
•

•

•
UD1 -251 ~ev, Ji73

SPE

Operating System/3 (OS/3)

Supervisor

User Guide

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) Supervisor User Guide", UP-8075 Rev. 3.

This update documents the following changes for release 8.0:

• Enhancement of the OC STXIT routine

• Restrictions to the monitor routine

• Expansion of the Soft-Patch Symbiont debugging aid

• Enhancement of the job accounting facility

This update also includes minor technical corrections to material applicable to the supervisor prior to release 8.0.

Copies of Updating Package A are now available for requisitioning. Either the updating package only, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8075 Rev. 3-A. To receive the complete manual, order UP-8075
Rev. 3.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A01, 18, 18U, 19, 19U, 20, 20U,
21, 21 U, 75, 75U, 76, and 76U

(Package A to UP-8075 Rev. 3,
75 pages plus Memo)

Library Memo for
UP-8075 Rev. 3-A

RELEASE DATE:

September, 1982

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ISSUE: Update A - UP-8075 Rev. 3
RELEASE LEVEL: 8.0 Forward

A
UPDATE LEVEL PAGE

PSS 1

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page

Number
Update
Level

Cover/Disclaimer Orig. PART4
Title Page Orig.

PSS 1 A
8 1 thru 6 Orig.

Preface 1, 2 Orig. 7 A
8 thru 48 Orig.

Contents 1 Orig. 49 A
2,3 A 50 thru 63 Orig.
4 thru 6 Orig.
7,8 A 9 1 thru 22 Orig.
9, 10 Orig. 23 A

24 thru 26 Orig.
PART 1 27 A

Title Page Orig. 28 Orig.

29 A
1 1 thru 3 Orig. 30 thru 34 Orig.

35 A
2 1 thru 8 Orig. 36 thru 42 Orig.

9 A 43 A
10, 11 Orig. 44,45 Orig.

46,47 A
3 1 thru 10 Orig. 48 thru 57 Orig.

11 A 58,59 A
12 Orig. 60 thru 63 A*

PART2 10 1 thru 23 Orig.
Title Page Orig.

11 1 Orig.
4 1 thru 3 A 2 A

4 Orig. 3,4 Orig.
5 A 5 A
6 thru 14 Orig. 6 Orig.
15 A 7,8 A
16 thru 18 Orig. 9 Orig.
19 thru 22 A 10 A
23 thru 28 Orig. 11, 12 Orig.
29 A
30 thru 34 Orig. Index 1 thru 10 Orig.
35 thru 37 A 11 thru 13 A

14, 15 Orig.
5 1 thru 18 Orig.

User Comment
6 1 thru 7 Orig. Sheet

8 A
9 thru 24 Orig.

25 A
26 thru 55 Orig.
56,57 A
58 thru 63 Orig.

PART3
Title Page Orig.

7 1 thru 22 Orig.

*New pages

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow(-.) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

•

•

•

•
8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. INTRODUCTION

• 1. CONCEPT AND ORGANIZATION

•

1.1.

1.2.
1.2.1.
1.2.2.
1.2.3.
1.2.4.

GENERAL

FEATURES
Modularity
Minimum Main Storage Requirements
Multijobbing and Multitasking Capability
Minimum Operator Intervention

2. SUPERVISOR INTERFACES

2.1.

2.2.
2.2.1.
2.2.2.
2.2.2.1.
2.2.2.2.
2.2.2.3.
2.2.2.4.
2.2.2.5.
2.2.2.6.
2.2.2.7.
2.2.2.8 .
2.2.2.9.
2.2.2.10.
2.2.2.11.
2.2.2.12.

INTERRUPT HANDLING

MODULAR FUNCTIONS
Task Control
Physical Input/Output Control

Execute Channel Program Processor Module
PUB Control Module
Queue Control Module
Address Adjustment Module
Channel Scheduler Modules
Interrupt Module
IOST Processor Module
Channel Interrupt Processor Modules
Error Control Module
Error Editing Root Overlay
Device Sense Analyzer Overlay
Error Reply Overlay

Contents 1

UPDATE LEVEL PAGE

Contents

1-1

1-2
1-2
1-2
1-3
1-3

2-1

2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5

8075 Rev. 3

UP-NUMB EA

3.

~ 4.

SPERRY UNIVAC Operating System/3 A Contents 2

UPDATE LEVEL PAGE

2.2.3. Transient Management 2-5 • 2.2.4. Console Management 2-6
2.2.5. Workstation Manager 2-6
2.2.6. Resource Allocation 2-6
2.2.7. Timer and Day Clock Services 2-7
2.2.8. Program and Machine Error Control 2-7
2.2.9. Spooling Operations 2-7
2.2.10. Diagnostic and Debugging Aids 2-8
2.2.10.1. Monitor and Trace 2-8
2.2.10.2. Snapshot Display of Main Storage 2-8
2.2.10.3. Main Storage Dumps 2-8
2.2.10.4. Standard System Error Message Interface 2-9
2.2.11. Automatic Volume Recognition 2-9
2.2.12. Main Storage Consolidation 2-9
2.2.13. Rollout/ Rollin 2-10
2.2.14. Cochanneling 2-10
2.2.15. Disk Seek Separation 2-11
2.2.16. Error logging 2-11
2.2.17. Interactive Services 2-11

MACRO INSTRUCTION CONVENTIONS

3.1. GENERAL 3-1

3.2. FORMAT ILLUSTRATION AND STATEMENT
CONVENTIONS 3-1

3.3. USE OF THE ASSEMBLER CODING FORM 3-5 • 3.3.1. Label Field 3-6
3.3.2. Operation Field 3-7
3.3.3. Operand Field 3-7
3.3.4. Comments Field 3-7
3.3.5. Continuation Column 3-7
3.3.6. Sequence Field 3-8

3.4. MACRO INSTRUCTIONS 3-8
3.4.1. Declarative Macro Instructions 3-8
3.4.2. Imperative Macro Instructions 3-8
3.4.3. Summary of Supervisor Macro Instructions 3-8

3.5. PROGRAMMING CONSIDERATIONS FOR MACRO INSTRUCTIONS 3-8

PART 2. PHYSICAL INPUT /OUTPUT CONTROL

PHYSICAL INPUT /OUTPUT CONTROL SYSTEM (PIOCS)

4.1. GENERAL 4-1

4.2. PHYSICAL 1/0 CONTROL 4-2
4.2.1. General 4-2
4.2.2. General 1/0 Usage Requirements 4-4
4.2.3. Generate Buffer Control Word (BCW) 4-5 • 4.2.4. Generate Channel Command Word (CCW) 4-15
4.2.5. Generate Command Control Block (CCB) 4-18
4.2.6. Generate Physical Input/Output Control Block (PIOCB) 4-24
4.2.7. Read File Control Block (RDFCB) 4-26
4.2.8. Execute Channel Program (EXCP) 4-28

•

•

•

8075 Rev. 3
UP-NUMBER

5.

6.

SPERRY UNIVAC Operating System/3

4.3. INPUT /OUTPUT SYNCHRONIZATION
4.3.1. Wait for 1/0 Completion
4.3.2. Multiple 1/0 Wait

4.4. BLOCK NUMBERED TAPE FILES
4.4.1. Block Number Field
4.4.2. Tape Restrictions
4.4.3. Input/Output Buffer
4.4.4. Processing
4.4.5. PIOCS Requirements and Options

DISK SPACE MANAGEMENT

5.1. GENERAL

5.2. DISK SPACE MANAGEMENT ROUTINES
5.2.1. Allocate Routine
5.2.2. Extend Routine
5.2.3. Scratch Routine
5.2.3.1. Scratch Entire File
5.2.3.2. Scratch by Prefix
5.2.3.3. Scratch All by Date
5.2.4. Rename Routine
5.2.5. Obtain Routine

5.3 DISK MACRO INSTRUCTIONS
5.3.1. Assign Space to a New Disk File
5.3.2. Assign Additional Space to an Existing Disk File
5.3.3. Scratch a Disk File
5.3.4. Rename a Disk File
5.3.5. Access VTOC User Block

5.4. DISKETIE SPACE MANAGEMENT ROUTINES

5.5. DISKETIE MACRO INSTRUCTIONS
5.5.1. Assign Space to a New Diskette File
5.5.2. Scratch a Diskette File
5.5.3. Obtain Diskette Label Information

5.6. SPACE MANAGEMENT ERROR CODES

SYSTEM ACCESS TECHNIQUE

6.1. GENERAL

6.2. DISK SAT FILE ORGANIZATION AND
ADDRESSING METHODS

6.2.1. PCA Table Entries Used in Addressing
6.2.2 . Block Addressing by Key
6.2.3. Block Addressing by Relative Block Number
6.2.4. Disk Space Control
6.2.5. Record Interlace
6.2.5.1. Interlace Operation
6.2.5.2. Lace Factor Calculation
6.2.6. Accessing Multiple Blocks

A Contents 3

UPDATE LEVEL PAGE

4-30
(WAIT) 4-31
(WAITM) 4-32

4-33
4-33
4-35
4-35
4-35
4-36 ~

5-1

5-2
5-2
5-3
5-3
5-4
5-4
5-4
5-4
5-4

5-5
(ALLOC) 5-5
(EXTEND) 5-7
(SCRTCH) 5-9
(RENAME) 5-10
(OBTAIN) 5-12

5-14

5-14
(ALLOC) 5-14
(SCRTCH) 5-16
(OBTAIN) 5-17

5-18

6-1

6-1
6-1
6-3
6-3
6-4
6-5
6-6
6-8
6-8

8075 Rev. 3 SPERRY UNIVAC Operating System/3 Contents 4

UP-NUMBER UPDATE LEVEL PAGE

6.3. DISK SAT FILE INTERFACE 6-10
6.3.1. Define a New File (DTFPF) 6-10 • 6.3.1.1. Filelocks 6-12
6.3.1.2. Shared Filelock Capability 6-13
6.3.2. Defining a Partition (PCA) 6-14

6.3.3. Processing Partitioned SAT Files 6-17

6.3.3.1. Processing Blocks by Key 6-18

6.3.3.2. Processing by Relative Block Number 6-18

6.4. CONTROLLING YOUR DISK FILE PROCESSING 6-19

6.4.1. Open a Disk File (OPEN) 6-19

6.4.2. Retrieve Next Logical Block (GET) 6-20

6.4.3. Output a Logical Block (PUT) 6-21

6.4.4. Wait for Block Transfer (WAITF) 6-22

6.4.5. Read by Key Equal/Read by Key Equal
or Higher (READE/READH) 6-23

6.4.6. Access a Physical Block (SEEK) 6-24

6.4.7. Close a Disk File (CLOSE) 6-24

6.5. SAT FOR TAPE FILES 6-25

6.6. SYSTEM STANDARD TAPE LABELS 6-26

6.6.1. Volume Label Group 6-27

6.6.2. File Header Label Group 6-29

6.6.2.1. First File Header Label (HDR1) 6-29

6.6.2.2. Second File Header Label (HDR2) 6-31

6.6.3. File Trailer Label Group 6-33

6.7. TAPE VOLUME AND FILE ORGANIZATION 6-37 • 6.7.1. Standard Tape Volume Organization 6-38

6.7.2. Nonstandard Tape Volume Organization 6-42

6.7.3. Unlabeled Tape Volume Organization 6-44

6.8. TAPE SAT FILE INTERFACE 6-45

6.8.1. Define a Magnetic Tape File (SAT) 6-45

6.8.2. Define a Tape Control Appendage (TCA) 6-46

6.9. CONTROLLING YOUR TAPE FILE PROCESSING 6-51

6.9.1. Open a Tape File (OPEN) 6-51

6.9.2. Get Next Logical Block (GET) 6-52

6.9.3. Output Next Logical Block (PUT) 6-53

6.9.4. Wait for Block Transfer (WAITF) 6-54

6.9.5. Control Tape Unit Functions (CNTRL) 6-54

6.9.6. Close a Tape File (CLOSE) 6-55

6.10. BLOCK NUMBER PROCESSING 6-56

6.10.1. Facilities Required for Block Number Processing 6-57

6.10.2. Specifications for Block Number Processing 6-57

6.10.2.1. Initialized Processing 6-58

6.10.2.2. Noninitialized Processing 6-58

PART 3. MULTITASKING

7. MULTITASKING

7.1. GENERAL 7-1

7.1.1. Multijobbing and Multitasking 7-1

•

•

•

8075 Rev. 3

UP-NUMBER

10.

SPERRY UNIVAC Operating System/3
A Contents 7

UPDATE LEVEL PAGE

9.2. CHECKPOINT AND RESTART CAPABILITY 9-10
9.2.1. How to Generate Checkpoint Records (CHKPT) 9-12
9.2.2. Using Magnetic Tape as the Checkpoint File 9-14
9.2.3. Using a SAT Disk or Tape as a Checkpoint File 9-15
9.2.3.1. Estimate Space Requirements for a Disk Checkpoint File 9-16
9.2.3.2. Define, Open, and Close a SAT Checkpoint File (DDCPF, DCPOPN,

DC PC LS) 9-17
9.2.4. Processing PIOCS Files (DCFLT) 9-18

9.3. MONITOR AND TRACE CAPABILITY 9-22
9.3.1. How to Call the Monitor Routine 9-23
9.3.1.1. Monitoring From the Beginning of the Job 9-23
9.3.1.2. Monitoring After Execution Begins 9-25
9.3.2. Monitor Input Format 9-27
9.3.3. Defining What You Want to Monitor 9-29
9.3.4. Specifying Options 9-31
9.3.4.1. Storage Reference Option (S) 9-32
9.3.4.1.1. Program Relative Address {PR) 9-32
9.3.4.1.2. Base/Displacement Address (§/D) 9-34
9.3.4.1.3. Absolute Address (.8BS) 9-34
9.3.4.2. Instruction Location Option (A) 9-35
9.3.4.3. Instruction Sequence Option (I) 9-36
9.3.4.4. Register Change Option (R) 9-37
9.3.4.5. No Option Specified? You Get a Default 9-37
9.3.5. Specifying Actions 9-38
9.3.5.1. Display Actions 9-38
9.3.5.1.1. Register Display (DL.R) 9-39
9.3.5.1.2. Storage Display (DLS) 9-40
9.3.5.1.3. Default Display 9-42
9.3.5.2. Halt Action (H) 9-43
9.3.5.3. Quit Action (0) 9-44
9.3.6. Cancel of Monitor 9-45

9.4. SYSTEM DEBUGGING AIDS 9-45
9.4.1. Supervisor Debug Option 9-48
9.4.2. Mini Monitor 9-53
9.4.3. Console Debug Options 9-54
9.4.4. Transient Management Halts 9-56
9.4.5. Symbiont Halt 9-56
9.4.6. Shared Code Halts and Pauses 9-57
9.4.7. Soft-Patch Symbiont (PT) 9-58 t 9.4.7.1. Soft-Patching Using Card Input 9-58
9.4.7.2. Soft-Patching Using Console Input 9-60
9.4.7.3. Using the PT Command 9-61
9.4.7.4. Cancelling the PT Symbiont 9-61
9.4.7.5. PT Symbiont Error Messages 9-62

t
MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

10.1. GENERAL 10-1
10.1.1. The Canned Message File 10-3
10.1.1.1. Canned Messages 10-3
10.1.1.2. Inserting Variable Characters in a Canned Message 10-3
10.1.2. The System Log 10-6

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

10.2. MESSAGE AND LOGGING MACRO INSTRUCTIONS
10.2.1. Write to the Log
10.2.2. Display a Message and Write to the Log
10.2.3. Get a Canned Message

10.3. USER-OPERATOR COMMUNICATION

10.3.1. General
10.3.2. Display a Message to the Operator

11. OTHER SERVICES

11.1. SPOOLING
11.1.1. General
11.1.1.1. In itia I ization

11.1.1.2. Input Reader

11.1.1.3. Spooler
11.1.1.4. Output Writer

11.1.1.5. Special Functions
11.1.2. To Use Spooling

11.1.3. Create a Breakpoint in a Spool Output File

11.2. JOB ACCOUNTING
11.2.1. General
11.2.2. Accounting Data
11.2.2.1. Job Step Level Data

11.2.2.2. Job Level Data

11.2.3. Data Printout

11.3. SYSTEM ACTIVITY MONITOR
11.3.1. General
11.3.2. Monitor
11.3.3. Report Producing Program
11.3.4. System Activity Monitor Statistics

INDEX

USER COMMENT SHEET

FIGURES

3-1. 9000 Series Assembler Coding Form

..... 4-1. Relationship of Basic PIOCS Macro Instructions

4-2. Buffer Control Word (BCW) Format for Integrated Disk Adapter
4-3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel

4-4. Buffer Control Word (BCW) Format for Multiplexer Channel

4-5. Channel Command Word (CCW) Format for Selector Channel
4-6. Channel Address Word (CAW) Format
4-7. Command Control Block (CCB) Format
4-8. Physical 1/0 Control Block (PIOCB) and File Control Block (FCB) Format
4-9. Tape Block Number Field Format

6-1. Partition Control Appendage (PCA) Table Format
6-2. Record Formats for Disk Devices
6-3. Definition of Interlace Variables
6-4. Interlace Accessing

A Contents 8
UPDATE LEVEL PAGE

10-6
(WTL) 10-6 • (WTLD) 10-9
(GETMSG) 10-14

10-17
10-17

(OPR) 10-19

11-1
11-1
11-1
11-2
11-2
11-3
11-4
11-4

(BRKPT) 11-5

11-6
11-6
11-6
11-7
11-8
11-9 • 11-11
11-11
11-11
11-11
11-12

3-6

4-3
4-7
4-10
4-13
4-16
4-17
4-22
4-25
4-34 • 6-2
6-3
6-6
6-7

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
A 2-9

UPDATE LEVEL PAGE

• 2.2.10.4. Standard System Error Message Interface

•

•

An error message service routine provides complete and specific error messages without
requiring each system module to contain alphanumeric error information. This routine locates
the message in a disk file and transfers control to the system console handler for message
display or system logging.

