Operatm System/ (OS/3)

Supervisor

User Guide

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (0S/3) Supervisor User Guide”, UP-8075 Rev. 3.

This update documents the following changes for release 8.0:

L] Enhancement of the OC STXIT routine

] Restrictions to the monitor routine

] Expansion of the Soft-Patch Symbiont debugging aid

= Enhancement of the job accounting facility

. This update also includes minor technical corrections to material applicable to the supervisor prior to release 8.0.

Copies of Updating Package A are now available for requisitioning. Either the updating package only, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8075 Rev. 3—A. To receive the complete manual, order UP-8075

Rev. 3.

MO AND AT TACHMENTS

Mailing Lists
. BZ, CZ and MZ

UD1-251 Rey, 3773

Mailing Lists ACO, AO1, 18, 18U, 19, 19U, 20, 20U,
21, 21U, 75, 75U, 76, and 76U

(Package A to UP-8075 Rev. 3,

75 pages plus Memo)

Library Memo for
UP-8075 Rev. 3—A

RELEASE DATE:

September, 1982

PSS 1

8075 Rev. 3 . A
S e o SPERRY UNIVAC Operating System/3 oroaTe Lever | pace
PAGE STATUS SUMMARY
ISSUE: Update A — UP-8075 Rev. 3
RELEASE LEVEL: 8.0 Forward
. Page Update . Page Update] Page Update
Part/Section| Nymber | Level | |Part/Section) nymper | Level | [Part/Section) nymber | Level
Cover/Disclaimer Orig. PART 4
Title Page Orig.
PSS 1 A
8 1 thru 6 Orig.
Preface 1,2 Orig. 7 A
8 thru 48 Orig.
Contents 1 Orig. 49 A
2,3 A 50 thru 63 Orig.
4 thru 6 Orig.
7,8 A 9 1 thru 22 Orig.
9,10 Orig. 23 A
24 thru 26 Orig.
PART 1 27 A
Title Page Orig. 28 Orig.
29 A
1 1 thru 3 Orig. 30 thru 34 Orig.
35 A
2 1thru 8 Orig. 36 thru 42 Orig.
9 A 43 A
10, 11 Orig. 44,45 Orig.
46, 47 A
3 1 thru 10 Orig. 48 thru 57 Orig.
1 A 58, 59 A
12 Orig. 60 thru 63 A*
PART 2 10 1 thru 23 Orig.
Title Page Orig.
1 1 Orig.
4 1 thru 3 A 2 A
4 Orig. 3,4 Orig.
5 A 5 A
6 thru 14 Orig. 6 Orig.
15 A 7,8 A
16 thru 18 Orig. 9 Orig.
19 thru 22 A 10 A
23 thru 28 Orig. 11,12 Orig.
29 A
30 thru 34 Orig. Index 1 thru 10 Orig.
35 thru 37 A 11 thru 13 A
14,15 Orig.
5 1 thru 18 Orig.
User Comment
6 1 thru 7 Orig. Sheet
8 A
9 thru 24 Orig.
25 A
26 thru 55 Orig.
56, 57 A
58 thru 63 Orig.
PART 3
Title Page Orig.
7 1 thru 22 Orig.
*New pages

All the technical changes are denoted by an arrow (=) in the margin, A downward pointing arrow (f) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (4 } is found. A horizontal arrow () pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

; . Contents 1
8075 Rev. 3 I SPERRY UNIVAC Operating System/3 "
UP-NUMBER UPDATE LEVEL | PAGE

Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. INTRODUCTION

1. CONCEPT AND ORGANIZATION
1.1. GENERAL 1—1
1.2 FEATURES 1-2
1.2.1. Modularity 1—2
1.2.2, Minimum Main Storage Requirements 1—2
1.2.3. Muitijobbing and Multitasking Capability 1—3
1.2.4, Minimum Operator Intervention 1—3

2. SUPERVISOR INTERFACES
2.1. INTERRUPT HANDLING 2—1
2.2. MODULAR FUNCTIONS 2—2
2.2.1. Task Control 2—2
2.2.2. Physical Input/Output Control 2—2
2.2.2.1. Execute Channel Program Processor Module 2—2
2222, PUB Control Module 2—3
2223 Queue Control Module 2—3
2224 Address Adjustment Module 2—4
2.2.25. Channel Scheduler Modules 2—4
2.2.2.6. Interrupt Module 2—4
2.227. IOST Processor Module 2—4
2.2.28. Channel! Interrupt Processor Modules 2—5
2.2289. Error Control Module 2—5
2.2.2.10. Error Editing Root Overlay 2—5
2.2.2.11. Device Sense Analyzer Overlay 25
2.2.2.12, Error Reply Overlay 2—5

8075 Rev. 3 SPERRY UNIVAC Operating System/3 I A Contents 2

UP-NUMBER) UPDATE LEVEL | PAGE
2.2.3. Transient Management 2—5
2.2.4. Console Management 2—6 .
2.2.5. Workstation Manager 2—6
2.2.6. Resource Allocation 2—6
2.2.7. Timer and Day Clock Services 27
2.2.8. Program and Machine Error Control 2—7
2.2.9. Spooling Operations 2—7
2.2.10. Diagnostic and Debugging Aids 2—8
2.2.10.1. Monitor and Trace 2—8
2.2.10.2. Snapshot Display of Main Storage 2—8
22.103. Main Storage Dumps 2—8
2.2.104. Standard System Error Message Interface 2—9
2.2.11. Automatic Volume Recognition 29
2.2.12. Main Storage Consolidation 2—9
2.2.13. Rollout/Rollin 210
2.2.14. Cochanneling 2—10
2.2.15. Disk Seek Separation 2—11
2.2.16. Error Logging 2—11
2.217. Interactive Services 2—11

3. MACRO INSTRUCTION CONVENTIONS

3.1. GENERAL 3—1
3.2. FORMAT ILLUSTRATION AND STATEMENT

CONVENTIONS 3—1
3.3. USE OF THE ASSEMBLER CODING FORM 3—5
3.3.1. Label Field 3—6
3.3.2. Operation Field 3—7
3.3.3. Operand Field 3—7
3.34. Comments Field 3—7
3.3.5. Continuation Column 3—7
3.3.6. Sequence Field 3—8
3.4. MACRO INSTRUCTIONS 3—8
3.4.1. Declarative Macro Instructions 3—8
3.4.2. Imperative Macro Instructions 3—8
3.43. Summary of Supervisor Macro Instructions 3—8
3.5. PROGRAMMING CONSIDERATIONS FOR MACRO INSTRUCTIONS 3—8

PART 2. PHYSICAL INPUT/OUTPUT CONTROL
= 4. PHYSICAL INPUT/0OUTPUT CONTROL SYSTEM (PIOCS)

4.1. GENERAL 4—1
4.2. PHYSICAL 170 CONTROL 4-—2
4.2.1. General 42
4.2.2. General |/0 Usage Requirements 4-4
4.2.3. Generate Buffer Control Word {BCW) 4—5
4.2.4. Generate Channel Command Word ({CCW) 4—-15
4.25. Generate Command Control Block {CCB) 4—18
4.2.6. Generate Physical Input/Output Control Block {PIOCB) 4-—-24
4.2.7. Read File Control Block (RDFCB) 4—26

4.2.8. Execute Channel Program (EXCP) 4--28

: : A Contents 3

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER | UPDATE LEVEL | PAGE
4.3. INPUT/OUTPUT SYNCHRONIZATION 4—30
4.3.1. Wait for 1/0 Completion (WAIT) 4—31
4.3.2. Multiple 1/0 Wait (WAITM) 4-32
4.4. BLOCK NUMBERED TAPE FILES 4—33
4.41. Block Number Field 433
4.4.2. Tape Restrictions 4--35
4.4 3. Input/Output Buffer 435
4.4.4. Processing 4—35
4.45. PIOCS Requirements and Options 4—36 -

5. DISK SPACE MANAGEMENT
5.1. GENERAL 5—1
5.2. DISK SPACE MANAGEMENT ROUTINES 5—2
52.1. Allocate Routine 5—2
5.2.2. Extend Routine 5—3
5.2.3. Scratch Routine 5—3
5.2.3.1. Scratch Entire File 5—4
5.2.3.2. Scratch by Prefix 5—4
5.2.3.3. Scratch All by Date 5—4
524. Rename Routine 5—4
5.2.5. Obtain Routine 5—4
5.3 DISK MACRO INSTRUCTIONS 5—5
5.3.1. Assign Space to a New Disk File (ALLOC) 5—5
5.3.2. Assign Additional Space to an Existing Disk File (EXTEND) 5—7
5.3.3. Scratch a Disk File (SCRTCH}) 5—9
5.3.4. Rename a Disk File (RENAME) 5—10
5.3.5. Access VTOC User Block (OBTAIN) 5—12
5.4. DISKETTE SPACE MANAGEMENT ROUTINES 5—14
5.5. DISKETTE MACRO INSTRUCTIONS 5—14
5.5.1. Assign Space to a New Diskette File (ALLOC) 5—14
5.5.2. Scratch a Diskette File {SCRTCH) 5—16
5.56.3. Obtain Diskette Label Information (OBTAIN) 5—17
5.6. SPACE MANAGEMENT ERROR CODES 5—18
6. SYSTEM ACCESS TECHNIQUE
6.1. GENERAL 6—1
6.2. DISK SAT FILE ORGANIZATION AND
ADDRESSING METHODS 6—

6.2.1. PCA Table Entries Used in Addressing 6—1
6.2.2. Block Addressing by Key 6—3
6.2.3. Block Addressing by Relative Block Number 6-—3
6.2.4. Disk Space Control 6—4
6.2.5. Record Interlace 6—5
6.2.5.1. Interlace Operation 6—6
6.2.5.2. Lace Factor Calculation 6—8
6.2.6. Accessing Multiple Blocks 6—8

8075 Rev. 3 SPERRY UNIVAC Operating System/3 l Contents 4
UP-NUMBER UPDATE LEVEL | PAGE

6.3. DISK SAT FILE INTERFACE 6—10
6.3.1. Define a New File (DTFPF) 6—10 .
6.3.1.1. Filelocks 6—12
6.3.1.2. Shared Filelock Capability 6—13
6.3.2. Defining a Partition (PCA) 6—14
6.3.3. Processing Partitioned SAT Files 6—17
6.3.3.1. Processing Blocks by Key 6—18
6.3.3.2. Processing by Relative Block Number 6—18
6.4. CONTROLLING YOUR DISK FILE PROCESSING 6—19
6.4.1. Open a Disk File (OPEN) 6—19
6.4.2. Retrieve Next Logical Block (GET) 6—20
6.4.3. Output a Logical Block (PUT) 6—21
6.4.4. Wait for Block Transfer {(WAITF) 6—22
6.4.5. Read by Key Equal/Read by Key Equal

or Higher (READE/READH) 6—23
6.4.6. Access a Physical Block (SEEK) 6—24
6.4.7. Close a Disk File {CLOSE) 6—24
6.5. SAT FOR TAPE FILES 6—25
6.6. SYSTEM STANDARD TAPE LABELS 6—26
6.6.1. Volume Label Group 6—27
6.6.2. File Header Label Group 6—29
6.6.2.1. First File Header Label (HDR1) 6—29
6.6.2.2. Second File Header Label (HDR2) 6—31
6.6.3. File Trailer Label Group 6—33
6.7. TAPE VOLUME AND FILE ORGANIZATION 6—37
6.7.1. Standard Tape Volume Organization 6—38
6.7.2. Nonstandard Tape Volume Organization 6—42
6.7.3. Unlabeled Tape Volume Organization 6—44
6.8. TAPE SAT FILE INTERFACE 6—45
6.8.1. Define a Magnetic Tape File (SAT) 6—45
6.8.2. Define a Tape Control Appendage (TCA) 6—46
6.9. CONTROLLING YOUR TAPE FILE PROCESSING 6—51
6.9.1. Open a Tape File (OPEN) 6—51
6.9.2. Get Next Logical Block (GET) 6—52
6.9.3. Output Next Logical Block (PUT) 6—53
6.9.4. Wait for Block Transfer (WAITF) 6—54
6.9.5. Control Tape Unit Functions (CNTRL) 6—54
6.9.6. Close a Tape File (CLOSE) 6—b55
6.10. BLOCK NUMBER PROCESSING 6-—56
6.10.1. Facilities Required for Biock Number Processing 6—567
6.10.2. Specifications for Block Number Processing 6—57
6.10.2.1. Initialized Processing 6—58
6.10.2.2. Noninitialized Processing 6—58

PART 3. MULTITASKING

7. MULTITASKING

7.1. GENERAL 7—1
7.1.1. Multijobbing and Multitasking 7—1

8075 ev. 3 SPERRY UNIVAC Operating System/3 A Contents 7

UP-NUMBER per g%y UPDATE LEVEL | PAGE
9.2. CHECKPOINT AND RESTART CAPABILITY 9—10
9.2.1. How to Generate Checkpoint Records (CHKPT) 9—12
9.2.2. Using Magnetic Tape as the Checkpoint File 9—14
9.2.3. Using a SAT Disk or Tape as a Checkpoint File 9—15
9.2.3.1. Estimate Space Requirements for a Disk Checkpoint File 9—16
9.2.3.2. Define, Open, and Close a SAT Checkpoint File (DDCPF, DCPOPN,

DCPCLS) 9—17
9.2.4. Processing PIOCS Files (DCFLT) 9—18
9.3. MONITOR AND TRACE CAPABILITY 9--22
9.3.1. How to Call the Monitor Routine 9—-23
9.3.1.1. Monitoring From the Beginning of the Job 9—23
9.3.1.2. Monitoring After Execution Begins 9—-25
9.3.2. Monitor Input Format 9-27
9.3.3. Defining What You Want to Monitor 9—29
9.3.4. Specifying Options 9—31
9.34.1. Storage Reference Option (S) 9—-32
9.3.4.1.1. Program Relative Address (PR) 9—32
9.3.4.1.2. Base/Displacement Address (B/D) 9—-34
9.3.4.1.3. Absolute Address (ABS) 9—-34
9.34.2. Instruction Location Option (A) 9—-35
9.34.3. Instruction Sequence Option (1) 9—36
9.344. Register Change Option (R) 9—-37
9.3.45. No Option Specified? You Get a Default 9—37
9.3.5. Specifying Actions 9—-38
9.3.5.1. Display Actions 9—-38
9.3.5.1.1. Register Display (DAR) 9—-39
9.35.1.2. Storage Display (DAS) 9—40
9.3.5.1.3. Default Display 9—42
9.3.5.2. Halt Action (H) 9—43
9.3.5.3. Quit Action (Q) 9—44
9.3.6. Cancel of Monitor 9—45
9.4, SYSTEM DEBUGGING AIDS 9—45
94.1. Supervisor Debug Option 9—48
9.4.2. Mini Monitor 9—-53
9.4.3. Console Debug Options 9—54
9.4.4. Transient Management Halts 9—56
9.45. Symbiont Halt 9—56
9.4.6. Shared Code Halts and Pauses 9—57
9.4.7. Soft-Patch Symbiont (PT) 958 *
94.7.1. Soft-Patching Using Card Input 9-—-58
947.2. Soft-Patching Using Console Input 9—60
94.7.3. Using the PT Command 9—61
9.474. Cancelling the PT Symbiont 9—61
94.7.5. PT Symbiont Error Messages 9—-62 +
10. MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

10.1. GENERAL 10—1
10.1.1. The Canned Message File 10—3
10.1.1.1. Canned Messages 10—3
10.1.1.2, Inserting Variable Characters in a Canned Message 10—3
10.1.2. The System Log

10—6

8075 Rev. 3 SPERRY UNIVAC Operating System/3

A Contents 8
UP-NUMBER UPDATE LEVEL | PAGE
10.2. MESSAGE AND LOGGING MACRO INSTRUCTIONS 10—6
10.2.1. Write to the Log (WTL) 10—6 .
10.2.2. Display a Message and Write to the Log (WTLD) 10—9
10.2.3. Get a Canned Message (GETMSG) 10—14
10.3. USER-OPERATOR COMMUNICATION 10—17
10.3.1. General 10—17
10.3.2. Display a Message to the Operator (OPR) 10—19
11. OTHER SERVICES
11.1. SPOOLING 11—1
11.1.1. General 11—1
11.1.1.1. Initialization 11—1
11.1.1.2. Input Reader 11—2
11.1.1.3. Spooler 11—2
11.1.14. QOutput Writer 11-—3
11.1.1.5. Special Functions 11—4
11.1.2. To Use Spooling 11—4
11.1.3. Create a Breakpoint in a Spool Output File (BRKPT) 11—5
11.2. JOB ACCOUNTING 11—6
11.2.1. General 11—6
11.2.2. Accounting Data 11—6
11.2.2.1. Job Step Level Data 11—7
11.2.2.2. Job Level Data 11—8
11.2.3. Data Printout 11—9
11.3. SYSTEM ACTIVITY MONITOR 1111
11.3.1. General 11—11
11.3.2. Monitor 11—11
11.3.3. Report Producing Program 11—11
11.3.4. System Activity Monitor Statistics : 11—-12
INDEX
USER COMMENT SHEET
FIGURES
3—1. 9000 Series Assembler Coding Form 3—6
- 4—1. Relationship of Basic PIOCS Macro Instructions 4—3
4—2. Buffer Control Word (BCW) Format for Integrated Disk Adapter 47
4—3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel 4—10
4—4. Buffer Control Word (BCW) Format for Multiplexer Channel 4—13
4—-5. Channel Command Word (CCW) Format for Selector Channel 4—16
4—6. Channel Address Word (CAW) Format 4-17
4—7. Command Control Block (CCB) Format 4--22
4—8. Physical 1/0 Control Block (PIOCB) and File Control Block (FCB) Format 425
4—9. Tape Block Number Field Format 434
6—1. Partition Control Appendage (PCA) Table Format 6—2
6—2. Record Formats for Disk Devices 6—3
6—3. Definition of Interlace Variables 6—6

6—4. Interlace Accessing 6—7

. -9
8075 Rev. 3 l SPERRY UNIVAC Operating System/3 A 2
UP-NUMBER UPDATE LEVEL | PAGE
. 2.2.10.4. Standard System Error Message Interface

An error message service routine provides complete and specific error messages without
requiring each system module to contain alphanumeric error information. This routine locates
the message in a disk file and transfers control to the system console handler for message
display or system logging.

