
•

•

•
001-251 Re"'- 3173

ATTN: CHANLlt GI3a~

O:J'-'1'­
CA\1Zwt>.M4'.J5.:.1

::.P!:-RR'I' U"'lvAC
1 - 1o1~ CORN.ALL SlRLlT

VA 1\COU \IE k L' \.

Assembler

v6 J 1c7
User Guide

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) Assembler User Guide", UP-8913.

This update provides the 8.0 release enhancements to OS/3 Assembler. The enhancements include:

• The addition of two privileged instructions (Put IORB, Get IORB)

• An additional UPSI byte setting for diagnostic errors

• The addition of STXIT island code (providing the capability to continue job streams when program checks
occur)

• The display of error messages on the console or workstation

• An additional warning message when using continuation characters with macro instructions (a comma after the
last operand is checked)

Appendix A was expanded to include job control information.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8913-8. To receive the complete manual, order UP-8913 .

Mailing Lists
BZ, CZ and MZ

Mailing Lists BOO, B 18, 28U and 29U
(Package B to UP-8913, 192 pages plus Memo)

Library Memo for
UP-8913-B

September, 1982

•

•

•

•

•

•

L

SPERRY UNIVAC
SUIH 906
1177 WEST HASTINGS ST

VANCOUVER BC V6E 2K3

ATTN: CHARLIE GIBBS

00158
CAV208M45541 UP 8913-A

"
UAS

CAY
Assembler

User Guide

·--__ _j

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating

System/3 (OS/3) Assembler User Guide", UP-8913.

This update discusses assembler features that are new to release 7 .1. These features include:

• Added instructions: IPL and SWLS

• A new option for the ASM listing parameter: LST=NR

• ASM, ASML, and ASMLG jproc enhancements to accept cataloged files for input, output, macro library,
COPY source code library, and alternate load library files.

The following instructions were deleted: ENO, DEO, STEP, and MSS .

All other changes are corrections to, or clarifications of, material applicable prior to release 7 .1.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8913-A. To receive the complete manual, order UP-8913.

Mailing Lists
BZ, CZ (less DE,
GZ and HA) and
MZ

Mailing Lists DE, GZ, HA, 28U and 29U
(Package A to UP-8913,
83 pages plus Memo)

September, 1981

•

•

•

•

•

•

Assembler

User Guide

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Assembler User Guide", UP-8913.

This manual describes the assembler. It covers machine instruction and data formats, assembler directives, macro/proc
usage, and assembler output.

Additional copies may be ordered by your local Sperry Univac representative .

Mailing Lists
BZ,CZ (less DE,GZ and
HA) and MZ

Mailing Lists DE, GZ, HA, 28U and 29U
(Covers and 886 pages)

.:: ~.;,;.:
.... -~

Library Memo

1980

J.,

•

•

•

Assembler

•

Environment: System 80

UP-8913

©1980 - SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTR:A.ND, SPERRY UNIVAC, UNISCOPE, UNISERV.O, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

UP-8913

• ...

SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

. ISSUE: Update C - UP-8913
RELEASE LEVEL: 8.2 Forward

PSS 1
Update C

Part/Section
Page Update

Number Level
Part/Section

Page Update
Number Level Part/Section

Page Update

i Number Level

i Covet/Oisct.mer Orig. 8 {com) 16. 17 Orig. 11 {cont) 7thru11 Orig. I

[PSS
;

I Preface
i
,.

I
'Contents

I

I
I
tARi 1

I

I
1

/

i
z··

3

4

tPARi 2

I
r 5

l
I 6

P.:.RT 3

7

-
!!!!:"

=

18 B 12 c
1 thru 3 c 19 Orig.

20 B
13, 14 Orig~
15 c

1 Orig.
2 B

21 c
22 Orig.

16 Orig.
17 c

3 Orig. 23 B 18 Orig.
19 c

1 thru 3 Orig.
4 A

9 1thN8 Orig.
9 B .

20 . Orig •
21 c

5 thru 7 Orig.
8thru11 B

10 tllru 12 Orig.
13 B

22 Orig.
23 thru 25 c

12 thru 14 A
15 thru 18 B

14 tllru 29 Orig.
30 A

26 Orig.
27 thru 29 c

31 tllru 62 A• 30 Orig.
63 tllru 80 Orig. 31 c

rrtte Page Orig. 81 8 32.33 Orig.
82 thN 100 Orig. 34 c

1 thru 11 Orig. 35 Orig.
12 B 10 1. 2 Orig. 36 c
13 c
14 thru 20 'i.Orig.

3 tlvu 5 B
6 tlvu 18 o~.

37 Orig.
38 c

·.;;,...
1 thru 10 Orig.

19 c
' 20 thru 23 Orig.

39 thru 41 Orig.
42 c

24 c 43 Orig.
1 thru 3 Orig. 25 thru 33 Orig. 44 c

34 8 45 Orig.
1 Orig. 35 thru 39 Orig. 46 c
2 .c 40 c 47 Orig.
3 thru 9 Orig. 41 Orig. 48 c
10 c 42 c 49 Orig.
11 thru 13 Orig. 43 Orig. 50' c
14 B 44 c 51 Orig.
15 thru 20 Orig. 46.46 Orig. 52 c

47 B 53 Orig.
48,49 Orig. 54 c

Title Page Orig. 50 B 55 Orig.
51 thru 54 Orig. 56 c

1, 2 Orig. 55 c 57 Orig.
3 c 56 thru 72 Orig. 58 c
4 thru 10 Orig. 73 B 59 Orig.
11, 12 B 74, 75 Orig. 60 c
13 thru 18 Orig. 76 c 61 Orig.

'.'
19 c 77 Orig. 62 c

78 c 63 Orig.
1 thru 3 A 79 B 64 c
4 Orig. 80 c 65 Orig.

81. 82 Orig. 66 c
83 c 67 Orig.

Title Page Orig. 84 thru 87 Orig. 68 c
88 c 69 Orig.

1 thru 3 B 89, 90 Orig. 70 c
4, 5 c 71 Orig.
6 Orig. 11 1, 2 Orig. 72 B

3 c 73 Orig.
1 thru 13 Orig. 4, 5 Orig. 74 c
14 1.5. ..a s _c_

.;. ·-;o ::::••1ca1 c.~a.•oes are dencred ov an arrow (-) m the ma·gm. A downward pomrmg arrow (~) nex; tc ii line indicates that
:.-:--:a .,r .. ,.,ges (Jeg;n ar this lme and conrmue unril an upward po •tmg arrow (11) is found. A horizonrai arrow f-) pointing to a line
-:: :...::es a 1echn1ca; cnange m only rnat ltne. A horiz.ontal arrow located betwlffln twn r.nnc•r11~iua hnoff! ;,..,.,,.. 02~ _ , , ... ,...,. ___ ..., ·- .. _

' '

•

-<1'

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update C - UP-8913
8.2 Forward

PSS 2
Update C

Part/Section
Page Update

Number Level Part/Section
Page Updllte

Number Level
Part/Section

Page Update
Number Level

11 (cant) 75 Orig. 12 (cont) 100. 101 B 20 1 thru 6 Orig.

12

.. ~.

76 c 102 Orig.

n Orig.

78 c
103 B
104. 105 Orig.

21 • 1

~. 2 thru 10
79 Orig. 106 B
80 c 107thru111 Orig. PART 5
81 Orig. 112 B Title Page Orig.
82 c 113 Orig.

83 Orig. 114. 115 B 22 i thru 4 Orig.
84 c 116 thru 118 Orig.

.
85 Orig. . 119 B 23 1 thru 5 Orig.
86 c 120 thru 131 Orig. 6 thru 8 B
87 Orig. 9. 10 Orig.
88 c
89 thru 91 ',Orig.

13 1 Orig.

2 B 24 1 thru 5 Orig.
92 c 3 Orig. 6 B
93 Orig. 4 B 7 thru 12 Orig.
94 c 5 Orig.
95 Orig. 6. 7 B 25 1thN9 Orig.

8 thru 12 Orig. 10 A
1. 2 Orig. 13 B 11 Orig.
3

"
8 . 14 Orig.

4 Orig. 14a. 14b B 26 1 thru 7 Orig.
5.6 B ·- 15 Orig.
7 c 16 B 27 1 thru 16 Orig.
8 B 17. 18 Orig. 17 B
9 thru 16 Orig. 19 B 18. 19 Orig.
17 B 20 thru 23 Orig. 20 B
18 Orig. 24 B 21 thru 32 • Orig.
19 c 25 Orig.

..
20 tl1N 43 Orig. 26 A !PART 6
44 c 2611. 26b A Tide Page Orig.
45.46 Orig. 27 B

47 c 28 Orig. 28 1 thru '4 Orig.
48 .. Orig. 29 B 5 B
49 c 30 Orig.

··~· . -so Orig. 31 B PART7
51 B 32 Orig. T"rtle~ Orig.
52 thru 59 Orig.

60 B 14 1 A 29 1 Orig.
61 Orig. 2 A
62 B PART4 3 Orig.
63 Orig. rnle Page Orig. 4 thN 6 B
64 B

~~ 65 thru 67 Orig. 15 1 Orig.
7.8 A
Sa A

68 B 9. 10 B
69 thru 72 Orig. 16 1 thru 3 Orig. 10a B
73 B 11, 12 B
74 Orig. 17 1 thru 9 Orig. 13 A
75 B 14 B
76 thru 81 Orig. 18 1 thru 4 Orig. 14a B
82 B 15 thru 19 Orig .
83. 84 Orig. 19 1 thru 9 Orig.
85. 86 B 10. 11 B 30 1 thru 5 Orig.
87 Orig. 12 tht1J 14 Orig.
88 B PART 8
89~ .J:2lliLI.iIJll..Paoe Orio .

.411 rhe rec'"'"'cal cnanges are denoted oy an arrow (-) m the rr.arg1· A downward pomtmg arrow (.ii) ner. co a line indicates char
technical c.-.anges begm at this !me and conrmue unr1I an upward pomri-g arrow (n) is found. A honzonral arrow (-) pointing to a line
1nd1cates a rechmcal change m only that /me. A horizonral arrow loca:eo ;;ecween rwo consecutive Imes indicates technical changes in both

i

' '

•

UP-8913

...

Part/Section
Page

Number

Appendix A 1 ttwu 4

Appendix B 1, 2
3 ttwu 7

Appendix C 1 ttwu 9

Appendix D 1 thru 3

Appendix E 1
2 thru 4
5
6. 7
8
9
10
11
12. 13
14
15
16

Appendix F 1 thru 3
~ 4

5 thtu 8 .
Appendix G 1 1hru 5

Index 1, 2
3
4 thru 7
8,9
10
11
12 . 13
14
15
16 thru 18
19
20. 21
22. 23
24
25,26

'.• 27
28
29
30,31

User Comment

Sheet

SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update C - UP-8913
8.2 Forward

Update

Level

B

B
Orig.

Orig.

Orig.

Orig.

B
Orig.

B
A

.·a
A

B
Orig.
A

B
A

"" Orig.
A

Orig.

Orig.

Orig.
A
Orig.
A

B
Orig.

B
A
Orig.
A
Orig.
A

Orig.

B
Orig.
B
Orig.
B
A
Orig.

Part/Section
Page

Number Part/Section

PSS 3
Update C

Page
Number

Update
Level

Ar r.~e rec,.,ri,=at cnan:;es are denoted by an a"ow (-} in the margin. A downward pointing arrow(~) ne>rr to a line indicates that
tec,.,ni:;aJ c:·1anges Deg~ a: tn1s line and continue unt// an upward pointing arrow (~) is found. A honzonrat arrow (-) pointing to a line
ma1cares a tec . .,n1cal c.·.ange m only that line. A honzontal a"ow located between two consecutive lines md1c.ates technic.al changes in both
'·--- --· -.1-:-··---

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the
use of the SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically
describes the OS/3 assembler and its effective use. Its intended audience is the
novice programmer with a basic knowledge of data processing, but with limited
programming experience, and the assembler programmer whose experience is limited
to systems other than Sperry Univac.

Two other manuals are available that cover OS/3 assembler; one is an introductory
manual and the other is a programmer reference. The introductory manual briefly
describes OS/3 assembler and its facilities. The programmer reference provides the
characteristics of OS/3 assembler in skeletal form and is intended as a quick­
reference document for the programmer experienced in the use of OS/3 assembler.

This user guide is divided into the following parts:

• PART 1. BASIC DATA AND CONVENTIONS

Introduces you to what basic assembly language (BAL) is, how the computer
stores information (data), how to locate the data required, and what forms
mathematic notations assume in computer manipulations. The general rules that a
programmer must understand to solve simple BAL problems are stated in this
part. Where the content may seem out of context to the more experienced user,
he can find such material repeated in greater detail in the following parts of this
manual. As the manual progresses, the problems and examples become
increasingly complex.

• PART 2. STORAGE AND SYMBOL DEFINITIONS

Describes and illustrates the use of storage assignments, the constants, and the
rules for symbol designations.

• PART 3. BAL APPLICATION INSTRUCTIONS

Presents the explicit and implicit formats for all the assembly language application
instructions, the rules of their use and illustrative examples.

UP-8913

• PART 4. BAL DIRECTIVES

SPERRY UNIVAC OS/3
ASSEMBLER

Preface 2
Update B

Describes and illustrates the use of all the assembler control directives.

• PART 5. BAL MACROS

Explains the macro facility for writing and using this time-saving feature of the
assembler.

• PART 6. ASS EMBLY LISTING

Describes what an assembly listing is, what it means, and how it is of use to
the programmer.

• PART 7. PROGRAMMING TECHNIQUES

A series of programming techniques are presented in this part.

• PART 8. APPENDIXES

The appendixes contain figures and tables for use in explaining the text and for
general programmer reference.

•

Each of the foregoing parts consists of one or more sections that cover the different .-
aspects of the subject matter covered in each part.

Other current OS/3 publications for the System 80 system, referenced in this manual, will
be necessary or useful to the programmer working with the assembler.

Document name and number

General editor user guide/programmer
reference, UP-8828

System services program user guide,
UP-8841

Consolidated data management concepts
and facilities user guide, UP-8825

Consolidated data management macro­
instructions user guide/programmer
reference, UP-8826

Supervisor concepts and facilities
user guide, UP-8831

Supervisor macroinstructions
user guide/programmer reference,
UP-8832

Description

Describes the general editor

Describes the librarian and linkage editor

Presents an overview of data management

Describes the data management
macroinstructions

Presents an overview of the supervisor

Describes the supervisor macroinstructions •

•

•

UP-8913

Document name and number

Processor programmer reference,
UP-8881

System hardware and software
summary, UP-8868

Interactive job control user
guide, UP-8822

Workstation user guide, UP-8845

Assembler programmer reference,
UP-8914

SPERRY UNIVAC OS/3
ASSEMBLER

Description

Describes the processor

Preface 3

Presents an overview of the system
hardware and software

Describes interactive job control

Describes the OS/3 workstation

Describes the assembler

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. BASIC DATA AND CONVENTIONS

1. INTRODUCTION TO ASSEMBLER LANGUAGE PROGRAMMING

1.1. CODING AN ASSEMBLER PROGRAM

1.1.1. Operation Field
1.1.2. Operand Field

1.1.3. Label Field
1.1.4. Comments Field

1.1.5. Sequence Numbers

1.1.6. Column 72
1.1.7. Additional Coding Rules

1.2. ASSEMBLING A PROGRAM

1.3. CREATING A LOAD MODULE

1.4. PROGRAM EXECUTION

2. DATA FORMS

2.1. DATA REPRESENTATION

2.2. BINARY REPRESENTATION

Contents 1

Contents

1-1
1-5
1-6
1-7
1-9
1-10
1-11
1-11

1-14

1-18

1-20

2-1

2-2

UP-8913

3.

4.

2.3.

2.4.
2.4.1.
2.4.2.
2.4.3.
2.4.3.1.
2.4.3.2.
2.4.4.

2.5.

2.6.

SPERRY UNIVAC OS/3
ASSEMBLER

HEXADECIMAL REPRESENTATION

CHARACTER REPRESENTATION

Alphabetic Characters
Special Letters
Numeric

Unpacked Format
Packed Format

Special Characters

FIXED-POINT NUMBERS

FLOATING-POINT NUMBERS

ADDRESSING

3.1. MAIN COMPUTER STORAGE ADDRESSING
3.1.1. Instruction Addressing
3.1.2. Data Field Addressing

3.2. REGISTER ADDRESSING

RULES AND CONVENTIONS

4.1. READING INSTRUCTION NOTATION
4.1.1. Assembler Application Instruction Notations
4.1.2. Notation Rules and Meanings

4.2. TERMS
4.2.1. Self-Defining Terms
4.2.2. Literals
4.2.3. Symbols
4.2.4. Location Counter References
4.2.5. Length Attribute Reference

4.3. OPERATORS
4.3.1. Arithmetic Operators
4.3.2. Logical Operators
4.3.3. Relational Operators

4.4. EXPRESSIONS
4.4.1. Absolute Expressions
4.4.2. Relocatable Expressions
4.4.3. Complex Relocatable Expressions
4.4.4. Character Expressions
4.4.5. Length Attribute of Expressions
4.4.6. Character Strings

Contents 2

2-3 • 2-5
2-5
2-6
2-6
2-6
2-7
2-8

2-9

2-9

3-1
3-1
3-2

3-3

4-1
4-1
4-5

4-8
(SOT) 4-9

4-10
4-11
4-12
4-13

4-13
4-14
4-15
4-15

4-16
4-16
4-17
4-18
4-18
4-19
4-19

UP-8913

• 5.

•
6.

7.

•

SPERRY UNIVAC OS/3
ASSEMBLER

PART 2. STORAGE AND SYMBOL DEFINITIONS

STORAGE DEFINITIONS

5.1. STORAGE USAGE
5.1.1. Define Constant (DC)
5.1.2. Define Storage (OS)
5.1.3. Duplication Factor
5.1.4. Definition Type
5.1.5. Length Factor (Ln)
5.1.6. Constant Specification
5.1.7. Alignment

5.2. DEFINITION TYPES
5.2.1. Character Constants (C)
5.2.2. Hexadecimal Constants (X)
5.2.3. Binary Constants (B)
5.2.4. Packed Decimal Constants (P)
5.2.5. Zoned Decimal Constants (Z)
5.2.6. Half-Word Fixed-Point Constants (H)
5.2.7. Full-Word Fixed-Point Constants (F)
5.2.8. Half-Word Address Constants (Y)
5.2.9. Full-Word Address Constants (A)
5.2.10. Base and Displacement Constants (S)
5.2.11. External Address Constants (V)
5.2.12. Floating-Point Constants (E and 0)

5.3. LITERALS

SYMBOL DEFINITIONS

6.1. EQUIVALENT SYMBOLS

6.2. SYMBOL APPLICATIONS

PART 3. BAL APPLICATION INSTRUCTIONS

INTRODUCTION TO APPLICATION INSTRUCTIONS

7.1. INSTRUCTION AND FORMAT CONVENTIONS

7.2. EXPLICIT FORMS

7.3. IMPLICIT FORMS

7.4 . DEFINITIONS OF FORMAT TERMS

Contents 3

5-1
5-4
5-5
5-5
5-6
5-6
5-7
5-8

5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-13
5-15
5-15

5-18

6-2

6-3

7-1

7-6

7-6

7-6

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

8. BRANCHING INSTRUCTIONS

8.1. USE OF BRANCHING INSTRUCTIONS

8.2. EXTENDED MNEMONIC CODES

8.3. BRANCH AND LINK
8.3.1. Use of the BALR Instruction in Base Register Assignment

8.4. BRANCH ON CONDITION

8.5. BRANCH ON COUNT

8.6. BRANCH ON INDEX HIGH

8.7. BRANCH ON INDEX LOW OR EQUAL

8.8. EXECUTE

9. DECIMAL AND LOGICAL INSTRUCTIONS

9.1. USING DECIMAL INSTRUCTIONS

9.2. DEFINING PACKED AND UNPACKED CONSTANTS
AND MAIN STORAGE AREAS

9.2.1. Packed Decimal Constants and Main Storage Areas
9.2.2. Unpacked Decimal Constants and Main Storage Areas

9.3. ADD DECIMAL

9.4. COMPARE DECIMAL

9.5. DIVIDE DECIMAL

9.6. EDIT
9.6.1. The Edit Pattern
9.6.2. The Resulting Condition Code
9.6.3. Examples of General Usage
9.6.4. Summary

9.7. EDIT AND MARK

9.8. Deleted (MSs)

(BAL. BALR)

(BC, BCR)

(BCT. BCTR)

(BXH)

(BXLE)

(EX)

(AP)

(CP)

(DP)

(ED)

(EDMK)

Contents 4
Update A

8-1

8-2

8-5
8-7

8-9

8-13

8-15

8-18

8-20

9-1

9-3
9-4
9-6

9-8

9-10

9-13

9-16
9-17
9-23
9-24
9-26

9-27

9-30

•

•

•

UP-8913

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

MOVE CHARACTER

SPERRY UNIVAC OS/3
ASSEMBLER

MOVE CHARACTER LONG

MOVE NUMERICS

MOVE WITH OFFSET

MOVE ZONES

MULTIPLY DECIMAL

PACK DECIMAL

SUBTRACT DECIMAL

SHIFT AND ROUND DECIMAL

UNPACK DECIMAL

ZERO AND ADD DECIMAL

10. FIXED-POINT BINARY INSTRUCTIONS

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS

10.1 .1. Half-Word Fixed-Point Constants
10.1.2. Full-Word Fixed-Point Constants
10.1 .3. Address Constants
10.1.3.1. Full-Word Address Constants
10.1.3.2. Half-Word Address Constants
10.1 .4. Representation of Positive and Negative

Fixed-Point Binary Numbers

10.2. ADD

10.3. ADD

10.4. ADD HALF WORD

10.5. ADD IMMEDIATE

10.6. COMPARE

10.7. COMPARE

10.8. COMPARE HALF WORD

10.9. CONVERT TO BINARY

10.10. CONVERT TO DECIMAL

10.11. DIVIDE

10.12. DIVIDE

Contents 5

(MVC) 9-63

(MVCL) 9-67

(MVN) 9-72

(MVO) 9-75

(MVZ) 9-78

(MP) 9-80

(PACK) 9-82

(SP) 9-86

(SRP) 9-89

(UNPK) 9-95

(ZAP) 9-98

10-1
10-3
10-4
10-4
10-4
10-5

10-6

(A) 10-7

(AR) 10-9

(AH) 10-11

(Al) 10-13

(C) 10-15

(CR) 10-17

(CH) 10-19

(CVB) 10-21

(CVD) 10-24

(D) 10-27

(DR) 10-31

UP-8913

10.13.

10.14.

10.15.

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

10.28.

10.29.

10.30.

10.31.

10.32.

10.33.

LOAD

LOAD

LOAD AND TEST

LOAD COMPLEMENT

LOAD HALF WORD

LOAD MULTIPLE

LOAD NEGATIVE

LOAD POSITIVE

MULTIPLY

MULTIPLY

MULTIPLY HALF WORD

SHIFT LEFT DOUBLE

SHIFT LEFT SINGLE

SHIFT RIGHT DOUBLE

SHIFT RIGHT SINGLE

STORE

STORE HALF WORD

STORE MULTIPLE

SUBTRACT

SUBTRACT

SPERRY UNNAC OS/3
ASSEMBLER

SUBTRACT HALF WORD

11. FLOATING-POINT INSTRUCTIONS

11.1. INTRODUCTION

11.2. ADD NORMALIZED, LONG FORMAT

11.3. ADD NORMALIZED, LONG FORMAT

11.4. ADD NORMALIZED, SHORT FORMAT

11.5. ADD NORMALIZED, SHORT FORMAT

Contents 6

(L) 10-33 • (LR) 10-35

(LTR) 10-38

(LCR) 10-40

(LH) 10-42

(LM) 10-44

(LNR) 10-50

(LPR) 10-52

(M) 10-55

(MR) 10-59

(MH) 10-61

(SLDA) 10-64

(SLA) 10-67

(SRDA) 10-70

(SRA) 10-73

(ST) 10-76

(STH) 10-78

(STM) 10-80

(S) 10-83

(SR) 10-85

(SH) 10-88

11-1

(AD) 11-3

(ADR) 11-6

(AE) 11-9

(AER) 11-12

UP-8913

• 11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

• 11.19.

11.20.

11.21.

11.22.

11.23.

11.24.

11.25.

11.26.

11.27.

11.28.

11.29.

11.30.

11.31 .

• 11.32.

11.33.

SPERRY UNIVAC OS/3
ASSEMBLER

ADD UNNORMALIZED. SHORT FORMAT

ADD UNNORMALIZED. SHORT FORMAT

ADD UNNORMALIZED. LONG FORMAT

ADD UNNORMALIZED, LONG FORMAT

COMPARE, LONG FORMAT

COMPARE, LONG FORMAT

COMPARE, SHORT FORMAT

COMPARE. SHORT FORMAT

DIVIDE. LONG FORMAT

DIVIDE. LONG FORMAT

DIVIDE. SHORT FORMAT

DIVIDE. SHORT FORMAT

HALVE. LONG FORMAT

HALVE. SHORT FORMAT

LOAD COMPLEMENT, LONG FORMAT

LOAD COMPLEMENT, SHORT FORMAT

LOAD. LONG FORMAT

LOAD, LONG FORMAT

LOAD. SHORT FORMAT

LOAD. SHORT FORMAT

LOAD NEGATIVE. LONG FORMAT

LOAD NEGATIVE, SHORT FORMAT

LOAD POSITIVE. LONG FORMAT

LOAD POSITIVE, SHORT FORMAT

LOAD AND TEST. LONG FORMAT

LOAD AND TEST, SHORT FORMAT

MULTIPLY, LONG FORMAT

MULTIPLY, LONG FORMAT

Contents 7

(AU) 11-15

(AUR) 11-17

(AW) 11-19

(AWR) 11-21

(CD) 11-23

(CDR) 11-25

(CE) 11-27

(CER) 11-29

(DD) 11-31

(DOR) 11-34

(DE) 11-36

(DER) 11-38

(HOR) 11-40

(HER) 11-42

(LCDR) 11-44

(LCER) 11-46

(LO) 11-48

(LOR) 11-50

(LE) 11-52

(LER) 11-54

(LNDR) 11-56

(LNER) 11-58

(LPDR) 11-60

(LPER) 11-62

(LTDR) 11-64

(LTER) 11-66

(MD) 11-68

(MOR) 11-70

j

------------------------------~- ~-~

UP-8913

12.

11.34.

11.35.

11.36.

11.37.

11.38.

11.39.

11.40.

11.41.

11.42.

11.43.

11.44.

11.45.

SPERRY UNIVAC OS/3
ASSEMBLER

MULTIPLY, SHORT FORMAT

MULTIPLY, SHORT FORMAT

SUBTRACT NORMALIZED, LONG FORMAT

SUBTRACT NORMALIZED, LONG FORMAT

SUBTRACT NORMALIZED, SHORT FORMAT

SUBTRACT NORMALIZED, SHORT FORMAT

STORE, LONG FORMAT

STORE, SHORT FORMAT

SUBTRACT UNNORMALIZED, SHORT FORMAT

SUBTRACT UNNORMALIZED, SHORT FORMAT

SUBTRACT UNNORMALIZED, LONG FORMAT

SUBTRACT UNNORMALIZED, LONG FORMAT

LOGICAL INSTRUCTIONS

12.1. THE USE OF LOGICAL INSTRUCTIONS

12.2. ADD LOGICAL

12.3. ADD LOGICAL

12.4. AND

12.5. AND

12.6. AND

12.7. AND

12.8. COMPARE LOGICAL

12.9. COMPARE LOGICAL CHARACTERS

12.10. COMPARE LOGICAL CHARACTERS LONG

12.11. COMPARE LOGICAL IMMEDIATE

12.12. COMPARE LOGICAL IMMEDIATE AND SKIP

12.13. COMPARE LOGICAL CHARACTERS UNDER MASK

12.14. COMPARE LOGICAL

12.15. COMPARE AND SWAP UNDER MASK

12.16. EXCLUSIVE OR

(ME)

(MER)

(SD)

(SOR)

(SE)

(SER)

(STD)

(STE)

(SU)

(SUR)

(SW)

(SWR)

(AL)

(ALR)

(N)

(NC)

(NI)

(NR)

(CL)

(CLC)

(CLCL)

(CLI)

(CLIS)

(CLM)

(CLR)

(CSM)

(X)

Contents 8
Update B

11-72

11-74

11-76

11-78

11-80

11-82

11-84

11-86

11-88

11-90

11-92

11-94

12-1

12-2

12-5

12-7

12-10

12-13

12-16

12-19

12-22

12-25

12-29

12-34

12-39

12-42

12-44

12-49

•

•

•

•

•

•

UP-8913

12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

12.25.

12.26.

12.27.

12.28.

12.29.

12.30.

12.31.

12.32.

12.33.

12.34.

12.35.

12.36.

12.37.

12.38.

12.39.

12.40.

EXCLUSIVE OR

EXCLUSIVE OR

EXCLUSIVE OR

INSERT CHARACTER

SPERRY UNIVAC OS/3
ASSEMBLER

INSERT CHARACTERS UNDER MASK

LOAD ADDRESS

MOVE IMMEDIATE

OR

OR

OR

OR

SHIFT LEFT DOUBLE LOGICAL

SHIFT LEFT SINGLE LOGICAL

SHIFT LOGICAL

SHIFT RIGHT DOUBLE LOGICAL

SHIFT RIGHT SINGLE LOGICAL

STORE CHARACTER

STORE CHARACTERS UNDER MASK

SUBTRACT LOGICAL

SUBTRACT LOGICAL

TEST UNDER MASK

TEST UNDER MASK AND SKIP

TRANSLATE

TRANSLATE AND TEST

13. PRIVILEGED AND STATUS SWITCHING INSTRUCTIONS

13.1 . GENERAL

13.2. STATUS-SWITCHING PRIVILEGED INSTRUCTIONS
13.2.1. Halt and Proceed Instruction
13.2.2. Insert Storage Key Instruction

(XC)

(XI)

(XR)

(IC)

(ICM)

(LA)

(MVI)

(0)

(QC)

(01)

(OR)

(SLDL)

(SLL)

(SHL)

(SRDL)

(SRL)

(STC)

(STCM)

(SL)

(SLR)

(TM)

(TMS)

(TR)

(TRT)

(HPR)
(ISK)

Contents 9
Update B

12-52

12-55

12-58

12-61

12-64

12-67

12-69

12-72

12-75

12-78

12-81

12-84

12-87

12-91

12-99

12-102

12-105

12-108

12-111

12-114

12-117

1 2-121

12-126

12-129

13-1

13-1
13-2
13-3

UP-8913

13.2.3.
13.2.4.
13.2.5.

13.3.
13.3.1.
13.3.2.
13.3.3.
13.3.4.
13.3.5.
13.3.6.
13.3.7.
13.3.8.
13.3.8.1.
13.3.8.2.
13.3.9.

13.4.
13.4.1.
13.4.2.
13.4.3.

13.5.
13.5.1.

13.6.
13.6.1.
13.6.2.

13.7.
13.7.1.
13.7.2.

13.8.
13.8.1.
13.8.2.

13.9.
13.9.1.

13.10.
13.10.1.

13.11.
13.11.1.

13.12.

13.13.

13.14.

SPERRY UNIVAC OS/3
ASSEMBLER

Load Program Status Word Instruction
Set Storage Key Instruction
Set System Mask Instruction

INPUT /OUTPUT PRIVILEGED INSTRUCTIONS
Clear Channel Instruction
Clear Device Instruction
Enqueue 1/0 Instruction
Halt Device Instruction
Load Channel Register Instruction
Load Directive Address Instruction
Load 1/0 Address Instruction
Move 1/0 Instruction

Put IORB Instruction
Get IORB Instruction

Start Device Instruction

DIAGNOSTIC PRIVILEGED INSTRUCTIONS
Execute Diagnose Instruction
RESET Instruction
Store Status Instruction

INTERVAL TIMER PRIVILEGED INSTRUCTION
Service Timer Register Instruction

CONTROL REGISTER PRIVILEGED INSTRUCTIONS
Load Control Instruction
Store Control Instruction

RELOCATION REGISTER PRIVILEGED INSTRUCTIONS
Load Relocation Register Instruction
Store Relocation Register Instruction

GENERAL REGISTER PRIVILEGED INSTRUCTIONS
Supervisor Load Multiple Instruction
Supervisor Store Multiple Instruction

DATA CHECKING PRIVILEGED INSTRUCTION
Longitudinal Redundancy Check Instruction

PROGRAM LOAD PRIVILEGED INSTRUCTION
Initial Program Load Instruction

SWITCH LIST PRIVILEGED INSTRUCTION
Switch List Scan Instruction

SET PROGRAM MASK STATUS-SWITCHING
INSTRUCTION

SUPERVISOR CALL STATUS-SWITCHING
INSTRUCTION

TEST AND SET STATUS-SWITCHING
INSTRUCTION

(LPSW)
(SSK)
(SSM)

(CLRCH)
(CLRDV)
(EIO)
(HOV)
(LCHR)
(LOA)
(LIA)
(MIO)
PRB)
(GRB)
(SDV)

(EXD)
(RESET)
(STS)

(STR)

(LCTL)
(STCTL)

(LRR)
(STRR)

(SLM)
(SSTM)

(LRC)

(IPL)

(SWLS)

(SPM)

(SVC)

(TS)

Contents 10
Update B

13-4
13-5
13-6

13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-14a
13-14b
13-15

13-15
13-16
13-17
13-18

13-18
13-19

13-19
13-20
13-21

13-21
13-22
13-23

13-24
13-24
13-25

13-25
13-26

13-26
13-26a

13-26a
13-26b

13-27

13-29

13-31

•

•

•

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

14. DELETED (L151 Pf{4>C£55ING)

PART 4. BAL DIRECTIVES

15. INTRODUCTION TO DIRECTIVES

16. EQUATE AND DELETE OPERATION CODE DIRECTIVES

16.1. EQUATE

16.2. DELETE OPERATION CODE

17. ASSEMBLER CONTROL DIRECTIVES

17.1. CONDITION NO OPERATION

17.2. PROGRAM END

17.3. GENERATE LITERALS

17.4. SPECIFY LOCATION COUNTER

17.5. PROGRAM START

18. BASE REGISTER ASSIGNMENT DIRECTIVES

18.1. UNASSIGN BASE REGISTER

18.2. ASSIGN BASE REGISTER

19. PROGRAM LINKING AND SECTIONING DIRECTIVES

19.1. COMMON STORAGE DEFINITION

19.2. CONTROL SECTION IDENTIFICATION

19.3. DUMMY CONTROL SECTION IDENTIFICATION

19.4. EXTERNALLY REFERENCED SYMBOL DECLARATION

19.5. EXTERNALLY DEFINED SYMBOL DECLARATION

19.6. SUBROUTINE LINKAGE

20. LISTING CONTROL DIRECTIVES

20.1. ADVANCE LISTING

20.2. LISTING CONTENT CONTROL

(EQU)

(OPSYM)

(CNOP)

(END)

(LTORG)

(ORG)

(START)

(DROP)

(USING)

(COM)

(CSE CT)

(DSECT)

(ENTRY)

(EXTRN)

(EJECT)

(PRINT)

Contents 11
Update B

16-1

16-3

17-2

17-4

17-5

17-6

17-8

18-2

18-3

19-3

19-6

19-8

19-10

19-11

19-12

20-2

20-3

~

UP-8913

20.l

20.4.

SPERRY UNIVAC OS/3
ASSEMBLER

LEAVE BLANK LINES ON LISTING

LISTING TITLE DECLARATION

21. INPUT AND OUTPUT CONTROL DIRECTIVES

21.1. INPUT FORMAT CONTROL

21.2. INPUT SEQUENCE CONTROL

21.3. REPRODUCE FOLLOWING RECORD

21.4. PRODUCE A RECORD

21.5. INCLUDE CODE FROM A LIBRARY

21.6. CHANNEL COMMAND WORD

PART 5. BAL MACROS

22. MACRO FACILITY

22.1. THE MACRO PROCESSOR

22.2. MACRO SOURCE CODE

23. MACRO DESIGN

23.1. THE MACRO DEFINITION

23.2. MACRO DEFINITION STORAGE

23.3. THE MACRO CALL INSTRUCTION

24. TWO TYPES OF MACRO DEFINITIONS

24.1. PROCS AND MACROS

24.2. CALL INSTRUCTION DESIGN

24.3. PASSING PARAMETERS TO THE BODY

25. PROC FORMAT

25.1. BASIC PROC DESIGN

25.2. REFERENCING POSITIONAL PARAMETERS IN
THE CALL

(SPACE)

(TITLE)

(ICTL)

(ISEQ)

(REPRO)

(PUNCH)

(COPY)

(CCW)

Contents 12
Update A

20-5

20-6

21-2

21-4

21-5

21-6

21-8

21-9

22-1

22-2

23-1

23-3

23-6

24-1

24-2

24-7

25-1

25-3

•

•

•

UP-8913

•
26.

• 27.

•

25.3.

25.4.

25.5.

25.6.

SPERRY UNIVAC OS/3
ASSEMBLER

REFERENCING KEYWORD PARAMETERS IN THE
CALL

REFERENCING SUBPARAMETERS IN THE CALL

MULTIPLE PROC NAMES AND POSITIONAL
PARAMETER 0

THE LABEL ARGUMENT

MACRO FORMAT

26.1. BASIC MACRO DESIGN

26.2. REFERENCING POSITIONAL PARAMETERS
IN THE CALL

26.3. REFERENCING KEYWORD PARAMETERS IN
THE CALL

26.4. REFERENCING SUBPARAMETERS IN THE CALL

26.5. THE LABEL ARGUMENT

CONDITIONAL ASSEMBLY

27.1. SET SYMBOLS
27.1.1. local Set Symbols
27.1.2. Global Set Symbols
27.1.3. Set Symbol Value Assignment
27.1.4. SET Statement
27.1.5. SET A Statement
27.1.6. SETB Statement
27.1.7. SETC Statement
27.1.8. Character Expressions
27.1.9. Subscripted SET Symbols
27.1.9.1. Defining Subscripted SET Symbols

27.2. BRANCHING
27.2.1. Sequence Symbols
27.2.2. Unconditional Branch
27.2.3. Conditional Branch
27.2.4. Define Branch Destination
27.2.5. Macro Definition Exit

27.3. ERROR MESSAGES AND COMMENTS
27.3.1. MNOTE Message Statements
27.3.2. PN OTE Message Statements
27.3.3 . Comments Statement

27.4. REPETITIVE CODE GENERATION
27.4.1. Define Start of Range
27.4.2. Define End of Range
27.4.3. Conditional Assembly Control Counter

(AGO)
(AIF)
(ANOP)
(MEXIT)

(MNOTE)
(PNOTE)

(DO)
(ENDO)
(ACTA)

Contents 13
Update A

25-4

25-7

25-9

25-11

26-1

26-2

26-4

26-5

26-6

27-2
27-3
27-5
27-6
27-7
27-9
27-10
27-13
27-14
27-14
27-15

27-15
27-15
27-16
27-17
27-18
27-19

27-19
27-20
27-21
27-21

27-22
27-22
27-23
27-24

UP-8913

28.

27.5.
27.5.1.
27.5.2.
27.5.3.
27.5.4.
27.5.5.
27.5.6.

SPERRY UNIVAC OS/3
ASSEMBLER

ATTRIBUTE REFERENCES
Type Attributes
Length Attributes
Scale Attributes
Integer Attributes
Count Attributes
Number Attributes

PART 6. ASSEMBLY LISTING

ORGANIZATION OF LISTING

28.1. HEADER LINES

28.2. PREFACE

28.3. CODED IT

28.4. EXTERNAL SYMBOL DICTIONARY LISTING

28.5. CROSS-REFERENCE LISTING

28.6. DIAGNOSTIC LISTING

28.7. EXAMPLE OF ASSEMBLY LISTING

PART 7. PROGRAMMING TECHNIQUES

29. JOB CONTROL PROCEDURES

29.1. HOW TO RUN A JOB

29.2. INTRODUCING THE SOURCE DECK
29.2.1. JOB Control Statement
29.2.2. OPTION Job Control Statement

29.3. ASSEMBLE; ASSEMBLE AND LINK-EDIT;
OR ASSEMBLE, LINK-EDIT. AND EXECUTE

29.3.1. Assemble (ASM)
29.3.1.1. ASM Jproc Call Statement
29.3.2. Assemble and Link-Edit (ASML)
29.3.2.1. ASML Jproc Call Statement
29.3.3. Assemble. Link-Edit. and Execute (ASMLG)
29.3.3.1. ASMLG Jproc Call Statement

29.4. START-OF-DATA JOB CONTROL STATEMENT(/$)

29.5. FOLLOWING THE SOURCE DECK
29.5.1. End-o.f-Data Job Control Statement (/*)
29.5.2. End-of-Job Control Statement(/&)
29.5.3. Terminate-the-Card-Reader Job Control

Statement (/I FIN)
29.5.4. Setting the UPSI Byte

Contents 14
Update A

27-25
27-27
27-28
27-30
27-30
27-31
27-32

28-1

28-1

28-2

28-3

28-4

28-5

28-5

29-1

29-1
29-2
29-2

29-3
29-3
29-4
29-10
29-10
29-11
29-11

29-12

29-13
29-13
29-13

29-13
29-14

•

•

•

UP-8913

•
30.

A.

B .

• c.

D.

E.

F.

• G.

29.6.
29.6.1.
29.6.2.
29.6.3.

29.7.

SPERRY UNIVAC OS/3
ASSEMBLER

SUMMARY OF JOB CONTROL PROCEDURE
Assembly
Assembly and link-Edit
Assembly, link-Edit, and Execution

RUNNING ASSEMBLER FROM A WORKSTATION

EXAMPLE MACRO DEFINITIONS

30.1. SMALR/LARGR PROC (POSITIONAL PARAMETER 0)

30.2. SMALL6/LARGE6 PROC (DO LOOP)

30.3. BLANK MACRO (VARIABLE INLINE EXPANSION CODE)

PART 8. APPENDIXES

SAMPLE PROGRAM

CHARACTER CONVERSION CODES

MATH TABLES

C.1. HEXADECIMAL-DECIMAL INTEGER CONVERSION

C.2. HEXADECIMAL FRACTIONS (APPROXIMATE VALUES)

C.3. POWERS OF 2

C.4. POWERS OF 16

CHECK-OFF TABLE TERMS

INSTRUCTION LISTINGS

USE OF PARAM STATEMENT

F.1. PARAM STATEMENT

F.2. SOURCE CORRECTIONS
F.2.1. SEQ Statement
F.2.2. REC Statement
F.2.3. SKI Statement

SYSTEM VARIABLE SYMBOLS

G.1. &SYSECT

Contents 15
Update B

29-14a
29-14a
29-16
29-18

29-18

30-1

30-2

30-4

C-1

C-7

C-8

C-9

F-1

F-5
F-6
F-7
F-7

G-1

.....

UP-8913

G.2.

G.3.

G.4.

G.5.

G.6.

G.7.

&SYS LIST

&SYSNDX

&SYS DATE

&SYSTIME

&SYSJDATE

&SYSPARM

SPERRY UNIVAC OS/3
ASSEMBLER

USER COMMENT SHEET

INDEX

FIGURES

1-1. Writing and Submitting a Program
1-2. Card Image
1-3. Assembler Coding Form
1-4. Coding Form and Card Image Relationship
1-5. Example of Proper Coding Techniques
1-6. COBOL Source Code
1-7. Object Code Generated from COBOL Source Code
1-8. Assembly Listing
1-9. OS/3 Object Module Format
1-10. OS/3 Load Module Format
1-11. Assemble, Link, and Go Operation

2-1. Determining Binary Values
2-2. Fixed-Point Number Formats

4-1. Assembler Format Relationships
4-2. Byte and Word Structure

5-1. Floating-Point Number Formats

7-1. Instruction Formats

8-1. Program Status Word Diagram

9-1 thru 9-8 Deleted (MSS)

10-1. Comparison of Binary Numbers and Values Expressed in Powers of 2

Contents 16
Update B

G-1

G-2

G-2

G-3

G-4

G-5

1-2
1-3
1-4
1-5
1-13
1-15
1-15
1-16
1-18
1-19
1-20

2-3
2-9

4-4
4-7

5-17

7-2

8-1

10-6

•

•

•

•

•

•

UP-8913

14-1 thru 14-37 Deleted

22-1. Example of lnline Macro Expansion

SPERRY UNIVAC OS/3
ASSEMBLER

23-1. Accessing a Macro Definition Submitted in the Source Deck
23-2. Accessing a Macro Definition Stored in a Library

24-1. PROC and MACRO Heading
24-2. PROC, MACRO, and Call Instruction Comparison
24-3. Communication between Macroinstruction and Macro Definition
24-4. Example of MACRO and PROC Definitions

TABLES

2-1.
2-2.

4-1.
4-2.

5-1.
5-2.

8-1 .
8-2.
8-3.

Comparison of Numeric Expressions
Hexadecimal Notation

Comparison of Terms
Summary of Operators

Characteristics of Constant and Storage Definition Types
Zero Duplication Area Examples

Extended Mnemonics and Functions
Operand 1 Mask Combinations
Branch-on-Condition Instruction by Usage

9-1 th ru 9-8 Deleted ('"15 5}

12-1. Shift Logical Mask Bits

14-1 thru 14-9 Deleted (L151 p,'{¢Cl5SlNC)

15-1. Assembler Directives

17-1 . Assembler Control Directives

20-1. Listing Control Directives

27-1. Conditional Assembly Language Statements
27-2. Operator Priority
27-3. Valid Attribute Reference Applications
27-4. Type Attributes of Symbols

28-1 . CODEDIT Listing Content
28-2. External Symbol Dictionary (ESD) Listing Content
28-3. Cross-Reference Content
28-4. Diagnostic Listing Content

Contents 17
Update B

22-3

23-4
23-5

24-1
24-6
24-8
24-12

2-2
2-4

4-9
4-14

5-2
5-6

8-3
8-10
8-11

12-92

15-1

17-1

20-1

27-1
27-9
27-26
27-27

28-2
28-3
28-4
28-5

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

B-1. ASCII (American Standard Code for Information Interchange) Character Codes
B-2. EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes
B-3. Punched Card, ASCII, and EBCDIC Codes

C-1. Hexadecimal-Decimal Integer Conversion
C-2. Hexadecimal Fractions

E-1. Mnemonic List of Instructions
E-2. Alphabetic Listing of Instructions
E-3. List of Instructions by Machine Code

Contents 18
Update B

B-1
B-2
B-3

C-3
C-7

E-1
E-5
E-11

•

•

•

1.

,'·~ ~

"""' <

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

1-1

1. Introduction to Assembler
Language Programming

1.1. CODING AN ASSEMBLER PROGRAM

An assembler language program goes through several translations from the time it is hand
coded by a programmer until it is actually inside the computer and operating. (See Figure
1-1.) The first change is the conversion of code decipherable by people, source code
written in basic assembler language (BAL), to data capable of being processed by a
computer. Although an assembler source program can reside on several types of storage
media, diskette and punched card are the two types used by the BAL programmer
operating in a System 80 environment. The source code recorded on either of these media
types is in card image format. Therefore, the guidelines for generating your BAL program
on diskette are the same as those used for preparing punched cards. Because of this
similarity, the descriptions provided in this section are discussed from the standpoint of
card images.

While source code is entered onto cards by a card punch, it is recorded onto diskette
by either of two methods, both of which involve keyboard entry. One method allows
you to prepare the diskette offline by use of the SPERRY UNIVAC Universal
Distributed System 2000 (UDS 2000). Basically, you perform the same functions on
the UDS 2000 that you would from a card punch except the card images generated
from the keyins are recorded . on diskette. The second method for recording card
images onto diskette is through the use of the system console (or workstation
keyboard) and the general editor, information for which is presented in the general
editor user guide/programmer reference. In addition to diskette, the general editor can
output source code to disk.

UP-8913

HANDWRITTEN SOURCE CODE

Sl"E~v+uNIVAC

ASSEMBLER CODING FORM

SPERRY UNIVAC OS/3
ASSEMBLER

~ CARD PUNCH

PROGRAM __ ---··--·--- ___________)

LABEL OOPERATION/I
1 18 1& UDS-2000

_1 -~ _,_L__,__

1--1-i-'"--'-_l--'----'-- l. .LL _ _!._ L--.-..L....J

J _l ~

J_ J_ J_

J_ J J_

GENERAL
~ EDITOR

COMPUTER

C9C6E2C1E5C5 E2E3C1D9E3 FO

-
-

Lo._. -
OBJECT PROGRAM IN
EBCDIC HEXADECIMAL

-

1-2

CARD IMAGES

PUNCHED CARDS t--

CARD IMAGES

u
@

....-
DISKETTE

CARD IMAGES

t-- ~ /
DISK

LISTING

OS/3 ASM

LOC. OBJECT CODE SOURCE

~ RESULTS

~

Figure 1-1. Writing and Submitting a Program

The coded entries in a card image are converted on a column-by-column basis to data
that can be processed by the computer. Each column represents a single unit of
information. Figure 1-2 shows a blank card image. From this figure, you can see
that it has 80 vertical columns. Each column has 12 vertical positions called rows
(rows are numbered 0 through 9, 11, and 12 which appear at the top portion of the
format preceding row 0).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

1-3

12~~~~~~~~~~~~~~ TWELVEPUNCH~~~~~~~~~~~~~~12

11~~~~~~~~~~~~~~ELEVENPUNCH~~~~~~~~~~~~~~11

DOOOOOODDDOOOOOOOOOOOODDOOOOOOOOOOOOOOOIDOOOOOOOODOODODDOOOOOOOOIOOOOOOOOOOOOOOI
12Jcs111tM11nuunn11q11•nnn~aanaa•nnuM••»•••~ua•••u••~~~u~~~n9s•11uaM••P•••11nnMn•nnn•

1 111 11 1111111111 111111 1 1 111 1111 11 I 1 I I 11 11 I 111 I 11 I I I I 1 1 1 1 1 1 1 11 1 1 111111111 11111111

22

33

44

55

166&6666666&6666666&111166&&6666666&6&6666&666666666666666666661&1&&6&&&6&&6&&&6

11 7 7 7 7 11 7 7 7 1 7 7 11 7 111111111111111

88118811181881181181111111111118111111111888888818888888888888881111811111111111

99
1234s11111111u11M1sn1111nannn~nanaa•n~D~••n•••~a@~••u•••s1~~~~~~~••~ua•••A••~nnnMnanan•

COLUMN NUMBERS

Figure 1-2. Card Image

Different entry configurations in a column represent different characters and numbers.
For instance, each decimal number (0 through 9) is represented by a respective
position in the card image. If an entry is made only in row 0 of a column, then the
image for that column is interpreted as the value zero. Likewise, if an entry is made
only in row 1 of a column, then the image for that column is interpreted as the
value 1, and so on through row 9. Everything you code in assembly language is
based on the 80-column card image.

The card images that make up an assembler language program are entered from code
that is handwritten on an assembler coding form. (The Sperry Univac assembler
coding form is shown in Figure 1-3.) Each line on the assembler coding form has 80
positions that correspond to the 80 columns of the card image. One card image is
entered for every line of code on the assembler coding form (Figure 1-4). The lines
of code on the assembler coding form and the card images entered from the form are
called source code lines. Collectively, these source lines make a source program.

A BAL source program is written with instructions, directives, conditional statements,
and macros. They are the elements of the assembler language and each is usually
written on one source line. (Sometimes it may take more than one source line to
write a single element, but most of the time it takes only one source line for one
instruction, directive, statement, or macro.) The assembler ignores the presence of any
blank card images in the source code. A blank line will not be printed nor terminate
a sequence of continuation lines. The rules for coding assembler language source
lines are reflected on the assembler coding form. Each source line has five fields
and the assembler expects specific information to be coded in each field.

e

e

e

I
I r T T f T T

Tr T-1

rrT-lj-rr

1--, ,,-,r r-.-

T
l-r--.--r..- T r1

1 T·r··y· f r· T

1--.-r1·rrr-

r-. T-r-r I I

I
-,,---,--rT• '

T r·r-1 l r r·

Irr T [

"T -T T · 1 J T T

W.IO:J /JU!PO:J .1a1qwaSStf ·c-t a.Jn!J!:J

1 1 I I I T T T I T I
f 1 r r r T 1 TI T -T ' T T l ~ l r·T· r·r ,-TT·T-T"'T-'' T---,-~-,-.---rt-t-,. ,----,T T

r TI r 1 TT T l -,-,-r-1 ,-1 r-1-r1-r1-·1·•·r·rTT----,-,~1

ri TT l I 1 T r· ·r r-rr1·-.- ~ r-1-T'---,----.-----,~'' 'l-'r r-1--ro--r----,-rr 1-r-r---.-.-T11

T r·r1·1- T-1 ,--i-Tr .----r-T Tr,. r-r·--r -r .--T-,-tr----.------r-r-r--.---- •---.'T-r r••-~rr- T

T T
p·1-rT T

I IT

-r1 T rr1

-TTI rr J-T-T

-1 r-, r-r-1 1·1

I I I I T T
T-T-1 -,--,,, --,· r-~· .-,----,---,,-,---r ·-r--,--,,Tfl,---,,.1

r·r-1-·r ,-T·r· .---,---,-1r•·r--rr--.----o-,---.--1 --:---r~-IT',..T"

T 1-r r,-----r-r r-11·1-1 l-1 'T--,-,--,--ri- .-r--.~-r-r~

T T
T T

T T

T T
TT TT-~r -r 11 1 .-----rTTT---r·r-1---T'"·-,--r-----,-~r--.---~·~r-r-r-'T

T I T I T T T T
r T T r 1 ·r-r-T-,- II rr ,-r-rT ,-,,-,-T-,- -r-r ,--·r "I ,--,-----,--~--.-r~

r T-r T r r• 1 T r T IT,- ,-r,-r 11··11 rrrp--.--r·-r-T'' -, r- r---.-. T -r-1m.-,

1-.---r T 1·T-1·T rT T-1 r-~-r-1rrT·1---,-,-.---111"Tr-1-: ,-T'~l-,---,,--IT'-~T

T 1 1 r i y·r r r r l T ·r-r·r·r-.,-,--T r..,. r ---.-Tr1·-.---i T--...--r 111-.----r "-f-----r-T