2.2.11. Automatic Volume Recognition

Automatic volume recognition allows the console operator to premount magnetic tapes
and disk packs before the devices are required for a job step. This reduces time lost due to
job step setup and console responses. The automatic volume recognition function is
performed during supervisor initialization and as a result of an attention interrupt being
received from an online 1/0 device. This attention interrupt is caused by physically
activating the device online, or, in the case of a device that does not have an attention
interrupt capability, by the operator issuing an AVR console command.

Using the physical unit block (PUB) for the devices, automatic volume recognition checks
to see if the required tape and disk volumes are already mounted. In addition, it performs
special processing to handle unique characteristics of various devices. For example, when
required at supervisor initialization, it distinguishes between an 8418 disk pack with high
density and an 8418 disk pack with low density or an 8416; it performs special interrupt
processing for the 8415 disk; it identifies an 0776 printer configured as an 0770 printer. It
then marks the device type in the PUB for that device. It also distinguishes between block
numbered and unnumbered tapes. If a tape is not at loadpoint, it rewinds the tape so that
it can read the label and the volume serial number.

The automatic volume recognition function displays console messages to the operator to
indicate such conditions as a disk or tape not prepped, an 1/0 error, or a duplicate volume
serial number.

A system generation option incorporates a retry on the attention interrupts feature in the AVR
function. This permits automatic retry of a recoverable error when an attention interrupt is
received on a printer, card reader, or card punch that has an unanswered PIOCS error message. ~
The operator can initiate the recovery retry at the device by placing it online, instead of having to
return to the console to respond to the error message.

2.2.12. Main Storage Consolidation

Main storage consolidation is a system generation option that repos1t1ons jobs and
reallocates space in main storage so that enough contiguous space can be made available
when needed to hold the next job to be initiated. This reduces fragmentation of main
storage and permits a job to be run that requires more contiguous space than is currently
available without consolidation .

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-10

UPDATE LEVEL PAGE

When a job or a symbiont terminates, the next job to be run is evaluated to determine •
whether there is enough space available or whether main storage consolidation is
necessary and which jobs must be moved. If this job is scheduled and consolidation is
required, the jobs are moved down one by one, starting with those farthest from the
supervisor. Each job to be moved is brought to an idle state, then moved down. Addresses
are adjusted and the job is reactivated. When all these jobs have been moved, the next
scheduled job is read in and initiated.

Main storage consolidation does not move symbionts because they do not have an
associated relocation register. Nor does main storage consolidation move jobs with open
interfaces to the integrated communications access method (ICAM), because these jobs
may be reading or writing directly into or out of user main storage. This restriction is
minimized if ICAM is loaded first, then ICAM user jobs next, in order to retain the
maximum continuous main storage region for further allocation.

2.2.13. Rollout/Rollin

The rollout/rollin function is a system generation option that temporarily transfers jobs
from main storage to disk to make room for a job with a preemptive scheduling priority.
Jobs currently in main storage are suspended and written to the job's run library. The
preemptive job is then read into main storage and initiated. As enough space becomes
available, the rolled-out jobs are read back into main storage and allowed to continue
processing.

When a job or a symbiont terminates and there is a preemptive job in the job queue, the
preemptive job is evaluated to determine whether there is enough existing main storage
available, or whether main storage consolidation or rollout is necessary to make space
available. If the job is scheduled and rollout is required, the rollout function brings each
job marked for rollout to an idle state, delinks the TCBs from the switch list, and writes the
job's image from the job region to disk. These rolled-out jobs have asterisks appended to
their names on the top line of the display on the system console. If the needed 1/0 devices
are available, the preemptive job is read into the freed main storage and initiated.

As space becomes available and if there are no other preemptive jobs, the job scheduler
tries to bring in the rolled-out jobs, one by one. The job slots and 1/0 devices remain in
effect from the time the jobs were rolled out. The job scheduler ignores any jobs on the
high- or normal-priority job queues until all of the rolled-out jobs have been rolled back in
and reactivated.

2.2.14. Cochanneling

Cochanneling is the capability of accessing a single peripheral device through either of
two physical paths. Under OS/3, it provides for the support of both the dual access and
dual channel capabilities of the 90/30 hardware.

•

Dual access cochanneling permits simultaneous 1/0 operations (read/read, read/write, •
write/write) on any two devices using two control units and two selector channels. Each
input/output device is connected to both control units, one control unit on each selector
channel. Depending on the control units used, dual access cochanneling is applicable to

•

•

•

SPERRY UNIVAC Operating System/3 A 3-11 8075 Rev. 3
UP-NUMBER .UPDATE LEVEL PAGE

MULTITASKING

Task Management

ECB
ATTACH
DETACH
TY I ELD
AWAKE
CHAP

Task Synchronization

WAIT
WAITM
POST
TPAUSE
TGO

PROGRAM MANAGEMENT

Program Loader

LOAD
LOADR
LOADI
FETCH

Table 3-1. Supervisor Macro Instructions (Part 2 of 3)

Generate an event control block.
Create and activate an additional task.
Terminate a task normally.
Deactivate a task.
Reactivate an existing nonactive task.
Change the priority of a task.

Wait for a task request to complete.
Wait for one of several task requests to complete.
Activate the waiting task.
Deactivate one or more tasks other than the issuing task.
Reactivate one or more tasks other than the issuing task.

Load a program phase and return control.
Load a program phase, relocate address-constants, and return control.
Locate a program phase and store its phase header in a work area.
Load a program phase and branch.

Job and Task Termination

EOJ
CANCEL

Timer Services

GETIME
SETI ME

Program Linkage

CALL/VCALL
ARGLST
SAVE
RETURN

Island Code Linkage

STXIT
EXIT

Terminate a job step normally.
Terminate a job abnormally.

Obtain current time and date.
Set an elapsed time counter for the requesting task.

Call a program.
Generate an argument list.
Save register contents.
Restore registers and return.

Link to island code subroutine.
Exit from island code subroutine.

3-12 8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 3-1. Supervisor Macro Instructions (Part 3 of 3)

PROGRAM MANAGEMENT (cont)

System Information Control

GETCOM
PUTCOM
GETINF

Control Stream Reader

GETCS
SETCS

Retrieve data from job communication area.
Place data into job communication area.
Retrieve data from system control tables.

Retrieve embedded data file submitted in job control stream.
Reset pointer to embedded data file.

DIAGNOSTIC AND DEBUGGING

Storage Displays

SNAPISNAPF
DUMP

Checkpoint Facility

CHKPT
DDCPF
DCPOPN
DC PC LS
DCFLT

Monitor and Trace

Print out portions of main storage and return control.
Print out the job main storage and terminate the job step.

Record a checkpoint.
Define a SAT checkpoint file.
Open a SAT checkpoint file.
Close a SAT checkpoint file.
Generate a file list table.

11 OPTION TRACE Monitor from start of job.
(This is a job control statement, not a macro instruction.)

MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

WTL
WTLD
GETMSG
OPR

OTHER SERVICES

Spooling

BRKPT

Write a message into system log file.
Write a message into system log file after displaying on system console or workstation.
Retrieve message from canned message file.
Display a message on system console or workstation.

Create a breakpoint in a spool output file.

•

•

•

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

A 4-1

4.1. GENERAL

UPDATE LEVEL PAGE

4. Physical Input/Output Control
System (PIOCS)

The resident supervisor of OS/3 contains a set of routines called the physical input/output
control system (PIOCS) that controls the activity between the processor and all peripheral
devices connected to the mutliplexer, selector, and integrated channels. These input/output
(1/0) channels operate independently of the processor and allow 1/0 operations on a channel
to overlap with processing and with operations on other 1/0 channels.

PIOCS:

• schedules 1/0 requests to maintain optimum 1/0 throughput without burdening the
problem program;

• initiates 1/0 operations;

• tests for error or other exceptional conditions pertinent to the actual physical transfer of
data; and

• activates error recovery procedures in the event of peripheral device errors.

Problem program interface to the IOCS is provided at two levels: data management (logical 1/0
control system) and PIOCS macro instructions.

Data management routines substantially reduce programming effort, especially for jobs
requiring a great amount of 1/0 processing. The routines, by handling the foregoing 1/0
functions for the programmer automatically, enable you to concentrate on the logical record,
because the applicable PIOCS macro instructions are contained in the data management
macro routines and you need only limited knowledge of the peripheral device. The data
management macro instructions are described in the data management user guide, UP-8068
(current version).

The use of the PIOCS macro instructions may be advantageous for certain programs, which,
because of unique 1/0 devices, need to control the actual handling of the data to be read or
written. To use PIOCS macro instructions, you must have an in-depth knowledge of the
particular peripheral device and its control requirements. At the PIOCS level, the problem
program is responsible for performing functions such as:

8075 Rev. 3

UP-NUMBER

•

SPERRY UNIVAC Operating System/3 A 4-2 •

UPDATE LEVEL PAGE

constructing the actual 1/0 commands processed by the device as well as constructing the
control blocks used by PIOCS for issuing the 1/0 order;

• ensuring the desired sequence of 1/0 commands by the proper use of 1/0 synchronization
macro instructions;

• blocking/deblocking logical records;

• alternating 1/0 buffer areas;

• detecting wrong-length records;

• handling end-of-file (EOF) or end-of-volume (EOV) conditions;

• processing labels;

• translating ASCII data to EBCDIC on input, or EBCDIC data to ASCII on output; and

• handling unique error conditions.

4.2. PHYSICAL 1/0 CONTROL

4.2.1. General

Detailed tabular information pertaining to each request must be supplied if the problem
program is to communicate effectively with the IOCS facilities of the resident supervisor
through the PIOCS macro instructions.

The following PIOCS macro instructions are available for establishing the tabular information
and for requesting services of the supervisor and the IOCS:

• Table generation macro instructions (declarative)

BCW
Constructs a buffer control word (BCW), which is used by the integrated 1/0 channels
and multiplexer channel.

ccw

CCB

Constructs a channel command word (CCW), which is used by the selector 110
channel and the physical device.

Constructs a command control block (CCB), which is used as a bidirectional
communications medium between the problem program and the IOCS routines in the
supervisor.

PIOCB
Constructs a physical input/output control block (PIOCB), which is used as a buffer
for file control blocks (FCB) containing file and device information that is compiled by
job control at the time the job control stream is processed.

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

•

SPERRY UNIVAC Operating System/3

Service request macro instructions (imperative)

RDFCB

A

UPDATE LEVEL

4-3

PAGE

Reads a file control block (FCB), which completes the PIOCB with information
compiled at job execution time by job control. (The RDFCB macro instruction must be
executed prior to any !>ervice for an associated PIOCB.)

EXCP
Requests execution of a channel program. The EXCP macro instruction initiates the
PIOCS routine. Before this instruction can be executed, you must construct an 1/0 ~
control packet that consists of a CCB, a CCW or a BCW, and a PIOCB.

The relationship of the basic PIOCS macro instructions is illustrated in Figure 4-1. ...,

RDFCB PIDCB-name- - - - - - - - -{j)
EXCP CCB·name ~

Command Control
Block ICCBI

BCW/CCW·reference

P!OCB-reference

T T

Buffer Control
Words IBCWI or
Channel Command
Words (CCWl

command-code

data-reference

options

data-length

Data Area

data

T

Physical 110
Control Block IPIOCBI

PUB-reference

Physical Unit
Block (PUB)

PUB 1
1-----------1

PUB 2 .,.___ ____ ______,

1----..;;..;da_.;v•c_;_e-l__:_D -----! PUB 3
PUB 4 .,.___ ____ ______,

r.__-----ir PUB n

Device Assignment
Via Job Control

Figure 4-1. Relationship of Basic PIOCS Macro Instructions

SPERRY UNIVAC Operating System/3 4-4 8075 Rev. 3

UP-NUMBER UPDATE LEVEL PAGE

4.2.2. General 1/0 Usage Requirements

The users of 1/0 facilities are required to perform certain prerequisites for 1/0 communication.
These include:

• Description of the file to the operating system through ·DVC, LBL, or LFD statements.

• Description of the file to the data management system through file description tables and
file control routines.

Description of the file to the operating system is through job control statements which describe
the device to be used, the volume which contains the file, and the logical name assigned to the
file.

Description of the file to the data management system includes the option of linking to a
standard data management file control module, using a resident module, or assembling and/or
linking a special tailored module with the user program.

The file description table must be included with the user program.

The macro instructions used in the 1/0 system are best described atthe levels at which they are
employed.

• User level macro instructions

The execution of imperative macros (EXCP, RDFCB, SWAP) results in control being passed
to the appropriate control routine within the operating system. You specify the name of the
file, which is the name that was assigned to the file control block by an entry in the label
field of the PIOCB macro instruction.

Example:

FILEIN
MASTER

RDFCB
EXCP
WAIT

CCB
PIOCB

MASTER
FILEIN
FILEIN

The PIOCB declarative macro instruction reserves an area which is the repository of the file
control block. The name assigned to the PIOCB must be a duplicate of the character string in the
LFD job control statement.

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
A 4-5

UPDATE LEVEL PAGE

Data management level macro instructions

Execution of the imperative 1/0 macro instructions results in the data management file
control routine reducing your macro to a new level of imperative macro instructions. These
include the RDFCB (read file control block), the EXCP (execute channel program), and the
WAIT (wait for channel program completion) macro instructions.

The primary parameter to the EXCP and WAIT macro instructions is the CCB. The CCB
macro provides the ability to specify a particular command to a particular device.

4.2.3. Generate Buffer Control Word (BCW)

Function:

The BCW macro instruction generates a buffer control word which provides the hardware
parameter interface to the integrated disk adapter, integrated peripheral channel, t
multiplexer channel, and the integrated line adapters for use by the PIOCS routines. Also,
the BCW macro instruction provides you with a limited device-independent interface
across selector channel devices. In this case, the PIOCS routines construct a CCW chain .1
by using the information provided in the BCW. The formats of the BCW are shown in T
Figures 4-2, 4-3, and 4-4.

Note that the BCW of formatting commands sent to the 8411 and 8414 disk
subsystems must specify a single record.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL t:. OPERATION t:. OPERAND

symbol BCW device-cmd-code [,data-add r] [,data-flag]
[,data-byte-count] [,repl-addr] [,repl-flag]
[,repl-byte-count] [,control-flag]

Label:

symbol
Specifies the symbolic address of the buffer control word. This name is used to refer
to the BCW.

