
Basic Data Management

Environment: 90/25, 30, 308, 40 Systems

H UNIVAC UP-8068 Rev. 4

UOt-251 Re>o. 3f7':r.

Consolidated Data
Management

User Guide

This Library Memo announces the release and availability of Updating Package D to "SPERRY
Operating System/3 (OS/3) Basic Data Management User Guide", UP-8068 Rev. 4.

This 8. 1 release update documents a correction applicable to a feature present in basic data management prior
to the 8. 1 release.

Copies of Updating Package D are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8068 Rev. 4-D. To receive the complete manual, order UP-8068
Rev. 4.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A01, 18, 18U, 19, 19U, 20, 20U
21, 21U, 75, 75U, 76 and 76U

(Package D to UP-8068 Rev. 4,
7 pages plus Memo)

Library Memo for
UP-8068 Rev. 4-D

June, 1983

Basic Data I Management

User Guide

Memo announces the release and of Updating Package C to "SPERRY UN IV AC c Jrn:>r:11r1nn

sv~:1"Prn1:< (OS/3) Basic Data Management User Guide", UP-8068 Rev. 4.

This documents the following new information on the basic data management file lock
feature for the 8.0 release:

1111 How to avoid unnecessary locking out of files

1!111 Additional information on file shareability

All other changes are corrections or expanded descriptions applicable to features present in basic
data management prior to the 8.0 release.

Copies of Updating Package Care now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8068 Rev. 4-C. To receive the complete manual, order UP-8068 Rev. 4.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO,A01, 18, 18U,19,
19U,20,20U,21,21U,75, 75U,76 and
76U

(Package C to UP-8068 Rev. 4,
32 pages plus Memo)

February, 1983

Basic Data Management

User Guide

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) Basic Data Management User Guide", UP-8068 Rev. 4.

This update for the 8.0 release indicates the availability of a new conversion routine for basic data management. This
routine is the OS/3 Sequential DTF Mode to CDI Mode Converter (DTFCDl301). This converter processes a basic
data management BAL source program module and produces a consolidated data management source module that,
with minimal modification, can be used in the consolidated data management environment.

All other changes are corrections or expanded descriptions applicable to features present in basic data management
prior ot the 8.0 release.

Copies of Updating Package Bare now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only the
updating package, order UP-8068 Rev. 4-8. To receive the complete manual, order UP-8068 Rev. 4.

Mailing Lists BZ,
CZ and MZ

Mailing Lists AOO, A01, 18, 18U, 19, 19U, 20, 20U,
21, 21 U, 75, 75U, 76, and 76U

(Package B to UP-8068 Rev. 4,
29 pages pl us Memo)

Library Memo for
UP-8068 Rev. 4-B

September, 1982

Basic Data Management

User Guide

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) Basic Data Management User Guide", UP-8068 Rev. 4.

This update documents the following new basic data management features for the 7.0 release:

• Consolidated Data Management migration considerations

• New information on the file lock feature

All other changes are corrections or expanded descriptions applicable to features prese11t in basic data management
prior to the 7 .0 release.

Copies of the Updating Package A are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8068 Rev. 4-A. To receive the complete manual, order UP-8068 Rev. 4.

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21,
21 U, 75, 75U, 76 and 76U

(Package A to UP-8068 Rev. 4,
38 pages plus Memo)

December, 1981

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PSS 1
Update D

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update D - UP-8068 Rev. 4
8.1 Forward

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level

Cover/Disclaimer Orig. 10 (cont) 16 thru 22 Orig. 16 (cont) 6 thru 14 Orig.

PSS

Preface

Contents

PART 1

1

PART 2

2

3

4

5

6

7

PART 3

8

9

PART4

10

1 D 11 1 Orig. PART5
2 A Title Page Orig.

1 Orig. 3 thru 7 Orig.
2 A 8 A 17 1 thru 75 Orig.
3,4 Orig. 9 c

10 thru 15 Orig. PART6
1thru11 Orig. 16 A Title Page Orig.
12 c 17 thru 51 Orig.
13, 14 Orig. Appendix A 1 thru 11 Orig.
15 B 12 1 thru 9 Orig.
16, 16a A 10 B Appendix B 1 thru 15 Orig.
17, 18 Orig. 11 thru 13 Orig.
19 c Appendix C 1 thru 11 Orig.

13 1 thru 18 Orig.
18a c Appendix D 1 thru 32 Orig.

Title Page Orig. 19 thru 29 Orig.
Appendix E 1 thru 26 Orig.

1 Orig. 13A 1 Orig.
2 A 2 B Appendix F 1 A
2a A 3 Orig. 2,3 8
3 A 4 B
4 thru 18 Orig. 4a B Index 1, 2 Orig.

5 thru 13 Orig. 3 A
4 thru 6 B

Title Page Orig. 138 1 Orig. 7 Orig.
2 B 8 thru 10 c

1 thru 4 Orig. 3 thru 5 Orig. 11 thru 23 Orig.
6 D 24 c

1 thru 31 Orig. 7thru12 Orig. 25 thru 27 Orig.
13 c

1 thru 5 Orig. 14 D User Comment
15 thru 17 Orig. Sheet

1 thru 12 Orig. 18 B
19thru21 Orig.

1 thru 12 Orig.
14 1 thru 13 Orig.

1 thru 31 Orig.
15 1 thru 7 Orig.

8,9 c
Title Page Orig. 10 Orig.

11, 12 c
1 thru 17 Orig. 13 Orig.

14 c
1 thru 62 Orig. 15, 16 Orig.

17 c
18 thru 20 Orig.

Title Page Orig. 21 c
22 thru 111 Orig.

1 thru 7 Orig.
8 A 16 1 B
9, 10 Orig. 2 Orig.
11, 12 A 3 A
12a A 4 B
13 Orig. 4a c
14, 15 A 5 c

All the technical changes are denoted by an arrow(..,...} in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow(+-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

UP-8068 Rev. 4

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1
2
3,4

Contents 1 thru 11
12
13, 14
15
16,16a
17, 18
19

PART 1
Title Page

1 1
2
2a
3
4 thru 18

PART2
Title Page

2 1 thru 4

3 1 thru 31

4 1 thru 5

5 1 thru 12

6 1 thru 12

7 1 thru 31

PART3
Title Page

8 1 thru 17

9 1 thru 62

PART4
Title Page

10 1 thru 7
8
9, 10
11, 12
12a
13

*New pages

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PAGE STATUS SUMMARY

ISSUE: Update C- UP-8068 Rev. 4
RELEASE LEVEL: 1 8.0 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. 10 (cont) 14, 15 A
16 thru 22 Orig.

c
11 1 Orig.

Orig. 2 A
A 3 thru 7 Orig.
Orig. 8 A

9 c
Orig. 10 thru 15 Orig.
c 16 A
Orig. 17 thru 51 Orig.
B
A 12 1 thru 9 Orig.
Orig. 10 B
c 11 thru 13 Orig.

13 1 thru 18 Orig.
Orig. 18a C*

19 thru 29 Orig.
Orig.
A 13A 1 Orig.
A 2 B
A 3 Orig.
Orig. 4 B

4a B
5 thru 13 Orig.

Orig.
138 1 Orig.

Orig. 2 B
3 thru 5 Orig.

Orig. 6 B
7 thru 12 Orig.

Orig. 13, 14 c
15 thru 17 Orig.

Orig. 18 B
19 thru 21 Orig.

Orig.
14 1 thru 13 Orig.

Orig.
15 1 thru 7 Orig.

8,9 c
Orig. 10 Orig.

11, 12 c
Orig. 13 Orig.

14 c
Orig. 15,16 Orig.

17 c
18 thru 20 Orig.

Orig. 21 c
22 thru 111 Orig.

Orig.
A 16 1 B
Orig. 2 Orig.
A 3 A
A 4 B
Orig. 4a C*

Part/Section

16 (cont)

PART5

17

PARTS

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Index

User Comment
Sheet

PSS 1
Update C

Page
Number

5
6 thru 14

Title Page

1 thru 75

Title Page

1 thru 11

1 thru 15

1 thru 11

1 thru 32

1 thru 26

1
2,3

1, 2
3
4thru 6
7
8 thru 10
11 thru 23
24
25 thru 27

3

Update
Level

c
Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

A
B

Orig.
A
B
Orig.
c
Orig.
c
Orig.

B

All the technical changes are denoted by an arrow(,._.) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (t) is found. A horizontal arrow (+-)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

UP-8068 Rev. 4

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1
2
3,4

Contents 1 thru 11
12
13, 14
15
16, 16a
17 thru 19

PART 1
Title Page

1 1
2
2a
3
4 thru 18

PART2
Title Page

2 1 thru 4

3 1 thru 31

4 1 thru 5

5 1 thru 12

6 1thru12

7 1 thru 31

PART3
Title Page

8 1 thru 17

9 1 thru 62

PART4
Title Page

10 1 thru 7
8
9, 10
11, 12
12a
13
14, 15
16 thru 22

*New pages

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update B - UP-8068 Rev. 4
8.0 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. 11 1 Orig.
2 A

B 3 thru 7 Orig.
8 A

Orig. 9 thru 15 Orig.
A 16 A
Orig. 17 thru 51 Orig.

Orig. 12 1 thru 9 Orig.
A 10 B
Orig. 11thru13 Orig.
B
A 13 1 thru 29 Orig.
Orig.

13A 1 Orig.
2 B

Orig. 3 Orig.
4 B

Orig. 4a B*
A 5 thru 13 Orig.
A
A 138 1 Orig.
Orig. 2 B

3 thru 5 Orig.
6 B

Orig. 7 thru 17 Orig.
18 B

Orig. 19 thru 21 Orig.

Orig. 14 1thru13 Orig.

Orig. 15 1 thru 111 Orig.

Orig. 16 1 B
2 Orig.

nrin 3 A
4 B

Orig. 5 A
6thru 14 Orig.

Orig. PART5
Title Page Orig.

Orig.
17 1 thru 75 Orig.

Orig.
PART6

Title Page Orig.
Orig.

Appendix A 1 thru 11 Orig.
Orig.
A Appendix B 1thru15 Orig.
Orig.
A Appendix C 1 thru 11 Orig.
A
Orig. Appendix D 1 thru 32 Orig.
A
Orig. Appendix E 1 thru 26 Orig.

Part/Section

Appendix F

Index

User Comment
Sheet

PSS 1
Update B

Page Update
Number Level

1 A
2 B
3 B*

1, 2 Orig.
3 A
4 thru 6 B
7 thru 27 Orig.

All the technical changes are denoted by an arrow(+-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (f) is found. A horizontal arrow(+-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

UP-8068 Rev. 4

Part/Section
Page

Number

Cover /Disclaimer

PSS 1

Preface 1
2
3,4

Contents 1 thru 11
12
13
15, 16
16a
17 thru 19

PART 1
Title Page

1 1
2
2a
3
4 thru 18

PART2
Title Page

2 1 thru 4

3 1 thru 31

4 1 thru 5

5 1 thru 12

6 1thru12

7 1 thru 31

PART3
Title Page

8 1thru17

9 1 thru 62

PART4
Title Page

10 1 thru 7
8
9,10
11, 12
12a
13
14, 15
16 thru 22

*New pages

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update A - UP-8068 Rev. 4
7.0 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. 11 1 Orig.
2 A

A 3 thru 7 Orig.
8 A

Orig. 9 thru 15 Orig.
A 16 A
Orig. 17 thru 51 Orig.

Orig.
A

12 1 thru 13 Orig.

Orig.
A

13 1 thru 29 Orig.

A*
Orig. 13A 1 thru 13 Orig.

138 1 thru 21 Orig.
Orig.

14 1 thru 13 Orig.
Orig.
A 15 1 thru 111 Orig.
A*
A 16 1, 2 Orig.
Orig. 3 thru 5 A

6 thru 14 Orig.

Orig. PART5
Title Page Orig.

Orig.
17 1 thru 75 Orig.

Orig.
PARTS

Orig. Title Page Orig.

Orig. Appendix A 1 thru 11 Orig.

Orig. Appendix B 1 thru 15 Orig.

Orig. Appendix C 1 thru 11 Orig.

Appendix D 1 thru 32 Orig.
Orig.

Appendix E 1 thru 26 Orig.
Orig.

Appendix F 1, 2 A
Orig.

Index 1, 2 Orig.
3 A

Orig. 4 thru 27 Orig.

Orig. User Comment
A Sheet
Orig.
A
A*
Orig.
A
Orig.

Part/Section

PSS 1
Update A

Page
Number

Update
Level

All the technical changes are denoted by an arrow(.,.._) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (f.) is found. A horizontal arrow(+-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PSS 1

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

UP-8068 Rev. 4
7.0 Forward

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page

Number
Update
Level

Cover/Disclaimer PARTS

PSS

Preface

Contents

PART 1

1

PART2

2

3

4

5

6

7

PART3

8

9

PART4

10

11

12

13

13A

138

14

15

16

Title Page

1
17 1 thru 75

1 thru 4

PART6
1 thru 19 Title Page

Title Page
Appendix A 1 thru 11

Appendix B 1 thru 15
1 thru 18

Appendix C 1 thru 11

Title Page Appendix D 1 thru 32

1 thru 4 Appendix E 1 thru 26

1 thru 31 Index 1 thru 27

1 thru 5 User Comment
Sheet

1 thru 12

1 thru 12

1 thru 31

Title Page

1 thru 17

1 thru 62

Title Page

1 thru 22

1 thru 51

1 thru 13

1 thru 29

1 thru 13

1 thru 21

1 thru 13

1 thru 111

1 thru 14

All the technical changes are denoted by an arrow(....,.) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow (..,,.._)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

lJP-8068' Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically describes
OS/3 basic data management and its effective use. Its intended audience is the
applications programmer with a basic knowledge of data processing, but with limited
programming experience, as well as the seasoned applications programmer.

Two other manuals are available that cover OS/3 basic data management; one is an
introductory manual and the other is a programmer reference manual (PRM). The
introductory manual briefly describes OS/3 basic data management and its facilities. The
PRM provides the characteristics of OS/3 basic data management in skeletal form and is
intended as a quick-reference document for the programmer experienced in the use of
OS/3 basic data management.

For systems with interactive facilities, an additional series of manuals is provided to
instruct and guide the programmer in the use of OS/3 consolidated data management.
These are:

• Introduction to consolidated data management, UP-8824

• Consolidated data management concepts and facilities, UP-8825

• Consolidated data management macro language user guide/programmer reference,
UP-8826

In general, any further references to the term data management in this user guide imply
basic data management.

This user guide is divided into the following parts:

• PART 1. OS/3 DATA MANAGEMENT

Introduces OS/3 data management in terms of what it is and how it is used;
introduces and briefly describes consolidated data management; describes the data
management/user interface and the relation of data management to other OS/3
software.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

• PART 2. CARD, DISKETTE, and PRINTER FILES

Preface 2.
Update A

Describes file and format conventions and the function and operation of OS/3 data
management in relation to punched ca~rd, diskette, and printer files.

• PART 3. MAGNETIC TAPE FILES

Describes file and format conventions and the function and operation of OS/3 data
management in relation to magnetic tape files.

• PART 4. DISK FILES

Describes file and format conventions and function and operation of OS/3 data
management as related to disk files. Describes the indexed sequential access method
(ISAM) both with and without an index structure, the sequential access method
(SAM), the direct access method (DAM), the indexed random access method (IRAM),
the multiple indexed random access method (MIRAM), and the nonindexed access
method. Also includes info'rmation on disk space management.

• PART 5. PAPER TAPE FILES

Describes record, character, and file conventions and the functions of OS/3 data
management for perforated paper tape files.

• PART 6. APPENDIXES

Provide selected functional characteristics of peripheral devices relevant to data
management use; explain the OS/3 data management procedures for error and
exception handling; compare the EBCDIC/ ASCII/Hollerith codes and other card codes
used in OS/3; describe the systems standard labels for magnetic tape and disk files;
and describe the consolidated data management migration considerations.

Statement Conventions

The conventions used to delineate the data management macroinstructions are:

• Positional parameters must be written in the order specified in the operand field and
must be separated by commas. When a positional parameter is omitted, the comma
must be retained to indicate the omission, except for the case of omitted trailing
parameters.

Examples:

Assume that CNTRL is a data management macroinstruction with three optional
positional parameters: A, B, and C. '

TAG1 CNTRL A
T AG2 CNTRL A,B
TAG3 CNTRL A,B,C
T AG4 CNTRL A,,C

UP-8068 ·Rev: 4 , SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Preface 3

• , A keyword parameter consists of a word or a code immediately followed by an equal
sign, which is, in turn, followed by a specification: Keyword parameters can be

·written in: any order in the operand field. Commas are required only to separate
parameters; however, a comma must neither be coded in column 16 of a continuation
line nor follow the last keyword of a string.

Example:

Assume that the data management DTF macro for a card file (called CARDIN) has
three keyword parameters: IOAREA1, BLKSIZE, and WORKA.

CARDIN DTFCD IOAREA 1==AREA1,BLKSIZE==80,WORKA==YES

• Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown. The exceptions are those acronyms that are part of generic terms
representing information to be supplied 'by the user and the commas pre'ceding
keyboard parameters of declarative macroinstructions. (These cornmas serve to
remind the user that keyboard parameters coded in a string must be separated by
commas.)

Examples:

FIELDS==([ADDR][,A2TD][,FREQ])
REOC==(MERGE,label,reel,to)
CMceNUMBCHAR==n
X'aa'(NOV)

• Lowercase letters and words are generic terms representing information that must be
supplied by the user. Such lowercase terms may contain hyphens and acronyms (for
readability).

Examples:

name
start-addr
number-of-bytes
param-1
CCB-name

• Information contained within braces represents mandatory entries of which one must
be chose'n.

Examples:

{
filename}
(1)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Preface4

• Information .contained within brackets represents optional entries that .(depending
upon program requirements) are included or omitted. Braces within bracket~ signify
'.that one of the specified entnies must be chosen if that parameter'. is.to be included.

Examples:

[INPUT=NO]
[OUTPUT=NO]

[, { ~rname }]

• An optional parameter .which has a .list of optional entries may have a default
specification which is supplied by the operating system when the parameter is not
specified by the .user. Although the ;default may be specified by the user with no
adverse effect, it is con$idered in.efficient to do so. For each reference, when a default
specification occurs in the format delineation it is printed on a shaded background. If,
by parameter omission, the operating system performs some complex processing
.other than pc.~uameter insertion, it is explained under an. if-omitted heading in the
parameter description.

Examples:

}]
• An ellipsis. (series of three periods) indicates the omissi.on of a variable number of

entries.

Example:

param-1, ... ,param-n

• Commas are required when positional parameters are omitted, except after the last
parameter specified.

Example:

positional parameter 1, positional parameter 2,, positional parameter 4

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. OS/3 DATA MANAGEMENT

1. INTRODUCTION

1.1.

1.2.

1.3.
1.3.1.
1.3.2.
1.3.3.
1.3.4.
1.3.5.
1.3.6.
1.3.7.

1.4.

1.5.
1.5.1.
1.5.2.
1.5.3 ..
1.5.4.
1.5.5.
1.5.6.
1.5.7.

1.6.
1.6.1.
1.6.2.
1.6.3.

THE FUNCTION OF DATA MANAGEMENT

BASIC AND CONSOLIDATED DATA MANAGEMENT

DATA STRUCTURE
Definition of Terms
Punched Card Files
Diskette Files
Printer .. Files
Magnetic Tape Files
Disk Files
Paper Tape Files

PROGR.AMMlNG FOR DATA MANAGEMENT

OS/3 DATA MANAGEMENT ENHANCEMENTS
ISAM Files
SAM and DAM Files
IRAM Files
MIRAM Files
Error and Exception Returns
Disk Flexibility and Hardware Constraints
Shared Data Managemerit··Modliles

DATA MANAGEMENT /USER INTERFACE
Declarative Macroinstructions
Imperative Macroinstructions
Assembler Rules for Operand Field

Contents 1

Contents

1-1

1-1

1-4
t

1-6
1-7
1-7
1-7
1-7
1-8
1-9

1-9

1-10
1-10
1-10
1-10
1-11
1-11
1-11
1-12

1-12
1-12
1-14
1-14

UP-8068 Rev;. 4 SPERRY UNIVAC osn
BASIC DATA MANAGEMENT

2.

3.

4.

1.7.
1.7.1.
1.7.2.
1.7.3.
1.7.4.
1.7.5.

RELATED OS/3 SOFTWARE
System Service Programs (SSP)
Job Control
Supervisor
Linkage Editor
Data Utilities

PART 2. CARD, DISKETTE, AND PRINTER FILES

CARD FORMATS AND FILE CONVENTIONS

2.1. GENERAL

2.2. FILE ORGANIZATION
2.2.1. Card Input Files
2.2.2. Card Output Files
2.2.3. Combined Files

2.3. RECORD FORMATS
2.3.1. Start-of-Data Job Control Statement (/$)

2.3.2. End-of-Data Job Control Statement (/*)

2.3.3. Card Punch Records

FUNCTION AND OPERATION OF PUNCHED CARD SAM

3.1. GENERAL

3.2. FUNCTIONAL DESCRIPTION
3.2.1. Punched Card Input
3.2.2. Punched Card Output

3.3. DEFINE A SAM CARD FILE ·(DTFCD)

3.4. IMPERATIVE MACRO INSTRUCTIONS
3.4.1. Open a Card SAM File (OPEN)
3.4.2. Retrieve Next Logical Record (GET)
3.4.3. Output a Record (PUT)
3.4.4. Controlling Stacker Selection on the Card Punch (CNTRL)
3.4.4.1. Using the CNTRL Imperative Macro
3.4.5. Close a Card SAM File '(CLOSE)

3.5. ERROR AND EXCEPTION HANDLING
3.5.1. FilenameC
3.5.2. Filenames

3.6. SAMPLE PROGRAMS

DISKETTE FORMATS AND FILE CONVENTIONS

4.1. GENERAL

Contents 2

1-15
1-15
1-16
1-17
1-17
1-18

2-1

2-1
2-2
2-3
2:.:..3

2-3
2-3
2-3
2-4

3-1

3-1
3-1
3-2

3-3

3-13
3-14
3-15
3-17
3-19
3-20
3-24

3-25
3-25
3-25

3-25

4-1

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

4.2. FILE ORGANIZATION
4.2.1. Diskette Input Files
4.2.2. Diskette Output Files
4.2.3. Combined Files

4.3. RECORD FORMATS
4.3.1. Fixed-Length Records
4.3.2. Variable-Length Records

5. FUNCTION AND OPERATION OF DISKETTE SAM

5.1. GENERAL

5.2. FUNCTIONAL DESCRIPTION
5.2.1. Input Record Processing
5.2.2. Output Record Processing
5.2.3. Combined File Record Processing
5.2.4. Multisector 1/0
5.2.5. Specifying 8413 Diskette Use
5.2.6. Diskette· Limitations

5.3. DEFINE A SAM DISKETTE FILE

5.4. IMPERATIVE MACROINSTRUCTIONS
5.4.1. Open a Diskette SAM File
5.4.2. Retrieve Next Logical Record
5.4.3. Writing a Diskette Record
5.4.4. Closing a Diskette File

6. PRINTER FORMATS AND FILE CONVENTIONS

6.1. GENERAL
6.1.1. 0773 Printer Subsystem
6.1.2. 0770 Printer Subsystem
6.1.3. 0768 Printer Subsystem
6.1.4. 0776 Printer Subsystem
6.1.5. 0778 Printer Subsystem

6.2. FILE ORGANIZATION
6.2.1. Text
6.2.2. Tabular Data
6.2.3. Printer Forms

6.3. RECORD FORMATS

6.4. VERTICAL FORMAT AND LOAD CODE BUFFERS
6.4.1. Load Code Buffer Interchangeability
6.4.2. LCB Statement Specification
6·.4.2.1. LCB Specification for the 0773 and.0778 Pr:inters
6.4.2.2. L.:CB Specification for the 0770 and 0776 Printers
6.4.2.3. LGB Specification for the 0768 Printer
6'.4.3. Vertical Form.at Buffer Interchangeability
6:.4.4. VFB Statement Specification

Contents 3

4-1
4-3
4-4
4-4

4-4
4-4
4-4

5-1

5-1
5-1
5-2
5-2
5-3
5-3
5-4

(DTFCD) 5-5

5-6
(OPEN) 5-7
(GET) 5-8
(PUT) 5-10
(CLOSE) 5-12

6-1
6-2
6-2
6-2
6-2
6-2

6-2
6-3
6-4
6-4

6-5

6-7
6-7
6-7
6-8
6-8
6-8
6-9
6-9

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

6.4.4.1. Specifying Home Paper Position
6.4.4.2. Specifying Forms Overflow Position
6.4.4.3. Specifying Special Forms
6.4.4.4. Paper Tape Loop, 0768 Printer
6.4.4.5. Vertical Format Buffer Statement Example

7. FUNCTION AND OPERATION OF SAM PRINTER FILES

7.1. GENERAL

7.2. FUNCTIONAL DESCRIPTION

7.3. DEFINE A SAM PRINTER FILE

7.4. IMPERATIVE MACROINSTRUCTIONS
7.4.1. Open a Printer File
7.4.2. Output a Record
7.4.3. Control Printer Forms
7.4.4. Print Overflow Action
7.4.5. Close a Printer File

7.5. ERROR AND EXCEPTION HANDLING
7.5.1. FilenameC
7.5.2. Truncation of Print Line

7.6. SAMPLE PROGRAM

PART 3. MAGNETIC TAPE FILES

8. MAGNETIC TAPE FORMATS AND FILE CONVENTIONS

8.1. GENERAL

8.2. TAPE VOLUME AND FILE ORGANIZATION
8.2.1. EBCDIC Standard Volume Organization
8.2.2. EBCDIC Nonstandard Volume Organization
8.2.3. EBCDIC Unlabeled Volume Organization
8.2.4. ASCII Standard Volume Organization
8.2.4.1. End-of-File and End-of-Volume Coincidence
8.2.5. Magnetic Tape File Record and Block Formats

9. FUNCTIONS AND OPERATIONS, MAGNETIC TAPE SAM

9.1. GENERAL

9.2. DEFINING A MAGNETIC TAPE FILE
9.2.1. Format of the DTFMT Declarative Macro
9.2.2. Required and Most Frequently Used DTFMr Keywords
9.2.2.1. Specifying the 1/0 Buffer
9.2.2.2. Specifying the Length of the 110 Buffer
9.2.2.3. Specifying Type of File Processing
9.2.2.4. Error Processing
9.2.2.5. End-of-Data Processing for an Input File
9.2.2.6. Specifying a Register Save Area

Contents 4

6-9
·6-9
6-10
6-10
6-12

7-1

7-1

(DTFPR) 7-4

7-15
(OPEN} 7-16
(PUT) 7-18
(CNTRL) 7-21
(PRTOV) 7-24
(CLOSE) .7-27

7-28
7-28
7-28

7-28

8-1

8-1
8-2
8-2
8-8
8-9
8-9
8-14

9-1

(DTFMT) 9-1
9-2
9-10

(IOAREA1} . 9-10
(BlKSIZE) 9,...10
(TYPEFLE} 9-11
(ERROR} 9-12
(EOFADDR) 9-12
(SAVAREA) 9-13

UP-8068 Rev. 4

9.2.3.
9.2.3.1.
9.3.3.2.
9.2.3.3.
9.2.3.4.
9.2.3.5.
9.2.3.5.1.
9.2.4.
9.2.4.1.
9.2.4.2.
9.2.4.3.
9.2.5.
9.2.5.1.
9.2.5.2.
9.2.5.3.
9.2.5.4.
9.2.6.
9.2.6.1.
9.2.6.2.
9.2.6.3.
9.2.7.
9.2.7.1.
9.2.7.2.
9.2.7.3.
9.2.8.
9.2.8.1.
9.2.8.2.
9.2.9.
9.2.10.

9.3.

9.3.1.
9.3.2.
9.3.3.
9.3.3.1.
9.3.3.2.
9.3.3.3.
9.3.4.
9.3.4.1.
9.3.4.2.
9.3.4.3.
9.3.4.4.
9.3.4.5.
9,3.4.6.

9.3.5.
9.3.6.
9.3.7.

9.4.

9.4.1.
9.4.2.
9.4:3.
9.4.4.

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Commonly Used DTFMT ·Keywords
Specifying a Secondary 1/0 Buffer
Specifying an Index Register
Processing in a Work Area
Handling Parity Errors
Precessing Block Numbers

Block Number Specification
Parameters Related to Tape Record Formats

Specifying a Record Format
Providing Record Size
Blocking Variable Records in an 1/0 Area

Parameters Related to Tape Movement
Specifying Input File Direction
Exercising General Rewind Options
Rewinding at Open
Rewinding at Close

Parameters Related to Tape Label Processing
Specifying Type of Tape Labels
Eliminating Tape Mark After Header Labels
Special Label Handling

ASCII Processing
Specifying ASCII Processing
Specifying ASCII Buffer Offset
Checking the Length of Variable' ASCII Records

Other DTFMT Keyword Parameters
Specifying That a File is Optional
Bypassing Checkpoint Dumps

Nonstandard Forms of DTFMT Keywords
Processing Multivolume Files

(IOAREA2)
(IOREG)
(WORKA)
(ERR OPT)
(BKNO}

(RECFORM)
(RECSIZE)
(VARBLD)

(READ)
(REWIND)
(OPRW)
(CLRVV)

(Fll.ABL)
(TPMARK)
(LABADDR)

(ASCII)
(BUFOFF)
(LENCHK)

(OPTION)
(CKPTREC)

JOB CONTROL STATEMENTS USED WITH MAGNETIC TAPE
FILES
Assigning a Tape Device to Your Job (DVC)
Defining Your Logical File {LFD)
Specifying Tape Volume Information (VOL)

Inhibiting Volume Seriaf Number Checking
Specifying Dynamic Tape Prepping and Recording Density
Specifying a Scratch Volume

Specifying Tape File Label Information (LBL)
Specifying File Identifier
Checking Volume and File Serial Numbers
Specifying File Expiration Date
Specifying File Creation Date
Speclfying File Sequence Number
Specifying File Generation and Version Numbers

Creatin
4

g Multivolume Tape Files
Extending Tape Files
Error Messages Related to Tape Label Processing

IMPERATIVE MACROS FOR PROCESSING
MAGNETIC TAPE FILES
lniti~ting Tape File Processing (OPEN)
Terllii.nating Tape File Processing (CLOSE)
Delivering the Next Logical Output Record to Tape SAM (PUT)
Reaciin~ t~e Next Logical Input Record From Tape (GET)

Contents5

9-13
9-13
9-13
9-14
9-14
9-15
9-15
9-17
9-17
9-18
9-19
9--21
9-22
9-22
9-23
9-23
9-23
9-23
9-24
9-24
9-26
9-27
9-27
9-28
9-28
9-28
9-29
9-29
9-30

9-31
9-31
9-32
9-33
9-34
9-34
9-36
9-36
9-36
9-36
9-38
9-39
9-39
9-39

9-40
9-41
9-43

9-43
9-46
9-48
9-50
9-52

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT.

9.4.5. Changing File Processing Mode for an IN/OUT
Tape File

9.4.6. Writing Short Output Blocks to Magnetic Tape
9.4.7. Skipping to the Next Input Block
9.4.8. Forcing End-of-Volume Procedures
9.4.9. Processing User Tape Labels
9.4.10. Controlling Tape Unit Functions

PART 4. DISK FILES

10. ISAM FORMATS AND FILE CONVENTIONS

10.1. GENERAL

10.2. ISAM FILE ORGANIZATION
10.2.1. ISAM Record Formats
10.2.2. ISAM Data Block Format
10.2.2.1. Calculating Space Requirement& for the File
10.2.3. ISAM Index Blocks
10.2.4. Calculating Space for the ISAM Index Area
10.2.5. Loading the Top Index into Main Storage

10.3. Al.:TERNATE SEQUENTIAL ACCESS METHOD
10.3.1. ASAM Data Formats

10.4. MULTIVOLUME ISAM FILES

11. FUNCTIONS AND OPERATION OF ISAM

11.1. GENERAL

11.2. FUNCTIONAL DESCRIPTION, OS/3 ISAM
11.2.1. Processing an Indexed ISAM File
11.2.2. Processing an ISAM File Without an Index Structure
11.2.3. Deleting Records From an ISAM File

11.3. DEFINING AN OS/3 ISAM FILE

11.4. DTFIS KEYWORD PARAMETERS
11.4.1. Specifying File Accessing Options
11.4.2. Specifying Size of Data Blocks
11.4.3. Specifying Your Error Exit
11.4.4. Describing an Index Area in Main Storage
11.4.5. Eliminating the Index Structure
11.4.6. Specifying 1/0 Buffers
11.4.7. Specifying Current Record Pointer
11.4.8. Specifying the Type of File Processing
11.4.9. Specifying Location of Retrieval Search. ·Argument
11.4.10. Specifying Length and Location of Record Keys
11.4.11. Suppressing a File Lock
11.4.12. Providing Cylinder Overflow Area
11.4.13. Specifying Record Size .and Format
11.4.14. Specifying a Save Area. for Conten.ts of G.eneral Registers
11.4.15. Specifying the Type of Retrieval

Contents 6

. (SETF) 9-54
(TRUNC) 9-56
(RELSE) 9-58
(FEOV) 9-59
(LBRET) 9-60
(Cl\ITRL) 9-62

10-1

10-3
10-5
10-8
10-11
10-12
10-14
10-16

(ASAM) 10-18
10-22

10-22

11-1

11-2
11-2
11-3
11-4

(DTFIS) 11-6

11-8
(ACCJ~SS) 11-8
(BLKSl.ZE) 11-9

.(ERftQR) 11-10
(INDAR.EA,INDSIZE) 11-11
(INDJ:XED) 11-12
oqAr;u;A 1,IOAREA2) 11-12
(tOREq) 11-13
(IOROUT) 11-13
(KEYARG) 11-14
(.KEYR:.E N, KEYLOC) 11-15
.(LOCK) 11-16
(PCYLOFL) 11-17

I:

(R~GFORM,RECSIZE) 11-17
J~AVAREA) 11-18
(TYPEFLE) 11-18

U P-8068 Rev; 4·

11.4.16.
11.4.17.
11.4.18.
11.4.19.
11.4.20.

11.5.
11.5.1.
11 .5.1 .1 .
11.5.1.2.
11.5.2.
11.5.2.1.
11.5.2.2.
11.5.2.3.
11.5.3.
11 .5.3.1.

11.5.3.2.

11.5.3.3.
11.5.4.
11.5.4.1.

11.5.4.2.
11.5.4.3.
11.5.5.
11.5.5.1.
11 .5.5.2.
11.5.5.3.
11.5.5.4.

11.6.
11.6.1.
11.6.2.

11.7
11.7.1.

SPERRY UNl\IAC OS/3
BASIC DATA MANAGEMENT·

Forestalling Use of Update Functions
Specifying Parity Check of Output Records
Specifying Location of Record' Work ·Ar~as
Nonstandard Forms of the Keyword Parameters
Recapitulation of DTFIS Keyword Parameters

IMPERATIVE MACROS FOR ISAM FILES
Basic Macroinstrllctions

Initializing an ISAM File
Terminating an ISAM File

Loading and Extending an ISAM File
Initiating the Load Sequence
Writing Initial Records to the File
Terminating the Load Sequence·

Inserting New Reco·rds in an ISAM File
Adding a New Record to Overflow in an
Existing File
Adding a New Record to Overflow in an Existing
File
Ensuring Completion of Record Transfer

Processing an ISAM File Randomly
Retrieving a ·Record

Updating a Record
Updating Last Record Retrieved

Processing an ISAM File Sequentially
Initializing a Retrieval Sequence
RetrieV.ing Next Logical Record
Updating a Record
Terminating a Retrieval Sequence

ERROR AND EXCEPTION HANDUNG
Filenamec
Other Addressable Fields of the DTFIS File Table

PROGRAMMING EXAMPLE
Sample ISAM File Load· Program

;

12. IRAM FORMATS AND FILE CONVENTIONS

12.1. GENE.ff.AL
12.1.1. IRAM .Concepts

12.2. IRAM FILE CONVENTIONS AND.FORMATS
12.2.1. The Data. Partition
12.2.2. Entries in the Index Partition
12.2.3. Structure of IRAM Index
12.2.4. Estimating Disk Space Required for an Indexed

IRAM··file

Contents 7

(UPDATE)' 11-19
(VERIFY) 11-19
(WORK1 ,WORKS) 11-19

11-20
11-21

11-23
11-23

(OPEN) 11-24
··fCLOSE) 11-25

11-26
fSETFL) 11-27
(WRITE;NEWKEY) 11-28
{ENDFL) 11-30

11-31

(WRITE,:NEWKEY) 11-32

'"'(ADD) 11-34
(WAl=ff) 11-35

11-35
'(REAID,10 and
READ,iKEY) 11-36

. (WRITE·,'KEY} 11-38
(LI PDT) 11-40

11-40
(SETL) 11-42
(GET)' 11-44
(PUT} 11-46
(ESETtf 11-48

11-49
11-49
11-49

11-50
11-50

12-1
12-1

12-3
12-3
12-3
12-6

12-9
12.2.5. Estimating Disk Space Required for. a Nonindexed IRAM File 12-12

......

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENfi. ·

13. FUNCTIONS AND OPERATIONS OF IRAM

13.1,,
13.1.1.
13.1.1.1.
13.1.1.2.
13.1.1.3.
13.1.1.4.
13.1.1.5.
13.1.1.6.
13.1.2.
13.1.2.1.
13.1':2.2.
13.1.2.3.
13.1.2.4.
13.1.2.5.
13.1.2.~.

13.2.
13.2.1.
13.2.2.
13.2.3.
13.2.4.
13.2.5.
13.2.6.
13.2.7.

13.3.

13.4.
13.4.1.
13.4.2.

13.4.3.
13.4.4.
13.4.5.
13.4.6.
13.4.7.
13.4.8.
13.4.9.
13.4.10.
13.4.11.
13.4.12.
13.4.13.
13.4.14.
13.4.15.
13.4.16.

13.4.17.
13.4.18.
13.4.19.

13.4.20.

13.4.21.
13.4.22.
13.4.23.

PROCE$~1NG NONINDEXED ,IRAM FILES.
Processing Sequential lRAM Files

Creating a Sequential IRAM .Fiie,
Extending a Sequential lRAM File
Adding Records to a Sequentiat<Fil~,
Retrieving and Updating Records in a Sequential IRAM File
Del~ting Records from a Sequential IRAM File
.Reprgan.izing a Sequential IRAM File

Processing Direct IRAM Files
Cr~qting a Direct IRAM File
Exter.ding a Direct IRAM File
Adding ;Records to a Direct IRAM File
Retrieving and Updating Recorqs in a Di:rect. IRAM File
Deleting Records from a Direct IRAM Fiie ·
:R~org~nizing a Direct IRAM File

PROCE.SSING INDEXED IRAM FILES
Creatjng an Indexed IRAM Fiie
Extending an Indexed IRAM File
R~1ri~ying and Updating in an IRAM File With Index Active
.Addi~g Records During Retrieval - Index Active
Retrjeval.tand Update When Index is Inactive
Deleting Records from an Indexed IRAM f.ile
Reorganizing an Indexed lRAM File

DEFINING AN OS/3 IRAM FILE

DTFl.;R KEYWORD PARAMETERS
Specifying File Accessing Options
Specifying the Addition of Records to JRAM.
Input File
Specifying the Buffer Si~e for IRAM' File
Specifying the End-of-File Handling Routine
Specifying Error Routines
Naming Main Storage Location for lndex·.Bl.ock Processing
Specifying the Index Area Length in Main Storage
Indicating Processing by Key
Identifying the 1/0 Area
Identifying an Additional 1/0 Area
Pointing to Current 1/0 Area
Naming a Place for Key Retrieval
Specifying Key Lengths for IRAM Files
Specifying Number of Bytes Preceding Keys
Suppressing a File Lock
Specifying Retrieval and Load Modes for Indexed· and
Nonindexed I RAM Files
Specifying Optional Files
Specifying Record Length
Locating Rela1ive.·.·P~sk Address for Pr:.ocessing
IRAM File by Relative Record Numbers
Verifying Ascending Record Key Order During
File Creation
Specifying the File Type
Updating Records
Verifying Output Records

•(DJ'FIR}

(ACCESS}

(ADD}
:('BFSZ}
(EOFA}
(ERRor
(INDA)
(INDS)
(INDX)

. (IOA1')
(IOA2)
(IORG}
(KARG}
(KLEN}
(KLOC)
(LOCK}

(MODE}.
(OPTN}
(RCSZ}

(SKAD}

(SOCK)
(TYPE)
(UPDT)
(VRFY}

Contents 8

13-1
13-2
13-2
13-3
13-3
13-3
13-5
13-5
13-5
13-5
13-6
13-7
13-7
13-8
13-8

13-9
13..-10
13-11
13-11
13-12
13-13
13-14
13-14

13-15

13-18
13-18

13-19
13-19
13-19
13-19
13-20
13-20
13-20
13-20
13-21
13-21
13-21
13-21
13-22
13-22

13-22
13-22
13-23

13-23

13-23
13-23
13-24
13-24

UP-8068 Rev. 4

13.4.24.

13.4.25.

13.4.26.

13.5.

13.5.1.
13.5.2.
13.5.3.

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Specifying File Processing With One Volume
On line at a Time
Specifying Input or Output Record Processing in
a Work Ar~a
Nonstandard Forms of the Keyword Parameters

IRAM KEYWORD PARAMETERS:- DD.JOB CONTROL
STATEMENT SUPPORT ONLY
Variable Sector Support for IRAM .Files
File Recovery Support for IRAM Files
Automati.c. Computation of Initial Allocation
Percentages for IRAM Files

13A. MIRAM FORMATS AND FILE CONVENTIONS

13A.1. GENERAL
13A.1.1. MIRAM Concepts

13A.2. MIRAM FILE ORGANIZATION
13A.2.1. The Data Partition
13A.2.2. Entries in the Index Partition
13A.2.3. MIRAM Index Structure
13A.2.4. Retrieving Records from an Indexed MIRAM File./.
13A.2.5. Estimating Disk Space Required for an Indexed MIRAM File

(VMNT)

(WORK)

(VSEC)
(RECV)

(AU'fO)

13A.2.6. Estimating Disk Space Required for a Nonindexed MIRAM File

138. FUNCTIONS AND OPERATIONS OF MIRAM

138.1. GENERAL

138.2. PROCESSING NONINDEXED MIRAM flLES
138.2.1. Creating a Sequential MIRAM File
138.2.2. Extending a Sequential MIRAM File
138.2.3. Adding Records to a Sequential MIRAM File
138.2.4. Retrieving arid Updating :Records in a· sequential MIRAM File
138.2.5. Deleting Records from a Sequential MIRAM File
138.2.6. Reorganizing a Sequential MIRAM File
138.2.7. Creating a Relative MIRAM File
138.2.8. Extending a Relative MIRAM File
138.2.9. Retrieving and Updating Records in a Relative MIRAM File·
138.2.10. Deleting Records from a Relative MIRAM File
138.2.11. Reorganizing a Relative MIRAM File·

138.3. PROCESSING INDEXED MIRAM FILES
138.3.1. Creating an Indexed MIRAM File
138.3.2. Extending an Indexed MIRAM File
138.3.3. Retrieving and Updating Records in an Indexed .MIRAM File
138.3.4. Adding Records to an Indexed MIRAM File during RetrJeval
138.3.5. Deleting Records from an Indexed MIRAM File
138.3.6. Reorganizing an Indexed MIRAM File

138.4. DEFINING AN OS/3 MIRAM FILE (DTFMI)

Contents 9

13-24

13-24
13-25

13-25
13-26
13-27

13-28

13A-1
13A-2

13A-3
13A-3
13A-6
13A-7
13A-8
13A-9
13A-12

138-1

138-1
138-2
138-2
138-3
138-3
138-3
138-3
138-4
138-4
138-4
138-5
138-5

138-5
138-6
138-6
138-7
138-8
138-8
138-8

138-8

UP-8068 Rev. 4

13B.5.

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

DTFMI KEYWORD PARAMETERS
13B.5.1. Specifying File Accessing Options
13B.5.2. Specifying the Buffer Size for a MIRAM .file
13B.5.3. Specifying the End-of-File Handling Routine
13B.5.4. Specifying Error Handling Routines
13B.5.5. Naming the Main Storage Area for Index Block Processing
13B.5.6. Specifying the Index Area' Length in Main Storage
13B.5.7. Identifying the Primary Data Buffer
13B.5.8. Identifying the Secondary Data Buffer
13B.5.9. Pointing to the Current Data Buffer
13B.5.10. Specifying the Key Argument Field
13B.5.11. Specifying the Keys for an Indexed File
13B.5.12. Suppressing a File Lock
13B.5.13. Specifying Processing Mode for MIRAM Files
13B.5.14. Specifying Optional Files
13B.5.15. Specifying Type of Operations
13B.5.16. Specifying Record Control Byte
13B.5.17. Specifying Record Format
13B.5.18. Specifying Record Length
13B.5.19. Specifying Record Retrieval Purpose
13B.5.20. Specify the Location of the Relative Disk Address for

Processing a MIRAM File by Relative Record Numbers
13B.5.21. Verifying Output Records
13B.5.22. Specifying File Processing withAOne Volume Online

at a Time
13B.5.23. Specifying Record Processing~ in a Work Area
13B.5.24. Nonstandard Forms of the Keyword Parameters

13B6. MIRAM KEYWORD PARAMETERS - DD JOB CONT.AOL
STATEMENT SUPPORT ONLY

13B.6.1. Variable Sector Support for MIRAM Files
13B.6.2. File Recovery Support for MIRAM Files
13B.6.3. Automatic Computation ofJnitial Allocation Percentages

for MIRAM Files

(ACCESS)
(BFSZ)
(EOFA)
(ERHO)
(INDA)
(INDS)
(IOA1)
(IOA2)
(IORG)
(KARG)
(KEYn)
(LOCK)
(MODE)
(OPTN)
(PROC)
(RCB)
(RCFM)
(RCSZ)
(RETR)

(SKAD)
(VRFY)

(VMNT)
,(WORK)

(VSEC)
(RECV)

(AUTO)

14. NONINDEXED DISK FILE FORMATS AND CONVENTIONS ·

14.1. GENERAL

14.2. FILE ORGANIZATION
14.2.1. Partitioning DTFNI Files
14.2.2. Subfiles in DTFNI Partitions
14.2.3. System Standard Labels for Nonindexed Disk Files
14.2.4. Optional Standard User Labels
14.2.4.1. User Header Labels
14.2.4.2. User Trailer Labels

14.3. NONINDEXED FILE RECORD FORMATS
14.3.1. Fixed-Length Records
14.3.2. Variable-Length Records
14.3.3. Optional Key Fields With Nonindexed Files

Contents 10

138-13
138-13
138-13
138-13
138-13
138-14
138-14
138-14
138-15
138-15
138-15
138-16
138-16
138-16
138-17
138-17
138-17
138-18
138-18
138-18

138-19
138-19

138-19
138-20
138-20

138-21
138-21
138-21

138-21

14-1

14-2
14-3
14-3
14-4
14-5
14-5
14-6

14-6
14-7
14-8
14-10

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Contents 11

15. NONINDEXED FILE ACCESS METHODS: FUNCTION AND OPERATION

15.1. GENERAL 15-1

15.2. FUNCTIONAL DESCRIPTION, OS/3 SAM 15-3

15.3. FUNCTIONAL DESCRIPTION, OS/3 DAM 15-4

15.4. FUNCTIONS OF THE OS/3 NONINDEXED FILE ACCESS
METHOD 15-5

15.5. NONINDEXED DISK FILE DECLARATIVE MACROS 15-7
15.5.1. Defining a Sequential Disk File (DTFSD) 15-8
15.5.2. Defining a Direct Access Disk File (DTFDA) 15-11
15.5.3. Defining a Nonindexed Disk File (DTFNI) 15-14
15.5.4. Defining a Partition Control Appendage (DPCA) 15-16

15.6. KEYWORD PARAMETERS FOR DECLARATIVE MACROS 15-20
15.6.1. Specifying File Accessing Options (ACCESS) 15-21
15.6.2. WRITE,AFTER or WRITE,RZERO Macro Issue (AFTER) 15-21
15.6.3. Specifying Block Length (BLKSIZE) 15-22
15.6.4. Address for Routine on End-of-Input File or Partition (EOFADDR) 15-25
15.6.5. Handling Parity Errors on Sequential Disk Files (ERROPT) 15-26
15.6.6. Error Processing (ERROR) 15-26
15.6.7. Specifying Field for Return of Relative Disk Address (IDLOC) 15-28
15.6.8. Specifying the. Factor for Record Interlace (LACE) 15-30
15.6.9. Specifying Input/ Output Buffer (IOAREA1) 15-33
15.6.10. Specifying a Secondary Input/Output Buffer (IOAREA2) 15-34
15.6.11. Specifying Index Register for Current Data Pointer (IOREG) 15-34
15.6.12. Specifying Address of Argument for Key Search (KEYARG) 15-35
15.6.13. Specifying the Length of Record Keys (KEYLEN) 15-36
15.6.14. Specifying Address of Your Label Processing Routine (LABADDR) 15-37
15.6.15. Suppressing a File Lock (LOCK) 15-38
15.6.16. Specifying an Optional Sequential File (OPTION) 15-38
15.6.17. Specifying Address of Partitions for DTFNI Files (PCA) 15-39
15.6.18. Specifying Issue of a READ.ID Macro (READID) 15-40
15.6.19. Specifying Issue of a READ.KEY Macro (READ KEY) 15-40
15.6.20. Specifying Format of Records in Disc Files (RECFORM) 15-40
15.6.21. Specifying Size of Records in Blocked Disc Files (RECSIZE) 15-42
15.6.22. Specifying the Form for Relative Addressing (RELATIVE) 15-42
15.6.23. Specifying a Save Area for Contents of General Registers (SAVAREA) 15-45
15.6.24. Specifying Relative Disk Address for Random Processing (SEEKADR) 15-46
15.6.25. Assigning Initial Disk Space to a File Partition (SIZE) 15-49
15.6.26. Extending Key Search to Multiple Tracks (SRCHM) 15-50
15.6.27. Specifying Support of Subfiles in a Partition (SUBFILE) 15-50
15.6.28. Specifying Processing of User Trailer Labels (TRLBL) 15-51
15.6.29. Defining the Type of File (TYPEFLE) 15-51
15.6.30. Specifying Dynamic Extension of a File Partition (UOS) 15-53
15.6.31. Specifying Update Processing Mode for Sequential Files (UPDATE) 15-54
15.6.32. Specifying Register for Residual Space, Variable

Records (VARBLD) 15-54
15.6.33. Specifying Parity Check Verification of Output (VERIFY) 15-55
15.6.34. Specifying Sequential Processing in a Work Area (WORKA) 15-56
15.6.35. Specifying Issue of WRITE.ID Macro (WRITEID) 15-56
15.6.36. Specifying Issue of WRITE.KEY Macro (WRITE KEY) 15-57
15.6.37. Nonstandard Forms of the Keyword Parameters 15-57

........

........

UP-8068 Rev. 4

15.7.
15.7.1.
15.7.2.
15.7.3.
15.7.3.1.
15.7.3.2.
15.7.4.
15.7.5.
15.7.6.
15.7.7.
15.7.8.
15.7.9.
15.7.9.1
15.7.9.2.

15.7.9.3.
15.7.9.4.
15.7.9.5.
15.7.9.6.
15.7.10.
15.7.11.
15.7.11.1.
15.7.11.2.
15.7.11.3.
15.7.11.4.
15.7.11.5.
15.7.12.
15.7.13.
15.7.14.
15.7.14.1.
15.7.14.2.
15.7.15.
15.7.16.
15.7.17.
15.7.18.

15.8.
15.8.1.

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

IMPERATIVE MACROS FOR NONINDEXED DISK FILES
Opening a Disk File
Closing a Disk File
Processing Optional User Labels

Creating Optional User ·Labels
Retrieving or Updating User Labels

Accessing a Selected File Partition
Processing Subfiles Within a Partition
Initializing Position of a File or Partition
Forcing End-of-Volume Procedures
Setting File Processing Mode
Output of Sequential Disk Files

Creating a Sequential Disk File
Updatin·g and Extending an Existing Disk
File Processed Sequentially
Extending an Existing DTFSD Output File
Output of Blocked Records, Sequential Disk Files
Output of Sequential DTFNI Files With Keys
Optional Sequential Input Files

Output of Short Variable Blocks to Sequental Disk Files
Random Output of Records to Disk

Creating a Random Disk File by Sequential Load
Selecting and Initializing a New Track
Recording the Logical End-of-File
Creating or Updating Blocks by Relative Disk Address
Rewriting Randomly Retrieved Blocks to Disk

Retrieving Records From Sequentially Processed Disk Files
Skipping Records in Sequentially Processed Input Blocks
Random Retrieval From Direct Access Files

Random Retrieval of Records by Relative Disk Address
Direct Retrieval and Updating of Input Blocks by Key

Controlling Disk Head Movement to a Track
Waiting on Completion of 1/0 to Random Disk Files
Accessing the Current Relative Block Address
Positioning a File or Partition to a Relative Block Address

ERROR AND EXCEPTION HANDLING
FilenameC

16. SYSTEM RESOURCE CONTROL

16.1. DEVICE ALLOCATION AND FILE ASSJGNMENT
16.1.1. Use of Job Control Statements
16.1.2. Sample Device Assignment Set
16.1.3. Joi:> Control Deallocation Statement
16.1.4. Using the File Lock Feature
16.1.4.1. lnd~cating Which Files are Lockable
16.1.4.2. Setting File Locks for Data Files in BAL. Programs
16.1.4.3. Setting File Locks for Oata Files in .. Non.,Bal Programs
16.1.4.4. File Lock Feature Summary

16.2. RENAMING A DISK FILE

16.3. DYNAMIC DEALLOCATION OF A DISK FILE

16.4. DISC SPACE MANAGEMENT AND THE VTOC
16.4.1. Retrieving VTOC Information
16.4.1.1. Retrieving Specific Format Label Items

Contents 12
Update C

15-59
(OPEN) 15-62
(CLOSE) 15-63
(LBRET) 15-64

15-66
15-67

(SETP) 15-68
(SETS) 15-70
(POINTS) 15-72
(FEOV) 15-73
(SETF) 15-74
(PUT) 15-75

15-76

15-78
15-79
15-80
15-80
15-81

(TRUNC) 15-82
(WRITE) 15-84
(WRITE.AFTER) 15-86
(WRITE,RZERO) 15-88
(WRITE,AFTER,EOF) 15-89
(WRITE, ID) 15-90
(WRITE, KEY) 15-93
(GET) 15-94
(RELSE) 15-96
(READ) 15-97
(READ.ID) 15-99
(READ.KEY) 15-101
(CNTRL) 15-103
(WAITF) 15-105
(NOTE) 15-106
(POINT) 15-108

15-, 11
15-1 , 1

16-1
16-1
16-2

(SCR) 16-2
16-3
16-3
16-3
16-4
16-4a

(RENAME) 16-6

(SCRTCH) 16-8

16-11
(OBTAIN) 16-12

16-14

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

PART:.5 .. PAPER TAPE FILl;S

17.: PAPER TAPE DATA MANAGEM~.NT

17.1. GENERAL

17.2. HARDWARE AND PAPER TAPE CONSIDERATIONS
17.2.1. The Program Connector Board
17.2.1.1. Wiring the Program Connector for the Tape Punch
17.2.1.2. Wiring the Program Connector for the Tape Reader
17.2.2. Paper Tape Leader
17.2.3. Paper Tape Trailer

17.3. CHARACTER AND RECORD TYPES ON PAPER TAPE
17.3.1. Null, Delete, and Stop Characters
17.3.2. Letter and Figure Shift Characters
17.3.3. Record Formats in Paper Tape Files
17.3.4. lnterrecord Gaps in Paper Tape Files

17.4. PROCESSING PAPER TAPE FILES
17.4.1. Initializing a Paper Tape File
17.4.2. Terminating Paper Tape File Processing
17.4.3. Reading a Logical Record From Paper Tape
17.4.4. Punching a Logical Record into Paper Tape

17.5. DEFINING PAPER TAPE FILES
17.5.1. Basic DTFPT Keyword Parameters
17.5.1.1. Specifying File Type
17.5.1.2. Specifying Record Format
17.5.1.3. Specifying Block Size
17.5.1.4. Specifying Buffers, Work Areas, and

Double Buffering

17.5.1.5. Specifying Oversized Buffers
17.5.1.6. Specifying Register for Record Size
17.5.2. Specifying File Processing Mode
17.5.2.1. Highlights of Binary Mode Processing
17.5.2.2. Highlights of the Character Mode
17.5.3. Letter/Figure Shifting and Translation,

Input Files in Character Mode

17.5.3.1. Character Deletion, Input Files, in Binary
or Character Mode

17.5.3.2. Translation for Input Files Without Shifted Codes
17.5.4. Specifying the End-of-Tape Routine for Input Files
17.5.5. Translation and Letter/Figure Shifting, Output Files

17.5.5.1. Translation for Unshifted Output Files, Either Mode
17.5.6. Specifying the End-of-Record Stop Character for Output

Files
17.5.7. Specifying Optional File Processing
17.5.8. Providing a General Register Save Area
17.5.9. Data Management Error Processing, Paper Tape Files
17.5.10. Processing ASCII Paper Tapes

Contents 13

17-1

17-1
17-2
17-2
17-2
17-3
17-3

17-4
17-4
17-6
17-10
17-10

17-15
(OPEN) 17-17
(CLOSE) 17-18
(GET) 17-20
(PUT) 17-22 ..,.._
(DTFPT) 17-24

17-28
(TYPEFLE) 17-28
(RECFPRM) 17-29
(BLKSIZE) 17-29
(IOAREA1)
(10AREA2)
(IOREG)
(WORKA) 17-30
(OVBLKSZ) 17-33
(RECSIZE) 17-35
(MODE) 17-36
(MODE=BINARY) 17-36
(MOPE=STD) 17-37
(SCAN)
(LTRANS)
(FT;RANS) 17-39
(SCAN)
(TRANS) 17-45
(TRANS) 17-46
(EOFADDR) 17-49
(FSCAN)
(LSCAN)
(TRANS) I 17-50
(TRANS)· 17-58

(l:ORCHAR) 17-60
(OPTION) 17-62
(SAVAREA) 17-63
(ERROR) 17-65
(SCAN)
(TRANS) 17-70

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

17.6. COMPARISON OF OS/3 WITH OTHER PAPER
TAPE SYSTEMS

17.6.1. Compatibility with OS/4
17.6.2. Compatibility with the 9200/9300 Series
17.6.3. Compatibility with IBM System/360 DOS

PART 6. APPENDIXES

A. FUNCTIONAL CHARACTERISTICS OF PERIPHERAL DEVICES

B. ERROR AND EXCEPTION HANDLING

B.1. GENERAL

B.2. RETURN OF CONTROL
B.2.1. Error Handling with ISAM

B.3. SYSTEM ERROR MESSAGES
B.3.1. Data Management Error Messages
B.3.2. Disk Space Management Error Codes
B.3.3. Disk File Extension Error Handling

B.4. ERROR FLAGGING PROCEDURES
B.4.1. FilenameC
B.4.2. Other DTF Fields

C. CODE CORRESPONDENCES

C.1.

C.2.
C.2.1.
C.2.2.
C.2.3.

C.3.
C.3.1.
C.3.2.

C.4.

GENERAL

EBCDIC/ASCII/HOLLERITH CORRESPONDENCE
Hollerith Punched Card Code
EBCDIC.

ASCII

OTHER CARD CODES
Compressed Card Code
Column Binary (Image) Code

DATA CONVERSION

D. LABELS FOR DISK FILES

D.1.

D.2.
D.2.1.
D.2.2.
D.2.3.
D.2.4.
D.2.5.

GENERAL

VOLUME INFORMATION GROUP
VOL1 Label
Disk Format 4 Label
Disk Format 5 Label
Disk Format 6 Label
Disk Format 0 Label

Contents 14

17-73
17-73
17-74
17-74

B-1

B-1
B-2

B-2
B-2
B-10
B-12

. B-12

B-13
B-15

C-1

C-1
C-2
C-2
C-2

C-8
C-8
C-9

C-9

D-1

D-2
D-3
D-4
D-8
D-9
D-11

UP-~068 Rev. 4

D.3.
D.3.t

l

D.3.¢.
D.3.~.

D.4.
D.4.1.
D.4.2.

D.5.

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

FILE mlFORMATION GROUP
Disk Format 1 Label
Disk Format 2 Label
Dis~ Format 3 Label

OPTIONAL USER STANDARD LABELS
User Header Labels
User Trailer Labels

8413 DISKETTE FILE LABEL

E. MAGNETIC TAPE LABELS

E.1. OS/3 SYSTEM STANDARD LABELS FOR
MAGNETIC TAPE

E.2. SYSTEM STANDARD TAPE LABELS
E.2.1. Volume Label Group
E.2.2. File Header Label Group
E.2.2.1. First File Header Label
E.2.2.2. Second File Header Label
E.2.3. File Trailer Label Group
E.2.4. Standard User Header and Trailer Labels

E.3. ASCII STANDARD MAGNETIC TAPE LABELS
E.3.1. ASCII Character Code and Processing
E.3.1.1. Output Processing of Labels in ASCII Magnetic Tape Files
E.3.1.2. Input Processing of Labels in ASCII Magnetic Tape Files
E.3.2. OS/3 Processing of Certain Fields in ASCII Tape Labels
E.3.2.1. Accessibility Field
E.3.2.2. Label Standard Level Field
E.3.2.3. Expiration Date Field
E.3.2.4. Systems Code

E.4. PADDING

(HDR1)
(HDR2)

Contents 15
Update B

D-12
D-13
D-18
D-25

D-28
D-28
D-29

D-30

E-1

E-1
E-2
E-4
E-4
E-7
E-9
E-14

E-15
E-15
E-15
E-15
E-15
E-16
E-16
E-16
E-16

E-16

F. CONSOLIDATED DATA MANAGEMENT MIGRATION CONSIDERATIONS

F.1. WHAT DO I HAVE TO DO TO MIGRATE
TO CONSOLIDATED DATA MANAGEMENT?

F.2. MIGRATION REQUIREMENTS
F.2.1. BAL Programs
F.2.1.1. OS/3 Sequential DTF Mode to COi

Macro Converter (DTFCDl301)
F.2.2. RPG II Programs
F.2.3. 1968 American National Standard COBOL Programs
F.2.4. 1974 American National Standard COBOL Programs
F.2.5. FORTRAN Programs

INDEX

USER COMMENT SHEET

F-1

F-1
F-1

F-2
F-2
F-2
F-2
F-3

UP-8068 Rev. 4

FIGURES

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-1. Organization of Data on Typical Peripheral Devices
1-2. Magnetic Tape File Organization

2-1. Typical Card File Structure
2-2. Fixed-Length Unblocked Record Format for Input and Combined Card Files
2-3. Card Punch (Output File) Record Formats

3-1. Schematic Diagram of Card Flow Through 0604 Card Punch

4-1. Typical Organization of a Diskette Volume
4-2. Diskette File Record Formats

6-1. Typical Text Output Example
6-2. Sample Table Printout
6-3. Sample Forms Printout
6-4. Printer Record Formats

8-1. Reel Organization for EBCDIC Standard Labeled Volumes Containing a Single File
8-2. Reel Organization for EBCDIC Standard Labeled Tape Volume: Multifile Volume

With End-of-File Condition
8-3. Reel Organization for EBCDIC Standard Labeled Tape Volumes: Multifile Vo.lumes

With End-of-Volume Condition
8-4. Reel Organization for EBCDIC Nonstandard Volume Containing a Single File
8-5. Reel Organization for EBCDIC Nonstandard Multifile Volume
8-6. Reel Organization for Unlabeled EBCDIC Volumes
8-7. Label Configuration, ASCII Single-File, Single-Volume and Multivolume Sets
8-8. Label Configuration, ASCII Multifile Single-Volume Set
8-9. Label Configuration, ASCII Multifile! Multivolume Set
8-10. Label Configuration Options, ASCII Multifile, Multivolume Set, When

End-of-Volume and End-of-File Coincide
8-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC

10-1. The Two Partitions of an Indexed OS/3 ISAM File: Cylinder Formats of the Index

10-2.
10-3.
10-4.

10-5.

10-6.
10-7.

Partition and the Data Partition
Fixed-Length ISAM Records, With and Without Keys
Variable-Length ISAM Records, With and Without Keys
Layout of ISAM Da~a Blocks (Prime or Overflow) on Disk, Each Containing
Two Logical Records
Schematic Diagram of ISAM Records Chained Into Logical Sequence After Adding
Records to the File
Format of Full OS/3 ISAM Index Blocks
OS/3 ISAM File Structure

10-8. Blocks of an ISAM Top Index on Disk and Corresponding INDAREA Table
in Main Storage

10-9. Logical Aspect of an ASAM File Containing Not More than One Record Chained
in Overflow From Any One Prime Data Record

10-10. Logical Effect of Successively Adding Three Records in Overflow, Chained From
Same Prime Data Record of an ISAM File

Contents 16
Update A

1-4
1-8

2-2
2-2
2-4

3-20

4-2
4-5

6-3
6-4
6-4
6-6

8-3

8-4

8-5
8-6
8-7
8-8
8-10
8-11
8-12

8-13
8-14

10-4
10-6
10-7

10-9

10-10
10-12
10-13

10-17

10-20

10-21

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-1.
12-2.
12-3.
12-4.
12-5.
12-6.

IRAM Data Records With and Without Keys
IRAM Data Records Spanning Disk Sectors on a Fixed Sector Disk
Typical Fine-Level Index Block of Three Sectors
Typical Coarse- or Mid-Level Index Sector
IRAM Index Partition
Typical Search of 4-Level IRAM Index

13A-1. MIRAM Characteristic Data Record Formats
13A-2. MIRAM Data Record Slots Spanning Physical Block or Sector Boundaries
13A-3. Fine-Level Index Block
13A-4. Coarse- or Mid-Level Index Block
13A-5. MIRAM Index Partition

14-1. Organization of a DTFNI Disk File Into Partitions and Subfiles
14-2. Fixed-Length Physical Record Formats, Nonindexed Disk Files Without Keys
14-3. Variable-Length Physical Record Formats, Nonindexed Disk Files Without Keys
14-4. Keyed Fixed- and Variable-Length Physical Record Formats, Nonindexed Disk Files

Contents 16a
Update A

12-4
12-5
12-5
12-6
12-7
12-8

13A-4
13A-5
13A-6
13A-7
13A-8

14-4
14-8
14-9
14-12

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Contents 17

15-f.
15-2.

17-1.
17-2.

17-3.

17-4.

17-5.

17-6.

17-7.

17-8.

17-9.

17-10.

17-11.

C-1.
C-2~
C-3.

D-1.
D-2.
D-3.
D-4:
D-5.
D-6.
D-7.
D-8.
D-9.
D-10.
D-11.
D-12.
D-13.
D-14.
D-15.
D-16.

E-1.
E..:.2.·

E-3.
E-4.
E-5.
E-6.

Record Formats and 1/0 Area Contents for Nonindexed Disk Files,
Reading a Sequential Disk File With and Without Record Interface

Tape Leader, Paper Data File, and Tape Trailer
Undefined Paper Tape Record of Maximum Size for the File:
Relationship of Record Length to BLKSIZE Specification
Undefined Output Record for Standard Mode Paper Tape File in 1/0
Area and as Punched on Tape
Relationships of Record Length, Work Area Length, and 1/0 Area Length
to BLKSIZE Specification and Content of RECSIZE Register for an Undefined
Record Input From Paper Tape With Shifted Codes
Undefined and Fixed, Unblocked Records Followed by lnterrecord Gaps in
Output Paper Tape File, Either Processing Mode
Undefined and Fixed, Unblocked Records Followed by lnterrecord Gaps in Input
Paper Tape Files, Standard Processing Mode
Fixed, Unblocked Record Followed by lnterrecord Gap in Input Paper Tape File,
Binary Processing Mode
Shifted, Undefined Records as They Appear on Paper Tape and in User Work Area:
Input File, Character Mode (MODE=STD)
Shifted, Fixed, Unblocked Records on ·Paper Tape and in Work Areas: 'Input File, 'Character
Mode (MODE=STD)
Relationships of Logical Record Length, Work Area Length, and 110 Buffer Length
to the BLKSIZE and OVBLKSZ Specifications for a Fixed, Unblocked Record Input From
Paper Tape With Shiftetl Codes
Portion of ASCII Punched Paper Tape, Showing Correspondence Between Hole
Patterns and the Bits of the ASCII Code

Compressed Card Code
Column Binary (Image) Card Code
96-Column Card Punch Codes

VTOC Volume Information Label Group
VTOC VOL 1 Label
Disk Format 4 Label
Disk Format 5 Label
Disk Format 6 Label
Disk Format 0 Label
File Information Group Label Chain
Disk Format 1 Label
Disk Format 2 Label, Nonindexed Files (DTFSD, DTFDA, 'DTFNI)
ISAM (DTFIS) File Information Area, Disk Format 2 Label
IRAM/MIRAM File Information Area, Disk Format 2 Label
Library File Information Area, Disk Format 2 Label
Disk Format 3 Label
Optional User Standard Header Label
Optional User Standard Trailer 'Label
8413 Diskette File Label Format

Tape Volume 1 (VOLHLabelFormat fo{a'tfEBCDIC yolurT'le
First File Header Label (HDR1) Format for an EBCDIC Tape Volume ·
Second File Header Label (HDR2) Format for an EBCDIC Tape Volume
Tape File EOF1 and EOV1 Label Formats
Tape File EOF2 and EOV2 Label Formats
Optional User Header and Trailer Label Format, ASCII and Standard Labeled EBCDIC
Tape Files

15-24
15-31

17-3

17-6

17-7

17-9

17-11

17-12

17-13

17-14

17-15

17-33

17-71

C-8
C-9
C-11

D-2
D-3
D-5
D-8
D-10
D...:.11
D-12
D-13
D-19
D-20
D-20
D-21
D-26
D-28
D.:..29
D-30

E-3
E-5
E-8
E-10
E-12

E-14

......

......

......

UP-8068 Rev. 4 SPERRY UNIVAC OS/i3
BASIC DATA MJXNAGEMENT

E-7.
E-8.
E-9.
E-10.
E-11.

Volume Header Label (VOL1) for an ASCII Magnetic Tape·\(olume
First File Header Label (HDR1) for an ASCII Magnetic Tape Volume
Second File Header Label (HDR2) for an ASCII Volume
First End-of-File or End-of-Volume Label (EOF1 /EOV1) for an ASCII Volume
Second End-of-File or End-of-Volume Label (EOFUEOV2) for an .ASCII Volume

TABLES

3-1. Summary of Keyword P13rameters for the DTFCD Macroinstruction

5,...1. VFB Statement Specification and lnterchange13bility

7-l. Device-Independent Control Character Codes
7-2. Overflow and Home Paper Cortrol Charact~r Codes
7-3. Summary of Keyword Parameters for DTFPR Macroinstruction.
7-4 . Device Skip Code Table

9-1. Summary of DTFMT Keyword ~arameters
9.-2. Variants of DTFMT Keyword Parameters Accepted in OS/3
9-3. Effects of Job Control VOL and LBL. Statements .on Data M<:magement.OP~N

Transient, Standard Labeled Tape Files
9-4. Summary of Imperative Macros. Used with. Magnetic Tape SAM

11-1. Imperative Macro Calls for Processing an OS/3 ISAM File With an .lnd~x Structure,
Listed by Functiol'.'ls

11-2. Imperative Macro Calls for Processing a Nondirectory.OS,/3. ISAM File Witho!Jt
an Index Structure, Listed by Functions

11.,-3. Keyword Parameters of the DTFIS Declarative Macroinstruction
11-4. Summary of Filename-Addressable Fields in DTFIS File Table

12-1. Disk-Dependent Factors for Calculating Size of Top-Level Index for an IRAM File

13-1. Summary of DTFIR Keyword Parameters

13A:-1. Disk-Dependent Factors for Determining Disk Space Requirements

13B-1. Summary of DTFMI Keyword Parameters

15-1. Summary of Keyword Parameters for DTFSD Macroinstruction
15-2. Summary of DTFDA Keyword Pfirameters ,
15-3. Summary of DTFNI and DPCA Keyword Pararn~ters
15-4. IOAREA 1 Contents
15-5. Relative Disk Address (ID) Returned After a READ ·or WRITE

Macroinstruction When IDLOC Keyword Is Specified
15-6. Record Formats for Nonindexed Disk Files
15-7. Summary of All Declarative Macro Keyword Parameters Used With the

Nonindexed File Processor System
15-8. Summary of Imperative Macroinstructions for Processing Nonindexed Disk Files
15-9. Use of IOREG Keyword Parameterfo.r Processing. Blqcked or Unbl9cked

Input Disk Files Sequentially Witb GET Macro.

Contents 18

E-17
E-19
E-21
E..,.23
E..,.25

3-13

6-11

7-6
7-8
7-14
7-22

9-4
9-30

9-37
9-44

11-3

, 1-4

1 l-21
11-49

12-13

13~16

13A-13

13B-10

15-9
15:...12
15.,..17
15.,..25

15:-2S
15-41

15-58
15-61

15-95

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

16-1.

17-1.
17-2.

A-1.
A-2.
A-3.
A-4.
A-5.
A-6.

B-1.
B-1A.
B-2.
B-3.

C-1.

D-1.
D-2.
D-3.
D-4.
D-5.
D-6.
D-7.
D-8.
D-9.
D-10.
D-11.
D-12.

E-1.
E-2.
E-3.
E-4.
E-5.
E-6.

E-7.
E-8.
E-9.
E-10.

E-11.

File Lock Summary

Summary of DTFPT Keyword Parameters
Significance of Bits in filenameC, Paper Tape Files

SPERRY UNIVAC Card Reader Subsystems Characteristics
SPERRY UNIVAC Card Punch Subsystems Characteristics
SPERRY UNIVAC Printer Subsystems Characteristics
SPERRY UNIVAC Disk Subsystems Characteristics
UNISERVO Subsystems Characteristics
SPERRY UNIVAC 0920 Paper Tape Subsystem Characteristics

OS/3 Data Management Error Messages
Data Management Error Message Subcodes
OS/3 Disk Space Management Error Codes
Significance of Bits in filenameC

Cross-Reference Table: EBCDIC/ASCII/Hollerith

Contents of VOL 1 Label
Contents of Disk Format 4 Label
Contents of Disk Format 5 Label
Contents of Disk Format 6 Label
Contents of Disk Format 0 Label
Contents of Disk Format 1 Label
Contents of Disk Format 2 Label
Contents of Indexed File Information Area, Disk Format 2 Label
Contents of IRAM/MIRAM File Information Area, Disk Format 2 Label
Contents of Library Information Area, Disk Format 2 Label
Contents of Disk Format 3 Label
Diskette File Label Description

Tape Volume 1 (VOL 1) Label Format, Field Description for an EBCDIC Volume
First File Header Label (HDR1), Field Description
Second File Header Label (HDR2), Field Description
Tape File EOF1 and EOV1 Labels, Field Description
Tape File EOF2 and EOV2 Labels, Field Description
Optional User Header and Trailer Labels, Field Description for Standard Labeled
Tape Files
Volume Header Label (VOL 1), Field Description for an ASCII Volume
First File Header Label (HDR1), Field Description for an ASCII Volume
Second File Header Label (HDR2), Field Description for an ASCII Volume
First End-of-File or End-of-Volume Label (EOF1 /EOV1), Field Description
for an ASCII Volume
Second End-of-File or End-of-Volume Label (EOF2/EOV2), Field Description
for an ASCII Volume

Contents 19
Update C

16-4a

17-27
17-66

A-2
A-3
A-4
A-9
A-10
A-11

B-3
8-9
8-11
8-13

C-3

D-4
D-6
D-9
D-10
D-11
D-14
D-21
D-23
D-24
D-25
D-27
D-31

E-4
E-6
E-9
E-11
E-13

E-14
E-18
E-20
E-22

E-24

E-26

PART 1. OS/3 DATA MANAGEMENT

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1.1. THE FUNCTION OF DATA MANAGEMENT

1-1

1. Introduction

As you know, data processing programs produce desired results by accepting data as
input, processing the data as appropriate, and outputting the results of the processing
performed.

Because most data movement and retrieval operations are inherently the same, regardless
of the application involved, generalized, preprogrammed data management packages have
been developed to assist you in performing these tasks.

The degree of assistance you receive from these packages depends on the insight into
your problems by data management developers and the success they achieve in providing
you with the most flexible and convenient data management aids possible. The extent to
which you can inform the data management system of the characteristics of your data and
the specific function you want performed on that data is also integral. Therefore, it is
necessary to establish conventions to communicate, or interface, with your data
management system.

Data management services available to you, the programmer, via OS/3 are varied, flexible,
and powerful. Descriptions of these services and conventions for using them go well
beyond the scope of what a language manual can and should contain. Hence, this and
other manuals dealing exclusively with this subject are provided to facilitate your use of
OS/3 data management.

1.2. BASIC AND CONSOLIDATED DATA MANAGEMENT

Until recently, the only method of data management available under OS/3 was DTF
(define-the-file) or basic data management. The programmers' means for interfacing with

, this data management system is through certain declarative and imperative macros related
directly to the device from which data is being retrieved or to which data is being moved.

Now under OS/3, another method of data management is available: CDI (common data
interface) or consolidated data management.

t

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-2
Update A

Consolidated data management generally provides all the services basic data management
does, and then some. The single major difference is that MIRAM (multiple indexed random
access method) files are the only disk files supported by consolidated data management.

Consolidated data management can best be described by answering the following
question: What does consolidated data management provide that basic data management
doesn't? The answers are:

• A single uniform set of declarative and imperative macroinstructions

With basic data management, you must use a specific declarative macroinstruction
(DTF) to define your file and the method used to access that file: DTFMT for a
magnetic tape file, DTFPR for a printer file, DTFIS for an ISAM disk file, and so on.
Also, with basic data management; the imper~tive macroinstructions are not the
same for all types of access methods. Different instructions are used to perform the
same functions. For example, to write a record to a tape file· you must use a PUT
instruction. To write a record to an ISAM file, you must use a WRITE,NEWKEY
instruction.

Consolid~ted data management, .on the. other hand, has a uniform set of declarative
and imperative macroinstructi;ons that you use to define· and process all types of files.
There are two declarative macroinstructions. These are the CDIB and RIB instructions.
The CDIB instruction identifies the file and the RIB instruction describes the file
characteristics and processing requirements. The consolidated data management
imperative macroinstructions are also the same for all types of files. For example, if
you want to write a record, you use the DMOUT instruction regardless of the. file type.

• Control structures cannot be modified

The control structures for each basic data management DTF macroinstruction are
generated and maintained within your program region. As a result, these structures
ca.n be inadvertently modified and compromise the integrity of the file.

Consolidateddata management eliminates this problem because all control structures
it uses are, generated and maintained outside of your program region. As a result, you
cannot inadvertently modify these control structures. This preserves the integrity of
the file and prevents the distortion of any action taken on that file by data
management. The CDIB and RIB macroinstructions generate parameter passing
structures that are used to communicate information to data management.

• A single file access method for all disk files

Basic· data management supports a variety of disk access· methods: SAM, DAM, ISAM,
ASAM, and so.,on. Thus, you are faced with a decision each time you want to use a
disk file. You must decide how you want to process the file and then select the access
method that meets your needs or is required by the programming language you
intend to use.

Consolidated data management uses one single disk access ,method, MIRAM, which
provides all the functions provided by the various basic data management disk access
methods. As a result, you only have to decide how you want to process the file.

UP-8068 Rev. 4

111 Enhanced file sharing

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-2a
Update A

With basic data management a file can be shared; that is, it can be used by more
than one program at a time. This sharing, however, is limited because several
programs can read from the file at the same time, but only one program can write to
the file.

Consolidated data management, however, allows complete flexibility; more than one
program can read from or write to the file at the same time.

111 Interactive capabilities

Basic data management does not support interactive capabilities.

Consolidated data management, however, supports a wide range of interactive
capabilities. These allow you to: enter or display data from a workstation; create
workstation screen formats that aid you in entering data or presenting output data;
and develop and include dialogs (question and answer sessions) in your program. In
addition, consolidated data management also supports interactive services that allow
you to operate your jobs from a workstation, perform housekeeping tasks, and
communicate with other workstations in your system.

• A high degree of device independence

Device independence means that, at program execution time, you can change the
type of device used for a file in your program by changing the job control device
assignment set for that file.

This is not possible with basic data management because changing the device type
requires changing the file definition, recompiling and relinking your program, and
changing the job control stream before you can execute it with a different device.

With consolidated data management, a high degree of device independence is
possible whenever you are processing records sequentially. This is possible because
device assignment takes place when the file is opened based upon the job control
device assignments. As a result, you can change the device that a file is processed on
by changing the job control device assignment set for that file. The file you have
defined must be compatible with the types of devices you want to use. For example, if
you define a file that has an 80-byte record size, the records can be output to a card
punch, printer, tape, disk, diskette, or workstation. If, on the other hand, you define a
file that has a 200-byte record size, the records can be output to a tape, disk, diskette,
or workstation. However, they cannot be output to a card punch or printer without
truncating the data because of the physical limitations of these devices. In addition to
your files being compatible, your program must also be compatible with the devices
you want to use. This means you cannot have any instructions in your program that
are device dependent such as random operations when using a disk or diskette, forms
control operations when using a printer, or screen management operations when
using a workstation.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-3
Update A

Use of a particular data management mode is specified at systems generation time. The
capabilities just described are provided when consolidated data management (CDI mode)
alone or in combination with basic data management (CDl/DTF mixed mode) is specified.

This manual specifically describes basic data management. For more detailed information
on consolidated data management, see the consolidated data management concepts and
facilities, UP-8825 (current version) and the consolidated data management macro
language user guide/programmer reference, UP-8826 (current version).

If you want to migrate to consolidated data management, see Appendix F. This appendix
describes the migration requirements for programs written in BAL, RPG II, 1968 American
National Standard COBOL, 1974 American National Standard COBOL, and FORTRAN.

t

UP-8068 Rev. 4

1.3. DATA STRUCTURE

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-4

The structural entities recognized by OS/3 data management are illustrated in the
following diagram:

The hierarchy shown is not always followed exactly. The volume concept is not truly
applicable to printers or card devices. On disk, diskettes, and magnetic tape, a file may
sometimes be larger than a volume. A record may sometimes be equal to a block, or a
field equal to a byte. Figure 1-1 illustrates the organization of data on typical peripheral
devices.

A FILE COMPRISES ONE OR MORE SPANS
OF TRACKS ON ALL SURFACES OF PACK

BLOCK FIELD '-.. fl D I I ii
t

RECORD

DISC PACK

D

NOTE:

The set of tracks at a specific
radius on all recording surfaces
is called a cylinder.

Figure 1-1. Organization of Data on Typical Peripheral Devices (Part 1 of 2)

UP-8068 Rev. 4

FILE

SPERRY UNIVAC OS/3.
BASIC DATA MANAGEMENT

FIXED SECTORS

DISKETTE

RECORD=ONE LINE OF PRINTING

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0

PRINTER.

BLOCK

0
0
0
0
0
0
0

0
0

1-5

i
.______.___,_..:,.__,_ii · D ? __

t
RECORD

VOLUME

MAGNETIC TAPE

I I I

I I

I I

RECORD

FILE

PUNCHED CARD

Figure 1-1. Organization of Data on Typical Peripheral Devices (Part 2 of 2)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-6

1.3.1. Definition of Terms

The following is a brief list of terms and definitions to assist you in understanding the
general description of data management in this section:

block
The portion of a file transferred into or out of main storage by a single access.

buffer
An area in main storage for handling a block,of data. Must not be smaller than
the blocks to be handled.

direct addressing
Retrieving a specific block or record from disk storage by a single access, using
numeric values given in a field.

extent

field

file

A set of contiguous tracks on disk assigned exclusively to one file. Several
extents may be required to provide space enough for a file.

One or more contiguous characters, normally comprising a single unit of
information.

A delimited storage space having an identifying file name; useful for subdividing
the entire data mass into manageable groups. Also, the data residing in such a
storage space.

partition
A file subdivision, which is required to have uniform block specifications. OS/3
data management provides partition-relative block addressing, and individual
partition extension capabilities.

pointer
A field containing a value for direct addressing. In indexed sequential access
method (ISAM) files, data management introduces pointers between records to
provide for maintenance of logical sequence of records.

record
The collection of contiguous characters designated by the user to data
management as such, for handling as a unit. Record size must not exceed block
size.

volume
The largest physical unit for data storage, such as a tape reel or disk pack.

UP-8068 Rev. 4 SPERRY. UNIVAC OS/3,: 1-7
BASIC. .DATA. MANAGEMENT

1.3.2. Punched Card Files

A punched· card file ,consists of a card deck, input Via a, reader, or output via a punch:
Records 'can.comprise either a portion of a ca.rd or a complete card, The records are made
up of. fields of related characters. Punched card files must be treated as sequential fries
(handled one record at a time in ,sequential ,order).

You must not confuse a deck of. cards to be handled as .a ·data, management card file with
control stream cards or with data cards embedded in control streams. You mwst pface the
data management deck in the card reader when there is a console message calling for
assignment of the reader to the program. You may begin the deck immediately with a data
card, but you must end it with an end-of-data card (/*). You cannot place an end-of-data
card within the deck.

Details.of punched card records and files are presented in Section 2.

1.3.3. Diskette Files

Diskette files are sequential, unblocked files processed similarly to card files. In fact,
diskettes are intended as rapid replaceme.nt media for card processing equipment. Each
diskette is a single-sided, single plate disk with tracks containing fixed sectors. Records
are recorded on the tracks, one record per sector. (Sections 4 and 5 discuss the diskette in
more detail.)

1.3.4. Printer Files

Printer files include standard text, listings, forms, and similar printed quptut.The files qre
composed of individual records that are formed in an output area or work area by your
program and then output to the printer in increments of one record (line). The file is
output, character by character, in C3 serial manner. When the printer buffers are loaded,
the line is then printed. This process repeats, each line in succession, until the entire file
is printed. A printer record can also contain certain control characters which, although
part of the output record, are not printed. The control characters allow you to advance· the
paper to a home position, specify a procedure in case of overflow, or select a number of
lines to be skipped by the printer. Section 6 gives details on printer files and ·records;·
Section 7 describes the uses of control characters.

1.3.5. Magnetic Tape Files

Magnetic tape Jiles are also sequential files,. and can span more than one volume· (reel).
Each magnetic tape file is ide,ntified by two file header labels; each volume of the file has
a volume label. Because most magnetic tape files can be read in both a forward and
backward direction, the file labels are placed both at the beginning. and at the end of each
of these file levels.

UP-8068 Rev. 4 ' SPERRY UNIVAC 1 0S/3
BASIC'DATA MANAGEMENT

1-8

Figure 1-2 illustrates the relationship of the various elements of a magnetic tape file. The
volume label (VOL 1) has a standard system format that describes the contents of the tape
volume. The two'. file header labels (HDRl and HDR2) also are in a standard system· format.
User header labels (UHL), which are optional, may be ina standard format or ·one that you~
as .a user, c<;m 1structure. A tape mark is next in the sequence, and acts as a delimiter to
indicate that data blocks or records follow .. After the data, another tape mark, two end-of­
volume (EOV) labels, optional user trailer labels (UTL), and two more tape marks are
provided as delimiter$. A complete description of the magnetic tape file organization and
conventi'ons isi:presented in .Section 8; Appendix E describes the labels for magnetic tape
files.

LEGEND:

VOL1
HDR1
HDR2
UHL
EOV1
EOV2
UTL

TAPE MARK

Volume Label

v
0
L

H .H
D D
R R

2

File Header Label 1
File Header Label 2

(J

H
L

User Header Labels (optional)
End of .Volume Label
End of Volu'me ·Label
User Trailer labels (optional)

i
DATA BLOCKS

TAPE MARKS

~
E
0
v

~·\ u
T

V L
2

< DIRECTION OF MOVEMENT, FORWARD READ

Figure 1 :-2. Magnetic Tape File· Organization

Provisions for qisk files differ from those for sequential devices in that there are several
data management programs from which to choose. You implement your choice by
selecting, one of several operation codes at the point in your program where the DTF
(define the file) procedure (proc) is coded. You must consider the services offered by the
programs to determine which is best suited to your needs for the particular file. (There is a
certain amount of overlap in the services available, so it is possible for you to meet a
particular need through either of two programs.) The desire for rapid storage and retrieval
is usually paramount. In this context, several considerations are pertinent:

• Is seareh-by.;.key needed?

• Is appending new data to a series satisfactory, or are insertions necessary?

• Are direct addressing or sequential access, or both necessary?

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-9

• Is reading or writing blocks sufficient, or is assista nee with records needed?

To satisfy these questions, detailed descriptions of the disk file services are'presented i:n
Sections 11 through 13.

1.3.7. Paper Tape Files

Punched (or perforated) paper tape files are handled at the logical record level by a paper
tape data management system described in Section 17. The system provided by: OS/3
includes macros, transients, and processing modules with which you can define paper
tape files amd read and write data on paper tape. Translation and letter/fi~;ture shifting'
capabilities are provided.

1.4. PROGRAMMING FOR DATA MANAGEMENT

All users of OS/3 must employ the conventions established for designating existing files
and new files in the job control stream. In using data management, you must also code
appropriately in your BAL program.

• By issuing a DTF declarative macroinstruction provided by data management, you
cause a DTF table to be created in a data area. By using keyword parameters, you
describe the file and provide addresses of buffers and work spaces. You must also
indicate your desire to handle all returns inline, or you must give the address of your
routine for accepting co~trol when errors or exceptions occur.

• By using ordinary assembler instn.ictions, you must reserve sufficient amounts of
main storage buffer space and workspace, and you must provide the error/exception
routine.

• By issuing imperative macro instructions provided , with each access method, you
request data management to perform specific file-processing functions.

• You must realize that general registers 0, 1, 14, and 15 are loaded by the imperative
macroinstructions before the contents of your registers are saved. You cannot afford
to have vita I data in these registers when you call on data management.

• You must provide a 72-byte register save area. The address of this area can be placea
in the DTF by specifying the SAVAREA keyword para'meter, common, fo all DTFs.
Failing to do this, you must provide the address in register 13 when you enter each
data ma nagemen't imperative macro. ,

• The storage area you specify with the SAVAREA·keyword parameter is often useful to,
examine in snaps or 'dumps of your program region. It comprises 18 full words, the
first three of which are used by data management. Following these is a display of full
words for 15 of the general registers, presented in the following order: 14, 15, 0, 1, 2, ~

and so on, through 12. Register 13 is not included.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1.5. 0$1.3 .OATA MANAGEMENT ENHANCEMENTS

1-10

OS/3 data management departs from traditional data management systems in several
areas.

1.5.1. ISAM Files

In OS/;3 ISAM files, inserted .records are placed in overflow blocks, forming chains
betvve.en indivi,dual prir:ne records. This causes all data records to remain where originally
placed and eliminates time consuming record pushdown. Moreover, the stability of records
makes it possible to offer direct addressing to, every record, a convenience for those who
can benefit from this feature.

The ISAM program can also operate on files where the key index structure is never
formed. This precludes the use of keyed instructions, 1but leaves the rest of the repertoire
operative. The ISAM load is still effective for file creation. The resulting file is then
susceptible to $equential and direct access without keys.

Eliminating the index does not preclude the ability to insert records. The position for
insertion cannot be reached by a key search. However, both direct access and sequential
prngression are available to reach any record so that a new record may be inserted after it.

1.5.2. SAM and DAM Files

The flexibility of sequential access method (SAM) and direct access method (DAM)
pr9c~ssjng has been augmented in OS/3 by provision of a DTFNI macroinstruction and
processing module. This module supports an extended repertoire of imperative
macroinstructions applicable to a file described by the DTFNI macroinstruction.
Combinations of SAM and DAM imperative macroinstructions may be used; NOTE and
POINT imperative macroinstructions are provided. There is also provision for partitioning a
file, using different block specifications for each partition. These are supported by
partition-relative block addressing.

1.5.3. IRAM Files

The inde)(ed random access method (IRAM) is an access method in OS/3 for handling disk
files and is intended for use by programs written in RPG II language, the sort, and data
utilities. The functionality of IRAM is equivalent to that provided by OS/3 ISAM and
ASAM, and by the OS/3 nonindexed access disk methods SAM and DAM (relative record
addressing); however, those modules (ISAM, ASAM, SAM, and DAM) are considerably
larger. The IRAM processor cannot access disk files that have been. created by other
acc~ss r:netf:lods nor can IRAM files. be processed by other 0$13 disk access methods.

UP-8068 Rev. 4

1.5.4. MIRAM Files

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-11

The multiple indexed random access method (MIRAM) in OS/3 is used for handling
sequential, relative, and indexed files in programs. These programs' are written in the
OS/3 version of the 1974 American National Standard COBOL, and for sequential and
relative (direct) files' in programs that are written in FORTRAN IV. MIRAM provides the
same functions as those provided by OS/3 ISAM, ASAM, IRAM, SAM, and DAM disk
access methods. The MIRAM processor can access only MIRAM and IRAM characteristic
files that it has created or IRAM files created by the IRAM processor. It cannot access disk
files that have been created by other access methods nor. can MIRAM files be processed
by other OS/3 disk access methods. MIRAM files, however, can be processed by using the
sort/merge and data utilities programs.

1.5.5. Error and Exception Returns

OS/3 data management differs somewhat from other data management systems in its
method of returning control to your program. Control is always returned, whether or not
an error or exception has been detected. A reply field is always set to indicate the nature
of the exception. If the function is executed with no defects, control is always returned
inline to the instruction following the macro call. If you provide the address of an
error /exception routine in your DTF macro instruction, control is returned to that address
on all occurrences of errors or exceptions. In the absence of this address, all returns are
made inline (register 14 always contain the inline return address). Appendix B describes
the error and exception handling features of OS/3 data management.

Because data management interprets a zero value in the DTF error field of the DTF file
table as the nonexistence of an error routine, you must not locate your error routihe at
location 0 relative to the load module.

Errors occurring during file extend operations are always associated w.ith inability to
acquire output space for a buffer and consequent loss of output data. On' extend failure
errors, file extend procedures now minimize loss of output 'data to one record.

1.5.6. Disk Flexibility and Hardware· Constraints

The obligation to handle disk devices with different characteristics has influenced the
design of OS/3 data management. It was considered desirable that the disk file processing
modules should be independent of the disk type used and should present the same
interface to you. As a result, OS/3 data management requires, throughout, that all bfocks
in a track or partition be uniform in size and format. On the fixed-sector disk devices, it is
also necessary that all blocks be multiples of 256 bytes. Furthermore, span.ned records
(those extengjng beyond a block boundary) are not supported.

Consequently, during sequential blocking of records, block filling continues until a
submitted record will not fit in remaining block space. At that point, the full-size block is
written to disk, and the rejected record is used to begin the next block.

t

t

UP-8068 Rev. 4 SPERRY UNIVAC 'OS/3
BASIC DATA MANAGEMENT

1-12

The fixed-sector disk does not provide an RO record for identifying the portion of track
devoted to usefu I data. Furthermore, the hardware search interrogates the first n bytes of
every 256-byte sector. These characteristics cause some restrictions of relative"'track:DAM
functions. When employing the WRITE,AFTER macro, you must fill each track because the
unfilled portion is: not identified. When employing keyed operations, you must use a block
size of, 25·6 bytes; otherwise, false internal hits could be made in blocks of 512 bytes and
other multiples of 256 bytes.

1.5. 7. Shared Data Management Modules

Under OS/3, all data management modules are shared-code modules. There is only one
data management module for each access method and when a particular access method is
requested by a program, one copy of the corresponding module is loaded into main
storage. This module is then used or shared by all programs requesting the same access
method.

1.6. DATA MANAGEMENT /USER INTERFACE

The interface between you and data management consists of:

• Declarative macroinstructions

• Imperative macroinstructions

1.6.1. Declarative Macroinstructions

Your program must inform the system of the parameters, special conditions, current
status, and. options pertaining. to a file. You must include a declarative (file definition)

.macroinstruction for each file required by your program. As implied by the term
declarative, these macroinstructions generate nonexecutable code, such as constants and
storage areas for variables. Therefore, you should separate these macroinstructions from
the inline file processing coding. The declarative macroinstruction and the selected
keyword parameters in the operand define the file. The first three characters of the
operation code must be DTF. The last two characters usually indicate the type of device or
metJ1od of accessing. A keyword parameter consists of a word or code immediately
followed by an equal (=) sign and one specification.

The format of the declarative macroinstruction is:

LABEL ~OPERA i:10N ~ OPERAND

filename DTFcc keyword-1 =x, ... ,keyword-n=z

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-13.

The symbolic name of the file must appear in the label field. The name can have a
maximum of seven characters and must begin with an alphabetic charact_er. The
appropriate DTF designation must appear in the ope.ration field. 'the ·keyword paraiileters
can be written in any order in the operand field and must be separated by co.mmas.
However, a comma must neither be coded in column 16 of a continuation line nor follow
the last keyword of a string. Appropriate assembler rules regardir:ig macroinstruc.tions
apply to blank columns and continuation statements. Register numbers are.specified to the
data management declarative macroinstructions (DTF) by enclosing ther numBer in
parentheses. Certain DTF parameters can be changed at run time via the data definition
job control statement (DD). (See Tables 3-1, 7-3, 9-1, 11-3, 13-1, 138-1, 15-1,
15-2, 15-3, and 17-1.)

The DTFs may have the following forms:

• DTFCD

Defines ·an input, olltput, or combined p'unched card file.

• DTFDA

Defines either an input or output direct access disk file.

• DTFIR

Defines input or output indexed or nonindexed IRAM disk files.

• DTFIS

.Defines an indexed sequential disk file.

• DTFMI

Defines an input or output indexed or nonindexed· MIRAM disk files:

• DTFMT

Defines an input, output, or in/out magnetic tap'e file;

• DTFNI

Defines a nonindexed input and output disk file·.

• DTFPR

Defines a printer outpu(file_,

• DTFPT

Defines an input or output paper tape file.

UP-8068 Rev. 4

• DTFSD

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Defines an input, putput, or combined sequential access disk file.

• DPCA

1-14

Similar to .a DTF macroinstruction, but defines a partition of a disk file rather than the
entire file.

1.6.2. Imperative Macroinstructions

Your program must be able to communicate with the data management modules in order
to process files that have been defined by declarative macroinstructions. Imperative (file
processing) macroinstructions included in ·your program communicate with the transient

__.... routines and logical IOCS shared-code modules. The imperative macroinstructions are
expanded as inline executable code. Not all macroinstructions are available for use on all
devices. Some are specifically input-type macroinstructions and cannot be used for a
device that is exclusively used for output; the opposite is true, also.

The format of the imperative macroinstruction is:

LABEL !J. OPERATION 8. OPERAND

[name] xx xx yyyy , ... ,zzzz

A symbolic name can appear in the label field. The name can have. a maximum of eight
charcters and must be·gin with an alphabetic character. The appropriate verb or code must
appear in the operation field. The positional parameters (as signified by the name) must be
written in the specified order in the operand field and be separated by commas. When a
positional parameter is omitted, the comma must be retained to indicate the omission
except in the case .of omitted trailing parameters. Appropriate assembler rules regarding
macroinstructions apply to blank columns and continuation statements.

1.6.3. Assembler Rules for Operand Field

The operand field of a macro instruction begins in column 16 and may not extend beyond
column 71. An operand may be continued onto the next line by inserting an arbitrary
nonblank character in column 72. Each continuation line starts in column 16.

The operand field is terminated by the first blank which is not enclosed ~within
apostrophes. As operand specification is usually completed before column 40, columns 41
through 71 are available for comments, but at least one blank space must occur between
the end of operand specification and the beginning of the comments.

UP-8068 Rev/ 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

1-15

Comments are not continued by the insertion of a nonblank character. in co'lumn 72.
Lengthy comments can be entered by coding an asterisk(*) in column 1. You will note the
applications of these rules in ·the programming examples throughout this nianual.
Operands may be contir.iued onto the next line by placing a comma after the last operand
on the first line and a nonblank character in column 72. However, if you omit the comma
and at least one blank exists between the last operand on the first line and the nonblank
character in column 72, the second line of operands is tre·ated as comments. Because the
second line is treated as comments and not as part of your operand specification, the
assembler does not .flag the missing comma as an error. Up, to. two, comment lines are
permitted.

1.7. RELATED OS/3 SOFTWARE

Several OS/3 software components are indirectly involved with data management, while
others perform functions related to and required for program operation. These components
include:

• System service programs (SSP)

• Job contra I

• Supervisor

• Linkage editor

• Data .utilities

1.7.1. System Service Programs (SSP)

Tne service progrc;ims provided to prepare disk anq magnetic tape file~ to accepJ data
records and blocks are the .disk prep .program and t~e magnetic tape prep program.

The d·isk prep routine performs a surface analysis for the disk trac.ks and assigns a.ltem~te
tracks if defects are discovered. The disk prep also establishes a volume table of contents
(VTOC) for .the device so that files can then be placed on the disk.

The magnetic tape prep routine prepares magnetic tape.s in ~tandard label format by
writing the initial volume label, dummy file header label, dummy file trailer label, and tape
marks.

O~her system service programs include dump routines in non-nar.rative or naftrative:
formats. The SYSDUMP and JOBDUMP routines provid~ the reside11t shared-code.
directory and the preamble EXTRN table in narrative format.

These routines are described in detail in the system service programs (SSP) user guide,
UP-8062 (current version).

t

UP-8068 Rev. 4

1:.7.2. Job Control

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT·

The main functions of job control, as related to data management, are:

• Allocation of required peripheral devices

• file control block (FCB) management

• Catalog management allowing automatic identification of files by name

• Loading printer vertical format buffer (VFB) and load code buffers

• Defining software facilities (SFT) needed to support the user program

• Modifying. DTF specifications at run time··(DD)~

1-16

Peripheral devices are assigned through job control statements that specify logical unit
numbers, alternate device types, and information about the file. These job control
statements include:

11 DVC Statement assigns device number.

I I VOL Statement describes tape and disk volumes.

I I EXT Statement provides disk extent information.

I I LBL Statement provides additional tape and disk identification information:·

I I LFD Statement links the file defined by the DTF macroinstruction with the file and
device information in the control strea'm. ·

Each .part of this manual that deals with a particular access method or device: type
provides you with job control stream examples that illustrate the relationship between data
management entries coded for program assembly and the job control stream statements
that ·control the prograrri.

A separate file control block is maintafned automaticallyin main storage for each active
file. This block contains all descriptive information about the file and is used for reference
when the file is being accessed.

OSl3 automatically loads the data management modules needed by your job. However, if
you have written your own shared-code modules, you must use the SFT job control
statement to identify and load these modules. SFT statements are effective only during the
job step in which they are specified.

For details on OSl3 job control, refer to the job control .user guide, UP-8065 (current
version).

UP-8068 Rev.4

1. 7 .3. Supervisor

SPERRY. UNIVAC .QS/3
BASIC DATA MANAGEMENT

1-17

The ~supervisor provides the greatest amount of support for the user program and data
management. This support includes the following:

• Pl.OCS

Those macroinstructions and routines that schedule and monitor execution of channel
programs, controlling the actual transfer of physical records between external ·sources
and main storage. These routines also provide for. device .1/0 error recovery ..

• Transient scheduling

The routines that retrieve transients from auxiliary storage and bring them into main
storage for execution. These include file open and close routines.

• Operator communication

The routines that handle the communications concerning volume mounting requests,
tape mount requests, etc.

• File protection

Protection of files and records during shared file processing.

• Timer services

Used as a reference for computing run time, scheduling, etc.

• Disk space management

Routines for allocating space to disk files and maintaining space accounting through
standard procedures for updating the volume table of contents (VTOC).

• System Access Technique (SAT)

An input/output control systems that provides a standard interface for tape and disk
subsystems between OS/3 data management and the PIOCS.

For details concerning the supervisor, refer to the supervisor user guide, UP-8075 (current
version).

1. 7 .4. Linkage Editor

The linkage editor is a system service program that constructs a load module from object
modules. The linkage editor control statements that define the load module are contained
in the job control stream beginning with a LOADM control statement and terminated by
another LOADM control statement or by an end of data (/*) job control statement. For
details concerning the linkage editor, refer to the system service programs (SSP) user
guide, UP-8062 (current version).

UP-8068 Rev. 4

1.7.5. Data Utilities

SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

1-18

,The OS/3 data utility and service routines are provided to assist you iri manipulating data
files and preparing card decks. Your use of these routines requires only a minimum
amount of programming effort. You simply code the appropriate job control statements,
together with utility and data statements or control specifications, to exchange information
with OS/3, submit parameters, and start your job.

:fhe OS/3 data utilities and service routines are described in detail in the data utilities
user guide/programmer reference, UP-8069 (current version):

PART 2. CARD, DISKETTE, AND PRINTER FILES

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
B.ASIC DATA MANAGEMENT

2-1

2. Card Formats and File Conventions

2.1. GENERAL

This section describes the data formats and file conventions that apply to the card reader
and card punch subsystems supported by the SPERRY UNIVAC 90/30 System and the
OS/3:

•
•
•
•
•

SPERRY UNIVA~ 0604 Card Punch Subsystem

SPERRY UNIVAC 0605 Card Punch Subsystem

SPERRY UNIVAC 0716 Card Reader· Subsystem

SPERRY UNIVAC 0717 Card Reader Subsystem

SPERRY UNIVAC 0719 Card Reader Subsystem

For the functional characteristics of 'these subsystems, refer to Appendix A.

2.2. FILE ORGANIZATION

.Your punched card decks may include a start-of...:data job control card at the beginning and
must include an end-of-data job control card at the end of the card deck (Figure 2-1). ,
Punched card files can be input (card read), output (card punched), or combined
(read/punched).

The basic punched cards for subsystems supported by OS/3 are standard 80-column, 12-
row rectangular tab cards. However, optional hardware features, available on both 0716
and 0717 card readers, allow reading of 51- and 66-column stub cards. The 0716· is
capable of reading 96-colu.mn cqrd data files.

ur--ouoo nev ... ~t"CMM T UNIVl-\1., U~/ ..:>

BASIC DATA MANAGEMENT

OPTIONAL
51-COLUMN
OR
66-COLUMN
FILE
(INPUT ONLY)

END-OF-DATA JOB
CONTROL CARD

START-OF-DATA JOB
i--- CONTROL CARD

•----END-OF-DATA JOB ____ ..,,

COMBINED FILE
(ALTERNATING DATA
AND BLANK CARDS)

START-OF-DATA

CONTROL CARD

1 TO n CARDS
EACH CARD IS
A SEPARATE
RECORD

i----JOB CONTROL CARD---~
(OPTIONAL)

Figure 2-1. Typical Card File Structure

2.2.1. Card Input Files

------,
I I

~ 1~~=====J DATA

---- - ---- -'
I

I

The card reader handles fixed-length unblocked records, which always have the same
length for your entire file. This length is equivalent to the value you selecte,d for the
BLKSIZE keyword parameter of the DTFCD macroinstruction when defining the file. Figure
2-2 illustrates the fixed-length unblocked format related to card input files; the same
format is used for combined files (8.2.3).

record n

A

NOTES:

1. The record length, A, must be an even number of bytes, at least as many as specified by the BLKSIZE keyword
parameter.

2. The 1/0 area must be aligned on a half-word boundary and comprise an even number of bytes.

3. When 51-column stub cards are processed, the BLKSIZE keyword parameter may specify a 51-byte length, but the 1/0
area must be 52 bytes in length. A work area may be 51 bytes long.

Figure 2-2. Fixed-length Unblocked Record Format for Input and Combined Card Files

UP-8068 Rev. 4

2.2.2. Card Output Files

SPERRY UNIVAC OS/3
~ASIC:. DA,JA MANAGEMENT

2-3

The card punch files (output) consist of data that is formed into· physical records, us'ually in
the 1/0 area, and then output to the card purich, where the records are' punched in the
standard 80-column format. The cards are then accumulated in a stacker, which keeps
them in sequence.

2.2.3. Combined Files

Combined read/punch files are allowed only where the optional read/punch f~ature is
installed as part of the card punch. This feature allows you to read cards and punch cards
in the same file (deck) on a single pass through the card punch. Reading and punching of
cards can be' accomplished in the following ways:

• Data can be read from a card then punched on the same card. This requires the
nonoverlap mode of processing (3.3).

• A card deck containing alternating punched and blank cards can be entered; each
punched card is read and data is punched on the blank card following. The overlap
mode of processing must be specified (3.3).

• Punched cards and blank cards can be grouped; the punched cards are then read, and
the following group of blank~~card is pun.ched with the new data. The overlap mode of
processing must be specified (3.3).

2.3. RECORD FORMATS

2;3.1. Start-of.;.Data Job Control Statement (/$)

Data management do'es not check for a start-of~data card. For consistency, you may
choose the /$ card convention as a card file .identification. If you do so, your program
should include a check for this card.

2.3.2. End-of-Data Job Control Statement (/*)

Data management checks for an end-of-data card when you are reading c::ards. The format
of this card is identical to that required by job control. The first two columns contain /*.
When this configuration is sensed, control is transferred to the end-of-file address
specified for the file. When an output file is punched, the end-of-data card is nof punched
by logical IOCS. You must supply the end-of-data card for input and combined files.

UP-8068 Rev . .4

2.3.3. Card Punch Records

SPERRY UNIVAC .QS/3
BASIC DATA MANAGEMENT

2-4

You may form card punch records either in the 1/0 area or in a designated work a.rea of
main storage. The records, illustrated in Figure 2-3, are of three types:

• Fixed-length records

• Variable-length records

• Undefined-length records

Eixed-Length

data

I
A

Undefined

data J~ I

A .. ~I
Variable-Length

I b I I u I data

A ----------------------..... ----...i

G

F --....

LEGEND:

b Block size field, four bytes

Record length. field, two bytes, binary
. .

u Reserved (tWo bytes); may be any two characters chosen by the user

A Data record length

C Variable record length

D Reco~d size field

F 1/0 area layout

NOTES:

1. An 1/0 area must be so aligned that the first character to be punched falls on a half-word boundary.

2. Record length, as a binary number, must be placed in the first two bytes of the record length field (r) before punching a variable­

length, unblocked record.

3. An even number of bytes should be allocated for data in 1/0 areas, even though an odd numberof columns are to be punched.

The 1/0 areas for a file with an odd block size should provide at least block size+1 bytes.

Figure 2-3. Card Punch (Output File) Record Formats

UP-8068 Rev. 4

3.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENr

3-1

3. Fune.lion and Operation .of
Punched Card SAM

The OS/3 includes data management modules that you can use to move and manipulate
sequential access method (SAM) card reader files, card punch files, and combined
(read/punch) files. These modules allow you to configure your program for each particular
application and related device types.

This section contains a brief functional description of punched card SAM operation for
input files, output files, and combined input/output files. Following the functional
description is a detailed explanation of the declarative macroinstructions that define the
three types of files. The section concludes with detailed descriptions of the imperative
macroinstructions that initiate, conduct, and terminate file processing.

3.2. FUNCTIONAL DESCRIPTION

3.2.1. Punched Card Input

The card reader is a unit record device and is connected to the integrated peripheral
channel or to the multiplexer channel, if several relatively slow peripheral devices are to
share 1/0 jointly. The punched card file comprises data in the Hollerith punched card code
(Appendix C). The cards are usually divided into fields; these files, in turn, are combined to
form physical records.

You define, to the system, the type of file, structure of the data, and the operating
environment in which your file will be processed through a define the file (DTFCD)
declarative macroinstruction. At system installation, the system macro library file
(YMAC) is loaded with source code modules that are common to several machine
operations. These modules include data management modules that are common to several
device types and access methods.

When assembling the program, you define the files (input, output, or combined) used in
the operation through the DTFCD macroinstruction. The source modules for the particular
data management operation are called in from the macro library during program assembly
by using imperative macroinstructions which place the modules in your program as inline
code. Each macroinstruction available for punched card file processing is described in
detail in 3.3 and 3.4.

UP-8068 Rev. 4

3.2.2. Punched Card Output

SPERRYUNIVAC OS/3
BASIC :DATA MANAGEMENT

The punched card output records are constructed in the 1/0 area or a designated work
area. Processing. data . an? creating an output on punched cards are similar to the
procedure described in 3.2': 1 except that the CNTRL macroinstruction can be used with the
0604 Card Punch Sub~ystem (0604 card punch).

;' ' ~

If the punched card deck is to be inserted in a program, you must punch a start-of-data
(/$) job control card and an end-of-data (/*) job control card and add these to the
beginning and end of the punched card deck.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA ~MANAGEMENT

3.3. DEFINE A SAM CARD FILE (DTFCD)

Function:

3-3

DTFCD
{card)

The DTFCD declarative macroinstruction is required for you to define punch card files
that are accessed by OS/3 SAM. Following is a listing, in alphabetic order, of the
required and optional keyword parameters that might appear in the operand of the
DTFCD macroinstruction. A summary of the keyword parameters is provided in Table
3-1.

A comma is shown preceding. each.keyword parameter except tbe first, to remind you
that all keywords coded in a string must be separated by commas. However, a comma
must neither be coded in column 1-6 of a continuation line, nor follow the last
keyword in the string. Refer. to the coding examples which follow:

Format:

LABEL ~OPERATION~

filename DTFCD

OPERAND,

[ASCll=YES]
[,AUE=YES]
[,BLKSl~E=n]
[,CONTROL=VES]
[!CRDERR=RETRY]
[,EOFADOR=symbol]
[,ER~OA=symbol] ..
,IOAREA1=symbof
[, 19AR ~A2~symbol]
[,IOREG~(r)]

r~~=n~:AN:yiJ
[,0,PTI QN:;::V~sj
[,O~LP~YES]
[,OTB.L=symbol] .
[,OUB~KSZ=n]

[

,RECFORM= ~ UNDEF lJ
l VARUNB

~R ECSI ZE= { ~) }]
[,SA VAR EA=symboll

[,STUBe=·mJJ

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

LABEL !:J. OPERATION !:J. OPERAND

filename
(cont)

DTFCD

Keyword Parameter ASCII:

ASCII YES

[

TYPEFLE= l]
OUTPUT

. CMBND

[,WORKA=YES]

3-4

Specifies processing in American Standard ·Code for Information Interchange
(ASCII).

For input files, you must specify this parameter if you desire your card data to be
translated into ASCII code for internal processing and storage.

For, output files, you must specify this parameter if internal processing is: in ASCII and
you desire output in Hollerith punched. card code (Appendix· e).

The keyword parameter MODE should be written as MODE==STD if this parameter is
supplied.

Keyword Parameter AUE:

AUE==YES
Inhibits data management . error processing when validity check errors are
detected on nonbinary .ir}put files.

In punched card input files, a v·alidity check error (also termed a unique unit error) is
the occurrence of more th~n one punch jri ·rows 1 through 7 of any column in a card,
and usually indicates a mispunch. ~Each frme a validity check error is detected, the
operator receives a PIOCS message at the system console indicating the problem. The
card containing the error is the: lasf card in the stacker. The operator has three
options: He can place the error card in the input hopper and reply "R" to reread the
card, or he can reply "I" or ''UH, to indicate that the error is to be ignored or is
unrecoverable. If you have specified AUE ·YES, and the operator replies "I" or "U",
data management does not bran.ch to your error routine. The error card is skipped (not
passed on to the user).

On the other hand, if you do not specify AUE==YES and a validity check error is
detected, data management branches·· to your error routine if the operator replies "U".
When your error routine receives control, data management will have set the unique
unit error flag (byte 0, bit 2) of filenameC in your DTFCD file table. Refer to Appendix
B. Data management ignores the AUE· keyword parameter if 8413 diskette files are
used.

Keyword Parameter BLKSIZE:

BLKSIZE==n
Specifies the length of the 1/0 area in bytes. If the records in a file are variable
length, n specifies the maximum ::size for records. For variable, unblocked records,
n includes the block size aria rec9rd ·1ength fields.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

3-5

The user can specify BLKSIZE=1 to BLKSIZE=96 to read from 1 to 96 columns of
a 96-column card.

A user program that specifies BLKSIZE=1 to BLKSIZE=80 can read from 1 to 80
columns of 96-column cards. A program that has·a BLKSIZE of 1 to 80 and that

· has been used with 80-column cards, in any mode except binary, can read 96-
column cards with no program changes.

A program that specifies BLKSIZE=1 to BLKSIZE=96 to the DTFCD ··proc call can
be used to read up to 96 columns of a 96-column card. Such a program can also
read up to 80 columns of 80-column cards. The DMCS Will blank out (insert the
appropriate blank character, based on data;mode) bytes in the user's 1/0 and
work areas for columns beyond 80. At OPEN time, DMCS checks for 80-column
cards being read:with BLKSIZE ·from 81 :to 96. If such a condition exists, a
message is issued to the operator with a required reply:

If omitted, the block size is determined from the keyword parameters MODE,
RECFORM, and STUB.

Keyword Parameter CONTROL:

CONTROL. YES
Specifies that your program will issue one or more CNTRL imperative macros to
control stacker selection on the 0604 card punch; used only for output or
combined card files.

The use of the CNTRL macro, which applies n·either to input card files nor to' the 0605
card punch, is explained in 3.4.4. If you ·specify CONTROL=YES in the DTF for an
input file, the parameter is ignored, and a diagnostic message is printed in the DTF
expansion in your assembly listing.

Keyword Parameter CRDERR:

CRDERR=RETRY
Specified if card punch error recovery should be attempted on hole-count errors
for 0604 and 0605 combined read/punch files. or oh the 0604.card punch output
files with stacker selection. Error cards· are ·automatically selected. into the error
select stacker. If ·error recovery is not successful; the logical IOCS returns control
to the address of the user's error routine (ERROR). If keyword parameters
CRDERR and ERROR are not specified, the card system returns fo your program
inline when a punch error (hole count error) is encountered. See 3.6.2.

Error recovery is provided for hole-count errors on 0604 combined read/punch card
files, 0604 card output files with stacker selection, and punch check errors on 0605
combined read/punch card files; If the 8413 diskette is used, the CRDERH=RETRY
parameter is ignored.

Keyword Parameter EOFADDR:

EOFADDR=symbol
Specifies the address to which control is transferred when the end-of-data card
is sensed. This keyword parameter is required for all input and combined files.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

3-6

Keyword Parameter ERROR:

ERROR=symbol
Specifies the address of your error handling routine. When a fatal, hardware or
detectable logical error occurs on .a file, you may have control transferred to a
special error handling routine. If not specified, errors return inline (see 3.6 and
Appendix B).

Keyword Parameter IOAREA 1: ,

IOAREA1=symbol
Specifies the address of an 1/0 .,area that each input or output file must have
reserved ,for its individual use. Keyword parameter IOAREA 1 specifies the input
area for a combined file; IOAREA2 must also be used to specify the combined
file's output area. 1/0 areas must contain an even number of bytes for data to be
punched or read. Odd numbers of columns can be read or punched. If the
BLKSIZE specification is an odd ;number of bytes, the 1/0 areas must be at least
BLKSIZE + 1 bytes long; this means, for example, if you are using all of the 51-
col umn stub card and have therefore specified BLKSIZE=51, that the length of
the storage area you define for IOAREA 1 must be 52 bytes. The first data byte
(character read or to be punched) must be aligned on a half-word boundary. The
length of the area is specified by the keyword parameter BLKSIZE.

Keyword Parameter IOAREA2:

IOAREA2=symbol
May specify a secondary d/0 area for standby processing; must be used to
·specify the output area for a ~ornbined file. ·vou rnust allocate 1/0 areas that
provide an even number of bytes of data. The first data byte must be aligned on a
half-word boundary.

Keyword Parameter IOREG:

IOREG=(r)
Specifies the number of the general register (2 through 12) used to reference
current ,data. If SAVAREA is specified, register 13 may be used for IOREG. If a
work area is not required, this keyword parameter must be specified when there
are two 1/0 areas. This parameter may not be .specified if either a work area or a
combined file is specified, through the DTFCD macroinstruction. Do not specify
WORKA if this parameter is specified;

Keyword Parameter ITBL:

ITBL=symbol
Specifies the addr~ss of the 256.~byte translation table in your problem program
when records in an input or combined file are to be translated on input. If the
keyword parameter MODE=TRANS is specified, the keyword parameter ITBL
must also be specified.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

3-7

Keyword Parameter MODE:

This keyword parameter is used to specify the input/output mode of the file and is
required as part of the DTFCD macroinstruction. There are ·four forms of the keyword
parameter which can be used with all types of files~

MODE=BINARY
This form is used for cards read on the card re·ader in binary· mode or for cards
read or punched on the card punch in column binary (image) mode. An 1/0 area
of 160 bytes is required for one 80-column card.

The binary mode is not -available for 96-column cards. This parameter is ignored
if the 8413 diskette is used.

MODE=CC
On the card punch, this form must be specified for cards read or punched in
compressed code. An 1/0 '.area. of 80 bytes is required for one 80-column card.

MODE=STD
Should be specified for cards to be .read or punched in EBCDIC. This keyword
parameter: must be speeified if the ASOll=YES· ·j:>ararrieter is specified. If no
MODE keyword is supplied, this option is assumed.

MODE TRANS
You should specify this option to have cards read in EBCDIC and translated by ·
your ITBL translation table, or translated by your OTBL translation table and then
punched in EBCDIC. Each position of your 256-byte translation table contains a
bit-pattern you have assigned to it.

On reading a byte or card column in the record to be translated, data
management places into the receiving byte of '.your 1/0 area the bit-pattern it
finds .in tt:ie position of 'your translation table which corresponds to the ·position
which the bit- or hole-pattern to be translated occupies in Table C-1 (Appendix
C). For example, on reading 12-0-9-8 .. 1 hole-pattern, which occupies position 0
in the EBCDIC column labeled Hollerith Punched Card Code in Table C-1, data
management will place into your 1/0 area the bit-pattern it finds in position 0 of
your ITBL translation 'table. If you ·move to your 1/0 or Work area the bit-pattern
which occupies position 1 of your OTBL translation table, data management will
punch the hole-pattern (12-9-1.) which occupies position 1 in the EBCDIC column
labeled Hollerith Punched Card Code in Table C-1, and so on.

Do not use the Hollerith Punched Card Code column in the ASCII portion of Table
C-1 for this translation table feature.

Keyword Parameter OPTION:

OPTION=YES
Specifies· an optional file: one which you anticipate will not invariably be required
for every execution of your program.

UP-8068 Rev. 4 SPERRY, UNIVAC OS/3
BASIC DATA MANAGEMENT

3-8

When the OPTION keyword parameter is used, optional file processing is performed
by data management:

• if the OPT positi0r:tal parameter' is inch.Jded in your DVC job control statement
and the device is not avaialble at execution time; or

• when no device is assigned to the file by your job control statements (i.e., no
DVC-LFD device assignrnem set),

Optional file processing:

• For an input or combined file, which you issue a GET imperative
macroinstruction, data management branches to your end ... of;;.file routine
(EOFADDR). No cards are read. You should close the card file.

• For an output. or combined file, if you issue ·a PUT or a CNTRL imperative
macroinstruc;tion, data management disables these and immediately returns
control to your program at the normal point. No 1/0 is performed.

If you do not specify OPTION==YES, and one oLthe foregoing ·conditions occurs, the
file is not ppened. Data management branches "to your error routine, if you have
supplied one, or to the normal r:eturn point in your program if you have rtot. You will
not be able to perform further processing on the file.

Keyword Parameter .PRLP:

ORLP;==YES
May be specified for combined files processed· in overlap mode, when you are
using a card read/punch unit with the prepunch read station feature installed.

In the overlap mode, each GET o.r PUT macro processes a different card. Use this
. mode to read a card and then punch data on the following card; In the· nonoverlap
rnqde, you can r:ead and punch the· same. card. If you issue a GET macroinstruction,
you cause a card to. be read. If you issue a GET .macro and then a PUT macro, you
punch data on the same card that was read by the GET macro. In either mode of
operation" you can issue a series of ·GET macros or a series of PUT macros. Five
successive GET macros read five cards; Jive successive PUT macros p·unch five cards.

Three pO$Sible combinations for issuing GET and PUT macroinstructions are:

1. Alternating GET and PUT macroinstructions, when used with alternating
prepunched and blank cards, produce valid results if overlap is .specified. Each
GET macroinstruction applies to prepunched input data cards, and each PUT
macroinstruction applies to punching data into a blank card.

2. Multiple GET macroinstructions between single PUT macroinstructions, when
used with multiple prepunched cards between single blank cards,' prdduce .valid
results iJ, in every case, the number of GET macroinstructions·corresponds to the
number of prepunched cards between each. of the blanks that the PUT
macroi nstructions reference.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

3-9

3. Multiple GET and multiple PUT macroinstructions, when used with multiple
prepunched cards between multiple blanks, produce valid results if the number
of GET macroinstructions and PUT macroinstructions ''and the number of
prepunched and blank cards are consistent through the program.

Keyword Parameter OTBL:

OTBL=symbol
Specifies the address of the 256-byte translation table in your program when
records in an output or combined file are to be translated on output. A
translation table is required if the keyword parameter MODE=TRANS is
specified.

Keyword Parameter OUBLKSZ:

OUBLKSZ=n
Specifies the length (in bytes) of the secondary 1/0 area (IOAREA2) for a
combined file. If OUBLKSZ is omitted, the size of the output block is assumed to
be the same length as BLKSIZE.

Keyword Parameter RECFORM:

RECFORM, lti.BlllJ:i
Fixed-lengih unblocked records are assumed by the, logical IOCS when, this
keyword parameter is omitted. For input or combined files, this option
(RECFORM=FIXUNB) must be used.

RECFORM=UNDEF
Used for undefined records in output files only. You must specify the RECSIZE
keyword parameter when this option is used. If the 8413 diskette is used, this
parameter specification causes the generation of an invalid DTF field message,
DM61. :

>RECFORM=VARUNB
Used for variable-length, unblocked records in output mes only.

Keyword Parameter RECSIZE:

RECSIZE=(r)
Specified for output files with undefined record format; (r) indicates the number
(2 through 12) of the general register that holds the length of the output record.
The record size must be entered into the, general register before the PUT
macroinstruction is issued. If SAVAREA is specified, register 13 may be used for
RECSIZE.

RECSIZE=n
Specifies the record size in bytes used in conjunction with the BLKSIZE
parameter value. Data management uses both values to invoke multi-sector 1/0
operations in processing diskette files.

UP-8068 Rev. 4

Keyworq Parameter ,SAVAREA:

SAVAR,EA==symbol

SPERRY UNIVAC, OS/3
BASIC DATA 1MANAGEMENT

3-10

Specifies, the label of a 72-byte register save area, ~ligned on <;1 full-word
boundary. ,

Specified for each card file defined for a program. Only one user register save
area is needed for each program.

If you have a program written for the S~ERRY pNIVAC 9200/9300 Series, in which
register 13 is employed, it may be converted to :0$/3 ,specifications by adding a 72-
byte labeled save area (aligned on a full-word boundary) and by, specifying the
SAVAREA keyword parameter. Refer to 1.4 for the content of this area.

If SAVAREA is not specified, register 13 must be loaded with the address of a 72-byte
register save area, aligned on a full-word boundary, before any imperative macros are
issued.

Keyword Parameter STUB:

This keyword parameter is used with 0716, 0717, and 0719 card r~aders, and must
be supplied when the stub card read feature is to be used. If the 8413 diskette is
used, both the STU8==51 and STU8==66 parameter specifications are ignored.

STUB==51
The stub card read feature applies to cards with 51 columns.

STUB==66
The styb card read feature applies to cards with 66 columns.

The block size spec,ified (BLKSIZE==n) must be less than or equal to the number of
columns in the card; however, because of the requirement for an even number of
bytes in the length of the 1/0 buffer, you must reserve 52 bytes for the buffer in
defining it with a DC or DS statement in your program when you are rea~ing all
columns of a 51-:column stub card. ,

If omitted, standard 80-column cards are assumed.

Keyword Parameter TYPEFLE:

TYPEFLE-lilleif1
Pesc:;ribes an input file only. This option is assumed if this keyword parameter is
not specified.

UP-8068 Rev. 4

TYPEFLE=OUTPUT

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Describes an output file only.

TYPEFLE=CMBND

3-11

Describes the combined file when both the re()d and punch features .are to be
used.

Keyword Parameter WORKA:

WORKA=YES
Specified if 1/0 records are to be processed in a work area rather than in the 1/0
area.> The address of the current work area must be specified with each GET or
PUT macroinstruction. If this keyword parameter is specified, the keyword
parameter IOREG must not be specified.

The following are examples of coding" the DTFCD macroinstruction.

Examples:

LABEL 60PERATION6 OPERAND
10. 16 72 80

Fl:Le 'DEF:Z:

UP-8068 Rev. 4

Keyword

ASCII

AUE*

BLKSIZE**

CONTROL*

CR DERR*

EOFADDR

ERROR

IOAREA1

...:..

IOAREA2

IOREG

.J

ITBL

MODE

OPTION

ORLP

OTBL

OUBLKSZ

RECFORM**

SPERRY UNIVACOS/3
BA?IC DATA MANAGEMENT

3-12

Table 3-1. Summary of Keyword Parameters for the DTFCD Macroinstruction (Part 1 of 2)

Files
Specification Input Remarks

Output Cmbnd

YES x x x Specifies processing in ASCII; if used,
MODE=STD must be specified

YES x Skip cards containing validity check errors.

n x x x The maximum block size. in bytes
.

YES x x Specified if CNTRL macro is to be issued to file
.

-=-
RETRY x For card punch error recovery; if used,

CONTROL must no.t be specified

symbol R R End-of-file routine for input and combined files
. . -

symbol x x x Address of the user's unrecoverable error
routine

symbol R R R Address of input/output area; output area for a
combined file

.::_ ..

symbol x x x Address of alternate input/ output area; output
area for a combined file

(r) x x General register (2-13) that contains the
address of the current record when processing
in· two 1/0 areas. Omit WORKA=YES. Must not
be used for a. combined file

-".. _:.:_

symbol x x Address of input translate table; required when

•I
MODE=TRANS is specified

.

BINARY* y Y, y Specifies cards are to be read or punched in
column binary

cc y y y Specifies records are to be read or written in
compresed code

y y y Specifies records are to be read and written in
EBCDIC

TRANS y y -·· y
. . T

For records to be read or written in EBCDIC and
translated by the table specjfied in the ITBL or
OTBL entry, respectively

.. ..::.:
··~·

YES x x x Specifies an optional file

YES x Specifies that a combined file is to be processed
in an overlap ·mode

.

symbol x x Address of output translate table; required wben
MODE=TRAN_S is specified

n R Specifies the length of IOAREA2 for a combined
file

R y R For fixed-length records

UNDEF* y For undefined records

VARUNB y For variable-length records

UP-8068 Rev. 4 SPERRY l)NIVAC QS/3
BAS!Q DATA MA.NAGEMENT

3-13

Table 3-1. Summary of Keyword Parameters for the DTFCD Macroinstruction (Part 2 of 2)

Files
Keyword S pacification Input Remarks

Output Cmbnd
;. '· ..d:.. ...:.. ...:.....;;:;_ ...:...

RECSIZEt (r) x For undefined records; general register (2-13)
contains record size

n x x
I·

Specifies record. size in bytes and is. used with
Bl.:KSIZE·for multi-sector 1/0 on disketl~. : .

f
T T I

SAVAREA YES x x X, Specifie~ 74::-byt~ ·regist~r ,~ave area ..
...:..

STUB* 51 x 'Stub card reacf for .. 51-column cards

'
. 'l • .

66 x Stub card read for 66-column cards

TYPEFLE ·illll R ; ;For input files
~· ~ I -,- ':::- ;

OUTPUT R For output .files
.• -=- ..:;;,. _I_ '... '...:....:..'

CMBND. .,I R For<i::onioined read/punch file ·
--"-,., .. I•' I T

'
- I •• ; ~ T

WORKA YES x x x Records are to· be 'processed in work area. Omit
IOREG

LEGEND:

R Required
X Optional
Y One option required
*Not appliable for diskette files

**Parameter may be changed on DD job control statement.
1

tParameter may be changed on DD job control statement for diskette, only.

3.4. IMPERATIVE MACROINSTRUCTIONS

There are five imperative macroinstructions available to you for processing punched card
SAM files:

Maccoinstruction

OPEN
GET
PUT
CNTRL
CLOSE

File control
Record processing
Record_ pr,9eessing
Output and combined file record contr;ek~
File control

The following paragraphs provide you with a detailed description of these
macroinstructions, and provide- coding examples with explanattops, when requTred, to
clarify use. J.

t

UP-8068 Rev.'4

OPEN

SPERRY UNIVAC· OS/3
BASIC: DA TA MANAGEMENT

4 ~- ~ ,, ···~ ,,,, '• -

3-14

3.~J ... · Open a ~()rd S~M File (QPE~U

Function:

Before a file can be ciccess.ed by the logical IOCS, you must issue an OPEN
macroinstruction. The trans·ient routine called by the OPEN macroinstruction performs
certain validation chec~'s and initiate,s ti.le pr.ocessing ... A chec.k i$ made to defermibe.
that you have. suppl;ied .. au the necessary keyword parameters defining the file. The
device allocation performed by the· Job contr9I prograrn·is determined.

The actions performed by the OPEN transient routine depend on whether the file you
are· dealing with· is· an input or· an output file. F9r input files, the fir.st datci record is
QOL?Vaila.ble to YOlJ un~'fl .~ .. GET macroinstruction is js~ued. For outputfiles, no data is
written; however, the data area is· made available for use. Only one file per card
reader should be· ope,ry at any one time· during e,xecution of a'.··program.

Format:

LABEL Li OPERATION Li OPERAND

[name] OPEN

{

filename-1 [, ... ,filename-nl}
(1) .•

. 1

Positional Parameter 1:

filename
Is the label of the corresponding DTF macroinstruction in the program. The file
name may have a maximum of seven characters;· tHe maximum n'umbei<of file
names is 16.

(1) or 1

Example:

Indicates that register 1 has been preloaded.M/itfl the address of the dec,arative
macroi nstruction.

LABEL
1

.6.0PERATIONl(•';·
I

OPERAND
10 16

PEN

Enters the transient routines necessary to prepare the DTF macroinstructions whose
labels are INPUT, OUTPUT, and LISTING. Checks that they are prepared to access
these files with the next imperative macroinstruction (GET, PUT, etc.).

UP-8068 Rev. 4

3!4.3·. Output a Record (PUT)'

Function:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

3-17

PUT

The PUT macroinstruction delivers an output record to the logical IOCS in either the
output area or 'a work'. area specified by, you.

Data management delivers the records singly to your output peripheral device. A
general register (2 through 13) must be supplied (by means of the IOREG keyw0rd
parameter) when a standby area (IOAREA2) is specified and when no work area is
used. This register provides the l9gic;,al. IOCS 'with a place to put the a·aar;e.s:s of ,the
current output area. Records processecf in an 1/0 area can ·be referenced ~dfrectly by
means of the name you~nave given to tfl'at· area flOAREA1). The output ar'eas:a .. Fe(not
cleared after the current output data is sent to.the· device. Yo·u ·should exercise·care to
clear the area before use or to supply records, including blanks, which completely fill
the output area to the logical IOCS to prevent spurious char.a~ters from appe~uing.,in
the data.

When records are processed in a work area, the logical IOCS moves the record into
tpe 1/0 area. Tpis fr~es the. work ar~C;J for YC?Hr :isubsequent pr9cessing,,

vvhen punching a r.ecord cootaining a.n c;>~~f nymb~r of c.hjaract~rs, data. management
places a nonpunching character in the 1/0 area at the v~ry end of ttie data you
supplied. ·

Format:

LABEL /::,OPERATION/::, OPERAND

[name] PUT

Positional Parameter 1:

filename
Is the label of the corresponding DTF macroinstruction in the program.

(1) or 1
Indicates that register 1 has been preloaded with the address of the declarative
macro in st ruction.

Positional Parameter 2:

workarea
Is the label of the work area from which the record may be obtained.

UP-8068 Rev. 4

(0) or 0

SPERRY;· UNIVAC OS/3
BASICDATA MANAGEMENT

3-18

Indicates that register 0 has been preloaded with the address of the work area.

If omitted, indicates you have chosen processing either by means of a register (IOREG
keyword parameter) or by directly accessing the data relative,to the name of the 1/0
area.

NOTE:

When the work area is specified, the keyword parameter WORKA=YES must be present in
the DTF statement.

Ex~mple:

Programming Considerations:

• Variable-Length, Unt>,l9cked Recor9s

You must determine 'the siz~ 'of ·the output record a'nd must insert th'e size at the
beginning of the record before issuing the PUT macroinstruction. Record size includes
the 4.;.byte record length field: You may not access the first four bytes, which are
reserved for block size.

• Undefined Output Records

RECSIZE==(r) must be specified; you must determine and place the record size in this
register before issuing. ~ach PUT macroinstruction.

UP-8068 Rev. 4 SPERRY· ONIVAC ()S/3
BASIC DATA MANAGEMENT

3.4.4. Controlling Stacker Selection' on the Card Punch (CNTRL)

Function:

3-19

CNTRL

The CNTRL macroinstruction allows you tO control stack'er· sel'ection On the 0604 card
punch for ·OUtpUf or combined files:; In processing a combined file, you may read a
card, process tHe data .read frorn a card: and then select an outptJt stacker ··in
accordance with the data·on the same card. If you issl.le thEfCNTRL.imp~tative macro
iri your~ program,, ·you must specify the GONTROL keyword parameter in' the DTFCD
declarative macro (3.3). · · ·

The CNTRL macro is ignored if you issue it to a card file processed on the 0605 card
punch because its small error stacker is not designed for selecting cards.

Format:

LABEL Ll OPE RATION 6 OPERAND

[name] CNTR'l

{
·filename} ,SS [·~{··.·.· .. ·.·.·.·.·.·.'.· .. 1.· .. ·.······.·.: •••.. · .• }] (1) !;itlt .,
1 . ·-.

!

Positional Parameter 1:

filename
Is t.he label of the DTFCD declarative macro defining ther output or combined file.

(1) or 1
Indicates that ·yow have ,.,preloaded register 1 with the address of the DTFCD
declarative macro.

Positional Parameter 2:

SS
Specifies stacker selection on the 0604 card punch.

Positional Parameter ·3:

1
Specifies selection of the normal stacker.

Specifies selection of the select (error) stacker. If the third positional parameter is
omitted, specification of the select stacker is assumed~: If the third positional
parameter is specified, but is not specified as 1 or 2, specification of the normal
stacker is assumed; an error flag appears in your program listing.

