
•

•

•

Independent Sort/Merge

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY®
Operating System/3 (OS/3) Independent Sort/Merge User Guide/Programmer Reference", UP-8819
Rev. 2.

The independent sort/merge program available to System 80 allows Operating System/3 (OS/3) users to
produce a tailored output file from existing input data files.

This manual describes the sort/merge program and is intended for the programmer with a basic knowledge of
data processing, but with little programming experience.

This update documents changes to the following:

• Program restrictions and considerations

• Table 1-2, Comparison of Transfer Rates for Magnetic Tape Devices

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8819 Rev. 2-A. To receive the complete manual, order UP-8819
Rev. 2 .

Mailing Lists
BZ, CZ, and MZ

Mailing Lists BOO, 802, 803, 28U, and 29U
(Package A to UP-8819 Rev. 2,
7 pages plus Memo)

Library Memo for
UP-8819 Rev. 2-A

January, 1985

•

•

•

•

•

•

Independent Sort/Merge

User Guide/Programmer
Reference

This Library Memo announces the release and availability of "SPERRY® Operating System/3 (OS/3)
Independent Sort/Merge User Guide/Programmer Reference", UP-8819 Rev. 2.

This manual supersedes, for System 80 users, UP-8819 Rev. 1. The text is essentially the same except for
changes made for Release 8.2 which include the following:

• Support of 8416, 8418, 8430, 8433, and 8470 disk subsystems.

• Addition of an UPSI byte that is set when a warning message is generated indicating Sort/Merge has
located less than the number of files specified by the user.

All other changes are corrections or expanded descriptions applicable to features present in Independent
Sort/Merge prior to Release 8.2.

Destruction Notice: If you are going to OS/3 release 8.2, use this revision and destroy all previous copies. If
you are not going to OS/3 release 8.2, retain the copy you are now using and store this revision for future
use.

Copies of UP-8819 Rev. 1 and UP-8819 Rev. 1-A will be available for 6 months after the release of 8.2.
Should you need additional copies of this edition, you should order within 90 days of the release of 8.2.
When ordering the previous edition of a manual, be sure to identify the exact revision and update packages
desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry representative.

Mailing Lists
BZ, CZ and MZ

Mailing Lists BOO, 802, 803, 28U, and 29U
(Cover and 132 pages)

Library Memo for
UP-8819 Rev. 2

February, 1984

•

• '

~
i

•

•

•

•

•
• UNISYS

•

•

OS/3
Independent
Sort/Merge
Programming
Guide

Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.
Previous Title: OS/3 Independent Sort/Merge

User Guide/Programmer Reference

Relative to Release
Level 9.0

Priced Item

August 1987

Printed in U S America
UP-8819 Rev. 2

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, +SPERRY, SPERRY+UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and + are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

•

•

•

•

•

•

UP-8819 Rev. 2

Part/Section
Page

Number

Cover

Title Page/Disclaimer

PSS 1

Preface 1, 2

Contents 1 thru 4

1 1 thru 3

4

5, 6

7

8 thru 11

2 1, 2

3 1 thru 50

4 1 thru 15

Appendix A 1 thru 5

Appendix B 1 thru 11

Appendix C 1 thru 21

Index 1 thru 8

User Comment

Form

•New pages

SPERRY OS/3
INDEPENDENT SORT /MERGE

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update B - UP-8819 Rev. 2
9.0 Forwc1rd

Update

Level

B

s·

B

Orig.

Orig.

Orig.

A

Orig.

A

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Part/Section
Page

Number

Update

Level
Part/Section

PSS 1
Update B

Page

Number

Update

Level

All the technical changes are denoted by an arrow (==>) in the margin. A downward pointing arrow (J!) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (11) is found. A horizontal arrow (==>) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both
lines or deletions.

.I

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY Operating System/3 (OS/3). It specifically describes the independent
sort/merge program available to System 80 users of OS/3. The intended audience is
the programmer with a basic knowledge of data processing, but with little programming
experience. Also helpful is an understanding of job control language (JCL). Programmers
planning to use own-code routines should be familiar with basic assembler language
(BAL) and data management macros. An introduction manual, the introduction to
sort/merge, UP-8835 (current version), is also available. It describes the general
characteristics and facilities of all the sort/merge programs available to OS/3 users.

Other current OS/3 publications referenced in this manual that are helpful when using
independent sort/merge are:

• Data utilities user guide/programmer reference, UP-8834

Describes the data utility routine.

• System service programs (SSP) user guide, UP-8841

Describes various system utilities (e.g., librarian, linkage editor).

• General editor user guide/programmer reference, UP-9976

Describes the OS/3 general editor (EDT).

• Job control user guide, UP-9986

Describes the job control language used under OS/3.

• System messages programmer/operator reference, UP-8076

Describes the errors encountered when using OS/3 .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

• Basic data management user guide, UP-8068

Describes the effective use of OS/3 basic data management.

Preface 2

• Consolidated data management macro language user guide/programmer reference,
UP-9979

Describes the data management macroinstructions.

• Interactive services commands and facilities, UP-9972

Describes the commands and operating procedures for workstation terminals.

The subject matter in this manual is divided into the following sections and appendixes:

• Section 1. Introduction

• Section 2. Basic Concepts

• Section 3. Sort/Merge Requirements You Supply

• Section 4 . Program and Control Stream Examples

• Appendix A . Statement Conventions

• Appendix B . Standard EBCDIC and ASCII Collating Sequences

• Appendix C . Control Statement Summary

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. INTRODUCTION

1.1.

1.2.

1.3.

1.4.

1.5.
1.5.1.
1.5.2.
1.5.3.
1.5.4.

1.6.

1.7.

WHY YOU NEED A SORT PROGRAM

WHAT INDEPENDENT SORT /MERGE DOES FOR YOU

CONCEPT OF MODULAR SORT STRUCTURE

PROGRAM RESTRICTIONS AND CONSIDERATIONS

ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM
Main Storage Allocation
Auxiliary Storage Work Area Assignments
1/0 Data File Organization
Sort Options Affecting Performance

STRUCTURING YOUR INPUT /OUTPUT DATA

RUNNING YOUR SORT JOB FROM A WORKSTATION

2. BASIC CONCEPTS

2.1. GENERAL

2.2 . SOFTWARE FRAMEWORK

Contents 1

Contents

1-1

1-1

1-3

1-4

1-4
1-5
1-5
1-7
1-7

1-8

1-11

2-1

2-2

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3. SORT/MERGE REQUIREMENTS YOU SUPPLY

3.1. GENERAL
3.1.1. Job Control Stream

3.2. CONTROL STATEMENTS
3.2.1. Defining a Sort Operation
3.2.2. Defining Data Records
3.2.3. Defining the Input File
3.2.4. Defining the Output File
3.2.5. Ending Input to Sort/Merge
3.2.6. Handling Special Sort/Merge Specifications
3.2.6.1. Disk Access Input Records
3.2.6.2. Input, Output, and Work Files
3.2.6.3. External Control

3.3. EXIT CODES
3.3.1. Exiting to DELETE Data Reduction Routine
3.3.2. Exiting to Your BAL Own-Code Routines
3.3.3. Using Exit Codes
3.3.3.1. Input File Label Processing
3.3.3.2. Input File Processing
3.3.3.3. Input File Read Error Processing
3.3.3.4. Output File Label Processing
3.3.3.5. Output File Processing
3.3.3.6. Write Error Processing for Direct Access Devices
3.3.3.7. Record Sequencing
3.3.3.8. Data Reduction
3.3.3.9. User-Defined Collation Sequencing
3.3.4. An Example of Exit Code Use
3.3.5. General Purpose Registers
3.3.6. Providing a Branch for User Own-Code Exits
3.3.7. Formatting the Exit Parameter List
3.3.8. Job Control for the Own-Code Routine

3.4. USING THE MERGE-ONLY PROCESS
3.4.1. Defining the Merge-Only Operation
3.4.2. Merge-Only Exit Code for Input File Processing
3.4.3. Merge-Only Exit Code for Input File Read Error Processing

4. PROGRAM AND CONTROL STREAM EXAMPLES

4.1. GENERAL

4.2. SORT/MERGE CONTROL STATEMENT EXAMPLES

4.3. JOB CONTROL STREAMS TO PERFORM DISK SORTS

4.4. JOB CONTROL STREAM TO PERFORM TAPE SORTS

4.5. JOB CONTROL STREAM TO PERFORM A FORMAT LABEL DISKETTE SORT

4.6. JOB CONTROL STREAM TO PERFORM A DEFAULT SORT

Contents 2

• 3-1
3-3

3-6
3-8
3-14
3-16
3-21
3-24
3-24
3-25
3-28
3-30

3-31
3-32
3-32
3-34
3-34
3-35
3-35
3-36
3-36
3-37 • 3-37
3-37
3-38
3-38
3-42
3-43
3-44
3-45

3-47
3-48
3-49
3-50

4-1

4-1

4-4

4-9

4-12 • 4-14

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

• APPENDIXES

A. STATEMENT CONVENTIONS

A.1. GENERAL FORMAT RULES

A.2. CODING RULES

B. STANDARD EBCDIC AND ASCII COLLATING SEQUENCES

B.1. GENERAL

B.2. EBCDIC/ASCII/HOLLERITH CORRESPONDENCE
B.2.1. Hollerith Punched Card Code
B.2.2. EBCDIC
B.2.3. ASCII

B.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS

B.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS

c . CONTROL STATEMENT SUMMARY

• C.1. GENERAL

C.2. END

C.3. INPFIL

C.4. MERGE

C.5. MODS

C.6. OPTION

C.7. OUTFIL

C.8. RECORD

C.9 . SORT

•

Contents 3

A-1

A-3

B-1

B-1
B-2
8-2
B-2

B-8

B-10

C-1

C-1

C-1

C-3

C-7

C-8

C-12

C-14

C-18

UP-8819 Rev. 2

INDEX

USER COMMENT SHEET

FIGURES

SPERRY OS/3
INDEPENDENT SORT /MERGE

1-1.
1-2.
1-3.

Key, Record, and Block Interrelationship
Input Data Records before Sort

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.

Data Records after Sort

Disk Sort Program Flowchart
Disk Sort Coding
Typical Sort/Merge Job Control Stream
Input File, Unsorted Records (Additional Data Fields Not Shown)
Tag-Sorted Output File when ADDROUT =A
Tag-Sorted Output File when ADDROUT=D
Coding Example for Using Exit Code El5
Typical Job Control Stream for a Merge-Only Operation

TABLES

1-1 . Comparison of Data Capacities and Access Speeds for Direct Access Devices
1-2. Comparison of Transfer Rates for Magnetic Tape Devices

3-1 . Data Format Codes
3-2. Exit Codes: Their Allowable Functions and Associated Phases
3-3. Branch Table Format
3-4. Parameter List Format

B-1. Cross-Reference Table: EBCDIC/ ASCII/Hollerith
B-2. OS/3 Collating Sequence: EBCDIC Graphics
B-3. OS/3 Collating Sequence: ASCII Graphics

Contents 4

1-8
1-9
1-10

3-2
3-3
3-7
3-26
3-26
3-27
3-39
3-49

1-6
1-7

3-11
3-31
3-43
3-44

B-3
B-8
B-10

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1.1. WHY YOU NEED A SORT PROGRAM

1-1

1. Introduction

Why is it important that you have a sort capability? Well, consider the amount and
types of data contained in your files, and the number of ways in which you use that
data. You'll probably discover that you seldom use all of the data for every job and that
the organization of the data does not always lend itself to efficient methods of
processing during certain applications. In general, most files contain a collection of data
records, possibly of different types, that have no relationship other than their existence
in the same file. Finding records and specific types of data in your files requires a
search, and searching takes time. However, less time is expended to search an ordered
file than to search an unordered file, and time is directly related to processing efficiency.
This is where a good sort program comes into play. It allows you to select the data
you need and to organize that data according to criteria such as an employee number,
customer account number, an inventory item, or whatever your particular job application
requires. Remember, data is useless for the most part unless it can be related to
something real, such as the type of record entries mentioned. A file properly organized
and formatted for the job at hand allows the use of techniques that achieve faster
searching of your files, faster determination of the presence or absence of the
information needed, and faster record retrieval during job execution.

1.2. WHAT INDEPENDENT SORT /MERGE DOES FOR YOU

Independent sort/merge is essentially an easy-to-use canned service program. It does not
need to be assembled or linked and requires only a minimum of user programming and
intervention. The program is loaded and directed at run time via sort/merge control
statements you include in the control stream of your job. Because sort/merge control
statements and job control are used to define files, records, and functional structure of the
sort to the system, you have no lengthy register address manipulations to program. You
simply provide the data files, assign your devices, and define the sort or merge-only
procedure you want independent sort/merge to perform .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1-2

For those who want to perform specialized functions other than those provided by the
program, independent sort/merge allows you to write your routine (called an own-code
routine). Own-code routines can be used to extend your control over the selection of
external formats and disposition of output records, record sequencing, and data reduction.
Own-code routines are written in basic assembler language (BAL) and must conform to
the interfaces of the sort program and the conventions of OS/3. Although it supports user
own-code, independent sort/merge does not allow you to indiscriminately pass control to
your routines. Exiting to own-code routines is restricted to specific operational phases of
the sort. The rules for, and restrictions placed on, the use of own-code routines within
independent sort/merge are provided in Section 3.

Independent sort/merge assists you in producing a tailored output file from your existing
input data files. You can reformat a file (rearrange records and selectively include or omit
specific record types), reformat records, and summarize record fields. The types of sorts
performed include full record sorts, tag sorts, and summary sorts. Specifically, independent
sort/merge can:

• sort records in ascending or descending sequence;

• sort fixed-length or variable-length records;

• sort blocked or unblocked records;

• sort records with noncontiguous key fields;

• recognize key fields in the following formats:

character

binary (signed and unsigned)

decimal (signed zoned and unsigned zoned)

decimal packed

leading and trailing sign numeric

overpunched leading and trailing sign numeric

EBCDIC data in ASCII collating sequence

floating point (single and double precision)

• sort two or more different characters having the same collating value (multiple
character sort);

• sequence files in accordance to user-specified (alternate) collating sequence;

• perform data validity and data integrity checks during sorting; and

• perform restart procedures for tape sorts.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1-3

• The output produced from your sort job is file formatted according to your instructions to
the sort program. You are not, however, automatically provided a copy of the output file
produced by the sort. If you want a copy of the sorted file, you can obtain it by running the
appropriate data utility routine, as described in the data utilities user guide/programmer
reference, UP-8834 (current version). The successful execution of your job results in a
terminated normally message printed on your job log and a list of the total number of
records included in the sort and the total number of records deleted during the sort.

r

•

•

1.3. CONCEPT OF MODULAR SORT STRUCTURE

In the process of describing independent sort/merge, we refer to it as being modular in
structure. What do we mean by modular? Modular, as related to the sort programs, refers
to the method used to package the sort/merge programs. Rather than writing separate
sort programs for every conceivable type of sort, we have broken the sort/merge process
into a group of interrelated, yet independent, functional subtasks. The subtasks are coded
as executable routines and are provided to you as load modules residing in the system
load library (YLOD). Their implementation into your job is based on the structure you
establish in your job stream. That is, you define the type of sort you want performed
through parameterized statements in your job control stream, and the sort program will
structure the sort/merge process accordingly. One advantage of modular programming is
that it conserves main storage space. The sort program loads only those modules needed
for the particular sort/merge phase being executed. It also aids in adapting the OS/3
independent sort/merge program to the requirements of your installation by increasing
programming flexibility.

In addition to the sort modules, independent sort/merge provides a call module to
interface with the system. This call module is the SORT system driver program, which
resides in YLOD.

SYS RES

OS/3 SYSTEM
LIBRARY

INDEPENDENT
SORT/MERGE

(LOAD MODULE)

INTERFACE
MODULE

SYSTEM
DRIVER

PROGRAM
(SORT)

OS/3
MAIN

STORAGE

If you want to copy the independent sort/merge program onto your own user library file,
you can do so by means of the librarian, as described in the system service programs
(SSP) user guide, UP-8841 (current version). Be sure to include the system driver program
(SORT) and sort load modules beginning with SM$ from YLOD .

t

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1.4. PROGRAM RESTRICTIONS AND CONSIDERATIONS

1-4
Update A

Variations in program design, capability, and implementation sometimes restrict the use of
a sort program for specific applications or for specific system configurations. Therefore,
consideration should be given to the following:

• All sorting is limited to storage-only, disk-only, or tape-only, single-cycle sorts.

• Input and output files can be disk, format label diskette, or tape.

• Auxiliary storage work areas can be either disk or tape, but not both, and are
limited to eight disk files or six tape files.

• Volume of data sorted and merged is limited by the type and physical capacity of
the tape or disk space assigned as auxiliary working storage.

• User own-code routines can be substituted for those provided; however, they must
satisfy the requirements of the program and OS/3 programming conventions.

• The FIL TYPE parameter is ignored when the system is generated to support only
consolidated data management mode file access.

• If the system supports both consolidated data management and DTF file access,
the FIL TYPE parameter may be used to specify the file type as IRAM (for MIRAM),
NI, or SAM.

If the FIL TYPE parameter is not specified, the output file type will be the same as the
input file type. Or, if an input file is not specified, the output file type will be MIRAM.

1.5. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM

The careful user should be aware of elements affecting the performance of his sort
program. These elements are:

• Available main storage

• Number and type of assigned
auxiliary storage devices

• Record characteristics

• Input and output data file organization

• Options under which the sort program
operates

Remember to be explicit in supplying instructions to your sort program and to be careful in
setting up your file and record formats. This results in faster sorts that require less central
processor time and reduces the number of 1/0 operations required. To improve program
efficiency, consider these factors during record and file preparation:

• Record size • Number of key or control fields

• File size • Record format

• Key or control field size • File format

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1-5

As a rule, simplification reduces processing and the time needed to perform a function. By
simplifying the key fields and decreasing their number and size, you decrease the number
of comparisons and the length of time needed to make each comparison. Sort performance
improves when input and output records are blocked. Decrease record size and you
increase efficiency because a greater _number of records are processed at one time for a
given amount of main storage.

To improve processing speed and efficiency:

• Be generous with storage; assign more than one 1/0 device to the sort for auxiliary
storage and more than the minimum amount of main storage.

• Simplify your file and record formats.

• Be explicit in defining your output file requirements to the sort program.

1.5.1. Main Storage Allocation

In general, the more main storage available to a sort program, the more efficient the
performance. It decreases the number of 1/0 functions because fewer passes are needed
to produce strings of sequenced data for final merging. Therefore, proper consideration
given to these factors when preparing your program reduces processing time and
increases program efficiency .

Independent sort/merge requires 16,000 bytes, plus sufficient main storage for the larger
of either two input blocks or two output blocks. User own-code routines may require
additional main storage.

When performing a merge-only operation, independent sort/merge requires 16,000 bytes,
plus sufficient main storage to hold two buffers for each input file and two buffers for the
output file.

An internal-only sort/merge requires sufficient main storage to hold the entire input file,
plus eight bytes for each record, in addition to the preceding requirements.

Performing large volume sorts is most efficient when 50,000 to 150,000 bytes of main
storage are allocated.

1.5.2. Auxiliary Storage Work Area Assignments

Work areas may be assigned as auxiliary storage on tape or disk, but not both. If disk storage
is used, all work area disks must be of the same general type. It is important not to
underestimate the amount of auxiliary storage required. When possible, avoid assigning the
bare minimum of auxiliary storage needed; otherwise, the sort program must perform a
greater number of intermediate merge passes to sequence records. This wastes time and
reduces program efficiency. Because the volume of data processed varies with the quantity
and type of magnetic tapes or disks assigned as auxiliary storage, selecting auxiliary storage
devices with faster data transfer rates results in a faster sort. Data volume doesn't reduce
sort performance.

t

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1-6

Disk space is assigned by using standard sort work file names DM01, ... ,DMOn or system
scratch space file names $SCR1 , ... ,$SCRn (in consecutive order) on LFD job control
statements, or by using WORK jproc calls. If one work file is allocated, the file name
DM01 or $SCR1 must be assigned; if two are used, the names DM01 and DM02 or
$SCR1 and $SCR2 must be assigned, and so forth. A maximum of eight disk files may be
assigned to sort/merge programs. The amount of disk space requested must be sufficient
to hold the entire volume of data to be sorted, plus 10 to 20 percent additional space for
overhead requirements. (An additional 10 to 20 percent space should be requested if data
involves variable-length records.) In addition, all disk files used in the sort operation must
be the same type; i.e., mixed disk types are unacceptable. Table 1-1 contains the data
capacities and access speeds of the direct access storage devices used by the sort
program.

Table 1-1. Comparison of Data Capacities and Access Speeds for Direct Access Devices

Disk Subysystem Types

Characteristics

8416 8417 8418-92/93 8418-94/95 8419 8430 8433 8470

Maximum data capacity 28,958.720 118,270,000 28,958.720 57,917.440 72,396,800 100,018,280 200,036,560 491,520,000

(8-bit bytes per disk pack)

Maximum track capacity 10,240 15,360 10,240 10,240 12,800 13,030 13,030 24,576

(bytes)

Mm1mum cylinder access 10 7 10 10 10 7 7 4

time (ms)

Average cylinder access 30 35 27 33 33 27 27 23
time (ms)

Maximum cylinder access 60 70 45 60 60 50 50 46

time (ms)

When tape is used, the auxiliary storage work areas use labeled or unlabeled tapes.
Work files are assigned by using standard tape sort file names SM01 through SM06 (in
consecutive order) on LFD job control statements. A minimum of three tape units, and a
maximum of six, may be assigned. Each tape work file must be large enough to contain
all of the input data; i.e., the volume of data that can be processed in a tape sort is
limited to the capacity of the smallest reel of tape assigned to the sort. The speed (rate)
of data transfer varies according to the tape density (number of bits recorded across

-.. the width of the tape) and tape device. Refer to Table 1-2.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 1-2. Comparison of Transfer Rates for Magnetic Tape Devices

Tape Density
Data Transfer Rate (bps**)

(bpi*)
UNISERVO 10 UNISERVO 22 UNISERVO 24 UNISERVO 26

9-track
(phase encoded)

1600 40,000 120,000 200,000 120,000

9-track
(NAZI) 20,000 60,000 100,000 60,000
800

* bpi = bits per inch
** bps = bits per second

1.5.3. 1/0 Data File Organization

1-7
Update A

UNISERVO 28

200,000

100,000

Data file organization begins with record layouts. If you assume that you have a fixed
number of records, a file of large records takes longer to sort than a file of smaller records.
Also, larger key fields and more key fields per record increase sort time because lengthier
comparisons are needed. Key fields are explained in 1.6 .

Record sizes that exceed one-half track in length may require up to 100 percent more
space or twice the normal space calculated by multiplying the number of records to be
sorted by the record size.

1.5.4. Sort Options Affecting Performance

When using independent sort/merge, your performance time can be affected by the
following options:

• NOCKSM keyword parameter

• USO specification in the FIELDS keyword parameter

By specifying NOCKSM=D or NOCKSM-T, you suppress the calculation of a checksum
word for blocks written to disk (D) or tape (T). A checksum word is used to verify the
integrity of data blocks transferred from sort/merge to work files. The calculation and
operation of a checksum word increases overall sort/merge operation time. Similarly, if
you specify the USO specification (FORMAT=USO) in the FIELDS keyword parameter to
indicate a user-defined collation sequence, you again increase sort/merge execution time .

t

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1.6. STRUCTURING YOUR INPUT /OUTPUT DATA

1-8

When you first consider the problem of sorting data, you may be faced with a large volume
of information that may or may not be organized into workable units. Dividing information
into records, blocks, and files helps both you and the computer identify where the data is
located and control the changes or manipulations you want performed. After carefully
examining the nature and content of the input data and determining the record layout and
block size that best suits your needs, you must indicate, via your control stream, what size
records and blocks you intend to input for processing and output after the sorting
operation is completed.

Records can be divided into smaller units called fields. Specific fields, called key fields or
just keys, are used for comparing records to arrange them in the order you want. To tell
the sort program which keys to use, you must specify the size and position of the keys
within records. Figure 1-1 shows key, record, and block interrelationship.

Figure 1-2 illustrates what the data contained in key fields of the first two input data
record blocks might look like before the sort.

DISK
INPUT
FILE

80 bytes = 1 record

400 bytes = 1 block

START
KEY -

,.
/ ,.

,,,.. ,.
,. ,. ,.

81 82 85 86

Figure 1-1. Key, Record, and Block Interrelationship

' ' 87 88

•

•

•

•

•

•

UP-8819 Rev. 2

Key Field

RECORD 1 I 0 I 0 I 3 I 2 I I
RECORD 2 I I 0 I 0 I 0 I 7 I
RECORD 3 I 6 I a I 7

1
9

1 9 I
RECORD4 I 9 14 16 1 ° I 0 I
RECORD 5 I 2 I 0 I 4

1
6

1
3 I

RECORD 6 I 5 I 4
1

4
1

8
I

6 I
RECORD 7 I 0 I 3 I 0 I 0 I 0 I
RECORD 8 I a I 8

1
8

1
5 I 5 I

RECORD 9
1

4
1

3
1

3 I 0 I 0 I
RECORD 10 I 7 I 0 I , I 0 I· I

Figure 1-2.

6

0

8

0

8

5

6

2

0

3

SPERRY OS/3
INDEPENDENT SORT /MERGE

I 5 I 4 I
I 0 I 5 I
I 6 I 3 I
I 5 I 4 I

1
4

1
4 I

I 5 I 5 I
I 0 I 0 I
I 9 I 6 I

I 0 I 0 I

I 0 I 0 I
Input Data Records before Sort

1-9

Block 1

Block 2

Of course, your volume of data is much larger than the two 400-byte record blocks shown
in Figure 1-2, but the results of sorting the records in ascending order by key fields should
be as shown in Figure 1-3 .

UP-8819 Rev. 2

RECORD 1

RECORD 2

RECORD 3

RECORD4

RECORD 5

RECORD 6

RECORD 7

RECORD 8

.. RECORD9

RECORD 10

Key Field

SPERRY OS/3
INDEPENDENT SORT /MERGE

l·I ·1
3

1,1 ·l·l· l·I
l 0l 3lolol 01 6 1°! 01

l1 l 0l0 l0l1 lolol 5 I
12101416131814141

l•H 3 l•H•l•H
15141418161515151

1
6

1
8

1
7

1
9

1
9

1
8

1
6

1
3

1

1
1

1°1
5

1°1
9

1
3

1°1°1

1·1·1·1·1·1,1·1·1

1
9

1
4

1
6

1°1°1°1
5

1
4

1

Figure 1-3. Data Records after Sort

1-10

•

Block 1

•
Block 2

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

1-11

• 1.7. RUNNING YOUR SORT JOB FROM A WORKSTATION

OS/3 provides you with the capability of running independent sort/merge interactively. This
means two things:

1. You can build a control stream to execute the sort program at a workstation, as
opposed to punching it on cards or writing it to a diskette.

2. You can initiate the running of the control stream from the workstation, as opposed to
asking the system operator to run your job for you.

The easiest way to build a job control stream from a workstation is by using the general
editor. This allows you to key in your control stream statements and have them stored on a
library file. Then at some later time you can initiate the running of the program by keying in
the RV system command. (An example of this procedure is provided in 4.3.)

If you are not familiar with job control, use the job control dialog for assistance. The job
control dialog is an interactive facility of OS/3 that allows you to describe your job's
requirements to it in English, in response to a series of questions, and then produces as its
output the job control stream needed by OS/3 to run your job.

The control stream produced by the job control dialog is virtually identical to the control
stream that you would have to produce if you were running your job in a batch environment.
Only now, you do not have to be concerned with the intricacies of the job control language.

• The job control dialog eliminates this requirement on your part.

•

After you have answered all the questions presented to you by the job control dialog, it
builds a control stream and stores it in a permanent library file for you. You can then initiate
its running by simply keying in the appropriate system RUN command or, if you'd rather, you
can change the contents of the control stream by using the general editor.

