional branch instruction tests the condition code for an equal to, less
than, or greater than condition. If the condition is met, a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

Operational Considerations:

® Any of the general registers (O through 15) can be used as operand 1.

m Operand 2 must be either defined as a half word or aligned on a half-word
boundary.

® Neither operand is permanently changed by the execution of the instruction.

Example:
LABEL AOPERATIONA ‘ OPERAND
1 10 16
L 5,AMOUNT
CH 5,HALFWORD
BH ROUTINE
AR 8,5
ROUTINE A 6,=F'1"
AMOUNT DC F'32!
HALFWORD DC H'16"

Register 5 before and after executicn of CH instruction:

| ' | :
0000 0000 {0000 {0000 0000'0000 0010{0000 binary
1 1 |

o 21 o hex
[

b~

0! o o! o 0
1 1

HALFWORD before and after execution of CH instruction:

operand 2 before expansion

w
r=T= -T = T T
10000 10000 oooo:oooo oooo!oooo 0001 10000 binary
L L I}
—t } } }
it o! ol ol ol ot o] 1! o h
e— 4 _ L1 L 1 ex

operand 2 after expansion

In this example, the full word in AMOUNT is loaded into register 5. Then, the content
of register 5 is compared to the half word in HALFWORD. Since the content of
register 5 is greater than the content of HALFWORD, the condition code is set to 2.
The next branch instruction (BH) tests for a greater than (high) condition. Since a
greater than condition exists, a branch to the instruction labeled ROUTINE taken place.

'JP-8913 SPERRY UNIVAC 0S/3 10-21
ASSEMBLER

cvB

10.9. CONVERT TO BINARY (CVB)

General Possible Program Exceptions
0PCODE | rormaT ?NBSJ:.CT Il ADDRESSING Ml PROTECTION
TYPE LaTH.]l DATA (INVALID SIGN/DIGIT) | [SIGNIFICANCE .
MNEM. [HEX. (8yTes) || (] DECIMAL DIVIDE H SPECIFICATION:
[d pecimAaL OVERFLOW [J NOTAFLOATING-POINT REGISTER
CVB | 4F RX 4 [J ExecuTe 0 ©OP1NOT ON HALF-WORD BOUNDARY
[J EXPONENT OVERFLOW [0 0P 2NOT ON HALF-WORD BOUNDARY
Condition Codes (0 EXPONENT UNDERFLOW 0O or2NOTONFULL-WORD BOUNDARY
TTIF nEsoiT oo s To 0 M FIXED-POINT DIVIDE B op2NOT ON DOUBLE-WORD
C1F RESULT <0, SET TO 1 [FIXED-POINT OVERFLOW BOUNDARY
Cl1F RESULT >0, SET TO 2 [] FLOATING-POINT DIVIDE (J oP1NOTEVEN NUMBERED REGISTER
C)1F OVERFLOW, SET TO 3 [] OPERATION 0 op1NOT ODD NUMBERED REGISTER
B UNCHANGED O ~none

The convert to binary (CVB) instruction converts the packed decimal contents of the
double word in operand 2 to its binary equivalent and puts the result in the operand
1 register.

Explicit Format:

LABEL l A OPERATION A l OPERAND
[symbol] cvB | rd,0x,b,)

Implicit Format:

LABEL | A OPERATION A ‘ OPERAND

[symbol]

CVB ' ry Sy, (x,)

The CVB instruction converts a packed decimal number into a binary number. The
operand 1 register contains the resulting binary number (4 bytes in length) and
operand 2 is a packed number (8 bytes in length) aligned on a double-word boundary.
Operand 2 is checked for a valid sign in the low order four bits. The remaining 60
bits represent a decimal value not exceeding 15 decimal digits. The largest decimal
number that can be converted is +2,147,483,647 (23'—1) and the smallest is
—2,147,483,678 (—23'). Any decimal number outside this range causes a fixed-point
decimal divide. The result of the conversion is placed in the operand 1 register. The
sign value (low order four bits) of the packed decimal number in operand 2 becomes
the sign value (high order bit or bits) of the binary number in the operand 1 register.

UP-8913

SPERRY UNIVAC 0S5/3 10-22
ASSEMBLER

Operational Considerations:

® Any of the general registers (O through 15) can be used as operand 1.