UP-8068 Rev. 4 SPERRYUNIVAC:>OS/3
BASIC DATA MANAGEMENT

.. c3:4.4·.1. Using the CNTRL Imperative Macro

3-20

You issue the CNTRL macro after any PUT or GET imperative macro that punches or reads
the card you want to select, and before any PUT or GET macro that processes the
following card. If you fa,sue several ·G~J"RL; macros;. iA succes~jon, the ~last one you issue
controls which hopper the card goes into the next time card motion occurs.

A look at the following schematic diagram of card flow through the 0604 card punch may
b~ helpful. in visual:izing wt)atthe CNTRL macro does for \'.'Ol,.I. In Fi,gure 3---:-1, a card moves
fro'.m lett ·tq ~igh~;. frqm t~~ input hopper,· past the. optiopal prepunch read station, to the
punch statior:l~ It then passes into one of th~ two output h9ppers: either the. n9rmal stacker
or the sel~~Gt stacker, according to the position of the deflector. The 0604 card punch

. subsyste,m:itself automatically .geflects ~m?r ~ards into the select stacker; it is the oeflector
that can be controlled~by the CNTRL macros issued in your program.

INPUT
HOPPER

PREP UNCH
READ

STATION
(OPTIC?NAL)

PUNCH
STATION

D

DEFLECTOR

oZ1 r
\ I

D
POSTPUNCH

READ
STATION

SELECT NORMAL
STACKER STACKER

Figure 3-1. Schematic Diagram of Card Flow through 0604 Card Punch·

The normal sequence is that a card in the postpunch station passes into the normal
stacker when the following card enters the punch station; if you have set the deflector by
issuing the CNTRL macro, however, it passes into the select stacker when the card
following it moves (is fed or punched). Stacker. sel~ction-fo(C3 card that has gone through
the punch station thus takes effect when a macro is executed that moves the following
card - a GET or PUT macro, depending on file type and your processing.

When a card file is opened, then, cards passing the punch station are sent to the normal
output stacker until you issue:

• CNTRL filename,SS; or

• ·CNTRL filem~me,SS,2~ ,

UP-8068 Rev. 4 SPERRY .UNIVAC OS/3
BASIC DATA MANAGEMENT·

3-21

Then, the following imperative macro (GET or 'PUT) that causes card motion results in one
card being placed in the select stacker. If you do not issue any further CNTRL macros,
cards following the card that went into the select stacker are sent 'inta the normal stacker.
Thus, a CNTRL macro to send a card to the select stacker applies only to one card: To send
10 cards to the select stacker, you must issue 10 CNTRL macros, properly interleaved with
PUT or GET macros. Note that the CNTRL macro causes no card motion itself.

For an output file, each PUT macro causes a card to be fed into the 0604 card punch and
a card to be directed into an output hopper. You must issue the :CNTRL macro after the
PUT macro ;that punches the card you want selected and before yo'l.rr next PUT macro~·

Example:

LABEL 60PERATION6
HJ 16

OPER~~D

I. 1-----L---'--'--'---'--'--~~-L.....f...__.L~~~__.___,___.___.__~'---L--L.__,___,___.___.__...__.__.___.__._~~...__..,.__.~,
2. ~--'---L__.____._~~L...1.-L.--.L~~~~---'---'----'--'-__.___.__""---'---''---'----'-~-'---'--_.__.___~____.___.____.__.__

5~...l-'-~-'--J......l-~""-1...1.-L.-~~~~._._-l.-l.--J--~~ ~~~~_._.__.__.__.__..,.,,....._._
G.1---L-L---1.._.L__J__.l,__J---l--lJ-~~~~il.....!l.--L-.1--l..-........__.____----.l.-...L_,_,_,__.....___,___,_~-'---'--'----'--'-~__,.___,___'--'---
7 ~~_L__L_-L-1-J~~~~~_L_J__l_L__J_L_J~~_i_J_~~~_.__._~~
a~~L_j_j_~~~~~~~~-L-L-~~~~~~

.1. Punches card 1.

2. Punches card 2; card 1 ·is sen·t to the norma·I stacker.

3. Punches card 3; card 2 is sent to the select stacker.

4. Punches card 4; card 3 is sent to the normal stacker.

5. Punches card 5; card 4 is sent to the select stacker.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC' DATA MANAGEMENT

6. Punches car~ 6; .card. 5 is s~nt to· the~ normal stacker.

7. Pync,hes c~ud 7; .card 6 is~sent to the normal stacker.

8. On closing the output file, card 7 is sent to the normal stacker.

3-22

9. PUNCH is the logical file name of the output card file being processed.

When .you. are processing combined files (TYPEFLE=CMBND), you have two processing
modes, overlap and nonoverlap. The overlap mode is specified with the ORLP keyword, as
you recall from 3.3; if you omit the ORLP keyword from the DTF of a combined card file,
you process the file in the nonoverlap mode. The action of the CNTRL macro is slightly
different in each of these modes; consider the overlap mode first.

For a combined card file with overlap, each 'GET or PUT macro advances a card, and the
CNTRL macm applies· to the card processed by the previous GET or PUT macro. The
sequence of instructions in the following coding example processes a c.ombined file deck
named COMBO, in which e.ach punched card is foll()wed by one blank card. A punched
card is read, data is processed, and some resulting data is punched into the blank card
following it. · '

Example:

LABEL i6.0PERATIONi6. O~ERAND
10 16

UP-8068 Rev. 4 SPERRY UNIVAC OSV3i';
BASIC DATA MANAGEMENT'

3-23

The instruction sequence shown causes all the prepunched cards to be seriiJ:o<the
select stacker and all of the newly punched cards to be sent to the normal stacker.
Processing continues until an end-of-data (/*) card is detected (2.3.2); at this point,
the end-of-file routine ENDFL closes the file, and the job terminates.

On the other hand, consider the nonoverlap mode of processing a combined card file:
A single card may be processed by a GET and a PUT macro. A CNTRL macro may be
issued after any macro that processes a card. If a card is processed by both a GET
and a PUT macro, CNlJ:tJ .. 1r:nay be issued after either the,GET octhe PUT macro to
control stacker selection;J>f: that c.ard. If ,several CNTRL macros, which apply to a
single card, are issued, the last CNTRL determines which stacker is selectecl.

The following coding example reads three cards from a combined card file named
COMB02, processed in nonoverlap mode and containing no blank cards. It punches data
on all three cards; the fir~t is:,sent to the select stacker, anp the,l ottier two c~mts ,are sent
to the normal stacker'.·;

Example:

LABEL flOPERATIONll
10 16

t

UP-8068 Rev. 4

CLOSE

SPERRY UNIVAC OS/3
BASIC. DATA MANAGEMENT

3.4.5. Close a Card SAM File (CLOSE)

Function:·, ·

3-24

The· CLOSE macroinstfuctioff initiates the termination procedures for your card SAM
file. When all the data in a file has beeil processed, a CLOSE macroinstruction should
be issued.

Format:

LABEL AoPERATION !::.· OPERAND'

[name] CLOSE

lf .. i.lename-1 [, ... ,filename-n]!
(1)
1

*ALL. .

Positional Parameter 1:

filename
Is the label of the corresponding DTF macroinstructlon in· your program. Filename
may contain. a maximum of seven characters;· the maximwm number of filenames
is 16.

(1) Or' 1
Indicates that register 1 has been preloaded with the address of ·the declarative
macroi nstruction.

*ALL
Specifies· that a II files currently open· in tile job ~tep are tb be closed.

Example:

LABEL /::.OPERATION/::. OPERAND
1 10 16

Enters the transient routine which closes the file described in the DTF macroinstruction
whose label is INPUT.

UP-8068 Rev. 4 SPERRY UNIVAG,OS/;3
BASIC:DA'lAMANAGEMENT :

3.5. ERROR AND EXCEPTION HANDLING
~ .,

3.5.1. FilenameC

3-25

When certain errors or exceptions to file .processing performance .are detected by OS/3
data management, it will make appropriate entries in specific· fields· of the~ 'OTF fi,le table,
which your program may address in order to learn of these conditions and take the proper
course of action on regaining contrqL One such field is filenameC, a 1-byte field which
you may access by concatenating the character C to your 7-character logical filename and
using the test-under-mask (TM) instruction. ,

Refer to Appendix B for the meaning pf the Qits in filenameC of the DTFCD file table which
are set to binary 1 bf'OS/3 data management fo'r certain error and exception conditions.

3.5.2. Filenames

When you have specified CR DERR RETRY ;on a card punch file DTFCD and six successive
attempts to punch ·a card have failed; OS/3 data management sets. the hardware ,error bit
in filenameC (see f\ppendix 8) and aJso places the image of the card which i~ in error in
filenames of the DTFCD file table. Fi/f!n~meS, which you may addres~' f n the same way as
filenameC, is an 80-byte field fdr all, modes except tJ1e binary (image) mode, and a 160-
byte field for that mode. Filenam,eS does not contain'1he error card [mage if the file is a
combined file. Software punch;~'. retry applies to ·the 0604 card punch. Fqr the 0605

, t l , \ · I

(integrated) punch, the operator. ~an repunch erroneous cards.

3.6. SA~PLE PROGRAMS

The following examples have been constructed to illustrate. typical 1uses of card input,
output, and combined files in B~L programs. They,also provide examptes of the O,S/3 job
control statements you need to implementyour programs.

LABEL OPERAND 6. COMMENTS

j' II I 1y1y1""" I f'-1',ll'\P"!I !"-r-L I I I I I I I I I I I l ! 1 I L_L .. L .. LLl .. .L l lJ._J_L l. 1

-'-..l....;..L-1-..l. L.....1...-L.....L .. .l ·t ~L..L .. L i

r~ :~~ i) : I~ : : ~ : : : : : : : : : : : ' : : I ' I I I I I I ' ' .. I I ' I I I ' I ' J_G __ Lu_L_u__j__j_uu *R RUTI i_L__!_ I. I l l t l ~ I I I I I I i~:~.L_L_L_LLL.L.L 1.L..L-i-L.LJ

I

80

L ... LJ

l. 1. .1

.L.LL

CD
)>

c
""C
00
0 m
CX>
:a
CD
~
~

~. c.n
("') .,,

m
c ::c
)>.:a
~ -< .c
~~
~~
)> ("').
G)Q
m c.n
~-
mW
z
-:f

w
I
N m

......

LABEL OOPERATIONll OPERAND ll COMMENTS
10 16

ix,' ,so,' 1 , , ·• , 1 , , , , 1 , , , , 1DiA TA, 1TiRuN,aA,L_~Q._J&L..TLS1;:.iL?. J 1 J .. J 1 1 i

..__.__..__.__L_1_J_L_l_L I I I I .. 1 ~1tiCtl::LiI£ 1S,EL.&t_b~_ iILN.T!t P1f<!~LG1
I 1&.Ci~N1T1IN,UiE, 1PJ21l'>1C.E1$1S1I1~tGl I ... 1-L.J .. J .l ... L.L . .L J

1 •• , , •• , ,, ,-1"-".1 , , , , ,. • , , • , , , , • , • • , •• , , ~J:i_1-u:.R1WI$iE{ ~1CAN,CiE1L1 p,i<~G_j_~AM.._L..L l

, .. , P!f\.111'\ i::>p:J;;Jlr<st\tl1C::I V';'il<".1t:::v'\1I I I I I I I I I I I I I I I I I I IL I I I I 1.;1 I I,_ I 1 ... 1 I I i L I I I IL LL.i ... J. J 1 LLL

72 80

J ·1. l 1 11 L 1

1 1 I

.. L ... Lj

l l .l .. l

,.-.-, ,y .. "-"'"V' 1- 1",_,_, , ... P""I'""' ,_,. '""''....., i-• , ''"'" ""'" ·-11 -• ' ' 1 1 ' • ' 1 '·· " • 1 ·• 1 r 1 1 • • • 1 1 1 1 1 L ... L~J__1 l. l._J_J __ .L .1 L Lf l J 1 1 .l I I 1

1 Li

.1._l ... L .I

l ... J _L J... J I .1J.. .. J

: .l_1 1 l

; 1AS1Sl.GN~.T1 !>E 1C~RD1 .READEJ<1 I J l 1 l j

l i . .1...J. __ L~ i .I I ...L......:..-1 , 1 ' .I l ... l L..l l 1 L.1. l

~ .J.._~_J L .. J .. J l I J l ' ·1 l I J I J I

1. _.L___.._.1~~"· .. '1 .--L.. • .L J L. LJ J l l .. I.. l l l .l

I'" I II, l I I I l I I I I I I I I I l I I I I I _L_L_L-'--1. I I LL.L.LJ 1 l .. L.L_l. 1 .. J. l

OJ
)>

c
'"CJ
00
0
CJ)

CX>
:c
CD
~
~

CJJ CJJ
.n~
t!:I .::0

'.)> .::c
-i-<
)> c
~-Z

~~-~
)> (")
enc
m:.CJJ

~ " mW
z
-i

w
,!.,,

UP-8068 Rev. 4 SPERRY <UNIVAC OS/3
BASIC DATA MANAGE_MENT

3-28

tn
1-z
w
:E
:E
0 u

<l

0
z
<t
a:
w
a.
0

<l z
0
j::
<t
a:
w

I
-; ...

I
-1 ...

J
... -i : ~
~ ~ ~ ~
-i:---t_;

-; _,
... ~

.... - - -{

- -1 ...
.... '-1 ~

... 1 -i '-
-I -:.; """' -1

N L i

~11-~--....__..........,__._~~.-.....+--+-_..__-+-~'-+-~-I--------~_._---~-+-+---.---~

1 1

-
-1

~ -I ~ -j

-1
I I

-1 ·~
<;

1 - <- --i

-1 <~
--l
.i

-1

I l

1
J

-\ l

1 ~ -:i I .11
l -i

~lh-:i¥=1===-4===t:=~_µ:;.c~~--+..:~~:f..kil~~~~~~~~,.,.J-4-:-+.-1-l--4-~

~~l~r--+-+-+--+-~~~f--+--+J~=+--=~+---4--4-;..._µ~~~-=-!---4-1=~-+--t--i-+-+--I

UP-8068 Rev. 4

N

SPERRY UNIVAC OS}3
~ASIC DATA .MANAGEME.NT'

3-29

- - - -!

.. ,.... 11------+--+---+------+---+---;....;;.~___....t,___ ____ ,..__i----o-_--+-

ti.I ._
z
w
:E
:E
0 u

<l

Q
2
<(
a:
w
~
0

- - I -
- - 1 -
...., ~ -1 """'.
-. - -1 ~

--< - - ~
-1 - -1 '

-J _;
- -1 - -;

_; -1 ·-1

I
--1 - - -

-; ~ -"1 -

- ~ _; -
- -I - f

-i

- 1 - -1

- -J - - _; - J
. -~ -· ~

-, ~.. i

d ~ ~ ~
·~ 1

t

UP-8068 Rev. 4

en ...
z
w
:?:
:?:
0
u

<i

Q
z
<(
a:
w
Q.
0

SPERHY UNIVAl,; u:::;;;:s
BASIC. DATA MANAGE.MENT

.. ~ -~ - - - -- ~ ~ ~ - - ~

- ~ - - ~ ~ - ~

- - - -. - - ~ -
------ ~---!-1~

- - - - - ~ -
- -' I ------1-

N

~1~~------t-~~-i----T--+-------+--+-------_,._-+-+--....._,..._..-+-

- - - -j

I
-j
-j

I ·~ -1
1
.j .J -

~
-1

-l

-1

-!
·-i
-l

-1 -l

........

LABEL 2IOPEAATION6 OPERAND COMMENTS
10 16

~! 1E1~~R l .l l .:. j t j •. 1 i L .i i ; . A • .. l l I

~I l .• j l I I l . l I 1 l I I I j

f:;R,&_i l j l J. L ... Ll. _<;;.JANC.E_L_ P.R~!GR~M I I I

. i - • L - l • j • I I I

In I lk'lCJI. !CJ "='I' ,,...,,g..,, •-l I r "'" r ., i I I ·-~L.~l--L-Ll ..

j

IL•!
. .I .L

1 j, l_...J.. j j .I, l _L __ J. "..1 l l ..;., ;., ~ . ' .I. i l. 1 ··-'- l ... l l

L l ..L •• "_L 1

i i., .!_--1...._-_ ;.. l ., __ _. 1

l ! -'-- ~

&__jc,A.~~ :DM iS'lSjT.~iM ; .
l l ~ --1.. ... "" • • "" • .. 4.

-~E.6:I.S.T_ER 1S1/l..V.E... A1Rl=.A
1I/~_ .AtR.EA . I 1

tI/ ~;,. AREA, .lz~

!-)<1S.I.~1E,=.8QLrE,~FAD.D.R1.;::1~VF.,.E,R.RD.R.=.E.RR,,.I,~:ARE.A.l.=.I~.AI .7

I l l

I 1 I I

J I I

I i ! l

I 1

l l _._ I i.Ai.R£A2 :::,It>1AZ.,f"ll~ .. D"E.=.SI1Dt.,DPTL~N .. l.~N. "Y,e.s, .QV5.iLJSS.i!.~ :8.0,
T. PEFLE=c . AV REA=S VE -~· L.J..-1

C_l>_MBt, . ! ~ ' l

I I, I ,_ ,_1PL_15.I&E"~Tb.. . .EX.EtCiUT1E .LIJJ.KA.GJE .EtQI1L~_R__ l I

I

1 t - ~ I l

. .L I l • -.L.. • • . - • l - -·· . . . •.. ' I l

l Jb-8 .ST.RE1AM I~ "EX.LE.CtUT£. PR.~.GJ<AM] l I I

j l . ; l

. I l l

.l. I _l_ l i . . . l I

c
""'O
Co
0
0)
(X)

::0
(!)

:.::
.J::>.

I
72

l l

l I l

I l l l

l I I

_ . .;.__L_l_ _ __;__i__l.

I I I I I

I I ! I I
CJ

j I I l
)>
U> U>
-""'O

i I I l nm
0 :0

_L__L.,_.!_,,,.,..,._'"j__~J. ..I.- -
)> :0
-i -<
)> c
$: ~

I I I I I I)>~
~n

I I I I I(;) 0
m U>

$: ' mW
z
-I

I I
J I

l l l I

I l j

I J 1 J

I ! l I J I

j I l I l l l

I I I J

._._u

J I w
I j I 1 I I w

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

4-1

4.1. GENERAL

4. Diskette Formats and
File Conveottons

This section describes the data formats and file conventions that apply to the 8413
diskette subsystems files supported by OS/3. The 8413 diskette is a rapid replacement
medium for card processing devices and provides multifile volume and multivolume file
exchange capabilities.

4.2. FILE ORGANIZATION

The 8413 diskette is a single-sided, fixed-sector storage medium used for sequential file
processing as a substitute for punched card ~quipment. The diskette subsystem handles
single or multivolume input, output and combined files. A maximum of 19 files is allowed on
a single diskette volume. A summary of the 8413 diskette volume characteristics follows:

Tracks
Tracks (usable)
Sectors per track
Sectors (records) per volume
Sector size
Files per volume
Number of volumes

77 (0-76)
73 ', (l-73)'
26
1898
128 bytes
19 maximum
152 maximum per file

Figure 4-1 illustrates the track and sector organization of an 8413 diskette volume.

UP-8068 Rev. 4

SYSTEM
SCRATCH

..-"-.
ER MAP
,-/'-..

VOLUME
LABEL
,-/'-..

SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

4-2

~~r!_,_2~-'--3~'--4~...._-5---'·!~·-6~-'--7~'---8---'-~~~~~~~~~-F-IL_E_D_E_S_C_R_IP-T-IO-N~LA-B_E_L_S~~~~~--'~
'"\--- \

\ \
\ \
\ \

\ \
\ \

\ \
\ \
\ \

\ \
\ \
' \

\ \
\ \

' \ \ \

~~~.~ -;,:::.~-----...... -~ 
SECTORS 

TRACK r-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
\ 

0 \ 
\ 

73 

74 

75 

76 

INDEX TRACK 

DATA FILES 

not used 

spare or 
alternate 

Figure 4-1. Typical Organization of a Diskette Volume 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I 

I 
I 

I 
I 

I 
I 



UP-8068 Rev. 4 SPERRY UNIVAC 'OS/3 
BASIC DATA MANAGEMENT 

4-3 

File description labels are written on the first track (track 0) of each volume of a diskefte 
DTFCD file by data management. The maximum number of files that can be written to a 
volume is 19. The simple l 28~byte diskette file label format is: 

0 2 3 

0 label ID 

4 

LABEL DATA\. 

76 

81 

NOTUS ED 

I 
NOTE: 

Details on the diskette file description label are presented In D.5. 

4.2.1. Diskette Input Files 

Diskette files can be conta.ined on one volume or can spa~n severaLvolumes (multivol1;.1me 
file)~ l.nform,ation on a,qiskette volu~e is orgc;inized into fyvo areas; the index track (track 0) 
and the data files, {tracks l through 73). Track, 74 is· not .~·used; tracks 75 qnd 76 are 

_, ' ' - ' ' ~ : f ' ' - " ' ' - " ' ' ;. , ' - ' , 

alternates or spares (See Figure +-l ). 

The index tr,ack (track .0) contains a .volume label (Vpl l) in sector 7. Sectors 8 through. ?f? 
are used for the file desc~iption Jabels. One file can be .. 9escribed in each sector; therefore, a 
maximum of 1 9 file description labels can be entered in the track index. 

The data portion of the diskette files qontain punch carddma~es (EBCDIC) with one record to 
ecich diskette.sectqr. Eaqh sector is i 28 t>vtes 10.ng, and.any unused space in the .sector after 
the record is hardware padded. . . . 

All diskette input files are read-only se,quential files. Multivolume files require that th.e 
volµmes bernounJed in the proper sequence;. stand~uo mount messages provide p.ro.mpting 
to ensure that the volumes are mounted in the correct order. .. 



UP-8068 Rev. 4 

4;2.2. Diskette Output Files 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

4-4 

Diskette output files are read/write sequential files allocated on a sector basis. All files 
must reside in a contiguous area. When the file description label is written, it includes a 
pointer to the beginning of the file. Card images that are read to diske.tte are entered 
sequentially, one record (card image) per sector; ·unused space after the record in .each 
sector is padded with binary zeros. 

4.~.3. Combined Files 

Diskette combined files are read/write files that are used mainly for updating records. A 
record is read, updated, and then wr:itten back into its original location; this is the 
nonoverlap mode of processing. You should exercise extreme care when using combined 
files, because destruction of the initial contents of the record read may result when writing 
back into that location. The overlap mode of processing for combined files is not supported. 

4.3. RECORD FORMATS 

Di$kette records fall into two categories: fixed-length unblocked records and variable-length 
u(lblocked records. Records are contained one to a sector within a file. There is no record 
blocking of diskette records. 

4.3.1. Fixed-Length Records 

Fixed-length diskette records are all of equal length for a given file. Diskette records are 
generally the length for a given card type image (51, 66, 80, or 96); however, the records 
can be any length from 1 to 128 bytes. Figure 4-2 illustrates the fixed-length record 
characteristics. 

4.3.2. Variable-Length Records 

When you use variable-length records, data management preempts the first four bytes of 
every block (in this case, record) for use as'. a record descriptor·word (Figure 4-2). Data 
managenient calculates the length of the record and inserts this for 'you in the first two 
bytes; the other two bytes are used by data management. 

Data management, again reserve·s the f.inal two bytes of the record descriptor word (ROW) 
for its own use, but the first two bytes must contain the length ofthe record of which the 
ROW is a part. 

When you spe~ify that your records ar·e variable and uriblocked, data management will write 
out one block for each logical record ·you submit, regardless of .the amount of available space 
remaining in the 1/0 area. 

You must not use the RECSIZE keyword parameter in 'your DTF for a file containing variable­
lehgth records, because data management expects to find the record size in· the first two 
bytes of ROW. 



UP-8068 Rev. 4 

FIXED-LENGTH 

VARIABLE-LENGTH 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

LOGICAL RECORD 

A 

128 BYTES 

c 
128 BYTES 

LOGICAL RECORD 

B 

124 BYTES 
~4BYTES14--------------------------------

c 
128 BYTES 

LEGEND: 

r Record descriptor word (ROW) 
A Data record length plus padding to fill out the sector 
B Variable record length 
C 1/0 area layout 
P Padding 

NOTES: 

4-5 

1. For input files, data management passes to the user the record length and data portion of the record. 

2. BLKSIZE=n specification on DTF macro and file label block length determines the size of record processed during 
OPEN processing. The maximum block size of multi sector 1/0 is 1024 bytes. 

3. Unused sector space is hardware padded. 

4. Under multisector 1/0, user IOAREA contains multiple records in either fixed unblocked or variable unblocked formats. 

Figure 4-2. Diskette File Record Formats 





UP-8068 Rev. 4 SPERRY_UNIVAC1.QS/3 
BASIC DAlAMANAGEMENT 

5-1 

. 5. Fur)ction ~Od o·peration 
ol Diskette.,,S,AM 

5.i1. ·GENERAL 

This section contains a brief description of the data management modules that apply to 
SAM operationfor input files, output files~ artd combined.files us·edWithdiskette operation. 
Following the functi6nal' description is 1 1 a• detailed explanation of the detlarative 
macr:oinstructions that define ·the:·. three types of: files. This section :concludes with the 
imperative macroinstructions that initiate, conduct, and terminate file processing. 

NOTE: 

The 8413 diskette ·processor does not handle . compressed code tfa:tfslation. 

5.2. FUNCTIONAL DESCRIPTION 

5.2.1. Input Record Processing 

Diskette input files, like punched card input files (2.2.1.),· use the· fixed unblocked record 
format (RECFORM=FIXUNB). Diskette records range from a fixed length of 1 to 128 bytes 
per sector.. In addition, diskette ~input· files cam· be in variable unblocked. record format 
(RECFORM VARUNB). I 

Data management accesses diskette"input·fi!es in read;·mode.only. :Once data management 
locates a diskette file label at open time, it saves the filedabel address and certain fields of 
information from the label such as file extent boundaries, i.e. beginning of extent (BOE), end 
of data (EOD), .and. end ·Of exte.nt ·(EOE). Datc:f'.management:1 then.·comi;>ares file label 
informatioo with DTF ·specifications to determioe ·if. the ·.file sholild be processed under 
single-sector or·rnultisector· 1/0. It' is the user's responsibility. here tb providel/0 areas of 
adequ~te size to handle the block length specified. 



UP-8068 Rev. 4 SPERRY UNIVAC'OS/3 
BASIC DATA MANAGEMENT 

5.2.2. Output Record Processing 

5-2 

Data management accesses an opened diskette output file in both read and write modes. 
Using tbe file-id qn the job control// L~BL stat~ment, data management searches the index 
track fo 'l0cate the corresponding''file label and saves the file label address to be used at 
close time. Files can,, be exteng~d, or overwritten on output only if the expiration date has 
been surpassed or 'iflNIT is ·sp~cified on the I I LFD statement. 

If specified on the I I LBL statement for the output file, the new creation date is then 
inserted in the file label; otherwise, the system date is used as the creation date. 

If INIT is specified on the I I LFD job control statement for an output file, the file expiration 
date is ignored and the file is overwritten. If EXTEND is specified on the I I LFD statement, 
the expiration date is checked and if still valid, the file is extended. If neither INIT or EXTEND. 
is specified, a normal check of expiration date occurs. 

If np ·major file errors oc.curred to that p·oint, data management writes the label back to the 
inde)( track in its original sect0r. location, positioning occurs if ·EXTEND mode was specified, 
anq data manqgement marks the OTF as opened and passes control to the next instruction. 

Data management writes output files via the PUT imperative macro either by single-sector 
or multisector 1/0 (determined by BLKSIZE or RECSIZE DTF specifications). When data 
management closes output files, it writes all necessary buffers to the diskette to avoid loss 
of user records, and upd.ates the EODfield of th~ file label by reading the label, updating it, 
and writing it to its original sector location on the index track. Finally, data management 
resets indicators and fields in the DTF and marks the DTF closed. 

5.2.3. Combined File Record Processing 

Data management handles combined files (files capable of GET /PUT functions) at open 
time. the same way it·.handles input files (5.2.1 ). 

Likewise, during close operations~ data management handles combined files as output .files 
(5.2.2) with one exception. If the current EOD is less than the original EOD, i.e., partial 
update occurred, data management does not update the EOD field on the file label. If the 
current EOD is greaterthan\the original·EOD, i:e.,·file extension occurred, data management 
updates the EOD.freld in··the file label. 

Data management processes GET ~nd PUT diskette operations for combined files under 
single-sector 1/0 .. The IOAREA 1 receh/es·the input record v'ia the GET macro. The user must 
move the record to IOAREA2 ,and then update it. The contents of IOAREA 1 are 
superimposed on the updated record in IOAREA2; If an invalid character results, the original 
character in IOAREA1 will be substituted in IOAREA2. From there, the PUT macro writes it 
to the diskette at the sector from which the original record was read. Data management 
repositions back one sector before each write so that the PUT writes directly to the record's 
original location. When a series of PUT macros occurs, however, no backward sector 
repositioning occurs after the second and all succeeding PUT macros. The user must take 
care in moving updated records to avoid loss of existing data. 



UP-8068 Rev. 4 

5.2.4. Multisector 1/0 

SPERRY UNIVAC os/3 
BASIC DATA MANAGEMENF 

5-3 

Multisector 1/0 is allowed for the diskette up to a maximum··vo byte count of 1024. This 
means that up to 8 full 128-byte sectors (records) can be read or written with one physical 
110. Many more sectors can be handled, .if record size is less than 128 bytes. For·e·xanipfe, if 
record size is 80, the maximum blocksize that can evenly process multiple sectors is 960 
bytes and the number of sectors accessed in a single physical 1/0 is 12. 

To process smaller records using multisector 1/0, the BLKSIZE and RECSIZE parameters of 
the DTFCD declarative macro must be specified with the blocksize value being an integral 
multiple of the record size. To determine the actual number of sectors to the processed, 
divide your BLKSIZE length DTF specifications by block length field in the file 1·at)et (pnsitions 
23 through 27 in the file label sector). 

The result; must be an iRtegral number of sectors. There is no remainder. Records are in 
blocked format in 1/0 areas; therefore, to facilitate record by record processing, you must 
specifiy either the IOREG or WORKA parameters on your DTFCD macro. 

In addition, the IOAREA buffer space allocation must be increased to equal the new larger 
blocksize specification in the DTFCD macro and reprogramming and reassembling of 
existing card file programs is necessary to use diskette multisector 1/0. 

In multisector processing, the initial logical GET brings in a block of sectors and either 
points to a record or moves a record to your work area. When all records from a block of 
sectors have been processed, another physical multisector 1/0 occurs· and processing 
continues until the file is exhausted and EOD is reached. Control then passes to your end of 
file routine (EOFADDR=symbol). 

5.2.5. Specifying 8413 Diskette Use' 

The following steps are required to use the 8413 diskette: 

• The supervisor which supports the diskette must be generated. See the system 
installation user guide/programmer reference, UP"-8074 (current version). 

• The DSKPRP system utility rnutine and diskette space management must be applied to 
the diskette to initialize the allocate file space before user program execution. See the 
system service programs (SSP) user guide, UP-8062 (current version). 

• The appropriate job control statements must be provided to enable diskette recognition 
and scheduling. The I I DVC statement specifies logical unit numbers 130, 131, 132, 
or 133 for diskette. The ALT option of this statement allows you to specify multivolume 
processing (using two drives). The I I VOL statement supplies the diskette volume 
serial number. On a first run, the // EXT statement allocates sectors. The I I LBL 
statement identifies the file (this name should match positions 5-12 on the file label 
of the diskette). 



UP-8068 Rev. 4 SPERRY .UNIVAC ·OS/3 · 
BASIC DATA MANAGEMEN1 

5-4 

Only the first eight positions of the field are used for the file, n~rne. The I I LBL 
statement can also specify the file creation date, and file expiration date. Finally, 
the // LFD statement spepifies the name given for the file description (DTFCD); 

For furth.er detail, see the jQb ·control user guide, UP-8065 (current version). 

5.2.6. Diskette Limitations 

The following limitations .exist for the 8413 diskette: 

• AllJ:iiskette files are created and retrieved sequentially. 

• Data management requires that each diskette file be opened via an OPEN imperative 
macr,o before accessing the file and closed via a CLOSE me1cro when file processing is 
fin~shed. Data management also recognizes a virtual device on an OPEN macro. 

• The CNTRL imperative macro is ignored when issued to a diskette file. 

• If an error occurs during file processing in" output mode, and control passes to the· 
user's error routine, the user must c!ose the file in ~rror to permit data management to. 
update the EOD pointer in the file label. · 

• Maximum block size allowable with multisector 1/0 is 1024 bytes and file processing is 
limited to traGks 1 through 73. 

• Within the same job step, only one logical file (DTF) may .access a diskette volµme. 

• Data management cannot process, in a normal GET /PUT sequence, combined files that 
contain logically deleted data records containing 'D' in the first position of the record. 

• Data management PUT operations do not use multisector processing if spooling out. 
The output writer provides this feature. 

• All data manage.ment mount messages are suppressed in a spooling environment. 

• If spooling is in operation, a CLOSE macro does not attempt to access the diskette. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA.MANAGEMENT 

5.3. DEFINE A SAM DISKETTE FILE (DTFCD) 

Function: 

5-5 

DTFCD 
(Diskette) 

The DTFCD declarative macro used to define punched card files is also used to define 
diskette files (3.3). Except for the undefined record format specification 
(RECFORM=UNDEF) which generates an invalid DTF field message (DM61; see Table 
B-1 ), if issued for a diskette, the following DTFCD parameter specifications do not 
apply to diskette files and are ignored if specified for diskette files: 

AUE=YES 

CONTROL=YES 

CRDERR=RETRY 

MODE=BINARY 

RECFORM=UNDEF 

STUB=51 

STUB 66 , 

The format of the DTFCD macroinstruction as it applies to diskette files follows: 

Format: 

LABEL !:::.. OPERATION !:::.. 

filename DTFCD 

OPERAND 

[ASCI l=YES] 
[,BLKSIZE=n] 
[,EOFADDR=symbol] 
[,ERROR=symbol] 
IOAREA1=symbol 
[,IOAREA2=symbol] 
[,IOREG= (r)] 
[,ITBL=symbol] 

[
,MODE={ CC }] 

TRANS 
[,OPTION=YES] 
[,ORLP=YES] 
[,OTBL=symbol] 
[,OUBLKSZ=n] 

[ 
,RECFORM={ }] 

VARUNB 



UP-8068 Rev. 4 

LABEL 

SPERRY UN.IVAC OS/3 
BASIC DATA MANAGEMENT 

/).OPERATION b. OPERAND 

DTFCD (cont) [.RECSIZE= {~l}] 
[,SAVAREA=symbol] 

[

,TYPEFLE={·· }] 
OUTPUT 
CMBND 

[,WORKA=YES] 

5-6 

For a complete description and summary of each keyword parameter, r~fer to 3.3 and Table 
3::..;_1. . 

5.4. IMPERATIVE MACROINSTRUCTIONS 

There are four imperative macroinstructions available to you for processing diskette SAM 
files: 

Macro instruction 

OPEN 
GET 
PUT 
CLOSE 

Use 

File control 
Record processing 
Record processing 
File control 

The following paragraphs describe these macroinstructions in detail and provide coding 
examples with explanations. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT. 

OPEN 

5.4.1. Open a Diskette SAM File (OPEN) 

Function: 

The .OPEN macroinstruction is used to open a file for pmcessing:The transient routine 
called by the OPEN macroinstruction makes certain validation. checks and then 
proceeds to access the diskette file. The OPEN transient routine accesses input and 
combined files in read only mode (5.2.1 ). It accesses output files in read and write 
modes, (5.2.2J.. 

Format: 

LABEL !:::.OPERATION!:::. OPERAND 

(name] OPEN 
{

filename'-1 ... [,filename-rt]} 
(1) 

Positional Parameter 1: 

filename 

( 1) 

Example: 

Is the label of the corresponding DTF macroinstruction in the program. The file 
name may have a maximum of seven characters; .the maximum number of file 
names is 16. ~ 

Indicates that register 1 ha·s been preloaded with the address of the declarative 
macroinstruction. 

LABEL O~ERAND 

Enters the transient routines necessary to prepare the DTF macroinstructions whose 
labels a re INPUT and OUTPUT. Checks that they are prepared to access these files with 
the next imperative macroinstruction (GET, PUT, etc.). 



UP-8068 Rev. 4 

GET 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

5.4.2. Retrieve Next Logical Record (GET) 

Function: 

5-8 

The GET macroinstruction makes the next logical record in the input diskette file 
available to you. The datais accessible either in an 1/0 area or in a work area you have 
specified. Data records must be in fixed unblocked or variable unblocked format(4.3). 

If you specify only one 1/0 area arid require single-sector 1/0 processing, you access 
records relative to the name of the 1/0 area. Otherwise, you must specify· 'a register 
(IOREG keyword parameter) used by the card processor to supply the starting address 
of the current record or must specify a work area in the DTF declarative niacro, 
WORKA=YES. 

If you use multisector.,processing, to determine the number of, sectors read by one 
physical 1/0 as a re~ult of~, GET macro, divide your DTF blo~kstze length by the block 
length field in the file label (positions 22_:_26). The result must be an integrar number 
of sectors. There is no remainder. The GET macro reads a block of sectors and points to 
a record or moves it to a work area until reaching end of data (EOD). Data management 
then passes control to your EOFADDR=symbol routine indicated on1 the DTF rnacro. 

Format: 

,·LABEL . ~OPERATION~ ,OPERAND. 

GET 
{

filename} ['{ workarea }] 
(1) ,•, (0) 

[name] 

Positional Parameter 1: 

filename 
Is the label of the corresponding bTF macroinstruction in the program. 

(1) 
Indicates that register 1 has been preloaded with the address of the declarative 
macro instruction. 

Positional Parameter 2:' 

workarea 
Is the label of an area into which the current record is moved for processing. 



UP-8068 Rev. 4 SPERRY.UNIVACOS/3 . 3-15 
BASIC 'PATA MANAGEMENT: 

GET 

3.4.2. Retrieve Next Logical Record· (GET) 

Function: 

The, GET macroinstructi.on makes the next logical re,cord in ap input file avaJJ~ble to 
you. The data is accessible either in the VO area. or iin ~·,work area you J:iave 
specified. The macroinstruction is used for all record types. 

If you specify only one 1/0 area, you may directly access data relative to the name of 
the 1/0 area. Otherwise, you must specify a register (through the IOREG keyword 
parameter) to be used by the logical IOCS to give the starting address of the current 
record, or you must specify a work area in the declarative macroinstruction. More 
than one work area may be employed, since the address of the area is specified to the 
logical IOCS with each GET macroinstruction. Each GET macroinstruction may specify 
a different work area, if necesary. 

Format: 

LABEL ~OPERATION~ OPERAND 

[name] GET 

Positional Parameter 1: 

filename 
Is the label of the corresponding DTF macroinstruction in the program. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the declarative 
macroi nstruction. 

Positional Parameter 2: 

workarea 
Is the label of an area into which the current record is moved for processing. 

(0) or 0 
Indicates that register 0 has been preloaded with the address of a work area. 

If omitted, indicates the user has chosen processing either by means of a register 
(IOREG keyword parameter) or by directly accessing the data relative to the name of 
the 1/0 area. 

NOTE: 

When a work area is specified, the keyword WORKA_;.YES must also be specified in 
the DTF statement. 



UP-8068 Rev. 4 

Example: 

LABEL flOPERATIONfl 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

OPERAND 
10 16 

ET. 'IN~U 

3-16 

Places the next record of the file described in the DTF macroinstruction, whose label 
is INPUT, into the area whose label is INWORK. Tne optional label HERE may be used 
to reference this point in the', program. 



UP-8068 Rev. 4 

(0) 

SPERRY' UNIVAC U~/~ 
BASIC DATA· MANAGEMENT 

Indicates that register 0 has been preloaded with the address of a work area. 

If omitted, indicates the user has chosen processing either by means of a register 
(IOREG keyword parameter) or by directly acces,sing th~ data relative to,th.e name of the 
1/0 area. 

NOTE: 

When workarea is specified; the keyword WORKA_:_YES must also be:,specified in the 
DTF statement. 

Example: 

11 LABEL 
~OPERATIONS ; OPERAND 

10 ,15 . ' 

I I ·HERE 

Places the next record of the .file described in the DTF macroinstruction, whose label is 
INPUT, into the area whose label is INWORK. The optior:ial label HERE may be used to 
reference this 'point in tfie program. 



Ut"'-tsUbts ttev. q. vrc:nn 1 Ul'lllVl'"\v v,;;,r.., 

BASIC DATA MANAGEMENT 

PUT 

5.4.3. Writing a Diskette Record (PUT) 

Function: 

The PUT macroinstruction delivers an output record to the card processor. In single­
sector processing, each PUT macro writes a record to diskette. In multisector 
processing, you use the IOREG or WORKA specifications in the DTF and the PUT macro 
to control the release and writing of individual records from a block of sectors held in 
the output buffer to the output file on the diskette. 

Tff prevent occurrence of unwanted information in the data, you must be careful to 
clear output record buffer areas 'before each use or, to supply complete records 
including blanks on each logfoal POT. 

Format 

LABEL· ~OPERATION~ OPERAND 

[name] PUT { :;1~name } [, { ~~rkarea} J 

Positional Parameter 1: 

filename 

( 1) 

Is the label of the corresponding DTF macroinstruction in the program. 

Indicates that register 1 has been preloaded with the address of the declarative 
macro instruction. 

Positional Parameter 2: 

workarea 
Is the label of the work area from which the record may be obtained. 

(0) 
Indicates that register 0 has been preloaded with the address of the work area. 

If omitted, indicates you have chosen processing either by means of a register (IOREG 
keyword parameter) or by directly accessing the data relative to the name of the 1/0 
area. 



UP-8068 Rev. 4 

NOTE: 

~l"'t:HHY: UNIVA\,,; U::>/ .1 

BASIC DATA MANAGEMENT 
0-1 I 

When the work area is specified, the keyword parameter WORKA=YES must be present in 
the DTF statement. 

Example: 

LABEL LiOPERATIONLi OPERAND 
1.0 . 16 

Programming Considerations: 

• Variable-Length, Uhblocked Records 

You must determine the size of the output record and must insert the size at the 
beginning of the record before issuing the PUT macroinstruction. Record size includes 
the 4-type record length field. You may not access the first four bytes, which are 
reserved for block size. 



Ut'-tlUOl:l 11ev. q. 

CLOSE 

::'>t't:.1111 T UNIVA~ U::'>/ _, 

BASIC DATA MANAGEMENT 

5.4.4. Closing a Diskette File (CLOSE) 

Function: 

The CLOSE macroinstructiqn transfers control to a. ci.~ta manage:me11t CLOSE transient 
routine which validates devices. If devices are .diskette, a new diskette close t.ra nsient 
receives control and determines the close processing required according to file type. It 
marks the DTF of an input file closed and resets indicators and fields in the DTF where 
applicable (2.4.3). For output files, it writes all necessary bt;Jffers .to diskette; updates 
the EOD indicator in the file label, and resets indicators in the DTF before· closing the 
file (2.4.4). The diskette close transient closes combined .files like output files .except~ 
when updating or not updating the EOD field for partial updates of files or extended 
writes to files (2.4.5). 

Format: 

LABEL b.OPERATION b. OPERAND 

[name] CLOSE 
{

filename-1 [, ... ,filename-n]} 
(1) 
*ALL 

Positional Parameter 1: 

filename 

( 1) 

Is the label of the corresponding DTF macroinstruction in your program. Filename 
may contain a maximum of seven characters; the maximum number of filenames 
is 16. 

Indicates that register 1 has been preloaded with the address of the DTF 
macro instruction. 

*ALL 
Specifies that all files currently open in the job step are to be closed. 

Example: 

LABEL b.OPERATIONb. OPERAND 
1 10 16 

Enters the transient routine which closes the file described in the DTF 
macroinstruction whose label is INPUT. 



UP-8068 Rev. 4 SPERRY UNIVAG OS/3 
BASIC DATA MANAGEMENT 

6-1 

6. Printer Formats 
·and File Conventions 

6.1. GENERAL 

The section describes the data formats and file conventions that apply to printer 
subsystem files supported by OS/3. The SPERRY UNIVAC 0773 Printer Subsystem, an 
integrated printer, is intended primarily for use with OS/3. However, the SPERRY UNIVAC 
0768, 0770, a'nd 0776 ~rinter :Subsystems are also supp~rted by OS/3. 

A numbe(,'of terms, used in what follows, are, explained here: 

line spacing 
Advancing the paper (or forms) to be printed unde'r the cont(bl of a line counter, 
i.e. a specifif?d number of Ii nes. 

line s·kipping 
· Advancing the paper to a line on the form that is specified by a code placed in 
the vertical format buffer (VFB) by the user (or by a punch made by the user in 
the forms control loop). 

paper advance 
Vertical movement of the, form or paper in ,the printer either after printing or 
without printing., 

vertical ·format buffer , .. 
A buffer in the 0773, 0770, OJ68, and 0776 printers. The buffer contains ·a 
location for each line on a form. A code may be placed in the location that 
corresponds to a particular line. Your program can then adva.nce the. form to that~ 
line by issuing a skip command and specifying the appropriate code. The paper 
tape joop on the Q768 p~i:mer ,is ,used in conjunction with the VFB .. 

load code buffer 
A buffer located in the printer that allows the specification of any 8-bit code for 
any grr;1phicaJ syr:nbqJ :On the print band or drum: Thus, you ~an load the EBCDIC 
codes for the graphical characters on the print band into. the.load code buffer in 
the proper seql!en,ce ~md. then print EBGDIC data. 



UP-8068 Rev. 4 SPERRY·UNIVAC OS/3 
BASIC DATA MANAGEMENT 1 

6.1.1. 0773 Printer Subsystem 

6-2 

The 0773 printer has a standard print line of 120 print columns. You can expand this to 
144 print columns through availablE3 hardyvare options. Line spacing (6 or 8 lines per inch) 
is accomplished through a switch on the printer. Paper advance (up to 15 lines) is 
controlled ,by- the VFB and, can be accomplished after printing or without printing. 

6.1 .2. 0770 Printer Subsystem 

The 0770 printer allows you to use print lines of up to 160 print columns. The line spacing 
(6 or 8 lines per inch) and paper advance (up to 15 lines) are accomplished through the 
VFB. As with the 0773 printer, paper advance can be accomplished without printing or 
after printing. 

6.1 .3. 0168 Printer Subsystem 

The 0768 printer all,ows you to .. print lines of up to 132 print coiurnns. Line spacing (
1

6 or 8 
lines per inch) is controlled through a punched pape'r tape loop (forms control loop), and 
paper advance (up to 15 lines) can be accomplis~"ed witho~t printing or after printing. 

6.1 .4. 0776 Prin:ter Subsystem 

The 0776 printer allows you to print lines of up to 136 print ·columns. Line spacing (6 or 8 
lines per inch) and paper advance (up to 15 lines) are accomplished throµgh the VfB. As 
with the 0773 printer, paper advance can be ac:::compli.shed withouJ printiruf or after 
printing1

• 

6.1 .5. 0778 Printer Subsystem 

The 0778 printer has a standard pfint line of 1'20 prTnt columns. You can expand this 
optionally to 132 print columns. Line spacing (6 or 8 lines per inch) is accomplished 
through a switch on the printer. Paper advance (up to 15 lines) is controlle<;i by the VFB 
and can be accomplistied after priQting or without printing. · · ' ,,·, 

6;:2. FILE ORGANIZATION 

A print file can be best described as· a collection of related data that 'is output to a printer 
device, one line at a time (band or drum printer). Line printers assemble the contents of a 
complete line (including blank spaces) before actual printing occurs. 

Line· printers are provided with the 90/30 system, and operate through OS/3. Therefore, 
not only are ycm responsible for organizing the data you\JVant printed within each line, but 
you must also consider the vertical separation between lines and pages. 



U P-8068 Rev. 4 SPERRY. UNIVAC OS/3 
BASIC DATA MANAGEMENT 

6-3 

Print files described in this section fall into three categories: 

• general text; 

• tabular data; and. 

• data printed on forms. 

6.2.1. Text 

The simplest printer file to understand and .use is probably one which consists of plain 
text. For example, assum~. tbat each ,input record is punched card and each output record 
is formed in. the J/O area or ih a work ·area you have specified. The records a.re output to 
the printer buffer by the. physical IOCS. Each time that the printer buffer is fµll, a print 

. command (s issued and the. line is printed.' Figure 6-1 is a tY:pical example. of text output; 
the annotations point out the record where .t.he home paper instruction should be issued 
.and the home paper position necessary to begin printing the lower portion of the text at 
the top of a new page. 

LINE TRUNCATED <BIT Q) 

.VERTICAL 
SPACING ,FIXED LENGTH, UNBLOCKED RECORDSr TH.E LINE T!WN.GATED BIT IS SET 

I DURING OPEN ~~OCESSJNG IF THE USER HAS SPECIFIED A BLOC~ S(ZE 
1 WHfCH INDICATE§ A PRINT LINE LONGER T~A~ THE MAXIMUM PRtNT LI~E 

6 LINES/INCH< wHICH CAN BE P,ij.l~TED 0N THE ASSIGNED PRINTER• OPEN· PROCESSING IS 
COMPLETED AND THEN A BRANCH TO THE USEH ERROR ROUTINE OCCURS· IF 

•THERE IS NO ERROR ROUTINE,. THE OPEN ROUTINE RETURNS Td THE USER 
1AT NORMAL RETURN POINT. IF THE USER CONTINUES PROCESSING EACH 

PRINT LINE WILL CONTAIN THE MAXIMUM NUMBER OF PHINT 

~N~~~~;;I~~ 
HOME PAPER PAGE 

POSITION NUMBER . ___ J ___ _ i 
16 90/30 PRINTER SYSTEM/USER INTERFACE 

t 
PAGE 

HEADING 

POSITIONS WHICH CAN BE PRINTED ON THE ASSIGNED PRINTER· 

VARIABLE LENGTH, UNBLOCKED RECORDS ANf>-DEFlNEU RECORDSr 
IF THE USER TRIES TO PRINT A LINE LONGER THAN THE MAXIMUM LINE 
LENGTH INDICATED BY THE BLOCK SIZE SPECIFICATION, A LINE EQUAL 
IN LEMGTH TO THE MAXIMUM iNOJCATED·BY BLOCK· SIZE WtllL SE PRINTED, 
AFTEH THE LINE IS PRINTED .. THE LINE TRUNCATED BIT WILL BE SET AND 
A BRANCH TO THE USER ERROR EXIT OCCURS• iF THERE IS NO ERROR EXIT1 
THE PUT ROUTINE RETURNS TO THE INSTRUCTION AFTER THE PUT MACRO 
INSTRUCTION• ·NOTE1 THE OPEN ROUTINE ADJUSTS· BLOCK.SIZE.IF A PRINT 
LINE LONGER THAN THE MAXIMUM PRINT LINE ON THE ASS.IGNED PRINTER 
IS INDICATED BY THE.BLOCK SIZE SPECIFICATION• IN THIS CASE1 BLOCK 
SIZE IS AQJUSTED TO· INDICATE~ MAXIMUM P~INT LlNE EQUAL IN LENGTH 
TO THE MAXIMUM PRINT LINE ON THE ASSIGNED PRINTER· 

Figure 6-1. Typical Text Output Example 



UP-8068 Rev. 4 

6.2.2. Tabular Data 

SPERRY UNIVAC OS/3 
BASIC·:DATA MANAGEMENT 

6-4 

Tabular data and reports generally require a more complex printer file structure;;since 
there is a more varied spacing requirement, both vertical and horizontal (Figure 6-2). 
Also, column headings and similar repetitive items require a more complex program if the 
file is lengthy. The output records are formed in the same manner as those of regular text 
files (in the 1/0 area or work area) and are output to the printer orie linecat a time. 

COLUMN [ -PART--"------rrEM 
HEADIN<3s ·_· 

_ti!,1.M_B_l:~ _____ D.J:..SC.FUft.LQ~ 
000 fOE . . CAP"AC ITOR 

.noo10F ROJOR 
000106 POI~T1.lGN 

HOME PAPER POSITION 

-- _DAILY ACTIVITX 
1

REPOR:f 
TRANS- QUAN 

ACT IO~ 
ORDER' 
ORDER 
ORDER 

ON-HA.ND 

Figure 6-2. Sample Table Printout 

6.2.3. Printer Forms 

DEPARTMENT 

Printer files that complete or that are added to document forms are usually simple to use 
once they are organized (Figure 6-3}. By usfng ,tb~ contro(:;. and overflow 
macroinstructions, you c~n achieve desired vertical positioning. By forming your records 
properly in the 1/0 area or work area, you can ·achieve the required horizontal positioning 
to place the data on the. form wh.ere it belongs. 

HOME 
PAPER ~--:­
POSITION 

HOME PAPER~­
INSTRUCTION 

sr=c~v.JLuNIVAC .,r COMPUTER SYSTEMS 

P. 0. BOX 500 
BWE BELL. PA. 19422 

---- -- -~.- -:- -.--:-- - :---- _!_NJ 
SITE 3-1 

ATTN: CATHY _SMITH 

____ D6866M 8598 UP 8071 
ADDRESS CORRECTION REQUESTED 

RETURN•POSTAGei GUARANTEED 

UD1-527 

Figure 6-3. Sample Forms Printout 

UMS 

00851 



UP-8068 Rev. 4 

6.3. RECORD FQflMATS 

SPERRY. UNIVAC OS/3 
BASIC DATA MANAGEMENT 

6-5 

You have the option of specifying, in the DTFPR macroinstruction, that a control character 
is to be included in the data records. This character specifies line spacing or skipping 
when the file is printed. The character itself is normally not printed, but is a part of the 
record in storage. If. the record is sent to a printer and the user has· not specified that the 
record contains a control character, the character is handled as data and printed. 1/0 
areas must be large enough to include this character. 

When fixed-length or undefined record formats are used, the control character is the first 
character in the record (Figure 6-4). It is the first character following the record length 
specification in a variable-length unblocked record format. The block size of the output 
area must include the byte for the control character. If variable-length, unblocked records 
are to be processed, the block size must account for the initial eight characters as well as 
the control character (nine bytes total) in the output area. Although these characters do 
not appear in the output, the output area must be large enough to accommodate them. 
When a control character is spec:;ified, every record must contain a cortrol character. 

When a PUT macroinstruction is executed, the control character in the data record is· 
translated to the appropriate command code. (For the. character required, see the CTLCHR 
keyword parameter under the DTFPR macroinstruction, 7.3.) The first character in the 
output data after the control character is the first character printed. Logical input/output 
control system (IOCS) modules also automatically issue certain printer control instructions. 
These involve printer overffow conditfons ·and vertical format control. Parameters available 
with the macroinstructions that call the IOCS modules into the program allow you to tailor 
them for each particular task. In this manner, the complex vertical movement and overflow 
sensing functions are made easy for you to control. 

If the CNTRL macroinstruction is to be issued for the printer~ the CONTROL keyword 
parameter is specified and CTLCHR must be omitted. 



UP-8068 Rev. 4 

Undefined 

H 
Variable-Length 

b 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

data, fixed length 

A 

data, variable length } .... i _____________ _ 
A 

data, variable length 

·~o~~----A 

c 

F 

LEGEND: 

b Block size field, four bytes 
cc Control character, one byte, optional 
r Rec.ord length fiel~, two bytes, binary 
u Reserved (two bytes); can be any two characters you c.hoose. 
D Record size field 
A Data record length 
C Variable record length 
F 1/0 area layout 

NOTES: 

1. You must align an 1/0 area so that the first character to be printed falls on a half-word boundary. 

6-6 

2. You must place record length, as a binary number, in the first two bytes of the record length field (r) before printing a 
variable-length, unblocked record. The record length includes the 4-byte record length field and the control character, 
if any. 

3. You should allocate an even number of bytes for data in 1/0 areas, even though an odd number of columns are to be 
printed. To print an odd number of columns, allocate data areas one byte larger than the number of columns to be 
printed. 

Figure 6-4. Printer Record Formats 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

6.4. VERTICAL FORMAT AND LOAD COOE BUFFERS 

6-7 

In OS/3, you use the job control LCB· statement to specify the load code buffer (LCB) and 
the VFB statement to specify the veftrtical format buffer (VFB) of the following printer 
subsystems: 

• SPERRY UNIVAC 0768 Printer Subsystem 

• SPERRY UNIVAC 0770 Printer Subsystem 

• SPERRY UNIVAC 0773 Printer Subsystem 

• SPERRY UNIVAC 0776 Printer Subsystem 

• SPERRY UNIVAC 0778 Printer Subsystem 

Refer to Table A-3 for operatiOnal characteristics of these printers, and to the job control 
user guide, UP-8065 (current version). 

6.4.1. Load Code Buffer Interchangeability 

There is no interchangeability of 'printer load code buffers across devices; an LCB job 
control statement you have specified for a particular, printer and print band or drum cannot 
be used for any other. 

6.4.2. LCB Statement Specification 

You specify the codes to be assigned to each graphic symbol on the print band ·Or drum by 
using the X (hexadecimal) or the C (character) positional parameters of the LCB statement. 
You must specify a character code or a hexadecimal specification for each, symbol OR the 
band or drµm, and you may imermix :X and C specifications. Each X or C specification 
must be complete on a single card. As many specifications as are necessary to specify an 
entire band or a single repeated font may be made. 

The space or nonprinting code should be specified,through the SPACE keyword parameter, 
and not included in the sequence of codes specified through the positional parameters. 

If the number of characters is specified with the NUMBCHAR keyword, it should include 
only the number of codes specified for graphic symbols and should not include the space 
code. 

If the CARTNAME keyword is specified, the operator receives a message to mount the 
specified band, and program execution is suspended until the operator replies to the 
message. If the CARTNAME keyword is not specified, no operator message is issued. 



UP-8068 Rev. 4 SPERRY UNIVAC .OS/3 
BASIC DATA MANAGEMENT 

6.4.2.1. LCB Specification for the 0773. arid 0778. Printers 

6-8 

You may. specify 48, 63, 64, or 256 characters for the 0773 and 0778 printers; however, 
any band having more than 64 characters requires·:the specification of 256 characters. A 
128-character cartridge requires the specification of 256 characters. A 128-character 
cartridge requires that the 128 characters be specified twice on the LCB statement. 

Dualing applies to 48-character bands only; you specify dualing with the DUAL keyword of 
the LCB statement. Four dualing characters may be specified for the 0773 and .0778 
printers; these correspond to the 39th, 40th, 44th, and 47th characters on the band. 

The CARTID specification is optional for the 0773 and 0778 printers. 

6.4.2.2. LCB Specification for the 0770 and 0776 Prin:ters 

You ,nay specify from 24 to 384 characters for the loac). code. buffer of the OTZO and 0776 
printer. For repeating fonts ranging from 24 to 192 sym.bols,. you, need only specify the 
characters for a single font: for example you would specify only 128 characters through 
the LCB statement for a repeating font of 128 characters. 

Dualing for the 0770 and 0776 printers involves specifying up to four pairs of codes with 
ttle DUAL parameter. Each pair consists of·one code that has been specified for the loaa 
code buffer, followed by one qode that has. not.- .Assuming, for example, that a band 
contains the question mark symbol (?), but not the vertical bar (j), you could substitute ? in 
your printout for I by specifying DUAL == C? I'. Every time your program outputs the EBCDIC 
code for a vertical bar to be printed, a question mark appears on the printed listing. 

For the 0770 and 0776 printer, you must specify the CARTID parameter, and the code you 
specify ·must be the correct one for the cartridge you intend to use. 

You may also specify a mismatch character for the 0770 or 0776 printer: that is, you may 
spec.ify what character, other than blank (space), is.:to be printed whenever a character 
mismatch occurs. 

6.4.2.3. LCB Specification for .:the 0768 Printer 

You need only specify the string of codes for the load code buffer and the MISM, SPACE, 
and TYPE parameters. You may also specify the optional NUMBCHAR parameter, but the. 
other parameters. of the LCB statement do not; apply to the 0768::printer. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/B 
BASIC .DATA MANAGEMENT; 

6.4.3. Vertical.Format Buffer Interchangeability 

6-9 

Table 6-1 summarizes the· conditions under whi.ch a properly specified VFB statement for 
one printer may be used with other devices. There is no difference in the appearance of 
the printed results if the same VFB statement is used from machine to machine under 
these conditions. 

6.4.4. VFB Statement Specification· 

Specifying a. VFB job control statement involves visualizing the form with numbered lines. 
An 11-inch form to be printed at a density of 8 lines per inch has 88 lines. At 6· lines .per 
inch, an 11-inch form has 66 lines. The first printable line on a form is line 1. The last line 
on'. an 11 ~inch ·form, printed at 8 lines per inch, is line ·88. 

The vertical format b .. uffer can b~ spe~ified and the program designed so that most printing 
occurs between the home paper code position and the overflow code position on the form. 
The .Position of the home paper code. determines the .amo.unt of unprinted space at the·top 
of.the form, and the overflQ.W code position approximates the am0unt of: unprinted spa·ce at 
the l:1ottor:n, of the form. 

aecaus~ .lines may be printed (and the. form advanced) beyond the overflow position, yo.u 
must prqyide enqugh space. between:· the; overflow. code position·· and the· bottom of the· 
form for any lines (and form advances) that must fit· on·. a page. Note that you must prqvide 
at least four lines between the overflow code position and the bottom of the form. This is 
particularly important for VFBs that ·are used to print dumps, librari.an runs, assemblies. 
etc. 

6.4.4.1. Specifying Home Paper Position 

The HP code specified on the VFB job control statement gives the lines number location of 
the home paper position: The specification HP==5 places the· home .paper position on the 
fifth line of the form. 

6.4.4.2. s·pecifying Forms Overflow Position 

You use the OVF keyword of the VFB job control statement to specify the forms overflow 
position to printer SAM. You should not specify: the OVF keyword if you do not intend to 
use it. 

When c:m overflow code is placed in the buffer, a space form ·op.eration·(advahce paper n 
lines) which would move the form to or beyond the overflow position causes forms 
overflow to be detected. On detecting forms overflow, printer SAM takes action according 
to your specifications of the PRll'\ITOV keyword parameters in .the DTFPR declarative ....._ 
macro. 



UP-8068 Rev. 4' SPERRY UNIVACDS/3 
BASIC DATA MANAGEMENT 

6-10 

No indication of overflow is returned to you, except that printer SAM tN:insfers control to 
your overflow routine if you have so specified. In this routine, you may take such actions 
a$ skipping, to the top of the next page~ printing page numbers, printing subtotals, and so 
forth. 

You must specify the overflow code position so that enough space is left between the 
overflow position and the bottom of the form to print and space all of the lines that are to 
appear on the page. Printer SAM may print a line on or below the overflow code position 
and perform spacing before branching to your overflow routine. 

If a PUT appears tn the overflow routine, the effect will be to perform spaCing and/or print 
a, line between the overflow position and the bottom of the form. 

If the user does not specify the PRINTOV keyword, in the DTF, data management takes no 
overflow action; in this event, the BAL programmer who is not counting lines in his 
program r:uns some risk of tearing kthe form by printing on or too near the perforations. 

Table 6~ 1 summarizes the combinatio'ns of device-independent control character codes 
permitted when using each type of printer' with or without 'the TYPE parameter 
specification on the VFB job control statement. Because it describes the allowable t1se of 
device-independent control character codes, Tables 6-1, 7-1, and 7-2 should be used 
conjunctively. Table 7-1 interprets the; control character codes associated with each of 
four printer functions: print and space, print ancJ skip; spacing; and skipping. Table 7~2, 
interprets overflow and home' paper control character codes. 

Note that the 0770" printer has two overflow codes (9 and 12) that the data management 
PRTOV imperative macro can detect selectively. You should specify a secondary overflow 
code (hexadecimal code 9, specified through the OVF2 keyword) only with the 0770 printer 
and only if you are using the PRTOV macro, or (if you are not using data management) its 
PIOCS equivalent. 

6.4.4.3/~ Specifying Special Forms 

If you specify the FORMNAME keyword in the VFB job control statement, the operator is 
issued a message to mount the specified form, and program execution is halted until the 
operator replies. 

6.4~4.4. Paper Tape Loop, 0768 Printer 

For the 0768 printer, you must provide both a paper tape loop and a VFB job control 
statement. The paper tape should be punched to agree 'exactly with the VFB' statement, 
with the following exceptions: 

1. A 7 should not be punched on the tape. Home paper should be punched either as 15 
(for 8 lines per inch spacing) or as 14 (for 6 lines per inch). Only one home paper 
code may be punched on the tape. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

2. Channel 1, 2, 3, or 12 should not be punched ori the tape. 

Table 6-1. VFB Statement Specification an.d Interchangeability 

Statement May 
Specification of be Used With Other Keywords that the User May Specify(Ndte 1): 

TYPE Keyword Printer Types 
(Note 2) HP OVF 

=0773 0768} TYPE 

(or keyword 0770 keyword 
0776 omitted x x 

omitted) 0773 
0778 

=0768 0768 

0770 ~ 
TYPE x x 

0776' 
key we.rd 
omitted 

=0770 0770 
x x 

Note 3 Note 4 

=0776 
0768 ~ 

TYPE 

0770 
keyword. 
omitted x x 

0776 

LEGEND: 

x Keyword may be specified. 

Keyword may not be specified. 

NOTES: 

6-11 

1. This table is concerned with only the keywords shown; the user may always specify the LENGTH, DENSITY, FORMNAME, and USE keywords. 

2. The TYPE keyword should be specified only if a particular printer type must be used .. .A VFB stater;nent designed for a .Particular printer (using the 
permitted keywords shown for tha

0

t printer in Table 6-1) may be used with other printers only if the TYPE keyword is omitted. 

3. The user should specify TYPE=0770 only if he specifies a secondary overflow code (OVF2) or if he specifies multiple home paper positions. 

4. If the user does not specify the OVF2 keyword, he may use the VFB statement (TYPE keyword omitted) with the 0768, 0770, and 0776 printers. 

5. The secondary overflow code (OVF2) should be specified only by a data management user who issues the PRTOV imperative macro. Refer to the PRI NTOV 
keyword parameter of the DTFPR and PRI 0 declarative macros. 



UP-8068 Rev. 4 SPERRY UNIVAG os;a 
BASIC DATA MANAGEMENT 

6.4.4.5. Vertical Format Buffer Statement Example 

6-12 

The following example might be a typical VFB statement used to set up the forms spacing 
and skipping required for a printed report; 

LABEL COMMENTS 

~.L..J.Y~~~~J..i.Hi=J~~~~~.il.E:.lQ_,~~~8.M&;;;ELL.A;;Bll:;\"°lBR--4.l-T81BE.=0,717iO,.iHi'P1=tL.,_QNJEEi52i.,1 
1-'--'-'--'--'-'-.i..=::.c::c=.L...-t=t-~µ=JJ."'-l.1-4-1.p""-L_L_L L:.1.:_.L I ., I I I i Ll...i_L_L_L.l__i__L.L.LJ ...L'.i_ _l___L.L. -1.-L.l.J_.LL.J.\L.L_J...._L .• Ll LL..i. LI 1 

Line 1 specifies ·that the operator use a form called TESTPR. The total number of lines per 
page is 66 at 6 lines per inch. The 0770 printer is being used. The home paper position is 
on line 1 and the overflow area of each page begins on line 52. Note that this includes the 
4-line space between the overflow code position and bottom of page used if a dump, 
librarian run, or assembly is executed. The number 52 is used· by data managemen.t to test 
for page overflow ~onditions. Then, according to ·your PRTOV imperative macro 
specifications, .data management skips to the overflow routine or register to handle your 
overflow routine addr;ess. 

Line 2 specifies a channel code of CD2 with a line number of 6. This means that 
wheneve,r a CNTRL filename,SK,2 imperative macro is issued in the program, the printer 
immediately skips 6 lines on the page. Here a d.etail line of a report might be printed. On 
the other hand, if a CNTRL filename,Sk,,2 macro is issued .in the program, the printer 
skips 6 lines after printing the detail line. The first macro use illustrates immediate 
skipping and the second, delayed skipping. 

A second channel code of CD3 indicates 46 lines. Similarly, the CNTRL macro could 
specify an immediate or delayed skip of 46 lines where a final total might be printed. 

It is important to realize that the CD number (VFB parameter) relates to a channel c~de 
and the value indicated on the tight of the equal sign indicates the line numper to. which 
the printer skips. ' ·· ·· · 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3. 7-1 
BASIC D:A.TA MANAGEMENT. 

·1. Function .~"d Oper~tion 
of ·SAM Printer Files 

7.1. GENERAL 

The OS/3 includes data management· modules that can be used to move and manipulate 
sequential access method (SAM) printer files. These modules: can function with five 
different printer subsystems: 

• SPERRY UNIVAC 0773 Printer Subsystem 

• SPERRY UNIVAC 0770 Printer Subsystem 

• SPERRY UNIVAC 0768 Printer Subsystem 

• SPERRY UNIVAC 0776 Printer Subsystem 

• SPERRY UNIVAC 0778 Printer Subsystem 

This section contains a brief functional description of printer file SAM· operation.· This is 
followed by a detailed description of the declarative macroinstruction that .is used to define 
a printer file and of the imperative macroirastructions that ·initiate, conduct, and conclude 
file processing. 

7.2. FUNCTIONAL DESCRIPTION 

At system installation time, the system macro library ($Y$MAC) is Joaded with source code 
modules that are common to several machine operations. These modules include data 
management modules that are common to several device types and access methods. 

When assembling the program, you define the characteristics of printer file involved in the 
operation, using the define the file (DTFPR) declarative macroinstruction. This 
macroinstruction creates a table of file characteristics, in main storage, that is referenced 
by your program. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC [;)ATA MANAGEMENT 

7-2 

The source code modules that are required for your program are called in from the system 
macro library at program assembly time by using imperative macroinstructions. These 
imperative macroinstructions are included in the program you are assembling and result in 
the creation of inline code .at. the point where the assembler encounters the 
macroinstruction. Positional param'eters contained in the imperative macroinstructions 
allow you to modify the basic ·assembled module so that it meets your particular 
requirements. 

When the file is opened, the characteristics in the file control table set up by the DTFPR 
are examined to determine that they are valid and, if required, that they are present. The 
output records are formed either in the 1/0 area or a work area. A form of overlap 
processing can be achieved by assigning either two 1/0 areas or an 1/0 area and a work 
area. In this way, records can be constructed in one area while others are simultaneously 
being output to the printer from the other area. 

Logical input/output coAtrol system (IOCS) modules also automatically issue certain 
printer control instructions. These involve printer overflow conditions and vertical format 
control. Parameters available with the macroinstructions that call the IOCS modules<into 
the program allow you to tailor them for each particular task. In this manner, the complex 
vertical movement and overflow sensing functions are made easy for you to control. 

A typical printer SAM operating sequence is described in the following example, which 
show the sequence and function of each macroinstruction. The macroinstructions are 
discussed in detail in 7.3 and 7.4. 

Example: 

LABEL .:,OPERATION:~ OPERAND COMMENTS 
to rn 

l . 

i l __ _.,;__ .. ~_..i_ 1 ...._ _..;._L_L_.1. .L.._ .... ,_ ...... ___ ..... _.L_ . ..!.___ .L_ ....._'_t_ __ .._ __ :;. • 

. $t~!:~A.e.~~i~IJ.~_L~_, -··-:~· .... !-.-.. .' .. _ : 

' ' ' 
Il~P~.ILN_._ -1~lni±iQ.te..SJ~ .. ~. $J~.n+ t~u_t~.h.~ ... ±~,c..he.F~. PT.F:MT_a~d 0-.1.F_PR..t~ 

-~· ~· , .L ~a!I ~ef_~~tY ~~-~~~':,..(~'"~ ~u_peli~4 ~~_pre ~air~·~ lhe .Physical 
p RT~ U iT I~c;.s' theh reads th~ i h put, l'"ec.~i-d iht~ the I/~ ai-e a. 

-~---~.&....: -· _.._ ____ ......;_ __ • __________ ... 1 ---·-· - • -- .;.... ~--. 1 .... - • • • - - --' .. -



UP-8068 Rev. 4 

LABEL 6oPERATIONl.. 
1 10 16 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

OPERAND 

7-3 

COMMENTS 

;~•:: :.~-~C~l-.-::L:j~~~~~~~j~~:r'~~~: ~-- 1 
l J.. .1 .l. l J.. .1 l -1. .1 J.. .l. .l. .1 .l. I J. J .. I I I I I I I I I I I I I .L--L..L_1~_'.___:_i__;, _ _j_ _ _l_;__i_L1 LL_LJ I 

.l. _L .1 .1 l _L _l leiRLTl.:>tV IF'i_&T_b1U1TL"l. I 2~ _l _L I _l _l _1 _i_ .LL.i.~ ... --LL."-.: ... LL.l. ' J .-'.~ l . ..LL 

~j 1 1 J. j 1 .1 l .L..:J.. ..1 .1 .1 .l. l ..!. 1 .l. .J. I . l .J. .J. l .J. .l. l -'. .l. ' .l. l ..J.. .l. ..!.. l .l. I .l. ..I.. ' _l .l. ...L 1 

~ i ...l ..1. l ..J.. i i ..1.
0

..1.....L ... ~ _i_ ' ..1. .l. ~ 1Sf'icifie.~ J.I ~.t.f&c -' ~e~fl~wrfbr...d:~'I0.2..t:Lniet befoi:LL1 ... l. 
1-i _Li ...l. l ii 1 ...l .1 ...l ...l L.L _L 1 . ...l .)1uj_ed ~~ll:...1i2dicp~VfBs:~.d~ __ 1.2~ As-t2~ird,p~s}~!~_L_ J 

*-ii ...l .i l i ...l .i~ .1 _1.pJr?';'e;t:1r ,h~~ ib~ep ~h(+l:~~,,a~ au~~~-8.~ic ~kiP~~j_p~pe[_LL 
•i l_ i d _L 1 1 1 J. 1 p~s'i1itih,will.t>7c~l"l "Y~et:'°?>~rr;is 1 ~yer~1~w1 i~ ~etefted. 1 1 -.. 

... L...li..i L 

J ·1 

~_l_ J. .L _l_ 1 _l_ L l l .1 L 'L .L _L l _l_ ' _l_ l .L ' _L • _]_ I I 1 _j_ l_ l I _l I 
-:;-

J. l 

~ I _l ... L ! . l l _l_ ·.....l........i; J ' ...... 1... I 1·~........L .. l........i__i_...l .... L.L 

• i • • l" • ,, .. .,p:.I:Nj~"' 'to.' Prtice.,1.: te • .:n.:h~m p•b~t.t.i•-4 · ~ ,J_LL · · 
• 

1 1 1 
-'--L.L......L 

1 
·.fbt.! -+Pie i~pot hhtl o~ile:s .1 

• '~. • • .....l. .. ...J_L....L_.........J..._.L.J..... . .......J........L ......... l..-. 1
· L 

...L _L _L ...L _l ...L P_1.R:r UT _L l ...L I ...L _j_ ' l . I ..• _l_ _L . ~_...LL.i_i__LJ_J_...i_....i i .!.....l 

l 

C1L.i.D...LSiE 

j _L 

C...iLJ6S E 

•....Liil ...L 1ii...Il ...lii _1. '_i_ il iiil ...J. I liii I l i ...L ...L 

~N_D.L i _l_ .L _l_ • -1 i i i , , 1 , 1 6n9~ a.Sse !'!\ bliy , , , 1 J__ __ _L __ .L...l _..:1._L...l........L..1 l . ..... 1 1 

.l. .l. .l. ...L l .i ..l i J. J. l -1. .l. J. LI I I I I ! .........L..... . .i_L.....l__L_~._.____j__,_.!._ .. ~ .L-~·--.l .L..L....LJ... .. l L_._.L. l l ..i ..l _L 

I i'l.L ii i i l_ l 1 1 .L i 
1 ...l.h.d. t»fda+a, , , !, ___ ;_1_L_L_J__.J.__ l.........L- _.:........L._L , ... ....l.---.L1 L .... t ... -1.... 

llL .J1'iLCi. .L l210. i , ILi.Li. LF"1D, PRNLR , , I 1 LRe¢\LA i red_l:furi_SNAPs and DLJMP...il.J_J_d_.L 
l!d'1 n,v1c , 1 21.~-1-L£..._J_Lf iDL_ER1r1au:c , 1 I , , Ll.......t.__J_J_L_L ..!. ...Li 1 ..L.L.L...1-.L.L.J_LLL ... L ... _L....L._L_L 

!LLt _DML .i. l9i0i ..LL lLiLi_ ,Lr: .fi iliAP1E1ill i l i i _l_ i _l _1 i _l_ i 1 _l_ i _l_ . .t l _l_ _l_ i i l i i i ...l l .i. _l_ i_ i l i_ 

_l_ _l_ ..l i l _L J. _l_i___i__i_ _l ..l. l ..l. ..J.. ...!. J.. .l. ..!. ... ! - .... L . ...l . ...L.•-. ...L--. ____ L.j_l __ .l C 

IL iElf..'E_i_C.i l i i .L .i. .l. .i l i E.i.qc.!tl_e~r. .... ...Wl!..'.L l 1 .i , l L ! i 
u 

J_ ...l J. _l l l 1 L _l_ l . ...L~'~·-.L_L....L......L......L ....... L--...L-· .L.~-~-----l.. .. L- J 

l J. i _1_ .l. i ...J. 1 ,En(:! d'ijbb~...J-·~~· . -~· ___ .L .i.......L_l_Ll __ ,_.i_..__L .. J__,____ ... _ ... t 

l t11l1i. J _l _l J. i. .1. _l J_ l ...l. l '----1 l _l_ .1. .1. ... LL...L_~- j __ _J__ Ll_._, -- __ J_......l_!_.1 1 j 

.~l.JJ~l~i ~iF~:.iI~lti~.i.'--t--t---'-1 .J..._j___L_ ...L _l_ _l L~~J. .......... .i~' -~.L~--...l__i____i___.__~ __ ! ---~ .. -1..........L.L......L......_J_......l -

l...i..1 _j_ .1 ! J_ . ..I. l l _l .1. 



UP-8068 Rev. 4 

DTFPR 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

7.3. DEFINE A SAM PRINTER FILE (DTFPR) 

Function: 

7-4 

The DTFPR declarative macroinstruction is required to define each printer file 
processed in the program. Following the format is a listing, in alphabetical order, of 
the required and optional keyword parameters which may appear in the operand of 
the DTFPR macroinstruction. A description of each keyword parameter follows the 
format; A summary, of the keyword parameters is given in Table 7--3. 

A' comma ~is shown preceding each keyword parameter except the first, to remind you 
that all keywords c'oded ~in a string must be separated by commas. However, a comma 
must neither be coded in column 16 of a continuation line, nor follow the last 
keyword in the string. Refer to the coding example that follows. 

Format: 

LABEL b. OPERATION b. 

filename DTFPR [BLKSIZE=n] 
[,CONJROL=YES] 
[,CTLCHR=DI] 
[,ERROR=symbol] 

OPERAND 

,I OAR EA 1 =symbol 
[,IOAREA2=symbol] 
[,IOREG=(r)] 
[,OPTION=YES] 
[,PRAD=n], 

[ 
,PRINTOV= {SKIP }] 

symbol 
YES 

[,RECFORM={~i~B}] 

[,R ECSI ZE=(r)] 
[,SAVAREA=symbol] 

[ ,UCS= {ON }] 

[,WORKA=YES] 



UP-8068 Rev: 4 SPERRY UNIVAC 0$/3 
BASIC DA'TA MANAGEMENT 

7-5 

Keyword Parameter BLKSIZE: 

BLKSIZE=n 
Specifies the length of the 1/0 area in bytes. If the record is variable length or 
undefined, r'l specifies the length ·of the longest block, including block size and 
record size bY'tes for the variable-length unblocked records. 

If omitted, the block size (120, 121, 128, or 129) is determined from the CTLCHR and 
RECFORM keyword parameters. 

With RECFORM-FIXUNB specified and CTLCHR not specified, block size is set to 120. 
With RECFORM VARUNB and CJLCHR specified, block size is set to 129. 

The minimum bl.ock size is wvo bytes. With CTLCHR=DI, RECFORM=VARUNB, and 
maximum print position options installed on the 0773, 0778 and 0770 printers, block 
size can be a maximum of 141 bytes for the 0768 printer, 145 bytes for the 0776 
printer, 169 bytes for the 0770 printer, and 153 bytes for the 0773 and 0778 
integrated printers. If these optional features are not installed on your printers, the 
maximum block sizes for the 0773 and 0778 printer are 129 bytes and for the 0770 
printers are 141 bytes. 

Keyword Parameter CONTROL: 

CONTROL=YES 
Spedfied if spacing or skipping lines on the printer is controlled by your program 
through the CNTRL macroinstruction. 

The CONTROL keyword parameter and the CTLCHR keyword parameter are mutually 
exclusive. If they are both used in the same DTF, an error flag appears in the output 
listing and the control specification is ignored. 

Keyword Parameter CTLCHR: 

This keyword parameter is specified when you wish to use a control character with 
data records. , , 

CTLCHR=DI 
Specifies the device .. independent, 2-digit, hexadecimal control character code 
listed in Table 7-1. 

The use of device-independent characters allows a single character for each function 
to be used with any printer, (;Wen if the hardware opcode varies with printer type. 
With this set of characters, some substitutions have to be made to compensate for 
device characteristics (Table T-2). 



UP-8068 Rev. 4 

. Function 

No-op 

Print ahd space 
n lines (Note 8) 

n= 0 
1 
2 
3 
4 
5 
6 
'.7 

8 
9 

10 
11 
12 
13 
14 
15 

Print and skip 
to code n (Note 7) 

n= 1 (OV) 

2 
3 
4 
5 
6 
7 (HP) 

8 
9 

10 
11 
12 
13 
14 
15 

Space n lines (Note 8) 
n= 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEME.NT 

Table 7-1. Device-Independent Control Character Codes· (Part 1 of 2) 

DI Printer 
Code . • .. ... .. 

(Hex.) 0773 and 0778 0770 0768 

00 

Note6 
I 

10 
01 
02 
q3 

.. 

04 
05 Nqte 1 
06 Note 1 
07 Note 1 
08 Note 1 
09 Note 1 
QA Note 1 
OB Note 1 
QC Note 1 
OD Note 1 
OE Note 1 
OF Note 1 

11 Code 12 (OV) Chan 9 (OV) 

12 Note 5 
13 . Note 5 
14 
15 
16 
17 Note 4 (OV) Chan 15 . Note 3 
18 Code 2 
19 Code 1 ·.(OV) Note 2 (OV) 

1A Code 3 
18 Code 4 
1C Code 1 (OV) Note 2 (OV) Chan 9 (OV) 

10 Code 5 
b• ~. 

1E Code 7 (HP) Code 7 (HP) Chan 15 Note 3 
1F Code 7 (HP) Code 7 (HP) Chan 15 Note 3 

Note 6 
51 
52 
53 
54 Note 1 
55 Note 1 
56 Note 1 
57 Note 1 
58 Note i 
59 Note.1 
5A Note 1 
58 Note 1 
5C Note 1 
50 Note 1 
5E Note 1 
5F Note 1 

ons 

Code 12 (OV) 

Code 7 (HP) Note 4 

Code 12 (OV) 

Code 12 (OV) 

Code 7 (HP) 
Code 7 (HP) 



UP-8068 Rev. 4 

Function 

Skip to code n (Note 7) 
n= 1 (OV) 

2 
3 
4 
5 
6 
7 (HP) 

8 
9 

10 
11 
12 
13 
14 
15 

LEGEND: 

OV Overflow code 

HP Home paper code 

NOTES: 

SPERRY UNIVAC OS/3 
BASIC DATkMANAGEMENT 

Table 7-1. Device-Independent Control Character Codes (Part 2 of 2) 

--"- ~· 

DI Printer 
Code -cc 

(Hex.) 0773 and 0778 1 0770 076P 

' 

21 Code 12 (OV) Chan 9 (OV) 

22 Note 5 
23 Note 5 
24 
25 
26 
27 Note 4 Chan 15 (Note 3) 

28 Code 2 
29 Code 1 (OV) Note 2 
2A Code 3 
28 Code 4 
2C Code 1 (OV) Note 2 Chan 9 (OV) 
2D Code 5 
2E Code 7 (HP) Code 7 (HP) Chan 15 (Note 3) 

2F Code.7 (HP) 'Code 7 (HP) Chan 15 (Note 3) 
'-'--:;: 

7-7 

' 

0776 
-"'-_!:_ 

Code 12 (OV) 

Code 7 (HP) Note 4 

Code 12 (OV) 

Code 12(0V) 

Code 7 (HP) 
Code 7 (HP) 

1. Line spacing of 4-15 lines on the 0768 printer is accomplished by issuing mul~iple 1/0 commands'. Tihe, commands are issued 
by data management. ·· 

2. Code 12 is the primary forms overflow code on the 0770 printer. Code 9 can also be detected as forms overflow code, using 
the PRTOV macro. If the PRTOV macro is not used, however, cod~ 1? ~hould be used as overflow code, and code. 9 should 
not be placed in the VFB. · 

3. On the 0768 pri[lter, you must use both a vertical format buffer ana a pape'r' tape loop. Using DI codes 271 2E; or 2F as 
control characters has no <;lirect effect on line spacing; this .is co11trc;>lled by what is punched on the paper: tape loop .. The actual 
selection of six or eight lines-per-inch spacing occurs when t.he operator sets ·up your form on the 0768.printer to register at 
home paper position and pushes the HP button twice. 

If channel 14 is used as home paper code on the paper tape loop, this causes printing at six lines per inch; using cha'nnel 15 
results in eight lines-per-inch spacing. These two codes should not be intermixed. When a DI code for skip to code 7 is issued, a 
skip is is!;ued to channel 15 on the 0768 printer - this causes an advance to either channel 14 or 15, whichever in punched on 
the paper tape loop. 

4. Code 7 must be used as the home paper code on the 0770ind 0776 printers. 

5. For the 0768 printer, the software (physical IOCS) provides codes 2 and 3. 

6. Line spacing (print density) is switch-controlled on the 0773 and 0778 printers. You issue instructions to the operator via the 
job control VFB statement by using its FORMNAME and DENSITY parameters, a·nd he sets the line rate whe'n the vertical 
format buffer i.s loaded. 

For the 0770.arid 0776 printers, line spacing is software-controlled.via the DENSFfYparameter of the VFB statement. 

7. Code n specifies channel code CD1 through CD15. (See"'7.4.3.) 

8. Code n specifies number of lines to be spaced. (See 7.4.3.') 



UP-8068 Rev. 4 SPERRY UNl\(AC 05/3 
BASIC DATA MANAGEMENT 

Table 7-,..-2. Overflow .and Hof'(le .Paper Control Character Codes 

-,,-~ 

Printers 
Code 0773 a.nd 

-o-= ~ 

0778 0770 0768 0776 
~~ 

Overflow Code 1 Code9 Code9 Code 12 
code 12* 

Home paper Code7 Code 7 Code 14 Code 7 
Code 15 

*Code 12 is the primary code; code 9 should not be used with the 0770 printer unless the 
PRTOV macro is used. 

7-8 

Keyword Parameter ERROR: 

ERROR-symbol 
Specifies the address of a special error handling routine to which you ·may have 
control transferred when a fatal· hardware or detectable· logic error occurs ·on 
your file. Information concerning reasons for the error will be contained in 
filenameC (see 8.4). 

Keyword Parameter IOAREA 1: 

IOAREA1==symbol 
Defines the address of the 1/0 area. Each input or output file must have an area 
reserved for its individual use.-The 1/0 area must be aligned so ttiat the first byte 
of data (the character to be printed in column 1) is on a half-word boundary. 

The 1/0 a·rea must provide''spac'S fof everything included as part of the b.lock length. 
You must allocate 1/0 areas that contain an even number of bytes, excluding the 
-control character, if any. Data,-management inserts a nonprinting character atthe end 
of ·any user· print· line which ·contains ah odd number of characters. This extra 
character ·is placed in an 1/0 area before printing the line. 

Examp.les: 

LABEL OOPERATIOND. OPERAND 
10 16 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA,MANAGEMENT 

7-9 

1. Without control character: nn must be even and greater than or equal to 
BLKSIZE. 

2: With control character:: nn must be odd and greater than or equal to BLKSIZE. 

Note, in this case, that it is necessary to reserve one byte after the half-word 
alignment, because the first character to be printed must be on a half~word 
boundary, and a control character is being Lised. Remember thatttie block length 
always includes one byte for the control character when one is used. 

Keyword Parameter IOAREA2: 

IOAREA2=symbol 
Provides a second 1/0 area to allow overlapped processing and speed 1/0 
operations. 

lhe same conditions that apply for IOAREA1 also apply for IOAREA2. If IOAREA2 is 
specified and WORKA is not, you must specify the IOREG keyword :parameter. No 
additional processing speed is obtained when both the IOAREA2 and WORKA 
keyword parameters are specified. Most efficient processing is obtained with ,either of 

, the following:' 

IOAREA 1, IOAREA2, and IOREG 
or 
IOAREA 1 and WORKA 

Keyword Parameter IOREG: 

IOREG=(r) 
Specified when a general register (2 throu~fti' 12) is used to reference current 
data. If SAVAREA is specified, register 13 is also available. The register must be 
spedfied if two output areas are used and, records' are not to be' processed in a 
work area. 

After each line is printed, and before returning to your program, data management 
loads the register specified by IOREG with one of the following, depending on your 
record format: 

111 The address where the first character of the next record: to 'lfe output should be 
placed when fixed-length, unblocked or undefined records are used. This is either 
a control character (if used) or the character in print rfo>sition,L 

• The address c>fithe location where: the ,4.:.bYte'. record' lerigth field, followed by the 
control charaeter, if,',any, and data to be printed, should be placed for variable­
length unblocked 'records. 

The IOREG and WORKA keyword parameters are mutually exclusive. If both are 
specified, the WORKA keyword parameter is ignored and an error flag appears in the 
DTF listing. 



lt"-OVOO nev. '+ ;:irc:nn T Ul'llVl"\\...Uv/ v 

BASIC DATA MANAGEMENT 

Keyword Parameter OPTION: 

OPTION=YES 
A.llows you to specify an optional file: one which you anticipate will not invariably 
be required to be printed every time your program is executed . 

. When the OPTIQN keyword:. parameter is used, the PUT, CNTRL, and PRTOV 
imperative macroinstructions ar:e disabled: 

• if an OPT positional parameter is included in the DVC job control statement and 
the device is not available at execution time; or 

• when no device is assigned to the file by your job control statements, (i.e., no 
DVC,..LFD sequence). 

If the OPTION keyword parameter is used under these conditions, the occurrence of a 
PUT, CNTRL, or PRTOV macroinstruction results in a branch back to your program, 
and no 1/0 is performed. 

If the OPTION keyword parameter is not specified and one of the two previously 
stated conditions exists, the file is not opened; an error bit is set in the file table and 
the program branches to your error routine. If you have not provided an error routine, 
control returns to you inline. 

Keyword Parameter PRAD: 

PRAD=n 
Allows you to specify a standard form advance of from 1 to 15 lines, where n is 
the number of lines the form is to be advanced and ranges from 1 through 15. 
The form advance takes pl.ace after the line is printed. 

On the 0768 printer, spacir,ig of 4 through 15 lines is .accomplished ·by issuing 
multiple 1/0 commands because this device can advance only three ljnes under one 
1/0 command. If the PRAD and CTLCHR keyword parameters are not specified, 
PRAD . 1 is assumed; if both are. specified, .the control character will cteterrnine the 
lir:ie advancement. 

A delayed CNTRL macro instruction, which spaces or skips lines after printing, 
over.rides the PRAD keyword,;parameter specification for one print operation only. 

Keyword Parameter PHINTOV: 

This keyword parameter specifies the action to be taken when the forms overflow 
code is detected dwing a space or. print and space c,ommar:id~ The forms overflow 
code cannot be detected on skip or print and skip' comma,,r1ds. 



UP-8068 Rev. 4 SPERRY UNIVAC US/3 
BAS.IC DATA MANAG.EMENT 

There are three PRINTOV option specifications that can be made.: 

PRINTOV-Sl{IP 
Specifies an automatic skip to the home paper position. 

PRINTOV=symbol 
Specifies that control is transferred to your overflow routine. When this 
option is specified, the form will not be automatically advanced to the home 
paper position. 

In the overflow routine, you may. print total ·Jines, skip to home paper, and print 
page headings. To branch back to the point in the program where processing 
would have continued (if overflow hadn't occurred) you may use the address in 
register 14. If imperative macros (CNTRL, PUT) are issued in the overflow routine, 
you should store register 14 before issuing the macro and restore it after the 
instruction is executed. 

If overflow is detected during the issuance. 0f, a CNTRL macro, control will be 
transferred to your overflow routine. 

PRINTOV=YES 
Specifies that the PRTOV imperative macroinstruction will be used in the 
program to control overflow detection and actions .. 

To use the forms overflow features, you must load the proper forms overflow 
code in the VFB for the 0770, 0776, 0768, !lnd 0773, .printers. If the PRTOV 
imperative rnacroinstfuctions are to be u~ed with the 0770 printer, each code 
required must be loaded in the VFB. The VFB is loaded thr()ugh job control 
statements. The 0768 printer also:.requires a paper tape loop whJch must agree 
with the VFB statement. 

OS/3 data management will execute one user-issued CNTRL or PUT macroinstruction 
after the immediate CNTRL or PUT instruction on which forms overflow was detected. 
If the imperative macro issued after the macro on which ~overflow .was, detected 
results in a forms advance to a skip c,ode (V,FB or paper tap~ code), your: overflow 
options will not be. executed. · 



UP-8068 Rev. 4 SPERRY UNIVAC 05/3 
BASiC DATA MANAG.EMENT 

/-IL. 

Keyword Parameter RECFORM: 

One of the following three options describing the record format· should be specified: 

RECFORM 
Fixed-length records for print files are assumed by the logical IOCS when 
this keyword parameter is omitted. . 

RECFORM=UNDEF 
Used for undefined records. You must specify the RECSIZE keyword 
parameter wheh this format is used· and enter the size of each record into 
the RECSIZE register before issuihg each PUT macroinstruction. See Figure 
5_;;._4; 

RECFORM VARUNB 
Used for variable-length, unblocked records .. ' 

Before issuing a PUT macroinstt'·uction~ you must include ·a valid record length value 
(a binary number) in the record. This record length, inserted into the firsttwo bytes of 
the 4-byte record size field, must include the control character, if provided, as well as 
four bytes for the record size field itself. See Figure 6-4. 

Keyword Parameter RECSIZE: 

RECSIZE=(r) 
For output files· with ·undefined record format, specifies the. number (2 through 
l2) of the general register that holds the size<. of the· output record. If SA VEAR EA 
is 'specified, register 13 may be used as the ·RECSIZE ·register. The record size 
must be entered into the .general register ·before the PUT macroinstruction is 
issued. 

Keyword Parameter SAVAREA: 

SAVAR EA=symbbl 
If you have' a' program written· for a SPERRY UNIVAC 9200/9300 System or 
similar system (in which register 13 was used), you may convert the program to 
run under OS/3 by adding a 72-byte labeled save area (aligned on a full-word 
boundary) by adding this keyword parameter. 

This keyword parameter should be specified by you for each DTF in a program. Only 
one register save area is needed per program. Refer to 1.4 for the content of this 
area. 

If this keyword is not present in a DTF, logical IOCS will assume that register 13 has 
been loaded with the address of a 72-byte save area, aligned on a full-word boundary. 



UP-8068 Rev. 4 SPERRY· UNIVAC OS/3. 7-13 
BASIC DATA MANAGEMENT 

Keyword Parameter UCS: 

This keyword parameter is specified to determine whether character mismatches are 
to be ignored or hot. A mismatch occurs whenever the printer attempts to print a bit 
configuratioff which· is not present in the printer's load code buffer: This parameter 
has two formats: 

ucs 
Character mismatches are ignored by the program. All unprintable 
characters a~e printed as the nonprinting code jNP) in the load code buffer. 
When the standard load code is used, a blank (4016) is printed. 

UCS==ON 
The operator is notified of character mismatches. If an error routine has 
been provided, control will be transferred to that routine and the registers 
restored. If no error routine has been provided, a message will be issued 
and control will return to" the program as if no error had occurred. 

Keyword Parameter WORKA: 

WOR.KA-YES 
Specifies a work .area Jor .preparation of output records. The address of the 
current work area must be specifi~d with each PUT ·macroinstruction . 

. The WORKA and IOREG keyword parameters are mutually J~xclusive; if both are 
specified, the WORKA keyword parameter is~ignored and an error flag appears in the 
DTF listing. Best .efficiency· is obtained with either of the following combinations: 

Example: 

IOAREA 1, IOAREA2, and )OREG 
or 
I OAR EA 1 and WORKA 

LABEL b.OPERATIONb. 
; 10 . 16 

OPERAND 



UP-8068 Rev. 4 

Keyword 

BLKSIZE* 

CONTROL 

CTLCl:IR 

ERROR 

IOAREA1 

IOAREA2 

IOREG 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

7-14 

Table 7-3. Summary of Keyword Parameters for DTFPR Macroinstruction 

Specifications 
OUTPUT 

Remarks 
File 

' 
n x The maximum block size in bytes, 

YES x Specified if CNTR L macro instruction is issued to 
line spacing or skipping 

. ) . . ' ' 

DI y DE:!vice-independent control characters 
) 

symbolic :label: x Address of your unrecoverable error routine 

symbolic label R Address of output area 

symbolic label x Address of alternate output area 

(r)=:gen~ral register x General register (2 through 12) that contains the 
address of the current record each time a PUT is 
issued. Register 13 may be used when'SAVAREA 
keyword parameter is used. 

~ _:__:c 

OPTION YES x Specifies an optional file that has not been allocated 
by job control 

·PRAD n x Number of lines (i to 15) to be spaced 
-"- c 

PRINTOV SKIP x Automatic skip to home paper position on printer 

~ymbolic label x Address of your overflow routine 
: 

I, YES x Specifies execution of PRTOV imperative macros in 
program 

RECFORM* ···el~WMI y For fixed-length records 

UN DEF y For undefined records 

VARUNB y For variable-length, unblocked records 

RECSIZE (r)=general register x General register (2 through 13) that contains the 
length of each re~ord when RECFORM=UNDEF 

' ~ 

SAVAREA symbolic label x Specifies 72~byte register save area 
--"'- -"- '-'- 1.:.. -"- -"- ;..::_ 

ucs y Charncter mismatcheswill be ignored. 

ON y Operc~tor is notified of character mismatches. 

WORKA YES x Process records in work area. 
,· 

LEGEND: 

R Required 
X Optional 
Y One option required 

Value assumed if keyword is not specified 
Parameter may be changed on DD job control statement 



UP-8068 Rev.A · SPERRY UN.IVAC OS/3 
BAS.IC DATA MANAG .. EMENT 

7.4. IMPERATIVE MACROINSTRUCTIONS 

7-15 

There are five imperative macroinstructions available to you for processing SAM printer 
files: 

Macroi nstruction 

OPEN 
PUT 
CNTRL 
PRTOV 
CLOSE 

Use 

File control 
Record processing 
File contrbl 

··File control 
flle control 

The following paragrapt1s describe the macroinstructions and their related parameters in 
detail and provide you with coding examples and explanations, when required, to clarify 
use. 



t 

UP-8068 Rev. 4 

OPEN 

SPERRY UNIVAC QS/3 
BASIC DATA MANAGEMENT 

7.4.1. Open a Printer File (OPEN) 

Function: 

7-16 

Before a file can be accessed by the logical IOCS, ,an OPEN macroinstru,ction is 
issued. The transient routine called by the OPEN macroinstruction performs certain 
validation checks and initiates file processing. A check is made to determine it all the 
necessary keyword parameters defining the file have been supplied. The device 
allocation performed by the job control ,program is determin~d, and the 1/0 r~gister is 
set up if one is specified. 

Format: 

LABEL /::..OPERATION/::.. 

[name] OPEN 

OPERAND 

{

filename-1 [, ... ,filename-n]} 
(1) 
1 

Positional Parameter 1: 

filename 
Is the label of the corresponding DTF macroinstruction in the program. The 
filename may have a maximum of seven characters. The maximum number of 
filenames is 16. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the declarative 
macroinstruction. 

Examples: 

LABEL !::..OPERATION/::.. OPERAND 
1 10 16 



Ul-'-tiUoti Hev. ~ 1 ~f'EHHY UNIVAC,; U~l~ 

BASIC DATA MANAGEMENT 

1. Open printer files labeled PRNT1 and PRNT2. 

2. Open printer file labeled PRNT4. 

7-17 



UP-8068 Rev. 4 

PUT 

7 .4.2. Output a Record (PUT) 

Function: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

7-18 

The PUT macroinstruction delivers an output record to the logical IOCS in either an 
outp1..1t area or a work area you have specified. This output record could be a line to 
be printed or, if the record comprises only control characters, could cause carriage 
movement alone. 

Format: 

LABEL b. OPERATION b. OPERAND 

[name] PUT 

Positional Parameter 1: 

filename 
Is the label of the corresponding DTF macroinstruction in the program. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the declarative 
macroi nstruction. 

Positional Parameter 2: 

workarea 
Is the label of the work area from which the record may be obtained. 

(0) or 0 
Indicates that register 0 has been preloaded with the address of the work area. 

If omitted, indicates that you have chosen processing either by means of a register 
(IOREG keyword parameter) or by directly accessing the data relative to the name of 
the 1/0 area. 

NOTE: 

When the work area is specified, the keyword parameter WORKA=YES must be present in 
the DTF statement. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

7-19 

Examples: 

LABEL fiOPERATIONfi OPERAND 
10 16 

/. r---"_.__,_.__.__..__.____,t-f--L.:~._J_-t--P-'~.:1...!....J....:.J._J___J_,L-1.__J___L_L..l.._l.__L_l__L_l_J_Jl__L_j_J_J_L___L_.LJ_L___l_j_ 

£.t---'--L-..L-L-1._-L-1-f--F-L=:..L!_L_-L...f-J1-..J.!...:JIL:l...!~Ll)-l!~~~_J_JL..L_L_L.-1.._L.J_j__L_J_JL...L_L_l__J__L__l__i_L_L_ 

1. Print a line, or space the paper. The record is located in an output area. The file 
characteristics are contained in the DTF table labeled PRNT1. 

2. Move the record in the work area WORK1 to an output area and print, space 
paper, or both. 

3. Move a record from the work area whose address is stored in register 0 and 
print, space paper, or both. 

Programming Considerations: 

When WORKA=YES is used, a work area must be specified with each PUT 
macroinstruction. When only one 1/0 area is specified, you may move the records to 
be printed directly into the 1/0 area. If you specify two 1/0 areas, you must use the 
1/0 register (IOREG keyword parameter) to move records to be printed jnto one of the 
1/0 areas before issuing each PUT macroinstruction. 

When printing variable-length, unblocked records, you must place the record length 
(as a binary value) in the first two bytes of the record size field. Undefined-length 
records require that you place the record length in the required register (specified by 
the RECSIZE keyword parameter) before issuing each PUT macro instruction. 

When you want to use control characters to position the form only (no printing) for 
variable-length, unblocked, or undefined record formats, you can indicate that the 
record contains no characters to be printed. 

When you are printing records in undefined or variable, unblocked format, printer 
SAM checks whether the number of columns being printed is greater than zero every 
time. If you try to print zero columns, data management normally issues error 
message DM18 (RECORD SIZE INVALID), sets the record size invalid error flag (byte 
0, bit 7) in filenameC, and branches to your error routine. Refer to Appendix B. 

However, this error processing does not take place when you are performing an 
advance-only operation using control characters; you may then indicate that there is 
no data to be printed. With either undefined or variable, unblocked records, you must 
place the record size in either the RECSIZE register or in the record size field in the 
record before issuing each PUT macro. To indicate that you have no data to be printed 
when your records are variable, unblocked, you may place a record size of five bytes 
in the record size field - provided that you limit this to advance-only operations. 



UP-8068 Rev. 4 SPERRY UNIVAG OS/3 
BASIGDATA MANAGEMENT 

7-20 

When you are printing a record containing an odd number of characters to be printed, 
data management places a nonprinting character in the 1/0 area after the last byte of 
user-supplied data. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT, 

~ ' £ ~ 

7-21 

CNTRL 

7.4.3. Control Printer Forms (CNTRL) 

Function: 

The CNTRL macroinstruction controls printer forms spacing and skipping. Forms 
motion -~·~.n.9ccur before,, .after, or bQtb before .. and.C!ft~r a .lJne i~ prjnt~d •.. 

Format 

LABEL A OPERATION!'::. OPERAND 

[nam~] CNl'.RL 

{

. filename} .. , ·{SK}. [,m] [,n] 
(1) SP 
1 

Positional Parameter 1: 

filename 
Is the label of the corresponding DTF macroinstruction in the program. 

(1) or 1 
Indicates that·· register 1 has been preloaded with the address of the declarative 
macroinstrucfion. 

Positional ·Parameter 2: 

SK 
Indicates that forms skipping is desired. 

SP 
Indicates that forms spacing is. desired. 

Positional Parameter 3: 

m 
Specifies either the, number of lines (0 through 15) for immediate spacing, or the 
channel code (1 through 15) for immediate skipping. The PUT macro performs 
spacing after printing. The number of lines spaced is determined by tbe PRAD 
keyword parameter (default causes advance of one line). Immediate CNTRL 
spacing is in addition to any spacing performed on a previous PUT 
macroinstruction. It sho'uld be noted 'that forn:ts overflow processing can be 
initiated after CNTRL processing (immediate or qelayed) is performed. 



UP-8068 Rev. 4 

Positional Parameter 4: 

n 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Specifies either the number of lines (0 through 15) for delayed spacing, or the 
channel code (1 through 15) for delaye~ sl<ipping,. 

Examples: 

LABEL OPERAND 

1. Space three lines before printing the next line in file PRINT2 and five lines after 
printing the next line. 

2. Skip to the home paper position. 

3. After printing the next line, skip to the home paper position. 

Programming Considerations: 

Because of differences between the JJ770, 0773, 0776, 0778, and 07.68 printers, 
substitutions have to be made for some skip codes on each;!Ype of printer. Table 7-4 
lists these substitutions. On the 0768 printer, data management accomplishes 
spacing greater than three lines by issuing multiple 1/0 commands'.,, If you issue 
several control commands in succession, specifying delayed spacing or skipping, only 
the last delayed spacing or skipping option is executed. 

Function 

Skip to code n, m 
·n, m = l (OV) 

2 
3 
4 
5 
6 
7 (HP) 

8 
9 

Table 7-4. Device Skip Code Table (Part 1 of 2) 

0773 and 
0778 

Printer Code Substitution 

0770 

Code 12(0Vl 

0768 

Chan9 (OV) 
Note 6 
Note 6 

0776 

God~ l2 (OV) 

Note 2 
Code 2 

Chan 15 (Note 4) Cod.e ,7 (HP) Note 2 

Code 1 (OV) Note 5 (OV) Code 12 (OV) 



UP-8068 Rev. 4 

Function 

10 

'I 
11 
12 
13 
14 
15 

LEGEND: 

OV Overflow code or channel 

HP Home paper code 

NOTES: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table 7-4. Device Skip Code Table (Part 2 of 2) 

Printer Code Substitution 

0773 and 0770 0768 0778 '! 

Code 3 
Code 4 
Code 1 (OV) Note 5 (OV) Chan 9 (OV) 
Code 5 
Code 7 (HP) Code 7 (HP) Chan 15 (Note 4) 
Code 7 (HP) Code 7 (HP) Chan 15 (Note 4) 

7-23 

0776 

Code 12 (OV) 

Code 7 (HP) 
Code 7 (HP) 

1. A blank in the code substitution column indicates that no substitution is made; data management skips to the code 
you have specified. 

2. Code 7 must be used as the home paper code on the 0770 and 0776 printers. 

I 

3. A skip to code 7 control causes a skip to the home paper code on all printers. On the 0768 printer, the skip is to 
chanr:i,el 14 or 15 .(skip tp c~annel 15 i,s~issued to the Rrinter). On .the .0768 printer, the home paper code used on the 
tape loop sets the number of lines printed per inch. Channel 14 results in 6 lines/inch line spacing and channel 15 
results in 8 lines/inch spacing . 

. 4. A skip to· channel 15 is.sued to the 0768 printe.r; .causes an, advance to the home paper position, regardless of whether 
channel 14 or 15 is punched in the paper-tape forms control loop. 

5. Code 12 is the primary forms overflow control code for the 0770 printer. Code 9 can also be d~tected as forms 
overflow code, using the PRTOV macro. If the PRTOV macro is not used, however, code 12 should be ~sed'as overflow 
code, and code 9 should not be placed in the VFB. 

6. Data management accomplishes spacing greater than three lines on the 0768 printer by issuing a number of 1/0 
commands. If the user issu~s several 'control commahd~:;c in succession,· specifyfng delayed; spacing ·or· skipping, only 
the last delayed spacing or skipping option is executed. 

7. For the 0768 printer, the. software (physical IOCS) providE;!S c<;>qes 2 and 3 .. 



UP-8068 Rev. 4 

PRTOV 

SPERRY UNIVAC 05/3 
BASIC DA1fA\MANAGEMENT 

7 .4.4. Print Overflow Action (PRTOV) 

7-24. 

The PRTOV macroinstruction specifies the action to be taken whE(n a forms qverflow 
condition occurs~ /' 

Format: 

LABEL I.\ OPERATION[.\ OPERAND 

[name] PRTOV { \~iname} [·{~}] [' u~r-flowname }] . 

Positional Parameter 1: 

filename 
·is the label of the corresponding QTF macroinstruction in the program. 

(1) or 1 
lndicates·.that register 1 ·has beeri preloaded with- the :address of the ·declarative 
macroi nstruction. 

Positionat Parameter 2: 

9 
lpdicates; !hat.forms ovedlc:>w. is :!9·rbe i.npjcated, by channet9. 

Indicates that forms overflow is to be indicated by channel 12 (0770 ·printer only). 

Positional parameter 2 is ignored for all printers except the 0770 printer. If omitted, 
channel 9 is assumed for the 0768 printer, and channel 1 is assumed for the 0773 
and 0778 printers. Channel 1 is the only overflow code recognized by the 0773 and 
0778 printers. Channel 12 is the only overflow code recognized by the 0776 printer. 

Positional Parameter 3: 

overflowname 
Is the label of your overflow routine. When overflow occurs and this option is 
specified, the logical IOCS transfers control to this address. 



UP-8068 Rev. 4 SPERRY UNIVAC ,QS/3 
BASIC. DATA· MANAGEMENT 

7-25 

(0) or 0 
Indicates that register 0 has been preloaded with the address of your overflow 
routine. · 

If omitte:d, the,Jogical· IOCS .provides an automatic skip to home paper in':the paper 
tape loop. 

Examples: 

LABEL OPERAND 

;,:; 

l, · If an overflow condition occurred on a previol:Js PUT or immediate CNTRL 
.ma~fQir\&trl:Jc~)on execµi·i~fl· on ~fil~ FILE1, branch to .roµtine OVFLO. Overflow 
codes detected are: 

0773 printer - code 1 
0770 printer - code 12 
0768 printer - code 9 
0776 printer - code 12 
0778 printer - code 1 

2. If an immediate overflow condition occurred on a previous PUT or immediate 
CNTRL macroinstruction execution issued on FILE1, skip to home paper position. 

(Lines 3 and 4 of the example show selective overflow detection, which is possible 
only on the 0770 printer.) 

3. Jf an overflow code 9 was detected on a previous PUT or immediate CNTRL 
macroinstruction execution, skip to the home paper position. 

4. If an overflow code 12 (0770 printer only) was detected on a previous PUT or 
immediate CNTRL macroinstruction execution, branch to routine OVFLOB. 

5. If an overflow code is detected, a skip to home paper position wiU occur. 



UP-8068 Rev. 4 

Programming Considerations: 

SPERRY UNIVAC OS/'·3 
BASIC DATA MANAGEMENT , 

7-26 

When you use the PRTOV macroinstruction in your program, you must specify the 
PRINTOV=YES keyword parameter in the DTF macroinstruction for the file. The 
PRTOV · macroi nstruction can be used with the· 0770 printer to. selectively· check ;for a 
code 9 or code 12 forms overflow condition. 

When the PRTOV macroinstruction is used, the logical IOCS performs either a skip to 
the home paper channel or a branch to your forms overflow routine when a forms 
overflow condition is detected on the preceding pr inf or space command .. The forms 
overflow code is not recognized· during a skip operation. · 

- . 

OS/3 data management executes one user-issued CNTRL or PUT macroinstruction 
after the immediate CNTRL or PUT instruction on which forms overflow is detected. If 
the imperative macro issued after the macro .on which ·pverfloY\i was 

1
detected results 

in a forms advance to a skip code (VFB or paper tape code.), ypur overflow options will 
not be executed. · ·

1 

The PRTOV macroinstruction may ;be .issued after each CNTRL . ,or .. PUT 
macroinstruction, or, it can be_ is~ued after- enly :a PWT macroinstruction. It is also 
permissible to issue a CNTRL, PUT, PRTOV macrqinstruction se.quenbe. 

If an overflow routine is specified, the pri11t~r "carri_age is not automatically restored to 
the home paper position. 

The address of the instruction after the PUT macroinstruction, which detected the 
overflow condition, Is stored in register l4. If imperative macro·insfructibns are issued 
in your overflow routine, ·register 14 ·should be stared before issufng fhe<instruction, 
and restored after execution of the instruction. · " 



UP-8068 Rev. 4 SPERRY·UNIVAC OS/3 
BASIC DATA MANAGEMENT 

7.4.5. Close. a Printer File (CLOSE) 

Function:. 

7-27 

CLOSE 

The CLOSE macr9i.nstruction is issued when all the data in a file has been processed. 
This macroinstruction calls a transient routi.ne which checks for errors that may have 
occurred in the final output operation and then prevents further access to the file. 

Format: 

LABEL 

[name] 

Positional Parameter,s: 

filename 

fl OPERATION fl 

CLOSE 

OPERAND 

l 
filename-1 [,._ .. ,filename-n] l 
(1) 
1 

. *ALL . . 

Is the label of the corresponding DTF macroinstruction in your program. The 
maximum number of filenames is 16. 

(1) or 1 
Indicates that register 1 has been preloap.ed with the address of the :declarativ_e 
macroi nstruction. 

*All 
Specifies that all files currently open in the job step are to be closed. 

Examples: 

LABEL .flOPERATION~ OPERAND 
10 16 

CL 

1. Close print files labeled PRNT2 and PRNT4. 

2. Close print file labeled PRNT1. 

t 



UP-8068 Rev. 4 SPERRY UNIVAC 'QS/3 · 
BASIC DATA MANAGEMENT 

7.5. ERROR AND EXCEPTION HANDLING 

7.5.1. FilenameC 

7-28 

When certain errors or exceptions to file processing;performance 'are detected by 0$/3 
data management, it will make appropriate entries in specific fields of the DTF file table, 
which your program may address in order to learn of these conditions and take the prope-r 
course of action on regaining c~ntrol. One such field in the DTFPR file table is .filen~rneC, 
a 1-byte field which you may access by concatenating ·the ·character t to your 7-character 
file name and using the assembler language test-under-mask (fM}:'instruction. 

Refer to Appendix B for the meanings of the bits in filenameC of the DTFPR file table 
which are set to binary 1 by OS/3 data management for certain error and exception 
conditions. 

7.5.2. Truncation of Print Line 

When OS/3 data management detects that the execution of a PUT macroinstruction has 
resulted in the printing of a truncated line, it sets the line truncated fla.g in filenameC (bit 
0, byte 0) (Appendix B). However, it does not pass control to your error routine until after 
the printer file has been closed, by which time other truncated lines niay have also been 
printed. Depending on your requirements, you may find it useful in your program to test 
for setting of the line truncated bit after each execution of the PUT macro and provide for 
a flag character to be printed with the next line to speed visual location of all trunqation 
errors on your printout. 

7.6. SAMPLE PROGRAM 

The following sample program, constructed to illustrate a· typical use of the OS/3 data 
management printer system in a BAL program, also indicates where fo place·the OS/3 job 
control statements needed to implement it. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/S 
BASIC DATA MANAGEMENT 

7-29 

(/) 
1-z 
w 
~ 
~ 
0 
CJ 

<] 

c 
z 
ct 
a: 
w 
a. 
0 

..J 
w 
IXI 
ct 
..J 

N 
~ll-T-'1-"'1-"T--~~t---it---1--t--t-+-+-+-+-+---+--+--+--+--+--+--+--+--+--+--t--+--+--f 



...... 

LABEL 00PERATION6 OPERAND 6 COMMENTS 
10 · 16 

..,.U;'r. l-'¥--wtJ,R.K.51 _u_L~L ,BfS,I1NTu-5UMMA~TA 
ur_J...e)~J<,Ki6:, L.L.Ls.LiL__J _ _:_1 t ..L.1.-L-: l l LL l 

~ 1 J, l 

l l 

UTil ,>I .! I I I ., I I I I .L· I I I '· ~~J.~~ .PiRi.IN1T~_1BikLE;1. ~1UT1J.1 
I I I I I I I I I l"-'Vl'"'I 14 I I I I L.1._L_i__.c__J_E,ND1. ~lfi ,.T.~;8 '·-~···· J l i 

Li___L__~_L L~' ~· ..._!__L .. L.-1...l 

l 

~~~~~.J....J. i I I I L.L.J.....L.:..._.L ..;._L-'~· .... J. l 

l J

l l l l

l l l

I j

72

i l

I
I I ! 1

I I

l l l I

l l !

I I l

I l l I

I l

1-., , , , , , , 1 1 , , , , 1 1- .. "~ , ... , 'V'. 1-1r-v .,_,_, ,, .,,,..,,._" ,, 1 , , 1 , 1 i 1 , ~-1 ~

~-1..,_..J ____ ,1,, __ .J.._

AJ&~A L

"-~-~--~' l i ' l

I
l 1 j l l

l i

I I j

J I l ! l l t t

l I l l

i l

l l

JVW?1IS"1C:l I I I jU!L:1 I I I lt..b I 1~iUI 1lJi.l''\1 I ,t::.j. I I I I w .L'Uil:l t::. I ,:::.1 ;t-"J<iCJ,l;)iU:L1t:::iU ::: ,6,I DG,E,T.5 J?~1D1U~--'-...L.-'---'-....l...~
' i 1 l

.J. .•... L • .1....- l ._ l .L l j l i l

~10' 1S1U,M__MA_~ __ t)~FuQA TlA._
1

j l i l

,L, I i"20! 'J.~.~iIAtk iW.Ii_Q:<.;LE;lTSLPR~1{:1V1C.1.EJ:l.: LI

.~LL~l~"L_~L&~ __ G,IX:!~i_E;,TS'.PR~QJJ_<:;J.§::O;L' l l .•. 1 j ; . I l l

CLi 1 ,2,01' ,c,u;R,R1EN,T1 1I:N.v ENueRYi : · 1 .m_G,E Ts ==, ·6 r o GE.115, = '. ~-_;_l__!_,,..i...L+-4-----..l....-i--~......l........-i
.. ,. , , • , , "~~1~E_=_d~;.i_c:;§lB.TJ<~L::::1YiESL1~E1&&~:=;fJ<Ri';.tvAREAL=1~1 ,PRAoi:::,1 ,,, x I I

?,R,J.,N!T~M.=.5,K1I,&R£CL~f?M..~F.rJ~.JJbl1B!~1v~ls&KA:=-tY~Si· i . . , 1 .i I l ! l I 1 I

I

I I I I I I I l I r"-1' ... , ! I I l'=V'I • I I I I I -1....-1-~.L.-~.L~ l I !. J I l J. I l l

I ' I i I l I l

, , ., • • , , , , , : • , , l , 1>, , ,J~1B ·S1T,RlEAbL.Jl~~ J;;l.gicLv.T~t;l tL1IJ:41~A16.LE~ . .L.E..nrii:-~:.& Ii l .Ll

,__..__...._..__.__..._~..._+--t-~~~~ -1#~~.~-~-~~~.-~.~~~~-.~ 1..__l.__L__:___J_ __ , ___ 4 __ ;._ __ __,,_____l_.~-----~-~-.... j l 1 l I 1 1 1 l I

CJ
)>

c
-0
Co
0
m
00

:IJ
Cll
:c::
~-

en. en
() -0 m
0 ::0

~~
):>' c
s:: ~
)> <
z)>
)> ('")

~O­
S:·~
mW
z
-i

-..J
I
w
0

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

7-31

PART 4. DISK FILES

UP-8068 Rev. 4

10.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-1

10. ISAM Form.ats and Fne Conventions

The indexed sequential access method (ISAM), one of the five methods that OS/3 data
management provides for handling your disk files, may be used with all available disk
subsystems. These are: SPERRY UNIVAC 8411 Disk Subsystem; SPERRY UNIVAC 8414
Disk Subsystem; SPERRY UNIVAC 8415 Disk Subsystem; SPERRY UNIVAC 8416 Disk
Subsystem; SPERRY UNIVAC 8418 Disk Subsystem; SPERRY UNIVAC 8424 Disk
Subsystem; SPERRY UNIVAC 8425 ... Disk Subsystem; SPERRY UNIVAC . 8430 Disk
Subsystem; and SPERRY UNIV}:\C8433 Disk Subsystem. Th~ 8415, 8416, and 8418 disk
subsystems are fixed-sector disks; on which riata records are written in fixed. ph~sical
sectors of 256-byte lengths. All data transfers must be multiples .of this lerigth. The others
are variable-sector disks. Each OS/3 data management processing module handles all disk
types, in order to give you as much device::independence .. as possible. You seldom need to
be concerned with most of the details of th·e way these disk subsystems operate. Those
functional characteristics you will find useful, however, are presented in Appendix A.
ISAM does. not support the 8413 diskette.

ISAM is the only method that gives you the capability of building ·a hierarchy of index
blocks to support a search of your files by key; its search-by-key function allows you
to perform random retrieval in a relatively short' time. In OS/3 ISAM, a key is a
character string that you specify within each logical record, to uniquely identify that
record. Its minimum length is 3 bytes; its maximum is 253. One restriction on the
content of keys is that no byte of "any key may contai'n the hexadecimal value FF
(11111111 in binary). A key that contains FF16 may produce erratic results. during
retrieval by key. Another restriction on the content of keys is that you may not have
a key constituted entirely of binary O's; this key is ·reserved for a dummy record that
data management creates and inserts at the start of every ISAM file. The reasons for
these restrictions on key size and content are developed later in the ·man.ual.

As, in other OS/3 data management systems, a logical record is simply what you tell
data management it is - ·· ·a character string that you define and that data
management handles as an entity in stora·ge and retrieval.'

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC PATA 1\/1.4\N,A.GEMENT

10:-2

To use ISAM's search-by-key function, you must first present your records serially with
keys and load them sequentially onto disk. You present your records to data management,
unblocked and one at a time, in ascending order of these keys. Data management blocks
yoLJr injtia! recqrds into an area of your file, termed the prime data area, and builds the
index structure used to effect random retrieval by key. After initially creating your ISAM
file, you may add new records, presented in any key order. OS/3 ISAM does not place
these in the prime data area; it places your new records in an overflow area of your file
and logically chains them to the proper points in the pre-existing series of records,
maintaining the effect of one long, orderly series. (Other ISAM systems insert new records
on the original prime data tracks, and existing records are pushed down; OS/3 avoids this
inefficient process.)

You may retrieve and update your records in any of the following ways:

11111 sequentially, progressing from any record toward the end of the series;

IE rqndofllly, by presenting a key; or

11111 randomly, by presentfng a relative address.

Another 'significant point of difference ,between this and ot.her similar access methods is
that OS/3 I.SAM 9ls9 allows you the option of side-stepping. the formation of the ISAM
index. When you do ·so, yc:)ur records .r:ieed not be keyed, and the key-based functions of
the ISAM repertOire are inoperative, yet you retain Jull abilities for sequentl'al access,
direct access, and inserting records.

' ' .».

T~e advantages of using OS/3 ISAM wfthout an index (ASAM) are thes.e:

11111 Although your ASAM file Ys, in· effect, a sequential file, uQder ISAM you have direct
addressing capabilities that are not available to you under the OS/3 sequential
access method (SAM).

• Your ability to add records to an ISAM file gives you the capability of building a
header-traTler file and form·ing trailers dynamically.

Another advantage of OS/3 1.$.AM over earlier syster:ns is that a program referencing
several disk files, one of which is an ISAM file with index, may. employ the same
process'ing module to reference the other files; that is, you may use an OS/3 ISAM

··module to process ASAM files sequentially or directly.

Usually, an OS/3 ISAM file will be one of several files occupying the same disk pack.
Every pack is provided with a volume table of contents (VTOC), which facilitates system
control of disk space and file location. (The VTOC and the system standard disk labels used
in common by. all 'OS/3.data management access methods are describeq in Appendix .D of
this manual. But it is worth noting at this poi.nt that ISAM does not support user labels for
disk files.)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DAlA MANAGEMENT

10.2. ISAM FILE ORGANIZATION

10-3

When you are using the index-building feature of OS/3 ISAM, your file space oR disk is
divided into two parts: the index area and the data area. The index area is devoted:entirely
to 256-byte ind~x blocks, formatted for hardware search.

An ISAM key search, which always starts at the beginning of the top index, executes a
disk search and retrieves a block that contains an entry pointing to another index track.
When this is searched, a second index block is read; the second block contains an entry
pointing to the desired data block in the data area. (In some cases, however, When the size
of your keys and the size of your file are unusually large, data management will need to
make one additional index-track search to reach this data-pointer level in the index. A
number of measures, developed later in some detail, will help you minimize this index­
searching overhead; for the moment, however, remember that you do have some options.)

The index area is formatted to permit hardware search, equal/high. By "hardware search,
equal/high", we mean that the disk SUO?YSt~m .itself, once provided with your key and
positiqned to the index track by data management, tests each index block as it comes
under the head to see whether the key on disk is egual to or greater than the key
presented to it. Key comparisons are made within the disk control unit and do not involve
transmission of key information to main storage. Only when a hit is made does the
physical input/output control system (IOCS) return the index block to main storage, where
data management examines it to decide which block to search for next. No read from your
data area on disk is performed until a hit in the block index has pointed to the data block
sought. When this data block is brought into main storage, data management searches it
there for the logical record you have requested.

This exploitation of the hardware search capability of the disk subsystems makes for
speed, but a hardware search of the entire index can be avoided when you place part of it
in main storage. This point is developed further in 10.2:4 and 10.2.5. See also the
discussion of the IN DAR EA keyword parameter (11.4.5).

The data area of your file contains only data bocks, which are not formatted for hardware
search, and cylinder overflow control record$ (COCR). The data blocks are either prime
data blocks filled durir:ig your. initial file load, ·or overflow data blocks, filled by your
subsequent additions to the file. These blocks are identical in form; the only difference is
their location, in either the prime data area or the overflow area of the cylinder. You will
specify the percentage of each cylinder of your file.that data management is to reserve for
overflow when you first design and describe the file, using a certain keyword parameter in
the declarative macro that defines it to OS/3 ISAM. Figure 10-1 shows the two partitions
of an indexed OS/3 ISAM file.

UP-8068 Rev. 4

4 tracks

(2 tracks {
on 8416
and 8418
disks)

ISAM Index Partition

ISAM Data Partition

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

prime data area

overflow data
area

10-4

256-byte index
blocks, hardware­
~earchable.

user-'specified
data blocks,
not hardware­
searchablet

COCR Cylinder overflow control record; written by data management in last block of:cylinder and points to the location

D

Figure 10-1.

of remaining overflow Space on this cylinder. · · · ·

Supplied by OS/3 data management.

Data supplied by you; you _also specify to OS/3 data management the percenta~e of cylinder area that is to be
·assigned to receive overflow records. The breakpoint between prime and overflow need. not fall at a track
~undM~ ·

The Two Partitions of an Indexed OS/3 ISAM-File: Cylinder Formats of,the Index Partition and the Data Partition

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-5

Because it is unlikely that you will use the overflow areas at the same rate<in all your
cylinders, some may be Jilled while others are hardly touched; this is where the COCR
comes in. When a cylinder's overflow area can take no· more, OS/3 ISAM will place
records ordinarily destined for that cylinder onto other cylinders having overflow space
avai,lable. The COCR is in the last data block of the cylinder, and is used to keep track of
available overflow space.

During its original loading of your file into data blocks on disk, data management inserts a
5-byte data po infer field after each prime data record. It vvill use· these fields later,
whenever you present new records for insertion, to set up the required logical sequence
and to keep it current. (You have a use for this data pointer, too, for retrieval of records
without keys; this point .i$ developed later,)

New records are never actually inserted, although a rewritten record, which is an upd~te
of a record already· on disk, ·is written back i'nto the location of the original. As stated
previously, data management· places new records in the overflow area and chains them
into: logical sequence. All records remain at the locations where they were originally
placed, making it easy for you to point to the records of one ISAM file from the records of
some other file. Because an updated rec'O'rd ·rs al'ways written back to its original spot, you
must never alter either the original key or record length of a record when you UJ.;>date it.

The most significant three bytes of the 5-byte data pointer contain the record's block
number, relative to the start of the data area; its least significant two bytes·contain'the
byte position of the record within this block. You may address all ISAM data records
directly by their 5-byte relative addresses of this format, which you will express in binary
form.

10.2.1. ISAM'Record Formats

Your OS/3 ISAM file may contain either fixed-length or variable-length block.ed records -
this is a difference between OS/3 and some earlier systems, which allowed only fixed
record lengths. You present your records .()ne by one.r an.9 1$AM pl!Jcks them ..

If your records are variable~ you must insert into the leading two bytes of every logical
record the length of that parti.c;ular recor.d in binary. form. Fixed,,record~ do not require this
2-byte field. (l.t is worth noting, if you are familiar with other syst~ms .using a 4:-byte record
length field at the head of each variable record and reserving two of these bytes for
system use, that OS/3 ISAM does not do so - only two bytes are used for record length;
the rest of the record is yours).

When you submit keyed records to· OS/3 ISAM (which you must do when you are using
the index feature and may do even when you are not), all logical .records in the file must
have keys. Each key must be unique in content, equai in size to the other keys, and must
be located at the same distance from the start of its record. As noted before, a key may
always be embedded in a record; its length may not be less than 3 bytes nor exceed 253
bytes.

Figures 10-2 and 10-3 show the formats of OS/3 ISAM logical records, keyed and
unkeyed.

UP-8068 Rev. 4

Key at Head of Record

I
key

I :
K

Key Internal to Record

data

I
L

· 1.

Without Key

LEGEND:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

data

R

key
I

K
_j

R

data

R

10-6

I
D

:I

data

I

.I

K Record key. All keys in a keyed file must have the same length; each record in a keyed file must have one (and only
one) unique key; and the starting location of the key must be the same in each record. You specify the length of the
key with the KEYLEN keyword parameter; minimum length is 3 bytes, maximum is 253.

L Key location. The starting location of the key must be the same in each record. You may specify the 'number of bytes
of data pre.ceding the key with the KEYLOC keyword parameter. If keyword is omitted, ISAM assumes the key starts in
the first byte of a .fixed record.

D Data portion of your logical record

R Length of logical fixed-length record (key plus data). You specify this length, measured in bytes, with the RECSIZE
keyword parameter; it myst never exceed the value of data block size, less seven bytes.

Figure 10-2. Fixed~Length /SAM Records with and without Keys

UP-8068 Rev. 4

Key at Head of Record

rl key

K

Key Internal to Record

data

L

Without Key

LEGEND:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

data

10-7

v--0--~:i

I key data I

J K -----..l
. I v

data

v _o ----..i:I
F A 2-byte record length field. You insert the length of each variable record into this field in binary; the length includes

this 2-byte field and is equivalent to V in this figure.

D Data portion of your logical record

V Length of a variable record. Includes key plus data, plus two bytes for the record length field. You never specify this
length with a keyword parameter but place it in the leading two bytes of each variable record (in the field represented
by F in this figure).

K Record key. All keys in a keyed file must have the same length; each record in a keyed file must have one (and only
one) unique key; and the starting location of the key must be the same in each record. Minimum key length is 3 bytes;
the maximum is 253. You specify the length of the key with the KEYLEN keyword parameter.

L Key location. The starting location of the key must be the same in each record. You may specify the number of bytes
that precede the key with the KEYLOC keyword parameter. If you omit the keyword, ISAM assumes the key begins in
the third byte of a variable record.

Figure 10-3. Variable-Length /SAM Records with and without Keys

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10.2.2. ISAM Data Block Format

10-8
Update A

When OS/3 ISAM writes your records to the disk, it blocks them into data blocks, the size
of which you specify. (This data block length is the same as the length of your 1/0 area, or
data buffer, and may contain unused space, for reasons discussed later.) All data blocks
begin with a 2-byte field called the block header, which states the number of bytes in the
block that are currently occupied. Because every logical record is accompanied by the 5-
byte data pointer just mentioned, the maximum size of any logical record is thereby limited
to data block size minus seven bytes. And, because the effective data length of a variable
record is further reduced by its own 2-byte record length field, the number of bytes of data
that your longest variable record may contain is no more than data block size less nine
bytes.

Although you should use as large a block as you can afford to have in main storage, data
buffer size is not entirely up to you. It may never be less than 256 bytes, for example,
because this is the length of the index blocks, and ISAM handles these through the 1/0
buffer (whose length you specify when you specify data block size to data management).
Furthermore, you should set data block size at some multiple of 256 bytes if you are using
the fixed-sector 8415, 8416, or 8418 disks at your installation. If you do not specify a
multiple of 256 bytes, ISAM increases your specification to the next higher multiple. If
your data block size is less than 256 bytes, then you must specify a BLKSIZE length of 256
bytes or more. Finally, whether you are using this or the variable-sector 8411, 8414,
8424, 8425, 8430, or 8433 disks, the block size you specify must not exceed the track
size for these devices:

SPERRY UNIVAC Track Size,
Disk Subsystem in Bytes

8411
8414
8415
8416
8418
8424
8425
8430
8433

3625
7294

10,240
10,240
10,240
7294
7294

13,030
13,030

Figure 10-4 illustrates the layout of two ISAM data blocks on disk, one containing two
fixed-length records, and one containing two variable-length records. The legend relates
the segments shown to various keyword parameters you will use in the DTFIS declarative
macroinstruction to define your file to OS/3 ISAM. (The DTFIS macro and its keyword are
described in detail in Section 11.)

·Note that Figure 10-4 shows some unused space at the end of each data block. You
should avoid this (if you can) when you specify data block size for a file containing fixed
records, by ensuring that the sum of your logical record size, pl us five bytes for the record
pointer following each record, divides evenly into the block size - not forgetting that block
size must always include. the 2-byte block header field.

On the other hand, it is generally not possible for you to avoid some unused space in the
data block when your ISAM file contains variable records.

UP-8068 Rev. 4

Fixed Records

Variable Records

LEGEND:

data1

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

I
R -D~----_,..~',~ p _...,..1~~-K-~-· - R =-=r

10-9

B Block header, written by data management in the buffer. This is always two bytes long and contains (in·binary)
the number of bytes in the data blockwhich hold usable information. In the example shown, this figyrewould
equa I (I) min us (U); it. includes the total space occupied by the records themselves. and the p~byte data pointers,
one of which follows each of the records. Because data rilanagement appends the block header in the buffer,
and it is placed in the buffer with the block when it is retrieved, you must allow for this 2-byte header in
calculating the data block size, which you specify with the BLKSIZE keyword parameter. However, it is not
moved to your record work area (the address of which you specify with the WORK 1 keyword parameter) where
data manaQement presents your records, one by one.

K Record key. This may be internal to the record instead of being located (as shown) at the head of the
record. All keys in a file must have the same length; each record in a keyed file must have one and
only one unique key; and the starting location of the key must be the same in each record of the file.
You specify the starting location of the key with the KEYLOC keyword parameter, and its length with
the KEYLEN parameter; minimum key length is 3 bytes and maximum is 253. (When you present a key
that you want ISAM to match by search you load it in an area of your program specified by the
KEYARG keyword parameter.)

D Data portion of your logical record

F A 2-byte record length field of a variable record

P Record pointer, a 5-byte divider which follows every record that data management writes into the data
block. The record pointers are written by data management, but you must allow space for them in
calculating your 1/0 area length, which you specify with the BLKSIZE keyword parameter. Data block
size and 110 buffer size may differ; the buffer must be at least the size of the data blocks, but may be
greater. The record pointer contains, in binary, the block number. and byte position in that block of the
next sequential logical record in the file, in the form rrrbb, where: rrr is the block number, relative to
the data partition; and bb is the displacement, measured in bytes, of the record into that block (a record
preceded by 125 bytes will have a displacement value of 125). You will use this 5-byte "address" when
you retrieve records directly, rather than by key. (This address is always returned to you by data
management after each record is loaded or added to your file; it is your responsibility to access it and
store it for later use, if you plan to use it. Data management places this 5-byte value in the field· of
your DTF called filenameH.)

Figure 10-4. Layout of /SAM Data Blocks (Prime or Overflow) on Disk Each Containing Two Logical Records (Part 1 of 2)

UP-8068 Rev. 4·

LEGEND (cont):

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-10

U Any unus~d space at the end of a data block. Usually unavoidable in data blocks containing variable-length
records, this dead space may also occur in files of fixed records, if the sum of the logical record size (R) plus five
bytes for the record pointer (P) does riot divide evenly into {I), the data block size you specify.

R Length of logical fixed-length record (key plus data). You specify this, measured in bytes, with the RECSIZE
keyword parameter. This must never exceed the value of the data block size, less seven bytes.

v Length of logical variable-length record (2-byte record length field, plus key, plus data). You never specify this
length with a keyword parameter; you place it in the 2-byte record-length field at the head of each logical
reco~d. Lik~ the length of a fixed record, it may never exceed the value of data block size, less seven bytes.

Length of 1/0 area, which you specify with the BLKSIZE keyword parameter. It includes the 2-byte block header
length, plus .the record length of each logical record in the block, plus the 5-byte record pointer that must follow
each record. It also includes such unused space as you have.been unable to avoid.

Figure 10-4 Layout of /SAM Data Blocks (Prime or Overflow) on Disk Each Containing Two Logical Records (Part 2 of 2)

Figure 1 ~5 is a schematic diagram of OS/3 ISAM's method of charning records in
logical sequence. The upper tier of records represents those placed into ,the prime data
area by an initial load of the file in ascending order of record keys (keys being represented
by the numbers). After the initial load, the record pointer that follows each record
contained the hexadecimal pattern FO AA AA AA AA, indicating that the next record in
physical sequence was also the next in logical sequence in the file. (The record pointer
after the record whose key is 750 still points in this way to the start of the one whose key
is 809, for example.) After the lower tier of four records was added (to the overflow area),
data management rewrote some record pointers as n·ecessary to chain the new records
into their logi.cal sequence. The record pointer following record 827 originally contained
the pattern pointing to record 902, which is the next record in sequence in the original file
and happens to be the first record in the next data block. After the addition of record 901,
data management rewrote this to point to the new record; the new record pointer
following 901 is now the one poir)ting to 9,02.

bh 648 rp 701 rp 750 rp 809 rp 827 rp bh 902

662 rp 728 rp 747 rp 901

Figure 10-5. Schematic Diagram of /SAM Records Chained into Logical Sequence after Adding
Records to the File (Part 1 of 2)

rp

rp

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-11
Update A

LEGEND:

bh

rp

D

Block header, a 2-byte field atthe head of each physical data block. Written by data management to indicate the
number of bytes in the block that are devoted to usable data.