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, 16 bytes containing O's are reserved for the BCW, and the assembly listing
will contain an error note.

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-6

UPDATE LEVEL PAGE

Positional Parameter 2:

data-addr
Specifies the symbolic address of the data being transferred. This is the active
buffer for the system console and the integrated line adapters. For the
read/punch, it is the address of the punch output buffer. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address .field in the BCW is set to O's, and the assembly listing will
contain an error note.

Positional Parameter 3:

data-flag
Specifies the flag byte associated with the address of the active buffer. This is
written in the form X'xx' as follows:

For the integrated disk adapter:

X'40'

x·ao·

Indicates a search operation is to be performed on an entire
cylinder rather than a track.

Indicates no data to be transferred.

For the integrated peripheral channel:

X'20'

x·ao·

Indicates no data to be transferred. (This entry can also be used
for the multiplexer channel.)

Indicates a replacement operation is to be performed. If this
entry is used, positional parameters 5, 6, and 7 are also
required.

If omitted, x·oo· is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the BCW.

Positional Parameter 4:

data-byte-count
Specifies the number of bytes to be transferred or the number of sectors to be
transferred for a sectored IDA device.

If omitted, zero is assumed. For a search on the integrated disk adapter, this indicates
the maximum number of bytes or sectors are to be transferred; and for a read or a
write, this indicates no data is to be transferred. For the integrated peripheral
channel, this indicates the maximum number of bytes are to be transferred.

NOTE:

Positional parameters 5, 6, 7, and 8 apply only to the integrated peripheral channel.

•

•

•

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

A 4-15

UPDATE LEVEL PAGE

Explanations:

1. Read one 80-column card in EBCDIC mode.

2. Read/punch 80-column card in EBCDIC mode. Punch buffer is IOAREA 1; read buffer
is IOAREA2.

3. Print 132 positions and advance one line.

4. Read one sector on 8416/ 1 8 disk.

NOTE:

The cylinder half word (BCW name+ 12), the head address byte (BCW name+ 10), and the
record (sector) number byte (BCW name+ 14) can be set statically by use of the ORG
assembler control directive, or dynamically via instruction execution.

4.2.4. Generate Channel Command Word (CCW)

Function:

The CCW macro instruction generates a channel command word which provides the
hardware parameter interface to the selector channels for use by the PIOCS routines. The ~
format of the CCW is shown in Figure 4-5. The format of the CAW, which contains the
first CCW address, is shown in Figure 4-6.

The supervisor can only handle command chains on selector devices through two
levels of transfer in channel {TIC) within command chain. This limitation is due to the
lack of hardware address relocation on CCWs and the need to have a software
function perform the absolutizing and relativizing of CCW addresses.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL

symbol

Label:

t.OPERATION t.

ccw

OPERAND

[device-cmd-code] [,data-addr] [,flag]
[,data-byte-count]

symbol
Specifies the symbolic address of the channel command word. This name is used
to refer to the CCW.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 4-16

UPDATE LEVEL PAGE

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, eight bytes containing O's are reserved for the CCW, and the assembly
listing will contain an error note.

0

command code

s
c I

0 • • 0

13

0 c i () ------------·

3 333435

Biu Allocation

0-7 Command code

8-12

13--31 Data address

32

33 cc (chain command flag)

34 sli (suppress length indication flag)

35-47

48-63 Byte count

LEGEND:

System-supplied data

48

data address
(Next CCW address if

TIC command)

byte count

Function

Specifies operation to be performed by device
and channel

Unassigned; must be set to zero

Address of location in main storage into or from
which first byte of data is transferred

Unassigned; must be set to zero

When valid ending device status received, new
CCW fetched and operation specified by new
command code initiated

If set to 1, incorrect length condition not
indicated to program; if cc = 1 also, command
chaining not suppressed

Unassigned; must be set to zero

Byte count required for all data transfer
operations

[:=:J Data supplied by the user via the macro instruction that directs the supervisor to generate the control
block

Figure 4-5. Channel Command Word (CCW) Format for Selector Channel

31

63

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL

4-19

PAGE

Label:

symbol
Specifies the symbolic address of the command control block. This name is used to
refer to the CCB.

Positional Parameter 1:

PIOCB-name
Specifies the symbolic address of an associated physical input/output control block
generated by the PIOCB macro instruction. (The address furnished will be modified by
this macro instruction to be the address of the PUB address within the PIOCB.)

Positional Parameter 2:

BCW-name
Specifies the symbolic address of a BCW.

CCW-name
Specifies the symbolic.address of a CCW, or a list of CCWs if command chaining is
used.

When you use data management macro instructions, the BCWs and CCWs are generated
automatically. When using PIOCS macro instructions, you must specify each BCW and ~
CCW according to the 1/0 functions desired.

Positional Parameter 3:

PUB-entry-number
May be 0, 2, 4, 6, 8, 10, 12, or 14 indicating one of eight 2-byte fields in the PIOCB
containing the absolute address of the PUB for the device involved in the 1/0
operation. (Zero indicates the first entry, 2 the second, 4 the third, etc.)

If omitted, zero is assumed (indicating the first PUB address) .

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

4-20'

PAGE

Positional Parameter 4:

error-option
Specifies error acceptance options elected at assembly time. This is written in the
form X'xx' as follows:

X'OO'

X'01'
X'02'
X'04'
x·oa·

X'10'
X'20'

X'40'

X'80'

NOTES:

Indicates that no error conditions are acceptable to the problem
program.
Block number area is reserved in buffer.
Reserved for system use.
Reserved for system use.
Indicates system access CCB. Device independence can be achieved
by furnishing a BCW for an integrated peripheral.
Indicates a diagnostic request. Reserved for system use.
Indicates that, following the normal error recovery attempts by the
supervisor, those errors classified as unique are acceptable to the
problem program. See note 1.
Indicates that all unrecoverable error conditions are acceptable to the
problem program following the normal error recovery attempts by the
supervisor. See note 2.
Indicates user has own error code. No recovery will be attempted by
the supervisor, and device status and sense are communicated to the
user in the CCB.

1. Accept Unique Errors (byte 3, bit 2). Unique errors may be considered as
recoverable errors. The meaning of unique errors is different for different
devices.

For a disk, unique error means record not found. Your program may expect that
certain records you are looking for in a file may not be there. An example of this is
an update-add program. If the record is found, it is updated; if it is not found, it is
added to the file. In this case, you should set the accept unique errors bit (byte 3,
bit 2) in the CCB. If you receive a no record found condition (byte 2, bit 3), PIOCS
will retry the error twice. If the record is still not found and the CCB is marked to
accept unique errors, no error message is displayed on the console and control is
returned to your program with the no record found bit set in the CCB.

For tape, unique error means a tape that is busy rewinding. If you issue an
EXCP to a magnetic tape which is rewinding, the CCB will be returned with
the unique error bit (byte 2, bit 2) set. This occurs whether or not accept
unique errors is set in the CCB. The EXCP should be reexecuted until the
status does not occur. At that time, the EXCP is considered completed.

•

•

•

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

4-21

PAGE

For printers, unique error means character mismatch. This means that there
is no match between a code in the load code buffer (LCB) and a character in
the print line buffer. When you generate the LCB for your printer, you may
choose whether or not to report character mismatches. If you choose not to
report character mismatches, they will be ignored and no console error
message will be displayed If the LCB is generated so that character
mismatches are to be reported and a character mismatch occurs, an error
message will be displayed on the console. If the accept unique errors bit is
set in the CCB, the options on the error message will be R (retry) or I
(ignore).

If the operator responds I, control will be returned to your program with the
unique error bit set in the CCB. If the accept unique errors bit is not set, the
options on the error message will be R (retry) or C (cancel).

There are no unique errors for readers and punches. Note that, except for tape, if
a unique error occurs and the CCB Is not marked to accept unique errors, PIOCS
will treat the unique error as an unrecoverable error.

2. Accept Unrecoverable Errors (byte 3, bit 1). If you set this bit in the CCB and
an unrecoverable error occurs, the console message will appear with the R
(retry) and U (accept unrecoverable) options. If the operator responds R, the
command will be retried If the operator responds U, control will be returned
inline following the command, and the unrecoverable error bit (byte 2, bit 1)
will be set in the CCB. If you do not set the accept unrecoverable bit in the
CCB and an unrecoverable error occurs, the console message will appear
with the R (retry) and the C (cancel) options. After successive retries, if the
error still is unrecoverable, the operator may choose to respond C and the
job will be cancelled.

If omitted, the entry X'OO' is assumed, indicating that no error conditions are
acceptable to the problem program.

The CCB is used to communicate with the functional IOCS routines executing the 1/0
operations. The generated CCB forms the logical connection between the PIOCB and the CCW
or the BCW. The PIOCB references the actual peripheral device and the CCW or the BCW
defines and controls the function of the particular device and its data transfer. The CCB also
specifies user options pertinent to the 1/0 request in the event of an error, and reflects the
status of the request. When the related 1/0 interrupt occurs, the IOCS also stores status
information pertinent to the interruption in the associated CCB.

Because the CCB serves as a 2-way communications medium between the IOCS and the
problem program, it is used for one active 1/0 request at a time; therefore, every active 1/0
request must have a unique CCB .

8075 Rev. 3
UP-NUMBER

Byte

0

4

8

12

16

20

24

0

control byte 1

sense byte 0

sense byte 4

SPERRY UNIVAC Operating System/3 A 4-22

UPDATE LEVEL PAGE

1 2 3

1/0 error count transmission byte control byte 2

TCB address©
or next CCW address

T
CCB link I address@ l or residual CCW byte count

CCW address

PIOCB pointer (PUB address)

sense byte 1 sense byte 2 sense byte 3

sense byte 5 device status channel status

NOTES:

During the 1/0 command execution, bytes 4-7 contain the address of the TCB associated with this CCB. At 1/0
command termination, PIOCS inserts the address of the next CCW in the chain.

During 1/0 command execution, bytes 8-11 contain the address of the next CCB in the chain at this job level. At 1/0
command termination, PIOCS inserts the number of bytes remaining in the CCW byte count (when the 1/0 command
terminated) into bytes 10 and 11 .

Figure 4-7. Command Control Block (CCB) Format (Part 1 of 2)

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3 A
4-29

8075 Rev. 3
UP-NUMBER UPDATE LEVEL PAGE

The EXCP macro instruction communicates directly with the 1/0 scheduler for the purpose of
submitting 1/0 requests to the system. Before the EXCP macro instruction is executed, you
must construct an 1/0 packet consisting of the following:

• Use a CCB macro instruction to define the CCB.

• Use a PIOCB macro instruction to define the physical 1/0 control block.

• Use one or more CCW macro instructions or a BCW to construct the channel program.

• Use an RDFCB macro instruction to identify the 1/0 device and to obtain file information
specified by job control.

Linkage between these components is as follows:

• The EXCP macro instruction passes the address of the CCB to the PIOCS routines. ..-

• The address of a 2-byte field in a physical 110 control block is stored in the CCB. This field
contains the address of the PUB for the peripheral device concerned. ..-

• The address of the first CCW or BCW is stored in the CCB.

• Each CCW or BCW contains the address of an input/output data area .

Whenever an EXCP macro instruction is executed, the 1/0 request counter in the task control
block of the requester is incremented and a status indicator in the CCB is set to signify that the
order is outstanding. Control is returned to the calling program immediately by the supervisor
with the degree of completion of this 1/0 order uncertain. You must use the WAIT or WAITM
macro instruction for synchronization with this 1/0.

An EXCP issued to a magnetic tape which is rewinding will result in the posting of the
CCB with unique error status. The EXCP should be reexecuted until the status does not
occur. At that time the EXCP is considered completed .

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

4.3. INPUT /OUTPUT SYNCHRONIZATION

4-30"

UPDATE LEVEL PAGE

Macros are available that provide the means by which a task can await the completion of one or
more outstanding 1/0 operations. Specifically the task can await one, several, or all
outstanding I/Os; however, the 1/0 being waited for must have been requested by the task
doing the waiting.

Tasks are waited by setting a unique wait bit with in that task control block (TCB). These wait bits
signal the switcher that this task is nondispatchable and indicate the reason for the wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.

Two macro instructions are available for 1/0 synchronization:

• WAIT

Wait for one or all 1/0 requests to complete.

• WAITM

Wait for one of several 110 requests to complete.

•

These macro instructions can also be used (with different parameters) to synchronize a task
with the execution of other tasks. For 1/0 synchronization, the macro instruction references a
CCB; and for task synchronization, the macro instruction references an event control block. •
Task synchronization is described in 7 .4.

It must be remembered when you use these macro instructions that only the task having
executed an 1/0 request can await its completion; and when you await a task, it is not valid to
await the executing task.

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

4.4.2. Tape Restrictions

A
UPDATE LEVEL

4-35

PAGE

The 3-byte block number fields are added to standard labels on block numbered tapes. The
three bytes precede the label identifier (VOL 1, HOR 1, etc.) making the label 83 bytes long.
This is true for tapes written in ASCII as well as EBCDIC. Note that in the case of ASCII
tapes, the 83-byte label is nonstandard. It can be used for internal processing, but cannot
be used for information interchange. Block number processing will be exactly the same for
both EBCDIC and ASCII tape files. Tape label formats for block numbered EBCDIC tapes
are shown in Figures 6-17 through 6-21.

Block numbers will be volume dependent and file independent. Files on a volume and
volumes in a multivolume file must be all numbered or all unnumbered, not mixed.

Block number processing is available for magnetic tapes on selector or multiplexer
channels. These may be 9-track tapes, or 7-track odd parity tapes operating in data
conversion mode. Block size of 7-track tapes operating in data conversion mode must be a
multiple of 3.

4.4.3. Input/Output Buffer

When processing block numbered tapes you must reserve a 4-byte storage area
immediately preceding your input/output area for supervisor processing of the block
number. This 4-byte block number area, and the input/output area, must be aligned on a
full-word boundary. Do not include these four bytes in either the location or the block size
of the input/output area.

Block numbers will be checked when reading in either direction. When reading backward,
you must be sure your input/output area is large enough to hold the entire block of data.
If the data is truncated on a backward read, the block number will be lost and incorrect
positioning of the tape may result.

4.4.4. Processing

A number of software components are affected by block number processing; these include
system generation, tape preparation, job control, automatic volume recognition, PIOCS, data
management, and system access technique (SAT) on tape files. Several control tables in main
storage are also affected, including the systems information block (SIB), the device PUB trailer,
and the CCB. These tables contain fields that are updated and bits that are set, tested, and
cleared to reflect user options and processing events.

PIOCS will perform block number processing for data management, tape SAT, and EXCP-level
PIOCS users. A general description of required and optional parameters and processing ~
performed is contained on the following pages. Details pertinent to PIOCS users are contained
in 4.4.5. Details of the requirement for tape SA Tare contained in 6.5 to 6.1 Oofthis manual. For ~
data management details, refer to the data management user guide, UP-8068 (current
version) .

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 4-36

UPDATE LEVEL PAGE

The supervisor must be configured to process block numbered tapes, in which case, the •
generated supervisor can process both numbered and unnumbered tapes. A bit in the SIB
is set to indicate that the supervisor supports block numbering. If the supervisor does not
have the block numbering capability, only unnumbered tapes can be processed; otherwise,
misalignment and possible truncation of data will result because of the block number field.

To use the block numbering capability of the supervisor, you must also reserve a 4-byte storage
area, aligned on a full-word boundary, immediately preceding the input/output area. If you are
a data management user, you indicate that you have reserved this 4-byte area by using the
BKNO=YES parameter in the DTFMT macro instruction. If you are a tape SAT user, you do this

~ by using the BKNO=YES parameter intheTCA macro instruction. If you area PIOCS user at the
EXCP level, you must also indicate that you have reserved the 4-byte area by setting a bit in the
CCB (4.4.5).

You have the option not to use block number processing even though the supervisor has
the capability and you have indicated there is a block number field preceding the
input/output area. If you enter N as the first parameter in the VOL job control statement,
block numbers will not be written on output tapes and will be ignored if present on input
tapes.

