
UOl -251 Rev. 3173

Assembler (Suies 'Jo}
F0t Systerr. lo set UP-g,,~
Programmer Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Assembler Programmer Reference", UP-8227 Rev. 2.

This revision documents the following enhancements to the assembler for release 8.0:

• The display of error messages on the console

• An additional warning message when using continuation characters with macroinstructions

This revision also includes minor technical corrections to material applicable to the assembler prior to release 8.0.

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8227 Rev. 1, UP-8227 Rev. 1-A, UP-8227 Rev. 1-B, UP-8227 Rev. 1-C, UP-8227 Rev. 1-D and
UP-8227 Rev. 1-E will be available for 6 months after the release of 8.0. Should you need additional copies of these
editions, you should order them within 90 days of the release of 8.0. When ordering the previous edition of a
manual, be sure to identify the exact revision and update packages desired and indicate that they are needed to
support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists BZ,
CZ and MZ

Mailing Lists ADO, A18, 75, and 76
(Cover and 345 pages)

Library Memo for
UP-8227 Rev. 2

RELEASE DATE:

September, 1982

Assembler

Environment: 90/25, 30, 308, 40 Systems

H UNIVAC UP-8227 Rev. 2

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and UNIS
are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd .. King of Prussia, Pa .. 19406.

C1980- SPERRY CORPORATION PRINTED IN U.S.A.

8227 Rev. 2

UP-NUMBER

Part/Section

Cover/Disclaimer

PSS

Preface

Contents

Section 1

Section 2

Section 3

Section 4

Appendix A

Appendix B

Appendix C

Appendix D

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

UP-8227 Rev. 2
8.0 Forward

Page Update
Number Level Part/Section

Page Update
Number Level

Appendix E
Title Page

1 1 thru 5

1 Appendix F
Title Page

1 thru 10 1 thru 6

Glossary 1 thru 17
Title Page
1 thru 5 User Comment

Sheet

Title Page
1 thru 48
48a
49 thru 62
62a,62b
63 thru 68
68a
69 thru 80
80a
81 thru 120
120a
121 thru 128
128a
129 thru 138
138a thru
138e
139 thru 146
146a
147thru163

Title Page
1 thru 31

Title Page
1 thru 29

Title Page
1 thru 24

Title Page
1 thru 7

Title Page
1 thru 13

Title Page
1 thru 8

UPDATE LEVEL PAGE

Part/Section
Page Update

Number Level

-

All the technical changes are denoted by an arrow r-1 in the margin. A downward pointing arrow (t l next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+ l is found. A horizontal arrow r-1 pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

PSS 1

-

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Preface 1
UPDATE LEVEL PAGE

Preface

This programmer reference manual is one in a series designed to be used as a quick-reference document for
programmers familiar with the SPERRY UNIVAC Operating System/3 (OS/3). This particular manual describes
the basic assembly language (BAL) instructions, directives, and macro definition statements that allow you to
write your own assembly language programs and procedure definitions (procs).

No extensive introductory information or examples of use are provided. This type of information is presented in
two other assembler manuals: an introduction to the assembler, UP-8030, and an assembler user guide, UP-
8061.

The information contained in this manual is presented as follows:

• Section 1. General Information

Provides a brief overview of the assembler, the job control stream requirements of the assembler, and the
conventions that must be observed when reading and writing assembler code.

• Section 2. BAL Application Instructions

Describes each of the BAL application instructions recognized by the OS/3 assembler. These descriptions
are presented in alphabetic order by their operation code mnemonic.

• Section 3. BAL Directives

Describes each of the dir~ctives that are used to control the operation of the assembler. These directives
are also presented in alphabetic order by their operation code mnemonic.

• Section 4. BAL Macro Definition Statements

Describes the macro definition statements used to write and call procedure definitions. These statements
are presented in alphabetic order.

• Appendixes

•

Contain assembler references, character set code references, math references, source corrections, and
system variable symbols helpful to the BAL programmer.

Glossary

Defines the terms, expressions, and abbreviations peculiar to the assembler.

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. GENERAL INFORMATION

ASSEMBLER OVERVIEW

JOB CONTROL REQUIREMENTS

ASSEMBLER CODING FORM
Symbol Field
Operation Field
Operand Field
Comment Field
Continuation Column
Sequence Field

READING INSTRUCTION NOTATIONS
Assembler Application Instruction Notations
Notation Rules and Meanings

2. BAL APPLICATION INSTRUCTIONS

A

AD

ADR

AE

AER

AH

Al

UPDATE LEVEL

Contents 1

PAGE

Contents

1-1

1-1

1-1
1-2
1-2
1-2
1-2
1-3
1-3

1-3
1-3
1-4

2-1

2-2

2-3

2-4

2-5

2-6

2-7

8227 Rev. 2
UP-NUMBER

AL

ALR

AP

AR

AU

AUR

AW

AWR

BAL

BALR

BAS

BASR

BC

BCR

BCT

BCTR

BXH

BXLE

c

CD

CDR

CE

CER

CH

CL

CLC

cu

SPERRY UNIVAC Operating System/3 Contents 2
UPDATE LEVEL PAGE

2-8

2-10

2-11

2-13

2-14

2-15

2-16

2-17

2-18

2-19

2-20

2-20

2-21

2-23

2-24

2-25

2-26

2-27

2-28

2-29

2-30

2-31

2-32

2-33

2-34

2-35

2-36

8227 Rev. 2
UP-NUMBER

CLR

CP

CR

CVB

CVD

D

DD

DOR

DE

DER

DIAG

DP

DR

ED

EDMK

EX

HOR

HER

HPR

IC

ISK

L

LA

LCDR

LCER

LCR

LCS

SPERRY UNIVAC Operating System/3 Contents 3
UPDATE LEVEL PAGE

2-37

2-38

2-39

2-40

2-42

2-43

2-44

2-45

2-46

2-47

2-48

2-48a

2-50

2-51

2-56

2-58

2-60

2-61

2-62

2-62a

2-62b

2-63

2-64

2-65

2-66

2-67

2-68

8227 Rev. 2

UP-NUMB EA

LO

LOR

LE

LER

LH

LM

LNDR

LNER

LNR

LPDR

LPER

LPR

LPSW

LR

LTDR

LTER

LTR

M

MD

MOR

ME

MER

MH

MP

MR

MVC

MVI

MVN

SPERRY UNIVAC Operating System/3 Contents 4

UPDATE LEVEL PAGE

2-68a

2-69

2-70

2-71

2-72

2-73

2-75

2-76

2-77

2-78

2-79

2-80

2-80a

2-81

2-82

2-83

2-84

2-85

2-87

2-88

2-89

2-90

2-91

2-92

2-94

2-95

2-96

2-97

8227 Rev. 2

UP-NUMBER

MVO

MVZ

N

NC

NI

NR

0

QC

01

OR

PACK

s

SD

SOR

SE

SER

SH

SIO

SL

SLA

SLDA

SLDL

SLL

SLM

SLR

SP

SPM

SR

SRA

Contents 5

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

2-98

2-99

2-100

2-102

2-104

2-106

2-107

2-109

2-111

2-113

2-114

2-115

2-116

2-117

2-118

2-119

2-120

2-120a

2-121

2-123

2-125

2-127

2-128

2-128a
2-129

2-130

2-132

2-133

2-134

8227 Rev. 2
UP-NUMBER

SRDA

SRDL

SRL

SSFS

SSK

SSM

SSRS

SSTM

ST

STC

STD

STE

STH

STM

STR

SU

SUR

SVC

SW

SWR

TM

TR

TRT

TS

UNPK

x

xc

XI

XR

SPERRY UNIVAC Operating System/3 Contents 6
UPDATE LEVEL PAGE

2-136

2-137

2-138

2-138a

2-138b

2-138c

2-138d

2-138e

2-139

2-140

2-141

2-142

2-143

2-144

2-146

2-146a

2-147

2-148

2-149

2-150

2-151

2-152

2-154

2-156

2-157

2-158

2-159

2-161

2-162

8227 Rev. 2
UP-NUMBER

3.

SPERRY UNIVAC Operating System/3

ZAP

BAL DIRECTIVES

ccw

CNOP

COM

COPY

CSE CT

DC (Floating Point)

DC (Standard Format)

DROP

OS

DSECT

EJECT

END

ENTRY

EQU

EXT RN

ICTL

ISEQ

LTORG

OPSYM

ORG

PRINT

PUNCH

REPRO

SPACE

START

TITLE

Contents 7
UPDATE LEVEL PAGE

2-163

3-1

3-2

3-3

3-5

3-6

3-7

3-9

3-10

3-11

3-12

3-·13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

3-21

3-23

3-24

3-25

3-26

3-27

3-28

3-29

8227 Rev. 2
UP-NUMBER

4.

SPERRY UNIVAC Operating System/3

USING

BAL MACRO DEFINITION STATEMENTS

ACTR

AGO

Alf

ANOP

DO

END

ENDO

GBL

GBLA

GBLB

GBLC

LCL

LCLA

LCLB

LCLC

MACRO

Macro Call Instruction

MEND

MEXIT

MNOTE

Model Statement

NAME

PNOTE

PROC

Prototype Statement

SET

Contents 8
UPDATE LEVEL PAGE

3-30

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-8

4-8

4-8

4-9

4-9

4-9

4-9

4-10

4-11

4-13

4-14

4-15

4-16

4_.:17

4-18

4-19

4-21

4-22'

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

SETA

SETB

SETC

APPENDIXES

A. ASSEMBLER REFERENCES

CHECK-OFF TABLE TERMS

B. CHARACTER SET CODE REFERENCES

c. MATH REFERENCES

FLOATING-POINT MATH
Floating-Point Addition
Floating-Point Division
Floating-Point Multiplication

D. SOURCE CORRECTIONS

GENERAL

PAR AM

SEQ

REC

SKI

E. SYSTEM VARIABLE SYMBOLS

F. ATTRIBUTE REFERENCES

Type Attributes
Length Attributes
Scale Attributes
Integer Attributes
Count Attributes
Number Attributes

GLOSSARY

USER COMMENT SHEET

Contents 9

UPDATE LEVEL PAGE

4-25

4-26

4-29

A-20

C-10
C-11
C-12
C-13

D-1

D-2

D-6

D-7

D-8

F-2
F-4
F-5
F-5
F-5
F-6

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

TABLES

A-1.
A...;.2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.

B-1.
B-2.
B-3.

C-1.
C-2.
C-3.
C-4.
C-5.
C-6.

F-1.
F-2.

Instruction Formats
Instruction Repertoire
Extended Mnemonic Branch Codes
Summary of Operators
Comparison of Terms
Characteristics of Constant and Storage Definition Type Codes
Macro and Proc Format Comparison
Check-off Table Terms

Punched Card, ASCII, and EBCDIC Codes
90/30 EBCDIC Code Chart
ASCII Character Code Chart

Comparison of Numeric Expressions
Hexadecimal-Decimal Integer Conversion
Hexadecimal-Decimal Fraction Conversion
Hexadecimal Addition and Subtraction Table
Powers of 16
Powers of 2

Valid Attribute Reference Applications
Type Attributes of Symbols

Contents 10
UPDATE LEVEL PAGE

A-1
A-3
A-19
A-20
A-20
A-21
A-22
A-23

B-1
B-6
B-7

C-1
C-2
C-6
C-7
C-8
C-9

F-2
F-3

1. General Information

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 1-1
UPDATE LEVEL PAGE

ASSEMBLER OVERVIEW

The SPERRY UNIVAC Operating System/3 (OS/3) assembler permits highly-efficient, machine-instruction
programs to be written in symbolic form. The assembler consists of an instruction translator and a macro
facility. The instruction translator converts symbolic instructions to machine instructions on a one-to-one basis.
The macro facility allows a subroutine to be coded, assigned a name, stored in a permanent library, and then to
be included in a source program by a simple reference to the subroutine's name in a single instruction. The
macro facility greatly reduces the amount of repetitive coding required for routines used frequently within a
program or in many different programs.

The assembler accepts source-image input from punched cards, magnetic tape, and disc. It reads source
statements and produces a relocatable object module. The object module can then be linked to other object
modules to form one load module that is suitable for loading and execution on a SPERRY UNIVAC 90/30
System.

A set of assembler directives is provided to aid you in your program organization and in directing the course of an
assembly. All assembly runs produce a printed listing that lists source code, object code, label cross-references,
cross-references, and, when necessary, error diagnostics. The final error statement message, which gives the
total number of statements flagged in the assembly, is also displayed on the console upon completion of the
assembly.

JOB CONTROL REQUIREMENTS

The job control statements required to assemble, linkage edit, and execute are:

ASSEMBLER CODING FORM

Using an assembler coding form eases the job of writing the program, both for yourself and for the keypunch
operator, who must prepare the punched card deck from your written program. Columns 9 and 15 are ruled to
remind you that the symbol and operation fields must be terminated by at least one blank.

t

8227 Rev. 2
UP-NUMBER

Symbol Field

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The first eight columns of the assembler coding form may contain a symbol. An asterisk (*) indicates that this
coding line does not contain instructions and that it contains only comments. The rules for using the symbol
field are:

1 . The symbol must start in column 1.

2. The symbol must begin with an alphabetic character or special letter.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.

5. The field must be terminated by a blank.

Operation Field

The operation code is written in the operation field (columns 10 through 14). These codes specify the operation
to be performed. The rules for using this field are:

1. The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics for application instructions,
directives, and macro or proc instructions.

3. The operation field must be terminated by a blank.

4. The operation code must not start in column 1 .

Operand Field

The operand field begins in column 16 and usually ends in or before column 71. The operands that form part of
the assembler statements are written in this field. The rules for using this field are:

1. The operand field is terminated_ by a blank that is not enclosed by apostrophes.

2. Operands may be continued onto the next line by placing a nonblank character in column 72. Up to two
continuation lines are permitted.

3. Continuation lines start in column 16.

Comment Field

Operand specification is usually completed by column 40, thus leaving columns 41 through 71 free for
comments. There must be at least one blank between the end of the operand specification and the start of the
comments. long comments can be entered by coding an * in column 1 .

1-2

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Continuation Column

UPDATE LEVEL PAGE

When the operand specification is continued onto the next line, a nonblank character must be written in column
72. Do not confuse this with continuing a comment. An operand specification can be continued for a total of
three lines. The second and third continuation lines start in column 16.

Sequence Field

Columns 73 through 80 may be used for entering sequence numbers. This is done by assigning consecutive
numbers to each line of coding and is useful for reassembling the card deck if it should be dropped.

READING INSTRUCTION NOTATIONS

Throughout this manual, notations are used to describe the general forms of programmer-written and computer­
generated formats. A complete consolidated listing of all the notations is given in A.1.

Assembler Application Instruction Notations

There are six forms of assembler application instructions:

RR Register-to-register

RX Register-to-indexed-storage or storage-to-indexed-register

RS Register-to-nonindexed-storage or storage-to-nonindexed-register

SI Storage immediate

SS Storage-to-storage (type SS1)

SS Storage-to-storage (type SS2)

All of the assembler application instructions and other information are explained in formats that you can write
and in the assembler format that generates the machine coding. The following assembler application move
instruction (MVC) is an SS1 typ_e:

Explicit Format:

LABEL t:.OPERATION t:. OPERAND

[symbol] MVC

1-3

8227 Rev. 2
UP-NUMBER

Implicit Format:

LABEL

[symbol]

SPERRY UNIVAC Operating System/3

!lOPERATION !l OPERAND

MVC

After this application instruction is assembled, it is in the following form:

lo
opcode ,I. 1, J. b1 .1

~' b2 ,.I~ d2 .,I

UPDATE LEVEL PAGE

d1 J

Table A-1 shows the six formats as generated by the assembler in machine code, as well as the explicit and
implicit formats for the programmer coding.

Notation Rules and Meanings

The following conventions are used in application instruction, assembler directive, macro instruction, proc, and
control statement formats:

• Optional information is enclosed in brackets [] and may be specified or omitted.

For example:

[symbol]

• Braces { } indicate multiple options, at least one of which must be chosen.

For example:

PRINT {ON }
OFF

• Braces within brackets signify that one of the options must be chosen if that operand is specified.

For example:

[{~:}]

1-4

8227 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 1-s
UPDATE LEVEL PAGE

When given a choice of multiple options, the option that is shaded is the default option and indicates the
choice that is made by the system if you do not specify one of the options.

For example:

• Uppercase letters, terms, and punctuation marks indicate information that must be coded exactly as
shown.

For example:

Mnemonic codes MVN, PACK, and CLC are uppercase.

• Lowercase letters and terms indicate variables that are supplied by you.

For example:

[symbol]

• An ellipsis, a series of three periods, indicates that a series of entries may be coded.

For example:

• Keyword parameters may be coded in any order.

For example:

IOROUT=LOAD ,BLKSIZE=51 2,RECFORM=FIXBLK
BLKSIZE=512,IOROUT=LOAD,RECFORM=FIXBLK

• Positional parameters must be coded in the order shown. Commas are required after each positional
parameter except the last. ~hen a positional parameter is omitted from a series of positional parameters,
the comma must be retained to indicate the omission.

For example:

I I JOB 0003,,30,8000,COOO
I I JOB 0003,,30,8000

• Throughout this book, the register notations RO through R15 represent the registers 0 through 15.

For example:

BALR R2,R3

2. BAL Application Instructions

l

·8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

A

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

A SA RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 0 • IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the value of operand 2, a full word in main storage, to be algebraically added to operand 1, a
general register; the results are placed in operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] A

Implicit Format:

LABEL AOPER~TION A OPERAND

[symbol] A

Operational Considerations:

• Operand 2 must be on a full-word boundary address.

• Operand 2 must contain data in fixed-point binary format.

• A fixed-point overflow condition is produced when a value greater than 2a1_1 or -2a1 is reached in
operand 1 (r1). After overflow, the sign and value of the result are incorrect.

• The contents of operand 2 remain unchanged.

2-1

·8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AD*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AD &A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O.SETT02 D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of the double word in ~torage specified by operand 2 to be algebraically added to the
contents of the double-word register specified by operand 1 (r1). The sum is normalized and placed in the
operand 1 (r,) register.

Explicit Format:

LABEL AOPERATIONA OPERAND

[symbol] AD

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] AD

• AD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-2

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ADR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING·POINT REGISTER
ADR 2A RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT> 0, SET TO 2

0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the contents of the double-word register specified by operand 2 (r2) to be algebraically added to the
contents of the double-word register specified by operand 1 (r1). The sum is normalized and placed in the
operand 1 (r,) register.

Explicit and Implicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] ADR r 1 ,r 2

* ADR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-3

8227 Rev. 2
UP-NUMBER

AE*
Floating Point

General

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AE 7A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

D
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP i NOT EVEN NUMBERED REGISTER

DI F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of the full word in storage specified by operand 2 to be algebraically added to the
contents of a full word in the register specified by operand 1 (r1). The sum is normalized and placed in the
full word in the operand 1 (r1) register.

Explicit Format:

LABEL LlOPERATIONLl OPERAND

[symbol] AE

Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] AE

* AE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-4

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AER*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AER 3A RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0. SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of a full word in the register specified by operand 2 (r2) to be algebraically added to a
full word in the register specified by operand 1 (r1). The sum is normalized and placed in the operand 1 (r1)

register.

Explicit and Implicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] AER r 1'r2

* AER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-5

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AH 4A RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
• IF RESULT >o, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the value of operand 2, a half word in main storage, to be algebraically added to operand 1, a
general register; the results are placed in operand t.

Explicit Format:

LABEL 60PERATION 6 OPERAND

rsymbol] AH

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] AH

Operational Considerations:

• Operand 2 must be on a half-word boundary address.

• Operand 2 must contain data in fixed-point binary format.

• A fixed-point overflow condition is produced when a value greater than 231_ 1 or -231 is reached in
operand 1 (r1). After overflow, the sign and value of the result are incorrect.

• The contents of operand 2 remain unchanged.

2-6

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Al

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

Al 9A SI 4 D EXECUTE • OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
.IF RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the value of operand 2, immediate data, to be algebraically added to operand 1, a half word in main
storage; the results are placed in operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] Al

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] Al

Operational Considerations:

• Operand 1 must be on a half-word boundary address.

• Operand 1 must contain data in fixed-point binary format.

• A fixed-point overflow condition is produced when a value greater than 215-1 or -215 is reached in
operand 1. After overflow, the sign and value of the result are incorrect.

• The maximum value for operand 2 (i 2) is +127 or -128.

2-7

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AL*

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
AL SE RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 0
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS 0 NONE

Function:

Causes the contents of operand 2, a full word in storage, to be logically added to the contents of the full
word in the operand 1 (r1) register. The sum is placed in operand 1 (r1).

Explicit Format:

LABEL !:::.OPERATION!:::. OPERAND

[symbol] AL

Implicit Format:

LABEL !:::.OPERATION!:::. OPERAND

[symbol] AL

Operational Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 remain unchanged.

• Operand 2 must be a full word, in storage, on a full-word boundary.

* Al is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-8

8227 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3

The condition code is set:

to zero if result is zero; no carryout of most significant bit;

to 1 if result is not zero; no carryout of most significant bit;

to 2 if result is zero; carryout of most significant bit; or

to 3 if result is not zero; carryout of most significant bit.

2-9
UPDATE LEVEL PAGE

AL*

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ALR*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
ALR 1E RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS D NONE

Function:

Causes the contents of the operand 1 (r1) and operand 2 (r2) registers to be logically added. The sum is
placed in operand 1 (r1).

Explicit and Implicit Format:

LABEL /:::,.OPERATION/:::,. OPERAND

[symbol] ALR r1 ,r2

Operationa I Considerations:

• Logical addition is performed by adding all 32 bits of each operand.

• The contents of operand 2 (r2) remain unchanged.

• The condition code is set:

to zero if result is zero; no carryout of most significant bit;

to 1 if result is not zero; no carryout of most significant bit;

to 2 if result is zero; carryout of most significant bit; or

to 3 if result is not zero; carryout of most significant bit.

* ALR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-10

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE
TYPE LGTH.

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

AP FA SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
• IF RESULT= 0, SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 0 • IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Algebraically adds the contents of operand 2 (a packed number in main storage) to operand 1 (also a
packed number in main storage). The result is stored in operand 1.

Explicit Format:

LABEL !J. OPERATION !J. OPERAND

[symbol] AP

Implicit Format:

LABEL !J. OPERATION !J. OPERAND

[symbol] AP

Operational Considerations:

• All signs and digits are checked for validity and the sign of the result is determined algebraically.

• A zero result has a positive sign when the operation is completed without overflow.

• Operand 1 and operand 2 must be packed numbers.

• When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had.

2-11

8227 Rev. 2
UP-NUMBER

AP

I'
I

SPERRY UNIVAC Operating System/3
UPDATE' LEVEL PAGE

• If operand 2 is shorter than operand 1, operand 2 is extended with zero digits.

• An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide. This makes it possible
to add a number to itself.

2-12

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AR

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

AR 1A RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the value of operand 2 (r2) to be algebraically added to the value of operand 1 (r1). The results are
placed in operand 1.

Explicit and Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] AR r1 ,r2

Operational Considerations:

• A fixed-point overflow condition is produced when a value greater than 231-1 or -231 is reached in
operand 1. After overflow, the sign and value of the result are incorrect.

• The contents of the register for operand 2 (r2) remain unchanged.

2-13

8227 Rev. 2
UP-NUMBER

AU*
Floatlng Point

OPCODE

MNEM. HEX.

AU 7E

General

FORMAT
TYPE

RX

Condition Codes

• IF RESULT= 0, SET TO 0
.IF RESULT<O,SETTO 1

SPERRY UNIVAC Operating System/3 2-14
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WOAD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 Q1F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of the full word in storage specified by operand 2 to be algebraically added to the
contents of a full word in the register specified by operand 1 (r1). The sum is placed in the operand 1 (r1)

register.

Explicit Format:

LABEL /:l OPERATION !l OPERAND

[symbol] AU

Implicit Format:

LABEL !l OPERATION !l OPERAND

[symbol] AU

Operational Consideration:

• The execution of the AU instruction is identical to that of the AE instruction, except that the sum is
not normalized before being placed in operand 1.

• AU is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-15
UPDATE LEVEL PAGE

AUR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALIDSIGN/DIGJTI • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AUR 3E RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of a full word in the register specified by operand 2 (r2) to be algebraically added to a
full word in the register specified by operand 1 (r,). The sum is placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL 60PERATION6 OPERAND

[symbol] AUR r1 ,r2

Operational Consideration:

• The execution of the AUR instruction is identical to that of the AER instruction, except that the sum is
not normalized before being placed in operand 1.

* AUR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AW*
Floatlng Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

AW 6E RX 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes the contents of a double word in storage specified by operand 2 to be algebraically added to the
contents of the double word in the register specified by operand 1 (r1). The sum is placed in the double
word in the register specified by operand 1 (r1).

Explicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] AW

Implicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] AW

Operational Consideration:

• The execution of the AW instruction is identical to that of the AD instruction, except that the sum is
not normalized before being placed in operand 1 (r1).

* AW is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-16

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

AWR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
AWR 2E RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 0
• IF RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

Q1F OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of the double-word register specified by operand 2 (r2) to be algebraically added to the
double-word contents of operand 1 (r1). The sum is placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL /j. OPERATION /j. OPERAND

[symbol] AWR r1 ,r2

Operational Consideration:

• The execution of the AWR instruction is identical to that of the ADR instruction, except that the sum
is not normalized before being placed in operand 1 (r1).

* A WR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-17

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

BAL

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BAL 45 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT= o. SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2
0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Loads the address of the next sequential instruction into the register in the first operand and then
branches to the location specified in the second operand. The normal sequence of instructions may be
reinstated when a return branch via r1 is taken. BAL is an unconditional branch instruction.

NOTE:

Bits 32 through 39 (instruction length code, condition code, and program mask) of the current program
status word (PSW) are stored in bit positions 0 through 7 of operand 1 (r,). The return address is stored in
bits 8 through 31 of operand 1 (r,).

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] BAL

Implicit Format:

LABEL /),.OPERATION /),. OPERAND

[symbol] BAL

2-18

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BALR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
BALR 05 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1 0 0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Loads the relative address of the next sequential instruction into the first operand register and then
branches to the address in the second operand register. The normal sequence of instructions may be
reinstated when a return branch via r1 is taken. When the second operand (r2) is zero, there is no branch
and the next sequential instruction is executed.

NOTE:

Bits 32 through 39 (instruction length code, condition code, and program mask) of the current program
status word (PSW) are stored in bit positions 0 through 7 of operand 1 (r1). The return address is stored in
bits 8 through 31 of operand 1 (r1).

Explicit and Implicit Format:

LABEL £\OPERATION L\ OPERAND

[symbol] BALR

2-19

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BAS
BASR

General

OBJECT
OPCODE FORMAT INST.

TYPE LGTH.
MNEM. HEX. (BYTES)

BAS& 40&
BASR OD RX&RR 4 or2

Condition Codes

D IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1
0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3
.UNCHANGED

Function:

Possible Program Exceptions

D ADDRESSING D PROTECTION

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON F.ULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

• NONE

These instructions do not exist in the native mode instruction set and are used only when operating in the.
360120 compatibility mode.

2-20

8227 Rev. 2
UP-NUMBER

OPCODE

MNEM. HEX.

BC 47

General

FORMAT
TYPE

RX

Condition Codes

01F AESULT=O,SETTOO
01F AESULT<O,SETTO 1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BC

Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
INST.
LGTH.

D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY

D
01F AESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 D IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Checks the specified mask (m1), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specified by operand 2; otherwise, the next sequential instruction is executed.
See Table A-3 for the list of BC formats and equivalent extended mnemonic codes.

Explicit Format:

LABEL A OPERATION A OPERAND

(symbol] BC

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] BC

Operational Considerations:

• The mask, operand 1, determines the condition code setting in the PSW to be tested, as follows:

An 8 produces the mask 10002, which tests bit 8 for a zero condition code.

A 4 produces the mask 01002, which tests bit 9 for a 1 condition code.

2-21

8227 Rev. 2
UP-NUMBER

BC

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

2-22

A 2 produces the mask 00102, which tests bit 10 for a 2 condition code.

A 1 produces the mask 0001 2, which tests bit 11 for a 3 condition code.

A zero produces the mask 00002, which is equivalent to no-operation.

Any combination of 1 's and zeros in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

• A mask specification of 15 (1111 2) produces an unconditional branch.

8227 Rev. 2
UP-NUMBER

OPCODE

General

FORMAT
TYPE

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BCR

Possible Program Exceptions

OBJECT Q ADDRESSING 0 PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BCR 07 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= O. SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0 0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Checks the specified mask (m,), operand 1, with the current condition code. If any 1 bits match, a branch
takes place to the location specifi~d by operand 2 (r2); otherwise, the next se!luential instruction is
executed. If operand 2 (r2) is zero, no branch will take place. See Table A-3 for the list of BC formats and
equivalent extended mnemonic codes.

Implicit and Explicit Format:

LABEL i".IOPERATION 6 OPERAND

[symbol] BCR m1 ,r2

Operational Considerations:

• The mask, operand 1, determines the condition code setting in the PSW to be tested, as follows:

An 8 produces the mask 10002, which tests bit 8 for a zero condition code.

A 4 produces the mask 01002, which tests bit 9 for a 1 condition code.

A 2 produces the mask 00102, which tests bit 10 for a 2 condition code.

A 1 produces the mask 0001 2, which tests bit 11 for a 3 condition code.

A zero produces the mask 00002, which is equivalent to no-operation.

Any combination of 1 's and zeros in the mask tests for more than one condition code.

Any 1 bit on and tested produces the branch.

• A mask specification of 15 (1111 2) produces an unconditional branch.

2-23

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BCT

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

BCT 46 RX 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT= 0, SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02 0 D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Each time this instruction is executed, the value in r1 is decremented by 1 and then tested to see whether
the result is equal to zero. If the result is not equal to zero, a branch takes place to the.location specified by
operand 2. If the result is equal to zero, then no branch takes place and the next sequential instruction is
executed. This instruction can be used to control the number of times a loop routine is executed. The
initial value in r1 must be a positive value greater than zero.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] BCT

Implicit Format:

LABEL 60PERATION6 OPERAND

[symbol] BCT

2-24

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC Operating System/3 2-2s
UPDATE LEVEL PAGE

BCTR

Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST. 0 SIGNIFICANCE

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
BCTR 06 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY D 1F RESULT <o. SET TO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

BCTR is the RR format type of BCT and works in the same way, except the second operand (r2) is a register
rather than a storage location. The BCTR instruction is initiated by loading a value in the first operand
register (r1) to be used as a count value and a branch address into the second operand register (r2). Each
time this instruction is executed, the value in r 1 is decremented by 1 and then tested to see whether the
result is equal to zero. If the result is not equal to zero, a branch takes place to the address in the second
operand (r2). If the result is equal to zero, then no branch takes place and the next sequential instruction is
executed. This instruction can be used to control the number of times a loop routine is executed. The
initial value in r1 must be a positive value greater than zero. If the second operand (r2) is zero, no branch
will take place.

Implicit and Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] BCTR r1 ,r2

8227 Rev. 2
UP-NUMBER

BXH*

General

OPCODE FORMAT
TYPE

MNEM. HEX.

BXH 86 RS

Condition Codes

0 IF RESULT= 0, SET TO 0
01F RESULT<O,SETTO 1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O,SETT02

0 OP 1 NOT ODD NUMBERED REGISTER 0 IF OVERFLOW, SET TO 3 • OPERATION
.UNCHANGED 0 NONE

Function:

Compares the algebraic sum of operand 1 (r1) and operand 2 (r3) to a value that is equal to the number of
the register specified as operand 2 (r3) or r3 + 1. If the sum of operand 1 (r1) and operand 2 (r3) is less than
or equal to the compare value, the next sequential instruction is executed; if the sum is greater than the
compare value, then a branch will take place to the location specified by operand 2, "":'hich is d2 (b2) or s2•

The value being used as the reference is always an odd-numbered register and is specified by r3 if r3 is an
odd-numbered register, or is r3 +1 if r3 is an even-numbered register. Following the comparison, the sum
is placed in the first operand location. All quantities are treated as signed integers. An operation
exception takes place if this operation is attempted on a processor that does not have this feature installed.

Explicit Format:.

LABEL /::,.OPERATION /::,. OPERAND

(symbol] BXH

Implicit Format:

LABEL /::,.OPE RATION/::,. OPERAND

[symbol] BXH

* BXH is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-26

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

BXLE*

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

BXLE 87 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

This instruction is the same as BXH, except that the branch is made when the sum of the first operand (r1)

and the third operand (r3) is less than or equal to the value being compared.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] BXLE

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] BXLE r 1,r3 ,s2

* BXLE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-27

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

c

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

c 59 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF r 1 - OPERAND 2, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r

1
<OPERAND 2, SET TO 1 D

• IF r
1

>OPERAND 2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of operand 1 (r1) to be algebraically compared with the contents of operand 2, a full
word in main storage.

Explicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] c

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] c

Operational Considerations:

• The contents of both operands remain unchanged.

• Operand 2 must be on a full-word boundary.

2-28

8227 Rev. 2
UP-NUMBER

OPCODE

MNEM. HEX.

CD 69

General

FORMAT
TYPE

RX

Condition Codes

• IF OP1 = OP2, SET TO 0
• IF OP1<0P2, SET TO 1
• 1 F·OP1 >oP2, SET TO 2
01F OVERFLOW, SET TO 3
OuNCHANGED

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CD*
Floating Point

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• OPERATION D OP 1 NOT ODD NUMBERED REGISTER

D NONE

Causes the contents of a double word in the register specified by operand 1 (r1) to be algebraically
compared with the contents of a double word in storage specified by operand 2. The condition code is set
by this instruction.

·-.._... Explicit Format

LABEL llOPERATION ll OPERAND

[symbol] CD

Implicit Format:

LABEL llOPERATION 6 OPERAND

[symbol] CD

Operational Considerations:

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different.

* CD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-29

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CDR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CDR 29 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT.OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF OP1 = OP2, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF OP1 <oP2, SET TO 1 D
• IF OP1 >OP2, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODO NUMBERED REGISTER

OuNCHANGEo D NONE

Function:

Causes the contents of a double word in the register specified by operand 1 (r1) to be algebraically
compared with the contents of a double word in the register specified by operand 2 (r2). The condition code
is set by this instruction.

Explicit and Implicit Format:

LABEL /),.OPERATION/),. OPERAND

[symbol] CDR r1 ,r2

Operational Considerations:

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different.

* CDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-30

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC Operating System/3

Possible Program Exceptions

UPDATE LEVEL PAGE

CE*
Floating Point

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CE 79 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF OP1 = OP2, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF OP1 <oP2, SET TO 1 0
• IF OP1 >oP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of a full word in the register specified by operand 1 (r1) to be algebraically compared
with the contents of a full word word in storage specified by operand 2. The condition code is set by this
instruction.

Explicit Format:

LABEL Ll OPERATION Ll OPERAND

[symbol] CE

Implicit Format:

LABEL LlOPERATIONLl OPERAND

[symbol] CE

Operational Considerations:

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different.

* CE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-31

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

CER 39 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OP1: OP2, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OP1 <oP2, SET TO 1 D
• IF OP1 > OP2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the full-word contents of the register specified by operand 1 (r1) to be algebraically compared with
the contents of a full word in the register specified by operand 2 (r2). The condition code is set by this
instruction.

Explicit and Implicit Format:

LABEL AOPERATION A OPERAND

[symbol] CER r 1,r2

Operational Considerations:

• Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is zero.

• Operands with zero fractions compare as equal even when their signs or exponents are different.

* CER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-32

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CH 49 RX 4 D EXECUTE tJ OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF r
1

=OPERAND2, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r

1
<OPERAND 2, SET TO 1 D

• IF r 1 >oPERAND 2, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW. SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of operand 1 (r1) to be algebraically compared with the contents of operand 2 (a half
word in main storage), after operand 2 is expanded, by propagating the sign bit to fill a full word.

Explicit Format

LABEL ~OPERATION~ OPERAND

[symbol] CH

Implicit Format

LABEL ~OPERATION~ OPERAND

[symbol] CH

Operational Considerations:

• The contents of both operands remain unchanged.

• Operand 2 must be on a half-word boundary.

2-33

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CL

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
CL 55 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF r
1

=OPERAND2, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF r1 <OPERAND 2, SET TO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF r1 >OPERAND 2, SET TO 2

D D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of a full word in storage specified by operand 2 to be compared with the contents of
the register specified by operand 1 (r1). The condition code is set according to the comparison result.

Explicit Format:

LABEL /J,. OPERATION /J,. OPERAND

[symbol] CL

Implicit Format:

LABEL /J,. OPERATION /J,. OPERAND

[symbol] CL

Operational Considerations:

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

• Operand 2 must be on a full-word boundary.

2-34

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-35
UPDATE LEVEL PAGE

CLC

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

TYPE LGTH.

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

CLC 05 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OP1 = OP2, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• IF OP1 < OP2, SET TO 1
0 FIXED-POINT OVERFLOW BOUNDARY

• IF OP1 > OP2, SET TO 2 0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the contents of one area in main storage specified by operand 1 to be compared with an equal
length area in main storage specified by operand 2. The condition code is set according to the comparison
result.

Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CLC

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CLC

Operational Considerations:

• The I specification of operand 1 specifies the length of both operands.

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

• The instruction is processed from left to right, byte by byte.

• If the number of bytes to be compared is not explicitly shown in operand 1, then the number will be
equal to the length attribute of operand 1.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CLI

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX, (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
CLI 95 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF OPERAND 1 = 1
2

, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF OPERAND 1 <1

2
, SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
• IF OPERAND t> i

2
, SET TO 2

0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of one byte in main storage specified by operand 1 to be compared with the one byte
of immediate data specified in operand 2. The condition code is set according to the .comparison result.

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] CLI

Implicit Format:

LABEL 6.0PERATION~ OPERAND

[symbol] CLI

Operational Considerations:

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• Operands are one byte in length.

• The contents of operand 1 remain unchanged.

2-36

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CLR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CLR 15 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.1Fr1 =r
2
,SETTOO

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF r1 < r2 , SET TO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

• IF r1 >r
2

, SET TO 2
0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

Function:

Causes the contents of the operand 1 (r1) register to be compared with the contents of the operand 2 (r2)

register. The condition code is set according to the comparison result.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CLR r 1 ,r2

Operational Considerations:

• Operands are considered unsigned binary numbers and all bit combinations are valid.

• The contents of both operands remain unchanged.

2-37

8227 Rev. 2
UP-NUMBER

CP

OPCODE

MNEM. HEX.

CP F9

General

FORMAT
TYPE

SS

Condition Codes

• IF OPl = OP2, SET TO 0
• IF OPl <0P2, SET TO 1
• IF OP1 >OP2, SET TO 2
0 IF OVERFLOW, SET TO 3
QUNCHANGED

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Compares the contents of two storage areas to see whether they are algebraically equal, operand 1 is
higher, or operand 1 is lower. The condition code is set to reflect the results of this compare. A branch
instruction is usually used after the compare instruction.

Explicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] CP

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] CP

Operational Considerations:

• All signs and digits are checked for validity, and comparison proceeds from right to left.

• If the operand fields are unequal in length, the shorter field is extended with zero digits.

• Operands with zero values and unlike signs compare as equal.

• All valid codes representing the same sign are considered equal.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide.

• The contents of both operands remain unchanged.

2-38

8227 Rev. 2
UP-NUMBER

..

OPCODE

MNEM. HEX.

CR 19

General

FORMAT
TYPE

RR

Condition Codes

• IF r1= r2, SET TO 0
• IF r1 <r2, SET TO 1
• IF r1 >r2 , SET TO 2
0 IF OVERFLOW, SET TO 3
0 UNCHANGED

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CR

Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

2 0 EXECUTE 0 OP 1 NOT ON HALF-WO~D BOUNDARY

0 EXPONENT OVERFLOW 0 Of' 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

0 OoPERATION OP 1 NOT ODO NUMBERED REGISTER

• NONE

Causes the contents of operand 1 (r1) to be algebraically compared to operand 2 (r2).

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CR r 1,r2

Operational Consideration:

• The contents of both registers remain unchanged.

2-39

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

eve

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
CVB 4F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
• FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D 1F RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
D IF RESULT >o. SET TO 2

D DI F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Converts the packed decimal number in operand 2, a double word in main storage, to a fixed-point signed
binary number, which is placed in operand 1 (r1).

Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CVB

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] CVB

Operational Considerations:

• Operand 2 is a 15-digit and sign packed decimal number in a double word on a double-word
boundary in main storage.

• Operand 2 is checked for valid digits and sign code before conversion to a fixed-point, 32-bit signed
binary number.

2-40

8227 Rev. 2
UP-NUMBER

.•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

eve

The maximum number that can be converted and still contained in a 32-bit register is 2,147,483,647
(231-1). The minimum number is -2,147,483,648 (-231). For decimal numbers exceeding this
range, the 32 least significant bits are stored in the first operand location and a fixed-point divide
exception is generated.

• If operand 2 is negative, the result will be in twos complement notation.

• The contents of operand 2 remain unchanged .

•

2-41

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CVD

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

CVD 4E RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODO NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Converts the fixed-point signed binary number in operand 1 (r1) to a packed decimal number, which is
placed in operand 2, a double word in main storage.

Explicit Format

LABEL ti OPERATION ti OPERAND

[symbol] CVD r1 ,d2 (x2 ,b2)

Implicit Format

LABEL ti OPERATION ti OPERAND

[symbol] CVD r 1 ,s2 (x2)

Operational Considerations:

• Operand 1 is a fixed-point, 32-bit signed binary number in a register.

• Operand 2 is a 15-digit packed signed decimal number in a double-word main storage location on a
double-word boundary.

• The contents of operand 1 remain unchanged.