: II : : : TT.-rl
I 11 I

I I I Ii I
I II I I

I I I ii I

~~~ 
I I ii I 

I 11 I I 
I 11 I I 

I I I ii I 
I II I I 

l"f~'I 1111111 1111 II 11 'I I ii I II 11 

t--"r1T1"""""1•41"'.-r-r-1 11-r p-.-..-T' -~r,...--,,.--1"'......--r- -T~~~.--rr 
T I I I ii I 
T ~'/ 

Tr 1 r ·r·1-r 1---..,----,!,-'-----.---r-!T---.-1·-r-r---r ,----,--,-T-.--.----.'--~ -1-.------.--~--,--,------,-·1-m---.- TfT"l'TTr T1T·11 TT 

r·-r-T-r Tr< 

1-,T-rj-~ 

TT,,-'f-TTT-. T,-,- ,-r1•'-.--riT-..-r-TT• ,...,.,.-.--.,-.-rrri.-.-.-'1-.-r-r"T I I I I 1111 
-~-r'TTTrTT•r•T[·'~T"!T' 'TT 'ITTT: : : : : : : : 

1 T T 1 I T I 
-,-., ,,-T,.,,,. ,,,-,,T,.,~'I~~ ...,T'T.-Tl'-,--r'-,r-

t-r'--.,...--,-r1---,--r·,----r r.---1--ri---.----.-•JT•-.----.~ ---,----,--,--- ,-,.----,,-1·---.----r-,-
t==-'T 
h-:<~~~ TT -r -r11 TT T T-T-r·1·1~~1·1r---r---,T·,---,""l~~Tl,----,---,l-l----,-r1--.·T1·~-,--,--i1-+.--~ro-+-+ 

~-.p-r-t-fl r·1·1 1 l T-.-r·-r-1··1--.---.---.-~l'-r~~ 'T"-~,-,-T T 

J-,,-,,.-T 11 ---,,.- r.---11·1---.rT' T--,-,-~-1- T,,-,-,i-r-m-T--,-,-,-'T"·~1--r-r ~ 

-m·TTT' .,.-T-rr,--r--1-1- .--~-,-,...,---p1-.-~-111~ -,--r--,-~ 

1-,·1 

r-.-r·T rT 1 

, , y 1 ·1 T T-r· T l 1 T "T -, "T rT Tf --.--1- r•-T T ·r---r-i---,...,.-, 11 '1 T"I ,-,-] T"I! ,--

r1 r·r -1 'r r-,- 1 -1 -, 'T' r·r11.---.-r-·r-rr-r1·T-f---,-,--ro11-r-~.---.-.,.--r~-r-r ,-,,-,-,---,--

T T 

T T 

T T 
T"T-,- r T . f TTT r,,-rj 

TT 11tf-r.,~·-r"1 

08 lL 91 01 

S:ID\fd ~-:to - :ID\fd -~:1.1.\fO 

aa1t:1aa 

i•l•l•i#i 
::JYl\INn 

v-L 

SiN:IWWO:l 'V 

---y3ww•HOOHd 

wt:10::1 !>NIDO::> t:1:newassv 

1::13181/113SS'v' 
£/SO :l'v'AINn Al::ll::l3dS 

ONYi::j:ldO 'VNOil.,,H3d0\7 1:18\fl 

---W\fi::j9Qi::jd 

::i~/\1Nn+ACCJ3d5 

£ L68·dn 



UP-8913 

LABEL 
1 

SPERRY UNIVAC OS/3 
ASSEMBLER 

.dOPERATIONA 
10 16 

START 

START 0 

I 

I 
0010100001100101000000000000 
1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18 19 ;a 21 221314 25 26 27 18 

1111111111111111111111111111 

2 2122 2 2 2 212 2 2 2 2 2 2 2 2 2 2?. 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 313 313 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 

5 5 5 5115 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

sl s 6 s s s s s s s s s r. s s s s s s s s s s s s s 

777777777777777777777777777 

88~888R888Ba838888888883888 

199999999999199999999999999 
1 2 3 4 5 b 7 fl 9 1'.) 11 1i 1'i H 15 Hl 17 18 i9 20 21 21i324 Li 21> ~1 

.. Ol1-5081 

Figure 1-4. Coding Form and Card Image Relationship 

1 .1 .1 . Operation Field 

1-5 

The easiest part of an assembler source code line to recognize is the operation field; 
it begins in column 10 and ends in column 14 of the card image. The operation field 
is the most restrictive field on the coding form because you must use an established 
operation code. You cannot arbitrarily assign a name of your own. The operation code 
you use is a mnemonic code that relates to some function. For example, A is for add, 
D is for divide, and S is for subtract. The mnemonic code must be written exactly as 
the instruction, directive, or statement indicates. For example, A (not AD) causes the 
add operation to be performed. If you put AD in the operation field, the assembler 
could not relate it to any of the assembler functions, so this would cause an error. 
Each mnemonic code for instructions, directives, statements, or macros is listed with 
the description of that function. The rules for using the operation field are: 

1. The operation code must not contain embedded blanks. 

2. The operation code must be written exactly as shown in the list of mnemonics 
for instructions, directives, and procs, or macroinstructions. 



UP-8913 SPERRY UNNAC OS/3 
ASSEMBLER 

3. The operation field must be terminated by a blank. 

4. The operation code must not start in column 1. 

Examples: 

LABEL 
1 

dOPERATIO~ 

1. HOVEPAY 
2. HOVEPAY 
3. 
4. 
5. 
6. 
]. 
8. USING *,6 

1. Valid 

10 16 

HVC 
H V C 
EOJ 
ENJOB 
START 
STARTS 
USINC 

YEARPAY,WORK 
YEAR,WORK 

*,6 

OPERAND 

1-6 

2. Invalid because there are embedded blanks in the operation code MVC 
3. Valid 
4. Invalid because there is no such mnemonic as ENJOB 
5. Valid 
6. Invalid because the operation code START is not followed by a blank 
7. Valid 
8. Invalid because the operation code starts in column 1 

1.1.2. Operand Field 

The operand field is the object of the operation code. The operand field begins in 
column 16 and ends in column 71. The operand field holds the data or the location 
of data that is being operated on. Each item of data in the operand field is an 
operand, and operands are separated by commas. For instructions, operands can be 
actual data - like the decimal number 10., the name of an area where data is stored 
- like STORAREA, or the actual address specifying the number of bytes the 
assembler must count to get to the data - like 1108(32). Operands for instructions, 
directives, statements, or macros are whatever parameters are required by the 
particular operation that is being done. For instance, an add immediate instruction has 
two operands. The first operand is a main storage location, and the second operand is 
a byte of actual data. An add immediate instruction adds the second operand to 
whatever data is located at the first operand's address. 

Al STORAREA,lS 

The add operation in this example is performed on the actual data, 10, and on 
whatever data is located at an area named STORAREA. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

The rules for using the operand field are: 

1-7 

1. The operand field is terminated by a blank that is not enclosed by an apostrophe. 

2. Operands may be continued onto the next line by placing a nonblank character in 
column 72. Up to two continuation lines are permitted. Caution should be 
exercised when using a nonblank character in column 72. As shown in the 
OUTRIB RIB example (1.1.7), a comma must follow the last operand on the 
continued statement if there are more operands to follow; otherwise, the 
operands that follow will be treated as comments. 

3. Column 16 is where a continuation line starts. 

Examples: 

LABEL 
1 

AOPERATION4 OPERAND 

1. NAME 
2. NAME 
3. 

1. Valid 

10 16 

DC 
DC 
ENTRY 

CL9'REBEW R D' NAME IN 9 BYTES 
CL9'REBEW R D'NAME IN 9 BYTES 
ILE,AYAHC NAD,NAHS,WNS,WBE,OREG, 
DNOMYAR,N4543N11,CONST32,EQUITY,WMC, 
WDR,WRD32,SGAW 

2. Invalid because the operand field is not terminated by a blank 
3. Invalid because the line has an embedded blank 

1.1.3. Label Field 

72 

x 
x 

As we mentioned, the operand field can contain data or the name of an area where 
data is stored. You assign a name to an area in your program by coding a symbolic 
name in the label field of the area to be accessed. Once a source line is given a 
label, it can be referenced from any other location in the source program. For 
example, I can name a line of code and use its name in the operand field of an 
instruction. 

1. ROUT I NE A I STORAREA, 10 

2. B ROUTINE 

In this example, I labeled an add instruction: ROUTINE. Then, later in my program, I 
used the symbol ROUTINE to refer to that line of code. On line 2, I said, "Branch to 
the area called ROUTINE, where the add instruction is located." 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-8 

A symbol in the label field of a line of code can also be used as an operand to 
reference data. For example, I can write a line of code to define a constant. 

LABEL 
1 

TEN 

AOPERATIONA OPERAND 
10 16 

DC 

This line of code says, "Place the number 10 in the location named TEN." Once the 
symbol TEN is defined, it can be used as an operand to represent the value 10. 

Al TEN,6 

In this line of coding, I'm requesting that 6 be added to whatever data is stored at 
location TEN. When you label data as I labeled the data (10), you are associating a 
symbol with a value. That symbol can then be used in place of the value. 

The rules for using the label field are: 

1. The symbol must start in column 1. 

2. The symbol must begin with an alphabetic character or special letter. 

3. The symbol must not exceed eight characters in length. 

4. The symbol must not contain embedded blanks or other special characters. 

5. The field must be terminated by a blank. 

Examples: 

LABEL AOPERATIONA 
1 10 20 

1. BEGIN 
2. BEGIN 
3. WEEKS52 
4. 52WEEKS 
5. EMPLOYEE 
6. EMPLOYEENO 
7. BLANKNO 
8. BLANK NO 
9. MOVEPAYMVCYEARPAY,WORK 

OPERAND 



UP-8913 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Valid 
Invalid 
Valid 
Invalid 
Valid 
Invalid 
Valid 
Invalid 

because the 

because the 

because the 

SPERRY UNIVAC OS/3 
ASSEMBLER 

symbol does not start in column 

symbol starts with a number 

1 

symbol is longer than eight characters 

because the symbol contains an embedded blank 

1-9 

Invalid because the symbol MOVEPAY is not followed by a blank (There 
also be a blank after the operation code MVC.) 

must 

The three fields just discussed are essential for designing an executable BAL program. The 
remaining two fields, the comment and sequence fields, don't play a role in the actual 
design of a program but they are useful programming aids. The comment field is a program 
documentation aid and the sequence field is a program maintenance aid. Program 
documentation is as important to the programmer writing the program as it is to those who 
must refer to it later. Operand specification is usually completed by column 40, thus leaving 
columns 41 through 71 free for comments. 

1.1 .4. Comments Field 

There are two ways to code comments: 

1. Comments can be coded on the same line as an instruction, statement, or 
directive. There must be at least one blank between the end of the operand 
specification and the start of comments. If your comments exceed one source 
line, place a nonblank character in column 72 and continue the remaining 
comments on the next source line (at column 16). 

Examples: 

LABEL AOPERATIONA OPERAND 
1 10 16 

OPEN 
BALR 

READCARD DMINP 
MVI 
MVC 

CARDFLE, (PR I NT) 
14,HDRTN 
CARDFLE,CARWORK 
p RI NTOUT' c I I 

PRINTOUT+1(131),PRINTOUT 

ACOHHENTS 

OPEN FILES 
GO TO HEADING ROUTINE 
READ A CARD INTO WORKAREA 
CLEAR PRINT AREA 

72 

CLC NUMBERIN(S),CUSTNO IS THE CUSTOMER NUMBER DIFFERENX 
T THAN THE PREVIOUS NUMBER 

BNE NEWCUST 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-10 

2. Comments can be coded on a separate line. This is done by placing an asterisk e 
(*) in column 1 of a source line. Then your comments can be coded. If your 
comments exceed one full source line, place another asterisk in column 1 of the 
next source line and continue coding the remaining comments. Note that a 
nonblank character is not coded in column 72 for continuation when an asterisk 
is coded in column 1 of the next source line. However, if your comments exceed 
one full source line, you can code a nonblank character in column 72 if you 
continue the remaining comments on the next source line starting in column 16. 
An asterisk must not be coded in column 1. 

Example: 

LABEL AOPERATION.d OPERAND 
1 10 16 

BALR 4,5' 
USING *,4 
OPEN CARDSIN,(CARDRIB) 

*THIS PROGRAM PREPARES AN ACCOUNTS RECEIVABLE REPORT USING CARD INPUT 
* AND PRINTER OUTPUT 

During assembly, comments are printed but do not affect the resulting object code. 
The purpose of comments is to make the program listing easier to follow and can 
also highlight certain portions of the program. 

1.1.6. Sequence Numbers 

Columns 73 through 80 may be used for entering sequence numbers. This is done by 
assigning consecutive numbers to each line of coding and is useful for reassembling 
the card deck, if it should be dropped. It is good practice to number the lines in 
multiples of 10, or even 100. This allows you to insert additional coding lines without 
having to renumber the cards when they have been keypunched prior to the 
modification. Some programmers use letters in addition to the numbers. This is useful 
in identifying the deck from which cards have come if they have been removed for 
any reason. Sequence numbers also are important in maintaining a source module. A 
copy of your source module may be stored on tape, disk, or diskette and the OS/3 
librarian can update and correct the source module by using the sequence numbers. 
(See the system service programs (SSP) user guide.) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-11 

• 1.1 .6. Column 72 

• 

• 

Another coding feature on the assembler coding form is column 72. This column 
separates the sequence field from the rest of the source line and is normally blank 
unless you have to continue an operand field to the next source line. If an operand 
specification is too lengthy to fit into the columns provided on a single line, the field 
may be continued onto the next line. An operand field can be continued by coding 
any nonblank character in column 72 and then continuing the operands on the next 
line starting in column 16. It is best to avoid using the comma as a continuation 
character when the comma is being used to separate the operand fields. However, it 
can be used as a continuation character when it is being used to separate operands. 
If you have coded up to column 72 and the next character you have to code is a 
comma separating operands, that comma must appear in column 16 of the next line 
after you code a nonblank character in column 72 (even another comma may be 
used). 

1.1.7. Additional Coding Rules 

The operand fields of an instruction, directive, or conditional statement must 
completely fill all available space on a source line, starting with the first operand 
specified up to and including column 71. Then a nonblank character can be placed in 
column 72 and the remainder of the operand field can be continued onto the next 
source line (column 16). These operand fields in an instruction or directive can be 
continued for only two additional lines. 

Example: 

LABEL 
1 

TITLE 

.:10 PE RA Tl 0 N.6. OPERAND 
10 16 72 

DC 

ENTRY 

C1 UNITED STATES GOVERUHENT PRINTING OFFICE STYLE HANUALSX 
(ABRIDGED)' 
I 1234567,Jl234567,K1234567,Ll234567,H1234567,N1234567,0lX 
234567 

The operand fields of macros and procs can be coded in two different ways: 

1. The operand fields can be coded in the same manner as instructions, directives, 
or conditional statements, in which case they must completely fill all available 
space on a source line, starting with the first operand specified up to and 
including column 71. Then a nonblank character can be placed in column 72 and 
the remainder of the operand field can be continued onto the next source line 
(column 16) . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-12 
Update B 

2. The operand fields can be coded to leave space between the last operand specified on 
that line and the nonblank character in column 72. A comma must be placed 
immediately following the last operand on that line, thereby separating it from the 
following operand field on the next source line. However, if you omit the comma 
immediately following the last operand on that line, and at least one blank exists 
between the last operand and the nonblank character in column 72, a warning 
message is issued by the assembler. 

The operand fields in a macro or proc can be continued for as many lines as 
necessary. 

Examples: 

LABEL 
1 

~OPERATIONA OPERAND 
10 16 72 

OUTR I B RIB IOA1=0UTBUF,RCFM=VARBLK,VARBLD=(13), IORG=(12),TYPEFLE=OUX 
TPUT,FILABL=STD 

OUTR I B RIB IOAl=OUTBUF, 
RCFM=VARBLK, 
VARBLD=(13), 
IORG=(12), 
TYPEFLE=OUTPUT, 
FILABL=STD 

It is wise to develop good coding habits from the start. A neatly coded program is 
easy to enter, debug, and interpret. Figure 1-5 is an example of such a program. 
This example program follows the format of the coding form, has plenty of comments, 
and uses sequence numbers. Don't fall into the bad habit of jotting down instructions 
and assembling them just to see if your ideas have any substance. It is much better 
to sit down and evaluate the problem. First flowchart your program, and then code it 
on the coding form, using plenty of comments and sequence numbers for lengthy 
programs. 

x 
x 
x 
x 
x 

• 

• 

• 



• 

• 

• 

UP-8913 

LABEL AOPERATIONA 
I 10 

TITLE 
PROGi START 
BEGIN BALR 

USING 
ZAP 
MP 
AP 

HOVE PAY HVC 
DP 
HVC 

* HVC 
EOJ 

WORKAREA OS 
BONUS DC 
WEEKS DC 
YEARRATE DC 
OUTPUT DC 
EMPLOYEE OS 
NAME DC 
WORKNO DC 
YEARPAY DC 
WEEKPAY DC 
CG DC 

EtlD 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND ACOHHENTS 
16 

'FIRST PROBLEH·PROGRAH' 
el 
6 .Ill 
*,6 
WORKAREA,BONUS ENTERS BONUS RATE INTO WORKAREA 
WORKAREA,WEEKS HULT BONUS BY 52 WEEKS 
WORKAREA,YEARRATE ADD BONUS TO YEARLY RATE 
YEARPAY,WORKAREA+2 HOVE TOTAL YEARLY PAY 
WORKAREA,WEEKS DIVIDE TOTAL PAY BY 52 WEEKS 
WEEKPAY,WORKAREA+I MOVE WEEKLY PAY,HOURLY RATE IS 

NOT CALCULATED IN THIS PROGRAM 
OUTPUT(29),EMPLOYEE COMPLETE RECORD MOVED 

END OF JOB 
CL6 RESERVE 6 BYTES OF STORAGE 
PL2'5elel' PACKED VALUE OF 51111!1 IN 2 BYTES 
PL2'52 1 PACKED VALUE OF 52 IN 2 BYTES 
p L4 I I 3elelelelel I PACKED 13elelelelel IN 4 BYTES 
23C'A' 23 BYTES OF BLANKS 
,0'CL23 SYMBOL FOR NEXT 23 BYTES 
CL9' REBEWl1MD 1 REBEWl1MD IN 9 BYTES 
C'Al234' Al234 IN 5 BYTES 
PL4'el' 4 BYTES OF PACK ZEROS 
PL3'el' 3 BYTES OF PACKED ZEROS 
C1AAA1 3 BYTES OF BLANKS 
BEGIN END OF THE PROGRAM 

Figure 1-5. Example of Proper Coding Techniques 

72 

1-13 
Update; C 

80 

DARflfl 1 lllfl 
DARlllll211lfl 
OARllfl3flll 
DARllll411lfl 
OARllfJ5flfJ 
OARfJfJ6flfJ 
OARllfl711lll 
OARfJfJ8fJlll 
DARfJlll9fllll 
DARfJ 1 flllll 
DARfl 11 fll/J 
DARfJ12flfl 
DARfl I 3flll 
DARfJ14flfJ 
OARll15fJlll 
DARlll1611lf 
DARfl17fJlll 
DARll1811llll 
DARfJI 91111 
DARf2flfJll 
DARfJ2 l fllll 
OARfJ22flll 
DARfJ2311lll 
DARfJ24fllll 
DARlll25ellll 

You can, if you wish, code your assembler program in a free-form manner. The 
operation, operand, and comments fields don't always have to start in column 10, 
column 16, and column 41. These columns are shown on the coding form as 
preferred starting positions for each field to promote formalized coding practices. One 
unbreakable rule is that label field must always start in column 1. Each field after the 
label field must be separated by at least one blank. So, if you only have a 3-character 
label, the operation field can be coded starting in column 5 instead of column 10. 
Also note that the label, operation, and operand fields must all be keypunched on the 
same card. Another restriction is that the sequence numbers must always appear in 
columns 73 through 80. Some examples of free-form coding are as follows: 

LABEL AoPERATIO~ 
I 10 16 

TAG START II 
BEGIN BALR 6,11 

USING *,6 

OPERAND 

ZAP WORKAREA,BONUS ENTERS BONUS RATE INTO WORKAREA 
HP WORKAREA,WEEKS, HULT BONUS BY 52 WEEKS 

72 80 

DARflfl I flfl 
DARflfl2tlfl 
DARflfl3flfl 
DAR(IJ(IJ41/J(IJ 
DARflfl511llll 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-14 

As you can see, the free-form style of coding is much more difficult to interpret than • 
the formalized style. 

Another option is available, if the location of the fields on the supplied coding form 
doesn't suit your particular application. The assembler coding form can be changed by 
using the ICTL directive (21.1 ). By using this directive, you can change the location of 
the beginning, ending, or continuation column. 

After a BAL source program is coded, it mm:t first be assembled (and also linked) 
before the program can be executed by the computer. These two functions are 
separate operations and therefore they happen at different times under control of two 
different computer elements. At assembly time, the assembler translates the source 
program to machine code instructions, and at execution time, the hardware processor 
performs the machine code instructions. Although you can interpret a source program 
as if it can actually execute, the hardware processor is incapable of actually executing 
this source program. 

1.2. ASSEMBLING A PROGRAM 

Before source code can be executed by a computer, it must be converted to machine 
code. A BAL source program is converted by an assembler, and a higher-level 
language, like COBOL or FORTRAN, is converted by a compiler. Whether a source 
program is assembled or compiled, the output is always the same. An assembler or • 
compiler produces an object program (machine code): 

SOURCE PROGRAM 

ASSEMBLER 
OR 

COMPILER 
OBJECT PROGRAM 

The object program is a binary program that can actuate the electronic logic circuits 
in the hardware processor to perform specific functions like add, subtract, or divide. 
Any computer program must be in binary form before it can be stored in the 
computer and executed by the processor. 

Though an assembler or compiler can produce an object program, each operates 
differently. Figure 1-6 shows five source lines from a COBOL program, and Figure 
1-7 shows the object source code generated from the original COBOL source lines. 
As you can see from Figure 1-7, a single compiler source line produces several 
object code instructions. This is not true of assembler source lines (excluding 
macroinstructions); each line is converted to object code on a one-for-one basis. The 
object code shown in Figure 1-7 is in hexadecimal as is any object code shown in 
printout form. This is because hexadecimal is easier to read and binary would take up • 
too much room on a printout. 



UP-8913 

nooeo 

no'"l9n 

nnr91 

LIN' • 
onn•• 

ono•n 

00091 

000•1 

ono92 

n0•019 PROCEDURE n1v1s1nN, 

n0•020 INITIALIZE, 

n0•021 OPE~ INPUT ens. 

n0•022 

SPERRY UNIVAC OS/3 
ASSEMBLER 

nO•OZl HOVE Sp&CFS TO our, 

Figure 1-6. COBOL Source Code 

ol~F1015pL 1nnRESS CONTENTS o, MEMORy OPEolND •noRr55,5 

nno•l& INfTIALIZE 

nno9l8 SA 10 • n•c \ nf'\nOE .. 
nno9JC SI ,0 l n,o Ono IOI 
ono9•0 OS E' 

0!'09•2 • 1 10 A nfltt OnnOoc 
noo9•6 S8 ,0 l """ I Or1oOFc BAL 
nC10•1tA OS f, 

1DEN, 

PROGOI 

PROGOI 

pRoGOI 

PRoGOI 

pRoGOI 

,.PcnoE 

I L 
L 

I 
Ill R 

LA 

) ;Al R 

On09•C 00•2 ,_, SOURCE De ' OPERATION< 
noo••E S8 10 • nc• I nnnOEC L 
Ono•s2 SA FO l "'0 OnnlOB CODES L 
ono•s• OS H B&lR 
ono9sa 90 77 • n•a nonuco 

I 
STM 

0009SC •2 •o 1 nnn L.....+- OBJECT HVI 
nno9bO 02 82 1 nn1 7 nOO CODE \ Hvc 

Figure 1-7. Object Code Generated from COBOL Source Code 

1-15 

COMH[NT5 

OPEN 

OPEN 

OPEN 

HOVE 

I COBOL 
SOURCE 

) STATEMENT 
NAMES 

The assembler converts each source instruction directly to a line of object code. 
Figure 1-8 shows a listing of an assembler program. The source code that was 
submitted to the assembler is shown at the right of the listing, and the object code 
generated by the assembler is shown at the left of the listing. Figure 1-8 has a 
BALR assembler instruction in the second source line that uses register 6 in operand 
1 and register 0 in operand 2. As you can see, in the object code part of this listing, 
the assembler has converted the BALR source instruction to 056016. The 05 16 is the 
machine code for a branch and link instruction; when the processor reads an 0516, it 
will perform the BALR instruction. For a listing of the machine codes for all 
instruction opcodes, see Table E-1. The register numbers for the BALR source 
instruction are in the second half of the object instruction. 

Very rarely will high-level language programmers read object code. Their concern is 
mostly with the language and the compiler. While assembler language programmers 
not only have the assembler and the assembler language to contend with, they also, 
if not just by sheer exposure, have to tolerate reading object code. This is because 
the assembler is really only one language step from the hardware processor. The only 
programming language left after assembler language is the nonsymbolic machine 
language. Although assembler language is closely related to the processor, it is still a 
symbolic programming language. 



c 
"U 
Co 
co -

l oc. OBJECT CODE AOOR 1 ADO R2 LINE SOURCE STATEMENT OS/3 ASM 80/01/03 
w 

OC.C!OOO J IFSAVE START .; 
COCuOU 05b0 2 BEGIN BALR b,J 
OUCU02 3 uSlNu •,b 
OUOJ02 4100 buF6 ".!OOF8 4 LA 13,SAVE 
r.OCUOb F2b3 b~CA b".101 OUOCC 00003 5 PACK PRlNP,PRINl 
COCUOC F212 b005 6007 OUOD7 OOCD9 6 PACK INTERP,It.TERZ 
OOCU12 F272 &ODE 60l6 OUOEO OuOE8 7 PACK TIMEP,TIMEZ 
CUCOld 4F4".l 6uOE OC0£0 8 CVB 4, TIMEP 
CUCUlC FC61 6QCA b".105 ~uocc OOOD7 9 AGAIN MP f'RINP,INTERP 
~ucu22 FAol 6~CA b0E9 ouocc OJOEB l 'l AP FRINP ,ROUNOEC 
CUOU2o Dl~O 6UCF &ODO 00001 OQOD2 11 HVN PRINP+Slll,PRINP+6 
C!QC02l 0205 6uEB b".!C:A COOED OOOCC 12 MVC AREA,PR!NP 
CuC034 F865 6uCA bOEB OuOCC COOED 13 ZAP FRINP ,AREA 
OiJCU3A 4b41) 6UlA OUOlC 14 &CT 4,AGAit. 
Ou0U3E F34b 6Uf l bOCA OOOF3 OUOCC 15 uNPK AN:>l.:ER,PRlNP 

lb OPEN IJUT, I OUTRil:l I 
OOCU44 A 17+ CNOP o,q Pi0000960 
CUC044 451".l 6u4E 000:>0 A 18 + SAL l,••12 PiOOOllSO 
OUC048 81 A 19+ LC X'81' P.-001160 
OiJC049 ..,Q(;".180 A ZO+ DC AL310UT I Pi0001170 CJ) 
00!:04C 80 A 21+ DC x•so• Pi>001180 "U 

m 000040 unuoAc A 22+ DC AL310UTRIBI P0.001190 
)> ~ COCU5Q OA2b A 23+ SVC 38 ISSUE SVC PiOOU2170 
CJ) -< 000052 a 700 24 C:NOP (i,4 
CJ) c 

OOCU54 u2U8 60BA bOFl OOOBC Ou0f3 25 MVC bUF191,ANSllER mz 
ruC!U5A 96f1 6JC2 Ou0C4 26 OI bUF+8,X'fO' s:: -

27 GMOUT OUT,l:!Uf ~~ 
IJOCOSE A ~8+ uC "'y lrJ I • SET ALIGNMENT PiOIOIJ69U mn 

::0 0 CUCUSE 5810 613E OJl 4') A 29+ L l,=AIOUTI • LOAD Rl$ 1 COib ADDRESS PO.I00710 
CJ) 

000062 58CO 61~2 D~.il 44 A 30+ L u,=AIBUFI • LOAU ROS, wORKAREA ADDRESS Pwiu074D " COCJ6b 9221 1J02 OUOJ2 A 31+ HVI 21ll,X'2()' • SET FUNCTION CODE PwIU!l89U w 
OOC06A 92JO 10~3 00003 A 32+ HVl 3111,0. SET FUNCTION CONTROL BYTE l Pi1IU089l 

A 33+ SCI.LL 47 PiOIU0920 
Ou006E 6 34+ i:JS .,H PiS00810 
COCU6E JAEF B 35+ SVC .139 PiS01380 
0UOU7U l 'l B 3b+ DC YL 1116 I P$S0139U 
0UC07l 2f B 37+ uC YL 114 71 PiSU1395 
0U007Z UA19 B 38+ SVC .:!5 P!OSU1590 
000074 070() B 39+ NOPR (; PiSOlb5U 
OOC076 .JAlC B 4:J+ SVC 28 PiSOlb60 
Ou 0U76 A 41+ ORI> •-2 
OUC07b ilA85 A 42+ SVC 133 

43 CLOSE OUT 
OUC078 A 44 + UC (JY 101 Pw000280 
OOCU78 5810 613E IJo.11 40 A 45+ L l,=AIOUTI LOAD Rl WITH FILENAME ADDRESS Pw002020 
OOCU7C OA27 A 4b+ SVC 39 ISSUE SVC Pw002U30 

47 EOJ 
OC.007£ A 118 + OS LiH EOJ00050 
OUCU7E OAlA A 49+ SVC 26 EOJUOU70 

50 OUT COlB 

·1 
~ 

A 51+ ENTRY OUT O> 

Figure 1-8. Assembly Listing 

e e e 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

1-17 

The symbolic language for the assembler has two basic types of operation codes. Those 
that are translated directly to machine codes and those that are not. The mnemonic codes 
that aren't translated to machine codes are processed only at assembly time and do not 
become part of the object program. Nonmachine code mnemonics are used to direct the 
assembler when building an object program, while machine code mnemonics make up the 
actual object program. Operations codes that are translated to machine codes are called 
assembler instructions. For a complete listing of mnemonic instruction codes and their 
counterpart machine codes, see Table E-1. 

There are three categories of nonmachine code mnemonics in the OS/3 assembler 
language: directives, conditional statements, and macros. Table 15-1 is a summary of 
assembler directives; Table 27-1 is a summary of conditional statements; and information 
on the macroinstructions available under OS/3 is included in the applicable user guide or 
programmer reference. The most commonly used macroinstruction types are data 
management and supervisor. See the consolidated data management concepts and facilities 
user guide, the consolidated data management macroinstructions user guide, the supervisor 
concepts and facilities user guide, and the supervisor macroinstructions user guide. The 
following listing shows the four elements of the assembler language and whether or not 
they are converted to executable code. 

1. 
2. 
3. 
4. 

Instructions 
Directives } 
Conditional statements 
Macros 

Machine Codes/Executable Code 

Nonmachine Codes/Nonexecutable Code 

As stated, the main function of the assembler is to produce an object program from a BAL 
source program. The object program created by the OS/3 assembler is called an object 
module and contains other information in addition to the machine code instructions 
translated from your source program. This other information is generated by the assembler 
so that OS/3 can recognize and process the object module. Figure 1-9 shows the format 
of the OS/3 object module. The shaded area indicates where the machine code program is 
located in the generated object module, and the remaining unshaded areas in the object 
module are used by the linkage editor, which is an OS/3 system program that creates 
another module called a load module. For further details about the contents of an objer.t 
module, see the system service programs (SSP) user guide. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

OBJECT MODULE HEADER RECORD 

LINKAGE EDITOR CONTROL STATEMENTS 
(OPTIONAL) 

CONTROL SECTION RECORDS 

EXTERNAL SYMBOL DICTIONARY (ESDI 
RECORDS (OPTIONAL) 

TRANSFER RECORD 

LINKAGE EDITOR CONTROL STATEMENTS 
(OPTIONAL) 

MACHINE CODE 

Figure 1-9. OS/3 Object Module Format 

1.3. CREATING A LOAD MODULE 

1-18 

Assembling a program is only the first step in generating an executable BAL program. 
The complete process is a 3-step sequence and is generally called an assemble, link, 
and go operation. This means you must assemble an object module and create (link) a 
load module before you can execute (go) a BAL program. To set up an assemble, link, 
and go operation, or an assemble only (if only an assembly is required), you must use 
job control statements. Section 29 gives detailed information on how to run a BAL 
job. 

Although the object module created by the assembler contains a BAL program in 
machine code form, it still isn't an executable program. To be executable (in OS/3) 
the object module must be changed to a load module. After an object module is 
generated, the assembler is no longer in control and the object module, left behind by 
the assembler, is used as input for creating a load module. The next OS/3 system 
program to gain control builds a load module from the object module. This system 
program is called the linkage editor. 

The format of the load module produced by the linkage editor is illustrated in Figure 1-10. 
The shaded area indicates where the machine code program is located in the load module. 
For detailed information about the contents of a load module see the system service 
programs (SSP) user guide. Segments phase 1 through phase n shown in Figure 1-10 
aren't created unless you specifically do so with linkage editor control statements. 
However, every load module will always have a root phase. After a load module is created, 
the BAL program is ready for execution. 



UP-8913 

ROOT 
PHASE 
SEGMENT 

PHASE 1 
SEGMENT 

PHASE N 
SEGMENT 
(UPT099) 

• MACHINE CODE 

SPERRY UNNAC OS/3 
ASSEMBLER 

PHASE HEADER RECORD 

AUTOMATICALLY INCLUDED 
OBJECT CODE 

AUTOMATIC OVERLAY CONTROL ROUTINE 
(KL$0CP OR KL$0CPRI 

ENTRY POINT TABLE (NTAB) 

PHASE TABLE (PTABI 

TRANSFER RECORD 

PHASE HEADER RECORD 

TRANSFER RECORD 

PHASE HEADER RECORD 

TRANSFER RECORD 

Figure 1-10. OS/3 Load Module Format 

1-19 

ONLY PRESENT IF REQUIRED 
AND AUTOMATIC INCLUSION 
FEATURE IS NOT INHIBITED 

ONLY PRESENT WHEN V-CON 
PROCESSING IS SPECIFIED 
AND VALID V-CON 
REFERENCES EXIST IN 
MULTIPHASE OR MUL Tl­
REGION LOAD MODULES 



UP-8913 

1.4. PROGRAM EXECUTION 

SPERRY UNIVAC OS/3 
ASSEMBLER 

1-20 

During the assemble and link phase, each type of BAL module is on disk, while 
during the program execution phase, the machine program is stored in main storage 
as a load module. Figure 1-11 shows the location of each module after assembly 
time and linkage editor time. The source, object, and load modules are stored in a 
disk file called the job's run library file ($Y$RUN). This file is an OS/3 system file, 
which is used to hold each BAL module until the assembler, linkage, and execution 
steps are finished. 

The focal point of program execution is main storage. Once the load module is loaded 
from disk to main storage, the machine instructions are fetched one at a time from 
main storage by the processor. When the processor fetches an instruction, the opcode 
is decoded to find out which instruction is to be executed. If the instruction is legal, 
it is executed and the processor fetches another. This goes on until no machine 
instructions are left in the load module. 

The only codes that the processor can interpret are the machine codes for assembler 
instructions. Any other codes submitted to the processor will cause an error, and the 
offending program is aborted. Every machine code instruction in the BAL instruction 
repertoire is supported by the microcode loaded into the control storage of the system. 
It is important to realize that machine codes, and only machine codes, can drive the 
hardware processor. This is the key to understanding the difference between program 
execution time and assembly time. At assembly time, the assembler processes the 
source program; the processor cannot execute a source program and doesn't see your 
program until it is in machine code form. 

~ / 

SOURCE 
MODULE 

ASSEMBLER 
MAIN STORAGE PROCESSOR 

FETCH NEXT 

C700 C560 4510 INSTRUCTION 

I MACHINE CODE I ARITHMETIC UNIT 
OBJECT 

~ ANO 
MODULE 0219 0219 600A MACHINE 

INSTRUCTION CONTROL LOGIC 

61C6 OOOED 6156 
LINKAGE 
EDITOR 

LOAD 
MODULE 

Figure 1-11. Assemble, link, and Go Operation 



UP-8913 

2.1. DATA REPRESENTATION 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-1 

2. Data Forms 

Computer data is stored in special code combinations used to represent all the 
characters and numerical data needed for problem solving. The smallest area the 
computer can move or manipulate is called a byte, which is composed of eight units 
called bits. Each bit is either a 1 or a O; thus, a byte representing the letter M would 
look like this: 

1 BYTE 

1 
1101 I 0100 

I 
0 314 7 

Bits are numbered from left to right, with the leftmost bit referred to as the zero bit 
or the most significant bit (MSB). The rightmost bit in this byte is the number seven 
bit. The rightmost bit in any field, no matter how long, is also referred to as the least 
significant bit (LSB). Two contiguous bytes are called a half word; four are called a 
full word; and eight are a double word. When you manipulate several bytes as a 
string, the leftmost byte is called the most significant byte (MSB), and the rightmost 
byte is the least significant byte (LSB). Additional information on bit and byte structure 
is given in 4.3.2. 

Table 2-1 comprises different methods of organizing and referencing numeric data as 
you would use them in data processing. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 2-1. Comparison of Numeric Expressions 

Type of Number 

Character form (unpacked) 

Zoned decimal (+) 

Zoned decimal (-) 

Packed decimal (+ only) 

Packed decimal, signed (+) 

Packed decimal, signed(-) 

Hexadecimal (+ only) 

Floating point (+) 

Floating point (-) 

Binary (+ only) 

Binary (+ only) 

Fixed point (+) 

Fixed point(-) 

C I 3 
I 

0000 

1111 

0000 

I 
1111 I 

I 

Examples 

0001 1111 ! 0100 

1110 0000 ! 1100 

0001 1111 ! 0100 

1110 

2.2. BINARY REPRESENTATION 

2-2 

Decimal 
Values 

500 

+500 

-500 

+500 

+500 

-500 

+500 

+500 

-500 

+500 

+65,036 

+500 

-500 

In binary language, the same principles are followed as in decimal language. In 
decimal language (base 10), the number 251 is a combination of three values: 

1 
50 

+200 

251 

2 

2 

5 1 

1 a value of one unit 

5 the value of five 1 o· s 

the value of two 100's 

In binary (base 2), the rightmost digit has the decimal value of 1; the digit to its leh 
has a decimal value of 2, the next is 4, then 8, and so on to the most significant bit, 
which in one byte, has the decimal value of 128. You determine the total value of a 
binary number by adding the decimal value of each "on" bit (1 ), as illustrated in 
Figure 2-1. 



UP-8913 

I 0 0 0 

I 0 0 0 

lo 0 0 

[ 1 1 1 

128 J 
64 

32 

16 

8 

4 

2 

0 i 0 0 

4 

0 ! 0 

8 4 

0 ! 1 

1 : 1 1 
_l_ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-3 

0 

0 

2 

1 

1 

1 I 
1 I 
0 I 
1 ] 

This has a decimal value of 1. 

This equals the sum of 4 and 1 (or 51. 

This equals the sum or 8, 4, and 2 (or 14). 

This decimal value adds to 255, which is the maximum 
value for one byte. The maximum value for a half byte 
(4 bits) is 15. 

Figure 2-1. Determining Binary Values 

Starting with the value of zero, a full byte represents a total of 256 different codes 
(B.1) and a half byte represents 16 codes. Since binary notation is unwieldy, most 
notations are written and computer-printed in other forms. 

2.3. HEXADECIMAL REPRESENTATION 

Using base 16 values, there are 256 hexadecimal codes in one byte. The hexadecimal 
notations consist of the numbers 0 through 9 and the letters A through F. In this 
way, we can represent the maximum decimal value of a half byte, which is 15, by 
one hexadecima I notation, which is F (Table 2-2). In B.1, the relationship of the 
binary, decimal, and hexadecimal codes for a full byte is shown. 

Hexadecimal representation is an outgrowth of decimal and binary representation of 
data. In decimal, the base used is 10; therefore, the decimal number 251 is in 
actuality: 

2 5 1 

__LJ_~ 
2 x 102 + 5 x 101 + 1 x 1 o0 

which is the same as saying: 

(2 x 100) + (5 x 10) + (1 x 1) 251 



UP-8913 
SPERRY UNIVAC OS/3 

ASSEMBLER 
2-4 

If we take this same number, 251, and show it in binary notation (that is, use the 
base 2), it would look like this for one byte: 

This is the same as: 

(1 x 27) + (1 x 26) + (1 x 25) + (1 x 24) + (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) 

or: 

(1x128)+(1 x64)+(1x32)+(1x16)+(1 x8)+(0x4)+(1x2)+(1x1)=251 

Hexadecimal notation reduces the time and space needed to read or write the codes 
represented by a full byte of binary information. Because 16 is the base, to convert 
binary data to hexadecimal data, divide the binary representation of the decimal 
number into groups of four bits and pad to the left as necessary to obtain a full 
grouping of four bits. Thus, taking the binary representation of the decimal number 
251 and breaking it up into groups as just described, we get: 

Binary 1 1 111 0 1 11 
= decimal value 251 

Decimal 
= decimal value 251 

Hexadecimal 
= decimal value 251 

Table 2-2. Hexadecimal Notation 

Binary Decimal Hexadecimal 
Half Byte Value Code 

0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 
1000 8 8 
1001 9 9 
1010 10 A 
1011 11 B 
1100 12 c 
1101 13 D 
1110 14 E 
1111 15 F 



UP-B913 SPERRY UNIVAC OS/3 
ASSEMBLER 

2.4. CHARACTER REPRESENTATION 

2-5 

There are 256 possible bit combinations that can be stored in a byte. By convention, 
certain bit combinations are used to represent the letters, numerics, and special 
characters that are used to convey information in written form. In B.1 are listed the 
hexadecimal equivalents of the characters used to write programs. It is also pointed 
out in this document that only certain characters are used in statement formats. To 
aid in the specification of permissible characters, the overall character set of the 
assembler is divided into the following classes: 

• Alphabetic set: 

Alphabetic characters: the uppercase letters A through Z 

Special letters: ? $ # @ 

• Numeric characters: 0 through 9 

• Special characters: + - * I , = /:::,. (blank) ( ) . & ' > < 

2.4.1. Alphabetic Characters 

The letters A through Z are alphabetic characters and part of the alphabetic set. The 
following table shows the hexadecimal representation, which is one byte long, for 
each of the uppercase letters. (Also see B.2.) 

Alphabetic Hexadecimal Alphabetic Hexadecimal 
Character (EBCDIC) Code Character (EBCDIC) Code 

A Cl N 05 
B C2 0 06 
c C3 p 07 
0 C4 Q OB 
E C5 R 09 
F C6 s E2 

G C7 T E3 
H CB u E4 
I C9 v E5 

J 01 w E6 

K 02 x E7 
L 03 y EB 
M 04 z E9 



UP-8913 

2.4.2. Special Letters 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-6 

The following special letters are part of the alphabetic set and usually follow the 
same rules as the letters mentioned in 2.4.1. The hexadecimal representation for 
these special letters are listed in the following table (also see B.2): 

Special Hexadecimal 
Letters (EBCDIC) Code 

? 6F 
$ 58 

# 78 
@ 7C 

2.4.3. Numeric 

As previously noted, all characters are coded in a full byte (eight bits), and this is 
also true for the character forms (unpacked) of numbers. Numbers written in this 
form, just as letters and other characters, can be moved from one location in main 
storage to another and can be sequenced, compared, and treated in other ways; but 
mathematical operations can not be performed on unpacked numerics. To do 
mathematical operations, the values must be in binary or packed decimal form. 
Unpacked and packed numeric formats are explained in 2.4.3.1 and 2.4.3.2. All 
numeric forms are shown in Extended Binary Coded Decimal Interchange Code 
(EBCDIC). For the American Standard Code for Information Interchange (ASCII), see 
B.3. 

2.4.3.1. Unpacked Format 

Unpacked (printable) numeric characters are coded in a full byte and are easily 
recognized because the first half of the coded byte is the hexadecimal code F. The 
decimal digit 5 is represented in a byte as F5. The F half of the byte (bits 0 through 
3) is the zone field, and the 5 (bits 4 through 7) is in the digit field. Numeric data 
must be in this unpacked format to be output to a printer unit. 

T 
zone I digit 

I 
0 314 7 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-7 

The following shows the hexadecimal 1-byte unpacked code for each decimal digit. 

Decimal Hexadecimal 
Digit (EBCDIC) Code 

0 FO 
1 Fl 
2 F2 
3 F3 
4 F4 
5 F5 
6 F6 
7 F7 
8 F8 
9 F9 

Examples of decimal digits and their unpacked byte equivalents are shown here. 

52 fills 2 bytes I F ! 5 I F ! 2 I 
107 fills 3 bytes I F ! 1 I F ! 0 I F ! 7 I 

0024 fills 4 bytes I F ! 0 I F ! 0 I F ! 2 I F l 4 

2.4.3.2. Packed Format 

As you can see, unpacked format involves a considerable waste of main storage 
space. When numbers are to be processed, they can be converted to packed format 
by means of the PACK instruction, prior to processing. In packed format, the zone 
fields are stripped away and the number is stored as follows: 

digit 
1 

byte 1 

digit 
0 

digit 
7 

byte 2 

sign 
F 

Thus, in packed format, only two bytes are needed to store the decimal number 107. 
This results in considerable savings in main storage space. After mathematical 
operations on a packed number, the sign C indicates a positive value and the sign D 
a negative value in EBCDIC. 

I 1 ! 0 I 7 ! C I +107 (signed) 

I 1 ! 0 I 7 ! D I -107 (signed) 

j 1 : 0 I 7 i F I unsigned (assumed positive) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

2-8 

The following program extract shows how the PACK instruction is used. (See 9.14.) 

PACK AREA1,N01 Area N01 is packed into AREA1. 

AP AREA1,0NE A sign code is produced. 

N01 DC C'123" 

AREA1 DS CL2 

ONE DC PLT 

After these operations, the two main storage areas will look like this: 

N01 

AREA1 

IF!1IF!2IF131 
I , ! 2 14 ! c I 

The hexadecimal code C in AREA 1 indicates that the value is positive. If the value is 
to be indicated as a negative value, a hexadecimal code of D would be in this field. 

2.4.4. Special Characters 

The following 14 special characters are not part of the alphabetic set (2.4.1 ), special 
letters (2.4.2), nor are they numeric (2.4.3). They have special uses, and rules are 
covered in this user guide when required. Following are listed the special characters 
with their hexadecimal codes for reference. (Also see B.2.) 

Special Hexadecimal Special Hexadecimal 
Character (EBCDIC) Code Character (EBCDIC) Code 

+ 4E ( left 40 
parenthesis 

-(minus) 60 ) right SD 
parenthesis 

* SC . (period) 48 
I 61 & so 
. (comma) 68 ·(prime) 70 
= 7E > 6E 
b.. (blank) 40 < 4C 



UP-8913 

2.5. FIXED-POINT NUMBERS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

2-9 

Each fixed-point number is represented in one of three fixed-length binary formats 
composed of a single positive or negative sign bit followed by a number field (Figure 2-2). 
When the sign bit is 0, the number represents a positive value; when 1, the number 
represents a negative value. Negative numbers are represented in twos complement 
notation, which is derived by inverting each bit of the binary number and adding 1 to the 
result of the inversion. For additional information on fixed-point numbers, see 2.1, 5.2.6, 
5.2.7, and Section 10. 

HALFWORD 

NUMBER FIELD .• I 
FULLWORD 

NUMBER FIELD 

DOUBLE WORD 

I ~ I NUMBER FIELD 3Q 
~~1 -----~ 63 

Figure 2-2. Fixed-Point Number Formats 

2.6. FLOATING-POINT NUMBERS 

The assembler provides floating-point arithmetic operations as an optional hardware 
feature. Floating-point arithmetic operations involve a fraction and an exponent. For 
example: 

217,000 can be expressed as 0.217 x 106 

296,000 can be expressed as 0.296 x 106 

In fixed-point arithmetic, add: 

217,000 

+ 296,000 

513,000 



UP-8913 

In floating-point arithmetic, add: 

0.217 x 106 

+ 0.296 x 106 

0.513 x 106 

where: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0.513 is the fraction and 106 is the exponent. 

2-10 

In floating-point notation, the fraction is added and the exponent is retained. The 
example uses decimal floating-point; the assembler uses hexadecimal floating-point. In 
hexadecimal floating-point notation, the biased exponent is expressed in excess-64 
binary notation; the fraction is expressed as a hexadecimal number having an 
arithmetic point to the left of the most significant digit. The quantity expressed by the 
full floating-point number is the product of the fraction and the number 16 raised to 
the power minus 64 of the biased exponent (fraction x 16n-64). For additional 
information on floating-point numbers, see 5.2.12 and Section 11. 

s 
I characteristic mantissa G (exponent) (fraction) N 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

3-1 

3. Addressing 

Each full byte (eight bits) of main storage is numbered in sequence starting with 
000000. With the assembler, the address of each instruction is calculated and you 
can refer to it by its real address or by a symbolic notation assigned to it. The 
assembly listing shows these addresses in their hexadecimal form. The computer also 
contains 16 registers that can be used for addressing and storage. The many types 
and uses of addressing are covered in detail in the following parts of this user guide. 

3.1. MAIN COMPUTER STORAGE ADDRESSING 

If you wish to refer to some other part of your program, you assign a symbol to that 
location and the assembler translates this to the real main storage address. 

3.1.1. Instruction Addressing 

Your program may contain the move instruction MVC: 

LABEL 40PERATIONi1 OPERAND 
1 10 16 

MOVES MVC MYAREA, YOURAREA 

Even though the main storage for this application instruction is 00008A, you could 
return (branch) to this instruction by writing: 

B MOVES 

This type of referencing a location in a program is called symbolic addressing. It is a 
time saver and helps eliminate many errors. 



UP-8913 

3.1.2. Data Field Addressing 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-2 

As noted in 1.2, storage and data areas are defined for later reference. The following 
list shows assembler-generated addresses, the symbolic addresses assigned by you, 
and the storage areas. 

Assembler-Generated Symbolic 
Address Address Definition 

000048 WKAREA1 DS CL41 

000071 WKAREA2 DS CL16 

000081 MY AREA DS OCL121 

000081 OUTPUT1 DS OCL121 

000081 NEWAREA1 DS CL41 

OOOOAA NEWAREA2 DS CL80 

OOOOFA YOURAREA DS OCL121 

OOOOFA INPUT1 DS OCL121 

OOOOFA COUNTS DS OCL3 

OOOOFA COUNT5 DC CL 1 '5' 

OOOOFB COUNT12 DC CL2'12' 

OOOOFD DS CL118 

The first work area shown, WKAREA 1, has the hexadecimal location 000048 and is 
41 bytes long. The hexadecimal value of 41 is 29, which added in hexadecimal 
produces the next hexadecimal location 000071. The next areas, MYAREA and 
OUTPUT1, show how we can assign different symbols to the same area. They do not 
take up main storage space and thus have the same address as NEWAREA 1, which is 
16 bytes from the start of the last address. The hexadecimal value of 16 is 10; thus, 
the address of NEWAREA 1 is 000081. This address plus 41 bytes (hexadecimal 29) 
produces the next address, OOOOAA. 

The use of either the symbol MYAREA or OUTPUT1 calls for the same 121 bytes 
following them in storage. The zero placed in front of the CL instructs the assembler 
to assign a location for these symbols but not to reserve any storage for them. The 
remaining six instructions show how this can be done with constants (DC) as well. 
The symbol COUNTS is an example of a symbol reference within another symbol 
reference. 



UP-8913 

3.2. REGISTER ADDRESSING 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3-3 

There are 16 general registers (0 through 15). Each register consists of 32 bits which 
is equivalent to a full word. Any register can be used in RR. RS, or RX type 
instructions. Any register can also be used in base register assignment. However, 
most 1/0 operations use registers 14, 15, 0, and 1. So, if you use any one of these 
registers and then perform either input or output, the original data in these registers 
is destroyed. You can use these registers, though, by saving their contents prior to 
the execution of an 1/0 operation and restoring their contents after the execution of 
an 1/0 operation. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-1 

4. Rules and Conventions 

4.1. READING INSTRUCTION NOTATION 

Notations are used throughout this manual to describe the general forms of 
programmer-written and computer-generated formats. A consolidated listing of all the 
notations is included in Figure 7-1. This section includes the definitions of terms. 

4.1 .1 . Assembler Application Instruction Notations 

There are eight forms of assembler applications instructions: 

RR Register-to-Register 

RX Register-to-Indexed-Storage or Storage-to-Indexed-Register 

RS Register-to-Nonindexed-Storage or Storage-to-Nonindexed-Register 

SI Storage Immediate 

SS Storage-to-Storage (Type SS1) 

SS Storage-to-Storage (Type SS2) 

S Storage 

SM Storage Mask 

Assembler application instructions provide the format for handwritten coding that, in 
turn, leads to the assembler format that generates the machine coding. The assembler 
application move instruction (MVC) illustrated is an SS1 type. The coding follows. 
Definitions of the explicit and implicit formats are provided in Section 7. 



UP-8913 

Explicit Format 

LABEL 

[symbol] 

Implicit Format 

LABEL 

[symbol] 

A OPERATION A 

MVC 

A OPERATION A 

MVC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

On the coding sheet, it could look like this: 

LABEL AOPERATIONA 
1 10 16 

OUT4 MVC AREA(37),NETPAY 

where: 

[symbol] 

OPERAND 

OPERAND 

OPERAND 

The brackets around symbol mean OUT4 is optional. 

MVC 
Is the mnemonic opcode for the move instruction. 

AREA(37) 
Is the first operand: d 1 ,,b1) or s1 (1 1) AREA is the address d1(b 1) or symbol 
s1 and (37) is the length (1 1) of the receiving field to be filled. 

NETPAY 
Is the second operand: d2(b 2) or s2 . 



UP-8913 

After this application 

I. opcode 

i,, b2 ,.I,. 

instruction 

,I. 
d2 

SPERRY UNIVAC OS/3 
ASSEMBLER 

is assembled, it 

1, J. 
.,I 

And could have the generated machine code: 

02 24 44FC 4AA6 

where: 

02 

is in the 

b1 ,.!,. 

Is the operation (opcode) for the mnemonic MVC. 

24 

4-3 

following form: 

d1 J 

Is the hexadecimal coding for the length (1 1), which is 37 bytes long but 
assembled as 37-1 or 36. 

4 
Is the base register b1 used for the first operand. 

4FC 
Is the displacement d1 used for the first operand. 

4AA6 
Is the base b2 and displacement d2 address of the second operand NETPAY. 

The generated machine code is expressed in hexadecimal form. Knowing the 
organization of the machine code format can help you when the written coding does 
not generate the values you intended. Such knowledge helps in finding errors in the 
results of a program. (See Figure 4-1 ). 



UP-8913 

Instruction 
Format 

[symbol) 
opcode 

opcode 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Object Code 
Format 0 7 8 15 16 19 20 

,-"--. 

Source Code OUT4 

Example T 
Object Code L-------------.., 

~ 
AREAC37l,NETPAY MVC 

L: 
Printout 

0003F6 02 24 44FC 4AA6 

where: 

0003F6 
Is the address of the instruction symbol, OUT4. 

02 
Is the numeric operation code for the mnemonic, MVC. 

24 
Is the 37-byte length (1 1), value 37-1. 

4 
Is the base register (b1) for the first operand, AREA. 

4FC 

4-4 

Is the displacement for the first operand, AREA. This displacement plus the contents of the base register yield the 
starting address of the first operand. 

4 and AA6 
Specify the base register and the displacement for the second operand, NETPAY. 

Figure 4-1. Assembler Format Relationships 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-4a 

Consider another instruction: 

LABEL b.OPERATION b. OPERAND 

[symbol] L 6,GROSSPAY(5) 

where: 

L 
Is the mnemonic opcode for the load instruction. 

6 
Is the first operand register r 1 • 

GROSSPAY (5) 
Is the second operand in the form s2(x2). 

After this application instruction is assembled it may generate the following machine code: 

58654012 

where: 

58 
Is the opcode for the load instruction. 

6 
Is the register r1 used for the first operand. 

5 
Is called the index register and is part of the second operand (x2). 

4012 
Is the base b2 and displacement d2 for the second operand address GROSSPAY. 
For a discussion of how the processor uses the base register, index register, and 
displacement of an operand to form main storage addresses, refer to the current 
version of the processor programmer reference. 

Figure 7-1 shows the formats of the eight application instructions as generated by 
the assembler in machine code, as well as the explicit and implicit formats for 
programmer coding. Examples of the implicit coding format using symbols and the 
explicit format are included in following sections for each assembler application 
instruction. More detailed information on the use of the assembly listing is in Section 
28. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4.1.2. Notation Rules and Meanings 

4-5 

The following conventions are used in application-instruction, assembler-directive, 
macroinstruction, proc, and control-statement formats: 

• Optional information is enclosed in brackets [ ] and may be specified or omitted 
as in the use of [symbol]. 

• Braces { } indicate multiple options, at least one of which must be chosen, as in 
the following directive. 

For example: 

PRINT 

• Braces within brackets signify that one of the options must be chosen if that 
operand is specified. 

For example: 

[{}] 

e • When given a choice of multiple options, the option that is shaded is the default 
option and indicates the choice that will be made by the system if you do not 
specify one of the options. 

For example: 

• Uppercase letters, terms, and punctuation marks indicate information which must 
be coded exactly as shown. Also, mnemonic codes (such as MVN, PACK, and 
CLC) are in uppercase letters. 

• Lowercase letters and terms indicate variables (such as [symbol], r, d, b, and e) 
which are supplied by you. 

• An ellipsis, a series of three periods, indicates that a series of entries may be 
coded, as in the directive DROP r,[,r2 , •.• ,r nl 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

• Keyword parameters may be coded in any order. 

For example: 

IOROUT=LOAD,BLKSIZE=512,RECFORM=FIXBLK 
BLKSIZE=512,IOROUT=LOAD,RECFORM=FIXBLK 

4-6 

• Positional parameters must be coded in the order shown. Commas are required 
after each positional parameter except the last. When a positional parameter is 
omitted from a series of positional parameters, the comma must be retained to 
indicate the omission. 

For example: 

X'03',0UTP,X'00',132 (operand field of CCW) 
&P,3,&KEY1 =,&KEY2=,&KEY3=(operand field of macro statement in proc format) 

• Names of directives and instructions in text are shown in lowercase italics. 

For example: 

add, move, load, branch and link, store 

• Throughout this manual, the register notations RO through R15 represent the 
registers 0 through 15. 

For example: 

BALR R2,R3 

The handwritten program, usually on the assembler coding form, is called the source 
program; the card images containing this coding are still called the source program. The 
source program is assembled, and the assembler usually produces a translation of the 
source program into machine code; this deck is called the object program. A printed listing 
of the assembled program, called the assembly listing, shows the source coding with its 
associated assembled machine coding. 

The smallest unit of information in basic assembly language (BAL) is the bit. Eight 
bits make a byte and two bytes form a half word. Four bytes are a full word and 
eight bytes comprise a double word. Figure 4-2 shows the relationships between 
bits, bytes, and words. Bits 0 through 7 form the high-order byte or MSB, and bits 56 
through 63 form the low-order byte or LSB in a double-word storage area. 



UP-8913 SPERRY UNNAC OS/3 
ASSEMBLER 

4-7 

MS8 LSI 

I I I I I I I I 

11 00 
I 

0100 , , 01 I , 00 1 01 00 I 0000 1,, 0 I 011 0 11 00 I 0101 J 1100 I 
0010 J 1100 I 0101 J 1101 I 1 001 I I I 

0 I 7. I 15 16 23 24 I 31 32 I 39 40 ., .. I .. .. I 

}4-1BYTE 1 BYTE 1 BYTE 19YTE-

HALF WORD HALF WORD 

FULLWORD 

OOUBLEWDRO 

Figure 4-2. Byte and Word Structure 

The following short definitions should be useful for the new programmer. 

• Source program 

Programmer-produced 

• Source cards 

Keypunch output 

• Source deck 

Keypunch output 

• Source code 

Keypunch, disk, or diskette output 

• Machine code 

Assembler-generated 

• Object program 

Assembler output 

• Assembly listing 

Assembler output to printer 

• Bit 

One binary digit 

• Byte 

Eight binary digits 

83 



UP-8913 

• Half word 

Two bytes 

• Full word 

Four bytes 

• Double word 

Eight bytes 

• MSB 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Most significant bit or byte, leftmost 

• LSB 

Least significant bit or byte, rightmost 

• High order 

Leftmost data, byte, or bit 

• Low order 

Rightmost data, byte, or bit 

4.2. TERMS 

4-8 

Terms represent values coded by the programmer or computed by the assembler. 
There are five classes of terms recognized by the assembler: 

• Self-defining terms (SOT) 

• Literals 

• Symbols 

• Location counter references 

• Length attribute references 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-9 

Self-defining terms are fixed values the programmer codes such as 
33,P'591 ',X'OF',B'11100110', or C'EBW'. Literals can have their value specified by the 
programmer and their location decided by the assembler and could look like, 
=X'FO',=C'A',=P'-1 ', or =8'00001000' as used in storage-to-storage instructions (e.g., 
CLC TAGA,=C'A'). Symbols, location counter references, and length attribute 
references are assigned values by the assembler. (See Table 4-1.) 

Table 4-1. Comparison of Terms 

Term 

SD Ts 

• Can be used in the 1st or 2nd 
operands. 

• May be used in application 
instructions and in assembler 
directives. 

Literals 

• May not be used in assembler 
directives. 

• Literals are preceded by an 
equal (=) sign. 

Symbols for constants 

• May be used in the 1st or 2nd 

• 
operands. 
May be used in application 
instructions and in assembler 
directives. 

4.2.1. Self-Defining Terms (SOT) 

CLI 

MVI 

MVC 

MVC 

MVC 

CLC 

AREA10 
N010 
MOVE10 

Examples 

AREA10, 10 
S5T 

AREAS, X'C2' 

5DT 
33 (10,R5l,3(R8) 

SDrSoT SOT 

AREA10,~ 

Literal 
AREA10,=X'F1FO' 

Literal 
ONSW,=8'11111111' 

OS CL2 
DC C'10' 

Literal 

MVC AREA10,N010 .._.,...._.... 
symbols 

Self-defining terms (SOT) are terms that represent fixed values. They are presented by 
the programmer in a form that is easily recognized and its value is understood 
without the need for computation. SOTs are not relocatable; they can be used to 
specify immediate data. registers, addresses. and masks. They can be used in 
assembler directives as well as in application instructions and can be part of an 
expression. The size of an SOT depends on where it is used. When used to designate 
a register you cannot exceed a value of 15. After conversion by the assembler to a 
binary format, the value is right-justified and filled with binary zeros on the left to fit 
the designated field. SOTs can be represented in binary, hexadecimal, decimal, or 
character form. (See 5.2.) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-10. 
lj i '\ 
!. . ~ 11> '-' 

When a 24-bit hexadecimal, binary, or character SOT has a 1 in the sign bit position 
the SOT will be treated as a negative term in the evaluation of an arithmetic 
expression. 

• A binary SOT consists of a series of up to 24 zeros and ones enclosed in apostrophes 
and preceded by the letter B (e.g., 8'101 ', 8'11110000', 8'00101 '). The field is filled 
with high order zeros when necessary. 

• A hexadecimal SOT consists of up to six hexadecimal digits enclosed in apostrophes 
and preceded by the letter X (e.g., X'FO', X'C1 ·, X'F1 FOFO'). Each hexadecimal digit 
represents a half byte of information. 

• A decimal SOT is an unsigned decimal number consisting of up to eight digits having a 
value of 0 through 16,777,215 (224-1) (e.g., 0, 32, 16000000). This number is 
converted by the assembler to a binary value occupying one, two, or three bytes. 

• A character SOT consists of up to 3 characters of the 256 valid characters of which 
only 63 are printable. (See Appendix B, Table B-1.) The characters must be enclosed 
in apostrophes and preceded by the letter C (e.g., C'A', C'ABC', C'123', C'A1 '). Each 
ampersand or apostrophe to be included in a character representation must be 
indicated by a double ampersand or double apostrophe, respectively. In this case there 
may be more than three characters within the apostrophes which delimit the SOT (e.g., 
C'3"S' produces 3'S; C'A&&B' produces A&B). 

The following four examples all produce the same internal bit pattern of 11110001 in 
the one byte area called AREA: 

• Decimal J;J::t"{r l/l AREA, 241 

• Hexadecimal ..cY r<'l/! AREA, X'F1 • 

• Character ~ l'l'i/! AREA, C'1' 

• Binary ~w.v: AREA, s·11110001· 

4.2.2. Literals 

Literals are terms that represent data in the source coding (see 5.3). The assembler 
replaces the value of the original literal in the literal table (pool) with the address of 
the main storage location. In the following example the literal =C'AA' will be replaced 
in this instruction by the address of a 2-byte area in the literal table containing the 
binary value 11000001 11000001. 

MOVEAA MVC TEST SW ,=C'AA' 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-11 

When the assembler recognizes a literal in the source code, it searches the table of 
literals that have been previously encountered. If a duplicate is found, then the 
relocatable address of the literal in the table replaces the original literal in the source 
code. If a duplicate is not found, then the value of the original literal is entered into 
the table and its address replaces the source code specification. Literals are similar in 
form to the operands of DC and OS statements. 

A literal may be used in any machine instruction that specifies a storage address, 
except that the literal may not be specified as the receiving field operand of an 
instruction that modifies storage. Literals may not be specified in address constants, 
shift instructions, or 1/0 instructions. Literals must always appear as the complete 
operand specification. They cannot be combined with other terms, nor with an explicit 
base register specification. 'S' type constants may not be used as literals. 

4.2.3. Symbols 

A symbol is a group of up to eight alphanumeric characters. The left, or leftmost, 
character must be alphabetic. Special characters or blanks may not be contained 
within a symbol. (See Section 6.) The following are examples of valid symbols: 

v 
GS279 
BOB 

CARDAREA 
R$1NTRN 
BD#4 

The following are not valid symbols for the reasons stated: 

READ ONE 
SPEC'L 
6AGN 

Embedded blank 
Special character used 
First character not alphabetic 

Two other categories of symbols are available in the macro language and conditional 
assembly statements. They are variables and sequence symbols. These categories of 
symbols are defined and discussed in detail in Section 6 and in 27.2.1. 

The assembler associates three attributes with each symbol it processes. These 
attributes are value, length, and relocatability. Symbols defined by the EQU directive 
adopt the attributes of the expression in the operand field of the statement. (See 
Section 1 6.) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-12 

• Value Attribute 

A symbol is assigned a value, or defined, when it appears in the label field of 
any source code statement other than a comment. A symbol appearing in the 
label field of an EQU or ORG directive is assigned the value of the expression in 
the operand field. In all other cases the value assigned is the current value of 
the location counter after the adjustment to a half-word, full-word, or double­
word boundary (5.1.7), if necessary. The value is assigned to the current label 
before the location counter is incremented for the next instruction, constant, or 
storage definition. Thus, if a symbol appears in the label field of a statement 
defining an instruction, constant, or storage area, the symbol is assigned a value 
equal to the storage area address of that instruction, constant, or storage area. 

The value of a symbol must lie in the range -223 through 223_1. 

• Length Attribute 

The length attribute of a symbol is the number of bytes assigned to the 
instruction, constant, or storage area involved. For example, the label of a 2-byte 
instruction has a length attribute of 2 and the label of a DS statement reserving 
200 bytes would have a length attribute of 200. Symbols equated to location 
counter references or absolute value representations usually have a length 
attribute of 1. The duplication factor (constant or storage area) has no effect on 
the length attribute. (See 5.1 .3.) 

The maximum length attribute that can be generated by the assembler is 65,536. 

• Relocatability Attribute 

A symbol may either be absolute or relocatable. Values which are assigned to 
symbols defined in the label field of a source code line representing an 
instruction, constant, or storage definition, are relocatable. A relocatable symbol is 
a symbol whose address would change by a given number of bytes if the 
program in which it appears is relocated the same number of bytes from its 
originally assigned address. Relocatable symbols are assigned values relative to 
the location counter. Decimal, character binary, and hexadecimal representations 
are all absolute terms and have a relocation attribute of 0. 

4.2.4. Location Counter References 

A location counter is maintained by the assembler for each control section created by 
the programmer. Each counter contains the next available location for the associated 
control section. After the assembler processes an instruction or constant, it adds the 
length of the instruction or constant processed to the correct location counter. The 
maximum value that the location counter can achieve is 223_1. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-13 

• Each instruction must have an address which is a multiple of two bytes. This type of 
address is said to fall on a half-word boundary. If the value of the location counter is 
not a multiple of 2 when assembling such an instruction, a 1 is added to the location 
counter before assigning an address to the current statement. Storage locations 
reserved in this way receive binary O's when the program is loaded. Certain constants 
must be aligned to a half-word, full-word, or double-word boundary. Again the 
location counter is adjusted to the boundary, and the storage locations which were 
bypassed receive binary O's when the program is loaded unless the adjustment 
occurred as a result of a DS or ORG directive. 

• 

• 

The current value of the location counter, under which the program is currently being 
assembled, is available for reference by the programmer. It is represented by the 
special asterisk character (*). If the asterisk is written as a term in an address 
constant or in an instruction operand expression, this character is replaced by the 
storage address of the leftmost byte allocated to that instruction or constant. Care 
must be taken to ensure that all such implied references are specified appropriately in 
individual expressions since the character asterisk (*) may also be used to indicate the 
multiply operator during the evaluation of expressions. 

An instruction may address data or other instructions in its immediate vicinity in 
terms of its own storage address. This is one kind of relative addressing and it is 
achieved by an expression of the form *+n or *-n where n is the difference in 
storage addresses of the referencing instruction and the instruction or data being 
accessed. Relative addressing is always in terms of bytes and not in terms of words 
or instructions. 

A location counter reference may not be made in a statement which requires the use 
of a predefined symbol, with the exception of the EQU and ORG directives. 

4.2.5. Length Attribute Reference 

The length attribute of a symbol is referenced as a term in an expression by writing 
L' followed by the symbol. Thus if the symbol STOREND is the name of a full-word 
field, 

L'STOREND 

would be considered a term and it would have a value of 4. (See 5.1.5.) 

4.3. OPERATORS 

There are 12 operators in the assembler language (Table 4-2) which designate the 
method and sequence to be employed in combining terms or expressions. Blanks are 
not permitted within an expression. Evaluation of an expression begins with the 
substitution of values for each term. The operations are then performed from left to 
right in hierarchical order as listed in Table 4-2. The operation with the highest 
hierarchy number is performed first; operations with the same hierarchy number are 
performed from left to right. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-14 
Update B 

Parentheses can be used to alter the hierarchy of evaluation. Multiplication by 0 equals 0. 
The 12 operators are divided into three classes: arithmetic operators, logical operators, and 
relational operators. More detailed descriptions of these operators are provided in 4.3.1, 
4.3.2, and 4.3.3. 

Table 4-2. Summary of Operators 

Classification Operator Description Hierarchy 

Arithmetic Operators ·1 A• 18 is equivalent to A •28 
6 

11 Covered quotient, All8 is 5 
equivalent to (A+8-1 )18 

I A/8 means arithmetic quotient 5 
, of A and 8. 

• A *8 means arithmetic product 5 
of A and 8. 

- A-8 means arithmetic difference 4 
of A and 8. 

+ A+8 means arithmetic sum of 4 
A and 8. 

Logical Operators .. A•• 8 means Logical Product 3 
AND of A and 8. 

++ A++8 means Logical Sum OR 2 
of A and 8. 

-- A--8 means Logical Difference 2 
XOR of A and 8. 

Relation Operators = A=8 has value 1 if true; 1 
has value 0 if false. 

> A>8 has value 1 if true; 1 
has value 0 if false. 

< A<B has value 1 if true; 1 
has value 0 if false. 

4.3.1. Arithmetic Operators 

The symbols +, -, *, I, I I, *I represent the six arithmetic operators. The intrinsic 
meanings of +, -, *, and I are the usual ones; that is, + indicates addition, -
indicates subtraction, *indicates multiplication, and I indicates division. 

The operator I I denotes a covered quotient where A/ /B is equivalent to (A+B-1 )/B. A 
covered quotient is equal to regular binary division except that if there is a remainder, a 1 
is added to the regular quotient. 

The operator *I denotes a binary shift left or right. A* /B indicates a left shift and is 
equivalent to A*2 8 . A* /(-8) indicates a right shift and is equivalent to A/2 B . 

----------------------------------------------···-··· 

• 

• 

• 



UP-8913 

4.3.2. Logical Operators 

SPERRY UNIVAC OS/3 
ASSEMBLER 

4-15 

The symbols **, ++, and -- are the three logical operators. The characters ** 

represent the logical product (AND), and characters ++ represent the logical sum 
(OR), and the characters -- represent the symmetric difference (exclusive OR). 

Each bit of the first term is compared with its corresponding bit in the second term 
and the result of the comparison is placed in the corresponding position in the 
resulting term. (See Section 12.) The result of the bit comparison for each operator is: 

mm om 
A**B Result A++B Result 

1 1 1 1 1 1 

1 0 0 1 0 1 

0 1 0 0 1 1 

0 0 0 0 0 0 

4.3.3. Relational Operators 

The three relational operators are the equals operator 
and the less than operator <. 

mm 
A--8 Result 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

the greater than operator >, 

The equals operator is used to compare the value of two terms or expressions. If the 
two values are equal, the assembler assigns a value of 1 to the expression; 
otherwise, a value of 0 is assigned. 

The greater than operator makes a comparison between two terms or expressions. If 
the value of the first (left) term is greater than the value of the second (right) term, 
than a value of 1 is assigned to the expression; otherwise, a value of 0 is assigned. 

The less than operator compares the value of the first (left) expression or term with 
the second (right) expression. If the value of the first expression is less than the 
value of the second one, then a value of 1 is assigned to the expression; otherwise, 
a value of 0 is assigned. 

For the expression A+B>C, if the expression A+B has a value greater than a value of 
C, then the assembler assigns a value of 1 to the expression; otherwise, a value of 0 
is assigned. 

A relational expression consists of a relational operator and its two operands. The 
operands in a relational expression may be either two character expressions (4.4.5) or 
two arithmetic expressions. A character expression may not be compared to an 
arithmetic expression. Character expressions are valid only on conditional assembly 
directives. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-16 

Since the evaluation of a relational expression yields an arithmetic result, a relational 
expression may be used as a term in an arithmetic expression. 

4.4. EXPRESSIONS 

An expression consists of one or more terms connected by operators. A leading minus 
sign is allowed to produce the negative of the first term. Each term in the expression 
may be either a relocatable term or an absolute term. A term is absolute if its value 
is not changed by program relocation. A term is a relocatable term if its value is 
changed by program relocation. Two relocatable terms may be considered to be paired 
if they have opposite signs and have the same relocatability attribute (that is, appear 
in the same control section). 

Evaluation of expressions obeys the following rules: 

• Multiplication and division of a relocatable term by an absolute 1 or multiplication 
of an absolute 1 by a relocatable term produces a relocatable term. 

• Multiplication of any term by absolute 0 yields absolute 0 as a result. 

• If a relocatable term enters any multiply or divide operation other than the preceding, 
an error flag is given. 

• The number of unpaired relocatable terms at any point in the evaluation must not 
exceed 16. 

• Intermediate results of the expression evaluation are full 32-bit values; however, 
the final result is the truncated rightmost 24 bits. 

Three types of expressions, absolute, relocatable, and complex relocatable obtain 
various characteristics from the term or terms which compose them. These three 
types of expressions are discussed in 4.4.1 through 4.4.6. 

4.4.1. Absolute Expressions 

An absolute expression is an expression whose value is unchanged by program 
relocation. The absolute expression can be an absolute term or any combination of 
absolute terms. Arithmetic operators are permitted between absolute terms. 

Examples of absolute terms are: a symbol which has an absolute value, a self­
defining term or a length attribute reference. 

Relocatable terms alone or relocatable terms in combination with absolute terms can 
be contained within an absolute expression. This type of absolute expression requires 
that each relocatable term be paired with another relocatable term which has the 
opposite sign and the same relocatability attribute. The paired terms need not be 
contiguous. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-17 

The effect of relocation is canceled by the pamng of relocatable terms with the same 
relocatable attribute and opposite signs. The absolute expression is thereby reduced to 
a single absolute value. 

The following are examples of absolute expressions: 

A 
A+A-A 
A-A+A+A 
R+A-R 
R-R+A 
(R-R)*A 
A*A 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

4.4.2. Relocatable Expressions 

A relocatable expression is an expression whose value changes with program 
relocation. All relocatable expressions must be positive values. 

Relocatable terms alone or relocatable terms in combination with absolute terms can 
be contained within a relocatable expression. 

Either type of relocatable expression requires the following conditions: 

• All but one relocatable term must be paired. 

• A minus sign must not precede the unpaired (remaining) relocatable term. 

• Each pair of relocatable terms must have opposite signs and the same 
relocatability attribute. 

• The paired relocatable terms do not have to be contiguous. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4-18 

Using the preceding requirements, a relocatable expression is thereby reduced to a single 
relocatable term. The following are examples of relocatable expressions: 

R 
R/1 
R+A or A+R 
R-R+R 
R-A 
R*1 or 1 *R 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

4.4.3. Complex Relocatable Expressions 

A complex relocatable expression is an expression that contains 2 to 16 unpaired 
relocatable terms or a negative relocatable term in addition to any absolute or paired 
relocatable terms. 

A complex relocatable expression may be written only in the operand field of either 
an A-type or Y-type address constant. (See 5.2.8 and 5.2.9.) 

Some examples of complex relocatable expressions are: 

A-R 
-R/1 
A-R-R+R-R 

where: 

A 
Is an absolute term. 

R 
Is a relocatable term. 

4.4.4. Character Expressions 

A character expression is either a character string, a character substring, or a 
concatenation of strings or substrings. Character expressions are used as the operand 
of a SET or SETC statement or as terms in a SETB, SET, AIF, or DO relational 
expression. Any character string is considered to be greater in value than any shorter 
character string. A character expression may have a length of up to 127 characters. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

4.4.5. Length Attribute of Expressions 

4-19 

The length attribute of an expression is determined by the assembler and it is a 
function of the leading term of the expression. If the first term of an expression is an 
absolute value, a length attribute of one byte is assigned to the expression. If the 
leading term is a symbol, the number of bytes attributed to the expression is the 
same as the length attributed to the symbol. Thus, if TAG appears in the label field 
of an LH {load half word) instruction, it would have a length attribute of 4 since LH 
is a 4-byte instruction. In referencing the same label, the expression TAG+195 also 
has a length attribute of 4, but the expression 195+ TAG has a length attribute of 1 
because the leading term is a decimal self-defining term. 

4.4.6. Character Strings 

A character string is at least one of the 256 valid characters enclosed by apostrophes. 
A character string, unlike a character self-defining term, is not converted and treated 
as a binary value. The value of a character string is determined by its length. Any 
character string is greater in value than any shorter character string. Rules for writing 
character strings are: 

• Two apostrophes must be written within a character string to represent one 
apostrophe. The two apostrophes are replaced by a single apostrophe. 

• Two ampersands must be written within a character string to represent one 
ampersand. A single ampersand within the character string is interpreted as the 
first character of a variable symbol. 

A character substring is a valid character string followed by two arithmetic 
expressions separated by a comma and enclosed in parentheses. The format is: 

character string {e1,e2) 

where: 

e, 
Specifies the leftmost character of the original string to be included in the 
substring. 

Specifies the number of characters to be in the substring. 

The expressions e1 and e2 must be valid SET expressions. {See 27.1.4.) If there are 
fewer characters {than the number specified by e2) remaining after character number 
e1 in the string, the resultant substring is shortened to include only valid characters 
of the original string. A null character string results if e1 is greater than the number 
of characters in the original string. 



UP-8913 

Example: 

'PREDEFINED' (4,6) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

will produce the character substring 

'DEFINE' 

Concatenation is the joining together of: 

• two character strings; 

• two character substrings; or 

• a character string and a character substring. 

A period designates concatenation into a single string of characters. 

Example: 

'PRE'.'DEFINE' produces 

'PREDEFINE' 

4-20 

When a substring is to be concatenated with a following character string. the period 
may be omitted and concatenation is assumed. 



• 

···:',' 

·,PART .2.. STORAGE.·· AND SYMBOL 
'DEF.lTIONS 

, .:'"'" . 



• 

--<:-



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-1 

5. Storage Definitions 

In almost all programs, inclusion of constant value is required for mathematical 
computation, headings for reports, and values or codes for comparisons. You also 
reserve storag~ for work areas, record keeping, and save areas. Two methods used to 
produce constants or reserve storage are: 

• define constant - DC 

• define storage - OS 

5.1. STORAGE USAGE 

There are 13 definition types used to describe the type and format of storage used. 
Table 5-1 lists the characteristics of each of these storage notations. All the 
definition types shown are valid for both DC and OS statements. Except for floating­
point constants (2.9, 5.2.12, and Section 11 ), the formats of both statement operands 
are similar, as follows: 

LABEL 

[symbol] 

[symbol] 

fl OPERATION ll 

DC 

OS 

[d]t[Ln 1{ ~~;} 
[d]t[Ln] [;~;] 

where: 

[symbol] 
Is up to eight characters. 

d 
Is the duplication factor in decimal. 

t 
Is the definition type. (See Table 5-1.) 

OPERAND 



UP-8913 

Type 
Code 

c 

x 

B 

p 

z 

H 

F 

y 

A 

s 

v 

E 

D 

'c' 

(c) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Is the explicit length factor in decimal. 

Is the constant specification for data. 

Is the constant specification for an address. 

Table 5-1. Characteristics of Constant and Storage Definition Types 

Constant or Source Code Storage Truncation 
Alignment 

Storage Type Specification Format or Padding Implied 

Character None Characters C', Character Right Variable 

Hexadecimal None Hexadecimal X" Hexadecimal Left Variable 
digits 

Binary None Binary B" Binary Left Variable 
digits 

Packed None Decimal P" Packed Left Variable 
decimal digits decimal 

Zoned decimal None Decimal Z" Character Left Variable 
digits 

Half word, Half word Decimal H" Fixed-point Left 2 
fixed point digits binary 

Full word, Full word Decimal F" Fixed-point Left 4 
fixed point digits binary 

Half-word Half word Expression Y() Binary Left 2 
address 

Full-word Full word Expression A() Binary Left 4 
address 

Base and Half word One or two S() Base and None 2 
displacement expressions displacement 

External Full word Relocatable V() Binary Left 4 
address symbol 

Full word, Full word Decimal t:" Floating- Right 4 
floating point digits point binary 

normalized 

Double word, Double word Decimal D" Floating- Right 8 
floating point digits point binary 

normalized 

5-2 

Length in Bytes 
Minimum Maximum 
Explicit Explicit* 

1 256 (DC) 
65,535 (OS) 

1 256 (DC) 
65,535 (OS) 

1 256 

1 16 

1 16 

1 8 

1 8 

1 2 

1 4 

2 2 

3 4 

1 8 

1 8 

*The maximum explicit length in bytes is that total length produced by the explicit length factor times the duplication factor. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-3 

L! 1-j ., r-"';.i.'- c 

Following are DC-statement and OS-statement examples showing the use of the 
subfields, which must appear in the order stated and must not be separated by 
blanks. 

LABEL 
1 

.10PERATI ONA 
10 16 

~ WRD32 DC 3CL9 1 CONSTANTS 1 

EQUITY OS 3CL9 

d"pllra<loo '"'"' ti- --.--
definition symbol 

length factor -------' 

constant specification---------' 

OPERAND 



UP-8913 

DC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-4 

5.1 .1. Define Constant (DC) 

The define constant (DC) statement is processed by the assembler and the constant 
specification is translated into object code representing the required values. The 
maximum explicit length for a DC is 256 bytes. (See Table 5-1 for C, X, and B 
types.) 

The following five examples show the use of the subfields in a DC statement. 

LABEL 
1 

AOPERATIONA 
10 16 

OPERAND 

1. N4543 DC 
DC 
DC 
DC 
DC 

C'4543' 
2C'4543' 
CL2'4543' 
2CL2'4543' 
5CL1'4543' 

2. NAO 
3. NAHS 
4. WRD 
5. L59 I 

1. Four bytes containing: I F ! 4 I F ! s I F ! 4 I F ! 3 

N4543 has a length attribute of four bytes, the number of bytes assigned the 
value '4543'. 

2. Eight bytes containing: 

NAD also has a length attribute of four bytes, as called for by the value 
'4543', even though the duplication factor calls for two such fields of four 
bytes each. 

3. Two bytes containing: F ! 41 F ! s I 
NAHS has a length attribute of two bytes, as specified by the length 
modifier, and only two bytes of storage are used. The digits 4, 3 are ignored. 

4. Four bytes containing: I F ! 41 F ! s I F ! 4 I F ! s I 
WRD also has a length attribute of two bytes, as specified by the length 
modifier, but two fields of two bytes each are used because of the 
duplication factor of 2. The digits 4, 3 are ignored. 

5. Five bytes containing: I F ! 4 I F ! 41 F ! 4 I F ! 4 I F ! 4 I 
L591 has a 1-byte length attribute, as specified by the length modifier of 1. 
There are five 1-byte fields, as called for by the duplication factor. The digits 
5, 4, 3 are ignored. 



UP-8913 

5.1.2. Define Storage (OS) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-5 

DS 

The define storage (DS) statement is processed by the assembler and the constant 
specification is translated into reserved storage. The maximum explicit length for a DS 
is 65,535 bytes. (See Table 5-1 for C and X types.) The following five examples 
show the use of the subfields in a DS statement. Only the number, not the content, 
of the bytes reserved by a DS statement is determined by the assembler. 

LABEL 
1 

AOPERATIONA 
10 16 

1. I LE OS 
2. AYAHC OS 
3. DNOMYAR OS 
4. REBEW OS 
5. OREG OS 

C'4543' 
CL4 
2CL4 
5CL1 
3C 16 N0.61 

OPERAND 

1. ILE reserves a 4-byte field with a length attribute of 4. 

2. AYAHC produces the same result as line 1. 

3. DNOMYAR reserves eight bytes composed of two fields of four bytes each. 
The length attribute of DNOMYAR is 4. 

4. REBEW reserves five bytes of storage consisting of five fields of one byte 
each. The length attribute here is 1. 

5. OREG reserves 15 bytes of storage. The constant field defines a 5-byte field, 
and the duplication factor calls for three of these fields. The length attribute 
of OREG is 5. 

5.1.3. Duplication Factor 

The duplication factor designates the number of identical constants or areas to be 
generated. An unsigned decimal value is used to specify the duplication factor. If no 
duplication subfield is used, the assembler assumes a factor of 1. A duplication factor 
of zero generates neither a constant nor a storage area and, if no length factor is 

. specified, the location counter will provide the proper boundary alignment and assign 
the location counter value to the symbol used. A duplication factor of zero is not 
permitted with literals. (See Table 5-2 for an example of the use of the zero 
duplication factor.) Note that, even though the duplication factor can change the size 
of the storage area used, the use of the duplication factor does not change the length 
attribute of the field. (See 5.1.5.) The maximum value of the duplication factor is 256. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 5-2. Zero Duplication Area Examples 

Address Symbol Operation Operand 

000048 WKAREAl OS CL41 

000071 WKAREA2 OS CL16 

000081 WBE OS OCL121 

000081 OUTPUTl OS OCL121 

000081 NEWAREAl OS CL41 

OOODAA NEWAREA2 OS CL80 

OOODFA SGAW OS OCL121 

OOODFA INPUTl OS OCL121 

OOODFA COUNTS OS OCL3 

OOODFA COUNTS DC CL1'5' 

OOODFB COUNT12 DC CL2'12' 

OOODFD OS CL 118 

5-6 

The first work area shown, WKAREA1, has the hexadecimal location 0000048 and is 
41 bytes long. The hexadecimal value of 41 is 29, which is added in hexadecimal to 
produce the next hexadecimal location, 000071. (See C.1.) The next areas WBE and 
OUTPUT1 show how we can assign different symbols to the same area. They do not 
take up storage space and so would have the same address of NEWAREA1, which 
you can see is 16 bytes away from the start of the last address. The hexadecimal 
value of 16 is 10, making the address of NEWAREA 1 000081. Now plus 80 bytes 
(hexadecimal 50) produces the address OOODFA. 

5.1 .4. Definition Type 

The definition-type symbol is required for both DC and OS statements to determine 
the alignment (5.1.7), padding, truncation, storage form, and implied length. (See 5.2 
and Table 5-1 for the characteristics of the 13 types used.) 

5.1.5. Length Factor (ln) 

The length factor designates the explicit value of the length attribute of a field 
generated by a OS or DC statement. The letter n represents either an unsigned 
decimal self-defining term or a positive absolute expression enclosed within 
parentheses. If any symbols are used in the expression, they must be previously 
defined. The length attribute of a field used in an assembler instruction determines 
the number of bytes generated for either that constant or reserved field. The 
maximum value of the length factor (n) is 65,536. Examples follow: 



UP-8913 SPERRY UNIVAC OS/3 5-7 
ASSEMBLER 

LABEL t:.OPERATI ONt:. OPERAND 
1 10 16 

1. \.INS 
2. VAR 
3. WDR 
4. SGAW 
5. STOR 

DC 
OS 
OS 
DC 
DC 

C1 LENGTH ATTRIBUTE' 
CL16 
2CL16 
CL16 1 LENGTH' 
CL16 

Examples 1 through 5 all have a length attribute of 16 bytes. The length factor is not 
required in example 1 because the constant specified is 16 bytes long. The length 
attribute of the receiving field in examples 2 through 5 is a vital element of the 
instruction. (See 12.18.) 

When used, the length factor must follow the character L. The maximum and 
minimum values that may be explicitly specified are shown in Table 5-1 for all 
definition types. Constants that do not agree with the specified length are padded or 
truncated to the left or right, as shown in Table 5-1. 

NOTE: 

Boundary alignment is not provided when a length factor is specified 

5.1.6. Constant Specification 

The constant specification determines the constant, or storage to be generated. When 
an apostrophe or ampersand is included in the constant specification, double 
apostrophes or ampersands are used to indicate the inclusion of these characters in 
the constant. 

Examples: 

1. VAR 
2. LG591 

DC 
DC 

C'ENTER NUMBER 11 4N 11 HERE' 
C'ENTER THE NUMBER 51&&91 1 

This will produce 22 bytes as follows: 

1. ENTER NUMBER '4N' HERE 

2. ENTER THE NUMBER 51 &91 

The constant may take the form of data or an address, as shown in Table 5-1. 

Data Constant Address Constant 

'JUNE 15' (AREA1) 



UP-8913 

5.1.7. Alignment 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5-8 

Machine instructions are aligned on half-word boundaries; constants may be aligned 
on a half word, full word, double word, or no boundary. (See Table 5-1.) When a 
length factor is specified in the DC or DS statement, no alignment is provided. A 
duplication factor of zero does not generate a constant or storage area but, for some 
types of constants, it forces a boundary alignment when no length is stated. This 
provides a method for obtaining boundary alignment before generating a constant that 
is not automatically aligned by the assembler. Bytes skipped to align constants are 
zero filled; bytes skipped to align storage areas are not. 

5.2. DEFINITION TYPES 

Data definition types generate absolute values or storage through the assembler 
interaction. There are 13 types, as shown in Table 5-1 and described in more detail 
in 5.2.1 through 5.2.12. (Also see 2.1.) 

5.2.1. Character Constants (C) 

The character C is used to specify character constants and can produce up to 256 
bytes for a DC and 65,535 bytes for a OS statemnent. All of the 256 valid card 
punch combinations can be used, but only 48 or 64 characters are printable, 
depending on the print set available. When the length factor does not agree with the 
constant specification, padding or truncating takes place on the right. Padding takes 
place with blanks. (See 2.1 and 2.4.) 

LABEL llOPERATION fl OPERAND 
1 10 16 

1. PADDING DC CL19J'CONSTANT 1 

2. TR UN CAT DC CL5 1 CONSTANT 1 

3. NORMAL DC C1 CONSTANT 1 

1. Produces: CONSTANT D.D.(ten bytes) 

2. Produces: CONST (five bytes) 

3. Produces: CONSTANT (eight bytes) 

A pair of ampersands is needed to specify a single ampersand constant. A pair of 
apostrophes is needed to specify a single apostrophe constant. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5.2.2. Hexadecimal Constants (X) 

5-9 

The character X is used to specify hexadecimal constants and can produce up to 256 
bytes for a DC and 65,535 bytes for a OS statement. Each byte contains two 
hexadecimal digits. When the length factor does not agree with the constant 
specification, padding or truncating takes place on the left. Padding takes place with 
hexadecimal zeros. (See 2.1 and 2.3.) 

1 • 
2. 
3. 

LABEL 
1 

PADDING 
TRUNCAT 
NORMAL 

~OPERATION~ 

10 16 

DC XL7'C4CED5F3FA 1 

DC XL4 1 C4CED5F3FA' 
DC X1 C4CED5F3FA' 

I I 1. Produces: I 0 
I I I 
I 0 : 0 I 0 I C I 4 I c I E jo 
I I I I 

2. Produces: I c ! EI D 

I c 
I I 

E I 3. Produces: I 4 Cl D 
I I 

5.2.3. Binary Constants (B) 

OPERAND 

5 I F 3 I F Al 7 bytes 

5 I F 3 I F Al 4 bytes 

5 I F 3 I F Al 5 bytes 

The character B is used to specify binary constants and can produce up to 256 bytes. 
When the length factor does not agree with the constant specification, padding or 
truncating takes place on the left. Padding is done with binary zeros. The constant 
specification consists of only the numerals 0 and 1. (See 2.1 and 2.2.) 

1. PADDING DC BL2' f/Jl UJ' 
2. TRUNCAT DC B L1 I 1 f/Jf/Jf/J 1 11 f/Jf/J 110 I 
3. NORMAL DC B I 1 11 f/Jf/J 1 10 I 

1. Produces: 0000 0000 0000 0110 2 bytes 

2. Produces: 1110 0110 1 byte 

3. Produces: 1110 0110 1 byte 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5.2.4. Packed Decimal Constants (P) 

5-10 

The character P is used to specify signed packed decimal constants. It can produce up 
to 16 bytes. When the length factor does not agree with the constant specification, 
padding or truncating takes place on the left. Padding is done with hexadecimal zeros. 
The decimal constant is written as a signed or unsigned number. If unsigned, the 
number is assumed to be plus. A positive number is assembled with a hexadecimal C 
in the four least significant bits; a negative number has a D in this location. The 
maximum of 16 bytes can contain 31 decimal digits plus the sign. (See 2.1 and 
2.4.3.) 

LABEL AOPERATIONA OPERAND 
1 10 16 

l. PLUS DC p 1+4543 1 

2. NEG DC P1 -4543 1 

3. UNSIGNED DC p 1 4543 1 

4. PADDING DC PL4 1+4543 1 

5. TRUNCAT DC PL2 1 -4543 1 

6. ODON UN DC P1 14543 1 

1. Produces: 
0 4 5 4 I 3 c 3 bytes 

2. Produces: 0 4 5 4 I 3 D 3 bytes 

3. Produces: 0 4 5 4 3 c 3 bytes 

4. Produces: 
I 

0 I 0 0 
I 

4 5 4 3 c 
4 bytes 

2 bytes 

5. Produces: 5 4 3 D 
3 bytes 

I 

6. Produces: 
1 I 4 5 4 3 c 

I 

5.2.5. Zoned Decimal Constants (Z) 

The character Z is used to specify zoned decimal constants. It can produce up to 16 
bytes. When the length factor does not agree with the constant specification, padding 
or truncating takes place on the left. Padding is done with zoned zeros (FO). A plus or 
unsigned number is assembled with a C in the zone half of the rightmost byte; a 
negative number will have a D in this location. (See 2.1.) 

1 . PLUS DC 
2. NEG DC 
3. UNSIGNED DC 
4. PADDING DC 
5. TRUNCAT DC 

Z1+4543' 
Z'-4543' 
Z1 4543' 
ZL5'+4543 1 

ZL3'-4543' 



• 

• 

• 

UP-8913 

1. Produces: F 

2. Produces: F 

3. Produces: F 

4. Produces: I F : 0 F 
I 

5. Produces: 

NOTE: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

41 
I 

5 I I 
F I F 4 C I 3 

I I 

I F 5 I F 
I 

4 4 D I 3 
I 

4 I F 51 F 4 c : 3 
I 

41 F : 5 I F 4 c : 3 
I I 

I F 5 I F 4 D: 3 

4 bytes 

4 bytes 

4 bytes 

5 bytes 

3 bytes 

5-11 
Update B 

A zoned decimal number is also known as a signed unpacked number. (See 
2.4.3.1 and 2.4.3.2.) 

5.2.6. Half-Word Fixed-Point Constants (H) 

The character H is used to specify half-word fixed-point constants. It can produce up to 8 
bytes. If no length factor is specified, the length attribute equals the implied length of 2 
bytes. Padding or truncating takes place on the left. Padding is done with the sign of the 
value, binary 0 for a positive number and binary 1 for a negative number. The constant 
specification may not contain over five significant decimal digits nor a value greater than 
+32767 (215-1) or less than -32768 (-215). Unsigned values are treated as positive 
values. The data is aligned on a half-word boundary if no explicit length is specified; 
otherwise no alignment takes place. (See 2.1, 2.5, and Section 10.) 

LABEL t:.OPERAT I ON t:. OPERAND 
1 10 16 

I. PLUSI DC HLI '+°57' 
2. PLUS2 DC H'57' 
3. NEGI DC HLI '-57' 
4. NEG2 DC H'-57' 

1. Produces: 
.. , ·r;"[1,, 
~ 

1001 1 byte 

2. Produces: I 0000 0000 I 0011 1001 2 bytes 

3. Produces: ~mo 0111 1 byte 

4. Produces: I 1111 1111 I 1100 0111 2 bytes 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5.2.7. Full-Word Fixed-Point Constants (F) 

5-12 
Update B 

The character. F is used to specify full-word fixed-point constants. It can produce up to 
eight bytes. If no length factor is specified, the length attribute equals the implied length of 
four bytes. Padding or truncating takes place on the left. Padding is done with the sign of 
the value, binary 0 for a positive number and binary 1 for a negative number. The constant 
specification may not contain over 10 significant decimal digits nor a value greater than 
+2, 147,483,647 (231-1) or less than -2, 147,483,648 (-231) .. Unsigned values are 
treated as positive values. The data is aligned on a full-word boundary if no explicit length 
is specified; otherwise no alignment takes place. (See 2.1, 2.5, and Section 10.) 

LABEL 
1 

1. PLUS2 
2. PLUS4 
3. NEG2 
4. NEG4 

AOPERATIONA 
10 16 

DC 
DC 
DC 
DC 

FL2 '+271' 
F'271' 
FL2'-271' 
F'-271' 

OPERAND 

Sign bits -----i 
1 . Produces: 0000 0001 0000 1111 

2. Produces: 0000 0000 0000 0000 0001 0000 1111 

3. Produces: 

Sign bits 

l 
[ 1111 1110 1111 0001 

4. Produces: 1111 1111 1111 1111 1110 1111 0001 

5.2.8. Half-Word Address Constants (Y) 

2 bytes 

4 bytes 

2 bytes 

4 bytes 

The character Y is used to specify half-word address constants. It can produce up to two 
bytes. If no length factor is specified, the length attribute equals the implied length of two 
bytes. Padding or truncating takes place on the left. Padding is done with binary zeros. A 
length factor of one byte may be specified for absolute expressions only. The expression 
may be a positive or negative absolute value or a relocatable symbol representing the 
address of an instruction or item of data within the program. Alignment is on a half-word 
boundary if no explicit length is stated; otherwise no alignment takes place. The maximum 
value that can be specified is 215_1 (32,767). 

I. I WRD 
2. WBE 
3. WMC 

DC 
DC 
DC 

Y (EQU ITV) 
YLl (9) 
Y(9) 

..__------------------------------------··----··· 

• 

• 

• 



e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-13 

1. Produces a 2-byte area containing the address of the instruction EQUITY. 

2. Produces: 0000 1001 1 byte 

3. Produces: 0000 0000 0000 1 001 2 bytes 

5.2.9. Full-Word Address Constants (A) 

The character A is used to specify full-word address constants. It can produce up to 
four bytes. If no length factor is specified, the length attribute equals the implied 
length of four bytes. Padding or truncating takes place on the left. Padding is done 
with binary zeros. Length factors of one or two bytes may be specified for positive or 
negative absolute values. The maximum value that can be specified is 231 -1 
(2, 147,483,647). Alignment is on a full-word boundary if no explicit length is 
specified; otherwise no alignment takes place. 

I. 
2. 
3. 

LABEL 
I 

WRD 
WBE 
WHC 

t:.OPERATI ONf:. OPERAND 
10 16 

DC A(VALLEY) 
DC AL I (9) 
DC AL2(9) 

1. Produces a 4-byte area containing the address of the instruction VALLEY. 

2. Produces: 0000 1001 1 byte 

3. Produces: 0000 0000 0000 1001 2 bytes 

5.2.1 O. Base and Displacement Constants (S) 

The character S is used to specify base and displacement constants. It can produce a 
2-byte area. The only length factor that may be specified is 2. No padding or 
truncating can take place. Alignment is on a half-word boundary when the length 
factor is not used. Neither negative values nor literals may be used. This instruction 
produces a 2-byte area, as follows. 

1 BYTE 1 BYTE --------- ------------
lo J. ,I. i .. I 
~-.......... ~ ~ 

BASE 
REGISTER 

(4 BITS) 

DISPLACEMENT 
(12 BITS) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-14 

The first four bits (half byte) contain the number of the base register used in this 
constant. The next 12 bits contain the value of the displacement to be added to the 
value in the register to produce the full address of the constant. 

In the following example, in line 1, the value 5000 will be placed in register number 
9 at execution time. (See 19.2 for the USING directive.) In line 2, assume the 
program has produced the address of 5025 to be assigned to the instruction called 
ELI, and this instruction is 25 bytes away from the area covered by register number 
9. The instruction CHAYA, line 3, specifies the address of ELI, which is register 
number 9 (value 5000) plus a displacement of 25 bytes to give 5025. The instruction 
REBEW does not use an address symbol but explicitly states the displacement, 25 
bytes, and register number 9. 

Examples: 

LABEL t. OPE RAT I ONt. 
1 10 16 

ELI 

CHAYA 
RE BEW 

START 

• 

USING 

• 
DC 

DC 
DC 
• 
• 
• 

srarara, 9 

C'CONSTANT' 

S (ELI) 
5(25(9)) 

OPERAND 

The constants produced in lines 3 and 4 show the hexadecimal values of the base 
register and the displacement as follows: 

BASE 
REGISTER 

DISPLACEMENT 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5.2.11. External Address Constants (V) 

5-15 

The character V is used to declare references to special external symbols. The 
constant must be used to reference an executable instruction which is external to the 
program. The reference symbol need not be identified by an EXTRN statement. (See 
19.5.) 

The only length factors that may be specified are 3 or 4. If no length factor is used, 
the length attribute equals the implied length of four bytes and alignment will be on 
a full-word boundary. 

Padding or truncating takes place on the left. Padding is done with hexadecimal zeros. 

The specification of a symbol in the operand field of a type V constant does not 
constitute a definition of the symbol. 

Until the program containing the external symbol is linked to the program with the V 
type constant, the value of the assembled constant is composed of hexadecimal zeros. 

Example: 

LABEL 
1 

LODGE 

60PERAT I ONt:. OPERAND 
10 16 

DC V(TRAVEL) 

As the address value of this DC instruction (TRAVEL) is externally defined, the 
following constant is generated. 

5.2.12. Floating-Point Constants (E and D) 

The format of floating-point constants differs from the standard format of the DC 
statement (5.1) in that an additional subfield (the scale modifier) may appear. The 
format for floating-point constants is as follows: 

LABEL t:. OPERATION t:. OPERAND 

[symbol] DC [d] t[L0 ][S+n] 'c(E±n]' 



UP-8913 

where: 

d 

t 

S+n 

Is the duplication factor. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Is the definition type (E, full word; D, double word). 

Is the explicit length factor in decimal. 

Is the scale modifier. 

'c[E±n]' 
Is the constant specification with optional exponent. 

5-16 

The subfields must be written in the order given. The d, t, and Ln subfields are 
discussed in 5.1. The scale modifier must be a positive signed or unsigned decimal 
number. If the sign is omitted, a positive value is assumed. The scale modifier is 
applied to a number after it has been converted to internal format. 

Two types of floating-point constants are available: full word (E) and double word (D). 
The implied length of an E type constant is four bytes; if the length modifier is 
omitted, full-word boundary alignment is assigned. The implied length of a D type 
constant is eight bytes; if the length modifier is omitted, double-word boundary 
alignment is assigned. In either case, an explicit length modifier of from one to eight 
bytes may be specified. 

A floating-point number is written as a decimal number. It can be an integer (110), a 
fraction (0.75), or a mixed number (110.75). The floating-point number may be 
followed by an optional exponent represented by an E, a sign, and a decimal number, 
respectively. In the absence of a sign, a plus sign is assumed. 

The exponent for a constant is that power of 10 by which that constant will be 
multiplied before its conversion to internal format. This exponent value may range 
from -85 to + 75. 

The machine representation of the constant consists of a hexadecimal fraction 
(mantissa) and a hexadecimal exponent (characteristic). The decimal point is assumed 
to be at the left of the leftmost digit of the fraction. The characteristic represents the 
power of 16 by which the fraction must be multiplied to obtain the value of the 
constant. The machine format is shown in Figure 5-1. 



UP-8913 

FULL 
WORD 

0 

s 
I characteristic 

G (exponent) N 
1 7 8 

SPERRY UNIVAC OS/3 
ASSEMBLER 

(SHORT FORMAT) 

mantissa 
(fraction) 

6 hexadecimal digits 

(LONG FORMAT) 

5-17 

31 

DOUB LE G~ characteristic mantissa {CJ 
WORD N (exponent) (fraction) 

~0__...__ ______________ 1 .......... a ______________________ 1_4_h_ex_a_d_ec_im __ al_d_ig_it_s ________ ~ 63 

where: 

SIGN 
is the 0 bit, the sign of the mantissa. 

CHARACTERISTIC 
Is a 7-bit binary number (signed and biased by the hexadecimal value 4016 , decimal value 64) reflecting the scaling of 
the floating-point number. 

MANTISSA 
Is the fraction after the constant has been converted to its machine representation; scaling is performed if specified. 

Figure 5-1. Floating-Point Number Formats 

Example: 

The floating-point value is the product of the mantissa (fraction) and the base 16 
raised to the power of the biased characteristic (exponent) after the exponent has 
been reduced by 64. The decimal number 255 will generate the floating-point 
number 42FFOOOO. 

LABEL Ll OPERATION Ll OPERAND 

[symbol] DC E'255' 

Decimal 255 = the fraction X16. The floating-point number shown in hexadecimal 
form is 42FFOOOO. 

In this example: 

n = hexadecimal 42 (decimal value 66) fraction 
from Table C-2). Therefore, 42FFOOOO equals: 

.9961 x 1666-64 

or .9961 X 162 

or .9961 X 256 
or 255 

.FFOOOO (decimal value .9961 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

5-18 

If scaling is not specified, the fraction is hexadecimally normalized; that is, all 
leading hexadecimal zeros are removed, and the characteristic is adjusted by 1 
for each zero removed. Rounding is then performed, and the number is 
assembled into the field as specified by the explicit or implicit length. Negative 
fractions are carried, not in twos complement, but in true representation. 

The scale modifier must be a positive value from 0 to 14. This modifier specifies 
the number of hexadecimal positions (four bits) the number is shifted to the 
right. Scaling provides an unnormalized floating-point number. The characteristic 
is adjusted to reflect the number of hexadecimal positions the number has been 
shifted. If any hexadecimal positions are lost, rounding occurs in the rightmost 
hexadecimal position retained. 

Examples: 

Normalized number, I I 
F I 0 ! 0 I I 

0 I value 255. 4 I 2 F I 0 I 
I I I 

Unnormalized number, 
14 

I jo l F F : 0 I 0 : 0 I value 255. 
I 3 
I I I I 

Unnormalized number, o I F I I I 0 l I I o I 4 : 4 F I 0• 
value 255. I I 

See 2.6, Section 11, and Appendix c. 

5.3. LITERALS 

A literal is a representation of data within a source code statement and can be coded 
in the sending field of either operand. A literal is simply a constant coded with an 
equal sign followed by a type code and a nominal value enclosed within single 
quotation marks. 

The method of describing and specifying a constant as a literal is almost identical to 
the method of specifying it in the operand field of a DC statement. When a literal is 
assembled, the data is stored in a "literal pool" which is a special area in main 
storage where all literals are placed. The address of that storage field in the literal 
pool is then placed in the operand field of the assembled statement. 

If two identical literals occur within one literal pool, only the first literal is stored. 

The permissible use of literals are: 

• Any type of data can be used to specify a literal. 

• Only one reference to the same literal in a coding statement can be made. 

• A literal is always in the sending field of an operand. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

• Literals are relocatable because the address (not the literal itself) is assembled in 
the coding statement. 

• Literals can be self-defining terms which are recognized by the absence of the 
equal sign, also referred to as immediates. 

• Duplication factors can be used in the specification of literals and are expressed 
only by unsigned decimal values except zero. 

• Length attributes can be used in the specification of literals and are expressed 
only by unsigned decimal values. 

The nonpermissible use of literals are: 

• A literal can never be used in the receiving field of an operand. 

• A literal cannot be combined with other terms. 

• It cannot be specified within the parenthesis of an address constant. 

• It cannot be specified in a shift instruction, or an 1/0 instruction. 

• A literal cannot have an explicit base or an explicit index. 

• Absolute (with all terms previously defined), relocatable, or complex relocatable 
expressions cannot be used as either duplication factors or length attributes. 

Example: 

LOC. OBJECT CODE 
000000 
000000 0530 
000002 
000002 58BO 3016 
000006 5ABO 301E 
OOOOOA 42BO 301A 

OOOOOE 

OOOOOE 1700 
000010 OAlB 
000014 
000018 000008BC 
OOOOlC F0404040 
000000 
000020 00000005 

ADDRI ADDR2 

00019 
00020 
OOOlC 

A 
A 
A 
A 
A 
A 

LI NE SOURCE STATEMENT 
I STC START 0 
2 BEGIN BALR 3,0 
3 USING "',3 
4 l 11,AMTIN 
5 A 11,=F' 5' 
6 STC 11, STOR 
7 DUMP 
8+ DS OH 
9+"' 

10+"' THE DUMP PARAMETER IS A 1-4 BYTE HEX CODE 
11+"' 
12+ XR 0,0 CLEAR DUMP CODE 
13"' SVC 27 DUMP SVC 
14 DS F 
15 AMTIN DC F'2236' 
16 STOR DC CL4'0' 
17 END BEGIN 
18 =F'5' 

On line 5 of the sample program, a literal is used in the sending field of operand 2. 
The equal sign is used followed by the type code (which in this case is F, full word) 
and the nominal value enclosed in single quotation marks. Note that the object code 
produced when the literal is assembled is the address (00020) of the field in the 
literal pool where that literal was placed. Line 18, under object code, shows the 
literal actually generated. 





• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

6-1 
Update A 

6. Symbol Definitions 

Byte locations in main storage are numbered consecutively starting with zero. Each 
number is considered the address of the byte of data stored at that location. A group 
of consecutive bytes is addressed by the leftmost byte. A symbol appearing in the 
label field of a statement defining an instruction, constant, or storage area is assigned 
the address value of the first byte of the source statement with which the symbol is 
associated. The following rules apply to the general use of symbols. 

• Must start in column 1 

• Must start with an alphabetic character or special letter 

• Must consist of only alphabetic characters, 

• Must not be longer than eight characters 

• Must not include a space (blank) or other 

• Must be followed by a blank 

Example of valid label field symbols: 

LABEL l::.OPERATIONl::. 
1 10 16 

\.J DC 
N4543 DS 
DNOMYARD DC 
CASH$0UT BALR 

P1 4069 1 

PL4 
CI 5fJfJ I 

R5,fJ 

numeric characters, 

special character 

OPERAND 

and special letters 



UP-8913 

Examples of invalid symbols: 

LABEL 
1 

flOPERAT I ONfl 
10 16 

1. EQUITY DC 
2. 4543 DS 

p I 402 1 

ZL4 

SPERRY UNIVAC OS/3 
ASSEMBLER 

3. READ ONE PACK 
4. CONSISTORY DC 

OPERl ,OPER2 
(I 80 I 

OPERAND 

1. Invalid because symbol does not start in column 1 

6-2 
Update A 

2. Invalid because symbol does not start with an alphabetic character or special letter 

3. Invalid because symbol contains a special character (space) 

4. Invalid because symbol is longer than eight characters 

6.1. EQUIVALENT SYMBOLS 

To make a program more meaningful, the programmer may use more than one 
symbol to represent the same value or location. The same output area could be called 
NURECORD (in one place) and OUTPUT1 in another part of the program. The EQU 
directive (Section 16) can be used, as shown in this section, to equate these symbols. 
An EOU may be used to equate any symbol to any other symbol or to a value. Only 
the operands may declare expressions. 

NURECORD EQU 
R0 EQU 
Rl EQU 
R2 EQU 
R3 EQU 

R12 EQU 
R13 EQU 
R14 EQU 
RI 5 EQU 

OUTPUT I 
0 
l 
2 
3 

12 
1 3 
14 
1 5 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

6-3 
Update A 

After the EQU directive, a register instruction could be written in any of the following 
ways: 

LABEL 
1 

ADD 
ADD 
LOAD 
LOAD 
MOVE 
MOVE 
MOVE 

NOTE: 

~OPERATION~ 

10 16 

AR 
AR 
LA 
LA 
MVC 
MVC 
MVC 

1 '2 
Rl ,R2 
5,2(5) 
R5,2(R5) 
WKAREA,REC 
15(7,9) ,5(10) 
15(7,R9),5(R10) 

OPERAND 

Throughout, the register notations (RO through RT 5) represent the registers 0 through 15. 

6.2. SYMBOL APPLICATIONS 

Symbols are used not only to identify storage areas and constants but also to locate 
instructions in the program. In the following example, the branch instruction with the 
symbol RETURN calls for a branch to the location CONSIS32 under certain conditions . 
The branch instruction called TRAVEL branches around the nonexecutable DC 
constants to the location SQUARE. 

BEGIN 

TITLE 
START 
BALR 
USING 

CONSIS32 MVC 

TRAVEL B 
WMC DC 
WRD32 DC 

SQUARE LR 

'SYMBOL USE' 

R3,Rl!'I 
*,R3 

VALLEY,CONSISTO 

SQUARE 
C'365' 
C'32' 

R2,R4 



UP-8913 

LABEL aOPERATION.A 

SPERRY UNNAC OS/3 
ASSEMBLER 

1 10 16 

RETURN BC 

MASTER CLC 

EOJ 
RO EQU 
R2 EQU 
R3 EQU 
R4 EQU 
RE BEW DC 
WEEKS52 EQU 
VALLEY OS 
CONSISTO OS 

END 

7,CONSIS32 

WEEKS52,•P'52' 

fl 
2 
3 
4 
P'+52' 
RE BEW 
CL32 
XL32 
BEGIN 

6-4 

OPERAND 

The EQU directives show how to use the symbol WEEKS52 for REBEW; also RO, R2, 
R3, and R4 for registers 0, 2, 3, and 4. 

Through the ·extensive use of symbols and the assembly listing cross-reference, you 
can trace every use of a data area or instruction routine. (See 28.5.) 

• 

• 

• 





• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

7-1 
Update B 

7. Introduction to Application 
Instructions 

7.1. INSTRUCTION AND FORMAT CONVENTIONS 

Certain conventions have been adopted in this manual for specifying instruction, 
directive, macro, proc, and control-statement formats. The following describe these 
conventions. 

There are eight types of assembler application instructions: 

RR - Register-to-register 
RX - Register-to-storage-indexed or storage-to-register-indexed 
RS - Register-to-storage-nonindexed or storage-to-register-nonindexed 
SI - Storage immediate 
SS - Storage-to-storage (Type SS 1) 
SS - Storage-to-storage (Type SS2) 

S - Storage 
SM - Storage mask 

Figure 7-1 illustrates the source code and object code formats for each of these 
instruction types. (Also see Section 4.) 



Sou""' Code Instruction Formot 

• 
+ 

• 

Instruction 
Type 

RR 

RX 

RS 

SI 

s 

SS 

SM 

NOTES: 

Explicit Form 

[symbol] opcode r ,r 8 
1 2 

[symbol] opcode r ,d (x b ) 0 
1 2 2' 2 

[symbol I opcode r r d (b ) 0 
1 '3' 2 2 

[symbol] opcode d
1

(b
1
l,i

2 

[symbol] opcode d
2

(b
2

) 

[symbol] opcoded
1 

(l,b
1

) ,d
2 

(b
2

) 

[symbol] opcoded, o,.b,),d2(12,b2) 

[symbol] opcode d
1 

(b
1 

),i
2

,m
3

,d
4 

(£) The RR instruction has three other forms: 

[symbol} opcode i1 for the SVC instruction; 

[symbol] opcode r, for the SPM instruction; and 

[symbol] opcode m 1,r2 for the BCR instruction. 

@ The RX instruction BC is written in the form: 

+ 
[symbol] opcode m 1, d2 (x,, b2 ). 

• 

Implicit Form 

[symbol] opcode r
1

,r
2 

[symbol] opcode r
1

,s
2

(x
2

) 

[symbol] opcode r
1

,r
3

,s
2 

(symbol] opcode s
1 

,i
2 

[symbol I opcode s
2 

[symbol] opcode s
1

(1),s
2 

[symbol] opcode s
1
0

1 
),s

2
U

2
l 

[symbol] opcode s
1

,i
2

,m
3

,d
4 

I 
L 

T 
I 
I 
L 

Byte 1 

opcode 

opcode 

opcode 

First Half Word 

7j8 151 Byte 2 
ll_ll2 

T I 

I reg reg I 
opl op2 I 

,_,..__.._ -'-.....1 

r2 J 

Object Codo Instruction Formot 

19 J.20 

Second Half Word 

Bytes 3 and 4 
31 I 32 

I 
I 
I 
I 
I 
I 

: address I 
1 operand 2 I 

I r, I 
: reg 
I op 1 

l~I 
reg 

op 1 

, I 
I 

x, I b2 I d2 I 
I 
I 
I 

reg 
op 3 ' -·-' 

address I 
operand 2 I 

------------- I I ,-r, r::--i b2 I d2 I 

35136 

Third H1lf Word 

Bytes 51nd 8 
47 

I I . , 1 immediate 1 I : -~ , ...... , ,~l --· : 
1 

I 
) 

lo 

opcode 

opcode 

opcode 

opcode 

i 2 l~I , 
I 
I 
I 

opcode I 
i length 

1 

I oplandop2 ! 
i~· 

I - 1-1 I 
l length i 

address 
operand 2 -------------b2 I d2 

address 
operand 1 
~ 

b, I d, 

address 
operand 1 i opl op2 ' _, ____ __...._ ! ~ 

d, 1 1,-1 1 12 -1 I b, I 
r 

: address 
1 operand 2 

' ----------- J 
b, 1 d2 

I I address [ 
\ operand 2 I 
------------- I 

_J 

..,. b, 1 d2 

immediate 
operand 2 

I--------.. 

I immediate 
I mask 3 
I~ 

displacement I address 
operand 1 1 4 I I 

~I I 

I d4 

471 
I "'-3 I i2 

718 ii /12 15 I 16 19 '20 

b1 1 d, 

31f32 351"36 

0 The RS instruction has two other forms: 

the RS .shift instructions are written without use of the r3 operand, in the form: 

[symbol] opcode r1,d,(b2 ): and 

some RS instructions such as ICM and CLM are written in the form: 

[symbol] opcode r,, m3, d2 (b2 ). 

Figure 7-1. Instruction Formats (Part 1 of 2) 

• • 

c 
"1J 
Co 
(!) 

w 

Ul 
"1J 
m 

)> :0 
Ul :0 
Ul -< 
mC 
s: ~ 
~~ 
m n 
:0 0 

Ul 
'­w 

C-..J 
"C I 
a. N 

"' <n 
OJ 



• 

• 

• 

UP-8913 

Characters 

OPCODE 

s, 

SPERRY UNIVAC OS/3 
ASSEMBLER 

The application instruction operation code. 

The number of the general register containing operand 1 

The number of the general register containing operand 2 

The number of the general register containing operand 3 

7-3 
Update B 

The number of the general register containing an index number for operand 2 of the RX instruction 

The immediate data used as operand 1 of the SVC instruction 

The immediate data used as operand 2 of an SI instruction 

The length of the operands as stated in source code* 

The length of operand 1 as stated in source code* 

The length of operand 2 as stated in source code* 

The number of the general register containing the base address for operand 1 

The number of the general register containing the base address for operand 2 

The displacement for the base address of operand 1 

The displacement for the base address of operand 2 

The displacement used as operand 4 of an SM instruction 

The mask used as operand 1 

The mask used as operand 3 of an SM instruction 

Operand 1 

Operand 2 

Operand 3 

The symbol used to identify operand 1 in the implicit format 

The symbol used to identify operand 2 in the implicit format 

*In source code, the length you specify is 1 greater than the object code length. The reason for this is that 0 is the first length 
count, not 1. For example, I can.address a maitimum length of 256, but.in actuality, I get 0 through 255 bytes. The assembler 
makes a reduction of 1 in the length when converting source code to object code. 

Figure 7-1. Instruction Formats (Part 2 of 2) 



·-·--~----------~-----------------.., 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

An instruction is an executable statement for operations involving data. The assembler • 
instructions are two, four, or six bytes in length. (See Figure 7-1.) In a 2-byte (RR) 
instruction, the registers are referenced for both operands. A 4-byte (RS) instruction 
references a register for the first operand and main storage for the second operand. A 
4-byte (RX) instruction references registers for the first and second operands and main 
storage for the third operand. A 4-byte immediate operand (SI) instruction references 
main storage for the first operand and immediate data for the second operand. A 6-
byte (SS) instruction references main storage for both operands. 

NOTE: 

All instructions are aligned by the assembler on a half-word boundary. 

The implied length field may be applicable with the SS1 and SS2 type instructions. If 
no length is specified in an SS1 type instruction, the length attribute of the first 
operand is assembled into the length field of the instruction. The length attribute of 
an operand is the length attribute of the expression used to define the storage 
location. The SS2 type instruction contains a length field for each operand; however, 
neither, either, or both length fields may be implied. In every case, the assembler 
puts the operand lengths, implied or specified, into the length fields. 

The following are examples of implied and explicitly stated lengths. 

LABEL 
1 

t:.OPERATI ONt:. 
10 16 

NUMBER12 DC 
NUMBER7 DC 

1. PAD PACK 
2. FILLUP PACK 
3. TRUNCATE PACK 

ZLl 2 1 +.0 1 

z•1234567• 
NUMBER12,NUMBER7 
NUMBER12(4),NUMBER7 
NUMBER12(4),NUMBER7(3) 

OPERAND 

Instruction 1 (PAD) packs all seven digits and the sign of operand 2 (NUMBER7) into 
four bytes of operand 1 (NUMBER12), then zero fills the remaining eight bytes of the 
implied field of 12 bytes. Instruction 2 (FILLUP) packs all seven digits and the sign of 
operand 2 into the explicit four bytes of operand 1. Instruction 3 (TRUNCATE) packs 
only the explicitly stated three digits and the sign of operand 2 into the explicit four 
bytes of operand 1. Labeled instructions themselves are assigned implied lengths 
based on instruction type. 

There are six basic ways to explain how an assembler application instruction is 
written: the implicit format, the implicit source code example, the explicit format, the 
explicit source code example, the object code format, and the object code example. 
The first four methods are shown for each instruction in this part of the user guide, 
as the subject of object code formats covered in 4.3.1) and are discussed again in 
assembly listings (Part 6). The following shows how the· move character instruction is 
written. 

• 

• 



UP-8913 

• 

• 

e 

• 

Implicit source 

Format: 

LABEL 

[symbol] 

Example: 

code: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

/).OPERATION/). 

MVC s, (I) ,s2 

LABEL 60PERATIONL\ 
1 10 16 

MOVES MVC LODGE ,MASTER 
MOVE32 MVC LODGE(32),MASTER 

Explicit source code: 

Format: 

LABEL /).OPERATION/). 

OPERAND 

OPERAND 

OPERAND 

[symbol] MVC d, (l,b, ) ,d2 (b2) 

Example: 

MOVE32 MVC 

Object code: 

Format: 

lo 
opcode 

),, b2 ,.I,. 

~·-_..., ... , 
-·' •/f:-_ 

,p(,J, R2), 3 ( R3) 

, I. ., ,.I,. 

.,J 
Example as shown on an assembly listing: 

OOODF5 02 1F 20F1 30FC 

b1 ,.I~ d1 J 



UP-8913 

7.2. EXPLICIT FORMS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

7-6 

The first line is how the explicit format is expressed, and the second line is an 
example of how you might write the explicit source code form of the add instruction. 

Explicit Format: 

LABEL 

[symbol] 
ADDREC 

ti OPERATION ti 

A 
A 

7.3. IMPLICIT FORMS 

OPERAND 

The first line is how the implicit format is expressed, with the following one or more 
lines being examples of how you might write the implicit source code forms of the 
add instruction using symbols to represent registers and data areas. 

Implicit Format: 

LABEL 

[symbol] 
ADD FOR 
ADDREG 

A 
A 
A 

ti OPERATION ti 

r
1 

,s
2

(x
2

) 

R2,PAYSUM 
R2, PA YSUM(R3) 

7.4. DEFINITIONS OF FORMAT TERMS 

OPERAND 

Figure 7-1 explains all the terms used in describing the explicit and implicit forms of 
the instructions. The following additional explanations will help you to understand the 
implicit and explicit forms of programming coding. 

• The general registers r 1, r2, or r3 are shown in the RO through R15 form. 

• The index register x2 and the base registers b1 and b2 are also shown in the RO 
through Rl 5 form. 

• The terms s1 and s2 represent the use of a symbol (4.2.1 and Section 6) in the 
first or second operand. 

• The displacement d 1 or d2 is a decimal value which is combined with the value 
in some base register. 

• A checkoff table is included for each applicable instruction in the text. 
Explanations of the program exceptions are provided in Appendix D. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-1 

8. Branching Instructions 

8.1. USE OF BRANCHING INSTRUCTIONS 

Branching instructions are used to alter the normally sequential execution of 
instructions by branching out of sequence to link to a subroutine, make a decision, or 
control looping. The operand 2 field of each branching instruction refers to the 
address (branch to) of the instruction to be executed immediately after the branching 
instruction. The branch-to address in operand 2 is stored in bits 40-63 of the 
current program status word (PSW) (Figure 8-1 ). The PSW is a double word 
containing the address of the next instruction and various other control fields. In 
general, the PSW is used to control instruction sequencing and to hold and indicate 
th'e status of the system in relation to the program currently being executed. (See the 
processor programmer reference for a complete description of the PSW.) 

BYTE 

BYTE 

E I 
0 

0 1 

SYSTEM MASK 

s s s 
p p p 

M A A A 

2 

R R R 
E E E 

3 4 5 

0 

PROGRAM 
MASK 

s s 
p p 
A A 
R R 
E E 

6 7 

ILC CC B D E S 

RELOCATION 
REGISTER 

8 11 

INTERRUPT 
MODE KEY 

CODE 

s s s 
p p p p 

A 
p p w A A A E 
R s R R R R 

E E E 

12 1~ 14 15 16 17 1~ 19 20 23 24 31 

1 2 3 

INSTRUCTION ADDRESS 

32 33 34 35 36 37 38 39 40 63 

4 

Condition 
Code 

5 6 7 

......___ _____ ......... --~-------------._./ 
Address of the next instruction 

to be processed (branch to) 

Figure 8-1. Program Status Word Diagram 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-2 

While the program is executing, it utilizes the PSW (called the current PSW), which is 
stored in the supervisor portion of the operating system. Before a branch out of the 
sequence of the program to a new location, the present location of the program is 
stored in the PSW. That PSW (called the old PSW) is saved, and the program uses a 
new PSW (current) to keep track of pertinent program information. In other words, the 
old PSW holds the place in the program if you want to return to where you were 
before branching to a routine or instruction in another area, and the current PSW 
keeps track of the running program regardless of where you branched. 

For an explanation of the checkoff table exceptions, see Appendix D. 

8.2. EXTENDED MNEMONIC CODES 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

See Table 8-1. RX& RR 

Condition Codes 

01F RESULT; O,SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 

.UNCHANGED 

2 or 4 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMRERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The extended mnemonic codes are used like the branch on condition (8.4) instruction. 
Extended mnemonics are the shorthand version of the branch on condition (BC) 
instruction. They are easy to use because you do not need to remember the decimal 
value that is associated with the operand 1 mask of the branch on condition 
instruction. You merely remember the mnemonic. The extended mnemonics create the 
mask value, which tests the condition code. If the specific condition or conditions you 
want to branch on exist, a branch is made to the address specified in operand 2. 

Before a branch is made, the address of the running program is saved, thus enabling 
you to return to that point if desired. It is a good idea to familiarize yourself with the 
branch on condition instruction and Table 8-1 before you use the extended 
mnemonics. 

Table 8-1 is a listing of the extended mnemonic codes. The hexadecimal operation 
codes (with mask) and functions, categorized by instruction type, are grouped 
according to use. Also included are the branch on condition (BC) instruction 
equivalents. An example of a handwritten coding form follows. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-3 

Example: 

1. 
2. 
3. 

LABEL 
1 

LOW 

A 
B 

MPERATI ON!i 
10 16 

CP 
BE 
BL 
BH 

AP 

DC 
DC 

A,B 
EQUAL 
LOW 
HIGH 

A,B 

p 14 I 

p•5• 

OPERAND 

1. The compare decimal (CP) instruction compares the packed decimal contents 
of A against the packed decimal contents of B. Based on the results, the 
condition code in the PSW is set to 1 (operand 1 < operand 2). 

2. The next sequential instruction executed is branch if equal (BE). The mask (8) 
tests for condition code 0 (operand 1 = operand 2). Since the condition is 
not 0, no branch is made, and the next sequential instruction is executed. 

3. Since no branch was made, the next sequential instruction executed is 
branch if low (BL). The mask (4) tests for condition code 1 (operand 1 < 
operand 2). Since the condition code is 1, a branch is made to the operand 
2 address (LOW). In this example, LOW is the address of an add decimal 
instruction, which is the instruction executed after the BL instruction. 

Note that the next sequential instruction is branch if high (BH), but it is not 
executed after the BL instruction. 

Table 8-1. Extended Mnemonics and Functions (Part 1 of 2) 

RR-Type Instructions RX-Type Instructions BC Equivalent 

Mnemonic 
Hexadecimal 

Mnemonic 
Hexadecimal 

Explicit 
Function 

Operation 
Code 

Operation 
Code Form 

Code/m1 Code/m
1 

Used to Branch Around Nonexecutable Assembler Instructions and Directives 

BR 07 F - - BCR 15,r2 
Branch unconditionally 

NOPR 07 0 - - BCR O,r2 No operation 

- - B 47 F BC 15,d2 1x2,b2 l Branch uncon~itionally 

- - NOP 470 BC O,d2 1x2,b2 l No operation 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-1. Extended Mnemonics and Functions (Part 2 of 2) 

RR-Type Instructions RX-Type Instructions BC Equivalent 

Mnemonic 
Hexadecimal 

Mnemonic 
Hexadecimal 

Explicit 

Code 
Operation 

Code 
Operation 

Form 
Code/m1 Code/m1 

Used After Comparison Instructions 

BHR 07 2 BH 47 2 BC 2,d2 (x2,b2) 

BLR 074 BL 474 BC 4,d21x2,b2) 

BER 078 BE 478 BC 8,d2 (x2,b2 ) 

BNHR 07 D BNH 47 D BC 13,d2 (x2,b2) 

BNLR 07 B BNL 47 B BC 11,d21x2,b21 
BNER 07 7 BNE 47 7 BC 7,d2 1x

2
,b2) 

Used After Test-Under-Mask Instructions 

BOA 07 1 BO 47 1 BC 1,d2 (x2,b21 
BZR 078 BZ 47 8 BC 8,d21x2,b2) 

BMR 074 BM 474 BC 4,d21x2,b21 
BNOR 07 E BNO 47 E BC 14,d2 (x

2
,b2) 

BNZR 077 BNZ 47 7 BC 7,d2 (x2,b21 

BNMR 07 B BNM 47 B BC 11,d21x2,b2 ) 

Used After Arithmetic Instructions 

BOA 07 1 BO 47 1 BC 1,d
2

(x
2

,b
2

) 

BZR 07 8 BZ 47 8 BC 8,d
2

(x
2

,b2) 

BMR 074 BM 474 BC 4,d2 (x2,b2) 

BPR 072 BP 47 2 BC 2,d2 (x2,b2) 

BNOR 07 E BNO 47 E BC 14,d2(x
2

,b2) 

BNZR 07 7 BNZ 47 7 BC 7,d2 (x
2

,b2l 
BNMR 07 B BNM 47 B BC 11,d2 (x2

,b2) 

BNPR 07 D BNP 47 D BC 13,d
2

(x
2

,b
2

) 

8-4 

Function 

Branch if high 

Branch if low 

Branch if equal 

Branch if not high 

Branch if not low 

Branch if not equal 

Branch if all ones 
Branch if all zeros 
Branch if mixed 

Branch if not all ones 

Branch if not all zeros 

Branch if not mixed 

Branch if overflow 
Branch if zero 
Branch if minus 
Branch if positive 

Branch if not overflow 

Branch if not zero 

Branch if not minus 

Branch if not positive 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-5 

BAL 
BALR 

8.3. BRANCH AND LINK (BAL, BALR) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

BAL 45 M 
BALR 05 RR 

Condition Codes 

D IF RESULT; 0, SET TO 0 
01F RESULT<O,SETTO 1 
01F RESULT>O,SETT02 
D IF OVERFLOW, SET TO 3 
.UNCHANGED 

::! 
2 

Possible Program Exceptions 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The branch and link (BAL and BALR) instructions alter the normally sequential 
execution of instructions by branching to an address you specify in operand 2. The 
instruction located at that address is the next instruction executed after the branch 
and link instruction. Before the branch is made, the address of the next sequential 
instruction (current location) is saved in the operand 1 register to enable you to 
return to the location where you were before branching. 

Explicit Format 

LABEL 

[symbol] 
[symbol] 

Implicit Format 

LABEL 

[symbol] 

!::.OPERATION 6 

BAL 
BALR 

6 OPERATION 6 

BAL 

r 1 , d2 (x2' b2) 
r 1' r 2 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-6 

Example 1 (BAL): 

LABEL 
1 

MPERATI ONi\ 
10 16 

1. BAL 
2. NEXTSEQ AP 

3. BRANCHTO CP 

A 
B 

DC 
DC 

6,BRANCHTO 
A,B 

A,B 

P'654' 
p 1 123 I 

OPERAND 

1. In this coding example, the BAL instruction alters the sequential execution 
of instructions by causing a branch to an area in main storage labeled 
BRANCHTO. Before the branch, the address of the next sequential instruction 
is stored in register 6 (location of NEXTSEQ). 

2. Since a branch took place, the normally sequential execution of the add 
decimal (AP) instruction (NEXTSEQ) is skipped. 

3. This compare decimal (CP) instruction is processed immediately following the 
BAL instruction, since its label (BRANCHTO) is the pranch-to address 
(operand 2) of the BAL instruction. 

Example 2 (BALR): 

1. LA 

2. BALR 
NEXTSEQ AP 

ROUTINE CP 
BL 
BH 

NUM DC 

4 ,ROUTINE 

6,4 
A,B 

NUM ,=PI 15 I 

LOW 
HIGH 

p '21} I 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-7 

1. This load address (LA) instruction puts the address of an instruction labeled 
ROUTINE (CP) into register 4. 

2. The BALR instruction stores the address NEXTSEQ in register 6, then 
branches to the branch address in register 4. Since register 4 is the address 
of ROUTINE, the instruction following the BALR instruction is compare 
decimal (CP). 

Operational Considerations: 

• You may specify any of the general registers (0 through 15) as operand 1 in both 
the BAL and BALR instructions, and any of these registers as operand 2 of the 
BALR instruction. 

• The address of the instruction following the BAL or BALR instruction is placed in 
the operand 1 register. Then the branch to the address specified in operand 2 is 
made. 

• If you specify 0 in the operand 2 register of a BALR instruction, it means you 
are not specifying a branch-to address, and, therefore, no branch takes place. The 
instruction executed after the BALR is the next instruction in sequence. 

8.3.1. Use of the BALR Instruction in Base Register Assignment 

The BALR instruction is used in conjunction with the USING directive (see 18.2) to 
assign a base address to a register. This address becomes the starting address of 
your program. The BALR instruction and the USING directive must be coded in the 
following order: 

LABEL 
1 

BASEREG 
BEGIN 

READ 

tiOPERAT I ONti 
10 16 

START 
BALR 
US I NG 
OPEN 
DMINP 

0 
3,0 
;':' 3 
INFILE,(INRIB) 
INFILE 

OPERAND 

The BALR instruction in this example stores the address of the next sequential instruction 
(OPEN) in register 3. No branch takes place since 0 is specified as operand 2. Logically, the 
address of the USING directive should be stored in register 3, since that is the next 
instruction. However, USING is a directive and not an executable instruction. Directives are 
information to the assembler only. They do not generate any object code nor increase the 
location counter. Therefore. OPEN is the next executable instruction following the BALR 
instruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-8 

The USING directive tells the assembler that register 3 is going to be used as the 
base register for this program. Register 3 can accommodate a program up to 4096 
bytes in length. If your program is larger than this, additional base registers can be 
assigned. (See 18.2.) Operand 1 tells the assembler at what point in your program 
your base register should start being used. The asterisk (*) means "start now". So, 
operand 1 indicates starting now, all addresses of the following instructions will use 
the register specified by operand 2 (in this case, 3) as the base register. 

In the following printout example, an LA instruction (line 3) is coded after the BALR 
instruction, causing an addressability error. The BALR instruction (line 2) stores the 
address of the next sequential instruction (LA) in register 3. No branch takes place 
since 0 is specified as the operand 2 register. At location counter 000002, no object 
code was generated for the LA instruction because the assembler does not assemble 
an erroneous instruction. It does, however, increase the location counter by the 
number of bytes that the instruction occupies. Now, register 3 contains the address of 
the LA instruction at 000002 but the USING directive (line 4) tells the assembler that 
starting at location counter 000006, all succeeding instructions will use register 3 as 
the base register. The USING directive assumes that register 3 contains the address 
at location counter 000006 but in reality contains the address at location counter 
000002. So, all the addresses of every instruction and label in this program will be 
calculated as being four bytes more than its actual location. Therefore, the BALR 
instruction and USING directive must always refer to the same address so that the 
base and displacement values can be accurately calculated. 

Example: 

LOC, OBJECT CODE 
cocooo 
ooooau 0530 
ouooaz 4170 0000 

*** ERROR *** 
Ou Cu Ob 

COOOOo 07~0 

000008 4510 300E 
cocooc 81 
cooooo oouozo 
000010 dO 
OOCUll J0~04C 
COC014 UAZb 

OD CO lb 

ADDRl ADORZ LINE SOURCE STATEMENT 
l TSTUSING START ~ 
Z BEGIN ~ALR 3 0 0 

OO'llb 3 LOAD LA 7,LlST 

4 
5 

A ;,+ 
COO 14 A 7 + 

A 8+ 
A 9+ 
A 10+ 

11• 
12• 

14 LIST 

lb 
25 

USING •,3 
OPEN PRINT,CPRINTRIBI 
CNOP ~,4 

BAL 1 1 ••12 
DC X'Sl' 
uC AL3CPRINTI 
oc x•so• 
DC AL3CPRINTRIBI 
SVC 38 ISSUE SVC 

OS QCL12 

Zb PRINT CDIB 
33 PRINTRIB Rio IOA1=ouTPUT,arsz=120 

OS/3 ASH 80/01103 

Pii0009b0 
Pii001150 
PiiOOllbO 
PiiOOll 70 
PwOC1180 
P.0001190 
Pli002170 



e 

e 

e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-9 

BC 
BCR 

8.4. BRANCH ON CONDITION (BC, BCR) 

General 

OBJECT 
0 PCODE FORMAT INST. 

MNE 

~ 
BCR 

01F 
01F 
01F 
01F 

TYPE LGTH. 

M. HEX. (BYTES) 

7 RX 
07 RR 

Condition Codes 

RESULT= 0, SET TO 0 
RESULT< 0, SET TO 1 
RESULT >o. SET TO 2 
OVERFLOW, SET TO 3 

4 
2 

•u NCHANGED 

Possible Program Exceptions 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The 
on 

branch on condition (BC and BCR) instructions change program sequence based 
the condition code setting of the PSW. You specify in the operand 1 mask a 
mal value that tests the condition code to see whether the branch-causing 
dition exists. If the condition of the branch does exist, a branch is made to the 

deci 
con 
oper 
of 

and 2 address you specify in the branch on condition instruction. If the condition 
he branch does not exist, no branch takes place, and the next sequential 
uction is executed. 

t 
instr 

Exp I 

lmpl 

icit Format: 

LABEL 

[symbol] 

[symbol] 

icit Format: 

LABEL 

[symbol) 
[symbol] 

/;;OPE RATION /;; 

BC 
BCR 

.60PERATION /;; 

BC 
BCR 

m1 , d2 (x2 , b2 ) 

m1 , r2 

OPERAND 

OPERAND 

The condition code, bits 34-35 of the PSW, reflects the result of an instruction 
uted prior to the branch on condition instruction. There are four possible condition 

e settings: 
exec 
cod 

If result 0, set to 0. 

If result < 0, set to 1. 



UP-8913 

If result > 0, set to 2. 

If overflow, set to 3. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-10 

The decimal values that can be specified in the operand 1 mask are 0 through 15, 
each of which has a 4-bit binary representation. 

• The decimal value 8 (1000) tests for condition code 0. 

• The decimal value 4 (0100) tests for condition code 1. 

• The decimal value 2 (0010) tests for condition code 2. 

• The decimal value 1 (0001) tests for condition code 3. 

Note that only one bit is set for each condition. When more than one bit is 
4-bit binary configuration, it is possible to test for multiple conditions. 

8 4 2 decimal 

0 binary 

8 + 2 10 

The decimal value 10 tests for: 

1. condition code 0 (result is equal to zero); and 

2. condition code 2 (result is greater than zero). 

Table 8-2 lists the 16 values and each condition code it tests. 

Table 8-2. Operand 1 Mask Combinations 

Mask Results 
Possible Combinations of Branches on Causing 

Decimal Binary Condition Codes Condition Code Branch 
Value Value 

0 0000 * no operation None 

1 0001 1 ; 1 3 Overflow 

2 0010 2 ;2 2 >o 
3 0011 3 ;2+1 2,3 >o or overflow 

4 0100 4 ;4 1 <o 
5 0101 5 ;4+1 1, 3 <o or overflow 

6 0110 6 ;4+2 1, 2 *o 
7 0111 7 ;4+2+1 1, 2, 3 *O or overflow 

8 1000 8 ;8 0 ;o 
9 1001 9 ;8+1 0,3 ; 0 or overflow 

10 1010 10; 8 + 2 0,2 ~o 

11 1011 11;8+2+1 0,2,3 ~O or overflow 
12 1100 12; 8 + 4 0, 1 ..;a 
13 1101 13;8+4+1 0, 1, 3 ..;o or overflow 
14 1110 14;8+4+2 0, 1, 2 Any value 
15 1111 15;8+4+2+1** 0, 1, 2, 3 Any value or overflow 

*No condition code is tested and no branch takes place. The next sequential instruction is executed. 

**Unconditional branch 

set in the 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-11 

Table 8-3 lists the explicit format of the BC instruction with different mask values 
and their relation to the condition tested. 

Table 8-3. Branch-on-Condition Instruction by Usage 

Hexadecimal 
Mnemonic Explicit 

Operation 
Code Format 

Function 

Code m 1 

Used to Branch Around Nonexecutable Assembler Instructions and Directions 

07 F BCR 15,r2 
Branch unconditionally 

07 0 BCR O,r2 No operation 

47 F BC 15,d21x2.b21 Branch unconditionally 

470 BC O,d21x2,b21 No operation 

Used After Comparison Instructions 

47 2 BC 2,d2(x2,b2) Branch if high 

474 BC 4,d21x2,b21 Branch if low 

478 BC 8,d21x2,b21 Branch if equal 

47 D BC 13,d21x2,b21 Branch if not high 
47 B BC · 11,d21x2,b21 Branch if not low 
47 7 BC 7,d21x2,b21 Branch if not equal 

Used After Test-Under-Mask Instructions 

47 1 BC 1,d21x2,b21 Branch if all ones 
47 8 BC 8,d21x2,b21 Branch if all zeros 
474 BC 4,d2(x2,b21 Branch if mixed 

47 E BC 14,d21x2,b21 Branch if not all ones 

47 7 BC 7,d2(x2,b21 Branch if not all zeros 
47 B BC 11,d21x2,b21 Branch if not mixed 

Used After Arithmetic Instructions 

47 1 BC 1,d21x2,b21 Branch if overflow 

47 8 BC 8,d21x2,b2) Branch if zero 

474 BC 4,d21x2,b21 Branch if minus 

47 2 BC 2,d21x2,b2) Branch if positive 

47 E BC 14,d21x2,b21 Branch if not overflow 

47 7 BC 7 ,d2tx2,b21 Branch if not zero 

47 B BC 11,d21x2,b21 Branch if not minus 

47 D BC 13,d21x2.b21 Branch if not positive 

Operational Consideration: 

• You can specify any of the general registers (2 through 12) as operand 2 of the 
BCR instruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-12 

Example (BC): 

1. 
2. 
3. 
4. 

LABEL 
1 

tiOPERATIONJ\ 
10 16 

CP 
BC 
BC 
BC 

A,B 
2,HIGH 
4,LOW 
8,EQUAL 

OPERAND 

5. EQUAL AP A,C 

A 
B 
c 

DC 
DC 
DC 

P 1 650 1 

P1 650 1 

p' 1' 

In this example, two packed decimal values are compared. After the result is 
obtained, the condition code is stored in the PSW. The branch instructions are 
executed sequentially, and when the proper condition for the branch-on condition 
exists, a branch to the operand 2 address takes place. 

1. Operands 1 and 2 compare equally since both A and B contained the packed 
decimal 650. The condition code is set to 0. 

2. The operand 1 mask 2 tests for condition code 2. Since the condition code is 
not 2 (operand 1 > operand 2), the next sequential instruction is processed. 

3. The operand 1 mask 4 tests for condition code 1. Since the condition code is 
not 1 (operand 1 < operand 2), the next sequential instruction is processed. 

4. The operand 1 mask 8 tests for condition code 0. Since the condition code is 
0 (operand 1 = operand 2), a branch to the address of operand 2 (EQUAL) 
takes place. 

5. Since the add decimal instruction has the label EQUAL. that is the 
instruction executed after the branch-on condition regardless of the 
sequential instructions in between. 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-13 

BCT 
BCTR 

8.5. BRANCH ON COUNT (BCT, BCTR) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

B:_[T 46 RX 
BCT..B_ 06 RR 

Condition Codes 

01F RESULT:Q,SETTOO 

01F RESULT<O,SETTO 1 
01F RESULT>o, SET TO 2 

01F OVERFLOW, SET TO 3 

.UNCHANGED 

4 
2 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The branch on count (BCT and BCTR) instructions branch to the same instruction or 
routine a number of times (loop). Normally, before you execute a branch on count 
instruction, you load one of the general purpose registers with a value (the count) 
that refers to the number of times you want to loop to an instruction or routine. You 
specify the register containing the counter as operand 1 in your branch on count 
instruction. Each time the branch on count instruction is executed, the operand 1 
register is decremented by one. Then the register is checked for a value of zero. If 
zero is not found, a branch to the instruction at the operand 2 address takes place. If 
the counter is 0, no additional branching takes place, and the next sequential 
instruction is executed. You can use the BCTR instruction to decrement the counter 
register (operand 1) without branching, by specifying the operand 2 register as 0. 
When BCTR is executed, the value in the operand 1 register is decremented by 1, but 
since no branch address is supplied, the next sequential instruction is executed. 

Explicit Format: 

LABEL 

[symbol] 

[symbol] 

Implicit Format: 

LABEL 

[symbol] 
[symbol] 

6 OPERATION 6 

BCT 
BCTR 

6 OPERATION 6 

BCT 
BCTR_ 

r 1 , d2 (x2, b2) 

r 1, r 2 

OPERAND 

OPERAND 



UP-8913 

Example: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LABEL 
1 

AOPERATIONA 
10 16 

I. SR 
2. LA 
3. BRANCHTO AP 
4. BCT 

NEXTSEQ MP 

AMOUNT 
SUM 

DC 
DC 

6,6 
6, 10 
SUM,AMOUNT 
6,BRANCHTO 
SUM,VALUE 

pi 15~ I 

PL3'~' 

OPERAND 

8-14 
Update B 

This coding example adds AMOUNT (150) to SUM 10 times and stores the result 
in SUM (3-byte field). 

• 

1. The subtract (SR) instruction subtracts the operand 2 register value from the 
operand 1 register value and puts the result in operand 1. In this case, 
register 6 is subtracted from itself, thus making it 0. It is a good idea to • 
clear a register before using it. 

2. The load address (LA) instruction loads a count of 10 into register 6. 

3. The add decimal (AP) instruction adds the packed decimal value in AMOUNT 
(150) to whatever is stored in SUM and stores the answer in SUM. SUM is 
defined as a packed decimal constant containing 0. After the AP instruction 
is executed once, SUM contains 150. 

4. The BCT instruction subtracts 1 from register 6. Si nee register 6 now 
contains 9, the AP instruction labeled BRANCHTO is executed again. After 
the AP is executed twice, SUM contains 300. The BCT instruction executes 
nine more times until the counter (register 6) is 0. On the 10th attempt, no 
branch takes place, and NEXTSEQ is executed. 

Operational Considerations: 

• The maximum value you can specify in the operand 1 counter register is za2. 

• You can specify any of the general registers (0 through 15) as operand 1. 

• You can specify the operand 2 register of the BCTR instruction as O if you want 
to decrement the operand 1 counter register by 1 without causing a branch. 
When you specify 0 in operand 2, the next sequential instruction of your program • 
is executed following the BCTR. 

• The branch-to address in operand 2 is determined before the operand 1 register 
is decremented. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-15 
Update B 

• BXH 

• 

• 

8.6. BRANCH ON INDEX HIGH (BXH) 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

BXH 86 RS 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O.SETTO 1 
0 IF RESULT >o, SET TO 2 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

4 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The branch on index high (BXH) instruction algebraically compares the sum of the 
operand 1 register and operand 3 register to either the operand 3 register or one 
greater than the operand 3 register (comparand register). If the sum is greater than 
the content of the comparand register, a branch to the instruction located at the 
operand 2 address takes place. If a greater than condition does not exist, your 
program continues processing with the instruction following the BXH instruction. The 
sum is always placed in the operand 1 register after the comparison. 

Explicit Format: 

LABEL t.OPERATION [', OPERAND 

[symbol] BXH r 1' r 3' d2 (b2) 

Implicit Format: 

LABEL t.OPERATION [', OPERAND 

[symbol] BXH r 1, r 3, s2 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-16 

This instruction algebraically adds the content of the operand 1 register to the content • 
of the operand 3 register. The sum is algebraically compared to the content of an 
odd-numbered register (which can be the same as the operand 3 register) or a 
register that is one larger than the operand 3 register. If the sum is greater than the 
content of the odd-numbered register it is being compared to, a branch to the 
instruction located at the operand 2 address takes place. If the sum is less than or 
equal to the content of the odd-numbered register it is being compared to, the 
program continues processing with the instruction following the BXH instruction. 
Following the comparison, the sum is placed in operand 1. Usually, the BXH 
instruction is executed several times (depending on program logic) until the content of 
the operand 1 register is greater than the odd-numbered register it is being compared 
to. Then the branch to the instruction located at the operand 2 address takes place. 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 3. 

• Any odd-numbered register either equal to operand 3 or one greater than 
operand 3 can be used as the comparand register. 

• Operand 2 can be any location in main storage. 

• The rules of algebra apply to both the addition and the comparison operations . 

• The condition code remains unchanged. 

Example: 

LABEL 
1 

.10PERATION.1 
10 16 

LA 3,4 
LA 4, 18 
LA 5, 11 
BXH 3,4,LOOP 
AP CARDIN,=P 1 Sl/J8 1 

LOOP CP CARD 111, MAX I MUM 

CARDIN DC 
MAXIMUM DC 

PL3 1
1/J

1 

PL3' 101/Jl/Jl/J I 

OPERAND 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Registers 3 and 4 before execution of BXH instruction: 

000010000 
""""!" 

0000:0100 000010000 0000:0000 
I 

I I 
000010000 000010000 

I 

I I 
0 ; 0 

I 

0 l 0 0 J 0 0 ! 4 0 : 
I 

0 0 I 0 I 

8-17 

ooooioooo 
I 000011010 
I I 
I I 

0 I 0 0 : A I 

Register 5 (comparand register) before and after execution of BXH instruction: 

binary 
I 

I 

000010000 
"T 

0000:0000 0000:0000 0000 :1011 

hex 
I 

I I 

o I I I 0 0 l 0 0 I 0 0 l B 
l 

Registers 3 and 4 after execution of BXH instruction: 

T "'T "T "T 

000010000 0000 10000 0000:0000 0000:1010 
I I I I 

ooooloooo ooooToooo 
1 

0000:0000 0000:1110 
I 

' 
I I I ' 0 I 0 0 I 0 0 I 0 0 I 

A I I _:_ l 0 : 
I I 

I 
0 0 j_ 0 0 I 0 0 _:_ E I 

binary 

hex 

binary 

hex 

In this example, the decimal value 4 is loaded into register 3, the decimal value of 10 
is loaded into register 4, and the decimal value of 11 is loaded into the comparand 
register 5. When the BXH instruction is executed, the contents of registers 3 and 4 
are algebraically added together, the sum being decimal value 14 (hexadecimal E). The 
sum is algebraically compared to the content of register 5 and then placed in register 
3. Since the sum is greater than the content of register 5, a branch to the instruction 
labeled LOOP takes place. There, the content of CARDIN is compared to the content 
of MAXIMUM . 



UP-8913 

BXLE 

SPERRY UNIVAC OS/3 
ASSEMBLER 

8-18 
Update B 

8.7. BRANCH ON INDEX LOW OR EQUAL (BXLE) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

BXH 87 RS 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

01F RESULT>O.SETT02 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

4 

Possible Program Exceptions 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

• 

The branch on index low or equal (BXLE) instruction algebraically compares the sum 
of the operand 1 register and operand 3 register to either the operand 3 register or 
one greater than the operand 3 register (comparand register). If the sum is less than 
or equal to the content of the comparand register, a branch to the im~truction located • 
at the operand 2 address takes place. If a less than or equal to condition does not 
exist, the program continues processing with the instruction that follows the BXLE 
instruction. The sum is always placed in the operand 1 register after the comparison. 

Explicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] BXLE 

Implicit Format: 

LABEL !:::.OPERATION 6 OPERAND 

[symbol] BXLE 

• 



• 
UP-8913 SPERRY UNIVAC OS/3 

ASSEMBLER 

8-19 

This instruction algebraically adds the content of the operand 1 register to the content 
of the operand 3 register. The sum is algebraically compared to the content of an 
odd-numbered register, which can be the same as the operand 3 register, or a 
register that is one larger than the operand 3 register. If the sum is less than or 
equal to the content of the odd-numbered register it is being compared to, a branch 
to the instruction located at the operand 2 address takes place. If the sum is greater 
than the content of the odd-numbered register it is being compared to, the program 
continues processing with the instruction following the BXLE instruction. Following the 
comparison, the sum is placed in operand 1. Usually, the BXLE instruction is executed 
several times (depending on program logic) until the content of the operand 1 register 
is less than or equal to the odd-numbered register to which it is being compared. 
Then the branch to the instruction located at the operand 2 address takes place. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 3. 

• Any odd-numbered register either equal to operand 3 or one greater than 
operand 3 can be used as the comparand register. 

• Operand 2 can be any location in main storage. 

• The rules of algebra apply to both the addition and the comparison operations. 

• • The condition code remains unchanged. 

• 

Example: 

~OPERATION~ LABEL 
1 10 16 

L 
L 
BXLE 

NEXTSEQ AP 
BRANCHTO CP 

VALUE I 
VALUE2 
A 
B 

DC 
DC 
DC 
DC 

4,VALUEl 
5,VALUE2 
4,5,BRANCHTO 
A,B 
A,B 

F'-3' 
F' 10 1 

PL4 '2"}6 I 

PL2 1 l6 1 

OPERAND 

In this example, the values -3 and +10 are loaded into registers 4 and 5, 
respectively. The BXLE instruction compares the sum of the content of registers 4 
and 5 (+7) to the content of the comparand register, register 5. Since +7 is less 
than 10, the branch is taken. The next instruction executed (CP) is located at 
BRANCHTO. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-20 
Update B 

EX • 

8.8. EXECUTE (EX) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

EX 44 RX 4 • EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 
D IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 

0 FLOATING-POINT DIVIDE 
[] OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o, SET TO 2 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS D NONE 

The execute (EX) instruction is used to branch to an instruction elsewhere in your 
program, execute it with or without having modified it temporarily, and then branch 
back to the instruction following the EX instruction. 

Explicit Format 

LABEL 60PERATION 6 OPERAND 

[symbol] EX 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] EX 

The address specified by operand 2 is the address of the instruction to which you 
branch following the EX instruction. This instruction, specified by operand 2, is called 
the subject instruction. The operand 1 register determines whether or not change will 
be made to the subject instruction before execution. If register 0 is specified as the 
operand 1 register, no change is made to the subject instruction and it is executed 
following the EX instruction as if it were the next sequential instruction. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

On the other hand, if any register other than zero is specified, bits 8 through 15 of 
the subject instruction are changed. This change is accomplished by the logical 
addition OR on the contents of bits 24 through 31 of the operand 1 register that you 
previously loaded and the contents of bits 8 through 15 of the subject instruction. 
(See logical OR instruction.) The result is placed in bits 8 through 15 of the subject 
instruction. The contents of the operand 1 register remain unchanged. Moreover, the 
change to the subject instruction is temporary and effective only during this execution 
of the subject instruction. 

The instruction address and instruction length of the current PSW is changed by the 
execution of the EX and subject instruction. Normally, instruction sequencing 
continues with the instruction following the EX instruction. However, if the subject 
instruction is a successful branch instruction, the instruction address of the current 
PSW is replaced by the branch address and instruction sequencing resumes with the 
instruction address specified by the branch. If the subject instruction is a BAL or 
BALR, . . · · · 

Link r&9ist9r. The shaded portion 
operand 1 register affects. 

EX instruction: 

opcode 

0 7 8 11 12 

Subject instruction is RR type: 

0 7 

Subject instruction is RX type: 

0 7 

Subject instruction is RS type: 

0 7 

Subject instruction is SI type: 

0 7 

15 16 

16 

16 

instruction shows what portion of it the 

-f,~! /,'11~f,~j•S'Af- w:fl h !~·;-deJ w.i'/f ~f-6,,, wJ/r<?>"5 
C'"! fry,, I" 5 'fr,:JJ,- f ,, fl ~11 o.; .i?J fl:e EX 17 5fr1.1/I, ~,..,. 

19 20 23 24 31 

19 20 31 

19 20 31 

31 



UP-8913 

Subject instruction is SS Type 1: 

0 7 

Subject instruction is SS Type 2: 

0 7 

Subject instruction is SM type: 

0 7 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

16 19 20 

16 19 20 

16 19 20 

8-22 

31 32 35 36 0 
31 32 35 ~ D 

d4 0 31 32 35 36 

• It isn't a good idea to alter instructions, but if it's absolutely necessary, you can 
use the EX instruction for that purpose. 

• You can specify any of the general registers (0 through 15) as operand 1. 

• Before the EX instruction causes a branch to the address you specify in operand 
2, the current program address is stored in the PSW. Unless the branch to 
instruction (operand 2) is a successful branch instruction, sequential instruction 
execution follows execution of the subject instruction. 

• If a program interrupt occurs after completion of the subject instruction, the old 
PSW contains either the address of the instruction following the EXECUTE or, in 
the case of a successful branch, the branch address. The current PSW contains 
the address of the instruction causing the interrupt (i.e., the operand 2 address in 
the EX instruction, or the branch-to address if a successful branch occurred 
before the interrupt). 

• If the subject instruction is another EX instruction, a program exception occurs. 

• A program exception can be caused by either the EX instruction itself or by the 
subject instruction. 

• The condition code can be set by the subject instruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

8-23 
Update B 

• Example: 

• 

• 

LABEL 
1 

tiOPERATIONti 
10 16 

L 4,=F'3' 
EX 4,MOVE 

MOVE MVC f/J(f/J,5), INPUT 

INPUT 
DS 
OS 

'1JH 
CL8{1J 

MOVE before execution 
of EX instruction and 
after execution of MVC 
instruction: 

Register 4 before and 
after execution of EX 
instruction: 

02 0 

OPERAND 

3 and 4 5 and 6 

3 321 

MOVE instruction during I 
02 

I 
3 
I 

5 
I 

0 
I 

3 
I 

321 execution of MVC _ _ _ _ _ _ 
instruction: 

In the preceding coding example, register 4 is loaded with a value of 3. The EX 
instruction is executed. Register 4 indicates that change will be made to the subject 
instruction (MOVE). A branch is made to the subject instruction and a logical addition 
OR is performed on the contents of bits 24 through 31 of register 4 and the contents 
of bits 8 through 15 of the MVC instruction. The result is placed in bits 8 through 15 
of the MVC instruction only for the duration of this execution of the MVC instruction. 
After execution of the MVC instruction is completed, a branch is made back to the 
instruction following the EX, and processing continues . 



• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-1 

9. Decimal and Logical Instructions 

9.1. USING DECIMAL INSTRUCTIONS 

Decimal instructions perform arithmetic calculations on data located in main storage, 
using storage-to-storage instruction format. You must put decimal numbers into main 
storage before attempting to use them in mathematical calculations. Storage-to-storage 
instructions do not allow the use of general registers for calculations, since registers 
handle binary, not decimal, numbers. Decimal instructions are slower than instructions 
that use general registers (binary arithmetic, floating-point, etc.), because two main 
storage locations (specified in the operand fields) are accessed each time a decimal 
instruction is executed. 

In assembly language, decimals are expressed in either unpacked or packed format. 
Format refers to the way bits represent decimal numbers. Unpacked format is the 
standard form in which numbers are brought in to the system (input), and sent out 
from the system (output). Packed format is the standard form in which numbers are 
used in mathematical calculations. 

Numbers written in unpacked format are movable from one location in main storage 
to another and are printable on input and output devices. Arithmetic operations, 
however, can only make use of packed decimal numbers. Therefore, you must pack 
each number before you use it. In turn, you must then unpack the number before you 
output it (either to a printer or any other character sensitive device). 

Unpacked format uses eight bits to represent a decimal number. The leftmost four bits 
are the zone field, and the rightmost four bits are the decimal digit in binary. 

zone digit 

0 3 4 7 

The zone portion of a number is always a binary 1111 which is a hexadecimal F. The 
F in the zone field indicates that any decimal digit (0-9) in the digit field is a 
numeric character in EBCDIC (Extended Binary Coded Decimal Interchange Code). 
These relationships are shown in the following chart. 



UP-8913 

Decimal 
Digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Hexadecimal 
(EBCDIC) Code 

FO 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 

9-2 

Binary 
Code 

11110000 
11110001 
11110010 
11110011 
11110100 
11110101 
11110110 
11110111 
11111000 
11111001 

Since decimal operations require the number you use to be in packed format, the 
decimal numbers must be defined as packed constants or converted from unpacked to 
packed format. To convert from unpacked to packed format, use the pack decimal 
(PACK) instruction. The PACK instruction removes the zone bits of the unpacked 
decimal, thus expressing the same value in fewer bytes of main storage. 

In both unpacked and packed formats, the sign is expressed in the rightmost byte 
which is the zone portion in unpacked format and the rightmost digit portion in 
packed format. 

The hexadecimal numbers A through F can be sign values that are either positive or 
negative, and are used in either ASCII or EBCDIC mode. A hexadecimal A and B are 
used for output of data in ASCII mode only. A represents a positive value and B 
represents a negative value. 

A hexadecimal C, D, and F are all used for internal processing in EBCDIC mode. C 
represents a positive value, D represents a negative value, and F represents an 
unsigned number which is assumed positive. If you attempt to print an unpacked 
decimal number with hexadecimal C or D as the sign value, an alpha character is 
printed for the rightmost byte instead of a decimal digit. Hexadecimal C and D must 
be changed to hexadecimal F either through the ED or 01 instruction to print the 
correct value. 

A hexadecimal F is used for output of data in EBCDIC mode and represents an 
unsigned number which is assumed positive. 

The following illustrations represent a 3-digit decimal number in both packed and 
unpacked format. Notice the positions of the zone and digit portions: 

Unpacked Format: 

I zone I digit I zone I digit I sign I digit I 
~~~ 

byte 1 byte 2 byte 3

UP-8913

Packed Format:

digit digit digit sign

~~
byte 1 byte 2

SPERRY UNIVAC OS/3
ASSEMBLER

9-3

These illustrations represent the decimal number +456 in both packed and unpacked
format.

Unpacked: byte 1 byte 2 byte 3
~~~ 

Packed: 

byte 1 byte 2 

There is a zone portion for every digit and one sign value in unpacked format and 
only digits and one sign value in packed format. Notice the number of bytes the 
unpacked format occupies in contrast to the packed format. The decimal number +456 
occupies three bytes when unpacked and only two bytes when packed. The sign value 
hexadecimal C indicates that 456 is a positive number. 

9.2. DEFINING PACKED AND UNPACKED CONSTANTS AND MAIN STORAGE 
AREAS 

You can specify packed or unpacked constants and reserve areas in main storage 
destined to hold packed decimal values by using the define constant (DC) and define 
storage (DS) statements. Their format is: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] DC 

[symbol] OS 

[d] { ~} [Ln] 'c' 

[d] { ~} [Ln] ['c'] 

Duplication facto_r _____ __.I I I 
Definition type . _ 
Length factor 
Constant specification ___________ ___, 

In this format. symbol is an optional predefined label that names the location of the 
constant or main storage area. The symbol's main storage address is the address of 
the leftmost byte of the constant or main storage area specified in the operand field. 
Relative addressing (symbol + 4) is acceptable. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-4 

The duplication factor d is a decimal number that tells the assembler how many times 
you want the constant reproduced or how many areas of the same length you want 
reserved in main storage. Specifying the duplication factor saves you the time of 
defining the same constant or area more than once. 

The definition type is P for packed or Z for zoned (unpacked), which indicates the type 
of constant or main storage area you are specifying. There are other definition types 
available, but are used for other applications (Table 5-1 ). 

The length factor Ln specifies the number of bytes of storage reserved for a constant 
(DC) or an area to be used in your program (DS). If no length is specified, the 
assembler assigns the length of the constant specified within apostrophes. By 
explicitly specifying a length, you can determine the lengths of all the fields in your 
program regardless of how large or small your constants are. 

The constant itself (c) is enclosed in apostrophes. In the case of a DS statement, the 
constant you enclose in the apostrophes is not actually generated, but its length 
determines the length of the main storage area allocated. Embedded blanks cannot be 
used in packed and zoned type constants. 

9.2.1. Packed Decimal Constants and Main Storage Areas 

When you specify packed decimal constants, the character P is the definition type in 
the operand field. Packed decimal constants can be up to 31 decimal digits (16 bytes) 
and can be signed or unsigned. If unsigned, the value is assumed to be positive. The 
address of the symbol you put in the label field is the address of the constant you 
define in the operand field. When you specify a packed decimal constant, the actual 
decimal value you specify is placed into main storage. 

Example: 

LABEL 
1 

1. NUMl 
2. NUM2 
3. NUM3 

bOPERATIONb 
10 16 

DC 
DC 
DC 

P'+4563' 
PL3'123' 
2PL2I123 I 

OPERAND 

1. This coding statement produces this packed decimal constant in main 
storage. The 3-byte length is implied since three bytes are needed to hold 
the constant and its sign. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-5 

2. This coding statement produces this packed constant in main storage. In this 
case, the 3-byte length isn't needed to hold the constant, but since a length 
of three is specified, three bytes are allocated. The number is right-justified 
and thus the most significant unused bytes are zero-filled. 

l 2 
I 

3. This coding statement produces two consecutive, duplicate 2-byte constants 
in main storage. 

The character P also is the definition type for defining packed decimal storage areas 
(i.e., areas destined to hold packed decimal data). The address of the symbol you put 
in the label field is the address of the constant you define in the operand field. No 
actual constant is placed into the area you reserve, and the area is not cleared of 
any data it may already contain. You are merely reserving a main storage area for 
future use. 

Example: 

LABEL 
1 

1. NUM4 
2. NUM5 
3. NUM6 

l\OPERATIONA 
10 16 

OS 
OS 
OS 

P1+4563' 
PL2 
Pll 1 6 1 

OPERAND 

1. This coding statement reserves a 3-byte area in main storage. The statement 
does not put the packed decimal +4563 into that area but merely reserves 
an area large enough to hold it. 

2. This coding statement reserves a 2-byte area in main storage. It does not 
clear the area or put anything into it. 

3. This coding statement reserves a 1-byte area in main storage. 

If you intend to reserve a packed storage area for mathematical calculations in either 
of these three ways, move zeros into the specified storage area to clear it of any 
leftover data from another program. This will ensure that mathematical calculations 
are performed correctly. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-6 

9.2.2. Unpacked Decimal Constants and Main Storage Areas 

When you specify unpacked decimal constants, the character Z is the definition type 
in the operand field. Unpacked decimal constants can be up to 16 decimal digits (16 
bytes) and can be signed or unsigned. If unsigned, the value is assumed to be 
positive. The address of the symbol you put in the label field is the address of the 
constant you define in the operand field. When you specify an unpacked decimal 
constant, the actual decimal value you specify is placed into main storage as digits 
with zone fields of hexadecimal F. 

Example: 

LABEL 
1 

t.OPERATI ON!! 
10 16 

1. [symbol] DC 
2. [symbol] DC 
3. [symbol] DC 

Z 1+4563' 
ZL5' l 23' 
2ZL3' 123 I 

OPERAND 

1. This coding statement produces this unpacked decimal constant in main 
storage. The 4-byte length is implied since four bytes are needed to hold the 
unpacked constant with zones and sign. 

2. This coding statement produces this unpacked decimal constant in main 
storage. In this case, the 5-byte length isn't needed to hold the constant, but 
since a length of five is specified, five bytes are allocated. Note that the C in 
the rightmost byte represents a signed positive value. 

3. This coding statement produces two consecutive 3-byte constants iri main 
storage. 

The character Z also is the definition type for defining unpacked decimal main storage 
areas (i.e., area destined to hold unpacked decimal data). The address of the symbol 
you put in the label field is the address of the main storage area you define in the 
operand field. No actual constant is placed into the area you reserve, and the area is 
not cleared of any data it may already contain. You are merely reserving a main 
storage area. 



UP-8913 

Example: 

LABEL 
1 

1. ZNUH1 
2. ZNUH2 
3. ZNUH3 

tiOPERATION6 
10 16 

OS 
OS 
OS 

Z14543 1 

ZL4 
2ZL4 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

9-7 

1. This coding statement reserves a 4-byte area in main storage. The actual 
unpacked decimal constant 4543 is not placed into the reserved area by this 

/ 

statement. 

2. This coding statement also reserves a 4-byte area in main storage. 

3. This coding statement reserves two consecutive 4-byte areas in main storage. 



UP-8913 

AP 

9.3. ADD DECIMAL (AP) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

9-8 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

• DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

AP FA SS 6 0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT~ 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 0 
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The add decimal (AP) instruction algebraically adds the packed decimal contents of 
operand 2 (the sending field) to the packed decimal contents of operand 1 (the 
receiving field). The sum is stored in operand 1 and is filled, a byte at a time, from 
rig ht to left. 

Explicit Format: 

LABEL .0.0PERATION 6 OPERAND 

[symbol] AP 

Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] AP 

Operationa I Considerations: 

• The value and sign of the sum are algebraically, not logically, calculated. 

• Since the sum is stored in the operand 1 location and if the length of the sum 
is greater than the length of operand 1, the leftmost digits of the sum are 
truncated. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-9 
Update B 

• Example: 

• 

• 

LABEL 
1 

A 
B 

t.OPERATIOtlA 
10 16 

AP A,B 

DC 
DC 

p '2' 
P'9' 

A before AP execution: 

B before and after AP execution: 

A after AP execution: 

OPERAND 

I 

1 I C 
I 

As shown, the entire sum (11) does not fit into the one byte allocated in operand 1, 
so the leftmost digit of the sum is lost. If the operand field of the DC statement 
defining A is changed to PL2'2', two bytes are allocated for the sum, and the correct 
2-byte sum fits into the allocated area. If the sum does not fill the length specified in 
operand 1, zeros fill the remaining leftmost bytes of operand 1. A zero sum is positive 
as long as the length of operand 1 is large enough to hold the entire sum (i.e., no 
leftmost digits are lost). If the sum is zero and the leftmost digits are lost, the sign is 
the sign of the sum before the digits were lost. It is possible to double a number 
(add it to itself) when the rightmost bytes of operands 1 and 2 have overlapping bytes 
in main storage. 

Example: 

AP A,A 

A DC P'123lt' 

byte 1 byte 2 byte 3 

A before AP execution: 
~~~ 

I 0 ! 1 I 2 3 I 4 c I
A after AP execution: I 0

I
2 I 4 ! 6 I 8 ! c I

I

The entire contents of A is extracted, doubled, and the answer returned to the same field.
This destroys the original contents of A.

-----------~-------------------

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-10

CP •

9.4. COMPARE DECIMAL (CP)

G eneral Possible Program Exceptions

OBJECT
OPCODE F OR MAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

CP F9 SS 6

Condit ion Codes

• IF OPI = OP2, SET TO 0
• IF OPI <oP2, SET TO 1
• IF OPI >oP2, SET TO 2
0 IF OVERFLOW, SET TO 3
OuNCHANGED -------..J

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The compare decimal (CP) instruction is used to compare operand 1 to operand 2,
byte-by-byte from right to left. The result determines the setting of the condition code.
(See 8.1.)

Explicit Format:

LABEL b.OPERATICJN 6 OPERAND

[symbol] CP

Implicit Format:

LABEL b.OPERATION 6 OPERAND

[symbol] CP

Based on the comparison result, the condition code of the program status word (PSW)
is set to 1 if operand 1 is less than operand 2, to 2 if operand 1 is greater than
operand 2, and to 0 if operands 1 and 2 are equal.

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-11

The condition code is part of the PSW, a double-word register that holds information
pertinent to instruction execution. The instruction executed following the CP
instruction depends on the condition code setting. The four condition code settings are
as follows:

Condition Code Bit Configuration
(Decimal Value) (Bits 34-35 of PSW)

0 00 =test value is binary 8 (1000)
1 01 = test value is binary 4 (0100)
2 10 =test value is binary 2 (0010)
3 11 =test value is binary 1 (0001)

Operational Considerations:

• The CP instruction compares the rightmost byte of the operands first, and then
works to the left one byte at a time.

• If operand 1 is shorter than operand 2, or operand 2 is shorter than operand 1,
zeros fill the leftmost bytes of the shorter operand, thus making the operands the
same length during the comparison. Even though zeros are added, neither
operand is permanently changed by the instruction.

• Any zero compares equal to another zero regardless of their signs.

• Positive signs compared to each other compare as equal; and the same holds
true for negative signs.

• It is possible to compare a decimal, or part of a decimal to itself, or part of itself,
by overlapping the location of the rightmost bytes of the operands in main
storage.

Example:

LABEL
1

A

tiOPERATI ONA OPERAND
10 16

CP A+2(2),A+3(1)

DC PL4'1234567'

UP-8913

A before and after execution
of CP instruction:

SPERRY UNIVAC OS/3
ASSEMBLER

Operand 1
~

~

Operand 2

9-12

In this example, the packed decimal contents of operand 1 are compared to the
packed decimal contents of operand 2. Operands 1 and 2 have overlapping rightmost
bytes. The processor temporarily adds a byte of zeros to operand 2 since operand 2
has fewer bytes than operand 1. After the CP instruction is executed, the condition
code is set to 2 because operand 1 is greater than operand 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-13
Update B

• DP

•

•

9.5. DIVIDE DECIMAL (DP)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

DP FD SS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1

0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3

.UNCHANGED

6

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

• DECIMAL DIVIDE

D DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The divide decimal (DP) instruction divides the packed decimal contents of oµerand 1
(dividend) by the packed decimal contents of operand 2 (divisor). The result (quotient
and remainder) is stored in operand 1 (the receiving field) which is filled from right to
left .

Explicit Format:

LABEL fl OPERATION 6. OPERAND

[symbol] DP

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] DP

Operational Considerations:

• Operand 1 contains both the quotient and the remainder after the DP instruction is
executed. Since operand 1 is the receiving field for the result, it consists of two side-by­
side fields. The remainder with sign occupies the rightmost field, and the quotient with
sign occupies the leftmost field. The leftmost byte of the quotient is the address
specified by operand 1, and the rightmost byte of the remainder is the rightmost byte
specified by operand 1 .

• The quotient with sign and the remainder with sign are determined algebraically .
The sign of the remainder takes its sign value from the sign of the dividend.

UP-8913

•

SPERRY UNIVAC OS/3
ASSEMBLER

9-14

The length of the dividend is restricted to 16 bytes and must have at least one
leading zero in the leftmost portion. As a result. the most significant digit is
always zero. The length of operand 1 should be sufficient to hold the quotient,
the remainder, and their signs.

• The divisor length is restricted to eight bytes. The operand 2 field, which holds
the divisor, is unchanged after the DP instruction is executed.

• The length of the quotient is restricted to 15 bytes. This length is equal to the
number of bytes needed to hold the dividend with sign and the divisor with sign
(operand 1 + operand 2).

• The length of the remainder must be at least one byte. The length of the
remainder is the length of the divisor and is therefore restricted to eight bytes.

• If the result is larger than the length specified for operand 1, or if you attempt to
divide by zero, a decimal divide program exception occurs.

• If you want to reuse operand 1 for further mathematical calculations, you must
move a packed field of zeros into the specified area to clear it of any leftover
data.

• In fixed-point instructions, it is your responsibility to keep track of assumed
decimal points. To add or delete decimal places, you can multiply or divide by
powers of 10. You can also use the move with offset (MVO) instruction (see 9.9)
to drop any number of leftmost digits you specify.

Example:

LABEL
1

AOPERATIONA
10 16

OPERAND

DP NUM1,NUM2

NUMI
NUM2

DC
DC

PL3'234'
P'2'

NUM 1 before execution
of DP instruction:

NUM2 before and after
execution of DP instruction:

NUM 1 after execution
of DP instruction:

leading

zeros dividend

jof:T?f3

quotient . remainder

1~1±1

Packed
decimal
number

Packed
decimal
number

Two packed
decimal
numbers

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-15

In this example, the packed decimal content of NUM1 is divided by the packed
decimal content of NUM2. The result (quotient and remainder) replaces NUM1. Note
the dividend is a 3-byte field containing leading zeros. Its length is calculated by
adding the actual number of bytes required to hold the data in NUM 1 (two bytes) and
NUM2 (one byte) which gives a total of three bytes for the dividend. Since the divisor
is one byte, the remainder also is one byte. Note that the remainder with sign
occupies the rightmost byte of NUM 1 and the quotient with sign occupies the
remaining (leftmost) portion of NUM1.

Example:

LABEL
1

60PERATI OHL\ OPERAND
10 16

DP NUM3,NUM4

NUM3
NUM4

DC
DC

PL4 1646 1

p '35'

NUM3 before execution
of DP instruction:

NUM4 before and after
execution of DP instruction:

NUM3 after execution
of DP instruction:

dividend -- .-/'-.... ----leading zeros
~

Packed
decimal
number

Packed
decimal
number

Two packed
decimal
numbers

In this example, the packed decimal content of NUM3 is divided by the packed
decimal content of NUM4. The result is placed in NUM3. The length of operand 1 is
calculated by adding the actual number of bytes required to hold the data in NUM3 (2
bytes) and NUM4 (2 bytes) which gives a total of four bytes for the dividend. In this
example there also is a remainder of 16 that occupies the same number of bytes as
the divisor and is located in the rightmost portion of operand 1.

UP-8913

ED

9.6. EDIT (ED)

SPERRY UNIVAC OS/3
ASSEMBLER

9-16

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

ED DE SS

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2

OsET TO 3
SEE OPER. CONSIDERATIONS

6

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The edit (ED) instruction unpacks and modifies packed operand 2 data so that the
printed output received is printed the way you want it displayed. This modification is
controlled by the operand 1 edit pattern.

Explicit Format

LABEL L':.OPERATICJNL':. OPERAND

[symbol] ED

Implicit Format:

LABEL L':.OPERATION 6 OPERAND

[symbol] ED

The contents of operand 2 must be a packed decimal number. Operand 1 contains the
edit pattern which consists of EBCDIC character codes. It is the pattern of EBCDIC
character codes you specify that determines how results are displayed. The edit
pattern can rearrange, delete, select, or insert any needed data, symbols, or characters
in the operand 2 data. The edited result (unpacked and modified operand 2 data)
replaces the operand 1 edit pattern.

UP-8913

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

9-17

• The length of the operand 1 edit pattern is almost always longer than operand 2
because operand 1 is in unpacked format while operand 2 is in packed format.

• The edited result replaces operand 1, thus permanently destroying the edit
pattern. If you intend to reuse the edit pattern, then it must be saved or moved
prior to the execution of the ED instruction.

• The total number of significance starters and digit selectors in operand 1 must
equal the total number of digits in operand 2.

• If there is no significance starter in operand 1, all zeros in operand 2, and the
fill character is hexadecimal 40, the resultant field is blank.

• The condition code reflects only the last field edited or the field after the last
field separator.

• The S switch reflects the sign of the last byte in operand 2. A plus sign detected
as the least significant digit turns the S switch off. A minus sign has no effect
on the S switch, and a plus or minus sign detected as the most significant digit
causes a data exception.

• The sign of operand 2 is converted to hexadecimal F when edited, regardless of
whether it is a hexadecimal C or F (positive), or a hexadecimal D (negative).

9.6.1. The Edit Pattern

The operand 1 edit pattern may consist of five types of pattern characters:

• Fill character

• Digit selector

• Significance starter

• Message character

• Field separator

The fill character, in all cases, is the leftmost byte of operand 1. It is any EBCDIC
character code you choose. The EBCDIC character code specified is the first byte of
the edited result, and replaces (or fills in) certain pattern characters corresponding to
any nonsignificant operand 2 digits. (The significant digits are the digits 1 thru 9. Zero
is the only nonsignificant digit but becomes significant when it follows a significant
digit or the significance starter (hexadecimal 21)). The edited result replaces the
operand 1 edit pattern. Some of the more commonly used fill characters are
hexadecimal 40 (blank), hexadecimal SB (dollar sign), and hexadecimal SC (asterisk).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-18

The digit selector is the EBCDIC character code 20. For every digit in operand 2,
there must be a corresponding hexadecimal 20 in the operand 1 edit pattern. Every
significant digit in operand 2 replaces its corresponding digit selector in operand 1. If
there is a nonsignificant digit in operand 2, the fill character replaces its
corresponding digit selector.

Example:

LABEL
1

60PERAT I OIU1
10 16

ED PATTERN 1~ANSWER1

PATTERN) DC
ANSWERJ DC

x 1482f/JUJ28 I

P'253'

PATIERN1 before execution
of ED instruction:

ANSWER 1 before and after
execution of ED instruction:

PA TIERN 1 after execution of
ED instruction:

Printed edit result looks
like this:

fill
character
~

4 I 0

OPERAND

digit selectors

Edit pattern

Packed decimal number

Edited result

253 Printed output

Note that in PATTERN1 there is a corresponding hexadecimal 20 for every digit in
ANSWER1. The edit pattern (operand 1) is examined one byte at a time and operand
2 is examined one digit at a time. The fill character remains as the first byte of the
edit result (operand 1), and the succeeding pattern characters (in this example, the
digit selectors) are replaced by unpacked operand 2 digits.

Example:

ED

PATTERN2 DC
ANSWER2 DC

PATTERN2,ANSWER2

XI 4f/J2f/J2f,28 I

P'26'

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-19

~~~~~~~~~~~~~~~~~~-

PATIERN2 before execution 
of ED instruction: 

ANSWER2 before and after 
execution of ED instruction: 

PATIERN2 after execution 
of ED instruction: 

Printed edit result looks 
like this: 

fill 
character digit selectors 

Edit pattern 

Packed decimal number 

Edited result 

26 
Printed output 

In this example, note that ANSWER2 is padded to the left with a zero. Zero is 
considered a nonsignificant digit because it precedes any significant digits. Therefore, 
the fill character hexadecimal 40 replaces the second byte of the edit result, because 
zero corresponds to the first digit selector. The other packed operand 2 digits are 
unpacked and replace the remaining digit selectors. This method of changing lead 
zeros to blanks is called zero suppression. 

The significance starter is the EBCDIC character code 21. You need to specify only 
one hexadecimal 21 for each field to be edited. Every hexadecimal 21 must 
correspond to a digit in operand 2. When a hexadecimal 21 is examined in an edit 
pattern, it is replaced with its corresponding digit in operand 2 and then turns on the 
significance start switch (S switch). The significance start switch is an internal switch 
that when turned on forces all of the following pattern characters either to remain or 
be replaced in the edit result. In effect, the only conditions that force the S switch on 
are a hexadecimal 21 or a significant digit. On the other hand, the S switch is turned 
off after a digit in operand 2 is examined whose sign is positive and located in the 
rightmost four bit positions of a field. A negative sign does not affect the S switch. 
Whether the sign is positive or negative, all results are printed as positive values. 

Example: 

60PERATl0Nti LABEL 
1 10 16 

ED 

PATTERN3 DC 
ANSWER3 DC 

PATTERN3,ANSWER3 

X14eJ212flJ2.(}2fl2flJ 1 

PL3 1248 1 

OPERAND 



UP-8913 

ANSWER3 before and after 
execution of ED instruction: 

PA TTERN3 after execution 
of ED instruction: 

Printed edit result looks 
like this: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

fill significance 
character starter 

9-20 

digit selectors 

Printed output 

The fill character remains as the first byte of the edit result, and also replaces the 
significance starter because its corresponding digit in ANSWER3 is a nonsignificant 
zero. Now, the S switch is turned on and the second zero in ANSWER3 becomes 
significant. It replaces its corresponding digit selector with a zero. The succeeding 
operand 2 digits are unpacked and replace the remaining digit selectors. 

The message character can be any EBCDIC character code except hexadecimal 20, 21, 
or 22. If the message character follows a significant digit or the significance start 
switch (hexadecimal 21 ), the message character remains as part of the edited result 
(operand 1 ). On the other hand, if the message character precedes a significant digit 
or a hexadecimal 21, it is replaced by the fill character. Some of the most commonly 
used message characters are hexadecimal 6B (comma) and hexadecimal 4B (decimal 
point). 

Example: 

tiOPERATI ONt\ LABEL 
1 JO 16 

ED 

PATTERN4 DC 
ANSWER4 DC 

PATTERN4,ANSWER4 

X'5B2S2S6B2S212S4B2S2S' 
p I 1326flQJ I 

OPERAND 



UP-8913 

PATTERN4 before execution 
of ED instruction: 

fill 

5 I B 

ANSWER4 before 
and after 
execution of 
ED instruction: 

PA TTERN4 after 
execution of ED 
instruction: 

Printed edit result looks 
like this: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

digit mes-
character 

$ $ 

9-21 

dtgit significance digit menage digit 
starter selector character 

2 6 a a Printed output 

In this example, hexadecimal 58 (dollar sign) is used as the fill character. It remains 
as the first byte of the edited result and also replaces the second byte because the 
second byte's digit selector corresponds to a nonsignificant zero. The digit 1 in 
ANSWER4 replaces the third byte and the message character hexadecimal 68 remains 
because it follows a significant digit. The digits 3, 2, and 6 in operand 2 replace their 
corresponding pattern characters, the message character hexadecimal 48 remains and 
the trailing zeros in ANSWER4 replace their corresponding pattern characters. 

Note the position of the significance starter hexadecimal 21. In this example, the S 
switch is turned on by the first significant digit. Therefore, when this hexadecimal 21 
is examined, it is replaced with its corresponding digit in ANSWER4. Now, suppose 
the edit pattern remains the same and operand 2 is changed to look like this 
example: 

Example: 

AOPERATI ONA LABEL 
1 10 16 

ED 

PATTERNS DC 
ANSWERS DC 

PATTERN5,ANSWER5 

X'5B2f286B2821284B2f2S' 
PL4'75' 

OPERAND 



UP-8913 

PATTERN5 before execution 
of ED instruction: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

fill _E:__ message digit 

~ 1 selectors character selector 

~ ~ 

ANSWER5 before 
and after 
execution of 
ED instruction: 

PATTERN5 after 
execution of ED 
instruction: 

Printed edit result looks 
like this: $ $ $ $ 

9-22 

stgnificance digit message digit 
starter selector character selector 
~ 

2 I 0 

dit pattern 

$ 0 5 
Printed output 

The significance starter (hexadecimal 21) is placed in the sixth byte of PATTERN5 so 
that the S switch is turned on to force the display of bytes 7 through 10. As a 
result, the least significant dollar integer, the decimal point, and the cents are always 
represented no matter how small or large the value of operand 2 is. 

The field separator is the EBCDIC character code 22. It is used to separate two or 
more contiguous fields. These fields must be packed decimal numbers in operand 2 
and located in consecutive order in main storage. The fill character you specify 
replaces all field separators. As soon as a hexadecimal 22 is examined, the S switch 
is turned off and the field separator is replaced with the fill character. 

Example: 

MPERATI ONA OPERAND LABEL 
1 10 16 

ED 

PATTERN6 DC 
ANSWER6 DC 

PATTERN6,ANSWER6 

X 1 4020212022222021202222214B2'112~ 1 

p I 123Cfllf.1'11C2'11f.IC I 



UP-8913 

PATTERNS before execution 
of ED instruction: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

digit signif1ca11011 digit field digit sigrlif1carn;e digit 

ANSWERS before 
and after 
execution of 
ED instruction: 

PATTERNS after 

9-23 

··~ 
significance meS$il98 

execution of 
c__.,_____.1-___.,,_J_-+---'-'--+---'--+--'--+-_L_+-~I--'-+--'----+---'--+--'--+--'----+--'----;~-.______,,.___. 

ED instruction: 

Printed edit result 
looks like this: 

Edited 

In this example, ANSWERS contains three packed contiguous fields each separated by 
two field separators (hexadecimal 22). Since the fill character specified is hexadecimal 
40, that character is used as the fill character for all fields, and also replaces each 
field separator in the edit pattern. Remember that the S switch is turned off as soon 
as a hexadecimal 22 is examined. This causes any leading zeros in succeeding fields 
to be nonsignificant digits. 

9.6.2. The Resulting Condition Code 

All operand 2 digits examined are tested for condition code 0. The sign of the last 
packed field edited, and whether or not all the digits in that field are zeros, are 
recorded in the condition code setting when execution of the ED instruction is 
completed. 

The condition code is set to 0 when: 

• all digits in the last field edited in operand 2 are zeros; 

• the edit pattern has no digit selectors or significance starters causing operand 2 
digits not to be examined; 

• the last character in the edit pattern is a field separator; and 

• the edit pattern has no digit selectors or significance starters after the last field 
separator. 

The condition code is set to 1 when: 

• the last field edited is not all zeros but the S switch is on. This indicates the 
value of the last field edited is less than zero, because a negative sign does not 
affect the S switch. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

The condition code is set to 2 when: 

9-24 

• the last field edited is not all zeros but the S switch is off. This indicates the 
value of the last field edited is greater than zero, because a positive sign turns 
the S switch off. 

9.6.3. Examples of General Usage 

The following examples are more commonly used and can be applied in practical 
situations. The first example shows how a nonblank fill character is used. 

Example: 

60PERATI ONL\ LABEL 
1 10 16 

ED 

PATTERN] DC 
ANSWER] DC 

PATTERN7 before 
execution of ED 
instruction: 

PATTERN7,ANSWER7 

x '5C211J211J211J2f6211J I 

P'12345' 

fill 

ANSWER7 before and 
after execution of 
ED instruction: 

PATTERN7 after 
execution of ED 
instruction: 

Printed edit result 
looks like this: 

OPERAND 

digit selectors 

Edit 
pattern 

Packed 
decimal 
number 

Edited 
result 

2 3 4 5 
Printer 
output 

All results, whether pos1t1ve or negative, are printed as positive results. By using 
message characters in the edit pattern, you can indicate whether a field in operand 2 
is positive or negative. These message characters should be the last pattern 
characters in the edit pattern for each corresponding field in operand 2. If the value 
of operand 2 is negative, message characters placed to the right of the rightmost digit 
selector remain as part of the edit result. Since a negative sign in the rightmost four 
bit positions does not affect the S switch, the message characters become significant. 
However, if the value of operand 2 is positive, the message characters are replaced 
by the fill character. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-25 

Since a positive sign in the rightmost four bit pos1t1ons turns the S switch off, the 
message characters become nonsignificant. You can specify any character or any 
number of characters to indicate a negative number, but the most commonly used are 
hexadecimal C3D9 (CR), hexadecimal C3C2 (DB), and hexadecimal 60 (-). The 
following example illustrates editing a negative number using the minus sign. 

Example: 

LABEL 
1 

AOPERATIOUA OPERAND 
10 16 

ED PATTERN9,ANSWER9 

The following example illustrates date-field editing. Here, message characters are 
inserted into a 5- or 7-digit field. The most commonly used message characters for a 
date field are hexadecimal 61 (slash), hexadecimal 60 (hyphen), and hexadecimal 40 
(blank). 

Example: 

ED 

PATTERNA DC 
ANSWERA DC 

PATTERNA,ANSWERA 

x 1 4~2~212~612~2~~12~2~ 1 

P1 122576 1 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

PATTERNA before 
execution of ED 
instruction: 

fill digit significance digit message 
dlaracter selector starter starter ,._..,.___ ,._..,.___ ,._..,.___ ,._..,.___ 
4 I 0 

ANSWERA before and 
after execution of ED 
instruction: 

PATTERNA after 
execution of ED 
instruction: 

Printed edit result looks 
like this: 

9.6.4. Summary 

digit mes,_ 

9-26 

6 

digit 

Packed decimal 
number 

Printed 
output 

result 

Table 9-1 summarizes and combines the information in this section to · provide a 
clear and concise picture of the ED instruction and its functions. 

Table 9-1. Edit Instruction Operation 

Pattern (Operand 11 
Previous Decimal Sign of Least Resulting Resulting 

EBCDIC 
Switch (Operand 21 Significant Byte (Operand 11 Switch 

Character Code Status Digit (Operand 21 Character Status 

Fill character Any Off Not examined * Fill character Off 

Digit selector 20 Off 0 * Fill character Off 
Off 1-9 * Digit On 
Off 1-9 Positive Digit Off 
Off 1-9 Negative Digit On 
On 0 * Digit On 
On 1-9 * Digit On 
On 1-9 Positive Digit Off 
On 1-9 Negative Digit On 

Significance starter 21 Off 0 * Fill character On 
Off 1-9 * Digit On 
On 0 * Digit On 
On 1-9 * Digit On 

Message character Any except Off Not examined * Fill character Off 
20,21,22 Off Not examined Positive Fill character Off 

On Not examined * Message character On 
On Not examined Positive Fill character Off 
On Not examined Negative Message character On 

Field separator 22 Off Not examined * Fill character Off 
On Not examined * Fill character Off 

*Not applicable 



e 

e 

e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-27 

EDMK 

9.7. EDIT AND MARK (EDMK) 

General 

OBJECT 
OPC ODE FORMAT INST. 

MNEM. 

EDMK 

.IF R 

.IF R 

.IF R 
01F 0 
DUNC 

TYPE LGTH. 
HEX. (BYTES) 

OF SS 6 

Condition Codes 

ESU LT= 0, SET TO 0 
ESU LT< 0, SET TO 1 
ESU LT> 0, SET TO 2 
VE RF LOW, SET TO 3 
HANGED 

Possible Program Exceptions 

• ADDRESSING 

• DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The e dit and mark (EDMK) instruction operates like the edit (ED) instruction except 
also saves the address of the first significant byte and places it in register 1. that it 

Explici t Format: 

LABEL l'.OPERATION ['. OPERAND 

[symbol] EDMK 

lmplici t Format: 

LABEL ['.OPERATION['. OPERAND 

[symbol] EDMK 

Ope rat ional Considerations: 

• 

• 

T he EDMK instruction operates like the ED instruction (see 9.6). After the packed 
ontent of operand 2 is edited and the unpacked result stored in operand 1, the 
ddress of the first nonzero character is placed in general register 1. 

c 
a 

If 
st 

the field to be edited contains no significant digits until after the significance 
arter, no address is moved into register 1, and the move instruction following 
e EDMK instruction will be using the incorrect address (or whatever value) that 
in register 1 . 

th 
is 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-28 

• To avoid having an incorrect address in register 1 because no significant digits e 
exist before the significance starter, load register 1 with the address of the 
position where you want the insert character to be placed. 

• If a field to be edited contains multiple fields, the address of the first significant 
byte in each field replaces the one before. So in effect, the address of the first 
significant byte in the last field is the final result. 

• The EDMK instruction is a featured instruction. An operation program exception is 
caused if you use this instruction and the processor does not have the control 
feature installed. 

• This instruction is used to insert a character in several places throughout the 
output display. For example: 

$6.25 
$86.00 

$2.34 
$724.11 

The location of the dollar sign is predictable in that it appears at the left of the 
first significant digit on each line. The decimal point position also is predictable 
as the third character from the right. The proper positioning of a dollar sign or 
other message character is ensured by using the EDMK instruction. 

Example: 

LABEL 
1 

.l'.lOPERATI ON.l'.l 
10 16 

MVC PATTERN,MASK 
LA 1 ,PATTERN+] 
EDMK PATTERN,DATA 
s 1 ,=FI 1 I 
MVI 0(1),C 1 $ 1 

PATTERN OS CL10 
X1 4S20206B2S20214B2S20 1 

P1024571S 1 

MASK DC 
DATA DC 

Register 1 before execution of EDMK instruction: 

0000: 0000 0000 l 0000 0000; 0000 1100~ 0000 binary 

0 1 0 0 l 0 0 l 0 C l 0 hex 

-- "-.... -...... 7 
address of PATTERN+7 

OPERAND 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 1 after execution of EDMK instruction: 

000010000 000010000 000010000 101111011 binary 

o I o o I o o I o B I B hex 

address of 1st significant digit 

Register 1 after execution of S instruction: 

000010000 0000 10000 000010000 1011 j1010 binary 

o 1 o olo olo BIA hex 

address of byte to the left of 
1st significant digit 

Edited result after execution of MVI instruction: 

1st 
significant 

$ digit 
~ 

9-29 

0100
1
0000 0101

1
1010 1111100100110

1
1011 1111

1
0100 1111

1
0101 1111

1
0111 0100

1
1011 111110001 1111 

1
0000 binary 

410 SIB Fl2 6l
0

B F14 FIS fl7 41B Fl1 FIO hex 

In this example, the edit mask is moved into a 10-byte field labeled PATTERN. 
The address of the position where the insert character is to be placed (in the 
absence of significant digits before the significance starter) is loaded into register 
1. Then DATA, containing the packed number, is edited and the result is placed 
in PATTERN. The address of the first significant byte (in this example, 2 is 
significant) replaces the content of register 1. Then a full word containing the 
decimal value 1 is subtracted from the content of register 1, therefore moving 
one byte to the left. The MVI instruction moves the dollar sign into the byte 
addressed by the content of register 1 . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

DELETION 

Pages 9-30 through 9-62, Figures 9-1 through 9-8, and 
Tables 9-1 through 9-7 have been deleted. 

/V/SS 
.. · .. \.) '- .. 

9-30 thru 9-62 
Update A 

• 

• 

• 



e 

e 

e 

UP-891 3 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-63 

MVC 

9. 9. MOVE CHARACTER (MVC) 

General Possible Program Exceptions 

• PROTECTION OBJECT 
OPCODE FORMAT INST. 

• ADDRESSING 

TYPE LGTH. 

M NEM. HEX. (BYTES) 

D DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

D SIGNIFICANCE 

D SPECIFICATION: 

MVC 02 SS 6 
0 DECIMAL OVERFLOW 

D EXECUTE 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
0 
0 
0 
0 • 

Condition Codes 

IF RESULT= 0, SET TO 0 
IF RESULT<O,SETTO 1 
IF RESULT >o. SET TO 2 
IF OVERFLOW, SET TO 3 
UNCHANGED 

D EXPONENT OVERFLOW 

D EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

Th e move character (MVC) instruction moves the contents of one area in main storage 
perand 2) into another area in main storage (operand 1 ). The length of operand 1 
termines the number of bytes moved. 

(o 
de 

E xplicit Format 

Im 

Th 
to 
a 
de 

LABEL {:,.OPERATION{:,. OPERAND 

[symbol] MVC d, (l,b,) ,d2 (b2) 

plicit Format 

LABEL {:,.OPERATION{:,. OPERAND 

[symbol] MVC s, (I) .S2 

e move. character instruction moves data referenced by operand 2 (the sending field) 
the location referenced by operand 1 (the receiving field). Data is moved a byte at 
time from left to right. The length of operand 1, whether implied or explicit, 
termines the number of bytes to be moved. 

0 perational Considerations: 

• 

• 

The instruction moves one byte at a time, processing from left to right through 
each field. 

The length of operand 1 determines the number of bytes moved. It can be either 
implied or explicit. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-64 

• When using operands with overlapping bytes, the results are often unpredictable. 

• One character can be propagated through an entire field if the sending field 
begins with the first byte of a field and the receiving field begins with the 
second byte of that same field. 

• Any type of data can be specified in an MVC instruction. 

Example: 

LABEL 
1 

tiOPERATIONL\ 
10 16 

MVC RECEIVEl ,SENDl 

RECEIVEl DC 
SENDl DC 

CLS'DIGIT' 
CL5 1 SALES 1 

RECEIVE1 before 
execution of MVC 
instruction: 

SEND1 before and after 
execution of MVC 
instruction: 

RECEIVE1 after 
execution of MVC 
instruction: 

D 

I 
c I 4 

_l 

s 
I 

E I 2 
_l 

1 
s 

l 
E I 2 

I 

I 
C I 9 

_l 

A 

-, 
cj 1 

] 
A 

1 c _l_ 1 

OPERAND 

G I 

I : cl 7 c _J 9 

L E 

. l : D I 3 c ..1 5 
...1 

l l 
L E 

I : D I 3 5 J_ c J_ 

T 

E I 
...1 3 

s 
I 

E I 2 
..l 

l 
s 
I 

E I 2 
.1. 

Alpha characters 

Hexadecimal 
(EBCDIC mode) 

Alpha characters 

Hexadecimal 
(EBCDIC model 

Alpha characters 

Hexadecimal 
(EBCDIC model 

In this example, the content of operand 2 is moved into operand 1. Since it is an 
even move (a 5-byte field to a 5-byte field), the content of SEND1 completely overlays 
the content of RECEIVE1. Note that no length is specified for operand 1 and, as a 
result, the implied length is applied. 

Example: 

MVC 

RECEIVE2 DC 
SEND2 DC 

RECEIVE2(5),SEND2 

CL7'JANUARY 1 

CLS 'MARCH I 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-65 

RECEIVE2 before 
execution of MVC 
instruction: l:D==J===i==c=A====l=D==N=5=:1==E=u==4==1=c==A===l==D=R==9===E==y=8~1 ~;;:~ 
SEND2 before and after 
execution of MVC 
instruction: 

D 

M 

4 

M A 

D 4 C 

A A 

c D 9 

A C H 

D 9 C 3 C 8 

c H A y 

c 3 c 8 D 9 E 8 

RECEIVE2 after 
execution of MVC 
instruction: L-~--&~~~.1..-~~-'-~~----~~--'-~~---''--~--' 

Alpha characters 

Hexadecimal (EBCDIC mode) 

Alpha characters 

Hexadecimal 
(EBCDIC mode) 

In the preceding example, an explicit length of 5 is specified for operand 1. The 5 
determines that RECEIVE2 will accept only five bytes from SEND2. The five bytes from 
SEND2 are moved to RECEIVE2 filling operand 1 from left to right. As you can see, 
five bytes of SEND2 (MARCH) are moved to the first five bytes of RECEIVE2 (JANUA). 
Note that the last two bytes of RECEIVE2 still remain. 

Example: 

LABEL 
1 

60PERATI ON6 
10 16 

HVC TOTAL(2),ANSWER+l 

PL4 18 1 

PL3 1 128 I 

OPERAND 

TOTAL DC 
ANSWER DC 
HEADING DC CL19'TOTAL SALES FOR HAY' 

TOTAL before execution 
of MVC instruction: 

ANSWER before and after 
execution of MVC instruction: 

TOTAL after execution 
of MVC instruction: 

ANSWER+ 1 

Packed decimal 
number 

Packed decimal 
number 

Two packed 
decimal numbers 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-66 

Since the concerned number occupies the second and third bytes of ANSWER, relative 
addressing (ANSWER + 1) is used to address the second byte, and avoid the first 
byte of zeros. Note the number of bytes moved is restricted to two by using an 
explicit length in operand 1. If an explicit length is not specified, four bytes would be 
moved to TOTAL since it is a 4-byte field. Bytes two and three of operand 2, plus the 
first two bytes of data contiguous to operand 2 (in this case the letters TO of 
HEADING), would be moved to TOTAL. 

Example: 

LABEL 
I 

AOPERATIONA 
10 16 

MVC FIELD+1(3),FIELD 

FIELD DC CL4' 1234' 

FIELD before execution 
of MVC instruction: 

FIELD after byte 1 is 
moved: 

FIELD after byte 2 is 
moved: 

FIELD after byte 3 is 
moved: 

F 

FIELD+1 

F 

FIELD+1 

F 

OPERAND 

2 F 3 F 

F 3 F 

F F 

final result 

4 

4 

4 

Hexadecimal 
(EBCDIC mode) 

Hexadecimal 
(EBCDIC mode) 

Hexadecimal 
(EBCDIC mode) 

Hexadecimal 
(EBCDIC mode) 

As indicated, F1 is propagated through the entire field. This can be done using any 
character. If a hexadecimal 40 is used, the_ resultant field is EBCDIC blanks. If a 
hexadecimal FO is ·used, the resultant field is EBCDIC zeros. To propagate one 
character through an entire field, the sending field (operand 2) must begin with the 
first byte of that field and the receiving field (operand 1) must begin with the second 
byte of that same field. The move is processed from left to right. When operands 1 
and 2 overlap, the end result is obtained by processing the operands one byte at a 
time, and putting each result byte immediately after the byte just obtained. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-67 

4t MVCL 

9.10. MOVE CHARACTER LONG (MVCL) 

General Possible Program Exceptions 

OPCODE 

MNEM. HEX. 

FORMAT 
TYPE 

MVCL OE RR 

Condition Codes 

• IF OP 1 = OP 2, SET TO 0 
• IF OP 1 <oP 2, SET TO 1 
• IF OP 1 >OP 2, SET TO 2 

•sETTO 3 
0UNCHANGED 

OBJECT 
INST. 
LGTH. 
(BYTES) 

2 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

• OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 2 NOT EVEN NUMBERED REGISTER 

D NONE 

The move character long (MVCL) instruction moves data from the main storage area 
specified by operand 2 to the main storage area specified by operand 1. Operands 1 
and 2 can have different lengths; where operand 2 is shorter than operand 1, a 
padding character contained in operand 2 is inserted in all remaining bytes of operand 
1. 

Explicit and Implicit Formats: 

LABEL ilOPERATION il OPERAND 

[symbol] MVCL r
1

,r
2 

The MVCL instruction uses two even-odd register pairs to specify operands 1 and 2. 
Both have basically the same format: the even-numbered register contains the 
operand address in bits 8-31, while the odd-numbered register contains the operand 
length, also in bits 8-31. The operand 2 odd-numbered register differs from the other 
three registers in that it contains a padding byte in bits 0-7. When operand 1 
exceeds operand 2 in length, the padding byte is moved in all remaining low order 
(rightmost) bytes of operand 1. When the operand 2 length exceeds the operand 1 
length, operand 1 determines the number of bytes to be moved. The following chart 
summarizes register usage with the MVCL instruction: 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

9-68 

::;~::m~red register 0~~~~~000~~~0000~~~0~~~~
7

~
8

~~~~~~~~~~~~~~~~~~~~a~d~dr~es~s~~~~~~~~-11 d 
odd-numbered register --00000000~--""--~~~-'eng_th~~!tJ
Operand 2

_0000000 __ 0 ~----a-ddre_ss _ ___,! 0 even-numbered register

odd-numbered register '--~~-:_;_!~~~..._~~~~~~~~~~'e_n_g-th~~~~~l~
The MVCL instruction differs from MVC in that it can move more than 256 bytes per
instruction. In action, it begins by moving the high order (leftmost) byte of operand 2
to the high order byte of operand 1. Execution continues byte by byte proceeding from
left to right. If more than 256 bytes are to be moved, the instruction breaks execution
down into units of operation, each unit moving 256 bytes at a time. Interrupts are
allowed between units; the MVCL instruction always responds by updating the
contents of its registers so that execution can resume exactly where it was
interrupted. After execution of the entire instruction is finished, the four registers
have the following contents:

• Operand 1 even-numbered register: original operand 1 address incremented by
original operand 1 length.