The procedures for activating the general editor are detailed in the general editor user
guide/programmer reference, UP-9976 (current version). The procedures for activating
the job control dialog and initializing the running of a job are detailed in the job control
user guide, UP-9986 (current version).

Although the sample job control streams in this manual are shown on cards, the rules for
preparing your sort control statements and specifications also apply to entries keyed in at a
workstation.

Note that if a job has been initiated from a workstation, all messages will be displayed on
the workstation rather than the system console .

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

2-1

2. Basic Concepts

2.1. GENERAL

Independent sort/merge, which we'll call simply sort/merge, is a self-contained processor
that assists you in sorting and merging, or just merging, data files. You initiate it by
writing a job control stream including some sort/merge control statements and job control
statements that you will learn in the following sections.

Operating in a minimum system configuration, sort/merge reads your data files, sorts and
merges the data according to your specifications, then writes the data to your output file. It
does this with almost no user program intervention, if you supply the data files and specify
the sort/merge procedures you want performed .

In addition to simplifying your sort/merge job execution, sort/merge allows you to write
own-code routines to perform specialized functions that it doesn't provide or that you want
to handle differently.

To use own-code routines, specify to sort/merge:

• the name of your routine;

• the approximate size of its load module; and

• the phase of the sort/merge operation from which it is to be called.

An exit code contained in the control stream automatically calls your routine to perform its
function at the appropriate time. Own-code routines, their associated exit codes. and their
functions are explained in greater detail in 3.3.

A good example of routines you might want to perform differently would be 1/0 file
handling routines. You can program your own input or output file processing routines or
let sort/merge handle one file while your own-code routine handles the other. Thus, you
can have both convenience and flexibility when you use sort/merge .

UP-8819 Rev. 2

2.2. SOFTWARE FRAMEWORK

SPERRY OS/3
INDEPENDENT SORT /MERGE

2-2

Independent sort/merge consists of four separate operational phases, normally executed
in sequence:

1. Sort initilization and assignment (Phase 1)

This phase initializes the sort process by reading sort control statements from the job
control stream. It validates the content and syntax of these statements, and examines
your parameters to determine the type of sort function to be performed (tape, disk,
internal sort, or merge-only). It then structures the sort/merge processor to perform
only the sort functions you specify.

2. Data input and internal sort (Phase 2)

This phase initiates the input routine and performs internal sort operations.

• Input routine

•

The input routine opens input files, validates file labels, and reads data records,
one at a time, before passing them to the internal sort routine. The input routine
supplied by sort/merge can be replaced by one of your own. If you use your own,
you must identify it to sort/merge via a user exit code. (See 3.3.)

Internal sort routine

The internal sort routine produces strings of sequenced data that are written as
intermediate files to tape or disk.

3. Preliminary merge (Phase 3)

In this phase, the data strings produced by the internal sort routine are continuously
merged, producing longer and longer sequenced data· strings, until only one final
merge is needed to create a single string (final output string).

4. Final merge (Phase 4)

This phase merges all strings written to the intermediate files into one sequenced
string, and passes it to the sort/merge output routine or your own output routine. If
you provide the output routine, you must identify the exit code required to transfer
control to your routine. (See 3.3.)

In cases where the input file is biased (partially sequenced) or small enough so that one
final merge produces the required output file, sort/merge bypasses the preliminary merge
and proceeds to the final merge and output phase. In a merge-only operation, control
proceeds directly from initialization and assignment to preliminary merge, where records
are read into main storage, merged, and written to the output file.

•

•

•

•
UP-8819 Rev. 2

3.1. GENERAL

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-1

3. Sort/Merge Requirements
You Supply

The sort/merge requirements you supply are simple and direct. They consist of job control
statements and a set of sort/merge control statements. The amount of detail involved in
writing the job control stream depends upon the complexity of the sort. In essence, your
sort/merge control statements tailor the available sort/merge modules to suit the
requirements of a particular sort operation (disk, tape, default, etc).

By answering these three questions concerning the sort/merge operation, you can
construct the specifications needed for the sort:

• 1. How is the sort to be performed?

•

2. What does the sort act upon?

3. Which file is the sort using?

The control statement. SORT, answers the first question via your parameters that supply
the information needed to sort the records. You can answer question 2 by writing the
RECORD sort control statement. This supplies information describing the record size and
formats used in the sort. Input and output files are defined by using the INPFIL and
OUTFIL control statements. To indicate the end of the sort control stream, you use the
END control statement.

Before we discuss the functions of each sort control statement, let's step through the
flowchart of a typical sort program (Figure 3-1) .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

START
(//EXEC SORT)

DEFINE
SORT

OPERATION
(SORT)

DEFINE
LOGICAL
RECORDS
(RECORD)

DEFINE INPUT FILE
TO SORT/MERGE

(INPFIL)

DEFINE
OUTPUT FILE

TO SORT/MERGE
(OUTFIL)

END THE
SORT/MERGE

CONTROL
STATEMENTS

(END)

EOJ

Figure 3-1. Disk Sort Program Flowchart

3-2

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-3

• 3.1.1. Job Control Stream

•

•

In order to schedule your program and allocate the system resources to it, you must assign
a name to the job so that the system can distinguish it from other jobs. The job control
statement that identifies the job and signifies the beginning of control information for the
job is the JOB statement. Figure 3-2 shows the entire job control stream required for our
independent disk sort program. The control stream is explained in detail in the paragraphs
that follow:

1 .
2 .
3.
4.
5 .
6.
7.
8.
9.
10.
11 .
1 2 .
1 3 .
14.
15.
16 .

• Line 1

10 16

II JOB SRTEXMPL.,7888,9888
II DVC 28 II LFD PRNTR
II DVC 58 II VOL DSP828 II LBL INFILE II LFD SORTINl
II DVC 58 II VOL DSP828 II LBL OUTFILE II LFD SORTOUT,,INIT
II DVC 58 II VOL DSP828 II EXT ST,C .. CYL,5
II LBL $SCR1 II LFD DM81
II EXEC SORT
1$

SORT FIELDS=(l,8,CH),DISC=l
RECORD LENGTH=(88). TYPE=F
INPFIL BLKSIZE=488
OUTFIL BLKSIZE=488
END

I'
I&
II FIN

Figure 3-2. Disk Sort Coding

In the first line of the sample control stream in Figure 3-2, SRTEXMPL is the 8-
character alphanumeric name of your job. The double comma indicates that the job
priority parameter is omitted. Because it is omitted, the system assumes normal (N)
priority. The numbers 7000 and 9000 are hexadecimal values (equivalent to 28,672
and 36,864 in decimal) that represent the minimum number of main storage bytes
(including job prologue) required to execute the largest job step of this job and the
maximum number of main storage bytes requested but not required to execute the
largest job step of this job .

UP-8819 Rev. 2

• Line 2

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-4

In order to process incoming information, the system needs hardware devices to
handle the processing, and you must assign devices to various routines in your
program. A device assignment set consists of at least two or as many as five job
control statements; i.e., the DVC and LFD statements or the DVC, VOL, EXT, LBL,
and LFD statements. Each device assignment set begins with a DVC statement that
assigns a logical unit number. For specific 1/0 device numbers, check the list of
device types and features in the job control user guide, UP-9986 (current version).

The first device usually assigned is a printer. It is needed to print messages for
operator action or information. The printer must be assigned the standard name
PRNTR on the LFD statement (line 2).

• Lines 3-6

Your next series of job control statements (lines 3 through 6) follow a pattern in
assigning input, output, and sort work files. The pattern of specifications for each file
is the file name within a volume name on a specific device.

FILE NAME

VOLUME NAME

DEVICE NUMBER

Lines 3-5

Your first DVC statement after the printer device assignment set assigns device
number 50 to your input file named INFILE (line 3). The second DVC statement
assigns the same device to your output file (line 4). Looking at the next DVC
statement (line 5), notice that the same device is assigned for sort work file
$SCR1. Because our input files are very low volume, this is possible; however,
under normal circumstances for larger input volume, you should assign one disk
device for each sort work file and another for input and output files. The sort
operates more efficiently when one work file is assigned per disk. The name
$SCR1 is for a temporary work file. Next you must identify the disk volume to be
used. The VOL statement supplies volume serial numbers that uniquely identify
tape or disk volumes (lines 3, 4, and 5). The name you assign to your input and
output file volume is the alphanumeric name DSP028 (lines 3 and 4). For the
sort work file volume name, you specify the same, DSP028 (line 5).

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-5

To provide disk space for sort work files and to designate information needed to
create new files or extend existing disk files, you specify the EXT job control
statement on the device assignment sets for each sort work file. Each EXT
statement applies to the first volume specified on the immediately preceding VOL
statement (line 5). Notice there is no EXT statement for either input or output
files because these files already exist (lines 3 and 4). The input file was created
by the data utility program that used your card input data, and the output file
needed an EXT only on the first run. ST indicates that your work file is accessed
via the system access technique (SAT). The C allocates contiguous space for the
extent; a comma indicates omission of an optional parameter; CYL specifies that
space must be allocated in cylinder; and the 5 indicates the number of cylinders
allocated for the file.

Data management needs to know the file identifiers you designate for your
program. Only one LBL statement is allowed per device assignment set. You
specify the disk sort program's input file identifier as INFILE (line 3), the output
file identifier as OUTFILE (line 4), and the sort work file identifier as $SCR1.

To associate the file information in the job control stream with the data
management file definition, you must specify the standard label names SORTINn
and SORTOUT on the LFD job control statement for each file (lines 3 and 4).
Thus your first two LFD statements in the job control stream would specify the
name SORTIN1 for the input file and SORTOUT for the output file. If more than
one input file is being processed, the label names for the files must be assigned
in sequence (SORTIN1 for the first file, SORTIN2 for the second file, etc). The
number of input files sort/merge can process depends on the type of operation
being performed (sort/merge or merge-only). For sort/merge operations,
sort/merge can process up to nine tape or disk files (SORTIN1 to SORTIN9). For
merge-only operations, sort/merge can process up to 16 tape or disk files
(SORTIN1 to SORTIN9 for the first nine files and SORTINA to SORTING for the
last seven files).

Line 6

The INIT parameter on the LFD statement for the output file indicates that
you want to start writing at the beginning of the file, overlaying its previous
contents. The LFD statements for sort work files must specify the file names
DM01 through DM08 or $SCR1 through $SCR8, in consecutive order,
beginning with DM01 or $SCR1. Thus, the third LFD statement specifies the
name DM01 (line 6).

An easier way of assigning work areas on disk would be to use WORK job
control procedure (jproc) calls. A WORK jproc automatically generates a device
assignment set allocating system scratch space as a work area. The format for
the WORK jproc call needed for our program is / / WORK 1 . This statement
takes the place of lines 5 and 6. The WORK jproc, used without parameters,
allocates 4000 256-byte blocks of scratch space on your system resident
device (SYSRES) or the volume containing your system run library (YRUN) .
You can increase the amount of work space and specify the use of other disk
volumes through optional parameters. For more information about the WORK
jproc, see the job control user guide, UP-9986 (current version).

UP-8819 Rev. 2

• Line 7

SPERRY OS/3
INDEPENDENT SORT /MERGE

The EXEC statement calls the first sort/merge module into main storage.

• Line 8

The /$ indicates the start-of-data.

• Lines 9-13

3-6

These are your parameters for the sort parameter table being structured for your disk
sort program.

• Lines 14-16

These lines indicate the end-of-data, the end of the job stream, and the end of the
card reader operation, respectively.

~ For details about job control and its language, see the job control user guide, UP-9986
(current version).

Figure 3-3 shows the job control stream required to execute your disk sort program. This
control stream can also be built and executed from a workstation. (See 1.7.)

3.2. CONTROL STATEMENTS

Sort/merge control statements are issued from the control stream and provide the
information needed to sort and merge records in your input files. Sort/merge control
statements perform the following functions:

• They define the sort/merge to be performed.

• They describe your records, input and output files, and key fields.

• They specify the own-code routines you may have used during program execution.

There are eight sort/merge control statements:

SORT

Defines the sort key fields, sorting sequence, auxiliary storage, and the number
and size of the input files.

MERGE

Defines a merge-only job.

..

•

•

•

•

•

•

UP-8819 Rev. 2

TERMINATES CARD
READER OPERATION*

SPERRY OS/3
INDEPENDENT SORT /MERGE

II FIN

I&

1·

---~~

3-7

MARKS THE END
1------ OF JOB CONTROL

STREAM

THE SORT/MERGE
CONTROL STATEMENTS
PRECEDED AND FOLLOWED ----r PROGRAM CONTROL

STATEMENTS BY DATA SENTINELS.
(SEE 32)

II JOB

1$

11 EXEC SORT

I I DVC - I I LFD
SEQUENCE

I I DVC - // LFD
SEQUENCE

1------ EXECUTES INDEPENDENT SORT /MERGE

DVC, LFD, LBL (FOR DISK) AND LFD
JOB CONTROL STATEMENTS REQUIRED TO

~---- ASSIGN AUXILIARY STORAGE, IF NEEDED.
EXT STATEMENT MAY ALSO BE NEEDED
FOR DISK FILES. (SEE 3 1.1 .)

DVC, VOL, LBL (FOR DISK) AND LFD
..__ ____ JOB CONTROL STATEMENTS REQUIRED TO

I I DVC - I I LFD
SEQUENCE

II DVC - II LFD
SEQUENCE

ASSIGN THE OUTPUT FILE. EXT STATEMENT
IS ALSO NEEDED TO ALLOCATE A NEW DISK
FILE. (SEE 3.1.1.)

~---- DVC. VOL, LBL (FOR DISK) AND LFD
JOB CONTROL STATEMENTS REQUIRED TO
ASSIGN THE INPUT FILE. (SEE 3.1.1.)

~---- DEVICE ASSIGNMENT SET FOR THE PRINTER

JOB STATEMENT IS ALWAYS REQUIRED TO INITIATE
1------ THE JOB AND ASSIGN MAIN STORAGE.

*Not applicable if job control stream was entered from a workstation.

Figure 3-3. Typical Sort/M~rge Job Control Stream

UP-8819 Rev. 2

RECORD

SPERRY OS/3
INDEPENDENT SORT /MERGE

Defines the records to be sorted or merged.

INPFIL

3-8

Defines the input file to the sort/merge processor and specifies the procedures
for opening and closing input tape files.

OUTFIL

Defines the output file to the sort/merge processor and specifies the procedures
for opening and closing tapes.

OPTION

Specifies additional options and information to the sort/merge program.

MODS

END

Required when you include user routines in a sort/merge application. It defines
your program routines with related user own-code exits. Also allows you to
perform automatic data reduction of your files through the use of the system­
supplied data reduction routine (DELETE).

Indicates that the last control statement of a related group of sort/merge control
statements has been read. This is an optional control statement.

After reading the detailed discussion in the following paragraphs, you will have a basic
understanding of how each control statement functions. For later quick reference,
Appendix C provides a summary of the sort/merge control statements, including formats
and brief descriptions of the keyword parameters.

3.2.1. Defining a Sort Operation

The SORT control statement defines a sort operation to independent sort/merge. All
parameters are optional, but specifying your exact requirements will increase program
efficiency. The SORT control statement defines:

• sort key fields and their sorting sequence;

• the type and number of auxiliary storage devices needed;

• the approximate number of logical records in the input file being sorted; and

• the total number of input files entered into the sort.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-9

• The format of the SORT control statement is:

•

•

LABEL 60PERATION6

SORT

NOTE:

OPERAND

Fl ELDS= ([strt-pos-1][, lgth-1][.form-1][, seq-1])
[, ... , [s t r t - po s - n] [. I g t h - n][, f o rm - n]
[,seq-nJ]

(

[s t r t - p o s - 1] [, I g t h - 1][. s e q - 1])
[.... ,[strt-pos-n][, lgth-n][,seq-nJ]

,FORMAT=code:

[
,COPY={All }]See

i n p u t - f i I e - n u m b e r . o u t p u t - f i I e - n u m b e r note.

[
, {~ !~~1=n umber]

.WORK

[, F 1 L E={.P:
1
.umb er}]

·Iii

[·NOCK SM=g}]

[,SIZE=number]

[
,SORTP=output-file-number,J

input-Ii le-number

[
,{CHPT }] See note .

CHKPT

See note.

The COPY, SORTP, and CHPT ICHKPT keyword parameters are provided and accepted
for compatibility with other systems; no action is performed by OS/3 sort/merge.

• Specifying key fields (FIELDS)

The FIELDS keyword parameter may be used to specify up to 12 key fields. The order
in which you specify the key fields is considered by sort/merge as the order of
significance. The first key field defined is the major sorting field, the second specified
is the first minor sorting field, and so on.

There are two formats for the FIELDS parameter. One format has four subparameters
to indicate the starting position, length, data format, and sequence for each key field.
The other format has three of the same subparameters plus the FORMAT
subparameter. The data format may vary for each key field or it may be the same for
all key fields. If you omit the FIELDS parameter, one key field is assumed, beginning
at byte 1, the same length as the record up to a maximum of 256 bytes, with
character format and ascending sequence. If you specify FIELDS but omit any of the
subparameters. you must retain their associated commas, except for trailing commas .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-10

The strt-pos subparameter is a decimal number specifying the starting point of a key
field relative to the beginning of the record. All key fields except binary key fields
must start on a full-byte boundary. For example, specifying 9 as strt-pos indicates that
the most significant byte of the key field begins at byte 9 of the record.

I~
Key

~I Field

RECORD 1

I I
81 82 83 84 85 86 87 88 89 810 811 812

LEGEND:

B =Byte

The byte numbering method used by independent sort/merge is compatible with
other systems.

Binary key fields may start on a bit boundary, i.e., a specific bit within a specific byte
of a record. In this case, you specify strt-pos in byte-bit format. Bits are numbered
from 0 to 7. As an example, assume that key field 1 starts at bit 2 of byte 9 in the
record. You would specify 9.2 for the strt-pos-1 subparameter.

The lgth subparameter is a decimal number specifying the key field length in full
bytes following any of these formats:

n

n.

n.O

When using binary key fields, specify key field length in byte-bit format. The number
of bits specified must not exceed seven. For example, a key field length of six bits
would be written as 0.6; that is, we have a key field that is six bits long. If the key
field extends from bit 2 of byte 10 through bit 5 of byte 12, the length subparameter
would be specified as 2.4.

0 6 7

LEGEND:

IBil!!l!'.!i1I Key field length

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-11

The form subparameter is a code consisting of two or three alphabetic characters
specifying the key field's data format. If you omit this subparameter, the format is
assumed to be character (CH). This subparameter is used when the data format varies
for each key field. If all key fields have the same data format, you can use the
FORMAT-code subparameter. In this case, the same codes used for the form
subparameter are permissible; however, you must not specify the form subparameter
when using the FORMAT subparameter. The format codes and their maximum
allowable field lengths are shown in Table 3-1.

Table 3-1. Data Format Codes

Format Description Allowable Field
Code Length

AC EBCDIC data in ASCII collating sequence 1 - 256 bytes

ASL ASCII numeric data leading sign 2 - 256 bytes

AST ASCII numeric data trailing sign 2 - 256 bytes

Bl Unsigned binary 1 bit to 256 bytes

• Character (EBCDIC or ASCII) 1 - 256 bytes

CLO Numeric data overpunched leading sign 1 - 256 bytes

CSL Leading sign numeric 2 - 256 bytes

CST Trailing sign numeric 2 - 256 bytes

CTO Numeric data overpunched trailing sign 1 - 256 bytes

Fl Fixed-point integer 1 - 256 bytes

FL Floating point 1 - 256 bytes

MC Multiple character, user-specified 1 - 256 bytes
collating sequence

PD Packed decimal 1 - 32 bytes

USO Character, user-specified collating sequence 1 - 256 bytes

ZD Zoned decimal 1 - 32 bytes

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-12

The seq subparameter specifies the sorting sequence of the key field: A for ascending
order and D for descending order. If omitted, ascending sequence is assumed.

The following coding illustrates FIELDS specifications. Line 1 shows that the first key
field begins at byte 1 of the record, is four bytes long, has a character format, and is
to be sorted in ascending sequence. The second key field begins at byte 10 of the
record and is 12 bytes long, has a binary format, and is to be sorted in ascending
sequence.

Line 2 is basically the same as line 1 except that the format of both key fields is the
same. Therefore, rather than defining them separately in the FIELDS parameter, they
are jointly defined by means of the FORMAT parameter. The sequence subparameters
are omitted, indicating that the default is to be applied. Remember that a comma
must be coded in place of a missing subparameter except after the last subparameter.

Line 3 shows three key fields with varying data formats. The first two are packed
decimal and the third has a character format. All fields are to be sorted in ascending
sequence by default. The WORK=3 parameter indicates that three work files (either
tape or disk) are assigned to the job.

1 .

2.
3.

10 16

S 0 RT F I E L D S= (1 , 4 , CH , A , 1 0 , 1 2 , B I , A)

SORT FIELDS=(l,4,,10,12),FORMAT=CH

SORT FIELDS=(85,3,PD, ,88,3,PD, ,8,9,CH) ,WORK=3

• Assigning additional work space (DISC, TAPE, WORK)

Unless the sort is small and can be executed in main storage, it requires additional
work (scratch) space to perform its operations. You can choose one of three
parameters on the SORT control statement as the medium used for work area: DISC,
TAPE, or WORK. DISC and TAPE parameters are used to designate those media;
however, the WORK parameter can indicate the number of disk or tape files assigned
to sort/merge as working storage.

After designating the medium, you must specify a decimal number indicating the
maximum number of files available to sort/merge as working storage. This number
must not exceed 8 for disk files or 6 for tape files. You assign disk and tape files in
LFD job control statements using standard name DM01, ... ,DM08 or $SCR1 , ... ,$SCR8
for disk, SM01, ... ,SM06 for tape.

If you omit this specification, sort/merge determines the number and type of work
files assigned, from the PUBS list generated by job control when devices were
assigned to your job. On the other hand, if you do not assign any work files in the job
control stream, the sort defaults to an internal, main storage sort, even if you include
the DISC, TAPE, or WORK parameter in the SORT control statement.

The following coding illustrates two examples of how this parameter could be
specified to the previously described FIELDS parameters. In line 1, the WORK
parameter indicates three work files are needed for the sort and they can be either
tape or disk. In line 2, the DISC parameter indicates that three work files are required
for the sort and they must be on disk and are used for work files.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-13

1 .
2.

SORT FIELDS=(l,4,CH,A,10,12.Bl,A),WORK=3
SORT FIELDS=(l,4,,10,12),FORMAT=CH.DISC=3

• Specifying the number of input files (FILE)

Sort/merge needs to know the total number of input files to be sorted in each run.
The FILE parameter supplies this information. Your data input files are specified as
SORTIN1 , ... ,SORTIN9 and SORTINA through SORTINF on LFD statements in the job
control stream. If you have more than one input file and forget to code the FILE
parameter, sort/merge will process only your first input file. The following coding
indicates that two input files are to be entered into the sort.

10 16

SORT FI LE=2

If sort/merge locates less than the number of files specified in the FILE parameter,
a warning message is issued setting the UPSI byte to hexadecimal 40. Refer to
system messages programmer /operator reference, UP-8076 (current version) to
determine the nature of the warning and the corrective action to be taken.
Sort/merge continues to run when a warning message is issued.

• Bypassing checksum word calculation (NOCKSM)

•

A checksum word is normally calculated for each data block written to work files (disk
or tape). The checksum is the logical sum of all the data in the block. When the block
is read, the checksum is recalculated and compared with the previous calculation to
verify data integrity. A miscompare indicates a hardware problem because data
integrity in reading or writing data was not maintained. You can bypass this
specification by coding the NOCKSM parameter. This increases overall sort
performance. D means omit disk checksum, and T means omit tape checksum. The
following coding indicates that no checksum word is to be calculated for each data
block written to the disk work file.

SORT NOCKSM=D

By specifying the NOCKSM parameter, you can save a considerable amount of
processing time.

Specifying the number of records in the input file (SIZE)

Another parameter, SIZE, specifies the approximate number of records in the input
file. If you use the CALCAREA parameter in the OPTION sort control statement, the
SIZE parameter is required for an accurate calculation of optimum sort time and disk
work space. The following coding indicates that 3500 records are contained in the
input file. If you do not specify the number of records in the input file, sort/merge
assumes a file size of 25,000 records. You can greatly increase sort/merge program
efficiency by supplying this information .

SORT SI ZE=3500

UP-8819 Rev. 2

3.2.2. Defining Data Records

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-14

The RECORD sort control statement defines the type and length of the data records being
sorted or merged. It also allows you to delete records from a file by character identification
and byte position. The RECORD statement is not generally required for disk input files
unless records are variable length or if length modifications are to be made; however, if
you omit the RECORD control statement, you also must omit the INPFIL control statement.
Both must be omitted or both must be present. It is required for tape input files, and when
input processing is handled by a user exit routine (3.3). The RECORD sort control
statement format is:

LABEL 60PERATION6

RECORD

OPERAND

{

LENGTH=(lgth-1[. lgth-2][. lgth-3][. lgth-4]}
[, I gt h - 5])

RCSZ=bytes

[TYPE=(~}]

[, B
1

N={ ~ ~ ~ ~ ~ by t e s , s i z e - 1 , f r e q - 1 [, ... , s i z e - n , }]
f re q - 1])

[,DEBLANK=(delete-char,byte-posit ion)]

• Specifying record length (LENGTH and RCSZ)

The LENGTH parameter can list one to five lengths. Each length specifies definite
information about fixed- or variable-length records for input, internal sort, and
output phases of the sort/merge operation. Lgth-1 specifies the decimal number of
bytes in the input record for fixed-length records or the maximum input record
length for variable-length records. (This length must not exceed 32, 767 bytes.)
Lgth-2 gives the length (in bytes) of each record released to the internal sort phase
for fixed-length records or the maximum-length record for variable-length records. If
omitted, sort/merge assumes the lgth-1 specification for this parameter. Do not
specify lgth-2 for a merge-only operation; however, you must retain its associated
comma. Lgth-3 specifies the output record length in bytes for fixed-length records
or maximum output record length for variable-length records written to tape or
single-partition disk output files. Output record lengths written to multipartitioned
disk files are specified via the RCSZ keyword parameter in the OUTFIL control
statement (3.2.4). If lgth-3 is omitted, lgth-2 is assumed for sort operations, and
lgth-1 for merge-only operations. Lgth-4 is a decimal number specifying the
minimum input record length in bytes for variable-length records, and Jgth-5
specifies the number of bytes in variable-length input records that appear most
frequently in the input file. If you have variable-length records and omit Jgth-4 and
lgth-5, this information is obtained from the BIN parameter. The LENGTH parameter
is required for a tag sort (3.2.6.1).

The other parameter alternative is RCSZ. It is a more general specification that
indicates the record length for fixed-length records or the maximum record size for
variable-length records.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-15

•

•

If input is from sequential or direct access disk files and you fail to specify either
LENGTH or RCSZ parameters and also the BLKSIZE parameter on the INPFIL sort
control statement, sort/merge defaults to the input record size supplied by data
management.

In the following coding, line 1 illustrates the LENGTH parameter for variable-length
records. The maximum input record length is 120 bytes; maximum length of each
variable-length record released to the internal sort is 100 bytes; maximum length of
each variable-length record written to the output file is 30; minimum input record
length is 65 bytes; and the number of bytes in the most frequently appearing records
of the input file is 65. Line 2 illustrates the more general specification of the RCSZ
parameter, giving the number of bytes in each fixed-length record or the maximum
record size for variable-length records.

1 .
2.