2-42

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

D

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST. 0 SIGNIFICANCE

TYPE LGTH.
Q DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

D 50 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
• FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >o. SET TO 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the value in the even-odd pair of registers specified by operand 1 (r1) to be divided by the full-word
operand 2 (the divisor). The quotient and remainder are placed in the operand 1 registers.

Explicit Format:

LABEL LlOPERATION t. OPERAND

[symbol] D

Implicit Format:

LABEL LlOPERATION t. OPERAND

[symbol] D

Operational Considerations:

• Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register
pair. The operand 1 field of the instruction must specify an even-numbered register. The 32-bit
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered
register, respectively.

• Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain
unchanged after execution.

• The sign of the quotient is determined algebraically, and the remainder assumes the sign of the
dividend. A zero quotient or zero remainder is always positive.

• When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception
occurs, no division takes place, and the dividend remains unchanged.

2-43

8227 Rev. 2
UP-NUMBER

DD*
Floatlng Point

General

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION OPCODE FORMAT INST.
TYPE LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
DD &D RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

01F RESULT<O,SETTO 1 0 FIXED-POINT OVERFLOW BOUNDARY

0 IF RESULT >o. SET TO 2 • FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 .OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the double-word contents of the operand 1 (r1) register to be divided by the contents of the double
word in storage specified by operand 2. The normalized quotient is placed in the register specified by
operand 1 (ri). Any remainder is not preserved.

Explicit Format

LABEL b. OPERATION b. OPERAND

[symbol] DD

Implicit Format

LABEL b. OPERATiON b. OPERAND

[symbol] DD

* DD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-44

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DOR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DOR 20 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0
01F RESULT>O.SETT02 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

Q1F OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the double-word contents of the operand 1 (r1) register to be divided by the double-word contents of
the operand 2 (r2) register. The normalized quotient is placed in the operand 1 (r1) register. Any remainder
is not preserved.

Explicit and Implicit Format:

LABEL Do OPERATION Do OPERAND

[symbol] DOR r 1,r2

* DDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-45

8227 Rev. 2
UP-NUMBER

DE*
Floating Point

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVAUD SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • ·NOT A FLOATING-POINT REGISTER

DE 70 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT O.VERFLOW D OP 2 NOT ON HALF·WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0
0 IF RESULT >o, SET TO 2 • FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the full-word contents of the operand 1 (r1) register to be divided by the full-word contents of a full
word in storage specified by operand 2. The normalized quotient is placed in a full word in the operand 1
(r1) register. Any remainder is not preserved.

Explicit Format:

LABEL A OPERATION t. OPERAND

[symbol] DE

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] DE

* DE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-46

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

DER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

DER 30 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<o.sETTo 1

• FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET TO 2
D IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the full-word contents of the operand 1 (r,) register to be divided by the full-word contents of the
operand 2 (r2) register. The normalized quotient is placed in a full word in the operand 1 (r1) register. Any
remainder is not preserved.

Explicit and Implicit Format

LABEL 11 OPERATION /1 OPERAND

[symbol] DER

__ *_ __ DEB is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-47

8227 Rev. 2

UP-NUMBER

DIAG

General

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

DIAG 83 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
D 1F RESULT <o. SET To 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Resets the processor to zero after control storage is loaded and provides various diagnostic and
supervisor operations.

Explicit Format:

LABEL b.OPERATION t. OPERAND

[symbol] DIAG

Implicit Format:

LABEL b.OPERATION t. OPERAND

[symbol] DIAG

2-48

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-48a
UPDATE LEVEL PAGE

DP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) • DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

DP FD SS 6 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D
01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 1 (the dividend) to be divided by the contents of operand 2 (the divisor). The
quotient and remainder are placed in the operand 1 location.

Explicit Format:

LABEL /j, OPERATION /j, OPERAND

[symbol] DP

Implicit Format:

LABEL /j, OPERATION /j, OPERAND

[symbol] DP

Operational Considerations:

• All signs and digits are checked for validity.

• The quotient and remainder occupy the entire operand 1 field. The remainder is right-justified in the
field, carries the sign of operand 1, and is equal in size to operand 2. The quotient, carrying the
algebraically determined sign, is right-justified in the rest of the field.

• The maximum dividend (operand 1) size is 31 digits and sign. The maximum quotient size is 29 digits
and sign. The smallest remainder is one digit and sign. The maximum divisor is 15 digits.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DP

• Operand 1 and operand 2 fields may overl~p if their least significant bytes coincide.

• If the number of quotient digits exceeds the size of the quotient field or if division by zero is
attempted, a decimal divide exception results; the divisor and dividend remain unchanged in their
storage locations.

• A decimal divide exception occurs if the dividend does not have at least one leading zero. The
condition for a decimal divide exception can be determined by aligning the leftmost digit of the divisor
(operand 2) field with the leftmost less 1 digit of the dividend (operand 1) field and performing a
subtraction. If, after alignment, the divisor is less than or equal to the dividend, a decimal divide
exception is indicated.

• A specification exception indicates the divisor exceeds 15 digits or operand 1 is not longer than
operand 2.

2-49

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DR*

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

DR 1D RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD
0 IF RESULT= 0, SET TO 0 0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the value in the even-odd registers specified by operand 1 (r1) to be divided by the value in the
register (the divisor) specified by operand 2 (r2). The quotient and remainder are placed in the operand 1
registers.

Explicit and Implicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] DR r1 ,r2

Operational Considerations:

• Operand 1 is treated as a 64-bit fixed-point signed binary integer and occupies an even-odd register
pair. The operand 1 field of the instruction must specify an even-numbered register. The 32-bit
remainder and 32-bit quotient replace the dividend in the even-numbered and odd-numbered
register, respectively.

• Operand 2 is treated as a 32-bit fixed-point signed binary integer. The contents of operand 2 remain
unchanged after execution.

• The sign of the quotient is determined algebraically and the remainder assumes the sign of the
dividend. A zero quotient or zero remainder is always positive.

• When the quotient exceeds 32 bits or the divisor is equal to zero, a fixed-point divide exception
occurs, no division takes place, and the dividend remains unchanged.

• A specification exception will occur if r1 specifies an odd-numbered register.

* DR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-50

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

ED

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

ED DE SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
• SET TO 0 D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1

0 FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 2 D D SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS D NONE

Function:

Causes the packed data specified by operand 2 to be unpacked and edited under the control of a mask
(pattern) specified by operand 1. The result is placed in the main storage location specified by operand 1.
This instruction can produce the following types of results:

• Zero suppression
Ex: 00173 - 173

• Character protection
Ex: 000453 - ***4.53

• Punctuation
Ex: 123400 - S 1,234.00

• Multiple field editing
Ex: 12531468 - 12.53.6..6.14.68

Explicit Format:

LABEL t.OPERATION t.

[symbol] ED

Implicit Format:

LABEL t.OPERATION t.

[symbol] ED

OPERAND

OPERAND

2-51

8227 Rev. 2
UP-NUMBER

ED

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Operational Considerations:

• For every digit in the source field, operand 2, there must be an equal number of digit select
characters, significance start characters, or a combination of both in the pattern.

• The significance indicator, referred to as the S switch, indicates by its on or off state the significance
or nonsignificance, respectively, of subsequent operand 2 digits or message characters. Significant
operand 2 digits replace their corresponding digit select or significance start characters in the result.
Significant message characters remain unchanged in the result.

• The S switch is turned off when the edit instruction starts and when a sign code of "C" (+) is
reached; and it is turned on when the first signficant (nonzero) digit is reached.

• When the S switch is off, zeros to be transferred from operand 2 are suppressed and the fill character
is inserted in the corresponding operand 1 position. When the S switch is on, any zero to be
transferred from operand 2 is unpacked into the corresponding operand 1 position. At the beginning
of execution, the S switch is off.

• Editing includes sign and punctuation control and the suppression and protection of leading zeros. It
also facilitates programmed blanking for all zero fields. Several fields may be edited in one operation,
and numeric information may be combined with text.

• The instruction proceeds from left to right.

• Operand 2 data must be in packed format and must contain valid numerics and sign codes.

• The original contents of operand 1 is the mask, the pattern which controls the edit process.
Depending on the edit requirements, some or most of the bytes originally in operand 1 are replaced
by data from operand 2. The mask is expressed in unpacked format and may consist of any
combination of 8-bit characters.

• As the mask is scanned from left to right, one of three things happens to each mask character:

An operand 2 digit is expanded to a zoned character. The zoned character replaces the mask
character. When the operand 2 digit is stored as the result, its code is expanded from packed to
unpacked format by attaching a generated zone code.

The mask character is left unchanged.

A fill character is stored in the result. The fill character is taken from the first byte position of
the mask. The choice of this character is not dependent upon the editing function initiated by
this code. The editing function occurs after the code has been assigned as a fill character.

2-52

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ED

Each mask character is replaced by a result character that depends on three conditions:

the digit obtained from operand 2;

the mask character; and

the S switch status.

When a digit select or significance start byte is found in the mask, the S switch and an operand 2
digit are examined. This results in either the unpacked operand 2 digit or the fill character replacing
the mask character. A valid decimal digit (if the mask byte is a significance start) or nonzero decimal
digit (if the mask byte is a digit select) sets the S switch to on if the operand 2 byte does not contain a
plus code in the four least significant bit positions.

• The fill character is the leftmost character of the edit mask (operand 1). Any valid hexadecimal value
(B.2) may be used as a fill character. This character is retained for the editing which follows. This
positio11 does not receive a digit from the operand 2 data.

• The digit select byte is a character in the operand 1 mask represented by EBCDIC code 20. If the digit
select byte is encountered and the S switch is on, any digit, 0 through 9, is unpacked to replace the
digit select byte. If the S switch is off, the operand 2 digit is examined and only nonzero digits are
unpacked into operand 1. The fill character replaces the digit select byte if the examined digit is zero.
The S switch is turned on when the first nonzero operand 2 digit is encountered; this allows

succeeding zeros from operand 2 to be included in the result.

• The significance start byte is represented in the edit mask by EBCDIC code 21. The significance start
byte performs the same function as the digit select byte except the significance start byte turns the S
switch on, regardless of the value of the current operand 2 digit. Once the S switch is on, it remains
on for all succeeding digits; however, the current digit is not affected. The S switch may be turned
off by a field separator byte or by a positive sign code within operand 2.

• Any other symbol or data in the operand 1 edit mask, as represented by hexadecimal codes, is
retained unchanged if the S switch is on. If the S switch is off, this other data is replaced by the fill
character. During this operation, the digit of operand 2 is neither accessed nor addressed-advanced.

• The sign of operand 2, positive or negative, must be a value greater than binary 9 (10022). Any
hexadecimal value A through F is acceptable. The sign itself is not moved to operand 1; instead, a
sign indicator, such as a minus sign or letters CR, is either deleted from or retained in operand 1,
depending on the sign of operand 2.

The sign of operand 2 also affects the S switch. A positive sign turns the S switch off, thus causing
the following characters in operand 1 to be replaced by the fill character. A negative sign leaves the
S switch unchanged.

2-53

8227 Rev. 2
UP-NUMBER

ED

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• If the fill character is a blank, if no significance start byte appears in the mask, and if operand 2 is all
zeros, the editing operation blanks the result field.

• Overlapping operand 1 and operand 2 fields produces unpredictable results.

• The length specification (I) in the object instruction specifies the length of the mask (operand 1). The
length of the mask can be determined as:

one byte for the fill character;

one byte for each digit select byte, significance start byte, and field separator byte; and

one byte for each message character.

Usually, operand 2 is shorter than operand 1 because a zone (a half byte) and a numeric (a full byte)
are inserted in the result for each operand 2 digit. The total number of digit-select and significance
start bytes in the mask must equal the number of operand 2 digits to be edited.

• If operand 2 containing unpacked data is to be edited, it must first be packed by th~ PACK instruction.
In packing an odd number of bytes, an odd number of digit positions and the sign are produced. In
packing an even number of bytes, an odd number of digit positions and the sign are produced. The
extra digit position in the latter case is zero and is the most significant position in operand 2. The
extra position must be provided for in the mask by specifying an extra DSB or SSB. Space, asterisk, or
other character fill occurs and may be dropped when transferring the edited operand to output.

• Multiple-field editing operations are indicated by the presence of one or more field separator bytes
(EBCDIC code 22). The field separator byte identifies the individual fields in this operation and is
always replaced in the mask with a fill character. The S switch is always off after the field separator
byte is encountered. If field separators are not indicated by the mask, the entire operand 2 is
considered one field.

• The condition code, reflecting the status of the last source field edited, is set

to zero when all of the operand 2 digits in the last field are zero; if the mask of the last field has
no significance start or digit select bytes, the operand 2 digits are not examined and the
condition code is set to zero;

to 1 when a nonzero operand 2 digit is detected and the S switch is set after the last mask digit
is examined; or

to 2 when a nonzero operand 2 digit is detected and the S switch is off after the last mask digit
is examined.

Code 3 is not used.

2-54

--·

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-55

UPDATE LEVEL PAGE

ED

• The operation of the edit instruction is summarized in the following table.

Mask (Operand 1) EBCDIC S Switch Data (Operand 2)
Resulting Resulting

Character Code Status Character
(Operand 11 S Switch
Character Status

Fill character Any Off Not examined None Off

Digit select 20 On Digit Digit On*
byte

Off Nonzero Digit On*

Off Zero Fill Off
character

Significance 21 On Digit Digit On*
start byte

Off Nonzero Digit On*

Off Zero Fill On*
character

Message Any except On Not examined Message On*
character 20, 21, 22 character

Off Not examined Fill Off
character

Field 22 On Not examined Fill Off
separator byte character

Off Not examined . Fill Off
character

*Sign detection (examined simultaneously with operand 2 digit) affects the S switch as follows:

1. A plus or minus sign detected as a most significant digit causes a data exception.
2. A plus sign detected as a least significant digit causes the S switch to be turned off.
3. A minus sign has n~ effect on the S switch.

• If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1 .

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating Sys'tem/3
UPDATE LEVEL PAGE

t

EDMK*

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

EDMK DF SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D
• SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

QSET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS D NONE

Function:

This instruction is identical to the edit (ED) instruction, except for the additional function of placing the
address of the first significant result digit in register 1. This is done to permit the use of a floating $

character or other character in the result field.

Explicit Format:

LABEL AOPERATIONA OPERAND

[symbol] EDMK

Implicit Format:

LABEL AOPERA"l'.ION lJ. OPERAND

[symbol] EDMK

Operational Considerations:

• The edit and mark (EDMK) instruction is identical to the edit (ED) instruction, except that EDMK
inserts the resulting address of the first significant character in the low-order 24 bits of general
register 1. This insertion occurs whenever the result character is a zoned source digit and the
significant switch is zero before examination of the digit.

• The condition code is set in the same manner as the edit instruction.

* EDMK is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-56

8227 Rev. 2
UP-NUMBER

•

•

•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

EDMK

The edit and mark instruction facilitates the programming of floating currency-symbol insertion. The
character address inserted in general register 1 is one more than the address where a floating
currency sign would be inserted. The branch on count (BCTR) instruction, with zero in the R2 field,
may be used to reduce the inserted address by 1 .

The character address is not stored when significance is forced. To ensure that general register 1
contains a valid address when significance is forced, it is necessary to place into the registe..
beforehand the address of the pattern character that immediately follows the significance starter.

When a single instruction is used to edit several fields, the address of the first significant result
character of each field is inserted into bit positions 8 through 31 of general register 1. Only the
address of the first significant character of the last field is available after the instruction is completed.

If the number of bytes to be edited is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1 .

2-57

8227 Rev. 2

UP-NUMBER

EX

General

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

0 SIGNIFICANCE
TYPE LGTH.

0 DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
EX 44 RX 4 • EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

0 IF RESULT >o. SET TO 2
0 01F OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

• SEE OPER. CONSIDERATIONS 0 NONE

Function:

Used to branch to a nonsequential instruction, then to execute it, with or without modification, and then to
return to the normal sequence of instructions.

If operand 1 is 0, the instruction at the operand 2 address, specified by d2 (x2, b2), is executed without
modification. If operand 1 (r1) is in the range 1-15, the contents of r1 are used to modify the subject instruction
when that instruction is staticized.

When r1 is nonzero, modification of the operand 2 instruction proceeds as follows: A logical addition (OR)
is performed on the contents of bits 24 through 31 of r1 and bits 8 through 15 of the operand 2 instruction.
The result replaces bits 8 through 15 of the operand 2 instruction. The rules of operation for logical
addition are illustrated by the following truth table:

Operand 1 Operand 2 Result

·o 0 0

0 1 1

1 0 1

1 1 1

The subject instruction is executed as if it were in the normal instruction sequence except that the
instruction length code and updated instruction address fields of the current program status word (PSW)
reflect the execute instruction. The subject instruction itself is never modified permanently in main
storage, and the subject instruction cannot be another execute instruction.

2-58

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

EX

Normally, instruction sequencing continues with the instruction following the execute instruction.
However, if the instruction at the operand 2 address is a successful branch instruction, the instruction
address field of the current PSW is replaced by the branch address and instruction sequencing continues
with the instruction located at the branch address. If the operand 2 instruction is branch and link or
branch and link external, the instruction address stored in the link register is that of the instruction
following the execute instruction.

Explicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] EX

Implicit Format:

LABEL Ll OPE RA Tl ON Ll OPERAND

[symbol] EX

Operational Considerations:

• If an interrupt occurs after the completion of the subject instruction, the old PSW contains the
address of the instruction following the execute instruction or the branch address.

• The condition code may be set by the instruction at the operand 2 address.

• Possible program exception:

Specification exception (The address specified by operand 2 is an odd-numbered address.)

NOTE:

A program exception condition can be caused by the execute instruction or the instruction specified in the
execute instruction.

2-59

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

HOR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
HOR 24 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the double-word contents of the operand 2 (r2) register to be divided by 2. The normalized quotient
is placed in the double-word operand 1 (r1) register.

Explicit and Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] HOR r1 ,r2

Operational Considerations:

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit of the fraction
is placed into the most significant bit position of the guard digit, and the vacate~ fraction bit position
is filled with zero. The intermediate result is normalized and placed in the operand 1 (r1) location.

• When normalization causes the exponent to become less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current program status word (PSW) is 1, the
exponent of the result is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is _zero, the result is made true zero.

• When the fraction of operand 2 (r2) is zero, the result is made a true zero, a normalization is not
attempted, and a significance exception does not occur.

* HOR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-60

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC Operating System/3

Possible Program Exceptions

OBJECT

UPDATE LEVEL PAGE

HER*
Floatlng Point

0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

0 SIGNIFICANCE
TYPE LGTH.

0 DATA (INVALID SIGN/DIGIT)

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

HER 34 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2
0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the full-word contents of the operand 2 (r2) register to be divided by 2. The normalized quotient is
placed in the full word in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] HER r1 ,r2

Operational Considerations:

• The fraction of operand 2 (r2) is shifted right one bit position. The least significant bit of the fraction
is placed into the most significant bit position of the guard digit, and the vacated fraction bit position
is filled wit~ zero. The intermediate result is normalized and placed in the operand 1 (r1) location.

• When normalization causes the exponent to become less than zero, an exponent underflow condition
exists. If the exponent underflow mask bit of the current program status word (PSW) is 1, the
exponent of the result is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is zero, the result is made true zero.

• When the fraction of operand 2 (r2) is zero, the result is made a true zero, normalization is not
attempted, and a significance exception does not occur.

* HER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-61

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

HPR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
HPR 99 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

0 IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Alters the current relocation register.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] HPR

Implicit Format:

LABEL 60PERATION /:, OPERAND

[symbol] HPR

2-62

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-62a
UPDATE LEVEL PAGE

IC

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

IC 43 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ o. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes one byte from the area in main storage specified by operand 2 to be moved into the least significant
eight bits of the operand 1 (r,) register.

Explicit Format:

LABEL /).OPERATION /). OPERAND

[symbol] IC

Implicit Format:

LABEL /).OPERATION /). OPERAND

[symbol] IC

Operationa I Considerations:

• The contents of operand 2 remain unchanged.

• The contents of the most significant 24 bits of the operand 1 (r1) register remain unchanged.

• Operand 2 may be an area in main storage defined as longer than one byte, but only one byte will be
moved.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-62b
UPDATE LEVEL PAGE

ISK

General Possible Program Exceptions

OBJECT • ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

ISK 09 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Alters the contents and size of the protect key storage.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] ISK

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

L

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

L 58 RX 4 0 EXECUTE D OP 1 NOT ON HALF WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

QIF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 2, a full word in main storage, to be placed in the operand 1 register (r1).

Explicit Format

LABEL 6 OPERATION 6 OPERAND

[symbol] L

Implicit Format:

LABEL l::i.OPERATION 6 OPERAND

[symbol] L

Operational Considerations:

• Operand 2 is a full word in main storage on a full-word boundary.

• The contents of operand 2 remain unchanged.

2-63

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LA

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LA 41 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT= 0,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D D 1F RESULT >o. SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Causes the main storage address or the self-defining term specified by operand 2 to be loaded into the
least significant 24 bits of the operand 1 (r1) register. The eight most significant bits of the operand 1 (r,)
register are set to zeros.

Explicit Format

LABEL £\OPERATION Ll OPERAND

[symbol] LA

Implicit Format:

LABEL LlOPERATl()N Ll OPERAND

[symbol] LA

Operational Considerations:

• The generated address is not checked for validity.

• The contents of operand 2 remain unchanged.

• If only the x2 or b2 register is used and is the same as the operand 1 (r1) register, the content of the
operand 1 (r,) register is incremented by the decimal value d2•

• If operand 2 is expressed as a decimal value without the reference of any register, then operand 1 (r1)

is loaded with the operand 2 decimal value.

2-64

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LCDR*
Floatlng Point

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIF;ICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LCDR 23 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes the sign of the double-word contents of the operand 2 (r2) register to be reversed. The result is
placed in the double-word operand 1 (r1) register.

Explicit and Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] LCDR r1 ,r2

Operationa I Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

* LCDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-65

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LCER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
LCER 33 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP'2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 0
• IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 .OPERATION 0 OP 1 NOT ODO NUMBERED REGISTER

0UNCHANGEO 0 NONE

Function:

Causes the sign of the full-word contents of the operand 2 (r2) register to be reversed. The result is placed
in the full-word operand 1 {ri) register.

Explicit and Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] LCER r 1 ,r 2

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2. (r2) remain unchanged.

* LCER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-66

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LCR*

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LCR 13 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
• IF RESULT >o, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the twos complement of the value of the contents of the operand 2 register (r2) to be placed in the
operand 1 (r1) register.

Explicit and Implicit Format:

LABEL ~OPERATION ~ OPERAND

[symbol] LCR r 1,r2

Operational Considerations:

• The twos complement of the second operand is placed in the first operand location.

• A fixed-point overflow condition exists when the maximum negative number is complemented; the
number remains unchanged. Zero remains unchanged under complementation.

• Operand 2 (r2) remains unchanged.

* LCR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-67

8227 Rev. 2

UP-NUMBER

LCS

OPCODE

MNEM. HEX.

LCS 81

General

FORMAT
TYPE

RS

t Condition Codes

• SET TO 0
• SET TO 1
0 SET TO 2
.SET TO 3
OuNCHANGED

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

D NONE

Transfers data from main storage to control storage.

Explicit Format:

LABEL f'l OPERATION f'l OPERAND

[symbol] LCS

Implicit Format:

LABEL f'l OPE RATION f'l OPERAND

[symbol] LCS

2-68

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-68a
UPDATE LEVEL PAGE

LO*
Floatlng Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LD 68 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= o. SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02 D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of a double word in storage specified by operand 2 to be placed in the double word in
the operand 1 (r1) register.

Explicit Format:

LABEL t:. OPE RATION t:. OPERAND

[symbol] LO

Implicit Format:

LABEL t:.OPERATION t:. OPERAND

[symbol] LO

Operational Consideration:

• The contents of operand 2 remain unchanged.

* LO is a featured instruction. ff you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LOR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LDR 28 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the double word in the operand 2 (r2) register to be placed in the double word in the
operand 1 (r,) register.

Explicit and Implicit Format:

LABEL !J.OPERATION !J. OPERAND

[symbol] LOR

Operational Consideration:

• The contents of operand 2 (r2) remain unchanged.

* LDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-69

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LE*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
LE 78 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
D 1F RESULT >o. sET TO 2 D DI F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of a full word in storage specified by operand 2 to be placed in a full word in the
operand 1 (ri) register.

Explicit Format

LABEL b. OPERATION b. OPERAND

[symbol] LE

Implicit Format:

LABEL t. OPERATION t. OPERAND

[symbol] LE

Operational Consideration:

• The contents of operand 2 remain unchanged.

* LE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-70

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LER*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LER 38 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
OIF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of a full word in the operand 2 (r2) register to be placed in a full word in the operand 1
(r 1) register.

Explicit and Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] LER r 1'r2

Operational Consideration:

• The contents of operand 2 (r2) remain unchanged.

* LER is a featured instruction. If you attempt to issue this instruction to a 'processor which does not have the control feature
installed, you cause an operation program exception.

2-71

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LH 48 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 2, a half word in main storage, to be expanded and placed in the operand 1
register (r1).

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] LH

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] LH

Operational Considerations:

• Operand 2 is a half word in main storage on a half-word boundary.

• The contents of operand 2 remain unchanged.

• Operand 2 is placed in the register of operand 1 (r1) and then is expanded to a full word by
propagating the sign bit through the most significant bits.

2-72

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LM

--.
General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LM 98 RS 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2
0 IF OVERFLOW, SET TO 3 D OPERATION

0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 2, one or more full words in main storage, to be placed in the registers of
operand 1 (ri) through operand 3 (r3).

Explicit Format:

LABEL /:::,OPERATION /:::, OPERAND

[symbol] LM

Implicit Format:

LABEL /:::,OPERATION /:::, OPERAND

[symbol] LM r 1 ,r 3 ,s2

Operational Considerations:

• The general registers, starting with the register specified by operand 1 (r1) and ending with the
register specified by operand 3 (r3), are loaded with full words from main storage, beginning with the
address specified by operand 2 (r2).

• The registers are loaded in ascending numeric sequence, beginning with the register specified by
operand 1 (r1) and continuing through the register specified by operand 3 (r3).

2-73

8227 Rev. 2
UP-NUMBER

LM

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• One register may be loaded by specifying the same register for both operand 1 (r1) and operand 3 (r3).

• If the register specified by operand 3 (r3) is lower than the register specified by operand 1 (r,), then
the register specified by operand 1 (r1) and all registers with a number greater than operand 1 (r1)

plus the register specified by operand 3 (r3) and all registers with a number less than operand 3 (r3)

are loaded.

• The contents of operand 2, in main storage, remain unchanged. Operand 2 must be on a full-word
boundary.

2-74

---·

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-75
UPDATE LEVEL PAGE

LNDR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LNDR 21 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o. SET TO 2 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the sign of the double word in the operand 2 (r2) register to be made negative. The result is placed
in the double-word register specified by operand 1 (r1).

Explicit and Implicit Format:

LABEL !:,.OPERATION!:,. OPERAND

[symbol] LNDR r1 ,r2

Operational Considerations:

• Operand 2 (r2) is made negative even if the fraction is zero.

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

* LNDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LNER*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LNER 31 RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes the sign of a full word in the operand 2(r2) register to be made negative. The result is placed in a
full word in the register specified by operand 1 (r1).

Explicit and Implicit Format:

LABEL /:),.OPERATION/:),. OPERAND

[symbol) LNER

Operational Considerations:

• Operand 2 (r2) is made negative even if the fraction is zero.

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

* LNER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-76

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LNR*

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LNR 11 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOU~JbARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the twos complement of the absolute value of the contents of the operand 2 and register (r2) to be
placed in the operand 1 (r,) register.

Explicit and Implicit:

LABEL LlOPERATION ll OPERAND

[symbol] LNR r1 ,r2

Operationa I Considerations:

• The twos complement of the absolute value of the second operand (r2) is placed in the first operand
(r1) location.

• The operation complements positive numbers; negative numbers and zero remain unchanged.

• Operand 2 (r2) remains unchanged.

* LNR is a featuredinstwction. If yOU-4Jttempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-77

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LPDR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LPDR 20 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT >o, SET TO 2 0 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the sign of the double word in the operand 2 (r2) register to be positive. The result is placed in the
double word of the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] LPDR

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

* LPDR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the controf­
feature installed, you cause an operation program exception.

2-78

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LPER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LPER 30 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the sign of a full word in the operand 2 (r2) register to be positive. The result is placed in a full word
of the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] LPER r1 ,r2

Operational Considerations:

• The exponent and fraction are not changed.

• The contents of operand 2 (r2) remain unchanged.

* LPER is a featured in_s_truction. If you attemp.!_JCJ_jssue this instructi()n to a processor which does not hl!ve the control
feature installed, you cause an operation program exception.

2-79

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LPR*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LPR 10 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o, SET To 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D • IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the absolute value of the contents of the operand 2 register (r2) to be placed in the operand 1 (r1)

register.

Explicit and Implicit Format:

LABEL LlOPERATION ll OPERAND

[symbol] LPR

Operational Considerations:

• Positive numbers remain unchanged. When the second operand (r2) is negative, the twos
complement is placed in the first operand (r1) location.

• A fixed-point overflow condition exists and the number remains unchanged when the maximum
negative number is complemented.

• Operand 2 (r2) remains unchanged.

* LPR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-80

._,.

8227 Rev. 2
UP-NUMBER

OPCODE

MNEM. HEX.

LPSW 82

General

FORMAT
TYPE

SI

Condition Codes

• SET TO 0
• SET TO 1

• SET TO 2
• SET TO 3
0 UNCHANGED

Function:

SPERRY UNIVAC Operating System/3 2-BOa
UPDATE LEVEL PAGE

LPSW

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE
LGTH.
(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY t
0 FIXED-POINT DIVIDE • OP 1 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY

0 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0 NONE

Replaces all or part of the current PSW.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] LPSW d,(b,),i2

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] LPSW s,, i2

...

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LR

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

LR 18 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 D D IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

QIF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Causes the contents of the register specified by operand 2 (r2) to be loaded into the register specified by
operand 1 (r1).

Explicit and Implicit Format

LABEL A OPERATION A OPERAND

[symbol] LR r1 ,r2

Operational Considerations:

• The contents of the register specified by operand 2 (r2) are loaded into the register specified by
operand 1 (r,).

• The contents of the register specified by operand 2 (r2) remain unchanged.

2-81

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LTDR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LTDR 22 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT >o. SET TO 2 D 01F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the double-word contents of the operand 2 (r2) register to be placed in the double-word operand 1
(r1) register. The condition code is set by this instruction.

Explicit and Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] LTDR r 1 ,r2

Operational Considerations:

• The contents of operand 2 (r2) remain unchanged.

• When the same register is specified by operand 1 (r1) and operand 2 (r2), the operation is equivalent
to a test without data movement.

2-82

* LTDR is a featured i"1Structi9R. If you attempt-te-issue#11's fflstFttCtion-to a processor which does-not have the controi---­
feature installed, you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LTER*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

LTER 32 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D 01F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes the contents of a full word in the operand 2 (r2) register to be placed in a full word in the operand 1
(r1) register. The condition code is set by this instruction.

Explicit and Implicit Format:

LABEL /:)..OPERATION /:).. OPERAND

[symbol] LTER

Operational Considerations:

• The contents of operand 2 (r2) remain unchanged.

• When the same register is specified by operand 1 (r1) and operand 2 (r2), the operation is equivalent
to a test without data movement.

* l TER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-83

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-84
UPDATE LEVEL PAGE

LTR

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

LTR 12 RR 2 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1 D
• IF RESULT >o, SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

Function:

Causes the contents of the register specified by operand 2 (r2) to be loaded into the register specified by
operand 1 (r1) and the condition code to be set to reflect the value contained in the registers.

Explicit and Implicit Format

LABEL 6. OPERATION /],. OPERAND

[symbol] LTR r1,r2

Operational Considerations:

• The contents of the register specified by operand 2 (r2) are loaded into the register specified by
operand 1 (-r1).

• The contents of the register specified by operand 2 (r2) remain unchanged.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

M

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

M 5C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 • 01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the odd register of the even-odd pair specified by operand 1 (r1) to be multiplied by
the contents of operand 2, a full word in main storage. The product is placed in the even-odd pair of
registers specified by operand 1 (r,).

Explicit Format:

LABEL b. OPE RATION b. OPERAND

[symbol] M

Implicit Format:

LABEL b.OPERATION b. OPERAND

[symbol] M

Operationa I Considerations:

• Both operands are treated as fixed-point. 32-bit signed integers.

• The contents of operand 2, the multiplier in a full word in main storage, remain unchanged.

• The product is treated as a 64-bit, fixed-point signed integer and occupies and even-odd register pair
specified by operand 1 (r,).

2-85

8227 Rev. 2
UP-NUMBER

M

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• The multiplicand is first loaded into the odd-numbered register of the even-odd pair specified by
operand 1 (r1). The content of the even-numbered register is ignored until replaced by the most
significant 32 bits of the product.

• The sign of the product is determined algebraically.

• A specification exception results if operand 2 is not on a full-word boundary and also if operand 1 (r1)

specifies an odd-numbered register.

2-86

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MD*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

MD 6C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 D
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the double word in the operand 1 (r1)register to be multiplied by the contents of a
double word in main storage specified by operand 2. The normalized product is placed in the double word
of the operand 1 (r1) register.

Explicit Format

LABEL 60PERATION6 OPERAND

[symbol] MD

Implicit Format

LABEL Do OPERATION 6 OPERAND

[symbol] MD

* MD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-87

8227 Rev.2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MOR*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
MDR 2C RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0
01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the double word in the operand 1 (ri) register to be multiplied by the contents of the
double word in the operand 2 (r2) register. The normalized product is placed in the double word of the
operand 1 (r1) register.

Explicit and Implicit Format

LABEL /j, OPERATION /j, OPERAND

[symbol] MOR r 1 ,r 2

* MOR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-88

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ME*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

ME 7C RX 4 • EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
D1F RESULT<O,SETTO 1 0 0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of a full word in the operand 1 (r1) register to be multiplied by the contents of a full
word in main storage specified by operand 2. The normalized product is placed in a fuU word of the operand
1 (r1) register.

Explicit Format

LABEL ti.OPERATION .6. OPERAND

[symbol] ME

Implicit Format

LABEL .6. OPERATION .6. OPERAND

[symbol] ME

* ME is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-89

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

MER 3C RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 0
01F RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of a full word in the operand 1 (r1) register to be multiplied by the contents of a full
word in the operand 2 (r2) register. The normalized product is placed in a full word in the operand 1 (r,)
register.

Explicit and Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] MER r 1 ,r 2

* MER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-90

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MH 4C RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE
0 OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O,SETT02 D 01F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the register specified by operand 1 (rd to be multiplied by the contents of operand
2, a half word in main storage. The product is placed in the register specified by operand 1 (r1).

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] MH

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] MH

Operational Considerations:

• Operand 2 is expanded after being read from storage; then both operands are treated as fixed-point,
32-bit signed integers.

• The contents of operand 2, the multiplier, a half word in main storage, remain unchanged.

• The sign of the product is determined algebraically.

• If the multiplication results in a product that exceeds 32 bits, the high-order bits are ignored but the
overflow condition is not indicated. The sign and value of the product may not be correct after
overflow.

• A specification exception will result if operand 2 is not on a half-word boundary.

* MH is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-91

...

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • .SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MP FC SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET TO 2
0 D IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 1 to be multiplied by the contents of operand 2. The product is placed in
the operand 1 location.

Explicit Format:

LABEL Do OPERATION Do OPERAND

[symbol] MP

Implicit Format:

LABEL Do OPERATION Do OPERAND

[symbol] MP

Operational Considerations:

• All signs and digits are checked for validity, and the sign of the product is determined algebraically.

• Operand 1 must be longer than operand 2.

• Operand 1 and operand 2 may overlap if their least significant bytes coincide.

• The size of the multiplier (operand 2) cannot be more than 15 digits and sign.

2-92

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

MP

• The number of digits in the product is equal to the number of digits in the operands; therefore, the
multiplicand (operand 1) must have a field of most significant zero digits to equal, in size, operand 2.
The maximum product size is 31 digits. At least one most significant digit of the product field is zero.

• Data exception indicates one or more of the following conditions:

Invalid sign or digit code

Operand 1 has insufficient high-order zero digits

Incorrect overlap

2-93

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-94
UPDATE LEVEL PAGE

MR*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MR 1C RR 2 D EXECUTE D OP 1 NOT ON HALF·WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL·WORD BOUNDARY

DI F RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02

D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the odd register of the even-odd pair specified by operand 1 (r1) to be multiplied by
the contents of the register specified by operand 2 (r2). The product is placed in the even-odd pa~r of
registers specified by operand 1 (r,).

Explicit and Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] MR r 1,r2

Operational Considerations:
1

• Both operands are treated as fixed-point, 32-bit signed integers.

• The contents of operand 2 (r2), the multiplier, remain unchanged.

• The product is treated as a 64-bit. fixed-point signed integer and occupies an even-odd register pair
specified by operand 1 (r1).

• The multiplicand is first loaded into the odd-numbered register of the even-odd pair specified by
operand 1 (r1). The content of the even-numbered register is ignored until replaced by the most
significant 32 bits of the product.

• The sign of the product is deter.mined algebraically.

• A specification exception results if operand 1 (r1) specifies an odd-numbered register.

* MR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MVC

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH. 0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
MVC 02 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
OtF RESULT>o.SETT02

0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the field in main storage specified by operand 2 to be placed in the field in main

storage specified by operand 1.

Explicit Format:

LABEL /::,.OPERATION l::. OPERAND

[symbol] MVC

Implicit Format:

LABEL /::,.OPERATION /::,. OPERAND

[symbol] MVC ·

Operational Considerations:

• The transfer proceeds from left to right.

• The number of bytes transferred is specified by 1 in operand 1.

• The contents of operand 2 remain unchanged unless operand 1 and operand 2 overlap.

• If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be

equal to the length attribute of operand 1.

2-95

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MVI

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVI 92 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY 0 IF RESULT <o. SET TO 1
0

0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the one byte of data used in the instruction as operand 2 to be moved into the one byte of main
storage specified by operand 1.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] MVI

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] MVI

Operational Considerations:

• The immediate data in the instruction, operand 2, must specify one byte of data.

• The length attribute of the field specified by operand 1 may be longer than one byte, but only the one
byte addressed by operand 1 will be replaced by the immediate data (operand 2).

2-96

-

8227 Rev. 2
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MVN

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVN 01 SS 6 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2

01F OVERFLOW, SET TO 3 0 OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the least significant four bits (the digit or numeric field) of each byte specified by operand 2 to be
moved to the least significant four bits of each byte of operand 1.

Explicit Format:

LABEL A OPERATION A OPERAND

[symbol] MVN

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] MVN

Operational Considerations:

• The four most significant bits of each byte (zone field) remain unchanged.

• The contents of operand 2 remain unchanged unless there is overlapping.

• Overlapping of operands is permitted.

• The number of bytes transferred is specified by 1 in operand 1.

• If the number of bytes to be moved is not explicitly shown in operand 1, then the number will be
equal lo the length attribute of operand 1.

2-97

-

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MVO

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

MVO F1 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
Q1F RESULT>O,SETT02 D QIF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Moves the contents of operand 2 to operand 1 with a 4-bit (half-byte) shift to the left.

Explicit Format:

LABEL /::,.OPERATION /::,. OPERAND

[symbol] MVO

Implicit Format:

LABEL /::,.OPERATION/::,. OPERAND

[symbol] MVO

Operational Considerations:

• This instruction proceeds from right to left.

• The operands are not checked for valid codes.

• Overlapping fields may occur. Unless the operands overlap, operand 2 and the least significant four
bits of operand 1 remain unchanged.

• If the second operand is exhausted before the first operand, the remaining first operand field is zero
filled. If the result exceeds the capacity of the first operand field, the remaining digits of the second
operand are ignored. This operation, in effect, prefixes the least significant digit or sign of the first
operand with the digits of the second operand.

2-98

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

MVZ

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

MVZ 03 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o, SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the most significant four bits (the zone field) of each byte specified by operand 2 to be moved to the
most significant four bits of each byte of operand 1.

Explicit Format:

LABEL L':.OPERATION L\ OPERAND

[symbol] MVZ

Implicit Format:

LABEL L\ OPERATION L\ OPERAND

[symbol] MVZ

Operational Considerations:

• The four least significant bits of each byte (digit field) remain unchanged.

• The contents of operand 2 remain unchanged unless there is overlapping.

• Overlapping of operands is permitted.

• The number of bytes transferred is specified by I in operand 1.

• If the number 0f bytes to be moved is not explicitly shown in operand 1, then the number will be
equal to the length attribute of ooerand 1.

2-99

8227 Rev.2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

N

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

N 54 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT::foO,SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes a logical full-word AND operation to be performed on the contents of operand 1 (r1) and operand 2.
The result is stored in the operand 1 (r,) register. Operand 2 is a full word in main storage.

Explicit Format

LABEL 6 OPE RATION 6 OPERAND

[symbol] N

Implicit Format:

LABEL bi OPERATION 6 OPERAND

[symbol] N

Operational Considerations:

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be
1. If either bit is zero, the resultant bit will be zero.

• The rules of operation for logical AND (N) are illustrated by the following truth table:

"'-•

2-100

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

N

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

• It is possible to clear selected bits in operand 1 (r,) by specifying zeros in the corresponding bit
positions of operand 2.

• Operand 2 must be on a full-word boundary.

2-101

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

NC

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

NC 04 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT -:f=o, SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET To 2 D DI F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes a logical AND operation to be performed on the contents of operand 1 and operand 2. Both
operands are located in main storage. The result is stored in operand 1.

Explicit Format:

LABEL b. OPERATION b. OPERAND

[symbol) NC

Implicit Format:

LABEL b. OPERATION b. OPERAND

[symbol) NC

Operational Considerations:

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be
1. If either bit is zero, the resultant bit will be zero.