• Operand 1 odd-numbered register: 0000000016•

• Operand 2 even-numbered register: original operand 2 address incremented by
number of bytes moved from operand 2 (not including padding bytes).

• Operand 2 odd-numbered register: original operand 2 length decremented by
same number of bytes as that added to operand 2 address.

The main storage areas defined by operands 1 and 2 can overlap except for one case:
where a byte of main storage is used as an operand 2 source byte after being used
as an operand 1 destination byte. This action is called destructive overlap. As one of
its first actions, the MVCL instruction determines from its operands if destructive
overlap is going to occur. If it is, the instruction sets the condition code to 3, moves
no data, and terminates.

Operationa I Considerations:

• Both operands 1 and 2 must be specified as even-numbered registers.

• You can use the MVCL instruction to clear memory. To do so you set both the
operand 2 length and padding byte to zero, in effect putting all zeros into the
operand 2 odd-numbered register.

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-69

• If the destination field contains the MVCL instruction, the processor may attempt
to fetch it in mid-execution. If this happens after the instruction has been written
over, the results will be unpredictable.

• If you specify an operand 1 length of zero, the MVCL instruction simply sets the
condition code and terminates.

• If you specify the same register for r1 and r2, the MVCL instruction acts as if you
had specified two different register pairs having identical contents. In this case,
condition code 0 is set.

• Do not treat the MVCL instruction simply as an extended version of the MVC
instruction; certain legal MVC instructions, for example, MVC BYTE+1 (2),BYTE, cannot
be recoded using MVCL without causing destructive overlap.

Condition Code:

After execution of the MVCL instruction, the condition code is set:

• to 0 if the operand 1 and operand 2 lengths are equal;

• to 1 if the operand 1 length is less than the operand 2 length;

• to 2 if the operand 1 length is greater than the operand 2 length; or

• to 3 if no data movement occurs because of destructive overlap.

Example:

LABEL 60PERATION6 OPERAND
1 10 16

1 LA 2,AREA1+2 OPERAND 2 ADDRESS
2 LA 3,4 OPERAND 2 LENGTH
3 LA 6,AREA2 OPERAND 1 ADDRESS
4 LA 7,8 OPERAND 1 LENGTH
5 0 3,PADBYTE PAD BYTE IN OPERAND 2
6 MVCL 6,2

DS OF
AREA1 DC XL8'3794274B11328E97 1

AREA2 DC XL8'B9D0~04A171890EF 1

PAD BYTE DC Xt4 1:40000000 1

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-70

In this example, the MVCL instruction moves data from within the double word at
AREA 1 to within the double word at AREA2. Assuming that AREA 1 is at location
100, the move can be illustrated as follows:

AREA1

100 104

AREA2

108 l 10C

37 94 27 48 11 32 8E 97 89 DO 00 4A 17 18 90 EF

source
data

destination
data

The four LA instructions in lines 1-4 load information into register pairs 2-3 and
6-7, which describe the operands to be used by the MVCL instruction at line 6. The
OR instruction at line 5 puts a hexadecimal 40 into the eight high order bits of the
operand 2 length register, thus making it the padding character. Before execution of
the MVCL instruction the registers contain:

Register 2 100000102 Register 3 140000004

Register 6 100000108 Register 7 I 00000008

The MVCL instruction at line 6 acts on main storage locations 100-1 OF as follows:

AREA1

100 104

37 94 27 48 11 32 SE 97

The MVCL instruction moves four bytes from AREA 1 +2 to AREA2. Because the
destination field is eight bytes long, the remaining four bytes are filled with the pad
byte in register 3. After execution of the instruction, the condition code is set to 2
and the registers used contain:

Register 2 I 00000106 I
Register 6 I 00000110 I

Register 3 140000000 I
Register 7 I 00000000 I

UP-8913

Example:

1
2
3
4
5

LABEL
1

l\OPERATIONA

SPERRY UNIVAC OS/3
ASSEMBLER

10 16

LA
LA
LA
LA
MVCL

4,CSECTl
5 ,UJ48
8,CSECT-1
9,0
4,8

9-71

OPERAND

In this example the MVCL instruction is used to clear a 2048-byte area in main
storage starting at CSECT1. After execution of the instructions in lines 1-4, and
assuming that CSECT1 is at location X'100', registers 4-5 and 8-9 contain:

Register 4 I 0000010~ I
Register 8 I OOOOOOFF I

Register 5 I 00000800

Register 9 I 00000000

Registers 4 and 5 contain the location and length of the destination field. Register 8
contains the location of the byte immediately preceding CSECT1; in this case it could
contain any valid address that does not cause destructive overlap. Register 9 specifies
0 for both the source length and the padding byte. When the MVCL instruction at
line 5 is executed, the zero source length causes the instruction immediately to move
pad bytes of 0 into CSECT1, CSECT1 +1, CSECT1 +2, and so on. The destination
length of 2048 bytes forces the instruction to move zeros into all 2048 bytes of the
destination field, thus clearing it. After execution is finished, the condition code is set
to 2 and the registers contain:

Register 4 I 00000900

Register 8 I OOOOOOFF

Register 5 I 00000000

Register 9 I 00000000

Notice that the operand 2 address in register 8 has not changed. No bytes have been
moved from the source area in main storage; rather, the source bytes have come
from the pad byte contained in operand 2.

UP-8913

MVN

SPERRY UNIVAC OS/3
ASSEMBLER

9.11. MOVE NUMERICS (MVN)

9-72

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

MVN 01 SS

Condition Codes

D IF RESULT~ o. SET TO 0
D 1F RESULT <o. SET To 1

01F RESULT>O,SETT02

0 IF OVERFLOW, SET TO 3

.UNCHANGED

6

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

D DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER 0
0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The move numerics (MVN) instruction moves the low order four bits (digit portion) of
each byte in operand 2 into the corresponding low order four bits of each byte in
operand 1. The high order four bits (zone portion) of each byte in operand 1 remain
unchanged. This instruction operates from left to right.

Explicit Format:

LABEL 60PERATICJN6 OPERAND

[symbol] MVN

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] MVN

Operationa I Considerations:

• Any type of data can be specified in both operands 1 and 2.

• The condition code remains unchanged.

• The high order bit positions of each byte in operand 1 remain unchanged.

e

UP-8913

Example:

SPERRY UNIVAC 05/3
ASSEMBLER

LABEL AOPERATIONA OPERAND
1 10 16

MVN TOTAL1+2(3),SUBTOT1

TOTALl DC
SUBTOTl DC

TOTAL 1 before
execution of MVN
instruction:

SUBTOT1 before and
after execution of
MVN instruction:

TOT AL 1 after
execution of MVN
instruction:

ZLS' 12123 I

ZL3'345 1

TOTAL1+2 -----

1111i0001
!

1111 10010 111110001

F I 1 Fl 2
!

l
F l 1

1111 I 0011 000010100 1111 ,0100

1111 I 0001 1111,0010 1111 I 0011

F I 1 F I 2 F I 3

111110010
_L

F l 2

1111 :0100

F I 4

1111 : 0011

T

F l 3

1111 :0101

F I 5

9-73

Binary

hexadecimal
(EBCDIC mode)

Binary

hexadecimal
(EBCDIC mode)

Binary

hexadecimal
(EBCDIC mode)

In this example, the low order four bit positions of each byte in SUBTOT1 are move<;I
into the low order four bit positions of bytes 3, 4, and 5 of TOTAL 1. The high order
bit positions of each byte in TOTAL 1 remain unchanged.

Example:

1. AP
2. MVN

MVC
3. MVC

RESULT DC
BUFFER OS
SPACES DC

RESULT,=P 1Srl 1

RESULT+2(1),RESULT+3
BUFFER,SPACES
BUFFER(3),RESULT

PL4 1 1234567 I

CL5
CL5' I

UP-8913

RESULT before execution
of AP instruction:

Operand 2 before and after
execution of AP instruction:

RESULT after execution
of AP instruction:

RESULT before execution
of MVN instruction:

RESULT after execution
of MVN instruction:

SPERRY UNIVAC OS/3
ASSEMBLER

, , i 2 I 3 l 4 I
I 0 l 5 I 0 c I
I 1 1 2 I 3 l 4 I

5 l 6 I 7 i c I

6 l 1 I 7 ! c I
RESULT+2 (operand 1)

RESULT+3 (operand 2)

1 I 2 3 I 4

I 1 ; 2 I 3 l 4 I 6 ! 7 ! c I

9-74

Packed decimal number

Packed decimal literal

Packed ,decimal number

Packed decimal number

Packed decimal number

In this example, the MVN instruction is used in rounding numbers. In the first line of
code, the literal fifty (50) is added to the contents of RESULT to round the number to
the first two decimal places.

Then, the low order four bits of byte 4 in RESULT are moved to the low order four
bits of byte 3 in RESULT. When the MVN instruction is completed, the sign is moved
to the right of the first two decimal places that were just rounded. The last byte of
RESULT is ignored when the MVC instruction is executed. The location named
BUFFER contains the final result.

blanks

BUFFER before execution I 4 : 0 I 4 l 0 I 0 I l 0 4 ! Hexadecimal
of MVC instruction: 0 4 4

(EBCDIC model

blank

~

BUFFER after execution I 1 i 2 I 3 ! 4 6 l c I 4 ! 0 I Packed decimal
of MVC instruction: number

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9.12. MOVE WITH OFFSET (MVO)

9-75

MVO

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MVO F1 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD D IF RESULT~ 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The move with offset (MVO) instruction moves the contents of operand 2 into operand
1 offsetting the data one half-byte to the left during the move.

Explicit Format

LABEL 6 OPERATION 6 OPERAND

[symbol] MVO

Implicit Format

LABEL 60PERATION6 OPERAND

[symbol] MVO

The MVO instruction operates from right to left. Data from operand 2 (the sending
field) is moved into operand 1 (the receiving field) but offset one half-byte to the left.
The low order four bits of the rightmost byte in the receiving field remain unchanged.
If operand 2 data does not completely fill operand 1, the leftmost unfilled bytes of
operand 1 are padded with zeros. However, if the operand 2 field is larger than the
operand 1 field, the leftmost bytes of operand 2 are truncated. The MVO instruction is
most commonly used in rounding packed decimal numbers to an odd number of digits.

Operational Considerations:

• Usually, the MVO instruction operates on packed decimal fields; however,
unpacked fields can be specified.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

• Padding of zeros to the left and truncation to the left can occur.

• Condition code remains unchanged.

Example:

LABEL
1

FIELDI
FIELD2

60PERATIOIM
10 16

HVO FIELD1,FIELD2

DC
DC

XL4'FFFFFFFF'
XL3'AABBCC'

T FIELD 1 before execution
of MVO instruction:

111111111
T

F I F
I

OPERAND

1111T1111 1111:1111 1111 T1111
T T T

F ! F F l F F I F
..l.

FIELD2 before and after
execution of MVO instruction:

1010:1010
I

1011,1011
I

1100 11100

FIELD1 after execution
of MVO instruction:

I T
C I C A _l A B _l_ B _l_

0000 i 1010 101011011 1011 : 1100 1100J 1111
_i

~

0 I A A : B
I

C I F B I C
I I j

9-76

Binary

hexadecimal
characters

Binary

hexadecimal
characters

Binary

hexadecimal
characters

In this example, the content of FIELD2 is moved (starting from right to left) into
FIELD1 offset by one half-byte to the left. The low order four bits of the rightmost
byte of FIELD1 (1111, or hexadecimal F) remain unchanged.

Each half-byte of FIELD2 fills its corresponding half-byte of FIELD1. The high order
four bits of the leftmost byte of FIELD1 are padded with binary zeros since the
operand 1 field is larger than operand 2.

Example:

HVO PRICE,PRICE(2)

PRICE DC P'37254'

UP-8913

PRICE before execution
of MVO instruction:

PRICE after execution
of MVO instruction:

SPERRY UNIVAC OS/3
ASSEMBLER

operand 1

operand 2 ---------

9-77

Packed decimal number

5 I C

In this example, the MVO instruction is used in rounding packed decimal numbers. An
explicit length is specified for operand 2 and both operands have overlapping bytes. If
all decimal places are needed in the final result, then this rounding technique is not
useful. The purpose of this MVO instruction is to move the final result (dollars and
cents) next to the sign so that it can be edited and printed. Note the decimal number
4 in the high order four bits of the rightmost byte of operand 1 is replaced with the
decimal number 5 and binary zeros are padded in the high order four bits of the
leftmost byte of operand 1 .

UP-8913

MVZ

9.13. MOVE ZONES (MVZ)

SPERRY UNIVAC OS/3
ASSEMBLER

9-78

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

MVZ 03 SS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o. SET TO 2
01F OVERFLOW, SET TO 3
.UNCHANGED

6

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The move zones (MVZ) instruction moves the high order four bits (zone portion) of
each byte in operand 2 into the corresponding high order four bits of each byte in
operand 1.

Explicit Format

LABEL t.OPERATION t. OPERAND

[symbol] MVZ

Implicit Format

LABEL t. OPERATION t. OPERAND

[symbol] MVZ

This instruction operates from left to right. The low order four bits of each byte in
operand 1 remain unchanged. If the operand 2 field is larger than operand 1, the
zone portions of the leftmost bytes of operand 2 are truncated. On the other hand, if
the operand 1 field is larger than operand 2, the zone portions of the leftmost bytes
in operand 1 remain unchanged.

Operational Considerations:

• The contents of both operands should contain zoned numeric fields; however, any
type of data can be specified.

• The low order four bits of each byte in operand 1 remain unchanged.

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

• Operands 1 and 2 can have overlapping bytes.

• The condition code remains unchanged.

Example:

LABEL
1

AOPERATIONh OPERAND
10 16

MVZ NUMPOS,NUMNEG

NUMPOS
NUMNEG

DC
DC

ZL3'456'
XL3'FfJFllDfJ'

NUMPOS before execution
of MVZ instruction:

NUMNEG before and after
execution of MVZ instruction:

NUMPOS after execution
of MVZ instruction:

111110100

F l 4

111110000

F I 0

111110100

F I 4

1111 : 0101
I

110010110
..1

F I 5 c I
6

J_ I

111110000 11011 0000

F I 0 D
I

0 I

1111t0101 1101 1 0110

I
F I 5 D I 6

9-79

Binary zoned
decimal number
(positive)

Binary zoned
decimal number
(negative)

Binary zoned
decimal number
(negative)

In this example, the zone portions of each byte in NUMNEG are moved into the
corresponding zone portions of each byte in NUMPOS. As a result, the sign is
changed from positive to negative by moving a hexadecimal D into the high order four
bits of the rightmost byte of NUMPOS. The other two zone portions are replaced with
the same hexadecimal value.

UP-8913

MP

SPERRY UNIVAC OS/3
ASSEMBLER

9.14. MULTIPLY DECIMAL (MP)

9-80

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

MP FC SS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O.SETTO 1
01F RESULT>O.SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

6

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

• .SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The multiply decimal (MP) instruction algebraically multiplies the packed decimal
contents of operand 2 (multiplicand) by the packed decimal contents of operand 1
(multiplier) and stores the result (product) in operand 1. The receiving field (operand 1)
is filled from right to left.

Exp I icit Format

LABEL !::. OPE RATION !::. OPERAND

[symbol] MP d1 01 ,b1),d2 02 ,h2)

Implicit Format

LABEL !::.OPERATION!::. OPERAND

[symbol] MP s1 (1 1) ,s
2

(1
2

)

Because the result replaces operand 1, you must ensure that the operand 1 field is
large enough to hold the product. This is determined by adding the number of bytes
required to hold the multiplicand to the number of bytes required to hold the
multiplier.

length of
multiplicand

+ length of
multiplier

length of
operand 1 (product)

If you use this rule, the multiplicand will have at least as many high order zeros as
the number of digits in the multiplier. These high order zeros prevent overflow from
occurring in the final result.

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-81
Update B

The multiplier (operand 2) can be up to 8 bytes long which can consist of 15 digits
and a sign. The resultant product (operand 1) can be up to 16 bytes long which can
consist of 31 digits and a sign.

Example:

LABEL
1

tiOPERATIONA
10 16

MP HOURS,RATE

HOURS
RATE

DC
DC

PL4'49'
PL2'59f/J'

HOURS before execution I 0 : of MP instruction:

RA TE before and after
execution of MP instruction:

HOURS after execution I 0 of MP instruction:

0 I
I

0 I

OPERAND

0 0 I 0 i 4 I 0 ! c Packed decimal number

5 ! 0 0 l c I Packed decimal number

Lsssumed decimal point

2 : 0 I 0 l 0 I 0 l c Packed decimal number

L assumed decimal point

In this example, the length of operand 1 is determined by adding the number of bytes
required to hold the packed decimal 40 (2 bytes) to the number of bytes required to
hold the packed decimal 500 (2 bytes) which gives the total of 4 bytes. Then the
multiplication operation takes place operating from right to left. The product replaces
HOURS and the sign is determined algebraically. (In this example, positive x positive
= positive.)

Operational Considerations:

• The operand 1 field must be large enough to hold the product.

• The operand 2 field is limited to 8 bytes in length and the operand 1 field is
limited to 16 bytes in length.

• Since a symbolic name references the leftmost or high order portion of a location
in main storage, overlapping bytes can exist in the rightmost bytes only.

If overlapping bytes exist in the leftmost portion, the number of bytes required to hold
the multiplicand and the multiplier will be larger than the receiving field .

• The condition code remains unchanged.

• Multiplication by powers of 10 adds decimal places to a specified value.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-82

~K •

9.15. PACK DECIMAL (PACK)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

PACK F2 SS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O.SETTO 1
0 IF RESULT >o, SET TO 2
01F OVERFLOW, SET TO 3
.UNCHANGED

6

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The pack decimal (PACK) instruction converts data in operand 2 from unpacked format
to packed format. (See 9.1 .) The result replaces operand 1.

Explicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] PACK

Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] PACK

Any data that is to be used in decimal arithmetic must be stored in packed decimal
format before any arithmetic operations are performed. After your calculations are
processed, packed data must be changed back to unpacked (zoned decimal) format to
be sent to the printer or any other character sensitive device. Remember, when data
is input from an external device (i.e., card reader), the data is stored in zoned decimal
format. Operand 2, the sending field, is defined as a character type or zoned type
field. Operand 1, the receiving field, is defined as a packed field and should contain
enough bytes to receive all digits (plus the sign) from operand 2.

The formula for computing the number of bytes required to receive unpacked operand
2 data is:

(Number of bytes of operand 2) + 1
2

number of bytes required for
packed operand 1 field (round
upward to the nearest byte)

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-83

When the PACK instruction is executed, all zones in operand 2 are ignored except the zone
in the rightmost byte. That zone portion (the sign) and the digit portion are reversed and
placed in the rightmost byte of operand 1. Each digit in operand 2 is placed in operand 1
next to the rightmost byte, filling in from right to left. Any unfilled bytes or half bytes that
are part of the specified length for operand 1 are zero-filled. Any unfilled bytes that are not
part of the specified length for operand 1 remain unchanged.

Operationa I Considerations:

• Operand 2 data should be in zoned decimal format.

• Operand 1 should contain enough bytes to receive all digits (plus the sign) from
operand 2.

• This instruction operates from right to left.

• Any unfilled bytes or half bytes that are part of the specified length for operand 1 are
zero-filled.

• Any unfilled bytes that are not part of the specified length for operand 1 remain
the same.

• Specification of a length attribute for operands 1 and 2 is optional.

• The condition code remains unchanged.

Example:

LABEL
1

AOPERATI ONA
10 16

PACK AMTP(3),AMT(4)

AMT
AMTP

DC
DC

ZL4'1234'
PL3'fl.I'

AMTP before execution I 0 of PACK instruction:

AMT before and after
execution of PACK I F 1

instruction:

AMTP after execution zero
0 l

of PACK instruction: filled

0 I
I

F I
I

1 I

OPERAND

0 l 0 I 0 l c I Packed decimal number

I l 4
Zoned or unpacked

2 F 3 c decimal number

2 ! 3 I 4 l c I Packed decimal number

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-84

In this example, the content of AMT (a 4-byte zoned decimal number) is packed into
AMTP (a 3-byte packed field of zeros). The sign and digit portions of the rightmost
byte of AMT are reversed and placed in the rightmost byte of AMTP. Then the next
digit (3) is placed next to the left of the rightmost byte. Then digit 2 is placed to the
left of digit 3 and digit 1 is placed to the left of digit 2. The high order four bits of
the leftmost byte are zero-filled. As you can see in this example, two decimal digits
occupy a single byte with the exception of the rightmost (sign) byte. Note that a
length attribute is specified for both operands in the examples. The length attribute
can be omitted but it is suggested it be included for clarity.

Example:

LABEL
1

MPE RAT I ON/\ OPERAND
10 16

PACK AMOUNTIN+1(2) ,AMOUNTIN(3)

AMOUNTIN DC C1?68 1

AMOUNTIN before execution
of PACK instruction:

AMOUNTIN during execution
of PACK instruction:

AMOUNTIN after execution
of PACK instruction:

I
F I 7

I

I
F I 7

I

AMOUNTIN+1

7 6 8 F

Zoned decimal number

Zoned decimal number

Zoned decimal number

Part zoned and part
packed decimal number

This example shows that the content of AMOUNTIN (a 3-byte zoned decimal field) is
packed into part of itself (AMOUNTIN+1, a 2-byte zoned decimal field). The zone
portion (F) and digit portion (8) of the rightmost byte of AMOUNTIN are reversed and
placed in the rightmost byte of AMOUNTIN+1. The digits 6 and 7 are placed to the
left of the rightmost byte, 6 in the low .order four bits and 7 in the high order four
bits. Because the leftmost byte of AMOUNTIN is not part of the resultant field, that
byte remains unchanged. Since AMOUNTIN is now a part zoned, part packed field,
you should move the packed decimal number to another field before performing any
mathematical calculations. Note that packing a number into itself is not considered
good practice since results are often unpredictable.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

t\OPERATIONL\ LABEL
1 10 16

PACK INVAMT(5), INVAMT(5)

INVAMT DC ZL5'-528fJfJ'

INVAMT before execution
of PACK instruction:

INVAMT during
execution of
PACK instruction:

OPERAND

F

8 t 0
I

9-85

Zoned decimal
number

INVAMT after execution
of PACK instruction: I O I O I 0 : O I 5 i 2 I 8 : o (o : o I ~~::rdecimal

The content of INVAMT (a 5-byte zoned field) is packed into itself. The zone portion
(D) and the digit portion (0) of the rightmost byte are reversed and returned to the
same byte. The remaining zones are ignored. The remaining digits are placed in
INVAMT starting next to the rightmost byte and filling each half-byte from right to
left. Because the full length of operand 1 is specified, the remaining unfilled bytes are
zero-filled.

UP-8913

SP

SPERRY UNIVAC OS/3
ASSEMBLER

9.16. SUBTRACT DECIMAL (SP)

9-86

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SP FB SS 6

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT <o, SET TO 1
• IF RESULT >o, SET TO 2
• 1 F OVERFLOW, SET TO 3
OuNCHANGED

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

• DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The subtract decimal (SP) instruction algebraically subtracts the packed decimal
contents of operand 2 from the packed decimal contents of operand 1 and stores the
result in operand 1.

Explicit Format:

LABEL Li OPERATION Li OPERAND

[symbol] SP

Implicit Format:

LABEL Li OPERATION Li OPERAND

[symbol] SP

Operand 1 (minuend) and operand 2 (subtrahend) must be in packed decimal format.
The operand 1 field should be equal and in most cases larger than the size of
operand 2. If operand 1 is too short to contain the result (difference), an overflow
condition occurs. Subtraction is algebraic, concerning the signs and digits of both
operands. If the sign of operand 2 is negative, it is treated as positive; if positive, it is
treated as negative. Then, both operands are added together and the result is placed
in operand 1. The sign of the difference is determined by the rules of algebra. If the
result is smaller than the operand 1 field, any unfilled leftmost bytes are zero-filled.
On the other hand, if the result is larger than the operand 1 field, the leftmost bytes
of the result are truncated.

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-87

Operational Considerations:

• Operands 1 and 2 must be_ in packed decimal format.

• The length of operand 1 should be equal to or larger than the length of operand
2.

• Subtraction is algebraic.

Example:

LABEL
1

tiOPERATIONi\
10 16

SP GROSS(3),DEDUCT(3)

GROSS
DEDUCT

DC
DC

P • 2ra11Jra1t •
P'6rl27'

GROSS before execution
of SP instruction:

DEDUCT before and after
execution of SP instruction:

GROSS after execution
of SP instruction:

I 2 i 0

I 0 ! 6

I ! 3 I

OPERAND

0 0 I 0 c
Packed decimal number
(assumed decimal point)

I 0 1 2 7 c I Packed decimal number
(assumed decimal point)

9 7 3 ! I c Packed decimal number
(assumed decimal point)

In this example, the content of DEDUCT is subtracted from the content of GROSS.
The result replaces GROSS and, in this example, completely fills the operand 1 field.
The signs of both operands are positive which produces a positive result.

Example:

SP FIELD,FIELD+2(2)

FIELD DC P16249311 I

operand 1 -----------FIELD before execution 16 l 2
4 : 9 I 3 l 1 I 1 : c I of SP instruction:

Packed decimal number

operand 2
(assumed decimal point)

~

FIELD after execution I 6 l 2 4 ; 9 I of SP instruction:
0 ! 0 I 0 I c Packed decimal number

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-88

Here is an example of setting the rightmost part of a field to zeros. The contents of
FIELD + 2 (a 2-byte field) are subtracted from the contents of FIELD (a 4-byte field).
The result replaces the rightmost two bytes of FIELD. The signs of both operands are
positive and by the rules of algebra produces a positive result. This instruction
operates from right to left. The SP instruction starts with the rightmost bytes of both
operands regardless of the differences in length. If you are concerned with whole
numbers only, you may want to zero-fill any undesired decimal places. This SP
instruction is used as a method to zero-fill any decimal places to the right of the
decimal point.

Example:

LABEL
1

A OPE RAT I ONA
10 16

SP QTY , ITEMS

QTY DC P'-25'
ITEMS DC p I 12 I

QTY before execution I 0
of SP instruction:

I 0
ITEMS before and after
execution of SP instruction:

I 0
QTY after execution
of SP instruction:

OPERAND

: 2 I 5 D I Packed decimal number

I , I 2 c I Packed decimal number

! 3 I 7 D I Packed decimal number

The SP instruction subtracts the contents of ITEMS (a 2-byte field) from the contents
of QTY (a 2-byte field). The result replaces QTY and a zero fills the leftmost unused
half-byte. The signs are different, however. Operand 2 is unsigned and assumed to be
positive. Since the sign of operand 2 is positive, it is treated as negative. Now, both
operands 1 and 2 are negative and are added together. The sign of the result is
negative since the rules of algebra determine that the sign of the operand with the
highest absolute value (in addition and subtraction) determines the sign of the result.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9.17. SHIFT AND ROUND DECIMAL (SRP)

9-89

SRP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

• DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SRP FO SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• 1 F OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

The shift and round decimal (SRP) instruction shifts a packed decimal number in main
storage, specified by operand 1, according to specifications contained in operand 2.
For right shifts, the instruction rounds the decimal result according to the byte of
immediate data contained in i3.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] SRP

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] SRP

Operand 1 addresses a packed decimal number, the length (in bytes) of which is specified by
1. The SRP instruction can shift operand 1 left or right. Only the numeric portion of operand
1 participates in the shift; the sign does not change, although a sign digit of Fis changed to
C by the instruction. The resulting number replaces operand 1; zeros are shifted in to
replace vacated digits.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-90

Operand 2 specifies the number of half-bytes (packed decimal digits) to be shifted and
the direction of the shift. This information is taken from the low order six bits of
operand 2, which are treated together as a signed integer in twos complement form.
The integer can range in value from -32 (1000002) to +31 (011111 2), where a
positive number indicates a shift to the left and a negative number a shift to the
right. Thus the integer:

I 000001 1 111

specifies a 1-digit shift to the left while the integer

1111101 I (-3)

whose twos complement is 3, indicates a 3-digit shift to the right.

Operand 3 contains the rounding factor used during right shifts. The factor is
decimally added to the last {or leftmost) digit shifted out of operand 1. Both factor and
digit are treated as positive. If this addition generates a carry digit, it is added to the
low order digit remaining in operand 1 {not the sign). Depending on the number in
operand 1, the carry may in turn generate other carry digits to its left. The rounding
factors generally used are: 0 for no rounding, and 5 for rounding. All digits shifted
out of operand 1 are lost.

Operational Considerations:

• Operand 1 must be a packed decimal number, the low order half-byte containing a C,
D, or F, or else a data exception will result. The sign remains unchanged but the SRP
instruction changes a sign digit of F {unsigned positive) to a sign digit of C {signed
positive).

• If operand 2 is an explicit address with a base register {b2) other than 0, the SRP
instruction first calculates the address by adding the register contents to the
displacement {d2) then extracts its low order six bits to determine how to shift
operand 1. For an explicit address using 0 as its base register, the six bits are
taken directly from bits 42-47 of the SRP object code.

• You can specify operand 2 as an explicit address or as a symbol.

• For a right shift, you must specify operand 3 as a self-defining term; the usual
values are 0 or 5. For left shifts, operand 3 is ignored.

• For a specified length 1, the object code contains the value 1-1 in bits 8-11.
You can specify a maximum length of 16 bytes or 31 packed digits, plus sign.

UP-8913

Condition Code:

SPERRY UNIVAC OS/3
ASSEMBLER

After execution of the SRP instruction, the condition code is set:

• to 0 if operand 1 is zero;

• to 1 if operand 1 is less than zero;

• to 2 if operand 1 is greater than zero; or

9-91

• to 3 if one or more nonzero digits is shifted out of the high order end of
operand 1; this can only occur during a left shift. If the decimal overflow mask
bit (bit 37) of the PSW is set to 1, an overflow generates a decimal overflow
exception in addition to setting the condition code to 3.

Example:

LABEL t\OPERATIONL\ OPERAND
1 10 16

1 LA 9,3
2 SRP PNUMl (3) ,0(9) ,0

PNUMl DC PL3'41037 1

In this example, the 3-byte packed decimal field PNUM1 has the value:

PNUM1

The LA instruction in line 1 puts a value of 3 into register 9. The SRP instruction in line 2
uses operand 2 to form an address of:

Operand 2 address

. of which the low order six bits are:

0 3

00 l 0011

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-92

The value thus obtained is +3 which indicates a left shift of 3 digits. Following
PNUM1 through its shifts:

First shift ~ 10 (condition code 3 set)

4
lost

i
0

Second shift '103170 J!c I
1
lost

Third shift (condition code 2 set)

0
lost

i

we get the final PNUM1 value of +37000. Notice that the C (positive) sign remains
unchanged throughout. Notice also that a decimal overflow sets condition code 3
(assuming here that the decimal overflow exception is prevented) and that a positive
result sets condition code 2. Operand 3 plays no part in this shift.

Example:

LABEL
1

PNUM2

60PERATIONi\ OPERAND
10 16

SRP PNUM2(4),61,5

DC PL4 1 -4799807 1

In this example, the 4-byte packed decimal field PNUM2 has the value:

PNUM2 147 199 I 80 170 I

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Operand 2 in the SRP instruction yields an effective address of:

the low order six bits of which are:

3 D

I 11 ! 1101

9-93

The twos complement of this integer is 3 so the value represented is -3, indicating a right
shift of 3 digits. First, the SRP instruction performs two digit shifts in which the shifted-out
digits are simply lost

First shift 79 98 OD

I
7
lost

0

Second shift y 00 47 99 8D

I
0
lost

l
After the third and final shift, the resulting number is rounded according to the
rounding factor:

0

Third shift

First carry

Second carry

Third carry

00 04 79

'-----8 (last digit shifted out)
+ 5 (rounding factor)

/

r1T31-1ost --i
L-.1.-J •

+ ~ (first carry digit)

00 04 11yD1
(second carry digit) +1

00 04

I 'o
I OD I

+~I (third carry digit)

I oo I 04 I 80 I OD I
(no more carry digits)

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-94

When the final digit (8) is shifted out, it is added to the i3 rounding factor, 5. The
sum of 13 has a carry digit which is added to the low order digit of operand 1. This
action generates another carry digit which, when added to the next higher operand 1
digit, generates a third-carry digit. Because that digit, when added to the third
operand 1 digit, does not generate another carry digit, the SRP instruction ends there.
The condition code is set to 1 to indicate a negative result.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9.18. UNPACK DECIMAL (UNPK)

9-95

UNPK

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

UNPK F3 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
01F RESULT=O,SETTOO

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >o, SET TO 2

0 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The unpack decimal (UNPK) instruction converts data in operand 2 from packed format
to unpacked (zoned decimal) format_ (See 9.1.) The result replaces operand 1 _

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] UNPK

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] UNPK

Data that is to be printed or sent to any other character-sensitive device must be
stored in zoned decimal format. Operand 2, the sending field, is defined as a packed
field. Operand 1, the receiving field, is defined as a character type or zoned type field.
Operand 1 should contain enough bytes to receive all digits, a zone for each digit,
and the sign from operand 2.

The formula for computing the number of bytes required to receive packed operand 2
data is:

(Number of bytes of operand 2) x 2 -1= number of bytes required
for unpacked operand 1
field.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-96

The UNPK instruction reverses the zone and digit portion (the sign) of the rightmost
byte of operand 2 and places it in the rightmost byte of operand 1. Each half byte of
operand 2 is moved to a digit portion and a hexadecimal F (binary 1111) fills each
zone portion in operand 1. The move takes place from right to left, consecutively. Any
unfilled bytes that are part of the specified length for operand 1 are zero-filled. If the
operand 1 field is too short, the leftmost bytes of operand 2 are truncated.

Operational Considerations:

• Operand 2 data should be in packed decimal format.

• Operand 1 should contain enough bytes to receive all digits, a zone for each
digit, and the sign from operand 2.

• This instruction operates from right to left.

• Any unfilled bytes that are part of the specified length for operand 1 are zero­
filled.

• Specification of a length attribute for operands 1 and 2 is optional.

• The condition code remains unchanged.

Example:

LABEL
1

AOPERAT I ONt\
10 16

UNPK TOTALU(3),TOTALP(2)

TOTALU OS CL3
TOTALP DC p' 125'

TOT ALU before execution
of UNPK instruction: 1 s ! c I
TOTALP before and after I execution of UNPK instruction: 1 :
TOTALU after execution I F :

1 I of UNPK instruction:

OPERAND

7 l 6 I D 2 I Leftover data from a previous page

2 I 5 ! c I Packed decimal number

F i 2 I c l 5 I Unpacked decimal number

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

9-97

The UNPK instruction changes the packed format of TOTALP to unpacked format and
places the result in TOTALU. The zone (5) and digit (C) portions of TOTALP are
reversed and placed in the rightmost byte of TOTALU. The digit 2 fills the digit
portion and a hexadecimal F fills the zone portion next to the rightmost byte. Then
the digit 1 fills the digit portion and a hexadecimal F fills the zone portion to the left
of the byte just filled. As you can see, the field requiring 2 bytes to store the original
packed data now requires 3 bytes to store the same data but in unpacked format.
Note that a length attribute is specified for both operands, although it can be omitted.

Example:

LABEL
1

t\OPERATIOUt\
10 16

UNPK TOTAMT,TOTAMT

TOT AMT DC p 1 1234 I

TOTAMT before execution
of UNPK instruction:

TOTAMT during execution
of UNPK instruction:

TOTAMT after execution
of UNPK instruction:

I 0 i 1

I 0 l 1

I 0 l 1

OPERAND

I 2 i 3 4 ! c I Packed decimal number

I 2 i 3 c : 4 I

I F ! 3 c l 4 I

The UNPK instruction reverses the zone (4) and digit (C) portions and returns it to the
same byte. The next half byte (3) replaces the digit portion and a hexadecimal F fills
in the zone portion next to the half byte just filled. No length attributes are specified,
so the implied lengths are used. As you can see, the result received is not the result
expected. So, remember that unpacking a number into itself is not considered good
practice because some results are often unpredictable.

UP-8913

ZAP

SPERRY UNIVAC OS/3
ASSEMBLER

9.19. ZERO AND ADD DECIMAL (ZAP)

9-98

General Possible Program Exceptions

OBJECT
OPCODE FORMAT

TYPE
MNEM. HEX.

ZAP FS SS

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT <o. SET TO 1
.JF RESULT >o. SET TO 2
• 1 F OVERFLOW, SET TO 3
0UNCHANGED

INST.
LGTH.
(BYTES)

6

• ADDRESSING

• DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

• DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

0 SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 OP 2 NOT ON HALF-WOAD BOUNDARY

0 OP 2 NOT ON FULL-WOAD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The zero and add decimal (ZAP) instruction moves a packed field of zeros into operand
1 and then adds the packed contents of operand 2 to the packed field of zeros in
operand 1. The result replaces operand 1.

Explicit Format

LABEL !::i. OPE RATION !::i. OPERAND

[symbol] ZAP

Implicit Format:

LABEL !::i.OPERATION !::i. OPERAND

[symbol] ZAP

This instruction operates in the same manner as the add decimal (AP) instruction
except that a packed field of zeros is moved into operand 1 before the addition
occurs. The sign of the packed field of zeros is positive_ After the addition takes place
the resultant sign is the same as operand 2. If operand 2 does not have a valid sign
in the low order four bits, a data exception occurs. If an overflow condition occurs
and the leftmost bytes are truncated, a zero result still has the sign of operand 2_ In
effect, the ZAP instruction replaces operand 1 with the contents of operand 2. The
length of operand 1 should be the same as, or larger than, the length of operand 2.
If the operand 1 field is not sufficient to receive all of operand 2, an overflow
condition occurs. Operands 1 and 2 can have overlapping bytes when the rightmost
byte of operand 1 coincides with, or is to the right of, the rightmost byte of operand
2, provided a valid sign exists in the low order four bits of operand 2.

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

• Operand 2 must be in packed decimal format.

9-99

• If the length of operand 2 is larger than the length of operand 1, the leftmost
digits of operand 2 are truncated.

• If the length of operand 1 is larger than operand 2, the leftmost digits of operand
1 are zero-filled.

• Operand 2 must have a valid sign in the low order four bits.

Example:

LABEL
1

60PERATION6
10 16

ZAP TOTAHT,YTDAMT

TOT AMT DC P1528416 1

YTDAHT DC P1215 1

TOTAMT before execution I 0 of ZAP instruction:

YTDAMT before and after
execution of ZAP instruction:

TOTAMT after execution I 0 l of ZAP instruction:

OPERAND

5 I 2 l 8 I 4 ! 1 I 6 ! c I
I 2 l 1 I 5 I c I

0 I 0 l o. I 2 l 1 I 5 : c I

Packed decimal number

Packed decimal number

Packed decimal number

In this example, the ZAP instruction moves a packed field of zeros into TOTAMT and
then adds the contents of YTDAMT to TOTAMT. As you can see, the contents of
YTDAMT now replaces the contents of TOTAMT. In this sample program, TOTAMT
contains a year's total amount of sales, while YTDAMT contains the accumulative
amount of sales. At the end of 12 months, when the maximum amount of sales for
the year is reached, TOTAMT must be cleared to zero, so that the amount of sales
for the first month of the next year can be accumulated.

Example:

HVC CALC+1(1),=P 11 I
ZAP CALC+1(2),CALC(2)

CALC DC P'25124 1

UP-8913

CALC before execution
of MVC instruction:

CALC after execution
of MVC instruction:

CALC during execution
of ZAP instruction:

CALC after execution
of ZAP instruction:

I 2

I 2

SPERRY UNIVAC OS/3
ASSEMBLER

5 I 1
: 2 4 l c I

operand 1 -----------: 5 I 1 : c I 4 ! ~ ----------operand 2

I 2 5 I 0 l 0 0 l c

I 2 5 I 2 l 5 1 : c I

9-100

Packed decimal number

operand 2

Packed field of zeros

Packed decimal number

In this example, operands 1 and 2 have one overlapping byte. The rightmost byte of
CALC+1 (2) (operand 1) is to the right of the rightmost byte of CALC(2) (operand 2).
When the ZAP instruction is executed, a packed field of zeros with a positive sign is
moved into operand 1. Then, the contents of operand 2 that has been saved prior to
the execution of the ZAP instruction is now added to the packed field of zeros. In
effect, the contents of operand 2 now replace the contents of operand 1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-1

10. Fixed-Point Binary Instructions

10.1. USE OF FIXED-POINT BINARY INSTRUCTIONS

If the fixed-point binary instruction set (RX, RR, or RS) is compared to the decimal
instruction set (SS or SI), you will discover that the difference between storage-to­
storage type instructions and register type instructions is the location of the
instruction operands. Both operands for decimal instructions are contained in main
storage, while the operands for fixed-point instructions are either both in the
processor or one in the processor and one in main storage. Any instruction operands
located in main storage are transferred to the processor before execution. In fixed­
point binary instructions, the RR type requires no transfer of operands, while the RX
and RS types require transfer of only one. In decimal instructions, both operands are
always transferred. This explains why execution time of fixed-point binary instructions
is faster than execution time of decimal instructions.

Execution time gained by arithmetic binary instructions over decimal instructions is
lost, however, in the data conversion process. Both instruction sets must convert card
input data in zoned decimal format (EBCDIC) to a data format acceptable to the
instruction set. Decimal instruction input data must be converted to packed decimal
format; fixed-point binary instruction input data must be converted to binary format.

Conversion to packed format is faster than conversion to fixed-point binary format
because binary conversion requires an additional instruction that has a slower
execution time. To get input data into packed format, you use the PACK instruction; to
output packed data, you must first unpack it with the UNPK or ED instruction. When
converting input data to binary, the data must be packed first, then converted to
binary (using the convert to binary (CVB) instruction). On output, data must be
converted to packed decimal (using the convert to decimal (CVD) instruction) and then
converted to unpacked or zoned decimal format. For input conversion, fixed-point
binary instructions execute slower than decimal instructions. For a comparison of the
execution times for decimal and fixed-point instructions, see the system hardware and
software summary.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-2

Fixed-point instructions should be used in programs having less input data and more
arithmetic calculations, whereas decimal instructions should be used in programs
having more input data and less arithmetic calculations. This is why binary
instructions are used in the design of FORTRAN compilers and decimal instructions
are used in the design of COBOL compilers.

There are 16 general registers located inside the processor that can be used as
operands in fixed-point instructions. A decimal number (0 through 15) is used to
reference a register. This is similar to using labels when referencing main storage
locations.

For all fixed-point instructions, operand 1 always references a register with the
exception of the add immediate (Al) instruction, whose operands both reference main
storage locations. The operand 1 register is usually the receiving field or resultant
field after an instruction is executed. For the store (ST) and convert to decimal (CVD)
instructions, however, operand 2 (a main storage location) is the resultant field. In
fixed-point instructions, operand 2 references either a register (RR), or a main storage
location (RX or RS). The compare instructions do not have a resultant field, since they
test already existing conditions and have no effect on operands 1 and 2.

To bring data from main storage into a register, it must be compatible with the
structure of the register. A register is four bytes in length and uses 32 binary bits to
represent a signed binary number. The high order bit position represents the sign. A
binary 1 in the high order bit position represents a negative number, whereas a
binary 0 in the high order bit position represents a positive number.

REGISTER (4 bytes)

31

There are two ways to create data in fixed-point binary format:

1. Use the convert to binary (CVB) instruction to convert a packed decimal number
to a fixed-point binary number which is placed in a register.

2. Use the define constant (DC) statement to create a constant that is defined as a
half word, full word, or double word, or a constant that is aligned on a half­
word, full-word, or double-word boundary. This constant is then placed in a
register through execution of another instruction [i.e., Add (A), Load (L), Subtract
(S)].

•

•

•

UP-8913

I~ I ,
I~ I,

I~ I,

SPERRY UNIVAC OS/3
ASSEMBLER

HALF WORD (2 bytes)

.. I
FULL WORD (4 bytes)

DOUBLE WORD (8 bytes)

10-3
Update B

31

As shown, these formats are compatible with the formats of registers. Since registers
are full words (4 bytes), only full words or half words in main storage (or other
registers) can be specified as operand 2. When a half word value in main storage is
specified as operand 2, a full 4 bytes are used when that instruction is executed.
Operand 2 is expanded to 32 bits by propagating the sign bit value through the 16
high order bit positions. Expansion occurs after the operand is obtained and before
insertion, comparison, or any mathematical calculations are performed with the
register.

10.1.1. Half-Word Fixed-Point Constants

The character H is the definition type used for defining half-word fixed-point constants in
main storage. The constants associated with this definition type must be enclosed within
apostrophes, cannot exceed more than five decimal digits, and cannot have a value greater
than +32767 (215-1) or less than -32768 (-215). Half-word constants are two bytes in
length and aligned on a half-word boundary. If the constant specified does not occupy the
full two bytes, it is right-justified and the high order unused bits are filled with the sign
bit. Duplication factors can be used and the nominal value can be a signed or unsigned
decimal number. Because the length of a half word is always two bytes, no length factor is
required. If a length factor is specified, half-word boundary alignment is ignored and the
specified length is allocated.

Example:

LOC. OBJECT CODE LINE SOURCE STATEMENT

000002 39 4 PLUS! DC Hll '+57'
000003 00
000004 0039 5 PLUS2 DC H'57'
000006 C7 6 NEGl DC Hll '-57'
000007 00
000008 FFC7 7 NEG2 DC H'-57'

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10.1.2. Full-Word Fixed-Point Constants

10-4
Update B

The character F is the definition type used for defining full-word fixed-point constants in
main storage. The constant associated with this definition type must be enclosed within
apostrophes, cannot exceed more than 10 decimal digits, and cannot have a value greater

-.. than +2,147,483,647 (231-1) or less than -2,147,483,648 (-231). Full-word constants
are four bytes in length and aligned on a full-word boundary. If the constant specified does
not occupy the full four bytes, it is right-justified and leftmost unused bits are filled with
the sign bit. Duplication factors can be used and the nominal value can be a signed or
unsigned decimal number. Because the length of a full word is always four bytes, no
length factor is required. If a length factor is specified, full-word boundary alignment is
ignored and the specified length is allocated.

Example:

LOC. OBJECT CODE

OOOOOA OlOF
OOOOOC OOOOOlOF
000010 FEFl
000012 0000
000014 FFFFFEFl

10.1.3. Address Constants

LINE

8 PLUS3
9 PLUS4

10 NEG3

11 NEG4

SOURCE STATEMENT

DC
DC
DC

DC

FL2'+271'
F' 271'
FL2 I -271 '

F'-271'

Address constants are storage addresses that are stored as constants by using DC
statements. Address constants are used to initialize base registers; thereby, providing
communication between control sections of a multisection program. Unlike other types of
constants, an address constant is enclosed within parentheses. If more than one address
constant is specified, they are separated by commas, and the entire sequence is enclosed
within parentheses. There are two types of address constants: half word (Y) and full word
(A).

10.1.3.1. Full-Word Address Constants

This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of four bytes and is full-word boundary aligned. You cannot

-.. specify a value greater than +2,147,483,647 (231-1) or less than -2,147,483,648 (-231).
To generate full-word address constants, use the DC statements with the character A as
the definition type and the expressions specified enclosed within parentheses. You can
also generate full-word address constants as literals. The address of these expressions are
stored in consecutive full words in main storage. However, if a length factor is specified,
full-word boundary alignment is ignored and the specified length is allocated.

............ ..__ _____________________________ . _______ _

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-5
Update B

• Example:

•

•

LOC. OBJECT CODE

000002
000005
000007
OOOOOB
OOOOOE
000014
000017
OOOOlB
OOOOlE
000032 0000
000034 0000006A
000038 00000002
00003C 0000024A
000040
000040 00000007
000044 00000005
000048 00000008
00004C
00004C 9858 3056
000050 OOOOOOlE

ADDRl ADDR.2

00058

10.1.3.2. Half-Word Address Constants

LINE

5 TAG
6 HOURS
7 RATE
8 PAY
9 LABEL

10 TAGl
11 BUF
12 TAG2
13 ADLIST

14 ADCONl

15 ADCON2

16 ADCON3
17 ADCON4

SOURCE STATEMENT

DS CL3
DS CL2
DS CL4
DS CL3
DS CL6
DS CL3
DS CL4
DS CL3
DS CL20

DC A(l06,TAG,*+526)

DC A(RATE,HOURS,PAY)

LM 5,8,=A(88,LABEL,TAG1-TAG2,BUF+641
DC A(ADLIST)

This constant can be specified as an absolute, relocatable, or complex relocatable
expression. It has a length of two bytes and is half-word boundary aligned. You cannot
specify a value greater than +32767 (215-1) or less than -32768 (-215). To generate
half-word address constants, use the DC statements with the character Y as the definition
type and the expressions specified enclosed within parentheses. You can also generate
half-word address constants as literals. The addresses of these expressions are stored in
consecutive half words in main storage. However, if a length factor is specified, half-word
boundary alignment is ignored and the specified length is allocated.

Example:

LOC. OBJECT CODE LINE SOURCE STATEMENT

000002 500C 5 VALUE DC PL2'500'
000004 00000001 6 NUM DC FI 1'
000008 F3F6F2 7 POS DC X'F3F6F2'
OOOOOB 60 8 NEG DC CL 1 '-8'
OOOOOC F6F2F4F7CO 9 ZONE DC ZL5'62470'
000011 00
000012 OOOB 10 ADCONYl DC Y(NEG,POS)
000014 0008
000016
000016 0116 11 ADCONY2 DC y (;'•+256,600)
000018 0258
OOOOlA 0008 12 ADCONY3 DC Y(VALUE+6)
OOOOlC
OOOOlC 0019000A 13 ADCONY4 DC Y(25,ZONE-VALUE,NUM,POS+4)
000020 0004
000022 oooc
000024

-- -- --..
UP-8913 SPERRY UNIVAC OS/3

ASSEMBLER
10-6

10.1.4. Representation of Positive and Negative Fixed-Point Binary Numbers

Binary ones and zeros, with relation to their positions in a string of bits, represent
values expressed in powers of two (see Appendix C.3). The powers of two increase
from right to left (Figure 10-1). A zero (0) bit indicates no value and a one (1) bit
indicates that a value exists. By adding all the powers of two that correspond to one
bits, you can determine the decimal equivalence for a positive binary number. A zero
l:>it in the high order bit or any unused high order bits signify a positive binary
number.

(powers
15

of two) 2

(binary 0

configuration)

0 0 0

+sign

0 7 8 15

0 0 0 0 0

L 1 (20)

4 (22)

64 1261
128 (27)

512 (29)

2048 1211)

4096 1216)

6853 (decimal
equivalent)

Figure 10-1. Comparison of Binary Numbers and Values Expressed in Powers of 2

Negative binary numbers are indicated by a one bit in the high order bit pos1t1on or
any unused high order bit positions. The remaining portion contains the negative
binary number but in twos complement form. To change a positive binary number into
twos complement form:

• reverse the bits; and

• add one to the rightmost or low order bit position:

0001101011000101

1110010100111010
+1

1110010100111011

positive binary number
(decimal + 6,853)

reversed bits
add 1

binary number in twos complement form
(decimal - 6,853)

•

•

•

UP-8913

10.2. ADD (A)

SPERRY UNIVAC OS/3
ASSEMBLER

10-7

A

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

A 5A RX 4 0 EXECUTE 0 OP 1 NOT ON HALF WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
.IF RESULT= 0,SETTOO

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

.IF RESULT>O. SET TO 2 0 .IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The add (A) instruction algebraically adds the full-word main storage contents of
operand 2 to the contents in the operand 1 register and stores the sum in operand 1.

Explicit Format:

LABEL £:..OPERATION£:.. OPERAND

[symbol] A

Implicit Format:

LABEL £:..OPERATION £:.. OPERAND

[symbol] A

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a full word or aligned on a full-word
boundary.

• If the sum exceeds 31 bit positions, an overflow condition occurs.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL

1

.AOPERATION.:1

10 16

SR
A

FULLWORD DC

6,6
6,FULLWORD

F '+271'

Register 6 before execution of A instruction:

ooooioooo ooooToooo
j_

ooooToooo 0000:0000
I

0 l 0 0 I 0 I 0 01 0
.l

0
..l

OPERAND

binary

hex

FULLWORD before and after execution of A instruction:

0000:0000 ooooloooo 000010001 0000:1111
j_ ..1 ..L .1

binary

0 I 0 0 I 0 0 I 1 0 I F hex
..l J_ ..1 J_

Register 6 after execution of A instruction:

ooooloooo 000010000 000010001 000011111
..1 ...L

binary

0 I 0 o I 0 0 1 1 0 I F
l ..L _l

hex

10-8

In this example, the SR instruction subtracts the content of register 6 from itself,
clearing it to zero. Then the content of FULLWORD is added to the content of register
6. The result replaces the content of the operand 1 register.

UP-8913

10.3. ADD (AR)

SPERRY UNIVAC OS/3
ASSEMBLER

10-9

AR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

AR 1A RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The add (AR) instruction algebraically adds the contents of the operand 2 register to
the contents of the operand 1 register and stores the sum in operand 1.

Explicit and Implicit Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol] AR r1,r2

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• If the sum exceeds 31 bit positions, an overflow condition occurs.

Example:

LABEL
1

NUMl
NUM2

AOPERATI ONA
10 16

L
L
AR

DC
DC

5,NUM1
6,NUM2
5,6

F'22'
F' 16 I

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Register 5 before execution of AR instruction:

I
ooooloooo 0000:0000 0001 :0110 0000~0000

...1 _L

01 o I o I T

0 0 0 1 I 6
...1 I I

Register 6 before and after AR instruction:

ooooioooo ooooloooo ooooloooo 000110000
...1 .I _l

0 : 0 0 I 0 0 I 0 1 I 0
...1 _l

Register 5 after execution of AR instruction:

0000~0000 ooooloooo ooooToooo 001010110
...1

0 l 0 O I 0 0 I 0 2 I 6
_l _l _l

10-10

binary

hex

binary

hex

binary

hex

In this example, the contents of NUM1 is loaded into register 5 and the contents of
NUM2 is loaded into register 6. Then, the contents of register 6 is added to the
contents of register 5. The result is placed in register 5 (operand 1). Notice that both
NUM1 and NUM2 are full words.

UP-8913

10.4. ADD HALF WORD (AH)

SPERRY UNIVAC OS/3
ASSEMBLER

10-11

AH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AH 4A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
• IF RESULT~ 0, SET TO 0

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

The add half-word (AH) instruction algebraically adds the contents of operand 2 to the
contents of the operand 1 register and puts the sum in operand 1.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] AH

Implicit Format:

LABEL fl OPERATION Ll OPERAND

[symbol] AH

Operand 2 is two bytes in length (16-bit signed integer) and is located in main
storage. Before operand 2 is added to the operand 1 register, operand 2 is temporarily
expanded to 32 bits by propagating the sign bit through the high order 16 bit
positions. Then all 32 bits of operand 2 are added to the 32 bits of operand 1. The
result is placed in operand 1. If the sum exceeds 31 bits, an overflow condition
occurs.

Operationa I Considerations:

• Operand 2 must be either defined as a half word or half-word boundary aligned.

• Any of the general registers (0 through 15) can be used as operand 1 .

• A fixed-point overflow condition can occur.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
I

AOPERATIONA
10 16

L
AH

FULLWORD DC
HALFWORD DC

5,FULLWORD
5,HALFWORD

F'32'
H 1 16 1

Register 5 before execution of AH instruction:

0000:0000 0000 10000 I 0000:0000 0010:0000 .
0 I 0 0 l 0 o I 0 2 l 0

__j_ __j_

OPERAND

binary

hex

HALFWORD before and after execution of AH instruction:

before expanding to 32 bits

~
r--r--,--T- I
1000010000 000010000 0000,0000 000110000
L .l. j_ i
I 0 I 0 O I 0 0 I 0 1 I 0 I
L---L-- _...J..._ i

..___-------------..............-~------------after expanding to 32 bits

Register 5 after execution of AH instruction:

oooofoooo 000010000 0000:0000 001110000
__j_

o I O 0 I 0 o I o 3 I O
i _l _l J_

binary

hex

binary

hex

10-12

In this example, the content of FULLWORD is loaded into register 5. Then the content
of HALFWORD is added to the content of register 5. The result is placed in register 5
(operand 1). If the sum exceeds 31 bits, an overflow condition occurs.

UP-8913

10.5. ADD IMMEDIATE (Al)

SPERRY UNIVAC OS/3
ASSEMBLER

10-13

Al

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH_
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

Al 9A SI 4 0 EXECUTE • OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW o. OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 D
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The add immediate (Al) instruction algebraically adds the 1-byte immediate data in
operand 2 to the half word value in operand 1. The sum is placed in operand 1.

Explicit Format

LABEL Li OPERATION b. OPERAND

[symbol] Al

Implicit Format

LABEL Li OPERATION b. OPERAND

[symbol] Al

Operand 1 must be either defined as a half word or is half-word boundary aligned.
Operand 2 must be a 1-byte self-defining term. Before operand 2 is added to the half
word in operand 1, operand 2 is temporarily expanded to 16 bits by propagating the
sign bit through the high order 8 bit positions. Then all 16 bits in operand 2 are
added to the 16 bits in operand 1. The result is placed in operand 1. If the sum
exceeds 15 bit positions, an overflow condition occurs.

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-14

• Operand 1 must be either defined as a half word or aligned on a half-word
boundary.

• During execution of the Al instruction, operand 2 is temporarily expanded to 16
bit positions. The leftmost eight bits are the same as the sign bit.

• Operand 2 must be a 1-byte, self-defining term (see 4.4).

• You may not specify an immediate value greater than +127 (27-1) or less than
-128 (-27) in operand 2.

• If the sum exceeds 1 5 bit positions, an overflow condition can occur.

Example:

LABEL
1

AOPERATIONA
10 16

Al STORAGE,1

STORAGE DC H1 3 1

STORAGE before execution of Al instruction:

0000:0000 000010011 binary
l ..1.

o I 0 o I 3 hex
j

OPERAND

Operand 2 immediate before and after execution of Al instruction:

0000}0001 binary

O l 1 hex

STORAGE after execution of Al instruction:

ooooToooo 0000 ~0100 binary
l .l

o I 0 0 I 4 hex
l _j_

In this example, the immediate value in operand 2 is added to the half-word value in
STORAGE. The result replaces the contents of STORAGE.

e

UP-8913

10.6. COMPARE (C)

SPERRY UNIVAC OS/3
ASSEMBLER

10-15

c

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

c 59 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF r
1

=OPERAND 2, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r

1
<OPERAND 2, SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF r

1
>OPERAND 2, SET TO 2

D D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The compare (C) instruction algebraically compares the contents in the operand 1
register to the ful I word in operand 2. The result determines the setting of the
condition code. (See condition code settings, 8.4.)

Explicit Format:

LABEL /:,OPERATION/:, OPERAND

[symbol] c r, ,d2 (x2 ,b2)

Implicit Format:

LABEL /:,OPERATION/:, OPERAND

[symbol] c r 1 .S2 <x2)

The operand 1 register is compared to a 32-bit signed integer (operand 2) located on
a full-word boundary in main storage. The result of the comparison determines the
setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand 1 operand 2, set to 0.

If operand 1 < operand 2, set to 1.

If operand 1 > operand 2, set to 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-16

Usually, a conditional branch instruction tests the resulting condition code for an
equal to zero, less than zero, or greater than zero condition. If the condition is met, a
branch takes place. If not, the program continues processing as shown in the
following coding instruction.

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word
boundary.

• Neither operand is changed by the execution of the instruction.

Example:

LABEL
I

£\OPERATION!\
10 16

SR 7,7
L 5,AHOUNT
C 5,FULLWORD
BE ROUTINE
A 6,=F'l I

ROUTINE AR 7,5

FULLWORD DC
AMOUNT DC

F'32'
F'32'

OPERAND

Register 5 before and after execution of C instruction:

ooooToooo 0000;0000 0000~0000 0010:0000 binary

0 l 0 0 I 0 0 I 0 2 I 0
J_ _l_

hex

FULLWORD before and after execution of C instruction:

000010000
I 0000:0000 0010:0000

_l
000010000 binary

T T ""T
2 I 0 l 0 0 I 0 O• 0 0

J_ _L _J_
hex

In this example, the full word in AMOUNT is loaded into register 5. Then, the content
of register 5 is compared to the full word in FULLWORD. Since they compare equally,
the condition code is set 0 and a branch to the instruction labeled ROUTINE takes
place. If they do not compare equally, the A instruction following the BE instruction is
executed and the program continues processing.

UP-8913

10.7. COMPARE (CR)

SPERRY UNIVAC OS/3
ASSEMBLER

10-17

CR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CR 19 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED • NONE

The compare (CR) instruction algebraically compares the contents in the operand 1
register to the contents in the operand 2 register. The result determines the setting of
the condition code. (See condition code settings, 8.4.)

Explicit and Implicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] CR

The 32 bits of operand 1 a re compared to the 32 bits of operand 2. The result
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.)

If operand 1 operand 2, set to 0.

If operand 1 < operand 2, set to 1.

If operand 1 > operand 2, set to 2.

Usually, a conditional branch instruction tests the resulting condition code for an
equal to, less than, or greater than condition. If the condition is met, a branch takes
place accordingly. If not, the program continues processing as shown in the following
coding instruction.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• Neither operand is changed by the instruction.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

AOPERATIONA
10 16

SR
L
L
CR
BH
AR,

7,7
5,AMOUNT
6,VALUE
5,6
ROUTINE
7,5

ROUTINE Al ERCNT, 1

AMOUNT
VALUE
ERCNT

DC
DC
DC

F'32'
F'32'
H1 01

OPERAND

Register 5 before and after execution of CR instruction:

ooooloooo ooooioooo
T

0010:0000 0000,0000 binary

0 I 0 0 I 0 0 I 0 2 : 0 hex
.L _l .L

Register 6 before and after execution of CR instruction:

000010000 000010000 000010000 000010000 binary
...I.

o I 0 0 I 0 0 I 0 2 I 0
_i

hex

10-18

In this example, the full word in AMOUNT is loaded into register 5 and the full word
in VALUE is loaded into register 6. Then the content of register 5 is compared to the
content of register 6. Since they compare equally, the condition code is set to 0. The
next branch instruction (BH) tests for a greater than (high) condition. Since both
registers compare equally, no branch is taken and the instruction following the BH
instruction (AR) is executed and the program continues processing.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-19
Update B

• CH

10.8. COMPARE HALF WORD (CH)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

CH 49 RX 4

Condition Codes

• IF r
1

=OPERAND2, SET TO 0

• IF r 1 <oPERAND 2, SET TO 1
• IF r

1
>OPERAND 2, SET TO 2

0 IF OVERFLOW, SET TO 3

D UNCHANGED

Possible Program Exceptions

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD

BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The compare half word (CH) instruction algebraically compares the contents in the
operand 1 register to the half word in operand 2. The result of the comparison
determines the setting of the condition code.

• Exp I icit Format:

•

LABEL 6 OPE RATION 6 OPERAND

[symbol] CH

Implicit Format:

LABEL 60PERATION6 OPERAND

[symbol] CH

Operand 2 is two bytes in length (16-bit signed integer) and is located in main
storage. Before operand 2 is compared with the operand 1 register, operand 2 is
temporarily expanded to 32 bits by propagating the sign bit through the high order 16
bit positions. Then all 32 bits of operand 1 are compared to the 32 bits in operand 2.
The result determines the setting of the condition code, bits 34 and 35 of the PSW.
(See 8.1.)

If operand 1 operand 2, set to 0.

If operand 1 < operand 2, set to 1.

If operand 1 > operand 2, set to 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-20

Usually, a conditional branch instruction tests the condition code for an equal to, less •
than, or greater than condition. If the condition is met, a branch takes place
accordingly. If not, the program continues processing as shown in the following coding
instruction.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a half word or aligned on a half-word
boundary.

• Neither operand is permanently changed by the execution of the instruction.

Example:

LABEL
I

ROUTINE

AMOUNT

AOPERATIONA
10 16

L 5,AMOUNT
CH 5,HALFWORD
BH ROUTINE
AR 8,5
A 6 ,=FI 1 I
.
.
.
DC F'32'

HALFWORD DC H 1 16 1

OPERAND

Register 5 before and after executicn of CH instruction:

ooooloooo 0000~0000 000010000 0010joooo binary

2 I 0
_L

hex

HALFWORD before and after execution of CH instruction:

operand 2 before expansion
~

r-T-,---,-- ~

1000010000 000010000 ooooioooo 000110000 binary

hex

------------------...........-~-------------operand 2 after expansion

In this example, the full word in AMOUNT is loaded into register 5. Then, the content
of register 5 is compared to the half word in HALFWORD. Since the content of
register 5 is greater than the content of HALFWORD, the condition code is set to 2.
The next branch instruction (BH) tests for a greater than (high) condition. Since a
greater than condition exists, a branch to the instruction labeled ROUTINE taken place.

•

•

'JP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10.9. CONVERT TO BINARY (CVB)

10-21

eve

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPEClflCATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
CVB 4F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD B.OUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
• FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 IF RESULT <o, SET TO 1 D FIXED-POINT OVERFLOW BOUNDARY

0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The convert to binary (CVB) instruction converts the packed decimal contents of the
double word ·in operand 2 to its binary equivalent and puts the result in the operand
1 register.

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] CVB

Implicit Format:

LABEL 6. OPERATION[:., OPERAND

[symbol] CVB

The CVB instruction converts a packed decimal number into a binary number. The
operand 1 register contains the resulting binary number (4 bytes in length) and
operand 2 is a packed number (8 bytes in length) aligned on a double-word boundary.
Operand 2 is checked for a valid sign in the low order four bits. The remaining 60
bits represent a decimal value not exceeding 15 decimal digits. The largest decimal
number that can be converted is +2,147,483,647 (231-1) and the smallest is
-2,147,483,678 (-231). Any decimal number outside this range causes a fixed-point
decimal divide. The result of the conversion is placed in the operand 1 register. The
sign value (low order four bits) of the packed decimal number in operand 2 becomes
the sign value (high order bit or bits) of the binary number in the operand 1 register.

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-22

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must contain a packed decimal number aligned on a double-word
boundary.

• If the sign value of the packed decimal number in operand 2 is positive, the sign
value of the binary number in operand 1 is positive.

• If the sign value of the packed decimal number in operand 2 is negative, the
binary number in operand 1 is represented in twos complement form and the
sign value is negative.

• The condition code remains unchanged.

• There is no conversion between EBCDIC and binary. EBCDIC data must first be
packed, then converted to binary.

Example:

LABEL
1

AOPERATI ONA
10 16

SR 7,7
SR 5,5
L 6,=F'100'
PACK DBLWDP,AMT(3)
CVB 5,DBLWDP
CR 5,6
BH ERRTN
AR 7,5

ERRTN A 4,=F'l I

DBLWDP OS
AMT DC

D
ZL3'428 1

Register 5 before execution of CVB instruction:

000010000 ooooToooo ooooloooo
_l

0000:0000 binary

0 I 0 0 I 0 0 I 0 0 I 0
.1 _j_ _j_ _j_

hex

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

DBLWDP before and after execution of CVB instruction:

Register 5 after execution of CVB instruction:

sign bits

ooooToooo 0000~0000 0000~0001 101011100 binary
.l. ..1 _J_ _]_

0 I 0 o I 0 O I 1 1 c
.1 ..! A J. hex

10-23

Packed
decimal
number

In this example, the SR instruction cleared both register 5 and 7 to zero by
subtracting the contents of the registers from themselves. Then, a full-word value of
100 is loaded into register 6. The contents of AMT is packed into DBLWDP and the
CVB instruction converts the packed decimal value into its binary equivalent which
replaces the contents of register 5. Register 5 is then compared to register 6. Since
the value of the contents in register 5 is greater than that of register 6, the condition
code is set to 2. The BH instruction then tests for a greater than condition and a
branch to the instruction labeled ERRTN takes place. If the condition code is not 2, no
branch takes place and the program continues processing with the instruction
following the branch.

UP-8913

CVD

SPERRY UNIVAC OS/3
ASSEMBLER

10.10. CONVERT TO DECIMAL (CVD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CVD 4E RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODO NUMBERED REGISTER

.UNCHANGED 0 NONE

The convert to decimal (CVD) instruction converts the binary number in the operand 1
register into its packed decimal equivalence and stores the result in the double word
in operand 2.

Explicit Format

LABEL LlOPERATION Ll OPERAND

[symbol] CVD

Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] CVD

The CVD instruction converts a binary value into a packed decimal value. Operand 1
register contains the binary value (4 bytes) and operand 2 contains a double-word
field in packed decimal format (8 bytes). The largest decimal number that can be
represented in binary in the operand 1 register is +2,147,483,647 (231-1) and the
smallest is -2, 147,483,648 (-2 31). Since the number to be converted is a 32-bit
signed integer from a register and there are 15 decimal digits available for its decimal
equivalent, an overflow condition cannot occur.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-25

The sign value (high order bit or bits) of the binary number in the operand 1 register
becomes the sign value (low order four bits) of the packed decimal number in operand
2. The result of the conversion is placed in the double word of operand 2. Note that
the CVD instruction is one of the few instructions that has operand 1 as the sending
field and operand 2 as the receiving field.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a double word or aligned on a double-word
boundary.

• If the sign value of the binary number is positive, the sign value of the decimal
number is positive.

• If the sign value of the binary number represented in twos complement form is
negative, the sign value of the decimal number is negative.

• The condition code remains unchanged.

• The result is stored in operand 2, unlike most instructions, where operand 1 is
the receiving field.

Example:

LABEL
1

NOPAY

AOPERATIONA OPERAND
10 16

SR 7,7
PACK DBLEWRD,CARDIN+9(3)
CVB 4,DBLEWRD
AR 7,4
BZ NOPAY
CVD 4,DBLEWRD
ZAP TOTHRS,DBLEWRD

A 9 ,=FI 11

CARDIN DC
DBLEWRD OS
TOTHRS OS

CL8~ 1 SMITH,J. 480 WKTOT EXEMPT X'
D
PL3

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

DBLEWRD before execution of CVD instruction:

Register 4 before execution of CVD instruction:

0000~0000 ooooioooo
I

0000~0001 1110:0000 binary

O I 0 0 I 0 ol 1 E I 0
..L ..1. i ..1.

hex

DBLEWRD after execution of CVD instruction:

1 o ! o 1 o ! o 1 o : o 1 o ; o 1 o l o

10-26

Packed
decimal

Packed
decimal

In this example, register 7 is cleared to zero. A field from card input (CARDIN+9),
which is EBCDIC and in zoned decimal format, is packed into DBLEWRD. The CVB
instruction then converts the packed decimal number in DBLEWRD into its binary
equivalent and puts the result into register 4. The content of register 4 is added to
register 7. The condition code is set to 2, since the result of the addition is greater
than zero. The next branch instruction (BZ) tests for an equal-to-zero condition. Since
that condition does not exist, no branch takes place and the instruction following the
branch instruction is executed. The CVD instruction then converts the contents of
register 4 into its decimal equivalent and puts the result into DBLEWRD. The ZAP
instruction clears TOTHRS to zero and adds the packed decimal number in DBLEWRD
to TOTHRS. (This is an example where truncation is beneficial.)

UP-8913

10.11. DIVIDE (D)

SPERRY UNIVAC OS/3
ASSEMBLER

10-27

D

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D 50 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFL.OW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
• FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 • D 1F RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The divide (D) instruction algebraically divides the double word in the operand 1
register pair (dividend) by the full word in operand 2 (divisor) and puts the result
(quotient and remainder) in operand 1.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] D

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] D

Operand 1 consists of an even-odd pair of contiguous registers, where the even­
numbered register, since it is the lower numbered register, is specified as operand 1.
Every time the even-numbered operand 1 is referenced in the D instruction, both
registers are used. The dividend occupies the register pair as a double-word value
with the high order bit or bits as the sign value. Operand 2 must be either defined
as a full word in main storage, or aligned on a full-word boundary. The resulting
quotient occupies the odd-numbered register as a full-word value with its sign
determined algebraically. The remainder occupies the even-numbered register, also as
a full-word value with its sign the same as the dividend_ If the values of the divisor
and dividend cause the quotient to be larger than a 32-bit signed integer, a fixed­
point divide program exception occurs, no division takes place, and the dividend
remains unchanged_

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-28

To load a value (dividend) into an even-odd register pair, use the load multiple (LM)
instruction (see 10.18). If the value (dividend) can be contained in one register, it
must be loaded into the odd-numbered register only. This can be done through the
use of the load (L), load register (LR), or load half-word (LH) instructions. The even­
numbered register must be cleared before execution of the D instruction.

Operational Considerations:

• Operand 1 consists of an even-odd pair of registers located in consecutive order
in the processor.

• Operand 1 always references the even-numbered register.

• The dividend occupies both registers. After the D instruction is executed, the
quotient occupies the odd-numbered register, and the remainder occupies the
even-numbered register.

• Operand 2 must be either defined as a full word or aligned on a full-word
boundary.

• If operand 1 does not reference an even-numbered register, a specification
exception occurs.

• The condition code remains unchanged.

• Division by zero causes a fixed-point divide program exception.

• Any of the even-numbered general registers (0 thru 14) can be used as the
operand 1 register pair.

Example:

AOPERATIONA LABEL
1 10 16

SR
L
D

DIVIDEND DC
DIVISOR DC

6,6
],DIVIDEND
6,DIVISOR

F 1 1685 1

F'2'

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 6 and 7 before execution of D instruction:

Register 6 Register 7 - -~ - _,,,,,......___
0000:0000 ooooToooo 0000:0000 0000:0000 0000:0000 0000:0000 000010110

_L __l_ j_ _L
~ ~

o I 0 i 0 o I 0 0 l 0 O I 0 0 I 0 0 I 0 6
__l_ _._ J_ J_ l

"'---.......
I

operand 1

DIVISOR before and after execution of D instructi,on:

ooooToooo 0000:0000 ooooloooo oooojoo10
j_

0 ~ 0 0 ~ 0 0 l 0 0 I 2
J

binary

hex

Registers 6 and 7 after execution of D instruction:

Register 6 Register 7

sign bits sign bits - ..,..,.,...._ -- - -

000010000 000010000 ooooToooo 000010001 ooooioooo 000010000 ooooioo11
_L _L _l_ ...L ...1.

0 I 0 0 I 0 0 I 0
: :

0 l 0 ·o i 3 o I 1 0 I 0
J_ J 1 I _J_ .1

. .._
remainder quotient

10-29

-
100110101 binary

_L

9 I 5 hex
l

7

0100-r1010 binary
.1

I

4 I A hex
..J._ --

In this example, registers 6 and 7 are the operand 1 register pair and DIVISOR
(operand 2) has been defined as a full-word constant. First, the SR instruction clears
register 6 to zeros. Since the full word in DIVIDEND can be contained in one register,
it is loaded into register 7 (the odd-numbered register) through the use of the L
instruction. Then, the register pair 6-7 is divided by the full word in DIVISOR. The
resulting remainder occupies register 6 with a positive sign (the same as the dividend)
and the resulting quotient occupies register 7 with a positive sign (determined
algebraically).

Example:

LABEL
1

~OPERATIONA
10 16

LM
D

DIVIDEND DC
DC

DIVISOR DC

6,7,DIVIDEND
6,DIVISOR

F' 1 '
FI 15 I

F' 101lJllJ'

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 6 and 7 before execution of D instruction:

Register 6 Register 7 - _,,.....___ ---- ~
T

ooooToooo 000010000 oooofooo1 0000~0000 0000:0000 000010000 000010000
..L I ..l J. _L _l

0 I 0 0 I 0 o L 0 o I 1 o I 0 0 I 0 0 I 0
_L _I _j_ __j_ ..L

--000011111
_l

O I F
_l

"----~----------~~------------~~ operand 1

DIVISOR before and after execution of D instruction:

000010000
I

ooooioo11 1110~1000 000010000 binary
_J _J

01 0 Oj 0 01 3 E I 8
..J.

hex

Registers 6 and 7 after execution of D instruction:

Register 6 Register 7

_______________ _,....____~---------------------------~--------------
sign bits sign bits -

- - -.... ~

ooooloooo 000010000 ooooiooo1 001111001 ooooloooo 01ooiooo1 1oooi1001 001111001
..L _J _J ..J.

01 0 o I 0 01 1 3 I 7 0 I 0 4 1 1 8 I 9 3 I 7
.l ..L --1 _j ...1 ..L

-------------~~-~---------------------~~~~----------remainder quotient

10-30

binary

hex

binary

hex

In this example, the even-odd register pair is loaded with the contents of DIVIDEND.
This is done through the LM instruction because the dividend cannot be contained in
one register and has a value of +4,294,967,311 which is greater than

+2,147,483,647 (231-1)
-2,147,483,648 (-231).

The content of DIVISOR is then divided into the double-word value in the even-odd
register pair. The resulting quotient with sign occupies the odd-numbered register and
the resulting remainder with sign occupies the even-numbered register.

UP-8913

10.12. DIVIDE (DR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

DR 10 RR 2

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O.SETTO 1
01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-31

DR

Possible Program Exceptions

0 ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDAR.Y

0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER

0 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The DIVIDE (DR) instruction algebraically divides the contents of the double word in
the operand 1 register pair (dividend) by the full word in the operand 2 register. The
result (quotient and remainder) is placed in operand 1 _

Explicit and Implicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] DR

Operational Considerations:

• Operand 1 consists of a pair of contiguous registers (64 bits) containing a fixed­
point binary value. The registers are even-odd numbered, the lower numbered
register being even. You must specify the even-numbered register as operand 1.
The odd-numbered registers must contain the dividend before you can use this
instruction. You may specify any of the general registers (0 through 15).

• Operand 2 is a 32-bit register (0 through 15) containing a fixed-point binary
value (dividend). Operand 2 is not changed by the execution of this instruction.

• After the instruction is executed, the quotient with sign is put into the odd­
numbered register, and the remainder with the same sign occupies the even­
numbered register. If the quotient and remainder do not fill their respective 32-bit
fields, leftmost bit positions are filled by bits having the same value as the sign.

• If you attempt to divide by zero, or if the quotient does not fit into the 32-bit
odd-numbered register in operand 1, a fixed-point divide program exception
occurs.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

£\OPERATION£\
10 16

LM 6,8,DIVEND
DR 6,8

DI VEND DC
DIVISOR DC

D1+64'
F'+32'

10-32

OPERAUD

In this example, registers 6, 7, and 8 are loaded with the main storage contents of
DIVEND and DIVISOR, respectively. Then, divide the contents of registers 6 and 7 by
the contents of register 8 and place the result (quotient with sign) in register 7.

Note that the use of the LM instruction eliminates the writing of three separate load
instructions but still loads three registers. Also note that the quotient and its sign are
loaded into register 7 and the remainder with the same sign value as the quotient
that occupies register 6.

Registers 6 and 7 before execution of DR instruction:

0000
1

0000 0000
1

0000 ooooioooo ooooioooo 0000~0000 0000;0000 0000:0000
~

I I 0100,0000 binary

hex I o I o I o o I o
I I

0 : 0
I

o I o 0 o I o o I o 4 I 0 1 J l ...1 --1 ...1 .l

Register 8 before and after execution of DR instruction:

000010000 000010000 000010000 001010000 binary

0 I 0 0 I O 0 I O 2 I O hex

Registers 6 and 7 after execution of DR instruction:

0000:0000 ooooloooc ooooioooo oooo:oooc 0000!0000 ooooloooo ooooloooo :0000:0010 I _l I I I I
binary

I i I

0 ! . I . I

0 i I I I 0 I 0 0 0 0 0 01 0 0 0 0 0 0 I 2
..1

I I I I hex

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-33

• L

•

•

10.13. LOAD (l)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

L 58 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET To 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The load (L) instruction places the full word in operand 2 into the operand 1 register.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] L

Implicit Format:

LABEL 6 OPE RATION 6 OPERAND

[symbol] L

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word
boundary .

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

XNUM

AOPERATIONA
10 16

L

OS
DC

4,XNUM

0F
XI tltltltltltl J 8 I

Register 4 before execution of L instruction:

OPERAND

000010000 ooooroooo 0010:1111 1001:1000
I

binary (leftover data from

ol 0 01 0 2~ F 91 8
_l ...1

previous program)
hex

XNUM before and after execution of L instruction:

0000 I 0000 0000 i 0000 0000~ 0000 0001 : 1000
_l

0 I 0 1 I 8
--1

Register 4 after execution of L instruction:

binary

hex

0000 10000 0000 loooo ooool 0000 0001l1000 binary

0 I 0

_l ...l

0 I 0
I

0 I 0
_l

1 I 8
..1

hex

10-34
Update B

In this example, XNUM is defined as a hexadecimal constant aligned on a full-word
boundary and register 4 is the operand 1 register. The L instruction places the full
word in operand 2 into register 4 replacing any leftover data in register 4 with the
contents of XNUM

•

•

UP-8913

10.14. LOAD (LR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

LR 18 RR 2

Condition Codes

D IF RESULT= 0, SET TO 0
D 1F RESULT <o. SET To 1
D 1F RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-35

LR

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

• NONE

The load (LR) instruction places the contents of the operand 2 register into the
operand 1 register.

Explicit and Implicit Format:

LABEL .60PERATION .6 OPERAND

[symbol] LR

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• The contents of the register specified by operand 2 (r2) are loaded into the
register specified by operand 1 (r 1).

• The contents of the register specified by operand 2 (r2) remain unchanged.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

~OPERATION~

10 16

L
L
LR
LR
A
AR
CVD
CVD

FINTOT DC
SUBTOT DC
FINTOTP OS
SUBTOTP OS
INTERTOT DC

7,FINTOT
5,SUBTOT
6,5
8,7
5, INTERTOT
7,5
5,SUBTOTP
7,FINTOTP

F1 5630 1

F 1 220 1

D
D
F 1 20 1

Register 6 before execution of LR instruction:

ooooioooo ooooioooo 0000To111 1100T1011 binary
..!.. ...1. ..!..

O I 0 0 I 0 OI 7 Cl B hex
J_ _l_ _l_ _l_

OPERAND

(leftover data from
previous program)

Register 5 before and after execution of LR instruction:

ooooioooo 000010000 ooooToooo 1101~1100 binary
...1 J_ ..!.. ...1

O I 0 0 I 0 0 I 0 o• c hex
...1.. ...L _L l_

Register 6 after execution of LR instruction:

0000:0000 ooooioooo 0000:0000 1101 :1100 binary
...1 -.

0 I o' o' 0 I 0 0 0 c
...1.. j_ .1 j_

hex

10-36

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-37

In this example, the full word in FINTOT (FINTOT represents final total) is loaded into
register 7 and the full word in SUBTOT (SUBTOT represents subtotal) is loaded into register
5. Then the content of register 5 is loaded into register 6 and the content of register 7 is
loaded into register 8 so it can be saved prior to the execution of the succeeding add
instructions. Then the full word in INTERTOT is added to register 5 (now register 5 has the
most current subtotal). The content of register 5 is added to the content of register 7 (now
register 7 has the most current final total). The first CVD instruction converts the binary
number in register 5 to its decimal equivalent and puts the result into the double word in
SUBTOTP. The second CVD instruction converts the binary number in register 7 to its
decimal equivalent and puts the result into the double word in FINTOTP.

UP-8913

LTR

SPERRY UNIVAC OS/3
ASSEMBLER

10.15. LOAD AND TEST (l TR)

10-38

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LTR 12 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP
0

2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
• IF RESULT; 0, SfT TO 0 D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

.IF RESULT>O.SETT02 0 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED • NONE

The load and test (LTR) instruction places the contents of the operand 2 register into
the operand 1 register. The value and sign of operand 2 determines the setting of the
condition code. The actual testing of the condition code is done through the execution
of another instruction.

Explicit and Implicit Format:

LABEL t. OPERATION .6 OPERAND

[symbol] LTR r1 ,r2

If operand 2 0, set to 0.

If operand 2 < 0, set to 1 .

If operand 2 > 0, set to 2.

Usually, a conditional branch instruction tests the resulting condition code for an
equal to zero, less than zero, or greater than zero condition. If the condition specified
is met, a branch takes place accordingly. If not, the program continues processing
with the following instruction.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• It is your responsibility to test the condition code setting.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-39

• Example:

•

•

LABEL
1

ERRTN

ERCNT

.60PERATION.6
10 16

L 6,=F'25'
LTR 7,6
BC 8,ERRTN

AP ERCNT,=P'l I

DC PL2'flJ'

Register 7 before execution of LTR instruction:

ooooloooo ooooloooo 1010:0000 0000:0000 binary
J _L

01 0 0 l 0 A _i 0 o• 0
_L

hex

OPERAND

(leftover data from
previous program)

Register 6 before and after execution of LTR instruction:

0000:0000 ooooloooo 0000:0000 000111001 binary
_J ..J.. .J. .J.

0 I 0 0 I 0 0 I 0 1 I 9
.l .l. .l ..1

hex

Register 7 after execution of L TR instruction:

000010000 000010000 000010000 0001~ 1001 binary
_l -1 .l. .J.

0 I 0 0 I 0 0 : 0 1 I 9 hex
..1 ..1 I .J.

In this example, a full word containing the decimal value 25 is loaded into register 6.
Then, the LTR instruction loads the contents of register 6 into register 7. The
condition code is set to 2, since the value of register 6 (operand 2) is greater than
zero. The BC instruction tests for an equal to zero condition which is represented by
the decimal value 8 in operand 1. If an equal to condition existed, a branch to the
instruction labeled ERRTN would take place. Since that condition does not exist, the
program continues processing with the instruction immediately following the BC
instruction .

-- ------------------------------------,

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-40
Updatek,

LCR •

10.16. LOAD COMPLEMENT (LCR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LCR 13 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The load complement (LCR) instruction places the twos complement form of the
contents of operand 2 register into the operand 1 register.

Explicit and Implicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] LCR

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

• If operand 2 is a positive value, the twos complement of that value is placed into
operand 1 when the instruction is executed. If the value in operand 2 is
negative, the positive value is placed in operand 1 when the instruction is
executed. The maximum value you can specify in operand 2 is +2, 147,483,647
(231 -1) or -2,147,483,647 (-231-1).

• A zero value in operand 2 is not changed when complemented.

• Operand 2 is not changed by the execution of the instruction.

I ·•:, ::~~~-.'lC~.·~n~tuct·i~l\~~~·<f~~tlJ.~~\j\.~~~'t~ih An-,;:oP'a~ti19.f\)x~~\eX\e~~~ . "-_ 1c;!us~d- ~f,,.yo'u ',~use -thJ~ -rnSt[°l:t~troA a~d ~ur\ ~cessor \?oes nol\ ti~ve. \{he._ con~ol ·
eature ... _ -· ' - · -- ·

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
I

~OPERATI ONA
10 16

L 5,FULLWORD
LCR 6,5
LTR 6,6

•

FULLWORD DC F' lf/Jf/J I

OPERAND

Register 5 before and after execution of LCR instruction:

I
ooooi 0000

T T
000010000 000010000 011010100 binary

..1 I
I

0 I 0 0 l 0 o I o 6 I 4
I _J_ _l

hex

Register 6 after execution of LCR instruction:

T
1111: 1111 1111i1111 1001i1100 111111111 binary

"T T

F I F F l F F I F 9 I c
1 l l

hex

10-41

In this example, the contents of FULLWORD is loaded into register 5 and the LCR
instruction loads the complement of the content of register 5 into register 6. Since
the result is less than zero, the condition code is set to 1 and the load and test (LTR)
instruction (see 10.15) loads the content of register 6 into itself and tests the
condition code. Because the registers of operands 1 and 2 in the LTR instruction are
the same, the operation is performed as a test without data movement.

UP-8913

LH

SPERRY UNIVAC OS/3
ASSEMBLER

10.17. LOAD HALF WORD (LH)

10-42

1.1rdf1C!.c

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LH 48 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02

D 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The load half word (LH) instruction places the half word in operand 2 into the
operand 1 register.

Explicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] LH

Implicit Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] LH

Since registers only work in conjunction with full words, the half word in operand 2
is automatically expanded to 32 bits by propagating the sign bit through the 16 high
order bit positions. Then, operand 2 is loaded into the operand 1 register.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a half word or aligned on a half-word
boundary.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

aOPERATIONa
10 16

LH 4,PRODUCT

PRODUCT DC H'256'

Register 4 before execution of LH instruction:

000010000 0000 Toooo 000011100 0001 ~ 1010 binary

0 I 0 0 l 0 0 I c 1 : A
_l I

hex

OPERAND

(leftover data from
previous programl

PRODUCT before and after execution of LH instruction:

before expansion ------------r- - .- - - ,-
1000010000 000010000 000010001 000010000

1010 010 011 0 I 0
-- - .l. - - ..l.. -____.._____,~__._-~

---------------~ ----------------after expansion

binary

hex

Register 4 after execution of LH instruction:

ooooToooo ooooioooo 0000:0001 0000 loooo binary
...L

0 l 0 0 I 0 o: 1 0 l 0 J_
hex

10-43

lri this example, the half word in PRODUCT is expanded temporarily to a 32-bit signed
integer. Then the LH instructions loads the contents of PRODUCT (now a 32-bit
signed integer) into register 4.

UP-8913

LM

10.18. LOAD MULTIPLE (LM)

SPERRY UNIVAC OS/3
ASSEMBLER

Gene ral Possible Program Exceptions

OBJECT
OPCODE FOR MAT INST.

TY PE LGTH.

MNEM. HEX. (BYTES)

LM 98 R s

Condition Codes

01F RESULT=O,SETTOO
D1F RESULT<O.SETTO 1

01F RESULT>O.SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The load multiple (LM) instruction loads the contents of two or more consecutive
registers (operands 1 and 3) with an equal number of consecutive full words in main
storage (operand 2).

Explicit Format

LABEL 6. OPERATION 6. OPERAND

[symbol] LM

Implicit Format

LABEL 6. OPERATION/:,. OPERAND

[symbol] LM

The operand 1 register is the first register loaded and the operand 3 register is the
last register loaded. If operands 1 and 3 are not consecutive, any registers
consecutive to the operand 1 register up to and including the operand 3 register also
are included. If the address of the operand 3 register is less than the address of the
operand 1 register, the register addresses wrap around from 15 to 0. The number of
full words in main storage to be loaded is determined by the number of consecutive
registers specified. The registers are loaded in ascending sequence starting with the
operand 1 register up to and including the operand 3 register. The content of operand
2 is loaded into the registers beginning with the byte addressed by the operand 2
label and continuing with as many full words that are needed to fill the registers A
specified. W

UP-8913

Operationa I Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-45

• Any of the general registers (0 thru 15) can be used as operands 1 and 3.

• Operand 2 must either be defined as a full word or aligned on a full-word
boundary.

• If operand 2 does not reference the correct number of full words needed to fill
all the registers, full words consecutive to the first full word specified by operand
2 are loaded into the registers until the operand 3 register is filled.

• When loading multiple registers, the wraparound concept applies.

• If operand 1 and operand 3 reference the same register, only that register is
loaded with the contents of the first full word of operand 2.

Example:

LABEL
1

VALl
VAL2
VAL3

.10PERATI O~
10 16

LM 5,7,VALl

DC
DC
DC

FI 11/.1'
F' 21/.1'
F' 311.1'

OPERAND

Registers 5, 6, and 7 before execution of LM instruction:

Register 5

ooooloooo ooooloooo ooooloooo ooooloooo
.J.. _l_

0 I 0 o' 0 0 ~ 0 0 I 0
.1 .1 ...I. ...1.

Register 7

ooooToooo 0000~0000 000011100 1010:0100
.i j_ _l_

0 I 0 0 I 0 0 I c Al 4
..1. .1 ...L ...L

-------------~---......,,.-~------------leftover data from previous program

Register 6

1111:1111 111111111 1000-Y1111 1oooiooo1
l _1_ .1

F I F F I F a1 F er 1
l _I_ .l.

----------------~--------------1 e ft over data from previous program

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

VAL1, VAL2, and VAL3 before and after execution of LM instruction:

VAL1 VAL2

0000:0000 000010000 0000:0000 000011010
.l. _J_ _J_ _J_

ooooToooo ooooToooo 0000:0000
.l. 1

o I 0 o I 0 0 I 0 0 I A
_J__ J_ .l. .l.

0 I 0 0 I 0 o I o
...1. ...1. _i_

VAL3

ooooloooo ooooToooo 0000:0000 0001: 1110
...1. _J_

0 I 0 0 I 0 0 I 0 1 I E
J _J_ __L _J_

Registers 5, 6, and 7 after execution of LM instruction:

Register 5 Register 6

ooooloooo 0000:0000 ooooToooo ooooi1010 0000~0000 ooooToooo ooooioooo
...1. ...1. _J_ ...L ,-

0 I 0 0 I 0 01 0 0 I A
J _J__

0 I 0 0 I 0 0 I 0
J .l. _J_

Register 7

0000:0000 0000:0000 ooooioooo 0001i1110
...1. _J_ _J_

0 I 0 0 I 0 0 I 0 1 l E
_l ...1 l

10-46

0001To100
_J__

1 I 4
_J__

0001 :0100

1 I 4
i

In this example, operands 1 and 3 specify that registers 5, 6, and 7 are to be loaded
with three consecutive full words from main storage starting with the first full word
at VAL 1 (operand 2) and continuing until register 7 is filled.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-47
Update B

• Example:

•

•

LABEL
1

TAGl
TAG2
TAG3

aoPERATIONa
10 16

LM

OS
DC
DC
DC

5,5,TAGl

0F
XL2 I .0001 I

XL2'3C0F'
XL2 1 00CA 1

Register 5 before execution of LM instruction:

ooooloooo ooooioooo ooooToooo ooooToooo binary
l

0 I 0 01 0 0 I 0 0 I 0
J_ _l_ _l_

hex

OPERAND

TAG1, TAG2, TAG3 before and after execution of LM instruction:

TAG1 - ,,..

ooooToooo 0000l0001
_l

0 I
l ..

full-word
boundary

l

0 0 I 1
.l.

TAG2 TAG3 - - ,,..
I

0011i1100 000011111 ooooioooo 1100T1010
T

.l.

3 I c QI
.1. .1.

F 0 I 0

•
full-word
boundary

_l

+
Cl A

l

Register 5 after execution of LM instruction:

ooooloooo 0000Tooo1 0011~1100 000011111 binary
l _J_

0 I 0 0 I 1 3 I c 01 F
J _l

hex

remaining main storage - ,,... -
ooooToooo ooooloooo

ol 01 0 0
..l.

In this example, operand 1 and operand 3 both refer to register 5. Therefore, the
content of operand 2 is loaded into register 5 (operand 1) beginning with the first
byte at TAG1 and continuing with as many full words that are needed to fill register
5 (operand 3). Note that only register 5 is filled with the first full word at operand 2 .

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-48

Example:

LABEL
1

SECTOR

~OPERATION..1

10 16

LM

DC
DC
DC
DC
DC

14,2,SECTOR

F 1 1250 1

F1 4000 1

F 1 2300 1

F 1 1000 1

F1 6200 1

Registers before execution of LM instruction:

Register 14

OPERAND

Register 15

ooooioooo 0000~0000 0000:0000 ooooioooo 0000:0000 ooooioooo 000010000 ooooioooo

O I 0 0 I 0 0 I 0 0 I 0
I I _l_ _l_

-------------------....._.......--~-------------0 per and 1

Register 0

T T
0 I 0 0 I 0 0 : 0 01 0

I I

Register 1

ooooioooo 000010000 0000:0000 ooooioooo 0000:0000 0000~0000 0000 Toooo ooooToooo
I

T T

0 I 0 0 I 0 0 I 0 0 I 0
l _l_ _L _l_

0 _!_ 0 0 I 0 0 i 0 o I 0
I

Register 2

0000~0000 0000;0000 ooooioooo ooooToooo
l -1

0 I 0 0 I 0 0 I 0 o I 0
..1 _l_ _j _l_

operand 3

SECTOR before and after execution of LM instruction:

0000[0000 0000:0000 0000~0100 111010010 000010000 ooooioooo 0000;1111 1010~0000 binary
-1 I

o I 0 o I 0 0 I 4 E I 2 O I 0 0 I 0 0 I F Al 0
J _l _J_ _l __l __l

hex

ooooioooo ooooioooo 000011000 1111i1100 ooooioooo ooooioooo ooooioo11 111oi1000 binary
I r-

0 I 0 0 I 0 0 I 8 Fl c OJ 0 0 I 0 0 I 3 E : 8
J ..l J. __l _I

hex

0000:0000 0000:0000 0001T1000 0011i1000 binary
l

0 I 0 0 l 0 1 I 8 3 I 8
_L J. _l

hex

•

•

---~·-····-······-'--------~

•

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Registers after execution of LM instruction:

Register 14

000010000 ooooioooo ooooio100 1110f 0010 0000:0000
I I _l

o I 0 01 0 01 4 E I 2
_l l 01 0

Register 0

ooooioooo ooooToooo 0000~1000 111111100 ooooloooo

0 I 0 O I 0 0 l 8 F j C
J_ _I_

0 I 0
_l

Register 2

000010000 000010000 000111000 0011i 1000
I I ...1.

T
0 I 0 o I 0 1 I 8 3 I 8

J. _l ...1. _l

10-49

Register 15

0000:0000 0000:1111 1010:0000
...1. ...1.

0 I 0 0 I F Al 0
...1. _l

Register 1

ooooToooo 000010011 1110l1000
...1.

0 I 0 0 I 3 El 8
J ..l.

In this example, register 14 is the first register loaded and register 2 is the last
register loaded. Since the address of operand 2 (register 2) is less than the address
of operand 1 (register 14), the register addresses wrap around from 15 to 0 up to
and including 2. Operand 2 is either defined as a full word or aligned on a full-word
boundary. The contents of operand 2 is loaded into register 14 starting with the byte
addressed by SECTOR and continuing with as many full words until register 2 is
filled.

Remember that most 1/0 operations use registers 14, 15, 0, and 1. So, if you use
these registers and then perform some input or output in your program, the original
contents of these registers are destroyed. However, you can use these registers if you
save the contents prior to every 1/0 operation, and restore them after completing
each 1/0 operation.

It may be helpful to note that the supervisor usually uses the lower numbered registers and
data management usually uses the higher numbered registers .

--- --- -----------------------....
UP-8913 SPERRY UNIVAC OS/3

ASSEMBLER
10-50
Update B

LNR •

10.19. LOAD NEGATIVE (LNR)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LNR 11 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<o.sETTO 1 0 0 IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED • NONE

The load negative (LNR) instruction places the twos complement of the content of the
operand 2 register into the operand 1 register. If operand 2 contains a negative value
or a value of zero, the instruction places that value unchanged into operand 1.

Explicit and Implicit Format:

LABEL /::,,OPERATION/::,, OPERAND

[symbol] LNR

Operational Consideration:

• Any of the general registers (0 through 15) can be used as operands 1 and 2.

Example:

LABEL
1

AOPERATIONA
10 16

LM 5,7,NUMBERSI
LNR 5,5
LNR 6,6
LNR 7,7

NUMBERS I DC F '4'
NUMBERS2 DC F'5'
NUMBERS3 DC F16 1

OPERAND

•

•

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-51

In this example registers 5, 6, and 7 are filled with contents of NUMBERS1.
NUMBERS2, and NUMBERS3. respectively. Then each of the three LNR instructions,
operating respectively on registers 5, 6, and 7, replaces the full word in its respective
register with the twos complement of that full word.

Register 5 before execution of the LNR instruction:

000010000 000010000 000010000 000010100 binary

o I o o I o o I o o I 4 hex

Register 6 before execution of LNR instruction:

000010000 0000(0000 000010000 000010101 binary

o I O O I O o I o o I s hex

Register 7 before execution of LNR instruction:

000010000 0000(0000 000010000 000010110 binary

0 I 0 0 I 0 o I o o I 6 hex

Register 5 after execution of LNR instruction:

I
1111l 1111

T
1111T1100 111111111 111111111

I _l I I
binary

I
Fl Fl F

I

F F F F 1 C I
hex

Register 6 after execution of LNR instruction:

1111 (1111 1111 I 1111 111111111 1111 I 1011 binary

F I F F I F F I F F I B hex

Register 7 after execution of LNR instruction:

11111 1111 1111 (1111 111111111 1111 p 010 binary

F I F F I F F I F F I A hex

UP-8913

LPR

10.20. LOAD POSITIVE (LPR)

SPERRY UNIVAC OS/3
ASSEMBLER

10-52

General Possible Program Exceptions

OBJECT
OPCODE FORMAT

TYPE
MNEM. HEX.

LPR 10 RR

Condition Codes

• IF RESULT= 0, SET TO 0
D 1F RESULT <o. SET To 1

INST.
LGTH.
(BYTES)

2

• IF RESULT >o. SET TO 2
• IF OVERFLOW, SET TO 3
OuNCHANGED

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

• FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

D PROTECTION

D SIGNIFICANCE

D SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The load positive (LPR) instruction places the positive value of the content of the
operand 2 register in the operand 1 register. If operand 2 contains a positive value or
zero, that same value is placed unchanged in operand 1. If operand 2 contains a
negative number, the twos complement of that number (its positive value) is loaded
into operand 1.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] LPR

Operationa I Considerations:

• Any of the general registers (0 through 15) can be used as operand 1 and 2.

• The maximum negative value you can specify in operand 2 is -2,147,483,657
(-231-1). Otherwise, a fixed-point overflow program exception occurs.

• Operand 2 is not changed by the execution of the instruction.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

AOPERATIONA
10 16

LH 5,7,NUMBERSl
LPR 5,5
LPR 6 ,6
LPR 7,7

NUMBERS1 DC
NUMBERS2 DC
NUMBERS3 DC

F'-4'
F'-5'
F'-6'

10-53

OPERAND

In this example, registers 5, 6, and 7 are filled with the contents of NUMBERS1,
NUMBERS2, and NUMBERS3, respectively. Then each of the three LNR instructions,
operating respectively on registers 5, 6, and 7, replaces the full word in its respective
register with the twos complement of that full word. The result is their positive
values.

Register 5 before execution of LPR instruction:

T I

111111111
T

1111(1111 111111111 111111100 binary
I _l I .,.

F I F Fl F F I F F : C
.l l l

hex

Register 6 before execution of LPR instruction:

111111111 1111(1111 1111 f 1111 111111011 binary

F I F F I F F I F F I B hex

Register 7 before execution of LPR instruction:

111111111 1111(1111 111111111 111111010 binary

F I F F I F F I F F I A hex

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Register 5 after execution of LPR instruction:

000010000 000010000 000010000 000010100 binary

o I o o I o o I o o I 4 hex

Register 6 after execution of LPR instruction:

000010000 00001 0000 000010000 000010101 binary

o I o O I o o I o o I 5 hex

Register 7 after execution of LPR instruction:

OOOOjOOOO 00001 0000 000010000 000010110 binary
I

o I o o I o o I o 0 6 hex

10-54

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-55
Ui;-d;:i1e, C

•

9 M

10.21. MULTIPLY (M)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

M 5C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01FRESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 • 0 IF RESULT> 0, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

The multiply (M) instruction algebraically multiplies the operand 1 register pair by the
full word in operand 2. The result replaces the operand 1 register pair.

Explicit Format

LABEL b.OPERATION b. OPERAND

[symbol] M r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL b. OPERATION b. OPERAND

[symbol] M r 1.S2 <x2)

Operand 1 must be a contiguous pair of even-odd registers. The even-numbered
register, since it is a lower numbered register, is specified as operand 1. Both the
multiplier (operand 2) and the multiplicand (operand 1) are 32-bit signed integers but
the product is always a 64-bit signed integer. Before execution of the M instruction,
the multiplicand must be loaded into the odd-numbered register, while the content of
the even-numbered register is ignored. The multiplier must either be defined as a full
word or aligned on a full-word boundary. After execution of the M instruction, the
resulting product replaces the even-odd register pair as a double-word value with the
high order bits or bit as the sign value. The sign of the product is determined
algebraically; like signs produce positive results and unlike signs produce negative
results. If the product is always contained in the odd-numbered register, you can
ignore the contents of the even-numbered register and store the contents of the odd­
numbered register as the product.

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-56

• Operand 1 consists of an even-odd pair of registers located in consecutive order
in the processor.

• Operand 1 always references the even-numbered register.

• The multiplicand occupies the odd-numbered register as a full-word value.

• After the M instruction is executed, the product occupies both registers as a
double-word value.

• Operand 2 must either be defined as a full word or aligned on a full-word
boundary.

• Any of the even-numbered general registers (0 thru 14) can be used as operand
1.

Example:

AOPERATION.6 LABEL
1 10 16

L
H

MULTCAND DC
MULTPLYR DC

5,HULTCAND
4,HULTPLVR

F'244'
F'22'

OPERAND

Registers 4 and 5 before execution of M instruction:

Register4 Register 5 -- --- _ _,.,,,....___

T ooooloooo 000010000 ooooToooo ooooToooo I
0000:0000 000010000 000010000

_L _L ...1. .l.

01
o I

.
0 '

0 I 0 0 0 o I 0 0 l 0 ol 0 0
.l. I .l. .l. .l.

--1111:0100
..I.

Fl 4

'---~------------~-----....... .---~ operand 1

MULTPLYR before and after execution of M instruction:

I

0000:0000 0000:0000 000010000 000110110 binary
__._ ..l. • -: T I

0 I 0 0 : 0 0 I 0 1 I 6
_L _i _i

hex

binary

hex

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 4 and 5 after execution of M instruction:

Register 4 Register 5

10-57

_______________ _..-...___~------------______________ __.......___~------------
000010000 ooooioooo 0000:0000 ooooioooo ooooJoooo ooooloooo 0001~0100 1111:1000

_l --1 ...1.

O I 0 0 I 0 0 I 0 0 I 0 0 : 0 0 ; 0 1 I 4 F I 8
l j __L _l ..J. ..J.

'-------~-------------~--------------~ operand 1

binary

hex

In this example, the full-word value in MULTCAND is loaded into register 5 (odd­
numbered register). Then, the full-word value in MULTPL YR is multiplied by register 4
(the even-odd register pair). The even-numbered register is ignored and the content of
the odd-numbered register (in this case, 5) is used in the multiplication.

The resulting product replaces the even-odd register pair as a double-word value.
Since the value of this product is less than +2,147,483,647, it can be contained in
register 5 and register 4 can be ignored.

Example:

LABEL
1

AOPERATIONA
10 16

L
M
ST

MULTCAND DC
HULTPLVR DC
HOLDAREA OS

7,MULTCAND
6,MULTPLYR
7,HOLDAREA

F'35~'
F'-5'
F

OPERAND

Registers 6 and 7 before execution of M instruction:

Register 6 Register 7 _______________ _..-...___~--------------____________ _..-...___~-------------
ooooioooo 0000:0000 ooooToooo ooooToooo ooooioooo ooooioooo 0000~0001 010111110

..J. ..J._ .
o I o o I 0 0 I 0 0 I 0 01 0 0 I 0 o I 1 5 I E

..J. ..1 .1 I _l _J_ _J_

'----------------------~-------... -----~ operand 1

binary

hex

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

MULTPL YR before and after execution of M instruction:

sign bits

--- ./'......

----1111T1111 111111111 1111T1111 1111ho11 binary
l ...L

"T

F ; B F I F F I F F l F
..l _L

hex

(-5 in twos complement form)

Registers 6 and 7 after execution of M instruction:

sign bits

-
1111--r1111 111111111 1111 :1111 1111 !1111 1111I1111 111111111

. ..l --1 j_ ..l --1 --.-
F I F Fj F F I F F l F F I F F I F

_L _l --1

(-1750 in twos complement form)

10-58

-
1111 i1001 0010 '1010 binary

.J .J

F j 9 2 I A
..1

hex

UP-8913

10.22. MULTIPLY (MR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

MR 1C RR 2

Condition Codes

01F RESULT=O,SETTOO
01F RESULT<O,SETTO 1
0 IF RESULT >o, SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

SPERRY UNNAC OS/3
ASSEMBLER

10-59

MR

Possible Program Exceptions

D ADDRESSING 0 PROTECTION

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER

0 0 OPERATION OP 1 NOT ODO NUMBERED REGISTER

0 NONE

The multiply (MR) instruction algebraically multiplies the content of the operand 1
register pair (multiplicand) by the content of the operand 2 register (multiplier). The
result (product) is placed in operand 1.

Explicit and Implicit Format:

LABEL 60PERAT10N 6 OPERAND

[symbol] MR

Operational Considerations:

• Operand 1 consists of a pair of even-odd registers (64 bits). You must specify the
even-numbered register as operand 1, and you must load the odd-numbered
operand 1 register with the multiplicand before using this instruction.

• The product fills the odd-numbered register first and then, if necessary, the even­
numbered register.

• Any of the general registers (0 through 15) can be used as operands 1 and 2.
Operand 2 is not changed by the execution of this instruction.

UP-8913

Example:

LABEL
1

NEWBUY
PRICE

~PERATION.:\

10 16

SPERRY UNIVAC OS/3
ASSEMBLER

LH 8,PRICE
LH 7,NEWBUY
HR 6,8

•
DC
DC

H'73'
H' UJ'

10-60

OPERAND

In this example, place the contents NEWBUY and PRICE into registers 7 and 8,
respectively. Then, multiply the content of the even-odd register pair 6 and 7 by
register 8. (You address the pair of registers by using register 6.) The result is placed
in register 7. If, however, the result of the multiplication exceeds the capacity of
register 7, register 6 is filled with the remainder of the result.

Registers 6 and 7 before execution:

6 7

I I 1 ,. T T T T
000010000 000010000 000010000 000010000 000010000 000010000 000010000 010011001

I I I j_ J --'- .
o I o o I o

T T T
o I o o I o 0 l 0 0 1 0 0 ! 0 4 I 9

J_ l J_ I i

binary

hex

double word

Register 8 before execution:

000010000 00001 0000 OOOOJ 0000 0000 I 101 O binary

0 I 0 0 I 0 0 I 0 0 I A hex

Registers 6 and 7 after execution:

6 7

000010000 000010000 000010000
I

000010000

,. I I
000010000 000010000 000010010 110111010

-+ -f -t -+
i

I .,. .,. "'T

binary

o I o o I o o I o o I o o I o 0 l 0 0 : 2 D I A
_j i I I i

hex

double word

e

e

-

UP-891 3 SPERRY UNIVAC OS/3
ASSEMBLER

1 0.23. MULTI PL V HALF WORD (MH)

10-61

MH

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

MH 4C RX 4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

============::::::! 0 EXPONENT OVERFLOW

Condition Codes

D IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
D 1F RESULT >o. SET To 2
01F OVERFLOW, SET TO 3
.UNCHANGED

D EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

OOPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

OP 1 NOT EVEN NUMBERED REGISTER D
D OP 1 NOT ODD NUMBERED REGISTER

D NONE

T
0

1

he multiply half word (MH) instruction algebraically multiplies the content of the
perand 1 register by the half word in operand 2. The result is placed in the operand

register.

E xplicit Format

LABEL fl OPERATION/::,. OPERAND

[symbol) MH

I mplicit Format:

LABEL fl OPERATION /::,. OPERAND

[symbol] MH

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-62

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Before execution of the MH instruction, operand 2 is expanded from. 16 to 32
bits. The 16 high order bits are propagated with the sign bit value. The contents
of operand 2 before the 16 high order bits are propagated with the sign bit
value.

rsignbit

T T
000010000 000011010

j_ _L

binary

T
0 I 0 0 I A

l _L

hex

I
half word

The contents of operand 2 after the 16 high order bits are propagated with the
sign bit value.

Lsign bit

T T T I
000010000 000010000 000010000 000011010 binary

hex
_L _L i i
I I I I

0 I 0 0 I 0 0 I 0 0 I A
~ i l i

I
sign bits

L
T

J

full word

Operand 2 is not permanently changed by the execution of the instruction.

• The result (product) fills the 32-bit operand 1 register from right to left. If the
product does not fit into the operand 1 field, extra leftmost bits are truncated and
the result or sign may be incorrect.

------------------------------------········

UP-8913

Example:

LABEL
1

NEWBUY
PRICE

.::lOPERATION.::l
10 16

SPERRY UNNAC OS/3
ASSEMBLER

L 7,NEWBUY
MH 7,PRICE

DC
DC

F 173 1

HI 1 fJ I

10-63

OPERAND

In this example, load the contents NEWBUY into register 7 and multiply the half word
of PRICE by the content of register 7. The product is placed in register 7.

Register 7 before execution of MH instruction:

I I
oooof oooo

I
000010000 000010000 010011001

i I I _l

binary

I I I 1 o I o o I o o I o 4 9 hex
_l l J _l

PRICE before and after execution of MH instruction:

sign bit

OOOOIOOOO 000010000 000010000 0000j1010 binary

o I o o I o o I o

sign bit value
propagated through
16 high order bit
positions

o I A hex

Register 7 after execution of MH instruction:

000010000 OOOOIOOOO 000010010 1101I1010 binary

o I o o I o o I 2 D I A hex

UP-8913

SLDA

SPERRY UNIVAC OS/3
ASSEMBLER

10.24. SHIFT LEFT DOUBLE (SLDA)

10-64

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SLDA BF RS

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1
• IF RESULT >o. SET TO 2
.IF OVERFLOW, SET TO 3
OuNCHANGED

4

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

• FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF·WORD BOUNDARY

0 OP 2 NOT ON HALF·WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

• OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The shift left double (SLDA) instruction shifts all of the 63 bits of the operand 1
even-odd register pair to the left the number of bits specified by the low order six
bits of the operand 2 address.

Explicit Format:

LABEL ll OPERATION fl OPERAND

(symbol) SLDA

lmpf icit Format:

LABEL &OPERATION fl OPERAND

[symbol] SLDA

Operational Considerations:

• Any pair of generaf registers (0 through 15) can be used as operand 1. Operand
1 is an even-odd register pair. You must specify the even-numbered register of
the pair as operand 1.

• The main storage address or label you specify in operand 2 is not changed by
the SLDA instruction execution. Notice the formats indicate that you cannot
specify a length in operand 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-65

• The sign bit (leftmost bit) of the even-numbered operand 1 register pair is not
moved or changed by the execution of this instruction. Only the 63 remaining
bits can be shifted by this instruction.

• After the requested number of bits are shifted out of the operand 1 register pair,
zeros fill the rightmost bit positions of the register pair that were emptied.

• During the instruction execution, each bit being shifted out is checked when it is
the bit adjacent to the sign bit. If the bit differs from the sign, it cannot be
shifted out without causing a fixed-point overflow program exception.

Before shifting two bits left:

sign bit

third bit to be shifted

After shifting two bits left:

Shifting left three bits in this register pair causes a fixed-point overflow program
exception, since the third bit being shifted is not the same value as the sign bit.
In this example, two bits are successfully shifted out, but when the third bit is
moved adjacent to the sign bit and tested, it is not like the sign.

• Each time you shift one digit left, it is the same as multiplying by a power of 2.
If you shift one bit left, you multiply by 2, two bits left, you multiply by 22, three
bits by 23, and so forth.

• When the shift value is zero, it causes a double-length sign and magnitude test,
and the condition code is set.

Example:

LABEL
1

AOPERATIONA
10 16

L 9,FULLWORD
SLDA 8,4

•
FULLWORD DC F'4543'

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-66

In this example, registers 8 and 9 are shifted four bit pos1t1ons left. Before the SLDA
instruction, the content of FULLWORD is placed into register 9. Operand 2 is
expressed in explicit format with 4 as the displacement (d2) and no base register (b2)

representation. Consequently, the addition of base register and displacement values is
not performed by the assembler and the operand 2 displacement value becomes the
absolute value.

Before execution of SLDA instruction:

Register 8 Register 9

zero
filled

Note that the content of register 9 before the shift is 4543, and after shifting four
bits left, it contains 72,688 (4543 multiplied by 24(16)).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10.25. SHIFT LEFT SINGLE (SLA)

10-67

SLA

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLA BB RS 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESUL.T ~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
.IF RESULT>O,SETTO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• 1 F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The shift left single (SLA) instruction shifts the 31 bits of the operand 1 register to
the left of the number of bits specified by the low order six bits of the operand 2
address. The sign bit (the leftmost high order bit) of register 1 remains unchanged,
and zeros fill the vacated positions of the register.

Explicit Format:

LABEL .60PERATION .6 OPERAND

[symbol] SLA r 1' d2 (b2)

Implicit Format:

LABEL .6 OPERATION .6 OPERAND

[symbol] SLA r 1' s2

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-68

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• The main storage address or label you specify in operand 2 is not changed by
the SLA instruction execution. Notice the formats indicate that you cannot specify
a length in operand 2.

• The sign bit (leftmost bit) of the operand 1 register is not shifted or changed by
the execution of this instruction. Only the 31 remaining bits can be shifted by
the execution of this instruction.

• After the requested number of bits are shifted out of the operand 1 register,
zeros fill the vacated rightmost bit positions.

• During the instruction execution, each bit being shifted out is checked when it is
the bit adjacent to the sign bit. If the bit differs from the sign, it cannot be
shifted out without causing a fixed-point overflow program exception.

Before shifting two bits left:

lost
bits

sign bit

third bit to be shifted

After shifting two bits left:

111111111 1111i1111

zero
filled

Shifting left three bits in this register causes a fixed-point overflow program
exception, since the third bit being shifted is not the same value as the sign bit.
In this example, two bits are successfully shifted out, but when the third bit is
moved adjacent to the sign bit and tested, it is not like the sign.

• For numbers with a value of less than 23° (1,073, 741,824), each time you shift one
digit left, it is the same as multiplying by a power of 2. If you shift one bit left, you
multiply by 21; two bits left, you multiply by 22; three bits by 23; and so forth.

UP-8913

Example:

LABEL
1

AOPERATIONA
10 16

SPERRY UNIVAC OS/3
ASSEMBLER

L 8,FULLWORD
SLA 8, l

•
FULLWORD DC F'4543'

10-69

OPERAND

In this example, the content of main storage location FULLWORD is placed in register
8. Register 8 is then shifted one bit position left.

Register 8 before execution of SLA instruction:

lost
bits

After SLA instruction execution:
zero
filled

Note that register 8 contains 4543 before the SLA instruction and 9086 afterwards.
By shifting one bit left, the content of register 8 is multiplied by 2.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-70

SRDA ~

10.26. SHIFT RIGHT DOUBLE (SRDA)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SRDA BE RS

Condition Codes

.IF RESULT=O,SETTOO

.IF RESULT<o.sETTO 1
• IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
0 UNCHANGED

4

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

D PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

• OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The shift right double (SRDA) instruction shifts the 63 bits of operand 1 to the right
the number of bits specified by the low order six bits of the operand 2 address. You
cannot shift the sign bit. Specify the even-numbered register of the pair as operand 1.

Explicit Format

LABEL fl OPERATION Li OPERAND

[symbol] SRDA

Implicit Format

LABEL Li OPE RATION fl OPERAND

[symbol] SRDA

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-71

• Any pair of general registers (0 through 15) can be used as operand 1, which is
an even-numbered register pair. You must specify the even-numbered register of
the pair as operand 1.

• The main storage address or label you specify in operand 2 is not changed by
the SRDA instruction execution. Notice the formats indicate that you cannot
specify a length in operand 2.

• The sign bit (leftmost bit) of the even-numbered operand 1 register pair is not
moved or changed by the execution of this instruction. Only the 63 remaining
bits can be shifted by this instruction.

• After the requested number of bits are shifted-out of the operand 1 register pair,
the vacated leftmost bit positions are filled with bits that have the same value as
the sign bit.

• For positive values, each time you shift one bit position right, it is the same as
dividing by a power of 2. If you shift one bit right, you divide by 21; two bits right, you
divide by 22; three bits by 2a and so forth. When the value is negative, shifting right
causes a divide by 2 on a value one less than the value in the register. For examples,
see SRA instruction.

• When the shift value is zero, it causes a double-length sign and magnitude test,
and the condition code is set.

Example:

LABEL
1

AOPERATIONA
10 16

L 9,FULLWORD
SRDA 8,4

FULLWORD DC F'72688'

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-72

In this example, registers 8 and 9 are shifted four bit positions right. Before the
SRDA instruction, the contents of FULLWORD are placed into register 9.

Before SRDA instruction execution:

Notice that the contents of register 9 before the shift are 72,688, and after shifting
four bits right, it contains 4543 (72,688 divided by 24(16)).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-73
Update B

• SRA

•

•

10.27. SHIFT RIGHT SINGLE (SRA)

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
SRA BA RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT: O,SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED • NONE

The shift right single (SRA) instruction shifts the 31 bits of the operand 1 register to
the right the number of bits specified by the low order six bits of the operand 2
address. You cannot shift the sign bit .

Explicit Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol) SRA r
1

, d2 (b2)

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol) SRA r 1' s2

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-74

Operationa I Considerations:

• Any or the general registers (0 through 15) can be used as operand 1.

• The main storage address or label you specify in operand 2 is not changed by
the SRA instruction execution. Notice the formats indicate that you cannot specify
a length in operand 2.

• The sign bit (leftmost bit) of the operand 1 register is not shifted or changed by
the execution of this instruction. Only the 31 remaining bits can be shifted by
the execution of this instruction.

• After the requested number of bits are shifted out of the operand 1 register, the
vacated leftmost bits are filled with bits that have the same value as the sign bit.

• If the contents of the operand 1 register are a positive value, shifting right one
bit divides the value of the register by 2. Any remainders are rounded downward.
For example, a value of +5 shifted right one bit produces a +2 in the register
after the shift.

Before one bit shift right:

After one bit shift right:

When contents of the operand 1 register are negative, shifting right one bit
causes a divide by 2 on a value one less than the value in the operand 1
register. For example, a value of -5, when shifted right one bit produces a -3
in the register (-6 divided by 2).

Before one bit shift right:

After one bit shift right:

\

•

•

•

....-----------~-~~-------

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-75

Note that a negative is expressed in twos complement notation. After the shifting
operation, you can determine the positive value in the register by taking the twos
complement of a negative number.

-3 (twos complement of +3)

oioooloooo ooooloooo 0000:0000 0000:0011 +3 (twos complement of -3)

Example:

LABEL
I

~OPERATION~

10 16

L 8,FULLWORD
SRA 8, I

FULLWORD DC F'4543'

OPERAND

In this example, the content of main storage location FULLWORD is placed in register
8. Register 8 is then shifted one bit position right.

Register 8 before SRA instruction execution:

0:000:0000 0000:0000 0001:0001

Register 8 after SRA instruction execution:

Note that register 8 contains 4543 before the SRA instruction and 2271 afterwards.
By shifting one bit right, the content of register 8 is divided by 2.

UP-8913

ST

10.28. STORE (ST)

SPERRY UNIVAC OS/3
ASSEMBLER

10-76

~1D!J:.Ji11,C

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

ST 50 RX

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
01F RESULT>o.SETT02
D IF OVERFLOW, SET TO 3
.UNCHANGED

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

Q DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

D EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

Q SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The store (ST) instruction places the contents of the operand 1 register unchanged
into the full word in operand 2.

Explicit Format

LABEL ~OPERATION~ OPERAND

[symbol] ST

Implicit Format:

LABEL ~OPERATION ~ OPERAND

[symbol] ST

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a full word or aligned on a full-word
boundary.

• Unlike most instructions, the ST instruction has operand 1 as the sending field
and operand 2 as the receiving field.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

CHART

40PERATIONA
10 16

L 7,•F'25'

ST 7,CHART+4

DC
DC
DC

F'22'
F'5fJ'
F 1 28 1

...

CHART +4 before execution of ST instruction:

000010000 0000~0000 0000:0000 0011ioo10
i

binary

•
0 I 0 0 I 0 o I 0 3 I 2 hex

..L I

OPERAND

Register 7 before and after execution of ST instruction:

000010000 oooofoooo
_i

~~0000 000111001
i

binary

• 0 I 0 O I 0 0 1 : 9
..1 -1

O I hex

CHART +4 after execution of ST instruction:

ooooioooo ooooToooo 0000~0000 000111001
J _l_ ..J.

binary

T

0 1 0 I 0 0 I 0 0 1 I 9
..1 -1

hex

10-77

In this example, register 7 is loaded with a full-word value of 25. Then the content of
register 7 destroys the content of the second full word in CHART and replaces it with
the content of register 7.

UP-8913

STH

10.29.

SPERRY UNIVAC OS/3
ASSEMBLER

STORE HALF WORD (STH)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

STH 40 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET TO 2 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The store half word (STH) instruction places bits 16 through 31 of the operand 1
register unchanged into the half word in operand 2.

Explicit Format:

LABEL ti OPE RATION ti OPERAND

[symbol] STH

Implicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] STH

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a half word or aligned on a half-word
boundary.

• Unlike most instructions, the STH instruction has operand 1 as the sending field
and operand 2 as the receiving field.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-79
Update B

• Example:

•

•

LABEL
1

AOPERATIONA
10 16

LA 7,HALFBUF
LH 6,=H 1 43 1

CH 6,CONSTANT
BNE ERROR

ERROR STH
A

CONSTANT DC
OS

HALFBUF OS

6,0(7)
7,=F 1 2 1

H1 50 1

0H
CL80

HALFBUF (2) before execution of STH instruction:

ooooioooo

o I 0
_[

0000(0001

0 I 1
L

binary

hex

(leftover data from
previous program)

OPERAND

Register 6 before and after execution of STH instruction:

ooooloooo ooooioooo
_L

o I 0 0 ~ 0
L

0000:0000 0010 11011
..l.

0 I 0 2 I B
J_ .l
~

Bits 16 - 31

binary

hex

HALFBUF (2) after execution of STH instruction:

l

0010T1011 ooooloooo
..l.

binary

O I 0 2 I B hex
I I

In this example, the address of HALFBUF is loaded into register 7, and the half-word
decimal value of 43 is loaded into register 6. Then, the content of register 6 is
compared to the half-word decimal value in CONSTANT. Since the value 43 is less
than 50, the condition code is set to 1 and the branch to the instruction labeled
ERROR takes place. There, bits 16 through 31 of register 6 are stored in the first two
bytes of HALFBUF. A full word of 2 is then added to the address in register 7 which
increases the address by 2 bytes. This makes it possible for the next unequal
condition to be stored in the succeeding two bytes and so on.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

STM •

10.30. STORE MULTIPLE (STM)

General Possible Program Exceptions

0 BJECT
OPCODE FORMAT NST.

TYPE L GTH.

MNEM. HEX. (

STM 90 RS

Condition Codes

D IF A ESU LT = 0, SET TO 0
01F AESULT<O,SETTO 1
01F AESULT>O,SETT02
D IF OVERFLOW, SET TO 3
.UNCHANGED

BYTES)

4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 OP 2 NOT ON HALF-WOAD BOUNDARY

• OP 2 NOT ON FULL-WOAD BOUNDARY

D OP 2 NOT ON DOUBLE-WOAD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The store multiple (STM) instruction places the contents of two or more consecutive
registers (operands 1 and 3) into an equal number of consecutive full words in main
storage (operand 2).

Explicit Format

LABEL /:::.OPERATION/:::. OPERAND

[symbol] STM

Implicit Format:

LABEL /:::.OPERATION/:::. OPERAND

[symbol] STM

The operand 1 register is the first register stored and the operand 3 register is the
last register stored. If operands 1 and 3 are not consecutive, any registers consecutive
to the operand 1 register up to and including the operand 3 register are also
included. If the address of the operand 3 register is less than the address of the
operand 1 register, the register addresses wrap around from 15 to 0. The contents of
the registers are stored in ascending sequence into an equal number of consecutive
full words in main storage starting with the byte addressed by the operand 2 label,
and continuing with as many full words that are needed to receive the contents of

•

the registers specified_ •

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

10-81

• Any of the general registers (0 through 15) can be used as operand 1 and
operand 3.

• Operand 2 must either be defined as a full word or aligned on a full-word boundary.