Record pointer, a 5-byte field inserted by data management following each logical record written to a
data block. Originally, after initial load, contains hexadecimal pattern FO AA AA AA AA, pointing to next
sequential record in the file. Rewritten by data management as necessary to point to records "inserted"
by addition after initial load.

Logical records submitted by you in ascending order of keys. The top tier represents prime data records
submitted by an initial load; the lower tier represents four records submitted by a subsequent operation, placed
in overflow, and chained into logical sequence by OS/3 ISAM.

Supplied by OS/3 ISAM

Unused space in physical data block

Figure 10-5. Schematic Diagram of /SAM Records Chained into Logical Sequence after Adding
Records to the File (Part 2 of 2)

10.2. 2.1. Calculating Space Requirements for the File

To calculate the number of cylinders required for data in an ASAM or ISAM file, you may
proceed as follows:

1. Calculate r, the number of logical records per data block (r is an integer):

r = (block size) - 2 bytes
(average record size) + 5 bytes

2. From this, calculate b, the number of prime data blocks required for the initial ISAM
load:

b
number of records to be loaded

r

3. Then calculate d, the total number of data blocks (prime plus overflow):

d = 100 b
1 00 - (percent overflow)

4. Calculate the cylinder capacity of the disk subsystem you are using:

cylinder capacity = (number of surfaces per disk unit) (track capacity)

The number of surfaces and the track capacity for the various disk subsystems are
shown in Table A-4.

5. Calculate the number of data blocks of the desired size each cylinder can hold:

number of data
blocks each cylinder
can hold

cylinder capacity

block size

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

_.... 6. Finally, convert d into Cd, the number of cylinders required for data:

d
Cd= (number of data blocks each cylinder can hold)

10.2.3. ISAM Index Blocks

10-12
Update A

The index area of your ISAM file is, as we stated previously, entirely devoted to 256-byte
index blocks, which are. written for you on the index tracks by OS/3 data management.
The format of these blocks is shown in Figure 10-6; they contain keys and 3-byte
pointers to the prime data blocks and are hardware-searchable.

ISAM Index Block on a Fixed-Sector 8416 Disc

HK

256 bytes

ISAM Index Block on a Variable-Sector Disc

[] (gap) I PH I

sum = 256 bytes

LEGEND:

HK High key of the block.

PH Pointer following the high key of the block - points to next level below

p A 3-byte pointer to next level below

Unused space in index block

Figure 10-6. Format of Full OS/3 /SAM Index Blocks

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-12a
Update A

Note that all the entries are fixed-length and that the index block has no block header
field. If the final block of an index level happens to be a full block, it will have the form
shown in Figure 10-6, and the high key of the block will contain all 1 bits. If the final
block is not full, its form will differ in that the top entry with a key of all 1 bits will be
repeated between the last record pointer and the unused space. As a result, a scan of a
final index block in main storage will search only valid information; there is no possibility
of its running on into the spurious information contained in the unused space.

Each scan of index blocks in main storage begins at the K1 position. In the ordinary full
block, the result may be a hit on or before Kn; if it is a miss, the search uses the PH
pointer to locate the next index block to scan.

UP-8068' Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-13

Note that, like the ISAM data blocks, the index blocks may also contain unused space if
the sum of the key length (measured in bytes and uniform for every key in the file), plus
three bytes for the track or block pointer that follows each key, does not divide evenly into
256. If your keys are 40 bytes long, for example, you can fit only five of them (and their
accompanying 3-byte pointers) into 256 bytes and will have 41 unusable bytes left over. If
you are designing a file, therefore, and have some latitude in choice of key length, it is
wiser not to establish it arbitrarily, but to choose a key length that will give you the least
wasted space in the index blocks. Figure 10-7 recapitulates much of what has been
discussed so far: it shows the layout of an index partition and a data partition of an
indexed ISAM file as they appear on disk:

INDEX

PARTITION

DATA
PARTITION

- --
--. -....... -- -...._

D D D fill D D D_D D_D D - --..__--~--~--~-------- -~~

K1 ,P,j K2 lr·I

SUM= 256 bytes

DI
~--

ID I
t t

K3 lr~J

""'"---I D [

I
Prime Data Blocks

J
~··

JjD [or J
L Overflow Blocks

K4

JD I

t

DI

Figure 10-7. OS/3 /SAM File Structure (Part 1 of 2)

t

COCA

INDEX BLOCK ON
FIXED SECTOR DISC

I

l

UPTO FOUR
TRACKS OF
TOP INDEX

UP-8068 Rev. 4

LEGEND:

K Record key

P Pointer

bh Block header

Logical record

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

~ Unused space at block end

COCR Cylinder overflow control record; written by data management

D System-supplied pointers, headers, and count fields on disk

Figure 10-7. OS/3 /SAM File Structure (Part 2 of 2)

10.2.4. Calculating Space for the ISAM Index Area

10-14
Update A

You may calculate your disk space requirements for the block index of your ISAM file by
the process shown below. Because the space needed to hold your index is inversely
proportional to the size of your data blocks, you should favor larger over smaller data
blocks when you design your file, to avoid excessive index space.

_.... To calculate the number of cylinders (Ci) that your block index will need, you start with
your block size, the average size of your records (if they are variable), the total number of
records in your file, and the size of keys in the file. These are the five steps we suggest
you take; they can, of course, be compressed into one calculation:

1. Calculate r, the number of logical records per data block (r is an integer, naturally):

blocksize - 2
r ==

average record size + 5

2. Calculate b, the number of prime data blocks you require:

total number of records to be loaded
b ==

r

3. Calculate e, the number of entries data management will make per index block (e is
also an integer):

256 e ==-----
keysize + 3

4. The next calculation gives i, the number of index blocks you will have:

i ==
b
e

UP-8068 R'ev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-15
Update A

5. Dividing this by the number of index blocks each cylinder may hold (a constant
depending on the disk subsystem) gives Ci, the number of cylinders your block index
will require:

c. =
I number of index blocks per cylinder

These are the numbers of 256-byte ISAM index blocks that each cylinder may hold on
the disk subsystems used by OS/3:

SPERRY UNIVAC
Disk Subsystem

8411
8414
8415 fixed
8415 removable
8416
8418
8424
8425
8430
8433

Number of 256-byte
Index Blocks per Cylinder

100
340
120

80
280
280
340
340
551
551

The foregoing calculations hold good for the second level of your ISAM index: the block
index. For a useful approximation of the disk occupied by the entire index (when there is
no intermediate index), you need add only the number of tracks that ISAM sets aside for
the first level, which is the top index: two tracks for an ISAM file residing on an 8415,
8416, or 8418 fixed sector disk, and four tracks for the variable sector 8411, 8414, 8424,
8425, 8430, and 8433 disks supported by OS/3.

The calculation of the amount of disk space actually occupied by your top index (without
the repetition pattern mentioned in 10.2.3) is more complex. Of course, you can readily
figure the maximums:

Track Capacity
Disk Subsystem Maximum Number in 256-byte Maximum Number
on Which ISAM of Tracks for Top Index of Bytes for
File Resides Top Index Blocks Top Index

8411 4 10 10,240
8414 4 17 17,408
8415 2 40 20,480
8416 2 40 20,480
8418 2 40 20,480
8424 4 17 17,408
8425 4 17 17,408
8430 4 29 29,696
8433 4 29 29,696

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

However, these maximums are rarely reached in practice; few files require more than 3K
bytes for the top index.

The most convenient procedure for learning the size of the top index is to access
filenames after issuing the ENDFL imperative macro that terminates the initial file load or
each subsequent extension of it (11.5.2.3). ISAM places the number of bytes required to
hold the top index of a file in main storage in this 2-byte field, which is half-word aligned
and addressed by concatenating the character "S" to your 7-byte file name. This is the
figure you need to know for subsequent random operations on your file, because you can
improve the speed of your keyed search operations (for add and retrieval) by providing
main storage space for some or all of the top index.

10.2.5. Loading the Top Index into Main Storage

To speed random retrieval or record insertion operations in an ISAM file, you may specify
that data management is to place as much as possible of your top index in the index buffer
(INDAREA, 11.4.5) for subsequent search there. Doing so minimizes the hardware search
of this part of your index on disk; if you can allow enough space in main storage for the
entire top index, a search of it on disk is eliminated altogether. Only top index entries may
be brought into main storage.

As explained in 11.4.5, when you specify random retrieval operations, or record insertion
operations, or both, you may direct ISAM to bring your top index into main storage by
proper specification of the INDAREA and INDSIZE keywords.

When your ISAM file is first opened for random retrieval or record insertion, if you have
specified that your top index is to be brought into main storage, the OPEN transient
computes the number of top index blocks that can be held in a table of the size you have
specified with the INDSIZE keyword, reads this number of top index blocks (commencing
with the trailing block and working toward the start of the index), and transfers these
blocks to the INDAREA buffer. Although the top index blocks are not reformatted, ISAM
eliminates any unused space in each 256-byte index block. The appearance of your top
index in main storage is then as depicted in Figure 10-R Notice that the part of your top
index that is in main storage always includes at least the last block, which contains the
high key (hexadecimal FF). Including this key guarantees that an equal/high comparison
will result when the index is searched in main storage.

The search of the index in main storage is initiated by a READ, KEY; ADD; or WRITE,
NEWKEY macro issued to the file. First, the search compares the key argument (KEYARG,
11.4.9) to the low key of the top index segment in the IN DAR EA table. If the argument is
equal to or greater than the low key of the INDAREA table, then a comparison is made
against the high key of each block of the top index in the table until an equal/high
comparison results. Then each entry in the block thus located is searched on an
equal/high basis, to isolate the index entry that corresponds to the key argument. The
search next turns to the block index on the disk (via the intermediate index, if one is
present on disk) and from there to direct access of the prime data block sought.

UP-8068 Rev. 4

Top Index Block

Top Index Block 3

I
K15

1
1
: I K13 I 1p3 I

Top Index Block 5

K14

SPERRY UNIVAC OS/3
BASIC DATA M.4NAGEMENT

Top Index Block

Top Index Block

1
1:1 p

FF
FF

Top Index Block 6

2

4

K16

Corresponding IN DAR EA Index Table in Main Storage,
Assuming INDSIZE Specification Accommodates Three Blocks:

p

16

Block 1 ------•_....l,.-r!'---- Block2 ----
1

p p p p p

K12 12 K10 10 K11 11 1(15 15 K13 13

p p p p

K14 14
FF

FF K16 16 K17 17

I I
- (Block 2)-•....,,I•.,------ Block 3 -------111t11111I

LEGEND:

K Record key

P 3-byte pointer to. next index level below

Unused space in top index block on disc

10-17

Kl7
p

17

Figure 10-8. Blocks of an /SAM Top Index on Disk and Corresponding /NDAREA Table in Main Storage

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-18

Referring again to Figure 1 Q.....;_8, consider that the KEYARG field contains the key 13.5.
The search follows the following logic:

1. Compare KEYARG (KA) to K10, low key of the INDAREA index table: KA > K10•

Therefore continue search in table.

2. Compare KA: K12, high key of block 1: result .low.

3. Compare KA: K15, high key of block 2: result high.

4. Therefore search block 2, each entry: result is hit on K14. Search of INDAREA table in
main storage is complete; P14 points to next lower level of index, on disk.

On the other hand, if the key argument is lower than the low key of the INDAREA table,
the search moves the disk, where a hardware search of the top index begins in the usual
manner, as described in 10.2. The part of your top index that you have placed in main
storage is not searched again on disk.

10.3. ALTERNATE SEQUENTIAL ACCESS METHOD (ASAM)

OS/3 ISAM provides the usual ISAM capabilities of retrieving sequentially or by key; and
provides the additional capability of retrieving by address. The coding necessarily includes
the simpler coding required for SAM processing and relative record DAM processing.
Therefore, it was not difficult to provide handling for unkeyed sequential files wherein the
index structure is omitted and keyed functions are avoided. This alternate sequential
access method is called ASAM.

Some of the reasons for using ASAM files are:

1. A program is required to retrieve from a keyed file and from a sequential file. If these
are specified respectively as ISAM and ASAM files, the same data management
coding handles both.

2. Direct addressing into an essentially sequential file is desired, and ASAM handling is
found to fulfill the need.

3. It is desired to insert new data between records of a previously formed file, and to
retain direct access capabilities. The inserted data may be additional records of the
same nature as the original records, or they may be addenda to the record from
which they are chained.

The important things to remember about ASAM files are these:

• No index or index space is provided; hence records may not be retrieved by key
search.

• Records may be retrieved randomly (as in ISAM) by providing the record address that
was returned to you at the time the record was placed in the file. You must make
your own arrangements for retention of addresses; alternatively, you may calculate
addresses, if your records are of fixed size. In this case, remember that there is one
dummy record at file start.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-19

• Any block may be retrieved by providing the 3-byte number, followed by the 2-byte
field containing binary 2 (the address of the first record of the bl.ock).

• Sequential retrieval is the same as in ISAM except that the SETL, KEY and SETLG;
KEY imperatives cannot be used to start the sequence.

• If records are not to be added, you may specify zero overflow space. Nevertheless, the
5-byte pointers will be appended to records.

• It may be desirable to have prime records of one size and addenda of other sizes.
Remember that all records must have variable record formats, if there is to be any
variance in size.

• In order to add records, you must provide ASAM with the address of the record that is
to be followed by the new record.

• ASAM files will usually be defined as unkeyed. If keys are specified, ASAM will reject
duplicate and out-of-sequence keys during LOAD. When such checking is necessary,
you may save some coding by having ASAM do it.

• As in ISAM, you must use the SETL and ESETL imperatives to start and end a
sequential progression. While you are in sequential mode you may not perform
random functions.

Figure 10-9 shows the logical aspect of an ASAM file in which not more than one
addendum record in overflow has been chained from the prime record to which it relates.

Because you may logically insert new records at any point in the ASAM file, it is possible
to subordinate or connect several addendum records in overflow to each prima data
record. A file you may structure this way may be of more interest or use to you than one
based on the one-to-one relationship suggested so far. If you add your new records to
overflow and provide ASAM with the address of the same prime data record for each of a
group of, say, three records that you want related to it, these are chained .in the sequence
shown in Figure 1o_:_10. The same chaining can be obtained by successive adds on three
separate occasions - a point to remember, therefore, is that when you retrieve
sequentially, the order of retrieval is inverted. The last record of a string added to overflow,
chained from a given record, is the first retrieved.

This "last in, first out" (LIFO) retrieval sequence results automatically when you chain a
series of overflow records from one prime record and is satisfactory for some applications.
However, when you want some other order in sequential retrieval, you may set up the file
for this when you provide ASAM, for each new record, with the address of the record
(which may be overflow or prime) from which it is to be chained.

Note that there is no pushdown or relocating of records added to the overflow area; the
physical location of a new record blocked into overflow is not determined by the position of
the prime record from which it is chained nor by the relative location of other records
chained from the same prime record.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-20

bh first prime
(one addendum)

second prime
(no addenda)

rp third prime
(one addendum)

rp fourth prime
(one addendum)

Prime Data Area

hh addendum to
first prime

rp addendum to
third prime

rp addendum to
fourth prime

Overflow Area To start of next
------------- prime record

LEGEND:

bh Block header, a 2-byte field written by data management at the head of each physical data block to indicate
the number of bytes of usable data in the block.

rp Record pointer, a 5-byte field inserted by data· management followjng each logical record in the data block.
Those inserted following the prime records initially loaded into the ASAM file were originally dummied and
contained the hexadecimal pattern FO AA AA AA AA. This pattern indicated that no related record had been
added in overflow, chained from this prime record, and that the next record in logical sequence was therefore
the next in physical sequence. When the overflow records were added, data management rewrote the record
pointers following those prime records from which an overflow record was chained. The pointer following the
first prime record, for example, points to the start of its addendum record in overflow; the pointer after the
second prime data record (for which no overflow record was added) still contains the dummy pattern pointing
to the next sequential record, in the prime data area.

D logical data records, prime and overflow, provided by the user.

Supplied by OS/3 ASAM.

~ Unused space in physical data block.

Figure 10-9. logical Aspect of an ASAM File Containing Not More than One Record Chained in Overflow from Any One
Prime Data Record

UP-8068 Rev. 4

RESULT OF FIRST ADD:
Prime Data Area

bh
first

prime data
record

Overflow Area

first addendum
bh chained from

first prime

rp

rp

RESULT OF SECOND ADD:

Prime Data Area

first
prime data
, , record

Overflow Area

first addendum
bh chained from

first prime

RESULT OF THIRD ADD:
Prime Data Area

first
bh prime data

record

Overflow Area

bh
first addendum

chained from
first prime

rp

rp

rp

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

next
prime

unrelated to
first prime

next
prime

unrelated to
first prime

next
prime

unrelated to
first prime

rp

second addendum
rp chained from rp

first prime

second addendum third addendum
rp chained from rp chained from

first prime first prime

10-21

rp

Figure 10-10. Logical Effect of Successively Adding Three Records in Overflow, Chained from Same Prime Data Record of
an ASAM File

UP-8068 Rev. 4

10.3.1. ASAM Data Formats

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

10-22

The formats of the ASAM data records and data blocks are the same as in OS/3 ISAM,
and separate figures of those for ASAM are not necessary. Figures 10-2, 10-3, and
10-4 illustrate both keyed and nonkeyed records. Bear in mind, when you review these
figures for ASAM, that you will be most likely to omit record keys when you want to omit
the construction and use of an index structure. If you key in your ASAM file, your records
will look like the keyed examples illustrated.

10.4. MULTIVOLUME ISAM FILES

You may split an ISAM file across several disk volumes. It is important to remember that
all volumes of a multivolume ISAM file must be mounted online for all file processing:

During your load operations, data management monitors continually to ensure that it does
not exceed the prime data area you have allocated. If your load fills the prime area of a
volume, data management continues the load onto the succeeding volume, if there is one.
If there is no other volume, it seeks additional space on the current volume and notifies
you if there is no additional space available. When you terminate the load, data
management saves the progress point for later use if you should extend the file.

UP-8068 Rev. 4

11.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-1

11. Functions and Operation of ISAM

In the previous section, the discussion of the OS/3 indexed sequential access method
(ISAM) aimed primarily at describing file organization, data record and data block formats,
and the format of the index blocks in the index structure that is characteristic of the
traditional ISAM file. The salient feature of processing an ISAM file that you have
constructed with a directory or index structure is the search-by-key function, which is
used to retrieve your records by key.

We also pointed out the option for creating a nondirectory ASAM file, in which your
records need not be keyed, and for which data management builds no index structure.
Accessing records directly without use of an index is accomplished by providing record
pointers, rather than keys. Sequential processing of either type of ISAM file is essentially
the same. In our discussion of the structure and content of OS/3 ISAM files, we gave you
a certain insight into the means OS/3 provides for processing them.

This section builds on that foundation, presenting first an overview of OS/3 ISAM
functions. It then presents a declarative macroinstruction, DTFIS, of a specific type, with
which you define your file to OS/3 data management and outline to OS/3 ISAM some of
your intentions for processing it. The DTFIS macro establishes a file control table that data
management uses, during its processing of your file, to keep you and itself informed of the
characteristics of the file and the results of processing. (Both the macro and the file table
it creates are frequently termed the "DTF," from the initials of the phrase define the file
we use to distinguish this type of declarative macro from others.)

You describe significant characteristics of your ISAM file, and provide OS/3 data
management with certain particulars it needs for processing it, by means of some 27
keyword parameters that you specify as operands of the DTFIS declarative macro. Two of
these keywords, which provide the size and symbolic name of the input/output area (or
1/0 buffer) that every OS/3 data management file needs for its exclusive use, are always
required. Most of the other keywords are mandatory under certain conditions or for certain
processing functions. Others you will specify entirely at your option. The greater part of
the DTFIS macro discussion concerns its keyword parameters.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-2
Update A

Following the detailed descriptions of the keywords, this section then presents the set of
12 imperative macroinstructions that make up the OS/3 data management repertoire for
processing your ISAM files. Each macro is detailed individually, and the discussion of each
one points out any way in which your use of it will change when you use it with the
indexed form or the nondirectory form of OS/3 ISAM.

Next, we explain the methods you have of linking your program to the OS/3 ISAM
processing modules. An explanation of OS/3 ISAM's system for handling error and
exception conditions follows this, and recapitulates certain points made during
descriptions of the imperative macros. A number of programming examples conclude the
section.

11.2. FUNCTIONAL DESCRIPTION, 05/3 ISAM

Perhaps the best way to obtain a quick overview of the functions for which OS/3 ISAM
has been designed is to look at the imperative macros you will issue in your basic
assembly language (BAL) program to process your ISAM files. But, before studying each of
these macros in detail (they are described fully in 11.5), it may be more useful to consider
their functional groupings; these are discussed in the next two paragraphs.

11.2.1. Processing an Indexed ISAM File

As you have noted in Section 10, OS/3 ISAM is provided primarily to enable ·you to
organize and process disk files from which you will have frequent need to retrieve records
directly by key, but for which sequential processing is also important to you. ISAM
facilitates the search-by-key function by providing a key-based index structure; it
implements this function through a repertoire of key-related imperative macros. OS/3
ISAM also provides you with a set of imperatives for sequential processing. Table 11-1
lists the imperatives available for processing an indexed ISAM file. The imperative macro
calls are grouped in sets according to functions and are repeated to point out that some
are used in more than one setting. Note that those you would expect to call many times in
your BAL program have been indented in the list to identify them. (The name of the ISAM

__...... file in the illustration is "EMPLMST" - possibly a master file of employees at some
installation.)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-3

·Table 11-1. Imperative Macro· Calls for Processing an OS/3 /SAM File with an Index Structure, Listed by Functions

Functions Imperative Macro Calls
~

Initiating and Terminating OPEN EMPLMST

Processing of the File CLOSE EMPLMST

Loading or Extending SETFL EMPLMST

the File WRITE EMPLMST, NEWKEY
ENDFL EMPLMST

Inserting New WRITE EMPLMST, NEWKEY

Records WAITF EMPLMST

Random Processing. READ EMPLMST, K.EY

Retrieval and Updating WAITF EMPLMST

if WRITE is used READ EMPLMST, ID
WAITF EMPLMST
WRITE EMPLMST, KEY
WAITF EMPLMST

rF} Sequential Processing. SETL EMPLMST KEY
Retrieval and Updating ' GKEY

if PUT is used ID
GET EMPLMST, (0)
PUT EMPLMST

ESETL EMPLMST

NOTES:

1. The ADD imperative macro is equivalent to the WR ITE,NEWKEY
macro for inserting new records.

2. The UPDT imperative macro 'is equivalent to the WRITE,KEY macro
for random updating.

11.2.2. Processing an ISAM File without an Index Structure

When you specify a nondirectory ISAM file, you can no longer locate records by presenting
a key to data management. Three of the standard imperative macros are no longer
available to you:

READ, KEY
SETL, KEY
SETL, GKEY

Otherwise, the function repertoire is the same. Despite the fact that keys are not used,
some macro calls retain the KEY operand.

The WRITE, KEY macro, for example remains available to you for inserting a trailer record
in overflow, but you provide this macro with the relative address of the header record from
which the trailer depends, qot its key.

Sequential processing is the, same as for indexed files, except that no index is available for
selecting the starting point for a sequential retrieval sequence. Here again, you will
provide a relative record address to the SETL macro.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-4

Table 11--:2 lists the cal.ls for the imperatives available for processing a nondirectory ISAM
file. The calls are grouped in sets according to functions and, as in Table 11-1, are
repeated to indicate that some operate in more than one setting. Those calls that you
should expect to use many times in your BAL program are indented to identify them.
(Again, the 7-character file name of the nondirectory ISAM file being processed in the
illustration is "EMPLMST.")

Table 11-2. Imperative Macro Calls for Processing a Nondirectbry OS/3 /SAM File without an Index Structure, Listed by
Functions

Functions Imperative Macro Calls

Initiating and Terminating OPEN EMPLMST
Processing of the File CLOSE EMPLMST

Loading or Extending SETFL EMPLMST
the File WRITE EMPLMST, NEWKEY

END FL EMPLMST

Adding Trailer WRITE EMPLMST,NEWKEY
Records WAITF EMPLMST

Random Processing. READ EMPLMST, ID
Retrieval and Updating WAITF EMPLMST
if WRITE is used WRITE EMPLMST, KEY

WAITF EMPLMST

Sequential Processing. SETL EMPLMST { BOF}
I ID

Retrieval and Updating
if Put is used GET EMPLMST, (0)

PUT EMPLMST
ESE TL EMPLMST

NOTES:

1. The ADD imperative macro is equivalent to the WRITE,NEWKEY
macro for inserting new records.

2. The UPDT imperative macro is equivalent to the WRITE,KEY macro
for random updating.

11.2.3. Deleting Records from an ISAM File

A function for which OS/3 ISAM does not provide you a specific imperative
macroinstruction is record deletion. However, to help you in this aspect of managing a file,
OS/3 ISAM establishes a 2-byte field in the DTFIS file table (half-word-aligned) in which
your ·program may keep .a count of the number of records you have tagged for deletion.
You may address this field, which is available for the life of the file, by concatenating the
character "T" to your 7-character file name; this field will be termed filenameT in this
manual.

You, of course, must establish your own convention for tagging records in your file that
are to be deleted; there is no field in the OS/3 ISAM data formats dedicated to this use
(nor~ if you recall; does OS/3 ·ISAM provide for user file labe·ls in which you might record
deletion statistics instead of using filenameT).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-5

Because tagging a record for deletion will most likely be part of a rewrite operation (for
which you issue the WRITE, KEY macro), it would be logical also to increment the count in
filename T either before or after the rewrite operation. Because your count of records you
have tagged for deletion is always available to you in the DTF, you can access it as an aid
in deciding when to reorganize your ISAM file.

There is no way to avoid retrieving records you have tagged for deletion; they will always
be read by a READ or GET imperative macro. For this reason, to tag records that you have
decided should be removed from the file is an important part of your processing them. You
should, of course, also provide in your program for checking against the presence pf this
flag whenever you retrieve a record.

UP-8068 Rev. 4

DTFIS

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.3. DEFINING AN OS/3 ISAM FILE (DTFIS)

11-6

In order to process a file by OS/3 ISAM, you must define it to data management by
issuing the DTFIS declarative macro in your BAL program. (The macro call is derived from
the phase define the file for indexed sequential.)

The symbolic name of your file (filename) may contain no more than seven characters and
must begin with an alphabetic character. This file name is also used by the OS/3 ISAM
imperative macros to identify the file to be processed. It must be the same as the file
name you have included in the LFD statement in the device assignment set of OS/3 job
control statements by which you allocate the file. (See the job control user guide, UP-8065
(current version) for the details of OS/3 job control statements.)

The DTFIS declarative macro generates a file table that data management uses to keep
itself and you informed of the characteristics of the file and of the results of your
processing it with the ISAM imperative macros. The DTF generator assures that the file
table is automatically aligned on a full-word boundary. The size of this file table varies
according to the processing to be performed (which you may specify via the IOROUT
keyword parameter, 11.4.8):

DTF File Table Size,
in Bytes IOROUT Specification

332 LOAD
372 RETRVE
396 ADD
396 ADDRTR

As you execute each imperative macro, data management places an informative reply,
indicating normal completion or exceptions (including unrecoverable error conditions) in a
special field of the DTF file table. If you have not provided an error exit, you must
remember to access this field when control returns inline to you after execution of each
imperative.

You address this field (called filenameC) by concatenating the character "C" to the name
of your file. Some of the imperative macros also pass information to you in other special
fields of the DTF file table, which you may address similarly by concatenating a specific
character to your file name (details are given for each macro separately in 11.5, and these
are recapitulated in 11.7). Because the maximum length for symbolic names throughout
OS/3 is eight characters, data management therefore limits you to a maximum of seven
for file names.

In addition to the file table just mentioned, the DTFIS declarative macro also generates
certain references so that you may link a BAL program with a DTFIS file table you have
generated in a separate assembly:

1111 An ENTRY definition for filename. You must specify a corresponding EXTRN definition
for filename within your program.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-7

11 An EXTRN definition for each symbolic name you have supplied with certain of the
DTFIS keyword parameters described in what follows. You must specify a
corresponding ENTRY definition for each of these symbolic names.

Following is a listing of the required and optional keyword parameters you will specify as
operands of the DTFIS declarative macroinstruction. These are listed here in alphabetic
order, but you may specify them in any convenient order, just so you separate them with
commas. The paragraphs following this format statement discuss the use of each keyword
parameter, and a table summarizing the keywords follows the descriptions.

Refer to the preface of this manual for OS/3 data management format statement
conventions and to 1.6.3 for rules concerning continuation of statements. A comma is
shown preceding each keyword parameter except the first, to remind you that all keywords
coded in a string must be separated by commas. However, a comma must neither be
coded in column 16 of a continuation line, nor follow the last keyword in the string. Refer
to the coding examples which follow.

Format:

LABEL Ll OPERATION .6.

filename DTFIS

OPERAND

[ACCESS= \!~~: \]
BLKSIZE=n

[,ERROR=symbol]

[,I NDAR EA=symbol]

[,INDEXED=NO]

[,INDSIZE=n]

,IOAREA 1=symbol

[,I OAR EA2=symbol]

[,IOREG={r)]

[IOROUT=i~~: lJ
RETRVE
ADDRTR

[,KEY ARG=symbol]

[,KEYLEN=n]

[,KEYLOC=n]

[,LOCK=NO]

[,PCYLOFL=nn]

t

UP-8068 Rev. 4

LABEL

filename
{cont)

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

60PERATION 6 OPERAND

DTFIS [RECFORM={FIXBLK }]
L VARBLK

[,RECSIZE=n]

[,SAVAREA=symbol]

[TYPEFLE= {Erfl]
[,UPDATE=NO]

[,VERI FY=YES]

[,WORK1=symbol]

[,WORKS=NO]

11.4. DTFIS KEYWORD PARAMETERS

11-8
Update A

The following is a discussion of the use of each of the keywords that you may specify as
operands of the DTFIS declarative macroinstruction; the discussions are arranged
alphabetically for ease of reference. Table 11-3, following these descriptions, summarizes
all of the keywords.

11.4.1. Specifying File Accessing Options (ACCESS)

In a multitasking environment, the file lock feature can prevent the loss or destruction of
data. This feature allows you to control the sharability (specify the read/write
requirements) of a file while you are using it. This feature only applies to those files you
specified as lockable. The procedure for specifying which files are lockable is described in
16.1.4.

You can specify the sharability of a lockable file by using either the ACCESS or LOCK
keyword parameter (11.4.1). It is recommended that you use the ACCESS parameter
because it provides greater flexibility (more read/write options available) than the LOCK
parameter. If both the ACCESS and LOCK parameter are specified in the same DTF
macroinstruction, the ACCESS specification will override the LOCK specification.

Keyword Parameter ACCESS:

ACCESS=EXC
Specifies exclusive read/update/add use of the file. No other jobs can access the
file while it is being used.

NOTE:

This specification is equivalent to the default value for the LOCK parameter; that is,
LOCK-NO is omitted.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-9
Update C

ACCESS=EXCR
Specifies read/update/add use of the file and also allows other jobs to read from
the file while it is being used. (Only ACCESS=SRD can be specified for other
jobs.)

ACCESS=SRD
Specifies that only the read function is allowed for the file and allows other jobs
read/update/add use of the file. (Only ACCESS=EXCR, SRO, or SRDO can be
specified for other jobs.)

ACCESS=SRDO
Specifies that only the read function is allowed for the file and also allows other
jobs to read from the file. Writing to the file is not allowed from the job
associated with this DTF or from other jobs. (Only ACCESS=SRD or SRDO can
be specified for other jobs.)

11.4.2. Specifying Size of Data Blocks (BLKSIZE)

To specify the size of the physical data blocks in your ISAM file, you must supply this
required keyword parameter in your DTFIS declarative macro. (See 10.2.2 for a discussion
of ISAM data block formats; these are shown in Figure 10-4.)

Keyword Parameter BLKSIZE:

BLKSIZE=n
Specifies the size of the blocks in the file, where n is the size in bytes. This
keyword is always required. Size may not be less than 256 bytes nor exceed
the track size for the disk subsystem on which the file resides:

SPERRY UNIVAC Track Size,
Disk Subsystem in Bytes

8411
8414
8415
8416
8418
8424
8425
8430
8433

3625
7294

10,240
10,240
10,240

7294
7294

13,030
13,030

When you specify fixed-length records (by default, or by specifying
RECFORM==FIXBLK), your BLKSIZE specification n should equal record size + 5 bytes,
multiplied by the number of records per data block, adding two bytes for the block
header. The block size need not be the same as your 1/0 buffer allocation, which may
be specified with a define storage (OS) statement elsewhere in your program, but it
must not exceed the length of the buffer.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-10

When 8415 disks are used, the ISAM blocksize is restricted. For each cylinder, ISAM
requires at least two blocks of space reserved for overflow. The following algorithm
calculates b, the total number of overflow blocks per cylinder:

b = blocks per track x tracks per cylinder

A minimum of one block per track may be specified and two tracks per cylinder (8415
removable) or three tracks per cylinder (8415 fixed). The number of blocks per cylinder is
then multiplied by the percentage of overflow (maximum 80%) and rounded up to the next
integer value. If less than two, the resulting overflow block count is set to 2. The overflow
block count is then subtracted from the total number of blocks per cylinder to calculate d,
the data blocks per cylinder, a value which must be nonzero.

d = b - overflow block count

When applied to the 8415 disk (fixed or removable) the algorithm for calculating number of
overflow blocks per cylinder (b) can result in a value identical to the total number of blocks
per cylinder, thus leaving no space for data. If this condition occurs, the' OPEN imperative
macro generates the message: DM61 INVALID DTF FIELD: PARAMETER, OR PARAMETER
COMBINATION. This restriction condition can occur only with large block sizes (one or two
blocks per track) and large overflow percentages (70 to 80%).

11.4.3. Specifying Your Error Exit (ERROR)

When a fatal hardware or detectable logic error occurs on an ISAM file, or an exception is
detected to exact performance of the function you have requested, data management
returns control to your error-handling routine, if you have coded one and provided
address with the ERROR keyword parameter .. If you have no error routine, control returns
to you inline, at the instruction in your program next after the imperative macroinstruction
that initiated the transfer of control.

It is your responsibility to interrogate the error /status codes and take appropriate action. If
you choose to continue processing, it is useful to know that data management provides
you an inline return address in register 14; this inUne return is to the instruction in your
program next following the imperative macro that initiated the transfer of control to your
error routine.

When OS/3 data management transfers control, the addressable field filenameC
DTFIS file table contains information on the reasons for the error. (See 11.7 and Appendix
8.)

Keyword Parameter ERROR:

ERROR=symbol
Specifies the address of your error-::randling routine, to which data management
transfers control for ,all conditions of error or exception to exact performance
the function ·you have requested. When data management transfers control,
filenameC contains information on the reasons for the ,error.

If omitted, control returns to you inline.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-11

11.4.4. Describing an Index Area in Main Storage (INDAREA, INDSIZE)

This pair of keyword parameters is required when you are loading an indexed file but
optional at other times. (It is not used wh~n your file is a nondirectory ASAM file and has
no index.) You specify a main storage location into' which ISAM may load part of your top
index by the IN DAR EA· keyword, and you specify th~ length. of this area, in bytes, with the
INDSIZE keyword. Like the 1/0 area, your index area must always be half-word aligned.

For loading operations, the length of. the index area must always be at least 256 bytes
because ISAM uses this space to create the 256-byte index blocks as loading proceeds.
(See 10.2.3.)

An optional OS/3 ISAM faciJity, by which ISAIVl places all or part of the top index in main
storage to speed random retrieval or record insertion, may be invoked by specifying the
INDAREA and the INDSIZE keywords under the following conditions:

11 The KEY ARG and KEYLEN keywords are also specified (11.4.9, 11.4.10).

11 IOROUT=ADD, IOHOUT=AODRTR, or IOROUT=RETRVE is also specified (11.4.8).

11 .TYPEFLE=RANDOM or TYPEFLE=HANSEQ is ·also specified (11.4.15).

The INDSIZE, INDAREA, and KEYLEN parameters define the size and address of the index
buffer and the amount of the top index· that. may be brought into main storage
automatically when the file is opened. ISAM determines the size of the top index table
entries from the length of keys specified by the KEYLEN keyword and ensures that the
length of the INDAREA table (specifiedt:by the INDSIZE k·eyword) will accommodate at least
one block of top index entries. If your INDSIZE specification is less than this minimum,
your attempt to invoke this facility ·is negated, and appropriate diagnostic messages are
printed in the DTFIS macro expansion.in your assembly listing. ISAM automatically rounds
your INDSIZE specifica~ion down ·to an· integer multiple of one block of top index entries.

To ascertain the total number of •bytes actually req·uired to hold the entire the entire top
index in table form in the INDAREA buffer, you may access filenames in· the DTF on
completion of a file load sequence; refer to 10.2.4.

For a description of the operation of the ISAM index-in-main-storage facility, refer to
10.2.5.

Keyword Parameter INDAREA:

INDAREA=symbol
Specifies location in main storage in which ISAM builds index blocks dus:ing load
operations, or where ISAM places top index table for random retrieval or record
insertion, where symbol (address) is the location. Must be half-wordC aligned.
Required for load operations; 6ptional for others. Length of area specified by
INDSIZE keyword.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

11-12

Keyword Parameter INDSIZE:

INDSIZE=n
Specifies length of index ·area in main stora,ge, where n is the length, in bytes.
For load operations, the length must be at least 256 bytes; excess space is
unused: For random processing, length greater than 256 bytes is optio.nal; lSAM
ensures that INDAREA accommodates at least one block of top index entries
(three bytes greater than KEYLEN specification).

11.4.5. Eliminating the Index Structure (INDEXED)

This keyword is used when you want to eliminate construction of the ISAM index
str'ucture.

Keyword Parameter INDEXED:

INDEXED=NO
Specifies that you have elected the option to create a nondirectory ISAM file and
to reference its records by relative addresses, rather than by keys. Data
management does not construct the index; key-based processing functions are
inoperative.

If omitted, the index structure is provided.

11.4.6. Specifying 1/0 Buffers (IOAR:EA 1, .IOAREA2)

All ISAM operations require .at least one 1/0 area, half-word-aligned and at least 256
bytes in length. You specify its address with the JOAREA 1 keyword. You may specify a
second area, of equal size, which must also. be aligned on a half-word boundary, with the
optional IOAREA2 keyword. To do so will increase the speed of your processing; you will
.notice that the benefits are more pronounced for lo.ad and sequential retrieval than for
random Qperations.

Keyword Parameter IOAREA 1:

IOAREA1=symbol
Required to specify location of input/output area, where symbol (address) is the
location. Must be half-word aligned. Length must equal or exceed the number of
bytes specified with BLKSIZE keyword.

Keyword Parameter IOAREA2:

IOAREA2=symbe>I
Specifies location of optional .additional input/output area, where symbol
(address) is the location. Must also be half-word aligned and will be same size as
the required area specified by the IOAREA 1 keyword. You may improve the speed
of sequential 1/0 operations if you specify this keyword.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA l\(IANAGEMENT

11.4.7. Specifying Current Record Pointer (IOREG}

11-13

When you are referencing your records in the 1/0 areas rather than in the wqrk areas,
you need to speoify a gener;:il register: to be used to point to the current 1/0 area.
Registers Z through 12 are always available; if you have ~pecified the SAVAREA keyword
parameter, general register 13 is also available. (See 11.4~ 18 for details on the use of
record work areas.)

Keyword Parameter IOREG:

IOREG-:-{r)
Required to specify the general register. to be used Jo point to the current 1/0
area when you are not referencing records in the work areas, where r is the
number of the general register. Registers 2 through 12 are available, and register
13 is also available if you have specified the SAVAREA keyword.

11.4.8. Specifying the Type of File Processing (IOROUT)

You may specify the type of processing to be performed on your file with the optional
IOROUT keyword; this parameter has four forms. Note that you may also. specify the type
of retrieval with the TYPEFLE keyword (11.4.15). · '

A file-loading operation (IOROUT ,L.OAD) may end with the final data block only partly full.
When this occurs, data management stores the exact location of unused file space in the
disk volume table of contents (VTOC) for later recovery and use as needed.

You may add records (IOROUT-ADD) with keys higher than the final prime data record,
which is contained in the data,

1
block marked ,as the logic~I end. of, file. As data

management places. tliese in overflow, they do not· affect the location of unused prime
space.

If you should introduce new records by resuming load operations (IOROUT LOAD), these
must be submitted in ascending order of keys; all must have higher keys than the current
highest key (whether in a prime record or an overflow record already o~ disk).

If you add enough records to an ISAM file, some cylinder oveflow space will become filled,
and data management ,will be unable to place .a,dded records on the cylinder where they.
belong. When this occurs, data management resorts to using space on the earliest cylinder
having available overflow and adds records .at the· earliest possible point of the followi~g
sequence:

1. On the cylinder reached by prime search

2. On the cylinder having the cu:rrent COCRS*

3. On a cylinder newly set as having the COCRS (discovered by progressing through
COCR blocks to one showing space available)

*The COCRS is a special cylinder overflow control record that data management writes and maintains in the DTF and
VTOC to control remaining overflow space on the cylinder that is currently used to accept overflow records from other
cylinders.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-14

Keyword Parameter IOROUT:

IOROUT=ADD
Specifies that new records are to be inserted into a file. You may not specify the
ADD form of this keyword unless you have allocated an overflow area with the
PCYLOFL keyword parameter (11.4.12).

IOROUT=ADDRTR
Specifies that new records are to be inserted in the file and that records will also
be retrieved and updated randomly or sequentially. You may not specify the
ADDRTR form of this keyword unless you have allocated an overflow area with
·the PCYLOFL keyword (11.4.12).

IOROUT lit>AD
Specifies that either a new file is to be created or an existing file is to be
extended. ISAM assumes that the LOAD form has been specified if you omit the
IOROUT keyword parameter.

IOROUT=RETRVE
Specifies that your records are to be retrieved or updated randomly or
sequentially.

If omitted, IOROUT=LOAD is assumed. Type of retrieval. may be specified with the
TYPEFLE keyword (l1.4.15).

11.4.9. Specifying Location of Retrieval Search Argument (KEY ARG)

Whether you· are referencing records by key (as when you are using ISAM with the index
structure) or by relative address (as with ·the nondirectory form of ISAM), you need a field
in which to present data management either with the key it is to match by the search-on;..
key function or with the relative disk address at which it is to access your record directly.
You specify this field with the KEYARG keyword parameter.

You should avoid presenting ISAM with either the address or the all-zero key of the
dummy record at file start as a search argument. The dummy record is not available for
you to use, and efforts to retrieve or overwrite it result in the error processing described
under the various·imperafive macros involved. You may, on the other hand, safely specify
an all-zero ·key in the KEYARG field when you issue the SETL, GKEY imperative: data
management prepares to give you the first record after the dummy, and no error
processing results.

The length of the KEYARG area will be five bytes when you use it only for relative
addressing, but it must equal the actual length of the keys in your records (specified by the
KEYLEN keyword) when you are using the indexed form of ISAM. You may omit the
KEYARG keyword parameter when you are not retrieving records.

Keyword Parameter KEYARG:

KEY AR G=symbol

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-15

Specifies the field in your program where you will place addresses or keys to
effect retrieval of your records, where symbol (address) is the location in this
field. The length of the KEYARG area is five bytes when you use it for relative
addressing and equal to key length (KEYLEN keyword parameter) otherwise. May
be omitted when you will not retrieve records.

11.4.10. Specifying length and location of Records Keys (KEYlEN, KEYlOC)

When your records have keys (as they must when you use the indexed form of ISAM, and
may when you are using the nondirectory form), all keys in the file must have the same
length, and every record must have a key. The key need not begin at the head of the
record; it may be internal to the record, in fact, but the starting place for the key must be
the same in every record. The minimum length for a key is 3 bytes; the maximum is 253.
Each key must be unique. No byte of any record's key may contain the hexadecimal value
FF, nor may any of your keys duplicate the all-zero key or the dummy record that ISAM
creates and inserts at the start of the file.

You specify the length of the key in bytes with the KEYLEN keyword parameter and the
number of bytes of data that precede the key with the KEYLOC keyword. You must specify
the KEYLEN parameter for an indexed ISAM file; you need not specify it for a nondirectorty
file unless you want ISAM to check the sequence of your keys during the load operation
(remember that sequence checking is done automatically only when you are loading your
records for an indexed ISAM file, to which you present them in ascending order of keys).

You need not specify the KEYLOC keyword if the key is at the head of the record. When
you omit this keyword, ISAM assumes that you have specified KEYLOC=O for fixed records
or KEYLOC=2 for variable records (each of which, as you recall, contains its record length
in the leading two bytes}.

Keyword Parameter KEYLEN:

KEYlEN=n
Specifies the length of keys in an ISAM file, where n is the length in bytes. All
keys in an ISAM file must have the same length; the minimum length is 3 bytes,
and the maximum is 253. Required for indexed ISAM files; optional otherwise. If
specified for a nondirectory ISAM file, causes data management to check
sequence of keys during a record load.

Keyword Parameter KEYLOC:

KEYLOC=n
Specifies the number of bytes that precede the key of an ISAM record, where n
is this number. The location of the keyfield must be the same within all records
of the file.

If omitted, ISAM assumes that you have specified a value of zero for fixed records or
two for variable records.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11 .4.11. Suppressing a File Lock (LOCK)

11-10

Update A

As we mentioned earlier, there are two ways to specify the sharability of your disk files. We
have already discussed the ACCESS keyword parameter and now we will discuss the other
way: that is, the LOCK keyword parameter.

Two options are available with the LOCK parameter:

1. The file is exclusively locked when it is opened during the execution of your program.
You have exclusive use of the file. You can read, update, and add to the file. No other
user can open the file until you close it.

2. A read-only lock is applied to the file when it is opened. You can only read from the
file and all other uses can only read from the file.

Keyword Parameter LOCK:

LOCK== NO
This is equivalent to specifying ACCESS==SRDO. It should not be used in the
same DTF as the ACCESS keyword parameter. If it is, the ACCESS keyword
parameter will override it.

If you omit both LOCK==NO and the ACCESS keyword parameter, this is equivalent to
specifying ACCESS==EXC.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-17

11 .4.12. Providing Cylinder Overflow Area (PCYLOFL)

For both the indexed and the nondirectory ISAM file, you specify the percentage of the
space of each cylinder that data management is to reserve for overflow with the PCYLOFL
keyword parameter. You will recall that it is to the overflow area that data management
writes records added after your initial load. The maximum percentage is 80.

If you specify a zero value or if you omit the PCYLOFL keyword altogether, you may not
add records to the file; any you attempt to insert will be rejected.

Keyword Parameter PCYLOFL:

PCYLOFL=nn
Specifies the percentage of each cylinder that data management is to reserve for
overflow, where nn is the percent. The value of nn may range from 00 through
80. If you specify PCYLOFL=OO, records presented later for insertion will be
rejected.

If omitted, data management assumes that you have specified· PCYLOFL=OO.

11.4.13. Specifying Record Size and Format (R;ECFORM, RECSIZE)

Records in an ISAM file are fixed or variable in length and are blocked by data
management. You may specify the format with the RECFORM keyword parameter; if your
records are fixed length, you must specify this length with the RECSIZE keyword. All fixed
records must have the same length in an ISAM file.

Keyword Parameter RECFORM:

RECFORM FIXSLK
Specifies that your records are fixed-length, blocked. You must also specify the
RECSIZE keyword.

RECFORM=VARBLK
Specifies that your records are variable-length, blocked. You do not specify the
RECSIZE keyword.

If omitted, data management assumes that you have specified RECFORM=FIXBLK,
and you must specify the RECSIZE keyword parameter.

Keyword Parameter RECSIZE:

RECSIZE=n
Specifies the length of fixed records, where n is this length, measured in bytes.
Required for fixed-length records only; must be specified if you omit the
RECFORM keyword. Not used for variable records.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC·DATA MANAGEMENT

11-18

11.4.14. Specifying a Save Area for Contents of General Registers (SAVAREA)

Before you issue an imperative macro for processing any OS/3 data management file, you
may first load general register 13 with the address of a 72-byte labelled save area -
always aligned on a full-word boundary ,...- in which data management will expect to save
the contents of your registers. If you do not want to provide this information with every
call, you may place the location of the save area in the DTF file table by specifying the
SAVAREA keyword. Refer to .1.4 for the content of this area.

Keyword Parameter SAVAREA:

SAVAREA=symbol
Specifies the address of a 72-byte labeled save area for the contents of general
registers, full-word-aligned, where symbol (label) is the address. Used only when
register 13 is not loaded with save area address before each issue of imperative
macros to the file.

If omitted, data management assumes that you have preloaded register 13 with
address of a save area before issuing ,each imperative.

11.4.15. Specifying the Type of Retrieval (TYPEFLE)

When you ar,e performing retrieval operaHons on your ISAM file, indexed or nondirectory
(and therefore have .sp.ecified IOROUT=RETRVE or IOROUT=ADDRTR (11.4.8.)), you may
specify the type ef processing (random or sequential) with the TYPEFLE keyword
parameter. You do not use the TYPEFLE keyword unless you are retrieving record~.

Keyword Parameter TYPEFLE:

TYPEFLE=RANDOM
Specifies that random (direct) retrieval operations are to be performed.

TYPEFLE SEQNTL
Specifies that sequential retrieval operations will be performed.

TYPEFLE=RANSEQ
Specifies that both random and sequential retrieval will be peformed.

If omitted, data management assumes that you have specified TYPEFLE=SEQNTL. Not
used unless records are to be retrieved. IOROUT=RETRVE or IOROUT=ADDRTR must
also be specified (11.4.8).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-19

11 .4.16. Forestalling Use of Update Functions (UPDATE)

When you want to avoid the possibility of inadvertently writing to an ISAM file that 'YOU

intend to be a read-only file, you may specify the UPDATE keyword parameter in the DTFIS
macro. This keyword sets a bit in: the DTF file table that causes data management to set
the invalid macro error flag (byte 0, bit 6) in filenameC if you should' issue a PUT or WRITE
imperative macro to this file, and you then may take no action on the file other than to
close it. (See Appendix .B.)

Keyword Parameter UPDATE:

UPDATE==NO
Specifies that data management is to flag ·a subsequent issue of the PUT or
WRITE· macro as an invalid· macro (byte 0, bit 6 of filenameC); no further
reference to the file, other than to close it, is possible.

If omitted, the possibility of inadvertent updating of the file is not forestalled.

11.4: 17. Specifying Parity Check of Output Records (VERIFY)

When ,you need data management to make a parity check of your records after it has
written each one to disk you must specify the VERIFY keyword parameter; otherwise, no
check reading will be done. You should remember that specifying a parity check will
necessarily increase the execution time required for the PUT and WRITE macros by about
one rotation period per block. You must weigh this overhead against the advantage of
immediate notification of problems within your file.

Keyword Parameter VERIFY:

VER I FY==Yr=S
Specifies that data management is to check parity of output records after they
have been written to disk. Necessarily increases execution time for PUT and
WRITE macros. If bad parity is detected, data management sets output parity
check flag (byte 2, bit 2) in filenameC and transfers control to your error routine
or to you inline.

If omitted, no output parity verification will be done.

11.4.18. Specifying Location of Record Work Areas (WORK1, WORKS)

For loading and adding functions {that is, when you have specified IOROUT==LOAD,
IOROUT==ADD, or IOROUT ADDRTR, 11.4.8), you must provide ISAM with the location of
a record work area by specifying the WORK 1 keyword parameter. Furthermore, unless you
have selected a general register to be the current record pointer (IOREG keyword 11.4.7),
you must also specify a record work area for random retrieval.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-20

For sequential retrieval, you do not specify the location of a record .work area ,in the DTF,
and data management ignores the WORK 1 keyword if it is present. You have two other
options for sequential retrieval:

1. "Working in the input buffer. To do this, you specify the IOAREA 1 and IOAREA2
keywords and both the IOREG and the WORKS keyword parameters.

2. Transferring records to the work area. To do this, you do not specify either the IOREG
or the WORKS keyword parameter; you specify the location of the work area in the
second positional parameter of each GET imperative macro you issue (11.5.5.2).

An important point to remember is that the record work area, however you specify it, holds
one record at a time. An obvious point is that its size is governed by your record. length; if
your records are ~variable, the size must accommodate the largest of these.

Keyword Parameter WORK 1:

WORK1=symbol
Provides the location of a record work area, where symbol (address) is the
location. Required for load and add functions (when IOROUT=LOAD,
IOROUT=ADD, or IOROUT=ADDRTR has been specified). Also required for
random retrieval unless you have specified the IOREG keyword parameter. Is
ignored for sequential retrieval.

Keyword Parameter WORKS:

WORKS=NO
When IOREG keyword is also specified for sequential retrieval, indicates that you
will process records in the current input buffer.

If omitted, and IOREG keyword is not specified, data management expects to transfer
sequentially retrieved records (one at a. time) to the work area you specify as an
operand of each GET macro you issue (11.5.5.2).

11.4.19. Nonstandard Forms of the Keyword Parameters

When the assembler is preparing your DTF, it uses a specific list of keywords. Discovery of
a keyword that is not on the list results in an assembly error. In order that existing
programs may require minimal changes for assembly in OS/3, the list of acceptable
keywords has been expanded beyond those listed as standard. The acceptable variations
are:

OS/3 Standard

BLKSIZE
ERROR
IN DAR EA
INDSIZE
IOAREA1
IOAREA2
IOREG

Acceptable

BKSZ
ERRO
INDA
INDS
IOA 1, IOAREAL, I OAR EAR, IOAREAS
IOA2
IORG

UP-8068 Rev. 4

OS/3 Standard

IOROUT
KEYARG
KEY,LEN
KEYLOC
PCYLOFL
RECFORM
RECSIZE
SAVAREA
TYPEFLE
UPDATE
VERIFY
WORK1

SPERRY UN.IVAC OS/3
BASIC DATA MANAGEMENT

Acceptable

IORT
KARG
KLEN
KLOC
PCYL, CYLOFL, C_YL
RCFM
RCSZ
SAVE
TYPF
UPDT
VRFY
WRK 1, WORKL, WORKR

11-21

Note that there are no acceptable variations for the INDEXED or the WORKS keywords and
that non~ of the completion values (the values to which you equate these keywords) may
vary from the OS/3 standards given in the preceding paragraphs.

11.4.20. Recapitulation of .DTFIS Keyword Parameters

~ . . .

Table 11-3 lists all of the keyword parameters that may be used as operands of the
DTFIS declarative macroinstruction. An example of coding the DTFIS declarative macro
follows the table. ·

Table 11-3. Keyword Parameters of the DTF/S Declarative Macro Instruction (Part 1 of 2)

cc::
File Function

Keyword Specification Remarks
L A s T I

ACCESS* EXC s s s s This DTF: read/update/add use
Other jobs: no access

EXCR s s This DTF: read/update/add use
Other jobs: read use

SRO s s ThisDTF: read use
Other jobs: read/update/add use

SRDO s s This DTF: read.use
Other jobs: read use

BLKSIZE * n R R R R

ERROR symbolic label 0 0 0 0 Address of subroutine to handle errors and exceptions

INDAREA symbolic label R 0 0 0 Address of main storage area to cpntain index

INDEXED. NO 0 0 0 0 Specifies that file is not to be indexed

** INDSIZE n (in bytes) R 0 0 0 Size of index area in main storage; minimum size
is 256 bytes.

IOAREA1 symbolic label R R R R Address of 1/0 area in main storage

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA-MANAGEMENT

11-22

Table 11-3. Keyword Parameters of the DTFIS Declarative Macro Instruction (Part2. of 2)

File Function
Keyword Specification Remarks

L A s T
:'

IOAREA2 symbolic label 0 0 0 0 Address of a secondJ/0 area in main storage to speed
processing

IOREG (r)=general register 0 0 Contains address of.the 1/0 area in main storage.

I OR OUT ADD R Insert new records to file.

ADDRTR R s s Insert new records· and retrieve records randomly
or sequentially.

tQAO R Create new file or extend existing file.

RETRVE s s Retrieve alld/or upd.ate randomly or sequentially.

KEYARG symbolic label 0 R Address of field containing key of desired record.
•. ·; :..!. ..:..

KEYLEN ** n 0 0 0 0 Key length in bytes for ISAM file. When specified
for nonindexed files, a sequence check of keys is made .

..:..
KEYLOC ** 0 0 0 0 Location, in bytes, of the key within a record. If

omitted, KEYLOC=O for fixed-length records;
KEYLOC=2 for variable-length records.

LOCK NO 0 0 0 0 Requests file lock not be set on a lockable file at OPEN
~--

PCYLOFL nn l~ 80) 0 Percentage of ~ylinder (blocks) availal:lle for 9ve.rflow

RECFORM" s s s s Specifies fixed-blocked records

VARBLK s s s s Specifies variable-blocked records

RECSIZE * 0 0 0 0 Size, in bytes, of fixed records to be processed

SAVAREA symbolic label 0 0 0 0 Address of general register save area

TYPEFLE RANDOM 0 ··specifies random file processing function

-
RANSEQ 0 0 Specifies random/sequential file 'processing function

-

. St:ONTL 0 Specifies sequential file processing functi.on

UPDATE NO 0 0 Eliminates update capability

VERIFY YES 0 0 0 0 Specifies a parity check of data records is to be
made after being written to output disc

...:...

WORK1 symbolic label R R 0 Address of work area for records being loaded,
reloaded, extended, or inserted

WORKS NO 0 No record work area available for sequential
retrieval

LEGEND:

L File creation or extension
A Record insertion
S Sequential retrieval
T Random retrieval
0 Optional
R Rt:!quired
S Select one

Value assumed if keyword is not specified.

*Parameter may be changed by DD job control statement.
**Parameter may be changed by DD job control statement, indexed mode only.

UP-8068 Rev. 4

Example:

LABEL L'.OPERATIONL'i
10 Hi

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

OPERANO

11.5. IMPERATIVE MACROS FOR ISAM FILES

11-23

COMMENTS
72

To process your ISAM files, you will issue imperative macros in your BAL program to
communicate with OS/3 data management. These imperative macros expand as inline
executable code to set up linkages, pass required parameters, and initiate transfer of
control to the various ISAM transients and logic modules.

As explained in further detail in 11.7 and Appendix 8, data management sets a flag in a 4-
byte addressable field in your DTF file table (labelled filenameC), after the execution of
each imperative macro you issue, to inform you of the normal completion of the
processing you have specified or of error or exceptional conditions. If you do not provide
an error/exception handler routine, it is your responsibility to interrogate filenameC after
each inline return and to take appropriate action in your program.

Certain of these imperative macros also provide other useful information to you, in
different fields of the DTF file table (filenameH, filenameP, and so on). These actions are
pointed out in the individual macro descriptions and also recapitulated in 11. 7.

The imperative macro descriptions are grouped according to the file processing functions
involved:

• Basic macroinstructions: OPEN and CLOSE

• File loading and extending macros: SETFL; WRITE, NEWKEY; and ENDFL

• Random processing macros: READ, KEY; READ, ID; WRITE, KEY; UPDT; and WAITF

• Record insertion macros: WRITE, NEWKEY; ADD; and WAITF

• Sequential processing macros: SETL, GET, PUT, and ESETL

11.5.1. Basic Macroinstructions

You must use the OPEN and CLOSE macroinstructions to initiate and terminate action on
an ISAM file. They call transient routines into main storage to perform the necessary
preparation and close-out. The OPEN macroinstruction must be issued before any other
macro function can be performed.

t

UP-8068 Rev. 4

OPEN

SPERRY ONIVAC OS/3
BASIC DATA MANAGEMENT

11.5.1.1. Initializing an ISAM Fil~ (OPEN)

Format:

LABEL b.OPERATION b.

[name] OPEN

Positional Parameter 1:

filename

OPERAND

{

filename-1 [, ... ,filename-n]}
(1)
1

11-24

Is the label of the corresponding DTFIS declarative macroinstruction iA the
program. The maximum number of file names is 16.

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

Examples:

LABEL b.OPERATIONb. OPERAND
10 16

E

(L)

UP-8068 Rev: 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT ·

11.5.1.2. Terminating an ISAM File (CLOSE)

Function:

11-25

CLOSE

You must use the CLOSE macroinstruction to terminate processing of your file. The
CLOSE macroinstruction calls on a transient routine that performs required
termination operations, such as updating the format 2 label. Once your file is closed,
no other macroinstrµctions can be executed for the file until it is reopened by the
OPEN macroinstruction.

Format:

LABEL f.':.OPERATION f.':.

[name] CLOSE

Positional Parameter 1:

filename

OPERAND

l
filename-1 [, ... ,filename-n] l
(1)
1

*ALL

Is the label of the corresponding DTFIS declarative macroinstructio., 11 your

t

program. The maximum number of file names is 16. ~

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

*ALL
Specifies that all files currently open in the job step are to be closed.

Example:

LABEL f.':.OPERATIONL':. OPERAND
10 16

UP-8068 Rev. 4

Programming Considerations:

SPERRY UNIVAC OS/3
BASIC/ DATAMANAG,EMENT

11-26

When you have issued a CLOSE macro, you may access filenames, if desired, to
ascertain the number of bytes required to hold the top index in main storage (11.6.2).

11.5.2. Loading and Extending an ISAM File

Whether a new ISAM file is to be loaded (created) or an existing one is to be extended by
adding records at the end, the Jile processing functions are the same. Both functions are
indicated in the DTFIS declarative macroinstruction ,when you specify IOROUT=LOAD.
Records for the fire are supplied in a work area to be blocked by data managemen~.

The imperative macroinsfruct:ions you require are the same in either case. The two
processing functions are differentiated by the disk format 2 label. Once a file has' been
loaded successfully and a CLOSE macroinstruction has been executed for it, subseq~ent
processing of a file for which you have specified IOROUT=LOAD extends, rather than
creates, the file.

The three imperative macroi nstructions are:

1111 SETFL, which initiates the processing sequence:

1111 WRITE, NEWKEY, which loads a record to the file; and

11111 ENDFL, which terminates the processing sequence.

You do not follow the WRITE, NEWKEY macro with the WAITF macro for a !bad operation,
although the WAITF macro is required after all other uses of the WRITE macro and all
uses of the READ macro in OS/3 ISAM.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.2.1. Initiating the Load', Sequence ·(SETFt.)

Function:

11-27

SET FL

The SETFL (set file /oad)rnacroinstruction calls on a transient rouHne which sets up
controls in the DTFIS file table and in the indexes on'the disk: to prepare file for
loading (or extending}.

Format:

LABEL /:::.OPE RATION /:::. OPERAND

[name] SET FL

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS file table in your program.

(1) or 1

Example:

Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

LABEL /:::.OPERATION/:::. OPERAND
10 16

,

UP-8068 Rev. 4

WRITE, NEWKEY

SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

11.5.2.2. Writing Initial Records to the File (WRITE, NEWKEY)

Function:

I 1-L.O

The WRITE, NEWKEY macroinstruction (that is, WRJT,:= 1 is the op~ration code, and
NEWKEY is positional parameter 2) writes a logical rec9rd to a file being loaded or
extended. Specifically, it transfers a record from the working storage area to the 1/0
area. Before issuing the WRITE, NEWKEY macroinstruction, you must have stored the
logical record in the work area.

Format:

LABEL

[name]

Positional Parameter 1:

filename

~OPERATION~

WRITE

OPERAND

{

filename} ,NEWKEY
(1)
1

Is the label of the corresponding DTFIS declarative macroinstruction in the
program.

(1} or 1
Indicates that register 1 has been preloaded with the address of the DTFIS file
table.

Positional Parameter 2:

NEWKEY
Indicates that a new record is to be loaded into an ISAM file.

Examples:

LABEL ~OPERATION~ OPERAND
1 10 16

t • ..._..._._....__._._-L-.._..-J.!-~~L...i.=+-.J~-!iL..-LioolO..ll.~~~-=-===::...::l.!!!e~~.Ll-.l-.-J.-L~L.....L___.L__..L-1___!_~1-.L_l__..L_l~

f ..._.__._~1-1..-J.-~>-+JL.3.!...:i=-~::i-<µ..L.::...U-.1..4-C=-=:..L!...:J~~..L--l.-L--L-J.__.J...._L-J.__j___!___,L_J._J___j_...L--l__L.-L-.J._J_-1-J_

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-29

Programming Considerations:

The WRITE, NEWKEY macroinstruction causes the following actions:

1111 The key in the work area is checked against the key of the last record transferred
into the 1/0 area, and if it is not great~r, either .a dlJplicate key or a sequence
check error has occurred. 'Data management setS the appropriate flag in the
fi/enameC field of the DTFIS file table and returns control to your error-handling
routine, if you have one, or to you inline. The record in error is not transferred to
t~~ 1/0 area, and you may resume nprmal processing with another valid logical
record.

1111 The record and its key are transferred from the work area to the 1/0 area.

1111 When the 1/0 area cannot accommodate the entire record, a block is written into
the prime data area on the disk, and the given record is used to start the next
block.

1111 When a block ·is written, a 'key-pointer· entry is formed for the block index,
provided that you have specified an indexed file. For an ASAM file
(INDEXED=NO), this action is omitted.

1111 Following execution of the WRITE, NEWKEY macroinstruction, the disk address of
the logical record is available to you in a DTFIS addressable field labeled
filenameH. You may save these addresses during load and present them later for
direct accessing. A 3-byte count of the total number of logical records in the
prime data area (contained in filename? of the DTFIS file table) is also available
to you.

You may not overwrite the dummy record at file start, which is not availab.le to
you for storing data. H you issue the VVRITE, NEWKEY macro with a search key of
all binary O's in your KEYARG field (this being.the key re·served for· the dummy},
error processing results. Data management sets the invalid ID error in
filenameC, issues error message DM24 (INVALID REQUEST (ID) - OUTSIDE FILE
LIMITS), and branches to your ERROR routine. Refer to Appendix B.

Examples:

LABEL ~OPERATION~ OPERAND
10 16

1. Assuming register 1 has been preloaded with the EMPLMST address, and the
WRITE, NEWKEY macroinstruction has been executed successfully, the field in
the DTDIS file table labeled EMPLMSTH holds the logical record address.

2. If an error or warning condition has occurred, the field in the DTFIS file table
labeled EMPLMSTC contains an indication of this condition.

UP-8068 Rev. 4

END FL

SPERRY UNIVAC OS/3
BASIC DATA .MANAGEMENT

11.5.2.3. Terminating the Load Seq:uence (ENDFL)'

Function:

11-30

The ENDFL (end file load) ma·c·roinstruction calls on a transient routine that
terminates your file loading or extending functions for the file and writes the final
block on the disk. Also, file parameters are .tested and any required index processing
is performed. · · ·

Format

LABEL fl OPERATION fl OPERAND

[name] END FL

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS file table in your program.

(1) or 1·

Example:

Indicates thaf you have prelo9ded register 1 with the address of the DTFIS file
table.

LABEL LlOPERATIONfl OPERAND
10 16

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.3. Inserting New Records in an ISAM File

11-31

Once an ISAM file has been created, you can add new records to the file, providing that
you allocated overflow space on disk during load. Each new record is placed in the
overflow area and chained into logical sequence. You specify this file processing function
by specifying IOROUT ADD (or IOROUT ADDRTR, H retrieval is also desired) in the DTFIS
declarative macroinstruction and use either the ADD or the WRITE,NEWKEY imperative
macro to add each new record.

You supply new.records in a work area;: as you did during file creation. However, keys of
added records need not be in ascending sequence. For ASAM files, the area specified by
the KEYARG. keyword paramet.~r must contain the address. of the record from which the
current item .is to be chained. The DTFIS keyword par.ameters must be equated .to the
same spe.cific~tions a~ when the original fUe was. created.

You issue the imperative macroinstructions WRITE, NEWKEY (or ADD) and WAITF to add
records to an ISAM file. The form of the WRITE, NEWK;Y macroinstruction for adding to a
file is the same as you use for loading or extending a file, although the functions
performed are different.

In ISAM, there is no restriction preventing the addi,ng of records with keys lower than the
key of the first record loaded, except the key of ali binary zeros. fSAM has begun the file
with a dummy record having this key; so error processing will result if you attempt to add
a record whose key is binary 0. This is described under the WRITE, NEWKEY macro
description in 11.5.2.2.

In the course. of addirg records to a file, overflow areas may be.come filled. After each
WAITF macroinstruction, the conditions are reflected in the program-addressable fields in
the DTFIS file table. These fields are as foll.ows:

1111 FilenameA

A 2-byte field indicating the number of prime data cylinders having full cylinder
overflow areas. This field is set to zero if you have not specified cylinder overflow
with the PCYLOFL keyword.

11111 FilenameO

A 2-byte field indicating the total number of overflow records.

1111 Filename?

A 3-byte field indicates the total number of prime data records in the file.

UP-8068 Rev. 4

WRITE, NEWKEY

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-32

11.5.3.1. Adding a New Record to Overflow in an Existing File (WRITE, NEWKEY)

Function:

When you specify IOROUT=ADD or· IOROUT=ADDRTR, the WRITE, NEWKEY
macroinstruction logically inserts a new record ·in an existing file. You cannot use this
macroinstruction unless you have allocated cylinder overflow area during load with
the PCYLOFL keyword (11.4.'12). Before issuing the WRITE, NEWKEY
macroinstruction, you must have stored the logical record In the working storage area
in the logical record format.

In response to this macroinstruction, data ·managemenf does the following:

1. Searches through the index to locate the record's prime data block. This block or
the overflow chain is then searched to determine the position into which the

· new record should be inserted.

2. Places the new record in overflow.

3. Installs chaining in the blocks as necessary to maintain logical sequence.

For ASAM files, the: index search is replaced by a direct· access to the proper block;
you provide data management with the 5-byte file-relative address of the record from
which the new record is to be chained by.loading it into the KEYARG field before
issuing the WRITE, NEWKEY macro (11.4.9).

To ensu~e that all the actions initiated by the WRITE, NEWKEY macroinstruction have
been completed, you must execute a WAITF macroinstruction. When control is
returned to you from the latter, the work area is' available for further insert records.
The record just inserted is no longer in WORK1.

Format:

LABEL /::.OPERATION/::.

WRITE

OPERAND

{
filename} ,NEWKEY
(1) .
1

ur--ovoo nev: c+ ;:,r-t:nn T Ul'\llVAl.. U;:)/ .:s I 1-.::S.::S

BASIC DATA MANAGEMENT

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS declarative macro in your program.

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

Positional Parameter 2:

NEWKEY
Indicates that a new record is to be written into an ISAM file.

Examples:

LABEL llOPERATIONll OPERAND
10 16

Progra'T'ming Considerations:

If an error or warning condition has occurred, the field in the DTFIS file table labeled
EMPLMSTC will contain an indication of the condition.

UP-8008 Kev. 4 ;::>t"'"t:nrn Ul'llVl-\1.... UCI/ .:>

BASIC DATA MANAGEMENT

ADD

11.5.3.2. Adding a New Record to Oyerflow in an Existing File (ADD)

Function:

The ADD imperative macro, exactly equivalent to the WRITE, NEWKEY macro used
when IOROUT=ADD or IOROUT=ADDRTR is specified, adds a new record to the
overflow area of an existing ISAM or ASAM file and chains it into the appropriate
logical sequence.

As with the WRITE, NEWKEY macro, you must have previously provided an overflow
area with the PCYLOFL keyword (11.4.12) when you originally created the file, and
you must specify the IOROUT keyword as just stated. You sfore the logical record in
the work area before you issue the ADD macro, and you issue a WAITF macro after it,
before issuing another function to the file.

If your file is an ASAM file, the ADD macro does not conduct a search on key but
directly accesses the data block (prime or overflow) containing the record from which
the new one is to be chained. You provide data management with the 5-byte file­
relative address of this record by loading it into the KEYARG fi~ld before issuing the
ADD macr,o (11.4.9).

Format:

LABEL ~OPERATION /::i OPERAND

[name] ADD

{
filename}
(1)
1

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS declarative macro in your program.

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.3.3. Ensuring Completion of Record Transfer (WAITF).

Function:

11-35

The· WAITF macroinstruction ensures that the. transfer of a record between main
storage and cjis~ has been completed. It must be issued after. you issue one of the
following m.acros and before you attempt to process another record: ADD;
WRITE,NEWKEY; READ,10; READ,KEY; or V\/RITE,KEY. Any ~xceptional (error or status)
conditions detected during the execution of the WAITF instruction are reflected in the
DTFIS filen.ameC field when .control is returned to you.

Format

ilOP'ERATION fl

[name] WAITF

Positional Parameter 1:

filename

{'
filename}
(1)

OPERAND

Is the label of the corresponding DTFIS file table in your program.

(1) or 1

Example:

Indicates that you have preloaded register 1 with the address of th~ DTFIS file
table.

LABEL ilOPERATIONil OPERAND
10 16

11.5.4. Processing an ISAM File Randomly

You can retrieve individual logical records in random order for processing and updating.
The record to be retrieved from the file is designated by its key or address and, iri the case
of an updating operation, is written back into the file.

You indicate the random retrieval (and updating) file processing function in the DTFIS
macroinstruction by specifying IOROUT=RETRVE (or IOROUT=ADDRTR if new record
insertions are also to be performed), and TYPEFLE=RANDOM (or)"YPEFLE=RANSEQ if
sequential processing functions are also to be performed).

The following imperative macroinstructions are used in the random processing of an ISAM
me: READ, ID; READ, KEY; UPDT; WRITE, KEY; and WAITF.

UP-8068 Rev. 4

FfE,AD, ID
READ, KEY

SPERRY UNIVAC OS/3'
BASIC•DATA MANAGEMENT

11.5.4.1. Retrieving a Record (READ, ID and READ, KEY)

Function:

The HEAD macroinstruction initiates the retrieval of a single logical record from an
ISAM file. Before issuing the instruction, you must have stored the key.or the address
of the record to be retrieved in the niain storage area equated to the KEYARG
keywora parameter 'of the DTFIS dedarative macroinstruction.

For indexed files, data management uses the argument for an indexed search and
retrieval of a record with a matching key. ASAM files treat the argument as a relative
address and retrieve the block and record. If a work area has been specified in the
DTFIS macroinstruction, the logical record is transferred to the work area designated.
If the IOREG keyword parameter is used, the address of the first character of the
logical record is placed in the general register specified by IOREG.

To ensure that the retrieval operation has been completed, you must execute a WAITF
macroinstruction before attempting to access the logical record retrieved.

Format:

LABEL ~OPERATION~ OPERAND

[name]

{
filename} , {ID ·}
(1) KEY
1

READ

Positionai Parameter i:

filename
Is the label of the corresponding DTFIS file table in your prog·ram.

(1) or 1
Indicates that you have preloaded register 1 with the addres of ,:the DTFIS file
table.

P9sitional Parameter 2:

ID
Indicates that random retrieval by location is performed.

KEY.
Indicates that random retrieval by key is performed.

UP-8068 Rev. 4 ·

Examples:

LABEL .60PERATION.6

SPERRY UNIVAC OS/3
BASIC.DATA MANAGEMENT

OPERAND
10 16

Programming Considerations:

11-37

When control is returned to you after execution of the WAITF macroinstruction, the
logical record associated with the argument in the area specified by KEYARG is
available in either the work area or the 1/0 area, depending upon the DTFIS
macroinstruction specifications. If the record is available in the 1/0 area, the register
specified by the IOREG keyword parameter contains the address of the first character
of the logical record. The disk address of the physical record is available at the
address EMPlMSTG in the DTFIS file table. Indications of any exceptional (status or
error) conditions are available at EMPlMSTC.

The dummy record containing an all-zero key and inserted by data management at file
start is not available for you to retrieve. If you issue the READ, ID macro with the
address of the dummy specified in the KEYARG field (11.4.9), data management sets
the invalid ID error flag in filenameC and issues error message DM24 (INVALID
REQUEST (ID)-OUTSIDE FILE LIMITS). If you issue the READ, KEY macro with a key
of all binary O's specified in the KEYARG field, data management sets the record not
found flag in filenameC and issues error message DM31 (RECORD NOT FOUND FOR
RANDOM FUNCTION). In either case, control transfers to your ERROR routine if you
have specified one; otherwise, errors return to you inline. Refer to Appendix B.

UP-8068 Rev. 4

WRITE, KEY

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.4.2. Updating a Record (WRITE, KEY)

Function:

11-38

The WRITE,KEY macroinstruction initiates rewriting (updating) of the last record
retrieved with a READ macroinstruction. You must not alter the key field or the record
l~ngth field (for variable records) in any way.

Format:

LABEL 60PERATION 6 OPERAND

[name] WRITE

{

filename}
(1)
1

,KEY

Positional Parameter 1:

filename .
Is the label of the corresponding DTFIS file table in your program.

(1) dr 1
Indicates that you have preloaded register 1 with address of the DTFIS file table.

Positional Parameter 2:

KEY

Example:

Indicates that the last record retrieved by a READ,KEY or READ,ID
macroinstruction is to be rewritten in the file.

LABEL 60PERATION6 OPERAND
10 16

Ul"""-tsUOts Hev. A-

Programming Considerations:

~Pl::Hl::{Y UNIVAC OS~3
BASIC DATA MANAGEMENT

11-39

In response to a WRITE, KEY macroinstruction, the updated logical record from the
work area is moved to the correct location in the 1/0 area, and the block is rewritten.
If the record is updated in the 1/0 area through the use of the IOREG keyword
parameter, no move is required since the record is already in its correct location.

You must use a WAITF macroinstruction following the WRITE macroinstruction to
ensure completion of the rewrite function. When control returns to you after the
executionof your WAITF macroinstru~tion, the logical reGord last retrieved by a READ,
Kl;Y or READ, lP: rnacroinstruction, .· <lS we.II as the block. that contains it, will have
been rewritten ~nto your disk file. Any indications of exceptional conditions (error or
status) detected duffng. the wri.te and wait operations .(:)re available to you at address
EMPLMSTC in the DTFIS file table. · .. '. . .

) . ' . '- \ ;

If you have tagged the record ·tor 'dkletio.i:i, according to your own conventions, you
may increment the 2-byte tagged-for-deletion field at address EMPLMSTT in the
DTFIS file table either before or after the rewrite operation. This count is available for
the life of the file to help you decide when file reorganization is beneficial.

UP-8068 Rev. 4

UPDT

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.4.3. Updating Last Record Retrieved (UPDT)

Function:

ll-4U

You issue the UPDT imperative macro (which is exa.ctly equivale.r:it to the WRITE, KEY
macro for updating randomly processed files).to rewrite to its original 9isk location in
an ISAM or ASAM file the' updated logical ·record last ret.rieveq by a READ,ID or
READ,KEY macroinstruction. You do not use the UP[>T macro. unless. you have
updated the record; in updating, you must neither alter the key nor change the length
of the record. Like the WRITE, KEY macro, the U PDT macro must be followed by a
WAITF macro before you issu~ another function to the file.

Format:

LABEL b. OPERATION b. OPERAND

[name] UPDT

{

filename}
(1)
1

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS declarative macro in your program.

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

11.5.5. Processing an ISAM File Sequentially

You may also retrieve and update logical records sequentially. The first record to be
retrieved may be designated by the beginning of the file, by a relative record disk address,
by a specified key, or by any key greater than or equal to a specified value. The SETL
macroinstruction specifies which kind of starting point is desired. Individual records are
then retrieved in sequence by the GET macroinstruction. Where an updating operation is
to be performed, the individual records are rewritten into the file by means of the PUT
macroi nstruction.

You indicate the sequential retrieval (and updating) file processing function in the DTFIS
declarative macro by equating the IOROUT keyword parameter to RETRVE (or to ADDRTR if
new record insertions are also to be performed), and the TYPEFLE keyword parameter to
SEQNTL (or to RANSEQ if random processing functions are also to be performed).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-41

To terminate a retrieval sequence, you issue an ESETL macroinstruction. This ensures that
logical records committed to output by the PUT macroinstruction are written onto the disk.
After the ESETL macroinstruction has been executed, another retrieval sequence may be
initiated by executing a SETL macroinstruction. Also, if you have specified
TYPEFLE=RANSEQ in the DTFIS declarative macro, the READ,KEY; READ,ID; and
WRITE,KEY macroinstructions may be issued, once you have terminated the sequential
mode.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-42

SETL

11.5.5.1. Initializing a Retrieval Sequence (SETL)

Function:

The SETL macroinstruction initializes a retrieval sequence. It specifies the file from
which the records are to be retrieved and the point at which the retrieval is to start.
For the starting point, the SETL macroinstruction can select the beginning of the file
or other file locations. When control is returned to you from the SETL
macroinstruction, the retrieval sequence may start.

Format:

LABEL LlOPERATION Ll OPERAND

[name]

{

filename} ,
(1)
1 l BOF l !3oKEY

KEY

SETL

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS file table in your program.

(1} or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

Positional Parameter 2:

BOF
Indicates that the retrieval sequence is to begin with the first logical record of
the file.

GKEY

ID

Indicates that the retrieval sequence is to start with the first logical record whose
key is greater than or equal to the value in the area equated to the KEYARG
keyword parameter of the applicable DTFIS macroinstruction. Used only for
indexed files.

Indicates that the retrieval sequence begins at the location given in the KEYARG
keyword parameter in the applicable DTFIS macroinstruction.

UP-8068 Rev. 4

KEY

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-43

Indicates that the area equated to the KEYARG keyword parameter in the
applicable DTFIS macroinstruction holds the key of the first logical record to be
retrieved. Used only for indexed files.

Examples:

LABEL .6.0PERATION.6. OPERAND
10 16

Programming Considerations:

When your file is an ASAM file, the KEY and GKEY positional parameters of the SETL
macroinstruction should not be used.

The dummy record inserted by ISAM at file start, whose key is all binary O's, is not
available for yol;J to retrieve. If you . issue the SETL,BOF macro, or issue the
SETL,GKEY imperative macro with an all-zero key specified in the KEYARG field,
ISAM prepares to give you the first record after the dummy, and no error processing
results.

On the other hand, if you issue the SETL,KEY macro with a search key of all binary
O's specified, data management sets the record not found error flag in filenameC and t
issues error message DM3l (RECORD NOT FOUND FOR RANDOM FUNCTION). If you
issue the SETL,GKEY macro and the search key specified is greater than the highest
key in the file, DM32 (RECORD NOT FOUND FOR SEQUENTIAL FUNCTION) is issued.
If you issue the SETL,ID macro with the address of the dummy record specified as a t
search argument, data management sets the invalid ID error flag and issues error
message DM24 ,{INVALID REQUEST (ID)-OUTSIDE FILE LIMITS). Control is
transferrad in either case to your ERROR routine if you have specified one; otherwise,
to your program inline. Refer to Appendix 8.

UP-8068 Rev. 4

GET

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.5.2. Retrieving Next Logical Record (GET)

Function:

11-44

The GET macroinstruction retrieves the next logical record in sequence. It must be
part of a valid retrieval sequence initiated by a SETL macroinstruction. If the block
containing the next logical record is not already in main storage, the GET instruction
reads it into the 1/0 area designated by the DTFIS macroinstruction. The DTF
parameters you specify indicate preference for one of the following two modes of
handling the logical record:

• By omitting the WORKS and IOREG keyword parameters, you choose to specify
the work area that is to receive the logical record with every GET
macroi nstruction.

• When you specify the WORKS and IOREG keyword parameters, you choose to
process the record in the 1/0 buffer area. The value specified in the IOREG
keyword parameter is the number of the general register that points to the
record.

If the GET instruction requires the reading of a new block, and if a PUT
macroinstruction was executed for any logical record in the previous block, then the
previous block, as updated, is written back onto the disk before the new block is read.

Format:

LABEL L'\OPERATION L\ OPERAND

[name]

{
filename}
(1)
1

GET

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS file table in your program.

(1) or 1
Indicates that you have preloaded register 1 with the address of the DTFIS file
table.

UP-8068 Rev. 4

Positional Parameter 2:

work name

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11-45

Is the label of the work area into which the record is to be transferred.

(0) or 0
Indicates that register 0 has been preloaded with the address of the work area
into which the record is to be transferred.

Positional parameter 2 is. not required if the WORKS keyword of the DTFIS declarative
macro was equated to NO.

Examples:

LABEL .6.0PERATION.6. OPERAND
10 16

/.t--"--___.__,.__.____.__.~-+--+~'-1-.!-L--'-+-4'!=-.JLL..!.:~~__wµ~~~~_J__.l__J,__i_L_L_.....J._JL_L__J___l_.l_._L_l.__J___L__L_

~~_L....,L__JL-...1...-1-~~~c.U,-l___l_-+-~:.__!ll_~lL.!.l..LL!..l._JL--L._1_...L...J_J__L_.L_l_L__l_L_l_L__L_L-1.__L__l_L___L_LJ_j__

1. The next logical record of EMPLSMST is transferred into the work area labeled
EMRCD. Any abnormal conditions are indicated by the bit settings in addressable
field at location EMPLMSTC. The disk address from which the logical record was
transferred is available to you in the addressable field at location ,EMPLMSTG.

2. The register equated to the IOREG keyword parameter (for example, register 4)
holds the address of the first character of the logical record. Addressable fields
EMPLMSTC and EMPLMSTG have the same significance as ·in example 1.

UP-8068 Rev. 4

PUT

SPERRY UNIVAC .OS/3
BASIC DATA MANAGEMENT

11.5.5.3. Updating a Record (PUT)

Function:

11-46

The PUT macroinstruction indicates that the last record retrieved by a GET
macroinstruction has been updated and is to be rewritten on the disk. It must be part
of a valid retrieval sequence initiated by a SETL macroinstruction and must follow a
GET macroinstruction. Updating takes place in a sequential retrieval operation only
through the execution of the PUT macroinstruction. If a record retrieved by a GET
instruction is not updated, there is not need to execute a PUT instructron.

The PUT macroinstruction·sets an indicator in the DTFIS file contra.I ·table to ensure
that a write is done before the present block is abandoned. The next block is not
accessed until all logical records in the present block have beeri processed.

Like the GET macroinstruction, the PUT macroinstruction has two forms: the form
that uses a work area and the form that uses an 1/0 area. If the DTFIS
macroinstruction has specified use of a work area,· then the ·PUT macroinstruction
must specify the address· of that work area from .which an updated record will be
transferred to: the 1/0 area. This may be the same area specified· in the preceding
GET macroinstruction, or it may be a different area. Under no circumstances may the
original record length be changed during update operations, nor may you alter the
keyfield of the updated record.

If you :chave equated the WORKS keyword·parameters of your DTFIS to NO, then you
must also select a general register to be the current record pointer by specifying the
IOREG keyword, and you will supply the address of the logical record in this register
when you execute the previous GET macroinstruction. In this event, data
management assumes that you udpated the record in the 1/0 area.

Format:

LABEL /).OPERATION /). OPERAND

[name] PUT

UP-8068 Rev. 4

Positional Parameter 1:

filename

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Is the label of the corresponding DTFIS file table in your program.

(1) or 1

11-47

Indicates that you have preloaded register 1 with the address of the DTFIS
macroi nstruction.

Ppsitional Parameter 2:

workname
Is the label of the work area from which the record is to be tra,nsferred.

(0) or 0
Indicates that you have preloaded register 0 with the address of the work area
from which the record is to be transferred.

Positional p'arameter 2 is not required if the WORKS keyword of the DTFIS declarative
macro was equated to NO.

Examples:

LABEL i10PERATIONL'l OPERAND
10 16

/. (O)
1--'--'-....L-'--'--'---'-1t--+!~_._.__,_.__-f-.f=-l'--1.L-"""!.-'----!L=..L.:.-'-'J--~~_,_'--L-1-..L_JL--L--'--L-.l-L_.l_.l-l_L-L-.L__J__L.....J___~

z.l--'-_.__.__i--L-L---'-1~'-'=...L.:.-l-'---f--+=-''-=--=~=.i...:_,_.1....-L._.__,_'--L-L-..J__L--L-_._-L-.l_._--L--L-L--1--L-.L__J__L.....J___~

1. The logical record last retrieved from EMPLMST is replaced by a record in the
work area whose address is specified in register 0. An indicator in the DTFIS file
control table is set to initiate rewriting of the block before the next record is read
into the 1/0 area.

2. The logical record, whose address was suppned in the register speCified by the
IOREG keyword :parameter when the preceding GET macroinstruction was
executed, is assumed to have been 'l1pdatect

UP-8068 Rev. 4

ESETL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

11.5.5.4. Terminating a Retrieval Sequence (ESETL)

Function:

11-48

The ESETL macroinstruction terminates a retrieval sequence initiated by a SETL
macroinstruction. If there are any updated logical records that have not yet been
rewritten, they are rewritten at this time. After the ESETL instruction has been
executed, another retrieval sequence may be initiated by means of a SETL instruction.

Format:

LABEL /::-.OPERATION/::-:. OPERAND

[name] ESE TL

{

filename}
(1)
1

Positional Parameter 1:

filename
Is the label of the corresponding DTFIS file table.

(1) or 1
Indicates that you have preloaded the address of the DTFIS file table into register
1.

Examples:

LABEL /::-.OPERATION/::-. OPERAND
10 16

UP-8068 Rev. 4 SPERRY. UNIVAC OS/3
BASIC. DATA MANAGEMENT

11.6. ERROR AND EXCEPTION HANDLING

11.6.1. FilenameC

11-49

Whether OS/3 data management detects certain errors or exceptions to file-processing
performance, or it ascertains that the processing you requested was carried out exactly as
specified, it makes appropriate entries in a 4-byte, full-word-aligned addressable field of
the DTFIS. file table, designated filenameC. You address this field by concatenating the
character "C" to your 7-character logical file name and may use the BAL test-under-mask
(TM) instruction to ascertain its contents.

Each of the 32 bits in the 4-byte field filenameC has its own significance as a status or
error flag. It is your responsibility to provide the coding for testing the bits of filenameC
and for taking action appropriate to the condition reported. If you have provided an
error /exception handling routine, data management returns control to this routine in all
events other than successful, unexceptional performance of the requested function. (In the
absence of such a routine, control invariably returns to you inline.) You can avoid the need
to check filenameC at the inline return points by including the necessary coding in your
error routine. Table B-3 in Appendix B gives the meaning. of the' bits in filenameC that
are set by OS/3 ISAM for you.

11.6.2. Other Addressable Fields of the DTFIS File Table

The OS/3 ISAM· imperative macros also provide other information to you, in different
fields of the DTFIS filettable. Most of these actions have been discussed in the previous
paragraphs describing these imperatives; Table 11 _;4 summarizes the information
provided in these fiel'ds and indicates the length of each field and whether it is half-word­
aligned or full-word-aligned. The individual fields. are addressed by concatenating the
character in the left-hand column of the table to your 7-character file name.

Table 11-4. Summary of Filename-Addressable Fields in DTF/S File Table (Part 1 of 2)

Field
Addressable Content Alignment Length, in Bytes

by Suffix
to Filename

A Number of cylinders with full overflow area H 2
-'-;;.. .

c Error and Exception Conditions - see Appendix B F 4

G Relative disc address from which the last record u 5
was retrieved

H Relative disc address to whjch. the last record was u 5
written

0 Total number of overflow records H 2

p Total number of prime data records u 3

UP-8068 Rev. 4 SPERRY UNIVAC OSY3
BASIC DATA MANAGEMENT .

11-50

Table 11-4. Summary of Filename-Addressable Fields in DTFIS File Table (Part 2 of2)

Field
Addressable Content
by Suffix

to Filename

R Number of overflow records retrieved that were not
first in the chain ·. ·cc.

s Number of bytes required to hold top index in main storage

7

T Number of records your program has tagged for deletion

LEGEND:

H Half-word aligned
F Full-word aligned
U Unaligned

1·1.7. PROGRAMMING EXAMPLE

11.7.1. Sample ISAM File Load Program

Alignment Length, in Bytes

H 2

i.

H 2

H 2

The following coding forms contain a sample program for the initial load of an indexed
ISAM file, including the OS/3 job control statements you need to assemble and execute it.
The logical name of the .file in the example is. '1AFILE." A note may be in order about the
boundary alignment ofthe storage areas and buffers shown in the example (REGS, WKSP,
INDBUF, and DATABUF). The register save area, .as you recall from 11.4.14, must be full­
word.,.aligned aligned, and ·the others need to, be aligned on half-word boundaries ...

That they are so aligned in the example, without the usual full- or half word constants
needing to be defined to skip bytes ahead of them and force alignment, is the result of
special circumstances:

11 The first of these areas (REGS) immediately follows the DTF.

111 The OS/3 DTF generator automatically ensure·s that the DTF file table is. full-word­
aligned.

11 The length of the DTF file table generated when you. have specified IOROUT=LOAD is
332 bytes (11.3).

This is enough to ensure that REGS is full-word aligned; its 72-byte ,length and the even
lengths of the other areas, in turn, cause them to be properly aligned. In the real world, of
course, you will seldom find circumstances so neat.

UP-8068 Rev. 4

Example:

LABEL l:IOPERATIONfi
10 16

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

OPERAND

~~J;;LiLll::.L_i_H~L-L-LJri-'~~M!l__,__ -''-'--'-L-<--~1--LL-L~· -~81l..J=~BQ1 .. J.Afdl_&N~ _ 1

i.....:::llLl<:iJ.<!!WlJCL-~"1-.LL_l__ .+-1-""""UMJ'--'- -'--'--'--"'--'---C~L.L...LJ._~ L~l.1EJ~tll~IBDL~e.oi_

i-u-~"-'--'--'--'-+-~..LL-L.4+-1--'-'--'-L-L.J--L-'-l_J__JLJ__,L_,J_-L-J_~_j~ -~~_seip,iCJ

11-51

UP-8068 Rev. 4

12.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-1

12. IRAM Formats and
File Conventions

The indexed random access m.ethod (IRAM), a fifth access method in OS/3 for handling
disk files, is available for programs written in RPG II language. RPG II programs compiled
in the IBM System/3 mode automatically access all disk data files via IRAM; however,
RPG II programs compiled in OS/3 native mode may advantageously specify the use of
IRAM instead of other OS/3 disk access methods.

The main advantage in using IRAM in RPG II is the inherent saving of main storage. Only
one of two IRAM processing modules is required: the smaller module (about 1350 bytes)
provides random and sequential functions for processing nonindexed IRAM files. The
larger module (about 2050 bytes) provides the same functions· and also keyed functions for
random and sequential processing of IRAM files created with indexes.

The functionality provided by IRAM is equivalent to that provided by OS/3 'ISAM and
ASAM, and by the OS/3 nonindexed access disk methods, SAM and DAM (relative record
addressing); however, these modules are considerably larger than those of IRAM. It is also
equivalent to that provided for sequential, direct, and indexed files processed with RPG II
programs under IBM System/3. IRAM files may reside on any of the disk subsystems used
with OS/3. An IHAM file may occupy from one to eight disk packs, which must be of the
same type.

The IRAM processor can access only disk files it has created or files created by the
MIRAM processor that have IRAM characteristics. It cannot access disk files,that have
been created by the OS/3 ISAM, ASAM, DAM, or SAM access methods, nor can IRAM
files be processed by these access methods. IRAM files can be processed using the OS/3
independent sort/merge program, however, and by the data utilities program. RPG II users
convertir:ig to DS/3 from IBM System/3, moreover, may. transcribe existing data files to
IRAM format by using procedures detailed in the System/3 to OS/3 transition user
guide/programmer reference, UP'-8379 (current version).

12.1.1. IRAM Concepts

A number of features and concepts distinguish IRAM from other disk access methods:

• Data records in IRAM files .are of uniform, fixed s.ize and may span physical bloc!<s
and sectors, tracks, and even cylinders as required. They may extend from one
volume onto another (unless the file is created for processing only a single volume at
a time).

UP-8068 Rev. 4 SP6.RRY UNIVAC 0$/3
BASIC DATA MANAGEMENT

12-2

1111 Data records are written on disk compactly, as a continuous string of bytes, without
any space in the string being used for system control or overhead. The data string is
enlarged only by appending records.

1111 The string 9f data reco.rds is always usable in sequential and direct access modes,
with direet access being made by a file-relative record number. Moreover, the data
can be specified to be indexed by key; this causes IRAM to build a suitable index
structure that resides in a second partition, separately from the data.

1111 An indexed IRAM file can be referenced by the additional modes of random-by-key
and sequential-by-key.

11 Indexed IRAM files, multivolume or single-volume, may be created by means of an
orderly load (records submitted in ascending order of keys) or a disorderly load (record
keys in no particular order), and they may be extended by appending records in either
·manner. If orderly load or- extend is specified, automatic sequence checking is
performed and res·ults in immediate rejection of any record with an out-of-sequence
key. ·

11 Duplicate keys are not permitted; a record with a key duplicating one already in the
file is rejected immediately. IRAM does not sort the index at the completion of a
disorderly 1load, but maintains the index ·current on a<record-by-record basis.

11 When a new record has been added· to an indexed or nonindexed IRAM file, it is
immedi;ately available for retrieval.

1111 Multivolume IRAM files may be created for processing with either one volume online
at a time,, or with all volumes online. They must be processed in the same manner as
created.

1111 All programs accessing an IRAM file need not use the same data buffer size for 1/0
as was used to create the file. However, all those accessing an indexed IRAM file
must use the same indeK b~ffer size (unless they are not issuing keyed functions).

1111 IRAM's restrictions are the following:

All records ·are fixed-length.

Duplicate k:eys .are rejected in indexed files.

The maximum.key length is 80 .bytes (RPG II allows only 29 bytes, however). No
byte of a record key may contain the hexadecimal value 'FF.

The minimum size for the index buffer is 256 bytes.

No IRAM function is provided for deleting records - logical deletion and physical
removal are responsibilities of the user's programs.

The following subsections describe the IRAM record and file formats and conventions and
tHe processing of sequential,· direct, and indexed IRAM files.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12.2. IRAM FILE CONVENTIONS AND FORMATS

12-3

A nonindexed IRAM file contains only one partition, the data partition, which IRAM defines
to the system access technique (SAT) as containing 256-byte physical blocks, unkeyed. An
indexed file, on the other hand, contains yet a second partition, the index partition,
spec,ified to SAT as containing 256-byte keyed. blocks. The data partition of an indexed
IRAM file is laid out exactly like that in, a nonindexed file; it precedes the index partition,
which begins on a separate cylinder from if.

12.2.1. The Data Partition

The data partition, cylinder aligned, consists of a single, compact string of data records,
spanning the sector or physical block boundaries as necessitated by their uniform, fixed
lengths. Records may be keyed or unkeyed; they contain no bytes reserved for control
overload, nor are there any such nondata bytes in the string. Figure 12-1 shows the
appearance of IRAM data records and lists the rules for their structure.

When these data records are stored in an IRAM file, the records are loaded consecutively,
arranged in the same order as you originally presented them to the IRAM processor.
Although the records are stored in 256-byte sectors on your fixed-sector disk packs, and in
256-byte physical blocks on variable-sector disks, the data records may span these
physical boundaries. Record-length and sector-length need not coincide, as shown in
Figure 12-2. Your data records are also independent of track boundaries, cylinder
boundaries, and even volume boundaries (except when a multivolume file is created for
single-volume processing). The data partition of your IRAM file is a long continuous string
of data records. When new records are added, they are appended to the string, that is,
added at the end as a continuation of the original string of records.

12.2.2. Entries in the Index Partition

As it loads your keyed records into the data partition of an indexed file, IRAM extracts the
k~y from each .record and constructs a 3-byte pointer from ,the file.,relative record number
of the position to which the record is written. From these it forms an index entry for each
record, and stores the entry in the index partition. The index entry for' each record is then
equal to the specified key length' plus three bytes; it is stored in what is called the fine
level of the IRAM index.

The fine level of index is not formatted for' hardware search, unlike the other levels of
index described in subsequent paragraphs. It is treated as a chain of multisector blocks
(each sector being 256 bytes long, as previously stated). Initially, each fine-level index
block is only partly filled (to just beyond the three-quarter level) with index entries so as to
permit later insertion of new entries, as required. All entries ·in the fine-level index are
maintained in ascending key order. Figure 12-3 represents a fine;_level index block
comprising three 256-byte sectors.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-4

Without Key

data

R

D :I
Key at Head of Record

I
key data

I :
K D

R : I

Key Internal to Record

data

I
key

I
data

L .I. . I. D K

R

D :I
LEGEND:

K

L

D

R

Record key. All keys in a keyed file must have the same length; each ~record in a keyed file must have one
unique key; ang the starting location of the key must be the same in each record. You specify the length of the
key, which may range from a minimum length of 3 bytes to a maximum of 80. (The maximum key length for
RPG II records is 29 bytes.) No byte of any key may contain the hexadecimal value 'FF'.

Key location. The starting location of the key must be the same in each record. You may specify the number of
bytes of data preceding the key. If you default, IRAM assumes the key starts in the first byte of the record.

Data portion of your logical record

Length of logical record (key plus data). You specify this length, measured in bytes. All records in an IRAM file
must have the same length.

Figure 12-1. /RAM Data Records with and without Keys

UP-8068 Rev. 4

SECTOR 1

I
2

I I

SECTOR 1

I I

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

EXAMPLE1

SECTOR 2

2 3

EXAMPLE 2

SECTOR 2

I
2

EXAMPLE 3

12-5

SECTOR 3

I I
3

I
4

SECTOR 3

I I
2 3

SECTOR 1 SECTOR 2 SECTOR 3

1

5

1

I I
2

I
3

1
4

1 H 5

I
6

I
7

1
8

11
8

1
9

I 1° 1
11 H

NOTES:

All sectors equal 256 bytes.
Records in example 1 equal approximately 190 bytes each.
Records in example 2 equal approximately 300 bytes each.
Records in e?Carnple 3 equal approximately 70 bytes each.

Figure 12-2. /RAM Data Records Spanning Disk Sectors on a Fixed Sector Disk

FLAG BYTE

CURRENT NUMBER OF ACTIVE BYTES~

~

CHAIN TO NEXT
FINE BLOCK

~
CONTROL AREA }
IS LAST SIX · ·. ~
BYTES OF INDEX
BLOCK

INACTIVE AREA

........
........

.........
........

ACTIVE ENTR.IES_......_

\
\

------------~~---------------~
~-_

I I 11 11 J I I I

CONTROL AREA

Figure 12-3. Typical Fine-level Index Block of Three Sectors

\
\

\

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-'-6

One other hierarchic level of index is always created: the coarse-level index. This is
hardware searchable and comprises 256-byte blocks, each containing a variable number of
entries similar tO' those at the fine' level. One difference, however, is that the 3-byte
pointer in each coarse-level entry does not represent the file..:relative number of a record
in the data partition; it points to another index block at a lower level - either a fine-level
index block, or a block in what is called the mid-level index. Another difference is that,
instead of containing a 6-byte control area, 'each coarse-level block uses its final byte to
indicate the number of bytes in the block that represent active entries. The index entries in
a coarse-level block are filed in descending order of key values, the high key of the block
being the first encountered by the hardware search. Mid-level index blocks have the same
construction as those in the coarse level; refer to Figure 12-4. The mid-level index is
created by IRAM as required; the process is described in the following subsection.

ACTIVE ENTRIES INACTIVE AREA' ------------------.J..l __________ ~

HIGH
KEY

Figure 12-4. Typical Coarse- or Mid-level Index Sector

12.2.3. Structure of IRAM Index

FINAL
BYTE

~--OF

SECTOR

When the IRAM processor builds an index for your file., it creates at least two levels of
index: a fine level and a coarse level. If your file is very large, one or more mid-levels of
index are created as they are neefied.

The fine level of index consists of an entry for every record in the data partition of your
file. The fine-level entries are filed in ascending key order until an index block (256 bytes)
is filled. At this time, one coarse-level entry is made that points to the high key entry in
that filled fine-level block. As each fine-level block is· filled, another coarse-level entry is
made. This patt~rr] is continued until all your records are on file.

The coarse-level index is arbitrarily allocated by IRAM; its size is disk-dependent. On the
fixed-sector 8415, 8416, and 8418 disks, IRAM allocates two tracks; on the variable-sector
8411, 84:14, 8424, 8425, 8430, and 8433 disks,' it allocates four. If the coarse-level index
is filled before al(your records are on file, a mid-level index is created. The IRAM
processor allocates a new track, designates it as a mid-level index, and copies three­
quarters of the entries from the filled coarse-level track onto this mid-level track. The
IRAM processor creates a new entry in the coarse-level index that points to the high key
of a block in the mid-level. In thts manner, three-quarters of a track on the coarse-level
index are replaced by a single entry.

As new fine-level entries are recorded, one entry is made in the coarse-level index for
each filled index block in the fine level, just as before. When the coarse-level track is filled
again, another mid-level track is allocated, three-quarters of the coarse-level entries on

UP-8068 Rev .. 4 SPERRY·UNIVAC OS/3
BASIC DATA MANAGEMENT

12,-7

that track are moved into, ;the mid-level index: track,;and .one new coarse-level ·entry is
.cr:eated to point to:the high key ·of the second track of the mid-level index. This. process
can be repeated until e.ach entry in the coarse-level index points to the high key of a track
in the mid-level index. Figure 12-5 illustrates the structure of an IRAM index.

COARSE LEVEL

MID-LEVEL
(IF NECESSARY)

~---- ------- --- -- - - ------

FINE LEVEL

Figure 12-5. /RAM Index Partition

4 TRACKS
(2TRA~KS ON
8419 AND 8418 DISCS)

ADD 1 TRACK AT
A Tl ME; AS NEEDED. ,

ONE ENTRY FOR
EVERY RECORD IN
DATA PARTITION

At this point, the addition of new records would cause another mid-level index to be
created between the filled coarse-level index and the old mid-level index. A search for a
specific data record by key in a 4-level index would proceed as follows (refer to Figure
12-6):

• the sea.rch begins in the coarse-level index;

11 a hit is made that points to the new mid-level index;

II the new mid-level is Searched;

11 a hit is made that points to the .qld, mid-level index;

11 the old mid-level is search;ed;

11 a hit is m9de .thaf points to the fin~-level index;

11 the fine-level. is searched;

11 a hit is made which··points to the d
1
ata record in question; and

.11 . the data record is retrieved.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-8

It is not likely that your file would be large enough to require more than three index levels,
but IRAM can create an index for any size file up to the physical limitation of eight disk
devices.

SEARCH BEGINS HERE

FIGURATIVE
REPRESENTATION
OF INDEX
PARTITION

INDIVIDUAL DATA f3ECORDS

DATA PARTITION

' ' ' '

COARSE-LEVEL INDEX

' '
NEW Ml D-LEVEL INDEX

OLD Ml D-LEVEL INDEX

Figure 12-6. Typical Search of 4-Level /RAM Index

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12.2.4. Estimating Disk Space Required for an Indexed IRAM File

12-9

To estimate the number of cylinders for your primary allocation of disk space to an indexed
IRAM file, follow the straightforward procedure outlined herein. The result is a good first­
level approximation for your use in specifying the EXT statement in the job control device
assignment set that is used in allocating disk space for an indexed IRAM file to be created
by your program. The same calculations may also be used for specifying the number of
cylinders to be allocated for an indexed IRA:M file to be generated from another file by the
OS/3 data utility program (as in the task of transcribing your data files in the System/3-
to-OS/3 transition process).

The number of cylinders required for an indexed IRAM file includes those occupied by the
data partition and the index partition; the latter comprises the fine-level index and the top
levels of index (the coarse-level and the mid-level, if any). Your initial space allocation for
an indexed IRAM file must always be at least two cylinders because the data partition and
the index partition are separate, and each is cylinder-aligned. To obtain the approximate
size of the space the file will occupy, proceed as follows.

First, calculate D, the number of 256-byte sectors required for your data records:

record-length · number-of-records (1)
D

256

Next, calculate B, the number of index blocks required by your fine-level index:

B
_n_u_m_b_e_r-_o_f-_r_e_co_r_d_s_·_(_k_e_yl_e_n_g_th_+_3_)_. (4

3

\

(256. m) - 6 I
(2)

where:

the factor 4/3 is used because the average fine-level index will be 3/4 full. m is the
number of 256-byte sectors in the index buffer. (See 13.2.1.)

Next, calculate F, the number of 256-byte sectors required by your fine-level index:

F = m · B (3)

NOTE:

Over 95 percent of the file allocation is used by the sum of the data requirements (D) and
the fine-level requirements (F). Unless you need a more accurate estimate, skip the
calculations to obtain the number of 256-byte sectors required for the coarse level (T) and
the mid-levels (S) of the index, and do your fina/. calculation as described in step 6 with T
and S set to zero.

Next, do the following calculations to obtain the number of 256-byte sectors required for
the top levels of the index - the coarse-level, T, and the mid-level, S.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-10
Update B

The coarse-level calculation is automatic: IRAM always sets aside two tracks of coarse­
level index for an indexed IRAM file that resides on an 8416 or 8418 fixed-sector disk; it
sets aside four tracks for a file on a variable-sector disk (8411, 8414, 8430, or 8433). The
number of sectors these tracks contain are found in column T of Table. 12-1. If they can
contain enough index entries .to point to all your fine-level index blocks; no mid-level index
is needed.

On the other hand, if the number of fine-level index blocks exceeds what the maximum
coarse-level index can control, IRAM automatically creates one or more tracks of mid-level
index, one at a time, as it finds the need to control the remainder .. You may proceed as
follows to calculate the number of sectors these mid-level index tracks will contain:

• Take {from Table 12-1) the value T, which represents the number of sectors
allocated to the coarse-level index for a file on the type of disk this index is to reside
on, calculate E, the number of index entries that T can contain, and compare this
number to B:

E ==
[

255 J
(keylength+3) . T

(4)

where:

[] implies the integer value only: no remainder.

If E is equal to or greater than B, no mid-level index is required. The value S (the
number of sectors required for the mid-level) in step 6 is set to zero.

• On the other hand, if E is less than 8, a mid-level index will be constructed; proceed
to calculate S, the number of sectors it will contain:

s 8-E (j) (5)

[255 J
keylength · + 3

where:

The factor of 4/3 is used because the average mid-level index Will be 3/ 4 full.

The final calculation of the number of cylinders to allocate to the whole file is represented
by the following formula:

c

where:

c

A

(F + T + S) D (6)

U·N A·N

Is the number of disk cylinders to allocate to the indexed IRAM file.

Is the disk dependent number of 256-byte sectors per track (data partition) from
Table 12-1.

UP-8068 Rev. 4

D

F

T

s

u

N

Example:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Is the number of 256-byte sectors required for the data partition.

Is the number of 256-byte sectors required by the fine-level index.

12-11

Is the disk-dependent number of sectors allocated automatically for the coarse­
level index, from Table 12-1.

Is either zero (when no mid-level index is required), or. the :pumber of mid-level
index sectors required.

Is the disk-dependent number of 256-byte sectors per track, from Table 12-1.

Is the disk-dependent number of tracks per cylinder, from Table 12-1.

Given the following parameters, calculate the number of cylinders to allocate for an indexed
IRAM file residing on an 8416 disk:

Number of records: 77,500

Record length~ 512 bytes

Key length: 28 bytes

Index buffer length: 512 bytes

• D

• B

record-length · number of records
256

512. 77,500
256

155,000 se«::tors for data partition.

number-of-records · (keylength+3) · 4
· ' (256·m)-6 · ,.;: 3

77,500(28+3) . 4
(256·2)-6 3

6331 blocks for fine-level index.

(1)

(2)

.UP-8068 Rev. 4

• F m·B

2 . 6331

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12,662 sectors for fine-level index.

12-12

(3)

• The coarse-level index for an IRAM file on an 8416 disk contains 80 sectors; by
inspection this number can be seen to be too small to avoid tl7le need of a mid-level
index.

• E

• s

• c

[
255 J · T

(keylength+3)

[
255 J . 80

(28+3)

(4)

[8.22] · 80 = 8 · 80 = 640 index entries can be contained by T.

B - E

[255 J
(keylength+3)

6331-640 4
8 3

4
3

949 sectors for mid-level index.

(F + T + S)
U·N

+ D
A·N

(12,662 + 80 + 949)

40. 7

168,691
280

+ 155,000

40. 7

603 cylinders to be allocated for file.

(5)

(6)

12.2.5. Estimating Disk Space Required for a Nonindexed 1,RAM File

To estimate the number of cylinders to be allocated for an IRAM file created without an
index, proceed to calculate D, the number of 256-byte sectors required for your data
records, using formula 1 in the preceding subsection, and divide by the product of A times
N (taken from Table 12-1):

D
C =A· N (7)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

12-13

Table 12-1. Disk-Dependent Factors for Calculating Size of Top-Level Index for an /RAM File

u A T
N

SPERRY UNIVAC (Number of 256-byte (Number of 256-byte (Number of sectors
(Number of tracks

Disk Subsystem sectors per disk track sectors per disk track allocated to course-
per disk cylinder)

for index partition) for data partition) level index)

8416 40 40 80 7

8418 40 40 80 7

8411 10 11 40 10

8414 17 20 68 20

8424 17 20 68 20

8425 17 20 68 20

8430 29 33 116 19

8433 29 33 116 19

UP-8068 Rev. 4 SPERRY UNIVAC 0St3
BASIC DATA MANAGEMENT

13-1

13. Functions and Operations
of IRAM

13.1. PROCESSING NONINDEXED IRAM FILES

Nonindexed IRAM files are created with specific processing requirements in mind~ A
sequential nonindexed file is one in which the physical, consecutive order of records on
disk is of specific significance to.your application, and you· expect to process these records
one after the other. A direct nonindexed file, on the other hand,, is one arra.nged on disk so
as to provide ready access to a specific record without processing any of the records
preceding it. The consecutive, physical order of records in the direct file is usually of less
importance than your ability to access each record at random, independently of any other
record in the file.

A capability that sets IRAM off from other disk access methods, however, is that record
retrieval, update, and other opera.tions on nonindexed files may be performed
consecutively or randomly, regardless of the primary purposes for which files were
c.reated. The .direct file created randomly by relative record number has several special
characteristics that need separate consideration; for this reason, the processing
procedures for the randomly processed and sequentially processed consecutive file are
taken up separately in the following paragraphs.

Nonindexed IRAM files spanning two or more volumes may be created with only one
volume mo.unted at a time, or with all volumes mounted. They must always be processed
in the same way as they were created: only one volume online, or all online.* However, it
is important to realize that the nonindexed multivolurne file intended for single-volume
processing may not be created randomly by relative record number, nor may it be
processed this way. Multivolume files for wh.ich relative record addressing is planned must
have all volumes mounted - whether they are sequentially processed or randomly
processed consecutive files.

All IRAM files may be processed with a randomly-ordered disk file that contains relative
record addresses; this type of file is knoyvn to t.he RPG II programmer as a tag, or
ADDROUT, file, You may create s.uch a file from an IRAM file by means of the ADDROUT
option of the independent OS/3 sort/merge program; this process is documented in the
sort/merge user guide, UP-8342 (current version).

For details of the actual programming specifications you must use for creating and
processing IRAM files in OS/3 using RPG II, refer to the RPG II programmer reference,
UP-8044 (current version).

*The IBM System/3 programmer recognizes the file created to be processed with all volumes mounted as an online
multivolume file; the file created for single-volume processing he recognizes as an off/ine multivolume file.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.1 .1. Processing Sequential I RAM Files

13-2

A sequential file is one organized consecutively, its records being written on the disk in
the physical order in which you provide them to IRAM. They are usually processed
consecutively, one after the other, in the order in which they occur on the disk, and
usually all the records in ttie file are processed. IRAM furnishes you functions for
consecutive processing, but also provides functions for random processing, by relative
record number. The following subsections discuss procedures for creating and extending a
sequential IRAM file; for adding, retrieving, updating, and deleting records; and for
reorganizing a sequential IRAM file.

13.1.1.1. Creating a Sequential IRAM File

You define your IRAM file as an output file to be created in a sequential (consecutive) file
processing mode, and you specify the uniform size of your fixed-length records and the
size of your data buffer (or buffers). You may use two contiguous 110 areas, each half­
word aligned, for double buffering if you desire, but they must have the same length.

To calculate the minimum size that you may specify as data buffer length, use the
following algorithm:

• If record size divides into 256 bytes without remainder, minimum buffer size is 256
bytes.

• If record size is a m·ultip_le of 256 bytes, the .. minimum buffer size equals record size.

• Otherwise, minimum buffer size depends on the sum of record size + 255 bytes. If
the sum is a multiple of 256 bytes, then the minimum buffer size equals this sum. If
not, you must round this sum upward to the next multiple of 256 bytes; this, then, is
the minimum buffer size.

The same algorithm is used for minimum data buffer length calculations if1 creating direct
and indexed IRAM files as well. To specify data buffers larger than the minimum may
enhance your program's performance. Note that subsequent programs processing this file
need not specify the same data buffer size that you use to create the file, but they must, of
course, specify at least the minimum.

After the file is opened, your records are submitted to IRAM, one after the other, until you
have no more records available. IRAM stores them in the· data partition in the order of
submission - this is the consecutive order in which you may process them later. The
relative record number of the last record written is recorded by IRAM in the file control
table and the volume table of contents. Records are stored as a single, compact string of
bytes, without any space in the string unused or devoted to system overhead. IRAM
performs no sequence checking or duplicate record rejection in loading a sequential IRAM
file; these functions, if they are necessary, are up to your programs.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.1.1.2. Extending a Sequential IRAM File

13-3

Once the string of data records has been created, it may be enlarged through IRAM only
by appending new records at the end. IRAM does not provide functions for inserting new
records within the string, nor for adding them at the head of the string. Records may not
be appended during retrieval processing.

The usual method of appending new records to a sequential file is essentially the same as
file creation. Again, the file is defined as an output file for sequential processing, and the
same specifications made as before (except, as previously noted, that this program need
not use data buffers of the same size as the file-creating program used). After the file is
opened, your new records are submitted to IRAM and stored in consecutive order, as in
file creation; all are appended to the data string. This procedure requires you to specify the
EXTEND option in the LFD job control statement for the file.

It is also possible~ in IRAM, to extend a sequential file in random mode - again by
appending each new record to the end of the string. For this manner of enlarging the file,
you redefine it as a chained output file for random (direct) processing, and you define a
field in your program to be used for providing a relative record number for each new
record IRAM is to append. You must also define a record work area in your program (equal
in size to one record length) in which you make each record available to IRAM. When the
file is opened, IRAM automatically initializes the relative record number field to the next
record number available for file extension. You use this for the first record to be appended,
incrementing the field by 1 for each succeeding record before you issue the output
function to append it to the file.

13.1.1.3. Adding Records to a Sequential File

When you have to enlarge a sequential file by inserting new records between existing
records, or by adding them at the head of the string, you must make use of processors
other than IRAM, which has no sequential or random functions for performing these tasks.
Your new records must be sorted into the consecutive sequence in which you expect to
process them, and be provided as an input file (together with your IRAM file). to either the
OS/3 independent sort/merge program or the OS/3 data utilities program. Either of these
processors can be used to create a new sequential IRAM file containing your inserted or
added records in their proper consecutive order. Refer to current versions of the OS/3
sort/merge user guide, UP-8342, or the OS/3 data utilities user guide/programmer
reference, UP-8069, for the details of these procedures.

13: 1.1.4. Retrieving and Updating Records in a Sequential l~AM File

You may retrieve or retrieve-and-update records in an IRAM file either in sequential
(consecutive) order or at random (using relative record number). Recall that if yours is a
multivolume file, however, it must have been created for processing with all volumes
mounted if you are to process it via relative record number (see 13.1). For consecutive
retrieval, define the IRAM file as a nonindexed input file for sequential (consecutive) file
processing mode. For consecutive retrieval-and-update, define the IRAM file as a
nonindexed update file for sequential processing. If your processing is to begin elsewhere

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-4

than at the first record of the file, you must predefine a field in your program where you
must provide the relative record number of the starting point to IRAM by setting a lower
limit for processing before you issue the input function (these actions are not required
when your program is to read all the records). 'Your retrieval may begin at any record
number that is not higher than the current file limit; once this record has been retrieved,
however, the remainder of the records in the file are read automatically in unbroken~
consecutive order, unless you select a second starting point.

You may provide two data buffers if you are only retrieving records without updating, but
you must. prov.ide only one data buffer if you are updating. The lengths of these buffers
must be the sarne, but need not· equal the data buffer size used to create the file.

IRAM provides data records to you in the· data buffer in the same consecutive order in
which it received them at file. creation or extension, and .in the same order that they were
written on the disk. Consecutive retrieval continues until the file is closed or the end of file
is reached; if it is to be terminated by the end-of-file condition, you must have specified
the address of a routine for handling this event: If the relative record number you specified
as the starting poim lies outside the file limit, retrieval does not take place; control is
transferred to an error routine with status flags set to indicate a no-find condition.

Random retrieval by relative record number from a sequential file requires that you define
the file as a chained input file for random processing by relative record number. Your
program defines a field in which you will supply the desired relative record number to
IRAM and moves this number into the field before you issue the input function. If you
request a number that lies outside the current file limit, IRAM transfers control to an error
routine with status flags set to indicate a no-find condition. Random retrieval terminates
when the file is closed.

For random retrieval-with-update from a sequential file, you proceed as for random
retrieval, but you may predefine a ·field in your program as a record work area (of a size
equal to record length) from which you will make the updated record available to IRAM
instead of using the data buffer. (Only one data buffer may be used in· the update mode.)
IRAM will make the retrieval record available to you in this record work area, instead of in
the data buffer, if your program specifies if before you issue the input function. You
retrieve by supplying IRAM with the desired relative record number in the predefined field
of your program before you issue the input function. The output function to write the
changed record back to the file does not require a relative record number and none should
be supplied.

Updating records in any IRAM file may include marking records that have become inactive
with a deletion flag - according to your own conventions. Such records will always be
retrieved; therefore, if your update processing does include the writing of a deletion flag,
then your retrieval programs must include checking for the presence of this flag to
determine whether each record retrieved is to be bypassed or processed.

Records may not be appended during retrieval or retrieval-and-update operations.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.1.1.5. Deleting Records from a Sequential I RAM File

13-5

IRAM does not provide a function for logically deleting records from a file nor for.
physically removing them from the unbroken string of data records. As records .become
inactive or otherwise eligible for removal. from the file, your update programs should mark
them in some way (of your own choosing) so that they can be· recognizedfor bypassing -
and for eventual physical removal when you reorganize the file. A common method for
logically deleting a record is to write a conventional deletion flag in a specific byte of the
record. Because IRAM has no means of checking this flag for you, logically deleted records
will always be retrieved; your programs must check for the presence of the delete code.

13.1.1.6. Reorganizing a Sequential IRAM File

A sequential file may eventually require reorganization. One reason may be to conserve
di.sk space by physically removing records that have been logically deleted from the file;
another may be to reorder the file according to a more convenient physical sequence than
was used to create or extend it.

Two .methods are available to you for reorganizing a sequential file. Either the independent
sort/merge program or the data utilities program will accept your IRAM file a~ input and
resequence the data records, physically deleting records you have tagged. For details on
these processors, refer to the current versions of the sort/merge user .guide, UP-~342,
and the data utilities user guide/programmer reference, UP-8069.

13.1 .2. Processing Direct I RAM Fil~s

A di.rect IRAM file is one organized to allow any record in the file to be retrieved. directly
when the location of the record, in relation to the beginning of the file, is specified. ·The
IRAM proGessor does not search an index or process other records that precede the one to
be retrieved; all records in the file are assigned to specific file~relative positions,
independent of the order in which they are presented to IRAM for writing to the file.

IRAM provides not only functions for direct or random processing but also. functions for
consecutive processing of records in a direct file. The following subsections diskuss
procedures for creating and extending a direct IRAM file; for adding, retrieving, updating,
and dele.ting records; and for reorganizing the file.

13.1.2.1. Creating a Direct IRAM File

When your plans for processing a nonindexed IRAM file call. for each record to l;>e assigned
to a specific disk location, you create a direct file by presenting your records, one by om~,
to the IRAM processor in a work area, and by supplying the file-relative. position to which
each record is to be. written on disfs. This position is not a disk address, but a file-relative
record number that you supply to IRAJYI in a ·predefined field of yo~r program before your
issue each output function to write a· new record to disk. The RPG II programmer knows
this type of file as a chained output file.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

13-6

The relative record number that you assign to each record as it is written out may have
been determined directly from some control field in the new record itself, or it may have
been derived from the record by a conversion. process that you have programmed
separately. Or, it may have been obtained from some other source entirely: a control field
in a record in some other file. In any event, it is entirely possible that a number of the
relative record positions available in the extent you have allocated to this direct IRAM file
will not be occupied by a data record in your initial load. It is also possible, on the other
hand, that your method of obtaining a relative record number may result in your assigning
the same number to two or more records.

When you are creating a direct IRAM file randomly by relative record number, IRAM does
not check for duplicate assignment of relative record numbers, nor does it detect or
prevent two records being loaded into the same position in the file. Later addition of
records or extension of the file may, likewise, result in overwriting record positions already
containing valid records that you do not intend to be "updated" in this backhand way.
Such problems must be dealt with in your programming and in your preparation of the file
before you load.

IRAM preformats the extents of direct files residing on the variable-sector 8411, 8414,
8424, 8425, 8430, and 8433 disk subsystems, initializing or "dummying" all relative
record positions to binary O; it does not do so, however, for files on the fixed-sector 8415,
8416, and 8418 disks. Record positions on the latter disks will contain spurious data (from
your point of view) resulting from previous uses of the disk, or residual patterns from prior
disk prep or testing routines. Before loading a direct IRAM file onto an 8415, 8416, or
8418 fixed-sector disk, you should therefore take care of dummying with a file preparation
program of your own: one that writes into all record positions the null pattern (blanks,
zeros, or whatever you determine) that your subsequent load program will recognize as
virgin territory. In this way, the algorithm in your load program for detecting and
preventing the collision of synonyms will be more likely to work as you intend.

In calculating the minimum size of your data buffers, follow the same procedure as for a
sequential file, described in 13 .. 1.1.1.

13.1.2.2. Extending a Direct IRAM File

You enlarge or extend a direct IRAM file, which has been created randomly by relative
record number, in the same way as you created it. That is, provide each new record to
IRAM, singly in a work area or 1/0 area, and supply the relative record number for the
record before you issue the output function to write it, placing this number in a predefined
field in your program.

When a direct IRAM file is opened for extension in random mode, IRAM automatically
initializes the predefined relative record number field in your program by moving into it the
next available record number. This number is the next relative record position where IRAM
expects to write the first data record to be appended to the string of records in the file~ It
has recorded this record position in the volume table of contents (VTOC) of the file ana in
the file control table as an end-of:'.'data address.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-7

You must use this IRAM.,.supplied relative record number with the first new record you add
to the file, and each successive relative. record number you provide (by incrementing the
content of this fie.Id) must be 1 higher than the current highest numbered record.
Therefore, if you are enlarging your file by adding data records by relative record numbers
that you are calculating or obtaining by algorithm, your file extension program should
provide a dummy record for each consecutive. relative record position to which .a record
containing actual data is not to be written. (An alternative, of course, is to: extend your
direct file vyith all dummied records, to. be updated later at random by. actual data records
whose relative record numbers you provide by the same process ~sed iri file creation.) In
either ca~e, the dummying is your own convention, recognized by your programs - not by
IRAM.

Records may not be appended during retrieval operations.

13.1.2.3. Adding Records to a Direct IRAM File

In the sense of appending new records to the end of the string of data records in a direct
IRAM file, adding records extends the file; this process is described in the preceding
paragraph. In the quite different sense of inserting. new data records into the exi?ting data
string, however, adding new records by relative record .number is tantamount to updating.
without prior retrieval. However, an important difference .between this way of adding
records and the up<;fate procedures described in the following paragraph is that your direct
file must not be defined as an update file.

To insert new records by relative record number without first retrieving the recqrd at the
specified file-relative position, you must deine your file as an output file. To add a new
data record to an output file in this method, your program must predefine both a record
work area (size equal to record length) and the field in which you supply to IRAM the
relative record number of the position within the file to whi.ch the new record is to be
written. You provide the relative record number in this field before you issue the output
function.

Whether you use this method of inserting new data records into a direct IRAM file
depends upon your methods· for generating or obtaining relative record numbers and for
dealing with synonyms. Some methods rel.y on your ·examining a record position before
you add a new re<:ord; to add bindly in these methods would eventually destroy the
integrity of your file.

13.1.2.4. Retrieving and Updating Records in a Direct IRAM File

There are three methods available for record retrieval or retrieval-with-update from a
direct IRAM file. If you specify sequential processing mode, you may retrieve data records
in the order in which they occur on disk. You may retrieve records randomly by supplying
relative record numbers in your program, and you may retrieve records randomly· by
processing your direct IRAM file with a tag file that contains a set of relative record
numbers produced by the ADDROUT option ·Of the sort/merge program.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-8

For consecutive retrieval, define the direct · IRAM file ·as an input file for sequential
processing mode; for retrieval-with-update; define it as an update file. (Only one data
buffer may be specified for update mode.) When you issue the input function, consecutive
retrieval begins automatically with the first record position in the data partition.

If you do not want to begin processing with the first consecutive record in the file; you
may issu·e• the appropriate function to set a different lower limit for retrievai:.- You must do
this after the file is open, having predefined a field in which you provide the relative record
number of the starting position desired for retrieval. Your first input function retrieves the
record at this position, and the succeeding input functions retrieve data records in
consecutive order. You may reset the lower limit at any time while the file is open.

To retrieve randomly by relative record number, define· the direct IRAM file as an input file
for random processing mode; for retrieval-with-update, define it as an update file. Your
program must predefine the field in which you supply IRAM with the desired relative
record number, which you do before issuing each input function. The output function for
writing a retrieved, updated record back to its original disk location does not require a
relative ·record number, and.:·none should be supplied.

If your updating programs include 'p.fdvisions for tagging · records for deletion,· or
overwriting them with a null pattern (blanks, zeros, etc.) so that they may be recognized as,·
available for reuse, your retrfeval programs should include a check for these conventions
in order· fo avoid unnecessaryproce'ssing of invalid records. IRAM itself has no means of
avoiding the retrieval of logically deleted records.

If your file contains synonyms, "your retrieval and updating programs must, obviously,
contain the necessary codin~: to locate the desired record.

13.1.2.5. Deleting Records from a Direct IR~M· File

Because IRAM does not provide a function for logically deleting a record from a file, your
update programs should provide for whatever means are necessary, according to your own
conventions. Although you may flag each record for later deletion when your updating
program determines that it is eligible for, removal ·from the file, consider also the
alternative of overwriting a record thatvou no longer want to process with the null pattern
that (according to your own programming conventions) is rec·ognized as a relative record
position available for reassignment to a new record. Depending upon your. method of
handling synonyms in your direct file, there may be synonym linking or chaining
information in a record that should not be deleted when its data content is inactivated by
your logical deletion procedure. ·

13.1.2.6. Reorganizing a Direct IRAM File

Unlike a sequential IRAM file, a direct file cannot be usefully reorganized with the
sort/merge or data utility programs. It is Aot feasible,· for example, to physically remove
records flagged for deletion in copying a direct file with the data utility because of the
inevitable change in the file-relative positions of the valid records carried over to the new
file. They are carried over in the same consecutive order that they held in the old file; but,
because the data utility has no means of generating new relative record numbers and
substituting these in your synonym linkage fields, these fields are unchanged and are no
longer valid.

UP-8068 Rev.4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-9

Even· though your file does not contain ~wnonyms, if the valid records a[e to be written to
relative record positions contained in or derived from a control field in each record, the
data utility or sort/merge program nonetheless lacks the facilitY to write- them to the
desired locations in the new file. A method for compressing a direct file without synonyms
would be to copy it consecutively, via the data utility, and to use the resulting sequential
IRAM file as input to a direct IRAM file-creation program you have written in RPG II. This
effectively recreates a direct IRAM file in a smaller disk· space.

For details on the use of the data utility, refer to the data utilities user guide/programmer
reference, UP-8069. (curreAt version).

13.2. PROCESSING INDEXED IRAM FILES

Indexed IRAM files contain two separate partitions: a data partition with fixed:.length
records ordered consecutively in the order of submission and stored (exactly as in
nonindexed IRAM files) in a single compact string of bytes; and, ·an index partition,
containing blocked index entries at two or more hierarchic levels. Each data record in the
data partition contains a key, a character string specified by the user; that uniquely
identifies the record. All keys in the IRAM file are of the same length; a key may start at
the head of the record it identifies, or it may be elsewhere within the record, but the
location of all keys must be the same for all records in one file. For details on the structure
of keyed records an·d the IRAM index, refer to 12.2.

If the index partition is activated' during processing, data records may be referenced
randomly or sequentially by the values ·of their keys. When the index partition is inactive,
data records may be accessed.consecutively (in the physical order .in which they occur oh
disk) or randomly, according to their relative positions in the data partition. However,
records may not be added unless the index is active. Activating the index is a specific
detail! of file definition, performed before .the file is opened.

A multivolume indexed IRAM file may be created for processing with all volumes on line, or
with only one volume online at a time, and it must always be processed in the mode for
which it was created. When a multivolume file is created for single-volume processing,
random processing must always use the keyed retrieval functions, for which the index
partition must be active; random retrieval by record number is not possible.

Both multivolume and single-volume indexed, IRAM files may be created in an orderly or
disorderly load. In an ordered load, records are submitted to IRAM in ascending order of
key. values; an out-of-sequence record is rejected, and an error is reported. In an
unordered load, no checking of key sequence is performed by IRAM. In both types of load,
however, IRAM checks for duplicate keys; a record whose key duplicates a key already in
the file is rejected, and an error is reported.

A new data record with a key duplicating one already in the file may not be added to the
file at any time. No sequence checking of keys may be specified during file extension
operations. All IRAM files may be processed randomly with a tag file containing relative
record numbers of the records selected for processing. Such a disk file may be prepared
from the IRAM file by using the ADDROUT option of the independent sort/merge program;
for details, see the sort/merge user guide, UP-8342 (current version). In addition, an
indexed IRAM file may be processed sequentially with a file containing record key limits.
Alternatively, the lower limit may be set within the RPG II program.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-10

The following subsections discuss, in general terms, procedures for creating and extending
an indexed IRAM file; for adding, retrieving, updating, and deleting records; and for
reorganizing an indexed IRAM file. For detailed programming specifications, refer to the
RPG II programmer reference, UP-8044 (current version).

13.2.1. Creating an Indexed IRAM File

You define your IRAM file as an indexed output file and present each data record to IRAM
in a predefined record work area (of a size equal to one record length) before you issue the
output function to write it to the data partition. All data records are of a uniform length,
and each contains a unique record key. You must specify the record length, the key length,
and the fixed location of the key in all records when you define the file.

Other specifications you must make in defining the file include:

111 the size and address of your primary data buffer;

111 the size and address of your index buffer; and

111 the address of a field in your program that is to contain a search key.

For calculating the minimum data buffer size you may specify, follow the same procedure
used for creating a sequential IRAM file - described in 13.1.1.1. The primary data buffer
is half-word aligned and contiguous to the index buffer in main storage. You may
optionally specify a secondary data buffer (except, for update operations); this must be
contiguous to the primary buffer and of exactly the same size. The secondary data buffer
follows the primary buffer in main storage.

The index buffer in main storage is also half-word aligned and has a minimum length of
256 bytes; if larger, its size must be a multiple of 256 bytes. The RPG II compiler specifies
this minimum length for you and provides you with means for increasing the size of the
index buffer (by one or more (up to nine) 256-byte increments) to enhance the
performance of your programs: not only the load program itself, but all programs
subsequently accessing the indexed IRAM file when its index is active. You should do so if
you can afford the main storage, bearing in mind that all subsequent programs that use
keyed functions must specify the same index buffer size you used to create the file. (They
need not use the same data buffer size, however; see 13.1.1.1.)

A good rule of thumb in determining your ,index buffer size is to multiply the sum of your
specified key length plus three bytes by 20, rounding the result upward to the next
multiple of 256 bytes. This figure is used in calculating disk space required for an indexed
IRAM file (see 12.2.4).

The length of the field you must predefine in your file creation program to hold a search
key is your specified key length plus three bytes. This field is required in any program that
uses keyed functions. IRAM uses this field itself, amd sometimes overlays it. Your
programs should avoid this field except for placing a search key in it, just prior to
requesting, a random read.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-11

In defining the file for creation, you may specify that IRAM is to check that the sequence
of the keys in your submitted data records is in ascending order. If you do so, you must
submit them in this order for the load (but not nec~ssarily in subsequent file extensions);
an attempt to load a data record containing an out-of-sequence or duplicate key is rejected
immediately, and an error is reported.

If you do not request key sequence checking, you may submit your data records to IRAM in
any key order; only duplicate keys will be rejected. Depending on the bias of your key
distribution in this disordered load, you should expect the process to be less than half as
fast as an orderly load with sequence checking.

13.2.2. Extending an Indexed IRAM File

Once the file is created, it may be extended in the same manner we ha~,e just described
for creating the file. IRAM appends new records to the end of the data string. If you have
specified sequerwe checking in creating the file,. you are not constrained to extending the
file with an orderly sequence of added record keys, but if you do specify 1sequence
checking for extending the file, the key in each record submitted. must be succe~sively
higher than any in the file or volume. Duplicate keys are rejected. You may also add nevv
records while you are retrieving existing records from the file; see 13.2.4.

Once you have successfully added a new record to an indexed IRAM file, it is immediately
available for retrieval. This is true because IRAM updates the index structure on a record­
by-record basis during load, extend, and add operations. It does not sort the index
following a disorderly load, but maintains the fine-level index in unbroken ascending key
order at all times. Refer to 12.2 for details.

13.2.3. Retrieving and Updating in an IRAM File with Index Active

When a multivolume indexed file has been created for single-volume proc~ssing, random
retrieval from each volume must always be performed with the index marked active, using
the key of the desired record as a search argument. It is not possible to retrieve records
from the mounted volume at random by relat,ive record number.

Random retrieval from a single-volume indexed file is not limited iri this way. You may
retrieve records at random by key when the. index is active, and at random by relative
record number when it is not. The same is true for multivolume files created for
multivolume processing. When the index is marked inactive, IRAM fil~s may be processed
only in retrieval and update modes, as described in 13.2.5. When ''the index is marked
active, all retrieval from an IRAM file is done by key.