• The rules of operation for logical AND (NC) are illustrated by the following truth table:

2-102

8227 Rev. 2
UP-NUMBER

•

•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

NC

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions

of operand 2.

The number of bytes involved in the AND instruction is specified by I in operand 1 .

If the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1.

2-103

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-104
UPDATE LEVEL PAGE

NI

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

NI 94 SI 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT *o. SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER 0 IF RESULT >o, SET TO 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes a logical AND operation to be performed on the contents of operand 1, a byte in main storage, and
operand 2, a byte of immediate data in the instruction. The result is stored in operand 1.

Explicit Format:

LABEL f::. OPE RATION f::. OPERAND

[symbol] NI

Implicit Format:

LABEL f::.OPERATION f::. OPERAND

[symbol] NI

Operational Considerations:

• If the corresponding bit positions in both operand 1 and operand 2 contain 1, the resultant bit will be
1. If either bit is zero, the resultant bit will be zero.

• The rules of operation for logical AND (NI) are illustrated by the following truth table:

8227 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

NI

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions
of operand 2.

2-105

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

NR

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

NR 14 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT = 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT oFO, SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02 D D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

Function:

Causes a logical AND operation to be performed on the contents of the registers specified by operand 1 (r1)

and operand 2 (r2). The result is stored in operand 1 (r1).

Explicit and Implicit Format:

LABEL /).OPERATION /). OPERAND

[symbol] NR r 1 ,r2

Operational Considerations:

• If the corresponding bit positions in both operand 1 (r1) and operand 2 (r2) contain I, the resultant bit
will be 1. If either bit is zero, the resultant bit will be zero.

• The rules of operation for logical AND (NR) are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 0

1 0 0

1 1 1

• It is possible to clear selected bits in operand 1 by specifying zeros in the corresponding bit positions
of operand 2.

2-106

..

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

0

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

0 56 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT =/=o, SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes a logical OR operation to be performed on the contents of operand 1 (r1) and operand 2, a full word
in main storage. The result is stored in operand 1 (r1).

Explicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] 0

Implicit Format:

LABEL ~OPERATION~ OPERAND

[symbol] 0

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

• The rules of operation for logical OR (0) are illustrated by the following truth table:

2-107

..

8227 Rev. 2
UP-NUMBER

0

SPERRY UNIVAC Operating System/3

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 1

1 0 1

1 1 1

• Operand 2 must be on a full-word boundary.

2-108
UPDATE LEVEL PAGE

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

oc

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

oc D& SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT; 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT:FO,SETTO 1

D FLOATING-POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET To 2 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes a logical OR operation to be performed on the contents of main storage specified by operand 1 and
operand 2. The result is stored in operand 1.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] oc

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol1 oc

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

• The rules of operation for logical OR (OC) are illustrated by the following truth table:

2-109

8227 Rev. 2
UP-NUMBER

oc

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Operand 1 Operand 2
Results

(Operand 1)

0 0 0

0 1 1

1 0 1

1 1 1

• The number of bytes used is specified by I in operand 1.

• If the number of bytes to be used is not explicitly shown in operand 1, then the number will be equal
to the length attribute of operand 1.

2-110

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

01

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

01 96 SI 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED·POINT OVERFLOW BOUNDARY
• IF RESULT *-o. SET TO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >o. SET TO 2

0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes a logical OR operation to be performed on the contents of operand 1 (a byte in main storage) and
operand 2 (a byte of immediate data in the instruction). The result is stored in operand 1.

Explicit Format

LABEL l!. OPERATION l!. OPERAND

[symbol] 01

Implicit Format:

LABEL !:J. OPE RATION l!. OPERAND

[symbol] 01

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

2-111

8227 Rev. 2
UP-NUMBER

01

SPERRY UNIVAC Operating System/3 2-112
UPDATE LEVEL PAGE

• The rules of operation for logical OR (01) are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

0 1 1

1 0 1

1 1 1

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

OR

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

OR 16 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT oFO, SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O,SETT02
01F OVERFLOW, SET TO 3 D OPERATION

D OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED • NONE

Function:

Causes a logical OR operation to be performed on the contents of the registers specified by operand 1 (r,)
and operand 2 (r2). The result is stored in operand 1 (r1).

Explicit and Implicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] OR r1 ,r2

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to zero.

• The rules of operation for logical OR (OR) are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

0 1 1

1 0 1

1 1 1

2-113

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-114

UPDATE LEVEL PAGE

PACK

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

PACK F2 SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Converts the contents of operand 2 from the unpacked format to the packed format, which is placed in
operand 1.

Explicit Format:

LABEL t:. OPE RATION t:. OPERAND

[symbol] PACK

Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] PACK

Operational Considerations:

• This instruction proceeds one byte at a time from right to left. The first byte operated on has its sign
and digit reversed. (An F4 becomes 4F.) Each byte from then on has its zone removed and the digit
half of the byte packed into the receiving area.

• If operand 2 does not completely fill operand 1, the remaining operand 1 field is zero filled.

• If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

• The operands are not checked for valid codes.

• Overlapping fields may occur; each resultant byte is processed after each operand byte.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

-- s

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE ~.SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

s 58 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT >o, SET TO 2

0 .IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the contents of operand 2, a full word in main storage, to be subtracted from the contents of the
register specified by operand 1 (r1). The results are placed in the operand 1 (r1) register.

Explicit Format:

LABEL !J.OPERATION /J. OPERAND

[symbol] s r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL 1J. OPERATION /J. OPERAND

[symbol] s r 1 's2 (x2)

Operational Considerations:

• The subtraction is performed by converting the number in operand 2 into a signed twos complement
binary number and then algebraically adding it to the value in operand 1 (r1).

• The maximum fixed-point number that can be contained in a 32-bit register is 2, 147,483,647(231-1).
The minimum number is -2, 147,483,648(-231). For decimal numbers outside this range, an
overflow condition is produced.

• Operand 2 must be on a full-word boundary.

• The contents of operand 2 are not changed by the subtract (S) instruction.

2-115

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SD*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

so 68 RX 4 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 D
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of a double word in main storage specified by operand 2 to be algebraically subtracted
from the contents of the double word register specified by operand 1 (r1). The normalized difference is
placed in the operand 1 (r1) register.

Explicit Format

LABEL 6 OPERATION 6 OPERAND

[symbol] SD

Implicit Format

LABEL 6.0PERATION6 OPERAND

[symbol] SD

Operational Consideration:

• The execution of the SD instruction is identical to that of the AD instruction except that the sign of
operand 2 is reversed before addition.

* SD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-116

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SOR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SDR 28 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of the double-word register specified by operand 2 (r2) to be algebraically subtracted
from the contents of the double-word register specified by operand 1 (ri). The normalized difference is
placed in the operand 1 (r1) register.

Explicit and Implicit Format

LABEL Ll OPE RATION Ll OPERAND

[symbol] SOR r1 ,r2

Operational Consideration:

• The execution of the SDR instruction is identical to that of the ADR instruction, except that the sign
of operand 2 (r2) is revers.ed before addition.

* SOR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-117

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SE*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SE 78 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
.IF RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED 0 NONE

Function:

Causes the contents of a full word in main storage specified by operand 2 to be algebraically subtracted
from a full word in the register specified by operand 1 (r1). The normalized difference is placed in the
operand 1 (r1) register.

Explicit Format

LABEL LlOPERATION Ll OPERAND

[symbol] SE

Implicit Format:

LABEL Ll OPERATION Ll OPERAND

[symbol] SE

Operational Consideration:

• The execution of the SE instruction is identical to that of the AE instruction, except that the sign of
operand 2 is reversed before addition.

* SE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-118

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SER*
Floating Point

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SER 38 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes • EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O.SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 0
• IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the contents of a full word in the operand 2 (r2) register to be algebraically subtracted from a full
word in the operand 1 (r1) register. The normalized difference is placed in a full word in the operand 1 (r1)

register.

Explicit and Implicit Format:

LABEL f;,, OPERATION f;,, OPERAND

[symbol] SER

Operational Consideration:

• The execution of the SER instruction is identical to that of the AER instruction, except that the sign of
operand 2 is reversed before addition.

* SER is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-119

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SH 48 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT~O.SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 0 • IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the contents of operand 2, a half word in main storage, to be subtracted from the contents of the
register specified by operand 1 (r1). The results are to be placed in the operand 1 (r1) register.

Explicit Format:

LABEL fl OPERATION.!\ OPERAND

[symbol] SH

Implicit Format:

LABEL fl OPERATION fl OPERAND

[symbol] SH

Operational Considerations:

• The subtraction is performed by converting the number in operand 2 into a signed twos complement
binary number, expanded to a full word, and then algebraically adding it to the value in operand 1 (r,).

• The maximum fixed-point number that can be contained in 32-bit register is 2, 147.483,647(231-1);
the minimum number is -2, 147.483,648(-231). For decimal numbers outside this range, an
overflow condition is produced.

• Operand 2 must be on a half-word boundary.

• The contents of operand 2 are not changed by the subtract half word (SH) instruction.

2-120

8227 Rev. 2
UP-NUMBER

OPCODE

MNEM. HEX.

SID 9C

General

FORMAT

TYPE

SI

Condition Codes

• SET TO 0

•sET TO 1
.SET TO 2
.SET TO 3
OuNCHANGED

Function:

SPERRY UNIVAC Operating System/3 2-120a
UPDATE LEVEL PAGE

SIO

Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
INST.
LGTH.

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

(BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD t
D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

D NONE

Initiates input and output operations to be executed by the 1/0 channels and the 1/0 status tabler.

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] SIO

Implicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] SIO s,

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SL*

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
SL 5F RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 0
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS 0 NONE

Function:

Causes the contents of a full word in main storage specified by operand 2 to be subtracted logically from
the contents of the operand 1 (r1) register. The difference is placed in operand 1 (r1).

Explicit Format

LABEL LlOPERATION Ll OPERAND

[symbol] SL

Implicit Format

LABEL LlOPERATION Ll OPERAND

[symbol] SL

Operational Considerations:

• The subtraction is performed by adding the twos complement of operand 2 to operand 1.

• All 32 bits of both operands are used.

• The contents of operand 2 remain unchanged.

• Operand 2 must be on a full-word boundary.

* SL is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-121

8227 Rev. 2
UP-NUMBER

SL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• The condition code is set:

to 1 if result is not zero (no carryout of most significant bit position);

to 2 if result is zero (carryout of most significant bit position); or

to 3 if result is not zero (carryout of most significant bit position).

Code 0 is not used. A zero difference cannot be obtained without a carryout of the most significant bit
position.

2-122

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SLA*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLA 88 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT; 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O.SETT02 D • IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the 31-bit integer field in the register specified by operand 1 (r1) to be shifted left the number of bit
positions specified by the six low-order bits of the second operand (s2) address.

Explicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SLA

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] SLA

Operational Considerations:

• The 31-bit integer of the first operand (r1) is shifted left the number of bit positions specified by the
low-order six bits of the second operand address.

• The vacated low-order bit positions of the register are zero filled. The sign bit of the register remains
unchanged.

• If a bit unlike the sign bit is shifted out of the high-order numeric bit position, a fixed-point overflow
condition exists.

* SLA is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-123

8227 Rev. 2
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SLA

• For numbers with an absolute value of less than 23°, a left shift of one bit position is equivalent to

multiplying the number by 2.

• A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -231 •

• A zero shift value provides a sign and magnitude test.

2-124

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SLDA*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SLDA BF RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 • .IF RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the 63-bit integer field in the pair of registers specified by operand 1 (r1) to be shifted left the
number of bit positions specified by the six low-order bits of the second operand (s2) address.

Explicit Format:

LABEL /::.OPERATION /::. OPERAND

[symbol] SLDA

Implicit Format:

LABEL /::.OPE RATION /::. OPERAND

[symbol] SLDA·

Operational Considerations:

• Operand 1 (r1) must refer to an even-numbered register of an even-odd register pair.

• The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit
integer. The vacated low-order bit positions of the odd register are zero filled. The sign bit of the even
register remains unchanged.

• If a bit unlike the sign bit is shifted out of the high-order numeric bit position of the even register, a
fixed-point overflow condition exists.

* SLDA is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-125

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SLDA

• A zero shift value in the double-shift operations provides a double-length sign and magnitude test.

• For numbers with an absolute value of less than 230, a left shift of one bit position is equivalent to

multiplying the number by 2.

• Shifting 63 bits causes the entire integer to be shifted out of the registers. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -231 .

2-126

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SLDL*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SLDL BD RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

DI F RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>o. SET TO 2

D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the double word in the pair of registers specified by operand 1 (r1) to be shifted left
the number of bit positions specified by the least significant six bits of the operand 2 address.

Explicit Format

LABEL 6 OPERATION 6 OPERAND

[symbol] SLDL

Implicit Format

LABEL 60PERATION 6 OPERAND

[symbol] SLDL

Operationa I Considerations:

• The vacated least significant bit positions of the registers are zero filled ..

• Bits shifted out of the even-numbered register are lost.

• Operand 1 (r1) must refer to the even-numbered register of an even-odd register pair.

* SLDL is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-127

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SLL

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 D.ECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SLL 89 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WOAD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET to 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NbNE

Function:

Causes a full word in operand 1 (r1) to be shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address.

Explicit Format:

LABEL t.OPERATION !::!. OPERAND

[symbol] SLL

Implicit Format:

LABEL !::!.OPERATION t. OPERAND

[symbol] SLL

Operational Considerations:

• The vacated least significant bit positions of the register are zero filled.

• Bits shifted out of the register are lost.

2-128

8227 Rev. 2
UP-NUMB EA

General

SPERRY UNIVAC Operating System/3

Possible Program Exceptions

2-128a
UPDATE LEVEL PAGE

SLM

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SLM 88 RS 4 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

01F OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of operand 2, one or more full words in main storage, to be placed in the problem
registers of operand 1 (r1) through operand 3 (r3).

Explicit Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol] SLM

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] SLM

t

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SLR*

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SLR 1F RR 2 0 EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 0
• SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS 0 NONE

Function:

Causes the contents of the operand 2 (r2) register to be subtracted logically from the contents of the
operand 1 (r1) register. The difference is placed in operand 1 (r1).

Explicit and Implicit Format:

LABEL ti OPERATION 6 OPERAND

[symbol] SLR r1 ,r2

Operational Considerations:

• The subtraction is performed by adding the twos complement of operand 2 to operand 1.

• All 32 bits of both oper~nds are used.

• The contents of operand 2 remain unchanged.

• The condition code is set:

to 1 if result is not zero (no carryout of most significant bit position);

to 2 if result is zero (carryout of most significant bit position); or

to 3 if result is not zero (carryout of most significant bit position).

Code 0 is not used. A zero difference cannot be obtained without a carryout of the most significant bit
position.

4 SLR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-129

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

• DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SP FB SS 6 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WOAD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 0 OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Subtracts the contents of operand 2 from the contents of operand 1. The results are placed in operand 1.

Explicit Format

LABEL fl OPERATION fl OPERAND

[symbol] SP

Implicit Format:

LABEL LlOPERATION t. OPERAND

[symbol] SP

Operationa I Considerations:

• Subtraction is accomplished by reversing the sign of operand 2 and performing a decimal add. The
contents and sign of operand 2 are not affected by this operation.

• All signs and digits are checked for validity and the sign of the result is determined algebraically.

• A zero result has a positive sign when the operation is completed without overflow.

• When most significant digits are lost because of overflow, the partial result has the sign that the
correct result would have had.

2-130

8227 Rev. 2

UP-NUMBER

•

•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SP

If operand 2 is shorter than operand 1, operand 2 is extended with zero digits .

An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carryout of the most significant digit position of the result field is lost.

Operand 1 and operand 2 may overlap if their least significant bytes coincide. Incorrect overlay will
cause a data exception.

2-131

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-132
UPDATE LEVEL PAGE

t

SPM

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA {INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. {BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SPM 04 RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1

D FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
• SET TO 2 0 • SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 SEE OPER. CONSIDERATIONS • NONE

Function:

Causes the program mask field (bits 34 through 39) of the current program status word (PSW) to be
changed according to the contents of operand 1 (r,).

Explicit and Implicit Format:

LABEL /j,, OPERATION /j,, OPERAND

[symbol] SPM

Operational Considerations:

• Bits 2 through 7 of the full-word contents of operand 1 (r,) replace the program mask field (bits 34
through 39) of the current PSW.

• Bits 0, 1, and 8 through 31 of r1 are ignored.

• The condition code is set equal to bit positions 2 and 3 of operand 1.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-133
UPDATE LEVEL PAGE

SR

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SR 18 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WOAD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WOAD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WOAD

• FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O.SETT02 D • IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

Function:

Causes the contents of the operand 2 (r2) register to be subtracted from the contents of the operand 1 (r1)

register. The results are placed in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL fl OPERATION 6 OPERAND

[symbol] SR

Operational Considerations:

• The subtraction is performed by converting the number in operand 2 (r2) into a signed twos
complement binary number and then algebraically adding it to the value in operand 1 (r1).

• The maximum fixed-point number that can be contained in a 32-bit register is 2, 147,483,647(231-1);
the minimum number is -2, 147,483,648(-231). For decimal numbers outside this range, an
overflow condition is produced.

• The contents of operand 2 (r2) are not changed by the subtract (SR) instruction.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SRA*

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SRA BA RS 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
.IF RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED 0 NONE

Function:

Causes the 31-bit integer field in the register specified by operand 1 (ri) to be shifted right the number of
bit positions specified by the six lower bits of the second operand (s2) address.

Explicit Format:

LABEL 6 OPERATION A OPERAND

[symbol] SRA

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] SRA

Operationa I Considerations:

• The 31-bit integer field of the first operand (ri) is shifted right the number of bit positions specified by
the low-order six bits of the second operand address. The sign bit remains unchanged.

• The bits shifted out of the low-order bit position of the register are lost; the vacated high-order bit
positions of the register are sign filled.

* SRA is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed. you cause an operation program exception.

2-134

--

8227 Rev. 2
UP-NUMBER

•

•

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SRA

A right shift of one bit position is equivalent to division by 2 with rounding downward. When an even
number is shifted right one position, the value of the field is that obtained by dividing the value by 2.
When an odd number is shifted right one position, the value of the field is that obtained by dividing
the next lower number by 2. For example, 5 shifted right by one bit position yields +2, whereas -5

yields -3.

A shift of 31 bits causes the entire integer to be shifted out of the register. When the entire integer
field of a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -1.

A zero shift value provides a sign and magnitude test.

2-135

8227 Rev. 2
UP-NUMBER

SRDA*

OPCODE

MNEM. HEX.

SRDA BE

General

FORMAT
TYPE

RS

Condition Codes

• IF RESULT= 0, SET TOO

.IF RESULT<O,SETTO 1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT Q ADDRESSING 0 PROTECTION
INST.
LGTH.

0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY • • IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 Q IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the 63-bit integer field in the pair of registers specified by operand 1 (r1) to be shifted right the
number of bit positions specified by the six low-order bits of the second operand (s2) address.

Explicit Format:

LABEL /J. OPE RATION /J. OPERAND

[symbol] SRDA r 1 ,d2 (b2)

Implicit Format:

LABEL IJ.OPERATION /J. OPERAND

[symbol] SRDA r1 ,s2

Operational Considerations:

• Operand 1 (r1) must refer to an even-numbered register of an even-odd register pair.

• The contents of both registers, except the sign bit of the even register, are shifted as one 63-bit
integer. The bits shifted out of the low-order bit position of the odd register are lost; the vacated high­
order bit positions of the register pair are sign filled.

• A right shift of one bit position is equivalent to dividing the number by 2, without a remainder.

• Shifting 63 bits causes the entire integer to be shifted out of the register. When the entire integer
field for a positive number has been shifted out, the register contains a value of zero. For a negative
number, the register contains a value of -1.

• A zero shift value in the double-shift operations provides a double-length sign and magnitude test.

* SRDA is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed. you cause an operation program exception.

2-136

"-....··

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SRDL*

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SRDL BC RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY D IF RESULT <o. SET To 1
0 FLOATING-POINT DIVIDE • OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O.SETT02
D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of the double word in the pair of registers specified by operand 1 (r1) to be shifted right
the number of bit positions specified by the least significant six bits of the operand 2 address.

Explicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] SRDL

Implicit Format:

LABEL ti OPERATION ti OPERAND

[symbol] SRDL

Operational Considerations:

• The vacated most significant bit positions of the registers are zero filled.

• Bits shifted out of the odd-numbered register are lost.

• Operand 1 (r1) must refer to the even-numbered register of an even-odd register pair.

* SRDL is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control
feature installed, you cause an operation program exception.

2-137

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SRL

General Possible Program Exceptions

OBJECT 0 ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SRL 88 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT >a. SET TO 2
01F OVERFLOW, SET TO 3 0 OPERATION

0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED • NONE

Function:

Causes a full word in operand 1 ~r,) to be shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address.

Explicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] SRL

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] SRL

Operational Considerations:

• The vacated most sianificant bit positions of the register are zero filled.

• Bits shifted out of the register are lost.

2-138

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-138a
UPDATE LEVEL PAGE

SSFS

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SSFS A2 RS 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 • D IF RESULT >o. SET To 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Samples data at a specified rate after a sync pattern has been detected on the selected SOFTSCOPE data
bus.

Explicit and Implicit Format:

The bit pattern is the format of the instruction.

2-138b 8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SSK

General Possible Program Exceptions

OBJECT • ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SSK 08 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT~ 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1 D
01F RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D IF OVERFLOW, SET TO 3 • OPERATION D OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Specifies storage protection blocks of 512 bytes or 1024 bytes.

Explicit and Implicit Format:

LABEL /:i OPERATION /:i OPERAND

[symbol] SSK

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC O~rating System/3

Possible Program Exceptions

2-138c
UPDATE LEVEL PAGE

SSM

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SSM 80 SI 4 0 EXECUTE • OP 1 NOT ON HALF·WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= O. SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED·POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the system mask of the current PSW to be replaced by the first half word of the first operand
(bits 0-7).

Explicit Format:

LABEL fl.OPERATION[). OPERAND

[symbol] SSM

Implicit Format:

LABEL fl.OPERATION[). OPERAND

[symbol] SSM s,

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-138d
UPDATc LEVEL PAGE

t

SSAS

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SSRS A3 RS 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 0
.IF RESULT>O.SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• IF OVERFLOW, SET TO 3 • OPERATION • OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Samples data at a specified rate, and stores the data into a revolving buffer until a sync pattern has been
detected on the selected SOFTSCOPE data bus, or until the internal timer lapses.

Explicit and Implicit Format:

The bit pattern is the format of the instruction.

8227 Rev. 2
UP-NUMBER

General

SPERRY UNIVAC Operating System/3

Possible Program Exceptions

UPDATE LEVEL
2-138e

PAGE

SSTM

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

SSTM BO RS 4 0 EXECUTE 0 OP 1 NOT ON HALFWORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT 0 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED POINT OVERFLOW BOUNDARY
0 IF RESULT <o. SET TO 1 0 0 IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

QIF OVERFLOW, SET TO 3 • OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

Function:

Causes the contents of the registers specified by operand 1 (ri) through operand 3 (r3) to be stored in
operand 2. one or more full words in main storage.

Explicit Format:

LABEL !::. OPE RATION !::. OPERAND

[symbol] SSTM

Implicit Format:

LABEL !::.OPERATION!::; OPERAND

[symbol] SSTM

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

ST

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

ST 50 RX 4 D EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O,SETT02
QIF OVERFLOW, SET TO 3 D OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the operand 1 (r1) register to be stored in operand 2, a full word in main storage.

Explicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] ST

Implicit Format:

LABEL A OPERATION 6 OPERAND

[symbol] ST

Operational Considerations:

• The contents of the operand 1 (r1) register are not changed by the store (ST) instruction.

• Operand 2, a full word in main storage, must be on a full-word boundary.

• Operand 1 is the sending field, operand 2 the receiving field.

2-139

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

STC

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

STC 42 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF.WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

01F RESULT=O,SETTOO
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
0 IF RESULT <o, SET TO 1 0 0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the least significant eight bits of the operand 1 (r1) register to be stored in a byte of main storage
specified by operand 2.

Explicit Format:

LABEL /),.OPERATION/),. OPERAND

[symbol] STC r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL /),.OPERATION/),. OPERAND

[symbol] STC r 1 ,s2 ("2)

Operational Considerations:

• The contents of operand 1 (r1) remain unchanged.

2-140

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

STD*
Floatlng Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER
STD 60 RX 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
D IF RESULT <o. SET TO 1

0
01F RESULT>O.SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the register specified by operand 1 (r1) to be placed in a double word in main
storage specified by operand 2.

Explicit Format

LABEL fl OPERATION fl OPERAND

[symbol] STD

Implicit Format

LABEL fl OPERATION fl OPERAND

[symbol] STD

Operational Considerations: •
• The contents of the operand 1 (r1) register remalh unchanged.

* STD is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-141

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-142
UPDATE LEVEL PAGE

STE*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

STE 70 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= O. SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D 1F RESULT >o. SET TO 2 D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED D NONE

Function:

Causes the contents of a full word in the register specified by operand 1 (r1) to be placed in a full word in
main storage specified by operand 2.

Explicit Format:

LABEL 6. OPERATION 6. OPERAND

[symbol] STE r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] STE r 1 ,s2 (x2)

Operational Consideration:

• The contents of the operand 1 (r1) register remain unchanged.

* STE is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

STH

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW 0 · NOT A FLOATING-POINT REGISTER

STH 40 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW • OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

D IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0
0 IF RESULT >o, SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

OIF OVERFLOW, SET TO 3 0 OPERATION
0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the least significant 16 bits of the operand 1 (r1) register to be stored in operand 2, a half word in
main storage.

Explicit Format:

LABEL A OPE RATION A OPERAND

[symbol] STH

Implicit Format:

LABEL A OPERATION A OPERAND

[symbol] STH .

Operational Considerations:

• The contents of the operand 1 (r1) register are not changed by the store half word (STH) instruction.

• Operand 2, a half word in main storage, must be on a half-word boundary.

• Operand 1 is the sending field, operand 2 the receiving field.

2-143

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

STM

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

STM 90 RS 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1 0
01F RESULT>O,SETT02 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 0 OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of the registers specified by operand 1 (r1) through operand 3 (r3) to be stored in
operand 2, one or more full words in main storage.

Explicit Format

LABEL fl OPERATION fl OPERAND

[symbol] STM

Implicit Format:

LABEL 60PERATION6 OPERAND

[symbol] STM

Operational Considerations:

• The contents of the general registers starting with the register specified by operand 1 (r1) and ending
with the register specified by operand 3 (r3) are stored in one or more full words in main storage
beginning with the address specified by operand 2 (s2).

• The registers are used in ascending numeric sequence beginning with the register specified by
operand 1 (r1) and continuing through the register specified by operand 3 (r3).

• One register may be stored by specifying the same register for both operand 1 (r1) and operand 3 (r3).

2-144

8227 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3 2-145
UPDATE LEVEL PAGE

STM

If the register specified by operand 3 (r3) is lower than the register specified by operand 1 (r1) then the
register specified by operand 1 (r1) and all registers with a number greater than operand 1 (r1), plus
the register specified by operand 3 (r3) and all registers with a number less than operand 3 (r3), are
stored.

• The contents of all registers used remain unchanged.

• Operand 2 (s2) must be on a full-word boundary.

2-146 8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

STR

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

STR 03 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

t Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o, SET TO 1 D
.IF RESULT>O,SETT02 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

.IF OVERFLOW, SET TO 3 • OPERATION
D OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Controls internal timer register.

Explicit and Implicit Format:

LABEL t, OPERATION t, OPERAND

[symbol] STR

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SU*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SU 7F RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
• IF RESULT >o. SET TO 2 D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes the contents of a full word in main storage specified by operand 2 to be algebraically subtracted
from the contents of a full word in the register specified by operand 1(r1). The difference is placed in a full
word in the operand 1 (r1) register.

Explicit Format:

LABEL l:.OPERATION l:. OPERAND

[symbol] SU r 1 ,d2 (x2 ,b2)

Implicit Format:

LABEL LlOPE~ATION Ll OPERAND

[symbol] SU r 1 •s2 (x2)

Operational Consideration:

• The execution of the SU instruction is identical to that of the AU instruction, except that the sign is
reversed before addition.

* SU is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-146a

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SUR*
Floating Point

General Possible Program Exceptions

OBJECT D ADDRESSING 0 PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SUR 3F RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT~ 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

0 FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O.SETT02 D 0 IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

QUNCHANGED 0 NONE

Function:

Causes the contents of a full word in the operand 2 (r2) register to be algebraically subtracted from a full
word in the operand 1 (r,) register. The difference is placed in a full word in the operand 1 (r1) register.

Explicit and Implicit Format:

LABEL b, OPERATION A OPERAND

[symbol] SUR

Operational Considerations:

• The execution of the SUR instruction is identical to that of the AUR instruction, except that the sign is
reversed before addition.

* SUR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-147

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SVC

General Possible Program Exceptions

OBJECT 0 ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE •.GTH.
0 DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

SVC DA RR 2 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

.IF RESULT=O,SETTOO
0 FIXED-POI MT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1 D
• IF RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• 1 F OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS • NONE

Function:

Causes the interrupt code field (bits 24 through 31) of the current program status word (PSW) to be
changed according to the contents of operand 1, a byte of immediate data in the instruction.

Explicit and Implicit Format:

LABEL l:. OPE RATION l:. OPERAND

[symbol] SVC

Operational Considerations:

• A supervisor call interrupt request is generated.

• When the interrupt is granted, the contents of operand 1 (i 1) are stored as the interrupt code (bits 24
through 31) in the current program status word (PSW). The current PSW is stored in the supervisor
call old PSW location, and the contents of the supervisor call new PSW location replace the current
PSW.

• The condition code is set equal to bits 34 and 35 of the supervisor call new PSW. It remains
unchanged in the old PSW.

2-148

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SW*
Floating Point

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SW &F RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT: 0, SET TO 0
D FIXED-POINT DIVIDE • OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT <o. SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02

D DI F OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the contents of a double word in main storage specified by operand 2 to be algebraically subtracted
from the contents of the double word in the register specified by operand 1 (r1). The difference is placed in
the double word operand 1 (r1) register.

Explicit Format

LABEL b. OPERATION b. OPERAND

[symbol] SW

Implicit Format:

LABEL b. OPE flATION b. OPERAND

[symbol] SW

Operational Consideration:

• The execution of the SW instruction is identical to that of the AW instruction, except that the sign is
reversed before addition.

* SW is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-149

..

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SWR*
Floatlng Point

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) • SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

0 DECIMAL OVERFLOW • NOT A FLOATING-POINT REGISTER

SWR 2F RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

• EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O,SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D D IF OVERFLOW, SET TO 3 • OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes the contents of the double word in the operand 2 (r2) register to be algebraically subtracted from
the double word contents of the operand 1 (r1) register. The difference is placed in the double operand 1 (r1)

register.

Explicit and Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol) SWR r 1,r2

Operational Consideration:

• The execution of the SWR instruction is identical to that of the AWR instruction, except that the sign
is reversed before addition.

* SWR is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you cause an operation program exception.

2-150

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

TM

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER
TM 91 SI 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes D EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 D D SET TO 2 D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

• SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS D NONE

Function:

Causes one byte in main storage specified by operand 1 to be tested for 1 bits according to the 8-bit mask
specified in operand 2. The condition code is set to reflect the results of the test.

Explicit Format:

LABEL t.OPERATION t. OPERAND

[symbol] TM

Implicit Format:

LABEL t. OPERATION t. OPERAND

[symbol] TM

Operational Considerations:

• The 1 bits of the immediate operand 2 are used to test the bits of operand 1.

• The contents of operand 1 remain unchanged.

• The condition code is set:

to zero if all the 1 bits in the mask match zero bits in the byte tested or if all the bits in the mask
are zero;

to 1 if some of the 1 bits in the mask match zero bits in the byte tested; or

to 3 if all the 1 bits in the mask correspond with 1 bits in the byte tested.

Code 2 is not used.

2-151

..

8227 Rev. 2
UP-NUMBER

TR

General

SPERRY UNIVAC Operating System/3 2-1s2
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

TR DC SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
0 IF RESULT>o. SET TO 2 0 0 IF OVERFLOW, SET TO 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

.UNCHANGED 0 NONE

Function:

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand
2. As a result, operand 1 will contain data copied from the operand 2 table.

Explicit Format

LABEL 6 OPERATION 6 OPERAND

[symbol] TR

Implicit Format:

LABEL 6.0PERATION 6 OPERAND

[symbol] TR

Operational Considerations:

• The 8-bit code of each character of operand 1 is used as an index to the base table address specified
by operand 2. The character code located at this address 8-bit code value of operand 1 plus d2(b2) is
transferred from the table to the character position of operand 1. Thus, the original 8-bit code of
operand 1 is replaced.

• Translation continues until all characters specified by the length (I) have been translated.

• The contents of the table are not changed unless overlap occurs.

..

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

TR

• If the number of bytes to be translated is not explicitly shown in operand 1, then the number will be
equal to the length attribute of operand 1.

• The programmer may place whatever values are required into the 256-byte translate table. When it is
known what kind of bit configurations are expected as input (each unique configuration produces an
address pointing to a unique table address), the desired value may be placed in the table to produce a
translation.

2-153

•

8227 Rev. 2
UP-NUMBER

TRT

OPCODE

MNEM. HEX.

TAT DD

General

FORMAT
TYPE

SS

Condition Codes

• SET TO 0
• SET TO 1
• SET TO 2
D SET TO 3

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

(BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

6 D EXECUTE D OP 1 NOT ON HALF-WOAD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY

D D FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

SEE OPEA. CONSIDERATIONS D NONE

Function:

Causes the contents of operand 1 to be translated according to a table in main storage specified by operand
2. The resultant data in the table will be tested and condition code set.

Explicit Format:

LABEL !:::. OPERATION!:::. OPERAND

[symbol] TRT

Implicit Format:

LABEL !:::.OPERATION!:::. OPERAND

[symbol] TRT

Operational Considerations:

• The translate and test (TAT) instruction searches the table in the same manner as the translate (TR)
instruction.

• The selected byte (result byte) in the translate table is examined and tested for an all zero pattern. If
the result byte is all zeros, it is ignored and the translate operation is continued. If the result byte is
nonzero, the address of the corresponding operand 1 byte is stored in the least significant 24 bit
positions of general register 1, the result byte is stored in the least significant 8-bit positions of
general register 2, and the operation is terminated.

2-154

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

TRT

• The contents of both operands remain unchanged.

• If the maximum number of bytes to be translated is not explicitly shown in operand 1, then the
number will be equal to the length attribute of operand 1.

• The condition code is set:

to zero if all result bytes are zero;

to 1 if the result byte corresponding to any except the last operand 1 byte is nonzero; or

to 2 if the result byte corresponding to the last operand 1 byte is nonzero.

Code 3 is not used.

2-155

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

TS*

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER
TS 93 SI 4 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FU:...L-WORD BOUNDARY

• SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
• SET TO 1 0 0 SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 SET TO 3 • OPERATION 0 OP 1 NOT ODD NUMBERED REGISTER

SEE OPER. CONSIDERATIONS 0 NONE

Function:

Causes the operand, a byte in main storage, to be read and bit position 0 to be tested. After the byte is
tested and the condition code is set, all the bits in this indicator byte are set to 1. The byte indicated by the
operand can be used as an indicator switch which is tested and set to all binary 1 's by this instruction and
then reset to binary O's by some other instruction.

Explicit Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol] TS

Implicit Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] TS

Operational Considerations:

• Only the first bit of the operand is tested to determine the condition code.

• All eight bits of the operand are set to binary 1 's after the condition code is set.

• The condition code is set as follows:

0 if bit position 0 is zero; or

1 if bit position 0 is one.

* TS is a featured instruction. If you attempt to issue this instruction to a processor which does not have the control feature
installed, you caus_e an operation program exception.

2-156

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

UNPK

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT A FLOATING-POINT REGISTER

UNPK Fl SS 6 0 EXECUTE 0 OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL-WORD BOUNDARY

0 IF RESULT= 0, SET TO 0
0 FIXED-POINT DIVIDE 0 OP 2 NOT ON DOUBLE-WORD

0 FIXED-POINT OVERFLOW BOUNDARY
01F RESULT<O,SETTO 1

0 FLOATING-POINT DIVIDE 0 OP 1 NOT EVEN NUMBERED REGISTER
01F RESULT>O.SETT02
01F OVERFLOW, SET TO 3 0 OPERATION

0 OP 1 NOT ODD NUMBERED REGISTER

• UNCHANGED 0 NONE

Function:

Converts the contents of operand 2 from a packed format to an unpacked format, which is placed in
operand 1.

Explicit Format

LABEL l:.OPERATIONA OPERAND

[symbol] UNPK

Implicit Format:

LABEL t.OPERATION t, OPERAND

[symbol] UNPK.

Operational Consideration:

• This instruction proceeds one byte at a time from right to left_ The first byte operated on has its sign
and digit reversed (a 4C would become C4). Each half byte from then on is moved to the next left digit
field, and an F is placed in the zone field of the receiving byte (EBCDIC notation).

• Any unfilled bytes that are part of the specified length for operand 1 are zero-filled.

• Operand 2 data should be in packed decimal format.

• Operand 1 should contain enough bytes to receive all digits, a zone for each digit, and a sign from
operand 2.

• Specification of a length attribute for operands 1 and 2 is optional.

2-157

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

x

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) 0 DECIMAL DIVIDE • SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

x 57 RX 4 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW • OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT: 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT =/=o, SET TO 1 D D 1F RESULT >o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

0 IF OVERFLOW, SET TO 3 D OPERATION D OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED D NONE

Function:

Causes a logical exclusive OR operation to be performed on the contents of the operand 1 (r1) register and
the full word in main storage specified by operand 2. The result is placed in operand 1 (r1).

Explicit Format:

LABEL DaOPERATION Da OPERAND

[symbol] x

Implicit Format:

LABEL 60PERATION 6 OPERAND

[symbol] x

Operationa I Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to zero.

• The rules of operation for the exclusive OR (X) operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

1 0 1

0 1 1

1 1 0

2-158

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

xc

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST

TYPE LGTH
0 DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

MNEM HEX. I BYTES) 0 DECIMAL DIVIDE 0 SPECIFICATION:

0 DECIMAL OVERFLOW 0 NOT AF LOA fl NG POINT RE:GISTE: R

xc 07 SS 6 0 EXECUTE 0 OP 1 NOT ON HALF WORD BOUNDARY

0 EXPONENT OVERFLOW 0 OP 2 NOT ON HALF WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW 0 OP 2 NOT ON FULL WORD BOUNDARY

0 FIXED POINT DIVIDE 0 OP 2 NOT ON DOUBLE: WORD
• IF AESULT=O,SETTOO

0 FIXED POINT OVERFLOW BOUNDARY
.IF RESULT4'0.SET TO 1

0 FLOATING POINT DIVIDE
0 OP 1 NOT EVEN NUMBE:RED REGISTER

0 IF RESULT >o. SET TO 2
0

01F OVERFLOW. SET ro 3 0 OPERATION OP 1 NOT ODD NUMBERED REGISTER

0 UNCHANGED 0 NONE

Function:

Causes a logical exclusive OR operation to be performed on the contents of the areas in main storage
specified by operand 1 and operand 2. The result is placed in operand 1.

Explicit Format

LABEL /",.OPERATION/",. OPERAND

[symbol] xc

Implicit Format:

LABEL /",.OPERATION/",. OPERAND

[symbol] xc

Operationa I Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to zero.

• The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 1)

0 0 0

1 0 1

0 1 1

1 1 0

2-159

8227 Rev. 2
UP-NUMBER

xc

SPERRY UNIVAC Operating System/3
UPDATE LEVEL 'PAGE

• The number of bytes used in each operand is specified by I in operand 1.

• If the number of bytes to be used in each operand is not explicitly shown in operand 1, then the
number will be equal to the length attribute of operand 1.

2-160

8227 Rev. 2

UP-NUMBER

OPCODE

MNEM. HEX.

XI 97

General

FORMAT

TYPE

SI

Condition Codes

.IF RESULT=O,SETTOO
• IF RESULT *O. SET TO 1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

XI

Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
INST.
LGTH.

D DATA (INVALID SIGN/DIGIT) 0 SIGNIFICANCE

(BYTES) D DECIMAL DIVIDE D SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

4 D EXECUTE D OP 1 NOT ON HALF WORD BOUNDARY

D EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

D EXPONENT UNDERFLOW D OP 2 NOT ON FULLWORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE WORD

D FIXED-POINT OVERFLOW BOUNDARY

D
01F RESULT>o. SET TO 2 0 FLOATING-POINT DIVIDE OP 1 NOT EVEN NUMBERED REGISTER

D D IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Causes a logical exclusive OR operation to be performed on the contents of operand 1 (a byte in main
storage) and operand 2 (a byte of immediate data in the instruction). The result is placed in operand 1.

Explicit Format:

LABEL 60PERATION6 OPERAND

[symbol] XI

Implicit Format:

LABEL LlOPERATION Ll OPERAND

[symbol] XI

Operational Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to zero.

• The rules of operation for the exclusive OR (XI) operation are illustrated by the following truth table:

Operand 1 Operand 2
Result

(Operand 11

0 0 0

1 0 1

0 1 1

1 1 0

2-161

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-1s2

UPDATE LEVEL PAGE

XR

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

D DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

XR 17 RR 2 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
• IF RESULT -:f=o, SET TO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER D IF RESULT >o. SET TO 2 D 0 IF OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

0UNCHANGED • NONE

Function:

Causes a logical exclusive OR operation to be performed on the contents of the registers specified by
operand 1 (ri) and operand 2 (r2). The result is placed in operand 1 (r1).

Explicit and Implicit Format:

LABEL tJ. OPERATION tJ. OPERAND

[symbol] XR

Operationa I Considerations:

• A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to zero.