Automatic volume recognition will read and store volume serial numbers and will set
appropriate bits in the PUB trailer to indicate whether or not it is processing standard
labeled tapes and block numbered tapes.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors), control is returned to the user program. If there is
a discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward
the number of blocks implied by the discrepancy. If the correct block is found, control is returned
to the user. If the correct block cannot be found, the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

When processing control macros, block number processing will not be performed, because
no data transfer is involved. However, for commands involving single blocks (FSB, BSB),
the block number count will be updated.

On block numbered tapes, CCW chains with more than one tape movement command and
multiblock BCW commands can be processed only through the first tape movement
command.

4.4.5. PIOCS Requirements and Options

•

PIOCS users at the EXCP level have an additional requirement. Before issuing any EXCP macro
instruction for a block numbered tape, you must set byte 3, bit 7, in the CCB. This indicates that
the 4-byte block number field preceding the input/output buffer has been reserved. lfthis bit is
not set, the job will be cancelled. •

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

4-37

PAGE

You can request that block numbering be ignored on input tapes by setting byte 0, bit 3, in
the CCB before issuing an EXCP. In this case, block numbered tapes will be read, but the
block numbers will not be verified. You must set this bit each time you want to ignore
block number processing on a read.

Another option available at the PIOCS level is to accept unrecoverable errors. You can do this by ..-
setting byte 3, bit 1, in the CCB. You don't have to reset this bit for each EXCP; it need only be set
once and stays set.

On a read, if PIOCS detects a variance between the expected block number and the actual block ..-
number and is unable to resolve this variance after 10 retries, a console message is issued. If
byte 3, bit 1 (accept unrecoverable errors) is set, the console message gives the operator
opportunity to request a retry or accept the error. If retry is requested but is still unsuccessful,
the operator will again be asked to request a retry or accept the error. If he accepts the error (or if
he first requests retry and it is still unsuccessful), PIOCS sets byte 2, bit 1 (unrecoverable error). ..-
PIOCS then sets byte 2, bit 0, to indicate that CCB processing is complete and returns control to
your program. On input, you should test byte 2, bit 5, after the WAIT is executed to ensure that
the correct block has been processed.

If byte 3, bit 1 (accept unrecoverable errors) was not set, the operator has the option only
to request a retry or cancel. If retry is requested but is still unsuccessful, the operator will
again be asked to request a retry or cancel.

On a write, if byte 3, bit 1, is set and the tape cannot be positioned correctly, a console
message gives the operator the opportunity to accept the error or cancel. If this bit is not
set, he must cancel.

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

Physical Block No.

Logical Block No.

Revolution
No.

1

2

3

Logical Blocks 4
Read or Written
During Each 5

Disk Revolution 6

7

8

9

10

SPERRY UNIVAC Operating System/3

Without Interlace

1 2 3 4 5 6 7 8 9 10

i 1 I 2 I 3 I 41 5 I 6 I 7 I a I 0 I 10 I

Q
w

0
0

GJ
GJ

0
~
~
~

Figure 6-4. Interlace Accessing

6-7
UPDATE LEVEL PAGE

With Interlace

1 2 3 4 5 6 7 8 9 10

! 1 161410 I 2 I 1I5I1013 Is I

[J GJ GJ
GJ GJ

G 0 0
0 ~

Successful interlace operation requires that the 1/0 orders must be issued within· a
specific time frame. The lace factor, therefore, determines how blocks are to be spaced on
the track to ensure that the actual time frame (which includes both user and SAT
overhead) is equal to or greater than your estimate of required time between block
accesses.

A lace factor of 4 means that the blocks will be spaced in sufficient intervals (every 4th
block) to produce an actual time frame that is equal to or greater than the estimated
required time frame.

To calculate the lace factor, use the formula described in 6.2.5.2. Although the formula is
based on the use of the 8416 disk subsystem, all lace factor calculations must be
performed by using this formula, regardless of the actual disk subsystem being used.
When the file is opened by the OPEN macro instruction, the specified lace factor will be
applied to the performance of the particular disk subsystem being accessed. If necessary,
SAT will adjust the lace factor to the capacity and speed of the specific device so that a
similar time frame will be maintained for interlaced files processed on all supported disk
subsystems .

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

6.2.5.2. Lace Factor Calculation

The lace factor is calculated in two steps by using the following formula:

1.

2.

BLKSIZE
256

x .535 = Calculated Sector Time

Required Time Frame
Calculated Sector Time

+ 1 (rounded high) = Lace Factor

A 6-8

UPDATE LEVEL PAGE

For example, if you are using a block size of 1024 bytes, first calculate the sector time in
milliseconds:

1.
1024
256

x .535 = 2.14 ms

Then calculate the lace factor using an estimate of the processing time required between
block accesses. For this example, let us use a required time frame estimate of 7.48 ms:

2.
7.48
2.14

= 3.49 + 1 = 4.49 rounded to 4

The result is a lace factor of 4. In the PCA macro instruction statement for this partition,
enter the keyword parameter LACE=4.

NOTE:

When the time frame exceeds 21.4 ms, it should be divided by 21.4 and the remainder
should be used as the time frame in the foregoing calculation.

6.2.6. Accessing Multiple Blocks

When you are engaged in sequential processing (SEQ=YES specified in PCA macro
instruction), you can read or write more than one block with each SAT imperative macro
instruction that is issued. This is done by specifying the number of blocks you wish to access
together by using the LBLK keyword parameter of the PCA macro instruction. However, when
you use multiple buffer accessing, be certain that your 1/0 buffer area has enough contiguous
space to contain the blocks. Also, if you are creating the partition by using the format write
option, (FORMAT=NO), an additional 8-byte area, used to construct the count field, must
immediately precede the first buffer area. During input operations, fewer than the requested
number of blocks may be read if the end of data ID is encountered. The 1/0 count field (bytes 44
and 45) of the DTF (Figure 6-5) will contain the number of buffers not acted upon .

..,.. Normally, SAT makes a single reference to PIOCS for the number of blocks requested. If an end­
of-track condition is enccuntered for any block other than the last block of the request, SAT

•

•

..,.. makes an additional reference to PIOCS to access the next track. For interlaced files, SAT
makes one reference to PIOCS for each block requested. If an end-of-block condition is
encountered on the last, or only, block requested, an information bit will be set in the error •
status field (byte 50, bit 0, of the DTF)to indicate the last block on thattrack has been accessed.

The LBLK keyword parameter specifies the number of blocks required, within a range from 1 to
255; however, the total size of the buffer cannot exceed 32,767 bytes.

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

A 6-25

UPDATE LEVEL PAGE

Format:

LABEL b.OPERATION b.

[symbol] CLOSE

OPERAND

{

filename-1 [, .. .,filename-n] }
(1)
*ALL

Positional Parameter 1:

filename-1

(1)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file to be closed.

Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

*ALL
Specifies that all files currently open in the job step are to be closed.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the DTFPF macro
instructions in the program corresponding to the additional files to be closed.

6.5. SAT FOR TAPE FILES

The OS/3 tape system access technique (TSAT) is a generalized input/output control system
that provides a standard interface to PIOCS for magnetic tape subsystems. It performs the basic -..
functions of a tape data management system and provides block level 1/0 for sequential tape
files.

Interface with TSAT files is through declarative and imperative macro instructions. You
use the SAT and TCA declarative macro instructions to define the characteristics of the file
and the data management technique to be used to process the file. The SAT macro
instruction creates the DTF table for the file, and the TCA macro instruction creates the
appendage to the table. These macro instructions are described in 6.8. You use the OPEN,
GET, PUT, CNTRL, WAITF, and CLOSE imperative macro instructions to control file
processing. These are described in 6.9.

All files processed by TSAT are written in a forward direction, and can be read forward
and backward. The CNTRL macro instruction initiates nondata operations on the device
and can be issued whether or not the file is open.

To use TSAT, you must observe tape label conventions (described in 6.6) and tape volume
and file organization conventions (described in 6.7).

If you are processing block numbered tapes, you must also observe the special
conventions applicable to these tapes. Requirements and processing for block numbered
tapes are summarized in 6.10.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

6.6. SYSTEM STANDARD TAPE LABELS

6-26

UPDATE LEVEL PAGE

Magnetic tapes may be labeled or unlabeled, and a labeled tape may contain either
standard or nonstandard labels. You indicate this using the FILABL parameter in the TCA
macro instruction. TSAT assumes that tapes have standard labels. If nonstandard labels
exist on input files, TSAT bypasses them.

All standard tape labels are in blocks of 80 bytes and are always recorded at the same
density as the data. The first three bytes of each label identify the type, and fourth byte
indicates its position within the group. For example, VOL 1 indicates this is the first volume
label for this file.

For block numbered tapes, each label includes a 3-byte block number field as the first
three bytes of the label, making the label 83 bytes long.

There are five tape label groups; three are required and two are optional. The tape label
groups are:

• Volume label group VOL

• File header label group HOR

• User header label group (optional) UHL

• File trailer label group EOF or EOV

• User trailer label group (optional) UTL

TSAT does not process user header (UHL) or user trailer (UTL) labels. No provision is made
for creating these labels on output files; if they exist on input files, TSAT bypasses them.

TSAT label processing is limited to one volume label (VOL1), two file header labels (HDR1
and HDR2), and two file trailer labels (EOF1 and EOF2 or EOV1 and EOV2). No provision is
made for creating additional labels on output files; if they exist on input files, TSAT
bypasses them.

Tape label formats for block numbered files are shown in Figures 6-17 through 6-21.
Tape label formats for files without block numbers are shown in Figures 6-6 through
6-10 and are described on the following pages.

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-55

UPDATE LEVEL PAGE

• Positional Parameter 1:

•

•

filename

(1)

Specifies the symbolic address of the corresponding SAT macro instruction in the
program.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

code
Is a mnemonic 3-character code specifying the tape unit function to be
performed:

BSF Backspace to tape mark*

BSR Backspace to interrecord gap*

ERG Erase gap (writes blank tape)

FSF Forward space to tape mark*

FSR Forward space to interrecord gap*

REW Rewind tape

RUN Rewind tape with interlock (unloads tape)

WTM Write tape mark

6.9.6. Close a Tape File (CLOSE)

Function:

The CLOSE macro instruction performs the required termination operations for a file;
for example, construction of the EOF label group. Once the CLOSE macro instruction
has been issued for a file, only the OPEN macro instruction may reference that file.

Format:

LABEL

[symbol]

*Applies only to input files.

/:,.OPE RATION /:,.

CLOSE

OPERAND

{
filename-1 [, ... ,filename-n]}

(1)

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL

6-56

PAGE

Positional Parameter 1:

filename-1

(1)

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be closed.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be closed.

6.10. BLOCK NUMBER PROCESSING

TSAT can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and, therefore, incorrect tape
processing. This is especially helpful for error recovery on read and write commands and
for restarting at a checkpoint.

•

_,.. Processing of block numbered tapes for TSAT files will be executed by PIOCS. The general •
requirements and processing are the same as detailed for PIOCS in 4.4.1 to 4.4.4. Some of
these are noted here for convenience.

• When the block numbering capability is being used, all blocks on tape except tape marks
will include a 3-byte block number field as the first three bytes of the block. This 24-bit
block number field is composed of a 4-bit tape mark counter and a 20-bit block number
counter. PIOCS uses both of these counters when reading and writing block numbered
tapes. The format of the tape block number field is shown in Figure 4-9.

• The first block on tape that is not a tape mark will contain a block count of 1 plus the
number of tape marks preceding it.

• Block numbers are incremented sequentially by 1. All label, data, and checkpoint
blocks are counted and numbered. Tape marks are counted, but no number is written.

• For both EBCDIC and ASCII tapes, the 3-byte block number field is added to a
standard label immediately preceding the label identifier (VOL 1, HOR 1, etc.), making
the label 83 bytes long. The 83-byte ASCII label is nonstandard for information
interchange. Tape label formats for block numbered EBCDIC tapes are shown in
Figures 6-17 through 6-21.

• Block number processing will be exactly the same for both EBCDIC and ASCII tape
files.

• Block numbers will be volume dependent and file independent. If a volume contains
more than one file, the block count is continued from the preceding file on the volume
and the blocks are consecutively numbered to the end of the tape.

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 6-57

UPDATE LEVEL PAGE

• Files on a volume and volumes in a multivolume file must be all numbered or all
unnumbered, not mixed.

• The 7-track odd parity tapes operating in convert mode may be block numbered if the
block size is a multiple of 3.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors)control is returned to the user program. If there is a
discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward ..,_
the number of blocks implied by the discrepancy. If the correct block is found, control is returned
to the user. If the correct block cannot be found, the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

6.10.1. Facilities Required for Block Number Processing

To process block numbered tape files, three conditions (called preliminary conditions) are
required:

1. So that the generated supervisor can process both numbered and unnumbered tapes,
you must operate with a supervisor configured to process block numbered tapes .

2. You must reserve a full-word aligned, 4-byte storage area immediately preceding your
input/output area for supervisor processing of the block number. Do not include these
four bytes as part of either the address or the length specifications (IOAREA and
BLKSIZE keyword parameters of the TCA declarative macro instruction).

3. You must indicate to TSAT that you have reserved the 4-byte block number area by
specifying BKNO=YES in the TCA macro instruction (6.8.2).

If these three preliminary conditions exist, you may then control block number processing
through either job control (JCL) or automatic volume recognition (AVR). This permits you to
leave the 4-byte storage area and the BKNO parameter in your program even though you
may at times be processing unnumbered tapes.

6.10.2. Specifications for Block Number Processing

Several factors determine when and how block number processing is employed. If a tape
is not at load point when the file is opened, the file will be handled according to the
specifications existing when the tape was opened at load point. Therefore, you cannot
have both numbered and unnumbered files on the same volume.

If a tape is at load point when it is opened, processing will proceed as described on the
following pages .

The various methods of tape file processing can be divided into two categories: processing
with tape initialization, and processing without tape initialization. These will be referred to
simply as initialized or noninitialized processing.

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-58

UPDATE LEVEL PAGE

6.10.2.1. Initialized Processing

Initialized processing includes:

• TPREP utility routine processing, described in the system service programs user
guide, UP-8062 (current version);

• processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction) and PREP specified in the VOL job control statement; or

• processing input or output files with nonstandard labels (FILABL=NSTD) or no labels
(FILABL=NO specified in the TCA macro instruction).

For initialized processing, you control the presence or absence and the processing of block
numbers by the first parameter of the VOL job control statement as follows:

You Specify Preliminary Conditions Result

Nothing All present Block number processing

Some missing No block number processing

N Ignored No block number processing

6.10.2.2. Noninitialized Processing

Noninitialized processing includes:

• processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction), but without PREP specified in the VOL job control statement; or

• processing input files with standard labels (FILABL=STD specified in the TCA macro
instruction).

For noninitialized processing, TSAT ignores the first parameter of the VOL job control
statement. Instead, the specification is obtained from the tape content (which was
detected by AVR), as follows:

Tape Content Preliminary Conditions Result

Block numbers All present Block number processing

Some missing No block number processing

No block numbers Ignored No block number processing

For processing of multivolume files, you must ensure that all volumes have (or do not
have) block numbers. You cannot mix numbered and unnumbered volumes within a file.

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
A 8-7

UPDATE LEVEL PAGE

• Positional Parameter 5:

•

•

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

8.2.7. Load a Program Phase and Relocate (LOADR)

Function:

The LOADR macro instruction locates a program phase in a load library on disc, loads
it into main storage, and transfers control to the calling program immediately
following the LOADR macro instruction.

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry-point
address. This entry point address is determined at linkage edit time. If an alternate
load address is provided (positional parameter 2), the load point address specified to
the linkage editor is overridden and the phase is loaded at the specified address. This
new override address is returned in register 0.

The format and operation of the macro instruction is identical to the LOAD macro
instruction except that all address constants in the phase are relocated if an alternate
load address is specified (positional parameter 2).

This macro instruction is used to load a phase at an address other than that at which
it was linked.