2.2.11. Automatic Volume Recognition

Automatic volume recognition allows the console operator to premount magnetic tapes
and disk packs before the devices are required for a job step. This reduces time lost due to
job step setup and console responses. The automatic volume recognition function is
performed during supervisor initialization and as a result of an attention interrupt being
received from an online |/O device. This attention interrupt is caused by physically
activating the device online, or, in the case of a device that does not have an attention
interrupt capability, by the operator issuing an AVR console command.

Using the physical unit block (PUB) for the devices, automatic volume recognition checks
to see if the required tape and disk volumes are already mounted. In addition, it performs
special processing to handle unique characteristics of various devices. For example, when
required at supervisor initialization, it distinguishes between an 8418 disk pack with high
density and an 8418 disk pack with low density or an 84186; it performs special interrupt
processing for the 8415 disk; it identifies an 0776 printer configured as an 0770 printer. It

. then marks the device type in the PUB for that device. It also distinguishes between block
numbered and unnumbered tapes. If a tape is not at loadpoint, it rewinds the tape so that
it can read the label and the volume serial number.

The automatic volume recognition function displays console messages to the operator to

indicate such conditions as a disk or tape not prepped, an 1/0 error, or a duplicate volume
serial number.

A system generation option incorporates a retry on the attention interrupts feature in the AVR
function. This permits automatic retry of a recoverable error when an attention interrupt is

received on aprinter, card reader, or card punch that has an unanswered PIOCS error message. -

The operator can initiate the recovery retry at the device by placing it online, instead of having to
return to the console to respond to the error message.

2.2.12. Main Storage Consolidation

Main storage consolidation is a system generation option that repositions jobs and
reallocates space in main storage so that enough contiguous space can be made available
when needed to hold the next job to be initiated. This reduces fragmentation of main
storage and permits a job to be run that requires more contiguous space than is currently
available without consolidation.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 >0

UP-NUMBER

UPDATE LEVEL | PAGE

When a job or a symbiont terminates, the next job to be run is evaluated to determine
whether there is enough space available or whether main storage consolidation is
necessary and which jobs must be moved. If this job is scheduled and consolidation is
required, the jobs are moved down one by one, starting with those farthest from the
supervisor. Each job to be moved is brought to an idle state, then moved down. Addresses
are adjusted and the job is reactivated. When all these jobs have been moved, the next
scheduled job is read in and initiated.

Main storage consolidation does not move symbionts because they do not have an
associated relocation register. Nor does main storage consolidation move jobs with open
interfaces to the integrated communications access method (ICAM), because these jobs
may be reading or writing directly into or out of user main storage. This restriction is
minimized if ICAM is loaded first, then ICAM user jobs next, in order to retain the
maximum continuous main storage region for further allocation.

2.2.13. Rollout/Rollin

The rollout/rollin function is a system generation option that temporarily transfers jobs
from main storage to disk to make room for a job with a preemptive scheduling priority.
Jobs currently in main storage are suspended and written to the job’s run library. The
preemptive job is then read into main storage and initiated. As enough space becomes
available, the rolled-out jobs are read back into main storage and allowed to continue
processing.

When a job or a symbiont terminates and there is a preemptive job in the job queue, the
preemptive job is evaluated to determine whether there is enough existing main storage
available, or whether main storage consolidation or rollout is necessary to make space
available. If the job is scheduled and rollout is required, the rollout function brings each
job marked for rollout to an idle state, delinks the TCBs from the switch list, and writes the
job’s image from the job region to disk. These rolled-out jobs have asterisks appended to
their names on the top line of the display on the system console. If the needed |/0 devices
are available, the preemptive job is read into the freed main storage and initiated.

As space becomes available and if there are no other preemptive jobs, the job scheduler
tries to bring in the rolled-out jobs, one by one. The job slots and 1/0 devices remain in
effect from the time the jobs were rolled out. The job scheduler ignores any jobs on the
high- or normal-priority job queues until all of the rolled-out jobs have been rolled back in
and reactivated.

2.2.14. Cochanneling

Cochanneling is the capability of accessing a single peripheral device through either of
two physical paths. Under OS/3, it provides for the support of both the dual access and
dual channel capabilities of the 90/30 hardware.

Dual access cochanneling permits simultaneous 1/0O operations (read/read, read/write,
write/write) on any two devices using two control units and two selector channels. Each
input/output device is connected to both control units, one control unit on each selector
channel. Depending on the control units used, dual access cochanneling is applicable to

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

A

3-11
PAGE

Table 3—1. Supervisor Macro Instructions (Part 2 of 3)

MULTITASKING

Task Management

ECB
ATTACH
DETACH
TYIELD
AWAKE
CHAP

Task Synchronization

WAIT
WAITM
POST
TPAUSE
TGO

Generate an event control block.
Create and activate an additional task.
Terminate a task normally.

Deactivate a task.

Reactivate an existing nonactive task.
Change the priority of a task.

Wait for a task request to complete.

Wait for one of several task requests to complete.

Activate the waiting task.

Deactivate one or more tasks other than the issuing task.
Reactivate one or more tasks other than the issuing task.

PROGRAM MANAGEMENT

. Program Loader

LOAD
LOADR
LOADI
FETCH

EOJ
CANCEL

Timer Services

GETIME
SETIME

Program Linkage

CALL/VCALL
ARGLST
SAVE
RETURN

. Island Code Linkage

STXIT
EXIT

Load a program phase and return control.

Load a program phase, relocate address-constants, and return control.
Locate a program phase and store its phase header in a work area.
Load a program phase and branch.

Job and Task Termination

Terminate a job step normally.
Terminate a job abnormally.

Obtain current time and date.
Set an elapsed time counter for the requesting task.

Call a program.

Generate an argument list.
Save register contents.
Restore registers and return.

Link to island code subroutine.
Exit from island code subroutine.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

3-12
PAGE

B

Table 3—1. Supervisor Macro Instructions (Part 3 of 3)

PROGRAM MANAGEMENT (cont)

System Information Control

GETCOM Retrieve data from job communication area.
PUTCOM Place data into job communication area.
GETINF Retrieve data from system control tables.

Control Stream Reader

GETCS Retrieve embedded data file submitted in job control stream.
SETCS Reset pointer to embedded data file.

DIAGNOSTIC AND DEBUGGING

Storage Displays

SNAP/SNAPF Print out portions of main storage and return control.
DUMP Print out the job main storage and terminate the job step.

Checkpoint Facility

CHKPT Record a checkpoint.
DDCPF Define a SAT checkpoint file.
DCPOPN Open a SAT checkpoint file.
DCPCLS Close a SAT checkpoint file.
DCFLT Generate a file list table.

Monitor and Trace

// OPTION TRACE Monitor from start of job.
(This is a job control statement, not a macro instruction.)

MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

WTL Write a message into system log file.

WTLD Write a message into system log file after displaying on system console or workstation.
GETMSG Retrieve message from canned message file.

OPR Display a message on system console or workstation.

OTHER SERVICES

Spooling

BRKPT Create a breakpoint in a spool output file.

A
UPDATE LEVEL

4-1

UP-NUMBER PAGE

8075 Rev. 3 | SPERRY UNIVAC Operating System/3

@
4. Physical Input/Output Control
System (PIOCS)

4.1. GENERAL

The resident supervisor of 0OS/3 contains a set of routines called the physical input/output
control system (PIOCS) that controls the activity between the processor and all peripheral
devices connected to the mutliplexer, selector, and integrated channels. These input/output
(170) channels operate independently of the processor and allow I/0 operations on a channel
to overlap with processing and with operations on other I/0 channels.

PIOCS:
. ® schedules 1/0 requests to maintain optimum 1/0 throughput without burdening the
problem program;

® initiates |/0 operations;

® tests for error or other exceptional conditions pertinent to the actual physical transfer of
data; and

® activates error recovery procedures in the event of peripheral device errors.

Problem program interface to the IOCS is provided at two levels: data management (logical /0
control system) and PIOCS macro instructions.

Data management routines substantially reduce programming effort, especially for jobs
requiring a great amount of 1/0 processing. The routines, by handling the foregoing 1/0
functions for the programmer automatically, enable you to concentrate on the logical record,
because the applicable PIOCS macro instructions are contained in the data management
macro routines and you need only limited knowledge of the peripheral device. The data
management macro instructions are described in the data management user guide, UP-8068
(current version).

The use of the PIOCS macro instructions may be advantageous for certain programs, which,
because of unique 1/0 devices, need to control the actual handling of the data to be read or
written. To use PIOCS macro instructions, you must have an in-depth knowledge of the

‘ particular peripheral device and its control requirements. At the PIOCS level, the problem
program is responsible for performing functions such as:

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

4-2
PAGE

\

\

® constructing the actual |/O commands processed by the device as well as constructing the
control blocks used by PIOCS for issuing the 1/0 order;

8 ensuring the desired sequence of | /O commands by the proper use of | /O synchronization
macro instructions;

® blocking/deblocking logical records;

m alternating |/0 buffer areas;

m detecting wrong-length records;

n handling end-of-file (EOF) or end-of-volume (EOV) conditions;

B processing labels;

® translating ASCIi data to EBCDIC on input, or EBCDIC data to ASCIl on output; and

® handling unique error conditions.

4.2. PHYSICAL I/0 CONTROL

4.2.1. General

Detailed tabular information pertaining to each request must be supplied if the problem
program is to communicate effectively with the IOCS facilities of the resident supervisor
through the PIOCS macro instructions.

The following PIOCS macro instructions are available for establishing the tabular information
and for requesting services of the supervisor and the IOCS:

m Table generation macro instructions (declarative)

BCW
Constructs a buffer control word (BCW), which is used by the integrated |/0 channels
and multiplexer channel.

CcCw
Constructs a channel command word (CCW), which is used by the selector 1/0
channel and the physical device.

CcCB
Constructs a command control block (CCB), which is used as a bidirectional
communications medium between the problem program and the |IOCS routines inthe
supervisor.

PIOCB
Constructs a physical input/output control block (PIOCB), which is used as a buffer
for file control blocks (FCB) containing file and device information that is compiled by
job control at the time the job control stream is processed.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

A 4-3

UPDATE LEVEL

PAGE

Service request macro instructions (imperative)

RDFCB

Reads a file control block (FCB), which completes the PIOCB with information
compiled at job execution time by job control. (The RDFCB macro instruction mustbe
executed prior to any $ervice for an associated PIOCB.)

EXCP

Requests execution of a channel program. The EXCP macro instruction initiates the
PIOCS routine. Before this instruction can be executed, you must construct an 1/0
control packet that consists of a CCB, a CCW or a BCW, and a PIOCB.

The relationship of the basic PIOCS macro instructions is illustrated in Figure 4—1.

RDOFCB PIOCB-name—

EXCP CCB-name

Command Control
Block (CCB)

/1ove I

i

Device Assignment
Via Job Control

$YSRUN

Physical /0
Control Block (PIOCB)

!
|
I
I
i

FCB

— PUB-reference

0}
¢

by1

BCW/CCW-reference

P1OCB-reference

1)
i

I
G

Buffer Control
Words (BCW) or
Channel Command
Words (CCW)

Physical Unit
Block (PUB)

command-code

data-reference

— device-1D

options

data-length

Data Area

at u“"\ e
e

Figure 4—1.

Relationship of Basic PIOCS Macro Instructions

a-4
PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

4.2.2. General I/0 Usage Requirements

The users of 1/0 facilities are required to perform certain prerequisites for | /O communication.
These include:

® Description of the file to the operating system through:DVC, LBL, or LFD statements.

® Description of the file to the data management system through file description tables and
file control routines.

Description of the file to the operating system is through job control statements which describe
the device to be used, the volume which contains the file, and the logical name assigned to the
file.

Description of the file to the data management system includes the option of linking to a
standard data management file control module, using a resident module, or assembling and/or
linking a special tailored module with the user program.

The file description table must be included with the user program.

The macro instructions used in the |/0 system are best described at the levels at which they are
employed.

] User level macro instructions

The execution of imperative macros (EXCP, RDFCB, SWAP)results in control being passed
to the appropriate control routine within the operating system. You specify the name of the
file, which is the name that was assigned to the file control block by an entry in the label
field of the PIOCB macro instruction.

Example:
RDFCB MASTER
EXCP FILEIN
WAIT FILEIN
FILEIN CCB

MASTER PIOCB

The PIOCB declarative macro instruction reserves an area which is the repository of the file
control block. The name assigned to the PIOCB must be a duplicate of the character string inthe
LFD job control statement.

4-5
PAGE

A
UPDATE LEVEL

UP-NUMBER

8075 Rev. 3 l SPERRY UNIVAC Operating System/3

. = Data management level macro instructions

Execution of the imperative /0 macro instructions results in the data management file
control routine reducing your macro to a new level of imperative macro instructions. These
include the RDFCB (read file control block), the EXCP (execute channel program), and the
WAIT (wait for channel program completion) macro instructions.

The primary parameter to the EXCP and WAIT macro instructions is the CCB. The CCB
macro provides the ability to specify a particular command to a particular device.

4.2.3. Generate Buffer Control Word (BCW)
Function:

The BCW macro instruction generates a buffer control word which provides the hardware
parameter interface to the integrated disk adapter, integrated peripheral channel,
multipiexer channel, and the integrated line adapters for use by the PIOCS routines. Also,
the BCW macro instruction provides you with a limited device-independent interface
across selector channel devices. In this case, the PIOCS routines construct a CCW chain
by using the information provided in the BCW. The formats of the BCW are shown in
Figures 4—2, 4—3, and 4—4.

‘ Note that the BCW of formatting commands sent to the 8411 and 8414 disk
subsystems must specify a single record.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:
LABEL A OPERATION A OPERAND
symbol BCw device-cmd-code[,data-addr] [,data-flag]
[data-byte-count] [,repl-addr] [repl-flag]
[,repl-byte-count] [,control-flag]
Label:
symbol
Specifies the symbolic address of the buffer control word. This name is used to refer
to the BCW.

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
. device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, 16 bytes containing O’s are reserved for the BCW, and the assembly listing
will contain an error note.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 nl

UP-NUMBER

UPDATE LEVEL | PAGE

Positional Parameter 2:

data-addr
Specifies the symbolic address of the data being transferred. This is the active
buffer for the system console and the integrated line adapters. For the
read/punch, it is the address of the punch output buffer. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address field in the BCW is set to O’s, and the assembly listing will
contain an error note.

Positional Parameter 3:
data-flag
Specifies the flag byte associated with the address of the active buffer. This is
written in the form X‘xx’ as follows:

For the integrated disk adapter:

X'40° Indicates a search operation is to be performed on an entire
cylinder rather than a track.

X'80’ Indicates no data to be transferred.

For the integrated peripheral channel:

X'20 Indicates no data to be transferred. (This entry can also be used
for the multiplexer channel.)

X80’ Indicates a replacement operation is to be performed. If this
entry is used, positional parameters 5, 6, and 7 are also
required.

If omitted, X'00’ is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the BCW.

Positional Parameter 4:

data-byte-count

Specifies the number of bytes to be transferred or the number of sectors to be
transferred for a sectored IDA device.

If omitted, zero is assumed. For a search on the integrated disk adapter, this indicates
the maximum number of bytes or sectors are to be transferred; and for a read or a
write, this indicates no data is to be transferred. For the integrated peripheral
channel, this indicates the maximum number of bytes are to be transferred.

NOTE:

Positional parameters 5, 6, 7, and 8 apply only to the integrated peripheral channel.