To retrieve randomly by key, define the file as an input file for random mode processing
and specify that the index is active. Your program predefines a field in which you provide
IRAM with the key of the desired record as a se.arch argument before you issue the input
function. The length of this field is three bytes greater than the key length specified for the
file. No search key may contain a byte with. the hexadecimal value 'FF'. ·

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-12

If you have specified update mode, random retrieval may be followed by an output function
to update the record retrieved. IRAM prevents you from issuing the update function if the
desired record has not been found. In updating a keyed record, you should take care not to
alter its ·key in any: way. IRAM does not check for alteration of the key nor does it prevent
your update from being issued if the key of the updated record duplicates one already in
the file. IRAM updates without reference to the index; therefore, if an updated record is
written back to the file with a key that has been changed, subsequent retrieval by key is
either impossible or unreliable.

Sequential retrieval by key requires that the file be defined as an input file for sequential
processing and that the index be marked active. Before you issue the input function to
retrieve the first record, you must establish the value of the record key at which the
retrieval sequence is to begin. This is done by issuing a function to set the lower limit for
retrieval and providing a key value in a predefined field of your program. IRAM will then
search for a record containing· a key equal to or greater than this value.

If the value you supply is zero, the record retrieved by your first input function is the
record containing the lowest key in the file. (This is the first record in the data partition
oniy if tne file was· created with an orderly load.~ If the v'alue you supply is greater than the
highest key contained in the fine index,· no retrieval sequence can begin. In this case,
IRAM reports a "no-find".

Once a sequential-by-key retrieval sequence has been successfully 'Started, it continues
until:

• you reach end of file or end of volume;

• you specify a new lower limit to start a new sequential retrieval sequence;

• you reset file processing mode from sequential to random; or

• the file is ~losed (by your program or by IRAM, as in case of 1/0 error).

A sequential-by-key 'retrieval sequence is n~t terminated when you add a new record
during retrieval operations, but is resumed With your next input function (see 13.2.4).

If your updating· operations include provisions for flagging records (by your own
conventions) that are. to be deleted from the file, your retrieval prog'rams should include
coding to check for 'the presence 'of this delete flag, and to bypass or process each record
accordin.gly. IRAIVf do,es not recognize your deletion code and will not avoid retrieval •of a
flagged record. · ·

13.2.4. Adding Records during Retrieval - Index ACtive

Provided that you have marked the index active ahd have specified that you intend to add
during retrieval, you may provide a new record tcf'IRAM in a predefined work area in your
program and request that it be appended to the file. IRAM refuses the action if the key of
the new record duplicates a key already in the file, but the value of the key may be lower
than or greater than any key in the file, or fall within the range of the existing keys. You
may not specify that IRAM is to check key sequence when you add during retrieval.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-13

If you append a new record in this manner during a sequentiaLretrieve-by-key operation,
the retrieval sequence is not terminated, but resume with your next issue of an input
function. A record may not ·be added to an indexed IRAM file unless its index is active.

13.2.5. Retrieval and Update when Index Is Inactive

An indexed IRAM file may be processed only in retrieval or retrieval-and-update modes
when the index is marked inactive. Update is not possible without prior retrieval. Programs
accessing such files may not issue. any keyed function, nor may they add new records.
Attempts to extend the data partition are disallowed and result in an error report with
status flags set to indicate an invalid macro issue. IRAM does not use an index buffer for
the nonkeyed retrieval or update functions allowed for an indexed IRAM file processed
with an inactive index, and therefore, your program does not require or define an index
buffer.

When its index is inactive, random retrieval and retrieval-with-update of an indexed IRAM
file may be performed by relative record number - but only if the file is a 1-volume file or
was created for multivolume processing and all volumes are mounted. Define the file as
an input file for random processing mode, with update if desired. The file may not be
defined as an output file. Your program predefines the field where you provide the relative
record number of the desired record before you issue the input function to retrieve it. An
input request with a file-relative record number higher· than the highest number recorded
for the file results in transfer of control to your error routine, with status flags set to
indicate an end-of-file condition. To terminate random retrieval, .you close the file; For
update, you may use a work area (length equal to one record length), or one data buffer to
present the updated record to IRAM. Two buffers may not be specified for update
processing.

The other method for retrieval or retrieval-with-update, :from an indexea IRAMfilewith its
index inactive, is consecutive processing. For this, define the file. as an input file for
sequential mode processing (with update if desired) and mark the index inactive.

If yours is a 1-vol'ume file, or was created for multivolume processing and all volumes are
to be mounted, you may set the lower file limit for consecutive retrieval·. Your program
predefines a 4-byte field in which you supply IRAM with the file-relative record number
where consecutive pro<l:essing is to begin; you move this number into the' field before you
issue the function to set the lower processing limit. Your first input function then retrieves
the record at this file-relative address, ·and your successive input functions retrieve the
remaining records in their consecutive, physical order on disk. If you do not set a lower
limit, consecutive retrieval starts with the first record in the file. Retrieval terminates when
IRAM detects end-of-file; it detects end-of-volume conditions automatically and issues
mount messages to the operator for subsequent volumes.

If your file is a multivolume indexed file created for single-volume processing, you do not
have the option of setting a file-relative lower limit for consecutive retrieval. If you are to
provide a record number to IRAM intended to be a lower limit for retrieval, you must
realize that IRAM treats this as a volume-relative record number - the first record in the
volume data partition being record number 1. (This is the first record retrieved if you do
not set a lower limit.) Consecutive retrieval terminates when end-of-volume is detected by
IRAM.

UP-8068 Rev. 4 SPERRY UNl\'./AC OS/3
BASIC DATA MANAGEMENT

13.2.6. Deleting Records from an Indexed IRAM File

13-14

Because IRAM does not provide a function for deleting records from your files, you must
tend (yourself) to whatever is necessary for this purpose in your programming. A common
method of logically deleting a record from a file that is being updated is to mark it with a
deletion code: for example, a specific character in a specific data byte. Records so marked
or flagged for deletion may later be physically removed from the file when it is reorganized
- offline from IRAM processing. In the meantime, your retrieval programs should be
coded so as to check for the presence of your conventional deletion flag in each record
retrieved so that a logically deleted record may be recognized and bypassed. IRAM has no
provisions for recognizing your deletion flag and avoiding the retrieval of records
containing it.

In establishing your own convention for logical deletion, restrict your flagging to one or
more data bytes, recalling the unpredictable results of changing the key of a record in an
indexed IRAM file during update (12.2.3). The index of the IRAM file is not available to you
for marking index entries that refer. to records you intend to be logically deleted, and you
should not attempt this.

13.2.7. Reorganizing an Indexed IRAM File

You may have occasion to reorganize an indexed IRAM file: for example, to compress it by
physically removing data records tagged for deletion, or to resequence the data records for
more efficient or convenient processing. If you have created or extended your file with the
disorderly load option, but then find increasing need to scan it in key sequence, you would
improve your sequential retrieval program's performance as a result of dumping the file
and reloading it in an ascending key order.

To reorganize an IRAM file, you will generally need to use other processors: either the
independent .sort/merge program, or the data utility program. Either. of these, for example,
will accept your IRAM file as input and delete or omit records as specified in the process
of sorting or copying and recreating the file. These procedures are documented in the
current version of the sort/merge user guide, UP-8342, and the data utilities user
guide/programmer reference, UP-8069.

When your multivolume indexed IRAM file has been created for single-volume processing,
you may find a need to regroup data records onto different volumes for more convenient
processing. You cannot perform this task with the data utility program, however, because
the utility is not parameterized to allow you to select the volume onto which a given record
is to be copied. For this sort· of .reorgani.zation, therefore, you would need to prepare a
specific RPG II program.

UP-8068 Rev~A SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.3. DEFINING AN OS/3 IRAM FILE (DTFIR)

13-15

The DTFIR declarative macro is used to define an IRAM file to data management. It
establishes a 240-byte nonindexed file table or a 307+KEYSIZE-byte indexed file table.

Normally, you do not need to know wh9t,the format of the DTFIR macro is because the file
definition statements you use in your program to define the file are effectively translated
into a DTFIR macro.

If, however, you want to temporarily change your file definition at run time by using a DD
job control statement, you must know what the format is. To help you in these cases, the
DTFIR Macro format and a summary of the keyword parameters (Table 13-1) that
indicates which parameters can be changed by the DD job control statement are provided.
Examples of typical DTFIR macros follow Table 13-1 and detailed descriptions of the
individual DTFIR keyword parameters are provided in 13.4.

Format:

LABEL £1 OPERATION £1

filename DTFIR

OPERAND

[ACCESS= lf ~~: l J
[ADD=YES]

,BFSZ=n

[,EOFA=symbol]

[,ERRO=symbol]

[,I NDA=symbol]

[,INDS=n]

[,INDX=YES]

,IOA 1=symbol

[,IOA2=symbol]

[,IORG=(r)]

[,KARG=symbol]

[,KLEN=n]

[,KLOC=n]

[LOCK=NO]

UP-8068 Rev. 4

LABEL

filename

Keyword Specification

ACCESS* EXC

EXCR

SRD

SRDO

ADD YES

BFSZ* n

EOFA symbol

ERRO symbol

INDA symbol

INDS** n

INDX YES

IOA1 symbol

IOA2 symbol

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

L\OPERATION L\

DTFIR (cont)

[,OPTN=YES]

,RCSZ=n

[,SKAD=symbol]

[,SQCK=YES]

[,UPDT=YES]

[,VRFY=YES]

[,VMNT=ONE]

[,WORK=YES]

13-16

OPERAND

Table 13-1. Summary ofDTFIR Keyword Parameters (Part 1of2}

Keyed Operations Nonkeyed Operations

Restrictions Remarks

INPUT OUTPUT INPUT OUTPUT

0 0 0 0 This DTF: read/update/add use
Other jobs: no access

x x 0 0 This DTF: read/update/add use
Other jobs: read use

x x 0 0 This DTF: read use
Other jobs: read/update/add use

0 0 0 0 ,, This DTF: read use
Other jobs: read use

0 x x x Used only with keyed operations Indicates new records are to be added
to a file

R R R R Always required Supplies data buffer size

R x R x Required if MODE=SEQ Address of end-of-file routine

0 0 0 0 Address of error-handling routine

R R x x Used only with keyed operations Address of main storage area to

contain index

R R x x Used only with keyed operations Indicates size of index area

R R x x Used o,nly with keyed operations Indicates keyed operations

R R R R Always required Address of primary buffer

0 0 0 0 Not permitted when UPDT=YES Address of secondary buffer

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-17

Table 13-1. Summary of DTFIR Keyword Parameters (Part 2 of 2)

Keyword

IORG

KARG

KLEN**

KLOC**

LOCK

MODE

OPTN

RCSZ*

SKAD

SOCK

TYPE

UPDT

VRFY

VMNT

WORK

LEGEND:

0 =Optional
R =Required
S = Select one
X =Not used

Specification

(r)=general register

symbol

n

n

NO

SEQ

RAND

YES

n

symbol

YES

INPUT

OUTPUT

YES

YES

ONE

YES

Keyed Operations

INPUT OUTPUT

0 x .
R R

R R

R R

0 0

s s

s s

0 0

R R

x x

x 0

R x

x R

0 x

0 0

0 0

0 R

•Parameter may be changed on DD job control statement.

Nonkeyed Operations

INPUT OUTPUT

0 0

x x

x x

x x

0 0

s s

s s

0 0

R R

R R

x x

R x

x R

0 x

0 0

0 0

0 0

**Parameter may be changed on DD job control statement for index mode only.

Restrictions Remarks

Not permitted when WORK=YES Indicates 1/0 buffer index register

Used only with keyed operations Address of field containing key of
desired .record

Used only with keyed operations Indicates key length

Used only with keyed operations Indicates the byte number location
of the key within a record

Indicates file lock

Sequential file processing (default)

Random file processing

Optional file for sequentially
processed files.

Always required Indicates record size

Required if MODE=RAND Address of seek address field

Used only with keyed operations Indicates that sequence of keys for
ordered load should be verified

Indicates input file type (default)

Indicates output file type

Input only Indicates update capability

Used for TYPE=INPUT and Read/check of output records
permitted only when ADD~YES to be performed
or UPDT?YES

Not permitted when MODE=RAND Defines file to be processed with
unless INDX=YES only one volume online at any time

Also required for keyed Indicates that the record processing
operations when TYPE=INPUT is in a work area
and ADD=YES. Not permitted
in conjunction with !ORG

t

UP-8068 Rev. 4

Example (IRAM Output File):

LABEL t.OPERATIONt.
10 16

Example (IRAM Input File):

LABEL OOPERATIONt.
10 16

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

OPERAND

OPERAND

13.4. DTFIR KEYWORD PARAMETERS

13.4.1. Specifying File Accessing Options (ACCESS)

COMMENTS

COMMENTS

See 11.4.1 for a detailed explanation of each ACCESS keyword parameter.

13-18

72

Note that indexed files should not be shared in an environment that permits only one
writer to a file but any number of readers. If a file is shared, readers may get
unpredictable results;· that is, DM24, DM39 error messages or no-find errors may result
when attempting to read records that were previously accessible. Consequently, the
ACCESS~EXCR or ACCESS=SRD specification should not be made for an indexed file in
either the DTFIR declarative macroinstruction or the DD job control statement.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-18a
Update C

Records added by the writer (ACCESS==EXCR) to a nonindexed file, in a shared
environment that permits one writer and any number of readers, are not available to the
reader (ACCESS=SRD). Once the writer closes the job, any added records will be available
to users who subsequently open the file.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC QATA MANAGEMEN:f

13-19

13.4.2. Specifying the Addition of Records to IRAM Input File (ADD)

The ADD parameter indicates that rec.ords may be add~d to an input file during record
retrieval. These additions may be made only to indexed files processed by key.

Keyword Parameter ADD:

ADD=YES
If specified, the DTFIR declarative macro must also contain the INDX=YES
keyword parameter.

13.4.3. Specifying the Buffer Size for IRAM File (BFSZ)

The BFSZ parameter indicates the size of the data buffer in the IRAM file.

Keyword Parameter BFSZ:

BFSZ=n
Is always required. n represents the number of bytes in the data buffer. The size
must be at least 256 bytes as well as a multiple of 256. To calculate minimum
buffer size, see 13. 1.1.1.

13.4.4 .. Specifying the End-of-File Handling Routine (EOFA)

When data management senses the end of data while processing an IRAM input file
sequentially by key or consecutively, it looks for the symbolic address of the user's end-of­
data routine and transfers control there.

Keyword Parameter EOFA:

EOFA=symbol
Specifies the symbolic address (name) of your required routine that handles the
end-of-data condition for IRAM input files. This parameter is required if
MODE=SEQ is included in the DTFIR decla.rative macro; however, it is optional
for randomly. processed input files.

13.4.5. Specifying Error Routines (ERRO)

When data management detects any error or exception in processing, it looks for the
symbolic address of your error-handling .routine.

Keyword Parameter ERRO:

ERRO=symbol
Specifies the symbolic address (name) of the user error-handling routine. When
data management transfers control to the error routine, filenameC contains
information on the reasons for the error.. (See. Tables B-1 and B-3.) If ERRO
parameter is omitted, control returns to your program inline.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-20

13.4.6. Naming Main Storage location for Index Block Processing (INDA)

During keyed operations, IRAM processes index blocks in a main storage index area.

Keyword Parameter INDA:

INDA=symbol
Specifies the symbolic address of this index block processing area in main
storage. The specified area must be half-word aligned and its length must be
specified in the INDS parameter. The location of the i"ndex area in main storage
must immediately precede the primary 1/0 buffer area (IOA 1). This parameter is
required for all keyed or indexed IRAM file processing.

13.4.7. Specifying the Index Area length in Main Storage (INDS)

When data management processes indexed (keyed) IRAM files, it uses an index area in
main storage. The length of this area must be defined.

Keyword Parameter INDS:

INDS=n
Indicates the number of bytes used in main storage for the index area named in
the INDA parameter. The index area length must be at least 256 bytes and, in
addition, a multiple of 256 bytes. Both INDS and INDA parameters are required
specifications for IRAM indexed files.

13.4.8. Indicating Processing by Key (INDX)

Data management processes nonindexed and indexed IRAM files.

Keyword Parameter INDX:

INDEX=YES
Indicates that IRAM file processing is to be performed by key. This parameter is
required for input and output indexed IRAM files. In adaition, the parameters
INDA, INDS, KARG, KLEN, and KLOC must be specified if INDX=YES is used.

13.4.9. Identifying the 1/0 Area (IOA1)

When data management processes nonindexed or indexed IRAM files, it always uses at
least one required 1/0 area.

Keyword Parameter IOA 1:

IOA1=symbol
Specifies the symbolic address of the 1/0 processing area. IOA 1 must be half­
word aligned and greater than or equal to 256 bytes, a multiple of 256, and
consistent with the BFSZ specification. IOA 1 must immediately follow the index
buffer (INDA), if specified, and must immediately precede the secondary 1/0
buffer (IOA2), if specified.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-21

13.4.10 Identifying an Additional 1/0 Area ·uoA2)

An additional 1/0 area may be indicated optionally for double buffering.

Keyword Parameter IOA2:

IOA2=symbol
Specifies the symbolic address of secondary 1/0 area. Similar to IOA 1, the IOA2
parameter must be half.;word aligned, the same size as the required IOA 1
parameter, and immediately follow the primary 1/0 buffer. IOA2 may not be
specified if the UPDT=YES parameter is specified.

13.4.11. Pointing to Current 1/0 Area (IORG)

When you are not referencing records in work areas, you must indicate an 1/0 buffer
index register number.

Keyword Parameter IORG:

IORG=(r)
Indicates the register number used to point to the current 1/0 area. Registers 2
through 12 are available. Either the IORG or WORK parameter may be specified,
but not both. If both parameters are specified, the WORK parameter specification
is used.

13.4.12. Naming a Place for Key Retrieval (KARG)

When using indexed (keyed) operations, the user must name and define a loc~tion in his
program where keys are placed for retrieval of IRAM records.

Keyword Parameter KARG:

KARG=symbol
Provides the symbolic address of the field ir:i the user's program where keys are
placed. The length of KARG must be equal to the specification in the KLEN
parameter plus 3. The KARG parameter is required for all keyed operations.

13.4.13. Specifying Key lengths for I RAM Files (KLEN)

In processing indexed IRAM files, data management must have the length of keys in an
IRAM file.

Keyword Parameter KLEN:

KLEN. h',

Specifies the number of bytes in a key for an IRAM indexed file. All keys must be
the same length; the minimum length is 3 bytes and the maximum, 80 bytes.
This parameter is required for all keyed ·operations.

UP-8068 Rev. 4 SPERRY .UNIVAC OS/3
BAS.IC DATA MANAGEMENT

13-22

13.4.14. Specifying Number of Bytes Preceding Keys. (KLOC)

Often keys do not appear at the beginning of a record; when they do not, the number of
bytes offset must be indicated.

Keyword Parameter KLOC:

KLOC=n
Indicates the number of bytes preceding the key of an IRAM record. The key
location must be the same within all records of tl;ie file. If the key begins in the
first byte of the record, KLOC=O should be specified. This parameter is required
for all keyed operations. If the KLOC parameter is omitted, IRAM assumes a
value of zero; i.e., the keys begin in the first byte of each record.

13.4.15. Suppressing a File Lock (LOCK)

For a detailed explanation of the LOCK keyword parameter, see 11.4.11.

13.4.16. Specifying Retrieval and Load Modes for Indexed and Nonindexed IRAM Files
(MODE)

Data management can process IRAM files sequentially or randomly according to the
MODE keyword parameter specification.

Keyword Parameter MODE:

MODE=SEQ
Specifies sequential retrieval operations for an indexed IRAM file and sequential
retrieval or sequential load operations for nonindexed IRAM files. Sequential
mode is assumed if no MODE parameter is specified.

MODE=RAN
Specifies random (direct) retrieval operations for an indexed file and random
retrieval or random load operations for a nonindexed file.

13.4.17. Specifying Optional Files (OPTN)

Sometimes you will not need to use a file bn every program ·execution. In this case, the
file is considered optional. Only sequentially processed input or output IRAM files can be
optional files.

Keyword Parameter OTPN:

OPTN=YES
Specifies that the sequential input or output file defined by the DTFIR macro is
an optional file. When this parameter is specified for an input file not allocated to
a device by the DVC job control statement, data management transfers control to
your EOFA routine on the first issue of an input operation. When the OPTN
parameter is specified for an output file, data management transfers control to
your program inline and with no error.

U P-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.4.18. Specifying Record Length (RCSZ)

13-23

This parameter is always required and specifies the length of each record in bytes.

Keyword Parameter RCSZ:

RCSZ=n

13.4.19. Locating Relative Disk Address for Processing IRAM File by
Relative Record Numbers (SKAD)

When data management randomly processes files defined by the DTFIR macro, you must
specify the SKAD parameter.

Keyword Parameter SKAD:

SKAD=symbol
Specifies the symbolic address of an area in your program into which you load
the relative disk address for use in processing nonindexed files by relative recon:t
number. The form of a record address is a 4-byte value, and the fir'st re·cord i~
relative record 1.

13.4.20. Verifying Ascending Record Key Order during File Creation (SQCK)

Data management can verify that record keys are in ascending seq'uence during file
creation. This check is possible only on keyed operations, i.e., indexed files.

Keyword Parameter SOCK:

SQCK=YES
Specifies that data management should verify ascending key sequence on file
creation for indexed files.

13.4.21. Specifying the File Type (TYPE)

The DTFIR declarative macro describes input and output files. The TYPE parameter
designates input or output file types.

Keyword Parameter TYPE:

TYPE=INPUT
Specifies· a read-only DTFIR file.

If omitted, data management assumes the TYPE=INPUT specification. You may not
issue an output function to this file unless:

• you specify either the UPDT=YES or ADD=YES parameter; or

• you close the file, reset the file processing direction, and reopen the file.

UP-8068 Rev. 4

TYPE=OUTPUT

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Specifies a write-only file.

13-24

You may not issue an input function to this file unless you close, reset, and
reopen the file.

13.4.22. Updating Records (UPDT)

When you wish to update a nonindexed or indexed input file and you have also specified
TYPE=INPUT, you specify the UPDT parameter. If this P'13rameter is omitted, you cannot
update a file.

Keyword Parameter UPDT:

UPDT=YES

13.4.23. Verifying Output Re.co.rds (VRFY)

0.()ta manageme,nt can check parity of output records after they have been written to disk.
If it detects bad· parity, data management· sets the parity check flag (byte 2, bit 2) in
fi/enameC and transfers control to your error routine or to your program inline if you have
no error routine. Specifying this parameter results in an increase in execution times for
update and file. adcUtion operations.

Keyword Paramet.er VRFY:

VRFY=YES

13.4.24. Specifying File Processing with One Volume Online at a Time (VMNT).

IRAM files created with one volume online at a time must be processed in the same
manner.

Keyword Parameter VMNT:

VMNT=ONE
Specifies that only one volume be processeq online :at any t.ime. This parameter
cannot be used if the MODE=RAND parameter is specified unless the INDX=YES
parameter is a Isa specified.

13.4.25. Specifying Input or Output Record Processing in a Work Area (WORK)

To specify that input .or outpµt records are to be processed in a work area rather than an
1/0 buffer area, you specify the WORK parameter.

UP-8068 Rev. 4

Keyword Parameter WORK:

WORK=YES

SPERRY UNIVAC OS/3
BASIC DAitA 'MANAGEM'ENT

13-25

May not be specified in the same DTt=IR' with the IQREG pa'rameter. When you
issue the 'input, output, or file addition operatiorfa~·you specify"the address of the
worl< area.·· The WORK parameter is requfred for indexed files when
TYPE=OUTPUT or when TYPE=IN,PUT and ADD=YES.

13.4.26. Nonstandard Forms of the Keyword Parameters

OS/3 clata management accepts certain variant spellings for the keyword parameters
described in this section. These variations are:

DTFIR OS/3
Spelling Standard Form

BFSZ B LKS IZE/B KSZ
EOFA EOFADDR
ERRO ERROR
INDA IN DAR EA
INDS INDSIZE
INDX INDEXED
IOA1 IOAREA1
IOA2 IOAREA2
IORG IOREG
KARG KEYARG
KLEN KEYL EN
KLOC KEYLOC
OPTN OPTION
RCSZ RECSIZE
SKAD SEEKADPR
TYPE TYPEFLE/TYPF
UPDT UPDATE
VRFY VERIFY
WORKA WORKA

13.5. IRAM KEYWORD PARAMETERS - DD JOB CONTROL STATEMENT
SUPPORT ONLY

The f9llowing keyword parameters .can be specified only by using a. DD job .qontrol.
statement.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13.5.1. Variable Sector Support for IRAM Files (VSEC)

13-26

In IRAM files, both the data and index partitions in the DTF specify a fixed sector size of 256
bytes. This is required for the sectorized devices (84 .. 15, 8416, and 8418 disk subsystems),
which are formatted for a 256-byte sector. Th.e s~lector channel devices (8411, 8414, 8424,
8425,. 8430, and 8433 disk subsystems) have. no such constraint. However, they are
preformatted at OPEN time to accept the 256-byte sector size. This sectorization requires
hardware overhead and thus decreases the effective capacity of the disk.

Variable sector support eliminates the problem. It allows you to create IRAM files with data
partition sector sizes larger than 256 bytes on the selector channel devices. Since the
hardware overhead remains constant, the use of the larger sector size increases the
effective capacity of the disk.

To use variable sector support, you must specify it in a DD job control statement that you
include in your job control stream when the file is created. The format of this DD job control
statement is:

I I DD VSEC= {" }
YES

where:

VSEC=n
Specifies the sector size (number of bytes) to be used in creating the file.

VSEC=YES
Specifies that the sector size is to be computed at OPEN time, based upon record
size and buffer size. The computed sector size will be the largest multiple of record
size that does not exceed the buffer size.

If you use a DD statement to specify a sector size for a file, the statement must be used in
all subsequent job control streams that access the ·fiie, unless you specify the ACCEPT
parameter in the LFD statement for the file. If you do, the DD statement that specifies
variable sector support may be omitted.

The message DM17 INVALID BLOCK SIZE SPECIFICATION is displayed if you use the VSEC
parameter incorrectly in a DD job control statement. This occurs if:

11 a sector size other than 256 bytes is specified for a sectorized device;

11 the VSEC parameter specifies a sector size that is different from the sector size used to
create the file; or

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-27

• changing the sector size results in the buffer size being less than the minimum buffer
size required. To compute the minimum buffer size, the following rules apply:

If the record size divides evenly into the sector size, the minimum buffer site is
equal to the sector size.

If the record size is a multiple of the sector size, the· minimum buffer size is equal
to the record size.

If neither of the preceding rules apply, add the sector size to the record size,
subtract 1, and then round up to the next multiple of the sector size to find the
minimum buffer size.

13.5.2. File Recovery Support for IRAM Files (RECV)

When you perform operations such as adding or updating records to a file, the physical file
structure constantly changes during execution of your program; If your program runs to
completion and the file is successfully closed, the file limits information contained in the file
labels is updated. If a system failure occurs, the file is not closed and the file limits
information is not updated. The effect of a system failure on a nonindexed file is that the file
reverts back to its original state before it was opened. For example, added records are lost.
In the case of an indexed file, system failure may cause the file to be compromised; that is, it
must be recreated.

File recovery support eliminates these problems. It allows you to create IRAM files that can
be reopened after system failure. It does this by updating the file limits information and
writing it on the disk each time an operation that affects the information is performed. If you
have specified file recovery and there is a system failure, you can reopen your filebecause
the file limits information was saved.

To use file recovery support, you must specify a DD job control statement that you include in
your job control stream when the file is created. The format for this DD job control
statement is:·

I I DD RECV=YES

This statement is only valid at file creation time. It should not be included in the job control
stream for subsequent jobs that process the file after creation.

If a system failure occurs during file creation, you will have to start over because the file
creation program must run to completion and the file m·ust be successfully closed before
you can use the file recovery facility. If file creation is successful, the file recovery faCility is
activated each time you open the file.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-28

If you are processing an .indexed file (created with file recoveryL where the physical file
structure is changing and the structure modification process is interrupted by an operator
cancel, HPR, or a hardware 1/0 error, the file may be compromised. If the file is
compromised and you attempt to reopen it, the error message DM66 FILE COMPROMISED
is displayed to inform you that the file should not be used. If you want to open the file solely
for reading its data contents in order to recreate the file, the file recovery support facility
allows you to override the error condition. This is accomplished by including the appropriate
DD job control statement in the job control stream when you reopen the file. The format for

DD job control statement is:

DD RECV=FCE

This statement causes the file compromised error to be ignored. The message DM66 FILE
COMPROMISED does not appear when the statement is present. The statement should not
be used you receive the error message, and then only if you want to reopen the file
to read its data contents in order to recreate the file.

13.5.3. Automatic Computation of .Initial Allocation Percentages for IRAM Files
(AUTO)

Normally, when .aQ indexed IRAM file is created, 50% of the initial allocation is assigned to
the cjc;1ta partition, and 1 % is assigned to the index partition. The remainder is left as
unas~igned space .to be used for logical extensi9ns to the file. As the file is loaded, the data
partition and the index partition are filled at different rates. This results in the two partitions
extending on an alternating basis which, for large files, tends to rapidly use up the extent
table entries. This .causes the extent table to be exhausted and the error message DM45 -
EXTENT TABLE EXHAUSTED to be displayed.

Automatic computation of initial allocation percentage helps m1rnm1ze the problem. It
causes the entire initial allocation to be assigned to the index and data partitions in a
calculated ratio based upon the record and key sizes.

use the automatic computation of initial allocation percentage, you must specify it in a
DD job control statement that you include in your job control stream when the file is
created. The format of this DD job control statement

DD SIZE=AUTO

This statement is only valid at file creation time and has no effect at other times. When it is
encountered in the file creation job control stream for an IRAM file, this statement causes

of the. initial allocation to be assigned to the data partition and (100-n)% to the index
partition. The value n is calculated at file open time and is dependent upon the record and
key sizes.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13-29

There are two major factors that determine the accuracy of the calculated ratio:

1. The manner in which the file is loaded: Space in the index partition is used more
efficiently if the records are loaded in ascending key sequence rather than in unordered
key sequence.

2. The size of the file: Due to possible roundoff in the computation, the result is more
accurate for relatively large files than for smaller files. For example, a given set of
record and key lengths may yield a ratio of 3 to 1. For a 100 cylinder file, the allocation
would be 75 cylinders for the data partition, 25 cylinders for the index partition. For a
10 cylinder file, the allocation would be 8 cylinders for the data partition, 2 cylinders for
the index partition.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-1

13A. MI RAM Formats
and File Conventions

13A.1. GENERAL

The multiple indexed random access method (MIRAM), a sixth disk access method in
OS/3, is used for handling sequential, relative, and indexed files in programs that are
written in the OS/3 1974 American National Standard COBOL language, and for
sequential and relative (direct) files in programs that are written in FORTRAN IV language.
MIRAM provides the same functions as those provided by OS/3 ISAM, ASAM, IRAM,
SAM, and DAM disk access methods. A MIRAM file may reside on any of the disk
subsystems used with OS/3, and it may occupy from one to eight disk packs, which must
be of the same type.

The MIRAM processor can access only MIRAM characteristic files and IRAM characteristic
files that it has created or IRAM files created by the IRAM processor. It cannot access disk
files that have been created by the ISAM, ASAM, DAM, or SAM access methods, nor can
MIRAM files be processed by these access methods. MIRAM files can be processed by
using the sort/merge program, however, and by the data utilities program.

A MIRAM characteristic file is one that meets any of the following condi'tions:

• More than one key per record is permitted.

• The file contains variable-length records.

• Records may be logically deleted from the file (RCB is present).

• Duplicate record keys are permitted, or key changes are allowed on update.

• The length of a key in a record is one or two bytes.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-2
Update B

An IRAM characteristic file differs from a MIRAM characteristic file in that it meets none
of the conditions required for the latter; that is:

• Only one key per record is permitted.

• The file contains fixed-length records.

• Records cannot be logically deleted from the file (RCB not present).

• Duplicate record keys or key changes during update are not permitted.

• The minimum length of the record key must be three bytes.

Note that IRAM characteristic files can be accessed by all programs that access IRAM
files.

The discussions that follow deal with MIRAM characteristic files. For information on IRAM
characteristic files, refer to Section 12.

l3A.1.1. MIRAM Concepts

MIRAM has a number of features and concepts that distinguish it from other disk access
methods.

• The data record slots in MIRAM files, for either fixed- or variable-length records, are
of uniform size and may span physical blocks, sectors, tracks, and cylinders as
required. They may even extend from one volume to another (unless the file was
created for processing only a single volume at a time).

• Data records are written on disk compactly as a continuous string of bytes.

• The string of data records can always be accessed sequentially (consecutively) or by
relative record number. In addition, the data can be specified to be indexed by up to
five keys; this causes MIRAM to build a suitable index structure for each key type in a
partition separate from the data.

• An indexed MIRAM file can be accessed by the additional random-by-key or
sequential~by-key ~odes using a given key of reference, which can be changed.

• Indexed MIRAM files, either multivolume or single-volume, may be created by means
of an orderly load (records submitted in ascending key order) or a disorderly load
(records submitted in no particular key order) and they may be extended by appending
records in either manner. MIRAM does not sort the index at the completion of a
disorderly load, but maintains the index current on a record-by-record basis.

• MIRAM files are always extended unless the INIT parameter is specified on the LFD job
control statement of the device assignment set. The EXTEND parameter is not
supported for MIRAM files.

UP-8068 Rev. 4

• Duplicate keys are permitted.

SPERRY UNIVAC ·OS/3
BASIC DATA MANAGEMENT

13A-3

• When a new record has been added to an indexed or nonindexed file, it is
immediately available for retrieval.

• Multivolume MIRAM· files may be created for processing with either one volume
online at a time, or with all volumes online. They must be processed in the same
manner as they were created.

• All programs that access a MIRAM file need not use the same data buffer size for
input/output as was used to create the file. Those that access an indexed MIRAM
file, however, must use the same index blJffer size.

• MIRAM allows you to logically delete records in your files; that is, it allows you to
mark records so that in subsequent processing they will be ignored.

• MIRAM's restrictions are:

- The maximum key length is 80 bytes.

- No byte of a record key may contain the hexadecimal value 'FF'.

- The minimum size for the index buffer is 256 bytes.

13A.2. MIRAM FILE ORGANIZATION

All MIRAM characteristic files contain two part1t1ons: the data partition, which MIRAM
defines to the system access technique (SAT) as containing 256-byte unkeyed physical
blocks, and the index partition, which is defined as containing 256-byte keyed blocks. If
the file is a nonindexed file, the index partition is not used; that is, no entries will be
placed in it and no space will be allocated to it. If the file is an indexed file, entries will be
placed in the ·index partition and space will be allocated to it.

For indexed files, the data partition precedes the index partitions, which begins on a
separate cylinder.

13A.2.1 . The Data Partition

The data partition is arranged in the same way for both nonindexed and indexed files. It is
cylinder-aligned and consists of a single compact string of data records that may be keyed
or unkeyed. The formats of the MIRAM data records are shown in Figure 13A-1.

t

UP-8068 Rev. 4

FIXED-LENGTH WITHOUT KEYS

FIXED-LENGTH WITH KEYS

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

data.

I ~ I key 1 data I key 2

VARIABLE-LENGTH WITHOUT KEYS

I I ~ 11

data

data

13A-4
Update B

· 1

.I ~: RDW_---1 -R

s --....;..~-11i~1 VARIABLE-LENGTH WITH KEYS

I I ~ 11

key i data

I
key2":

LEGEND:

rcb Record control byte (optional). Used to indicate that a record has been logically deleted from the file. For MIRAM
fixed-length records, this byte is placed at the beginning of each record. For variable-length records, the third
byte of the record descriptor word (ROW) is used as the rcb.

R Length of the logical record (ROW plus keys plus data). You specify this length as the number of bytes. For
variable-length records, this value, expressed in binary, must be placed in the first two bytes of the ROW.

Figure 13A-1. MIRAM Characteristic Data Record Formats (Part 1 of 2)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-4a
Update B

RDW 4-byte record descriptor word for variable-length records. The first two bytes contain the logical record length (r)
expressed in binary; the third byte may be used as the rcb; the fourth byte is not used.

L n The starting location of record key n (n = 1 through 5) of a MIRAM file data record when the key does not start
in the first byte of the record. L n represents the number of bytes (ROW plus data) that precede key n. The
starting location of key n must be the same in each record. Key n must have the same length in each record (a
minimum of 1 byte and a maximum of 80), and no byte may contain the hexadecimal value 'FF'.

S Slot size. All records are written into fixed-size slots. Slot size equals the record size + 1 for fixed-length
records with a record control byte; otherwise, slot size equals the record size. Slot size for variable-length
records equals maximum record size + 4-byte record descriptor word.

P Padding.

Figure 13-1. MIRAM Characteristic Data Record Formats (Part 2 of 2)

t

UP-8068 Rev. 4 SPERRY UNIVAC:QS/3
BASIC DATA MANAGEMENT

13A-5

When data records are stored in a MIRAM file, the records are· placed in uniform size
record slots and are arranged in the same order you originally presented them to the
MIRAM processor. These data records are stored in 256-byte physical blocks or sectors on
your disk packs. Since the record slot site does not have to conform to the physical block
or sector size, the records may span these physical boundaries as shown in Figure 13A-2.

EXAMPLE 1

PHYSICAL BLOCK 1 · OR SECTOR 1 ·PHYSICAL BLOCK 2 OR SECTOR 2 PHYSICAL BLOCK 3 OR SECTOR 3

4

EXAMPLE 2

PHYSICAL BLOCK 1 OR SECTOR 1 PHYSICAL BLOCK 2 OR SECTOR 2 PHYSICAL BLOCK 3 OR SECTOR 3

__ Ill
2 11~2 -3

EXAMPLE 3

PHYSICAL BLOCK 1 OR SECTOR 1 PHYSICAL BLOCK 2 OR SECTOR 2 PHYSICAL BLOCK 3 OR SECTOR 3

1
1

1
2

1
3

1
4

11
4

1
5

1
6

1
7

1
8

11
8

1
9

1
10

1
11 H

NOTES:

1. All physical blocks or sectors are 256 bytes.

2. 1, 2, 3 ... n represent record slots.

3. Record slots in Example 1 are approximately 190 bytes each.

4. Record slots in Example 2 are approximately 300 bytes each.

5. Record slots in Example 3 are approximately 70 bytes each.

Figure 13A-2. MIRAM Data Record Slots Spanning Physical Block or Sector Boundaries

Your data records may also span track boundaries, cylinder boundaries, and volume
boundaries (except when a multivolume file is created for processing with only one volume
online at any one time). When new records are added to a file, they are appended to the
existing data record string; that is, they are added at the end as a continuation of the
original string.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A.2.2. Entries in the Index Partition

13A-6

If you have keyed records, entries are placed in the index partition as these records· are
loaded into the data partition. MIRAM extracts all the keys from each record (a maximum
of five keys is permitted) and constructs a 3-byte· pointer for each of the keys from the file
relative record number of the position the record was written to. From these it forms an
index entry for each of the keys in the record and stores them in the index partition. The
index entry for each key consists of the key plus three bytes (it is equal to the specified key
length plus three bytes) and it is stored in an area of the ·index partition, which is called a
fine-level index. If you had three keys in each record, the index entry for each key would
be stored in a separate fine-level index; that is, the entry for key 1 would be stored in the
fine-level index for key 1, the entry for key 2 would be stored in the fine-level index for key
2, and the entry for key 3 would be stored in the fine-level index for key 3.

A fine-level index is not formatted for hardware search, unlike the other levels of index
that will be described subsequently. It is treated as a chain of multisector blocks where
each sector is 256 bytes long. All entries in a fine-level index are maintained in ascending
key order. Figure 13A-3 shows a typical fine-level index block of three sectors.

FLAG BYTE

CURRENT NUMBER OF ACTIVE BYTES~

!~

CONTROL AR EA }
ISLASTSIX ·~

BYTES OF INDEX
BLOCK

INACTIVE AREA

Figure 13A-3. Fine-Level Index Block

CHAIN TO NEXT
FINE BLOCK

~

CONTROL AREA

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-7

When a fine-level index is created, another hierarchical level of index is always created -
the coarse-level index. This is hardware searchable and .is composed of 256-byte blocks
that contain entries similar to those in the fine-level index. They differ, however, in that
the 3-byte pointer in each coarse-fevel entry does not represent the file-relative number of
a record in the data partition. Instead, it points t() another index block at a lower level -
either a fine-level block or a block in what is called a mid-level index. Another difference is
that instead of having a ·6-byte control area, each coarse.:.level block uses its final oyfo to
indicate the number of active entries. The entries in a coarse-level block are filed in
descending key order. The high key of the block is the first one encountered by the
hardware search and its length is equal to the longest key in the group plus four bytes.
Both the c·oarse-level and mid-level blocks have the same format (Figure 13A-4).

HIGH
KEY

ACTIVE ENTRIES INACTIVE AREA

~------------~

Figure t 3A-4: ·coarse- or Mid-Level Index Bloc'k

13A.2.3. MIRAM Index Structure

' '

FINAL
BYTE
OF
SECTOR

As you know, you can specify up to five keys for a file. For each key that you specify, the
MIRAM processor will build a separate index struqture. In those cases where you, have
more than one key, these separate index structures will allow you to use any of the key
types as the key of reference to access your data records. when, you subsequently use the
file in a program.

When the MIRAM processor builds an index structure for your file, it creates a minimum
of two levels of index: a fine-level index and a coarse,..tevel index. If your file is .very large,
one or more mid-level indexes are created as needed. The fine-level Index consists of one
entry for every record in the data partition of yqur file .. The fine-level entries are filed in
ascending key order until an index block (256 bytes) is filled. At this time, one coarse-level
entry is made that points to the high key entry of that filled fine-level block. As.each fine­
level block is filled, another coarse-level entry is made. This process· continues until all
your records are on file.

The coarse-level index is automatically allocated by MIRAM.Jts .$ize is always one track
regardless of the type of disks being used. If the coarse-levef index is filled before all your
records are on file, a mid-level index is created. The MIRAM processor allocates two
tracks, designates them as a mid-level index, and copies the entries from the coarse-level
track onto these tracks. It then places two entries in the coarse-level index. Each entry
points to a high key in one of the tracks in the mid-level index. In this manner the entries
on the coarse-level track are replaced by two entries. As new fine-level entries ~re
recorded, one entry is made in the coarse-level index for each filled index block in fine­
level index and when the coarse-level index is filled a new mid-level index is created just
as before. This process continues until all records are on the file. Figure 13A-5 shows the
structure of a MIRAM index.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3 ·
BASIC 'DATA MANAGEMENT.

COARSE. LEVEL

MID-LEVEL
(IF NECESSARY)

FINE LEVEL·

Figure .13A-5. MIRAM Index Partition

13A.2.4. Retrieving Records from an Indexed MIRAM .File

13A-8

1 TRACK

ADD 2 TRACKS AT A
TIME AS NEEDED

ONE ENTRY FOR
EVERY RECORD IN
DATA PARTITION

To show how records are retrieved from an indexed MIRAM. file, assume that a file with a
4-level index has been created. A search for a specific data record by key in this case
would proceed as follows:

• the search begins in the coarse-l~vel index;

• a hit is made that points to the· first mid-level index;

• the new mid-level is searched;

• a hit is made that points to the second mid-level index;

• the second mid-level is searched;

• a hit is made that points to the fine-level index;

• the fine-level is searched;

• a hit is made that points to the data record in question; and

• the data record is retrieved.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A.2.5. Estimating Disk Space Required for an Indexed MIRAM File

13A-9

The following procedure will allow you to estimate the number of cylinders for your
primary allocation of disk space to an indexed MIRAM file. The result is a good
approximation that you can use in specifying the EXT statement in the job control device
assignment set that allocates disk space for an indexed MIRAM file to be created by your
program. This procedure can also be used to determine the number of cylinders to be
allocated for an indexed MIRAM file that is to be generated from another file by the OS/3
data utility program.

The number of cylinders required for an indexed MIRAM file includes those occupied by
the data partition and the index structures for each key type in the file. To estimate the
number of cylinders the file will require, proceed as follows:

First, calculate D, the number of sectors required for your data records (the data partition).

Step 1:

D = record-length · number-of-records
s

where:

S is the sector size. The default size is 256 for all types of disk subsystems. For 8411,
8414, 8424, 8425, 8430, and 8433 disk subsystems, this value can be greater than
256.

Next, calculate Bi, the number of index blocks required by your fine-level index for keyi.

Step 2:

Bi = number-of-records · (keylengthi + 3) · (4
3

)
(256 · m) - 6

where:

the factor of 4/3 is used because the average fine-level index will be 3/4 full.

m is the number of 256-byte sectors in the index buffer. (See 13B.3.1.)

Then calculate Fi, the number of 256-byte sectors required by your fine-level index for
keyi.

Step 3:

Fi= m ·Bi

Repeat steps 1 through 3 as many times as necessary and then calculate F, the number of
256-byte sectors required by your fine-level indexes for all keys in the file.

t

t

UP-8068 Rev. 4

Step 3a:

.n

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-10

F = L Fi
i=1

where:

n is the number of keys in the file.

Then perform the final calculation. This calculation, which is the sum of the data
requirements and the fine-level index requirements, represents over 95 percent of the
space required for an indexed file. Once this is determined, it is a simple matter to figure
out what your space requirements are for a given file.

Step 4:

F D
C =~ +A· N

where:

c

A

D

F

u

N

4 7-

Is the number of cylinders to allocate to. the indexed MIRAM file.

Is the disk dependent number of 256-byte sectors per track for data partition
(Table 13A-1).

Is the number of 256-byte sectors required for the data partition.

Is the number of 256-byte sectors required by all the fine-level indexes in
the file.

Is the disk-dependent number of 256-byte sectors per track for index
partition (Table 1 3A-1).

Is the disk dependent number of tracks per cylinder (Table 13A-1).

UP-8068 Rev. 4

Example:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13A-11

Assume that you want to calculate the number of cylinders to allocate for an indexed
MIRAM file and the following conditions apply:

•

Number of records 77,500

Record length 512 bytes

Keylength1 28 bytes

Keylength2 30 bytes

Sector size (data partition) 256 bytes

Index buffer length 512 bytes

Type of disk 8433

D record length number-of-records
256

= 512 . 77,500
256

155,000 sectors for data p,artition.

• B, number-of-records · (keylength, + 3) . (i
3

)
(256 · m) - 6

77,500 . (28 + 3) . (~)''
(256 . 2) - 6 3

6331 index blocks required for the fine-level index for key1.

• F, m · 8 1

2 . 6331

12,662 se~tors for the fine level index fqr key,.

• number-of-records · (keylength2 + 3) . (i)
(256 · m) - 6 3

77,500. (30 + 3). (~)
(256 . 2) - 6 3

6739 index blocks required for the fine-level index for key2 .

UP-8068 Rev. 4

•

• F

2 . 6739

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

13,478 sectors for the fine-level index for key2.

12,662 + 13,478

13A-12

26, 140 sectors for all the fine-level indexes for all keys in the file.

• The maximum coarse-level index on an 8433 disk can contain 132 sectors. As you
can see, this number is too small to contain all of the index blocks for either of the
keys.

• c F
U·N +

D
A·N

(26, 140 + 58 + 2090)
29 . 19 +

155,000
33. 19

~"_cylinders to be allocated to the file.

NOTE:

After you have calculated your disk space requirements and you proceed to create your
file, you must provide enough volumes to hold the file. This must be considered because
the amount of space available is not the same for all types of disk. Refer to Table A-4 to
determine how many volumes you will need based upon your calculations and the type of
disk you intend to use.

13A.2.6. Estimating Disk Space Required for a Nonindexed MIRAM File

The following procedure will allow you to estimate the number of cylinders required for
your primary allocation of disk space to a nonindexed MIRAM file. First, you must calculate
D, the number of 256-byte sectors required for your data records (13A.2.5). Then, divide by
the product of A times N (from Table 13A-1):

D
C= -­

A·N

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Table 13A-1. Disk-Dependent Factors for Determining Disk Space Requirements

SPERRY UNIVAC
Disk Subsystem

8415

8416

8418

8411
_

8414

8424

8425

8430

8433

*Removable portion
**Fixed portion

u
(Number of 256-byte
sectors per disk track
for index partition)

40

40

40

10

17

17

17

29

29

A
(Number of 256-byte

N

sectors per disk track
(Number of tracks

for data partition per disk cylinder)

40 2*
3**

40 7

40 7

11 10

20 20

20 20

20 20

33 19

33 19

13A-13

t

UP-8068 Rev. 4

138.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-1

138. Functions and Operations
of MIRAM,

Before you create a MIRAM file (a MIRAM characteristic file unless noted otherwise) you
must carefully consider how you will use the file in subsequent programs because this
governs how it should be created. If you expect to process unkeyed records consecutively
or you need to access specific records quickly without processing the preceding ones, the
file should be created as a nonindexed file. If you intend to process keyed records either
consecutively or randomly, the file should be created as an indexed file.

After you have created a MIRAM on file, you can perform retrieval, update, and other
operations either ~onsecutively or randomly, or you can switch back and forth between
consecutive and random operations. Both non indexed and indexed MIRAM files that span
two or more volumes can be created with only one volume online (mounted) at a time, or
with all volumes online. A multivolum~ file must always be process_ed in the same way it
was created; only one volume is online at a time, or all volumes are online.

The discussions that follow are at a general level. For details of the actual programming
statements you use for creating and processing MIRAM files in OS/3, refer to the OS/3
1974 American National Standard COBOL programmer reference, UP-8613 (current
version), or the OS/3 FORTRAN IV supplementary reference, UP-8474 (current version).

138.2. PROCESSING NONINDEXED MIRAM FILES

A nonindexed file is one that is organized consecutively. Its records are written on the disk
in the physical order they are presented to the MIRAM processor. The records are
processed consecutively in the order they appear on the disk. A nonindexed file can also
be one that is organized relatively; each record in the file is written on the disk in a
specific position relative to the beginning of the file (independent of the order in which
they are presented to the MIRAM processor). This allows any record in the file to be
retrieved directly without processing any preceding records when the location of the
record is specified.

The following subsections describe the general procedures for creating and processing
nonindexed files.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138.2.1. Creating a Sequential MIRAM File

138-2
Update B

If you want to create a file for sequential processing, you must define the file as a
sequential output file in your program~ You must also specify the uniform size of your
record slots and the size and addr~ss of your data buffers (1/0 areas). If you have variable­
length records, the slot size must be large enough to hold the maximum size record plus

,..... the required 4-byte record descriptor word (ROW). You may use two data buffers, each
half-word aligned, but they must be contiguous and the same size. The minimum data
buffer size that you can specify for your program is determined as follows:

11 If the slot size divides into 256 without remainder, the minimum buffer size is 256
bytes.

11 If the slot size is a multiple of 256, the minimum buffer size is equal to the slot size.

11 If the slot size does not divide into 256 without remainder and is not a multiple of
256, add 255 to the slot size and round this sum upward to the next multiple of 256:

(Note that for fixed-length records, the slot size + 1 must be used in your buffer
calculation. This is required because space must be provided in the buffer for the extra
byte, the RCB, that is appended to the front oF·each' fixed-length record by the MIRAM
processor and is not counted when you specify your slot size.)

This calculation also applies when you create relative or indexed files. If you specify data
buffers larger than the minimum, you may improve your program's performance. Note that
when a file is processed in subsequent programs, you do not have to specify the same
data buffer size that you used to create the file, 'but it must be at least the· minimum.

After you open the file, you submit your records, one after the other, until you have no
more records. The records are stored in the data partition in the order you submitted them.
When the file is subsequently processed, it is processed in the same order. The MIRAM
processor records the relative record number of the last record written 'in the file control
table and the volume table of contents.

138.2.2. Extending a Sequential MIRAM File

Once a sequential file has been created, it can be extended (enlarged) only by appending
new records at the end of the existing data string. Records· cannot be inserted between
existing records nor can they be appended during retrieval or update operations.

Extending a sequential file is essentially the same process as creating the file because the
same specifications are made. The difference is that you must define the file as a
sequential file that is to be extended rather than a sequential output file. After you open
the file you submit the new records, one after another, as in file creation, and they are
stored in consecutive order starting after the last record of the existing data string.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC.RATA MANAGEMEN:r

138.2.3. Adding Records to a Sequential MIRAM File

138-3

If you want:tQ enlarge a sequential file by inserting records between existing records or
appending· records at the head of the existing data string, you must use some other
processor. A way to solve this· problem is to sort the new records into the consecutive
sequence you expect.:to process them, and then use them as an input file (together with
you sequential MIRAM file) to the sort/merge program or the data utilities program to
create a new sequential file with the new records in the proper order. Refer to the
sort/merge user guide, UP-8342 ·(current version) or the data .utilities user
guide/programmer reference, UP"--8069 (current version) for details.

138.2,.4. Retrieving and Updating Records in a Sequential MIRAM File

You can. retrieve record? or retrieve and update records in sequential (consecutive) order in
a sequential file. F<:>r sequential retrieval, you must define the file as a sequential inputfile
in your program. For seque,ntial retrieval and update, you ml1st define the file as a
sequential file for .update. You can provide two data buffers. If you do/ the lengths of these
buffers. need not be the same as the data buffer that was used to ere.ate the file. However,
if two buffers are used, each one must be the same size as the other.

The MIRAM processor will provide the records in the s·ame ·order that they were written on
disk when the file was created or extended. Consecutive retrieval will continue until you
close the file or the end of file is reached. If the file is to be terminated by end of file, you
must have specified the address of a routine for handling this situation in your program.
Records may not be appended during retrieval operations or retrieval and update
operations.

138.2.5. Deleting Records from a Sequential MIRAM File

If a MIRAM file is defined as a sequential file in your program, you cannot logically delete
records from your file (mark specific records so :they will be bypassed when the file is
processed in subsequent programs). To delete records, the file must have been created as
a relative file.

138.2.6. Reorganizing a Sequential MIRAM File

At some point you may want to reorganize a sequential file. Perhaps your experience in
using the file has shown that a different physical sequence of records would be more
convenient. There a(e two methods that you can use to reorganize your file - the
sort/merge program or the data utilities program. Either of these will accept your file as
input and resequence the data records. For details, refer to the sort/merge user guide,
UP-8342 (current ver~ion) or the data utilities user guide/progr.ammer reference,
UP-8069 (current version).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMEN:it

138.2.7. Creating a Relative ,MIRAM File

138-4

If you require a file in which each data record is to be assigned to a speCifit p'osition on
disk, you must create a relative file>You do this,by defining the file as a relative oUtput
file. You must also specify the uniform size of your record slots and the size of your:'data
buffer. The minimum data buffer calculation is,,the same as :that described for a sequential
file in J 38.2.1.

After you open ,the file, you present each record, one by one, to the MIRAM processor in a
work area you have defined along with the file relatiVe position the record is to occupy.
This position is not a disk address. It is a 4-byte file-relative number (relative to the
beginning of the file; position 1 is relative record number 1, etc) that you supply in a field
you have defined before, you issue the output 'function to write the record to disk.

The method you use to determine the relative record number that you assign to each
record is up to you. It can be a potential source of trouole if you 'are not ct:freful; the
method you use may generate a relative record number ofa record that 'has already been
placed on the file. If an output fuhction is issued in this si'tu'ation, the 'attempt to place the
new record in an occupied position will be rejected and an error condition will result.

138.2.8. Extending a Relative MIRAM File

Extending a relative file is ,essentially the same as creating' it. You provide each record to
be placed in the file in a work area, and you supply the relative record address for the
record in a predefined field before ,you issue the output function. If you direct a record to a
point beyond the current file end (established at file creation: that is, the relative record
address of the last valid record on the file), any gap will be filled with void records. If you
direct a record to a position short of the file end, the operation will be rejected if it is
occupied by a valid record.

138.2.9. Retrieving, and Updating Records in a Relative MIRAM File

You can retrieve records or retrieve and update records in a relative file sequentially
(consecutively) or randomly by relative record number. You also have the ability to switch
retrieval methods (between sequential and random retrieval), and to specify at what point
you want to commence sequential retrieval.

For sequential retrieval, ·define the file as an input file for sequential' processing. For
retrieval with update, define the file as arf update file. When you issue an input function,
retrieval begins automatically with the first record position.in the file.

If you do not wanf to begin your sequential processfng with the first record, you can iss1,.Je
a function that establishes the starting point. This must be dorie after the file has bee.n
opened and before you issue an input function. To establish, a starting point, you must
place a relative record number in a predefined field in your program and then use the
starting point function to specify where the starting point is to be; that is, the starting
point is equal to, greater than, or not less than the relative record number you have
supplied. Your first input function retrieves the record at the starting point. The
subsequent input functions will retrieve the records in consecutive order. You can change
the starting point at any time while the file is open.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-5

For random retrieval by relative record number, define the file as an input file for random
retrieval. For retrieval with update, define /the file as an update file. For random retrieval,
you must supply the relative record number of the desired record in a predefined field in
your program before you issue an input function. If you update a retrieved record, the
output function to rewrite this record does not require you to supply a relative record
number.

138.2.10. Deleting Records From a Relative MIRAM File

If you want to logically delete records from a relative file, you must define the file as an
update file. After the file is opened, you can delete a record by first issuing an input
function for that record, and then following this with a delete function. The delete function
logically deletes the record by marking it as a void record. (The record is not physically
removed from the file.) The marking process consists of setting the high order bit in the
RCB.

When a deleted record is encountered in subsequent sequential processing, it is bypassed.
If you are retrieving records randomly and you specify the relative record number of a
deleted record, it is treated as a no find.

138.2.11. Reorganizing a Relative MIRAM File

If you want to reorganize a relative file, you cannot do it in a straightforward manner. For
example, if you have logically deleted records in a relative file and you use the data utility
program to remove the invalid records and recopy the file, the relative position of the valid
records will change. This occurs because the valid records are copied in the same
consecutive order that they appeared on the old file. As a result, any subsequent
processing of the new file may prove unsatisfactory because the valid records will not be
where they originally were.

A possible solution would be to use the data utility program to remove the invalid records
and copy the valid records to a sequential file. This sequential file could then be used as
input to a relative file creation program that will place the valid records in the positions
you want them to be.

138.3. PROCESSING INDEXED MIRAM FILES

An indexed MIRAM file contains a data partition with the data records ordered
consecutively in the order that you submitted them, and an index partition that consists of
one or more index structures arranged in ascending key order. The number of index
structures is governed by the number of keys specified for the file. Each data record can
contain from one to five keys (uniform length character strings that uniquely identify the
record). A key may start at the head of the record or may be embedded within it; however,
the location of each key type must be the same for all records in the file. Duplicate key
values are permitted.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-6
Update D

When you create an indexed file for processing one volume online at a time or with all
volumes online, you can submit your records to the MIRAM processor as an orderly load
or a disorderly load. The former means that the data records are submitted in ascending
key order and the latter that the records are submitted in any other order. In both cases,
the records are placed in the data partition in the order submitted; however, the keys are
always arranged in ascending key order in the index structures. The following subsections
describe the general procedures for creating and processing indexed files.

138.3.1. Creating an Indexed MIRAM File

To create an indexed MIRAM file you must define the file as an indexed output file in your
program. You must also specify the following:

• uniform size of your record slots;

• the size and address of your data buffers;

• the length and location of all keys in your records;

• the size and address of your index buffer; and

• the address of a field in your program that is to contain a search key.

If you have variable-length records, the slot size must be large enough to hold the
maximum size record plus the required 4-byte record descriptor word (ROW). You may use
two data buffers (each half-word aligned), but they must be contiguous, the same size, and
they must immediately follow the index buffer. The minimum data buffer calculation is the
same as that described for a sequential file in 138.2.1.

The index buffer is also half-word aligned and must be at least 256 bytes in length. It
~ can be larger; however, if it is, it must be a multiple of 256 bytes up to a maximum of

32,512 bytes. The index buffer must immediately precede the primary data buffer. A
good rule to apply when determining your index buffer size is to multiply the sum of the
largest specified key plus 3 bytes by 20, rounding the result up to the next multiple of
256.

The length of the field that is to contain a search key must be equal to the length of the
largest key in your file plus three bytes.

After you open the file, you present each record to the MIRAM processor in a work area
you have defined, and then you issue an output function to write the record to disk.

138.3.2. Extending an Indexed MIRAM File

Extending an existing indexed file is essentially the same process as creating the file. As
in creating the file, you present each record to the MIRAM processor in a work area you
have defined and then you issue an output function to write the record to disk. The
records are appended to the end of the data string in the data partition. Your records can
be submitted as an orderly load or a disorderly load. In either case, the records are placed
in the data partition in the order submitted and the record keys are placed in the index
structures in ascending key order. After a record has been successfully added to the file, it
is immediately available for retrieval because the index structures are updated each time a
record is added to the file.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138.3.3. Retrieving and Updating Records in an Indexed MIRAM File

138-7

You can retrieve records or retrieve and update records in an indexed file sequentially
(consecutively) or randomly by key. You also have the ability to switch retrieval methods
(between sequential and random) and to specify at what point you want to commence
sequential retrieval.

For sequential retrieval, define the file as an input file for sequential processing. For
sequential retrieval with update, define the file as an update file.

After the file is opened, the sequential position is established at the lowest key value in
the keyi index structure. If you want a different starting point, you must establish a new
starting point (the value of the record key at which retrieval is to begin). To do this, you
must place a key value in a predefined field in your program and then use the starting
point function to specify where the starting point is to be; the starting point is equal to,
greater than, or not less than the key value you have supplied. Your first input function
retrieves the record at the starting point and the subsequent input functions will retrieve
the records in consecutive order.

After a sequential-by-key retrieval sequence has been started, you can continue it until:

• you reach the end of file or the end of volume;

• you specify a new starting point;

• you change the file processing mode from sequential to random; or

• you close your file or it is closed as the result of an error.

For random retrieval by key, define the file as an input file for random retrieval. For
retrieval with update, define the file as an update file. For random retrieval you must
supply the key of the desired record in a predefined field. in your program before you issue
an input function. If you update a retrieved record, the output function to rewrite this
record does not require you to supply a key value.

If you are performing a sequential retrieval sequence and you interrupt it to perform a
random retrieval operation, the sequential retrieval sequence cannot be resumed at the
point it was interrupted (unless random retrieval with hold is requested).

If you have specified that duplicate keys are permitted and you are performing a sequential
retrieval sequence, records with duplicate keys will be retrieved in the order they were
presented to the file during file creation. If you perform a random retrieval, the first record
encountered in a duplicate key series that contains a key equal to the search key will be
retrieved.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138.3.4. Adding Records to an Indexed MIRAM File during Retrieval

138-8

You can add records to an indexed file during retrieval if you have defined the file as an
update file. To add a record during retrieval you must provide the new record in a
predefined work area in your program, and then issue an output function to place it in the
file. The record will be placed in the file if the value of the record key is less than or
greater than any key in the file, or it falls within the range of the existing keys. If you have
specified that duplicate keys are not permitted, the record will be rejected if its record key
duplicates the key of a record that is already in the file.

If you interrupt a sequential retrieval sequence to add a Tecord, the sequence will be
resumed at the point it was interrupted when you issue the next input function.

138~3.5. Deleting Records from an Indexed MIRAM File

If you want to logically delete records, you must define the file as an update file. After the
file is opened, you can delete a record by first issuing an input function to retrieve the
record and then follow this by a delete function. The delete function logically deletes the
record by marking it as a void record. (The record is not physically removed from the file.)
This marking consists of setting the high order bit in the RCB.

When a deleted record is encountered in subsequent sequential processing, it is bypassed.
If you are retrieving records randomly and you specify the key of a deleted record, it is
treated as a no find.

138.3.6. Reorganizing an ln~exed MIRAM File

Your experience in processing an indexed file may indicate, that the file should be
reorganized. For example, your processing may have logically deleted a large number of
records and you want to compress the file by physically removing these records. Another
reason to reorganize,, is that the file was created or extended with disorderly loadr and you
want to improve your program's performance because the majority of your processing
involves sequential retrieval.

In the former c;ase, you can use the data utility program to delete the invalid records. In
the latter case, you can use the sort/merge program to sort your data records in
ascending key order. For details refer to the data utilities user guide/programmer
reference, UP-8069 (current version) or the sort/merge user guide, UP-8342 (current
version).

138.4. DEFINING AN OS/3 MIRAM FILE (DTFMI)

The DTFMI declarative macro is used to define a MIRAM file. It establishes a 388-byte file
table.

Normally, you do not need to know what the format of the DTFMI macro is because the
file definition statements you use in your program are effectively translated into a DTFMI
macro.

UP-8068 Rev. 4 SPERRY UNIVAC, OS/3
BASIC DATA MANAGEMENT

138-9

If, however, you want to temporarily change your file definition at run time by using a DD
job control statement, you must. know what the format is .. To help you in these cases, the
DTFMI macro format and a summary of the keyword parameters (Table 138-1) that
indicates whidh parameters can be changed by the DD jqp control s.tatement are provided.
Examples of typical DTFMI macros follow Table 138.::.._1, and detailed descriptions of the
individual DTFMI keyword parameters are provided in 138.5.

Format:

LABEL EoPERATioN 6.

filename DTFMI

OPERAND

[ACCESS= ~ !~gRl
lsRDO .

,BFSZ=n

[,EOFA=symbol]

[,ER RO=symbol]

[,INDA=symbol]

[,INDS=n]

,IOA1=symbol

[,I 0 A2=symbol]

[,IORG=(r)]

[,KAHG=symbol]

[KEYn=(s,[ll .[{~~~P}] [{~~~0}])]
[,LOCK=NO]

[MODE= {=:~JJ
[,OPTN=YES]

[.PROC= fuNK }]
[,RCB=NO]

[,RCFM= {vAR }]
,RCSZ=n

[.RETR= { ~~~ }]
,SKAD=symbol

[,VMNT=ONE]

[,VRFY=YES]

[,WORK=YES]

UP-8068 Rev. 4

Specifi-
Keyword' cation

ACCESS* EXC

EXCR

.SRO

SRDO

BFSZ* n

EOFA symbol

ERRO symbol

INDA symbol

INDS** n

IOA1 symbol

IOA2 symbol

IORG {r)=general
register

KARG symbol

KEYn** n

LOCK NO

MODE SEO

RAN

RANH

OPTN YES

PROC KEY

UNK

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-10

Table 138-::-1. Summary of DTFMI Keyword Parameters/Part 1 of 2)

~

Keyed Non keyed
Op~ra- Opera- Restrictions Reme1

1
rks

tions tions
;

s s This DTF: read/update/add use
Other jobs: no access

x s This DTF: read/update/add use
Other jobs: read use

x s This DJF: read use
Other jobs: read/update/add use

s s This DTF: read use
Other jobs: read use

R R Always required Supplies data buffer size

0 0 Address of end-of-file routine

0 0 Address of error handling routine

R x Used only with keyed Address of index buffer
operations

R x Used only with keyed Indicates size of index buffer
operations

R R Always required Address of primary data buffer

0 0 Only allowed with sequential Address of secondary data
output or unkeyed sequential buffer
input

0 0 Not permitted when Indicates 1/0 buffer index
WORK='(ES register

R x Used only with keyed Address of field that contains key
operations of desired record

R x Used only with keyed Indicates key length, key
operations. location, and whether duplicate
n>1, key length <3, keys or changes to keys are
duplicate keys, or changes allowed
to key!? not permitted
for IRAM characteristic
files.

0 0 Indicates file lock

s s Sequential file processing
(default)

s s Random file processing

s s Random file processing (hold sequential
position)

'..:.

0 0 Optional file

s x Keyed (index and data) operation
(default)

..
x R Nonkeyed (data) operation

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-11

Table 138-1. Summary of DTFMI Keyword Parameters (Part 2 .of 2)

Specifi- Keyed Non keyed
Keyword

cation Opera- Opera- Restrictions Remarks
tions tions

RCB NO 0 0 Required for IRAM No re2ord control. byte
characteristic files

~

RCFM FIX s s Fixed-length records (default)
..:.

VAR s s Not permitted for IRAM Variable-length records
characteristic files

RCSZ* n R R Always required Indicates record· size

RETR INF s s Update not allowed Retrieval for
information (default)

MOD s s Retrieval for modification

REP s s Retrieval for replacement

.
SKAD symbol R R Always required Address of seek

address field

VRFY YES 0 0 Check parity of output records
after they have been written

VMNT ONE 0 0 Nonkeyed random operations Defines file to be processed
and random output with only one volume
operations not allowed. online at a time

WORK YES 0 0 Required for all output, Indicates that record processing
keyed update. and delete is in a work area
functions

LEGEND:

0 =Optional
R =Required
s =Select one
x =Not used
*Parameter may be changed on DD job control statement.
**Parameter may be changed on DD job control statement for indexed file only.

'
"

\

UP-8068 Rev. 4

Example (MIRAM Output File):

LABEL D.OPERATION.6

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

OPERAND
10 16

Example (MIRAM Input File):

138-12

72

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138.5. DTFMI KEYWORD PARAMETERS

138-13
Update C

The following paragraphs discuss how each of the DTFMI keyword parameters are used.

138.5.1. Specifying File Accessing Options (ACCESS)

See 11.4.1 for a detailed explanation to the ACCESS keyword parameter.

Note that indexed files should not be shared in an environment that permits only one writer to
a file but any number of readers. If a file is shared, the readers may get unpredictable results;
that is, DM24, DM39 error messages or no-find errors may result when attempting to read
records that were previously accessible. Consequently, the ACCESS=EXCR or ACCESS=SRD
specification should not be made for an indexed file in either the DTFMI declarative
macroinstruction or the DD job control statement.

Records added by the writer (ACCESS=EXCR) to a nonindexed file, in a shared
environment that permits one writer and any number of readers, are not available to the
reader (ACCESS=SRD). Once the writer closes the job, any added records will be available
to users who subsequently open the file.

138.5.2. Specifying the Buffer Size for a MIRAM File (BFSZ)

The BFSZ parameter specifies the size of the data buffer in the file.

Keyword Parameter BFSZ:

BFSZ=n
Is always required. n represents the number of bytes in the data buffer. The size
must be at least 256 bytes as well as a multiple of 256. To calculate the
minimum buffer size, see 138.2.1.

138.5.3. Specifying the End-of-File Handling Routine (EOFA)

When data management senses the end of data while you are processing a MIRAM file
sequentially by key or consecutively, it looks for the symbolic address of your end-of-file
handling routine and transfers control to that address.

Keyword Parameter EOFA:

EOFA=symbol
Specifies the symbolic address of your end-of-file handling routine.

138.5.4. Specifying Error Handling Routines (ERRO)

When data management detects any error or exception in processing, it looks for the
symbolic address of your error handling routine.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-14
Update D

Keyword Parameter ERRO:

ERRO=symbol
Specifies the symbolic address of your error handling routine to which data
management transfers control when cin error is detected. When control is·
transferred to this routine, filenameC contains information on the reasons for the
error (see Tables B-1 and 8-:-3). If this parameter is omitted, control is returned
to your program inline.

13B.5.5. Naming the Main/ Storage Area for Index Block Processing (INDA)

During keyed operations, index blocks are processed in a main storage index area.

Keyword Parameter INDA:

INDA=symbol
Specifies the symbolic addres~ of .. the main storage area in which index blocks
are processed. This area must· be half-word aligned and must immediately
precede the primary 1/0 (data) buffer area IOA 1. This parameter is required for
all keyed operations and it requires that all related keyword parameters must be
specified: INDS, KARG, and KEYn •. If INDA is specified and any of the related
parameters are omitted, it is assumed that indexed operations were not intended
to be used, and none will be permitted.

13B.5.6. Specifying the Index Area Length in Main Storage (INDS)

When indexed files are processed, the. index blocks a~e processed in the index area
specified by INDA. The length of this area must be specified.

Keyword Parameter INDS:

INDS=n
Specifies the number of bytes to be used in main storage for the index area
named in the INDA parameter. The length must be at least 256 bytes or a
multiple of 256 up to a maximum of 32;512 bytes. This parameter is required
for all indexed files.

13B.5.7. Identifying the Primary Data Buffer (IOA1)

When any file is processed, at least one data buffer is required and this area must be
identified.

Keyword Parameter IOA 1:

IOA1=symbol
Specifies the symbolic address of the primary data buffer. This area must be half­
word aligned, greater than or equal to 256, a multiple of 256, and it must be
consistent with the BFSZ parameter. It must immediately follow the index area
(INDA) if specified, and must immediately precede the secondary data buffer
(IOA2) if specified.

UP-8068 Rev. 4 SPERRY UNIVAC OS/B
BASIC DATA MANAGEMENT

138-15

13B.5.8. Identifying the Secondary Data Buffer (IOA2)

If you want to use double buffering to improve the performance of your program you can
specify an additional buffer in certain cases.

Keyword Parameter IOA2:

IOA2=symbol
Specifies the symbolic address of a secondary data buffer. As· with IOA 1, this
buffer must be half-word aligned, the same size as IOA 1, and must immediately
follow the primary ·buffer (IOA 1). You can use a secondary data buffer only when

· performing keyed or nonkeyed sequential output or nonkeyed sequential input
operations.

13B.5.9. Pointing to the Current Data Buffer (IORG)

If you are not referencing records in work areas, you must specify a data buffer index
register number.

Keyword Parameter IORG:

IORG=(r)
Specifies the number of the general register to be used to point to the current
data buffer when you do not reference records in the work area. Registers 2
through 12 may be used. Either IQRG or WORK must be specified. If both are
specified, the WORK parameter is used.

13B.5.10. Naming the Key Argument Field (KARG)

If you are using keyed operations, you must name the location in your program where you
will place the search key for record retrieval.

Keyword Parameter KARG:

KARG=symbol
Specifies the symbolic address of the field in you program where keys are placed
to effect the retrieval of records. The length of this area must be equal to the
largest key in your program plus 3 bytes. This parameter is required for all keyed
operations.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-16

138.5.11. Specifying the Keys for an Indexed File (Keyn)

When you process an indexed file, you must specify (for each key in your records) the
length, location, if duplicate keys are permitted, and whether the key may be changed
during update.

Keyword Parameter KEYn:

KEYn=(s,[I]. [{~~~p}], [{~~~G}])
Specifies one of up to five keys for an indexed file; that is, 1 :::;:; n :::;:; 5. There must
be a KEYn parameter for .each key in the file. s specifies the size of the key and
may range from 1 to 80 bytes. I specifies the number of bytes preceding the key. If
I is omitted, 0 is assumed for fixed records and 4 for variable records. DUP
specifies that duplicate keys are allowed. NDUP specifies that they are not allowed
and is the default case. CHG specifies that the key can change during update.
NCHG specifies that it cannot change and is the default case.

KEYn parameters are required unless you intend to accept the KEYn parameters
that were specified when the file was created. If so, no KEYn specifications should
be present.

For IRAM characteristic files, n > 1, s < 3, DUP; and CHG are not permitted.

138.5.12. Suppressing a File Lock (LOCK)

See 11.4.11 for a detailed exp la nation of the LOCK keyword parameter.

138.5.13. Specifying Processing Mode for MIRAM Files (MODE)

MIRAM files can be processed sequentially or randomly as specified by the MODE
keyword parameter.

Keyword Parameter MODE:

Specifies sequential file processing. This is the default case.

MODE=RAN
Specifies random file processing.

MODE=RANH
Specifies random file processing (hold sequential position).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-17

13.B.5.14. Specifying Optional Files (OPTN)

If your program does not need to use a particular file each time you execute the program,
the file is considered an optional file. Only sequentially processed files can be optional
files.

Keyword Parameter OPTN:

OPTN=YES
Specifies that the sequentially processed file is an optional file. When this
parameter is specified for a file not allocated to, a device,'by a DVC job control
statement, control is' transferred to your EOFA routine when you issue an input
operation. Control is transferred to your,program ialfne with no error when you
issue an output operation.

138.5.15. Specifying Type of Operations (PROC)

When you process a file you must specify the type of operations you are going to perform
(keyed operations or. nonkeyed operations).

Keyword Parameter PROC:

Specifies keyed operations. This is the·default case.

PRO.C=UNK
Specifies nonkeyed operations.

138.5.16.. Specifying Record Control Byte (RCB)

When a file is created, a record control byte (RCB) is appended to the beginning of each
record unless you specify that you do not want this.

Keyword Parameter RCB:

RCB=NO
This specification only applies to files that are being created. It is required for
IRAM characteristic files and it specifies that each record is not to ·contain a
record control byte. If thi$ parameter is specified, delete function§ will not be
permitted when the file is subsequently processed. The default case is that each
record will contain an RCB. When the file creation program is compJeted and the
file is closed, the .format label is marked to indicate whether or not the RCB is
present. Once the file is created, this format label indication cannot be changed;
that is, if you subsequently process the file and attempt to use the RCB
parameter, the format label indication will override it.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3 ~

BASIC DATA MANAGEMENT
138-18
Update B

138.5.17. Specifying Record Format (RCFM)

This parameter specifies the record format, eith~r fixed-length or variable-length.

Keyword Parameter RCFM:

Specifies fixed-length records. This is the default case.

RCFM==VAR
Specifies variable-length records. The first four bytes of a variable-length record
is the record descriptor word (ROW). The first two bytes of the ROW contain the
effective record size that ~ou ·supply on output and data management supplies on
input. The record size includes the 4-byte ROW. Variable-length records are
contained within a fixed-size slot that is equal to the RCSZ specification.

138.5.18. Specifying Record Length (RCSZ)

This parameter is always required. It specifies the length of each record in bytes.

Keyword Parameter RCSZ:

RCSZ==n
Specifies the length of each_ record in bytes. If you ,have variable records, this
parameter should specify the maximum size plus the 4-byte record descriptor
word (ROW) required for variable-length records. (See Figure 13A-1.)

138.5.19. Specifying the Record Retrieval Purpose (RETR)

If you are going to retrieve records for ~other than information purposes, you must use this
parameter.

Keyword Parameter RETR:

Specifies that records are to be retrieved for information purposes only. This is
the default case.

RETR==MOD
Specifies that records are to be retrieved for modification. ·

RETR==REP
Sp·ecifies that records are to be retrieved for replacement.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-19

138.5.20. Specifying the Location of the Relative Disk Address for Processing a
MIRAM File by Relative Record Numbers (SKAD)

This parameter is always required. It specifies where the relative disk address is placed in
your program for use in processing by relative record number.

Keyword Parameter SKAD:

SKAD=symbol
Specifies the symbolic address in your program where you place the relative disk
address for use in processing files by relative record number. The form of the
relative disk address is a 4-byte value. The first record is relative record 1.

138.5.21. Verifying Output Records (VRFY)

You can specify that data management is to check the parity of output records after they
have been written to disk.

Keyword Parameter VRFY:

VRFY=YES
Specifies that data management is to check the parity of output records after
they have been written to disk. If it detects bad parity, data management sets the
parity check flag (byte 2, bit 2) in filenameC and transfers control to your error
routine, or to your program inline if you have no error routine. If you specify this
parameter, it will result in an increase in execution times for output operations.

138.5.22. Specifying File Processing with One Volume Online at a Time (VMNT)

If you want to process a file with one volume online at a time, you must specify this
parameter.

Keyword Parameter VMNT:

VMNT=ONE
Specifies that the file is to be processed with only one volume online at any time.
A file that is created in this manner must be processed in this manner. Nonkeyed
random operations are not permitted. If a file was not created for processing with
one volume online at a time, it cannot be processed in this manner.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138.5.23. Specifying Record, Processing in a Work Area (WORK)

138-20

You can use this parameter to specify that your records are to be processed in a work area
rather than in a data buffer (1/0) area.

Keyword Parameter WORK:

WORK= YES
Specifies that input and output records will be processed in a work area rather
than a data buffer area. The IORG ,p·arameter should not be specified when the
WORK parameter is specified; If both are specified, the WORK parameter is used.
When you issue input, update, output, ·or delete operations, you specify the
address of the work area. The WORK parameter is required for all output, keyed
update, and delete operations.

138.5.24. Nonstandard Forms of the Keyword Parameters

OS/3 data management accepts certain variant spellings for the keyword parameters
described in this section. These variations are:

DTFMI OS/3
Spelling Standard Form

BFSZ BLKSIZE/BKSZ

EOFA EOFADDR

ERRO ERROR

INDA IN DAR EA

INDS INDSIZE

IOA1 IOAREA1

IOA2 IOAREA2

IORG IOREG

KARG KEYARG

OPTN OPTION

RCFM RECFORM

RCSZ RECSIZE

SKAD SEEKADR

VRFY VERIFY

WORK WORKA

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

138-21

138.6. MIRAM KEYWORD PARAMETERS - DD JOB CONTROL STATEMENT
SUPPORT ONLY

The following keyword parameters can be specified only by using a DD job control
statement.

138.6.1. Variable Sector Support for MIRAM Files (VSEC)

The detailed explanation of this facility for IRAM files (13.5.1) also applies to MIRAM files.

138.6.2. File Recovery Support for MIRAM Files (RECV)

The detailed explanation of this facility for IRAM files (13.5.2) also applies to MIRAM files.

138.6.3. Automatic Computation of Initial Allocation Percentages for MIRAM Files
(AUTO)

The detailed explanation of this facility for IRAM files (13.5.3) also applies to MIRAM files
except that normally 0% of the initial allocation is assigned to the index partition for MIRAM
files.

UP-8068 Rev. 4

14.1. GENERAL

SPERRY UNIVAC OS/3
BASIC DATA ·MANAGEMENT

14-1

14. Nonindexed Disk File Formats
and Conventions

This section describes the disk file formats and conventions that are part of the indexed
flier ·processor system of OS/3 data management. The system comprises three basic
methods for processing or accessing disk files withot.'.lt indexes:· the sequential access
method (SAM); the cfaect access method (DAM); and a combination of these two, termed
simply the "nonindexed method," which has no acronym.

The three m'ethods of processing are explained in detail in Section 15, which describes:

• fhe logical input/output control system (IOCS),' or processor, that OS/3 data
management furnishes•:you for each method;

• the imperative macroinsfructions that constitute the actual repertoire of file­
processi ng functions· available to you; and

• the define-the-file (DTF) declarative macros you will use to inform data management
how your files are to be accessed and how you have structured them.

In both this section and Section 15, the term "DTF" is applied both to tbis type of
declarative macro and to the file· table that each DTF sets up for data ma'nagement to use
while you are. processing Your file. . . . ·

· You define your sequentially processed' disk. files to ·data management with the DTFSD
declarative macr.o; ·consequently, 'these files are often cc:li'led DTFSD files. Direct ·access, 'or
randomly processed, files. (these terms are synohymous ·in this manual) are defined by the
DTFDA decla·rative macro and. are termed DfF'DA files .. Files 'that you want to process by a
combination of both se::quential ahd random techniques you will aefine t6 data
management with the DTFNI. declar.ative macro. You may. subdivide your DTFNI. files i.nto
as mi:iny as seven file partitions; you defihe certain detailS"Of each partition With yet a
fourth type of DTF declarative macro: the DPCA macro.

,"; ··, '"\ , '

UP-8068 Rev. 4

To summarize:

• Three access methods:
:i'\:

SPERRY ~UNIVA,.C OS/3
BASIC DATA MANAGEMENT

Sequential access method (SAM)

Direct access method (DAM)

Nonindexed access method (a combination of SAM and DAM techniques)

11 Four define-the-file (DTF) declarative macros:

DTFSD - defines a sequentially processed, nonindexed disk file

14-2·

DTFDA - defines a randomly processed (direct access), nonindexed disk ffle

DTFNI - defines. a nonindex~d disk file that is to. be pro~ess.ed sequentially, randomly,
or by a cornbin:ati9n of both ,techniq4es

DPCA - defines certain particulars .of a partition of a DTFN.1 file

The various access nie.thods and nonindexed qisk fl.le descriptions share certain concepts
of file organization, iile labe.lling, record for.mats, and record addressing; these are
described generally in this section, although some. d.etails (:)re further developed in Section
15. You will notice some differences from ttie. OS/3 inde>,ee.o sequential access method
(ISAM), described in earlier sections of this manual; chief· of these, of course, is the
absence of any index structure. Another diff;erence is that ISAM does not allow you to
have your own header and trailer labels. A thi.ro point of difference lies in the concept of
keys (14.3.3). ·· · ·

14.2. FILE ORGANIZATION

All DTFSD, DTFDA, and DTFNI files in the os/3 nonindexed processor system may resjde
on one or more disk volumes and may be. termed multivolunJe files. Multivolume DTFNI
and DTFDA files must have all volumes of the file mounted and online for processing and
may consist of no more than eight volumes .. l)llultivolume DTFSD files ar~ maintained in
single-volume mode --: only .cme. of your di~k packs being online at 'any time; there is no
lipilt fmposed by OS/3 on ~he. total number of .volurnes you may hav~ rn a DTFSD file.
Data man.agement coi:nmunic(:ltes w.ith the .. operator for you, automatically, to reque·st and
validate mounting of the successive vol um.es, of a.multivolume)JTFSD 'file.

i . ·. . ·•. : . ,.

Alt OS/.3 nonindexed disk fil.es are terminated l;>y a. logical end-of-file (EOF) pointer to the
block one after the highest block in the .file in which you have ptaced a data record.: The
address of this block is file- or partition-relative; that is, its numbering is related to the
address of the block that begins the file or - if you are considering a partition of a file -
begins this partition. The significance of the logical EOF pointer lies in the actions that
occur when the address is accessed during sequential processing of an input file.

UP-8068 Rev. 4 SPERRY UNIVAG.OS:/S. 14-3
BAS1c·oATA··MANAGEMENT

In DTFSD files (which have only one volume mounted online at a time), the EOF pointer
also indicates the logical end-of-volume (EOV) for the online volume. When you have
finished creating such a file and issue the CLOSE imperative macro to terminate
processing, data management stores the address of the block next after the current block
as the EOF/EOV p,olnter or enq~of-data ID (EODID) in the DTF file table and on the disk
format 2 label for the file. No speci~Ulag or notation is written in the data area at this
relative disk addre_ss. When dat.a ·mana.gement. encounters the EOF .address during input of
your file, it tran$fers control to a routine you have prepared to handle the end-of-file
condition. (This routine., called the l;OFADDR routine frbm the keyword parameter by
which you specify it in your DTF, is described in· 15.6.4; see 15.7.2 for the CLOSE macro.)
You should remembertllat, for multivolume DTFDA and DTFNI files (all volumes of which

I

are mounted and online at all times wnen you are processing), there is no EOV in the·
DTFSD ·sense and no need for an EOFADDR routine except for input DTFNI files you
process sequentially.

14.2.1. P~rtitioning. DTFNI Files

You may subdivide each DTFNI file into as many··as seve:n file partitions, each with its .own
. I

partition name, record size, bloqk size, and other characteristics. You define"the overall file
characteristics, name all the, file partitions, and describe the ft~st parti~i9n in the DTFNI
declarative macro; you theri use separate DPCA declarative macros for each partition· to
define the characteristics of the partition. Every DTF file table has a length of 242 bytes,
but the table established by the DPCA declarative macro is only 82 bytes long; it is termed
the partition control appendage. You access a file partition for processing by name, using
the SETP macro (15.7.4).

14.2.2. Subfiles in DTFNI, Partitions

You may._ fu;rtt)~:rn SJ.d3diyide:each p~rtitipn of a D!F:NI file_ into asmany as 71 serial subfiles,
which yoJ.1 must create in .sequence. (They need .not be' process,ed: sequentially, and you
may. ae<~es.s. them ·for pro~essing in any order, once yoJJ haye created them\) Unlike a file
partition, whjch may diffen iri certain chan;Jcteri.stics .from the basic" DTFNlfUe, a subfile
must not differ from the partition in any respect. Another difference between a subfile
and a partition is that a subfile has no name; you address one by using its partition­
relatiye· ser,i&I numbe~1asrrln operand of the SETS .. macro by. which you access your sL:Jbfiles
(th.e ·Sf=TS macro is. ·,describe~d in 15a.o). To help it keep abreast of your processi·ng of
subf:iles, dat~t m~nagement maintains ·subJile tables; it: reserves one tra·ck of the ·first
vo.lume ot a ·filecJor. the$e when you so ios:truct it. by specifying the SUBFILE keyword
parameter jn. YOl:J.r::,DTFNL or .DPCA declarative .macro (15.626). E:igure 14-1 depicts the
organization of a DTFNI file into partitions and subfiles.

UP-8068 Rev. 4

Characteristics defined by
DTFNI
declarative

macro
instruction;
selected by
SETP imperative

macro

Characteristics are
those of parent
partition. Supported
via SUBFILE keyword

para.n;ieter in DTFt:JI
or DPCA macros.
Accessed.(after partition is
selected by

0

SETP macro)

via SETS macro.
Created serially; may
be accessed ranpomly.

FILE
PARTITION-1

S
0

UBFILE

1

SPERRY'UNIVAC OS/3
BASIC DATA MANAGEMENT

FILE

FILE
PARTITION-2

SUBFILE

Chafacteristics defined by DTFNI
declarative macro instruction

14-4

Characteristics defined by DPCA declarative macro instructions;
selected·by SETP imperative macro

FILE
PARTITION-n
(maximum of

. 7 partitions) ·
. '

1------.----.---,

SUBFILE

------:-i
. I

..L ·.,.

SUBFILE

SUBFILE

2

I
_l

SUBFILE
n

(maximum
of 71)

SUB.FILE

2
SUBFILE
. ., 3

SUBFILE ·

4

n

(rpaximum
of 71)

Figure 14-1. Organization o/ a DTFNI Disk File into Partitiqns and Subfiles.

14.2.3. System Standard Labels for Nonindexed Disk Files

In processing your DTFSD, DTFDA, and DTFNI files, data management uses the OS/3
system standard labels for disk files. The system standard labels comprise the OS/3
standard volume label (VOL l) and seven types of disk format labels, designated format 0,
format 1, and so on, located in a directory called the volume table of contents (VTOC). Data
management accesses these standard labels to retrieve information it needs about your
file and to add informatian on certaih ·file characteristics to' them. All are described in
Appendix D.

For example, data management retrieves the VOL 1 label to find the~ location of the VTOC~
Here, it will read the first record in the VTOC' (the:format 4 label) to obtain the address of
the last active format 1 fabel and will search the· VTOC up to that address tb locate the
format 1 label for the current ti.le. It needs this format 1 label, and· any format 3 labels it
may point to, for information about the extent space and secondary allocation for the file.

If your file is an output file, data management will rewrite the format 1 label to add to it
some of the file characteristics you have defined in your DTF. If your file is currently an
input file, data management retrieves and checks these characteristics. In addition, data
management maintains a format 2 label to control file partitions and save information on
existing and newly created files.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC, DATA MANAGEMENJ

14-5

A look at Appendix D will make the foregoing clearer when you ,n~ed to go into it. For the
moment, however, it may be more important for you to know that these actions of data
management are, automc;itic and that you will rarely neeq. to be concer:r:ted with:the details.
(Section 16 has further information on management of your disk resources.)

14.2.4. Optional Standard User Labels

Unlike OS/3 ISAM, which does not allow them, the nonindexed file.processor system does
support standard user header labels (UHL) and user trailer labels (UTL). These are optional,
unblocked records, which you may process on the opening or closing of a volume with a
routine you make available to,data management by specifying its address in the LABADDR
keyword parameter in your DTF (15.6.14).

14.2.4.1 . User Header Labels

If you have UHL, data management writes these on the first track of each volume of a
DTFSD file, and on the first track of the first volume of a DTFDA or DTFNI file. You may
have no more than eight UHL, and they may not be blocked. This is their simple 80-byte
format: ·

Byte

0

4

76

0

l
Field Bytes Code

Label ID 0-3 EBCDIC

2 3

Label ID

Label Data

Description

Contains 4-byte label 'identifier':·
UHL, followed by a label number
which ranges from· 1 through 8

Label Data 4-79 User option Contains 76 bytes of user-specified
h~ader label data

T

UP-8068 Rev. 4

14.2.4.2. User Trailer Lab'els

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

14-6

Data management writes. your optional UTl dn the first track of each·volume of a DTFSD
file and on the first track of the first vol·ume 'DTFDA or DTFNI files; your UTL follow your
UHL You may have no more than eight, and they may not be blocked. This is their 80-byte
form:

_Byte

0

4

7() I
Field Bytes Code

Label ID 0-3 EBCDIC

2 3

Label ID

Label Data

T
Description

Contains 4-byte label identifier:
UTL, followed by a label number which
ranges from 1 through 8

Label Data 4-79 .. User option. Contains 76 bytes of user~specified
trailer label data

14.3. NONINDEXED FILE RECORD FORMATS

The ·nonindexed processor system handles four record formats:

• Fixed-length, blocked

• Fixed-length, unbloqked

• Variabl.e-lengtti, blogkeq

• Variabl~::.length-' .unblocke,d,

DTFSD and DTFNI files may comprise records in any of these four formats, but DTFDA files
may not be specified as having blocked records (that is, physical blocks containing more
than one logical data record, fixed- or variable-length).

UP-8068 Rev. 4 SPERRY UNIVAC OS/(3
BASIC DATA MANAGEMENT

It might be well at this point to review three OS/3 definitions:

block

14-7

The portion of a file transferred into or out of main storage by a single access.

buffer
An area in main storage for handling a block of data. Must not be smaller than
the blocks to be handled.

record
The collection of contiguous characters, designated as such to data management
by. the user, for handling as a unit. Record size must not exceed block size.

The system do~s not handle undefined records; if yolJ .do not specify the record format in
your DTF, data management assumes that your records are fixed and unblocked (that is,
you have only one fixed-length logical record in each physical block). No record may
occupy. more than o.ne block, nor may any record or block.span frorl1 one disk track to
another.

14.3.1. Fixed-Length Records

Fixed-length logical records are all of equal length for a given file or partition. When you
specify that your fixed-length records are unblocked (or leave this specification ·to data
management's default assumption, just mentioned), you do not need to specify the
RECSIZE keyword parameter because data management takes the ntfrnber of bytes per
records as being what you specified with the BLKSIZE keyword. However, when you block
your fixed-length records, you must specify both the BLKSIZE and RECSIZE keywords, and
the value of BLKSIZE must be an exact multiple of RECSIZE.

When you are using the·variable-sector SPERRY UNIVAC 8411, 84141 8424, 8425, 8430,,
or 8433 Disk Subsystems, your BLKSIZE specification governs exactly the number of
bytes of data read or written. On the other hand, if you are using the fixed-sector SPERRY
UNIVAC 8415, 8416, or 8418 Disk Subsystem and do not specify a blocks·ize that is a,
multiple of 256 bytes, the block written will always be larger than the specified block size;
this is because the system writes or reads only in multiples of 256.bytesto;the 8416 disk.
Your BLKSIZE specification controls the number of bytes treated as data within a logical
block, which is a multiple of 256. (For example, if you specify BLKSIZE,;.4QO for a file that
is to reside on an 8416 disk, data management·.will write out a block bf 5121bytes.)You
must be sure to reserve adequate buffer space for this circumstance, ·because· a 512-byte
block will be read into ·the buffer during. retrieval.

Figure 14-2 illustrates the two fixe.d-length record formats and their relationship to tir1e
1/0 area and DTF keyword parameters.

UP-8068 Rev. 4

FIXED-LENGTH, UNBLOCKED RECORD

SPERRY;UNIVAC OS/3
BASIC DATA MANAGEMENT

I log;cal record I

FIXED-LENGTH, BLOCKED RECORDS

14-8

logical record
1

logical record
2

logical record
3

logical record
4

D ___ _.•..ii . .---- D ___ _..,,..il-4---- D----1---- D _____ ,.._,

LEGEND:

D Length of data in each logical record; you specify this length only when your records are blocked, using the RECSIZE

keyword parameter in your DTF macro.

Length of 1/0 area; you .always specify this with the BLKSIZE keyword parameter of your DTF macro instruction. If.

your file is to reside on an 8416. disc, I must be a multiple of 256 bytes, and therefore the length of the block may

exceed th.e .r:iearestmultiple of fixed-record length.

NOTE:

In preparing the illustration of blocked records, the arbitrary choice was made to show four logical records per physical block. The
actual number you qhoose is a matter pf file design. Remember that blocking is. not specifiable for DTFDA files.

Figure 14-2. Fixed-Length Ph11sica/ Re.cord Formats, Nonindexed Disk Files without Keys

14.S.2. Variable-Length Records

W.hen your recor:ds are variable-length, OS/3 data management preempts the first four
bytes of every block for use as a .block descriptor word· (BDW). Data management
calculates the effective length of the block and inserts this for you into the first two bytes
of the BDW; it reserves the last two bytes of the BDW for its own use. You need not be
concerned with the BDW, therefore, other than to allow for the fact that it reduces by four
bytes the block space ·4available for your logical records.

You are concerned, however, with the first four bytes of every logical record; these are
also needed by data management for control and constitute the record descriptor word
(RDW).

Data management, again, reserves the final two bytes of the RDW for its own use, but the
first two bytes must contain the length of the record of which the RDW is a part. Before
submitting a new record to be blocked, you must place the proper binary value in this 2-
byte field.

UP-8068 Rev. 4 SPERRY UNIVAC 0$/3
BASIC DATA MANAGEMENT

14-9

When you specify that your records are variable and unblocked, data management will
write out one block for each logical record you submit, regardless of the amount of
available space remaining in the 1/0 area. If you have specified blocked ·records, data
management will pack as many complete records as possible into each block before
writing it. In either case, the length of the block it V\lrites will be the nurnbe,r1 bf bytes you
have specified with the BLKSIZE keyword parameter, unless more must be written
because of rouridup for the 8416 disk.

Unless your logical records follow some unusual pattern, there will always be varying
amounts of unused space at block ends.

You must not use the RECSIZE keyword parameter in your DTF for a file containing
variable-length records because data management expects to find the record size in the
first two bytes of the RDW.

Figure 14-:--3 illustrates the layout of both formats for variable records and relates these to
the length of the 1/0 ar~a.

VARIABLE-LENGTH, UNBLOCKED RECORD

I Ww I rdw I l~ical record I

VARIABLE-LENGTH, BLOCKED RECORDS

bdw rdw
1

logical record
1

logical record
2

_o ==t~,.__. R---_..~1 ____ • -----v ..-,;......;,.: o ===:I
.I

LEGEND:

B Block pescriptor word, four bytes. You must reserve spaGe for this in yoµr 1/0 area; it i~ also part of the block on

disc. Data management calculates the block length in bytes and writes this i11/he,first two bytes of the BOW; the last

two bytes are reserved~

R Record descriptor word, always first four bytes of each variable-length record. You determine the length of each

logical record in bytes, including this 4-byte ROW, and place it in the first two bytes of the RDW. The last two

bytes are reserved.

Fi(l,ure 14-3. Variable-Length Physical Record Formats, Nonindexed Disk Files, without Keys (Part 1 of 2)

UP-8068 Rev. 4

LEGEND (cont):

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

0 ·Vari~ble. leng!h of the dat.a portion of your r~cord~

14-10

V Length 9f the va.riable record (measured in bytes); incluqes four bytes for the ROW.You insert this number into the
first two bytes of the RDW,'ln binary form.

• D
NOTE:

Length of the physical block, both on disc and in the 1/0 area. The 1/0 area length you specify via the BLKSIZE keyword

parameter must accommodate the largest variable-length block in your file •

Unused space

Supplied by data management

·in prepadng this illu~tration of blocked records, an arbitrary choice was made to show two logical records per physical block.

The actual number you choose is a matter of file design. Remember that you may not specify blocked record format for

DTFDA files. This does not mean that 05/3 DAM does not handle the block format in which the unblocked variable-length

record is shown here and actually exists on disc. It does. The point is that DAM does not block or deblock records for you. If

what you can only descri.b~. tQ DAM via the DTFDA macro as an .unblocked record is actually a block of logical records, you

must provide for blocking and d.eblocking them yourself.

You will probably find the DTFNI file the better alternative; for one thing, the PUT and GET imperative macros may
be issued to a DTFNI file for record level access; but they cannot be issued to a DTFDA file. In random processing
of a DTFNI input file containing fixed, blocked records, data management provides you with the displacement of the
desired record in the block, loading this into fi~enameD after the R.EAD/WAffF macro sequence.

Figure 14-3. VariablfJ-Length Physical Record Formats, Nonindexed Disk Files without Keys (Part 2 of 2)

14.3.3. Optional Key Fields with Nonindexed Files

Up to this point, our discussion of record formats has ignored an optional feature you may
wantto .indude in the design of your DTFDA and DTFNI files: a leading key to identify each
physical block.

A key in the nonindexed file processor system is simply a character string, unrelated to the
disk location of a physical block, which you specify and write with the block to uniquely
distinguish that block from all others in the area of search. Search can be confined to a
single traclt or can run from starting point to end of cylinder. Key length has certain limits,
but .key cor:itent is almost ent;.rely up to you. Tti.e only rt3StriGtion. is that.no b~e of any key
may contain the hexadecimal value FF. This value may produce erratic results during
keyed retrieval. Otherwise, keys to your files may be constructed according to any scheme
meaningful in the context of your file-processing needs, although uniqueness within the
search area is assumed to be necessary because you will search for one specific block in
the area, seeking ·to identify it by its key alone. Keys may be used With DTFDA and DTFNI
files, 'arid partitions··of DTFNI files; they are not used With DTFSD files.*

*OS/3 data management does not provide you with a means for using keys in processing your DTFSD files because, in
sequentially constructed files like these, each block is already uniquely. identified by its relative location. OS/3 assumes that
your reasons for ·organizing the file for sequential access only do not include a need to identify a block by some other means.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENI.

14-11

If you are familiar with OS/3 ISAM, you might note at this point that; in the nonindexed
file processor system, you associate a key only with a physical block, whereas in ISAM
each of your logical records may have a key.

Sequential processing does not necessarily preclude the presence of keys. ·A DTFNI file or
partition, for example, which you may always process sequentially, may have· a key
associated with each block of data. If it does,. moreover, you mu~t take. the. k~y into
account when you tissue the seque.ntial access PUT' and .GET im.perative ma.cros to.process
the file. (This point is developed further in 15.7·;9.5.)

A point to note here, perhaps, is that processing a file with the OS/3 sort/merge program
is quite different from sequential processing in the data manage'menf sense. With
sort/merge, you are concerned only with sequential organization of files and use the term
key iri a very different sens·e:. a record may contain a numbef offields, located anywhere
within it, which sort/merge uses to resequence the file. Each of these fields is considered
a sorting· key; these may overlap and need not be unique. In the data management
nonindexed system, however, keys are used only .in direct access files and only with
blocks; each block has only one key, always unique, and always located in front of the
block:· · ·· · · , ·

You have noted that the length of the key has certain limits in the nonindexed processor
system: the minimum key length is 3 bytes, and the maximum is 255 bytes. Another point
to remember is that all keys in any one file must have the same length;~the only exception
to this rule is the partitioned DTFNI file, in which e_ach parti.ti()n may have its 9wn unique
key length, uniform throughout the partition. You may not include blocks without keys in a
file of keyed blocks.

When you are processing blocks with keys, you inform data management of the actt.Jal key
length it will find or place. with. your blocks qn di$.!<.by specifying the KEYLEN keyword
parameter in the DTFDA, DTFNI, or DPCA declarative macro. .

The various forms of the READ .and WRITE imperative macros are designed to ghte you a
useful set of options for retrieving records by key and writing or updating the key and data
portions; these are described in Section 15.

The effects of keys on the physical block length and, consequently, on the layout of your
blocks on disk and in the 110 buffer are illustrated in Figure 14-4 for both fixed and
variable records.

UP-8068 Rev. 4

FIXED-LENG'fH, UNBLO~KED RECORD

key field

K

FIXED-LENGTH, BLO.CKl;D RECORDS

k~y field

...:..

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

logical record

D

logical rec?rd 1

;

I
,.,

· J

lo.gtcal record2

r-==-K ____ o-__,...I~•-- o

VARIABLE-Ll;NGTH, UNBLOCKEI;> BECORD

I key field I bdw I rdw logical record I

VARIABLE-LENGTH, BLOCKED RECORDS

key field bdw rdw
1

logical record
1

rdw
2

logical record
2

14-12

tK •I 4
B -t-A .1. D=± R~I· v~ v

Figure 14-4. Keyed Fixed- and Variable-Length Physical Record Formats, Nonindexed Disk Files (Part 1 of 2)

. I

UP-8068 Rev. 4

LEGEND:

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

14-13

K Key field, supplied by you. Minimum 3 bytes, maximum 255. All keys in same partition or file must have same

length. Notice that only a block has a key; individual records within a block do not.

B Block descriptor word, always four bytes. You reserve space for this at the head of the block, after the keyfield; data

management calculates and inserts block length into first two bytes. Last two bytes are reserved.

R Record descriptor word, always the first four bytes of your variable-length record. You determine the length of each

logical record in bytes, including this 4-byte ROW, and place it in the first two bytes of the ROW. The last two

bytes are reserved.

0 Length of the data portion of your logical record; varies for variable-length records. Always the same for each fixed­

length record throughout file.

V Length of a variable record; includes four bytes for the ROW. You insert this number (measured in bytes) into the

first two bytes of the ROW, in binary form.

• D
NOTE:

Length of the physical block, both on disc and in your 1/0 area. The 1/0 area length you specify via the BLKSIZE

keyword parameter must accommodate the largest physical block in a file of variable-length records .

Unused space, if any

Supplied by data management

In preparing these illustrations of blocked records, an arbitrary choice was made to show two logical records per physical
block, in both the fixed- and variable-length formats. The actual number you choose is a matter of file design. You may not
specify that records are blocked for DTFDA files.

Figure 14-4. Keyed Fixed- and Variable-Length Physical Record Formats, Nonindexed Disk Files (Part 2 of 2)

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA :MANAGEMENT

15-1

15. Nonin'dexect File Acc·ess Methods:
Futictio·n- and', O'peration

15.1. GENERAL

This section describes the nonindeked file processor system used with OS/3 data
management. The. nonindexed file processor system is a generalized input/output control
system (IOCS) that enables you to create and maintain data files on au disk subsystems
supported by.OS/3 and to,process these files in a sequential order, a 'random order, or by
a combination of both sequential and random file processing techniques. It offers standard
techniques for processing sequential ,access method (SAM) files and-direct access method
(DAM) files, as well as enhanced capabilities for processing nonindexed files by a
com bi nation of both methods·.

The nonindexed processor system: operates on disk files that you describe to OS/3 data
management through DTF (define the file) declarative macroinstructions:

• SAM files are defined by the DTFSD declarative macro;

• DAM files by the DTFDA declarative macrQi and

• nonindexed files through the DTFNI macro.

You provide descriptive information to the declarat:ive macros by specifying the keyword
parameters associated with each. From these, data management builds the appropriate
DTF file table for the type of file you have selected. .,..._

You perform 1/0 operations upon your file by issuing imperative macroinstructions in your
basic assembly language (BAL) program. These, providing the essential interface between
your :program and OS/3 data management, are what you use to 'acc_ess, and generate data
within your' file and to position it for more effective proces'sing. Data management
communicates directly with the resident systems access technique (SAT) of the OS/3
supervisor for access to the physical input/o'utput control system (PIOCS).

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT.

15-2

The transient routines invoked by the OPEN macro, for example, complete setting up your
DTF file definition tables and perform certain checks to ensure the integrity of your
definition. Once you have opened a file, you may then access it via the imperative
processing macros (GET,. PUT, CNTRL, READ, WRITE, etc) .. You terminate your file
processing by issuing a CLOSE macro and can ·then do no further processing on the data
in the file until you reopen .it J?Y issuing another Q·F:?,FN ·macro.

When you are processing files sequentially, the GET macro reads data blocks and delivers
individual records to you, one at a time. You output records to the disk file with the PUT
macro, which you may also use to update records. Data management provides buffering
via blocked records and automatically blocks and deblocks them for you. You may overlap
your 1/0 with your sequential processing by specifying a work area, or a second 1/0 area,
in addition to the one 1/0 area that is always required for each file. As is true throughout
OS/3 data management, your 1/0 areas must be half-word aligned.

For randomly processing files, data management offers you the capability to erase data
from an expired or newly allocated file, to create blocks in a file, or to expand a file by
generating data blocks in space newly allocated to it You retrieverecords via the. READ
macro and output them via the WRITE macro; ·each 'Of these macros has several forms,
which you specify as required, to access a block by its :relative disk address, or by a key to
be matched via search and an .address for starting the search.

You may subdivide each nonindexed file, defined by the DTFNI declarative macro, into as
many as seven file partitions, each having its own 1/0 area and characteristic block size,
record size, and key length. Each partition of a DTFNI file may be further subdivided into as
many as 71 serial subfiles. You may gain access to: the specific partition and subfile
required by issuing special imperative macros (SETP, SETS, for example) provided for this
purpose.

For all three file types, OS/3 data management gives you the option of ,generating and
processing your own standard user header and trailer labels. You may accompish this by
coding a special user label processing routine, which receives control from the OPEN and
CLOSE transients. You should remember that user standard labels are associated with
your file and are not maintained at. the partition or subfile level. Your label processing
routin~, furthermore, may not issue any of the file processing imperative macros, although
a special macro, LBRET, is available for use in this routine.

It is important for you to keep in mind, as you stucjy this section, that differences exi$t
between OS/3 data management ~nd the data manag:ement of SPERRY UNIVAC or other
systems you may be a~quainted with. Another point t,o remember is that some macros are
used for other types of OS/3 data management files than those described in this sectionr
with slight differences. in .format or effect. For: exa.mple, the imperative macro SETF (15. 7.8)
is also used for magnetic tape files defined by the DTFMT declarative macro, but in its tape
application has no UPDATE positional parameter.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-3

Following functional descriptions of each of the three file processing methods, this section
of the manual presents a discussion of the DTF declarative macros. A summary of the 37
keyword parameters (Table 15----7) and a description of their use follow these. The next
paragraphs present a summary of the 18 imperative macros used in processing your files,
and a detailed description of the use of each follows the summary. The final paragraphs of
this section discuss the error and exception handling features of the nonindexed file
processor system. You will find numerou$ coding examples throughout.

15.2. FUNCTION DESCRIPTION, OS/3 SAM

As you have just noted, you use the DTFSD declarative macro to define disk files that data
management is to process as sequential .access files. During your processing of DTFSD
files, ·you should keep in mind that mu.ltivolume DTFSD files are maintained in single­
volume-mounted mode, only the current volume being online at any . one time. Data
management takes care of communicating with the operator to request ~nd validate the
mounting of subsequent DTFSD volumes automatically. Files defined as sequential access
by the DTFSD declarative macro may contain fixed- or variable-length records, blocked or
unblocked.

For input operations, you use the GET macro; data management reads the input data and,
deblocking it automatically if required, delivers the records, one at a time, to you~ For
output, you deliver records to data management one at a time via the PUT macro; when a
full block of records is ready, data management writes it to disk. You may process input or
output records in a work area or directly in the 1/0 area.

If you use a work area, data management moves an output rec9rd from the work area to
the J/O area; it moves an input record from the 1/0 area to the work area~ If your records
are blocked, or if you provide two 1/0 areas without a work area, you must, supply an
index register (via the IOREG keyword parameter of your DTF), into which data
management places the starting address of the current record position in the 1/0 area.

You may overlap your .1/0 operations with your other processing if you provide one or
more work areas or a second 1/0 area in addition to the one 1/0 area you must always
provide.

When you are processing variable-length, blocked records in the .output .mode and do not
provide a work area, you must yourself test whether the next record will fit in the space
remaining in the current output area. When it :does not, you issue a TRUNC imperative
macro to output a truncated block to disk. Data management provides you with the.
number of bytes remaining in the 1/0 area in a register that you specify via the VARBLD
keyword parameter of your DTFSD declarative macro.

When you are processing input records from a ·DTFSD file, you may reach a point where
you. want ~o omit processing the records r1emaining in the current block or volume and
b~gin V\(ith the first record of the next. You. may accomplish either of these actions by
issuing the RELSE .imperative macro for skipping the remaining records in the current
block, or the FEOV macro for skipping the remain.der of the· current .volume. ·

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-4

When necessary, you may use the PUT imperative macro to update records you have
retrieved, but you may not change their record length. You issue the PUT macro for the
record to be updated following the GET macro by which ·it is retrieved.

In addition, you may extend a DTFSD file beyond the current end-of-file (EOF) address of
the last volume of the file. There are two ways of doing this: in the update mode, you
provide for this extension by coding it in your EOF routine; for output files, you specify the
extend mode of processing in the LFD job control statement of the device assignment set
by which you allocate the file. (The details of t~ese two niet.hods are developed under the
discussion of the PUT macro; see 15.7.9.2 and 15.7.9.3.)

To use a DTFSD file as a disk work file, creating and then processing it under the same
DTF file descriptor, you initially specify TYPEFLE=INOUT in· the DTF, open the file for
output ·and create it, and then close it. Changing the file processing direction to input via
the SETF imperative macro, you then reopen the file, using the same DTF, to retrieve and,
optionally, update your records. The details of this method are developed under the
discussions of the SETF macro (15. 7.8) and the PUT. macro (15. 7.9.1).

15.3. FUNCTIONAL DESCRIPTION, 05/3 DAM

You define DAM filesj which you process at random with OS/3 data management, by
-+-- means of the DTFDA declarative macro.

Another way in which OS/3 DAM differs from OS/3 SAM and OS/3' nonindexed file
access method is that DAM supports fixed- and variable-length records in unblocked
format only, whereas the other two also support blocked records. Consequently, you have
no need of.a work area or a second 1/0 area, as you ·do for processing sequential blocked
records or for overlapping 1/0 with processing; and therefore the DTFDA declarative macro
does not have IOAREA'2., IOREG, RECSIZE, rior WORKA keyword parameters associated
with it.

A third· point of difference to remember between SAM and DAM is that all volumes of a
multivolume DAM file are kept online when you are processing; there is no EOF concept
in the SAM sense and consequently no EOFADDR keyword parameter associable with the
DTFDA declarative macro, nor is there a combined input/output file type
(TYPEFLE=INOUT), or need~for an UPDATE keyword parameter.

OS/3 DAM provides you with a means.for creating records ih a file, erasing data.froman
old or newly allocated file, and expanding a<file by generating ·records in space newly
a !located to it.

The input work horse for direct access files is the block-level READ imperative macro,
which has two fornis (READ,KEY and READ,ID}for accessing a block through a· search on
key (starting the search at an address you specify) and for accessing a block directly at a
relative disk address (ID) that you provide to data management~ Yo·u indicate to data
management which 'Of:: these fo'rrns of the REA(J macro you intend to use by specifying the·
READKEY and READID keyword parametes in your DTFDA declarative, and yO'u provide

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-5

data management with READ-related information in a number~ of other DTF 'keyword
parameters, discussed in 15.7.14. To give data management time to locate the ·block you
want and to move it to the 1/0 area, you must issue a WAITF imperative· macro after every
,READ macro issued to a DTFDA file, ·before you may .. issue another imperative to the: file.
This :assures .you that the d~ta. transfer has taken place as specified before you proceed
further (15.7.16).

Another imperative macro for DTFDA files. that must be paired with· a following WAITF
macro -'---- and for the same reasons -'---- is the direct access ocitput processing macro,
WRITE, which, like READ, is also a block-level macro. The ·WRITE macro has.five forms
that may be used with each other and with the two READ macro forms to create, update,
and, erase direct access disk files. Two of these forms (WRITE,RZERO and
WRITE;AFTER,EOF) do not actually output a block· to disk. You·.use these to reposition the
·disk:· access arm to a· .·new ·track, or fo 1record the ID returned after the last block was
·written as the end of .data in the file. These forms of the WRITE command, and the WRITE-

' related· DTFDA .keyword parameters, are· developed in detail in' 15;7.11 and 15.6.

15.4. FUNCTIONS OF THE OS/3 NONINDEXED FILE ACCESS METHOD

The logical ·IOCS processor, which processes nonindexed files you define with the DTFNI
declarative macro, will alsb process sequential files defined by the DTFSD· macro and
.direct access files you de.fine with the DTFDA macro. It supports all OS/3 random access

.·file processing imperative macros and all the sequential processing macros; however, only
files you define by the DTFNI macro may be processed by the combination of both direct
and sequential processing techniques. Similarly, it is important to remember that only to
DTFN/ files may you issue the following five· imperative macros~ NOTE, POINT, POINTS,
SETP, and SETS.

The DTFNI declarative macro has a number of unique .keyword parameters you will specify
to realize other extensi0ns to file ptoce:ssing techniques which apply .to ·nonindexed disc
files under OS/3 data management: the· PCA and SUBFILE! keyword parameters, for
example, by which you specify that your DTFNI file is subdivided into file partitions and
that these, in turn, are subdivided into partition subfiles. You will note also the SIZE and
UOS (unit of stQre) keyword parameters, which you use for dynamic ·.allocation and
extension of DTFNI files to the partition level.

You may subdivide a DTFNI file into as many as seven file partitions, each ·of which has·iits
own 1/0 area or areas and its own characteristic record size, block size, and recotd'format.
Each partition you may further subdivide::ihto a ·maximum of 71 suofiles, having the same
characteristics as the partition of which' it is a part. You. define. a DTFNI file as being
partitioned by specifying two or more PCA keyword parameters in the DTF and by coding a

· DPCA (define partition control appendage) declarative macro for the second through the
seventh partitions of the file. In the DPCA ·declaratives, you specify a keyword parameter
for each· aspect in which the partition diffe'rs ·from the parent DTFNI file; for this reason,
you do not prepa·re a separate DPCA description for the first partition - it is already fully
described· in the DTFNI macro.~

*It is not mandatory, of course, that each partition of a DTFNI file have different record lengths or formats: however, even
though a partition may be the same as the parent DTFNI file in all other respects, if it is a partition it has its own separate
name, blocksize, and 110 area and requires its own DPCA declarative macro for separate identity and accessibility.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-6

When you open the DTFNI file for processing, only the first partition is set active and
available to you, for processing; to gain access to som·e other partition, you issue the SETP
imperative macro to the file and specify the partition you want to process by name.
Subsequent processing is carried out on this partition until you select another by issuing
another SETP macro. When you have selected the partition you want. to process, you issue
a SETS imperative macro to specify whichever subfile it is you want to process, having
previously indicated that data management is to support subfiles for this file via the DTFNI
or DPCA keyword parameter SUBFILE. These procedures are detailed further in the
descriptions of the DTFNI and DPCA declaratives (15.5.3 and 15.5.4) and the SETP and
SETS imperative macros (15.7.4 and 15.7.5).

OS/3 data management will allocate and extend DTFNI space automatically for you, ,as
you need it, using the disk space management routines of the OS/3 supervisor and taking
its cues from both your job,control statements and your DTFNl/DPCA keyword parameters.
It satisfies the space requirement for the first partition from the first available area of the
extents you specified in the device assignment set of job control statements by which you
initially allocate the file; to the first partition it allocates that percent of the total file
allocation you have specified in the SIZE keyword parameter of the DTFNI declarative
macro.

You use the UOS keyword parameter to indiate the percentage of additional space data
management will dynamicaUy allocate to this partition, should you ever issue a WRITE or
PUT output imperative macro referencing a block or record that lies beyond the current
maximum relative block address for the partition. The UOS keyword parameter specifies
the percentage. of the secondary allocation data management rnay assign. (You will have
specified the total number of tracks or cylinders by which the file may be extended
dynamically in the third positional parameter of the EXT job control statement in your
device assignment set for the file.)

Further details on ·dynamic extension are given in descriptions of the SIZE and UOS
keyword parameters (15.6.24 and 15.6.29); each DPCA declarative macro has its unique
SIZE and UOS keyword parameters. You should also remember that DTFNI files will not be
dynamically extended beyond the volumes on which they initially reside.

Should you ever want to expand a growing DTFNI file beyond the physical volumes you
originally allocated to it (assuming that these volumes are sti.11 full after your efforts to
reorganize the file and scratch expired or unused portions of it), you will need to copy the
file sequentially off to tape or other disk devices, using one of the OS/3 data utility
programs, redefine the file with a new DTFNI macro, reallocate this to new devices, and,
copying it back, effectively create a new file. (The OS/3 data utility programs are described
in the data utilities user guide, UP-8069 (current version).

Other enhancements that apply only to processing your DTFNI files are the NOTE and
POINT imperative macros. You use the NOTE macro to access the partition-relative
address of the current record or block, which data management places in the. DTFNI file
table for you to reference. You may then ·use the current address for file positioning via
the POINT macro, which updates the current record address in the DTF as you direct; your
subsequent file processing proceeds from this updated address. (Further details are
developed on the NOTE and POINT macros in 15.7.17 and 15.7.18.)

UP-8068 Rev. 4 SPERRY UNIVAC. OS/3
BASIC. DATA MANAGEMENT

15-7

The imperative macro POINTS is useful to you for initializing the relative block address of
the current partition; you select the current partition, as previously described, with the
SETP macro. (The POINTS macro is fully described in 15.7.6.)

15.5. NONINDEXED DISK FILE DECLARATIVE MACROS

You will use the four DTF declarative macros described in the following paragraphs to
define disk files and partitions to OS/3 data management. Note that, although the DTF ...,._
keyword parameters listed in the following statement formats are presented in alphabetic
order, you may code these in any convenient order, just so you separate them with
commas.

Following the statement formats are tables summarizing the required and optional
keyword parameters; the detailed descriptions of the keyword parameters are presented in
15.6 and a table recapitulating all of them follows the descriptions. Except for the LACE
keyword (15.6.8) and the LOCK keyword (15.6.36), the keywords are described in
alphabetic order.

Refer to the Preface of this manual to review OS/3 statement conventions, and to 1.6 for
a general discussion of DTF macros and BAL rules for coding their operands.

In the declarative macroinstruction format delineations that follow, a comma is shown
preceding each keyword parameter except the first, to remind you that all keywords coded
in a string must be separated by commas. However, a comma must not be coded in
column 16 of a continuation line, nor follow the last keyword in the string. Refer to the
coding examples that follow.

UP-8068 Rev. 4

DTFSD

SPERRY UNIVAC OS/3
BASIC DATA ,MANAGEMENT

15.5.1. Defining a Sequential Disk File (DTFSD)

Function:

15-8
Update C

You will use the DTFSD declarative macro instruction to define input and output disk
files that you intend to process sequentially. The DTFSD macro establishes a 242-byte
file table. Table 15-1 summarizes the DTFSD keyword parameters. These are
described in detail in 15.6. A coding example follows Table 15.;_1.

Format:

LABEL OOPERATIONll

filename DTFSD

OPERAND

[
ACCESS= l ~~. gRlJ

SRDO ·
SRO

BLKSIZE=n

,EOFADDR=symbol

[,ERROR=symbol]
,I OAR EA 1=symbol
[,IOAR EA2=symbol]
[,IOREG=(r)]
[,LABADDR=symbol]
[,LACE=n]
[,LOCK=NO]
[,OPTION=YES]

[,RECSIZE=n]

[,SAVAREA=symbol]
[,TRLBL=YES]

(continued)

UP-8068 Rev. 4

LABEL

Keyword

ACCESS*

-c:

BLKSIZE*

EOFADDR

ERR OPT

ERROR

IOAREA1

IOAREA2

IOREG

LABA DOR

LACE*

LOCK

OPTION

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-9
Update C

t.OPERATION t.

DTFSD (cont)

OPERAND

[{
INOUT }]

,TYPEFLE= :ET

[,UPDATE= YES]
[,VARBLD=(r)]
[,VERIFY=YES]
[,WORKA=YES]

Table 15-1. Summary of Keyword Parameters for DTFSD Macro Instruction (Part 1of2)

Files
Specification Remarks

Input Output In/Out

EXC x x x Request exclusive use of file for
associated DTF

EXCR x x x Request exclusive use of file for
associated DTF while permitting read
use for other jobs

SAD x Request read function for file
associated with DTF while permitting
read/write for other jobs

SRDO x Request read function for both files
associated with DTF as well as other
jobs. No writing permitted.

n=maximum block size R R R The maximum block size, in bytes

symbolic label A R Identifies EOF routine

IGNORE x x x !9.!iore pari!Y_ error
SKIP x x x Bypass parity error

symbolic label x x x Address of user's unrecoverable
error routine

symbolic label R R R -Address of 1/0 area

symbolic label x x x Address of alternate 1/0 area

(r)=general register x x x Requfred if records are processed in the
1/0 area and records are blocked

symbolic label of user's x x Required if user header or trailer labels
label routine are to be created

x Required if user header or trailer labels
are to be retrieved

n=lace factor x x x Specifies factor for record
interlace

cc

NO x x x Specifies that file lock is not to be set
on a lockable file at OPEN, permitting
read-only access

YES x Specifies file not always to be processed

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-10

Table 15-1. Summary of Keyword Parameters for DTFSD Macro Instruction (Part 2 of 2)

Files
Keyword Specification Remarks

Input Output In/Out

RECFORM* FIXBLK y y y For fixed-length, blocked records

x x x For fixed-length, unblocked records;

assumed

VARBLK y y y For variable-length, blocked records

VARUNB y y y For variable-length, unblocked records

RECSIZE* n=number of bytes x x x For fixed-length, blocked records
record

SA VAR EA symbolic label x x x Specifies address of save area for

contents of general registers

TRLBL YES x x x Read or write user trailer labels when

CLOSE issued to file. (Specify LABADDR
also.)

TYPEFLE INOUT A l For 1/0 files

x For input files; assumed

OUTPUT R For output files

UPDATE YES x x Required if records are to be written
back to the same location from which

they were read

VARBLD (d=general register x x Required for variable-length, blocked
records built in output area; register

contains number of bytes left in output area.

VERIFY YES x x x Check parity after records have been written.

WORKA YES x x x Process records in work area.

LEGEND:

Assumed parameter, if none specified A
x

Required
Optional Parameter may be changed on DD job control statement.

Y One option required

Example:

LABEL fiOPERATION.6 OPERAND
10 16 72 80

This example defines a file ACCNTS that is a SAM input file (by TYPEFLE default
option). The required 1/0 area is designated symbolically as READ. The block size is
800 bytes, record size is 100 bytes, and records are fixed and blocked. An end of file
routine FINIS has been specified to handle that occurrence. No special label handling
or error routines are provided; therefore, errors will return inline.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15.5.2. Defining a Direct Access Disk File (DTFDA)

Function:

15-11
Update C

DTFDA

You will use the DTFDA declarative macroinstruction to define files that are to be
randomly processed. The DTFDA macro establishes a 242-byte file table. A summary
of DTFDA keyword parameters is presented in Table 15-2; these are described in
detail in 15.6. A coding example follows the table.

Format:

LABEL ~OPERATION~

filename DTFDA

OPERAND

[ACCESS= g~~: lJ
[AFTER=YES]
,BLKSIZE=r:i
[,ERROR=symbol]
[,IDLOC=symbol]
,IOAREA 1=symbol
[,KEYARG=symbol]
[,KEYLEN=n]
[,LABADDR=symbol]
[,LACE=n]
[,LOCK=NO]
[,R EADID=YES]
[,READKEY=YES]

[
,RECFORM= {·FfXUNS }]

VARUNB

[,RELATIVE= { ~ } J
[,SAVAREA=symbol]

,SEEKADR=symbol

[,SRCHM=YES]
[,TRLBL=YES]

(continued)

UP-8068 Rev. 4

LABEL

Keyword

ACCESS*

AFTER

BLKSIZE*

ERROR

IDLOC

IOAREA1

KEYARG

KEY LEN*

LABA DOR

LACE*

LOCK

READID

READKEY

RECFORM*

RELATIVE

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-12
Update C

b.OPERATION ti

DTFDA (cont)

OPERAND

[
,TYPEFLE= {•INPUT• }]

OUTPUT

[,VERIFY= YES]
[_!WRITEID=YESJ
[,WRITEKEV=YES]

Table 15-2. Summary of DTFDA Keyword Parameters (Part 1of2)

Files
Specification Remarks

Read Write

EXC x x Request exclusive use of file for
associated DTF

EXCR x Request exclusive use of file for
associated DTF while permitting read
use for other jobs

SAD x Request read function for file
associated with DTF while permitting
read/write for other jobs

SRDO x Request read function for both files
associated with DTF as well as other
jobs. No writing permitted.

YES x A capacity record on each track is assumed.

n=maximum block size 'R R Length of IOAREA 1, in bytes

symbolic label x x Address of user error routine

symbolic label x x Address of field containing the record ID

symbolic label R R Name of 1/0 area defined by user

symbolic label x x Address of field for key used for key search

n=key length x x Length of the key in bytes

symbolic label x x Address of user label handling routine

n=lace factor x x Specifies factor for record interlace

NO x x Specifies that file lock is not to be set
on a lockable file at OPEN, permitting
read-only access.

YES x Record referenced by ID

YES x Record referenced by KEY

"-llK~tllf' y y For fixed-length records

VARUNB y y Variable-length records

R x x Relative addressing - record

T x x Relative addressing - track

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-13

Table 15-2. Summary of DTFDA Keyword Parameters (Part 2 of 2)

Keyword Specification
Read

SAVA REA symbolic label x

SEE KA DR symbolic label R

SR CHM YES x

TRLBL YES x

TYPEFLE l*~ut y

OUTPUT y

VERIFY YES

WRITEID YES

WRITEKEY YES

LEGEND:

R Required
X Optional

Y One option required
Assumed parameter. if none specified
Parameter may be changed on DD job control statement.

Example (DAM Input File):

LABEL .'.'.OPERATIOND OPERAND
10 16

Example (DAM Output File):

Files

Write

x

R

x

x

y

y

x

x

x

Remarks

Specifies the address of a save area for
contents of general registers

Address of track reference field

Search multiple tracks. (If specified, file

must be allocated on a cylinder basis.)

User standard trailer labels are to be read
or written when CLOSE issued to file. Specify
LABADDR also.

Check standard labels

Write standard labels

Records are to be check-read

Output record is located by means of its
relative disc address (ID).

Output record is located by key.

COMMENTS

ID

x
x

I 1

ill

UP-8068 Rev. 4

DTFNI

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-14
Update C

15.5.3. Defining a Nonindexed Disk File (DTFNI)

Function:

You will use the DTFNI declarative macro instruction to define disk files that are to be
processed sequentially, randomly, or by a combination of sequential and direct access
processing techniques. The DTFNI macro establishes a 242-byte file table. See 15.5.4
for a description of the DPCA declarative macro, which you use to define the second
and all subsequent partitions of a partitioned DTFNI file. Table 15---'3 summarizes the
DTFNI and DPCA keyword parameters; coding examples follow the table. Keyword
parameters are detailed in 15.6.

Format:

LABEL LlOPERATION Ll

filename DTFNI

OPERAND

[ACCESS= u~~: lJ
[AFTER= YES]
,BLKSIZE=n

[,ERROPT= g~7~RE} J
[,EOFADDR=symbol]
[,ERROR=symbol]
[,IDLOC=symbol]
,I OAR EA 1=symbol
[,IOAREA2=symbol]
[,IOREG=(r)]
[,KEY ARG=symbol]
[,KEVLEN=n]
[,LABADDR=symbol]
[,LACE=n]
[,LOCK=NO]
[,OPTION=VES]
[[,PCA 1 =symbol] , ... , [PCA7=symbol]]
[,READI D=VES]
[,READKEV=VES]

UP-8068 Rev. 4

LABEL

SPERRY UNIVAC OSY3
BASIC DATA MANAGEMENT

b. OPERATION b.

DTFN I (cont)

OPERAND

[

,RECFORM= ~ ~~?~K l J
l VARUNB

[,RECSIZE=n]

[,RELATIVE;; { ~} J
[,SAVAREA=symbol]
,SEE KADR~sy111bol
[,SRCHM=YES]
[,SIZE=n]
[,SUBFILE= YES]
[,TRLBL=YES]

[
. ,TYPEFLE={. ·· .. 1.·N····o·u· T } J

INPUT
OUTPUT

[,UOS=n]
·[,UPDAJE;::VES] ,
[,V~RBl-D.~(r)]
hVEHIFY=YES]
[,WORKA=YES]
[,WR IT:EI D=YES]
[,WR·ITEl<EY=YES]

15-15

UP-8068 Rev.4

DPCA

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15.5.4. Defining a Partition Control Appen~age (DPCA)

15-16

...,.... When you have a DTFNI file that is to contain two or more partitions, you use a DPCA
declarative macro to define separately the second and each of the subsequent partitions
(that is, partitions 2 through 7). D~scriptive information for the first partition (and for the
parent file as a whole) is contained' in tl;le 242-byte DTFNI file table. The DPCA declarative
macro sets up an auxiliary file tabie, calleda partition control appendage, which defines
the aspects in which each partiti:on differs from the first and occupies only 82 bytes of
main storage.

Notice that the label of each DPCA macro is partition-name; this is the symbolic label of
the partition you have spec,ifi,ed ir;i the corresponding PCA keyword parameter of the parent
DTFNI macro.

You should also note the absence of aWstrlctly file-relative keyword parameters from the
DPCA macro: ERROPT, ERROR,· and LABAbOR, for example. The reason for this is to
simplify matters for you: OS/3 data management relies upon the DTFNI file table for all
file-relative keyword parameters, ~nd you eh not specify these again in the DPCA macros.

1 ' V;

Following the format statemerit, Table:c.15:....,..3 summarizes the DTFNI and the DPCA
keyword parameters; these are·,~ ih turri,.detailed in 15.6. Coding examples follow the table.

Function:

You use the DPCA macro to define the second and all subsequent partitions of a
multipartitioned DTFNI file. A maximum of seven partitions may be defined in all. The
DTFNI file table contains descriptive information for the first partition. Separate DPCA
macros establish partition control appendages defining each of the others (partitions 2
through 7).

Format:

LABEL L'.lOPERATION Li

partition-name DPCA

OPERAND

BLKSIZE=n
[,EO FADD R=symbol]
,IOAREA 1=symbol
[,IOAREA2=symbol]
[,IOR EG=(r)]
[,KEYARG=symbol]
[,KEYLEN=n]
[,LACE=n]

UP-8068 Rev. 4

LABEL

Keyword

ACCESS*

AFTER

BLKSIZE*

EOFADDR

ERROPT

ERROR

IDLOC

IOAREA1

IOAREA2

IOREG

KEYARG

KEY LEN*

LABADDR

LACE*

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-17
Update C

~OPERATION~

DPCA (cont)

OPERAND

[

,RECFORM= l•,,F,IX'B'''',L','K,,,,',', lJ FIXUNB
VARBLK
VARUNB

[,RECSIZE=n]
[,SIZE=n]
[,SUBFI LE=YES]
[,UOS=n]
[,VARBLD=(r)]
[,WORKA=YES]

Table 15-3. Summary of DTFNI and DPCA Keyword Parameters (Part 1of3)

Used Files
Specification for Remarks

DPCA Input Output In/Out

EXC No x x x Request exclusive use of file for
associated DTF

EXCR No x x x Request exclusive use of file for
associated DTF while permitting read
use for other jobs

SAD No x Request read function for file
associated DTF while permitting,
read/write for other jobs

SRDO No x Request read function for both files
associated with DTF as well as other
jobs. No writing permitted

YES No x x A WRITE, AFTER macro will be issued.

n=maximum block size R R R R Length of IOAREA1, in bytes

symbolic label x x x x Address to which control is passed when end
of sequentially processed file is reached

IGNORE No y y y Ignore parity error
SKIP No y y y Bypass parity error

symbolic label No x x x Address of user error routine

symbolic label No x x x Address of field containing the record ID

symbolic label R R R R Name of 1/0 area defined by user: always
half-word aligned

symbolic label x x x x Name of alternate 1/0 area

(r) general register x x x x Required if records are processed in the
I /O area and records are blocked

symbolic label x x x x Address of field for key used for key search

n=key length x x x x Length of the key in bytes

symbolic label No x x x Address of user label-handling routine

n=lace factor x x x x Specifies the factor for record interlace

UP-8068 Rev. 4

Keyword

LOCK

OPTION

PCAn

READ ID

READ KEY

RECFORM*

RECSIZE*

RELATIVE

SAVAREA

SEEKADR

SIZE*

SRCHM

SUBFILE

TRLBL

TYPEFLE

UOS*

UPDATE

VARBLD

VERIFY

SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-18

Table 15-3. Summary of DTFNI and DPCA Keyword Parameters (Part 2 of 3)

Used Files
Specification for Remarks

DPCA Input Output IN/Out

NO No x x x Specifies that file lock is not to be set
on a lockable file at OPEN, permitting
read-only access

YES No x x x Specifies an optional file

symbolic label No x x x Specifies the address of partitions (1 to 71
used to subdivide a file

YES No x x A READ, ID macro will be issued.

YES No x x A READ.KEY macro will be issued.

FIXBLK y y y y Fixed-length, blocked records

y y y y Fixed-length records, unblocked

VARBLK y y y y Variable-length, blocked records

VARUNB y y y y Variable-length records, unblocked

n=number of bytes
in record x x x x Specifies record size

R No x x x Relative addressing record

T No x x x Relative addressing track

symbolic label No x x x Specifies save area for contents of general registers

symbolic label No R R R Address of track reference field

n=percent x x x x Specifies percentage of total file allocation to
be initially assigned to partition

YES No x x x Search multiple trac.ks. (If specified, file must be
allocated on a cylinder basis.)

YES x x x x Support division of file partitions into subfiles

YES No x x x Read or write user trailer labels when CLOSE
issued to file. (Specify LABADDR also)

INOUT No R This file may be used as either an input file or
an output file.

No x Read and check standard labels for file. If file is
processed sequentially, the PUT macro may not be
issued for this file unless UPDATE=YES has also
been specified in the DTF.

OUTPUT No R Write standard labels for th·s file. If file is
processed sequentially, the GET macro instruction
may not be issued.

n=percent x x x x Specifies percentage of secondary allocation to
be used for extending partition

YES No x x x Write records back into same location from which
they were read.

(r)=general register x x x x Required for variable-length, blocked records that
are built in output area; register contains number of
bytes left in output area.

YES No x Records are to be check-read.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-19

Table 15-3. Summary of DTFNI e1nd Df{:/J. Keyword Parameters. (Part 3 of 3)

Used Files
Keyword Specification for Remarks

DPCA INPUT OUTPUT IN/OUT

WORK A YES Yes x x x Process records in work area
..

WRITEID YES No x x ft. WRITE, ID macro will l;>e issued

WRITE KEY VES No ,·. x x A WRITE, KEY ma.era will be issued

LEGEND:

R Required
X Optional
Y One option requi~ed

Assumed parameter, if none specified

Parameter may be changed on DD job control s.tatem~nt.

Exampl~s of DTFNI declarative macros used to define a rionpartitioned, nonindexed file and a
nonindexed file containing two partitions.

·Example:

LABEL ~OPERATION~ OPERAND
10 16 72 80

J<TI!r.