• If operand 2 does not reference the correct number of full words needed to
receive the contents of all the registers specified, full words consecutive to the
first full word specified by operand 2 are filled until the contents of the operand
3 register has been stored.

• When storing multiple registers, the wraparound concept applies.

• If operand 1 and operand 3 reference the same register, only the contents of that
register is stored in the first full word of operand 2.

Example:

40PERATION4 LABEL
1 10 16

ZAP
CVS
M
STM

OWORO OS
HULTPLYR DC

OWORO,=P'525'
5,0WORO
4,MULTPLYR
4,5,DWORO

0
f '26'

DWORD before execution of STM instruction:

OPERAND

Registers 4 and 5 before and after execution of STM instruction:

Register 4 Register 5 - ~ ------ ./'..... ---
0000 :oooo 0000:0000 0000~0000 ooooioooo 000010000 000010000 001110101 010110010

...L

---------------........,,.---------------------------~..............,----------------operand 1 operand 3

Packed
decimal
number

binary

hex
(decimal
+13,650)

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

DWORD after execution of STM instruction:

0000 10000 0000 I 0000 0000 10000 0000 i 0000 ooooi 0000 ooooi 0000 oo 11i 0101 o 1o1~ 001 o
_L j I

0 I 0 O I 0 o_..11 O O I O 0 I O O I O 3 I 5 5 I 2
i I I i

10-82

binary

hex

In this example, the packed decimal number 525 is added to DWORD which was
previously cleared to zero. Then, the double word in DWORD is converted into its
binary equivalent and the result is placed in register 5. The contents of registers 4
and 5 are then multiplied by the full word in MULTPLYR and the result replaces
registers 4 and 5 as a double-word value. Register 4 (operand 1) and register 5
(operand 3) are stored in the first two full words in DWORD.

•

•

•

UP-8913

10.31. SUBTRACT (S)

SPERRY UNIVAC OS/3
ASSEMBLER

10-83
Update~C.

s

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

s 58 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER J
QUNCHANGED D NONE

The subtract (S) instruction subtracts the contents of the full word in operand 2 from
the contents of the operand 1 register. The difference replaces the operand 1 register.

Explicit Format:

LABEL 6 OPE RATION /:; OPERAND

[symbol] s r1 ,d2
(x

2
,b

2
)

Implicit Format:

LABEL L'IOPERATION /:; OPERAND

[symbol] s r
1

,s
2

(x
2

)

When the actual subtraction takes place, the twos complement form of operand 2 is
added to operand 1. The sign of the result is determined algebraically.

Operational Considerations:

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must be either defined as a full word or aligned on a full-word
boundary .

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

VALUE

AOPERATIONA
10 16

L
s

DC

5.=F'52'
5.VALUE

FI 11 I

Register 5 before execution of S instruction:

000010000 000010000 000010000 001110100 binary
I _L

O I O O I o O I O 3 I 4
j_

hex

OPERAND

VALUE before and after execution of S instruction:

I

000010000 000010000 000010000 0000I1011 binary

0 I 0 0 I 0 0 I 0

.l.

0 I B
j

Register 5 after execution of S instruction:

hex

000010000 000010000 000010000 000010000 binary

O I 0 0 I 0 0 I 0

J

2 I 9
j

hex

10-84

•

•

•

UP-8913

10.32. SUBTRACT (SR)

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

SR 18 RR 2

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT <o. SET TO 1
.IF RESULT>O.SETT02
• 1 F OVERFLOW, SET TO 3
OuNCHANGED

SPERRY UNIVAC OS/3
ASSEMBLER

10-85

SR

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY

D 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract (SR) instruction subtracts the contents of the operand 2 register from the
contents of the operand 1 register and places the difference in the operand 1 register.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] SR r 1 ,r 2

When the actual subtraction takes place, the twos complement form of operand 2 is
added to operand 1. The sign of the result is determined algebraically.

Operational Considerations:

• Any of the general registers can be used as operands 1 and 2.

• This instruction can be used to clear a register by subtracting the content of the
register from itself.

• The subtraction is performed by converting the number in operand 2 (r2) into a
signed twos complement binary number and then algebraically adding it to the
value in operand 1 (r1).

• The maximum fixed-point number that can be contained in a 32-bit register is
2, 147.483,647(231_ 1); the minimum number is -2, 147,483,648(-231). For
decimal numbers outside this range, an overflow condition is produced.

• The contents of operand 2 (r2) are not changed by the subtract (SR) instruction.

UP-8913 SP EARY UNIVAC OS/3
ASSEMBLER

Example:

LABEL
1

HRS
DEDUC
HR SOT
RATE
FLWRD

.:10PERATION.:1
10 16

LM 5,6,HRS
SR 4,4
A 5,HRSOT
M 4,RATE
SR 5,6
ST 5,FLWRD

DC
DC
DC
DC
OS

F1 40 1

F 1 2916 1

F'3'
F 1 350 1

F

Register 4 after execution of fir st SR instruction:

0000,0000 000010000 000010000 00 ooioooo binary

o I o o I o o I O oT 0 hex
_L

Registers 4 and 5 before execu tion of second SR

OPERAND

instruction:

0000,0000 0000:0000 000010000 00 ooToooo ooooToooo 0000:0000 0011T1010

0 I 0 0 I 0 0 I 0 o I 0 0 I 0 oi 0 3 I A
L j ...1

Register 6 before and after exec ution of SR instruction:

000010000 000010000 000011011 0 110 :0100 binary

0 I 0 0 I O 0 I B 61 4 hex

10-86

e

e

1100:1010 binary

Cl A hex

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Registers 4 and 5 after execution of second SR instruction:

ooooioooo 000010000 ooooToooo 000010000 0000:0000 ooooioooo 001011111
__l __l j_

0 l 0 O I O 0 I 0 o I o o I 0 0 l 0 2 I F
_l _l __L __l j_

'10-87

0110lo101 binary

6 l 6 hex

In this example, two full words (starting with the byte addressed by HRS and
including the full word in DEDUC) are loaded into registers 5 and 6. The SR
instruction clears register 4 to zeros and the content of HRSOT is added to the
content of register 5. Register 5 now contains the standard 40 working hours per
week plus any overtime hours. The content of RATE is multiplied by the even-odd
register pair. The product replaces registers 4 and 5 as a double-word value. The
content of register 6 is subtracted from register 5 (since the product is contained in
one register) and the difference replaces register 5. Register .5 now contains one
employee's weekly net pay. The content of register 5 is then stored in FLWRD in
main storage.

UP-8913

SH

SPERRY UNIVAC OS/3
ASSEMBLER

10.33. SUBTRACT HALF WORD (SH)

10-88
IJ 17r1:~ie C:

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

SH 48 RX

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT <o. SET TO 1
• IF RESULT >o. SET TO 2
• IF OVERFLOW, SET TO 3
0UNCHANGED

4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

• FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

0 NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON HALF-WOAD BOUNDARY

0 OP 2 NOT ON FULL-WOAD BOUNDARY

D OP 2 NOT ON DOUBLE-WOAD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The subtract half word (SH) instruction subtracts the contents of the half word in
operand 2 from the contents of the operand 1 register. The difference replaces the
operand 1 register.

Explicit Format

LABEL /::,,OPERATION /::,, OPERAND

[symbol] SH

Implicit Format

LABEL /::,,OPERATION/::,, OPERAND

[symbol] SH

Operand 2 is two bytes in length (a 16-bit signed integer) and is located in main
storage. Before operand 2 is subtracted from operand 1, operand 2 is temporarily
expanded to 32 bits by propagating the sign bit through the high order 16 bit
positions. Then the twos complement of operand 2 is added to operand 1. The
difference replaces the content of the operand 1 register.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

10-89

e Operational Considerations:

e

• Any of the general registers (0 through 15) can be used as operand 1.

• Operand 2 must either be defined as a half word or aligned on a half-word
boundary.

• A fixed-point overflow condition can occur.

• Execution of the SH instruction sets the condition code accordingly.

Example:

LABEL
1

GDACTS

CODECD
BADACTS
VALUEl
YTDACTS

AOPERATIONA
10 16

LA
L
CH
BE
.
.
.
SH
ST
.
.
.
DC
DC
DC
OS

5,2
9,BADACTS
5,CODECD
GDACTS

9,VALUEl
9,YTDACTS

H'2 1

F 1 3 I
H 1 l 1

F

Register 9 before execution of SH instruction:

0000 ~oooo 0000 ioooo 0000 ioooo 0000 :0011 binary
i i + i

0 l 0 0 J 0 0 1 0 0 j 3 hex

OPERAND

VALUE1 before and after execution of SH instruction:

before expansion -------
000010000 ooooloooo ooooloooo 000010001

+ +

--------------~-.....,...---------------after expansion

binary

hex

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

Register 9 after execution of SH instruction:

OOOOJOOOO 000010000 000010000 000010010
i I

binary

hex

10-90

In this example, the decimal value 2 is loaded into register 5 and the content of
BADACTS is loaded into register 9. Then the content of register 5 is compared to the
half-word value of CODECD. Since an equal to condition exists, the condition code is
set to 0. As a result, the following branch to the instruction labeled GDACTS takes
place. There, the half word in VALUE1 is expanded to a 32-bit signed integer, and
the twos complement form of VALUE1 is added to register 9. The difference occupies
register 9 as a full-word value. Finally, the ST instruction stores the contents of
register 9 in YTDACTS located in main storage.

UP-8913

11 .1. INTRODUCTION

SPERRY UNIVAC OS/3
ASSEMBLER

11-1

11. Floating-Point Instructions

The floating-point instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, storing, and sign control of short or long format floating-point
operands. Four double-word floating-point registers are provided to accommodate
storing and loading of results and operands. These registers are numbered 0, 2, 4,
and 6. The specification of any other register number results in a specification
exception. For long format operands, the entire double-word register is involved in the
operation. For short format operands, excluding the product in the short format
multiple (ME) instruction, only the most significant word of the double-word register is
involved in the operation. The least significant word remains unchanged. Separate
instructions are provided for operations with long and short format operands.

Each operand is treated as a floating-point number consisting of a biased exponent
(characteristic) and a signed fraction (mantissa). The biased exponent is expressed in
excess-64 binary notation; the fraction is expressed as a hexadecimal number having an
arithmetic point to the left of the high-order digit. The quantity expressed by the full floating­
point number is the product of the fraction and the number 16 raised to the power of the
biased exponent minus 64 (fraction times 16 n -64).

A quantity may be represented with the greatest precision by a floating-point number
of a given fraction length when the number is in a "normalized" form. A normalized
floating-point number has a nonzero, high order hexadecimal fraction digit.

An exponent overflow exception develops if, in the result of a floating-point
instruction, the characteristic of the result exceeds 127 and the fraction of the result
is not zero. An exponent underflow exception develops if the characteristic is less
than zero and the fraction of the result is not zero. An exponent overflow exception
causes a program interruption. An exponent underflow exception causes a program
interruption if the exponent underflow mask bit of the current PSW is 1.

A floating-point number having a zero characteristic, a zero fraction, and a positive
(zero) sign is said to be a "true zero" number.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-2

The floating-point instructions are available in RR and RX formats. Therefore, at least
one of the operands is contained in one of the floating-point registers. The other
operand is located in the same or another register or in main storage. Each main
storage address may be specified as relative or absolute.

To increase the precision of certain computations, an additional least significant digit,
the guard digit, is carried within the hardware in the intermediate result of the
following operations: add-normalized, subtract-normalized, add-unnormalized, subtract­
unnormalized, compare, halve, and multiply. In the execution of add-normalized,
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare
instructions, when a right shift of the fraction is required to equalize two exponents,
the last hexadecimal digit to be shifted out of the least significant digit position of the
fraction is saved by the processor hardware as the guard digit. The shifted fraction,
including the guard digit, is used in computing the intermediate result. In the halve
instruction, the least significant bit position of the fraction is saved as the most
significant bit position of the guard digit. In the long format multiply instruction, the
guard digit is used in computing the intermediate result. In the halve instruction, the
least significant bit position of the fraction is saved as the most significant bit position
of the guard digit. In the long format multiply instruction, the guard digit is carried as
the fifteenth digit of the fraction of the intermediate product. If the intermediate result
is subsequently normalized, the guard digit is shifted left to become part of the
normalized fraction.

This section describes the operation of each floating-point instruction. The instructions
are arranged in alphabetical order according to mnemonic operation code. Each
description includes a list of the possible program exceptions and condition codes
which may result. (See 2.1, 2.3, 2.6, 5.1, 5.2.12, Appendix C, and Appendix D.)

UP-8913

11.2.

SPERRY UNIVAC OS/3
ASSEMBLER

ADD NORMALIZED, LONG FORMAT (AD)

11-3

Vrd~ie c.

AD

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

AD &A RX 4

Condition Codes

• IF RESULT= 0, SET TO 0
• IF RESULT <o. SET TO 1
• IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
0UNCHANGED

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

• OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The add normalized, long format (AD) instruction causes the contents of the double
word in storage specified by operand 2 to be algebraically added to the contents of
the double-word register specified by operand 1 (r1). The sum is normalized and
placed in the operand 1 (r1) register.

Explicit Format:

LABEL

[symbol)
AD LONG

Implicit Format:

LABEL

[symbol]
AD LONG

~OPE RATION ~

AD
AD

~OPERATION~

AD
AD

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-4

Operational Considerations:

• Floating-Point Addition

Floating-point addition consists of exponent equalization and fraction addition. If
the exponents are equal, the fractions are added to form an intermediate sum. If
the exponents are unequal, the smaller exponent is subtracted from the larger.
The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit
shift to the right causes the exponent to be increased by 1. After equalization,
the fractions are added to form an intermediate sum.

A carry-over digit of the most significant hexadecimal digit pos1t1on of the
intermediate sum causes the intermediate sum to be shifted right one digit
position and the exponent to be increased by 1. If an exponent overflow condition
occurs, the resultant floating-point number consists of a normalized and correct
fraction, a correct sign, and an exponent which is 128 less than the correct
value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most signficant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized
fraction. Vacated least significant digit positions are zero-filled, and the exponent
is reduced by the number of shifts. If normalization is unnecessary, the guard
digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the
current program status word (PSW) is 1, the resultant floating-point number has
a correct and normalized fraction, a correct sign, and an exponent which is 128
more than the current value. If the exponent underflow mask of the current PSW
is zero, the result is a true zero.

• Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of
the current PSW is zero and the intermediate sum is zero, the result is made a
true zero. Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result
with a zero fraction is always positive.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-5

Example:

LABEL
1

AD LONG
FAM

AOPERATIONA
10 16

AD
DC

R4,FAM
D 1 100 1

OPERAND

Before execution of the add normalized, long format (AD) instruction, if we
assume a value of +50 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I 4 ! 2 1 3 I 2 I o

FAM before and after execution:

~' -4~!_2_._!_6~!_4-,--1--j_o__._o_.__j _o~!_o_.__j _o~!_o___.__o~!_o_J_j_o~i_o___._l_o_._o_Jj+100

R4 after execution:

~4_...__2 __.___s _.__6----Ll_o__,__o__._I _o__._! _o__,l....._o __,!'--o __,___o1..! _0---LI _o--'-! _o__LI _o___L__o-.11 +150

UP-8913

ADR

SPERRY UNIVAC OS/3
ASSEMBLER

11-6

lJfL11? D

11.3. ADD NORMALIZED, LONG FORMAT (ADR)

General

OBJE CT
OPCODE FORMAT INST.

TYPE LGTH

MNEM. HEX. (BYT

ADR 2A RR

Condition Codes

• IF RESULT; 0, SET TO 0
• IF RESULT <o. SET TO 1
• IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
0UNCHANGED

2

ES)

Possible Program Exceptions

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The add normalized, long format (ADR) instruction causes the contents of the double­
word register specified by operand 2 (r2) to be algebraically added to the contents of
the double-word register specified by operand 1 (r1). The sum is normalized and
placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL

[symbol]
AD LONG

6. OPERATION 6.

ADR
ADR

Operationa I Considerations:

• Floating-Point Addition

OPERAND

r1 ,r2
R4,R6

Floating-point addition consists of exponent equalization and fraction addition. If
the exponents are equal, the fractions are added to form an intermediate sum. If
the exponents are unequal, the smaller exponent is subtracted from the larger.
The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having a smaller exponent. Each hexadecimal digit shift
to the right causes the exponent to be increased by 1. After equalization, the
fractions are added to form an intermediate sum.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-7

A carry-over digit of the most significant hexadecimal digit position of the
intermediate sum causes the intermediate sum to be shifted right one digit
position and the exponent to be increased by 1. If an exponent overflow condition
occurs, the resultant floating-point number consists of a normalized and correct
fraction, a correct sign, and an exponent which is 128 less than the correct
value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized
fraction. Vacated least significant digit positions are zero-filled, and the exponent
is reduced by the number of shifts. If normalization is unnecessary, the guard
digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the
current program status word (PSW) is 1, the resultant floating-point number has
a correct and normalized fraction, a correct sign, and an exponent which is 128
more than the correct value. If the exponent underflow mask of the current PSW
is zero, the result is a true zero.

• Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of
the current PSW is zero and the intermediate sum is zero, the result is made a
true zero. Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result
with a zero fraction is always positive.

Example:

LABEL
1

AOPERATIONA
10 16

ADLONG ADR R4,R6

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-8

Before execution of the add normalized, long format (ADR) instruction, if we
assume a value of +50 in R4 and +100 in R6, the contents of the R4 and R6
will be:

R4 before execution:

1 4 1 2 I 3 ! 2 1 o l o I o 0!0!+50

R6 before and after execution:

o ! o I +100

R4 after execution:

L...-4 _J!L-2 -L.j _s___i.__s-.L-j _o -L-o___._! _o___._! _o _.__o _._! _· o___._! _o__.___o l _o__._i _o__._I _o _.____.o J +150

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-9

AE

11.4. ADD NORMALIZED, SHORT FORMAT (AE)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AE 7A RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

The add normalized, short format (AE) instruction causes the contents of the full word
in storage specified by operand 2 to be algebraically added to the contents of a full
word in the register specified by operand 1 (r1). The sum is normalized and placed in
the full word in the operand 1 (r1) register.

Explicit Format:

LABEL

[symbol]
ADSHORT

Implicit Format:

LABEL

[symbol
ADSHORT

6 OPERATION fl

AE
AE

6 OPE RATION 6

AE
AE

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-10

Operational Considerations:

• Floating-Point Addition

Floating-point addition consists of exponent equalization and fraction addition. If
the exponents are equal, the fractions are added to form an intermediate sum. If
the exponents are unequal, the smaller exponent is subtracted from the larger.
The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit
shift to the right causes the exponent to be increased by 1. After equalization,
the fractions are added to form an intermediate sum.

A carry-over of the most significant hexadecimal digit position of the intermediate
sum causes the intermediate sum to be shifted right one digit position and the
exponent to be increased by 1. If an exponent overflow condition occurs, the
resultant floating-point number consists of a normalized and correct fraction, a
correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized
fraction. Vacated least significant digit positions are zero-filled and the exponent
is reduced by the number of shifts. If normalization is unnecessary, the guard
digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the
current program status word (PSW) is 1, the resultant floating-point number has
a correct and normalized fraction, a correct sign, and an exponent which is 128
more than the correct value. If the exponent underflow mask of the current PSW
is zero, the result is a true zero.

• Zero Resu It

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of
the current PSW is zero and the intermediate sum is zero, the result is made a
true zero. Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result
with a zero fraction is always positive.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-11

Example:

AOPERATIONA LABEL
1 10 16

ADSHORT AE
FAM DC

R4,FAM
EI 100'

OPERAND

Before execution of the add normalized, short format (AE) instruction, if we
assume a value of +50 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I 4 l 2 I 3 l 2 I 0 0 I 0 ! 0 I +50

FAM before and after execution:

I 4 ! 2 I 6 ! 4 I 0 0 I 0 I 0 I +100

R4 after execution:

4 ! 2 9 ! 6 I 0 0 I 0 ! 0 I +150

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-12
Ll_r_,.l;:Ie C:

AER 9

11.5. ADD NORMALIZED, SHORT FORMAT (AER)

General

OBJ ECT
OPCODE FORMAT INST

TYPE LGT H.

MNEM. HEX. (BYT

AER 3A RR

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1
• IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
OuNCHANGED

2

ES)

Possible Program Exceptions

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

• SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

The add normalized, short format (AER) instruction causes the contents of a full word
in the register specified by operand 2 (r2) to be algebraically added to a full word in
the register specified by operand 1 (r1). The sum is normalized and placed in the
operand 1 (r,) register.

Explicit and Implicit Format:

LABEL

[symbol]
AD SHORT

LlOPERATION Ll

AER
AER

Operational Considerations:

• Floating-Point Addition

OPERAND

r 1,r2
R2,R4

Floating-point addition consists of exponent equalization and fraction addition. If
the exponents are equal, the fractions are added to form an intermediate sum. If
the exponents are unequal, the smaller exponent is subtracted from the larger.
The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit
shift to the right causes the exponent to be increased by 1. After equalization,
the fractions are added to form an intermediate sum.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-13

A carry-over digit of the most significant hexadecimal digit position of the
intermediate sum causes the intermediate sum to be shifted right one digit
position and the exponent to be increased by 1. If an exponent overflow condition
occurs, the resultant floating-point number consists of a normalized and correct
fraction, a correct sign, and an exponent which is 128 less than the correct
value.

• Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a
possible carry-over digit. If any most significant digits of the intermediate sum are
zero, the fraction including the guard digit is shifted left to form a normalized
fraction. Vacated least significant digit positions are zero-filled and the exponent
is reduced by the number of shifts. If normalization is unnecessary, the guard
digit is lost.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent
underflow condition results. If the exponent underflow mask bit (38) of the
current program status word (PSW) is 1, the resultant floating-point number has
a correct and normalized fraction, a correct sign, and an exponent which is 128
more than the correct value. If the exponent underflow mask of the current PSW
is zero, the result is a true zero.

• Zero Resu It

If the intermediate sum, including the guard digit, is zero, a significance exception
exists. If the significance mask bit (39) of the current PSW is 1, the result is not
normalized and the exponent remains unchanged. If the significance mask bit of
the current PSW is zero and the intermediate sum is zero, the result is made a
true zero. Exponent underflow cannot occur for a zero fraction.

• The sign of an arithmetic result is determined algebraically. The sign of a result
with a zero fraction is always positive.

Example:

LABEL
1

AOPERATIONA
10 16

ADSHORT AER R2,R4

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-14

Before execution of the add normalized, short format (AER) instruction, if we
assume a value of +50 in R2 and +100 in R4, contents of R2 and R4 will be:

R2 before execution:

+50

R4 before and after execution:

I 4 ! 2 I 6 ! 4 1 o +100

R2 after execution:

4 ! 2 1 9 ! 6 I o +150

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-15
L~f~,:i~c. C

AU

11.6. ADD UNNORMALIZED, SHORT FORMAT (AU)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AU 7E RX 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The add unnormalized, short format (AU) instruction causes the contents of the full
word in storage specified by operand 2 to be algebraically added to the contents of a
full word in the register specified by operand 1 (r1). The sum is placed in the operand
1 (r1) register.

Explicit Format

LABEL

[symbol]
ADSHORT

Implicit Format:

LABEL

[symbol]
ADSHORT

b. OPERATION b.

AU
AU

b. OPERATION b.

AU
AU

Operational Consideration:

r 1 ,d2 (x2 ,b2)

R4,50(R7,R8)

. r 1 ,s2 (x2)

R4,FAM

OPERAND

OPERAND

• The execution of the AU instruction is identical to the AE instruction (11.4)
except that the sum is not normalized before being placed in operand 1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-16

Example:

LABEL
1

AOPERATIONA
10 16

ADSHORT AU
FAM DC

OPERAND

Before execution of the add unnormalized, short format (AU) instruction, if we
assume a value of +900 in R4, the contents of R4 and main storage area FAM
will be:

R4 before execution:

I
0 I I 4 I 4 I 0 ! 3 I 8 I 4 0 I

I
+900

FAM before and after execution:

I 4 ! 2 I 6 ! 4 I 0 0 I 0 l 0 I +100

R4 after execution:

4 I 4 0 I 3 I E : 8 0 ! 0 I +1000

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-17

Urd;;ie..C

AUR

11.7. ADD UNNORMALIZED, SHORT FORMAT (AUR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AUR 3E RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IFRESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
• IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

The add unnormalized, short format (AUR) instruction causes the contents of a full
word in the register specified by operand 2 (r2) to be algebraically added to a full
word in the register specified by operand 1 (r1). The sum is placed in the operand 1
(r1) register.

Explicit and Implicit Format:

LABEL

[symbol]
AD SHORT

/:::.OPE RATION /:::.

AUR
AUR

Operational Consideration:

OPERAND

r 1 ,r 2
R2,R4

• The execution of the AUR instruction is identical to the AER instruction (11.5),
except that the sum is not normalized before being placed in operand 1.

Example:

LABEL
1

AOPERATIONA
10 16

ADSHORT AUR R2,R4

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-18

Before execution of the add unnormalized, short format (AUR) instruction, if we
assume a value of +900 in R2 and +100 in R4, the contents of R2 and R4 will
be:

R2 before execution:

I 4 ! 4 I 0 ! 3 I 8 ! 4 I 0 ! 0 +900

R4 before and after execution:

I 4 ! 4 I 0 ! 0 6 ! 4 I 0 ! 0 +100

R2 after execution:

I
8 I ! 0 4 i 4 I 0 ! 3 I E I 0

I
+1000

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

AW

11.8. ADD UNNORMALIZED, LONG FORMAT (AW)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AW 6E RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OV'ERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 D
.IF RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The add unnormalized, long format (AW) instruction causes the contents of a double
word in storage specified by operand 2 to be algebraically added to the contents of
the double word in the register specified by operand 1 (r1). The sum is placed in the
double word in the register specified by operand 1 (r1).

Explicit Format:

LABEL

[symbol]
AD LONG

Implicit Format:

LABEL

[symbol]
AD LONG

ti OPERATION .6

AW
AW

ti OPERATION .6

AW
AW

Operational Consideration:

r 1 ,d2 (x2 ,b2)
R4,50(R7,R8)

OPERAND

OPERAND

• The execution of the AW instruction is identical to the AD instruction (11.2)
except that the sum is not normalized before being placed in operand 1 (r1).

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-20

Example:

~OPERATIO~ LABEL
1 10 16

ADLONG AW
FAM DC

Before execution of

R4,FAM
o• 100•

the add

OPERAND

unnormalized, long format (AW) instruction, if we
assume a value of +900 ,in R4, the contents of R4 and storage area FAM will
be:

R4 before execution:

I 4 l 4 I 0 ! 3 I 8 l 4 I 0 ! 0 I 0 0 I 0 ! 0 I 0 i 0 I 0 o I +900

FAM before and after execution:

I 4 ! 2 I 6 i 4 I 0 ! 0 I 0 ! 0 I 0 ! 0 0 ! 0 I 0 ! 0 I o o I +100

R4 after execution:

I 4 4 I 0 ! 3 E ! 8 I 0 l 0 I 0 ! 0 0 ! 0 I 0 ! 0 I 0 o I +1000

e

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

AWR

11.9. ADD UNNORMALIZED, LONG FORMAT (AWR)

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AWR 2E RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

The add unnormalized, long format (AWR) instruction causes the contents of the double­
word register specified by operand 2 (r2) to be algebraically added to the double-word
contents of operand 1 (r1). The sum is placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL

[symbol]
AD LONG

/:::,.OPERATION /:::,.

AWR
AWR

Operational Consideration:

OPERAND

r 1 ,r 2
R4,R6

• The execution of the AWR instruction is identical to the ADR instruction (11.3) except
that the sum is not normalized before being placed in operand 1 (r1).

Example:

LABEL
1

AD LONG

.6.0PERATIONA OPERAND
10 16

AWR R4,R6

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-22

Before execution of the add unnormalized, long format (AWR) instruction, if we
assume a value of +900 in R4 and +100 in R6, the contents of R4 and R6 will be:

R4 before execution:

~I 4___.__!_4~j_o--1..-l_3~'-s~!_4____._jo~l_o~j_o__._o___.__j_o~i_o~j~o~!_o~l_o-J-_,oj~oo

R6 before and after execution:

~' -4~1_4~j_o-'-i_o_._-s_,_!_4~'-o__.._!_o~l_o__.__o~l_o~i_o_,_l_o~!_o~l_o_._o~l+100

R4 after execution:

0 0 0 o l o I +1000

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11.10. COMPARE, LONG FORMAT (CD)

CD

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CD 69 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <OP2, SET TO 1 0
• IF OPI >OP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The compare, long format (CD) instruction causes the contents of a double word in the
register specified by operand 1 (r 1) to be algebraically compared with the contents of a
double word in storage specified by operand 2. The condition code is set by this
instruction.

Explicit Format:

LABEL

[symbol]
COMPAR

Implicit Format:

LABEL

[symbol]
COMPAR

~OPE RATION ~

CD
CD

~OPERATION~

CD
CD

r 1 ,d2 (x2 ,b2)
R2,50(R7,R9)

OPERAND

OPERAND

UP-8913

Operational Considerations:

SPERRY UNIVAC OS/3
ASSEMBLER

11-24

~',,J;i/2- c

{I ..,-j.

• Comparison is accomplished by the rules for normalized ~point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

Examples:

~OPERATION~ LABEL
1 10 16

COMPAR 1 CD
COMPAR2 CD
COMPAR3 CD
FAM3 DC
FAM32 DC
FAM33 DC

R2,FAM3
R2,FAM32
R2,FAM33
D'3'
D'32'
D'33'

OPERAND

Before execution of the compare, long format (CD) instruction, if we assume a value
of +32 in R2, then:

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11.11. COMPARE, LONG FORMAT (CDR)

CDR

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CDR 29 RR 2 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 0
• IF OPI >oP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 0 OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

The compare, long format (CDR) instruction causes the contents of a double word in the
register specified by operand 1 (r,) to be algebraically compared with the contents of a
double word in the register specified by operand 2 (r2). The condition code is set by this
instruction.

Explicit and Implicit Format:

LABEL

[symbol]
COMP AR

fl OPERATION fl

CDR
CDR

Qperationa I Considerations:

OPERAND

r1 ,r2
R2,R6

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-26

Examples:

LABEL .AOPERATION~
1 10 16

COMPARl CDR
COMPAR2 CDR
COMPAR3 CDR

R2,R6
R2,R4
R2,R0

OPERAND

Before execution of the compare, long format (CDR) instruction, if we assume values
of +32 in R2, +33 in R6, +32 in R4, and +o in RO, then:

• Example 1 will set a condition code of 1.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 2.

e

e

e

UP-891 3 SPERRY UNNAC OS/3
ASSEMBLER

1 1.12. COMPARE, SHORT FORMAT (CE)

11-27
'. ·1 r LprJ;;; c. ~

CE

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

CE 79 RX

Condition Codes

• IF OPI = OP2, SET TO 0
• IF OPI <0P2, SET TO 1
• IF OPI >OP2, SET TO 2
01F OVERFLOW, SET TO 3
OuNcHANGED

4

• ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

0 EXECUTE

0 EXPONENT OVERFLOW

0 EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

0 FIXED-POINT OVERFLOW

0 FLOATING-POINT DIVIDE

0 OPERATION

• PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

•. NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

T he compare, short format (CE) instruction causes the contents of a full word in the
egister specified by operand 1 (r1) to be algebraically compared with the contents of a full
ord in storage specified by operand 2. The condition code is set by this instruction.

r
w

E xplicit Format:

LABEL

[symbol]
COMP AR

I mplicit Format:

LABEL

[symbol]
COMP AR

!:!. OPERATION !:!.

CE
CE

l:!. OPE RATION !:!.

CE
CE

r 1 ,d2 (x2 ,b2)
R2,50(R5,R7)

OPERAND

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-28 .

Upd::i'k~ C

Operationa I Considerations:

• Comparison is accomplished by the rules for normalized 12~:~~!~iint subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand is greater than operand 2.

Code 3 is not used.

Examples:

AOPERATIONA LABEL
1 10 16

COMPARl CE
COMPAR2 CE
COMPAR3 CE
FAM) DC
FAM32 DC
FAM33 DC

R2,FAM3
R2,FAM32
R2,FAM33
E'3'
E'32'
E'33'

OPERAND

Before execution of the compare, short format (CE) instructions, if we assume a value
of +32 in R2, then:

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11.13. COMPARE, SHORT FORMAT (CER)

11-29
., 'I C ur,J;J,e

CER

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST,

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CEA 39 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPI = OP2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPI <oP2, SET TO 1 0
• IF OPI > OP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED D NONE

The compare, short format (CER) instruction causes the full-word contents of the register
specified by operand 1 (r1) to be algebraically compared with the contents of a full word in
the register specified by operand 2 (r2). The condition code is set by this instruction.

Explicit and Implicit Format:

LABEL

[symbol]
COMP AR

~OPERATION /:l

CER
CER

Operationa I Considerations:

OPERAND

r 1,r2
R4,R6

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The
operands are equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents
are different.

• The condition code is set:

to zero when operand 1 equals operand 2;

to 1 when operand 1 is less than operand 2; and

to 2 when operand 1 is greater than operand 2.

Code 3 is not used.

UP-8913

Examples:

LABEL aOPERATIONa
I 10 16

COHPARI CER
COHPAR2 CER
COHPAR3 CER

R4, R((J
R4,R2
R4,R6

SPERRY UNIVAC OS/3
ASSEMBLER

OPERAND

11-30

Before execution of the compare, short format (CER) instructions, if we assume values
of +32 in R4, +3 in RO, +32 in R2, and +33 in R6, then:

• Example 1 will set a condition code of 2.

• Example 2 will set a condition code of zero.

• Example 3 will set a condition code of 1 .

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-31
l l 'i ~ I.Jr";; !e, (,

DD

11.14. DIVIDE, LONG FORMAT (DD)

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX, (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DD 6D RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes .• EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O.SETT02 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

The divide, long format (DD) instruction causes the double-word contents of the operand 1
(r1) register to be divided by the contents of the double word in storage specified by
operand 2. The normalized quotient is placed in the register specified by operand 1 (r1).

Any remainder is not preserved.

Explicit Format:

LABEL

[symbol]
DIV LONG

Implicit Format:

LABEL

[symbol]
DIV LONG

/::::,,OPERATION /::::,,

DD
DD

/::::,,OPERATION/::::,,

DD
DD

r 1 ,d2 (x2 ,b2)
R4,33(R7,R10)

r
1

,s
2

(x
2

)

R4,FAM

OPERAND

OPERAND

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-32

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r1) fraction digits are used in forming the quotient, even if the normalized
operand 1 fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results.
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a
program interrupt if the exponent underflow mask bit of the current PSW is 1.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged,
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

LABEL
1

.:10PERATION.:1
10 16

DIVIDLG DD
FAM DC

Rl+,FAM
D'5'

OPERAND

Before execution of the divide, long format (DD) instruction, if we assume a value of
+1000 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

...._4__.~3__._~3__.__E__..__s__.~o_.__o~~!-o__,.__o_._~o--'-l-o__.!~o__..l~o-'-!-o~~l-o__.~o-11+1000

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

FAM before and after execution:

I 4 ! 1 I 5 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0

R4 after execution:

I 4 2 I c ! 8 I 0 ! 0 I 0 i 0 ·I 0 i 0

11-33

0 ! 0 I 0 ! 0 I 0 ! o j+s

0 ! 0 I 0 ! 0 I 0 ! 0 j+200

UP-8913

DOR

SPERRY UNIVAC OS/3
ASSEMBLER

11.15. DIVIDE, LONG FORMAT (DOR)

11-34

Vrd,de C

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

DOR 20 RR

Condition Codes

0 IF RESULT: 0, SET TO 0
D IF RESULT <o. SET To 1
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

2

0 ADDRESSING

D DATA (INVALID SIGN/DIGIT)

0 DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

• FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The divide, long format (DOR) instruction causes the double-word contents of the operand
1 (r1) register to be divided by the double-word contents of the operand 2 (r2) register. The
normalized quotient is placed in the operand 1 (r1) register. Any remainder is not
preserved.

Explicit and Implicit Format:

LABEL

[symbol]
DIV LONG

b.OPERATION b.

DOR
DOR

Operational Considerations:

OPERAND

r 1,r2
R2,R6

• Floating-point division consists of exponent .subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64_

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift or one digit position may be required_
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r1) fraction digits are used in forming the quotient even if the normalized
operand 1 (r1) fraction is larger than the normalized operand 2 (r2) fraction.

• If the final quotient exponent exceeds 127, an exponent overflow results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which
is 128 less than the correct value.

-

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-35

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged,
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

't

Example:

LABEL
1

AOPERATIONd
10 16

DIVIDLG DOR R2,R6

OPERAND

Before execution of the divide, long format (DOR) instruction, if we assume values of
+1000 in R2 and +5 in R6, the contents of R2 and R6 will be:

R2 before execution:

I 4 l 3 I 3 ! E I a ! 0 I 0 ! 0 I 0 i 0 0 i 0 I 0 ! 0 I o o I +1000

R6 before and after execution:

I 4 l 1 I 5 ! 0 I 0 i 0 I 0 i 0 I 0 l 0 0 i 0 I 0 l 0 I o o I +5

R2 after execution:

I 0 I 0 I 0
I i 0 I 0 0 ! 0 I ! 0 I 0 o I +200 4 2 c 8 I 0 0
I

UP-8913

DE

11.16.

SPERRY UNIVAC OS/3
ASSEMBLER

DIVIDE, SHORT FORMAT (DE)

11-36
·J · t r U..t.!I;. ~ '-'

l

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

DE 70 RX

Condition Codes

D IF RESULT= 0, SET TO 0
0 IF RESULT <o. SET TO 1

01F RESULT>O,SETT02
0 IF OVERFLOW, SET TO 3
.UNCHANGED

4

• ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

• FLOATING-POINT DIVIDE

D OPERATION

• PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

• OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The divide, short format (DE) instruction causes the full-word contents of the operand 1 (r,)
register to be divided by the full-word contents of a full word in storage specified by
operand 2. The normalized quotient is placed in a full word in the operand 1 (r1) register.
Any remainder is not preserved.

Explicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] DE r 1 ,d2 (x2 ,b2)
DIVSHORT DE R4,32(R8,R9)

Implicit Format:

LABEL t. OPERATION t. OPERAND

[symbol] DE r 1 ,s2 (x2)
DIVSHORT DE R4,FAM

Operational Considerations:

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-37

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r1) fraction digits are used in forming the quotient even if the normalized
operand 1 (r1) fraction is larger than the normalized operand 2 fraction.

• If the final quotient exponent exceeds 127, an exponent overflow exception results.
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

AOPERATIONA LABEL
1 10 16

DIVIDESH DE
FAM DC

R4,FAM
E'5'

OPERAND

Before execution of the divide, short format (DE) instruction, if we assume a value of
+1000 in R4, the contents of R4 and storage area FAM will be:

R4 before execution:

I 4 i 3 I 3 i E I 8 i 0 I 0 : 0 I +1000

FAM before and after execution:

I

I I i I
4 I 1 5 0 0 0 0 I 0 +5

I I

R4 after execution:

I 4 2 I c i 8 I 0 0 I 0 l 0 +200

UP-8913

DER

SPERRY UNIVAC OS/3
ASSEMBLER

11.17. DIVIDE, SHORT FORMAT (DER)

11-38

L~i-1\e_ {

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

DER 30 RR

Condition Codes

D IF RESULT= o. SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o. SET TO 2
Q1F OVERFLOW, SET TO 3
.UNCHANGED

2

0 ADDRESSING

0 DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

0 DECIMAL OVERFLOW

D EXECUTE

• EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

0 FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

• FLOATING-POINT DIVIDE

0 OPERATION

0 PROTECTION

0 SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

0 OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The divide, short format (DER) instruction causes the full-word contents of the operand 1
(r1) register to be divided by the full-word contents of the operand 2 (r2) register. The
normalized quotient is placed in a full word in the operand 1 (r1) register. Any remainder is
not preserved.

Explicit and Implicit Format:

LABEL L\OPE~ATION Ll

[symbol] DER
DIVSHORT DER

Operational Considerations:

OPERAND

r1,r2
R4,R6

• Floating-point division consists of exponent subtraction and fraction division. The
intermediate quotient exponent is obtained by subtracting the exponents of the two
operands and increasing the difference by 64.

• Both operands are normalized before division. Consequently, the intermediate
quotient is correctly normalized or a right shift of one digit position may be required.
The exponent of the intermediate result is increased by 1 if the shift is necessary. All
operand 1 (r1) fraction digits are used in forming the quotient even if the normalized
operand 1 (r1) fraction is larger than the normalized operand 2 (r2) fraction.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-39

• If the final quotient exponent exceeds 127, an exponent overflow exception results.
The quotient consists of the correct and normalized fraction, a correct sign, and an
exponent which is 128 less than the correct value.

• If the final quotient exponent is less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current PSW is 1, the quotient has a
correct and normalized fraction, a correct sign, and an exponent which is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is zero,
the result is made a true zero. Underflow does not apply to the intermediate result or
the operands during normalization.

• Attempted division by a divisor with a zero fraction leaves the dividend unchanged
and a program exception for floating-point divide occurs. When division of a zero
dividend is attempted, the quotient fraction is zero. The quotient sign and exponent
are made zero and give a true zero result. No program exceptions occur.

Example:

LABEL
1

.:10PERATION.:1
10 16

DIVIDESH DER R4,R6

OPERAND

Before execution of the divide, short format (DER) instruction, if we assume values of
+1000 in R4 and +5 in R6, the contents of R4 and R6 will be:

R4 before execution:

I 4 i 3 I 3 i E I 8 ! 0 I 0 ! 0 +1000

R6 before and after execution:

I 4 I 1 I 5 ! 0 I 0 0 I 0 ! 0 +5

R4 after execution:

I 4 ! 2 c ! 8 I 0 0 I 0 ! 0 +200

UP-8913

HOR

SPERRY UNIVAC OS/3
ASSEMBLER

11.18. HALVE, LONG FORMAT (HOR)

11-40

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX. (BYTES)

HOR 24 RR

Condition Codes

D IF RESULT= o. SET TO 0
01F RESULT<O.SETTO 1

01F RESULT>O.SETT02

0 IF OVERFLOW, SET TO 3

.UNCHANGED

2

D ADDRESSING

D DATA (INVALID SIGN/DIGIT)

D DECIMAL DIVIDE

D DECIMAL OVERFLOW

D EXECUTE

D EXPONENT OVERFLOW

• EXPONENT UNDERFLOW

D FIXED-POINT DIVIDE

D FIXED-POINT OVERFLOW

D FLOATING-POINT DIVIDE

D OPERATION

D PROTECTION

D SIGNIFICANCE

• SPECIFICATION:

• NOT A FLOATING-POINT REGISTER

0 OP 1 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON HALF-WORD BOUNDARY

0 OP 2 NOT ON FULL-WORD BOUNDARY

D OP 2 NOT ON DOUBLE-WORD
BOUNDARY

0 OP 1 NOT EVEN NUMBERED REGISTER

0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

The halve, long format (HOR) instruction causes the double-word contents of the operand
2 (r2) register to be divided by 2. The normalized quotient is placed in the double-word
operand 1 (r1) register.

Explicit and Implicit Format:

LABEL

[symbol]
HALVE

bi OPERATION bi

HOR
HOR

Operational Considerations:

OPERAND

r1 ,r2
R4,R6

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit
of the fraction is placed into the most significant bit position of the guard digit, and
the vacated fraction bit position is filled with a zero. The intermediate result is
normalized and placed in the operand 1 (r,) location.

• When normalization causes the exponent to become less than zero, an exponent
underflow condition exists. If the exponent underflow mask bit of the current program
status word (PSW) is 1, the exponent of the result is 128 greater than the correct
value. If the exponent underflow mask bit of the current PSW is zero, the result is
made true zero.

• When the fraction of operand 2 (r2) is zero, the result is made a true zero, a
normalization is not attempted, and a significance exception does not occur.

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-41

Example:

LABEL
1

HALF

AOPERATIONA OPERAND
10 16

HOR R4,R6

Before execution of the halve, long format (HOR) instruction, if we assume values of
+o in R4 and +1000 in R6, the contents of R4 and R6 will be:

R4 before execution:

I ! 0 I I I 0 I ! 0 0 i I 0 i 0 I i 0 I 0 0 I +O 0 0 I 0 0 0 0 0
I

R6 before and after execution:

I 4 l 3 I 3 i E I 8 ! 0 I 0 ! 0 I 0 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I +1000

R4 after execution:

I 4 l 3 I 1 l F I 4 0 I 0 i 0 0 ! 0 I 0 l 0 I 0 ! 0 I 0 I 0 I +500

UP-8913 SPERRY UNIVAC OS/3
ASSEMBLER

11-42

:Jpd;ii~ c

HER 9

11.19. HALVE, SHORT FORMAT (HER)

General Possible Program Exceptions

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.

MNEM. HEX (BYTES)