10 16

REC 0 RD L ENG TH= (1 2 fl , 1 fl fl , 3 fl . 6 5 , 6 5)
RECORD RCSZ=8fl

Specifying record type (TYPE)

The TYPE parameter specifies the type (D, F, or V) of records to be processed by
sort/merge. Specifications in this keyword apply only to tape and single-partition disk
files. Specifications for data record types contained in multipartitioned disk files are
defined in the TYPE keyword parameter of the OUTFIL control statement (3.2.4) .
TYPE=D specifies that data records are ASCII, variable-length records. An F specifies
fixed-length records. This type of data record is assumed by default if you omit the
TYPE parameter. The V specifies variable-length records. The following coding
specifies a fixed-length record format and a record size of 80 bytes.

RECORD TYPE=F ,RCSZ=8fl

Calculating subrecord size (BIN)

To conserve main storage space and provide optimum processing speed, variable­
length records are divided into fixed-length subrecords (fixed-bin sizes). The BIN
parameter either specifies the size of these subrecords or supplies the information
needed by sort/merge to calculate the subrecord size. The BIN parameter has two
formats. In the first format, you can specify the decimal number of bytes in each bin.
In the second format, you indicate the minimum number of bytes in a bin (a number
large enough to accommodate all sort key fields within the record plus the 4-byte
record length field), the number of bytes in the most frequently occurring record size,
and a number specifying either the percentage or estimated number of the most
frequently occurring records. If the number is less than 100, sort/merge assumes this
specification to be a percentage. If 100 or more, the number is assumed to be an
estimate of the number of the specified-size records in the file to be sorted. A
maximum of six different variable-length record sizes and their frequencies may be
specified. The sum of the records specified does not have to total 100 percent of the
file.

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-16

Assuming that all five lgth subparameters of the LENGTH parameter were not
specified, the following coding on line 1 specifies the number of bytes in each bin of a
variable-length record. Line 2 shows information you supply to sort/merge to
calculate the bin size: minimum of 30 bytes per bin, a most frequently occurring
record length of 80 bytes, and approximately two hundred 80-byte records in the file
to be sorted.

1.
2.

10 16

RECORD BIN=49
RECORD BIN=(39,89,299)

You should code the BIN parameter if you use the RCSZ parameter or if you omit the
lgth-4 and lgth-5 subparameters of the LENGTH keyword parameter. If BIN and
LENGTH are both omitted, sort/merge calculates bin size from the lgth specifications
of the FIELDS parameter.

• Deleting records from a file (DEBLANK)

The DEBLANK parameter of the RECORD sort control statement allows you to delete
specific records from the file by defining a specific character and identifying its byte
position. The first subparameter (delete-char) indicates the character that, when found
in the byte specified by the byte-position subparameter, causes the record to be
deleted from the file. The second subparameter (byte-position) denotes the byte
position of the character used as a deletion indicator. In the following coding example,
the DEBLANK parameter specifies that any records with the character A in byte 4 are
to be deleted.

RECORD DEBLANK=(A,4)

3.2.3. Defining the Input File

The INPFIL control statement defines your input file to sort/merge and specifies open and
close procedures for tape files. It is not required if input files are on disk or format label
diskette.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-17

•

LABEL 60PERATION6 OPERAND

INPFIL
[

BL KS I ZE={ bytes }]
(bytes-1[•... ,bytes-8])

[,BUFOFF=n]

[,BYPASS]

[CLOSE~{~D}]

[.DATA={~;}]

[. EXIT]

[·OPEN={miio}]

[,SKIPBYTE=n]

[
.VOLUME={vol }]

(vol-1[, ... ,vol-8])
See note.

NOTE:

The VOLU~E parameter is provided and accepted for compatibility with other
systems; no action is performed by OS/3 sort/ merge .

Specifying block size (BLKSIZE)

The BLKSIZE parameter has two formats, one for sort/merge application and one for
a merge-only application. The first format applies to the sort/merge operation. It
specifies the number of bytes in each input file block when all input file blocks are
the same length or the length of the largest input block when block size varies. If the
largest block length is not specified when variable-length blocks are involved, data
will be lost through truncation when the larger blocks are encountered. The following
coding example illustrates the first format.

10 16

INPFIL BLKSIZE=800

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-18

The second format is required in a merge-only operation when input files have
different block sizes. The subparameters (bytes-fl ... ,bytes-8]) specify block size, in
bytes, of each input file in order. For example, the first subparameter (bytes-1)
specifies the number of bytes per block for input file 1, the second subparameter
specifies the block size for input file 2, and so on. If you specify only one block size for
an input file (bytes-1 subparameter), all additional files are assumed to have blocks
equal in length. The following coding example illustrates three input files, each of a
different block size.

10 16

INPFIL BLKSIZE=(800,1200,1600)

If you omit the BLKSIZE parameter and also the RCSZ keyword parameter on the
RECORD control statement, sort/merge assumes that all input blocks are the size of
the first block processed.

• Defining block prefix length for ASCII data (BUFOFF)

When tape data is in ASCII code, your program needs information prefixing each
block of data. This is because ASCII has a 7-bit character code and there must be a
compensation between ASCII and EBCDIC character code lengths, as well as space
allotted for header information. The BUFOFF (buffer offset) parameter defines the
length of a block prefix when you use an ASCII data block structure. You indicate a
decimal number from 0 to 99 on the BUFOFF parameter. The following coding
example shows this parameter as well as the data format parameter specifying ASCII
code. These two parameters are usually coded together.

INPFIL BUFOFF=30,DATA=A

• Ignoring unreadable blocks of input data (BYPASS)

Another optional INPFIL parameter is the BYPASS parameter. It has no associated
values but when you specify BYPASS, you direct the sort/merge input phase to
ignore all unreadable blocks of data on the input file. Sort/merge does not keep a
record of the blocks ignored. The following example shows an 800-block input file for
which all unreadable data blocks are to be ignored by the sort/merge input phase.

INPFIL BLKSIZE=800,BYPASS.CLOSE=NORWO

• Closing input tape files (CLOSE)

There are several rewind methods for closing input tape files:

CLOSE=NORWD

Does not rewind input tape file on closing.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-19

•

CLOSE=RWD

Rewinds the input tape file to load point on closing.

CLOSE=RWI or CLOSE=UNLD

Rewinds with interlock on closing.

To understand when to use these parameters, consider the conditions that require
their use. For example, you would want to specify NORWD if your tape contained
multiple files and you were planning to run successive sorts on file 1 and file 2. You
wouldn't return to the tape load point after sorting file 1 because you want to leave
the tape prepositioned on file 2 for the second sort. Suppose, on the other hand, you
wanted to perform two successive sorts on the same file. After the first sort at the
end of the input tape or input file, the tape needs to be rewound to the beginning of
the file for the second sort on a different key. This situation would require the RWD
specification. The rewind with interlock (RWI) and unload (UNLD) subparameters
perform identical functions; i.e., the tape is rewound with interlock, making those files
inaccessible unless the operator intervenes. The RWI or UNLD is a protective
procedure you might specify if you didn't want to risk writing over the tape files.

If you omit the CLOSE parameter, the default is UNLD. The following example shows
that no rewinding is performed upon closing the input file .

10 16

INPFIL BLKSIZE=800.BYPASS.CLOSE=NORWD

Specifying data format (DATA)

You can specify two data formats: ASCII or EBCDIC. DATA A indicates data recorded
in ASCII; DATA=E indicates data recorded in EBCDIC. EBCDIC is the default assumed
if you omit the DATA parameter. In the following coding, line 1 has no data format
specified, so the system assumes a normal default condition of E (EBCDIC). On line 2,
ASCII data format is specified.

1 .
2.

INPFIL BLKSIZE=800
INPFIL BUFOFF=30.DATA=A

• Providing your own input routines (EXIT)

Instead of letting sort/merge provide the input routines, sometimes you may want to
supply your own routine for reading the input file. The EXIT parameter indicates that
you are providing the entire input routine. EXIT has no associated value, and you may
not code any other INPFIL parameters when you specify it. The following coding
shows this by indicating that you want to read the input file via your own input
routine.

INPFIL EXIT

UP-8819 Rev. 2

• Opening input tape files (OPEN)

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-20

Just as there are several rewind methods for closing input tape files, there are two
rewind methods for opening input tape files:

OPEN=NORWD

Specifies no rewind to load point on opening and is used when you don't want to
begin processing an input file at the beginning of the tape but at some
prepositional location.

OPEN=RWD

Specifies rewind to load point on opening and is used when you want to begin
processing at the tape load point. RWD is the assumed default if you omit the
OPEN parameter.

• Indicating the first data record in a block (SKIPBYTE)

A record block doesn't always begin with the first data record. The SKIPBYTE
parameter specifies the location of the first data record in relation to the beginning of
the block.

The n is a decimal number you supply to indicate that the first data record is n+1
from the beginning of the block; that is, the first n bytes are to be skipped. In the
following coding example, the first data record starts at byte 11.

I NPF IL SK I PBYTE=l8

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-21

• 3.2.4. Defining the Output File

• .

•

The OUTFIL control statement defines output procedures to sort/merge. All parameters
are optional. They:

• define block size;

• define rewind alternatives for opening and closing the output file;

• indicate if you are providing the output routine; and

• indicate if a tape mark is to be written before the first data record of each volume in
the output file.

Notice that the following OUTFIL control statement format contains parameters similar to
the INPFIL control statement (3.2.3).

LABEL iiOPERATIONL'.i

OUTF IL

NOTE:

OPERAND

[BL KS I Z E=b y t es)

[,BUFOFF=n)

[°LO SE~{lii] J
[. EXIT]

[
,FIL TY P E=1,l 0~AM}] 1:::1::

SAM

[,NOTPMK)

[, N P T N = {l:.u m b e r } J
[,OPEN={ili~D}]

[RCSZ=bytes]

See note.

See note.

[S I Z E=p e r cent age) }· See note.

[TYPE=type)

[U 0 S=e x t - p e r cent J

The Fil TYPE, NPTN, SIZE, and TYPE parameters are provided and accepted for
compatibility with other systems; no action is performed by OS/3 sort/merge .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-22

These parameters are valid for disks as well as tapes. The OUTFIL control statement is not
needed if both input and output files are on disk and the output file is to have the same
block size and record size as the input files. If the output file has been predefined, you
should not specify the first optional parameter on the LFD job control statement, indicating
the maximum number of extents in the file. In addition, if you do use the OUTFIL c~trol
statement for a previously defined output file, all file specifications must be the same as
when the file was created, or an error will result.

• Specifying block size (BLKSIZE)

The BLKSIZE parameter can specify the number of bytes in the output data block
written to a tape or disk output file.

If block size is needed and you do not specify the BLKSIZE parameter or the RCSZ
parameter in any sort control statement, sort/merge assumes a block size equal to
the input block. The following coding indicates that you are writing 400-byte data
blocks to the output file.

10 16

OUTFIL BLKSIZE=400

• Defining block prefix length for ASCII data (BUFOFF)

The BUFOFF parameter specifies the length of a block prefix for an ASCII data block
structure. This buffer offset specifies a decimal number from 0 to 99, indicating a
special adjustment for data written in ASCII character code. The BUFOFF example
indicates an adjustment of 20 bytes for an ASCII format file.

OUTFIL BUFOFF=20

• Closing output tape files (CLOSE)

The CLOSE parameter specifies rewind alternatives for closing tape output files. All
the specifications are identical to the CLOSE parameter specifications for the INPFIL
control statement (3.2.3): NORWD indicates no rewind on closing a tape output file;
RWD, rewind on closing; RWI or UNLD, rewind with interlock on closing. Similarly,
the UNLD is assumed by default if you omit the CLOSE parameter on the OUTFIL
control statement.

• Providing your own output routines (EXIT)

To specify that you are providing your own output routine for writing the entire output
file, write the EXIT parameter. No other parameters may be specified on the OUTFIL
control statement when you specify EXIT. There is no assigned value for the EXIT
parameter.

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-23

• • Omitting tape marks (NOTPMK)

•

•

If you do not want a tape mark written before the first data record of each volume in
the tape output file, you can indicate this via the NOTPMK parameter. It has no
associated values and is coded as follows:

OUTF IL NOT PMK

Omitting the NOTPMK causes a tape mark to be written before the first record of
each volume in the tape output file.

• Opening tape output files (OPEN)

To specify rewind alternatives on opening tape output files, use the OPEN parameter
values identical to the OPEN parameter of the INPFIL control statement; i.e.,
OPEN=NORWD for no rewind to load point and OPEN=RWD for rewinding the output
tape file to the load point. If you omit the OPEN parameter on OUTFIL, independent
sort/merge assumes the RWD specification by default.

• Specifying output record size (RCSZ)

In addition to the block size, you can also indicate the number of bytes in the output
record .

If you fail to specify the RCSZ parameter, sort/merge supplies the same number of
bytes as the input record .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-24

• Extending output file (UOS)

After you've assigned disk output file space, your number of records might increase
and you might find that you exceed the amount of output file space allocated. The UOS
parameter solves this problem by allowing the file to be dynamically extended by data
management when it becomes full. When you submitted an EXT job control statement
for your output file, you specified, in the third parameter, the number of cylinders you
wanted for secondary storage allocation. In the UOS parameter, you indicate what
percentage of that amount you want the file extended by when it requires more space.
You can specify up to 100 percent. If you want to extend your file by 100 percent, you
can specify 100 or you can omit the specification because the default is 100 percent. If
you want to extend your file by less than 100 percent. you must specify.a percentage in
the UOS parameter. Suppose, for example, you specified five cylinders in the third
parameter of the EXT statement. You might want to specify 20 percent as the
percentage of the amount you want the file extended by when it requires more space.
To do this, you would include the following control statement:

10 16

OUTFIL UOS=20

If your file requires more space, data management will extend your file by one cylinder at a
time rather than by five cylinders at a time.

3.2.5. Ending Input to Sort/Merge

The END control statement is optionally used to notify sort/merge that all sort/merge
control statements have been processed and that program execution may begin. This
control statement has no parameters and is coded as follows:

END

The END control statement is not to be specified when sort/merge specifications are
embedded in a jproc. Otherwise, the run processor mistakenly interprets the END control
statement as the END directive for the jproc.

3.2.6. Handling Special Sort/Merge Specifications

The OPTION control statement consists of optional parameters that supply sort/merge
with additional information not applicable to any of the other sort/merge control
stalements. Parameters with built-in default conditions automatically become effective if
you omit them. The OPTION control statement format follows:

LABEL .6.0PERATION.6. OPERAND

OPTION [ADDROUT=g}]

[

, { C A L C A R E A }]
.CALCAREA={~~s}

(continued)

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-25

LABEL 60PERATIONI\

0 PT I 0 N (cont)

NOTE:

OPERAND

['CS PRAM={~S}]

[, KEYL E N=b y t es]

[,LABEL=(output, input-I[, ... , input-n] ,work)]

[PR INT"{~: I CAL)]
[

,RESERV={work-tile-name }]
(work-ti le-name[,output-ti le-name])

[.RESTART]

[
,SHARE={work-t i le-name }]

(work - t i I e - name [, input - ti I e - name])

[,STORAGE=bytes]

[,VERIFY]

[, AL TWK]

[.DUMP]

[,ERASE]

[,ROUTE]

[,SORT IN]

[, SORTOUT]

[,SORTWK]

See note.

The ALTWK, DUMP, ERASE, ROUTE, SORTIN, SORTOUT, and SORTWK parameters
are provided and accepted for compatibility with other systems; no action is performed
by OS/3 sort/merge.

You may specify the OPTION control statement parameters in any order. With this in mind,
we plan to discuss those parameters concerning special specifications for disk access
input records (ADDROUT and KEYLEN), those concerning input, output, and work files
(LABEL, RESERV, SHARE, VERIFY, CALCAREA, and STORAGE), and those that affect
external control (CSPRAM, PRINT, and RESTART).

3.2.6.1. Disk Access Input Records

• Sorting by direct access addresses and key fields (ADDROUT)

The ADDROUT parameter is required when sort/merge must perform a tag sort. The
tag sort is a method of constructing a file that contains only the direct access
addresses, or the addresses and key fields, of the records in the original file. If you
provide the input through an own-code routine, you must obtain the disk address of
each input record and place it into the 10-byte address field of the new tag sort
record. The total length of all key fields per tag sort record, including the 10-byte
record address field, cannot exceed 256 bytes. A tag sort can be performed only when
input is from a nonindexed file. Multiple input files cannot be tag sorted.

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-26

If you specify A on the ADDROUT parameter, the final output is only the direct access
addresses of the input records. D specifies that the output file is to contain both the
direct access addresses and sort key fields of each record. The following coding
example illustrates the ADDROUT parameter.

10 16

OPTION ADDROUT=D.CALCAREA=YES,CSPRAM=YES

Figures 3-4, 3-5, and 3-6 show unsorted key fields from four records and the
resulting records returned to your output file after the tag sort. It is not the intent to
show actual record formats in these figures, but to illustrate the concept of record
sorting by key fields and the outputs produced by a tag sort operation.

RECORD
ADDRESS

MAJOR KEY MINOR KEY

FIELD / FIELD

540 33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

Figure 3-4. Input File. Unsorted Records (Additional Data Fields Not Shown)

INPUT FILE
(UNSORTED RECORDS)

540 33 001654

360 04 002992

180 06 007959

001 10 004570

WORK FILE
(RECORDS SORTED ON MAJOR KEY FIELD)

540 33 001654

001 10 004570

180 06 007959 180 - -
360 04 002992 360

Figure 3-5. Tag-Sorted Output File when ADDROUT=A

OUTPUT FILE
(RECORD ADDRESSES ONLY)

540

001

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

WORK FILE

3-27

OUTPUT FILE
INPUT FILE (RECORDS SORTED ON (RECORD ADDRESSES

(UNSORTED RECORDS) MAJOR KEY FIELDS) AND KEY FIELDS)

540 33 001654 540 33 001654 540 33 001654

360 04 002992 001 10 004570 001 10 004570

180 06 007959 180 06 007959 180 06 007959 - -
001 10 004570 360 04 002992 360 04 002992

Figure 3-6. Tag-Sorted Output File when ADDROUT=D

The following restrictions apply when ADDROUT is used:

1. Output block size must be a multiple of:

a. 10 bytes for ADDROUT=A

b. The sum of the sort key field lengths plus 10 bytes for ADDROUT=D

2. The lgth-2 and lgth-3 values in the length specification of the RECORD control
statement must be used. The /gth-2 value must be 10 bytes plus the sum of the
sort key field lengths. The lgth-3 value must be:

a. 10-bytes for ADDROUT=A

b. 10 bytes plus the sum of the sort key field lengths (after any user
modification at exit E35) for ADDROUT=D

• Specifying number of bytes in keys (KEYLEN)

Focusing now on the use of direct access for input records, note that record blocks
may be preceded by a key. This key is used by data management and has an entirely
different purpose from the sort key field represented on the FIELDS parameter of the
SORT control statement. You use the KEYLEN parameter to specify a decimal number
of bytes in each key. A sample KEYLEN parameter is shown in the following coding. If
you do not specify the KEYLEN parameter, it is assumed that blocks do not have keys.

10 16

OPTION STORAGE=l8000.KEYLEN=l0.PRINT=NONE,VERIFY

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-28

3.2.6.2. Input, Output, and Work Files

• Specifying label types (LABEL)

•

Files may have standard or nonstandard labels or may be on unlabeled tapes. The
LABEL parameter specifies the label types for output, input, and work files. If files have
nonstandard labels, you must process those labels yourself via the user exit codes E11
and E31 (see 3.3). The LABEL parameter specifies one of the following 1-character
codes describing the label type for output, input, and work files, in that order:

N Nonstandard labels

S Standard labels

U Unlabeled tapes

You may specify a maximum of nine input files. Standard labels are assumed on all
files if you omit the LABEL parameter. The following example illustrates the coding of
a LABEL parameter, indicating standard labels for output, input, and work files.

10 16

OPTION STORAGE=l888,LABEL=(S,S.S),RESERV=(SM86),
SHARE=(SM81)

Reserving a tape unit for work file (RESERV)

By coding the RESERV parameter, you can reserve for your output data file a tape
unit assigned to the sort/merge as a scratch or work file. This allows the tape unit to
function as a work file during the input and intermediate phases of the sort/merge
operation and as the device for the output data file during the output phase.

Sort/merge provides messages at the system console instructing you when to unload
the scratch tape and mount the output tape. The work-file-name specifies the
standard sort work file name (SM01, ... ,SM06) of the reserved tape device. The same
device cannot be assigned for both the RESERV and SHARE keyword parameters. The
device is associated with this name through an LFD job control statement. If you use
the second format, you can also specify the output-file-name, and the console
messages will include the name of the output file the operator is to mount.

• Using a tape unit as an input device and a work file (SHARE)

Like the RESERV parameter, the SHARE parameter specifies the double use of one
tape device by input and work files. It allows a tape unit assigned to sort/merge to be
used as the input device during the input phase and as a work file during the
preliminary merge and final merge phases of the sort operation.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-29

•

•

•

Messages at the system console tell you when to unload an input tape and mount a
scratch tape. The work-file-name specifies the standard sort work file name
(SM01, ... ,SM06) of the shared tape device. The device is associated with this file
name through an LFD statement in the job control stream. If you use the second
format, you can use the input-file-name subparameter to specify the name of the
input file that is to be shared, and a console message will be provided telling the
operator which input tape to dismount. Remember to assign different device numbers
to your files specified on the RESERV and SHARE parameters.

Checking output blocks (VERIFY)

For output accuracy, coding the VERIFY parameter specifies that each output block
will be checked to ensure that it is written correctly when the output file is on a direct
access device. The VERIFY parameter has no associated values.

Calculating optimum working-storage area (CALCAREA)

In a disk sort, sort/merge can calculate for you the optimum working-storage area
required for efficient sorting operations based on the parameters you supply on the
sort control statements. After its calculations, it displays execution information
pertinent to the defined operation. It does these calculations when you specify the
CALCAREA parameter. The information it supplies is the estimated sort time in
minutes and the number of cylinders sort/merge requires for work space. If you
specify CALCAREA=YES, the sort is executed. If you specify CALCAREA or
CALCAREA=NO, optimum working-storage is calculated and execution information is
displayed, but the sort is not executed. If you use the CALCAREA parameter, the SIZE
parameter on the SORT statement should be specified; otherwise, the default value of
25,000 records will be used in calculating working-storage area and the result may
not be accurate.

Using less main storage (STORAGE)

If you want the sort to use less main storage than is allocated in the job region, you
can indicate that decimal number of bytes on the STORAGE parameter. Otherwise,
sort/merge obtains this information from your job control statements. The following
coding shows an example of the STORAGE parameter.

10 16

OPTION STORAGE=l8000,KEYLEN=l0,PRINT=NONE,VERIFY

UP-8819 Rev. 2

3.2.6.3. External Control

SPERRY OS/3
INDEPENDENT SORT /MERGE

• Including parameters at execution time (CSPRAM)

3-30

Occasionally, you may need to include certain parameters from the job control stream
at execution time. To tell sort/merge you are submitting parameters in this way, you
must use the CSPRAM parameter. The keyword parameters that sort/merge can
accept via the control stream at run time are BIN, DISC, NOCKSM, RSERV, RESUME,
SHARE, and TAPE. You enter these keyword parameters via PARAM job control
statements. There are three values to choose from on the CSPRAM parameter: NO, or
YES. NO specifies that sort/merge parameters will not be accessed from the control
stream. This specification is assumed by default if you omit the parameter. The YES
keyword specifies that the control stream is tested for the presence of I I PARAM
statements. If they are present, they are read. An example of this parameter is shown
in the following coding.

1 0 1 6

OPTION ADDROUT=D,CALCAREA=YES.CSPRAM=YES

• Specifying printing options for error messages (PRINT)

When sort/merge encounters errors, it provides error messages. These error
messages are interpreted in the system messages programmer/operator reference,
UP-8076 (current version). The way to specify the printing options for these error
messages is the PRINT parameter. There are three values to choose from: ALL,
CRITICAL, and NONE. If omitted, the default provided for the PRINT parameter is ALL,
which specifies that all messages and control statements are written to the job log for
subsequent printing. The CRITICAL specification indicates that only fatal error
messages are to be written to the job log. NONE specifies that no messages are to be
written to the log. The coding example for the STORAGE parameter also shows an
example of this specification. Error messages that are written to the job log are
displayed on the operator console.

• Restarting a tape sort (RESTART)

When a tape sort has been interrupted, and you want to restart it at the last recovery
point, you write the RESTART parameter. There are no values associated with this
parameter. The system console interfaces with sort/merge by displaying messages
concerning sort/merge execution status, fatal errors, possible recovery information,
and directions for mounting, demounting, and labeling tapes during the sort/merge
process. The recovery information supplied by the system console is the recovery
point number or last cycle break executed before the sort was interrupted. You need
this number to restart your job. By coding this number on a PARAM job control
statement on the RESUME keyword parameter and by indicating the RESTART and
CSPRAM keyword parameters on the OPTION sort control statement (3.2.6), you can
restart your sort job by resubmitting the job control stream. The PARAM job control
statement must immediately follow the /* statement for the sort/merge control
statements.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-31

The OPTION control statement that you must include for a tape restart is coded in line
1 as follows.

10 16

1. OPTION RESTART,CSPRAM=YES
2. // PARAM RESUME=(PASS,061)

Line 2 is an example of a PARAM statement that could indicate the recovery number
you just read from the system console.

3.3. EXIT CODES

The independent sort/merge allows you to pass control during certain phases of its
operation to the system-supplied DELETE data reduction routine or your own-code routines
that you write in BAL.

The points where you cause control to be passed are called exit codes. Each exit code allows
definite functions to be performed and is associated with a specific phase of the sort. The
exit codes, the functions each exit code allows you to perform, and the phase associated
with each exit code are listed in Table 3-2.

Table 3-2. Exit Codes (Allowable Functions and Associated Phases)

Phase Exit Code

Data E11

input
(phase E15

1)CD

E18

Final E31
merge
(phase E32
3)0

E35

E38

E39

All E65
(phases
1-3)0 E75

E84

Specified by PH 1.
Specified by PH3.

Function

Input file label processing

Input file processing:
- Reading input files
- Counting input records
- Inserting records
- Deleting records
- Modifying record size
- Modifying record content
- Modifying control fields

Read error processing

Output file label processing

Input file processing during merge-only application:

- Modifying record content
- Modifying control fields

- Record substitution

Output file processing
(Same as for E 15 except applicable to output files)

Read error processing during merge-only application

Write error processing for direct access devices

Record sequencing

Data reduction

User-defined collation sequencing

Specified by PH6 for exit code E65, PH7 for E75, and PH8 for E84.

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-32

If you want to perform a particular function, you must choose the proper exit code for
the function, assign it to the operational phase to which it is associated, and specify the
name of the load module that contains the routine that performs the function. This is
done through the use of the MODS control statement which is discussed in detail for
the DELETE data reduction routine in 3.3.1 and in 3.3.2 for your own code routines.

3.3.1. Exiting to DELETE Data Reduction Routine

As noted, a MODS control statement is required to cause the sort to exit to this routine. The
format of the MODS control statement for the DELETE data reduction routine is:

LABEL .60PERATION.6 OPERAND

MODS PH7=(DELETE, ,E75)

This routine allows you to have duplicate records automatically deleted from your files
during the execution of the sort. This is all that this routine does; that is, it is a
stand-alone routine that does not require you to provide any own code. All that is
required to use this routine is that you include this form of the MODS control statement
in the control stream for your sort program. (An example of this is provided in 4.5.) If
you require other functions, you must exit to a BAL own-code routine as described in
3.3.2.