Format:

LABEL .60PERATION .6 OPERAND

[symbol] LOADR

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1-
to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

8075 Rev. 3
UP-NUMB EA

(1)

SPERRY UNIVAC Operating System/3 8-8

UPDATE LEVEL PAGE

Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register 0 has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage
editor.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

Specifies that the designated register (other than 0 or 1) contains the address of
the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

•

•

This option is designed to reduce the search time for separately linked load
modules which are loaded repeatedly. When using this option, you must ensure
that there is no possibility of another job deleting or moving the load module you
are trying to load. For example, if another job uses the librarian to pack the
library, this may cause a load error in your job. If you can be sure this doesn't
happen, you may be able to reduce considerably the load time for some modules,
particularly in large libraries. •

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 8-49
UPDATE LEVEL PAGE

LABEL COMMENTS
72

~ J. l_ 1 I JI Ll l .l_L I I l J L_Lt_l l I 1 J. ! I I 1 _l __ i _ _l I j I 1 l I _l I I l I I j l J. I I I I I 1 LI l

1----'-LLLLLL~"""'-_j__L-~-ll---""'-l!::l~..LiiliEi,:\iI.M5fil.JAfii__u_-6iE._TuFJL.~ LLd LLLl LLLu_J 1 1 u l 11 1 J L

~L__l_L __ L_l____i______i__j__L...1_.L L_J__LJ._.....L_ • .i l_l______i____i __ L_L-l_1 _ _i_ _ _l__l l I l______L__l_l__L_j_J LL1L_L.L1 i_J__l_ JI

~~~~~~~~.£&.._~, ~~_.QJJI.R1I5D, , , I , , " I 

jn.b~J:n~~b_J_J__-i-¥"----1.!IY.1l.LL_l_i_LL__L_!_J ___ l_L~ I 1IJ4.L\,l11\,LL:-<,...a~ lLLLl LL! l Ll' ' l 1 I l l l 1-1_ 

-'ill~'- ~ I ' I I jBI;I, ,=1 ,I, ,WHJE4 ,Ll.I_M_E___J;J_JAP~'Si_, l LI j u L l l 

Figure 8-7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses (Part 2 of 2) 

In this example, the SETIME macro instruction (line 6) requests a timer interrupt in 25 
seconds so that a time limit of 25 seconds can be placed on the computation (lines 8 to 16) 
that follows. The STXIT macro instruction (line 4) attaches the interval timer island code 
routine (lines 27 to 29) to the task. The routine sets a flag when the time interval expires. 
The STXIT macro instruction is used again (lines 18 and 21) to detach the island code 
routine. The EXIT macro instruction (line 29) returns control from the island code routine to 
the interrupted task. Line 18 is the normal exit from the compute loop, which occurs if 
computation is completed before the timer elapses. Lines 20 and 25 are the error routine 
which is executed if the time elapses before the computation is completed. Line 31 defines 
the save area needed when the interrupt occurs. 

8.6.8. Operator Communication 

Your operator communication island code routine receives control when the operator enters an 
unsolicited message at the system console or workstation. He does this by typing the job 
number and a zero, followed by the message text. For additional details of the operating 
procedure at the system console or workstation, refer to the appropriate operations handbook 
for your system. 

You can use the WTLD and QPR macro instructions to communicate with the operator. In these 
cases, your program displays a message on the system console or workstation and requests a 
reply. However, the use of operator communication island code routines permits the operator to 
enter a message for the attention of your program at anytime during the execution of a job step 
without being prompted by your program. He could enter one of several predefined messages to 
acknowledge an event or a condition external to your program, for example, an infrequent 
request for statistics at the end of a particular job step. 

The island code routine gains control at the entry point specified in the STXIT macro instruction 
that linked the island code routine to the job step. At this time, register 0 contains the length f 
(including the character under the cursor) of the message entered by the operator. Register 1 
contains either a zero, indicating that the operator communication was initiated at the console, 
or a negative sign, indicating that the operator communication was initiated at the workstation. t 
(Register 1 would not contain an ECB address because operator communication island code 
routines always execute under the primary task TCB.) 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 8-50 
UPDATE LEVEL PAGE 

To exit from operator communication island code, use the EXIT macro instruction to return • 
to the interrupted task. 

If the operator attempts to enter an unsolicited message for a job step for which there is no 
operator communication island code routine, or the island code routine has been detached, 
the message is rejected. 

Figure 8-8 is an example of the use of the STXIT and EXIT macro instructions for operator 
communication island code routine using symbolic addresses. The general operation is 
similar to that described for program check (8.6.5). However, you will note that, in addition 
to the entry point and save area, the STXIT macro instruction also specifies a message area 
and message length. 

Following the format, the STXIT macro instruction in line 21 specifies that it is attaching an 
operator communication island code routine (OC). The island code routine's entry point is 
SYSCON, the save area address is OC1, and the message from the system console is stored 
in a reserved 60-byte area whose address is OPRMSG. 

LABEL flOPERATIONfl OPERAND 
10 16 

• 

• 

S:t~...L...J-..L..J...--1.-'--1-P..wrJ~..L4~~...l........l-..l.....L......L-'--1-L...L..l:......1-..L...L-'--1-L...l........l-'-.L......L-L-L...L...L..l-'-.L._L. 
qo_~~L..L-L-l.-1...-4-µ<>:>~L.....L-4-µ..A---L......l...-L-L...J--L-L......l...-L-L......l...-L-L.....L-L-L......l...-L--L......l...-L--L......l...-L--J........L._.i.._J......L. 
ql. ~~~91...J...4__.u,.a~.L..J...J-l,~~.J........1.....L.J--L.J......l.....L..1......J.._J...L.....L..L....J_Ll.....L.....1.....L.Ji........L.J......J......L..li........LL 

Figure 8-8. Example of Operator Communication Island Code Linkage Using Symbolic Addresses 

• 

• 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 A 
UPDATE LEVEL 

9-23 

PAGE 

• 9.3.1. How to Call the Monitor Routine 

• 

• 

There are two ways to call the monitor routine into main storage. Which one you use 
depends on whether you want to trace instructions from the beginning of the job or wait 
until after the job begins executing. 

Whenever you use the monitor routine, keep this in mind: it occupies 3K bytes of main 
storage. If you specify the minimum main storage as a parameter of the JOB control 
statement, make sure you do not overestimate the storage size needed by your job, 
because it is possible that there might not be enough main storage available for the 
monitor when you combine your job needs plus the 3K bytes needed by the monitor. 

Another point to remember: the monitor routine cannot be run in a strict spooling 
environment, because the job being monitored always requires the sole use of a printer. 
You can accomplish this through the addr parameter of the DVC job control statement 
which, in effect, dedicates a printer strictly to this job. It's coded immediately following the 
logical unit number (separated by a comma). Every device has a hardware address number 
associated with it. Your site manager can provide you with the number you need. (In most 
cases, however, this number can be physically found on the device itself, generally on 
some type of label.) This number is then coded in the device assignment set for the print 
file in your job. 

Assume the printer you want to dedicate has a hardware address number of 170. Using 
20 as the logical unit number, the DVC job control statement would be: 

50 

I I 

It is also recommended that the job be run as the first job immediately after the system is 
intialized (initial program load) to ensure that the job is scheduled; otherwise, you might 
have to wait for the job to be scheduled, depending on the work load. 

9.3.1.1. Monitoring From the Beginning of the Job 

If you want to begin monitoring with the first instruction executed, you must call the 
monitor routine into main storage before the job to be monitored is run. In this case, the 
monitor input is entered as embedded data in the control stream. 

The system operator types MO at the system console, which brings the monitor routine into 
main storage. The monitor initializes itself and awaits activation . 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL 

9-24 

PAGE 

If you want to use the monitor beginning with the first instruction of the program, you • 
must enter the monitor statements as embedded data in the job control stream. The job 
step that contains the program to be monitored must include an OPTION job control 
statement with the TRACE parameter specified. This parameter activates the monitor 
routine by setting the monitor bit in the PSW and creates a link between this job step and 
the monitor statements. If the OPTION job control statement is not present in the proper 
job step (the one with the monitor statements- - the one you want to trace), it will not 
activate the monitor routine because an OPTION job control statement is effective only in 
the job step in which it is encountered. As soon as the program begins executing, 
monitoring begins, and it continues until the program completes or until the monitor is 
deactivated by meeting the conditions that accompany a 0 action (9.3.5.3). 

The control stream you submit when you want to monitor from the beginning of the job 
would look something like this: 

10 20 30 40 50 

• 

• 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
9-27 

A 
UPDATE LEVEL PAGE 

• The explanation for each job control statement is the same as for the corresponding job 
control statement in 9.3.1.1. Notice the absence of an OPTION job control statement and 
the monitor statements, and the presence of the ALTER job control statement. 

• 

• 

After the monitor statements have been read, the operator must issue the GO command, 
using the same job name as that on the JOB control statement. This resumes program 
execution under monitor control. 

The second method for suspending the executing program is the use of an QPR macro 
instruction with a REPLY parameter (10.3.2). By placing it in a location near the area you 
want to monitor, you can use the halt when the program is suspended and the message it 
generates to instruct the operator to activate the monitor. Once again, the operator must 
have the monitor statements ready in the card reader (no /$ or /*). He then enters 00 MO 
R, to activate the monitor. After the monitor statements have been read, he enters the 
reply you requested with the QPR macro instruction to resume processing under monitor 
control. The monitor input is exactly the same as when using the first method. That is, no 
/$ or /* enclose it, and an OPTION TRACE job control statement is not submitted in the 
control stream. (And, in this case, no ALTER job control statement is submitted.) 

The third method is to instruct the operator to type in the PAUSE command at some specific 
place in the program execution. This could be after a certain time limit has expired, or when a 
certain milestone is reached, such as the end of an input tape file. The operator places the 
monitor statements in the card reader and, when the system halts, types 00 MOR to activate 
the monitor routine. After the monitor statements are read, he finally types GO and the job 
name from the JOB control statement to resume program execution under monitor control. 
When activating the monitor in this way, the *P=phase-name entry cannot be used to specify 
the type of task to be monitored. Use eitherthe *U=jobname or *S=symbiont-name entry in the 
monitor input deck. These entries to the monitor input format are described in 9.3.3. 

There might be a situation when there is no card reader available to read in the monitor 
statement (or no keypunch readily available to prepare the monitor statements). If this is 
the case, the operator can type in 00 MOC at the system console. The C indicates to the 
system that the monitor statements are going to be input via the console, not via a card 
reader. (This applies to entering the monitor statements during all three methods of 
suspending program execution.) In this way the operator can enter the task, options, and 
actions at the console. He enters one card at a time, a line on the screen corresponding to 
a card in the monitor statement input, and indicates the end of each card by pressing the 
TRANSMIT key. After all monitor statements are sent, he enters the GO command 
followed by the job name. 

9.3.2. Monitor Input Format 

The monitor statements define what to monitor (task), when to monitor (option), and what 
to do when you monitor (action). This applies to monitor statements submitted via the 
control stream as embedded data before the job begins, and to the monitor statements 
used by the operator after program execution was begun. (Remember, the /$ and /* job 
control statements are only needed when the monitor statements are submitted as 
embedded data.) 

t 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
9-28. 

UPDATE LEVEL PAGE 

For the program you want to monitor, only one task can be specified. It must be coded as • 
the first monitor statement of the input, and no options or actions can share this card with 
the task. These tasks are explained in 9.3.3. For the task, however, you can specify up to 
15 different options. {Each option must be on its own card; no two options can be present 
on the same card.) Each option can specify as many actions as will fit on a single card. A 
space must be used to separate the option from the first action on the card, and each 
succeeding action is separated from the previous action by a semicolon {;). 

So, if you want to specify one option and one action, it would be coded as: 

20 30 40 so 

! I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I ! I I ! I l I I 

If you wanted three different options, each with two actions, it would be coded as: 

The last card used in the monitor input stream is a $ card. {Do not confuse this with the 
/$ job control statement, which indicates start of data.) 

So, the order of a monitor input stream is: 

• the task statement; 

• the first option statement with its actions; 

• any other option statements and their actions; and 

• the $ card. 

The options are described in 9.3.4, and the actions are defined in 9.3.5. 

Figure 9-1 shows the format of the monitor statements. 

• 

• 



• 

• 

• 

8075 Rev. 3 
UP-NUMBER 

First 
Monitor 

Statement 

SPERRY UNIVAC Operating System/3 

i------ task---....J 

~ 
* U=jobname } 
*P=phase-name 
*S=symbiont-name 

, *T=transient-number 

A 9-29 

UPDATE LEVEL PAGE 

--- - - ------- ---------- -----
..,__ ___ option-----16. .,._______ first ----~ i------- succeeding ____ __. 

action actions 

Succeeding 
Monitor 

Statements 

NOTES: 

{

(PR:xv) } 
S (~/0: bddd) 

!ABS: xv) 

A(PR:xv) [Rnn] 

l(xmcd) 

R(n) 

06.R [n[-Rnl] 

06.R [ n[-RnLJ 

{

(PR:xv) } 
06.S [ Lnn] (_!!/0: bddd) 

!ABS: xv 

{

(PR:xv) } 
06.S [Lnn] (~/D:bddd) 

(ABS: xv) 

Hccc 

Hccc 
a 

a 

1. If no option is specified, the monitor routine assumes a default option (9.3.4.5) and default display (9.3.5.1.3). 

2. If no action is specified, the monitor routine produces a default display (9.3.5.1.3). Also, remember that the first 
action is separated from the option by a blank space, and any succeeding actions are separated from the previous 
action by a semicolon. 

Figure 9-1. Monitor Input Format 

9.3.3. Defining What You Want to Monitor 

The task you want to monitor can be one of four types: 

1. Your entire program 

2. A certain phase of your program 

3. A symbiont, which is a system utility routine 

4. A transient, which is an OS/3 routine that is nonresident and is called into a 
transient area when needed . 



/ 

8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

In this format: 

*U jobname 

*P=phase-name 

*S=symbiont-name 

*T-transient-number 

9-30" 

UPDATE LEVEL PAGE 

you can see that each type has its own specification, and each type is preceded by an 
asterisk. 

If you want to monitor all the phases of your program, use the *U jobname entry. The 
jobname is the same as the jobname parameter on the JOB control statement. 
(Remember, if you have the operator enter the monitor statements after the program has 
started, you can limit monitoring to a part of the job step; otherwise, the job step is 
monitored from the beginning.) 

For example, if the JOB control statement is: 

20 30 40 so 

I I I I I I I I 

the monitor task statement would be: 

Since a program can consist of more than one phase, it can be useful to use the specific 
phase name with the *P=phase-name entry. (A program can also have more than one 
phase.) If you want to monitor a phase, you have to know its name. The names of the 
phases used in a program are listed on the allocation map provided by the linkage editor. 
(Remember, operator input can limit the monitor to a portion of a phase.) 

If the phase name you want is this: 

LNKLODOU 

LOAD MODUlf • LN~LOO 

Fl AG l At1EL 

NOOt. - r(QQ r 
F AUT-0-1 NCLOlllD [l.[M(tH5 -

• 75/lO/O't 05.~9 • PRilOE 
PHi l Ol:. 
DPi(llf"l7 
UP'ICOf'UJ 

Ol·"•COH I 
UPICOHti 
DPICOH2 
i>PICOH~ 

DPICOH't 
OPiCOHJ 

.. ALLOCAT IM~ "'" .. 
s' l£ - nnooos"-t 

Tn•t:: LSIO 

O•J 
CSE CT 0 I 

ENTRY 01 
Eh TNT 01 
ENTRY 01 
ENTRY 01 
ENTRY 01 
ENTRY 01 
ENTRY O I 

ENTRY 01 

L•• """ uuuuouuu 

uuuuuuuu 
uuuouuuu 
LlUlJOUUUU 
OUU0001.HJ 
oouooouu 
oouooouu 
ooooouuu 
oovonnou 
IJOUUOOUO 

H l AUON llNul11 ObJ OR(, 
oouuu~cR uooou~cc 

OUUUU'UF ooooU .. t10 oouuonun 
ooooonun 
OOUOODUIJ 
00000000 
oouoooon 
0000000(} 
OOUOIJOUO 
000000011 

oooooouo 

• 

• 

• 



• 
8075 Rev. 3 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 A 9-35 

UPDATE LEVEL PAGE 

For example, if you want the monitor routine to take action when the program reaches an 
instruction that references storage at absolute address 34AE, you would code: 

~ 10 20 
30 40 50 

I I I I I I I I 

9.3.4.2. Instruction Location Option (A) 

This option requests the monitor routine to take action when the specified instruction 
location is reached. Just as with the storage reference option, it uses the program relative 
address. However, you can also add a range to continue this monitor action for a specific 
number of bytes. It has only one format: 

A(PR:xv) [Rnn] 

The xv is the 1- to 6-hexadecimal-character program relative address (016 to FFFFFF16). If 
the program reaches an instruction at this location (program relative), monitor action 
begins. vo·u can also continue monitor action for this option for a length of up to 255 bytes 
by specifying a range (Rnn). The allowable values for this range field are 0216 to FF16. 

• For example, if you coded either: 

• 

IA G-P&: ,G,o,z.) , 1 , , , , , , , 

or 

IA (.y,: c.o,'2..) , , 1 , , I I 

the monitor takes action for this option if the instruction at program relative address is 
reached. 

If you coded (notice the convenient form P instead of PR): 

I I 

monitor action begins when the instruction at program relative address C02 is reached, 
and continues for 14 bytes (OE). This means the monitor action is to continue until 
program relative address C10 is reached. Note that you must use two hexadecimal 
characters for the range even when it can be expressed in one. In the last example, if the 
leading 0 of OE was omitted, and it was coded as this: 

jA.CiP,: ,co.2.)jgEJ , , , , , , , , , 1 , , , , , , , , , 1 , , , 

monitoring would continue for 224 bytes to program relative address CE2. 



8075 Rev. 3 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

9.3.4.3. Instruction Sequence Option (I) 

9-36 
UPDATE LEVEL PAGE 

This option requests the monitor routine to take action when the exact instruction 
sequence specified is reached. The monitor routine compares the machine code specified 
in the option entry to the actual instruction sequence of each instruction to be executed in 
the program being monitored, and takes action when an exact match occurs. The format 
for the instruction sequence option is: 

l(xmcd) 

The xmcd stands for hexadecimal machine code. It may consist of from 2 to 64 
hexadecimal characters (1 to 32 bytes). This is the value you want compared to the actual 
machine code being processed. 

There are three different types of machine code sequences you can select 

• A single instruction 

• Just the operation code of an instruction 

• A string of instructions 

For example, if you want monitor action to start when a supervisor call instruction for 
supervisor routine 31 occurs (SVC 31 in machine code = QA 1 F), code it as: 

~,( ,QA, I ,FJ ' 
10 20 30 40 50 

I I I I I I I I I I I 

If you want monitor action whenever any branch on condition instruction is reached 
(hexadecimal code = 47), you would code: 

IL (,9,J ,) I I I I I I I I I I I I I I I I I I I 

But if you want monitor action to occur whenever the following sequence of instructions 
occur (even though we are showing a series of inline expansion codes): 

.\rl[lt(l AODR2 Llf4[ snUf.ICf ':>TATbtUO 

OUlJllUll 

OUUOilO f.'jbl1 
nuvut..11 
OlhJ!JU2 <f7hl h1)1L1 

OIJUUIJb CIL2Cl('t"fU"fu'tflltu 
Oli.JUlJf (5(b( 7C~ 

0Ut1Cll7 "fl 1'.1 bl1JL 

UOU I 2 

UOI fl<f 

I PHO~ ~TANT r) 

2 B~~I~ nALH b,u 
3 U~INU •,c 
"f t\~A~CH ~ ••lb 
~ U( Clb'AH(U 1 

oc CL"f. Ef"&H I 

LA I 1l I 'iT 
SNAP I I I 

OUol.J28 l1A20 A 18+ SVC JA l~CilJL S,,( 
OOtJU~A r201 AIJF~ bull"f UllU~<f flUOOh I~ 