• The rules of operation for the exclusive OR (XR) operation are illustrated by the following truth table:

Result
Operand 1 Operand 2 (Operand 1)

0 0 0

1 0 1

0 1 1

1 1 0

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-163

UPDATE LEVEL PAGE

ZAP

General Possible Program Exceptions

OBJECT • ADDRESSING • PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
• DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE 0 SPECIFICATION:

• DECIMAL OVERFLOW D NOT A FLOATING-POINT REGISTER

ZAP FB SS 6 D EXECUTE D OP 1 NOT ON HALF-WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULL-WORD BOUNDARY

• IF RESULT= 0, SET TO 0
D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD

D FIXED-POINT OVERFLOW BOUNDARY
.IF RESULT<O.SETTO 1

D FLOATING-POINT DIVIDE D OP 1 NOT EVEN NUMBERED REGISTER
.IF RESULT>O,SETT02 D • 1 F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

OuNCHANGED D NONE

Function:

Clears operand 1 to zeros and adds the value of operand 2. Replaces operand 1 with the value of operand
2.

Explicit Format:

LABEL b.OPERATION 6 OPERAND

[symbol] ZAP

Implicit Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] ZAP .

Operational Considerations:

• Equivalent to AP with zero in operand 1. Sign digit is generated.

• Checks operand 2 sign and digits for validity.

• Decimal overflow condition exists when operand 2 value will not fit in operand 1. Most significant
digits are truncated.

• Zero result has positive sign. When overflow occurs, zero result has sign of operand 2.

• Operand 2 is zero extended when it does not fill operand 1.

• Operands 1 and 2 may overlap if least significant bytes coincide, or if least significant byte of operand
1 is to the right of the least significant byte of operand 2.

3. BAL Directives

•

8227 Rev. 2
UP-NUMBER

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ccw

Defines and generates an 8-byte channel command word aligned on a double-word boundary.

For full information on the use of the CCW, refer to the processor programmer reference, UP-8052 (current
version).

Format:

LABEL /).OPERATION/). OPERAND

[symbol] ccw

where:

op,
Is the command code specifying the operation to be performed.

Is the address of the first byte in main storage of the data being controlled.

Is the flag control indicating the options desired.

Is the byte count indicating the number of bytes of data to be controlled.

3-1

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CNOP

Function:

Adjusts the location counter to a half-word, full-word, or double-word storage boundary without initiating
any other operation.

Format:

LABEL ~OPERATION~ OPERAND

unused CNOP

where:

a1 and a2

Are absolute expressions consisting of predefined terms.

Operational Considerations:

The first expression in the operand field indicates a byte to which the location counter must be set. Legal
values for the first expression are zero and 2 for full-word boundary alignment, and zero, 2, 4, and 6 for
double-word boundary alignment, as follows:

• Zero indicates a full-word or double-word boundary.

• A 2 indicates the second byte (first half word) past the boundary.

• A 4 indicates the fourth byte (second half word) past a double-word boundary.

• A 6 indicates the sixth byte (third half word) past a double-word boundary.

Permissible values for the second expression are 4 and 8, indicating that the adjustment is relative to a
full-word or double-word boundary, respectively.

If the location counter is already set to the indicated byte, the CNOP has no effect. When alignment is
needed, one, two, or three no-operation instructions are generated to increment the location counter to the
proper half-word boundary and to ensure correct instruction processing. All terms must be predefined.

3-2

8227 Rev. 2
1,JP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

COM

Function:

Enables the programmer to define a control section to be used as a common storage area for two or more
separately assembled routines. The format of the common section may be described by DS and DC
directives. Labels appearing within the sections are defined. Like a dummy control section, no data or
instructions are assembled in a common section. It has a separate location counter with an initial value of
zero. Data may be entered into a common section only by execution of a program which refers to it. DC
instructions act as DS instructions in the COM area because neither instructions nor constants in a
common storage area are assembled. Labels defined in a common section are not subject to the
restrictions imposed on dummy section labels.

One assembly can define only one common section. However, several COM directives may appear among
the source statements. Each COM directive after the first defines a continuation of the common section
previously described. When several routines defining common storage are linked, the resulting module
contains only one section corresponding to the common sections in the input modules. The length of this
section is the length of the largest like common section in the input modules.

Format:

LABEL l:::.OPERATIO)l--I:::. OPERAND

[symbol] COM unused

Operational Considerations:

If the common section is unlabeled, the area is addressed by referencing the label of a statement within
the common section with a USING directive.

If more than one object module element refers to a common storage area with the same name, the
references are to the same storage area. Only one common storage area is allocated within a load module
to satisfy all object module requests for common storage areas with the same name. The size of a common
storage area in a load module is determined by the maximum size requested by any object module for
common storage with that name. Blank common storage areas are allocated in the same way.

In a multiphase load module, common storage areas are not normally overlaid.

The following rules apply to the use of common storage:

An entry point cannot have the same name as a labeled common storage area included in the load
module.

When the linkage editor includes module elements (CSECT or COM) with the same name as a labeled
common storage area, that section is treated as a block data subprogram (i.e., to initialize values of
labeled common blocks) and is loaded into all or a portion of the common storage area. A block data
subprogram is loaded when the phase in which it was included is loaded. Blank common cannot be
initialized during loading unless the text encountered is for that COM ESD.

3-3

S227 Rev. 2
UP-NUMBER

COM

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

If an object module has requested common storage, the partial inclusion of a single control section
from that object module will cause the common storage area defined to be included also, regardless
of whether or not the included control section refers to that common storage name. For further
information, see the linkage editor portion in system service programs (SSP) user guide, UP-8062
(current version).

3-4

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

COPY

Function:

Causes the source module identified in the operand field of the COPY directive to be included directly into
the source program being assembled.

Format:

LABEL b. OPERATION b. Ol[l'ERAND

unused COPY symbol

where:

symbol

Identifies the code to be copied by the assembler. Only one symbol may be used.

Operational Considerations:

The assembler places the source code, identified by the operand, immediately after the COPY directive.
This source module may not include any COPY, END, ICTL, MACRO, or MEND directives. Statements
included in the program by a COPY directive are assumed to be in standard format regardless of any ICTL
directives in the program.

3-5

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

CSE CT

Function:

Indicates the initiation or continuation of a control section.

Format:

LABEL t.OPERATION t. OPERAND

[symbol] CSE CT unused

Operational Considerations:

The symbolic name of the control section defines an entry point of the program being assembled. This
symbol must not appear as a symbol for any other source statement except the START directive of its
control section or another CSECT directive to indicate continuation of the coding in the same control
section.

Each control section is adjusted to begin on a double-word boundary. The value of the symbol is the
address of the first byte of the control section and has a length attribute of 1.

If the symbol is blank, the CSECT directive is a continuation of coding for an unnamed control section. If
the symbol is blank and is not preceded by an unnamed control section, the CSECT initiates an unnamed
control section. Only one unnamed control section is permitted in a module.

3-6

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DC
Floating Point

Function:

Defines the value of a floating-point number and has a program storage location assigned to it. The format
of floating-point constants differs from the standard format of the DC statement in that an additional
subfield may appear - the scale modifier.

Format:

LABEL b.OPERATION t. OPERAND

[symbol] DC [d]t[L 0][S+n] 'c[E±n]'

where:

[symbol]

d

t

S+n

Is up to eight characters.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, the
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assign the location counter value to the symbol used. A duplication factor of
zero is not permitted with literals. Even though the duplication factor can change the size of the
storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required to determine the alignment. padding, truncation, storage form,
and implied length. (See Table A-6 for the characteristics of the E and D types.)

Is the explicit length factor in decimal. Two types of floating-point constants are available: full word
(E) and double word (D). The implied length of an E type constant is four bytes; if the length modifier
is omitted, full-word boundary alignment is assigned. The implied length of a D type constant is eight
bytes; if the length modifier is omitted, double-word boundary alignment is assigned. In either case,
an explicit length modifier of from one to eight bytes may be specified.

Is the scale modiifer and must be a positive signed or unsigned decimal number. If the sign is
omitted, a positive value is assumed. The scale modifier is applied to a number after it has been
converted to internal format.

3-7

8227 Rev. 2
UP-NUMBER

DC

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Floating Point

'c[E±n]'
Is the constant specification with optional exponent. A floating-point number is written as a decimal
number which may be an integer (110), a fraction (75), or a mixed number (110.75). The floating­
point number may be followed by an optional exponent represented by an E, a sign, and a decimal
number, respectively. In the absence of a sign, a plus sign is assumed. The exponent for a constant is
that power of 10 by which that constant will be multiplied before its conversion to internal format.
This exponent value may range from -85 to + 75.

Operational Considerations:

FULL
WORD

The machine representation of the constant consists of a hexadecimal fraction (mantissa) and a
hexadecimal exponent (characteristic). The arithmetic point is assumed to be at the left of the leftmost digit
of the fraction. The characteristic represents the power of 16 by which the fraction must be multiplied to
obtain the value of the constant. The machine format is as follows:

(SHORT FORMAT)

s
i characteristic mantissa g

(exponent) (fraction) n
0 1 7 8 6 hexadecimal digits 31

(LONG FORMAT)

DOUBLE i mantissa

s f D WORD
gn characteristic (fraction)

(exponent)
_o~~~~~~~~~~7~8~~~~~~~~~~~~-14~he_x_a_de_c_im~al_d_ig_i_ts~~~~--- 63

where:

sign
Is the zero bit. the sign of the mantissa.

characteristic
Is a 7-bit binary number (signed and biased by the hexadecimal value 4016, decimal value 64)
reflecting the scaling of the floating-point number.

mantissa

NOTE:

Is the fraction after the constant has been converted to its machine representation; scaling is
performed if specified.

The floating-point value is the product of the mantissa (fraction) and the base 16 raised to the power of the
biased characteristic (exponent) after the exponent has been reduced by 64.

3-8

.. _ ...

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DC
Standard Format

Function:

Defines the value of a decimal number, an alphanumeric expression, or address constant and has a
program storage location assigned to it.

Format

LABEL /::,OPE RATION /::, OPERAND

[symbol] DC

where:

[symbol]

d

t

Is up to eight characters long.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, the
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assigns the location counter value to the symbol used. A duplication factor
of zero is not permitted with literals. Even though the duplication factor can change the size of the
storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required for both DC and DS statement to determine the alignment,
padding, truncation, storage form, and implied length. (See Table A-6 for the characteristics of the
13 types used.)

The length factor designates the explicit value of the length attribute of a field generated by a DS or
DC statement. The length attribute of a field used in an assembler application instruction determines
the number of bytes involved in that instruction. The maximum value of the length factor is 256.
Boundary alignment is not provided when a length factor is specified.

'c' or (c)
The constant specification determines the constant, or storage, to be generated. When an apostrophe
or ampersand is included in the constant specification, double apostrophes or ampersands are used
to indicate the inclusion of these characters in the constant. The constant may take the form of data
or an address, as shown in Table A-6.

3-9

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

DROP

Function:

Informs the assembler that the registers specified are no longer available for base register assignment.

Format:

LABEL /"::,.OPERATION /"::,. OPERAND

unused DROP

where:

r1[, ••• ,rn]

Specifies that the declared registers (0 through 15) are no longer available for base register
assignment.

Operationa I Considerations:

Registers previously made available for base register assignment may be dropped and made available
again in a USING directive. The value assumed to be in a base register may be changed by coding another
USING directive without an intervening drop of that register.

3-10

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

OS

Function:

Defines storage to be used as work areas, to hold data, and to function as input and output areas. The
storage areas are assigned program locations.

Format:

LABEL 60PERATION 6 OPERAND

[symbol] OS

where:

symbol

d

t

Is up to eight characters long.

The duplication factor designates the number of identical constants or areas to be generated. An
unsigned decimal value is used to specify the duplication factor. If no duplication subfield is used, the
assembler assumes a factor of 1. A duplication factor of zero generates neither a constant nor a
storage area and, if no length factor is specified, the location counter will provide the proper
boundary alignment and assigns the location counter value to the symbol used. A duplication factor
of zero is not permitted with literals. Even though the duplication factor can change the size of the
storage area used, the use of the duplication factor does not change the length attribute of the field.
The maximum value of the duplication factor is 256.

The definition-type symbol is required for both DC and DS statements to determine the alignment,
padding, truncation, storage form, and implied length. (See Table A-6 for the characteristics of the
13 types used.)

The length factor designates the explicit value of the length attribute of a field generated by a DS or
DC statement. The length attribute of a field used in an assembler application instruction determines
the number of bytes involved in that instruction. The maximum value of the length factor is 256.

'c' or (c)

The constant specification determines the constant, or storage, to be generated. When an apostrophe
or ampersand is included in the constant specification, double apostrophes or ampersands are used
to indicate the include of these characters in the constant. The constant may take the form of data or
an address, as shown in Table A-6.

NOTE:

The maximum explicit length for a DS is 65,535 bytes. (See Table A-6 for C and X types.) Only the
number, not the content, of the bytes reserved by a DS statement is determined by the assembler.

3-11

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DSECT

Function:

Defines a data storage area permitting one or more programs to use indirect symbolic addressing for the
same record items.

Format:

LABEL /j, OPERATION /j, OPERAND

[symbol] DSECT unused

Operational Consideration:

Storage is not reserved by a DS directive within a dummy control section, and the data and instructions
appearing in a dummy control section do not become part of the assembled program. A separate location
counter with an initial value of zero is kept for each dummy control section. More than one DSECT
directive with the same symbol may appear in a module. The first DSECT directive initiates the dummy
control section; the remaining DSECT directives continue it.

Symbols of statements in a dummy control section are called dummy section symbols. The following rules
must be observed in using and assigning dummy section symbols:

• An unpaired dummy section symbol may appear only in an expression defining a storage address for
a machine instruction or an S-type constant.

• A base register may not be specified for an address field containing an unpaired dummy section
symbol.

• The programmer must ensure that the appropriate value is loaded into the register specified in the
USING statement.

To guarantee alignment between the actual storage area and the dummy control section, the user should
align the storage area to a double-word boundary.

3-12

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

EJECT

Function:

Causes the assembler to continue the assembly listing on the top of the next page.

Format:

LABEL t.OPERATION t. OPERAND

unused EJECT unused

Operational Considerations:

If the next line of the listing causes a page change, the EJECT directive has no effect.

When the EJECT directive is encountered, the printing form is skipped to the next page. If a title has been
previously specified, the title is printed on the new page. An EJECT directive appearing in a source code
macro definition causes the form to be skipped whenever the definition is listed and each time the macro is
generated.

The assembler will advance the assembly listing to a new sheet whenever a sheet is full. However, if the
programmer would like each new logical part or subroutine to start at the top of a new sheet, he can use
the EJECT directive whenever he wants a new sheet to start.

The EJECT directive itself is never printed.

3-13

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

END

Function:

Indicates the end of a source program.

Format:

LABEL 6. OPERATION 6.

[symbol] END [e]

where:

e
Is a relocatable expression.

Operational Considerations:

UPDATE LEVEL PAGE

OPERAND

The END directive must be the last statement in the source program. An expression in the operand field
designates the point in the program where control may be transferred after the program is loaded.

3-14

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ENTRY

Function:

Declares to the assembler those symbols defined by the module being assembled that may be referenced
by other modules.

Format:

LABEL £\OPERATION£\ OPERAND

unused ENTRY symbol [,symbol, ... ,symbol]

Each symbol in the operand field is declared to be defined in this module. Their names and assigned values

3-15

are included in the output of the assembler as external reference records. ..,_

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

EQU

Function:

Defines the length and value of a symbol using another symbol as all or part of the definition.

Format:

LABEL A OPERATION A OPERAND

symbol EQU e[,a]

where:

e
Is an absolute or relocatable expression.

a
Is an absolute expression.

All symbols must be predefined.

Operational Considerations:

The symbol in the label field is defined as the value of the first expression in the operand. The maximum
values are -223 to 223-1. The length attribute of the symbol is equal to the second expression (a) if
explicitly stated. If the second expression (a) is omitted, the symbol will have the length attribute of the first
term in the first expression (e). If the first term is an * or a self-defining term, the length attribute of the
symbol is 1.

3-16

··-·

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

EXT RN

Function:

Declares to the assembler those symbols used in the module being assembled that are defined in a
different module.

Format:

LABEL LlOPERATION Ll OPERAND

unused EXTRN symbol [,symbol, ... ,symbol]

Operational Considerations:

Each symbol in the operand field is declared to be a symbol defined in some other module. The symbolic
name and the external symbol identification assigned by the assembler are input to the linkage editor as an

3-17

external definition record. Each reference to the externalized symbol creates an appropriate relocation ~
mask to allow reference resolution at linkage editor time. When an EXTRN and a definition for an identical
symbol appear in the same assembly, the EXTRN reference is discarded automatically, and the definition is
accepted regardless of the order of appearance of either item.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ICTL

Function:

Specifies new values for the begin, end, and continue columns. Normally, a source statement begins in
column 1 of the coding form and ends in column 71. If a continuation statement is needed, a character is
written in column 72, and the statement continues in column 16 of the following line.

Format:

where:

b

e

c

LABEL LlOPERATION Ll OPERAND

unused ICTL [b] [,e] [,c]

Is an unsigned decimal integer specifying the beginning column. It must be between 1 and 75.

Is a unsigned decimal integer specifying the ending column. It must be greater than or equal to b + 5.

Is an unsigned decimal integer specifying the continuation column. It must be greater than or equal
to b and less thi:ln e. The line is continued starting in the column specified by c.

If b is omitted, it is assumed to be 1. If e is omitted, it is assumed to be 71. If c is omitted or if e equals 80,
continuation records are not allowed.

Operational Considerations:

There can be only one ICTL directive in a source code module and it must immediately precede or follow
any program-defined macro definitions. The ICTL directive applies only to those source statements that
follow it. All library macro definitions are assumed to have normal output format. If the ICTL appears before
the START card and it is incorrect, the assembly is terminated. When an ICTL appears out of sequence
(must be first statement following START card) the ICTL terminates the assembly.

3-18

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ISEQ

Function:

Informs the assembler which columns of the source statement contain the field used for checking the
sequence of statements and controls the initiation and termination of sequence checking.

Format:

where:

r

LABEL 60PERATION 6 OPERAND

unused ISEQ l,r

Is a decimal integer specifying the leftmost column of the field to be used for the sequence check.

Is a decimal integer specifying the rightmost column of the field to be used for the sequence check; r
must be greater than or equal to I.

Operational Considerations:

Columns to be checked should not fall between the beginning and ending input columns specified for the
program.

The sequence check begins with the first source statement after the first ISEQ directive and is terminated
by an ISEQ directive with a blank or invalid operand field.

Sequence checking is not performed on statements generated from macro definitions or on statements
inserted into the source code via a COPY directive.

If no ISEQ directive is supplied, no sequence checking occurs.

3-19

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LTORG

Function:

Generates all literals previously defined into a data pool within the source program.

Format:

LABEL t.OPERATION t. OPERAND

[symbol] LTORG unused

Operationa I Considerations:

The literals are pooled following the occurrence of the LTORG directive. A symbol in the label field
represents the first byte of the generated literal pool and is assigned a length attribute of 1. LTORG
directives may not appear within a dummy control section or in a blank common storage area. If there are
no LTORG statements in a program and literals are specified, or if any literals are specified after the last
LTORG directive in a program, these literals are pooled at the end of the first control section. The
programmer then must ensure that a valid base register is available to address the locations in the literal
pool.

Literals are placed in the literal pool according to their total length (duplication factor multiplied by the
length of the constant). The literal pool consists of four sections:

1. Literals with total lengths that are multiples of double words (eight bytes)

2. Literals with total lengths that are multiples of full words (four bytes)

3. Literals with total lengths that are multiples of half words

4. Any remaining literals

Within each pool section, the literals are stored in order of occurrence. Before the literal pool is generated,
the location counter is adjusted to a double-word boundary. If two control sections are assembled together
and an LTORG is not included in the second or following sections, then all the literals defined in all the
sections will be pooled in the first section and may subsequently be available only to that first section. To
ensure that each linked control section can use the literals declared by it, an LTORG can be used within
each control section.

3-20

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

OPSYM

Function:

The delete operation code (OPSYM) directive allows you to tell the assembler not to accept a certain
mnemonic operation code.

Format:

LABEL

mnemonic
operation
code

t.OPERATION t. OPERAND

OPSYM unused

After you use the OPSYM directive to declare a mnemonic code as unacceptable, the assembler will not
generate the normal object code for that mnemonic if it appears after the OPSYM. You are then free to use
the declared mnemonic another way, such as the mnemonic code of a macro prototype statement.

The OPSYM directive cannot be used from within a PROC/MACRO or from within code generated as a

result of conditional assembly statements.

3-21

8227 Rev. 2
UP-NUMBER

OPSYM

Example:

LABEL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

1; OPERATION1' OPERAND
10 16

In this example, I preceded my program with a macro definition which I'll use in my program. Line 2 contains the
mnemonic code A, which is the mnemonic operation code for an add full word instruction. Before I can call the A
macro into my program, I must use an OPSYM directive to tell the assembler not to recognize A as the add full
word mnemonic. The OPSYM directiv~ must come before the line of code which references the macro; that is,
line 8 must precede line 9.

3-22

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

ORG

Function:

Sets or resets the location counter to a specified value.

Format:

LABEL 60PERATION6 OPERAND

[symbol] ORG [e]

where:

e
Is a relocatable expression.

Operational Considerations:

The location counter is set to the value of the expression in the operand field. When no expression is
present, the location counter is set to the highest location previously assigned in that control section. A
symbol in the label field has the same value as the expression in the operand field and is assigned a length
attribute of 1. The expression in the operand field must be relocatable. Its value must represent an address
in the same control section in which the ORG occurs. This address value must be equal to or greater than

the initial setting of the current location counter. If the expression is in error, the ORG directive is ignored,
and the line is flagged. All terms in the expression must be predefined.

The ORG directive permits the location counter to be set to a value not on a half-word boundary.

Bytes of storage reserved with an ORG directive are not set to zero or cleared when the program is loaded.

3-23

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 3-24
UPDATE LEVEL PAGE

PRINT

Function:

Controls the contents of the assembly listing.

Format:

LABEL AOPERATIONA OPERAND

PRINT IJ{ON }]f{$Ut }] [{DATA }] [{SINGLE }]
~OFF l NOGEN ' MfllJ!I ' DOUBLE

unused

where:

ON
Specifies the listing is to be printed.

OFF
Specifies that no listing is printed.

Specifies that lines generated by a macro instruction are printed.

NOGEN

Specifies that lines generated by a macro instruction are not printed, except that the macro
instruction and any MNOTE messages generated are printed.

DATA
Specifies that all characters of each constant representation are printed.

NOOATA
Specifies that only the first eight characters of each constant representation are printed.

SIN'GLE
Specifies that the source listing is single-spaced.

DOUBLE
Specifies that the source listing is double-spaced.

Operational Considerations:

If a PRINT directive specifies OFF plus other parameters, the other specifications are not effective until a
PRINT directive is encountered that specifies the listing facility is to be turned ON. The options provided by
a PRINT directive are keyword (not positional) parameters; therefore, the comma is not required if a
parameter is omitted. The initial print condition of assembly printing is ON, GEN, NODATA, SINGLE. This
condition remains until the first PRINT directive changes it. PRINT directives may change from only one to
all of the parameters; any unspecified parameters remain in their previous condition. A PRINT directive
may not appear in a macro definition.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

PUNCH

Function:

Produces a record at assembly time. This directive is used to produce job control card images to precede or
succeed the object module; it eliminates the necessity of manually inserting them.

Format:

LABEL Do OPE RA Tl ON Do OPERAND

unused PUNCH 'c, , ... ,cs o,

where:

c,, ... ,Cao
Represents a string of up to 80 characters produced as a record in the object code output.

Operational Considerations:

The following conditions apply to characters in the operand field.

• Up to 80 characters, including spaces, may be specified within the apostrophes.

• An apostrophe within the operand must be specified as a pair of apostrophes.

• An ampersand within the operand must be specified as a pair of ampersands.

• Spaces must be used to separate fields.

• In counting the 80 characters, a pair of ampersands or apostrophes written to express a single
apostrophe, or ampers.and, counts as one.

A PUNCH directive prior to the first control section of the program produces records prior to the first control
section, and all others produce records after the last control section.

Variable symbol substitution is performed within the operand field.

Although the PUNCH directive may be included anywhere in the program, it may not be used before macro
definitions.

3-25

8227 Rev. 2
UP-NUMBER.

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

REPRO

Function:

Reproduces a record in its entirety (columns 1 through 80) during assembly time. This directive is useful
for producing job control card images to precede or succeed the object module and eliminates the necessity
of manually inserting them.

Format:

LABEL ~OPERATION~ OPERAND

unused REPRO unused

Operational Considerations:

This directive causes the contents of the following source record to be reproduced as a record in the
assembler output. Each REPRO directive produces one record; up to 80 bytes are reproduced.

A REPRO directive prior to the first control section of the program produces records prior to the first control
section, and all others produce records after the last control section.

All REPRO directives following the declaration of the first CSECT (START) produce records which appear
after the object module transfer record. Although this directive may be included anywhere in the program,
it cannot be used before a macro definition.

No substitution for variable symbols occurs in the record thus produced.

3-26

8227 Rev. 2
UP-NUMBER

Function:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SPACE

Advances the paper in the printer a specified number of lines. The operand field contains an unsigned
decimal integer specifying the number of lines the paper is to be advanced. If no operand is coded, one line
will be spaced.

Format:

LABEL ti OPERATION ti OPERAND

unused SPACE [i]

where:

Is an unsigned decimal integer.

3-27

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

START

Function:

Defines the program name, the name of the first control section, and the initial location counter value.

Format:

LABEL t.OPERATION t. OPERAND

[symbol] START [a]

where:

a
Is an absolute expression.

Operational Considerations:

A symbol in the label field becomes the name of the first or only control section in the program. If the label
field is blank, an unnamed control section is begun. All statements following the START directive are
assembled as part of the control section until another unique control section definition is encountered.

The label field of a CSECT directive, which contains the same name as the label field of the START
directive, identifies the continuation of the control section. A blank label field in the CSECT directive
identifies the continuation of an unnamed control section that began with an unnamed START directive.

The symbol in the label field of the START directive also identifies or names the object program. If the
START directive is unnamed, the object module is assigned the name ASMOBJ. The symbol must be a
valid symbol. It is an automatic entry point and has a length attribute of 1. The START directive must not
be preceded by any statements which would initiate a control section.

The self-defining term in the operand field of the START directive establishes the initial location counter value
for the first control section. If the self-defining term represents a value which is not a multiple of 8, the START
directive is flagged and the location counter set to the next higher multiple of 8. If the operand is omitted, the
initial control section is assigned a location counter value of zero.

3-28

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

TITLE

Function:

Provides data for the heading of each page of the assembler listing and advances the printer form to a new
page.

Format:

LABEL fl OPERATION t:. OPERAND

unused TITLE 'c'

where:

'c'

Is a heading of up to 100 characters enclosed in apostrophes.

Operational Considerations:

The following conditions apply to characters in the operand field:

• Any character may be specified, including spaces, within the defining apostrophes.

• An apostrophe within the operand must be specified as a pair of apostrophes.

• An ampersand within the operand must be specified as a pair of ampersands.

• Spaces may be specified freely to separate heading words.

More than one TITLE directive is permitted in a program. A TITLE directive provides the heading for all
pages in the listing which suc;ceed it.

3-29

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

USING

Function:

Informs the assembler that a specified register is available for base register assignment and will contain a
specific value at execution time. The value must be loaded by the program into the base register that the
USING directive specifies. The assembler maintains a USING table of the specified registers.

Format:

where:

v

LABEL A OPERATION A OPERAND

unused USING

Is the value assumed to be in the first specified register at execution time. This value may be
relocatable or absolute. Literals are not permitted.

r1[, •• .,rn]
Specifies that the declared registers (0 through 15) will be used as base registers loaded at execution
time. These register numbers do not necessarily have to be assigned in ascending sequence.

Operational Considerations:

The first register specified after v is assigned the value of v; the next register is assigned the value of the
first register plus 4096; the next register is assigned the value of the second register plus 4096; and so on
through all the registers specified. A USING directive may specify a single register or a group of registers,
or the registers may be specified by individual USING directives.

Register O may be specified as a valid base register; however, the assembler assumes that it always
contains the value 0 and calcu!ates displacement as if the operand were zero. Register 0 must be the
operand specified by r1, and any registers specified in the operand field following register 0 are assumed to
contain increments of 4096 from zero.

When v is absolute, the indicated registers may be used to process only absolute effective addresses.

When v is relocatable, the indicated registers can be used to process only relocatable effective addresses.
The registers r1,. .. ,rn are used to process only those addresses in the same control" section as the address
represented by v.

The value specification in a USING directive sets the lower limit of an address range; the upper limit is
automatically set 4095 bytes above the lower limit. The upper limit of a USING directive may be set less
than 4095 bytes by being overlapped by the lower limit of another USING directive.

The range specified by a USING directive is used by the assembler to assign base register and
displacement values to those effective operand addresses that fall within that range.

3-30

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 3-31
UPDATE LEVEL PAGE

USING

If an operand address is specified as an effective address instead of a base register and displacement
specification, the assembler searches the USING table for a value yielding a displacement of 4095 or less;
if there is more than one such value, the value that yields the smallest displacement is chosen. If no value
yields a valid displacement, the operand address is set to zero, and the line is flagged with an error
indication. If more than one register contains the value yielding the smallest displacement, the highest
numbered register is selected.

4. BAL Macro Definition Statements

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-1

UPDATE LEVEL PAGE

ACTR

Function:

You use the ACTR statement to limit the number of AGO, AIF, GOTO, AGOB, AIFB, and DO statements that
may be processed by the assembler either within a macro or within the source program.

Format:

LABEL t:. OPERATION t:. OPERAND

unused ACTR SETA expression

Operational Considerations:

The ACTR statement must be written immediately following the local and global symbol declarations in
either the source program or in a macro definition. There can be a separate ACTR statement in the source
program and in each macro definition.

The value of the expression in the operand field may be any positive value from 1 to 223-1. The value
specified in the operand field causes a counter to be set to that value. This counter is decremented by 1 for
each AGO, AGOB, or GOTO statement that is processed for each AIF or AIFB statement whose evaluation
resulted in a true condition and for each time that the range of a DO statement is generated.

If prior to decrementing, the counter is zero, the following occurs. If a macro is being processed, its
processing and that of any macros above it in a nest are terminated. The next statement to be processed is
in the source code following the macro instruction which initiated the nest. If the source code is being
processed (outside a macro definition), an END directive is generated. The assembly continues with only
that portion of the program generated thus far.

If an ACTR statement is not written, the value of the counter is 409616•

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

AGO

Function:

Unconditionally alters the sequence of source statement processing.

Format:

LABEL Ll OPERATION Ll OPERAND

{
AGO }
AGOB
GOTO

where:

AGO
Defines the operation .

• S1

Is a sequence symbol.

Is a sequence symbol defined in a following source code statement.

Operational Considerations:

The label field of the AGO statement may contain a sequence symbol. AGOB or GOTO may be used in lieu
of AGO in the operation field. The sequence symbol in the operand field is the symbol of the next
statement to be processed. Branching forward or backward from the AGO statement is permitted.

When an AGO statement is used in a macro definition, the sequence symbol specified in the operand field
must appear in the label field of another statement in that macro definition.

4-2

--

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Alf

Function:

Conditionally alters the sequence of source statement processing.

Format:

LABEL /J. OPERATION !J. OPERAND

[.s,J { AIF }
AIFB

where:

.s,
Is a sequence symbol.

AIF
Defines the operation.

(b)

Is a SETB logical expression enclosed in parentheses.

Is a sequence symbol defined in a source code statement.

Operational Considerations:

The label field of the AIF statement may contain a sequence symbol. AIFB is permitted in lieu of AIF in the
operation code field.

Any logical expression permitted in the operand field of a SETB statement is valid in the operand field of
the AIF statement except a 0 or a 1 enclosed in parentheses. The sequence symbol in the operation field
must be written immediately after the parenthesis terminating the logical expression.

If, after the logical expression has been evaluated, the condition is true (a value of 1), you branch to the
statement specified by the .s2 portion of the operand. If the condition is false (a value of 0), the statement in
the source code following the AIF statement will be the next statement to be processed. Branching either
forward or backward from the AIF statement is permitted. When an AIF statement is written in a macro
definition, the sequence symbol specified in the operand field must appear in the label of another
statement within that macro definition.

4-3

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 4-4
UPDATE LEVEL PAGE

ANOP

Function:

Enables branching. If a branch is necessary and no statement within the source code supplies the branch
destination in its label field, an ANOP statement can be coded to provide a label to which to branch.

Format:

LABEL b. OPE RATION b. OPERAND

{
ANOP }
LABEL

unused .s

where:

.s
Is a sequence symbol.

ANOP
Defines the operation.

Operational Considerations:

The label field must contain a sequence symbol.

When the label field of a statement which is desired as a branch destination point already contains a
symbol or variable symbol, the branch destination is indicated by preceding the statement by an ANOP
statement.

LABEL is an acceptable synonym for ANOP in the operation field.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

DO

Function:

Defines the starting point of the code and the numbers of times it is to be generated.

Format:

LABEL A OPERATION A OPERAND

[&varisymb] DO a

where:

&varisymb
Is an optional variable symbol.

DO
Defines the operation.

a
Is a valid SETA expression or a valid SET expression written in a macro definition in proc format.

Operational Considerations:

The expression in the operand field indicates the number of times the source code statements following
the DO statement are produced in the object code. All lines of coding appearing between a DO statement
and its associated ENDO statement are generated. The value of the expression in the operand field may be
any value from 0 to 223-1. _If the __ value of the expression is negative, the DO statement is flagged and
ignored (that is, treated as if the value has been a 1).

The set of statements between the DO statement and its associated ENDO statement are said to be within
the range of the DO statement. Any valid source code statement may be within the range of a DO
statement, including other DO statements with their corresponding ENDO statements. DO statements may
be nested up to 10 levels.

A variable symbol may be entered in the label field of the DO statement. When the variable symbol in the
label field is specified, it is used as a counter for the number of times a set of lines within the range of a
DO statement has been generated. The value of this variable symbol is 1 the first time through the set of
statements; 2 the second time through; and so forth. It is referenced in the same manner as a SETA
symbol.

If a DO statement is within the range of another DO statement and the nested DO statement is reentered,
its count begins at 1 again. The value of the variable symbol in the label field of the DO statements is
available to the statements following the ENDO statement even if the operation of the DO statement cycle
is interrupted.

If an AGO, AGOB, GOTO, AIF, or AIFB statement outside the range of a DO statement results in an
assembler branch to a sequence symbol inside the range of the DO statement, processing continues with
the statement defining the sequence symbol. Processing proceeds from that point as though the DO
statement operand had had a value of 1.

4-5

8227 Rev. 2

UP-NUMBER

END

Function:

SPERRY UNIVAC Operating System/3

Signifies the end of a macro definition in PROC format.

Format:

LABEL /::,.OPERATION /::,.

unused END unused

Operational Considerations:

UPDATE LEVEL PAGE

OPERAND

An END statement signals the end of a macro definition. The assembler pairs each END statement with the
most recently encountered unpaired PROC statement. The statements between paired PROC and END
statements are defined as the body of a macro definition.

4-6

8227 Rev. 2
UP-NUMBER

Function:

SPERRY UNIVAC Operating System/3

Indicates the end of the range of a DO statement.

Format:

LABEL 6. OPERATION 6.

unused ENDO unused

Operational Considerations:

UPDATE LEVEL PAGE

ENDO

OPERAND

DO and ENDO statements must be paired. For every DO statement, there must be an ENDO statement to
define the end of the range.

4-7

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

GBL
GBLA
GBLB
GBLC

Function:

Declares global set symbols. The declarative chosen determines the range of values to which the set
symbol may be set and the type of SET statement used to assign the values.

Global set symbols are initialized only once and are used to pass values back and forth between macro
definitions. A global set symbol declared at the source code level is available to all macro definitions in
which it is also declared.

Format:

LABEL

unused

where:

GBL

LlOPERATION Ll

{

GBL 1 GBLA
GBLB
GBLC

Declares a general-purpose global set symbol.

GBLA
Declares an arithmetic global set symbol.

GBLB
Declares a Boolean global set symbol.

GBLC
Declares a character global set symbol.

s,,s2 sn
Are set symbol names.

Operational Considerations:

OPERAND

The operand field of the global set declaration may contain one or more set symbols. A global set symbol is
considered defined when declared. It is initialized only once; that is, the first time it is declared. With
subsequent declarations in other contexts, the global set symbol is available for use but is not reinitialized.
A set symbol must be declared before it is available for use. A set symbol declared by a GBLA or GBLB
statement is assigned an initial value of zero. A set symbol declared by a GBLC or GBL statement is
assigned an initial value of a null character string.

If a set symbol is declared as a global set symbol in more than one macro definition, it must be declared
with the same statement code in each macro definition.

4-8

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

LCL
LCLA
LCLB
LCLC

Function:

Declares local set symbols. The declarative chosen determines the values to which the set symbol may be
set and the type of SET statement used to assign the values. A local set symbol is available for use only in
the macro definition in which it is declared.

Format:

LABEL A OPERATION t.

unused

{

LCL 1

where:

LCL

LCLA

LCLB

LCLC

LCLA
LCLB
LCLC

Declares a general-purpose local set symbol.

Declares an arithmetic local set symbol.

Declares a Boolean local set symbol.

Declares a character local set symbol.

s,,s2 sn
Are set symbol names.

Operational Considerations:

OPERAND

The operand field of the local set declaration may contain one or more set symbol names. A local set
symbol is considered defined when declared. A set symbol declared by an LCLA or LCLB statement is
assigned an initial value of zero.

A set symbol declared by an LCLC or LCL statement is assigned an initial value of a null character string.

4-9

8227 Rev. 2

UP-NUMBER

MACRO

Function:

SPERRY UNIVAC Operating System/3

Designates the start of a macro definition written in macro format.

Format:

LABEL Ll OPERATION l!.

unused MACRO unused

Operational Considerations:

OPERAND

This statement may be used only in macro definitions written in macro format.

UPDATE LEVEL PAGE

A macro definition written in macro format consists of the following elements in the order specified:

1. MACRO statement (heading)

2. Prototype statement (macro instruction format)

3. Model statements (optional)

4. MEND statement (trailer)

4-10

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Macro Call Instruction

Function:

Causes a precoded set of assembler instructions (a macro definition) to be inserted into a source program
at the point where the macro call instruction is located. The macro definition that is inserted into the
source program is identified in the operation field of the macro call instruction.

Format:

LABEL /::,OPERATION/::, OPERAND

[symbol] call-name

If a symbol appears in the label field of a macro instruction, it must be explicitly defined in the
corresponding macro definition.

The operation field of the macro call instruction contains a symbol which is the name of a macro definition
stored in a library or being assembled with the program source code. The operation field calls the desired

4-11

macro definition. The operand field may contain from 0 through 252 operands separated by commas. Each _.,.
operand of the macro call instruction is either a positional or keyword parameter that specifies a value
which is passed to the corresponding symbolic parameter references in the macro definition.

The value of a positional parameter is identified by the position it holds in the operand field. Given a macro
definition which expects four positional parameters to be specified, the operand field of the macro call
instruction normally has the form:

An omitted operand must be indicated by writing both commas that separated it from the string.

If the second and third operands are omitted, the form of the operand field of the macro call instruction is:

If the final parameters are the ones to be omitted, the commas following the last operand specified may be
dropped. If the macro definition were to be called by using only the second of four parameters, the operand
field of the macro call instruction has the form:

.P2

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Macro Call Instruction

A macro definition may specify that some or all of its parameters are keyword parameters. The
specification of a keyword parameter consists of the keyword followed by an equal sign, followed by the
value being specified for the parameter. Keyword parameters are separated by commas and may be
specified in any order. Consecutive commas are not required to indicate omission of a keyword parameter
specification. Keyword parameters have the form:

or

A macro definition having both positional and keyword parameters is called a mixed-mode macro
definition. The operand field of a mixed-mode macro instruction must contain any positional parameter
specifications followed by the keyword parameter specifications being supplied. The last positional
parameter specified is followed by a comma followed by the first keyword parameter specification. Mixed­
mode parameters have the form:

Operation a I Considerations:

Each of the macro call instruction operands consists of 1 to 127 characters, with the character string
satisfying the following conditions:

• May include one or more sequences of characters enclosed in single apostrophes. The apostrophes
enclosing each character sequence are paired. Paired apostrophes may appear within paired
apostrophes.

• May include a single apostrophe outside paired apostrophes if written as part of the following
sequence: any special character except an ampersand, the letter L, an apostrophe, and a letter.

• May include an ampersand as the first character of a variable symbol if the ampersand is a single
ampersand or the last ampersand of a string containing an odd number of ampersands.

• May include paired parentheses outside paired apostrophes. To determine pairing, a left parenthesis
is paired with the immediately following right parenthesis (that is, no parentheses between them).
Additional pairs are determined by ignoring the first pair and reapplying the rule.

• May include an equal sign only as the first character of an operand or within paired parentheses or
paired apostrophes.

• May include a comma as a character in a string if the comma is enclosed in paired parentheses or
paired apostrophes. A comma standing alone is interpreted as the end of an operand.

• May include a blank within paired apostrophes. A blank not enclosed in apostrophes terminates the
operand field.

NOTE:

Operands can be coded on more than one line through the use of a continuation character in column 72. If
a line is to be continued, the last operand on that line must be followed by a comma. A warning message is
issued if a comma is not included.

4-12

8227 Rev. 2
UP-NUMBER

Function:

SPERRY UNIVAC Operating System/3

Signifies the end of a macro definition written in macro format.