HER 34 RR

Con dition Codes

D 1F RESULT= a, SET TO a
01F RESULT<O,SETTO 1

D1F RESULT>O,SETT02
D IF OVERFLOW, SET TO 3
.UNCHANGED

2

~~~~~~~~~ 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

• EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

0 OPERATION 

D PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The halve, short format (HER) instruction causes the full-word contents of the operand 2 
• (r2) register to be divided by 2. The normalized quotient is placed in the full word in the 

operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
HALVE 

b.OPERATION b. 

HER 
HER 

Operational Considerations: 

OPERAND 

rl ,r2 
R4,R6 

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit 
of the fraction is placed into the most significant bit position of the guard digit, and 
the vacated fraction bit position is filled with a zero. The intermediate result is 
normalized and placed in the operand 1 (r1) location. 

• When normalization causes the exponent to become less than zero, an exponent 
underflow condition exists. If the exponent underflow mask bit of the current program 
status word (PSW) is 1, the exponent of the result is 128 greater than the correct 
value. If the exponent underflow mask bit of the current PSW is zero, the result is 
made true zero. 

• When the fraction of operand 2 (r2) is zero, the result is made a true zero, 
normalization is not attempted, and a significance exception does not occur. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-43 

Example: 

LABEL 
1 

HALF 

dOPERATIONd OPERAND 
10 16 

HER R4,R6 

Before execution of the halve, short format (HER) instruction, if we assume values of 
+1000 in R4 and +o in R6, the contents of R6 and R4 will be: 

R4 before execution: 

I 0 i 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I +o 

R6 before and after execution: 

I 4 I 3 I 3 i E I a 0 I 0 l 0 I +1000 

R4 after execution: 

I 4 l 3 I 1 l F I 4 0 I 0 ! 0 I +500 



UP-8913 

LCDR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-44 
· r ··t ,, 
'-P~lri .e. L 

11.20. LOAD COMPLEMENT, LONG FORMAT (LCDR) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LCDR 23 RR 2 D EXECUTE D OP 1 NOT ON HALF·WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 D 
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The load complement, long format (LCDR) instruction causes the sign of the double-word 
contents of the operand 2 (r2) register to be reversed. The result is placed in the double 
word in the operand 1 (r,) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SIGN 

~OPERATION~ 

LCDR 
LCDR 

Operational Considerations: 

r1 ,r2 
R6,R4 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; 

to 1 if result is less than zero; and 

to 2 if result is greater than zero. 

Code 3 is not used. 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-45 

Example: 

LABEL 
I 

SIGN 

.::lOPERATION.::l OPERAND 
I 0 16 

LCDR R6,R4 

Before execution of the load complement, long format (LCDR) instruction, if we 
assume values of +1000 in R4 and +O in R6, the contents of R6 and R4 will be: 

R6 before execution: 
18 

R4 before and after execution: 

~' _4__.l..__3___.1~3__._i_E~..__s__.~o_._~o__.__o__,..__o_,_~o_.__o~..__o__.~o-'-~o-'-l-o---l!....-o_,1+1000 

R6 after execution: 

a I o ! o o I o I o I o I o l o I o ! o 1-1000 



UP-8913 

LCER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-46 

iJ dJe[ 

11.21. LOAD COMPLEMENT, SHORT FORMAT (LCER) 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LCER 33 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 0 
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

0UNCHANGED 0 NONE 

The load complement, short format (LCER) instruction causes the sign of the full-word 
contents of the operand 2 (r2) register to be reversed. The result is placed in the full word 
in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SIGN 

"1 OPERATION "1 

LCER 
LCER 

Operational Considerations: 

r1 ,r2 
R6,R4 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; 

to 1 if result is less than 0; and 

to 2 if result is greater than zero. 

Code 3 is not used. 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-47 

Example: 

LABEL 
1 

SIGN 

dOPERATIONd OPERAND 
10 16 

LCER R6,R4 

Before execution of the load complement, short format (LCER) instruction, if we 
assume values of +1000 in R4 and +o in R6, the contents of R6 and R4 will be: 

R6 before execution: 

I 0 ! 0 I 0 l 0 I 0 0 I 0 ! 0 +o 

R4 before and after execution: 

I 4 ! 3 I 3 ! E I s 0 I 0 ! 0 +1000 

R6 after execution: 

c ! 3 I 3 i E I 8 0 I 0 ! 0 -1000 



UP-8913 

LO 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.22. LOAD, LONG FORMAT (LO) 

11-48 ., t ' t.:r1J:: ·e-L 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HE.X. (BYTES) 

LO 68 RX 

Condition Codes 

D IF RESULT = 0, SET TO 0 
01F RESULT<O.SETTO 1 
D IF RESULT >o. SET TO 2 
D IF OVERFLOW, SET TO 3 
.UNCHANGED 

4 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

• OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The load, long format (LO) instruction causes the contents of a double word in storage 
specified by operand 2 to be placed in the double word in the operand 1 (r,) register. 

Explicit Format: 

LABEL 

[symbol] 
LOAD 

Implicit Format: 

LABEL 

[symbol] 
LOAD 

Do OPERATION Ll 

LO 
LO 

LlOPERATION Ll 

LO 
LO 

Operationa I Consideration: 

r 1 ,d2 (x2 ,b2 ) 
R4,33(R8,R9) 

• The contents of operand 2 remain unchanged. 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-49 

Example: 

LABEL 
1 

LOAD 
FAM 

t.OPERATIONt. 
10 16 

LO 
DC 

R4,FAM 
DI 15" I 

OPERAND 

Before execution of the load, long format (LO) instruction, if we assume a value of +O 
in R4, the contents of R4 an_.9 main storage area FAM will be: 

R4 before execution: 

I 0 I I I ! 0 l I +O l I I 
0 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 

I I 

FAM before and after execution: 

I 4 I +150 i I I I I 
2 9 I 6 0 0 0 I 0 0 I 0 0 0 0 0 0 0 I I I 

R4 after execution: 

I 4 l 2 I 9 ! 6 0 i 0 I 0 ! 0 0 ! 0 I 0 l 0 I 0 : 0 0 l 0 I +150 



UP-8913 

LOR 

11.23. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LOAD, LONG FORMAT (LOR) 

11-50 

L_k~jie C 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LDR 28 RR 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

2 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

D EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The load, long format (LOR) instruction causes the contents of the double word in the 
operand 2 (r2 ) register to be placed in the double word in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
LOAD 

b.OPER~TION t. 

LOR 
LOR 

Operational Consideration: 

OPERAND 

r1,r2 
R6,R4 

• The contents of operand 2 (r2) remain unchanged. 

Example: 

LABEL 
1 

LOAD 

dOPERATION.!l OPERAND 
10 16 

LDR R6,R4 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-51 

Before execution of the load, long format (LOR) instruction, if we assume values of 
+150 in R4 and +o in R6, the contents of R6 and R4 will be: 

R6 before execution: 

I 0 ! 0 I 0 ! 0 I 0 ! 0 0 ! 0 0 : 0 I 0 ! 0 I 0 ! 0 0 i 0 I +o 

R4 before and after execution: 

I 4 f~ 0 l I 0 l ! I +150 
I I 9 i 6 I ! 0 I ! I : 0 I 2 0 0 0 0 0 0 0 0 
I 

R6 after execution: 

I o I ! 0 I 1 +150 4 I 2 9 6 0 0 0 0 0 0 0 0 0 0 
I I 



UP-8913 

LE 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.24. LOAD, SHORT FORMAT (LE) 

11-52 
'' ' .I •, vM~~ 12 !_ 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LE 78 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT~ 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
D IF RESULT <o. SET To 1 D 0 IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

DI F OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

The load, short format (LE) instruction causes the contents of a full word in storage 
specified by operand 2 to be placed in a full word in the operand 1 {r1) register. 

Expicit Format: 

LABEL 

[symbol] 
LOAD 

Implicit Format: 

LABEL 

[symbol] 
LOAD 

/::,.OPERATION /::,. 

LE 
LE 

A OPERATION A 

LE 
LE 

Operational Consideration: 

r 1 ,d2 {x2 ,b2 ) 
R6,33{R8,R9) 

r 1 ,s2 {x2) 
R6,FAM 

• The contents of operand 2 remain unchanged. 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-53 

Example: 

LABEL 
1 

LOAD 
FAM 

AOPERATIONA 
10 16 

LE 
DC 

R6,FAM 
EI I 50 1 

OPERAND 

Before execution of the load, short format (LE) instruction, if we assume a value of +O 
in R6, the contents of R6 and main storage area FAM will be: 

R6 before execution: 

I o l I ! 0 I 0 ! I I I +o 0 0 0 0 I 0 
I 

FAM before and after execution: 

I 4 
I I i 6 I I I ! I +150 I 2 9 0 0 0 0 I 

R6 after execution: 

I 4 
I 2 I 9 ! 6 0 i 0 I 0 ! 0 I +150 I 
I 



UP-8913 

LER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.25. LOAD, SHORT FORMAT (LER) 

11-54 

U_l>d:l ... c 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

LER 38 RR 

Condition Codes 

D IF RESULT= 0, SET TO 0 
01F RESULT<O,SETTO 1 
D IF RESULT >o, SET TO 2 
01F OVERFLOW, SET TO 3 
.UNCHANGED 

2 

D ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL-WOAD BOUNDARY 

D OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The load, short format (LER) instruction causes the contents of a full word in the operand 
2 (r2 ) register to be placed in a full word in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
LOAD 

LlOPERATION I::!.. 

LER 
LER 

Operational Consideration: 

r 1'r2 
R61R4 

• The contents of operand 2 (r2) remain unchanged. 

Example: 

LABEL 
1 

LOAD 

AOPERATIONA 
10 16 

LER R6,R4 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-55 

Before execution of the load, short format (LER) instruction, if we assume values of 
+150 in R4 and +o in R6, the contents of R6 and R4 will be: 

R6 before execution: 

I 0 l I i 0 I I I I I +o 0 0 0 I 0 0 I 0 
I I 

R4 before and after execution: 

I 4 : 2 I 9 ! 6 

' 
0 ! 0 I 0 

I 
0 I +150 I 

I 

R6 after execution: 

I 

! I ! I +150 4 2 9 I 6 0 0 0 0 
I 



UP-8913 

LNDR 

11.26. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LOAD NEGATIVE, LONG FORMAT (LNDR) 

11-56 

~'v~::ie t 

General Possible Program Exceptions 

OB JECT 
OPCODE FORMAT IN ST. 

TYPE LG TH. 

MNEM. HEX. (B 

LNDR 21 RR 

Condition Codes 

• IF RESULT= 0, SET TO 0 
• IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
D UNCHANGED 

YTES) 

2 

D ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

D OPERATION 

D PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODO NUMBERED REGISTER 

D NONE 

The load negative, long format (LNDR) instruction causes the sign of the double word in 
the operand 2 (r2) register to be made negative. The result is placed in the double-word 
register specified by operand 1 (r1 ). 

Explicit and Implicit Format: 

LABEL 

[symbol] 
LOAD 

t:. OPERATION t:. 

LNDR 
LNDR 

Operational Considerations: 

OPERAND 

r1 ,r2 
R2,R6 

• Operand 2 (r2) is made negative even if the fraction is zero. 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; and 

to 1 if result is less than zero. 

Codes 2 and 3 are not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-57 

Example: 

LABEL 
1 

LOAD 

t.OPERATION~ OPERAND 
10 16 

LNDR R2,R6 

Before execution of the load negative, long format (LNDR) instruction, if we assume 
values of +150 in R6 and +o in R2, the contents of R2 and R6 will be: 

R2 before execution: 

I 0 i 0 I 0 ! 0 I 0 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 I 0 0 ! 0 I +O 

R6 before and after execution: 

I 4 ! 2 I 9 ! 6 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I +150 

R2 after execution: 

I I I 0 ! I ! 0 ! 1-150 c 2 9 6 0 0 0 I 0 0 I 0 0 0 0 0 
I I 



UP-8913 

LNER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.27. LOAD NEGATIVE, SHORT FORMAT (LNER} 

11-58 

v ·1-~, ( 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LNER 31 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 D 
D 1F RESULT >o. SET To 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

DI F OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

0UNCHANGED D NONE 

The load negative, short format (LNER) instruction causes the sign of a full word in the 
operand 2 (r2) register to be made negative. The result is placed in a full word in the 
register specified by operand 1 (r 1 ). 

Explicit and Implicit Format: 

LABEL 

[symbol) 
LOAD 

6. OPERATION 6. 

LNER 
LNER 

Operational Considerations: 

OPERAND 

r1,r2 
R6,R4 

• Operand 2 (r2) is made negative even if the fraction is zero. 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; and 

to 1 if result is less than zero. 

Codes 2 and 3 are not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-59 

Example: 

aOPERATI ONa LABEL 
1 10 16 

LOADNEG LNER R6,R4 

OPERAND 

Before execution of the load negative, short format (LNER) instruction, if we assume, 
values of +150 in R4 and +O in R6, the contents of R6 and R4 will be: 

R6 before execution: 

I 0 ! 0 I 0 i 0 I 0 I I 
0 I 

I 
0 ! 0 I +o 

R4 before and after execution: 

I 4 ! 2 I 9 ! 6 I 0 0 I 0 ! 0 I +150 

R6 after execution: 

I c l 6 I 0 1-150 ! 2 I 9 0 I 0 I 0 
I 

. I 



UP-8913 

LPDR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.28. LOAD POSITIVE, LONG FORMAT (LPOR) 

11-60 

U -j ' prl;i <'-I. 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LPDR 20 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 0 
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The load positive, long format (LPDR) instruction causes the sign of the double word in the 
operand 2 (r2) register to be positive, and the result is placed in the double word of the 
operand 1 (r,) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
LOADN 

A OPERATION A 

LPDR 
LPDR 

Operational Considerations: 

r1 ,r2 
R4,R6 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; and 

to 2 if result is greater than zero. 

Codes 1 and 3 are not used. 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-61 

Example: 

AOPERATIONA LABEL 
1 10 16 

LOADPOS LPDR R6,R4 

OPERAND 

Before execution of the load positive, long format (LPDR) instruction, if we assume 
value of -150 in R4 and +o in R6, the contents of R6 and R4 will be: 

R6 before execution: 1l 

I ! I I I I I 0 ! I I 
l+o 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 I 0 

I I I 

R4 before and after execution: 

I i I I I I I 
1-150 c 2 9 I 6 0 I 0 0 0 0 0 0 I 0 0 I 0 0 0 

I I I I 

R6 after execution: 

I I I I I 0 1+150 4 I 2 9 6 0 0 0 I 0 0 0 0 I 0 0 I 0 0 
I I I I 



UP-8913 

LPER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.29. LOAD POSITIVE, SHORT FORMAT (LPER) 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LPER 30 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 
• IF RESULT= 0, SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
.IF RESULT>O.SETT02 D 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The load positive, short format (LPER) instruction causes the sign of a full word in the 
operand 2 (r2) register to be positive. The result is placed in a full word of the operand 1 
(r,) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
LO ADP 

I'.\ OPERATION L\ 

LPER 
LPER 

Operational Considerations: 

r1 ,r2 
R6,R4 

• The exponent and fraction are not changed. 

• The contents of operand 2 (r2) remain unchanged. 

• The condition code is set: 

to zero if result is zero; and 

to 2 if result is greater than zero. 

Codes 1 and 3 are not used. 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-63 

Example: 

AOPERATIONA LABEL 
1 10 16 

LOADPOS LPER R6,R4 

OPERAND 

Before execution of the load positive, short format (LPER) instruction, if we assume 
values of -150 in R4 and +o in R6, the contents of R6 and R4 will be: 

R6 before execution: 
f>' 

I 0 ! 0 I 0 i 0 I 0 i 0 I 0 ! 0 I +o 

R4 before and after execution: 

I I I I I 

1-150 c I 2 9 I 6 0 0 0 I 0 
I I I 

R6 after execution: 

I I I +150 4 I 2 9 6 0 0 0 I 0 
I I 



UP-8913 

LTDR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-64 

urJz~t, c 

11.30. LOAD AND TEST, LONG FORMAT (LTDR) 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LTDR 22 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 D 
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The load and test, long format (LTDR) instruction causes the double-word contents of 
the operand 2 (r 2) register to be placed in the double-word operand 1 (r1) register. The 
condition code is set by this instruction. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
TEST 

~OPERATION ~ 

LTDR 
LTDR 

Operational Considerations: 

r1 ,r2 
R2,R6 

• The contents of operand 2 (r2) remain unchanged. 

OPERAND 

• When the same register is specified by operand 1 (r1) and operand 2 (r2 ), the 
operation is equivalent to a test without data movement. 

• The condition code is set: 

to zero if resu It is zero; 

to 1 if result is less than zero; and 

to 2 if result is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-65 

Example: 

LABEL AOPERATIONA OPERAND 
10 16 

TEST LTDR R2,R6 

Before execution of the load and test, long format (LTDR) instruction, if we 
assume values of +150 in R6 and +O in R2, the contents of R6 and R2 will be: 

,t 
R2 before execution: 

I 
0 I 0 

I 

R6 before and after execution: 

0 0 0 0 
I 

0 I 0 
I 

0 l+o 

j ~-4~~!_2____.l..._9__.!~s__..~o_._!_o~......_o~...__o~.___o___.!.__o__.~o__..i~o__..~o_._!_o~..._o___....._o~l+150 

R2 after execution: 

1 4 ! 2 I 9 ! 6 1 o I o I o ! o I o ! o I o I o 1 o ! o I o ! o 1+150 

The condition code is set to 2 because the result is greater than zero. 



UP-8913 

LTER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-66 

Vfd,:;,fa.c 

11.31. LOAD AND TEST, SHORT FORMAT (LTER) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

LTER 32 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
• IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 D OPERATION 

D OP 1 NOT ODD NUMBERED REGISTER 

QUNCHANGED D NONE 

The load and test, short format (LTER) instruction causes the contents of a full word 
in the operand 2 (r2) register to be placed in a full word in the operand 1 (r1) 

register. The condition code is set by this instruction. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
TEST 

/:;;OPERATION /:;; 

LTER 
LTER 

Operationa I Considerations: 

r 1,r2 
R6,R4 

• The contents of operand 2 (r2) remain unchanged. 

OPERAND 

• When the same register is specified by operand 1 (r1) and operand. 2 (r2 ), the 
operation is equivalent to a test without data movement. 

• The condition code is set: 

to zero if result is zero; 

to 1 if result is less than zero; and 

to 2 if result is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-67 

Example: 

LABEL 
1 

TEST 

AOPERATIONA OPERAND 
10 16 

LTER R6,R4 

Before execution of the load and test, short format (L TER) instruction, if we 
assume values of +150 in R4 and +O in R6, the contents of R4 and R6 will be: 

R6 before execution: 
... 
l"J. 

I 0 i 0 I 0 I +O l 0 I 0 ! 0 I 0 i 0 I 

R4 before and after execution: 

I ! 2 I 9 i I 0 l 0 I 0 
I I +150 4 6 I 0 
I 

R6 after execution: 

I 4 ! 2 I 9 i 6 I 0 ! 0 I 0 i 0 I +150 

The condition code is set to 2 because the result is greater than zero. 



UP-8913 

MD 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.32. MULTIPLY, LONG FORMAT (MD) 

11-68 
. J . j ' 
1..p:i,11eC 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

MD 6C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

01F RESULT=O,SETTOO 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

The multiply, long format (MD) instruction causes the contents of the double word in 
the operand 1 (r 1) register to be multipled by the contents of a double word in main 
storage specified by operand 2. The normalized product is placed in the double word 
of the operand 1 (r1) register. 

Explicit Format: 

LABEL 

[symbol] 
MULT 

Implicit Format: 

LABEL 

[symbol] 
MULT 

t. OPE RATION t. 

MD 
MD 

t.OPERATION t. 

MD 
MD 

Operationa I Considerations: 

r 1 ,d2 (x2 ,b2 ) 
R4,32(R9,R10) 

OPERAND 

OPERAND 

• Floating-point multiplication consists of exponent addition 
multiplication. The exponent of the intermediate product is obtained 
exponents of the two operands and reducing the sum by 64. 

and fraction 
by adding the 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-69 

• Both operands are normalized before multiplication and the intermediate product 
is normalized after multiplication. The intermediate product fraction is truncated to 
14 digits and a guard digit before normalization. 

• If the exponent of the final product exceeds 127, an exponent overflow condition 
exists. The resultant floating-point number consists of a correct and normalized 
fraction, a correct sign, and an exponent which is 128 less than the correct 
value. The overflow condition does not occur for an intermediate product 
exponent exceeding 127 if the final exponent is brought within range during 
normalization. 

,; 

• If the final product exponent is less than zero, an exponent underflow condition 
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the 
resultant floating-point number has a correct and normalized fraction, a correct 
sign, and an exponent which is 128 greater than the correct value. If the 
exponent underflow mask bit of the current PSW is zero, the result is made a 
true zero. When an underflow characteristic becomes less than zero during 
normalization before multiplication, an underflow exception is not recognized. 

• When all digits of the intermediate product are zero, the result is made a true 
zero. 

• When the resulting fraction is zero, a program exception for exponent underflow 
or overflow does not occur. 

Example: 

LABEL 
1 

MULTLG 
FAM 

AOPERATIONA 
10 16 

MD 
DC 

R4,FAM 
D1 50 1 

OPERAND 

Before execution of the multiply, long format (MD) instruction, if we assume a 
value of -100 in R4, the contents of R4 and main storage area FAM will be: 

R4 before execution: 

I I I I I 0 
I 

0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 ! 0 I 0 c I 2 6 I 4 I 
I I I 

FAM before and after execution: 

I I I i I I I o 
I I ! I ! I 0 l 0 I 0 4 2 3 2 0 I 0 I 0 0 0 0 0 

I I 
o I +so 

R4 after execution: 

I c ! 4 I 1 ! 3 I 8 ! 8 I 0 i 0 I 0 ! 0 I 0 ! 0 I 0 i 0 I 0 



UP-8913 

MOR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.33. MULTIPLY, LONG FORMAT (MOR) 

11-70 

e !i8l c 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 
MDR 2C RR 2 0 EXECUTE 0 OP 1 NOT ON HALF·WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF·WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL·WORD BOUNDARY 

0 IF RESULT; O. SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

The multiply, long format (MOR) instruction causes the contents of the double word in 
the operand 1 (r1) register to be multiplied by the contents of the double word in the 
operand 2 (r2) register. The normalized product is placed in the double word of the 
operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
MULT 

/),.OPERATION t:. 

MOR 
MOR 

OPERAND 

r 1,r2 
R4,R6 

Operational Considerations: 

• Floating-point multiplication consists of exponent addition 
multiplication. The exponent of the intermediate product is obtained 
exponents of the two operands and reducing the sum of 64. 

and fraction 
by adding the 

• Both operands are normalized before multiplication and the intermediate product 
is normalized after multiplication. The intermediate product fraction is truncated to 
14 digits and a guard digit before normalization. 



• 

• 

• 

UP-8913 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-71 

If the exponent of the final product exceeds 127, an exponent overflow condition 
exists. The resultant floating-point number consists of a correct and normalized 
fraction, a correct sign, and an exponent which is 128 less than the correct 
value. The overflow condition does not occur for an intermediate product 
exponent exceeding 127 if the final exponent is brought within range during 
normalization. 

• If the final product exponent is less than zero, an exponent underflow condition 
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the 
resultant floating-point number has a correct and normalized fraction, a correct 
sign, and an exponent which is 128 greater than the correct value. If the 
exponent underflow mask bit of the current PSW is zero, the result is made a 
true zero. When an underflow characteristic becomes less than zero during 
normalization before multiplication, an underflow exception is not recognized. 

• When all digits of the intermediate product are zero, the result is made a true 
zero. 

• When the resulting fraction is zero, a program exception for exponent underflow 
or overflow does not occur. 

Example: 

LABEL 
1 

LlOPERATIONLl 
10 16 

MULTREG MOR R4,R6 

OPERAND 

Before execution of the multiply, long format (MOR) instruction if we assume 
values of -100 in R4 and +50 in R6, the contents of R4 and R6 will be: 

R4 before execution: 

I c l 2 I 6 ! 4 I 0 i 0 I 0 ! 0 I 0 0 I 0 : 0 I 0 I 0 I 0 0 1-100 

R6 before and after execution: 

I 4 ! 2 I 3 i 2 I 0 ! 0 I 0 i 0 I 0 ! 0 I 0 l 0 I 0 i 0 I 0 0 I +50 

R4 after execution: 

I ! i I ! 0 I 0 I 0 ! 0 I 0 1-5000 I I I 0 0 0 : 0 0 c 4 1 I 3 8 8 
I I 



----------------------------- ------- -----

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-72 
Update B 

ME • 

t 

11.34. MULTIPLY, SHORT FORMAT (ME) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

ME 7C RX 

Condition Codes 

0 IF RESULT= 0, SET TO 0 
01F RESULT<O.SETTO 1 
01F RESULT>O,SETT02 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

4 

Possible Program Exceptions 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

• EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The multiply, short format (ME) instruction causes the contents of a full word in the 
operand 1 (r1) register to be multiplied by the contents of a full word in main storage 
specified by operand 2. The normalized product is placed in a full word of the 
operand 1 (r 1) register. 

Explicit Format 

LABEL 

[symbol] 
MULT 

Implicit Format 

LABEL 

[symbol] 
MULT 

LlOPERATION Ll 

ME 
ME 

LlOPERATION t. 

ME 
ME 

Operational Considerations: 

r 1 ,d2 (x2 ,b2 ) 
R6,32(R8,R 12) 

r 1 ,s2 (x2) 
R6,FAM 

OPERAND 

OPERAND 

• Floating-point multiplication consists of exponent addition 
multiplication. The exponent of the intermediate product is obtained 
exponents of the two operands and reducing the sum by 64. 

and fraction 
by adding the 

• 

• 



e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-73 

• Both operands are normalized before multiplication and the intermediate product 
is normalized after multiplication. The intermediate product fraction is truncated to 
14 digits, the two least significant digits of which are zero, before normalization. 

• If the exponent of the final product exceeds 127, an exponent overflow condition 
exists. The resultant floating-point number consists of a correct and normalized 
fraction, a correct sign, and an exponent which is 128 less than the correct 
value. The overflow condition does not occur for an intermediate product 
exponent exceeding 127 if the final exponent is brought within range during 
normalization. 

• If the final product exponent is less than zero, an exponent underflow condition 
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the 
resultant floating-point number has a correct and normalized fraction, a correct 
sign, and an exponent which is 128 greater than the correct value. If the 
exponent underflow mask bit of the current PSW is zero, the result is made a 
true zero. When an underflow characteristic becomes less than zero during 
normalization before multiplication, an underflow exception is not recognized. 

• When all digits of the intermediate product are zero, the result is made a true 
zero. 

• When the resulting fraction is zero, a program exception exponent underflow or 
overflow does not occur. 

Example: 

LABEL ~OPERATION~ 

10 16 

MULT 
FAM 

ME 
DC 

R6,FAM 
E'50' 

OPERAND 

Before execution of the multiply, short format (ME) instruction, if we assume a 
value of -100 in R6, the contents of R6 and main storage area FAM will be: 

R6 before execution: 

I 1 -100 c ! I I I 
2 6 I 4 0 0 0 I 0 

I I 

FAM before and after execution: 

I 4 ! 2 I 3 : 2 I 0 ! 0 0 ! 0 I +50 

R6 after execution: 

c ! 4 I 1 3 I 8 i 8 I 0 I 0 1-5000 



UP-8913 

MER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.35. MULTIPLY, SHORT FORMAT (MER) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

MER JC RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD D IF RESULT; 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

The multiply, short format (MER) instruction causes the contents of a full word in the 
operand 1 (r 1) register to be multiplied by the contents of a full word in the operand 
2 (r2) register. The normalized product is placed in a full word in the operand 1 (r1) 

register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
MULT 

b.OPERATION b. 

MER 
MER 

OPERAND 

r1 ,r2 
R6,R4 

Operational Considerations: 

• Floating-point multiplication consists of exponent addition 
multiplication. The exponent of the intermediate product is obtained 
exponents of the two operands and reducing the sum by 64. 

and fraction 
by adding the 

• Both operands are normalized before multiplication and the intermediate product 
is normalized after multiplication. The intermediate product fraction is truncated to 
14 digits, the two least significant digits of which are zero, before normalization. 

• If the exponent of the final product exceeds 127, an exponent overflow condition 
exists. The resultant floating-point number consists of a correct and normalized 
fraction, a correct sign, and an exponent which is 128 less than the correct 
value. The overflow condition does not occur for an intermediate product 
exponent exceeding 127 if the final exponent is brought within range during 
normalization. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-75 

• If the final product exponent is less than zero, an exponent underflow condition 
exists. If the exponent underflow mask bit (38) of the current PSW is 1, the 
resultant floating-point number has a correct and normalized fraction, a correct 
sign, and an exponent which is 128 greater than the correct value. If the 
exponent underflow mask bit of the current PSW is zero, the result is made a 
true zero. When an underflow characteristic becomes less than zero during 
normalization before multiplication, an underflow exception is not recognized. 

• When all digits of the intermediate product are zero, the result is made a true 
zero. 

~, 

• When the resulting fraction is zero, a program exception for exponent underflow 
or overflow does not occur. 

Example: 

LABEL 
1 

MULT 

~OPERATION~ OPERAND 
10 16 

MER R6,R4 

Before execution of the multiply, short format (MER) instruction, if we assume 
values of -100 in R6 and +50 in R4, the contents of R6 and R4 will be: 

R6 before execution: 

I c ! 2 I 6 i 4 I 0 i 0 

R4 before and after execution: 

I 4 i 2 I 3 i 2 

R6 after execution: 

C I 4 
I 

I 
1 I 3 

I 

I 0 ! 0 

8 8 

I 0 
I 

0 1-100 I 
I 

I 0 I 0 I +50 

o I o 1-500 



UP-8913 

SD 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.36. SUBTRACT NORMALIZED, LONG FORMAT (SD) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SD 68 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 0 
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER 

0UNCHANGED 0 NONE 

The subtract normalized, long format (SD) instruction causes the contents of a double 
word in main storage, specified by operand 2, to be algebraically subtracted from the 
contents of the double-word register specified by operand 1 (r1). The normalized 
difference is placed in the operand 1 (r1) register. 

Explicit Format: 

LABEL 

[symbol] 
SUB 

Implicit Format 

LABEL 

[symbol] 
SUB 

b. OPERATION b. 

SD 
SD 

b. OPERATION b. 

SD 
SD 

r 1 ,d2 (x2 ,b2 ) 
R4,32(R7,R8) 

r 1 ,s2 (x2) 
R4,FAM 

OPERAND 

OPERAND 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-77 

• The execution of the SD instruction is identical to that of the AD instruction 
(11.2), except that the sign of operand 2 is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 

Example: 

AOPERATIONA LABEL 
1 10 16 

SUBLONG SD 
FAM DC 

R4,FAM 
D1 100 1 

OPERAND 

Before execution of the subtract normalized, long format (SD) instruction, if we 
assume a value of +250 in R4, the contents of R4 and main storage area FAM 
will be: 

R4 before execution: 

: 0 I 0 0 1+250 I I I l I i I ! I I I o i 4 I 2 F A 0 0 0 0 0 0 0 0 
I I 

FAM before and after execution: 

I 0 l 0 I : 0 I ! I 0 a I +100 I 4 l I ! l I I I a 2 6 4 0 0 I 0 0 0 0 
I 

R4 after execution: 

I 0 I 0 ! 0 I ! I 0 0 1+150 
I I 0 ! 0 I I I 0 4 2 9 I 6 0 I 0 0 0 
I I 



UP-8913 

SOR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-78 

L'rd.~ie, c 

11.37. SUBTRACT NORMALIZED, LONG FORMAT (SOR) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • ~PECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SOR 28 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 
• IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 

D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
.IF RESULT>O,SETT02 0 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The subtract normalized, long format (SOR) instruction causes the contents of the 
double-word register, specified by operand 2 (r2) to be algebraically subtracted from 
the contents of the double-word register, specified by operand 1 (r1). The normalized 
difference is placed in the operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SUBTR 

Li OPERATION Li 

SOR 
SOR 

Operational Considerations: 

OPERAND 

r1 ,r2 
R6,R4 

• The execution of the SOR instruction is identical to that of the ADR instruction 
(11.3), except that the sign of operand 2 (r2 ) is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-79 

Example: 

LABEL 
1 

SUBTR 

.i:\OPERATIONA OPERAND 
10 16 

SOR R6,R4 

Before execution of the subtract normalized long format (SOR) instruction, if we 
assume values of +250 in R6 and +100 in R4, the contents of R6 and R4 will 
be: 

:lt 

R6 before execution: 

I 4 ! ! I 0 ]+250 I I I 
2 F A 0 0 0 I 0 0 0 0 I o 0 0 0 

I 

R4 before and after execution: 

I 4 ! 2 I 6 ! 4 I 0 ! 0 I 0 i 0 I o i 0 I 0 l 0 I 0 i 0 I 0 0 !+100 

R6 after execution: 

: I 0 1+150 
I 

4 2 9 6 0 0 0 0 0 0 0 I 0 0 0 0 
I 



UP-8913 

SE 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-80 

Upd:11e C 

11.38. SUBTRACT NORMALIZED, SHORT FORMAT (SE) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SE 78 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 0 
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OPT NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 UNCHANGED 0 NONE 

The subtract normalized, short format (SE) instruction causes the contents of a full 
word in main storage, specified by operand 2, to be algebraically subtracted from a 
full word in the register specified by operand 1 (r1). The normalized difference is 
placed in the operand 1 (r1) register. 

Exp I icit Format: 

LABEL 

[symbol] 
SUB 

Implicit Format: 

LABEL 

[symbol] 
SUB 

b.OPERATION b. 

SE 
SE 

SE 
SE 

b.OPERATION Ll 

r 1 ,d2 (x2 ,b2 ) 
R2,32(R9,R10) 

r 1 ,s2 (x2) 
R2,FAM 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-81 

Operational Considerations: 

• The execution of the SE instruction is identical to that of the AE instruction 
(11.4), except that the sign of operand 2 is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 

Example: 

Ll.OPERAT I ON.1 LABEL 
I JO 16 

SUBSHORT SE 
FAM DC 

R2,FAM 
E 1 100 1 

OPERAND 

Before execution of the subtract normalized, short format (SE) instruction, if we 
assume a value of +250 in R2, the contents of R2 and main storage area FAM 
will be: 

R2 before execution: 

FAM before and after execution: 

I...._ _4 _._l _2__._I _a _._l _4__._I _o ....... ! _o__._I _o _.._o__,J +1 oo 

R2 after execution: 

2 I s : 6 
I 

1 o ! o I o ! o I +150 



UP-8913 

SER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-82 

ur1a1.,, t 

11.39. SUBTRACT NORMALIZED, SHORT FORMAT (SER) 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SER 38 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT: 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
.IF RESULT<O,SETTO 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
.IF RESULT>O,SETT02 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0 UNCHANGED 0 NONE 

The subtract normalized, short format (SER) instruction causes the contents of a full 
word in the operand 2 (r2) register to be algebraically subtracted from a full word in 
the operand 1 (r 1). The normalized difference is placed in a full word in the operand 
1 (r 1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SUB 

6 OPERATION 6 

SER 
SER 

Operational Considerations: 

OPERAND 

r1 ,r2 
R2,R4 

• The execution of the SER instruction is identical to that of the AER instruction 
(11.5), except that the sign of operand 2 is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result ,fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-83 

Example: 

LABEL 

I 

SUB 

AOPERATIONA OPERAND 
10 16 

SER R2,R4 

Before execution of the subtract normalized, short format (SER) instruction, if we 
assume values of +250 in R2 and +100 in R4, the contents of R2 and R4 will 
be: 

R2 before execution: 

I 4 ! 2 I F i A I 0 ! 0 I o ! 0 I +250 

R4 before and after execution: 

I 4 i 2 I 6 ! 4 I 0 ! 0 I 0 ! 0 ] +100 

R2 after execution: 

4 i 2 I 9 ! 6 I 0 ! 0 I 0 ! 0 I +150 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

STD ~ 

11.40. STORE, LONG FORMAT (STD) 

General Possible Program Exceptions 

0 BJECT 
OPCODE FORMAT I NST. 

TYPE L GTH. 

MNEM. HEX. ( 

STD 60 RX 

Condition Codes 

01FRESULT=O,SETTOO 

01F RESULT<O,SETTO 1 
01F RESULT>O,SETT02 

0 IF OVERFLOW, SET TO 3 

.UNCHANGED 

BYTES) 

4 

• ADDRESSING 

0 DATA {INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

• OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The store, long format (STD) instruction causes the contents of the register, specified 
by operand 1 (r1), to be placed in a double word in main storage, specified by 
operand 2. 

Explicit Format: 

LABEL 

[symbol] 
STORE 

Implicit Format: 

LABEL 

[symbol] 
STORE 

.6. OPERATION .6. 

STD 
STD 

.6. OPERATION .6. 

STD 
STD 

Operational Consideration: 

r 1 ,d2 (x2 ,b2 ) 
R4,32(R5,R6) 

r 1 ,s2 (x2) 
R4,FAM 

OPERAND 

OPERAND 

• The contents of the operand 1 (r1) register remain unchanged. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-85 

Example: 

LABEL 

1 

STORE LG 
FAM 

AOPERATI ONA 

10 16 

STD R4,FAM 
DC o·~· 

Before execution of the stOfl#, 
of +500 in R4, the contents 

FAM before execution: 

I 0 : 0 I 0 : 0 I 0 

OPERAND 

long format (STD) instruction, if we assume a 
of R4 and main storage area FAM will be: 

0 I 0 l 0 I 0 l 0 I 0 ! 0 I 0 ! 0 I 0 

R4 before and after execution: 

I : I I I 4 
I I o 4 3 1 I F 0 0 I 0 0 0 0 0 0 0 

I I I 

FAM after execution: 

I ! ; I 4 I 3 1 F I 4 0 I 0 ! 0 I 0 
I 

0 I 0 i I 0 
I I 0 I 0 I O 

I I I 

value 

0 I +O 

0 I +500 

0 I +500 



UP-8913 

STE 

SPERRY UNNAC OS/3 
ASSEMBLER 

11.41. STORE, SHORT FORMAT (STE) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

STE 70 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
OtF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

OtF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

The store, short format (STE) instruction causes the contents of a full word in the 
register, specified by operand 1 (r1}, to be placed in a full word in main storage, 
specified by operand 2. 

Explicit Format: 

LABEL 

[symbol] 
STORE 

Implicit Format: 

LABEL 

[symbol] 
STORE 

60PERATION6 

STE 
STE 

6 OPERATION 6 

STE 
STE 

Operationa I Consideration: 

r, ,d2 (x2 ,b2 ) 
R4,32(R5,R6) 

OPERAND 

OPERAND 

• The contents of the operand 1 (rd register remain unchanged. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-87 

Example: 

LABEL 

I 

STORE 
FAM 

~OPERATI ONA 

10 16 

STE 
DC 

R4 ,FAM 
E 'iJ I 

OPERAND 

Before execution of the store, short format (STE) instruction, if we assume a 
value of +500 in R4, the 1 contents of R4 and main storage FAM will be: 

FAM before execution: 

o I o I +O 

R4 before and after execution: 

I~ -4~!~3~!_1_._!_F~·~' _4_,_o_._!_o_._!_o~l+soo 

FAM after execution: 

'---4 -'l-3-.L.l _1-.L..! _F ...... 1_4__,__o-.Jl.__o ...i.....o__.j +soo 



UP-8913 

SU 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-88 

J J.ii~ ( 

11.42. SUBTRACT UNNORMALIZED, SHORT FORMAT (SU) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE 
MNEM. HEX. 

SU 7F RX 

Condition Codes 

• IF RESULT= 0, SET TO 0 
.IF RESULT<O.SETTO 1 
• IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

LGTH. 
(BYTES) 

4 

Possible Program Exceptions 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

• EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

• SIGNIFICANCE 

• SPECIFICATION: 

• NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

• OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The subtract unnormalized, short format (SU) instruction causes the contents of a full 
word in main storage specified by operand 2 to be algebraically subtracted from the 
contents of a full word in the register specified by operand 1 (r1 ). The difference is 
placed in a full word in the operand 1 (r1) register. 

Explicit Format: 

LABEL Do OPERATION Do OPERAND 

[symbol] SU r 1 ,d2 (x2 ,b2 ) 
SUB SU R6,32(R7,R9) 

Implicit Format: 

LABEL Do OPERATION Do OPERAND 

[symbol] SU r 1 ,s2 (x2) 
SUB SU R6,FAM 

-----------------· ------------------



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-89 

Operational Considerations: 

• The execution of the SU instruction is identical to that of the AU instruction 
(11 .6), except that the sign is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 

Example: 

LABEL ~OPERATION~ 

10 16 

SUBUNNOR SU 
FAM DC 

R6,FAM 
E '9.el.el I 

OPERAND 

Before execution of the subtract unnormalized, short format (SU) instruction, if we 
assume a value of +1000 in R6, the contents of R6 and main storage area FAM 
will be: 

R6 before execution: 

I I ! I +1000 I i 3 I 3 
I 

E I 8 0 0 0 4 I 
I 

FAM before and after execution: 

I +900 I I I I I 
4 I 3 3 I 8 4 0 0 I 0 

I I I 

R6 after execution: 

1 +100 
I 

4 3 0 6 4 0 0 I 0 
I 



UP-8913 

SUR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11-90 

11.43. SUBTRACT UNNORMALIZED, SHORT FORMAT (SUR) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SUR 3F RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 0 
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0UNCHANGED 0 NONE 

The subtract unnormalized, short format (SUR) instruction causes the contents of a 
full word in the operand 2 (r2) register to be algebraically subtracted from a full word 
in the operand 1 (r,) register. The difference is placed in a full word in the operand 1 
(r 1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SUB 

LlOPERATION /J. 

SUR 
SUR 

Operational Considerations: 

OPERAND 

r1 ,r2 
R6,R4 

• The execution of the SUR instruction is identical to that of the AUR instruction 
( 11. 7), except that the sign is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-91 

Example: 

l10PERATIONA LABEL 

J JO 16 

SUBSHORT SUR R6,R4 

OPERAND 

Before execution of the subtract unnormalized, short format (SUR) instruction, if 
we assume values of +1000 in R6 and +900 in R4, the contents of R6 and R4 
will be: 

R6 before execution: 

I ! 3 I i f I I I +1000 4 3 E 8 0 0 I 0 
I I 

R4 before and after execution: 

I 4 l 3 I 3 l 8 I 4 ! 0 I 0 ! 0 I +900 

R6 after execution: 

I 4 i 3 I 0 : 6 I 4 0 I 0 
I 

0 I +100 I 
I I 



UP-8913 

SW 

SPERRY UNIVAC OS/3 
ASSEMBLER 

11.44. SUBTRACT UNNORMALIZED, LONG FORMAT (SW) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SW 6F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT~ 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 0 
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The subtract unnormalized, long format (SW) instruction causes the contents of a 
double word in main storage specified by operand 2 to be algebraically subtracted 
from the contents of the double word in the register specified by operand 1 (r1 ). The 
difference is placed in the double-word operand 1 (r1) register. 

Explicit Format: 

LABEL 

[symbol] 
SUB 

Implicit Format: 

LABEL 

[symbol] 
SUB 

/'::,.OPERATION /'::,. 

SW 
SW 

/'::,.OPERATION/'::,. 

SW 
SW 

r 1 ,d2 (x2 ,b2 ) 
R4,32(R5,R9) 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-93 

Operational Considerations: 

• The execution of the SW instruction is identical to that of the AW instruction 
(11.8), except that the sign is reversed before addition. 

• The condition code is set: 

to 

to 

to 

Code 

Example: 

LABEL 

1 

3 

zero if result fraction 

1 if result fraction is 
,. 

2 if result fraction is 

is not used. 

AOPERATIONA 
10 16 

SUBUNNOR SW 
FAM DC 

R4 ,FAM 
0'900' 

is zero; 

less than zero; and 

greater than zero. 

OPERAND 

Before execution of the subtract unnormalized, long format (SW) instruction, if we 
assume a value of +1000 in R4, the contents of R4 and main storage area FAM 
will be: 

R4 before execution: 

L-1 _4 __.!L,_3_..i..l _3---L-! _E_l..__a -L! _o--i.,,j _o--'-1 _o __Jj1--o__._! _o__._l _o_l....__o __..j_o__.__o__,_j _o _.__o___,I +1 ooo 

FAM before and after execution: 

IL.. _4 ....L.! _3_J,1_3~i _a ....1...l _4--1-0--'--I _o ....1...i _o--11...._o~l _o ......L..j _o--'!_o~j _o _...! _o--'j_o~---10 I +900 

R4 after execution: 

o I o 0 
I 

0 I 0 
I 

o ! o I +100 



UP-8913 

SWR 

SPERRY UNNAC OS/3 
ASSEMBLER 

11-94 

ur1a1ec 

11.45. SUBTRACT UNNORMALIZED. LONG FORMAT (SWR) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 0 DA.TA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

TYPE LGTH. 
MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER 

SWR 2F RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT <o. SET TO 1 0 
• IF RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The subtract unnormalized, long format (SWR) instruction causes the contents of the 
double word in the operand 2 (r2 ) register to be algebraically subtracted from the 
double-word contents of the operand 1 (r1) register. The difference is placed in the 
double-word operand 1 (r1) register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SUB 

f10PERATION /j. 

SWR 
SWR 

Operationa I Considerations: 

OPERAND 

• The execution of the SWR instruction is identical to that of the AWR instruction 
(11.9), except that the sign is reversed before addition. 

• The condition code is set: 

to zero if result fraction is zero; 

to 1 if result fraction is less than zero; and 

to 2 if result fraction is greater than zero. 

Code 3 is not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

11-95 

Example: 

~OPERATIONA LABEL 
1 10 16 

SUBLONG SWR R4,R6 

OPERAND 

Before execution of the subtract unnormalized, long format (SWR) instruction, if 
we assume values of +1000 in R4 and +900 in R6, the contents of R4 and R6 
will be: 

R4 before execution: 

I I I 3 ! I a ! I I o I 0 i I o l I ! 0 I o 0 I 4 I 3 E 0 0 0 0 0 +1000 
I I 

R6 before and after execution: 

I 4 ! 3 I l I 0 ! 0 I o 
I 

0 I 0 ! 0 I o ! 0 I 0 0 I +900 3 8 4 0 I 
I 

R4 after execution: 

I I I 0 
I I 0 ! I ! 0 I 0 0 I +100 4 3 0 I 6 4 I 0 0 0 I 0 0 0 

I I I 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-1 

12. Logical Instructions 

12.1. THE USE OF LOGICAL INSTRUCTIONS 

All operations performed by logical instructions are executed according to the rules of 
logic. Unlike decimal and fixed-point binary instructions, logical instructions disregard 
arithmetic signs. Most of these instructions manipulate data bit by bit and operate from 
left to right. 



UP-8913 

AL 

12.2. ADD LOGICAL (AL) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-2 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

Al 5E RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WOAD BOUNDARY 

• 0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY • SET TO 1 0 • 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 
SET TO 2 0 • SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

SEE OPEA. CONSIDERATIONS 0 NONE 

The add logical (AL) instruction logically adds the content of operand 2 to the content of 
the operand 1 register and places the sum in operand 1. 

Explicit Format: 

LABEL b.OPERATION .6 OPERAND 

[symbol] AL 

Implicit Format: 

LABEL b. OPERATION b. OPERAND 

[symbol] AL 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-3 
Update B 

• Operational Considerations: 

• 

• 

• Any of the general registers (0 through 15) can be used as operand 1. 

• The main storage location you specify in operand 2 must refer to a main storage area 
that is on a full-word boundary. Operand 2 is not changed by the execution of this 
instruction. 

• The addition is performed by logically adding the 32 bits of operand 2 to the 32 bits of 
operand 1. 

• Neither operand has a sign bit. 

• The condition code of the program status word (PSW) is set as follows: 

to 0 if result is 0 (no carry of most significant bit); 

to 1 if result is not 0 (no carry of most significant bit); 

to 2 if result is 0 (carry of most significant bit); or 

to 3 if result is not 0 (carry of most significant bit). 

Example: 

LABEL 
l 

~OPERATION~ 

l 0 16 

L 3,HEXVALU 
AL 3,FULLWORD 

DS 
HEXVALU DC 
FULL\./ORD DC 

~F 
X I fJfJfJfJfjfJ 19 I 

X'9J009J079C' 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-4 

In this example, the main storage content of HEXVALU is placed into register 3. The • 
AL instruction logically adds the full-word content of main storage location 
FULLWORD to the content of register 3 and places the sum in register 3. 

Register 3 before execution of AL instruction: 

I 1 : 
000111001 0000•0000 000010000 0000:0000 

I 
binary 

..I.. 

0 : 0 I 0 0 l 0 
I 

9 0 1 l .l. l _l_ 

hex 

FULLWORD before execution of AL instruction: 

: ! 
000010111 

! 
0000:0000 0000•0000 100111100 

I I ..i 
binary 

o I I 0 I 7 I 
0 0 I 0 9 I C 

.l j_ l i. 
hex 

Register 3 after execution of AL instruction: 

T I ' I 

0000:0000 000010000 0000:0111 1011: 0101 
l 

binary 

0 I 0 
! I B I 5 0 I 0 0 7 

l l l l hex • 

• 



• 

• 

• 

UP-8913 

12.3. ADD LOGICAL (ALR) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-5 
Update B 

ALR 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

ALR 1E RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 D 
• SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTEn 

• SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS • NONE 

The add logical (ALR) instruction logically adds the content of the operand 1 register to the 
content of the operand 2 register and places the sum in operand 1. 

Explicit and Implicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] ALR 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• The addition is performed by logically adding the 32 bits of operand 2 to operand 1. 

• Neither operand has a sign bit. 

• The condition code of the program status word (PSW) is set as follows: 

to 0 if result is 0 (no carry of most significant bit); 

to 1 if result is not 0 (no carry of most significant bit); 

to 2 if result is 0 (carry of most significant bit); or 

to 3 if result is not 0 (carry of most significant bit). 



UP-8913 

Example: 

LABEL 
1 

VALUl 
VALU2 

AOPERATIONA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

10 16 

L 3,VALUl 
L 4,VALU2 
ALR 3 ,4 

DS 
DC 
DC 

faF 
X'08f/J00019' 
X'0000079C' 

OPERAND 

12-6 
Update B 

In this example, the hexadecimal contents of main storage locations VALU1 and VALU2 
.are placed in registers 3 and 4, respectively. Then, the contents of registers 3 and 4 are 
added and the sum placed in register 3. 

Register 3 before execution of ALR instruction: 

I ! 
0000:0000 

T 

0000:0000 0000:0000 0001: 1001 binary 

I -+ I I I o I o 0 I 0 0 l 0 1 : 9 
J. i 

hex 

Register 4 before execution of ALR instruction: 

! I ! 
000010000 0000:0000 000010111 1001: 1100 binary 

0 I 0 0 
I 

0 0 
I 

7 
1 

l I l 9 I c hex 
.l. i 

Register 3 after execution of ALR instruction: 

! ! I T 

000010000 0000:0000 0000:0111 1011: 0101 binary 
i 

I I I I 
0 l 0 0 l 0 0 I 7 B I 5 hex 

l j 

• 

• 

• 



• 
1 UP-8913 

12.4. AND (N) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

N 54 RX 4 

Condition Codes 

• IF RESULT= 0, SET TO 0 
• IF RESULT -=Fa, SET TO 1 
0 IF RESULT >o. SET TO 2 
Q1F OVERFLOW, SET TO 3 
0 UNCHANGED 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-7' 
u,,d;.;t!. c 

N 

Possible Program Exceptions 

• ADDRESSING • PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The and (N) instruction performs a logical AND operation on the contents of the operand 1 
register and the contents of the full word in operand 2. The result is placed in the operand 
1 register. 

• Explicit Format: 

• 

LABEL /':,,OPERATION/':,, OPERAND 

[symbol] N 

Implicit Format: 

LABEL /':,,OPERATION/':,, OPERAND 

[symbol] N 

When the N instruction is executed, a logical AND operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit just 
accessed in operand 1. This instruction operates from left to right starting with the logical 
AND operations of bit 0 in both operands up to and including the logical AND operation of 
bit 31 in both operands . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-8 
Update B 

The N instruction is used to turn off selected bits in the receiving field. The procedure is • 
shown in the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

When coding patterns used as operands in AND instructions, code a 0 in all bit positions 
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0), 
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

After the N instruction is executed, the condition code is set to 0 if the result is all O's; or 
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Operand 2 must be defined as either a full word or aligned on a full-word boundary . 

• The logical AND operation executes upon all 32 bit positions of oper::inds 1 and 2. 

• A zero in a bit position in operand 2 sets its corresponding bit position in operand 1 to 
0. 

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to 
remain the same. 

• The condition code is set accordingly. 

Example: 

LABEL 
I 

b.OPERATI ON b. 
I 0 16 

L 
tJ 

DS 
AtlDPATRtl DC 
HEXVALUE DC 

8,HEXVALUE 
8 ,AtlDPATRN 

~F 
x • r1H,0eJ!IJ9JFF • 
x I 00 F0el!IJ7 DI 

OPERAND 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 8 before execution of N instruction: 

0000 0000 1111 0000 0000 0000 0111 1101 binary 

0 0 F 0 0 0 7 D hex 

ANDPATRN before and after execution of N instruction: 

0000 0000 0000 0000 0000 0000 1111 1111 binary 

0 0 0 0 0 0 F F hex 

Register 8 after execution of N instruction: 

0000 0000 0000 0000 0000 0000 0111 1101 binary 

0 0 0 0 0 0 7 D hex 

.._,_, 
only bits actually changed 

12-9 

In this example, the hexadecimal value in HEXVALUE is loaded into register 8. Then a 
logical AND operation is performed on the hexadecimal pattern in ANDPATRN (operand 2) 
and the contents of register 8. Ones in bit positions 24 through 31 of ANDPATRN allow 
the corresponding bit positions in register 8 to remain the same. Zeros in bit positions 0 
through 23 of ANDPATRN set the corresponding bit positions in register 8 to 0. As the 
high order four bit positions of byte 2 in register 8 are all 1 's, they are set to O; and as the 
remaining bit positions are already 0, they remain 0. The condition code is set to 1 
because the result is a combination of 1 's and O's. 



UP-8913 

NC 

12.5. AND (NC) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-10 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

NC 04 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT #0, SET TO 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2 D OP 1 NOT ODD NUM.BERED REGISTER 01F OVERFLOW, SET TO 3 D OPERATION 
OuNCHANGED D NONE 

The and (NC) instruction performs a logical AND operation on the contents of operand 1 
and the contents of operand 2 which are both located in main storage. The result is placed 
in operand 1 . 

Explicit Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] NC 

Implicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] NC 

When the NC instruction is executed, a logical AND operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit 
accessed in operand 1. This instruction operates from left to right. The length of operand 
1, whether implied or explicit, determines the length of operand 2. Therefore, when the 
NC instruction is executed, the lengths of operands 1 and 2 are the same. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-11 

The NC instruction is used to turn off selected bits in the receiving field. The procedure is 
shown in the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

When coding patterns used as operands in AND instructions, code a 0 in all bit positions 
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0), 
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

After the NC instruction is executed, the condition code is set to 0 if the result is all O's; or 
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's. 

Operational Considerations: 

• Operands 1 and 2 must be main storage locations. 

• The length of operand 1, whether implied or explicit, determines the length of 
operand 2. 

• A zero in a bit position in operand 2 sets its corresponding bit position in operand 1 to 
0. 

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to 
remain the same. 

• The condition code is set accordingly. 

• Operands 1 and 2 can have overlapping bytes. 

Example: 

LABEL 
1 

LOCJ\Tl 
LOCAT2 

t.OPERATI ON t. 
10 16 

UC LOCAT1,LOCAT2 

DC 
DC 

PL2'-217' 
X1 FFFC 1 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

LOCAT1 before execution of NC instruction: 

0010 0001 0111 1101 binary 

2 1 7 D packed decimal 

LOCAT2 before and after execution of NC instruction: 

1111 1111 1111 1100 binary 

F F F c hex 

LOCAT1 after execution of NC instruction: 

0010 0001 0111 1100 binary 

2 1 7 c hex 

12-12 

In this example, LOCAT1 is defined as a negative packed decimal number and LOCAT2 is 
defined as a field containing a hexadecimal value. A logical AND operation is performed on 
the contents of LOCAT1 and LOCAT2. The result is placed in LOCAT1. The 1 's in bit 
positions 0 through 13 of LOCAT2 allow the corresponding bit positions in LOCAT1 to 
remain the same. Zeros in bit positions 14 and 15 of LOCAT2 set the corresponding bit 
positions in LOCAT1 to 0. Because the low order bit position of LOCAT1 is 1, it is set to O; 
and the bit position adjacent to the low order bit position remains 0, since it is already 0. 
The condition code is set to 1 because the result is a combination of 1 's and O's. Note the 
sign value is changed from negative to positive. 



UP-8913 

12.6. AND (NI) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-13 

NI 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

NI 94 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT -=/=o, SET TO 1 D 
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The and (NI) instruction performs a logical AND operation on the contents of operand 1 
located in main storage and the one byte of immediate data in operand 2. The result is 
placed in operand 1. 

Explicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] NI 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] NI 

When the NI instruction is executed, a logical AND operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the AND operation replaces the bit just 
accessed in operand 1. This instruction operates from left to right The length of operand 1 
can vary but the length of operand 2 is always one byte_ Although operands 1 and 2 may 
have differing lengths, only one byte in operand 1 is used in conjunction with the one byte 
of immediate data in operand 2. The result replaces the one byte in operand 1 that was 
just accessed. If you do not specify the exact byte in operand 1 you want used in the 
execution with the one byte of data in operand 2, the first byte of operand 1 is used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-14 

The NI instruction is used to turn off selected bits in the receiving field. The procedure is 
shown in the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1 ) 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

When coding patterns used as operands in AND instructions, code a 0 in all bit positions 
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0), 
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

After the NI instruction is executed, the condition code is set to 0 if the result is all O's, or 
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's. 

Operational Considerations: 

• Operand 1 must be a main storage location. 

• Operand 2 must be a 1-byte, self-defining term. 

• The length of operand 1 can vary. 

• A zero in a bit position in operand 2 sets its corresponding bit position in operand 1 to 
0. 

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to 
remain the same. 

• The condition code is set accordingly. 

• You can specify the exact byte in operand 1 you want used in the execution with the 
one byte in operand 2 through relative addressing. 

Example: 

LABEL ~OPERATION~ OPERAND 
l 10 16 

HI RESULT+l,8 1 10801011 1 

RESULT DC Bl2 1 000011110ll01100 1 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

RESULT before execution of NI instruction: 

RESULT+ 1 
~ 

0000~1111 011011100 binary 
-1 

0 I F 6 •C hex 
-1 i 

0 78 15 

Operand 2 before and after execution of NI instruction: 

1000 ~1011 binary 

' 8 • B hex 
.. I 

0 7 

RESULT after execution of NI instruction: 

RESULT+ 1 
~ 

' 000011111 000011000 binary 
..L 

0 IF 0 I 8 hex 
.. l _l 

0 7 8 15 

12-15 

In this example, the content of RESULT is a 2-byte binary string of O's and 1 's and the 
immediate operand 2 is a 1-byte binary string of O's and 1 's. A logical AND operation is 
performed on the contents of the second byte of RESULT and the one byte in operand 2. 
The result replaces the second byte of RESULT. The 1 's in bit positions 0, 4, 6, and 1 of 
the immediate operand allow the corresponding bit positions in the second byte of RESULT 
to remain the same. Zeros in bit positions 1, 2, 3, and 5 of the immediate operand set the 
corresponding bit positions in the second byte of RESULT to 0. As a result, the second byte 
of RESULT has been changed from a hexadecimal 6C to a hexadecimal 08. 



UP-8913 

NR 

12.7. AND (NR) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

NR 14 RR 2 

Condition Codes 

• IF RESULT~ 0, SET TO 0 
• IF RESULT <o. SET TO 1 
01F RESULT>O,SETT02 
D IF OVERFLOW, SET TO 3 

OuNCHANGED 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-16 

Possible Program Exceptions 

D ADDRESSING D PROTECTION 

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The and (NR) instruction performs a logical AND operation on the contents of the operand 
1 and operand 2 registers. The result is placed in the operand 1 register. 

Explicit and Implicit Format: 

LABEL l:. OPERATION l:. OPERAND 

[symbol] NR 

When the NR instruction is executed, a logical AND operation is performed on a bit in the 
operand 1 register and a bit in the operand 2 register. The result replaces the bit accessed 
in operand · 1. This instruction operates from left to right starting with the logical AND 
operation of bit 0 in both registers up to and including the logical AND operation of bit 31 
in both registers. 

The NR instruction is used to turn off selected bits in the receiving field. The procedure is 
shown in the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
0 1 0 
1 0 0 
1 1 1 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-17 
Update B 

When coding patterns used as operands in AND instructions, code O's in all bit positions 
in operand 2 that correspond to bit positions in operand 1 that you want to set to off (0), 
and a 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

After the NR instruction is executed, the condition code is set to 0 if the result is all O's, or 
the condition code is set to 1 if the result is all 1 's or a combination of 1 's and O's. 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• The logical AND operation executes upon all 32 bit positions of the operand 1 and 2 
registers. 

• A zero in a bit position in operand 2 sets its corresponding bit position in operand 1 to 
0. 

• A 1 in a bit position in operand 2 allows its corresponding bit position in operand 1 to 
remain the same. 

• The condition code is set accordingly. 

Example: 

LABEL 
1 

INFOIN 

t.OPERATI ON t. 
10 16 

LH 5,6,INFOIN 
UR 5,6 

DS 
DC 
DC 

~F 
X'FFCCBBAA' 
X'CCBBEEDD' 

Register 5 before execution of NR instruction: 

T 
11ooi1100 1011 :1011 1010T1010 111111111 binary 

_j_ 

F I F C I C B I B A I A hex 
_J __L __L .l 

OPERAND 

Register 6 before and after execution of NR instruction: 

1100 11100 1011 ~1011 111oi1110 1101f1101 binary 
_I ..L 

c I C B I B E I E D I D 
__L __L .l 

hex 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 5 after execution of NR instruction: 

"T "'T "'T 
1000T1000 110011100 1000 ,1000 101011010 binary 

....L -r I 
c I C 8 : 8 A I A 8 18 

I I J 
hex 

12-18 

In this example, the LM instruction loads the two consecutive hexadecimal values aligned 
on a full-word boundary in main storage into registers 5 and 6. Then, a logical AND 
operation is performed on all 32 bits of registers 5 and 6. The result replaces register 5. 
The 1 's4'in respective bit positions in register 6 allow the corresponding bit positions in 
register 5 tq remain the same. The zeros in the remaining bit positions in register 6 set 
the corresponding bit positions in register 5 to 0. In effect, the content of register 5 is 
completely changed. 

• 

• 

• 



UP-8913 

12.8. COMPARE LOGICAL (CL) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-19 

UrJ.ir~ c 

CL 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 
CL 55 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

• IF r
1

=OPERAND2, SET TOO 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF r

1 
<OPERAND 2, SET TO 1 

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
• IF r 1 >OPERAND2, SET TO 2 D OtF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNcHANGED D NONE 

The compare logical (CL) instruction logically compares the contents of the operand 1 
register to the full word in operand 2. The result of the comparison determines the setting 
of the condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Explicit Format: 

LABEL Ll OPERATION Ll OPERAND 

[symbol] CL 

Implicit Format: 

LABEL Ll OPERATION Ll OPERAND 

[symbol} CL 

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That is, 
the comparison takes place regardless of data format. This instruction operaJes from left to 
right starting with the logical comparison of bit 0 in both operands and ending as soon as 
an inequality is reached, or the logical comparison of bit 31 in both operands is reached. 

After execution of the CL instruction, the condition code is set: 

To 0 if operand 1 = operand 2 

To 1 if operand 1 < operand 2 

To 2 if operand 1 >operand 2 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-20 

Usually, a conditional branch instruction tests the resulting condition code for an equal to, 
less than, or greater than condition. If the condition is met, a branch takes place 
accordingly. If not, the program continues processing as shown in the following coding 
instruction. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Operand 2 must either be defined as a full word or aligned on a full-word boundary. 

• Both operands 1 and 2 are considered unsigned binary values. 

• The condition code is set accordingly. 

• Condition code 3 is not used. 

• Operands 1 and 2 remain unchanged after execution of this instruction. 

Example: 

LABEL LOPERATIONL 
1 10 16 

SR I+, 4 
L 8,=F'75' 
CL 8,FULVAL 
BH LOOP! 
ST 8,LOW 

LOOP! AR 

FULVAL DC 
LOW DS 

4,8 

F'64' 
F 

OPERAUD 

Register 5 before and after execution of CL instruction. 

000010000 ooooloooo ooooloooo 0100 :1011 binary 
...l. ..I. 

0 I 0 0 l 0 o I o 4 I B 
...l. .1 

hex 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

FULVAL before and after execution of CL instruction: 

000010000 0000:0000 ooooloooo 010010000 binary 
...L ...L 

0 I 0 0 I 0 0 I 0 4 I o hex 
-1 ...L ...L 

12-21 

In this example, register 4 is cleared to 0 and the full-word value coded as a literal is 
loaded into register 8. Then the content of register 8 is logically compared to the full-word 
value in FULVAL. As the content of register 8 is greater than the content of FULVAL, the 
condition code is set to 2 and the branch to the instruction labeled LOOP1 takes place. If 
the result of the comparison was other than a greater than condition, no branch takes 
place and the ST instruction following the branch instruction is executed. 



UP-8913 

CLC 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12.9. COMPARE LOGICAL CHARACTERS (CLC) 

12-22 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FOF1MAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

CLC 05 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 
• IF OP1 = OP2, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
• IF OP1 < OP2, SET TO 1 

0 FLOATING-POINT DIVIDE 
D OP 1 NOT EVEN NUMBERED REGISTER 

• IF OP1 > OP2, SET TO 2 D 
Q1F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The compare logical characters (CLC) instruction logically compares the contents of 
operand 1 located in main storage to the contents of operand 2 located in main storage. 
The result of the comparison determines the setting of the condition code, bits 34 and 35 
of the PSW. (See 8.1 .) 

Explicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] CLC 

Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] CLC 

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That is, 
the comparison takes place regardless of data format. This instruction operates from left to 
right starting with the logical comparison of bit 0 in both operands and ending as soon as 
an inequality is reached (or the end of the field is reached). The length of operand 1, 
whether implied or explicit, determines the length of operand 2. Therefore, when the CLC 
instruction is executed, the length of operands 1 and 2 are the same. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

After execution of the CLC instruction, the condition code is set: 

To 0 if operand 1 = operand 2 

To 1 if operand 1 < operand 2 

To 2 if operand 1 > operand 2 

12-23 

Usually, a conditional branch instruction tests the resulting condition code for an equal to, 
less than, or greater than condition. If the condition is met, a branch takes place 
accordingly. If not, the program continues processing as shown in the following coding 
instruction. 

Operationa I Considerations: 

• Operands 1 and 2 must be located in main storage. 

• Both operands 1 and 2 are considered unsigned binary values. 

• The length of operand 1, whether implied or explicit, determines the length of 
operand 2. 

• The condition code is set accordingly. 

• Operands 1 and 2 remain unchanged after the execution of this instruction. 

• Condition code 3 is not used. 

Example: 

LABEL .60PERAT I ON.6 
1 10 16 

CLC MONTH! (8) ,t10tlTH2 
BE ADRTN 
HVC MONTH1(8),MONTH2 

ADRTN AP 

MONTH 1 DC 
MONTH2 DC 
TOTAL DC 
MTD DC 

TOTAL,MTD 

CL8 1 NOVEMBER 1 

CL8 1 DECEMBER 1 

PL3'28!a0' 
P'524 1 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

MONTH 1 before and after execution of CLC instruction: 

N 0 v E M B 

1101i 0101 1101io110 
T 

1100To101 1101To100 1100Too10 111010101 

T ...L 
T 

D I 5 D ! 6 E ! 5 c I 5 D I 4 c 12 
_l_ _l_ 

MONTH2 before and after execution of CLC instruction: 

D E c E M B 

1100To100 11ooio101 
T 

1100 To101 1101 To1 oo 1100 Too10 110010011 
I _l_ 

C I 4 
I I 

C I 5 c I 3 c I 5 D I 4 c I 2 
_l _L _l I _l 

12-24 

E R 

1100To101 1101T1001 binary 
_l_ 

C I 5 D ! 9 
_L 

hex 

E R 

T 
110010101 110111001 binary 

-+ I 
T 

c l 5 D .. ~. 9 bex 

In this example, the content of MONTH 1 is logically compared to the content of MONTH2. 
Since the content of MONTH1 (its binary value) is greater than the contents of MONTH2, the 
condition code is set to 2. The following branch instruction tests for an equal to condition 
(condition code of 0). Because that condition does not exist, no branch is taken, the MVC 
instruction following the BE branch instruction is executed, and the program continues 
processing. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-25 

CLCL 

12.10. COMPARE LOGICAL CHARACTERS LONG (CLCL) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CLCL OF RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF OP 1 =OP 2, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF OP 1 <OP 2, SET TO 1 D 
• IF OP 1 >OP 2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 2 NOT EVEN NUMBERED REGISTER 

0UNCHANGED D NONE 

The compare logical characters long (CLCL) instruction logically compares operands 1 and 
2, both of which are areas in main storage, and sets the condition code according to the 
result. The two operands need not be the same length. If they are not, a padding character 
specified by operand 2 is used to extend the shorter operand; this character takes part in 
the comparison. 

Explicit and Implicit Formats: 

LABEL /:J. OPE RATION /:J. OPERAND 

[symbol] CLCL 

The CLCL instruction uses two even-odd register pairs to specify the operands to be 
compared: 

Operand 1 

1: :1· Id even-numbered register Operand 1 address 

odd-numbered register lo ol Operand 1 length /CJ 
Operand 2 

l 1 
even-numbered register I 0 01 Operand 2 address 

odd-numbered register pad byte I Operand 2 length )) 
I I 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-26 

In action, the CLC instruction logically compares the byte at the operand 1 address with 
the byte at the operand 2 address. If the bytes are equal, the next bytes in both main 
storage areas are compared. This process continues byte by byte, proceeding left to right, 
until either an inequality is found or until the longer of the two operands has been 
completely scanned and the two operands found equal. For comparison purposes all codes 
and digits are considered valid. If an inequality is found, the condition code is set 
accordingly and the instruction terminates. 

If one operand is shorter than the other, comparison proceeds as previously described until 
all of the shorter operand has been scanned (up to which point the two operands must 
have been equal). Beyond this point, comparison continues between the remaining bytes 
of the longer operand and a single pad byte that you specify in bits 0-7 of the odd­
numbered register in operand 2. Comparison ends when an inequality is found or when all 
remaining bytes have been scanned and found equal to the pad byte. 

When at least one operand exceeds 256 bytes in length, the CLCL instruction breaks 
execution down into units of operation, each of which compares 256 bytes. Interruptions 
are allowed between units; the CLCL instruction always responds by updating its registers 
so that execution can resume exactly where it left off. 

If execution of the CLCL instruction ends because of an inequality, the operand registers 
contain information about the operation as follows: 

• Odd-numbered register, both operands: 

Contain their original operand lengths reduced by the number of equal bytes scanned. 
If the pad byte is being used at the time, the length of the shorter operand is 0. 

• Even-numbered registers, both operands: 

Contain their original addresses increased the same number of bytes by which their 
corresponding length registers are reduced. For operands that are equal (the pad byte 
included if used), both length registers have a zero value when execution finishes. 

Programming Considerations: 

• Both r 1 and r2 must be specified as even registers. 

• When operand lengths differ, padding always occurs no matter which register pair 
specifies the shorter operand. Nevertheless, the pad byte must be specified when 
needed in the high order byte of the operand 2 odd-numbered register. 

• If the contents of the r1 and r2 registers are identical, condition code 0 is set. 

• One or both operands can have zero length. If only one operand has it, all 
comparisons take place between the other operand and the pad byte. If both lengths 
are 0, condition code 0 is set and the instruction terminates. 



e 

UP-8913 

Condition Code: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

After execution of the CLCL instruction, the condition code is set: 

• to 0 if the two operands are equal, or if both operand lengths are zero; 

• to 1 if operand 1 is less than operand 2; or 

• to 2 if operand 1 is greater than operand 2. 

Condition code 3 is not used. 

Example: 

LABEL AOPERATIONA OPERAND 
1 10 16 

1. LA 2,CHARl 
2. LA 3,7 
3. LA 8,CHAR2 
4. LA 9,2 
s. 0 9,PADBYTE 
6. CLCL 2,8 

CHARl DC CL7'789.19.1019J' 
CHAR2 DC CL2'78' 

OS 9.IF 
PAD BYTE DC XL4 1 F9.19Jf69J9Jr6f6' 

12-27 

In this example, a 7-byte area in main storage starting at CHAR1 is compared to a 2-byte 
area, also in main storage, starting at CHAR2. The starting addresses for the two operands 
are loaded in registers 2 and 8. The respective operand lengths are loaded in registers 3 
and 9. At line 5, a logical OR operation on register 9 moves the pad byte FO into the high 
order (leftmost) eight bits of register 9. At line 6, the CLCL instruction is executed. When 
execution begins, the registers and main storage used are as follows (assuming CHAR1 to 
be at location 100): 

Register 2 

Register 8 

100 

I 00000100 I 
I 00000101 I 

Register 3 

Register 9 

104 

CHAR1 I F7 I F8 I FO I FO I FO I Fl I FO 

107 

CHAR2 F7 F8 

I 00000007 I 
I F0000002 I -pad byte 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Comparison proceeds as follows: 

direction of scan-----

100 

CHAR1 F7 F8 

-

CHAR2 

1~ 

104 

pad byte 
from register 9 

FO 

comparison stops, 
condition code=2 

12-28 

After the first two comparisons, all bytes are equal and the instruction runs out of operand 
2 (CHAR2) data. This causes all further comparisons to be made using the pad byte 
contained in register 9, which is the odd-numbered register of operand 2. The next three 
bytes of CHAR1 are found to be equal to the pad byte. However, the byte at operand 1 
location CHAR 1 +5 is greater than the pad byte, so the condition code is set to 2 and CLCL 
execution stops there. 

The CLCL registers, after execution is finished, contain: 

Register 2 

Register 8 

I 00000105 

100000109 

Register 3 

Register 9 

I 00000002 

I FOOOOOOO 

Notice that register 2 gives the exact location of the operand 1 byte that caused the 
inequality. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12.11. COMPARE LOGICAL IMMEDIATE (CLI) 

12-29 

CLI 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CLI 95 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

• IF OPERAND 1 = i
2

, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF OPERAND 1 < i

2
, SET TO 1 

D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
• IF OPERAND 1 >i

2
, SET TO 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The compare logical immediate (CU) instruction logically compares the content of operand 
1 located in main storage to the 1-byte immediate data of operand 2. The result of the 
comparison determines the setting of the condition code, bits 34 and 35 of the PSW. (See 
8.1.) 

Explicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] cu 

Implicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] cu 

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That 
is, the comparison takes place regardless of data format. The length of operand 1 can vary 
in length but the length of operand 2 is always one byte. Although the lengths of operands 
1 and 2 differ, only one byte of operand 1 is compared to the one byte of immediate data 
in operand 2. If you don't specify the exact byte in operand 1 you want logically compared 
to the one byte of data in operand 2, the first byte of operand 1 is used. This instruction 
operates from left to right starting with the logical comparison of bit 0 of the byte specified 
in operand 1 and bit 0 of operand 2, and ending as soon as an inequality is found, or the 
logical comparison of bit 7 of the byte specified in operand 1 and operand 2 is reached. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

After the execution of the CU instruction, the condition code is set: 

To 0 if operand 1 = operand 2 

To 1 if operand 1 < operand 2 

To 2 if operand 1 > operand 2 

12-30 

Usually, a conditional branch instruction tests the condition code for an equal to, less 
than, or greater than condition. If that condition is met, the branch takes place. If not, no 
branch takes place and the program continues processing as shown in the following 
coding instruction. 

Operational Considerations: 

• Operand 1 must be located in main storage. 

• Operand 2 must be a 1-byte self-defining term. 

• You can specify the exact byte in operand 1 that you want logically compared to the 
one byte in operand 2 through relative addressing. 

• Operands 1 and 2 remain unchanged after the execution of this instruction. 

• The condition code is set accordingly. 

• The length of operand 1 can vary. 

• Condition code 3 is not used. 

Example: 

LABEL 
1 

.6.0PERAT I ON .6. 
10 16 

cu 
BE 
PACK 

EQUALITY MVC 

BUF DC 
STORAGE DC 
STORAGEP DC 

STORAGE+l,X'F7' 
EQUALITY 
STORAGEP(2),STORAGE(3) 

BUF(l),STORAGE+l 

CL2'0' 
X'F6F7F2 1 

PL2'0' 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

STORAGE before and after execution of CU instruction: 

STORAGE+ 1 
1 

1111 ~0110 111110111 1111-:0010 
...l 

T 

F I 6 F I 7 F I 2 
_l_ ...l ...l 
~ 

Byte to be compared 
with operand 2 

binary 

hex 

Operand 2 immediate before and after execution of CU instruction: 

1111io111 binary 

F I 7 hex 
_l 

12-31 

In this example, the second byte in STORAGE is compared to the 1-byte immediate data in 
operand 2. As the content of the second byte of STORAGE is equal to operand 2, the 
condition code is set to 0, and the branch to the instruction labeled EQUALITY takes place. 
If the result of the comparison is not equal, no branch takes place, the PACK instruction 
following the branch instruction is executed, and the program continues processing. 

e Example: 

LABEL 
1 

t:.OPERAT I ONt:. 
10 16 

LA 8,526 
CLI AREA,C 'TI 
BE TOOLRTN 
HVI HOLD,C'T' 

TOOLRnl S 8,=F' 11 

AREA DC CL3'Tl2' 
HOLD DC CL 11 I 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

AREA before and after execution of CU instruction: 

1110 Too11 111110001 111110010 binary 

E I 3 F I 1 F I 2 hex 
..1 _L _L 

~ 

Byte to be compared 
with operand 2 

Operand 2 immediate before and after execution of CU instruction: 

1110 roo11 binary 
_L 

E I 3 hex 
_L 

12-32 

In this example, register 8 is loaded with a value of 526. Then the contents of the first 
byte of AREA is logically compared to operand 2. Because no one byte is specified in 
AREA, the first byte is used. As the content of byte 1 of AREA is equal to the content of 
operand 2, the condition code is set to 0, and the branch to the instruction labeled 
TOOLRTN takes place. If the result of the comparison is not equal, no branch takes place, 
the MVI instruction following the branch instruction is executed, and the program 
continues processing. 

Example: 

LABEL 
1 

liOPE RAT I ON li 
10 16. 

LM 3,4,LOADREG 
CLI NUMIN,X'Cl' 
BE STOCKNO 
MV I NEWHOLD, NUH I ti 

STOCKtlO /\R 3,4 

t!EWHOLD DC 
NUMIM DC 
LOADREG DC 

DC 

Cll I I 

CL4'A256' 
F'5264' 
F' 1 1 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

NUMIN before and after execution of the CU instruction: 

110010001 1111:0010 1111: 0101 1111 :0110 binary 

c J 1 F I 2 F l 5 F T 6 
_l l hex 

Operand '2 immediate before and after execution of the CU instruction: 

1100 I 0001 binary 

T 

C I 1 hex 

12-33 

In this example, two consecutive full words in main storage are loaded into registers 3 and 
4. The first byte of NUMIN is logically compared to the 1-byte immediate in operand 2. 
Because no one byte is specified in NUMIN, the first byte is moved. As the content of byte 
1 of NUMIN is equal to the content of operand 2, the condition code is set to 0, and the 
branch to the instruction labeled STOCKNO takes place. If the result of the comparison is 
not equal, no branch takes place, the MVI instruction following the branch instruction is 
executed, and the program continues processing. 



UP-8913 

CLIS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-34 

12.12. COMPARE LOGICAL IMMEDIATE AND SKIP (CLIS) 

General Possible Program Exceptions 

OBJECT • ADDRESSING 0 SIGNIFICANCE 
OPCODE FORMAT INST. 0 DATA (INVALID SIGN/DIGIT) • SPECIFICATION: 

TYPE LGTH. 0 DECIMAL DIVIDE 
(BYTES) 0 NOT A FLOATING-POINT REGISTER MNEM. HEX. 0 DECIMAL OVERFLOW 0 OP 1 NOT ON HALF-WORD BOUNDARY 

CLIS E1 SM 6 0 EXECUTE 0 OP 2 NOT ON HALF-WORD BOUNDARY 
0 EXPONENT OVERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON DOUBLE-WORD 
0 FIXED-POINT DIVIDE BOUNDARY 

• IF OP 2= OP 3, SET TO 0 0 FIXED-POINT OVERFLOW 0 OP 1 NOT EVEN NUMBERED REGISTER 
• IF OP 2 <OP 3, SET TO 1 0 FLOATING-POINT DIVIDE 0 OP 1 NOT ODD NUMBERED REGISTER 
• IF OP 2 >oP 3, SET TO 2 0 OPERATION • LOW-ORDER BIT OF OP 4 0 IF OVERFLOW, SET TO 3 
QUNCHANGED • PROTECTION DISPLACEMENT MUST BE ZERO 

The compare logical immediate and skip (CLIS) instruction logically compares a byte in 
main storage, addressed by operand 1, with a byte of immediate data in operand 2, setting 
the condition code accordingly. A 4-bit mask that you specify in operand 3 uses the 
condition code to determine if program control goes to the next sequential instruction or 
branches to another location in the program. That location is specified by operand 4 as an 
offset from the instruction immediately following the CLIS instruction. 

Explicit Format: 

LABEL b.OPERATION t. OPERAND 

[symbol] CLIS 

Implicit Format: 

LABEL t. OPERATION t. OPERAND 

[symbol] CLIS 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-35 

The CLIS instruction operates much like a combined COMPARE LOGICAL IMMEDIATE and 
BRANCH ON CONDITION instruction. It compares the byte in main storage addressed by 
operand 1 to operand 2, a byte of immediate data. This comparison sets the condition code 
to 0, 1, or 2. At this point, the instruction calls on a 4-bit mask, specified by m3, to 
determine where program control goes. Each bit in the mask corresponds to a condition 
code as fol lows: 

Mask Value 8 4 2 1 

Object bit position 16 17 18 19 

Condition code 0 1 2 3 

If a condition code is set and the mask bit corresponding to that code has a value of 1, 
program control branches to the address specified in the operand 4 displacement. If the 
mask bit has a 0 value, program control unconditionally passes to the next sequential 
instruction. 

When a condition code mask bit is set to 1, the CLIS instruction a1gebraically adds the 12-
bit displacement value contained in operand 4 to the value of the current p.rogram status 
word (PSW), effectively causing a branch to the new address.,The displacement can be 
positive or negative, signifying, respectively, a branch forward or backward. The sign of the 
displacement is determined by its high order (leftmost) bit: 0 for positive, 1 for negative. 
Addition of the displacement to the current PSW takes place using the rules of twos 
complement arithmetic. 

You can specify the m3 mask either with an absolute value or by coding an extended 
mnemonic in place of CUS in your assembler source program. The assembler provides six 
of these mnemonics for the CLIS instruction: all assemble into CLIS object instructions but 
each generates a different m3 mask value as shown in the following list. 

Mnemonic Opcode m3 mask Resulting action 

CLIBH E1 2 Branch if operand 1 is greater than operand 2 

CLIBL E1 4 Branch if operand 1 is less than operand 2 

CUBE E1 8 Branch if operand 1 is equal to operand 2 

CLIBNH E1 D Branch if operand 1 is not greater than operand 2 

CLIBNL E1 B Branch if operand 1 is not less than operand 2 

CLIBNE E1 7 Branch if operand 1 is not equal to operand 2 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-36 

When using an extended mnemonic you use only three operands: the operand 1 address, 
the operand 2 immediate byte, and the operand 4 displacement, in that order. 

You can specify the displacement value yourself or you can let the assembler do it for 
you: 

• You can code the displacement as an absolute expression. In this case the 
assembler inserts the expression, unchanged, into the displacement field. 

• You can code the displacement as a relocatable expression. In this case the 
assembler simulates a branch to the specified location by calculating its offset from 
the address of the instruction immediately following CLIS and inserting the offset in 
the displacement field. 

Operational Considerations: 

• The displacement field can range from -2048 decimal bytes to +2046 bytes. 

• The displacement must always be an even number of bytes because destination 
instructions must always lie on a half-word boundary. 

• A mask of 0 (OO()(h) causes the instruction always to branch to the next sequential 
instruction regardless of the condition code set. Likewise, a displacement value of 0 
causes an unconditional branch to the next instruction. 

• A mask of 15 ( 1111 2) causes the CLIS instruction always to branch to the instruction 
specified by the displacement field. 

• You must specify both the mask and the immediate byte as self-defining terms. 

Condition Code: 

After execution of the CLIS instruction, the condition code is set: 

• to 0 if the operand 1 byte is equal to the i2 byte; 

• to 1 if the operand 1 byte is less than the i2 byte; or 

• to 2 if the operand 1 byte is greater than the i2 byte. 

Condition code 3 is not used. 



UP-8913 

Example: 

LABEL llOPERATIONll 
1 10 

1. PACK 
2o CLI S 
3. NEG NI 
4. B 
5. POS NI 
60 COMSTEP 

CHARS TR DC 
PACKSTR DS 

16 

SPERRY UNIVAC OS/3 
ASSEMBLER 

PACKSTR(3),CHARSTR+1(5) 
CHARSTR,X 1 60 1 ,7,POS 
PAC KSTR+2 ,x I FD I 

COM STEP 
PACKSTR+2,X 1 FC 1 

CL6 1 -44031 1 

CL3 

12-37 

OPERAND ADDRESS 

(/j(/j(/j 1 (/j(/j 
(lj(/j01 (lj6 
(lj(/j@l(/jC 
00(/jl 10 
000114 
000118 

In this example, a 5-byte EBCDIC number at CHARSTR is packed into a 3-byte number at 
PACKSTR, and the leading sign of CHARSTR is attached to PACKSTR. The object code 
addresses of the instructions are shown in the right margin in the preceding example. 
Before execution of the CLIS instruction in line 2, CHARSTR and PACKSTR contain: 

CHARSTR 

PACKSTR 

4 4 0 3 

I 60 I F4 I F4 I FO I F3 I F1 

I 44 I 03 I 1 F I 
In the PACK operation, PACKSTR becomes an unsigned positive number; its actual sign is 
subsequently set by the CLIS instruction which: 

• compares the first byte of CHARSTR against an immediate byte, X'60' (EBCDIC minus 
sign); 

• sets up a branch to location POS if conditions are met, by adding the displacement 
between the next sequential instruction (at NEG) and POS (114-1 OC=8 bytes) to the 
current PSW; and 

• meets those conditions, causing the branch, if condition codes 1, 2, or 3 are set (mask 
value 4+2+1 =7). 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-38 

In action, the CLIS instruction finds CHARSTR equal to X'60', setting condition code 0. 
Since the mask bit for condition code 0 is not set, program control passes to the next 
sequential instruction, which is a NI instruction at location NEG that, in effect, attaches a 
packed negative sign to PACKSTR: 

PACKSTR ,44,031101 

If CHARSTR were anything but X'60', program control would pass to location POS, which 
attaches a packed positive sign to PACKSTR. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-39 

CLM 

12.13. COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
CLM BO RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF OP 1 =OP 2, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF OP 1 <OP 2, SET TO l D 
• IF OP 1 >OP 2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The compare logical characters under mask (CLM) instruction compares some or all of the 
bytes within the operand 1 register with a main storage location starting at the second 
operand address. The bytes to be compared are determined by a mask derived from 
operand 3. The condition code is set according to the result. 

Explicit Format: 

LABEL £:.OPERATION f:. OPERAND 

[symbol] CLM 

Implicit Format: 

LABEL £:.OPERATION£:. OPERAND 

[symbol] CLM 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-40 

The CLM instruction compares all or part of operand 1 with contiguous main storage data 
starting at the operand 2 address. The main storage bytes to be compared are contiguous, 
but you can select the bytes to be compared using a 4-bit mask (m3) defined by operand 3. 
Each bit in the mask corresponds to a byte within the operands. If a bit equals 1 its byte 
participates in the comparison; if the bit equals 0 its byte does not participate. The mask 
value of the bits and their corresponding bytes are as follows: 

Mask value 8 4 2 1 

Object code bit 12 13 14 15 

Byte (left to right) 1 2 3 4 

Thus, a mask value of 10 (8+2) specifies that the first and third bytes of the register are to 
take part in the comparison. The number of bytes in the operand 2 field equals the number 
of 1-bits in the mask. In operation, the leftmost register byte whose mask bit equals 1 is 
logically compared to the byte addressed by operand 2. Then, the next byte within the 
register having a mask bit of 1 is compared to the main storage byte immediately following 
the one used in the preceding comparison. This process is repeated for all 1-bits within 
the mask. Each comparison treats its bytes as unsigned binary data, the comparisons 
proceeding from left to right. 

Operational Considerations: 

• The operand 3 mask must be a self-defining term ranging from 0 to 15. 

• With a mask of 15 (1111 2), the CLM instruction acts like a COMPARE instruction, 
comparing all four bytes within the operand 1 register to four bytes in main storage. 
The only difference between the two instructions is that the four bytes addressed by 
CLM need not reside on a full-word boundary. 

Condition Code: 

After execution of CLM, the condition code is set: 

• to 0 if the mask is all O's or if the selected bytes are equal; 

• to 1 if the selected bytes of operand 1 are less than the corresponding bytes of 
operand 2; or 

• to 2 if the selected bytes of operand 1 are greater than the corresponding bytes of 
operand 2. 

Condition code 3 is not set. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Example: 

1. 
2. 

LABEL 
1 

LiOPERATIONLi 
10 16 

L 
CLM 

DS 
FWORD DC 
COMPMASK DC 

7,FWORD 
7,11,COMPMASK 

0F 
XL4 1 4F90782F 1 

XL3'4F883E 1 

OPERAND 

12-41 

In this example, register 7 is compared to three bytes in main storage starting at 
COMPMASK. At the beginning of the CLM instruction, register 7 and COMPMASK have 
the following contents: 

Register 7 I 4F90782F I 
coMPMASK I 4F I as I 3E I 

The CLM instruction has a mask of 11 that causes the instruction to operate as follows: 

Mask bit 0 (11) 

Register 7 4F 2F 

Select bytes 

COMPMASK CC=1 

The mask bits cause the CLM instruction to compare the first, third, and fourth bytes of 
register 7 with the three bytes at COMPMASK. The first operand 2 byte equals the first 
operand 1 byte; therefore, no conclusions can yet be drawn. However, the second operand 
2 byte (88) exceeds the second operand 1 byte (78), thus making the entire quantity at 
COMPMASK greater than the selected bytes in register 7. As a result, CLM sets the 
condtion code to 1 . 



UP-8913 

CLR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12.14. COMPARE LOGICAL (CLR) 

12-42 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

CLR 15 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition .Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
.1Fr

1
=r

2
,SETTOO D FIXED-POINT OVERFLOW BOUNDARY 

• IF r
1
<r

2
,SETTO1 

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
.1Fr1 >r

2
,SETT02 D 01F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0UNCHANGED • NONE 

The compare logical (CLR) instruction logically compares the content of the operand 1 
register to the content of the operand 2 register. The result of the comparison determines 
the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Explicit and Implicit Format: 

LABEL t.OPERATION ,0. OPERAND 

[symbol] CLR r 1,r2 

Both operands 1 and 2 are considered unsigned binary values with all codes valid. That 
is, the comparison takes place regardless of data format. This instruction operates from 
left to right starting with the logical comparison of bit 0 in both operands and ending as 
soon as an inequality is found, or the logical comparison of bit 31 in both operands is 
reached. 

After execution of the CLR instruction, the condition code is set: 

To 0 if operand 1 = operand 2 

To 1 if operand 1 < operand 2 

To 2 if operand 1 > operand 2 

Usually, a conditional branch instruction tests the resulting condition code for an equal to, 
less than, or greater than condition. If the condition is met, a branch takes place 
accordingly. If not, the program continues processing as shown in the following coding 
instruction. 



UP-8913 

Operationa I Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-43 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• Both operands 1 and 2 are considered unsigned binary values. 

• The condition code is set accordingly. 

• Operands 1 and 2 remain unchanged after the execution of this instruction. 

• Condition code 3 is not used . 

Example: 

LABEL b.OPERATI ONb. 
1 

COMPARE 

ADD2 

END 

DBLWD 
BtJF 

10 

SR 
L 
A 
CR 
BH 
CVD 
B 
AH 
B 
MVC 

DS 
DC 

16 

7,7 
5,=F 1 1250 1 

7,=F'875' 
5,7 
ADD2 
7,DBLWD 
mo 
7,=H'375 1 

COMPARE 
BUF,DBLWD+5 

D 
PL3'0' 

OPERAND 

In this example, register 7 is cleared to 0. A full word containing the decimal value 1250 
is loaded into register 5. Another full word containing the decimal value 875 is added to 
register 7. Then the content of register 5 is logically compared to the content of register 7. 
Since the content of register 5 is greater than the content of register 7, the condition code 
is set to 2, and the branch to the instruction labeled ADD2 takes place. There, a half word 
containing the decimal value 375 is added to register 7. An unconditional branch to the 
instruction labeled COMPARE takes place and registers 5 and 7 are logically compared 
again. This time, the content of register 5 is equal to the content of register 7. Because an 
equal to condition exists, the condition code is set to 0, and no branch takes place. The 
CVD instruction following the branch instruction is executed and the program continues 
processing. 



UP-8913 

CSM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12.15. COMPARE AND SWAP UNDER MASK (CSM) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

CSM 89 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

• IF OP 1 =OP 2, SET TO 0 
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF OP 1 < OP 2, SET TO 1 • • IF OP 1 >OP 2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

DI F OVERFLOW, SET TO 3 0 OPERATION • OP 3 NOT EVEN NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The compare and swap under mask (CSM) instruction logically compares a full word of 
main storage addressed by operand 2 with some or all of the odd-numbered register of an 
even-odd register pair specified by operand 1. If the two operands are not equal the 
condition code is set and execution ends there. If the two operands are equal the condition 
code is set, and then the instruction replaces some or all of the operand 2 field with data 
contained in the odd-numbered register of an even-odd register pair specified by operand 
3. You select the bits to be compared using a 32-bit mask in the even-numbered register 
of operand 1. You select the operand 2 bits to be replaced using a 32-bit mask in the 
even-numbered register of operand 3. 

Explicit Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] CSM 

Implicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] CSM 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-45 

The CSM instruction acts basically like a sequence of the COMPARE, BRANCH ON 
CONDITION, and STORE instructions. What separates the CSM instruction from the 
sequence is the use of 32-bit register masks in both the comparison and replacement 
steps. The comparison step uses an even-odd register pair, the even-numbered member of 
which is specified as operand 1. Within this pair, the odd-numbered register provides the 
data to be logically compared against the operand 2 full word, and the even-numbered 
register determines, using a combination of 0 and 1 bits, which bits actually take part in 
the comparison. Only operand 2 bits whose corresponding bits in the mask are 1 take part. 
A zero bit in the mask causes its corresponding bit to be ignored, to have no effect on the 
result of the comparison. Thus, an operand 1 mask containing FF00000016 causes 
comparison to take place as follows: 

Operand 1 mask 

Direct CSM to 

Operand 1 comparison register 

Action taken 

Operand 2 full word 

F F 0 

I 1111 1111 loooo 

condition 
code 

set 

• 

xx xx 

xx xx 

0 0 0 0 0 

0000 loooo 0000 loooo 0000 I 
ignore I 

xx xx xxxx xxxx xx xx xx xx 

not compared 

xxxx xxxx xxxx xxxx xx xx 

With this mask, comparison takes place using only the first byte of operands 1 and 3. The 
operands as a whole may be unequal, but in this instance equality is determined solely by 
comparing their respective first bytes. All signs and codes are considered valid for 
comparison purposes. The comparison step sets the condition code, which remains 
unchanged for the remainder of the instruction. 

If the masked operand 1 register does not equal the corresponding data in the operand 2 
full word, the CSM instruction terminates and control passes to the next instruction in 
sequence. If the operands are equal, the instruction proceeds to its second step, using 
another even-odd register pair, the even-numbered member of which is specified as 
operand 3. The odd-numbered register makes available 32 bits of data for replacement of 
data in the operand 2 full word. The bits that the instruction actually replaces are 
determined by the mask contained in the even-numbered register. If a mask bit position 
has a value of 1, the corresponding bit in the operand 3 odd-numbered register replaces 
the corresponding bit in the operand 2 full word. If a mask bit position has a value of 0, its 
corresponding bit in operand 2 remains unchanged. Thus, an operand 3 mask of 
OOFFFFFF 16 causes bit replacement to take place as follows: 



UP-8913 

Operand 3 replacement data 

Operand 2 full word 

SPERRY UNIVAC OS/3 
ASSEMBLER 

0 0 0 0 0 

I 0000 0000 0000 0000 0000 

I ignore 

3 9 4 6 2 

0 0 0 0 0 

12-46 

0 F F 

0000 1111 

replace 

2 

0 

The condition code is set according to the result of the comparison step and remains 
unchanged through the rest of the instruction. 

Operational Considerations: 

• Both r1 and r3 must be even-numbered registers. 

• Operand 2 must reside on a full-word boundary. 

• An operand 1 mask of zero (0000000016) sets the condition code to 0 and causes bit 
replacement to take place according to the operand 3 registers. 

• Using r1 and r3 masks of FFFFFFFF16 causes CSM to act like a COMPARE-BRANCH 
ON CONDITION-STORE instruction sequence in that it deals with whole registers 
without masking out any bits. 

Condition Code: 

After execution of the CSM instruction, the condition code is set: 

• to 0 if the masked bits of the operand 1 odd-numbered register equal their 
corresponding operand 2 bits (causing operand 3 bit replacement to take place); 

• to 1 if the masked operand 1 data is less than the operand 2 data (preventing operand 
3 bit replacement); or 

• to 2 if the masked operand 1 data is greater than the operand 2 data (preventing 
operand 3 bit replacement). 



UP-8913 

Example: 

1 • 
2. 
3. 
4. 

LABEL 
1 

FWORD1 
FWORD2 
EXl 

EX2 

AOPERATIONA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 
10 16 

LM 
CSM 
LM 
CSM 

DC 
DC 
DC 
DC 
DC 
DC 

2,5,EXl 
2,4,FWORDl 
2,5,EX2 
2,4,FWORD2 

F1 -2 1 

F 1 -1 1 F 
XL8 I 0F0F0F0FFFFFFFF.f I 

XL8 1 F0F0F0F0EEEEEEEE 1 

XL8 100080008FFFFFFFF 1 

XL8 1 F0F0F0F0DDDDDDDD 1 

12-47 

u,~<3la. c 

In this example, two CSM instructions both use full-word FWORD1 as the main storage 
operand 2. After the LM instruction in line 1 is executed, registers 2 through 5 and 
FWORD1 have the following contents: 

Register 2 I OFOFOFOF Register 3 I FFFFFFFff' I 
Register 4 I FOFOFOFO Register 5 I EEEEEEEE I 

FWORD1 I FFFFFFFE I 
When the CSM instruction in line 2 is executed, it first uses the even-numbered operand 
1 register, register 2, to mask a comparison between register 3 and FWORD1. 

Register 2 

Register 3 

FWORD1 

Only the shaded data shown takes part in the comparison. Although three of the four half 
bytes thus compared are equal, the low order half byte of FWORD1 is less than its 
corresponding register 3 half byte. This result sets the condition code to 2 and terminates 
CSM at once, leaving FWORD1 unchanged. 

Next, the LM instruction at line 3 loads the following data into registers 2 through 5: 

Register 2 I oooaooos 

Register 4 I FOFOFOFO 

FWORD2 

Register 3 

Register 5 

I FFFFFFFF 

I FFFFFFFF I 
I DDDDDDDO I 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-48 

Upon execution of the CSM instruction in line 4, the register 2 mask governs comparison 
of register 3 with FWORD2 as follows: 

0 0 0 8 0 0 0 8 
;.:.;: =~ 

Register 2 
w looo 0000 0000 0000 1000 0000 0000 0000 

:r 

F F F rt F F F F fj F w 

Register 3 1111 1111 1111 1111 1111 1111 1111 

F F F llt, 
n F F F F ,1 F 

FWORD2 1111 1111 1111 1111 
rn 

1111 1111 1111 1111 

As a result of the operand 1 mask, only shaded bits 12 and 28 are compared. Because all 
bits involved are equal, the condition code is set to 0 and CSM execution continues with 
the bit replacement step. In that step, the operand 3 mask in register 4 governs bit 
replacement from register 5 to FWORD2 as follows: 

Register 4 

Register 5 

FWORD2 

As a result of the mask, every other half byte in FWORD2 is replaced by its corresponding 
half byte in register 5. The condition code remains set to 0. 



UP-8913 

12.16. EXCLUSIVE OR (X) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-49 

1JpAa1e C 

x 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

x 57 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

.IF RESULT~O,SETTOO 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT =f=o, SET TO 1 D 
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The exclusive or (X) instruction performs an exclusive OR operation on the content of the 
operand 1 register and the full word in operand 2. The result is placed in operand 1 and 
also determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Explicit Format: 

LABEL 60PE"ATION 6 OPERAND 

[symbol] x r 1 ,d2 (x2 ,b2) 

Implicit Format 

LABEL 60PERATION 6 OPERAND 

[symbol] x r 
1

,s2 (x2) 

When the X instruction is executed, an exclusive OR operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit 
just accessed in operand 1. This instruction operates from left to right starting with the 
exclusive OR operation of bit 0 in both operands up to and including the exclusive OR 
operation of bit 31 in both operands. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-50 

The X instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 0 

When coding patterns are used as operands in exclusive OR instructions, the following 
codes are set: 

• O in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in 
operand 1 that you want set to 1 . 

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in 
operand 1 that you want set to 0. 

After the X instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Operand 2 must be either defined as a full word or aligned on a full-word boundary. 

• The condition code is set accordingly. 

• Condition codes 2 and 3 are not used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-51 
Update B 

• Example: 

• 

• 

LABEL 
1 

fl OPERATION fl 
10 16 

L 
x 

OS 
VAL DC 
XPATTERN DC 

6,VAL 
6,XPATTERN 

~F 
X'0000CAF2 1 

X'0~00C50D' 

Register 6 before execution of X instruction: 

0000:0000 oooofoooo 1100:1010 111110010 
_l_ 

binary 

o I O 
I 

IA F 12 O I O c 
.l. .i _l_ 

hex 

OPERAND 

XPATIERN before and after execution of X instruction: 

ooooToooo 0000:0000 
I 

ooooi 1101 110010101 binary 

-+ ..L -, ID 0 l 0 0 10 c 15 0 
.l. .l. 

hex 

Register 6 after execution of X instruction: 

0000:0000 ooooioooo 0000T1111 1111T 1111 binary 
..L _l_ 
T T 

I 0 l F 0 0 I o 0 F I F 
_l_ ..L . 

hex 

In this example, the content of VAL is loaded into register 6. Then the exclusive OR 
operation is performed on the contents of register 6 and the contents of XPATIERN. The 
resultant modified binary string is placed in register 6. Since the result is a combination of 
O's and 1 's, the condition code is set to 1 . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-52 

xc • 

12.17. EXCLUSIVE OR (XC) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

xc 07 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
• IF RESULT= 0, SET TO 0 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT *o. SET TO 1 

0 FLOATING-POINT DIVIDE 
0 OP 1 NOT EVEN NUMBERED REGISTER 

01F RESULT>O.SETT02 
0 

01F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The exclusive or (XC) instruction performs an exclusive OR operation on the contents of 
operand 1 and operand 2, both located in main storage. The result is placed in operand 1 
and also determines the setting of the condition code, bits 34 and 35 of the PSW. (See 
8.1.) 

Explicit Format: 

LABEL [;OPERATION[; OPERAND 

[symbol] xc 

Implicit Format: 

LABEL [;OPERATION[; OPERAND 

[symbol] xc 

When the XC instruction is executed, an exclusive OR operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit 
accessed in operand 1. This instruction operates from left to right. The length of operand 
1, whether implied or explicit, determines the length of operand 2. Therefore, when the XC 
instruction is executed, the lengths of operands 1 and 2 are the same. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-53 

The XC instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1 ) 

0 0 0 
1 0 1 
0 1 1 
1 1 0 

When coding patterns are used as operands in exclusive OR instructions, the following 
codes are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in 
operand 1 that you want set to 1. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in 
operand 1 that you want set to 0. 

After the XC instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Operands 1 and 2 must be located in main storage. 

• The condition code is set accordingly. 

• Operands 1 and 2 can have overlapping bytes. 

Example: 

LABEL 60PERATION6 
1 10 16 

A 
B 

XC A,B 
XC B,A 

DC 
DC 

BL 1 I "'"'011011 I 

BL 1 I 00010001 ' 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

A before execution of first XC instruction: 

0001~1011 binary 

+ 
I B hex 

_l 

B before and after execution of first XC instruction: 

~ 
~ 

binary 

hex 

A after execution of first XC instruction: 

0000 i 1010 
....I. 

0 I A 
_l 

binary 

hex 

B before execution of second XC instruction: 

T 

000110001 binary 
_L 

I 1 hex 
_j 

A before and after execution of second XC instruction: 

I 
000011010 binary 

_l 

0 I A hex 

B after execution of second XC instruction: 

I 
0001 11011 binary 

...1 

I B hex 
__l 

12-54 

In this example, the exclusive OR operation is performed on the contents of A and B. The 
resultant modified binary string of 1 's and O's is placed in A. Then another exclusive OR 
operation is performed on the contents of B and A (now modified). That resultant modified 
binary string of 1 's and O's is placed in B. Note that the sequence of executions of the 
exclusive OR operation on A and B, then B and A, results in A containing the resultant 
modified binary string and B containing the original contents of A. Note that the original 
contents of A is saved without use of another area in main storage. 



UP-8913 

12.18. EXCLUSIVE OR (XI) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-55 

XI 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORll.1AT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

XI 97 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT; 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT :;!:a, SET TO 1 0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

The exclusive or (XI) instruction performs an exclusive OR operation on the contents of 
one byte of operand 1 located in main storage and the one byte of immediate data in 
operand 2. The result is placed in operand 1 and also determines the setting of the 
condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Explicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol) XI 

Implicit Format: 

LABEL ~OPERATION~ OPERAND 

[symbol] XI 

When the XI instruction is executed, an exclusive OR operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the exclusive OR operation replaces the bit 
accessed in operand 1. This instruction operates from left to right. The length of operand 1 
can vary but the length of operand 2 is always one byte. Although operands 1 and 2 may 
have differing lengths, only one byte in operand 1 is used in the exclusive OR operation. 
The result replaces the one byte in operand 1 that was accessed. If you do not specify the 
exact byte in operand 1 you want used in the exclusive OR operation, the first byte of 
operand 1 is used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-56 

The XI instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 0 

When coding patterns are used as operands in exclusive OR instructions, the following 
codes are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in 
operand 1 that you want set to 1. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in 
operand 1 that you want set to 0. 

After the XI instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Operand 1 must be a main storage location. 

• Operand 2 must be a 1-byte self-defining term. 

• The length of operand 1 can vary. 

• The condition code is set accordingly. 

• You can specify the exact byte in operand 1 you want used with the one byte in 
operand 2 through relative addressing. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Example: 

LABEL 
1 

.60PERAT I ON .6 
10 16 

CLC ITEMNO(l),STNDNO 
RE SWTCHON 

SWTCHON XI 
MVC 

ITEMNO DC 
snrn~IO DC 
PROCESS DS 

ITEMNO+l, '161' 
PROCESS, I TEMNO 

X'F200' 
X' F2 I 

CL2 

ITEMNO before execution of XI instruction: 

111110010 
T 

000010000 binary 
_J_ 

F l 2 0 I 0 hex 

OPERAND 

Operand 2 immediate before and after execution of XI instruction: 

T 
000010001 binary 

0 j 1 hex 

ITEMNO after execution of XI instruction: 

1111i 0010 
T 

000010001 binary 
L 

F I 2 O I 1 hex 
_I_ I 

12-57 

In this example, the first byte of ITEMNO is logically compared to the content of STNDNO. 
Since they compare equally, the condition code is set to 0 and the branch to the 
instruction labeled SWTCHON takes place. There, the exclusive OR operation is performed 
on the first byte of ITEMNO and the one byte of data in operand 2. The result replaces the 
first byte in ITEMNO. The only change to the content of ITEMNO is the setting of the low 
order bit. This is an example of how the XI instruction can be used in setting programmed 
binary bit switches that are useful in testing for existing conditions within the logic of the 
program. 



UP-8913 

XR 

12.19. EXCLUSIVE OR (XR) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-58 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

XR 17 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• IF AESUL T =/=o, SET TO 1 

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 
01F RESULT>O,SETT02 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED • NONE 

The exclusive or (OR) instruction performs an exclusive OR operation on the contents of 
the operand 1 register and operand 2 register. The result is placed in the operand 1 
register and also determines the setting of the condition code, bits 34 and 35 of the PSW. 
(See 8.1.) 

Explicit and Implicit Format: 

.LABEL ti OPERATION ti OPERAND 

[symbol] XR 

When the XR instruction is executed, an exclusive OR operation is performed on a bit in 
the operands of 1 and 2 registers. The result of the exclusive OR operation replaces the bit 
just accessed in operand 1. This instruction operates from left to right starting with the 
execution of the exclusive OR operation on bit 0 in both registers up to and including bit 
31 in both registers. 

The XR instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 0 



• 
UP-8913 SPERRY UNIVAC OS/3 

ASSEMBLER 
12-59 

When coding patterns are used as operands in exclusive OR instructions, the following 
codes are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions containing O's in 
operand 1 that you want set to 1 . 

• 1 in all bit positions in operand 2 that correspond to bit positions containing 1 's in 
operand 1 that you want set to 0. 

After the XR instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• The condition code is set accordingly. 

• Example: 

• 

LABEL 
1 

t.OPERATIONt. 
10 16 

SR 
L 
A 
CVD 
MVC 
XR 

4,4 
7,CONTENTS 
7 ,=F' 25 1 

7,DBLWD 
AREA, DBLWD+5 
7,7 

CONTENTS DC F' 5" I 

DBLWD 
AREA 

OS 
DS 

D 
PL3 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 7 before execution of XR instruction: 

000010000 0000:0000 ooooToooo 0011loo10 binary 

1 
I O I B 0 I 0 0 I 0 0 4 hex 

.l. .l. ..J. 

Register 7 after execution of XR instruction: 

ooooToooo ooooloooo 000010000 ooooloooo binary 

-+ .l. 

0 IQ 0 l 0 0 I 0 0 :o 
J_ 

hex 

12-60 
Update B 

In this example, the full word in CONTENTS is loaded into register 7. A full word 
containing the decimal value of 25 is added to register 7, and that result is converted into 
its decimal equivalent and placed in DBLWD in main storage. Then the content of the last 
three bytes of DBLWD are moved into a smaller field, and the exclusive OR operation is 
performed on the contents of register 7 and itself. The result is a field of O's. This is 
another method of clearing a field to O's. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-61 

• IC 

• 

• 

12.20. INSERT CHARACTER (IC) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 
IC 43 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT~ 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
D IF RESULT <a. SET To 1 D D IF RESULT >a. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

• UNCHANGED D NONE 

The insert character (IC) instruction places one byte of data from operand 2 into the 
rightmost byte of the operand 1 register. 

Explicit Format: 

LABEL /::;.OPERATION /::;. OPERAND 

[symbol] IC 

Implicit Format: 

LABEL /::;.OPERA TIOl\I /::;. OPERAND 

[symbol] IC 

The data in operand 2 can be defined in any format. The length of operand 2 can vary but 
the length of operand 1 is always four bytes. Although operands 1 and 2 can have 
differing or equal lengths, only one byte of operand 2 is inserted into the rightmost byte of 
the operand 1 register. The remaining three bytes of operand 1 remain the same. If you do 
not specify the exact byte in operand 2 you want inserted into operand 1, the first byte of 
operand 2 is used . 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• Any of the general registers (0 through 15) can be used as operand 1. 

• The length of operand 2 can vary. 

12-62 
Update B 

• You can specify the exact byte in operand 2 you want inserted into the rightmost byte 
of operand 1 through relative addressing. 

• The condition code remains unchanged. 

Example: 

LABEL 
1 

INSERT 

HE XV AL 
MEWVAL 

6 OPE RAT I oru~ 
10 16 

L 4,HEXVAL 
CLC HEXVAL+3(1) ,NEWVAL 
BtlE INSERT 

IC 

OS 
DC 
DC 

4,NEWVAL 

0F 
X1 000064A2 1 

X1 F4 1 

Register 4 before execution of IC instruction: 

HEXVAL+3 

000010000 ooooioooo 0110 :0100 101oioo10 binary 

0 lo 0 l 0 6 I 4 A I 2 
-1. J_ 

hex 

OPERAND 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

NEWVAL before and after execution of IC instruction: 

111110100 binary 

F I 4 hex 

Register 4 after execution of instruction: 

000010000 000010000 011010100 1111 t0100 binary 

0 I 0 0 I 0 6 I 4 F I 4 hex 

12-63 

In this example, the content of HEXVAL is loaded into register 4. Then the fourth byte of 
HEXVAL is logically compared to the one byte in NEWVAL. Since the content of 
HEXVAL +3 is greater than NEWVAL, the condition code is set to 2 and the branch to the 
instruction labeled INSERT takes place because a not equal to condition exists. There, the 
1-byte field in NEWVAL is inserted into the rightmost byte of register 4 . 



t 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-64 
Update B 

ICM • 

12.21. INSERT CHARACTERS UNDER MASK (ICM) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

ICM BF RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 D 
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The insert characters under mask (ICM) instruction inserts contiguous bytes from storage 
starting at the operand 2 address into the operand 1 register, according to a pattern 
determined by a 4-bit mask in operand 3. 

Explicit Format: 

LABEL /:,OPERATION/:, OPERAND 

[symbol] ICM 

Implicit Format: 

LABEL /:,OPERATION/:, OPERAND 

[symbol] ICM 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-65 

The ICM instruction replaces any or all bytes within the operand 1 register with bytes 
located at the operand 2 address in main storage. The bytes to be replaced are determined 
by the 4-bit operand 3 mask, in which each bit corresponds to a byte within the register 
into which data is to be inserted: 

Mask value 8 4 2 1 

Object code bit 12 13 14 15 

Register byte (left to right) 1 2 3 4 

Thus, a mask value of 9 (8+1) replaces the two end bytes in the register while a value of 6 
(4+2) replaces the two middle bytes. 

The number of bytes in operand 2 equals the number of bits in the operand 3 mask. In 
operation, the first byte at operand 2 is inserted into the leftmost byte of the register for 
which a 1 bit exists in the mask. The process continues from left to right within the mask, 
the storage field of operand 2, and the operand 1 register. Bytes within the register whose 
mask bits equal 0 are left unchanged. 

Operational Considerations: 

• Operand 3 must be a self-defining term between 0 and 15. 

• Operand 2 need not reside on a full-word boundary . 

• For a mask of 15 (1111 2), the ICM instruction acts like a combination of a LOAD 
instruction and a LOAD AND TEST instruction, moving four bytes from storage into all 
four bytes of the operand 1 register and setting the condition code according to the 
result. 

Condition Code: 

After execution of the ICM instruction, the condition code is set: 

• to O if the operand 3 mask is zero, or if all bits inserted are zero; 

• to 1 if the high order bit of operand 2 is 1 (making operand 2 algebraically negative); 
or 

• to 2 if the high order bit of operand 2 is 0 (making operand 2 algebraically positive). 

Condition code 3 is not used. Note that the condition code is set according to operand 2, 
not operand 1. 



UP-8913 

Example: 

aOPERATIONa 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND LABEL 
1 10 16 

1. L 5,=F'-1 1 

2. ICM 5 ,5 ,MASKBYTE 

MASKBYTE DC XL2 1 0QJ11 1 

12-66 

In this example, the LOAD instruction in line 1 puts a value of -1 into register 5: 

Register 5 I FFFFFFFF I 
The ICM instruction at line 2, using a mask of 5 and main storage starting at location 
MASKBYTE, operates on register 5 as follows: 

Mask bits 0 

I 
0 

I 
(5) 

no no 
change change 

l ,~':::" ,~;;:;., 
Register 5 FF : 00 l FF l 11 

MASKBYTE 

The first and third bits of the mask are O; therefore, the first and third bytes of register 5 
remain unchanged. But the second mask bit is 1, so the byte at MASKBYTE is inserted 
into the second byte of the register. Likewise, the fourth mask bit is 1, so the fourth byte 
of register 5 is replaced by the byte at MASKBYTE+1. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-67 

• LA 

• 

• 

12.22. LOAD ADDRESS (LA) 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

LA 41 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT~ 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

D 
DI F RESULT> 0, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED • NONE 

The load address (LA) instruction places the address of the main storage location of 
operand 2 into bit positions 8 through 31 (rightmost 3 bytes) of the operand 1 register. Bits 
0 through 7 (leftmost byte) of the operand 1 register are set to O's . 

Explicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] LA r 1 ,d2 (x2 ,b2) 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] LA r1 ,s2 

Operand 2 can be any byte in main storage and does not have to be aligned on a full-word 
boundary. Operand 2 can also be a self-defining term. The three rightmost bytes of 
operand 1 are filled and the leftmost byte of operand 1 is set to O's. 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Any of the general registers (1 through 15) can be used as operand 2. These registers 
are used as self-defining terms. 

• Operand 2 can be any label in main storage. 



UP-8913 

Example: 

AOPERATIONA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LABEL 
1 10 16 

SR 
LA 
ZAP 

ADDLOOP PACK 
AP 
A 
A 
c 
BL 

CARDIN OS 
WKLYHRS OS 
CONl DC 
CON3 DC 
CON7 DC 

4,4 
6,CARDIN+38 
WKL YHRS ,=P 10 I 
0 (3 ,6) ,0 (3 ,6) 
WKLYHRS,0(3,6) 
4,CONl 
6,CON3 
4,CON7 
ADD LOOP 

CL80 
PL3 
FI 1 ' 
F'3' 
F'7' 

OPERAND 

12-68 
Update B 

In this example, register 4 is cleared to 0. Then, the LA i'lstruction loads the address of 
CARDIN+38 into register 6. The ZAP instruction sets the field labeled WKLYHRS to a 
packed field of O's. Since the address of the byte located at card column 39 is in register 
6, the PACK instruction packs the 3-byte field (defined in explicit format) into itself. Note 
that there is a displacement value of 0. Therefore, the base address is not modified 
through displacement values. The 3-byte packed field is now added to WKLYHRS which 
will eventually contain the total number of hours an employee works in one week. A full 
word containing the decimal value of 1 is added to register 4 each time a 3-byte field is 
packed and added to WKLYHRS. Register 4 acts as a counter to keep track of the number 
of times the ADDLOOP routine has been executed. A full word containing the decimal 
value of 3 is added to register 6 modifying the address by increasing it 3 bytes each time 
the A instruction is executed. This allows the successive fields on the input card to be 
processed. Then, the content of register 4 is compared to the decimal value of 7 in CON7. 
The branch if low (BL) instruction tests the condition code for a less than condition. Since 
the content of register 4 is less than the content of CON7, a branch to the instruction 
labeled ADDLOOP takes place. The ADDLOOP routine is executed seven times. After the 
seventh execution, the content of register 4 is not less than CON7 and the instruction 
following the BL instruction is executed. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12.23. MOVE IMMEDIATE (MVI) 

12-69 

MVI 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PRO_TECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

MVI 92 SI 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINTOVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 
01F RESULT>O,SETT02 

0 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED - 0 NONE 

The move immediate (MVI) instruction places the one byte of immediate data in operand 2 
into one byte of operand 1 located in main storage. 

Explicit Format: 

LABEL L:. OPERATION i'.:. OPERAND 

[symbol] MVI 

Implicit Format: 

LABEL i'.:. OPERATION i'.:. OPERAND 

[symbol] MVI 

The data in operands 1 and 2 can be defined in any format. The length of operand 1 can 
vary but the length of operand 2 is always one byte. Although operands 1 and 2 can have 
differing lengths, only one byte in operand 1 receives the immediate data from operand 2. 
If you do not specify the exact byte in operand 1 you want to receive the operand 2 data, 
the first byte of operand 1 is used. 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• Operand 1 must be a main storage location. 

• Operand 2 must be a 1-byte, self-defining term. 

• The length of operand 1 can vary. 

12-70 

• You can specify the exact byte in operand 1 you want to receive the immediate data 
in operand 2 by relative addressing. 

Example: 

LABEL 
1 

tiOPERATI ON ti 
10 16 

HVI OUTPUT,X'4~ 1 

MVC OUTPUT+1(7),0UTPUT 

OUTPUT OS CL8 

OUTPUT before execution of MVI instruction: 

T 
0000 10000 ooooloooo 0000:0000 0000:0000 000010000 

-+ 
I 

-+ ..L 

To I 0 I O 0 I 0 0 o I o 0 0 
_1 ..L ...L _l _l 

OPERAND 

0011 :1101 1100I1010 0100:1100 
...L 

T 

3 l D C l A 4 I c 
...L 

'------------------~-------....... --._./' leftover data from previous program 

Operand 2 immediate before and after execution of MVI instruction: 

~ 
~ 

binary 

hex 

binary 

hex 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

OUTPUT after execution of MVI instruction: 

01ooioooo 0000:0000 ooooloooo ooooioooo oooojoooo 
_l 

T 

0 I 0 4 I 0 0 I 0 o I o 0 I 0 
_L _L ...l .1 
~ 

only byte changed 

OUTPUT after execution of MVC instruction: 

010010000 010010000 0100Toooo 0100Toooo 0100:0000 
_L 

T T T 
I O 4 1 0 4 I 0 4 I o 4 4 l 0 

..L _L 

12-71 

0011 r1101 
T 

010011100 110011010 binary 
_L 

3 l D c I A 4 l c 
..L 

hex 

0100:0000 01ooloooo 010010000 binary 
_L 

4 I 0 
T 

To 4 l 0 4 
I ..L 

hex 

In this example, the one byte of immediate data in operand 2 is placed in the first byte of 
OUTPUT since no exact byte is specified. Then that first byte of OUTPUT is propagated 
through that entire field. The length attribute (in this example, 7) can be either implied or 
explicit and determines the number of bytes that the first byte is propagated through. 



UP-8913 

0 

12.24. OR (0) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-72 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 56 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WOAD BOUNDARY 

• IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• IF RESULT *o. SET TO 1 

0 FLOATING-POINT DIVIDE 
0 OP 1 NOT EVEN NUMBERED REGISTER 

01F RESULT>O.SETT02 
0 0 IF OVERFLOW, SET TO 3· 0 OPERATION OP 1 NOT 000 NUMBERED REGISTER 

0UNCHANGED 0 NONE 

The or (0) instruction performs a logical OR operation (sometimes referred to as an 
inclusive OR operation) on the contents of the operand 1 register and the full word in 
operand 2. The result is placed in the operand 1 register. 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] 0 

Implicit Format: 

LABEL ti OPERATION 6 OPERAND 

[symbol] 0 

When the 0 instruction is executed, a logical OR operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of that OR operation replaces the accessed bit 
in operand 1. This instruction operates from left to right starting with the logical OR 
operation of bit 0 in both operands up to and including the logical OR operation of bit 31 
in both operands. 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-73 
Update B 

The O instruction is used to modify bits in the receiving field. The procedure is shown in 
the followihg truth table: 

Result 
Operand 1 Operand 2 (Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 1 

When coding patterns are used as operands in logical OR instructions, the following codes 
are set: 

• O in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to set to 1 . 

After the 0 instruction is executed, the condition code is set as follows: 

To 0 if result is all O's . 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Operand 2 must be either defined as a full word or aligned on a full-word boundary. 

• The condition code is set accordingly. 

Example: 

LABEL 
1 

NUMX 
PATRNO 

t.OPERATI ON t. 
10 16 

L 
0 

OS 
DC 
DC 

11 ,NUMX 
11,PATRNO 

~F 
x I (6(6(6(6F0F0' 
x I f60FF0Ff6F I 

OPERAND 



UP-8913 NIVAC OS/3 SPERRY U 
ASSE MBLER 

Register 11 before execution of 0 ins truction: 

000010000 000010000 111110000 111110000 binary 

0 I o O I O F I 0 F I 0 hex 

12-74 

PATRNO before and after execution o f 0 instruction: 

000010000111111111 000011111 00001111 1 binary 

0 I 0 F I F 0 I F 0 I F hex 

Register 11 after execution of 0 instr uction: 

0000 I 0000 1111 I 1111 1111 1 1111 1111 I 111 1 binary 

0 I 0 F I F F I F F I F hex 

loaded into In this example, the content of NUMX is 
operation is performed on the content of 
resultant modified binary string replaces re 

register 11 
gister 11. 

register 11 and then a logical OR 
and the content of PATRNO. The 

• 

• 

• 



• 
UP-8913 

12.25. OR (QC) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE 
MNEM. HEX. 

oc 06 SS 

Condition Codes 

.IFRESULT=O,SETTOO 
• IF RESULT =/=o, SET TO 1 
0 IF RESULT >o. SET TO 2 
0 IF OVERFLOW, SET TO 3 
OuNCHANGED 

LGTH. 
(BYTES) 

6 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-75 
Update B 

oc 

Possible Program Exceptions 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The or (QC) instruction performs a logical OR operation (sometimes referred to as an 
inclusive OR operation) on the contents of operands 1 and 2 located in main storage. The 
result is placed in operand 1. 

• Explicit Format: 

• 

LABEL [-,OPERATION[-, OPERAND 

[symbol] OC 

Implicit Format: 

LABEL l-.OPERATION [-, OPERAND 

[symbol] oc 

When the QC instruction is executed, a logical OR operation is performed on a bit in 
operand 1 and a bit in operand 2. The result of the logical OR operation replaces the 
accessed bit in operand 1. This instruction operates from left to right. The length of 
operand 1, whether implied or explicit, determines the length of operand 2. Therefore, 
when the QC instruction is executed, the lengths of operands 1 and 2 are the same . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-76 

The OC instruction is used to modify bits in the receiving field. The procedure is shown in • 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 1 

When coding patterns are used as operands in logical OR instructions, the following codes 
are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to set to 1. 

After the OC instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operationa I Considerations: 

• Operands 1 and 2 must be located in main storage. 

• The condition code is set accordingly. 

• Operands 1 and 2 can have overlapping bytes. 

Example: 

LABEL 
1 

t:. OPE RAT I ON t:. 
10 16 

OC CONSTANT,CONDITl 
OC CONSTANT,CONDIT2 

CONSTANT DC B'f110fllf110fllf110' 
B I r6r60f110r611 I 
BI '1101010'11'11' 

CONDIT1 DC 
CONDIT2 DC 

OPERAND 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

CONSTANT before execution of OC instruction: 

0000:0000 binary 

0 I 0 hex 
I 

Before and after execution of OC instruction: 

CONDIT1 CONDIT2 

0000 Too11 
T 

001011000 binary 
_l_ _l 

T 
0 I 3 

_l 
2 I 8 hex 

CONSTANT after execution of first OC instruction: 

0000 io011 binary 

0 l 3 hex 

CONSTANT after execution of second OC instruction: 

001oi1011 binary 

2 I B hex 
_l 

12-77 

In this example, a logical OR operation is performed on the contents of CONSTANT and 
CONDIT1 and the result is placed in CONSTANT. Then, another logical OR operation is 
performed on the contents of CONSTANT (now modified) and CONDIT2. That result 
replaces the contents of CONSTANT. This is an example of the way programmed switches 
can be used to set several conditions. 



UP-8913 

01 

12.26. OR (01) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-78 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (Blr'TES) 

QI 96 SI 

Condition Codes 

.IFRESULT=O,SETTOO 
• IF RESULT °4'0, SET TO 1 
01F RESULT>O,SETT02 

0 IF OVERFLOW, SET TO 3 

0 UNCHANGED 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVl-OE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The or immediate (01) instruction performs a logical OR operation on the contents of 
operand 1 located in main storage and the one byte of immediate data in operand 2. The 
result replaces one byte in operand 1. 

Explicit Format 

LABEL L'-.OPERATIONL'i OPERAND 

[symbol] 01 

Implicit Format: 

LABEL L'iOPERATION 6 OPERAND 

[symbol] 01 

When the 01 instruction is executed, a logical OR instruction is performed on a bit in 
operand 1 and a bit in operand 2. The result of the logical OR operation replaces the 
accessed bit in operand 1. This instruction operates from left to right. The length of 
operand 1 can vary but the length of operand 2 is always one byte. Although operands 1 
and 2 may have differing lengths, only one byte in operand 1 is used in the logical OR 
operation. The result replaces the one byte in operand 1 that was accessed. If you do not 
specify the exact byte in operand 1 you want used in the logical OR operation, the first 
byte of operand 1 is used. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-79 

The 01 instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table. 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 1 

When coding patterns are used as operands in logical OR instructions, the following codes 
are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the ~ame. 

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to set to 1. 

After the 01 instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operational Considerations: 

• Operand 1 must be a main storage location. 

• Operand 2 must be a 1-byte self-defining term. 

• The length of operand 1 can vary. 

• The condition code is set accordingly. 

• You can specify the exact byte in operand 1 you want used in the logical OR 
operation through relative addressing. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Example: 

LABEL 
I 

AMTP 
VAL 
AMT 

.6.0PERAT I ON.6. 
IO J 6 

AP AMTP,VAL 
UNPK AMT(S),AMTP 
01 AMT+4,X 1 F~ 1 

DC 
DC 
OS 

PL3'652' 
P'522 1 

ZLS 

AMT before execution of 01 instruction: 

AMT+4 

·~ 
111110001 

I 

1100:0100 111110000 111110001 111110111 
__]_ 

I I I 
F I 7 C I 4 F I 0 F I 1 F I 1 

_l_ _J_ 

OPERAND 

binary 

hex 

Operand 2 immediate before and after execution of 01 instruction: 

1111 I 0000 binary 
_1 

F I 0 hex 

AMT after execution of 01 instruction: 

111110000 1111iooo1 
T T 

1111 :0100 111110001 111110111 binary 
_l_ _j_ _j_ _J_ 

F I 0 
I 

F I 1 F I 7 F I 4 F I 1 
J_ _l _j_ _J_ 

hex 

12-80 

In this example, the packed decimal contents of AMTP and VAL are added together and 
the result is placed in AMTP. Then the UNPK instruction changes the packed format of 
AMTP to the zoned decimal format and puts the result in AMT. In order to print a decimal 
number, it must be in zoned decimal format and each number must be preceded by a 
hexadecimal F. Otherwise, an alpha character will be printed as the rightmost byte. Note 
that the last byte in AMT has a hexadecimal C in its zone portion. The 01 instruction 
allows a logical OR operation to be performed on the contents of byte 5 in AMT and the 
one byte of data in operand 2. The result replaces byte 5 of AMT. Now the decimal 
number in AMT can be printed. 



• 
UP-8913 

12.27. OR (OR) 

General 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

OR 16 RR 2 

Condition Codes 

• IF RESULT~ 0, SET TO 0 

• IF RESULT*O,SETTO 1 

0 IF RESULT >o. SET TO 2 
Q1F OVERFLOW, SET TO 3 

OuNCHANGED 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-81 

OR 

Possible Program Exceptions 

0 ADDRESSING 0 PROTECTION 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The or (OR) instruction performs a logical OR operation on the contents of the operand 1 
register and operand 2 register. The result is placed in the operand 1 register and also 
determines the setting of the condition code, bits 34 and 35 of the PSW. {See 8.1.) 

• Explicit and Implicit Format: 

• 

LABEL ,0, OPERATION ,0, OPERAND 

[symbol] OR r 1,r2 

When the OR instruction is executed, a logical OR operation is performed on a bit in the 
operand 1 and operand 2 registers. The result of the logical OR operation replaces the 
accessed bit in operand 1. This instruction operates from left to right starting with the 
execution of the logical OR operation on bit 0 in both registers up to and including bit 31 
in both registers. 

The OR instruction is used to modify bits in the receiving field. The procedure is shown in 
the following truth table: 

Operand 1 Operand 2 
Result 

(Operand 1) 

0 0 0 
1 0 1 
0 1 1 
1 1 1 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-82 
Update B 

When coding patterns are used as operands in logical OR instructions, the following codes • 
are set: 

• 0 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to remain the same. 

• 1 in all bit positions in operand 2 that correspond to bit positions in operand 1 that 
you want to set to 1. 

After the OR instruction is executed, the condition code is set as follows: 

To 0 if result is all O's. 

To 1 if result is a combination of 1 's and O's. 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• The condition code is set accordingly. 

Example: 

LABEL 
1 

HEX#l 
HEX#2 

LOPERATI ONL 
10 16 

L 4,H~X#l 
L 8,HEX#2 
OR 4,8 

DS 
DC 
DC 

0F 
X1 !1100101C0 1 

X1!11C!llA0FF5' 

Register 4 before execution of OR instruction: 

000010000 0000:0001 oooolooo1 1100~0000 
_l -l-

binary 

0 I 0 0 I 1 0 I 1 C I 0 
I ...L ...L l 

hex 

OPERAND • 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 8 before and after execution of OR instruction: 

000011100 000011010 000011111 1111 ~0101 binary 
I 

0 : A 
I 

o I c 0 I F F I 5 hex 

Register 4 after execution of OR instruction: 

0000}1100 0000 T1011 000011111 
T 

111110101 
I 

binary 

! 
0 : B F l 5 0 l c 0 I F hex 

12-83 

In this example, the content of HEX#l is loaded into register 4 and the content of HEX#2 
is loaded into register 8. Then a logical OR operation is performed on the contents of 
registers 4 and 8. The result replaces the content of register 4. 



UP-8913 

SLDL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12.28. SHIFT LEFT DOUBLE LOGICAL (SLDL) 

12-84 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

SLDL SD RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
D IF RESULT <o, SET To 1 • 01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

Q1F OVERFLOW, SET TO 3 D OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

The shift left double logical (SLDL) instruction shifts all of the 63 bits of operand 1 to the 
left by the number of bits specified in the low order six bits of the operand 2 address. 
Specify the even-numbered register of the pair as operand 1. 

Explicit Format: 

LABEL fl OPERATION!:::,. OPERAND 

[symbol] SLDL 

Implicit Format: 

LABEL !:::,. OPE RATION fl OPERAND 

[symbol] SLDL 



• 

• 

• 

UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-85 
Update B 

• Any pair of general registers (0 through 15) can be used as operand 1, which is an 
even-odd register pair. You must specify the even-numbered register of the pair as 
operand 1. 

• The main storage address or label you specify in operand 2 is not changed by the 
SLDL instruction execution. Notice the formats indicate that you cannot specify a 
length in operand 2. 

• After the requested number of bits are shifted out of the operand 1 register pair, 
zeros fill the rightmost bit positions of the register pair. 

Example 1: 

LABEL 
l 

VALUE 

AOPERATIONA 
10 16 

LM 4,5,VALUE 
SLDL 4,32 

DS 
DC 
DC 

({jF 
x I FFFFFFFF I 
x I FFFFFFFF I 

OPERAND 

In this example, register 4 is loaded with the content of main storage location VALUE. 
Register 5 is loaded with the next 32 bits of main storage following VALUE. The SLDL 
instruction causes the contents of the registers to be shifted left 32 bits. 

Registers 4 and 5 before execution of SLDL instruction: 

Register 4 Register 5 

F 
I 

F F 
I i I : : -:- I 

: I F F I F F I F F I F F I F F I F F l F 
i __L 

I 
1111I1111 

I T 

1111I1111 
! ! 

1111: 1111 111111111 1111 I 1111 1111: 1111 1111 i 1111 1111: 1111 
I i J. i J_ J_ j_ i 

hex 

binary 

Registers 4 and 5 after execution of SLDL instruction: 

I i T i 1 i l T 

F I F F F F I F F 0 0 0 0 : 0 I I I F I 0 I 0 I 0 I hex 

1111 :1111 1111: 1111 1111: 1111 1111: 1111 0000: 0000 0000: 0000 0000: 0000 
T 

0000: 0000 
_i i ...L ...L .! _i L 

binary 



-------~~---------------------------

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-86 
Update B 

Example 2: 

This example using the SLDL has the same shift result except that a label is used as 
operand 2 of the SLDL instruction. 

LABEL 
I 

VALUE 
STORAGE 

L\OPERATIONL\ 
IO 16 

LM 4,5,VALUE 
SLDL 4,STORAGE 

OS 
DC 
EQU 

0F 
2XL4 I FFFFFFFF I 

X'UJ' 

OPERAND 

In this example, the absolute value of the main storage location STORAGE determines the 
number of bits that operand 1 should be shifted left. The operand 2 label is equated (EQU 
instruction) with a hexadecimal value that indicates how many bit positions you want to 
move. This is necessary so that the assembler takes the absolute value that you equated 
with your label and not its relocatable address. Note that a hexadecimal 20 is equivalent to 
a decimal 32. 

Registers 4 and 5 before execution of SLDL instruction: 

T i T I T i I 
F : F F 

I 
F I F I F F l F F I F F I F F I F F I F 

_L 
hex 

1111 : 1111 
I 

1111 : 1111 1111: 1111 1111 I 1111 
I I 

1111: 1111 111111111 111111111 1111I1111 
_l _l_ i i i i _i 

binary 

I J 

STO RAGE before and after SLDL instruction execution: 

2 I 0 hex 
I 

0010 loooo 
_i 

binary 

l 25 (32) 

Regi sters 4 and 5 after SLDL instruction execution: 

l r l 
I I 

T 1 1 I I : F 
I 

F F I F F : F F I F 0 I 0 0 I 0 0 I 0 0 I 0 hex 

! ! 
1111 : 1111 

I I T 

0000: 0000 
I 

1111 !1111 1111 :1111 1111: 1111 0000 I 0000 0000 I 0000 000010000 
_i _i i j j i i 

binary 

• 

• 

• 



• 
UP-8913 SPERRY UNIVAC OS/3 

ASSEMBLER 
12-87 

SLL 

12.29. SHIFT LEFT SINGLE LOGICAL (SLL) 

General 

OBJECT 
OPCODE FORMAT 

TYPE 

MNEM. HEX. 

Sll 89 RS 

Condition Codes 

0 IF RESULT: 0, SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT >o, SET TO 2 

0 IF OVERFLOW, SET TO 3 

.UNCHANGED 

INST. 
LGTH. 
(BYTES) 

4 

Possible Program Exceptions 

0 ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE -
0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

OP 1 NOT EVEN NUMBERED REGISTER 0 
0 OP 1 NOT ODD NUMBERED REGISTER 

• NONE 

The shift left single logical (SLL) instruction shifts all of the 32 bits in the operand 1 
register to the left by the number of bits specified in the low order six bits of the operand 
2 address. 

• Exp I icit Format: 

• 

LABEL 6 OPERATION 6 OPERAND 

[symbol] SLL 

Implicit Format: 

LABEL 6 OPE RATION 6 OPERAND 

[symbol] SLL 

The operand 2 address is not used to address data. The low order six bits are used as the 
shift count and the remainder of the address is ignored. When the SLL instruction is 
executed, the high order bits that are shifted out of the register are lost and replaced with 
subsequent bits within the register also being shifted. Zeros fill the vacated low order bit 
positions . 



UP-8913 

Operationa I Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• Any of the general registers (0 through 15) can be used as operand 1. 

12-88 
Update B 

• If you already know the displacement value associated with a label in your program, 
you can use the low order six bits as the shift count. 

• A self-defining term can be specified for operand 2. 

• Zeros fill the vacated low order bit positions in the operand 1 register. 

• The condition code remains unchanged. 

• A length attribute cannot be specified for operand 2. 

• The shift count cannot exceed 32 bits because the highest value that can be 
represented in the low order six bits is +32 (25). 

Example: 

LABEL 
1 

t.OPERATI ONt. 
10 16 

L 
SLL 

OS 
FLWRD DC 
STORAGE EQU 

4,FLWRD 
4 ,STORAGE 

~F 
X'89ABCDEF 1 

8 

Register 4 before execution of SLL in~truction: 

1000T1001 1010T1011 1100:1101 1110:1111 
I i. 

binary 

8 I 9 A l B C I D E I F 
..1 _l _l_ 

hex 

OPERAND 

STORAGE before and after execution of SLL instruction: 

low order six bits 

ooooToooo 
i. 

ooooioooo 000011000 

0 
T T 

I 0 0 J. 0 0 la _J_ 

location counter (address) 
not contents 

binary 

hex 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 4 after execution of SLL instruction: 

101011011 110011101 1110:1111 
T 

000010000 
...L 

binary 

A l B c ID E l F 0 I 0 
_l_ 

hex 

12-89 

In this example, the content of FLWRD is loaded into register 4. Then the SLL instruction 
uses the low order six bits of the address of STORAGE (not content) as the shift count. In 
this case, STORAGE has no content but has been equated with or contains the address of 
the absolute value of 8. When the SLL instruction is executed, eight high order bits of 
register 4 are shifted out of the register, and replaced with subsequent bits within the 
register also being shifted. Zeros fill the vacated eight low order bit positions. 

Example: 

LABEL 
1 

.!10PERATION.!1 
10 16 

SR 4,4 
L 4,=F'2508 1 

L S,=F 1 10 1 

SLL 4,8(5) 

Register 4 before execution of SLL instruction: 

000010000 ooooToooo 0000T1001 11ooio100 
_j_ 

binary 

I 

0 I 0 0 'o 0 I 9 C I 4 hex 
_j_ j_ .l .l 

OPERAND 

Register 5 before and after execution of SLL instruction: 

0000:0000 ooooloooo 0000:0000 0000: 1010 
i 

binary 

T 
0 I 0 0 I A 0 I 0 0 I 0 

..L J. ...L .l. 
hex 

actual contents 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 4 after execution of SLL instruction: 

0000 10000 001010111 0001 10000 ooooloooo binary 

0 I 0 2 I 7 1 I 0 0 l 0 hex 

12-90 

In this example, register 4 is cleared to 0. The decimal value of 2500 is loaded into 
register 4, and the decimal value of 10 is loaded into register 5. The actual content of 
register 5 is used (not its address) because register 5 is being used as a base register. So, 
the value loaded into register 5 is treated as an address. This can only be done in the 
explicit format. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-91 

SHL 

12.30. SHIFT LOGICAL (SHL) 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 
TYPE LGTH. 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

SHL 98 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
• SET TO 0 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 

0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER 
• SET TO 2 

0 .SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

0UNCHANGED 0 NONE 

The shift logical (SHL) instruction shifts all 32 bits in the operand 1 register or all 64 bits 
in the operand 1 even-odd register pair right or left by the number of bits specified in the 
low order six bits of the operand 2 address. 

Explicit Format: 

LABEL !::,. OPERATION!::,. OPERAND 

[symbol] SHL 

Implicit Format: 

LABEL !::,.OPERATION!::,. OPERAND 

[symbol] SHL 

The SHL instruction is a versatile shift instruction that can operate in a number of 
different ways. With it you can: 

• shift the contents of the operand 1 register left or right up to 63 bits per operation; 

• fill the vacated bits of the operand 1 register with 1 's or O's at your option; 

• shift a single register or shift two contiguous registers; and 