A 4-15

PAGE

UP-NUMBER UPDATE LEVEL

8075 Rev. 3 | SPERRY UNIVAC Operating System/3

. Explanations:

1. Read one 80-column card in EBCDIC mode.

2. Read/punch 80-column card in EBCDIC mode. Punch buffer isIOAREA1; read buffer
is IOAREA2.

3. Print 132 positions and advance one line.
4. Read one sector on 8416/18 disk.
NOTE:

The cylinder half word (BCW name+12), the head address byte (BCW name+10), and the
record (sector) number byte (BCW name+14) can be set statically by use of the ORG
assembler control directive, or dynamically via instruction execution.

4.2.4. Generate Channel Command Word (CCW)
Function:

The CCW macro instruction generates a channel command word which provides the

hardware parameter interface to the selector channels for use by the PIOCS routines. The -
. format of the CCW is shown in Figure 4—5. The format of the CAW, which contains the

first CCW address, is shown in Figure 4—6.

The supervisor can only handle command chains on selector devices through two
levels of transfer in channel (TIC) within command chain. This limitation is due to the
lack of hardware address relocation on CCWs and the need to have a software
function perform the absolutizing and relativizing of CCW addresses.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:
LABEL AOPERATION A OPERAND
symbol ccw [device-cmd-code] [,data-addr] [,flag]
[,data-byte-count]
Label:
symbol

Specifies the symbolic address of the channel command word. This name is used
. to refer to the CCW.

8075 Rev. 3
UP-NUMBER

4—-16
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, eight bytes containing O’s are reserved for the CCW, and the assembly
listing will contain an error note.

data address
command code (Next CCW address if
TIC command)
31
byte count
63
Bits Allocation Function
07 Command code Specifies operation to be performed by device
and channel
8-12 Unassigned; must be set to zero
13-31 Data address Address of location in main storage into or from

which first byte of data is transferred

32 Unassigned; must be set to zero

33 cc (chain command flag) When valid ending device status received, new
CCW fetched and operation specified by new
command code initiated

34 sli {(suppress length indication flag) 1f set to 1, incorrect length condition not
indicated to program; if cc = 1 also, command
chaining not suppressed

35—47 Unassigned; must be set to zero
48-63 Byte count Byte count required for all data transfer
operations
LEGEND:

System-supplied data
D Data supplied by the user via the macro instruction that directs the supervisor to generate the control
block

Figure 4—5. Channel Command Word (CCW) Format for Selector Channel

4-19
PAGE

8075 Rev. 3 l SPERRY UNIVAC Operating System/3 1 A

UP-NUMBER UPDATE LEVEL

‘ Label:

symbol
Specifies the symbolic address of the command control block. This name is used to
refer to the CCB.

Positional Parameter 1:

PIOCB-name
Specifies the symbolic address of an associated physical input/output control block
generated by the PIOCB macro instruction. (The address furnished will be modified by
this macro instruction to be the address of the PUB address within the PIOCB.)

Positional Parameter 2:

BCW-name
Specifies the symbolic address of a BCW.

CCW-name

Specifies the symbolic.address of a CCW, or a list of CCWs if command chaining is
used.

When you use data management macro instructions, the BCWs and CCWs are generated
‘ automatically. When using PIOCS macro instructions, you must specify each BCW and
CCW according to the 1/0 functions desired.

Positional Parameter 3:

PUB-entry-number
May be O, 2, 4, 6, 8, 10, 12, or 14 indicating one of eight 2-byte fields in the PIOCB
containing the absolute address of the PUB for the device involved in the 1/0
operation. (Zero indicates the first entry, 2 the second, 4 the third, etc.)

If omitted, zero is assumed (indicating the first PUB address).

A 4-20°

UPDATE LEVEL

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

PAGE

Positional Parameter 4:

error-option
Specifies error acceptance options elected at assembly time. This is written in the
form X'xx" as follows:

X‘00’ Indicates that no error conditions are acceptable to the problem
program.

X01’ Block number area is reserved in buffer.

X'02’ Reserved for system use.

X04' Reserved for system use.

X'08’ Indicates system access CCB. Device independence can be achieved
by furnishing a BCW for an integrated peripheral.

X110’ Indicates a diagnostic request. Reserved for system use.

X220’ Indicates that, following the normal error recovery attempts by the

supervisor, those errors classified as unique are acceptable to the
problem program. See note 1.

X'40 Indicates that all unrecoverable error conditions are acceptable to the
problem program following the normal error recovery attempts by the
supervisor. See note 2.

X80’ Indicates user has own error code. No recovery will be attempted by
the supervisor, and device status and sense are communicated to the
user in the CCB.

NOTES:

1. Accept Unique Errors (byte 3, bit 2). Unique errors may be considered as
recoverable errors. The meaning of unique errors is different for different
devices.

For a disk, unique error means record not found. Your program may expect that
certain records you are looking for in a file may not be there. An example of this is
an update-add program. If the record is found, it is updated, if it is not found, itis
added to the file. In this case, you should set the accept unique errors bit (byte 3,
- bit 2) in the CCB. If you receive a no record found condition (byte 2, bit 3}, PIOCS
will retry the error twice. If the record is still not found and the CCB is markedto
accept unique errors, no error message is displayed on the console and control is
returned to your program with the no record found bit set in the CCB.

For tape, unique error means a tape that is busy rewinding. If you issue an
EXCP to a magnetic tape which is rewinding, the CCB will be returned with
the unique error bit (byte 2, bit 2) set. This occurs whether or not accept
unique errors is set in the CCB. The EXCP should be reexecuted until the
status does not occur. At that time, the EXCP is considered completed.

. 4-21
. A
8075 Rev. 3 I SPERRY UNIVAC Operating System/3 UPDATE LEVEL] PAGE

UP-NUMBER

For printers, unique error means character mismatch. This means that there
is no match between a code in the load code buffer (LCB) and a character in
the print line buffer. When you generate the LCB for your printer, you may
choose whether or not to report character mismatches. If you choose not to
report character mismatches, they will be ignored and no console error
message will be displayed. If the LCB is generated so that character
mismatches are to be reported and a character mismatch occurs, an error
message will be displayed on the console. If the accept unique errors bit is
set in the CCB, the options on the error message will be R (retry) or |
(ignore).

If the operator responds 1, control will be returned to your program with the
unique error bit set in the CCB. If the accept unique errors bit is not set, the
options on the error message will be R (retry) or C (cancel).

There are no unique errors for readers and punches. Note that, except for tape, if
a unique error occurs and the CCB Is not marked to accept unique errors, PIOCS
will treat the unique error as an unrecoverable error.

2. Accept Unrecoverable Errors (byte 3, bit 1). If you set this bit in the CCB and
an unrecoverable error occurs, the console message will appear with the R
(retry) and U (accept unrecoverable) options. If the operator responds R, the
command will be retried. If the operator responds U, control will be returned
inline following the command, and the unrecoverable error bit (byte 2, bit 1)
will be set in the CCB. If you do not set the accept unrecoverable bit in the
CCB and an unrecoverable error occurs, the console message will appear
with the R (retry) and the C (cancel) options. After successive retries, if the
error still is unrecoverable, the operator may choose to respond C and the
Jjob will be cancelled.

If omitted, the entry X'00’ is assumed, indicating that no error conditions are
acceptable to the problem program.

The CCB is used to communicate with the functional I0CS routines executing the 1/0
operations. The generated CCB forms the logical connection between the PIOCB and the CCW
or the BCW. The PIOCB references the actual peripheral device and the CCW or the BCW
defines and controls the function of the particular device and its data transfer. The CCB also
specifies user options pertinent to the 1/0 request in the event of an error, and reflects the
status of the request. When the related 1/0 interrupt occurs, the IOCS also stores status
information pertinent to the interruption in the associated CCB.

Because the CCB serves as a 2-way communications medium between the I0CS and the
problem program, it is used for one active I/0 request at a time; therefore, every active 1/0
request must have a unique CCB.

-

4-22°
PAGE

A
UPDATE LEVEL

UP-NUMBER

8075 Rev. 3 I SPERRY UNIVAC Operating System/3

Byte 0 1 2 3
0 control byte 1 1/0 error count transmission byte control byte 2
4 TCB address®
or next CCW address
1
g CCB link | address®
llor residual CCW byte count
12 CCW address
16 PIOCB pointer (PUB address)
20 sense byte O sense byte 1 sense byte 2 sense byte 3
24 sense byte 4 sense byte b device status channel status
NOTES:

@ During the 1/0 command execution, bytes 4—7 contain the address of the TCB associated with this CCB. At I/0
> command termination, PIOCS inserts the address of the next CCW in the chain.

During 1/0 command execution, bytes 8—11 contain the address of the next CCB in the chain at this job level. At1/0
L @ command termination, PIOCS inserts the number of bytes remaining in the CCW byte count {when the |/O command

terminated) into bytes 10 and 11.

Figure 4—7. Command Control Block (CCB) Format (Part 1 of 2}

4-29
A
UPDATE LEVEL

UP-NUMBER PAGE

8075 Rev. 3 I SPERRY UNIVAC Operating System/3

The EXCP macro instruction communicates directly with the I/0 scheduler for the purpose of
submitting 1/0 requests to the system. Before the EXCP macro instruction is executed, you
must construct an 1/0 packet consisting of the following:

® Use a CCB macro instruction to define the CCB.

m Use a PIOCB macro instruction to define the physical I/0 control block.

® Use one or more CCW macro instructions or a BCW to construct the channel program.

8 Use an RDFCB macro instruction to identify the 1/0 device and to obtain file information
specified by job control.

Linkage between these components is as follows:

= The EXCP macro instruction passes the address of the CCB to the PIOCS routines.

® The address of a 2-byte field in a physical 1/0 control block is stored in the CCB. This field
contains the address of the PUB for the peripheral device concerned.

® The address of the first CCW or BCW is stored in the CCB.
I ® Each CCW or BCW contains the address of an input/output data area.

Whenever an EXCP macro instruction is executed, the |/0 request counter in the task control
block of the requester is incremented and a status indicator in the CCB is set to signify that the
order is outstanding. Control is returned to the calling program immediately by the supervisor
with the degree of completion of this |/0 order uncertain. You must use the WAIT or WAITM
macro instruction for synchronization with this 1/0.

An EXCP issued to a magnetic tape which is rewinding will result in the posting of the
CCB with unique error status. The EXCP should be reexecuted until the status does not
occur. At that time the EXCP is considered completed.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 e

UP-NUMBER PAGE

UPDATE LEVEL

4.3. INPUT/OUTPUT SYNCHRONIZATION

Macros are available that provide the means by which a task can await the completion of one or
more outstanding 1/0 operations. Specifically the task can await one, several, or all
outstanding 1/0s; however, the 1/0 being waited for must have been requested by the task
doing the waiting.

Tasks are waited by setting a unique wait bit within that task control block (TCB). These wait bits
signal the switcher that this task is nondispatchable and indicate the reason for the wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.
Two macro instructions are available for 1/0 synchronization:
s WAIT

Wait for one or all I/0 requests to complete.
= WAITM

Wait for one of several 1/0 requests to complete.
These macro instructions can also be used (with different parameters) to synchronize a task
with the execution of other tasks. For /0 synchronization, the macro instruction references a

CCB; and for task synchronization, the macro instruction references an event control block.
Task synchronization is described in 7.4.

It must be remembered when you use these macro instructions that only the task having
executed an 1/0 request can await its completion; and when you await a task, it is not valid to
await the executing task.

8075 Rev. 3 l SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

PAGE

4-35

4.4.2. Tape Restrictions

The 3-byte block number fields are added to standard labels on block numbered tapes. The
three bytes precede the label identifier (VOL1, HDR1, etc.) making the label 83 bytes long.
This is true for tapes written in ASCIl as well as EBCDIC. Note that in the case of ASCII
tapes, the 83-byte label is nonstandard. It can be used for internal processing, but cannot
be used for information interchange. Block number processing will be exactly the same for
both EBCDIC and ASCII tape files. Tape label formats for block numbered EBCDIC tapes
are shown in Figures 6—17 through 6—21.

Block numbers will be volume dependent and file independent. Files on a volume and
volumes in a multivolume file must be all numbered or all unnumbered, not mixed.

Block number processing is available for magnetic tapes on selector or multiplexer
channels. These may be 9-track tapes, or 7-track odd parity tapes operating in data
conversion mode. Block size of 7-track tapes operating in data conversion mode must be a
multiple of 3.

4.4.3. Input/Output Buffer

When processing block numbered tapes you must reserve a 4-byte storage area
immediately preceding your input/output area for supervisor processing of the block
number. This 4-byte block number area, and the input/output area, must be aligned on a
full-word boundary. Do not include these four bytes in either the location or the block size
of the input/output area.

Block numbers will be checked when reading in either direction. When reading backward,
you must be sure your input/output area is large enough to hold the entire block of data.
If the data is truncated on a backward read, the block number will be lost and incorrect
positioning of the tape may result.

4.4.4. Processing

A number of software components are affected by block number processing; these include
system generation, tape preparation, job control, automatic volume recognition, PIOCS, data
management, and system access technique (SAT) on tape files. Several control tables in main
storage are also affected, including the systems information block (SIB), the device PUB trailer,
and the CCB. These tables contain fields that are updated and bits that are set, tested, and
cleared to reflect user options and processing events.

PIOCS will perform block number processing for data management, tape SAT, and EXCP-level
PIOCS users. A general description of required and optional parameters and processing
performed is contained on the following pages. Details pertinent to PIOCS users are contained
in 4.4.5. Details of the requirement for tape SAT are contained in 6.5 to 6.10 of this manual. For
data management details, refer to the data management user guide, UP-8068 (current
version).

4

4

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

A 4-36
PAGE

The supervisor must be configured to process block numbered tapes, in which case, the
generated supervisor can process both numbered and unnumbered tapes. A bit in the SIB
is set to indicate that the supervisor supports block numbering. If the supervisor does not
have the block numbering capability, only unnumbered tapes can be processed; otherwise,
misalignment and possible truncation of data will result because of the block number field.

To use the block numbering capability of the supervisor, you must also reserve a 4-byte storage
area, aligned on a full-word boundary, immediately preceding the input/output area. if you are
a data management user, you indicate that you have reserved this 4-byte area by using the
BKNO=YES parameter in the DTFMT macro instruction. If you are a tape SAT user, you do this
=» by using the BKNO=YES parameter in the TCA macro instruction. If you are a PlOCS user atthe

EXCP level, you must also indicate that you have reserved the 4-byte area by setting abitinthe
CCB (4.4.5).

You have the option not to use block number processing even though the supervisor has
the capability and you have indicated there is a block number field preceding the
input/output area. If you enter N as the first parameter in the VOL job control statement,

block numbers will not be written on output tapes and will be ignored if present on input
tapes.

Automatic volume recognition will read and store volume serial numbers and will set
appropriate bits in the PUB trailer to indicate whether or not it is processing standard
labeled tapes and block numbered tapes.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors), control is returned to the user program. If there is
- a discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward
the number of blocks implied by the discrepancy. If the correct block is found, control is returned
to the user. If the correct block cannot be found, the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

When processing control macros, block number processing will not be performed, because
no data transfer is involved. However, for commands involving snngle blocks (FSB, BSB),
the block number count will be updated.

On block numbered tapes, CCW chains with more than one tape movement command and

multiblock BCW commands can be processed only through the first tape movement
command.

4.4.5. PIOCS Requirements and Options

PIOCS users at the EXCP level have an additional requirement. Before issuing any EXCP macro
instruction for a block numbered tape, you must set byte 3, bit 7, in the CCB. This indicates that

the 4-byte block number field preceding the input/output buffer has been reserved. If this bitis
not set, the job will be cancelled.

4-37
PAGE

A
UPDATE LEVEL

8075 Rev. 3 I SPERRY UNIVAC Operating System/3

UP-NUMBER

. You can request that block numbering be ignored on input tapes by setting byte O, bit 3, in
the CCB before issuing an EXCP. In this case, block numbered tapes will be read, but the
block numbers will not be verified. You must set this bit each time you want to ignore

block number processing on a read.

Another option available at the PIOCS level is to accept unrecoverable errors. You can do this by
setting byte 3, bit 1, inthe CCB. Youdon't have toreset this bit for each EXCP; it need only be set
once and stays set.

On aread, if PIOCS detects a variance between the expected block number and the actual block
number and is unable to resolve this variance after 10 retries, a console message is issued. If
byte 3, bit 1 (accept unrecoverable errors) is set, the console message gives the operator
opportunity to request a retry or accept the error. If retry is requested but is still unsuccessful,
the operator will again be asked to request a retry or accept the error. If he accepts the error (or if
he first requests retry and it is still unsuccessful), PIOCS sets byte 2, bit 1 (unrecoverable error).
PIOCS then sets byte 2, bit O, to indicate that CCB processing is complete and returns control to

your program. On input, you should test byte 2, bit 5, after the WAIT is executed to ensure that
the correct block has been processed.

If byte 3, bit 1 (accept unrecoverable errors) was not set, the operator has the option only
to request a retry or cancel. If retry is requested but is still unsuccessful, the operator will
again be asked to request a retry or cancel.