3.3.2. Exiting to Your BAL Own-Code Routines

In order to activate your own-code routines (load modules), you need a MODS control
statement to define exits. The MODS statement specifies the sort/merge phase in which
your own-code routine load module is to be executed (PHn), the name (module-name) and
approximate length (length) of your module, and the exit-code numbers (exit-code) that are
to be used. If you plan to use your own routines in more than one phase, you must specify
each phase individually by repeating the PHn parameter for each phase exiting to your
own-code routines. The three exit codes which apply to all three phases (E65, E75, and
E84) must be specified individually by means of an identifying code that takes the place of
a phase number. Follow the first PHn parameter and subparameters with a comma, a
continuation character coded in column 72 (if necessary), and another PHn parameter with
its set of subparameters defining exits for that phase.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-33

• The MODS control statement format for BAL own-code routines is:

•

•

•

LABEL L'>OPERATIONL'> OPERAND

MODS PHn=(module-name[. length],exit-code
[, ... ,exit-code]) [, ... ,PHn=(module-name
[,length] .exit-code [.... ,exit-code])]

You must always code the phase number PHn, module-name, and exit-code; however, the
length subparameter is optional. You can choose from the following decimal numbers
specifying the sort/merge phase in which your own-code routine is to execute or
identifying a routine that is executed during all phases .

n Description

1 Phase 1 (input and internal sort). Exit codes are El 1, El 5, and El 8.

3 Phase 3 (final merge and output). Exit codes are E31, E32, E35, E38, and
E39.

6 All phases (record sequencing routine). Exit code is E65.

7 All phases (data reduction routine). Exit code is E75 .

8 All phases (user-defined collation sequencing). Exit code is E84.

The module-name subparameter may contain up to eight characters; the first character
must be alphabetic. The name you specify is the name of your own-code routine's load
module. Module length specifies the number of decimal bytes in the load module. If you
omit the length subparameter, sort/merge obtains the length from the load module header
record. Exit-code specifies the exit code numbers (i.e., El 1, El 5) listed as subparameters
on the phase to which they apply. You format the MODS control statement according to
the routines you want to use during sort/merge operations; for example, if you're going to
provide your own input file label processing routine and input file reading routine, you
format the MODS control statement to reflect the exit codes for input label (El 1) and input
file (El 5) processing (line 1).

1 .
2 .

10 16

MODS PHl=(PHASEl.3850,Ell,ElS).
PH3=(PHASE3. 2700. E31, E35)

Since both exits pertain to data input (phase 1), you indicate PHl (line 1). In addition, you
specify the name of your own routine's load module (PHASEl) and the approximate
number of bytes (3850) required for your load module. Line 2 illustrates the continuation
of phase specifications. Here, you specify that your routine's load module named PHASE3
contains 2700 bytes and is to receive control during phase 3 of the sort/merge execution
via exits 31 and 35. These exits process output file labels and read output files .

UP-8819 Rev. 2

3.3.3. Using Exit Codes

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-34

Independent sort/merge can exit to your own-code routines only during the phases you
specify in the MODS control statement. Control is passed to your own-code routine via
a branch table and general registers. When the exit is reached, register 15 is loaded
with the address of the first location of the exit routine load module, which must be the
branch table. This branch table must be covered by specifying register 15 as the base
register. Before your routine assumes control from sort/merge, you must save certain
register contents. (See 3.3.4.) Table 3-2 helps to categorize exit codes within their
related phases. The following discussion describes the functions that your own-code
routines are permitted to perform.

3.3.3.1. Input File Label Processing

When you specify nonstandard labels for tape input files on the OPTION control statement,
you must enter that tape input file label processing routine via exit code E11. E11 enables
sort/merge to gain entry to your own-code nonstandard label processing routine.

If you omit exit 11 (you do not specify E11 on the MODS control statement) for input files
that contain nonstandard or user labels, the labels are bypassed. Exit code E11 enables
the input files to interface with your own-code routine.

•

•

•

------·-------------

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-35

• 3.3.3.2. Input File Processing

•

•

Input file processing (exit code E1 5) enables sort/merge to enter your own-code routine to
perform any of the following functions during data input (phase 1).

• Read input files

• Count input records

• Insert records

• Delete records

• Lengthen or shorten records

• Modify record contents or control fields

When you specify E15 on your MODS control statement, exit code E15 receives control
each time an input record passes to internal sort. Since your routine may perform a
number of different functions on an E15 exit code, you must tell the sort what you decide
to do after the exit occurs. You supply this information to the sort by placing an action
code in the action word, a 4-byte area in main storage that sort/merge sets up when it
detects the EXIT parameter on the INPFIL sort control statement. You may place any of the
following action codes in the action word .

Action Code

0

4

8

12

Action Taken

Accept the record by modifying it prior to entering the internal sort
or by taking no action

Delete the record from the sort

Request no return to exit code (E15 in this case) because exit use
is completed

Create a new record and insert it into the sort

The action word is a 1-word (4-byte) entry in the parameter list, a table built by
sort/merge to specify location of records and information affecting record processing
(3.3.7).

3.3.3.3. Input File Read Error Processing

When you specify exit code E18 on the MODS control statement, sort/merge enters your
own-code read error processing routine for your input file. You write only the BR 14
instruction to return to the sort program .

If you specify the BYPASS parameter on the INPFIL control statement and exit E18 on the
MODS control statement, the E 18 specification overrides the BYPASS.

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3.3.3.4. Output File Label Processing

3-36

The exit-code E31 specification on your MODS control statement enables independent
sort/merge to enter your own-code nonstandard label processing routine for the output file.
Functionally, it corresponds with the E11 exit for input files and interfaces the output file via
the ULABEL data management keyword parameter and the DMLAB imperative
macroi nstruction.

3.3.3.5. Output File Processing

Exit code E35 enables independent sort/merge to enter your own-code routine for output
file processing during the final merge and output phase (phase 3). Any of the following
functions may be used in your own-code output routine:

• Write output records

• Count output records

• Insert records

• Lengthen or shorten records

• Modify record contents or control fields

By specifying exit code E35 on your MODS control statement, you indicate that E35
should receive control each time an output record passes to final merge phase (phase
3). Like exit code E 15 for input file processing, there are a number of possible functions
your own-code output routine can perform. Thus, you must tell the sort what you
decide to do after exit E35 occurs. To supply this information, you place action codes
in the action word of exit code E35 in the exit parameter list. (The action word is a
1-word (4-byte) field identified by the parameter list; a table built by sort/merge to
specify the location of records and information affecting record processing. Additional
details concerning parameter list format are given in 3.3.7.) The action codes allowed
are:

Action Code Action Taken

0 No change

4 Delete the record from the sort

8 Request no return to exit

12 Insert and accept a new record for output

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-37

• Action codes 4 and 8 are valid only when the EXIT parameter is specified in the OUTFIL
control statement (3.2.4). If the EXIT parameter is not specified, then all of the action
codes listed are valid until sort/merge passes the last record to the exit 35 routine. At this
time, 8 and 12 are the only valid action codes.

•

•

After the last record is written, control is passed to the end-of-file routine. In this case, the
first entry in the exit parameter table is 0 contained in a 1-word (4-byte) field which
normally contains the address of the next record to be sent to the output buffer.

Exit code E35 is not valid in a merge-only application.

3.3.3.6. Write Error Processing for Direct Access Devices

There is no recovery from this type of error; however, you may supply your own-code
routine to handle a direct-access-device writing error by writing an E39 exit code on your
MODS control statement. When a write error occurs, sort/merge enters your own-code
write error processing routine for your output file. The BR 14 instruction returns control to
sort/merge.

3.3.3. 7. Record Sequencing

Exit code E65 is used during phases 1, 2, and 3 for entering your own-code record
sequencing routine from sort/merge. Sort/merge enters your routine each time two
records are compared, to determine which will be sorted first. You decide the record
sorting sequence in your routine.

The first instruction in your own-code routine must be the USING assembler directive,
assigning register 15 as a base register. Your program receives the addresses of the two
records to be compared in registers 11 and 12. For variable-length records, the addresses
supplied are those of the first bin of each record. The 4-byte record length field is part of
the first bin. You pass the result of the comparison to sort/merge via condition code
settings. If the record for the address in register 11 is first, the condition code should be
set to low (cc=1). If the record for the address in register 12 is first, you set the condition
code to high (cc=2). If the sequence of the two records is arbitrary, you set the condition
code to equal (cc=O). Control is returned to sort/merge via a branch to register 14.

3.3.3.8. Data Reduction

When sort/merge encounters records with equal keys, it normally retains both records in
an arbitrary sequence. If you want to eliminate duplication in your files, you can do so by
using the system-supplied DELETE routine or by using exit code E75 to enter your own­
code data reduction routine. To use the system-supplied automatic data reduction routine,
include the following version of the MODS control statement in your control stream.

MODS PH7=(DELETE,,E75)

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-38

When processed, this MODS statement causes sort/merge to load and execute the load
module for the automatic data reduction routine called DELETE. The routine reduces data
by deleting duplicate records whenever they are encountered. You can use the DELETE
routine for input files that contain either fixed-length or variable-length records but not
both types. In your own-code routine, each time two records with equal keys are
processed, you may:

• delete one of the duplicate records;

• combine data contained in the duplicate records to create a new record; or

• use a combination of retaining, deleting, and combining duplicate records.

The first instruction in your own-code routine must be the USING assembler directive
specifying register 15 as a base register. Sort/merge places the addresses of the two
records with equal keys in registers 11 and 12. If one of the records is to be deleted,
normally the address of the record to be retained is in register 11 and the deleted record
address is in register 12, unless in your routine you overlay the address in register 11,
thereby forcing the deletion of the address in register 11 and saving the address in
register 12. Your program returns control to sort/merge four bytes beyond the address
specified in register 14.

If you want to save the contents of both records, control must be returned to sort/merge
at the address specified in register 14.

3.3.3.9. User-Defined Collation Sequencing

Exit code E84 is used whenever you want to specify an alternate collating sequence to the
one supplied by sort/merge or to sort two or more different characters that have the same
collating values. To determine which operation you wish to perform, E84 is used in
conjunction with the character format code (USO and MC) specified in the FIELDS keyword
parameter of the SORT and MERGE control statements. Because both USO (user-specified
collating sequence) and MC (multiple character) specifications use the E84 exit code, they
are mutually exclusive within a sort or merge operation. The distinction between the two
is that the USO specification for character code format requires you to provide sort/merge
with two 256-byte translation tables at exit code E84 when control is passed to your own­
code routine. The first table (input) must translate and collate the input record key fields,
and the second table (output) must return the fields to their original format. You only
require one table, the input table, when you use the MC specification. The translation
table is used only for comparison purposes and not to change the actual data in the
record. (See Appendix B for OS/3 EBCDIC and ASCII standard collating sequences.)

3.3.4. An Example of Exit Code Use

Figure 3-7 finishes the discussion of exit codes by illustrating the coding required to build
a branch table, set up a base register, save and restore general registers, and provide a
return address to sort/merge. It also shows how you can write your own input/output
routine. The exit code ·used in this example is E15 as specified by the MODS control
statement (line 113). This example modifies the record contents (line 66).

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

10 16

11 JOB SRTEXMP5 .. 8000. A000
II DVC 20 II LFD PRNTR

11 WORK I l
II WORK2 =II ASM
II EXEC ASM
1$

PHASE! START
USING ,15
B E 11
B EI 5

El 8

I 2 . E 11
B

EQU
13. EIS EQU
14.
15.
16.
I 7.

18.
19.

CANCEL

DATA MANAGEMENT WORK AREA

VTOC CDIB=YES
USING CD$CDIB,5
CDIB

ERROR

ERROR

20. INPUT
21. MYRIB
22.

RIB BFSZ=400,RCSZ=80, IOAl=BUFFl, IOA2=BUFF2, IORG=(2).

23.
24., BUFF!
25. BUFF2
26. SAVE
27. SAVE
28.
29.

30.

DS
DS
DS
DS
DS

RCFM=FIXBLK.OPTN=YES
OH
CL400
CL400
10F
10F

EXIT El5 ROUTINE

31. El5 EQU
32.
33.
3 4. ;

35.
36. TAG
37.
38.
39.

40.
4 I .

42. NEXT
43.
44.

45.
46.
47.
48.
49.

5 0 · 1
5 I .

52.
53.

54.
55. RETURN
56 .
57.
58.

STM
LR

13,6,SAVE
4 . I 5

DROP 15
USING PHASEl,4
BC 0,NEXT
OPEN INPUT, (MYRIB)

5 . =A (INPUT)
TM
BZ
MVI
EQU

CD$ I SVCC, L 'CD$ I SUCC
IOERROR
TAG+l,X'F0'

DMINP INPUT
5 . =A (I NP UT)

TM CD$1EOF,L'CD$1EOF
BO EOF
TM
BZ
BAL

ST

L

MVC
EQU
LM
BR

CD$ I SUCC. L 'CDS I SUCC
IOERROR
5,MOD
l,SAVE+l6
2, 0 (0. I)

3 . 4 (I)

0(4,3).INSERT

13,6,SAVE
14

ROUTINE SAVE AREA

SAVE REG I STE RS
SET NEW BASE REGISTER FOR YOUR ROUTINE
FREE Rl5
SET R4 AS BASE REGISTER
FALL THROUGH ON FIRST TIME
OPEN THE INPUT FILE
LOAD R5 WITH CDIB ADDRESS

ALTER BRANCH FOR NEXT ENTRY

GET A RECORD
LOAD R5 WITH CDIB ADDRESS

MODIFY THE RECORD
LOAD PARAM LIST ADDR INTO REG I
STORE THE ADDRESS OF THE RECORD
IN THE PARAM LIST
GET ADDR OF ACTION CODE
SET INSERT IN ACTION WORD

RESTORE REGISTERS
RETURN TO INDEPENDENT SIM

Figure 3-7. Coding Example for Using Exit Code E15 (Part 1 of 2)

3-39

•

UP-8819 Rev. 2

10

59.
60. MOD EQU
61.
62.
63.
64.
65.
66. MVC
67. BR
68.
69. EOF EQU

16

SPERRY OS/3
INDEPENDENT SORT /MERGE

ROUTINE TO MODIFY THE RECORD

8(45,2).MESSAGE ADD MESSAGE
RETURN

TO RECORD

END OF DATA ROUTINE
70. l.SAVE+l6 LOAD PARAM LI ST ADDR INTO
71. 3 . 4 (I) GET ACTION WORD ADDR
72. MVC 8(4.3),EOD SET ACTION CODE 8 FOR END
73. EXIT ACTIVITY
74. CLOSE INPUT CLOSE INPUT ROUTINE
75. L 5 . =A (I NP UT) LOAD RS WITH CDIB ADDRESS
76. TM CD$1SUCC.L'CD$1SUCC
77 . BZ IOERROR
78. B RETURN RETURN
79.
80. IOERROR EQU ERROR HANDLING ROUTINE
81. B E 18 BRANCH TO CANCEL
82.
83. INSERT DC F ' 12 '
84. EOD DC F' 8'
85. MESSAGE DC CL45'THIS RECORD HAS BEEN MODIFIED THROUGH EXIT 15'
86. END
87. I•
88. II WORK!
89. II EXEC LNKEDT
90. 1$

91. LOADM PHASE!
92. INCLUDE PHASE!
93. I•
94. I I I DVC 58
95. II VOL DSP828
96. II LBL MYFILEl
97. II LFD INPUT
98. II DVC 58
99. II VOL DSP828
100. II EXT ... CYL. 4
101. II LBL MYFILE2
102. II LFD SORTOUT .. INIT
103. II DVC RES
104. II EXT ST.C .. CYL.5

}=llDMBI WORK! BLK=28889 105. II LBL $SCRI
106. II LFD DM81
107.1// EXEC SORT.YRUN
108.j 1$
109.i SORT FIELDS=(1. 8. CH)
11 0 . RECORD RCSZ=88.TYPE=F
111. IN PF I L EXIT
112 . OUTFIL BLKSIZE=89
11 3 . MODS PHl=(PHASEl .. El5)
114 . END
115 . I•
116. I&
11 7 . II FIN

Figure 3-7. Coding Example for Using Exit Code E15 (Part 2 of 2)

3-40

•

REG!

OF

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-41

Notice the test under mask (TM) and branch on condition (BO and BZ) instructions at lines
45-48. After DMINP macroinstruction finishes its other operations on a file, it sets control
information in the CDIB that reflects the status of the file. After the end-of-file indicator
CD$1EOF is tested (line 45), control branches (line 46) to the end-of-file routine EOF if the
indicator is set, or to the next sequential instruction if the indicator is not set. The next
instruction (line 47) tests the successful function indicator CD$1SUCC and sets the
condition accordingly. The branch instruction at line 48 then causes a branch to the error
routine IOERROR if the CD$1SUCC is not set; otherwise, control passes to the instruction
at line 49.

Data management requires 1/0 buffers to be half-word aligned (line 23). If you want to
make your program device independent, your 1/0 buffer areas must be in multiples of 256
bytes, or, in this case, 512 bytes instead of the 400 bytes shown in the example (lines 24
and 25).

Since your routines are associated with phases of sort/merge, all routines for a particular
phase must be linked together as one load module. Exit code E15 that we are using in this
coding example, as well as exit codes E11 and E18, belong to the data input and internal
sort phase (phase 1). Thus, to access exit code E15, we must code the branch table for the
phase 1 exits in the order shown (lines 9-11). At execution time, your sort control
statements have told sort/merge that:

• your key field starts in byte 1, extends eight bytes, and has a character data format
(line 109);

• your records are fixed type and 80 bytes long (line 110);

• you intend to use a phase 1 exit code (E15) for your own-code input processing
routine (line 113);

• your output block size is 80 bytes (line 112);

• the load module name for your input routine is PHASE1 (line 113); and

• you are supplying a routine to modify input records (lines 56-63 and line 111).

The first step you must take in your own-code routine is to save those registers used by
sort/merge (line 32). You set up a new base register for your own-code routine (line 35),
open the input file, and read records (lines 37-43). To modify records, you branch out to
your record modification routine (line 49) and return inline to load the parameter list
address in register 1 and store the address of the modified record in the parameter list
(lines 50 and 51). This record modification information is needed by sort/merge to
continue its succeeding phases and give the sorted record results you want. Therefore,
you must move the address of the changed record to the parameter list. After this move,
the parameter list contains the changed record address and, thus, the information needed
by sort/merge in the first full word addressed by register 1 .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-42

You must then tell sort/merge how to create a new record and to insert it into the sort.
First, you get the address of the action code (line 53) and place it in register 3. Then, you
insert the action code, a DC assembler directive indicating a full-word constant with the
number 12 (line 83), into the parameter list at the second full-word position (line 54).
When the end of input file is reached and all record inserts and modifications have been
made, you change your action code in the parameter table by getting the action word
address (line 71) and setting the action code to 8 (line 72). You close the input file (line
74).

The final step in coding is to restore the registers used by independent sort/merge (line
56) and return to sort/merge (line 57). The end-of-file routine (line 69) is labeled EOF, the
address of your routine handling the end-of-data condition.

Certain registers do play an important role in implementing the transfer from sort/merge
to your own-code routines. As we examine the use and function of these registers in the
following discussion, refer frequently to Figure 3-7 to understand how registers help
implement the linkage.

3.3.5. General Purpose Registers

Four general purpose registers play important roles in enabling sort/merge to
communicate with your own-code routines and to provide linkage between its modules
and your routine. These registers are 1, 13, 14, and 15.

In cases where several functions may be performed by your routine during a particular
sort/merge phase, sort/merge requires an action code from your routine to tell it what
to do with a record or how to handle the situation at hand. Your parameter list is the
place where sort/merge receives this action code, but first it needs the address of the
parameter list. Sort/merge places the parameter list address in register 1. The possible
action code response your routine must make depends upon the exit-code function
being performed. Action codes for the various exit codes used in sort/merge are
described in 3.3.3.2. The format for your own-code parameter list is discussed in 3.3.7.

In your own-code routine, you use registers for base registers and movement of
addresses. The contents of any registers you use during execution of your own-code
routine must be saved in a save area and restored to their original values before
returning control to sort/merge. This save area must be 18 full words (72 bytes) long,
full-word aligned, and defined by a OS assembler directive in your program. Sort/merge
places the address of a save area in register 13.

Before sort/merge enters your own-code routine via the exit code, it must save the
address of the next sequential instruction in its module. This address is known as the
return address. Sort/merge places its return address in register 14. At its conclusion,
your own-code routine must then branch back to sort/merge via register 14.

When exiting to a user routine, sort/merge loads register 15 with the address of the
exit routine. The appropriate exit routine is then entered via the branch table (Table
3-3), which is required at the beginning of each exit load module.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-43

• 3.3.6. Providing a Branch for User Own-Code Exits

Sort/merge locates and enters each own-code routine via a branch table entry, which
must also be the first coding of the own-code load module. Table 3-3 indicates the table
format and the phases with which each exit code is associated. The right half of Table 3-3
represents the actual user coding required to build the branch table. (See lines 9 through
11 in Figure 3-7 for an illustration of this coding.)

Table 3-3. Branch Table Format

Applicable
Phase of Sort/Merge Typical Table Format

Operation

Data input and entry B Ell
internal sort B E15
(phase 1) B E18

Final merge entry B E31
and output B E32
(phase 3) B E35

B E38
B E39

e When sort/merge gives control to your own-code routine, it loads register 15 with the
address of the first branch table entry and then enters your routine at the appropriate
branch table entry. Own-code routines for the same phase of the sort must be linked
together as one common load module. Each routine used at a given exit must have its own
point of entry (exit code) listed in the branch table.

•

Several exit codes (E65, E75, E84) link the sort to your own-code routines differently.
Because functions provided at these exits are common to all phases of sort/merge, they
are linked as independent load modules rather than as one common load module by phase
association. The point of entry for exit codes E65 and E75 is the first position in the load
module. Exit code E84, however, has a unique problem. It is used for entering either a
user-defined, alternate collating sequence (USO) or a user-defined collating sequence for
sorting two or more different characters having equal collating values. Because exit code
E84 has no executable code of its own, your coding must show the address for entry to
your translation tables as the first word of the load module. If your own-code routine is for
an alternate collating sequence, you must provide two table entry addresses; one for the
input translation table and one for the output translation table. For MC (multiple character)
sorting, you need only one table entry address because this function uses only the input
table for comparison purposes (conversion is not performed during this operation thereby
eliminating the need for the output translation table). The format for exit code E84 is:

entry DC A(convto-address)

DC A(convfrm-address)

t

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3.3. 7. Formatting the Exit Parameter List

3-44

Sort/merge uses information it finds in the parameter list to locate your response (action
code). The action code you place in the action word tells sort/merge how to process your
records. Register 1 points to the first entry in the parameter list when control passes to
your own-code routine. Each entry in the parameter list is a 1-word (4-byte) entry. Table
3-4 describes the parameter list information required and the parameter positions it
occupies in the list.

Some exits do not use the parameter list. These exits work according to data
management requirements, using data management imperative macros to locate
own-code routines and return to the sort. Current versions of the consolidated data
management macro language user guide/programmer reference, UP-9979, and the basic
data management user guide, UP-8068, discuss these imperative macros in more detail.

Table 3-4. Parameter List Format

Exits Parameter Function of Parameter
Position No.

E11,E31 None Interfaces conform to data management conventions for
user label routines.*

E15 1 Address of record in the input buffer

2 Address of action word

E32 1 Address of record in input buffer

E35 1 Address of record next scheduled for the output buffer

2 Address of last record in the output buffer

3 Address of action word

4 Address of sequence check word

E18, E38 None See data management conventions for error routines.*

E39 None See conventions for data mana~ement error routines.*

E65 None See E65 description (3.3.3. 7).

E75 None See E75 description (3.3.3.8).

E84 None No executable code at this exit

• Refer to the consolidated data management macro language user guide/programmer
reference, UP-9979 or basic data management user guide, UP-8068 (current versions).

The parameter list is used by three exits: E15, E32, and E35. E15 uses a 2-word
parameter list, E32 uses a 1 -word parameter list, and E35 uses a 4-word parameter list.
All other exits use other interface conventions.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3.3.8. Job Control for the Own-Code Routine

3-45

After you have written your own-code routine, you must assemble and link it (see Figure
3-7, lines 3-5 and 88-93) before you can use the routine in your sort/merge program.
Perhaps you want to assemble and link your routine and execute the sort/merge in a
single run as described in Figure 3-7. In this case, sort/merge finds the load module in
the job run library file (YRUN). However, you may want to save your own-code routine
in the form of a load module that you can use again.

If you decide to save the load module for future use, you again have two choices. You can
store the module in the system load library file (YLOD), where the sort/merge modules
also reside, or in a private library file. If you store the module in YLOD, you have a little
less coding to do and sort/merge can retrieve the module slightly faster at execution time.

Example
YLOD.

Example 1:

1 . II JOB
2. II DVC
3 . II ASM
4 . I$
5 .

:}your 6.
7.
8. I•
9. II L INK
1 0 . I&
11 . II F IN

gives the job control stream needed for storing your own-code routine in

10 16

OWN CODE
20 II LFD PRNTR

program coding

PHASEl ,OUT=(RES,YLOD)

Notice that we have used the job control procedure (jproc) calls for both the assembler
(line 3) and the linkage editor (line 9). This saves a considerable amount of coding. The
first parameter on the LINK jproc tells the linkage editor to include the object module
called PHASE1 in the load module it is creating. Since the label field is omitted, the name
of the load module will also be PHASE1 by default. The OUT parameter tells the linkage
editor to place the load module in the YLOD file on your SYSRES volume.

When you want to execute the sort/merge, you use the job control stream in example 2 .

UP-8819 Rev. 2

Example 2:

1 .
2 .
3 .
4.
5.
6.
7.
8.
9.
10.
1 1 .
1 2 .
1 3 .
14.
1 5 .
1 6 .

10 16

II JOB SRTEXMPL, ,61:11:11:1,8888
II DVC 21:1 II LFD PRNTR
II DVC 51:1 II VOL DSP81:11
II LBL MYFILEl II LFD INPUT
II DVC 51:1 II VOL DSP81:11
II EXT , . ,CYL,4
II LBL MYFILE2
II LFD SORTOUT
llDMl:ll WORKl
llDMl:l2 WORK2
11 EXEC SORT
1$

SORT FIELDS=(l,8)
INPFIL EXIT
MODS PHl=(PHASEl,3588,El5)
END

11. r
18 . I &
19. II FIN

SPERRY OS/3
INDEPENDENT SORT /MERGE

3-46

There are three indications in example 2 that an own-code routine is being provided. On
line 4, the LFD name for the input file is INPUT, instead of the standard input file name
SORTIN 1. This matches the label you used on the input CDIB when you wrote the
program. (See Figure 3-7, line 20.) The EXIT parameter on the INPFIL control statement
(line 14) indicates that you are providing the input routine, and the MODS control
statement (line 15) specifies that your load module is named PHASE1 and is to be called
from the data input phase at exit E15. Job control automatically looks for your load module
in YLOD.

If you want to store your program in an alternate library file, you might use the job control
stream in example 3.

Example 3:

1 . II JOB OWNCODE
2 . II DVC 28 II L FD PRNTR
3. II ASM
4. 1$
5.

:}your 6. program coding
7.
8. I•
9. II DVC 50 II VOL DSP002
1 0 . II EXIT ST ... CYL,1
1 1 . II LBL OWNCODE II L FD OWN CODE
1 2 . II WORK!
1 3 . II EXEC LNKEDT
1 4 . 1$
1 5 . LINKOP OUT=OWNCODE
16 . LOADM PHASE!
1 7 . INCLUDE PHASE!
1 8 . I•
1 9 . I&
20. II FIN

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-47

The device assignment set in lines 9 through 11 sets up a file labeled OWNCODE on
volume DSP002 to contain the load module PHASE1. If you wanted to add PHASE1 to a
program file that existed, you would omit the EXT statement (line 10). In this example, we
have elected to use the WORK jproc, the EXEC LNKEDT statement. and linkage editor
control statements (lines 12 through 18) in place of the LINK jproc. The OUT keyword
parameter of the LINKOP control statement tells the linkage editor to store the load
module in the file with the LFD name OWNCODE. The LOADM and INCLUDE statements
tell the linkage editor to name the load module PHASE1 and to include the object module
PHASE1.

At execution time, you have to tell job control where to find the load module you have
placed in an alternate library file. The same coding is needed as in example 2, except for
an additional device assignment set and a change in the EXEC statement.