Format:

LABEL fl OPERATION fl

unused MEND unused

Operational Considerations:

UPDATE LEVEL PAGE

MEND

OPERAND

This statement is allowed only once in each macro definition, and it must be the last statement of the
definition.

4-13

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-14

UPDATE LEVEL PAGE

MEXIT

Function:

Indicates to the assembler that thy processing of a macro definition should be terminated before ending
normally with a MEND statement. This statement is used when it is necessary to process only one section
or operation of a macro definition rather than the entire macro definition.

Format:

LABEL fl OPERATION fl OPERAND

unused MEXIT unused

Operational Considerations:

When MEXIT is encountered, the assembler terminates processing the macro definition and processes the
statement in the source program following the macro call instruction that called the macro definition
containing the MEXIT.

A second macro instruction with different operands may request the processing of different portions of the
macro definition containing the MEXIT.

-

SPERRY UNIVAC Operating System/3 4-15 8227 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

MNOTE

Function:

Generates an error message, which indicates how dangerous an error is, or to generate a comment, which
supplies information. An MNOTE statement is used in a macro definition or in source code statements.

Format:

LABEL fl. OPERATION fl.

unused MNOTE

~ 'm'~ ti., 'm'
S,'m'
* ,'m'

OPERAND

In this format, you can specify: a message enclosed in apostrophes, a comma followed by a message enclosed in
apostrophes, a severity code followed by a message, or an asterisk followed by a message. In all cases, the
message is printed in the assembly listing source code. The severity code indicates the danger of the error which
occurred. The severity code is a decimal value of 0 to 255. If you want to indicate a severity code of 1, you leave
a blank space (~) followed by the error message, enclosed in apostrophes. An asterisk used as the severity code
indicates that the message following it is informational and not an error. As mentioned before, any of these
specifications causes the message to be printed in the assembly listing. Also, MNOTE lines are flagged as errors
and listed in the diagnostics portion of the assembly listing if they don't have an asterisk in operand 1. Messages
which are preceded by an asterisk are not flagged or listed in the diagnostics because they are not errors.

Variable symbols can be used as operands in an MNOTE statement.

·8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Model Statement

Function:

Model statements are between the NAME and END statements in a proc and between the prototype and
MEND statements in a macro. The model statements define the pattern of operations to be performed at
assembly. Model statements do not generate object code.

Format:

LABEL 6.0PERATION 6. OPERAND

mnemonic code operands [{
variable symbol }]
sequence symbol
symbol

Operational Considerations:

The label field cannot contain an asterisk.

The operation field can contain the mnemonic operation code of an assembler instruction, directive, or
macro definition. The field can also contain a variable symbol if you want to generate a different operation
each time the macro is called. The variable symbol is restricted to seven characters, preceded by an
ampersand. The operation field cannot contain the mnemonic codes END, ICTL, ISEQ, or PRINT.

The operand field can contain symbols or variable symbols. The size of the field, after the variable values
are substituted, is up to 240 characters.

4-16

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

NAME

Function:

Supplies the mnemonic operation code by which a macro definition in proc format is referenced. The label
field of this statement supplies the name of the macro definition in which it appears.

Format:

LABEL ilOPERATION Ll OPERAND

call-name NAME pos-0

The call-name symbol in the label field of the NAME statement identifies the mnemonic operation code by
which the macro definition may be referenced. This symbol must be unique; it may not be the same as the
mnemonic operation code of a machine, assembler directive, or assembler instruction or duplicate the
mnemonic operation code associated with any other macro definition in the source program.

In the operand field, pos-0 can be a decimal or alphanumeric value but it cannot b~ a variable symbol. The
value in the operand field of the NAME statement is referenced as positional parameter 0 by using the
same symbolic parameter you indicated in operand 1 of the PROC statement. You can vary the value for
positional parameter 0 by using multiple NAME statements.

Operational Considerations:

At least one NAME statement is required for each macro definition, but more than one may be written.
Each NAME statement specifies a different name (symbol) by which the macro definition may be
referenced. The NAME statement must be written immediately after the PROC statement. When more than
one NAME statement follows the PROC statement. only the operand of the NAME statement containing
the symbol used to reference the macro definition is available to the body of the definition.

Multiple NAME statements allow the programmer to specify a different parameter for each NAME
statement and to select the .parameter by referencing that particular NAME statement.

4-17

8227 Rev. 2
UP-NUMBER

PNOTE

Function:

SPERRY UNIVAC Operating System/3 4-18
UPDATE LEVEL PAGE

Generates an error message or a comment. A PNOTE statement is used in a macro definition or a source
code statement.

Format:

LABEL to OPE RATION to OPERAND

unused PNOTE

In this format, there are two operand fields. In the first field, you can specify an asterisk to indicate that the
message is informational and not an error, or you can specify a character expression COl)taining up to six
characters. The second operand field contains the message. It can contain up to 79 characters. Regardless of the
choice you make for the first operand, the message is printed in the assembly listing source code. If it does not
contain an asterisk as operand 1, a PNOTE statement ;s fldgged as an error, and listed in the diagnostics portion
of the assembly listing. If there is an asterisk in the first operand field, the line is not flagged or listed in
diagnostics. This is done because asterisk indicates that the message is not an error.

Variable symbols can be used as operands in a PNOTE statement.

4-19 8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

PROC

Function:

Designates the start of a macro definition written in proc format.

Format:

LABEL /:::.OPERATION/:::. OPERAND

[&symbol] PROC [&pos,n] [,&key1 =, ... ,&keym =]

where:

&symbol
Is a variable symbol referring to the label of the macro instruction.

&pos.n
Is a variable symbol used in the body of the PROC to reference positional parameters in the call
instruction. The n is a decimal number indicating how many positional parameters there are.

&key1= &keym =
Specifies the keyword parameters. (If only keyword parameters are specified, commas must be coded
in operands 1 and 2.)

Operational Considerations:

A macro definition written in proc format consists of the following elements in the order specified.

1. PROC statement (heading)

2. NAME statements

3. Model statements (optional)

4. END statement (trailer)

Macro definitions may contain either a macro or a proc format within a definition, but not both.

·8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

PROC

The functions of the PROC statement are:

• to designate the beginning of a macro definition;

• to identify the variable symbol if any, that refers to the label of the macro instruction;

• to specify the maximum number of positional parameters in the macro instruction calling a macro
definition;

• to identify the variable symbols to be used to address the positional and keyword parameters in the

operand field of the macro instruction; and

• to optionally specify a default value for each keyword. Values assigned to keyword parameters are
set to null if nothing follows the equal sign. If a default setting is provided, the respective keyword is
set to that value when the proc is called. The setting then remains unchanged if the keyword is not
specified with an appropriate value on the call line.

4-20

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Prototype Statement

Function:

Provides the mnemonic operation code by which a macro instruction may call a macro definition written in
macro format. It names the macro definition. The prototype statement specifies the names of the positional
parameters in the macro instruction that call the macro definition containing the prototype statement.

Format:

LABEL 60PERATION 6 OPERAND

&symbol call-name &pos, , ... ,&pos n ,&key 1 =, ... ,&key m =

where:

&symbol
Is a variable symbol that refers to the symbol in the label field of the macro call instruction.

call-name
Is the symbol that is the name of the macro definition.

&pos, •...• &pos n

Are variable symbols used as positional parameters.

&key1= &kevm =
Are variable symbols used as keyword parameters.

Operational Considerations:

If the label field of the prototype statement is blank, or if the variable symbol specified does not also appear
in the label field of a model statement generated by the macro definition, the symbol in the label field of the
macro instruction will not be defined when the macro is generated. This symbol must not duplicate the
name of any parameter or set symbol defined within the prototype statement.

The operand field of the prototype statement contains the names of all the symbolic parameters wich may

4-21

be coded for the macro. Zero through 252 positional and keyword parameters are permitted in the operand ~
field. If the macro instruction contains a mixture of both positional and keyword parameters, the names of
all the positional parameters must precede the names of the keyword parameters. The names of the
positional parameters must appear in the order specified in the operand field of each macro call
instruction.

Within the operand field of the prototype statement, the entry defining a positional parameter consists
entirely of the variable symbol that names the parameter. The entry for a keyword parameter consists of
the variable symbol naming the parameter followed by an equal sign. The equal sign may be optionally
followed by a string of characters specifying a default value for that parameter. If no specification for the
parameter is supplied in the macro call instruction, the default value is the value supplied for a reference to
that parameter within a macro definition. The default value must be written following the rules for macro
instruction operands. As many continuation lines may be used as required to contain the symbolic
parameters and the desired comments.

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SET

Function:

Assigns either an arithmetic or character string value to a variable symbol declared by an LCL or GBL
statement.

Format:

LABEL t. OPERATION t. OPERAND

&s SET

where:

&s
Is a set symbol declared by LCL or GBL.

SET
Defines the operation.

a
Is a valid arithmetic expression.

c
Is a valid character expression.

Operational Considerations:

When the operand of the SET statement contains an arithmetic expression, the value of the expression
may range from -223 to +223-1. When the operand of the SET statement contains a character expression,
the maximum length that may be specified is eight characters.

If a SET variable symbol is assigned a character value, a reference to the SET symbol yields the same result
as a reference to SETC symbol assigned the same character value. Similarly, if a SET variable symbol is
assigned an arithmetic value, a reference to the SET symbol yields the same result as a reference to a
SETA symbol assigned the same value. A SET variable symbol with a character value may be reassigned
an arithmetic value, and vice versa.

A SET expression is a SETA expression allowing the use of the operators>,<.=,**, and++ in the SET
expression when an arithmetic operator is valid. The characters** represent the logical product AND, and
the characters ++ represent the logical sum OR.

4-22

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SET

Each bit of the first term is compared with its corresponding bit in the second term, and the result of the
comparison is placed in the corresponding position in the resulting term. The result of the bit comparison
for each operator is:

AND OR

A**B Result A++B Result

1 1 1 1 1 1

1 0 0 1 0 1

0 1 0 0 1 1

0 0 0 0 0 0

The three relational operators are the equal (=) operator, the greater than (>) operator, and the less than
(<) operator:

>

<

Compares the value of two terms or expressions. If the two values are equal, the assembler
assigns a value of 1 to the expression. If the values are not equal, a zero value is assigned.

Compares two terms or expressions. If the value of the first (left) term is greater than the value
of the second (right) term, a value of 1 is assigned to the expression. If the value of the second
term is greater than the value of the first term, a zero value is assigned.

Compares the value of the first (left) expression or term with the second (right) expression or
term. If the value of the first expression or term is less than the value of the second, a value of
1 is assigned to the expression. If the value of the second expression or term is less than the
value of the first, .a zero value is assigned.

Given the expression A+B > C, if the expression A+B has a greater value than the value of C, the
assembler assigns a value of 1 to the expression. If the value of C is greater than the value of A+B. a zero
value is assigned.

Since the value of a relational or logical expression is arithmetic, the expression may be used as a term in
an arithmetic expression. The following chart shows operator priority.

4-23

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SET

Operator Hierarchy

*,/ 5

+,- 4

** 3

++ 2

<>= 1

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

4-24

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SETA

Function:

Assigns an arithmetic value to a variable symbol that was declared by an LCLA or GBLA statement.

Format:

LABEL b. OPERATION b. OPERAND

&s SETA a

where:

&s
Is a set symbol declared by either LCLA or GBLA.

SETA
Defines the operation.

a
Is a valid SETA term or an arithmetic combination of valid SETA terms.

Operational Considerations:

A valid SETA term is:

• a self-defining term; or

• a variable symbol with an arithmetic value; or

• a character value consisting of one to eight decimal digits.

The arithmetic operators used in writing SETA expressions are +, -, *, and /. The expression may not
begin with an operator. Two operators or two terms may not succeed one another.

The rules of precedence for the evaluation of a SETA arithmetic expression are the same as stated for a
SET statement. The value of a SETA expression may range from -223 to 223_ 1.

When the SETA symbol is used in an arithmetic expression, the arithmetic value of the symbol is
substituted for the symbol. If the SETA symbol is used in another context, the arithmetic value of the SETA
symbol is converted to a decimal integer with leading zeros removed. A leading minus sign will be
retained. This decimal value is then substituted for the SETA symbol. If the value of the SETA symbol is

zero, a single zero is substituted.

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

4-25

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

SETB

Function:

Assigns a binary value of 0 or 1 to a variable symbol which was declared by an LCLB or GBLB statement.

Format:

LABEL t:. OPE RATION t:. OPERAND

&s SETB b

where:

&s
Is a set symbol declared in either LCLB or GBLB.

SETB
Defines the operation.

b

Is a valid logical expression, a 0 or a 1, that must be enclosed in parentheses.

Operational Considerations:

The logical expression in the operand field may have a value of either O (false) or 1 (true), and the set
symbol specified in the name field of the set statement is assigned the resultant binary value. The logical
expression may consist of a single term or logical combination of terms.

The permissible terms are:

• a SETB arithmetic relational expression;

• a SETB character relational expression; and

• a SETB symbol.

The SETB logical operators that may be used to combine the terms are lilll!l, lil!I, and Elfill. The logical expression
must not contain two terms in succession. Two operators may appear in succession if the first operator is
either lillID or lil!I, and the second operator is Elfill. Only the operator Elfill is allowed prior to the first term of the
expression.

4-26

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SETS

A SETB arithmetic relational expression consists of two arithmetic expressions connected by a SETB
relational operator. A SETB character relational expression consists of two character Strings connected by
a SETB relational operator. The SETB relational operators are:

Operator Meaning

NE Not equal

EQ Equal

LT Less than

LE Less than or equal

GT Greater than

GE Greater than or equal

The arithmetic expression that may be used as a term in the SETB arithmetic relational expression is
defined under the SETA statement. The rules under the SETC statement define the format of the character
string that may be used in a SETB character relational expression. If two character strings are of unequal
length, the shorter will always compare less than the longer, regardless of actual value. The maximum
length of character strings that may be compared is 127 characters.

In writing SETB expressions, the SETB relational or logical operators must be preceded and followed by at
least one blank or other special character. The relational expression may be optionally enclosed in
parentheses.

The procedure for evaluating a SETB expression is:

• Each term (SETB symbol, SETB arithmetic expression, or SETB character expression) is evaluated and
given a value of either 1 (true) or 0 (false).

• Evaluation is from left to right. The weight of the logical operators is:

mm 2

Ell = 3

Therefore, Ell is performed prior to mm, and mm is performed prior to Dlll.

If a SETB variable symbol is used in the operand field of a SETA or DO statement, or in an arithmetic
relation (in either a SETB or AIF term), the binary values 0 and 1 are converted to the arithmetic values +O
and +1.

If the SETB variable symbol is used in the operand field of a SET statement, the value substituted is
dependent on the context. In an arithmetic expression, +1 or +o is substituted. In a character expression,
the character values 1 and 0 are substituted.

4-27

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SETB

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETB, and SETC statements may
be used only within macro.definitions written in macro format. The SET statement may be used only within

macro definitions written in proc format.

4-28

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SETC

Function:

Assigns a character value to a variable symbol that was declared by an LCLC of GSLC statement.

Format:

LABEL f:.OPERATION t:. OPERAND

&s SETC c

where:

&s
Is a set symbol declared by either LCLC or GSLC.

SETC
Defines the operation.

c
Is a valid SETC operand.

Operational Considerations:

A SETC operand must be a character expression.

The maximum length of the value that may be specified for a SETC symbol is eight characters. If more than
eight characters are specified, only the leftmost eight characters are used by the assembler.

Four statements are provided to assign values to set symbols: SETA, SETS, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol. SETA, SETS, and SETC statements may
be used only within macro definitions written in macro format. The SET statement may be used only within
macro definitions written in proc format.

4-29

~··

Appendix A. Assembler References

~

~

..

t

+

(

Source Code Instruction Format
Instruction

Type

RR

RX

RS

SI

SS

NOTES:

Expltcit Form

(symbol! opcode r
1

,r
2

0

0
(symbol) opcode r

1
,d2(x2,b2)

[symbol) opcode r r d (b) 0
1. 3' 2 2

[symbol] opcode d (b) ; ©
1 1 '2

(symbol] opcode d
1

(l,b
1

).d
2

(b
2

I

(symbol) opcode d
1

(1
1
,b

1
l,d

2
!1

2
,b

2
I

0 The RR instruction has three other forms:

(symbol) opcode i1 for the SVC instruction;

(symbol) opcode r 1 for the SPM instruction; and

[symbol) opcode m 1, r2 for the BCR instruction.

0 The RX instruction BC is written in the form:

(symbol) opcode m1, d 2 !x 2, b21

Implicit Form

(symbol) opcode r
1
,r

2

[symbol] opcode r
1

.s
2

!x
2
1

[symbol) opcode r
1
,r

3
,s

2

(symbol) opcode s
1

,i
2

(symbol) opcode s
1

W.s2

(symbol) opcode s
1

(1
1

) ,s2 !1 2 I

(

Table A-1. Instruction Formats (Part 1 of 2)

' I
I
I

L

Byte 1

opcode

Firs\ Half Word

7: 8

reg
op 1

Byte 2
l lJ.12

reg
op 2

16
-·-

Object Code Instruction Format

19 J_20

Second Half Word

Bytes 3 and 4 312
I
I
I
I
I

I I I
I 1 reg address !

I I r, J '1

I I op 1 operand 2 I
' I I

I opcode 1-r:- J x, I b2 J d2 I
I ' -··--·--- o

: reg reg I address [

i :~p~:~i~i I ,, I ,, I b, I d, · opcode

I
immediate 1 address
operand : operand 1 --------· -------opcode I ., I b, I d, J

35 j_36

Third Half Word

Bytes 5 and 6

i length address : address
t operand 2

(

47

I op 1 and op 2 1 I _______ , operand 1

~ ·~
opcode

I
I
I
I

opcode

I 1-1 l
length

op 1

I
I

b I
1 _l d,

address
op 2 : operand 1

----·~ I 1,-1 I 1,-1 I b, I d,

b2 t d,

I
I address
I operand 2
I~

I b, I d,

I
I
I

j

L 1 I e 11 112 ls I 1 s 19 120 31 I 32 ~T3s 471

@ The RS shift instructions are written without use of the r
3

operand, in the form:

[symbol I opcode r
1

,d
2

(b
2

1

© Some SI instructions, such as TS, SSM, and SIO, do not use an i
2

field. They are written in the form:

(symbol) opcode d 1 (b1 I

I

c co
"II l\l
' l\l zi
c]J
s: ~ m:::
~ l\l

(/)
""O
m
::c
::c
-<
c: z
<
)>
0
0
"C
CD
01
r+ s·

CQ

!f

c
"II
c
)>
-I
m
r
m
< m
r

"II
)>
Gl
m

i
3 -w

)>
I

.8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table A-1. Instruction Formats (Part 2 of 2)

Characters Meaning

OPCODE The application instruction operation code.

The number of the general register containing operand 1

The number of the general register containing operand 2

The number of the general register containing operand 3

The number of the general register containing an index number for operand 2 of the RX instruction

The immediate data used as operand 1 of the SVC instruction

The immediate data used as operand 2 of an SI instruction

The length of the operands as stated in source code*

The length of operand 1 as stated in source code*

The length of operand 2 as stated in source code*

The number of the general register containing the base address for operand 1

The number of the general register containing the base address for operand 2

The displacement for the base address of operand 1

The displacement for the base address of operand 2

The mask used as operand 1

Operand 1

Operand 2

Operand 3

The symbol used to identify operand 1 in the implicit format

The symbol used to identify operand 2 in the implicit format

*This is coded as the true source code length of the operand, not the length less 1, as assembled in the object code. The
assembler makes a reduction of 1 in the length when converting source code to object code.

A-2

8227 Rev. 2

UP-NUMBER

Mnemonic

A

AD*

ADA*

AE*

AER*

AH

Al

AL*

ALA*

AP

AR

AU*

AUR*

AW*

AWA*

BAL

BALA

BAS

BASA

BC

BCR

BCT

BCTR

BXH*

BXLE*

c
CD*

CDR*

CE*

CER*

CH

CL

CLC

CLI

CLR

CP

CR

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 1 of 16)

Listing By Mnemonic Code

Machine Byte
Source Code Format

Instruction Name
Code Length Explicit Implicit

Add 5A 4 r
1

,d
2

(x
2

,b2) r
1
s
2

(x
2

)

Add normalized, long 6A 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Add normalized, long 2A 2 r
1

,r
2

r 1,r
2

Add normalized, short 7A 4 r 1 ,d2 (x2,b2) •1,s2(x2)

Add normalized, short 3A 2 r 1,r
2

r
1

,r
2

Add half word 4A 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Add immediate 9A 4 d1(b1),i2 s1 ,i2

Add logical 5E 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

)

Add logical 1E 2 r 1,r r
1

,r
2

Add decimal FA 6 d1 o1,b 1 l.d2 (1 2,b2) s
1

(1 1),s2
(1

2
)

Add 1A 2 r 1,r 2
r 1,r 2

Add unnormalized, short 7E 4 r
1

,d
2

(x
2

,b2) r 1,s2 (x2
)

Add unnormalized, short 3E 2 r 1,r2 r 1 ,r 2

Add unnormalized, long 6E 4 r 1 'd2 (x2,b2) r 1 's2 (x2)

Add unnormalized, long 2E 2 r 1,r 2
r 1,r 2

Branch and link 45 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

)

Branch and link 05 2 r 1,r 2
r 1,r 2

Branch and store 4D 4 ~ compatibility ~

Branch and store OD 2 mode only

Branch on condition 47 4 i,d
2

(x
2

,b
2

) i,s
2

(x
2

)

Branch on condition 07 2 i,r
2

i,r
2

Branch on count 46 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Branch on count 06 2 r 1,r 2
r 1,r 2

Branch on index high 86 4 r
1

,r
3

,d
2

(b2) r 1,r
3

,s
2

Branch on index low or equal 87 4 r
1
,r

3
,d

2
(b2) r1,r

3
,s

2
Compare algebraic 59 4 r 1 ,d 2 (x 2,b~) r

1
,s

2
(x

2
)

Compare, long 69 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Compare, long 29 2 r 1,r 2
r 1,r 2

Compare, short 79 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

)

Compare, short 39 2 r
1

,r
2

r 1,r 2
Compare half word 49 4 r

1
,d

2
(x 2,b2) r

1
,s

2
(x

2
)

Compare logical 55 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

J

Compare logical 05 6 d1 ,(l,b1),d2(b2) s
1

(I) ,s
2

Compare logical immediate 95 4 d1 (b1),i2 s, ,i2
Compare logical 15 2 r

1
,r

2 r 1·'2
Compare decimal F9 6 d1 (11,b1),d2(12,b2) s

1
(1

1
),s

2
(1

2
)

Compare algebraic 19 2 r 1 ·'2 r 1·'2

*Micro expansion feature

A-3

8227 Rev.2
UP-NUMBER

Mnemonic

CVB

CVD

D

DD*

DDR*

DE*

DER*

DIAG

DP

DR*

ED

EDMK*

EX

HDR*

HER*

HPR

IC

ISK*

L

LA

LCDR*

LCER*

LCR*

LCS

LD*

LDR*

LE*

LEA*

LH

LM

LNDR*

LNER*

LNR*

LPDR*

LPER*

LPR"

LPSW

LR

LTDR"

LTER"

LTR

M

MD*

MOR*

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 2 of 16)

Listing By Mnemonic Code

Source Code Format

Instruction Name Machine Byte
Code Length Explicit Implicit

Convert to binary 4F 4 r
1

,d
2

(x
2

,b
2

) r 1 's2(x2)

Convert to decimal 4E 4 r 1 'd2(x2,b2) r 1's2(x2)

Divide 5D 4 r1,d
2

(x
2

,b
2

) r 1 's2 (x2)

Divide, long 6D 4 r 1 'd2(x2,b2) r 1 's2(x2)

Divide, long 2D 2 r 1,r
2

r 1,r 2

Divide, short 7D 4 r 1 'd2(x2,b2) r 1 's2(x2)

Divide, short 3D 2 r
1

,r
2

r
1

,r
2

Diagnose 83 4 (Privileged) (Privileged)

Divide decimal FD 6 d1 o1.b1 l.d2 11 2.b2 l s
1

(1 1 l .. s2
(1 2)

Divide 1D 2 r 1,r 2 r 1,r 2

Edit DE 6 d, (l,b,),d2(b2) s
1

(l),s
2

Edit and mark DF 6 d, (l,b,),d2(b2) s1 (I) ,s2

Execute 44 4 r 1,d
2

(x
2

,b2) r1,s2 (x21

Halve, long 24 2 r 1,r 2 r 1,r 2
Halve, short 34 2 r 1,r 2 r 1 ,r 2

Halt and proceed 99 4 (Privileged) (Privileged)

Insert Character 43 4 r1,d2 (x 2,b2) r 1,s2 (x
2

)

Insert storage key 09 2 (Privileged) (Privileged)

Load 58 4 r 1 'd2 (x2,b2) r 1 's2(x2)

Load address 41 4 r 1 'd2(x2,b2) r 1 's2 (x2)

Load complement, long 23 2 r 1'r2 r 1,r
2

Load complement, short 33 2 r 1,r
2

r 1,r
2

Load complement 13 2 r
1

,r
2

r
1

,r
2

Load control storage B1 4 (Privileged) (Privileged)

Load, long 68 4 r 1 'd2(x2,b2) r 1 's2(x2)

Load, long 28 2 r 1,r 2
r
1
,r

2
Load, short 78 4 r 1 'd2(x2,b2) r

1
,s

2
(x

2
)

Load, short 38 2 r 1,r
2

r
1

,r
2

Load half word 48 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Load multiple 98 4 r 1,r3,d2 (b2) r 1 'r3,s2

Load negative, long 21 2 r 1,r
2 r 1,r 2

Load negative, short 31 2 r 1 'r2 r 1,r 2
Load negative 11 2 r 1,r 2 r 1,r

2
Load positive, long 20 2 r 1,r

2
r 1,r

2
Load positive, short 30 2 r

1
,r

2
r
1
,r

2
Load positive 10 2 r

1
,r

2
r
1

,r
2

Load program status word 82 4 (Privileged) (Privileged)

Load 18 2 r 1,r
2

r
1

,r
2

Load and test, long 22 2 r 1,r
2

r 1,r
2

Load and test, short 32 2 r
1
,r

2
r 1,r 2

Load and test 12 2 r 1,r 2 r 1,r
2

Multiply 5C 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

)

Multiply, long 6C 4 r 1 'd2 (x2,b2) r
1

,s
2

(x
2

1

Multiply, long 2C 2 r 1,r 2 r 1,r 2

*Micro expansion feature

A-4

8227 Rev. 2

UP-NUMBER

Mnemonic

ME*

MER*

MH*

MP

MR*

MVC

MVI

MVN

MVO

MVZ

N

NC

NI

NR

0

oc
OI

OR

PACK

s
SD*

SOR*

SE*

SER*

SH

SID

SL*

SLA*

SLDA*

SLDL*

SLL

SLM

SLR*

SP

SPM

SR

SRA*

SRDA*

SRDL*

SRL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

Table A-2. Instruction Repertoire (Part 3 of 16)

Listing By Mnemonic Code

Source Code Format
Machine Byte

Instruction Name Code Length
Explicit Implicit

I

Multiply, short 7C 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Multiply, short 3C 2 r 1,r 2
r 1,r 2

Multiply half word 4C 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Multiple decimal FC 6 d1 o1,b 1 l.d2 (1 2,b2l s
1

(1
1

),s
2

(1
2

)

Multiply 1C 2 r 1,r 2 r 1 ,r 2

Move characters 02 6 d, (l,b,),d2(b2) s1 (I), s
2

Move immediate 92 4 d, (b,),i2 s, ,i2

Move numerics 01 6 d, (l,b,),d2(b2) s, (I) ,52

Move with offset Fl 6 d 1 o1,b 1 l,d2!1 2,b2 l s
1

(1 1),s2
(1

2
)

Move zones 03 6 d, (l,b,),d2(b2) s
1

(l),s
2

AND logical 54 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

AND logical 04 6 d 10,b1),d2 !b
2

) s
1

(l),s
2

AND logical immediate 94 4 d, (b,),i2 s, ,i2

AND logical 14 2 r
1
,r

2
r 1,r

2
OR logical 56 4 r

1
,d

2
(x

2
,b

2
) r

1
,s

2
(x

2
)

OR logical 06 6 d, (l,b,),d2(b2) s1 (l),s2
OR logical immediate 96 4 d1(b1).i2 s, ,i2

OR logical 16 2 r 1,r 2
r
1

,r
2

Pack F2 6 d, (I, ,b,),d2(12,b2) s
1

0
1

),s
2

(1
2

)

Subtract 58 4 r 1 'd2(x2,b2) r 1,s2(x
2

)

Subtract normalized, long 68 4 r 1 'd2 (x2,b2) r 1,s2(x
2

)

Subtract normalized, long 28 2 r 1,r 2
r 1,r 2

Subtract normalized, short 78 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Subtract normalized, short 38 2 r 1,r
2

r 1,r 2
Subtract half word 48 4 r 1 'd2(x2,b2) r 1,s2(x

2
)

Start 1/0 9C 4 (Privileged) (Privileged)

Subtract logical 5F 4 r1,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

l

Shift left single algebraic 88 4 r
1
,d

2
(b

2
) r 1,s2

Shift left double algebraic 8F 4 r
1

,d
2

(b
2

) r 1,s2
Shift left double logical 80 4 r

1
,d

2
(b

2
) r

1
,s

2
Shift left single logical 89 4 r 1 'd2(b2) r 1,s2
Supervisor load multiple 88 4 (Privileged) (Privileged)

Subtract logical 1F 2 r 1,r 2
r 1,r 2

Subtract decimal F8 6 d, (I, ,b,),d2(12,b2) s1 (1 1),s2
0

2
)

Set program mask 04 2 r 1 r 1

Subtract 18 2 r 1,r
2 r, .r 2

Shift right single algebraic 8A 4 r 1 'd2(b2) r 1,s2
Shift right double algebraic 8E 4 r

1
,d

2
(b

2
) r 1,s2

Shift right double logical BC 4 r 1 'd2(b2) r 1,s
2

Shift right single logical 88 4 r
1

,d
2

(b
2

) r 1,s2

*Micro expansion feature

PAGE
A-5

·8227 Rev. 2

UP-NUMBER

Mnemonic

SSFS

SSK*

SSM

SSRS

SSTM

ST

STC

STD*

STE*

STH

STM

STR

SU*

SUR*

SVC

SW*

SWR*

TM

TR

TRT

TS*

UNPK

x
xc
XI

XR

ZAP

SPERRY UNIVAC Operating System/3 A-6
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 4 of 16)

Listing By Mnemonic Code

Source Code Format

Instruction Name
Machine Byte

Code Length
Explicit Implicit

SOFTSCOPE forward scan A2 4 (Privileged) (Privileged)

Set system key 08 2 (Privileged) (Privileged)

Set system mask 80 4 (Privileged) (Privileged)

SOFTSCOPE reverse scan A3 4 (Privileged) (Privileged)

Supervisor store multiple 80 4 (Privileged) (Privileged)

Store 50 4 r 1 'd2(x2,b2) r 1,s
2

(x
2

)

Store character 42 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Store long 60 4 r 1 'd2(x2,b2) r
1

,s
2

(x 2)

Store short 70 4 r
1

,d
2

(x
2

,b
2

) r
1

,s
2

(x
2

)

Store half word 40 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Store multiple 90 4 r
1

,r
3

,d
2

(b
2

) r1,r3,s2

Service timer register 03 2 (Privileged) (Privileged)

Subtract unnormalized, short 7F 4 r 1 'd2(x2,b2) r
1

,s
2

(x
2

)

Subtract unnormalized, short 3F 2 r 1,r 2
r
1

,r
2

Supervisor call OA 2 i i

Subtract unnormalized, long 6F 4 r 1 'd2 (x2,b2) r 1,s
2

(x2l

Subtract unnormalized, long 2F 2 r 1,r 2
r 1,r 2

Test under mask 91 4 d1(b1).i2 s1,i2

Translate DC 6 d, (l,b,).d2(b2) s, (I) ,s2

Translate and test DD 6 d, (l,b,).d2(b2) s, (I) ,S2

Test and set 93 4 d1 (b1) s,

Unpack F3 6 d 1 o1.b1 l.d2 (1 2.b2l s101),s2 (1 2l

Exclusive OR 57 4 r 1 'd2(x2,b2) r1,s2 (x2)

Exclusive OR D7 6 d, (l,b,),d2(b2) s, (I) ,s2

Exclusive OR, immediate 97 4 d, (b,),i2 s, ,i2

Exclusive OR 17 2 r 1,r 2
r 1,r

2

Zero and add decimal FB 6 d 1 o1.b1 l,d202.b2l s
1

(1
1

) ,s
2

0
2

l

*Micro expansion feature

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table A-2. Instruction Repertoire (Part 5 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Code

Add (Native and 360/20 Modes) 1A

Add 5A

Add decimal FA

Add half word (Native and 360120 Modes) 4A

Add half word (920019300 Mode only) (AA)

Add immediate 9A

Add immediate (9200/9300 Mode only) (A6)

Add logical (9200/9300 Mode only) 1E

Add logical 5E

Add normalized (long) 2A

Add normalized (long) 6A

Add normalized (short) 3A

Add normalized (short) 7A

Add unnormalized (long) 2E

Add unnormalized (long) 6E

Add unnormalized (short) 3E

Add unnormalized (short) 7E

And 14

And 54

And 94

And (Native and 9200/9300 Modes) 04

Branch and link 05

Branch and link (Native and 920019300 Modes) 45

Branch and store (360/20 Mode only) 40

Branch and store (360/20 Mode only) OD

Branch on condition (Native and 360/20 Modes) 07

Branch on condition 47

Branch on count 06

Branch on count 46

UPDATE LEVEL PAGE
A-7

Mnemonic

(C)AR

A

(C)AP

(C)AH

(C)AH

Al

(C)AI

(F)ALR

(F)AL

(F)ADR

(F)AD

(F)AER

(F)AE

(F)AWR

(F)AW

(F)AUR

(F)AU

NR

N

(C)NI

(C)NC

BALA

(C)BAL

(C)BAS

(C)BASR

(C)BCR

(C)BC

BCTR

BCT

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table A-2. Instruction Repertoire (Part 6 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Code

Branch on index high 86

Branch on index low or equal 87

Compare 19

Compare 59

Compare decimal F9

Compare half word 49

Compare logical 15

Compare logical 55

Compare logical 95

Compare logical D5

Compare (long) 29

Compare (long) 69

Compare (short) 39

Compare (short) 79

Convert to binary 4F

Convert to decimal 4E

Diagnose - privileged 83

Divide 1D

Divide 5D

Divide decimal FD

Divide (long) 2D

Divide (long) 6D

Divide (short) 3D

Divide (short) 7D

Edit DE

Edit and mark DF

Exclusive OR 17

Exclusive OR 57

Exclusive OR 97

UPDATE LEVEL PAGE A-8

Mnemonic

(FIBXH

(FIBXLE

CR

c

(C)CP

(C)CH

CLR

CL

(C)CLI

(C)CLC

(F)CDR

(F)CD

(F)CER

(F)CE

CVB

CVD

DIAG

(F)DR

D

(C)DP

(FIDDR

(F)DD

(F)DER

(FIDE

(C)ED

(F)EDMK

XR

x

XI

8227 Rev. 2

UP-NUMB EA
SPERRY UNIVAC Operating System/3

Table A-2. Instruction Repertoire (Part 7 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Coda

Exclusive OR 07

Execute 44

Halt and proceed - privileged 99

Halve {long) 24

Halve (short) 34

Insert character 43

Insert storage key - privileged 09

Load 18

Load 58

Load address 41

Load and test 12

Load and test (long) 22

Load and test (short) 32

Load complement 13

Load complement {long) 23

Load complement (short) 33

Load control storage - privileged 81

Load half word 48

Load (long) 28

Load (long) 68

Load multiple 98

Load negative 11

Load negative (long) 21

Load negative (short) 31

Load positive 10

Load positive (long) 20

Load positive (short) 30

Load PSW- privileged 82

Load (short) 38

A-9
UPDATE LEVEL PAGE

Mnemonic

xc

EX

HPR

(F)HDR

(F)HER

IC

(F)ISK

LR

L

LA

LTR

(F)LTDR

(F)LTER

(F)LCR

(F)LCDR

(F)LCER

LCS

(C)LH

(F)LDR

(F)LD

LM

(F)LNR

(F)LNDR

(F)LNER

(F)LPR

(F)LPDR

(F)LPER

LPSW

(F)LER

-8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table A-2. Instruction Repertoire (Part 8 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Code

Load (short) 7B

Move 92

Move 02

Move numerics 01

Move with offset Fl

Move zones (Native and 9200/9300 Modes) 03

Multiply 1C

Multiply 5C

Multiply decimal FC

Multiply half word 4C

Multiply (long) 2C

Multiply (long) 6C

Multiply (short) 3C

Multiply (short) 7C

OR 16

OR 56

OR 96

OR (Native and 9200/9300 Modes) 06

Pack F2

Service timer register - privileged 03

Set program mask 04

Set storage key - privileged OB

Set system mask - privileged BO

Shift left double BF

Shift left double logical BO

Shift left single BB

Shift left single logical B9

Shift right double BE

Shift right double logical BC

Shift right single 8A

Shift right single logical 88

A-10
UPDATE LEVEL PAGE

Mnemonic

(FILE

(C)MVI

(C)MVC

(C)MVN

(CIMVO

(C)MVZ

(F)MR

M

(C)MP

(F)MH

(F)MOR

(F)MO

(F)MER

(F)ME

OR

0

(C)OI

(C)OC

(C)PACK

STA

SPM

(F)SSK

SSM

(F)SLOA

(F)SLOL

(F)SLA

SLL

(F)SROA

(F)SROL

(F)SRA

SAL

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table A-2. Instruction Repertoire (Part 9 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Code

SOFTSCOPE forward scan - privileged A2

SOFTSCOPE reverse scan - privileged A3

Start 1/0 - privileged 9C

Store 50

Store character 42

Store half word 40

Store (long) 60

Store multiple 90

Store (short) 70

Subtract (Native and 360/20 Modes) 1B

Subtract 5B

Subtract decimal FB

Subtract half word (Native and 360/20 Modes) 4B

Subtract half word (9200/9300 Mode only) (AB)

Subtract I ogical 1F

Subtract logical 5F

Subtract normalized (long) 2B

Subtract normalized (long) 6B

Subtract normalized (short) 3B

Subtract normalized (short) 7B

Subtract unnormalized (long) 2F

Subtract unnormalized (long) 6F

Subtract unnormalized (short) 3F

Subtract unnormalized (short) 7F

Supervisor call OA

Supervisor load multiple - privileged BB

Supervisor store multiple - privileged BO

Test and set 93

Test under mask 91

A-11
UPDATE LEVEL PAGE

Mnemonic

t
SSFS

SSAS

SIO

ST

STC

(C)STH

(F)STD

STM

(F)STE

(C)SR

s

(C)SP

(C)SH

(C)SH

(F)SLR

(F)SL

(F)SDR

(F)SD

(F)SER

(F)SE

(F)SWR

(F)SW

(F)SUR

(F)SU

SVC

SLM

SSTM

(F)TS

(C)TM

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

Table A-2. Instruction Repertoire (Part 10 of 16)

Listing By Alphabetic Instructions

Instruction Name Machine Code Mnemonic

Translate DC (C)TR

Translate and test DD TAT

Unpack F:.'1 (C)UNPK

Zero and add FS (C)ZAP

NOTES:

1. Tag symbol (F) before mnemonic indicates instructions that are added as features.

2. Tag symbol (C) before mnemonic indicates instruction available in native mode and in 9200/9300
and 360/20 compatibility modes, unless indicated otherwise by notes. The absence of (C) indicates
instruction available in native mode only. Opcodes in parentheses execute in 9200/9300
compatibility mode only.