~~~~~~~ ~,-.-. ..-,.....,.... ,...,.,.,... 
OlJ\.lUl't 922· I UJ l
l)lJl10.lR ~8H. 103'1

OUUOJ(O'E:.t.F
'----~

OOUOJE
00\JOJE !>blU bll~

00UU&t2 0A27

JI) l•b'
A l l +TA~ l

1..1011" .l 22•
O.Jlll:.$ l ... 23•

ii0hl4 l 24•
A 2'>+

J.b T AC,&1

A 17•TAc,q
OUI IA A 28•

... 29•

~vc dUFl8),o~•~c11•<f

.-u1 OU l
llC Uyt0) SLT ALIC,NM(NT
L ,•AI0\11 LOAO l\l , F LlNAM[ADORE.~S

HVl .. 9tl),x•2u• 3£T FUhCTIUN coot.
l.. J'!i,'>21 ti I LOAD AUOH Of' COMHUN 1/0
dALR .~.l'> LINK Tu CuHMO~
tL E O
UC OY(U)

I.. lt•A(OUll i..OAO Kll, Fli..lNAMl ADOH(~S
~vc J9 ISSUl 5w(

•

•

•

•
8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

A 9-43

UPDATE LEVEL PAGE

For example, assume that the following option statement was the only input to the
monitor routine (and the task statement):

1~,G~/i12: ,4if>z.;,), , , , , ' , , ,''.
30 40 50

I I ~ I I I I I ! I I I I l ! I J I I I I I I ! ' ! I I I I

When the program reaches an instruction that references an address using base register 4
and a displacement of B29, a default display is given.

Remember, you can also get a default by omitting the option statement (9.3.4.5.). The only
difference between the default display caused by omitting the option and the default
display caused by omitting the action is that the omission of the option means that the
option causing the display is not printed.

9.3.5.2. Halt Action (H)

This action, like the other actions, prints out items 1, 2, 3, and 4 (detailed in 9.3.5.1.1). It
then prints a halt message on the system console and suspends program execution until a
reply from the console operator allows execution to continue.

• The halt message sent to the system console has the following format:

•

HALT ccc. TYPE-IN GO jobname TO RESUME

Program execution is then suspended until the operator issues the GO command followed
by the job name (same as that on the JOB control statement). You can then provide the
operator with special instructions about what to do before entering the GO command,
such as taking a main storage dump. After he completes these special instructions, and
enters the GO command, the instruction causing the halt is executed, and program
processing continues under monitor control.

The format for the halt action is:

Hccc

The ccc is a 3-character EBCDIC code that you specify to identify the halt, and corresponds
to the ccc in the halt message displayed to the operator.

For example, assume that your JOB control statement has a job name of TWESTMON, and
uses the following monitor statement:

I I

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 9-44

.UPDATE LEVEL PAGE

When the program reaches the instruction at program relative address 184, the monitor •
routine prints out the program information and displays the following message on the
system console:

HALT DMP TYPE-IN GO TWESTMON TO RESUME

You would instruct the operator to take your desired action when he sees this message. In
this case, assume it is a dump. After issuing the DUMP command (and a dump of main
storage is given), the operator would then type:

GO TWESTMON

to reactivate the interrupted job. The instruction at program relative address 184 is then
executed, and program processing continues under monitor control.

9.3.5.3. Quit Action (Q)

The quit action (Q) prints out items 1 through 4 and nothing else. The instruction causing
the printout is then executed, and program processing continues without any further
monitor intervention (pertaining to the option to which this action applies).

This action is useful when you want to monitor a problem area in the beginning of your
program, and then exit from the monitor routine without tracing all the remaining •
instructions in the program (thus not wasting execution time).

The format for the quit action is:

Q

For example, if you coded:

~ "
20 30 40 50

the monitor routine would print out the program information when program execution
reaches the instruction at program relative address F18. This instruction is then executed,
and program processing continues without monitor intervention.

When the quit action is not used as one of the actions for an option, monitor processing
continues until the end of the job step.

Table 9-2 summarizes the program information that is displayed by each action.

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 9-2. Summary of Actions and Program Information Printed

Action

Program Information Printed Display Display
Default Halt

Register Storage Display IHI
(D RI (OSI

Job name* x x x x

TCB address* x x x x

Program base address* x x x x

PSW contents x x x x

Next instruction to execute x x x x

Option causing this printout x x x x

Contents of specified registers x

Contents of specified storage x

Contents of changed registers x

Contents of referenced storage x

HALT message x

*These items are included for only the first option that causes a printout.

9.3.6. Cancel of Monitor

9-45
UPDATE LEVEL PAGE

Quit
(QI

x

x

x

x

x

x

If the monitor routine is terminated abnormally, either by a CANCEL command or by a
program exception within the monitor routine, all programs requesting the monitor routine
will continue normal program processing without any type of monitor intervention. The
monitor routine itself will dump and leave the system. A CANCEL command should not be
issued while transcent monitoring is in progress.

9.4. SYSTEM DEBUGGING AIDS

Several debugging aids are built into the OS/3 supervisor to aid in solving system
problems which cannot be identified through a normal SYSDUMP. These aids are useful
only with some knowledge of the internal supervisor structure and are therefore not
intended for general use. This section is provided for informational purposes only.

Table 9-3 summarizes the debugging aids described on the following pages .

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-46

UPDATE LEVEL PAGE

Table 9-3. Summary of System Debugging Aids (Part 1 of 2)

Function Use Console Command Results

Pseudo monitor* To identify the routine changing SET HA.PM.address HPR code 99130202 (Press
a particular byte [,job-name] RUN to continue.)

Resident monitor* To identify the instruction SET HA.RM.address HPR code 99130404 (Press
changing a particular byte [,job-name] RUN to continue.)

Mini monitor To identify the instruction MM value.address, HPR code 991200 (Press
changing a particular byte RTUE RUN to continue.)

Verify bytes 0-B* To identify the routine destroying Included in supervisor HPR code 99130303 (Press
low-order storage debug option RUN to continue.)

History tables* To provide some recent history in Included in supervisor Continuous updating of
SYSOUMPs debug option resident tables

Halt on transient load To halt if and when a particular SET HA.TL.hex-id HPR code 990COC (Press
transient is loaded RUN to continue.)

Halt on transient call* To halt if and when a particular SET HA.TC.hex-id HPR code 990COO (Press
transient is called RUN to continue.)

Halt on transient exit* To halt if and when a particular SET HA.TE.hex-id HPR code 990COE (Press
transient exists RUN to continue.)

Halt on shared code To halt if and when certain (or SE HA,Slr•~:l•-1J 991 001 (Press RUN to
call* all) shared code modules are continue.)

called. prefix.

Halt on shared code To halt if and when certain (or SE HA,ST1:~:'·-~ 991002 (Press RUN to
return* all) shared code modules continue.)

return. prefix.

Halt on shared code To halt if and when certain (or SE HA,SE [1:~:l•-1J 991 003 (Press RUN to
return with error* all) shared code modules continue.)

return with error. prefix.

Halt on symbiont load To halt if and when a particular SET HA,SY,idnn HPR code 997C (Press RUN
symbiont (or symbiont phase) is to continue.)
loaded

Pause on shared code To pause a task if and when SE PA.SC [/:::'•-1J SE25 console message (Enter
call* certain (or all) shared code ·c· to continue.)

modules are called. prefix.

Pause on shared code To pause a task if and when SE PA SR [I:~:'·)] SE25 console message (Enter
return* certain (or all) shared code 'C' to continue.)

modules return. prefix.

Pause on shared code To pause a task if and when
SE PA.SE n~a~~le-}] SE25 console message (Enter

return with error* certain (or all) shared code ·c· to continue.)
modules return with error. prefix.

*Supervisor debug option required at IPL

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-47

UPDATE LEVEL PAGE

Table 9-3. Summary of System Debugging Aids (Part 2 of 2)

Function Use Console Command Results

PIOCS debug option To identify checksum errors or SET DE,10 HPR code 990F
internal PIOCS problems

Transient debug option To halt on transient errors (100-1 FF) SET DE,TR HPR code 99080800

Loader debug option To halt on loader errors (52-5F) SET DE,LD HPR code 991500 (Press
RUN to continue.)

Shared code To halt on errors detected SET DE,SC HPR 990809 on shared code
debug option during the execution of errors (Press RUN to take a

shared code. SYSDUMP and to continue.)
HPR 99130A when dynamic
buffer pool links are
destroyed.

Dynamic buffer To halt on dynamic SET DE,DB HPR code 99130D
debug option* buffer overflow

Screen format To take a snapshot dump SET DE,INO Writes snapshot dump
coordinator of all input and output to job log
input/output buffer blocks when using
debug option the screen format coordinator

Screen format To take a snapshot dump SET DE,FS Writes snapshot dump
coordinator of the format block; the to job log or system
format/input/ output input buffer (on input printer
debug option operations); the output

buffer (on output opera-
tions) blocks; and, if
errors occur, the screen
format coordinator blocks

Reset pause options Resets all SE PA commands SE PA.OFF None

Reset halts Resets all SE HA commands SE HA.OFF None

Reset debug options Resets all SE DE commands SE DE.OFF None

*Supervisor Debug option required at IPL.

t

8075 Rev. 3
UP-NUMB EA

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

9.4.1. Supervisor Debug Option

The supervisor debug option is set at initial program load (IPL) time by entering D as the
final character (following the comma) of the initial IPL message. This is described in the
operations handbook. Use of this D option causes the supervisor being loaded to be

~ expanded in size to support the supervisor debug option.

t

The following functions are provided:

• A normal halt (HPR code 99130101) between IPL and supervisor initialization. This
allows changes to be made to the supervisor (via the maintenance panel) prior to
loading the supervisor initialization load module. Normally, however, you should
simply press the RUN switch on the maintenance panel to continue.

• A pseudo monitor to detect when any byte within the supervisor has been changed.
When activated this function checks the byte on every interrupt and on every pass
through the switcher. When the byte is changed, the supervisor halts (HPR code
99130202) without restoring the original contents of the byte. If you want to
continue, press RUN. The new value becomes the original value and the supervisor
halts if the byte is changed again.

• The console command to activate the pseudo monitor is:

SET HA.PM,address[,job-name]

where address is the address of the byte to be monitored either absolute (no job­
name specified) or relative to the preamble of a currently active job if you specify one
with job-name. After the pseudo monitor is activated you use this same command to
change the address of the byte being monitored.

• Verification of low-order main storage (locations 0-B) on every interrupt and every
pass through the switcher. When changed, the supervisor saves the incorrect setting,
restores the correct setting and halts (99130303). Although you may continue past
this HPR by pressing RUN, you should take a SYSDUMP here to determine why these
bytes are being altered.

• A resident supervisor monitor to detect when any byte in main storage has been
changed. When activated, this function checks the byte upon executing every
instruction in supervisor critical code (interrupt processing), transients, symbionts, and
job control. The only code not monitored is code being executed under a key other
than 0 (i.e., user jobs). Monitoring user jobs is unnecessary because the hardware key
protection feature of the processor prevents user jobs from destroying any part of the
supervisor.

When the specified byte is changed, the resident monitor halts (99130404) without
restoring the original contents. The double word at location 80 contains the PSW at
the time the byte was changed. If you want to continue, simply press RUN. The new
value becomes the original value and the supervisor will halt if the byte is changed
again.

9-48

•

•

•

•
9-57

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

9.4.6. Shared Code Halts and Pauses

SET console commands are available to interrupt or halt processing when shared code
modules are called or when they return. These commands allow the operator to request
an interrupt or halt on the call or return for:

• a specific module

• a specific group of modules which have a common prefix; or

• all modules.

The format of these commands is:

The first and second parameters form individual commands which are discussed in the
following paragraphs. The third parameter determines what modules these commands
affect. You specify an individual module by its full name, a module group by its prefix
followed immediately by a period, or all modules by omitting the parameter completely. For
example, the command SE HA,SC,DM. would cause an HPR upon a call to any module

t

• whose name begins with OM.

•

You can continue past any HPR resulting from these commands by pressing RUN. The
supervisor debug option is required at IPL time for all of these functions. The individual
commands are:

• Halt on shared code call. The SE HA,SC command causes an HPR of 991001 when a
module is called.

• Halt on shared code return. The SE HA,SR command causes an HPR of 991002 when
control returns from a module.

