
•

•

•
U01 -251 Rev. 303

ATTN: CHARLIE GIBBS

01100
CAV208M45541 UP 8379

SPERRY UNIVAC
1 - 1818 CORNWALL STREET

VANCOUVER B C

R4A

UAS

V6J 1C7

- -- - - - --- __ ..

Operating System/3 (OS/3)

System/3 to OS/3 Transition

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) System/3 to OS/3 Transition User Guide/Programmer Reference", UP-8379 Rev. 4.

This update covers removal of support for split-cylinder file allocation, corrects several errors in sample OCL and
JCL streams, and contains other minor technical changes.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8379 Rev. 4-A. To receive the complete man:.ial, order UP-8379 Rev. 4 .

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A50, BOO, 850, 18, 18U, 20, 20U,
28U, 76, and 76U

(Package A to UP-8379 Rev. 4,
70 pages plus Memo)

Library Memo for
UP-8379 Rev. 4-A

September, 1982

•

•

•

•

•

•

_UP-~379 Rev. 4

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1
2

Contents 1
2,3
4,5

PART 1
Title Page

1 1, 2
3
4 thru 11

PART2
Title Page

2 1, 2
3,4
5 thru 7
8 thru 12
13
14
15 thru 17

3 1
2

4 1
2 thru 6
7
8,9

PART3

Title Page

5 1 thru 4
5,6
6a
7
8
9 thru 19
20, 21
22
23, 24
25
26
26a
27 thru 30
31,32
33
34,35

*New pages

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

PAGE STATUS SUMMARY

ISSUE: Update A - UP-8379 Rev. 4

RELEASE LEVEL: 8.0 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. 5 (cont) 36,37 Orig.
38 A

A 39 thru 41 Orig.
42 A

Orig. 43 thru 47 A**
A 48 A

49 thru 51 A**
Orig. 52 thru 65 Orig.
A 66 A
Orig. 67,68 A**

69 thru 102 Orig.

Orig. 6 1 thru 27 Orig.

Orig. Index 1 thru 3 A
A
Orig.

4 Orig.
5 thru 7 A
8 Orig.
9, 10 A

Orig.

User Comment
Orig. Sheet
A
Orig.
A
Orig.
A
Orig.

Orig.
A

A
Orig.
A
Orig.

Orig.

Orig.
A
A*
Orig.
A
Orig.

A
Orig.
A
Orig.
A
A*
Orig.
A
Orig.
A

**Pages 5-43 thru 5-47, 5-49 thru 5-51, and 5-67 and 5-68 have been deleted.

Part/Section

PSS 1
Update A

Page
Number

Update
Level

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) /s found. A horizontal arrow (_.)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•
UP-8379 Rev. 4 SPERRY UNIVAC OS/3

SYSTEM/3 TO OS/3 TRANSITION
Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically describes:

• The transcription of your source libraries, operation control language (OCL)
procedures, and data files from the IBM System/3 (System/3) for use under OS/3

• Conversion of your System/3 programs for use under OS/3

• The method used to run your existing OCL control streams with a minimum amount
of modification. Its intended audience is the programmer, system analyst, or a

• manager of System/3 installation.

•

One other manual that covers the subject of file transcription and the use of OCL control
streams under OS/3 is an introductory manual. The introductory manual, however, only
briefly describes the facilities.

This user guide/programmer reference is divided into the following parts:

• PART 1. INTRODUCTION

Introduces the various aspects of migrating from a System/3 to OS/3 including
transcription, program language conversion, OCL and OCL routines, and SORT3.
Describes and illustrates the rules used in describing OCL statements and how these
statements should be used.

• PART 2. CONVERSION PROCESS

Presents the details of converting from a System/3 to OS/3. Describes data and
source and procedure file transcription in terms of what it i·s and how it is used.
Describes the various steps that must be taken on both the System/3 and a Sperry
Univac system using OS/3. Describes the function and operation of a number of
routines run to support the transition effort including SORT3 and OCL-to-JCL
converter. Also presents information relevant to the conversion of your language
programs so that they can be recomplied and executed on OS/3 .

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Preface 2
Update A

• PART 3. USE OF OPERATION CONTROL LANGUAGE (OCL)

Describes the methods needed to run an OCL control stream in the OS/3
environment. Provides an explanation of how each OCL statement is used by OS/3.

The following listing identifies the documents that you should be familiar with or have
available to help you in your conversion effort. Each document is referenced in the
appropriate section of this manual. Since OS/3 is used on two types of systems (Series 90
and System 80), two distinct manuals may exist for the same topic, one for each type of
system. The list shows the appropriate document number for use with each system. In
addition to the documents listed, the following documents are also referenced: OCL to JCL
converter (JCLCON801) user guide, UA-0423; CCP screen source statement to SFS
converter (CCPCON301) user guide, UA-0485; and System/3 COBOL to OS/3 COBOL '74
(COB!RN309) user guide, UA-0466.

UP Number
Document Title

Series 90 System 80

OS/3 system service programs (SSP) user guide 8062 8841

OS/3 job control user guide 8065 8065

OS/3 data utilities user guide/programmer reference 8069 8834

assembler user guide 8061 8913

OS/3 system messages manual 8076 8076

consolidated data management concepts and facilities 8825 8825

basic data management user guide 8068 NA

1974 American National Standards COBOL 8613 8913
programmer reference

FORTRAN IV programmer reference 8193 8814
.

OS/3 report program generator II (RPG II) user guide 8067 8067

OS/3 general editor user guide/programmer reference 8828 8828

supervisor user guide 8075 NA

supervisor macroinstruction language NA 8832
user guide/programmer reference

screen format services user guide/ 8802 8802
programmer reference

•

•

•

UP-8~79 Rev. 4

•

PAGE STATUS SUMMARY

CONTENTS

PREFACE

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

PART 1. INTRODUCTION

• 1. SYSTEM/3 TO OS/3 TRANSITION

•

1.1.

1.2.
1.2.1.
1.2.2.

1.3.

1.4.

1.5.
1.5.1.
1.5.2.
1.5.3.

1.6.

GENERAL

TRANSCRIPTION PROCESS
Library Transcription for System/3 Models 10, 12, and 15
Data Transcription for System/3 Models 10, 12. and 15

COMPATIBILITY FEATURES

PROGRAMMING LANGUAGES

OPERATION CONTROL LANGUAGE
Benefits of Using OCL in OS/3 Environmen,t
What Is a Job?
OCL to JCL Converter

STATEMENT CONVENTIONS

Contents 1

Contents

1-1

1-2
1-2
1-4

1-5

1-5

1-6
1-6
1-7
1-8

1-8

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

PART 2. CONVERSION PROCESS

2. TRANSCRIPTION OF SOURCE MODULE FILES, OCL PROCEDURES,
AND DATA FILES

2.1. PURPOSE OF TRANSCRIPTION

2.2. HARDWARE REQUIREMENTS

2.3. SOURCE MODULE AND OCL PROCEDURE TRANSCRIPTION
FOR MODELS 1 O. 12, AND 15

2.3.1. Generating Diskette Transfer Files
2.3.2. Generating Tape Transfer Files
2.3.2.1. Copying Source and Procedure Modules to Disk
2.3.2.2. Copying Source and OCL Procedure Modules from Disk to Tape
2.3.3. Source and OCL Procedure Modules from Tape or

Diskette to OS/3 Disk

2.4. DATA FILE TRANSCRIPTION FOR MODELS 10. 12. AND 15
2.4.1. Data Files to Tape or Diskette (System/3 Step)
2.4.2. Data Files from Tape or Diskette to Disk (OS/3 Step)

2.5. COPYS3 ROUTINE
2.5.1. Input File Characteristics
2.5.2. Input Record Characteristics
2.5.2.1. COPY Record
2.5.2.2. Source Data Records
2.5.2.3. CEND Record
2.5.3. Executing COPYS3

3. TRANSITION SUPPORT

3.1. SORT3 ROUTINE
3.1.1. Executing SORT3
3.1.2 Operational Considerations

3.2. OCL TO JCL CONVERTER

3.3. CCP SCREEN SOURCE STATEMENT TO OS/3 SFS CONVERTER

4. LANGUAGE PROCESSORS

4.1. GENERAL

4.2. REPORT PROGRAM GENERATOR II
4.2.1. Compiling an IBM System/3 RPG II Program Under OS/3
4.2.2. Executing an IBM System/3 RPG II Program Under OS/3
4.2.3. Specifications Form Incompatibilities

4.3. COBOL

4.4. FORTRAN

4.5. BASIC ASSEMBLY LANGUAGE

Contents 2
Update A

2-1

2-1

2-2
2-3
2-4
2-5
2-6

2-8

2-9
2-9
2-11

2-13
2-13
2-13
2-13
2-14
2-14
2-14

3-1
3-1
3-2

3-2

3-2

4-1

4-1
4-3
4-3
4-3

4-7

4-8

4-9

•

•

•

•

•

•

UP-&379 Rev. 4

PART 3 .

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

USE OF OPERATION CONTROL LANGUAGE {OCL)

Contents 3
Update A

5. USING OCL

5.1. POINT OF ENTRY 5-1
5.1.1. Using OCL from the Console 5-1
5.1.2. Using OCL on the Workstation 5-4
5.1.2.1. Considerations for Creating OCL Streams at a Workstation 5-5

5.2. SYSTEM/3 OCL STATEMENTS 5-5
5.2.1. Allocating Main Storage for a Job (PARTITION) 5-6
5.2.2. Indicating Program to be Run (LOAD) 5-6a
5.2.3. Executing the Program (RUN) 5-8
5.2.4. System Date (DATE) 5-9
5.2.5. Setting User Program Switch Indicator (SWITCH) 5-10
5.2.6. Compiler Options (COMPILE) 5-10
5.2.7. Print Character Set Specification (IMAGE) 5-12
5.2.8. Printer Form Characteristics (FORMS/PRINTER) 5-14
5.2.9. Card Punch Forms Characteristics (PUNCH) 5-16
5.2.10. Messages to Logging Device (LOG) 5-17
5.2.11. lnterjob Operator Intervention (HALT and NOHALT) 5-18
5.2.12. Displaying Comments (*comment) 5-19
5.2.13. Displaying Comments and Halting (PAUSE) 5-19
5.2.14. Defining Data Files (FILE) 5-20
5.2.14.1. Defining Disk Data Files 5-21
5.2.14.2. Defining Tape Data Files 5-26a
5.2.14.3. Defining Diskette Data Files 5-31
5.2.14.4. Defining Combined Card Files 5-35
5.2.14.5. Defining Card Data Files Not Contained in the Control Stream 5-35
5.2.14.6 Defining Printer Files 5-36
5.2.14.7. Defining Punch Files 5-37
5.2.15. Calling OCL Procedures (CALL) 5-38
5.2.16. Grouping Related Job Steps (JOB) 5-38
5.2.17. End of Data (/*) 5-39
5.2.18. End of Job (/&and /.) 5-39
5.2.19. Other OCL Statements 5-40

5.3. JCL STATEMENTS SUPPORTED BY OCL 5-41
5.3.1. Making Temporary Changes to a Load Module (ALTER) 5-41
5.3.2. Selecting Software Features (OPTION) 5-42
5.3.3. Defining the Software Facilities (SFT) 5-48
5.3.4. Restarting a JOB (RST) 5-52
5.3.5. Adding Cards to a Stored Control Stream or Procedure (CR) 5-53
5.3.6. Spooling Input Card Data (DATA) 5-54
5.3.7. Controlling Spooled Output (SPL) 5-55
5.3.8. Introducing Processing Options (PARAM) 5-59
5.3.9. Beginning of the Job (JOB) 5-59
5.3.10. Ending the Card Reader Operation (FIN) 5-61
5.3.11. Changing the Label of a Disk File (REN) 5-61
5.3.12. Modifying Control Fields (SET) 5-63
5.3.12.1. Changing the Date (SET DATE) 5-63
5.3.12.2. Setting the UPSI (SET UPSI) 5-64
5.3.12.3. Setting the Communications Region (SET COMREG) 5-65
5.3.13. Issuing System Commands (CC) 5-66
5.3.14. Bypassing Job Control Statements (SKIP) 5-69
5.3.15. Unconditional Branching (GO) 5-70

UP-8379 Rev. 4

5.3.16.
5.3.17.
5.3.18.
5.3.19.
5.3.20.
5.3.21.

5.3.22.

5.4.
5.4.1.
5.4.2.
5.4.3.
5.4.4.
5.4.5.
5.4.6.
5.4.7.

5.5.
5.5.1.
5.5.2.
5.5.3.

5.6.
5.6.1.
5.6.2.
5.6.3.
5.6.4.
5.6.5.

5.7.

5.8.