' On a write, if byte 3, bit 1, is set and the tape cannot be positioned correctly, a console
message gives the operator the opportunity to accept the error or cancel. If this bit is not
set, he must cancel.

) 6-7
8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL | PAGE
‘ Without Interlace With Interlace
Physical Block No. 1 2 3 4 65 7 8 9 10 1 2 3 4 5 7 8 9 10

Logical Block No. [1]2]3]4]5]6]718L9[1ﬂ L1le]4|ﬂ2[|'s]10]3]s]

Revolution
No.

| [[+

Logical Blocks
Read or Written E]
During Each 5

Disk Revolution
: [e]

10

Figure 6—4. Interlace Accessing

Successful interlace operation requires that the |/0 orders must be issued within a
specific time frame. The lace factor, therefore, determines how blocks are to be spaced on
the track to ensure that the actual time frame (which includes both user and SAT
overhead) is equal to or greater than your estimate of required time between block
accesses.

A lace factor of 4 means that the blocks will be spaced in sufficient intervals (every 4th
block) to produce an actual time frame that is equal to or greater than the estimated
required time frame.

To calculate the lace factor, use the formula described in 6.2.5.2. Although the formula is
based on the use of the 8416 disk subsystem, all lace factor calculations must be
performed by using this formula, regardiess of the actual disk subsystem being used.
When the file is opened by the OPEN macro instruction, the specified lace factor will be
applied to the performance of the particular disk subsystem being accessed. If necessary,
SAT will adjust the lace factor to the capacity and speed of the specific device so that a

similar time frame will be maintained for interlaced files processed on all supported disk
subsystems.

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

}

}

6.2.5.2. Lace Factor Calculation
The lace factor is calculated in two steps by using the following formula:

1. %Zﬁ x .636 = Calculated Sector Time

Required Time Frame
Calculated Sector Time

+ 1 (rounded high) = Lace Factor

For example, if you are using a block size of 1024 bytes, first calculate the sector time in
milliseconds:

1024 _
256 x.635=2.14 ms

Then calculate the lace factor using an estimate of the processing time required between
block accesses. For this example, let us use a required time frame estimate of 7.48 ms:

N
N
s
o]

=3.49 + 1 = 4.49 rounded to 4

.I D
—
f-9

The result is a lace factor of 4. In the PCA macro instruction statement for this partition,
enter the keyword parameter LACE=4.

NOTE:

When the time frame exceeds 21.4 ms, it should be divided by 21.4 and the remainder
should be used as the time frame in the foregoing calculation.

6.2.6. Accessing Multiple Blocks

When you are engaged in sequential processing (SEQ=YES specified in PCA macro
instruction), you can read or write more than one block with each SAT imperative macro
instruction that is issued. This is done by specifying the number of blocks you wish to access
together by using the LBLK keyword parameter of the PCA macro instruction. However, when
you use multiple buffer accessing, be certain that your |/0 buffer area has enough contiguous
space to contain the blocks. Also, if you are creating the partition by using the format write
option, (FORMAT=NO), an additional 8-byte area, used to construct the count field, must
immediately precede the first buffer area. During input operations, fewer than the requested
number of blocks may be read if the end of data ID is encountered. The 1/0 count field (bytes 44
and 45) of the DTF (Figure 6—5) will contain the number of buffers not acted upon.

Normally, SAT makes a single reference to PIOCS for the number of blocks requested. If an end-
of-track condition is enccuntered for any block other than the last block of the request, SAT
makes an additional reference to PIOCS to access the next track. For interlaced files, SAT
makes one reference to PIOCS for each block requested. If an end-of-block condition is
encountered on the last, or only, block requested, an information bit will be set in the error
status field (byte 50, bit O, of the DTF)to indicate the last block on that track has been accessed.

The LBLK keyword parameter specifies the number of blocks required, within arange from 1 to
255; however, the total size of the buffer cannot exceed 32,767 bytes.

6-8
PAGE

. . A 6-25
8075 Rev. 3 l SPERRY UNIVAC Operating System/3 UPDATE LEVEL [PAGE

UP-NUMBER

. Format:

LABEL A OPERATION A ! OPERAND

{ filename-1[,...,filename-n] }

[symbol] CLOSE (1)

*ALL

Positional Parameter 1:

filename-1
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file to be closed.

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

*ALL
Specifies that all files currently open in the job step are to be closed.

Positional Parameter n:

filename-n

. Successive entries specify the symbolic addresses of the DTFPF macro
instructions in the program corresponding to the additional files to be closed.

6.5. SAT FOR TAPE FILES

The OS/3 tape system access technique (TSAT) is a generalized input/output control system
that provides a standard interface to PIOCS for magnetic tape subsystems. It performs the basic
functions of a tape data management system and provides block level |/0 for sequential tape
files.

Interface with TSAT files is through declarative and imperative macro instructions. You
use the SAT and TCA declarative macro instructions to define the characteristics of the file
and the data management technique to be used to process the file. The SAT macro
instruction creates the DTF table for the file, and the TCA macro instruction creates the
appendage to the table. These macro instructions are described in 6.8. You use the OPEN,
GET, PUT, CNTRL, WAITF, and CLOSE imperative macro instructions to control file
processing. These are described in 6.9.

All files processed by TSAT are written in a forward direction, and can be read forward
and backward. The CNTRL macro instruction initiates nondata operations on the device
and can be issued whether or not the file is open.

To use TSAT, you must observe tape label conventions (described in 6.6) and tape volume
. and file organization conventions (described in 6.7).

If you are processing block numbered tapes, you must also observe the special
conventions applicable to these tapes. Requirements and processing for block numbered
tapes are summarized in 6.10.

6—26
UPDATE LEVEL | PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

6.6. SYSTEM STANDARD TAPE LABELS

Magnetic tapes may be labeled or unlabeled, and a labeled tape may contain either
standard or nonstandard labels. You indicate this using the FILABL parameter in the TCA
macro instruction. TSAT assumes that tapes have standard labels. If nonstandard labels
exist on input files, TSAT bypasses them.

All standard tape labels are in blocks of 80 bytes and are always recorded at the same
density as the data. The first three bytes of each label identify the type, and fourth byte
indicates its position within the group. For example, VOL1 indicates this is the first volume
label for this file.

For block numbered tapes, each label includes a 3-byte block number field as the first
three bytes of the label, making the label 83 bytes long.

There are five tape label groups; three are required and two are optional. The tape label

groups are:
® Volume label group VOL
B File header label group HDR

B User header label group (optional) UHL

®m File trailer label group EOF or EQV
= User trailer label group (optional) UTL

TSAT does not process user header (UHL) or user trailer (UTL) labels. No provision is made
for creating these labels on output files; if they exist on input files, TSAT bypasses them.

TSAT label processing is limited to one volume label (VOL1), two file header labels (HDR1
and HDR2), and two file trailer labels (EOF1 and EOF2 or EOV1 and EOV2). No provision is
made for creating additional labels on output files; if they exist on input files, TSAT
bypasses them.

Tape label formats for block numbered files are shown in Figures 6—17 through 6—21.
Tape label formats for files without block numbers are shown in Figures 6—6 through
6—10 and are described on the following pages.

. . 655
::jfuﬁl::;-e :; | SPERRY UNIVAC Operating System/3 ronre Lever | pace
. Positional Parameter 1:
filename
Specifies the symbolic address of the corresponding SAT macro instruction in the
program,

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

cOdels a mnemonic 3-character code specifying the tape unit function to be
performed:
BSF Backspace to tape mark*
BSR Backspace to interrecord gap*
ERG Erase gap (writes blank tape)
FSF Forward space to tape mark*
. FSR Forward space to interrecord gap*

REW Rewind tape
RUN Rewind tape with interlock (unloads tape)

WTM Write tape mark

6.9.6. Close a Tape File (CLOSE)

Function:
The CLOSE macro instruction performs the required termination operations for a file;
for example, construction of the EOF label group. Once the CLOSE macro instruction
has been issued for a file, only the OPEN macro instruction may reference that file.

Format:

LABEL A OPERATION A | OPERAND

[symbol] CLOSE {filename-1 [,... filename-n] }

. (1

*Applies only to input files.

6—-56
PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

A
UPDATE LEVEL

Positional Parameter 1:

filename-1

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be closed.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n

Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be closed.

6.10. BLOCK NUMBER PROCESSING

TSAT can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and, therefore, incorrect tape

processing. This is especially helpful for error recovery on read and write commands and
for restarting at a checkpoint.

=» Processing of block numbered tapes for TSAT files will be executed by PIOCS. The general
requirements and processing are the same as detailed for PIOCS in 4.4.1 to 4.4.4. Some of
these are noted here for convenience.

® When the block numbering capability is being used, all blocks on tape except tape marks
will include a 3-byte block number field as the first three bytes of the block. This 24-bit
block number field is composed of a 4-bit tape mark counter and a 20-bit block number
- counter. PIOCS uses both of these counters when reading and writing block numbered
tapes. The format of the tape block number field is shown in Figure 4—9.

® The first block on tape that is not a tape mark will contain a block count of 1 plus the
number of tape marks preceding it.

® Block numbers are incremented sequentially by 1. All label, data, and checkpoint
blocks are counted and numbered. Tape marks are counted, but no number is written,

® For both EBCDIC and ASCII tapes, the 3-byte block number field is added to a
standard label immediately preceding the label identifier (VOL1, HDR1, etc.), making
the label 83 bytes long. The 83-byte ASCH label is nonstandard for information
interchange. Tape label formats for block numbered EBCDIC tapes are shown in
Figures 6—17 through 6-—21.

® Block number processing will be exactly the same for both EBCDIC and ASCIl tape
files.

® Block numbers will be volume dependent and file independent. If a volume contains
more than one file, the block count is continued from the preceding file on the volume
and the blocks are consecutively numbered to the end of the tape.

8075 Rev. 3 H System 3 A 6-—57
A | SPERRY UNIVAC Operating Sy / vronte Lever | pace
.] Files on a volume and volumes in a multivolume file must be all numbered or all

unnumbered, not mixed.

m The 7-track odd parity tapes operating in convert mode may be block numbered if the
block size is a multiple of 3.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors) control is returned to the user program. If there is a
discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward
the number of blocks implied by the discrepancy. If the correct block is found, control is returned
to the user. If the correct block cannot be found, the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

6.10.1. Facilities Required for Block Number Processing

To process block numbered tape files, three conditions (called preliminary conditions) are
required:

1. So that the generated supervisor can process both numbered and unnumbered tapes,
you must operate with a supervisor configured to process block numbered tapes.

You must reserve a full-word aligned, 4-byte storage area immediately preceding your
input/output area for supervisor processing of the block number. Do not include these
four bytes as part of either the address or the length specifications (IOAREA and
BLKSIZE keyword parameters of the TCA declarative macro instruction).

3. You must indicate to TSAT that you have reserved the 4-byte block number area by
specifying BKNO=YES in the TCA macro instruction (6.8.2).

If these three preliminary conditions exist, you may then control block number processing
through either job control (JCL) or automatic volume recognition (AVR). This permits you to
leave the 4-byte storage area and the BKNO parameter in your program even though you
may at times be processing unnumbered tapes.

6.10.2. Specifications for Block Number Processing

Several factors determine when and how block number processing is employed. If a tape
is not at load point when the file is opened, the file will be handled according to the
specifications existing when the tape was opened at load point. Therefore, you cannot
have both numbered and unnumbered files on the same volume.

If a tape is at load point when it is opened, processing will proceed as described on the
following pages.

. The various methods of tape file processing can be divided into two categories: processing
with tape initialization, and processing without tape initialization. These will be referred to
simply as initialized or noninitialized processing.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

6-58
UPDATE LEVEL PAGE

6.10.2.1. Initialized Processing

Initialized processing includes:

® TPREP utility routine processing, described in the system service programs user
guide, UP-8062 (current version);

® processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction) and PREP specified in the VOL job control statement; or

B processing input or output files with nonstandard labels (FILABL=NSTD) or no labels
(FILABL=NO specified in the TCA macro instruction).

For initialized processing, you control the presence or absence and the processing of block
numbers by the first parameter of the VOL job control statement as follows:

You Specify Preliminary Conditions Result

Nothing All present Block number processing
Some missing No block number processing

N Ignored No block number processing

6.10.2.2. Noninitialized Processing

Noninitialized processing includes:

® processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction), but without PREP specified in the VOL job control statement; or

B processing input files with standard labels (FILABL=STD specified in the TCA macro

instruction).

For noninitialized processing, TSAT ignores the first parameter of the VOL job control
statement. Instead, the specification is obtained from the tape content (which was
detected by AVR), as follows:

Tape Content

Preliminary Conditions

Result

Block numbers

All present

Block number processing

Some missing

No block number processing

No block numbers

ignored

No block number processing

For processing of multivolume files, you must ensure that all volumes have (or do not
have) block numbers. You cannot mix numbered and unnumbered volumes within a file.

8-7
PAGE

A
UPDATE LEVEL

8075 Rev. 3 l SPERRY UNIVAC Operating System/3

UP-NUMBER

. Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

8.2.7. Load a Program Phase and Relocate (LOADR)

Function:

The LOADR macro instruction locates a program phase in a load library on disc, loads
it into main storage, and transfers control to the calling program immediately
following the LOADR macro instruction.

After execution of this macro instruction, register O contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry-point
address. This entry point address is determined at linkage edit time. If an alternate

. load address is provided (positional parameter 2), the load point address specified to
the linkage editor is overridden and the phase is loaded at the specified address. This
new override address is returned in register O.

The format and operation of the macro instruction is identical to the LOAD macro
instruction except that all address constants in the phase are relocated if an alternate
load address is specified (positional parameter 2).

This macro instruction is used to load a phase at an address other than that at which
it was linked.

Format:
LABEL AOPERATION A l OPERAND
[symbol] LOADR { phase-name {Ioad-addr}][{error-addr]
(1) }[(0) A () HiriLoal <

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1-
. to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

(1)
Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register O has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage
editor. :

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that is to be executed if a load

error occurs.

(r)

Specifies that the designated register (other than O or 1) contains the address of
the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

This option is designed to reduce the search time for separately linked load
modules which are loaded repeatedly. When using this option, you must ensure
that there is no possibility of another job deleting or moving the load module you
are trying to load. For example, if another job uses the librarian to pack the
library, this may cause a load error in your job. If you can be sure this doesn’t
happen, you may be able to reduce considerably the load time for some modules,
particularly in large libraries.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

s8-8

Figure 8—7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses (Part 2 of 2)

In this example, the SETIME macro instruction (line 6) requests a timer interrupt in 25
seconds so that a time limit of 25 seconds can be placed on the computation (lines 8 to 16)
that follows. The STXIT macro instruction (line 4) attaches the interval timer island code
routine (lines 27 to 29) to the task. The routine sets a flag when the time interval expires.
The STXIT macro instruction is used again (lines 18 and 21) to detach the island code
routine. The EXIT macro instruction (line 29) returns control from the island code routine to
the interrupted task. Line 18 is the normal exit from the compute loop, which occurs if
computation is completed before the timer elapses. Lines 20 and 25 are the error routine
which is executed if the time elapses before the computation is completed. Line 31 defines
the save area needed when the interrupt occurs.

8.6.8. Operator Communication

Your operator communication island code routine receives control when the operator enters an
unsolicited message at the system console or workstation. He does this by typing the job
number and a zero, followed by the message text. For additional details of the operating
procedure at the system console or workstation, refer to the appropriate operations handbook
for your system.

You can use the WTLD and OPR macro instructions to communicate with the operator. In these
cases, your program displays a message on the system console or workstation and requests a
reply. However, the use of operator communication island code routines permits the operator to
enter a message for the attention of your program at any time during the execution of a job step
without being prompted by your program. He could enter one of several predefined messages to
acknowledge an event or a condition external to your program, for example, an infrequent
request for statistics at the end of a particular job step.

The island code routine gains control at the entry point specified in the STXIT macro instruction
that linked the island code routine to the job step. At this time, register O contains the length
(including the character under the cursor) of the message entered by the operator. Register 1
contains either a zero, indicating that the operator communication was initiated at the console,
or a negative sign, indicating that the operator communication was initiated at the workstation.
(Register 1 would not contain an ECB address because operator communication island code
routines always execute under the primary task TCB.)