I I

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Examples of DPCA declarative macros used to define partitions of a multipartitioned DTFNI file:

LABEL .6.0PERATION.6. OPERAND
10 16 72 80

15.6. KEYWORD PARAMETERS FOR DECLARATIVE MACROS

The following paragraphs describe each of the 36 required and optional keyword
parameters used as the operands of the declarative macros that are part of the nonJndexed
file processing $ystem of OS/3 data management. These declarative macros include the
DTFSD, DTFDA, DTFNI, and DPCA declarative macros, which you use to define your disk

....,.. files and partitions. The keyword parameters are presented in alphabetic order for ease of
reference. Subsection ,l5.6~~36 lists certain nonstandard forms of these parnmeters that
·are supported by OS/3 data management so that existing programs prepared for other
systems may be run under OS/3 with minimum change.

Table 15-7 shows which keyword parameters are used with which macro; if you code a
keyword parameter for a declarative macro that does not support it, this error will be noted
at ass~mbly time, and flagged in your assembly IJSting with 'an appropriate, self­
explanatory error message.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15-21
Update C

The following descriptions also include notations as to which declarative macros support
each keyword parameter and point out any difference in meaning of a keyword when it is
applied to the various file definitions or processors.

15.6.1. Specifying File Accessing Options (ACCESS)

For a description of the ACCESS keyword parameter, see 11.4.1.

Records added by the writer (ACCESS=EXCR) to a file, in a shared environment that
permits one writer and any number of readers, are not available to the reader
(ACCESS=SRD). Once the writer closes the job, any added records will be available to
users who subsequently open the file.

15.6.2. WRITE,AFTER or WRITE,RZERO Macro Issue (AFTER)

When you intend to issue one of the following forms of the WRITE macro to a DTFDA file
or to a DTFNI file you are processing randomly, you must specify the AFTER keyword
parameter in your DTF:

WRITE,AFTER

WRITE,AFTER,EOF

WRITE,RZERO

(15.7.11.1)

(15.7.11.3)

(15.7.11.2)

If you specify the AFTER keyword parameter in the DTF for a file that you are creating on a
variable-sector 8411, 8414, 8424, 8425, 8430, or 8433 disk, data management expects
that you will do so using these macros and does not preformat the file at OPEN time.
Because the WRITE,ID macro conducts a search and relies on preformatting, you may not
issue this macro to a file on a variable-sector disk when you have specified the AFTER
keyword parameter; data management can find no relative disk addresses to match against
the content of your SEEKADR field. See the description of the WRITE,ID macro (15.7.11.4).

The foregoing restriction does not apply to a file on a fixed-sector 8416 disk, which is
preformatted by definition.

Keyword Parameter AFTER:

AFTER YES
Specified if a subsequent WRITE macroinstruction contains an AFTER or an
RZERO positional parameter. This keyword parameter is used only when creating
or adding blocks sequentially, marking the end of data in the file, or repositioning
the disk head to a new track.

t

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

15.6.3. Specifying Block Length (BLKSIZE)

15-22

Each input or output file and partition must have at least one 1/0 area (buffer) reserved for
its individual use. The symbolic address of this area is defined by the I OAR EA 1 keyword
parameter, which is required for all DTFs (15.6.10), but you also need the BLKSIZE
keyword parameter to specify the maximum length of the blocks placed within it. The
BLKSIZE keyword parameter is therefore required for DTFSD, DTFDA, DTFNI, and DPCA
declarative macros.

These factors determine the size of your 1/0 area, which you specify elsewhere in your
program with the BAL define constant (DC) or define storage (DS) statement:

1. The length of the data to be read or written - If the records in the file. or partition are
variable-length, the block size and buffer must accommodate the length of the largest
record, which includes the data length and the four bytes reserved at the head of
each record for the record descriptor word (RDW). Fixed-length records do not contain
an RDW (14.3.2).

2. The track capacity of the device on which the file is written - This must not be
exceeded by fixed- or variable-length records. (See Appendix A for the operational
characteristics of the disk subsystems supported by OS/3.)

3. Whether records are variable-length - For blocked or unblocked variable records,
your block size and buffer length specifications must include the length of the largest
logical record plus the four bytes required for the block descriptor word (BDW) at the
head of each block. This point is important for you to remember when you are
processing files defined by the DTFDA macro, which does not support blocked record
formats - a BDW is calculated by data management for the blocks of these records
as well. Look for this in Figure 15-1.

4. The length of the record key - You specify the key length of the KEYLEN keyword
parameter when you are referencing blocks by key, generating new blocks with keys,
or updating or reading both key and data areas of blocks (15.6.14). Therefore,
whenever you specify the KEYLEN keyword parameter, your block size must also
include the length of the key.

5. Whether you are processing optional user labels - User header labels (UHLs) and
user trailer labels (UTLs) have a standard length of 80 bytes. The 1/0 area must be at
least 80 bytes long when these labels are to be processed in your program; in OS/3,
UHLs and UTLs are handled only in the 1/0 areas, not in a work area. Refer to 14.2.4,
15.6.15, and 15.7.3.

An important point to note is that, although you must always reserve an 8-byte field
immediately preceding the 1/0 area for data management use when you are processing
output files, these eight bytes are not included in your block size specification. Remember,
also, that the 1/0 area is always half-word aligned; this is true throughout OS/3 data
management.

For example, it would be incorrect to reserve a 68-byte field when your BLKSIZE
specification is 60 bytes; the following coding example shows one way to do this in OS/3.
Other systems you may be familiar with do it differently.

U P-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATA MANAGEMENT

Example:

LABEL flOPERATIONfl OPERAND
10 16 72 80

/.~AMPFLE

2.f--L-'--'-'-'--1--'--4-+---'-----''--'--'-+--l-_._--'--JL--L_l._-1-J.-..L--'-..__._-'---'--'-'--'--'--'-­

if--L-'--'-'--'--'--'---11-+-'--'--'-'--+-+:-L-'--1--'-..__.__.__._J.-L_,__,_'-L-=--'--L-l--'-

4. • x
11--L-'--'-L-.J..-'--L-<1-+-'--'--'-"--4---..-i-L--'-.1..-.L-'--'-'-'--'--'-~_..._....__._._~

• x
•

CLGO

1. SAMPFLE is a DTFNI file; block size is 60 bytes.

2. 1/0 buffer's symbolic address is IODAM.

3. SAMPFLE is an output file; data management requires eight bytes for its use
immediately pr~ceding the buffer.

4. Other keyword parameters are not shown. The following define storage (DS)
statements must be coded elsewhere in your program, not as part of the DTFNI
macro call.

5. Half-word alignment required for all 1/0 buffers in OS/3 data management. No
label required.

6. Eight bytes are required for data management use immediately preceding the 1/0
buffer. No label required.

7. Storage area IODAM defined as 60 bytes in length, not 68.

NOTE:

Lines 5 and 6 were written as shown merely to document two separate points
explicitly. Most BAL programmers will probably replace these, two lines of coding with
a single define storage (DS) statement having simply a D (double word) for an
operand. Such an instruction will reserve eight bytes and force half-word alignment
- a neater way to discharge both requirements at once.

Figure 15-1 illustrates the contents of the 1/0 area under some of the situations just
described; Table 15-4 summarizes what data management moves into the 1/0 area when
you specify certain combinations of the keyword parameters in your DTF.

UP-8068 Rev. 4 SPERRY UNIVAC OS/3
BASIC DATAMANAGEMENT

15-24

Records With Keys

RECFORM FIXUNB

[~~::~~~.l ___ i_og~·ic~a-lr-ec_o~rd---~

RECFORM = FIXBLK

dm logical record
1

logical record
2

logical record
3

l_:_o--• j..,,l •1--- o--• i...l •1---o-J

RECFORM VARUNB

dm

j-s-!-R~•-1-•~~o~~~•I
---~~~~v~--~•...il

RECFORM = VARBLK

:-------
! dm bdW rdw 1 logical record

1
rdw

2
logical record

2
L-------t.-......._......_ _ _._ ____ ----1. __ ..._ ___ __,1

I-s-J-R ~-D -r--R-1-D --1
·· v v-J
1..-~~~~~~~~~~~1~

LEGEND:

Records Without Keys

RECFORM FIXUNB

[~:~~] key field
logical record

I-K--++~---D----...i

REC FORM= FIXBLK

r-------...------.--------..--------~
I
I
I

'
dm key field logical record

1 logical record
2 L _______ ,__ ____ _.__ ______ _._ ______ __,

RECFORM VARUNB

[~~~~] key field lbd~ I rdw I logical record

1-K---f---s-f-R.....i...~~-o~~~~

l'--------v.....:...-'-~~•

RECFORM = VARBLK

r-------.-------.-......,,.,,.,.,..---,,------r---r------,
I

: dm
I

key field bdw rdw 1 logical record
1

rdw
2

logical record
2 L _______ .__ ____ ...__.._......._ _ __. _____ ,___....._ ____ _,