A-12
PAGE

·8227 Rev. 2
UP-NUMBER

Machine Code

03

04

05

06

07

08

09

OA

OD

10

11

12

13

14

15

16

17

18

19

1A

18

1C

1D

1E

1F

20

21

22

23

SPERRY UNIVAC Operating System/3 A-13
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 11 of 16)

Listing By Machine Code

Mnemonic Instruction Name

STR Service timer register - privileged

SPM Set program mask

BALA Branch and link

BCTR Branch on count

(C)BCR Branch on condition (Native and 360/20 Modes)

(F)SSK Set storage key - privileged

(F)ISK Insert storage key - privileged

SVC Supervisor call

(C)BASR Branch and store (360/20 Mode only)

(F)LPR Load positive

(F)LNR Load negative

LTR Load and test

(F)LCR Load complement

NR AND

CLR Compare logical

OR OR

XR Exclusive OR

LR Load

CR Compare

(C)AR Add (Native and 360/20 Modes)

(C)SR Subtract (Native and 360/20 Modes)

(F)MR Multiply

(F)DR Divide

(F)ALR Add logical

(F)SLR Subtract I ogical

(F)LPDR Load positive (long)

(F)LNDR Load negative (long)

(F)LTDR Load and test (long)

(F)LCDR Load complement (long)

8227 Rev. 2
UP-NUMBER

Machine Code

24

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

SPERRY UNIVAC Operating System/3 A-14
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 12 of 16)

Listing By Machine Code

Mnemonic Instruction Name

(F)HDR Halve (long)

(F)LDR Load (long)

(F)CDR Compare (long)

(F)ADR Add normalized (long)

(F)SDR Subtract normalized (long)

(F)MDR Multiply (long)

(F)DDR Divide (long)

(F)AWR Add unnormalized (long)

(F)SWR Subtract unnormalized (long)

(F)LPER Load positive (short)

(F)LNER Load negative (short)

(F)LTER Load and test (sh ortl

(F)LCER Load complement (short)

(F)HER Halve (short)

(FILER Load (short)

(F)CER Compare (short)

(F)AER Add normalized (short)

(F)SER Subtract normalized (short)

(F)MER Multiply (short)

(F)DER Divide (short)

(F)AUR Add unnormalized (short)

(F)SUR Subtract unnormalized (short)

(C)STH Store half word

LA Load address

STC Store character

IC Insert character

EX Execute

(C)BAL Branch and link (Native and 9200/9300 Modes)

BCT Branch on count

8227 Rev. 2
UP-NUMBER

Machine Code

47

48

49

4A

4B

4C

4D

4E

4F

50

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

68

69

6A

6B

6C

6D

SPERRY UNIVAC Operating System/3 A-15
UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 13 of 16)

Listing By Machine Code

Mnemonic Instruction Name

(C)BC Branch on condition

(C)LH Load half-word

(C)CH Compare half-word

(C)AH Add half-word (Native and 360/20 Modes)

(C)SH Subtract half-word (Native and 360/20 Modes)

(F)MH Multiply half-word

(C)BAS Branch and store (360/20 Mode only)

CVD Convert to decimal

CVB Convert to binary

ST Store

N AND

CL Compare logical

0 OR

x Exclusive OR

L Load

c Compare

A Add

s Subtract

M Multiply

D Divide

(F)AL Add logical

(F)SL Subtract logical

(F)STD Store (long)

(F)LD Load (long)

(F)CD Compare (long)

(F)AD Add normalized (long)

(F)SD Subtract normalized (long)

(F)MD Multiply (long)

(F)DD Divide (long)

·S227 Rev. 2
UP-NUMBER

Machine Code

6E

6F

70

7S

79

7A

7B

7C

7D

7E

7F

so

S2

S3

86

S7

SS

S9

SA

BB

SC

SD

BE

BF

90

91

92

93

94

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

A-16

Table A-2. Instruction Repertoire (Part 14 of 16)

Listing By Machine Code

Mnemonic Instruction Name

(F)AW Add unnormalized (long)

(F)SW Subtract unnormalized (long)

(F)STE Store (short)

(F)LE Load (short)

(F)CE Compare (short)

(F)AE Add normalized (short)

(F)SE Subtract normalized (short)

(F)ME Multiply (short)

(F)DE Divide (short)

(F)AU Add unnormalized (short)

(F)SU Subtract unnormalized (short)

SSM Set system mask - privileged

LPSW Load PSW - privileged

DIAG Diagnose - privileged

(F)BXH Branch on index high

(F)BXLE Branch on index low or equal

SRL Shift right single logical

SLL Shift left single logical

(F)SRA Shift right single

(F)SLA Shift left single

(F)SRDL Shift right double logical

(F)SLDL Shift left double logical

(F)SRDA Shift right double

(F)SLDA Shift left double

STM Store multiple

(C)TM Test under mask

(C)MVI Move immediate

(F)TS Test and set

(CINI AND

8227 Rev. 2

UP-NUMBER

Machine Code

95

96

97

98

99

9A

9C

A2

A3

(A6)

(AA)

(AB)

BO

B1

B8

01

D2

D3

D4

D5

06

D7

DC

DD

DE

DF

F1

F2

F3

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3 A-17

Table A-2. Instruction Repertoire (Part 15 of 16)

Listing By Machine Code

Mnemonic Instruction Name

(C)CLI Compare logical

(C)OI OR

XI Exclusive OR

LM Load multiple

HPR Halt and proceed - privileged

Al Add immediate

SIO Start 1/0 - privileged

SSFS SOFTSCOPE forward scan - privileged

SSRS SOFTSCOPE reverse scan - privileged

(C)AI Add immediate (9200/9300 Mode only) t
(C)AH Add half word (9200/9300 Mode only)

(C)SH Subtract half word (9200/9300 Mode only)

SSTM Supervisor store multiple - privileged

LCS Load control storage - privileged

SLM Supervisor load multiple - privileged

(C)MVN Move numerics

(C)MVC Move

(C)MVZ Move zones (Native and 360/20 Modes)

(C)NC AND (Native and 9200/9300 Modes)

(C)CLC Compare logical

(C)OC OR (Native and 920019300 Modes)

xc Exclusive OR

(C)TR Translate

TRT Translate and test

(CIED Edit

(F)EDMK Edit and mark

(C)MVO Move with off set

(C)PACK Pack

(C)UNPK Unpack

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table A-2. Instruction Repertoire (Part 16 of 16)

Listing By Machine Code

Machine Code Mnemonic Instruction Name

F8 (C)ZAP Zero and add

F9 (C)CP Compare decimal

FA (C)AP Add decimal

FB (C)SP Subtract decimal

FC (C)MP Multiply decimal

FD (C)DP Divide decimal

NOTES:

1. Tag symbol (F) before mnemonic indicates instructions that are added as features.

2. Tag symbol (C) before mnemonic indicates instruction available in native mode and in 9200/9300
and 360/20 compatibility modes, unless indicated otherwise by notes. The absence of (C) indicates
instruction available in native mode only. ·

3. Opcodes in parentheses execute in 9200/9300 compatibility mode only.

A-18

8227 Rev. 2

UP-NUMBER

RR-Type Instructions

Mnemonic Hexadecimal

Code
Operation
Codem

1

BR 07 F

NOPR 07 0

- -

- -

BHR 07 2

BLR 07 4

BER 07 8

BNHR 07 D

BNLR 07 B

BNER 07 7

BOR 07 1

BZR 07 8

BMR 074

BNOR 07 E

BNZR 07 7

BNMR 07 B

BOR 07 1

BZR 07 8

BMR 07 4

BPR 07 2

BNOR 07 E

BNZR 07 7

BNMR 07 B

BNPR 07 D

SPERRY UNIVAC Operating System/3 A-19
UPDATE LEVEL PAGE

Table A-3. Extended Mnemonic Branch Codes

RX-Type Instructions BC Equivalent

Mnemonic Hexadecimal Explicit Function

Code
Operation

Form
Code m 1

- - BCR 15,r 2 Branch unconditionally

- - BCR O,r2 No operation

B 47 F BC 15,d2(x
2

,b
2
) Branch unconditionally

NOP 47 0 BC O,d2(x
2

,b
2

1 No operation

Used After Comparison Instructions

BH 47 2 BC 2,d2(x2,b2) Branch if high

BL 474 BC 4,d
2

(x
2

,b
2

) Branch if low

BE 47 8 BC 8,d 2(x 2,b
2

l Branch if equal

BNH 47 D BC 13,d
2

(x
2

,b
2

) Branch if not high

BNL 47 B BC 11,d
2

(x
2

,b
2

) Branch if not low

BNE 47 7 BC 7,d 2(x2,b
2

) Branch if not equal

Used After Test-Under-Mask Instructions

BO 47 1 BC 1,d
2

(x
2

,b
2

) Branch if all ones

BZ 47 8 BC 8,d
2

(x
2

,b
2

) Branch if all zeros

BM 47 4 BC 4,d
2

(x2,u
2

l Branch if mixed

BNO 47 E BC 14,d
2

(x
2

,b
2

) Branch if not all ones

BNZ 47 7 BC 7,d
2

(x
2

,b
2

) Branch if not al I zeros

BNM 47 B BC 11,d
2

(x
2

,b
2

) Branch if not mixed

Used After Arithmetic Instructions

BO 47 1 BC 1,d
2

(x2,b
2

) Branch if overflow

BZ 47 8 BC 8,d 2Cx2,b2) Branch if zero

BM 47 4 BC 4,d
2

(x
2

,b
2

) Branch if minus

BP 47 2 BC 2,d2(x2,b
2

) Branch if positive

BNO 47 E BC 14,d2(x
2

,b2l Branch if not overflow

BNZ 47 7 BC 7,d2(x2.b2) Branch if not zero

BNM 47 B BC 11,d
2

(x
2

,b
2

l Branch if not minus

BNP 47 D BC 13,d2(x
2

,b
2

l Branch if not positive

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE
A-20

Table A-4. Summary of Operators

Classification Operator Description Hierarchy

Arithmetic operators */ A* /B is equivalent to A *26 6

II Covered quotient, A/ /B is 5
equivalent to (A+B-1)/B

I A/B means arithmetic quotient 5
of A and B.

* A* B means arithmetic product 5
of A and B.

- A-B means arithmetic difference 4
of A and B.

+ A+B means arithmetic sum of 4
Aand B.

Logical operators ** A**B means logical product 3

r~ofAand B .

.:: ~--, 2 ++ A++B means logical sum ~
of A and B.

-- A--B means logical difference
[Jll of A and B.

2

Relational operators = A=B has value 1 if true; 1
has value 0 if false.

> A>B has value 1 if true; 1
has value 0 if false.

< A<B has value 1 if true; 1
has value 0 if false.

Table A-5. Comparison of Terms

Term Examples

SD Ts CLI AREA10,!2,.

• Can be used in the 1st or 2nd SOT
operands. MVI AREAB, X'C2'

• May be used in application Si5T
instructions and in assembler MVC 33 (10R5),3(R8) --directions. SOT SOT SOT

Literals MVC AREA10,~

• May only be used in the last Literal
operand. MVC AREA10,=X'F1FO'

• May not be used in assembler Literal
directives. CLC ONSW.'!;,.B'1111111J'

• Literals are preceded by an Literal
equal (=) sign.

Symbols for constants AREA10 DSCL2

• May be used in the 1st or 2nd N010 DC C'10'
operands. MOVE10 MVC AREA10,N010

• May be used in application
instructions and in assembler

symbols

directives.

8227 Rev. 2

UP-NUMBER

Type
Code

c

x

B

p

z

H

F

y

A

s

v

E

D

Constant or
Storage Type

Character

Hexadecimal

Binary

Packed decima

Zoned decimal

Half word,
fixed point

Full word,
fixed point

Half-word
address

Full-word
address

Base and
displacement

External
address

Full word,
floating point

Double word,
floating point

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table A-6. Characteristics of Constant and Storage Definition Type Codes

Source Code Storage Truncation
Length in Bytes

Alignment Minimum Maximum
Specification Format or Padding Implied Explicit Explicit*

None Characters C"' Character Right Variable 1 256 (DC)
65,535 (OS)

None Hexadecimal X" Hexadecimal Left Variable 1 256 (DC)
digits 65,535 (OS)

None Binary B". Binary Left Variable 1 256
digits

None Decimal p·. Packed Left Variable 1 16
digits decimal

None Decimal z·. Character Left Variable 1 16
digits

Half word Decimal H"' Fixed-point Left 2 1 8
digits binary

Full word Decimal F"' Fixed-point Left 4 1 8
digits binary

Half word Expression Y() Binary Left 2 1 2

Full word Expression A() Binary Left 4 1 4

Half word One or two S() Base and None 2 2 2
expressions displacement

Full word Relocatable V() Binary Left 4 3 4
symbol

Full word Decimal E"' Floating- Right 4 1 8
d~gits point binary

normalized

Double word Decimal o·. Floating- Right 8 1 8
qigits point binary

normalized

*The maximum explicit length in bytes is that total length produced by the explicit length factor times the duplication factor.

A-21

8227 Rev. 2
UP-NUMBER

HEADING

BODY

TRAILER

HEADING

BODY

TRAILER

LABEL

[symbol]

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

A-22

Table A-7. PROC, MACRO, and Call Instruction Comparison

PROC CONSTRUCTION

LABEL 60PERATION6 OPERAND

[&symbol] PROC [&pos,n] [.&key 1=, ... ,&key m = J
call-name NAME [pos-0]

[t'°' }] mnemonic-code operands
&symbol
.symbol

mnemonic-code operands

unused END unused

MACRO CONSTRUCTION

LABEL 60PERATION6 OPERAND

unused MACRO unused

[&symbol] call-name [&pos 1, &posJ(.&key 1=, ... ,&keym =}

[t'°' }] mnemonic-code operands
&symbol
.symbol

mnemonic-code operands

unused MEND unused

CALL INSTRUCTION FORMAT

60PERATION 6 OPERAND

call-name

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Explanation:

• Addressing

A storage location outside the range of the installed storage is referenced by a program-specified address.

• Data

An invalid sign or digit code is detected in decimal operands.

Fields in decimal arithmetic overlap incorrectly.

The first operand of the multiply decimal instruction does not have a sufficient number of high-order
zero digits.

• Decimal Divide

The quotient of a divide decimal instruction exceeds the capacity of the quotient part of the first operand
field.

• Decimal Overflow

The result of an add decimal, subtract decimal, or zero and add instruction exceeds the capacity of the first
operand location.

• Execute

The subject instruction of an execute instruction is an execute instruction.

• Exponent Overflow

The final characteristic resulting from a floating-point arithmetic operand exceeds 127.

• Exponent Underflow

The final characteristic resulting from a floating-point arithmetic operation is less than zero.

Table A-8. Check-off Table Terms

General Possible Program Exceptions

OBJECT D ADDRESSING D PROTECTION
OPCODE FORMAT INST.

TYPE LGTH.
D DATA (INVALID SIGN/DIGIT) D SIGNIFICANCE

MNEM. HEX. (BYTES) D DECIMAL DIVIDE D SPECIFICATION:

0 DECIMAL OVERFLOW D NOT A FLOATING POINT REGISTER

D EXECUTE D OP 1 NOT ON HALF WORD BOUNDARY

0 EXPONENT OVERFLOW D OP 2 NOT ON HALF-WORD BOUNDARY

Condition Codes 0 EXPONENT UNDERFLOW D OP 2 NOT ON FULLWORD BOUNDARY

D FIXED-POINT DIVIDE D OP 2 NOT ON DOUBLE-WORD
D IF RESULT~ 0, SET TO 0 D FIXED·POINT OVERFLOW BOUNDARY
01F RESULT<O.SETTO 1

D FLOATING POINT DIVIDE
D OP 1 NOT EVEN NUMBERED REGISTER

01F RESULT>O.SETT02 D 01F OVERFLOW, SET TO 3 D OPERATION OP 1 NOT ODD NUMBERED REGISTER

D UNCHANGED D NONE

A-23

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Explanation:

• Fixed-Point Divide

The quotient of a fixed-point divide operation exceeds the capacity of the first operand (including division by
zero), or the result of a convert to binary instruction exceeds 31 bits.

• Fixed-Point Overflow

A fixed-point add or subtract operation exceeds the capacity of the first operand field.

• Floating-Point Divide

The divisor fraction in a floating-point divide operation is equal to zero.

• Operation

An illegal operation has been attempted or an operation using a noninstalled processor feature has been
attempted.

• Protection

A storage protection violation occurs on a program-generated address, when the protection feature is
installed.

• Significance

The final fraction resulting from a floating-point addition or subtraction is equal to zero.

• Specification

The unit of information referenced is not on an appropriate boundary.

An invalid modifier field is specified in the STR instruction.

The R, field of an instruction which uses an even/odd pair of registers (64-bit operand) does not
specify an even register.

A floating-point register other than 0, 2, 4, or 6 is specified.

A multiplicand or divisor in decimal arithmetic exceeds 15 digits and sign.

The first operand field is shorter than, or equal in length to, the second operand in decimal multiply
and decimal divide instructions.

A-24

.
Appendix B. Character Set Code References

8227 Rev. 2
UP-NUMBER

Character

Uppercase A

Uppercase B

Uppercase C

Uppercase 0

Uppercase E

Uppercase F

Uppercase G

Uppercase H

Uppercase I

Uppercase J

Uppercase K

Uppercase L

Uppercase M

Uppercase N

Uppercase 0

Uppercase P

Uppercase Q

Uppercase R

Uppercase S

Uppercase T

Uppercase U

Uppercase V

Uppercase W

Uppercase X

Uppercase Y

Uppercase Z

Lowercase a

Lowercase b

Lowercase c

SPERRY UNIVAC Operating System/3 s-1
UPDATE LEVEL PAGE

Table 8-1. Punched Card, ASCII, and EBCDIC Codes (Part 1of5)

Printed Card ASCII EBCDIC

Symbol Punches Hexadecimal Decimal Hexadecimal Decimal

Letters

A 12-1 41 65 C1 193

B 12-2 42 66 C2 194

c 12-3 43 67 C3 195

0 12-4 44 68 C4 196

E 12-5 45 69 C5 197

F 12-6 46 70 C6 198

G 12-7 47 71 C7 199

H 12-8 48 72 C8 200

I 12-9 49 73 C9 201

J 11-l 4A 74 01 209

K 11-2 48 75 02 210

L 11-3 4C 76 03 211

M 11-4 40 77 04 212

N 11-5 4E 78 05 213

0 11-6 4F 79 06 214

p 11-7 50 80 07 215

Q 11-8 51 81 08 216

R 11-9 52 82 09 217

s 0-2 53 83 E2 226

T 0-3 54 84 E3 227

u 0-4 55 85 E4 228

v 0-5 56 86 E5 229

w 0-6 57 87 E6 230

x 0-7 58 88 E7 231

y 0-8 59 89 E8 232

z 0-9 5A 90 E9 233

a 12-0-1 61 97 81 129

b 12-0-2 62 98 82 130

c 12-0-3 63 99 83 131

·8227 Rev. 2

UP-NUMBER

Character

Lowercased

Lowercase e

Lowercase f

Lowercase g

Lowercase h

Lowercase i

Lowercase j

Lowercase k

Lowercase I

Lowercase m

Lowercase n

Lowercase o

Lowercase p

Lowercase q

Lowercase r

Lowercases

Lowercase t

Lowercase u

Lowercase v

Lowercase w

Lowercase x

Lowercase y

Lowercase z

0

1

2

3

4

5

6

SPERRY UNIVAC Operating System/3

Table 8-1. Punched Card, ASCII, and EBCDIC Codes (Part 2 of 5)

Printed Card ASCII

Symbol Punches Hexadecimal Decimal

d 12-0-4 64 100

e 12-0-5 65 101

f 12-0-6 66 102

g 12-0-7 67 103

h 12-0-8 68 104

i 12-0-9 69 105

j 12-11-1 6A 106

k 12-11-2 68 107

I 12-11-3 6C 108

m 12-11-4 60 109

n 12-11-5 6E 110

0 12-11-6 6F 111

p 12-11-7 70 112

q 12-11-8 71 113

r 12-11-9 72 114

s 11-0-2 73 115

t 11-0-3 74 116

u 11-0-4 75 117

v 11-0-5 76 118

w 11-0-6 77 119

x 11-0-7 78 120

y 11-0-8 79 121

z 11-0-9 7A 122

Numerals

0 0 30 48

1 1 31 49

2 2 32 50

3 3 33 51

4 4 34 52

5 5 35 53

6 6 36 54

B-2
UPDATE LEVEL PAGE

EBCDIC

Hexadecimal Decimal

84 132

85 133

86 134

87 135

88 136

89 137

91 145

92 146

93 147

94 148

95 149

96 150

97 151

98 152

99 153

A2 162

A3 163

A4 164

A5 165

A6 166

A7 167

AB 168

A9 169

FO 240

F1 241

F2 242

F3 243

F4 244

F5 245

F6 246

8227 Rev. 2

UP-NUMBER

Character

7

8

9

Exclamation point

Quotation mark, dieresis

Number sign, pound sign

Dollar sign

Percent sign

Ampersand

Apostrophe, acute accent

Opening parenthesis

Closing parenthesis

Asterisk

Pl us sign

Comma, cedilla

Minus sign. hyphen

Period, decimal point

Slash, virgule, solidus

Colon

Semicolon

Less than

Equal sign

Greater than

Question mark

Commercial at symbol

Opening bracket

Closing bracket

Reverse slash

Circumflex

SPERRY UNIVAC Operating System/3

Table 8-1. Punched Card, ASCII, and EBCDIC Codes (Part 3 of 5)

Printed Card ASCII

Symbol Punches Hexadecimal Decimal

7 7 37 55

8 8 38 56

9 9 39 57

Symbols

I 12-8-7 21 33

" 8-7 22 34

~ 8-3 23 35

$ 11-8-3 24 36

% 0-8-4 25 37

& 12 26 38

8-5 27 39

I 12-8-5 28 40

) 11-8-5 29 41

. 11-8-4 2A 42

+ 12-8-6 28 43

0-8-3 2C 44

- 11 20 45

12-8-3 2E 46

I 0-1 2F 47

8-2 3A 58

11-8-6 38 59

< 12-8-4 3C 60

~ 8-6 30 61

> 0-8-6 3E 62

7 0-8-7 3F 63

@ 8-4 40 64

[12-8-2 58 91

I 11-8-2 50 93

\ 0-8-2 5C 92

/\ 11-8-7 5E 94

8-3
UPDATE LEVEL PAGE

EBCDIC

Hexadecimal Decimal

F7 247

F8 248

F9 249

4F 79

7F 127

78 123

58 91

6C 108

50 80

70 125

40 77

50 93

5C 92

4E 78

68 107

60 96

48 75

61 97

7A 122

5E 94

4C 76

7E 126

6E 110

6F 111

7C 124

4A 74

5A 90

EO 224

5F 95

8227 Rev. 2

UP-NUMBER

Character

Underline

Grave accent

Opening brace

Closing brace

Vertical I ine

Over I ine, tilde

Character

ACK (Acknowledge)

BEL (Bell)

BS (Backspace)

CAN (Cancel)

CR (Carriage return)

DC1 (Device control 1)

DC2 (Device control 2)

DC3 (Device control 3)

DC4 (Device control 4)

DEL (Delete)

OLE (Data link escape)

OS (Digit select)

EM (End of medium)

ENO (Enquiry)

EOT (End of transmission)

ESC (Escape)

SPERRY UNIVAC Operating System/3

Table 8-1. Punched Card, ASCII, and EBCDIC Codes (Part 4 of 5)

Printed Card ASCII

Symbol Punches Hexadecimal Decimal

- 0-8-5 5F 95

' 8-1 60 96

I 12-0 7B 123 \

} 11-0 70 125

I
12-11 7C 124 I

~ 11-0-1 7E 126

Card ASCII

Punches Hexadecimal Decimal

Nonprintable Characters

0-9-8-6 06 6

0-9-8-7 07 7

11-9-6 08 8

11-9-8 18 24

12-9-8-5 OD 13

11-9-1 11 17

11-9-2 12 18

11-9-3 13 19

9-8-4 14 20

12-9-7 7F 127

12-11-9-8-1 10 16

11-0-9-8-1 80 128

11-9-8-1 19 25

0-9-8-5 05 5

9-7 04 4

0-9-7 1 B 27

ETB (End of transmission block) 0-9-6 17 23

ETX (End of text) 12-9-3 03 3

FF (Form feed) 12-9-8-4 oc 12

FS (File separator) 11-9-8-4 1C 28

B-4
UPDATE LEVEL PAGE

EBCDIC

Hexadecimal Decimal

60 109

79 121

co 192

DO 208

6A 106

A1 161

EBCDIC

Hexadecimal Decimal

2E 46

2F 47

16 22

18 24

OD 13

11 17

12 18

13 19

3C 60

07 7

10 16

20 32

19 25

20 45

37 55

27 39

26 38

03 3

oc 12

1C 28

--

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table 8-1. Punched Card, ASCII, and EBCDIC Codes (Part 5 of 5)

Card ASCII
Character

Punches Hexadecimal Decimal

FS (Field separator) 0-9-2 82 130

GS (Group separator) 11-9-8-5 10 29

HT (Horizontal tabulation) 12-9-5 09 9

LF (Line feed) 0-9-5 OA 10

NAK (Negative acknowledge) 9-8-5 15 21

NUL (Null) 12-0-9-8-1 00 0

RS (Record separator) 11-9-8-6 lE 30

SI (Shift in) 12-9-8-7 OF 15

SO (Shift out) 12-9-8-6 OE 14

SOH (Start of heading) 12-9-1 01 1

SOS (Significance start) 0-9-1 81 129

SP (Space) 20 32

STX (Start of text) 12-9-2 02 2

SUB (Substitute) 9-8-7 lA 26

SYN (Synchronous idle) 9-2 16 22

US (Unit separator) 11-9-8-7 1F 31

VT (Vertical tabulation) 12-9-8-3 OB 11

B-5
UPDATE LEVEL PAGE

EBCDIC

Hexadecimal Decimal

22 34

10 29

05 5

25 37

30 61

00 0

1 E 30

OF 15

OE 14

01 1

21 33

40 64

02 2

3F 63

32 50

1 F 31

OB 11

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table 8-2. 90/30 EBCDIC Code Chart

Bit Positions 0, 1, 2, 3

0000 0001 0010 0011 0100 0101 0110 0111

0000 NUL DLE Ds© SP & -

0001 SOH DC1 © sos I

0010 STX DC2 FSG) SYN

0011 ETX DC3

0100

0101 HT LF

0110 BS ETB
Bit

Positions 0111 DEL ESC EOT
4,5,6, 7

1000 CAN

1001 EM

1010 [l :@

1011 VT $

1100 FF FS DC4 < * %

1101 CR GS ENO NAK () -
1110 so RS ACK + ; >
1111 SI us BEL SUB ,0 -,Ci> ?

NOTES:

EBCDIC bits are numbered from the left in ascending numerical
order: 0 1 2 3 4 5 6 7. Some graphic card code and hexadecimal
assignments may differ depending on the device, language, application,
and installation policy.

·©

:

@

=

..

© DS, SOS, FS are the control characters for the EDIT instruction and
have been assigned for ASCII mode processing so as not to conflict
with the corresponding character positions previously assigned in the
EBCDIC chart. As these characters are not outside the range as
defined in American National Standard, X3.4 - 1968, they must not
appear in external storage media, such as ANSI standard tapes. This
presents no difficulty due to the nature of the EDIT instruction.

1000

a©

b

c

d

e

f

g

h

i

@ The following optional graphics can be substituted in the character set:

/\ forJ

I for !

@ For 63-character printers, the following substitution is made:

\for :

© The lowercase alphabet and indicated graphics are introduced by
use of the type 0768-02 printer, which prints a 94-character set.

1001

j

k

I

m

n

0

p

q

r

B-6
UPDATE LEVEL PAGE

1010 1011 1100 1101 1110 1111

!@)
\ '® (\© 0

~© A J 1

s B K s 2

t c L T 3

u D M u 4

v E N v 5

w F 0 w 6

x G p x 7

y H Q y 8

z I R z 9

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table 8-3. ASCII Character Code Chart

Bit Positions 7, 6, 5

000 001 010 011 100 101

0000 NUL DLE SP 0 @ p

0001 SOH DC1 ,CD 1 A o

0010 STX DC2 .. 2 B R

0011 ETX DCJ # 3 c s

0100 EQT DC4 $ 4 D T

0101 ENO NAK % 5 E u

0110 ACK SYN & 6 F v
Bit

0111 BEL ETB . 7 G w Positions

4, 3, 2, 1 1000 BS CAN (8 H x

1001 HT EM) 9 I y

1010 LF SUB . : J z

1011 VT ESC + ; K I

1100 FF FS < L \

1101 CR GS - = M I

1110 so RS > N AQ)

1111 SI us I ? 0 -
- --~

©

NOTES:

ASCII bits are numbered from the left in descending numerical order: 7 6 5 4 3 2 1. Some
graphic card code and hexadecimal assignments may differ depending on the device,
language, application, and installation policy.

UPDATE LEVEL PAGE

110 111

p

a q

b r

c s

d t

e u

I v

g w

h x

I y

j z

k {
I

I I

m }
n ~

0 DEL

- -

The following optional graphics can be substituted Sixty-three printable character set.
in the following set: ·

----, for 6

@

@ Graphics available by use of the type 0768-02 printer
which prints a 94-character set (DEL is not a graphic)

I for 1 © Ninety-four printable character set.

Control Character Mnemonics

ACK Acknowledge ENO Enquiry SI Shift in

BEL Bell EOT End of transmission so Shift out

BS Backspace ESC Escape SOH Start of heading

CAN Cancel ETB End of transmission block sos Start of significance

CR Carriage return ETX End of text SP ·- Space

DCl Device control 1 FF Form feed STX Start of text
DC2 Device control 2 FS Field separator SUB Substitute

DC3 Device control 3 GS Group separator SYN - Synchronous idle
DC4 - Device control 4 HT Horizontal tab us Unit separator
DEL Delete LF Line field VT Vertical tab
OLE Data Ii n k escape NAK Negative acknowledge
OS Digit select NUL Null
EM End of medium RS Record separator

B-7

Appendix C. Math References

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table C-1. Comparison for Numeric Expressions

Type of Number Examples

Character form (unpacked) I F: 5 F l 0 I F ! 0 I
I

I

! I c~ ol Zoned decimal (+) F I 5 F 0
I

Zoned decimal (-) I F : 5 F I 0 I D l 0 I I
I

Packed decimal(+ only) 5 ! 0 I 0 : F I
Packed decimal, signed (+) 5 ! 0 I 0 l c I

I ! I I
Packed decimal, signed (-) 5 0 0 I D

I

Hexadecimal (+ only) I 0 ! 1 I F ! 4

Floating point (+) I 4 l 3 1 ! F I 4
I

0 ! 0 l 0 I
I

I
I

i I ! 0 ! Floating point (-) c I 3 1 F 4 I 0 0
I I

Binary(+ only) I 0000 0001 1111 ! 0100

Binary (+ only) I 1111 1110 0000 ! 1100

Fixed point (+) I 0000 0001 1111 ! 0100

Fixed point (-) I 1111 1110 0000 ! 1100

C-1
UPDATE LEVEL PAGE

Decimal

Values

500

+500

-500

+500

+500

-500

+500

+500

-500

+500

+65,036

+500

-500

8227 Rev. 2
UP-NUMBER

0

00 0000
01 0016
02 0032
03 0048
04 0064
05 0080
06 0096
07 0112
08 0128
09 0144
OA 0160
OB 0176
oc 0192
OD 0208
OE 0224
OF 0240

0

10 0256
11 0272
12 0288
13 0304
14 0320
15 0336
16 0352
17 0368
18 0384
19 0400
1A 0416
16 0432
1C 0448
10 0464
1E 0480
1F 0496

0

20 0512
21 0528
22 0544
23 0560
24 0576
25 0592
26 0608
27 0624
28 0640
29 0656
2A 0672
28 0688
2C 0704
20 0720
2E 0736
2F 0752

0

30 0768
31 0784
32 0800
33 0816
34 0832
35 0848
36 0864
37 0880
38 0896
39 0912
3A 0928
3B 0944
3C 0960
30 0976
3E 0992
3F 10()8

1 2

0001 0002
0017 0018
0033 0034
0049 0050
0065 0066
0081 0082
0097 0098
0113 0114
0129 0130
0145 0146
0161 0162
0177 0178
0193 0194
0209 0210
0225 0226
0241 0242

1 2

0257 0258
0273 0274
0289 0290
0305 0306
0321 0322
0337 0338
0353 0354
0369 0370
0385 0386
0401 0402
0417 0418
0433 0434
0449 0450
0465 0466
0481 0482
0497 0498

1 2

0513 0514
0529 0530
0545 0546
0561 0562
0577 0578
0593 0594
0609 0610
0625 0626
0641 0642
0657 0658
0673 0674
0689 0690
0705 0706
0721 0722
0737 0738
0753 0754

1 2

0769 0770
0785 0786
0801 0802
0817 0818
0833 0834
0849 0850
0865 0866
0881 0882
0897 0898
0913 0914
0929 0930
0945 0946
0961 0962
0977 0978
0993 0994
1009 1010

SPERRY UNIVAC Operating System/3 C-2
UPDATE LEVEL PAGE

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 1 of 4)

3 4 5 6 7 8 9 A B c D E F

0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

3 4 5 6 7 8 9 A B c D E F

0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
0403 0404 0405 0406 0407 0408 0409 0410 0411 04l2 0413 0414 0415
0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

3 4 5 6 7 8 9 A B c D E F

0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
0659 0660 . 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

3 4 5 6 7 8 9 A B c D E F

0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

...._.

8227 Rev. 2

UP-NUMBER

0

40 1024
41 1040
42 ,1056
43 1072
44 1088
45 1104
46 1120
47 1136
48 1152
49 1168
4A 1184
48 1200
4C 1216
40 1232
4E 1248
4F 1264

0

50 1280
51 1296
52 1312
53 1328
54 1344
55 1360
56 1376
57 1392
58 1408
59 1424
5A 1440
58 1456
5C 1472
50 1488
5E 1504
5F 1520

0

60 1536
61 1552
62 1568
63 1584
64 1600
65 1616
66 1632
67 1648
68 1664
69 1680
6A 1696
68 1712
6C 1728
60 1744
6E 1760
6F 1776

0

70 1792
71 1808
72 1824
73 1840
74 1856
75 1872
76 1888
77 1904
78 1920
79 1936
7A 1952
78 1968
7C 1984
70 2000
7E 2016
7F 2032

1 2

1025 1026
1041 1042
1057 1058
1073 1074
1089 1090
1105 1106
1121 1122
1137 1138
1153. 1154
1169 1170
1185 1186
1201 1202
1217 1218
1233 1234
1249 1250
1265 1266

1 2

1281 1282
1297 1298
1313 1314
1329 1330
1345 1346
1361 1362
1377 1378
1393 1394
1409 1410
1425 1426
1441 1442
1457 1458
1473 1474
1489 1490
1505 1506
1521 1522

1 2

1537 1538
1553 1554
1569 1570
1585 1586
1601 1602
1617 1618
1633 1634
1649 1650
1665 1666
1681 1682
1697 1698
1713 1714
1729 1730
1745 1746
1761 1762
1777 1778

1 2

1793 1794
1809 1810
1825 1826
1841 1842
1857 1858
1873 1874
1889 1890
1905 1906
1921 1922
1937 1938
1953 1954
1969 1970
1985 1986
2001 2002
2017 2018
2033 2034

SPERRY UNIVAC Operating System/3

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 2 of 4)

3 4 5 6 7 8 9 A 8

1027 1028 1029 1030 1031 1032 1033 1034 1035
1043 1044 1045 1046 1047 1048 1049 1050 1051
1059 1060 1061 1062 1063 1064 1065 1066 Hl67
1075 1076 1077 1078 1079 1080 1081 1082 1083

1091 1092 1093 1094 1095 1096 1097 1098 1099
1107 1108 1109 1110 1111 1112 1113 1114 1115
1123 1124 1125 1126 1127 1128 1129 1130 1131

1139 1140 1141 1142 1143 1144 1145 1146 1147

1155 1156 1157 1158 1159 1160 1161 1162 1163
1171 1172 1173 1174 1175 1176 1177 1178 1179
1187 1188 1189 1190 1191 1192 1193 1194 1195
1203 1204 1205 1206 1207 1208 1209 1210 1211

1219 1220 1221 1222 1223 1224 1225 1226 1227
1235 1236 1237 1238 1239 1240 1241 1242 1243
1251 1252 1253 1254 1255 1256 1257 1258 1259
1267 1268 1269 1270 1271 1272 1273 1274 1275

3 4 5 6 7 8 9 A 8

1283 1284 1285 1286 1287 1288 1289 1290 1291

1299 1300 1301 1302 1303 1304 1305 1306 1307
1315 1316 1317 1318 1319 1320 1321 1322 1323
1331 1332 1333 1334 1335 1336 1337 1338 1339
1347 1348 1349 1350 1351 1352 1353 1354 1355
1363 1364 1365 1366 1367 1368 1369 1370 1371

1379 1380 1381 1382 1383 1384 1385 1386 1387
1395 1396 1397 1398 1399 1400 1401 1402 1403
1411 1412 1413 1414 1415 1416 1417 1418 1419
1427 1428 1429 1430 1431 1432 1433 1434 1435
1443 1444 1445 1446 1447 1448 1449 1450 1451

1459 1460 1461 1462 1463 1464 1465 1466 1467
1475 1476 1477 1478 1479 1480 1481 1482 1483
1491 1492 1493 1494 1495 1496 1497 1498 1499
1507 1508 1509 1510 1511 1512 1513 1514 1515

1523 1524 1525 1526 1527 1528 1529 1530 1531

3 4 5 6 7 8 9 A 8

1539 1540 1541 1542 1543 1544 1545 1546 1547
1555 1556 1557 1558 1559 1560 1561 1562 1563
1571 1572 1573 1574 1575 1576 1577 1578 1579
1587 1588 1589 1590 1591 1592 1593 1594 1595
1603 1604 1605 1606 1607 1608 1609 1610 1611
1619 1620 1621 1622 1623 1624 1625 1626 1627
1635 1636 1637 1638 1639 1640 1641 1642 1643
1651 1652 1653 1654 1655 1656 1657 1658 1659
1667 1668 1669 1670 1671 1672 1673 1674 1675
1683 1684 1685 1686 1687 1688 1689 1690 1691
1699 1700 1701 1702 1703 1704 1705 1706 1707
1715 1716 1717 1718 1719 1720 1721 1722 1723
1731 1732 1733 1734 1735 1736 1737 1738 1739
1747 1748 1749 1750 1751 1752 1753 1754 1755
1763 1764 1765 1766 1767 1768 1769 1770 1771
1779 1780 1781 1782 1783 1784 1785 1786 1787

3 4 5 6 7 8 9 A 8

1795 1796 1797 1798 1799 1800 1801 1802 1803
1811 1812 1813 1814 1815 1816 1817 1818 1819
1827 1828 1829 1830 1831 1832 1833 1834 1835
1843 1844 1845 1846 1847 1848 1849 1850 1851
1859 1860 1861 1862 1863 1864 1865 1866 1867
1875 1876 1877 1878 1879 1880 1881 1882 1883
1891 1892 1893 1894 1895 1896 1897 1898 1899
1907 1908 1909 1910 1911 1912 1913 1914 1915
1923 1924 1925 1926 1927 1928 1929 1930 1931
1939 1940 1941 1942 1943 1944 1945 1946 1947
1955 1956 1957 1958 1959 1960 1961 1962 1963
1971 1972 1973 1974 1975 1976 1977 1978 1979
1987 1988 1989 1990 1991 1992 1993 1994 1995
2003 2004 2005 2006 2007 2008 2009 2010 2011
2019 2020 2021 2022 2023 2024 2025 2026 2027
2035 2036 2037 2038 2039 2040 2041 2042 2043

C-3
UPDATE LEVEL PAGE

c 0 E F

1036 1037 1038 1039
1052 1053 1054 1055
1068 1069 1070 1071
1084 1085 1086 1087
1100 1101 1102 1103
1116 1117 1118 1119
1132 1133 1134 1135
1148 1149 1150 1151
1164 1165 1166 1167
1180 1181 1182 1183
1196 1197 1198 1199
1212 1213 1214 1215
1228 1229 1230 1231
l244 1245 1246 1247
1260 1261 1262 1263
1276 1277 1278 1279

c 0 E F

1292 1293 1294 1295
1308 1309 1310 1311
1324 1325 1326 1327
1340 1341 1342 1343
1356 1357 1358 1359
1372 1373 1374 1375
1388 1389 1390 1391
1404 1405 1406 1407
1420 1421 1422 1423

. 1436 1437 1438 1439
1452 1453 1454 1455
1468 1469 1470 1471
1484 1485 1486 1487
1500 1501 1502 1503
1516 1517 1518 1519
1532 1533 1534 1535

c 0 E F

1548 1549 1550 1551
1564 1565 1566 1567
1580 1581 1582 1583
1596 1597 1598 1599
1612 1613 1614 1615
1628 1629 1630 1631
1644 1645 1646 1647
1660 1661 1662 1663
1676 1677 1678 1679
1692 1693 1694 1695
1708 1709 1710 1711
1724 1725 1726 1727
1740 1741 1742 1743
1756 1757 1758 1759
1772 1773 1774 1775
1788 1789 1790 1791

c 0 E F

1804 1805 1806 1807
1820 1821 1822 1823
1836 1837 1838 1839
1852 1853 1854 1855
1868 1869 1870 1871
1884 1885 1886 1887
1900 1901 1902 1903
1916 1917 1918 1919
1932 1933 1934 1935
1948 1949 1950 1951
1964 1965 1966 1967
1980 1981 1982 1983
1996 1997 1998 1999
2012 2013 2014 2015
2028 2029 2030 2031
2044 2045 2046 2047

8227 Rev. 2
UP-NUMBER

0

80 204B
81 2064
82 2080
B3 2096
84 2112
B5 212B
86 2144
87 2160
88 2176
89 2192
BA 220B
BB 2224
BC 2240
BO 2256
BE 2272
BF 22BB

0

90 2304
91 2320
92 2336
93 2352
94 236B
95 2384
96 2400
97 2416
9B 2432
99 244B
9A 2464
9B 2480
9C 2496
90 2512
9E 252B
9F 2544

0

AO 2560
A1 2576
A2 2592
A3 260B
A4 2624
A5 2640
AS 2656
A7 2672
AS 26BB
A9 2704
AA 2720
AB 2736
ACO 2752
ADO 2768
AEO 2784
AFO 2800

0

BO 2B16
81 2832
B2 284B
83 2864
B4 2BBO
85 2896
BS 2912
B7 292B
BB 2944
B9 2960
BA 2976
BB 2992
BC 300B
BO 3024
BE 3040
BF 3056

1 2

2049 2050
2065 2066
2081 2082
2097 209B
2113 2114
2129 2130
2145 2146
2161 2162
2177 2178
2193 2194
2209 2210
2225 2226
2241 2242
2257 2258
2273 2274
2289 2290

1 2

2305 2306
2321 2322
2337 233B
2353 2354
2369 2370
23B5 2386
2401 2402
2417 241B
2433 2434
2449 2450
2465 2466
24B1 2482
2497 249B
2513 2514
2529 2530
2545 2546

1 2

2561 2562
2577 257B
2593 2594
2609 2610
2625 2626
2641 2642
2657 265B
2673 2674
26B9 2690
2705 2706
2721 2722
2737 273B
2753 2754
2769 2770
27B5 27B6
2B01 2B02

1 2

2B17 2B1B
2B33 2834
2849 2B50
2865 2866
2881 2882
2897 2898
2913 2914
2929 2930
2945 2946
2961 2962
2977 297B
2993 2994
3009 3010
3025 3026
3041 3042
3057 305B

SPERRY UNIVAC Operating System/3 C-4
UPDATE LEVEL PAGE

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 3 of 4)

3 4 5 6 7 8 9 A B c 0 E F

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
2067 206B 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
2099 2100 2101 2102 2103 2104 2105 2106 2107 210B 2109 2110 2111
2115 2116 2117 211B 2119 2120 2121 2122 2123 2124 2125 2126 2127
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
2147 214B 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
2163 2164 2165 2166 2167 216B 2169 2170 2171 2172 2173 2174 2175
2179 2180 2181 21B2 2183 21B4 2185 2186 21B7 2188 2189 2190 2191
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
2211 2212 2213 2214 2215 2216 2217 221B 2219 2220 2221 2222 2223
2227 222B 2229 2230 2231 2232 2233 2234 2235 2236 2237 223B 2239
2243 2244 2245 2246 2247 224B 2249 2250 2251 2252 2253 2254 2255
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
2275 2276 2277 227B 2279 22BO 2281 22B2 22B3 2284 2285 22B6 22B7
2291 2292 2293 2294 2295 2296 2297 229B 2299 2300 2301 2302 2303

3 4 5 6 7 B 9 A B c 0 E F

2307 230B 2309 2310 2311 2312 2313 2314 2315 2316 2317 231B 2319
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
2339 2340 2341 2342 2343 2344 2345 2346 2347 234B 2349 2350 2351
2355 2356 2357 235B 2359 2360 2361 2362 2363 2364 2365 2366 2367
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 23B2 23B3
2387 238B 2389 2390 2391 2392 2393 2394 2395 2396 2397 239B 2399
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
2419 2420 2421 2422 2423 2424 2425 2426 2427 242B 2429 2430 2431
2435 2436 2437 243B 2439 2440 2441 2442 2443 2444· 2445 2446 2447
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
2467 246B 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
24B3 24B4 24B5 2486 24B7 24BB 2489 2490 2491 2492 2493 2494 2495
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
2531 2532 2533 2534 2535 2536 2537 253B 2539 2540 2541 2542 2543
2547 254B 2549 2550 2551 2552 2553 2554 2555 2556 2557 255B 2559

3 4 5 6 7 B 9 A B c 0 E F

2563 2564 2565 2566 2567 256B 2569 2570 2571 2572 2573 2574 2575
2579 2580 2581 2582 2583 2584 2585 2586 2587 258B 2589 2590 2591
2595 2596 2597 259B 2599 2600 2601 2602 2603 2604 2605 2606 2607
2611 2612 2613 2614 2615 2616 2617 261B 2619 2620 2621 2622 2623
2627 262B 2629 2630 2631 2632 2633 2634 2635 2636 2637 263B 2639
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
2659 2660 2661 2662 2663 2664 2665 2666 2667 266B 2669 2670 2671
2675 2676 2677 267B 2679 26BO 26B1 26B2 26B3 2684 26B5 26B6 26B7
2691 2692 2693 2694 2695 2696 2697 269B 2699 2700 2701 2702 2703
2707 270B 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
2723 2724 2725 2726 2727 272B 2729 2730 2731 2732 2733 2734 2735
2739 2740 2741 2742 2743 2744 2745 2746 2747 274B 2749 2750 2751
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
2771 2772 2773 2774 2775 2776 2777 277B 2779 27BO 27B1 27B2 2783
27B7 2788 27B9 2790 2791 2792 2793 2794 2795 2796 2797 279B 2799
2B03 2B04 2805 2806 2B07 2BOB 2B09 2B10 2B11 2B12 2B13 2B14 2B15

3 4 5 6 7 B 9 A B c 0 E F

2B19 2B20 2B21 2B22 2B23 2B24 2B25 2B26 2B27 2B28 2B29 2B30 2B31
2B35 2836 2B37 2838 2839 2840 2841 2842 2843 2844 2845 2846 2B47
2851 2B52 2853 2854 2855 2B56 2857 2B5B 2B59 2B60 2B61 2B62 2863
2867 286B 2869 2B70 2B71 2B72 2B73 2B74 2B75 2B76 2B77 2B7B 2879
2BB3 2884 2B85 2886 2887 288B 2889 2890 2891 2892 2B93 2B94 2895
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
2915 2916 2917 291B 2919 2920 2921 2922 2923 2924 2925 2926 2927
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
2979 2980 29B1 29B2 29B3 29B4 29B5 29B6 29B7 29BB 2989 2990 2991
2995 2996 2997 299B 2999 3000 3001 3002 3003 3004 3005 3006 3007
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
3027 302B 3029 3030 3031 3032 3033 3034 3035 3036 3037 303B 3039
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
3059 3060 3061 3062 3063 3064 3065 3066 3067 306B 3069 3070 3071

-= ..