8075 Rev. 3 I SPERRY UNIVAC Operating System/3 A I 8-49
UP-NUMBER UPDATE LEVEL | PAGE
LABEL AOPERATIONA OPERAND A COMMENTS
10 16 72

Qb e oL IERROR TF COMPUTATION NOT, DOME BEFORE TIME ELAPSES 1]
DITENLONG, | BA | A ST ST S IV EETIIE SN E A AN I R ISR RIS
Vil I LT T!l]klll|lllllA‘L#mgﬂ;mggfmug,AlA,LJ.;LLfLJAl,JlJJ,Lll]
Q'lllllll Laa L E@LQ; EEBQE_MEQISA) GE_SI;AAEIQ U S AT R A S U DU I B
230 l i [T B GRS AR EEUTETSEN § ERTN S AT T ATV SRR SN EE TR DR ST R |
24-A||IIJ_L LI . L‘LlllillllijjllAIAAlt‘evrovmﬁw‘rsnllIAALAIAlJ,J,llllJlA,l,ll,,Jk
S IR LS I SR S UR TN Wl A S U RS S T L. SR S I G S S S SN SRS ST B U S G S AN AU SRS S U S U S
Zbi-LA_LJ_L Pl B I O L 1.4 2 J,l_EILMEJRl AELALHLDL_CDD_EAL—J IAQILIMALTJE:DJ MH@M mLME. }ELAPSIESI !
21LCANDCOD B [P s L e s b s da o b aaaba s ba bl
< . FALAﬁE}Y‘TxE.,meEEUAEn L BET ELAG foaaa bt baoea b caead s L)
= i IR O B (=) % O B 0 70 VR B A S S S UV E S U VU S AT o RS SRS IR SRR
oMk ot gl] WORK AREAS i Ll L
MCIAVE | N8F 1. REGIATER SAVE, AREA, REQUIRED: . 1. 4 |
32‘:11-1%3 Ll ‘JQQ,lLLLJJ,l,LJ_J_i_LLJ_LJ_MLTMﬁEIm,L_L,L,L,l [T S I B U E i
BTIMEFLAG] BOU | KO0 ey BIT 20 WHEN TIME ELAPSES oo Loaas L

8-50
UPDATE LEVEL PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

To exit from operator communication island code, use the EXIT macro instruction to return
to the interrupted task.

If the operator attempts to enter an unsolicited message for a job step for which there is no
operator communication island code routine, or the island code routine has been detached,
the message is rejected.

Figure 8—8 is an example of the use of the STXIT and EXIT macro instructions for operator
communication island code routine using symbolic addresses. The general operation is
similar to that described for program check (8.6.5). However, you will note that, in addition
to the entry point and save area, the STXIT macro instruction also specifies a message area
and message length.

Following the format, the STXIT macro instruction in line 21 specifies that it is attaching an
operator communication island code routine (OC). The island code routine’s entry point is
SYSCON, the save area address is OC1, and the message from the system console is stored
in a reserved 60-byte area whose address is OPRMSG.

LABEL AOPERATIONA 1 OPERAND A
i FERENE B L ST 3:,:RHI RS EATENS VST AT I U (TN S WU HVUN S MO N S R M
: IR S B O [RPENEEN SRS U ST N U S RN AU SR
i AT °l o4 gy vy b v by by g by Iy
I AT B *lai S B B SR S N [T S
2% I B S h acL.ISYwmQB&msgbm Lol
N SR A *la 1y v b v by v s b g by e b 1y
B ITET A ol B B oo by b v e b v by e b g g
: TR Ll TR VA SN S WU N SR S N A N S T S SO AR I WU S SO M A A
TS.SX@CDIMI R) KS;QP@M%.ﬁa “n ' B BT BT S ST O AN NS G Y N B
B ITE N B l BRI TN B AR ST AN NS N SR S SN S AN S S A
B SR ol SR PR B | Lp}‘séaf‘d.c?dﬁmd\’m? IR
"l by *l sy PN TR S TS S N WA SO N ST U T N S U (O S SO B I
Al eI e L
LN oA PRI I 10 SN B 1V <N N S N B B o
ql-wﬁu %41 5114|;1|IIL111111|1L1111|1L111L

Figure 8—8. Example of Operator Communication Island Code Linkage Using Symbolic Addresses

9-23
PAGE

8075 Rev. 3 | SPERRY UNIVAC Operating System/3 L A

UP-NUMBER PDATE LEVEL

. 9.3.1. How to Call the Monitor Routine

There are two ways to call the monitor routine into main storage. Which one you use
depends on whether you want to trace instructions from the beginning of the job or wait
until after the job begins executing.

Whenever you use the monitor routine, keep this in mind: it occupies 3K bytes of main
storage. If you specify the minimum main storage as a parameter of the JOB control
statement, make sure you do not overestimate the storage size needed by your job,
because it is possible that there might not be enough main storage available for the
monitor when you combine your job needs plus the 3K bytes needed by the monitor.

Another point to remember: the monitor routine cannot be run in a strict spooling
environment, because the job being monitored always requires the sole use of a printer.
You can accomplish this through the addr parameter of the DVC job control statement
which, in effect, dedicates a printer strictly to this job. It's coded immediately following the
logical unit number (separated by a comma). Every device has a hardware address number
associated with it. Your site manager can provide you with the number you need. (In most
cases, however, this number can be physically found on the device itself, generally on
some type of label.) This number is then coded in the device assignment set for the print
file in your job.

Assume the printer you want to dedicate has a hardware address number of 170. Using

. 20 as the logical unit number, the DVC job control statement would be:
1 10 20 30 40 50
/l/l :DIVLI JZOI?“ l-’iol § G (N I S T | J | S S W T T N | I R TS OO R S S N J_l L4 1 1 ¢ 1 J_L
U VS SO T T T WY S AN TN N U T U U T SN S VO NS A SN N NN U WO S S U N S N N0 WY N0 A WY ST S U NN NS AU W B

It is also recommended that the job be run as the first job immediately after the system is
intialized (initial program load) to ensure that the job is scheduled; otherwise, you might
have to wait for the job to be scheduled, depending on the work load.

9.3.1.1'. Monitoring From the Beginning of the Job

If you want to begin monitoring with the first instruction executed, you must call the
monitor routine into main storage before the job to be monitored is run. In this case, the
monitor input is entered as embedded data in the control stream.

The system operator types MO at the system console, which brings the monitor routine into
main storage. The monitor initializes itself and awaits activation.

9-24 "
PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

If you want to use the monitor beginning with the first instruction of the program, you
must enter the monitor statements as embedded data in the job control stream. The job
step that contains the program to be monitored must include an OPTION job control
statement with the TRACE parameter specified. This parameter activates the monitor
routine by setting the monitor bit in the PSW and creates a link between this job step and
the monitor statements. If the OPTION job control statement is not present in the proper
job step (the one with the monitor statements— — the one you want to trace), it will not
activate the monitor routine because an OPTION job control statement is effective only in
the job step in which it is encountered. As soon as the program begins executing,
monitoring begins, and it continues until the program completes or until the monitor is
deactivated by meeting the conditions that accompany a Q action (9.3.5.3).

The control stream you submit when you want to monitor from the beginning of the job
would look something like this:

1 10 20 30 40 50
Wwhndme
I. |4/ JTdR IKI’IIILIIIIJLIIII}JLIIILIllllllllllllll T
) I N O T | l.l 1 1 J_l | 1 1t 1 i | 1l 1 11 ¢ 1 i 1 l 1 1 1) 1 1) I —) N W N S i l J
| Y U U R . Y VOO N TS O W U A N SN T TN WS U YOO A TN U S VOO U A S0 N S Y NS S O WA IO O
AU ALY AN A B B YN S YT VO T G TN S T OO W T S G Y S T W N T U WA S0 WY A O T A
evu aesl rnfn+ee4$
1 d “ ?n A4 1 N N O T | 1) S IR U T WS Y N T | I j (U A T D S S N A 1 | S VS N W W N N B | I l
and any a“‘lef neceosary
2 U G D G G N N G l N WS (N S WO IS U N W Y l 1t J U N | l) T U U D B T 1 l b N N O I S N N B § LJ
: Job comvol stotements
U R RN TN U0 T Y0 VA DA SN T S T T S MY O IO WO O PR T N U U RN S T N A N Y S T O S S S0 A U

TR S T SN TS T S T U S0 WA SN S N SN U0 U0 N R A Y O

PN S R N . U TN U U T 0 VAN SO S S S S AN OO

[U WO T R T T S KT G T N TS A WU O U B OO0 B O
3. 1// OPTTON OTRACE 1 1
4‘- /i EXEC ;Prlo?rfr?—lnlan:cl T BN

_A$1A11|1|1111|||1|111|1|

monitor \nput ~expldined
5, Y WU S Y VO N T O W | 141 | Y W T N N W W | I J I

i
1111quQI~13|~12-1||1|1|11111

11
-
N
-
L1
11
1 |
1
i1
Al
J*Illlllll_llllllllllllll_lllllllllllllllllllllllllll
1t
i1
1
Al
i i
1 1
11

operdnds

b-[liElA!QﬁMIlJlllllllLllll

/l*lgllJlJlgxllllLlllllll
ay data cavds

‘1- JlJ_llllAllJlllllllLllll

neaedm‘mprvgr;m

Ll AT S U B

(. S B A AR B

8.§/811llllllllllllLllJllIl
JBRIN b

’ 9-27
; A
Ui‘_’;im’ég | SPERRY UNIVAC Operating System/3 POATE LeveL l noc
. The explanation for each job control statement is the same as for the corresponding job

control statement in 9.3.1.1. Notice the absence of an OPTION job control statement and
the monitor statements, and the presence of the ALTER job control statement.

After the monitor statements have been read, the operator must issue the GO command,
using the same job name as that on the JOB control statement. This resumes program
execution under monitor control.

The second method for suspending the executing program is the use of an OPR macro
instruction with a REPLY parameter (10.3.2). By placing it in a location near the area you
want to monitor, you can use the halt when the program is suspended and the message it
generates to instruct the operator to activate the monitor. Once again, the operator must
have the monitor statements ready in the card reader (no /$ or /*). He then enters 00 MO
R, to activate the monitor. After the monitor statements have been read, he enters the
reply you requested with the OPR macro instruction to resume processing under monitor
control. The monitor input is exactly the same as when using the first method. That is, no
/$ or /* enclose it, and an OPTION TRACE job control statement is not submitted in the
control stream. (And, in this case, no ALTER job control statement is submitted.)

The third method is to instruct the operator to type in the PAUSE command at some specific
place in the program execution. This could be after a certain time limit has expired, or when a
certain milestone is reached, such as the end of an input tape file. The operator places the
monitor statements in the card reader and, when the system halts, types 00 MO R to activate
. the monitor routine. After the monitor statements are read, he finally types GO and the job
name from the JOB control statement to resume program execution under monitor control.
When activating the monitor in this way, the *P=phase-name entry cannot be used to specify
the type of task to be monitored. Use either the *U=jobname or *S=symbiont-name entryin the
monitor input deck. These entries to the monitor input format are described in 9.3.3.

There might be a situation when there is no card reader available to read in the monitor
statement (or no keypunch readily available to prepare the monitor statements). If this is
the case, the operator can type in 00 MO C at the system console. The C indicates to the
system that the monitor statements are going to be input via the console, not via a card
reader. (This applies to entering the monitor statements during all three methods of
suspending program execution.) In this way the operator can enter the task, options, and
actions at the console. He enters one card at a time, a line on the screen corresponding to
a card in the monitor statement input, and indicates the end of each card by pressing the
TRANSMIT key. After all monitor statements are sent, he enters the GO command
followed by the job name.

9.3.2. Monitor Input Format

The monitor statements define what to monitor (task), when to monitor (option), and what
to do when you monitor (action). This applies to monitor statements submitted via the
control stream as embedded data before the job begins, and to the monitor statements
used by the operator after program execution was begun. (Remember, the /$ and /* job

control statements are only needed when the monitor statements are submitted as
. embedded data.)

8075 Rev. 3 SPERRY UNIVAC Operating System/3 9-28"

UP-NUMBER lUPDATELEVEL

PAGE

For the program you want to monitor, only one task can be specified. It must be coded as
the first monitor statement of the input, and no options or actions can share this card with
the task. These tasks are explained in 9.3.3. For the task, however, you can specify up to
156 different options. (Each option must be on its own card; no two options can be present
on the same card.) Each option can specify as many actions as will fit on a single card. A
space must be used to separate the option from the first action on the card, and each
succeeding action is separated from the previous action by a semicolon (;).

So, if you want to specify one option and one action, it would be coded as:

1 10 20 30 40 50

gﬂd‘_ﬂ_@nalcr"liﬁlnllllllllll}lJllllI11!11111111114u1111

If you wanted three different options, each with two actions, it would be coded as:

&Px'h-l on-~l dedibn-l x’;ﬂnCl‘h‘l on=-2Z vl v s e v gl
é71!)1""1] JOLnl"IZI A dion - 1:;aGH'|‘l on-2 5ol e e g
LPﬂ'LLd)lf\l‘ngl gic it o=l .‘.,..agri-fl oy, (st Y /RN WA TN N USRS N VR0 N R S T A N SN N S S ST N WY S O

The last card used in the monitor input stream is a $ card. (Do not confuse this with the
/$ job control statement, which indicates start of data.)

So, the order of a monitor input stream is:

® the task statement;

8 the first option statement with its actions;

® any other option statements and their actions; and

m the $ card.

The options are described in 9.3.4, and the actions are defined in 9.3.5.

Figure 9—1 shows the format of the monitor statements.

. A 9--29
8075 Rev. 3 stem/3
UP-NUMeBVER I SPERRY UNIVAC Operatmg Sy UPDATE LEVEL | PAGE
- task {
First
Monitor *U=jobname
Statement *P:phase.name
*S=symbiont-name
. *T=transient-number
' . TA L first I succeeding i
! option 14} action b actions
(PR:xv) DAR [n{—Rn]]]]
S { (B/D:bddd) DAR [n[-Rni]
Succsedi (ABS: xv) (PR:xv)
Momior DAS [Lnn] < (B/D:bddd) (PR:xv)
Statements A(PR:xv) [Rnn] {(ABS: xv) DAS[Lnn] < (B/D:bddd)
A ; (ABS:xv
I(xmed) Hcece
Hcec
R(n) Q
Q
NOTES:
1. If no option is specified, the monitor routine assumes a default option (9.3.4.5) and default display (9.3.5.1.3).
2. If no action is specified, the monitor routine produces a default display (9.3.5.1.3). Also, remember that the first
action is separated from the option by a blank space, and any succeeding actions are separated from the previous
action by a semicolon.
Figure 9—1. Monitor Input Format
9.3.3. Defining What You Want to Monitor

The task you want to monitor can be one of four types:

—

o w

Your entire program
A certain phase of your program

A symbiont, which is a system utility routine

A transient, which is an 0S/3 routine that is nonresident and is called into a

transient area when needed.

9-30°
8075 Rev. 3 SPERRY UNIVAC Operating System/3 ’

UP-NUMBER

UPDATE LEVEL | PAGE

In this format:

*U=jobname
*P=phase-name
*S—=symbiont-name
*T=transient-number

you can see that each type has its own specification, and each type is preceded by an
asterisk.

If you want to monitor all the phases of your program, use the *U=jobname entry. The
jobname is the same as the jobname parameter on the JOB control statement.
(Remember, if you have the operator enter the monitor statements after the program has
started, you can limit monitoring to a part of the job step; otherwise, the job step is
monitored from the beginning.)

For example, if the JOB control statement is:

1 i0 20 30 40 50

L S8 POCOD 0o v s b s v v s Ly gl

the monitor task statement would be:

!*lUl’IP&CQAJIIIlJlIll|llllll|llllIlllllllll [T T W A S N A

Since a program can consist of more than one phase, it can be useful to use the specific
phase name with the *P=phase-name entry. (A program can also have more than one
phase.) If you want to monitor a phase, you have to know its name. The names of the
phases used in a program are listed on the allocation map provided by the linkage editor.
(Remember, operator input can limit the monitor to a portion of a phase.)

If the phase name you want is this:

oo ALLOCATINN MAP se

LOAD MODULE = LNKLOD SIiE = onooosee

FHASE NAME TRANS ADDK FLAG LABEL TYPE tSID LNK ORg H1ADDR LeNGTH 0bJ ORG

LNKLODOU NODe = ROOCT OLLLBUUY 00UJOLCR LogOUSCC

e F AUTO=INCLUDED ELEMENTS -

- 75/10/04% 05459 = PR [OE oBJ

PHSIDE CSECT 01 uuuvuuUuy DOUJUYAF 0000V 4u0 aoouonun
DPECONMT ENTRY [} VUVOUGUY ogagooun
DPICOMU ENTRY 01 uoLouLvo 00000000
DPSCOMI ENTRY o1 0uu00Buy 00008v00
LDPSCOMs ENTRY g1 oouagouy 00uuno0n
OPSCOMZ ENTRY al aouoooue gvonoaaon
DPSCOMS ENTRY a1 00000VuY 00ugnooun
DPSCOMY ENTRY ol 00u0000Y ocoovooy

DP3COM] ENTRY 01 LU IR Qugoo0un

8075 Rev. 3
UP-NUMBER

9-35

UPDATE LEVEL | PAGE

SPERRY UNIVAC Operating System/3 l A

For example, if you want the monitor routine to take action when the program reaches an
instruction that references storage at absolute address 34AE, you would code:

1 10 20 30 40 50

SI(IAMI:I3I51AIE)IIlllll¢41llLlllJllLlll!llllllIlllllllll

9.3.4.2. Instruction Location Option (A)

This option requests the monitor routine to take action when the specified instruction
location is reached. Just as with the storage reference option, it uses the program relative
address. However, you can also add a range to continue this monitor action for a specific
number of bytes. It has only one format:

A(ER:xv) [Rnn]

The xv is the 1- to 6-hexadecimal-character program relative address (0, to FFFFFF,g). If
the program reaches an instruction at this location (program relative), monitor action
begins. You can also continue monitor action for this option for a length of up to 255 bytes
by specifying a range (Rnn). The allowable values for this range field are 02,4 to FF,.