~K---f---s+ R ~-o---f---R-J-o-J
i------v v-j

~~~~~~~~~~ ~~~~~~~---1 

D Data portion of logical record. Data Management assumes this equals block size when records are fixed, unblocked. 

Length of I OAR EA 1; specified by BLKSIZE. 1/0 area is always half-word aligned. 

R Record descriptor word (ROW), a 4-byte record-length field containing the length of the record in the first two bytes; 
inserted by user. 

B Block descriptor word (BOW), 4-byte· block length field containing the length of the block in the first two blocks; 
calculated by data. management. 

V Variable-length record; length is specified by RECSIZE and is contained in first two blocks of ROW. 

K Keyfield, from 3 bytes to 255 bytes in length; its actual length is specified by KEYLEN except whe·n you want keys 
ignored. (In this event, you specify KEYLEN=O or omit the keyword.) Note that only a block, not a record, has a key. 

dm Eight-byte field that you reserve for data management use with output files; immediately precedes 1/0 buffer but its 
length is not included in BLKSIZE. 1/0 area is always half-word aligned. . 

~ Calculated by data management; user supplies space. 

D User-supplied. 

Ffgure 15-1. Record Formats and 110 Area Contents for Nonindexed Disk Files 



UP-8068 Rev. 4 

Keyword 
Specification 

. 
AFTER= YES 

READID=YES 
or 

WRITEID=YES 

READKEY=YES 
or 

WRITEKEY=YES 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table 15-4. /OAR EA 1 Contents 

READID or 
KEYLEN AFTER WRITE ID 

-':.. 

=O = Y.ES -
=foo =YES -

-'-

=foo =YES =YES 
=foo Not specified =YES 
=O =YES =YES 
=O Not specified =YES 

=foo =YES =YES 
=foo =YES Not specified 
=foo Not specified =YES 
=foo Not specified. Not specified 

~ ... 

15-25 

1/0 Area Contents 

pa ta 
Key, Data 

Key, Data 
Key, Data 
Data 
Data 

Key, Data 
Key, Data; 
Key,.Data 
Key, Pata 

The BLKSIZE and RECSIZE parameters must be specified such that there are no more than 
255 records in a block for FIXBLK files defined by the DTFSD or DTiz:NI declarative 
macroinstruction. If this maximum blocking factor is exceeded, an attempt to open the file 
results in control being returned to your error routine (or inline if none was· sp.ecified) and 
bit 2 (invalid DTF) and bit 4 (error found in open) set in byte 0 of filenameC. 

Keyword Parameter BLKSIZE: 

BLKSIZE=n 
Specifies the length of the 1/0 area, where n is the maximum size of the block in 
bytes. If the records in the file or partition are variable-length, n must include 
four bytes for the BDW. If the KEYLEN keyword:parameter is specified, you must 
also include in n the specified length of the· key. 

15.6.4. Address for Routine on End-of-Input File or Partition (EOFADDR) 

You must supply the address of the routine you code to handle end,..of-data processing for 
input files processed sequentially by specifying the EOFADDR keyword parameter. This 
keyword is required for input files defined by the DTFSD declarative macro and for 
sequentially processed input files defined by the DTFNI macro. You may not need it for a 
sequentially processed partition defined by a DPCA macro unless you have special end-of­
data requirements for that partition: if you do not specify· the EOFADDR keyword 
parameter in a DPCA declarative macro, data management will transfer control, on 
sensing end of data, to the address specified ·by the EOFADDR keyword parameter of the 
parent DTFNI macro. 

In addition to performing normal file termination procedures by using the CLOSE 
imperative macro in your end-of-file or end..:of.:.partition routine (15. 7:2), you may optionally 
extend your file or partition beyond the logical end-of-file; this option is open to you only 
for sequentially processed input files in the update mode (that is, you have specified 
UPDATE=YES in the DTFSD or DTFNI declarative ·macro). The details on this method of 
extension are developed under the PUT imperative macro (15.7.9). 

t 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC .DATA MANAGEMENT 

15-26 

Keyword Parameter EOFADDR: 

EOFADDR-symbol 
Specifies the address of a routine you have coded to handle end-of-data for a 
DTFSD input file or a sequentially processed DTFNI input file, where symbol is 
the symbolic address to which data management fransfers control on sensing 
end of data. Required for DTFSD input files and for sequentially processed DTFNI 
input files. 

15.6.5. Handling Parity Errors on Sequential Disk Files (ERROPT) 

Your may use the ERROPT keyword parameter to specify action data management is to 
take when it is informed of a parity error from which the physical IOCS has tried 
unsuccessfully to recover. Its 'use is optional for sequentially processed input or output 
files defined by the DTFSD or DTFNI declarative macros. It is not supported by the DTFDA 
macro. 

Keyword Parameter ERROPT: 

ERROPT=IGNORE 

Specifies that data management is to make the block or record available to you in 
the 1/0 area as if no parity error had occurred. 

ERROPT=SKIP 

Specifies that data management is to bypass or skip over an input block or logical 
record, which it does not make available to you for processing. For output 
records, data management ignores the block or record as if it were written 
correctly. 

If you omit the ERROPT keyword parameter:, on detecting a parity error, data management 
transfers control to your error-handling routine if you have specified one; otherwise 
control returns to you inline. 

15.6.6. Error Processing (ERROR) 

You may have data management transfer control, on detecting an error or exception 
conditi.on, to a special error processing routine you have defined by the ERROR keyword 
parameter. The ERROR keyword parameter may be used with input or output files defined 
by the DTFSD, DTFDA, or DTFNI declarative macros. You do not specify it in a DPCA 
declarative: on detecting an error or exception condition while processing a partition, data 
management transfers control to the address specified by the ERROR keyword parameter 
:of the DTFNI macro defining the file to which the partition belongs. 

An exception condition, as distinguished from a hardware or detectable logic error, is not 
necessarily an unforeseen result in ·processing your file. It may simply signal the 
completion of 1/0 or an anticipated end of data, cylinder, track, or volume condition; on 
the other hand, it may also indicate that the expected record was not found. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-27 

Before data management transfers control to your error handling routine, it displays 
and/or logs an error message. Data management error messages are documented in the 
system messages operator /programmer reference, UP-8076 (current version) and briefly 
described in Appendix 8. 

When your error routine receives control, data management will have already made other 
information available to you in certain fields of the DTF file table. One field, which your 
error routine should access dynamically to take appropriate action, is filenaineC. This field 
of the DTF contains four contiguous bytes; data management sets certain bits of these to 
binary 1 as flags to indicate specific error conditions; refer to Appendix B (Table B-3) for 
the significance of the flags. You may address this field in your program by concatenating 
the character C to your 7-character logical file name. 

Another field in the DTF file table, in which data management informs you of the general 
error/status condition, is more useful to examine in debugging a program than to access 
dyamically in your error routine. This field, designated filename£ and always decimal byte 
56 in the DTF, is loaded by data management with a hexadecimal error message code: the 
numeric component of the numbered data management error message to which it 
corresponds. Note these in the leftmost column in Table B-1. Filename£ can be quickly 
located by the tag generated in the expansion of your DTF declarative macro. 

You should realize that not all of the flags set in filenameC represent error conditions 
causing transfer of control to your error routine. The two exceptions in the nonindexed 
disk file processor system are: 

• last block on track accessed (byte 0, bit 0); and 

• 1/0 completed (byte 1, bit 0). 

These two do not represent errors; they signal conditions you·might expect to use in t.he 
normal course of processing to determine the need to ·branch;fn your program. If you use 
either of these flags in this way, your must test for them inline:· you will miss your cue if 
you test only in your error routine. 

It is your responsibility to interrogate the error /status codes and take appropriate action. If 
you choose to continue processing, however, it is useful to remember that data 
management provides you an inline return address in general register 14; the inline return 
is to the instruction in your program next following the imperative macro that initiated ttae 
transfer of control to your error routine. 

If you do not specify the optional ERROR keyword parameter in your DTF, data 
management returns control to you inline, when an error is detected, to the instruction 
next following the imperative macro. In this situation, of .course, it is up to you to 
interrogate error /status codes inline and to take appropriate action inline. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3. 15-28 
BASle DATA MANAGEMENT 

Keyword Parameter ERRQR; 

ERROR~symbol 

Specifies the address of your error handling routine, to which data management 
transfers control upon detecting an error condition, where symbol is the symbolic 
ac;jdress of this rqutine. 

If you omit·,~pe9ification of this optional keyword parameter, data management returns 
control to· your~ program inline, at the instruction next after the imperative macro that 
in.itiated transfer of· control ·to your error routine. 

15.6.7. Specifying Field for Return of Relative Disk Address (IDLOC) 

When you want data management to return to you the relativ~1 disk address (or ID) of a 
hlock after you have issued a READ or WRITE Imperative macroinstruction, you specify the 
IDLOC keyword parameter in your DTF. Th~ ID return is made by the WAITF macro you 
issue following the REAO. or WRITE macro. 

If you issue a READ,ID macro or a WRITE macro with the ID, AFTE.R, or RZERO positional 
parameter, data management returns to you the ID of the next block in the file or partition. 

On the other hand, if you issue a READ,KEY or a WRITE,KEY macro, data management 
returns the same ID as Is supplied in the SEEKADR field. 

The form in which the ID is stored for you (as a relative record or a relative track address) 
is governed by how you specify the RELATIVE keyword parameter (15.6.22). 

The IDLOC keyword is specified only for files defined by the DTFDA declarative macro or 
for randomly processed fil~s defined by. the DTFNI macro. (When you are processing a 
partition of a DTFNI file, da~a man_agement uses the IDLOC keyword you specified i_n the 
DTFNI macro defining the Hie to which the ·partition belongsJ 

l •. : .. ~ . . ·.. . 

When you specify the IDLOC keyword parameter, you provide the symbolic address of the 
field to which data management makes its return. You should remember that OS/3 data 
man~gement assum~s that the size an_d format of this field are the same as those of the 
field 'you have supplied via the SEEKADR keyword parameter, which you are required t9 
specify for DTFDA file_s and randomly processed DTFNI .files. In some. situations, y9u will 
find it an advantage to make the IDLOC and the SEEKADR fields n5.6.26) physically one 
and the same, so that data management automatically updates the SEEKADR field for you. 

For exampfe, if you are creating an output f_ile with the WRITE,ID macro (15.7.11.4), you 
must provide data management with the relative disk address, or ID, to which each block 
is to be written by moving this ID into the SEEKADR field before issuing the macro: the ID 
is what guides the macro. After successful execution of the WRITE,ID macro, the following 
WAITF macro (15.7.16) returns to your IDLOC field the ID of the next block in physical 
sequence in your file. If this address is indeed where your next record goes, you move the 
contents of the IDLOC field to the SEEKADR field - but, if you had made these two fields 
the same area in main storage, then data management has in effect updated the 
SEEKADR field for you automatically, and you can issue another WRITE,ID macro. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-29 

Consider, on the other hand, the WRITE,AFTER imperative macro ( 15. 7.11.1 ). This macro 
does not require you to preload the SEEKADR field to guide it, but relies upon your having 
positioned your file to where it is to write. Yet, to specify both the IDLOC and the 
SEEKADR keywords and to make the fields the' same simplifies your handling of the end­
of-track occurrence. The ID returned by the WAITF macro that follows each WRITE,AFTER 
macro is (as with the WRITE,ID macro) the relative disk address of the next block. If you 
have specified relative traak addressing (with RELATIVE == T), the ID is not automatically 
incremented to become the address of the first block on the new track unless you have 
moved each previously returned ID to the SEEKADR field. To avoid this, and to avoid 
testing inline for setting of the last-block-on-track-accessed bit in filenameC after each 
WRITE,AFTER issue and repositioning your file to the head of the next track with a 
WRITE,RZERO macro (as described in 15. 7.11.1 }, you may rely on the automatic 
incrementing that data management provides, by making the IDLOC and SEEKADR fields 
the same area. 

On the ·other hand, if you are updating your file with the READ,ID/WRITE,ID macro 
combination, you would not want to have data ·management automatically update' the 
SEEKADR field with the ID return for you. This is because the ID returned;after the WAITF 
that follows the READ,ID macro is the address of the next block in the file. You would be 
overwriting that block with the information intended for the current block if1you had made 
the IDLOG and the SEEKADR fields physically one and the sanie - not a good practice in 
update mode. 

Table 15-5 recapitulates the situations just described. 

Table 15-5. Relative Disk Address (ID) Returned after a READ or WRITE Macroinstruction 
when IDLOC Keyword Is Specified 

~ 

Imperative DTF Keyword ID Returned by Form* of ID Returned, if: 

Macros Parameters WAITFMacro 
RELATl\lE=R RELATIVE=T 

READ, KEY READKEY=YES JD of the block 
retrieved 

rrrr tttr 

WRITE, KEY WRITEKEY=YES 
Same ID as that 
of block retrieved 

READ, ID READID=YES 

WRITE,ID WRITEID=YES 

ID of next block rrrr tttr WRITE, AFTER AFTER=YES in the file 

WRITE, AFTER, EOF AFTER=YES None - ·--

WRITE, RZERO AFTER=YES None - -

*Discontinuous binary, where: 

rrrr is the 4-byte relative block riumber. 

ttt is the relative track number. 

is the absolute block number on the relative track. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-30 

Keyword Parameter IDLOC: 

IDLOC=symbol 
Specifies the field to which da~a management returns the relative disk address 
(ID) after the execution of a READ or WRITE macro, where symbol (label) is the 
address of the field. Data management assumes that size and format of the field 
are the same as specified in the SEEKADR keyword parameter (15.6.23). Form in 
which ID is returned is governed by specification of RELATIVE keyword 
parameter (1 5.6.22); the block whose ID is returned is governed by the positional 
parameter us.ed with the READ or WRITE macro. 

15.6.8. Specifying the Factor for Record Interlace (LACE) 

Supported for input and output files defined by the DTFSD, ·DTFDA, and DTFNI macros and 
for partitions defined by the DPCA declarative, the optional keyword parameter LACE 
allows you to specify the lace factor you need when you want to take advantage of record 
interlace operations. 

The record interlace feature of OS/3 data management is both a data mapping and a 
tuning technique for increasing your throughput when you are processing input or output 
disk files by permitting you to access successive blocks within a predetermined interval of 
time. If this interval, which depends upon your program, is less then the time the disk 
takes to complete a turn, you will retrieve more than one block per disk revolution. Record 
interlace thus reduces the effect of rotational delay on your overall disk processing time; 
you benefit most when you are processing files or partitions sequentially and least when 
you are processing randomly. 

This does not mean that the LACE keyword has no role in processing a direct access 
DTFDA or DTFNI file; the record interlace technique will never degrade random processing 
of such a file and is of use whenever sequential operations against the file are significant. 
For example, if you create a direct access file by a substantial sequential loading 
operation, using record interlace will make for a more efficient creation program. A 
massive update operation, using the READ,ID/WRITE,ID combination, might also be a 
recurring program in your application; this, too, could make advantageous use of record 
interlace. A third example of a use of record interlace that makes sense in a file organized 
for direct access is with a report-generating program in which random access is used to 
one or more points in the file, with sequential processing required thereafter for the 
reports. 

You must first physically arrange your blocks on disk using record interlace before you can 
achieve the increased processing speed that the technique offers you when you are 
reading from a laced input file; on the other hand, you are able to write your output file 
more rapidly by using record interlace. It is important to remember that, once you create a 
file with interlace, this physical characteristic remains with the file, and it must always 
thereafter be accessed by programs that specify the same lace factor you used to create it. 



UP-8068 Rev. 4 SPERRY Uf\JIVAC OS/3 
BASIC DATA MANAGEMENT 

15-31 

Figure 15-2 shows how record interlace works to your advantage. Assume that your 
input file contains ten 1024-byte blocks per track. If these are located on disk in physical 
sequential order, as shown. in the lefthaod portion of the figure, you would r:leed 10 disk 
revolutions to retrieve all 10 blocks sequentially. ·(If the disk you are using has a rotation 
speed of 21.4 rns per revolution, for example, accessing the blocks in this way would take 
214 ms:) 

On the other hand, if you could space your blocks on the track so that the next one to be 
retrieved arrived under the disk head just as our 1/0 order to retrieve it took effect, you 
could save time ~ p9ssibly enough time to retrieve more than one block per disk 
revolution. The physical interval between your blocks would need to be little more than the 
distance the disk rotates during the period of time it takes you to process each block and 
to issue a new L(O order. The components of this time slice. are your processing overhead 
and the data manageme(lt overhead involved in issuing your 1/0 order; your processing 
time overhead depends primarily on what your program does. When you use the record 
interlace technique, data management uses SAT (through which it physically accesses 
each disk subsystem) to establish the physical interval between your blocks and to arrange 
them on the track so that as many may be retrieved as your program is capable of 
handling before the next access time comes. 

Without Record Interlace With Lace Factor of 4 

Physical Block No. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
Logical Block No. 1112131415161718191101 I 1 16141912171511013181 

Revolution 
No. 

1 [2J [i] w Ci] 

GJ ' GJ Ci] 2 

3 0 ~ [?] ~ 
Logical Blocks 4 0 ~ ~ 
Read or Written 

0 During Each 5 
,. Disc Revolution 

G 6 

7 0 
8 [!] 
9 0 

10 GJ 
Figure 15-2. Reading a Sequ(3ntial Disk Filf3 With and Without Record Interlace 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASlt'DATA MAl'\JAGEMENT 

15-32 

The righthand: portion of Figure 15---2 shows an arrangement of the same 10 blocks, 
using an interlace factor of 4. How the factor is derived from the estimated program time 
frame will be developed in what follows; note at this point that their physical arrangement 
allows all 10 to be retrieved before the completion of the fourth revolution of the disk-'­
less than 85.6 ms, instead of 214 ms as before. Note also that three blocks are skipped 
between successive accesses; the lace factor is always 1 more than the number of blocks 
skipped. 

To achieve this saving of processing time, you specify the lace factor to data management; 
calculating it is a simple 2-step procedure. You need only two figares: your block size and 
an estimate· of. the time interval between your 1/0 orders. · 

The first step is to calculate the sector time; this is the number of milliseconds each block 
requires to pass under the disk head. Simply divide your block size, measured'iri bytes, by 
256 bytes and multiply by a standard factor, 0.535 ms: · 

user block size 
256 bytes 

x 0.535 ms == calculated sector time 

The second step yields the lace factor, which you will specify as a decimal integer with the 
LACE keyword parameter. First, you make an estimate of the time frame your program will 
need for processing between issuing your 1/0 orders .. Then you divide the time frame by 
the calculated sector time, add 1, and rourid high to yield the lace factor, which is always 
a decimal integer: 

time frame ms 
calculated sector time ms + 1 (rounded high) == lace factor 

Following the illustrated example, assume that you are using a 1024-byte block size; you 
calculate the sector time in milliseconds: 

1024 bytes 
256 bytes 

x 0.5~5 ms== 2.14 ms 

Estimating that a 6.0 ms average time frame is requfred between accesses to your blocks, 
you then calculate the lace factor: 

6.0 ms 
2.14 ms == 2.9 + l == 3.9 

When the time frame exceeds 21.4 ms, it should be divided by 21.4, and the remainder 
should be used as the time frame in the foregoing calculations. 

You may estimate the average time frame your program needs to process records between 
passes by using the GETIME macro of the OS/3 supervisor, described in the supervisor 
user guide, UP-8075 (current version). Or, arbitrarily specifying successively larger lace 
factors, and noting the running time for your program with each factor, you may pinpoint 
the optimum lace factor for this program: the one giving the sharpest decrease in running 
time, followed by a quick increase when the next higher factor is used. 



UP-8068 Rev:. 4 SPERRY UNIVAC OS/3 · 
BASIC DATA MANAGEM.ENT. 

15-33 

Note that the average :time frame will be different for every program accessing the laced 
file. If several programs at your installation are to .use the ,same file but have. different time 
frames, t.he .file should be laced with a factor that is the best compromise you can 
establish, taking into consideration the running times of the programs, the frequency with 
which they will access the file, and the relative importance of the programs to your 
installation. 

It is important to remember that all programs accessing the same laced file must specify in 
the DTF the actual lace factor used in constructing it; an erroneous specification will cause 
data management to reset the LACE specification to the value· used when the file was 
created. The lace factor· is recorded in the·disk format 2 label (D.3.2), and it is one of the 
items listed by the system utility (SU) symbiont when you request a VTOC print. (The SU 
symbiont is documented in the system service programs (SSP) user guide, UP-8062 
(current version).) 

It may be evident to you that the standard factor 0.535 ms and the 256-byte divisor 
contained in ·the first formula do not apply to all disk subsystems supported by OS/3. This 
is ·true only in part: these figures actually derive from the operatonal characteristics of the 
8416 disk subsystem, which was selected quite arbitrarily to provide one set of standard 
factors for you. to use in this calculation. Nevertheless, you use these same figures for 
whatever disk subsystem contains your file; OS/3 data man·agement, through SAT, will 
adjust the lace factor automatically to the characteristicfJ of the actual device in use. (As 
you know, you never specify the actual device to data management, but SAT' and data 
management know the device type from OS/3 job control.) 

Whenever you specify the KEYLEN keyword parameter (15.6.14), .you imply random 
processing, and the LACE keyword parameter is ignored if you specify both. 

Keyword Parameter LACE: 

LACE==n 
Specifies the lace factor, a decimal integer, for data management use in applying 
the record interlace technique to sequentially processed input or output files 
defined by the DTFSD, DTFDA, or DTFNI macro, or partitions defined by the 
DPCA declarative macro and processed sequentially. Is ignored when the 
KEYLEN keyword parameter is specified. 

15.6.9. Specifying Input/Output Buffer (IOAREA 1) · 

Each input or output disk file and partition must have at least one input/outpuf area 
reserved for its individual. use. You define this area by specifying· the IOAREA 1 keyword 
parameter, which is required for files defined by the DTFSD, DTFDA, and DTFNI declarative 
macros and for file partitions defined by the DPCA macro. 

You define the length of the 1/0 area by means of the BLKSIZE keyword parameter 
(15.6.3); as is true throughout OS/3 data management, the 1/0 area must be half-word 
aligned. You must reserve an 8-byte area for data management use immediately preceding 
the 1/0 area for output files; these eight bytes are not included in the blocksize 
specification. (See Figure 15-1.) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-34 

In order to achieve device independence between sectorized and nonsectorized disks, you 
should ·reserve areas whose lengths are some multiple of 256 bytes for 1/0 areas. 
·However, your BLKSIZE specification need not be a multiple of 2S6 bytes to maintain 
device independence. 

Keyword Parameter IOAREA 1: 

IOAREA 1 =symbol 
Specifies the location, half-word aligned, of the 1/0 area; required· for files 
defined by the DTFSD, DTFDA, and DTFNI macros and for file partiti.ons defined 
by the DPCA macro, where symbol (label) is the address of the 1/0 area. Length 
of 1/0 area is specified by BLKSIZE keyword parameter (15.6.3). 

15.6.10. Specifying a Secondary Input/Output Buffer (IOAREA2) 

You may improve your processing efficiency by specifying a secondary 1/0 area for 
standby processing; this allows you to overlap 1/0 operations with your record processing; 
You may optionally specify the IOAREA2 keyword parameter for DTFSD files and 
sequentially processed files and partitions ,defined by the DTFNI and DPCA macros;.,it is 
not supported by the DTFDA macro. 

Keyword Parameter IOAREA2: 

IOAREA2=symbol 
Specifies the location of an optional secondary 1/0 area for files defined by the 
DTFSD macro or sequentially processed files and partitions defined by the DTFNI 
and DPCA macros, where symbol (label) is the address of the secondary 1/0 
area. If specified, the area is subject to the same considerations as noted for the 
area defined by the IOAREA 1 keyword parameter (15.6.10). The IOAREA2 
keyword parameter is not supported for DTFDA files. 

15.6.11 •.. Specifying Index Register for Current Data Pointer (IOREG) 

When you need an index register to reference current data for your 1/0 processing, you 
specify the general register to be used for this purpose with the IOREG keyword 
parameter. General registers 2 through 12 are always available, but if you have specified 
the SAVAREA keyword parameter, general register 13 is also available (15.6.25). 

The IOREG keyword parameter is not supported .for files defined by the DTFDA declarative 
macro. You should specify it for the following inp.ut or output files: 

• DTFNI files and partitions processed randomly (using the HEAD or WRITE imperative 
macro), when you have specified two 1/0 buffers (15.6.11 ). 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-35 

• DTFNI files and partitions processed sequentially (using the GET or PUT macro) and 
files defined by the DTFSD macro wh·en you have: 

specified two 1/0 areas but no work area; or 

specified no work area but have blocked records. 

Table 15-'-9 summarizes the use of an index register with the GET macro (15.7.12). 

When you do use a work area for sequential processing instead of an 1/0 area, you 
specify its address as an operand of each GET or PUT imperative macro you issue, and you 
indicate to data management that you are using a Work area by specifying the WORKA 
keyword parameter in your DTF. You then do not specify the IOREG keyword parameter. 
(See 15.6.34.) 

For input files, data management loads the index register with the address of the next 
available record or block. 

For output files, data management loads the index register with the address of the next 
available 1/0 area. 

When a file is opened, data management loads the index register with the current buffer 
address and, for a multipartitioned file defined by the DTFNI macro, se~s partition 1 active. 
If you specify an IOREG keyword parameter for several partitions, the index register for 
partition 1 is loaded when the file is opened; only when you issue a SETP imperative 
macro to gain access to a subsequent partition does data management load the index 
register for that partition ( 15. 7.4). 

Keyword Parameter IOREG: 

IOREG=(r) 
Specifies the general register to be used as an index register to reference current 
data for 1/0 operations, where r is the number of the general register and must 
be enclosed in parentheses. Registers 2 through 12 are available, and register 13 
is also available when you specify the SAVAREA keyword parameter. The IOREG 
keyword parameter may not be specified for DTF.DA files, nor when you specify a 
work area with the WORKA keyword parameter; it is required for DTFNI files and 
partitions processed randomly with two 1/0 areas and for DTFSD files and DTFNI 
files and partitions processed sequentially when records are blocked or when you 
use two 1/0 areas. 

15.6.12. ·Specifying Address of Argument for Key Search (KEYARG) 

When you want to search your file. for a block with a ·specific key (if, for example, you are 
issuing the block-level READ,KEY or WRITE,KEY imperative macro), you must provide data 
management with the search argument in a field in your program that you specify with 
the KEYARG keyword parameter. Data management uses the search argument to locate a 
block with an identical key. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-36 

You $hould also remember to specify the length of the key with the KEYLEN keyword 
parameter, described next (15.6.13). The READ,KEY and WRITE,KEY imperative macros are 
described in 15.7.14.2 and 15.7.11.5. 

Keyword Parameter KEYARG: 

KEYARG=symbol 
. Specifies that a search is to be made for a block having a key identical to a 
search argument you provide to data management, where symbol (label) is the 
field in your program containing this argument. The KEYARG keyword parameter 
is not supported for DTFSD files; it is required for DTFDA files and randomly 
processed DTFNI files (and ·partitions defined by the DPCA macro) when 
READ,KEY or WRITE,KEY imperative macros will be issued. When you specify the 
KEYARG keyword parameter, you must also specify the length of the key, using 
the KEYLEN keyword parameter. 

15.6.13. Specifying the Length of Block Keys (KEYLEN) 

When you are referencing blocks.by key, generating new blocks with keys, or reading both 
the key and data areas of your blocks, you must specify the length of the keys in your file 
with the KEYLEN. keyvvord parameter. 

All keys in a· DTFDA file or a single-partitioned DTFNI file must have the same length; 
however, each partition of a multipartitioned DTFNI file may have its own characteristic 
key length (which must remain the same for all blocks in the partition); you define this 
length separately with a KEYLEN keyword parameter in the DPCA dec.larative macro for 
each partition that does differ in length of keys from the basic file. The minimum key 
length for any file or partition is 3 bytes; the maximum is 255 bytes. No byte of any block's 
key may contain the hexadecimal value FF. 

It is important to specjfy the actual .. length of the key as it exists in all blocks of your disk 
file; otherwise, data management either truncates or pads .out the key and sets the wrong 
length found flag (bit 5, byte 1 ) in filenameC. (See Appendix B.) 

Another important point to remember has to do with sequentially processed DTFNI files: 
these also may have a key associated .with each block of data. (See, for example, Figure 
15~1 J 

If yours do, you must remember to place the key at the beginning of the data block, before 
you issue a PUT imperative macro. Your PUT macro will then cause both the key and the 
data portion of the block to be written out to disk, and your subsequent GET macros will 
retrieve both the key and data. Data man~gement will, as a.lways, block and deblock your 
records automatically when you are processing DTFNI files sequentially (that is, via the 
GET and PUT macros). DTFSD files. do not contain keyed blocks; DTFDA files may not be 
specified as having blocked records. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-37· 

Keyword Parameter KEYLEN: 

KEYLEN=n 
Specifies the length of keys in DTFDA and DTFNI files and in file part1t1ons 
defined by the DPCA macro, where n is the number of bytes in the keys. All keys 
in the same partition or the same nonpartitioned DTFNI or DTFDA file must have 
the same length; the key length may range from 3 bytes minimum to 255 bytes 
maximum. No byte of any key may contain the hexadecimal value FF. 

The KEYLEN .keyword parameter is not supported for DTFSD files. 

15.6.14. Specifying Address of Your Label Processing Routine (LABADDR) 

As you know from 14.2.4, OS/3 data management gives you the option of having your 
own user header and trailer labels (UHL and UTL) on your nonindexed disk files. When you 
need to process your labels, you use the LABADDR keyword parameter to specify the 
address of your label processing routine. 

The LABADDR keyword parameter is supported for DTFSD, DTFDA, and DTFNI files; 
because user header and trailer labels are supported at the file level and not below, you 
do not specify the LABADDR keyword with the DPCA declarative macro (by which you 
define a file partition). · 

When you choose to use your own headers and trailer labels, it is well to remember that 
they are written by data management on the first track of each volume of a DTFSD file 
(because only one volume is mounted at a time) and on: the first track of the first volume 
only of a DTFDA ot DTFNI file (because all volumes of these files are online for 
processing). 

In examining the DTF of a direct access file that contains user labels, do not be confused 
by the relative block addresses calculated by data management and stored in the DTF. 
These will appear to be inflated because data management adds to the relative disk 
address in question the number of data blocks that could have been contained by the user 
label track if it were used for data. (This is more fully explained in ~ 5.6.24.) 

Another important point to remember is that your label processing routine may comprise 
only BAL instructions and the LBRET imperative macro, described in 15.7.3. You may not 
issue any other file processing macro in your label routine; there is, for example, ho legal· 
way to issue a macro to subsequently list your labels for inspection, via a printer file. They 
do show up, however, in a disk print of your file taken with the system utility (SU) 
symbiont if your specification to this utility includes head 00' of the volume, and the last 
one processed may also be seen in your 1/0 area in a program dump under the right 
circumstances. 

A third point to keep in mind is that, whenever your LABADDR routine will be processing. 
UTL wheri you issue the CLOSE imperative macro to the file, you must a·lways specify the 
TRLBL keyWord parameter in the DTF (15.6.28). 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-38 

Your standard UH Ls and UTLs have a simple 80-byte format ( 14.2.4); this means that your 
1/0 areas must always be at least 80 bytes long when you specify a LABADDR routine to 
process them. 

Keyword Parameter LABADDR: 

LABADDR=symbol 
· Specifies the address of your routine for processing optional standard user 

header and trailer labels, where symbol (label) is the address. This keyword is 
supported for DTFSD, DTFDA, and DTFNI files. UHL and UTL.are not supported at 
the partition level; therefore, the LABADDR keyword is not specified with the 
DPCA declarative macro. Your label processing routine may issue the LBRET 
imperative macro (15].3), but no other. If you will be processing UTL on closing 
the file, you must also specify the TRLBL keyword parameter in the DTF 
(15.6.28). 

15.6.15. Suppressing a File Lock (LOCK) 

For a description of the LOCK keyword parameter, see 11 .4.11. 

15.6.16. Specifying an Optional Sequential File (OPTION) 

When you have a sequentially processed file that your program can sometimes do without 
- that you anticipate you will not invariably want to process every time you run - you 
may specify this fact with the OPTION keyword parameter. This keyword may be U$ed for 
files defined by the DTFSD ma.cro and for sequentially processed DTFNI files. Because all 
volumes of DTFDA or randomly processed DTFNI files are always online for processing, the 
OPTION keyword parameter is not used for these. 

When you use the OPTION keyword parameter, and data management det.ects that you 
have not all.ocated the file to a device (that .is, you have not specified a job control DVC­
LFD device assignment set for it), the first GET imperative macro transfers control to your 
end-of-file routine. This action maintains the continuity of your program, but it is up to you 
to close the optional file when you receive control (you specify the address of your end-of­
file routine, which itself is optional, via the EOFADDR keyyvord parameter (15~6.4)). 

On the other hand, if you have not specified the OPTION keyvyord parameter for a file that 
yoL,r neglect to allocate to a device with job control statements, your EOFADDR routine 
does not receive control. Instead, data management either transfers control to your error 
routine (if you have coded one and supplied its address via the ERROR keyword parameter) 
or returns control to you inline. In any case, you may neither create records for the file nor 
obtain records from it even if it exists on disk. For output files, the PUT mechanism is 
disabled. 

You may not randomly process a file described as optional with this keyword parameter, 
which is reserved for sequentially processed files. If you issue a direct access file 
processing macro (READ or WRITE) to a file described by the OPTION keyword parameter, 
data management will transfer control either to your error routine or to your program 
inline, at the instruction next after the imperative macro, setting the invalid macro flag 
(byte 0, bit 6) in filenameC. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-39 

Keyword Parameter OPTION: 

OPTION=YES 
Specifies that the sequentially processed file defined by this DTFSD or DTFNJ 
macro is an optional file: one that you anticipate will not invariably be prese,nt for 
every program execution. When specified for a file not allocated to a device by 
job control DVC-LFD device assignment set, transfers control to your EOFADDR 
routine on first issue of the GET macro. For sequential output files, the PUT 
mechanism is disabled. When specified for sequential files, issue of a direct 
access imperative macro (READ or WRITE) causes transfer of control to your 
error routine or to you inline. The OPTION keyword is not used with DTFDA files. 

15.6.17. Specifying Address of Partitions for DTFNI Files (PCA) 

You must use the PCA keyword parameter in a DTFNI declarative macro to provide data 
management with the address of each partition of the file that has a separate identify (that 
is, each partition that is defined with a DPCA declarative macro - see 15.5.4). You need 
not use the PCA keyword parameter when the DTFNI file is not partitioned (15.5.3). 

Each DTFNI file may comprise seven partitions; descriptive information on the first 
partition is contained in the DTFNI declarative macro. The second partition thrOL.Jgh the 
seventh are described in separate DPCA declarative macros, which are limited to 
presenting those partition:-level aspects in which the partition differs from the basic file. 
The labels of these DPCA macros are the partition names specified by the corresponding 
PCA keyword parameters of the DTFNI macro. 

Although you may subsequently access DTFNI file partitions in any order, when you are 
defining an output file you must specify the partitions in unbroken s'equence in the DTFNI 
macro: you must specify the first partiton before the second, the second before the third, 
and so on. When you are defining an input file, you specify only those partitions you 
actually require for processing. (You will subsequently access these separately by issuing a 
SETP imperative macro, 15.7.4.) 

You should not confuse the PCA keyword parameter de,scribed here with the PCA 
declarative macroinstruction of the OS/3 s~pervisor. The PCA macro of the supervisor has 
a role analogous to that of the OS/3 data management DPCA declarative macro; see the 
supervisor user guide, UP-8075 (current version). 

Keyword Parameter PCA: 

PCA 1 =symbol, ... ,PCA7=symbol 
Specifies the address of each partition of a multipartitioned DTFNI file, where 
symbol (label) is the address. PCA2 symbol, ... ,PCA 7=symbol define the labels of 
the corresponding DPCA macros. Partition 1 is contained in the table defined by 
the DTFNI macro, in which PCA 1=symbol is required only for data management 
use in assigning the label to the partition table defined within the DTF. The PCA 
keyword is not used for nonpartition,e,d DTFNI files, nor for files defined by the 
DTFSD or DTFDA macros. Partitions must be specified in unbroken sequence. 
The symbolic address is used as the label of the corresponding DPCA declarative 
macro. 



UP-8068 Rev.A SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.6.18. Specifying Issue of a READ,ID Macro (READID) 

15-40 

When you intend to read a direct access file, locating each block by its relative disk 
address or ID, you will issue the READ,ID form of the READ imperative macro (15. 7.14.1 ). 
Beforehand, however, you mu,st inform data management that you will be doing so, by 
specifying the READID keyword parameter in the DTFDA ·or DTFNI declarative macro. (The 
READID keyword is not used. with files defined by the DTFSD macro.) 

Keyword Parameter READID: 

. READ.ID YES 
Specifies to data management that you will issue a READ,ID imperative macro to 
the DTFDA or DTFNI file defined by this declarative macro. 

The READID keyword is not used for DTFSD files. 

15.6.19. ·specifying ·Issue of a READ,KEY Macro (READKEY) 

When you intend to read a direct access file, locating each block by a search on key, you 
will issue the READ,KEY form of the READ imperative macro. Beforehand, you must 
inform data management that you will be doing so, by specifying the READKEY keyword 
parameter in ttie DTFDA or DTFNI decl~rative macro. The action of the READ,KEY 
imperative is explained in 15.7.14.2; you will need also to specify the following keyvyord 
parameters: 

SEEKADR (15.6.23) 
KEY ARG ( 15.6.12) 
KEYLEN (1 5.6.13) 

Keyword Parameter READKEY: 

READKEY-YES 
Specifies to data management that you will issue a READ,KEY imperative macro 
to the DTFDA or DTFNI file defined by this declara.tiv~ macro (15.7.14.2). This 
keyword is not used for DTFSD f!les. Th~ SEEKADR, KEYARG, and KEYLEN 
keyword parameters. are also required. 

15.6.20. Specifying Format of Records in Disk Files (RECFORM) 

The optional keyword parameter RECFORM is your means of specifying to data 
management the format of the records in your disk files. It is unnecessary to specify this 
keyword parameter if your records are fixed-length and unblocked: data management 
assumes that this is 'the desired format when you omit the RECFORM keyword from your 
DTF. . 

OS/3 data management supports foµr record formats for nonindexed disk files; Table 
15-6 shows which formats are used with which file type.: Note that undefined records are 
not supported. · · 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table 15-6. Record Form~ts fbr Nonindexed Disk Files 

Record 
Format 

Fixed-length, unblocked 

Fixed-length, blocked. 

Variable-length, blocked 

Variable-length, unblocked · 

DTFSD 

x 

x 

Declarative Macro 

DPCA 

x x 

x x 

x x 

x x 

15-41 

Specification 
for RECFORM 

Key\iVord Parameter 

FIXUNB 

FIXBLK 

VARBLK 

VARUNB 

X suppprted 
unsupported 
assumed if not specified 

Keyword Parameter RECFORM: 

Optionaf for all files; specifies ·format _bf recor'ds. There are four specifications: 

Specifies that records are fixed-length and unblocked. Data management 
assumes this format if you omit the RECFORM keyword parameter from the DTF. 

RECFORM==FIXBLK 
Specifies that records are fixed-length arid blocked. Not supported for DTFDA 
files. 

A maximum of 255 records per block is allowed. The number of records per block 
is saved in thf3;format label in a 1-byte field. Thus, if jt .exceeds 255, the value 
placed in the 1 ~byte field will be the actual number of records per block minus 
modulo 256. For example, if there are 3.00 records per blo9k, the effective '(al ue 
placed. in the format label will be 44. 

RECFORM VARBLK 
Specifies that records are variable-length and blocked. Not supported for DTFDA 
files. 

RECFORM==VARUNB 
Specifies that records are variable-length an(:! unblocked. Supported for DTFSD, 
DTFDA, DTFNI, and DPCA declarative macros. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-42 

15.6.21. Specifying Size of Records in Blocked Disk Files .(RECSIZE) 

When you have specified blocked records in your file, fixed~length, you may specify the 
number of bytes in a logical record to data management with the optional RECSIZE 
keyword parameter. This keyword may not be specified for files defined by the DTFDA 
declarative rnacro because OS/3 DAM does not provide for blocking or deblocking records. 

It is not necessary to specify the RECSIZE keyword parameter when your records are fixed­
length, unblocked: data management assumes that the record size equals the length of the 
1/0 area that you specify by your BLKSIZE keyword parameter (15.6.3) when your records 
are fixed-length, unblocked. Nor do you specify the RECSIZE keyword for files containing 
variable-length records, blocked or unblocked: here, data management expects to find the 
size of the record in the first two bytes of the ROW at the head of each variable-length 
record. A look at Figure 15-1 (15.6.3) will make these points clear. 

See the description of the BLKSIZE keyword parameter (15.6.3) for ·information regarding 
the maximum blocking factor for FIXBLK files. 

Keyword Parameter RECSIZE: 

RECSIZE=n 
Specifies the length of fixed-length logical records in blocked files, where n is the 
number of bytes in the record. Optional for files defined· by DTFSD and DTFNI 
macro and for partitions defined by DPCA declarative macro. Not used for DTFDA 
files. 

Data management assumes that record size equals block size (BLKSIZE keyword 
parameter) for fixed-length, unblocked records and expects to find record size in 
ROW of variable-length records. 

1.5.6.22. Specifying the Form for Relative Addressing (RELATIVE) 

The nonindexed disk file processor system gives you the choice of two forms for specifying 
the relative disk addres$ (ID) of an individual block or record in a direct access file: relative 
record or relative ttack addressing. You specify the form that is to be used for data 
management with the RELATIVE keyword parameter of the DTFDA or DTFNI declarative 
macro. When you specify the relative disk address of a recorq or block to data 
management, or when data managementJeturns an ID to you in the course of processing, 
it is placed in this form on the appropriate 4-byte field in your program. The absolute disk 
identification address* is not used in the nonindexed processor system. 

By relative record address, you should understand a hexadecimal number, right-justified in 
its 4-byte field, that represents the sequential position of the block or record, relative to 
the beginning of the direct access file or partition. The number of the first record of a file 
or partition is 1. 

*The absolute disk identification address, an ID used in other data management systems, is a 5-byte address containing the 
cylinder number, the head number, and the record number that define the physical location of a record on a disk. In OS/3 
data management, all disk record addressing in direct access files is relative and uses a 4-byte address in either of the 
formats described here. OS/3 /SAM uses a 5-byte file-relative address (or record pointer); refer to Sections 10 and 11. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-43 

By relative track address, understand a 4-byte hexadecimal number, the first three bytes of 
which represent the track number on which the record or block is written, relative to the 
first track of records in the direct access file :or partition. Track number begins with 001. 
The fourth. byte of the relative track address represents the sequential number of the block 
or record on this relative track; block or record numbering begins with 1. 

For example, to specify record 7 on relafo1e track 143 in a direct access file, if you have 
specified RELATIVE T in your DTF, this is what you would move into the 4-byte field in 
your program: 

Byte; 0 

t t 

2 

t 

3 

""-----y-----' '--y--J: L L recOid 7 on 

· relative track 143 

Assume, that this same file is laid out with eight blocks to a track, but that you hf.we 
specified RELA TIVE-R in the DTF. The same record would be the 1143rd in the file, 'and 
you would specify its relative disk address this way in the 4-byte field: 

Byte: 0 2 3 

L relative record 1143 

Any relative disk addresses that you generate in your program for use with the data 
management imperative macr:os designed for random processing must be presented to 
data management in the appropriate one of these two forms, and you must inform .data 
management as to which form to expect by specifying the RELATIVE keyword param~ter. 

You may, at this point, be asking yourself when a relative disk addr~ss is the ID of a block, 
and when it is the ID of a record; you may also want to know how to decide between 
relative track or relative record addressing. These questions are taken up in the next few 
paragraphs, but a glance back at Figure 14-4 will suggest part of the answer: that a 
record has an ID only in the same sense that a record has a key. When it is in unblocked 
record format (fixed or variable in length), a record actually exists on disk in a block as 
shown in the figure, and the ID of the block and its key can both be considered to 
represent the only record in the block. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-44 

For example, when you are referring to your direct access records by key, using the block­
level READ,KEY .imperative· macro for retrievin'g data from your file, you specify to data 
management the key of the block that contains the record er records you are after,placing 
it in the KEYARG field of your .program (15.6.13). You must also specify a relative disk 
address to indicate to data.management where in the file to start its·Search for the desired 
block, by moving it into the SEEKADR field of your program (15.6.24). This then, is the ID 
of the first block to be·tested for a key that matches the centent of your KEYARG field. You 
should consider it the ID of a record only if this record is in the unblocked format and the 
only record in the block - which it must be in a DTFDA file. 

Moreover, if you want to save the ID of the block that the READ,KEY macro retrieves for 
you (to use it, for example, in later processing of the file·- perhaps in another program}, 
then you must specify the IDLoc~ keyword parameter in your DTF, thus providing the label 
of a field to which data management makes a return: the relative disk address of the keyed 
block it has just retrieved. This is discussed further under the IDLOC keyword parameter 
(15.6.7), where Table 15-5 summarizes the ID returns made after execution of the 
various forms of the READ and V\/RITE imperative macros. Once the READ,KEY macro has 
read the block yo~ want into main storage, you may access the desired record by your own 
deblocking code or by successive issues of the GET macro. For further details, refer to the 
READ,KEY macro description, 15.7.14.2. 

,. . 

When you are retrieving data, from. your fil,e with the READ,ID ·imperative macro, you must 
specify the ID of the record you want retriieved by placing this, in the form you have 
specified with the RELATIVE keyword parameter, in the field defined by your SEEKADR 
keyword. Although data management reads in the entire block, including the key if the 
block has one, it points to the specified record by loading its displacement within the block 
in a field of your DTF designated as filenameD. The ID returned by data management to 
the IDLOC field of your program after the successful execution of the READ,ID macro is 
the relative disk address of the block that is physically the next in your file. Again, this ID 
is in the form you have specified with the RELATIVE keyword parameter; further details 
are documented under the READ,ID macro description, 15.7.14.1. 

The advantage of specifying the relative track form of record addressing in DTFDA files 
...,... (RELATIVE=T) is that you can treat each track bf your data as if it were a partition or a 

subfile (only DTFNI files may actually comprise partitions or subfiles (15.4, 15.5.3)). On the 
other harid, such use requires that you keep tight control over your data, knowing what 
goes where in each case, without the help of the DTFNI and DPCA file tables or the 
special imperative macros (NOTE, POINT, POINTS, SETP, and SETS) that cannot be issued 
to DTFDA files. 

An advantage of specifying relative record addressing (RELATIVE=R) is that you can stand 
off further remove,g from your file, without as much concern for its layout on disk, 
remaining independent of all actual disk locations. 

The RELATIVE keyword is not specified for the DPCA declarative macro; when you are 
randomly processing a partition of a DTFNI file, data management uses the specification of 
the RELATIVE keyword you made in the DTFNI macro defining the file to which the 
partition belongs. 



UP-8068 Rev: 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT . 

15-45 

Keyword Parameter RELATIVE: 

For DTFDA files and randomly processed files defined by the DTFNI macro, specifies 
the method of relative addressing. NoLused for DTFSD files. For direct accessdile 
partitions, data management uses the specification in the DTFNI macro; the RELATIVE 
keyword is therefore not specifiable in the DPCA macro. 

RELA TIVE==R 
Specifies relative record addressing, in the for:m: 

rrrr 

where: 

rrrr 

RELATIVE==T 

Is a hexadecimal number, right-justified in a 4-byte field, that 
represents the number of the block or record to be accessed, relative to 
the first block or record in the file or partition. The number of the first 
block or record in a file or partition is 1. 

Specifies relative track addressing, in the form: 

tttr 

where: 

ttt 

r 

Is a 3-byte hexadecimal number, relative to the first track in the file or 
partition, of the block on which the record or block occurs. Track 
numbering begins with 001. 

Is the sequential number of the record or, block on this relative track; 
record numbering begins with 1. 

15.6.23. Specifying a Save Area for Contents of General Registers (SAVAREA) 

Before you issue an imperative macro for pr_ocessing any OS/3 data management file, you' 
should generally first load general register 13 with the address of a 72-byte labeled save 
area - always aligned to a full-word boundary - in which data management will expect 
to save the contents of your registers. One· purpose of the SAVAREA keyword parameterJs 
to make things easier for you if you are converting a.program, written for use under some 
other data management system, in which you have already used register 13 for some 
other purpose. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-46 

When you are converting such a program to run under OS/3 data management, you need 
not recode it to revise your use of register 13. You need only add to it a 72-byte labeled 
save area, aligned as described, and specify its address with the SAVAREA keyword 
parameter in the DTF for each file your program will process. (Although you will need to 
specify this keyword in each DTF, you need only one register save area for your program.) 

In writing a new program using OS/3 data management, you must make one choice or 
the other: load register 13 with the same area address before issuing macros, or specify 
the SAVAREA keyword. One advantage of using the SAVAREA keyword is that register 13 
then becomes available (along with register 2 through 12) for use in your program: as the 
IOREG or VARBLD register, for example. 

When it does not encounter the SAVAREA keyword in your DTF, data management will 
always assume that, before issuing an imperative macro to the file, you have preloaded 
register 13 with the address of a 72-byte save area, aligned on a full-word boundary. 

Keyword Parameter SAVAREA: 

SAVAREA=symbol 
Specifies the address of a 72-byte labeled save area for the contents of general 
registers, full-word aligned, where symbol (label) is the address. If used, must be 
specified in the DTF for each file your program will process; however, only one 
such save area is required per program. Not supported by DPCA declarative 
macro, as SAVAREA is a file-level parameter. 

15.6.24. Specifying Relative Disk Address for Random Processing (SEEKADR) 

The SEEKADR keyword parameter is mandatory for random processing; you must specify it 
for DTFDA files and for randomly processed files defined by the DTFNI declarative macro. 
Its purpose is to specify the 4-byte field in your program into which you load the relative 
disk address you will use for directly accessing a block or updating it, for initiating a key 
search, and for controlling the movement of the disk head. There are therefore three basic 
ways you must use the SEEKADR keyword parameter: with the READ,ID and WRITE,ID 
macros; with the READ,KEY and WRITE,KEY macros; and with the CNTRL and 
WRITE,RZERO/WRITE,AFTER macros. 

When you are issuing READ,ID and WRITE,ID macros to directly access blocks in a 
randomly processed file to retrieve and update them, you must load into the SEEKADR 
field of your program the relative disk address (ID) of the current block. 

On the other hand, when you are referencing your keyed blocks by key and therefore 
using the READ,KEY and WRITE,KEY macros, the address you must load into the 
SEEKADR field is the relative disk address at which data management is to start the key 
search. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

The third required use of the SEEKADR keyword parameter is related to your uses of the 
WRITE,RZERO macro and the CNTRL macro. When you use the WRITE,RZERO and 
WRITE,AFTER macros to select and initialize a disk track, you must load, into the 
SEEKADR field of your program, the relative disk address to which data management is to 
reposition your output file for subsequent processing, initialized so as to write the first 
block on the new track with the WRITE,AFTER macro (15.7.11.2). Similarly, when you use 
the CNTRL macro to control disk head movement (either to return to the current track or to 
seek another track, 15.7.15), you must place the relative track address you want in the 
field specified by the SEEKADR keyword parameter. 

In certain circumstances (for example, when you want to use tt'.le ID returned by the 
WAITF macro that follows each READ or WRITE macro issued to automatically update the 
SEEKADR field for you), you may specify that the. IDLOC and SEEKADR fields are . . 
physically one and the same area in main storage. Refer to 15.6.7, where the means and 
rationale for doing so are discussed in some detail. 

Data management does not require a special alignment of the IDLOC or SEEKADR field (as 
it doesJor the 1/0 buffer and certain other areas). However, you may weH,need to align 
the SEEKADR field on a specific boundary if you are performing certain operations on it. 
For example, if you are controlling movement through your file by incrementing the 
relative track number (having specified RELATIVE==T), using, say an add immediate (Al) 
i.nstruction, you should align the 4-byte SEEKADR field on an odd boundary so that the 
increment is added to byte 2 by this half-word-oriented instruction. 

Consider the following example, which presupposes relative track addressing in a direct 
access file named DAMFLE. You are stepping through the file, updating blocks on every 
third track. This is the content of your IDLOC field at a certain point, representing record 7 
on relative track 145: 

Byte: 0 2 3 

t t 

lo!o!o!ois!1!0!1I 

You have aligned your SEEKADR field (the label of which is SKADR) and defined it as a 4-
byte constant with the following pair of BAL statements in your program, and you are 
moving the IDLOC contents to this field before each incrementatiC?n. 

LABEL 60PERATION6 OPERAND 
10 16 

1. ALIGNbDD DC 
2. S'.KADR DC 

c 3
1 xxx' 

CL4 1 OOo0 1 

1. Assuming that the alignment of previously defined storage areas leaves the 
location counter at an even boundary, this statement forces odd alignment. No 
label is required, of course, except to document the point. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-48 

2. The. label SKADR (which you have equated to the SEEKADR keyword parameter 
in the DTF defining the ·direct access file DAMFLE) is defined as a 4-byte 
character (not full-word) constant. 

At tt,ie appropriate point in your executable code, you issue the following pair of 
instructions, to increment relative. track number by 2 and to write record 7 ori relative 
track 147. 

LABEL ilOPERATIONfl OPERAND 
1 10 16 

AMFLE,~0 

The half word addressed by the Al instruction comprises bytes 1 and· 2 of the 
SEEKADR field, SKADR. Byte 2 contains the least ·significant byte of the relative track 
number, ttt. 

Other operations may require other ali'gnment - but whatever you do to the contents 
of the SEEKADR field, remember that they must be in fixed-point binary format before 
you issue an imperative macro that uses the seek address: 

WRITE,RZERO 
WRITE,10 
8EAD,ID 
READ,KEY 
CNTRL 

Remember also that the relative disk address must never have a negative or zero 
value. 

Before leaving the subject of relative track addressing, you should note that, when your 
DTFDA file contains optional user labels, data management reserves the entire first track 
on the first volume of your file for them. However, you must not include this user label 
track in your relative track count. The first of your data blocks Is written on the ·first track 
after the label track, and this, then, is relative track 001. 

The same caution applies also to the DTFNI file containing user labels, but these files may 
also contain subfiles in each partition. When this is the case, data management reserves 
the first track after the user label track (or the first track of the file, in the ·absence of user 
labels) to maintain its subfile tables. Relative track 001, on which the first of your data 
lies, may then be actually the third track of the extent; it is still the first data track of your 
file. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-49 

There are two reasons for.keeping these points ih mind. One is that, when you are·using 
the system utility (SU) symbiont to obtain a print of a specific part of your disk file, and are 
specifying certain heads and cylinders to be listed, you must include the user label and 
subfile table tracks in your reckoning. There is no way to specify a relative track to the SU 
symbiont (which is documented in the system service program (SSP) user guide, UP-8062 
(current version)). 

Another reason to remember the user label and subfile table tracks in your calculations is 
that the length of these ··tracks (in terms of the· number of your data blocks they could 
contain if used for data) is included by data management in its calculation of the current 
relative block and certain other relative addresses that it maintain·s in the DTF file tables. 
You will eventually learn to read these fields in the DTF you see in a program dump, for 
'they are often .:useful in debugging, and you will need to be prepared for an otherwise 
mystifying discrepancy. For example, if each track in yo'ur data file can hold 10 blocks -
and you have both user labels and subfile tables on disk - each relative block address 
contained in the DTF will appear to have been inflated, being 20 blocks higher than you 
expected. 

The form in which you load the re.lative disc ciddress into the SEEKADR field is governed 
by your specification of the RELATIVE keyword parameter; see 15.6.22, where relative 
track and ·relative ·record addressing are discussed in detail. In no case may the ID be 
negative or zero. 

Keyword Parameter SEEKADR: 

SEEKADR=symbol 
Specifies the location in your program into which you load the· relative disk 
address for use in processing direct access files with the READ,ID; READ,KEY; 
WRITE,ID; WRITE,RZERO; and CNTRL ·imperative macros. Required for DTFDA 
files and randomly processed files defined by the DTFNI macro. Form in which 
address is loaded is governed by your specification of the RELATIVE keyword 
parameter. Relative disk address may not be negative or zero. 

15.6.25. Assigning Initial Disc Space to a File Partition (SIZE) 

When you are defining each partition of a DTFNI file, you may specify the percentage of 
the total file allocation that data management is to initially assign to the partitions, by 
using the SIZE keyword parameter. 

You indicate the initial disk space you require for each partition by ·specifying the SIZE 
keyword parameter in the DTFNI or DPCA declarative macro. 

It is not necessary to specify the SIZE keyword parameter in the DTFNI or DPCA macros if 
you want only 1 % of the total file allocation to be assigned initially to the first partition and 
to those partitions that you do not specify other percentages for. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-50 

As you know, you specify the total file space allocation to OS/3 job control when you 
initially allocate the file, using the fourth and. fifth positional parameters on the EXT job 
control statement of your device assignment set. For. subsequent a.utomatic dynamic 
extension of a partition, yoµ .. wilJ use. the UOS keyword parameter (15.6.30). 

Keyword Parameter SIZE: 

SIZE, n 
Specifies the percentage of total file allocation to be initially assigned by data 
.management to the partition being defined by: this DTFNI or DPCA declarative 
macro. Not used with nonpartitioned DTFNI files, nor with DTFSD or DTFDA files. 

If omitted from DTFNI macro; data management ass.umes that SIZE==1 had been 
specified and assigns 1 percent. If omitted from DPCA m~cro, data management 
makes a l percent allocation. 

15.6.26. Extending Key Search to Multiple Track (SRCHM) 

When you issue a READ,KEY imperative macro to a DTFDA or randomly processed DTi=NI 
file, the search continues until the first block headed by a k.ey that matches the content of 
your KEYARG field is found, or the end of the current track is ·reached, ·whichever occurs 
first. To search beyond the end of the current track to the end of the cylinder, you may 
specify the SRCHM keyword parameter in the DTF. 

Keyword Parameter SRCHM: 

SRCHM==YES 
Specifies that a search key issued to a DTFDA or randomly processed DTFNI file 
(READ,KEY) is to be extended beyond the current track tothe end of the cylinder. 

15.6.27. Specifying Support of Subfiles in a Partition (SUBFILE) 

You may further subdivide each of the seven optional partitions of a DTFNI file into as 
many as 71 subfiles. These subfiles, which you. will access serially for processing within 
the partition, via the SETS imperative macro (15.7.5), maintain the same characteristics as 
the partition. (You select the appropriate partition with the SETP macro ( 15. 7.4).) 

Data management reserves one track of the first volume of the file on which to maintain 
subfile tables when subfiles are to be supported; to indicate to data management that it is 
to do so, you must specify the SUBFILE keyword parameter in the declarative macro that 
defines each separate partition containing subfiles: the DTFNI macro for the first partition, 
and the appropriate DPCA macros for the succeeding partitions. 

·1f you file does not contain optional user labels, data management writes the subfile tables 
on the first track; when you do have UHL/UTL, data management writes these on the first 
track, and the subfile tables go on the second track. Refer to 15.6.24 for a discussion of 
the. effect the presence of these tracks have on positioning yourself in your file. Refer to 
15. 7.5 for discussion of the contents of the subfile. 



UP-8068 Rev. 4 SPERRY UNIVAC' OS/3 
BASIC DATA MANAGEMENT 

15-51 

Keyword Parameter SUBFILE: 

SUBFILE YES 
Specifies that data management is to support subfiles in the partition defined by 
this DTFNI or DPCA declarative macro. A maximum of 71 subfiles may be 
established in each partiton; you access these serially by issuing a, SETS 
imperative macro to the file, having previously selected the correct partition with 
a SETP imperative macro. 

15.6.28. Specifying Processing of User Trailer Labels (TRLBL) 

As you recall, you may have optional standard user trailer labels (UTLs) in your nonindexed 
disk files. These are processed by your label routine (LABADDR keyword parameter, 
15.6.15) and written by data management on the user label track when you issue the 
CLOSE imperative macro to the file. When you want to process your UTL on closing the 
file, .you must specify the TRLBL keyword parameter beforehand in the DTF for the file; 
naturally, you must also provide data management with the address of your label 
processing routine'by specifying the LABADDR keyword parameter. If you omit the TRLBL 
keyword parameter, your LABADDR routine does not receive control at file close~ and your 
UTLs, consequently, are, never processed. 

Keyword Parameter TRLBL: 

TRLBL=YES 
Specifies that you will process UTL when you issue the CLOSE imperative macro 
to the DTFSD, DTFDA, or DTFNI file defined by this DTF. You must also specify 
the LABADDR keyword parameter. 

15.6.29. Defining the Type of File (TYPEFLE) 

One of the most significant keyword parameters, used for DTFSD, DTFDA, and DTFNI files, 
is the TYPEFLE keyword parameter. It is important to ¥OU because with it you specify not 
only what type of optional header/trailer label processing you will perform on the file, but 
also what basic processing you will be performing on the data itself. It is also important to 
note that, having defined a file for one mode of processing, you are generally restricted to 
that mode until you explicitly provide? for a change in one of the ways pointed out in the 
following discussion. 

This is the format of the TYPEFLE keyword parameter: 

If you omit specifying this keyword, data management assumes that TYPEFLE=INPUT has 
been specified. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-52 

The effect of the TYPEFLE keyword on header /trailer :label processing is simply 
summarized: TYPEFLE==INPUT specifies that data management will read header /trailer 
labels for the file; TYPEFLE==OUTPUT specifies that it will write header/trailer labels. In 
both c,asesr th~se actions include readir;ig, ~hecking, and writing your optional UHL and 
UTL, which. you generate and t,.1pdate with your LABA[)J:)R 1~.bel processing routine. If you 
specify TYPEFLE==INPUT and, the LABADDR and .rRLBL J<eyword para111eters, data 
m,anagement ,a~sume~ UHL a,nd · UTL exist. Y9u m.ay not specify TYPEFLE, INOUT for 
DTFDA files, but this specification for DTFSD or DTFNI files is what you use for label 
updating. 

The TYPEFLE keyword parameter controls only• the mode of label processing to be 
performed on files defined by the DTFDA macro; for DTFSD files and sequentially 
processed DTFNI files, however, it also constrains your processing of the data:records in 
the file. When you specify TYPEF1£==1NPUT for one of these, you define a fil.e that is to be 
read only . .You may not issue an output· function to it (that is,. the PUT imperative macro) 
unless you have also ·specified UPDATE-:-YES in the DTF. (The UPDATE keyword parameter 
is described in 15.6.31.) Similarly, when you.specify.TYPEFLE==OUTPUT, you define ·a file 
that is to be written, and you may not issue an input function (the GET imperative macro) 
to the file. Specifying TYPEFLE-;-INOUT.defines a file that you, may use .either as an input 
or ~n output file, issuing the GET or PUT ·macw, ·as required.<. 

After you have used a file as an output type, you must close the file and change its type to 
input before you reopen it. You alter the file type by issuing the SETF imperative macro to 
the file; this procedure is developed in 15. 7.8. (The OPEN macro is described in 15. 7.1; the 
CLOSE imperative in 15. 7.2.) 

Keyword Parameter TYPEFLE: 

Specifies a read-only file; used with DTFSD, DTFDA, and DTFNI macros. Data 
management will read and check standard labe1s··for this file. You may noUssue 
an output function to this file unless you have also specified UPDATE==YES in the 
DTF. Data management assumes you have specified TYPEFLE==INPUT when you 
omit the TYPEFLE .keyword 11>arameter. 

TYPEFLE~ouTPUT 
Specifies a:· file that is to be written; used with the DTFSD, OTFDA, and DTFNI 
macros. Data· management will write standard labels for this file. For DTFDA 
files, this keyword controls only the mode of label processin~rto be employed; for 
DTFSD files and sequentially processed DTFNI files, it also controls the mode of 
record processing you may use 1within t·he file. You may· not issue an input 
function to this file unless you close it, reset its file processing direction to input 
with the SETF imperative macro, and reopen the file. 

TYPEFLE==I NOUT 
Specifies a file that you may use for either input or output. Used with DTFSD and 
DTFNI files; not used With DTFDA·fites. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3' 
BASIC DATA MANAGEMENT 

15-53 

15.6.;30. Specifying Dynamic·Extension of a File Partition (UOS) 

You use the SIZE keyword parameter (15.6.25) to assign initial disc space to a partition of 
a DTFNI file, but whe(1 you anticipate a ·need to,e)(J~nd ·a p.artition dynamically, you use the 
UOS keyword parameter. This keyword Is specified only with the DPCA macro or with a 
DTFNI macro which defines the first (or only) partition of a nonindexed file. 

With the UOS keyword, you specify to data. management what percentage of your 
secondary allocation of disk space to the file it is to suballocate each time the partition 
requires additional .space. From your acquaJntance with OS/3 job control, recall that you 
specify the number of cylinders or blocks that is to constitute the secondary allocation of 
disk space Jo. a file with the third positional parameter on the EXT job control statement of 
your fil.e's device assignment set. (To· .review this statement in detail, you should refer to 
the job control user guide, UP-8065 (cur:rent versioo).) 

When you have specified the UOS keyword paramete~. for the partition :(and have not 
specified a Ztft:O increment in your EXT1jol;> control statement), and the partition requires 
more sp~ce, data man~gement wiU automatically st,.Jl;>allocate to itthe number of :additional 
tracks that is equivalent to the amount of $torage,r.:specified QY the UOS keyword. This 
amount is designa~ed the unit of stor~~ the same amount is t,.J.sed each time the .partition 
neeqs extension. Data mapagernent keeps a recorp of .~uballocation information developed 
for all partitions in .. the format 2 label.associated wjth .th.e file (Appendix D). 

Data management learn.s of the need to extend a fH.e partiton each time one of your o.utput 
imperative macros (PUT or WRITE) references a block that lies beyond the current 
maximum relative block address data management maintains in the PCA table for the 
partition. Data management acts automatically to extend the partition, but there are 
several points you should keep in mind. 

One point is that y0tr must have specifiep.the UOS keywerd parameter in the first place; if 
you omit it, no e~tensibn can be made. A second: pointdis that file partitions will not be 
extended beyond· the volumes on which the fife resides. Furthermore~ ff, after extending 
your partition by one uni~ ofstore, .data manag.ement findsthat the requested block still 
lies beyond the new maximum relative block ·address, it sets th.e invalid ID flag (byte 0, bit 
1) in filenameC .and transfers control to your ern:>r routine, (or to you inline if you h<;ive no 
error routine). Data management takes the same .action if there is no space availa.ble on 
the disk to extend the partition or if you have not specified the UOS keyword. Finally, a 
unit of store specification greater than 100% is not valid. 

Keyword Parameter UOS: 

UOS=n 
Specifies, as the unit of store, the percentage of secondary disk storage 
allocation for the file that data management is to suballocate to the partition 
being defined each time it requires more space. The valu~ of n, which is the 
specified percentage, may ·not exceed 100. Secondary storage allocation is 
specified in the EXT job c9ntrol statement in the device assignment set for the 
file. · ·· · · 



t 

UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-54 

Used with DPCA declarative macrn or: with OTFNI macro defining first'(or only) 
partition of a nonindexed file. Not used with DTFDA or DTFSD macro. 

If omitted, or ;if a zero·,secondary storage allocation is specified in EXT job control 
statement, no extension Will be made. 

15.6.31. Specifying Update Processing Mode for Sequential Files (UPDATE) 

The UPDATE keyword parameters is used with the DTFSD and DTFNI' macros. 

You will recall from the discussion of the TYPEFLE Re\!word parameter that when you have 
specified TYPEFLE=INPUT, you define a read-only file and may not issue an output 
imperative macro to it unless you have also specified UPDATE-YES (15.6.29). 

When, therefore, you have an input file defined by a DTFSD macro, or an input file defined 
by the DTFNI macro that is to be processed sequentially and you want to update your data 
records, you specify UPDATE=YES to make this' possible. Only then may you retrieve your 
records with the GET imperative macro and, modifying them if you heed to, rewrite them 
to disc with the PUT macro. (The UPDATE=YES specification is also accepted in your DTF 
for sequentially processed: files you have defined as TYPEFLE=INOUT, although you do not 
need to use it for this 2'-way type of file.) Another point worth remembering is that the 
UPDATE keyword parameter, unlike the TYPEFLE keyword, has nothing to do with your 
mode of label processing; its use ·affe,cts only your mode of data record processing in 
sequential input ,files. 

Keyword Para meter UPDATE: 

UPDATE=YES 
Used only with DTFSO macr.o or btFNl macro defining sequentially processed 
files and only when you have specified n'PEFLE=INPUT or TYPEFLE=INOUT for 
these files. When used, 'specifies that •sequential output function (PUT macro) 
may be issued to update data records in 'file. Unrelated to label processing. 

If omitted from DTF for a sequentially processed input file (TYPEFLE-INPUT), you may 
not issue an output function to the file. 

15.6.32. Specifying Register for Residual Space, Variable Records (VARBLD) 

When you are outputting variable-length, blocked records to a sequentially processed disk 
file, and you are building these in an 1/0 area without a work area, you must specify the 
VARBLD keyword parameter. 

Data management uses the general register you specify with this keyword to inform you of 
the number of bytes of residual space remaining in the 1/0 area 'after the execution of 
each PUT macroinstruction you issue. Before you, Issue your next PUT macro, you must 
test whether there is enough space left to accommodate the next record. If there is not, 
you must issue a TRUNC macro to write out the current block. (These procedures are 
detailed in 15.7.9.4 and 15.7.10.) 



UP-8068 Rev.4 SPERRY UNIVAC OS/3. 15-55 
BASIC DATA MANAGEMENT 

The VARBLD keyword parameter is not supported by the DTFDA macro because the 
blocked record formats may not be specified for DTFDA files; you may specify the keyword 
for sequentially processed output files or partitions defined by the DTFSD, DTFNI, or DPCA 
declarative macros. 

Keyword Parameter VARBLD: 

VARBLD==(r} 
Specifies a general register into which data management loads the number of 
bytes remaining in the 1/0 area after each execution of a PUT macroinstruction 
to a sequentially processed output file containing blocked, variable-length 
records, where r is the number of the register and must be enclosed in 
parentheses. Supported for DTFSD, DTFNI, and DPCA macros; not supported for 
DTFDA macro. Value of r may range from 2 through 12, but register 13 may also 
be used if SAVAREA keyword has also been specified. 

When you are building variable-length blocked records in an 1/0 area for output to a 
sequentially processed file, without a work area, you must access the VARBLD register to 
test whether enough space remains in the area for the next record before issuing your 
next PUT macro. You issue a TRUNC macro when it does not. See 15. 7.9.4 and 15. 7.10. 

15J>.33. Specifying Parity Check Verification .of Output (VERIFY) 

When you want data management to make a parity check of your data records or plocks 
after it has written each of them to disk, you must specify the optional VERIFY keyword 
parameter. Verification necessarily increases execution time for the output commands 
involved (PUT or WRITE macroinstructioo). If a parity check is conducted and reveals an 
error, data management normally sets the output parity check error flag (byte 2, bit 2) in 
filenameC and transfers control to your error routine, if you have specified one, or to you 
inline (Appendix B). 

You may specify the VERIFY keyword parameter with the DTFSD, DTFDA, and DTFNI 
macros; it is not supported by the DPCA macro. 

Keyword Parameter VERIFY: 

VERIFY==YES 
Specifies that data management is to conduct a parity check of output blocks or 
records after writing them to disk. Parity check verification necessarily increases 
execution time for PUT or WRITE macro. Optional for DTFSD, DTFDA, and DTFNI 
files; not supported for DPCA macro. 

If omitted, no verification is performed; however, data management may detect an 
output parity check error by other means. You may direct data management to take 
certain actions with the ERROPT keyword parameter (15.6.5). 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASiC DATA MANAGEMENT 

15-56 

15.6.34. Specifying Sequential Processing in 'a; Work Area (WORKA') 

When you are going.·to process input or output records sequentially i'Fi a work area rather 
than in the 1/0 area, you indicate this to data management by specifying the· WORKA 
keyword parameter in the DTF. This keyword is supported for the DTFSD declarative macro 
and for sequentially processed files or partitions defined by the bTFSD declarative macro 
and for sequentially processed files or partitions defined by the DTFNI or DPCA macro; it is 
not specified for the DTFDA macro. 

You specify the address of the work area in the second positional parameter of each PUT 
or GET macro you issue to the file (15.7.9 and',15.7.12). When you use a work area and 
therefore specify the WORKA keyword, you m·ust not specify the IOREG keyword 
parameter in your. DTF (15.6.11 ). 

Keyword Parameter WORKA: 

WORKA-YES 
Specifies to data management that you will Ile processing input or output records 
sequentially in ·a work area and not in the 1/0 area. Supported for DTFSD macro 
and sequentially processe·d files or partitions defined by DTPNi' or· DPCA macros; 
not supported for DTFDA files. 

Do not specify IORE'G keyword parameter when you specify the WORKA keyword: 

'Address of work area is· specified with each issue of GET and PUT macro. 

15.6.35. Specifying Issue of WRITE,ID Macro (WRITEID) 

When you. are processing. a DTFDA file or .randomly processing a DTFNI file and will issue 
the WRITE,ID form of the WRITE imperative macro to locate an output block by means of 
its relative disk address or ID, you must notify data management by specifying the 
WRITEID keyword parameter in your DTF. (This use of the· WRITE macro is detaifed in 
15.7.11.4.) 

Keyword Parameter WRITEID: 

WRITEID YES 
Specifies that you will issue a WRITE,ID macro to the randomly processed file 
defined by this DTFDA or DTFNI declarative macro to locate an output block by its 
relative disk address (ID). Not supported for DTFSD files. See 15.7.M .4 for the 
WRITE,ID macro. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.6.36. Specifying Issue of WRITE,KEY Macro (WRITEKEY) 

15-57 

When you are processing a DTFDA f.ile or randomly proc~ssing a DTFNI file and wifl issue 
. the WRITE,KEY form of the WRITE imperative macro to rewrite or update a block just ·read 

by the READ,KEY macro, you must notify data management by specifying the WRITl!KEY 
keyword parameter in.your DTF. (These uses of the WRITE and READ macros are detailed 
in 15.7.11.5 and 15.7.14.2.) 

Keyword Parameter WRITEKEY~ 

WRITEKEY .YES 
Specifies that you will issue a WRITE,KEY imperative macro to the randomly 
processed file defined by this DTFDA or DTFNI declarative macro to rewrite a 
block just retrieved by the READ,KEY macro. Not supported for QTFSD files~ See 
15. 7.11.5 for the WRITE, KEY macro; 15. 7.14.2 for the READ,KEY macro. 

15.6.3.7; Nonstandard Forms of the Keyword Parameters 

In order to minimize any recoding you may need to revise programs previously prepared to 
· run under other data management systems, OS/3 data management accepts certain 
.variant spellings for the keyword parameters described in this section. The nonstandard 
. forms of these keywords, listed alphabetically, are as follows: 

Nonstandard OS/3 ·Nonstandard OS/3 
Spelling Standard Form Spelling Standard Form 

AFTR AFTER RDID READID 

BKSZ BLKSIZE RDKY READKEY 

£0FA EOFADDR REL RELATIVE 

ERRO ERR OPT SKAD SEEKADR 

IOA1 IOAREA1 SRCM SRCHM 

IOA2 IOAREA2 TYPF TYPEFLE 

IORG IOREG Ut:>DT UPDATE 

KARG KEYARG VBLD VARBLD 

KLEN KEYL EN VRFY VERIFY 

LBAD LABADDR WRID WRITEID 

RCFM RECFORM WRKY WRITEKEY 

RCSZ RECSIZE WORK WORKA 

Table 15-7 summarizes nonindexed file declarative macro keyword parameters. 



t 

UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-58 

Table 15-7. Summary of All Declarative Macro Keyword Parameters Used With the Nonindexed File Processor System (Part 1 of 2) 

Keyword Keyword 
Declarative Macros 

Parameter ' Specification 
Used to Specify or define 

DTFSD OT FDA OTFNI DPCA 

ACCESS EXC x x x - This DTF: read/update/add use 
Other jobs: no access 

EXCR x x x - This DTF: read/update/add use 
Other jobs: read use 

SRD x x x - This DTF: read use 
Other jobs: read/update/add use 

SRDO x x x - This DTF: read use 
Other jobs: read use 

AFTER YES x x - Issue of WRITE, AFTER or WRITE, RZERO macro 

BLKSIZE n R R R R Length of 1/0 buffer 

EOFADDR symbol R x x Address of end-of-file/partition routine 

ERROPT IGNORE Availability of record in 1/0 area despite parity error 

SKIP Bypass input record or ignore output record despite 

parity error 

ERROR symbol x x x Address of user error routine 

IDLOC symbol - x x - Define field for next available record address 

IOAREAl symbol R R R R Address of primary 1/0 buffer 

IOAREA2 symbol x x x Address of secondary 1/0 buffer 

IOREG (r) x - x x 1/0 buffer index register 

KEYARG symbol - x x x Address of field containing key search argument 

KEY LEN n - x x x Length of key 

LACE n x x x x Lace factor for record interlace operations 

LABADDR symbol x x x Address of user header/trailer label processing routine 

LOCK NO x x x Specifies that file lock is not to be set on a lockable file 
at OPEN 

OPTION YES x - x - Optional file for input 

PCA(n) symbol - - x - Partition address, where n = 1-7 

READ ID YES - x x - Issue of READ, ID macro 

READKEY YES - x x - Issue of READ, KEY macro 

REC FORM 
',;;;:;,,:;,;::;'"'''' 

Format of data records hl~H~~~ x x x x 
VARUNB x x x x 
FIXBLK x - x x 
VARBLK x - x x 

RECSIZE n x - x x Record size 

RELATIVE R - x x - Relative addressing method 
T - x x -



UP-8068 Rev. 4 SPERRY UNIVAe OS/3 
BASIC DATA MANAGEMENT 

15-59 

Table 15-7. Summary of All Declarative Macro Keyword Parameters Used With the Nonindexed File Processor System (Part 2 of 2) 

Keyword Keyword 
Declarative Macros 

Used to Specify or define 
Parameter Specification 

DTFSD DTFDA DTFNI DPCA 

SAVAREA symbol x x x - Address of register save area 

SEE KA DR symbol - R R - Address of seek address field 

SIZE n - x x Percent of total file allocation to be initially 
assigned to partition 

SRCHM YES - x x - Multi-track search for key 

,, 

SUBFILE YES - - x x Support of subfiles 

TRLBL YES x x x - Support trailer labels 

TYPEFLE lNJ!l£i x x x - Define file type and mode of label processing 
OUTPUT x x x -

INOUT x - x 

uos n - - x x Secondary allocation 

UPDATE YES x x - Update of sequential input file 
_::_ 

VARBLD (r) x - x x Count of residual 1/0 buffer space for VARBLK file 

VERIFY YES x x x - Read/check of output records to be performed 

WORKA YES x - x x Sequential processing in work area 

WRITEID YES - x x - Issue of WRITE, ID macro 

WRITE KEY YES x x Issue of WRITE, KEY macro 

LEGEND: 

X Optional 
R Required 

Not supported 
Assumed specification if keyword not specified. 

15.7. IMPERATIVE MACROS FOR NONINDEXED DISK FILES 

You inform the nonindexed file processor system of the distinct operations that 'data 
management is to perform on your files and partitions by including the appropriate file 
processing imperative macroinstructions in your program. 

There are 18 of these imperative macros available to you for processing your 'nonindexed 

t 

files ·and partitions; Table 1 5-8 summarizes their functions. ....,_ 

The paragraphs following the table describe the imperative· macros in detail; the macro 
descriptions are arranged in four groups, according to the file processing functions 
involved: 

• Initialization and Termination Macros: 

OPEN 

CLOSE 



UP-8068 Rev. 4 

LBRET 

SETP 

SETS 

POINTS 

FEOV 

SETF-

SPERRY UNIVACOS/3 
BASIC DATA MANAGEMENT 

• Creation, Addition, and Updating Macros: 

PUT 

TRUNC 

. WRITE 

• Retrieva I Macros: 

GET 

RELSE 

READ 

• Validation and Positioning Macros: 

CNTRL 

WAITF 

NOTE 

POINT 

15-60 

Before,. issuing an imperative macro to an OS/3 .gata management file,, you must provide a 
72-byte save area, full~word aligned, into which data management expe~ts .to place the 
contents of your registers. You may load general register 13 in your ·program, or use the 
SAVAREA DTF keyw9rd parameter to speci.fy the address .of the register save area. (See 
1 5. 6 .23.) . 1 

• •• • ' • • 



UP-8068 Rev. 4 

Macro 

OPEN 

CLOSE 

LBRET 

SETP 

SETS 

POINTS 

REOV 

SET_F 
: 

PUT 

TRUNC 

WRITE 
-I 

GET 

RELSE 

-h-
READ 

CNTRL 

WAITF 

NOTE 

POINT 

SPERRY. UNIVAC.OS/3 
BASIC DATA_ MANAGEMENT 

15-6·1 

Table 15-8. Summary of Imperative Macroinstructions for Processing Nonindexed Disk Files 

May be issued to 
Secondary Remarks 
Operands* DTFSD DTFDA DTFNI 

Files Files Files 

x x x File_ or: partition initialjzatio,rr 

_:_ x x x File of partition termination 
- --

• J '· I J ~~ _ _.._ I 

None x x x -Creat~ng, retrieving, and. apd()ti ng sta_ndard 
user header and trailer labels 

partition-name - - x Sefect partition for subsequent prdces:sing 

subfile-number - - x Select subf.ile or_1t1
erminate current s_ubfile cre~tion 

- - - x Initialize to first block of file or partition 
- '-:.:::!.. 

---==- -- ---
- x - x Terminate processing of current volume 

8 --
:-T --~ 

INPlJT x -::- x Set processin-g directio~ for type INOUT_file 
OUTPUT 

:' 

UPDATE ! 

workarea x - x Recor,d-level oµtJ:lut, sequential l'JlO,d~ 

- x - x Terminate output processing of fUrrent block 

,, 
x _Bloqk~level outp4~ byrelative adornss ID -

+, 
x I··-" 

KEY - x x Block-level output by direct write 
_:__ - ~~ - -~-

RZERO - x x Track initialization 

----__,-
~ 

AFTER - x x Write current block in next sequential position in file 

AFTER,EOF - x x Record end-of-dat ID in DTF and format 2 label 
;__ --"'-- ---- -__ ---;;::-

workarea x - x Record-level retrieval, sequential mode 

- x - x Terminate input processing of current block 
j_ 

___,- - ~ -;-,, I 

ID - x I• x Block-level_ retrjev~l-by relative address 
-

KEY - x x Block-level retrieval by key 
-

S.EEK x x -~ S~ek·to ;current track or to track indiqated,by SEEKADR 

i 
;-;::" 

- - x x Wait on 1/0 completion;'required after READ or WRITE 

- - - x Access current relative block address 

address-field - - x Position file to relative block address in address-field 

*Except for the LBR ET macro, filename is assumed for operand-1; operands listed are secondary. 

t 



UP-8068 Rev. 4: 

OPEN 

SPERA\' UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.1. Opening a Disk File (OPEN) 

15-62 

You will use the OPEN imperative rnacro to open a disk file defined by the appropriate DTF 
macro instruction in order to initialize it (and its partitions, if any) before it may be 

~ accessed by the logical IOCS processor. The OPEN macro instruction calls the appropriate 
transient routines to perform the following functions: 

• validating and completi.ng the file or partition tables; 

• validating or creating ··system standard labels; and 

• reading or writing user standard header labels. 

If you define a DTFNI file to have more than one partition (by specifying two or more PCA 
· keyword parameters and by coding the necessary DPCA declarative macros), you initialize 
all partitions by issuing an OPEN macro for the file. 

Th is is the format of the OPEN macro: 

LABEL 6. OPE R.A TJON b. 

[na.me] .OPEN 

Positional Parameter 1: 

filename 

QPERAND 

l
filenam~:1 [, ..• ,filename-n] l 
(1) . 
1 

Is the label of one or more corresponding DTF declarative macroinstructions in 
your program. You may have as many as 16 files opened. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTF filetable. 
(You use (1J or 1 as the operand only when you have a single DTF.) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.2. Closing a Disk File (CLOSE) 

15-63 

CLOSE 

After you .. have completed your processing of a dislffile, you must issue the CLOSE macro 
to ch.eek that all your 1/0 orders have actually been completed and to read or write the 
system standard and optional standard trailer labels: in other words, to terminate the file. 
Once you have termi:nated a me with thR CLOSE macro (which calls a transient routine to 
perform all of these functions), you cannot access it again unless you issue another OPEN 
macro. An important point to note is that you do not terminate file partitions separately; 
once you have done vvith all .the partitions of a file you intend w process, you terminate 
operations by issuing one CLOSE macro for the file that 1contains them. (For this reason, 
the partition name never appears as ·an operand of the CLOSE macro.) 

The format of the CLOSE macro is: 

LABEL /;.OPERATION 8. OPERAND 

CLOSE 

l 
fi lename-1 [ , ... , f i lenarrie-n] l 
( 1) . 

1 
*ALL 

[name] 

The three basic ways to code the CLOSE macro involve the use of symbolic addresses in 
the operand. 

Positional Parameter 1: 

filename 
Is the label of the DTF declarative macro in your program; there may be 1 or as 
many as 16 files named. 

(1) or 1 
Specifies that you have preloaded register 1 with the address of the DTF file 
table. You may use (1) or 1 when you have only one file to terminate. 

*ALL 
Specifies that all files currently open in the job step are to be closed. 



UP-8068 Rev. 4 

LBRET 

SRERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT. 

15.7.3. Processing Optional User Labels (LBRET) 

15-64 

You will use the imperative macro·LBRET in your label processing routine .. (whose symbolic 
address is specified to data management via the LABADDR keyword parameter of. your 
DTF) to create,· retrieve, or retrieve and update optienal user header or trailer labels. Note 
that LBRET is the only data management macro your label processi·ng routine may issue. 
The maximum number of each type of label yotrmay process is eight. 

When your LABADDR routine receives. control; data management will3have loaded general 
register 1 with the address of the 1/0 buffer for use in processing input and outpuFUHLs 
and UTLs. You must always use· register l, even though you may have specified only one 
buffer with the IOAREA 1 keyword; it is not possible to use a work area for processing user 
labels. 

Your LABADDR routine is accessed when the file is opened and again when it is closed; 
register 0 contains the EBCDIC alphabeti9 chc;ffaGie.r Q.Jn. Jts 1¢asJ sl.gnificant byte when the 
file is opened and the character F when it is closed. Your LABADDR routine should be 
coded to access register 0 and to process, your header labels when the register contains 0 
and your trailer labels when it contains F. · 

Another point to remember is that user header !t'railer labels, if you have them at all, are 
maintained at the file level only; data management does not maintain them at the partition 
level. (For this reason, there is no LABADDR keyword parameter in the DPCA declarative 
macro.) 

The format of the LBRET macro is as follows: 

LABEL b. OPERATION b. OPERAND 

[name] LBRET U} 
where: 

1 
Does not write or read a label; returns control to your program at the next 
instruction after the OPEN or CLOSE macroinstruction. 



UP-8068 Rev. 4, 

2 

3 

SPERRY UNIVAC OS/3 
BASIC DATA .MANAGEMENl= 

15-65 

Writes a label to an output file or reads a label from an input file; then returns 
control inline to your p.togram at the next ,instruction after the l..BRET 2 
macroi nstruction. 

Writes back to disk the label just read and returns control to your program inline 
at the next instruction after the LBRET "3 macroinstruction. 

TYPEFLE==INOUr must be specified in your DTF declarative macroinstri.Jction, or the file 
processing direction reset for update processing' with the SETF macroinstruction. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.3.1. Creating Optional User Labels 

15-66 

Your LABADDR label-creating routine delivers your. standard user header or trailer labels 
to data management one at a time, up to the maximum of eight. Data management will 
write each label to the disk file. If you have specified LBRET 2, it will return control to your 
label routine after each label has been written, until the eighth label has been written to 
disk. Then data management will transfer control .to you inline. If you are creating user 
labels, control returns to you at the instruction next after the OREN macro call by which 
you initially opened the file for processing. If you are creating user trailer labels, of course, 
data managernent returns control to yol:J inline at the instruction next after the CLOSE 
macro call by which you are terminating your processing of the file. (Remember that 
reading or writing optional user trailer labels is one of the functions performed by the 
CLOSE macro.) Remember also where labels are written: 

• User header labels are written by the LBRET macro on the first track of each volume 
of a DTFSD file, and on the first track of the first volume of a DTFDA or DTFNI file. 
They are 80 bytes long; their simple format is shown in 14.2.4. 

• User trailer labels are written on the first track of each volume of a DTFSD file and on 
the first track of the first volume of a DTFDA or DTFNI file, following your user header 
labels. Their format and content are similar to those of the user header label and are 
also shown in 14.2.4. 

When you have fewer than eight user labels of either type to create, you issue LBRET 1 
when you have created the last one. After it has written the last label to your disk file, 
data management will return control to your program at the instruction next inline after 
your OPEN macro call. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.3.2. Retrieving or Updating User Labels 

15-67 

If you need to retrieve your user labels for updating or other label processing, you will 
specify in the DTF the type of label processing you intend to perform (TYPEFLE=INPUT or 
TYPEFLE=INOUT), specify TRLBL=YES if you are going to process user trailer labels, 
specify the address of your label processing routirie (LABADDR), and open the file with the 
OPEN imperative macro. (You do not use the VPDATE J<eyword parameter of the DTF; this 
is hot related to label processing· but affecfs data· 110.) c. 

When the file is opened, data management will deliver your user header and trailer labels, 
one at a time, to your LABADDR routine either until all existing user labels have been 
passed to you, or until you specify that you need no mofe, by issuing LBRET 1. 

Your label routine processes each label delivered by data management and then returns 
control to data ·management by i·ssuing the LBRET macro with 1, 2," or 3 for the positional 
parameter. 

If you want to terminate label processing short of the maximum (eight standard user labels 
of each type), you issue LBRET 1 when you need no more (this implies, of course, that you 
keep track). Data management then transfers control to you inline,· to.the instruction next 
after your OPEN macro ·call. 

When you are processing all your labels (bufnot updating them), you issue LBRET 2. Data 
management will retrieve the next label and pass it to your LABADDR routine. It will. 
continue to do so until there are no more to process;··ihen, after you have processed tfie 
last label, data management automatically transfers control to the next instruction after 
your OPEN macro call. 

'"''" 

When you are updating your user· header and trailer labels, you issue LB:=ii Here, data 
management will update the label just read, writing the new label to disk n the place of 
the old. 



UP-8068 Rev. 4 

SETP 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15. 7 .4. 'Accessing a. S~lecte.(i f:iJe J:»art,tion. (~ETP). 

15-68 

When you open a multipartltioned DTFNl file for. processing, the ,only one of its pf:trtitions 
that you may then access is PCA 1, the partition defined in the DTF itself. All partitons of 
the file are initialized WDen you issu~. an ()PEN m9c;:ro for the file, but only partition 1 .set 
active; you cannot access any pa~tition other than this first on~ with the OPEN. macro 
alone. To selec;:t another :p~rtJtiqn of the opened file, you need the SETP macro. 

The SETP. rpacro act~ tg~elect th.~,. new partition, but: it is. important .to remember that it 
positions you for processing .this. partition j;l.t its 1;urrent pgsition;. that is,.· at the next 
accessible block after tne point at which you were last processing. If you want to begin at 
some other point, you will need to issue additonal macros, for example, SETS (15.7.5), 
POINTS (15.7 .. 6),. or POl~T (15.7.1.~l. 

Onc.e ·you have acc'3~sed a partition with the .SETP macro, all su,bsequent processing 
continues on the sefected partition 'until you issue another ,~ETP macro~ . All other 
imperative macros with which you may process within a partition (POINT, POINTS, SETS, 
and NOTE) depend Of' you to select the prqper .Rartition t;>~fore calling them. 

Thi~ is the format of 'the SETP macro; .notice that i,t i~ t~e only imperative macro that may 
have a partit.ion name in .the operand. 

LABEL f). OPERATIONf). OPERAND 

SETP 
{

filename} {partition name} 
(1) , (0) 
1 0 

[name] 

Positional Parameter 1: 

filename 
Is the label of the DTFNI declarative macro that describes the already-opened file 
of which partition-name is part. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTFNI file 
table. 



UP-8068 Rev. 4 SPERRY. UNIVAC OS/3' 
BASIC DATA MANAGEMENT 

15-69 

Positional Parameter 2: 

partition-name 
Is the label of the partition control appendage (PCA 1-7) that denotes the 
partition you want to access .. (This is, of course, the same. thing as the label ()f 
the corresponding DPCA declarative macro for PCA2-7 and the label 'assigned 
to the partition defined by PGA 1 withtn th.e prFNLmacro.) 

(0) qr 0 . 
in.dicates that. you' have preloaded regis.ter 0 \l\/ith the adpress .o( ttie partition 
·!able· defined ·.bv the ·orFNr keyword CPCAJ-7) .that descr,ibes ·the pa,rtition you~ 
want·to ·access~ 

Each DTFNI file table maintains the address of the· partition that is currently active; when 
you issue a SETP macro! data nian9gemept modifie~. this current par~ition ?ddre?s to 
indi.cate which partition you have ·s.e.lected tQ be. activefor. subsequent file a.cces?e.s. (When 
you· close the file, you have no further access to the file .• until y,OU ipitif;lllZe it again .With a 
subsequent OPEN macro, which once more sets PCA 1 active .. ) · · 

If you have specified an index register (via the IOREG keyword.parameter of your DTF), 
each SETP macro··you issue 'Will cause the· inde£r~gister to be loaded for ··the pa.rfoion you 
are accessing. (During the opening of a multipartltioned file, only the :index regj$ter for 
PCA 1 will have been loaded.) · 



UP-8068 Rev. 4 

SETS 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.5. Processing Subfil.es within a partition (SETS) 

15-70 

Within each partition of a DTFNI file, you may estabHsh as many as 71 subfiles. Subfiles 
must be created sequentially, but you may access them at random for data retrieval. If you 
intend to use subfiles in the first partition (PCA 1) of a DTFNI file, you specify .the SUBFILE 
keyword parameter in the DTF; data managemenf·reserves on~Jrack of the first volume of 
the file for maintenance of ·a subfile table. Similarly, if you wa.nt subfiles supporte9 for any 
of the subsequent partitions, you specify the SUBFILE keyword parameter iri the DPCA 
declarative macros describing these .partitions. 

Once you have selected the ·partition to be subdivid.e~, the SETS imperative macro is. the 
one that provides you with the· ability to create· and subsequently retrieve the data in the 
partition subfiles. This is its format ; · 

LA•BEL .6. OPE RAT ION .6. OPERAND 

SETS ·{· filename} { subfile.:-l)O.} 
(1) , (0) 
1 0 

[name] 

Positional Parameter 1: 

filename 
Is the label of the DTFNI macroinstruction describing the file to which the 
subdivided partition belongs. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the DTF file 
table. 

Positional Parameter 2: 

subfile-no 
Is the decimal integer number of the subfile (1 through 71) to be referenced. 

(0) or 0 
Indicates that register 0 has been preloaded with the subfile number. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-71 

The reason that the partition name does not appear in the operand is that the SETS .macro 
expects that you have already selected the partition you want, by issuing an appropriate 
SETP macro before calling it. If you have not done so, or if the SETP macro you issue is for 
the wrong file or partition, data management sets the invalid subfile bit (byte 3, bit 3) in 
the error flag field of the DTFNI file table, referenced as filenameC (Appendix 8). You 
should check this bit whenever you issue a SETS macroinstruction. · 

What the SETS macro does is to maintain a partition-relative subfile table, orHh.e track of 
the first volume of the fi,le that you reserve.d by specifying SUBFIU: keyworcj par.ameter in 
the DTFNI or DPCA macro. (This is either the first track on the vofume or, when optional 
user labels are present, the first track after the user label track.) Data management uses 
th.is table to keep track .of the start of each subfile: the. address of the record that starts it. 
Nq record is k~pt by data management of the end of a subfile;. unless you keep track 
yourself of the record with which it ends, it is possible to process through a subfile to the 
end of the partition or logical EOF. · · 

The subfile table is not available for you to access, but you may examine it in a disk print 
taken with the system utility (SU) symbiont. To know its contents may help you visualize 
what the SETS macro is?doing for you when you create or retrieve su9file records. There is 
one 6.:.byte entry in the ·table for each subfile, consisting of the relative block address of 
the record at the start of the subfile and, if the records are in blocked format, its 
displacement into the block. When you are creating a subfile, you issue a SETS macro to 
insert the address of the next available block or record as an entry in the subfile table. 
(Remember that you are creating subfiles sequentially, although you may retrieve the 
subfiles at random.) 

During retrieval, the SETS macro you issue moves the table entry for the subfile you have 
selected to the current relative address field of the DTFNI or DPCA file table; the file. may 
then be processed between the limits of the current relative address of the start of the 
subfile and the ·logical end of the file or partition. This selective positioning of a file for 
subfile processing is a useful ability to keep in mind. 

For creation of subfiles (output), the SETS macro must be issued following the output of 
the last record to each subfile. SETS for output indicates termination of the subfile. 

For retrieval of subfiles (input), the SETS macro should be issued prior to the first GET of a 
spbfile record. SETS for input i.nitializ~s processing to !,t1e start of a s.ubfjle. 



UP-8068 Rev: 4 

POINTS 

SPERRY UNIVAC OS/3 
BASIC .DATA MANAGEMENT 

15.7.6. lnhializing Positfon of~ File or Partit.ion (POINTS) 

15-72 

When you. are processing within a filepartition and want to get back to the start of it (that 
is, to reset the current relath1~ block addres~Hrom its presenf value to the partition-relative 
address of the first block of the same partition),~·you wiil use the POINTS macro that, is 
designed to'd6 just thi~. · · '· · 

When you· want to· change partitio'ns, you must ffrst issue a. SETP.rnacroJ15:7.4) to select 
tfie new partition, ·and the.n issue t~e POINTS macro to· get t~ the b~ginning of that: 
POINl'S initializes.the relative bldck address of the current partition. ' · · 

This is the format of the POINTS imperatiye macro: 

LA'BEL 

[namel POINTS 

,{
file.name} .. 
(1) , 

•. 1 

Positjonal Parameter .1 :. 

·filename .. 
Ts~ the l~bel of the cprre~·ponding DTFNI :macroin~truction in your progra.m. 

, , , 

(1) or 1 
Indicates thqt register 1. has been. preloaded with the address of t~e DTFNI ti.le 

·table. · · · · ·.. · ·~ .. · . · · 

LABEL OPERAND 

I. 
t--'--'--'--'.__.___.___.__.-¥-~......U:.~-f=-+-'--'-'-'--'-'--~=-<-'=-~-'--'-JL-.L_-'-"----L-'---'---J'-'--'--'-'--'-_._'-'-_.__..L-

2. __..._.__._._.__.__._.--='--'--".___._-'-..,_-'--'--''-'--'-1.-'--'--L"-'-"~~'--'-'--'-=-''--'--'---'-"----L-'---'---'__i_~-'-'--'-~'--'-_i_-'-



UP-8068 Rev; 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT . 

15. 7. 7. Forcing End-of-Volume Procedures (FEOV) 

15-73 

FEOV 

When you are processing a DTFSD file for input or output, and want to discontinue short 
of the actual end of this volume and to begin processing the· next, you issue the'FEOV 
imperative .macro. 

This macro initiates end-of-volume (EOV) procedures on ·the current volume, :which ·is 
closed just as if the actual EOV had been reached. Volume swapping is performed, arYd 
your next GET or PUT macroinstruction continues processing on the next sequential 
volume. The FEOV macro may be used only for DTFSD files; these· h~ave only one volurne .,.._. 
mounted at a time. It may not be used for sequentially processed files described by the 
declarative macro because all volumes are always online, and there is no "current 
vo.lume" in the sense ·used here. 

When you are processing sequential blocked input files and need ta skip over the records 
remaining in a block in order to resume with the next block of the same volume, a 
different macro, RELSE, is available (15.7.13). 

This is the format of the FEOV macro: 

LABEL ti OPERATION~ OPERAND 

FEOV 

{

filename} 
(1) 
1 

[name] 

Positional Parameter 1: 

filename 
Is the label .of the corresponding DTFSD macroinstruction in the program. 

(1) or 1 

Example: 

1 

Indicate$. that ·yeu have preloaded register 1 with 'the address of the DTFSD file 
table. 

LABEL .60PERATION.6 OPERAND 
10 16 

Treats the file described by the DTFSD macroinstruction, whose label is INFILE, as if 
logical end-of-volume address had been accessed. 



UP-8068 Rev. 4 

SETF 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.8. Setting File Processing Mode (SETF) 

15-74 

The SETF macroinstruction enable~ you to set the processing direction (change the type of 
file) for DTFSD files, or sequentially processed DTFNI files, described by the keyword 
parameter TYPEFLE=INOUT. You should not issue the SETF macro during your file 
processing; it should, instead, be issued between your terminating file processing (with the 
CLOSE macro) and your opening it again, or before ~he OPEN issued to the file at the start 
of your program. 

Th is is the format of the S ETF macro: 

LABEL l1 OPERATION!1 OPERAND 

SETF 

{
filename}'{ INPUT } 
(1) OUTPUT 
1 UPDATE 

[name] 

Positional Parameter 1: 

filename 
Is the label of the DTFSD or DTFNI macroinstruction that defines the INOUT file. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the DTFSD or 
DTFNI file table describing the INOUT file. 

Positional Parameter 2: 

INPUT 
Indicates that the INOUT file is to be set for input processing, without updating. 

OUTPUT 
Indicates that the INOUT file is to be set for output processing. 

UPDATE 
Indicates that the INOUT file is to be set for input processing, with updating. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.9. Output of Sequential Disk Files (PUT) 

15-75 

PUT 

You will use the PUT imperative macro to create, extend, or update disk files processed 
sequentially. These are either files defined by the DTFSD declarative macroinstruction 
(15.5.1) or those files and partitions defined by the DTFNI and DPCA declarative macros 
(15.5.3 and 15.5.4). 

Essentially, the PUT macro handles record-level output for sequential files in either of two 
ways. It delivers an output record to data management in the current output area, if you 
are processing in I OAR EA 1 or IOAREA2. 8 ut, if you are building your output records in a 
work area (specifying WORKA=YES), the PUT macro delivers these to data management 
for writing to disk directly from there. Either way, the record is no longer available to you, 
once delivered. 

If your output records are unblocked, they are delivered singly to disk; if your records are 
to be blocked, data management handles blocking automatically for you from the work 
area. You must take care of blocking for variable-length blocks constructed in an 1/0 area, 
however, and you may optionally write out short blocks of fixed-length records. Both of 
these actions are easily accomplished: see 15.7.9.4 and the TRUNC imperative macro 
(15.7.10). 

When your output records are blocked, or when you have specified a standby 1/0 area 
(IOAREA2) but no work area, you must supply an index register via the IOREG keyword 
parameter of your DTF or DPCA macro so that data management has a place to. put the 
starting address of the current record position in the output area (15.6.11 ). You do not do 
this when building records in a work area, because you specify its address every time you 
issue the PUT macro. And, i.f you are processing unblocked records in a single 1/0 area 
(IOAREA 1 ), you may reference these directly by means of the name you have assigned to 
the area and do not need an index register. 

An important point to remember is that, after data management writes the current output 
data to disk from the output or work area, it does not clear these ar~as. You must be 
careful either to clear the area yourself, or always to supply records - padded with blanks 
if necessary - which completely fill out the work area or 1/0 area. Otherwise, spurious 
characters left over from previous records may appear .in your output data. When you are 
processing in a work area, it is freed for subsequent processing (but not cleared) each time 
data management moves an output record from then~. into the 1/0 area for you. 

Sequentially processed DTFNI files with keys may also be easily output with the PUT 
macro; see 15.7.9.5. 



UP-8068 Rev. 4 · SPERRY UNIVAC OS/.3 
BASIC DATA MANAGEMENT 

This is the format of the PUT macro: 

LABEL .6. OPE RAT ION .6. 

[name] PUT 

Positional Parameter 1: 

filename 

15-76 

OPERAND 

Is th~· label of the corresponding DTFSD or DTFNI macroinstruction that defines 
the Ol.!tput fi ie. · 

.. 

(1} or 1 
Indicates that you have preloaded register 1 with the address of 'the DTF file 
table. 

Positional Parameter 2: 

worki:frea 
Is the label of the work area from which the output record may be obtained. 

(0) or 0 . 
Indicates that register 0 has been preloaded with the addre$S of the work area. 

' .. , ' ' '} 

If o~itted, incHcates that you have chosen~.tb reference the current .record either by 
r\ieans or a . register (IOREG keyword para.meter) pr by directly ac;:cessing .the data 
relative to the na111e you have assigned to IOAREA 1. Yoµ rnay use the latter method 
on1y· for unblocked records processed in a sinQ.le Vo ,area:. 

NOTE: 

VVhen tfJe work area ls used, ine keyword parameter WORKlf '(£§must btlprese(lt 
in the DTF statement. · 

15.7.9.1. Creating a· Sequentiaf Disk File 

The PUT macro gives you the ability fo create· a· new disk file and then to process it 
sequenti.ally: this amounts to using the disk file as a wor~ file. You use the ~ameDTF file 
table to 1describe the file when you cre·atel it and when you process it; sli.c'1 '.a file 'may be 
defined by a DTFSD or DTFNI declarative macro (15.5.1 or 15.5.3). The procedure is as 
follows: 

1. Define the file, specifying the DTF keyword parameter TYPEFLE=INOUT among the 
other parameters you need. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 · · · 
BASIC DATA MANAGEMENT 

15-77 

2. Open the file for output, using tfie: OPEN macroinstr.uctfon (t5. 7.1 ); then create the 
file, using the PUT macro t~ write your records to disk. 

3. Close the file, using the CLOSE macroinstructiori (1'5.7.2). 

4. Issuing the SETF macroinstruction ( 15. 7.8), reset the file processing direction to 
INPLJT or UPDATE·. , 

5. Reopen the file. 

6. Retrieve your records sequentially, via the GET macroinstruction (15.7.12), or 
optionally, update them with pairs of GET and PUT macros (15.7.9). It is important to 
remember that wheri you update with the PUT mac·ro, you may never change the 
record length. 

7. Close the file. 

The following coding example shows how you might do this for ~ file 'with the logical 
name INVNTRY. Once created as a TYPEFLE~INOUT file, the file is closed; after you reset 
the file processing direction to UPDATE, you reopen and update it by issuing paired GET 
and PUT macros to retrieve records and write them to disk. 

Example: 

LABEL flOPERATIONL'.'l OPERAND 
10 16 

f. I 

Z.__._~_._._~-+-if-'--._.__.__~~~~~~~~~~._._~~-'-"-_._.____.__.~ 

.3. ......... --........., ........... --~._.._._...._._._-+-+-'....,.._....._ .......... _.__._._..._.__._ .......... _._...._ .......... _..........._.....,..__._....._._._....._ ........... _._....._~ 

I' 

5.1--L-L-..L-.J'---J.__.J.._~l---l!l~:.J...!.-l..!.-L-J--l==J.~!!...l.:..-:i-::....t...!-=.l-L.1...4=U"'-.!.P!.-U!:IP:.-'!1A-=-t..!.1T-l!!/3j~· ._1 _J__L_L__L_..J__Jlc_J__l_l__l_I I I I I 

I I I I I I I 'I I I· I .1 I I f_L..:.1-l_LL 



UP-8068 Rev. 4 

LABEL LlOPERATIONLl 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

OPERAND 
10 16 

15-78 

1. Other DTF keyword parameters, including required keyyvords not pertinent to the 
example, are not shown. 

2. Must be INOUT file 

3. Other parameters are not shown. 

4. Creating file, using disk a,s work file 

5. Now reset file processing direction to update and reopen file 

6. Issuing paired GET /PUT macros to retrieve records, update them, and rewrite to 
disk. 

7. Terminate file; cannot be ac.cessed until reopened. 

15.7.9.2. Updating and Extending an Existing Disk File Processed Sequentially 

The logical end of a disk file - the relative block number of the last data block - plus 1 is 
recorded by data management in the DTF and in the format 2 label of the file as its end­
of-data (EOD) address. (See D.3.2.) In a DTFSD file, this address is also called the logical 
end-of-file (EOF) address. No EOF sentinel or other flag is recorded in the data area of the 
file to mark this point, and there is no data record in the block at the EOD address. 

When you are sequentially processing a nonindexed disk file in an update mode (that is, 
you have specified UPDATE=YES in the DTFSD or DTFNI declarative macro), you may 
extend the file beyond its current EOF record by the following procedure, which you will 
include in your end-of-file routine. (When you issue a GET macro and an end-of-file 
condition is detected, control returns to you at the address specified by your EOFADDR 
parameter in the DTF. You may not extend a file beyond its current volume by this means, 
but see 15. 7.9.3.) 

1. Issuing a GET macro, you place the record to be added to the file in the 1/0 area 
(IOAREA 1 or 2) or in the work area you have specified. 

2. Issue a PUT macro, which causes the new record to be added. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-79 

3. Issue another GET macro and follow· it by a PUT macro; this will output the next 
record to be added to the file. 

4. Terminate the file by issuing a CLOSE macro when you have completed all your 
additions .to it ( 15. 7.2). 

An important point to remember is that you must have anticipated the eventual need to 
extend this file and provided for extension by the appropriate job control statements issued 
at the time you originally created it. Extension is: done automatically for you by data 
management through the disk space management routin·es of the .OS/3 supervisor; you 
never need to call the supervisor EXTEND macro in your· program. 

Another point to remember is· that you must not issue itwo. PUT macros in succession in 
the update mode; this will be flagged . as an invalid macro sequence (byte 0, bit 6 of 
filenameC (Appendix 8)). 

15.7.9.3. Ex~ending an Existing DTFSD Output File 

Extending a sequential file within your EOFADDR routine is discussed in 15.7.9.2. You 
have another means available for extending an existing sequential file: processing it in the 
output mode (that is, by specifying TYPEFLE==OUTPUT in the DTFSD declarative macro, or 
resetting the direction of file processing to OUTPUT with the SETF imperative macro 
(15.7.8)). This procedure also requires that you issue appropriate job control statements, 
which are dis.Gussed in what follows. 

First, the current last volume of the file is mounted; for a disk file described by the DTFSD 
declarative macro, this is always a specific volume because only one volume is mounted at 
a time. (All volumes of a DTFNI file, processed sequentially or not, are always online.) 

When you issue an OPEN macro for the file, if you have specified the appropriate job 
control st.atements.1 data management will p0sition the file to its current logical end-of,..file 
(EOF) address. 

You then issue the PUT macros necessary to add records beyond the current logical EOF. 

If you need them, allocate additional disk volumes to the file, and you may continue to 
extend it beyond its current last volume to subsequent volumes. 

The OS/3 job control statements you need to specify to extend a sequential disk file by 
this method are discussed in detail in the job control user guide, UP-8065 (current 
version). Briefly, what you need in your device assignment set is an LFD statement that 
contains the logical name of your file (the name by which your program references it)' and 
indicates by an EXTEND (third positional parameter) that the extend mode of processing is 
to take place: the sequential file will be extended by appending the new records to the 
present end of the file. 

It is important for you to remember that all LFD names within a job step must be unique; if 
more than one file is given in the same name, only the last one to be specified is available 
for any operation - including extension by this method. 



UP-8068 Rev. 4 SPERRY UNIVAC OS.A3 
BASIC DATA MANAGEMENT 

15.7.9.4. Output of ·e1ocked Re'cords, Sequential Disk Files 

15-80 

As you are forming variable-length records for output to a sequentially processed disk file 
via the f>WT macro, you will be determining the. length of each r~ecord and placing this 
information in the first two bytes of the 4-byte record descriptor word (RDW), at the head 
of each record (14.3.2). This information is contained within the record and is always in 
the 1/0 area whenever the record is. 

When you are outputting v.ariable-length·b/ocked records ·from an 1/0 area to disk and are 
not using a workare.a, you must:test whether the next record will fit:into the remaining 
space in the 1/0 area before·yqu issue the PUT macroinstrucHon·for it. Data management 
informs you of the amount of space remaining in the 1/0 area after each variable-length 
record is· moved in by a PUT macro; it does so·by placing the number of bytes of residual 
space· into the general register you have~ specified (via the VARBLD· keywerd parcfmeter of 
the DTFSD or DTFNI macro or the DPCA macro (11.6.34). If you find that the· next ·record 
will fit, add it to the current block with the PUT macro. If you find that it will not, you 
instead issue a TRUNC macro to write out the current block to disk and free the entire 1/0 
area for building the next ( 15. 7.10). ·Data:· management wilfcRalculate ttfie ·block size and 
will enter it into the first two bytes of the 4-byte block descriptor word (BDW), as explained 
in 14.3.2, before writing the block to' d'isc. 

On the other· hand, when y0u are forming your variable-length blocked records in a work 
area, each PUT macro you ;issue causes data management td test whether the record it 
moves· will fit into the 1/0' area .. If it will, it is added to the block currently being built; if it 
will not fit, data management first writes out the current block and then starts a hew block· 
with the current record. 

15.7.9.5 .. :Output of Sequential D11FNI Files With Keys 

Files defined by the DTFiNI ·declarative macro and processed sequentially may have a key 
associated with each block of data. Before you issue a PUT macro to oufput such a blook 
to disk, you must place this key at the head of the block (just as you would before ·issuing 
a WRITE macro with an ID positional parameter for direct access method output of blocks 
with keys); When you issue the PUT macro; data management will write the key and data 
portion of the block to disc. Subsequent sequential retrieval of blocks having keys (via the 
GET macro) will, similarly, cause .transfer··of: both ·the key and data. Remember that· data 
management will perform the normal blocking and deblocking for DTFNI files processed 
sequentially. 

Another point to remember is that, when you are creating ·or l:lpdating nonindexed files 
vvith keys, using the PUT macro; you must specify the key length via the KEYLEN keyword 
parameter of the DTFNI. or DPCA macroinstruction (15:6.13). 



UP-8068 Rev. 4 SPERRY UNIVAC os13· 
BASIC DAliA.MANAGEMENT 

15.7.9.6. Optional Sequential Output Files 

15.:..:81 

When you have a program that you anticipate will not invariably be called on to process a 
particular sequential output disk file each time it is executed, you should designate this file 
as optional by specifying OPTION=YES in the DTFSD or pTFNI macro (15.6.16). On the 
occasions when you do not require ·the file td be outpuf from Your program, you need 
merely omit the device assignment set of job control sta~ements thacus.1.:1ally allocate the 
file to a disk. Wheffyour program executes the OPEN macro for th.E:Loptional fil~, the OPEN 
transient marks the file as bpti('.>nal, and it gisables the PUT macro. mec~anism so that no 
1/0 is performed.. .. · · · · 

You should not forget to specify the OPTION kev.word,parameter for an optional file: if you 
do 'forget, and the file has hot been ·allocated by job. c9httol wheh your progntm is 
executed, it is impossible to process the file. Data management will transfer control to the 
address of your error routine. 

{ ,; 



UP-8068 Rev.A 

TRUNC 

SPERRY UNIVAC OS/3 
BASIC DA"fA MANAGEMENT 

15.,-82 

15.7.10. Output of Short Variable Blocks to Sequential Disk Files (TRUNC) 

The TRUNC imperative macro is used with sequentially pro~essed, variable-length, output 
files, defined by the DTFSD or DTFNI macros, to enable you to write short blocks of output 
data· to disk. Its use is mandatory with variable-length, blocked records that you build in 
the output 1/0 area. Its function is to notify data management that the block currently 
being built is to terminate and is to be written out to disk. Data management calculates 
the block size ahd inserts it in the first two bytes of the block descriptor word (BDW) 
before it writes the block to disk.. · 

When you have formed a variable-length record to be added to the block building in the 
1/0 area, you must determine whether there is room for it in the remaining space in the 
1/0 area before you issue the PUT macro. You compare the current record length, which 
you have placed in the first two bytes of its record descriptor word (RDW), with the 
number of bytes remaining in the 1/0 area. (Data management informs you of the space 
left in the 1/0 area by placing the number of bytes of residual space in the general 
register that you designated by specifying the VARBLD keyword parameter in the DTFSD, 
DTFNI, or DPCA macro (15.6.34); it updates this number each time a variable-length 
record is added to the current block by a PUT macro.) 

If the current record will fit in the space remaining, you will issue a PUT macro to add it to 
the current block. But if it will not, you issue a TRUNC macro to write the current block to 
disk and to free the 1/0 area for building the next block. A subsequent PUT macro will 
then start off the next block with the current record; the TRUNC macro resets the IOREG 
index register to point to the new current area address of the next available output 1/0 
area. 

This is the format of the TRUNC macro: 

LABEL A OP ERA TION A OPERAND 

TRUNC 

{

filename} 
(1) 
1 

[name] 

Positional Parameter 1: 

filename 
Is the label of the corresponding DTFSD or DTFNI macroinstruction in the 
program. 

(1) or 1 
Indicates that register 1 has been preloaded with the address of the DTF file 
table. 



UP-8068 Rev. 4 

Example: 

LABEL flOPERATIONfl 

SPERRY UNIVAc:os/3 
BASIC DATA MANAGEMENT 

OPERAND 
10 16 

15-83 

Sends to the output device ":the short block of records accumulated" by PUT 
macroinstructions since the last TRUNC iWas issued or since a full block of records was 
sent automatically to the output device for the file described in the DTF macroinstruction 
whose label is OUTPUT. 



UP-8068 Rev. 4 

WRITE 

SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT 

15.7.11. Random Output of Reco~ds to Disk (WRITE) 

15-84 

The WRITE imperative macro is a block-level output processing macro that, in its various 
forms and uses, provides you with the following capabilities with randomly processed disk 
files defined as output files by,the DTFDA or DTFNI declarative.macros, or as. input/output 
files by the DTFNI. macro: 

• creating a newly allocated file; 

• updating a previously created file by rewriting blocks to their original locations; 

• extending a file by generating data blocks in space newly allocated to it; 

• overwriting unwanted data in an expired or newly allocated file; 

• recording the logical end of a file or partition; and 

• moving the disk access arm to a new track and ensuring that the new track is 
initialized. 

Three forms of the WRITE macro output a block from main storage to disk; the main 
storage address from which your data is written is contained in the location specified by 
the IOAREA 1 keyword parameter of your DTF. Its input counterpart for disk files that may 
be processed randomly is the READ imperative macro, which is also a block-level 
processing macro (15.7.14). 

I 

Because these two operate a block-level, you must control any record blocking and 
deblocking that may be necessary, as OS/3 data management handles this function 
automatically for you only for sequentially processed DTFSD and DTFNI files. 

For disk files you define with the DTFDA macro, of course, this is no problem, as only 
unblocked iecord format (fixed- or variable-length) may be specified for these files. For 
randomly processed DTFNI files, however, in which you may have blocked records, you will 
need to control their blocking and deblocking with the PUT and GET macros, used in 
conjunction with READ and the WRITE,KEY or WRITE,ID form of the WRITE command 
(15.7.11.4 and 15.7.11.5). 

In all uses, you must issue a WAITF imperative macro (15.7.16) after each READ or WRITE 
macro you issue, to ensure that the intended data transfer has taken place, before issuing 
another imperative macro. Remember also that none of your transferred records will be 
check-read for parity unless you specify the VERIFY=YES keyword parameter in your DTF 
macro; check reading necessarily increases the execution time for each WRITE operation 
(15.6.33). 



vi- -uvuo ncv. -t- ;;Jrcnn T Ul"llVl-\\J v;;;,1.> 10-00 

BASIC DATA MANAGEMENT 

Another DTF keyword parameter involved is IDLOC, which enables you to have the rel,ative 
disk address (ID) of your block returned to a specified field. The form of the returned ID is 
governed by your specification of another DTF keyword parameter, RELATIVE, which you 
might also review (15.6.22). The uses of the IDLOC keyword parameter are explained in 
15.6.7 and further _discuss~d in what folJows. 



\JI -uVVU l\'OV~ ""T 

BASIC DATA MANAGEMENT 

WRITE, AFTER, 

15.7.11.1. Creating a Random Disk File by ,S,equential Load (WRITE,AFTER) 

This is one form of the WRITE command you may use to create a file: 

LABEL ~OPERATION~ 

[name] WRITE 

OPERAND 

{ 

filename},AFTER 
( 1) 

1 

The second positional parameter, AFTER, specifies that the current block in main storage 
is to be written as the next sequential block on the current track and that the remainder of 
the track is to be cleared. If this current block, when written, occupies the last position on 
the track, data management sets the last block on track accessed bit (byte 0, bit 0) in 
filenameC after completion of the WAITF macro. (See Appendix B for the details on 
filenameC.) You should check this bit after each issue of the WAITF macro, and be 
prepared to move to another track if it is set, using, for example, the WRITE,RZERO form of 
the WRITE command (15.11.2) or the CNTRL imperative macro (15.7.15). 

You should review the AFTER keyword parameter of the DTFDA and DTFNI declarative 
macros; this parameter must be specified when you use the WRITE,AFTER form of the 
WRITE command and precludes your use of the WRITE,ID function ( 15. 7.11.4). Data 
management does not automatically preformat the file at OPEN when AFTER=YES is 
specified. 

In the first positional parameter, filename represents the label of the DTFDA or DTFNI 
declarative macro; (1) or 1 indicates that you have preloaded general register 1 with the 
address of the DTF file table. The first positional parameter is specified in the same way 
for all forms of the WRITE command and will not be discµssed further. 

If you want to store the relative disk address or ID of the next block in the file or partition 
you are processing, you would specify the IDLOC keyword parameter in the DTF (15.6.7). 
The form in which this ID is returned to you is governed by your specification of another 
keyword parameter, RELATIVE, which you should review (15.6.22). 

You have two basic ways of using the WRITE,AFTER imperative macro to create a new 
direct access disk file: a simple sequential load process that proceeds from the file start 
through all the tracks in succession, and another use, in conjunction with the 
WRITE,RZERO macro (15.7.11.12), which enables you to select the tracks to be filled in 
whatever order you choose. Because the WRITE,AFTER macro (having written a block to a 

-+-- file on a variable-sector 8411, 8414, 8424, 8425, 8430, or 8433 disk) then overwrites the 
remainder of the current track with binary o~s, you may also use it (with or without the 
WRITE,RZERO macro) to expunge unwanted data from an existng variable-sector disk file. 
You cannot do this if the file resides on the fixed-sector 8416 disk in OS/3. 



BASIC DATA MANAGEMENT 

When you open a newly allocated direct access file the first time for output! the OPEN 
transient positions you automatically at the head of relative track 001. If you are going to 
use the WRITE,AFTER macro, you have specified the AFTER keyword, and no 
preformatting has been done (if the file is on a variable-sector disk). If you issue 
successive WRITE,AFTER imperatives, each followed by a WAITF macro (15. 7.16), you 
effect a sequential loaping of your file, in the simple order in which you present your 
blocks to data management. You do not use the SEEKADR field's contents to control this 
macro, for the WRITE,AFTER macro used this way automatically shifts from track· to track 
and cylinder to cylinder sequentially. However, you must arrange to move the contents. of 
the IDLOC field (to which the following WAITF macro returns the ID of the next block in 
physical sequence in the file) into the SEEKADR field in order for this method to work. 
(One easy way. for bringing this about is to define.the .IDLOC and the SEEKADHfields as 
the same area in main storage, as described in 15.·6.7.) The file-filling sequence continues 
until you reach logical end of volume and an error condition in filenameC indicates that 
you have exhausted your file space, unless you have terminated loading sooner (as, for 
example, when reaching logical end of file (EOF) 'in your input file). You do not, in this 
method, need to test for setting of the last block on track accessed flag in filenameC 
because of the automatic movement to the head of the next track that data management 
performs. 

You ·do need to ·keep your finger on track fill, however, when you use the WRITE,AFTER 
macro in the second method mentioned, for this controls your issue of the WRITE,RZERO 
macro· to select the next track to be filled. 

You should note a few more points about this method. The first is the last block on track 
accessed flag is set by OS/3 after you have issued the WRITE,AFTER macro·that writes 
the block in the last position of the current track; in some other data management 
systems, this flag is not set until you issue a macro to write the next block, which will not 
fit ,on the track. 

Another poinf is that the setting of this flag must be tested for in your program inline 
because accessing the last block is not a condition that causes control to transfer to your 
error routine: if you test.filenameC for this flag only in your error .routine, you will miss it. 
A third point is. that, although the WHITE,AFTER macro does not require a. seek address to 
guide it, the ·.WRITE,RZERO macro does; you must, thereforel arrange to iocrement your 
SEEKADR fields!s contents to the new .relative track address you want ;before you issue it .. 
You will probably have specified relative track addressing (RELATIVE=T) when you use this 
method for :creating a file with WRITE,RZERO and WRITE,AtT~R, but :you may also use 
relative record addressing (RELATIVE=R), although this is harder to control. 

One final· point ds most important jf your file resides on an 8416 disk. Because of the 
fixed-sector format of this disk in OS/3, the action of the WRITE,AFTER macro is 
significantly different from the foregoing description in that the macro, having written a 
block, does not set all fields to binary 0 in the remainder of the blocks on the track. On the 
8416 disk, moreover, there is no record 0 at the head of the track from which data 
management can be informed of the amount of unused space. For these reasons, you 
must always fill each 8416 disk track completely when you use the WRITE,AFTER macro. 
If you write only the one block at the head of the track, for example, and then pass on to 
another track, the residual data in the 39 remaining blocks is still there and may produce 
unpredictable results when your program encounters it in later retrieval operations. 



UP-8Uo8 Hev. 4 ::Sl"'t:liliY UNIVAl,; U::S/ .l 

BASIC DATA MANAGEMENT 

15.7.11.2. Selecting and Initializing a New Track (WRITE,RZER·O) 

10-00 

The forr'.T1·of the .WRITE command to use for moving the disk:· access arm to a new track, 
and ensuring that the new track is initialized is: 

LABEL ts OPERATION!::::. 

[name]· WRITE 

OPERAND 

.• {· .. f· ilename }· ,RZERO 
( 1) . 

: 1 

Here, the second positional parameter, RZERO, specifies that data management will 
position the file for subsequent processing at the relative track address you have preloaded 
irito the field specified by the SEEKABR keyV\iord parameter of your DTF ·(15.6.24). This 
means.that. you bave·, selected a ·new track, or that the track specified is to be treated as a 
new track, and that writing will begin at the first .record on this track. Note jhat this form 
of the WRITE command does not actually output a record: it merely repositions the file so 
that ·you may write the subsequef\t records beginning with the first record ofa new track. 
For writing the next record, you must 'follow this form with the WHITE AFTER form of '·Hie 
WRIFE comm.and, '(15.7.11.l). 

Because the WRITE,AFTER macro clears the rest of the current ·track, "t:his · 
WRITE,RZERO/WRITE,AFTER combination is one you may use to create a new file or to 
overwrite (or erase data from) an ,·expired or newly allocated file on a variable-sec;:tor disk. 

If you want to store the relative. disk address, or identifier ·(ID), .of the next block~ in.1the file 
or par:.Htion yc:>l.J. are·· processirig with the WRlTE,RZERO/WRITE,AFTER macros, you \Jvou'ld 
specify the IDLOC keyword parameter in the DTF {15.6.7). The form in which'this ID is. 
returned to. you is governed ·by· your specification of another· keywef'd parameter;· 
RELATIVE, which you should also review (15.6.22). No ID isYetutned'by ttie'WAITF macro 
that. follows·the WRITE,RZERO macro; the contents of the IDLOC field are ·unchanged. 

Use of the WRITE,RZERO macroinstruction requires that you specify AFTER=YES in your 
DTF; because data .. management does not preformat ~the file on. a variable-sector diskwheri' 
this keyword :'is specified, you may ·not issue the 1WRIIE,ID macro to it. 



UP-8068 Rev,. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-89 

WRITE,AFTER,:EOF 

15.7.11.3~ R~cording the logical End-of-File. (WRITE,AFTER,EOF) 

This .. form of the ·WFHTE macro may be used to record the logical end of data or end-of-file 
address in the DTF. Data management also records it in the di$k format 2 label: 

LABEL Li OPl;RATION ~ 

[name] WRITE 

OPERAND 

. {filename } , AFTER, EOF 
(1) 
1 . . 

The logical end:-of-:file .(EOF) or ~nd of partition is the r~lative disk addr:es$ of the block one 
bey.and. the bloGk (containing data) tha! i.s written the f9rthest or deepest in.to the fil.e or 
partition. It is the addr~ss one block. beyond .the highest ~used: re.lative disk address, and 
th~re. is nq .. data.that· qelongs to your file. there. Data· rnfrnagement ~ses this address, 
wt,iJch.it a.lso kpow$ as the end-of-d~ta)b (~ODID), to prevent your readin€J e,xtraoeoos 
d.ata outside of the ·,limit$' of the cu.rrenf.,partition or file space on·.disk, and il recqrd~ the 
EODIO.· .. in the .di$k form9t 2 label. (See D.3.2) 

\ . 
If you issue a R,EAD,lb macro that references a block whose relative disk address exceeds 
the Eoq1p~:data ni,cmagem~pt sets tt]e /nvalid ~!D flag (byte· 0, bit. 1) ir;1 filename~~ i$.Sljes 
error mess.age DM24, and branches to your error .routine .. (See AppendixB .. ) You may, on. 
th~ oth'e~· hand, wr(te at pr beyond the. qurr:ent i'o9ical encl of file,. if you, h~ve proviq~d for. 
file. extension. 

,~ , ! 

Yo't.J should not ~eed. to issue ·the WRITE,,A}TER,EOF macro.in ~: new program writte~ in 
OS/3, because data management automatically keeps track of the progress your program 
is; .making ~s. it fills ~h~ .file, ·and automatically records;ithe ·EODID onJile. ol9$e. However, if 
yo.y have,.aprqgxarn coded ~or some.other:,SYStem where.it wa$ necessaryfor you.to issue 
tt)e' mac,ro, NOLI need.not remove your WRITE,t,\FTER,EOF macr9 call. from ·it: 

- ' ' 0 

The WgJJE,AFTER.,i:OF, macro does not output '8 block, nor does it mak~ an ID return ~to 
t~1e IDLO~. field. It is howev~r, necessary for Y,ou.to.placejn theSEEKADR. field .the relative 
disk addr'ess of the blopk that data manag.ement fa.;to use in calqulati.ng anq recor:dir:ig the 
EODID. Usually, this is the address of the block just written. 

Note, however, that the partition name is ~ever used in the :first positional ,pcirameteL If 
you· need to know.where the end of a subfile occ4rs wi~hin a parti~ion, you must maintain 
yo0r own end-of-subfile ·data record; data management does ,not provide1 this Se[:ViCei:tO 
you ... On the contrary, it. js poss!ble to .process th.rough the ;end of ,a subfile to .the Jogical 
EPF or end of pC!rtition. 

Remen:i,ber to specify the keyword parameter AFTER in the DTF when ypu i'nteJ1d to issu.e 
tb~ WRITE,AFTER,EOF form of the WRITE macro (.15.6.2); oth~rwise it wil.1 be flagged as· 
an invalid macro (byte 0, bit 6. of filenameC). . . . 



UP-8068 Rev. 4 

WRITE, ID 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-90 

15.7.11.4. Creating or Updating Blocks by Relative Disk Address ('WRITE,10) 

You may use the following form of the WRITE imperative macro' for creating a direct 
access file or for updating an existing one on disk: 

LABEL /},.OPERATION/},. 

[name] WRITE 

{ 

filename } , ID 
(1) 
1 

OPERAND 

The seco'nd positional parameter, ID, specifies that a search is to be made ,in the output 
file for a blotl<' whose relative disk address (ID) matches the content of the SEEKADR field 
in your program (15.6.13). The ID you present to dat'a management in this field may not be 
neg'ative or zeroi it must be in the form you specify with the RELATIVE keyword parameter 
(15.6.22). If you issue the WRITE,ID madro to process a file, you must specify the WRITEID 
keyword parameter in tne DTFDA or DTFNI cjeCl(3rative macro defining· the file (15.6.35); 
the AFTER keyword must not be specified (15.6.2). If the blocks ihyour file are keyed, you 
must specify the length of these keys with the KEYLEN keyword parameter (15.6.13). 

Before you issue the 'WRITE,ID macro, you must ensure that the correct relative 'disk 
address 'is contained, as a fixed-point binary number in the form you have specified with' 
the RELATIVE keyword,, in the 4-byte SEEKADR field in your program. If you de,fihe the 
IDLOC and the SEEKADR fields to be the same physical area in main storage, data 
management is, in effect, providing a new relative disk address to your WRITE,ID macro 
automatic'ally. (Refer to 15.6.7.) 

In addition to providing your WRITE,ID macro with the correct ID, you must have the ne'w 
block already formed ih the 1/0 area before you issue the macro. If your file contains keys, 
moreover, you must place the key of each block in the 1/0 area :ahead of the record proper 
(or ahead of a string of blocked records), allowing for the block descriptor and record 
descriptor words (BDW and 'RDW) as appropriate. In executing' the WRITE,ID macro, data 
management locates the relative disk address you have specified (if it can) and writes the 
entire block at the location, including its key if yours is a keyed file. 

Following your issue of the WRITE,ID macro - or of any form of the WRITE macro - you 
must issue a WAITF macro before issu'lng any other to the tile. This is necessary to ensure 
that• the intended 1/0 is completed. Among other things,' the WAITF m~l'cro returns the, 
relative disk address of the next block in ,physical' sequence in the file to your IDLOC field, 
if you have specified this keyword, in the form you have specified with the RELATIVE 
keyword. If the relative disk address specified is not located, data management set the 
record not found flag (byte 1, bit 3) in filenameC, which you should test in your error, 
routine when you are updating a file. If the block written by the WRITE,ID macro ocdupi'es 
the last possible position on the current track, data management sets the 'last block, oh 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-91 

track accessed flag (byte 0, bit 0) in fi/enameC, but, because this is not an error condition, 
control does not pass to your error rouline. If you are controlling movement through your 
file by incrementing the relative track number when you reach the end of track, you must 
test for the setting of this flag inline. 

There are two ways to use the WRITE,ID macro to create a new direct access file: a simple 
file-filling operation that uses this macro alone, and an operation writing on specific tracks 
that you select and move to, via the CNTRL macro, followed by the WRITE,ID macro. 

When you open a new DTFDA or DTFNI file for the first time for output on a variable­
sector disk,* unless you have specified· AFTER=YES in the DTF (15.6.2), the OPEN 
transients preformat ev~ry track in the file, writing the count fields throughout at intervals 
corresponding to your specified block size, and then position you at the head of relative 
track 001, ready to write the first block. By providing your WRITE,ID macro with the 
relative disk address for the first block, and thereafter incrementing the contents of your 
SEEKADR field,, you may fill your file at will, in any sequence of relative track or relative 
record addresses. If you simply increment the relative record number in the SEEKADR 
field, for example {having specified RELATIVE=R), before each WRITE,ID macro issued, you 
achieve a file load in the simple sequential order in which you present your blocks. In this 
circumstance, you have no need to test for the last block on track accessed flag because 
data management automatically shifts you to the head of the next relative track. When you 
close the file, data management records the end-of-data ID in the DTF file table and in the 
disk format 2 labe,1; you do not need to issue the WRITE,AFTER,EOF imperative macro for 
this.t On the other hand, if you need to structure the data in your direct access file in 
such a way that you must skip relative track 001 or certain other tracks during its initial 
loading, the first imperative macro to issue. after opening the file might be the CNTRL 
macro (15.7.15), guided by a relative track address you have placed in the SEEKADR field 
to position you to the head of the first track you wanted to receive your data. After 
execution of the CNTRL macro, simply issue successive WRITE,ID macros, incrementing 
the record number in the SEEKADR field until end of track; then increment the relative 
track number before issuing the next CNTRL macro. (You cannot pair the WRITE,ID macro 
with th.e WRITE,RZERO macro for this mode of processing,, because this macro also 
requires you to specify AFTER=YES in your DTF, and this is incompatible with using the 
WRITE,ID macro.) 

Updating an existing direct access file with the WRITE,ID macro is conceptually different 
from creating a new one, although the action of the macro is the same. One thing to keep 
in mind, however, is that the new block is written in the place of the old one on disk, and 
data management requires that it be the same length. New blocks written to an existing 
file must have the same length as existing blocks. The BLKSIZE specification is checked at 
file open time against the block size recorded in the disk format 1 label; if these are 
unequal, data management issues error message DM17 (INVALID BLOCK SIZE SPECIFIED) 
and branches to your error routine. {Refer to Appendix 8.) 

*The variable-sector disks used with OS/3 data management are the SPERRY UNIVAC 8411, 8414, 8424, 8425, 8430, 
and 8433 Disk Subsystems. The SPERRY UNIVAC 8415, 8416, and 8418 Disk Subsystems are fixed-sector disks and 
are already preformatted at OPEN time. 

t In fact, because this macro requires that you specify the AFTER keyword in your DTF, and you cannot issue the WRITE,ID macro if you 
do, you cannot use WRITE,AFTER,EOF. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3. 15-92 
BASIC DATA M.ANA9EMEN.T 

If you know the relative disk addresses of all the blocks tha( requfre 'updating, and you 
have the update· infofmation formatted to replace the entire block (including its key, ifthis 
is a keyed file), theri·you need not read your ··existing blocks inio main storage. You need 
merely issue successive WRITE,ID macros to update the· file, providing :.the· rela'tive disk 
addresses in the order of the update information in y9ur input file. 

On the other hand, if you must read the old blocks to determine whether or where to·· 
update them, you either would issue the READ,ID macro, process each incoming block, 
and then issue the WRITE,ID macro to update each block that requires it, or you would 
issue the READ,KEY macro ·followed by the WRITE.,KEY macro. Remember the difference 
between the IDs returned after execution of the two different·· READ macros, and plan your 
use of the IDLOC field contents accordingly (Table 15-5). To eqt1ate the' IDLOC and 
SEEKADR fields in update· mode is.· not good practice. 

Another point to keep in mind about updating a keyed file is that you must not only' specify 
the length of keys with tne KEYLEN keyword parameter in your· DTF, butyou must al'so' 
provide a key for ·each updated block in your 1/0 area. Both the key·and the data fields'· or 
the block on disk :are updated when you specify this· keyword. 

Data management does not provide you a·diredt means of changing only the key of a block 
on .disk. You may do so with:the. WRITE,ID macro only by presenting ·data management 
with a block in main storage that .contains-a new key field and a data· portion that is 
identical to that·already on disk. Of course; this can be done by reading in the whole bfock 
in question and updating only the key field before copying it all back to disk ·with the 
WRITE,ID macro. (You must not attempt this. with the READ,KEY /WRITE,KEY macros, 
because with this· pair you should not chan·ge the key of a block before returning it to the 
disk file.) 

A massive upda.te of a direct access· file with the WRITE,ID macro may be made more 
effici.ent if the update information is presented in the physical order of the blocks that it is 
intended for·on .disk; this is especially true if the file ·has been created :by using· record 
interlace. ·a np a LACE factor tailored to the updating program (15.6.8). Having a keyed fife 
precludes this. possibility, because .you cannot create a keyed file withouv specifying the 
KEYLEN parameter, and you cannot use record interlace if you do. In deciding whether to 
lace a direct access file that does not contain keys, you need, of course, to consider the 
additional com'.s .of sorting your input file before using it in .your t,Jpdate program~ 



UP-8068 Rev. 4, SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-93 

WRITE, KEY 

15.7.11.5. Rewriting Randomly Retrieved Blocks to Disk (WRITE,KEV) 

When you want to effect a c:tirect-access rewrite, or updating, of a bl<;>ck that you have just 
retrieved with the READ,KEY form ot the READ command (15.7.14.2), you will use this 
form of the WRITE macro: 

LABEL. ~O.PERATION ~· 

[namel- WRITE 

OPERAND 

{ .. 

filename } , KEY 
(1) 

·1 

Here, the sec.and· positional parameter, KEY, specifies that the bl.ock just read by a 
READ,KEY macro. is to be rewritten to .its origi9al location on disk. Both the. key and the 
data field will be· updated. Remember to ~pecify WRITEKEY YES in your DTF (15.6.·35). 
You should als·o. rem.ember that if the newJ~.lock is longer t,han the 1old, the r:iew block will 
be.truncated; if the new block is shorter, datg mcmagement will pad out the original field 
with binary zeros·. In either .case, the wrong length error flag. (byte 1, bit 5) will be set.in 
filenameC (Appendix B). You should check this bit after issuing the WAITF macro that 
must follow each WRITE,KEY macro. 

Another point to remember is that, because each block to be rewritten by the WRITE,KEY 
form must first be retrieved by the READ,KEY macro, consecutive issues of the WRITE,KEY 
form constitute a sequence error and will be flagged as an invalid macro sequence (byte 0, 
bit 6, of filenameC). 

Because the WRITE,KEY macro does hot conduct a search but relies on the search made 
by the preceding READ,KEY macro, it is not possible to add new records to a file with the 
WRITE,KEY macro alone. It is guided neither by the contents of the SEEKADR field nor by 
the contents of the KEYARG field. The only way the WRITE,KEY macro could be used tO 
create a new file would be to originally create one whose keyed records contain blank or 
zero-filled data portions and then use the READ,KEY /WRITE,KEY combination to overwrite 
each null data portion with actual data. But this would be an inefficient and· unnecessary 
way to go about creating a file. 

If you want to store the ID of the block updated by the WRITE, KEY macro, you should 
specify the JDLOC keyword parameter in your DTF (15.6.7). The form in which this relative 
disk address is returned to you is governed by your specification of another DTf keyword 
parameter, RELATIVE, which is described in 15.6.22. 



UP-8068 Rev. 4 

GET 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-94 

15.7.12. Retrieving Records From Sequentially Processed Disk Files (GET) 

You use the record-level GET imperative macro to obtain records of all types, one at a 
time, from DTFSD files or from sequentially processed DTFNI files, opened for input 
processing. Data management reads the records, automatically deblocks them if they are 
blocked, and delivers each unblocked or deblocked record to you. If you are processing in 
an 1/0 area, it places the records there, one at a time; if you are processing in a work 
area, it delivers the records there from the 1/0 area. , 

When you use a work area, you must remember to spec"ify WORKA==YES. in the DTF 
declarative macro (15.6.35). Because you specify the address or label of the work area to 
be used each time you issue the GET macro, you may use more than one work area, and a 
different one each time. 

When your input records are blocked, and you have no work area, or if you provide two 
1/0 areas, you must also provide an index register (using the IOREG keyword parameter of 
your DTF (15.6.11 )), into which data management places the starting address (in the 1/0 
area) of the next available record. An index register should not be used to keep track ofthe 
current work area, because you specify this with each GET mac·ro; if you elect to use two 
or more work areas, it is important to use them consistently. 

Th is is the format of the GET macro: 

LABEL fl.OPERATION fl OPERAND 

[name] GET 

Positional Parameter 1: 

filename 
Specifies the label of the DTFSD or sequentially processed DTFNI declarative 
macroi nstruction. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTF file 
table. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-95 

Positional Parameter 2: 

workarea 
Is the label of an area into which data management moves the current record for 
you to process. (A different work area may be used for each GET macro.) 

(0) or 0 
Indicates that you have preloadecfregister 0 with the address of a work area. 

Omit Positional Parameter 2 when you do not use a work area·. 

If you specify only one 1/0 area in your DTF, and your input record~ are not blocked, you 
may access the data directly in the 1/0 area (IOAREA 1 ). Otherwise, you must specify an 
index register with the IOREG keyword parameter or use a work area. Table 15-9 shows 
the uses of an index register and work areas, and the actions taken by data management 
under the various combinations possible. 

Table 15-9. Use of /OREG Keyword Parameter for Pr;ocessing Blocked or Unblocked Input Disk Files Sequentially with GET 
Macro 

Number of Number of Record 
IOREG 

1/0 Areas Work Areas Format 
Specification Data Management Action 

1 2 0 >o Blocked Unblocked 
Required 

YES DMS uses IOREG to point to address of current record within the block contained 
in IOAREA1. 

NO OMS delivers each unblocked record directly to user in I OAR EA 1. 

NO OMS' deblocks in IOAREA 1 a~d delivers each deblocked ~ecord to workarea specified 
in positional parameter 2 of GET macro. 

NO OMS delivers unblocked record from I OAR EA 1 to workarea specified in GET macro. 

YES OMS deb locks in one IOAR EA and delivers deb locked records to other I OARE A for user 
to process. 

'"'''' 
,,, •·:., ... 

YES OMS delivers unblocked record to I OAR EA specified by !OREG. Alternate areas are 
available for overlap processing. 

YES OMS deblocks in one IOAREA and delivers deblocked records to workarea specified by 
GET macro. Other areas are available for overlap processing. 

'· 
~ ,;", 

I ,., .. YES OMS delivers unbloi:ked record to workarea specified by GETmacro, from IOAREA specified 
by IOR EG. Alternates are available for overlap processing. 

When you .are retrieving blocked input records with the GET macro, you may come to a 
point in the current block where you want to skip over the remaining records to process 
the first record of the succeeding block; the RELSE imperative macro is designed for this; 
see 15.7.13. 

You have a different imperative macro, FEOV, available if you want to discontinue 
processing the current volume of an input DTFSD file in order to begin processing the 
next. This macro may not be used with sequentially processed DTFNI files, however; see 
15.7.7. 



UP-8068 Rev. 4 

RELSE 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-96' 

15.7.13. Skipping Records in Sequentially Processed Input Blocks (RELSE) 

When you are. processing blocked input recorc;Js with the GET imperative macro from 
DTFSD.: files or sequentially pro~essed DTFNI files, you may reach a point at which you 
want to skip over the remaining records in the current olock and to commence proces~ing 
with the first record of the succeeding block. To effect the skip, you issue the RELSE 
imperative macro; the next GET macro youjssue makes the first record .9f the next block 
available fo you ( 16. 7.12). · · 

Th~ format of the RELSE rna9ro is simply: 

LABEL .6. OPERATION .6. OPERAND 

RELSE 

{.

filename} 
( 1) 
1 

{name] 

Positional Parameter 1: 

filename 
Is the ;label in your program pf the DTFSD or DTFNI declarative macro defining 
the file you are processing sequentially. 

(1) or 1 
Indicates that you have preloaded general r:egister 1 with the address of the 
DTFSD' or DTFNI file table. 

When you want to ·terminate processing the current vglume of a sequentially processed 
input file defined ·by the DTFSD declarative macro in order to begin with the ·next volume, 
you will use the FEOV imperative macro (15.7.·7). 



UP-8068 Rev. 4 

' 

SPERRY UNIVAC'OS/3 
BASIO DATA MANAGEMEN'f 

15.7.14. Random Retrieval frorr:1; Di~~ct Access Files (Rl;AD) 

15-'-97 

READ 

The HEAD imp~rative macro is a block-Jevel input pIQcessing macro that, in its two forms 
arid various use·s, provides you with the following capabilities for randomly processing disk 
files defined as input files by the DTFDA and DTFNI declarative macros, or as input/output 
files by the DTFNI macro: 

• retrieving a block or record by means of its relative disk address (ID), which you 
specify; 

• retrieving a block by searching for its key, to be matched with a key you specify (the 
search begins at an address that you also specify); and 

• updating a previously created file. 

The READ macro causes a block to be retrieved from disk and to be read into main storage 
at an address specified by the IOAREA 1 keyword parameter of your DTFDA or DTFNI 
declarative macro, when you specify only a single 1/0 area (15.6.10). On the other hand, 
when you are processing DTFNI files and have specified a second 1/0 area (IOAREA2; see 
15.6.11 ), the main storage address is contained in the index register you must .specify with 
the IOREG keyword parameter (15.6.11 ). (The DTFDA declarative macro, as you know, 
does not support either the IOAREA2 or the IOREG keyword parameter.) 

Because the READ macro operates at block level, and OS/3 data management handles 
blocking and deblocking automatically only for sequentially processed files, you must 
control any deblocking necessary when you read blocked input files defined by the DTFNI 
macro. This deblocking you will take care of via the GET imperative macro (15.7.12), after 
the READ macro has placed a block into main storage from disk. As you know, you may 
not specify either of the blocked record formats for a DTFDA file. If your "unblocked" block 
in a DTFDA file actually contains more than one logical record, therefore, you must tend to 
the deblocking yourself. The GET macro is not supported for DTFDA files, however, and is --+-
flagged as invalid if issued to such a file. The best solution to this quandary is probably to 
avoid it by defining such a file with the DTFNI declarative macro in the first place. 

Another important point to remember is that, after each READ macro you issue, you must 
issue a WAITF imperative macro before you issue any other imperative (15.7.16). This is 
necessary, to ensure that the intended transfer of the block from disk to main storage has 
indeed taken place. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-98 

If you want data management to store the relative disk address (ID) of the block retrieved 
by the READ macro, or of the next block - the two forms of the macro make different 
returns - you would specify the IDLOC keyword parameter of the DTF declarative macro 
(15.6.7). The form in which the ID is returned to you is governed by your specificaton of 
another DTF keyword parameter, RELATIVE, which you might also review (15.6.24). The 
uses of the IDLOC keyword parameter are furtH~r developed in what follows. 

OS/3 data management supports the READ macro only fqr DTFNI files pr for DTFDA files. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA M:~NAGEMENT 

15-99 

READ,ID 

15.7.14.1. Random Retrieval of Records by Relative Disk Address (READ,10) 

In order !O use the READ,ID form of the READ macro to retrieve ,a specific record by its 
relative disk address, or ID, you have a number of keyword parameters in the DTFDA or 
DTFNI declarative macro to consider. First of all, recall the uses of the IOAREA 1 and 
IOREG keyword parameters (the latter is used with the DTFNI macro only) to specify the 
main storage address into which the block that contains the record will be read (15.6.10 
and 15.6.11 ). You will also need to use the SEEKADR keyword parameter (15.6.26) to 
specify the 4-byte field in your program into which you will place the relative disk address 
of the record you want retrieved. (which must always be gr~ater than zero), ijnd you must 
give notice to data management that you V\lill .. be usi"ng the READ,10 form ofthe macro, by 
specifying the READ==YES keyword parameter in the DTF .(15.6.1 &). Both the key of the 
block (if a key exists) and all data the block contains wiH always be· read in. The form in 
which you provide the relative ID of the desired record must be the same as you specify 
with the RELATIVE keyword parameter. 

Further, if you need data management to return to you the ID of the next block in the file 
or partition after you issue the READ,ID form of the macro, you would specify the location 
to which the ID is to be returned by the IDLOC keyword parameter (15.6.7). Finally, recall 
that the form in which the ID is returned has been specified by means of the RELATIVE 
keyword parameter (1 5.6.22). 

When the logical record you want retrieved by ID from a DTFNI file lies within a block of 
records retrieved, data management reads the entire block into your 1/0 area. After your 
execution of the mandatory WAITF macro, data management returns the displacement of 
the desired record into the block (measured in hexadecimal bytes) to the DTF file table, 
right-justified in a 2-byte field designated as filenameD. You may address this field by 
concatenating the character "D" to your 7-character file name. To retrieve subsequent 
records contained in the same block, you may issue successive GET macros in the 2-
parameter form to specify the work area into which data management is to move the 
current record (15.7.12). An important point here is that you must know the structure of 
your blocks: there is no end-of-block indication provided by data management to prevent 
you from going past the last record in a block you are processing in this way. A GET macro 
issued after you have processed the last record in a block causes the entire next block to 
be read in from the DTFNI file, and the first record from it to be moved to the specified 
work area. 

The format of the READ,ID form of the READ macro is: 

LABEL 6. OPERATION 6. 

[name] READ 

{ 

filename } , ID 
(1) 
1 

OPERAND 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DAIA MANAGEMENT 

15-100 

Ppsitionpl ·Parameter 1: 

filename 
Is the label in your program of the DTFDA or DTFNI declarative macro that 
defines the randomly processed file from which you are retrieving recorcts. 

,\ ,, " l , ,~' ~ •1' ' , ;, 

(1) or 1 .. 
· . Indicates that you have prelo.aded register. 1 with ttle addres~. of the DTF file 

table. 

Positional Parameter 2: 

ID 
Specifi~s that a search is to be made for a re9ord with an ID matching the 
relative •• disk' address .vou have presented to data management, via the~ field 
specified .in ~.he SEl;KADR keyword parameter of the DTF macro, in the for'm you 
have speCified with the RELATIVE keyword parameter. 



UP-8068 Rev. 4 SPERRY UNIVAC ,QS/3 
BASIC DATA MANAGEMENT 

15-101 

15.7.14.2. Direct Retrieval and Updatin~ of Input, BIOcks by Key (REA[?J{EY) 

You will use the READ,KEY form of the READ macro when you want fo retrieve blocks by 
a search on k~y from input files defined by the DTFDA. macro (1 f).5.2)''or randomly 
processed fll'es defined by the DTFNI macro (15.5.3). It i$ ttli,s forrn of the, REAP macro.that 
is also used, in combination with the WRITE,KEY form of the WRITE m~cro, for updating a 
randomly processed disk file (15.7.11.5). 

You have a n'umber'of pointsto consider when y9u are l.J$tng t~e READ,KEY, macro; these 
involve severalkey~ord paramet~rs in the DTF. Fjrst ofall: 'i,n 'order that dat~ management 
may set up the. DTF file ·table, properly for J~is macro, 'you m'.u,sl specify tbe Rf:ADKEY 
keyword parameter. To guide the search, you must provide both''a search argument a.nda 
sta'rting point. With the KEYARG keYword, you'·sp'ecify'th~ key tha(is to be matched by the 
key of the block you warit retrieved (15.6.12); with the ·r~Jative disk address that you place 
in the 4-byte field, whose label you specify vvith the SEEKADR keyword (15.6.24), you 
supply the starting point of the search. As to its end point, if y,ou want the search to 
continue past the end of the current track to the end of the current cylinder, you specify 
the SRCHM keyword parameter; otherwise, the search ends at the end of the track 
(15.6.26). 

Remember that the relative disk addrnss you ~upply to data mana~ernent must be in the 
form (relative track or relative record) that youselecled when you 'specified the RELATIVE 
keyword parameter (15.6.22): the same form is used by data management when it makes 
the return of the relative disk address of the retrieved block to the 4-byte field whose label 
you specified with the IDLOC keyword (15.6.7). 

If the., se?rch is successful, data n:i.anagement moves the er:itire (?lock to your .110 b.uffor, 
including the key. Thus, the length of lOAREA 1 (and oLIOAREA2, 1ifthis i$ a DTFNI file and 
you have specified doubler-buffering) .rnust accommodate the lengt~ of the key, as well as 
the length· of your data record~ if this is a DTFNI file cor:i,taining variable-length blocked 
records, you have not only the KEYLEN specification and the block descriptor word .(BPW) 
to keep in mind, but also the record descriptor words (RDWs) that precede each logical 
record. ID a DTFDA file, you may not sgecify either of the glocked record formats, .but a 
variable-length record in this type of file is also preceded by a BDW and .an RDW, exac;tly 
as the variable, unblocked record is in the DTFNI file. A glance back at Figure 14-4 in the 
preceding section will help you visualize what is in your 1/0 area when the READ,KEY 
macro completes a successful search. Note that both the BDW and each RDW are four 
bytes long. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15-102 

The data portion of a fixed, unblocked record from a DTFDA or DTFNI file begins at a 
displacement into your 1/0 area that is equal to your KEYLEN specification; the same is 
true of the first of your fixed-length logical records in the blocked format in DTFNI files; the 
succeeding records begin at intervals equal to your RECSIZE specification (15.6.21 ). When 
you have variable, unblocked records in either file, the first (or only) data portion is found 
at a displacemerit that is eight· bytes longer than your KEYLEN specification; the 
displcicement of each succeeding variable record in a blocked DTFNI file may be calcul~ted 
by adding in the contents of the first two qytes of the ROW for the record preceding it. 
Figure 14-4 shows these relationships, which you mus·t use in accessing your logical 
recorcjs from a block retrieved ~Y the READ,KEY macro after a successful search. 

If the search is unsuccessful, data management first sets the record not found flag (byte 1, 
bi~ ~) in filenameC aqcj:~ither the end of traqk (byte 1, bit 6) pr both this flag and the end 
of cylinder flag (byt'e · 1, o.it 7), depending on whether Jfr not you have specified 
SRCHM. YES in the DTF. Data Management then branches to your error routine. (or 
returns cohtror to you 'i)1ITne' if you have no error ro.utine specified). (Refer to Appe.ndix B). 
Your error routine should check for. these bits and· provide action that is appropriate fo[ 
your application; otherwise, if. you accept error retur·n$ inline, you s.hould test for these 
flags after each issue· of 'the READ,KEY macro. 

The format of the READJ<EY form of the R~AD macro is: 

L.ABEL ti. OPE RAT IOM ti. 

[name] READ 

{

filename}, KEY 
( 1) 

.. 1 

OPERAND 

Here, the second positional parameter, KEY, specifies that data management will search 
for a block that has a key matching the one you have placed in the location in your 
program 'specified by the KEYARG k!eyword parameter. The search begins at the relative 
disk address you have placed in the location defined by the keyword parameter SEEKADR · 
and conti'nues to the end of the one track, unless you have specified the SRCHM keyword 
parameter. 

The 1/0 area into which data is read will contain both the key and the data" portions of the 
block read; data management moves the key to the 1/0 buffer. · 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3, 
BASIC DATA MANAGEMENT 

15.7.15. Controlling Disk Head Movement to a Track (CNTRL) 

15-103 

CNTRL 

The CNTRL imperative macro gives you a means by which you may overlap disk head 
movement with the processing of your records. While it may be used when you are 
processing files define9 by the DTFDA, DTFSD,, or, DTFNI macros, the CNTRL macro is 
perhaps mosf useful for achieving some increase in throughput when you are sequentially 
processing files on a shareable disk volume. (A shared volume is one that may be 
accessed by more than one user program in a multiprogramming environment at your 
instal,lation. It is described in the device assignment' set by a' VOL job control statement 
which has "S" as i,ts second positional parameter~) 

When you issue the CNTRL macro to a DTFS'D file, data management issues a se,ek 
command that positions the disk head to the track yot.J are currently processing. When. you 
are processing a DTFDA or DTFNI fi'le, on the other hand, you may issue the CNJRL macro 
to reposition the disk head to a new relative track address, which you place in the location 
specified by the SEEKADR keyword parameter of your DTF (15.6.26). 

When your program and another are sharing the same disk volume, issuing CNTRL may 
increase your throughput by positioning the disk head to the specified track while you are 
processing your records. Any CNTRL macro you issue to a blocked file is ignored, and data 
management will wait until the block is finished. (Of course, this feature protects you from 
interrupting your own block processing prematurely, as well.) 

When there is no problem of seek contention among programs (as when you are 
processing a nonshared volume), using the CNTRL macro may still increase your 
throughput and save you overall processing time. If you move the new current track 
address into the location specified by SEEKADR after successful completion of a READ or 
WRITE operation, for example, and then issue the CNTRL macro before you execute your 
other record processing instructions, the disk head is repositioned during the time you are 
processing, and data management can more promptly execute the next input or output 
imperative macro you issue. 

It should be clear from the foregoing discussion what the position of the WAITF macro 
must be that you will always issue after a READ or WRITE macro to randomly processed 
files (15.7.16): it must follow this macro and precede the CNTRL macro. To prevent you 
from repositioning the disk head before you learned of an incomplete input/output 
operation, data management will set the WAITF required flag (byte 0, bit 7 of filenameC) 
after determining that you have failed to issue the WAITF macro before executing the 
CNTRL imperative macro after a READ or WRITE macro. (The WAITF macro is not required 
after the CNTRL macro; the CNTRL macro makes no return to the IDLOC field of your 
program.) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC PATA MANAGEMENT 

15-104. 

This is the format of the CNTRL macro used for processing all nonindexed disk files: 

LABEL b. OPERATION b. OPERAND 

CNTRL, .. 

{

1
filename} , SEEK 
(1) j 

. 1 

[name] 

The second positional parameter, SEE.K, is always required; it specifies that. data 
management will issue a seek commandto.the disk head, positioning it.fC?r· DTFSD fil~s to 
the current track 'or, for DTF.OA 

1 

or DTFN·1 files, to the relative track .addre~s contained in 
the 4-byte locatiorf whose laoel you hav·e specified· with the "SEEKADR· keyworct parar:neter. 
(The address at this location should bei gh)en in the form Ott', where u. is the relative. track 
number and O is binary O; it must be lefr-Justified in the SEEKADR field, and you must 
have specified RELATIVE T in the DTF fc;>r the file.}. In the first positi~nal parameter, 
filename is the label in your program for the DTFSD, DTFDA,. or DTFNI ~~dlar-ative macro 
defining the file; (1) or t indicates that you have preloaded re'gister 1 w'ith th~ address of 
this DTFfile table. 



UP-8068 Rev. 4 SPERRY .UNIVAC OS/3 
BASIC DATA MANAGEMENT 

15.7.16. Waiting on Completion of 1/0 to Rfindom Disk Files (WAITF) 

15-105 

WAITF 

When you. are randomly processing input _or outp:ut;_disk fil~.s. defined by ~qe DTFPA or 
DT_FNI dedaratiye macros, using the WAITF)nacro. is <:(compulsory safety measur~ ·tp 
ensure thaithe data transfer ihitiat.ed by a READ or WRITE _macro is complet¢d .before you 
issae another imp·erative. You must issue the ·wAITF macro followfng e"ach"~Rl:AD .. m<:t~fo 
(15. 7.14) or WRITE macro (15:7.lf) you execute, before you may issue a CNTRL n1acro Or 
another READ or WRITE ma~rQ for the same file or pa_rtition. Th.e _WAITF macro is not 
required followin'g .. the CNTRL macro.· 

·<."''t 

When data management detects that you:· have omitted this ·mandafoYv macro, it set? the 
WAITF requited efror flag (byte 0, bit 7 offilenameC); and transfe_rs controlfo Vqur ~~ror 
rbutfrie, if you· have specified one, orto you ihlirie. . .. . . 

The WAITF macro itself acts to check the completion o( the data transfer you intended~ 
and to set the appropriate status orerror bits in the status code fields' of fi/f)nameC'. These 
bits you must always check afte(·the exefo'utfon of :th'e· WAITF ma.fro - it is pointles~ ·to 
anticipate the execution of the WAITF macro by checking fi/enameC immediately af!er you 
issue the READ or WRITE macro, although perfectly legitimate to check it when yOu are 
processing sequentially with the PUT macro and GET macro. (You do not use the \!\fAITF 
macro with these sequential input/output processing imperatives.) 

The WAITF macro is not involved in the parity checking of output records; ·this is 
pedo'rmed as "•a separate operation:·: by data ~hiariageme'n't 'only when, you specify the 
optional VERIFY keyword parameter in your DTF (15.6.32). 

The format of the WAITF macro is simply: 

LABEL Li OPERATION Li 

Fnamel WAITF 

{ 

f .. ilename } 
. '( 1) ., . . .· 

OPERAND 

As elsewhere, filename is the label in your program of the DTFDA or randomly processed 
DTFNI declarative macro; (1) or 1 indicates that you have previously loaded general 
register 1 with the address of the corresponding DTF file table. 



UP-8068 Rev. 4 

NOTE 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEME.NT 

15.7.17. Accessing the C~rrent Relative Block Address (NOTE) 

15-106 

The .NOTE macro, which you m.ay use only with DTFNI files, is one of the ~xtended 
capabilities OS/3 data ma·nagernent provides for pr·ocessing nonindexed disk files. You 
may use it, whether you are processing DTFNJ files randomly or sequentially, to .access the 
relative address of th~ ~urrent block or rec·ord. The NOTE macro is .used in cor;ijunction 
with the ~QINT macro (15.7.18), where a coding example. is given. 

When you are processing sequentially, after issuing a Gl;:T. or PUT macro, you use the 
NOTE macro to access the relative address of the current bfock and the displacement of 
the Gurrent reco~d within this blqck. Because the addresses it returns are partition-relative, 
the NOTE rl1acro relies upon your having selected the partition previously by issuing the 
SETP macro (15.7.4) and, if you are working within a subfile 9f this partition, having 
positioned yourself to this with the SETS macro (15.7.5). · · 

For seq1:1entially processed DT.FNI .files, th~ NOTE macro returns the addr.ess to a 6-byte 
fiel(j of the DTF file ta~Je in discontinyous binaJy in the form: 

Obbbdd 

where: 

Obbb. 

dd 

Is the number of the current block, relative. to the first block in the file, 0 being 
binary 0. · · · · 

Is the displacement, measured in hexadecimal bytes, of the current record within 
that block. 

For randomly processed DTFNI files, you issue the NOTE macro following a READ or 
WRITE macro. The 6-byte address is i.n discontinuous binary, and the form of the address 
is governed by what you have specified for the RELATIVE keyword parameter in your DTF 
(15.6.22). If you have specified RELATIVE==R, the form is: 

rrrdd 

yvhere: 

rrr 
Is the relative record address of the current block. 

dd 
Is binary 0. 



UP-8068 Rev. 4 . SPERRY UNIVAC os/3 
BASIC DATA MANAGEMENT 

15-107 

If you have specified RELATIVE T, on the other hand, the address returned is in the form: 

Ottrdd 

where: 

Ottr 

dd 

Is the r~it;1ti~e .track address of tbe curr~nt block; that is, r is the number .. of the 
bloGk oQ th;e relative track denoted by Ott, 0 being binary 0. 

Again, is binary 0. 
. . 

You rieed. to use the SETP and SETS .r:nacros for randomly processed files .also, as 
mentioned· in the previous paragraph, to pre-position yourself to the correct subfile of the 
correct partition. 

The NOTE macro returns the address you have spe:cifi.ed to a 6-.byt~ field in the DTF;NI or 
DPCA file tabfe that you. address by. concatenating the ch.aracter "B" to yo.ur 7-character 
filename or partition nqme. It is imp.ortant to rem~mber that you mµst address thfs field as 
filenameB whether you are processing the first partition (PCA 1) of a partitioned DTFNI file 
or are processing a nonpartitioned file. It is only when you are working in the 0th.er 
partition.s JPCA2 throu~~ PCA 7), that you address this field as partitiomJameB. 

This is the form of the NOTE macro: 

LABEL bi OPERATION~ 'OPERAND 