® Operand 2 must contain a packed decimal number aligned on a double-word
boundary.

m |f the sign value of the packed decimal number in operand 2 is positive, the sign
value of the binary number in operand 1 is positive.

s If the sign value of the packed decimal number in operand 2 is negative, the
binary number in operand 1 is represented in twos complement form and the
sign value is negative.

8 The condition code remains unchanged.

m There is no conversion between EBCDIC and binary. EBCDIC data must first be
packed, then converted to binary.

Example:

LABEL AOPERATIONA OPERAND
1 10 16
SR 7,7
SR 5,5
L 6,=F'19g"'
PACK DBLWDP ,AMT (3)
CvB 5,DBLWDP
CR 5,6
BH ERRTN
AR 7,5
ERRTN A b,=F']
DBLWDP DS D
AMT DC ZL3'428"

Register 5 before execution of CVB instruction:

— T Lo LI
0000:0000 0000,0000{ 0000 | 0000 | 0000
i i

0000 binary

{

+ — $

| | | |
OLO OIO 0]0 OIO hex

UP-8913

SPERRY UNIVAC 0S/3
ASSEMBLER

10-23

DBLWDP before and after execution of CVB instruction:

o
o

Q
(=]

[=]

E-Y

(9]

Packed
decimal
number

Register 5 after execution of CVB instruction:

sign bits
P, R N
1 1 1 1
0000 10000 {0000 10000 |0000 {0001 {1010 11100 binary
—1] [1
T 1 M LS
o:o 01 0 0:1A:C hex
L

In this example, the SR instruction cleared both register 5 and 7 to zero by
subtracting the contents of the registers from themselves. Then, a full-word value of
100 is loaded into register 6. The contents of AMT is packed into DBLWDP and the
CVB instruction converts the packed decimal value into its binary equivalent which
replaces the contents of register 5. Register 5 is then compared to register 6. Since
the value of the contents in register 5 is greater than that of register 6, the condition
code is set to 2. The BH instruction then tests for a greater than condition and a
branch to the instruction labeled ERRTN takes place. If the condition code is not 2, no
branch takes place and the program continues processing with the instruction
following the branch.

UP-8913 SPERRY UNIVAC 0S/3

ASSEMBLER

10-24,

CVD

10.10. CONVERT TO DECIMAL (CVD)

Ueanla C

[J EXPONENT OVERFLOW
O exPONENT UNDERFLOW
[FIXED-POINT DIVIDE

3 FIXED-POINT OVERFLOW
O FLOATING-POINT DIVIDE
J OPERATION

Condition Codes

[Jifr RESULT=0,SETTO O
Oi1F resuLT <0,SETTO 1
OiF RESULT >0, SET TO 2
O F OVERFLOW, SETTO 3
B UNCHANGED

General Possible Program Exceptions
OBJECT || i ADDRESSING B PROTECTION
OPCODE FORMAT | INST.
TYPE LGTH [J DATA (INVALID SIGN/DIGIT) | [J SIGNIFICANCE
MNEM. |HEX. evyTes) || 0 DECIMAL DiVIDE) SPECIFICATION:
- {J becIMAL OVERFLOW NOT A FLOATING-POINT REGISTER
CVD | 4E RX 4 [J EXECUTE OP 1 NOT ON HALF-WORD BOUNDARY

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

000 mdoOgo

The convert to decimal (CVD) instruction converts the binary number in the operand 1
register into its packed decimal equivalence and stores the result in the double word

in operand 2.

Explicit Format:

AOPERATION A |

LABEL | OPERAND
[symbol] ‘ cvD | rydy(x,,b,)
Implicit Format:
LABEL | A OPERATION A | OPERAND
* [symbeol] ’ CVvD l ryS,(x,)

The CVD instruction converts a binary value into a packed decimal value. Operand 1
register contains the binary value (4 bytes) and operand 2 contains a double-word
field in packed decimal format (8 bytes). The largest decimal number that can be
represented in binary in the operand 1 register is +2,147,483,647 (23'—1) and the
smallest is —2,147,483,648 (—23'). Since the number to be converted is a 32-bit
signed integer from a register and there are 15 decimal digits available for its decimal

equivalent, an overflow condition cannot occur.