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Conditional Branching
Providing Targets for Branching
Assigning Local Status Set Symbols
Assigning Global Status Set Symbols
Assigning Global Status Set Symbols from a Workstation
Replacing Embedded Data Sets in Expanded Control
Streams
Substituting VSNs for Disk, Tape, and Diskette

USING OCL PROCEDURES
Standard Procedure Call
Changing Procedure Parameters in a Procedure Call
Deleting Procedure Parameters in a Procedure Call
Adding a Missing Parameter in a Procedure Call
Adding a Statement in a Procedure Call
Printing of Procedure Calls
Nesting of Programs and Procedures

USING MULTIVOLUME FILES
Multivolume Disk Files
Multivolume Tape Files
Multivolume Diskette Files

CARD DATA FILES IN AN OCL ENVIRONMENT
Card Input Files
Card Output Files
Combined Card Input and Output Files
Diskette Card Files
Card Input Files for Programs in Procedures or in a
Stored Control Stream

STORED OCL CONTROL STREAMS

OPERATIONAL CONSIDERATIONS

6. OCL UTILITY ROUTINES

6.1. OCL FILE DELETE ROUTINE
6.1.1. REMOVE and SCRATCH Control Statements
6.1.2. FORMAT Control Statement
6.1.3. END Control Statement

6.2. OCL COPY ROUTINE

6.2.1. Disk-to-Tape Dump or Tape-to-Disk Restore Function
6.2.2. Disk-to-Disk Copy Function
6.2.3. File-to-File Copy Function
6.2.4. Format of the File Copy Control Statement
6.2.4.1. Copy a File
6.2.4.2. Copy and Print a File
6.2.4.3. Print an Entire File
6.2.4.4. Copy Part of a File
6.2.4.5. Copy and Print Part of a File
6.2.4.6. Print Part of a File
6.2.4.7. Build an Indexed File

Contents 4

(IF) 5-72 • (NOP) 5-73
(JSET) 5-74
(GBL) 5-75
(QGBL) 5-76

(DATA STEP) 5-76
(CHANGEVSN) 5-78

5-79
5-79
5-80
5-80
5-81
5-81
5-81
5-82

5-85
5-86
5-88
5-89

5-90
5-90
5-94 • 5-94
5-94

5-95

5-96

5-98

(SDELET) 6-1
6-1
6-2
6-2

($COPY, $KCOPY,
SDCOPY) 6-2

6-3
6-4
6-5
6-6
6-6
6-7
6-7 • 6-8
6-8
6-9
6-9

UP-8379 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

SOURCE
MODULES

AND
OCL

PROCS

IBM
$MAINT

ROUTINE

SOURCE
MODULES

AND
OCL

PROCS

IBM
COPY/DUMP

ROUTINE
($COPY)

or

OS/3
COPYS3
ROUTINE

COPIED
SOURCE

MODULES
AND OCL

PROCS

,------
1

I PROCEDURE RUN ON
- - -I IBM SYSTEM/3

I
L _____ _

1------

J PROCEDURE RUN ON
- - I IBM SYSTEM/3

I
L _____ _

1------
1

__ _J PROCEDURE RUN ON
I SPERRY UNIVAC OS/3

I
L _____ _

1-3
Update A

Figure 1-1. Source Module and OCL Procedure Transcription Flow for Model 10, 12, and 15

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

1.2.2. Data Transcription for System/3 Models 10, 12, and 15

1-4

The data transcription process has one procedure and two steps. In step 1, you use the
IBM $COPY routine on the System/3 to transcribe your data files from an IBM disk to a
magnetic tape or diskette. In step 2, processed in an OS/3 environment, you use the
OS/3 data utility routine to copy the contents of the transcribed tape or diskette (from step
1) onto a SPERRY UNIVAC DISK. This procedure is illustrated in Figure 1-2.

YOUR
DATA
FILES

IBM
COPY/DUMP

ROUTINE
($COPY)

or

OS/3
DATA UTILITY

ROUTINE

COPIED
DATA
FILES

,------
1

I PROCEDURE RUN ON
- - -, IBM SYSTEM/3

I
L _____ _

,------
1

I PROCEDURE RUN ON
- - -, SPERRY UNIVAC OS/3

I
L _____ _

Figure 1-2. Data File Transcription Flow

•

•

•

•

•

•

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-3
Update A

By specifying RT as the unit specification, you indicate that the library file to be searched
for the program is YLOD, and it's located on the volume that contains the temporary job
run library file (YRUN) for the job. Each job that enters the OS/3 environment is
assigned its own YRUN file on the volume set aside for all the YRUN job files.

Each installation can have a separate volume containing the area set aside for all the
YRUN job files, or they can have it residing on SYSRES. This is determined when you
perform the initial program load. If you specify RT, and the area for all the YRUN job
files is on its own volume, then this volume is searched for YLOD. (YRUN must be
allocated since it does not exist on SYSRES.) If you specify RT, and the area for all the
YRUN job files is on SYSRES, then, by default, SYSRES would be searched for YLOD.

By specifying R2, you indicate that Y0CLOD on the volume containing the job's YRUN
file is to be searched for the program (remember, you have to allocate Y0CLOD, since
it's not an OS/3 system library). The same default (in respect to not having YRUN files
on a separate volume) applies.

You can also specify your own private load library name.

NOTE:

If the volume contammg the $ Y$RUN job files is specified as the SYSRES device
(determined at system IPL time), then specifying the parameter R 1 is exactly the same as
specifying F1. Likewise, specifying the parameter R2 is the same as specifying F2 .

2.3.1. Generating Diskette Transfer Files

To generate diskette transfer files, you must run the System/3 library maintenance
routine ($MAINT). To execute this routine you must code a control stream using the
System/3 OCL. The control stream you use should look like this:

II LOAD $MAINT,Fl
II FILE NAME-LIBMODRl,UNIT-3741,RECL-96
II RUN
II COPY FROM-Rl,T0-3741,FILE-LIBMODRl
II ENTRY LIBRARY-S,NAME-ALL
II ENTRY LIBRARY-P,NAME-ALL
II NEND
II END

The first statement (LOAD) identifies the program to be run and indicates which disk
contains the program. In this example, the program name is $MAINT and it is located on a
disk with a unit designation of FT. Possible designations are FT, F2, RT, and R2 (use the
designation appropriate for your system).

The FILE statement is used to define the diskette file to be generated. The parameters of
the FILE statement identify the characteristics of the file .

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-4
Update A

~ The NAME parameter assigns a name to the file. The UNIT parameter identifies the device •
in question as a diskette. The RECL parameter specifies the number of bytes per record. In

t
this example, there are 96 bytes per record.

The next statement (RUN) initiates the execution of the library maintenance routine.
Following the RUN statement are the control statements for the library maintenance
routine. The COPY statement initiates the copy function of $MAINT and the parameters
indicate the files to be copied. The FROM parameter indicates which disk drive contains
the library to be copied. This value can be Ft., F2, Rt, or R2. In our example we use Rt.

The TO parameter specifies the output file of the library to diskette copy. The 3741 entry
indicates a diskette is the output file.

The diskette is further identified with the next parameter, the FILE parameter. The entry
specified for this parameter must be the same entry as was made for the NAME parameter
of the preceding FILE statement that identified the diskette file.

Following the COPY statement are two ENTRY statements. These statements identify the
modules within the library that we wish to have copied. Only one entry per ENTRY
statement is permitted and since we wish to copy both the source and procedure modules,
two ENTRY statements are required.

In addition, since we also wish to copy all of the source and procedure modules from the
library, we specify the ALL parameter.

The last two statements in the control stream are the NEND statement and the END
statement which terminate the library-to-disk function and the library maintenance
routine, respectively.

This procedure must be used for each source and procedure library being copied. You
must create a new diskette file for each execution.

NOTE:

If your diskette device has been allocated as a punch device, then the TO parameter in the
COPY statement should be changed to TO-PUNCH.

2.3.2. Generating Tape Transfer Files

The 2-step process used to generate tape transfer files from your System/3 source and
procedure libraries is described in 2.3.2.1 and 2.3.2.2.

•

•

•

•

•

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-7

The next statement (FILE) defines the output file for tape. The first parameter needed is
NAME. For this, an exact value of COPYO must be used. The second parameter is UNIT,
which indicates the unit designator where the tape that's going to receive the data file is
loaded. This can be either TT, T2, T3, or T4.

We assumed the tape is loaded on T1. If you want to assign a name to the transcribed
data file on tape, you can do so with the LABEL parameter (this is optional). This name is
the file identifier, which is physically written in the header label on the tape, and can be
alphanumeric characters.

We assigned the filename LIBMODR1, which was specified on our FILE statement. The
next parameters are the BLKL and RECL parameters. These parameters indicate the length
in bytes for each physical block and logical record on tape.

The RECL parameter must be the same as the record length in the disk file, and the BLKL
must be a multiple of the record length. The RECL value must be in the range of 21 to 128
bytes, while the maximum BLKL value is 1280 bytes. In our example, we used a length of
96 bytes for both parameters (because this is the value we used in our COPY statement
back in step 1).

The next parameter is RECFM which indicates the record format. The record format can
either be fixed (F) or fixed length blocked (FB). Since we made our RECL and BLKL
parameters the same, our RECFM parameter would be fixed length (F) .

The next parameter, REEL is required and identifies the tape volume being used. When
you use the OS/3 COPYS3 routine to copy this tape to a disk, you indicate, on a FILE job
control statement, which volume to use, thus ensuring the correct tape is loaded. Since
this is the tape that's going to contain the library file, we called this tape LIBFIL.

The last parameter is the DENSITY parameter. This value must be compatible with the IBM
and SPERRY UNIVAC equipment used in the transcription.

Next, since the input data file is not a system library, it also must be defined with a FILE
statement. The first parameter needed is NAME, and it has an exact value of COPYIN.
Then, you have to provide the unit designator, indicating where the disk volume is
located, with the UNIT parameter. This can be either RT, R2, FT, F2, OT, 02, 03, or 04.
We assumed R2, because we used this value in our last step.

Next, the PACK parameter is used to tell the system the name of the disk being used. For
this example, we used DISK01. The LABEL parameter identifies the file on the disk (if you
omit this parameter, the name from the NAME parameter is used). Assume that the file is
identified as LIBMODR1.

Following the FILE statements, you code a RUN statement to initiate the execution of the
copy operation. Immediately following RUN, you must code the control statements used to
control the copy operation. In this case you must include the COPYFILE statement. The
parameter OUTPUT-FILE instructs the program to copy the input file to the tape file
identified in the output FILE statement. The final statement is the END statement which
terminates the $COPY program.

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-8
Update A

2.3.3. Source and OCL Procedure Modules from Tape or Diskette to OS/3 Disk

This step consists of transcribing the source and OCL procedure modules from your IBM
tape or diskette to a SPERRY UNIVAC disk library via the OS/3 COPYS3 routine. However,
the COPYS3 routine runs under the direction of OCL statements, as well as OS/3 job
control statements. (For a detailed discussion of the COPYS3 program, see 2.5.)

The following coding example shows a typical OCL control stream, used to copy all the
source and OCL procedure modules from tape to our disk library.

3.

4.
5.

1.

I I L 0 AD llJ8''¥:13il~'lil
I I F I L E NAM E -'l~'lilli~i~I . UN I T - T 1 , R E EL - L I B F I L , LAB E L - L I BM 0 DR 1 , R E C L -9 6 ,
Ill BLKL-96, RECFM-F,DENSITY-1600
II RUN
II PARAM DEFAULT-LIBRARY-RI
II FIN

The LOAD statement indicates that the OS/3 COPYS3 routine is to be executed.
FT indicates that this routine is located in the OS/3 load library file (YLOD).

2. The FILE statement allows access to the tape file created in the previous step.
The NAME parameter must have the value of INPFILE. The UNIT parameter is
required, and indicates the unit designator where the tape is to be mounted (T1).

•

The remaining parameters (REEL, LABEL, RECL, BLKL, RECFM, and DENSITY) •
must agree with the FILE statement parameters. If no LABEL parameter is
specified, then we specify COPYO as the label file name for this statement
(COPYO corresponds to the NAME parameter). We could omit specifying the
RECL, BLKL, and RECFM parameters because they would default to 96, 96 and F,
respectively. The DENSITY parameter indicates the recording density for the tape
in bits per inch. The density given must be the same as it was when the tape
was written.

NOTE:

The parameters for the I I FILE statement in this example require a continuation
line. As is shown, such a continuation line must begin with I IT and at least one
space before entering the parameters.

3. The RUN statement causes the routine named on the LOAD statement (COPYS3)
to be executed.

4. The PARAM statement tells the COPYS3 routine to copy the modules to the
default library (R1). This is done in case the COPY librarian control statements in
the file do not have the TO code parameter, which shows where the copy
modules are to be placed. If no default library parameter is given, the default
library is FT. The possible codes are FT, F2, RT, and R2.

5. The FIN statement indicates the end of the data, the end of the job, and turns off •
the card reader.

•

•

•

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-9
Update A

The following coding shows a control stream used to copy all the source and OCL
procedure modules from diskette:

I I L 0 A D k~~l:!~/j~r;::,iiJ~J/l\i[,/j II FILE NAME UNIT-Kl,LABEL-LIBMODRl,BLKL-128,RECL-96,PACK-LIBFIL

II RUN

II PARAM DEFAULT-LIBRARY-RI

II FIN

NOTE:

All libraries except FT (YLOD on SSRES) must be created prior to using the COPYS3
routine.

2.4. DATA FILE TRANSCRIPTION FOR MODELS 10, 12, AND 15

The procedure for transcribing data files is comprised of two steps. The first step is run on
the System/3 $COPY utility routine. The second step, the data utility routine, is run in an
OS/3 environment. For simplification, each step of the procedure is discussed separately
in 2.4.1 and 2.4.2.

2.4.1. Data Files to Tape or Diskette (System/3 Step)

This step consists of executing the IBM copy/dump program ($COPY) to copy your data
files to tape or diskette transfer files. The following sample control stream shows a disk-to­
tape file copy. The control stream can be used as a model for you to develop control
streams to meet your particular requirements. A control stream for a disk-to-diskette file
copy is presented at the end of this subsection.