NOTE 

{

filename} 
(1) 
1 

[name] 

Positional Parameter 1: 

filename 
Is the label in your program of the corresponding DTFNI macroinstruction. The 
partition name is never used. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTFNI ffle 
table. 

Remember that all returned addresses are partition-relative; . you must Issue the 
appropriate SETP/SETS macros before issuing the NOTE macro (15.7.4 and 15.7.5). 



UP-8068 Rev. 4 

POINT 

SPERRY UNIVA.C QS/3 
BASIC DATA MANAGEMENT 

'J - f' • 

15-108 

15.7.18. Positioning a File or Partition to a Relative Block Address (POINT) 

The POINT imperntive macro is your means of randomly positioning a sequeritially 
proce

4

ss·ed DTFNI file or partition to .a relative block1address. This addressma/be obtained, 
for example, via the NOTE macro just described ·(15.7.17). Like NOTE, the POINT macro is 
a useful extension of capabilities (OS/3 data management provides for processing your 
DTFNI files; it is not supported for files you define by the DTFDA or DTFSD macrbs. 
Another similarity to the NOTE macro is that the POINT macro also relies on you to have 
selected your partition via, the SEJP ma.cro (15. 7.4) before you i~sue it. A third similarity is 
that ~he fonff of tne relai:H/e .blo.ck address used by the· POINT macro is the·· same form .the 
NOTE macro uses. . . . . . 

When you .. i~sue the POINT ma,cro ... for a sequentially. processed. DTFNI file, .. d.ata. 
managefn~·ni. modifies t~e current partition-relative. block addres~ and bloqk dfsplacer:nent 
tha't it m~lntairls in the DTP file table (or in ttle OPCA.partition table; if you· are process'ihg 
in a. partitibn); Vou~.·are 'si.Jbseque·nt·l\t J)ro~essing from the new address. ,· · 

""' ( ' j . * - '\ - ~ - -, \ • 

An Hnporta ntpo'int ·~o.'.rerhember is .tha~ .th~ .P91NT rt1·acro is effective only· so lon9· ~s you 
continue to us'e· the 'GET.'and PUT macros· in your subsequent processing of the'file or 
partition. If you subsequently issue a READ or WRITE macro. (yvhic,h would be quite 
legitimate, for these are DTFNI files), these macros cause the curre'1t partitiOn-relMive 
block address to be modified by the relative track or record address you will have supplied 
to data management in ~he: area specified by the SEEKADR,, keYyY9rd parameter of your 
DTF (15.6.24). There ·is no ·error· indication returned·to you ·when this occurs~ 'Y01:1 must rely 
upon yourself to keep this point in mind. 

This is the format of the POINT macro: 

LABEL l:J. OPERATION l:J. OPERAND 

POINT 

{ 
f. il.·e· name} , .{ a··d. d .. ress-field }·. (1J (0) i• 

1 ··· · .. o ... ·· . . ... 

[name] 

Positional Parameter 1: 

filename 
Is .the label in your prowam, of ~he corres,ponding DTJ~NI rpacrc;>instructiqn.,,, 

(1) or.1 
Indicates that you have preloaded register 1 with the address of the DTFNI file 
table. 



UP-8068 Rev: 4 SPERRY UNIVAC .OS/3 . 
BASIC DAT A MANAG,EMENT' 

Positonal Parameter 2: 

address-field 
Is the label of a 6-byte field (Obbbdd) in your program containing the rel;ative 
block address· and displacement of the record within the block. The· relative block 
address p9rtion {Obbb) i~t right-justified in the first four bytes, and the 'record 
displacement (dd) is right-justified in the second two. 

(0) or·O 
Indicates that you have preloaded register 0 with the address of the 6-byte 
address field. 

Remember that, wheri you are proce'ss'ipg within a partition, or a subfile of a partition, y9u 
must have preselected these by issuihg the appropriate· SETP ·and SETS macros (15: 7.4 
and 15. 7.5). for this reason, the partition name is never use.d as· an operand of the POINT 
macro. 

The coding· example that follows· shows ·the ·use of a NOTE macro to· access the· current 
relative address of a sequentially processed outpu't· fil'e, FILE1, whenever a record 
containing a :desired value, 'VALLJ', in its first four positions is encountered. This address 
is then used by a POINT macro in a selective input or updating of FILEl, in wh9t amounts 
to random processing in a sequential file. FILE2 is used as an inde~ -to FILE1 for this 
processing. 

Example: 

LABEL L\OPERATIONL\ OPERAND 
10 1~ .. 

/. g:r E:P I •. 1 

I I I I l I I I I I I I I I 

I I I; ' ,. I I· I I; ,. 
f, I I r. I 

Fr LEil 17 ,5.r,,L..,E1Z, I I I I 



BASIC DATA MANAGEMENT 

Example (cont): 

LABEL ilOPERATIONfl OPERAND 
10 16 

1. FILE1 and FILE2, both DTFNI files, are oper:-ied for sequential output processing. 

2. Record output to FILEl is Jested for ,desired,va'lue, 'VALU'. 

3. NOTE macro is issued when 'VALU' found; r'elative address is returned to 
filenameB. 

4. Relative address found by NOTE i.s output to FILE2, which will serve as an index 
in STEP2. 

5. FILE1 is reopened' for updating; FILE2 for input processing, (assume flle 
processing directions have been reset). 

6. Record retrieved from FILE2 is the address of a record in FILE1 containing 
'VALU'. 

7. POINT macro is issued to position FILE1 to address obtained ,in 6. 

8. Sequential processing continues in FILE1 from pos'ition set in 7. 

9. Definition of the desired value, normally located outside of executable code. 



BASIC DATA MANAGEMENT 

15.8. ERROR AND EXCEPTION HANDLING 

15.8.1. FilenameC 

When certain errors or exceptions to file processing performance are detected by OS/3 
data management, it will make appropriate entries in specific fields of the DTF file table, 
which your program may address in order to learn of these conditions and take the proper 
course of action on regaining control. One such field is filenameC (in the nonindexed file 
processor system a 4-byte field), which you may access by concatenating the character 
"C" to your 7-character logical filename. 

A point to remember when you are processing the partitions of a DTFNI file is that, just as 
your ERROR routine is a file-relative specification and belongs in your DTFNI declarative 
macro (not in the DPCA declarative macro defining the partition), you do not have a field 
for error flags in the partition control appendage established in the DPCA macro. That is, 
there is no "partition-nameC"; error and status flags set during processing of partitions 
are set in the field of the DTFNI file table and are accessed, therefore, as filenameC. 

Most of the error and status flags have already been discussed in preceding paragraphs; 
refer to Table B-3 for the meanings of the bits in filenameC of the DTFSD, DTFDA, and 
DTFNI filetables that are set to binary 1 by OS/3 data management for certain error and 
exception conditions. 

Not all of the status flags represent conditions causing transfer of control to your error 
routine. Some of these must be tested for inline in your program if you want to act upon 
them. 





UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16-1 
Update B 

16. System Resource Control 

16.1. DEVICE ALLOCATION AND FILE ASSIGNMENT 

In OS/3, the supervisor and job control have the essential responsibility for reserving 
main storage and allocating peripheral devices for jobs that appear in the control stream 
and make their needs known through job control statementsJollowing the JOB statement. 
Of these statements, DVC, VOL, EXT, LBL, and LFD are essential for providiQg information 
relating to your files. With proper use of these statements you may reserve peripheral 
devices and identify and assign to your program the files you have on them or will place 
on them. 

16.1.1. Use of Job Control Statements 

Every file that you intend to reference in your program must be represented in the job 
control stream by a set of control statements, called the device assignment set, which 
contains at least a DVC statement followed by an LFD statement. Between these basic two, 
you will need to insert as many as six other statements for your magnetic tape and disk 
files: the VOL, EXT, LBL, LCB, VFB, and DD statements. The device assignment set specifies 
the relationships between your files or volumes and the peripheral devices; there is one set 
for each file. Following is a short summary of the functions of these statements; all are 
described in the job control user guide, UP"'."8065 (current version): 

• The DVC statement assigns peripheral devices to your job. 

• The VOL statement specifies the magnetic tape or diskJile volumes to be accessed by 
the job. 

• The EXT statement establishes new disk files or extends existing files on disk. 

• The LCB statement specifies and loads to the printer a unique load code buffer that 
overrides the LCB set at SYSGEN time. 

• The VFB statement specifies and loads a unique vertical format buffer that overrides 
the VFB set at SYSGEN time. 

• The DD statement modifies fields within the DTF file table at run time acnd avoids 
recompiling DTF's when changes in DTF specifications are required. 



UP-8068 Rev. 4 SPERRY UNIYAC OS/3 
BASl.C DATA MANAGEMENT 

16-2 

• The LBL statement supplies label information for magnetic tape or disk files. 

• The LFD statement identifies the file control block for each file used in your job. 

Card and paper tape files use only the DVC and LFD statements and optionally the DD 
statement. The printer always uses the DVC and LFD statements and optionally the LCB, 
VFB, and DD statements. 

16 .1 . 2. Sample Device Assignment Set 

Following is an example of a set of control statements that you would use for reserving 
space for a sequential disk file that is to be created: 

LABEL ~OPERATION~ OPERAND 
10 16 

t=I LE I 

This device assignment set will cause modification of the volume table of contents (VTOC) 
of disk pack 124365 to show that a sequential file called 'INVENTORY MASTER FILE' 
exists, and that the space reserved for it occupies a specific position on the pack. OS/3 job 
control will also note that your program will address this file as 'INVNTRY' (its 1 lbgi·cal 
name), and that space for one ·extent entry in the prologue area will suffice. To start with, 
the file will be assigned 10 cylinders of contiguous space. When this space is ·exhausted, 
you desire automatic extension, five cylinders at a time. 

When space for only one extent in the prologue area is specified, no dynamic extension 
can take place. 

For a program that will subsequently operate on this file, you would use the same set of 
job control statements, except that you would omit .the EXT statement If you want to 
recreate a file (for example, if an error occurred during your first attempt to create it), you 
may use the INIT positional parameter of the LFD statement. This parameter has the same 
effect as scratching the file and real.locating it to the same area as it previously occupied 
on disk. 

16.1.3. Job Control Deallocation Statement (SCR) 

The OS/3 job control language also provides an SCR statement ·that you may use to 
deallocate (scratch) a file from a disk pack. When you use this statement, you must use an 
LE.D name that is the same as the one you have used for the file in a preceding valid 
device assignment set (DVC-LFD). The SCR statement will deallocate the file and its 
extents before the program named in the next EXEC statement in the control stream is 
executed; therefore, you may use it to free disk space needed for a subsequent job or job 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANA,GEMENT 

16-3 
Update A 

step. (The disk space management facilities of the OS/3 supervisor also include an 
imperative macro, SCRTCH, that provides similar functions and is used for dynamic 
deallocation ( 16.3.).) 

16.1.4. Using the File Lock Feature 

The OS/3 file lock feature allows you to control the sharability of a file while you are 
using it. Sharability control only applies to lockable files. To use the file lock. feature, 
proceed as follows: 

• Step 1 

At system generation, you specify the FILELOCK parameter to indicate which files are 
lockable. 

• Step 2 

In your file definition (within your BAL program) and in the device assignment set for 
the file (regardless of _the program type), you specify y9ur read/write requirements 
and indicate whether other jobs or tasks ·within a job ·can share the file. 

In the following paragraphs we will describe howtq~indicate which files can·-be locked and 
how to set the various degrees of sharability. 

16.1.4.1. Indicating Which Files are Lockable 

Yop indicate which files are lockable by using the Fllf:LOCK parameter in the SUPGEN 
section. ofthe J:>arameter processor at system gener~tion time. 

If you choose FILELOCK=NO or omit the parameter, only the system files prefixed with 
$Y$ are lockable. No user files can be locked. 

H you choose FILELOCK=YES, all system files (prefixed with $Y$) and all files prefixed 
with $LOK01-$LOK99 are lockable. 

If you choose FILELOCK=SHARE, all files are lockable. 

16.1 .4.2. Setting File Locks for Data Files in BAL Programs 

After you specify which files are lockable, you specify the degree of sharability for each of 
these files. 

If you choose FILELOCK=YES at system generation time, you tan lock any file whose 
filename you prefixed with $LOK01-$LOK99 in the I I LBL job control statement in the 
device assignment set. If you do nothing more, any prefixed file will be exclusiveJy locked 
when it is opened during the execution of your program. You have exclusive use of the 
file. You can read, update, and add to the file. No other user can open the file until you 
close it. 

t 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16-4 
Update B 

If you choose FILELOCK~SHARE at system generation time, you can lock all of your files. 
If you do nothing more, each file will be exclusively locked when ·it is opened during the 
execution of your program. You have exclusive use of the file. You can read, update, and 
add to the file. No other user can access the file until you close it. 

In both cases (FILELOCK=YES or FILELOCK=SHARE specified at system generation), you 
can override this lock by specifying one of the options of the ACCESS parameter or by 
specifying the LOCK=NO parameter in the DTF macroinstruction for a file. (See 11.4.1 and 
11 .4.11 .) 

You can also override this lock at program execution time in two ways. The first way is to 
include a I I DD job control statement that specifies one of the ACCESS parameter options 
in your device assignment set. The second is to prefix the filename with an asterisk(*) in the 
I I LFD job control ·statement in the device assignment set. This will cause a read-only lock 
to be applied to the file; that is, you can only read from the file and all other users can only 

_.... read from the file. 

NOTE: 

To set file locks on SAT· files, see the supervisor user guide, UP:B075 (current version). 

16.1.4.3. Setting File Locks for Data Files in Non-BAL Programs 

After you specify which files are lockable, you specify the degree of sharability for each of 
these files. 

If you choose FILELOCK=YES at system generation time, you can lock any file whose 
filename is' prefixed with. $LOK01-$LOK99 in the I I LBL job control statement in the device 
assignment set. If you do nothing more, any prefixed file will be exclusively locked when it is 
opened in your program. You have exclusive use of the file. You can read, update, or add to 
the file. No other user can access the ·file until you dose it. 

If you choose FILELOCK=SHARE at system generation time, you can lock all of your files. 
$, < ' :, ' ' 

If you do nothing more, each file will be exclusively locked when it is opened in your 
program. You have exclusive use of the file. You can read, update, or add to the file. No 
other user can access the file until you close it. 

In both cases (FILELOCK=YES or FILELOCK=SHARE specified at system generation) you 
can override this lock at program execution time. There are two ways to do this. The first 
way is to include a I I DD job control statement that specifies one of the ACCESS parameter 
options in the deviGe assignment set. The second i.s to prefix the. fil~name with an asterisk(* 
) in the I I LFD job control statement in the device assignment set. This will cause a read­
only lock to be applied to the file; that is, you can only read from the file and all other users 

__... can only read from the fiJe. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16.1.4.4. File Lock Feature Summary 

16-4a 
Update C 

Table 16-1 summarizes the data management file lock feature. Remember, before using 
this feature, you indicated which files are lockable at system generation time through the 
FILELOCK keyword parameter. Once again, the available options are: 

11 FILELOCK=NO indicates that only the system files prefixed with $Y$ are lockable. No 
user files can be locked. 

11 FILELOCK=YES indicates that all system files (prefixed with $Y$) and all files prefixed 
with $LOK01-$LOK99 are lockable. 

11 FILELOCK=SHARE indicates that all files are lockable. 

Table 16-1. File Lock Summary 

LOCK Keyword Action ACCESS Keyword Action 

LOCK=NO CD not This DTF: read use/ ACCESS=EXC CD This DTF: read use/ 
specified update use/add use update use/add use 

Other jobs: no Other jobs: no 
access access 

LOCK=NO® This DTF: read use ACCESS=EXCR This DTF: read use/ 
Other jobs: read update use/add use 
use Other jobs: read 

use (ACCESS=SRD 
specified for other jobs) 

ACCESS=SRDO @ This DTF: read use 
Other jobs: read 
use (ACCESS=SRD 
or SRDO specified for 
other jobs) 

ACCESS=SRD This DTF: read use 
Other jobs: read 
use/update use/ 
add use (ACCESS=EXCR, 
SRO, or SRDO specified 
for other jobs) 

NOTES: 

CD LOCK=NO not specified and ACCESS=EXC are functionally equivalent. 

@ LOCK:=NO and ACCESS=SRDO are functionally equivalent. 

t 





UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16-5 
Update C 

Remember, files are locked based upon the physical file name or $LOKnn prefix for the 
name that you specified in the I I LBL job control statement of the device assignment set. 
The volume serial number is not used. Since this is the case, you should use a unique 
physical file name or $LOKnn prefix to differentiate between unrelated files or file sets on 
different vol um es. 

If you specify the same physical file name or $LOKnn prefix for unrelated files, you risk 
having files locked out unnecessarily when the ACCESS options are not compatible. For 
example, assume that files A and B are unrelated and are on different volumes. Also 
assume that these files have the same physical file name on the I I LBL job control 
statement in their respective device assignment sets. If file A is lockable and has been 
opened for exclusive use with JOB 1, no other job can open file B because its physical file 
name has already been locked to JOB 1 even though file A is an unrelated/different file. 
Using unique file names prevents this from happening. 

t 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16-6 

RENAME 

16.2. RENAMING A OISK FILE (RENAME) 

Neither OS/3 job control nor data management provides a means for renaming an existing 
disk file. If you need to change the name of one of your files (as recorded in the 44-byte 
file ID field of the format 1 label on disk), you must do it dynamically within your program, 
using the RENAME imperative macroinstruction provided by the disk space management 
facilities of the OS/3 supervisor. Note that you should not issue the RENAME macro to a 
file that is currrently open. 

Function: 

The disk space management macro RENAME allows you to rename any disk file but a 
system file. By specifying the new 44-byte file identifier you want used, the 7-byte 
logical file name, and the volume sequence number of the volume on which the file 
resides, you cause the new file identifier to replace the old file ID in the format 1 
label of the VTOC. (The 7-byte logical file name is the same as that appearing as the 
first operand of an LFD job control statement for the file and in the label field of the 
corresponding data management DTF declarative macro.) 

Format 

LABEL biOPERATION bi OPERAND 

[name] RENAME {r,a;am-list} [ {~;,ror-addr} J [,vol-seq-no] 

Positional Parameter 1: 

pa ram-list 

(1) 

Specifies the address of a parameter list containing a 7-byte filename (as listed 
on the LFD job control statement and in the label field of the corresponding DTF 
macro) and a 44-byte new file identifier. The parameter list is a 52-byte 
character string, the first eight bytes of which contain the LFD-name of the file, 
left-justified; the last 44 bytes contain the new file ID, also left-justified. 

Indicates that register 1 has been preloaded with the address of the parameter 
list. 

Positional Parameter 2: 

error-addr 

(r) 

Symbolic address to which control is transferred if an error is encountered. 

Indicates that a register (2 through 12) has been preloaded with the error 
address. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Positional Parameter 3: 

vol-seq-no 
Specifies the volume of a multivolume file to be renamed. 

If omitted, the value 1 is assumed. 

Examples: 

LABEL ~OPERATION~ OPERAND 
10 16 

16-7 



UP-8068 RevA 

SC RT CH 

SPERRY UNIVAC OS/3 
BASIC. DATA· MANAGEMENT 

16.3. DYNAMIC DEALLOCATION OF A DISK FILE (SCRTCH) 

Function: 

16-8 

The disk space management macro SCRTCH enables you to deallocate any disk file 
but a system file, making the space available for future use. After validating your 
request, the SCRTCH macro removes the definition of the space or extents from the 
format 1 or format 3 labels and updates the format 5 label in the VTOC. The extent of 
the newly available freed space is inserted ~in the correct position in the format 5 
record, where available extents are described in ascending sequence of relative track 
addresses. If you deallocate your file, the SCRTCH macro deletes all format 1, 2, and 
3 labels from the VTOC and replaces them with format 0 labels. Note that you should 
not issue the SCRTCH macro to a file that is currently open. 

Three basic deallocation (scratch) functions are available to you: 

• deallocation of files by prefix; 

• deallocation of files by expiration date; and 

• complete deallocation of a file by file ID. 

To deallocate files by prefix, you place a 4-byte prefix in bytes 76-79 of the file 
control block .(FCB) of the file in main storage and specify the PREFIX parameter; the 
SCRTCH macro searches the VTOC for files with file ID fields beginning with these 
four characters and deallocates each one matched. The prefix may not include the 
characters $Y$, so that it is not possible to you to scratch system files by mistake. But 
by this macro you may deallocate all your temporary work files with one call on OS/3 
disk space management. 

To deallocate expired files, you specify the ALL parameter and include the expiration 
date in the 3-byte expiration date field of the FCB; the SCRTCH macro compares this 
with the expiration date in each format 1 label in the VTOC and deallocates all files 
with earlier expiration dates. 

To deallocate an entire file by the 44-byte file ID that is contained in the FCB, you 
either omit the second positional parameter altogether, or specify (0) and preload bits 
0 through 7 of general register 0 with the hexadecimal code 00. 



UP-8068 Rev:4 

Format: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Ll OPERATION Ll 

16..:.9 

OPERAND 

SCRTCH 
{ FCB-name} ll (0) !]. [ {error-addr}] (1) • ALL ·• ,(r) 

, PREFIX 

Positional' Parameter l: 

FCB-name 
Specifies the symbolic address of the ·FCB in main storage. 

Bytes 1-----0 ___ -...1-_______ -'--___ 2 ____ 1...-__ ___:3:__ _ __:....--1 

4 

( 1) 

volume serial number 

prefi?<, or expiration date, or file ID 

I 
I 
I 
I 
I 
I 

(see table below) I 
I I 
L----------------------------~ 

0-5 

6-n 

,Contents. 

Volume serial number (VSN) of disk pack on which files to be 
deallocated reside 

One of the foJ lowing:, 

• 4-byte prefix (may not contain $Y$); requires specification of 
PREFIX in positional parameter 2 

• 3-byte expiration date, in discontinuous binary in the form 
YDD (year, day, day), where Y ranges from 0 to 99 and DD 
ranges from 1 to 366; requires specification of ALL in 
positional parameter 2 

• 44-byte file identification name; requires omission of 
positional parameter 2 

Indicates that you have preloaded general register 1 with the symbolic address of 
the FCB in main storage. 



UP-8068 Rev. 4 SPERRY UNIVAG OS/3 
BASIC DATA MANAGEMENT 

16-10 

Positional Parameter 2: 

(0) 

ALL 

Indicates that you have preloaded register 0 with a hexadecimal function code 
specifying the scratch operation desired, as follows: 

Function Code 

00 

82 

83 

Interpretation 

Scratch entire file. 

Scratch all files of the volume whose expiration date is 
exceeded by the content of the 3-byte expiration-date field of 
the FCB. 

Scratch all files that have the 4-byte prefix contai.ned in bytes 
76-79 of the FCB. 

Specifies that all files of the specified volume with expired dates will be 
deallocated. 

PREFIX 
Specifies that all files of the specified volume whose file IDs begin with the 4-
byte prefix placed in bytes 76-79 of the FCB are to be deallocated. 

If positional parameter 2 is omitted, the file specified by the 44-byte file ID in the FCB 
is scratched. 

Positional Parameter 3: 

error-addr 

(r) 

Specifies the symbolic address of your error routine, to which control will be 
transferred if an error is encountered. 

Indicates that you have preloaded the specified register with the address of your 
error routine. Register 0 and 1 cannot be specified. 



UP-8068 Rev. 4 

Examples: 

LABEL ~OPERATION~ 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

OPERAND 
10 16 

16-11 

1. This macro deallocates all files whose expiration dates are exceeded by the 
contents of the 3-byte expiration date field of the FCB whose symbolic address is 
MYFLE. Your error routines' symbolic address is ERRXT. 

2. This macro scratches the file whose 44-byte file ID is contained in the FCB 
whose symbolic address is TRIFLE. You have preloaded general register 10 with 
the address of your error routine. 

16.4. DISK SPACE MANAGEMENT AND THE VTOC 

We have discussed two disk space management routines that update the VTOC of a disk 
pack for you. All together, there are five OS/3 disk space management routines providing 
vital services for maintaining a correct VTOC on every disk pack. Two of these transients 
(ALLOC and EXTEND) you will not use directly because they are invoked automatic"ally for 
you, when you need them, by OS/3 data management or job control; they are therefore 
not documented here but in the supervisor user guide, UP-8075 (current version). 

Because the disk space management routines provide efficient, completely automatic 
space accounting and maintenance, they relieve you of the burden~of keeping precise track 
of the contents of your disk files. An understanding of the structure of the VTOC and the 
format of its label records is not essential to you as a data management user; however, 
Appendix D describes the VTOC in full detail for your information, and the disk space 
management macro OBTAIN is available for the rare occasions you will have to examine it 
from a program. 



UP-8068 Rev. 4 

OBTAIN 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16.4.1. Retrieving ~VTOC Information (OBTAIN) 

Function: 

16-12 

The disk space management macro OBTAIN returns to you either the disk address or 
the contents of a specified VTOC format label record for a specified disk volume. You 
m~st $pecify a return buffer of a size appropriate for the information you want 
retrieved. · · 

Format: 

LABEL .6 OPERATION .6 OPERAND 

OBTAIN { 
param-list·.} [ {error-addr }] [,vol-seq-no] 
(1) ' (r} 

Positional Parameter 1: 

pa ram-list 
Is the address of a 12-byte parameter list containing the following: 

Bytes 0-7 7-byte logical filename (as listed in the LFD Job control statement) 

Byte 8 Hexadecimal code of the retrieval function to be performed on the 
vroc of the disk volume whose volume sequence number is 
specified by positional parameter 3 

Code Function 

00 Return VOL 1 disk address 

01 Return format 1 disk address 

02 Return format 2 disk address 

03 Return format 3 disk address 

04 Return format 4 disk address 

05 Return format 5 disk address 

06 Return format 6 disk address 

80 Return contents of VOL 1 label 



UP-8068 Rev. 4 

(1) 

Bytes 9-11 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Code Function 

81 Return contents of format 1 label 

82 Return content~ of format 2 label 

83 Return contents of fqrmat :3 label 

84 Return contents of format 4 label 

85 R~turn contents of form.at 5 Jqbel 

8~L Return cont~ots of format 6 1~.bel 

16-13 

87 Return contents of the label record .that is located at the 
disk address that has been preloaded. into the first work 
of the .return buffer. 

Return buffer· address. Specifies the address in main storage of a 
return buffer. The OBTAIN macro places the disk address or the 
conteri'ts ()f the specified format label in the return bilffer specified 
by this field. All disk addresses returned by the a·BTAIN macro are 
stored in bytes 0 through 3 of this buffer, in the form O ~cc hh rr, 
in discontinuous binary. If you specify function ·c·otJe 87, you must 
store the disk address of the foJmat label you want 'retrieved in the 
same location in this buffer, in the same forni and format. 

The size of your return buffer must be four bytes when .you request 
the return of ar{address, 84 bytes when you. request the contents 
9f the VOL 1 lat?el, and 140 bytes when you request the.contents of 
a disk format label record. 

Indicates that you have preloaded register 1 with the address of the parameter 
list. 

Positional Parameter 2: 

error-addr 

(r) 

Symbolic address of your error routine, to which control is transferred when an 
error is encountered. 

Indicates that you have preloaded the specified register with the ac;Jdress of your 
error routine. Registers 0 and 1 may not be specified. 



UP-8068 Rev. 4 

Positional Parameter 3: 

vol-seq-no 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

16-14 

Specifies the volume sequence number of that volume of a multivolume file from 
which you want to retrieve VTOC information. 

If omitted, a value of 1 is assumed. 

Examples: 

LABEL OPERAND 

1. You have preloaded register 1 with the address of your parameter list and 
register 4 with the address of your error routine;, you are retrieving information 
from the VTOC of the second volume of a multivolume file. 

2., This e~ample is seeking information from the VTOC of the first volume of a 
multivolume file; the error routine and parpmeter list are specified by their 
syr:nbolicaddresses, ERRRTN and RECOVER1, respectively. 

16.4.1.1. Retrieving Specific Format Label Items 

Once you have retrieved the desired format label with the OBTAIN macro, you may 
address a specific field by its individual label; these labels are shown in Appendix D. 



PART 5. PAPER TAPE FILES 





UP-8068 Rev. 4 

17.1 ~ GENERAL 

SPEfUW UNIVAC. OS/3 
BASIC DATA MANAGEMENT 

17-J 

17m; Paper Tape. Data Ma:nagement 

This section describes OS/3 paper tape data management, a system that provides the 
basic .assembly language {BAL) programmer with access at the logical-record level to the 
SPERRY UNIVAC OS20 Paper .Tape Subsystem. The operational characteristics of the latter 
are outlined in Table A-6;. for ·further information, however, refer to the, 0920 paper tape 
subsystem programmer reference, UP-7998 (current version). 

After a brief discussion of the hardware and paper. tape itself, this section describes the 
effects of various character and record types on the modes of processing paper tape files 
and gives an overview of programming with paper· tape data; management.· Following this 
overview, the four file processing imperative functions OPEN, CLOSE, GET, and PUT are 
expla.ined, with a description of the means available to you as a BAL programmer .in OS/3 
for .jncluding the paper tape data management processing modules with your own ~ode. 

The matter of defining a paper ·tape file .to data management, using the keyword 
parameters of the DTFPT declarative macro to specify its characteristics and your 
requirements for processing it, is then presented in full detail, with a number of simple 
coding examples to clarify, the use of1;shift code.scan tables and translation tables. ·The 
discussion of file definition closes·with a description of data management error processing 
for paper tape files and the t:.1se of scan·'and translation tables when processing paper 
tapes in ASCII (American·National Standard 1Code· for. IAformation Interchange). 

This·section .concludes with~a 'few notes on the comp·atibility of OS/3:With the paper tape 
data management <of other operating systems. 

17.2. HARDWARE AND PAPER TAPE CONSIDERATIONS 

The data management paper tape system in OS/3 is designed to be used with the 0920 
paper tape subsystem, which can be configured as a papertape reader, a paper tape 
punch, or a combined reader and punch. 

It is important to::note that, when··the subsystem is being used as a combined reader and 
punch; there are two separate paper tape paths>·Whereas reading ·and punching can take 
place at the same time in such a subsystem, they cannot take place in one pass on the 
same tape. Two different passes are necessary to read and punch on the same piece of 
paper tape, and in OS/3 the tape must be defined with a separate DTF for each such pass: 
once as an input file, once for output, using different file names. In addition, you require 
separate job control device assignment sets {of DVC-LFD statements). 



UP-8068 Rev. 4 SPERRY UNIVAC 0$/3 
BASIC DATA MANAGEMENT 

17-2 

As a reader, the 0920 paper tape subsystem can handle three different widths of tape: 
11 /16, 7 /8, and 1 inch. The subsystem can punch two widths: 11 /16 and 1 inch. As to 
the number of tracks, or levels of tape characters, the subsystem can read or punch 5-
level tape on the· 11 /16-inch width and from· 5 through 8 levels on the 1-inch width. 

The subsystem runs in two reading and punching modes: binary and character. In the 
binary mode, which is used only with 8-level (1-inch) tapes, there is a fixed, direct 
correspondence between bits in main storage and holes punched on the tape, that cannot 
be altered by rewiring the program connector board (17.2.1 ). 

In the character mode (also called standard, or nonbinary, mode) from 5- to 7-level tapes 
are read and punched; an even or odd parity signal may be punched on the tape and 
checked during reading. It is not transferred to main storage, but, if a parity error is 
detected (this is always done by the hardware), the most significant bit of the byte in main 
storage representing the character is set to 1. 

In addition, you may set up the program connector board to allow detection of a stop 
character (often called the ''wired stop character" because of the clip-on wires used), as 
well as a delete character. 

17.2.1. The Program Connector Board 

For control, the 0920 paper tape subsystem .uses the program connector, a printed circuit 
patch card which you set up with clip-on wires for the specific tape you are reading or 
punching. You will have much need of the program connector for processing in character 
mode, but it is bypassed completely for processing in binary mode~ A short summary to 
highlight the procedure for wiring the program connector follows; for full details, consult 
the 0920 paper tape subsystem programmer reference, UP-7998 (current version). 

17.2.1.1. Wiring the Program Connector for the Tape Punch 

There are eight punch actuator circuits, each connected to a pin on the program connector 
board. In addition, there is a pin on the board for, each of the seven least significant bits of 
a byte in main storage, and two pins that generate odd or even parity signals, based on 
the content of all eight bits of the ,byte in main storage., You connect the actuator pins to 
the main storage bit pins by the clip-on wires; .ar:w· actuator pin can be connected to any 
bit pin. You can connect either parity signal pin (the odd or the even) to one of the actuator 
pins, or you can ground the unused actuator pins together so that nothing is punched in 
their tracks. 

17 .2.1.2. Wiring the Program Connector for· the ·Tape Reader 

A pin on the program connector is connected to each of the eight photodiodes in the read 
station of .the device; ther:e are also pins for each of the seven least significant bits of a 
byte in main storage, and two pins connected to ·reader circuits for checking odd or even 
parity. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-3 

You connect seven of the photodiode pins to any of theseven bit pins; any of the bit pins 
can be grounded so that the associated bit in main storage is always zero. You may also 
connect one of the two parity-check circtfit pins to any one of the photodiode :pins, or the 
parity-check pins can be so connected that no parity checking is done. 

The reader section of the program connector also allows you to specify one delete 
character. and· one stop character for detection by the hardware when it is reading in 
character mode; however, in the binary mode, it cannot detect these characters. Therefore, 
if you need to delete characters from your input records in binary moqe, or if your 
application requires additional delete characters, rememberthat you must specify these as 
software deletes in your program, using the, SCAN keyword parameter ·Of' the DTFPT 
declarative macrd (17.5.3.1 ). 

17.2.2. Paper Tape Leader 

If the optior'.lal tape spooler is used with the 0920 paper tape subsystem, a tape leader at 
least three feet long must precede the first data character to be read on the tape. In the 
binary mode, the leader must consist only of null characters; in the character mode, you 
may use either null or delete characters. If the reader spooler is not. used, the paper tape 
leader may be as short as 'two inches; 

17.2.3. Paper Tape Trailer 

When you are using the 0920 paper tape subsystem, you receive an indication of broken 
tape if there are data characters under the read photodiodes when the end-of-tape $Witch 
is activated. A false indication of broken tape, therefore, results when the end of an 
unbroken tape .goes by. while the last of the data characters· are still being··read. To prevent 
this false error indication from being given, you must follow the last data character on an 
input tape with a tape trailer· at least. 12 inches (120· characters) long; there ml:Jst be 
nondata characters. In the .binary mode, the t~ailer must consist cmly of null characters; in 
the character mode, you may· use. n:ull or delete characters. 

Figure 17-:-1 is a schematic ·diagram of a paper tape file with its leader and trajler. 

LEGEND: 

L Tape leader. Immediately precedes the first da,ta character on pap~r tape and comprises only 11ull characters in binary 
mode; may comprise null or delete characters in character (standard) mode. Must be at least three feet (360 
characters) long if the optional tape spooler is used on 0920 paper tape'.'subsyster'n; otherwise heeds to be·no more 
than two inches (20 characters) long. 

T Tape trailer. Immediately follows the last data character on paper tape; must be at least 12 inches (120 characters) 
long to prevent false error indication of broken tape. Comprises only null characters in binary mode; may comprise null 
or delete characters in character mode. 

D Data file. In character mode, the format of data records may be either fixed, unblocked or undefined (that is, records 
are of various lengths). The only record format used in binary is fixed, unblocked. 

Figure 17-1. Tape Leader, Paper Tape Data File, and Tape Trailer 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC,DATA MANAGEMENT 

17.3. CHARACTER AND RECORD TYPES ON; PAPER TAPE 

17-4 

Before looking into the way your data. is organ!zed·on punched.·paper tape and appears to 
data management and to your program, .consider the uses of several character types 
already mentioned, but not explainted so far: the null character, the delete character, and 
the. end-of,.record stop. These are part of a class of charactersi selected by .convention or 
arbitarily from among all the .possible patterns :that may be punched in one character's 
space on tape, different from the rest only .in that they are not used to represent data. 
They are sometimes called ·control characters, but, on· the other hand, they may represent 
the absence ·of data or serve as information s.eparators. or delimiters to foq11at your data. 
They· may serve merely to fill space on tape· as a tape leader as .trailer. One .of them may 
be used to obliterate unwanted or erroneous data characters or other nondata characters. 
Characters from this class may indeed be used to control communications or devices 
(here, for example, the 0920 paper tape subsystem itself), and the term control characters 
is then appropriate. 

An important realization is that each tape code you must assign to one of these characters 
reduces by one the subset of possibilities you may use to :repres.ent your data. When you 
are processing in ·character, or standard, mode, however, this limitation is not as serious 
as it may seem: data management's letter /figure ·Shifting capability allows you to 
represent more than one set of charcters in the same set of hole patterns punched on 
tape. 

17.3.1. Null, Delete, and Stop Characters 

• ·Null Character · 

The. null character is represented on tape· by the absence· of any punches in the 
information levels (tracks); only the feed (or:sprock:et) hole is punched.· To punch the 
tape code fpr the:·null character, you place' the> hexadecimal value DO ~ a standard 
convention in both ASCII and .EBCDIC processing - iA your 1/0 area; You may use 
the null character (or the delete) in the paper tape leader and. trailer when you are 
processing in character mode (MODE=STD), but you must use only the null for these 
purposes in binary mode (:17.2.2, 17.2.3). Similarly,. you must use only the null 
character to represent the optional interrecord gap in binary processing, although the 
delete character may be. used ... instead, in cha,racter modeJ17.3.4) .. 

~when you start to read paper tape, the subsystem feeds tape until it comes to the 
first:character that is not a null (or a delete~; it then; b~ginniog with this ch~uacter, 
starts to transfer characters intcf main storage. For this. reason, \iou must never use 
the null as the first character o( the first record on a tape; if you do, all subsequent 
record lengths are off by one byte. In binary mode, once the transfer of data has 
begun, all subsequent null characters are read into main storage, as binary O's 
(hexadecimal 00), and, whatever these represent in your input file, you must pro.gram 
to. Cleal with them~ In charadet.foode, ori th'E,t other hand (MODE=STD), nulls are 
never transJerr.ed into main storage. · · · · · 



UP-8068 Rev. 4 SPERR¥:0NIVAC OS/3. 17-5 
BASIC DATA MANAGEMENT 

11 Delete Characters 

You may represer:lt a delete character on tape by ariy ohhe hole patterns available for 
you to puRch, although the standard ASCII delete character is ·a punch in each of the 
seven data tracks' :(17.5.lO). The practice •of punching· a hole in each track 6f data 
·1evel to represent a delete charaeter '.facilitates one of 'the manf uses of the character: 
to cancel:dr obl'iterate· unwanted data in a; record. There ·are, however, two types of 

: these: the "hardware" delete ·a~nd the "software" delete. 

In character mode only (MODE=STD), by wirin·g the: program conriector<board, you 
can cause •the. hardwa·re ·;itself to recognize one of the 'incoming tape codes as a 
·character to 'be del·eted, which it does not transfer to main sfi:>rage>'lt skips this 
character, without leaving a :space· in: its place~ and goes on to read in the Aext data 
character. This is called the ·~wired" or "hardware'' delete; but" -such a character 
cannot be used: in binary mode. 

To prevent a character you want treated as a delete from being read into main 
storage in binary mode, you nilfst so designate ·:it i:n· a scan table that you specify to 
data management via ·the SCAN keyword ·p'arametef"''·of the DTFPT declarati\te macro 
that defines the file f17.5.3:1c). You· may sp·ecify more than one deiete characte'r this 
way - these ar.e;·caUed "So~ware'' deletes; because the'data managem·ent software 
takes .care of: them - in both biliary a'nd character modes. 

A major use of the delete characfer, as suggested, ·is to obliterate unwanted 
characters from your paper tape file when ·these- are identified in later processing, 
once the file is created. However (with one exception), you must take pains never to 
include the delete character in your output data when you are creating a paper tape 
file; it is punched into the tape by other means. Because of this use in cancelling out 
any tape coqe, the delete is often called a· '''fub-out" char·acter. 

The exception to the general rule of always excluding the delete character from 
appearance among the data characters in your output' is its use. as the record gap 
character when you are punching a tape (17.3.4). 

The other uses of. the delete, -to const~tute the paper tape leader and trailer, or the 
interrecord 'gap (th.~. record gap cnaq:19tef) ; ih standard . rnode~ ha·ve, already been 
referred to: ·i:n these uses, it is lmporti:fnf to reme.mber that ·the delete character must 
be the hardware delete, to be wired for. iriput.files via the program connector board, 
and not one of the software deletes des·igriated in a~SCAN table~ Yoti may place the 
hexadecimal code for the hardware delete in your 1/0 area as many' times ~s you 
want it punched in the,header or· trailer, or you may ·form these. file-delimiting 
character strings by splicing afreadV'J>Unched strips of tape onto"the ends of the file 
after it is punched without them. ,,, · · · 



UP-8068 Rev. 4 

• Stop Character 

SPERRY UNIVAC OS/3 
BASIC' DATA MANAGEMENT 

17-6 

Undefined records, used, pnly when y<;>u are .. pr<;>ce~sing .; in character mode 
(MODE STD), require some means of delimitation, as· they vary in length. For this, 
you use an:.end-of,.record stop character at. tMe low:-order end of the record; it is 

· placed there ~utomatically by data management when you are punching an output 
file. It is read int<;> your 1/0 area from an input file, and marks the farthest point into 
your 1/0 area you should; 9tte111pt,. to reach in; processing your data. You specify to 
data management what it is to use for this character on an output file by means of 
th.e EORCHAR keyword parameter of the DTFPT dec,arative macro defining the file 
(1].5.6); for an input file, you mwst specify the end:-of .. record stop to the 0920 paper 
tape subsystem itself by wiring the program connector board (17.2.1.2,). When the 
s1.,.1bsystem encounters this character on reading an undefined record in character 
mode, it a.1,1tomatically stops tape motion. Remember that in binary mode the 
subsystem cannot be wired to recognize a stop character. The end-Qf-record stop 
character may not be used in OS/3 as the record gap character. 

The use of an e.nd-of-record stop ch9r,acter affects tl;l~ length of your 1/0 buffers and 
work ~reas in character mode (MODE=STD); these. effec~s are discussed. in detail in 
17;5.1.3, 17.5.1.4, and 17.5.1.6. Figure 17""77""2 shows the relatiqnship of record length 
to the block size speGification for an undefined recqrd of the .maximum size in a file. 
Note the position of the stop character in some of the subsequent figures, also. 

UNDEFINEp RECORD. (lJSED IN CHARACTER (STAND~RD) MODE ONLY) 

I 
I: D 

',1' 

LEGEND: 

E End-of-record char:act~r, a "wired stop'1•. character placed by data management .as a delimiter at the end of each 
undefine.d (variable..:lengtb) record. Specified by the. EORCHAR keyword of a DTFPT declarative macro defining an 
output paper tape file;. set for input files with clip~on. wires in the reader section of the program connector. 

i.' ' ' . ·,' ',' " ;_·. ~ 

D Length of data record, vvhich may not exceed·· 4.09'4 bytes. For output files, you load this length into the register 
specified with the. RECSIZE: keyword of the DTFPT macro. For input files, .data management loads the RECSIZE. register 
witti the length· of ·each record it reads in .. 

Assuming that ·D is the length of the longest data rebord in the paper tape.file; then I as depicted here equals the 
BLKSIZE sp.ecification, which may not exceed 4095. bytes. The BLl<SIZE spe,::ification is the size of the largest logical 
record to be processed and always incl~des 1 byte for the EORCHAR stop cha~acter that follows the data in an 
undefined record. ·· 

Figure 17-2. Undefined Paper Tape Record of Maximum Size for the File: 
Relationship of Record Length to BLKSIZE Specification 

17.3.2. Letter and Figure Shift Characters 

Only when you are processing in character mode (MODE=STD) may you use the 
letter /figure shifting capability that data management offers to permit you to represent 
more characters than you have unique hole patterns available in the number of data levels 
or tracks in your tape. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-7 

Setting aside a few of the hole patterns for the null character, one or more deletes, and (if 
you have undefined records. in your file), the end-of-record stop, you can nearly double the 
number of characters ·that the remaining hole patterns represent if you select two~ more to 
be shift code$· and then assign two meanings to each of the patterns that this leaves you: 
one meaning when it follow$ the one shift code on tape, one when it follows the other. 

The conventions in OS/3 data management are that one of these shift codes is the letter 
shift character, all hole patterns following it on tape being translated as "letters", and that 
the other is the figure shift character, all tape codes that follow it being translated as 
"figures"; Another convention is that, on opening an input file, data management expects 
that the first record of the file begins with a "figure" 'unless the first character of the 
record is the letter shift code. Data management inserts all shift codes automatically as it 
punches your output records into paper tape. file.s, and !t deletes them automaticallyi 
translating the intervening data as required,· as it reads input records from tape. 

To represent the letter shift and the figure shift codes, you may select any of the codes 
that you can punch into the tape at your disposal - except for the null, deletes, and end­
of-record stop. Figure 17-3 shows the appearance of an undefined output record, 
comprising both "figures" and "letters", as it would appear in the 1/0 area after you had 
formed it there for punching by data management, and as the record would look after jt 
was punched as the first record on tape. Notice that the letter; shift code has been added 
automatically by data management as the "first character of the puncti~d record. 

UNDEFINED OUTPUT RECORD, LESS THAN MAXIMUM SIZE FOR FILE, AS IT APPEARS IN 1/0 AREA 

1 

... :1-------------- BLKS~ZIE specification ---------------11•~1 

..... ---------- Record size ----i~.i-

LEGEND: 

Data moved by user to output area when he is 
forming records to be punched on tape 

~ "Letters": 8-bit configurations user has designated to be ·~ranslated. by. t.he .content. ot his LSCAN and. TRANS tabl.es 

D "Figures": 8-bit patterns user has designated to be translated by the content of his FSCAN and TRANS tables 

End-of-record stop character, placed in 1/0 area by data management; specified by EORCHAR keyword 

lillJ Residual data in 1/0 area, not processed 

Figure 17-3. Undefined Output Record for Standard Mode Paper File in 110 Area 
and as Punched on Tape (Part 1 of 2) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASl.C DATA MANAGEMENT. 

AND AS IT APPEARS PUNCHED AS THE Fl~.~ff RECORD ON A PAPf;R TAPE FIL~ 

LEGEND: 

L 
s 
c 

F 
s 
c 

L F 
s s 
c c 

L 
s 
c 

F 
s 
c 

L.: 
s 
c 

L 
s 
c 

17-8 

I 
5
CL ·:I Letter shift code (LSC), punched by data management, the OS/3 Conve11ti0rl is that the firsi character in the firsi 

. record on· tape is either a "f.igure" C?r the· 1etter shift c;ode: 

Im 
D 

[lJ 

Tape codes to be translated on input as repres~nting ·'r~tters;', belicalise they follow. LSC an9 precede FSC 
' ' - "' ' '' ~' - -, ;/ ~ - ' : -~ 

Tape codes to be translated on input as representing "figures", because they follow FSC and precede LSC 

Figure shift code (FSC), n~~er the first chara.cter of the .first record. on t,ape 

End-of7record delimiter, a ch~rac;~~r. specified. by th~ EORCHAR keyword' of the DTFPT ·macro. On input, when this 
character is encountered, t~pe rpotion stops. The.0920 paper. tape Sl!bsy~tem.can b~wired to.recognize this.character 
only in standard moae. . . . 

ii!) Paper tape leader 

Figure 17-3. Undefined Output Record for Standard Mode Paper File in 110 Area 
and as Punched on Tape (Part 2 of 2) ' 

Figure 17-4 shows tl),e relations. of an undefh1ed inpu~t r~cord's:Jength. and ;contents to 
the 1/0 and work a.rf3as, (and to}he specified blo,ck size); notic:e ~hat ·the bytes jn the··data 
area beyond the end~of~record stop character are· noFzeroed or otherwise processed by 
data management; you should avoid running into them in your processing. 

The means for designating the shift codes, for designating which characters are "figures" 
and which "letters", and for translating these are described in full elsewhere (17.5.3, 
17.5.3.1, and 17.5.5, for example) under the DTFPT macro keyword parameters used for 
the purpose. See ·also Figure· 17~ 1'0,· in 17.'B.1.5. · 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC :DATA MANAGEMENT 

17-9 

(for largest undefined 
record, including 

..,....__..,.....__,.....,.._-----__,......,...___...__ _____ ___; BLKSIZE specification-, --------"-'-----------11)11i11>-1 1 byte for. EORC,HAR) I 
IOAREA 1 

--~-.....--------~ 

letters ""figures letters 

I I I I I / / / / //,' 

I/ / / .. // /' I,// // ~ / //// Bytes beyond 

I I I ~ · / / / . the EORCHAR (stop) 
J · .· ./ ! / , // / / 1 character are not 
J / / / / // . // / / zeroed or otherwise 

I II II 11 // / / processed by data management. 
l/OorWORK II I/ // / / ·. 

-'~-A_RE_A ___ f,__~f_,_/ ____ ~--~/~--------~/ / 

letters 
f 

t 

g r 
figures, letters 

l
l:s made available to user aft~ir !?ET instruction in 1/0 area or work area,) with shJ and delete cbaracters removed and data translated 

..... _-.---"'-------· Record·length loaded into RECSl.ZE -1 
register excludes 

LEGEND: 

the EORCHAR (stop character) 
that delimits each undefined record 
on tape and in 1/0 and work area~. 

,EORCHAR (stop character) 

Lettershift character 

· Figun?shift character 

Bytes beyond the EORCHAR (stdp) character. These' are not zeroed or otherwise. process~d by data management and 
should not be accessed by the user. · · , · 

Figure 17-4. Relationships of Record length, Work Area length, and 1/0 Area length to BlKSIZE Specification 
and Content of RECSIZE Register for:artOndefined Rec<J.;d Input lrotn•Paper Tape with Shifted Codes 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17~3.3. Record Formats in Paper Tape Files 

17-10 

In defining OS/3 paper tape files, one of two record formats may be specified, depending 
on processing mode. When you are processing in binary mode, the only format you may 
specify is the fixed, unblocked format, but when you are processing in character mode 
(MODE==STD), you may specify either this or the undefined record format. You use the 
RECFORM keyword of the DTFPT declarative macro, discussed in detail in 17.5.1.2, for 
specifying the format of records in your file. The two processing modes are described in 
fully in 17.5.2. 

The reason that the undefined format may not be specified in binary mode is that there is 
no way the paper tape subsystem, when operating in binary, can be made to recognize the 
end-of-record stop character that delimits the undefined record (17.3.1 ), yet this 
recognition is essential for input processing. 

The fixed, 'unblocked record may vary in length from 1 to 4095 bytes. If you are used to 
processing records that are considerably smaller than 4095 bytes in your applications, you 
may wonder whether it is possible to block them in OS/3. Paper tape data management 
does not offer facilities for blocking and unblocking records, and this is the reason you 
may not specify a blocked format in your DTF; however, because a record is simply what 
you tell data management it is, your file may indeed consist of blocked records. The only 
point is that your program must deal with the blocking and deblocJ<ing that is necessary, 
without the assist that data management offers in the magnetic tape and some of the disk 
access methods. 

In character processing mode (MODE==STD), fixed, unblocked records may contain shifted 
characters and shift codes (they may not in binary mode), and when they do, moreover, 
you should note that they will seldom be all of one size when punched on paper tape. 
Figure 17-5, contained in a following paragraph (17.3.4), illustrates this point. Although 
fixed, unblocked records may not be shift_ed in binary mode, they may be translated.· ' 

The undefined record is simply one that may be of any length up through 4094 bytes; its 
maximum length is one byte less than the limit for the fixed-length record because of the 
need for the end-of-record stop character just described (17.3.1 ). The aqtual length of 
individual undefined records may vary from record to record; it is marked by the delimiting 
stop character and referred to in the general register designated for record size (17.5.1.6). 
It, too, may actually contain blocked records, but there is no way to specify this fact to data 
management, which has no facilities for blocking or deblocking. You must do this yourself. 

Figures 17-5, 17-6, and 17-7, presented in the following paragraph, show the 
appearance of records of each format on tape and in the data area. These records are 
followed by an interrecord gap. 

17.3.4. lnterrecord Gaps in paper Tape Files 

Data management does not provide automatic facilities for punching a string of nondata 
characters (null or delete characters, for example) after each output record to serve as an 
interrecord gap. Yet a gap so constituted, especially if it contained a fixed number of these 
characters, might facilitate error recovery and would serve to distinguish records on tape. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17..,-11 

If you want to create an interrecord gap for these reasons, yolj need only to place the 
number of null or del~te characters ,that you have decided to use at the end of each recorg 
in the output of work area. There are a few considerations to .keep in mind, however; 
these affect both your block size specification and (for undefined records only) the value 
placed in the general register used to refer to logical record length. 

With output files in both binary and standard modes, a byte for every character to be 
punched at the end of a record as part of an interrecord gap must be included in your 
calculation of block size, which you specify with the BLKSIZE keyword parameter of the 
DTFPT declarative macro (17.5.1.3). Furthermore, if your records are undefined, your block 
size must still allow one byte more for the end-of-record stop character, which data 
management inserts in the 1/0 buffer as a delimiter after the last record gap character 
you place there. Therefore, the overall length of data-record~plus record-gap that you form 
must be at least one byte shy of your BLKSIZE specification. You also count the bytes for 
the record gap characters at the end of undefined records in the record length that you 
load into the general register that you must use to refer to record size (the RECSIZE 
register, 17.5.1.6). Refer to Figure 17-5. 

I .... •~----- Block size specification --------11•~1 Output File 

data 

I. 
LEGEND: 

data ••••• 
f.____IRG .. 1 

• • • • • 
~IRG~ 

Undefined record, of maximum size for its file 
(standard mode only). 

Undefined record, of less than maximum size for 
its file (standard mode only). 

data I • • • • • I Fixed, 
_ . mode. 

unblocked record, either processing 

!----- IRG ___...:I 
1/0 area contents '----------i-...i· 

End-of-record stop character, punched by data management 

I Bytes in 1/0 area beyond end-of-record stop, not processed by data management nor to be accesseQ by user 

IRG Length of interrecord gap, characters supplied by user 

Figure 17-5. Undefined and Fixed, Unblocked Records Followed by lnterrecord Gaps 
in Output Paper Tape File, Either Processing Mode 



UP-8068 Rev. 4 SPERRY UNIV/.\C OS/3 
BASIC DAT.f.\\;MANAGEMENT 

17-'12 

With ihput~files ·processed ,jn character mode'.(MODE-: .. :.s:ro),'nulls or deletes at the end of 
each record are not inCluded ''in your BLKSIZE' sp·ecification, because they are not 
transferred into mairfstorage. For the sam'e reason~ data management does not include 
the bytes for the record 'gap characters·in the' record length i{lba~ds for undefined records 
into the RECSIZE register. A standard mode output file containing interre'cord 'gaps would 
therefore require a smaller BLKSIZE specification when it is read in than it needed when 
punched. Refer to Figure 17-6. 

data • • • • • 

... , .a..---- Block size on input ~----1•...a1 

data 

r--Block si~e when crooF-IRG 

Input Files 

Und~fined record, of maximum si:I!'.~ for its file, as 

punched on tape y-yith the .in;terrec~rd gap 

Content of 1/0 area when the same undefined 
record is read in in character mode 
(MODE=STP) 

I data I • 8 8 8 8 •. .. I Fi~ed: unblocked record as punched on 
with mterrecord gap 

--~~~~~~~~~~~~~--~~~~~~~~___, 

tape 

I Block size on input 

I OOta 

LEGEND: 

End-of-record stop character, punched by data management 

Contenf of 1/0 area when the same fixed, 
unblocked record is read in in character mode 
(MODE=Sl"D) 

IRG Length of interrecord gap, characters si.Jpplied by user when files were created. Punched on tape, but ncif transferred to main 
storage on input in character mode {MO[ E =STD) 

Figure 17-6. Undefined and Fixed, UnblockedRecqr<fs Fol~owed by lnterrf]cord Gaps 
in Input Paper Tape Files, Standard Processing Mode 



UP-8068 Rev~ 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-13 

For input ·files processed in· binary mode, on the other ·hand, the situation is different. 
Because the record gap characters are transferred . into main storage (as nulls, 
hexadecimal 00) at the. emd of each record, you must include the fixed number of bytes for 
cafculating block size, as we.II as programming appropriately to account for their presence. 
A binary mode file containing interrecord gaps would have the same BLKSIZE specification 
for input processing as it had when punched. Refer to Figure 17-7. · 

I .... ~--------Block size when created ---------1•---1 
Input File 

I I 

. . 

I 

Fixed, unblocke<J,:record as pum:.hed ontape in 

_______ d_a_u-------~·--·--·--·-~·-----~~~~w~~~~~~ 

IRG 

_l _____ d_a_u ______ ~l~·· __ • __ • __ • __ • __ • __ •_l~:~o~~l/Oa~w~nra~~~~M~ 
.... , ~11o-------Same block size on input ·I 
LEGEND: 

IRG Length of interrecord gap. Characters supplied by user when file was created. In binary mode, these characters are 
read into main storage as input and must be included in BLKSIZE specification and in reserving main storage for 11q 
area. 

Figure 17-7. Fixed, Unblocked Record Followed by lnterrecord Gap in l,nput faper Tape File, Binary Processing Mode 

It might occur to you that, when you are processing output files in character mode 
(MODE==STD), you coHld punch a string of end-of;.record stop characters, rnstead of nulls 
or deletes, as an interrecord gap between undefined records. Although you could punch a 
series of these characters, when your file is read in, the device would stop tape motion at 
each of the end-of-record characters, and could not be made to skip over them. Other 
paper tape systems you \are familiar with may allow" consecutive e"nd-of-record characters, 
without intervening data, to be punched in output tapes and skipped over on input -
OS/3 does not pr.ovide the facility· to skip these on input. 

Figures 17-8 and 17-9 depict shifted undefined records and shifted fixed, unblocked 
records as they exist on tape and appear in your work area when processed in character 
mode (MODE==STD). 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT 

17-14 

r--IRG_, 
figures letters figures 

reco.rd 2 

Shifted, undefined records, each followed J:w· ,a user-supplied inte.rrecord gap as they appear on tape 

'""I •11------BLKSIZE specification and length of work area--------

1 

figures letters 

11 : I 

figures 

record 1 

The first undefined record as made available to user in work area by GET macro. 

LEGEND: 

• Bytes in work area beyond end-of-record stop character, not to be accessed by user 

Figure shift character inserted and deleted by data management. Precedes each string of figures except those 
beginning first record or tape 

Letter shift character inserted and deleted by data management. Precedes each string of letters in every record on 
tape 

End-of-record stop character, delimiter for each undefined record. Specified for input file by wiring program 
connectors board 

IRG lnterrecord gap, chciracters supplied by user. Not transferred to main storage in character mode (MODE=STD). 

NOTE: 

The record length placed by data management in the RECSIZE register does not include the ~nd-of-:'record stop!character -
even though .this character is read into .1/0 area and is moved with the reqord into the work area. 

Figure 17-8. Shifted, Undefined Records as They Appear on Paper Tape and. in User Work Area: 
Input File, Character Mode (MODE=STD) 



UP-8068 Rev. 4 

figs 

LEGEND: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

llRG--, 
all letters 

Record 2 

letters 

r-IRG4 

••••• 

!.-Input BLKSIZE--.1 

and size of each work area-smaller than output 
blocksize by the fi;ed number of record 'gap 
characters punched between ~ecgrds 

Letter shift code, inserted and deleted by data management 

Figure shift code, inserted and deleted by data management 

17-15 

all letters • •••• 
Record 3 

IRG lnterrecord gap, a fixed number of characters supplied by user on output but not transferred on input in character 
mode 

NOTES: 

1. Record 1, including its interrecord gap, is two bytes larger than specified by the BLKSIZE keyword at output because of 
the shift codes required after the first and second fields and inserted there by data management. 

2. Record 2, likewise, is one byte larger than the output BLKSIZE specification (which must include the fixed number of 
record gap characters you supply for each record), because of the letter shift code required. This record begins with a 
letter, and the preceding record ended in a figure. 

3. Record 3 is exactly the length specified by the BLKSIZE keyword at output. No shift code is required: the record 
contains only letters, and the preceding record ended with a letter. 

Figure 17-9. Shifted, Fixed, Unblocked Records on Paper Tape and in Work Areas: 
Input File, Character Mode (MODE=STD) 

17.4. PROCESSING PAPER TAPE FILES 

The procedures in processing paper tape files are simply summarized. Before creating your 
program, you obviously will know what form of tape you are going to read or punch, 
whether it is to be in binary or character mode, whether it is to be translated into or from 
the standard EBCDIC, and whether it is to contain shifted characters or rely on only one, 
unique use of the codes available to you. Once these points have been determined.by the 
nature of your application, you will take the following steps to use the paper tape data 
management system: 

• You define each of your paper tape files, using the keyword parameters of the DTFPT 
declarative macro to specify your requirements. 

• Before reading or punching any data from or to any paper tape file, you issue an 
OPEN imperative macro to initialize the file. 



UP-8068 Rev. 4 SPERRY-UNIVAC OS/3. 17-16 
BASIC DATA ·MANAGEMENT 

• At this point in your program, you may issue the GET imperative macro to read data 
from the file, or the PUT macro to punch data into the tape. Note that you cannot 
issue both macros ,to the same file in any one pass. 

•· After all data has been puncned onto a tape, or read from it, you issue a CLOSE 
imperative macro to terminate your processing of it. 

At program execution time, you must do the following: 

• Provide proper device assignement and logical file definition for each file, through job 
control DVC and LFD statements. 

• Ensure that the program connector in the 0920 paper tape subsystem is properly set 
up. 

• Ensure that the proper paper tape is mounted and that the device is online. 

The following paragraphs describe the four imperative macros you may issue to a paper 
....,.. tape file: OPEN, CLOSE, GET, and PUT. . 



UP-8068 Rev. 4 SPERRY UNIVAC os/3 ' 
sAs1e DATA M:A.NA~~MENT 

17-'17 

OPEN 

17.4.1. Initializing a Paper Tape' ,file (OPEN) 

Before issuing any of the other imperative macros to it, you must issue·'an OPEN 
imperative macro to the paper tape file to be processed.~The transients ancfoverlay~ called 
as a result link your fife to the device you have assigned through job,controi' ana pendrm 
other:',file initialization procedures. 

For an input file, for example, that contains letter/figure shift codes, the OPEN prbcessing 
initializes the file so that the first record on tape is read in the figures mode. If the first 
record on a paper tape actually begins with letters, therefore, a letter shift code must be 
the first character punched on tape, or the record will be misread. This code is inserted 
automaticallx .. for ~a,pes punched by QS/3~. 

Format: 

LABEL Li OPERATION Li 

[symbol] OPEN 

OPERAND 

{

'filename-1 [, ... ,filename-n]} 
(1) 
1 

Positional Parameter 1: 

filename 
Is the label in your program of the DTFPT declarative macro defining ,the:., paper 
tape file to be initialized. You may initialize a~ rJlanyas 16 daJa rJianagement 
files widY one OPEN macro ·call; they ne·ed ·not all .be· paper tape files. 

(1) or 1 
Indicates that you have preloaded general register 1 with the address of the 
DTFPT declarative. r:ry.acrcL You use this torm onlY.:.W:hen, you .haye a single file to 
initialize. 

Examples: 

LABEL fiOPERATIONfi OPERAND 
10 16 

I. POO l DM'PT2 

2. 

1. Opens paper tape files DMPT1 and DMPT2 

2. Opens the paper tape file DMPT7 

t 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

1/-18 

t 

CLOSE 

17.4.2. Terminating Paper Tape File Processing (CLOSE) 

When .you h?ve complet~d processing your paper tape file, you must issue the CLOSE 
imperativ.e macro before taking any action. to terminate the job (such as issuing supervisor 
macros EOJ, . CANGEL, DUMP, etc). Transients: .called by Jhe CLOSE macro .ascertain 
whether all 1/0 operations have been completed, process errors on the final 1/0 
operations, and so forth. If you require further processing on the paper tape file, you must 
reopen it. with the OPEN. macro. 

Format: 

LABEL /::.OPERATION /::. OPERAND 

[symbol] CLOSE lfilename-1 [, ... ,filename-n] l 
(1) 
1 
*ALL 

Positional Parameter 1: 

filename 
Is the label in your program of the DTFPT declarative macro defining the paper 
tape file whose processing is to be terminated. You may close as many as 16 
data management files with one CLOSE macro call; they need not all be paper 
tape files. 

(1) Qr 1 
Indicates that you have preloaded general register 1 with the address of the 
DTFPT declarative macro. You use this form only when you have a single file to 
terminate. 

*ALL 
Specifies that all files currently open in the job step are to be closed. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3. 17-19 
BASIC DATA MANAGEMENl 

Examples: 

LABEL L'.10PERATIONL'.1 OPERAND 
10 16 

I. PO SO 

1. Closes the files labeled DMPT1 and DMPT2 

2. Closes the· file labeled EX1 



UP-8068 Rev. 4 , 

GET 

SPERRY UNIXlAC' OS73 
BASIC~'DAJA MANAGEMENT 

Y9LJ issue ~he GEJ imperative macro to, an .input file to 'make a logical record available to 
you either. in a work area or. in an 1/0 area. In executing a GET macro, before data 
managen1·ent makes an inpuf record available,foyou in an 1/0 art~~ or moves ii from there 

·to your· work area~ it has~ removed all shift or delete 'characters tram the record and has 
trans.lated. all data that requires translation. · 

If you want to use a work area for proce~ssing input records,·yo·u must specify·the WORKA 
keyword parameter in the DTFPT declarative macro defining the file and must also specify 
the address of the work area with each issue of the 'GET macro. If you do· not specify the 
WORKA keyword, you must access each record in an 1/0 area. And, if you have specified 
two 1/0 areas but no work area, you must use an 1/0 register to access the record 
(17.5.1.4). 

When your record is an undefined record (RECFORM==UNDEF), the end-of-record character 
appears in the data area at the end of the record; furthermore, any unused bytes in the 
area beyond this stop character are not zeroed or otherwise processed by data 
management (refer back to Figures 17-3 and 17-4, for example). If you wish, you may 
specify a record size register when you are reading undefined records. Data management 
then loads this register with the length of the record, as it appears in the data area minus 
shift and delete characters; this length does not include the end-of-record stop character. 

Format: 

LABEL 6. OPERATION 6. OPERAND 

[symbol] GET 

Positional Parameter 1: 

filename 
Is the label in your program of the DTFPT declarative macro defining the input 
paper tape file from which you are reading a record. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTFPT file 
table. 

Positional Parameter 2: 

workarea 
Is the symbolic address (label) of your work area. You may change this label from 
one GET macro to another. 



UP-8068 Rev. 4 

(0) or 0 

SPERRY UNIVAC OS/3 
BASIC DATAiMANAGEMENT 

17-21 

Indicates that you have preloaded register 0 with the address of a work area. 

Examples: 

LABEL OPERAND 

' 1 ~ ' ' 

1. Read a record from p,aper ta,pe ftle labeled DMPT1 a.rid leave the record in an 1/0 
area. 

2. Read a record from paper .tape file Jabel~d DMPT2 and move the record to the 
work area· labeled WK 1. · 

3. Read a recorg from paper t,ape fil~ .labeled PMPT3 and mov~ the recorq to t,he 
work area labeled VVK5. ''' ' . 



UP-8068 Rev.4 

PUT 

SPERRY UNIVAG QS/3 
BASIC DA;rA MANAGEMENT 

l /-"l.."L 

17.4.4. Punching a Logical Record. into Paper Tape (.PUT) 

Having provided.,;the date\ for an Qutput record in an 1/0 area or work area, you issue the 
PUT imperative macro to punch it as a logical record into paper tape. If you are using a 
work area, you "must specify the WORKA keywerd in ~he DTFPT declarative macro that 
defines your output file, and you must specify the address of a work area with each PUT 
macro you issue. The work area may differ from macro to macro. 

Data management moves the output record from the"Work area to the output area and, 
before punching the record on tape, inserts letter and figure shift characters and 
translates data as necessary. If this is the first record on the tape, and if it begins with a 
letter, data management ,automatically punches the letter shift character as the first 
character of the record. If the record format is undefined, data management punches the 
end-of-record stop character at the end of each record. You will have specified the shift 
'Characters with tne LSCAN and 'FSCAN R'eywords, and the en:d-of-record character with 
the EORCHAR keyword, when you defined the file with the DTFPF declarative macro. 

To punch out undefined records, 'y"ou must also have specifieda record size register,· using 
the RECSIZE keyword in the DTF, and, determining the length of each record, you must 
load this length into the register before you issue each PUT macro. The number you load 
into the RECSIZE register is the number of bytes of data in the record; it does not include 
bytes for the end-of-record stop character nor for the shift characters, which data 
management inserts. 

Format: 

LABEL !:::.OPERATION!:::. OPERAND 

[symbol] PUT 

Positional Parameter 1: 

filename 
Is the label in your program of the DTFPT declarative macro that defines the 
output paper tape file. 

(1) or 1 
Indicates that you have preloaded register 1 with the address of the DTFPT file 
table. 

Positional Parameter 2: 

workarea 
Is the label in your program of the work area from which you want the output 
record moved. 



UP-8068 Rev. 4 

(0) or 0 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-23 

Indicates that you have preloaded register 0 with the address of the work area 
from which you want the record moved. 

Examples: 

LABEL flOPERATIONL'.l OPERAND 
10 16 

1. Punch a record which the user has placed in an l/Q. area., into the paper tape file 
whose label is EX7. 

2. Move the record that the user has placed in the work area labeled WK.A to an 
1/0 area and punch it into .the paper .tape fiJe whose label is DMPT8. 

3. Same as 2. 



UP-8068 Rev.' 4 

DTFPT 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17.5. DEFINING PAPER TAPE FILES (DTFPT) 

17-24 

You define your paper tape files to data management by issuing a DTFPT declarative 
macro for each file you will process in your BAL,program, .using its keyword parameters to 
describe the file. The DTFPT macro does not generate executabl.e code (and therefore 
should not be issued in the midst of executable instructions or imperative macros); it does 
generate a file table to contain data about the file and the results of processing. 

When your program is assembled, the assembler expands your DTFPT declarative macro 
into a 215-byte file table, which it uses in a numper of ways to ~ontrol file processing and 
to record certain results~ 

As you execute each imperative macro to process your file, for example, data management 
places an informative reply, indicating normal completion of 1/0 or· exceptional conditions 
(including unrecoverable error) in a program-addressable field of the DTF file table called 
filenameC. Your use of . this field is explained under the ERROR keyword parameter 
(17.5.9), as is'·tt1e use of another field, fl!enameD, to access a record containing a parity 
error. 

Following is a format delination of the DTFPT declarative macro, showing the required and 
optional keyword parameters you will use to define your file and to indicate to data 
management some of your file processing requirements. Notice that the keywords are 
listed here in alphabetic order; however, you may issue them in any convenient order, 
separating them with commas. 



UP-8068 Rev. 4 

LABEL 

· filenam~ 

SPERRY UNIVAC OS/!3 
BASIC l:>ATA MANAGEMEr:JT 

/:::,,OPE RATION /:::,, · OPERANQ 

IHFPT BLKS.IZE=n 
hEf.lFADDR=7symbol]: 
[,BO RCHAR;:::expression] 
[;ER:ROR:::;symbolJ·•· 
[,FSCAN=symbol l .. 
[, FTHANS=symbol] 
,I OAR EA 1=symbol 
[,I OAR EA2=syniool] 
[,IOREG=(r)] 
[, LSCAN=symbol J 
[,L TRANS=symbol] 

[MODE= BINARY}]· 

[,OVBLKSZ=n] ·'· 

[,OPTION=YES] '· 

[RECFORM~UNDEF }] 

[,RECSIZE={r)] 
[,SA VAR EA=symbol] 
[,SCAN=symbol] 
[, TRANS=symool] 

[TYPEFLE= .. }] 
[ OUTPUT 
[,WORKA=YES] 

17-25' 

A comma is shown preceding every keyword but the first, fo remind you that an keywords 
coded in a string must be separated by commas. However, a comma must not be coded in 
column 16 of a continuation line, nor follow the last of the string. Refer to the :preface of 
this manual for OS/3 format statement conventions and to 1.6.3 for rules on continuation. 

The symbolic label of the DTFPT declarative macro (filename), required for all DTFPT files, 
is the logical name; by·which you addressrthe file in your BAL pro:gramrit may contain no 
mor~ .. than ·seven alphanumeric: cHaracters, the first oVwhich must be alphabetic. 
Restricting filename to :seven i'Characters allows data manageme~nt to generate· :symbols, 
sueh as filenameC,. whic'ri vou :may reference in each DTF ·me table by concatenating. a 
letter to the file name. You specify this file name to the imperative macroinstructions;tyou 
issue to process your file, and it is this name also that you use in the job control logical 
file definition (LFD) statement with which you allocate the file. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-26 

Notice that there are two keyword parameters (BLKSIZE and IOAREA 1) that you must 
always specify in every DTFPT macro. Others are required under certain circumstances, 
and some are entirely ·up .. to you. 

Notice also that the completion of many of the keyword parameters is symbol, 
representing the fact that with symbol you specify the symbolic address of the subroutine, 
translation table, scan table, or VO buffer the keyword stands for. In expanding your 
DTFPT declarative macro, the assembler generates an EXTRN pseudo-op for each symbolic 
label the macro contains; this means that the corresponding subroutine or table ''heed not 
be assembled with the DTFPT macro, but, when it is more convenient or advantageous for 
you to do so, may be assembled separately. 

These are the keywords in point: 

Keyword Subsection 

EOFADDR 17.5.4 

ERROR 17.5.9 

FSCAN 17.5.5 

FTRANS 17.5.3 

IOAREA1 17.5.L4 

IOAREA2 17.5.1.4 

LS CAN 17.5.3 

LTRANS 17.5.3 

SAVAREA 17.5.8 

SCAN 17.5.3 

TRANS 17.5.3.1 

Table 17-1, following·.the DTFPT format delineation, summarizes the rules for specifying 
the. keywords. The kevwords are discussed, in full detail, in the subsequent paragraphs. 
Information on acceptable variations of some of .the keywords is given in 17 .6, which 
dis.cusses· the compatibility of OS/3 with· certain other data management systems for 
paper tape. 



UP-8068 Rev. 4 

Keyword Completion 

BLKSIZE* 

EOFADDR symbo! 

EORCHAR expression 

ERROR symbol 

FSCAN symbol 

FTRANS symbol 

IOAREA1 symbol 

IOAREA2 symbol 

IOREG (rJ 

LS CAN symbol 

LTRANS symbol 

MODE BINARY 

STD 

OPTION YES 

OVBLKSZ 

RECFORM* !'l~N~._ 

UN DEF 

RECSIZE lrl 

SJ!,VAREA symbol 

SCAN symbol 

TRANS symbol 

TYPEFLE lt.IF'VT 

OUTPUT 

WORK A YES 

*Parameter may be 

SPERRY UNIVAC 0518 
BASIC DATA MANAGEMENT 

Table 17-1. Summary of DTFPT Keyword Parameters 

Use With Use With 
File Type Procasslng 

EXT RN 
Mode 

Remarks INPUT OUTPUT RI NARY STD 

Required for aU files, Specifies maximum length, 
in bytes, of largest logical record; n is a decimal 
number in the range 1 through 4095 

Specifies label of user's end--of-tape processing No Yes 
routine; required for all input files. 

Required for output files with undefined records; No No No 
specifies end-of-record stop character (delimiter! 

Specifies label of user's error routine. If not 'fes 0 
specified, errors return inHne 

Required. with LSCAN keyword, to specify labe1 No 0 Yes No 0 
of user's figure scan table f~r punching files with 
shifted codes 

__ c_ 

Required, with' L TRANS and SCAN, to specify 0 No Yes No 0 
label of user's figure translation .table for 
processing a shifted input file 

Required for all files; specifies label of primary Yes 
1/0buffer 

Specifies label of optional secondary 1/0 buffer. 0 Yes 0 
Requires specification of IOREG if work area 
processing is not specified (WORKA keyword) 

Specifies, in mandatory parentheses, the number 0 0 0 0 
of the general register to be used as l/OJndeK 
register. Required when IOAREA2 keywOrd is 
specified, but !'\I.Ork area processjng is no! 
(WORKA keyword! • -

Required, with FSCAN keyword, to spepify No 0 Yes No q 
18bel of user's fetter scan table to ·punch files 
with shifted codes . 

--'. 

Required, with FTRANS and SCAN keywords, 0 No Yes No 
to specify ,die label of the useris letter 'transla~ 
tion table for an input file with shifted codes 

Required to specify binary processing mode 0 0 No 

Specifies character (nonbinary) processing 0 0 No 
mode 

Specifies optional We processing 0 0 

Specifies use and length of oversized 1/0 0 0 No 
buffers for processing fixed, unblocked 
records containing shifted codes; n is a 
decimal number ranging from 2 through 
4095 and must be at least one byte larger 
than the BLKSIZE specification. 

Specifies fixed, ~nblocked recorq format 0 0 

Specifies undefined record format (varying 0 0 No 0 
length). Records require delimiter !end-of-
record stop). Output files require 
RECSIZE register. 

Specifies, in mandatory parentheses, the No 
number of the general register to be used 
to refer to length of undefined records. 
Required for output files; opt_ional for 
inpui. 

Specifies label of 72-byte storage area, 0 Yes 0 
fullword-aligned, in which data manage-
ment saves contents of user's general 
registers during execution of imperative 
macros. If not specified, data management 
expects save area address in register 13. 

Specifies label of user's input file shift No Yes 0 
code scan table, Required for input files 
with sMted codes IMODE=STDl; 
FTRANS and L TRANS keywords must 
also be specified. Optional for software 
character deletion in binary mode. 
Optional, with TRANS keyword, for 
character deletion in either mode 

Specifies label of use(s translation table, 0 0 Yes 
for any file but a shifted input file 

' 

Specifies an input file-read only No 

No 
punch on!y 

Specifies double bu.ffering via work areas, O' 
which user must specify with each GET 
or PUT macro. Ignored if IOR EG keyword 
is specified 

changed.on DD job control statement. 

17-27 

(Part 1 of 2) 

Use Do Pantgraph Use With 
Without Shifted not fOt" 

Codes Shifted Specify Details 
Codes With 

13.5.1.3 

13.5.4 

RECFORM= 13.5.6 
FIXUNB, 

MODE=BINARY 

13.5.9 

No MODE=BINARY 13.5.5 

---"-

- No TRANS, 13.5.3 

MODE=BINARY 

13.5.1.4 

1a.s:1.4 

WORKA 13.5.1.4 

. No MODE=BIN-ARY 13.5.3 

No TRANS, JJ.5.3 
l MODE=BINARV 

No RECFORM=UNOEF 1a.s.2. 
13.5.2.1 

Yes Yes 13.5.2, 
13.5.2.2 

13.5.7 

0 No RECFORM=UNOEF, 13.5.1.5 

MODE=B)"!'l,RY 

. 

Yes 'fes 13.5,1.2 

Yes 'fes MOOE•BINAAY 13.5.1.2 

Yes 'Yes REC FORM= 13.5.1.6 
FIXUNB, 

fl!ODE':;BINARY 
~-

13.5.8 

Yes 13.5.3, 
13.5.3.1 

' 

Yes Yes~ FTRANS, 13.5.3.'1, 
13.5.3.2, 

LTRANS 13.5.5 
13.5.10 

Yes 'fes 13.5.1.1 

Yes Yes: fa.s.1.1 

Yes Yes !OREG 13.5.1.4 



UP-8068 Rev. 4. 

LEGEND: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Tab{f! 17-:--t .Summ%Y. .ofDTFfTi Keyw()rdParam,eters (Part·2 of 2) 

R Required to be specified, explicitly or bX default 

0 Specification is optional. 

Default value assumed by data management if keyword is not specified 

Not pertinent 

NOTE: 

17-28 

A "yes" entry in ~he column headed "EXTRN" indicates that the assembler generates an EXTRN pseudo-op for the symbolic label 
specified. This means that your coding that defines the subroutine, table, or main storage area in point may be assembled 
separately fro'm your DTFPT macro. You will need an ENTRY for each EXTRN. . . 

17. 5. 1 . Basic DTFPT Keyword Parameters 

The following subparagraphs explain several basi·c keyword parameters that you use to· 
indicate to data management how to set up the file' tabl'e according to certain of the 
fundamentals of your processing. With these keywords, you e~tablish whether your file is 
an input or an output file, what the record f9rmat is, what the record and block sizes are, 
whether you are using oversized buffers, and which, if either, of the double-buffering 
options you are using. 

17.S.1.1. Specifying File Type (TYPEFLE) 

Data mana·gement provides two types of paper tape file: input and output; the combined 
file is not supported. The input file allows the use of the GET imperative macro to read 
data. from a paper tape (17.4.3) and requires you to code a routine for end-of-tape 
processing (17.5.4). An outptrJt file allows the use of the PUT macro to punch data on a 
paper tape (17.4.4). If your 0920 paper tape subsystem is configured with both a punch 
ahd a reader, simultaneous reading and punching are possible, but on di,fferent pieces of 
tape; each of these requires separate definition with a DTFPT declarative macro and 
allocation with its own DVC ~ LFD job control device assignment set. You should use a 
different file name for each DTF. 

Keyword Parameter'TYPEFLE: 

TYPEFLE 111111 
ln~dicates that this PTFPT macro defines an input paper tape file, one that you 
want to read. You must specify the label of an end-of-tape processing routine for 
every input file, EOFADDR keyword parameter:, (17.5.4). 

TYPEFLE=OUTPUT 
Must be specified to define an output paper tape file, one that you want 
punched. 

If you omit the TYPEFLE keyword, data management generates an input file table by 
default; EOFADDR keyword must still be specified. 



UP-8068 Rev. 4 SflERRY UNIVAC OS/3 
BASIC·DATA MANAGEMENT 

l7.5.1.2. Specifying Record Format (R·ECFOR,,M) 

17-29 

In the OS./3 paper tape .data management system, you have but two record formats: 
undefined (that is, records. of various lengths) and fixed..;length; unblocked. ·In the standard 
(character) processing mode, you may use either format, but onlyfixed, unblocked records 
may be processed in binary. 

The reason for this is that, in the bi nary processing mode, the 0920.paper tape subsystem 
cannat be made to recognize the ~end-of-record stop character used as a; delimiter il:o mark 
the ends of undefined records, which vary in length from record to record. Input paper 
tape processing of records with varying lengths depends on the recognition of the 
delim.it.er to stop ·tape motion automatically when a record has been·read. 

For processirig o.utput·files with undefined records, you mus1 specify both an end.,.of-rncord 
stop:'character·Witt:l the t;:ORCHAR keywordd17:5.6), and a general 1register to be used for 
referring to. record size ·(the RECSIZE register, 17.5.1.6). Befofe you issue . the PUT 

. imperative macro to punch an undefined record, you determine its·· length and place this 
number in.the two least significant bytes .of; the}RECSIZE register. The length is measured 
in bytes and does not inclu.de the byte for the EORCHAR stop· character. The number must 
be positive and in the range 1 through 4094. When you issue the PUT macro, data 
management places the. stop character at: the end of each undefined record in the 1/0 
area before p.unohing the whole contents' into the tape. 

When. yot,J are processing an input file containin.g undefined· records, your use of the 
RECSIZE register is optional; if you specify .it, data management loads it with the length of 
each record read in; again, this Jength does net include the EORCHAR stop·character. You 
mu.st wire the program connector of the 0920 paper tape subsystem to recognize the.end­
of-record stop character that is punched in the tape (17.2.1.2). 

Keyword Parameter RECFOJ1M: 

RECFORM , 
Specifies that .the record format is· fixed and. unblocked~ Only this format may be 
used in binary mode. You specify record length with the BLKSIZE keyword. 

RECFORM=UNDEF 
Specifies that record length varies from record to record and that records are 
delimited by·.a wired stop character (EORCHAR keyword). 'Length of each record 

· is qefined via the RECSIZE register. This record .format is not valid for binary 
mode; if so specified, a diagnostic appears inthe DTFPT macro expansion in your 
assembly listing, and RECFORM- is assumed. 

If the RECFORM keyword is omitted, data management assumes that· the record 
format is fixed, unblocked. 

17.5.1.3. Specifying Block Size (BLKSIZE) 

The maximum number of bytes that.data management·can transfer between paper tape 
and . main' storage in one access is 4098 bytes. (If you, are familiar with OS/4 data 
management, you will recognize Hris figure as the·.: maximum block size in that system as 
well.) · 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT 

17-30 

The maximum block size limits the length ofy'our logical records. For the undefined record 
(RECFORM==UNDEF, 17.5.1.2), because the EORCHAR stop character must be included in 
the specified block size, the longest logical record is 4094 bytes. When you are processing 
undefined records, your 1/0 buffers and work areas must be at· least as long as the 
number of bytes specified as the block size. 

When you are processing fixed, unblocked records, which do not end in a stop character, 
your block size specification is the maximum length of a logical record and, because it is 
the number of bytes moved to,,or from ·a work area, each work area must be at least as 
long as the specified block. size. 

For neither record 'format does the .specified block size need to account for the presence of 
shift characters, which data management inserts and deletes. When you are processing 
fixed, unblocked :records, however, with shifted codes, you may specify that your 1/0 areas 
are larger than specified block ·size, using the OVBLKSZ keyword (17.5. 1.5). When 'you do 
this, you must also reserve at least as many bytes of storage for each 1/0 area as you 
specified with the OVBLKSZ keyword, but you need not reserve more for each work area 
than you specified.,with the BLKSIZE keyword. Do not specify the OVBLKSZ keyword 
unless your fixed, 1.mblocked records contain ·shifted characters. 

With output tapes, additional bytes for any characters to be punched at the end of a record 
to serve as an interrecord gap (17.3.4) must be included in your BLKSIZE specification. 
With character mode input files (MODE==STD), however, nulls or delete characters at the 
end of each record are not transferred into main storage and must not be included in the 
BLKSIZE specification. The situation with binary mode input files is the same as for output 
files: because record gap characters are transferred into main storage (nulls as 
hexadecimal 00), you must, include them in calculating block size, as well as programming 
as necessary to deal with them. 

When you issue the OPEN imperative macro for a paper Hfpe file, the OPEN transients 
check your BLKSIZE specification for validity. If there is no specification, or if the number 
of bytes specified is other than 1 to 4095 bytes, the file is not marked operi, and you may 
not process it. Refer to 17.5.·9 for the resulting data management error processing. 

Keyword Parameter BLKSIZE: 

BLKSIZE==n 
Required for all input and output paper tape files. Specifies the length of the 
largest logical record to be processed; where n, a decirtfal number ranging from 1 
through 4095, is the measure of this length in bytes. 

If omitted, an error message appears in the DTFPT expansion in your assembly listing; 
the.file cannot be opened for processing. 

17.5.1.4. Specifying Buffers, Work Areas, and Double-Buffering (IOAREA1, 
IOAREA2, IOREG, WORKA) 

You .must always specify at least one 1/0. buffer for each paper tape file, using the 
IOAREA 1 keyvyord parameter of the DTFPT declarntive macro. When you specify only one, 
however/; and do not us~ a vvork area, you have no means of overlapping 1/0 operations 
with your processing: each 1/0 operation must be completed before data management can 
return control to your program. (The reason for this is to prevent your inadvertently 
changing the data in your buffer before the 1/0 operation is completed.) 



UP-8068 Rev. 4 SPERRY.UNIVAC .QS/3 
BASIC DATA MANAGEMENT 

17-'31 

To increase your throughput over what this situation affords,.data management offers two 
methods of double-buffering: specifying a secondary 1/0 buffer and an index register to 
point to the current one (with the IOAREA2 and IOREG keywords), or using ohe or more 
work areas for processing while your 1/0 takes place from or· to the IOAREA 1 buffer. With 
either of these mutually exclusive alternafo1es, you bene·fit. Double-buffering allows data 
management to initiate an 1/0 operation:and to return to you before· it is completed. While 
the 1/0 proceeds in ·One area (donft change the daJa in this one!), you may process in 
another. This overlapping of 1/0 and pmcessing obviously sp.eeds up the execution of your 
program. 

No additional throughput is. gained, however, if,you·.specify a secondary VO buffer and use 
work a.reas at the same time .. Although OS/3 allows this combination of areas, it does not 
allow both double-buffering methods at once .. 

If you are going to use work area double-buffering, you must inform data management of 
this by specifying the WORKA keyword in the DTFPT macro (the specification is 
WORKA=YES), and you must then specify the address of a work area in the second 
operand of; .each PUT or GET macro you issue .(17.4.3, 17.4.4). You may use. a different 
work area each time. For an output file, data management moves your data from the work 
area to the: 1/0 area before initiating ari 1/0 operation to the punch. For input files, data 
management moves the data from.the l/Q. area to the work area before making it available 
to you. Each_ work area :you use (and there is no limit set by data management on their 
number) must be of a length of least equal to the number of bytes you specified with the 
BLKSIZE keyword (17.5.1.3). The reason for this is that data management always moves to 
or from a work area exactly this number of bytes. 

If, on the other hand, you choose the IOAREA 1 /IOAREA2 form of double-buttering, and 
therefore do not want data management to move records to and from your work areas, you 
must establish an 1/0 register to keep track. of the .current buffer, ·using ·the IOREG 
keyword parameter, For an output file, data ma_npgemenfs OPEN processing· 'Sets up the 
specified IOREG register to point to the address of one of the 1/0 areas; it changes this 
address to that of .the other buffer after each Oljtput operntion.- Before you1 issue a PUT 
macro, therefore, you must move the data you want punched to the. current 1/0 buffer, 
using the IOREG register to access the record. For input processing, after each GET m·acro 
you issue, the IOREG ·register points to· the 1/0 buffer that contains :the requested data 
just read from paper tape. You must use the IOREG register to access it. · 

When your DTFPT declarative macro is expanded, the assembler .generates EXTRN pseudo­
ops for the. symbols you have equated to the IOAREA 1 and IOAREA2 keyword parameters; 
therefore the coding that defines these storage areas may be assembled separately from 
the coding containing the. macro. IOAREA2, if specified, must be of the same size as 
IOAREA1. 

The length of the 1/0 buffers, defined by PS or DC statements somewbere in your BAL 
program, should be at least the number of bytes you have specified with the BLKSIZE 
keyword of this DTFPT declarative macro .(17.5.1.3). It must be.great enough to contain the 
longest of your undefined records, includiog the end-of,..record .. stop character (EORCHAR 
keyword, 17.5.6), but not including shift characters. Buffer length should also be no less 
than the BLKSIZE specification for fixed, unblocked records without shifted codes. When, 
however, your fixed, unblocked records do contain shifted codes, you may specify that your 
1/0 buffers are larger than your block size specification, via· the OVBLKSZ keyword 
(17.5.1.5); when you do this, the storage areas you define for IOAREA 1 and IOAREA2 
must not be less than your OVBLKSZ specification indicates. 



UP-8068 Rev. 4 

Keyword Parameter IOAREA1: 

I OAR EA 1==symbol 

SPERRY UNIVAG OS/3 
BASIG DATA MANAGEMENT 

17-32 

Required for all paper tape files, to specify the symbolic address of the main 
·storage area reserved for use as the primary 1/0 buffer for the paper tape file 
defined by this' DTFPT declarative macro. The length of the buffer is defined 
·elsewhere with a DS or DC: statement.' It must not be less than the OVBLKSZ 
specification; if the OVBLKSZ keyword is not specified, buffer length must not be 
less than the BLKSIZE specification. 

If omitted, data management'W:ill not open the file defined by this DTFPT declarative 
macro, and: an error message appears in your assembly listing. Refer to 17.5.9 for the 
resulting data management error processing. 

Keyword Parameter IOAREA2: 

IOAREA2==symbol 
Specifies the .symaolic address of a secondary 1/0 ·buffer; optional for an paper 
tape files. Length of IOAREA2 buffer must be the same as I OAR EA 1, and is 
subject to the1 same· considerations. When the IOAREA2 keyword is. specified, 
unles·s you·specify work area processing via the WORKA keyword, you must also 
specify a general register to reference the current 1/0 buffer, using tt:le IOREG 

· keyword. 

Keyword Parameter IOREG: 

IOREG==(r) 
Spedfies the general register that is to be used to reference the current 1/0 area 
when both the IOAREA 1 and IOAREA2 keywords are specified· for double­
buffering, and work. area processing is not specified with the WORKA keyword. 
The compl'.etion, r, must be enclosed irrparentheses; it represents the number of 
the general register ·used. Registers 2.through 12 are always available for use; if 
you specify the SAVAREA keyword (17:5.8)~ register 13 is also available. If you 
specify the ·10REG keyword, you should not also specify the WORKA keyword; if 
you Sll>ecify both, an ·error flag appears in the DTFPT expansion,.and the WORKA 
keyword is ignored. 

l(eyword Parameter WORKA: 

WORKA.YES 
Specifies that data. niariagement is to p'rovide double-buffering via the IOAREA 1 
buffer and a user-specified work area. Data management moves an input record 
from the 1/0 area to the work area you specify as the second operand of the GET 
macro. It moves an output record fram the work area you specify with the PUT 
macro to the IOAREA 1 buffer. The length of each work area is defined with a DS 
or DC statement :.elsewhere in your BAL program; each must have a length at 
least eql.fal to the .nuniber of bytes specified by your BLKSIZE keyword. 



UP-8068 Rev. 4 SPERRY·UNIVACOS/3, 
BASIC DATAMAN..«GEMENT 

17-33 

If you specify the WORKA keyword, you must not also specify the ·:IOREG 
keyword. If you specify both, an error flag appears in the DTFPT expansiQn in 
your assembly listing, and the WORKA keyword is i.gnored. The work area 
processing described cannot take place in this event,· nor when the WOHKA 
keyword is omitted. 

17.5.1.5. Specifying Oversized Buffers (OVBLKSZ) 

To obtain more efficient processing of input or output files containing fixed, unbfocked 
records that are letter /figure shifted, you may define 1/0 buffers in your program thal are 
larger than your BLKSIZE specification. Recall that your specified block size equ.al·s the 
length of your logical record when you have specified RECFORM= but that:this' 
length does not allow for the in.sertion of the .shift codes by _data manag~me'.nt ( 17.5.1.3)., 
Wheh you are using. over.sizecj ·µ,4ffer~, .\io.u r:ntJ.st notify ,data management:cthat ypu are 
doing so by specifying the OVBLKSZ keyword, which. indicates at;the same time bow long 
your oversized~ .~uffers are. 

• • '1' •• • 

What this does for you in pr;o.cessing input.files isAo all0w ·data. management to read in 
more characters than your fixed record length calls for. Data management renioves·shift 
codes. and delete char~cters from thi~ larger bloc~ until the ''compressed~~ re~ord.thus 
formed in the buffer does equal your 'specification,.{lt has al$o'.translated the charaeters 
between the shift codes with the specified FTRANS and LTRANS translation tables.) If data 
management cannot create a record equal in length to your BLKSIZE specification from 
the data in the buffer, it reads in more .. When 'it hasthus createda record of this size, data 
management either leaves this record in the 1/0 buffer and returns to you, or it moves the 
record to your work area before returning to you. If you have defined 1/0 buffers large 
enough/ this mode of precessing re·duces the ove·rall numbe·r of 110 operations required to 
process your file. Figure 11~1·0 depicts t·he :,relationship of the varfous specificati0ns. 

·1-~--· ·-·· ----'------"'--- OVBLKSZ sf)ecification __ ......__....._ _____ _ 

IO~REA 1. 

figures 

IOAREA 1 

WORK AREA 

...,_.__ ______ _,.;-____ BLKSIZE specification---"----...:........;. _ _,___+! 

Figure 17~10. Relationships of Logica/Record l:ength, .Work Area Length, and 110 Buffer Length to 
the BLKSIZE and OVBLKSZ Specifications tor a Fixecl Unblo.af!.ed Recordjnput 
from Paper Tape with Shifted Codes (Part 1 of 2) 



UP-8068. Rev. 4 

LEGEND: 

Figure shift character 

Letter shift character 

SPERRY UNIVAC· OS/3 
BASIC DATA MANAGEMENT 

·~ Bytes in 1/0 area not to be processed by user 

NOTES: 

17-34 

1. The 'upper diawam depicts the record as originally read into the .oversi~ed 1/0 buffer; it contains untranslated tape 
codes and letter/figure shift codes. The hardware delete characte.r has not beerrtransferred to main storage, and data 
management has removed all software deletes befor:e translation .. 

2. The center diagram shows the record as data management makes it available to you, left-justified, in the 1/0 buffer; 
the letter and figure shift codes have been removed and intervening data translated into EBCDIC. Notice the bytes in 
the oversized buffer: extending beyond yo1.fr BLKSIZE specification: these are extraneous to yoar logical record, and you 
should not access. them. 

3. The lo~er diagram shows the record inoved into your work area, 'the length of which should ~e no less than your 
'BLKSIZE spedfiction. The record is left-justified in the work area; also. 

·figure t 7..,.......,10. Relationships of Logical Record Length, Work Area Length, and 110 Buffer Length to 
the BLKSIZE and OVBLKSZ Spe<;ification$ for a Fixed, Unblocked Record Input 
from Pape,r Tape with Shifted Codes (Part 2 of i) 

For output files, the reverse takes place. Specifying the OVBLKSZ keyword allows data· 
manag.ernent more room to insert the required .shift.codes into the fixed-length record you 
have supplied. It continues doing so until the oversized buffer is filled, when it writes out 
the buffer contents to be P.unched on tape. If necessary, data management issues 
additional 1/0 orders until the complete logical record you provided has been punched. 

Your OVBLKSZ specifica~ion must. not exceed· 4095 bytes and must always be at least one 
byte more than your BLKSIZE specification. W.hen you use the OVBLKSZ keyword, you 
must still reserve storage for your 1/0 buffers in your program; data management cannot 
issue the necessary define storage (OS) or define constant {DC) instructions for you. 
(Recall that you may assemble this part of; your coding separately from your DTFPT 
declarative macro if yC>u want to). The 1/0 buffers must be defined to include as many 
bytes as you have specified with the OVBLKSZ keyword; however, if you have specified 
work area processing, you need not reserve storage for any work area that exceeds your 
BLKSIZE specification; this is because the number of bytes that data management moves 
to or from your work areas is always equal to the block size. 

How do you calculate the extra space you need? If you know your data well, and your 
logical records follow a definite pattern,. there is no great difficulty in establishing the 
number of additional characters to allow for the shift codes your records require. 
Statistical sampling of your records, when you do not know their composition well, may 
help you estimate the space you need. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-35 

The worst case, of course, occurs when there is an exact alternation: every letter being 
followed by a figure, every figure by a letter. This situation doubles the length of your 
logical record. The best case occurs when only one shift code is required per record. Do 
not disc::ount the possibility of timing several test runs, with an adequate sampling of data, 
using successively larger OVBLKSZ specifications until you are reasonably certain that you 
have the best trade-off of main storage space for increased processing speed in your 
application. Nor shot:Jld you forget that your use of delete codes must also be taken into 
account. 

If you specify the OVBLKSZ keyword, but do not specify the WORKA keyword, do not 
access data in the 1/0 buffers at a displacement greater than your BLKSIZE specification. 
A glance back at Figure 17-10 shows the possibility of accessing extraneous data if you 
do. 

If you do not specify the OVBLKSZ keyword with fixed, unblocked records that contain shift 
codes, your records are processed in the 1/0 buffers within areas that are limited in their 
length to the BLKSIZE specification. Reserving larger buffer space is then without useful 
effect. 

Keyword Parameter OVBLKSZ: 

OVBLKSZ=n 
Specifies processing input or output records ·in oversized 1/0 bt:Jffers, when 
buffers greater than your BLKSIZE specification are defined to increase 
processing efficiency of fixed, unblocked records containing shifted:,data; Here, n 
is the decimal number of bytes used for buffer length; n must be at least one 
byte greater than your BLKSIZE specification, but may not exceed 4095 bytes. 

When you specify the OVBLKSZ ·keyword, you must define 1/0 buffers that have 
a length at least equal to n; buffer length greater than n is unused. Work C)reas, 
if specified, need be no longer than your BLKSIZE specification. 

The OVBLKSZ keyword may not be used if RECFORM=FIXUNB. is not specified, 
explicitly or by default, or if records do not contain shifted data. 

If omitted, records are processed in the 1/0 buffers within areas limi.te.d in length to 
your BLKSIZE specification. 

17.5.1.6. Specifying Register for Record Size '(RECSIZE)· 

When you are processing an output file containing undefined records, you must specify a 
general register in which you will place the length of each record before you issue the 
PUT imperative macro. The use of a record size register is optional for input processing of 
undefined records; if you specify such a register, data management places in it the length 
of the logical record that is available to you in the 1/0 buffer or in your work area before 
returning to you from its execution of your GET macro. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-36 

The record ·$ize .placed by. you: or data management in this register is a fixed-point binary 
rnJmber, measuring the length of.the record ·in bytes;' it may range from 1 to 4094 bytes. 
This length does not .include extra bytes fo(,the end':"of.:.record·stop character (17.5~6) n·or· 
the shift. codes,. if any, that data management insertSi' However, for output undefined 
records, you must include extra bytes for any characters you·· want punched at the .end of 
the record to serve, .. as. an interrecord gap· (17.3.4). Data ·management. does not inClude 
record gap characters in the input record length it loads ·into the reg.ister. 

The record size register is specified with the RECSIZE keyword and is used only in 
character mpd~ (MODE=STD) for undefined records. Files processed in binary mode may 
not contain undefined records. 

Keyword Parameter RECSIZE: 

RECSIZE. (r) 
$pacifies the number of the general register that is to be used to refer to the. size 
of undefined records,. where r is .the register number and must be coded· in 
parentheses. General registers 2 through 12 are available for this use, as is 
register 13 when you have also specified the SAVAREA keyword. 

The RECSIZE keyword is specified only when processing is in character mode 
(MODE=STD) and records are undefined (RECFORM=UNDEF). It is required for 
output processing; befor,e issuing each PUT macro, you must place the length of 
the undefined record in the RECSIZE register. ·Use ' is optional for input 
processing; d~ta management loads the RECSIZE register before returning to you 
from each GET macro. 

17.J).2 .. SP,ecifying File Processing Mode (MO.DE) 

The · 0920 paper tape . subsystem itself operates in either of two modes: binary or 
nonbinary. The nonbinary mode of the hardware (for which the term character mode, used 
in this .. manual, is probably more descriptive) is the standard mode of operating the 
hardware in OS/~ data management. 

17.5.2.1. Highlights of Binary Mode Processing (MODE=BINARY) · 

The binary mode is designed for use only with 1-inch, 8-level paper tape. In this mode, 
each of the eight bits of a byte in m.ain storage that represents Cl character corresponds to 
a hole position on the tape. This correspondence is fixed within the hardware, and you 
cannot LJSe the program connector board to change it - as you can for character mode~ 

In binary mode, because you cannot wi~e the t>oa.rd so that the subsystem can recognize 
the stop character that delimits undefined records (thus permitting an automatic stop of 
tape motion when the harc;:Jware has r~ad in a f~ll record), you are limited to fixed, 
unblocked record format. Another way.. Jn which the binary mode differs from character 
mode is that figure and letter shifting is possible only for character mode; you have no 
need of the keyword parameters used to specify shift codes in character mode, nor 
concern for the effects of these extraneous characters on the sizes of your buffers and 
work areas. 



UP-8068 Rev.. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17"-37' 

Just as the subsystem cannot recognize the stop character in binary mode, so also it 
cannot recognize a delete (or "rub-out'') character. Data management, however, provides 
you the means for specifying what characters you want to use as deletes; this is the SCAN 
keyword parameter of the DTFPT declarative macro. When you have used this to specify 
one or more delete characters for an input file, each rncord~is scanned as it is read in, and 
any such characters are deleted. As the characters are .·removed, the record is 
"compressed''., and data .management reads more characters from tape, if necessary, until 
the record of the fixed length you have specified is in your buffer. (For further detail, see 
the SCAN keyword (17.5.3).) 

Although you cannot use shifted codes in binary mode, you may indeed specify that your 
data is to be translated. Data management translates your input or ·output data according 
to the table you provide in your program :(or assemble separately), specifying its symbolic 
address via the TRANS keyboard parameter (17.5.3.2)~ 

As to null characters in binary mode, once your input file has been read past the tape 
leader (which must contain only null characters:. 17:2.2), any null characters encountered 
after the first non-null are transferred to main storage. If, for example, you are using nulls 
to denote an interrecord gap (17.3.4), these will appear in your 1/0 area or work area at 
the end of each record (recall that you must include them in .calculating your BLKSIZE 
specification); .your program must provide for any action that may·,be necessary. Similarly, 
because the nuU characters you must use for your pape.r tape trailer in binary mode 
(17;2.3) are also transferred to main storage, you must do what is necessary in your 
program to deal: with them. 

Finally, binary mode differs from character mode in that parity checking is not possible.You 
can neither punch· a parity channel on tape nor check parity. pn an input tape with the 
hardware. On the contrary, the program connector board on the 0920 paper tape 
subsystem .is completely bypassed when you are processing in binary mode. 

Keyword Parameter MODE: 

MODE=BINARY 
Specifies that the input or output file defined by this DTFPT declarative macro is 
to be processed in binary mode. Record format must be fixed, unblocked. Data 
may be translated on input or output, but not shifted. On input files, all null 
eharacters occurring after the first non..:null on the tape are transferred to main 
storage. 

If the MODE keyword is omitted, data management assumes. has been 
specified (17.5.2.2). 

17.5.2.2. Highlights of the Character Mode (MODE=STD) 

The character (nonbinary, or standard) mode of paper tape data management is intended 
for use with 5- through 7-level tapes in 11 /16, 7 /8, and 1-inch widths. The 7 /8-inch 
width is limited to read-only processing. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-38 

In the character mode of processing, you may specify either the fixed,r unblocked record 
format, or the variable-length, undefined format (17.5.1.2). For input files with undefined 
records, you must wire the program connector board to specify the end,.of;-record delimiter, 
and you may specify a record size register, .. into which data management loads the length 
of each record it reads in (l7.5.1.6·). For output files containing undefined records; the 
RECSIZE register is not optional; you must specify it and load it yourself with record length 
before you issue the PUT imperative macro to punch each record into the tape. You must 
also specify the end-of-record delimiter (using the EORCHAR keyword), which data 
management places at the end of each undefined record to cause tape motion to stop 
when this character is encountered after reading the record (17.5.6). 

To allow more characters to be encoded on paper tape than would otherwise be possible 
with fewer than eight levels or tracks, data management provides a letter- and figure­
shifting capability, described in detail with the keyword parameters that implement it 
(FSCAN, LSCAN, FTRANS, LTRANS, and SCAN in 17.5.3 and 17.5.5). Data management 
handles insertion of shift characters on output and deletes shift codes on input, translating 
intervening data. You specify the shift codes, which may be any of the codes that you can 
punch on tape with the number of levels (tracks) in use. 

Through the TRANS keyword parameter (17.5.3.1 and 17.5.3.2), the character mode is 
provided with a translation capability that ·you may use for any but an input file with 
shifted codes. For the latter, a translation capability is provided through the SCAN, 
FTRANS, and LTRANS keywords (17.5.3). For output files with shifted codes, translation is 
performed after inserting shift codes; the shift characters themselves are not translated. 

When you are processing in character mode, you may wire the program connector board 
so that the hardware recognizes one delete character in input files. If you need more than 
one delete character, you may specify the remainder of them with the SCAN keyword 
(17.5.3.1 ), and data management takes care of deleting these. Or you may specify all your 
deletes with the SCAN table and not have a hardware delete. 

Parity signal generation and checking are both facilitated in the character mode of 
processing. You may wire the program connector board in the 0920 paper tape subsystem 
to punch an odd or even parity track on an output tape, or to check a parity •track, again 
odd or even, that has been punched into an input tape~ You may connect any photocell or 
punch actuator to any memory bit, except the most significant bit, of a byte in main 
storage. The parity signals are generated within the subsystem; when you are punching, 
the parity signal generated is based on all eight bits of the byte in main storage, even 
though fewer than seven tracks are actually being punched in the paper tape. 

When the hardware detects an odd or even parity error on a character of an input ~record, 
the most significant bit of the byte in main storage that represents the character is set to 
binary 1, and data management performs the error processing detailed in 17.5.9. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-39 

Keyword Parameter MODE: 

MODE-
Specifies that the input or output file defined by this DTFPT declarative macro is 
to be processed in the standard, nonbinary (character) mode. You can read and 
punch tapes with from five to seven data levels and may use either fixed, 
unblocked or undefined record format. You may suppress p·arity signal punching 
or checking or use the hardware to punch an odd or even parity signal on output 
tape or check parity on an input tape: In character mode, you may wire the 
program connector board so that the hardware recognizes one delete character 
and the end-of-.record stop character. Null or delete characters in this mode are 
never transferred to main storage. Data may be translated on input or output and 
may contain shifted codes. 

17.5.3. Letter/Figure Shifting and Translation, Input Files in Character Mode, (SCAN:,: 
LTRANS, FTRANS) 

The letter/figure shifting capability that data management provides you for use in 
character mode processing (MODE-STD)· allows more data and control characters to be 
represented by the hole patterns you can punch :in tape than would be possible without it. 

Consider the 5-level paper tape which can offer only 25 distinct combinations of punches 
in its five tracks. These 32 hole patterns are enough to cover one case of the alphabet, but 
not the 10 numbers in addition - and this leaves out a null, a delete, and any other 
characters you might need. 

If you assign two of the 32 hole patterns to the null and delete characters however, and 
two of the remaining 30 to shift codes (one the "letter shift", the other the "figure shift"), 
you have 28 :patterns left for ·representing da~a. (Shift codes may be any of the .32.) But 
these 28 hole patterns can now represent 56 characters, if you establish that each pattern 
represents one character when it follows the letter shift code on a tape, but a second 
character when it follows the figure shift. This is exactly what you do with the SCAN, 
FTRANS, and LTRANS keywords in your DTFPT macro, .with which you specify scan and 
translation tables for shifted input files. You can then handle one .case of the alphabet, 10 
numerals, and 20 other characters as well. You may place·codes representing any symbols 
in either table; it makes. no difference. to data management. 

One reason this is possible is that, although data is encoded on tape in a 5-hole system, 
you are representing it in main storage in an 8-bit system. One convention in OS/3 is 
data management's assumption that the first record on every paper tape begins with a 
"figure": one of the 28 characters that you have decided may be represented by the hole 
patterns that follow the figure shift code on paper tape. However, if your first record 
actually begins with a "letter" (one of the other 28 characters that the same set of hole 
patterns may stand for), the letter shift code must be the first non-null character on the 
tape. Data management automatically punches this on output tapes for you. 

Another circumstance making character shifting and translation easier in OS/3 is that 
data management implements these with the BAL translate (TR) instruction and translate 
and test (TRT) instruction. Both of these rely on the ordering of the 256 configurations 
possible in an 8-bit system that is shown in the EBCDIC columns of Table C-1, and your 
scan and translation tables should be based on the same order of character positions. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-40 

For paper tape input files with shifted codes, in character mode, data management deletes 
the shift codes it encounters in input records and translates the data between them. (For 
output files, data management inserts the shift codes; this is described in 17.5.5.) The 
shift codes you use are entirely up: to you; you may select ·any ;Of the hole patterns that 
may be contained ·in the number .of levels in the. tape you·,are using. 

When you have specified the fixed, unblocked recortd format (RECFORM for a 
file containing: shift codes, note that your records on paper tape. are not actually fixed in 
length. Usually, each has been made longer by the insertion of one. or more shift codes 
and thus exc .. eeds the fixed length your record had .when you provided it to data 
management to be punched. (For an illustration of this~ refer back ·to Figure 17-5.) 

When you are processing fixed, unblocked records with ·Shifted characters, however, you 
can make for more efficient processing by reserving storage areas for 1/0 buffers that are 
somewhat larger than the fixed length you provide to data management with your 
spedfication of the BLKSlZE keyword parameter: When you do so for an input file, data 
management is able to read in more characters at a time; the delete and shift characters 
are removed, shifted characters are translated as required (and additional tape reads 
peFformed, if necessary), until the number of data characters in the buffer equals your 
BLKSIZE specification. Then the data is made available to ·you in the buffer, or moved to 
your work area. To specify this procedure, which speeds up processing by permitting fewer 
1/0 operations to be issued by data management, you specify the OVBLKSZ keyword in 
your DTFPT macro (17.5.1.5). 

Keyword Paramete.r SCAN: 

SCAN==symbol 
Specifies the symbolic':address of your input file shift code.scan table. Required 
in character mode (MODE==STD) for input files with shift c0des; the FTRANS and 
LTRANS keywords must also be .specified whenever the SCAN table specifies 
whieh are the shift codes. 

An optional use of the SCAN table in character mode ·is· to specify one or more 
·delete characters (instead of or in addition to the one delete character you m·ay 
specify by wiring the·,program connector board, which you then do not include in 
the SCAN table). When=you use the SCAN table for· deletion only, you do not 
specify the FTRANS ·or LTRANS keyword~ but you may ·:specify the TRANS 
keyword ( 17. 5. 3. 1 ). 



UP-8068 Rew4 SPERRY UNIVAC OSY3 · 17-41 
BASIC:.DATA MANAGEMENT 

The SCAN table, .whose address ·is specified ·by ·symbol, need be only as long as 
the number of ·paper· tape codes in the ·set to be~ read. It contains a 1 :.byte entry 
for eaGh of these; aH are hexatjecinial 00 exc,ept those ·used to speCify·the figure 
shift character;; the letter .shift character~ and the "software'' delete characters (if 
any - there may be olle, none, ·or many). The,·nonze,ro~·entries in.the SCAN table 
are: 

Hexadecimal 
Code 

04 

08 

oc 

Use 

Defines the figure shift character; is placed in the byte 
position of the tabl.e that corresponds to the figure shift 
code 

Defines the letter shift·character; is placed in the table in 
the byte corresponding to the letter shift code 

Indicates a character to. be deleted by.;data management. 
(This "software" delete is in addition to or instead of the 
"hardware" delete character that may be specified by 
wiring on the program connector· boardkThere may cbe 
many software delete characters specified in the SCAN 
table; you may specify deletes with or without the use of 
a hardware delete· character. 

Refer to the coding example. that follows th.e descriptions of .the FTRANS and 
LTRANS keywords for an explanation of the SCAN table. See also 17.5.3.1 for a 
description of the use of the SCAN 'keyword .to delete charncters from records 
processed irt binary mode (MODE==BINARY). 

Keyword Parameter FTRANS: 

FTRANS:-symbol 
Specifies the symbolic address of·your input file figure tra·nslation table; required 
(with the SCAN and LTRANS keywords) to process input files in the character 
mode :(MODE:- ) that contain shifted characters . .The: label of the translation 
table is symbol. 

The translation .table specifies' the .. ct>rresponder;lce :between. a character that is 
punched after the figure shift character on tape ,and the 8-bit code that data 
management is to place in your data area. Each position in the table corresponds 
to a different hole pattern on ~the ,tap~ beginning. with hexadecimal 00 (null, 
which· is never transferred into main storage, but simply marks the first position 
in the table) and extending through hexadecimal 1 F, 3F, or 7F, depending on the 
level of tape you are using. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC.DATA MANAGEMENT 

17-42 

The FTRANS table contains a 1-byte entry for each paper tape hole.;.pattern in the 
set to be read; all entries are hexadecimal 00 except those in the positions for 
·the hole patterns that may· follow the figure Shift character on tape. The 1-byte 
entries for these hole-patterns may be the hexadecimal digits for the 10 EBCDIC 
numeral graphics· (F1, F2, and so on); on the other hand, they may also be any 
codes of your choosing: alphabet, punctuation, ASCII numerals, or whatever you 
have decided will be "figures". (In the coding example that follows the 
description of the LTRANS keyword, the codes are hexadecimal F1, F2, etc, for 
the EBCDIC numerics.) 

The FTRANS keyword should be specified only for files processed in character 
mode (MODE==STD);. it is ignored if you specify it for binary mode. You must not 
specify it with the TRANS keyword; if you do, both FTRANS and TRANS are 
ignored. In either case, a diagnostic message appears in the DTFPT macro 
expansion in your assembly listing. 

The assembler generates an EXTRN pseudo-op code for symbol, which allows 
you to assemble your figure translation table separately from the DTF if you 
want. 

Keyword Parameter L TRANS: 

L TRANS==symbol 
Specifies the symbolic address of ·your inputJile letter translation table; required 
(with the SCAN and FTRANS keywords) to process input files in the character 
mode .(MODE==STD) with shifted characters. 

The translation table, whose label is symbol, contains a 1-byte entry for each 
paper tape code in the set to be read; all are hexadecimal 00 except those used 
to specify which tape codes follow the letter shift character on tape and therefore 
are to be translated as "letters." The 1-byte entries for these tape codes may be 
the hexadecimal digits for the EBCDIC graphics desired (see Table C-1) or, as a 
matter of convenience, their character representation. On the other hand, they 
may be anything you warit to designate as "letters." 

The ·LTRANS keyword should be sp·ecified only for files processed in character 
mode (MODE=STD); it is ignored if you specify it for binary mode. You must not 
specify it with the TRANS keyword; if you do, both LTRANS and TRANS are 
ignored (as well as SCAN and FTRANS, if these are specified). In either case, an 
error message appears in the DTFPTmacro .expansion in your assembly listing. 

The assembler generates an EXTRN pseudo-op. code for symbol; therefore, you 
may assemble the letter translation table separately from the DTF if you have 
reason to. 

The following coding example illustrates how you might devise scan and letter /figure 
translation tables for an input file contained on 5-track paper tape, which provides only 32 
possible hole patterns. The entirely arbitrary example assumes that you have decided on 
the following correspondences to the paper tape codes, represented by their hexadecimal 
positions, 00 through 1 F: 



UP-8068 Rev. 4 

Hexadecimal Code 

00 

01 through 1C 

10 

1E 

1F 

01 through 09 

11 

SPERRY UNIVAC 0Sr3 
BASIC DATA MANAGEMENT 

Character 

null 

11 letters" (A-Z) 

letter shift code 

figure shift code 

delete 

"figures" (1 through 9) 

"figure" (0) 

17-43 

Having decided that you need only one delete character, you take care of it by wiring the 
program connector board, and' therefore do not sp.ecify it as a software delete' in the SCAN 
table. 

Example: 



UP-8068 Rev: 4· 

NOTES: 

Sf>ERRY UNIVAC OS/3 
BASIC DATAM*-NAGEMENT 

17-44 

1. This is part of the DTFPT declarative macro defining an input pape·r tape file, 
PAPTAP1. Note that it is processed in character mode; letter/figure shifting is 
possible only in this mode. Keywords not relevant to the example are n:ot shown. 

2. SCAN 1 is the label of the shift coQe s.cao, table; you assign a 32-byte length 
attribute to this symbol because there are 32 possible codes on a 5-level paper 
tape. You have equated this symbol to the .SCAN keyword in the DTF. 

3. You have placed the hexadecimal code 08 in the 30th byte position i'n the table; 
this corresponds to the position of the letter shift code, 1 D. In the next byte of 
the table, corresponding .to 1 Er you place· the hexadecimal code Q4' :ta designate 
1 E as the figure shift code. All other positions in the SCAN table contain the 
hexadecimal code 00; you have omitted the code OC because you have no need 
for a software delete. 

A. FffRANS l 1j,& tMe.Jabel of theJigµre traoslation table; like the: SCAN table,. it ·is 32 
bytes long. You have equated this symbol to the FTRANS keyword in the DTF; 

5. Having assigned the 1-byte hexadecimal entry 00 to the first byte of the taple .. (to 
take care of the null character assignment), you then assign the entries F1, F2, 
and 

1
$0 on, tb the next nine-l>ytes. This ·Jakes care of tJie EBCDIC numerial 

.. graphjcs l.thr0,ugh !9. 

6. Assigning hexadedmal 00 to the nextrseven bytes, yow assign the entry FO to the 
next byte. Thus the numeral zero is repres1ented on .. tape by the punch pattern 
·corresponding to the hexadecimaL.positinn l l /when ;11 ·foUows the figure shift 

_code, 1 E. As indicated by the assignment df hexadecimal 00-tothe 14 remaining 
bytes of the -table, there are no if urther chara'cters toe be rep~esented by tape 
codes that follow the figure shift code. 

· 7. LTRANSl, equated to the LTRANS keyword inthe·DTF,, is the, label of' the letter 
translation· table for this input paper tapfffile,; rf afao ~as a length attribute of 32 
bytes~ 

8. Again, the first bytt:r·of the table ·is assigned the entrv .0016 b~9a'use this position 
is for the null character: To the next 1 b positions, yci9«issigi:l .the fi'?'st 10 letters 
of the c:Hphabet, 'declaring jJYe. string is a lO-byte character constant for 
convenience ()f docume.ntatfon. · · · 

9. The next L10 being assigned in the same way, you conclude your assignment of 
.the 28 civailable "letter'' characters with eight ~ore. ·The 7th is ,the period (.), and 
th-e 8th is the b·lank, 'to be, n~presented .on tap·e~-by ·t~e patten] in hexadecimal 
ppsition 1.C. The translation table concltJ.des. witt:J hexadecimal 00 being as§igned 
to lhe last three bytes; these three bytes (10,, 1E, and JF) have b.,een dedicated to 
the letter shift code, the figure shift code, and the "ti~rdware" pelete character. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-45 

The foregoing example assumes that you have not wired the program connector board in 
order to change the correspondence :between hole patterns ·on paper tape and those data 
management encounters in main storage. As you know, you may connect any bit in main 
storage to any hole position on tape; whatever you do has a definite effect on the. layout 
and content of your FTRANS and LTRANS tables and how the characters on tape are 
ultimately represented in your buffer. 

Another point to be made is that the codes corresponding, to shift and delete characters 
are not translated by either the FTRANS or the LTRANS table. The entries in these.tables 
corresponding to the shift and delete codes m~y be hexadecimal 00 'or any code: they are 
simply used to fill out tile table completely. '·' 

17.5.3.1. Character Deletion, Input Files, in Binary or· Character Mode 
(SCAN, TRANS) 

As previously noted (17,5.3), an optiol)al use of the .pCAN keyword parame~er is t<:> sp.~cify 
a SCAN table that is dedicated to assigning ()ne or 1119re. s.oftware delete charaqters, t9 be 
removed by data management from records react in from input paper tape files in .character 
mode (MODE==STD). These software. deletes are usually in actdition to tbe hardware .delete 
that you specify with the wired program connector board; however, you may specify all of 
your deletes in the SCAN table. When you dedi.cate the SCAN table to character; deletion 
C3!one, you .do not specify the FT~ANS and LTRANS keywords, but you may specify. the 
TRANS keyword parameter: ......, 

In addition to th,is use, ypu may spedfy ·the. SCAN keyword. p~rame~er ·in .the D!FPT 
declarative macro, not only for .a file processed .in the character mode (MODE. STD), but 
also for one processed i.n binary (M06E==BINARY). Doing so is .the , onfy means' dat'a 
management provides you for automatically deleting characters from records in binary 
input files; as you yvill recall, you cannot useJheiprogram connector board for specifying a 
wired or hardware delete when you are processing in bina·ry mode (17 2.1.2). 

When the SCAN table is used .only to. spe,Gify software delete characters, there ar:e only 
two hexadecimal cod.es that may be us.ed for entries·: one is OC, which.you place in each 
byte position that represents a c.haracterJo be deleted. The other. hexactecimal .entry, 00;· 
you place in all the other bytes; these represent characters not to be deleted. The length of 
the table must equal .the number of possible .·hole ·patterns that ,can be. punched in the 
number of tracks or levels ·in your paper.t.ape: 32 bytes for a $-level t.~pe, .. ,64 for a 6-l·evel 
tape, 128 for a 7-level tape,. and 256 QYt.es for the 8-level tape that is :USed in binary mode. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-:-46 

In the followirig coding example, the programmer has specified a 256-byte SCAN table, the 
last six positions of which are assigned to delete characters. 

Example: 

LABEL fiOPERATIONL:i OPERAND 
10 16 

When your data in an input paper tape file requires translation before you process it (if, for 
example, it is encoded in ASCII), but also contains characters to be deleted, you may have 
data management delete them before translation by specifying both the SCAN and the 
TRANS ,keywords· in the DTF. ''You may do so for both binary and character mode 
precessTng, but must not sp'ecify the FPRANS or L TRANS keyword. 

In this, use, the SCAN table you provide may contain only the hexadecimal code OC, 
entered for each character to be deleted before frans'lation, and the hexadecimal code 00, 
entered in the position for each code that is to be translated. In the TRANS table (an 
example of coding a TRANS table is given in 17.5.3.2), you may enter arbitrary filler codes 
in positions corresponding to tne characters that· the SCAN table causes to be deleted, 
because you will ndt se'e any translat'ie>_ps for tl)~se in your 1/0 or work areas. 

'.?'" l 

17.5.3.2. Translation ··for Input Files without Shifted Codes (TRANS) 

You may use the TRANS keyword parameter to specify a translation table for any type of 
file except an input fil.·e with shifted characters. For the limited translation function 
provided for fileS"of ;every kind, via the FTRANS, LTRANS, and SCAN keywords, see 17.5.3. 
For the use· of the TRANS keyword for output paper· tape files, see 17.5.5. 

The TRANS table that you 'Code for an 'input file Without shifted characters is a simple 
table, not .exceeding 256 bytes ,in length, prepared ·in the form required for the BAL 
translate (TR) instruction. Essentially, it is a string of l-byte '(8-bit): codes that data 
management is to substitute in your 1/0 or work area for the codes originally read in. The 
number of codes in the string, then, equals the number of unique codes you expect to read 
from paper tape, less the software and hardware delete characters, which of course are 
never presented for translation. 

When your input paper tape file is a binary file (MODE=BINARY), the 8-bit codes originally 
read in are the directly corresponding images of the hole patterns punched in the tape. For 
input files processed in character mode (MODE=STD), the 8-bit configuraitons originally 
placed in the 1/0 area are those that result from your wiring of the program connector 
board. In either case, data management uses these as indexes to your TRANS table, 
adding their individual values to the address of the table, and the 8-bit code found at each 
table location thus reached is transferred to the data area to replace the one originally 
encountered. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-47 

The following coding example shows how you might devise a TRANS table for an input 
paper tape file (without shifting) processed on 6-level tape in character mode. Assume 
that, of the 64 original tape codes, 26 represent uppercase alphabet, 26 the lowercase, 10 
the numerals, and 2 the null and the· delete. You now want to replace the ·1owercase 
letters with uppercase for your processing. 

This is the original assignme.nt of tape codes, which extend from hexadecimal 00 through 
3F: 

Hexadecimal Codff Character 

00 null 

01 - 1A uppercase alphabet, A-Z 

18---:- 34 lowercase· alphabet, a-z 

35 ---:- 3E numerals, 0-9 

3F delete 

Assume that the. ~elete character is taken care of by wiring the program connector board 
.(thus making it a hardware delete); this leaves 63 characters to. be translated. 

Example: 

LABEL LlOPERATIONLl OPERAND 
10 16 

7. .......... _.__.__.L-L._._~~""""'""-l.-'--l-~~'-'---'----1'u.J.Jo~J.LSJ..J~...L!14JLL11!!~.J_JL-L.--1-..L...--l._J_....l-.L-L-'--'-L-L-'-~L-
8.~~L-L-~L..L-4-llL.J3ool!J._jl-.L~~~'---illi!.L.LJLLllLLL.LJL6oeL._L_JL-..L-l_l_L_L_JL.__L_L_.l_J__L_l_J__L_l_J__L_l_L_ 
q91-L.,..L...1_L._.L._L-Lq~'..1W.L_J_J~~~~..il.LLI~l!.a.:l~~Lll!!_!L_Lc..J_L_J__L_.Lc..J_L_l__L_J_c..J_L_L__.l_L_ 



UP-8068 Rev; 4 

NOTES: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-48 

l. Assigns a 63-byte length attribute to the symbol TRANSLC,· which is equated to 
the TRANS keyword parameter in the DTFPT declarative ·macro that defines the 
input paper tape file to be translated. 

2. The null· character, hexadecimal 00, is unchanged, but an entry for it is 
necessary in your TRANS table. 

3-5. Likewise, the meanings originally assigned to the next 26 codes are unchanged; 
you still want the tape codes 01 through 1A to be translated as uppercase 
alphabet, A-Z. But note that you must confirm this by including the same 
information in your TRANS table as applied when the paper tape file was 
punched on tape. 

6-8. Here is the only new information your TRANS table contains: the next 26 tape 
codes (hexadecimal 1 B through 34) ~re now to be translated into the EBCDIC 
uppercase characters, from the lowercase characters that they represent in the 
records on tape. 

9. The last 10 codes covered by this table are unchanged; they represent still the 
numerals 0 .through 9. There is no entry for the 64th tape code, as it is the 
hardware delete character that your program wiH never see in the 1/0 area. 

For further details on the preparation of translation tables to be used for the BAL translate 
(TR) instruction, refer to the assembler user guide, UP-8061 (current version). 

Keyword Parameter TRANS: 

TRANS=symbol 
Specifies the symbolic address of your translation table for input or output files, 
where symbol is the 1.abel of your table. May be used far an paper tape files 
except input files that cqntain SDifted characters. 

The translation table you code is in the form required for the BAL translate .(TR) 
instructioo~ Data management :,generates an EXTRN pseudo-.op for symbol, so 
that you may assembl·e your :table separately from the DT~PT d.eclarative macro. 

:vou must not specify the TRAN·s keyvyord ·when you specify the LTRANS. or 
FTRANS keywords (or both)) If you do so, an error. message appears in the .DTF 
expansion in your assembly listing, and data management.ignores the fol~owing 
.keywords: TRANS, FTRANS, L TRANS, AND SCAN (if the latter is specified). 

You may specify the TRANS keyword with the SCAN keyword for input files in 
binary or character mode, using the SCAN keyword to delete characters that are 
not to be translated ( 17.5.3.1 ). 

When you use the TRANS keyword to translate output files with shifted codes, 
the shift codes are not translated (17.5.5). For translating input files with shifted 
codes, use the FTRANS and LTRANS keywords (17.5.3). 



UP-8068 Rev. 4 SPERRY UNIVAC OS/;3 
BASIC 'DATA 1MANAGEMEN1· 

17-49 

17.5.4. Specify,i'ng''·the End~'of-Tape R•;mtine for Input Files (EOFADDR) 

For every input paper tape file, you must code a routine to handle the end-of-tape 
coodition. :Xou .. must, a)so use the EOFADDl:Lkeyworct,parameter in the .DTFPT de<;,larativ~ 
macro defining- each iqput file to specify .the lap~I of th,is,:.r:outjne to data managemertt, 
which branches to it automatically whenever end-of-tape is sensed, and when you issue a 
Gl5T imperative macro ·tg an. optional inp4t file, hayiAg specified the OPTION keyword 
un.der cor:id.itions de/scrib~d in 17.5.7. Y:ou neect not 9ssepible N9Ur end~of-tape routine 
with the DTF, however,~ Jn expanding.your DTFcoding, the assernbler generate$ an E.XTRN 
pseudo-op code for the label. of this routine, and you may therefgre assemble. it separately. 

If .you have·\9nly, one.strip of tape to read, your: en.d-of-tape routi,ne may simply terminate 
file processirig by issuing the Cl:-OSE imperative m.acr:ot: as you rnl:JSt do this· w.henever you 
have completed all processing (17.4.2). On the other hanq, if you ne~d tc;Head a number of 
strips of tape, you must anticipate that data management branches to your routine at the 
~nd of eac.h of.them, an9sthal .the paper tape subsystem itself goes, into the: stop·state. If 
you want to return to a .rol1t.ine yvhich has b~en reading ar:id.,proc~~sing tapes, you have 
only to branch to. the address contained jn register 14, a~Uf1is~register. holds ,the aadress of 
the next instruction after the last GET macro you issued. However, i(y9u w9nt t() issue 
any imperative macros in your end-of-tape routine before you use this return address, you 
must rememb.er to store aad restore .the :cont~pts of. reg.ister, 1.4 to preserve th~. retur11 
acjdress dt. contained at the entry:. of yo,ur routine. 

R~member that, in orcjer for; yqu to .read t,he n.e.xt tape, the qperator must l9adJUnto. th~ 
rea.der and ,pre$S the RUN $Witch on the device. a.utr if a GET .macro is issJ.;Jed Jo r.ead ,the 
first record on the,nevyly .inserte·d tape before the. operator can press the RUN $Witch, the 
physical IOCS .issues :.him. an operator message at the system console (DEVICE xxx STOP 
STATE RU?) to vvhiph he must r;eply ''R" to read. (The reply "U" results·, in data 
ma1;1agement error J?roqessing, 17.5.9.) To avoid having the operator· gq from theJeader .to 
the console:·,to read e~ery tape, .YOU could program into your ·end-of-tppe routine, a tirn~ 
delay long enough to allow him to mount a tape. 

Recall thqt, in·order to,prevent a;fals.eJ~.nd-of-tape c;:~mdi.tion being signalled before the l9st 
data character is .read from ,paper tape, you rn.~st provide· :C3 12~inqh; paper tape trajler 
( 17.2.~). i 

K~yword :Parameter EOFADDR: 

EOFADD.R=~yr:nbol 
Required for all input files to specify the label of your routine for handling the 
end-:of-tape cpnc;titiqn, where ~yrn/Jpl, js this· labeL ·Th~ ·a§semQler generates ar;i 
EXTRN for· label, so that your end:-.of-tape r9~tine .rm;1y be assembled separ~te,ly. 
You must c;:lpse the pap.er tapeJile when all pr()cessi .. n,g is completed . 

.. If YOlJ omit the EQfADDR keyword from the: QTFPT macro··foJ an input file (or if a,yal.id 
EOFADDR routine is not .present on Jite OP.ENJ,:data management does. not open tti.e 
file, but issues error message DM61, sets the DTF error flag (bit (0) and error deteqtf/l<i 
in OPEN flag (bit 4) in filenameC, and branches to your error routine. See 17.5.9. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/'.3 
BASIC·DATA MANAGEMENT 

17.5.5. Translation and Letter/Figure Shifting, Output Files (FSCAN, 
LSCAN, TRANS) 

17-50 

Three additional keyword parameters may come into play in your l?TF when you have 
output files with shifted codes to· produce in character mode (MODE~STD): 

11 FSCAN (required), which specifies the label of your figure scan table for this output 
file. e:>ata management uses the table to ascertain which code it is to ·purich on tape 
as the letter shift code, and to select out of your output data the groups of charcters 
for. translation as· "figures". 

• LSCAN (also required), which spedfies the label of your letter scan table, used by 
data management in the same way to identify the figure shift code and the groups of 
"letters" in your output data. 

• TRANS (optional), which specifies the label of the translation table you have coded. 
This table assigns, to each of the characters that will appear in your output data, one 
of the hexadecimal tape codes that can be punched in the number of character levels 
existing in your tape. 

The FSCAN and LSCAN tables are, in a way, reciprocals in that, with the FSCAN table, you 
specify the letter shift code (which must be nonzero), by placing it in· each ·position that 
corresponds to a "letter", and indicate, by placing hexadecimal 00 in all the other 
positions of the table, which 8-bit cohfi~urations in your output data are to be treated as 
"figures" by data management. With the LSCAN table, you specify the figure shift code 
(also nonzero) in each position corresponding to a "figure" and indicate, by hexadecimal 
00 in their positions, those configurations that are to be treated as "letters." These two 
scan tables, between them, must provide a 1-byte entry for every· ff-bit pattern that you 
may place in an 1/0 or work area to be punched on tape. Both scan tables are prepared in 
the format expected as operand 2 of the BAL translate and test (TRT) instruction. 

If you specify the TRANS keyword, you code the TRANS table in the format expected by 
the BAL translate (TR) instruction,· assigning a hexadecimal tape code to each of the 256 
JJOSsible 8-bit patterns that may appear in your output. To all remaining 8-bit 
configurations, which are not to be presented in your output data (this includes the 
EORCHAR stop character and the two shift codes which data management punches but 
never translates), you could assign the same tape code. This code may be the one that you 
will insert in your TRANS table to represent the nonprinting EBCDIC graphic character 
(opposite hexadecimal 40 in Table C-1 ), but you could use some other code. 

The: TRANS keyword is ·not required to produce output files with letter /figure shifting, but 
its use is a great convenience, especially with 5-level tape. If you do not use a TRANS 
table, you must work entirely withthe data characters that you can punch directly on tape. 
This means that, with a 5-level tape code, you can have only the hexadecimal codes 01 
through 1 F in your data buffers. On the other hand, using a TRANS table allows you to 
work in a more convenient code - EBCDIC is ·only one example - and still use 5-level 
tape. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-51 

For full details on the preparation of tables to be used as operands of the BAL translate 
(TR) and translate and test (TRT) instructions, refer to the: assembler user guide, UP-8061 
(current version), but first consider the two following coding. examples, which are based on 
these assumptions: 

• Your output tape has five levels, offering 32 hole patterns; these patterns are to be 
represented in your translation and scan tables, and on the program connector board, 
by the hexadecimal codes 00 through 1 F. 

• You have 37 EBCDIC characters for which you will present 8-bit codes in your output 
data. These are the 26 uppercase alphabet characters (A-Z), plus the nonprinting 
space character (these will constitute your "letters") and the 10 numerals (0-9) (these 
will constitute your "figures"). 

• You will use the hexadecimal tape code 00 to represent the null character, 1 B for the 
end-of-record stop character, 1 C for the nonprinting space character, 1 D for the letter 
shift code, 1 E for the figure shift code, and 1 F for the delete character. 

Although you may not expect to output any delete characters when you create your paper 
tape file, you probably intend to use them in routine processing of the file, and therefore 
must provide room for at least one delete character in your initial assignment of codes. 
(Later for input processing, you may specify one delete with the program connector board 
or one or more with the SCAN keyword parameter.) 

You must specify the end-of-record stop character with the EORCHAR keyword of the DTF 
for this output file; data management automatically punches this after the last data 
character in each undefined record (17.5.6). 

Thus, the following correspondences will be used: 

• Letters: 

Hexadecimal Hexadecimal 
Graphic Representation Tape Code, After the 
Symbol in 1/0 Area Letter Shift Code, 1 D 

A C1 01 

B C2 02 

c C3 03 

D C4 04 

E C5 05 

F C6 06 

G C7 07 



UP-8068 Rev. 4 

Hexadecimal 
Graphic Represeatation 
Symbol in 1/0 Area 

H ca 
-1 C9 

J 01 

K 02 

L 03 

M 04 

N 05 

0 06 

p D1 

Q 08 

R 09 

s E2 

T E3 

u E4 

v E5 

w E6 

x E7 

y E8 

z E9 

SP 40 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Hexadecimal' 
Tape Code, After the 
Letter Shift Code, 1 D 

08 

09 

QA 

OB 

oc 

OD 

OE 

OF 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1A 

1C 

17-52 

~ 



UP-8068 Rev. 4 

• Figures: 

Graphic 
Symbol 

0 

1 

2 

3 

4 

5 

6 

7 

9 

9 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Hexadecimal Hexadecimal 
Representation Tape Code, After the 
in the 1/0 Area Fi.gure Shift Code, 1 E 

FO 10 

F1 01 

F2 02 

F3 03 

F4 04 

F5 05 

F6 06 

F7 07 

F8 08 

F9 09 

17-53· 

In this example, any 8;.bit configu.rations othe·r than these that you present in the 1/0 area 
are to be punehed as the nonprinting SP character: 'that is, lo/lowing the letter shift code, 
as 1 C. Taking· its cue from the result of using the FSCAN table on your data, data 
management inserts the letter shift code automatically. 

The end.:of-record·stop character, 1 B, does not require ·either shift code; you must always 
be sufe that neither it, nor the 'Code 1 C, nor either of the shift codes, ever appears in your 
output data for translation. 

The first of the coding examples discusses your DTFPT declarative macro and your TRANS 
table; the second is devoted to your FSCAN and LSCAN tables. · 

Example: 

80 

(cont) 



UP-8068 RevA 

Example (cont): 

NOTES: 

SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT 

17-54 

10 

1. This is part of your DTFPT declarative macro for the output paper tape file 
PAPTAP2, which is to be processed in character mode (MODE==STD). As 
PAPTAP2 contains records in undefined record format, you must specify the end­
of-record stop character, which data management punches automatically after 
each record on tape, with the EORCHAR keyword parameter ( 17.5.6); this is the 
hexadecimal code 1 B. The required BLKSIZE, IOAREA 1, and RECSIZE 
specifications, as well as other keyword parameters not relevant to this example, 
are not shown. 

2. You assign a length attribute of 256 bytes to the symbol TRANS2, thus 
embracing the following define constant (DC) statements. You have equated 
TRANS2 to the TRANS keyword parameter in· your DTF; .thus the DC statements 
.constitute your translation t.able for the paper tape file PAPTAP4. It covers the 
256 positions of Table C-1. 

3. To the first 193 positions of Table C-1 (decimal Othrough 192), you assign the 
tape hexadecim~I code 1 C. Note that the nonprinting EBCDIC space character 
(hexadecimal 40) is embedded in this 193-byte string; because it is, the .effect of 
your specification is that any of the first 193 EBCDIC characters (if they appear in 
your output data) are to be represented on tape by the hole-pattern chosen to 
represent the space. 

4. To the next nine positions in the TRANS table (those corresponding in Table C-1 
to the EBCDIC graphics for the alphabetic characters A through I), you assign the 
tape codes 01, 02, and so forth, through 09. 

5. The next seven positions are not used, and any 8-bit configurations froni this 
part of the table will be represented on tape by the space code, 1 C. 

6. To the next string of nine alphabetic characters (J through R),. you assign the 
tape codes OA, OB, and so forth, through 12. 

7. Eight unused positions follow these. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-55 

8. The last eight alphabetic characters, S through Z, are assigned the tape codes 13 
through 1A. Tape codes 1 B and 1 C already have their assignments; codes 1 D 
and. 1 E will be assigned with the FSCAN and LSCAN tables~ as described in the 
next coding example. You have determined that the tape code 1 F is to represent 
one delete character, but, because you will not use it in this .output file and 
because ·(like 1 D and 1 E) it is. not to bff translated, you do not include a 
translation for it in the TRANS table. 

9. The next six table positions are also assigned the space code, lC. 

10. To represent the 10 EBCDIC numerics in your output data; you assign the 10 
tape codes shown here. These are the second assignments for the tape codes in 
question, which have these meanings when they follow the figure shift code on 
tape, and the previously· assigned ones when they follow thle letter shift code. 

11. The last six positions of Table C-'-1 are provided for by assigning the space code, 
1C. 

The second coding example discusses the figure and letter scan tables you prepare for the 
same file. Remember that you need not assemble them, nor the translation table, with the 
DTF because an EXTRN pseudo-op is gen·erated for the label of each of them .. 

Example: 

LABEL .6.0PERATION.6. OPERAND 
10 16 

L µ:.i.i;;~~~...1-.1-~~.J.,_.L~~~~!Qj_L_L..L.l:..:_L_L.L_j_J__LJ___J_J_ 
2 ........... _._.._,__,_.._,_-f-f-E'-'-'lol!!L-L-L.--f-~~~'-1--L..L.Ul!U-L_.l_c_L_L-.L.....L_JL-L.__L-L-!. 
J,_...._._~__._._.._-l-f"'""-1..311"'"'--L-l-+-f-~~-'=-ii=..l--L-J-L--L-l-_l._...1-..L_J._..L_L_.L_L 
~J--L---L...JC-.1-..L,-L--1-~~1-.J.._~~~!9.l.A.a-L.W---1LJWw.._....L~J_L_!_L_...L-L-J-1. 
51-'-~~-'--1--'-+-f~"--1-_.._~~IO.l..&:ll~~~--L-..J.......L--i-~-'-~_.A.-I. 

NOTES: 

72 80 

1. You assign a length attribute of 256 bytes to t[le symbolic. address. FSCAN2, the 
symbol you equat~d to the FSCAN keyword parameter in the DTF. This attribute 
embraces . the four DC statements following it, and these constitute your figure 
scan table for the ()Utput file. PAPTAP2,. · 

2. The first 27 bytes of the figure scan table, covered by this define constant (DC) 
statement, contain the 1-byte hexadecimal entry 1 D, which, solely because it is a 
nonzero entry, specifies to data management that the code 1 D is the letter shift 
code. It must appear in each byte position of the scan table that represents a 
"letter". 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-56 

Because the first 27 positions ofTabJe c~1 ·do not ·correspond to any EBCDIC 
graphics~ letters or otherwise, it may occur to you. to question why the FSCAN 
table shows these as letter positions. The reason is that .they are all to be 
represented on tape by the same code, .1 C, which' you have also assigned to the 
nonprint SP character in your TRANS table. Because you have included the SP 
character among your ''letters", its .code, 1 C,, ~must follow the letter shift code on 
tape. 

Other than the Jetter shift code, the only .entry that you wse in the figure scan 
table is hexadecimal 00; this code must be entered in every byte position that 
does not represent ,a "'letter". Not all, ,of these will necessarily be ''figures", of 
course, but. all of the figure ·codes will be in this subset. 

3. In the next byte, yqu insert the ·hexadecimal code 00 to indicate to data 
management that the corresponding tape code, hexadecimal 1 B, is not a "letter". 
(It is also not a "figure"; recall that 1 B is specified to data. management, via the 
EORCHAR keyword in your DTF, as the end-of-record stop character. This has no 
translation, requires no shift code, and should n·ever occur in your output data for 
tra ns•ation.) 

4. The next.212 bytes also contain the letter shiftcode, 1 D, specifying that the tape 
codes in these positions represent "letters". These include not only your 26 
EBCDIC alphabetic symbols, but also 185 substitutions of this graphic for every:· 
other character in this set of 212, all of which must occur on tape after the letter 
shift code. 

5. The hexadecimal code 00 ii-f ·each of the fast '16 bytes· of the figure scan 'able 
shows that these do not represent "letters". Recall' that only the first' 10 of these 
are actually to be translated as "figu·r~s". 

When your output data is examineq. and :tested by data management, character 
by character, your data serves, esseritially>as operand 1, and the FSCAN table as 
operarid2, of the translate and test (TRT) .. :.instruc;:tion. · 

So long as any of the 8-bit configur~tions in .de~imal posit
1
ions 240 ~hrough 455 

of Table C-1 is encountered in your 9utpl)t oat~, or the· on~ in dedmal position 
27 (this one should never be there, ·as it·· Is ·equated to lB)~· the result byte that 

.data management locates in the FSCAN tabte.··is hexadecirr\a1·00. Scanning may 
continue, and these configurations are selected out fo( translation with your 
TRANS table (shown in ·the preceding coding exampie) ·and .the translate (TR) 
instruction. 

The first nonzero result byte that data management encounters in your FSCAN 
table stops the scanning process; the Jetter shjft code 1 D (never tran~lated) is 
placed by data··managem~nt in the 1/0 aref! after the lasf figute translation, and 
then scanhing resumes·:L but this time data mi:friagement uses your LSCAN 
table in the same way to select ~l}a · 8-bit configuration, ·ar group of 
configurations, to submit for translation by your TRANS tabie. 



UP-8068 Rev.4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-57 

6. You assign a 256-byte length attribute to the symb6L LSCAN2, Whit~h you have 
equated to the LSCAN keyword in the DTF. This length embraces the subsequent 
DC statements# which constitute your letter scan table·~ for the outpwt file 
PAPTAP2~· 

7. In each of the.first 240 bytes 0f the.scan table, you enter the hexadecimal value 
00. When these result.bytes are tested by data management, using the TRT 
instruction, ~:the ·an-zero pattern each. contains allows the scanning and the 
translation processes to continue" with your. TRANS 1 table and the TR instruction. 
These 240 bytes include both shift codes, the delete, and the end-"of-record stop; 
except for these (which should never ·appear in your output data for translation), 
the 240 bytes represent "letters", and therefore their translations should follow 
the JetteLshift cede data management has already punched into the tape. Recall, 
bowever,· that most of these translati.ons are the .. dead-end" substitutions of the 
space character· code, 1~C, for everything·butthe 26 a·lphabetic characters and the 
space itself. 

8. You enter the figure shift code, 1 E, into each of the next 10 bytes (decimal 
positions 240 through 249 in Table C-1) to designate these positions as 
"figures". Bee:aus.e lE is a nonzero entry 1in ·a letter scan table, data management 
immediately· recognizes ·it .as the' figure shift code.· When any of these.· 10 bytes is 

1 
encountered in this LSCAN table by data management's use ,ef the TRT 
instruction on a byte of your :output data, ttie scanning process stops. Data 
management first punches the figure shift code on tape, then punches the 
correct translation, and, havirig shifted from this scan 'table back to the FSCAN 

· table, resumes scanning with it . 

. 9·. The '.last six bytes -Of. the LSCAN table ~comain hexadecimal 00; the "dead-end" 
translation process continues if any of these bytes is reached by data 
management. 

Keyword Parameter FSCAN: 

FSCAN==symbol 
Specifies the label ;Of a'·figufe scan table for an output paper tape file processed 
in character mode tMODE--J, where symbol is· the label. ·The· table, which 
may be assembled separately from the DTF, is prepared in'the forrtfrequired for 
operand 2 of the BAL translate and test (TRT) instruction; it mu~t contain a 1-
byte entry for ·each 8-bit configoratiOh that you might place· 'in an 1/0 or work 

·area· ·tb be pun'ched on· tape. Eritrie~ in the'· FS~AN: table corresponding fo 
"letters'' must contain · ther nonzero Hexadecimal code for the letter shift 

\ character; all ottiers must contain hexadecimal oo~ . 

'The FSCAN keyword ·must bEf ·specified· with the LSCAN keyword, to 'produce 
output files With shffted·'codes'. in charaeter mode (MODE ). If only one of 
these tWO! keywords is ;specified,, a dic:fgriostic message appears 'in tile DTF 
assembly listing, and tne specification is 'ignored. If specified when processing is 
in binary mode (MODE==BINARY), a diagnostic appears in the DTF assembly 
listing, and the specification is ignored. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DAJA MANAGEMENT 

17-58 

=Keyword Parameter LSCAN: 

LSCAN==symbol 
Specifies the label of a letter scan table for an output paper tape file processed in 
character mode (MODE .J, where symbol is the label. The table, which may 
be assembled separately from the DTF, is prepared ,in the form required for 
operand 2 of the BAL translate and test (TRT) instruction; it must contain a 1-
byte entry for each ,8-bit configuration that you might ,ptace in an 1/0 or work 
area to be punched on tape. Entries in the LSCAN table corresponding to 
"figures'' must contain .the nonzero hexadecimal code for the figure shift 
character; all other must contain hexadecimal 00. 

To produce output files with shifted codes in character mode (MODE .), you 
must specify both the LSCAN keyword and the FSCAN keyword.· Refer to the 
fo~egoing paragraph for the effect of misspecifying these keywords. 

Keyword Parameter TRANS: 

TRANS==symbol 
Specifies the label of a translation table you, have coded for any paper tape file 
but an input file with shifted codes, where symbol is· the label. The TRANS table 
may be assembled separately from the DTF and is coded in the form required for 
operand 2 of the BAL translate (TR) instruction. 

When the TRANS table is used for output files with shifted characters, the shift 
codes are not translated, but punched automatically by data management. 

Refer to 17.5.3 for·details on the use of the TRANS keyword with input files. 

17.5.5.1. Translation for Unshifted Output Files, Either Mode (TRANS) 

When your output file does not contain shifted characters, but merely requires translation 
from the EBCDIC character data in your 1/0 or work area to the hexadecimal tape codes 
you can punch in the levels or tracks that exist in your tape, your task is simpler. You 
specify the TRANS keyword in the DTF and' prepare a tr~nslatio.n Jable that is limited to the 
EBCDIC codes you will use. 

Consider the following exa.mpler .which assumes a 5-level paper tape and records that 
contain only the 26 EBCDIC uppercase alphabet, the space, and three punctuation marks: 
the period and the left and right parentheses. You will not punch out a delete character in 
creating this output file, but wil.1 reserve one tape code, hexadecimal 1 F, for punching into 
the tape by other means as a rub-out character and possible specification later as a 
hardware or software delete when you. read this. file in future input processing. For the 
null charcicter, you set aside the hexadecimal tapeJ~ode 00, as before. Your 3.2 available 
hexadecimal tape codes extend from 00 through 1 E; you need only·the first Z34 decimal 
position~. 9f Table C-1 to cover tt:le EBCDIC characters thmugh Z. 



UP-8068 Rev. 4 

Example: 

LABEL . fiOPERATIONfi 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

10 16 

17-59 

1.µ..u-~~~U-4-~~.l-L~~~~.µ__L-.L-L-L_J__L._L__J_;_J__J_;J~_L_!.L_L_l.__L_l_L_...L_L_L_L-.L~ 
2.l--L_._.._,__._.i_i_-1--1.1£J.=.L--L-l-l-~~'--'-u..LUU-1-L__J_.1---L-L-.L_.L-L--1--L_i._-L-!._i._-'---l_J_--L-JL--J._-'-L-.L_,_ 

3.1--1--L--L.-.L-.___.__.___.__..-~~~~~--'---'--l--L-1--L--...L-L--L-.L-...1...-L-.1.__J__,L_....L.--L-J...--'----'--....___.__,_~ 
~f-L-L-~~~~"---1--¥-J~_.___~~~~~_J_L_~~--L-l-~ 
5......,..._,_,, ___ .......... ~l--lal~-'"-~~__,_~:iu..a..i........,.~---.l-..l..~"--'-...... -'"-~~---.1-..1.. ........ ~ ......... ~ 
b.1-1-_..._.....__._.___,_.L.4~~L-..L-L-~..Lilll!!LL..l~~.l....-l..-L-...L-L-L-L--'-1-L-_i_L-1..--1-~-'--L-L-1-_i_..1-.1_.___,_~ 

7.~~~~~~--+---+-'-~~~_.__._~'---L--L~_.__._~--L-L-_._._~~_i_ 
8.l--L-L~~~~...1-...L-~!!!l!l..L....l-..J.Joiofl-L~~...l.-..l..-1.......1--.J..~-L--..J..:_.1..--L-J._--L-1.-..J..:...,...1.~~ 
CJ.1--L--"-.L.-L-..l-~~~l--+-L..l.-l~~~--'---'---l.~L--1---1-~~__J_.J....-l..--l...-L-.J_J_ 
( 0 .. 1-J-J.....L_J....J.....L...J_~~.J.....L..J.-IClLI.5'U-ll.....ili~Ll!lLU..£1.L.JJ""4WD.u...LIJ..U..:.U!.l1.J.ll~~-L-J__L..JL....L.....;L-J.._L.J... 
I I. ~L......L--L--'--L--'--1-~~~...µ...J.LJ~J.......J..lloLL-.LJ.__J._.l.,__,L---'---1...--l,__.L._J.__L.....L-,.L_...L-...L-.L-J.__~L--.L.-.i_L-J.._ 
12.1--'--L--L-L-.""--'---L~~--'---+'-~'---'-'--'-"'~r..:.....&...l.~.L...L.l.!!!!!l~~~~~~L--L--L­
l 3.t--L-'-...__._,_--L-..L-f--,+-'"-Ul£..l-'---L-~=-i-=-LUOC:.1-L.J---->.=.L-"-L-'--'-'-'--'--'-'--'-~'-'-' __._.1_,..._l~1_.__._.__,___._..L-.-\_.__.__~ 
(Y,,1-L--'-...l.......l-..~~IL-L-L--+-¥-U~L.J....J...L.L...J.3ioLL.L.L~l...L..aloU..L..LIIU..L..Uo~--'----'--.L.-L'. ---L....,.-1--L--LI .,--1--. ..L__.I_ 

NOTES: 

1. You assign a 234-byte length attribute to the symbol TRANSOUT, which is 
equated to the TRANS keyword in your DTF (not shown). 1tiis length attribute 
covers· the 13 subsequent DC statements, whi<::h constitute your translatiOn table. 

/" '', '•' . . ' " ·, ' ' < 

2. You insert the hexadecimal tape code 00 in the first byte. ·of your TRANS table. 
This is unnecessary for an output file (because this code represents the null 
character, whiph .YOU do not expect to include in an output record), unless you 
intend to place a certain (fixed) number of null ·characters at the end of each 
record in your output to indicate an interr~cord'gap (17.3.4). If you are notlising 
the null character in this way, 'you' would include th,is 'byte. with the next .14. 

3. To the next 74 bytes, you assign the hexadecimal code 01. Note that' the EBCDIC 
space 9haracter SP .is included in the string: •this code, then, represents the 
space and is also assi~fned to all EBCDIC characters not used. 

4. The devic~ coostant (DC) statem~nt assigns your next tape code, hexadecimal 02, 
to the EB'CDIC ·period. · · 

5. The EBCDIC less-than character is· as~igned the same nonprint code, 
hexadecimal ·oi, as the· other ·characters to be skipped. 

6. The left parenthesis is assigned the hexadecimal tape code '03. 

7. Fifteen more EBCDIC codes, unused, are assigned the nonprint code 01. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC. DATA MANAGEMENT 

8. Here, the right parenthesis is assigned hexadecimal 04. 

9. Nifiety-nirie more EBCDIC' code~: through the left l:frace, are skipped: 

17-60 

10. T6 the riexf nirte 'bytes, represerftingth~ EBCDIC .alpnabetlc.'characi~rs A through 
I, are assigned the hexadecimal tape codes 05; 06,, and so. on, througtf C)b:; 

11. The seven subsequent EBCDIC. character$, through: the right brace, are assigned 
hexadecimal 01. · ' · · · · · · 

l2. These nine tape codes cover the· alphabet characlters J. through R. 

13. Eight more skips. 

14. The last of the EBCDIC uppercase alphabet,··S··tflrough Z~ are iassigned·yo.ur 
.re,111aining hexadeci111al. tape .code.s, L17 through. 1E - Jemii.ng only hexadecimal 
1 F, for future use when·a defeteqct)aractef is needed. 

'.-,, - " ' ," , ·,- - .. ,_ - '".,.-

17.5.6. .:Specifying.: the End.:of:-Record Stop<Character for 0.utput Files .(EORCHAR) 

When you are processing in character mode (MODE- ) and you; file contains records 
' ' ' ' '.,' ' ' ' ' . J ,'. 

with varying lengths (RECFORM==UNDEF), you have need of a character. to delimit these 
records. With output files,. you .must specify this character with the EORCHAR keyword. for 
data management to punch at the end of each undefined record when you issue the PUT 
macro; recall that you must also designate one general register into which you loadthe· . 
length of each undefined record before you issue the macro (the RECSIZE register, 
1 ].5.1.6). 

The end=of:-:recorcf sfop ·character 9auses ,tape motion to stop automaticalJy when this 
character is z encountered 'while an input file containing undefined records' is' being read. 
Re.calJ. that, .f<;>r inpµt processtng, you must specify Jhis ch.a,r~cter by wiri9g. the. program 
c~nnector bo~rd .(17.2.J.2). 

For_ 9utR1.it, ·processing, ttie. _qhar.a~ter you specify.· with. the EORCHAR keyvvorq may be 
rep.r:eserited by cmy of the tape cod~s.you may pur)ch in the number of tracks on.your tape; 
hdweyer, you should no~ use the null ch~racter, nc)r, in fac( any ()f .the .codes to\ivhich you 
have assigned a special meaning ·(such. as the delete, or one of the shift codes). The 
EOBCrjAR .stop_ . chc;iracter must be . excl~uded from. translatiqn. tabJes, as it has no 
tra.nslatibn: an,d it' must)~e in.dependent of shift st~tu&; th~refore: i~ n:tl!St als.o Ii~ outside 
the range of r,

1 figures" a·nd "lefrers" des'ignated by· your scan .t,abl.es'.' In fact, you.must take 
pains to exclude the EORCHAR stop from your own outpdt."·· · · 

For an output file, data management aufomatically inserts th°e EOR'CHAR>stop character in 
your 1/0 area before it writes the buffer contents out to the punch; your BLKSIZE 
specificatiOQ mµst always include one e){tra. byt,e for it When an undefined record is 
transferred 

1

tb your 1/0 area from an ir}put file, the EORCHAR stop~ChqJ:acteLcomes with 
it, and the buffer space you reserve must accommodate 'this byfe; however,' the record 
length that data rnan9gement pl.aces in, your optional RECSIZEregister does no~ include 
the EORCHAR byte. Figures 17...:._2, 17~3,· and 1 i-4, rn f 7.~( illustrate these points. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC .DATAMANAGEMENT 

17-61 

Keyword Parameter EORCHAR: 

EORCHAR~expression 

Specifies the end-of-record stop character used tb delimit each undefined record; 
required for: output· files proc·essed in char:acter mode (MODE=STD) wheA 
RECFORM'· UNDEF is specified. Here; expression· is either an expression of self­
defining terms or a '.'symbol that is. equated to an expression of self-defining 
terms. 

Data management places the character defined with the EORCHAR keyword at 
the end of each undefined output record; it is the stop character punched on tape 
to delimit each uAdefined record. 

Examples: 

LABEL flOPERATIONfl OPERAND 
10 16 

l.1-L-'-..1-J.--1---L-L..+-+-_L_Jl_L-L-+-i!l!!!..l.3.f.l..l...IJ.-.U..!.l..Ll~--L.L31--~~.L...-1.-L-.-L-l.-J...-1-..l.-l.-'---L-L.--1...~...L-'-'-'---L-.L-

2..._..._._...j.__J.___.__J_~-+.-L-.L.-.L~-+-l=.u~~L.UL..!J..!....ll-L:3.eJ_.LI-.J..-U.~~---'=_._.__._.._...j.__J.__.__J__,___.__.__,_L.--1..._._-L-

3i----J-_J_JL.L..L.L_L_i--1-_L:_.1_.:L__l_l-~~~l.:.llOtlllL~LJlCUQ:U~L.L...L..l_i_.L_L_l_JL.L-1__1.;_L_:L..L_l_J__L_ 

NOTES: 

·1. Specifies thaf tne he)(adeci.riial ... tape code 03 is t6 be punched by data 
managemenf as the end-of..:record stop character to delimit ·each undefined 
record on tape. 

2. Specifies that the . end-of-record stop ctiar,acter to. be punched. by data 
rrianagem·ent as ·a aelimiter after each undefined.record on tape is the ldgical 
product (AND) of.'.the EBCDIC character P and fhe hexadecimal value ~OF~.(this 
works~·out to oe hexadecimal 07). . . 

3. Specifies that the end-of-reqord stop character is the expression of self-defining 
terms equated elsewhere in your program to the symbol CHAREX'. .The ·equate 
(EQU) directive for th~ symbol CHAREX, represented by t.he last line of coding in 
example ·3, makes· this~·example exactly the 'equivalent of example 1. 

Notice .two points about this way of specifying the .EORCHAR kevw.ord: .th,e coding 
that contains the equate:·(EQU) directive rt1us~ be·: placed~ outside the' OTFPT call 
itself, but it must be assembied with the coding that contafos the DTFPt call. The 
assembler does not generate an EXTRN for expression. 



UP-8068 Rev. 4 SPERRY UNIVAC 'OS/3 
BASIC DATA MANAGEMENT 

17.5.7. Specifying Optional File Processing (OPTION) 

17-62 

Optional file processing for paper tape input or output files is much the same as for 
punched .card files, described in Section 3. As with cards, an "optional" paper tape file is 
one that your program will not. invariably punch or read eve.ry time it is executed; you 
notify.data management that this is the case by specifying the.OPTION keyword parameter 
in the DTF defining the file. The specification is simply OPTION=YES. 

If you have specified the keyword, there are two circumstances that result in optional file 
processing by. data management: 

• You have specified the OPT positional parameter rn the. job control DVC statement in 
the device assignment set for the file, and the device is not available at execution 
time; or 

• You have notprovided a device a.~~ignment set (job control DVC and LFD statements) 
for the file. 

For details on these job control statements, refer to the job control user guide, UP-8065 
(current version). 

This is what optional file processing of a 'pap·er tape file involves: 

• If the file is an input file, the first GET imperative rri~cro you issue to it resµlts in an 
immediate branch·to your mandatory end-of-tape routine·, the label of which· you must 
specify with the EOFADDR keyword .(17.5.4). No 1/0 is pedormed; you must close the 
file, using the CLOSE macro (17.4.2). 

• If it is an output file, the first PUT macro you issue results in an immediate return to 
your program, at the first instruction ,after· the PUT macro. No 1/0 mders are issued 
by data management. if .vou have specified .the IOREG. or RECSIZE registers, data 
management sets these up so that you may process in exactly the same manner as if 
you were actually punching a paper tape. Again, you must close the file. 

If you have not specified the OPTION keyword parameter, and one .. ot the foregoing 
circum.stances occurs, the paper tape file is not opened ·by data management and may not 
be processed. In the error processing that ensues, data ma~agement take~. the following 
actions: 

• Sets the error in OREN flag, bit 4 .o( file,nam(!!C 

• Issues error message DM21 to . the log: "INVAL..ID OR MISSl,NG DEVICE 
ASSIGNMENT". . . .· 

• Branches to your'.> error routine or, if none .. is specified, returns to yolJ inline, at the 
first instrµction after the OPEN macro you· issued to the file. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17....:63 

If you do not code an error routine but take an inline return, then all GET or PUT 
imperative macros that your program issues to the file result in further data management 
error processing, as follows: 

• Data management sets the invalid imperative macro flag, bit 6 of filenameC; and 

• Issues error message DM 13 to the log: "ATTEMPTED ACCESS TO AN UNOPENED 
FILE''. 

These actions result for ever:y, issue of GET or PUT to the file. Because the file has not 
been opened, you need not issue the CLOSE imperative macro to the file. For flirther 
details on filenameC and other aspects of data management's error processing, refer to 
the ERROR keyword, 17.5.9. 

Keyword Parameter OPTION: 

OPTION=YES 
Specifies that the input or output paper tape file defined by this DTFPT 
dec.larative, macro is an "optional" file and is not required to be processed every 
time the program is executed. Data management performs optional file 
processing if this keyword is specified and either no device is assigned to the file, 
or you have specified the OPT positional parameter in the DVC job control 
statement for the file and no device is available at execution time. 

If you omit the OPTION keyword parameter and one of the foregoing conditions exists, 
data management does not open the file, and you may not process it. Data 
management er.ror processing results. 

17.5.8. Providing a General Register Save Area (SAV·AREA) 

In common with the other OS/3 data management systems, paper tape data management 
requires a 72-byte area in main storage, aligned on a fullword boundary, in which to store 
your general registers while it ·is proc~ssing. 

You must align and reserve storage for this area within your program, but you have two 
ways of providing its address to data management: loading its address into general 
register 13. before entering any data management ·imperative, or specifying the label of the 
area via th~ SAVAREA keywprd in your DTF. You need only .one general register save.area 
Pe.r program, but if you ppecify the SAVAREA keyyvord in one DTF, yot.,J should specify it in 
all.* 

*It is possible to write a valid program in which you preload register 13 with the address of a save area before you issue any 
imperative macros to a file whose DTF does not contain the SAVAREA keyword, and also, omitting the preload of register 
13, issue imperatives to another file whose DTF does contain the SA VAREA keyword. The program could work; the trick 
might be (in a large program processing numerous files) to be sure which file required which coding. You could not open all 
tiles with the same OPEN macro, for example, in such a program, nor terminate them all with one CLOSE - and you might 
be hampered in your use of register 13 for the /OREG or RECSIZE register. 



UP-8068 Rev: 4 SPERRY UNIVAC OS/3 
BASIC. DATA MANAGEMENT 

17-64 

When you specify the label of the general register save area with this. keyword, you free 
register · 13 for your own use and may, for example, use it for your IOREG or RECSl?E 
register ( 17.5.1.4 or 17.5.1.6); otherwise, only registers 2 through 12 are yours. Refer to 
1.4 for the content and layout of the save area, which is useful to examine in program 
dumps or snaps. Note that register 13 is not included, however: if you .want to see its 
contents in a snap, you must provide and load a specific storage area for them. 

If the SAVAREA keyword is not present in the DTFPT declarative macro, data management 
assumes that you have preloaded register 13 with the address of a fullword-aligned, 72-
byte general register save area before you issue any imperatives. If you have ·.a BAL 
program, therefore, written for some othe.r data management system (such ·as the 
9200/9309) in which you are using register 13 for your ewn purposes, you may easily 
convert it to run under OS/3. You need merely add a 72-byte tegiSter save area, full,word 
aligned, to your program and specify its label to data management with the SAVAREA 
keyword. 

Because the assembler, in expanding your DTFPT declarative macro, generates an EXTRN 
pseudo-op for each symbolic label specified via the keywords in1 the DTF, you may 
assemble the coding by whic.h you .define the register save area separately from the coding 
in which you define the file. 

Keyword Parameter SAVAREA: 

SAVAREA=symbol 
Specifies ·the. label of an area defined in main storage, fullword aligned and 72 
bytes in length, in which data management stores the contents of your user 
general registers while it is processing, where symbol is the label. 

Only one such area is required per program, but if you specify the SAVAREA 
keyword in one DTF, yot:{.should specify it in the DTF fo'r.• every file your program 
accesses. 

~If the SAVAREA keyword is omitted, data manag·ement expects that; before you issue 
any imperative macro to a file, you have preloaded register .13 with the addres·s of a 
72-byte storage area, fullword aligned, in which it saves the contents of your general 
registers. 

If you··specify the SAVAREA keyword, register 13 is available for your own uses; 
however, its contents are not included in the general register 1save area for .inspection 
in a sna'·p .or dump of 'your p·rogram. Refer to· 1.4 for the layout and content of this 
area. 



UP-8068 Rev. 4· SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17.5.9. Data Management Error Processing, 'Paper Tape Files fERROR) 

17-65· 

When data management detects an .error (hardware, software, or 'IOgicai), ·it sets qne or 
more bits 'in the error flag byte of your DTF~ file· table, issues the appropriate. num.ber:ed 
data manageme11t error message'to the log; ~nd .bra11ches t() v.our error ro.iJtin~. If YQ.u 
have not coded' a routine for error processing and specified its' label to data management 
with the ERROR keyword parameter, control returns to you a~ the normal inline return 
point the next instructiorl' after the imperative macro JLJs,t issueq. This is the point to 
which data management would~have transferred c'ontrol if no error had occurr~d. 

When data mana9ement branches to YOL!r error routine, register 14 contains the address 
of the normal return point, to which you may .bra'nch, after you have completed error 
processing, to resume processing your file. Ho~ever! if you ime11.d to issue G.ET or PUT 
imperative macros in yqur error routine, you must first store the .contents of register 14 
and. then, having issued all your imperatives,. restore r:egister 14 to· its initial value before 
you branch back to your program. 

The error flag byte is decimal byte 50 in the file table generated by the assembler in its 
expansion of your DTFPT declarative macro; the assembler also generates an EXTRN 
pseudo-op for this· byte, assigning it a label that is formed by concatenat'ing the EBCDIC 
character ·~c" to your 7-byte fogical file name___;_ which is why it is called filenameC~ ·rt you 
want to examine it to see whatbits were set, you can easily locate filenameC in a dump of 
your program area, because its address· is contained in the allocation map· and defin~tions 
dictionary produced by the· linka§'e editor, or you can include filenameC in a snap tak~n by 
your error routine; however, it is more useful to access it dynamically. You may d.o so 
inline or from your error routine, using the label of the error flag byte as the first operand 
of a BAL test under mask (TM) instruction, for example, to determine which bits were set 
so that you may ta.ke appropriate action. 

Each of the eight bits in filenameC has a special significance when set to binary 1 as an 
error flag; Table 17_;_2 summarizes these meanings. The subsequent paragr,ap~hs discuss 
the errors represented in more detail, with actions you should consider taking in your error 
routine or elsewhere. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC'DATA MANAGEMENT 

17-66 