• Halt on shared code return with error. The SE HA.SE command causes an HPR of
991003 when control returns from a module with an error condition.

• Pause on shared code call. The SE PA.SC command interrupts processing and
displays the following message when a module is called:

SE25 SC PAUSE ON shared-code-name. CONTINUE? (Y, HELP)

This message shows which shared code module has been called. A reply of Y causes
processing to resume. A reply of HELP displays the following information: the job or
symbiont name, the name of the calling module, the TCB address, the base address of
the calling module, and the local store address .

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-58
UPDATE LEVEL PAGE

t

• Pause on shared code return. The SE PA,SR command interrupts processing and •
displays the SE25 message when control returns from a module by execution of the
SRETURN macroinstruction. If requested to, this command displays the same shared
code information as SE PA,SC does except that it shows what module is being
returned to rather than what module called the shared code.

• Pause on shared code return with error. The SE PA,SE command interrupts
processing and displays the SE25 message when control returns from a module in
which an error has occurred. If requested to, this command displays the same shared
code information as SE PA,SR does.

9.4.7. Soft-Patch Symbiont (PT)

The PT symbiont is used to temporarily patch transients (transient overlays), load modules, and
shared code modules at the time they are loaded in main storage (soft patch) instead of
permanently patching the disk (hard patch). This is useful if you want to test a patch to see if it is
effective before hard-patching or if you want to trap a problem by temporarily applying a patch.
To use the PT symbiont, you must have included the supervisor debug option at IPL time.

When initiated, the PT symbiont builds a patch table from input read from cards or keyed in from
the console. The PT symbiont then locks itself into the supervisor so it can scan this table on
every load of a transient, load module, or shared code module. During this scan, if the module
name matches an entry on the patch table, the specified patches are applied. These patches are
temporary. Patches to transients remain in effect until the PT symbiont is cancelled. Load and •
shared code modules that are loaded in main storage while the PT symbiont is active remain
patched until reloaded.

The PT symbiont is also used to apply patches to the resident supervisor; however, these
patches remain in effect until you IPL the system again.

9.4.7.1. Soft-Patching Using Card Input

When using card input to soft-patch, you must create the card deck containing the desired
patches. Once prepared, the deck is placed in the system reader prior to initiating the PT
symbiont. The input deck consists of four card types:

1. The first card is provided for compatibility purposes. It is necessary when using the
transient patch (TRNPAT) program, which applies core to transients.

Format:

1 D=R

The card must have a 1 in column 1, followed by a blank in column 2, and then D=R.

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 9-59
UPDATE LEVEL PAGE

2. The second card defines the type and the id (or name) of the module to be patched. The
form of this card depends upon the module type.

3.

Formats:

2 T=decimal-id

2 S=module-name

2 L=module-name

2 O=module-name

(for transients)

(for shared code modules)

(for load modules - the load module can be the resident
supervisor, a symbiont, or a module loaded from a user
library)

(for resident supervisor modules specifying the csect or
object module name - this format can only be used when
operating in a mixed or CDI mode environment)

In all the formats, a 2 must appear in column 1, followed by a blank in column 2. Each
module to be patched must be defined with one of these cards.

The third card defines the patch. Each card contains only one patch, and the patch is
applied only to the module specified in the preceding 2 card .

Format:

P addr,patch

AP must appear in column 1, followed by a blank in column 2. Starting in column 3, the
hexadecimal address (relative to the start of the transient or module phase to be patched)
is entered. The address must be within the module specified or the card will be ignored.
The address is followed by a comma and then the patch. (The patch is also given in
hexadecimal, and embedded blanks are not permitted.) The patch character string can be
any length, though the entire P entry must fit on one card (or one line of the console, if
using console input).

More than one patch can be made to a module by entering more than one P card. All
patches to be applied to a given module should be specified in successive P cards following
the 2 card that defines the module.

4. The last card signifies the end of the patches. The symbols are entered in columns 1 and 2.

Format:

/*

8075 Rev. 3
UP-NUMBER SPERRY UNIVAC Operating System/3 A 9-60

UPDATE LEVEL PAGE

t

The following is a sample deck of cards:

1 D=R Can be eliminated if not using TRNPAT
2 L=MYSAL Defines a load module MYSAL
P 1A,47000000 Defines a patch to be applied to MYSAL
2 T=1539 Defines a transient
P 94,CO } f" .
p 12A,4780F2E499S6 De ines two patches to be applied to the transient

2 S=MYSHRCOD Defines a shared code module MYSHRCOD
P 24,07CO Defines a patch to be applied to MYSHRCOD
2 O=SM$0EBUG Defines an object module SM$DEBUG
P 27,FF Defines a patch to be applied to SM$DEBUG
/* Indicates the end of the patches

Once the card deck is created and placed in the system reader, initiate the PT symbiont by
keying in the following command from the console:

PT

Once initiated, the PT symbiont accepts the patches on the card deck from the system reader
and applies them to the specified modules as they are loaded.

9.4.7.2. Soft-Patching Using Console Input

Soft-patching can also be accomplished by entering the required input directly from the
keyboard of the system console. When using this method, the PT symbiont must be initiated
before entering any input. To initiate the PT symbiont, key in the following console command:

PTC

Once initiated, the PT symbiont solicits input from the system console. The input you key in is
entered in the same card-image format as thatofthefourcard formats described in 9.4.7.1. The
PT symbiont builds a patch table from your input and applies the patches as the specified
modules are loaded.

There are some optional features available to you when soft-patching directly from the console.
For example, you can key in the following console command to initiate the PT symbiont:

PT[dev-addr] C

This form of the command not only solicits patch input from the console, but it also punches that
input on the device specified. The card deck produced contains the patches that you can reuse
at some later time.

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
A 9-61

UPDATE LEVEL PAGE

You can also enter all the information for a single patch as part of the PT command format when
patching from the system console. The following is the format of this option:

PT $,shared-code-module-name ,addr,patch

{

T,transient-id }

L,load-module-name
0 ,object-module-name

Although this form eliminates the need of separate entries for 2 and P type card-image inputs, it
can only be used to make a patch at one location (module address). To patch more than one
location, use one of the other forms of the command, or key in this form one time for each
location to be patched.

Examples:

PT L,MYSAL, 1A,47000000
PT T,440,F0,45AOF220
PT S,MYSHRCOD,24,07CO
PT O,SM$DEBUG,27,FF

NOTE:

The object-module-name entry can only be used in systems with mixed or CD/ mode
environments.

9.4.7.3. Using the PT Command

Whether you use card input or console input, you can enter the PT symbiont command more
than once and the input is simply added to the end of the patch table. In addition, any
combination of the various forms can be used. For example, you can key in PT and a patch table
is built from the card input. Later in the same session, you can key in PT C and enter additional
patches. These additional patches are added to the existing patch table.

9.4.7.4. Cancelling the PT Symbiont

Regardless of how the input is entered, the PT symbiont can be cancelled at anytime by keying
in the following console command:

CA PT,S,N

Cancelling the PT symbiont eliminates all the patches entered, except those that changed the
resident supervisor. (These will remain in effect until you perform the IPL again.) Shared code
and load modules that were loaded while the PT symbiont was active will remain patched until
reloaded. Subsequent loads of modules, however, will not be patched.

t

8075 Rev. 3
UP-NUMBER SPERRY UNIVAC Operating System/3 A 9-62

UPDATE LEVEL PAGE

9.4.7.5. PT Symbiont Error Messages

Error messages are produced by the PT symbiont and appear on the console screen. The
following is a list of the error messages that might occur, the condition that caused the error,
and the corrective action to be taken.

PT01 TWO 2 IMAGES IN A ROW

Two 2 cards have been entered in a row. This is invalid because a module has been
specified to be patched, but no patches have been entered. The first 2 card is ignored, and
the PT symbiont continues. This could result in incorrectly applied patches. To avoid this,
cancel the PT symbiont, correct the input deck, and begin a new PT symbiont session.

PT02 INVALID CHARACTER STRING, CHARACTER ON CARD

A non hexadecimal digit (other than 0-9 and A-F) was entered in a field requiring a
hexadecimal digit. This message is also produced if an odd number of characters was
entered for a patch (patches cannot be half bytes in length). Cancel the PT symbiont,
correct the input deck, and begin a new PT symbiont session.

PT03 PATCH TABLE OVERFLOW- SOME PATCHES LOST

•

Too many patches have been entered. There is a limited amount of space that can be •
allotted to the patch table, and the PT symbiont will stop accepting input when this limit is
exceeded. This could result in a patch table that contains only part of the patches you
intended to apply. To avoid this, cancel the PT symbiont. Limit the number of soft patches
you enter, and begin a new PT symbiont session.

PT04 INVALID PT - NEEDS SUPV DEBUG OPTION SET AT IPL

The supervisor debug option, which is required if the PT symbiont is used, was not
specified at IPL time. The PT command is ignored, and the symbiont cannot be initiated.
You must IPL the supervisor again, specifying the debug option; then begin a new PT
symbiont session.

PTOS PUNCH SPECIFIED BUT NO CONSOLE INPUT

The form of the PT command specifying a punch device was used, but the input was not
specified as coming from the console. This will occur if the C following the device address
was not entered. The PT command is ignored under this condition. Reenter the command,
including the final C.

•

8075 Rev. 3
UP-NUMBER SPERRY UNIVAC Operating System/3

A 9-63
UPDATE LEVEL PAGE

• PT06 csect-name NOT FOUND

•

•

The object module or csect name specified on the 2 O= card was not found on the
supervisor currently loaded. The 2 O= card and all the P cards until the next 2 card are
ignored. If an incorrect object module or csect name was entered, you can enter the correct
name later in the session and the input will be added to the patch table.

PT07 SYSRDR NOT AVAILABLE

The form of the PT command used requires the system reader device, but in this case it is
unavailable. The PT command is ignored. When the system reader becomes available,
reenter the command.

PT08 INVALID INPUT FORMAT

An error was made in entering the information for a patch on a single line from the
console. The PT command is ignored under this condition. Check to make sure that all
commas are in the right place, and reenter the command.

t

•

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

11.1. SPOOLING

11 .1 .1 . General

SPERRY UNIVAC Operating System/3
11-1

UPDATE LEVEL PAGE

11. Other Services

Spooling is the technique of buffering data files for low speed input and output devices to a
high speed storage device independently of the program that uses the input data or.
generates the output data. Data from card readers or from remote sites is stored on disk
for subsequent use by the intended program. Data output by the program is stored on disk
for subsequent punching or printing. The spooling function also handles diskette files. It
treats input from diskette as though it were from a card reader, and output to a diskette as
though it were to a card punch. In this description of spooling, any reference to a card
reader, card input, or card file also includes diskette input; any reference to a card punch,
card output, or card file also includes diskette output. The data management user guide,
UP-8068 (current version) shows the formats for diskette records.

Spooling enhances system performance by releasing large production programs and system
software from the constraint of the slower speed devices, thereby freeing the main storage
occupied by these programs sooner; and by driving the slower speed devices at their rated
speed on a continuous basis, thereby making full use of the devices during the time that is
normally lost to systems overhead or to job steps not using printers.

The spooling function comprises five elements: initialization, input reader, spooler, output
writer, and special functions. These elements are described on the following pages. Figure
11-1 gives a simplified picture of the relationship between the slow and high speed
input/output devices and the software components of the spooling function and the
supervisor.

11.1 .1.1. Initialization

Spool initialization provides for the establishment, data recovery, or reestablishment of the
spoolfile at supervisor initialization. Based on system generation parameters or operator
specified options at supervisor initialization, it allocates the spoolfile and builds the system
spool control table, or it recovers an existing spoolfile. In the case of an existing spoolfile, it
clears the file, recovers closed subfiles, or recovers and closes all subfiles.

8075 Rev. 3
UP-NUMBER

ICAM

REMOTE
READER

t

SPERRY UNIVAC Operating System/3

PIOCS

REAL CARD READER REAL DISK REAL PRINTER/PUNCH

1

SPOOLER

VIRTUAL CARD READER VIRTUAL PRINTER/PUNCH

7 1 \ \

INPUT OUTPUT

READER WRITER

\ --
JOB CONTROL USER

RUN
PROCESSOR

JOB
REMOTE
BATCH ----

PROCESSOR

Figure 11-1. Relationship of Spooling Devices and Programs

11.1.1.2. Input Reader

A
UPDATE LEVEL

ICAM

REMOTE

11-2

PAGE

PAI NT ER/PUNCH

REMOTE
BATCH

PROCESSOR

Using PIOCS the input reader reads cards from a real card reader or records from a diskette and
writes these images to the spoolfile via a virtual card reader and the spooler. It closes the
previous subfile if one exists and opens a new subfile. A given input reader can handle only one
card reader or diskette at a time; however, any number of input readers can be active.

11.1.1.3. Spooler

The spooler is the hub of the spooling package and is linked as part of the resident supervisor. It
provides record level input and output to and from the spoolfile for each element in the system
needing access to that file. It intercepts all input/output commands to virtual printer, punch,
and card reader devices, and accesses the disc when necessary using the system access
technique (SAT) for accesses to the spoolfile. All input/output requests (EXCP macro
instructions) addressing virtual devices are trapped and routed to the spooler for processing
rather than PIOCS. The spooler supports both reads and writes to virtual devices while
simulating the action of PIOCS as far as error handling, page spacing, and synchronization are
concerned. It allocates tracks to subfiles and maintains control of the user's spool control
tables. It can handle any number of print, punch, and read files simultaneously, including
multiple files per job.

•

•

•

•

•

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 11-5

UPDATE LEVEL PAGE

Job control options for spooling are entered using the JOB, SPL, DATA, and DST job control
statements. These are described in the job control user guide, UP-8065 (current version).
Initialization options are also entered by the system operator. These are described in the
appropriate operations handbook for your system.

There are no changes required to a user program to use spooling. You can define your files
using either data management macro instructions, or PIOCS macro instructions. A job that ~
runs on a nonspooling system will also run on a spooling system, and vice versa. If you use the
BRKPT macro instruction in your program, it will be ignored if your job is run on a nonspooling
system.

NOTE:

Spooling always permits redirected output to tape. To redirect output to disk, however, you
must include dynamic buffer management either explicitly or using other parameters at
system installation time.

11.1 .3. Create a Breakpoint in a Spool Output File (BRKPT)

Function:

The BRKPT macro instruction creates a breakpoint in a printer or punch spoolfile. It
closes and reopens the subfile as it is being generated by the spooler. Each segment
created at this breakpoint is considered a logical subfile so that output to the physical
device can be started prior to job step termination.

If this macro instruction is included in a program executing in a system that does not
have the spooling capability, the macro instruction is ignored.

Format:

LABEL 60PERATION6 OPERAND

[symbol] BRKPT {
filename }
CCB-name
(1)

Positional Parameter 1:

filename
Specifies the· symbolic address of the DTF macro instruction in the program
which defines the file in which a breakpoint is to be created. Use this parameter
if you are using data management macro instructions to define and access the
file.

CCB-name

(1)

Specifies the symbolic address of the command control block (CCB) associated with
the file in which the breakpoint is to be created. Use this parameter if you are using
PIOCS macro instructions to define and access the file.

Specifies that register 1 has been loaded with the address of the DTF macro
instruction or CCB associated with the file to be breakpointed.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

11.2. JOB ACCOUNTING

11.2.1. General

UPDATE LEVEL

11-6

PAGE

The job accounting package consists of resident routines which are linked with the
supervisor and elements of the job step processor at system generation time. These routines
provide a count of the facilities utilized by each job step during its execution within the
system. The message logging facility of the spooling function transfers this data from main
storage to disk as part of the output spoolfile. The output writer prints the job step and job
values as part of the normal message log output for each job. Optionally, the output writer
can write the accounting information to a standard SAM magnetic tape file for offline
processing by user-developed accounting routines or by OS/3 data utility routines. You
can assign an account number using the JOB job control statement which is carried along
with the accounting records. This enables you to accumulate statistics from the SAM file
for computer time and resources charged against an account number, which could
represent a project, department, cost center, etc. The job accounting function requires the
use of the spooling package and the optional timer facilities. These must be included at
system generation time. Also, the job accounting versions of SVC decode and the switcher
must be included within the supervisor at link edit time.