11 LOAD ';11111. F 1

II FILE NAME-iilil/lli/Ni.UNIT-Dl,PACK-DATADK,LABEL-INDATA

I I F I L E NAME -i[llfi,lf. UN I T - T 1 • LAB EL - DAT AF I LE , B L K L - 1 2 8 , RE C L - 1 2 8 , R EC FM - F , R EE L - DAT A FL

II RUN

I I C O P Y F I L E 'llill'lt1Ji!¥iliiltite!II
II END

The first control statement needed is the LOAD statement to identify the program to be
run. You must also supply a unit designation of either RT, R2, FT, or F2 to indicate where
the program is stored. We assumed FT.

The next statement defines the input file. Since it is not a system library, it must be
defined with a FILE statement. The first parameter needed is NAME, and it has an exact
value of COPYIN. Then, you have to provide the unit designator, indicating where the disk
volume is located, with the UNIT parameter. This can be either DT, D2, D3, D4, FT, F2, RT,
or R2. We assumed DT because data files usually reside in what is referred to as "data
areas" (DT, D2, D3, or D4) rather than in what are called "simulation areas" (RT, R2, FT,
or F2).

t

t

' !

t

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-10
Update A

The PACK parameter is used to tell the system the name of the disk being used. For this
example, we used DATADK. The LABEL parameter identifies the file on the disk (if you
omit this parameter, the name from the NAME parameter is used). Assume that the data
file is identified as INDATA.

The next statement (FILE) defines the output tape file. The first parameter is NAME. For
this, an exact value of COPO must be used. The second parameter is UNIT, which
indicates the unit designator where the tape that's going to receive the data file is loaded.
This can be either T1, T2, T3, or T4. We assumed the tape is loaded on T1.

If you want to assign a name to the transcribed data file on tape, you do so with the
LABEL parameter (this is optional). This name is the file identifier, which is physically
written in the header label on the tape, and can be one to eight alphanumeric characters.
We assigned a file identifier of DATAFILE.

BLKL and RECL are the next parameters, which indicate the length (in bytes) of each
physical block on the tape and the length (in bytes) of each logical record. We used a
length of 128 bytes for each of these parameters.

NOTE:

Do not use the LABEL, BLKL, or PACK parameters in the output file statement when
creating diskette transfer files.

The RECFM parameter, indicating the format of the records, can be either fixed length (F)
or fixed length blocked (FB). We made ours fixed length (F). The REEL parameter, which
identifies the tape, also is required.

When you use the OS/3 data utility routine to copy this tape to a disk, you indicate on a
FILE job control statement which volume to use, thus ensuring the correct tape is loaded.
Since this is the tape that's going to contain the data file, we called this tape DATAFL.

A RUN statement, indicating that the program named on the LOAD statement ($COPY) is
to be executed is the next requirement. Also, the $COPY routine has a control statement
that must be used to copy the data file from disk to tape (COPYFILE).

You then place an END control statement (no parameters) in the control stream.

The control stream you use to transcribe your data file to diskette is:

II LOAD 11.11~! .. Fl
II FILE NAME-:IJll\ll,l/ci.UNIT-Dl.PACK-DATADK,LABEL-INDATA
I I F I L E N AM E -11111!1. U N I T - 3 7 4 1 • R E C L - 9 6
II RUN

I I C 0 PY F I L E .f;illlllm!;l1;ll!Jli
II END

•

•

•

UP-8,379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-11
Update A

• 2.4.2. Data File from Tape or Diskette to Disk (OS/3 Step)

•

•

This step utilizes the OS/3 data utility routine to transcribe your data file from tape or
diskette to disk. This routine makes use of OCL control statements to direct its execution;
you don't have to use OS/3 job control. If you want to know more about the data utility
routine used, consult the data utility user guide.

1 . I I L 0 A D Q!l]lJl!l@.f\ioJ
2. II PARTITION 40960

3. { II FILE REEL-DATAFL,UNIT-Tl,NAME-tl:PlUiTilLLABEL-DATAFILE ~
4 . I I F I L E UN I T - F 2 , PACK - DAT AD K , NAME -IUlitlHltli , LAB EL - I ND AT A , R EC 0 RDS - 4 0 0 0 , R E TA I N - P

5. II RUN

6 . U T D A= (1 2 8 , 1 2 8) , B= (1 2 8 , 1 2 8) , F F , L 0 , MK 1 = (6 , 0) , 0 M= (I , 1 , V • R)

7. { / •
II FIN

1. The LOAD statement indicates that the OS/3 data utility routine (DATA) is to be
executed. F1 indicates that this program is located in YLOD.

2. The PARTITION statement allocates 40960 decimal bytes of main storage for the
job. The data utility routine is designed to run most efficiently in this amount of
main storage. However, it does not absolutely need this amount; it can run in
less main storage if necessary .

3. This FILE statement allows access to the tape file created by the IBM $KCOPY
utility routine. The REEL and LABEL parameters, therefore, must agree with
those specified when the tape was created. OS/3 assigns a device based on the
default volume characteristics (DENSITY parameter not used). The UNIT
parameter is required, and tells OCL that the FILE statement is for a tape. The
value of INPUT1 must be used for the NAME parameter.

NOTE:

The OS/3 FILE parameters should match the System/3 FILE parameters used to
create the file. Be careful of the default value differences between systems.

4. This FILE statement defines the disk file that will contain the data. The values of
the PACK and LABEL parameters can vary according to the number of the disk
being used and the identifier of the file. In this file definition, the UNIT parameter
tells OCL that this FILE statement is for a disk file. The RECORDS parameter
performs the allocation in this case. It allocates enough space for 4000 records,
each 256 bytes in length. If you feel this amount is too large or too small, you
can change this value. And, if it's more convenient, the file size may be specified
with the TRACKS parameter. The RETAIN parameter specifies that the file is a
permanent file. It may also be specified as RETAIN-T, but RETAIN-S should never
be specified, as it would cause the file to be scratched at the end of the program.
The value of OUTPUT1 must be used for the NAME parameter .

t

t

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-12
Update A

5. The RUN statement causes the program named on the LOAD statement (DATA)
to be executed.

6. The UTD mnemonic indicates that this is a tape or diskette-to-disk copy
operation. The values of A indicate that the input records are 128 bytes long, and
the input file blocks are also 128 bytes long. The values of B indicate that the
records to be output to the disk file are to be 128 bytes long, and the output file
blocks are also to be 128 bytes long. FF specifies fixed-length records. LO
indicates that the standard INPUT1 tape label is to be used. MK1 =(6,0) indicates
that the file is to have one key, six bytes in length, located at address 0.
OM=(I, 1,V,R) indicates that the output file is to be an indexed (keyed) file, that
the file index buffer generated by data utilities must be large enough to hold one
256-byte sector, the multivolume file indicator is to be set, and no record control
byte is to be used.

7. This indicates the end of data (the data utility control statement) and end of job
and turns off the card reader.

The following coding example shows a control stream that transcribes your data file from
diskette to disk.

11 Lo Ao L: ,:::;11:a": :
II PARTITION 40960

II FILE NAME-INPUTl,UNIT-Kl,LABEL-DATAFILE

I I F I L E U N I T - F 2 , PAC K - DA T A D K , N AM E -rlll!]lflJ , L A B EL - I N DA T A , R E C 0 R D S - 4 0 0 0 , R E T A I N - P
II RUN

UT D A= (1 2 8 , 1 2 8) , B= (1 2 8 , 1 2 8) , FF , L 0 , MK 1 = (6 , 0) , 0 M= (I , 1 , V , R)
1·

II FIN

•

•

•

UP-8J79 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-13

• 2.5. COPYS3 ROUTINE

•

The COPYS3 routine transcribes the contents of either your diskette or tape files created
by $MAINT on the Systeml3 into OSl3 library files. This routine transcribes all source
and procedure modules but has no specific inclusion capabilities. If you only want specific
modules, you can use the OSl3 librarian· (LIBS) after the transcription is complete.
COPYS3, when run under the control of the OCL processor, is system transparent since
the transcription is to simulated Systeml3 libraries.

2.5.1. Input File Characteristics

Since the input to the COPYS3 routine can either be a diskette or tape file, the format of
the files is essentially the same regardless of the input. The first record of each module in
the file must be a I I COPY record and the last record must be a I I CEND record. The
maximum record size is 128 bytes while the minimum is 21 bytes. On the I I COPY
record, however, only the first 72 bytes are analyzed.

When your input is a tape file, the block length must be a multiple of the record length up
to a maximum size of 1280 bytes. If you recall, there is a default value of 96 bytes for both
the block and record length parameters. However, you may change the record length of
both diskette and tape files either via a DD job control statement (RCSZ parameter) or the
OCL FILE statement (RECL parameter) .

2.5.2. Input Record Characteristics

There are three types of records on these diskette or tape files:

• 11 COPY records

• Source data records

• 11 CEND records

Each type of record is discussed separately in 2.5.2.1, 2.5.2.2, and 2.5.2.3.

2.5.2.1. COPY Record

The COPY record is required a'nd must be the first record of the module. This record is
normally generated by the $MAINT routine when the file was created on your Systeml3.
The COPY record itself is not copied, but it supplies needed information about your
module.

The COPY record has the following format:

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

2-14
Update A

The FROM parameter must be READER; otherwise, the module is not copied. The LIBRARY •
parameter indicates the type of module to be copied. An S is for source modules, a P for
procedure modules, while the 0 and R entries will prevent the module from being copied.

The NAME parameter contains the module name and can have a maximum of eight
characters (six when using OCL). The TO parameter indicates the destination library. The
libraries associated with the parameter entries are:

Parameter

F1
F2
R1
R2

OSl3 Library File

YLOD on SYSRES
Y0CLOD on SYSRES
YLOD on SYSRUN
Y0CLOD on SYSRUN

If this parameter is omitted, the default is the library specified on the 11 PARAM DEFAULT
LIBRARY statement. If no 11 PARAM DEFAULT LIBRARY statement is supplied, the default
is F1.

2.5.2.2. Source Data Record

All of the data records are copied from the input file to the specified OSl3 library. There is
no restriction on the information these records can contain.

2.5.2.3. CEND Record

A I I CEND record is required at the end of each module. The CEND record is not copied
into the OSl3 library.

2.5.3. Executing COPYS3

You can execute the COPYS3 routine by using OCL, JCL, or simulating OCL under JCL.
First, we'll discuss the OCL control streams.

Our first coding example shows the use of a diskette being specified as our input file.

1. II LOAD COPYS3,Fl

2. II FILE NAME-INPFILE,UNIT-Kl,PACK-DK0001,LABEL-FILEX

3. II RUN

4. II PARAM DEFAULT-LIBRARY-RI
5. II FIN

1. The LOAD statement indicates that the COPYS3 routine is to be executed. F1
indicates that this routine is located in the OSl3 load library file (YLOD).

•

•

•

•

•

UP-8379 Rev. 4 ,

3.1. SORT3 ROUTINE

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

3-1

3. Transition Support

The System/3 compatible sort (SORT3) is an easy-to-use, canned sort program. It is
modular in design and requires a minimum of user programming and does not need to be
assembled or linked to your program. It increases the versatility of the OS/3 sort package
by providing you with a program that is compatible with the System/3 sort. That is,
SORT3 accepts, with minor differences, all System/3 sort specifications and offers all of
the features of the System/3 sort that are feasible within the OS/3 operating system.

In addition to disk and tape input files, the SORT3 program is capable of processing input
data from card files. It also provides you with added control over record sequencing, data
reduction, and data disposition without the necessity of reverting to user own-code
routines.

SORT3 is designed to operate under control of the OS/3 supervisor and data management
systems. However, it can be initiated through either OS/3 job control language (JCL) or
the operation control language (OCL) processor.

Running SORT3 under the OCL processor does not require you to make any changes to
your existing System/3 sort job stream; the OCL statements and sequence specification
remain the same as though you were running in a System/3 environment. After achieving
full production or when you find it convenient, you should convert your OCL control
streams to OS/3 job control streams using the Sperry Univac-supplied OCL-to-JCL
converter, JCLCON801.

3.1.1. Executing SORT3

The System/3 compatible sort executes the $0SORT (disk) and $TSORT (tape) programs.
To run these programs, you should specify $0SORT or $TSORT as the program name in
the OCL LOAD statement .

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

3.1.2. Operation Considerations

3-2
Update A

You need to allocate 20K (minimum) to 64K (maximum) of main storage for SORT3. Also,
the allocation of a work file ($SCR1) on the FILE statement is necessary. If these are not
assigned, the OCL processor interfaces with SORT3 to ensure that the memory
requirement and work file allocation is satisfied. (See the SORT3 user guide for an in­
depth look at SORT3.)

3.2. OCL TO JCL CONVERTER

Even though Sperry Univac offers an OCL processor as part of OS/3, you may find it
beneficial to convert your OCL streams to OS/3 job control streams. As you become more
accustomed to using job control, it may prove easier to have all of your procedures
standardized under one control language. To help you convert your System/3 OCL to
OS/3 JCL, Sperry Univac provides an OCL to JCL converter (JCLCON801). This converter
translates syntactically correct OCL streams into usable JCL control streams.

•

To convert your OCL streams in JCL through the converter, they must first reside as
modules in an OS/3 program library. Once there, they can be submitted to the converter.
The converter cannot always resolve differences between OCL and JCL capabilities. If in
the process of converting an OCL stream it detects areas that cannot be directly converted,
these areas are left unconverted and a message warning of the unresolvable difference is
issued. The converter outputs the converted control streams as modules to a program
library that you specify. •

For more detailed information on the operation of the OCL to JCL converter, refer to the
OCL to JCL converter (JCLCON801) user guide.