• allow bits shifted out of operand 1 to be lost or move them into the opposite end of 
operand 1, a process known as circular shifting. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-92 

When an SHL instruction is executed, the low order six bits of operand 2 determine the 
number of bits to be shifted. This permits you to specify a maximum shift of 63 bits (3F16). 

You use the 4-bit operand 3 mask (m3) to further specify the shift. The mask specifies 4 
options so that you can use the instruction in 1 of 16 different ways. Individual bits within 
the mask are used as shown in Table 12-1 : 

Table 12-1. Shift Logical Mask Bits 

Object Code Bit Position 

12 13 14 15 Mask 
Value 

Vacated Bits Shift Direction Register Digit Shifted In (Decimal) 
O=Lost O=Left O=Single O=O 

1=Circular 1=Right 1 =Even/Odd Pair 1=1 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

A circular shift (bit 12 = 1) moves bits shifted out of one end of operand 1 into the 
opposite end, one bit at a time. Assume that register 11 contains 07938008: 

0 7 9 3 B D 0 B 

0000:0111 1001: 0011 1011: 1101 0000: 1011 

Now register 11 undergoes a circular shift of three bits to the right: 

-direction of shift - --, 
0110:0000 1111:0010 011110111 1010:0001 0111 ______ ,-J 

...._ _____ bits shifted out-• -



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-93 

The three bits shifted out of the low order end of register 11 are placed, their sequence 
unchanged, into the high order bit positions just vacated by the instruction. 

You can use the SHL instruction to specify which binary digit is to be shifted into the 
operand 1 register to replace vacated bit positions. Specifying a 1 in bit 15 causes 1 's to 
be shifted in. Specifying a zero in bit 15 causes O's to be shifted in. If register 8 contains 

the instruction 

SHL 8,4,6 

specifies a 6-bit shift to the right with O's shifted in to the left or high order end (see Table 
12-1 ): 

-direction of shift-

O's 0000: 0011 1011 : 1100 0101 : 1011 0100: 0101 bits shifted outt 

The SHL instruction can shift two contiguous registers under all the conditions described. 
The first register must be an even-numbered register, the second the next higher odd­
numbered register. For double-register operation, all 64 bits of the pair are shifted: 

• for left shifts each bit shifted out of the high order end of the odd-numbered register 
is put in the low order end of the even-numbered register; 

• for right shifts, bits shifted out of the low order end of the even-numbered register 
are put in the high order end of the odd-numbered register. Assume that the register 
pair 8 and 9 contains: 

Register 8 Register 9 

0010 : 1011 0011 : 0101 1111 : 0010 101011101 

A 2-bit left shift with O's moved in the vacated bits yields: 

Register 8 Register 9 

bits· 
rout 1010:1100 1101 :0111 110011010 0011 :1010 100010100 010110011 1010: 1000 

shift 

O's 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-94 

• You can specify operand 2 as an address (d2(b2) form only) or as a symbol equated 
(EQU instruction) to an absolute expression. You should not use an operand 2 symbol 
(s2) as an address because you may get unpredictable results. 

• You can specify a single register in operand 1 using any of the general-purpose 
registers 0 through 15. 

• You can specify a register pair in operand 1, in which case the operand must be the 
even-numbered register, the first register of the pair. 

• You must specify the operand 3 mask as a self-defining term. 

• During circular shifts bit 15 (the bit to be shifted in) is ignored. 

Condition Code: 

After execution of SHL, the condition code is set: 

• to 0 if operand 1 contains 0 and the bits shifted out are all O's; 

• to 1 if operand 1 contains 0 and one or more 1 's are shifted out; 

• to 2 if operand 1 is not zero and the bits shifted out are all O's; or 

• to 3 if operand 1 is not zero and one or more 1 's are shifted out. 



UP-8913 

Example: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

LABEL 
1 

27. POS 
28. NEG 

EBCNO 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LlOPERATIONLl 
10 16 

LA 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
LR 
LA 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
SHL 
LR 
SHL 
STM 
CL I 
BNE 
MVI 
B 
MVI 

OS 

9 ,Ill 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
11 ;9 
9, Ill 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
8,6,4 
9,5,4 
1Ill,9 
10, 14,8 
lflJ, 11,EBCNO 
EBCNO,X'FD' 
POS 
EBCNO,C'-' 
NEG 
EBCNO ,c I I 

2F 

OPERAND 

CLEAR R9 
SHIFT lST DIGIT 
ZONE 
SHIFT 2ND DIGIT 
ZONE 
SHIFT 3RD DIGIT 
ZONE 
SHIFT 4TH DIGIT 
ZONE 

12-95 

MOVE LOW-ORDER DIGITS TO Rll 
CLEAR R9 
SHIFT 5TH DIGIT 
ZONE 
SHIFT 6TH DIGIT 
ZONE 
SHIFT 7TH DIGIT 
ZONE 
SHIFT 8TH DIGIT 
ZONE 
MOVE HIGH-ORDER DIGITS TO RlflJ 
SHIFT SIGN AROUND TO TOP OF R10 
STORE NUMBER IN EBCNO 
TEST SIGN 

IF POSITIVE GO TO POS 
OTHERWISE ATTACH '-' 

ATTACH SPACE FOR POSITIVE 

EBCDIC RESULT 

The code in this example expands a packed decimal number in register 8 to an EBCDIC 
number of 7 digits plus leading sign in field EBCNO. 

Assume that register 8 contains 

Register 8 138416940 I 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-96 

The LA instruction in line 1 puts O's in register 9. The SHL instruction in line 2 has a e 
mask of 6 that is interpreted as follows (see Table 12-1 ): 

Mask 6 0 

lose 
vacated 

bits 

shift 
right 

shift 
register 

pair 

0 

shift 
in O's 

Together with the rest of the operands, the SHL instruction specifies that register pair 8 
and 9 is to be shifted 4 bits to the right. Doing this results in: 

Register 8 Register 9 

o·,--j 03841 ~ ~ o;u ""'l 
h1ft 

(Since a hexadecimal digit comprises four bits, a 4-bit shift is equivalent to a shift of a 
single hexadecimal digit.) The SHL instruction in line 3 has a mask of 5 that is interpreted 
as follows: 

Mask 5 0 1 0 1 

lose shift shift shift 
va cated right single in 1 's 

b its register 

As a result of this instruction, the contents of register 9 are shifted four bits to the right, 
and 1 's are shifted in from the high order end: 

Register 8 Register 9 

I 038416941 f.' 0000000 f o;u o"'l 
(unchanged) 1 's 

Notice that the four "1" bits shifted into the high order end of register 9 form, in effect, 
the zone half of an EBCDIC digit. The SHL instruction in line 4 shifts another packed digit 
into the high order end of register 9: 

Register 8 Register 9 

•.. ·1·38·;11·;:-~'"' 0"'1 
shift 

e 



.----·-------·-----~----~------

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-97 

The SHL instruction of line 5, like that of line 3, shifts 1 's into register 9; this operation 
attaches a zone to the digit just shifted from register 8: 

Register 8 Register 9 

F4F 00000 bits out t 
~---

00384169 

(unchanged) 1 's 

Lines 6 through 9 repeat this process for two more packed digits, and line 10 moves the 
contents of register 9 to register 11 for later processing: 

Register 8 Register 9 

I 00003841 11 F6F~F4FD I 
LR 

I 
Register 11 

I F6F9

1

F4FD I 

Line 11 fills register 9 with O's and lines 12 through 19 repeat the action of lines 2 
through 9, but this time on the high order four digits orignally in register 8. After line 20, 
which moves the contents of register 9 to register 10, the result is: 

Register 8 Register 9 

I 00000000 11 F3F~F4F1 I 
ILR 

Register 10 Register 11 

I F3F:F4F11 I F6F9F4FD I 
The SHL instruction in line 21 has a mask of 14 (hexadecimal E) that is interpreted as 
follows: 

Mask E16 1 1 1 0 

circular shift shift not 
shift right register used 

pair 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-98 

The instruction shifts registers 10 and 11 right by 8 bits, moving the shifted bits out of 
register 11 directly back into the high order end of register 10: 

Register 10 Register 11 

~IF1F6F9F41;~: r=- ·-r_J 
circular shift----' 

In line 22, the contents of registers 10 and 11 are stored into a double-word area in 
storage named EBCNO. Lines 23 through 28 test the leading byte: if it contains 'FD' it is 
replaced with a minus sign to indicate a negative number; otherwise, the byte is replaced 
with a blank to indicate a positive number. Since the leading byte of EBCNO is 'FD', 
EBCNO ends up as: 

EBCNO I soF3F8F4 I I Fl F6F9F4 I 
-384 1694 

The number in EBCNO can now be printed if desired. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-99 

• SRDL 

12.31. SHIFT RIGHT DOUBLE LOGICAL (SRDL) 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

SRDL BC RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D IF RESULT~ o. SET TO 0 
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O.SETTO 1 • 01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

01F OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

The shift right double logical (SRDL) instruction shifts the 64 bits of operand 1 to the right 
by the number of bits specified in the low order six bits of the operand 2 address. You 
specify the even-numbered register of the pair as operand 1. 

• Explicit Format: 

LABEL l'>OPERATION 6 OPERAND 

[symbol] SRDL 

Implicit Format: 

LABEL 6 OPERATION /:::, OPERAND 

[symbol] SRDL 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-100 
Update B 

Operational Considerations: 

• Any pair of the general registers (0 through 15) can be used as operand 1. Operand 1 
is an even-odd register pair. You must specify the even-numbered register of the pair 
as operand 1. 

• The main storage address or label you specify in operand 2 is not changed by the 
SRDL instruction execution. Notice the formats indicate that you cannot specify a 
length in operand 2. 

• After the requested number of bits are shifted out of the operand 1 register pair, O's 
fill the leftmost bit positions of the register pair. 

Example 1: 

LABEL 
1 

VALUE 

AOPERATIONA 
10 16 

LM 4,5,VALUE 
SRDL 4,32 

DS 
DC 

~F 
2XL4' I FFFFFFFF I 

OPERAND 

In this example, registers 4 and 5 are loaded with the content of main storage 
location VALUE. The SRDL instruction causes the content of a register to be shifted 
right 32 bits. 

Registers 4 and 5 before execution of SRDL instruction: 

I ! I ! T I : F I F F I F F F F 
I 

F F I F I I I I I F I F F l F F I F 

: + 
1111 : 1111 1111 : 1111 1111 : 1111 1111: 1111 1111: 1111 

I 
1111 : 1111 111 ii 1111 111111111 

l_ _i _J_ _i _i ..l. .i _l 

hex 

binary 

Registers 4 and 5 after SRDL instruction execution: 

T I 
r : I T : 

0 0 0 0 : 0 F 1 F I I 0 I 0 I 0 F I F F I F l F I F 

I : I : 1 0000 ioooo 0000: 0000 0000 :oooo 0000: 0000 1111: 1111 1111 : 1111 1111, 1111 1111: 1111 
_J_ J ..l. l i _J_ _l_ ..l. 

hex 

binary 

• 

• 

• 



r-----------

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-101 
Update B 

• Example 2: 

• 

• 

This example using the SRDL instruction has the same shift result, but a label is used 
as operand 2 of the SRDL in~truction . 

LABEL 
1 

VALUE 
STORAGE 

..1.0PERAT I ON.Do 
10 16 

LM 4,5,VALUE 
SRDL 4,STORAGE 

DS 
DC 
EQU 

~F 
2XL4 1 FFFFFFFF 1 

X'28' 

OPERAND 

In this example, the absolute value of the main storage location STORAGE determines 
the number of bits that operand 1 should be shifted right. The operand 2 label is 
equated (EQU instruction) with a hexadecimal value that indicates how many bit 
positions you want to move. This is necessary so that the assembler takes the 
absolute value that you equated with your label and not its relocatable address. Note 
that a hexadecimal 20 is equivalent to a decimal 32 . 

Registers 4 and 5 before execution of SRDL instruction: 

T ' 1 ! I 
T 

F F I F F F I F F F F I F F I I F I I I I 

I 
1111: 1111 1111 : 1111 1111I1111 1111i1111 

I 
11111 1111 111111111 

..l. .i l _j_ _i .i 
l J 

~STORAGE before and after SRDL instruction execution: 

I 

2 1 0 hex 
I 

0010: 0000 binary 
l 

Registers 4 and 5 after instruction execution: 

r 
I T 1 I 1 0 I 0 0 : 0 0 0 I 0 F 
I 0 I I F I 

I I 
-,-

0000: 0000 
I 

0000 / 0000 0000 10000 0000 / 0000 1111 ,1111 
_j_ ..l. j_ _i j 

I F F I 

1111 11111 
i 

T ; 
F I F 

I F I F hex 

I I 
111111111 111111111 binary 

..1 

l 
T I 

F F F hex I F J. 
1111 :1111 1111 :1111 binary 

i ..l. 



-------------------------------------------... 
UP-8913 

SRL 

12.32. 

SPERRY UNIVAC OS/3 • 
ASSEMBLER 

SHIFT RIGHT SINGLE LOGICAL (SRL) 

12-102 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST 

TYPE LGTH_ 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM_ HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

SRL 88 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULLWORD BOUNDARY 

D IF RESULT~ 0, SET TO 0 
D FIXE:D POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED POINT OVERFLOW BOUNDARY D IF RESULT <o. SET To 1 D 
01F RESULT>O,SETT02 0 FLOATING POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED • NONE 

The shift right single logical (SRL) instruction shifts all of the 32 bits in the operand 1 
register to the right by the number of bits specified in the low order six bits of the operand 
2 address. 

Explicit Format 

LABEL 60PERATION 6 OPERAND 

[symbol] SRL 

Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] SRL 

The operand 2 address is not used to address data. The low order six bits are used as the 
shift count and the remainder of the address is ignored. When the SRL instruction is 
executed, the low order bits that are shifted out of the register are lost and replaced with 
subsequent bits within the register also being shifted. Zeros fill the vacated high order bit 
positions. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-103 
Update B 

• Operational Considerations: 

• 

• 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Using a label as operand 2 can cause unpredictable results. 

• A self-defining term can be used as operand 2. 

• Zeros fill the vacated high order bit positions in the operand 1 register. 

• The condition code remains unchanged. 

• A length attribute cannot be specified for operand 2. 

• The shift count cannot exceed 32 bits because the highest value that can be 
represented in the low order six bits is +32 (25). 

Example: 

LABEL 
1 

WORD 
LABEL 

.6.0PE RAT I ON .6 
10 16 

L 
SRL 

OS 
DC 
DC 

4,WORD 
4,LABEL 

0F 
X'3A600000' 
PL2'0' 

Register 4 before execution of SRL instruction: 

I I 
000010000 ooooioooo 001111010 011010000 binary 

__]_ 

3 IA 6 I 0 O I 0 o I O hex 
--1 .Jc I ~ 

Address of LABEL: 
low order six bits 

0000:0000 ooooioooo 0000;0000 0001:0100 
__]_ I i 

binary 

0 I 0 0 l 0 o I o 1 14 
1 _J_ I 

hex 

location counter 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 4 after execution of SRL instruction: 

0000~0000 0000 ioooo 000010011 1010:0110 binary 
_J I ...!. 

0 I 0 0 lo 0 I 3 A I 6 hex 
_J ..l ...!. ..l 

12-104 

In this example, the content of WORD is loaded into register 4. Then the SRL instruction 
uses the low order six bits of the address location counter of LABEL as the shift count. 
You should already know the displacement value of LABEL. That value should be the 
number of bits you want to shift to the right. When the SRL instruction is executed, 20 
low order bits of register 4 are shifted out of the register, and replaced with subsequent 
bits within the register also being shifted. Zeros fill the vacated 20 high order bits. This is 
what LABEL looks like when assembled: 

LOC. OBJECT CODE LINE SOURCE STATEMENT 

000014 oooc 14 LABEL DC PL2 1 0 1 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12.33. STORE CHARACTER (STC) 

12-105 

STC 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT 

TYPE 

MNEM. HEX. 

STC 42 RX 

Condition Codes 

0 IF RESULT~ 0, SET TO 0 
01F RESULT<O.SETTO 1 

Q1F RESULT>O,SETT02 
QIF OVERFLOW, SET TO 3 

.UNCHANGED 

INST. 
LGTH. 
(BYTES) 

4 

• ADDRESSING 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPO~JENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

0 OPERATION 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

The store character (STC) instruction places the low order eight bits (bit pos1t1ons 24 
through 31) of the operand 1 register into one byte of operand 2 that is located in main 
storage . 

Explicit Format: 

LABEL Li OPERATION 6 OPERAND 

[symbol] STC 

Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] STC 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-106 
Update B 

The data in operand 2 can be defined in any format. The length of operand 2 can vary but 
the length of operand 1 is always four bytes. Although operands 1 and 2 can have the 
same or differing length, only one byte in operand 2 receives the rightmost byte from the 
operand 1 register. If you do not specify the exact byte in operand 2 to receive the operand 
1 data, the first byte of operand 2 is used. 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operand 1. 

• Operand 2 must be a main storage location. 

• The length of operand 2 can vary. 

• You can specify the exact byte in operand 2 to receive the rightmost byte of the 
operand 1 register through relative addressing. 

• This instruction is one of the few in which operand 1 is the sending operand. 

Example: 

LABEL 
1 

AMTIN 
STOR 

LOPERAT I ON L 
10 16 

L 
A 
STC 

DC 
DC 

11 ,AMT IN 
11,=FI5' 
·11 ,STOR 

F'2236' 
CL4'0' 

STOR before execution of STC instruction: 

1111~ 0000 01ooioooo 01ooioooo 0100: 0000 
_[_ _[_ -+ 

F I 0 4 ~ 0 4 I 0 4 l 0 
...l. _j_ 

OPERAND 

binary 

hex 

• 

• 

• 



e 

e 

e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-107 

Register 11 before and after execution of STC instruction: 

I 
ooooioooo 000010000 

I 

000011000 1100 I 0001 binary 
_l __J_ 

0 I 0 0 I 0 O I 8 C I 1 hex 
I ...1 

STOR after execution of STC instruction: 

..,. 
0100~0000 110010001 010010000 010010000 binary 

__J_ 

C I 1 4 I 0 4 I 0 4 I 0 hex 
I ...1 . 

In this example, the content of AMTIN is loaded into register 11. Then a decimal value of 5 
is added to the value alrea 
in registers that will eventu 

dy in register 11. This is a method of rounding numbers located 
ally be printed. The STC instruction th~n places the content of 
er 11 into the first byte of STOR. Since the exact byte of STOR 
from register 11 is not specified, the first byte is used. 

the rightmost byte in regist 
that is to receive the data 



UP-8913 

STCM 

Y UNIVAC OS/3 SPERR 
A SSEMBLER 

12-108 

12.34. STORE CHARACTERS UNDE R MASK (STCM) 

General Possible Program Exceptions 

ING • PROTECTION OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 
VALi D SIGN/DIGIT) 

• ADDRESS 

D DATA (IN 

0 DECIMAL 

D DECIMAL 

D EXECUTE 

0 EXPONEN 

D EXPONEN 

0 FIXED-PO 

0 FIXED-PO 

0 FLOATIN 

0 OPERATI 

0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 

STCM BE RS 

Condition Codes 

0 IF RESULT = 0, SET TO 0 
0 IF RESULT <o. SET TO 1 
01F RESULT>O,SETT02 
0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

4 

DIVIDE 

OVERFLOW 

T OVERFLOW 

T UNDERFLOW 

INT DIVIDE 

INT OVERFLOW 

G-POINT DIVIDE 

ON 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

M) instruction permits you to store some or all of The store characters under mask (STC 
the contents of the operand 1 register i 
operand 2 address. You select the bytes 

n contiguous bytes of main storage starting at the 
to be stored by specifying a 4-bit mask in operand 

3 (m3). 

Exp I icit Format: 

LABEL t:. OPERATION t:. OPERAND 

[symbol] STCM r1 ,m
3

,d2 (b2 ) 

Implicit Format: 

LABEL .0.0PERATION t:. OPERAND 

[symbol] STCM r1 ,m3 ,s2 

e 

e 

e 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-109 

Operand 3 specifies a 4-bit mask, each bit of which corresponds to a byte within the 
operand 1 register, going left to right. The value of the mask corresponds to its bits as 
follows: 

Mask value 

Object code bit 

Register byte 
(left to right) 

8 4 2 

12 13 14 15 

1 2 3 4 

Thus, a mask of 5 (4+1) specifies the second and fourth register bytes. Each bit thus 
specified gets a value of 1, while remaining mask bits get a value of 0. In operation, the 
STCM instruction scans the mask left to right. The first register byte whose corresponding 
mask bit equals 1 is stored in the main storage byte located at operand 2. The next 
register byte whose mask bit equals 1 is stored in the byte location following the operand 
2 address. This process continues until all mask bits are scanned. Register bytes whose 
mask bits equal 0 are not stored. The number of bytes in the operand 2 field equals the 
number of 1-bits in the mask, up to a limit of four bytes. 

Operational Considerations: 

• The operand 3 mask must be a self-defining term ranging from 0 to 15. 

• With a mask of 15 (1111 2) the STCM instruction acts much like a STORE instruction; 
the only difference is that the STCM operand 2 need not reside on a full-word 
boundary. 

• The STCM instruction is one of the few instructions whose source operand precedes 
its destination operand. 

Condition Code: 

The condition code is left unchanged by the STCM instruction. 

Example: 

LABEL .:lOPERAT I ON.:l OPERAND 
1 10 1 6 

L 6,FWORD 
STCM 6, 13,BYTE3 
. 
0 

DS 0F 
FWORD DC XL4 I Fl 792340 1 

BYTE3 DC XL3 1 333333 1 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-110 

In this example, register 6 is partially stored into a 3-byte area named BYTE3. At the start 
of the STCM instruction, the data areas contain: 

Register 6 I Fl I 79 23 40 

BYTE3 I 33 I 33 33 

The STCM instruction has a mask of 13 which causes the instruction to operate as 
follows: 

Mask bits 0 (13) 

Register 6 Fl 79 40 

store 
store 

BYTE3 Fl 79 

The STCM mask of 13 causes the first byte of register 6 to be stored at BYTE3, the second 
byte of register 6 to be stored at BYTE3+1, the third byte of register 6 to be ignored, and 
the fourth byte of register 6 to be stored at BYTE3+2. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-111 

• SL 

• 

• 

12.35. SUBTRACT LOGICAL (SL) 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

SL 5F RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes D EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

D 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY • SET TO 1 D • SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS D NONE 

The subtract logical (SL) instruction logically subtracts the content of operand 2 from the 
content of the operand 1 register and places the result in operand 1. 

Explicit Format: 

LABEL 60PERATION6 OPERAND 

[symbol] SL 

Implicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] SL 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• Any of the general registers (0 through 15) can be used as operand 1. 

12-112 
Update B 

• The label or address you specify in operand 2 must refer to a main storage location 
that is on a full-word boundary. Operand 2 is not changed by the execution of this 
instruction. 

• The logical subtraction is performed by adding the twos complement of operand 2 to 
operand 1. All 32 bits of each operand are used. 

• Neither operand has a sign bit. 

• The condition code of the program status word (PSW) is set as follows: 

to 1 if result is not 0 (no carry of most significant bit); 

to 2 if result is 0 (carry of most significant bit); or 

to 3 if result is not 0 (carry of most significant bit). 

Zero code is not used. 

Example: 

.60PERATION.6 LABEL 
I JO 16 

L 3,HEXVALU 
SL 3,FULLWORD 

OS 
HEXVALU DC 
FULLWORD DC 

0F 
x I 1616f61616F F8 I 

x '16f6161616El68 I 

OPERAND 

In this example, the hexadecimal content of HEXVALU is placed in register 3. Then the 
twos complement of the content of main storage location FULLWORD is added to the 
content of register 3. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

FULLWORD before twos complement: 

T 
0 I 0 I 0 I 0 I 0 0 E 8 

I J_ I l 
ooooloooo 

T 

ooool 1110 0000: 1000 0000:0000 
i i _l_ j_ 

hex 

binary 

Twos complement of FULLWORD: 

T 

111111111 
~ 

1111:1000 1111:1111 1111:0001 
i 

binary 

; "T 
F I 1 I F I F F 8 F I F i l l j_ 

hex 

Register 3 before execution of SL instruction: 

T I : : 
0 I 0 0 I 0 0 I F F I 8 

I I hex 
.,. 

000010000 0000:1111 ooooloooo 1111l1000 
i _l j_ 

binary 

Register 3 after execution of SL instruction: 

T T I i 0 I O 
I 

0 I 0 0 I 1 F I 0 hex 
.L 

ooooloooo 
I 

oooolooo1 

.,. 
0000:0000 111110000 

i _l_ .i 
binary 

12-113 

The twos complement of FULLWORD is added to the content of register 3. The result 
replaces the content of register 3. The condition code is set to 3, since the result is not 0, 
and there is carryout (leftover 1 bit) of the leftmost bit. The carryout does not cause an 
overflow condition as would the subtract (S) instruction . 



UP-8913 

SLR 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12.36. SUBTRACT LOGICAL (SLR) 

12-114 
Update B 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

SLR 1F RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 

D FLOATING-POINT DIVIDE 
D OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 2 D • SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS • NONE 

The subtract logical (SLR) instruction logically subtracts the content of the operand 2 
register from the content of the operand 1 register and places the result in operand 1. 

Explicit and Implicit Format: 

LABEL .6.0PERATION .6. OPERAND 

[symbol] SLR r 1,r2 

Operationa I Considerations: 

• Any of the general registers (0 through 15) can be used as operands 1 and 2. 

• The logical subtraction is performed by adding the twos complement of operand 2 to 
operand 1. All 32 bits of each operand are used. 

• Neither operand has a sign bit. 

• The condition code of the program status word (PSW) is set as follows: 

to if result is not 0 (no carry of most significant bit); 

to 2 if result is 0 (carry of most significant bit); or 

to 3 if result is not 0 (carry of most significant bit). 

Zero code is not used. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-115 
Update B 

• Example: 

• 

• 

LABEL 
1 

VALUl 
VALU2 

aOPERAT I ONA 
10 16 

L 3,VALUl 
L 5,VALU2 
SLR 3,5 

OS 
DC 
DC 

~F 
x I fjfjfjfjfJFF8 I 

x I fjfjfjfjfjEfJB I 

OPERAND 

In this example, the hexadecimal contents of main storage locations VALU1 and VALU2 
are loaded into registers 3 and 5, respectively. Then, the SLR instruction logically subtracts 
the content of register 5 from the content of register 3. 

Register 5 before twos complement: 

I : I 
I 

0 0 0 I 0 0 E 0 I 8 I I : I 
.J. 

hex 

ooooloooo 
_l 

0000:0000 0000:1110 
...1. i 

0000: 1000 
j 

binary 

Twos complement of register 5: 

I 

111111111 
"'T I 

111111111 1111:0001 1111: 1000 
_l 

I binary 

I ! 
F I F I F F F I F 1 8 l l ! I 

hex 

Register 3 before execution of SLR instruction: 

1 i T T 
0 1 0 0 1 0 0 I F F I 8 hex 

-t .J. T 

0000:0000 0000:0000 0000:1111 1111l 1000 binary 
i i ~ l 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Register 3 after execution of SLR instruction: 

: ! ! 1 0 I 0 O I O 0 : 1 F I 0 I hex 

-t -,- I I 

0000:0000 0000:0000 0000:0001 1111 :oooo 
j_ ...i ...i j_ 

binary 

12-116 

The twos complement of register 5 is added to the content of register 3. The result 
replaces the content of register 3. The condition code is set to 3, since the result is not 
zero and there is a carryout (leftover 1 bit) of the leftmost bit. The carryout does not cause 
an overflow condition as would the subtract (SR) instruction. 

• 

• 

• 



e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12.37. TEST UNDER MASK (TM) 

12-117 

TM 

General Possible Program Exceptions 

OBJECT 
OPCODE FORMAT INST. 

TYPE LGTH. 

MNEM. HEX. (BYTES) 

TM 91 SI 

Condition Codes 

• SET TO 0 
• SET TO 1 
D SET TO 2 

• SET TO 3 

4 

SEE OPER. CONSIDERATIONS 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

D EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

D SIGNIFICANCE 

D SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 

BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

The test under mask (TM) instruction uses the 1-byte mask in operand 2 to test the bit 
pattern of one byte in operand 1 that is located in main storage. The result of the test 
determines the setting of the condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Exp I icit Format: 

LABEL 60PERA TION6 OPERAND 

[symbol] TM d1 (b1 ) ,i2 

Implicit Format: 

LABEL 60PER ATION6 OPERAND 

[symbol] TM 51 ,i2 

Operand 2 is one byte of immediate data that is used as the mask. Within that byte is an 
8-bit binary testing pattern. The bits of the mask correspond one for one to bits in one byte 
of operand 1. The length of operand 1 can vary but the length of operand 2 is always one 
byte. Although the lengths of operands 1 and 2 can differ, only one byte of operand 1 is 
used. If you do not specify the exact byte of operand 1 you want tested, the first byte is 
used. 

A mask bit of one in operand 2 tests its corresponding bit position in operand 1 for the 
presence of one bit or a zero bit. 

A mask bit of 0 in operand 2 causes its corresponding bit position in operand 1 not to be 
tested. If the mask pattern is all O's, no testing takes place; whereas, if the mask pattern is 
all 1 's, every corresponding bit position in operand 1 is tested. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

The condition code is set as follows: 

12-118 

• to 0 if the mask pattern is all O's; or all the corresponding tested bit positions in 
operand 1 are O's; 

• to 1 if all the corresponding tested bit positions in operand 1 are a combination of O's 
and 1 's; or 

• to 3 if all the corresponding tested bit positions in operand 1 are 1 's. 

Some of the more common uses of the test under mask instruction are checking the 
setting of program switches and checking for valid characters. These switches are usually 
set by one of the logical OR instructions. After the switches are set, the TM instruction 
uses the mask to test the bit pattern in operand 1 and set the condition code. Then the 
resulting condition code can be used to alter the processing sequence of a program by 
using one of these branch instructions: 

Mnemonic Code Branches on 
Meaning Remarks Condition 

RR-Type RX-Type Code 
Instruction Instruction 

BOA BO Branch if 1 's. The branch is taken if all 3 
the bits tested are on. 

BMR BM Branch if mixed. The branch is taken if some 1 
of the bits tested are on, some off. 

BZR BZ Branch if O's. The branch is taken if all of the 0 
bits are off, or the mask is 0. 

BNOR BNO Branch if not The branch is taken if at least 0, 1 
all 1 's. one of the bits tested is not on. 

BNZR BNZ Branch if not The branch is taken if at least 1,3 
all O's. one of the bits tested is not off. 

BNMR BNM Branch if not The branch is taken if all the bits 0,3 
mixed. tested are off or if all are on. 

Operational Considerations: 

• Operand 1 must be a main storage location. 

• Operand 2 is the mask and is a 1-byte self-defining term. 

• The condition code is set accordingly but condition code 2 is not used. 

• The length of operand 1 can vary but a length attribute cannot be specified. 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-119 
Update B 

• You can specify the exact byte in operand 1 you want the operand 2 mask to test 

through relative addressing. 

• The contents of operand 1 and operand 2 remain unchanged after the execution of 

the TM instruction. 

Example: 

LABEL 
1 

ERROR 1 

ERROR2 

PAYHRS 

OUTPUT 
MSGl 
MSG2 

PAYHRS 

60PERATI Otl6 OPERAND 
10 16 

LA 5,PAYHRS 
TM 0(5) ,X 1 F0 1 

BtlO ERROR 1 
TM 1 (5) ,X'F0 1 

BtJO ERROR2 

MVC OUTPUT(20} ,MSGl 

IWC OUTPUT(21),MSG2 

DC CL2'4A 1 

OS 0H 
OS CL132 
DC CL20 1 FIRST NUMBER INVALID' 
DC CLZ 11 SECOND NUMBER I tlVAL I 01 

before and after execution of first and second TM 

111110100 101oiooo1 
+ 

binary 

T 

F l 4 C I 1 
I 

hex 

instruction: 

Operand 2 mask before and after execution of first and second TM instruction: 

1111 ioooo binary 

F I O hex 
_l 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-120 

In this example, the address of PAYHRS is loaded into register 5. The TM instruction then • 
uses the mask in operand 2 to test the first byte in operand 1. The four high order bits of 
the mask test the four high order bits of operand 1. (The low order four bits of the mask 
cause no testing of the low order four bits of operand 1 to take place.) Since the result of 
the test is all 1 's, the condition code is set to 3 and no branch takes place. 

The second TM instruction uses the mask in operand 2 to test the second byte in operand 
1. The four high order bits of the mask test the four high order bits of the second byte in 
operand 1. (The low order four bits of the mask cause no testing of the low order four bits 
of operand 1 to take place.) Since the result of the test is a combination of O's and 1 's, the 
condition code is set to 1 and the branch to the instruction labeled ERROR2 takes place. 
There, an error message is moved to the output area for printing. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-121 

TMS 

12.38. TEST UNDER MASK AND SKIP (TMS) 

General 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

TMS E2 SM 

Condition Codes 

• SET TO 0 
• SET TO 1 
D SET TO 2 
• SET TO 3 
OuNCHANGED 

OBJECT 
INST. 
LGTH. 
(BYTES) 

6 

Possible Program Exceptions 

• ADDRESSING 

D DATA (INVALID SIGN/DIGIT) 

D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

D EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

D FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

D FLOATING-POINT DIVIDE 

D OPERATION 

• PROTECTION 

• SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

• LOW-ORDER BIT OF OP 4 MUST BE ZERO 

D NONE 

The test under mask and skip (TMS) instruction tests selected bits of a byte of main 
storage specified by operand 1 and sets the condition code. Together with a 4-bit mask 
specified by operand 3, the condition code determines whether program control then 
passes to the next sequential instruction or to another location determined by a 
displacement specified in operand 4. 

Explicit Format: 

LABEL fl OPERATION fl OPERAND 

[symbol] TMS 

Implicit Format: 

LABEL fl OPE RATION fl OPERAND 

[symbol] TMS 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-122 

Operand 2 is an 8-bit mask which corresponds, bit for bit, with the 8 bits at the operand 1 a 
location in main storage. The TMS instruction scans the mask and, depending on the W 
setting of its bits, takes the following action with each bit: 

• If a mask bit is 0, its corresponding operand 1 bit is ignored. 

• If a mask bit is 1, its corresponding operand 1 bit is selected and tested to determine 
if it is set to 1 . 

After the mask scan is finished, the condition code is set: 

• to 0 if the mask consists of all O's or if all selected bits are set to 0; 

• to 1 if some selected bits are set to 0 and some to 1; or 

• to 3 if all selected bits are set to 1. 

After the condition code is set, it is compared against the 4-bit mask specified by operand 
3: 

Mask value 8 4 2 1 

Mask bit position 16 17 18 19 

Corresponding condition code 0 2 3 

The TMS instruction then takes one of the following two actions: 

• If the mask bit corresponding to the condition code is set to 0, program control passes 
to the next sequential instruction. 

• If the mask bit corresponding to the condition code is set to 1, the TSM instruction 
adds the 12-bit displacement in bits 20-31 of the object code to the current program 
status word (PSW). This, in effect, causes a branch to the new PSW address. 

The TMS instruction acts like a sequence of TEST UNDER MASK and BRANCH ON 
CONDITION instructions. The only difference is that a TMS branch, when called for, is 
really a displacement from the current PSW; the normal address-formation routines play 
no role in this part of the instruction. Branching can take place forwards or backwards. A 
1 in bit 20 (the high order displacement bit) means a negative displacement and a 
backward branch, while a zero in bit 20 means a positive displacement and a forward 
branch. 

You can specify the m3 mask either with an absolute value or by coding an extended 
mnemonic in place of TMS in your assembler source program. The assembler provides six 
of these mnemonics for the TMS instruction: all assemble into TMS object instructions but 
each generates a different m3 mask value as shown in the following table. 



UP-8913 

Extended 
Mnemonic 

TMBO 
TMBZ 
TMBM 
TMBNO 
TMBNZ 
TMBNM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Mnemonic Mask 
Code Value* 

E2 1 
E2 8 
E2 4 
E2 E 
E2 7 
E2 B 

*Bits 16-19 of object instruction 

12-123 

Function 

Branch if all ones. 
Branch if all zeros. 
Branch if mixed. 
Branch if not all ones. 
Branch if not all zeros. 
Branch if not mixed. 

When using an extended mnemonic, you use only three operands: the operand 1 address, 
the operand 2 immediate byte, and the operand 4 displacement, in that order. 

You can specify the displacement value yourself or you can let the assembler do it for you: 

• You can code the displacement as an absolute expression. In this case, the assembler 
inserts the expression, unchanged, into the displacement field. 

• You can code the displacement as a relocatable expression. In this case, the 
assembler simulates a branch to the specified location by calculating its offset from 
the address of the instruction immediately following TMS and inserting the offset in 
the displacement field. 

Operationa I Considerations: 

• The displacement field can range from -2048 decimal bytes to +2046 bytes. 

• The displacement must always be an even number of bytes since destination 
instructions must always lie on a half-word boundary. 

• A mask of 0 (000016) causes the instruction always to branch to the next sequential 
instruction regardless of the condition code set. Likewise, a displacement value of 0 
causes an unconditional branch to the next sequential instruction. 

• A mask of 15 (1111 16 ) causes the TMS instruction always to branch to the instruction 
specified by the displacement field. 

• You must specify both the mask and the immediate byte as self-defining terms. 

Example: 

LABEL 
1 

NEXT INS 

NUM 

AOPERATIONA OPERAND 
10 16 

MV I 
TMS 
L 

TESTBYTE,X'F4 1 

TESTBYTE,X'Fr/J' ,1,NUM 
7 'r/J 

OBJECT ADDRESS 

r/J0r/J11 c 
r/Jr/Jr/Jl 2r/J 
0r/J0126 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-124 

In this example, the TMS instruction tests the byte in main storage at location TESTBYTE. 
Before execution of the TMS instruction, TESTBYTE contains: 

TESTBYTE ~ 

At the time it is assembled, the TMS instruction: 

• specifies that only the four high order bits of operand 1 are to be tested (using a mask 
of X'FO' or 8'11110000'); 

• sets up a branch to location NUM if conditions are met by calculating the 
displacement from the next sequential instruction (at NEXTINS) to NUM 
(142-126=1 C16 bytes) and putting that value in bits 20-31 of the object code; and 

• defines a condition code mask of 1, meaning that a branch to NUM will take place 
only if the condition code is set to 3. 

When executed, the instruction operates as follows: 

F 4 

CD TESTBYTE 0100 

(ignore) 

i2 0000 set condition code to 3 

0 0123 

Condition code 

Operand 3 mask 

branch by 
displacement 

® Old PSW I 000126 (NEXTINS) 

+Operand 4 I 00001C I 
displacement 

: New PSW I 000142 I (NUM) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-125 

lnG), the i2 mask causes only the four high order bits of TESTBYTE to be tested. The test 
takes place and all four bits are found to contain 1, therefore, condition code 3 is set. 
According to@, the operand 3 mask has a value of 1 that, corresponding to condition code 
3, causes a program branch to NUM. The branch occurs in @when the displacement of 
x·1 c· is added to the current PSW address, originally pointing at NEXTINS. This addition 
forces a branch to location 142, the location of NUM, and the TMS instruction then 
terminates. 

You could have recoded the TMS instruction using the appropriate extended mnemonic, 
TMBO: 

TMBO TESTBYTE,X'FO',NUM 

You would, in this case, omit the m3 mask, as TMBO automatically supplies the correct 
mask value, 1. 



UP-8913 

TR 

12.39. TRANSLATE (TR) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

12-126 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

TR DC SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED·POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
D IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
D 1F RESULT <o. SET To 1 

0 FLOATING POINT DIVIDE 
D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2 D D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

The translate (TR) instruction gets a byte from a table of characters in operand 2 and 
places it in its corresponding byte of operand 1. 

Explicit Format: 

LABEL f'.OPERATION 6 OPERAND 

[symbol] TR 

Implicit Format: 

LABEL b.OPERATION f'. OPERAND 

[symbol] TR 

The translate instruction can translate the bit pattern of each byte in a field (operand 1) to 
any other bit pattern. This instruction works in conjunction with a table (operand 2) that 
has been previously defined within the program, and contains the bit patterns that 
correspond to each byte in operand 1. This instruction operates from left to right, starting 
with the replacement of the leftmost byte in operand 1, and ending with the replacement 
of the rightmost byte in operand 1. To find the appropriate code in the table (operand 2), 
each byte in the operand 1 field is used as an unsigned binary value that is added to the 
address of the first byte in the table. (The sum of the addition is similar to the addition of 
base register and displacement values.) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-127 

The result of the addition is another address which should be somewhere within the table. 
The one byte of data that is located at that address replaces the 8-bit binary value of 
operand 1 that was used in the addition to arrive at that location. After the first byte is 
replaced, the second byte is operated upon and replaced, and so on until the end of the 
operand 1 field is reached. 

Since there are 256 different combinations of an 8-bit byte (EBCDIC), the maximum size of 
the translate table is 256 bytes. However, you can define a table smaller than that 
because input data is normally restricted to a smaller range. 

The translate instruction can be used to convert data from one code to another code (i.e., 
octal to hexadecimal) or it can be used to rearrange data to be stored in a specific 
sequence. 

Operational Considerations: 

• Operand 1 must be a main storage location and can be defined in any format. 

• Operand 2 must be a table that is previously defined within the program. 

• Operand 2 cannot exceed 256 bytes in length. 

• One byte in operand 2 replaces one byte in operand 1. 

• Each byte in operand 1 is treated as an unsigned binary value which is added to the 
address of the first byte in operand 2. 

Example: 

LABEL !:.OPERATION!:. 
1 10 16 

FIELD 
TABLE 

TR FIELD, TABLE 

DC 
OS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

X'66A4C5F7' 
~CL256 
100x·~0· 
X'0102030405060708090A' 
50X'00' 
X'0B0C0D0E0F10111213' 
10X'00' 
X1 1415161718191A1B1C' 
50X'00' 
X1 1D1E1F20212223242526 1 

4X'00' 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

FIELD before execution of TR instruction: 

011010110 101010100 
I I 

110010101 111110111 
...l j_ .1 ...l 

binary 

6 15 A l 4 c l 5 F I 7 
_l_ .1 

hex 

FIELD after execution of TR instruction: 

0000Too11 000011111 000010000 001oio110 binary 

T 
...l _l_ 

0 I 3 0 I F 0 I 0 2 I 6 hex 
...l _l _L _l 

12-128 

In this example, FIELD (operand 1) contains four addresses to be added to the address of 
the first byte of TABLE (operand 2), one at a time, to access a specific byte within the 
table. The table with the label TABLE is defined as part of this program. 

The first byte in operand 1, a hexadecimal 66, has a decimal equivalence of 102. When a 
decimal value of 102 is added to the address of the first byte in TABLE, the 103rd byte in 
the table (a hexadecimal 03) is accessed. That byte replaces the hexadecimal 66 and the 
second byte in operand 1 is processed. 

The second byte in operand 1 (a hexadecimal A4) has a decimal equivalence of 164. When 
a decimal value of 164 is added to the address of the first byte in TABLE, the 165th byte 
in the table (a hexadecimal OF) is accessed. That byte replaces the hexadecimal A4 and 
the third byte in operand 1 is processed. 

The third byte in operand 1 (a hexadecimal C5) has a decimal equivalence of 197. When a 
decimal value of 197 is added to the address of the first byte in TABLE, the 198th byte in 
the table (a hexadecimal 00) is accessed. That byte replaces the hexadecimal C5 and the 
fourth byte in operand 1 is processed. 

The fourth byte in operand 1 (a hexadecimal F7) has a decimal equivalence of 247. When 
a decimal value of 247 is added to the address of the first byte in TABLE, the 248th byte 
in the table (a hexadecimal 26) is accessed. That byte replaces the hexadecimal F7 and the 
TR instruction terminates. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12.40. TRANSLATE AND TEST (TRT) 

12-129 

TRT 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

TYPE LGTH. 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

TRT DD SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 
• SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 

0 FLOATING-POINT DIVIDE 
D OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 2 
0 0 SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

The translate and test (TRT) instruction gets a byte from a table of characters in operand 2 
and examines it for the presence of a hexadecimal 00. If found, it continues processing 
with the next byte in operand 1. If not found, execution of the TRT instruction is 
terminated and the address of that byte in operand 1 and the nonzero byte in the table are 
saved. The result of the byte examination in the table determines the setting of the 
condition code, bits 34 and 35 of the PSW. (See 8.1.) 

Explicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] TRT 

Implicit Format: 

LABEL 6 OPERATION 6 OPERAND 

[symbol] TRT 

This instruction works in conjunction with a table (operand within the program) and 
contains bit patterns that correspond to each byte in operand 1. This instruction operates 
from left to right starting with the first byte in operand 1 and ending with the last byte in 
operand 1 or when a nonzero byte is found in the table. To find the appropriate code in the 
table (operand 2), each byte in the operand 1 field is used as an unsigned binary value 
which is added to the address of the first byte in the table. This method of accessing a 
byte from a table is performed in the same manner as the translate (TR) instruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

12-130 

The result of the addition of an unsigned binary value to the address of the first byte is 
another address which should be somewhere within the table. The one byte of data that is 
located at that address is examined for the presence of a hexadecimal 00. If found, 
processing continues with the next byte in operand 1. If a hexadecimal 00 is not found, 
execution of the TRT instruction is terminated. 

The address of that byte in operand 1 is inserted in the low order 24 bits of register 1, 
with the high order eight bits remaining unchanged. The nonzero byte from the table is 
inserted in the low order eight bits of register 2, with the high order 24 bits remaining 
unchanged. 

The condition code is set as follows: 

• to 0 if all the bytes examined in the table are zero; 

• to 1 if a nonzero character is found in the table before the last byte in operand 1 is 
processed; or 

• to 2 if a nonzero character is found in the table that corresponds to the last byte in 
operand 1. 

The translate and test instruction is used to find certain characters in an input stream. You 
can set up operand 2 (table) with all zero bytes for those characters to be skipped over and 
all nonzero bytes for those characters to be detected and used. 

Operational Considerations: 

• Operand 1 must be a main storage location and can be defined in any format. 

• Operand 2 must be a table that is previously defined within the program. 

• Operand 2 cannot exceed 256 bytes in length. 

• Each selected byte in the table (operand 2) is examined for the presence of a 
hexadecimal 00. 

• Each byte in operand 1 is treated as an unsigned binary value which is added to the 
address of the first byte in operand 2. 

• The condition code is set accordingly. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Example: 

LABEL 
1 

l10PERATI ON6 
10 16 

TRT 

AREAIN DC 
TRTTABLE OS 

DC 
DC 
DC 

AREAi ti, TRTTABLE 

X1 324f/J48 1 

eJCL256 
64X 1 '1J{IJ 1 

X1 4f/J' 
191X''1J'1J' 

Register 1 after execution of TAT instruction: 

ooooToooo 000010000 

+ 
0 I 0 0 I o 

_l -
000010000 

...L 

0 I 0 
...L - ...... -

address of 
second byte 
in operand 1 

0100:0000 binary 

4 10 hex 
_l 

/ 

Register 2 after execution of TAT instruction: 

0000~0000 0000 loooo 
..I. .l. 

0 10 0 io 
...L _l 

000010000 

0 I 0 
...L 

01ooioooo 
I 

4 I 0 
...L 
~ 

nonzero byte 
in table that 
corresponds to 
second byte in 
operand 1 

binary 

hex 

12-131 

OPERAND 

In this example, the only nonzero byte in the table is the 65th byte which is the address of 
the first byte in the table +64. The hexadecimal 40 at that location causes the TRT 
instruction to terminate. Then the address of the blank, also a hexadecimal 40, is put into 
register 1. The nonzero character in the table, a blank, is put in the rightmost byte of 
register 2. The condition code is set to 1 since a nonzero character is found in the table 
before the last byte in operand 1 has been processed. 





• 
UP-8913 

13.1. GENERAL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13-1 

13. Privileged and ·Status Switching 
Instructions 

A privileged instruction is an instruction used by the operating system. A privileged 
instruction cannot be used in a program operating under the SPERRY UNIVAC Operating 
System/3 (OS/3). If a program operating under OS/3 uses a privileged instruction, a 
privileged operation program exception causes the program to terminate without 
executing. 

The privileged instructions are included in this book because they can be assembled under 
OS/3 even though they can't be executed. 

• The checkoff table used with each instruction is explained in Appendix D. 

• 

Some of the status-switching instructions are also privileged, but three are not. These 
instructions are set program mask (SPM), supervisor call (SVC), and test and set (TS). 

Since the status switching instructions manipulate portions of the program status word 
(PSW), it might be helpful to read the PSW field description in 8.1. 

13.2. STATUS-SWITCHING PRIVILEGED INSTRUCTIONS 

The status-switching instructions can change the program status word (PSW), the 
contents of the protect key storage, and the current relocation register . 



UP-8913 

HPR 

13.2.1. 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Halt and Proceed (HPR) Instruction 

13-2 
Update B 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 
OPCODE FORMAT INST. 

0 DATA (INVALID SIGN/DIGIT) 

0 DECIMAL DIVIDE 
TYPE 

MNEM. HEX. 

HPR 99 SI 

Condition Codes 

0 IF RESULT~ 0, SET TO 0 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 
QIF OVERFLOW, SET TO 3 
• UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
HAL THERE 

Implicit Format: 

LABEL 

[symbol] 

LGTH. 
(BYTES) 

4 
0 DECIMAL OVERFLOW 

0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

6 OPERATION 6 

HPR 
HPR 

60PERATION 6 

HPR 
HPR 

s, ,i2 
TAG, X'FF' 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-3 

• ISK 

• 

• . 

• 

13.2.2. Insert Storage Key (ISK) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

ISK 09 RR 2 D EXECUTE 

D EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 
01F RESULT<O,SETTO 1 
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE 

D IF OVERFLOW, SET TO 3 • OPERATION 
.UNCHANGED 

Explicit and Implicit Format: 

LABEL 6.0PERATION6 

[symbol] 
INKEY 

ISK 
ISK 

r 1' r 2 
3,4 

D PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 



t 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-4 
Update B 

LPSW • 

13.2.3. Load Program Status Word (LPSW) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

LPSW 82 s 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 0 IF RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

.SEE NOTE 0 NONE 

Explicit Format: 

LABEL 60PERATION 6 OPERAND 

[symbol] LPSW • 
Implicit Format: 

LABEL ti OPERATION 6 OPERAND 

[symbol] LPSW 

NOTE: 

Condition code is set as specified in the new PSW loaded. 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-5 

• SSK 

• 

• 

13.2.4. Set Storage Key (SSK) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

SSK 08 RR 2 D EXECUTE 

D EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

01F RESULT~O,SETTOO 
0 FIXEDPOINT DIVIDE 

D FIXED-POINT OVERFLOW 
01F RESULT<O.SETTO 1 

01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE 

01F OVERFLOW, SET TO 3 • OPERATION 
.UNCHANGED 

Explicit and Implicit Format: 

LABEL [::.,OPERATION [::., 

[symbol] 

SETKEY 

SSK 

SSK 

D PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 



t 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-6 
Update B 

SSM • 

13.2.5. Set System Mask (SSM) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

SSM 80 s 4 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

0 IF RESULT; 0, SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW QIF RESULT<O.SETTO 1 

01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 • OPERATION 
.UNCHANGED 

Explicit Format: 

LABEL 60PERATION6 

[symbol] 

SETSM 

Implicit Format: 

LABEL 

[symbol] 

SETSM 

SSM 

SSM 

60PERATION 6 

SSM 

SSM 
S2 

SVSMASK 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

13.3. INPUT /OUTPUT PRIVILEGED INSTRUCTIONS 

This set of privileged instructions initiates, controls, and ends all input/output operations 
in System 80. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-7 
Update B 

• CLRCH 

13.3.1. Clear Channel (CLRCH) Instruction 

General Possible Program Exceptions 

OBJECT • AD'DRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

CLRCH 9f 02 s 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 D SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

D SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED 0 NONE 

Explicit Format: 

LABEL f:.OPERATION t:. OPERAND • [symbol] CLRCH d2(bf) 
STCLR CLRCH 48(6 

Implicit Format: 

LABEL t:. OPERATION t:. OPERAND 

[symbol] CLRCH S2 
STCLR CLRCH ADD16 

• 

t 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-8 

CLRDV • 

13.3.2. Clear Device (CLRDV) Instruction 

General Possible Program Exceptions 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

CLRDV 9DX2 RS 

Condition Codes 

I SET TO 0 
SET TO 1 

• SET TO 2 
• SET TO 3 
OuNcHANGED 

Explicit Format: 

LABEL 

[symbol] 
CLEAR1 

Implicit Format: 

LABEL 

[symbol] 
CLEAR1 

OBJECT • ADDRESSING 
INST. 
LGTH. 

0 DATA (INVALID SIGN/DIGIT) 

(BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

6. OPE RATION 6. 

CLRDV 
CLRDV 

6.0PERATION 6. 

CLRDV 
CLRDV 

r 1 ,S2 
8,CLRDSC 

Operational Consideration: 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

• The r 1 field you specify goes into bits 8-11 of the object code. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-9 

EIO 

13.3.3. Enqueue 110 (EIO) Instruction 

General 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

EIO ED SS 

Conc;lition Codes 

• SET TO 0 
• SET TO 1 
• SET TO 2 
• SET TO 3 
OuNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
QUEUE1 

Implicit Format: 

LABEL 

[symbol] 
QUEUE1 

Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
INST. 
LGTH. 

D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 

0 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• OPERATION D OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

!J. OPERATION !J. OPERAND 

EIO 
EIO 

!J. OPERATION !J. 

EIO 
EIO 

OPERAND 

s1 (i1 ),s2 (r1 ) 

OP2(3) ,ENQ(3) 



UP-8913 

HOV 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13-10 

13.3.4. Halt Device (HOV) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

HOV 9E01 s 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

•sETTO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
•sET TO 1 0 
.SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

.SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

QUNCHANGED 0 NONE 

Explicit Format: 

LABEL b.OPERATION i'.l OPERAND 

[symbol] HOV d2 (b2) 
HALT10 HOV 8(10) 

Implicit Format: 

LABEL b.OPERATION i'.l OPERAND 

[symbol] HOV 52 
HALT10 HOV STOPCO 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-11 

LCHR 

13.3.5. Load Channel Register (LCHR) Instruction 

General 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

LCHR 9F03 s 

Condition Codes 

.SET TO 0 

.SET TO 1 

.SET TO 2 

.SET TO 3 
QUNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
OP2 

Implicit Format 

LABEL 

[symbol] 
OP2 

Possible Program Exceptions 

OBJECT • ADDRESSING 
INST. 
LGTH. 

Q DATA (INVALID SIGN/DIGIT) 

(BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

.OPERATION 

/::,.OPERATION/::,. 

LCHR 
LCHR 

/::,.OPERATION /::,. 

LCHR 
LCHR 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT AEGISTEA 

0 OP 1 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON HALF-WOAD BOUNDARY 

0 OP 2 NOT ON FULL-WOAD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WOAD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED AEGISTEA 

0 OP 1 NOT ODD NUMBERED AEGISTEA 

0 NONE 

OPERAND 

OPERAND 



UP-8913 

LOA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13-12 

13.3.6. Load Directive Address (LOA) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

LOA 51 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

01F RESULT=O,SETTOO 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
0 IF RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED D NONE 

Explicit Format: 

LABEL 6.0PERATION 6. OPERAND 

[symbol] 
LOADS 

Implicit Format: 

LABEL 

[symbol] 
LOADS 

LOA 
LOA 

6.0PERATION 6. 

LOA 
LOA 

r 1 ,dz (xz ,bz ) 
S, 16(4,5) 

r1 ,s2 (x2 ) 

S,ADDR(4) 

OPERAND 

-~ 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-13 
Update B 

• LIA 

• 

• 

13.3.7. Load 1/0 Address (LIA) Instruction 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 
LIA 61 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<O,SETTO 1 

0 
0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Explicit Format: 

LABEL /:!,.OPERATION/:!,. OPERAND 

[symbol] 
LOAD DR 

Implicit Format: 

LABEL 

[symbol] 
LDADDR 

LIA 
LIA 

/:!,.OPE RATION /:!,. 

LIA 
LIA 

r 1 ,d2 (x2 ,b2 ) 

7,8(2,3) 

r 1 ,s2 (x2 ) 

7,DATA1 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-14 

MIO • 

13.3.8. Move 1/0 (MIO) Instruction 

General 

OPCODE FORMAT 

TYPE 

MNEM. HEX. 

MIO 81 RS 

Condition Codes 

• SET TO 0 

• SET TO 1 

• SET TO 2 
• SET TO 3 

OuNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
ADDR5 

Implicit Format: 

LABEL 

[symbol] 
ADDR5 

Possible Program Exceptions 

OBJECT • ADDRESSING 
INST. 

LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

(BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

iii OPERATION 6 

MIO 
MIO 

iii OPERATION 6 

MIO 
MIO 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13.3.8.1. Put IORB (PRB) Instruction 

13-14a 
Update B 

PRB 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 

PRB DC RR 2 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

D IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 
01F RESULT<O,SETTO 1 
D IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 • OPERATION 
.UNCHANGED 

Explicit and Implicit Format: 

LABEL l:.OPERATION 6 

[symbol] 
PUTIT 

PRB 
PRB 

r 1 ,r 2 
3,4 

D PROTECTION 

D SIGNIFICANCE 

0 SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

t 



t 

UP-8913 

GRB 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13.3.8.2. Get IORB (GRB) Instruction 

13-14b 
Update B 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

GRB OB RR 2 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

.IF RESULT;Q,SETTOO 
0 FIXED-POINT DIVIDE 

.IF RESULT<O.SETTO 1 
0 FIXED-POINT OVERFLOW 

0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 • OPERATION 
OuNcHANGED 

Explicit and Implicit Format 

LABEL .60PERATION .6 

[symbol] 
GETIT 

GRB 
GRB 

r 1,r2 
3,4 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-15 

• SDV 

• 

• 

13.3.9. Start Device (SDV) Instruction 

General Possible Program Exceptions 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

SDV 9C02 s 

Condition Codes 

• SET TO 0 
• SET TO 1 
• SET TO 2 
• SET TO 3 
0UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
START1 

Implicit Format: 

LABEL 

[symbol] 
START1 

OBJECT • ADDRESSING 
INST. 
LGTH. 

D DATA (INVALID SIGN/DIGIT) 

(BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

6 OPERATION 6 

SDV 
SDV 

b.OPERATIONb. 

SDV 
SDV 

S2 
STOA TA 

13.4. DIAGNOSTIC PRIVILEGED INSTRUCTIONS 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

• OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

The diagnostic instructions are execute diagnose (EXD), reset (RESET), and store status 
(STS) instruction . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-16 
Update B 

EXD • 

t 

13.4.1. Execute Diagnose (EXD) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

EXD 8300 s 4 • EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

0 IF RESULT~ 0, SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 
01F RESULT<O,SETTO 1 

0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 
• SEE NOTE 

Explicit Format: 

LABEL 

[symbol] 
DIAG1 

Implicit Format: 

LABEL 

[symbol] 
DIAG1 

NOTE: 

• OPERATION 

.60PERATION .6 

EXD 
EXD 

.6 OPERATION .6 

EXD 
EXD 

S2 
LOCN2 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 

OPERAND 

Condition code may be set by the subject diagnostic or special function. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-17 

RESET 

13.4.2. RESET Instruction 

General 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

RESET 8301 s 

Condition Codes 

• SET TO 0 
0 SET TO 1 
OsET TO 2 
•sETTO 3 
0UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
INST3 

Implicit Format: 

LABEL 

[symbol] 
INST3 

Possible Program Exceptions 

OBJECT 0 ADDRESSING 
INST. 
LGTH. 

0 DATA (INVALID SIGN/DIGIT) 

(BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

6. OPERATION 6. 

RESET 
RESET 

6.0PERATION 6. 

RESET 
RESET 

S2 
PLACE1 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 



UP-8913 

STS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13.4.3. Store Status (STS) Instruction 

13-18 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

STS 8302 s 4 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 
OtF RESULT<O.SETTO 1 
01F RESULT>o.sETT02 0 FLOATING-POINT DIVIDE 

01F OVERFLOW, SET TO 3 
.UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
ADDSTORE 

Implicit Format: 

LABEL 

[symbol] 
ADDSTORE 

• OPERATION 

~OPERATION~ 

STS 
STS 

~OPERATION~ 

STS 
STS 

S2 
STOAT A 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY • OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

13.5. INTERVAL TIMER PRIVILEGED INSTRUCTION 

The OS/3 hardware contains an interval timer register that is controlled by the service 
timer register (STR) instruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-19 
Update B 

• STR 

• 

• 

13.5.1. Service Timer Register (STR) Instruction 

General Possible Program Exceptions 

OB'JECT 0 ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

STA 03 RR 2 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

.SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW • SET TO 1 
• SET TO 2 0 FLOATING-POINT DIVIDE 

• SET TO 3 • OPERATION 
OuNCHANGED 

Explicit and Implicit Format: 

LABEL 

[symbol] 

TIM REG 

D OPERATION D 

STR 

STR 

0 PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPE RANI"\ 

13.6. CONTROL REGISTER PRIVILEGED INSTRUCTIONS 

These instructions operate on the control registers maintained as part of System 80 
hardware . 

t 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-20 

LCTL • 

, 13.6.1. Load Control (LCTL) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 

LCTL 87 RS 4 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

01F RESULT=O,SETTOO 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 
0 IF RESULT <o. SET TO 1 
Q1F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 

.UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
CONT1 

Implicit Format: 

LABEL 

• OPERATION 

60PERATION 6 

LCTL 
LCTL 

60PERATION 6 

r1 ,r3 ,s2 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

[symbol] 
CONT1 

LCTL 
LCTL 4,6,CNTLSTOR 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13.6.2. Store Control (STCTL) Instruction 

13-21 

STCTL 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
STCTL 86 RS 4 D EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes D EXPONENT UNDERFLOW 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 
01F RESULT<O,SETTO 1 
0 IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE 

D IF OVERFLOW, SET TO 3 
.UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
STOR1 

Implicit Format: 

LABEL 

• OPERATION 

60PERATION 6 

STCTL 
STCTL 

£1 OPERATION £1 

r1 ,r3 ,s2 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY 

D OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

D OP 1 NOT EVEN NUMBERED REGISTER 

D OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 

OPERAND 

[symbol) 
STOR1 

STCTL 
STCTL 3,5,STORDATA 

13. 7. RELOCATION REGISTER PRIVILEGED INSTRUCTIONS 

These instructions operate on the relocation registers maintained as part of System 80 
hardware. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-22 

LRR • 

13.7.1. Load Relocation Register (LRR} Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
LRR A3 RS 4 D EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 0 IF RESULT <o. SET TO 1 
0 IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE 

QIF OVERFLOW, SET TO 3 
.UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
DO LOAD 

Implicit Format: 

LABEL 

[symbol] 
DO LOAD 

• OPERATION 

fJ. OPERATION /J. 

LRR 
LRR 

fJ. OPE RATION /J. 

LRR 
LRR 

r1 ,S2 
3,RELOC3 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

D OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-23 

• STRR 

• 

• 

13.7 .2. Store Relocation Register (STRR) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
STRR A2 RS 4 D EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

D IF RESULT= o. SET TO 0 
0 FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 01F RESULT<O,SETTO 1 
OIF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 
• UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
STOR12 

Implicit Format: 

LABEL 

[symbol] 
STOR12 

• OPERATION 

.60PERATION .6 

STRR 
STRR 

.6 OPERATION .6 

STRR 
STRR 

r1 ,S2 
4,STLOC 

• PROTECTION 

D SIGNIFICANCE 

• SPECIFICATION: 

D NOT A FLOATING-POINT REGISTER 

D OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

D NONE 

OPERAND 

OPERAND 

13.8. GENERAL REGISTER PRIVILEGED INSTRUCTIONS 

These instructions operate on the problem general register set . 



UP-8913 

SLM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13-24 
Update B 

,._ 13.8. GENERAL REGISTER PRIVILEGED INSTRUCTIONS 

13.8.1. Supervisor Load Multiple (SLM) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

SLM BB RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
0 IF RESULT <o. SET TO 1 0 
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

OIF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

.UNCHANGED 0 NONE 

Explicit Format: 

LABEL LlOPERATION 6 OPERAND 

[symbol] 
LOAD36 

Implicit Format: 

LABEL 

[symbol] 
LOAD36 

SLM 
SLM 

LlOPERATION L'.l 

SLM 
SLM 

r1 ,r3 ,d2 (b2 ) 

3,6,20(9) 

r1 ,r3 ,s2 
3,6,DAT AFIVE 

OPERAND 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-25 

SSTM 

13.8.2. Supervisor Store Multiple (SSTM) Instruction 

General Possible Program Exceptions 

OBJECT • ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 

D DECIMAL OVERFLOW 
SSTM BO RS 4 D EXECUTE 

D EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

D IF RESULT= 0, SET TO 0 
D FIXED-POINT DIVIDE 

D FIXED-POINT OVERFLOW 01F RESULT<o.sETTO 1 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 
.UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
STORE47 

Implicit Format: 

LABEL 

[symbol] 
STORE47 

• OPERATION 

/::,.OPERATION/::,. 

SSTM 
SSTM 

/::,.OPERATION/::,. 

SSTM 
SSTM 

• PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF.WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY • OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

13.9. DATA CHECKING PRIVILEGED INSTRUCTION 

Bit checking on main storage data is performed by the longitudinal redundancy check 
privileged instruction . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-26 
Update A 

LRC • 

13.9.1. Longitudinal Redundancy Check (LRC) Instruction 

General 

OPCODE FORMAT 
TYPE 

MNEM. HEX. 

LRC 83DE s 

Condition Codes 

• SET TO 0 
• SET TO 1 

D SET TO 2 

0 SET TO 3 

0UNCHANGED 

Explicit Format: 

LABEL 

[symbol] 
PRM1 

Implicit Format: 

LABEL 

[symbol] 
PRM1 

Possible Program Exceptions 

OBJECT • ADDRESSING 
INST. 
LGTH. 

0 DATA (INVALID SIGN/DIGIT} 

(BYTES} 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
4 0 EXECUTE 

0 EXPONENT OVERFLOW 

0 EXPONENT UNDERFLOW 

0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 

0 FLOATING-POINT DIVIDE 

• OPERATION 

6.0PERATION 6. 

LRC 
LRC 

6.0PERATION 6. 

LRC 
LRC 

S2 
CHECK1 

• PROTECTION 

0 SIGNIFICANCE 

• SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY • OP 2 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

OPERAND 

13.10. PROGRAM LOAD PRIVILEGED INSTRUCTION 

The initial program load (IPL) instruction performs the initial program load (IPL) function in 
the same manner as if the IPL key were pressed on the console workstation. 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13.10.1. Initial Program Load (IPL) Instruction 

13-26a 
Update A 

IPL 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 

0 DECIMAL OVERFLOW 
IPL 8303 s 4 0 EXECUTE 

0 EXPONENT OVERFLOW 

Condition Codes 0 EXPONENT UNDERFLOW 

0 IF RESULT= 0, SET TO 0 
0 FIXED-POINT DIVIDE 

0 FIXED-POINT OVERFLOW 
01F RESULT<O,SETTO 1 
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE 

0 IF OVERFLOW, SET TO 3 • OPERATION 
.UNCHANGED 

Explicit and Implicit Format: 

LABEL LlOPERATION Ll 

[symbol] 
IPL01 

IPL 
IPL 

13.11. SWITCH LIST PRIVILEGED INSTRUCTION 

0 PROTECTION 

0 SIGNIFICANCE 

0 SPECIFICATION: 

0 NOT A FLOATING-POINT REGISTER 

0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON HALF-WORD BOUNDARY 

0 OP 2 NOT ON FULL-WORD BOUNDARY 

0 OP 2 NOT ON DOUBLE-WORD 
BOUNDARY 

0 OP 1 NOT EVEN NUMBERED REGISTER 

0 OP 1 NOT ODD NUMBERED REGISTER 

0 NONE 

OPERAND 

One privileged instruction scans the supervisor switch list: the switch list scan (SWLS) 
instruction. 

t 



t 

UP-8913 

SWLS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13.11.1. Switch List Scan (SWLS) Instruction 

13-26b 
Update A 

General Possible Program Exceptions 

OBJECT D ADDRESSING D PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

SWLS 830F s 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 • • SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

QsET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

Explicit and Implicit Format: 

The bit pattern is the format of the instruction. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-27 
Update B 

SPM 

13.12. SET PROGRAM MASK (SPM) STATUS-SWITCHING INSTRUCTION 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

SPM 04 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SET TO 1 0 
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS • NONE 

The set program mask (SPM) instruction replaces bits 34 through 39 of the current PSW 
with bits 2 through 7 of the operand 1 register. 

Explicit and Implicit Format: 

LABEL 

[symbol] 
SETM 

f.lOPERATION f.l 

SPM 

SPM 

Operationa I Considerations: 

r1 

3 

OPERAND 

• Bits 0, 1, and 8 through 31 of the operand 1 register are ignored by the OS/3 
hardware. 

• The condition code is set equal to bit positions 2 and 3 of operand 1 . 

t 



UP-8913 

Example: 

LABEL 
1 

LO DREG 
SETM 

MASK 

AOPERATIONA 
10 16 

L 
SPM 

DC 

3 ,MASK 
3 

F' I' 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• 

OPERAND 

13-28 

In this example, I loaded register 3 with the contents of a main storage area called MASK. 
MASK contains a full word of binary 1 's. When the SPM instruction is executed, bits 34 
through 39 of the PSW are replaced with bits 2 through 7 of register 3. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-29 
Update B 

SVC 

13.13. SUPERVISOR CALL (SVC) STATUS-SWITCHING INSTRUCTION 

General Possible Program Exceptions 

OBJECT 0 ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

SVC OA RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• 0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 
SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY • SET TO 1 0 

• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

• SET TO 3 0 OPERATION 
0 OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS • NONE 

The supervisor call (SVC) instruction causes an interrupt and replaces bits 24 through 31 
of the current PSW with the 1-byte contents of operand 1. 

Explicit and Implicit Format: 

LABEL 

[symbol] 

SUPCALL 

Li OPERATION .6 

SVC 

SVC 

Operationa I Considerations: 

i, 
38 

OPERAND 

• The operand you specify is an immediate byte of data, which is a 1-byte absolute 
term. 

• Once the SVC instruction is executed, the PSW with its new contents is stored, and a 
new PSW is controlling your program. 

• The condition code is equal to bits 34 and 35 of the PSW after the supervisor call is 
granted . 

t 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-30 

Example: 

LABEL ~OPERATION~ OPERAND 
1 10 16 

CALL SVC X'OF' 

A supervisor call interrupt is generated, and the value X'00001111' is stored in the 
old PSW. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

13-31 
Update B 

TS 

13.14. TEST AND SET (TS) STATUS-SWITCHING INSTRUCTION 

General Possible Program Exceptions 

OBJECT • ADDRESSING • PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE 

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION: 

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER 

TS 93 s 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY 

• SET TO 0 
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD 

0 FIXED-POINT OVERFLOW BOUNDARY 
• SETT01 

0 FLOATING-POINT DIVIDE 
0 OP 1 NOT EVEN NUMBERED REGISTER 0 SET TO 2 0 0 SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER 

SEE OPER. CONSIDERATIONS 0 NONE 

The test and set (TS) instruction tests the zero bit of the operand 1 main storage area for a 
1 or a 0 and sets the condition code according to the result. 

Explicit Format: 

LABEL 

[symbol] 

TEST 

Implicit Format: 

LABEL 

[symbol] 

TEST 

60PERATION 6 

TS 
TS 

60PERATION6 

TS 
TS 

Operational Considerations: 

S2 
STORAGE 

OPERAND 

OPERAND 

• Only the first bit of the operand is tested to determine the condition code . 

• All eight bits of the operand are set to binary 1 ·s after the condition code is set . 

• The condition code is set as follows: 

O if bit position 0 is zero; or 

1 if bit position 0 is 1 . 

t 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

13-32 

• Only the leftmost bit of the operand is tested to determine the condition code setting. 

• All eight bits of the operand byte are set to 1 after the condition code is set. 

• The condition code is set as follows: 

to 0 if the tested bit is 0; or 

to 1 if the tested bit is 1. 

• This instruction can be used by two programs referencing the same main storage 
byte. A condition code setting of 0 indicates that the area is available for use by the 
testing program. A condition code setting of 1 indicates that the area is not available. 

Example: 

LABEL 
1 

TESTSW 

BYTE 

D.OPE RAT I ON D. OPERAND 
10 16 

TS BYTE 

DC B I 1111 """" I 

When the TS instruction is executed, the leftmost bit of BYTE is tested. Since the bit 
is 1, the condition code is set to 1 . 

• 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Section 14 has been deleted . 

14-1 
Update A 



• 

• 

• 



PART4. BAL :DIRECTIVES 



• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

15-1 

15. Introduction to Directives 

The OS/3 assembly language includes assembler directives (Table 15-1) that enable the 
user to control assembler operation. Assembler directives control the assembler at 
assembly time just as application instructions control the processor at execution time. 
Housekeeping, program organization, assembly listing modification, and 1/0 control are 
the tasks of the directives. 

The assembler application instructions the programmer uses to control the processor 
operation are discussed in Part 3 of this manual. The major portion of the program 
statements consists of these instructions. Just as there are mnemonics to direct the 
generation of the instructions, there are directives to control the operation of the 
software language processor (the assembler). These are called assembler directives. 

Table 15-1. Assembler Directives 

Types of Basic Function Where 
Directives Discussed 

EQUATE Symbol definitions Section 16 
OPSYM Delete operation code 

ASSEMBLER Control program name and Section 17 
CONTROL organization 

BASE REGISTER Directs registers to be Section 18 
ASSIGNMENT used and when 

LINKING AND Control of modules to be Section 19 
SECTIONING linked 

LISTING CONTROL Control of the assembly listing Section 20 

1/0 CONTROL Control of input/output data Section 21 



·----



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

16-1 

16. Equate and Delete Operation 
Code Directives 

EQU 

16.1. EQUATE (EQU) 

The equate (EQU) directive defines the length and value of a symbol using another 
symbol as all or part of the definition. 

The format is as follows: 

LABEL A OPERATION A OPERAND 

symbol EQU e[,a] 

where: 

e 
Is an absolute or relocatable expression. 

a 
Is an absolute expression. 

All symbols must be predefined. 

The symbol in the label field is defined as the value of the first expression in the 
operand. The maximum values are -223 to 223-1. The length attribute of the symbol is 
equal to the second expression (a) if explicitly stated. If the second expression (a) is 
omitted, the symbol will have the length attribute of the first term in the first expression 
(e). If the first term is an * or a self-defining term, the length attribute of the symbol is 
1. (See the following coding examples.) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

16-2 

Examples: 

LABEL aoPERATIONa 
1 10 16 

1. TAG 
2. HIDE 
3. SEEK 
4. GO 
5. R)f 
6. Rl 

DS 
EQU 
EQU 
EQU 
EQU 
EQU 

25CL10 
10'1+TAG, 150 
TAG+1278-* 
TAG+1278-*,288 ., 
1 

OPERAtW 

If the value of the location counter is 2000 when instructions 1 through 4 are 
encountered, the symbols have the following location counter values: 

1. TAG has a relocatable value of 2000 and a length attribute of 10. The location 
counter is advanced to 2250. 

2. HIDE has a relocatable value of 2100 (100 + 2000) and a length attribute of 
150. The location counter remains at 2250. 

3. SEEK has an absolute value of 1020 (2000 + 1270 - 2250) and a length 
attribute of 10 (same as length of first term). 

4. If line 4 is substituted in place of line 3, then GO has an absolute value of 
1020 (2000 + 1270 - 2250) and a length attribute of 200. (The 200 overrides 
the length of TAG.) 

5. The registers 0 and 1 are equated to RO and R 1. (See 6.1.) 
and 
6. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

16-3 

OPSYM 

16.2. DELETE OPERATION CODE (OPSYM) 

The delete operation code (OPSYM) directive allows you to tell the assembler not to 
accept a certain mnemonic operation code. 

The format is as follows: 

LABEL 

mnemonic 
operation 
code 

A OPERATION A 

OPSYM 

OPERAND 

unused 

After you use the OPSYM directive to declare a mnemonic code as unacceptable, the 
assembler will not generate the normal object code for that mnemonic if it appears after 
the OPSYM. You are then free to use the declared mnemonic another way, for example, 
as the mnemonic code of a macro prototype statement. 

Examples: 

LABEL L'.10PERAT I Oi~ t:, OPERAND 
J JO J6 

J. llACRO 
2. A &QUANT ,&Q2 ,&SUM 
3. L J 3, &QUANT 
4. A J '3 ,&Q2 
s. ST J3,&SUM 
6. Mrnl.l 
7. START 0 
8. A OPSYtl 

9. CALCU A P1\Y, RA I SE, TOTAL 

JO. END 

In this example, the program is preceded by a macro definition which is used in my 
program. Line 2 contains the mnemonic code A, which is the mnemonic operation 
code for an add full word instruction. Before you can call the A macro into your 
program, you must use an OPSYM directive to tell the assembler not to recognize A 
as the add full word mnemonic. The OPSYM directive must code before the line of 
code which references the macro, that is, line 8 must precede line 9. 

The OPSYM directive cannot be used from within a PROC/MACRO or from within 
code generated as a result of conditional assembly statements. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

17-1 

17. Assembler Control Directives 

Assembler control directives are available to name the program and specify an initial 
location counter, section the program, alter the location counter to a specified value, 
indicate the end of a program, and designate the instruction the program will begin with. 
Table 17-1 is a summary of the assembler control directives available to the user of the 
OS/3 assembler. 

Table 17-1. Assembler Control Directives 

Directives Basic Function Where 
Discussed 

CNOP Condition no operation 17.1 

END Program end 17.2 

LTORG Generate literal pool 17.3 

ORG Specify location counter 17.4 

START Program start 17.5 



UP-8913 

CNOP 

SPERRY UNIVAC OS/3 
ASSEMBLER 

17.1. CONDITION NO OPERATION (CNOP) 

17-2 

The condition no operation (CNOP) directive adjusts the location counter to a half-word, 
full-word, or double-word storage boundary. The format of the CNOP directive is: 

LABEL fl OPERATION fl OPERAND 

unused CNOP 

where: 

a, and a2 

Are absolute expressions consisting of predefined terms. 

The first expression in the operand field indicates a byte to which the location counter 
must be set. Legal values for the first expression are 0 and 2 for full-word boundary 
alignment, and 0, 2, 4, and 6 for double-word boundary alignment. 

• 0 indicates a full-word or double-word boundary; 

• 2 indicates the second byte (first half word) past the boundary; 

• 4 indicates the fourth byte (second half word) past a double-word boundary; and 

• 6 indicates the sixth byte (third half word) past a double-word boundary. 

Permissible values for the second expressions are 4 and 8, indicating that the 
adjustment is relative to a full-word or double-word boundary, respectively. 

If the location counter is already set to the indicated byte, the CNOP has no effect. When 
alignment is needed, one, two, or three no-operation instructions are generated to 
increment the location counter to the proper half-word boundary and to ensure correct 
instruction processing. All terms must be predefined. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

17-3 

Examples: 

LABEL AOPERATIONA 
I JO 16 

1.I 2. 
CNOP 
CtWP 

16,8 
2,4 

OPERAND 

1. The current location counter is advanced, if necessary, to the first byte of the 
next double-word boundary. A legal double-word boundary is any address value 
divisible by 8. 

2. The current location counter is advanced, if necessary, to the second byte (first 
half word) past the next full-word boundary. A legal full-word boundary is any 
address value divisible by 4. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

17-4 

END 

17.2. PROGRAM END (END) 

The program end (END) directive indicates the end of a source program or macro 
definition written in PROC format. (See Appendix A and Section 25.) 

The format of the END directive is: 

LABEL t. OPERATION t. OPERAND 

[symbol] END [e] 

where: 

e 
Is a relocatable expression. 

The END directive must be the last statement in the source program. An expression in 
the operand field designates the point in the program where control may be transferred 
after the program is loaded. If the END directive is missing, an END directive with a 
blank operand field is supplied by the assembler. If the END directive terminates a proc, 
the label and operand fields are not used. 

Examples: 

LABEL ~OPERATION~ 

1 10 16 

END 
END 
mo 

BEGN 
G0+324 

OPERAND 

All three of the END statements halt assembly, but each transfers control to a 
different address in the program. 

1. Control is transferred to a statement labeled BEGN in the program. The label 
FOX is assigned the address associated with the last byte of the assembly. 

2. If GO has a value of 1000, control is transferred, and the next instruction to be 
processed is located at address 1324. 

3. If no operand is specified, control is transferred to the first address of the 
program loaded. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

17.3. GENERATE LITERALS (LTORG) 

17-5 

LTORG 

The generate literal pool (L TORG) directive generates all literals previously defined into a 
data pool within the source program. The format of the LTORG directive is: 

LABEL .6 OPERATION .6 OPERAND 

[symbol] LTORG unused 

The literals are pooled following the occurrence of the LTORG directive. A symbol in the 
label field represents the first byte of the generated literal pool and is assigned a length 
attribute of 1. LTORG directives may not appear within a dummy control section (19.3) or 
in a blank common storage area. If there are no LTORG statements in a program and 
literals are specified, or if any literals are specified after the last LTORG directive in a 
program, these literals are pooled at the end of the first control section. The programmer 
then must ensure that a valid base register is available to address the locations in the 
literal pool. 

Literals are placed in the literal pool according to their total length (duplication factor 
multiplied by the length of the constant). The literal pool consists of four sections: 

1. Literals with total lengths that are multiples of double words (eight bytes) 

2. Literals with total lengths that are multiples of full words (four bytes) 

3. Literals with total lengths that are multiples of half words 

4. Any remaining literals 

Within each pool section, the literals are stored in order of occurrence. Before the literal 
pool is generated, the location counter is adjusted to a double-word boundary. If two 
control sections are assembled together and a L TORG is not included in the second or 
following sections, then all the literals defined in all the sections will be pooled in the 
first control section and may subsequently be available only to that first section. To 
ensure that each linked control section can use the literals declared by it, an LTORG 
should be used within each control section. 



UP-8913 

ORG 

SPERRY UNIVAC OS/3 
ASSEMBLER 

17.4. SPECIFY LOCATION COUNTER (ORG) 

17-6 

The specify location counter (ORG) directive sets or resets the location counter to a 
specified value. The format of the ORG directive is: 

LABEL bi OPERATION bi OPERAND 

[symbol) ORG [e) 

where: 

e 
Is a relocatable expression. 

The location counter is set to the value of the expression in the operand field. When no 
expression is present, the location counter is set to the highest location previously 
assigned in that control section. A symbol in the label field has the same value as the 
expression in the operand field and is assigned a length attribute of 1 . The expression in 
the operand field must be relocatable. Its value must represent an address in the same 
control section in which the ORG occurs. This address value must be equal to or greater 
than the initial setting of the current location counter. If the expression is in error, the 
ORG directive is ignored, and the line is flagged. All terms in the expression must be 
predefined. 

The ORG directive permits the location counter to be set to a value not on a half-word 
boundary. 

Bytes of storage reserved with an ORG directive are not set to zero or cleared when the 
program is loaded. 

Example: 

LABEL t.OPERATIONll OPERAND 
1 10 16 

AREA ORG *+A+B 

This statement reserves A plus B bytes of storage, where A and B are previously defined 
symbols with absolute values. If A= 80,B = 160, and the value of the location counter is 
1048, then 240 bytes are reserved beginning at the location 1048. 

Additional examples of the ORG directive follow. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

17-7 

Examples: 

1. 
2. 

3. 

4. 

LABEL 6.0PERAT ION6. OPERAND 6.COMMENTS 
1 10 16 

INPUT OS CL8S INPUT FIELD 8g BYTES 
ORG INPUT INPUT FOR RECl 

RECl OS CL20 
FLDI OS C L6" 

ORG Ill PUT INPUT FOR REC2 
REC2 OS CL3~ 
FL02 OS CL3'6 
FL022 OS CL2~ 

ORG INPUT INPUT FOR REC3 
REC3 OS CL15 
FL03 OS CL25 
FL033 OS C Ll1'6 

1. An input area for an 80-byte card is defined with no subfields. 

2. The input field is redefined in place to show two subfields. 

3. Redefine INPUT for different organizations of the field. 
and 
4. 

Instructions 1 through 4 define four different types of cards or other 80-byte 
records. 



UP-8913 

START 

SPERRY UNIVAC OS/3 
ASSEMBLER 

17.5. PROGRAM START (START) 

17-8 

The program start (START) directive defines the program name, the name of the first 
control section, and the initial location counter value. The format of the START directive 
is: 

LABEL ~OPERATION~ OPERAND 

[symbol] START [a] 

where: 

a 
Is an absolute expression. 

A symbol in the label field becomes the name of the first or only control section in the 
program. If the label field is blank, an unnamed control section is begun. All statements 
following the START directive are assembled as part of the control section until another 
unique control section definition is encountered. 

The label field of a CSECT directive, which can contain the same name as the label field 
of the START directive, identifies the continuation of the control section. A blank label 
field in the CSECT directive identifies the continuation of an unnamed control section 
that began with an unnamed START directive. 

The symbol in the label field of the START directive also identifies or names the objact 
program. If the START directive is unnamed, the object module is assigned the name 
ASMOBJ. The symbol must be a valid symbol. It is an automatic entry point and has a 
length attribute of 1. The START directive must not be preceded by any statements 
which would initiate a control section. 

The self-defining term in the operand field of the START directive establishes the initial 
location counter value for the first control section. If the self-defining term represents a 
value which is not a multiple of 8, the START directive is flagged and the location 
counter set to the next higher multiple of 8. If the operand is omitted, the initial control 
section is assigned a location counter value of zero. 



UP-8913 

Examples: 

LABEL 
1 

TEST 
TEST 

i:).OPE RAT I ON I'.). 

10 16 

START 
START 

1063 
x•427• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERAND 

17-9 

The location counter contents for either of these statements would be 1064, which is the 
next higher multiple of 8 from 1063. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

18-1 

18. Base Register Assignment Directives 

The OS/3 assembler converts storage addresses to base register and displacement 
values for insertion into instructions being assembled. To do this, the assembler must be 
informed of the available registers and the values assumed to be in those registers. The 
assembler directives USING and DROP are available for this purpose. 

• The unassign base register (DROP) directive informs the assembler that certain 
registers are no longer to be used for base registers. 

• The assign base register (USING) directive informs the assembler that the specified 
registers are available for use as base registers. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

18-2 

DROP 

18.1. UNASSIGN BASE REGISTER (DROP) 

The unassign base register (DROP) directive informs the assembler that the registers 
specified are no longer available for base register assignment. The format of the DROP 
directive is: 

LABEL t:, OPERATION t:, OPERAND 

unused DROP r
1 

[, ••• ,r
0

] 

where: 

r1[, ••• ,rn] 
Specifies that the declared registers (0 through 15) are no longer available for 
base register assignment. 

Registers previously made available for base register assignment may be dropped and 
made available again in a USING directive. (See 18.2.) The value assumed to be in a 
base register may be changed by coding another USING directive without an intervening 
drop of that register. 

Examples: 

LABEL 
I 

t:, OPE RAT I or~ t:, 
10 16 

OPERAND 

i. I 2. 
DROP 
DROP 1,3,4 

1. This directive specifies that register 1 is no longer available to the assembler 
for base register assignment. 

2. This directive specifies that registers 1, 3, and 4 are no longer available for 
base registers. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

18-3 

USING 

18.2. ASSIGN BASE REGISTER (USING) 

The assign base register (USING) directive informs the assembler that a specified register 
is available for base register assignment and will contain a specific value at execution 
time. The value must be loaded by the program into the base register that the USING 
directive specifies. The assembler maintains a USING table of the specified registers. The 
format of the USING directive is: 

where: 

v 

LABEL /j, OPERATION /j, OPERAND 

unused USING 

Is the value assumed to be in the first specified register at execution time. This 
value may be relocatable or absolute. Literals are not permitted. 

r 1[, ••• ,rn] 
Specifies that the declared registers (0 through 15) will be used as base 
registers loaded at execution time. These register numbers do not necessarily 
have to be assigned in ascending sequence. 

The first register specified after v is assigned the value of v; the next register is assigned 
the value of the first register plus 4096; the next register is assigned the value of the 
second register plus 4096; and so on through all the registers specified. A USING 
directive may specify a single register or a group of registers, or the registers may be 
specified by individual USING directives. 

Register 0 may be specified as a valid base register; however, the assembler assumes 
that it always contains the value 0 and calculates displacements as if the operands were 
zero. Register 0 must be the operand specified by r1, and any registers specified in the 
operand field following register 0 are assumed to contain increments of 4096 from zero. 

When v is absolute, the indicated registers may be used to process only absolute 
effective addresses. 

When v is relocatable, the indicated registers can be used to process only relocatable 
effective addresses. The registers r1, ... ,r n are used to process only those addresses in 
the same control section as the address represented by v. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

18-4 

The value specification in a USING directive sets the lower limit of an address range; the 
upper limit is automatically set 4095 bytes above the lower limit. The upper limit of a USING 
directive may be set less than 4095 bytes by being overlapped by the lower limit of another 
USING directive. 

The range specified by a USING directive is used by the assembler to assign base 
register and displacement values to those effective operand addresses that fall within 
that range. 

If an operand address is specified as an effective address instead of a base register and 
displacement specification, the assembler searches the USING table for a value yielding 
a displacement of 4095 or less; if there is more than one such value, the value that 
yields the smallest displacement is chosen. If no value yields a valid displacement, the 
operand address is set to zero, and the line is flagged with an error indication. If more 
than one register contains the value yielding the smallest displacement, the highest 
numbered register is selected. 

Examples: 

1 • 
2. 
3. 
4. 

LABEL llOPERATIONll 
1 10 16 

USING 
USING 
USING 
USING 

4rlrlrl' 8 
Brlrlrl,1,2,3,6,7,8,12 
*,5 
TAG,R9 

OPERAND 

1 . A range of 4096 bytes is covered by register 8 at location 4000 through 8095. 
The value 4000 is assumed to be stored in register 8. 

2. The value 8000 is assumed to be in register 1, 12096 in register 2, 16192 in 
register 3, 20288 in register 6, 24384 in register 7, 28480 in register 8, and 
32576 in register 12. These register numbers and their assumed values are 
entered into the USING table in the order specified. 

3. Register 5 is used as the base register, with the value of the location counter 
contained in register 5. 

4. The register declared by the symbol R9 is assumed to contain the base address 
of the symbol "TAG". 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-1 

19. Program Linking and 
Sectioning Directives 

A program or a portion of a program assembled as a single unit is called a module. A 
complex program may consist of many modules; some may be standard subroutines that 
can be used in any program. 

The assembler provides, as part of its output, information that allows modules to be 
linked together, loaded, and then executed as a single program. Proper partitioning or 
sectioning reduces the execution time required to make changes to an existing program. 
If a change is required, only the module that is changed must be reassembled. The 
output is then linked with the remaining parts to produce the altered program. Proper 
partitioning of a program also reduces the number of symbols required in each of the 
separate assemblies. 

A symbol defined in the label field of module A and addressed in module B must be 
externally defined by an ENTRY directive in module A and defined by an EXTRN directive 
in module B. By using the ENTRY and EXTRN directives, proper linkage is supplied when 
the separate modules are assembled. This information is passed to the linkage editor by 
the external definition records and the external reference records, which are outputs of 
the assembler. 

The assembler also provides an optional capability of dividing one module into different 
sections. A control section is a group of instructions, constants, and storage areas, the 
positions of which, relative to each other, are fixed and must remain fixed to ensure 
proper coding. Proper execution of instructions and data in one control section must not 
depend on their positions relative to instructions or data in any other control section. 
Because the assembler maintains a separate location counter for each section, control 
sections may appear in any order for input to the assembled. Statements belonging to 
one control section may be intermixed with statements belonging to one or more other 
sections. If the first statement of a control section is a START directive, its label names 
the control section. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-2 

Each module may have a maximum of 255 external symbol identification (ESID) items. 
An ESID item contains special information used by the linkage editor in relocating 
modules and module sections and in resolving references between modules. The 
following items cause the assembler to generate an ESID item: 

• Each unique symbol used in a V-type address constant 

• Each symbol used in a V-type address constant 

• Each control section 

• Each dummy control section 

• Each common storage definition section 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19.1. COMMON STORAGE DEFINITION (COM) 

19-3 

COM 

The common storage definition (COM) directive enables the programmer to define a 
control section which is a common storage area for two or more separately assembled 
routines. The format of the common section may be described by DS and DC directives. 
Labels appearing within the sections are defined. Like a dummy control section, no data 
or instructions are assembled in a common section. It has a separate location counter 
with an initial value of zero. Data may be entered into a common section only by 
execution of a program which refers to it, or by loading a control section of the same 
name. Such CSECTS are called block data sections. DC instructions act as DS 
instructions in the COM area because neither instructions nor constants in a common 
storage area are assembled. Labels defined in a common section are not subject to the 
restrictions imposed on dummy section labels. 

One assembly can define only one blank (unnamed) common section. Several like-named 
COM directives may appear among the source statements. Each COM directive after the 
first defines a continuation of the common section previously described. When several 
routines defining like common storage are linked, the resulting module contains only one 
section corresponding to the like common sections in the input modules. The length of 
this section is the length of the largest like common section in the input modules. The 
format of the COM directive is: 

LABEL .60PERATION.6 OPERAND 

[symbol] COM unused 

If the common section is unlabeled, the area is addressed by referencing the label of a 
statement within the common section with a USING directive. (See 18.2.) 

Examples: 

MODULE l : 

LABEL 
I 

1. MODI 

2. ACOM 
RE BEW 
CllAYA 

b.OPE RAT I ON.6 
to 16 

CSE CT 

COM 
DS 
DS 
END 

CLl25 
CL8f6 

OPERAIW 



UP-8913 

MODULE 2: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

19-4 

LABEL 
1 

6.0PERAT I ON.6 
10 16 

OPERAND 

3. MOD2 

4. ACOM 
ELI 

CSE CT 

COM 
OS 
END 

CL260 

1 . When module 1 is assembled, it uses the common storage area defined by line 2. 

2. The common storage area used by module 1 and module 2 

3. When module 2 is assembled, it also uses the common storage area defined by 
line 2. 

4. The common storage area used by module 1 and module 2 

The common storage area for these examples is 260 bytes long (see following 
listing). The fields REBEW and CHAYA are the same storage area as the first 205 
bytes of the field ELI. 

Byte Hexadecimal Module 1 
Hexadecimal 

Module 2 
Number Address Address 

ACOM COM ACOM COM 
0 00000 REBEW OS CL125 00000 ELI OS CL260 

125 00070 CHAYA OS CL80 

205 END 

260 00104 END 

If more than one object module element refers to a common storage area with the 
same name, the references are to the same storage area. Only one common storage 
area is allocated within a load module to satisfy all object module requests for 
common storage areas with the same name. The size of a common storage area in 
a load module is determined by the maximum size requested by any object module 
for common storage with that name. Blank common storage areas are allocated in 
the same way. 

In a multiphase load module, common storage areas are not normally overlaid. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

The following rules apply to the use of common storage: 

19-5 

• An entry point cannot have the same name as a labeled common storage area 
included in the load module. 

• When the linkage editor includes module elements (CSECT or COM) with the 
same name as a labeled common storage area, that section is treated as a 
block data subprogram (i.e., to initialize values of labeled common blocks) and is 
loaded into all or a portion of the common storage area. A block data 
subprogram is loaded when the phase in which it was included is loaded. Blank 
common cannot be initialized during loading unless the text encountered is for 
that COM ESD. 

• If an object module has requested common storage, the partial inclusion of a 
single control section from that object module will cause the common storage 
area defined to be included also, regardless of whether or not the included 
control section refers to that common storage name. For further information, 
see the linkage editor portion in the system service programs (SSP) user guide. 



UP-8913 

CSE CT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

19.2. CONTROL SECTION IDENTIFICATION (CSECT) 

19-6 

The control section identification (CSECT) directive indicates to the assembler the 
initiation or continuation of a control section. The format of the CSECT directive is: 

LABEL llOPERATION Ll OPERAND 

[symbol) CSE CT unused 

The symbolic name of the control section defines an entry point of the program being 
assembled. This symbol must not appear as a symbol for any other source statement 
except the START directive of its control section or another CSECT directive to indicate 
continuation of the coding in the same control section. 

Each control section is adjusted to begin on a double-word boundary. The value of the symbol 
is the address of the first byte of the control section and has a length attribute of 1. 

If the symbol is blank, the CSECT directive is a continuation of coding for an unnamed 
control section. If the symbol is blank and is not preceded by an unnamed control 
section, the CSECT initiates an unnamed control section. Only one unnamed control 
section is permitted in a module. 

Examples: 

LABEL 
1 

t:.OPERAT IONt:. 
10 16 

1. GROSS START 

2. DEDUCT C SECT 

3. GROSS CSE CT 

END 

OPERAl·~D 

(continued) 



UP-8913 SPERRY UNIVAC OS/3 19-7 
ASSEMBLER 

LABEL ~OPERATION~ OPERAND 
I I 0 16 

4. GROSS2X CSECT 

5. DEDUCTX CSECT 

6. GROSS2X CSECT 

END 

1. The first control section of coding is labeled GROSS. 

2. The second control section of coding is labeled DEDUCT. 

3. The coding beginning at line 3 is a continuation of the section labeled GROSS. 

4. The first control section of coding is labeled GROSS2X. 

5. The second control section of coding is labeled DEDUCTX. 

6. The coding beginning at line 3 is a continuation of the section labeled 
GROSS2X. 



UP-8913 

DSECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

19.3. DUMMY CONTROL SECTION IDENTIFICATION (DSECT) 

19-8 

A program may contain references to areas that have been defined in other modules. 
Addressing such areas is facilitated by describing the area and its format to the 
assembler as a dummy control section. Any statement following a dummy control section 
identification (DSECT) directive is identified as belonging to the dummy control section. 
The format of the DSECT directive is: 

LABEL t.OPERATION t. OPERAND 

[symbol] DSECT unused 

Storage is not reserved by a OS directive within a dummy control section, and the data 
and instructions appearing in a dummy control section do not become part of the 
assembled program. A separate location counter with an initial value of zero is kept for 
each dummy control section. More than one DSECT directive with the same symbol may 
appear in a module. The first DSECT directive initiates the dummy control section; the 
remaining DSECT directives continue it. 

Symbols of statements in a dummy control section are called dummy section symbols. 
The following rules must be observed in using and assigning dummy section symbols: 

• An unpaired dummy section symbol may appear only in an expression defining a 
storage address for a machine instruction or an S-type constant. 

• A base register may not be specified for an address field containing an unpaired 
dummy section symbol. 

• The programmer must ensure that the appropriate value is loaded into the register 
specified in the USING statement. 

To guarantee alignment between the actual storage area and the dummy control section, 
the user should align the storage area to a double-word boundary. 

Coding examples utilizing the DSECT directive follow. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-9 

• Examples: 

I • 

2. 

• 

• 

LABEL tiOPERATIONti 
I JO 16 

BEGIN 

MOVE 

AREA 
SECTION 
NAME 
NUMBER 
CODE 
WORK 
WORK! 

TABLE 

BALR 
USING 
L 
USING 

MVC 
HVC 
DC 
DSECT 
OS 
OS 
OS 
OS 
OS 
CSECT 
OS 
mo 

R3,0 
~"c' R3 
R4,AREA 
SECTION,R4 

WORK(3),COOE 
WORKl(28),NAHE 
A(TABLE) 

CL28 
CLIS 
CL3 
CL3 
CL28 

CL50 

OPERAND tiCOMMENTS 

REGISTER 4 FOR DSECT 

1. The coding following DSECT is assigned to a dummy control section. 

2. CSECT begins a new control section or continues the current control section . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-10 
Update B 

ENTRY 

.. 19.4. EXTERNALLY REFERENCED SYMBOL DECLARATION (ENTRY) 

Each module must declare to the assembler the symbols defined within the module to 
which reference is made by other modules. Each symbol is referred to as being externally 

.. referenced and is declared by the ENTRY directive. The format of the ENTRY directive is: 

LABEL ti OPERATION ti OPERAND 

unused ENTRY symbol [,symbol, ... ,symbol] 

Each symbol in the operand field is declared to be defined in this module. Their name and 
_. assigned values are included in the output of the assembler as external reference records. 

(See 19.5.) 

Example: 

LABEL tiOPERATIONti OPERAND 
I 10 16 

ENTRY WRD32,REBEW,ILE,CHAYA 

WRD32, RESEW, ILE, and CHAYA are symbols defined in module 1 for the use of 
other modules. ENTRY permits other modules to reference the symbol defined by the 
ENTRY directive declaring it. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19.5. EXTERNALLY DEFINED SYMBOL DECLARATION (EXTRN) 

19-11 
Update B 

EXTRN 

The assembler must be informed of all symbols used in the module being assembled that 
are defined in some other module. References to these symbols are called external 
definitions; these symbols are declared in the externally defined symbol declaration ..., 
(EXTRN) directive. The format of the EXTRN directive is: 

LABEL A OPERATION A OPERAND 

unused EXT RN symbol [,symbol, ... ,symbol] 

Each symbol in the operand field is declared to be a symbol defined in some other module. 
(See 19.4.) The symbolic name and the external symbol identification assigned by the 
assembler are input to the linkage editor as an external definition record. Each reference 
to the externalized symbol creates an appropriate relocation mask to allow reference 
resolution at linkage editor time. When an EXTRN and a definition for an identical symbol 
appear in the same assembly, the EXTRN reference is discarded automatically, and the 
definition is accepted regardless of the order of appearance of either item . 

Examples: 

MODULE A: 

LABEL 60PERATION6 
1 10 16 

FOX 

JOE 

MAT 

MVO 
DC 
DC 
BC 

BCT 
DC 

ENTRY 
EXT RN 

DEST(5),0RIG(3) 
A(CAT) 
A(DOG) 
8, 11/J48 

11/J, SET 
A(PIG) 

FOX,JOE,t1AT 
CAT,DOG,PIG 

OPERAND 



UP-8913 

MODULE B: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

LABEL 6. OPERAT I ON.6. 
1 10 16 

CAT 

DOG 

PIG 

DC A(FOX) 

PR I lff 
DC 
MVC 
DC 

AU 

ENTRY 
EXTRlJ 

DATA 
A (JOE) 
fJAHS, tlAD 
A(MAT) 

6,UNOR 

CAT,DOG,PIG 
FOX ,JOE ,MAT 

19-12 

• OPERAND 

In module A. the symbols FOX, JOE, and MAT are specified with the ENTRY • 
directive so that they may be used in module B as specified by EXTRN. 

In module B, the symbols CAT, DOG, and PIG are specified with the ENTRY directive 
so that they may be used in module A as specified by EXTRN. 

19.6. SUBROUTINE LINKAGE 

In addition to writing the code in your external subroutines, you must provide for certain 
conventions that link your subroutines to your program. The conventions are: 

• Saving and restoring the contents of the registers 

• Establishing a new base register 

• Branching back to the program 

Each of these conventions uses a specific register. The table that follows lists the 
registers and their use. 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-13 

Register Use 

1 Contains the address of the table holding variables being passed to the 
subroutine. 

13 Contains the address of an 18-word area that will save the contents of the 
registers as they were before your subroutine began execution. 

14 Contains the address that your program branches to after it finishes its 
execution. 

15 Used as the base register 

The format that follows shows how you should use these registers to meet these 
conventions. 

LABEL 

1. symbol 
2. 
3. 
4. 

5. 
6. 

7. 

Explanation: 

l::.OPERATIONl::. 

CSE CT 
STM 
BALR 
USING 

processing code here 

LM 
BR 

storage definition (if any) 

END 

14,12,12(13) 
15,0 
*,15 

14,12,12(13) 
14 

OPERAND 

1. This line uses the CSECT directive to name the subroutine. 

2. This line saves the contents of the registers in an 18-word save area located at 
the address stored in register 13. 

3. These two lines establish register 15 as the base register for the execution of 
and the subroutine. 
4. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

19-14 

5. This line restores the contents of the registers from an 18-word save area 
located at the address stored in register 13. 

6. This line returns control to your program by branching to the address stored in 
register 14. 

7. This statement must be the last line in the subroutine. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

20-1 

20. Listing Control Directives 

One of the outputs of the assembler process is a listing of source and object codes. The 
assembler directives that control the format of the listing have the following functions: 

• Provide headings for each page 

• Eject or skip to a new page 

• Space for extra blank lines 

• Provide for printing or nonprinting of the output 

Table 20---1 is a summary of the assembler listing control directives available to the user 
of the OS/3 assembler. 

Table 20-1. listing Control Directives 

Basic Function 
Where 

Directives 
Discussed 

EJECT Advance listing 20.1 

PRINT Listing content control 20.2 

SPACE Leave blank lines on listing 20.3 

TITLE Listing title declaration 20.4 



UP-8913 

EJECT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

20.1. ADVANCE LISTING (EJECT) 

20-2 

The advance listing (EJECT) directive causes the assembler to continue the assembly 
listing (Part 6, Section 28) on the top of the next printout page. The format of the EJECT 
directive is: 

LABEL L':IOPERATION L':i OPERAND 

unused EJECT unused 

If the next line of the listing causes a page change, the EJECT directive has no effect. 

When the EJECT directive is encountered, the printing form is skipped to the next page. 
If a title has been previously specified, the title is printed on the new page. An EJECT 
directive appearing in a source code macro definition causes the form to be skipped 
whenever the definition is listed and each time the macro is generated. 

The assembler will advance the assembly listing to a new sheet whenever a sheet is full. 
However, if the programmer would like each new logical part or subroutine to start at 
the top of a new sheet, he can use the EJECT directive whenever he wants a new sheet 
to start. 

The EJECT directive itself is never printed. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

20-3 

PRINT 

20.2. LISTING CONTENT CONTROL (PRINT) 

The listing content control (PRINT) directive enables the programmer to control the 
contents of the assembly listing. The format of the PRINT directive is: 

LABEL 6.0PERATION 6. OPERAND 

unused PRINT 

where: 

-Specifies the listing is to be printed. 

OFF 
Specifies that no listing is printed . .. 
Specifies that lines generated by a macroinstruction are printed. 

NOGEN 
Specifies that lines generated by a macroinstruction are not printed, except that 
the macroinstruction and any MNOTE or PNOTE messages generated are 
printed. 

DATA 
Specifies that all characters of each constant representation are printed. 

Specifies that only the first eight characters of each constant representation are 
printed. 

Specifies that the source listing is single-spaced. 

DOUBLE 
Specifies that the source listing is double-spaced. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

20-4 

If a PRINT directive specifies OFF plus other parameters, the other specifications are not 
effective until a PRINT directive is encountered that specifies the listing is to be turned 
ON. The options provided by the PRINT directive are keyword and not positional 
parameters; therefore, the comma is not required if a parameter is omitted. The initial 
print condition of assembly printing is ON, GEN, NODATA, SINGLE. This condition 
remains until the first PRINT directive changes it. PRINT directives may change from only 
one to all of the parameters; any unspecified parameters remain in their previous 
condition. A PRINT directive may not appear in a macro definition. 

Examples: 

LABEL 
1 

I.I 2. 
3. 

.!lOPERATI O~ 
10 16 

PRINT 
PR I NT 
PRINT 

DATA 
OFF 
ON,GEN,DATA 

1. Data is printed in full. 

2. Assembly listing is suppressed. 

OPERAND 

3. Assembly list printing is restored with complete printing of data constants. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

20.3. LEAVE BLANK LINES ON LISTING (SPACE) 

20-5 

SPACE 

The leave blank lines on listing (SPACE) directive causes the assembler to advance the 
paper in the printer a specified number of lines. The operand field contains an unsigned 
decimal integer specifying the number of lines the paper is to be advanced. If no operand 
is coded, one line will be spaced. 

LABEL f:.OPERATION !::l 

unused SPACE 

where: 

Is an unsigned decimal integer. 

Examples: 

LABEL 
l 

1.1 2. 

AOPERATIONA 
l 0 16 

SPACE 
SPACE 

6 
22 

OPERAND 

[i] 

OPERAND 

1. The assembler advances the print form six lines before printing the next line. 

2. The assembler advances the print form 22 lines before printing the next line. 



UP-8913 

TITLE 

SPERRY UNIVAC OS/3 
ASSEMBLER 

20.4. LISTING TITLE DECLARATION (TITLE) 

20-6 

The listing title declaration (TITLE) directive provides data for the heading of each page of 
the assembler listing and advances the printer form to a new page. The format of the 
TITLE directive is: 

LABEL t.OPERATION t. OPERAND 

unused TITLE 'c' 

where: 

c 
Is a heading of up to 100 characters enclosed in apostrophes. 

The following conditions apply to characters in the operand field: 

• Any character may be specified, including spaces, within the defining apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the operand must be specified as a pair of ampersands. 

• Spaces may be specified freely to separate heading words. 

More than one TITLE directive is permitted in a program. A TITLE directive provides the 
heading for all pages in the listing which succeed it. 

Examples: 

LABEL AOPERATIONA OPERAND 6COMMENTS 
1 10 16 72 

1. TITLE 1 WEEKLY PAYROLL SOURCE AND OBJECT LISTING -- ASSEMBLED Z 
ON &SYSDATE AT &SYSTIME 1 

2. TITLE 1 PAYROLL SUBSECTION -- &SYSDATE 1 

1. The Z in column 72 specifies that the title is continued on the next line. At 
assembly time, the assembler replaces the system variable symbols &SYSDATE 
and &SYSTIME with the current date and time, respectively. (See Appendix G.) 

2. The assembler puts the system date in &SYSDATE at assembly time. 



• 
UP-8913 SPERRY UNIVAC OS/3 

ASSEMBLER 
21-1 
Update B 

21. Input and Output Control Directives 

The OS/3 assembler input and output control directives provide the necessary control for 
sequence checking, formatting, and reproducing data. The directives in this section help 
you in writing the source code program and controlling the source code punched cards. 
The six directives are: 

• ICTL 

Controls the format of the program instructions. 

• ISEQ 

• Controls the sequence of the punched cards in the source deck. 

• REPRO 

Controls the production of linkage editor control statements in the object module. 

• PUNCH 

Produces a specified record at assembly time. 

• COPY 

Controls the inclusion of prefiled source statements into your source programs. 

• ccw 

Initiates input and output operations . 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

21-2 

ICTL • 

21.1. INPUT FORMAT CONTROL (ICTL) 

The input format control (ICTL) directive specifies new values for the begin, end, and 
continue columns. Normally, a source statement begins in column 1 of the coding form 
and ends in column 71. If a continuation statement is needed, a character is written in 
column 72, and the statement continues in column 16 of the following line. The format 
of the ICTL directive is: 

where: 

b 

e 

c 

LABEL !J. OPERATION !J. OPERAND 

unused ICTL (b] [,e] [,c] 

Is an unsigned decimal integer specifying the beginning column. It must be 
between 1 and 75. 

Is an unsigned decimal integer specifying the ending column. It must be greater 
than or equal to b+5 and less than or equal to 80. 

Is an unsigned decimal integer specifying the continuation column. It must be 
greater than b and less than e. The line is continued starting in the column 
specified by c. 

If b is omitted, it is assumed to be 1. If e is omitted, it is assumed to be 71. If c is 
omitted or if e equals 80, continuation records are not allowed. If e is specified and e is 
less than 80, a continuation statement is signalled by putting a nonblank character in 
column e+1 of the line to be continued. 

There can be only one ICTL directive in a source code module and it must immediately 
precede or follow any program-defined macro definitions. The ICTL directive applies only 
to those source statements that follow it. All library macro definitions are assumed to 
have normal output format. If the ICTL appears before the START card and it is incorrect, 
the assembly is terminated. When an ICTL appears out of sequence (must be first card 
following START card), the ICTL terminates the assembly. 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

21-3 

Examples: 

LABEL ~OPERATION~ OPERAND 
I 10 16 

ICTL 2,79,l~ 

ICTL 2" 16 

1. Coding is to follow a new format by starting in column 2, ending in column 79, 
and continuing on the following line in column 10. 

2. Coding is to follow standard format except that it is to start in column 2. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

21-4 

ISEQ 

21.2. INPUT SEQUENCE CONTROL (ISEQ) 

The input sequence control (ISEQ) directive informs the assembler which columns of the 
source statement contain the field used for checking the sequence of statements and 
controls the initiation and termination of sequence checking. The format of the ISEQ 
directive is: 

LABEL b. OPE RATION /). OPERAND 

unused ISEQ l,r 

where: 

r 

Is a decimal integer specifying the leftmost column of the field to be used for 
the sequence check. 

Is a decimal integer specifying the rightmost column of the field to be used for 
the sequence check; r must be greater than or equal to I. 

Columns to be checked should not fall between the beginning and ending input columns 
specified for the program. 

The sequence check begins with the first source statement after the first ISEQ directive 
and is terminated by an ISEO directive with a blank or invalid operand field. 

Sequence checking is not performed on statements generated from macro definitions or 
on statements inserted into the source code via a COPY directive. 

If no ISEO directive is supplied, no sequence checking occurs. 

Example: 

LABEL 
I 

AOPERATIONA OPERAND 
10 16 

ISEQ 75,79 

Input record sequence is to be checked using the sequence numbers found in 
columns 75 through 79. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

21.3. REPRODUCE FOLLOWING RECORD (REPRO) 

21-5 

REPRO 

The reproduce following record (REPRO) directive is used to reproduce a record in its 
entirety (columns 1 through 80) during assembly time. This directive is used to produce 
statements to precede or succeed the object module and eliminates the necessity of 
manually inserting them. The format of the REPRO directive is: 

LABEL bi OPERATION 6 OPERAND 

unused REPRO unused 

This directive causes the contents of the following source record to be reproduced as a 
record in the assembler output. Each REPRO directive produces one record; up to 80 
bytes are reproduced. 

A REPRO directive prior to the first control section-of the program produces records prior 
to the first control section. 

e All REPRO directives following the declaration of the first CSECT (START) produce 
records which appear after the object module transfer record. Although this directive may 
be included anywhere in the program, it cannot be used before a macro definition. 

No substitution for variable symbols occurs in the record thus produced. 

Example: 

LABEL 
1 

.8.0PERATION.8. OPERAND 
10 16 

RE PRO 
INCLUDE XYZ,USERLIB 

START 

ENO BEGllJ 



UP-8913 

PUNCH 

SPERRY UNIVAC OS/3 
ASSEMBLER 

21.4. PRODUCE A RECORD (PUNCH) 

21-6 

The produce a record (PUNCH) directive produces a record at assembly time. This 
directive is used to produce job control card images to precede or succeed the object 
module; it eliminates the necessity of manually inserting them. The format of the PUNCH 
directive is: 

LABEL b.OPERATION t. OPERAND 

unused PUNCH 'c1 ·····tao' 

where: 

c,, ... ,Cso 
Represents a string of up to 80 characters produced as a record in the object 
code output. 

The following conditions apply to the characters specified in the operand field: 

• Up to 80 characters, including spaces, may be specified within the apostrophes. 

• An apostrophe within the operand must be specified as a pair of apostrophes. 

• An ampersand within the operand must be specified as a pair of ampersands. 

• Spaces must be used to separate fields. 

• In counting characters for the limit of 80, a pair of apostrophes or ampersands 
written to express a single apostrophe or ampersand counts as one character. 

A PUNCH directive prior to the first control section of the program produces records prior 
to the first control section, and all others produce records after the last control section. 

Although this directive may be included anywhere in the program, it cannot be used 
before a macro definition. 

Variable symbol substitution is performed within the operand field. 



UP-8913 

Example: 

LABEL ~OPERATION~ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

I I 0 16 

PUIJCH 1 INCLUDE XYZ,USERLIB 1 

OPERAND 

The record XYZ is included from USERLIB at assembly time. 

21-7 



UP-8913 

COPY 

SPERRY UNIVAC OS/3 
ASSEMBLER 

21.5. INCLUDE CODE FROM A LIBRARY (COPY) 

21-8 

The include code from a library (COPY) directive causes the source module identified in 
the operand field of the COPY directive to be included directly into the source program 
being assembled. The format of the COPY directive is: 

LABEL !Cl OPERATION !Cl OPERAND 

unused COPY symbol 

where: 

symbol 
Identifies the source module to be copied by the assembler. Only one symbol 
may be used. 

The assembler places the source code, identified by the operand, immediately after the 
COPY directive. This source module may not include any COPY, END, ICTL, MACRO, or 
MEND directives. Also, the last statement in the source module may not be continued into 
the source program being assembled. Statements included in the program by a COPY 
directive are assumed to be in standard format regardless of any ICTL directives in the 
program. 

Example: 

LABEL ~OPERATION~ OPERAND 
1 10 16 

COPY SUB RUT 

SUBRUT is copied from a source library and placed into the calling program. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

21-9 

ccw 

21.6. CHANNEL COMMAND WORD (CCW) 

The channel command word (CCW) defines an 8-byte field aligned on a double-word 
boundary and located in main storage. The CCW is used to initiate 1/0 operations such 
as reading and writing. It has four operands which specify the contents of the channel 
command word. Each operand is separated by a comma and all four operands must 
appear in the operand field. 

Format: 

where: 

OP1 

LABEL fl OPERATION .6 OPERAND 

[symbol] ccw 

Is an absolute expression that specifies the command code. The command code 
defines the 1/0 operation to be performed. This value is right-justified in byte 1. 

Is an expression that specifies the address of the first byte of data in main 
storage to be controlled. This value is located in bits 13 through 31. Bits 8 
through 12 are set to zero. 

Is an absolute expression that specifies the flags for bits 33 and 34, and zeros 
for bits 32 and 35 through 47. Flag bits are set if a specific option is being 
used. 

Is an absolute expression representing the byte count which specifies the 
number of bytes to be controlled. This value is right-justified in bytes 7 and 8. 



UP-8913 

Operational Considerations: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

21-10 

• If a symbol is used in the label field, it references the address of the leftmost byte 
of the CCW. Its length attribute is eight. 

• All four operands must be specified. 

• For more detailed information on the use of the CCW, see the processor 
programmer reference manual. 

Example: 

LABEL ~OPERATIC~ 
1 10 16 

CCWJ 
ccw 
ccw 
CCW 

2,INAREA,X 1 8f6 1 ,8~ 
X1 f63 1 ,LOC+24,X 1 9f6 1 ,55 
5,8,X 1 f6f1 1

, 128 

OPERAND 



•• 

• PART 5 • SAL. MACROS 



• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

22.1. THE MACRO PROCESSOR 

22-1 

22. Macro Facility 

The OS/3 macro facility processes macro call instructions. This macro processor 
functions somewhat like a compiler and provides BAL users with a higher level basic 
assembler language. The OS/3 macro call instructions that make up this language are 
stored in the macro library file ($Y$MAC). Each macro call instruction provided by Sperry 
Univac (data management, sort/merge, etc) generates an open subroutine each time it is 
used in a program. An open subroutine is a set of BAL source instructions, designed to 
perform a particular function, that must be inserted into a program at each place desired. 
(The set of BAL instructions that make up an open subroutine is also called inline 
expansion code). The macro facility expands the OS/3 macro definitions from $Y$MAC 
and inserts them into a program in place of a macro call instruction. 

Although the macro processor is far from being a high-level language compiler like 
COBOL or FORTRAN, it has language statements that must be interpreted and reduced 
to machine instructions just like any compiler. We no longer have an assembler that just 
converts one source instruction to one machine instruction. We now have an assembler 
that accepts one source statement in the form of a macro call instruction and converts 
this one statement into as many BAL source instructions as required to perform the 
particular function. 

The macro processor is a valuable tool for the BAL programmer. Any programmer who 
writes his programs in assembly language quickly discovers the existence of 
macroinstructions (colloquially known as macros). Most programmers use data 
management macros to define their files and to process them (OPEN, DMINP, DMOUT, 
etc). These macros were created for a specific reason. For example, to open a file might 
take 15 instructions in a particular sequence. If you want to open five files, you have to 
code this 15-instruction sequence five times. The only differences in these instructions 
that you would have to code would be the instruction parameters that generally vary from 
file to file. To avoid this boring and repetitive process, which also provides opportunity for 
making coding errors, data management macroinstructions are provided for your use to 
define and process the necessary instruction sequences. These sequences are known to 
be error free, and you can generate your specific instruction sequences merely by filling in 
parameters in two or three lines of coding. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

22-2 

If you are an experienced BAL programmer, you should be familiar with 
macroprogramming because, to write any type of worthwhile BAL program, you have to 
use data management macroinstructions. This means you've studied the data 
management instructions, and possibly others, and used them when writing BAL 
programs. You know what inline expansion code looks like because you are a user of 
macro calls and have seen inline code in your source listings. 

For instance, look at the listing shown in Figure 22-1. This program has five macro call 
instructions, and the inline code that immediately follows each call instruction is marked 
with a plus sign. The inline code shown in this listing is generated via macro call 
instructions designed by Sperry Univac. Each call is designed to produce a sequence of 
source instructions that will perform a specific function. The CDIB macroinstruction, 
shown in Figure 22-1, is designed to generate all the DC statements required to define a 
file for data management. If a CDIB didn't exist, you would have to code all the DC 
statements needed to create a printer file. The purpose of this part of the user guide is to 
teach you how to become more proficient at using macro call instructions. We are going to 
teach you how to design your own macros, not how to call macros. You can learn about 
the macroinstructions Sperry Univac provides by reading the related user guides. If you are 
experienced in macro design, you would be better off referring to the assembler 
programmer reference, and not this user guide, because the discussion in this part is 
meant for novice macro designers. 

22.2. MACRO SOURCE CODE 

Although you've probably seen a lot of inline expansion code, chances are you have 
probably never seen macro source code. lnline expansion code originates from macro 
source code. Whenever you use an OS/3 macro call instruction, the macro facility 
retrieves the macro source code from $Y$MAC, which contains a macro definition for 
each macro call instruction provided by Sperry Univac. Each macro definition holds the 
BAL source instructions that are to be generated inline. If you have a BAL program that 
has become popular and is recurring in other programs and you want to make this code 
available via a macro call instruction, you have to design a macro definition. You use the 
statements provided with the assembler macro facility to transform your BAL program 
into a macro definition. It is the responsibility of the macro facility, which is part of the 
assembler, to process your macro definition. The macro facility works entirely with macro 
source code while a conventional assembly recognizes and processes program source 
code. Macro source code consists of macro facility source statements and BAL source 
statements. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

22-3 

LOC. OBJECT CODE ADDRl AODR2 LINE SOURCE STATEMENT 

000000 
000000 0560 
000002 
000002 OC06 607F 6~86 00081 00088 
OOOU08 0006 607F 6086 00081 00088 

OOOOOE 0700 
000010 4510 601A !.lCIOlC 
000014 81 
000015 OOO'l-8 
000018 81] 
000019 OOOOH 
OO!!OlC OA26 
OOOOlE 0206 60AA 607F OOOAC 00081 

000024 
000024 5810 60BE 
000028 5801] 60C2 
00002C 9220 1002 
000030 9200 1003 

000034 
OOC034 OAEF 
000036 10 
OOC037 2F 
JIOC038 OAl 9 
00003A 0700 
00!!03C OllC 
00003C 
00003C OA85 

OOC03E 
00003E 5810 60BE 
OOC042 ilAZ7 

0000114 

00004'1 l 7UO 
000041> OAlB 

0000'18 
0000"8 ll2C 
ooouo uouo 

Ou0il2 
00003 

00004C D6E4E340<t0404040 
OOC0511 OOOOOOOOOOOOOOUD 

'liJOCO 
OODC4 

l START 0 
2 BEGIN BALR 
3 USIN& •06 
4 EXAMPLE TR INOEX,TA&LE 

M· ~:-=-E_XA_M_P~L~E=2 ~~":"~"'N-0r.;I~ll~r'::-.~-n~u;;.T ~ri:~iii~•JI ~--- MAC R 0 I NS T RU CT I 0 N 
7+ CNOP i;,4 
8+ BAL l,••12 
9+ DC X'Bl' 

10+ DC ALJIOUTJ 
11• oc x·a~· 
12+ DC AL3COUTRIBJ 
13+ SVC 38 ISSUE SVC 
14 MVC BUF17J,INDEX 

b15 bMouT ouf,BUFI 
16• cc ~Y([\J • 
17• L l,=ACOUTJ • 
18+ L ~,=ACBUFJ • 
19• MVI 2c11,x•2u• • 
20• MVI 3111,0 * 
21+ SCALL 47 
22+ OS 
23• SVC 
<:4+ DC 
25 • uC 
26+ SVC 
27+ "OPR 
28+ SVC 
29+ ORG 
30+ SVC 

32• ~c 

CH 
239 
Yll C 161 
YL 1C4 7 J 
25 
.. 
28 
•-2 
133 

SET ALIGNMENT 
LOAD RlS, CDIB ADDPESS 
LOAD R~S, WORKAREA AODPESS 

SET FUNCTICN CODE 
SET FUNCTION CONTROL BYTE l 

33+ L Rl wlTH FiLENAME AOuPESS 
3<t + SVC 

36+ us ._H 
37+• 
38•• 
39+• 

THE DUMP PAkAMETER IS A 1-4 BYTE HEX CODE TO BE DISPLAYED BY DUMP 

'10+ 
4 I+ 

i<t2 OUT 
43+ 
44+ 
45+0UT 
46+ 
4 7• 
48+ 

j49 OUTRI& 
50+ 

566+ 

XR 
SVC 
CQIB! 
ENTRY 
us 
DC 
I.JC 
DC 
DC 
RIB 
PRlNT 
PRINT 

(.,u CLEA~ DUMP CODE 
;:1 DUMP SVC 

OUT 
(jf 

X' ll2C' • 
2X'0' 
CL&'OUT' • 
8F •n• 

Off' 
ON 

CDIB ID AND LENGTH 

FILENAME 

Figure 22-1. Example of lnline Macro Expansion 

There are three types of source code that are always associated with the macro facility: 

1 . Macro source code 

2. Macro call instruction 

3. lnline expansion code 

The order in which these different types of source code are listed is the order of their 
evolution. First, you must have a macro definition (macro source code) before you can 
use a macro call instruction to generate inline expansion code. An important fact to keep 
in mind is that all of this code is source code. The macro facility works entirely at the 
source code level, from the macro call instruction, to the $Y$MAC, to the inline 
expansion code. The following diagram shows the interactions of each type of code when 
a macro call instruction is used. 



UP-8913 

PROGRAM SOURCE CODE 

START 0 
BEGIN BALA 6,0 

USING *,6 

macro call instruction 

inline expansion code 

LA 13,SAVE 
END BEGIN 

SPERRY UNIVAC 05/3 
ASSEMBLER 

MACRO SOURCE CODE 

macro definition 

macro definition 

22-4 

The macro facility performs preassemble processing. It has nothing to do with turning 
source code into object code. The basic function of the macro facility is to search for the 
proper macro definition when a macro call instruction is used in a program, and 
generate the requested inline expansion code. This is done before the assembler starts 
creating an object module. When the assembler detects a pseudo-operation code (a 
mnemonic code that is not a machine instruction), that code is turned over to the macro 
facility. Each macro definition has a unique call-name that is identified in the operation 
field of the macro call instruction. The macro facility searches for the macro definition 
that matches the call-name and generates the requested inline expansion code. The 
macro facility expands the code inline before the assembler starts converting the 
program source code to object code. 

The macro facility has capabilities other than just inserting the BAL source instructions 
that are contained inside a macro definition inline in place of the macro call instruction. 
There are other elements of the expansion that you can control. You can use the macro 
facility to perform variable parameter replacement and variable inline expansion code. If 
you've used macro call instructions supplied by Sperry Univac, then you are familiar with 
positional and keyword parameters. The values you code as positional or keyword 
parameters in the call instruction replace variable symbols coded in the macro definition. 
Using variable parameter replacement, you can use the values given in the call 
instruction to replace variabl"e symbols coded in the label, operation, or operand field of 
any BAL instruction in the macro definition. 

Variable inline expansion code is another level of control that allows you to design a 
macro definition that will vary the pattern of BAL instructions generated from within the 
macro definition. Conditional assembly language statements are used to design the logic 
for variable inline expansion code. Variable parameter replacement and variable inline 
expansion code allow you to give the user of your macro call instruction more control 
over the code that is generated. If you use these coding techniques when designing 
macro definitions, the user can control calculations performed by the open subroutine 
and select the functions that are to be performed. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

23.1. THE MACRO DEFINITION 

23-1 

23. Macro Design 

You can define your own macro call instructions by using the statements provided with 
the assembler macro facility. When you define a call, it must be in a formalized pattern 
called a macro definition. Each macro definition is organized into the following parts: 

HEADING 

BODY 

TRAILER 

The two major areas to consider when designing a macro definition are the heading and 
the body; the trailer is mereJy a single statement indicating the end of the macr.o 
definition. The heading is always the first part of the macro, and it consists of 
statements you use to design the macro call instruction. The body, which immediately 
follows the heading, is where you design the inline expansion code. Model statements 
are used in the body to construct a model of the inline expansion code you want 
generated by the macro call instruction. If you design a basic macro definition, the model 
statements are merely a copy of the BAL source instructions that are to be expanded 
inline. A basic macro definition is one that does not require any parameters from the 
macro call instruction and will generate the same sequence of source instructions, with 
no modifications, each time it is called. The following diagram shows the operation of a 
basic macro definition. 



UP-8913 

MACRO DEFINITION 

HEADING 

L 13,PAY 
A 13,RAISE 
ST 13,TOTAL 

TRAILER 

SPERRY UNIVAC 0$/3 
ASSEMBLER 

23-2 

MACRO CALL INSTRUCTION 

ADD1 

INLINE EXPANSION CODE 

L 13,PAY 
A 13,RAISE 
ST 13,TOTAL 

The only real design consideration for the basic macro definition is the call-name, which 
is the mnemonic that appears in the operation field of the macro call instruction. You 
must give the call-name in the heading. 

If you want variable parameter replacement in the body, you must give further 
consideration to coding the heading and body. Variable parameter substitution is 
substituting parameter values coded in the macro call instruction in place of arguments 
given in the label, operation, or operand fields of model statements. The following 
diagram shows the operation of a macro definition designed to perform parameter 
substitution. 

MACRO DEFINITION MACRO CALL INSTRUCTION 

HEADING .. ADD2 450,40,TOTAL 

L 13,=F'argument' 
A 13,=F'argument' 

INLINE EXPANSION CODE 

ST 13,argument 

L 13,=F'450' 
A 13,=F'40' 

TRAILER ST 13,TOTAL 

You must design the body to indicate where the arguments are and design the heading 
to indicate how the parameter values are to be coded in the macro call instruction and 
how the body is to 'reference the parameter values in the macro call instruction. 

If you want variable inline expansion code, you must include model statements other 
than the BAL source statements that you want expanded inline. These other model 
statements are called conditional assembly language statements, and they enable you to 
vary the pattern of the inline expansion code produced by the macro definition. The 
pattern of code generated depends on a value given in the macro call instruction. The 
following diagram shows the operation of a macro definition designed to perform variable 
inline expansion code. 



-

UP-8913 

MACRO DEFINITION 

HEADING 

L 13,=F'argument' 
advance to STORE if P2=1 

A 13,=F'argurnent' 
STORE ST 13,argurnent 

TRAILER 

SPERRY UNIVAC OS/3 
ASSEMBLER 

23-3 

MACRO CALL INSTRUCTION 1 

PAY1 530,1,SAVE=TOTAL 

MACRO CALL INSTRUCTION 2 

PAY1 530, 2,SAVE=TOTAL,RAISE=40 

INLINE EXPANSION CODE 1 

L 13,=F'530' 
ST 13,TOTAL 

INUNE EXPANSION CODE 2 · 

L 13,=F'530' 
A 13,=F'40' 
ST 13,TOTAL 

Parameter 2 in the call indicates which pattern of inline expansion code is to be 
generated. The second statement in the body is a conditional assembly that tests the 
value of parameter 2. If the value of parameter 2 is 1, then a branch is made to STORE 
and the A instruction is not included in the inline expansion code. If the value of 
parameter 2 is 2, no branch is made and all of the instructions are generated. 

23.2. MACRO DEFINITION STORAGE 

After you've designed a macro definition there are several things you can do with it. If it 
is for your program and not to be used by anyone else, you can put it in your source 
program when it is assem.bled. A macro definition is placed in the source program 
immediately following the start-of-data (/$) job control statement and before the START 
assembler directive (Figure 23-1 ). The macro definition is stored in the temporary job 
run library file ($Y$RUN), and it is only available during execution of the current job. To 
make a macro definition available to anyone at anytime, it must be stored in a library 
other than $Y$RUN (either $Y$MAC or your own library). Figure 23-2 shows how a 
macro definition is obtained from $Y$MAC. To add a macro definition from cards to a 
disk file, you can use the ELE librarian control statement. (For more information on the 
system library and creating library files, see the system service programs (SSP) user 
guide.) Whether a macro definition is stored in a library or is part of a source program 
depends on whether you want the macro to be temporary or permanent. 



SOURCE DECK 

1· 

.. , 

BAL PROGRAM SOURCE CODE 

START 0 

MACRO DEFINITION 

STORE is the name 

/$ 

II ASM 

II JOB CALLMAC .. 5C00 

II I 

II 

II 

I 

II 

II 

I 

II I 

I I 

I 

II 

I 

Ill 

I 

I I 

SYSRES DISK PACK 

$Y$RUN 
BEFORE INLINE EXPANSION 

START 
BALA 

{~ 

END 

OF 
STORE 

pl ,p2,p3,p4 
p1,p2 
p1,p3 
p1,p4 

0 
6,0 
•,s 
5,RAG,BAG,SAG 

BEGIN 

$Y$RUN 

0 
6,0 

;a 
5,RAG,BAG,SAG 

5,RAG 
5,BAG 
5,SAG 

BEGIN 

Figure 23-1. Accessing a Macro Definition Submitted in the Source Deck 

$Y$LOD 

OS/3 ASSEMBLER 

I I 
I I 

c 
"'ti 
Co 
C.D -w 

(/I 
"'tl 
m 

)> ~ 
Ul -< 
Ul c: mz s:: -
~ ;; 
mn 
::D 0 

Ul 

' w 

N 
w 
~ 



( 

SOURCE DECK 

II FIN 

I& 

,. 
BAL PROGRAM SOURCE CODE 

START 0 

/$ 

II ASM 

II JOB CALLMAC.,5COO 

II I 

II 

II 

I 

II 

II 

I 

II I 

I I 

I 

II 

( 

I 

Ill 

I 

I I 

SYSRES DISK PACK 

$Y$RUN 

BEFORE INLINE EXPANSION 
OF 

STORE 

START 0 
BALR 6,0 
USING 
STORE 

*,6 
5,RAG,BAG,SAG 

END BEGIN 

$Y$RUN 
AFTER INLINE EXPANSION 

START 
BALR 
USING 
STORE 

L 
A 
ST 

END 

OF 
STORE 

0 
6,0 
*,6 
5,RAG,BAG,SAG 

5,RAG 
5,BAG 
5,SAG 

BEGIN 

Figure 23-2. Accessing a Macro Definition Stored in a library 

$Y$LOD 
OS/3 ASSEMBLER 

WITH 
ACRO FACILITY 

$Y$MAC 

STORE pl ,p2,p3,p4 
p1,p2 
p1,p3 
p1,p4 

'{~ 
ST 
END 

THIS CODE COULD 
ALSO EXIST IN 

A USER LI BRA RY 

( 

c ,, 
Co 
co 
~ 

w 

CJ) ,, 
m 

l> ~ 
CJ) -< 
CJ) c mz s: -
CD < 
r l> mn 
:c 0 

CJ) 
...... 
w 

N 
w 
I 

(11 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

23.3. THE MACRO CALL INSTRUCTION 

23-6 
Update B 

The macro call instruction has two functions: to call a macro definition and to pass 
parameters to the macro definition, if required. The label and operand fields of the macro 
call instructions are used for passing parameters, and the operation field is used to call 
the macro definition: 

LABEL /:1. OPERATION /:1. OPERAND 

[symbol] call-name 

Just as the inline expansion code originates from the macro definition body, the macro 
call instruction originates from the heading. The contents of the label, operation, and 
operand fields of the macro call instruction are specified in the heading of the macro 
definition. You actually use the heading of the macro definition as a dummy call line to 
design the format of the macro call instruction. The following diagram shows an abstract 
representation of how the heading represents each field of the macro call instruction. 
(The fields shown in the diagram of the heading do not necessarily appear exactly where 
they are shown; the diagram is provided to illustrate the association the heading has 
with the call. The exact format of the heading is described in the following discussion.) 

symbol call-name 

HEADING l label 
call-name 

parameter-list 

parameter 

specifications 

MACRO 
DEFINITION 

Everything you want the user to code in the macro call instruction must be represented 
in the heading. If you design a basic macro definition, the only thing that you requite 
from the macro call instruction is the call-name in the operation field. The call-name that 
you want the user to use to call your basic macro definition is duplicated in the heading. 
Al I call-names: 

1. Must begin with an alphabetic character or special letter. 

2. Must not exceed eight characters in length. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

23-7 
Update B 

3. Must not contain embedded blanks or other special characters. 

4. Must not be the same name as any of the Sperry Univac mnemonic operation codes 
or any mnemonic operation codes you have in your library. This restriction is 
normally true unless you use the OPSYM directive to override a valid mnemonic 
code (16.2). 

A macro definition that is designed to perform variable parameter replacement must 
indicate, in the heading, the type and number of parameters to expect from the macro 
call instruction. Values may be passed to the macro definition from the label field or the 
operand field of a macro call instruction. If you want to use the symbol in the label field 
of a call instruction, you must have a label-argument in the heading. Before the macro 
definition can pick up the values from the parameter-list in the macro call instruction, 
they must be coded according to the parameter-specifications given in the heading. You 
use the heading to specify how many parameters are to be coded in the macro call 
instruction and whether the parameters are keyword or positional, or both. The macro 
call instruction must be coded in accordance with the heading before the values in the 
parameter-list can properly replace the arguments in the body. 

The heading can specify a parameter-list of up to 252 parameters. All parameters must be ..,_ 
separated by commas and each parameter can be from 0 to 127 characters in length. In 
order to be properly picked up by the macro definition, the string of characters comprising 
a macroinstruction operand must satisfy the following conditions: 

• May include one or more sequences of characters enclosed in single apostrophes. 
The apostrophes enclosing each character sequence are paired. Paired apostrophes 
may appear within paired apostrophes. 

• May include a single apostrophe outside paired apostrophes if written as part of the 
following sequence: any special character except an ampersand, the letter L, an 
apostrophe, and a letter. 

• May include an ampersand as the first character of a variable symbol if the 
ampersand is a single ampersand or the last ampersand of a string containing an 
odd number of ampersands. 

• May include paired parentheses outside paired apostrophes. To determine pairing, a 
left parenthesis is paired with the immediately following right parenthesis (that is, 
no parentheses between them). Additional pairs are determined by ignoring the first 
pair and reapplying the rule. 

• May include an equal sign only as the first character of an operand or within paired 
parentheses or paired apostrophes. 

• May include a comma as a character in a string if the comma is enclosed in paired 
parentheses or paired apostrophes. A comma standing alone is interpreted as the 
end of an operand. 

• May include a blank within paired apostrophes. A blank not enclosed in apostrophes 
terminates the operand field. 



t 

UP-8913 

NOTE: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

23-8 
Update B 

Operands can be coded on more than one line through the use of a continuation character 
in column 72. If a line is to be continued, the last operand on that line must be followed 
by a comma. A warning message is issued if a comma is not included. 