8227 Rev. 2

UP-NUMBER

0

co 3072
C1 308B
C2 3104
C3 3120
C4 3136
C5 3152
C6 316B
C7 31B4
CB 3200
C9 3216
CA 3232
CB 324B
cc 3264
CD 32BO
CE 3296
CF 3312

0

DO 332B
D1 3344
D2 3360
DJ 3376
D4 3392
D5 340B
D6 3424
D7 3440
DB 3456
D9 3472
DA 348B
DB 3504
DC 3520
DD 3536
DE 3552
DF 356B

0

ED 3584
E1 3600
E2 3616
EJ 3632
E4 3648
E5 3664
E6 36BO
E7 3696
EB 3712
E9 372B
EA 3744
EB 3760
EC 3776
ED 3792
EE 380B
EF 3824

0

FO 3840
Fl 3856
F2 3872
F3 388B
F4 3904
F5 3920
F6 3936
F7 3952
F8 396B
F9 39B4
FA 4000
FB 4016
FC 4032
FD 404B
FE 4064
FF 4080

1

3073
30B9
3105
3121
3137
3153
3169
31B5
3201
3217
3233
3249
3265
32B1
3297
3313

1

3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505
3521
3537
3553
3569

1

35B5
3601
3617
3633
3649
3665
36B1
3697
3713
3729
3745
3761
3777
3793
3809
3825

1

3841
3857
3873
3889
3905
3921
3937
3953
3969
39B5
4001
4017
4033
4049
4065
40B1

2 3

3074 3075
3090 3091
3106 3107
3122 3123
313B 3139
3154 3155
3170 3171
31B6 31B7
3202 3203
321B 3219
3234 3235
3250 3251
3266 3267
3282 32B3
329B 3299
3314 3315

2 3

3330 3331
3346 3347
3362 3363
337B 3379
3394 3395
3410 3411
3426 3427
3442 3443
345B 3459
3474 3475
3490 3491
3506 3507
3522 3523
353B 3539
3554 3555
3570 3571

2 3

35B6 35B7
3602 3603
361B 3619
3634 3635
3650 3651
3666 3667
36B2 36B3
369B 3699
3714 3715
3730 3731
3746 3747
3762 3763
377B 3779
3794 3795
3810 3811
3826 3827

2 3

3842 3843
385B 3859
3874 3875
3890 3891
3906 3907
3922 3923
3938 3939
3954 3955
3970 3971
3986 39B7
4002 4003
4018 4019
4034 4035
4050 4051
4066 4067
4082 4083

SPERRY UNIVAC Operating System/3

Table C-2. Hexadecimal-Decimal Integer Conversion (Part 4 of 4)

4 5 6 7 B 9 A B

3076 3077 307B 3079 30BO 30B1 30B2 30B3
3092 3093 3094 3095 3096 3097 309B 3099
310B 3109 3110 3111 3112 3113 3114 3115
3124 3125 3126 3127 312B 3129 3130 3131
3140 3141 3142 3143 3144 3145 3146 3147
3156 3157 315B 3159 3160 3161 3162 3163
3172 3173 3174 3175 3176 3177 317B 3179
31BB 31B9 3190 3191 3192 3193 3194 3195
3204 3205 3206 3207 320B 3209 3210 3211
3220 3221 3222 3223 3224 3225 3226 3227
3236 3237 323B 3239 3240 3241 3242 3243
3252 3253 3254 3255 3256 3257 3258 3259
326B 3269 3270 3271 3272 3273 3274 3275
3284 32B5 3286 32B7 32BB 32B9 3290 3291
3300 3301 3302 3303 3304 3305 3306 3307
3316 3317 331B 3319 3320 3321 3322 3323

4 5 6 7 B 9 A· B

3332 3333 3334 3335 3336 3337 333B 3339
334B 3349 3350 3351 3352 3353 3354 3355
3364 3365 3366 3367 336B 3369 3370 3371
33BO 33B1 33B2 JJBJ 33B4 33B5 33B6 33B7
3396 3397 339B 3399 3400 3401 3402 3403
3412 3413 3414 3415 3416 3417 341B 3419
342B 3429 3430 3431 3432 3433 3434 3435
3444 3445 3446 3447 344B 3449 3450 3451
3460 3461 3462 3463 3464 3465 3466 3467
3476 3477 347B 3479 34BO 34B1 34B2 34B3
3492 3493 3494 3495 3496 3497 349B 3499
350B 3509 3510 3511 3512 3513 3514 3515
3524 3525 3526 3527 3528 3529 3530 3531
3540 3541 3542 3543 3544 3545 3546 3547
3556 3557 355B 3559 3560 3561 3562 3563
3572 3573 3574 3575 3576 3577 357B 3579

4 5 6 7 8 9 A B

3588 35B9 3590 3591 3592 3593 3594 3595
3604 3605 3606 3607 360B 3609 3610 3611
3620 3621 3622 3623 3624 3625 3626 3627
3636 3637 3638 3639 3640 3641 3642 3643
3652 3653 3654 3655 3656 3657 3658 3659
3668 3669 3670 3671 3672 3673 3674 3675
36B4 36B5 36B6 36B7 36BB 36B9 3690 3691
3700 3701 3702 3703 3704 3705 3706 3707
3716 3717 3718 3719 3720 3721 3722 3723
3732 3733 3734 3735 3736 3737 3738 3739
374B 3749 3750 3751 3752 3753 3754 3755
3764 3765 3766 3767 3768 3769 3770 3771
37BO 37B1 3782 37B3 3784 3785 3786 3787
3796 3797 379B 3799 3800 3801 3802 3803
3812 3813 3814 3815 3816 3817 381B 3819
3828 3829 3830 3831 3832 3833 3834 3835

4 5 6 7 B 9 A B

3844 3845 3846 3847 384B 3849 3850 3B51
3860 3861 3862 3863 3864 3865 3866 3867
3876 3877 387B 3879 38BO 3881 3882 3883
3892 3893 3894 3895 3896 3897 3898 3899
3908 3909 3910 3911 3912 3913 3914 3915
3924 3925 3926 3927 392B 3929 3930 3931
3940 3941 3942 3943 3944 3945 3946 3947
3956 3957 395B 3959 3960 3961 3962 3963
3972 3973 3974 3975 3976 3977 3978 3979
3988 39B9 3990 3991 3992 3993 3994 3995
4004 4005 4006 4007 400B 4009 4010 4011
4020 4021 4022 4023 4024 4025 4026 4027
4036 4037 403B 4039 4040 4041 4042 4043
4052 4053 4054 4055 4056 4057 4058 4059
4068 4069 4070 4071 4072 4073 4074 4075
4084 4085 40B6 4087 408B 4089 4090 4091

C-5
UPDATE LEVEL PAGE

c D E F

3084 30B5 3086 3087
3100 3101 3102 3103
3116 3117 311B 3119
3132 3133 3134 3135
314B 3149 3150 3151
3164 3165 3166 3167
31BO 31B1 31B2 31B3
3196 3197 319B 3199
3212 3213 3214 3215
322B 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263
3276 3277 327B 3279
3292 3293 3294 3295
3308 3309 3310 3311
3324 3325 3326 3327

c D E F

3340 3341 3342 3343
3356 3357 3358 3359
3372 3373 3374 3375
33BB 33B9 3390 3391
3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 343B 3439
3452 3453 3454 3455
346B 3469 3470 3471
3484 34B5 3486 3487
3500 3501 3502 3503
3516 3517 351B 3519
3532 3533 3534 3535
3548 3549 3550 3551
3564 3565 3566 3567
3580 3581 3582 3583

c D E F

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647
3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
370B 3709 3710 3711
3724 3725 3726 3727
3740 3741 3742 3743
3756 3757 375B 3759
3772 3773 3774 3775
378B 37B9 3790 3791
3804 3805 3806 3807
3820 3821 3822 3B23
3836 3837 383B 3839

c D E F

3852 3853 3854 3B55
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903
3916 3917 3918 3919
3932 3933 3934 3935
3948 3949 3950 3951
3964 3965 3966 3967
3980 39B1 39B2 39B3
3996 3997 399B 3999
4012 4013 4014 4015
402B 4029 4030 4031
4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 407B 4079
4092 4093 4094 4095

8227 Rev. 2
UP-NUMBER

First Digit

Hex. Decimal

.0 .0000

.1 .0625

.2 .1250

.3 .1875

.4 .2500

.5 .3125

.6 .3750

.7 .4375

.8 .5000

.9 .5625

.A .6250

.B .6875

.c .7500

.D .8125

.E .8750

.F .9375

Hex.

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

.OA

.OB

.oc

.OD

.OE

.OF

SPERRY UNIVAC Operating System/3

Table C-3. Hexadecimal-Decimal Fraction Conversion

Second Digit Third Digit

Decimal Hex. Decimal

.0000 0000 .000 .0000 0000 0000

.0039 0625 .001 .0002 4414 0625

.0078 1250 .002 .0004 8828 1250

.0117 1875 .003 .0007 3242 1875

.0156 2500 .004 .0009 7656 2500

.0195 3125 .005 .0012 2070 3125

.0234 3750 .006 .0014 6486 3750

.0273 4375 .007 .0017 0898 4375

.0312 5000 .008 .0019 5312 5000

.0351 5625 .009 .0021 9726 5625

.0390 6250 .OOA .0024 4140 6250

.0429 6875 .008 .0026 8554 6875

.0468 7500 .ooc .0029 2968 7500

.0507 8125 .OOD .0031 7382 8125

.0546 8750 .OOE .0034 1796 8750

.0585 9375 .OOF .0036 6210 9375

UPDATE LEVEL PAGE

Fourth Digit

Hex • Decimal

. 0000 .0000 0000 0000

.0001 .0000 1525 8789

.0002 .0000 3051 7578

.0003 .0000 4577 6367

.0004 .0000 6103 5156

.0005 .0000 7629 3945

.0006 .0000 9155 2734

.0007 .0001 0681 1523

.0008 .0001 2207 0313

.0009 .0001 3732 9102

.OOOA .0001 5258 7891

.0008 .0001 6784 6680

.oooc .0001 8310 5469

.OOOD .0001 9836 4258

.OOOE .0002 1362 3047

.OOOF .0002 2888 1836

To convert a 4-digit (2-byte) hexadecimal fraction to a decimal fraction, add the values shown in the above table
for each of the hexadecimal digits to be converted as illustrated below. The hexadecimal fraction .B5A 1 equals
the approximate decimal fraction .70948791 from the above table .

. B from the table equals .6875

.05 from the table equals .01953125

.OOA from the table equals .002441406250

.0001 from the table equals .000015258789

.B5A1 equals the sum .709487915039

NOTE:

All values listed are approximate values.

C-6

((

Table C-4. Hexadecimal Addition and Subtraction Table

01 02 03 04 05 06 07 08 09 OA OB QC OD OE OF 10 11 12 13 14 15
01 02 03 04 05 06 07 08 09 QA OB QC OD OE OF 10 11 12 13 14 15 16
02 03 04 05 06 07 08 09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17
03 04 05 06 07 08 09 QA OB QC OD OE OF 10 11 12 13 14 15 16 17 18
04 05 06 07 08 09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19
05 06 07 08 09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A
06 07 08 09 QA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B
07 08 09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
08 09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
09 OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
OA OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
OB QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
QC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A IB 1C 1D 1E 1F 20 21
OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22
OE OF 10 11 12 13 14 15 16 17 18 19 IA 1B 1C 1D IE 1F 20 21 22 23
OF 10 11 12 13 14 15 16 17 18 19 1A 1B IC 1D 1E IF 20 21 22 23 24
10 11 12 13 14 15 16 17 18 19 1A 1B IC 1D 1E IF 20 21 22 23 24 25
II 12 13 14 15 16 17 18 19 IA 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
12 13 14 15 16 17 18 19 1A 1B 1C ID IE 1F 20 21 22 23 24 25 26 27
13 14 15 16 17 18 19 IA IB IC 1D 1E 1F 20 21 22 23 24 25 26 27 28
14 15 16 17 18 19 IA IB IC 1D 1E IF 20 21 22 23 24 25 26 27 28 29
15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A
16 17 18 19 1A 1B IC 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B
17 18 19 IA IB 1C 1D IE IF 20 21 22 23 24 25 26 27 28 29 2A 2B 2C
18 19 IA IB IC 1D IE IF 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D
19 IA IB 1C 1D 1E IF 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
IA 1B 1C 1D 1E IF 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
1B 1C 1D 1E IF 20 21 22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 30
IC 1D IE IF 20 21 22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 30 31
ID 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 30 31 32
IE 1F 20 21 22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 30 31 32 33
1F 20 21 22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 30 31 32 33 34

1 2 3 4 5 6 7 8 9 A B c D E F 10 11 12 13 14 15

16 17 18 19 1A 1B 1C
17 18 19 1A 1B 1C 1D
18 19 1A 1B 1C 1D 1E
19 1A 1B 1C 1D 1E 1F
1A 1B 1C 1D 1E 1F 20
1B 1C 1D 1E 1F 20 21
1C 1D 1E 1F 20 21 22
1D 1E 1F 20 21 22 23
1E 1F 20 21 22 23 24
1F 20 21 22 23 24 25
20 21 22 23 24 25 26
21 22 23 24 25 26 27
22 23 24 25 26 27 28
23 24 25 26 27 28 29
24 25 26 27 28 29 2A
25 26 27 28 29 2A 2B
26 27 28 29 2A 2B 2C
27 28 29 2A 2B 2C 2D
28 29 2A 2B 2C 2D 2E
29 2A 2B 2C 2D 2E 2F
2A 2B 2C 2D 2E 2F 30
2B 2C 2D 2E 2F 30 31
2C 2D 2E 2F 30 31 32
2D 2E 2F 30 31 32 33
2E 2F 30 31 32 33 34
2F 30 31 32 33 34 35
30 31 32 33 34 35 36
31 32 33 34 35 36 37
32 33 34 35 36 37 38
33 34 35 36 37 38 39
34 35 36 37 38 39 3A
35 36 37 38 39 3A 3B
16 17 18 19 1A 18 lC

1D 1E 1F
1E 1F 20
1F 20 21
20 21 22
21 22 23
22 23 24
23 24 25
24 25 26
25 26 27
26 27 28
27 28 29
28 29 2A
29 2A 2B
2A 28 2C
2B 2C 2D
2C 2D 2E
2D 2E 2F
2E 2F 30
2F 30 31
30 31 32
31 32 33
32 33 34
33 34 35
34 35 36
35 36 37
36 37 38
37 38 39
38 39 3A
39 3A 3B
3A 38 3C
3B 3C 3D
3C 3D 3E
1D 1E 1F

01
02
03
04
05
06
07
08
09
QA
OB
QC

OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
lF

c .,, (I)

' "' z "' c
3:: :II m .,
m ~
ll "'

c .,,
0
)>
-I
m
r
m
<
m
r -.,,
)>
Gl
m

Cl)
"'C
m
:::D
:::D
-<
c:
z
<
)>
C')

0
i ..,
t:I)

!::!'.
~

CCI

!f s
3 -w

()

I

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

C-8

Table C-5. Powers of 16

16" n

1 0
16 1

256 2
4 096 3

65 536 4
1 048 576 5

16 777 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10
17 592 186 044 416 11

281 474 976 710 656 12
4 503 599 627 370 496 13

72 057 594 037 927 936 14
1 152 921 504 606 846 976 15

These powers of 16 are especially useful in determining the value of floating-point numbers.

8227 Rev. 2
UP-NUMBER

1
2

4
8

17
34

68
137
274
549

1 099

1
2
4
8

16
33
67

134

268
536
073
147

294
589
179
359

719
438
877
755

511

2"

1
2
4

8

16
32
64

128

256
512

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

048 576
097 152
194 304
388 608

777 216
554 432
108 864
217 728

435 456
870 912
741 824
483 648

967 296
934 592
869 184
738 368

476 736
953 472
906 944
813 888

627 776

SPERRY UNIVAC Operating System/3 C-9
UPDATE LEVEL PAGE

Table C-6. Powers of 2

n 2·"

0 1.0
1 0.5
2 0.25

3 0.125

4 0.062 5
5 0.031 25
6 O.Q15 625
7 0.007 812 5

8 o_.003 906 25
9 0.001 953 125

10 0.000 976 562 5
11 0.000 488 281 25

12 0.000 244 140 625
13 0.000 122 070 312 5
14 0.000 061 035 156 25
15 0.000 030 517 578 125

16 0.000 015 258 789 062 5
17 0.000 007 629 394 531 25
18 0.000 003 814 697 265 625
19 0.000 001 907 348 632 812 5

20 0.000 000 953 674 316 406 25
21 0.000 000 476 837 158 203 125
22 0.000 000 238 418 579 101 562 5
23 0.000 000 119 209 289 550 781 25

24 0.000 000 059 604 644 775 390 625
25 0.000 000 029 802 322 387 695 312 5
26 0.000 000 014 901 161 193 847 656 25
27 0.000 000 007 450 580 596 923 828 125

28 0.000 000 003 725 290 298 461 914 062 5
29 0.000 000 001 862 645 149 230 957 031 45
30 0.000 000 000 931 322 574 615 478 515 625
31 0.000 000 000 465 661 287 307 739 257 812 5

32 0.000 000 000 232 830 643 653 869 628 906 25
33 0.000 000 000 116 415 321 826 934 814 453 125
34 0.000 000 000 058 207 660 913 467 407 226 562 5
35 0.000 000 000 029 103 830 456 733 703 613 281 25

36 0.000 000 000 014 551 915 228 366 851 806 640 625
37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

FLOATING-POINT MATH

UPDATE LEVEL PAGE

The floating-point instruction set is added to the instruction repertoire as part of the floating-point control
feature. An operation exception results if a floating-point instruction is issued to a processor in which the
floating-point control feature has not been installed.

The floating-point instruction set provides for loading, adding, subtracting, comparing, multiplying, dividing,
storing, and sign control of short or long format floating-point operands. Four double-word floating-point
registers are provided to accommodate storing and loading of results and operands. These registers are
numbered 0, 2, 4, and 6. The specification of any other register number results in a specification exception. For
long format operands, the entire double-word register is involved in the operation. For short format operands,
excluding the product in the short format multiply (ME) instruction, only the most significant word of the double­
word register is involved in the operation. The least significant word remains unchanged. Separate instructions
are provided for operations with long and short format operands.

Each operand is treated as a floating-point number consisting of a biased exponent (characteristic) and a signed
fraction (mantissa). The biased exponent is expressed in excess-64 binary notation; the fraction is expressed as a
hexadecimal number having an arithmetic point to the left of the high-order digit. The quantity expressed by the
full floating-point number is the product of the fraction and the number 16 raised to the power of the biased
exponent minus 64 (fraction times 16n-64).

A quantity may be represented with the greatest precision by a floating-point number of a given fraction length
when the number is in a "normalized" form. A normalized floating-point number has a nonzero, high-order
hexadecimal fraction digit.

An exponent overflow exception develops if, in the result of a floating-point instruction, the characteristic of the
result exceeds 127 and the fraction of the result is not zero. An exponent underflow exception develops if the
characteristic is less than zero and the fraction of the result is not zero. An exponent overflow exception causes
a program interruption. An exponent underflow exception causes a program interruption if the exponent
underflow mask bit f the current PSW is 1.

A floating-point number having a zero characteristic, a zero fraction, and a positive (zero) sign is said to be a
"true zero" number.

The floating-point instructions are available in RR and RX formats. Therefore, at least one of the operands is
contained in one of the floating-point registers. The other operand is located in the same or another register or in
main storage. Each main storage address may be specified as relative or absolute.

To increase the precision of certain computations, an additional least significant digit, the guard digit, is carried
within the hardware in the intermediate result of the following operations: add-normalized, subtract-normalized,
add-unnormalized, subtract-unnormalized, compare, halve, and multiply. In the execution of add-normalized,
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a right shift of
the fraction is required to equalize two exponents, the last hexadecimal digit to be shifted out of the least
significant digit position of the fraction is saved by the processor hardware as the guard digit. The shifted
fraction, including the guard digit, is used in computing the intermediate result. In the halve instruction, the least
significant bit position of the fraction is saved as the fifteenth digit of the fraction of the intermediate product. If
the intermediate result is subsequently normalized, the guard digit is shifted left to become part of the
normalized fraction.

C-10

8227 Rev. 2
UP-NUMBER

s
i
g
n

1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SHORT FORM FLOATING-POINT NUMBER

characteristic mantissa
(exponent) (fraction)

7 8 31

LONG FORM FLOATING-POINT NUMBER

f characteristic mantissa D
9 (exponent) (fraction)

.__" ~~~~~~~~~~~~~~~~~~~~~7CL.::.8~~~~~~~~~~~~~~--' 63

Floating-Point Addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are equal, the
fractions are added to form an intermediate sum. If the exponents are unequal, the smaller exponent is
subtracted from the larger. The difference indicates the number of hexadecimal digit shifts to the right to be
performed on the fraction having the smaller exponent. Each hexadecimal digit shift to the right causes the
exponent to be increased by 1. After equalization, the fractions are added to form an intermediate sum.

A carry-over digit of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an exponent
overflow condition occurs, the resultant floating-point number consists of a normalized ·and correct fraction, a
correct sign, and an exponent which is 128 less than the correct value.

• Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit, and a possible carry-over digit. If
any most significant digits of the intermediate sum are zero, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled, and the exponent
is reduced by the number of shifts. If normalization is unnecessary, the guard digit is 1.

• Exponent Underflow

If normalization causes the exponent to become less than zero, an exponent underflow condition results. If
the exponent underflow mask bit (38) of the current program status word (PSW) is 1, the resultant floating­
point number has a correct and normalized fraction, a correct sign, and an exponent which is 128 more
than the current value. If the exponent underflow mask of the current PSW is zero, the result is a true zero.

C-11

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• Zero Result

If the intermediate sum, including the guard digit, is zero, a significance exception exits. If the significance
mask bit (39) of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is zero and the intermediate sum is zero, the result is made a
true zero. Exponent underflow cannot occur for a zero fraction.

• Sign

The sign of an arithmetic result is determined algebraically. The sign of a result with a zero fraction is
always positive.

Floating-Point Division

Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient exponent
is obtained by subtracting the exponents of the two operands and increasing the difference by 64.

Both operands are normalized before division. Consequently, the intermediate quotient is correctly normalized or
a right shift of one digit position may be required. The exponent of the intermediate result is increased by 1 if the
shift is necessary. All operand 1 (r1) fraction digits are used in forming the quotient, even if the normalized
operand 1 fraction is larger than the normalized operand 2 fraction.

If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient consists of the
correct and normalized fraction, a correct sign, and an exponent which is 128 less than the correct value.

If the final quotient exponent is less than zero, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct sign,
and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of the current
PSW is zero, the result is made a true zero. Underflow does not apply to the intermediate result or the operands
during normalization. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit of the current PSW is 1.

Attempted division by a divisor with a zero fraction leaves the dividend unchanged, and a program exception for
floating-point divide occurs. When division of a zero dividend is attempted, the quotient fraction is zero. The
quotient sign and exponent are made zero and give a true zero result. No program exceptions occur.

C-12

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Floating-Point Multiplication

UPDATE LEVEL PAGE

Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of the
intermediate product is obtained by adding the exponents of the two operands and reducing the sum by 64.

Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit before normalization.

If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant floating­
point number consists of a correct and normalized fraction, a correct sign, and an exponent which is 128 less
than the correct value. The overflow condition does not occur for an intermediate product exponent exceeding
127 if the final exponent is brought within range during normalization.

If the final product exponent is less than zero, an exponent underflow condition exists. If the exponent underflow
mask bit (38) of the current PSW is 1, the resultant floating-point number has a correct and normalized fraction,
a correct sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit
of the current PSW is zero, the result is made a true zero. When an underflow characteristic becomes less than
zero during normalization before multiplication, an underflow exception is not recognized.

When all digits of the intermediate product are zero, the result is made a true zero.

When the resulting fraction is zero, a program exception for exponent underflow or overflow does not occur.

C-13

Appendix D. Source Corrections·

8227 Rev. 2

UP-NUMBER

GENERAL

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The OS/3 assembler supports a source module correction routine. This routine is the same as the one used in
the librarian. The correction deck is interchangeable between the assembler and the librarian except the
librarian also uses the added COR control statement. The corrections made to the source module are temporary.
The corrections are specified by the presence of both the source module input(/ I liPARAMlilN=module name or
the IN=(vol-ser-no, label) for the jproc call), and the correction records in the job control stream. These records
must be within the data delimiters (/$ and /*). If there are no records between the data delimiters, no source
correction is performed.

There are three control statements associated with the correction routine: sequence (SEQ), recycle (REC), and
skip (SKI). To make the source module corrections, the actual source record to be inserted is used as the
correction card with the same sequence number as the record to be replaced. Insertions are performed by using
at least one correction card (always the first card) with a sequence number falling between the sequence
numbers of the records between which the insertion is to be made. Any number of unsequenced correction
cards may then follow the first sequence card. Deletions are performed by bypassing one or more original source
module records in the old data set, thus eliminating them from being written on the new data set. The SKI and
REC statements are used for this function.

D-1

8227 Rev. 2
UP-NUMBER

PARAM

SPERRY UNIVAC Operating System/3 D-2
UPDATE LEVEL PAGE

The PARAM statement specifies the assembler processing options in effect at assembly time and alters the
standard default options. If you don't specify assembler options in the control stream of your job, the assembler
functions as follows:

• The assembler searches only the system source library file (YSRC) for any source module or copy code
referenced.

• It also searches only the system macro library file (YMAC) for any macro references.

• It stores the object module produced in the job run library file (YRUN).

• It prints the source code, object code, cross-references, and diagnostic listings.

• The value of &SYSPARM is equal to a null string .

• Columns 1 and 2 must contain slashes, followed by at least one blank column, and then PARAM followed
by at least one blank column. Multiple options are supported for each option separated by commas. The
end of the selected options is indicated by a blank column following the last option. All options selected are
printed preceding the assembly listing.

Format:

II t:, PARAM t:,

10

{ · .. f. ile ... ~.·.N·.··a· m·)······e.· ... 1} [i{ ... f .. ·.i···.'·.e·· .. ·.n·(·N·a···· .. ·· •. m.).· .. · .. ·.··.e.·.·.··2··· }]n $V'ISRC IY:$$RE u
[,1 N=modu I en a me

[,LST= { ([s1] [,s2]
5

[,s3] [,s4]) } J

{

filename l]
$V~~~t:AJ

[,RO=

[
_ { 'string' }]

,SYSPARM- .··.··.··.···.·· .. · ·.·.• .. ·.·.··.•·.·.•·.· .. ••.·.•••.•.· .•... null~nrang

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 D-3

UPDATE LEVEL PAGE

PARAM

The parameter definitions are as follows:

COPY=

Enables up to two files to identified as source code module libraries or specifies that no files are to be
searched for source code modules. If this option is omitted, YSRC is assumed and is the only file
searched for source code module references. Only source code modules can be copied; the source
code must be in the standard format and may not contain any COPY, ICTL, MACRO, PROC. or MEND

directives.

filename1
Specifies that the file identified as filename1 is searched first for source code modules referenced
and, if not found there, then YSRC is searched: filename is any name you specify or the system
source library. If filename1 = filename2, then COPY= filename1 will generate the same files to be
searched as COPY = /filename2 except that in the first case the order that the files are searched in
will be filename1 and then YSRC; whereas in the 2nd case the order will be YSRC and then
filename2.

filename1 /filename2

Specifies that the file identified as filename1 is searched first. Then, the file identified as filename2 is
searched for source code modules referenced. When two filenames are specified for this parameter,
the YSRC file is not searched.

filename1 /(N)

{N)

IN=

Specifies only the file identified as filename1 as searched for source code modules referenced, as
stated above, if filename1 = filename2, then COPY=filename1 /(N) is the same as COPY =
(N)/filename2 with only one file searched in either case.

Specifies no files, not even YSRC, are searched for source code modules referenced. COPY =
(N)/(N) is the same as COPY=(N).

Identifies the name of the source module that is to be assembled and the file in which it resides. If
this option is omitted, the source code must be in the control stream.

modulename
Specifies the name of the source module and directs the assembler to search the YSRC file for the
module; modulename is the name of the source module and is up to eight characters.

modulename/filename

LIN=

Specifies the name of the source module and the file in which it resides; filename is any name you
supply or the system source library.

Enables up to two files to be identified as macro source files or no files to be searched for macro
references. If this option is omitted, YMAC is assumed and is the only file searched.

filename1

Identifies the file that is searched for macro references and, if not found there, then YMAC is
searched; filename is any name or the name of the system macro library.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 D-4
UPDATE LEVEL PAGE

PARAM

filename1 /filename2
Identifies the two files that are searched for macro references. The file identified as filename1 is
searched first, followed by the file identified as filename 2. The YMAC file is not searched.

filename1 /(N)

(N)

LST=

s

Specifies only the file identified as filename1 is searched for macro references.

Specifies no files, not even YMAC, are searched for macro references.

Indicates the type of listing desired. If this option is omitted, source, object, corss-reference, and

diagnostic listings are printed.

A single specification requiring no parentheses.

([s,] ... (,S4])

Any s in the series is one of the following:

NC

ND

NR

Specifies that cross-reference listings are suppressed.

Specifies that diagnostic listings are suppressed.

Specifies that the cross-reference listing is to contain only those symbols that have at least one
reference each. If specified with the NC option, NC overrides NR.

N Specifies a proc or macro debug mode feature within the OS/3 assembler. When the feature is
selected, the output listing shows the following:

DBG
Specifies a proc or macro debug mode feature within the OS/3 assembler. When the feature is
selected, the output listing shows the following:

• Results of the expansion of any proc or macro called within the user program, including
any conditional assembly directives processed as the result of the expansion itself.
Source coding (constants, directives, and instructions) is listed twice and shows any
appropriate substitutions. Any statements causing error diagnostics show the exit line in
error.

• A proc or macro which produces error diagnostics at the time it is encoded is listed
following the END directive; e.g., system errors. A proc or macro is encoded once, but may
be called multiple times.

• If an error is detected at both expansion and encoding time, it appears two or more times.
Errors detected only at encoding time appear once following the END directive.

8227 Rev. 2
UP-NUMBER

D-5 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

PARAM

• All lines flagged (regardless of their order or appearance) are shown in the diagnostic
summary list. Lines flagged at encoding time may or may not be flagged at expansion
time.

When this feature is not selected, any errors detected during proc or macro expansion may not
show the exact line in error, but rather the vicinity of the item which is flagged.

OUT=
Enables you to specify the file that is to be used to store the object module output by the assembler. If
this option is omitted, the object module is generated and stored in YRUN, the system-run library.

filename

(N)

R0=

Identifies the file that is used as the output file by the assembler; filename is any name or the job run
library.

Specifies that no output file is used by the assembler and, thus, no object module is generated.

Permits you to optionally flag all absolute/base displacement fields of instructions that yield values
less than 4096 (100016). Each statement is flagged with an 'ADDRESSABILITY' error flag.

SYS PARM=
Specifies the equivalent of a global SETC symbol, with the value specified in this option. If this option
is omitted, the value of &SYSPARM is a null string.

'string'

Specifies a string of one to eight characters enclosed in apostrophes. An apostrophe within the string
is represented by two apostrophes but only counts as one in determining the length of the string.

Operational Consideration:

The value established by SYSPARM is available within the assembly, both outside of and within macro
definitions. This parameter is referenced as &SYSPARM within assembly statements. Any error in this
specification directs the assembler to ignore the specification, and an appropriate error message is printed
on the output printer.

D-6 8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SEQ

Function:

Specifies the starting position and the length of the sequence field. If the sequence field is omitted, column
73 is assumed to be the first column of the sequence field and continue to the maximum of eight
characters.

Format:

LABEL b.OPERATION t.

unused SEQ

Parameters:

column position

OPERAND

column position
73 } {

content }
, 00000000

73
SEQUENCE

Specifies the first column position in the source record where the sequence field begins.

If omitted, column 73 is assumed to be the first column of the sequence field.

content

One- to eight-character value. The length of this value determines the length of the sequence field.

NOTES:

1. Card column 1 must be blank if the sequence field does not start in card column 1.

2. The SEQ card always is the first card in the correction routine.

B227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 D-7
UPDATE LEVEL PAGE

REC

Function:

Causes the record pointer for the input module to be repositioned back to the first record in the module. In
conjunction with the SKI control statement, it allows rearranging of major segments of the input module.
When a REC control statement is processed, records are read from the input module up to and including
the record whose sequence number matches the sequence number in the REC control statement field.
Then, the record pointer for the input module is reset to the first record in the module. If the sequence field
of the REC control statement is blank, repositioning of the record pointer takes place immediately.

Format:

LABEL

ignored

Parameters:

last-sequence no.

~OPERATION~

REC unused

OPERAND
73
SEQUENCE

[last-sequence-no.]

One to eight alphanumeric characters identifying the sequence number of the last input record to be
read from the input module.

If omitted, the repositioning function takes place immediately.

NOTES:

1. Records are replaced one at a time by writing a source statement with a sequence number matching
the sequence number of the record to be replaced.

2. Records are inserted by writing source correction statements with sequence numbers that fall
between the sequence numbers of the input records between which insertion is to take place. Blank
sequence fields cause an insertion to take place immediately.

D-8 8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SKI

Function:

Allows one or more original input module records to be bypassed. Records are read from the input module
until a sequence number is detected that matches the sequence number of the SKI command. The skip
operation is started and continues until a sequence number that matches the operand field of the SKI
command is detected. If the sequence field of the skip command is blank, the function is started
immediately.

Format:

LABEL fi OPERATION fi

ignored SKI

OPERAND

last-sequence-no.

73
SEQUENCE

[starting-sequence-no.]

Parameters:

last-sequence-no.
One to eight alphanumeric characters identifying the sequence number of the last input module
record to be bypassed.

starting-sequence-no.
One to eight alphanumeric characters identifying the sequence number of the first source module
record to be bypassed.

If omitted, the skip operation is started immediately, starting with the input module record that immediately
follows the last record operated on.

Appendix E. System Variable Symbols

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

System variable symbols automatically generate values or character strings at assembly time. There are seven
system variable symbols: &SYSECT, &SYSLIST, &SYSNDX, &SYSDATE, &SYSTIME, &SYSJDATE, and
&SYSPARM. The following paragraphs contain the functions of each system variable symbol.

&SYSECT is a system variable symbol used to represent the name of the control section containing a macro
instruction.

&SYSECT is assigned a value for each inner and outer macro instruction processed by the assembler. This value
is the name of the control section containing the macro instruction. If &SYSECT is referenced in a macro
definition, its substituted value is the name of the last CSECT, DSECT, or START directive that occurred prior to
the macro instruction. If a named CSECT, DSECT, or START directive did not appear prior to the macro
instruction, &SYSECT is assigned a null character value during the processing of the macro definition called by
the macro call instruction.

Any CSECT or DSECT directives processed within a macro definition affect the value of &SYSECT for any
subsequent inner macro instructions in the definition and for any outer and inner macro instructions that occur
outside the current nest of macro definitions. However, the value of &SYSECT remains constant during the
processing of a given macro instruction, and it is not affected by CSECT or DSECT directives or inner macro
instructions occurring in that macro definition.

&SYSLIST is a system variable symbol.

Within a macro definition in macro format, each positional parameter may be referenced by a name; however,
each positional parameter need not be named in the macro prototype statement and may be referenced in terms
of its position within the macro instruction operand field by writing the system variable symbol &SYSLIST
followed by an expression in parentheses. The value of the expression identifies the position of the parameter in
the operand field. The expression may be a SETA symbol or a self-defining term. Therefore, if a macro definition
prototype statement has the operand field:

&A,&B,&C

the first positional parameter is referenced either as &A or &SYSLIST(1), the second is referenced either as &B
or &SYSLIST(2), and the third positional parameter is either &C or &SYSLIST(3), and so on. This capability, which
is used to index through the positional parameters, treats each parameter in the same way.

A null character string is generated in place of &SYSLIST(m) if m is zero or greater than the number of positional
parameters supplied in the macro instruction.

The system variable &SYSLIST may not be used in a mixed-mode (positional and keyword parameters included)
macro definition.

&SYSNDX is a system variable symbol.

The assembler maintains a counter that is incremented by 1 each time the assembler encounters a macro
instruction. The value of this counter within the first macro is 1. The current value of this counter is supplied as
the 4-digit character value of the system variable symbol &SYSNDX each time a macro instruction is
encountered. A macro definition that defines labels within the code it generates and that may be called more
than once in a single assembly generally creates duplicate definitions of the same label. To avoid this problem,
the system variable symbol &SYSNDX may be used as a suffix on the labels defined by the macro definition, so
that each time the macro definition is called, it will define a different set of labels.

E-1

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

&SYSDATE is a system variable symbol, which you can reference in your program text or within a macro
definition to generate the date your program is assembled. The date is produced in your assembly listing as a
character string representing the month, day, and year (mm/dd/yy) the program was assembled. If you:

1. assemble your program;

2. store it in a library; and

3. retrieve the assembled program for execution at a later date -

any &SYSDATE reference in your program references the original assembly date, not the current date when your
program is executed.

You specify &SYSDATE as either an operand in a source code statement, which defines a constant (DC), or an
operand field literal.

Example:

LABEL i10PERA TION11 OPERAND
10 16

,

When this line of source code is assembled, the object code contains the current date.