3.3. CCP SCREEN SOURCE STATEMENT TO OS/3 SFS CONVERTER

This program converts Communications Control Program (CCP) screen source statements
into a format usable by OS/3 Screen Format Services.

The program, CCPCON301, reads the System/3 screen source statements from an OS/3
library file; therefore, before you can convert the statements, you must copy them to an
OS/3 library. You do this in the same way you copy language programs, using the
COPYS3 utility.

The converted screen formats are ready for use in programs through the Screen Format
Coordinator (SFC). If you want to modify the System/3 source statements further than can
be done by the converter, use the Screen Format Generator (SFG).

Before you attempt this conversion, we recommend that you read the OS/3 screen format
services user guide/programmer reference, UP-8802, and the CCPCON301 user guide,
UA-0485.

•

•

•

•

UP-13379 Rev. 4

4.1. GENERAL

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

4-1
Update A

4. Language Processors

The SPERRY UNIVAC Operating System/3 (OS/3) supports programming languages that
are not only compatible with their System/3 counterparts but are also more powerful and
versatile then those supported by System/3. If you have been using RPG, COBOL, or
FORTRAN with your IBM system, you can quickly and easily resume your productive
programming effort and even exceed your former capabilities under System/3. The
conversion of programs written in these languages is a straightforward procedure that
permits you to continue to operate in much the same manner as before conversion with
the option to improve your programs with enhancements not available to you before.

To make your COBOL program conversion even easier, Sperry Univac makes available a
program that automatically performs much of the required conversion. We'll discuss the
program, COBTRN309, further in section 4.3.

The first step toward converting programs written in any of the languages is to transcribe
your program source modules to OS/3 libraries using the procedure described in Section
2 of this manual. After you have transcribed your program modules, you then recompile
each program using the appropriate language processor. You should find that nearly all of
your programs are executable after you correct the compilation errors detected by the
OS/3 processor. A flowchart showing the general procedure for program conversion is
presented in Figure 4-1.

4.2. REPORT PROGRAM GENERATOR II

Since there is a high degree of compatibility between System/3 RPG II and OS/3 RPG II,
most of your RPG programs can be recompiled on the OS/3 system and any compilation
errors resulting from the minor differences can be corrected. You should have no difficulty
in reaching full program productivity with your RPG applications.

To further simplify the transition of RPG programs, OS/3 offers you the option of
compiling your RPG programs in System/3 mode thus further reducing the number of
potential incompatibilities. Additionally, you can continue to use your original System/3
OCL streams because of the OCL processor incorporated as part of OS/3 software .

This discussion provides an overview of the procedure for compiling and executing your
System/3 RPG programs under OS/3 and briefly lists the areas of incompatibility. For
more detailed information refer to the OS/3 report program generator 11 user guide.

t

UP-8379 Rev. 4

UNCONVERTED
PROGRAMS

STORED AS OS/3
SOURCE

MODULES

MANUAL
CONVERSION

OS/3
CONVERTED
PROGRAMS

STORED AS OS/3
SOURCE

MODULES

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

OS/3
COMPILER

OS/3
OBJECT

MODULES

OS/3
LINKAGE EDITOR

OS/3
LOAD

MODULES

YES

Figure 4-1. Conversion Process for Program Source Modules

4-2

MAKE
CORRECTIONS

•

•

•

•

•

•

UP-8}379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

4-7
Update A

polling characters (columns 61 and 62)

Polling characters are not supported. This entry should be replaced with a blank,
otherwise a warning note will appear.

addressing characters (columns 63 and 64)

Addressing characters are not supported. This entry should be replaced with a
blank, otherwise a warning note will appear.

interspersed mode

Interspersed mode is not supported. This entry should be replaced with a blank,
otherwise a warning note will appear.

4.3. COBOL

The COBOL language supported by System/3 and that supported by OS/3 are very
compatible and should present few problems in conversion. To make your conversion job
easier, Sperry Univac makes available COBTRN309, a program that handles must of the
conversion from System/3 COBOL to OS/3 COBOL automatically. COBTRN309 can
greatly reduce the amount of time needed to convert your COBOL programs and thus get
them running in your new OS/3 environment that much sooner. For detailed information
on the use of COBTRN309, refer to the COBTRN309 user guide, UA-0485.

The COBOL language supported by OS/3 system adheres to the American National
Standard COBOL, X3.23-1974 COBOL. In addition, OS/3 COBOL supports Federal
Information Processing Standards Publication 21-1 (Appendix D). OS/3 COBOL supports
the high processing level (level 2) of all incorporated American National Standards 1974
COBOL modules. The modules and processing levels supported are:

• nucleus,2 • segmentation,2

• table handling,2 • library,2

• sequential 1/0,2 • debug,2

• relative 1/0,2 • interprogram communication,2

• indexed 1/0,2 • communication,2

• sort/merge

In addition, the OS/3 COBOL compiler contains extensions that enhance the capabilities
of the language beyond the requirements of the standard. For more information on the
capabilities of OS/3 COBOL, refer to the OS/3 1974 American National Standards COBOL
programmer reference .

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

4-8

System/3 supports a subset of the American National Standard COBOL, X3.23-1968. The •
System/3 COBOL subset incorporates the following six modules of the full ANSI standard:

• nucleus, 1NUC,1,2 • table handling,2TBL, 1,3

• sequential access, 1SEQ,1,2 • library, 1 LIB,0,2

• random access, 1 RAC,0,2 • segmentation, 1 SEQ,0,2

In addition, selected features of 2NUC 1,2; 2SEQ 1,2; and 2RAC 0,2 as well as certain IBM
extensions to the basic modules have been incorporated into this COBOL compiler.

As you can see, the conversion of your IBM COBOL source programs to OS/3 COBOL is
simple procedure that can be performed quickly and easily. Yet the conversion provides
you with a more powerful programming language offering more capabilities than
System/3 COBOL.

4.4. FORTRAN

The FORTRAN language supported by OS/3 FORTRAN IV offers a high degree of
compatibility with System/3 FORTRAN and provides a more powerful and versatile
language that extends the capabilities of FORTRAN programming. Because of the high
degree of compatibility between the two languages, no converter is required. System/3 •
FORTRAN programs can be simply recompiled on the OS/3 FORTRAN IV compiler and the
compilation errors caused by the few incompatibilities resolved.

OS/3 supports a FORTRAN IV compiler that includes the American National Standard
FORTRAN, X3.9-1966 with extensions and the IBM 360/370 DOS FORTRAN IV
languages. FORTRAN programs that conform to either of these specifications are accepted
without change. OS/3 FORTRAN IV does not support a commercial subroutine package. If
this package is not involved, little effort is required when converting your System/3
FORTRAN IV programs to OS/3 FORTRAN IV. For further information on the capabilities of
the OS/3 FORTRAN IV language, refer to the OS/3 FORTRAN IV programmer reference.

System/3 supports American National Standard Basic FORTRAN, X3.10-1966. The
compiler accepts as input, source programs written in IBM System 360 basic FORTRAN IV
and 1130 basic FORTRAN IV. In addition, its extensions include DEBUG, IMPLICIT,
relational IF, and explicit length specification for the INTEGER and REAL type statements.
Also included are commercial subroutines similar to the 1130 commercial subroutine
package.

•

•

•

•

UP-8;379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-5
Update A

However, you can include certain OS/3 job control statements in your OCL control stream
to offer further enhancements to it and to effect a gradual transition to OS/3. The OS/3
product, the general editor, is available to perform this function from the workstation. The
general editor enables you to edit the OCL streams from your OCL library file. To initialize
the general editor, you enter the following command from the workstation:.

EDT

A copy of the OCL library file is read into the EDT workspace file in main storage. All edit
operations are accomplished here. The contents in the EDT workspace file is then written
to an output file, which may be the original OCL library file or your own private library.

You can edit only disk and diskette files from the workstation.

For detailed information on the general editor and its capabilities, see the OS/3 general
editor user guide/programmer reference.

5.1.2.1. Considerations for Creating OCL Streams at a Workstation

When you write your completed OCL stream out to a module in a library file, you must
specify that the module is a type P module.

The first line in your OCL stream should be as follows:

PROC

(The letters PROC can be in any except the first space of the line).

The second line of your OCL stream should be as follows:

program-name NAME

(The program-name should begin on the first space of the line).

Your OCL stream should not be terminated with an I I END statement.

5.2. SYSTEM/3 OCL STATEMENTS

The following paragraphs provide a description of the System/3 OCL statements. In some
cases, you'll have to make some minor changes, but in most cases no changes are needed
to any of your current statements. However, we will briefly explain each statement as to
its function, and the functions of its associated parameters (and how they relate to the
scheme of operations in OS/3). The conventions applicable to OCL statements when used
in an OS/3 environment are described in 1.6 .

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5.2.1. Allocating Main Storage for a Job {PARTITION)

5-6
Update A

After the supervisor is loaded into the system, the remaining main storage space is
available to OCL (job control) and your programs. As jobs are loaded and executed, the size
of the available space varies. OCL (job control) assigns a portion of the available main
storage to a job as it's initiated. When the job is completed, this space is returned to the
system and becomes available to subsequent jobs.

When a job is initiated, a routine is loaded that determines the amount of main storage
needed by the job and compares this requirement with the amount of main storage space
available. If enough main storage is available, the job is scheduled; if not, the job is held
until enough main storage becomes available.

By using the PARTITION statement, you can assign more main storage for your job than is
automatically assigned, which it can use to improve or speed up job execution. This is, of
course, contingent upon your job being written in a way that can use the additional main
storage to an advantage.

The format of the PARTITION statement is:

II PARTITION [minimum size] ['~::;imum size}]

•

The minimum size parameter indicates the minimum bytes, in decimal, of main storage •
you want to assign to the job. This value does not include the prologue. The minimum size
you can assign is 8192 decimal bytes. If the OCL processor determines that the amount of
main storage specified by the minimum size parameter is insufficient for the job to run,
the parameter is ignored.

The maximum size parameter specifies the maximum size of main storage to be allocated
for the job. You should not ask for more main storage than your job can use, since the
extra main storage may be needed for some other job. The MAX parameter, when
specified, requests the maximum main storage on the machine. You must specify either
the minimum or maximum size parameters when using the PARTITION statement.

The PARTITION statement is allowed anywhere in the OCL control stream except between
a RUN statement and card data to the program.

To assign 12,000 bytes of main storage to your job, code the following:

II PARTITION 12000

NOTE:

The meaning of this statement differs in OS/3 OCL from that in System/3 OCL.

•

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-6a
Update A

• 5.2.2. Indicating Program to be Run (LOAD)

•

•

The LOAD statement names the program to be executed, indicates the library where the
program is located, and gives the switching priority. This statement must be placed before
the RUN statement in the control stream.

The format of the LOAD statement is:

II LOAD programname 1·~~ l[,switch-priority]

I ibrary-name

The programname parameter identifies the program that's to be loaded from disk. Up to six
characters may be used and the use of commas, apostrophes, and blanks is not permitted
in the programname parameter .

•

•

•

•
UP-lil379 Rev. 4 SPERRY UNIVAC OS/3

SYSTEM/3 TO OS/3 TRANSITION
5-7

The UNIT specification of the device containing the library is used by System/3 to define
the library being accessed. FT, F2, RT, and R2 are the unit designators indicating that the
source and load modules and OCL procs are on either disk drive 1 (FT), fixed disk drive 2
(F2), removable disk drive 1 (RT), or removable disk drive 2 (R2). Under OS/3, these four
UNIT codes are translated into the following four library files:

OCL Library Unit

Fl
F2
R1
R2

OS/3 Library File

YLOD on SYSRES
V0CLOD on SYSRES
YLOD on SYSRUN
YQCLOD on SYSRUN

Using the LOAD statement with unit specification FT will access the system load library
file (YLQD) on the system resident device (SYSRES) to look for the program. YLOD is
an OS/3 permanent library that contains executable programs (load modules) that are
generated as output from the linkage editor.

If you use unit specification F2, the OCL load library file (Y0CLOD) on SYSRES is the
library file that's searched for the program. If you want to use this library file, you must
first allocate it. This is not an OS/3 system file; you must allocate it yourself. You can do
this by using the $MAINT routine's allocate function. Worth mentioning at this time are
these two points:

• 1. What is known as the physical file name (LABEL) on the FILE statement in OCL is
known as the file identifier in OS/3. The file identifier is a physical label that's used
to identify a file.

•

2. In the OS/3 environment, all file identifiers on a given volume must be unique. That
is, no two files on the same volume can have the same name.

By specifying RT as the unit specification, you indicate that the library file to be searched
for the program is YLOD, and it's located on the volume that contains the temporary job
run library file (YRUN) for the job. Each job that enters the OS/3 environment is
assigned its own VRUN file on the volume set aside for all the YRUN job files. Each
installation can have a separate volume containing the area set aside for all the VRUN
job files, or they can have it residing on SYSRES. This is determined when you perform
the initial program load. If you specify RT, and the area for all the YRUN job files is on
its own volume, then this volume is searched for YLOD. (YRUN must be allocated
since it does not exist on SYSRES.) If you specify RT, and the area for all the YRUN job
files is on SYSRES, then, by default, SYSRES would be searched for YLOD.