For example, if you coded either:

!A(I-PIRI:ICIOIZI)jlllIllllllllILIlLJljllxlllllllllllllllljl

or

!Al(fpleclolzl)nllllllllnl111111111|||111114111L1|1||11|1[

the monitor takes action for this option if the instruction at program relative address is
reached.

If you coded (notice the convenient form P instead of PR):

!AI(TP|:|CO|Z|)TRDIE1111L1111111;1111111111.11111]|1|1x1111|

monitor action begins when the instruction at program relative address CO2 is reached,
and continues for 14 bytes (OE). This means the monitor action is to continue until
program relative address C10 is reached. Note that you must use two hexadecimal
characters for the range even when it can be expressed in one. In the last example, if the
leading O of OE was omitted, and it was coded as this:

!AA(TPGnCO:Zl)TRlEllllnllllJl111111«111||||11|1111|11||L111

monitoring would continue for 224 bytes to program relative address CE2.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 9-36

UP-NUMBER UPDATE LEVEL | PAGE

9.3.4.3. Instruction Sequence Option ()
This option requests the monitor routine to take action when the exact instruction
sequence specified is reached. The monitor routine compares the machine code specified
in the option entry to the actual instruction sequence of each instruction to be executed in
the program being monitored, and takes action when an exact match occurs. The format
for the instruction sequence option is:

I(xmed)
The xmcd stands for hexadecimal machine code. It may consist of from 2 to 64
hexadecimal characters (1 to 32 bytes). This is the value you want compared to the actual
machine code being processed.
There are three different types of machine code sequences you can select:
® A single instruction
® Just the operation code of an instruction

® A string of instructions

For example, if you want monitor action to start when a supervisor call instruction for
supervisor routine 31 occurs (SVC 31 in machine code = OA1F), code it as:

1 10 20 30 40 50

MI‘IFI)IIIILIIILLALIIIIIllllLJlLllllIlllllllllllllll

If you want monitor action whenever any branch on condition instruction is reached
(hexadecimal code = 47), you would code:

!L(Ml)llllllIIIJLJ_Lnllgllenlj_lll1|||1|1|1111|1111111

But if you want monitor action to occur whenever the following sequence of instructions
occur (even though we are showing a series of inline expansion codes):

LuCe ORULCT CULE ADDKR) ADDRZ LINE SNURCF STATEMLNT
nuUuLo 1 PHOG START 0
nuuouo (Ssu 2 BEGIN nALR &,.U
nuUuLYV2 3 USING &,6
NUULU2Z 47F0 601U tour 2 4 BRANCH o *+l6
OUULDSE C1C2CACH404u4NYy 5 ve CLs*ARCL"
QUJUUF €5C6CTCA 6 714 CLYTEFGH?®
QUUN12 4310 61U voInY 7 LA IeLlsT
8 SNaP (1)
00uL28 LA26 A 1He Sv(e 3R ESSUL Swi
NOUUZA [207 &UFc 6u04 UNULY OULDNA 19 L2314 BUF (8} oRANCH*Y
20 Taey ruy ouy
oUIU30 A 21+TAG3 [+ UY(U0} SET ALIGNMENT
00uo3n[s8T 8116 COLLA & 22+ L 1o=A(0UT) LOAD ni%, FTLENAME ADORESS
NUIL341922: 1034 RLIYYY A 23« Mv 49011 ,x%20°* SET FUNCTIUN CODE
oLLO3B AL 103y S 17102 L I Y 4 L 15,52(,1) LOAD ADOR UF COMMUN 170
0VVA3IC{O5LF A 25« BALR 19,16 LINK TU CuMMON
26 TaGy CLOSE oul
0ULOJ3E A 27¢TAGy 714 0Y(u)
O0UDIE SB)IU btle OUlLIB A 28+ L Ls®A(nUT} LOAD w18, FILENAML ADDRESS

NLUOYZ DA2Z7 A 29 SV 39 1SSUE Sv(

A 9-43
8075 Rev. 3 :
UP-NUMBER SPERRY UNIVAC Operating System/3 UPDATE LEVEL | PAGE
. For example, assume that the following option statement was the only input to the

monitor routine (and the task statement):

1 10 20 30 40 50

61(I’BL/I’DI:J|4;BIZIQI)4LJ_LLL114l]lLllllllllLlllllllillllllllll

When the program reaches an instruction that references an address using base register 4
and a displacement of B29, a default display is given.

Remember, you can also get a default by omitting the option statement (9.3.4.5.). The only
difference between the default display caused by omitting the option and the default
display caused by omitting the action is that the omission of the option means that the
option causing the display is not printed.

9.3.6.2. Halt Action (H)
This action, like the other actions, prints out items 1, 2, 3, and 4 (detailed in 9.3.5.1.1). It
then prints a halt message on the system console and suspends program execution until a
reply from the console operator allows execution to continue.

. The halt message sent to the system console has the following format:

HALT ccc. TYPE-IN GO jobname TO RESUME

Program execution is then suspended until the operator issues the GO command followed
by the job name (same as that on the JOB control statement). You can then provide the
operator with special instructions about what to do before entering the GO command,
such as taking a main storage dump. After he completes these special instructions, and
enters the GO command, the instruction causing the halt is executed, and program
processing continues under monitor control.

The format for the halt action is:
Hccce

The ccc is a 3-character EBCDIC code that you specify to identify the halt, and corresponds
to the cce in the halt message displayed to the operator.

For example, assume that your JOB control statement has a job name of TWESTMON, and
uses the following monitor statement:

!AL(TPRL:JJBA:L)1|H1‘DMI‘P111111141L1x|1|||111111111i11|111|¢1!

9-44
PAGE

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

When the program reaches the instruction at program relative address 1B4, the monitor
routine prints out the program information and displays the following message on the
system console:

HALT DMP TYPE-IN GO TWESTMON TO RESUME

You would instruct the operator to take your desired action when he sees this message. In
this case, assume it is a dump. After issuing the DUMP command (and a dump of main
storage is given), the operator would then type:

GO TWESTMON

to reactivate the interrupted job. The instruction at program relative address 1B4 is then
executed, and program processing continues under monitor control.

9.3.5.3. Quit Action (Q)

The quit action (Q) prints out items 1 through 4 and nothing else. The instruction causing
the printout is then executed, and program processing continues without any further
monitor intervention (pertaining to the option to which this action applies).

This action is useful when you want to monitor a problem area in the beginning of your
program, and then exit from the monitor routine without tracing all the remaining
instructions in the program (thus not wasting execution time).

The format for the quit action is:
Q

For example, if you coded:

1 10 20 30 40 50

AI(I‘PR}ZIF;‘gl)I‘QlllKIILIl‘ll}lllllJLJllllllllll[llllLLlll

the monitor routine would print out the program information when program execution
reaches the instruction at program relative address F18. This instruction is then executed,
and program processing continues without monitor intervention.

When the quit action is not used as one of the actions for an option, monitor processing
continues until the end of the job step.

Table 9—2 summarizes the program information that is displayed by each action.

8075 Rev. 3
UP-NUMBER

|

SPERRY UNIVAC Operating System/3

9-45
PAGE

UPDATE LEVEL

Table 9—2. Summary of Actions and Program Information Printed

Program Information Printed

Action
‘;‘s‘f':y SD:“’""; Default | Halt | Quit
egister orag Disol H a
{D R) (DS) ispay H) a

Job name*

TCB address*

Program base address*

PSW contents

Next instruction to execute
Option causing this printout
Contents of specified registers
Contents of specified storage
Contents of changed registers

Contents of referenced storage

HALT message

X

X

*These items are included for only the first option

9.3.6. Cancel of Monitor

that causes a printout.

If the monitor routine is terminated abnormally, either by a CANCEL command or by a
program exception within the monitor routine, all programs requesting the monitor routine
will continue normal program processing without any type of monitor intervention. The
monitor routine itself will dump and leave the system. A CANCEL command shouid not be
issued while transcent monitoring is in progress.

9.4. SYSTEM DEBUGGING AIDS

Several debugging aids are built into the 0OS/3 supervisor to aid in solving system
problems which cannot be identified through a normal SYSDUMP. These aids are useful
only with some knowledge of the internal supervisor structure and are therefore not
intended for general use. This section is provided for informational purposes only.

Table 9-3 summarizes the debugging aids described on the following pages.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

A
UPDATE LEVEL

Table 9—3. Summary of System Debugging Aids (Part 1 of 2)

Function

Use

Console Command

Results

Pseudo monitor*

To identify the routine changing

SET HA,PM,address

HPR code 99130202 (Press

a particular byte [.job-name] RUN to continue.)
Resident monitor* To identify the instruction SET HA,RM,address HPR code 99130404 (Press
changing a particular byte [.job-name] RUN to continue.)

Mini monitor

To identify the instruction
changing a particular byte

MM value,address,
RTUE

HPR code 991200 (Press
RUN to continue.)

Verify bytes O-B*

To identify the routine destroying
low-order storage

Included in supervisor
debug option

HPR code 99130303 (Press
RUN to continue.)

History tables*

To provide some recent history in
SYSDUMPs

Included in supervisor
debug option

Continuous updating of
resident tables

Halt on transient load

To halt if and when a particular
transient is loaded

SET HA,TL hex-id

HPR code 990COC (Press
RUN to continue.)

Halt on transient call*

To halt if and when a particular
transient is called

SET HA,TC hex-id

HPR code 990COD (Press
RUN to continue.)

Halt on transient exit*

To halt if and when a particular
transient exists

SET HA,TE hex-id

HPR code 990COE (Press
RUN to continue.)

Halt on shared code
call*

To halt if and when certain (or
all) shared code modules are
called.

-~

SE HA,SC| .{module-Y]
name
L_{ prefix.

991D01 (Press RUN to
continue.)

Halt on shared code
return*

To halt if and when certain (or
all} shared code modules
return.

— -
.{module-
name
prefix.
L

SE HA,SR

991D02 (Press RUN to
continue.)

Halt on shared code
return with error*

To halt if and when certain (or
all) shared code modules
return with error.

- _
,[(module-
name
prefix.

SE HA,SE

991D03 (Press RUN to
continue.)

f Halt on symbiont load

To halt if and when a particular
symbiont (or symbiont phase) is
loaded

SET HA,SY.idnn

HPR code 997C (Press RUN
to continue.)

Pause on shared code

To pause a task if and when

SE PA,SC [fmodule-)]

SE25 console message (Enter

call* certain (or all} shared code hame ‘C’ to continue.)

modules are called. | \Prefix.] |
Pause on shared code | To pause a task if and when SE PA,SR [,{module- -1 SE25 console message (Enter
return* certain (or all) shared code name ‘C’ to continue.)

modules return. | prefix. i

Pause on shared code
return with error*

To pause a task if and when
certain (or all) shared code
modules return with error.

name

SE PA,SE F{module-]"

prefix.

SE25 console message (Enter
‘C’ to continue.)

* *Supervisor debug option required at IPL

PAGE

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

A 947
UPDATE LEVEL | PAGE

Table 9—3. Summary of System Debugging Aids (Part 2 of 2)

Function Use Console Command Results
PIOCS debug option To identify checksum errors or SET DE.IO HPR code 990F
internal PIOCS problems
Transient debug option | To halt on transient errors (100-1FF)| SET DE,TR HPR code 99080800
Loader debug option To halt on loader errors {52-5F) SET DE,LD HPR code 991500 (Press
RUN to continue.)
Shared code To halt on errors detected SET DE,SC HPR 990809 on shared code
debug option during the execution of errors (Press RUN to take a
shared code. SYSDUMP and to continue.)
HPR 99130A when dynamic
buffer pool links are
destroyed.
Dynamic buffer To halt on dynamic SET DE,DB HPR code 99130D
debug option* buffer overflow
Screen format To take a snapshot dump SET DE,INO Writes snapshot dump
coordinator of all input and output to job log
input/output buffer blocks when using
debug option the screen format coordinator
Screen format To take a snapshot dump SET DE,FS Writes snapshot dump
coordinator of the format block; the to job log or system
format/input/output input buffer (on input printer
debug option operations); the output
buffer (on output opera-
tions) blocks; and, if
errors occur, the screen
format coordinator blocks
Reset pause options Resets all SE PA commands SE PA,OFF None
Reset halts Resets all SE HA commands SE HA,OFF None
Reset debug options Resets all SE DE commands SE DE,OFF None

*Supervisor Debug option required at IPL.

8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

9-48

9.4.1. Supervisor Debug Option

The

supervisor debug option is set at initial program load (IPL) time by entering D as the

final character (following the comma) of the initial IPL message. This is described in the
operations handbook. Use of this D option causes the supervisor being loaded to be

L
The
o =
* n
| |
n
| |

expanded in size to support the supervisor debug option.

following functions are provided:

A normal halt (HPR code 99130101) between IPL and supervisor initialization. This
allows changes to be made to the supervisor (via the maintenance panel) prior to
loading the supervisor initialization load module. Normally, however, you should
simply press the RUN switch on the maintenance panel to continue.

A pseudo monitor to detect when any byte within the supervisor has been changed.
When activated this function checks the byte on every interrupt and on every pass
through the switcher. When the byte is changed, the supervisor halts (HPR code
99130202) without restoring the original contents of the byte. If you want to
continue, press RUN. The new value becomes the original value and the supervisor
halts if the byte is changed again.

The console command to activate the pseudo monitor is:
SET HA,PM,address[,job-name]}

where address is the address of the byte to be monitored either absolute (no job-
name specified) or relative to the preamble of a currently active job if you specify one
with job-name. After the pseudo monitor is activated you use this same command to
change the address of the byte being monitored.

Verification of low-order main storage (locations O-B) on every interrupt and every
pass through the switcher. When changed, the supervisor saves the incorrect setting,
restores the correct setting and halts (99130303). Although you may continue past
this HPR by pressing RUN, you should take a SYSDUMP here to determine why these
bytes are being altered.

A resident supervisor monitor to detect when any byte in main storage has been
changed. When activated, this function checks the byte upon executing every
instruction in supervisor critical code (interrupt processing), transients, symbionts, and
job control. The only code not monitored is code being executed under a key other
than O (i.e., user jobs). Monitoring user jobs is unnecessary because the hardware key
protection feature of the processor prevents user jobs from destroying any part of the
supervisor.

When the specified byte is changed, the resident monitor halts (99130404) without
restoring the original contents. The double word at location 80 contains the PSW at
the time the byte was changed. if you want to continue, simply press RUN. The new
value becomes the original value and the supervisor will halt if the byte is changed
again.

9—567
UPDATE LEVEL } PAGE

8075 Rev. 3 l SPERRY UNIVAC Operating System/3

UP-NUMBER

9.4.6. Shared Code Halts and Pauses

SET console commands are available to interrupt or halt processing when shared code
modules are called or when they return. These commands allow the operator to request
an interrupt or halt on the call or return for;

® a specific module
m a3 specific group of modules which have a common prefix; or
& all modules.

The format of these commands is:

" {:2}'[2ﬁ}['{:;;£”'}]

SE

The first and second parameters form individual commands which are discussed in the
following paragraphs. The third parameter determines what modules these commands
affect. You specify an individual module by its full name, a module group by its prefix
followed immediately by a period, or all modules by omitting the parameter completely. For
example, the command SE HA,SC,DM. would cause an HPR upon a call to any module
whose name begins with DM.

You can continue past any HPR resulting from these commands by pressing RUN. The
supervisor debug option is required at IPL time for all of these functions. The individual
commands are:

] Halt on shared code call. The SE HA,SC command causes an HPR of 991D01 when a
module is called.

u Halt on shared code return. The SE HA,SR command causes an HPR of 991D02 when
control returns from a module.

n Halt on shared code return with error. The SE HA,SE command causes an HPR of
991D03 when control returns from a module with an error condition.

® Pause on shared code call. The SE PA,SC command interrupts processing and
displays the following message when a module is called:

SE25 SC PAUSE ON shared-code-name. CONTINUE? (Y, HELP)

This message shows which shared code module has been called. A reply of Y causes
processing to resume. A reply of HELP displays the following information: the job or
symbiont name, the name of the calling module, the TCB address, the base address of
the calling module, and the local store address.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 9-58
UP-NUMBER UPDATE LEVEL | PAGE
® Pause on shared code return. The SE PA,SR command interrupts processing and .

displays the SE25 message when control returns from a module by execution of the
SRETURN macroinstruction. If requested to, this command displays the same shared
code information as SE PA,SC does except that it shows what module is being
returned to rather than what module called the shared code.