You can also use the &SYSDATE system variable symbol as a literal.

Example:

When this line of source code is executed, the assembly date is moved into a main storage area called BUF.

&SYSTIME is a system variable symbol, which you can reference either in your program text or within a macro
definition, to generate the time of day your program is assembled. The date is produced in your assembly listing
as a character string representing the hour, minute, and second (hh.mm.ss) the assembly was run. If you:

1. assemble your program;

2. store it in a library; and

3. retrieve the assembled program for execution at another time -

E-2

8227 Rev. 2

UP-NUMB EA
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

any &SYSTIME reference in your program references the original assembly time, not the current time of
execution.

You specify &SYSTIME as either an operand in a source code statement, which defines a constant (DC), or an
operand field literal.

Example:

When this line of source code is assembled, the object code contains the current time.

You can also use the &SYSTIME system variable symbol as a literal.

Example:

1

When this line of source code is executed, the assembly time is moved into a main storage area called BUF.

&SYSJDATE is a system variable symbol, which you can reference either in your program text or within a macro
definition, to generate the Julian date when your program is assembled. The date is produced in your assembly
listing as a character string representing the month, day, year, and Julian value - day of the year (mmddyjjj) the
assembly was run. If you:

1. assemble your program;

2. store it in a library; and

3. retrieve the assembled program for execution at another time -

any &SYSJDATE reference in your program references the Julian date of the original assembly.

You specify &SYSJDATE as either an operand in a source code statement, which defines a constant (DC), or an
operand field literal.

E-3

8227 Rev. 2

UP-NUMBER

Example:

SPERRY UNIVAC Operating System/3

When this line of source code is assembled, the object code contains the Julian date.

You can also use the &SYSJDATE system variable symbol as a literal.

Example:

1

UPDATE LEVEL PAGE

When this line of source code is executed, the Julian date is moved into a main storage area called BUF.

&SYSPARM is a system variable symbol, which you can reference either in your program text or within a macro
definition, to generate an 8-byte null character string at assembly time. The string is initially null but can be
varied by using the PARAM statement (Section 3) as follows:

LABEL 60PERATION 6 OPERAND

//t.PARAMt. SYSPARM='string'

By using the PARAM statement, you ·can specify a string of up to eight characters, enclosed in apostrophes.
Once you've altered the value of &SYSPARM, any references to &SYSPARM produces the character string you
specified in the PARAM statement, not a null character string.

To reference the &SYSPARM system variable symbol, you specify &SYSPARM as either an operand in a source
code statement, which defines a constant (DC), or an operand field literal.

Example:

LABEL 60PERATION6 OPERAND
10 16

c (', \

E-4

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

When this line of source code is assembled, the object code contains an 8-byte null character string.

You can also use the &SYSPARM system variable symbol as a literal.

Example:

I

If you don't precede this source code statement with a PARAM statement when this line of source code is
executed, an 8-byte null character string is moved into a main storage area called BUF.

E-5

Appendix F. Attribute References

\

v

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 F-1
UPDATE LEVEL PAGE

The assembler assigns certain attributes to symbols and macro call operands that you may refer to in conditional
assembly statements. These attributes are: type (T), length (L), scale (S), integer (I), count (K), and number (N).

You can specify attributes in conditional assembly statements to control logic, which in turn can control the
sequence and contents of the inline expansion code generated from model statements. Each kind of attribute
has a specific purpose, which determines when you use it.

Format:

LABEL

[symbol]

LOPERATION L

conditional
assembly
operation
code

T
L
s
I
K
N

OPERAND

{
symbol }
&symbol

The attribute notation (T, L, S, I, K, or N) denotes which attribute of a symbol or parameter you are using. The
symbol or parameter is a reference to the data or field which possesses the attribute. The operation code must
be a conditional assembly operation code except when you are using the length attribute.

The origin of an attribute value is always either a symbol or parameter. Table F-1 gives the restrictions for using
a symbol or parameter as the reference to obtain a particular data attribute. Whether a symbol or parameter can
be used in an attribute reference depends on where the reference is made. If an attribute reference is made in
macro source code (from inside a macro definition), a symbol may be referenced for any data attribute except K
or N. A symbol cannot be used in a count or number attribute reference in macro source code because when K
or N is used inside a macro definition the only data that can be referenced is an operand field in the macro
instruction call. To reference an operand field to obtain the Kor N attribute you can use a symbolic parameter or
&SYSLIST; this also applies to the T, L, S, and I attributes. A SET symbol and the system variable symbols listed
in Table F-1 can only be used in the T and K attribute references when in macro source code. You can get all
but K or N attributes of a symbol in program source code along with all of the other attributes by using the
symbol in the attribute reference. Macro instruction operands cannot be referenced from program source code
so a symbolic parameter or &SYSLIST cannot be part of an attribute reference in program source code. However,
a SET symbol and the system variable listed in Table F-1 can be used in an attribute reference in program
source code.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table F-1. Valid Attribute Reference Applications

ATTRIBUTE
REFERENCE

T L s I K N

y y y y Symbol

y y Set Symbol

y y y y y y Symbolic Parameter

y y y y y y &SYS LIST

y y &SYSNDX,&SYSPARM,
&SYSJDATE,&SYSECT,
and &SYSTIME

y y y y Symbol

y y SET Symbol

y y &SYSPARM, &SYSDATE,
&SYSJDATE, and &SYSTIME

y = Valid Application

UPDATE LEVEL PAGE

LOCATION

Macro
Source
Code

Program
Source
Code

There are two requirements that must be met before using symbols in attribute references. First, the symbol
must appear either in the operand field of an EXTRN directive used outside of a macro, or in the label field of at
lease one assembler directive or instruction outside a macro. Second, there must not be any variable symbol in
the source line in whose label field the symbol appears. In regards to the call operand attributes, you must abide
by the following criteria: the same as previously mentioned, with the addition that the operand must be a symbol
and it may not be one generated by variable symbol replacement. The attributes of the operand are really the
attributes of the symbol itself. A nested call operand may be a symbolic parameter whose attributes are then the
same as the corresponding outer operand. You can not use a length attribute if the type attribute is J, M, N, 0 T,
or U.

Since a call operand may be a sublist, you can also refer to attributes of a sublist or each individual parameter in
the sublist. When you refer to these attributes, they will be assigned the same value as the first parameter in the
sublist.

You can refer to attributes on conditional directives both inside and outside of macros. Symbols that appear in
the label field of instructions generated by a macro are not assigned attributes.

Type attributes

You can use the type attribute to test for the characteristic of the operand or symbol. This is done by writing a T'
followed by the symbol or symbolic parameter to be tested. This can also be used in SETC directive operand
fields or as character expressions in SETB and AIF directive operand fields. Table F-2 summarizes the type
attributes and the circumstances under which they are produced.

F-2

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table F-2. Type Attributes of Symbols (Part 1 of 2)

Type
Symbol Length

Definition Specification

A Type A address Implied

constant

B Binary constant Implied or

explicit

c Character Implied or

constant explicit

D Double-word Implied

floating-Point
constant

E Full-word Implied

floating-point

constant

F Full-word Implied

fixed-point

constant

G Fixed-point Explicit

constant

H Half-word Implied

fixed-point
constant

I Machine instruction Implied

J Control section Not applicable

name

K Floating-point Explicit
constant

M Macro instruction Not applicable

N CD Self-defining term Not applicable

o CD Omitted operand Not applicable

p Packed decimal Implied or

constant explicit

R Una I igned address Explicit

constant (A, S, V, or Y)

s Type S address Implied

constant

T External symbol Not applicable

u ® Type not available Not applicable

F-3
UPDATE LEVEL PAGE

Alignment

Full-word

Not applicable

Not applicable

Double-word

Full-word

Full-word

Not applicable

Half-word

Half-word

Double-word

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Half-word

Not applicable

Not applicable

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table F-2. Type Attributes of Symbols (Part 2 of 2)

Type
Symbol Length

Alignment
Definition Specification

v Type V address Implied Full-word
constant

w CCW statement Implied Double-word

x Hexadecimal Explicit or Not applicable
constant implied

y Type Y address Implied Half-word
constant

z Zoned decimal Explicit or Not applicable
constant implied

NOTES:

G) This type attribute is produced only for macro instruction operands.

@ Type cannot be assigned. It is produced for inner and outer macro instruction operands that

cannot be assigned any other attribute, as well as for literals appearing as macro instruction operands,

symbols appearing in the label field of L TORG, ORG, or EQU directives, symbols appearing more than
once in a source statement label field, and symbols appearing in the label field of DC or OS

directives containing expressions or variable symbols in the modifier subfields. The latter is
true even if the modifier subfield expression consists solely of self-defining terms.

Length Attributes

You can reference the length attribute by writing an L' followed by the symbol or parameter whose attribute you
want. The length attribute has a numeric value, which refers to the number of bytes assigned by the assembler
to a data field. If the length attribute value is required for conditional (preassembly) processing, the symbol you
specify in the attribute reference must appear in the label field of a statement in open source code. The operand
field of that statement must contain a self-defining term.

The length modifier or length field must not be coded as a multiterm expression because the assembler does not
evaluate this expression until assembly time.

When the length attribute is used in conditional assembly statements, it can be specified only within an
expression. Examples: L'&P(4), L'&VARY(1,2), L'&SYSLIST(5).

When a length attribute reference is specified in open source code, it is not available for use in conditional
assembly statements.

F-4

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 F-5
UPDATE LEVEL PAGE

An L' cannot be generated directly by a macro or proc. It can be done indirectly as follows:

LABEL L\OPERATIONL\ OPERAND
10 16

) x

After generation this would result in:

MVC Z(L'Z),X

Scale Attributes

You can reference scale attributes of variable symbols by coding an s· followed by the desired symbol. Scaling
attributes are available only for labels of statements defining fixed-point or floating-point constants. This restricts
them to H, F, D, E, P, type Z, type K, and type G constants in the OS/3 assembler. The scaling attribute is the
value you have assigned for the scale modifier of a fixed or floating-point constant. This modifier is an integer
used to assign a number of bits in an unnormalized constant for the fractional portion of the constant. For
example, the scale modifier of a DC statement such as HF8'-19. 788' would be 8, since it is specifying 8 bits for
the fractional part of the number. For deciaml type constants, the scaling attribute is the number of decimal
digits to the right of the decimal point.

Integer Attributes

An integer attribute can be written with an I' followed by the symbol you wish. An integer attribute is computed
from length and scaling attributes and is thus also applicable only to a symbol which is the label of a statement
defining fixed-point or floating-point constants (F, H, D, E, P, type Z, type K, and type G). A fixed-point integer
attribute is equal to 8 times the length attribute, minus the scaling attribute, minus 1 (1'=8*L-S'-1). For
floating-point, you obtain the integer attribute by subtracting 1 from the length attribute, multiplying by 2 and
subtracting the scaling attribute (1'=2*(L'-1)--S').

A halfword fixed-point constant (H) would have a length attribute of 2 (L'=2) and a scale attribute specified as 4
(S'=4). Therefore the integer attribute would be (8x2)--8-1=7. A fullword fixed-point constant would have a
length of 4 (L'=4) and a scale attribute specified here as 12 (S'=12). The integer attribute in this case would be
(8x4)-12-1=19.

Since E is a floating-point fullword, its length attribute is 4 (L'=4). The scale attribute is specified to be 3 (S'=3).
Thus the integer attribute is 2(4-1)-3=3. When we have a floating point doubleword constant (D), its length
attribute is 8 (L'=8). The scale attribute is shown to be 6. The integer attribute we can then compute to be
2(8-1)-6=8. For decimal constants the integer attribute is the number of decimal digits to the left of the
decimal point.

Count Attributes

You can use the count attribute of a call operand to reference the number of characters in the operand,
excluding commas. This attribute is determined after substitution of any variable symbols, that is, it uses the
replacement characters rather than the variable symbol to determine the count attribute. You can use the count
attribute in SETA or DO operand fields, and in relational expressions of SETB and AIF operands that are within a
macro.

If the operand selected is a sublist, the count attribute will include the parentheses and commas within the
sublist.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Number Attributes

For call operands, you can also reference the number of operands in an operand sublist. You reference the
number attribute by writing an N' followed by the symbol or parameter whose attribute you want. This number is
equal to 1 plus the number of commas separating or indicating the ommission of operands in the sublist. This
attribute is available in SETA, DO, SETB, or AIF directives.

If an operand is not a sublist, the number attribute is 1. If an operand is omitted, its value is 0.

Example:

LABEL OOPERATIONL'I OPERAND COMMENTS
10 16

l l l__l L __ J l 1 1- l l l 1 l ._ 1 l l 1 l l l 1 1 l I l 1 l l

1 I 1 l L .L l I 1 I l I l l l 1 1 1 l I .I I j I I l

,..,...-r<'O"T'lol1_!;"f,ES. l~_J'IACR~~t&LlC:tJ:~~ ~;f'E.~J)l tl I j j l l l L. j

1-=-l!M..-1.l.JD.l.Y...2Lp..f~:E.J.bl~!+-Ll1~s~~~LI-~~~""""'Cl1.Ll l j 1 1 1 l 1 1 l

L J__' l l L I L 1 l l l

j l l 1 1 L , L l j l 1 l l

L1 l l j 1 L I l l 1 l

LL1 1 1 l l l l l

l _l _l .l l_ l

.+-4"'<=~""-.J--<µ.L_..,._._.l.Jl.J.>J!.-'lL..Llo,LLI~--L_l_ 1_L_1 1 __ J_l__l_1 __ J__l._ 1 l _ _J_ -1 1 .. 1 l 1 _J _ _J 1 L 1 l I 1 1 l l l

l Ll l l 1 1 LL 1 1

....... _._.L-1-..L...l.-J...4_......,..,,_.__J_~_LLI """=.s L L_L__i_Li_, ,J.~T~ A !,1w.a1..L.-r1Ei 1S>1n PJARAt-1 l , , ,

~_.__L.l._._.J__l-++""~...1.-4--+-'-~"""~µ_i...LLL~ ~l&bE... AC\;Tr&;I:iBl.L_""1);:._bf:, _pAi~ , 1 l 1 i

1--1--'--'L...L....L...L-'--.f-4'"""'L..L..-L-l-+--'~""-""'"""..,._J_L1.l_.1....L ,NtiMSE& 1~Fi ~'?JE.&~ ~' 1S1Ufil,..J.i~"T; ,
i.:L't1PiE.A\Cf3U;6.L..lffE ~Fl :PA'RAM I l l l I l I

F-6

8227 Rev. 2

UP-NUMBER

A

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Glossary

absolute expression
An expression whose value is unchanged by program relocation. The absolute expression can be an
absolute term or any combination of absolute terms. Arithmetic operators are permitted between absolute
terms.

Examples of absolute terms are: a symbol that has an absolute value, a self-defining term, or a length
attribute reference.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within
an absolute expression. This type of absolute expression requires that each relocatable term be paired with
another relocatable term that has the opposite sign and the same relocatability attribute. The paired terms
need not be contiguous.

The effect of relocation is canceled by the pairing of relocatable terms with the same relocatable attribute
and opposite signs. The absolute expression is thereby reduced to a single absolute value.

The following are absolute expressions:

A
A+A-A
A-A+A+A
R+A-R
R-R+A
(R-R)*A
A*A

where:

A
Is an absolute term.

R
Is a relocatable term.

advance listing (EJECT)
Controlled by the EJECT directive.

Glossary 1

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE Glossary 2

arithmetic operators

c

The symbols +,-,*.I.I/,*/. The intrinsic meanings of+,-,*, and I are the usual ones; that is,+ indicates
addition, - indicates subtraction, * indicates multiplication, and I indicates division.

The operator I I denotes a covered quotient where A/ /B is equivalent to (A+B-1)/B. A covered quotient
is equal to regular binary division except that if there is a remainder, a 1 is added to the regular quotient.

The operator *I denotes a binary shift left or right. A* /B indicates a left shift and is equivalent to A*2B. A*
/(-8) indicates a right shift and is equivalent to A/28.

character expression
A character string, a character substring, or a concatenation of strings or substrings. The maximum length
of a character expression is 127 characters. Character expressions are used as operands of SET and SETC
statements and as terms in a SETB relational expression.

A character string is at least one of the 256 valid characters enclosed by apostrophes. A character string,
unlike a character self-defining term, is not converted and treated as a binary value. The value of a
character string is determined by its length. Any character string is greater in value than any shorter
character string. Rules for writing character strings are:

• Two apostrophes must be written within a character string to represent one apostrophe. The two
apostrophes are replaced by a single apostrophe when the string is printed.

• Two ampersands must be written within a character string to represent one ampersand. Both
ampersands are retained as part of the character string. A single ampersand within the character
string is interpreted as the first character of a variable symbol.

A character substring is a valid character string followed by two arithmetic expressions separated by a
comma and enclosed in parentheses. The format is:

character string (e, .e2)

where:

e,
Specifies the leftmost character of the original character string to be included in the substring.

Specifies the number of characters to be in the substring.

The expressions e1 and e2 must be valid SETA expressions. If there are fewer characters (than the number
specified by e2) remaining after character number e1 in the string, the resultant substring is shortened to
include only valid characters of the original string. A null character string results if e, is greater than the
number of characters in the original string.

·8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

Glossary 3
PAGE

character set
The overall character set of the assembler. This set is divided into the following classes:

Alphabetic set:

Alphabetic characters: the uppercase letters A through Z

Special letters: ? $ # @

Numeric characters: 0 through 9

Special characters : + - * I , = .6. (blank) () . & · > <

comments statement
A statement that, when written within a source code statement, causes the assembler to generate
comments on the output listing. This type of comments statement is written with an asterisk in column 1
of the assembler coding form followed by the comment. To continue a comment on the following line,
column 72 must contain X.

A special form of the comments statement is also available for use within macro definitions. This form is
used to include comments in a macro definition that are not to be generated in the output listing. This type
is written with a period in column 1 of the assembler coding form, followed by an asterisk(*) in column 2,
followed by the comment.

Neither form of comments statement may be created by substitution for variable symbols. Substitution for
variable symbols is not performed on comment lines.

Three statements are available for listing comments, error messages, or internal references. The PNOTE
message statement may be used in either a macro definition or at the source code level. The MNOTE
message statement may be used only in a macro definition. If either of these statements is generated by a
macro definition, the statement will be printed, even if the NOGEN option of the PRINT statement is in
effect. The comments statement may be used in macro definition form or in source code level form.

common storage definition
A common storage area for two or more separately assembled routines.

complex relocatable expressions
An expression that contains either 2 to 16 unpaired relocatable terms or a negative relocatable term in
addition to any absolute or paired relocatable terms.

A complex relocatable expression may be written only in the operand field of either an A-type or Y-type
address constant.

Some complex relocatable expressions are:

A-R
-R/I
A-R-R+R-R

where:

A

Is an absolute term.

R
Is a relocatable term.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

Glossary 4
PAGE

concatenation
The joining together of:

• two character strings;

• two character substrings; or

• a character string and a character substring.

A period designates concatenation into a single string of characters. When a substring is to be
concatenated with a following character string, the period may be omitted and concatenation is assumed.

conditional assembly
Statements used by the programmer to direct the assembler to:

• exclude lines of code from the assembler output;

• include a set of lines more than once in the assembly output; or

• establish and alter values to determine whether a set of lines should be included in the output listing.

Conditional assembly statements are used to control the pattern of coding generated within a macro
definition and to define and assign values to set symbols that can be used to vary parts of generated
statements.

conditional branch (AIF)
The statement that conditionally alters the sequence of source statement processing.

control section identification (CSECT)
The directive that indicates to the assembler the initiation or continuation of a control section.

D
define branch destination (ANOP)

The statement that facilitates branching by supplying a symbol in its label field.

define end of range (ENDO) .
The statement used to indicate the end of the range of a DO statement.

define start of range (DO)
The statement that defines the starting point of the code and the number of times it is to be generated.

diagnostic listing
A listing of error statements. The diagnostic listing follows the assembly listing and contains a detailed
accounting of any errors which occurred in the assembly. The listing contains the line number of the
statement in which the error occurred, the error code, and a message indicating the cause of the error.
The messages are listed in the order in which they occurred. A diagnostic listing is optional and can be
suppressed by using the PARAM statement (3.22) with the LST=ND option in its operand field. The
PARAM statement also provides the LST=DBG option for debugging a macro definition.

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

When a macro definition is retrieved from a library, the END statement is flagged if an error occurs during
macro expansion. To obtain a diagnostic listing of the macro statement containing the error, you must use
the LST=DBG option. If the macro definition is part of your source program, actual source statements are
flagged if they contain errors. Each error is then listed in the diagnostic listing.

dummy control section identification (DSECT)
The directive that indicates to the assembler the areas defined in other modules.

E
expression

F

One or more terms connected by operators. A leading minus sign is allowed to produce the negative of the
first term. Each term in the expression may be either a relocatable term or an absolute term. A term is
absolute if its value is not changed by program relocation. A term is a relocatable term if its value is
changed by program relocation. Two relocatable terms may be considered to be paired if they have opposite
signs and have the same relocatibility attribute (that is, appear in the same control section).

Evaluation of expressions obeys the following rules:

• Multiplication and division of a relocatable term by an absolute 1 or multiplication of an absolute 1 by
a relocatable term produces a relocatable term.

• Multiplication of any term by absolute 0 yields absolute 0 as a result.

• If a relocatable term enters any multiply or divide operation other than the above, an error flag is
given and the result is treated as absolute.

• The number of unpaired relocatable terms at any point in the evaluation must not exceed 16.

• Intermediate results of the expression evaluation are full 32-bit values; however, the final result is
the truncated rightmost 24 bits.

Three types of expressions - absolute, relocatable, and complex relocatable - obtain various
characteristics from the term or terms that compose them.

fixed-point number
A number represented in one of three fixed-length binary formats composed of a single positive or negative
sign bit followed by a number field. When the sign bit is 0, the number represents a positive value; when 1,
the number represents a negative value. Negative numbers are represented in twos complement notation,
which is derived by inverting each bit of the binary number and adding 1 to the result of the inversion.

HALFWORD

I ~I, number field ,. I
FULLWORD

I ii number field
31

Glossary 5

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

DOUBLE WORD

UPDATE LEVEL
Glossary 6

PAGE

I ~ I number field 3Q
~~ 1 ____ _______.) 63

G
GBL

A general purpose global set symbol.

GBLA
An arithmetic global set symbol.

GBLB
A Boolean global set symbol.

GBLC
A character global set system.

generate literals (l TORG)
The directive that causes the assembler to generate literals previously defined.

H
high order

Leftmost data; most significant byte or bit

I
include code from a library (COPY)

The directive that includes code into the source program.

input format control (ICTL)
The directive that specifies new-values for the begin, end, and continuation columns.

input sequence control (ISEQ)
The directive that informs the assembler what columns contain the sequence information.

L
LCL

A general purpose local set symbol.

LCLA
An arithmetic local set symbol.

LCLB
A Boolean local set symbol.

LCLC
A character local set symbol.

'.____·

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

leave blank lines on listing (SPACE)
The directive that causes the assembler to advance the paper in the printer.

length attribute of expressions
An attribute that is determined by the assembler and is a function of the leading term of the expression. If
the first term of an expression is an absolute value, a length attribute of one byte is assigned to the
expression. If the leading term is a symbol, the number of bytes attributed to the expression is the same as
the length attributed to the symbol. Thus if TAG appears in the label field of an LH (load half word)
instruction, it would have a length attribute of 4 since LH is a 4-byte instruction. In referencing the same
label, the expression TAG+ 195 also has a length attribute of 4, but the expression 195+ TAG has a length
attribute of 1 because the leading term is a decimal self-defining term.

length attribute of symbols
The number of bytes assigned to the instruction, constant, or storage area involved. For example, the label
of a 2-byte instruction has a length attribute of 2, and the label of a DS statement reserving 200 bytes
would have a length attribute of 200. Symbols equated to location counter references or absolute value
representations usually have a length attribute of 1. The duplication factor (constant or storage area) has
no effect on the length attribute.

The maximum length attribute that can be generated by the assembler is 256 bytes; however, a DS may be
used to reserve more than 256 bytes of storage.

The length attribute of a symbol may be referenced as a term in an expression by writing L' followed by the
symbol. Thus if the symbol STOREND is the name of a full-word field,

L'STOREND

would be considered a term and would have a length of 4 bytes.

listing content control (PRINT)
The directive that controls the contents of the assembly listing.

literals
Terms that represent data in the source coding. The assembler replaces the literal with the address of the
main storage location, in the literal table, of the value of the original literal. In the following example, the
literal =C'AA' will be replaced in this instruction by the address of a 2-byte area in the literal table
containing the binary value 11000001 11000001.

MOVEAA MVC TESTSW.=C'AA'

When the assembler recognizes a literal in the source code, it searches the table of literals that have been
previously encountered. If a duplicate is found, then the relocatable address of the literal in the table
replaces the original literal in the source code. If a duplicate is not found, then the value of the original
literal is entered into the table and its address replaces the source code specification. Literals are similar in
form to the operands of DC and DS statements.

A literal may be used in any machine instruction that specifies a storage address, except that the literal
may not be specified as the receiving field operand of an instruction that modifies storage, i.e., a literal may
be used only as the last operand of an application instruction. Literals may not be specified in address
constants, shift instructions, or 1/0 instructions. Literals must always appear as the complete operand
specification. They cannot be combined with other terms, nor with an explicit base register specification.

Glossary 7

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
. UPDATE LEVEL

Glossary 8
PAGE

location counter reference
A reference maintained by the assembler for each control section created by the programmer. Each
counter contains the next available location for the associated control section. After the assembler
processes an instruction or constant, it adds the length of the instruction or constant processed to the
correct location counter. The maximum value that the location counter can achieve is 223_ l.

Each instruction must have an address that is a multiple of two bytes. This type of address is said to fall on
a half-word boundary. If the value of the location counter is not a multiple of 2 when assembling such an
instruction, a 1 is added to the location counter before assigning an address to the current statement.
Storage locations reserved in this way receive binary O's when the program is loaded. Certain constants
must be aligned to a half-word, full-word, or double-word boundary. Again the location counter is adjusted
to the boundary, and the storage locations that were bypassed receive binary O's when the program is
loaded, unless the adjustment occurred as a result of a DS or ORG directive.

The current value of the location counter, under which the program is currently being assembled, is
available for reference by the programmer. It is represented by the special character* (asterisk). If the
asterisk is written as a term in an address constant or in an instruction operand expression, this character

is replaced by the storage address of the leftmost byte allocated to that instruction or constant. All such
implied references must be specified appropriately, since the asterisk (*) is also used as an arithmetic
operator to indicate multiplication.

logical operators
The symbols **, ++, and --. The characters** represent the logical product (AND), the characters++
represent the logical sum (OR), and the characters -- represent the symmetric difference, exclusive or
(XOR).

Each bit of the first term is compared with its corresponding bit in the second term, and the result of the
comparison is placed in the corresponding position in the resulting term. The result of the bit comparison
for each operator is:

mm ~ mm
A**B Result A++B Result A--B Result

1 1 1 1 1 1 1 1 0

' 1 0 0 1 0 1 1 0 1

0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0

low order
Rightmost data; least significant byte or bit.

LSB
Least significant bit or byte, rightmost.

8227 Rev. 2

UP-NUMB EA

M

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

macro definition
A formalized pattern of code written once if a certain series of instructions (e.g., a routine) is needed more
than once in a program or associated programs. The macro definition may be stored in a library for later
use or submitted for assembly with the source code deck.

Macro definitions may be prepared in one of two separate formats: macro or proc. The elements of the
macro and proc format types may not be mixed within a macro definition; however, macro definitions of
both types are permitted within a program. Macro definitions contained in the source program may be
preceded only by comment statements and the following assembler directives: ICTL, ISEQ, TITLE, SPACE,
EJECT, and PRINT. Any of these directives except ICTL may appear between macro definitions. A macro
definition within a macro definition (nesting) is not permitted in either the macro or the proc format.

model statements
The statements in a macro definition from which machine and assembler instructions are generated.
Model statements contain from one to four entries, as follows:

• The label field may contain a symbol, a variable symbol, or a sequence symbol, depending on the
operation defined. Comment statements may not be created by substitution for variable symbols.

• The operation field may contain any machine, assembler, or macro instruction mnemonic code except
END, ICTL, ISEQ, or PRINT.

• Either ordinary symbols or variable symbols may be written in the operand field. The size of this field
may not exceed 240 characters after substitution.

• The comments field may contain any combination of characters; however, substitution for variable
symbols is not performed on this field by the assembler. Comments are written in the format of the
statement the model represents.

• A macro instruction that is a model statement within a macro definition is called an inner macro
instruction, while a macro instruction in the source module is called an outer macro instruction. A
macro instruction that appears in a macro definition corresponding to an outer macro instruction is
called a second-level macro instruction. A macro instruction that appears in the macro definition
corresponds to a second-level macro instruction. Macro instructions within macro definitions are
nested. The number of. levels to which macro instructions may be nested in an assembly depends
upon the amount of main storage available to the assembler.

• Because COPY statements within a macro definition are processed prior to the generation of code
from a macro definition, they are not considered to be model statements nor are they ever processed
as such.

• Model statements within a macro definition in proc format obey the same rules as model statements
in macro format.

MSB
Most significant bit or byte, leftmost.

Glossary 9

8227 Rev. 2

UP-NUMBER

0

SPERRY UNIVAC Operating System/3 Glossary 10
UPDATE LEVEL PAGE

operators

p

The 12 mathematical functions in the assembler that designate the method, and implicitly the sequence, to
be employed in combining terms or expressions. Evaluation of an expression begins with the substitution
of values for each term. The operations are then performed from left to right in hierarchical order. The
operation with the highest hierarchy number is performed first; operations with the same hierarchy
number are performed from left to right.

Parentheses may be used to alter the order of evaluation. Multiplication by 0 equeals 0. The 12 operators
are divided into three classes: arithmetic operators, logical operators, and relational operators.

privileged instructions
Instructions used by the operating system when the processor is in the supervisor state. If an application
program (user program) attempts to execute a privileged instruction, a program exception interrupt will
occur because the processor will be in the problem state. The following are the privileged instructions for
the SPERRY UNIVAC Operating System/3 (OS/3).

• Diagnose (DIAG)

• Halt and proceed (HPR)

• Insert storage key (ISK)

• Load control storage (LCS)

• Load program status word (LPSW)

• Start 110 (SIO)

• Supervisor load multiple (SLM)

• SOFTSCOPE forward scan (SSFS)

• Set storage key (SSK)

• Set system mask (SSM)

• SOFTSCOPE reverse scan (SSRS)

• Supervisor store multiple (SSTM)

• Service timer register (STR)

program status word (PSW)
A special register containing information on the status of the program being run. The PSW contains the
condition code, interrupt code, and the address of the next executable instruction. See status switching
instructions.

PSW
See program status word.

8227 Rev. 2
UP-NUMBER

R

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

relational operators
The equals symbol (=), the greater than symbol (>). and the less than symbol (<).

The equals operator is used to compare the value of two terms or expressions. If the two values are equal,
the assembler assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

The greater than operator makes a comparison between two terms or expressions. If the value of the first
(left) term is greater than the value of the second (right) term, then a value of 1 is assigned to the
expression; otherwise, a value of 0 is assigned.

The less than operator compares the value of the first (left) expression or term with the second (right)
expression. If the value of the first expression is less than the value of the second one, then a value of 1 is
assigned to the expression; otherwise, a value of 0 is assigned.

For the expression A+B>C. if the expression A+B has a value greater than a value of C, then the
assembler assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

A relational expression consists of a relational operator and its two operands. The operands in a relational
expression may be either two character expressions or two arithmetic expressions. A character expression

may not be compared to an arithmetic expression. Character expressions are valid only on conditional
assembly directives.

Since the evaluation of a relational expression yields an arithmetic result, a relational expression may be
used as a term in an arithmetic expression.

relocatability attributes
Values that are assigned to symbols defined in the label field of a source code line representing an
instruction, constant. or storage definition. A relocatable symbol is a symbol whose address would change
by a given number of bytes if the program in which it appears is relocated the same number of bytes from
its originally assigned address. Relocatable symbols are assigned values relative to the location counter.
Decimal, character, binary, and hexadecimal representations are all absolute terms and have a relocation
attribute of 0.

relocatable expressions
An expression whose value changes with program relocation. All relocatable expressions must be positive
values.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within a
relocatable expression.

Either type of relocatable expression requires the following conditions:

• All but one relocatable term must be paired.

• A minus sign must not precede the unpaired (remaining) relocatable term.

Glossary 11

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

• Each pair of relocatable terms must have opposite signs and the same relocatability attribute.

• The paired relocatable terms do not have to be contiguous.

Glossary 12
PAGE

Using the above requirements, a relocatable expression is thereby reduced to a single relocatable term.
The following are relocatable expressions:

R
R/I
R+A or A+R
R-R+R
R-A
R*I or l*R

where:

A
Is an absolute term.

R
Is a relocatable term.

reproduce following record (REPRO)
The directive used to reproduce a record in the assembler output.

s
SOT

See self-defining terms.

self-defining terms (SOT)
Terms that represent fixed values. They are presented by the programmer in a form that is easily
recognized and its value is understood without the need for computation. SDTs are not relocatable; they
can be used to specify immediate data, registers, addresses, and masks. They can be used in assembler
directives as well as in application instructions and can be part of an expression. The size of an SDT
depends on where it is used. When used to designate a register, it cannot exceed a value of 15. After
conversion by the assembler to a binary format. the value is right-justified and filled with binary zeros on
the left to fit the designated field. SDTs can be represented in binary, hexadecimal, decimal, or character
form.

When a 24-bit hexadecimal, binary, or character SDT has a 1 in the sign bit position, the SDT will be
treated as a negative term in the evaluation of an arithmetic expression.

• A binary SDT consists of a series of 24 zeros and ones enclosed in apostrophes and preceded by the
letter 8 (e.g., 8'101',8'11110000',8'00101'). The field is filled with high order zeros when

necessary.

• A hexadecimal SDT consists of up to six hexadecimal digits enclosed in apostrophes and preceded by
the letter X (e.g., X'FO',X'C1 ',X'F1 FOFO'). Each hexadecimal digit represents a half byte of
information.

8227 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Glossary 13

PAGE

• A decimal SOT is an unsiQned decimal number consistinQ of uo to eiQht diQits havinq a value of 0

through 16, 777,215 (224-1) (e.g., 0, 32, 16000000). This number is converted by the assembler to a
binary value occupying one, two, or three bytes.

• A character SOT consists of up to 3 characters of the 256 valid characters of which only 63 are
printable. The characters must be enclosed in apostrophes and preceded by the letter C (e.g., C'A'.
C'ABC'. C'123'. C'A 1 '). Each ampersand or apostrophe to be included in a character representation
must be indicated by a double ampersand or double apostrophe respectively. In this case, there may
be more than three characters within the apostrophes that delimit the SOT (e.g., C'3"S' produces 3'S;
C'A&&B' produces A&B).

set symbol
A type of variable symbol. The rules for writing set symbols are the same as for other variable symbols:

• An ampersand (&) is followed by an alphabetic character followed by up to six additional characters
(total maximum characters: eight)

• If the ampersand is omitted, the assembler interprets the character string as a symbol and not as a
set symbol.

Because set symbols are evaluated in the macro generation phase of the assembler, they may be used as
counters, switches, or values to control the sequence of code generated. Unlike an ordinary symbol, the
value assigned to a set symbol may be altered during assembly. A set symbol may be either global or local.

A global set symbol, once declared and given a value by a SET statement, retains the same value until that
value is changed by another SET statement. A local set symbol is defined only within the macro definition
in which it is declared. The value of a local set symbol within one macro definition is not affected by the
declaration of either a global or local set symbol with the same name in another macro definition.

Do not use &SYS as the first four characters of any symbol because they are reserved for the use of system
variable symbols.

Set symbols must be declared after macro prototype or NAME statements and before being referenced.

Four statements are provided to assign values to set symbols: SETA, SETB, SETC, and SET. The statement
used depends on the statement chosen to declare the set symbol.

• SETA

Assigns values to set symbols declared in either LCLA or GBLA.

• SETB

Assigns values to set symbols declared in either LCLB or GBLB.

• SETC

Assigns values to set symbols declared in either LCLC or GBLC.

• SET

Assigns values to set symbols declared in either LCL or GBL.

8227 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Glossary 14

UPDATE LEVEL PAGE

special characters
The 14 special characters that are not part of the alphabetic set, are not special letters, and are not
numerals. The special characters with their hexadecimal codes are:

Special Hexadecimal Special Hexadecimal
Character (EBCDIC) Code Character (EBCDIC) Code

+ 4E (left 4D
parenthesis

- (minus) 60 I right SD
parenthesis

* SC . (period) 48
I 61 & so
. (comma) 68 ·(prime) 7D
= 7E > 6E
6 (blank) 40 < 4C

special letters
The four special letters are:

Hexadecimal
Special Letters (EBCDIC) Code

? 6F
$ 58
78
@ 7C

specify location counter (ORG)
The directive that sets or resets the location counter to a specified value.

status switching instructions
The instructions that provide the capability of altering processor operating characteristics. The set program
mask (SPM) and supervisor call (SVC) instructions replace part of the current program status word (PSW).

The format of the PSW is:

INTERRUPT
SYSTEM MASK KEY MODE CODE

I s s s s s s s
0 p p p p p p p

M
T s A A A A A A A

p p A M 0
R R R R R R R s R N T
E E E E E E E

0 1 2 3 4 s 6 7 8 11 12 1~ 14 1S 16 1~ 19 20 23 24 31

PROGRAM
INSTRUCTION ADDRESS

MASK

ILC cc B D E s

32 33 34 351 36 37 38 39 40 63

8227 Rev. 2

UP-NUMBER

Glossary 15 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

For information on the format. description, and use of the PSW, see the processor programmer reference,
UP-8052 (current version).

The test and set (TS) instruction is used to control a byte in main storage to act as an indicator.

symbols

T

Identifications appearing in the label field of a statement defining an instruction, constant, or storage area
that are assigned the address value of the first byte of the source statement with which the symbol is
associated. The following rules apply to the use of symbols used as labels.

• Must start in column 1

• Must start with an alphabetic character or special letter

• Must consist of only alphabetic characters, numeric characters, and special letters.

• Must not be longer than eight characters.

• Must not include a space (blank) or other special character

• Must be followed by a blank

The assembler associates three attributes with each symbol it processes. These attributes are value,
length, and relocatability. Symbols defined by the EQU directive adopt the attributes of the expression in
the operand field of the statement.

Once symbols are defined in the label field, they can be used as operands to represent the value which
was defined.

terms
Values coded by the programmer or computed by the assembler. There are five classes of terms recognized
by the assembler.

• Self-defining terms (SOT)

• Literals

• Symbols

• Location counter references

• Length attribute references

Self-defining terms are fixed values the programmer codes, such as 33,P'591 ',X'OF',B'11100110', or
C'EBW'. Literals can have their value specified by the programmer or computed by the assembler and could
look like =X'FO',=C'A', =P'-1 ',or =8'00001000' as used in storage-to-storage instructions (e.g., CLC
TAGA,=C'A'). Symbols, location counter references, and length attribute references are assigned values by
the assembler.

8227 Rev. 2

UP-NUMBER

u

SPERRY UNIVAC Operating System/3
Glossary 16

UPDATE LEVEL PAGE

unassign base register (DROP)
The directive that informs the assembler specified registers are no longer available for base register
assignment.

unconditional branch (AGO)
The statement that unconditionally alters the sequence of source statement processing.

v
value attribute

The value assigned a symbol when it appears in the label field of any source code statement other than a
comment. A symbol appearing in the label field of an EOU or ORG directive is assigned the value of the
expression in the operand field. In all other cases, the value assigned is the current value of the location
counter after the adjustment to a half-word, full-word, or double-word boundary, if necessary. The value is
assigned to the current label before the location counter is incremented for the next instruction, constant,
or storage definition. Thus, if a symbol appears in the label field of a statement defining an instruction,
constant, or storage area, the symbol is assigned a value equal to the storage area address of that
instruction, constant, or storage area.

The value of a symbol must lie in the range -223 through 223-1.

variable symbol
A symbol consisting of two to eight characters; the first is an ampersand (&), the second is a letter (A
through Z) or a special character (? $ # @), and each of the remaining characters is a letter, special
character, or digit (0 through 9).

A variable symbol may be:

• a symbolic parameter;

• a set symbol;

• the label of a DO statement; or

• a system variable symbol. ·

Variable symbol symbolic parameters represent either the label or one of the operands of the macro
instruction by which the macro definition was named.

The following rules apply to the use of variable symbols:

• A variable symbol may not be used to generate a new sequence symbol, a SET symbol, a parameter,
or a system variable symbol.

. _.,

8227 Rev. 2
UP-NUMBER

Glossary 17 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• A variable symbol may not be used in the label or operand field of an END, ICTL, ISEQ, COPY, or
PRINT directive.

• No variable symbol replacement is performed on the line following a REPRO directive.

• Variable symbol replacement must not produce leading blanks in the label or operand fields.

A variable symbol may appear in a statement concatenated (joined) with other variable symbols or
characters. If a variable symbol is immediately followed by a letter, digit, left parenthesis, or period, a
period must be written after the variable symbol to distinguish the variable symbol from the characters that
follow it. The variable symbol and the period following it are replaced by the characters representing the
value of the variable symbol. The period does not appear in the printed statement. If a period is between a
character string (not in quotes) and a variable symbol (in that order), the period is considered part of the
character string and will appear in the printed statement.

The period after the variable symbol is optional if the variable symbol terminates with a right parenthesis or
is followed by another variable symbol or a special character other than a left parenthesis or a period .

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.; I
c

I "' c
0

I iii .._.. ...
:::i
(.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.__, I
I
I
I
I
I

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines. and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

Ill II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

C')
c
-i