11.2.2. Accounting Data

•

Accounting data is accumulated in a job accounting table (Figure 11-2) in the job prologue. •
Fields in this table serve as counters for job step and job statistics.

Byte 0 l 1 l 2 l 3

0 count of SVCs in job step

4 count of SVCs in job

8 count of transient calls in job step

12 count of transient calls in job

16 CPU time used by job step

20 CPU time used by job

24 length of largest job step (in bytes)

28 time of day that job step started

32 time of day that job started

36 accumulated time of day of all job steps •
Figure 11-2. Job Accounting Table Format (Part 1 of 2)

•

•

•

8075 Rev. 3
UP-NUMBER

Byte

40

44

48

52

56

60

64

68

....,

SPERRY UNIVAC Operating System/3 A 11-7
UPDATE LEVEL PAGE

0 l 1 l 2 l 3

count of EXCPs in job

count of I/Os not fitting in device count table

switch priority l not used I termination code of job step

logon time in milliseconds

number of commands issued

number of files accessed

number of non-PUB spooled I/Os

PUB acctg ID l count of EXCPs to that PUB t
(device count table - one entry for each device)

rV

PUB acctg ID J count of EXCPs to that PUB

Figure 11-2. Job Accounting Table Format (Part 2 of 2)

11.2.2.1. Job Step Level Data

Counters in the job accounting table are dynamically incremented during job step execution.
The following data is collected for each job step:

8075 Rev. 3
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 A 11-8

UPDATE LEVEL PAGE

Central processor time

This consists of the total time in milliseconds charged to tasks of this job or
supervisor tasks working for this job. This means that all supervisor overhead, such
as processing SVCs and the processing of supervisor tasks is charged to the
requesting job. Supervisor idle {wait) time is not charged to any job.

• Total SVCs executed

This consists of the total number of SVCs executed by the job's tasks or by supervisor
tasks working in behalf of the job.

• Total transient functions

This consists of the total number of transient functions executed by the job's tasks or
by supervisor tasks working in behalf of the job. This does not include overlays to
transients.

• Total 1/0 requests

•

This consists of the total number of 1/0 requests executed for each device by the job's
tasks or by supervisor tasks working in behalf of the job. 110 requests per device
include spooling activity in terms of the number of cards read from the spool file and
print lines written to the spool file by this job step. •

In addition to the counts dynamically maintained in the job accounting table, the job step
processor furnishes the following values for job step accounting:

• Total wall clock time required for the job step to execute. This does not include time
during which the job step was rolled out, nor does it include the period between the
time a checkpoint was taken and the job step was restarted from the last checkpoint.

• Total main storage into which programs were loaded by the loader.

This value represents only that amount of main storage used by the job step as
recorded by the loader, and does not include the prologue or those available areas
within the job region which are used but not for loading.

• Initial switch priority of the job step.

• Termination code of the job step. Normal termination code is 000.

• Value of the User Program Switch Indicators {UPSI) at job step termination.

11.2.2.2. Job Level Data

Some of the data collected for the job steps of a particular job is totalled for the job's
accounting record. In addition, data is collected on the job level which cannot be acquired by
just summing the job step values. That data which is collected solely for the job is recorded
at job termination time and consists of the following:

• Size of the largest job step.

•

•

•

•

11-9 8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

• Job date

This is the date from the job preamble representing the date the job was run.

• Total job main storage including prologue.

• Total wall clock time for the job, including all of the job step processor overhead.

Wall clock time is defined as the point in time when a job is initiated to execute up to
the point in time when the job termination message is displayed, and does not include
spool time.

• Total wall clock time for all job steps.

This is a sum of the total wall clock time for each job step and does not include job
control time.

• Total CPU time for all job steps.

•

•

This is a sum of the CPU time for each job step and does not include job control time.

Total SVC count for all job steps .

This is a sum of the SVC counts for each job step and does not include job control
counts.

Total transients called for all job steps .

This is a sum of the transients called by the job steps and does not include job control
counts.

• Total 1/0 count for all job steps.

This is a sum of the I/Os executed by the job steps and does not include job control
counts.

11.2.3. Data Printout

When printing the job's log, the output writer also prints the accounting records for that job.
Also, the output writer can write all the job log records to a magnetic tape for offline
processing, or only the log records, or the accounting records. This gives you the ability to
create a system log file and a system accounting file for subsequent statistical processing
and evaluation. Figure 11-3 shows the format of the job accounting record printout .

+ SPE~Y1~UNIVAC PRINTER FORMAT CHART
160 PRINT POSITIONS

r- APPLICATION TYPE OF PRINTER---------------------
L L
I _____ _ __ ----- --------·- ·-·-------- PROGRAMMER DATE 1
N N
E 20 60 70 i>o 90 100 110 120 144 150 160 E

N
0

Job Header f- (O_I .••• VJ!. i+•.b:.n.•.~-· . . A.CC.•. . .. ;t..X. s. l.G_llE]) ""1"'".RY•X.H<><U• .J!YHS. (L"S· "I"" .< PR:OL.b.GUE 1.' ~-"'· _._, - .r~.6. ""·" . .h.h.'"'~·''·'·. - •. - --·· - ---··. - .

Step Header - c_1_<1 .• J.f.l>. -__ LJJ>.-!l.Al\ _F_fJ!'-.M N~H - f~R"'~~ ., C~PJ(S - ,,,., ?A(jES - ,,,,,,~TEP,,., ··---- - -·-----·· -··-· f'. ___ n_h_: : -'-·-·-· -t··--- ·----···
C:.1....4 .. +5 .. i.E¥_,<4f:_it_:!.J-• .(st rna"!_e) US J> JC1'tticXJCX ~YfE"S ELAPSEl> 'ti L CLtlCK TjtME.::hh:m,...:ss.m.{ l,fl.TA._L __ S_IJ_C __ A_L_L_.S_"_t:_J_it_;ic-._J_J..~i.__ __A ___ ~_h_:_,,..,."2._:ss __________ ______ ---···+-

Spool Header &,0_2 __ 1·1~•.hn_ . . •."'-!.".•-"' . . •.v.-.r.-.•.'t't I: ~ ~ ~. __ nn_:., ... :s_s _ ---·- -·. ____ .. _ -· .. __ _

c..1 .. ~-·• .• E.!~COJ>_E.~l('(I(s ITCtt·PRiaRITY.110 Ptl llt'tE. u E.P =hh: ... "':ss.l"lrl -~~N_S_l_EMT A_LLS_,,_,_'11:_'11.:-it.'lt'_)!'_)(_ _A ___ h_h_:_"'!'"'_:)•• -·-··-----· ~--···-
Ct3 UPSl SE.lftMG- '(

1

nn
1 I I A ht\:,..n:ss

Device Counts ~:,·~'.:'.•: :;.: .).(v h ltCP's J.!•~'i"'"" •
1
d.h'"''" J·;J '"""' <ddi'"'"''' i:M~'"'''" :A~~~:.:,~~~,,~,~:~~~;~~~:=~_: ~~~~~:~:::

r·edA."t" E LAP st"p· "JA "L c"LoC"I(. 1 {ME·· h h: '"'"'":\ s" ' i" "b'r"A·L· .JtiB" s"vC" ·c-.A1..."L"s":. .,_-""-""·· J(.. -}(·)(· "fhh·:·"'-.;;: s-s-- - - + - --- ••• --- ----- - ______.

Job Totals .':".A.LL. Cloe.I<. TlJro\E. f fl.LL 5_ E-tS :.hh:,..f"l:.~s.~i.J T.R_AM_S_rE._Hl_ C,.,_L.L_S_-::""'J.X.JC><'IC.X.•. A. _h_h_:~l"l_:s_s_
.••. 1 1~.T.~_L. P_u_ T_l_M_E __ f;F __ ALL __ ~TE.PjS •hr._:_l'll'l_:Js.s_._,._i_J_ 1.0.T,t._L_ .1.~1. _l(C_P 1_s .. -:--..x_l(x.1CX._ll'_I(_ fi..J1.ti_:_..,~.:s_s_

t

l----1. +-+-+-+---+ •• -

. ·1·-···· I--+-------~ •
·-····+··

··I"
.1 ••

. ·····1··1··-·--- ..
, ... ----t:·+~-+----·

: ;:::2q:
t +.+::ti l
... . ·--1-
... +··1·· - •. ,.___ + •

•. lt-· !

1· ..
•t··

1 "·-·· ·-
t-l- - •••.. H••']1!

<--+-•t-· .. •--t-----····

itU: '_; l; fr::: : : : : :
I•

UOl-1505

•

: :.L..:l .. ·t +•t+•l

-·---~· I.

11·
'I·

·I f
... : I I

. ! ~

1 •
'I
1 •.

!) .

i j.
! 1·

Figure 11-3. Job Accounting Record Printout Format

•

::-:~:-:-~--:-~~
. -+·-----+-------+

------···1····-·{8··): '. -

::rr:::-:~::: ~!:.-:-::.t- -:-:::-:-:-+r
·····+-+-.1.- ... ------~

. ! t

.• 1

·I

. --~:: l ~
:: ... ;t

•• - •. t .. -t -

: J ···;I •·
·;·· •.. ··I---

. - ... -· •. l ••. --:-:++~ ·~- ... -......
I ' ... ii~ . •·' ... _, t

. .. ,..l:.:..:.::·;1: ~:~~:::~ ..
T !l::: ~: :::~:::J

··:11 ::::: n: :r~:::t -

•

c CXl
'ti 0
' z 01
c :D
s: "' IXJ <
m ~
::0

c
'ti
0
)>
-i
m
r
m
< m
r -
'ti
)>
Gl
m

sg
m
::c
::c
-<
c
2

<
)>
(")

0
i
Cil
r+
3·

CQ

!R
i
3 -w

)>

I
~

0

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
A Index 11

UPDATE LEVEL PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3
A Index 12

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page • s SETCS macro instruction 8.8.5 8-62

SAT SETIME macro instruction
block number processing 6.10 6-56 continue processing until interrupt 8.4.2.2 8-23
controlling disk file processing 6.4 6-19 example Fig. 8-2 8-24
controlling tape file processing 6.9 6-51 function 8.4.2.1 8-22
description 6.1 6-1 interval timer 8.6.7 8-48
disk file interface 6.3 6-10 timer services 8.4 8-15
disk file organization and

addressing methods 6.2 6-1 Shared filelock capability 6.3.1.2 6-13
system standard tape labels 6.6 6-26
tape file interface 6.8 6-45 SIB 8.4.1.1 8-16
tape files 6.5 6-25
tape volume and file organization 6.7 6-37 SNAP macro instruction 9.1.1 9-1

See also disk SAT files
and tape SAT files. SNAPF macro instruction 9.1.1 9-1

SAT macro instruction 6.8.1 6-45 Snapshot display 2.2.10.2 2-8

Save area, register 8.5.3 8-28 Snapshot dumps 9.1.1 9-1

Fig. 8-3 8-28
Table 8-1 8-29 Soft-patch symbiont

cancelling the symbiont 9.4.7.4 9-61
Save area address 8.6.8 8-49 description 9.4.7 9-58

error messages 9.4.7.5 9-62
SAVE macro instruction patching from a single entry

function 8.5.6 8-31 on the cosole 9.4.7.2 9-60 • program linkage 8.5 8-26 producing a card deck from
the console 9.4.7.2 9-60

Scratch routine, disk using card input 9.4.7.1 9-58

description 5.2.3 5-3 using console input 9.4.7.2 9-60

scratch all by date 5.2.3.3 5-4 using multiple forms of

scratch by prefix 5.2.3.2 5-4 the command 9.4.7.3 9-61

scratch file 5.2.3.1 5-4
Space assignment

Scratching files 5.2.3.1 5-4 existing file 5.3.2 5-7
5.3.3 5-9 new file 5.3.1 5-5

SCRTCH macro instruction Space control, disk 6.2.4 6-4

disk 5.3.3 5-9
diskette 5.5.2 5-16 Spooler 11.1.1.3 11-2

Search order, library 8.2.3 8-4
Spooling

breakpoint in output file 11.1.3 11-5

Second file header label See HDR2 label.
description 2.2.9 2-8
initialization 11.1.1.1 11-1

SEEK macro instruction 6.2.1 6-2
input reader 11.1.1.2 11-2

6.4.6 6-24
output writer 11.1.1.4 11-3
relationship of devices and programs Fig. 11-1 11-2

Seek separation, disk 2.2.15 2-10
special functions 11.1.1.5 11-4
spooler 11.1.1.3 11-2

Selective dynamic dump 9.1.l 9-1
use 11.1.2 11-4

Selector channel, BCW
Standard load modules 8.2 8-2

format Fig. 4-5 4-16 Standard system error message interface • 2.2.10.4 2-9

Sequence field 3.3.6 3-8 Standard tape labels

Service request macro instructions
system 6.6 6-26

(imperative) 4.2.1 4-3
tape volume organization 6.7.1 6-38

•

•

•

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

A Index 13

UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Standard tape volume organization System access technique See SAT.
description 6.7.1 6-38
multifile volume with System activity monitor 11.3 11-11

end-of-file Fig. 6-12 6-40
multifile volumes with System debugging aids

end-of-volume Fig. 6-13 6-41 history tables 9.4.1 9-48
volumes containing a single file Fig. 6-11 6-39 mini monitor 9.4.2 9-53

pseudo monitor 9.4.l 9-48
Start-of-data (/$) job control statement resident supervisor monitor 9.4.1 9-48

control stream embedded data 8.8.3 8-60 summary Table 9-3 9-46
monitor input 9.3.1.1 9-23

9.3.1.2 9-25 System control tables 8.7.3 8-56

Statement conventions 3.2 3-1 System information block (SIB) 8.4.1.1 8-16

Storage display action 9.3.5.1.2 9-40 System information control
description 8.7 8-54

Storage displays get data from communication region 8.7.1 8-55
abnormal termination 9.1.3 9-10 get data from system control tables 8.7.3 8-56
checkpoint and restart 9.2 9-10 put data into communication region 8.7.2 8-56
description 9.1 9-1
monitor and trace 9.3 9-22 System library file 6.3.1 6-14
normal termination dumps 9.1.2 9-5
snapshot dumps 9.1.1 9-1 System log 10.1.2 10-6

Storage reference option (S) 9.3.4.1 9-32 System standard tape labels See tape labels,

STXIT macro instruction 8.6 8-35
system standard.

8.6.1 8-36

T
Subtask 7.1.1.2 7-2

Table generation macro instruction
Supervisor (declarative) 4.2.1 4-2

description 1.1 1-1
diagnostic and debugging aids Section 9 Tape block number 4.4.1 4-33
disk space management Section 5 Fig. 4-9 4-34
interrupt handling 2.1 2-1
1ob accounting 11.2 11-6 Tape control append age (TCA) See TCA macro
macro instructions Section 3 instruction.
main storage requirements 1.2.2 1-2
message display and logging 10.1 10-1 Tape data management system 6.5 6-25

10.2 10-6
modular functions See modular Tape files, block numbered 4.4 4-33

functions.
multi1obbing and multitasking 1.2.3 1-3 Tape format, output writer 11.1.1.4 11-4

Section 7
operator communication 10.3 10-17 Tape labels, system standard

operator intervention 1.2.4 1-3 description 6.6 6-26

PIOCS Section 4 file header 6.6.2 6-29

program management Section 8 file trailer 6.6.3 6-33
spooling 11.1 11-1 nonstandard 6.7.2 6-42
system access technique Section 6 standard tape volumes 6.7.1 6-38

unlabeled 6.7.3 6-44
Symbolic addresses volume 6.6.1 6-27

abnormal termination island
code Fig. 8-6 8-47 Tape restrictions 4.4.2 4-33

interval timer island code Fig. 8-7 8-48
operator communication island code Fig. 8-8 8-50
program check island code Fig. 8-4 8-44

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
Index 14

UPDATE LEVEL PAGE

"I
I
I
I

t. I

ai
c:

I
I
I
I
I
I
I
I
I
I
I
I

SFE~Y=:(>=UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

--
FOLD

.• :.
'

-.:·

•'·

• f
I

$

.

\

'
"

.J ..
·'