The specifications for the parameter-list of a macro call instruction should be thoroughly 
documented for the user of the macro. He should know the range of values each 
parameter is to have and the type of parameters. 

There are two ways the macro definition can recognize values in the parameter-list: by 
the position of the value in the list or by the name associated with the value in the list. 
A value identified by the position it holds in the list is called a positional parameter, and 
one that is identified by a name is called a keyword parameter. When the parameter 
specifications in the heading indicate that the parameter-list is to contain only positional 
parameters, the corresponding values in the operand field of the macro call instruction 
must appear in the same operands each time the call is used. If any positional 
parameters are omitted in the call, this omission must be indicated by retaining the 
comma in the parameter's place. For instance, if a macro has the capacity to accept four 
positional parameters, the call doesn't necessarily have to give all the parameters 
because some of the parameters may be optional to the macro's function. The proper 
coding of some of the possible combinations for four positional parameters is: 

LABEL 
1 

NAME! 
NAME2 
NAME3 
NAME4 
NAMES 
NAME6 
NAME7 

tiOPERAT I ON ti 
10 16 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

P 1 , P2, P3, P4 
,P2,P3,P4 
Pl, ,P3,P4 
Pl , P2,, P4 
Pl ,P2,P3, 
P1,,,P4 
Pl 

OPERAND 

It is not necessary to retain. the commas for trailing positional parameters; if you are not 
going to code any of the remaining positional parameters in a call line, you do not have 
to code the commas for those parameters. But it doesn't matter if you do code the 
commas. I could have left out the last comma for CALL in NAME5 or I could have left 
the commas in for CALL in NAME7. 

The following are typical examples of positional parameters with their calls: 

READ IN 
WR I Tl 
ENDIN 
ACTION 

DM I NP 
DMOUT 
CLOSE 
OPR 

INFILE,WORKl 
PRINTER,HEDR 
INFILE 
TEXT,,,REPLY,AREA 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

23-9 

Keyword parameters, unlike positional parameters, are not referenced by the pos1t1on 
they hold in the call line, but by the name of the keyword in the call line. A keyword 
parameter consists of three parts: a keyword, an equal sign, and a value: 

keyword=value 

The keyword is an alphanumeric string from one to seven characters in length. Actually, 
a keyword may be longer: than six, but the macro facility recognizes only the first seven 
characters as the true name and truncates the remaining characters. The value is 
dependent upon the arguments in the macro. 

Keyword parameters, like positional parameters, must be separated by commas but aren't 
restricted to being in the same position each time they are coded. This nonpositional 
characteristic eliminates the inconvenience of comma counting because keyword 
parameters can be coded in any order and, when a keyword is omitted, a comma does 
not have to be retained in the parameter's place. Keyword parameters also provide 
another coding choice: default values for omitted parameters. The macro may be 
designed to automatically provide a preselected value for a keyword parameter that is 
omitted from a call line. To illustrate, suppose we had a keyword parameter called 
CHOICE. This parameter could be assigned optional values, such as ONE, NONE, or ALL. 
We could then write the parameter in the macro with a default value equal to ALL. Now 
when we call the macro, the ALL option is used unless the call specifically states 
another parameter such as CHOICE=ONE or CHOICE=NONE. This is true even if we omit 
the keyword parameter in the call. However, if a keyword is not given a default value 
within a macro and it is omitted in the call, it receives the value of a null character 
string. 

Following are examples of typical macros with keyword parameters: 

LABEL Cl OPERATION A 

TAPRIB RIB 

PRINTRIB RIB 

OPERAND 

TYPEFLE=OUTPUT,FILABL=STD, 
RCFM=FIXBLK,RCSZ=220,IOA1=TAPAREA, 
WORK=YES 

RCFM=FIXUNB,BFSZ=120,IOA 1=L IST ,WOR K=YES, 
PRAD=2,PR I NTOV=YES 

Both positional and keyword parameters may appear in the same call line. This is known 
as a mixed-mode macro call. In a mixed-mode macro call, the positional parameter string 
must be coded before the keyword parameter string: 

LABEL A OPERATION A OPERAND 

[symbol] call-name P1 , ... ,pn ,k, , ... ,kn 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

23-10 

Positional and keyword parameters may have a subordinate list of parameters called 
subparameters. This sublist of parameters permits the macro call line to provide more 
than one value in a single parameter position. A sublist for positional parameters is 
coded as follows: 

LABEL f:,,,OPERATION t:,,, OPERAND 

[symbol] call-name (p1 , 1 ,p, ,2 , •.. ,p, ,n) , ••. ,(pn, 1 , ... ,pn ,n) 

A sublist for keyword parameters is coded as follows: 

LABEL /),,OPERATION b. OPERAND 

[symbol] call-name k, =(p1 , .•. ,pn) , .•• ,kn =(p1 , ... ,pn) 

The parameter sublist must always be enclosed by parentheses, and the subparameters 
are coded as positional parameters (parameter omission is indicated by retaining 
commas). 

When you design a macro definition that requires parameters from the macro call 
instruction, the heading is the means to pass values from the call to the body. There are 
two methods available for designing the call-to-heading-to-body communications cycle 
that generates inline expansion code. You can use a macro definition in PROC format or 
a macro definition in MACRO format. Each uses a different technique in the heading for 
designing the call instruction. If a SET symbol appears in the operand entry of a 
macroinstruction, attribute information is not provided and the operand may not be 
accessed as a sublist. 



-

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-1 

24. Two Types of Macro Definitions. 

24.1. PROCS AND MACROS 

The OS/3 macro facility can process two types of macro definitions. One type is called a 
procedure (PROC) and has been the standard type of macro definition for Sperry Univac 
systems for many years. The other type is called a macro (MACRO) and is available 
primarily to be compatible with the IBM 360/20 system. You can design a macro 
definition in PROC format or MACRO format; the OS/3 macro facility will accept and 
process either one. Although the statements inside a PROC are a little different from 
those inside a MACRO, both types of definitions will always have a heading, a body, and 
a trailer and will always be in that order. Actually, the only differences between the two 
types of definitions occur in the heading and the trailer. The body, which contains the 
model statements, is the same for both PROCs and MACROs. Let's take a look at a 
macro definition heading in MACRO format and compare it to the same macro definition 
heading in PROC format and discuss their differences without going into a lot of detail 
about the operation of each. Look at Figure 24-1 and you'll see the differences between 
the headings for the PROC and the MACRO. 

PROC HEADING 

LABEL 6 OPERATION 6 OPERAND 

PROC STATEMENT label-argument PROC parameter-specifications 

NAME STATEMENT call-name NAME pos-0 

MACRO HEADING 

LABEL 6 OPERATION 6 OPERAND 

MACRO STATEMENT unused MACRO unused 

PROTOTYPE STATEMENT label-argument call-name parameter-specifications 

CALL INSTRUCTION 

LABEL 6 OPERATION 6 OPERAND 

symbol call-name parameter-list 

Figure 24-1. PROC and MACRO Heading 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24.2. CALL INSTRUCTION DESIGN 

24-2 

Even through the format for the PROC and MACRO headings is different, it doesn't affect 
the coding ru!es for the call instruction format. When a user issues a call instruction, he 
is completely unaware of whether the cali communicates with a PROC or MACRO. Th.is 
is because both headings have the same counterpart fields that represent each field of 
the call. The label-argument in each heading represents the symbol in the label field of 
the call instruction, the ca/I-name in each heading is the call-name used in the call 
instruction, and the parameter-specifications in each heading define the specifications for 
the parameter-list in the call. The fields representing the call instruction are in different 
positions in the heading for the PROC and MACRO, but they serve the same function for 
each. 

Variable symbols are used to create the label-argument and parameter-specifications in 
the PROC and MACRO heading. The variable symbol is a macro language symbol used 
as a dummy argument in a macro definition. It's a dummy argument because the 
variable symbol will be replaced with a value when the macro definition is called by the 
macro call instruction. Since a variable symbol is recognized and processed only by the 
macro facility, it is distinct from the symbols used in program source code. The macro 
facility requires that any symbol to be used as a variable symbol must have an 
ampersand (&) as an identifier in the first character position. There are seven character 
positions after the ampersand that are used to construct the variable symbol. Because a 
variable symbol must always be identified with an ampersand in the first character 
position, a variable symbol will always be at least two characters in length (an 
ampersand and a character) and eight characters' at the most (an ampersand and seven 
characters). The character position after the ampersand can contain a letter (A through Z) 
or a special letter (?$#@) and each of the remaining seven positions can contain a letter, 
special character (see 2.4 for character types), or a digit (0 through 9): 

, ~ ~ [~letter ~] [{ letter }] & ~ # s~~cial character ... sp~cial character 
@ d191t d191t 
A thru Z . 

1 6 

Some examples of legal variable symbols are: 

&ABCDEFG 
&#BCDE67 
&$6 
&@ 

Illegal variable symbols: 

ABCDEFGHI 
&&CDEFGHI 
&=KEY. 
&95&95 
& 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-3 

When variable symbols are used, the following restrictions must be considered: 

• A variable symbol may not be used to generate a new sequence symbol, a SET 
symbol, a parameter, or a system variable symbol. 

• A variable symbol may not be used in the label or operand field of an END, ICTL, 
ISEQ, COPY, or PRINT directive. 

• A variable symbol may not be used in the operation field of a statement. 

• No variable symbol replacement is performed on the line following a REPRO 
directive. 

• Variable symbol replacement must not produce leading blanks in the label or 
operand fields. 

The OS/3 assembler provides system variable symbols. When a system variable symbol 
is used in a model statement, a value is automatically provided by the macro facility. The 
system variable symbols available with the macro facility are given in Appendix G. 

Both the PROC and the MACRO use two statements in the heading; the PROC may have 
more than two but must have at least two. When designing a MACRO, you use the first 
statement strictly for indicating MACRO format; the entire second statement, called the 
prototype statement, is used to design the call instruction. In a PROC, the first statement 
is not only used to indicate a PROC format but is also used, along with the second 
statement, for call instruction design. The heading of the PROC consists of the PROC and 
NAME statement, and the heading of a macro consists of a MACRO and prototype 
statement. 

In MACRO format, each field of the prototype statement is used for designing each 
corresponding field in the macro call instruction. If you want to reference the label field 
in the call instruction, you must in.dicate a variable symbol for the label-argument in the 
label field of the prototype statement. The call-name for the call instruction is indicated 
in the operation field of the prototype statement, and the parameter-specifications for the 
parameter-list to be coded in the call instruction are indicated by variable symbols in the 
operand field of the prototype statement. The variable symbols for indicating a label­
argument and for specifying positional and keyword· parameters are coded in the 
prototype statement as follows: 

PROC &symbol PROC &p:os,m,&k~y=, ... ,&key m = 
STATEMENT 

T _..__.. 

CALL. symbol call-name p
1 

.... ,pn,l<ey 
1 

=value .... ,key m >=value 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-4 

If you want the call instruction to pass values as positional parameters, variable symbols 
representing these positional parameters are coded starting in operand 1 of the prototype 
statement and are separated by commas. Each positional parameter is represented by a 
unique variable symbol that must be coded in the prototype statement in the same 
position its corresponding values are to be coded in the operand field of the call. If you 
want a mixed-mode call instruction, you must code variable symbols representing the 
keyword parameters immediately following the variable symbols for positional 
parameters. The format of the keyword parameter variable symbol is: 

&key= 

where key is a 1- to 6-character keyword to be used in the call. The keyword in the call 
may be longer than six characters, but the macro facility will only use the first six 
characters as the keyword name. If you want the call to pass values using only keyword 
parameters, then you code only keyword parameter variable symbols starting in operand 
1 of the prototype statement. When designing a call instruction from a prototype 
statement, you can match each field of the statement with each field of the call, and you 
can also match value in the parameter-list of the call with each variable symbol in the 
operand field of the prototype statement. The prototype statement is the dummy call 
instruction used for designing the macro call instruction. 

Even though you can compare the prototype statement with the call instruction on a 
field-by-field basis, you cannot use a single statement in the PROC heading for a similar 
comparison. This is because you must use both the PROC and the NAME statement to 
design the call instruction. The label field of the PROC statement is used to indicate the 
variable symbol for referencing the symbol in the label field of the call instruction, and 
the operand field of the PROC statement is used to indicate the variable symbols used 
for referencing the parameter-list in the operand field of the call. The coding of 
parameter-specifications in the operand field of the PROC statement is different from the 
coding in the prototype statement: 

PROTOTYPE &symbol call-name &pos
1 

•••• ,&posm,&key
1 
=, •. .,&key m = 

CALL symbol call-name p
1

,. .. ,pn,key
1 
=value, ••• ,key m =value 

You specify positional parameters by indicating a variable symbol in operand 1, and you 
indicate the number of positional parameters to appear in the call in operand 2. If you 
want a mixed-mode call, the keyword parameters are indicated by coding keyword variable 
symbols starting in operand 3. You specify keyword parameters only, by coding commas in 
operand 1 and 2 and then coding the keyword parameter variable symbols. The PROC 
statement is used to indicate the label-argument and the parameter-specifications, and the 
NAME statement is used for specifying the call-name. 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-5 

In effect, what the NAME statement does is to make the call-name an independent entity 
in the PROC heading. Since the call-name is disassociated from the parameter­
specifications, it becomes easy to introduce another method of parameter submission 
without having any effect on the variable symbols in the heading. This order parameter is 
positional parameter zero and is submitted in the operand field of the NAME statement. 
Each value you want positional parameter zero to have must be coded in the operand field 
(pos-0) of a separate NAME statement. And each NAME statement must have a different 
call-name in the label field. Thus, you can vary the value of positional parameter zero by 
varying the call-name used in the call instruction. At any point in time, positional 
parameter zero has the value of the pos-0 coded in the operand field of the NAME 
statement that matches the call-name used in the call instruction. The PROC makes 
positional parameter zero possible through efficient use of two fields that are unused in 
the MACRO heading. These two fields are used in the PROC to disassociate the ca/I-name 
from the parameter-specifications and split the call design responsibility between the two 
heading statements. 

So, where the MACRO uses one statement in the heading to communicate directly with 
the call line, the PROC uses both statements, one statement for associating parameter 
replacement and another for naming the call-name. Using the one statement in the 
heading to interface the call-line instead of two, as the PROC does, seems like a 
straightforward way of doing things. But when you read about how to use the PROC, you'll 
find the split-heading characteristic of the PROC heading works to your advantage. The 
PROC offers one more additional parameter reference (positional parameter zero) and 
intrinsically allows the body to reference the parameters in the call line by the number of 
the position and not by the symbolic name of the position. 

A complete picture of the PROC and MACRO construction compared with the call 
instruction format is shown in Figure 24-2. It shows the format of the heading, body, and 
trailer for each type of macro definition. The rules for coding the model statements in the 
body are the same for the PROC and MACRO. These rules are: 

• The label field may contain a symbol, a variable symbol, or a sequence symbol, 
depending on the operation defined. Comments statements may not be created by 
substitution for variable symbols. 

• The operation field may contain any machine, assembler, or macroinstruction 
mnemonic code except END, ICTL, or ISEQ. 

• Either ordinary symbols or variable symbols may be written in the operand field. The 
size of this field may not exceed 240 characters after substitution. 

• The comments field may contain any combination of characters; however, substitution 
for variable symbols is not performed on this field by the assembler. Comments are 
written in the format of the statement the model represents . 



UP-8913 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

24-6 
Update B 

A macroinstruction that is a model statement within a macro definition is called an 
inner macroinstruction, while a macroinstruction in the program source module is 
called an outer macroinstruction. A macroinstruction that appears in a macro 
corresponding to an outer macroinstruction is called a second-level macroinstruction. 
Macroinstructions within macro definitions are nested. The number of levels to which 
macroinstructions may be nested in an assembly depends upon the amount of main 
storage available to the assembler. 

• Because COPY statements within a macro definition are processed prior to the 
generation of code from a macro definition, they are not considered to be model 
statements nor are they ever processed as such. 

The trailer indicates the end of a macro definition. The mnemonic code END is used in the 
PROC and MEND is used in the MACRO. The label and operand fields are not used. 

HEADING 

BODY 

TRAILER 

HEADING 

BODY 

TRAILER 

LABEL 

[symbol] 

LABEL 

V811.11l ••1 
[{

symbol }] 
&symbol 
.symbol 

unused 

LABEL 

unused 

Llli'lll 

[{

symbol }] 
&symbol 
.symbol 

unused 

PROC CONSTRUCT! ON 

60PERATION6 

PROC 
NAME 

mnemonic-code 

mnemonic-code 

END 

!BB'.il 
[pos-0] 

operands 

operands 

unused 

MACRO CONSTRUCTION 

60PERATION6 

MACRO unused 

mnemonic-code operands 

mnemonic-code operands 

MEND unused 

CALL INSTRUCTION FORMAT 

L'-.OPERATION 6 

call-name 

OPERAND 

[al1*-'lllUllJ & .. EJsll.L=.MP 

OPERAND 

OPERAND 

Figure 24-2. PROC, MACRO, and Call Instruction Comparison 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24.3. PASSING PARAMETERS TO THE BODY 

24-7 

The discussion of the heading thus far has been from the call instruction design point of 
view, but the heading also establishes a homologous relationship between the call 
instruction and the body. Body references to the values in the call instruction stem from 
the variable symbols used for designing the call instruction. The variable symbols used in 
the heading to represent the label and operand fields of the call instruction are used as 
arguments in the body to reference the values in the call instruction. Variable symbols in 
the body that directly reference values in the call instruction are called symbolic 
parameters. When you use a symbolic parameter in the body, you are directly referencing 
its associated value in the call instruction and, when you call the definition, the values in 
the call are substituted in place of the symbolic parameters. This call-to-body 
communications cycle is as follows: 

e for valu 
reference d label 

J 

HEADINGl 

&symbol 

symbol 

I 
label 

argument 

l 

MACRO CALL INSTRUCTION 

"L 
call-name parameter-list ~ 

I I 
call-name 

parameter 
spec I fi ca ti on s 

symbolic parameter specifications J &pos(n) 

l or &key 

va lue for 
reference d parameter 

t----

BODY 

TRAILER 

The heading of the macro definition thus serves not only as the design medium for the 
macro call instruction but also dictates how the arguments in the body are to reference 
the values in the call instruction. Coordination of values and arguments is accomplished 
by using variable symbols in the label-argument and parameter-specifications fields of the 
heading. The variable symbols used in the heading to represent the symbol, and the values 
in the parameter-list, are the variable symbols used in the body to reference the label and 
operand fields of the macro call instruction. Communications between a macro call 
instruction and a macro definition that is capable of variable parameter replacement is 
shown in Figure 24-3. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

PROGRAM SOURCE CODE MACRO DEFINITION 

CALLMAC START 0 

BEGIN BALA 6,0 MACRO 

USING *,6 CD 
STORE/ 5, RAG, BAG, SAG 

pl, p2, p3, 

\ 
pl, p2 

5,RAG ]·~ __ @ --___,_____,[ AL 
5,BAG ,..._ 

5, SAG ST 

L 

pl, p3 A 

ST 

LA 13, SAVE 

PACK AB, CD MEND 

PACK EF, GH 

END BEGIN 

LEGEND: 

CD Call the macro. 

@ Substitute the parameters. 

@ lnline expansion 

p Variable symbol 

24-8 

p4 } heading 

} trailer 

Figure 24-3. Communication between Macroinstruction and Macro Definition 

The following sequence of events occurs when a macro call is issued: The macro facility 
finds the macro definition called upon, matches the parameters given in the call to the 
variable symbols in the heading, and (wherever the body references a variable symbol in 
the heading), plugs the matched value into the body. Then, the body, with the substituted 
parameters, is put in the source program where the macro call instruction appeared. A 
variable symbol in a macro definition body represents either the label in an issued macro 
call instruction or one of the operands in that macroinstruction. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-9 

When a variable symbol appears as a symbolic parameter in a model statement, it may be 
concatenated (joined) with other variable symbols or characters. Some combinations of 
variable symbols and characters require a period as a separator between the variable 
symbol and the joined character to distinguish where the variable symbol stops and the 
concatenation begins. Other combinations do not require a period as a connector because 
the concatenation is implied by certain characters that are recognized as character string 
terminators. When the period is properly used as a concatenator, it will not appear in the 
generated inline expansion code. The replacement value for the variable symbol and the 
concatenated string appear as one string in the inline expansion code. 

The period must be used to concatenate a character string that immediately follows a 
variable symbol if that character string starts with a letter, digit, left parenthesis, or period. 
Some examples of this are: 

&Z.BC 
&Z.12 
&Z.(5,6) 
&Z .. BC 

If the replacement value for the variable symbol &Z is 12, the values generated in the 
inline expansion code would be: 

12BC 
1212 
12(5,6) 
12.BC 

The opposite combination reproduces the intended concatenation period in the inline 
expansion code. If you code a character before a variable symbol, don't use a period to 
concatenate the character with the variable symbol. The period, in this particular 
combination, is not considered to be a concatenator. A character coded before a variable 
symbol does not have to be concatenated with the variable symbol; the period is 
considered to be part of the character code and is generated as such. Take each previous 
example and switch the variable symbol and the characters: 

BC.&Z 
12.&Z 
(5,6).&Z 
BC .. &Z 

If &Z has a replacement value of 12, the following would be generated inline: 

BC.12 
12.12 
(5,6).12 
BC .. 12 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-10 

The period will not be generated, however, if the character coded before the variable 
symbol is contained within quotes. The following is the proper way to concatenate a 
variable symbol prefixed with a character string if the period is used: 

'BC'.'&Z' 
'12'.'&Z' 
'(5,6)'.'&Z' 
'BC'.'&Z' 

However, it isn't necessary to concatenate a variable symbol with a prefixed character. If 
you code: 

BC&Z 
12&Z 
(5,6)&Z 
BC.&Z 

and &Z equals 12, then the following would be generated: 

BC12 
1212 
(5,6)12 
BC.12 

You do not need a period after a variable symbol to indicate concatenation, if the variable 
symbol is followed by another variable symbol or a special character other than a left 
parenthesis or a period. Some examples of this are: 

&A&B 
&A+23 
&A6B 
&A=23 

You could use periods as concatenators in these examples with no adverse side effects. 

If &A equals TAG and &B equals 1, then the following is generated inline: 

TAG1 
TAG+23 
TAG6B 
TAG=23 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

24-11 

There are really only two items that you can concatenate with variable symbols: characters 
and other variable symbols. When concatenating variable symbols with variable symbols, 
the period is optional and, when certain combinations of characters are concatenated with 
a variable symbol, the period is necessary. 

Each format uses a different method for coding symbolic parameters to reference 
positional parameters, and this relates back to differences in the parameter-specifications 
between the PROC and MACRO. The PROC specifies positional parameters by indicating a 
variable symbol in operand 1 and the number of positional parameters in the call in 
operand 2. The variable symbol in operand 1 of the PROC statement is the symbolic 
parameter used in the body to reference positional parameters in the call. In addition to 
coding the symbolic parameters, you must also give the position of the parameter in 
parentheses immediately following the symbolic parameter: &pos(n). You do not give a 
positional reference after the symbolic parameter when referencing positional parameters 
in a MACRO body. The MACRO works differently because the prototype statement has to 
give a different variable symbol for every positional parameter in the call. To reference a 
positional parameter from a MACRO body, the symbolic parameter that you use is the 
variable symbol in the prototype statement that represents the desired positional value. 
This means you must keep track of all the variable symbols used to represent positional 
parameters, while with the PROC, you only require one variable symbol for the symbolic 
parameter. However, you can use the system variable symbol (&SYSLIST) in a macro to 
reference by position. (See 26.2.) 

Symbolic parameter references to keyword parameters and symbolic parameter references 
to the label field of the call are the same for the PROC and MACRO. The symbolic 
parameter used to reference a keyword parameter in the call is the &key portion of the 
variable symbol used in the heading to represent the keyword parameter. And the 
symbolic parameter used to reference the label field of a call instruction is the variable 
symbol used as a label-argument in the heading. These symbolic parameters are used the 
same way for both formats because the mechanics for coding them in each heading are 
the same. 

The details of how to use symbolic parameters in model statements in the PROC and the 
MACRO are given in Sections 25 and 26. PROC design of call instructions is encouraged 
because it is easier and because most of the call instructions designed by Sperry Univac 
are PROCs. Model statements using symbolic parameters are shown in Figure 24-4. 
More detailed examples of PROCs and MACROs are given in Section 30. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

PROC Format 

To write the macro in PROC format: 

Statements LABEL 6.0PERATION 6. 

Proc 

~ Heading 
&N01 PROC 

Name ADD1 NAME 
Model 

} 
&N01 L 

Model Body A 
Model ST 
End } Trailer END 

To call the macro (macro call instruction): 

CAL 1 I ADD1 

Generates this pattern of coding: 

CAL1 L 
A 
ST 

MACRO Format 

To write the macro in MACRO format: 

Statements LABEL 6.0PERATION 6. 

Macro 

~ Heading 
MACRO 

Prototype &N02 ADD2 
Model 

} 
&N02 L 

Model Body A 
Model ST 
Mend } Trailer MEND 

To call the macro (macro call instruction): 

CAL2 I ADD2 

Generates this pattern of coding: 

CAL2 L 
A 
ST 

OPERAND 

&TAG,3 

13,&TAG(H 
13,&TAG(2) 
13,&TAG(3) 

I PAY,RAISE,TOTAL 

13,PAY 
13,RAISE 
13,TOTAL 

OPERAND 

&TAG1 ,&TAG2,&TAG3 
13,&TAG1 
13,&TAG2 
13,&TAG3 

I PAY,RAISE,TOTAL 

13,PAY 
13,RAISE 
13,TOTAL 

Figure 24-4. Example of MACRO and PROC Definitions 

24-12 



UP-8913 

25.1. BASIC PROC DESIGN 

SPERRY UNIVAC OS/3 
ASSEMBLER 

25-1 

25. PROC Format 

The most basic type of PROC that you can design is one that requires no parameters from 
the call, no label, and no positional or keyword parameters in the operand field. All that is 
required is a mnemonic in the operation field. 

LABEL b. OPERATION b. OPERAND 

ADD1 

When this type of call is used, it generates the same sequence of instructions with no 
parameter replacement. The call instruction ADD1 is designed to generate the following 
code every time it is used in a source program: 

LABEL A OPERATION A 

L 
A 
ST 

13,PAY 
13,RAISE 
13,TOTAL 

OPERAND 

The design structure of a PROC that accomplishes this type of basic inline expansion is: 

LABEL 

call-name 

Cl OPE RA Tl ON L'l 

PROC 
NAME 

mnemonic-code 

mnemonic-code 
END 

OPERAND 

operands 

operands 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-2 

The PROC and NAME statements make up the heading of the PROC and must always be 
coded in the order shown. You use the PROC statement to identify the beginning of a 
macro definition in PROC format and the NAME statement to assign a call-name to the 
PROC. The call-name is coded in the label field of the NAME statement and is a 1- to 8-
character symbol (it cannot be a variable symbol) defining the mnemonic operation code by 
which the macro definition may be referenced. The call-name must be unique. It may not 
be the same as any Sperry Univac mnemonic operation code or any call-name in your own 
library. (The only way that you can duplicate a call-name is if you override the established 
call-name with the OPSYM directive. (See 16.2.) 

After the NAME statement is the body that contains the model statement and then the 
trailer, an END statement that indicates the end of the PROC. The model statements in the 
body are the source code statements that are generated when you use the call-name in 
your program. If you don't require parameter replacement, the model statements could be 
any BAL instruction, assembler directive, or call instruction except END, ICTL, or ISEQ. 

The model statements for the ADD1 call are the BAL instructions that are generated every 
time ADD1 is used. A completely designed ADD1 PROC is as follows: 

LABEL 

ADD1 

fl OPERATION fl 

PROC 
NAME 
L 
A 
ST 
END 

13,PAY 
13,RAISE 
13,TOTAL 

OPERAND, 

Although the basic PROC design that accomplishes direct instruction substitution saves 
the programmer time and effort, the most valuable role of the macro definition in BAL is 
variable parameter replacement. Variable parameter replacement allows you to vary the 
value of the label, operation, or operand field of any model statement by using the 
parameters submitted with each call. This means that you can design the ADD1 example 
PROC so that it accepts values from the call line and replaces the PAY, RAISE, and TOTAL 
operands of the model statements with the call line values. To accomplish parameter 
replacement in model statements, you indicate the fields that are variable by using 
symbolic parameters. 

The symbolic parameter is the type of variable symbol used to indicate variable parameter 
replacement directly from the call line to the body. You can use symbolic parameters in 
the label, operation, or operand field of model statements to indicate parameter 
replacement. If you wanted the PAY, RAISE, and TOTAL operands of the ADDl example to 
be variable, you would code symbolic parameters for those operands. The symbolic 
parameters in the model statements reference the values in the call through the PROC 
statement, and no symbolic parameter may be used in a model statement unless it also 
appears in the PROC statement. The value referenced in the call line replaces the symbolic 
parameter, and the manner in which you reference the parameters in the call depends on 
the kinds of parameters you design the call to have. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-3 

As shown in Figure 22-1, comments or instructions within a PROC call will be shifted 
one space beyond the last operand when they are assembled. This permits a maximum 
amount of space for comments on instructions that generate variable symbols. 

25.2. REFERENCING POSITIONAL PARAMETERS IN THE CALL 

You can define the call to submit values to the PROC body via positional parameters. This 
is done by indicating a variable symbol in operand 1 of the PROC statement and .by 
indicating the total number of positional parameters that can appear in the call in operand 
2 of the PROC statement: 

LABEL 6. OPERATION 6. OPERAND 

PROC &pos,n 

The &pos variable symbol is the symbolic parameter used in the body of the PROC to 
reference positional parameters in the call instruction. Following the symbolic parameter is 
a decimal number in parentheses (&pos(n)) that references the positional parameter in the 
call. For instance: 

&pos(1) references positional parameter 1 in the call. 

&pos(2) references positional parameter 2 in the call. 

&pos(3) references positional parameter 3 in the call. 

You can reference a positional parameter from the label operation, or operand field of a 
model statement, and the value coded in the referenced position in the call line is 
generated in place of the symbolic parameter. If an omitted positional parameter is 
referenced, a null character string is generated in place of the symbolic parameter that 
made the reference. The following example shows the PROC source code and inline 
expansion code for an ADD2 call instruction that is designed to submit three positional 
parameters. 

PROC SOURCE CODE CALL INSTRUCTION 

ADD2 450,40,TOTAL 

L 13,=F'&TAG(l)' INLINE EXPANSION CODE 

A 13,=F'&TAG(2)' 
ST 13,&TAG(3) L 13,=F'450' 

A 13,=F'40' 
ST 13,TOTAL 

END 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-4 

Operand 1 of the PROC statement indicates the variable symbol & TAG is used as the 
symbolic parameter reference in the body, and operand 2 indicates that there can be three 
positional parameters in the call. The NAME statement assigns the call-name ADD2 as the 
mnemonic to call the PROC. The body is a model for a procedure that adds two numbers 
and stores the result in a main storage location. The two numbers are picked up from 
positional parameter 1 of the call instruction, which is someone's pay, and positional 
parameter 2, which is their raise. The main storage location is picked up from positional 
parameter 3 of the call instruction. (One of the requirements for using this call instruction 
is that the user supply a OS statement with a symbol the same as that of positional 
parameter 3 for the PROC to store the result.) The first model statement is a load 
instruction that uses a variable symbol in operand 2 to reference positional parameter 1 in 
the call instruction. The PROC generates the load instruction with a full-word fixed-point 
literal value of 450 in operand 2. The add instruction is generated with a 40 in operand 2, 
and the main storage address TOTAL is generated in operand 2 of the store instruction. 

25.3. REFERENCING KEYWORD PARAMETERS IN THE CALL 

Instead of having the call submit values to the PROC body via positional parameters, you 
can use keyword parameters. This is done by using keyword parameter variable symbols 
starting in operand 3 of the PROC statement. Commas are used in operands 1 and 2 to 
indicate there are no positional parameters in the call (and key is the keyword name): 

LABEL Ll OPERATION Ll OPERAND 

PROC ,,&key1 =, ... ,&keym = 

Since a variable symbol can only be eight characters long and we've used two positions 
with the ampersand and equal sign, the keyword name portion of the variable symbol can 
only be six characters long. But the keyword name in the call can exceed six characters 
and still be accepted by the PROC. However, anything after six characters is ignored by the 
PROC; it recognizes only the first six characters as the true keyword name. 

The symbolic parameter used in the body of the PROC to reference keyword parameters in 
the call is the variable symbol indicated in the PROC statement, without the equal sign 
(&key). 

For instance: 

&PAY references keyword parameter PAY=value in the call. 

&RAISE references keyword parameter RAISE=value in the call. 

&SAVE references keyword parameter SAVE=value in the call. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-5 

You can reference a keyword parameter from the label, operation, or operand field of a 
model statement, and the value after the equal sign in the call line will be generated in 
place of the symbolic parameter. The following example shows the PROC source code and 
inline expansion code for an ADD3 call instruction that is designed to submit three 
keyword parameters: 

PROC SOURCE CODE CALL INSTRUCTION 

PROC ,.&PAY=,&RAISE=,&SAVE= ADD3 PA Y=450,RAISE=40,SAVE=TOTA L 

ADD3 NAME 

L 13,=F'&PAY' 
INLINE EXPANSION CODE 

A 13,=F'&RAISE' 
ST 13,&SAVE L 13,=F'450' 

A 13,=F'40' 
ST 13,TOTAL 

END 

Operands 3 through 5 of the PROC statement indicate that there can be three different 
keyword parameters in the call with the keyword names of PAY, RAISE, and SAVE. The 
NAME statement assigns the call-name ADD3 as the mnemonic to call the PROC. (The 
body of this PROC is designed to perform the same function as the ADD2 example PROC.) 
The symbolic parameter &PAY in operand 2 of the first model statement references the 
keyword parameter PAY in the call, and since PAY=450, the value 450 is substituted in 
operand 2 of this model statement. The same processing takes place with symbolic 
parameters &RAISE and &SAVE. 

You can design a PROC so that a preselected value is generated for a symbolic parameter 
that references an omitted keyword parameter in the call. Otherwise, symbolic parameters 
that reference omitted keyword parameters receive the value of a null character string. 
The default value for a keyword parameter is coded after the equal sign of the variable 
symbol in the PROC statement. 

The following example shows a PROC with a default value indicated in the PROC 
statement: 

PROC SOURCE CODE CALL INSTRUCTION 

PROC ,.&PA Y=,&RAISE=40,&SAVE= ~ ADD4 PAY=490,SAVE=TOTAL 

ADD4 NAME 

L 13,=F'&PAY' INLINE EXPANSION CODE 

A 13,=F'&RAISE' 
ST 13,&SAVE L 13,=F'490' 

A 13,=F'40' 
ST 13,TOTAL 

END 

The call instruction doesn't use the RAISE keyword parameter so the default value of 40 
indicated in the PROC statement is generated in the inline expansion code. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-6 

Another type of PROC is one with mixed-mode parameters. This PROC is designed to 
accept both positional and keyword parameters from the call. The format of the PROC 
statement for designing mixed-mode calls is: 

LABEL A OPERATION t. OPERAND 

PROC &pos,n,&key 1 =, ... ,&keym = 

We could design the ADD4 example PROC to have the call submit the &PAY symbolic 
parameter as a positional parameter and the &SAVE and &RAISE symbolic parameters as 
keyword parameters, with RAISE having a default value of 40: 

PROC SOURCE CODE CALL INSTRUCTION 

ADD5 530,SAVE=TOTAL 

L 13,=F'&PAY(l)' INLINE EXPANSION CODE 

A 13,=F'&RAISE' 
ST 13,&SAVE L 13,=F'530' 

A 13,=F'40' 
ST 13,TOTAL 

END 

The following example shows what happens if you have a default value indicated in the 
PROC statement and submit a value for the keyword in the call instruction; the value in 
the caU overrides the value in the PROC heading: 

PROC SOURCE CODE CALL INSTRUCTION 

ADDS 530,SAVE=TOTAL,RAISE=60 

L 13,=F'PAY(ll' INLINE EXPANSION CODE 

A 13,=F'&RAISE' 
ST 13,&SAVE L 13,F'530' 

A 13,=F'60' 
ST 13,TOTAL 

END 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-7 

25.4. REFERENCING SUBPARAMETERS IN THE CALL 

Another way to generate values in a field of a model statement is by referencing values in 
a parameter sublist. The parameter sublist is a list of subparameters that are subordinate 
to either a positional or keyword parameter. When you use a sublist, you can submit 
multiple parameter values from a single operand in the call. No coding is required in the 
PROC statement to support a sublist in a call line. It is a matter of referencing the sublist 
from a model statement by using a symbolic parameter with a sublist reference. The 
symbolic parameter reference to a subparameter in a positional paramet~r sublist is: 

&pos(n,x) 

where: 

&pos 

n 

x 

Is the variable symbol used in operand 1 of the PROC statement to represent 
positional parameters. 

Is the number of the positional parameter in the call. 

Is the position of the subparameter in the sublist. (All subparameters are 
referenced by position.) 

Sublists for positional parameters must be coded within parentheses in the operand field 
of the call: 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-8 

The following example shows a PROC referencing a positional parameter sublist in the call 
line: 

L 
A 
ST 

END 

PROC SOURCE CODE CALL INSTRUCTION 

ADD7 450, (40,TOTAL) 

13,=F'&TAG(l )' -------------' 
13,=F'&TAG(2,1 )' ------+---------" 
13,&TAG(2,2l-------i---------

INLINE EXPANSION CODE 

L 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 

The symbolic parameter reference to a subparameter in a keyword parameter sublist is: 

&key(x) 

where: 

&key 
Is the variable symbol in the PROC statement. 

x 
Is the number of the position of the subparameter in the sublist. 

Sublists for keyword parameters must be coded within parentheses after the equal sign in 
the operand field of the call: 

k1=(p1 , ... ,px), ... ,kn =(p, , ... ,px) 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-9 

The following example shows a PROC referencing a keyword parameter sublist in the call 
line: 

PROC SOURCE CODE CALL INSTRUCTION 

ADDS PAYRAS=(450.40),SAVE=TOTAL 

L 13,=F'&PAYRAS(11'-----+------" 
A 13,=F'&PAYRAS(21'-----+--------' 

ST 13,&SAVE -------+--------" 

END INLINE EXPANSION CODE 

L 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 

In addition to having the individual subparameters in a call generated in model statements, 
you can have the entire sublist generated. You do this by referencing the positional or 
keyword parameter with no reference to its subparameters. Simply use the symbolic 
parameter as you normally would reference a keyword or positional parameter; its 
associated sublist, including the parentheses, will be generated. If a SET symbol appears 
in the operand entry of a macroinstruction, attribute information is not provided and the 
operand may not be accessed as a sublist. 

25.5. MULTIPLE PROC NAMES AND POSITIONAL PARAMETER 0 

The split heading characteristic of the PROC permits another means of parameter 
modification. The parameter value is submitted by varying the mnemonic name in the 
operation field of the call. You can design a PROC so it may be called by many mnemonic 
names, and each name represents a different parameter value. This is easily done in the 
PROC because the NAME statement separates the call-name from the parameters in the 
PROC statement and therefore leaves the operand field of the NAME statement open for 
use. The PROC utilizes the operand field of the NAME statement for assigning a value to 
the call-name: 

LABEL 6.0PERATION 6 OPERAND 

call-name NAME pos-0 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

25-10 
Update A 

pos-0 can be a decimal or alphanumeric value but it cannot be a variable symbol. The value • 
in the operand field of the NAME statement is referenced as positional parameter 0 by using 
the same symbolic parameter you indicated in operand 1 of the PROC statement (&pos(O)). 
You can vary the value for positional parameter 0 by using multiple NAME statements. Each 
NAME statement has a different call-name and a value in the operand field for positional 
parameter 0. A symbolic parameter referencing positional parameter 0 receives the pos-0 
value from the NAME statement whose call-name is used in the operation field of the call. 
All NAME statements must appear directly after the PROC statement and before any model 
statements, including comments. 

We could design the ADD2 example PROC to have several different call-names and, each 
time a different call-name is used, the register number for operand 1 of the model 
statements is changed: 

CALL INSTRUCTION 1 

ADD9 450,40,TOTAL 

INLINE EXPANSION CODE 

L 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 

CALL INSTRUCTION 2 

ADD10 450,40,TOTAL 

L &TAG(0),=F'&TAG(1)' 
A &TAG(O),=F'&TAG(2)' 
ST &TAG(0),&TAG(3) 

INLINE EXPANSION CODE 

L 12,=F'450' 
END A 12,=F'40' 

ST 12,TOTAL 

CALL INSTRUCTION 3 

ADD11 450,40,TOTAL 

INLINE EXPANSION CODE 

L 11,=F'450' 
A 11,=F'40' 
ST 11,TOTAL 

• 

• 



UP-8913 

25.6. THE LABEL ARGUMENT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

25-11 

The label-argument is used to reference the symbol coded in the label field of a call 
instruction. To establish a label-argument, you must code a variable symbol in the label 
field of the PROC statement. The format of the PROC statement with a label-argument is 
as follows: 

LABEL fl OPERATION fl OPERAND 

&symbol PROC &pos,n,&key1=, ... ,&keym = 

The variable symbol that is coded in the label field of the PROC statement is used as the 
reference to the symbol in the label field of the call instruction. This variable symbol is 
used to take the label field from a call instruction and generate it in a model statement. 
Any model statement can have a label-argument. A label-argument is useful when you 
use a label in a PROC and you expect several copies of the inline expansion code to be in 
one program. The user can change the name of the label by changing the symbol in the 
label field of the call. 

The following PROC uses a label-argument. The purpose of this PROC is to add the 
number of salaries indicated in positional parameter 1 and located where indicated by 
keyword parameter RAISE. The results are stored in the location indicated by keyword 
parameter TOTAL, and control is returned to the user program at the location indicated by 
keyword parameter OUT. 

CALL INSTRUCTION 

GROUP1 PLUS 4,PAY=PA Y1 ,RAISE=RAISE1,TOTAL=TOTAL1,0UT=EXEMPT 

INLINE EXPANSION CODE 

LA 8,&PAY LA 8,PAY1 
LA 9,&RAISE LA 9,RAISE1 
LA 10,&TOTAL LA 10,TOTALl 

&LABEL L 13,0(8) GROUP1 L 13,0(8) 
A 13,0(9) A 13,0(9) 
ST 13,0( 10) ST 13,0(10) 
A 12,=F'l' A 12,=F't' 
c 12,=F'&COUNT' c 12,=F'4' 
BC 8,&0UT BC 8,EXEMPT 
A 8,=F'4' A 8,=F'4' 
A 9,=F'4' A 9,=F'4' 
A 10,=F'4' A 10,=F'4' 

B &LABEL B GROUP1 

END 





UP-8913 

26.1. BASIC MACRO DESIGN 

SPERRY UNIVAC OS/3 
ASSEMBLER 

26-1 

26. MACRO Format 

A basic MACRO does not perform variable parameter substitution and, therefore, does not 
require any values to be passed from the call instruction. The design structure of a 
MACRO that accomplishes this type of basic inline expansion is: 

LABEL 60PERATION6 

MACRO 
call-name 
mnemonic-code 

mnemonic-code 
MEND 

OPERAND 

operands 

operands 

The statements in a MACRO must always be coded in the order shown. First is the 
MACRO statement which indicates the beginning of a macro definition in MACRO format. 
Next is the prototype statement, which is where you code the call-name. Then, you code 
the model statements, which can be any BAL instruction, assembler directive, or call 
instruction except END, ICTL, or ISEQ. The last statement in a MACRO is the MEND 
statement, which indicates the end of the definition. 

If we take the ADD1 PROC shown in Section 25 and design an ADD1 MACRO, it appears 
as follows: 

LABEL ti OPERATION 6 

MACRO 
ADD1 
L 
A 
ST 
MEND 

13,PAY 
13,RAISE 
13,TOTAL 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26-2 

The ADD1 example MACRO produces the same inline expansion code as the ADD1 
example P~OC: 

LABEL t. OPERATION t. 

L 
A 
ST 

13,PAY 
13,RAISE 
13,TOTAL 

OPERAND 

As shown in Figure 22-1, comments on instructions within a MACRO call will be shifted 
one space beyond the last operand when they are assembled. This permits a maximum 
amount of space for comments on instructions that generate variable symbols. 

26.2. REFERENCING POSITIONAL PARAMETERS IN THE CALL 

Designing a MACRO to reference positional parameters in the call is a little different from 
the way it is done in the PROC. In MACRO design, the prototype statement must indicate 
a variable symbol for each positional parameter to be coded in the call. Positional 
parameter variable symbols are coded in the prototype statement as follows: 

LABEL 6 OPERATION t. OPERAND 

call-name &pos1 , ••• ,&posn 

The variable symbol representing a positional parameter in the call is used as the symbolic 
parameter to reference that positional parameter. You can reference a positional 
parameter from the label, operation, or operand field of a model statement, and the value 
coded in the referenced position in the call is generated in place of the symbolic 
parameter. If an omitted positional parameter is referenced, a null character string is 
generated in place of the symbolic parameter that made the reference. 

The following example shows the ADD2 example PROC given in Section 25 recoded in 
MACRO format: 

MACRO SOURCE CODE CALL INSTRUCTION 

L 
A 
ST 

MEND 

13,=F'&PAY' 
13,=F' &RAISE' 
13,&TOTAL 

ADD2 450,40,TOTAL 

INLINE EXPANSION CODE 

L 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26-3 

You can also reference the positional parameter values in the call by position rather than 
by using the symbolic parameters coded in the prototype statement. To do this, you must 
use the system variable symbol &SYSLIST. Instead of coding the positional parameter 
variable symbol for the symbolic parameter reference, you code: 

&SYSLIST(n) 

where: 

n 
Is the number of the positional parameter in the call and can be an expression that 
is a self-defining term or a SETA symbol. (SETAs are discussed in Section 27.) 

If you miscount the positional parameter string in the call and n is greater than the actual 
number of parameters that are supposed to be in the call, then a null character string is 
generated in place of &SYSLIST(n). When you use &SYSLIST, it isn't necessary to have 
positional parameter variable symbols in the heading. &SYSLIST references the call 
instruction, not the heading. The function of &SYSLIST is to provide the MACRO designer 
with the option to reference positional parameters by position, similar to the way it is done 
in the PROC. However, &SYSLIST does not allow you to reference keyword parameters by 
position as you could do in the PROC. In the PROC, you could use &pos(n+1) and continue 
right on through into the keyword parameters in the parameter-list. This won't work with 
&SYSLIST because &SYSLIST only references positional parameters. 

The following example shows the ADD2 example MACRO redesigned with &SYSLIST 
symbolic parameter references: 

MACRO SOURCE CODE CALL INSTRUCTION 

ADD2 450.40,TOTAL 

L 13,=F'&SYSLIST(1 )' INLINE EXPANSION CODE 

A 13,=F'&SYSLIST(2)' 
ST 13,&SYSLIST(3) L 13,=F'450' 

A 13,=F'40' 
ST 13,TOTAL 

MEND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26.3. REFERENCING KEYWORD PARAMETERS IN THE CALL 

26-4 

The MACRO references keyword parameter values in the call in the same way as the 
PROC. A keyword parameter reference is made by a symbolic parameter that consists of 
the &key portion of the keyword variable symbol. If the call is to have only keyword 
parameters, the prototype statement is coded as follows: 

LABEL 60PERATION 6 OPERAND 

call-name &key1 =, ... ,&keym = 

You can reference a keyword parameter from the label, operation, or operand field of a 
model statement and the value after the equal sign in the call will be generated in place of 
the symbolic parameter. 

The following is the ADD3 example PROC, shown in Section 25, recoded in MACRO 
format: 

MACRO SOURCE CODE CALL INSTRUCTION 

l 
A 
ST 

MEND 

13,=F'&PAY' 
13,=F'&RAISE' 
13,&SAVE 

ADD3 PAY=450,RAISE=40,SAVE=TOTAL 

INLINE EXPANSION CODE 

l 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 

If you want any of the keyword parameters in the call to have a default value, you code 
that value after the equal sign of the keyword variable symbol in the prototype statement. 
Whenever a keyword parameter in the call is omitted, the symbolic parameter receives the 
value given the keyword variable symbol. A symbolic parameter referencing a keyword 
parameter that doesn't have a default value receives the value of a null character string. 

To design a MACRO that references positional and keyword parameters in the call, you 
code the positional symbolic parameters before the keyword symbolic parameters in the 
prototype statement. The prototype statement for a mixed-mode MACRO is as follows: 

LABEL 60PERATION 6 OPERAND 

call-name &pos, , ... ,&posn ,&key 1 =, ... ,key m = 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26-5 

The following example shows the ADD5 example PROC, shown in Section 25, redesigned 
in MACRO format: 

MACRO SOURCE CODE CALL INSTRUCTION 

530,SAVE=TOTAL 

INLINE EXPANSION CODE 
L 
A 13,=F'&RAISE' 
ST 13,&SAVE L 13,=F'530' 

A 13,=F'40' 

13-=F'&PAY' ~ 
I------ ST 13,TOTAL 

MEND 

26.4. REFERENCING SUBPARAMETERS IN THE CALL 

Like the PROC, the MACRO does not require support from the heading to use sublists in 
the call. It is a matter of referencing the sublist from a model statement by using a 
symbolic parameter or &SYSLIST with a sublist reference. The &SYSLIST reference to a 
subparameter in a positional parameter sublist is: 

&SYSLIST(n,x) 

where: 

n 
Is the number of the positional parameter in the call. 

x 
Is the number of the subparameter in the sublist. 

The following example shows the ADD7 example PROC, shown in Section 25, recoded in 
MACRO format: 

MACRO SOURCE CODE CALL INSTRUCTION 

L 
A 
ST 

MEND 

13.= F' &PAY' 
13,=F'&SYSLIST(2, 1 )' 
13.&SYSLIST(2,2) 

ADD7 450, (40,TOTAU 

INLINE EXPANSION CODE 

L 13,=F'450' 
A 13,=F'40' 
ST 13,TOTAL 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26-6 

The symbolic parameter reference to a subparameter in a keyword parameter sublist for a 
MACRO is the same as for the PROC: 

&key(x) 

where: 

&key 
Is the variable symbol in the prototype statement. 

x 
Is the number of the subparameter in the sublist. 

The following example shows the ADD8 example PROC, shown in Section 25, redesigned 
in MACRO format: 

MACRO SOURCE CODE CALL INSTRUCTION 

L 
A 
ST 

MEND 

13,F'&PAYRAS(l )' 
13,F'&PAYRAS(2)' 
13,&SAVE 

ADDS PAYRAS;(450,40),SAVE;TOTAL 

INLINE EXPANSION CODE 

L 13,;F'450' 
A 13,;F'40' 
ST 13,TOTAL 

If you reference a positional or keyword parameter with a sublist and do not include a 
reference to a subparameter within the list, you will generate the entire sublist, including 
parentheses, in place of the symbolic parameter. The same thing happens in a PROC. If a 
SET symbol appears in the operand entry of a macroinstruction, attribute information is 
not provided and the operand may not be accessed as a sublist. 

26.5. THE LABEL ARGUMENT 

The label argument for a MACRO is used the same way it is used in the PROC. To 
establish the label-argument, you must code a variable symbol in the label field of the 
prototype statement. The format of the prototype statement with a label argument is as 
follows: 

LABEL !:::,. OPERATION !:::,. OPERAND 

&symbol call-name &pos1 , ••• ,&pos",&key1 =, ... ,&keym = 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

26-7 

The following MACRO uses a label argument. This example MACRO is the PLUS example 
PROC recoded in MACRO format (25.6). 

CALL INSTRUCTION 

GROUP1 PLUS 4,PAY=PAY1,RAISE=RAISE1,TOTAL=TOTAL1,0UT=EXEMPT 

INLINE EXPANSION CODE 

LA 8,&PAY LA 8,PAYl 
LA 9,&RAISE LA 9,RAISE1 
LA 10,&TOTAL LA 10,TOTAL1 

&LABEL L 13,0(8) GROUP1 L 13,0(8) 
A 13,0(9) A 13,0(9) 
ST 13,0(10) ST 13,0(10) 
A 12,=F'1' A 12,=F'l' 
c 12,=F'&COUNT' c 12,=F'4' 
BC 8,&0UT BC 8,EXEMPT 
A 8,=F'4' A 8,=F'4' 
A 9,=F'4' A 9,=F'4' 
A 10,=F'4' A 10,=F'4' 

B &LABEL B GROUPl 

MEND 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27. 

27-1 

Conditional Assembly 

Conditional assembly statements are used to control the pattern of coding generated 
within a macro definition, and to define and assign values to set symbols that can be used 
to vary parts of generated statements. Conditional assembly statements are used by the 
programmer to direct the asssembler to: 

• exclude lines of code from the assembler output; 

• include a set of lines more than once in the assembly output; or 

• establish and alter values to determine whether a set of lines should be included in 
the output listing. 

Table 27-1 lists the function of each conditional assembly statement. 

Table 27-1. Conditional Assembly Language Statements (Part 1 of 2) 

Statement Function General Usage 

ACTA Sets a conditional assembly loop counter Branching 

AGO An unconditional branch 
*AGOB 
*GOTO 

Alf A conditional branch 
*AIFB 

ANOP Provides a branch destination point tor a location 
*LABEL that already contains a symbol or variable symbol 

MEXIT Stops processing of macro definitions 

DO Defines starting point of the code and the number of Used for defining the range 
times it is to be generated for repetitive code 

ENDO Defines the end of the code to be repeated 

MNOTE Generates messages in macro definitions or program Used for generating messages 
PNOTE source code 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-2 

Table 27-1. Conditional Assembly Language Statements (Part 2 of 2) 

Statement Function General Usage 

LCL Declares a general-purpose local set symbol Used for declaring set symbols 
that are to be used only inside 

LCLA Declares an arithmetic local set symbol the macro definition that is 
declaring the set symbol 

LCLB Declares a Boolean local set symbol 

LCLC Declares a character local set symbol 

GBL Declares a general-purpose global set symbol Used for declaring set symbols 
that are to be used not only in 

GBLA Declares an arithmetic global set symbol the macro definition in which the 
set symbol is declared but also 

GBLB Declares a Boolean global set symbol outside the macro definition in 
other macro definitions 

GBLC Declares a character global set symbol 

SET Assigns an arithmetic or character string value Used to assign values to arithmetic, 
to a set symbol Boolean, or character set symbol 

SETA Assigns an arithmetic value to a set symbol 

SETB Assigns a binary value of 0 (false) or 1 (true) 
to a set symbol 

SETC Assigns a character value to a set symbol 

*Alternate mnemonic 

27.1. SET SYMBOLS 

Set symbols are a type of variable symbol (Appendix G). The rules for writing set symbols 
are the same as for other variable symbols: 

• An ampersand (&) is followed by an alphabetic character followed by up to six 
additional characters (total maximum characters is eight). 

• If the ampersand is omitted, the assembler interprets the character string as a symbol 
and not as a set symbol. 

The following are valid set symbols: 

&C 
&Al 
&PARAM 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-3 

The following are not valid set symbols for the reasons stated: 

CAT 
Valid for an ordinary symbol but not as a set symbol; no leading ampersand. 

&1 
First character after & is not alphabetic. 

&S12345678 
There are too many characters in the string (maximum length, including &, is 
eight characters). 

Because set symbols are evaluated in the macro generation phase of the assembler, they 
may be used as counters, switches, or values to control the sequence of code generated. 
Unlike an ordinary symbol, the value assigned to a set symbol may be altered during 
assembly. 

A set symbol may be either global or local. A global set symbol, once declared and given a 
value by a SET statement, retains the same value until that value is changed by another 
SET statement. A local set symbol is defined only within the macro definition in which it is 
declared. The value of a local set symbol within one macro definition is not affected by the 
declaration of either a global or local set symbol with the same name in another macro 
definition. 

Set symbols must be declared after macro prototype or NAME statements and before being 
referenced. 

27 .1 .1 . Local Set Symbols 

A local set symbol is available for use only in the macro definition in which it is declared. 
Four statements are available for declaring local set symbols. The declarative chosen 
determines the values to which the set symbol may be set and the type of SET statement 
used to assign the values. 

The basic format for a local set symbol declaration is: 

LABEL 

unused 

D. OPE RATION D. 

{

LCL I LCLA 
LCLB 
LCLC 

OPERAND 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

where: 

LCL 
Declares a general-purpose local set symbol. 

LCLA 
Declares an arithmetic local set symbol. 

LCLB 
Declares a Boolean local set symbol. 

LCLC 
Declares a character local set symbol. 

s1,S2, ... ,s 0 

Are set symbol names. 

27-4 

The operand field of the local set declaration may contain one or more set symbol names. 
A local symbol is considered defined when declared. A set symbol declared by an LCLA or 
LCLB statement is assigned an initial value of zero. 

A set symbol declared by an LCLC or LCL statement is assigned an initial value of a null 
character string. 

Examples: 

LABEL AOPERATIONA 
1 10 16 

LCLA 
LCLB 
LCLC 

&A,&B 
&BIG 
&BIG3 

OPERAND 

1. Declares arithmetic local set symbols &A and &B. 

2. Declares a Boolean local set symbol &BIG. 

3. Declares a character local set symbol &BIG3. 



UP-8913 

27.1.2. Global Set Symbols 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-5 

Global set symbols are initialized only once and are used to pass values back and forth 
between macro definitions. A global set symbol is available to all macro definitions in 
which it is also declared. 

Four statements are available for declaring global set symbols. The declarative chosen 
determines the range of values to which the set symbol may be set and the type of set 
statement used to assign the values. 

The basic format for a global symbol declaration is: 

LABEL 

unused 

where: 

GBL 

60PERATION6 

t
GBL ~ GBLA 
GBLB 
GBLC 

Declares a general-purpose global set symbol. 

GBLA 
Declares an arithmetic global set symbol. 

GBLB 
Declares a Boolean global set symbol. 

GBLC 
Declares a character global set symbol. 

S1,S2,···,Sn 

Are set symbol names. 

OPERAND 

The operand field of the global set declaration may contain one or more set symbols. A 
global set symbol is considered defined when declared. It is initialized only once; that is, 
the first time it is declared. With subsequent declarations in other contexts, the global set 
symbol is available for use but is not reinitialized. A set symbol must be declared before it 
is available for use. A set symbol declared by a GBLA or GBLB statement is assigned an 
initial value of zero. A set symbol declared by a GBLC or GBL statement is assigned an 
initial value of a null character string. 

If a set symbol is declared as a global set symbol in more than one macro definition, it 
must be declared with the same statement code in each macro definition. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Examples: 

1 ·1 2. 
3. 
4. 

LABEL AOPERATIO~ 
1 10 16 

GBL 
GBLA 
GBLB 
GBLC 

&BR 
&SETI ,&SET2 
&BUT 
&GLB 

OPERAND 

1. Declares a general-purpose global set symbol. 

2. Declares arithmetic global set symbols. 

3. Declares a Boolean global set symbol. 

4. Declares a character global set symbol. 

27 .1 .3. Set Symbol Value Assignment 

27-6 

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and 
SET. The statement used depends on the statement chosen to declare the set symbol. 

• SETA 

Assigns values to set symbols declared in either LCLA or GBLA. 

• SETB 

Assigns values to set symbols declared in either LCLB or GBLB. 

• SETC 

Assigns values to set symbols declared in either LCLC or GBLC. 

• SET 

Assigns values to set symbols declared in either LCL or GBL. 



UP-8913 

27 .1.4. SET Statement 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-7 

The SET statement can be used to assign either an arithmetic or character string value to 
a variable symbol declared by an LCL or GBL statement. 

The format of the SET statement is: 

LABEL Ll OPERATION Ll OPERAND 

&s SET 

where: 

&s 
Is a set symbol declared by LCL or GBL. 

SET 
Defines the operation. 

a 
Is a valid arithmetic expression. 

c 
Is a valid character expression. 

When the operand of the SET statement contains an arithmetic expression, the value of 
the expression may range from -223 to +223_ 1 . When the operand of the SET statement 
contains a character expression, the maximum length that may be specified is eight 
characters. 

If a SET variable symbol is assigned a character value, a reference to the SET symbol 
yields the same result as a reference to a SETC symbol assigned the same character 
value. Similarly, if a SET variable symbol is assigned an arithmetic value, a reference to 
the SET symbol yields the same result as a reference to a SETA symbol assigned the same 
value. A SET variable symbol with a character value may be reassigned an arithmetic 
value, and vice versa. 

A SET expression is a SETA expression allowing the use of the operators>,<,*/,//,=,**, 
- -, and ++ in the SET expression when an arithmetic operator is valid. The two 
characters ** represent the logical product AND, the two characters ++ represent the 
logical sum OR, and the two characters - - represent the logical difference XOR. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-8 

Each bit of the first term is compared with its corresponding bit in the second term, and 
the result of the comparison is placed in the corresponding position in the resulting term. 
The result of the bit comparison for each operator is: 

AND OR XOR 

A**B Result A++B Result A--B Result 

1 1 1 1 1 1 1 1 0 

1 0 0 1 0 1 1 0 1 

0 1 0 0 1 1 0 1 1 

0 0 0 0 0 0 0 0 0 

The three relational operators are the equal (=) operator, the greater than (>) operator, 
and the less than (<) operator. 

where: 

> 

< 

Compares the value of two terms or expressions. If the two values are equal, the 
assembler assigns a value of 1 to the expression. If the values are not equal, a 
zero value is assigned. 

Compares two terms or expressions. If the value of the first (left) term is greater 
than the value of the second (right) term, a value of 1 is assigned to the 
expression. If the value of the second term is greater than the value of the first 
term, a zero value is assigned. 

Compares the value of the first (left) expression or term with the second (right) 
expression or term. If the value of the first expression or term is less than the 
value of the second, a value of 1 is assigned to the expression. If the value of the 
second expression or term is less than the value of the first, a zero value is 
assigned. 

Given the expression A+B>C, if the expression A+B has a greater value than the value of 
C, the assembler assigns a value of 1 to the expression. If the value of C is greater than 
the value of A+B, a zero value is assigned. 

Since the value of a relational character or logical expression is arithmetic, the expression 
may be used as a term in an arithmetic expression. 

Operator priority is shown in Table 27-2. 



UP-8913 

Examples: 

LABEL 
I 

I .J &ARK 
2. &NUM 

AOPERATION.1 
10 16 

SET 
SET 

1AN IM 1 

6 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 27-2. Operator Priority 

Operator Hierarchy 

*/ 6 

II, *,I 5 

+,- 4 

** 3 

--,++ 2 

<>= 1 

OPERAND 

1. The SET symbol &ARK is assigned the value of ANIM. 

2. The SET symbol &NUM is assigned the value of 6. 

27.1.5. SETA Statement 

27-9 

The SETA statement assigns an arithmetic value to a variable symbol that was declared by 
an LCLA or GBLA statement. 

The format of the SETA statement is: 

LABEL .6.0PERATION /::,. OPERAND 

&s SETA a 

where: 

&s 
Is a set symbol declared by either LCLA or GBLA. 

SETA 
Defines the operation. 

a 
Is a valid SETA term or an arithmetic combination of valid SETA terms. 



UP-8913 

A valid SETA term is: 

• a self-defining term; 

SPERRY UNIVAC OS/3 
ASSEMBLER 

• a variable symbol with an arithmetic value; or 

• a character value consisting of one to eight decimal digits. 

27-10 

The arithmetic operators used in writing SETA expressions are +, -, *, and /. The 
expression may not begin with an operator. Two operators or two terms may not succeed 
one another. 

The rules of precedence for the evaluation of a SETA arithmetic expression are the same 
as stated in Table 27-2. The value of a SETA expression may range from -223 to 223-1. 

When the SETA symbol is used in an arithmetic expression, the arithmetic value of the 
symbol is substituted for the symbol. If the SETA symbol is used in another context, the 
arithmetic value of the SETA symbol is converted to an unsigned decimal integer with 
leading zeros removed. This decimal value is then substituted for the SETA symbol. If the 
value of the SETA symbol is zero, a single zero is substituted. 

Examples: 

LABEL &OPERATIONA 
1 10 16 

1.1 &ART 
2. &LOC 
3. &HER 

SETA 
SETA 
SETA 

5 
7 
&ART+&LOC 

OPERAND 

1. The SETA symbol &ART is assigned a value of 5. 

2. The SETA symbol &LOC is assigned a value of 7. 

3. The SETA symbol &HER is assigned a value of 12. 

27.1.6. SETB Statement 

The SETB or set Boolean value statement may be used to assign a binary value of zero or 
one to a variable symbol which was declared by an LCLB or GBLB statement. The format 
of the SETS statement is: 

LABEL I llOPERATIDNll 

SETB 

OPERAND 

&s 



UP-8913 

where: 

&s 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Is a· set symbol declared in either LCLS or GBLB. 

SETB 
Defines the operation. 

b 

27-11 

Is a valid logical expression that must be enclosed in parentheses or a 0 or 1 
enclosed in parentheses. 

The logical expression in the operand field may have a value of either 0 (false) or 1 (true), 
and the set symbol specified in the name field of the set statement is assigned the 
resultant binary value. The logical expressions may consist of a single term or logical 
combination of terms. 

The permissible terms are: 

• a SETS arithmetic relational expression; 

• a SETB character relational expression; and 

• a SETB symbol. 

The SETB logical operators that may be used to combine the terms are AND, OR, and NOT. 
The logical expression must not contain two terms in succession. Two operators may 
appear in succession if the first operator is either AND or OR, and the second operator is 
NOT. Only the operator NOT is allowed prior to the first term of the expression. 

A SETS arithmetic re1ationa1 expression consists of two arithmetic expressions connected 
by a SETB relational operator. A SETS character relational expression consists of two 
character strings connected by a SETS relational operator. The SETS relational operators 
are: 

• NE 

Not equal 

• EQ 

Equal 

• LT 

Less than 



UP-8913 

• LE 

Less than or equal 

• GT 

Greater than 

• GE 

Greater than or equal 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-12 

The arithmetic expression that may be used as a term in the SETB arithmetic relational 
expression is defined under the SETA statement. The rules under the SETC statement 
define the format of the character string that may be used in a SETB character relational 
expression. If two character strings are of unequal length, the shorter will always compare 
less than the longer, regardless of actual value. The maximum length of character strings 
that may be compared is 127 characters. 

In writing SETB expressions, the SETB relational or logical operators must be preceded 
and followed by at least one blank or other special character. The relational expression 
may be optionally enclosed in parentheses. 

The procedure for evaluating a SETB expression is: 

• Each term (SETB symbol, SETB arithmetic expression, or SETB character expression) 
is evaluated and given a value of either 1 (true) or 0 (false). 

• Evaluation is from left to right. The weight of the logical operators is: 

OR = 1 

AND= 2 

NOT= 3 

Therefore, NOT is performed prior to AND, and AND is performed prior to OR. 

If a SETB variable symbol is used in the operand field of a SETA or DO statement, or in an 
arithmetic relation (in either a SETB or AIF term), the binary values O and 1 are converted 
to the arithmetic value +o and +1. 

If the SETB variable symbol is used in the operand field of a SET statement, the value 
substituted is dependent on the context. In an arithmetic expression, +1 or +O are 
substituted. In a character expression, the character values 1 and O are substituted. 



UP-8913 

Examples: 

LABEL AOPERATIONA 

SPERRY UNIVAC OS/3 
ASSEMBLER 

1 10 16 

I ·I •CONT 
2. &EXP 

SETB 
SETB 

(L '&TO EQ 4) 
( 1 ) 

27-13 

OPERAND 

1. If the expression L'&TO EO 4 is true, the symbol &CONT is assigned a value of 1; 
otherwise, it is assigned a value of 0. 

2. The symbol &EXP is assigned a value of 1. 

27.1.7. SETC Statement 

The SETC statement may be used to assign a character value to a variable symbol that 
was declared by an LCLC or GBLC statement. 

The format of the SETC statement is: 

LABEL I ~~ERATION ~ OPERAND 

&s SETC c 

where: 

&s 
Is a set symbol declared by either LCLC or GBLC. 

SETC 
Defines the operation. 

c 
Is a valid SETC operand. 

A SETC operand must be a character expression. (See 27 .1 .8.) 

The maximum length of the value that may be specified for a SETC symbol is eight 
characters. If more than eight characters are specified, only the leftmost eight characters 
are used by the assembler. 



UP-8913 

Examples: 

LABEL 40PERATION4 
1 10 16 

1.1 &rvPE 
2. &C ITV 

SETC 
SETC 

'&&AID' 
'C INN' 

SPERRY UNIVAC OS/3 
ASSEMBLER 

OPERArm 

1. The symbol & TYPE is assigned the value of &AID. 

2. The symbof &CITY is assigned the value of CINN. 

27 .1.8. Character Expressions 

27-14 

A character expression is either ·a character string, a character substring, or a 
concatenation of strings or substrings. Character expressions are used as the operand of a 
SET or SETC statement or as terms in a SETB, SET, Alf, or DO relational expression; Any 
character string is considered to be greater in value than any shorter character string. A 
character expression may have a length of up to 127 characters. 

27.1 ;9. Subscripted SET Symbols 

Subscripted SET symbols may be defined as both global and local SET symbols. The local 
SET symbols previously defined were all nonsubscripted SET symbols. Subscripted SET 
symbols provide you with a convenient way to use a SET symbol plus a subscript to refer 
to many binary, arithmetic, or character values. The subscript may be any arithmetic 
expression that is allowed in the operand of a SETA statement in the range of 1 to the 
specified dimension. The subscripted SET symbol consists of a SET symbol immediately 
followed by a subscript enclosed in parentheses. 

A SETA or SETB operand permits only. five levels of parentheses. 

The following are valid subscripted SET symbols: 

&INPUT(30) 
&B45723(&A 1) 
&A6B9(2+&B 1 ) 

The following are invalid subscripted SET symbols: 

&AB No subscript 
(300) No SET symbol 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27.1.9.1'. Defining Subscripted SET Symbols 

27-15 

To use a subscripted SET symbol, you must write in a GBLA, GBLB, GBLC, LCLA, LCLB, or 
LCLC instruction with a SET symbol immediately followed by an unsigned decimal integer 
enclosed in parentheses. The number of SET variables associated with the SET symbol is 
indicated by the decimal integer and is called the dimension. Every variable associated 
with a SET symbol is assigned an. initial value that is the same as the initial value 
assigned to the corresponding type of nonsubscripted SET symbol. If a subscripted SET 
symbol is defined as global, the same dimension (decimal integer} must be used with the 
SET symbol each time it is defined as global. 

The maximum dimension of 255' can be used with a SETA, SETB, or SETC statement. A 
subscripted SET symbol may be used only if the declaration was subscripted, while a 
nonsubscripted SET symbol may be used only if the declaration had no subscript 

27.2. BRANCHING 

The sequence of processing macro source code statements may be altered by branching. 
The assembler provides for conditional and unconditional branching. 

27.2.1. Sequence Symbols 

A sequence symbol is used to define a branch destination point. A sequence symbol may 
appear in the label field of any. statement that does not contain a symbol or a set symbol, 
except for a macro prototype statement, a local or global symbol declaration statement 
(LCL, LCLA, LCLB, LCLC, GBL, GBLA, GBLB, GBLC}, or MACRO, PROC, NAME, ICTL, or 
ISEQ statement. 

A sequence symbol is written in the following form: a period followed by at least one 
alphabetic character followed by up to six alphanumeric characters. The following are valid 
sequence symbols: 

.D 

.03 

.BRNCPNT 

When a sequence symbol is written in the label field of a macroinstruction, statement, and 
the prototype (MACRO format) or PROC statements (PROC format) for that macro definition 
that contain a variable symbol in their label fields, the sequence symbol does not replace 
the variable symbol. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27.2.2. Unconditional Branch {AGO) 

27-16 

The unconditional branch {AGO) statement unconditionally alters the sequence of source 
statement processing. The format is: 

LABEL noPERATION n OPERAND 

{
AGO } 
AGOB 
GOTO 

[.s,] 

where: 

AGO 
Defines the operation . 

. s, 
Is a sequence symbol. 

Is a sequence symbol defined in a source code statement. 

The label field of the AGO statement may contain a sequence symbol. AGOB or GOTO 
may be used in lieu of AGO in the operation field. The sequence symbol in the operand 
field ·is the symbol of the next statement to be processed. Branching forward or backward 
from the AGO statement is permitted. 

When an AGO statement is used in a macro definition, the sequence symbol specified in 
the operand field must appear in the label of another statement in that macro definition. 

Examples: 

.!10PERAT I ON.!1 LABEL 
1 10 16 

1.1 ~GO 
2. . BRANCH AGO 

.STOP 

.BUG 

OPERAND 

1. An unconditional branch is made to another statement in the source code 
labeled .STOP. 

2. An unconditional branch is made to an instruction labeled .BUG somewhere else 
in your program. Notice a sequence symbol is used in the label field. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-17 
Update B 

• 27.2.3. Conditional Branch (AIF) 

• 

• 

The conditional branch (AIF) statement conditionally alters the sequence of source 
statement processing. The format is: 

LABEL 6. OPERATION 6. OPERAND 

[.51 ] 
{

AIF } 
AIFB 

where: 

.s, 
Is a sequence symbol. 

AIF 
Defines the operation. 

(b) 

Is a SETB logical expression enclosed in parentheses. 

Is a sequence symbol defined in a source code statement . 

The label field of the AIF statement may contain a sequence symbol. AIFB is permitted in 
lieu of AIF in the operation code field. 

Any logical expression permitted in the operand field of a SETB statement (27.1.6) is valid 
in the operand field of the AIF statement except a 0 or a 1 enclosed in parentheses. The 
sequence symbol in the operand field must be written immediately after the parenthesis 
terminating the logical expression. 

If, after the logical expression has been evaluated, the condition is true (a value of 1 ), you 
branch to the statement specified by the operand. If the condition is false (a value of 0), 
the statement in the source code following the AIF statement would be the next statement 
to be processed. Branching either forward or backward from the AIF statement is 
permitted. When an AIF statement is written in a macro definition, the sequence symbol 
specified in the operand field must appear in the label field of another statement within 
that macro definition . 



UP-8913 

Examples: 

1. 

LABEL 
1 

2 •• IF 

.::lOPERATION.::l 

SPERRY UNIVAC OS/3 
ASSEMBLER 

10 16 

AIF 
AIF 

(&BRO IJE 0).SIS 
(L'&TO EQ L'&FROM) .END 

27-18 

OPERAND 

1. If the value of the symbol &BRO is zero, the next statement to be processed is 
&IF. 

2. If the length attributes of the symbols & TO and &FROM are equal, a true (1) 
results and a branch is made to a statement in the source code labeled .END. 

27.2.4. Define Branch Destination (ANOP) 

The define branch destination (ANOP) statement is provided to facilitate branching. If a 
branch is necessary and no statement within the source code supplies the branch 
destination in its label field, an ANOP statement can be coded to provide a label to which 
to branch. The format is: 

LABEL fl OPERATION fl OPERAND 

unused 
{

ANOP } 
LABEL 

.s 

where: 

.s 
Is a sequence symbol. 

ANOP 
Defines the operation. 

The label field must contain a sequence symbol. 

When the label field of a statement which is desired as a branch destination point already 
contains a symbol or variable symbol, the branch destination is indicated by preceding the 
statement by an ANOP statement. 

LABEL is an acceptable synonym for ANOP in the operation field. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-19 

• Example: 

• 

• 

LABEL ~OPERATION~ 
I JO 16 

.DEST 
&STATE 

A I F ( & TY P E NE L ) . D EST 

ANOP 
SETC 1 PENN 1 

OPERAND 

If the Boolean expression in the AIF operand is true, a branch is made to the ANOP 
statement with the label .DEST. Since no operations are performed by ANOP, control 
passes immediately to the following statement, a SETC whose label field is already 
occupied by the variable symbol &STATE. 

27.2.5. Macro Definition Exit (MEXIT) 

The macro definition exit (MEXIT) statement is used when it is necessary to process only 
one section or operation of a macro definition rather than the entire macro definition. This 
statement indicates to the assembler that the processing of a macro definition should be 
terminated before ending normally with a MEND statement. 

The format of the MEXIT statement is: 

LABEL fl OPERATION fl OPERAND 

unused MEXIT unused 

When MEXIT is used, the assembler terminates processing the macro definition and 
processes the statement in the source program following the macro call instruction that 
called the macro definition containing the MEXIT. A coding example of the MEXIT 
statement is included in 27.3. ~. 

27.3. ERROR MESSAGES AND COMMENTS 

PNOTE or MNOTE statements are used to generate error messages or comments in a 
macro definition or in source code statements . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27.3.1. MNOTE Message Statements (MNOTE) 

27-20 
Update B 

A MNOTE message statement is used to generate an error message. It indicates how 
dangerous the error is or generates a comment that supplies information. A MNOTE 
statement is used in a macro definition or in source code statements. 

The MNOTE statement source code statement format is: 

LABEL ~OPERATION~ 

unused MNOTE 

{ 'm'} ~. 'm' 
S, 'm' 
*, 'm' 

OPERAND 

This format can be used to specify a message enclosed in apostrophes, a comma followed 
by a message enclosed in apostrophes, a severity code followed by a message, or an 
asterisk followed by a message. In all cases, the message is printed in the assembly listing 
source code. The severity code indicates the danger of the error that occurred. The severity 
code is a decimal value of zero to 255. 

If you want to indicate a severity code of 1, you leave a blank space (~) followed by the 

• 

error message enclosed in apostrophes. An asterisk used as the severity code indicates • 
that the message following it is informational and not an error. Any of these specifications 
causes the message to be printed in the assembly listing. Also, MNOTE lines are flagged 
as errors and listed in the diagnostics portion of the assembly listing if they do not have an 
asterisk in operand 1. Messages which are preceded by an asterisk are not flagged or 
listed in the diagnostics because they are not errors. 

Variable symbols can be used as operands in a MNOTE statement. 

The following example contains a MNOTE statement that generates a message in the 
source code of the assembly listing, and causes the line of code to be flagged in error. The 
error also is listed in the diagnostics portion of an assembly listing produced by this code. 

Example: 

LABEL 
1 

.TAG 

..10PERATI O~ OPERAND 
10 16 

&A,&B,&C 
(&A GT 0 AND &A LT 257) .TAG 
1 INVALID LENGTH SPECIFIED' 

MACRO 
MOVE 
AIF 
MNOTE 
MEXIT 
MVC 
MEND 

&B(&A),&C • 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27.3.2. PNOTE Message Statements (PNOTE) 

27-21 

A PNOTE message statement is used to generate an error message or a comment. A 
PNOTE statement is used in a macro definition or a source code statement. 

The PNOTE source code statement format is: 

LABEL fl OPERATION Ll OPERAND 

unused PNOTE { 1:1} I lml 

In this format, there are two operand fields. In the first field, you can specify an asterisk to 
indicate that the message is informational and not an error; or you can specify a character 
expression containing up to six characters. The second operand field contains the 
message. It can contain up to 79 characters. Regardless of the choice you make for the 
first operand, the message is printed in the assembly listing source code. If it does not 
contain an asterisk as operand 1, a PNOTE statement is flagged as an error and listed in 
the diagnostics portion of the assembly listing. If there is an asterisk in the first operand 
field, the line is not flagged or listed in diagnostics. This is done because the asterisk 
indicates that the message is not an error. 

Variable symbols can be used as operands in a PNOTE statement. 

27 .3.3. Comments Statement 

A comments statement written within a macro definition causes the assembler to 
generate comments on the output listing. This type of comments statement is written with 
an asterisk in column 1 of the assembler coding form followed by the comment. 

A special form of the comments statement also is available for use within macro 
definitions. It is used to include comments in a macro definition that are not to be 
generated in the output listing. This comments statement is written with a period in 
column 1 of the assembler coding form, followed by an asterisk (*) in column 2, followed 
by the comment. 

Neither comments statement form can be created by substitution for variable symbols. 
Substitution for variable symbols is not performed on comment lines. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Examples: 

LABEL AOPERATIONA 
1 10 16 

MACRO 
GEN 

OPERAND 

* THIS COMMENT WILL BE GENERATED ON THE LISTING 
* THIS COMMENT IS FOR INTERNAL USE, NOT GENERATED 

MEND, 

27.4. REPETITIVE CODE GENERATION 

27-22 

A section of code can be generated one or more times. The statements DO and ENDO 
specify the code you want and the number of times you want it to be generated. 

27.4.1. Define Start of Range (DO) 

The define start of range (DO) statement defines the starting point of the code and the 
number of times it is to be generated. The format is: 

LABEL 6. OPERATION 6. OPERAND 

[&varisymb] DO a 

where: 

&varisymb 
Is an optional variable symbol. 

DO 
Defines the operation. 

a 
Is a valid SET expression (27 .1) written in a macro definition. 

The expression in the operand field indicates the number of times the source code 
statements following the DO statement are produced in the object code. All lines of coding 
appearing between a DO statement and its associated ENDO statement (27.4.2) are 
generated. The value of the expression in the operand field may be any value from 0 to 
223-1. If the value of the expression is negative, the DO statement is flagged and ignored 
(that is, treated as if the value has been 1 ). 

The set of statements between the DO statement and its associated ENDO statement are 
said to be within the range of the DO statement. Any valid source code statement may be 
within the range of a DO statement including other DO statements with their 
corresponding ENDO statements. DO statements may be nested up to 10 levels. 



e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-23 

A variable symbol may be declared in the label field of the DO statement. The rules for 
writing variable symbols are described in Section 26. When the variable symbol in the 
label field is specified, it is used as a counter for the number of times a set of lines within 
the range of a DO statement has been generated. The value of this variable symbol is 1 
the first time through the set of statements; 2 the second time through; and so forth. It is 
referenced in the same manner as a SETA symbol (27.1.5). An example of a DO statement 
is shown in 27.4.2. 

27.4.2. Define End of Range (ENDO) 

The define end of range (ENDO) statement is used to indicate the end of the range of a DO 
statement. The format is: 

LABEL /:).OPERATION /:). OPERAND 

unused ENDO unused 

DO and ENDO statements must be paired. For every DO statement, there must be an 
ENDO statement to define the end of the r:ange. 

Examples: 

LABEL dOPERATIONA OPERAND 
1 10 16 

1 • &001 DO 5 
2. 
J. 
4. 
5. ENDO 
6. 
7. 
8. &DOZ 00 10 
9. 

10. 
l 1 • 
12. &DOJ DO 3 
13. 
14. 
15. &004 DO 5 
16. 
17. 
18. 
19. ENDO 
20. moo 
21. 
22. ENDO 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Lines 2, 3, and 4 are produced in the assembler output five times. 

27-24 

Lines 9, 10, 11, 21, and the lines produced by the operation of the DO directives on 
lines 12 and 15 are produced in the assembler output 10 times. 

Within each of the 10 sets of code produced by the DO directive on line 8, lines 13, 
14, and the lines produced by the operation of the DO directive on line 15 are 
generated in the assembler output three times. 

Within each of the 30 sets of code produced by the DO directives on lines 8 and 12, 
lines 16, 17, and 18 are generated in the assembler output five times. 

27.4.3. Conditional Assembly Control Counter (ACTR) 

You use the ACTA statement to limit the number of AGO, AIF, GOTO, AGOB, AIFB, and 
GO statements that may be processed by the assembler either within a macro or within 
the source program. 

The ACTA statement source code format is: 

LABEL /'::,OPERATION/'::, OPERAND 

unused ACTA SET A expression 

The ACTA statement must be written immediately following the local and global symbol 
declarations in either the source program or in a macro definition. There can be a separate 
ACTA statement in the source program and in each macro definition. 

The value of the expression in the operand field may be any positive value from 1 to 
223-1. The value specified in the operand field causes a counter to be set to that value. 
This counter is decremented by 1 for each AGO, AGOB, or GOTO statement that is 
processed for each AIF or AIFB statement whose evaluation resulted in a true condition 
and for each time that the range of a DO statement is generated. 

If the counter is zero prior to decrementing, the following occurs. If a macro is being 
processed, its processing and that of any macros above it in a nest are terminated. The 
next statement to be processed is in the source code following the macroinstruction that 
initiated the nest. If the source code is being processed (outside a macro definition), an 
END directed is generated. The assembly continues with only that portion of the program 
generated thus far. 

If an ACTA statement is not written, the value of the counter is 409610. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27.5. ATTRIBUTE REFERENCES 

27-25 

The assembler assigns certain attributes to symbols and macro call operands that you may 
refer to in conditional assembly statements. These attributes are type (T), length (L), scale 
(S), integer (I), count (K), and number (N). 

You can specify attributes in conditional assembly statements to control logic, which in 
turn can control the sequence and contents of the inline expansion code generated from 
model statements. Each kind of attribute has a specific purpose, which determines when 
you use it. The format of an attribute reference is as follows: 

LABEL 

[symbol] 

6. OPERATION 6. 

conditional 
assembly 
operation 
code 

T 
L 
s 
I 
K 
N 

OPERAND 

{
symbol } 
&symbol 

The attribute notation (T, L, S, I, K, or N) denotes which attribute of a symbol or parameter 
you are using. The symbol or parameter is a reference to the data or field which possesses 
the attribute. The operation code must be a conditional assembly operation code except 
when you are using the length attribute. (See 4.4.5 for a discussion of the use of length­
attribute references in program source code.) 

The origin of an attribute value is always either a symbol or a parameter. Table 27-3 
gives the restrictions for using a symbol or parameter as the reference to obtain a 
particular data attribute. Whether a symbol or parameter can be used in an attribute 
reference depends on where it is referenced. If an attribute reference is made in macro 
source code (from inside a macro definition), a symbol may be referenced for any data 
attribute except K or N. A symbol cannot be used in a count or number attribute reference 
in macro source code because, when K or N is used inside a macro definition, the only 
data that can be referenced is an operand field in the macroinstruction call. Any one of the 
valid attributes can be acquired for a symbol or &SYSLIST. A SET symbol and the system 
variable symbols listed in Table 27---3 can only be used in the T and K attribute references 
when in macro source code. You can get all but K or N attributes of a symbol in program 
source code by using the symbol in the attribute reference. Macroinstruction operands 
cannot be referenced from program source code so a symbolic parameter or a &SYSLIST 
cannot be part of an attribute reference in program source code. However, A SET symbol 
and the system variable symbols listed in Table 27-3 can be used in an attribute 
reference in program source code. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 27-3. Valid Attribute Reference Applications 

Attribute 
Reference 

T L s I K N 

v v v v Symbol 

v v Set symbol 

v v v v v v Symbolic parameter 

v v v v v v &SYS LIST 

v v &SYSNDX,&SYSPARM, 
&SYSJDATE, &SYSECT, 
and &SYSTIME 

v v v v Symbol 

v v SET symbol 

v v &SYSPARM, &SYSDATE, 
&SYSJDATE, and &SYSTIME 

y = valid application 

27-26 

Location 

Macro 
source 
code 

Program 
source 
code 

There are two requirements that must be met before using symbols in attribute 
references. First, the symbol must appear either in the operand field of an EXTRN directive 
used outside of a macro or in the label field of at least one assembler directive or 
instruction outside a macro. Second, there must not be any variable symbol in the source 
line in whose label field the symbol appears. In regard to the call operand attributes, you 
must abide by the same criteria in addition to the following. The operand must be a 
symbol and it may not be one generated by variable symbol replacement. The attributes of 
the operand are really the attributes of the symbol itself. A nested call operand may be a 
symbolic parameter whose attributes are then the same as the corresponding outer 
operand. You cannot use a length attribute if the type attribute is J, M, N, O, T, or U (see 
27.5.1 ). 

Since a call operand may be a sublist, you can also refer to attributes of a sublist or each 
individual parameter in the sublist. When you refer to these attributes, they will be 
assigned the same value as the first parameter in the sublist. 

You can refer to attributes on conditional directives both inside and outside of macros. 
Symbols that appear in the label field of instructions generated by a macro are not 
assigned attributes. If a SET symbol appears in the operand entry of a macroinstruction, 
attribute information is not provided and the operand may not be accessed as a sublist. 



UP-8913 

27.5.1. Type Attributes 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-27 

You can use the type attribute to test for the characteristic of the operand or symbol. This is 
done by writing a T followed by the symbol or symbolic parameter to be tested. This can also 
be used in SETC directive operand fields or as character expressions in SETB and AIF 
directive operand fields. Table 27-4 summarizes the type attributes and the circumstances 
under which they are produced. 

Table 27-4. Type Attributes of Symbols (Part 1 of 2) 

Type Symbol Length 
Alignment 

Definition Specification 

A Type A address Implied Full-word 
constant 

B Binary constant Implied or Not applicable 
explicit 

c Character Implied or Not applicable 
constant explicit 

D Double-word Implied Double-word 
floating-point 
constant 

E Full-word Implied Full-word 
floating-point 

constant 

F Full-word Implied Full-word 

fixed-point 

constant 

G Fixed-point Explicit Not applicable 

constant 

H Half-word Implied Half-word 
fixed-point 

constant 

I Machine instruction Implied Half-word 

J Control section Not applicable Double-word 
name 

K Floating-point Explicit Not applicable 

constant 

M Macroi nstruction Not applicable Not applicable 

N CD Self-defining term Not applicable Not applicable 

o CD Omitted operand Not applicable Not applicable 

p Packed decimal Implied or Not applicable 

constant explicit 



UP-8913 

Type 

R 

s 

T 

u@ 

v 

w 

x 

y 

z 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 27-4. Type Attributes of Symbols (Part 2 of 2) 

Symbol Length 
Alignment 

Definition Specification 

Unaligned address Explicit Not applicable 

constant (A, S, V, or Y) 

Type S address Implied Half-word 

constant 

External symbol Not applicable Not applicable 

Type not available Not applicable Not applicable 

Type V address Implied Full-word 
constant 

CCW statement Implied Double-word 

Hexadecimal Explicit or Not applicable 

constant implied 

Type Y address Implied Half-word 
constant 

Zoned decimal Explicit or Not applicable 
constant implied 

G) This type attribute is produced only for macroinstruction operands. 

@ Type cannot be assigned. It is produced for inner and outer macroinstruction 
operands that cannot be assigned any other attribute, as well as for literals appearing 

as macroinstruction operands. symbols appearing in the label field of L TORG, ORG, 
or EQU directives, symbols appearing more than once in a source statement label 

field, and symbols appearing in the label field of DC or DS directives containing 

expressions or variable symbols in the modifier subfields. The latter is true even if 
the modifier subfield expression consists solely of self-defining terms. 

27.5.2. Length Attributes 

27-28 

You can reference the length attribute by writing an L' followed by the symbol or 
parameter whose attribute you want. The length attribute has a numeric value, which 
refers to the number of bytes assigned by the assembler to a data field. If the length­
attribute value is required for conditional preassembly processing, the symbol you specify 
in the attribute reference must appear in the label field of a statement in open source 
code. The operand field of that statement must contain a self-defining term. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-29 

The length modifier or length field must not be coded as a multiterm expression because 
the assembler does not evaluate this expression until assembly time. 

LABEL ~OPERATION~ OPERAND 
1 10 16 

DATA DC FL7'7E+9' 

When the length attribute is used in conditional assembly statements, it can be specified 
only within an expression. Examples: L'&P(4),L'&VARY(1,2),L'&SYSLIST(5). These could be 
written in conditional statements such as: 

AIF (L'&P(4) LT &P(3)).PE 

&LBL SETA L'&TAG 

DO L I &NAME= 6 

An L' cannot be generated directly by a macro/proc; it can be done indirectly as follows: 

&A 
&B 

LCLC 
SETC 
SETC 
MVC 

&A,&B 
'Z' 
IL II I 

&A. (&B&A) ,X 

After generation this would result in: 

MVC Z(L'Z),X 



UP-8913 

27.5.3. Scale Attributes 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-30 

You can reference scale attributes of variable symbols by coding an s· followed by the 
desired symbol. Scaling attributes are available only for labels of statements defining 
fixed-point constants. This restricts them to H, F. D, E, P, type Z, type K, and type G 
constants in the 05/3 assembler. The scaling attribute is the value you have assigned for 
the scale modifier of a fixed- or floating-point constant. This modifier is an integer used to 
assign a number of bits in an unnormalized constant for the fractional portion of the 
constant. For example, the scale modifier of a DC statement such as HF86' -19.788' 
would be 8, since it is specifying 8 bits for the fractional part of the number. For decimal 
type constants the scaling attribute is the number of decimal digits to the right of the 
decimal point. 

The following examples illustrate typical usages of scale attributes: 

LABEL AOPERATIONA OPERAND 
1 10 16 

AIF (S'&S(l) EQ S'&S(2)).S1 

&SCALE SET S'&P(l) 

DO S'&VARY 6 

27.5.4. Integer Attributes 

An integer attribute can be written with an I' followed by the symbol you wish. An integer 
attribute is computed from length and scaling attributes and is thus also applicable only to 
a symbol which is the label of a statement defining a fixed-point or floating-point constant 
(F, H, D. E, P, type z. type K, and type G). A fixed-point integer attribute is equal to 8 times 
the length attribute, minus the scaling attribute, minus 1 (1'=8*L-S'-1 ). For floating 
point, you obtain the integer attribute, multiplying by 2. and subtracting the scaling 
attribute 1'=2*{L'-1 )-S'. Typical fixed-point constants and their computed integer 
attributes are: 

HLFWRD DC 
FULLWRO DC 

HS4'97.65 1 

FS12'47.8959' 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

27-31 

A half-word fixed-point constant (H) would have a length attribute of 2 (L'=2) and a scale 
attribute specified as 4 (5'=4). Therefore, the integer attribute would be (8x2)-8-1 =7. A 
full-word fixed-point constant would have a length of 4 (L'=4) and a scale attribute 
specified here as 12 (5'=12). The integer attribute in this case would be (8x4)-12-1 =19. 

Some floating-point constants and their computed integer attributes are: 

LABEL L\OPERAT I ONL\ 
1 10 16 

FLTHFWRD DC 
FLTFLWRD DC 

ES3'64.495' 
DS6 I 17. 99. 2 I 

OPERAND 

Since E is a floating-point full word, its length attribute is 4 (L'=4). The scale attribute is 
specified to be 3 (5'=3). Thus, the integer attribute is 2 (4-1 )-3=3. When we have a 
floating-point double-word constant (0), its length attribute is 8 (L'=8). The scale attribute 
is shown to be 6. We can then compute the integer attribute to be 2(8-1 )-6=8. For 
decimal constants, the integer attribute is the number of decimal digits to the left of the 
decimal point. 

27.5.5. Count Attributes 

You can use the count attribute of a call operand to reference the number of characters in 
the operand, excluding commas. This attribute is determined after substitution of any 
variable symbols; that is, it uses the replacement characters rather than the variable 
symbol to determine the count attribute. You can use the count attribute in SETA or DO 
operand fields, and in relational expressions of 5ETB and AIF operands that are within a 
macro. 

If the operand selected is a sublist, the count attribute will include the parentheses and 
commas within the sublist. Examples using count attribute references in statements are: 

OPCT SETA K'&SYSLIST(l) 

&GBLB SETB (K'&P(3) NE {6) 

AIF (K'&P(2) EQ ~).NG 



UP-8913 

27.5.6. Number Attributes 

SPERRY UNIVAC OS/3 
ASSEMBLER 

27-32 

For call operands you can also reference the number of operands in an operand sublist. 
You reference the number attribute by writing an N' followed by the symbol or parameter 
whose attribute you want. This number is equal to 1 plus the number of commas 
separating or indicating the omission of operands in the sublist. This attribute is available 
in SETA, DO, SETB, or AIF directives. 

Examples of number attribute usage are: 

LABEL ~OPERATION~ OPERAND 
1 10 16 

N1 &P &NUM SETA 
&COUNT SETB 

AIF 
DO 
DO 

(N 1 &SYSLIST NE 2) 
(N 1 &SYSLIST NE 3).ERRl 
N'&SYSLIST-2 
N1 &P>2 

If an operand is not a sublist, the number attribute is 1. If an operand is omitted, its value 
is 0. 

The following is an example showing all the attribute references available, along with the 
related constants and local directives that a SET directive requires in a program 
environment. 

PROC &PARAM, l 
DATTR NAME 
*DISPLAY ATTRIBUTES OF t1ACRO INSTRUCTION OPERAND 
* TH IS COMMENT IS NOT GENERATED 

LCLA &SQ,&10,&KQ,&NQ,&LQ 

&10 
&SQ 
&KQ 
&i~Q 

&LQ 
&TQ 

LCLC &TQ 
SETA I 1 &PARAM (1) 
SETA S'&PARAH(l) 
SETA K'&PARAM(l) 
SETA N'&PARAM(l) 
SETA L'&PARAM(l) 
SETC T'&PARAM(l) 
DC c 1&PARAM(l) I 

DC Y(&LQ) 
DC Y(&KQ) 
DC Y(&IO) 
DC Y(&SQ) 
DC Y (&l~Q) 
DC c '&TQ I 

END 

TH IS IS THE OPERAND 
LEtlGTH ATTRIBUTE OF PARAH 
COUNT ATTRIBUTE OF PARAH 
INTEGER ATTRIBUTE OF PARAM 
SCALE ATTRIBUTE OF PARAH 
NUl1BER OF OPERANDS IN SUBLIST 
TYPE ATTRIBUTE OF PARAH 



••• 

PART 6.i 



--------------:--------~-~~~~ 

.. JS 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

28-1 

28. Organization of Listing 

28.1. HEADER LINES 

The assembly listing produced by the OS/3 assembler consists of five sections, each with 
its own headings. The five sections are: 

• PREFACE 

Lists of options and assembler identification. 

• CODEDIT 

Object code and source code entries 

• EXTERNAL SYMBOL DICTIONARY LISTING 

• CROSS-REFERENCE LISTING 

• DIAGNOSTIC LISTING 

28.2.. PREFACE 

The first section or preface section identifies the assembler variant (if any), its version and 
update number, and the time and date of the assembly. The format is: 

UNIVAC SYSTEM OS/3 ASSEMBLER 

DATE yy/mm/dd TIME - hh.mm 

The preface also lists parameters indicating the assembler options selected in the job 
control stream, if any. 



UP-8913 

28.3. CODEDIT 

SPERRY UNIVAC OS/3 
ASSEMBLER 

28-2 

In this section, source coding is printed beside the object code generated for it. The first 
header line in this section contains the operand field used in the TITLE statement. The 
header, except for the page number, will be blank. The headings in the second line are 
shown in Table 28-1 . 

Table 28-1. CODEDIT listing Content 

Second Heading Line Field Contents 

LOC Assembler address of the object code in hexadecimal. 

OBJECT CODE Contains the object code produced from the source statement. 
This field is left-justified and is in hexadecimal. Machine 
instructions are printed in the format: 

mmmmmmmmmmmm 

Constants are printed in the form: 

C--C 

ADDR1 Contains the effective address in hexadecimal for the first 
operand of an instruction referencing main storage. 

ADDR2 Contains the effective address in hexadecimal for the second 
operand of an instruction referencing main storage. 

LINE Contains the sequential record number in decimal. If the 
statement is macro-generated, each line of generated code 
indicates its nest level in the leftmost portion of the 
column containing the line number. This macro level indicator 
is an alphabetic character (A through Z) that represents the 
nest level at which the coding was generated. If more than 26 
levels are nested, the indicator wraps around from Z to A. The 
line counter columns can record 10,000 lines of code (from 0 
to 9999). If line 10,001 of code is nested, the line number 
will wrap around from 9999 to 0000. The next level indicator 
enables you to see the nest level on any line of source code. 

SOURCE Contains the source program statement. The listing also contains 
STATEMENT any macro-generated statements, following the source statement 

that called it. The assembly listing also prints embedded macro or 
proc call lines when one macro or proc calls another into the 
program. The embedded lines contain the original keyword and 
positional parameters supplied by the caller. 

Although a sequence heading does not print in the assembly listing, you are permitted to 
have a sequence field that does print. Lines of code generated by a macro or proc call line 
retain any sequence number they had when they were originally coded. That is, the 
original sequence number is printed in the assembly listing on the same line as the 
generated statement. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

28-3 

28.4. EXTERNAL SYMBOL DICTIONARY LISTING 

This section is optional; you can request its omission at assembly time. Entries are 
generated in the external symbol dictionary listing for named and unnamed section 
definitions (defined by CSECT statement), entry points (defined by an ENTRY statement), 
external symbols (EXTRN statement and type V constants), and common sections (COM 
statement). A description of the information which is contained in this section is given in 
Table 28-2. 

Table 28-2. External Symbol Dictionary (ESD) Listing Content 

-
Second Heading Line Field Comments 

SYMBOL Contains the symbol that caused the ESD entry to be generated. 

TYPE Defines the type of entry: 

CSE CT Section definition (CSECT or START) 

ENTRY Symbol appeared in operand field of 
ENTRY statement. 

EXTRN External reference (symbol appeared in 
EXTRN operand field or defined as type 
V address constant) 

COM Common control section definition 

ESID Two-digit external symbol identification number (in hexadecimal) 
of item. 

ADDRESS Contains the address of the symbol in hexadecimal for ENTRY 
ESDS, the starting address of the control section for CSECT 
and COM items, and blank for EXTRN ESDS. 

LENGTH Contains a hexadecimal value which is the assembled length 
(in bytes) of control on common section. Blank for ENTRY 
and EXTRN ESD items. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

28-4 

28.5. CROSS-REFERENCING LISTING 

This section is optional; you can request its omission at assembly time. When this section 
is included, each symbol in the object program is listed in alphanumeric sequence with the 
statement number of the statement defining it, and the statement numbers of all 
references to it. Also included in the data for the symbol are the length attribute of the 
symbol and the value assigned to the symbol in the assembly. 

The first heading line of every page contains the following: 

CROSS REFERENCE 

The information on each page of the cross-reference risting appears in one column on the 
left half of the page. If more space is needed, the assembler prints a second column of 
cross-reference data on the right half of the page. Each column has a heading line followed 
by one or more data lines. The formats of the column heading and data lines are given in 
Table 28-3. 

Table 28-3. Cross-Reference Content 

Second Heading line Field Comments 

SYMBOL Symbol to which cross-reference data pertains. 

LENGTH Length (in decimal) of data associated with symbol (i.e .• implied 
length of symbol). 

VALUE Hexadecimal value of symbol. 

DEFN Statement number of statement in which symbol is defined. 

(Actual line May contain from 0 to 5 entries of the form nnnnfi.fi., where nnnn 
numbers of is a statement number, and 6.fi. represents two blanks. Each entry 
reference) represents a statement number of a line in which the symbol 

is referenced. Succeeding lines will be used as necessary to 
list all the references or duplicate definitions. Leading zeros 
are suppressed. 

Printing of the symbol cross-reference listing is in double-column 
format. Continuation occurs from the bottom of the left-hand 
column to the top of the right-hand column and from the bottom of 
the right-hand column to the top of the left-hand column on the 
next page. The last page of the listing may contain any part of a 
partial page. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

28-5 
Update B 

• 28.6. DIAGNOSTIC LISTING 

• 

• 

Statements containing errors are flagged and appear in the diagnostic listing. The 
diagnostic listing follows the assembly listing and contains a detailed accounting of any 
errors that occurred in the assembly. The listing contains the line number of the statement 
in which the error occurred, the error code, and a message indicating the cause of the 
error. The messages are listed in the order in which they occurred. A diagnostic listing is 
optional and can be suppressed by using the PARAM statement (Appendix F) with the 
LST=ND option in its operand field. The PARAM statement also provides the LST=DBG 
option for debugging a macro definition. 

When a macro definition is retrieved from a library, those of its statements that contain 
errors are listed and flagged immediately after the END statement. If the macro definition 
is part of your source program, source statements in error are flagged both within the 
definition itself and wherever they appear in inline expansion code. In all cases macro 
errors are listed in the diagnostic listing. 

The first heading line contains the following: 

DIAGNOSTICS 

The format of the second heading line and the data line contents are given in Table 28-4 . 

Second Heading Line 

STMT 

ERROR CODE 

MESSAGE 

Table 28-4. Diagnostic Listing Content 

Field Contents 

May contain from 1 to 1 O entries of the form nnnnM, where nnnn 
represents a statement number of a line in which the error occurred 
and M represents two blanks. Leading zeros are suppressed. 

Error code of the error in form annn. 

An actual error message giving details about the error. 

After the listing of the diagnostics, the assembler prints the total number of statements 
that were in error as follows: 

nnnn STATEMENTS FLAGGED IN THE ASSEMBLY - yy/mm/dd hh.ss 

The final error statement message is also displayed on the console or master workstation 
upon completion of the assembly. This lets you know immediately if there are any 
diagnostic errors in your source program. 

28.7. EXAMPLE OF ASSEMBLY LISTING 

Section 29 contains a sample assembly listing. 

t 



• 

• 

• 



, ' 

PART 7. PROGRAMtNG T£CHNIQ. 
. . . : ~"..,' ~'.. -. . - ' - - - -



,:. 



• 

• 

• 

UP-8913 

29.1. HOW TO RUN A JOB 

SPERRY UNIVAC OS/3 
ASSEMBLER 

29-1 

29. Job Control Procedures 

To assemble, link edit, and execute your program, you must tell the computer what you 
want it to do for you. You assign peripheral devices and then request other programs and 
routines for use in your program. Job control is your means of communicating with the 
computer. Job control procedures are designed to enable you to get your program into the 
computer in the most efficient way. These procedures are similar to macro definitions. 
They generate a series of job control statements by using one calling line of code. This 
section includes the job control procedures you need to assemble your program into an 
object module, to link-edit your program into a load module, and finally, to execute it. 
There are job control procedures available for many other functions but they are not 
discussed here. The minimum number of job control statements needed to run your 
program are provided. For additional information on job control, refer to the interactive job 
control user guide. 

When using a multisectioned program or unfamiliar instructions, assemble the program 
and correct any syntax, addressability, or other errors. Then, add the job control cards 
needed to link-edit and execute, and resubmit the job. Assemble your program and store 
the object module in a private library for execution at another time or store the object 
module and link it to another object module for combined execution. The system service 
programs user guide contains information about link-editing and how to create and access 
files of stored information. 

29.2. INTRODUCING THE SOURCE DECK 

To assemble your source program into an object code module, you need to surround your 
source code deck with job control statements. The job control statements needed to 
introduce the source deck are discussed in 29.2.1 and 29.2.2 . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29.2.1. JOB Control Statement 

29-2 
Update A 

The first job control statement in your deck is the JOB control statement, which assigns a 
unique name to your job. It is the only required parameter, as you can see from the 
format. See the interactive job control user guide for an explanation of the other 
parameters. 

II hymbol] JOB jobn•m• [. { '} J (.m;n] [,moxl [, {ta•la}] [,mox·t;mol [,[op-1;,..1, ... ,op-l;,..nll 

[acct-no] [ nXm] [~ ~~~~~ (] [{•DR}] 
I I '(-;) < ,,} 

The jobname can have up to eight alphanumeric characters. The name you specify on the 
JOB control statement has no bearing on the name you assign on the START card (see 
17.5) within your assembly program. The jobname parameter distinguishes one job from 
another. Use a unique name, since only one job can be scheduled for processing by the 
operating system under a name. (If two jobs have the same name, the second job would 
replace the first job.) 

29.2.2. OPTION Job Control Statement 

Following the JOB control statement, you can include an OPTION job control statement to 
cause a program dump at the end of your assembly listing. There are three kinds of dumps 
you can request, depending on the parameter you choose: 

LABEL 
1 

~OPERATION~ 

10 16 

1. //OPTION DUMP 

2. // OPTION JOBDUMP 

3. // OPTION SYSDUMP 

OPERAtW 

These dumps are explained in the system service programs user guide. When a program 
terminates normally, the OPTION job control statement alone does not produce a dump. 
You must have a corresponding DUMP or SNAP card within your assembly program. 
DUMP and SNAP are supervisor macros created to dump portions or all of your assembly 
program. DUMP and SNAP are explained in the supervisor macroinstructions user guide. 

If your program terminates abnormally and you've inclµded an OPTION job control 
statement, you'll get a dump following the assembly listing. 

• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-3 

If an OPTION job control statement is not present in the control stream, the DUMP 
macroinstruction acts as an EOJ macroinstruction. The OPTION job control statement 
must also be in the job step in which you want the d•Jmp to occur. For example, if you 
assemble, link-edit, and execute your load module, and you want the dump to occur when 
you execute your load module, you place the OPTION job control statement in the job step 
that executes your load module, not in the one that assembles or link-edits. 

29.3. ASSEMBLE; ASSEMBLE AND LINK-EDIT; OR ASSEMBLE, LINK-EDIT, AND 
EXECUTE 

You can assemble, link-edit, and execute your program in steps or do it all at once. Each of 
these functions requires a different job control procedure (jproc) call statement. You can 
use any one of these jproc call statements, depending on what you want to do: 

• ASM - Assembles your source deck. 

• ASML - Assembles and then link-edits. 

• ASMLG - Assembles, link-edits, and then executes the generated load module. 

29.3.1. Assemble (ASM) 

When you assemble, you create and name (either directly or indirectly) an object module. 
Errors incurred during assembly are flagged and listed on the printout in the diagnostics 
following the assembly listing. Once you have an error-free assembly, you are ready to 
execute. To execute, you must add the job control statements to your deck (and ASM jproc 
call statement) that link-edit and execute your program. Or, you can replace the ASM jproc 
call statement with the jproc call statement to assemble and link-edit (ASML) or assemble, 
link-edit, and execute (ASMLG). The latter approach is suggested. It is more practical to let 
the prewritten job control procedures do the work rather than having to keypunch the 
additional cards. If you do not use ASML or ASMLG jprocs, you will have to consult the 
interactive job control user guide for the additional cards needed. 

Remember, the object module you produce during assembly is not saved (unless you say 
so with a parameter). After the assembly is complete, the object module is removed from 
the temporary job $Y$RUN file. If you want to save it for later use, you must store it in a 
system library, or a library of your own. The librarian portion of the system service 
programs user guide describes system and user libraries . 



-----------------------------

t 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29.3.1.1. ASM Jproc Call Statement 

29-4 
Update B 

The format of the jproc call statement that generates only an assembly follows. Except for 
the OUT parameter, the format also applies to the ASML and ASMLG statements 
discussed in 29.3.2 and 29.3.3. 

//[symbol) MSML'.l 

[ 

N={i :o~~'.i:::·11abel)}] 
(RUN.label) 
(*,label) 

,OUT= 

,LIN= 

,COPY= 

( vol·ser-no ,label) 
(RES,label) 
(RUN.label) 
(*,label) 
(N) 

(RUN,$V$RUNl 

vol-ser-no-1,label· 1 
RES,label-1 
RUN,label-1 

vol-ser-no-1,label-1 
RES,label-1 
RUN,label-1 
*,label-1 
N 

RE.$.$V$SRC 

[ 
LST= {option t] 

' (opt-1,. . .,opt·nlf 

[.scR1={j·r·no} J 

[ { 

(vol-ser-no,label) }] 
(RES,label) 

AL TLOD= (RUN,label) 
(*,label) 
CRES.$Y$LOO) 

vol-ser-no-2,label-2 
RES,label-2 
RUN,label-2 

, *,label-2 
N 
RE.$,$V$MAC 

vol-ser-no-2,label-2 
RES,label-2 
RUN,label-2 
*,label-2 
N 

RE.$,$V$SRC 

The symbol field of the ASM jproc call statement is an optional field. There is no space 
between the // and the symbol. Normally, your input (the source module) is in the form of 
punched cards. But, possibly, you may have stored the source module in a library. The 
symbol field supplies the name of the source module (one to eight alphanumeric 

• 

• 

characters). (The symbol field is only needed when you use an IN parameter.) • 



• 

• 

• 

l:IP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-5 
Update B 

If no name is specified on the START directive, ASMOBJ is assigned. You can have only 
one unnamed assembly (the default, ASMOBJ) within a job unless all other assemblies 
are continuations of the first. For example, if performing two individual assemblies within 
the same job, proceed as follows: 

LABEL 
1 

AOPERATI ONA 
10 16 

II JOB COMSTOR 
II ASH 
1$ 
PROGA START 

1~~ 

II ASM 
1$ 

END 

PROGB START 

END 
1~·: 

I& 
II FIN 

OPERAND 
72 

In this example, the first assembly is named PROGA, and the second is named PROGB. 
The jobname is COMSTOR. When you use the IN keyword parameter, you must also use 
the symbol field. (This is discussed when the IN keyword parameter is discussed.) 

The keyword parameters of the ASM jproc call statement are optional. The shaded areas 
indicate the default values generated if you do not use the parameter. You can use 
statement continuation to contain all the parameters you want to specify. Following are 
examples of correct and incorrect coding: 

Correct Example: 

I I JOB ASSEMBLE 
//PROGNM ASM 
Ill 
112 
I& 

PRNTR=21,IN=(DSC1,U$SRC), 
OUT=(DSC2,U$0BJ), 
LIN=(DSC1,U$MAC1,DSC2,U$MAC2) 

x 
x 



-----------------------~--- ---

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-6 
Update B 

Incorrect Example: 

You cannot break a parameter specification. The keyword and its value must be on the 
same card. You cannot code the IN parameter as follows: 

LABEL 
1 

AOPERATI ONil OPERAND 
10 16 72 

I I JOB ASSEMBLE 
//PROGNM ASM 

This coding would cause an error. To continue on another card you need a nonblank 
character (we used X) in 72, and, in the next card, a I I in columns 1 and 2 followed by a 
number in column 3 as shown in the correct example. The column 3 numbers must be in 
ascending order in the deck, in the range of 1 through 9, or they can all have the same 
number. If there are two continuation cards, as shown in the correct example, the first 
card cannot be I 12 and the second card I 11. But it could be I 12 and I 12. 

The parameter definitions are as follows: 

PRNTR= 
Allocates a specific printer for the assembly listing. 

N 

lun 

20 

dest 

If you specify N, the device assignment set for the printer is not generated 
by the jproc. Instead, the device assignment set for the printer is manually 
inserted by the user in the control stream (prior to the placement of the 
jproc call). This allows for the creation of specific load code and vertical 
format buffers (the LCB and VFB job control statements) by the user. For 
example: 

I IDVC 26 I I VFB LENGTH=66,DENSITY=6 
11 LFD PRNTR 
I I ASM PRNTR=N 

NOTE: 

When this parameter is used, the file name for the device assignment set 
for the printer must be PRNTR. 

If you want a logical unit number other than 20, you must specify the logical 
unit number associated with the printer you select. 

If you specify 20 as the logical unit number, you will get the next available 
printer. This parameter is optional because 20 is the default value. 

If you spool the printed output and want to send it to a device at a remote 
site, you use this parameter to specify the device's 1- to 6-alphanumeric­
character destination identifier as it is defined by remote batch processing 
(RBP). 

• 

• 

• 



UP-8913 

• 

• 

• 

IN= 

SPERRY UNIVAC OS/3 
ASSEMBLER 

29-7 
Update A 

You only use the IN keyword parameter when the source program is not on 
cards. If you have stored your unassembled program on a disk, you use the IN 
parameter to retrieve it for assembly. When using this parameter, you must have 
the name of the source program you are retrieving in the symbol field of the 
ASM jproc call statement. The options are: 

(vol-ser-no,label) 
Specifies the volume serial number and the file identifier where the source 
module is located. For example, it could be on a disk whose volume serial 
number is DSC1. The disk is assigned that number. On the disk, the source 
program, named PROGNM, is stored in a library called US$SRC. To 
assemble the source program, specify the IN keyword parameter to define 
the input. This parameter must be used when making source corrections via 
the SKI, REC, and SEO statements. (See F.2.) 

LABEL 
1 

~OPERATION~ 

10 16 
OPERAND 

I I JOB ASSEMB2A 
I IPROGNM ASM IU=(DSCl ,U$SRC) 

(RES) 
Indicates you want to retrieve a source program from the system resident 
device (SYSRES) in the source library file ($Y$SRC). 

(RES,label) 
Indicates you want to retrieve your source program from SYSRES. But it is not 
in $Y$SRC; it is in a file identified by the label. 

(RUN.label) 
Indicates that you want to retrieve a source program from the volume 
containing the job's run library file ($Y$RUN). The label is the file identifier. 

(*,label) 

OUT= 

Indicates that you want to retrieve a source program from a cataloged file. 
The label is the file identifier, which is all that is necessary to identify the file 
to the system. 

You use this parameter to store assembled object module in a library other than 
the job's $Y$RUN file to save your assembly. Remember that the ASM jproc only 
stores your program until the job is complete. To permanently save an object 
module, you must put it somewhere with the OUT parameter. This also generates 
a PARAM OUT job control statement. The options are: 

(vol-ser-no,label) 
Specifies the volume serial number and file identifier where you want to store 
the object module. It is assumed that this file has been already allocated. If it 
is not, you have to supply a device assignment set to allocate this file. 

t 



UP-8913 

t 

t 

+ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

29-8 
Update A 

(RES.label) 
Indicates that you put your object module on SYSRES, but you didn't use the 
reserved $Y$SRC file; you named your own file. The label is the file identifier. 

(RUN, label) 
Indicates you put the object module on the volume containing the job's 
$Y$RUN file in the file identified by label. 

(*,label) 

(N) 

LIN= 

Indicates that you want to store the object module in a cataloged file. The 
label is the file identifier, which is all that is necessary to identify the file to 
the system. 

Indicates you do not want the object module stored in your own file, or 
retrieved from $Y$RUN. 

You can use the macro library file ($Y$MAC) to store the macro definitions or you 
can use a nonsystem library. The LIN keyword parameter identifies the library you 
want searched. If you do not specify this parameter, $Y$MAC is searched. The 
options are: 

• 

(vol-ser-no-1,label-1 [,vol-ser-no-2,label-2]) • 
Provides the volume serial numbers and file identifiers. You can specify up to 
two volumes and files where macros are stored. $Y$MAC is searched if the 
desired macros are not found elsewhere. 

(RES ,label-1 [,RES,label-2]) 
Specifies two library files to be searched for macros; both files are on 
SYS RES. 

(RUN,label-1 [,RUN,label-2]) 
Specifies two library files to be searched for macros; both files are on the 
volume containing the job's run library file ($Y$RUN). 

(* .label-1 [, * ,label-2]) 

([NJ) 

COPY= 

Specifies two library files to be searched for macros; you use this format 
when the files are cataloged, so you need only specify the file identifiers. 

Indicates that no macros should be retrieved. 

Identifies stored source programs that are to be copied into another source 
program. You can specify two volumes and two files. If you do not specify this 
parameter, $Y$SRC is searched for any source programs named in an assembler 
COPY directive. This parameter works with the COPY directive, which names the 
source programs you want to copy into your program. The options are: • 

-----------------------------~------



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

29-8a 
Update A 

(vol-ser-no-1,label-1 [,vol-ser-no-2,label-2]) 
Provides the volume serial numbers and file identifiers. You can specify up to 
two volumes and files where source programs are stored. 

(RES,label-1 [,RES,label-2]) 
Specifies two library files containing stored source programs; both files are on 
SYS RES. 

(RUN,label-1 [,RUN,label-2]) 
Specifies two library files containing stored source programs; both files are on 
the volume containing the job's run library file ($Y$RUN). 

(* ,label-1 [, * ,label-2]) 

({N}) 

Specifies two library files containing stored source programs; you use this 
format when the files are cataloged, so you need only specify the file 
identifiers. 

Specifies that no source programs should be copied . 

t 



• 

• 

• 



UP-8913 

• 

• 

• 

LST= 

SPERRY UNIVAC OS/3 
ASSEMBLER 

29-9 
Update B 

Alters the normal assembly listing and generates a PARAM LST job control 
statement. If you do not use this keyword parameter, the assembly listing 
contains a source, object, cross-reference, and diagnostic listing. You can specify 
LST options in either of two ways: 

option 
Specifies a single option. 

(opt-1, ... ,opt-n) 
Specifies more than one option. The parentheses are required. 

The options are: 

N 

NC 

ND 

NR 

DBG 

Specifies that no assembly listing is produced. 

Specifies that no cross-reference listing is produced. 

Specifies that no diagnostic listing is produced. 

Specifies that the cross-reference listing is to contain only symbols that 
each have at least one reference. The NC option, if specified with NR, 
always overrides it. 

Specifies the proc/macro debug mode feature, which shows the expansion 
of any macro or proc called within the use program. Source code is listed 
twice and shows any appropriate substitutions. Any statements causing 
error diagnostics show the exit line in error. For more information, see the 
LST keyword parameter discussion in Appendix F. 

SCR1= and SCR2= 
The assembler needs two scratch work areas to perform its calculations. 
Normally, the SYSRES device is used for one file and the volume containing the 
job $Y$RUN file for the other file. This is what is generated by default. But, you 
can use a different volume if desired. 

SCR 1 =vol-ser-no and SCR2=vol-ser-no 
Specify the volume serial numbers of the work files. The default for SCR 1 is 
SYSRES, and the default for SCR2 is the job's $Y$RUN file. 

ALTLOD= 
Identify the library file from which the assembler will be loaded if it is other than 
the $Y$LOD file on SYSRES . 

(vol-ser-no,label) 
Specifies the name of the library file from which the assembler will be loaded 
and the volume serial number of the volume containing that file. 



----------------~-- -- - --- ------- ---

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-10 
Update B 

(RES.label) • 
Indicates that the assembler is to be loaded from the file identified by label on 
SYS RES. 

(RUN.label) 
Indicates that the assembler is to be loaded from the file identified by label on 
volume containing the job's run library file ($Y$RUN). 

(*,label) 
Indicates that the assembler is to be loaded from a cataloged file specified by 
label. 

29.3.2. Assemble and Link-Edit (ASML) 

When you assemble and link-edit your program, you create and name an object module 
and a load module. The load module is temporarily stored in the job's $Y$RUN file. The job 
is not executed. You only assemble and link-edit without executing if you are referencing 
something in your program that is defined in another program. For example, you may have 
external references (EXTRN) and supervisor routines (DUMP), etc. At link-edit time, cross­
referencing between object modules is completed and loose ends are tied together. If you 
can link-edit without error, you are one step closer to completing the job. 

The load module is saved temporarily in the job $V$RUN file, thus enabling all separate • 
object modules to communicate while the job is being run. Once the link edit is complete, 
the load module is removed from $Y$RUN. The load module can be stored permanently as 
discussed in the linkage editor portion of the system service programs user guide. It is 
important to realize that you are using more main storage, for a longer period of time, 
when you assembly and link than when you just assemble. When you use the ASML jproc 
call statement, you cannot use the OUT parameter to define an output library and save the 
generated object module. 

29.3.2.1. ASML Jproc Call Statement 

The format of the ASML jproc call statement generates an assembly and then 
automatically link-edits the object module. The options shown are described in 29.3.1 .1. 
Again note that the OUT option is not included. 

I I [ sym boJ] ti.ASM Lti. 

t l
(vol-ser-no,label))] 
(RES) 

N= (RES.label) 
(RUN.label) 
(*,label) 

(continued) • 



• 

• 

• 

UP-8913 

,LIN= 

,COPY= 

SPERRY UNIVAC OS/3 
ASSEMBLER 

vol-ser-no-1,label-1 
RES,label-1 
RUN,label-1 
* ,label-1 
N 

vol-ser-no-1,label-1 
RES,label-1 
RUN,label-1 

[ 
LST= Joption }] 

' \(opt-1, ... ,opt-n) 

[.scR1={ vo.no} J 
[.sCR2={vo-o} J 

[ I 
(vol-ser-no,label) IJ 
(Rl;S,label) 

ALTLOD= (RUN.label) 
(*,label) 
w···x···.ll··:·v:.··;·; 
; ...••..••.. 

vol-ser-no-2,label-2 · 
RES,label-2 
RUN,label-2 

vol-ser-no-2,label-2 
RES,label-2 
RUN,label-2 
*,label-2 
N 

111:· 

29-10a 
Update B 

This jproc call statement is useful when you are still testing your program, since it lets you 
see the output of your job without reserving a file for it. Once the job is executing 
properly, you can allocate a file and store the load module by using the linkage editor. This 
jproc call statement is also useful for infrequently run jobs . 



• 

• 

• 



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-11 
Update B 

The functions and use of the linkage editor are explained in the system service programs 
user guide. There also is a jproc for executing the linkage editor, just as there is one for 
executing the assembler. This jproc call allows you to do more with the generated load 
module than either the ASML or ASMLG jprocs, such as storing the load module in a 
library. (This does not mean you cannot store your load module when you use either the 
ASML or ASMLG jproc call statements; it only means you cannot do it by the jproc call 
itself). You also can use the LINKOP linkage editor control statement but this involves 
more coding, and the jprocs are designed to reduce coding. The jproc call statement for 
the linkage editor is included in the interactive job control user guide. 

29.3.3. Assemble, Link-Edit, and Execute (ASMLG) 

When you use the ASMLG jproc call statement, you create and name both an object 
module and a load module, temporarily store it in the job $Y$RUN file, and then execute it. 
The load module is stored in the job $Y$RUN until execution of the job is completed. You 
cannot use the ASMLG jproc call when the system has the shared data management 
feature because job control must first scan the load modules in $Y$LOD for this feature. 
The GO option associated with the ASMLG jproc call cannot be used. If you use the ASM 
jproc call with a separate LINK jproc call or the ASML jproc call, and want to execute the 
program using the shared data management feature, you must provide a separate EXEC 
statement. 

29.3.3.1. ASMLG Jproc Call Statement 

The format of the ASMLG jproc call statement generates an assembly, creates a load 
module, and executes your program. The options shown in this format are described in t 
29.3.1.1. Notice, however, that the ALTLOD parameter default is RUN,$Y$RUN when 
using the ASMLG jproc call statement. The OUT keyword parameter does not apply to the 
ASMLG jproc call statement, only to the ASM jproc call statement. 

II [symbol] .6.ASMLG.6. 
[ { 

lun [,dest] }] 
PRNTR= ·.·.· •. N .......... I ..... dest] · 

:11[,dest] 

t l
(vol-ser-no,label))] 
(RES) 

IN= (RES,label) 
(RUN,label) 
(*,label) 

,LIN= 

,COPY= 

vol-ser-no-1,label-1 
RES,label-1 
RUN,label-1 
* ,label-1 
N 
I fl I .. !' 

vol-ser-no-1,label-1 
RES,label-1 
RUN,label-1 
* ,label-1 
N 
1§$i$lr'$SRJ; 

vol-ser-no-2,label-2 · 
RES,label-2 
RUN,label-2 

, *,label-2 
N 

1:rnm.:111 
vol-ser-no-2,label-2 
RES,label-2 
RUN,label-2 

(continued) 



UP-8913 

NOTE: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

[ LST= {option }] 
' (opt-1, ... ,opt-n) 

[.sCR2={volgJff".o } J 

[ I 
(vol-ser-no,label) )] 
(RES.label) 

AL TLOD= (RUN.label) 
(*.label) -·•II' 

29-12 
Update B 

Calling the ASML or ASMLG jproc mor'e than once in a single job may create 
unpredictable results. As called by either of these jprocs, the linkage editor includes all 
object modules currently residing in the job $Y$RUN file, even those modules generated 
by ASML or ASMLG jprocs called earlier in the job. In this way, you may accidentally 
include object code that has no place in your intended program. To avoid this problem 
you should: 

1. Call only one ASML or ASMLG jproc per job; or 

2. Assemble individual object modules separately using the ASM jproc, then link the 
modules together with one of the linkage editor jprocs described in the current 
version of the job control and system service programs user guides; these linkage 
editor jprocs give you more control over the generated load module. 

29.4. START-OF-DATA JOB CONTROL STATEMENT (/$) 

A start-of-data job control statement must precede the first card of the source program 
or any macros being submitted with the source program. 

LABEL 
1 

t:.OPERAT I ON Li 
10 16 

II JOB MYPROG 
II ASM 

END 
I* 

OPERAND 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-13 
Update A 

• 29.5. FOLLOWING THE SOURCE DECK 

• 

Following the END card in the source deck, you need job control cards to tell the computer 
that you have completed part or all of your job. 

29.5.1. End-of-Data Job Control Statement (/*) 

An end-of-data job control statement follows the END directive of the source program. 

II JOB MYPROG 
II ASMLG 
1$ 
PROGNM START 0 

END 

29.5.2. End-of-Job Control Statement (/&) 

An end-of-job control statement terminates the job which was started by the last JOB 
control statement. It indicates that all job steps have been completed . 

LABEL 
1 

II JOB 
II ASM 
1$ 
PRO GA 

I* 
11 ASt1 
1$ 

LOPERATIONL 
10 

COMSTOR 

START 

mo 

PROGB START 

I* 
I& 
II FIN 

END 

OPERAND 
16 

• 29.5.3. Terminate-the-Card-Reader Job Control Statement (//FIN) 

A terminate-the-card-reader job control statement ends a card reader operation. This 
statement follows the end-of-job control statement as shown in the coding form in 29.5.2. 



t 

UP-8913 SPERRY UNIVAC OS/3 29-14 
Update B ASSEMBLER 

29.5.4. Setting the UPSI Byte 

If any errors are detected in your program while it is being assembled, the assembler sets 
the User Program Switch Indicator (UPSI) byte according to OS/3 system standards to 
indicate the type of errors that occurred. 

UPSI Byte Setting 

Bit 0 1 (X'80') 

0 

Bit 1 1 (X'40') 

0 

Bit 2 1 (X'20') 

0 

NOTE: 

Meaning 

Catastrophic errors were detected in the source program 
that prevented completion of the requested function. An 
object module was not generated. 

No catastrophic errors were detected. 

Serious errors were detected that may have affected (but 
not prevented) the completion of the requested function. 
An object module was generated but the results could be 
unpredictable. 

No serious errors were detected. 

Diagnostic errors were detected but the completion of the 
requested function was not affected. The source program 
contains a legal but potentially undesirable situation. An 
object module was generated. 

No diagnostic errors were detected. 

In the event of a program check, the UPS/ byte setting X'BO', in combination with a 
supervisor macro (STXIT), provides continuation to the next job step rather than complete 
termination of the job stream. The job step that resulted in the program check is cancelled 
and a dump is produced. For further details about STXIT, see the supervisor 
macroinstructions user guide/programmer reference. 

• 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-14a 
Update B 

• 29.6. SUMMARY OF JOB CONTROL PROCEDURE 

• 

• 

The following card deck sketches and sample printouts demonstrate the difference in an 
output listing when the same source program is assembled; assembled and link-edited; 
and assembled, link-edited, and executed in three separate steps. 

29.6.1. Assembly 

The following source deck requests an assembly: 

my 

source 
program 

II FIN 

END BEGIN 

PROG START 0 

I I ASM LST=NC 

II JOB ASSEMBLE 

The listing produced by the assembly source deck is as follows. The headings are 
explained in Section 28 . 



• 

• 



e 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-15 

UNIVAC SYSTEM OS/3 ASSEMBLER 
CATE- Su/Ul/07 TIME- 09.45 

ASSEHBLER CONTROL STATEMENTS ENCOUNTERED ANO PROCESSED AS FOLLOWS­

EXTEPNAL SYHBOL DICTIONARY 
SY HbOL, TYPE, ESIOo ADDRESS, 

PROG 
OUT 
OU TR I6 

CSECT 01 
LNTRY 01 
ENTRY 01 

uO.:~uo 
0'10054 
000080 

LOC, OBJECT CODE ADDRl ADDR2 
oocooo 
000000 0560 
oocon2 
000002 47FO 6010 C0012 
000006 CIC2C3C440404~40 
00000£ C5C6C7C840404040 
000016 u203 6u08 600C OOOOA OOOOE 

OUOOIC 
OOCOIC 4 510 6026 £'uo2a 
oooc;2c; 81 
COC021 000054 
0001)24 80 
000025 u00~80 
Ou0028 OA26 
C0002A D207 6:J96 6004 t'0098 ClOO<J6 

OOC030 
OOC030 581~ 60A6 OUCA8 
000034 50on 60AA OOCAC 
000038 9220 1002 OJCl02 

LENGTH, 

uoooao 

LINE SOURCE STATEHENT 
1 PROG START ~ 
2 BEGIN BALR 6,0 
3 USING •,6 
4 BRANCH B ••lb 
5 (JC CL8'ABCD' 
6 DC CL8'EFGH' 
7 HVC BRANCH+8l41,BRANCH•l2 
8 OPEN OUT, l OUT RIB I 
9• CNOP C,4 

!Cl• BAL 1 ·••12 
11 • uC X'81' 
12• DC ALJIOUTI 
13• DC X'Sf"'' 
14• DC AL310UTRIBI 
15• SVC 38 IS SUE SVC 
16 MVC BUF l 8 I ,BRANCH•4 
17 OH OUT OUT ,BUF 
18. DC CY IOI • 
!9• L l,=AlOUTI • 
20• L L, =Al BUF I • 
21• HVI 211) 'x' 2(1' • 

OS/3 

SET ALIGNHENT 
LOAD RU, CDIB ADDRESS 
LOAD R'lS, WORKAREA ADDRESS 

SET FUNCTION COOE 
OOC03C 9201 IJ'B 00003 22• HVI 3111, 0 • SET FUNCTION CONTROL BYTE I 

23• SC ALL 47 
000040 24• DS OH 
COC040 OAEF 25• SVC 239 
000042 I~ 26• DC Yllll6l 
OOC043 2F 27• DC YLI 14 71 
000044 uH9 28• SVC 25 
COCu4b 07C~ 29• f'.OPR ~ 
000048 OAIC 30• SVC 28 
000048 31• ORG •-2 
000048 uA85 32• SVC 13 3 

33 CLOSE OUT 
OU004A 34• oc ~y (0) 

COC04A 5810 6JA6 '100AB 35• L 1, =Al OUTI LOAD Rl oITH FILENAME ADDRESS 
00004E OA27 36• SVC 39 ISSUE SVC 

37 EOJ 
000050 .38+ OS OH 
OUC050 UAIA 39+ SVC 26 

40 OUT CDIB 
41• ENTRY OUT 

000054 42+ OS UF 
000054 112C ,.ll3+0UT DC X'll2C' • CDIB ID AND LENGTH 
000056 0000 44• DC 2X '0' 
000058 D6E4E3404040~n4o 45• DC CLB'OUT' • FILENAHE 
oor.060 0000000000000000 46• DC SF 'IJ' 

47 OUTRIB RIB BFsz:16,IOAl=Buf,RCSZ=16,TYPEFLE=OUTPUT,RCfH:FIXUNB 
48+ PRINT OFF 

564• PRINT ON 
000080 565+0UTRIB OS OF 

566• ENTRY OUTRlB 

LOC, OBJECT CODE ADORI ADO R2 LINE SOUR.CE STATEHENT OS/3 
Oi;Ci18U AOOO 567• DC AL2lRBSSTRTI • RIB START 
OOC082 0402 568• DC AL2lRBSBFSZl • SFSZ HIC 
OOC084 0010 569• oc ALlL'RBSBFSZll161 • SUFFER SIZE 
OOC08c> OB03 ·570• oc AL21RBUOAll • IOAl HIC 
000088 000098 571 • DC ALIL'RBSIOAll lBUF-OI • IOAI AOORHS 

572• EXTRN BUF 
COCOBb 220Z 573• DC ALZIRBSRSZI • RCSZ HIC 
000080 uClO 574• DC ALlL'R85RSZlll61 • PCSZ 
00008F 2101 575• DC ALZIRBSRCFHI RCFH HIC 
000091 C'f 576• oc ALlL'RBSRCFHllRBSFXUNI • RCFM=FIXUNB 
OOC092 5601 577• DC AL21RBSTYPEI • TYPEFLE HIC 
oooc;94 BO '510• uC ALlL'RBSTYPEllRBSOUTl • TYPEFLE=OUTPUT 
000095 AID~ 579• DC ALZlRBSRENDI • RIB ENO 
OOC098 580 DS OF 
OOOU98 581 BUf OS 2Ll6 

582 ENO 
COCOAS uoorioos4 583 =AlOUTI · 
ODCIJAC OOOOJ098 584 =AlBUFI 
NO STATEMENTS FLAGGED IN THIS A SSE.MBL Y -80/01/1.)7 09. 53-

VER791U26 

PAGE 

PAGE 

ASH 80/01/07 

Pi000960 
Pi00115D 
P~001160 
PiOOll 70 
Pi001180 
Pi00119U 
p,;;002110 

PiI00690 
P~IU0710 
P;;IoD740 
PwIU0890 
PiI00891 
PcilI00920 
PSS00810 
P$SU1380 
P$SOl390 
P$SQl395 
PSS01590 
PSS01650 
PSSUl660 

Piii000280 
P;ooozu20 
Pcil002030 

EOJ00050 
EOJOOU70 

RIB00~3D 
RIBD045D 
RIBD0460 
RI80048D 

PAGE 2 

ASM 80/Dl/07 
RIBU050C 
RIB0141Ci 
RIB0142D 
RIBOZOOO 
RIBOZOIO 
RIBOZ040 
RIB05100 
RIB05110 
RlBU5660 
RIB05670 
RIB19970 
RIBl9990 
RIB3ll30 



UP-8913 

29.6.2. Assembly and Link-Edit 

SPERRY UNIVAC OS/3 
ASSEMBLER 

The following source deck requests an assembly and link-edit: 

my 

source 
program 

II FIN 

END BEGIN 

PROG START 0 

II ASML LST=NC 

II JOB ASSMBLL 

The listing produced by this deck is as follows: 

Assembly Listing: 

UNIVAC SYSTEM OS/3 ASSEMBLER 
DATE- 8~/Ml/21 TIHE- 02,17 

ASSEMBLER CONTROL STATEMENTS ENCOUNTERED ANO PROCESSED AS FOLLOwS-

TYPE. ESID. ADDRESS, 

PROG 
OUT 
OUTRIB 

CSECT 01 
ENTRY Ill 
ENTRY 01 

DOOOUO 
UOODS4 
aoooso 

LOC. OBJECT CODE ADORl ADDR2 
aoaooo 
DD DODO 051>0 
CIOCIDD2 
000002 4 7FO 6010 00012 
DD DODI> ClC2C3C4404040qO 
DllDDDE CSCl>C7C840'+DqD'+O 
000011> 0203 6008 l>DOC ODODA OOOOE 

ODDO IC 
lllJOOlC '+SH! 602& 00028 
1100020 81 
COllD21 0000~-
OD002q 80 
000025 000080 
000028 OA26 
Dll002A 02(;7 6iJ96 600'+ 00098 00006 

0011030 
11011030 5810 60A& CODAS 

EXTlRNAL SYMBOL DICTIONARY 
LENGTH• 

~ODOBO 

ltllt ·soURCE STATEMENT 
1 PROG START 11 
2 BEGIN BALR 6,0 
3 USING •,6 

-BRANCH B ••16 
5 DC CL8 'ABCD' 
6 DC CL8'EFGH' 
7 HVC BRANCH•8(ql,BRANCH•l2 
8 OPEN OUT,IOUTRI81 

A 9+ CNOP 11, .. 
A 10+ bAL 1.••12 
A 11+ DC x•a1 • 
A .12+ DC AL310UT I 
A 13+ DC x•ao• 
A l'++ DC Al310UTRIB I 
A 15+ SVC 38 ISSUE SVC 

16 HVC SUF (8 >,BRANCH•" 
17 OM OUT OUT ,BUF 
18+ DC ~Yl('I • 
19+ L l,:AIOUTI • 

SET ALIGNMENT 
LOAD R!S, CDIB ADDRESS 

29-16 

VER791021> 

PAGE 

PAGE l 

OS/3 ASH 10101/11 

Pi000960 
Pi001150 
PiODllH 
PiOOU 711 
PiOOlllO 
Pi001190 
PiOD2170 

Pi1001>90 
Pi10071D 001103'+ 5800 60AA OUOAC 20+ L ~,:AIBUFI • LOAD RDS, WORKAREA ADDRESS Pi1007'10 000038 9220 1002 !'0002 21+ A MVI 2c11.x•20• • SET FUNCTION CODE Pi1111089D DDC03C 9200 1003 00003 A 22+ MVI 3111,0. SET FUNCTION CONTROL BYTE 1 Pi11D0891 A 23+ SCALL '+1 Pil0092D 0000'+0 B 2'++ OS ~H PSS00810 0000'+0 OAEF B 25+ SVC 239 PSSD138D COD0'+2 10 B 26+ DC Yll I 161 PSSD139D DDCQq3 2F B 27+ DC YL11~71 PSSOl 395 0000'+4 till 9 B 2s. SVC ZS PSSD1590 00004& 0700 B 29+ NOPR ~ PSS011>5D CDDD'+S OAlC B 30+ SVC 28 PSSD11>6D ODC0'+8 A 31+ ORG •-2 

0000'+8 DABS A 32+ SVC 133 
33 CLOSE OUT 

OOOO'+A 3~. DC CYIDI Pii000280 ODCDO 5810 60Ab (100A8 35+ L 1,:A I OUT I LOAD Rl WITH FlLENAHE ADDRESS PilOD2112D 



UP-8913 

llOOD4E OA27 A 36+ 
37 

OOOD5D 38+ 
OD0050 OAlA 39+ 

40 OUT 
H+ 

000054 A 42:+ 
000054 ll2C A 43j+OUT 
000056 DllDO A .... I. 
ll00058 D6E4E340404D4040 A 45+ 
000060 OODDDODOOODDDOOD A "t 47 OUTRIB 

A .... 
A 586+ 

OOOD80 A S87+0UTRIB 
A SH• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

SVC 39 ISSUE SVC 
EOJ 
OS ~H 
SVC 26 
CDIB 
ENTRY OUT 
OS !if 
DC x• 112c• • 
DC 2X 'll' 
DC CL8'0UT' • 
DC ar•o• 

29-17 

CDIB ID AND LENGTH 

FILENA"E 

RIB BFSZ=l6,IOAl=BuF,RCSZ=16,TYPEFLE:ouTPUT,RCF":FIXUNB 
PRINT OFF 
PRINT ON 
OS OF 
ENTRY OUTRIB 

PiOD2030 

EOJ00050 
EOJ00070 

RIBOOSlO 
RIB00530 
RIBOOSllO 
l!IB0056'D 

PAGE 2 

LOC. OBJECT CODE ADDRl ADORZ LINE SOURCE STATE"ENT OS/3 AS" 80/01/21 
RIBDOSIO 
RIBOlSIO 
RIB01S90 
RIB02'11tD 
RIBD21tSO 
RIB02"80 
RIB05890 
RIBDS90D 
RIB068,1D 
RIB06820 
RIB21210 
RIB21230 
-RIB33980 

0DCD80 AOD() A 589+ 
COOD82 04D2 A 590+ 
ODC084 uo1n A 591+ 
COCCJ86 0Bu3 A 592+ 
ODOD88 0001!98 A 593+ 

A 594+ 
CDDIJ8B zzoz A 595+ 
DDOD8D 0010 A 596+ 
ODCC8F 2101 A 597+ 
0DOD91 04 A 598+ 
CDCU92 5601 A 599+ 
000094 80 A 600+ 
000095 AlC'J A 601• 
OD0098 6D2 
OOOD98 603 

604 
OOOOA8 COOODD54 6D5 
OD OD AC ll01l0D098 6D6 

LINE ERROR CODE MESSAGE 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 

Linkage Editor Listing: 

UNIVAC SYSTE" OS/3 LINKAGE EDITOR 
OATE- 80/01/21 {IME- 02.27 

BUF 

DC ALZIRBSSTRTI • RIB START 
DC ALZIRBSBFSZI • BFSZ HIC 
DC ALIL'RBSBFSZll161 • BUFFER SIZE 
DC AL2IRBSIOA11 • IOAl HIC 
DC ALIL'RBSIOAlllBUF-ul • IOAl ADDRESS 
EXTRN BUF 
DC AL21R8SRSZI • RCSZ HIC 
DC AL IL' RBSRSZ 11161 RCSZ 
DC AL21RBSRCFMI RCFM HIC 
DC ALIL'RBSRCFMllRBSFXUNI • RCFM:FIXUNB 
DC AL2 IRBSTYPE I • TYPEFLE HIC 
DC ALIL'RBSTYPEllRBSOUTI • TYPEFLE:OUTPUT 
DC ALZIRBSRENDI • RIB END 
OS ~F 
OS ZL 16 
ENO 

:AIOUTI 
:AcBUFI 

DIAGNOSTICS PAGE 

-80/01121 DZ.27-

,, ....... 
CONTROL STREA" ENCOUNTERED AND PROCESSED AS FOLLOWS-

•GENERATED• LOACH 