By specifying R2, you indicate that Y0CLOD on the volume containing the job's VRUN
file is to be searched for the program (remember, you have to allocate Y0CLOD, since
it's not an OS/3 system library). The same default (in respect to not having YRUN files
on a separate volume) applies .

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

You can also specify your own private load library name.

5-8
Update A

The optional task switching priority determines the order in which central processor
control is passed from task to task. The number of user switching priorities varies from 01
(highest) to 60 (lowest). The supervisor establishes a switching priority queue to control
the synchronization and rotation of tasks. If you do not specify a switching priority, the
supervisor assigns the lowest priority available for the system.

You can also specify a relative priority value such as +3 or -3 to change the switching
priority for a program specified in a particular job step with respect to the job's overall
priority. For example, if a job is running at a priority of 7, you should specify a -3 priority
in the // LOAD statement of a particular program within the job. That particular program
would then run at a priority of 4.

To illustrate the use of the LOAD statement, assume you want to run the program
CHECKS from the YLOD library contained on the SYSRES volume. The required coding
would appear as:

II LOAD CHECKS, Fl

NOTES:

1. If the volume contammg the YRUN job files is specified as the SYSRES device

•

(determined at system IPL time), then specifying the parameter R 1 is exactly the same .-
as specifying F1. Likewise, specifying the parameter R2 is the same as specifying F2.

2. The format 11 LOAD * is not supported.

5.2.3. Executing the Program (RUN)

The RUN statement is used to tell the operating system to execute the program named on
the LOAD statement. It must be the last OCL statement in your control stream for a
program. It must precede any card data to the program, and it is required for each program
to be run. Card data for the program being run must immediately follow the RUN
statement. (See 5.6 for more information.)

The format of the RUN statement is:

II RUN

It has no parameters.

NOTE:

The RUN statement does not cause immediate execution of the program as it does in a
Systeml3 environment. The entire job stream is processed before any programs are
executed. •

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-19

• The format of the NOHALT statement is:

•

•

The SEVERITY parameter, if supplied, will be treated as a comment.

NOHALT is the default mode of processing for multiple programs submitted to OS/3 OCL.

The HALT and NOHALT statements affect only the job in which they are encountered and
not other jobs being executed in the system.

5.2.12. Displaying Comments (*comment)

Comment statements to the operator can be displayed on the system console by inserting
asterisk (*) statements into the control stream. These statements can be used to provide
job setup instructions to the operator, or to simply explain the job.

The format of a comment statement is:

'comment

The comment can contain any character; there are no restrictions. The asterisk, however,
must start in column 1, and the comment can start in any column after column 1.

As many comment statements as are needed can be placed anywhere in the OCL control
stream, except between a RUN statement and card data to the program.

5.2.13. Displaying Comments and Halting (PAUSE)

The PAUSE statement is similar to the comment statement in that it's used to pass
information to the operator. Additionally, it causes the processing of the job to come to a
halt. This is especially helpful when you want the operator to peform some task (such as
placing special forms in the printer for nonspooling system) before allowing the job to
continue.

It is not necessary to specify the PAUSE statement for cases in which the
FORMS/PRINTER or IMAGE statements are used to change forms or the print image.
These statements generate their own job pause when the change is required to take place.
This is especially true for a spooling environment where printing can be performed after
job termination.

The format of the PAUSE statement is:

II PAUSE[comments]

t

---....,

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-20
Update A

The PAUSE statement can be used in conjunction with the comment statement to provide •
a list of instructions to the operator. By using both types of statements, rather than just
PAUSE statements, the job will not halt after every comment line is printed, but only after
the comment line printed by the PAUSE statement.

The PAUSE statement (just as the comment statement) can appear anywhere within the
control stream, except between a RUN statement and card data to the program.

Whenever a PAUSE statement is processed, the following message is also displayed on
the system console:

OCL PAUSE FOR JOB jobname

To continue processing, the operator only need press the MESSAGE WAITING key, enter
the message number, and then press the TRANSMIT key.

NOTES:

1. Any comments specified on the PAUSE statement will be displayed on the operator
console before the PAUSE message.

2. All device allocations are done before the PAUSE statement is processed. Therefore,
all your volumes must be mounted before you can issue the PAUSE to stop the job .

5.2.14. Defining Data Files (FILE)

The FILE statement provides the information needed to define a data file on a disk, tape,
diskette, card input, combined input/output card volumes, printer or punch files. The
operating system uses the information supplied on the FILE statement to access the file.
The FILE statement must be placed after the LOAD or CALL statement and must precede
the RUN statement.

NOTE:

You may use the FILE statement to define multivolume disk, diskette, and tape files. For
the special procedures necessary to define multivolume files, refer to 5.5.

The NAME parameter values for all the FILE statements for a given program must be
unique and also must not be one of the following reserved names: YRUN, YSRC,
YLOD, Y0BJ, YMAC, YJCS, OCLF2, OCLR1, OCLR2, and PRNTR. PRNTR1 is a
reserved name in a spooling system. The name PUNCH is reserved, but it may be used to
change the punch device for a program to a diskette. After the program terminates, the
diskette is reset to a card punch device.

NOTE:

•

If you wish to assign the same devices to more than one step of a multi-step job, the •
device identification on the UNIT parameter of the FILE statement must be specified in
each job step, and the devices must be assigned in the same order in each job step as in
the first job step.

UP-8,379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

• 5.2.14.1. Defining Disk Data Files

•

•

The FILE statement can be used to define a disk file.

The format of the disk FILE statement is:

II FILE NAME-{*filename},PACK-\name}[{(NS) }]
filename RES (NOV)

RUN

[
.LABEL-{' character string'}]

filename

[
.{TRACKS-number }]

RECORDS-number

[
, L 0 C A T I 0 N - { c y I i n d e r n u m b e r }]

cyl indernumberltracknumber

[RETA IN-I~] [DATE-1 :::::: l]

,UNIT-

[
• H I K E Y - { ' h i g h e s t k e y f i e I d s a II o w e d ' }]

P'highest packed key fields al lowed'

[.RECL-recordlength]

[,BLKL-blocklength]

.ACCESS- EXC

EXCR

SRDO

SRO

SUPD

[

OP EN-{~~~~ PT~
EXTEND

R HOD

SADD

[, EXTENTS-nn]

,RECFM- F [,LACE-nn]

v
D

FB

VB

DB

[R C. B -{ ~ ~ S}]

[VMNT-{~~En

F 1

F2

Rl

R2

01

02

03

04

[(d i d)] :

5-21
Update A

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

All the parameters are keyword parameters.

5-22

The NAME parameter provides the file name that your program uses to reference the file.
This must agree with the file name from the file description specification if your program
is written in RPG II. (In assembler language, it's the label field of the DTF; COBOL is the
file name from the file description entry; FORTRAN is the device number from the READ or
WRITE statement prefixed by FORT.) If more than one card is needed to complete the FILE
statement, the NAME parameter should be on the first card. The *preceding the filename
indicates that the file is read only protected.

It should be noted that scratch files required by certain software have different file names
in System/3 and OS/3. These System/3 file names will be changed to the OS/3
equivalent by the OCL processor as follows:

System/3
$SOURCE
$WORK
$WORK2
$WORKX

OS/3
$SCR1
$SCR2
$SCR3
$SCR3

The PACK parameter is used to provide the name of the disk volume that contains the file
(in OS/3, this is the volume serial number). (NOV) specifies that the volume is processed
as a NOVOL mount and no job control volume checking is performed. (NS) specifies the

•

volume is marked nonshareable and will not be shared between jobs in the system. The •
parentheses must be included and must immediately follow the name.

For example:

PACK-DISK01 (NOV)

By specifying RES for the pack name, you cause the OCL processor to substitute the
volume serial number of the SYRES pack for the name RES. This allows the job stream to
be independent of the actual volume serial number of the pack it will use.

Specifying RUN works in the same manner as RES except the volume serial number of the
SYSRUN pack is used.

The UNIT parameter value indicates the type of System/3 disk pack you would have used
for this file. (RT, R2, FT, and F2 indicate an IBM 5444 disk pack; DT, D2, D3, and D4
indicate an IBM 5445 disk pack.) Because these disk packs have different capacities, it is
important to know which type you would have used in order to determine the amount of
disk space required for the file in an OS/3 environment when the TRACK 1 parameter is
given. The calculation for determining the space needed is therefore based on the value
specified for the UNIT parameter and the value specified in the TRACKS parameter if
provided. A value indicating the capacity of each type of IBM disk pack in 256 byte blocks
(20 for 5445 and 24 for a 5444) has been set internally by OS/3.

•

•

•

•

UP-&379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-23
Update A

The (did) parameter is used to request a specific disk drive for your disk pack and specifies
the physical address assigned to the unit. This is a hexadecimal number defining the
channel number, control unit address, and device number. The parameter must be
enclosed in parentheses and must immediately follow the unit code.

The LABEL parameter indicates the 44-character physical label used to identify the file. In
5.2.2, we mentioned two points about the physical name of the file:

1. It's known as the file identifier in OS/3.

2. Each file name (file identifier) on a volume must be unique.

The value for the LABEL parameter can be specified in either of two ways:

• LABEL-filename

In this form, the first character must be alphabetic, and there cannot be any
apostrophes, commas, or intervening blanks.

• LABEL-'character string'

This form is enclosed within apostrophes and can contain special characters. If you
use an apostrophe as a special character, it must be coded as two apostrophes .

If you omit the LABEL parameter, then the file name you used on the NAME parameter is
used, by default.

The TRACKS parameter value indicates the number of disk tracks you want assigned to
the file. The OCL processor multiplies this value by the number of 256-byte blocks per
track for the disk defined in the UNIT parameter (20 for 5445 or 24 for a 5444) to provide
you with an equivalent number of blocks for OS/3 file allocation. (The number of blocks
calculated is internally rounded up to the next higher number of cylinders since actual disk
file allocation is done in terms of cylinders for OS/3 OCL.) If the TRACKS parameter is
specified, the RECORDS parameter must not be specified.

The value you assign to the RECORDS parameter indicates how many records to assign to
the file. This is equivalent to the number of 256-byte blocks. (This is then rounded up to
the amount of cylinders.) Because OS/3 OCL assumes a record size of 256 bytes for space
allocation, too much or too little space may be allocated. Values therefore may have to be
changed when converting to OS/3 OCL. If the RECORDS parameter is specified, the
TRACKS parameter must not be specified .

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-24
Update A

The LOCATION parameter is used to indicate the starting address of the file. You can
specify the starting track (tracknumber) which, under OS/3, is assumed to be the starting
cylinder; you can specify the starting cylinder (cylindernumber); or you can assign both the
starting cylinder and track (cylindernumberltracknumber). When you specify both the
cylinder and track, the cylinder is specified first, and is separated from the track by a slash
(/). The tracknumber is ignored. All OS/3 OCL files must start on a cylinder boundary.

The RETAIN parameter specifies the disposition of the file at the end of the job step. A
permanent file (P) is created with an expiration date of 99/999. A temporary file (T) that is
also the default, is normally used more than once. The designation of scratch (S) specifies
that this file is to be scratched when the job step is completed. Under OS/3, once a file is
scratched, all record of it is erased. Therefore, files cannot be reactivated by using the
System/3 RETAIN-A parameter. If used, this parameter causes an error condition and your
job will not be scheduled.

The DATE parameter provides a creation date for a file, in either the form mmddyy (month­
day-year) or ddmmyy (day-month-year). OS/3 does not support different versions of files
with the same name. Therefore, this parameter is not used by the OCL processor.

The HIKEY parameter specifies the highest key to be written on multivolume indexed files.
This parameter is supported for compatibility and is ignored by the OCL processor.

The RECL parameter indicates how many bytes are in each logical record in the file, up to
a maximum of 32, 767. This parameter overrides the record length defined in the program;
therefore, be sure not to specify a length greater than what was specified in your program.

The BLKL parameter for disk indicates the number of bytes in every physical block on the
disk, in the range of 1 to 32,767. The block length must be a multiple of the record length.
Also, this parameter overrides the block length defined in your program.

The VERIFY parameter indicates all data written is to be checked. This parameter is
supplied for compatibility and is ignored by the OCL processor.

The ACCESS parameter specifies the shareability status of the file between the current job
and others in the system. This parameter has six different options:

• EXC

Specifies the exclusive read/write use of this file. No other jobs can access this file
while the file is being used.

•

•

•

•

•

•

UP-8,379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-25

• EXCR

Specifies the read/write use of the file and also allows other jobs to read from this
file while it is being used.

• SRDO

Specifies only the read function is allowed for this file as well as other jobs accessing
it. No writing to this file is allowed.

• SRO

Specifies only the read function is allowed for this file, but other jobs accessing it can
both read and write to it.

• SUPD

Specifies both read and write functions may be performed by the job as well as by
other jobs accessing this file. No file extension is allowed.

The OPEN parameter determines how the file is to be opened. ACCEPT indicates that the
DTF specification for the file is obtained from format 1 and format 2 labels in the VTOC.
Coding RELOD and /NIT have the same effect. Data is written to the file starting at the
beginning of the file, with any existing data lost. EXTEND allows you to add information to
the end of your file.

The EXTENTS parameter reserves additional extent storage space for the file in the job's
prologue region. If the parameter is omitted, the default is space for eight extents.

The RECFM parameter indicates the format of the input or output records, as follows:

• F

Fixed-length, unblocked records. If this is used, the minimum value for the RECL
parameter is 18. Blocks and records are equal in size.