Example 4:

1 0 1 6

lOa.// DVC 51 //VOL DSP002
!Ob.// LBL OWNCODE // LFD OWNCODE
11. // EXEC SORT,OWNCODE

Lines 1 Oa and 10b represent the device assignment set for the load module containing
your own-code routine. The second parameter of the EXEC statement (line 11) must give
the LFD name of the alternate library file on which the load module, PHASE1, is stored .
Actually, placing OWNCODE in the EXEC statement will cause job control to search the
alternate library for all the needed sort modules. When they are not found in OWNCODE,
job control will automatically go to YLOD, where the sort/merge modules reside. It
takes slightly longer to retrieve modules this way than if you had stored PHASE1 in
YLOD, but the difference in total sort time is negligible.

3.4. USING THE MERGE-ONLY PROCESS

You need the merge-only process when you have previously sorted or sequenced files and
want only to combine or merge them. The merge-only operation can combine 2 to 16
similarly ordered files into one final output file arranged in the same sequence as the
input files. When sort/merge performs the merge-only process, control goes only to the
final merge phase and bypasses the internal sort and preliminary merge phases. The same
sort control statements used for the sort/merge operation may be used for the merge-only
operation except you replace the SORT control statement with the MERGE control
statement. User own-code exit routines for a merge-only operation; i.e., exit routines E32
and E38, are associated with final merge phase (phase 3) of the sort. Thus, when
sort/merge performs a merge-only operation, it begins with the sort initialization and
assignment phase (phase 0), skips the next two phases (data input and preliminary sort),
and ends with final merge and output (phase 3), where it enters your own-code routine via
exit codes E32 and E38 (if specified on your MODS sort control statement) .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-48

3.4.1. Defining the Merge-Only Operation

Independent sort/merge needs information about key fields, their formats, and the number
of files to be merged. The MERGE control statement specifies this information as the
SORT statement does for a sort/merge operation. It replaces the SORT control statement
when you specify a merge-only operation. The MERGE control statement format is:

LABEL L>OPERATIONL>

MERGE

NOTE:

OPERAND

F I ELD S=(([st rt - po s - 1 I [, I gt h - 1 I [, form - 1 I [. seq· l]l
[.... ,strt-pos-n. lgth-n[.form-n]
[,seq-nJ]l

([strt-pos-l][.lgth-l)[.seq-1)
[..... strt-pos-n, lgth-n
[.seq-nJ]) .FORMAT=code

[. r ILE S}={,n,umb er}]
ORDER II

[
,MERGE P=o u t put - f i I e - number , J See note.

input-ti le-number

The MERGEP parameter is provided and accepted for compatibility with other
systems; no action is performed.

• Specifying key fields (FIELDS)

The FIELDS parameter specifies the key field starting position (strt-pos-1), the length
of the key field (lgth-1), the data format code (form-1), and the merging sequence
(seq-1 }, ascending or descending. The FORMAT subparameter is used to specify the
data format code when the data formats for all key fields are the same. Data format
codes for this subparameter are the same as those for the SORT control statement
(Table 3-1). Descriptions for positional subparameters of the FIELDS keyword
parameter on the MERGE control statement are the same as those for the SORT
control statement (3.2.1).

If you omit the FIELDS keyword parameter, a character field is assumed beginning in
position 1, the record length is assumed as the field length up to 256 bytes, and
records will be merged in ascending sequence. If you specify FIELDS and omit any of
its subparameters, you must retain their associated commas, except for trailing
commas.

• Specifying the number of files (FILES and ORDER)

The keyword parameters FILES and ORDER can be used interchangeably to specify
the number of data input files you want to merge. This number must not exceed 16. If
you elect not to include either the FILES or ORDER parameter in the MERGE control
statement, sort/merge assumes 16 input files. Remember, input files are defined via
LFD statements in your job's control stream. Therefore, you must use the system
standard file names SORTIN1 ,. . .,SORTIN9 for the first nine input files defined and
SORTINA,. . .,SORTING for the remaining seven input files defined. The file names
must be defined in sequence.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-49

• 3.4.2. Merge-Only Exit Code for Input File Processing

•

•

You can use exit code E32 to enter your own-code routine from the final merge phase of
the merge-only operation. Your own-code routine may modify the contents, including
control fields, of each record in the merge-only input files; however, it may not change the
record size or insert or delete records from the input merge-only files. In your own-code
routine, you may replace one record with another but you must be careful to avoid
changing the sequence of the record in the merge or a sequence error will result. To
specify that you want merge-only to enter your own-code routine, you indicate exit code
E32, phase 3, and the load module name of your own-code routine on the MODS control
statement.

Figure 3-8 illustrates a typical job control stream required for a merge-only operation. In
the following discussion, we step through these statements to describe the processing
involved.

10 1 6

1 . II JOB MRGEXMP2,, 71Hl0, 9000, 2
2 . II QPR 'MERGE EXAMPLE 2'
3 . II OPR 'VARYING BLOCK SIZE'
4. II DVC 50
5 . II VOL DSP028
6. II LBL MYL I B 1
7. II L FD SORTINl
8. II DVC 50
9. II VOL DSP028
1 0. II LBL MYL 1B2
11 . II LFD SORTIN2
1 2 . II DVC 50
1 3 . II VOL DSP028
14. II LB L MYLIB3
1 5 . II LFD SORTIN3
1 6 . II DVC 50
17. II VOL DSP028
1 8 . II LBL MYL1B4
1 9 . II LFD SORTOUT,, INIT
20. II EXEC SORT
2 1 . 1$
2 2 . MERGE FIELDS=(l,8,PD) ,Fl LES=3
23. RECORD TYPE=F,RCSZ=80
24. IN PF I L BLKS I ZE=(800, 400, 1600)
2 5 . OUTFIL BLKS I ZE=800
26. END
27. I•
28. I&
29. II F IN

Figure 3-8 . Typical Job Control Stream for a Merge-Only Operation

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

3-50

The JOB statement supplies the name of your job, a minimum main storage requirement
of 7000 hexadecimal bytes, a maximum of 9000 hexadecimal bytes of main storage
requested for your program, and a maximum of 2 tasks simultaneously active during your
program execution. The two OPR control statements (lines 2 and 3) display the messages
enclosed in quotation marks to the operator at the system console.

Lines 4, 8, 12, and 16 specify that device 50 is used for input and output files. Lines 5, 9,
13, and 17 specify that the same volume (DSP028) is used for input and output files.

The file identifier for input file 1 is MYLIB1 (line 6); for input file 2, MYLIB2 (line 10); and
for input file 3, MYLIB3 (line 14). The output file identifier is MYLIB4 (line 18). File names
for the three input files to be merged and the output file to receive the merged data record
are the standard names SORTIN1 (line 7), SORTIN2 (line 11), SORTIN3 (line 15), and
SORTOUT (line 19), respectively.

The INIT parameter on the LFD statement (line 19) indicates that this output file is to be
initialized starting at the first record the first time the file is opened.

The EXEC statement (line 20) tells OS/3 job control to execute the SORT program. Your
sort/merge control statements follow, beginning with the /$ and ending with the /*
delimiters. The MERGE control statement (line 22) specifies that the key field begins in
byte 1, extends eight bytes, and is in packed decimal data format. There are three files
being merged.

Records are 80 bytes, fixed length according to the RECORD control statement (line 23).

Input files 1, 2, and 3 are blocked at 800, 400, and 1600 bytes, respectively, and the
output file has a block size of 800 bytes. These specifications appear in the INPFIL and
OUTFIL control statements (lines 24 and 25).

Finally the END, /*, /&, and FIN control statements (lines 26 through 29) indicate the end
of your sort control statements, end of job step, end of job, and end of card reader
operations.

Note that on first runs, the EXT job control statement is needed immediately after each
VOL statement to allocate each file; however, it should be removed on all succeeding

_.. runs after the files have been allocated. The job control user guide, UP-9986 (current
version) explains the EXT statement in more detail.

3.4.3. Merge-Only Exit Code for Input File Read Error Processing

If you decide to write your own-code routine for processing input file read errors during
the merge-only operation, use exit code E38. You write only the BR 14 instruction to
return to the sort.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-1

4. Program and Control
Stream Examples

4.1. GENERAL

This section contains examples that illustrate program coding and job control streams for
independent sort/merge operation. The first group of examples (4.2) illustrate sort/merge
control statements only and the succeeding examples show complete job control streams
including job control and sort control statements required for performing disk (4.3), tape
(4.4), format label diskette (4.5) sorts, and a default sort (4.6). These job control streams can
be punched on cards, written to a diskette, or built from a workstation. Building and
initiating job control streams from a workstation is discussed in Section 1 and an example is
shown in 4.3 .

4.2. SORT /MERGE CONTROL STATEMENT EXAMPLES

The following six examples illustrate the sort/merge control statements needed to supply
information to sort/merge or merge-only for their functions. In each example, the sort
control statements are preceded by a /$ delimiter statement and followed by a /*
delimiter statement. The sort control statements within these delimiter statements
represent a data set.

Example 1 shows specifications for a tape sort/merge on fixed-length records.

Example 1:

/$
SORT FIELDS=(l,4,CH,A,10.12.Bl,A).WORK=3.SIZE=3500
RECORD TYPE=F.RCSZ=82
INPFIL BLKSIZE=820,0PEN=RWD,CLOSE=UNLD.DATA=E
OUTFIL BLKSIZE=820.0PEN=RWD CLOSE=UNLD
OPTION PRINT=ALL,STORAGE=20000,LABEL=(S,S)
END

I•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-2

The SORT statement defines the key fields, the number of work files, and the number of
records to be sorted. The first key field begins in record position 1, is four bytes long, has a
character format, and is to be sorted in ascending sequence. The second key field begins
in position 10, is 12 positions long, is in binary format, and is to be sorted in ascending
sequence. Three work files are indicated by the WORK keyword parameter, and the input
file contains approximately 3500 records. The RECORD control statement defines the
record type as fixed with a record size of 82 bytes. The INPFIL control statement specifies
that the records are blocked at 820 characters per block, that the input file is on tape, and
that the tape is to be rewound to load point upon opening the rewound with interlock on
closing. Data is in EBCDIC format (DATA=E). The parameters specified in the OPTION
control statement provide for the printing of all messages, define the available main
storage as 20,000 bytes, and identify the input and output file labels as being standard
tape labels. The end of sort/merge control statements is indicated by the END control
statement in the job control stream.

Example 2 shows a tag sort on variable-length records.

Example 2:

/$
SORT FIELDS=(6,10,CH.A,12,10,CH.D),WORK=3.SIZE=3500
RECORD TYPE=V,LENGTH=(400,30, .65,65)
OPTION ADDROUT=D
END

I•

The FIELDS parameter says that the first sort key begins in byte 6 and is 10 bytes long, in
character format, sorted in ascending sequence. The second sort key begins in byte 12 and
is 10 bytes long, in character format, sorted in descending sequence. The WORK
parameter indicates three work files, and the SIZE parameter indicates approximately 3500
records in the input file. The length specifications of these records for each phase of
sort/merge operation, required for a tag sort, are: maximum input record length, 400
bytes; maximum length of records released to the internal sort, 30 bytes; maximum output
record length, 30 bytes by default; minimum input record length, 65 bytes; and the record
length appearing most frequently in the input file, 65 bytes. The OPTION control statement
defines a tag sort in which output records are to include both the direct access address
and the key fields. The new tag sort records will be 30 bytes in length, including the 10-
byte address field and 20 bytes for the key fields. This length is reflected in the second
and third subparameters of the LENGTH parameter. The END control statement indicates
the end of sort/merge control cards.

Example 3 shows fixed-length record processing with user-written modification exists.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-3

• Example 3:

•

•

/$
SORT FIELDS=(2.4,CH.A).WORK=3.SIZE=9000
RECORD TYPE=F.RCSZ=82
INPFIL EXIT
OUTFIL EXIT
OPTION STORAGE=21000
MODS PHl=(PHASEl.4500,Ell.ElS),

PH3=(PHASE3.4000,E31,E35).
PH7=(PHASE7 .1000. E75)

END
I•

c
c

The FIELDS parameter describes the sort key beginning in byte 2, extending four bytes
in character format, and being sorted in ascending sequence. There are three work files
(WORK) and approximately 9000 records in the input file (SIZE). The INPFIL and OUTFIL
control statements both state the EXIT keyword parameter indicating that user
own-code routines will provide the coding for reading the input file and writing the
output file. Exit codes E 11 and E 15 (approximately 4500 bytes long) provide the entry
points to your read routines, and exit codes E31 and E35 (approximately 4500 bytes
long) provide the entry points to your write routines. In addition, this coding indicates
that you will also provide a routine (approximately 1000 bytes long) for processing
records with equal key fields (specified by exit code E75 in the MODS control
statement) .

Example 4 illustrates the use of CALCAREA in the OPTION statement.

Example 4:

/$
SORT FIELDS=(2.4 ... 12. 10, .D) .SIZE=65800
RECORD TYPE=F.RCSZ=82
INPFIL BLKSIZE=820
OUTFIL BLKSIZE=820
OPTION CALCAREA
END

I•

The FIELDS parameter describes the sort keys. The first key in byte 2 is four bytes long in
character format and is sorted in ascending sequence. The second key begins in byte 12,
extends 10 bytes in character format, and is sorted in descending sequence. There are
approximately 65,800 records in the input file (SIZE=65800). This example will not
perform a sort, but will give you the estimated sort time in minutes and the number of
cylinders sort/merge requires for disk work space.

Example 5 defines a merge-only operation that processes three input files of fixed-length
records (165 bytes), which are blocked 10 records per block. The sort key begins in byte
20, extends 10 bytes in character format, and is sorted in ascending sequence .

UP-8819 Rev. 2

Example 5:

/$

SPERRY OS/3
INDEPENDENT SORT /MERGE

MERGE FIELDS=(20,10,CH,A),FILES=3
RECORD TYPE=F,RCSZ=l65
INPFIL BLKSIZE=l650
OUTFIL BLKSIZE=l650
ENO

I'

4-4

Example 6 shows the same merge-only operation as example 5 except for the file blocking
specified by the INPFIL control statement. The first file is blocked at 1650 bytes (10
records per block), the second at 825 bytes (5 records per block), and the third at 2475
bytes (15 records per block).

Example 6:

/$
MERGE FIELDS=(20,10),FILES=3
RECORD TYPE=F,RCSZ=l65
INPFIL BLKSIZE=(l650,825,2475)
OUTFIL BLKSIZE=l650
ENO

I'

4.3. JOB CONTROL STREAMS TO PERFORM DISK SORTS

The two examples that follow illustrate complete job streams to perform disk sorts where:

• disk input files and disk work files are used to create a disk output file; and

• multiple input files and one disk work file are used to create a single disk output file.

Example 1 illustrates a typical job control stream required for performing a sort using a
disk input file, disk work files, and a disk output file. The job named SRTEXMP1 performs a
sort of the data records contained in disk input file SORTIN 1. Three disk work files (DM01
through DM03) are assigned to the sort. The first key field for sorting starts at byte 9 of
the record and is one byte long. The second key field starts at byte 1 and extends for eight
bytes. The records are character formatted and are sorted in ascending order (specified by
default in the sort statement). The records are 80 bytes long and are fixed length. Both the
input file and the output file are blocked at 800 bytes. Approximately 10,000 records are
involved in the sort.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-5

Example 1:

1 .
2.
3 .
4.
5.
6.
7.
8.
9.
1 0.
11 .
1 2 .
1 3 .
14.
1 5 .
1 6 .
1 7.
18.
1 9 .
20.
2 1 .
2 2 .
23.
24.
2 5 .
26.
27.
28.
2 9 .
30.
3 1 .

10 16

II JOB SRTEXMPl,. 7000, 9000
II DVC 50
II VOL DSP001 } Input file device
II LBL MYL I B 1 assignment set
II L FD SORTINl
II DVC 50
II VOL DSP001 } Output file device
II LBL MYL I 82 assignment set
II L FD SORTOUT,,INIT
II DVC 5 1
II VOL DSPlll } Work file 1 device
II LBL SRTWKl assignment set
II L FD DM01 .. INIT
II DVC 52
II VOL DSP112 } Work Ii le 2 device
II LBL SRTWK2 assignment set
II LFD DM02., INIT
II DVC 53
II VOL DSP113 } Work file 3 device
II LBL SRTWK3 assignment set
II LFD DM03 .. INIT
II EXEC SORT
1$

SORT FIELDS=(9,l,. ,l,8),WORK=3.SIZE=10000
RECORD LENGTH=(80).TYPE=F
IN PF I L
OUTFIL
END

I•
I&
II FIN

Line
Number

1

2-5

6-9

10-21

BLKS I ZE=800 Sort program
BLKS I ZE=800

Explanation

The JOB statement defines the job named SRTEXMP1 to the system
and defines the minimum and maximum main storage required for
the job.

Assigns the input file. (See 3.1.1 .)

Assigns the output file. (See 3.1.1.)

Assigns the disk work files. (See 3.1.1 .) These files have been
previously created (indicated by lack of EXT statement); however,
the INIT option on the LFD statement allows the sort to access
them as though they were new files .

t

UP-8819 Rev. 2

Line
Number

22

23-29

24

25

26-27

28-29

30

31

Explanation

SPERRY OS/3
INDEPENDENT SORT /MERGE

Initiates the execution of sort/merge.

The data set containing the sort/merge control statements.

The SORT statement specifies:

4-6

• a 1 -byte character key field at byte 9 of the data records to be
sorted and an 8-byte field at byte 1;

• three work files; and

• the input file contains approximately 10,000 records to be
sorted.

The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output
block sizes as 800 bytes.

Marks the end of the sort control statements.

Marks the end of the job stream.

Marks the end of reader operations.

This control stream can be submitted when you want to execute this sort program.

You can also use·the general editor to create this control stream from a workstation. To do
this, proceed as follows:

1. Turn on your workstation and logon to the system by entering the LOGON
command (refer to interative services commands and facilities, UP-9972).

2. After you have successfully logged on, press the FUNCTION key and (while holding
it down) press the SYSMODE key.

3. Key in EDT, then transmit (press the XMIT key).

This will activate EDT.

4. Now keyin as follows:

•

•

•

•

•

•

UP-8819 Rev. 2

Job name 1.0000
Device 2.0000
assignment 3.0000
set

4.0000
5.0000
6.0000
7.0000
8.0000
9.0000

10.0000
11.0000
12.0000
13.0000
14.0000

Job 15.0000
control 16.0000
stream 17.0000

18.0000
19.0000
20.0000
21.0000
22.0000
23.0000
24.0000
25.0000
26.0000
27.0000
28.0000
29.0000
30.0000

Store job 31.0000
control stream

Terminates 32.0000
EDT

NOTE:

A '-6' indicates a space.

II JOB
II DVC
II VOL
II LBL
II LFD
II DVC
II VOL
II LBL
II LFD
II DVC
II VOL
II LBL
II LFD
II DVC
II VOL
II LBL
II LFD
II DVC
II VOL
II LBL
II L FD

SPERRY OS/3
INDEPENDENT SORT /MERGE

SRTEXMP 1 .. 7000, 9000
50
DSP001
MYL I B 1
SORTINl
50
DSP001
MYL I 82
SORTOUT,,INIT
5 1
DSPlll
SRTWKl
DM01,,INIT
52
DSP112
SRTWK2
DM02,,INIT
53
DSP113
SRTWK3
DM03,,INIT

II EXEC SORT
1$

SORT FIELDS=(9, 1,. ,l,8),WORK=3,SIZE=l0000
RECORD LENGTH=(80), TYPE=F
IN PF I L BLKSIZE=800
OUTFIL BLKSIZE=800
END

1·

I&
@WR I TE h.. MO=SRTEXMPl. FI L=YJCS

@HALT

4-7

t

At this point, the control stream has been stored on YJCS. You can either logoff the
system by entering the LOGOFF command or you can excecute your program by
entering RV ~SRTEXMP 1 . If you logoff the system, you can execute your program at a
later time by first logging on. Then, press the FUNCTION key and (while holding that
key down) press the SYSMODE key and enter RV ~SRTEXMP 1 .

You can also use the general editor to create the control stream for examples 2, 3, 4, 5, and
6 by following the procedure described for example 1 .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-8

Example 2 illustrates the job control stream required for performing an independent disk
sort using multiple input files, a disk work file, and a disk output file. The job named
SRTEXMP2 is to sort the data records of the three input files SORTIN1, SORTIN2, and
SORTIN3. The key fields are in packed decimal format and are to be sorted in ascending
order. Input files 1 and 3 are blocked at 800 bytes each and input file 2 at 400 bytes. The
output file is blocked at 800 bytes. Approximately 50,000 records are sorted.

Example 2:

10 16

1. II JOB SRTEXMP2 .. 7000,9000
2. II OPR SORT EXAMPLE 7'
3. II OPR 'MULTIPLE INPUT FI LES'
4. II DVC 50
5. II VOL DSP100
6. II LBL SORTINl
7. II LFD SORTINl
8. II DVC 50
9. II VOL DSP100
10. II LBL INPUT02
11. II LFD SORTIN2
12. II DVC 50
13. II VOL DSP100
14. II LBL INPUT03
15. II LFD SORTIN3
16. II DVC 50
17. II VOL DSP100
18. II LBL OUTPUT
19. II LFD SORTOUT .. INIT
20. II DVC 51
21. II VOL DSP101
2 2 . I I LB L WORK
23. II LFD DM01,. INIT
24. II EXEC SORT
2 5 . I$

}
lnp~t file 1 device
assignment set

}
lnp~t file 2 device
assignment set

}
lnp~t file 3 device
assignment set

}
Output file device
assignment set

}
Wo~k file device
assignment set

26. SORT FIELDS=(4.8.PD).FILE=3,SIZE=50000
27. INPFIL BLKSIZE=(800,400.800) Sort program
28. OUTFIL BLKSIZE=(800)
29. END
3 0. I'
3 1 . I &

32. II FIN

Line
Number

2-3

4-15

16-19

Explanation

The JOB statement defines the job named SRTEXMP2 to the system
and the minimum and maximum main storage bytes required for the
job.

Gives messages to operator at system console.

Assigns the three input files. (See 3.1.1 .)

Assigns the output file. (See 3.1.1.)

•

•

•

•

•

•

UP-8819 Rev. 2

Line
Number

20-23

24

25-30

26

27

28

29-30

31

32

Explanation

SPERRY OS/3
INDEPENDENT SORT /MERGE

4-9

Assigns the disk work file. (See 3.1.1.) This file has been
previously created (indicated by lack of EXT statement); however,
the INIT option on the LFD statement allows the sort to access it as
though it were a new file.

Initiates the execution of sort/merge.

The data set containing the sort/merge control statements.

The SORT statement specifies:

• an 8-byte packed decimal key field at byte 4 of the data
records to be sorted;

• three input files; and

• the input files contain approximately 50,000 records to be
sorted.

The INPFIL statement defines the input block sizes for each input
file: 800 bytes for input files 1 and 3 and 400 bytes for input file 2 .

The OUTFIL statement defines the output block size as 800 bytes.

Marks the end of sort/merge control statements.

Marks the end of the job stream.

Marks the end of card reader operations.

4.4. JOB CONTROL STREAM TO PERFORM TAPE SORTS

Both examples 3 and 4 use tape input and work files to create tape output files. They
illustrate the use of SHARE, RESERV, RESTART, and CSPRAM parameters in the OPTION
sort control statement and the use of the PARAM job control statement to enter
parameters from the control stream.

Example 3 illustrates a typical job control stream required to perform a sort/merge
operation using tape for the input, output, and work files. The job named SRTEXMP3 sorts
the character-formatted data records to input file SORTIN1 into ascending order and then
writes those records to the output tape file SORTOUT. The records are fixed-length and 80
bytes long, with a 10-byte sort key field starting in byte 8. The data block size for both the
input and output records is 800 bytes. The input and output files are rewound to their
starting point upon opening and rewound with interlock upon closing. Tape device SM01
is shared as an input device during input operations and as a work storage device during
sort operations. Tape device SM03 is specified as a reserved device used for working
storage during the first two phases of the sort and for output file during the final merge
phase.

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

Example 3:

10 16

II JOB SRTEXMP3,, 7000, 9000
II DVC 90

) Input file device II VOL MASTER
II LFD SORTINl assignment set

1 .

2.
3.
4.

5.

6.
7.

8.
9.
10.
11.
1 2 .
1 3 .
14.
1 5 .
16 .

1 7 .
18.

II
II

DVC
VOL

90, IGNORE) Redefined input device
TAPE01

II LFD SM01 assignment set to work file

II DVC 91) Work file device II VOL TAPE02
II LFD SM02 assignment set

II DVC 92

) Work file device II VOL TAPE03
assignment set ll L FD SM03

II DVC 92, IGNORE

) Redefined work file device II VOL MASTER
II LFD SORTOUT assignment set to output file

II EXEC SORT
1$

19. SORT FIELDS=(8,10,CH)
20. RECORD LENGTH=(80),TYPE=F
21. INPFIL BLKSIZE=800,0PEN=RWD,CLOSE=RWI
22. OUTFIL BLKSIZE=800,0PEN=RWD,CLOSE=RWI
23. OPTION SHARE=SM01,RESERV=SM03
24. END
2 5 . I'
2 6. I &

27. II FIN

Line
Number Explanation

Sort program

4-10

1 The JOB statement defines the job named SRTEXMP3 to the system
and minimum and maximum main storage required to run the job.

2-4

5-7

8-13

Assigns the input file. (See 3. 1. 1.)

Redefines the device assigned to the input file as a work file, using
the IGNORE option of the DVC statement.

Assigns the remaining work files.

•

•

•

•

•

•

UP-8819 Rev. 2

Line
Number

14-16

17

18-25

19

20

21-22

23

24-25

26

27

Explanation

SPERRY OS/3
INDEPENDENT SORT /MERGE

4-11

Redefines the device assigned to SM03 as the output file, using
the IGNORE option of the DVC statement.

Initiates the execution of the sort.

Is the data set containing the sort control statements.

The SORT statement defines a 10-character key field which begins
in byte 8 of the record.

The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output
block sizes as 800 bytes and indicate that these files are to be set
to load point on opening and to interlock on closing.

The OPTION statement specifies SM01 as the SHARE file and
SM03 as the RESERV file. (See 3.2.6.)

Indicates the end of the sort control statements .

Marks the end of the job stream.

Marks the end of card reader operations.

Example 4 illustrates a typical job control stream required for restarting an interrupted
tape sort performed by sort/merge. The sort itself is identical with that described in
example 3. (See example 3 for program and coding details.) By specifying the RESTART
and CSPRAM keyword parameters in the OPTION statement (line 25) included in the user
data set, the tape sort can be resumed. The system console displays the most recent pass
number, and the PARAM statement shown in line 28 of example 4 gives sort/merge the
pass recovery point at which the sort is resumed .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-12

Example 4:

10 16

1 . II JOB SRTEXM4,. 7111111. 9111111
2. II OPR 'SORT EXAMPLE 4'
3 . II OPR 'TAPE SORT WITH RESTART'
4. II DVC 911

) lnp~t file device 5 . II VOL MASTER
6. II LFD SORTINl assignment set

7. II DVC 911, IGNORE
) Redefined input device 8. II VOL TAPElll

assignment set to work file 9. II LFD SMlll
10. II DVC 91

} Work file device 11 . II VOL TAPEll2
1 2 . II LFD SMll2 assignment set

13 . II DVC 92

) Work file device 14. II VOL TAPEll3
assignment set 1 5 . II L FD SMll3

16. II DVC 92, IGNORE

) Redefined work file device 1 7 . II VOL MASTER
assignment set to output file 18. II LFD SORTOUT

19. II EXEC SORT
20. 1$
2 1 . SORT F I ELD S= (8 . 111 . CH)
22. RECORD LENGTH=(811), TYPE=F
23. IN PF I L BLKSIZE=81111,0PEN=RWD,CLOSE=RWI

Sort program 24. OUTF IL BLKSIZE=81111,0PEN=RWD,CLOSE=RWI
25. OPTION SHARE=SMll1.RESERV=SMll3,RESTART,CSPRAM=YES
2 6 . END
27. 1·
28. II PAR AM RESUME=(PASS.1123)
29. I&
30. II FIN

4.5. JOB CONTROL STREAM TO PERFORM A FORMAT LABEL DISKETTE SORT

Example 5 illustrates a typical job control stream for performing a sort using a format label
diskette input file, disk work files, and a format label diskette output file. The job named
SRTDKT performs a sort of the data records contained in the format label diskette input
file SORTIN1. Two disk work files (DM01 and DM02) are assigned to the sort. The first key
field for sorting starts at byte 8 of the record and is one byte long. The second key field
starts at byte 3 and extends for four bytes. The records are character formatted and are
sorted in ascending order (specified by default in the SORT statement). The records are 80
bytes long and are fixed length. Both the input and output file are blocked at 400 bytes.
Approximately 6000 records are involved in the sort. The system DELETE data reduction
routine is used to automatically delete duplicate records from the files (specified by the
MODS statement).