® Pause on shared code return with error. The SE PA,SE command interrupts
processing and displays the SE25 message when control returns from a module in
which an error has occurred. If requested to, this command displays the same shared
code information as SE PA,SR does.

9.4.7. Soft-Patch Symbiont (PT)

The PT symbiont is used to temporarily patch transients (transient overlays), load modules, and
shared code modules at the time they are loaded in main storage (soft patch) instead of
permanently patching the disk (hard patch). This is useful if you want to test a patch tosee if itis
effective before hard-patching or if you want to trap a problem by temporarily applying a patch.
To use the PT symbiont, you must have included the supervisor debug option at IPL time.

When initiated, the PT symbiont builds a patch table from input read from cards or keyed in from
the console. The PT symbiont then locks itself into the supervisor so it can scan this table on
every load of a transient, load module, or shared code module. During this scan, if the module
name matches an entry on the patch table, the specified patches are applied. These patches are
temporary. Patches to transients remain in effect until the PT symbiont is cancelled. Load and
shared code modules that are loaded in main storage while the PT symbiont is active remain
patched until reloaded.

The PT symbiont is also used to apply patches to the resident supervisor; however, these
patches remain in effect until you IPL the system again.

9.4.7.1. Soft-Patching Using Card Input

When using card input to soft-patch, you must create the card deck containing the desired
patches. Once prepared, the deck is placed in the system reader prior to initiating the PT

symbiont. The input deck consists of four card types:

1. The first card is provided for compatibility purposes. It is necessary when using the
transient patch (TRNPAT) program, which applies core to transients.

Format:
1 D=R

* The card must have a 1 in column 1, followed by a blank in column 2, and then D=R.

8075 Rev. 3] SPERRY UNIVAC Operating System/3 A [9-59
UP-NUMBER UPDATE LEVEL | PAGE
. 2. The second card defines the type and the id (or name) of the module to be patched. The
form of this card depends upon the module type.
Formats:
2 T=decimal-id (for transients)

2 S=module-name (for shared code modules)

2 L=module-name {(for load modules — the load module can be the resident
supervisor, a symbiont, or a module loaded from a user
library)

2 O=module-name (for resident supervisor modules specifying the csect or
object module name — this format can only be used when
operating in a mixed or CDl mode environment)

In all the formats, a 2 must appear in column 1, followed by a blank in column 2. Each
module to be patched must be defined with one of these cards.

3. The third card defines the patch. Each card contains only one patch, and the patch is
applied only to the module specified in the preceding 2 card.

. Format:

P addr,patch

A P must appear in column 1, followed by a blank in column 2. Starting in column 3, the
hexadecimal address (relative to the start of the transient or module phase to be patched)
is entered. The address must be within the module specified or the card will be ignored.
The address is followed by a comma and then the patch. (The patch is also given in
hexadecimal, and embedded blanks are not permitted.) The patch character string can be
any length, though the entire P entry must fit on one card (or one line of the console, if
using console input).

More than one patch can be made to a module by entering more than one P card. All
patches to be applied to a given module should be specified in successive P cards following
the 2 card that defines the module.

4. The last card signifies the end of the patches. The symbols are entered in columns 1 and 2.

Format:

/*

8075 Rev. 3 . —
AeATiva SPERRY UNIVAC Operating System/3 oroate Lever | pace 0
The following is a sample deck of cards: .

1 D=R Can be eliminated if not using TRNPAT

2 L=MYSAL Defines a load module MYSAL

P 1A,47000000 Defines a patch to be applied to MYSAL

2 T=15639 Defines a transient

P 94.,CO . . .

P 12A 4780F2E49966 } Defines two patches to be applied to the transient

2 S=MYSHRCOD Defines a shared code module MYSHRCOD

P 24,07CO Defines a patch to be applied to MYSHRCOD

2 O=SMS$DEBUG Defines an object module SM$DEBUG

P 27,FF Defines a patch to be applied to SM$DEBUG

/* Indicates the end of the patches

Once the card deck is created and placed in the system reader, initiate the PT symbiont by
keying in the following command from the console:

PT

Once initiated, the PT symbiont accepts the patches on the card deck from the system reader
and applies them to the specified modules as they are loaded.

9.4.7.2. Soft-Patching Using Console Input

Soft-patching can also be accomplished by entering the required input directly from the
keyboard of the system console. When using this method, the PT symbiont must be initiated
before entering any input. To initiate the PT symbiont, key in the following console command:

PTC

Once initiated, the PT symbiont solicits input from the system console. The input you key in is
entered in the same card-image format as that of the four card formats describedin9.4.7.1. The
PT symbiont builds a patch table from your input and applies the patches as the specified
modules are loaded.

There are some optional features available to you when soft-patching directly from the console.
For example, you can key in the following console command to initiate the PT symbiont:

PT[dev-addr] C

This form of the command not only solicits patch input from the console, but it also punches that
input on the device specified. The card deck produced contains the patches that you can reuse
* at some later time.

8075 Rev. 3
UP-NUMBER

A

| SPERRY UNIVAC Operating System/3

UPDATE LEVEL l PAGE

9-61

You can also enter all the information for a single patch as part of the PT command format when
patching from the system console. The following is the format of this option:

T,transient-id

PT) S.shared-code-module-name| ,addr,patch
L.load-module-name
0,object-module-name

Although this form eliminates the need of separate entries for 2 and P type card-image inputs, it
can only be used to make a patch at one location (module address). To patch more than one
location, use one of the other forms of the command, or key in this form one time for each
location to be patched.

Examples:

PT LLMYSAL,1A,47000000
PT T,440,F0,45A0F220
PT S,MYSHRCOD,24,07CO
PT O,.SMSDEBUG,27,FF

NOTE:

The object-module-name entry can only be used in systems with mixed or CDI/ mode
environments.

9.4.7.3. Using the PT Command

Whether you use card input or console input, you can enter the PT symbiont command more
than once and the input is simply added to the end of the patch table. In addition, any
combination of the various forms can be used. For example, you cankey in PT and a patch table
is built from the card input. Later in the same session, you cankey in PT C and enter additional
patches. These additional patches are added to the existing patch table.

9.4.7.4. Cancelling the PT Symbiont

Regardless of how the input is entered, the PT symbiont can be cancelled at any time by keying
in the following console command:

CA PT,S.N

Cancelling the PT symbiont eliminates all the patches entered, except those that changed the
resident supervisor. (These will remain in effect until you perform the IPL again.) Shared code
and load modules that were loaded while the PT symbiont was active will remain patched until
reloaded. Subsequent loads of modules, however, will not be patched.

8075 Rev. 3
UP-NUMBER

A
UPDATE LEVEL I PAGE

J SPERRY UNIVAC Operating System/3

9-62

9.4.7.5. PT Symbiont Error Messages

Error messages are produced by the PT symbiont and appear on the console screen. The
following is a list of the error messages that might occur, the condition that caused the error,
and the corrective action to be taken.

PTO1 TWO 2 IMAGES IN A ROW

Two 2 cards have been entered in a row. This is invalid because a module has been
specified to be patched, but no patches have been entered. The first 2 card is ignored, and
the PT symbiont continues. This could result in incorrectly applied patches. To avoid this,
cancel the PT symbiont, correct the input deck, and begin a new PT symbiont session.

PTO2 INVALID CHARACTER STRING, CHARACTER ON CARD

A non hexadecimal digit (other than 0—9 and A—F) was entered in a field requiring a
hexadecimal digit. This message is also produced if an odd number of characters was
entered for a patch (patches cannot be half bytes in length). Cancel the PT symbiont,
correct the input deck, and begin a new PT symbiont session.

PTO3 PATCH TABLE OVERFLOW — SOME PATCHES LOST

Too many patches have been entered. There is a limited amount of space that can be
allotted to the patch table, and the PT symbiont will stop accepting input when this limitis
exceeded. This could result in a patch table that contains only part of the patches you
intended to apply. To avoid this, cancel the PT symbiont. Limit the number of soft patches
you enter, and begin a new PT symbiont session.

PTO4 INVALID PT — NEEDS SUPV DEBUG OPTION SET AT IPL

The supervisor debug option, which is required if the PT symbiont is used, was not
specified at IPL time. The PT command is ignored, and the symbiont cannot be initiated.
You must IPL the supervisor again, specifying the debug option; then begin a new PT
symbiont session.

PTO5 PUNCH SPECIFIED BUT NO CONSOLE INPUT

The form of the PT command specifying a punch device was used, but the input was not
specified as coming from the console. This will occur if the C following the device address
was not entered. The PT command is ignored under this condition. Reenter the command,
including the final C.

A

9-63
UPDATE LEVEL | PAGE

SPERRY UNIVAC Operating System/3

8075 Rev. 3
UP-NUMBER

. PTO6 csect-name NOT FOUND

The object module or csect name specified on the 2 O= card was not found on the
supervisor currently loaded. The 2 O= card and all the P cards until the next 2 card are
ignored. If an incorrect object module or csect name was entered, you can enter the correct
name later in the session and the input will be added to the patch table.

PTO7 SYSRDR NOT AVAILABLE

The form of the PT command used requires the system reader device, but in this case it is

unavailable. The PT command is ignored. When the system reader becomes available,
reenter the command.

PTO8 INVALID INPUT FORMAT

An error was made in entering the information for a patch on a single line from the
console. The PT command is ignored under this condition. Check to make sure that all
commas are in the right place, and reenter the command.

11-1

UPDATE LEVEL | PAGE

UP-NUMBER

8075 Rev. 3 | SPERRY UNIVAC Operating System/3

11. Other Services

11.1. SPOOLING

11.1.1. General

Spooling is the technique of buffering data files for low speed input and output devices to a
high speed storage device independently of the program that uses the input data or.
generates the output data. Data from card readers or from remote sites is stored on disk
for subsequent use by the intended program. Data output by the program is stored on disk
for subsequent punching or printing. The spooling function also handles diskette files. It
i treats input from diskette as though it were from a card reader, and output to a diskette as
‘ though it were to a card punch. In this description of spooling, any reference to a card
reader, card input, or card file also includes diskette input; any reference to a card punch,
card output, or card file also includes diskette output. The data management user guide,
UP-8068 (current version) shows the formats for diskette records.

Spooling enhances system performance by releasing large production programs and system
software from the constraint of the slower speed devices, thereby freeing the main storage
occupied by these programs sooner; and by driving the slower speed devices at their rated
speed on a continuous basis, thereby making full use of the devices during the time that is
normally lost to systems overhead or to job steps not using printers.

The spooling function comprises five elements: initialization, input reader, spooler, output
writer, and special functions. These elements are described on the following pages. Figure
11—1 gives a simplified picture of the relationship between the slow and high speed
input/output devices and the software components of the spooling function and the
supervisor.

11.1.1.1. Initialization

Spool initialization provides for the establishment, data recovery, or reestablishment of the

spoolfile at supervisor initialization. Based on system generation parameters or operator

specified options at supervisor initialization, it allocates the spoolfile and builds the system

spool control table, or it recovers an existing spoolfile. In the case of an existing spoolfile, it
. clears the file, recovers closed subfiles, or recovers and closes all subfiles.

8075 Rev. 3 SPERRY UNIVAC Operating System/3 A -2

UP-NUMBER UPDATE LEVEL PAGE
ICAM PIOCS ICAM
REMOTE REAL CARD READER REAL DISK REAL PRINTER/PUNCH REMOTE
READER PRINTER/PUNCH
[§ ! |
Y
SPOOLER
VIRTUAL CARD READER VIRTUAL PRINTER/PUNCH
: /
INPUT OUTPUT
READER WRITER
¥ e
JOB CONTROL USER
RUN JoB
REMOTE PROCESSOR REMOTE
BATCH -——- ‘ BATCH
PROCESSOR PROCESSOR

Figure 11—1. Relationship of Spooling Devices and Programs

11.1.1.2. input Reader

Using PIOCS the input reader reads cards from areal card reader or records from a diskette and
writes these images to the spoolfile via a virtual card reader and the spooler. It closes the
previous subfile if one exists and opens a new subfile. A given input reader can handle only one
card reader or diskette at a time; however, any number of input readers can be active.

11.1.1.3. Spooler

The spooler is the hub of the spooling package and is linked as part of the resident supervisor. It
provides record level input and output to and from the spoolfile for each element in the system
needing access to that file. It intercepts all input/output commands to virtual printer, punch,
and card reader devices, and accesses the disc when necessary using the system access
technique (SAT) for accesses to the spoolfile. All input/output requests (EXCP macro
instructions) addressing virtual devices are trapped and routed to the spooler for processing
rather than PIOCS. The spooler supports both reads and writes to virtual devices while
simulating the action of PIOCS as far as error handling, page spacing, and synchronizationare
concerned. It allocates tracks to subfiles and maintains control of the user’s spool control
tables. It can handle any number of print, punch, and read files simultaneously, including .
multiple files per job.

A
UPDATE LEVEL

11-5

8075 Rev. 3 I SPERRY UNIVAC Operating System/3 SAGE

UP-NUMBER

Job control options for spooling are entered using the JOB, SPL, DATA, and DST job control

. statements. These are described in the job control user guide, UP-8065 (current version).
Initialization options are also entered by the system operator. These are described in the
appropriate operations handbook for your system.

There are no changes required to a user program to use spooling. You can define your files
using either data management macro instructions, or PIOCS macro instructions. A job that
runs on a nonspooling system will also run on a spooling system, and vice versa. If you use the
BRKPT macro instruction in your program, it will be ignored if your job is run on a nonspooling
system.

NOTE:

Spooling always permits redirected output to tape. To redirect output to disk, however, you
must include dynamic buffer management either explicitly or using other parameters at
system installation time.

11.1.3. Create a Breakpoint in a Spool Output File (BRKPT)

Function:

The BRKPT macro instruction creates a breakpoint in a printer or punch spoolfile. It
closes and reopens the subfile as it is being generated by the spooler. Each segment

. created at this breakpoint is considered a logical subfile so that output to the physical
device can be started prior to job step termination.

If this macro instruction is included in a program executing in a system that does not
have the spooling capability, the macro instruction is ignored.

Format:

LABEL AOPERATION A I OPERAND

filename
[symbol] BRKPT ﬁ?B-name

Positional Parameter 1:

filename
Specifies the symbolic address of the DTF macro instruction in the program
which defines the file in which a breakpoint is to be created. Use this parameter
if you are using data management macro instructions to define and access the
file.

CCB-name
Specifies the symbolic address of the command control block (CCB) associated with
. the file in which the breakpoint is to be created. Use this parameter if you are using

PIOCS macro instructions to define and access the file. -

(1)
Specifies that register 1 has been loaded with the address of the DTF macro
instruction or CCB associated with the file to be breakpointed.

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

11-6
UPDATE LEVEL | PAGE

11.2. JOB ACCOUNTING

11.2.1. General

The job accounting package consists of resident routines which are linked with the
supervisor and elements of the job step processor at system generation time. These routines
provide a count of the facilities utilized by each job step during its execution within the
system. The message logging facility of the spooling function transfers this data from main
storage to disk as part of the output spoolfile. The output writer prints the job step and job
values as part of the normal message log output for each job. Optionally, the output writer
can write the accounting information to a standard SAM magnetic tape file for offline
processing by user-developed accounting routines or by 0OS/3 data utility routines. You
can assign an account number using the JOB job control statement which is carried along
with the accounting records. This enables you to accumulate statistics from the SAM file
for computer time and resources charged against an account number, which could
represent a project, department, cost center, etc. The job accounting function requires the
use of the spooling package and the optionai timer facilities. These must be included at
system generation time. Also, the job accounting versions of SVC decode and the switcher
must be included within the supervisor at link edit time.

11.2.2. Accounting Data

Accounting data is accumulated in a job accounting table (Figure 11—2) in the job prologue. .
Fields in this table serve as counters for job step and job statistics.

Byte 0 1 2 | 3
0 count of SVCs in job step
4 count of SVCs in job
8 count of transient calls in job step

12 count of transient calls in job

16 CPU time used by job step

20 CPU time used by job

24 length of largest job step {in bytes)

28 time of day that job step started

32 time of day that job started

36 accumulated time of day of all job steps

Figure 11—2. Job Accounting Table Format (Part 1 of 2)

. 5;075 Rev. 3 l SPERRY UNIVAC Operating System/3 A 11-7
UP-NUMBER UPDATE LEVEL | PAGE
. Byte 0 1 2 l | 3
40 count of EXCPs in job
44 count of 1/Os not fitting in device count table
48 switch priority not used termination code of job step *
52 logon time in milliseconds ‘
56 number of commands issued
60 number of files accessed
64 number of non-PUB spooled |/0s
68 PUB acctg ID count of EXCPs to that PUB *
A~ v
" (device count table — one entry for each device) ~
‘ PUB acctg ID v count of EXCPs to that PUB

Figure 11—2. Job Accounting Table Format (Part 2 of 2)

11.2.2.1. Job Step Level Data

Counters in the job accounting table are dynamically incremented during job step execution.
The following data is collected for each job step:

.