• v

Variable-length, unblocked records. Blocks and records are equal in size; however, the
record size can vary in length. The RECL parameter must include four bytes for the
record description.

• D

Variable-length, unblocked ASCII records (0-type). The RECL parameter must include
four bytes for the record description. Ignored by the OCL processor.

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-26
Update A

• FB

Fixed-length, blocked records. All records have an equal length, and all blocks have
an equal length. If this is used, the minimum value for the RECL parameter is 18.

• VB

Variable-length, blocked records. Each block contains records of variable lengths. The
RECL parameter must include four bytes for the record description.

• DB

Variable, blocked ASCII records (D-type). The RECL parameter must include four bytes
for the record description. Ignored by the OCL processor.

The RECFM parameter overrides the format specified in your program.

The LACE parameter applies the record interlace technique to sequentially processed input
or output files. Lacing permits you to access successive blocks within a predetermined
interval of time. If this interval is less than the time the disk takes to complete a single
revolution, you will retrieve more than one block per disk revolution. Record interlace,
therefore, reduces the effect of rotational delay on your overall disk processing time. Only
digits are accepted.

The RCB parameter specifies the record control byte, which is used to indicate that a
record has been logically deleted from a file. This parameter applies only to newly created
MIRAM disk files. For more specific information, see the data management user guide.

The VMNT parameter specifies how multivolume files are to be processed. ONE indicates
that the file is to be processed one volume at a time. This method is used when the file is
being processed sequentially. NO indicates that the file is to be processed with all volumes
online at the same time. This method is used when the file is being processed using
rar.dom access. The default value of this parameter is ONE.

NOTE:

The default value indicated here is valid only for running OCL streams. The default value
when running OS/3 job control streams is different.

•

•

•

UP-~379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-26a
Update A

• 5.2.14.2. Defining Tape Data Files

•

•

The FILE statement can also be used to define a tape file by using a different set of
parameters.

The format of the tape FILE statement is:

II FILE NAME-{*filename},UNIT-{Tl}[(did)]
file name T2

T3

T4

, RE EL -
name[\(NS) · iu

(NOV)

(PREP)

:~ [' "]
BLP

[
, L A B E L - { f i I e n a m e . , }] [· DA TE - { mm d d y y }] [, R E T A I N - n n n]

'character string ddmmyy

[,BLKL-blocklength][,RECL-recordlength] ,RECFM- F [END-1LEAVE }~'
V UNLOAD

D REWIND

FB

VB

DB

•

•

•

•

•

•

UP-~379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-31
Update A

The SEQNUM parameter defines the file sequence number of the file to be accessed if
more than one file resides on a tape. The number value can be from 1-9999. The X value
parameter indicates the tape has been pre-positioned to where processing is to start.

The BLKNUM parameter specifies that the file is not to include block numbers. This
parameter should be used when the system supports block numbering but you do not
want it for this file.

The OPEN parameter determines how the file is to be opened. ACCEPT indicates that the
DTF specification for the file is obtained from format 1 and format 2 labels in the VTOC.
Coding RELOD and /NIT have the same effect. Data is written to the file starting at the
beginning of the file with any existing data in the file lost. EXTEND allows you to add
information to the end of your file.

NOTE:

Tapes may be prepped using the PREP option on the REEL parameter.

5.2.14.3. Defining Diskette Data Files

The FILE statement can also be used to define a diskette file.

The format of the diskette FILE statement is:

II FILE NAME-{*~i lename}.UNIT-{Kl}[(did)].PACK-name[(NS) J
f 1 lename K2 (NOV)

K3

K4

[
. LA B EL - { f i I e n am e }]

'character string'

[{
,RECORDS-number of}]
.TRACKS-number of

[RETAIN-\!)]

[.RECL-recordsize]

[. BLKL-b I ocks i ze]

[

0 PEN -{~~~~PT~ [• EXTENTS - n n]

EXTEND

R ELOD

.RECFM- F

v
D

FB

VB

DB

[VMNT-{~~E}]
(continued)

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

or (this form is for System/3 compatibility)

II FILE NAME-filename, UNIT-3741

[,RECL-recordsize]

[
.LABEL-{filename }]

'character string'

[,PACK-name[(NOV)]]

[{
,RECORDS-number of}]
,TRACKS-number of

[,BLKL-blocksize]

[
OPEN-{~~~~PT~ [, EXTENTS-nn]

EXTEND

REL OD

v
. !')

FB

VB

DB

All the parameters are keyword parameters.

5-32
Update A

The NAME parameter provides the file name your program uses to reference the file.

The UNIT parameter identifies this statement as a diskette file statement. The (did)
parameter indicates that specific diskette drive is_ to be used for the diskette volume and
specifies the physical address assigned to the unit. The physical address is a hexadecimal
number defining the channel number, control unit address, and unit address. It must be
enclosed in parentheses and immediately follow the unit code.

NOTE:

If the number of drives indicated by the UNIT parameter is greater than one, two diskette
drives are reserved for the file. OS/3 software has a two diskette drive per file capacity.

The PACK parameter specifies the volume serial number of the diskette containing your
file.

When (NOV) is specified, the volume is processed as a NOVOL mount and no job control
volume checking is performed.

The (NS) parameter specifies the diskette is not to be shared between jobs. This is the
default for diskette volumes and if specified, it is ignored by the OCL processor.

•

•

•

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-33

If UNIT-3741 was specified and the PACK parameter was omitted, the first six characters
of the NAME parameter are used as the pack name. It is treated as a NOVOL mount.

The LABEL parameter specifies a 44-character name by which your file is identified on the
diskette. If this parameter is omitted, the NAME specification is assumed.

The value for the LABEL parameter can be specified in either of two ways:

• LABEL-filename

In this form, the first character must be alphabetic and there cannot be any
apostrophes, commas, or intervening blanks.

• LABEL-'character string'

This form is enclosed within apostrophes and can contain special characters. If you
use an apostrophe as a special character, it must be coded as two apostrophes.

The RECORDS parameter specifies the amount of space you are allocating for the diskette
file. This value is the number of 128-byte blocks you are allocating for your file. If the
RECORDS parameter is specified, the TRACKS parameter must not be specified.

The TRACKS parameter specifies the number of diskette tracks to be allocated to the file. It
is converted into the number of 128-byte blocks by multiplying the number of tracks
requested by 26 (the number of 128-byte sectors in a diskette track). When the TRACKS
parameter is specified, the RECORDS parameter must not be specified.

The RETAIN parameter specifies the disposition of the file at the end of the job step. A
permanent file (P) is created with an expiration date of 99/999. A temporary file (T), which
is also the default, is normally used more than once. The designation of scratch (S)
specifies that this file is to be scratched when the job step is completed.

The RECL parameter specifies the number of bytes in a logical record for the diskette and
can be any number between 1 and 128. This parameter overrides the length defined in
your program.

The BLKL parameter specifies the number of bytes in the physical block on the diskette.
This parameter overrides the length defined in your program.

The OPEN parameter determines how the file is to be opened. ACCEPT indicates that the
DTF specification for the file is obtained from the format 1 and format 2 labels in the
VTOC. Coding RELOD and /NIT have the same effect. Data is written to the file starting at
the beginning of the file with any existing data in the file lost. EXTEND allows you to add
information to the end of your file.

The EXTENTS parameter reserves additional extent storage space for the file in the job's
prologue region. If this parameter is omitted, the default is space for eight extents .

,----
UP-8379 Rev. 4 SPERRY UNIVAC OS/3

SYSTEM/3 TO OS/3 TRANSITION
5-34
Update A

The RECFM parameter indicates the format of the input or output records, as follows:

• F

Fixed-length, unblocked records. If this is used, the minimum value for the RECL
parameter is 18. Blocks and records are equal in size.

• v

Variable-length, unblocked records. Blocks and records are equal in size; however, the
record size can vary in length. The RECL parameter must include four bytes for the
record description.

• D

Variable-length, unblocked ASCII records (D-type). The RECL parameter must include
four bytes for the record description. Ignored by the OCL processor.

• FB

Fixed-length, blocked records. All records have an equal length, and all blocks have
an equal length. If this is used, the minimum value for the RECL parameter is 18.

• VB

Variable-length, blocked records. Each block contains records of variable lengths. The
RECL parameter must include four bytes for the record description.

• DB

Variable, blocked ASCII records (D-type). The RECL parameter must include four bytes
for the record description. Ignored by the OCL processor.

The RECFM parameter overrides the format specified in your program.

The VMNT parameter specifies how multivolume files are to be processed. ONE indicates
that the file is to be processed one volume at a time. This method is used when the file is
being processed sequentially. NO indicates that the file is to be processed with all volumes
online at the same time. This method is used when the file is being processed using
random access. The default value of this parameter is ONE. When you are defining
diskette files, if you are using diskettes prepped in the data-set-label (DSL) mode, you must
take the default value. If you are using diskettes prepped in the format label mode, you
must override the default value and enter VMNT - NO.

System/3 Model 10 does not require a FILE statement to define a diskette file to the
system. The Model 15 requires a limited one for your programs using the diskette. The
OCL processor supplies Model 15 diskette specifications for the $COPY and $KCOPY

•

•

programs if diskettes are requested and diskette FILE statements were not provided. Since •
very little volume and file checking is done for the Model 15 type statements, it is
recommended that you change your statements to the OS/3 OCL diskette FILE
specification.

UP-8379 Rev. 4 _.
SPERRY UNIVAC OS/3

SYSTEM/3 TO OS/3 TRANSITION
5-35
Update A

• 5.2.14.4. Defining Combined Card Files

•

•

The FILE statement can also be used to define a combined card file. A combined card file
is a card input/output file in which the cards are punched as they are read.

The format of the combined card FILE statement is:

I I F I L E NAME - f i I e n am e , UN I T - C 0 MB [(d i d)] , [· LA B E L - { f i I e n am e }]
· 'character string'

[,RECL-recordlength][,BLKL-blocklength]

The NAME parameter supplies the file name to be used by the program. Just like the
NAME parameter for the other files (disk, tape, diskette), it must agree with the internal
name assigned in your program.

The UNIT parameter must be specified to identify the file as a combined file. To use the
combined card data file specification, you must have a card punch on your system that
also reads cards. The card data must be placed into the punch prior to program execution.
This differs from normal card files that are placed after the program's RUN statement.

The (did) parameter indicates that a specific combined file is to be used and specifies its
physical address. This is a hexadecimal number defining the channel number, control unit
address, and the device number. This parameter must be enclosed in parentheses and
immediately follow the UNIT-COMB designation .

The LABEL parameter indicates the physical name identifying the file. For combined files,
this parameter is meaningless. If this parameter is omitted, the file name used on the
NAME parameter is used.

The RECL parameter indicates the number of bytes in each logical record in the file. This
parameter overrides the record length defined in your program.

The BLKL parameter indicates the number of bytes in each physical block in the file. This
value must be the same value as specified on the RECL parameter. The BLKL parameter
overrides the block length defined in your program.

5.2.14.5. Defining Card Data Files Not Contained in the Control Stream

The FILE statement can also be used to define card data files not contained in the control
stream. The card FILE statement should only be used when the program being executed
does not expect card data to be present in the control stream.

RPG II programs compiled in System/3 mode and the OCL COPY routine must not contain
th is statement.

- ------ ---------------------------i

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

The format of the card FILE statement is:

II FILE NAME-filename. UNIT-{Cl}[(did)][,LABEL-{filename.
C2 'character

C3

C4

[,RECL-recordlength][,BLKL-blocklength]

5-36

string·}]

The NAME parameter indicates the file name used by the program. Just like the NAME
parameter used for the other files (disk, tape, diskette), the name must agree with the
name you used to reference the file in your program.

The UNIT parameter identifies the statement as a card file statement.

The (did) parameter indicates that a specific card reader is to be used for the file and
specifies the physical address of the card unit. This is a hexadecimal number defining the
channel number, control unit address, and the device number. This parameter must be
enclosed in parentheses and immediately follow the unit code.

The LABEL parameter indicates the physical name identifying the file. For card files in a
nonspooling environment, this parameter is meaningless. For an input spooling system,
the physical name is the name of the spooled card file (name specified on the DATA
statement, see 5.3.6). If the LABEL parameter is omitted, the file name specified on the
NAME parameter is used.

The RECL parameter indicates the number of bytes in each logical record in the file. This
parameter overrides the record length defined in your program.

The BLKL parameter indicates the number of bytes in each physical block in the file. This
value must be the same value as specified in the RECL parameter. This parameter
overrides the block length defined in your program.

5.2.14.6. Defining Printer Files

The FILE statement can be used to define a file that contains output to a printer.

The format of the printer FILE statement is:

II FILE NAME-filename, UNIT-PR[(did)]

[, REC L - r e co rd s i z e] [• BL K L - b I o c ks i z e]

[
,LABEL-{filename }]

'character string'

The NAME parameter provides the file name your program uses to reference.the file.

•

•

•

•

•

•

UP-~379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-37

The UNIT parameter identifies the statement as a printer file statement. The (did)
parameter indicates that a specific printer is to be used and specifies the physical address
of the unit. This parameter is a hexadecimal number defining the channel number, control
unit address, and the device number. The (did) parameter must be enclosed in parentheses
and immediately follow the unit code.

The RECL parameter indicates the number of bytes in each logical record, up to a
maximum of 32,767. This parameter overrides the record length defined in your program.