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-13

Example 5:

10 16

1 . II JOB SRTDKT,, 7000, 9000
2. II DVC 130

} 3. II VOL DKT001
Input file device assignment set 4. II LB L DIN

5 . II LFD SORT I Nl
6. II DVC 130

} 7. II VOL DKT001
Output file device assignment set 8. II LBL DOUT

9. II LFD SORTOUT., INIT
10. II DVC 5 1

} 11 . II VOL DSPlll
Work file 1 device assignment set 1 2 . II LB L SRTWKl

1 3 . II LFD DM01
14. II DVC 52

} 1 5 . II VOL DSP112
Work file 2 device assignment set 16 II LBL SRTWK2

17. II LFD DM02
1 8 . II EXEC SORT
19. 1$

20 . S 0 RT F I ELD S= (8 . 1 ... 3 . 4) . WO R K=2 . S I ZE=6 0 0 0
2 1 . RECORD LENGTH=(80). TYPE=F
22. INPFIL BLKSIZE=400 Sort program
23. OUTFIL BLKSIZE=400
24. MODS PH7=DELETE .. E75)
25. END
26. I•
27. I&
28. II FIN

Line
Number Explanation

1

2-5

6-9

10-17

18

19-26

The JOB statement defines the job named SRTDKT to the system
and the minimum and maximum main storage required for the job.

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1.1.)

Assigns the disk work files. (See 3.1.1.) These files have been
previously created (indicated by lack of EXT statement); however,
the INIT option on the LFD statement allows the sort to access
them as though they were new files .

Initiates the execution of sort/merge.

The data set containing the sort/merge control statements.

.. t

UP-8819 Rev. 2

Line
Number

20

21

22-23

24

25-26

27

28

Explanation

SPERRY OS/3
INDEPENDENT SORT /MERGE

The SORT statement specifies:

4-14

• a 1-byte character key field at byte 8 of the data records to be
sorted and a 4-byte field at byte 3.

• two work files; and

• the input file contains approximately 6,000 records to be
sorted.

The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output
block sizes as 400 bytes.

The MODS statement specifies that the DELETE data reduction
routine is used to delete duplicate records.

Marks the end of the sort control statements.

Marks the end of the job stream.

Marks end of card reader operations.

4.6. JOB CONTROL STREAM TO PERFORM A DEFAULT SORT

The default sort is so named because all information supplied to sort/merge is
automatically defaulted in the absence of sort control statements. In example 6, there are
no sort control statements. The only indication of a sort is the EXEC SORT job control
statement in the control stream. This example illustrates a typical job control stream
required to perform a default disk sort operation. When a default sort is performed,
sort/merge takes the record size, block size, and record type specifications from the
volume-table-of-contents (VTOC) for the input file. The output file is structured from the
specifications for the input file. If the input file happens to be a partitioned disk file,
sort/merge assumes the first partition of the file as the input partition. The output file is
always a single partition file in a default sort operation. The data records are assumed to
be character formatted and to have one sort key field the same length as the record but
not to exceed 256 bytes. In a default sort, only one input file can be processed, and all
input, output, and work files assigned in the job control stream must be disk files.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

4-15

Example 6:

1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
1 3 .
14.
1 5 .
16.
1 7.
18 .

1 10 16
II JOB SRTEXMP6,, 7000, 9000
II OPR 'SORT EXAMPLE 6'
II OPR 'DEFAULT SORT'
II DVC 50
II VOL DSP100
II LBL INPUT
II LFD SORTINl

} Input file device assignment set

II DVC 50
II VOL DSP100
II LBL OUTPUT
II LFD SORTOUT,,INIT
II DVC 51
II VOL DSP101
II LBL WORK
II L FD DM01 , , IN IT

} Output file device assignment set

} Work file device assignment set

II EXEC SORT
I&
II FIN

Line
Number

2-3

4-7

8-11

12-15

16

17

18

Explanation

The JOB statement defines the job named SRTEXMP6 and
minimum and maximum main storage required to run the job.

Gives message to the operator at the system console.

Defines the input file. (See 3.1.1.)

Defines the output file. (See 3.1.1.)

Defines the work file. (See 3.1.1 .)

Initiates the execution of a default sort.

Marks the end of control stream.

Marks the end of card reader operations.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

A-1

Appendix A. Statement Conventions

A.1. GENERAL FORMAT RULES

The following general conventions apply to the coding formats illustrated in this manual
for sort/merge control statements.

• Lowercase letters and words are generic terms representing information that must be
supplied by you. Such lowercase terms may contain hyphens and acronyms (for
read ab ii ity).

•

Example:

[
.BIN={bytes }]

(min-bytes.size-l,freq-1(, ... ,size-n,freq-l])

Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown.

Example:

[

I EL D S ={ ([s t r t - p o s - 1] [, I g t h - 1] [, f o rm - 1] [. s e q - 1]]~
[, st rt - po s - n, I gt h - n [. form - n] [seq - n]])

([strt-pos-1][.lgth-l][,seq-l][, ... ,strt-pos-n,lgth-n
[,seq-n]]),FORMAT=code

Sample Coding:

10 16

SORT FIELDS=(l,4,,10,12),FORMAT=CH

• Information contained within braces I I represents alternate choices, of which only
one may be chosen.

Example:

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

A-2

• Information contained within brackets [] represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets [{}]
signify that one of the specified entries must be chosen if that parameter is included.

Examples:

Brackets:

[.FILE=number]

Braces within brackets:

[

C L 0 S E ={ill:'}]
11wM:I

• Optional parameters having lists of optional entries may have default specifications
supplied by the operating system when the parameters are not specified by you.
Although the default may be specified by you with no adverse effect, it is considered
inefficient to do so. For easy reference, when a default specification occurs in the sort
macro or sort control statement format, it is printed on a shaded background. If, by
parameter omission, the operating system performs some complex processing other
than parameter insertion, it is explained in text.

Example:

• An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

Example:

[
. B L K S I Z E ={ b y t e s }]

(bytes-I[.... ,bytes-8])

• A keyword parameter consists of a word or a code usually, but not always, followed
by an equal sign and a specification. Keyword parameters can be written in any order
in the operand field and are separated by commas.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

A-3

Examples:

Assume that INPFIL is an independent sort/merge control statement with four
optional keyword parameters; OPEN, CLOSE, DATA, and BYPASS.

10 16

INPFIL OPEN=RWD.CLOSE=RWD,DATA=A
INPFIL CLOSE=RWD,DATA=A,OPEN=RWD
INPFIL DATA=A.CLOSE=RWD
INPFIL CLOSE=RWD.BYPASS

• Positional parameter specifications are presented in lowercase letters and require
insertion of a value.

•

Example:

SIZE=number

A keyword parameter may contain a sublist of parameters called subparameters,
which are separated by commas and enclosed in parentheses. The parentheses must
be coded as part of the specification. All subparameters presented in this manual are
positional and can be up to eight alphanumeric characters. They must be coded in the
order shown, and the comma must be retained when a subparameter is omitted,
except for trailing commas .

Examples:

10 16

SORT FIELDS=(l,4,CH.A)
SORT FIELDS=(l.4 .. A)
SORT FIELDS=(l,4)

A.2. CODING RULES

Sort/merge control statements are placed in the control stream between the start-of-data
(/$) and end-of-data (/*) job control statements. Each control statement can appear only
once in your program. Sort/merge control statements should appear in this general format
on the coding form:

COL.
l'.OPERA TIONl'. OPERAND l'.COMMENTS

COL.
SEQUENCE

1 72 73 80

blank

blank variable variable optional or optional

character

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

A-4

• Column 1

The first column or position must be blank for all sort/merge control statements.

• Operation

Use field for defining the operation to be performed. The permissible entries are:

END

INPFIL

MERGE

MODS

OPTION

OUT FIL

RECORD

SORT

The operation field must be the first field you define in a control statement. It starts in
any column after column 1 but cannot extend into column 72 (continuation field).

• Operand

The operands specify the parameters needed to define and execute the sort/merge.
Separate this field from the operation field by one or more blanks and begin the first
operand on the same card as your operation field. Operands are composed of keyword
parameters equated to a value, a set of values (positional parameters), or used as an
indicator without associated values. Embedded blanks are not allowed; anything after
a blank is regarded as a comment.

• Comment

Use the comment field to annotate the sort/merge program. Leave one or more
blanks between the operand field and the comment field.

• Continuation

Column 72 is used for the continuation indicator. A blank indicates that this is the
last image of the statement. You may use any other character to indicate that the
statement is continued on the following image or card. The continuation character is
not included in any operation or operand field.

•

•

•

•

•

•

UP-8819 Rev. 2

• Sequence

SPERRY OS/3
INDEPENDENT SORT /MERGE

A-5

You may use the sequence field (positions 73 through 80) as you wish; however, it is
usually used for sequence numbering and identification.

Continuation statements are logical extensions of the preceding operand or comment. The
statement preceding a continuation statement contains characters through co•umn 71 or
the operand may be discontinued by a comma followed by a blank. In either case, a
character must appear in column 72 to establish a continuation statement. The
continuation of an operand starts in column 16; the continuation of a comment starts in
column 17.

STATEMENT
CONTINUATION

71

operand L...-_______ .;...._ _______ ~ continuation

character blank
comment

• Column 16

73 80

sequence-id

Contains the first characters or delimiter of the continued operand (never a comma) .

• Column 17

Contains the first character of the continued comment.

• Column 71

Is the last column of the continuation statement.

• Column 72

Is any nonblank character; indicates that the next statement is a continuation
statement.

• Columns 73 through 80

Is the sequence identification .

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

B-1

Appendix B. Standard EBCDIC and
ASCII Collating
Sequences

B.1. GENERAL

This appendix provides three useful tables containing collating sequences. The first (Table
B-1) presents a cross-reference table that enables you to compare the following standard
codes commonly used in data processing and OS/3:

• Hollerith punched card code

• EBCDIC (Extended Binary Coded Decimal Interchange Code)

• ASCII (American National Standard Code for Information Interchange)

• Binary bit-pattern (bit-configuration) representation for an 8-bit system

• Hexadecimal representation

Table B-2 provides a convenient chart of OS/3 EBCDIC graphics only, and Table B-3 lists
OS/3 ASCII graphics only.

B.2. EBCDIC/ASCII/HOLLERITH CORRESPONDENCE

Table B-1 is a cross-reference table depicting the correspondences among the Hollerith
punched card code, ASCII, and EBCDIC. The table is arranged in the sorting (or collating)
sequence of the binary bit patterns which have been assigned to the codes, with 0000
0000 being the lowest value in the sequence and 1111 1111 the highest. These binary bit
patterns are sorted in a left to right sequence (most significant to least significant bit).

Note that the column headed Decimal uses decimal numbers to represent the positions of
the codes and bit patterns in this sequence, but counts the position of the lowest value as
the zero position rather than the first. Thus, the position of the highest value bit pattern
1111 1111 is represented in the decimal column by 255, whereas it is actually the 256th
in the sequence. This scheme corresponds to the common convention for numbering
bytes, in which the first byte of a group is byte 0, and is convenient when you are
constructing a 256-byte translation table .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

B-2

The column headed Decimal also represents the collating sequence for the EBCDIC
graphic characters shown in the fourth column of the table; the fifth column, Hollerith
Punched Card Code, contains the hole patterns assigned to these EBCDIC graphics. Empty
space in the fourth column represents the positions of the EBCDIC control characters; the
EBCDIC space character is represented in the fourth column by the conventional notation
SP at decimal position 64, and the corresponding card code is no punches.

The ASCII graphic characters, listed in the sixth column of Table B-1, are also in their
collating sequence, and the hole patterns in the seventh column correspond to the ASCII
graphics. The ASCII space character is represented by the notation SP in the sixth column
at decimal position 32; the corresponding card code is, again, no punches. The empty
space in the sixth column represents the positions of the ASCII control characters. The
shading in the ASCII graphic character column indicates where the 128-character ASCII
code leaves off: there are no ASCII graphic or control characters that correspond to the bit
patterns higher in collating sequence than 0111 1111 (the 128th in Table B-1).

B.2.1. Hollerith Punched Card Code

The Standard Hollerith punched card code specifies 256 hole-patterns in 12-row punched
cards. Hole-patterns are assigned to the 128 characters of ASCII and to 128 additional
characters for use in 8-bit coded systems. These include the EBCDIC set. Note that no
sorting sequence is implied by the Hollerith code itself.

B.2.2. EBCDIC

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters, each of
which is represented by an 8-bit pattern. Table B-1 shows the EBCDIC graphic characters
only; the EBCDIC control characters are not indicated.

B.2.3. ASCII

ASCII comprises 128 coded characters, each represented by an 8-bit pattern, and includes
both control characters and graphic characters. Only the latter are shown in Table B-1.

•

•

•

UP-8819 Rev. 2

•
Decimal

0
1

2
3
4

5

6
7

8

9
10
11

12

13
14
15

16
17

18

19

20
21

22
23
24
25
26
27

28
29
30
31

32
33
34
35

36
37

38

39
40

41

42
43

44
45

46
47
48
49
50

• 51

52
53

54

SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 8-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 1 of 5)

EBCDIC ASCII

Hex a· EBCDIC Hollerith ASCII Hollerith
dec1· Binary Graphic Punched Card Graphic Punched Card
mal Character Code Character Code

00 0000 0000 12-0-9-8-1 12-0-9-8-1
01 0000 0001 12-9-1 12-9-1
02 0000 0010 12-9-2 12-9-2
03 0000 0011 12-9-3 12-9-3
04 0000 0100 12-9-4 _9,_7

05 0000 0101 12-9-5 0-9-8-5
06 00000110 12-9-6 0-9-8-6
07 0000 0111 12-9-7 0-9-8-7
08 0000 1000 12-9-8 11-9-6
09 0000 1001 12-9-8-1 12-9-5
OA 0000 1010 12-9-8-2 0-9-5
OB 0000 1011 12-~-8-3 12-9-8-3
oc 0000 1100 12-9-8-4 12-9-8-4
OD 0000 1101 12-9-8-5 12-9-8-5
OE 0000 1110 12·9-8-6 12-9-8-6
OF 0000 1111 12-9-8-7 12-9-8-7
10 0001 0000 12-11-9-8-1 12-11-9-8-1
11 0001 0001 11-9-1 11-9-1
12 0001 0010 11-9-2 11-9-2
13 0001 0011 11-9-3 11-9-3
14 0001 0100 11-9-4 Q-R-4
15 0001 0101 11-9-5 9-8-5
16 0001 0110 11-9-6 9-2
17 0001 0111 11-9-7 0-9-6
18 0001 1000 11-9-8 11-9-8
19 0001 1001 11-9-8-1 11-9-8-1
lA 0001 1010 11-9-8-2 9-8-7
18 0001 1011 11-9-8-3 0-9·7
lC 0001 1100 11-9-8-4 11-9-8-4
1D 0001 1101 11-9-8-5 11-.:9..:.a.·5
1E 0001 1110 11-9-8-6 11-9-8-6
1 F 0001 1111 11-9-8·7 11-9-8-7
20 0010 0000 11-0-9-8-1 SP No punches
21 0010 0001 0-9-1 I 12-8-7
22 0010 0010 0-9-2 .. _a.7
23 0010 0011 0-9-3 # 8-3
24 0010 0100 0-9-4 $ 11-8·3
25 0010 0101 0-9-5 % 0-8-4
26 00100110 0-9-6 & 12

.2J 00100111 0-9-7 -8.:5.
28 0010 1000 0-9-8 (12-8-5
29 0010 1001 0-9-8-1) 11-8-5
2A 0010 1010 0-9-8-2 . 11-8-4
28 0010 1011 0-9-8-3 + 12-8-6
2C _QQj_Q_j_lOO 0-9-8-4 0-8.:.3.
2D 0010 1101 0-9-8·5 - 11
2E 0010 1110 0-9-8-6 12-8-3
2F 0010 1111 0-9-8-7 I 0-1
30 0011 0000 12-11-0-9-8-1 0 0
31 0011 0001 --9.· 1 1 1
32 0011 0010 9-2 2 2
33 0011 0011 9-3 3 3
34 0011 0100 9-4 4 4
35 0011 0101 9-5 5 5

36 0011 0110 9-6 6 6

B-3

UP-8819 Rev. 2

Decimal

55
56
57
58

59
60
61
62

63
64
65

66
67

68
69
70

71
72
73

74
75
76
77
78
79

80
81

82

83
84

85

86
87
88
89
90
91

92

93
94
95
96
97

98
99

100
101
102
103
104
105
106
107
108
109

---..
SPERRY OS/3

INDEPENDENT SORT /MERGE
B-4

Table 8-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 2 of 5) •
EBCDIC ASCII

He Ka· EBCDIC Hollerith ASCII Hollerith
deci· Binary Graphic Punched Card Graphic Punched Card
mal Character Code Character Code

37 0011 0111 9-7 7 7
38 0011 1000 9-8 8 8
39 0011 1001 9-8-1 9 9
3A 0011 1010 9-8-2 8-2
3B 00111011 9-8-3 ; 11-8-6
3C 00111100 9-8-4 < 12-8-4
30 0011 1101 9-8-5 = 8-6
3E 0011 1110 9-8-6 > 0-8-6
3F 0011 1111 9-8-7 7 0-8-7
40 0100 0000 SP No punches @ 8-4
41 0100 0001 12-0-9-1 A 12-1
42 0100 0010 12-0-9-2 8 12-2
43 0100 0011 12-0-9-3 c 12-3
44 0100 0100 12-0-9-4 0 12-4
45 0100 0101 12-0-9-5 E 12-5
46 01000110 12-0-9-6 F 12-G
47 0100 0111 12-0-9-7 G 12-7
48 0100 1000 12-0-9-8 H 12-8
49 0100 1001 12-8-1 I 12-9
4A 0100 1010 [...12.:.8.:2. J 11-1
4B 0100 1011 12-8-3 K 11-2
4C 0100 1100 < 12-8-4 L 11-3
40 0100 1101 (12-8-5 M 11-4
4E 0100 1110 + 12-8-6 N 11-5 • 4F 01001111 I 12-8-7 0 11-6
50 0101 0000 & 12 p 11-7
51 0101 0001 12-11-9-1 Q 11-8
52 0101 0010 12-11-9-2 R 11-9
53 0101 0011 12-11-9-3 s 0-2
54 0101 0100 12-11-9-4 T 0-3
55 0101 0101 12-11-9-5 u 0-4
56 0101 0110 12-11-9-6 v 0-5
57 0101 0111 12-11-9-7 w 0-6
58 0101 1000 12-11·9·8 x 0-7
59 0101 1001 11-81 y 0-8
5A 0101 1010 I 11-8-2 z 0-9
5B 0101 1011 $ 11-8-3 [12-8-2
5C 0101 1100 . 11-8-4 \ 0-8-2
50 0101 1101 I 11-8-5 I 11-8-2
5E 0101 1110 11-8-6 /\ 11-8-7
5F 0101 1111 /\ 11-8-7 - 0-8-5
60 0110 0000 - 11 8-1
61 0110 0001 I 0-1 a 12-0-1
62 0110 0010 11-0-9-2 b 12-0-2
63 0110 0011 11-0-9-3 c 12-0-3
64 0110 0100 11-0-9-4 d 12-0-4
65 0110 0101 11-0-9-5 e 12-0-5
66 0110 0110 11-0-9-6 f 12-0-6
67 0110 0111 11-0-9-7 g 12-0-7
68 0110 1000 11-0-9-8 h 12-0-8
69 01101001 0-8-1 i IT-ITTr
6A 0110 1010 I

12-11 j 12-11-1 I

68 0110 1011 0-8-3 k 12-11-2
6C 01101100 % 0-8-4 I 12-11-3
60 01101101 - 0-8-5 m 12-11-4 •

..----------------------

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

• Table 8-1. Cross-Reference Table: EBCDICIASCll/Hollerith (Part 3 of 5)

EBCDIC

Hex a·
Decimal dee•· Binary

mal

110 6E 0110 1110
111 6F 0110 1111
112 70 0111 0000
113 71 0111 0001
114 72 0111 0010
115 73 0111 0011
116 74 0111 0100

117 75 0111 0101

118 76 0111 011q

119 77 0111 0111

120 78 0111 1000

121 79 0111 1001

122 7A 0111 1010

123 78 0111 1011

124 7C 0111 1100

125 70 0111 1101

126 7E 0111 1110

127 7F 0111 1111

12B BO 1000 0000

129 Bl 1000 0001

130 B2 1000 0010

• 131 B3 1000 0011

132 B4 1000 0100

133 B5 1000 0101

134 B6 1000 0110

135 B7 1000 0111

136 88 1000 1000

137 B9 1000 1001

13B BA 1000 1010

139 B8 1000 1011

140 BC 1000 1100

141 BO 1000 1101

142 BE 1000 1110

143 BF 1000 1111

144 90 1001 0000

145 91 1001 0001

146 92 1001 0010

147 93 1001 0011

148 94 1001 0100

149 95 1001 0101

150 96 1001 0110

151 97 1001 0111

152 9B 1001 1000

153 99 1001 1001

154 9A 1001 1010

155 913 1001 1011

156 9C 1001 1100

157 90 1001 1101

15B 9E 1001 1110

159 9F 1001 1111

•

EBCDIC Hollerith
Graphic Punched Card

Character Code

> 0-8-6
7 0-8-7

12-11-0
12-11-0-9-1
12-11-0-9-2
12-11-0-9-3
12-11-0-9-4

12-11-0-9-5
12-11-0-9-6
12-11-0-9-7

12-11-0-9-8 .
8-1
8-2

= 8-3
@ 8-4

8-5
~ 8-6 .. B-7

12-0-8-1

a 12-0-1

b 12-0-2

c 12-0-3

d 12-0-4

e 12-0-5
I 12-0-6
g 12-0-7
h 12-0-8
I 12-0-9

12-0-8-2
12-0-B-3
12-0-B-4
12-0-8-5
12-0-8-6
12-0-8-7
12-11-8-1

I 12-11-1
k 12-11-2
I 12-11-3
m 12-11-4
n 12-11-5

0 12-11-6

p 12-11 7

q 12-11-8
r 12-11-9

12-11-B-2
12-11-8-3
12-11-B-4
)2-11-B-5

12-11-8-6
12·11-8-7

ASCII
Graphic

Character

n

0

p
q

ASCII

Hollerith

Punched Card

Code

12-11-5
12-11-6
12-11-7
12-11-8
12-11-9

s 11-0-2
t 11-0-3
u 11-0-4

v 11-0-5

w 11-0-6
x 11-0-7
y 11-0-8

z 11-0-9
{ 12-0

: 12-11
11-0
11-0-1

12-9-7

11-0-9-8-1

0-9-1

0-9-2

0-9-3
0-9-4
11-9-5
12-9-6
11-9-7
0-9-8
0-9-8-1
0-9-8-2
0-9-8-3
0-9-8-4
12-9-B-1
12-9-8-2
11-9-B-3
12-11-0-9-8-1
9-1
11-9-8-2
9-3
9-4
9-5
9-6

12-9-B

9-8

9-8-1
9-B-2
9-B-3
12-9-4
11-9-4

9-8-6
11-0-9-1

B-5

UP-8819 Rev. 2

Decimal

160
161

162

163
164

165
166
167
168
169
170
171
172
173
174

175

176
177

178
179
180
181
182
183
184
185

186
187

188

189
190
191

192
193
194

195

196
197

198

199
200
201
202
203
204
205

206
'207
208
209

SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 8-1. Cross-Reference Table: EBCDIC/ ASCII/Hollerith (Part 4 of 5)

EBCDIC ASCII

Hex a- EBCDIC Hollerith ASCII Hollerith
deci- Binary Graphic Punched Card Graphic Punched Card
mal Character Code Char Jeter Code

AO 1010 0000 11-0-8-1 12-0-9-1
Al 1010 0001 ,-v 11-0-1 12-0-9-2
A2 1010 0010 s 11-0-2 12-0-9-3
A3 10100011 t 11-0-3 12-0-9-4
A4 1010 0100 u 11-0-4 12-0-9-5
A5 1010 0101 v 11-0-5 12-0-9-6
A6 1 010 0110 w 11-0-6 12-0-9-7
A7 10100111 x 11-0-7 12-0-9-8
A8 1010 1000 y 11-0-8 12-8-1
A9 1010 1001 z 11-0-9 12-11-9-1
AA 10101010 11-0-8-2 12-11-9-2
AB 10101011 11-0-8-3 12-11-9-3
AC 1010 1100 11-0-8-4 12-11-9-4
AD 1010 1101 11-0-8-5 12-11 95
AE 1010 1110 11-0-8-6 12-11-9-6
AF 10101111 11-0-8-7 12-11 9 7
BO 1011 0000 12-11-0-81 12 11-9-8
B1 1011 0001 12-11-0-1 11-8-1
B2 1011 0010 12-11-0-2 11-0-9-2
B3 1011 0011 1211-0-3 11-0-9-3
B4 1011 0100 12-11-0-4 11 0·9-4
B5 1011 0101 12-11-0-5 11-0-9-5
B6 1011 0110 12 11-0-6 11-0-9-6
B7 1011 0111 12-11-0-7 11-0-9-7
B8 1011 1000 12-11-0-8 11-0-9-8
B9 1011 1001 12-11-0-9 0-8 1
BA 1011 1010 12-11-0-8-2 12-11-0
BB 1011 1011 12-11-0-8-3 12-11-0-9·1
BC 1011 1100 12-11-0-8-4 1211-0-9 2
BD 1011 1101 12-11-0-8-5 1211-0-9-3
BE 1011 1110 12-11 0-8-6 12-11 0-94
BF 1011 1111 12·11-0-8-7 1211 0-9-5
co 1100 0000 I 12-0

'
12-11 09-6

Cl 1100 0001 A 12 1 12 11-0-9 7
C2 11000010 B 12-2 1211·098
C3 11000011 c 12-3 120-8 1
C4 11000100 D 12-4 12-0-8-2
C5 1100 0101 E 12-5 12 0-8 3
C6 1100 0110 F 12-6 12-0-8-4
C7 1100 0111 G 12-7 12-0-8-5
ca 1100 1000 H 12-8 12-0-8-6
C9 1100 1001 I 12-9 12-0-8-7
CA 1100 1010 12-0-9-8-2 12 11 ·8·1
CB 1100 1011 12-0-9-8-3 12·11-8-2
cc 11001100 12-0-9-8-4 12-11-8-3
CD 1100 1101 12-0-9-8-5 1211-8-4
CE 1100 1110 12-0-9-8-6 12-11-8-5
CF 1100 1111 12-0-9-8-7 12-11-8-6
DO 1101 0000 \ 11-0 I 12-11-8-7
Dl 1101 0001 J 11-1 11-0-8-1

8-6

•

•

•

UP-8819 Rev. 2

•
Decimal

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251

252
253

254
255

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 8-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Pan 5 of 5)

EBCDIC

Hex a- EBCDIC
deci- Binary Graphic
mal Character

02 1101 0010 K
03 1101 0011 L
04 1101 0100 M
05 1101 0101 N
06 1101 0110 0
07 1101 0111 p

08 1101 1000 Q

09 1101 1001 R
DA 1101 1010
DB 1101 1011
DC 1101 1100
DD 1101 1101
DE 1101 1110
OF 1101 1111
EO 1110 0000 \
El 1110 0001

E2 11100010 s
E3 11100011 T
E4 11100100 u
E5 11100101 v
E6 1110 0110 w
E7 1110 0111 x
E8 11101000 y

E9 11101001 z
EA 1110 1010
EB 1110 1011
EC 1110 1100
ED 1110 1101
EE 11101110
EF 11101111
FO 11110000 0
Fl 1111 0001 1
F2 1111 0010 2
F3 1111 0011 3
F4 1111 0100 4
F5 1111 0101 5
F6 1111 0110 6
F7 1111 0111 7
F8 1111 1000 8
F9 1111 1001 9
FA 1111 1010
FB 1111 1011

FC 11111100
FD 1111 1101
FE 1111 1110
FF 1111 1111

Hollerith
Punched Card

Code

11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
12-11-9-8-2
12-11-9-8-3
12-11-9-8-4
12-11-9-8-5
12-11 ·9-8-6
12-11-9-8·7
0-8-2
11-0-9·1
0-2

0-3
0-4
0·5
0-6
0·1
0-8
0-9
11-0-9-8-2
11-0-9-8·3
11-0-9-8-4

11-0-9-8·5
11-0-9-8-6
11-0-9-8-7
0
1

2
3
4
5
6
7

8
9
12-11-0-9-8-2

12-11-0-9-8-3

12-11-0-9-8-4
1 2 · 11 -0-9-8-5
12-11-0-9-8-6
12·11-0-9-8-7

ASCII
Graphic

Character

ASCII

Hollerith
Punched Card

Code

11-0-8-2
11-0-8-3
11-0-8-4
11-0-8-5
11-0-8-6
11-0-8-7
12-11-0-8·1
12-11-0-1
12-11-0-2
12-11-0-3
12-11-0-4
12-11-0-5
12-11-0-6
12-11-0-7
12-11-0-8
12-11-0-9
12-11-0-8-2
12-11-0-8-3
12-11·0-8-4
12-11-0-8-5
12· 11-0-8-6
12-11-0-8· 7
12-0-9-8-2
12-0-9-8-3
12-0-9-8-4
12-0-9-8-5
12-0-9-8-6
12-0-9-8-7
12-11-9-8-2
12-11-9-8-3
12-11-9-8-4
12-11-9-8-5
12-11-9-8-6
12-11-9-8-7
11-0-9-8-2
11-0-9-8-3
11-0-9-8-4
11-0-9-8-5
11-0-9-8-6
11-0-9-8-7
12-11-0-9-8-2

12-11-0-9-8-3
12·11-0-9-8-4
12-11-0-9-8-5
12-11-0-9-8-6
12-11-0-9-8-7

B-7

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

8.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS

B-8

The following table shows the OS/3 collating sequence for EBCDIC characters and
unsigned decimal data. The collating sequence ranges from low (0000 0000) to high (1111
1111). The bit configurations that do not correspond to symbols (e.g., 0-73, 81-89, etc) are
not shown. Some of these correspond to control commands for printers and other devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data is collated
algebraically; i.e., each quantity is interpreted as having a sign.