UP-8913

SPERRY UNIVAC 0S/3 10-25
ASSEMBLER

The sign value (high order bit or bits) of the binary number in the operand 1 register
becomes the sign value (low order four bits) of the packed decimal number in operand
2. The result of the conversion is placed in the double word of operand 2. Note that
the CVD instruction is one of the few instructions that has operand 1 as the sending
field and operand 2 as the receiving field.

Operational Considerations:

® Any of the general registers (O through 15) can be used as operand 1.
8 Operand 2 must be either defined as a double word or aligned on a double-word
boundary.
m |f the sign value of the binary number is positive, the sign value of the decimal
number is positive. '
® |f the sign value of the binary number represented in twos complement form is
negative, the sign value of the decimal number is negative.
® The condition code remains unchanged.
8 The result is stored in operand 2, unlike most instructions, where operand 1 is
the receiving field.
Example:
LABEL AOPERATIONA OPERAND
1 10 16
SR 7,7
PACK DBLEWRD,CARD IN+9(3)
Ccvs L ,DBLEWRD
AR 7,4
BZ NOPAY
CcvD L4 ,DBLEWRD
ZAP TOTHRS ,DBLEWRD
NOPAY A 9,=F'1"'
CARDIN 6C CL8#'SMITH,J. 480 WKTOT EXEMPT X'
DBLEWRD DS D

TOTHRS DS PL3

UP-8913 SPERRY UNIVAC 0S/3 10-26
ASSEMBLER

DBLEWRD before execution of CVD instruction: .

T Y T T T T T T Packed
|
0 = 0 0 0 0 0 o1 0 010 01 0 4 8 . o011 C decimal

Register 4 before execution of CVD instruction:

T T | | .
000010000 {0000 0000 0000,0001 1110,0000 binary
i 1

1
0 ol 1 E
i

0 hex

0 0 0

- — 4

b —

DBLEWRD after execution of CVD instruction:

Packed
decimal

- —
«©
[=)
o

o
o
(=]
o
o
o
=]
.__o..
o
o
o
o
H

In this example, register 7 is cleared to zero. A field from card input (CARDIN+9),
which is EBCDIC and in zoned decimal format, is packed into DBLEWRD. The CVB
instruction then converts the packed decimal number in DBLEWRD into its binary
equivalent and puts the result into register 4. The content of register 4 is added to
register 7. The condition code is set to 2, since the result of the addition is greater
than zero. The next branch instruction (BZ) tests for an equal-to-zero condition. Since
that condition does not exist, no branch takes place and the instruction following the
branch instruction is executed. The CVD instruction then converts the contents of
register 4 into its decimal equivalent and puts the result into DBLEWRD. The ZAP
instruction clears TOTHRS to zero and adds the packed decimal number in DBLEWRD
to TOTHRS. (This is an example where truncation is beneficial.)

UP-8913 SPERRY UNIVAC 0S/3 10-27
ASSEMBLER
10.11. DIVIDE (D)

General Possible Program Exceptions

OPCODE OBJECT {] g ADDRESSING B PROTECTION
F?_HY';":T L"gs_rT';‘ [J DATA (INVALID SIGN/DIGIT) | [0 SIGNIFICANCE

MNEM. |HEX. (syTES) || O] DECIMAL DIVIDE B SPECIFICATION:
[J oeciMAL OVERFLOW NOT A FLOATING-POINT REGISTER
D 5D RX 4 0 ExXECUTE OP 1 NOT ON HALF-WORD BOUNDARY

Condition Codes

(JIF RESULT = 0,SET TO 0
Oir rResuLT <0,SET TO 1
OIF RESULT >0, SET TO 2
OIF OVERFLOW, SET TO 3
B UNCHANGED

[0 EXPONENT OVERFLOW
[] EXPONENT UNDERFLOW
Il FIXED-POINT DIVIDE

[FIXED-POINT OVERFLOW
[J FLOATING-POINT DIVIDE
[oPERATION

OP 2 NOT ON HALF-WORD BOUNDARY
OP 2 NOT ON FULL-WORD BOUNDARY

OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER
OP 1 NOT ODD NUMBERED REGISTER
NONE

Oo0Om O®OC0O0O

The divide (D) instruction

Expl