PROG •RUN LIBE MODULE• 

•DEFINITIONS DICTIONARY• 

SYMBOL• TYPE, PHASE. ADDRESS. SYMBOL. TYPE. PHASE. ADDRESS. SY"BOL, 

KESALP 
OUTRIB 

ENTRY ABS 
ENTRY ROOT 

0000008~ 
DOOOOU80 

MES RES 
PROG 

LOAD MODULE - LNKLOD 

PHASE NAME TRANS ADDR FLAG LABEL 
LNKLODUO NODE - ROOT 
••• START OF AUTO-INCLUDED ELEMENTS -
••• END OF AUTO-INCLUDED ELEMENTS -

- 80/0l/Zl 02.27 - PROG 

OOO!JOOOD 

PROG 
OUT 
OUT RIB 

B - BLK DATA CSECT D - AUTO-DELETED 
L - DEFERRED LENGTH M - MULTIPLY DEFINED 
S - SHARED ITEM U - UNDEFINED REF 
•ANY OTHER CODES REPRESENT PROCESS ERRORS• 

LINK EDIT OF 'LNKLOD' COMPLETED 
DATE- 80/01121 TI"E- D2o28 
ERRORS ENCOUNTERED- DODO UPSI- x•oo• 

•• 

ENTRY ABS DDOOODBO 
CSECT ROOT DDOOOOOO 

ALLOCATION KAP •• 

SIZE - DDOODDBD 

TYPE ESID LNK ORG 
DDDOOODCI 

OBJ 
CSE CT 01 ODODOOOD 

ENTRY 01 DDOD0054 
ENTRY Dl D0000080 

FLAG CODES -

OUT 

HIAODR 
OOOODDAF 

ODOOOOAF 

E - EXCLUSIVE 'A' REF G - GENERATED EXTRN 
N - NOT INCLUDED p· - PRO"OTED CO"MON 
V - VCON ITEM 

TYPE, PHASE, ADDRESS, 

ENTRY ROOT DOl.!000511 

LENGTH OBJ ORG 
00000080 

00000080 DOllODOllO 
000000511 
00000080 

I - INCLUSIVE 'V' REF 
R - SHARED REC PRODUCED 

The definitions dictionary and allocation map are explained in the system service programs 
user guide. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29.6.3. Assembly, Link-Edit, and Execution 

The following source deck requests an assembly, link-edit, and execution: 

my 
source 

program 

II FIN 

PROG START 0 

//ASMLG LST=NC 

II DVC 20 II LFD OUT 

II JOB ASSMBLG 

29-18 

The listing produced by this service deck is the same as the assembler and link listing, but 
it includes the results of the execution. This program moved letters and printed out the 
field containing ABCDEFGH. 

29.7. RUNNING ASSEMBLER FROM A WORKSTATION 

OS/3 provides you with the capability of assembling, link-editing, and executing your 
program interactively. This means two things: 

1. you can build a control stream to execute the assembler, linkage editor, and user 
programs at a workstation, as opposed to punching them on cards or writing them to 
a diskette; and 

2. you can initiate the running of the control stream from the workstation, as opposed to 
asking the system operator to run your job for you. 

The easiest way to build a control stream from a workstation is by using the job control 
dialog. The job control dialog is an interactive facility of OS/3 that allows you to describe 
your job's requirements in English, in response to a series of questions, and then produces 
as its output, the job control stream needed by OS/3 to run your job. The control stream 
produced by the job control dialog is virtually identical to the control stream that you 
would need to produce if your were running your job in a batch environment. Only now, 
you do not have to be concerned with the intricacies of the job control language. The job 
control dialog eliminates this requirement. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

29-19 

After you have answered all the questions presented to you by the job control dialog, it 
builds a control stream and stores it in a permanent library file for you. From here, you 
can initiate its running by simply keying in the appropriate system RUN command, or if 
you'd rather, you can change the contents of the control stream using another interactive 
facility of OS/3 called the general editor. 

The procedures for activating the job control dialog, initializing the running of a job, and 
activating the general editor are described in detail in the OS/3 workstation user guide. 

More detailed descriptions of the job control dialog and the general editor are presented in 
the interactive job control user guide and the general editor user guide, respectively. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

30-1 

30. Example Macro Definitions 

This section gives examples of both PROCs and MACROs. The explanation of these 
examples places the primary emphasis on the macro source code instead of on the 
resulting inline expansion source code. Descriptions of the macro definitions resolve 
around variable parameter replacement and variable inline expansion code caused by 
conditional assembly statements. Each description is accompanied by the macro source 
code and an example call with the inline expansion code. 

30.1. SMALR/LARGR PROC (POSITIONAL PARAMETER 0) 

The following example PROC selects either the smallest or largest of three positional 
parameters submitted in the call instruction. Two different mnemonics are provided for 
indicating whether the smallest or largest value is selected. The call SMALR is used for 
smallest value selection and the call LARGR is used for largest value selection. This PROC 
is a good example of using positional parameter 0. 

PROC Source Code: 

&OHY 
SHALR 
LA RG R 

tOHY 

PROC 
NAME 
!'.iAHE 
A If 
ZAP 
CP 

{.I I If 
ts NH 
BlllL 
llll'tl NE Ill.ERR 
t#lll,tlt21 
c.#111 1 Ul31 
••10 
UIU,C.1131 
Ull 1 1 tll 111 
••10 
Ulll1tlllll 

Test for 4 parameters. Branch to print error message if untrue. 
Select first value. 
Compare to next value. 
BNH or BNL or 
Select next value. 
Compare to next value. 
BNH or BNL or 
Select next value 

.ERR 

t I lO I 
ZAP 
CP 
tllO I 
ZAP 
HE.XIT 
MNOTE 
ENO 

'IMPROPER PARAMETERS--NO GENERATION' 

lnline Expansion Code (smallest value): 

S"ALR 
ZAP 
CP 
BlllH 
ZAP 
CP 
BNH 
ZAP 

SELECT 1 VAL1 1 VAL2,VAL3 
SELECT 1 VAL1 
SELECT 1 VA L2 
••10 
SELECT 1 VAL2 
SELECT, VAL3 
••10 
SELECT 1 VA L3 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

lnline Expansion Code (largest value): 

LARGR 
ZAP 
CP 
BNL 
ZAP 
CP 
BNL 
ZAP 

5ELECT 1 VAll1VAL2 1 VAL3 
SELECT 1 VA Ll 
SELECT 1 VA L2 
••10 
SELECT1VALZ 
SELECT, VA L3 
••10 
SELECT 1 VA L3 

30-2 

Operand 2 of the PROC statement indicates there are four positional parameters that can 
be passed from the call instruction, and &# is the symbolic parameter that references the 
positional parameters. This PROC requires all four positional parameters from the PROC. 
Otherwise, no inline expansion takes place and the message coded in the MNOTE is 
printed. 

The AIF conditional assembly statement tests to see whether the four parameters are 
present. Whether the smallest or largest value is selected from the call instruction is 
dependent upon generation of the BNH or BNL instruction in the inline expansion code. 
This is controlled by the call-names SMALR or LARGR used in the two NAME statements. 
SMALR implements BNH for positional parameter 0 and LARGR implements BNL. 

The two model statements referencing positional parameter 0 (&#(0)) are the instructions 
that determine smallest or largest value selection. The inline expansion code shows that the 
SMALR call instruction generates BNH in place of &#(0) and the LARGR call instruction 
generates BNL. 

Positional parameter 1 of the call instructions indicates an area to receive the selected 
value. It is referenced in the model statements (&#(1)) in operand 1 of the add instructions 
and compare instructions. Positional parameters 2 through 4 of the call instructions are 
the values to be selected. The model statements that perform the calculations for finding 
the smallest or highest value have references to positional parameters 2 through 4 (&#(2) 
through &#(4)). 

The MEXIT statement ends PROC processing at this point in the PROC, so the message 
isn't printed. The MNOTE is printed only if there aren't four positional parameters in the 
call instruction. 

30.2. SMALL6/LARGE6 PROC (00 LOOP) 

The following example PROC selects either the smallest or largest of the positional 
parameters in the call instruction, just like the SMALR/LARGR PROC. This PROC 
broadens the usage range by allowing the caller to specify from 3 to 100 values instead of 
limiting the caller to only 3 as did the SMALR/LARGR example PROC. There are two call 
mnemonics provided: the SMALL6 is used for small value selection and the LARGE6 is 
used for large value selection. The two mnemonics are provided via positional parameter 
0. The SMALL6/LARGE6 PROC shows a design using DO loops to provide variable inline 
expansion code. The DO range is determined by the number of values in the call 
instruction; the more values in the call, the more lines of source code generated. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

PROC Source Code: 

&OHY 
SH Al lb 
LA RC> Eb 

&OHY 
&CT 

PROC 
NAME 
NAME 
00 
ZAP 

&P 1 100 

~H 
BNL 
N' t.P>2 
t.P 11 I, t. Pt 2 I 

00 
CP 
t. P tO I 
ZAP 

N't.P-2 } 
C.Pll1 1 t.Plt.CT+21 
••10 
t.Pll 1 1 tPC t.CT+2 I 

Inner DO loop. The instructions CP, BNH/BNL, 
and ZAP will be generated the number of positional 
parameters in the call instruction minus two. 

N'&P<3 

E NOO 
E NOO 
DO 
PNOTE 
E NOO 
ENO 

'NOGEl\l','HIN11'1Ul1 OF T>iREE PARAM::TERS REQUIQEO' 

lnline Expansion Code (smallest value): 

SHALLb SELECT 1 YAll 1 VAL2 1 VALJ,VAL4 1 VALi 
ZAP SELECT 1 VAL1 
CP SELECT 1 YAL2 
BNH ••10 
ZAP SELECT 1 YAL2 
CP SELECT 1 VAL3 
BNH *+10 
ZAP SELECT,VAL3 
CP SELECT 1 VAL4 
B NH ••10 
ZAP SELECT 1 YAL4 
C P SELECT 1 VA LS 
BNH ••10 
ZAP SELECT,VALS 

} First inner DO generation 

} Second inner DO generation 

} Third inner DO generation 

} Fourth inner DO generation 

lnline Expansion Code (largest value): 

l A RGE b SE LE CT 1 VA L1 1 VA L.2 , I/ AU, VAL 4 , I/ Al> 
ZAP SELECT 1 VAL1 

c p s E LE c T ' "AL 2 I 
BNL ••10 r 
ZAP SELECT 1 VAL2 

BNL ••10 2 

Number of parameters = 6 

DO iteration= 6-2 = 4 

DO N'&P-2 

CP SELECT 1 VAL3 }, 

ZAP SELECT 1 VAL3 

CP SELECT 1 \IAL4 } 
3 

Outer DO processed because number of parameters 
are more than 2 (DO N'&P > 2). 

B NL 
z•AP 

CP 
BNL 
l AP 

••10 
SELE.CT,VAL4 
SELE.CT, WA L5 ) 

4 
••ID J 
SELECT 1 \IAL5 

30-3 

Operand 2 of the PROC statement indicates that the user can code up to 100 parameters 
in the call instruction while the symbolic parameter is &P. Two mnemonic codes can be 
used to call this PROC, as coded in the label field of the two NAME statements. Each is 
used to implement different BAL instruction codes via positional parameter 0 (&P(O)). In 
this PROC, positional parameter 0 is referenced only one time, while in SMALR/LARGR it 
was referenced twice. This is because the inner DO loop generates the required number 
BNH/BNL instructions to process the number of values coded in the call instruction. Of 
course, the inner DO is never processed unless the outer DO is. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

30-4 

In order for the outer DO to be processed, there must be more than two positional 
parameters in the call (DO N'&P>2). If there are two parameters or fewer, a zero is 
generated in the outer DO operand and the DO with the PNOTE is generated. 

A 1 is generated in the operand field of the PNOTE DO because there are less than three 
parameters (DO N'&PL3), and the message in the PNOTE is generated. The call instruction 
for the SMALL6/LARGE6 example PROC must have a minimum of 3 positional 
parameters and can have a maximum of 100. This gives a range of 1 to 98 values to be 
tested for the highest or lowest value. If you compare this with the SMALR/LARGR 
example PROC. you can see that the SMALL6/LARGE6 PROC provides much more than 
SMALR/LARGR and has only one more line of code. 

30.3. BLANK MACRO (VARIABLE INLINE EXPANSION CODE) 

In the following example, MACRO blanks (X'OO') the content of a specified number of 
bytes. There are only two positional parameters that can be submitted with the BLANK call 
instruction, and one is optional. Positional parameter 1 indicates the starting address of 
the area to be cleared, and positional parameter 2 specifies the number of bytes to be 
cleared. If the number of bytes in the area is less than 257, parameter 2 is optional. The 
BLANK MACRO is an example of variable inline expansion code. There are three basic 
sets of code that can be generated from this MACRO. Positional parameter 2 is used to 
determine which set is generated. 

MACRO Source Code: 

&OMY 

tOHY 

.Al 

tLAl 

• A 2 

P1A.CRO 
l:!LANK u1,u2 
LCLA f.LAI 
DO tN'&S\'SLIST>2J++IN't5rSLIST<ll 
HNOTE 7 1 'IH~ROPER PARAMETERS - NO GEN~RATION' 

HEXIT 
ENDO 
00 
A IF 
XC 
MEXIT 
HNGTE 
HEXIT 
E NOO 
A If 
SE TA 
L 
DO 
xc 
LA 
SEU 
ENOO 
DO 
xc 
ENDO 
HEXIT 
HNOTE 
MENO 

N' f.SYSL IS T=l 
IL'f.11 GT 25&1.Al 
UJ,Ul 

b,'LENGTH OF &11>25& - PARA"1: Z MUST BE USED• 

tT'UZ NE •N•l.A2 
f.12 
15,=ACtll J 
f.12125& 
0125&,J 5) 1 01151 
15,25&115,01 
tlA1-25b 

tllll>J 
altLAl 1 15J,Ol15J 

8 1
1 PAIU"IETER 2 NOT NU'fERlC' 

Code generated if 
positional parameter 2 
is omitted 

l Code generated for 
) more than 256 bytes 

~ Code generated for less 
than 256 bytes 



UP-8913 

lnline Expansion Code: 

BLANK PRTBF 1 8() 

SPERRY UNIVAC OS/3 
ASSEMBLER 

30-5 

L l 5 •=A I P RT BF I These two instructions were generated from the last DO because 
X C 0 18 0 1 1 5 I , 0 115 I positional parameter 2 is less than 256. 

The prototype statement establishes the call mnemonics as BLANK and indicates there can 
be two positional parameters in the call that are referenced in the body as &#1 and &#2. 
The LCLA declares &LA 1 as an arithmetic set symbol. Set symbols must be declared 
following the heading and preceding any other model statements. 

The rest of the body of this MACRO is sectioned by four DO statements. The first DO is an 
error exit. If either or both expressions on each side of the OR (++) operator are true, then 
no code is generated and the MNOTE message is printed. That is, the numeric attribute of 
the parameter list (N'&SYSLIST) is anything other than 1 or 2, then the blank MACRO will 
not work. 

The second DO is processed only if there is one parameter in the parameter list 
(N'&SYSLIST=1 ). And if the area indicated by positional parameter 1 is greater than 256, 
the AIF statement will shunt the generation of the XC instruction (the blanking operation) 
and print the MNOTE message. If the numeric attribute of the parameter list is 2, then the 
second DO loop is not processed and the AIF after this DO is processed. This AIF tests 
positional parameter 2 (&#2) for a self-defining term; if it isn't, no code is generated and 
the MNOTE is printed. 

The &LA 1 set symbol is set to the value of positional parameter 2, which is the number of 
bytes to be cleared. Register 15 is loaded with the address of area (&#1 ). The next DO loop 
is processed once for every multiple of 256 bytes indicated in positional parameter 2 (DO 
&#2/256). If positional parameter 2 is less than 256, the next DO is processed and the 
last one is not. 

There are three sets of codes that can be generated from the BLANK example MACRO. 
One set is generated if positional parameter 2 is omitted; another if positional parameter 2 
is more than 256; and another if positional parameter 2 is less than 256. 





• 





• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

A-1 
Update B 

Appendix A. Sample Program 

The following list illustrates the steps taken to create, code, and execute a simple 
assembler program. The sample problem is designed to calculate the effect of a $5.00 a 
week bonus on an employee's yearly, weekly, and hourly pay. 

• Flowchart 

The flowchart provides a graphic representation of the logic steps used to solve the 
problem . 

1 thru 4 
HOUSEKEEPING 

10 
STORE WEEKLY 

SETUP PAY 

1 
MULTIPLY BONUS DIVIDE WEEKLY 

BY 52 11 and 12 
PAY BY 40 HOURS 

5 thru 6 

I 
ADD TOTAL 

STORE HOURLY BONUS TO 13 
YEARLY PAY PAY 

7 

1 
STORE TOTAL MOVE TOTAL 

YEARLY PAY 
14 RECORD TO OUTPUT 

AREA 
8 

I 
DIVIDE THE 

9 TOTAL YEARLY 1-- 15 EOJ 
PAY BY 52 WEEKS 

t 



UP-8913 

• 

STMT 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 

21 
22 

23 

24 
25 
26 
27 
28 

29 

Source Code 

SPERRY UNIVAC OS/3 
ASSEMBLER 

A-2 
Update B 

Source code is created to implement the logic flow set forth in the flowchart. In the 
following list, comments have been included to explain what each source statement 
does. 

SYMBOL 

PROGRAM1 
BEGIN 

WORKAREA 

BONUS 
HOURS 
WEEKS 
YEARRATE 

OUTPUT 
EMPLOYEE 

NAME 

WORKNO 
YEARPAY 
WEEKPAY 
HOURPAY 
R6 

OPERATION 
CODE 

TITLE 

START 
BALR 
USlNG 
ZAP 
MP 
AP 
MVC 
DP 
MVC 
ZAP 
DP 
MVC 
MVC 
EOJ 
OS 

DC 
DC 
DC 
DC 

DC 
OS 

DC 

DC 
DC 
DC 
DC 
EQU 

END 

STATEMENT OPERANDS 

'FIRST SAMPLE PROGRAM' 

0 
R6,0 
*,R6 
WORKAREA,BONUS 
WORKAREA,WEEKS 
WORKAREA,YEARRATE 
YEARPAY,WORKAREA+2 
WORKAREA,WEEKS 
WEEKPAY,WORKAREA+1 
WORKAREA,WEEKPAY 
WORKAREA,HOURS 
HOURPAY,WORKAREA+2 
OUTPUT(23),EMPLOYEE 

CL6 

PL2'500' 
PL2'40' 
PL2'52' 
PL4' 1300000' 

23C'' 
OCL23 

CL9'REBEW R D' 

C'N4543' 
PL4'0' 
PL3'0' 
PL2'0' 
6 

BEGIN 

COMMENTS 

Provides the assembler listing with a 
heading. 
Provides a starting point for the program. 
Assigns a base address to the register. 
Assigns a base register to the program. 
Enter bonus rate into work area. 
Multiply bonus rate by 52 weeks. 
Add yearly rate to total bonus. 
Move calculated total to yearly pay area. 
Divide total pay by 52 weeks. 
Move results to weekly pay area. 
Move weekly pay into work area. 
Divide by 40 hours week. 
Move results to hourly pay area. 
Completed record moved to output area. 
End of job. 
Reserve 6 bytes of storage, contents 
unknown. 
Place value 5.00 in two bytes of storage. 
Place value 40 in two bytes of storage. 
Place value 52 in two bytes of storage. 
Place value 13000.00 in four bytes of 
storage. 
Produces 23 bytes of blanks only. 
Symbol "EMPLOYEE" represents next 23 
bytes. 
Produces nine bytes containing 
"REBEWRD". 
Produces five bytes containing "N4543". 
Produces four bytes of zeros. 
Produces two bytes of zeros. 
Produces two bytes of zeros. 
This instruction equates register 6 with 
R6. 
THIS IS THE END OF THE PROGRAM. 

• Job Control Procedure to Assemble 

The following job control statements assemble the source code into an object code 
module. 

Job Control Statements 

II JOB ASSEMBLE 
II ASM 
1$ 

I>'< 
I& 
I I FIN 

Assembler 
source 
code 

Comments 

Assigns a unique name to the program. 
Assembles the source code. 
Signifies the start of the source statements. 

Signifies the end of the source statements. 
Signifies the end of the job. 
Terminates card reader operation. 

• 

• 

• 



• 

• 

• 

UP-8913 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Output Generated by Assembly 

A-3 
Update B 

The program is now assembled and an assembly listing is generated. The assembly 
listing contains warning messages if any errors are detected in the source code. 

UNIVAC SYSTEM OS/3 ASSEMBLER 
DATE- 81112/30 TIHE- 23.09 

ASSEHBLER CONTROL STATEHENTS ENCOUNTERED ANO PROCESSED AS FOLLOWS-

E<TEO~AL SY~90L OICTIONAOY 
SYHBOL. TYPE. Esro. ADDRESS. LENGTH. 

PROGRAHI CSECT OJ ooooou OOJJ7E 

FIRST SAHPLE PROGRAM 

LOC. OBJECT CODE A DORJ ADD R2 LINE SOURCE STATEMENT 

000000 PROGRAM! S TAOT o 
000000 0560 BES IN f)ALQ "6,C 
000002 JSING *,R6 
000002 F 8SI 605E 6044 00040 UJ04b ZAP •ORKAREA,BOllUS 
000008 fCSl 603E 6048 00040 0004A 6 MP ~ORKAREA,WEEKS 

DO DODE FAS.I 603E 604A 00040 0004C 7 p •DRKAREA,YEA•RATE 
000014 020.1 6073 6040 0007 s 00042 8 MVC Y[APPAY,•0RKAREA+2 
OOOOIA FUSI 60.IE 6048 00040 0004A 9 DP •ORK AREA ,WEEKS 
000020 0202 6077 603F 00079 OO:J41 ID HVC ~£E~PAY,~0RKAREA•l 

000026 F 8S2 60.IE 6077 00040 UJ079 II ZAP •ORK AREA ,WEEKPAY 
00002C F OSI 60.IE 6046 00040 00048 12 L:P ~ORK AREA ,HOURS 
000032 0201 607 A 6040 0007C OJ042 13 "VC HO UR P A Y , 1110 RI( ARE A + 2 
000038 0216 604E 6065 oooso 00067 14 MVC OUTPUT(231,EMPLOYEE 

15 EOJ 
DODO.IE 16. OS G'< 
DODD3E OAIA 17• SVC 26 
DOD04D 18 ~OPKAREA OS CL6 
000046 sooc 19 30NUS uC ~L 2 '5 'JG' 
000048 040C 20 "OURS CIC PL 2 '" C' 
00004A 052C 21 JEEK S C·C PL2'52' 
00004C I .SOUOODC Z2 YEAR~ATE or PL4" l 3QCOOO' 
ooooso 4040404040404040 23 OUTPUT LC 23C' 
000067 24 EMPLOYEE GS 0Cc?3 
00006 7 09C~C2CSE6400940 2S ~A~E C:C CL9 ';i E3Ew R D' 
000070 O~F4FSF4F .I 26 ~ORK~O cc C'~ll543' 

DODO 7S ooouoooc 27 YEARPAY SC F'L4' G' 
000079 ooouoc 28 WEEKPAY cC PL 3 '0' 
0000 7C ouoc 29 t-fOURPAY lC FL2' 0' 
000006 30 Pb tCU 6 
000000 31 E ~JD Bt JI~ 

CROSS-REFERENCE 

SYHBOL LENGTH VALUE JEFN SYMBOL LE~GTH 

BEGIN OU002 000000 00003 0031 
BONUS OUD02 OU0046 00019 ooos 
EMPLOYEE 00023 000067 OOD24 0014 
HOUR PAY 00002 00007C 00029 0013 
HOURS 00002 000048 00020 0012 
NAME 00009 000067 00025 
OUTPUT OUOOI ouooso 0002 3 0014 
PRDGR.AHI OUOOl ouoooo oocoz 
R6 ODDO! 000006 00030 0003 0004 
WEEKPAY 00003 0U0079 00028 0010 0011 
WEEKS 00002 00004A OOJZI 0006 0009 
WORK AREA 00006 OU0040 00018 0005 DC Ob 0007 0008 GG09 

0010 0011 C012 0013 
WORK NO OU005 OU0070 00026 
YE ARPAY 00004 000075 00027 0008 
YE ARRA TE 00004 00004C J0022 0007 

D !AGNOSTICS 
LI NE ERROR CODE MESSAGE 

NO STATEMENTS FLAGGED IN TM!S ASSEMBLY -81112130 23.09-

VER8 00922 

PAGE 

PAGE 

OS/3 ASH 81/12130 

EOJOODSO 
EOJD0070 

PAGE 

VALUE OEFN 

PAGE 



t 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

A-4 
Update B 

• Job Control Procedure to Assemble, Link-edit, and Execute 

After the errors in the source code are corrected, the following job control statements 
are added to assemble the code, create a load module, and execute the program. 

Job Control Statements 

II JOB ASSEMBLE 
II ASMLG 
1$ 

1~·: 

I& 
II FIN 

Assembler 
source 
code 

Comments 

Assigns a unique name to the program. 
Assembles, link-edits, and executes the program. 
Signifies the start of the source statements. 

Signifies the end of the source statements. 
Signifies the end of the job. 
Terminates card reader operation. 

• 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Appendix B. 

B-1 
Update B 

Character Conversion 
Codes 

Table 8-1. ASCII (American Standard Code for Information Interchange) Character Codes 

0 1 2 3 4 5 6 7 

0 NUL DLE SP 0 @ p p 

1 SOH DC1 ,© 1 A Q a q 

2 STX DC2 .. 2 B R b r 

3 ETX DC3 # 3 c s c s 

4 EQT DC4 $ 4 D T d t 

5 ENO NAK % 5 E u e u 

6 ACK SYN & 6 F v f v 

7 BEL ETB 7 G w g w 

8 BS CAN ( 8 H x h x 

9 HT EM ) 9 I y I y 

A LF SUB . J z j z 

B VT ESC + K [ k ! 
I 

c FF FS < L \ I I 
I 

D CR GS = M I m I 
I 

E so RS > N ;\CD n ~ 

F SI us I ? 0 - - 0 DEL 

NOTES: 

Some graphic card code and hexadecimal assignments may differ depending on the device, language, 
application. and installation policy. 

CD The following optional graphics can be substituted 

in the character set: 

I for/\ 

I for 1 

0 Sixty-three printable character set. 

Graphics available by use of the 0768-02 
printer which prints a 94-character set (DEL is 
not a graphic) 

Ninety-four printable character set. 

t 



UP-8913 

t 

SPERRY UNIVAC OS/3 
ASSEMBLER 

B-2 
Update B 

Table B-2. EBCDIC (Extended Binary Coded Decimal Interchange Code) Character Codes 

0 1 2 3 4 5 6 7 8 9 A B c D E 

0 NUL DLE Ds© SP & - 1© 
\ 

1@) 
I \© 

1 SOH DC1 f':DS(i) I a© j -© A J 

2 STX DC2 FS© SYN b k s B K s 

3 ETX DC3 c I t c L T 

4 ® d m u D M u 

5 HT LF e n v E N v 

6 BS ETB I 0 w F 0 w 

7 DEL ESC EQT g p x G p x 

8 CAN h q y H Q y 

9 EM ·© i r z I R z 

A [ 1® :® 

B VT $ :tf 

c FF F~ DC4 < . % @ 

D CR G~ ENO NAK ( I -
E s& R~ ACK + > = 

F s~ u~ B~ SUB IC3f (§; -li> ? " 

NOTES: 

Some graphic card code and hexadecimal assignments may differ depending on the device. language. 
application. and installation policy. 

© The lowercase alphabet and indicated graphics are 
introduced by use of the 0768-02 printer, which 
prints a 94-character set. 

F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

DS, SOS, FS are the control characters for the 
EDIT instruction and have been assigned for 
ASCII mode processing so as not to conflict 
with the corresponding character positions 
previously assigned in the EBCDIC chart. As 
these characters are not outside the range as 
defined in American National Standard 
Institute X3.4 - 1968, they must not appear 
in external storage media, such as American 
National Standard Institute standard tapes. 
This presents no difficulty due to the nature 
of the EDIT instruction. 

® The following substitutions are made for the UTS 400 handler: 

@ The following optional graphics can be substituted 
in the character. set: 

/\ for I 

I for ! 

For 63-character printers, the following substitution 
is made: 

\ for : 

® 

SPROT for SO 
EPROT for SI 
SB for FS 
EB for GS 
SOE for RS 
FCC for US 
MW for BEL 
I for I 

for I 

DC4 for the UTS 400 handler. 

• 

• 

• 



UP-8913 

Character 

A 

B 

c 

0 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

p 

a 

A 

s 

T 

u 

v 

w 

x 

y 

z 

a 

b 

c 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 1 of 5) 

Printed Card ASCII 
Symbol Punches Hexadecimal Decimal 

Letters 

A 12-1 41 65 

B 12-2 42 66 

c 12-3 43 67 

D 12-4 44 68 

E 12-5 45 69 

F 12-6 46 70 

G 12-7 47 71 

H 12-8 48 72 

I 12-9 49 73 

J 11-1 4A 74 

K 11-2 48 75 

L 11-3 4C 76 

M 11-4 40 77 

N 11-5 4E 78 

0 11-6 4F 79 

p 11-7 50 80 

a 11-8 51 81 

A 11-9 52 82 

s 0-2 53 83 

T 0-3 54 84 

u 0-4 55 85 

v 0-5 56 86 

w 0-6 57 87 

x 0-7 58 88 

y 0-8 59 89 

z 0-9 SA 90 

a 12-0-1 61 97 

b 12-0-2 62 98 

c 12-0-3 63 99 

B-3 

EBCDIC 

Hexadecimal 1 Decimal 

C1 193 

C2 194 

CJ 195 

C4 196 

cs 197 

CG 198 

C7 199 

cs 200 

C9 201 

01 209 

02 210 

03 211 

04 212 

05 213 

06 214 

07 215 

08 216 

09 217 

E2 226 

E3 227 

E4 228 

E5 229 

E6 230 

E7 231 

EB 232 

E9 233 

81 129 

82 130 

83 131 



UP-8913 

Dlaracter 

d 

e 

f 

g 

h 

i 

j 

k 

I 

m 

n 

0 

p 

q 

r 

s 

t 

u 

v 

w 

x 

v 

z 

0 

1 

2 

3 

4 

5 

6 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 2 of 5} 

Printed Card ASCII 
Symbol Punches Hexadecimal Decimal 

d 12-0-4 64 100 

e 12-0-5 65 101 

f 12-0-6 66 102 

g 12-0-7 67 103 

h 12-0-8 68 104 

i 12-0-9 69 105 

j 12-11-1 6A 106 

k 12-11-2 68 107 

I 12-11-3 6C 108 

m 12-11-4 60 109 

n 12-11-5 6E 110 

0 12-11-6 6F 111 

p 12-11-7 70 112 

q 12-11-8 71 113 

r 12-11-9 72 114 

s 11-0-2 73 115 

t 11-0-3 74 116 

u 11-0-4 75 117 

v 11-0-5 76 118 

w 11-0-6 77 119 

x 11-0-7 78 120 

v 11-0-8 79 121 

z 11-0-9 7A 122 

Numerals 

0 0 30 48 

1 1 31 49 

2 2 32 50 

3 3 33 51 

4 4 34 52 

5 5 35 53 

6 6 36 54 

B-4 

EBCDIC 
Hexadecimal Decimal 

84 132 

85 133 

86 134 

87 135 

88 136 

89 137 

91 145 

92 146 

93 147 

94 148 

95 149 

96 150 

97 151 

98 152 

99 153 

A2 162 

A3 163 

A4 164 

A5 165 

A6 166 

A7 167 

AB 168 

A9 169 

FO 240 

Fl 241 

F2 242 

F3 243 

F4 244 

F5 245 

F6 246 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 3 of 5) 

Character Printed Card ASCII 
Symbol Punches Hexadecimal Decimal 

7 7 7 37 55 

8 8 8 38 56 

9 9 9 39 57 

Symbols 

Exclamation point ! 12-8-7 21 33 

Quotation mark, dieresis " 8-7 22 34 

Number sign, pound sign # 8-3 23 35 

Dollar sign $ 11-8-3 24 36 

Percent sign % 0-8-4 25 37 

Ampersand & 12 26 38 

Apostrophe, acute accent 8-5 27 39 

Opening parenthesis ( 12-8-5 28 40 

Closing parenthesis ) 11-8-5 29 41 

Asterisk * 11-8-4 2A 42 

Plus sign + 12-8-6 28 43 

Comma, cedilla 0-8-3 2C 44 

Minus sign, hyphen - 11 2D 45 

Period, decimal point 12-8-3 2E 46 

Slash, virgule, solidus I 0-1 2F 47 

Colon : 8-2 3A 58 

Semicolon 11-8-6 38 59 

Less than < 12-8-4 JC 60 

Equal sign = 8-6 30 61 

Greater than > 0-8-6 3E 62 

Question mark ? 0-8-7 3F 63 

Commercial at symbol @ 8-4 40 64 

Opening bracket [ 12-8-2 58 91 

Closing bracket l 11-8-2 50 93 

Reverse slash \ 0-8-2 5C 92 

Circumflex /\. 11-8-7 5E 94 

B-5 

EBCDIC 
Hexadecimal Decimal 

F7 247 

F8 248 

F9 249 

4F 79 

7F 127 

78 123 

58 91 

6C 108 

50 80 

70 125 

40 77 

50 93 

5C 92 

4E 78 

68 107 

60 96 

48 75 

61 97 

7A 122 

5E 94 

4C 76 

7E 126 

6E 110 

6F 111 

7C 124 

4A 74 

5A 90 

EO 224 

5F 95 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table 8-3. Punched Card, ASCII, and EBCDIC Codes (Part 4 of 5) 

Printed Card ASCII 
Character Symbol Punches Hexadecimal Decimal 

Underline - 0-8-5 5F 95 

Grave accent ' 8-1 60 96 

Opening brace { 12-0 7B 123 

Closing brace } 11-0 70 125 

Vertical line 
I 

12-11 7C 124 I 

Overline, tilde - 11-0-1 7E 126 

Nonprintable Characters 

ACK (Acknowledge) 0-9-8-6 06 6 

BEL (Bell) 0-9-8-7 07 7 

BS (Backspace) 11-9-6 08 8 

CAN (Cancel) 11-9-8 18 24 

CR (Carriage return) 12-9-8-5 OD 13 

DC1 (Device control 1) 11-9-1 11 17 

DC2 (Device control 2) 11-9-2 12 18 

DC3 (Device control 3) 11-9-3 13 19 

DC4 (Device control 4) 9-8-4 14 20 

DEL (Delete) 12-9-7 7F 127 

OLE (Data link escape) 12-11-9-8-1 10 16 

OS (Digit select) 11-0-9-8-1 80 128 

EM (End of medium) 11-9-8-1 19 25 

ENO (Enquiry) 0-9-8-5 05 5 

EOT (End of transmission) 9-7 04 4 

ESC (Escape) 0-9-7 1B 27 

ETB (End of transmission block) 0-9-6 17 23 

ETX (End of textl 12-9-3 03 3 

FF (Form feed) 12-9-8-4 oc 12 

FS (File separator) 11-9-8-4 1C 28 

B-6 

EBCDIC 
Hexadecimal Decimal 

60 109 

79 121 

co 192 

DO 208 

6A 106 

A1 161 

2E 46 

2F 47 

16 22 

18 24 

OD 13 

11 17 

12 18 

13 19 

3C 60 

07 7 

10 16 

20 32 

19 25 

2D 45 

37 55 

27 39 

26 38 

03 3 

oc 12 

1C 28 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table B-3. Punched Card, ASCII, and EBCDIC Codes {Part 5 of 5) 

Character Card ASCII 
Punches Hexadecimal Decimal 

FS (Field separator) 0-9-2 82 130 

GS (Group separator) 11-9-8-5 1D 29 

HT (Horizontal tabulation) 12-9-5 09 9 

LF (Line feed) 0-9-5 OA 10 

NAK (Negative acknowledge) 9-8-5 15 21 

NUL (Null) 12-0-9-8-1 00 0 

RS (Record separator) 11-9-8-6 1E 30 

SI (Shift in) 12-9-8-7 OF 15 

SO (Shift out) 12-9-8-6 OE 14 

SOH (Start of heading) 12-9-1 01 1 

SOS (Significance start) 0-9-1 81 129 

SP (Space) 20 32 

STX (Start of text) 12-9-2 02 2 

SUB (Substitute) 9-8-7 1A 26 

SYN (Synchronous idle) 9-2 16 22 

US (Unit separator) 11-9-8-7 1F 31 

VT (Vertical tabulation) 12-9-8-3 OB 11 

B-7 

EBCDIC 
Hexadecimal Decimal 

22 34 

10 29 

05 5 

25 37 

30 61 

00 0 

1E 30 

OF 15 

OE 14 

01 1 

21 33 

40 64 

02 2 

3F 63 

32 50 

1F 31 

OB 11 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

C-1 

Appendix C. Math Tables 

C.1. HEXADECIMAL-DECIMAL INTEGER CONVERSION 

Table C-1 provides for conversion of hexadecimal and decimal numbers in the range: 

Hexadecimal Decimal 

000 to FFF 0000 to 4095 

In the table, the decimal value appears at the intersection of the row representing the 
most significant hexadecimal digits (162 and 161) and the column representing the least 
significant hexadecimal digit (160). 

Example: 

hexadecimal C21 = decimal 3105 

~1 
3072 
3088 
3104 
3120 

3073 
3089 
3105 
3121 

2 

3074 
3090 
3106 
3122 

For numbers outside the range of the table, add the following values to the table figures: 

Hexadecimal 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
AOOO 
BOOO 

Decimal 

4,096 
8,192 

12,288 
16,384 
20,480 
24,576 
28,672 
32,768 
36,864 
40,960 
45,056 

Hexadecimal 

cooo 
DOOO 
EOOO 
FOOO 

10000 
20000 
30000 
40000 
50000 
60000 
70000 

Decimal 

49,152 
53,248 
57,344 
61,440 
65,536 

131,072 
196,608 
262,144 
327,680 
393,216 
458,752 



UP-8913 

Example: 

BC21 16 = 48, 161 10 

Hexadecimal 

C21 
+BOOO 
+BC21 

Decimal 

3,105 
+45,056 

48, 161 

SPERRY UNIVAC OS/3 
ASSEMBLER 

C-2 



UP-8913 

0 1 2 

00 0000 0001 0002 
01 0016 0017 0018 
02 0032 0033 0034 
03 0048 0049 0050 
04 0064 0065 0066 
05 0080 0081 0082 
06 0096 0097 0098 
07 0112 0113 0114 
08 0128 0129 0130 
09 0144 0145 0146 
OA 0160 0161 0162 
OB 0176 0177 0178 
oc 0192 0193 0194 
OD 0208 0209 0210 
OE 0224 0225 0226 
OF 0240 0241 0242 

0 1 2 

10 0256 0257 0258 
11 0272 0273 0274 
12 0288 0289 0290 
13 0304 0305 0306 
14 0320 0321 · 0322 
15 0336 0337 0338 
16 0352 0353 0354 
17 0368 0369 0370 
18 0384 0385 0386 
19 0400 0401 0402 
1A 0416 0417 0418 
1B 0432 0433 0434 
1C 0448 0449 0450 
1D 0464 0465 0466 
1E 0480 0481 0482 
1F 0496 0497 0498 

0 1 2 

20 0512 0513 0514 
21 0528 0529 0530 
22 0544 0545 0546 
23 0560 0561 0562 
24 0576 0577 0578 
25 0592 0593 0594 
26 0608 0609 0610 
27 0624 0625 0626 
28 0640 0641 0642 
29 0656 0657 0658 
2A 0672 0673 0674 
28 0688 0689 0690 
2C 0704 0705 0706 
2D 0720 0721 0722 
2E 0736 0737 0738 
2F 0752 0753 0754 

0 1 2 

30 0768 0769 0770 
31 0784 0785 0786 
32 0800 0801 0802 
33 0816 0817 0818 
34 0832 0833 0834 
35 0848 0849 0850 
36 0864 0865 0866 
37 0880 0881 0882 
38 0896 0897 0898 
39 0912 0913 0914 
3A 0928 0929 0930 
38 0944 0945 0946 
JC 0960 0961 0962 
3D 0976 0977 0978 
3E 0992 0993 0994 
3F 1008 1009 1010 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table C-1. Hexadecimal-Decimal Integer Conversion (Part 1 of 4) 

3 4 5 6 7 8 9 A B 

0003 0004 0005 0006 0007 0008. 0009 0010 0011 
0019 0020 0021 0022 0023 0024 0025 0026 0027 
0035 0036 0037 0038 0039 0040 0041 0042 0043 
0051 0052 0053 0054 0055 0056 0057 0058 0059 
0067 0068 0069 0070 0071 0072 0073 0074 0075 
0083 0084 0085 0086 0087 0088 0089 0090 0091 
0099 0100 0101 0102 0103 0104 0105 0106 0107 
0115 0116 0117 0118 0119 0120 0121 0122 0123 
0131 0132 0133 0134 0135 0136 0137 0138 0139 
0147 0148 0149 0150 0151 0152 0153 0154 0155 
0163 0164 0165 0166 0167 0168 0169 0170 0171 
0179 0180 0181 0182 0183 0184 0185 0186 0187 
0195 0196 0197 0198 0199 0200 0201 0202 0203 
0211 0212 0213 0214 0215 0216 0217 0218 0219 
0227 0228 0229 0230 0231 0232 0233 0234 0235 
0243 0244 0245 0246 0247 0248 0249 0250 0251 

3 4 5 6 7 8 9 A B 

0259 0260 0261 0262 0263 0264 0265 0266 0267 
0275 0276 0277 0278 0279 0280 0281 0282 0283 
0291 0292 0293 0294 0295 0296 0297 0298 0299 
0307 0308 0309 0310 0311 0312 0313 0314 0315 
0323 0324 0325 0326 0327 0328 0329 0330 0331 
0339 0340 0341 0342 0343 0344 0345 0346 0347 
0355 0356 0357 0358 0359 0360 0361 0362 0363 
0371 0372 0373 0374 0375 0376 0377 0378 0379 
0387 0388 0389 0390 0391 0392 0393 0394 0395 
0403 0404 0405 0406 0407 0408 0409 0410 0411 
0419 0420 0421 0422 0423 0424 0425 0426 0427 
0435 0436 0437 0438 0439 0440 0441 0442 0443 
0451 0452 0453 0454 0455 0456 0457 0458 0459 
0467 0468 0469 0470 0471 0472 0473 0474 0475 
0483 0484 0485 0486 0487 0488 0489 0490 0491 
0499 0500 0501 0502 0503 0504 0505 0506 0507 

3 4 5 6 7 8 9 A B 

0515 0516 0517 0518 0519 0520 0521 0522 0523 
0531 0532 0533 0534 0535 0536 0537 0538 0539 
0547 0548 0549 0550 0551 0552 0553 0554 0555 
0563 0564 0565 0566 0567 0568 0569 0570 0571 
0579 0580 0581 0582 0583 0584 0585 0586 0587 
0595 0596 0597 0598 0599 0600 0601 0602 0603 
0611 0612 0613 0614 0615 0616 0617 0618 0619 
0627 0628 0629 0630 0631 0632 0633 0634 0635 
0643 0644 0645 0646 0647 0648 0649 0650 0651 
0659 0660 0661 0662 0663 0664 0665 0666 0667 
0675 0676 0677 0678 0679 0680 0681 0682 0683 
0691 0692 0693 0694 0695 0696 0697 0698 0699 
0707 0708 0709 0710 0711 0712 0713 0714 0715 
0723 0724 0725 0726 0727 0728 0729 0730 0731 
0739 0740 0741 0742 0743 0744 0745 0746 0747 
0755 0756 0757 0758 0759 0760 0761 0762 0763 

3 4 5 6 7 8 9 A B 

0771 0772 0773 0774 0775 0776 0777 0778 0779 
0787 0788 0789 0790 0791 0792 0793 0794 0795 
0803 0804 0805 0806 0807 0808 0809 0810 0811 
0819 0820 0821 0822 0823 0824 0825 0826 0827 
0835 0836 0837 0838 0839 0840 0841 0842 0843 
0851 0852 0853 0854 0855 0856 0857 0858 0859 
0867 0868 0869 0870 0871 0872 0873 0874 0875 
0883 0884 0885 0886 0887 0888 0889 0890 0891 
0899 0900 0901 0902 0903 0904 0905 0906 0907 
0915 0916 0917 0918 0919 0920 0921 0922 0923 
0931 0932 0933 0934 0935 0936 0937 0938 0939 
0947 0948 0949 0950 0951 0952 0953 0954 0955 
0963 0964 0965 0966 0967 0968 0969 0970 0971 
0979 0980 0981 0982 0983 0984 0985 0986 0987 
0995 0996 0997 0998 0999 1000 1001 1002 1003 
1011 1012 1013 1014 1015 1016 1017 1018 1019 

C-3 

c D E F 

0012 0013 0014 0015 
0028 0029 0030 0031 
0044 0045 0046 0047 
0060 0061 0062 0063 
0076 0077 0078 0079 
0092 0093 0094 0095 
0108 0109 0110 0111 
0124 0125 0126 0127 
0140 0141 0142 0143 
0156 0157 0158 0159 
0172 0173 0174 0175 
0188 0189 0190 0191 
0204 0205 0206 0207 
0220 0221 0222 0223 
0236 0237 0238 0239 
0252 0253 0254 0255 

c D E F 

0268 0269 0270 0271 
0284 0285 0286 0287 
0300 0301 0302 0303 
0316 0317 0318 0319 
0332 0333 0334 0335 
0348 0349 0350 0351 
0364 0365 0366 0367 
0380 0381 0382 0383 
0396 0397 0398 0399 
0412 0413 0414 0415 
0428 0429 0430 0431 
0444 0445 0446 0447 
0460 0461 0462 0463 
0476 0477 0478 0479 
0492 0493 0494 0495 
0508 0509 0510 0511 

c D E F 

0524 0525 0526 0527 
0540 0541 0542 0543 
0556 0557 0558 0559 
0572 0573 0574 0575 
0588 0589 0590 0591 
0604 0605 0606 0607 
0620 0621 0622 0623 
0636 0637 0638 0639 
0652 0653 0654 0655 
0668 0669 0670 0671 
0684 0685 0686 0687 
0700 0701 0702 0703 
0716 0717 0718 0719 
0732 0733 0734 0735 
0748 0749 0750 0751 
0764 0765 0766 0767 

c D E F 

0780 0781 0782 0783 
0796 0797 0798 0799 
0812 0813 0814 0815 
0828 0829 0830 0831 
0844 0845 0846 0847 
0860 0861 0862 0863 
0876 0877 0878 0879 
0892 0893 0894 0895 
0908 0909 0910 0911 
0924 0925 0926 0927 
0940 0941 0942 0943 
0956 0957 0958 0959 
0972 0973 0974 0975 
0988 0989 0990 0991 
1004 1005 1006 1007 
1020 1021 1022 1023 



UP-8913 SPERRY UNIVAC OS/3 C-4 
ASSEMBLER 

Table C-1. Hexadecimal-Decimal Integer Conversion (Part 2 of 4) 

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F 

40 1024 1025 1025 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 10J!i 
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 105E 
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 108 
44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 110 
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 11 lE 
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 
48 1152 1153. 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
48 1200 1201 1202 1203 1204 1205 1205 1207 1208 1209 1210 1211 1212 1213 1214 1215 
4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
40 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 124 
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 126 
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F 

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 129~ 
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 134j 
54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 
58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5A 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
50 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5F 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F 

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 
64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 
68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
68 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 
6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
60 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F 

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 
74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 
78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 
7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
70 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 



UP-8913 

0 1 2 

BO 204B 2049 2050 
B1 2064 2065 2066 
B2 20BO 20B1 20B2 
B3 2096 2097 209B 
84 2112 2113 2114 
B5 2128 2129 2130 
86 2144 2145 2141\ 
B7 2160 2161 2162 
88 2176 2177 217B 
89 2192 2193 2194 
BA 220B 2209 2210 
B8 2224 2225 2226 
BC 2240 2241 2242 
BO 2256 2257 2258 
BE 2272 2273 2274 
BF 22BB 22B9 2290 ...__ 

0 1 2 

90 2304 2305 2306 
91 2320 2321 2322 
92 2336 2337 233B 
93 2352 2353 2354 
94 236B 2369 2370 
95 2384 23B5 23B6 
96 2400 2401 2402 
97 2416 2417 241B 
9B 2432 2433 2434 
99 244B 2449 2450 
9A 2464 2465 2466 
9B 2480 24B1 24B2 
9C 2496 2497 249B 
90 2512 2513 2514 
9E 252B 2529 2530 
9F 2544 2545 2546 

0 1 2 

AO 2560 2561 2562 
Al 2576 2577 257B 
A2 2592 2593 2594 
A3 260B 2609 2610 
A4 2624 2625 2626 
A5 2640 2641 2642 
A6 2656 2657 265B 
A7 2672 2673 2674 
AB 26BB 26B9 2690 
A9 2704 2705 2706 
AA 2720 2721 2722 
AB 2736 2737 273B 
ACO 2752 2753 2754 
ADO 276B 2769 2770 
AEO 27B4 2785 27B6 
AFO 2BOO 2B01 2B02 

0 1 2 

BO 2816 2817 2B18 
Bl 2832 2833 2834 
B2 2848 2849 2850 
B3 2864 2865 2866 
B4 2880 2B81 2882 
65 2696 2897 2698 
B6 2912 2913 2914 
B7 2928 2929 2930 
BB 2944 2945 2946 
B9 2960 2961 2962 
BA 2976 2977 2978 
BB 2992 2993 2994 
BC 300B 3009 3010 
BO 3024 3025 3026 
BE 3040 3041 3042 
BF 3056 3057 3058 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table C-1. Hexadecimal-Decimal Integer Conversion (Part 3 of 4) 

3 4 5 6 7 B 9 A 8 

2051 2052 2053 2054 2055 2056 2057 205B 2059 
2067 206B 2069 2070 2071 2072 2073 2074 2075 
20B3 20B4 20B5 20B6 20B7 20BB 20B9 2090 2091 
2099 2100 2101 2102 2103 2104 2105 2106 2107 
2115 2116 2117 211B 2119 2120 2121 2122 2123 
2131 2132 2133 2134 2135 2136 2137 213B 2139 
2147 214B 2149 2150 2151 2152 2153 2154 2155 
2163 2164 2165 2166 2167 216B 2169 2170 2171 
2179 2i00 21B1 21B2 21B3 2184 21B5 2186 2187 
2195 2196 2197 219B 2199 2200 2201 2202 2203 
2211 2212 2213 2214 2215 2216 2217 221B 2219 
2227 222B 2229 2230 2231 2232 2233 2234 2235 
2243 2244 2245 2246 2247 224B 2249 2250 2251 
2259 2260 2261 2262 2263 2264 2265 2266 2267 
2275 2276 2277 227B 2279 22BO 22B1 22B2 22B3 
2291 2292 2293 2294 2295 2296 2297 229B 2299 

3 4 5 6 7 B 9 A B 

2307 230B 2309 2310 2311 2312 2313 2314 2315 
2323 2324 2325 2326 2327 232B 2329 2330 2331 
2339 2340 2341 2342 2343 2344 2345 2346 2347 
2355 2356 2357 235B 2359 2360 2361 2362 2363 
2371 2372 2373 2374 2375 2376 2377 237B 2379 
23B7 238B 23B9 2390 2391 2392 2393 2394 2395 
2403 2404 2405 2406 2407 240B 2409 2410 2411 
2419 2420 2421 2422 2423 2424 2425 2426 2427 
2435 2436 2437 243B 2439 2440 2441 2442 2443 
2451 2452 2453 2454 2455 2456 2457 2458 2459 
2467 246B 2469 2470 2471 2472 2473 2474 2475 
24B3 24B4 24B5 24B6 24B7 24BB 24B9 2490 2491 
2499 2500 2501 2502 2503 2504 2505 2506 2507 
2515 2516 2517 251B 2519 2520 2521 2522 2523 
2531 2532 2533 2534 2535 2536 2537 253B 2539 
2547 254B 2549 2550 2551 2552 2553 2554 2!565 

3 4 5 6 7 B 9 A B 

2563 2564 2565 2566 2567 256B 2569 2570 2571 
2579 2580 25Bl 2582 25B3 2584 2585 2586 2587 
2595 2596 2597 259B 2599 2600 2601 2602 2603 
2611 2612 2613 2614 2615 2616 2617 261B 2619 
2627 262B 2629 2630 2631 2632 2633 2634 2635 
2643 2644 2645 2646 2647 264B 2649 2650 2651 
2659 2660 2661 2662 2663 2664 2665 2666 2667 
2675 2676 2677 267B 2679 26BO 26B1 26B2 26B3 
2691 2692 2693 2694 2695 2696 2697 269B 2699 
2707 270B 2709 2710 2711 2712 2713 2714 2715 
2723 2724 2725 2726 2727 272B 2729 2730 2731 
2739 2740 2741 2742 2743 2744 2745 2746 2747 
2755 2756 2757 2758 2759 2760 2761 2762 2763 
2771 2772 2773 2774 2775 2776 2777 277B 2779 
27B7 27BB 27B9 2790 2791 2792 2793 2794 2795 
2B03 2B04 2B05 2B06 2B07 2BOB 2B09 2B10 2B11 

3 4 5 6 7 8 9 A B 

2819 2820 2821 2822 2823 2B24 2825 2B26 2B27 
2B35 2836 2837 2B38 2B39 2840 2841 2842 2B43 
2851 2B52 2853 2854 2B55 2856 2857 2B5B 2859 
2B67 2B6B 2869 2870 2871 2872 2B73 2874 2875 
28B3 2B84 2885 2886 28B7 2888 2889 2B90 2891 
2899 2900 2901 2902 2903 2904 2905 2906 2907 
2915 2916 2917 2918 2919 2920 2921 2922 2923 
2931 2932 2933 2934 2935 2936 2937 293B 2939 
2947 2948 2949 2950 2951 2952 2953 2954 2955 
2963 2964 2965 2966 2967 2968 2969 2970 2971 
2979 2980 2981 2982 2983 29B4 2985 29B6 29B7 
2995 2996 2997 2998 2999 3000 3001 3002 3003 
3011 3012 3013 3014 3015 3016 3017 301B 3019 
3027 3028 3029 3030 3031 3032 3033 3034 3035 
3043 3044 3045 3046 3047 304B 3049 3050 3051 
3059 3060 3061 3062 3063 3064 3065 3066 3067 

C-5 

c D E F 

2060 2061 2062 2063 
2076 2077 207B 2079 
2092 2093 2094 2095 
210B 2109 2110 2111 
2124 2125 2126 2127 
2140 2141 2142 2143 
2156 2157 2158 2159 
2172 2173 2174 2175 
2188 21B9 2190 2191 
2204 2205 2206 2207 
2220 2221 2222 2223 
2236 2237 223B 2239 
2252 2253 2254 2255 
226B 2269 2270 2271 
2284 22B5 22B6 22B7 
2300 2301 2302 2303 

c D E F 

2316 2317 231B 2319 
2332 2333 2334 2335 
234B 2349 2350 2351 
2364 2365 2366 2367 
2380 23B1 23B2 23B3 
2396 2397 239B 2399 
2412 2413 2414 2415 
242B 2429 2430 2431 
2444 2445 2446 2447 
2460 2461 2462 2463 
2476 2477 247B 2479 
2492 2493 2494 2495 
250B 2509 2510 2511 
2524 2525 2526 2527 
2540 2541 2542 2543 
2556 2557 255B 2559 

c D E F 

2572 2573 2574 2575 
258B 2589 2590 2591 
2604 2605 2606 2607 
2620 2621 2622 2623 
2636 2637 263B 2639 
2652 2653 2654 2655 
266B 2669 2670 2671 
26B4 26B5 26B6 26B7 
2700 2701 2702 2703 
2716 2717 271B 2719 
2732 2733 2734 2735 
274B 2749 2750 2751 
2764 2765 2766 2767 
27BO 27Bl 27B2 27B3 
2796 2797 279B 2799 
2B12 2B13 2B14 2815 

c D E F 

282B 2B29 2B30 2831 
2844 2845 2846 2B47 
2B60 2B61 2B62 2B63 
2B76 2B77 2B7B 2B79 
2892 2893 2B94 2895 
2908 2909 2910 2911 
2924 2925 2926 2927 
2940 2941 2942 2943 
2956 2957 2958 2959 
2972 2973 2974 2975 
2988 29B9 2990 2991 
3004 3005 3006 3007 
3020 3021 3022 3023 
3036 3037 303B 3039 
3052 3053 3054 3055 
3068 3069 3070 3071 



UP-8913 SPERRY UNIVAC OS/3 C-6 
ASSEMBLER 

Table C-1. Hexadecimal-Decimal Integer Conversion (Part 4 of 4) 

0 1 2 3 4 5 6 7 B 9 A B c D E F 

co 3072 3073 3074 3075 3076 3077 307B 3079 30BO 30B1 30B2 30B3 3084 3085 3086 3087 
C1 308B 30B9 3090 3091 3092 3093 3094 3095 3096 3097 309B 3099 3100 3101 3102 3103 
C2 3104 3105 3106 3107 310B 3109 3110 3111 3112 3113 3114 3115 3116 3117 311B 3119 
C3 3120 3121 3122 3123 3124 3125 3126 3127 312B 3129 3130 3131 3132 3133 3134 3135 
C4 3136 3137 313B 3139 3140 3141 3142 3143 3144 3145 3146 3147 314B 3149 3150 3151 
C5 3152 3153 3154 3155 315~ 3157 315B 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6 316B 3169 3170 3171 3172 3173 3174 3175 3176 3177 317B 3179 31BO 31B1 31B2 31B3 
C7 31B4 31B5 31B6 31B7 31BB 31B9 3190 3191 3192 3193 3194 3195 3196 3197 319B 3199 
CB 3200 3201 3202 3203 3204 3205 3206 3207 320B 3209 3210 3211 3212 3213 3214 3215 
C9 3216 3217 321B 3219 3220 3221 3222 3223 3224 3225 3226 3227 322B 3229 3230 3231 
CA 3232 3233 3234 3235 3236 3237 323B 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CB 324B 3249 3250 3251 3252 3253 3254 3255 3256 3257 325& 3259 3260 3261 3262 3263 
cc 3264 3265 3266 3267 326B 3269 3270 3271 3272 3273 3274 3275 3276 3277 327B 3279 
CD 32BO 32B1 3282 32B3 3284 32B5 3286 32B7 3288 3289 3290 3291 3292 3293 3294 3295 
CE 3296 3297 329B 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CF 3312 3313 3314 3315 3316 3317 331B 3319 3320 3321 3322 3323 3324 3325 3326 3327 

0 1 2 3 4 5 6 7 B 9 A B c D E F 

DO 332B 3329 3330 3331 3332 3333 3334 3335 3336 3337 333B 3339 3340 3341 3342 3343 
01 3344 3345 3346 3347 334B 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
02 3360 3361 3362 3363 3364 3365 3366 3367 336B 3369 3370 3371 3372 3373 3374 3375 
03 3376 3377 337B 3379 33BO 33B1 33B2 33B3 3384 33B5 3386 33B7 33BB 3389 3390 3391 
04 3392 3393 3394 3395 3396 3397 339B 3399 3400 3401 3402 3403 3404 3405 3406 3407 
05 340B 3409 3410 3411 3412 3413 3414 3415 3416 3417 341B 3419 3420 3421 3422 3423 
06 3424 3425 3426 3427 342B 3429 3430 3431 3432 3433 3434 3435 3436 3437 343B 3439 
07 3440 3441 3442 3443 3444 3445 3446 3447 344B 3449 3450 3451 3452 3453 3454 3455 
DB 3456 3457 345B 3459 3460 3461 3462 3463 3464 3465 3466 3467 346B 3469 3470 3471 
09 3472 3473 3474 3475 3476 3477 347B 3479 34BO 34B1 34B2 34B3 3484 34B5 34B6 34B7 
DA 348B 34B9 3490 3491 3492 3493 3494 3495 3496 3497 349B 3499 3500 3501 3502 3503 
DB 3504 3505 3506 3507 350B 3509 3510 3511 3512 3513 3514 3515 3516 3517 351B 3519 
DC 3520 3521 3522 3523 3524 3525 3526 3527 352B 3529 3530 3531 3532 3533 3534 3535 
DD 3536 3537 353B 3539 3540 3541 3542 3543 3544 3545 3546 3547 354B 3549 3550 3551 
DE 3552 3553 3554 3555 3556 3557 355B 3559 3560 3561 3562 3563 3564 3565 3566 3567 
OF 356B 3569 3570 3571 3572 3573 3574 3575 3576 3577 357B 3579 3580 3581 3582 3583 

0 1 2 3 4 5 I 6 7 B 9 A B c D E F 

EO 3584 35B5 35B6 35B7 3588 35B9 3590 3591 3592 3593 3594 3595 3596 3597 359B 3599 
E1 3600 3601 3602 3603 3604 3605 3606 3607 360B 3609 3610 3611 3612 3613 3614 3615 
E2 3616 3617 361B 3619 3620 3621 3622 3623 3624 3625 3626 3627 362B 3629 3630 3631 
E3 3632 3633 3634 3635 3636 3637 363B 3639 3640 3641 3642 3643 3644 3645 3646 3647 
E4 364B 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5 3664 3665 3666 3667 366B 3669 3670 3671 3672 3673 3674 3675 3676 3677 367B 3679 
E6 36BO 36B1 36B2 36B3 36B4 36B5 36B6 36B7 36BB 36B9 3690 3691 3692 3693 3694 3695 
E7 3696 3697 369B 3699 3700 3701 3702 3703 3704 3705 3706 3707 370B 3709 3710 3711 
EB 3712 3713 3714 3715 3716 3717 371B 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9 372B 3729 3730 3731 3732 3733 3734 3735 3736 3737 373B 3739 3740 3741 3742 3743 
EA 3744 3745 3746 3747 374B 3749 3750 3751 3752 3753 3754 3755 3756 3757 375B 3759 
EB 3760 3761 3762 3763 3764 3765 3766 3767 376B 3769 3770 3771 3772 3773 3774 3775 
EC 3776 3777 377B 3779 37BO 37B1 37B2 37B3 37B4 37B5 37B6 37B7 37BB 37B9 3790 3791 
ED 3792 3793 3794 3795 3796 3797 379B 3799 3800 3801 3802 3803 3B04 3805 3B06 3B07 
EE 380B 3809 3810 3811 3812 3813 3814 3815 3816 3817 381B 3819 3820 3821 3822 3B23 
EF 3824 3825 3826 3827 382B 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

0 1 2 3 4 5 6 7 B 9 A B c D E F 

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
F1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 386B 3B69 3870 3871 
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 38B6 3887 
F3 38BB 3889 3890 3891 3892 3893 3894 3895 3896 3897 389B 3899 3900 3901 3902 3903 
F4 3904 3905 3906 3907 390B 3909 3910 3911 3912 3913 3914 3915 3916 3917 391B 3919 
F5 3920 3921 3922 3923 3924 3925 3926 3927 392B 3929 3930 3931 3932 3933 3934 3935 
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 394B 3949 3950 3951 
F7 3952 3953 3954 3955 3956 3957 395B 3959 3960 3961 3962 3963 3964 3965 3966 3967 
FB 396B 3969 3970 3971 3972 3973 3974 3975 3976 3977 397B 3979 39BO 39B1 39B2 39B3 
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 399B 3999 
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 402B 4029 4030 4031 
FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF 4080 4081 4082 4083 4084 4085 4086 4087 40BB 4089 4090 4091 4092 4093 4094 4095 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

C.2. HEXADECIMAL FRACTIONS (APPROXIMATE VALUES) 

Hexadecimal fractions are shown in Table C-2. 

Table C-2. Hexadecimal Fractions 

First Digit Second Digit Third Digit 

Hex. Decimal Hex. Decimal Hex. Decimal Hex • 

.0 .0000 .00 .0000 0000 .000 . 0000 0000 0000 .0000 

.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 

.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 

.3 .1875 .03 .0117 1875 .003 .0007 3242 1875 .0003 

.4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 

.5 .3125 .05 .0195 3125 .005 .0012 2070 3125 .0005 

.6 .3750 .06 .0234 3750 .006 .0014 6486 3750 .0006 

.7 .4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 

.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 .0008 

.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 .0009 

.A .6250 .OA .0390 6250 .OOA .0024 4140 6250 .OOOA 

.B .6875 .OB .0429 6875 .OOB .0026 8554 6875 .OOOB 

.c .7500 .oc .0468 7500 .ooc .0029 2968 7500 .oooc 

.D .8125 .OD .0507 8125 .OOD .0031 7382 8125 .OOOD 

.E .8750 .OE .0546 8750 .OOE .0034 1796 8750 .OOOE 

.F .9375 .OF .0585 9375 .OOF .0036 6210 9375 .OOOF 

C-7 

Fourth Digit 

Decimal 

.0000 0000 0000 

.0000 1525 8789 

.0000 3051 7578 

.0000 4577 6367 

.0000 6103 5156 

.0000 7629 3945 

.0000 9155 2734 

.0001 0681 1523 

.0001 2207 0313 

.0001 3732 9102 

.0001 5258 7891 

.0001 6784 6680 

.0001 8310 5469 

.0001 9836 4258 

.0002 1362 3047 

.0002 2888 1836 

To convert a 4-digit (2-byte) hexadecimal fraction to a decimal fraction, add the values 
shown in Table C-2 for each of the hexadecimal digits to be converted as the following 
illustrates. The hexadecimal fraction .B5A 1 equals the approximate decimal fraction 
.70948791 from Table C-2. 

.B from the table equals .6875 

.05 from the table equals .01953125 

.OOA from the table equals .002441406250 

.0001 from the table equals .000015258789 

.B5A1 equals the sum .709487915039 



UP-8913 

C.3. 

1 
2 

4 
8 

17 
34 

68 
137 
274 
549 

099 

POWERS OF 2 

1 
2 
4 
8 

16 
33 
67 

134 

268 
536 
073 
147 

294 
589 
179 
359 

719 
438 
877 
755 

511 

1 

2 

4 
8 

16 
32 

65 
131 
262 
524 

048 
097 
194 
388 

777 
554 
108 
217 

435 
870 
741 
483 

967 
934 
869 
738 

476 
953 
906 
813 

627 

1 

2 
4 

8 

16 
32 
64 

128 

256 
512 
024 
048 

096 
192 
384 
768 

536 
072 
144 
288 

576 
152 
304 
608 

216 
432 
864 
728 

456 
912 
824 
648 

296 
592 
184 
368 

736 
472 
944 
888 

776 

n 

0 
1 
2 
3 

1.0 
0.5 
0.25 

0.125 

4 0.062 5 
5 0.031 25 
6 0.015 625 
7 0.007 812 

8 0.003 906 
9 0.001 953 

10 0.000 976 
11 0.000 488 

12 0.000 244 
13 0.000 122 
14 0.000 061 
15 0.000 030 

16 0.000 015 
17 0.000 007 
18 0.000 003 
19 0.000 001 

20 0.000 000 
21 0.000 000 
22 0.000 000 
23 0.000 000 

24 0.000 000 
25 0.000 000 
26 0.000 000 
27 0.000 000 

28 0.000 000 
29 0.000 000 
30 0.000 000 
31 0.000 000 

32 0.000 000 
33 0.000 000 
34 0.000 • 000 

35 0.000 000 

36 0.000 000 
37 0.000 000 
38 0.000 000 
39 0.000 000 

40 0.000 000 

SPERRY UNIVAC OS/3 
ASSEMBLER 

5 

25 
125 
562 
281 

140 
070 
035 
517 

258 
629 
814 
907 

953 
476 
238 
119 

059 
029 
014 
007 

003 
001 
000 
000 

000 
000 
000 
000 

000 
000 
000 
000 

000 

5 
25 

625 
312 
156 
578 

789 
394 
697 
348 

674 
837 
418 
209 

604 
802 
901 
450 

725 
862 
931 
465 

232 
116 
058 
029 

014 
007 
003 
001 

000 

5 
25 
125 

062 
531 
265 
632 

316 
158 
579 
289 

644 
322 
161 
580 

290 
645 
322 
661 

830 
415 
207 
103 

551 
275 
637 
818 

909 

5 
25 
625 
812 

406 
203 
101 
550 

775 
387 
193 
096 

298 
149 
574 
287 

643 
321 
660 
830 

915 
957 
978 
989 

494 

5 

25 
125 
562 
781 

390 
695 
847 
923 

461 
230 
615 
307 

653 
826 
913 
456 

228 
614 
807 
403 

701 

5 
25 

625 
312 
656 
828 

914 
957 
478 
739 

869 
934 
467 
733 

366 
183 
091 
545 

772 

5 
25 
125 

062 
031 
515 
257 

628 
814 
407 
703 

851 
425 
712 
856 

928 

5 
25 

625 
812 

906 
453 
226 
613 

806 
903 
951 
475 

237 

C-8 

5 

25 
125 
562 
281 

640 
320 
660 
830 

915 

5 
25 

625 
312 
156 
078 

039 

5 
25 
125 

062 5 



UP-8913 

C.4. POWERS OF 16 

1 
17 

281 
4 503 

72 057 
152 921 

SPERRY UNIVAC OS/3 
ASSEMBLER 

16" 

4 
65 

048 
16 777 

268 435 
4 294 967 

68 719 476 
099 511 627 
592 186 044 
474 976 710 
599 627 370 
594 037 927 
504 606 846 

C-9 

n 

1 0 
16 1 

256 2 
096 3 
536 4 
576 5 
216 6 
456 7 
296 8 
736 9 
776 10 
416 11 
656 12 
496 13 
936 14 
976 15 

These powers of 16 are especially useful in determining the value of floating-point 
numbers. 





UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

D-1 

Appendix D. Check-Off Table Terms 

General Possible Program Exceptions 

OBJECT D ADDRESSING 0 PROTECTION 
OPCODE FORMAT INST. 

TYPE LGTH. 
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE 

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION: 

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER 

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY 

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY 

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY 

0 IF RESULT = 0, SET TO 0 
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD 

D FIXED-POINT OVERFLOW BOUNDARY 
01F RESULT<o.sETTO 1 D 
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER 

0 IF OVERFLOW, SET TO 3 D OPERATION 
D OP 1 NOT ODD NUMBERED REGISTER 

OuNCHANGED D NONE 

The check-off table is a fast reference source for its associated instruction. The table 
points where to look for possible errors when writing your programs and helps you debug 
your program when it does not run correctly. A program interrupt occurs when the 
hardware detects an improper specification, use of instructions or data. Interrupt requests 
of this type cause the instruction currently being executed to be suppressed or terminated. 
When a table is used with an instruction, the checked (•) condition codes and program 
exceptions are the only ones that apply to that instruction. The program exceptions are 
explained in the following list, as well as the instruction to which it applies. 

• Addressing 

A storage location outside the range of the installed storage is referenced by a 
program-specified address. 

• Data 

An invalid sign or digit code is detected in decimal operands. 

Fields in decimal arithmetic overlap incorrectly. 

The first operand of the multiply decimal instruction does not have a sufficient 
number of high order zero digits. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

D-2 

• Decimal Divide 

The quotient of a divide decimal instruction exceeds the capacity of the quotient part 
of the first operand field. 

• Decimal Overflow 

The result of an add decimal, subtract decimal, or zero and add instruction exceeds 
the capacity of the first operand location. 

• Execute 

The subject instruction of an execute instruction is an execute instruction. 

• Exponent Overflow 

The final characteristic resulting from a floating-point arithmetic operation exceeds 
127. 

• Exponent Underflow 

The final characteristic resulting from a floating-point arithmetic operation is less 
than zero. 

• Fixed-Point Divide 

The quotient of a fixed-point divide operation exceeds the capacity of the first operand 
(including division by zero) or the result of a convert to binary instruction exceeds 31 
bits. 

• Fixed-Point Overflow 

A fixed-point add or subtract operation exceeds the capacity of the first operand field. 

• Floating-Point Divide 

The divisor fraction in a floating-point divide operation is equal to zero. 

• Operation 

An illegal operation has been attempted or an operation using a noninstalled 
processor feature has been attempted. 

• Protection 

A storage protection violation occurs on a program-generated address when the 
protection feature is installed. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

D-3 

• Significance 

The final fraction resulting from a floating-point addition or subtraction is equal to 
zero. 

• Specification 

The unit of information referenced is not on an appropriate boundary. 

An invalid modifier field is specified in the STR instruction. 

The R1 field of an instruction which uses an even/odd pair of registers (64-bit 
operand) does not specify an even register. 

A floating-point register other than 0, 2, 4, or 6 is specified. 

A multiplicand or divisor in decimal arithmetic exceeds 15 digits and sign. 

The first operand field is shorter than, or equal in length to, the second operand 
in decimal multiply and decimal divide instructions. 



-------------------



• 

• 

• 

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Appendix E. 

E-1 

Instruction Listings 

Included in this appendix are alphabetic listings of the mnemonic codes (Table E-1) and 
instruction names (Table E-2) and a numeric list of the machine codes (Table E-3). 

Table E-1. Mnemonic List of Instructions (Part 1 of 4) 

Source Code Format 
Mnemonic Instruction Name 

Machine Byte 
Code Length 

Explicit Implicit 

A Add 5A 4 r 1.d2(X2,b2) r1s2(x2) 
AD Add Normalized, Long 6A 4 r, ,d2(X2,b2) r,,s2(X2) 
ADR Add Normalized, Long 2A 2 r1 ,r2 r1 ,r2 
AE Add Normalized, Short 7A 4 r 1.d2(X2,b2) r,,s2(X2) 
AER Add Normalized, Short 3A 2 r1 ,r2 r1,r2 
AH Add Half Word 4A 4 r 1.d2(X2,b2) r1,s2(x2) 
Al Add Immediate 9A 4 d,(b,),i2 s,,i2 
AL Add Logical 5E 4 r, ,d2(X2,b2) r,,s2(x2) 
ALR Add Logical 1E 2 r1,r r1 ,r2 
AP Add Decimal FA 6 d,(l,,b, ).d2(l2,b2) s,(l,),s2(12) 
AR Add 1A 2 r1 ,r2 r1,r2 
AU Add Unnormalized, Short 7E 4 r, ,d2(X2,b2) r,,s2(x2) 
AUR Add Unnormalized, Short 3E 2 r, ,r2 r1,r2 
AW Add Unnormalized, Long 6E 4 r, ,d2(X2,b2) r,,s2(x2) 
AWR Add Unnormalized, Long 2E 2 r1 ,r2 r1,r2 
BAL Branch and Link 45 4 r 1.d2(X2,b2) r,,s2(X2) 
BALR Branch and Link 05 2 r1,r2 r1 ,r2 
BC Branch on Condition 47 4 i,d2(X2,b2) i,S2(X2) 
BCR Branch on Condition 07 2 ih i,r2 
BCT Branch on Count 46 4 r 1.d2(xvb2) r,,s2(X2) 
BCTR Branch on Count 06 2 r1 ,r2 r1,r2 
BXH Branch on Index High 86 4 r, ,r 3,d2(b2) r,,r3,s2 

BXLE Branch on Index Low or Equal 87 4 r 1.r3,d2(b2) r1,r3,s2 
c Compare Algebraic 59 4 r 1.d2(X2,b2) r1,s2(x2) 
CD Compare, Long 69 4 r 1.d2(X2,b2) r,,S2(X2) 
CDR Compare, Long 29 2 r1 ,r2 r1,r2 
CE Compare, Short 79 4 r 1.d2(X2.b2) r,,s2(x2) 
CER Compare, Short 39 2 r1,r2 r1,r2 

CH Compare Half Word 49 4 r, ,d2(X2,b2) r,,s2(x2) 

CL Compare Logical 55 4 r, ,d2(X2,b2) r1,s2(x2) 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

E-2 
Update B 

Table E-1. Mnemonic List of Instructions (Part 2 of 4) 

Source Code Format 

Instruction Name 
Machine Byte 

Mnemonic Code Length 
Explicit Implicit 

CLC Compare Logical 05 6 d, ,(l,b, ).d2(b2) s,(l),s2 

CLCL Compare Logical Characters Long OF 2 r1,r2 r1 ,r2 

CLI Compare Logical Immediate 95 4 d,(b,),i2 s,,i2 

CLIS Compare Logical Immediate and Skip El 6 d, (b1 ), i2,m3,d4 s1,i2,m3,S4 

CLM Compare Logical Characters Under Mask BD 4 r,,m3,d2(b2) r1,m3,s2 
CLR Compare Logical 15 2 r1 ,r2 r1 ,r2 

CLRCH Clear Channel 9F02 4 (Privileged) (Privileged) 

CLRDV Clear Device 9DX2 4 (Privileged) (Privileged) 

GP Compare Decimal F9 6 d,(1,,b, ).d2(12.b2) s,(l,),s202) 

CR Compare Algebraic 19 2 r1 ,r2 r1,r2 
CSM Compare and Swap Under Mask B9 4 r1,r3,d2(b2) r1,r3,s2 
CVB Convert to Binary 4F 4 r 1.d2(X2,b2) r1 ,s2(x2) 

CVD Convert to Decimal 4E 4 r 1.d2(X2,b2) r, .s2(X2) 

D Divide 50 4 r, ,d2(X2,b2) r, .s2(X2) 

DD Divide, Long 60 4 r 1.d2(X2,b2) r, .s2(X2) 

DOR Divide, Long 20 2 r1 ,r2 r1,r2 
DE Divide, Short 70 4 r 1.d2(X2,b2) r,,s2(X2) 

DER Divide, Short 30 2 r, ,r2 r1 ,r2 
DP Divide Decimal FD 6 d, (I, ,b, ).d2(l2.b2) s,(l,) .. s202) 

DR Divide 10 2 r1 ,r2 r1 ,r2 
ED Edit DE 6 d,(l,b, ).d2(b2) s1(1),s2 
EDMK Edit and Mark DF 6 d, (l,b, ).d2(b2) s,(1),s2 
EIO Enqueue 1/0 EO 6 (Privileged) (Privileged) 

EX Execute 44 4 r 1.d2(X2,b2) r,,s2(X2) 
EXD Execute Diagnose 8300 4 (Privileged) (Privileged) 
GRB Get IORB OB 2 (Privileged) (Privileged) 
HOR Halve, Long 24 2 r1 ,r2 r1 ,r2 
HOV Halt Device 9E01 4 (Privileged) (Privileged) 
HER Halve, Short 34 2 r1 ,r2 r1 ,r2 
HPR Halt and Proceed 99 4 (Privileged) (Privileged) 
IC Insert Character 43 4 r, ,d2(X2,b2) r,,s2(X2) 
ICM Insert Characters Under Mask BF 4 r,,m3,d2(b2) r1,m3,s2 
IPL Initial Program Load 8303 4 (Privileged) I (Privileged) 
ISK Insert Storage Key 09 2 (Privileged) (Privileged) 
L Load 58 4 r 1.d2(X2,b2) r,,s2(x2) 
LA Load Address 41 4 r 1.d2(X2,b2) r, .s2(X2) 
LCDR Load Complement, Long 23 2 r1 ,r2 r1 ,r2 
LCER Load Complement, Short 33 2 r1 ,r2 r1 ,r2 
LCHR Load Channel Register 9F03 4 (Privileged) (Privileged) 
LCR Load Complement 13 2 r11r2 r1 ,r2 

LCTL Load Control 87 4 (Privileged) (Privileged) 
LD Load, Long 68 4 r 1.d2(X2,b2) r,,s2(x2) 
LOA Load Directive Address 51 4 (Privileged) (Privileged) 
LOR Load, Long 28 2 r 1,r2 r1 ,r2 
LE Load, Short 78 4 r 1.d2(X2,b2) r,,s2(x2) 
LER Load, Short 38 2 r1 ,r2 r1 ,r2 
LH Load Half Word 48 4 r,,d2(X2,b2) r,,s2(x2) 
LIA Load 1/0 Address 61 4 (Privileged) (Privileged) 

• 

• 

• 



UP-8913 

• 
Mnemonic 

LM 

LNDR 

LNER 

LNR 

LPDR 

LPER 

LPR 

LPSW 

LR 

LRC 

LRR 

LTDR 

LTER 

LTR 

M 

MD 

MOR 

ME 

• MER 

MH 

MIO 

MP 

MR 

MVC 

MVCL 

MVI 

MVN 

MVO 

MVZ 

N 

NC 

NI 

NR 

0 

OC 

01 

OR 

PACK 

PRB 

RESET 

s 
SD 

SOR 

SDV 

• SE 

SER 

SH 

SHL 

SPERRY UNIVAC OS/3 
ASSEMBLER 

E-3 
Update B 

Table E-1. Mnemonic list of Instructions (Part 3 of 4) 

Source Code Format 
Instruction Name 

Machine Byte 
Code Length 

Explicit Implicit 

Load Multiple 98 4 r,h,d2(b2) r1.ra.s2 
Load Negative, Long 21 2 r, ,r2 r1 ,r2 
Load Negative, Short 31 2 r1 ,r2 r, ,r2 
Load Negative 11 2 r1 ,r2 r1,r2 
Load Positive, Long 20 2 r1 ,r2 r1,r2 
Load Positive, Short 30 2 r1,r2 r1 ,r2 
Load Positive 10 2 r, ,r2 r,,r2 
Load Program Status Word 82 4 (Privileged) (Privileged) 
Load 18 2 r1 ,r2 r, .r2 
Longitudinal Redundancy Check 830E 4 (Privileged) (Privileged) 

Load Relocation Register A3 4 (Privileged) (Privileged) 

Load and Test, Long 22 2 r1,r2 r1,r2 
Load and Test, Short 32 2 r1,r2 r1,r2 
Load and Test 12 2 r1,r2 r1,r2 
Multiply 5C 4 r 1 ,d2(X2,b2) r,,s2(x2) 
Multiply, Long 6C 4 r 1.d2(X2,b2) r1,s2(X2) 
Multiply, Long 2C 2 r1 ,r2 r1 .r2 
Multiply, Short 7C 4 r 1.d2(X2,b2) r1,s2(x2) 
Multiply, Short 3C 2 r1 ,r2 r, ,r2 
Multiply Half Word 4C 4 r 1 ,d2(X2,b2) r1,s2(x2) 
Move 1/0 81 4 (Privileged) (Privileged) 

Multiple Decimal FC 6 d,(l,,b, ).d2(l2.b2) s,(l,),s202l 
Multiply 1C 2 r, ,r2 r1,r2 
Move Characters 02 6 d,(l,b, ).d2(b2) s1(1),s2 
Move Character Long OE 2 r1,r2 r,,r2 
Move Immediate 92 4 d,(b,),i2 S1,i2 
Move Numerics 01 6 d,(l,b, ).d2(b2) s1(1),s2 

Move With Offset F1 6 d,(l,,b, ).d202.b2) s,(l,),s2(12) 
Move Zones 03 6 d,(l,b, ).d2(b2) s1(l),s2 
AND Logical 54 4 r 1.d2(X2,b2) r,,s2(x2) 
AND Logical 04 6 d,(l,b, ).d2(b2) s,(l),S2 

AND Logical Immediate 94 4 d,(b,),i2 s,,i2 
AND Logical 14 2 r1,r2 r1,r2 
OR Logical 56 4 r 1 .d2(X2,b2) r,,s2(x2) 
OR Logical 06 6 d, (l,b, ).d2(b2) s,(l),S2 

OR Logical Immediate 96 4 d,(b,),i2 S1,i2 
OR Logical 16 2 r1,r2 r1 ,r2 
Pack F2 6 d,(1,,b, ).d202.b2) s1(1,),s2(12) 

Put IORB oc 2 (Privileged) (Privileged) 

Reset 8301 4 (Privileged) (Privileged) 

Subtract 5B 4 r 1 ,d2(X2,b2) r1,s2(x2) 

Subtract Normalized. Long 6B 4 r 1,d2(x2 ,b2 ) r 1,s2(x2 ) 

Subtract Normalized, Long 2B 2 r1,r2 r1 ,r2 

Start Device 9C02 4 (Privileged) (Privileged) 

Subtract Normalized, Short 7B 4 r, ,d2(X2,b2) r1,s2(X2) 

Subtract Normalized, Short 3B 2 r1,r2 r1,r2 

Subtract Half Word 4B 4 r 1 ,d2(Xi,b2) r,,s2(X2) 

Shift Logical 9B 4 r, ,m3,d2(b2) r1,ma.s2 

fJ55 



UP-8913 

Mnemonic 

SL 

SLA 

SLDA 

SLDL 

SLL 

SLM 

SLR 

SP 

SPM 

SR 

SRA 

SRDA 

SRDL 

SRL 

SRP 

SSK 

SSM 

SSTM 

ST 

STC 

STCM 

STCTL 

STD 

STE 

STH 

STM 

STR 

STRR 

STS 

SU 

SUR 

SVC 

SW 
SWLS 

SWR 

TM 

TMS 

TR 

TRT 

TS 

UNPK l 
x 
xc 
XI 

XR 

ZAP 

SPERRY UNIVAC OS/3 
ASSEMBLER 

E-4 
Update B 

Table E-1. Mnemonic List of Instructions (Part 4 of 4) 

Source Code Format 

Instruction Name 
Machine Byte 

Code Length 
Explicit Implicit 

Subtract Logical 5F 4 r 1 ,d2(X2,b2) r, .s2(X2) 

Shift Left Single Algebraic 8B 4 r1,d2(b2) r1,s2 
Shift Left Double Algebraic 8F 4 r,,d2(b2) r1,s2 
Shift Left Double Logical 8D 4 r,,d2(b2) r1,s2 
Shift Left Single Logical 89 4 r, ,d2(b2) r1,s2 
Supervisor Load Multiple B8 4 (Privileged) (Privileged) 

Subtract Logical 1F 2 r1 ,r2 r1,r2 
Subtract Decimal FB 6 d,(11 ,b, ).d2(12,b2) s,(l,),s2(12) 

Set Program Mask 04 2 r, r, 

Subtract 1B 2 r1 ,r2 r1 ,r2 
Shift Right Single Algebraic 8A 4 r,,d2(b2) r1,s2 
Shift Right Double Algebraic 8E 4 r1,d2(b2) r1,s2 
Shift Right Double Logical BC 4 r,,d2(b2) r1,s2 
Shift Right Single Logical 88 4 r1,d2(b2) r1,s2 
Shift and Round Decimal FO 6 d, (I, ,b, ).d2(b2).i3 S1(l,),S2,i3 

Set System Key 08 2 (Privileged) (Privileged) 

Set System Mask 80 4 (Privileged) (Privileged) 

Supervisor Store Multiple BO 4 (Privileged) (Privileged) 

Store 50 4 r, ,d2(X2,b2) r, .s2(x2) 

Store Character 42 4 r 1.d2(X2,b2) r,,s2(X2) 

Store Characters Under Mask BE 4 r1,m3,d2(b2) r1,m3,s2 
Store Control B6 4 (Privileged) (Privileged) 

Store Long 60 4 r 1 ,d2(X2,b2) r, .s2(X2) 

Store Short 70 4 r1,d2(X2,b2) r, ,s2(x2) 

Store Half Word 40 4 r 1.d2(X2,b2) r,,s2(x2) 

Store Multiple 90 4 r1,r3,d2(b2) r1,r3,s2 
Service Timer Register 03 2 (Privileged) (Privileged) 

Store Relocation Register A2 4 (Privileged) (Privileged) 

Store Status 8302 4 (Privileged) (Privileged) 

Subtract Unnormalized, Short 7F 4 r 1 ,d2(X2,b2) r, .s2(X2) 
Subtract Unnormalized, Short 3F 2 r1 ,r2 r1 ,r2 
Supervisor Call OA 2 i i 

Subtract Unnormalized, Long 6F 4 r 1 ,d2(X2,b2) r,,s2(X2) 
Switch List Scan 830F 4 (Privileged) (Privileged) 
Subtract Unnormalized, Long 2F 2 r1 ,r2 r1 ,r2 
Test Under Mask 91 4 d,(b,),i2 s,.i2 
Test Under Mask and Skip E2 6 d,(b, ).i2,m3,d4 s1,i2,m3,s4 
Translate DC 6 d,(l,b, ).d2(b2) s,(l),s2 
Translate and Test DD 6 d,(l,b, ).d2(b2) 

Test and Set 93 4 d2(b2) 52 
Unpack F3 6 d1 (I, ,b, ),d2(12,b2) s, (11 ),s2(12) 
Exclusive OR 57 4 r 1 'd2(x2,b2) r1 ,s2 (x

2
) 

Exclusive OR 07 6 d1 (l,b, ),d2(b2) s, (I) ,52 
Exclusive OR, Jmmediate 97 4 d1 (b1 ),i2 s, ,i2 
Exclusive OR 17 2 r 1,r 2 

r 1,r 
2 

Zero and Add Decimal FB 6 d1 (I, ,b, ),d2(12,b2) s1 (1 1 ),s2
(1

2
) 

• 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic Listing of Instructions (Part 1 of 6) 

Instruction Name Machine 
Code 

Mnemonic 

Add 1A AR 

Add 5A A 

Add Decimal FA AP 

Add Half Word 4A AH 

Add Immediate 9A Al 

Add Immediate A6 Al 

Add Logical 1E ALR 

Add Logical 5E AL 

Add Normalized, Long 2A ADR 

Add Normalized, Long 6A AD 

Add Normalized, Short 3A AER 

Add Normalized, Short 7A AE 

Add Unnormalized, Long 2E AWR 

Add Unnormalized, Long 6E AW 

Add Unnormalized, Short 3E AUR 

Add Unnormalized, Short 7E AU 

AND 14 NR 

AND 54 N 

AND 94 NI 

AND D4 NC 

Branch and Link 05 BALR 

Branch and Link 45 BAL 

Branch on Condition 07 BCR 

Branch on Condition 47 BC 

Branch on Count 06 BCTR 

Branch on Count 46 BCT 

Branch on Index High 86 BXH 

Branch on Index Low or Equal 87 BXLE 

Clear Channel - Privileged 9F02 CLRCH 

E-5 



UP-8913 

fjJ~ 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic Listing of Instructions (Part 2 of 6) 

Instruction Name Machine Mnemonic 
Code 

Clear Device - Privileged 9DX2 CLRDV 

Compare 19 CR 

Compare 59 c 

Compare and Swap Under Mask B9 CSM 

Compare Decimal F9 CP 

Compare Half Word 49 CH 

Compare Logical 15 CLR 

Compare Logical 55 CL 

Compare Logical 95 cu 

Compare Logical D5 CLC 

Compare Logical Characters Under Mask BD CLM 

Compare Logical Immediate and Skip E1 CLIS 

Compare Logical Characters Long OF CLCL 

Compare, Long 29 CDR 

Compare, Long 69 CD 

Compare, Short 39 CER 

Compare, Short 79 CE 

Convert to Binary 4F CVB 

Convert to Decimal 4E CVD 

Divide 10 DR 

Divide 5D D 

Divide Decimal FD DP 

Divide, Long 20 DOR 

Divide, Long 60 DD 

Divide, Short 30 DER 

Divide, Short 70 DE 

Edit DE ED 

Edit and Mark OF EDMK 

Enqueue 1/0 - Privileged EO EIO 

E-6 
Update B 

• 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic Listing of Instructions (Part 3 of 6) 

Instruction Name Machine Mnemonic 
Code 

Exclusive OR 17 XR 

Exclusive OR 57 x 

Exclusive OR 97 XI 

Exclusive OR 07 xc 

Execute 44 EX 

Execute Diagnose - Privileged 8300 EXD 

I Get IORB - Privileged OB GRB 

Halt and Proceed - Privileged 99 HPR 

Halt Device - Privileged 9E01 HOV 

Halve, Long 24 HOR 

Halve, Short 34 HER 

Initial Program Load - Privileged 8303 IPL 

Insert Character 43 IC 

Insert Characters Under Mask BF ICM 

Insert Storage Key - Privileged 09 ISK* 

Load 18 LR 

Load 58 L 

Load Address 41 LA 

Load and Test 12 LTR 

Load and Test, Long 22 LTDR 

Load and Test, Short 32 LTER 

Load Channel Register - Privileged 9F03 LCHR 

Load Complement 13 LCR 

Load Complement, Long 23 LCDR 

Load Complement, Short 33 LCER 

Load Control - Privileged B7 LCTL 

Load Directive Address - Privileged 51 LOA 

Load Half Word 48 LH 

Load 1/0 Address - Privileged 61 LIA 

Load, Long 28 LOR 

Load, Long 68 LD 

*Added as a feature 

E-7 
Update B 



UP-8913 

..,.. MSS 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic listing of Instructions (Part 4 of 6) 

Instruction Name Machine Mnemonic 
Code 

Load Multiple 98 LM 

Load Negative 11 LNR 

Load Negative, Long 21 LNDR 

Load Negative, Short 31 LNER 

Load Positive 10 LPR 

Load Positive, Long 20 LPDR 

Load Positive, Short 30 LPER 

Load PSW - Privileged 82 LPSW 

Load Relocation Register A3 LRR 

Load, Short 38 LER 

Load, Short 78 LE 

Longitudinal Redundancy Check - Privileged 830E LRC 

Move 92 MVI 

Move 02 MVC 

Move 1/0 - Privileged 81 MIO 

Move Characters Long OE MVCL 

Move Numerics 01 MVN 

Move With Offset F1 MVO 

Move Zones 03 MVZ 

Multiply 1C MR 

Multiply 5C M 

Multiply Decimal FC MP 

Multiply Half Word 4C MH 

Multiply, Long 2C MOR 

Multiply, Long 6C MD 

Multiply, Short 3C MER 

Multiply, Short 7C ME 

OR 16 OR 

OR 56 0 

E-8 
Update A 

• 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic Listing of Instructions (Part 5 of 6) 

Instruction Name Machine Mnemonic 
Code 

OR 96 01 

OR D6 OC 

Pack F2 PACK 

Put IORB - Privileged oc PRB 

Reset - Privileged 8301 RESET 

Service Timer Register - Privileged 03 STR 

Set Program Mask 04 SPM 

Set Storage Key - Privileged 08 SSK* 

Set System Mask - Privileged 80 SSM 

Shift and Round Decimal FO SRP 

Shift Left Double 8F SLDA 

Shift Left Double Logical 8D SLDL 

Shift Left Single 8B SLA 

Shift Left Single Logical 89 SLL 

Shift Logical 98 SHL 

Shift Right Double 8E SRDA 

Shift Right Double Logical 8C SRDL 

Shift Right Single 8A SRA 

Shift Right Single Logical 88 SRL 

Start Device - Privileged 9C02 SDV 

Store 50 ST 

Store Character 42 STC 

Store Characters Under Mask BE STCM 

Store Control - Privileged B6 STCTL 

Store Half Word 40 STH 

Store, Long 60 STD 

Store Multiple 90 STM 

Store Relocation Register - Privileged A2 STRR 

Store, Short 70 STE 

Store Status - Privileged 8302 STS 

*Added as a feature. 

E-9 
Update B 

57EP 



----------------------------------- - -

UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-2. Alphabetic Listing of Instructions (Part 6 of 6) 

Instruction Name Machine Mnemonic 
Code 

Subtract 1B SR 

Subtract 5B s 

Subtract Decimal FB SP 

Subtract Half Word 4B SH 

Subtract Logical 1F SLR 

Subtract Logical 5F SL 

Subtract Normalized, Long 2B SDR 

Subtract Normalized, Long 6B SD 

Subtract Normalized, Short 3B SER 

Subtract Normalized, Short 7B SE 

Subtract Unnormalized, Long 2F SWR 

Subtract Unnormalized, Long 6F SW 

Subtract Unnormalized, Short 3F SUR 

Subtract Unnormalized, Short 7F SU 

Supervisor Call OA SVC 

Supervisor Load Multiple - Privileged BS SLM 

Supervisor Store Multiple - Privileged BO SSTM 

Switch List Scan - Privileged 830F SWLS 

Test and Set 93 TS 

Test Under Mask 91 TM 

Test Under Mask and Skip E2 TMS 

Translate DC TR 

Translate and Test DD TRT 

Unpack F3 UNPK 

Zero and Add F8 ZAP 

E-10 
Update A 

• 

• 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-3. List of Instructions by Machine Code (Part 1 of 6) 

Machine Code Mnemonic Instruction Name 

03 STR Service Timer Register - Privileged 

04 SPM Set Program Mask 

05 BALR Branch and Link 

06 BCTR Branch on Count 

07 BCR Branch on Condition (Native and 360/20 modes) 

08 SSK* Set Storage Key - Privileged 

09 ISK* Insert Storage Key - Privileged 

OA SVC Supervisor Call 

OB GRB Get IORB - Privileged 

OC PRB Put IORB - Privileged 

OE MVCL Move Characters Long 

OF CLCL Compare Logical Characters Long 

10 LPR Load Positive 

11 LNR Load Negative 

12 LTR Load and Test 

13 LCR Load Complement 

14 NR AND 

15 CLR Compare Logical 

16 OR OR 

17 XR Exclusive OR 

18 LR Load 

19 CR Compare 

1A AR Add 

1B SR Subtract 

1C MR Multiply 

1D DR Divide 

1E ALR Add Logical 

1F SLR Subtract Logical 

20 LPDR Load Positive, Long 

21 LNDR Load Negative, Long 

22 LTDR Load and Test, Long 

23 LCDR Load Complement, Long 

E-11 
Update B 

t 



UP-8913 SPERRY UNIVAC OS/3 E-12 
ASSEMBLER 

Table E-3. list of Instructions by Machine Code (Part 2 of 6) • 
Machine Code Mnemonic Instruction Name 

24 HOR Halve, Long 

28 LOR Load, Long 

29 CDR Compare, Long 

2A ADR Add Normalized, Long 

2B SOR Subtract Normalized, Long 

2C MOR Multiply, Long 

2D DOR Divide, Long 

2E AWR Add Unnormalized, Long 

2F SWR Subtract Unnormalized, Long 

30 LPER Load Positive, Short 

31 LNER Load Negative, Short 

32 LTER Load And Test, Short 

33 

34 

LCER 

HER 

Load Complement, Short 

Halve, Short • 38 LER Load, Short 

39 CER Compare, Short 

3A AER Add Normalized, Short 

3B SER Subtract Normalized, Short 

3C MER Multiply, Short 

30 DER Divide, Short 

3E AUR Add Unnormalized, Short 

3F SUR Subtract Unnormalized, Short 

40 STH Store Half Word 

41 LA Load Address 

42 STC Store Character 

43 IC Insert Character 

44 EX Execute 

45 BAL Branch and Link 

46 BCT Branch on Count • 47 BC Branch on Condition 



UP-8913 

• 

• 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-3. List of Instructions by Machine Code (Part 3 of 6) 

Machine Code Mnemonic Instruction Name 

48 LH Load Half Word 

49 CH Compare Half Word 

4A AH Add Half Word 

4B SH Subtract Half Word 

4C MH Multiply Half Word 

4E CVD Convert to Decimal 

4F CVB Convert to Binary 

SO ST Store 

S1 LOA Load Directive Address - Privileged 

S4 N AND 

SS CL Compare Logical 

S6 0 OR 

S7 x Exclusive OR 

S8 L Load 

S9 c Compare 

SA A Add 

SB s Subtract 

SC M Multiply 

SD D Divide 

SE AL Add Logical 

SF SL Subtract Logical 

60 STD Store, Long 

61 LIA Load 1/0 Address - Privileged 

68 LD Load, Long 

69 CD Compare, Long 

6A AD Add Normalized, Long 

6B SD Subtract Normalized, Long 

6C MD Multiply, Long 

60 DD Divide, Long 

6E AW Add Unnormalized, Long 

E-13 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-3. List of Instructions by Machine Code (Part 4 of 6) 

Machine Code Mnemonic 

6F 

70 

78 

79 

7A 

7B 

7C 

7D 

7E 

7F 

80 

81 

82 

8300 

8301 

8302 

8303 

830E 

830F 

86 

87 

88 

89 

8A 

8B 

BC 

8D 

8E 

8F 

90 

91 

92 

SW 

STE 

LE 

CE 

AE 

SE 

ME 

DE 

AU 

SU 

SSM 

MIO 

LPSW 

EXD 

RESET 

STS 

IPL 

I
I LRC 

SWLS 

BXH 

BXLE 

SRL 

SLL 

SRA 

SLA 

SRDL 

SLDL 

SRDA 

SLDA 

STM 

TM 

MVI 

Instruction Name 

Subtract Unnormalized, Long 

Store, Short 

Load, Short 

Compare, Short 

Add Normalized, Short 

Subtract Normalized, Short 

Multiply, Short 

Divide, Short 

Add Unnormalized, Short 

Subtract Unnormalized, Short 

Set System Mask - Privileged 

Move 1/0 - Privileged 

Load PSW - Privileged 

Execute Diagnose - Privileged 

Reset - Privileged 

Store Status - Privileged 

Initial Program Load - Privileged 

Longitudinal Redundancy Check 

Switch List Scan - Privileged 

Branch on Index High 

Branch on Index Low or Equal 

Shift Right Single Logical 

Shift Left Single Logical 

Shift Right Single 

Shift Left Single 

Shift Right Double Logical 

Shift Left Double Logical 

Shift Right Double 

Shift Left Double 

Store Multiple 

Test Under Mask 

Move Immediate 

E-14 
Update A 

• 

• 

• 



UP-8913 

• 
Machine 

93 

94 

95 

96 

97 

98 

99 

9A 

9B 

9C02 

9DX2 

9E01 

9F02 • 9F03 

A2 

A3 

BO 

B6 

B7 

B8 

B9 

BO 

BE 

BF 

01 

02 

03 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-3. List of Instructions by Machine Code (Part 5 of 6) 

Code Mnemonic Instruction Name 

TS Test and Set 

NI AND 

cu Compare Logical 

01 OR 

XI Exclusive OR 

LM Load Multiple 

HPR Halt and Proceed - Privileged 

Al Add Immediate 

SHL Shift Logical 

SDV Start Device - Privileged 

CLRDV Clear Device - Privileged 

HOV Halt Device - Privileged 

CLRCH Clear Channel - Privileged 

LCHR Load Channel Register - Privileged 

STRR Store Relocation Register - Privileged 

LRR Load Relocation Register - Privileged 

SSTM Supervisor Store Multiple - Privileged 

STCTL Store Control - Privileged 

LCTL Load Control - Privileged 

SLM Supervisor Load Multiple - Privileged 

CSM Compare and Swap Under Mask 

CLM Compare Logical Characters Under Mask 

STCM Store Characters Under Mask 

ICM Insert Characters Under Mask 

MVN Move Numerics 

MVC Move 

MVZ Move Zones 

E-15 
Update B 

BJ 
B't 
l3S-

li.lvf 

Pt if 
S-/lp 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Table E-3. List of Instructions by Machine Code (Part 6 of 6) 

Machine Code Mnemonic Instruction Name 

D4 NC AND 

D5 CLC Compare Logical 

D6 QC OR 

D7 xc Exclusive OR 

DC TR Translate 

DD TRT Translate and Test 

DE ED Edit 

DF EDMK Edit and Mark 

EO EIO Enqueue 1/0 - Privileged 

El CLIS Compare Logical Immediate and Skip 

E2 TMS Test Under Mask and Skip 

~ E3 frJss 
FO SRP Shift and Round Decimal 

Fl MVO Move With Offset 

F2 PACK Pack . 
F3 UNPK Unpack 

F8 ZAP Zero and Add 

F9 CP Compare Decimal 

FA AP Add Decimal 

FB SP Subtract Decimal 

FC MP Multiply Decimal 

FD DP Divide Decimal 

*Added as a feature. 

E-16 
Update A 

• 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-1 

Appendix F. Use of PARAM Statement 

This appendix describes the use of the PARAM statement and the option-specifying 
operands supported by the SPERRY UNIVAC Operating System/3 (OS/3) Assembler. 
These options permit you to identify library files, to access source or copy modules and 
macro definitions from these libraries, to select assembler listings, and to control object 
module output. Also included in this appendix is the source module correction routine. 

F.1. PARAM STATEMENT 

The PARAM statement specifies the assembler processing options in effect at assembly 
time and alters the standard default options. If you don't specify assembler options in the 
control stream of your job, the assembler functions as follows: 

• The assembler searches only the system source library file ($Y$SRC) for any source 
module or copy code referenced. 

• It also searches only the system macro library file ($Y$MAC) for any macro 
references. 

• It stores the object module produced in the job run library file ($Y$RUN). 

• It prints the source code, object code, cross-references, and diagnostic listings. 

• The value of &SYSPARM is equal to a null string. 

• Columns 1 and 2 of the coding form must contain slashes, followed by at least one 
blank column, and then PARAM followed by at least one blank column (see following 
format). Multiple options are supported for each option separated by commas. The end 
of selected options is indicated by a blank column following the last option. All 
options selected are printed preceding the assembly listing. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-2 

Format: 

1 10 

II b, PARAMb, !COPY= {file~~~e1} G{file~~~e2}]] 
L II ID Ill L Jtlt II]![ 

[,IN=modulename [ 1{filena(eJ J J 

[LIN= { :'.·ri~~:J H;u·rF·;} J] 
[LST= { ([s1] [,s2t[,s3] [,s4])} J 

[.OUT= r1j;a)~, ] 
.. . ~·;~:, .. q: 

[,RO= {a;}] 

[,sYSPARM= {t':~~<i::[~~r~} J 

COPY Keyword Parameter: 

Enables up to two files to be identified as source code module libraries or specifies 
that no files are to be searched for source code modules. If this option is omitted, 
$Y$SRC is assumed and is the only file searched for source code module references. 
Only source modules can be copied; the source code must be in the standard format 
and may not contain any COPY, ICTL, MACRO, PROC, or MEND directives. 

COPY=filename1 
Specifies that the file identified as filename1 is searched first for source code 
modules referenced and, if not found there, then $Y$SRC is searched: filename is any 
name you specify or the system source library. lffilename1 =filename2, then copy= 
filename1 will generate the same files to be searched as copy= /filename2, except 
that in the first case the order in which the files are to be searched will be filename1 
and then $Y$SRC, whereas in the second case, the order will be $Y$SRC and then 
filename2. 

COPY=filename1 /filename2 
Specifies that the file identified as filename1 is searched first. Then, the file identified 
as filename2 is searched for source code modules referenced. When two filenames 
are specified for this parameter, the $Y$SRC file is not searched. 



• 

• 

• 

UP-8913 

COPY=filename1 /(N) 

SPERRY UNIVAC OS/3 
ASSEMBLER 

F-3 

Specifies only the file identified as filename1 is searched for source code 
modules referenced. As stated previously, if filename1 = filename2, then copy = 
filename1 /(N) is the same as copy = (N)/filename2, with only one file to be 
searched in either case. 

COPY=(N) 
Specifies no files, not even $Y$SRC, are searched for source code modules 
referenced. COPY=(N)/(N) is the same as COPY=(N). 

IN Keyword Parameter: 

Identifies the name of the source module that is to be assembled and the file in 
which it resides. If this option is omitted, the source code must be in the control 
stream. 

IN=modulename 
Specifies the name of the source module and directs the assembler to search the 
$Y$SRC file for the module; modulename is the name of the source module and 
is up to eight characters. 

IN=modulename/filename 
Specifies the name of the source module and the file in which it resides; 
filename is any name you supply or the system source library . 

LIN Keyword Parameter: 

Enables up to two files to be identified as macro source files or no files to be 
searched for macro references. If this option is omitted, $Y$MAC is assumed and is 
the only file searched. 

LIN=filename1 
Identifies the file that is searched for macro references and, if not found there, 
then $Y$MAC is searched; filename is any name or the name of the system 
macro library. 

LIN=filename1 /filename2 
Identifies the two files that are searched for macro references. The file identified 
as filename1 is searched first, followed by the file identified as filename2. The 
$Y$MAC file is not searched. 

LIN=filename1 /(N) 
Specifies only the file identified as filename1 is searched for macro references. 

LIN=(N) 
Specifies no files, not even $Y$MAC, are searched for macro references . 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-4 
Update A 

LST Keyword Parameter: 

Indicates the type of listing desired. If this option is omitted, source, object, cross­
reference, and diagnostic listings are printed. 

LST=s 
A single specification requiring no parentheses. 

LST=([s1 ] ... [,s4]} 
Any s in the series is one of the following: 

NC 

ND 

NR 

N 

Specifies that the cross-reference listing is suppressed. 

Specifi~s that the diagnostic listing is suppressed. 

Specifies that the cross reference listing is to contain only those symbols that 
have at least one reference each. 

Specifies that all output listings are suppressed. 

DBG 
Specifies a proc or macro debug mode feature within the OS/3 assembler. 
When the feature is selected, the output listing shows the following: 

• Results of the expansion of any proc or macro called within the user 
program, including any conditional assembly directives processed as the 
result of the expansion itself. Source coding (constants, directives, and 
instructions) is listed twice and shows any appropriate substitutions. Any 
statements causing error diagnostics show the exit line in error. 

• A proc or macro which produces error diagnostics at the time it is encoded 
is listed following the END directive; e.g., system errors. A proc or macro is 
encoded once, but may be called multiple times. 

• If an error is detected at both expansion and encoding time, it appears two 
or more times. Errors detected only at encoding time appear once following 
the END directive. 

• All lines flagged (regardless of their order of appearance) are shown in the 
diagnostic summary list. Lines flagged at encoding time may or may not be 
flagged at expansion time. 

When this feature is not selected, any errors detected during proc or macro 

• 

• 

expansion may not show the exact line in error, but rather the vicinity of the item • 
which is flagged. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-5 

OUT Keyword Parameter: 

Enables you to specify the file that is to be used to store the object module output by 
the assembler. If this option is omitted, the object module is generated and stored in 
$Y$RUN, the system-run library. 

OUT=filename 
Identifies the file that is used as the output file by the assembler; filename is any 
name or the job run library. 

OUT={N) 
Specifies that no output file is used by the assembler and, thus, no object 
module is generated. 

RO Keyword Parameter: 

Permits you to optionally flag all absolute/base displacement fields of instructions 
that yield values less than 4096. Each statement is flagged with an 
'ADDRESSABILITY' error flag. For example, if you wanted to code MVI TAG,X'40' but 
coded MVC TAG,X'40' by mistake, the latter instruction would be flagged, since the 
displacement field is less than 4096. 

SYSPARM Keyword Parameter: 

Specifies the equivalent of a global SETC symbol, with the value specified in this 
option. If this option is omitted, the value of &SYSPARM is a null string. 

Operationa I Consideration: 

The value established by SYSPARM is available within the assembly, both outside of 
and within macro definitions. This parameter is referenced as &SYSPARM within 
assembly statements. Any error in this specification directs the assembler to ignore 
the specification, and an appropriate error message is printed on the output printer. 

SYSPARM='string' 
Specifies a string of one to eight characters enclosed in apostrophes. An 
apostrophe within the string is represented by two apostrophes but only counts 
as one in determining the length of the string. 

F.2. SOURCE CORRECTIONS 

The OS/3 assembler supports a source module correction routine. This routine is the 
same as the one used in the librarian. The correction deck is interchangeable between the 
assembler and the librarian except that the librarian also uses the added COR control 
statement. The corrections made to the source module are temporary. The corrections are 
specified by the presence of both the source module input (// D.PARAMD.IN=modulename 
or the IN=(vol-ser-no,label) for the jproc call) and the correction records in the job control 
stream. These records must be with the data delimiters (/$ and /*). If there are no records 
between the data delimiters, no source correction is performed. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-6 

There are three control statements associated with the correction routine: sequence (SEQ), 
recycle (REC), and skip (SKI). To make the source module corrections, the actual source 
record to be inserted is used as the correction card with the same sequence number as 
the record to be replaced. Insertions are performed by using at least one correction card 
(always the first) card with a sequence number falling between the sequence numbers of 
the records between which the insertion is to be made. Any number of unsequenced 
correction cards may then follow the first sequence card. Deletions are performed by 
bypassing one or more original source module records in the old data set, thus eliminating 
them from being written on the new data set. The SKI and REC statements are used for 
this function. 

F.2.1. SEQ Statement 

Function: 

Specifies the starting position and the length of the sequence field. If the sequence 
file is omitted, column 73 is assumed to be the first column of the sequence field and 
continues to the maximum of eight characters. 

Format: 

LABEL A OPERATION A OPERAND 

SEO 
{

column .position} {content } 
,,, • , 00000000 

unused 

Specifications: 

column position 
Is the first column position in the source record where the sequence field begins. 
If omitted, column 73 is assumed to be the first column of the sequence field. 

content 
Is one to eight characters. The length determines the length of the sequence 
field. 

Operationa I Considerations: 

• Card column 1 must be blank if the sequence field does not start in card column 1. 

• The SEQ card is always the first card in the correction routine. 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

F-7 

F.2.2. REC Statement 

Function: 

Causes the record pointer for the input module to be repositioned to the first record in 
the module. In conjunction with the SKI control statement, it allows the rearranging 
of major segments of the input module. When a REC control statement is processed, 
records are read from the input module up to and including the record whose 
sequence number matches the sequence number in the REC control statement field. 
Then, the second pointer for the input module is reset to the first record in the 
module. If the sequence field of the REC control statement is blank, repositioning of 
the record pointer takes place immediately. 

Format: 

LABEL fl OPERATION fl OPERAND SEQUENCE 

ignored REC unused [last sequence no.] 

Specification: 

last sequence no. 
Is one to eight alphanumeric characters that identify the sequence number of the 
last input record to be read from the input module. If omitted, the repositioning 
function takes place immediately. 

Operational Considerations: 

• Records are replaced one at a time by writing a source statement with a sequence 
number matching the sequence number of the record to be replaced. 

• Records are inserted by writing source correction statements with sequence numbers 
that fall between the sequence numbers of the input records between which insertion 
is to take place. Blank sequence fields cause an insertion to take place immediately. 

F.2.3. SKI Statement 

Function: 

Allows one or more original input module records to be bypassed. Records are read 
from the input module until a sequence number is detected that matches the 
sequence number of the SKI command. The skip operation is started and continues 
until a sequence number that matches the operand field of the SKI command is 
detected. If the sequence field of the skip command is blank, the function is started 
immediately. 



UP-8913 

Format: 

LABEL 

unused 

Specifications: 

SPERRY UNIVAC OS/3 
ASSEMBLER 

t. OPERATION t. OPERAND 

SKI last-sequence-no. 

F-8 

SEQUENCE 

[starting-sequence-no.] 

last-sequence-no 
Is one to eight alphanumeric characters that identify the sequence number of the 
last input module record to be bypassed. 

starting-sequence-no. 
Is one to eight alphanumeric characters that identify the sequence number of the 
first source module record to be bypassed. 

Operationa I Consideration: 

• If omitted, the skip operation starts immediately with the input module record that 
follows the last record operated on. 

• 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

G-1 

Appendix G. System Variable Symbols 

System variable symbols automatically generate values or character strings at assembly 
time. There are seven system variable symbols: &SYSECT, &SYSLIST, &SYSNDX, 
&SYSDATE, &SYSTIME, &SYSJDATE, and &SYSPARM. The following subsections contain 
the functions of each of the seven system variable symbols. 

G.1. &SYSECT 

&SYSECT is a system variable symbol used to represent the name of the control section 
containing a macroinstruction. 

&SYSECT is assigned a value for each inner and outer macroinstruction processed by the 
assembler. This value is the name of the control section containing the macroinstruction. 
If &SYSECT is referenced in a macro definition, its substituted value is the name of the 
last CSECT, DSECT, or START directive that occurred prior to the macroinstruction. If a 
named CSECT, DSECT, or START directive did not appear prior to the macroinstruction, 
&SYSECT is assigned a null character value during the processing of the macro definition 
called by the macro call instruction. 

Any CSECT or DSECT directives processed within a macro definition affect the value of 
&SYSECT for any subsequent inner macroinstructions in the definition and for any outer 
and inner macroinstructions that occur outside the current nest of macro definitions. 
However, the value of &SYSECT remains constant during the processing of a given 
macroinstruction, and is not affected by CSECT or DSECT directives or inner 
macroinstructions occurring in that macro definition. 

G.2. &SYSLIST 

Within a macro definition in macro format, each positional parameter may be referenced 
by a name; however, each positional parameter need not be named in the macro prototype 
statement and may be referenced in terms of its position within the macroinstruction 
operand field by wiring the system variable symbol &SYSLIST followed by an expression in 
parentheses. The value of the expression identifies the position of the parameter in the 
operand field. The expression may be a SETA symbol or a self-defining term. Therefore, if 
a macro definition prototype statement has the operand field: 

&A,&B,&C 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

G-2 

the first positional parameter is referenced either as &A or &SYSLIST(1 ), the second is • 
referenced either as &B or &SYSLIST(2), and the third positional parameter is either &C or 
&SYSUST(3), and so on. This capability, which is used to index through the positional 
parameters, treats each parameter in the same way. 

A null character string is generated in place of &SYSLIST(m) if m is zero or greater than 
the number of positional parameters supplied in the macroinstruction. 

The system variable &SYSLIST may not be used in a mixed-mode (positional and keyword 
parameters included) macro definition. 

G.3. &SYSNDX 

The assembler maintains a counter that is incremented by 1 each time the assembler 
encountered a macroinstruction. The value of this counter within the first macro is 1. The 
current value of this counter is supplied as the 4-digit character value of the system 
variable symbol &SYSNDX each time a macroinstruction is encountered. A macro 
definition that defines labels within the code it generates, and that may be called more 
than once in a single assembly, generally creates duplicate definitions of the same label. 
To avoid this problem, the system variable symbol &SYSNDX may be used as a suffix on 
the labels defined by the macro definition, so that each time the macro definition is called, 
it will define a different set of labels. 

G.4. &SYSDATE 

&SYSDATE is a system variable symbol, which you can reference in your program text or 
within a macro definition, to generate the date your program is assembled. The date is 
produced in your assembly listed as a character string representing the month, day, and 
year (mm/dd/yy) the program was assembled. If you 

1 . assemble your program, 

2. store it in a library, and 

3. retrieve the assembled program for execution at a later date, 

any &SYSDATE reference in your program references the original assembly date, not the 
current date when your program is executed. 

You specify &SYSDATE as either an operand in a source code statement, which defines a 
constant (DC), or an operand field literal. 

LABEL 
1 

ASMDATE 

AOPERATIONA OPERAND 
10 16 

DC C'&SYSDATE' 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

G-3 

When this line of source code is assembled, the object code contains the current date. 

You can also use the &SYSDATE system variable symbol as a literal. 

LABEL 
1 

t:iOPERATIOUA 
10 16 

tWC BUF ,=CI &SYS DATE I 

OPE RAMO 

When this line of source code is executed, the assembly date is moved into a main storage 
area called BUF. 

G.5. &SYSTIME 

&SYSTIME is a system variable symbol, which you can reference either in your program 
text or within a macro definition, to generate the time of day your program is assembled. 
The time is produced in your assembly listing as a character string representing the hour, 
minute, and second (hh.mm.ss) the assembly was run. If you 

1. assemble your program, 

2. store it in a library, and 

3. retrieve the assembled program for execution at another time, 

any &SYSTIME reference in your program references the original assembly time, not the 
current time of execution. 

You specify &SYSTIME as either an operand in a source code statement, which defines a 
constant (DC), or an operand field literal. 

ASMTIHE DC C'&SYSTIHE' 

When this line of source code is assembled, the object code contains the current time. 

You can also use the &SYSTIME system variable symbol as a literal. 

MVC BUF,=C'&SYSTIME' 

When this line of source code is executed, the assembly time is moved into a main storage 
area called BUF. 



UP-8913 SPERRY UNIVAC OS/3 G-4 
ASSEMBLER 

G.6. &SYSJDATE 

&SYSJDATE is a system variable symbol, which you can reference either in your program 
text or within a macro definition, to generate the Julian date when your program is 
assembled. The date is produced in your assembly listing as a character string 
representing the month, day, year, and Julian value - day of the year {mmddyjjj) the 
assembly was run. If you 

1. assemble your program, 

2. store it in a library, and 

3. retrieve the assembled program for execution at another time, 

any &SYSJDATE reference in your program references the Julian date of the original 
assembly. 

You specify &SYSJDATE as either an operand in a source code statement, which defines a 
constant {DC), or an operand field literal. 

LABEL 
1 

JUL DATE 

.60PERATION.6 OPE RAMO 
I 0 16 

DC C1 &SYSJDATE 1 

When this line of source code is assembled, the object code contains the Julian date. 

You can also use the &SYSJDATE system variable symbol as a literal. 

MVC BUF,=C'&SYSJDATE' 

When this line of source code is executed, the Julian date is moved into a main storage 
area called BUF. 

• 



UP-8913 

G.7. &SYSPARM 

SPERRY UNIVAC OS/3 
ASSEMBLER 

G-5 

&SYSPARM is a system variable symbol, which you can reference either in your program 
text or within a macro definition, to generate an 8-byte null character string at assembly 
time. The string is initially null but can be varied by using the PARAM statement as 
follows: 

LABEL /::,.OPERATION/::,. OPERAND 

//l::.PARAMI::. SYSPARM='string' 

By using the PARAM statement, you can specify a string of up to eight characters, 
enclosed in apostrophes. Once you've altered the value of &SYSPARM, any reference to 
&SYSPARM produces the character string you specified in the PARAM statement, not a 
null character string. 

To reference the &SYSPARM system variable symbol, you specify &SYSPARM as either an 
operand in a source code statement, which defines a constant (DC), or an operand field 
literal. 

t. OPE RAT I ON Ll LABEL 
1 10 16 

NULSTRNG DC C'&SYSPARM 1 

OPERAND 

When this line of source code is assembled, the object code contains an 8-byte null 
character string. 

You can also use the &SYSPARM system variable symbol as a literal. 

MVC BUF,=C'&SYSPARM 1 

If you don't precede this source code statement with a PARAM statement when this line 
of source code is executed, an 8-byte null character string is moved into a main storage 
area called BUF. 



• 



UP-8913 

• 

Term 

A 

A instruction 
examples 
formats 
operational considerations 

A, type constant 

Absolute expression 
definition 
examples 
relocatable terms 

Absolute term 
examples 
expression 
relocatable expression 

ACTR statement 
format 
function 

AD instruction 
example 
formats 
operational considerations 

Add (A) instruction 

Add (AR) instruction 

Add decimal (AP) instruction 

e Add half word (AH) instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Add immediate (Al) instruction 

10.2 10-8 Add logical (AL) instruction 
10.2 10-7 
10.2 10-7 

Add logical (ALR) instruction 
5.2.9 5-13 

Add normalized (AD) instruction, long format 
4.4.1 4-16 
4.4.1 4-17 
4.4.l 4-16 Add normalized (ADR) instruction, 

long format 

4.4.l 4-16 
4.4 4-16 Add normalized (AE) instruction, 
4.4.2 4-17 short format 

27.4.3 27-24 Add normalized (AER) instruction, 
27.4.3 27-24 short format 

11.2 11-5 Add unnormalized (AU) instruction, 
11.2 11-3 short format 
11.2 11-4 

See A Add unnormalized (AUR) instruction, 
instruction. short format 

See AR 
instruction. Add unnormalized (AW) instruction, 

long format 
See AP 
instruction. 

Add unnormalized (AWR) instruction, 
See AH long format 
instruction. 

Index 1 

Index 

Reference Page 

See Al 
instruction. 

See AL 
instruction. 

See ALR 
instruction. 

See AD 
instruction. 

See ADR 
instruction. 

See AE 
instruction. 

See AER 
instruction. 

See AU 
instruction. 

See AUR 
instruction. 

See AW 
instruction. 

See AWR 
instruction. 



UP-8913 

Term Reference 

Address constants 
A-type 5.2.9 
external 5.2.11 
full-word 5.2.9 
half-word 5.2.8 
V-type 5.2.11 
Y-type 5.2.8 

Addressing 
main computer storage 3.1 
register 3.2 

ADR instruction 
example 11.3 
formats 11.3 
operational considerations 11.3 

Advance listing (EJECT) direction 
&SYS LIST See EJECT 

directive. 

AE instruction 
example 11.4 
formats 11.4 
operational considerations 11.4 

AER instruction 
example 11.5 
formats 11.5 
operational considerations 11.5 

AGO statement 27.2.2 

AH instruction 
example 10.4 
formats 10.4 
operational considerations 10.4 

Al instruction 
examples 10.5 
formats 10.5 
operational considerations 10.5 

AIF statement 
examples 27.3.3 
format 27.3.3 

AL instruction 
example 12.2 
formats 12.2 
operational considerations 12.2 

Alphabetic instruction listing Table E-2 

ALR instruction 
example 12.3 
formats 12.3 
operational considerations 12.3 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Page Term 

American Standard Code for Information 
5-13 Interchange (ASCII) character codes 
5-15 
5-13 Ampersand 
5-12 character string 
5-15 set symbols 
5-12 

&SYSDATE 

3-1 &SYSECT 
3-3 

&SYS LIST 
example 

11-7 mixed mode 
11-6 null character string 
11-6 

&SYSNDX 

&SYSPARM 

&SYS TIME 

11-11 And (N) instruction 
11-9 
11-10 

And (NC) instruction 

11-13 
11-12 And (NI) instruction 
11-12 

27-16 And (NR) instruction 

10-12 ANOP statement 
10-11 example 
10-11 format 

AP instruction 
10-14 examples 
10-13 formats 
10-14 operational considerations 

Apostrophe, character representation 
27-22 
27-21 Application instructions 

explicit length 
formats 

12-2 implicit length 
12-1 types 
12-3 

AR instruction 
E-5 example 

format 
operational considerations 

12-6 
12-5 
12-5 

Index 2 

Reference Page • 
Table B-1 B-1 

4.4.6 4-19 
27.1 27-2 

G.4 G-2 

G.l G-1 

G.2 G-1 
G.2 G-2 
G.2 G-2 

G.3 G-2 

G.7 G-5 

G.5 G-3 

See N 
instruction. 

See NC 
instruction. 

See NI 
instruction. 

See NR 
instruction. 

27.2.4 27-19 
27.2.4 27-18 

9.3 9-9 
9.3 9-8 
9.3 9-8 

4.4.6 4-19 

7.1 7-4 
Fig. 7-1 7-2 
7.1 7-4 
7.1 7-1 

10.3 10-9 
10.3 10-9 
10.3 10-9 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Index 3 
Update A 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Index 4 



UP-8913 

e Term 

c 
C instruction 

examples 
formats 
operationa I considerations 

C, type constant 

CCW instruction 
examples 
format 
operational considerations 

CD instruction 
examples 
formats 
operational considerations 

CDR instruction 
examples 
formats 
operational considerations 

e CE instruction 
examples 
formats 
operational considerations 

CER instruction 
examples 
formats 
operational con~derations 

CH instruction 
examples 
formats 
operational considerations 

Channel command word (CCW) 

Character constants (C) 
padding 
truncation 

Character conversion codes 
American Standard Code for Information 

Interchange (ASCII) 

Extended Binary Coded Decimal 
Interchange Code (EBCDIC) 

punched card 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Character expression 

10.6 10-16 Character representation 
10.6 10-15 alphabetic 
10.6 10-16 asterisk 

d esc ri ption 
5.2.1 5-8 numeric 

special characters 
special letters 

21.6 21-10 
21.6 21-9 Character strings value 
21.6 21-10 

Check-off table 
explanation 

11.10 11-24 format 
11.10 11-23 terms 
11.10 11-24 

CL instruction 
examples 

11.11 11-26 formats 
11.11 11-25 operational considerations 
11.11 11-25 

CLC in st ruction 
examples 

11.12 11-28 formats 
11.12 11-27 operational considerations 
11.12 11-28 

Clear channel (CLRCH) instruction 

11.13 11-30 Clear device (CLRDV) instruction 
11.13 11-29 
11.13 11-29 CLCL instruction 

example 
formats 

10.8 10-20 programming considerations 
10.8 10-19 
10.8 10-20 CU instruction 

examples 
See CCW formats 
instruction. operational considerations 

CLIS instruction 
5.2.1 5-8 example 
5.2.1 5-8 formats 

operational considerations 

CLM instruction 
Table B-1 B-1 example 
Table B-3 B-3 formats 

operating considerations 
Table B-2 B-2 
Table B-3 B-3 CLR instruction 
Table B-3 B-3 example 

formats 
operational considerations 

Index 5 

Reference Page 

4.4.4 4-18 
27.1.8 27-14 

2.4.1 2-5 
4.3.1 4-14 
2.4 2-5 
2.4.3 2-6 
2.4.4 2-8 
2.4.2 2-6 

4.4.6 4-19 

Appendix D 
Appendix D 
Appendix D 

12.8 12-20 
12.8 12-19 
12.8 12-20 

12.9 12-23 
12.9 12-22 
12.9 12-23 

13.3.1 13-7 

13.3.2 13-8 

12.10 12-27 
12.10 12-25 
12.10 12-26 

12.11 12-30 
12.11 12-29 
12.11 12-30 

12.12 12-37 
12.12 12-34 
12.12 12-36 

12.13 12-41 
12.13 12-39 
12.13 12-40 

12.14 12-43 
12.14 12-42 
12.14 12-43 



UP-8913 

Term 

CLRCH instruction 

CLRDV instruction 

CNOP directive 
examples 
format 

Code generation, repetitive 

CODEDIT section, listing content 

Code an assembler program 

COM directive 
examples 
format 

Comments field, coding form 
examples 
forms 

Comments statement 

Common storage definition (COM) 
directive 

Compare (C) instruction 

Compare (CR) instruction 

Compare (CD) instruction, 
long format 

Compare (CDR) instruction, 
long format 

Compare (CE) instruction, 
short format 

Compare (CER) instruction, 
short format 

Compare and swap under mask 
(CSM) instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

13.3.1 13-7 Compare decimal (CP) 
instruction 

13.3.2 13-8 

Compare half word (CH) 
17.l 17-3 instruction 
17.1 17-2 

See repetitive Compare logical (CL) 
code generation instruction 
statements. 

28.3 28-2 Compare logical (CLC) 
Table 28-1 28-2 instruction 

1.1 1-1 
Compare logical (CLI) 

instruction 
19.l 19-3 
19.1 19-3 

Comp a re logical (CLR) 
instruction 

1.1.4 1-9 
1.1.4 1-9 

Compare logical characters long 
27.3.3 27-21 (CLCL) instruction 

See COM Compare logical immediate and 
directive. skip (CLIS) instruction 

See C 
instruction. Compare logical characters under 

mask (CLM) instruction 
See CR 
instruction. 

Complex relocatable expressions 
definition 

See CD examples 
instruction. restrictions 

Condition no operation (CNOP) 
See CDR directive 
instruction. 

Conditional assembly 
See CE attribute references 
instruction. branching 

error messages and comments 
repetitive code generation 

See CER set symbols 
instruction. summary 

Conditional assembly control counter 
See CSM (ACTR) statement 
instruction. 

Index 6 

Reference Page e 
See CP 
instruction. 

See CH 
instruction. 

See CL 
instruction. 

See CLC 
instruction. 

See CLI 
instruction. 

See CLR 
instruction. 

See CLCL 
instruction. 

See CLIS 
instruction. 

See CLM 
instruction. 

4.4.3 4-18 
4.4.3 4-18 
4.4.3 4-18 

See CNOP 
directive. 

27.5 27-25 
27.2 27-15 
27.3 27-19 
27.4 27-22 
27.1 27-2 
Table 27-1 27-1 

See ACTR e 
statement. 



UP-8913 

• Term 

Conditional branch (AIF) 
statement 

Continuation column, coding form 

Control section identification 
(CSECT) directive 

Convert to binary (CVB) 
instruction 

Convert to decimal (CVD) 
instruction 

COPY directive 
example 
format 

Correction deck 

Count attributes • CP instruction 
examples 
formats 
operational considerations 

CR instruction 
examples 
formats 
operational considerations 

Cross-reference section, listing 
content 

CSECT directive 
examples 
format 

CSM instruction 
example 
formats 
operational considerations 

CVB instruction 
examples 
formats 
operational considerations 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

CVD instruction 
See AIF example 
statement. formats 

operational considerations 
1.1.4 1-9 

See CSECT 
directive. 

See CVB 
instruction. 

See CVD 
instruction. 

21.5 21-8 
21.5 21-8 

F.2 F-5 

27.5.5 27-31 

9.4 9-11 
9.4 9-10 
9.4 9-11 D instruction 

example 
formats 

10.7 10-18 operational considerations 
10.7 10-17 
10.7 10-17 D, type constant 

Data area program exceptions 
28.5 28-4 
Table 28-3 28-4 DC statement 

alignment 
constant specification 

19.2 19-6 definition 
19.2 19-6 example 

DD instruction 
12.15 12-47 examples 
12.15 12-44 formats 
12.15 12-46 operational considerations 

DOR instruction 
10.9 10-22 examples 
10.9 10-21 formats 
10.9 10-22 operational considerations 

Index 7 

Reference Page 

10.10 10-25 
10.10 10-24 
10.10 10-25 

D 

10.11 10-28 
10.11 10-27 
10.11 10-28 

5.2.12 5-15 

Appendix D 

5.1.1 5-4 
5.1.1 5-4 
5.1.1 5-4 
5.1.1 5-4 

11.14 11-32 
11.14 11-31 
11.14 11-32 

11.15 11-35 
11.15 11-34 
11.15 11-34 



UP-8913 

Term 

DE instruction 
examples 
formats 
operational considerations 

Decimal divide, program exception 

Decimal instructions 
add decimal (AP) 
compare decimal (CP) 
divide decimal (DP) 
move with offset (MVO) 
multiply decimal (MP) 
pack decimal (PACK) 
packed decimal manipulation 
subtract decimal (SP) 
unpack decimal (UNPK) 
zero and add (ZAP) 

Decimal overflow, program exception 

Default option, example 

Define branch destination (ANOP) 
statement 

Define end of range (ENDO) 
statement 

Define start of range (DO) 
statement 

Definition-type symbol, DC 
statement 

Definition types 
A character 
B character 
C character 
D character 
E character 
F character 
function 
H character 
P character 
S character 
V character 
Y character 
Z character 

Delete operation code (OPSYM) 
directive 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

DER instruction 
11.16 11-37 example 
11.16 11-36 formats 
11.16 11-36 operational considerations 

Appendix D D1agnost1c section, listing content 

9.3 9-8 Digit field 
9.4 9-10 
9.5 9-13 Digit select byte, ED instruction 
9.12 9-75 
9.14 9-80 Directives 
9.15 9-82 base register assignment 
9.1 9-1 basic functions 
9.16 9-86 control 
9.18 9-95 1n put and output control 
9.19 9-98 listing control 

Appendix D 
program linking and sectioning 

4.1.2 4-5 
Divide (D) instruction 

Divide (DR) instruction 
See ANOP 
statement. 

Divide (DD) instruction, 

See ENDO 
long format 

statement. 
Divide (DOR) instruction, 

long format 
See DO 
statement. 

Divide (DE) instruction, 
short format 

5.1.1 5-4 

5.2.9 5-13 
Divide (DER) instruction, 

short format 
5.2.3 5-9 
5.2.1 5-8 
5.2.12 5-15 Divide decimal (DP) 
5.2.12 5-15 instruction 
5.2.7 5-12 
5.1 5-1 
5.2.6 5-11 DO statement 
5.2.4 5-10 
5.2.10 5-13 Double word 
5.2.11 5-15 
5.2.8 5-12 DP instruction 
5.2.5 5-10 example 

formats 
operational considerations 

See OPSYM program exception 
directive. 

Index 8 
Update A 

Reference 

11.17 
11.17 
11.17 

28.6 

Page 

11-39 
11-38 
11-38 

28-5 
Table 28-4 28-5 

2.4.3.1 2-6 

9.6.1 9-17 

Section 18 
Table 15-1 15-1 
17.1 17-2 
Section 21 
Section 20 
Section 19 

See D 
instruction. 

See DR 
instruction. 

See DD 
instruction. 

See DOR 
instruction. 

See DE 
instruction. 

See DER 
instruction. 

See DP 
instruction. 

27.4.1 27-22 

2.5 2-9 

9.5 9-14 
9.5 9-13 
9.5 9-13 
Appendix D 

• 

• 

• 



UP-8913 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Index 9 
Update A 



UP-8913 

Term 

Equate (EQU) directive 

Error messages and comments 
MNOTE message statements 
PNOTE message statements 

EX instruction 
example 
formats 
operational considerations 
program exception 

Exclusive or (X) instruction 

Exclusive or (XC) instruction 

Exclusive or (XI) instruction 

Exclusive or (XR) instruction 

EXD instruction 

Execute (EX) instruction 

Execute diagnose (EXD) instruction 

Execution 

Explicit format coding 

Explicit source code 
examples 
format 

Exponent overflow, program exception 

Exponent underflow 
AD instruction 
ADR instruction 
AE instruction 
AER instruction 
program exception 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

See EQU Expressions 
directive. absolute term 

character 
complex relocatable 

27.3.1 27-20 declaration 
27.3.2 27-21 definition 

evaluation 
final result 

8.8 8-23 intermediate results 
8.8 8-20 length attribute 
8.8 8-22 relocatable term 
Appendix D 

External address constants (V) 
See X padding 
instruction. truncating 

See XC External symbol dictionary (ESD) 
instruction. listing 

See XI 
instruction. Externally referenced symbol declaration 

(ENTRY) directive 
See XR 
instruction. 

Externally defined symbol declaration 
13.4.1 13-16 (EXTRN) directive 

See EX 
instruction. EXTRN directive 

examples 
13.4.1 13-16 format 

1.4 1-20 

7.2 7-6 

7.2 7-6 
7.2 7-6 

Appendix D 

11.2 11-4 
11.3 11-7 
11.4 11-10 
11.5 11-13 
Appendix D 

Index 10 
Update B 

Reference 

4.4 
4.4.4 
4.4.3 
6.1 
4.4 
4.4 
4.4 
4.4 
4.4.5 
4.4.2 

5.2.11 
5.2.11 

28.4 

Page 

4-16 
4-18 
4-18 
6-2 
4-16 
4-16 
4-16 
4-16 
4-19 
4-17 

5-15 
5-15 

28-3 
Table 28-2 28-3 

See ENTRY 
directive. 

See EXTRN 
directive. 

19.5 19-11 
19.5 19-11 

• 

• 

• 



UP-8913 

• Term 

F 

F, type constant 

Field separator byte, ED instruction 

Fill character, ED instruction 

Fixed-point divide, program exception 

Fixed-point instructions 
add (A) 
add (AR) 
add half word (AH) 
add immediate (Al) 
compare (C) 
compare (CR) 
compare half word (CH) 
convert to binary (CVB) 
convert to decima I (CVD) 
divide (D) 
divide (DR) 
general discussion 
load (L) 

• load and test (LTR) 
load complement (LCR) 
load half word (LH) 
load (LR) 
load multiple (LM) 
load negative (LNR) 
load positive (LPR) 
multiply (M) 
multiply half word (MH) 
multiply (MR) 
shift left double (SLDA) 
shift left single (SLA) 
shift right double (SRDA) 
shift right single (SRA) 
store (ST) 
store half word (STH) 
store multiple (STM) 
subtract (S) 
subtract half word (SH) 
subtract (SR) 

Fixed-point numbers 
description 
formats 

Fixed-point overflow, program exception 

Floating-point addition 

• AD instruction 
ADR instruction 
AE instruction 
AER instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Floating-point constants (E and D) 
example 

5.2.7 5-12 formats 

9.6.l 9-17 
Floating point divide, program exception 

9.6.1 9-17 
Floating-point instructions 

Appendix D add normalized, long format (AD) 
add normalized, long format (ADR) 
add normalized, short format (AE) 

10.2 10-7 add normalized, short format (AER) 
10.3 10-9 add unnormalized, short format (AU) 
10.4 10-11 add unnormalized, short format (AUR) 
10.5 10-13 add unnormalized, long format (AW) 
10.6 10-15 add unnormalized, long format (AWR) 
10.7 10-17 compare, long format (CD) 
10.8 10-19 compare, long format (CDR) 
10.9 10-21 compare, short format (CE) 
10.10 10-24 compare, short format (GER) 
10.11 10-27 divide, long format (DD) 
10.12 10-31 divide, long format (DDR) 
10.1 10-1 divide, short format (DE) 
10.13 10-33 divide, short format (DER) 
10.15 10-38 general description 
10.16 10-40 halve, long format (HDR) 
10.17 10-42 halve, short format (HER) 
10.14 10-35 load, long format (LD) 
10.18 10-44 load, long format (LDR) 
10.19 10-50 load, short format (LE) 
10.20 10-52 load, short format (LER) 
10.21 10-55 load and test, long format (LTDR) 
10.23 10-61 load and test, short format (LTER) 
10.22 10-59 load complement, long format (LCDR) 
10.24 10-64 load complement, short format (LCER) 
10.25 10-67 load negative, long format (LNDR) 
10.26 10-70 load negative, short format (LNER) 
10.27 10-73 load positive, long format (LPDR) 
10.28 10-76 load positive, short format (LPER) 
10.29 10-78 multiply, long format (MD) 
10.30 10-80 multiply, long format (MDR) 
10.31 10-83 multiply, short format (ME) 
10.33 10-88 multiply, short format (MER) 
10.32 10-85 store, long format (STD) 

store, short format (STE) 
subtract normalized, long format (SD) 

2.5 2-9 subtract normalized, long format (SDR) 
Fig. 2-2 2-9 subtract normalized, short format (SE) 

subtract normalized, short format (SER) 
Appendix A subtract unnormalized, 

long format (SW) 
subtract unnormalized, 

11.2 11-3 long format (SWR) 
11.3 11-6 subtract unnormalized, 
11.4 11-9 short format (SU) 
11.5 11-12 subtract unnormalized, 

short format (SUR) 

Index 11 

Reference Page 

5.2.12 5-17 
5.2.12 5-15 
Fig. 5-1 5-17 

Appendix D 

11.2 11-3 
11.3 11-6 
11.4 11-9 
11.5 11-12 
11.6 11-15 
11.7 11-17 
11.8 11-19 
11.9 11-21 
11.10 11-23 
11.11 11-25 
11.12 11-27 
11.13 11-29 
11.14 11-31 
11.15 11-34 
11.16 11-36 
11.17 11-38 
11.1 11-1 
11.18 11-40 
11.19 11-42 
11.22 11-48 
11.23 11-50 
11.24 11-52 
11.25 11-54 
11.30 11-64 
11.31 11-66 
11.20 11-44 
11.21 11-46 
11.26 11-56 
11.27 11-58 
11.28 11-60 
11.29 11-62 
11.32 11-68 
11.33 11-70 
11.34 11-72 
11.35 11-74 
11.40 11-84 
11.41 11-86 
11.36 11-76 
11.37 11-78 
11.38 11-80 
11.39 11-82 

11.44 11-92 

11.45 11-94 

11.42 11-88 

11.43 11-90 



UP-8913 

Term 

Floating-point numbers 
description 
format 

Free element list (FEL) 

Full word 

Full-word address constants (A) 
padding 
truncating 

Full-word fixed-point constants (F) 
padding 
truncating 

G 

General register privileged instructions 

General registers 

Generate literal pool (L TORG) 
directive 

Get IORB (GRB) instruction 

Global set symbols 
examples 
format 

GRB instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

H 
2.6 2-9 
2.6 2-9 H, type constant 

14.6 14-39 Half word 

2.1 2-1 Half-word address constants (Y) 
padding 
truncating 

5.2.9 5-13 
5.2.9 5-13 Half-word fixed-point constants (H) 

padding 
truncating 

5.2.7 5-12 
5.2.7 5-12 Ha It device (HOV) instruction 

Halve, long format (HOR) instruction 

Halve, short format (HER) instruction 

HDR instruction 
example 
formats 
operational considerations 

HOV instruction 

HER instruction 
example 
formats 
operational considerations 

Hexadecimal constant (X) 
padding 
truncating 

13.8 13-24 
Hexadecimal-decimal integer conversion 

3.2 3-3 
Hexadecimal fractions (approximate values) 

Hexadecimal representation 
d escri pt ion 

See LTORG notation 
directive. 

HPR instruction 
13.3.8.2 13-14b 

27.1.2 27-6 
27.1.2 27-5 

13.3.8.2 13-14b 

Index 12 
Update B 

Reference 

5.2.6 

2.1 

5.2.8 
5.2.8 

5.2.6 
5.2.6 

13.3.4 

See HOR 
instruction. 

See HER 
instruction. 

11.18 
11.18 
11.18 

13.3.4 

11.19 
11.19 
11.19 

5.2.2 
5.2.2 

C.l 

C.2 

2.3 
Table 2-2 

13.2.1 

Page • 
5-11 

2-1 

5-12 
5-12 

5-11 
5-11 

13-10 

11-41 
11-40 
11-40 • 13-10 

11-43 
11-42 
11-42 

5-9 
5-9 

C-1 

C-7 

2-3 
2-4 

13-2 

• 



UP-8913 

• Term 

IC instruction 

ICM instruction 

ICTL directive 
examples 
format 

Implicit format 
coding 
examples 

Implicit source code 
examples 

format 

Include code from a library 

• (COPY) directive 

Initial program load (IPL) instruction 

lnline expansion code 
BLANK macro 
function 
generation 
variable 

Input and output control directives 
include code from a library (COPY) 
input format control (ICTL) 
input sequence control (ISEQ) 
produce a record (PUNCH) 
reproduce following record (REPRO) 

Input format control (ICTL directive) 

Input sequence control (ISEQ) directive 

Insert character (IC) instruction 
examples 
formats 

• operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Insert characters under mask 
(ICM) instruction 

See insert examples 
character formats 
instruction. operational considerations 

See insert Insert storage key (ISK) instruction 
characters under 
mask instruction. Instruction 

aligning 
application 

21.1 21-3 branching 
21.1 21-2 decimal 

definition 
fixed-point 

7.3 7-6 floating-point 
7.3 7-6 logical 

privileged 
RR 

7.1 7-4 RS 
7.3 7-6 RX 
7.3 7-6 SI 

SM 
SS 

See COPY status switching 
directive. 

Instruction listings 
13.10.l alphabetic 

machine code 
mnemonics 

30.3 30-4 
22.1 22-1 Integer attributes 
23.1 23-1 examples 
23.1 23-2 function 
30.3 30-4 

IPL instruction 

21.5 21-8 ISK instruction 

21.1 21-2 
ISEQ directive 21.2 21-4 

example 21.4 21-6 
format 

21.3 21-5 

See ICTL 
Italics 

directive. 

See ISEQ 
directive. 

12.20 12-62 
12.20 12-61 
12.20 12-62 

Index 13 
Update A 

Reference 

12.21 
12.21 
12.21 

13.2.2 

7.1 
7.1 
8.1 
9.1 
7.4 
10.1 
11.1 
12.1 
13.1 
7.1 
7.1 
7.1 
7.1 
7.1 
7.1 
13.1 

Table E-2 
Table E-3 
Table E-1 

27.5.4 
27.5.4 

13.10.1 

13.2.2 

21.2 
21.2 

4.1.2 

Page 

12-66 
12-64 
12-65 

13-3 

7-4 
7-1 
8-1 
9-1 
7-6 
10-1 
11-1 
12-1 
13-1 
7-4 
7-4 
7-4 
7-4 
7-1 
7-4 
13-1 

E-5 
E-11 
E-1 

27-31 
27-30 

13-26a 

13-3 

21-4 
21-4 

4-6 



UP-8913 

Term 

J 

Job control cards 
end-of-data job control statement 

(/*) 
end-of-job control statement (/&) 
terminate-the-card-reader job 

control statement (//Fl N) 

Job control procedures 
running an assembler program 
source deck introduction 

JOB control statement 

K 
Keyword parameters 

coding 
referencing in the call 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

L instruction 
example 

29.5.1 29-13 formats 
29.5.2 29-13 operational considerations 

29.5.3 29-13 LA instruction 
examples 
formats 

29.l 29-1 operationa I considerations 
29.2 29-1 

Label argument, PROC format 
29.2.1 29-2 

Label field, coding form 

LCOR instruction 
example 
formats 
operational considerations 

LCER instruction 
example 
formats 
operational considerations 

LCHR instruction 

LCR instruction 
example 
format 
operational considerations 

LCTL instruction 

LO instruction 
example 
formats 
operational considerations 

4.1.2 4-6 
25.3 25-4 LOA instruction 
26.3 26-4 

LOR instruction 
example 
formats 
operational considerations 

LE instruction 
example 
formats 
operational considerations 

Least significant bit (LSB) 

Index 14 

Reference Page • L 

10.13 10-34 
10.13 10-33 
10.13 10-33 

12.22 12-68 
12.22 12-67 
12.22 12-67 

25.6 25-12 

1.1.3 1-7 

11.20 11-45 
11.20 11-44 
11.20 11-44 

11.21 11-47 
11.21 11-46 
11.21 11-46 

13.3.5 13-11 • 
10.16 10-41 
10.16 10-40 
10.16 10-40 

13.6.l 13-20 

11.22 11-49 
11.22 11-48 
11.22 11-48 

13.3.6 13-12 

11.23 11-50 
11.23 11-50 
11.23 11-50 

11.24 11-53 
11.24 11-52 
11.24 11-52 

See LSB . 

• 



UP-8913 

• Term 

Leave blank lines on listing 
(SPACE) directive 

Length attribute 
application instruction 
conditional assembly 
duplication factor 
examples 
expressions 
referencing 
terms 

Length factor 
boundary alignment 
L character 

LER instruction 
example 
formats 
operational consideration 

Less than operator 

LH instruction 

• example 
formats 
operational considerations 

LIA instruction 

Linkage editor 
creating a load module 
functions 

Listing contents control (PRINT) 
directive 

Listing control directives 
advance listing (EJECT) 
basic functions 
leave blank lines on listing (SPACE) 
listing content control (PRINT) 
listing title declaration (TITLE) 

Listing title declaration (TITLE) 
directive 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Literals 
See SPACE defined 
directive. 

examples 
5.1.5 5-6 restrictions 
27.5.2 27-28 source code 
4.2.2 4-11 specification 
5.1.5 5-7 
4.4.4 4-18 LM instruction 
4.2.5 4-13 examples 
4.2 4-8 formats 

operational considerations 

5.1.5 5-6 LNDR instruction 
5.1.5 5-7 example 

formats 
operational considerations 

11.25 11-54 
11.25 11-54 LNER instruction 
11.25 11-54 example 

formats 
4.3.3 4-15 operational considerations 

10.17 10-43 
10.17 10-42 
10.17 10-42 

13.3.7 13-13 

1.3 1-18 
29.3.3 29-11 

See PRINT 
directive. 

20.1 20-2 
Table 20-1 20-1 
20.3 20-5 
20.2 20-3 
20.4 20-6 

See TITLE 
directive . 

Index 15 
Update A 

Reference 

4.2 
4.2.2 
5.3 
5.3 
5.3 
4.2.2 
4.2.2 

10.18 
10.18 
10.18 

11.26 
11.26 
11.26 

11.27 
11.27 
11.27 

Page 

4-8 
4-10 
5-18 
5-19 
5-19 

' 4-10 
4-11 

10-45 
10-44 
10-45 

11-57 
11-56 
11-56 

11-59 
11-58 
11-58 



UP-8913 

Term 

LNR instruction 
example 
format 
operational considerations 

Load (L) instruction 

Load (LR) instruction 

Load (LD) instruction, long format 

Load (LDR) instruction, long format 

Load (LE) instruction, short format 

Load (LER) instruction, short format 

Load address (LA) instruction 

Load and test (L TDR) instruction, 
long format 

Load and test (LTR) instruction 

Load and test (LTER) instruction, 
short format 

Load complement (LCDR) instruction, 
long format 

Load complement, short format (LCER) 
instruction 

Load complement (LCR) instruction 

Load control (LCTL) instruction 

Load directive address (LDA) instruction 

Load half word (LH) instruction 

Load 1/0 address (LIA) instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Load module, creating 
10.19 10-51 
10.19 10-50 Load multiple (LM) instruction 
10.19 10-50 

See L Load negative (LNDR) instruction, 
instruction. long format 

See LR 
instruction. Load negative (LNER) instruction, 

short format 
See LD 
instruction. 

Load negative (LNR) instruction 
See LDR 
instruction. 

Load positive (LPR) instruction 
See LE 
instruction. 

Load positive (LPDR) instruction, 
See LER long format 
instruction. 

See LA Load positive (LPER) instruction, 
instruction. short format 

See LTDR 
instruction. Load program status word (LPSW) instruction 

See LTR Load relocation register (LRR) instruction 
instruction. 

Local set symbol 
examples 

See LTER format 
instruction. 

Location counter 
adding 1 

See LCDR asterisk 
instruction. definition 

restrictions 
values 

See LCER 
instruction. 

See LCR 
instruction. 

13.6.1 13-20 

13.3.6 13-12 

See LH 
instruction. 

13.3.7 13-13 

Index 16 

Reference Page • 1.3 1-18 

See LM 
instruction. 

See LNDR 
instruction. 

See LNER 
instruction. 

See LNR 
instruction. 

See LPR 
instruction. 

See LPDR 
instruction. 

See LPER 
instruction . • 13.2.3 13-22 

13.7.1 13-22 

27.1.l 27-4 
27.1.l 27-3 

4.2.4 4-13 
4.2.4 4-13 
4.2.4 4-12 
4.2.4 4-13 
4.2 4-13 

• 



UP-8913 

Term 

Logica I instructions 
add logical (AL) 
add logical (ALR) 
and {N) 
and (NC) 
and (NI) 
and (NR) 
compare and swap under mask (CSM) 
compare logical (CL) 
compare logical (CLC) 
compare logical (CLCL) 
compare logical (CLI) 
compare logical (CLR) 
compare logical characters 

under mask (CLM) 
compare logical immediate 

and skip (CLIS) 
edit (ED) 
edit and mark (EDMK) 
exclusive or (X) 
exclusive or (XC) 
exclusive or (XI) 
exclusive or (XR) 
general description 
insert character (IC) 
insert characters under mask (ICM) 
load address (LA) 
move character (MVC) 
move immediate (MVI) 
move numeric (MVN) 
move zones (MVZ) 
or (0) 
or (OC) 
or (01) 
or (OR) 
shift left double logical (SLDL) 
shift left single logical (SLL) 
shift logical (SHL) 
shift right double logical (SRDL) 
shift right single logical (SRL) 
store character (STC) 
subtract logical (SL) 
subtract logical (SLR) 
test under mask (TM) 
test under mask and skip (TMS) 
translate (TR) 
translate and test (TRT) 

Logical operators 

Longitudinal redundancy check (LRC) 
instruction 

SPERRY UNIVAC 05/3 
ASSEMBLER 

Reference Page Term 

Low order 
12.2 12-2 
12.3 12-5 Lowercase letters and terms, coding 
12.4 12-7 
12.5 12-10 LPDR instruction 
12.6 12-13 example 
12.7 12-16 formats 
12.15 12-44 operational considerations 
12.8 12-19 
12.9 12-22 LPER instruction 
12.10 12-25 example 
12.11 12-29 formats 
12.14 12-42 operational considerations 

12.13 12-39 LPR instruction 
example 

12.12 12-34 format 
9.6 9-16 operational considerations 
9.7 9-27 
12.16 12-49 LPSW instruction 
12.17 12-52 
12.18 12-55 LR instruction 
12.19 12-58 example 
12.1 12-1 format 
12.20 12-61 operational considerations 
12.21 12-64 
12.22 12-67 LRC instruction 
9.9 9-63 
12.23 12-69 LRR instruction 
9.11 9-72 
9.13 9-78 LSB 
12.24 12-72 
12.25 12-75 
12.26 12-78 LTDR instruction 
12.27 12-81 example 
12.28 12-84 formats 
12.29 12-87 operationa I considerations 
12.30 12-91 
12.31 12-99 LTER instruction 
12.32 12-102 example 
12.33 12-105 formats 
12.35 12-111 operational considerations 
12.36 12-114 
12.37 12-117 LTORG directive 
12.38 12-121 
12.39 12-126 L TR instruction 
12.40 12-129 example 

format 
4.3.2 4-15 operational considerations 

13.4.2 13-17 

Index 17 

Reference Page 

4.1.2 4-6 

4.1.2 4-5 

11.28 11-61 
11.28 11-60 
11.28 11-60 

11.29 11-63 
11.29 11-62 
11.29 11-62 

10.20 10-53 
10.20 10-52 
10.20 10-52 

13.2.3 13-4 

10.14 10-36 
10.14 10-35 
10.14 10-35 

13.4.2 13-17 

13.7.1 13-22 

2.1 2-1 
4.1.2 4-8 

11.30 11-65 
11.30 11-64 
11.30 11-64 

11.31 11-67 
11.31 11-66 
11.31 11-66 

17.3 17-5 

10.15 10-39 
10.15 10-38 
10.15 10-38 



UP-8913 

Term 

M 
M instruction 

example 
formats 
operational considerations 

Machine code 
assembler format relationships 
definition 
instruction listing 
purpose 

Macro call instruction 
call-names 
format 
function 
keyword parameter 
parameter-list 
positional parameter 

MACRO definition 
accessing in library 
accessing in source deck 
body 
call-name 
call instruction design 
examples 

general 
heading 

macro instruction and definition, 
communication 

operation 
parameter substitution 
PROC and MACRO instructions 

compared 
prototype statement 
storage 
trailer 
variable inline expansion code 
variable symbol 

Macro definition exit (MEXIT) 
statement 

Macro design 
macro call instruction 
macro definition 
macro definition storage 

Macro facility 
processor 
source code 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

MACRO format 
basic design 
label argument 

10.21 10-56 referencing keyword parameters 
10.21 10-55 in the call 
10.21 10-56 referencing positional parameters in 

the call 
referencing subparameters in the call 

Fig. 4-1 4-4 
4.1.l 4-1 Macro (MACRO) definition 
Table E-3 E-11 
1.2 1-14 

Macro processor 
inline macro expansion 

23.3 23-7 · $Y$MAC 
23.3 23-6 
22.2 22-3 Macro source code 
23.3 23-8 example 
23.3 23-8 · macro facility 
23.3 23-8 ·types 

$Y$MAC 

Fig. 23-2 23-5 Main computer storage addressing 
Fig. 23-1 23-4 data field 
23.l 23-1 instruction 
23.1 23-2 symbolic 
24.2 24-2 
Fig. 24-4 24-12 Math tables 
Section 30 hexadecimal-decimal integer 
24.l 24-1 conversion 
23.l 23-1 hexadecimal fractions (approximate 
Fig. 24-1 24-1 values) 

powers of 2 
Fig. 24-3 24-8 powers of 16 
23.l 23-1 
23.1 23-2 MD instruction 

example 
Fig. 24-2 24-6 formats 
24.2 24-3 operational considerations 
23.2 23-3 
23.l 23-1 MDR instruction 
23.1 23-2 example 
24.2 24-2 formats 

operational considerations 

See MEXIT ME instruction 
statement. example 

formats 
operational considerations 

23.3 23-6 
23.l 23-1 MER instruction 
23.2 23-3 example 

formats 
operational considerations 

22.l 22-1 
22.2 22-2 

Index 18 

Reference Page 

26.l 26-1 
26.5 26-6 

26.3 26-4 

26.2 26-2 
26.4 26-5 

See MACRO 
definition. 

Fig. 22-1 22-3 
22.l 22-1 

30.3 30-4 
22.2 22-3 
22.2 22--3 
22.2 22-3 

3.1.2 3-2 
3.1.1 3-1 
3.1.1 3-1 

C.l C-1 

C.2 C-7 
C.3 C-8 
C.4 C-9 

11.32 11-69 
11.32 11-68 
11.32 11-68 

11.33 11-71 
11.33 11-70 
11.33 11-70 

11.34 11-73 
11.34 11-72 
11.34 11-72 

11.35 11-75 
11.35 11-74 
11.35 11-74 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Index 19 
Update A 



UP-8913 

Term 

MVN instruction 
examples 
formats 
operational considerations 

MVO instruction 
examples 
formats 
operational considerations 

MVZ instruction 
examples 
formats 
operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

9.11 9-73 
9.11 9-72 N instruction 
9.11 9-72 examples 

formats 
operational considerations 

9.12 9-76 
9.12 9-75 NC instruction 
9.12 9-75 example 

formats 
operational considerations 

9.13 9-79 
9.13 9-78 NI instruction 
9.13 9-78 examples 

formats 
operational considerations 

Normalization 
AD instruction 
ADR instruction 
AE instruction 
AER instruction 

NR instruction 
example 
formats 
operational considerations 

Number attributes 
example 
function 

Numeric data, comparison 

Numeric representation 
packed format 
unpacked format 

Index 20 

Reference Page • N 

12.4 12-8 
12.4 12-7 
12.4 12-8 

12.5 12-11 
12.5 12-10 
12.5 12-11 

12.6 12-14 
12.6 12-13 
12.6 12-14 

11.2 11-3 
11.3 11-6 
11.4 11-9 
11.5 11-12 

12.7 12-17 
12.7 12-16 • 12.7 12-17 

27.5.6 27-32 
27.5.6 27-32 

Table 2-1 2-2 

2.4.3.2 2-7 
2.4.3.l 2-6 

• 



UP-8913 

• Term 

0 
0 instruction 

example 
formats 
operational considerations 

Object code 
example 
format 

Object module format 

Object program 
definition 
general 

OC instruction 
example 
formats 
operational considerations 

01 instruction 
examples 

• formats 
operational considerations 

Operand field, coding form 

Operand length, ED 
instruction 

Operation, program exception 

Operation field, coding form 

Operators 
arithmetic 
description 
logical 
priority 
relational 
summary 

OPSYM directive 
examples 
format 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

OPTION job control statement 

Option-specifying operands 
12.24 12-73 
12.24 12-72 Optional information, coding 
12.24 12-73 

OR, bit comparison 

1.2 1-14 OR instruction 
1.2 1-14 example 

formats 
Fig. 1-9 1-18 operational considerations 

Or (0) instruction 
4.1.2 4-5 
1.2 1-14 

Or (OC) instruction 

12.25 12-76 
12.25 12-75 Or (01) instruction 
12.25 12-76 

ORG directive 
12.26 12-80 examples 
12.26 12-78 format 
12.26 12-79 function 

1.1 1-4 Organization of listing 
CODED IT 
cross-reference 

9.6 9-16 diagnostic 
example 

Appendix D external symbol dictionary (ESD) 

1.1.1 1-4 
preface 

OS/3 Assembler 

4.3.1 4-14 Output, assembly listing 
4.3 4-13 
4.3.2 4-15 
Table 27-2 27-9 
4.3.3 4-15 
Table 4-2 4-14 

16.2 16-3 
16.2 16-3 

Index 21 

Reference Page 

29.2.2 29-2 

F.1 F-1 

4.1.2 4-5 

4.3.2 4-15 

12.27 12-82 
12.27 12-81 
12.27 12-82 

See 0 
instruction. 

See OC 
instruction. 

See 01 
instruction. 

17.4 17-7 
17.4 17-6 
17.4 17-6 

28.3 28-2 
28.5 28-4 
28.6 28-5 
29.6 29-14 
28.4 28-3 
28.2 28-1 

1.1 1-1 

Section 28 



UP-8913 

Term 

p 

P type constant 

Pack decimal (PACK) 
instruction 

PACK instruction 
examples 

formats 
operational considerations 
packed format conversion 

Packed decimal constant (P) 
padding 
truncation 

PARAM statement 
format 
function 
operational considerations 

PNOTE message statement 

Positional parameter 0 
description 
example 

Positional parameters 
coding 
comma 
referencing in the call 

Powers 
of 2 
of 16 

Preface section of listing 

PRINT directive 
format 
examples 

Privileged instructions, status 

PRB instruction 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

PROC definition 
call instruction design 

5.2.4 5-10 examples 

general 
See PACK MACRO and PROC instruction 
instruction. compared 

macro instruction and definition, 
communication 

2.4.3.2 2-7 variable symbol 
9.15 9-82 
9.15 9-82 PROC format 
9.15 9-83 basic design 
2.4.3.2 2-7 label argument 

multiple PROC names and 
positional parameter 0 

5.2.4 5-10 referencing keyword parameters 
5.2.4 5-10 in the call 

referencing positional parameters 
in the call 

F.1 F-2 referencing subparameters in 
F.1 F-1 the call 
F.2 F-5 

27.3.2 27-21 
Procedure (PROC) definition 

25.5 25-9 
Produce a record (PUNCH) 

directive 
30.l 30-1 

4.1.2 4-6 
Program end (END) directive 

4.1.2 4-6 
25.2 25-3 Program exceptions 
26.2 26-2 addressing 

data 
decimal divide 

C.3 C-8 decimal overflow 
C.4 C-9 execute 

exponent overflow 
28.2 28-1 exponent underflow 

fixed-point divide 
fixed-point overflow 

20.2 20-3 floating-point divide 
20.2 20-4 operation 

protection 
13.1 13-1 significance 

specification 
13.3.8. l 13-14a 

Index 22 
Update B 

Reference 

24.2 
Fig. 24-4 
30.2 
24.1 

Fig. 24-2 

Fig. 24-3 
24.2 

25.1 
25.6 

25.5 

25.3 

25.2 

25.4 

See PROC 
definition. 

See PUNCH 
directive. 

See END 
directive. 

Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 
Appendix D 

Page • 
24-2 
24-12 
30-2 
24-1 

24-6 

24-8 
24-2 

25-1 
25-11 

25-9 

25-4 

25-3 

25-7 

• 

• 



UP-8913 

• Term 

Program linking and sectioning directives 
common storage definition (COM) 
control section identification 

(CSE CT) 
dummy control section identification 

(DSECT) 
externally defined symbol declaration 

(ENTRY) 

externally referenced symbol 
declaration (EXTRN) 

Program start (START) directive 

Program status word (PSW) 

Protection program exception 

PSW 

PUNCH directive 
example 
format 

• Punched card codes 

Punctuation marks, coding 

Put IORB (PRB) instruction 

• 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

R 
19.1 19-3 

Reading instruction notation 
19.2 19-6 assembler application instruction 

rules and meanings 
19.3 19-8 

REC statement 
19.4 19-10 format 

operational consideration 
19.5 19-11 

Register instruction equate 
See START instruction 
directive. 

Register notations, example 
See PSW. 

Relational operators 
Appendix D 

Relative addressing, location 
8.1 8-1 counter 

Relocatability attribute 
21.4 21-7 
21.4 21-6 Relocatable expression 

absolute terms 
Table B-3 B-3 definition 

examples 
4.1.2 4-5 relocatable term 

requirements 

13.3.8. l 13-14a 
Relocatable term 

absolute expression 
division 
expression 
multiplication 

Repetitive code generation statements 
conditional assembly control 

counter (ACTR) 
define end of range (ENDO) 
define start of range (DO) 

REPRO directive 
example 
format 

Reproduce following record 
(REPRO) directive 

Reset (RESET) instruction 

RR instruction 

Running an assembler program 
examples 
using job control 

RS instruction 

Index 23 
Update B 

Reference 

4.1.1 
4.1.2 

F.2.2 
F.2.2 

6.1 

4.1.2 

4.3.3 

4.2.4 

4.2.3 

4.4.2 
4.4.2 
4.4.2 
4.4.2 
4.4.2 

4.4.1 
4.4 
4.4 
4.4 

27.4.3 
27.4.2 
27.4.1 

21.3 
21.3 

See REPRO 
directive. 

13.4.3 

7.1 

29.6.1 
29.l 

7.1 

Page 

4-1 
4-5 

F-7 
F-7 

6-2 

4-6 

4-15 

4-12 

4-11 

4-17 
4-17 
4-18 
4-17 
4-17 

4-16 
4-16 
4-16 
4-16 

27-24 
27-23 
27-22 

21-5 
21-5 

13-18 

7-1 

29-14 
29-1 

7-1 



UP-8913 

Term 

s 
S instruction 

example 
formats 
operational considerations 

S switch, ED instruction 

S, type constant 

Sample program 

Scale attribute 

SD instruction 
example 
formats 
operational considerations 

SOR instruction 
example 
formats 
operational considerations 

SOT 
binary conversion 
character 
decimal 
hexadecimal 
meaning 

negative term 
use 

SDV instruction 

SE instruction 
example 
formats 
operational considerations 

Self-defining terms (SOT) 

SEQ statement 
format 
operational considerations 
specifications 

Sequence field, coding form 

Sequence symbols 

SER instruction 
example 
formats 
operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Service timer register 
(STR) instruction 

10.31 10-84 Set program mask (SPM) 
10.31 10-83 instruction 
10.31 10-83 

9.6 9-17 SET statement 
examples 

5.2.10 5-13 format 
function 

Appendix A 
operator priority 

27.5.3 27-30 
Set storage key (SSK) instruction 

11.36 11-77 SET symbols 
11.36 11-76 character expressions 
11.36 11-77 function 

global 
local 

11.37 11-79 SET statement 
11.37 11-78 SETA statement 
11.37 11-78 SETS statement 

SETC statement 
subscripted 

4.2.1 4-9 value assignment 
4.2.1 4-9 
4.2.1 4-9 Set system mask (SSM) instruction 
4.2.1 4-9 
4.2 4-9 SETA statement 
4.2.1 4-9 examples 
4.2.1 4-10 format 
4.2.l 4-9 

SETS statement 
13.3.9 13-14 examples 

format 

11.38 11-81 SETC statement 
11.38 11-80 examples 
11.38 11-81 format 

See SOT. Setting of UPSI byte 

SH instruction 
F.2.1 F-6 example 
F.2.1 F-6 formats 
F.2.1 F-6 operational considerations 

1.1.3 1-9 Shaded option 

27.2.l 27-15 Shift and round decimal 
(SRP) instruction 

11.39 11-83 
11.39 11-82 
11.39 11-82 

Index 24 

Reference Page • 
13.5.1 13-19 

See SPM 
instruction. 

27.1.4 27-9 
27.1.4 27-7 
27.1.3 27-6 
27.1.4 27-6 
Table 27-2 27-9 

13.2.4 13-5 

27.1.8 27-14 
27.l 27-2 
27.1.2 27-5 
27.1.1 27-3 
27.1.4 27-7 
27.1.5 27-9 
27.1.6 27-10 
27.1.7 27-13 • 27.1.9 27-14 
27.1.3 27-6 

13.2.5 13-6 

27.1.5 27-10 
27.1.5 27-9 

27.1.6 27-13 
27.1.6 27-10 

27.1.7 27-14 
27.1.7 27-13 

29.5.4 29-14 

10.33 10-89 
10.33 10-88 
10.33 10-89 

4.1.2 4-5 

See SRP 
instruction. • 



UP-8913 

• Term 

Shift left double (SLDA) 
instruction 

Shift left double logical (SLDL) 
instruction 

Shift left single (SLA) 
instruction 

Shift left single logical 
(SLL) instruction 

Shift logical (SHL) instruction 

Shift right double (SRDA) 
instruction 

Shift right double logical (SRDL) 

• instruction 

Shift right single logical (SRL) 
instruction 

Shift right single (SRA) 
instruction 

SHL instruction 
example 
formats 
operational considerations 

SI instruction 

Sign consideration for operand 2, 
ED instruction 

Signed unpacked number 

Significance, program exception 

Significance start byte, ED 
instruction 

• SKI statement 
format 
function 
operational considerations 
specifications 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

SL instruction 
See SLDA example 
instruction. formats 

operational considerations 

See SLDL SLA instruction 
instruction. example 

formats 
operational considerations 

See SLA 
instruction. SLDA instruction 

example 
formats 

See SLL operational considerations 
instruction. 

SLDL instruction 
See SHL example 
instruction. formats 

operational considerations 

See SRDA SLL instruction 
instruction. example 

formats 
operational considerations 

See SRDL 
instruction. SLM instruction 

example 
formats 

See SRL 
instruction. SLR instruction 

example 
formats 

See SRA operational considerations 
instruction. 

SM instruction 

12.30 12-95 Source card images 
12.30 12-91 definition 
12.30 12-94 general 

7.1 7-1 Source code 
literals 
PROC (DO loop) 

9.6.l 9-17 PROC (positional parameter 0) 

See zoned Source deck 

decimal constants. definition 
job control cards 

Appendix D requesting an assembly 

Source deck introduction 

9.6 9-17 JOB control statement 
OPTION job control statement 

F.2.3 F-8 Source module correction routine 

F.2.3 F-7 control statements 

F.2.3 F-8 correction deck 

F.2.3 F-8 REC statement 
SEQ statement 
SKI statement 

Index 25 
Update B 

Reference 

12.35 
12.35 
12.35 

10.25 
10.25 
10.25 

10.24 
10.24 
10.24 

12.28 
12.28 
12.28 

12.29 
12.29 
12.29 

13.8.1 
13.8.1 

12.36 
12.36 
12.36 

7.1 

4.1.2 
1.1 

4.2.2 
30.2 
30.l 

4.1.2 
29.5 
29.6 

29.2.l 
29.2.2 

F.2 
F.2 
F.2.2 
F.2.1 
F.2.3 

Page 

12-112 
12-111 
12-112 

10-69 
10-67 
10-68 

10-65 
10-64 
10-64 

12-85 
12-84 
12-85 

12-88 
12-87 
12-88 

13-24 
13-24 

12-115 
12-114 
12-114 

7-1 

4-5 
1-1 

4-10 
30-2 
30-1 

4-6 
29-12 
29-14 

29-2 
29-2 

F-5 
F-5 
F-7 
F-6 
F-7 



UP-8913 SPERRY UNIVAC OS/3 
ASSEMBLER 

Index 26 
Update B 



UP-8913 

• Term 

STH instruction 
example 
formats 
operational considerations 

STM instruction 
examples 
formats 
operational considerations 

Storage, type characteristics 

Store (ST) instruction 

Store (STD) instruction, 
long format 

Store (STE) instruction, 
short format 

Store character (STC) instruction 

• Store characters under mask 
(STCM) instruction 

Store control (STCTL) instruction 

Store half word (STH) instruction 

Store multiple (STM) instruction 

Store relocation register (STRR) 
instruction 

Store status (STS) instruction 

STR instruction 

STRR instruction 

STS instruction 

SU instruction 
example 
formats 

• operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Subparameters 
10.29 10-79 referencing in the call (macro) 
10.29 10-78 referencing in the call (proc) 
10.29 10-78 

Subroutine linkage 

10.30 10-81 Subscripted SET symbols 
10.30 10-80 
10.30 10-81 Subtract (S) instruction 

Table 5-1 5-2 
Subtract decimal (SP) instruction 

See ST 
instruction. 

Subtract half word (SH) 
instruction 

See STD 
instruction. 

Subtract logical (SL) instruction 

See STE 
instruction. Subtract logical (SLR) instruction 

See STC 
instruction. Subtract normalized (SD), long format 

See STCM Subtract normalized (SOR) instruction, 
instruction. long format 

13.6.2 13-21 
Subtract normalized (SE) instruction, 

See STH short format 
instruction. 

See STM Subtract normalized (SER) instruction, 
instruction. short format 

13.7.2 13-23 Subtract (SR) instruction 

13.4.3 13-18 
Subtract unnormalized (SW) instruction, 

13.5.l 13-19 long format 

13.7.2 13-23 
Subtract unnormalized (SWR) instruction, 

13.4.3 13-18 long format 

11.42 11-89 Subtract unnormalized (SU) instruction, 
11.42 11-88 short format 
11.42 11-89 

Index 27 

Reference Page 

26.4 26-5 
25.4 25-7 

19.6 19-12 

27.1.9 27-14 

See S 
instruction. 

See SP 
instruction. 

See SH 
instruction. 

See SL 
instruction. 

See SLR 
instruction. 

See SD 
instruction. 

See SOR 
instruction. 

See SE 
instruction. 

See SER 
instruction. 

See SR 
instruction. 

See SW 
instruction. 

See SWR 
instruction. 

See SU 
instruction. 



UP-8913 

Term 

Subtract unnormalized (SUR) instruction, 
short format 

Supervisor call (SVC) instruction 

Supervisor load multiple (SLM) instruction 

Supervisor store multiple (SSTM) instruction 

SUR instruction 
example 
formats 
operational considerations 

SVC instruction 
example 
formats 
operational considerations 

SW instruction 
example 
formats 
operational considerations 

Switch list scan (SWLS) instruction 

SWLS instruction 

SWR instruction 
example 
formats 
operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Symbol 
See SUR applications 
instruction. definition 

See SVC equivalent 
instruction. invalid examples 

valid examples 
13.8.l 13-24 

values 
13.8.2 13-25 

Symbol attributes 
length 

11.43 11-91 relocata bility 
11.43 11-90 value 
11.43 11-90 

System variable symbols 
&SYSDATE 

13.13 13-30 &SY SECT 
13.13 13-29 &SYSJDATE 
13.13 13-29 &SYS LIST 

&SYSNDX 
&SYSPARM 

11.44 11-93 &SYSTIME 
11.44 11-92 
11.44 11-93 

13.11.1 13-26b 

13.11.1 13-26b 

11.45 11-95 
11.45 11-94 
11.45 11-94 

Index 28 
Update B 

Reference 

6.2 
4.2.3 
Section 6 
6.1 
6.1 
4.2.3 
6.1 
4.2.3 

4.2.3 
4.2.3 
4.2.3 

G.4 
G.1 
G.6 
G.2 
G.3 
G.7 
G.5 

Page • 
6-3 
4-11 

6-2 
6-2 
4-11 
6-1 
4-11 

4-12 
4-12 
4-12 

G-2 
G-1 
G-4 
G-1 
G-2 
G-5 
G-3 

• 

• 



UP-8913 

• Term 

T 

Terminate-the-card-reader job 
control statement (//FIN) 

Terms 
classes 
comparison 

Test and set (TS) instruction 

Test under mask (TM) instruction 

Test under mask and skip 
(TMS) instruction 

TITLE directive 
examples 
format 

TM instruction 
examples • formats 
operational considerations 

TMS instruction 
example 
format 
operational considerations 

TR instruction 
example 
formats 
operational considerations 

Trans late (TR) instruction 

Translate and test (TRT) 
instruction 

TRT instruction 
example 
formats 
operational considerations 

TS instruction 
examples 
formats • operational considerations 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

Unassign base register (DROP) 
29.5.3 29-13 directive 

4.2 4-8 Unconditional branch (AGO) 
Table 4-1 4-9 statement 

See TS 

u 

instruction. Unpack decimal (UNPK) instruction 

See TM 
instruction. Unpacked format, numeric 

representation 

See TMS UNPK instruction 
instruction. examples 

formats 
operational considerations 

20.4 20-6 
20.4 20-6 Uppercase letters and terms, 

coding 

12.37 12-119 UPSI byte, setting 
12.37 12-117 
12.37 12-118 USING directive 

examples 
format 

12.38 12-123 
12.38 12-121 
12.38 12-123 

12.39 12-127 
12.39 12-126 
12.39 12-127 

See TR 
instruction. 

See TRT 
instruction. 

12.40 12-131 
12.40 12-129 
12.40 12-130 

13.14 13-32 
13.14 13-31 
13.14 13-32 

Index 29 
Update A 

Reference 

See DROP 
directive. 

See AGO 
statement. 

See UNPK 
instruction. 

2.4.3.1 

9.18 
9.18 
9.18 

4.1.2 

29.5.4 

18.2 
18.2 

Page 

2-6 

9-96 
9-95 
9-96 

4-5 

29-14 

18-4 
18-3 



UP-8913 

Term 

v 
V, type constant 

Value attribute 

w 
Word structure, example 

Writing conventions 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

5.2.11 5-15 X instruction 
example 

4.2.3 4-11 formats 
operational considerations 

X, type constant 

XC instruction 
example 
formats 
operational considerations 

XI instruction 
examples 
formats 

Fig. 4-2 4-7 
operational considerations 

1.1 1-1 
XOR, bit comparison 

XR instruction 
example 
formats 
operational considerations 

Index 30 

Reference Page • x 

12.16 12-51 
12.16 12-49 
12.16 12-50 

5.2.2 5-9 

12.17 12-53 
12.17 12-52 
12.17 12-53 

12.18 12-57 
12.18 12-55 
12.18 12-56 

4.3.2 4-15 

12.19 12-59 
12.19 12-58 
12.19 12-59 • 

• 



UP-8913 

e Term 

y 

Y, type constant 

e 

SPERRY UNIVAC OS/3 
ASSEMBLER 

Reference Page Term 

5.2.8 5-12 Z, constant 

ZAP instruction 
examples 
formats 
operational considerations 

Zero and add (ZAP) instruction 

Zero result 
AD instruction 
ADR instruction 
AE instruction 
AER instruction 

Zone field 

Zoned decimal constants (Z) 
padding 
truncating 

Index 31 

Reference Page 

z 
5.2.5 5-10 

9.19 9-99 
9.19 9-98 
9.19 9-99 

See ZAP 
instruction. 

11.2 11-4 
11.3 11-7 
11.4 11-10 
11.5 11-13 

2.4.3.1 2-6 

5.2.5 5-10 
5.2.5 5-10 



• 



ai e .: 
Cl> c 
0 
'iii 
.... 
::> 

(.) 

SPEl«V+ UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

• 

ge 
-I 



• 



• 



I 
I 
I 
I •1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ai I 
c 

"' I ., 
(.) 

• 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATIN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

• 

• 



• 

.; 
.!: 

"' 

-~ u 

• 

UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

--------------------------------------------------
FOLD 

• 

• 