Table 8-2. 0513 Collating Sequence: EBCDIC Graphics (Part 1 of 2)

Ce>llating
Bit Ce>nfiguratie>n Symbcll Meaning

Sequence

0 0000 0000
64 0010 0000 SP Space

74 0100 1010 I Opening bracket
75 01001011 Period, decimal point
76 0100 1100 < Less than sign
77 01001101 (Left parenthesis
78 0100 1110 + Plus sign
79 0100 1111 ! Exclamation point
80 0101 0000 & Ampersand

90 0101 1010 I Closing bracket
91 0101 1011 $ Dollar sign
92 0101 1100 . Asterisk
93 0101 1101) Right parenthesis
94 0101 1110 ; Semicolon
95 0101 1111 ..., Logical NOT
96 0110 0000 Minus sign, hyphen
97 01100001 I Slash

106 0110 1010 I Vertical bar
107 0110 1011 Comma
108 0110 1100 % Percent sign
109 0110 1101 - Underscore
110 01101110 > Greater than sign
111 0110 1111 ? Question mark

122 0111 1010 Colon
123 0111 1011 # Number sign
124 0111 1100 @ At sign
125 0111 1101 Apostrophe. prime
126 0111 1110 ~ Equals sign
127 0111 1111 " Quotation marks

129 1000 0001 a
130 1000 0010 b
131 10000011 c
132 1000 0100 d
133 1000 0101 e

134 1000 0110 f

135 1000 0111 g
136 1000 1000 h
137 1000 1001 i

145 1001 0001 j
146 1001 0010 k
147 1001 0011 I
148 1001 0100 m

•

•

UP-8819 Rev. 2

•

•

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 8-2. OS/3 Collating Sequence: EBCDIC Graphics (Part 2 of 2)

Collating
Bit Configuration Symbol Meaning

Sequence

149 1001 0101 n
150 1001 0110 0

151 10010111 p
152 1001 1000 q

153 1001 1001 r

161 1010 0001
.....,

Tilde
162 1010 0010 s
163 10100011 t
164 1010 0100 u
165 1010 0101 v
166 1010 0110 w
167 10100111 x
168 1010 1000 v
169 1010 1001 z

192 1100 0000 { Opening brace
193 1100 0001 A
194 1100 0010 B
195 11000011 c
196 11000100 D
197 11000101 E
198 11000110 F
199 1100 0111 G
200 1100 1000 H

201 1100 1001 I

208 1101 0000 ~ Closing brace
209 1101 0001 J
210 1101 0010 K
211 1101 0011 L
212 1101 0100 M
213 1101 0101 N
214 1101 0110 0
215 1101 0111 p

216 1101 1000 a
217 1101 1001 A

224 11100000 ' Reverse slant
226 11100010 s
227 1110 0011 T
228 11100100 u
229 11100101 v
230 11100110 w
231 1110 0111 x
232 11101000 y

233 11101001 z

240 1111 0000 0
241 1111 0001 1
242 1111 0010 2
243 1111 0011 3
244 1111 0100 4
245 1111 0101 5
246 1111 0110 6
247 1111 0111 7
248 1111 1000 8
249 1111 1001 9

B-9

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

B.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS

8-10

Table 8-3 shows the OS/3 collating sequence for ASCII characters and unsigned decimal
data. The collating sequence ranges from low (0000 0000) to high (0111 1111). Bit
configurations that do not correspond to symbols are not shown.

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the signed
numeric data formats are collated algebraically; i.e., each quantity is interpreted as having
a sign.

Table 8-3. OS/3 Collating Sequence: ASCII Graphics (Part 1 of 2)

Collating
Bit Configuration Symbol Meaning

Sequence

0 0000 0000 Null
32 0010 0000 SP Space
33 0010 0001 ! Exclamation mark
34 0010 0010 " Quotation mark
35 0010 0011 # Number sign
36 0010 0100 $ Dollar sign
37 0010 0101 % Percent sign
38 0010 0110 & Ampersand
39 0010 0111 Apostrophe, prime
40 0010 1000 (Opening parenthesis
41 0010 1001 I Closing parenthesis
42 0010 1010 . Asterisk
43 0010 1011 + Plus sign
44 0010 1100 Comma
45 0010 1101 Hyphen, minus sign
46 00101110 Period, decimal point
47 0010 1111 I Slant
48 0011 0000 0
49 0011 0001 1
50 0011 0010 2
51 0011 0011 3
52 0011 0100 4
53 0011 0101 5
54 0011 0110 6
55 0011 0111 7
56 0011 1000 8
57 0011 1001 9
58 0011 1010 : Colon
59 0011 1011 Semicolon
60 0011 1100 < Less than sign
61 00111101 = Equals sign
62 0011 1110 > Greater than sign
63 0011 1111 ? Question mark
64 0100 0000 @ Commercial at sign
65 0100 0001 A
66 01000010 B
67 0100 0011 c
68 0100 0100 D
69 0100 0101 E
70 0100 0110 F
71 01000111 G
72 0100 1000 H
73 0100 1001 I
74 0100 1010 J
75 0100 1011 K
76 01001100 L
77 0100 1101 M

•

•

•

UP-8819 Rev. 2

•

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Table 8-3. OS/3 Collating Sequence: ASCII Graphics (Part 2 of 2)

Collating
Bit Configuration Symbol Meaning

Sequence

78 01001110 N
79 0100 1111 0
80 0101 0000 p

81 0101 0001 Q

82 0101 0010 R
83 0101 0011 s
84 0101 0100 T
85 0101 0101 u
86 0101 0110 v
87 0101 0111 w
88 0101 1000 x
89 0101 1001 y

90 0101 1010 z
91 0101 1011 [Opening bracket
92 0101 1100 \ Reverse slant
93 0101 1101 I Closing bracket
94 0101 1110 /\ Circumflex
95 01011111 - Underscore
96 0110 0000 Grave accent
97 0110 0001 a
98 0110 0010 b
99 0110 0011 c
100 0110 0100 d
101 0110 0101 e
102 0110 0110 f
103 01100111 g
104 01101000 h
105 0110 1001 i
106 0110 1010 j
107 01101011 k
108 0110 1100 I

109 01101101 m
110 01101110 n
111 0110 1111 0

112 0111 0000 p
113 0111 0001 q

114 0111 0010 r
115 0111 0011 s
116 0111 0100 t
117 0111 0101 u
118 0111 0110 v
119 0111 0111 w
120 0111 1000 x
121 01111001 y

122 01111010 z
123 0111 1011

f
Opening brace

124 0111 1100 Vertical line
125 0111 1101 L_ Closing brace
126 01111110 Tilde

B-11

•

•

....--------·----- -------- ----

•

•

•

UP-8819 Rev. 2

C.1. GENERAL

SPERRY OS/3
INDEPENDENT SORT /MERGE

C-1

Appendix C. Control Statement
Summary

This appendix summarizes the sort/merge control statements (in alphabetical order) and is
provided for quick reference only. Section 3 describes the sort/merge control statements
in more detail.

C.2. END

Function:

Notifies sort/merge that all sort/merge control statements have been processed and
that program execution may take place.

Format:

LABEL 60PERATION6 OPERAND

END

The END statement is an optional sort/merge control statement. It is not to be used when
sort/merge specifications are embedded in a jproc. Otherwise, the run processor will
mistakenly interpret the END statement as the END directive for the jproc.

C.3. INPFIL

Function:

Defines the input files to sort/merge and specifies the procedures to be followed
when input tape files are opened and closed. This statement is not required if disk
input files are the source of data. However, if the RECORD control statement is used,
the INPFIL statement must also be included .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-2

Format:

LABEL 60PERATION6 OPERAND

IN PF I L fl! L K S I Z E ={ b y t e s }]
L (bytes-I[.... ,bytes-8])

[,BUFOFF=n]

[.BYPASS]

['""~{i:"}]
['DAT A= {,.J]
[, EXIT]

['OPEN={-~D}]

[,SK I PBYTE=n]

[
.VOLUME={ vol }]

vol-l[..... vol-8])
See note.

NOTE:

VOLUME is provided and accepted for compatibility with other systems; no action is
performed by OS/3 sort/merge.

Keyword Parameters:

BLKSIZE=bytes

Defines the block size of the input files. For a sort procedure, specify the length
of the largest input block. For a merge-only operation, use this format only if all
input files have the same block size.

BLKSIZE=(bytes-1[, ... ,bytes-8])

This format is used for a merge-only operation when multiple input files have
different block sizes.

If the BLKSIZE keyword parameter and the RCSZ parameter of the RECORD
control statement are both omitted, the size of the first block processed is
assumed to be the size of all input blocks.

BUFOFF=n

A decimal number of 0 to 99 defining the length of a block prefix for an ASCII
data block structure.

•

•

•

•

•

•

UP-8819 Rev. 2

BYPASS

SPERRY OS/3
INDEPENDENT SORT /MERGE

C-3

Directs the sort/merge input phase to ignore or bypass all unreadable blocks of
data on the input file. Sort/merge maintains no record of the errors encountered.

CLOSE=NORWD
Specifies that input tape files are not to be rewound on closing.

CLOSE=RWD
Specifies that input tape files are to be rewound to load point on closing.

CLOSE=RWI or CLOSE=fm
Specifies that input tape files are to be rewound with interlock on closing.

DATA=A
Specifies that the data is recorded in ASCII.

DATA=I

EX I T

Specifies that the data is recorded in EBCDIC.

Required when the user provides his own input routine for reading the input file.
No other parameters are to be specified when the EXIT keyword parameter is
coded .

OPEN=NORWD
Specifies that input tape files are not to be rewound to load point on opening.

OPEN41i
Specifies that input tape files are to be rewound to load point on opening.

SKIPBYTE=n
Indicates the location of the first data record in relation to the beginning of the
block. The n is the number of bytes preceding the first data record.

C.4. MERGE

Function:

Defines a merge-only operation. This statement is used in place of the SORT
statement for merging files that have been previously sequenced. It defines the key
fields, their formats, and the number of input files involved .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-4

Format:

LABEL 60PERATION6 OPERAND

MERGE

NOTE:

F I ELD S= ([st rt - po s - 11 [, I gt h - 11 [, form - 11
(seq-1](..... strt-pos-n, lgth-n
(. form-n][. seq-nl 1)

([strt-pos-11(.lgth-ll[.seq-ll
[.... ,strt-pos-n, lgth-n
[,seq-nll) .FORMAT=code

[
,MERGEP=ou t put - f i I e - number·] See note.

input-file-number

The MERGEP parameter is provided and accepted for compatibility with other
systems: no action is performed.

Keyword Parameters:

F I ELD S={ ([s t r t - po s - 1 l [. I g t h - 1 1 [. f o rm - 11 [. seq - 1 l }
[..... st rt - po s - n. I gt h- n [.form- n 1 [.seq - n 11)

([strt-pos-11(.lgth-ll[.seq-ll[..... strt-pos-n,lgth-nl(.seq-n]l).
FORMAT=code

Defines the merge key fields. The data may vary for each key field, or it may be
the same for all key fields. A maximum of 12 fields may be specified. If omitted,
one key field is assumed, beginning in position 1, the same length as the record
up to 256 bytes, with character format. Ascending sequence is assumed.

If any of the subparameters are omitted, their associated commas must be
retained, except for trailing commas.

Positional Subparameters:

strt-pos-n

A decimal number specifying the starting point of a key field relative to the
beginning of the record.

Key fields are numbered consecutively, starting with 1 for the most
significant key field, 2 for the next, and so on. All key fields, with the
exception of binary key fields, must start on a full byte boundary. The
starting point is defined by specifying the number of that byte relative to the
beginning of the record. For example, subparameter strt-pos-1 specified as 9
indicates that the most significant key field begins at byte 9 of the record.

Binary key fields are permitted to start on a bit boundary. In this case, the
strt-pos-n subparameter is specified in a byte.bit format. As an example,
assume that key field 1 starts at bit 2 of byte 9 of the record. The strt-pos-1
subparameter is specified as 9.2.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-5

I gt h - n

A decimal number specifying the length of a key field. Key field lengths are
specified in full bytes with the exception of binary key fields, which can
begin on a bit boundary. Key field lengths expressed in full bytes are defined
by whole numbers written in any of the following formats:

n
n.
n.O

Binary key fields starting on a bit boundary require a byte.bit format for
defining key field length. The number of bits specified must not exceed 7.
For example, a key field length of 6 bits would be written as 0.6. If the key
field extends from bit 2 of byte 10 through bit 5 of byte 12, the lgth-n
subparameter would be specified as 2.4.

form-n

A code consisting of two or three alphabetic characters specifying the data
format of the key field. This subparameter is used when the data format
varies for each key field. If this optional subparameter is not specified, the
format is assumed to be character (CH). If all key fields have the same
format, the FORMAT=code subparameter can be used. The format codes
and their maximum allowable field lengths are:

Format Allowable Field
Code Description Length

AC EBCDIC data in ASCII 1 - 256 bytes
collating sequence

ASL ASCII numeric data 2 - 256 bytes
leading sign

AST ASCII numeric data 2 - 256 bytes
trailing sign

Bl Unsigned binary 1 bit to 256 bytes

• Character (EBCDIC or (ASCII) 1 - 256 bytes

CLO Numeric data overpunched 1 - 256 bytes
leading sign

CSL Leading sign numeric 2 - 256 bytes

CST Trailing sign numeric 2 - 256 bytes

CTO Numeric data overpunched 1 - 256 bytes
trailing sign

UP-8819 Rev. 2

Format
Code

Fl

FL

MC

PD

USO

ZD

SPERRY OS/3
INDEPENDENT SORT /MERGE

Description

Fixed-point integer

Floating-point

Multiple character, user-specified
collating sequence

Packed decimal

Character, user-specified
collating sequence

Zoned decimal

C-6

Allowable Field
Length

1 - 256 bytes

- 256 bytes

- 256 bytes

1 - 32 bytes

1 - 256 bytes

1 - 32 bytes

seq - n

An alphabetic character specifying the sorting sequence of the key field, A
for ascending order and D for descending order. If omitted, ascending order
(A) is assumed. In a merge-only application, the output file must be
sequenced in the same order as the input file.

FORMAT=code

A code consisting of two or three alphabetic characters specifying the data
format of the key fields. This subparameter is used when the data format for
all key fields is the same. The code specifications for this subparameter are
the same as those listed for the form-n subparameter. The form-n
subparameter must not be specified when FORMAT=code is used.

FILES=number or ORDER=number

The FILES and ORDER keywords may be used interchangeably. Specifies the
number of input files that are to be merged. Independent sort/merge can merge
data from 2 to 16 previously sequenced input files. Input files are defined by the
LFD job control statement and are assigned the names SORTIN1 through
SORTIN9 for the first nine input files and SORTINA through SORTING for the last
seven input files.

If FILES and ORDER are both omitted, sort/merge assumes that 16 files are
being merged.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-7

C.5. MODS

Function:

Defines the user own-code routines that are to be included in the sort/merge
operation. Also causes sort/merge to load and execute the system-supplied DELETE
routine to perform automatic data reduction.

Format 1:

LABEL 60PERATION6 OPERAND

MODS PHn=(module-name,[length],exit-code
[.... ,exit-code])[, ... ,PHn=(module-name,
[length],exit-code[, ... ,exit-code])]

Keyword Parameters:

PHn=(module-name,[length],exit-code[, ... ,exit-code])

PHn

Identifies a load module containing one or more user own-code routines to be
accessed during a specific operational phase or during all operational phases.

This keyword parameter must be repeated for each phase requiring user own­
code exits and for those routines which are accessed during all phases. Multiple
calls of the keyword are separated by commas, with a continuation character
coded in column 72, if necessary.

Specifies the sort/merge phase in which the user own-code exit routine is to be
executed or an identifying code for an exit routine which is to be accessed from
all operational phases. The values for n are:

n Description

1 Phase 1 (input internal sort). Exit codes are E11, E15, and E18.
3 Phase 3 (final merge-output). Exit codes are E31, E32, E35, E38,

and E39.
6 All phases (record sequencing routine). Exit code is E65.
7 All phases (data reduction routine). Exit code is E75.
8 All phases (user-defined collation sequencing). Exit code is E84.

Positional Subparameters:

module-name

Specifies the name of the load module for the user own-code routine. The
module name may be one to eight characters in length .

- --------------------------------------

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-8

length

A decimal number specifying the length (in bytes) of the user own-code load
module.

If omitted, the length is obtained from the load module header record.

exit-code

Specifies the program modification exit code to be used; for example, E11,
E35, etc. All exit codes applicable to a particular phase must be specified as
subparameters to that phase. Exit codes are listed in Table 3-2.

Format 2:

LABEL 60PERATION6 OPERAND

MODS PH7=(DELETE,,E75)

Keyword Parameters:

PH7=(DELETE, ,E75)

PH7

Identifies a system-supplied load module that contains an automatic data
reduction routine to delete record duplication from your files.

Specifies the identifying code that allows the load module to be accessed from all
operational phases of the sort program.

Positional Subparameters:

DELETE

E75

Specifies the name of the load module.

Specifies the exit code that the sort/merge uses to exit from the sort
program and pass control to the DELETE routine.

C.6. OPTION

Function:

Specifies sort/merge options that do not apply to any of the other control statements.
These are tag sort specification, key length specifications for direct access input
records, label specifications for input, output, and work files, working-storage
specifications, error message printing options, restart specification, output block
verification for direct access devices, and calculation of the working-storage
requirements by the sort/merge.

•

•

•

•

•

•

UP-8819 Rev. 2

Format:

LABEL 60PERATION6

OPTION

NOTE:

SPERRY OS/3
INDEPENDENT SORT /MERGE

OPERAND

[ADDROUT=g}]

[{~:~~::::"{::,})]
['CSPRAM={~s}]

[, KEYL E N=b y t es]

C-9

[,LABEL=(output, input-1[, ... , input-n] ,work)]

[" "''"{rn: ICAl)]

[
, RE S E RV={ w o r k - f i I e - n am e }]

(work - f i I e - name [, output - f i I e - name])

[,RESTART]

[
.SHARE={work-file-name }]

(work-file-name[, input-file-name])

[.STORAGE=bytes]

[,VERIFY]

[, AL TWK]

[.DUMP]

[,ERASE]

[.ROUTE]

[,SORTIN]

[, SORTOUT]

[,SORTWK]

See note.

The ALTWK, DUMP, ERASE, ROUTE, SORTIN, SORTOUT, and SORTWK parameters
are provided and accepted for compatibility with other systems; however, no action is
performed by OS/3 sort/merge.

Keyword Parameters:

ADDROUT={~}

Specifies that a tag sort is to be performed. If the user is providing the input
through an own-code routine, each record must be preceded by a 10-byte field
containing its direct access address. A tag sort may be specified only when input
is from nonindexed disk files .

UP-8819 Rev. 2

ADDROUT=A

SPERRY OS/3
INDEPENDENT SORT /MERGE

C-10

Specifies that only the direct access addresses of the input records are to appear
in the output file.

ADDROUT=D
Specifies that both the direct access addresses and the sort key fields of each
record are to comprise the final output.

The following restrictions apply when ADDROUT is used:

1. Output block size must be a multiple of:

a. 10 bytes for ADDROUT=A

b. The sum of the sort key field lengths plus 10 bytes for ADDROUT=D

2. The lgth-2 and lgth-3 values in the LENGTH keyword of the RECORD control
statement must be used. The lgth-2 value must be 10 bytes plus the sum of the
sort key field lengths. The lgth-3 value must be:

a. 10 bytes for ADDROUT=A

b. 10 bytes plus the sum of the sort key field lengths (after any user
modification at exit E35) for ADDROUT=D

CALCAREA or CALCAREA=NO
Specifies that sort/merge is to calculate the optimum working-storage area in a
disk sort. display the estimated sort time in minutes and the number of cylinders
required for work space, and then terminate the job step.

CA LCAR EA=YE S
Specifies that sort/merge is to calculate optimum working-storage area, display
information, and then execute the sort.

If the CALCAREA parameter is used, the SIZE parameter on the SORT control
statement should be specified; otherwise, the default value of 25,000 records
will be used in calculating the working-storage area.

CSP RAM= YES
Specifies that sort/merge parameters may be accepted from the job control
stream at run time through PARAM control statements. The keyword parameters
that can be entered through the control stream are BIN, DISC, NOCKSM,
RESERV, RESUME, SHARE, and TAPE.

If CSPRAM is omitted, sort/merge parameters will not be accepted from the
control stream.

KEYLEN=bytes
Required by data management when direct access input blocks have leading
keys. Defines the length of the key field.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

LABEL=(output. input-I[, ... , input-n],work)

C-11

Indicates the type of labels for output, and work files: S for standard, N for
nonstandard, or U for unlabeled tapes. Files with nonstandard labels must be
opened and closed by the user via user exits E11 and E31.

If omitted, sort/merge assumes standard output, input. and work file labels.

PR I NT=lillJ
Specifies that all error messages are to be written to the job log for subsequent
printing.

PRINT=CRITICAL
Specifies that ony fatal error messages are to be written to the job log.

PRINT=NONE
Specifies that no error messages are to be written to the job log. The sort control
statements will always be written, however.

RESERV={work-f i le-name }
(work - f i I e - name [, output - f i I e - name])

Allows a tape unit to function as a work file device during the input and
intermediate phases of sort/merge operation and as the device for the output
data file during the output phase. Messages instructing the operator when to
unload the scratch tape and mount the output tape are displayed on the system
console. The same device cannot be used for both RESERV and SHARE.

Positional Subparameters:

work-file-name
Identifies the reserved tape unit by a standard sort work file name
(SM01, ... ,SM06). The tape unit is associated with this file name by an LFD
statement in the job control stream.

output-file-name

RESTART

Identifies the reserved tape unit by the standard output file name SORTOUT
or, if the user is supplying his own output routine, by the user-specified file
name assigned on the LFD job control statement. If this subparameter is
coded, the information displayed on the console will include the name of the
output file the operator is to mount.

Required when an interrupted tape sort is to be restarted at the last check point.
Restart information identifying each check point is displayed on the system
console. To restart an interrupted sort/merge, the control stream must be
updated and resubmitted. The updated control stream must include the PARAM
job control statement containing the proper specification for the RESUME
keyword parameter .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-12

SHARE={work-ti le-name }
(work-ti le-name[, input-ti le-name])

Allows a tape unit assigned to sort/merge as an input device to be used for a
sort work file during the intermediate and ouput phases. Messages instructing
the operator when to unload the input tape and mount a scratch tape are
displayed on the system console. The same device cannot be used for RESERV
and SHARE.

Positional Subparameters:

work-ti le-name

Identifies the shared tape unit by a standard sort work file name
(SM01, .. .,SM06). The tape unit is asociated with this file name by an LFD
statement in the job control stream.

input-ti le-name

Identifies the shared tape unit by the standard input file name SORTINn or,
if the user is supplying his own input routine, by a user-specified file name
assigned on an LFD job control statement. If this subparameter is coded, the
information displayed on the system console will include the name of the
input file the operator is to demount.

STORAGE=bytes

Specifies the number of bytes of main storage allocated to sort/merge. If this
parameter is omitted, sort/merge obtains this information from job control.

VERIFY

Specifies that each output block is to be checked to ensure that it is written
correctly when the output file is on a direct access device.

C.7. OUTFIL

Function:

Defines the output file to sort/merge and specifies the procedures for opening and
closing output tapes. The OUTFIL control statement is not required if:

• both input and output files are on disk;

• the output file is to have the same block size and record size as the input file;
and

• the output file is a single-partition file or a predefined multipartitioned file.

If the output file has been predefined, the first optional parameter of the LFD
statement, specifying the maximum number of extents in the file, should be omitted.

If the OUTFIL control statement is used to define a predefined output file, all file
specifications must be the same as when the file was created, or an error will result.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-13

• Format:

•

•

LABEL L':.OPERATIONL':.

OUTF IL

NOTE:

OPERAND

[BLKSIZE=bytes]

[,BUFOFF=n)

[. EXIT I

[F 1 L TYPE=Hr:M}] see note.

[.NOTPMK]

['NPTN={lumber}] See note.

[' OPEN={•WD}]

[RCSZ=bytes]

[S I ZE=p er cent age) } See note.
[TYPE=type]

[UOS=ext-percent)

The FILTYPE, NPTN, SIZE, and TYPE parameters are provided and accepted for
compatibility with other systems; no action is performed by OS/3 sort/merge.