The BLKL parameter indicates the number of bytes in each physical block in the file. This
parameter overrides the block length defined in your program.

The LABEL parameter is used for compatibility among file statements. If supplied, it is
ignored.

5.2.14.7. Defining Punch Files

The FILE statement can be used to define a file that contains output to a punch.

The format of the punch FILE statement is:

II FILE NAME-filename, UNIT-PU[(did)]

[,RECL-recordsize][,BLKL-blocksize]

[
. LABEL - { f i I en am e }]

'character string'

The NAME parameter provides the file name your program uses to reference the file.

The UNIT parameter identifies the statement as a punch file statement. The (did)
parameter indicates that a specific punch is to be used and specifies the physical address
of the unit. This is a hexadecimal number defining the channel number, control unit
address, and the device number. The (did) parameter must be enclesed in parentheses and
immediately follow the unit code.

The RECL parameter indicates the number of bytes in each logical record. This parameter
overrides the record length defined in your program.

The BLKL parameter indicates the number of bytes in each physical block in the file. This
parameter overrides the block length defined in your program.

The LABEL parameter is used for compatibility among file statements. If supplied, it is
ignored .

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5.2.15. Calling OCL Procedures (CALL)

5-38
Update A

The CALL statement is used to merge stored OCL statements with OCL statements
entering the system through the job stream. This is not a physical merge; the statements
called from the library are inserted logically into the control stream via the OCL processor.

The format of the CALL statement is:

II CALL p<o<odo<oo•mo,{~1}

The procedurename parameter is used to supply the name that you used when you stored
the procedure. The procedure is located on the library defined by the next parameter, (RT,
R2, FT, F2). Up to eight characters may be used, but the use of commas, apostrophes, and
blanks is not permitted.

Coding RT indicates the procedure is stored in the system library file (YLOD), and it's on
the volume containing the job's YRUN file. By coding R2, you indicate that the
procedure is stored in Y0CLOD, and it's located on the volume containing the job's
YRUN file. If you code FT, YLOD on SYSRES contains the procedure. The coding of F2
indicates the procedure is stored on SYSRES, in Y0CLOD. (See 5.2.2.)

•

To illustrate the use of the CALL statement, assume you have placed OCL statements in a •
procedure module called PAYROL in the F2 library (Y0CLOD on SYSRES) using the
$MAINT library routine. To run this set of OCL statements, you would use the following
CALL statement:

II CALL PAYROL,F2

NOTE:

If the volume containing the YRUN job files is defaulted to the system resident device
(determined at system IPL time), then specifying R1 is the same as specifying Fl Likewise,
specifying R2 is the same as specifying F2.

5.2.16. Grouping Related Job Steps (JOB)

The JOB statement allows you to group together related job steps to ensure they are run
sequentially. The next step of a job is not initiated until the previous job step has
successfully completed. The JOB statement may precede the first LOAD or CALL
statement. It cannot be used in a procedure.

•

•

•

•

UP-8~79 Rev. 4

• SIMULATE

II SIMULATE{ON }
OFF

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-41

This statement must not appear between a load or CALL statement and a RUN
statement.

5.3. JCL STATEMENTS SUPPORTED BY OCL

The following paragraphs give an explanation of the current JCL statements supported by
OS/3 OCL.

5.3.1. Making Temporary Changes to a Load Module (ALTER)

The ALTER control statement permits you to make minor temporary changes in up to eight
bytes of a load module to see if the changes have the desired effect before these changes
are made permanent, because recompiling and linking are time consuming. The· ALTER
statement must follow a LOAD or CALL statement and precede a RUN statement. As many
ALTER job control statements as you need to change the module are grouped between the
LOAD or CALL statement and the RUN statement.

The format of the ALTER job control statement is:

//[symbol] ALTER [phase-name][,address][,change] [{~:~ET}]

The phase-name parameter is either the 8-alphanumeric character name of the phase
assigned by the linkage editor or the 1- to 6-alphanumeric-character alias name of the
phase. If you omit this parameter, the last-phase name used on an ALTER job control
statement in this job step is used.

The address parameter is the 1- to 5-digit hexadecimal starting location address where the
changed information is to be stored. This is in relation to the first byte of the phase area. If
you omit this parameter and an address is required, an address of zero is used. An
address is not required when RESET is used as the fourth parameter.

NOTE:

If the address given is invalid, a change does not take place.

The actual information to be placed in the phase is specified with the change parameter.
You can specify it in either EBCDIC or hexadecimal. EBCDIC information takes the form
C'c ... c'. The maximum number of characters is eight (eight bytes). Hexadecimal information
takes the form X'c ... c'. The maximum number of characters is 16 (eight bytes). If you omit
the change parameter, no modification is made for this ALTER job control statement alone,
but the information it does contain, such as phase name, is passed to subsequent ALTER
job control statements.

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-42
Update A

The ORG parameter indicates that the address specified in the address parameter should •
be added to all the addresses on succeeding ALTER job control statements, until one with
a RESET parameter or a different phase name is encountered.

The RESET parameter resets the alter mode indicator to its original status. If you omit all
other parameters of this ALTER job control statement, control is returned to your program.

Once an ALTER job control statement is encountered, each and every phase of the load
module expects an ALTER job control statement. This the reason for the RESET parameter.
It indicates that no other ALTER job control statements are in the control stream.

Consider these examples:

II ALTER TSTPGMOO

II ALTER ,4361,X'FAF3F9'

II ALTER ,4700,X'FS'

II ALTER , , ,RESET

If a RESET parameter is specified, the information is passed along to the program
execution phase. When the phase that had the RESET parameter specified is loaded for
the first time, the option is reset so that no other phases will be altered. This saves time if
a phase that is only loaded once is the only phase requiring alteration.

Suppose there is a phase named TSTPGMOO and it constantly needs changes according
to weather conditions. The first and last ALTER job control statements could be placed
permanently in the control stream, while the variable ALTER job control statements could
be inserted as needed. In the preceding example, the information contained in addresses
4361 and 4700 is changed.

5.3.2. Selecting Software Features (OPTION)

The OPTION control statement permits you to select optional software features whenever
you wish. They are effective only during the job step in which they are specified. The
OPTION control statement must follow a LOAD or CALL statement and precede a RUN
statement.

The format of the OPTION job control statement is:

//[symbol] OPTION p-1[, ... ,p-n]

As you can see, you can specify as many features as desired, as long as they're separated
by commas (there can't be any spaces). For information on the specific features available
through the job control OPTION statement, refer to the job control user guide, UP-8065
(current version).

•

•

UP-8p9 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

DELETION

Pages 5-43 through 5-46 have been deleted .

5-43 thru 5-46
Update A

•

•

•

UP-8379 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

DELETION

Page 5-47 has been deleted .

5-47
Update A

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5.3.3. Defining the Software Facilities (SFT)

5-48
Update A

OS/3 automatically loads the data management modules needed by your job. However, if
you have written your own shared-code modules and they are not stored in YLOD or
YRUN, you use the SFT job control statement to identify these modules to the system.
The SFT statement tells the OCL processor that load modules not in either YLOD or
YRUN, or on the volume containing the job's YRUN file, are needed by a particular
job.

For more information on the SFT job control statement. refer to the job control user guide,
UP-8065 (current version).

•

•

•

UP-8379 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

DELETION

Pages 5-49 and 5-50 have been deleted .

5-49 and 5-50
Update A

•

•

•

UP-8:p9 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

DELETION

Page 5-51 has been deleted .

5,-51
Update A

UP-8379 Rev. 4

5.3.4. Restarting a Job (RST)

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-52

The RST job control statement allows you to rerun a job from a specified checkpoint. You
don't have to rerun the entire job, just the part that was never completed. The information
required to build an RST control statement is displayed on the system console whenever a
CHKPT macroinstruction is encountered in your program. So, to use this restart facility,
you have to make use of the CHKPT macroinstruction, which is explained in the supervisor
user guide. In general, all you have to do is place an RST job control statement in front of
the original job control stream; then run the job.

The format of the RST job control statement is:

//[symbol] RST file-name.checkpoint- id.number

[,job name - I i bra r y unit [(rename)] [,pr i]]

[, key - I =v a I - I , ... , key - n=v a I - n]

The file that contains the checkpoint records must be defined in a FILE statement in the
step being restarted. The file-name parameter of the RST job control statement must agree
with the NAME parameter on the FILE statement for that file.

Every time a checkpoint record is displayed on the system console, a checkpoint number is
given. When you want to restart the job, you use this checkpoint number as the
checkpoint-id parameter.

•

The number parameter specifies the number of the job step within the job where the •
restart should begin.

The jobname parameter specifies the name of the job if the job is stored in a library. The
library-unit identifier indicates the library. If a job with the same name is already
scheduled for execution and you want to restart the stored job, you specify an alternate
name for the job to be restarted by using the (rename) parameter (one to eight
alphanumeric characters). Remember, only one job at a time can use a particular name.
When you use the (rename) parameter, you must use the jobname parameter, and they
are not separated by a comma, but by a parenthesis.

The pri parameter is the priority at which a restarted job is to be scheduled. This is either
P for preemptive, H for high, or N for normal. The default is normal. This overrides the
priority of the operator console command, or the OS/3 JOB statement.

The key=va/ parameters represent keywords and their values that may be referenced like
the parameters of a GBL job control statement (5.3.19.). The effect of these parameters is
as if a GBL job control statement was inserted as the first job control statement of the job.
The total length of the value for the parameters cannot exceed 44 characters.

•

•

•

•

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5-65

Since bits O and 1 were already set by the first SET UPSI job control statement and we
want them left on, we code an X in these positions, and code a 1 to set bit 2. Since bit 7
is to be turned off, we code a 0 in this position; otherwise the 1 from the first SET UPSI
job control statement would still be effective.

NOTE:

The OS/3 SET UPS/ job control statement can be used interchangeably with the System/3
SWITCH statement. Both statements have equivalent functions.

5.3.12.3. Setting the Communications Region (SET COMREG)

The communications region is a 12-byte field in the job preamble that passes information
from one job step to the next. For instance, assume your job has two job steps. The first
job step generates input for the second. But, if this input is incorrect, you don't want to
run the second job step. In the program for the first job step, you insert a routine that
checks the validity of the output, and if it's incorrect, writes a code in the communications
region. Then, in the program for the second job step, you insert another routine that
checks the communications region. If the code is there, transfer control directly to the end
of the job.

Once you place these routines in your programs, they are there permanently unless you
remove the routines and recompile the programs. It may just happen that sometime you
want to run the second job step even if the first job step was wrong (a test). Here is where
you would use the SET COMREG job control statement. This allows you to change the
code in the communications region.

The format of the SET COMREG job control statement is:

//[symbol] SET COMREG,char-string

The char-string parameter specifies the 1 to 12 EBCDIC characters or the 2 to 24
hexadecimal characters (even amounts only) to be stored in the communications region. It
is stored left-justified, and any unspecified rightmost characters remain unchanged.
Specify hexadecimal characters as X'ccc ... cc' and EBCDIC characters as C, 'ccc ... cc'.

At the beginning of the job, the communications region is set to O's.

Let's say you wanted the hexadecimal code of E2 E3 06 07 to be stored in the first four
bytes of the communications region; it would be coded as:

II SET COMREG,X'E2E30607'

t

UP-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

5.3.13. Issuing System Commands (CC)

5-66
Update A

The CC job control statement allows you to issue OS/3 system console and workstation
commands, with their associated parameters, from within a job control steam. Because
there are many system commands, we will not attempt to discuss each one here. You can
find the formats and descriptions of system console commands in your operations
handbook. Workstation commands are described in the interactive service commands and
facilities user guide/programmer reference. The format of the CC statement is:

//[symbol] CC command{command }
'command and parameters'

When enclosed in single quotes, any system console or workstation command and
parameters can be specified in the CC statement. When the command has no associated
parameters or when you do not specify any parameters, the quotes are not used.

Let's say you want to release a job (JOB1) that's being held as the result of a HOLD
system command. If you specify the BEGIN command in a CC job control statement, you
can include this statement in the job you're going to run. JOB1 will be released when this
statement is processed (at your job's execution time). You would code the CC statement as
follows:

II CC 'BE JOBl'

•

Suppose you wanted to m1t1ate the general editor from a job control stream. The •
worksation command for the general editor is simply EDT. Because there are no
parameters, you'd code the CC statement as follows:

II CC EDT

Whenever parameters are specified with a command, the total number of characters
within the quotes cannot exceed 60.

The CC statement is examined for syntax errors by the run processor during job stream
validation. If no syntax errors are found, the job is queued. The command and its
associated parameters are sent to the system when the CC statement is encountered by
the job step processor. The command is validated by the system independently of your job,
so errors associated with satisfying commands do not terminate a job stream. If no EXEC
statement follows a CC statement, the specified commands are acted upon prior to job
termination.

NOTES:

1. The following system console commands cannot be specified in the CC job control
statement: MIX, SWITCH, A VR, REBUILD, SHUTDOWN, SYSDUMP, and all SET
commands.

2. When the command string contains no blanks (other than the blank separating the
command from its first parameter, you can precede the first parameter with a comma
instead of enclosing the command and its parameters in single quotes. For example:
/ / CC BE,JOB 1

•

UP-8~79 Rev. 4

•

•

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

DELETION

Pages 5-67 and 5-68 have been deleted .