11-8
PAGE

A
UPDATE LEVEL

8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER

® Central processor time

This consists of the total time in milliseconds charged to tasks of this job or
supervisor tasks working for this job. This means that all supervisor overhead, such
as processing SVCs and the processing of supervisor tasks is charged to the
requesting job. Supervisor idle (wait) time is not charged to any job.

® Total SVCs executed

This consists of the total number of SVCs executed by the job’s tasks or by supervisor
tasks working in behalf of the job.

] Total transient functions

This consists of the total number of transient functions executed by the job’s tasks or
by supervisor tasks working in behalf of the job. This does not include overlays to
transients.

8 Total I/0 requests

This consists of the total number of 1/0 requests executed for each device by the job’s
tasks or by supervisor tasks working in behalf of the job. 1/0 requests per device
include spooling activity in terms of the number of cards read from the spool file and
print lines written to the spool file by this job step.

In addition to the counts dynamically maintained in the job accounting table, the job step
processor furnishes the following values for job step accounting:

® Total wall clock time required for the job step to execute. This does not include time
during which the job step was rolled out, nor does it include the period between the
time a checkpoint was taken and the job step was restarted from the last checkpoint.

m Total main storage into which programs were loaded by the loader.
This value represents only that amount of main storage used by the job step as
recorded by the loader, and does not include the prologue or those available areas
within the job region which are used but not for loading.

® |nitial switch priority of the job step.

® Termination code of the job step. Normal termination code is 000.

= Value of the User Program Switch Indicators (UPSI) at job step termination.

11.2.2.2. Job Level Data

Some of the data collected for the job steps of a particular job is totalled for the job's
accounting record. In addition, data is collected on the job level which cannot be acquired by
just summing the job step values. That data which is collected solely for the job is recorded
at job termination time and consists of the following:

® Size of the largest job step.

8075 Rev. 3 | SPERRY UNIVAC Operating System/3 | 11-9
UP-NUMBER UPDATE LEVEL PAGE
] Job date

This is the date from the job preamble representing the date the job was run.
Total job main storage including prologue.

Total wall clock time for the job, including all of the job step processor overhead.
Wall clock time is defined as the point in time when a job is initiated to execute up to
the point in time when the job termination message is displayed, and does not include
spool time.

Total wall clock time for all job steps.

This is a sum of the total wall clock time for each job step and does not include job
control time.

Total CPU time for all job steps.
This is a sum of the CPU time for each job step and does not include job control time.
Total SVC count for all job steps.

This is a sum of the SVC counts for each job step and does not include job control
counts.

Total transients called for all job steps.

This is a sum of the transients called by the job steps and does not include job control
counts.

Total 1/0 count for all job steps.

This is a sum of the 1/0s executed by the job steps and does not include job control
counts.

11.2.3. Data Printout

When printing the job’s log, the output writer also prints the accounting records for that job.
Also, the output writer can write all the job log records to a magnetic tape for offline
processing, or only the log records, or the accounting records. This gives you the ability to
create a system log file and a system accounting file for subsequent statistical processing
and evaluation. Figure 11—3 shows the format of the job accounting record printout.

SPER'QY%%UNIVAC PRINTER FORMAT CHART

160 PRINT POSITIONS

APPLICATION TYPE OF PRINTER

L L
m _ [- PROGRAMMER DATE: I
€ 0 20 30 40 50 60 70
T T
8-1“\"""""*-]03 o "-322-32'&!322:2'2%22::%5‘-3’1-1|i‘qu$$;::p,:::.‘:;z;m;;sz;:sz: mEo2
Job Header Lol JbB i ACCT. NB® ASSTGNED MEMBRY =xxxxxxxx BYTES (PLUS
Spool Header | JAC02 ~ machin 19 :
Step Header T = xxxxy PAGES = xy¥j¥xxXxs
stlepname) USED xxxxxx. ELAPSED WALL CLOCK TiIMe=hh il JTBTAL SVC KALLS=xxx; KXXK
X x AFSH,I,T_CN'PRIORIT_Y_!U CPU TIME "F‘J b FhhimalSs.omil TVK'AN_S_I_EN‘I' CALLSA XRBUH X
..... . R e
Device Counts | i 117077 PEECE iy IO PR N R e Py TRy R FOOEPPORS
USED xxxxbxx BYTES ' " TBTAL ELAPSED WALL Lok TlIME:hh:immiss.mit TTOTAL JOB [SvC CALLS -t wuxxxx
Job Totals T WALL C[LOCK TIWE PF ACL STEPS shhimmils mil . JOB TRANSTENT CALLST xxxnvmx, |
__________ TOTAL LPU TIME BF ALL VSIE_P‘S thhimmiss . _n_,_l__ C . ToTaL Tod EXCP!s D xxxx XX K
............... | ! i - e -
. [
I O S
o DEPOSOREN IRPSPPPEOS HESEDERURS EOSUSREEOY EDERIEONE IOIOPROS SERRREON SUPPEEREEE SEOEOS »
— ; N
D e R I e e O
.+ T 4+
R T T T T
L P
o
RN
DU SO DI SRR U SN IS (PN
N B L e I
o DU NS e
; : SUDEOREENEN VRS NSO BOEREREDEE PR DREE DRSO
et
o T ey B ‘ .
1+ .t ST
H Ve
ik
- il
anadaN il
UD1-150%
* Figure 11—3. Job Accounting Record Printout Format

HIGWNN-dN
€ "My GL08

g/wasAg bunesadQ JVAINN AHHIALS

|

T3A3TT 31Vadn

3OVvd

oL—1L1

. A Index 11
327355353;‘ I SPERRY UNIVAC Operating System/3 lUPDATE LEVEL { PAGE
. Term Reference Page Term Reference Page
Program management {cont) READH macro instruction 6.2.1 6—3
initiation and loading 8.11 8—1 6.4.5 6—23
island code linkage 8.6 8—35
linkage 85 8—26 Record interlace
loader 8.2 8—2 description 625 6—5
system information control 8.7 8—54 interlace operation 6.2.5.1 6—6
termination 8.3 " 8—12 lace factor calculation 6.25.2 6—8
timer services 84 8—15
Register addresses
Program phase operator communication isfand
header 8.2.8.1 8—10 code Fig. 8—9 851
load 826 8—5 program check island code Fig. 8—5 8—45
load and branch 8.29 8—11
load and relocate 8.27 8—7 Register change option (R) 9344 937
locate header 828 8—9
Register display action 93511 9—39
Program relative address (PR) 93411 9-32
Registers, program linkage
Program termination conventions 851 8—26
abnormal 8.3.2 8—13 restore and return 85.7 8—33
cancel a job 8.35 8—14 save, contents 856 8—31
description 83 8—12 save area 853 8—28
end-of-job step 8.34 8—13
normal 831 8—13 Relative block number
printout 833 8—13 block addressing 6.2.3 6—-3
processing blocks 6332 6—19
. PT symbiont 947 9-—58
Relocation 822 8—3
PUB 2221 2—3 827 8—7
2222 2—3
Relocation fist dictionary (RLD) 822 8—3
PUT macro instruction
disk processing 643 6—21 | RENAME macro instruction 524 5—14
magnetic tape processing 693 6—53 534 5—10
PUTCOM macro instruction 872 8—56 Repetitive loads 8.2.4 8—4
Q Reply messages 10.3.1 10—17
Report producing program 11.33 11—-11
Queue control module 2221 2—3 Resident routines 122 1-2
2223 2—3
Resource allocation 226 2—b6
Queue driven task 725 1—4
Restart facility See checkpoint
Quit action (Q) 9353 9—44 and restart capability.
R Restore registers and return 857 8—33
RETURN macro instruction
RDFCB macro instruction 421 4—-3 function 857 8—33
427 4—26 program linkage 8.5 8—26
Reactivate a task 735 7—12 Rewind to load point 682 6—50
. Read by key equat 645 6—23 Rewind with interlock 6.8.2 6—50
Read pointer, repetitive loads 824 8—4 RLD 822 8—3
READE macro instruction 6.2.1 6—3 Rollout/rollin 2213 2—10

6.4.5 6—23

] ratin em ndex 12
8075 Rev. 3 SPERRY UNIVAC Operating System/3 A !
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
S SETCS macro instruction 8.8.5 8—62
SAT SETIME macro instruction
block number processing 6.10 6—56 continue processing until interrupt 8422 8—23
controlling disk file processing 6.4 6—19 example Fig. 8—2 8—24
controlling tape file processing 69 6—51 function - 8421 8—22
description 6.1 6—1 interval timer 8.6.7 8—48
disk file interface 6.3 6—10 timer services 8.4 8—15
disk file organization and . N
addressing methods 6.2 6—1 Shared filelock capability 6312 6—13
system standard tape labels 6.6 6—26
tape file interface 6.8 6—45 SIB 8411 8—16
tape files 6.5 6—25) ,
tape volume and file organization 6.7 6—37 SNAP macro instruction 9.11 9—1
See also disk SAT files v _
SAT macro instruction 6.8.1 6—45 Snapshot display 22102 2—8
Save area, register 853 8—28 Snapshot dumps 9.11 9—1
Fig. 8—3 8—28)
Table 8—1 8—29 Soft-patch symbiont
cancelling the symbiont 9474 9—61
Save area address 8.6.8 8—49 description 947 9—58
error messages 9475 9—62
SAVE macro instruction patching from a single entry
program linkage 85 8—26 producing a card deck from
the console 9472 9—60
Scratch routine, disk using card input 9471 9—58
description 523 53 using console input 9472 9—60
scratch all by date 5233 5—4 using multiple forms of
scratch by prefix 5232 5—4 the command 9473 9—61
scratch file 5231 5—4
Space assignment
Scratching files 5231 5—4 existing file 53.2 5—7
533 5—9 new file 531 5-5
SCRTCH macro instruction Space control, disk 6.24 6—4
disk 533 5—9
diskette 55.2 5—16 | Spooler 1L113 - 112
. Spooling
Search order, library 823 8—4 breakpoint in output file 1113 11—5
. description 229 2—8
Second file header label See HDR2 label. initialization 1111 11—1
. . input reader 11.1.12 11-2
SEEK macro instruction gié 2—34 output writer 11114 11—3
o o retationship of devices and programs Fig. 11—1 11-=2
. . special functions 11.1.15 11—4
Seek separation, disk 22.15 2—10 spooler 11113 11—2
Selective dynamic dump 911 9—1 use 112 11—4
Selector channel, BCW Standard load modules 8.2 8§—2
format Fig 4—5 4-16 Standard system error message interface 22104 2—9
Sequence field 336 3—8 Standard tape labels
Service request macro instructions ts;/s;eryomm nization g? 1 g_gg
(imperative) 421 4—3 P ¢ organizal o o

8075 Rev. 3 I SPERRY UNIVAC Operating System/3 A Index 13
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
Standard tape volume organization System access technique See SAT.
description 6.7.1 6—38
multifile volume with System activity monitor 11.3 11—-11
end-of-file fFig. 6—12 6—40
multifile volumes with System debugging aids
end-of-volume Fig. 6—13 6—41 history tables 94.1 9—48
volumes containing a singie file Fig. 6—11 6—39 mini monitor 9.42 9—53
pseudo monitor 94.1 9—48
Start-of-data {/$) job control statement resident supervisor monitor 94.1 9—48
control stream embedded data 8.8.3 8—60 summary Table 9—3 9—46
monitor input 9311 9—-23
9312 9—25 | System control tables 8.73 8—56
Statement conventions 32 3—1 System information block (SIB) 84.1.1 8—16
Storage display action 93512 9—40 System information control
description 8.7 8—54
Storage displays get data from communication region 871 8—55
abnormal termination 9.13 910 get data from system control tables 873 8—56
checkpoint and restart 92 9—10 put data into communication region 8.7.2 8—56
description 91 —1
monitor and trace 93 9—22 | System library file 6.3.1 6—-14
normal termination dumps 912 9—5
snapshot dumps 9.1.1 9—1 System log 10.1.2 10—6
Storage reference option (S) 9.34.1 9—32 | System standard tape labels See tape labels,
. . system standard.
STXIT macro instruction 8.6 8—35
861 8—36
T
Subtask 7.112 7—2
Table generation macro instruction
Supervisor {declarative) 421 4—2
description 1.1 1—1
diagnostic and debugging aids Section 9 Tape block number 441 4--33
disk space management Section 5 Fig. 4—9 4-—34
interrupt handling 2.1 2—1
job accounting 11.2 11—6 Tape control appendage (TCA) See TCA macro
macro instructions Section 3 instruction.
main storage requirements 122 1-2
message display and logging 10.1 10~—1 Tape data management system 6.5 6—25
10.2 10—6
modular functions See modular Tape files, block numbered 44 4—-33
functions. .
multijobbing and multitasking 123 1-3 Tape format, output writer 11114 114
Section 7
operator communication 10.3 10—17| Tape labels, system standard
operator intervention 124 1-3 deSC”Dt'OH 6.6 6—26
PIOCS Section 4 f;le hegder 6.6.2 6—29
program management Section 8 file trailer 663 6—33
spooling 11.1 11—1 nonstandard 6.7.2 6—42
system access technique Section 6 standard tape volumes 6.7.1 6—38
unlabeled 6.7.3 6—44
Symbolic addresses volume 6.6.1 6—27
abnormal termination island
code Fig. 8—6 8—47 Tape restrictions 442 4—33
interval timer island code Fig. 8—7 8—48
operator communication island code Fig. 3—8 8—50
program check island code Fig. 83—4 8—44

8075 Rev. 3 SPERRY UNIVAC Operating System/3 J Index 14
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page .
Tape volume and file organization Timer interrupt facilities
description 6.7 6—37 cancel previous request 8424 8—25
nonstandard 6.72 6—42 continue processing until interrupt 84.22 8—23
standard 6.7.1 6—38 description 84.2 8—21
unlabeled 6.7.3 6—44 set (SETIME) 84.2.1 8—22
wait for interrupt 8423 8—25
Tape volume label group 6.6.1 6—27
Timer services
Task control 221 2—2 current date 84.1.1 8—16
description 227 2—7
Task control block (TCB) 721 71—2 84 8—15
get current date and time
Task management (GETIME) 84.13 8—17
creation 122 12 Fig. 8—1 8—19
7132 7—9 interrupt facilities See timer interrupt
description 1.2 1—2 facilities.
721 72 time of day 84.12 8—17
generate event control block 731 7—6
hierarchical structure 1.2.6 1—4 TPAUSE macro instruction 745 7—20
macro instructions 7.3 7—5
priority 723 7—3 Trace See monitor and trace
736 7—13 capability.
queue driven task 125 1—4
reactivate a task 735 7—12 | Trace job control option 93.1.1 9—23
termination 7124 7—4
733 7—10 | Transient loader 223 2—5
yield until task completion 134 7—11
Transient overlay 223 2—3
Task switches 8.6.3 8—40
Transient
Task synchronization management halts 944 9—56
activate waiting task 744 7—18 routines 122 1-2
deactivate task 745 7—20 scheduler 223 2—5
description 14 7—15
74.1 7—15 | TYIELD macro instruction
multiple task wait 743 1—17 function 734 7—11
reactivate task 146 7—21 multitasking 73 7—6
wait for task completion 142 7—16
Tasks U
attaching island code 8.6.1 8—36
definition 11 1—1 Unit of store 6.3.2 6—15
detaching island code 8.6.2 8—39
Unlabeled tape volume
TCA macro instruction 6.8.1 6—45 organization 6.7.3 6—44
6.8.2 6—46 Fig. 6—16 6—44
TCB 121 7—2 Unsolicited message 103.1 10—18
Termination, program See program User-operator communication 103.1 10—17
termination.
User program switch indicator (UPSI) 87 8—54
Termination dumps
abnormal 9.13 9—10
normal 912 9—5 VvV
TGO macro instruction 746 7-=21 Variable Charactersy canned
] messages 10.1.1.2 10—-3
Time of day 84.12 8—17 Fig. 10—2 10—5
8413 8—17

Cut along line,

. e o s w— — —— — — — —— —— — —— ——— —— — o—— — — —— —— — — — ——— — —— — p—— — —— —— pm— ——— (ot Ottt e it g e, gt gt

SPERRY <= LUNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) {Revision No.) (Update No.)

Comments:

From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation .

| II || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

e e S i et i S, i i, e St T i S T e, S Y e e e, —— o S S P, S —_— S, S it . S . S e, S S TS S, S e S S it S S e S i, S S e S . — T S — St U et e S S e e i

2

-
l «
b

o

-

I

e
£
Y3

b

L

R
0L e e

'

-y

1n2
)

DY TR L PIPORRIPIRE F s - RS L SUPSRELS g

P JFF 3 5

% e vl

¢

-
e aa

B

e 3

i

=

.

+

~4

e

£

a

. 8

&

. 4.
- -