Keyword Parameters:

BLKS I ZE=bytes

Defines the output file block size when the output file is a tape or disk file.

If the BLKSIZE keyword parameter is omitted and the RCSZ parameter is not specified
elsewhere, sort/merge assumes a block size equal to the first output block.

BUFOFF=n
A decimal number from O to 99 defining the length of a block prefix for an ASCII
data block structure.

CLOSE=NORWD

Specifies that the tape output file is not to be rewound on closing.

CLOSE=RWD
Specifies that the tape output file is to be rewound on closing .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-14

CLOSE=RWI or CLOSE-I.II'::

EXIT

Specifies that the tape output file is to be rewound with interlock on closing.

Required when a user output routine is provided for writing the output file. No
other parameters should be specified when the EXIT parameter is used.

NOTPMK

Specifies that no tape mark is to be written before the first data record on each
volume in the tape output file.

OPEN=NORWD

Specifies that the tape output file is not to be rewound to load point on opening.

OPEN=lll

Specifies that the tape output file is to be rewound to load point on opening.

RCSZ=bytes

Indicates the maximum size of the records written to a disk output file.

If RCSZ is omitted, sort/merge supplies the same number of bytes as the input
file record size.

TYPE=type

Defines the type of data written to a specific partition in the output file: D for
ASCII variable-length records; F for fixed-length records; V for variable-length
records.

If omitted, fixed-length records are assumed.

UOS=ext-percent

Specifies the percentage of secondary storage a !location assigned to a disk
output file. Up to 100 percent may be specified.

C.8. RECORD

Function:

Defines the type and length of the data records to be sorted or merged and provides
the capability of deleting records from a file by character identification. This statement
is required if input is from a tape file. It is not required for disk input files unless files
contain variable-length records, length modifications are to be made, or input is by a
user exit routine. However, if the INPFIL control statement is included, the RECORD
control statement must also be included.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-15

• Format:

•

•

LABEL 60PERATION6

RECORD

OPERAND

I
LENGTH=(lgth-1[, lgth-2][, lgth-3])

[' lgth-4][' lgth-5])
RCSZ=bytes

[TYPE=l~)J

[
,
8 1

N=1 ~ ~ ! ~~by t e ~ , s i z e - 1 , f r e q - l IJ
[, s1ze-n,freq-n])

[,DEBLANK=(delete-char,byte-position)]

Keyword Parameters:

LENGTH=(lgth-1[, lgth-2][, lgth-3][, lgth-4][, lgth-5])

Establishes a sublist that specifies record length information. This sublist can
describe either fixed-length or variable-length records for input, internal sort, and
output phases of sort/merge operation.

Positional Subparameters:

I gt h - 1

A decimal number specifying the input record length in bytes for fixed­
length records or the maximum input record length for variable records. The
length specified must not exceed 32,767 bytes.

I gt h - 2

A decimal number specifying the length (in bytes) of each record released to
the internal sort phase for fixed-length records or the maximum length
record for variable-length records.

If omitted, sort/merge assumes lgth-1 by default.

This subparameter should not be specified for a merge-only operation.
However, its associated comma must be retained.

I gt h - 3

A decimal number specifying the output record length in bytes for fixed­
length records or maximum output record length for variable-length records
written to tape or single-partition disk output files. Output record lengths
written to multipartitioned disk files are specified by use of the RCSZ
keyword parameter in the OUTFIL control statement.

If omitted, lgth-2 is assumed for sort operations, and lgth-1 is assumed for
merge-only operations by default.

UP-8819 Rev. 2

lgth-4

SPERRY OS/3
INDEPENDENT SORT /MERGE

C-16

A decimal number specifying the minimum input record length in bytes for
variable-length records.

If omitted, this information is obtained from the BIN specification.

lgth-5

A decimal number specifying the input record length (in bytes) for the
variable-length records that appear most frequently in the input file.

If omitted, this information is obtained from the BIN specification.

RCSZ=bytes

Specifies the record length for fixed-length records or the maximum record size
for variable-length records.

If input is from sequential or nonindexed disk files and both of these parameters are
omitted along with the BLKSIZE parameter on the INPFIL sort control statement,
sort/merge defaults to the input record size supplied by data management.

TYPE={·~•) I
v

Specifies the type of data records to be processed by sort/merge. The
specifications provided in this keyword parameter apply only to tape and single­
partition disk files. The specifications for data record types contained in
multipartitioned disk files are defined in the TYPE keyword parameter of the
OUTFIL control statement.

TYP E=D
Specifies that the data records are ASCII format variable-length records.

TY P E=F

Specifies that the data records are fixed length.

TYPE=V

Specifies that the data records are variable length.

BIN={bytes }
(min-bytes,size-l,freq-1(, ... ,size-n,freq-n])

Specifies the size of fixed-length subrecords (BIN size) when variable-length
records are to be sorted, or provides the information from which sort/merge can
calculate the subrecord size. The BIN keyword parameter should be coded if the
lgth-4 and lgth-5 subparameters of the LENGTH keyword are omitted or if RCSZ
is used in place of the LENGTH keyword.

BIN=bytes

Specifies the number of bytes into which variable-length records are to be
subdivided. The BIN size must be large enough to contain all sort key fields
within each record, plus the 4-byte record length field.

•

•

•

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-17

BI N= (mi n - by t es , s i z e - 1 , f re q - 1 [, ... , s i z e - n , f re q - n])

Positional Subparameters:

min-bytes

Specifies the minimum number of bytes into which variable-length records
may be subdivided. The number must be large enough to accommodate all
sort key fields within each record, plus the 4-byte record length field.

s i z e - 1

Defines the record length (in bytes) that appears most frequently in the file.

freq-1

Specifies either the frequency (percentage) or estimated number of size-1
records in the file. If the number is less than 100, sort/merge assumes that
it is a percentage; if greater than 100, it is assumed to be an estimate of the
number of records in the file.

s i z e - n

Optionally defines additional record lengths (in bytes) that appear frequently
in the file. Up to six record lengths may be defined.

freq-n

Specifies either the frequency (percentage) or estimated number of size-n
records in the file. The sum of the records specified does not have to equal
100 percent of the file.

If the BIN keyword is omitted, BIN size is calculated from lgth-4 of the LENGTH
parameter or from the FIELDS parameter on the SORT statement.

DEBLANK=(delJte-char,byte-position)

Deletes specific records from the file. The deleted records are identified by
defining a specific character contained within a particular byte of the record.

Positional Subparameters:

delete-char

The identifying character that, when found in the byte specified by the byte­
position subparameter, causes the record to be deleted from the file.

byte-position

The position of the character (in bytes) relative to the start of the record; for
example, 1, indicating the first byte of the record, 2, the second byte, and so
on .

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-18

C.9. SORT

Function:

Defines the sort key fields and their sorting sequence. It also defines the type and
number of auxiliary storage devices to be used, the approximate number of records to
be sorted, and the number of input files.

Format:

LABEL 60PERATION6 OPERAND

SORT

NOTE:

[

F I E L D S =1([s t r t - po s - 1] [, I gt h - 1] [, f o rm - 1])]
[,seq-1][..... strt-pos-n. lgth-n
[.form-n][.seq-n]])

([strt-pos-1][.lgth-l][.seq-l]
[, strt-pos-n,
I gt h - n [. seq - n]]) . F 0 RMA T=c ode

[
.CO p Y={ ~ ~ ~ u t - f i I e - numb e r . }]

output-file-number

See note.

[u~:~rn umb e]

[·FILE={;umber}]

[· NOCKSM={ nJ
[.SIZE=number]

[
.SORT P=o u t put - f i I e - number·]

input-file-number

[
.{CHPT }] See note.

CHKPT

See note.

The COPY, SORTP, and CHPT /CHKPT parameters are provided and accepted for
compatibility with other systems; however, no action will be performed by
sort/merge.

Keyword Parameters:

F I ELD S={ ([st r t - po s - 1] [. I gt h - 1] [, form - 1] [. seq - l] [..... st r t - po s - n . I gt h - n }
[.form- n] [,seq - n J l)

([st rt - po s - l] [. I gt h - l] [.seq - l] [, st rt - po s - n. I gt h - n [.seq - n]]).
FORMAT=code

Defines the sort key fields. The data format may vary for each key field, or it may
be the same for all key fields. A maximum of 12 key fields may be specified. If
omitted, one key field is assumed, beginning in position 1, the same length as
the record up to 256 bytes, with character format. Sorting is in ascending
sequence.

If any of the subparameters are omitted, their associated commas must be
retained, except for trailing commas.

•

•

•

UP-8819 Rev. 2 SPERRY OS/3
INDEPENDENT SORT /MERGE

C-19

• Positional Subparameters:

•

•

strt-pos-n

A decimal number specifying the starting point of a key field relative to the
beginning of the record.

Key fields are numbered consecutively, starting with 1 for the most
significant key field, 2 for the next, and so on. All key fields, with the
exception of binary key fields, must start on a full byte boundary. The
starting point is defined by specifying the number of that byte relative to the
beginning of the record. For example, subparameter strt-pos-1 specified as 9
indicates that the most significant key field begins at byte 9 of the record.

Binary key fields are permitted to start on a bit boundary. In this case, the
strt-pos-n subparameter is specified in a byte.bit format. As an example,
assume that key field 1 starts at bit 2 of byte 9 of the record. The strt-1
subparameter is specified as 9.2.

I gt h - n

A decimal number specifying the length of a key field. Key field lengths are
specified in full bytes, with the exception of binary key fields, which can
begin on a bit boundary. Key field lengths expressed in full bytes are defined
by whole numbers written in any of the following formats:

n
n.
n.O

Binary key fields starting on a bit boundary require a byte.bit format for
defining key field length. The number of bits specified must not exceed 7.
For example, a key field of 6 bits would be written as 0.6. If the key field
extends from bit 2 of byte 10 through bit 5 of byte 12, the lgth-n
subparameter would be specified as 2.4.

form - n

A code consisting of two or three alphabetic characters specifying the data
format of the key field. This subparameter is used when the data format
varies for each key field. If this optional subparameter is not specified, the
format is assumed to be character (CH). If all key fields have the same
format, the FORMAT=code subparameter can be used. The format codes
and their maximum allowable field lengths are:

Format Allowable Field
Code Description Length

AC EBCDIC data in ASCII 1 - 256 bytes
collating sequence

ASL ASCII numeric data 2 - 256 bytes
leading sign

UP-8819 Rev. 2

Format
Code

AST

Bl

CH

CLO

CSL

CST

CTO

Fl

FL

MC

PD

USO

ZD

SPERRY OS/3
INDEPENDENT SORT /MERGE

Description

ASCII numeric data
trailing sign

Unsigned binary

Character (EBCDIC or ASCII)

Numeric data overpunched
leading sign

Leading sign numeric

Trailing sign numeric

Numeric data overpunched
trailing sign

Fixed-point integer

Floating point

Multiple character, user-specified
collating sequence

Packed decimal

Character, user-specified
collating sequence

Zoned decimal

C-20

Allowable Field
Length

2 - 256 bytes

1 bit to 256 bytes

1 - 256 bytes

1 - 256 bytes

2 - 256 bytes

2 - 256 bytes

1 - 256 bytes

1 - 256 bytes

1 - 256 bytes

1 - 256 bytes

1 - 32 bytes

1 - 256 bytes

1 - 32 bytes

seq-n
An alphabetic character specifying the sorting sequence of the key field, A
for ascending order and D for descending order. If omitted, ascending order
is assumed.

FORMAT=code
A code consisting of two or three alphabetic characters specifying the data
format of the key fields. This subparameter is used when the data format for
all key fields is the same. The code specifications are the same as those
listed for the form-n subparameter. The form-n subparameter must not be
specified when FORMAT=code is used.

DISC=number
Indicates the number of disk files available to sort/merge for working storage.
Disk files are assigned in LFD job control statements or in WORK jproc calls by
means of the standard disk file names DM01, ... ,DM08 or $SCR1 , ... ,$SCR8.

•

•

•

•

•

•

UP-8819 Rev. 2

TAPE=number

SPERRY OS/3
INDEPENDENT SORT /MERGE

C-21

Indicates the number of tape files available to sort/merge for working storage.
Tape files are assigned in the LFD job control statements by means of the
standard sort tape file names SM01,. .. ,SM06.

WORK=number
May alternately be used for specifying the number of disk or tape files available
to sort/merge for working storage.

A maximum of eight disk files or six tape files may be assigned for working storage. If
the DISC, TAPE, and WORK keyword parameters are omitted, sort/merge determines
the number and type of work files assigned from the PUBS list generated by job
control when devices are assigned to the job. If no work files are assigned to the job,
an internal (main storage) sort is performed.

FIL E=numbe r
Indicates the total number of input files to be sorted. The input files must be
specified as SORTIN1 , ... ,SORTIN9 in the LFD job control statements, unless a
user input routine is provided.

If omitted, one input file is assumed.

NOCKSM=D
Suppresses the calculation of a checksum word for disk work files. The
checksum word is normally calculated and written for each output data block,
then verified for each input block read to ensure data integrity.

NOCKSM=T
Suppresses the checksum calculation for tape work files.

SI ZE=numbe r
Specifies the approximate number of records in the input file. This information is
used for optimizing sort performance and for calculating optimum working­
storage area when the CALCAREA parameter is specified on the sort/merge
OPTION control statement. If SIZE is omitted, a file of 25,000 records is
assumed .

•

•

•

UP-8819 Rev. 2

•

Term Reference

A

Action word 3.3.3.2
3.3.7

ADDROUT keyword parameter 3.2.6.1

ASCII
block prefix length 3.2.3

• collating sequence, graphic
characters B.4

Table B-3
data format 3.2.3
description B.2.3
EBCDIC/ ASCII/Hollerith

correspondence B.2
Table B-1

Auxiliary storage, work area assignments 1.5.2

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

3-35 BIN keyword parameter
3-44

Blanks
3-25

BLKSIZE keyword parameter
input files

3-18 output files

B-10 Blocks
B-10 description
3-19 indicating first record
B-2 output, checking

prefix length, ASCII data
B-1 size, input files
B-3 size, output files

unreadable
1-5

Brackets and braces

Branch table
format
user own-code exits

BUFOFF keyword parameter
input files
output files

BYPASS keyword parameter
input files
read error processing

Index 1

Index

Reference Page

B
3.2.2 3-15

A.2 A-3

3.2.3 3-17
3.2.4 3-22

1.6 1-8
3.2.3 3-17
3.2.6.2 3-29
3.2.3 3-18
3.2.3 3-17
3.2.4 3-21
3.2.3 3-18

A.I A-1

Table 3-3 3-43
3.3.6 3-43

3.2.3 3-18
3.2.4 3-22

3.2.3 3-18
3.3.3.3 3-35

UP-8819 Rev. 2

Term

c
CALCAREA keyword parameter

description
example

Checksum word
bypassing calculation
sort performance

CLOSE keyword parameter
input files
output files

Coding rules

Collating sequences
ASCII graphic characters

EBCDIC graphic characters

user -defined

Comments

Contiguous space, extent

Continuation statements

Control statements
job

sort/merge

CSPRAM keyword parameter

Cylinders, disk sort

SPERRY OS/3
INDEPENDENT SORT /MERGE

Reference Page Term

D

Data

3.2.6.2 3-29 defining records

4.2 4-3 file organization
format codes
reduction

3.2.1 3-13 specifying format, tape input files

1.5.4 1-7 structuring

Data input and internal sort phase

3.2.3 3-18 description

3.2.4 3-22 exit codes

A.2 A-3
DATA keyword parameter

B.4 B-10 DEBLANK keyword parameter

Table B-3 B-10
Default sort

B.3 8-8
Table B-2 B-8 Default specifications

3.3.3.9 3-38
DELETE data reduction routine

A.2 A-3

3.1.l 3-5 Device assignment sets

A.2 A-3 Direct access addresses

Direct access devices, write error

See job control processing

statements.
See sort/ merge Disk

control statements. data capacities and access speeds
sort control stream examples

3.2.6.3 3-30 sort program flowchart
work file names

3.1.l 3-5
Disk files, direct access addresses

DISK keyword parameter

DISKETTE sort control stream example

DVC job control statement

Index 2

Reference Page •
3.2.2 3-14
1.5.3 1-7
Table 3-1 3-11
3.3.3.8 3-37
3.2.3 3-18
1.6 1-8

2.2 2-2
3.3.2.1 3-32
Table 3-2 3-32

3.2.3 3-19

3.2.2 3-16

4.6 4-13

A.l A-2

3.3 3-31
3.3.3.8 3-38 • 3.1.l 3-4

3.2.6.l 3-25

3.3.3.6 3-37

Table 1-1 1-6
4.3 4-5
Fig. 3-1 3-2
1.5.2 1-6

3.2.6.l 3-25

3.2.l 3-12

4.5 4-13

3.1.l 3-4

•

UP-8819 Rev. 2

• Term Reference

E

EBCDIC
collating sequence, graphic

characters B.3
Table B-2

data format 3.2.3
description B.2.2
EBCDIC/ ASCII/Hollerith

correspondence B.2
Table B-1

END control statement 3.2.5
C.2

Error messages, printing options 3.2.6.3

Errors
read 3.3.3.3

3.4.3
write 3.3.3.6

Exit codes
allowable phases Table 3-2

• data reduction 3.3.3.8
description 3.3
example 3.3.4

Fig. 3-7
input file label processing 3.3.3.l
input file processing 3.3.3.2
input file read error processing 3.3.3.3
merge-only input file processing 3.4.2
output file label processing 3.3.3.4
output file processing 3.3.3.5
record sequencing 3.3.3.7
user defined collating sequence 3.3.3.9
using 3.3.3
write error processing, direct

access devices 3.3.3.6

EXIT keyword parameter
input file processing, own-code

routine 3.3.3.2
input files (INPFIL) 3.2.3
output file processing, own-code

routine 3.3.3.5
output files (OUTFIL) 3.2.4

Exit parameter list 3.3.7
Table 3-4

•

SPERRY OS/3
"INDEPENDENT SORT /MERGE

Page Term

Exits, own-code routines
codes
defining
DELETE routine

B-8
B-8 formatting parameter list

3-19 functions and associated phases

B-2 providing a branch
sample control stream

B-1
B-3 EXT job control statement

disk sort

3-24 extending output file

C-1
Extents, allocating space

3-30

3-35
3-50
3-37

3-32 F
3-37
3-31 FIELDS keyword parameter

3-38 MERGE control statement

3-39 SORT control statement

3-34 sort performance

3-35
3-35 FILE keyword parameter

3-49
3-36 Files

3-36 blocking example

3-37 deleting records

3-38 disk

3-34 input
output

3-37 tape input
work

FILES keyword parameter

3-35 Final merge phase

3-19 description
exit codes

3-36
3-22

Fixed-length records

3-44 defining

3-44 output
tape sort sample control stream
user-written modification exits,

sample control stream

Format codes, data

Index 3

Reference Page

See exit codes.
3.3.2. 3-32
3.3 3-31
3.3.l 3-32
3.3.6 3-44
Table 3-2 3-31
3.3.6 3-43
4.2 4-3

3.1.l 3-5
3.2.4 3-24

3.1.l 3-5

3.4.l 3-48
3.2.l 3-9
1.5.4 1-7

3.2.l 3-13

4.2 4-4
3.2.2 3-16
See disk files.
See input files.
See output files.
3.2.3 3-18
See work files.
3.4.l 3-48

2.2 2-2
3.3.2 3-32
Table 3-2 3-31

3.2.2 3-14
3.2.4 3-23
4.2 4-1

4.2 4-3

3.2.l 3-11
Table 3-1 3-11

UP-8819 Rev. 2

Term Reference

G
General editor 1.7

Graphic characters
ASCII Table 8-3
EBCDIC Table 8-2

H

Hollerith punched card code
description 8.2.l
EBCDIC/ ASCII/Hollerith

correspondence 8.2
Table 8-1

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

Input/ output
data file organization

1-11 structuring data

Input phase
8-10
8-8

Input routine
sort
your own

Interlace feature

INTERLACE keyword parameter

Internal-only sort
main storage allocation
routine

8-2

8-1
8-3

Index 4

Reference Page •
1.5.3 1-7
1.6 1-8

2.2 2-2
3.3.2 3-33

2.2 2-2
3.2.3 3-19

3.2.3 3-20
3.2.4 3-23

3.2.3 3-20
3.2.4 3-23

1.5.1 1-5
2.2 2-2

•

.-------------------- -

UP-8819 Rev. 2

• Term Reference

K

Key fields
description 1.6
number of bytes 3.2.6.1
specifying 3.2.l
tag sorting 3.2.6.l

KEYLEN keyword parameter 3.2.6.l

• L

LABEL keyword parameter 3.2.6.2

Labels
processing, input files 3.3.3.l
processing, output files 3.3.3.4
specifying types 3.2.6.2
standard 3.1.1

LBL job control statement 3.1.1

LENGTH keyword parameter 3.2.2

L FD job control statement 3.2.4

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

Magnetic tape
1-8
3-27 Main storage
3-9 allocation
3-25 using less than allocated

3-27 MERGE control statement

Merge-only operation
block sizes
defining

M

exit code for input file processing
main storage allocation
sample control stream
using

MERGEP keyword parameter

MODS control statement
description and format
summary
See also exit codes .

Modular sort structure

3-28

3-34
3-36
3-28
3-4

3-5

3-14

3-22
N

NOCKSM keyword parameter
description
sort performance

Normal priority

NOTPMK keyword parameter

NPTN keyword parameter

Index 5

Reference Page

See tape.

1.5.l 1-5
3.2.6.2 3-29

3.4.l 3-48
C.4 C-4

3.2.3 3-17
3.4.l 3-48
3.4.2 3-49
1.5.l 1-5
4.2 4-4
3.4 3-47

3.4.l 3-48

3.3.2 3-33
C.5 C-7

1.3 1-3

3.2.l 3-13
1.5.4 1-7

3.1.1 3-3

3.2.4 3-23

3.2.4 3-21

UP-8819 Rev. 2

Term Reference

0

OPEN keyword parameter
input files 3.2.3
output files 3.2.4

OPTION control statement
description 3.2.6
input file label processing 3.3.3.l
sort time estimates D.l
summary C.6

ORDER keyword parameter 3.4.l

OUTFIL control statement 3.2.4
C.7

Output files
closing 3.2.4
defining 3.2.4
label processing own-code routine 3.3.3.4
label types 3.2.6.2
opening 3.2.4
tag sorted Fig. 3-5

Fig. 3-6

Output routines 3.2.4

Own-code routines
branching 3.3.6
description 2.l
exit parameter list 3.3.7
exiting to 3.3.2
input 3.2.3
job control streams 3.3.8
output 3.2.4
register use 3.3.4

3.3.5
See also exit codes.

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

Parameter list. exit
3-20
3-23

Parameters
general format rules

3-24 submitting at execution time
3-34
D-1 Phases
C-8 exit codes

3-48 sort software structure

3-21 Preliminary merge phase
C-12 description

exit codes

3-22
3-21 PRINT keyword parameter
3-36
3-28 Printing options, error messages
3-23
3-26 Programs
3-27 disk, flowchart

examples
3-22 performance and speed

restrictions and considerations

3-43 Punched card code
2-1
3-44
3-32
3-19
3-45
3-22
3-38
3-42

p

Index 6

Reference Page •
3.3.7 3-44
Table 3-4 3-44

A.l A-1
3.2.6.3 3-30

3.3.2 3-33
Table 3-2 3-31
2.2 2-2

2.2 2-2
3.3.2 3-33
Table 3-2 3-31

3.2.6.3 3-30

3.2.6.3 3-30

Fig. 3-1 3-2 • Section 4
1.5 1-5
1.4 1-4

See
Hollerith
punched card
code.

•

UP-8819 Rev. 2

• Term Reference

R

RCSZ keyword parameter 3.2.2
3.2.4

Read error processing 3.3.3.3
3.4.3

RECORD control statement 3.2.2
C.8

Records
defining 3.2.2
deleting duplicates 3.3.l
deleting from a file 3.2.2
dividing into subrecords 3.2.2
indicating first in block 3.2.3
merge-only, operation 3.4.l
sequencing, own-code routine 3.3.3.7
sizes, data files 1.5.3
specifying length/size 3.2.2
specifying number in input file 3.2.l
specifying type 3.2.2

3.2.4

• Registers
exit code use 3.3.4
general purpose 3.3.5

RESERV keyword parameter 3.2.6.2

RESTART keyword parameter 3.2.6.3

Routines, own-code See
own-code
routines.

•

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

3-14 Scratch space, system
3-23

3-25
Sequence field

3-50 SHARE keyword parameter

3-14
C-14

SIZE keyword parameter

3-14
SKIPBYTE keyword parameter

3-32 Software framework
3-16
3-15
3-20

SORT control statement

3-48

s

3-37
1-7

Sort initialization and assignment phase

3-14 Sort/ merge control statements
3-8
3-15

coding rules

3-21
description
END
general format rules

3-38
INPFIL

3-42
MERGE
MODS

3-28
OPTION
OUTFIL

3-30
RECORD
SORT
summary

SORTP keyword parameter

Statement conventions

STORAGE keyword parameter

Subrecords, calculating size

System access technique (SAT)

System driver program (SORT)

System load library (YLOD)

Index 7

Reference Page

3.1.l 3-5

A.2 A-5

3.2.6.2 3-28

3.2.l 3-13
3.2.4 3-21

3.2.3 3-20

2.2 2-2

3.2.l 3-8
C.9 C-18

2.2 2-2

A.2 A-3
3.2 3-6
3.2.5 3-24
A.l A-1
3.2.3 3-16
3.4.l 3-48
3.3.2 3-32
3.2.6 3-24
3.2.4 3-21
3.2.2 3-14
3.2.l 3-8
Appendix C

3.2.l 3-9

Appendix A

3.2.6.2 3-29

3.2.2 3-15

3.1.l 3-5

1.3 1-3

1.3 1-3

UP-8819 Rev. 2

Term Reference

T

Tag sort
ADDROUT keyword parameter 3.2.6.l
control stream example 4.2

Tape
input files 3.2.3
marks, omitting 3.2.4
nonstandard labels, input files 3.3.3.1
output files 3.2.4
restarting 3.2.6.3
sort control stream examples 4.2

4.4
transfer rates Table 1-2
unit, reserving for work file 3.2.6.2
unit, sharing 3.2.6.2
work file names 1.5.2

TAPE keyword parameter 3.2.l

Tasks 3.1.1

TYPE keyword parameter 3.2.2
3.2.4

u
UOS keyword parameter 3.2.4

UPSI byte 3.2.l

SPERRY OS/3
INDEPENDENT SORT /MERGE

Page Term

Variable-length records
3-25 dividing into subrecords
4-2 specifying (TYPE)

v

(BIN)

tag sort sample control stream
3-18
3-23 VERIFY keyword parameter
3-34
3-21 VOL job control statement
3-30
4-1 Volumes
4-10
1-7
3-28
3-28
1-6

3-12

3-3

3-15
3-21

w
Work files

assignment
label types
reserving tape unit
sharing tape unit

WORK jproc

WORK keyword parameter

Working-storage area
3-24 assigning

3-13
calculating optimum

Workstation

Write error processing

Index 8

Reference Page •
3.2.2 3-15
3.2.2 3-15
3.2.4 3-21
4.2 4-2

3.2.6.2 3-29

3.1.1 3-4

3.1.1 3-4

•
3.2.l 3-12
3.2.6.2 3-28
3.2.6.2 3-28
3.2.6.2 3-29

3.1.1 3-5

3.2.l 3-12

1.5.2 1-5
3.2.6.2 3-29

1.7 1-11

3.3.3.6 3-37

•

CUT

•

•

•

USER COMMENT SHEET

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

~---------------------

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

CUT

•

•

•

•

•

•

.JLSPE~Y -ir

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN: SYSTEM PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19422-9990

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

•

•

•

•

•

•

• UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

II II II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 Cl-NE6
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

-1

I.

I

•

•

•

•

•

•