5-67 and 5-68
Update A

•

•

•

UP-8f79 Rev. 4

•

Term

A

Addition
cards to stored stream (CR)
missing parameter
statement

ALLOCATE statement

• Allocating main storage (PARTITION)

ALTER statement

Assigning set symbols
global status

local status

Asterisk (*) statement

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

B

Basic assembly language processor
5.3.5 5-53
5.4.4 5-81 Beginning the job (JOB)
5.4.5 5-81

Braces
6.3.1 6-19

Brackets
5.2.1 5-6

Branching
5.3.l 5-41 conditional (IF)

targets (NOP)
unconditional (GO)

5.3.19 5-75
5.3.20 5-76 BSCA statement
5.3.18 5-74

Build an indexed file
5.2.12 5-19

Bypassing job control statements (SKIP)

Index 1
Update A

Index

Reference

4.5

5.3.9

1.6

1.6

5.3.16
5.3.17
5.3.15

5.2.19

6.2.4.7

5.3.14

Page

4-9

5-59

1-10

1-11

5-72
5-73
5-70

5-40

6-9

5-69

UP-8379 Rev. 4

Term

c
Calculation specifications form

incompatibilities

CALL statement

Card data files, OCL environment
combined input/output
diskette
input
output
stored control stream

Card data, spooling input (DATA)

Card punch forms characteristics
(PUNCH)

Card reader operation end (FIN)

Card-to-library add function

CCP screen conversion program

CC statement

CEND record

Changes to load module,
temporary (ALTER)

CHANGEVSN statement

Changing
date
disk file label
parameters

Character set specification (IMAGE)

COBOL conversion program

COBOL language processor

Combined card files definition

Combined 1/0, card data files

Comma convention

Comment display
PAUSE statement
*comment statement

Communications region setting

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

Compatibility features

4.2.3 4-5 COMPILE statement

5.2.15 5-38 Compiler options (COMPILE)

Conditional branching (IF)

5.6.3 5-94
5.6.4 5-94 Console, using OCL from

5.6.1 5-90
5.6.2 5-94 Continuation line

5.6.5 5-95
Control ca rd specifications

5.3.6 5-54 form incompatibilities

Control field modification (SET)
5.2.9 5-16

Control statements
5.3.10 5-61 copy routine

delete routine
6.3.2.1 6-21 format, file copy

3.3 3-2 Control stream, stored

5.3.13 5-66
Controlling spooled output (SPL)

2.5.2.3 2-14
Conversion process

5.3.1 5-41 Conventions, statement

5.3.22 5-78 Copy a file format
complete file
part of a file

5.3.12.1 5-63
5.3.11 5-61 Copy and print a file format
5.4.2 5-80 complete file

part of a file
5.2.7 5-12

Copy function

4.3 4-7 disk-to-disk
file-to-file

4.3 4-7
Copy record

5.2.14.4 5-35
COPY routine

5.6.3 5-94 control statements/functions
COPYFILE parameter

1.6 1-8 END statement
KEY parameters
SELECT parameters

5.2.13 5-19
5.2.12 5-19 COPY statement functions

card-to-library add

5.3.12.3 5-65 library-to-library copy
Ii bra ry-to-printer I punch copy
library directory printing

Index 2
Update A

Reference

1.1
1.3

5.2.6

5.2.6

5.3.16

5.1.1

1.6

4.2.3

5.3.12

6.2
6.1
6.2.4

5.6.5
5.7

5.3.7

Part 2

1.6

6.2.4.1
6.2.4.4

6.2.4.2
6.2.4.5

6.2.2
6.2.3

2.5.2.1

6.2
6.2.5
6.2.8
6.2.7
6.2.6

6.3.2.l
6.3.2.2
6.3.2.3
6.3.2.4

Page •
1-1
1-5

5-10

5-10

5-72

5-1

1-9

4-4

5-63

6-2
6-1
6-6

5-95
5-96

5-55 •
1-8

6-6
6-8

6-7
6-8

6-4
6-5

2-13

6-2
6-12
6-18
6-17
6-16

• 6-21
6-22
6-24
6-25

UP-8379 Rev. 4

• Term

COPYFILE parameter parameters
DELETE
INPUT
LENGTH
OMIT
OUTPTX
OUTPUT
REORG
WORK

Copying modules
from disk-to-tape
to disk

COPYS3 routine
description
example
execution
file characteristics
record characteristics

CR statement

$COPY control statement

• *comment statement

Creating OCL streams at a workstation

D

Data file definitions (FILE)
combined card files
disk data files
diskette data files

• files not in control stream
printer files
punch files
tape data files
See also FILE statement.

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

Data file transcription,
6.2.5.4 6-16 Models 10, 12, and 15
6.2.5.3 6-14 description
6.2.5.2 6-14 OS/3 step
6.2.5.4 6-16 System/3 step
6.2.5.1 6-12
6.2.5.1 6-12 DATA statement
6.2.5.5 6-16
6.2.5.5 6-16 DATA STEP statement

2.3.2.2 2-6
Date changing (SET DATE)

2.3.2.1 2-5 DATE statement

Defining software facilities (SFT)
2.5 2-13
2.3.3 2-8 DELETE
2.5.3 2-14 parameter
2.5.1 2-13 statement
2.5.2 2-13

Delete routine statements
5.3.5 5-53 END

FORMAT
6.2 6-2 REMOVE

SCRATCH
5.2.12 5-19

Deleting parameters
5.1.2.1 5-5

Disk date files definition

Disk file label changing (REN)

Disk files, multivolume

Disk-to-disk copy function

Disk-to-tape dump function

Diskette, card data files

Diskette data files definition

Diskette files, multivolume

Diskette transfer file generation

Displaying comments

5.2.14.4 5-35
Dump function; disk-to-tape

5.2.14.1 5-21 $DCOPY control statement
5.2.14.3 5-31
5.2.14.5 5-35
5.2.14.6 5-36
5.2.14.7 5-37
5.2.14.2 5-26a

Index 3
Update A

Reference

2.4
2.4.2
2.4.1

5.3.6

5.3.2.1

5.3.12.1

5.2.4

5.3.3

6.2.5.4
6.4.3

6.1.3
6.1.2
6.1.1
6.1.1

5.4.3

5.2.14.1

5.3.11

5.5.l

6.2.2

6.2.1

5.6.4

5.2.14.3

5.5.3

2.3.1

5.2.12
5.2.13

6.2.l

6.2

Page

2-9
2-11
2-9

5-54

5-76

5-63

5-9

5-48

6-16
6-26

6-2
6-2
6-1
6-1

5-80

5-21

5-61

5-86

6-4

6-3

5-94

5-31

5-89

2-3

5-19
5-19

6-3

6-2

UP-8379 Rev. 4

Term

E
End-of-data statement (/*)

End-of-job statement (/& and /.)

End statement

Ending card reader operation (FIN)

Entry point, System/3 to OS/3

Executing COPYS3

Executing program (RUN)

F

FILE
parameter
statement

File and record characteristics

File copy control statement format

File definitions

File delete routine ($DELETE)

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

File description specifications
form incompatibilities

5.2.17 5-39
File format, entire file

5.2.18 5-39 copy
copy/print

6.1.3 6-2 print
6.4.5 6-27

Files, card data
5.3.10 5-61

Files, multivolume
5.1 5-1 disk

diskette
2.5.3 2-14 tape

5.2.3 5-8 File-to-file copy function

FIN statement

Form characteristics
card punch (PUNCH)
printer (FORMS/PRINTER)

Format, file copy control statement
build indexed file
copy a file
copy part of a file
copy/print a file
copy/print part of a file
print entire file
print part of a file

FORMAT statement

FORMS/PRINTER statement

FORTRAN language processor

FROM parameter

Functions, copy routine
control statement format
disk-to-disk copy
disk-to-tape dump
file-to-file copy
tape-to-disk restore

6.2.6.4 6-17
5.2.14 5-20

2.5 2-13

6.2.4 6-6

See data file
definitions

6.1 6-1

Index 4

Reference Page •
4.2.3 4-5

6.2.4.1 6-6
6.2.4.2 6-7
6.2.4.3 6-7

5.5 5-90

5.5.1 5-86
5.5.3 5-89
5.5.2 5-86

6.2.3 6-5

5.3.10 5-61

5.2.9 5-16
5.2.8 5-14

6.2.4.7 6-9 • 6.2.4.1 6-6
6.2.4.4 6-8
6.2.4.2 6-7
6.2.4.5 6-8
6.2.4.3 6-7
6.2.4.6 6-9

6.1.2 6-2

5.2.8 5-14

4.4 4-8

6.2.6.2 6-16

6.2.4 6-6
6.2.2 6-4
6.2.l 6-3
6.2.3 6-5
6.2.1 6-3

•

UP-8379 Rev. 4 •

• Term

G

GBL statement

GO statement

Grouping related job steps (JOB)

H

HALT statement

•

IF statement

I MAGE statement

Incompatibilities, RPG II
specifications form

Indicating program to be run (LOAD)

Input, card data files

Input file/record characteristics

INPUT parameter

• lnterjob operator intervention

Introducing processing options (PARAM)

Issuing system commands (CC)

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

5.3.19 5-75 JCL statements
ALTER

5.3.15 5-70 cc
CHANGEVSN

5.2.16 5-38 CR
DATA
DATA STEP
FIN
GBL
GO
IF
JOB
JSET
NOP
OPTION
PA RAM
QGBL
REN
RST

5.2.12 5-18
SET
SET DATE
SET COMREG
SET UPSI
SFT
SKIP
SPL

J

Job control statement bypass (SKIP)

Job restarting (RST)

JOB statement

JSET statement

5.3.16 5-72

5.2.7 5-12

4.2.3 4-3

5.2.2 5-6a

5.6.l 5-90

2.5 2-13

6.2.5.3 6-14

5.2.11 5-18

5.3.8 5-59

5.3.13 5-66

Index 5
Update A

Reference

5.3.1
5.3.13
5.3.22
5.3.5
5.3.6
5.3.21
5.3.10
5.3.19
5.3.15
5.3.16
5.3.9
5.3.18
5.3.17
5.3.2
5.3.8
5.3.20
5.3.11
5.3.4
5.3.12
5.3.12.l
5.3.12.3
5.3.12.2
5.3.3
5.3.14
5.3.7

5.3.14

5.3.4

5.2.16
5.3.9

5.3.18

Page

5-41
5-66
5-78
5-53
5-54
5-76
5-61
5-75
5-70
5-72
5-59
5-74
5-73
5-42
5-59
5-76
5-61
5-52
5-63
5-63
5-65
5-64
5-48
5-69
5-55

5-69

5-52

5-38
5-59

5-74

UP-8379 Rev. 4

Term

K

KEY statement parameters
LENGTH
LOCATION

Keyword parameter description

$KCOPY control statement

L

Label changing, disk file (REN)

Language processors
basic
COBOL
description
FORTRAN
RPG II

Language, programming

LENGTH parameter

Library directory printing

Library maintenance ($MAINT) routine
control statements

ALLOCATE
COPY
DELETE
END
RENAME

Library-to-library copy function

Library-to-printer/punch copy function

Load module temporary changes (ALTER)

LOAD statement

LOCATION parameter

LOCKOUT statement

LOG statement

Logging device messages (LOG)

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

M

Main storage allocation (PARTITION)
6.2.7.l 6-17
6.2.7.2 6-17 Messages to logging device (LOG)

1.6 1-8 Modifying control fields (SET)

6.2 6-2 Module copying
from disk to tape
to disk

Multivolume file use
disk files
diskette files
tape files

$MAINT routine

5.3.11 5-61 See also library maintenance
routine control statements.

4.5 4-9
4.3 4-7
4.1 4-1
4.4 4-8
4.2 4-1

1.3 1-5

6.2.5.2 6-14
6.2.7.l 6-17

6.3.2.4 6-25

6.3.l 6-19
6.4.2 6-20 N
6.4.3 6-26
6.4.5 6-27 Nesting programs/procedures
6.4.4 6-27

6.3.2.2 6-22
NOHALT statement

6.3.2.3 6-24
NOP statement

5.3.1 5-41

5.2.2 5-6a

6.2.7.2 6-17

5.2.19 5-40

5.2.10 5-17

5.2.10 5-17

Index 6
Update A

Reference

5.2.l

5.2.10

5.3.12

2.3.2.2
2.3.2.2

5.5.l
5.5.3
5.5.2

6.3

5.4.7

5.2.11

5.3.17

Page •
5-5

5-17

5-63

2-6
2-5

5-86
5-89
5-88

6-18

•

5-82

5-18

5-73

•

UP.-8379 Rev. 4 SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Index 7
Update A

UP-8379 Rev. 4

~------------------------....

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Index 8

UP-~379 Rev. 4

•

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Index 9
Update A

UP-8379 Rev. 4

Term

u
Unconditional branching (GO)

U PSI setting

User program switch indicator
setting (SWITCH)

Using OCL
from console
on workstation
See also OCL use.
See also OCL procedures.

Utility routines, OCL

SPERRY UNIVAC OS/3
SYSTEM/3 TO OS/3 TRANSITION

Reference Page Term

5.3.15 5-70 VMNT parameter

5.3.12.2 5-64

5.2.5 5-10
Workstation, using OCL on

5.1.1 5-1
5.1.2 5-4

Section 6

v

w

Index 10
Update A

Reference

5.2.14.1
5.2.14.3

5.1.2

Page •
5-21
5-31

5-4

•

•

•

Cl

•

•

· SPE~Y+UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I
I

-~~---!
FOLD I

I
I
I
I
I
I
I
I

•

•