Table 17-,--2. S(gnificance of Bits in FilenameC! Paper Tape Files 

Hexadecimal Binary if 
Other 

Data Management E~ror tylessage~ 
Bit Significance for: DTFPT File Bits 

if Set Alone Set Alone 
Set CD Issued to Log 

; 

0 80® 1000 0000 DTF error 4 DM61: INVALID DTF FIELD; PARAMETER, 
,2 OR PARAMETER COMBINATION 

1 40 0100 0000 Wro<ng length error - DM25: WRONG LENGTH ERROR 
DETECTED 

2 20 0010 0000 Unique (parity) error - (None) 
l~ 

3 10 .0001 0000 Unrecoveraole<error -
© 

DM23: UNRECOVERABLE 1/0 ERROR 
DETECTED 

4 OB 0000 1000 Error detected in OPEN - (None) 
_:._ ..,,. 

5 04 0000 0100 Error detected in CLOSE - (None) 

6 02 0000 0010 Invalid imperative macro - DM13: ATTEMPTED ACCESS TO AN 
UNOPENED Fl LE, or: 

- DM14: INVALID IMPERATIVE MACRO/ 
MACRO SEQUENCE 

7 << Q1 0000 0001 Invalid record size 4 DM17: INVALID BLOCl(SIZ,S SPECIFIED, <<; 
or: 

'i ..,,. 

;< DM18: RECORD SIZE INVALID 

NOTES: 

® 

© 

• 

The "Other Bits Set" column shows only those bits invariably set by data management. Others may also be set, for example, to 
indicate which errors are detected during OPEN or CLOSE processing. 

Bit 4 is alvvays set when bit 0 is set. The resulting binary configuration of filenameC is 1000 1000, and the byte then contains the 
hexadetimal value 88. < 

When bit 4 is set with bit 7, the resulting binary configuration is 0000 1001, and filenameC contains the hexadecimal value 09. 

When an unrecoverable error is detected during OPEN processing, bit 4 is also set with bit 3, and filenameC contains the 
hexadecimal value 18. When detected during CLOSE processing, bit 5 is also set with bit 3; filenameC contains hexadecimal 14. 

DTF error (bit 0) 

This bit is set by the OPEN transient overlay to indicate that a serious error has been 
detected in your DTF. Data management also issues error message DM61. The error 
detected in OPEN flag (bit 4) will also be set to binary 1. Your file is not marked open 
and cannot be processed. 

The DTF error bit is set when you have not properly specified the BLKSIZE keyword 
parameter (17.5.1.3), have omitted the EOFADDR keyword for an input file (17.5.4), 
have omitted the IOAREA 1 keyword (17.5.1.4), or have specified an invalid address in 
the DTF (that is; some label or symbolic address specified in your DTF is an invalid 
address - in this case one that is not within your job region). 

You should check your DTF assembly listing for error flag messages and your linkage 
editor map for unresolved EXTRN symbols. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-67 

• Wrong length error (bit l) 

This bit is set for input files with undefined :(variable length) records; it indic.ates that 
data management has filled the 1/0 buffer with the number of:bytes.specified by your 
BLKSIZE specificatioA (shift codes having been removed), but that the hardware has 
not detected the wired .end-of-record stop character that delimits each undefined 
record. 

The wrong length error flag is also s.et for fixed, unblockeddnput files if the last record 
on the tape is not a full-sized record (that is, the number of bytes of data yielded by 
t.he final record, stripped of shift characters and deletes, must equal your BLKSIZE 
specification, or. you will receive·.a wrong length error indication). 

Data management i·ssues error message DM25 in either. case. You may either stop 
processing and close. your file, or process the assumed partial record and~ then, 
issuing another GET macro; branch to. the norm(;\I return point to continue processing 
(remembering to store and restore register 14 as required). 

• Unique (parity) error (bit :2) 

. When a parity error is, detected in reading an input paper tape, the physical IOCS 
issues a standard ·message to the operator, describing· and locating the error. The 
operator is able to move the paper tape back to the beginning of the record·and to 
retry the command; if the retry is successful, data management does not perform the 

'error processing set forth here. If the retry effort fails, however, you may have 
recourse to further recovery attempts, as follows. 

The unique (parity) error bit is set only for input files, processed in character 'mode 
(MODE=STD); the file must have been created with a parity track punched :on the 
tape, and the paper tape subsystem must have been set up (using the program 
connector board) to check the parity track for odd or even parity. 

Set to binary 1, this bit indicates detection of a parity error in one or more characters 
on. tape. Furthermore,· each character on wt:lich a parity error has been detected has 
its most significant bit set to binary 1 in main ,storage. Your options depend on 
whether your data contains shifted codes. 

For files with unshifted data, you have three courses open to you in your ·error 
routine: 

You may stop processing records and close the file. 

You may continue processing the· record by2branching to the normal return point, 
at the address contained in register 14 .. 

You may store register 14 and ;issue another GET macro. to skip the record 
containing bad parity and read in the next. If the next .record is free· of parity 
errors, you can restore register 14 and branch to the normal return point to 
resume the processing that was interrupted by the initial detection of parity 
error. On the other hand, of course, errors detected in the execution of your 
second GET macro will result in another branch to your error routine. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-,68 

When parity errors are detected on files with shifted characters, however" your 
recovery action is somewhat different. Data management does not perform shift 
processing on the. record, buUeaves· it in the. 1/0 area~ (Even though yot1 may have 
specified work (frea processing, .. the record is hot moved to your work area.) Its shift 
codes 'are not removed,:nor the software deletes~· nor are the intervening characters 
translated. Unless,you want .to stop processing" and dose the file, you must deal with 
the erroneous record in your error routine; to skip this record is risky at best, because 
the shift status is likely to be masked by the parity error, and your subsequent records 
cannot be assured ·of· being processed correetly; 

":If you. have specified an· 110 index register with the IOREG keyword ( 17.5.1.4), you 
can locate the error:record>by referring to this register. On the other hand, if you have 
specified more than one 1/0 buffer but do not have an IOREG register, you may refer 
to the address of the error record that is contained in lilenameD, a 4:..byte field, 
fullword aligned, and ·addressed by concatenating the 'EBCDIC character "D" to your 
7-byte file name. D·o·not modifyLthe contents of filenameD. 

After locating each character of the record that has a parity error and resetting its 
most significant bit to binary 0, you may perform the character shiftirig. in your error 
routine, removing the shift codes and translating the characters between them as 
required. You should compress the record and lea\!Ie: it left-justified in the· 1/0 area, 
or~ if you have specified .work area processing, .you must yourself move the ·record to 
.your work area. (17.5.1 r.4)·.· 

You wil I use your · SCAN: table as operand · 2 of '!:he BAL ·translate and test (TRT) 
instruction, and your FTRANS and LTRANS tables as operand 2 of the translate (TR) 
instruction; refer to 17.5.3 for details on the use of these tables and instructions by 

, data· managemenL Remember ·also to take care of removing any of the software 
delete characters. you may encounter in your error record. 

11 Unrecoverable error (bit 3) 

This bit, when set to binary 1, indicates that an unrecoverable hardware or software 
error has been detected. In most instances, the physical IOCS issues a message to 

.the ·operator, such1as "DEVICE XXX STOP STATE Rur·. This message indicates that 
the paper tape subsystem is in the stop state. If the. operator replies "U" to this 
message, data management branches to your error routine with the unrecoverable 
error.bit set and issues error messges DM23 to the log. Under certain conditions, the 
error detected in OPEN or error detected in CLOSE bit (4 or 5) may also be set. 

11 Error detected in OPEN (bit .4) 

This bit is .set when any .errors are detected during· the processing performed by the 
OPEN transients (17.4.1 ). The file is not :opened, and you may not issue any 
imperative macros to process it. In your error routine, you should not attempt any 
further processing of the ·file and should terminate your program. lt··is not necessary 
to issue· a CLOSE macro to: the file. 



UP-8068 Rev. 4 SPERRY UNIVAC QS/3 
BASIC DATA.MANAGEMENT 

17-69 

Other bits may be set with this bit to indicate which error.was detected. For e>e:ample, 
if you have an invalid DTF, this is detected during OPEN processing, and both bit 0 
and bit · 4 are set; data management issues error message DM61. Or, ik your 
specification of the BLKSIZE or QVBLKSZ keyword is not;a positive.decimal number in 
the range 1 through 4095 (or the OVBlKSZ specification does not exceed block size), 
the OPEN transient issues error message DM 17, INVALID BLOCKSIZE SPECIFIED, 
and sets both bit 7 and bit 4. Again, if. the error detected by the OPEN transient is 
unrecoverable, data management issues error message DM23 and sets both bit 3 and 
bi.t 4. Finally, for the circumstances under which the error in OPEN bit ·is set for an 
optional ·file, refer to the OPTION keyword, 17.5. 7. 

If you have not codee and specified the ERROR routine, but accept erro'r" returns 
inline, data management expects that you will check for errors and deal with them 
inline. When you do not do so, therefore, each imperative macro your program issues 
to process an unopened file results in further data management error processing. This 
includes .setting the:invalid imperative macro flag (bit 6). 

• · Error detected in CLOSE (bit 5) 

This bit is ·set when errors are detected during the processing performed by the 
CLOSE transients ( 17.4.2). Other bits may also be set to indicate which :error was 
detected: for example, bit 3 if the. error is unrecoverable. 

CLOSE processing is completed, and you may reopen the file. 

• Invalid imperative macro (bit 6) 

This bit is set to indicate that you have issued an inap·propriate imperative macro to 
process your file (for ·example, the <3ET macro ,to an output file, or a CNTRL macro, 
which does not exist ·in OS/3 paper tape· data management). 1·n this circumstance, 
data management also issues ·error message OM 14, t'INVAUD. MACRO/MACRO 
SEQUENCE", to the log. 

This bit is also set if you issue any imperative macro except OPEN to an unopened file 
~>.including one that could··not be opened·because of an invalid DTF or because of 
some other error detected during yoJJr> OPEN processing. In this case, data 
management issues error message DM13, "ATTEMPTED ACCESS TO AN UNOPENED 
FILE". 

• Invalid record size (bit 7) 

This bit is set only when you are processing an output paper tape.file that contains 
undefined records (RECFORM=UNDEF); it indicates that the number you have placed 
iR the mandatory RECSIZE register (17.5.1.6) is negative, .zero, .or larger than· your 
BLKSIZE specification mi nus one byte .(BLKSIZE-1 )~ Data•management does. not' punch 
the record on tape. If this bit is set, data management also issues error message 
DM 18, "RECORD SIZE INVALID". Your error routine should cease processing and 
close the file. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17.5.10. Processing ASCII Paper Tapes (SCAN; TRANS) 

17-70 

In OS/3, neither the physical IOCS nor paper tape data management provides automatic 
translation facilities. How data comes in from paper tape and is represented in main 
storage (and vice versa) ,are idetermined solely' by the way. ·you set up your program 
connector board and by the hole patterns on the tape. A hole on the paper tape always 
corresponds to some bit in main storage. 

On the other haFid, translation of data, via translation tables that you supply, is always 
possible for every type of file, be it in'put or output, binary or nonbinary, with or. without 
shifted characters. If you need to read a paper tape that has been punched in ASCII, or to 
punch ASCII characters on tape, you must provide the proper translation tables in your 
program. 

The ASCII code is specified in .American Natidnal Standard Code for Information 
Interchange, X3.4-1968, and is a 128-character, 7-bit code. Another .standard, American 
National Standard Perforated Tape Code for Information Interchange, X3.30-1971, 
specifies the representation of ASCII in perforated tape. The perforations are arranged in 
eight longitudinal tracks, one for each of the seven information levels, and one for parity. 
The bits of .:ASCII are .assigned to specific tracks, .and the ASCII character represented by 
each 8-bit pattern is related to its corresponding .column and row position in ASCII. The 
parity bit is always recorded on the number 8 track, ·and provides an even number of holes 
for each character. 

Figure 17-11, adapted from a figure in the standard, depicts a portion of an 8-track paper 
tape on which have been punched a number of ASCII null characters (NUL - no punches 
except the feed, or sprocket hole), the 10 ASCII numerical characters, and the ASCII delete 
character (DEL). The·,rectangles above the diagram .of the tape itself relate the standard 
hole patter'ns punched in tt:le tape to the ASCII character positions in the columns and 
rows of. the standard: the ASCII DEL character, for example, occupies column 7, row 15; 
the ASCII numeral '9 occupies column 3, row 9. (There is not shown in these rectangles 
the column/row position (0/0) that is occupied by the ASCII null character, NUL, because 
there are seven of these punched in the tape in the figure.) 

The following example, showing how you might code a translation table and a scan table 
to read an ASCII paper tape jn. OS/3, using data management, assumes that 

• Your ASCII input file is processed in binary mode, and the contents of its records are 
limited to the ten ASCII numerical characters and the ASCII space character. 

• These eleven ASCII characters are to be translated into the corresponding EBCDIC 
characters for your .processing in OS/3. 

• The tape. also contains .the ASCII NUL character and the standard delete character, 
DEL. (Recall that .in binary. mode, you must spe.cify this as a !'software delete".) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-71 

• The hexadecimal representations in main storage of the 13 codes punched on the 
ASCII tape are the following: 

Hexadecimal ASCII Character 

00 

20 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

7F 

Column: I. Row: 

ASCII numerical 
characters---+- 0 

b1 

b2 

b3 

NUL 

SP 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

DEL 

3 

2 3 4 5 6 7 

2 3 4 6 7 

• • • • . . ' ... 
• • • • 

Is , I •Bj 
8 9 DEL ~ASCII delete 

character 

• • 2 

• 3 

FEED e e e e e e e • e e e e e e e e • • FEED 

b4 

b5 

b6 

b7 

CHECK 

t 
ASCII bit number 

• • .. •.• ..... . 
• • • • • • • • • • 
•• • • • 

• 4 

• 5 

• 6 

• • 8 

t 
Paper tape track number 

Figure 17-11. Portion of ASCII Punched Paper Tape, Showinq Correspondence 
Between Hole Patterns and the Bits oi the ASCII Code 



UP-8068 Rev. 4 

NOTES: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-72 

1. This is part of your DTFPT declarative macro, defining an input paper tape file, 
INASCll, processed in binary mode. Required keyword parameters not relevant to 
the example are not shown. 

2. This is the define storage (OS) statement, coded elsewhere in your program, by 
which you assign a 127-byte length attribute to the symbol TRANSCll. Because 
you have equated this symbol to the TRANS keyword parameter in your DTF, 
data management recognizes the following define constant (DC) statements as 
constituting your translation table for this file. The table need not be 128 bytes 
long, even though this is the length of the ASCII code, because the 128th 
character (hexadeCimal 7f) is tt-ie standard A$Cll delete, which you must specify 
as a "software delete" to data management, via the SCAN table. Data 
management will delete this character before translation. 

3. In the the first 32 byte" positiOQS of Your translation table, you insert the 
hexadecimal valve 00. This is the commo.n code for both the EBCDIC and the 
ASCII null charagters, but note ~hat this statement also substitutes the EBCDIC 
null for each ASCII character in the remaining 31 of the first 32 positions in 
Table C-1. None of these is expected in your input data, and you have no 
translations for them. You might instead have substituted the EBCDIC space -
but not the delete, because deletion precedes translation. 

'· ;!:_ 

4. You substitute the hexadecimal value 40, which represents the EBCDIC space, 
for the ASCILspace charaCters, occupying ·decimaLposition 32 (hexadecimal 20) 
in Table C-: 1. 

5. The next 15 bytes of your TRANS table are also filled with the hexadecimal value 
00, nullifying ·_any unexpe~ted AS<;;ll mavefick cqdes between the SP character 
and the first of the ASCII numer·als. 



UP-8068 Rev. 4· SPERRY:UNIVAC .OS/3 
BASIC: DATA MANAGEMENT 

17-73. 

6. Here you substitute ten EBCDIC hexadecimal valuesi FO, F1,. F2, :·and so on, for 
the hexadecimal values expected in your input data for the ten ASCII numeral 
·characters. 

7. The remainder of the ASClkcodes should not appear in your input data a'nd are' 
hence nullified - except 7F, the standard ASCII delete, which you provide for in 
the following sea n table. 

8. This define storage (OS) statement assigns a 128-byte length attribute to the 
symbol DEL 7F, which you have equated to the SCAN keyword parameter in your 
DTF. Data management recognizes. the next two DC statements as your SCAN 
table for the input file INASCll. This table must be 128 bytes long to include all 
128 characters of ASCII. 

9 .. You i.nsert the hexadecimal value 00 in the first l27 bytes of this table. Here, 
this Value has nothing to do with.the ASCII NUL character: it ens.ures that a zero 
re$U.lt-byte is encounter.ed .by .data management when rany ·of the hexadecimal 
values ·in the first J 27 positions of Table C-;-""1 is. read in your input data,.'.and the 
data is submitted to the BAL translate and test (TRT) instruction. Any ofi.these 
127 characters occurring in your input data is eligible for translation, using your 
table TRANSCU. 

10 .. This statement inserts the hexadecimal value OC in the.1128th· byte .of your scan 
table~;.When the standard ASCII delete character,:hex,.adecimal 7F, is e,ncountered 
in ;,yoL;Jr data, the result-byte. data management ,accesses in the· ~scan table 
contains this nonzero value. The character 7F is therefore not translated; instead, 
data management deletes it before testing your next byte of input data and thus 
"compresses" your record. 

17.6.. COMPARISON OF. OS/3 WITH OTHE.,R PAPER TAPE SYSTEMS 

The OS/3 paper tape data management system is comparable with the paper tape 
systems in SPERRY UNIVAC Operating System/4 (OS/4) data management, SPERRY 
UNIVAC 9200/9300 Series Operating ·system IOCS; and the IBM System/360 Disk 
Operating System (DOS). The following paragraphs discuss areas of compatibility. 

17.6.1. C9mpatibility with QS/4 

OS/3 paper tape data management is compatible with the OS/4 paper tape system 
documented in the OS/ 4 data management system programmer reference, UP.;;7629 
(current version). The maximum block sizes of the two systems are the same: 409.5 bytes. 
The OS/ 4 ERRO keyword parameter is accepted by OS/3, but it is not implemented. All 
OSI 4 keyword spellings are accepted as alternates by the OS/3 DTFPT declaraJiye macro. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17.6.2. Compatibility with the .9200/9300 Seri'es 

17-74 

All 9200/9300 Series DTFPT keywords, as documented in the operating system IOCS 
programmer reference, UP-7526 (current version), are accepted by the OS/3 DTFPT 
declarative macro. Of these, the following are accepted but not implemented; the 
remainder are implemented: 

ATTN 
CHNL 
DEVA 
FIGS 
LTRS 

Moreover, you should note that the 9200/9300 Series letter/figure shifting capability is 
not supported for input files by OS/3. To run 9200/9300 Series paper tape programs that 
process input files with· shifted characters, you should remove the FIGS· and LTRS 
keywords from the DTFPT declarative macro call, substituting the FTRANS, LTRANS, and 
SCAN· keyword parameters and providing the necessary figure and letter translation tables 
and scan table elsewhere in your program. 

Another point of difference is maximum block size. OS/3 allows 4095 bytes; the 
9200/9300 Series allows only 256. Paper tape files created under the 9200/9300 paper 
tape data management system may be processed under OS/3; whether these should be 
restructured, or existing programs modified to exploit OS/3's 4095-byte maximum block 
size, are matters of judging the trade-offs between ·increased throughput and the 
programming effort involved. 

A fourth point of difference is that OS/3 has no combined paper tape file capability. To 
punch a paper tape and then read the tape for error checking in OS/3, you should code 
two DTFPT declarative macros (one for input processing, one for output, using different file 
names) and should specify two separate job c·ontrol DVC-LFD device assignment sets (one 
for each DTF). 

17.6.3. Compatibility with IBM System/360 DOS 

The OS/3 DTFPT declarative macro accepts all System/360 DTFPT keyword parameters 
documented in IBM Systems Reference Library: DOS Supervisor and 110 Macros, Twelfth 
Edition (February 1972), Order No. GC24-5037-11. Of these keywords, th€f following are 
accepted but not implemented in OS/3: 

DELCHAR .. 
DEVADDR 
DEVICE .. 
ER RO PT 
MOD NAME 
SEPASM 
WLR ERR 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

17-75 

A second point of difference is maximum block size. IBM System/360 DOS provides 
32,767 bytes; OS/3 allows 4095. Paper tape files containing fixed, unblocked records 
larger than 4095 bytes, or undefined records larger than 4094 bytes, must be restructured 
to be processed in OS/3, and existing programs exploiting the larger IBM maximum block 
size must be modified. 

A third point of difference is that, unlike IBM System/360 DOS, OS/3 paper tape data 
management does not provide for skipping over strings of consecutive end-of-record stop 
characters without intervening data when processing input files containing undefined 
records. 





PART 6. APPENDIXES 





UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

A-1 

Appendix A. Functional Characteristics 
of Peripheral Devices 

The tables in this appendix summarize the functional characteristics of the peripheral 
hardware available in the SPERRY UNIVAC Series 90 Data Processing Systems that are 
relevant to OS/3 data management usage. · · · 



UP-8068 Rev. 4 

I' 

I: 

,, 

SPERR:Y UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table A-1. SPERRY UNIVAC Card Reader Subsystems Characteristics (Part 1 of 2) 

0717 Card Reader Subsystem 

Characteristic Description 

Card orientation Face in, wit!l column 1 leading, and row 9 down 
(80-, 66-, and 51-column cards) 

Card rate 500 cpm (maximum) 

Read technique Dual redundant, solar cell technique using photo transistors. 
Column 0 amplifier checking 

Read modes Image mode: 160 six-bit characters per card 
Translate mode: 80 characters per card 
Available code: 8-bit EBCDIC 

: -:: --;-

Read station sensing Column by column 

Hopper capacity 2400 cards 

Stacker capacity 2000 cards 

0716 Card Reader Subsystem 

Card orientation Face in, with column 1 leading and row 9 down 
(80-, 66-, and 51-column cards) 

Card rate 1000 cpm 

Read technique Dual redundant, solar cell technique 
using photo transistors. 
Column 0 amplifier checking 

Read modes Image mode - 160 six-bit characters per card 

Translate mode - 80 characters per card 

Three available codes: 

• 8-bit ASCII 

• 8-bit EBCDIC (required) 

• Compressed code 

Read station sensing Column by column 

Hopper capacity 2400 cards 

Stacker capacity 
Normal (stacker 2) 2000 cards 
Reject (stacker 1) 2000 cards 

0719 Card Reader Subsystem 

Card orientation Face down, column 1 to left and row 9 
(80-, 66-, and 51-column cards) facing away 

Card rate 300 cpm 

Read technique Two columns of photosensitive sensors and 
light-emitting diodes 
Dual redundant. 
Column amplifier checking 

A-2 



UP-8068 Rev.4 

. 

·I 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT· 

Table A-1. SPERRY UNIVAC Caril Reader Subsystems Chara'cieristics (Part 2 of 2) 

0719 Carcf Reader Subsystem 

Characteristic Df!scri1>tion, 

Read modes Image mode: ~160 six-bit dharacters per card 
Translat"' mode; ~O ~f1aracters per card 

Read stafioh sensing Column by colUmn 

Hopper capacity 1000 cards 

Stacker capacity 1000 c~rds 
,_. 

Normal 

-"' 
Reject 

-..,-

Table A::-2. SPERRY UNIVAC Card Pµnch Subsystems Ch!Jracteristics (Part _1of2) 

0605 Card Punch Subsystem 

Characteristic· Description 
-'-'-

Media 80-column cards 

Punch mode 2-column serial 
-"-

Check mode Punch motion check 
; 

Feed mode On demand 

Punch rate 75 cpm (full card) 
160 cpm (28 columns only) 

Input capacity 700 cards 

Output capacity 700 cards (primary stacker) 
100 cards (reject stacker) 

Reading· Optional 

Read rate 160 cpm 
-= 

Punch translation 
Image mode 160 six-bit characters per card 
Translate mode 80 characters per card 
Available code: EBCDIC 

0604 Card Punch Subsystem 
---'- -"-

Media 80-column cards 

Punch mode Row 

Check mode Read of punched data 
--"" - --" ~ ~ 

Feed mode On demand 

Punch rate 250cpm 

Input hopper capacity 1000 cards 
~ 

A-3 

: 

' 

' 

"'I 



UP-8068 Rev. 4 

Characteristic 

Print speed 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table A-2. SPERRY UNIVAC Card Punch Subsystems Characteristics (Part 2 of 2) 

0604 Card Punch ~ubsystem 

Characteristic Description 

Output stacker capacity 1000 cards (normal and select stacker) 

Reading Optional 

Read rate 250cpm . .. . 

Punch translation 
Image mode 160 six-bit characters per card 
Compressed mode 80 characters per card 

Table A-3. SPERRY UNIVAC Printer Subsystems Characteristics (Part 1 of 5) 

0773 Printer Subsystem 
-;· 

Description 

110 to 680 lpm, depending on character contingencies: 

A-4 

Available character sets Characters sets per band Nominal print rate (lpm) 

48-character business 5 500 
63-character .print 4 400 
48/16-character print 4 400/670 
85-character print 3 (plus 1 character) 310 
128-character special 2 217 
96/ ( 16-16)-character 
ASCII 2 217/500 
256-character special 1 114 

Line advance 8.75 ms for spacing 8 .. 75 ms for spacing 8.75 ms for spacing 
timing first line; for first line; for first line; for 

skipping each skipping each skipping each 
subsequent line: subsequent line: subsequent line: 
3.33 ms at 6 lpi 2.22 ms at 6 lpi 1.67 ms at 6 lpi 
2.50 ms at 8 lpi 1.67 ms at8 lpi 1.25 ms at 8 lpi 

.. 

Number of print 120 print positions (columns) by standard printer; 132 or 144 columns 
positions by feature 

Form advance Vertical format buffer 
control 

Line advance Single space only, 22 inches/second 
rate 

= 
Form dimensions 3 to 18.75 inches wide 

1 to 24 inches long 

Character set Standard 48-character set. Any number of characters, up to 256, with 
options. 

Horizontal .spacing 10 characters per inch 

Vertical spacing 6 or 8 lines per inch, operator-selectable 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

A-5 

.Tab/eA'-3.· SPERRY UNlV.AC Printer Subsystems Characteristics (Part 2 of 5) 

0770. Printer. Subsystem 

Characteristic Description 

Print speed 0770-00 '0770-02 0770-04 

112 to 1435 lp!ll, . 213 to 2320 lpm, 337 to 3000 lpm, 
depending on character depending on character depending on character 
contingencies contingencies contingencies 

112 lpm - 384 contiguous 213 lpm - 384 contiguous 337 lpm - 384 contiguous 
characters characters characters 

800 lpm -48 contiguous 1400 lpm -48 contiguouS' 2000 lpm - 48 contiguous 
characters characters characters 

1435 lpm - 24 contiguous 2320 lpm - 24 contiguous 3000 lpm - 24 contiguous 
characters characters characters 

Line advance timing Advance and print Time in ms 
. 61pi 8 lpi 

> 

1 line 120.0 118.0 
2 lines 127.6 123.7 
3 lines .135.2 129.4 
n+1 line 12o+7.6n 118+5.7n 

--c;, '" 
Number of print positions Full print width of 132 print positions placed anywhere on a 16.5-

inch form. With 22-inch form, only central 13.2-inch portion can be 
used (160 print positions with feature). 

Form advance control Vertical format buffer 

Line advance rate 50 ips 75 ips 100 ips 

Form dimensions Continuous forms with standard edge sprocket-holes from 4 to 22 inches 
in width. Carbons may be attached or unattached with multicopy forms to 
a maximum of six parts. Recommended pack thickness not to exceed .0155 
inch for high quality print. 

Character set Standard 48-character set. Any number of characters up to 384 with 
options. 

Horizontal spacing 10 characters per inch 

Vertical spacing 6 or 8 lines per inch, as determined by program 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA'MANAGEMENT 

A-6 

Iable ;4-3. SPERRY "UNIVAC Printer Subsystems .Characte;isfi&s (Part 3 bf:\5) 

Characteristic 

Print speed 

Line advance 
timing 

Number of print positions 

Form advance control 

Line advance. rate: 

Form dimensions 

Character set 

Horizontal spacing 

Vertical spacing 

0768, eriinter· SU.bsystem 

0768-00 

:11.5 + 5.1 (n-1) ms -6·1ineS:per inch 
11.5 + 5.7 (n-1) ms - 8 lines per inch 
where: n = number of lines advanced 

Description 

. 0768-02 

132 character print positions including spaces 

0768-99 

1200 through 1600 lpm 

Vertical format buffer and loop control~ up to 132 lines per command 

'25 ip~ 

4 to 22 inches wide 

.1 to :22:in~hes .Ion!;! 

0768-00 63 characters 
0768-:-02 94 characters 
0768-"-99 132 characters 

10 characters per inch 



UP-8068 Rev. 4 SPERRY -UNIVAmOS/3 
BASIC DAlA MANAGEMENT 

A-7 

Table A-3. SPERRY UNIVAC Printer Subsystems Characteristics (Part 4 of 5) 

077.§ Pri.ntttr S~b$ystem -
.c; ")'< ,_, .. 

Characteristic Description 

Print speed Available. ... Character. ---Nominal print rate Opm) 

·I character sets per 
sets 

- i 

band 0776-00; 01 0776-02 0776-03 
-

·! 

384 1 115 150 145 
--- 192 2- 225 . -290 280 

128 3 325 420 400 
96 4 420 540 520 
64 6 600 750 730 
48 8 760 940 900 
32 12 1030 1250* 1220 
24 16 1090* 1250* 1250* 

~For duty cycle reasons, maximum speed 
in lpm is limited by a minimum time 
between consecutive line feeds: 55 ms 
for the 0776-00, 01 , ahd 48 ms for the 

·: 
9776~92, 03. 

1 

• 

. ·-
Time in ms 

.. Advance and .. Print 
Line advance timing. 6Jpi 8 lpi 

1 line 16 14.2 
2 lines 23.6 19.9 .. 
3 lines 31.2 25.6 
4-lines 38.8 

.,. 

31.3 
5 lines 46.4 37 
n+1 lines 16+7.6n 14:2+5.7n 

_!_e:_ ...'.:'.._::_ -~ -

Number of print positions 1136 print positiohs including-spaces 
'-"- -'-- ·:· 

Form advance control Vertical format buffer--
= """"' --'-'- _.:_ L _;:c_.::;....::.:_ --"-' _::_" - -

Line advance rate 22 inches/second 
-- ...::.:_ -- --

Form dimensions 4 to 18;75 inches Vllide ·I 

1 to 24 ·inches long 
'-"-'- ~ 1 J... 

Character set Standard 48-character set. Any number o-f charact~rs up to 
384 with options. 

--
Horizontal spacing 10 characters per inch 

- ---

Vertical spacing -6or S line~ per in~h; as determinb'C:t by program 
••• ! 'i . < i , , r . : .. ~ ; '% " 

·- - ~ ~ 



UP-8068 Rev. 4 SPERRY UNIVAC O~/~ 
BASIC DATA MANAGEMENT 

Jo\-O 

Table A-3. SPERRY UNIVAC Printer Subsystems Characteristics (Part 5 of 5)_ 

: 

0778 Printer Subsystem 
- ,,, 

Characteristic· -·Description 
-

Print Speed 240 to 560 lpm, depending on character contingencies, at 6 lines per inch (lpi) 
(2.36 lines per cm), and single line spacing. 

-

Available character sets Nominal print rate (lpm) 
-,_ :· : 

Basic Speed Upgrade 
00/01 02/03 ---

48-character business 300; 510 

64-character print - 240 415 

48/16-:-character .print* 240/255 415/560 

128-cbaracter_ print_ 120 240 

33.5-character print* - -

Line_·advance timing Number 
6 lpi:(2.36 lpcm) 8 lpi (3.15 lpcm) 

(in milliseconds) of lines 
-

j 

single 35.ms 35 ms 

double 53 ms 51 ms 

triple 61 ms 
l 

57 ms 
T T: 

Number of print positions 120 print poshio
1

ns (columns) per line; 136 columns by feature. 
1 

Number_ of characters Standard_ 48- or '64,.character set, with five- sets on a· .240-character 
band; or up to 256 characters with expanded character set control feature; 
48-character set band repeats five times resulting in 240 characters; 
64-character set band repeats f,our .times resulti'ng in 256 characters. 

-~ - - ·"C:'O' ; ; .. -:·:: '""= -=-:-

Forms advance control Vertical format buffer 
--:: 

Line advance rate Single space only, 22 inches fq5.88 cm) R~r _second (slew rate). 

Ribbon feeq Bidirectional, self-reversing; .ribbon removal without rewinding 

Ribbo_n type J•- Fabric or plastic film 
~ 

Codes EBCDIC, ASCII, or any 8-bit code 
; 

Form dimensions Continuous_s,ingle-:-p,art and rpultipart (ui::i ~9. six parts or up 
to 0.018 inch (0.457 mm) thick) with standard edge sprocket holes. Printer 
can also accept continuously 5I5rocketed, f..part card-stock forms of --

weights typically used for punch cards, postcards, or offset masters. Form 
widths from 4.0 inches (101.60 mm) to 18.75 inches (476.2 mm) and lengths 
up to 24 inches (609.6 mm) can be accommodated. Forms longer than 17 inches 
(431.8 mm) can be run with casework door open, but noise level increases with 
door open. 

Horizontal spacing 10 charcters per inch (2.54 mm per print position) 

Vertical spacing 6 lpi (4.23 mm per line) or 8 lpi (3.17 mm per line), 
operator-selectable. 

11 

*The "16" array is commonly a numeric subset. Extra 16 arrays are included in the 96/16-16 arrangement to 
make up a total number of 256 characters in a band. 



~ 
Table A-4. SPERRY UNIVAC Disk Subsystems Characteristics 

Description 

Characteristic 
8411 8413 8414 8415 8416 8418 8424 

Disk Subsystem Diskette Subsystem Disk Subsystem . Disk Subsystem Disk Subsystem Disk Subsystem Disk Subsystem 

Data capacity (8-bit bytes) 7.25 million 242,944 bytes (using 29.17 million 33.1 minion per track 28.95 million 28.9 million or 58.35 million 
tracks 1-73 for data)· 57.9 million 

Number of disk units 1. to 8 2.to 4 2 to 8 1 to 2 2.to 8 2 to 8 1 to 4 

....,: 

Disc/diskette speed 2400 rpm 360 rpm 2400 rpm 2800 rpm 2800 rpm 2800 r'pm 2400 rpm 

Rotation period (ms/rotation) 25 166.7 25 21.5 21.5 21.5 25 

Data bit rate 1.25 MHz .250 MHz 2.5 MHz 5.0 MHz 5.0 MHz 5.0 MHz 2.5 MHz __.._ 

Bit d!?nsity 1100 ppi 3268 ppi 2200 ppi 4040'fixed 4040 pulses 4040 ppi 2200 ppi 
4040 removable per inch (ppi) 

Track density 100 tracks per inch 48 track per inch 200 tracks per inch 370 fixed 192 tracks per inch 370 tracks per inch 400 tracks per inch 
(free format) 185 removable 

__::_ -=- ..:::. 
Track capacity (byte) 3625 3,328 bytes per track 7294 10,240: 10,240* 10,240 7294 

Number of tracks 200 + 3 spare 77 total, 73 for data 200 + 3 spare 808+ 7 spare tracks 404 + .7 spare 404 or 808+ 7 spare 400 + 6 spare 
usable tracks per use per disc surface usable tracks per 404+4 spare tracks usable tracks per usable tracks per usable tracks per 
disc surface disc surface disc surface disc surface surface 

Number of surfaces per 10 1 surface 20 Data 3 Data 7 Data 7 20 
disk uni! .• positioning 1 fixed Positioning 1 Positioning 1 

Data 2 removable 

Positioning time (seek time) 
Minimum 25 ms 25 ms 10 ms 10 ms 10 ms 10 ms 
Average 75 ms 83.33 ms 60 ms 33 ms 30 ms 27 ms 30 ms 
Maximum 135 ms - 130 ms 60 ms 60 ms 45 ms 55 ms 

'·" ~ 

Transfer.rate 156 kilobytes per 128 bytes in 6ms 312 kilobytes per 625 kilobytes per 625 kilobytes per 628 kilobytes per 312 kilobytes per• 
second second second second second· second 

t *In fixed 256-byte sectors, 40 sectors per track 

: 8425 
Disk. Subsystem 

58.35 million 

2 to 8 

'. 

2400.rpm 

25 
'C7 

2.5 MHz 

2200 ppi 

400 tracks per inch 

..:.::. .... 

7294 

400 + 6 spare 
usable tracks per 
surface 

20 

7.5 ms .. 
29 ms 
55 ms 

312 kilobytes per 
second 

..;.. 

8430 8433 
Disk Subsystem Disk Subsystem 

100 milliiln 200.million 

1 to 8 (with optional 1 to 8 (with optional 
feature up io 16) feature up to 16) 

3600 rpm ' 3600 rpm 

16.7 16.7 

6.45 MHz 6.45 MHz 

4040 ppi 4040 ppi 

1 92 tr?cks per inch : 370 tracks per inch 

13,030 . 13,030 

404 + 7 spare 808 + 7 spare 
usable, tracks per tracks per disc 
disc surface surface 

19 19 

7 ms. 10 ms 
27 ms 30 ms 
50 ms 55 ms 

806 kilobytes'per 806 kilobytes per 
second· second 

·i: 

OJ 
)> 

c 
""CJ 
Co 
0 
(j) 

CX> 
:a co 
~ 
,j::>. 

~~ 
("') m 
c :a 
)> :a 
-I -< 
)> c 
s: ~ 
~~ 
)> ("') 
G') 0 
m en s: ....... 
mW 
z 
-I 

)> 

cb 



Table A-5. UN/SERVO Subsystems Characteristics 

Description 
Characteristic 

UNISERVO 12 UNISERVO 16 UNISERVO 20 UNISERVO Vl-C 

Tape units per subsystem 1to16 1 to 16 1to16 2 to B 

Data transfer rate lmax1muml 68,320 frames per second 192,000 frames per second :320,000 frames per second 34, 160 frames per second 

Tape speed 42 7 inches per second 120 inches per second 200 inches per second 42. 7 inches per second 

Tape direction 
Reading Forward or backward Forward or backward Forward or backward Forward or backward 
Writing Forward Forward Forward Forward 

Tape length (maximum) 2400 ft 2400 ft 2400 ft 2400·1! 

Tape t.hickness 15mils 1.5 mtls 1.5 mils L5 mils l 

= = ..::. --=- _:.:_ 

Block length Variable Variable Vanable Variable 

Maximum block 65,535 65,535 65,535 8191 
size (bytesl 

: 

Minimum 18 18 18 ·18 
block size 
(bytes I 

lnterblock gap 9·track 7·track 9·track 7·track 0.6'" 9·track· 7·trSck 
0.6 In 0.75 lrl. 0.6 in. 0.75 In. '• ·o.6 in. 0.75 1n. 

..:::. -"' 

lnterblock gap time I• 

Nonstop 14.1 ms 11:5 ms 50 ms 6.25 3.0ms 14.1 ms 
NA 

Statt·stop 20.1 ms 23.6 ms B.d ms 9.25 5.0ms 20.1 ms 
..i 

Pulse .~ensi.ly 1600 ppl BOO.pp• 16dQppl .. aoo PP' 1600 PP' BOOppi 
!JOO pp1 556 ppi .BOO RP.I 800. ppi 556 ppi 

200 pp1 200 ppi 
~ ~ = 

Recording mode Phase NAZI Phase NRZI Phase encoded NAZI 
encoded · en~coded 

Reversal time .. 25 ms 1o'ms · 16 ms ··25·mS 

Rewind:time ·3 min 2 min 1'min 3'min 

' 
Simultaneous operation Opt.io~al Optional Qptional Option;il 

-'-
l 

UNISERVO 10 

2 to 8 

40,000 frames per second 

25 inches per second 

Forward or backward 
Forward 

2400 ft 

1.5 mils 

Variable 

8191 

1B 

9-track· 7-track 
0.6 in. 0.75 in. 

2~ ms 30.ms 

30 ms 3B ms 

1600 ppi BOO ppi 
BOO ppl 556 ppi 

200 ppi 

Phase 
NAZI encoded 

or 
NAZI 

16 ms· 

3 

Optl?nal 

UNISERVO 14 

2 to B 

96,000 frames per second 

60 inches per second 

Forward or backward 
Forward 

2400ft 

'1.5 mils 

Variable 

65,535 

1B 

9-track 7-track 
0.6 In. 0.75 In. 

14 ms 17 ms 

20 ms · 23 ms 

1600 ppi 800 ppi 
800 ppi 556 ppi 

200 ppi 

I Phase Ii NAZI encoded 
or 
NAZI 

10ms 

3 min 

" 
Optional 

= -=-

n•'I 

'""' 

Ill 
)> 

c 
'"C 
00 
0 m 
ex> 
:0 
(0 

::::: 
..j::> 

C/J C/J --c 
(') m 
c :0 
)> :0 
-I -:< 
)> c 
s:: ~ 
)> < z )> 
)> ("') 
G') 0 
m cn 
s: " mW 
z 
-:I. 

t 
0 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table A-6. SPERRY UNIVAC 0920 Paper Tape Subsystem Characteristics 

Characteristic Description 

Reader mounting Mounted on a 7- by 9-inch panel having a pin spindle 
for handling reels containing up to 50 feet of tape 
(for tape reader without an optional spooler) 

Tape read Unidirectional (right to left) 

Tape channel capacity Capable of reading 11/16-inch, 7/8-inch, or 1-inch 
paper tape; 3-position tape guide available to adjust 
to tape width used 

Read speed 300 characters per second at 10 characters per inch 

Type of tape All conventional perforated tapes with a light 
transmissivity of 40% or less 

Stop and start capacities Can stop on character or before next character; on start, 
unit reaches full speed within two characters 

Tape spooler Up to 5-inch reels can be used with the spooler to allow 
reeling of approximately 300 feet of paper tape 

Tape leader Approximately 3 feet of tape leader required when spooler 
mechanism is used 

Tape trailer A 12-inch trailer must be provided to prevent false broken 
tape indication 

Punch mounting Mounted within a 14- by 19-inch panel 

Tape channel capacity Handles paper tape width of 11/16 inch or 1 inch; five 
levels of tape characters with 11/16-inch paper tape 
being used; or 5, 6, 7, or 8 levels of tape characters 
with 1-inch paper tape in use. Tape guide adjusts to 
conform to paper tape width. 

Punch speed 110 characters per second at 10 characters per inch 

Type of tape Oil base paper tape is provided. A compatible tape 
utilizing a paper-plastic-paper sandwich is also 
available. 

Stop and start capabilities Punching is performed one character at a time. Tape 
punch is capable of stopping and starting between 
characters. 

Tape feeding The tape punch handles a paper tape reel of 1000 
feet with sensing signals to indicate low paper 
tape supply. 

A-11 





UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

8-1 

Appendix B·. Error and Exception Handling. 

B.1. GENERAL 

All programs using the services of OS/3 data :rlianagement execute imperative 
macroinstructions to obt~in specific processing. OS/3 data management performs part of 
the desired data manipulation itself, but frequently ca'lls on 0th.er OS/3 system programs 
(such as' the physical IOCS or disk space management) to perform other parts of the task. 
Most, of the time, the desired service 

7

1s performed exactly as requested, and, coritrol is 
returned to you inline with no need to issue messages to the system console or to the log. 
Sometimes, however, errors or exceptiOns to desired performance occur; these may be 
detected by data management, or the: other system 7programs at vario'us. points ,in 
processing. 

OS/3 data management is responsible for noting all errors and exceptions reported to it by 
the other system programs, as well as for testing, within itself, for other types of error or 
e~ceptions. When any such condition is detected, OS/3 data management will alw~ys: 

• make appropriate entries in certain fields of the DTF file table, yvhich your program 
may address in 'order to, learn of exceptions and errors and take the proper course of 
action when contrbl returns to you; 

• log and display me~sag'esJhat ,call fo~ operator intervention or are helpful in after-the-
fact tracing of vo,ur p~ogram's a.ction; · 

• branch to an error/exception routine in your program. 

B.2. RETURN OF CONTROL 

The design policy of OS/3 data management is never to terminate a user program. This 
means that data management will always return control to you after detecting an error or 
exception. If you provide the address of an error /exception routine in your DTF 
macroinstruction, data management returns control to this address for all conditions of 
error or exception. If you do not provide this address, data management returns control to 
you inline, at the next sequential instruction after the macro call. Retries by PIOCS have 
already been performed at this point in the processing. 

t 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

B.2.1. Error Handling with ISAM 

B-2 

When OS/3 ISAM detects certain logical errors, the processor sets a bit in the DTFIS table 
tbat prohibits. further refe(ence to the file, other than to;close It. These logical errors (also 
l~ted in; Table 8-3) are: · ; · · · · • · 1 

• •• • • • • ., 

11 Invalid macro sequence 

11 Invalid ID 

11 Invalid index search 

11 File space exhausted 

B.,3. SYSTEM. ERROR MJ:SSAqES 
, . . iE· _, ~ ,·. ' , 

In .OS/3,. system error·.messages .. are con.tc;tined .in a.general .filefof::.Ganne.d messc:tges, 
which. c:tr:e· listed .. or ,displayed u.nder·tbe.· control ,c;)f the o·~/3 ·supervisor.,y\/b~n QS/~ data 
m,anagemen~ dete.cts. a ,1.oggable· error, it acts through a logging lransient r:.Ql,Jtine. to 'J)rovide 
the. st:Jpervisor with.:the prope.~ code for the spe~ific message lo. bed .log~~d, vvhic;.1:1 the. 
tr~nsient .vanslates from an, .error code field. i.n the DTF fjle .table. This. iQt.~roal errnr· c;ode. 
may .also :be. .accessed by your program; it is place,d :in byte 56 otthe OTFjiJe table by da.ta 
management. ' ': l " • , . 

B.3.1. Oat~ Management .
1

Er~or: Messages 

The· error messages issued by OS/3 data management are shown in Table B-1, t'h'e'lfrst 
cql!ulTlp of vy~ich ~ists the internal error code placed in byte, 56 of ~very DTF file Jable 
fti~enameEt When

1 

ttiese messages are printed ~r displ~y.ed~ they will .. inclua.e: qetween the 
mess~:J'ge number ahd the text, the 7-byte logical filename. (LFD .na·m~) and 'the che]nnel and 
device address which are maintained in the physical unit .block. (PUB) b'n which the: file in 
question is assigned. Table B-1 also provicjes for .each,, mes~.age an e~planaJion of the 
probable cause 'of the error, a notation as fo the data manc;t,gement moQu'le. Vvbich issues it, 
and suggested actions by which you may recover from the error. Note, error messages 
relating to unit record also apply .to the 8413 disk~i~~ .. 



Internal 
Hexadecimal 

Code 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

DM 01 

DM921 

DM03 

DM.p4 

DM05 

DM.06 

DM07 

DM 08 

DMQ9 

OM 10 

OM 11 

DM.12 

OM 13 

DM14 

DM15 

DM16 

Table s~1. DS/3 Data Management Error Messages (Part 1.of 6) 

Message Number and Text I Issuing Module 

OPEN ISSUED TO OPENED FILE 

filenameREPUJRES channeJ/dev.ice v~n WITH RING RC 

FCB NOT FOU~D/INVALID 

filename REQUIRES ,c!i~nnel/device vsn WITH { ~~:6NO} R * C 

. 1/0 ERROR PETEqTl~D.'JYHILE.ACCESSING VTOC 

FORMAT~ LABEL~QTFOUND 

,VOLUME SEQUENCE ERROR RIC 

FILE SERIAL NUMBFR ERROR R*C • 

CREA119N [)ATE.ERROR ,RIC 

PF;tEFORN!ATWRITE ERROR DETECTED 

SPECIFIED NON-EXTENOABLE 

FILE SECURITY CHECK RIC 

ATTEMPTED/ACCESS.TO AN UNOPENED FILE 

ll"JIVALID IMf>ERATIV~ MACR.0/MACRO SEQUENCE ISSUED 

INVALID DTF, TYPE=nn@ 

PARTITION INVALID FOR SPECIFIED DTF, TYPE=nn G) 

OPEN 

·SAM tape 

.JlPEN/CLOSE 

SAM tape 

OPEN/CLOSE 

OPEN/CLOSE 

OP~N 

OPEN. 

OPEN 

Of> EN/EXTEND 

OPEN 

OPEN, 

All OMS 

All OMS 

OPEN7CLOSE 

OPEN 

Suggested Action 

T,L 

C (See note.) 

T,C 

C (See note.) 

T,V 

T,V,C 

0 (See note.) 

T, C, (See note.) 

T,C (See note.) 

T,M 

T,C 

H (See note.) 

T,L 

T,L 

T,S,L 

T,S,L 

·~ 

c 
""O 
00 
0 
Ol 
(X) 

:a 
(l) 

·~ 
.p. 

en en --o n m 
0 .:a 

~~ 
)> c 
s: 2:; 

~.~ 
)> ("') 
G') 0 
m en 
s: ' m c.u 
z 
-i 

OJ 
I c.u 



Internal 
Hexadecimal 

Code 

17 DM 17 .. 

18 DM18 

19 OM 19 

20 DM20, 

21 OM 21 

22 DM22 

23 DM23 

24 DM24 

25 OM 25 

26 DM26 

27 OM 27 

28 DM28 

29 DM29 

30 DM30 

31 DM 31 

32 DM32 
........... 

33 ' OM 33 

34 DM34 

Table 8-1. OS/3 Data Management Error Messages (Part 2 of 6) 

Message Number and Text Issuing Module 

INVALID BLOCK SIZE SPECIFIED OPEN/SAM/NI 

UNIT RECORD 

RECORD SIZE INVALID I SAM/SAM/NI 
UNITRECciRD 

INVALID DEVICE CHARACTERISTICS SPECIFIED OPEN 

NO BKNO SUPPORT IN SUPERVISOR SAM tape 

INVALID OR MISSING DEVICE ASSIGNMENT OR DEVICE NOT AVAILABLE UNIT RECORD 

HARDWARE ERROR-:- CHECK EBROR STATUS/SENSE BYTES All OMS 

UNRECOVERABLE 1/0 ERROR DETECTED All OMS 

1.NVALID REQUESJ:.(ID)-:- EXCEEDS FILE LIMITS GETCS ERROR: - Disc OMS 

WRONG LENGTH ERROR DETECTED Disk D!\t'IS, SAM tape 

DATA CHECK DETECTED Disc OMS 

READ ER13QR ON RUNLIB DEVICE OR SPOOL FILE OPEN 

PUNCH DOES NOT HAVE READ FEATURE UNIT RECORD 

NO HARDWARE FORSTUB READ UNIT REC.ORD 

VALIDITY CHECK ERROR UNIT RECORD 

(No console message appears, but this code in the Disc OMS 
DTF means: record not found for random function.) 

RECOfl[) NOT J=OUND FOR SEQUENTIAL FUNCTION SAM/Nl/ISAM/ 
IRAM/MIRAM 

INVALID FUNCTION ISSUED FOR OPTIONAL FILE Disc OMS 
.. 

(No console message appears, but this code Disc OMS 
in the DTF means: end of data detected for 
sequential operation.) 

Suggested Action 

T,S 

H, orT, D 

T,C 

S,T 

T,C 

T,M 

T,M 

T,D. 

T,M 

T,M 

T,M 

T,S 

T,S 

H 

H 

T,D 

T,L,C 

H 

OJ 
)> 

c 
-0 
00 
0 
O> 
(X) 

:D 
Cll 
:::: 
..J::>. 

en en 
nrl=: 
c :D 

~~ 
)> c 
s: ~ 
~~ 
)> n 
G> 0 
m en 
s: ' mW 
z 
-i 

OJ 

i 



Internal 
Hexadecimal 

I D~35 Code 

35 

36 I DM 36 

37 I DM 37 

38 I DM 38 

39 DM 39 

40 DM40 

41 OM 41 

42 DM42 

43 I DM 43 

44 I DM.44 

45 I DM45 

46 I DM46 

47 I DM47 

48 I DM48 

49 DM49 

50 I DM50 

51 I OM 51 

52 ., DM.52 

53 OM 53 

54 I DM 54 

Table 8-1. OS/3 ''Data Management Error Messages (Part 3 of 6) 

Message Number and Text I Issuing Module 

ADD OF RECORDS RESTRICTED BY PREVIOUS OPERATION ISAM add 

DUPLICATE RECORD-REJECTED ISAM add 

s'rn'.uENCE ERROR - RECORD REJECTED ISAM load 

END OF DATA RETURNED BY SYSTEM-ILLOGICAL ISAM 
CONDITION 

INVALID FILE CONDITION - INDEX INVALID ISAM add and retrieve 

INDEX SPACE Wll;LNOT SUPPORT PRIME DATA ISAM SETFL 

FILE SPACE EXHAUSTED ISAM, SAM tape 

CHARACTER MISMATCH Printer 

INVALID CONTROt.'C.HARACTER Printer 

LINE TRUNCATED Printer 

EXTENT TABLE 'EXHAUSTED Disc OPEN/EXTN D 

UNIT RECORD 

filename channel/device vsn'DATA BLKS: READ= nnnnnn.EOV = nnnnnn IC I SAM tape 

ERROR DURING"'L:ABEL PROCESSING 

I 
SAM/DAM/NI 

KEY LENGTH/l:.ACE FACTOR INVALID OPEN<disc 

PROCESSING INHIBITED BY ERROR CONDITION 

I 
ISAM 

RECSIZE REGISTER NOT SPECIFIED FOR UNDEF FORMAT SAM tcipe 

INVALID SUBFILE NUMBER SPECIFIED NI 

NO SPACE AVAILABLE FOR SUBFILE ENTRIES NI 

HARDWARE ERROR DURING FILE CONTROL BLOCK All disc 
UPDATE 

INVALID JCL SPECIFIED OR INVALID. USE OR NAME IN VFB I SAM.tape 
' ' ' \ '~ ' ' -", 

UNIT RECORD OR LCB JOB CONTROL STATEMENT INVALID USE OR NAME 
IN VCB OR LCB STATEMENT FOR printer file 

I Suggested Action 

H 

H 

H 

T,D 

T,R 

T,R 

T,:R 

T,D 

T,D 

H,S 

T,C 

C (See note.) 

I :.s.c 
T,L 

T,S 

T,S 

S;T 

T,M 

f c 

OJ 
)> 

c 
"tJ 
00 
0 
CJ) 
CX> 

:::0 
Cll 
~ 
~ 

en en 
(=)".'ti m 
c :::0 

~~ 
)>C:: 

s: ~ 
~~ 
)>n 
G') 0 
m en 
s: ' mW 
z 
-I 

OJ 
I 

01 



Internal 
Hexadecimal 

Code 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

DM 55 

DM 56 

DM 57 

DM 58 

DM59 

DM60 

OM 61 

or.Ji··62 

DM 6J 1 

DM64 

DM65 

DM 80 

OM81 

DM,82 

orv1'a3 

DM 84 

DMS5 

DM86 

PM8J 

DM88 

DM89 

Table B-:-1 .. OS/3 Data Management 'Error Messages (Pait 4 oi 6) 
• ' ' ! ,'' ' ' ' ' ' ' / ,' ,~ " 

Message Numb~r and Text 

STD SYSTEM/USER LABEL NOT FOUND 

FILE NOT FOUND 

V'!RITE ATTEMPTED ON UNEXPIRED FILE RIC 

'FSN DOES NOT MATCH FIRST VOLUME VSN 

STD LABEL FIELosbo NOT MATCH JCL SPECS 

TAPEMARKNOT FOUND AT FILE BOUNDARY 

INVALID DTF FIELD: PARAMETER, OR PARAMETER 
COMBfr~JATI ON, TYPE=nn © 

;ao'col.uMN CARDS READ WITH BLOCK SIZE 81-96 

'dPE·N:ERROR: BfNARY MODE CARD INPUT 
FILE.CANNC?T BE SPOOLED IN 

COMBINED CARD FILE CAN'T BE SPOOLED IN 

ILLEGAL KEY CHANGE DURING UPDATE 
l /,':·' t ;" 

BEGIN OUTPUT FILE PUNCH RECOVERY. R,U? 

PERFORM PUNCH RECOVERY STEP 2A. R,U? 

PERFORM PUNCH RECOVERY STEP 2B. R,U? 

BEGIN OF FILE MARKE~ NOT COMPLETE.**l,C 

1s·r(El\lb OF FILE
10R

1 

END OF TAPE. **F,T 

INSUFFICIEJ\IT SPA('..E AL:i:()CATEf5 FORJ~RINJER SKIJ'. CODES 

SPOOL FILE,fOR .CARD READ~R FILE WAS NOT CREATED 

UNRECOVERABLE ERRQR WHILE LOADING THE VERTICAL 
FORMAT BUFFER OR LOAD CODE BUFFER. 

jobname WAITING FOR LOCK lbl-flle-name 

DISKETTE DRIVE NOT AVAILABLE 

Issuing Module 

SAM tape 
UNIT RECORD 

SAM tape 

SAM tape, Disc OMS 
UNIT RECORD . 

·SAM tape 

SAM tape 

SAM tape 

All DMS 

UNIT RECORD 

UNIT RECORD 

UNIT R,~CORD 

MIRAM 

Read/Punc~ 

Read/Punch 

Read/Punch 

All paper tape 

All paper tape 

Printer 

UNIT RECORD 

Printer 

FILE LOCK 

UNIT RECORD 

Suggested Action 

C,T 

C,T 

C, T (See note.) 

C,T 

C,T 

C,T 

w 

C,T 

C,T 

B 

0 

0 

0 

0 

0 

c 

:0 

0 

w 

y 

OJ 
)> 

c 
"tJ 
Co 
0 

°' (X) 

:a 
CD ::: 
~ 

en en 
- "tJ n m 
c ::D 

~~ 
)> c 
s:: ~ 
~.~ 
)> (") 
G) • 

m~ s:: ...... 
me..> 
z 
-I 

OJ 

~ 



Table 8-1. OS/3 Data Management Error Messages (Part 5 of 6) 

Internal 
Hexadecimal Message Number and Text Issuing Module 

Code 

90 DM90 BEGIN ERROR RECOVERY ERROR CARD. R,U? Read/Punch 

91 DM 91 HAVE BLANK CDS BEEN PLACED IN HOPPER? R,U? Read/Punch 

92 DM92 DO RECVRY STEP 2. REFILE LAST (2) CD(S)? R,U? Read/Punch 

93 DM93 PERFORM PUNCH RECOVERY STEP 3. R,U? Read/Punch 

94 DM94 PREPUNCHED CARD DETECTED DURING ERROR RECOVERY Read/Punch 

95 DM95 PUNCH OFF-LINE.R,U? Read/Punch 

96 DM96 PUNCH MISFEED. R,U? Read/Punch 

98 DM98 LOGICAL END OF FILE REACHED RI* Tape extend 

99 DM99 ILLEGAL EXTEND, STANDARD LABEL NOT SPECIFIED Tape extend 

9A DM9A ILLEGAL EXTEND, HDR2 NOT FOUND Tape extend 

9B DM9B ILLEGAL EXTEND, EOF1 OR EOV2 NOT FOUND Tape extend 

9C DM9C ILLEGAL EXTEND, RECFORM INVALID Tape extend 

9D DM9D ILLEGAL EXTEND, RECSIZE INVALID Tape extend 

9E DM9E ILLEGAL EXTEND, BL~SIZE INVALID Tape extend 

9F DM9F ILLEGAL EXTEND, FILE FOLLOWS THE FILE.TO BE EXTENOED Tape extend 

NOTE: 

Operators choose one of the following action messages to reply to data management error messages. 

R 
I 
c 
u 
© 

Retry after mounting correct volume. 
Ignore the error condition. 
Cancel job. 
Unrecoverable; user error routine required. , 
nn is a message type subcode that is used to provide aaditional information as to why the associated message was displayed or printed. 
Refer to Table B-1 A for the subcodes and their explanatidns. 

Suggested Action 

0 

0 

0 

0 

H 

0 

0 

0 

s 

s 

s 

s 

s 

s 

s 

llJ 
)> 

c 
""C 
00 
0 
O'> 
(X) 

:c 
CD ::: 
~ 

(/) (/) 

5~ 
o':c 
)> :c 
;""" -< 
~e: s: z 
)> < 
z)> 
)> 0 
G>o 
·m en 
s:: ' m c..> 
.z 
-f 

llJ 

~ 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table 8-1. OS/3 Data Management Error Messages (Part 6 of 6) 

LEGEND: 

Suggested actions 

B. Check your data and rerun the job. 

C. Control stream content should be checked. 

D. Checking of program dump is recommended. 

H. Program should handle this occurrence, proceeding or otherwise as programmed. 

L. Program logic should be checked. 

M. Maintenance check of disk pack check. 

B-8 

0. Operator intervention is needed. See system messages operator/programmer reference, UP-8076 (current version). 

R. Reorganize file, getting more space or rebuilding inaex by new load. 

S. Program specifications to data management should be checked. 

T. Program termination is recommended. 

V. VTOC should be printed out for check. 

W. Warning message. 

Y. Rerun when device is available. 



UP-8068 Rev. 4 

·Associated Data 
Management 

Error Message 
-'-

DM15 

= 
'DM16 

DM61 

SPERRY UNIVAC os;:r 
BASl~.:DATA .MANAGI;~ENT·. 

B-9 

Table B-1 A. Data Management frror Message Subcodes, (Part 1 of 2) 

-"- ..,;!:- ...:.;_;_ . ,,,, _;;,,;;_ .:::... ..::::. 

Message 
Type Explanation 

Subcode* 
"""'-...:::.;.;. ..::. ..::. 

01 Invalid DTF ,address·· 

02 Invalid DTF type code 

03 Invalid DTF partition control appendage· (PCA) 
=· .... 

04 Invalid DTF partition control appendage (PCA) address 
= = .c==_ -"-

06 File type code in DTF does not match type code in IOCS processor. 
- ' ,, ' ,,, . 

01 Wrong key location 

02 Invalid DTF address in partition control appendage (PCA) 
-"- = .:::.... . 

03 Missing extenttable entry for partition contrdl appendage {PCA) 
. 

01 Single mount speciffcation1 does not match ·specification used to create file. 

Single mount specifications do 'riot match between Format 2 label and DTF 

02 Variable record specifications do not match between·· Format 2 label and DTF 
_:!_ 

. 

03 Two 1/0 areas are not contiguous. 

Index buffer not contiguous with 1/0 area 1. 

1/0 area 2 address not contiguous with 1/0 area 1 address. 

Index buffer not contiguous with 1/0 area l address. 
,. -. 

04 Index operations intended, but ·no index buffer or key argument specification 

Seek address not specified 

Key argument not specified 

Index buffer not specified 
-"- -"' CC' .. '" ... 
05 Key}location does not match specification used to create file. 

Key location values do not1 match)between Format 2 label and DTF 

Key location value less than. '4 with variable file 

Key specifications not zero after last valid key entry 

Key flag values do not match between Format 2 label and DTF. 

Key size does not equal ~Wigi.nal keysi~e us7d to ~r,eat~~fil~. 

06 Nonindexed output in!ended to an indexed file 

lndexed~acce.s,s in!ended tq a ,non indexed file! 

No \Jork ar~a or 1)0 re~iste~· specifitatiOn ' 07 
L L 

1:/0 regi~ter specified ·incorrectly 

Work area and 110 register specified together 

-"-

. ' 



UP-8068 Rev. 4 . SPER~YJ..l~JVAC os;a 
BAS IP . Dt.T A,. :MANAGEJvu:~r . 

Table B-r-1A: Qgta. lltJ.anagementError:'.Mes$a9.f! .• Subcodes (Part 2of2) · 

:Associated Data Message 
Management Type Explanation 

Error Message Subcode* 

DM61 (cont) 08 Double buffering with update or random •mode .. 

Double buffering with input and add 

Double bufferingcwith ;indexed input 

11 STD labels not specified with ASCII file 

When specifying ASCII, ·B4KS1l~ :not greater than 9999 

12 . B,~NQ.:::;:Y~!:>. n9t specified with block numbered tape 

13 :Y.:he. rea.der does nok.have··the, .96-column read feature 

15 .Format other than fixed unblocked. or variable unblocked• 

16 1/0 area 2 not specified with combined file 

Extend not allowed with combined file 

Multisector 1/0 invalid with combined file 

17 Block size· or record size equals zero 

18 An address in the DTF is not within the bounds of the user program 

B-10 

19 Invalid DTF, CR type not appropriate when Format 2 label active in multivolume 

20 User specified seek address is not word aligned or 1/0 area's are not half-word 
aligned 

21 ·With 7 tracl<· and conveq"on; .. Qlock.'size not multiple: of 3 

22 Error while performing. recovery of'.·~RAM/MIRAM file 

23 Invalid specificatioo in //DD job <Control statement 

*When error condition occurs, the related subcode (in hexadecimal) is placed in byte 44 bf the DTF file table. 

';f 

The disk space management routines of the OS/3 supervisor do not generate error 
messages, but instead load a hexadecimal ·error;·code into general register 0 for the error 
or exception conditions ·1isted iri TaJ~1e·. B-2.; .. Th,e /irsf colLirnrf of this table contains thE:} 
hexadecimal error code, which is loaded by disk space management into register 0, byte 3. 
This is followed by an interpretation of the· error: or exception. condition and suggestions for 
recovery action. 



UP-8068 Rev: 4 SPER'RY UNIVACi 05/3~· 
BAS~IC DATA MANAGEMENl 

8-11 

Table 8-2. OS/3 Disk Space Mamigement'Ef:roF,Codes · 

Internal ' 
Hexadecimal 

Code 

30 

31 

32 

33 

Interpretation 

Unrecoverable hardware 1/0 error on WRITE command; 
VTOC may be disturbed. 

Unrecoverable hardware 1/0 error on READ command; 
VTOC is disturbed. 

Unrecoverable hardware 1/0 error on READ command; 
VTOC not disturbed. 

Indicated device (PUB) either not allocated or none~istent .. 

34 File ID error: 

35 

36 

37 

38 

39 

3A 

3B 

3C 

• For EXTEND, SCRTCH, REN~ME, OBTAIN: the format 1 label 
record cannot be found on spe'cified volurrie. · · , 

• For ALLOf: a file with the same file ID already exists 
on this volume; . . ' ' '' ' ' ' 

No en:ipty label re.cords in VTqC. 

No space available on this volume. 

, No file con~rol bl9,ck (FCBI, fou~d fo,r t~is internal fil~nan:iE!,, 
(LFD-name). · · ., '' · · ' 

"*-""'' -'· 
For OBTAIN, theJlisk ad.dress si;iecified is Jnva!ip. 

, I 

For track aligned files, SCRTCH is invalid. 

'$Y$' is specified as first three characters of file ID to 
SCRTCH macro (PREFIX function). 

' "' i' ' 

' For RENAME, t.he file to;qE! renan:iE!d is not a 
format label file. 

VTOC format error is detected. 

Request for extension of file will exceed number of allowable 
extents (16 for all but split files, which are allowed 13). 

Error detected in your parameter table. 

List and examine VTOC, 
using OBTAIN macro. Attempt 
fo copy all files to' another disc; 
then reprep the suspected defective 
disc. · · . 

Same as· error code 31 
,,,''; 

Chei;:k the VOL.job control sta.tement 
and the volume sf?ciuence number 
of the disc volume. 

List VTOC and check all 
for~~t 1 labels. Check also 
all parameters in the job 
control device assignment set. 

Elimi11i:ite unused files or expand VTOC 
area. 

Eliminate unused files or change to a 
' ndncontiguous request. 

C.heck L,FO.job co.ntrol statement.,, 
,r '·' i· ' 

, , Provide.correct. disk address. 
arid rerun. · ' 

Use release that recognizes 
"trac:k aligned files. 

System files may not be 
deallocated with SCRTCH macro. 

~ $VTOC file cannot be 
scr~tched. 

IDa~~ set label.diskettes cannot. 
·.~~ scratched. 

For qisk.ette, chec:k for duplicate 
or overlapping space or a 
duplicate name. 

For disk, list VTOC and check 
format 4 label. 

Create a new file with a single 
extent large enough to 
accommodate the contents 
of the old file. 

Review formats presented in 
this manual and in 
supervisor user guide, UP-8075 
(current version). 



UP-8068 Rev. 4 SPERRY· UNIVAC· OS/3 
BASIC; DATA MANAGEMENT• 

8.3.3. Disk File Extension Error ·H~ndling 

B-12 

Three types bf exte.n~d failure:s can occur, eacn ··associated With a data manager:nent error 
diagnostic: ··· · · 

DM45 E.XTENTTABLE EXHAUSTED 

No space exists in ithe logical extent table for additional space acquired by file 
extension: 

DM41 FILE SPACE EXHAUSTED 

No physical space exists for file extension. 
' ~. ' < ; ; 

DM 11 SPECIFIED NON-EXTENDABLE 

DTF spe'cifies the file as nonextendable by: · 
' .,.. - • ,_' - >, 

maintaining a secondary allocation irlcrement' of zero (via the EXT card) 

definin'g the secondary allocation percent (UOS) as zerd 

setting the nonextendable flag in the partition table flag byte. 

Errors occuring' ·during file extend operations ·are always ass·ocialep with inability to 
acquire output space for a b:Uffer and consequent loss of output data. On extend .failure 
errors, file extena procedures now minimize IC>ss of 'Output data" to one record. 

8.4. ERROR FLAGGING PROCEDURES 

All OS/3 data management pgorams set bits in a special field of the DTF file table to serve 
as error flags, providing you with particular information on the error. Disk anp tape 
programs set the bits in this field and then call the logging transient (B.3); Gard and printer 
modules go directly to the logging transient. When· an error. is . detected durimg the 
execution of a data managem'.ent transient routine, the logging transient is called after the 
setting of the error flag bit~ is completed or bypassed. 



UP-8068 Rev. 4 

B.4.1. FilenameC 

SPERRY UNIVAC 08/3 
BASIC DATA MANAGEMENT 

"' ,~ ,. 

8-13 

The error flag field of the DTF file table ,is designated filenameC; it may be accessed by 
your program through the test under mask instruction· (TM), using for operand 1 your 7-
byte logical filename, to which you have· concatenated the 1,«3,tter C. Note that the size of 
filenameC varies with the type of file: for ,card and printer files, it is ortly one byte long; for 
tape and disk files, it is four bytes long. Table s_,3 lists the significance of the bits that are 
set to binary 1 in filenameC for certain error and exception condition$. For iQformation on 
paper tape error processing, refer to 17.5.9. , 

Table 8-3. Significance of Bits in filenameC (Part 1 of 4) 

BYTEO 
' 

DTFMI DTFSD 
Bit ,DTFIR 'DTFDA DTFMT DTFPR DTFCD 

DTFIS DTFNI 
~ -"' -"-

0 Last block on Reserved Line truncated Record size 
track accessed _}iJ (data too large) invalid --,. (too large or 

too small) 

1 Invalid ID .... Reserved Invalid control Reserved ,. character 

2 Invalid DTF ln'valid Invalid Character mis- Validity check 
PCA/DTF DTF match (unique unit error) 

3 Hardware _... 
error 

,, ,.. 
' 

4 Error found _}iJ 
in OPEN ,. 

= -"-

5 Error found .... 
in CLOSE --,. 

: 

6 Invalid macro _}iJ 
sequence r1 

= 

7 Reserved (DTFSD: reserved) Reserved Record size Reserved 
WAITF invalid 
required (too small) 



UP-8068 Rev. 4; 

1-

'I 

-·-

F 
J 

!'.>:' 

Bit 

:.:::.. 

0 

1 

2 

-t· 

3_ 

4 

--
5 

6 

7 

Bit· 

0 

1 

2 

-

~ -

~Pl;RRY µNl~A~>~1~/~ 
B~SlC .l)AT.£\. l\f'IANAG.EMENT 

Table B-3. Significance of Bits in filenameC (Part 2 of 4) 

BYTE 11 
...:.. ·~ _;::_ _._ 

; '· -;--:;- --,---,- -;:;-

OTFMI DTf$D. ,: 
DTFIR .QTfD~ DTFMT 
DTFIS I- DTFNI 

...:.. !.!.. -'-T '-"'- ...:;;_ •; 

-

1/0 corneletec£ --;- ' 
. ;_ 

Unrecoverable 
error 

--· 
--,-., 

--- -- - -
Unique unit 
error ·-

? 
fiecord .not 

---'- JrJ _ ~eserved 
found 71 

,.,,-
Unit exceptiqn ,~ 

,,_. __ 
-;:- _;;;; :; --,-;;:;-;;; _... .; ; '"' 

Y'frcmg ~ength. found -,-- Reserved 

-c: " - _::___...._ 
End of track - _l_~ •••-•R , ~".-

Reserved --,.. 

End of _cylinder 
_... 

Reserved ~~ ~ ---,. 

T~Jile B-3. Significµnce of Bits in filenameC (f?art 3 of 4) 

~ -~ 
_:_ 

BYTE2 
•-•-' _, -- --- ·u;• '"' 

DTFMI. --DTFSD 
DTFIR DTFDA DTFMT' 
DTFIS " DTFN( 

I 

Command rejection 

lnterven.ti-on,required 
_l_ 

Output parity check "I r 

... 

..;;_ ... ,. 
... ,. 

_... ,. 
-1-· 

'__... _-,. 

1J 
~ 
_Ii.. ,. 
~ ,. 

= ~ ~ --.;- ~ ~ ·- ~ _... ___ ,--3 Equ,ipment check,. __ -'-
- ,. 

- - --- ~ 4 D~tacheck ,. 
-,-;c;- ~ 

lii.J 5 Overrun Y! 

6 STOP state 
_ ... Word count ,. =zero 

7 Device check Data converter 
__ _... 

check ,. 
(7-track only) 

B-14 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table B-3. Significance of Bits in filenameC (Part 4 of 4) 

BYTE3 

DTFMI DTFSD 
Bit DTFIR DTFDA DTFMT 

DTFIS DTFNI 

0 Invalid record size ..... ...,.. 

1 Logical end of file ..... ...,.. 

2 File space exhausted Logical end of volume ti.. 

(DTFIS) 
..,.. 

Logical end of volume 
(DTFIR and DTFMI) 

3 Processing inhibited Invalid subfile Wrong length error 

4 Invalid index Reserved Reserved 

5 Sequence error Reserved Reserved 
(DTFIS and DTFIR 
only) 

6 Duplicate record Reserved Reserved 

7 ADD rejected Reserved Reserved 
(DTFIS only) 

B.4.2. Other DTF Fields 

8-15 

Certain of the OS/3 data management modules place, in other fields of the DTF file 
table than filenameC, additional information that is of value to you in monitoring the 
processing of your files. The details are documented for each specific use in the 
appropriate section of this manual;. these fields are designated filenameA, filenameP, 
filenames, etc., and are addressed in the same manner as filenameC: by concatenating 
the letter designation to your 7-byte logical filename. 





UP-8068 Rev. 4 SPERRY UNIVAC 05/3 
BASIC DATA 'MANAGEMENT 

C-1 

App~ndix C. Code Correspondences 

C.1. GENERAL 

This appendix presents a cross-reference table and figures useful to you for visualizing the 
correspondences· among. the following codes commonly used in data processing and in 
OS/3: ,. 

• Hollerith punched .card.: code 

• EBCDIC (Extended Binary .Coded Decimal Interchange Code) 

• ASCII (American National Standard Code fordnformation Interchange) 

• Binary bit-pattern (bit-configuration}1'representation for an 8-bit system. 

• HexadecimaJ,,representation 

• Compressed code for punched cards 

• Binary (image) mode for punched cards 

C.2. EBCDIC/ ASc'll/HOLLERITH CORRESPON'DENCE 

Table C~1 is a cross-reference table depicting the correspohdences among the; Hollerith 
punched card code, ASCII, and EBCDIC. The table is arranged inthe sorting (or collating) 
sequence of the binary bit-patterns that have been assigned to the codes, with 0000 0000 
being the lowest value in the sequence and 1111 1111 the highest. 

Note that the column headed Decimal uses decimal numbers to represent the positions of 
the codes and bit patterns in this sequence, but counts the position of the lowest value as 
the 0th (zeroth) position rather than the first. Thus, the position of the highest value bit­
pattern 1111 1111 is represented in the decimal column by 255, whereas it is actually the 
256th in the sequence. This scheme corresponds to the common convention for 
numbering bytes, in which the first byte of a group is byte 0, and is convenient when you 
are constructing a 256-byte translation table. (See the MODE keyword parameter of the 
DTFCD declarative macroinstruction (3.3).) 



UP-8068 Rev. 4 SPJ;RSY UNIVAC 05/3,t.:<: C-2 
BASIC· .DATA MANAGEME.~'f, 

The column headed Decimal also represents the collating sequence for the EBCDIC 
graphic characters shown in the fourth column of the table; the fifth column, Hollerith 
Punched Card Code, contains the hole patterns assigned to these EBCDIC graphics. Empty 
SJl::a~~e in t~~~fol!r~,~:i'°oJ~mD.)repr:e~ent~~ thez~bsitian~.~pf t~~~" EBCDIC control characters; the 
EBCDIC space charater is represented in the fourth column by the conventional notation 
SP at decimal position 64, and the corresponding card code is "no punches." 

The ASCII graphic characters, listed in the sixth column of Table C-1, are also in their 
collating sequence, and the hole patterns in the seventh column correspond to the ASCII 
graphics. The ASCII space character is represented by the notation SP in the sixth column 
at decimal position 32; the corresponding card code is, again, "no punches." The empty 
space in the sixth column represents the positions of the ASCII control characters. The 
shading in the ASCII graphic character column indicates where the 128-character ASCII 
code leaves off: there are no ASCII graphic or control characters that correspond to fhe bit 
patterns higher in collating sequence than 0111 1111 (the 128th in Table C-1 ). 

C.2.1. Hollerith Punched Card Code 

The standard Hollerith punched card code specifies 2'56. hole~pattems .in::12-row punched 
cards. Hole-patterns are assigned to the 128 characters. of ASCII and to 128 additional 
characters for use in 8-bit.coded systems.1:J:tnese .include;':the EBCDIC set. Note that no 
sorting sequence is implied by the Hollerith code itself. 

C.2.2. EBCDIC 

EBCDIC is an extension of Hollerith coding practices.,lt ~or:n~r:ise~~26:6·9;hare1cters, each of 
which is represented by an 8-bit pattern. Table C-1 shows the EBCDIC graphic characters 
only; the EBCDIC control characters are not.indicated!:r 

C.2.3. ASCII 

ASCII comprises 128 coded. cha,ra~1er~,~ eaGh ~~epres~pted .Q)', an e~bi.t pattef[l~::and ind.udes 
both control characters and graphic characters. Only the latter are shown in Table C-1. 

···r~A~ql)s l:JS~P· ~or,.i,Qforr:ne1tio~ .. in~_erchan,ge JJm<;>pg:.cfa~a: groces.sing;.cpmmµni·cati.on 1$y~tems 
;· c:mc:basso9.;C1tec:t eqy.ipr:nent.. · 



UP-8068 Rev. 4 

--;-

D~im~i· 

... 
-:;:-

0 
1 
2 
3 
4 
5· 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

SPERRY UNIVAC OS/3 · 
BASIC DATA MANAGEMENT· 

~ "'" ~ 4 ""'"" 

Table C_;;.1. Cross-Reference Table.: EBCDIC/ASCII/Holler/th (Part 1 of 5) 

'EBCDIC 
-cc -;= 

Hex a- EBCDIC 
deci- Binary Graphic 
mal <;h~racter 

= 
00 0000 0000 
01 0000 0001 
02 0000 0010 
03 0000 0011 
04 0000 0100 
05 0000 0101 
06 0000 0110 
07 0000 0111 
08 0000 1000 
09 \0000 1001 

OA 0000 1010 
OB 0000 1011 
OC 0000 1100 
OD 0000 1101 

I 

OE 0000 1110 
UF .OO<lO 1111 
10 0001 0000 
11 0001 0001 
12 0001 0010 
13 0001 0011 2 

14 0001 0100 ·, 

15' 0001 0101 
16 0001 0110 
17 0001 0111 
18: 0001 1'.000 
19· 0001 t001 
1.A: 0001 1010 
18 0001 1011 

\ 1C 0001 1100 
1D 0001 l101 .!:.. 

1E 0001 1110 
-;:c 

1F 0001 1111 
20 0010 0000 
21 0010 0001 
22 0010 0010 
23 0010·0011 
24 0010 0100 
25 .0010 0101 
26 ;0010 Q'.110 

. 27 0010 0111 
28 0010 1000 

·-' 

29 0010 1001 
2A 0010 1010 
28: 00101011 
?Ci 0010 1100 .. 
20 00101101 
2E 00101110 
2F 0010H11 

.' 30 0011 0000 
31 0011 0001 
32 ·ao·i 1 0010 

= 

33 0011 0011 
34 0011 0100 
35 0011 0101 
36 0011 0110 ,..,,. 

~ 

\ 

:Hollerith 
Punched Card 

Code 

12-0-9-8-1 
12-9-1 
12-9-2 
12-9-3 
12.:9:4_ 

\C 

12-9~5 
--:-

12-9-6 
12-9-7 
12-9-8 
12~9-8-1 

12-9-8-2 
12-9-8-3 
12-9-8-4 
12-9-8-5 
12-9-8-6 
12-9-8-7 
12-11-9-8-1 
11-9-1 
11-9-2 
lJ.,~EL. 

11-9-4 
11-9-5 
11-9-6 
11-9-7 
11-9-8 
11-9-8-1 
11-9-8-2 
11-9-8-3 
11-9-8-4 
11-9-8-5 
1 f-9-8-6 
11-9-8-7 
11-0-9-8-1 
0-9-1 
0-9-2 
0-9-3. 
0-9-4 
0-9-5 
0-9-6 
0-9-7 
0-9-8 
0-9-8-1 
0-9-8-2 
0-9-8-3 

..fi:fl:B-4 ...... 
0-9-8-5 
0-9-8-6 
0-9-8-7 
12-11-0-9-8-1 
9-1 
9-2 
9-3 
9-4 
9-5 
9-6 

I} 

. 

' 

.j 

; 

·' 

.. 
--;-

I 

I• 

ASCII 

· ''' Graphic 
Character 

SP 

.# 
$ 
%. 
& 

"4 
5 
6 

C-3 

ASCII 

Hollerith 
Punched Card 

Code 

12-0-9-8-.1 
12-9-1 
12-9-2 

0-9-8-7 
11-9-6 
12-9-5 
0-9-5 
12-9-8-3 
12-9-8-4; 
12-9-8-5 
12-9-8-6 
12-9-8-7 
12-11-9-8-1 
11-9-1 
l 1-9-2 
11-9~3 

9-8-4 
9-8-5 
9-2 
Q-9-6 
11-9-8 
11-9-8-1 
9-8-7 
0-9-7 
11-9-8-4 
11- -8-5 
11-9-8-6 
11-9-8-7 
No punches 
12-8-7 
8-7 
8-3 
11-8-3 
0-8-4 
i2 

0-1 
0 
1 
2 

~ 
4 
5 
6 



UP-8068 Rev. 4 

Decimal 

55 
56 
57 
58 
59 -=-
60 
61 . 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

·87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 

~ 

SPERRY UNIVAC OS/3 
BASIC DATA iytANAGEMENT 

C-4 

Table C-1. Cross-,fieference, Table: .EBCDIG/ASClllHollerith (Part 2 of 5) 

1

EBco1c ASCII 
~ 

Hex a- EBCDIC Hollerith ASCII Hollerith 
deci- Binary Graphic Punched Card. Graphic Punched Card 
mal Character· Code Character Code 

37 0011 0111 9-7 7 7 
38 0011:1000 9-8 8 .8 
39 0011 ·1001 9-8-1 9 9 
3A 0011·1010 9-8-2 : 8-2 
38 :._'._ 0011 1011 ::..::_ •.· 9-8-3 ; 11-8-6 
3C 0011.1100 

,,-,-
9-8-4 < '12-8-4 . 

3D 0011 1101 9-8-5 = 8-6 
3.E 0011 1110 9-8-6 

. 
> 0-8-6 

3F 00111111 9-8-7 ? 0-8-7 
40 0100 0000 .SP No.punches •@ 8-4 
41 0100 0001 12-0-9-1 A 12-1 
42 0100 0010 12-0-9-2 8 12-2 
43 0100 0011 12-0-9-3 c 12-3 
44 0100 0100 12-0-9-4 0 12c4 
45 0100 0101 12-0-9-5 E 12-5 
46 0100 9110 -:::- 12-0-9-6 F I• 12-5 
47 0100 0111 12-0-9-7 G 12-7 
48 0100 1000 12-0-9-8 H 12-8 
49 0100 1001 12-8-1 . I 12-9 
4A 01001010 [ ...1.2.:8.:2 

., J. 11-1 
48' {)100· 1011 

.-cc 

K· 11-2 12-8-3 
4t 0100 1100 < 12-8-4 L 11-3 
40 01001101 ( 12-8-5 M I· 11-4 
4E 0100 1 HO •;+. 12-8-6 ,. N 11-5 
4F 0100 1111 L ·:_:_ 12-8~7 0 11-6 
50 0101 0000 & 12 p 11-7 

I· 51 0101 0001 12-11-9-1 Q 11-8 
52 0101 0010 12-11-9-2 R 11-9 
53 0101 0011 12-11-9-3 s 0-2 
54 .. 0101 0100 

_'.:...'. 12-11-9-4 T 0-3 
55 0101 0101 12-11-9-5 u 0-4 
56 0101 0110 12-11-9-6 v 0-5 
57 0101 0111 12-11-9-7 w 0-6 
58 0101 1000 12-11-9-8 x 0-7 
59 0101 1001 - . 11-8-1 y 0-8 
5A 0101 1010 ] 

. 
11-8-2 z 0-9 

58 0101 1011 $ 11-8-3 [ 1,2-8-2 
5C 0101 1100 * 11-8-4 ' 0-8-2 
50 0101 1101 ) 11-8-5 ·] 1.1-8-2 
5E 0101111Q ~; -11-8-6 /\ 11-8-7 
SF 0101 1111 /\ 11-8-7 I - 0-8-5 
60 0110 0000 - 11 - 8-1 
61 0110 0001 I 0-1 a 12-0-1 
62 0110 0010 11-0-9-2 b 12-0-2 
63 91lQ 001.1 

_cc. --'- --11-0-9-3 ....::. c 12-0"3 
64 0110 010:0 11-0-9-4 d 12-0-4 
65 0110 910'1 11-0-9-5 e 12-0-5 
66 0110 0110 11-0-9-6 f 12-0-6 
67 0110 0111 11-0-9-7 g 12-0-7 
68 0110 1000 11-0-9-8 ~h 12-0-8 
69 0110 1001 0-8-1 i 12-0-9 
6A 0110 1010 I 

12-11 j 12-11-1 I 

68 0110 1011 0-8-3 k 12-11-2 
6C .:-:0110 1100 %- 0-8-4 I 12-11-3 
60 -0110 1101 - 0-8-5 m 12-11-4 



UP-S06S Rev. 4 

Decimar '", 

110 
111 
112 
113 
114 
1.15 
116 

·' 
117 
11S 
{19 
120 I 
121 
122 '·, 
123 

-
124 
125 
126 
1.27 
12S 
129 
1'30 
1;31 
132 
133 
134 
135 
136 
1.37 
fas 
139 
140 l 

1'41 
142 
143 
144 
145 
1146 
147 
148 
149 
150 
l51 
152 
1,53 

154 
-"-

1.55 
156 
157 
158 
159 

SPERR'{ UNfVAC OS/3 
BASIC ~DATA MANAGEMENT" 

C-5 

Table C-1. Cross-Reference Table: 'EBCDIC/ASC///Ho//erith'(Part 3 of 5)' 

. 
EBCDIC 

-=-
He.xa- EBCDIC 

; 
Bi.~~ry Graphic· deci-

mal Character ";.; . ~ 

·6E 0110 1110 > 
SF 0110 1111 ? 

. ·10 0111 0000 
7·1 0111 0001 

-
72 0111 0010 
73 0111 0011 
74 0111 0100 
75 0111 0101 
76 0111 0110 
77 . 01110111 
7S 0111 1000 
79 0111 1001 ' 
7/)\ 0111 1.010 : 
78 0111 1011 # 
·7C 0111110() @ •' 

70· 0111 1101 '· 

7E 0111 1110 = 

7F 0111 1111 " 
so 1000 0000 
Sf 1000 0001 a 
S2 1000 0010 b 

.f33 1000 0011 c 
S4 100.0 0100 d 
S5 1000 0101 e 
S6 1000 0110 f .. ., 

S7 1000 0111 g 

88 1000 1000 h 
S9 1000 1001 i 

~A 1000 1010 
SB 1000 1011 
SC 1000 1100 
so 1000 1101 

,SE 1000 1110 
SF 1000 1111 

;·go, 1001 0000 
,91 1001 0001 j 

92 1001 0010 k 
93 1001 0011 I 
94 1001 0100 m 
95 ·1001 0101 n 
96 1001 0110 0 

97 1001 0111 p 

9S 1001 1000 q 

:99 1001 1001 r 

QA J_ 1001 1010 .· 

,913. 1001 1011 
9C 1001 1100 
90 1001 1101 
9E 1001 1110 
9F 1001 1111 

-'-

Hollerith 
Punched Card 

··"code'· 

O-S-6 
0-8-7 
12-11-0 
1~J1-0-9-1 

12-11-0-9-2 
' 12-11-Qc9-3 
:12-11-0-9-4 
. 1 2-11 -0-9-5 
12-11-0-Q-6 
12-11-0:9_7 
12-11-0-9-S 
S-1 
S-2 
S-3 
8-4 
S-5 
,S-6 
S-7 
·.12-0-8-1 
·12-0-1 
;12-0-2 
12-0-3 
12-0-4 
12-0-5 
12-0-6 
12-0-7 
12-0-8 
'12-0-9 
'12-0-8-2 
12-0-S-3 
;12-0-S-4 
12-0-8-5 

l :12-0-8-6 
12-0-8-7 
.12-11-8-1 
12-11-1 
,12-11-2 
12-11-3 
12-11-4 
12-11-5 
12-11-6 
12-11-7 
12-11-8 
12-11-9 
12-11-8-2 
~2-11-8-3 

12-11-S-4 
12-11-S-5 
12-11-8-6 
12=11-8-i 

I· 

·I 

ASCII 
Graphic 

. (;haract~r 

p 
q 

s 
t 

'U· 

ASCII 

Hollerith 
Punched Card 

Code 

12-'11-5 
12-11-6 
12~11-7 

1.2-J 1-a 
12•11-9 
11-0-2 
11-0-3: 
1.1"0-4' 
11-0-5 
·11-0-6 

11-0-7 
11-0-a: 
11 ..'.Q-9' 
12-'0 
12..:11 
11.:.'Q 

11-0-1. 
12-9-7 
11 ·0-9:;.8-1 
0-9-1 
0-9-2 • 
0-9-3 
0-9-4 
11.'-9-5 l 

12-9-6· 
11-9-7 
0-9-8 
0-9-8-1 
0-9,S-2 
o:9~8-3 
0-9~8-4 

1259-8-1 
12-9-8-2 
1 t~9-S-3 
12-. 11 -0-9-8-1 
9-1 
11-9-8-2 
9-3,. 
9-4 
9-5 
9-6 
12-.9-8 
9-81' 
9-8•1 
9-8-2 
9-8.-.3 
12-9~4 

11~9-4 

9-8-6 
· 1'1-0-9-1 



UP-8068 Rev. 4 

Decimal 

160 
161 
162 
163 
164 
165 
160 
167 
168 
169 
HO 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
181 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 

SPERRY l)NIV~~ Q:S/i.i 
BASIC QATA: MANAGEMENT 

l..-0 

Table C-1~ (:ross-Ref~rence Table: EQCDICIASCll/Hof(erith (Part 4. of 5) 

·E-BCDIC 

Hexa:< 
1 

.EBCDIC 
d . I• Binary Graphic;·· ec1-

mal C:::haracter 

·Ao I 101_9ooop 
A1' 

I· 1010 0001 -.I 

A2 10100010 s 
A3 1010.0011 t 

A4 1: 1010.0100 u 
A5 10100101 v 

,. A6. 10100110 'W 
I A7 I 10100111 x 

A8 1010 1000 y 
•A9 10101001 z: 

Ir AA 1010 1010 
-;~--

AB 10101011 
AC' 

11 
1010 ;1100 

AD 10101101 
AE1 10101110 
AF I• 10101111 
ea 101 (Oooo 

... 

B1 10110001 
B2 1011 0010 
B3 1011 0011 
B4. 1011 0100 
B5. 1011 bioi 
B6 1

, 1011 0110 
B7 10110111 -·, 

L B8· I• 10111000 
B9 1- 1011 ~00_1 

1
·: BA- 1011 1010 

BB 10.11 1011 
BC 1011 1100 

I- iBD 10111101 . 

BE' 1011 1110 
81= 10111111 
co 1100 0000 { 
CT - 1100 0001 A 
C2 1100 001-0 B 

:c3 . 1.1Q00011 c 
C4-i 1100 0100 D 
C5 11000101 E 
C6 1100 0110 F 
C7 11000111 

.l. 
G 

C8 ) 190 .. 1@0 H -
C9 1100 1001 I 
·CA 1100 1010 
cs· 11001011 
co 11001100 

_gp 110_01101 
; 

CE. 11001110 
CF 11001111 
DO -1101 0000 }-
D1 · 1101 0001 J 

' ~-

Hollerith 
·Punctied Card 

Go'de 
_l_ 

. , 1l:O.:~F1 _ 
11-0-1 

j11-0-2 
i 11-0-3 
. 11-0-4 

11-0-5 
11-0-6 
11-0-7 
11-0-8 
11-0-9 
11-0_-8:.2 
11-0-8-3 

.: 11-0-8-4 
11-0-8-5 
11-0-8-6 
11-0-8-7 
12-11-0-8-1 
12-11-0-1 
12-11-0-2 
12-11-0-3 

•. 

12-11-0-4 
1-- .. - ·- -

•12-11-0-5 
12-11-0-6 

i 12-11-0-7 
12-11-0-8 

- 12-11-0-9 
12-11-0-8-2 
12-11-0-8-3 

; :12-11-0-8-4 
.12-11-0-8-5 

. 12-11-0-8-6 
h2-11-0-8-7 
' '12-0 

. i 12-1 
12-2 
12-3 
p-4 
12-5 
~2-6 

12-7 
l2-8 
12-9 
12-0-9-8-2 
12-0-9-8-3 
12-0-9-8-4 
12·0=9-8-.5 
:I 2-0-9-8-6 
12-0-9-8-7 
11-0 
11-1 

l 

' 

I·· 

ASCII 
Graphic 

Cha~~cter 

--ASCII 

Hollerith 
Punched Card 

Code· 

12-0-9.-1 
12-0-9-2 
12~0-9-3 

12~0-9-4 

12~0-9-5 

12-0-9-~ 

12-0-9-7 
12-0-9-8 
12-8-1 
12-11 ~9-1 
:I 2~11.-9:2 
12-11-9-3 
12~11-9-4 
12-11-9-5 

11:.'0-9-3 
11:.0-9-4 
11-6-9-5 
11-0-9-6 
11-0-9-7 
11 ~o-9-8 
0-8-1 
12-1-1-0 
12-11-0-9-1 
12-11-0-9-2 
12-11-0-9-3 
12-11_ -0-9-4 
12-11-0-9-5 
12-11-0-9-6 
12-11-0-9-7 
12-11-0-9-8 
12~0-8-1 

12-0-8-2 
12-0-8-3 
12-0-8-4 
12-0-8-5 
12c0-8-6 
12"0-8-7 
12-11-8-1 
12"11-8-2 
12-11-8-3 
12-i 1-8-4 
12-11-8-5 
12-11-8-6 



UP-8068 Rev. 4 

Decimal 

210 
211 
212 
213 
21'4 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 

sPE'RRv'uN1v.A.e;t>sVz 
~A~JG. ~~TA~ M&~'~Q~MENT 

Table C-1. Cross-Reference Table: EBCDIC/ASCll/H0Tferith1 (Patt· 5dt5J 

ASCI(:. 

·ASClfY '' Hollei-ith 
deci- Binary Graphic, , ~u11cheq Card ,Graphic·~ Purfchec:ICard 
mal Character Code Code 

02 1101 0010 K 11-2 11-0-8-2 
03 1101 0011 L 11-3 ; ' ,"l hQ-8~'3 
04 1101 0100 11-4 11-0-8-4 

1101 0101 11-0-8-5 
11'Moho 11-b.:S-6 

07 1101 0~1) '11-0..a .. 7: :.· 
08 1101 1000 12-11-0-8-1 
09 1101 1001 R 11-9 12-11-0-1 
DA 1101 1010 12-11-9-8-2 12-11-0-2 
DB 1101 1011 12-11~9-8~3 : ; 12-11-0-3 
DC 1101 1100 12-11-9-8-4 12-11-0-4 

DD 11011101 12-11-9-8-5 12-11-0-5 
DE 1101 111 q 12-1 i-9-8-6 12-11-0-6 
OF 1101 1111 12-11-0-7 

EO 1110000Q 12-11-0-8 
E1 1110 0001 12-11-0-9 
E2 1110 0010 12-11-0-8-2 
E3 1110 0011; T 12-11-0-8-3 
E4 11100100 u 12-11-0-8-4 
E5 1110 0101 v 12-11-0-8-5 
E6 1110011q w 1 2-11 -0-8-6 

E7·· M;1Q QJ11j 
'•<0"• = 

x 12-11-0-8-7 
E8 +t10 1000 y 12-0-9-8-2 

;,.fP,9· 11,10 1001 ·z· 12-0-9-8-3 
EA 1110 1010 12-0-9-8-4 
EB 1110 1011 11-0~9-8-3 12-0-9-8-5 
EC 11101100 11-0-9-8-4 12-0-9-8-6 
ED 1110 1101 11-0;9-8-5 12-0-9-8-7 
EE 11101110 11 -o,:g~~6 · ·''"" 12-11-9-8-2 
EF 11101111 11-0-9-8-7 12-11-9-8-3 
FO 1111 0000 0 0 12-11-9-8-4 
F1 1111 0001 1 1 12-11-9-8-5 
F2 1111 0010 2 2 12-11-9-8-6 
F3 1111 0011 3 3 12-11-9-8-7 
F4 1M1 O·JOQ 11-0-9-8-2 
F5,, 1.111 0101' 

'"{ ' . 11-0-9-8-3 
F6 1111 0110 11-0-9-8-4 
F7 1111 0111 11-0-9-8-5 
F8 11H100e- 11-0-9-8-6 
F9 11111001'" 11-0-9-8-7 
FA 1111 1010 12-11-0-9-8-2 
FB 11 il"10M 12-11-0-9-8-3 
FC 1111 1100 12-11-0-9-8-4 
FD 1111 1101 12-11-0-9-8-5 
FE 11111110 12-11-0-9-8-6 
FF 11i11111 12~11-0-9-8-7 12-11-0-9-8-7 



UP-8068 Rev. 4 

C.3. OTHER CARO COD.ES 

~PERRY UNt)(~C:~S/3 
BASl<>[)f. T~)y,'IANAQEMENT 

C-8 

Two other p1;inched card coding systems can be handled with OS/3 data ma.nagement and 
all· card. reader and ccnd punch subsystems in the ·SPERRY UNIVAC 90/30 System: the 
co~pressed code and the, column. binary, or image, code. 

C.3.1. Compressed Card Code 

Figure C-~-J indicates the constructi.on of the compressed CcUd code; each card column is 
represented 'by an 8-bit pattern in one bYte of main storage. . 

r COLUMN PUNCH POSITIONS 

NOTE: 

MAIN STORAGE 
.BYTE 

L..........~-------w------' BIT POSITIONS 

.PUNCH PqSITIONS 1 THROUGH 7 ABE INDICATED IN'. 
BITS 1 THROUGH 3, ACCORDING TO THE·FOLLOY\JIN9 TABLE: 

PUNCH BITS 
R'ows·1 TH~u 7 123 

NONE 000 
1 011 
2 101 l 

;3· 001 
4 010 
5 100 
6 111 
7 110 

Figure C-1. Compressed Card Code 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA· MANAGEMENT 

C.3.2. Column Binary (Image) Code 

C-9 

Figure C-2 indicates the construction of this code. Note that ~ach card column requires 
two bytes of main storage; an 1/0 area of 160 bytes is required for an 80.;.column:card. 

COLUMN PUNCH POSITIONS --i 

0 

NOTE: 

BITS 0 AND 1 ARE CLEARED TO ZEROS ON AN IMAGE READ. 

Figure C-2. Column Binary (Image} Card Code 

C.4. DATA CONVERSION 

12 

11 

0 

2 

3 

4 

5 

6 

7 

8. 

9 

In OS/3 data management, there are five ways in which your data, held in main storage 
in 8-bit bytes, may be converted into hole-patterns in punched cards, and vice versa: 

• Standard mode (EBCDIC) 

• Standard mode (ASCII) 

• Compressed code mode 

• Binary (image) mode 

• Translate mode for reading or punching 

In EBCDIC standard mode (MODE=STD), data in main storage in EBCDIC code is punched 
into cards in the Hollerith punched card code. Cards are read in Hollerith, and the data 
stored in EBCDIC. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

C-10 

In ASCII standard mode (MODE=STD and ASCII YES), data management translates data 
stored in the 8-bit ASCII code in main storage to EBCDIC, and then the cards are punched 
in Hollerith. The reverse process ·is used when cards are read, unless a hardware ASCII 
translate feature is available on the card reader, when data management omits the 
EBCDIC-to-ASCII translation. 

In the compressed code mode (MODE=CC), an 8-bit data byte is converted by data 
management into a single-column hole-pattern (Figure C-1 ). 

In the binary or image mode (MODE=BINARY}, there is a one-to-one correspondence 
between 12 data bytes in majn storage (data is stored in the lec;ist significant six bits of 
two 8-bit bytes) and the 12 possible row punches in a, card column (Figure C-2). 

In the translate mode (MODE TRANS), you make your own assignment of 8-bit patterns to 
the 256 hole-patterns listed under EBCDIC in Table C-1, in the order these are shown in 
the table. · 

The preceding considerations ·should be of ·little concern to you because, with OS/3 data 
management, you can always use any mode with any peripheral equipment in your 
installation's configuration. 

The 96-column card format (as 'shown in Figure C-3) hold 96 characters of data at six 
bits per character. The characters are arranged on the ;card as three rows of 32 characters 
each. The fact that each ch.axacter c.an· be represented :in six bits is the reason no binary 
read mode is provided. Depending upon the translate features.in the hardware, and MODE 
keyword specification, each 6-hole character on a card is transferred into the user's 1/0 
area as an EBCDIC or ASCII 8-bit byte. 



UP-8068 Rev. 4 

NUMERIC CHARACTERS 

Zone {: B 
Punches A g 8 
Digit 4 
Punches 2 

1 

@ ALPHABETIC CHARACTERS 

Zone {: B 
Punches A g 8 
Digit 4 
Punches 2 

@ SPECIAL CHARACTERS 

Zone {: B 
Punches A 

g 8 
Digit 4 
Punches 2 

2 2 
1 1 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

C-11 

©-___,_L.,..1234567890 L I ' l • ! ' 7 I 9 10 " l2 ll ,. l! '' n II !I 10 21 22 >l 2' 25 '2' 21 21 21 lO ll u 

@-....-i_.~ ABCDEFGHIJKLMNOPQRSTUVWXYZ 
nttHHUUU~~UU«H~~uu~nnHttH~nuu~~UUH 

@-...... } ¢ . < ( + I ! $ * ) ; ...., - !& ,% ->? _:#'.@' =" 
"""""mTinuunnnnn~~ttttttHHVHH~flttttttHH 

{ 
B i7 •• 99 100 10' tC2 lOl t04 10! JO& 1C7 lOI 109 110 mmITTM~mmunmm~rn~mmm 8 
A • A 

© 8 •• 8 
4 •••• 4 
2 •• •• 2 

~ ' ;: ' 4 ' I ' • ' 10 n 12 ll t• ti 16 11 11 t9 ZO 2t 12 Z3 24 25 26 27 21 21 30 l1 l1 
1 

{ •••••••••••••••••• B A.•••. e e e e •••••••• A 

@ 8 •• •• •• a 
4 •••• • ••• • ••• 4 
2 •• •• •• •• •• •• 2 

{ 
~~;!~~:l;~~1t1!08qln,n~n8nl9~~uuH~ 
A e e e e e e e ••••••• A 

@ 8 •••••••••••• • ••••••••••• 8 
4 •••• •••• •••• •••• 4 
2 •• • ••• •• •• • ••• •• 2 
1 ~u!uRm'n~uln~n~~luau~u~u8~~""""" 1 

'" 
DD 3700 

A 
8 8 

4 4 4 4 
2 2 

1 1 1 

I Al e I c I o l E l F l G l H j 1 l J l Kl L l Mj N lo I P I al R l s I Tf u l v l wl x l v I z I 
8 B B B B 8 B 8 8 B B B B 8 B 8 B B 
A A A A A A A A A A A A A A A A A 

8 8 8 8 8 8 
4 4 4 4 4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

(blank)~ 

B 8 B 8 B B 8 8 B B B B B B 
A A A A A A A A A A A A A A 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Figure C-3. 96-Column Card Punch Codes 

..J 





UP-8068 Rev. 4 

D.1. GENERAL 

SPERRY,UNIWA.C OS/3 
BASIC PATA MANAGEMENT 

D-1 

Appendix D. Labels for Disk Files 

This appendix describes the system standard labels for disk files in OS/3 as well as the 
optione1J user stan.dard labels that ar~ .supported ~Y OS/3 dala management for proce~~iAg 
dis.k files described by the DTFSD, DTJ:NI, and DTFDA macros. Note that PS.13 IS.AM does 
not support user labelsJor DTFIS files. (The user standard labels .. are described,:in D.4.) 

Because your files within a disk volume may be stored in various locc;:ttior;t~, a ·directo~y 
listing the addresses of the fragments of the files is required. This directory, called the 
volume table of contents (VTOC), and your. files withi.n a disk vol·ume require various 
st.andard ·labels in pred,~fined formats t9 ·describe the properties of ·th.e. fiJes and the 
volumes on which they. reside. 

The system· standard disk IB;bels include .the volume label (VOL1 label) and seven types of 
format labels. These labels may, according to their use, be separated into two distinct 
groups: 

• Volume Information Group 

VOL 1 label 

Format 4 label 

Format 5 label 

Format 6 label 

Format 0 label 

• File Information Group 

Format 1 label 

Format 2 label 

Format 3 label 

The VOL 1 label has a length of 84 bytes; all format labels are 140 bytes long. 



UP-8068 Rev. 4 SPERRY UNIVAC: OS/3 
BASIC DATA MANAGEMENT 

D.2. VOLUME INFORMATION GROUP 

D-2 

The volume information, group, comprising the VOL 1 label and the format 4, 5, 6, and 0 
'fa be IS: identiftes the' vol.ume afld defines the VTQC, the status of the VTOC, the available 
space within the volume, and the device-dependent characteristics of the volume on which 
the group resides. 

Standard linkages maintained within the group are shown in Figure D-1. The VOL 1 label, 
normally the first label in the group to be referenced, is written at cylinder 0, track 0, 
record 3 on each volume. The VOL1 label identifies the volume and contains a link to the 
format 4 label. The format 4 label defines the extent occupied by the VTOC and the device­
independent characteristics of the volume; it also supplies a link to the first format 0 label. 

Each label in the VTOC that describes label records not in use is defined as ~ format 0 
label and is linked to the next available format 0. 

The format 4 label also suppnes a link to the fir:st format '6 label, which defines space 
available within the extent areas of files· sha.ring 'exte~nts ;(s'plit cylinder allocation). If more 
format 6, la()els ·are requfred, they are linked 'in the same mann'er as· format 0 labels. The 
format 6 label and ·its link from the format 4 label will be present only if split-cylind.er 
alloeation has taken place. · 

Tile first :(or· only) format·5 label immediately .follows tile format 4 label, supplying an 
implied linkage. The format ~5 'label delines unused space on the \tolume' in terms of full 
cylinders. Successive format 5 labels, if required, are linked one to another:· The VTOC 
extent, as specified in the format 4 label, supplies an additional linkage because it is this 
area·that musfbe searched iri orderfo access 'the fiie .informati~n groups. · 

CVL 0 TRACK 0 REC 3 

VOL1 

FORMAT4 LINK 

FORMAT4 

VTOC EXTENT 

FORMATS LINK 

FORMATOUNK 

FORMATS 

FORMATS FORMAT 5 LINK FORMATO 

FORMATS LINK 
FORMATS 

FORMAT 0 LINK 

FORMATS FORMATO 

Figure D-1. VTOC Volume Information Label Group 



UP-8068 Rev. 4, 

D.2.1. VOL 1 Label 

SPERRY,.UNIVAC OS/'.'.3 
BASIC DATA MANAClEMENT 

D,..3. 

As each disk volume enters the system, it is given a unfque ider:)tiflcation code or volume 
serial number and the rudiments of a VTOC. The volume serial n'umber and the address of 
the VTOC are placed in the VOL 1 ·1abel. 

The VOL1 label, identified by a lcey field and label identification field containing"VOL 1 ", is 
written by the disk initia.lization routine at cylinder 0, head 0, record 3. '. · 

The VOL 1 label is the standard volume label in the OS/3. All reference to the VTOC of a 
given volume is made by ffrst ''obtai,riing the VOL.1 label, verifying the volume serial 
number, and, .because the location of the VTOC may vary from volume to volume, using 
the VTOC address contaihed in ·the VOL1 !label to locate the VTOC itself. 

The format of the VQLJ label is ,shown in ,Figur~ D-:-2; Table D:-1: summarizes its 
contents. 

BYTES 

0 

0 

v 

4 

8 

12 

16 

24 

44 

56 

80 

2 

0 L 

label identffier 

volume serial number 

volume security 

volume table of contents address 

reserved 

owner name and 
address code 

reserved 

Figure D-2. VTOC VOL 1 Label 

3 

label number 



UP-8068 Rev. 4 

.. Label 
Initialized 

by 

DL$VL Disc prep 

DL$VL1 

' DL$VSN 

DL$VSB Disc prep 

DL$VTC 

DL$0NR Disc prep 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Table D-1. Contents of VOL1 Label 

Bytes Code Description 

0-3 EBCDIC Key - contains VOL 1. 

4-6 Label identifier - VOL. 

7 Label number - always 1. 

a..:...13 Volume serial number - a unique code 
assigned to a disc pack when it enters 
the system. The same code should appear 
visually on the disc pack for operator 
identification. 

14 Binary Volume security - reserved for future use. 

15-24 Discon- VTOC address - This field is used to point 
tinuous to the format 4 label, which starts the 
binary* VTOC. The address is in the form cchhr in 

D-4 

bytes 15 through 19. Bytes 20 through 24 are 0. 

25-44 Reserved 

45-54 EBCDIC Optional owner name and address code -
an installation-supplied user identifier. 

55-83 Reserved 

* For discontinuous binary, each subfield is treated as a distinct binary entity. In the notation cchhr, each 
different letter represents a subfield. 

D.2.2. Disk Format 4 Label 

The format 4 label describes the VTOC itself and is the first record of the VTOC. An 
indicator in the format 4 label states whether the format 5 label contains valid 
information. In addition to describing the area occupied by the VTOC and its current 
status, the format 4 label contains information on all device-dependent characteristics of 
the volume on which it resides. 

The format 4 label is written by the disk initialization routine at the disk address specified 
in the VOL 1 label. Only one format 4 label may exist on a given volume. 

The address of the first available label record (i.e., a format 0 label) is placed in the format 
4 label for use by OS/3 disk space management. An additional linkage is created and 
maintained by disk space management that specifies the first active format 6 label and is 
used only during split-cylinder allocation of data files. Figure D-3 shows the format 4 
label; Table D-2 summarizes its contents. 



UP-8068 Rev. 4 

,..,....... 

44 

48 

52 

56 

60 

64 

68 

72 

80 

96 

104 

112 

136 

format ID 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

key field 

last active format 1 

available file label records 

highest alternate track 

number of alternate tracks reserved number of extents 

' 

reserved device size 

device size, track length 

record overhead flag 

tolerance labels blocks 

pointer to format 0 label 

reserved 

pointer to format 6 label 

VTOC extent 

reserved 

Figure D-3. Disk Format 4 Label 

D-5 

,.,.-

'! 

,, 



UP-8068 Rev. 4 

Label 

DL$KY4 

DL$1D4 

DL$LF4 

DL$AF4 

DL$HA4 

DL$AT4 

DL$Vl4 

DL$XC4 

DL$DS4 

DL$TL4 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-6 

Table D-2. Contents of Disk Format 4 Label (Part 1 of 2) 

!!l!!i_~li~~ Bytes Code Description 
by 

Disc prep 0_:43 Hexadecimal Key field - Each byte of this 
field contains 0416. 

Disc prep 44 EBCDIC Format ID - always 4 for 
' format 4 label. 

Space mgmt 45-49 Discontinuous Last active format 1 - the address, 
binary in the form CCHHR, used for a search 

on filename: 

Disc prep 50-51 Binary Available file label records -
number of unused records in the VTOC. 

Disc prep 52-55 Discontinuous Highest alternate track - address, in 
binary the form CCHH, of alternate tracks 

set aside in case of bad tracks. 
~ 

Disc prep 56-57 Binary Number of alternate tracks. 

Space mgmt 58 Reserved for VTOC indicators -

Bit Contents Meaning - --- ---
0 1 A format 5 label, if 

present, contains 
invalid information. 

1-7 0 Unused 

Disc prep 59 Binary Number of extents - contains 01 16 to 
indicate the one extent in the VTOC. 

Disc prep 60-61 Reserved 

Disc prep 62...;_'65 Device size - indicates the number of 
cylinders and the number of heads per 
cylinder on the device, in the form 
CCHH. 

Disc prep 66-67 Track length - number of available 
bytes on a track exclusive of home 
address and record 0. 



UP-8068 Rev. 4 

Label 

DL$R04 

DL$FG4 

DL$T04 

DL$LT4 

DL$BK4 

DL$F04 

DL$F64 

DL$VX4 

SPERRY UNIVAC OS/,3 
BASIC, ,DATA .MANAGEMENT:. 

D-7 

Table D-2. Contents of Disk Format 4 Label (Par! ,2 '!f 2L 
.k 

,: lnitialimd 
Bytes Code Description by 

Disc prep 68-70 Record overhead. - ILK d~sci:ibes 
overhead bytes on track, where 
I is for keyed record which ·is 

. not t~e la~t on t~(3Ck, L. is, for 
~eyed record which is the last 
on track, and K. is'. a decr~ment 
applied to records which have 
no key. 

Disc prep 71 Binary Flag-
.. 

Bit Meaning - ---
0-5 Reserved 
6,7 Device-dependent 

characteristics 

Disc prep 72-73 Tolerance - a device-dependent 
factor which is used to calculate 
effective record lengths for that 
device. 

Disc prep 74 Labels pery~ck - a d~vice-
dependent factor specifying the 
number of 140-byte labels possible 
in a VTOC track. 

-"- _::._ _:.:_ _::._ 

Disc prep 75 Blocks per track - a device-
dependent factor specifying the 
number of directory. blocks of a 
partitioned file which can be 
written on a track. 

Disc prep 76-80 Discontinuous Format zero address in the form 
binary CCHHR - points to the first available 

format zero record in the VTOC. 

81-99 Reserved. 

Space mgmt 100-104 Format 6 address in the form 
CCHHR - points to the first 
format 6 label created by 
space management. 

Disc prep 105-114 VTOC extent - describes the extent 
occupied by the VTOC itself. The 
format of this field is identical 
to the fields describing the extent 
in the format 1 and 3 labels. 

115-139 Reserved. 

I 



UP-8068 Rev. 4 

D.2.3. Disk Format 5 Label 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-8 

The format 5 label is ~he second record in the VTOC and is used to maintain control of the 
available extents in the volume at any time. 

The format 5 label is initialized by the disk initialization routine and maintained by the disk 
space management routine. Each format 5 label may define up to 26 available extents. 
Format 5 labels may be linked together should more than one become necessary. Figure 
D-4 shows the format 5 ·label; Table D-3 summarizes its contents. 

BYTES 
0 .l 1 _l 2 _l 3 

0 key identification 

'· . 
4 relative track c;iddress no. of cylinders in extent 

8 
no. of tracks in addition available extent 

2. 

6 available extent 

2 0 

available extents 

44 format ID 

~ 

available extents 

13 6 format 5 pointer 

Figure D-4. Disk Format 5 Label 



UP-8068 Rev. 4 

Label Initialized 
by 

DL$1D5 Disc prep 

DL$XT5 Disc prep 

DL$XC5 Disc prep 

DL$XE5 Disc prep 

Space mgmt 

Space mgmt 

DL$Fl5 Disc prep 

DL$XS5 Space mgmt 

DL$CP5 Space mgmt 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-9 

Table D-3. Contents of Disk Format 5 Label 

Bytes Code Description 

0-3 Hexadecimal Key identification - Each byte of this 
field contains 0516. 

4-5 Discontinuous Relative track address - start of extent. 
binary 

6-7 Binary Number of cylinders in extent. 

8 Binary Number of tracks in extent in addition to 
the cylinders. 

9-13 Available extent - describes another extent 
in fields with the same format as bytes 4 
through 8 above. 

14-43 Six more available extents. 

44 EBCDIC Format ID - always 5, for format 5 label. 

45-134 Eighteen more available extents . . . 

135-139 Discontinuous Pointer - indi~ates the address of another 
binary format 5 label, in the form CCHHR. Binary 0 

if no further label. 

D.2.4. Disk Format 6 Label 

The format 6 label is used to control split-cylinder allocation. Each format .6 label contains 
a code that identifies alt member files sharing the same extent area. Each memb.er file is 
allocated from 1 to n tracks within each cylinder allocated to the set', where n is the 
number of tracks per cylinder, minus one. Additionally, a head pool is maintained that 
specifies all tracks not currently allocated and available for use by new members of the 
same split:-cylinder set. A format 6 label will be created for each split-cylinder set defined. 

The format 6 label is created and maintained by the disk space management routines. 
Each label contains Jhe disk .address of the .format 3 label that defines the extents 
allocated to that split member set. The disk address of the first format 6 label is 
maintained. in the format 4 label. If more than one format 6 label is required, they are 
linked together. 

Note that no extent information is maintained in the format 1 label of a. split:-cylinder file 
and that all members of a split-cylinder set ·share a common format 3 label. Figure 0-5 
shows the format 6 label; TC3ble 0-4 summarizes its contents. 



UP-8068 Rev. 4 

Label 

DL$106 

OL$HH6 
. 1 

DL:.'$SET 

QL$1Df,?g 

· •. 

DL$LHA6 

DL$HHA6 
' ... 

-:-

· DL$1DF16 

DL$Fl6 

DL$CP6 

BYTES 

108 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

kaykfentification device high head 

split set identifier common format 3 

disc address: lowheadavaila~le high head available 

9 additional head pool entries 

primary member for~ 

format 6 pointer 

D-10 

Figure D-5. Disk Format 6 ·1,,abel 

·Table D-4. Contents of Disk Format 6 Label 

Initialized Bytes Code Description 
by 

Space mgmt 0-2 Hexadecimal Key identification -'- always 060606
16 

c ,3 
-" 

Device high head. 
_'._ 

4-5 Set identifier - identifies each 
member file of the split-Cylinder set. 
--;-

6-9 Discontinuo1..1~ Di~k ciddress .of the format 3 .label 
binary shared by all member files . 

_'._ . 

10 Hexadecimal Low head available in the specified 
extent areas. 

11 Hexadecimal I' High head available in the 
~pecified extent areas. 

·= 
~ 

Space mgmt 12~29 Hexadecimal Nine additional entries for low and 
high available head. 

Format 1 disc.address 9f primary 
member (CCRH) 

30-33 Hexadecimal l9 additioncil split set tormat 1 
·dis~ address· Emtries in the. same 
format as bytes 30-:,..33. 

Format 1 label· disk addresses of up to 19 
34-109 Hexadecimal additional members of the split-cylinder 

set in the same format as bytes 30-33 

11~133 Reserved 

134 Hexadecimal Format identification X'F6'. 

135-139 Discontinuous Pointer to next format 6 label 
binary in the form CCHHR. 

' 



UP-8068 Rev. 4 

D.2.5. Disk Format 0 Label 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-11 

The format 0 label is used to ,identify label records in the VTOC not currently in use. 

Format 0 records are initialized by the disk initialization routine. The. address· of the first 
format 0 is placed in the format 4 label, and each format 0 label is linked to the next The 
remainder of the label is filled with binary O's. Figure D-6 shows the format 0 label; 
Table D-5- summarizes its contents. 

BYTES 

pointer to ne~t a,,,;ilable format 0 label 

reserved 

• 

136 

Figure D-6. ·Disk Format 0 Label 

Table D-5. Contents of Disk Format 0 Label. 

Label Initialized 
by 

Bytes Code Description 

Disc prep 0-4 Discontinuous Disc address in the form CCHHR of 
binary the next available format 0 label. 

5-139 Binary zero Reserved. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D.3. FILE INFORMATION GROUP 

D-12 

The file information group (Figure D...:...-:7) is c.omposed of the format J, format 2, and format 
3 labels. The format 1 label is normally the first referenced label of the group. It is 
obtained by executing a key search for the file ID in the VTOC extent defined in the format 
4 label. 

The format 1 label defines the characteristics of the file and may define up to three 
extents occupied by the file. The format 1 label is linked to the format 2 label, which is 
used to further define the file. These two labels are present for each file in the volume. 

The format 3 label is used to define the extent area occupied by the file and is an optional 
label, except that it will exist for all files created by using split-cylinder allocation. For all 
other files, the format 3 label will exist only if the file occupies more than three separate 
extent areas. 

FORMAT 1 

KEY 
(FILE IOI 

FORMAT2 LINK 

FORMAT2 

OCCUPYING THREE 
EXTENTS OR LESS 

FORMAT 1 

KEY 
(FILE IOI 

FORMAT2 LINK 

FORMAT2 

FORMAT 3 LINK 

NON:SPLIT FILES 

SPLIT·CYLINOER Fl LES 

FORMATl 

KEY 
(FILE IOI 

FORMAT2 LINK 

FORMAT2 , 

FORMAT3 LINK 

FORMAT3 

• 

KEY 
(FILE IOI 

FORMAT 2 LINK 

FORMAT2 

FORMAT 3 LINK 

FORMATJ 

OCCUPYING MORE THAN 
THREE SEPARATE EXTENTS 

FORMAT1 

KEY 
(FILE ID) 

FORMAT 2 LINK 

FORMAT2 

FORMAT3 LINK 

Figure D-7. File Information Group Label Chain 



UP-8068 Rev. 4 

0.3.1. Disk Format 1 Label 

SPERRY UNIVAC OS/3' 
BASIC DATA MANAGEMENT. 

D-13 

A format 1 label exists for each file in a volume. As many as three extents of a file may be 
described in the forma-t 1 label, provided that the file is not a member of a split-cylinder 
set. 

The format 1 label is initialized.by the disk space management routines. It is maintained by 
both the space management and data management routines. The format 1 label contains a 
pointer to the format 2 label. Figure D-8 shows the format 1 label; Table D-6 
summarizes its contents. 

48 

52 

56 

60 

64 

68 

72 

76 

BO 

84 

88 

92 

96 

100 

104 

108 

112 

116 

128 

136 

volume sequence no. 

volume sequence no. I creation date 

expiration date 8>etent count 

option ~odes : I number of PCA's 
_._ 

file type 

PCA 1 block size PCA 1 record size 

PCA 1 record format J PCA 2 specifications 

PCA 3 specifications 

PCA 4 specifications 

PCA 5 specifications 

r 

PCA 7 specifications 

key location for ISAM 
secondary 

allocation increment 

file high head I extent type extent sequence no. 

lower limit 

upper limit 

second extent l 10 bytes) 

r 
third extent ( 10 bytes) 

format 2 pointer 

Figure D-8. Disk Format 1 Label 

data set indicator 

file low head 

lo\Wrl!mit 

upper limit 



UP-8068 Rev. 4 

Label 

DL$KEY1 

DL$1D1 

DL$FS1 

DL$VS1 

DL$CD1 

DL$ED1 

DL$XC1 

DL$0C1 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-14 

Table D-6. Contents of Disk Format 1 Label (Pait 1 of 5) 

Initialized · 

i1Y 
Bytes ~ode Description . 

Space mgmt 0-43 EBCDIC File identifier - Each file must 
have a unique 1- to 44-byte name 

1, in this Rey field, the firstSix bytes 
of whi~h may be a lock ID. A 
search of. the VTOC is made on 

I· this nallle. 
...:... 

44 EBCDIC Format identifier - always 1, for 
format 1 label. 

Data mgmt 45-50 EBCDIC File serial number-identifies the 
volume on which the file starts, is 
a 6-cligit alphanumeric number, and 
is the same as the volume serial num-
ber of the volume on which the file 
starts. The first volume of a file 
is defined by the first job control 
DVC statemef')t in the device assign-
ment set-for the file. 

51-52 Binary Volume sequence number - indicates the 
number of this volume relative to the 
first volume in the file. The first volume 
of a file is defined by the first job control 
DVC statement in the device assignment 
set for the file. 

Space mgmt 53-55 Discontinuous Creation date - format is YDD (year-
binary day-clay), where Y·ls 0 to 99, and DD 

is 1 to 366. 

56-58 Discontinuous Expiration date - the date when the 
binary file may be deleted. Format is the 

same as the creation date. 

59 Binary Extent count - specifies the number 
of extents currently constituting 
the file, or portions of it, on this 
volume. 

Space mgmt 60 Binary Option codes 

Bit Content Meaning - ---
0 1 Preformatted by VTOC 

1 1 Allocation by cylinder 

2 1 New file 

3 1 Partitions cylinder aligned 

4-7 Unusad 

I·· 

. 



UP-8068 Rev. 4 

-- ·-

Label 

---
DL$PC1 

DL$FT1 

·1 

DL$BL1 

DL$RL1 

DL$RF1 

SPERRY'·UNIVAC OS/3 
BASIC'DATA MANAGEMENT 

D-15 

Table 076 .. Contents of Disk-Format·T Label (Parti2 Of 5) 

-::- -:c- ~ --=··~· 

Initialized 
Bytes Code Description by 

---;c "" = ~ ~--· I 
Data_mgmt 61 Binary PCA count - number of partitions 

which coi:istitute the file. 

Data mgmr 62 Hexadecimal File type 

Hexadecimal 
Code Meaning 

---
20 Sequential {DTFSD) 

40 Direct access {DTFDA) 

60 Nonindexed {DTFNI) 

80 Indexed sequential {DTFIS) 

90 IRAM (DTFIR) or 
MIRAM {DTFMI) 

02 SAT {DTFPF) 

00 Undefined-

' --:;:- :--;:- :-;;--;;:- ; 

63 Hexadecimal_ File type 

·_:. Hexadecimal 
Code Meaning ---« ~< ' '" 

00 ·I.RAM -file, non indexed 

11 IRAM file,: indexed 

80 MIRAM file, IRAM 

-- I characteristics 

co MIRAM file, MIRAM 
characteristics 

NOTE: 

This-byte is meaningless unless byte 62 ' 
I• equals X'90'. 
IL 

.-
Data-mgmt 64-65 Binary Reserved for PCA 1 block length -

size of fixed-length blocks or 
maximum size of variable-length 
blocks. 

Data mgmt 66,67 Binary Reserved for PCA 1 record length -
size of fixed-length records or 
maximum size of variable-length re-
cords. 

Data mgmt 68 Binary Reserved for PCA 1 record format 

Bit Content Meaning 

0,1 Reserved 

2 0 Records have no keys. 
1 Records have keys. 

t 



UP-8068 Rev. 4 

Label 

DL$DS1 

DL$KL1 

. 

SPERRY UNIVAC OS/3 ' 
BASIC DATA MANAGEMENT 

0-16' 

Table. D-6. ·Contents .of.Disk Format 1 label (Part 3 of 5) 

= ..=;;. c.:. .. ;.:. 

. Initialized Bytes Code Description 
by 

-"" . _.;::;_ 
"""' ·1 

(Record format, cont) 

Bit Content Meaning - ---
3 1 Fixed-length blocked 

records 

4 1 Variable-length 
blocked records 

5 1 Fixed-length un-
blocked records 

6 1 Variable-length 
unblocked records 

7 1 Records are inter-
laced. 

Data mgmt 69-73 Discontinuous Partition descriptor 2; block size, 
binary record size, and record format for partition 2. 

Data mgmt 74-78 Discontinuous Partition descriptor 3. 
binary 

Data mgmt 79-83 Discontinuous Partition descriptor 4. 
binary 

Data mgmt 84-88 Discontinuous Partition ~escriptor 5. 
binary 

Data mgmt 89-93 Discontinuous Partition descriptor 6. 
binary 

...::. 

Data mgmt 94-98 Discontinuous Partition descriptor 7. 
binary 

' Space mgmt 99 Binary Data set indicators - reserved for 
future use. 

Data mgmt 100-101 Binary Key location - high order position 
of key field within each data record 
of an indexed-sequentialfile . 

...::. 



UP-8068 Rev. 4 

Label 

DL$SA1 

DL$LH1 

DL$HH1 

DL$XT1 

DL$XS1 

DL$XL1 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

0-17 

Table D-6. Contents of Disk Format 1 label (Part 4 of 5) 

Initialized Bytes Code Description 
by 

102 Binary Secondary allocation increment -
the number of cylinders of disc 
storage to be requested for each 
dynamic extension of the file. 

103 Hexadecimal File low head - split cylinder 
allocation. 

104 Hexadecimal File high head - split cylinder 
allocation. 

105 Hexadecimal Extent type indicator -

Code Meaning --
00 No valid extent descritled 

20 Sequential file (DTFSD) 

40 Direct access file (DTFDA) 

60 Nonindexed file (DTFNI) 

80 Indexed sequentiaLfile (DTFIS) 

90 IRAM (DTFIR) or MIRAM (DTFMC) 

02 SAT (DTFPF) 

FF Job Control 

106 Binary Extent sequence number - relative number 
of extents in multiple-extent volume. 

107-110 Discontinuous Lower limit - the address specifying 
binary the start of the extent, in the 

formCCHH. 



UP-8068 Rev. 4 

Label 

DL$XU1 

., cc-

DL$CP1 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-18 

Table D-6. Contents of Disk, Format t _label (Part 5, of 5) 

= 

Initialized Bytes Code Description 
by 

111-114 Discontinuous Upper limit - the address specifying 
binary the end of the extent, in the form CCHH. 

-
" 

115-.-124 Second extent - same format as described 
for bytes 105 through-114. 

125-134 Third extent ...... same format as !lecond extent. 

Space mgmt 1.35-139 Discon:t1nuous Continuation pointer - the address of a format 
binary 2 label. The address is in the form CCHHR. 

0.3.2. Disk Fo_rmat ~ Label 

The format 2 label is used as an extension to the format 1 label to further describe the 
file. 

For nonindexed files (DTFSD, DTFDA, DTFNI), bytes 1 through 43 are used to carry 
partition information in a maximum of seven 6-byte entries. For indexed ISAM files, bytes 
l3 through 43 are used to carry index control information. For IRAM and MIRAM files, 
bytes 13 througl1 43 are used to carry index control and file characteristic information. For 
library files, bytes 32 through 47 are used to carry information on the library text and 
directory; bytes 13 through 31 contain binary zeros. 

The format 2 Japel is initialized by spac_e management and mainta_ined by data 
managem_ent. The label is always present and is linked from. the format 1 label. The link 
field in the format -2 label will point to a format 3 label, if used. This pointer will be 
present for aU split-cylinder files and for non~plit-cy!inder files requiring more than_ three 
extents. If it is ·not pre~ent, the field is filled witll binary zeros. Figure D-9 shows the 
format 2 label; Table D-7 summarizes its contents. The format of the ISAM file 
information area is shown in Figure-D-10, and the contents of this area are listed in 
Table D-8. The format of the IRAM/MIRAM file information area is shown in Figure 
D-11, and the contents of this area are listed in Table D-9. The format of the library file 
information area is shown in Figure D-12, and the contents of this area are listed in 
Table D-10. 



UP-8068 Rev.4 

BYTES 0 

' 
... 

0 key ID 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

2 

nonindexed LBC key length or lace factor 

EODID 

D-19 

3 

reserved 
; 

nonindexed LBC 

8 key length or lace factor reservei:.:I EOD ID 

_ .. 

12 
..• 

EODID 

(up to five additional partition descriptors) 

40 

44 reserved blocks/track, PCA 1 

-::- -

48 PCA1 ID relative track adflr-1 * tracks 

0 2 3 15 16 

52 PCA21D relative track addr-2* tracks 

0 2 3 15 16 

-
"' 

31 

... 

31 

l°1'/ rr-' 

128 

132 

136 

tracks per cylinder file low head no. 

relative extent count flags 

format 3 pointer· 

*Thirteen bits can represent a maximum relative track address (RTA) of 8191 10 (1 FFF161. To support the larger 8433 
disc, the high-order bit of the tracks field (bit 16) of the logical extent is used to indicate that the RT A must be increased 
by a 'constant value of 8192

10
. (See Table D-7 .) . 

Figure D-9. Disk Format 2 Label, Nonindexed Files (DTFSD, . DTEDA, DTFNI) 



UP-8068 Rev. 4 

BYT ES 

16 

20 

24 

28 

32 

36 

40 

44 

BYT ES 

16 

20 

24 

28 

32 

36 

40 

NOTE: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

U-:t.U 

13 15 14 
l l 

disc address of last prime ... 

... data record, plus 1 number of cylinders having 
overflow space full 

current independent overflow address 

prime data load count overflow record count 

reserved disc address of last block level ... 

... index record, plus 1 
overflow retrieval count, except 

first of chain 

reserved total count of prime data records 

bytes of main storage required number of records tagged 
for top index for deletion 

number of blocks per 
cylinder 

Figure D-10. /SAM (DTFIS) File Information Area, Disk Format 2 Label 

13 
l 

14 15 

key location for key 1 key length for key 1 

used for IRAM processing 
key characteristic descriptor for ... 
flag byte (MIRAM) 

key 2 descriptor for. .. 

... key 3 descriptor for. .. 

... key 4 descriptor for ... 

... key 5 sector number of records ... 
offset 

fine-level index 
.. .in file, plus 1 record size block size in 

sectors 

number of index levels last fine-level index block 

l l 

Descriptions that pertain to IRAM files also apply to MIRAM files with IRAM characteristics. 

t 
Figure D-11. IRAMIMIRAM File Information Area, Disk Format 2 Label 



UP-8068 Rev. 4 

BYTES 

28 
l 

28 

32 

36 

40 

44 

NOTE: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

29 
l 

directory partition lace factor 

30 

directory partition lace adjustment factor 

text partition lace factor 

text partition lace adjustment factor 

number of library blocks per track 

D-21 

31 
I 

In the format 2 label for library files, byte 3 and bytes 13-27 are reserved and contain binary zero. 

Figure D-12. Library File Information Area, Disk Format 2 Label 

Table D-7. Contents of Disk Format 2 Label (Part 1 of 3) 

L~pel 
Initialized 

by 
Bytes Code Description 

DL$SID2 Space mgmt 0 Hexadecimal Key identification X '02' 

DL$SPC2 Data mgmt 1 Nonindexed last block control - the number 
of logical records in the last block of the 
partition for fixed-length blocked files. 

DL$SLF2 2 Key length or lace factor. 

DL$SLA2 3 Reserved 

DL$SEP2 Data mgmt 4:.._5 Binary End of data ID - relative block address plus 
1 of the last block written into the partition. 

7-12 A 6-byte partition descriptor entry 
in the same form as bytes 1-6. 

Data mgmt 13-43 Hexadecimal For nonindexed files, up to 5 
additional partition descriptors. 

For ISAM files, see index information 
area (Table D-8 and Figure D-1 O). 

For IRAM and MIRAM files, see 
IRAM/MIRAM information area 
(Table D-9 and Figure D-11). 

For library files, see library information 
area (Table D-'10 and Figure D-12). 

I 44-45 Unused (binary zero) for all but indexed files; 
reserved for indexed files. 

t 



UP-8068 Rev. 4 

Label 

DL$SBPT2 

. DL$SXAR2 

DL$TPC2 

DL$FLH2 

-:;,- -;c 

DL$SXCT2 

DL$SfL2. 

····· 

SPERRY UNIVAC .OS/3 
BASIC DATA MANAGEMENT 

0-22 

Table D-7. Contents of Disk Format 2 Label (Part 2 of 3) 

Initialized 
by 

Datamgmt 

I 

r--. 

Bytes 

46-47 

48-127 

:•; • ;c-.• 

130-:-,131 

132-:-.133 

134 

Code 

Discontinuous 
binary 

Hexadecimal 
I 

Description 

Blocks per track - the number of blocks per 
track in the first or only partition of the file . 

Logical extent table area- These entries are 
4 bytes in length and specify PCA ID in 3 
bits, starting relative track address in 13 bits, 
and number of tracks in thataddr:ess. 

From one to twenty 4-byte logical extent 
entries may be placed in this 80-byte area. 
Each 4-byte entry has the following format: 

Bit Meaning 

0-2 The high-order three bits of the 
logical extent identify the parti­
tion to which it is assigned. (This 
value may be from 1. to 7.) 

3-15 
1' 

The next 13 bits indicate the relative 
track address of the logical extent. 

I·· 

1.:f the first bit (bit 16) of the track 
field is set on, a value of 8192 must 
be added to the relative track 

·address to indicate the relative 
track address of the logical extent 
on the 8433 disc. The remaining 15 
bits indicate the numb~r of.tracks 
contalned ii;i the extent, 

Tracks per cylinder fpr ,this file. 

File low head - the lowest head 
number in. the.assigned cylinders 
accessible for this file. 

Number of relative extents contained 
.. in this label. 

Flags. 

Bit 

0 ) 

1 ( 

2 > 
I 

3 , 
4 

5 

6 

7 

Content 

Reserved 

Meaning 

Library le1ce adjustment, 
type 2 

Library lace C!~justment, 
type 3 

9400 SAT compatible 



UP-8068 Rev. 4 

Label 

-· 
DL$SCID2. 

....,,. 

-· 

Label 

DL$PID2 

-

DL$NMA2. 

DL$10F2 

DL$PDLC2 

DL$NMCfa 

-

DL$BID2 

DL$NMR2 

-

.. DL$NMP2 

_DL$NMS2 

DL$N,MT2. 

-

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-23 

Table 'D-7. Contents of Disk Format 2 label /Part 3 of 3) 

Initialized 
Bytes Code Description 

by •. 
--.,,, 

Space mgmt 135-139 Discontinuous The disc address, i_n the formCCHHR, 
binary of the format 3 label (if required) 

I- associated with this file. 

Table D-8. Contents of Indexed File Information Area, Disk Format 2 label 

_._._ 

·Initialized 
Bytes Code Description 

by 

·Data 13-17 Discontinuous Disc address of last prime data record (plus 1), 
management binary in the form rrrbb, where rrr =relative block 

address and bb =displacement within the 
block 

18-19 Hexadecimal Count of cylinders having overflow space 
filled 

20-23 Current address of independent overflow (rrr) 

24-25 Discontinous Prime data load count 
binary 

._!_ 

Data 26-27 -Hexadecimal Count of the number of overflow records in 
management the file 

·I 

28 
1-- Reserv.ea 

29-33 Discontinuous Disc address of last block level index record 
biliary (plus-1), in the same form as bytes 13-17 

- 34-35 Overflow chain retrieval count, not first 
of chain ---

;_.,.--f ~ 

3_6 Reserved 

37-39 Total count of number of prime data records 
--:-

Data 40-41 Hexadecimal Number of bytes required to. hold top index 
management in main storage 

c-;c ·ccc--cc 
··- -- .. - - -- = = 

42-:-43 Nu rnber of records user has tagged for 
delt;!tion 

44-45 Number of blo~ks per cylinder 

I· 



UP-8008 Hev. 4 ;:)t"'l::MM T UNIV~\, Uo:J/ .J 

BASIC DATA l\llANA.GEMENT 

Table D-9. Contents of IRAMIMIRAM F~le.lnformation Area, Disk Format 2 Label 

Label Initialized Bytes Code Descrh>tion 
by 

DL$XILOC Data mgmt 13-14 Hexadecimal Key location for key 1 

15 Key length for key 1 

16 Hexadecimal Used for IRAM file index processing 
(IRAM) 

Binary For MIRAM files, byte 16 contains key 1 
(MIRAM) characteristics: 

Bit Content Meaning 
0 1 Duplicates allowed 

for th is, k~y 

1 1 Key change allowed 
for this key during 
during update 

2-4 Unused 

*5 1 lnde.x-orily r!(cords 
permitted in this file 

*6 1 Variable-Jength 
record format 

*7 1 Record control byte 
(rcb) present 

17-20 Discontinuous Descriptor for ~ey 2 (binary zeros for IRAM) 
binary 

21-24. Descriptor for l<ey 3 (binary zeros for IRAM) 

25-28 Descriptor for key 4 (binary zeros for IRAM) 

29-32 Descriptor for key 5 (binary zeros for IRAM) 

DL$MARSO 33 Hexadecimal Sector offset for files created with recovery 

DL$COUTR 34:.:..._36 Number of records in file (plus 1) 

DL$REC 37--38 Record size 

DL$CSIZ 39 Fine-level index block size in sectors 

DL$CLEV 40 Number of index levels 
.. 

DL$FAB 41-43 Relative block number of last block of the 
fine-level index 

*These bit positions. are~ unused in the descriptors for keys 2 through 5. 

NOTE: 

t 
Descriptions pertaining to IRAM files also apply to MIRAM files with IRAM characteristics. 



UP-8068 Rev, 4 

Label 

DL$DIRL2 ·· 

DL$DIRF2 

DL$TXTL2 

DL$TXTF2 

-

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-2.5 

Table D-10. Contents of Library Information.Area, Disk format 2 .Label 

Initialized 
Bytes 

by Code Description 

:-'.. .. 

Data 28-31 Hardware-adjusted lace factor for the directory 
management partition 

.. 
Data 32-35 Rotational adjustment for directory lace factor 
management 

~. 

Data 36-39 Hardware-adjusted lace factor for the library 
management text partition 

Data 40-43 Rotational adjustment factor for the library's 
management text 

Data 44-47 Number of library blocks per track 
management 

D.3.3. Disk Format 3 Label 

The format 3 label is used to maintain extent information for the file. For split-cylinder 
files, a format 3 label is always present. For files not w~ing split-cylinder allocation, a 
format 3 label for the file will exist only when more than three extents are. required. 

The format 3 label is inltia!ized and maintained by the disk space management routines. 
The format 3 label, when required, will always be linked from a format 2 label. Figure 
D-13 shows the format 3 label; Table D-11 summarizes its contents. 



UP-8068 Rev; 4 

BYTES 

0 

4 

B 

12 

24 

36 

44 

48 

128 

136 

0 

extent type indicator 

format ID 

SPERRY UNIVAC OS/3. D-26 
BASIC. DATA ·MANAGEMENT 

2 3 

~ey identificaJion .. 

.extent sequen.i:~ no. lower limit 

lower.limit upper limit· 

upper limit 

extent 5 

exten't 6 

extent 7 

extent 8 

j 
extent 16 

I 
pointer 

Figure D-13. Disk Format 3 Label 



UP-8068 Rev. 4 

-:;-

Label Initialized 
by . ----'-=--::-

PL$1D3 Sp~~!3 rngmt 

DL$XT3 

' -'-

DL$SN3 

DL$XL3 

DL$XU3 

DL$Fl3 
I-

DL$XS3 

DL$CP3 

SPERRY UNIVAC OS13 
BASIC .DATA-MANAGEMENT 

Table D-11. Contents of Disk Form£Jt 3, Label 

7 -::- -c- :-;-.- ~ 

Bytes Code . Description 
, . 

.I:.. . --_'._· ____ ;• ...::;;...::. ·- -
0...,..-3 Hexadecimal t<ey- i9~n,ifis~tion ..,.., .each ~yte 

conJai_n~ o~19. 

4 Hexadecimal Extent type indicator -

Code Meaning --
00 No valid extent described 
01 Prirne data area 

~ - -
' -::- = 

5 Binarx Ext~n_t sequense _number - relative 
number of extents in this volume of 

, n',' $"( : ~. ~ < , " ' 
the file. 

6-9 Discontinuous Lower limit - starting track address 
binary_ of the extent, in the form CCHH. 

10-13 Discontinuou~ Upper limit - terminating track 
binary address of the extent, in the form CCHH. 

- --
14-23 Extent 5 - same format as described 

for bytes 4 through 13 for this 
extent. 

--::;-

24-43 Extents 6 and 7. 

44 EBCDIC Format identifier - always 3, for 
format 3 label. · 

45-134 E"''ents 8 through 16. 

135-139 Discontinu~us -Poi,rlt~r.;- address of f!'l~t ~ormat 3 
binary la~el;,in_ th~ form CCHHR. Binary 0 

1- - Jf 110Jup:ner label. 

-- ~ 

D-27 

__ , --'---'-
-= --,,-



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D.4. OPTIONAL USER STANDARD LABELS 

D-28 

Optional user standard labels are records made available to you via your label processing 
routine (LABADDR) at the opening or closing of a disk volume. OS/3 data management 
supports user standard labels for your SAM and DAM disk files described by the DTFSD, 
DTFNI, ,and DTFDA dE!clarative macroinstructions; it does not support them for your ISAM 
files, which are described by the DTFIS macro. 

D .4.1. User Header Labels 

If you require user header iabels, these will be written on the first track of each volume of 
a DTFSD file and on the first track of the first volume of a DTFDA or DTFNI file. You may 
write a maximum of eight labels. Figure D-14 shows the format of the 80-byte user 
header label; its contents are explained in the table below Figure D-14. 

0 

4 

76 r 
Field 

Label ID 

Label data 

I 

~ Code 

0-3 EBCDIC 

4-79 User option 

label ID 

Description 

Contains· 4-byte label 
identifier: UHL, followed 
by a 'label number which 
ranges from 1 through 8. 

Contains 76 bytes of user 
specified header label data. 

2 

Figure D-14. Optional User Standard Header Label 

3 



UP-8068 Rev. 4 

D.4.2. User Trailer Labels 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

0-29 

If you need user trailer labels, these will be written Ofl the first track of ,each volume of a 
DTFSD file and on the first track of the first volume of DTFDA or DTFNI files, following 
your user header labels. You may write a maximum of eight labels on DTFDA and DTFNI 
files, and eight labels per volume on DTFSD files. Figure D-15 shows the format of the 
80-byte user trailer label; its contents are explaine,d in the table below Figure D-15. 

0 

0 

4 

76 T · 
Fie id 

Label ID 

Label data 

Bytes Code 

o_.:3 EBCDIC 

4-79 User option 

label ID 

label data 

Description 

Contains 4-byte label 
identifier: UTL, 
fallowed by a label 
number whic,:h ranges 
from 1 through 8. 

Contains 76 bytes 
of ~ser-specified 
trailer label data 

2 

Figure D-15. Optional User Standard Trailer Label 

3 

T 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

0.5. 8413 DISKETTE FILE LABEL 

D-30 

·'F.igure D~16 illustrates the 8413 diskette file label format.· Table D_..:..12 explaJr1s\ the 
contents of each f1eld in the diskette fl.le label. 

0 ' 1 2 3 

label ID 
0 

reserved 
4 file identifier 

8 

12 not used 
"' 

... ~ 
'I 

20 

block length record attribute 
24 --"- -= --'-"-:..:;_ -=-:.::.:.__ _;:,;::_;_::_ ..;:::_ 

28 
beginning of extent (BOE) 

physical record ' ... ::: j 

32 length 
:-, ~ 

end of extei:it (EO,E) record/block format 
j ' 

36 

40 
bypass ind. file security , 

1 
,yvrite protect exchange type ind. 

multi-volume ind. volum~'s~quence ho. 
44 

file 'creation ~a~e 
48 

52 
record length 

J 
~ ·T:O\ ' ~ 

not used 56 
reserved 

60 

reserved 
64 

68 
file expiration date 

verify/copy ind. file org. 
72 

end of data (EOD) reserved 
76 

80 

"""'-' -v 

124 

Figure D-16. 8413 Diskette File Label Format 



UP-8068 Rev. 4 

-:::-

Field 
-::;- = 

label ID 

Reserved 

File identifier 

--;; 

-

Block length 

Record attribute 

Beginning of extent (BOE) 

""".'" 

Physical record length 

:: = ,-.,,. 

End of extent (EOE) il 

Record/block format 

Bypass indicator 

Fil'e security 

Write protect 

Exchange type indicator 

Multivolume indicator 

Volume sequence number 

File creation date 

SflERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-31 

Table D.:._1Q; Diskette File Label Description (Part 1of2) 

····- -::- :;cc- ;::- .·;;: -:: c:-

BV1e ·Position Description 
-;;c ,,, - """.:'" """.:'" -:;-::- -..,. . .. """.'" 

0-3 -Contains 4-byte label identifier HOR followed by the number 1 

4 Reserved 

5...,;-12 Names- user file and is from 1 to 8 characters. First character must 
-be alphabetic -and, no blanks are allowed. Duplicate--names on the 
same diskette are not allowed. 

I 
,, ,., "".';" -· --;:;::; 

13-21 Not used 
' 

22..:._26 Indicates the record size as follows: 

Character Meaning 

!::. Record size will be obtained from the DTF 

1-128 Actual record size; for example, 80. 
-;- "'?' ;cc· 

l "'?" 

27 Blank; indicates unblocked records 
"'?' -;- ..;. 

28-32 Identifies the ;address of the first sector of the file by cylinder 
number (pos. 28-29), head (pos. 30), and sector number (pas. 
31-32). 

\, 

~ : 'T \ 

33 '4 Indicates physical record length and is blank meaning 128 bytes per 
record. 

' ·• '"' ~-- . ;"·- '""." """"." ,. " -c;;; ...,.,-:;;- ."":"' 

34--:'-38 " Indicates address of last sector reserved for this-file ,and us~s t,he 
,same format as BOE. 

39 This field must be blank. 

40 -Indicates a file to be skipped during. exchange or copy operations 
'when transmitJing or transferring files on the volume. If position 40 
is blank, the file is transferred; if B, the file is not transferred. 

- . ' 

41 Blank indicates the file can be accessed. Nonblank indicates 
restricted access. When honblank, the Vol urne accessibility indicator 
in the volume label (track 00, sector 07) must also be no_nblank, 

42 Blank indicates both reading and writing allowed. P indicates only 
read activities allowed; · 

43 Blank indicates file can be used for basic exchange. Nonblank 
indicates additional label checking.:is neede_d: to exchange the file;: 

44 Character Meaning 

blank File on 1 diskette 

c File continued on next diskette 

L Last diskette on which file resides 

45-46 Indicates volume sequence number in multivolume set (01-99). 
Blanks indicate no volume sequence checking performed on this 
device. 

47-52 Indicates the creation date of the file by year (YY), month (MM), and 
day (DD). Blanks indicate nonsignificance of creation date. 

C-4j 

..,.. 

' 

"'.'"" 

·~ 
; 

J 



UP-8068 Rev. 4 

,, ' .. 

Field . 
Record length 

Offset to next record space 

Reserved 

File expiration date 

Verify/copy indii::ator 

""- .,.,.. 

File organization 
..;;:. -'= 

End of data (EOD) 

' 

-,-
' 

lh ~ 

Reservea 

'NOTE: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

D-32 

Table D--:-12. Diskette File Label Description (Part 2 of 2) 

,. . '• ''' 

Byte Position Description 
-"'- -'-'-"-

53-56 Defines record length. 

11f1f>f> = record length equals block length (position 22) 

(This field is ignored because blank in position 43 means the same.) 

57-61 Not used 
.. _:::. C'_ " _;;_ 

62-65 Reserved 

66-71 Contains date of deletion for a file. (Format is the same as creation 
date in position 47-52.) 

1IDfilIDb == file date expired 

999999 = file date never expires 
' 

72 Character Meaning 

blank File is created 

v File is verified 

c File data successfully transferred to another medium 
. -;-

73 If position 43 ~ontains blank, this field must also contain blanks. 
' ., ·'' ~ 

,. 

74-78 Identifies address of next unused sector within the file extent using 
I• BdE format. 

- If EOD equals BOE, the extent contains a null file. 

- If EOD equals address of next block beyond fi!e extent 
(unblocked records), entire extent was used. 

- If blocked records are'"used, EOD must be used with offset to 
next record space (position 57-61) to find the actual EOD. 

' 
79 Reserved 

80-J27 Padded with binary zeros 

ISAM does n0f support the 8413 diskette. 

'· 

""'! 

I 



UP-8068 Rev. 4 SPERRY· UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-1 

Appendix E, Magnetic Tape Labels 

E.1.' OS/3 SYSTEM STANDARD LAB.ELS FOR MAGNETIC TAPE 

This appendix describes the system standard labels for magnetic tape files and :reels (e:>r 
volumes) in OS/3. Section 8 describes magnetic tape SAM. record formats, volume 
organization, and Jile conve,ntions, Section 9 describes the functions and operations of 
magnetic tape SAM, including certain of the label-processing functions of tran~ients 
entered by the OPEN and CLOSE imperative macros and the user's own special label 
processing routine (.the address of which he. provides to tape SAM. by specifying the 
LABADDR keyword .parameter in the DTFMT declarative macro defining any standard 
labeled .magnetic tape file for which optional standard .user header or trailer labels (UHL ,or 
UTL) are to be pro,eessed). The LBRET imperative macro (9.4.9). is issued in the \JSe(s label 
routine to .control returns to and from tape.SAM. 

In OS/3 tape SAM, magnetic tapes may be labeled or unlabeled, and a labeled tape may 
contain either· nonstandard or OS/3 system standard labels.· Tape vohmles, have formats 
that may be specified as standard, nonstandard, or unlabeled, using the.FILA~L keyword of 
the DTFMJ declarative macro (9.2.6.1 ); unlabeled forrnat is assumed if this _keyword is npt 
specified. 

E.2. SYSTEM STANDARD TAPE LABELS 
'. 

All standard ·tape labels, including optional UHL. and UTL, are in p.locks of .80 bytes. There 
are five tape. label g.roups: three required, tvyo optional: 

• Volume label group 

• File header label group 

• User header lab_el group (oR.tional). 

• File trailer label group 

• User trailer label group (optional) 



UP-8068 Rev. 4 

E.2.1. Volume Label Group 

SPERRY UNIVAC OS/3 
BASIC. DATA· MANAGEMENT 

E-2 

The volume label group comprises a single volume label, VOL1. The VOL1 label identifies 
the,:tape reel'cand ifs owner, and it is used to check that the proper reel is mounted. (Refer 
to Table ·S-3). When a tape is first used at an installation, its volume serial number (VSN) 
and other volume information, as shown in Figure E-1, are usually recorded on it 
magnetically with the TPREP utility routine, being specified to the routine with parameter 
cards. The volume serial number is also written on the exterior of the reel for visual 
identification to the operator. For a detailed description of TPREP, refer to the system 
service programs (SSP) user guide, UP-.8062 (current version); note that you cannot use 
this routine to prep a magnetic tape volume dynamically, although you may prep as many 
as 36 volumes with it. 

As an alternative to using TPREP, if you want tape.SAM to prep 'the volumes.of a~standard 
labeled file dynamically, as a preliminary part of the job step in which you create the· file, 
you specify the· parameter (PREP) in thEf VOt job control statement of the file's device 
assignment set, also specifying a .. unique VSN; Data management then preps the :volumes 
from information you supply on the assoeiated VOL and:~LBL.statements. This procedure is 
described in 9.3.3.3. 

Whe'.h you issue an OPEN macro to ah output tape file, its 0pen-and-rewind options are 
executed first ('9.2.5.2 and 9.2.5.3), and then the tape is ch·ecked.to .see ·it it is at the load 
point. If H:: is·: at the load point, data managemeht reads.;the VOL 1 label (if it is not inthe 
prep mode) arid, checkln'g the VSN, saves this for use·in writing 0r reading the·file header 
labels (HDR1 and HDR2). It then positions .your tape so ·tt:lat the volume labels· are not 
destroyed, and no further volume label processing is performed. 

If the output tape is not at the· load point after the open·.:.and-rewind'options ar·e executed, 
tape SAM ·asstlmes that it is positioned [jetween the two ending .. tape marks .of the 
previous file; or·jUst prior to the HDR f label of an existing file. In either case, ·rio volume 
label checking or creation is performed. 

For an input tape, the OPEN transient first executes the open-and-rewind options and then 
checks to see whether the tape is at the load point If it is, the VOL1 label is ·read and the 
VSN is used to check the file serial number in the appropriate file header or trailer label. 
The tape· is· then positioned to the· proper file header or tfailer label, as specified lA the file 
sequence number field of the associated LBL job 5control statement (9.3.4), ··an:d·no :further 
volume label processing is performed. If the input tape is not at the load point after your 
open-and-rewind options are executed, tape SAM assumes that ·the tape is positioned 
between the two ending tape marks of a previously created file, or just prior to the HDR 1 
label of an existing file. In either case, no further volume label proc·essing is performed. 

When any volume label is encountered during the processing of a CLOSE ma't::roinstruction 
for an input tape (9.2.5.4, 9.4.2), if you have specified READ=BACK (9.2.5.1 ), the label is 
bypassed without processing. Figure E-1 shows the format of the VOl.1 label; its fields 
are described in Table E-1. 



UP-8068 Rev. 4 

BY.TES 

4 

8 

12 

16 

20 

24 

28 

32 

36 

·40 

.44 

48 

52 

56 

,·so 

64 

68 

72 

LEGEND: 

SPERRY UNIVAC OS/3 
BASIC,DATA MANAGEMENT 

volume serial nµmp~r 

reserved 

reserved 

res.i:?rved 

owner identification 

reserved 

2 

~ Generated by data management or reserved for system expansion. 

D Written by data management from user-supplied data. 

Figure E-1. Tape Volume 1 (VOL1) Label Format for an EBCDIC Volume 

E-3 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-4 

Table E-1. Tape Volume 1 (VOLT) Label Format, Field Description for an EBCDIC Volume 

·Field Initialized By Bytes Code Description 

Label Tape prep o_.:.2 EBCDIC Contains "VOL" to indicate 
identifier that this is a volume label 

Label number Tape prep 3 EBCDIC Always "1 ",for the initial 
volume label 

Volume serial Tape prep 4-9 EBCDIC Unique identification number 
number assigned to this volume by 

your installation. Tape SAM 
expects 1 to 6 alphanumeric 
characters, the first of which 
is alphabetic 

Volume Data Mgt 10 EBCDIC Reserved for future use by 
security installations requiring 

security at the reel level. 
Currently blank 

.Reserved ----- 11-20 EBCDIC Contains blanks (40
16

) 

Reserved ----- 21-30 EBCDIC Contains blanks (40
16

) 

Reserved· ----- 31-40 EBCDIC Contains blanks (40
16

) 

Owner Tape prep 41-50 EBCDIC Unique identification of the 
identification owner of the reel: any 

combination of alphanumerics 

Reserved -- ... -- 51-79 EBCDIC Contains blanks (40
16

) 

E.2.2. File Header Label Group 

The file header label group comprises two labels, HOR 1 and HOR2, described in the 
following subparagraphs. 

E.2.2.1. First File Header Label (HOR 1) 

The first file header label (HOR 1 ), which identifies the file, is written at the beginning of 
each file. The HOR 1 label is required and has the fixed format shown in Figure E-2; its 
fields ar~ described in Table E-2. All fields in the HOR1 label may be specified in the job 
control stream. 



UP-8068 Rev. 4 

BYTES 

0 

0 H 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 ... number 

44 

48 

52 

60 

64 

68 

72 

76 

LEGEND: 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

2 

D R 

file identifier 

file serial number 

. . . sequence number 

. . . sequence number 

... number 

creation date 

expiration elate 

unused 

system code 

reserved 

~ Generated by data management or reserved for system expansion. 

[lliJJ Written by data management from user-supplied data. 

3 

volume ... 

file ... 

generation ... 

version ... 

Figure E-2. First File Header Label (HDR1) Format for an EBCDIC Tape Volume 

E-5 



UP-8068 Rev.A 

l:. 

I 

,, 

SPERRY .UNIVAC OS/3 
BASIC OATAMANAGEMENT 

Table £-2. First File Header Label (HDR1 }, Field Description 

Field Bytes 
I· DescrJption 

Label identifier 0-2 Contains "HDR" to indicate a file header label 

Label number 3 Always "1" 

File identifier 4-20 A 17-byte configuration that uniquely identifies 
the file., It may contain embedded blanks and is 
left-justified in the field if fewer than 17 bytes 
are specified. 

File serial number 21-26 The same as the VSN of the VOL 1 label for the 
first reel of a file or a group of multifile reels 

Volume sequence 27-30 The position of the current reel with respect 
nunioer tb the first reel on which the file begins. 

.; 

File sequence·number 31--,-34 The position.of this file with respect to the 
first file in the group 

Generation number 35_:38 The generatiqn number of the file (0000-9999} 
~ 

Version number of i 39-40 I· The version number of a particular generation 
generati~n of a file 

Creation date 41-46 The date on which the file was created, expressed 
in the form YYDDD and right-justified.'The 
leftmost position is blank. 

Expiration date 47-:-5.2 The date the file may be written over or used 
as scratch, in the same form as the creation 

·aate 

File security indicator 53 Reserved for file security indicator. Indicates 
whether additional qualifications must be met 
before a user program may have access to the file. 

0 = No additional qualifications are required; 

1 = Additional qualifications are required. 

Unused 54-59 Unused field, containing EBCDIC O's 

Sy~emcode 60-72 Reserved fo.r system code, the unique identification 
of the operating system that produced the file 

Reserved 73-79 Resenled field, containing blanks (40
16

). 

E-6 

' 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIG DATA MANAGEMENT 

E-7 

For input tapes, all fields up to and including the system code field in the HOR f label are 
checked at file open against the values you specify in the. LBL job control statement 
(9.3.4), unless you have specified read-backward processing (9:.2.5.1 ). If you have specified 
REAO==BACK, tape SAM bypasses the HDR1 label~without "processing ii. For m~ltifile input 
volumes, you should, specify th~ file sequence number in the LB~job cq11trol statement to 
ensure proper tape positioning. 

For output files, the tape must be positioned properly before you may open thE! files. On 
file open, the. expiration date in the HOR 1 label is checked against the .current or actual 
calendar date to determine whether the associated file has expired. If it has not, data 
management issues error message OM57,. and it is not ·J)OSSible to write to the file. You 
should mount the correct volume and rerun. 

If the file has expired, the tap~ is positioned so that the old HOR 1 label is overwritten. The 
HOR1 label for the new file, set up from the values you specify in the t.:BL.job control 
statement, is written on the tape. 

E.2.2.2. Sepond File Header Label (HDR2) 

The second file header label (HOR2) acts as an extension of the "HDR1 lab.e.1 and .is 
required in standard labeled files. Unless the HOR2 label was created by OS/3, .. however, 
as indicated in the system code field of the HOR 1 label, tape SAM ignores the HPR2 label 
on input tapes. Figure E'-3 shows the format of the HOR2 label; Table E-3 describes its 
fields. 



UP-8068 Rev. 4 

BYTES 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

LEGEND: 

0 

H 

record format 
character 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

2 

D R 

block length 

record leagth 

reserved 

reserved 

~ Generated by data management or reserved for system expansion. 

~ Written by data management from user-supplied data. 

3 

2 

Figure E-3. Second File Header Label (HDR2) Format for an EBCDIC Tape Volume 

E-8 



UP-8068 Rev. 4 SPERRY UNIYAC OS/3.,:· 
BASIC DATAMANAGEMENT 

E-9 

Table E-3. Second File Header Label (HDR2), Field Description 

Field Bytes Description 

' :-c:-
Label identifier 0-2 Contains "HOR" to indicate a file header label 

~ I 

Label number 3 Always "2" 

Record format character 4 Character Meaning 

D Variable-length, with length 
fields specified in decimal 

F Fixed-length 

u Undefined 
v Variable-length, with length 

fields specified in binary 

Block length 5-9 Five EBCDIC characters specifying the maximum 
number of characters per block 

Record length 10-14 Five EBCDIC characters specifying the record length for 
fixed-length records. For any other record format, this 
field contains O's. 

:.:.."-. 

Reserved 15-35 Reserved for future system use 

Reserved 36-19 Reserved for future system use 

E.2.3. File Trailer Label Group 

The file trailer label group comprises either of two pairs of labels, depending on whether 
the reel contains an end-of-file or an end-of:::volume, condition. In the first condition, the 
first label of the pair is the EOF1 label, in a format identical to the HOR 1 label; the second 
label is the EOF2 label. Its format is identical to the HOR2 label. In the end:..of-volume 
condition, these labels are the EOV1 and EOV2 labels; again, the formats. of .these labels 
are identical to their counterparts in the file header label group, HOR1 and HOR2. 

When you issue an OPEN macroinstruction to an input tape file, with REAO==BACK 
specified in the OTFMT macroinstruction, the OPEN transient checks the fields in an EOF1 
and EOV1 label against the values you have specified in the LBL job control statement. 
This processing is similar to that of the HOR 1 label. 

Figure E-4 illustrates the format of the EOF1 or EOV1 label; Table E-4 summarizes the 
contents of it§ fields. Similarly, Figure E-5 and Table E-5 desc.ribe. the EOF2 or EOV2 
label. 



UP-8068 Rev. 4 

BYTES 

b 

4 

8 

12 

16 

20 

24 

28 

32 

36 

44 

48 

52 

56 

60 

64 

68 

72 

76 

LEGEND: 

. . . number 

SPERRY UNIVAC OS/3· 
BASIC DATA MANAGEMENT 

2 

label identifier 

file identifier 

file serial number 

... sequence number 

... sequence number 

. . . number 

creation date 

expir:ation date 

system code 

reserved 

~ Generated by data management or reserved for system expansion 

D Written by data management from user-supplied data 

file ... 

generation ... 

version ... 

Figure E-4. Tape File EOF1 ·and EOVT Label Formats 

E-10 



UP-8068 Rev. 4 -

-; 

F 

L 

I' 

S~ERRY UNIVA.C ()S/3 
BASIC DATA MANApEMJ=NT 

E-11 

Table £-4. Tape File £0F1 and £0V1 Labels, Field Description 

Field Bytes Description 
-~"- '-"---"--= = 

L~bel identifier 0-2 Indicates that this is a file trailer label; 
I 

contains "EOF" for an end-of-file label, 
or :'~EOV" for an end-c>f-volume label 

--

Label number 3 Always "1" 

flle identifier 4-20 A 17-byte configuration that uniquely identifies 
th_e file. It may contain embedded blanks and is 
left:iu~tified_in the field if fewer than 17 
bytes are specified. 

File serial number 21-26 The same as the VSN of the VOL 1 label 
for the first reel of a file or a group of 
multifile reels 

V61ume sequence number 27-30 The position of the current reel with respect 
to the first reel on which the file begins. 

File sequence number 31-34 The position of this file with respect to the 
first file in the group 

-

Generation number 35-38 The generation number of the file (0000-9900) 

Version number of 39-40 The version number of a particular generation 
generation of a file 

Creation date 41-46 The date on which the file was created, expressed 
in the form YYDDD and right-justified. The l~t-
most position is blank. 

Expiration date 47-52 The date the file may be written over or used· as 
scratch, in the same form as the creation date 

-

File security indicator 53 R'eserved for file security indicator. Indicates 
whether additional qualifications must be met before 
a user program may have access to the file. 

0 =No additional qualifications are.required. 

1 = Additional qualifications are required. 
-::-

Block count 54-59 In the first file trailer label, indicates the 
number of data blocks: either in this file of 
a multifile reel, or on the current reel of a 
multivolume file. Tape SAM checks the block 
count for input files or writes the count for. 

·output files. 
..:::.::_ ..::_ -_ 

System code 60-72 Reserved for system code, the unique identification 
of the operating system that produced the file 

Reserved 73-79 Reserved field,_contai11ing blanks (40
16

) 



UP-8068 Rev. 4 

BYTES 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

LEGEND: 

0 

record format 
character 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

2 

label identifier 

block length 

record length 

reserved 

reserved 

-~ Generated by data management or reserved for system expansion. 

Written by data management from user-supplied data. 

Figure E-5. Tape File EOF2 and EOV2 Label Formats 

3 

label 
number 

E-12 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATAMANAGEMENT 

E-13 

Table E-5. Tape File EOF2 and EOV2 Labels, Field Description 

' <' 

Field Bytes Description 

' Label identifier 0-2 Indicates that this is a file trailer label; contains 
"EOF" for ari end-of-file label, or "EOV" for 
an end-of-volume label 

Label nlJmber 3 Always "2" 
I 

Record format character 4 Character Meaning ---
D Variable-length, with length 

fields specified in decimal 
F Fixed-length 

u Undefined 
v Variable-length, with 

length fields specified in binary 

Block length 5-9 Five EBCDIC characters specifying the maximum 
number of characters per block 

Record length 10-14 Five EBCDIC characters specifying the record length 
for fixed-length records. For any other record 
format, this field contains O's. 

Reserved 15-35 Reserved for future system use 

Reserved 36-79 Reserved for future system use 



UP-8068 Rev. 4 SPERRY UNIVAC 0~/3 
BASIC ,QATA. M~NAGEMENT 

E-14 

E.2.4. Standard User .Header and Trailer Labels· 

In a standard labeled file, you may use· only the standard UHL and UTL; within the OS/3 
tape SAME conventions, their use is entirely optional. You may have one or as many as 
eight UHL, or riorie at a11; ttif3 same applies to 'Optional UTL. If you use them, they must be 
in the OS/3 standard 80-byte format and content as described in Figure E-6 and Table 
E-6. Their position in a standard labeled tape volume is as presc;:ribed in Section 8. 

When you have specified the block n.umt;>ering option with the BKNO keyword parameter 
of your DTFMT declarative macro (9.2.3.5), the system labels and your optional user labels 
may not be the standard length. Optional user labels in an EBCDIC input file must then be 
83 bytes long, and user 1·at;>els in an ASCII input file 81 bytes long, to ensure correct 
processing. 

BYTES 

0 

label identifier 

2 3 

label 
number 

label data 

LEGEND: 

D Written by user's LABADDR routine. 

~ Written by data management. (See note to Table E-6.) 

Figure E-6. Optional User Header and TraHer Label Format, ASCII and Standard Labeled EBCDIC Tape Files 

Table E-6. Optional User Header and Trailer Labels, Field Description for Standard Labeled Tape Files 

Field Bytes Description 

Label identifier 0-2 Contains "UHL" for user header label; "UTL" for 
user trailer label 

Label number 3 Ranges from 1 through 8 (See note.) 

Label data 4-79 Contains 76 bytes of user-specified information 

NOTE: 

For ASCII files, the label number is not written by data management; it is the user's responsibility. Also there is 
no limit on the range; the user may have any number of user labels he wants. 



UP-8068 Rev. 4 SPERRY:UNIVAC OS/3 
BASIC,bATA MANAGEMENT 

E.3. ASCII STANDARD MAGNETIC TAPE LABELS 

E..:.15 

The fig.ures and tables that follow describe the labels written (and ·exp.ected to be read) by 
OS/3 magrletic tape SAM for ASCII files~ Note the very small diffe'rences ior foregoing 
EBCDIC lao'els and these ASCII labels, ·which conform to American ·Natitmal Standard 
Magnetic Tape Lc,be!s for Information Interchange, ·X3.27 - '.1969. · 

{)S/3' magnetic tape SAM writes and processes 'the folkiwin'g Asen standard labels: 
VOL1, HDR1, HDR2, EOV1, EOV2, EOF1, and EOF2. Although data manag·ement also 
provides. for input and output processing of optional UHLs and UTLs (their forms are 
identical irin ASCil· to those descr.ibed in E.2.4), it does· 'not provide for processing optional 
user volume labels (UVLs) ori'o·utput. if'present on ASCII input tapes, UVLs are accepted, 
but bypassed and ignored. 

For ASCII record formats and reel organizations, refer to Section 8. 

E·.3.1. ASCII Character Code and. Pr~ces~ing 

D'.uri'ng' input and oUtput processing of ASCII :magnetic tape files, OS/3 data management 
uses 'the character ·code specifiad by American National Sta'ndard"·Code for Information 
Interchange, X3.4 - 0 1968, performing appropr·iate translations (EBCDIC to· ASCII, 'or vice 
versa) so that your program always processes in EBCDIC. Refer to 9.2. 7.1 for details on 
specific or automatic inclusion of the OS/3 ASCII translation table module during link 
time. Appendix C provides a useful cross-reference table ·depicting the correspondence 
.b~tween ASCII and EBCDIC. 

E.3.1.1. Output Processing bf Labels in ASCII Magnetic Tape Files 

When you specify ASCII = YES in the DTFMT declarative macro defining an output 
magnetic tape file, OS/3 data management writes out all system labels in ASCII. Just as 
you must present your data tO data mana'gement in EBCDIC (9.2. 7; 1;) so also must you 
present your optJonal UHL. and UTL ·1abel data in EBCDIC. Data management' translates 
these into ASCil before writin'g them outto tape. It is your ·responsfbility to write out the 
label number. 

E.3.1.2. Input Processing of Labels in ASCII Magnetic Tape Files 

When reading input magnetic tape files coded iri·ASCll, OS/3 data management assumes 
that the'se comply fully with American National Standard X3.27 - 1969,. and that there is 
no mixture of character codes. Any exception may result in incorrect processing. Before 
passing your data and your optional UHLs or UTLs to you, data management translates 
these into the form it expects to receive before ouptut: your program receive~ data and 
labels in EBCDIC. 

E.3:2. OS/3 Process.ing of Certain Fields in.·ASCff Tape ~abels 

The format and contentof .Asc·11 mqgnetic t~p~ labels in OS/3 are depicted in Figur·es 
E-7 ·through E_;, 11 ·and Table E-7 through E~11. These subparagraphs describe the 
way OS/3 processes certain of the label fields; further notes appear ih the tables. 



UP-8068 Rev. 4 

E.3.2.1. Accessibility Field 

SPERRY UNIVAC .QS/3 
BASIC PAJA MANAGEMENT 

E-16 , 

The accessibility field occurs in .the VOL1, HDR 1, EOF1, and EOV1 labels. During read­
forward input, a ,.·space" (4/0) encountered ·in this field of both the V6L 1 and HDR1 labels 
allows proces~ing, to continue, whereas a nonspace in either field causes the issua.nce of 
error message DM 12 to the operator's console; processing may not continue unless the 
operator responds with the override option in effect at your installation. (For backward­
rea.d input,, the procedure is .identical, the fields interrogated being those in the EOV1 and 
EOF1 labels.) 

In 0$/3, there .is no option to wrJte a nonspace character in the accessibility field of any 
system label on output ASCII tapes; data management always creates this field as 
"space". 

E.3.2.2. Label Standard Level Field 

The label standard level field occurs only in the VOL 1 label. When writing output ASCII 
tapes, data management writes "1" in this field to indicate that the tape is in full 
compliance with American National Standard X3.27 - 1969. On input tapes, a "1;" in this 
field ens1,1res correct processing; tapes created under later versions of the stan,dard may 
also be accepted, but you cannot be ass~red of correct processing. 

E.3.~.3. Expiration Date Field 

The expiration date field occurs in the HDR 1, EOF1, and EOV1 labels. If you attempt to 
write over an unexpired file in an ASCII tape (one whose expiration date is later than 
today's date), data. management issues error rn,essag.e DM57 to th.e operator consoJe. You 
will not be able ~t·a- continue processing unless the operator responds with the override 
option in effect at your installation. 

You should note that, in a multifile ASCII volume, if you give a file a later expiration date 
than you have given to the files that you have already recorded on the tape, this additional 
protection you intend is not effective. The expiration date of the first file on a volume is 
the latest date on which any part of the volume is protected from being overwritten. 

E.3.2.4. System Code 

In writing output tapes, data management writes "OS3", left-justified in the 13-byte 
system code field. The remainder of the"field is filled with "spaces". The field is igi;10red on 
input. 

E.4. PADDING 

In other systems, provision has sometimes been made to allow label blocks to be extended 
in length to the nearest multiple of the computer's word length, any desired characters 
being used for padding. OS/3 does not provide for padding of labels (nor of data blocks: 
see Section 8). If the labels in your ASCII input files are not exactly 80 bytes in length, 
they cannot be processed properly by OS./3. (If BKNO=YES is $pacified, however, label 
length should be exactly 83 bytes.) · 



UP-8068 Rev. 4 

BYTE 
0 

0 v 

4 

8 

2 

6 

0 

2 4 

2 8 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

volume serial 
number 

SPERRY UNIVAC OS~3 
BASIC DATA MANAGEMENT 

1 

0 

2 

L 

accessibility 

:~ 

reserved for future 
standardization 

reserved' for future standardization 

owner identification 

reserved for future 
standardization 

...,,. 

Figure E-7. Volume Header Label (VOLT) for an ASCII Magnetic Tape Volume 

E-17 

3 

1 

label standard 
level 



UP-8068 Rev. 4 SPEflRY UNIVAC OS/3 
BASl0 DATA MANAGEMENT 

E-18 

Table E-7. Volume Header Label (VOL 1 }, Field Description for an ASCII Volume 

,. ..:....:.. ...:.. -"- ""'--"-

'field Bytes Description 
-;; 

Label identifier 0-2 Must be "VOL" 

Label number 3 Must be "1" 
--::-

Volume serial number 4-9 Six "a" characters permanently assigned by the owner to 
identify this physical volume (that is,. this reel oLmagnetic 
tape). (See Note 1.l 

Accessibility 10 An "a" character that indicates any restrictions on who 
may have access to the information in this volume. A 
"space" means unlimited access; any other character . means special handling, in the manner agreed upon 
between the interchange parties. (See Notes 1 and 2) 

--· - ----- - --

Reserved 11-30 
Reserved for future standardization. Must be "spaces". 
(See Note 2.) 

.Reserved 31-36 Reserved for future standardization. Must be "spaces". 
(See Note 2.) 

Owner identification 37-50 Any "a" ~haracters, identifying the owner of the phys_ical 
volume (See Note 1.) 

2 

Reserved 51-78 Reserved for future standardization. Must be "spaces" 
(See Note 2.) 

Label standard level 79 "1" means that the labels and_ data formats on this v9lunie 
conform to the requirements of American National 
Standard X3.27-1969. "Space" means that the labels 
and data formats on this volume require the agreement 
of the interchange parties. (See Note 2.) 

·~-

, 

--

1. An "a" character is any of the characters occupying the center four columns of ASCII (American National Standard Code for 
Information Interchange) except position 5/15 and those positions where there is a provision for alternative graphic 
representation. 

2. "Space" is the normally nonprinting graphic character occupying position 2/0 of ASCII. 



UP-8068 Rev. 4 . 

BYTE 0 

0 H 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 ... version number 

' 
# 

48 

52 

56 

60 

64 

68 

72 

76 

SPERRY UNIVAC OS/3 ' 
BASIC. DATA.MANAGEMENT 

D 

file identifier. 

set identification 

... section number 

•.. sequence number 

ation number 

creation d~te 

expiration date 

accessibility 

block count 

system ·code 

R 

reserved for future 
standardization 

E-19 

3 

file ... 

file •.. · 

gener-

generation ... 

Figure E-8. First.File Header Label (HORT) for an ASCII fv1agnetic Tape Volume 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-20 

Table E-8. First File Header label (HDR1 ), Field Description for an ASCII Volume (Part 1 of 2) 

Field Bytes Description 

Label identifier 0-2 Must be "HDR" 

Label number 3 Must be "1" 

File identifier 4-20 Any "a" characters agreed on between originator and 
recipient. (See Note 1.) 

Set identification 21...:...25 Any "a" characters to identify the set of files of which 
this is one. This identification must be the same for all 
files of a multifile set. (See Note 1.) 

File section number 27-30 The file section number of the first header label of each 
file is "0001 ". This applies both to the first or only file 
on a volume and to subsequent files on a multifile 
volume. This field is incremented by one on each 
subsequent volume of the file. 

File sequence number 31-34 Four ~'n" characters denoting the sequence (that is, 
0001, 0002, etc) of files within the volume or set of 
volumes. In all the labels for a given file, this field will 
contain the same number. (See Note 3.) 

Generation number (optional) 35-38 Four "n" characters denoting the current stage in the 
succession of one file generation by the next. When a 
file is first created, its generation number is 0001. (See 
Notes 3 and 4.) 

Generation version number (optional) 39-40 Two "n" characters distinguishing successive iterations 
of the same generation. The generation version number 
of the first attempt to produce a file is 00. (See Notes 
3and 4.) 

Creation date 41-46 A "space" followed by two "n" characters for the year, 
followed by three "n" characters for the day (001 to 
366) within the year (See Notes 2 and 3.) 

Expiration date 47-52 Sa.me format as creation date field •. This file .is regarded 
as "expired" when today's date is equal to, or later than, 
the date given in this field. When this condition is 
satisfied, the remainder of this volume may be overwritten. 
To be effective on multifile volumes, therefore, the 
expiration date of a file must be less than, or equal to, the 
expiration date of all previous files on the volume. 

Accessibility 53 An "a" character that indicates any restrictions on who 
may have access to the information in this file. A "space" 
means unlimited access; any other character means special 
handling, in a manner agreed upon between the interchange 
parties. 

Block count 54-59 Must be "zeros" 

System code (optional) 60-72 Thirteen "a" characters identifying the operating system 
that recorded this file. Output tapes written by OS/3 
tape SAM contain "OS3". 

Reserved 73-79 Reserved for future standardization; must contain "spaces" 

NOTES: 

1. An "a" character is any of the characters occupying the center four columns of ASCII (depicted in American National Standard 
X3.4-1968), except for position 5/15 and those positions where there is provision for alternative graphic representation. 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-21 

Table £-8. First File Header Label (HDR.1 ), Field Description for an ASCII Volume (Part 2 of 2) 

2. A "space" is the normally nonprinting graphic character occupying position 2/0 in ASCII. 

3. An "n" character is any ASCII numeric digit, from 0 through 9. 

4. "Optional," when used to describe a field in these ASCII labels, means that the field may, but need not, contain the information 
described. If an optional field does not contain the designated information, it must contain "spaces". 

BYTE 

0 1 2 3 

0 H D R . 2 

4 
record format block length 

8 
record 
length 

2 

16 

2 0 

24 reserved for operating systems 

2 8 

3 2 

3 6 

4 0 

44 

48 buffer offset 

5 2 

5 6 

reserved for future 
6 0 standardization 

64 

68 

7 2 

7 6 

Figure E-9. Second File Header Label (HDR2) for an ASCII Volume 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-22 

Table E-9. Second. File Hf!ader Labej (H[)R2), Fie!<! Descriptlon for an ASCJI Vo/um(! 

Field Bytes· I De5cription 

Label identifier 0-2 Must be "HDR" 

Label number 3 Must be "2" ; 
_L_ ~ --=-

Record format 4 Character Meaning 

F Fixed length 

D Variable, with the number of characters 
in the record specified in decimal 

v Variable, with the number of characters 
specified in binary. (See Note.): 

u Undefined 

Block length 5-9 Five "n" characters specifying the maximum number of 
characters per block. (See Note 3, Table E-8.) 

Record length· 10-14 Five "n" characters specifying: if "record format" is F, 
record length; if Dor V, maximum record length including 
any count fields; if U, then undefined. (See Note.) 

Reserved 15-49 Reserved for OS/3 use; currently "spaces" 

Buffer offset (optional) 50-51 Two "n" characters specifying the length in characters of 
any additional field inserted before a data block-for 
example, block length. This length is included in the block 
length. (See Notes 3 and 4, Table E-8.) 

Reserved 52-79 Reserved for future standardization; must contain "spaces". 
(See Note 2, Table E-8.l 

NOTE: 

OS/3 magnetic tape SAM does not support the ASCII "V-format" record. 



UP-8068 Rev. 4 

BYTE 0 

0 

4 

8 

12 

16 

20 

24 

40' ... version number. 

48 

52' 

56 

60 

64 

68 

72 

76 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

label identifier 

file identifier 

set identification 

· ... section number 

~ .. sequence number 

ation number 

creation date 

expiration date 

.accessibility 

system code 

2 

reserved for future. 
standardiza'tion 

E-23' 

3 

file ... 

·file ... 

gener-

generation ... 

block count 

FigureE_:._10. First End-of""File or End-'of..:Volume L?be/ (EOF1/EOVU for an ASCII Volume 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-24 

Table E-10. First End-of-File or End-of-Volume Label (EOF1 IEOV1 ), Field Description for an ASCII Volume 

Field Bytes Description 

Label identifier 0-2 Contains "EOF" if an end-of-file label; "EOV" for end-of-
volume label 

Label number 3 Must be "1" 

File identifier 4-20 Any "a" characters agreed on between originator and 
recipient (See Note 1, Table E-8.) 

Set identification 21-26 Any "a" characters to identify the set of files of which 
this is one. This identification must be the same for all 
files of a multifile set. (See Note 1, Table E-8.) 

File section number 27-30 The file section number of the first header label of each 
file is "0001". This applies both to the first or only file 
on a volume and to subsequent files on a multifile 
volume. This field is incremented by one on each 
subsequent volume.of the file. 

File sequence number 31-34 Four "n" characters denoting the sequence (that is, 
0001, 0002, etc) of files within the volume or set of 
volumes. In all the labels for a given file, this field will 
contain the same number. (See Note 3, Table E-8.) 

Generation number (optional) 35-38 Four "n" characters denoting the current stage in the 
succession of one file generation by the next. When a 
file is first created, its gener~tion number is 0001. 
(See Notes 3 and 4, Table E-8.I 

Generation version number (optional) 39-40 Two "n" characters distinguishing successive iterations 
of the same generation. The generation version number 
of the first attempt to produce a file is 00. (See Notes 
3 and 4, Table~E-8.) 

Creation date 41-46 A "space" followed by two "n" characters for the year, 
followed by three"n" characters for the day (001 to 366) 
within the year. (See Notes 2 and 3, Table E-8.I 

Expiration date 47-52 Same format as creation date field. This file is regarded 
as "expired" when today's date is equal to, or later than, 
the date given in thi~ field. When this conditicm is 
satisfied, the remainder of this volume may be 
overwritten. To be effective on multifile volumes, 
therefore, the expiration date of a file must be less than, 
or equal to, the expiration date of all previous files on 
the volume. 

Accessibility 53 An "a" character that indicates any restrictions on who 
may have access to the information in this file. A "space" 
means unlimited access; any other character means special 
handling, in a manner agreed upon between the interchange 
parties. (See Notes 1 and 2, Table E-8.) 

Block count 54-59 Number of data blocks in the file or volume 

System code (optional) 60-72 Thirteen "a" characters identifying the operating 
system that recorded this file. Output tapes written by 
OS/3 tape SAM coritain. "OS3". (See Note 1, Table E-8.) 

Reserved 73-79 Reserved for future standardization; must be "spaces". 
(See Note 3, Table E-8.) 



UP-8068 Rev. 4 

BYTE 

0 

4 

8 

2 

6 

2 0 

2 4 

2 8 

3 2 

3 6 

4 0 

44 

4 9, 

5 2 

5 6 

6 0 

64 

6 8 

7 2 

7 6 

0 
l 

record format J 

i 

SPERRY UNIVAC OS/3 
BASld~bATA MANAGEMENT 

l 
label identifier 

2 

block length 

record 
length 

reserved for operating 
systems 

reserved for future 
standardization 

E-25 

3 

2 

buffer offset 

Figure E-11. Second End-of-File or End-of-Volume Label (EOF2/EOV2) for an ASCII Volume 

' 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

E-26 

Table E-11. Second End-of-File or End-of-Volume Label (EOF2/EOV2), Field Description for an ASCII Volume 

Field Bytes Description 

Label identifier 0-2 Contains "EOF" if an end-of-file label; "EOV" for end-
of-volume .. . . 

Label number 3 Must be "2" 

Record format 4 Character Meaning 

F Fixed length 

D Variable, with the number of characters 
in the record specified in decimal 

v Variable, with the number of characters 
specified in binary. (See Note 1, Table E-9.) 

u Undefined 

Block length 5-9 Five "n" characters specifying the maximum number of 
characters per block. (See Note 3, Table E-8.) 

Record length 10-14 Five "n" characters specifying: if "record format" is F, 
record length; if Dor V, maximum record length 
including any count fields; if U, then undefined. (See 
Note 1, Table E-9.l 

Reserved 15-49 Reserved for OS/3 use; currently "spaces". (See Note 2, 
Table E-8.) 

Buffer offset (optional) 50-51 Two "n" characters specifying the length in characters 
of any additional field inserted before a data block-for 
example, block length. This length is included in the .. 
block length. (See Notes 3 and 4, Table E-8.) 

Reserved 52-79 .f3eserved for .future standardization; must be "spaces". 
(See Note 2, Table E-8.) 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

F-1 
Update A 

Appendix F. Consolidated Data Management 
Migration Considerations 

F.1. WHAT DO I HAVE TO DO TO MIGRATE TO CONSOLIDATED 
DATA MANAGEMENT? 

The answer is that the amount of effort varies with language. of the program you want to 
migrate: that is, BAL, RPG II, 1968 American Nationa.1 Standard COBOL, 1974 American 
National Standard COBOL, or FORTRAN. ' 

F.2. MIGRATION REQUIREMENTS 

The migration requirements for programs written in the various programming languages 
are discussed in the paragraphs that follow. 

F.2.1. BAL Programs 

If your program is written in BAL, you must redefine your files. This means that you must 
replace all basic data management DTF declarative macroinstructions with the 
consolidated data management CDIB and RIB declarative macroinstructions. 

If you use disk files with your program, these must be converted (wsing data utilities) to 
MIRAM files before they can be used. 

You must replace all basic data management imperative macroinstructions with the 
appropriate consolidated data management imperative macroinstructions. These new 
imperative macroinstructions must be immediately followed by inline coding that checks 
the status of the operation being performed. This is necessary because consolidated data 
management always returns control inline. There is no provision made for contingency 
routine addresses such as EOFADDR and ERROR in the RIB macroinstruction. 

After you have modified your program, it must be reassembled and relinked before it can 
be executed. 

Note that if your program creates disk files, these files must be specified as MIRAM files 
in the job control stream used to execute the program. 

t 



t 

UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

F-2 
Update B 

F.2.1.1. OS/3 Sequential DTF Mode To CDI Macro Converter (DTFCDl301) 

You can reduce the amount of effort required to migrate a basic data management BAL 
program that processes sequential files (card, tape, printer, or SAM disk) to consolidated 
data management by using DTFCDl301. This converter processes basic data management 
BAL source program modules that you have previously written to a library file. It produces 
a consolidated data management source program module and a listing that shows the 
actions taken by the converter. The consolidated data management source program 
module is automatically written to the original library file unless you specify otherwise. 
Those statements that cannot be converted or that require your attention are indicated by 
diagnostic messages on the listing. As you can see, the converter can save you 
considerable time because you only have to change your program where indicated. 

After you have modified your program, it must be reassembled and relinked before it can 
be executed. 

The DTFCDl301 user guide, UA-0455 (current version) contains the detailed information 
you need to successfully use the converter. 

F.2.2. RPG II Programs 

An RPG II program does not require any modifications unless you want to want to use 
workstations. It must, however, be recompiled and relinked before you can execute it even 
if you did not modify it. 

If your program uses disk files, these must be converted (using data utilities) to MIRAM 
files. 

Note that if your program creates disk files, they must be specified as MIRAM fries in the 
job control stream used to execute the program. 

F.2.3. 1968 American National Standard COBOL Programs 

Programs that are written in this language cannot be migrated to consolidated data 
management. They must first be converted to 1974 American National Standard COBOL 

F.2.4. 1974 American National Standard COBOL Programs 

A program written in this language does not require any modification unless it uses disk 
files. It must, however, be recompiled and relinked before you execute it even if you did 
not modify it. 

If your program uses disk files, these must be converted (using data utilities) to MIRAM 
files before you can use them. 

Note that if your program creates disk files, they must be specified as MIRAM files in the 
job control stream used to execute the program. 



UP-8068 Rev. 4 

F.2.5. FORTRAN Programs 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

F-3 
Update B 

Your FORTRAN program does not have to be recompiled; however, you must update your 
unit definitions, reassemble them, and relink them with your program before you can 
execute it. 

If you want to use workstations, you must modify your FORTRAN source program and 
recompile it. You must also update your unit definitions and include unit definitions for the 
workstations. These unit definitions must be reassembled and relinked with your program 
before you can execute it. 

If your program uses disk files, these must be converted (using data utilities) to MIRAM 
files. 

Note that if your program creates disk files, they must be specified as MIRAM files in the 
job control stream used to execute the program. 





UP-8068 Rev. 4 

Term 

c 
Card codes 

column binary 

compressed 

data conversion 
Hollerith 
96-column punch 

Card files 

Card punch 
card flow 
characteristics 
codes, 96-column 
using CNTRL macro 

Card reader 
characteristics 
See also punched card. 

Character deletion 

Character mismatches 

Character mode, paper tape files 
character deletion, 

input files 
description 

letter /figure shifting 
and translation 

specifying 
See also paper tape files. 

Characters, paper tape 
delete 
letter and figure shift 
null 
stop 
types 

Checkpoint dumps, bypassing 

CLOSE macro 
diskette 
ISAM 
magnetic tape 
nonindexed disk 
paper tape 

printer 
punched card 

SPERRY UNIVAC OS/3 
BASIC DATA MAN.AGEMENT 

Reference Page Term 

CNTRL macro 
device skip code table 
DTFCD macro 

C.3.2 C-9 magnetic tape 
Fig. C-2 C-9 nonindexed disk 
C.3.1 C-8 printer 
Fig. C-1 C-;8 punched card SAM 
C.4 C-9 using 
C.2.1 C-2 
Fig. C-3 C-11 Code correspondences 

column binary 
See punched 
card files. compressed card code 

data conversion 
Fig. 3-1 3-20 description 
Table A-2 A-3 EBCDIO/ASCI I/Hollerith 
Fig. C-3 C-11 
3.4.4.1 3-20 

Codes 
ASCII 

Table A-1 A-2 device-independent control 
character 

device skip 
17.5.3.l 17-45 EBCDIC 

shift 
7.3 7-13 

Combined files, diskette 
description 
record processing 

17.5.3.1 17-45 
17.2 17-1 Compressed card code 
17.3.3 17-10 description 

17.5.3 17-39 mode 
17.5.5 17-50 
17.5.2.2 17-37 Consolidated data management 

description 
migration considerations 

17.3.1 17-5 Control characters 
17.3.2 17--:-6 device-independent 
17.3.l 17-4 overflow and home paper 
17.3.l 17~6 paper tape 
17.3 17-4 printer (DTFPR macro) 

9.2.8.2 9-29 Current data pointer 

Current 1/0 area 
5.4.4 5-12 
11.5.1.2 11-25 
9·.4.2 9-48 Current record pointer 
15.7.2 15-63 
17.4.2 17-18 Current re)ative block address 
17.5.9 17-65 
7.4.5 7-27 
3.4.5 3-24 

Index 3 
Update A 

Reference 

Table .7-4 
3.3 
9.4.10 
15.7.15 
7.4.3 
~.4.4 
3.4.4.1 

C.3.2 
Fig. C-2 
C.3.1 
Fig. C-1 
C.4 
C.l 
C.2 
Table C-1 

See ASCII. 

Table 7-1 
Table 7-4 
. See EBCDIC. 

Page 

7-22 
3-3 
9-62 
15-103 
7-21 
3-19 
3-20 

C-9 
C-9 
C-8 
C-8 
C-9 
C-1 
C-1 
C-3 

7-6 
7-22 

See shift coqes. 

4.2.3 4-4 
5.2.3 5-2 

C.3.1 C-8 
Fig. C-1 C-8 
C.4 C-9 

1.2 1-1 
Appendix F 

Table 7...:....1 7-6 
Table 7-2 7-8 
17.3 17-4 
7 .. 3 7-5 

15.6.11 15-34 

13.4.11 13-21 
138.5.9 138-15 

11.4.7 11-13 

15.7.17 15-106 



UP-8068 Rev. 4 

Term 

Cylinder overflow 
are·a·, providing 
c~.ntrol record 

Cylinders 
ccilculating space requirements 
formats; ISAM files 

D 
DAM files 

description 
disk 

Data 
~on version 
organization on typical 

peripheral devices 
partition, IRAM 
structure 
utilities 

Data blocks 
format, ISAM 

See also blocks. 

Data management error messages 
de~cription 
subcoqes 

Data records, IRAM 
spanning disk sectors on 

a fixed sector disk 
with and without 

DD .job control statement 
use 
with DTFCD macro keyword 

parameters 
with DTFDA macro keyword 

parameters 
with DTFIR macro keyword 

parameters 
with DTFIS macro keyword 

parameters 
with DTFMI macro keyword 

parameters 
with DTFMT macro keyword 

parameters 
with DTFNI and DPCA macro 

keyword parameters 
with DTFPR macro keyword 

parameters 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page ·Term 

with DTFPT macro keyword 
11.4.12 11-17 parameters 
10.2 10-3 with DTFSD macro keyword 
Fig. ·10-1 10-4 parameters 

Deallocation, dynamic 
10.2.2.1 10-11 
Fig. 10-1 10-4 Deallocation statement (SCR) 

Declarative macroinstructions 
description 
IRAM 
ISAM 
magnetic tape 
MIRAM 

. L5:2 1-10 
nonindexed disk file 

15.3 15-4 
paper tape 
printer 
punched card 

C.4 C-9 Delete character 

Fig. 1-1 1-4 
12.2.1 12-3 Deleting records 
1.3 1-4 
1.7.5 1-18 

Device allocation 

10.2.2 10-8 Device assignment set 

Fig. 10-4 10-9 sample 
use of job control statements 

8.3.l 8-2 Device-independent control 

Table 8-1 8-3 character codes 

Table 8-lA 8-9 
Device skip code table 

Direct access files 

Fig. 12~2 12-5 random retrieval 

Fig. 12-1 12-4 See also DAM files. 

Direct access method 

16.1.1 16-1 
Direct IRAM files 

Table 3-1 3-13 adding records 
creating 

Table 15.-2 15-12 deleting records 
description 

Table 13-1 13-16 extending 
processing 

Table 11-3 11_:..21 reorganizing 
retrieving and updating 

Table 138-1 138-10 records 

Table 9-1 9-4 Di re ct retrieva I 

Table 15-3 15-17 
Disk address, relative 

Table 7-3 7-14 

Index 4 
Update B 

Reference Page 

Table 17-1 17-27 

Table 1:5-1 15-9 

16.3 16-8 

16.1.3 16-2 

1.6.1 1-12 
See DTFIR macro. 
See DTFIS macro. 
See DTFMT macro. 
See DTFMI macro. 
15.5 15-7 
See DTFPT macro. 
See DTFPR macro. 
See DTFCD macro. 

17.2.1.2 17-3 
17.3.1 17-5 

See record deletion. 

16.1 16-1 

16.1.2 16-2 
16.1.l 16-1 

Table 7.-1 7-6 

Table 7-4 7-22 

15.7.14 15-97 

See DAM. 

13.1.2.3. 13-7 
13.1.2.1 13-5 
13.1.2.5 13-8 
13.1 13-1 
13.1.2.2 13-6 
13.1.2 13-5 
13.1.2.6 13-8 

13.1.2.4 13-7 

See READ.KEY 
macro. 

See relative 
disk address. 



UP-8068 Rev. 4 

Term 

Disk file labels 
description 
diskette 

ti le information group 

optional user standard 

volume information group 

Disk files 
access methods 
assigning space to file 

partition 
creating by sequential load 
description 
dynamic deallocation 

(SCRTCH) 
extension error handling 
IRAM 
ISAM 
labels 

non indexed 

renaming (RENAME) 
updating and extending 
See also sequential disk files. 

Disk bead movement 

Disk prep routine 

Disk sectors 

Disk space management 
description 
error codes 

OBTAIN macro 
VTOC 

Disk space requirements, estimating 
indexed IRAM file 
indexed MIRAM file 
ISAM file 
ISAM index area 
nonindexed IRAM file 
noni~dexed MIRAM file 

Disk subsystem 
characteristics 
files 
flexibility 

SPERRY UNIVAC .OS/3 
BASIC DATA MANAGEMENl; 

Reference Page Term 

Diskette 
D.1 D-1 characteristics 
D.5 D-30 combined files 
Fig. D-16 D-30 file label format 
Table D-12 D-31 
See file information 
group labels. files 
See stand a rd 
labelS, disk. 
See volume informa- input files 
tion group labels. limitations 

output files 
record. formats 

Section 15 
SAM 

15.6.25 15-49 
15.7.11.1 15-86 using 
1.3.6 1-8 

Double-buffering 
16.3 16-8 
B.3.3 B-12 DPCA macro 
See IRAM. description 
See ISAM. 
See disk file format 
labels. keyword parameter summaries 
See nonindexed 
disk files. keyword parameters 
16.2 16-6 nonstandard forms of keyword 
15.7.9.2 15-78 parameters 

DTF error 
15.7.15 15-103 

DTF fields 
1.7.1 1-15 filenameC 

other 
12.2.2 12-3 

DTF forms 

1.7:3 1-17 DTFCD macro 
B.3.2 ~-10 diskette 
Table B-2- B-11 punched card SAM files 
16.4.1 16-12 
16.4 16-11 DTFDA macro 

description 

12.2.4 12-9 
13A.2.5 13A-9 format 
10.2.2.1 10-11 keyword parameter summaries 
10.2.4 10-14 
12.2.5 12-12 keyword parameters 
13A.2.6 13A-12 nonstandard forms of 

keyword parameters 

Table A-4 A-9 DTFIR macro 
See disk. files. description 
1.5.6 1-11 format 

keyword parameters 

Index 5 
Update B 

Reference 

Table A-4 
4.2.3 
D.5 
Fig. D-16 

Page 

A-9 
4-4 
D-30 
D-30 

Table D-12 D-31 
1.3.3 1-7 
4.2 4-1 
Fig. 4-1 4-2 
4.2.1 4-3 
5.2.6 5-4 
4.2.2 4-4 
4.3 4-4 
Fig. 4.,._2 4-5 
See SAM files, 
diskette. 
5.2.5 5-3 

17.5.1.4 17-30 

15.4 15-5 
15.5.4 15-16 
15.5.4 15-16 
Table 15-3 15-17 
Table 15-7 15-58 
15.6 15-20 

15.6.37 15-57 

17.5.9 17-65 

See. filenameC. 
B.4.2 B-15 

1.6.1 1-12 

5.3 5-5 
3.3 3-3 

15.2 15-3 
15.3 15-4 
15.5.2 15-11 
15.5.2 15-11 
Table 15-2 15-12 
Table 15-7 15-58 
15.6 15-20 

15.6.37 15-57 

13.3 13-15 
13.3 13-15 
13.4 13-18 



UP-8068 Rev. 4 

Term 

DTFIR macro (cont) 
nonstandard forms of 

keyword parameters 
summary of keyword parameters 

DTFIS file table 
filenameC 
other addressable fields 

DTFIS macro 
description 
format 
keyword parameter summary 
keyword parameters 
nonstandard forms of key-

word parameters 

DTFMI macro 
description 
format 
keyword parameters 
nonstandard forms of 

keyword parameters 
summary of keyword parameters 

DTFMT macro 
description 
format 
keyword parameters 
nonstandard forms of 

keyword parameters 

DTFNI files, output 

DTFNI macro 
description 

format 
keyword parameter summaries 

keyword parameters 
nonstandard forms of key-

word parameters 

DTFPR macro 
description 
parameter summary 

DTFPT macro 
basic parameters 
description 
file processing mode 
format 
summary of keyword parameters 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

DTFSD macro 
· 13.4.26 13-25 description 
Table 13-1 13-16 

format 

11.6.1 11-49 
keyword parameter summaries 

11.6.2 11-49 keyword parameters 
Table 11-4 11-49 nonstandard forms of key-

word parameters 

11.3 11-6 DTFSD output file, extending 
11.3 11-7 
Table 11-3 11-21 Dumps, checkpoint 
11.4 11-8 

11.4.19 11-20 
DVC job control statement 

Dynamic deallocation, disk 
138.4 138-8 file (SCRTCH) 
138.4 138-9 
138.5 138-13 Dynamic extension, file partition 

138.5.24 138-20 Dynamic tape prepping and recording 
Table 138-1138-10 density 

9.2 9-1 
9.2.l 9-2 
Table 9-1 9-4 E 
9.2.9 9-29 EBCDIC code correspondences 
Table 9-2 9-30 

15.7.9.5 15-80 EBCDIC record and block formats, 
magnetic tape 

15.1 15-2 
15.4 15-5 EBCDIC standard mode 
15.5.3 15-14 
15:5.3 15-14 EBCDIC volume organization, 
Table 15-3 15-17 magnetic tape 
Table 15-7 15-58 file trailer label group 
15.6 15-20 first file header label 

(HDRl) 
15.6.37 15-57 multifile, end-of-file 

mult,itile, end-of-volume 
nonstandard 

7.3 7-4 second file header label 
Table 7-3 7-14 (HDR2) 

single file 
standard 

17.5.1 17-28 
17.5 17-24 unlabeled 
17.5.2 17-36 
17.5 17-25 VOLl label forma~ 
Table 17-1 17-27 

Index 6 
Update B 

Reference 

15.2 
15.5.1 
15.5.1 

Page 

15-3 
15-8 
15-8 

Table 15-1 15-9 
Table 15-7 15-58 
15.6 15-20 

15.6.37 15-57 

15.7.9.3 15-79 

9.2.8.2 9-29 

9.3.1 9-31 
16.1.1 16-1 

16.3 16-8 

15.6.30 15-53 

9.3.3.2 9-34 

C.2 C-1 
Table C-1 C-3 

8.2.5 8-14 
Fig. 8-11 8-14 

C.4 C-9 

E.2.3 E-9 

E.2.2.1 E-4 
Fig. 8-2 8-4 
Fig. 8-3 8-5 
8.2.2 8-2 

E.2.2.2 E-7 
Fig. 8-1 8-3 
8.2.1 8-2 
E.2.4 E-14 
8.2.3 8-8 
Fig. 8-6 8-8 
Fig. E-1 E-3 
Table E-1 E-4 



UP-8068 Rev. 4 SPERRY UNiVAC OS/3 
BASIC DATA MANAGEMENT 

Index 7 



UP-8068 Rev. 4 

Term 

F 

FEOV macro 
magnetic tape 
nonindexed disk 

Figure scan table 

Figure shift character 

Figure shifting and translation 
input files, character mode 
output files, character mode 

File accessing options 

File control block (FC8), SCRTCH 
macro 

File creation date 

File description labels, diskette 

File expiration date 

File header labels, tape 
first (HDRl) 
second (HDR2) 
See also HDRl and HDR2 labels. 

File identifier 

File information group labels, disk 
chain 
description 
format 1 

format 2 

format 3 

File label information (L8L) statement 

File lock, suppressing 
IRAM 
ISAM 
nonindexed disk 
MIRAM 

File lock feature 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

File organization 
IRAM 
ISAM 

9.4.8 9-59 magnetic tape 
15.7.7 15-73 MIRAM 

nonindexed disk 
17.5.5 17-50 

File partitions 
17.3.2 17-6 assigning initial disk space 

dynamic extension 
indexed ISAM 

17.5.3 17-39 
17.5.5 17-50 initializing position 

IRAM 
11.4.l 11-8 

nonindexed disk 
16.3 16-8 positioning to relative 

block address 
9.3.4.4 9:._39 selected, accessing 

specifying address for 
4.2 4-3 DTFNI files 
0.5 D-30 subfile processing 

9.3.4.3 9-38 
File processing 

mode, changing for an 1/0 
E.2.2.1 E-4 tape file 
E.2.2.2 E-7 mode, setting (SETF macro) 

optional 

9.3.4.1 9-36 specifying with one volume 
online at a time 

Fig. D-7 D-12 TYPEFLE keyword 
D.3 D-12 
D.3.1 D-13 utility 
Fig. D-8 D-13 
Table D-6 D-14 File protection 
D.3.2 D-18 
Table D-7 D-21 File recovery support 
D.3.3 D-25 IRAM files 
Fig. D-13 D-26 MIRAM files 
Table D-11 D-27 

9.3.4 9-36 
File sequence number 

File serial numbers, checking 

13.4.15 13-22 File sharability 
11.4.11 11-16 
15.6.16 15-38 
138.5.12 138-16 

16.1.4 16-3 
Table 16-1 16-4a 

Index 8 
Update C 

Reference 

12.2 
10.2 
8.2 
13A.2 
14.2 

15.6.25 
15.6.30 
10.2 
Fig. 10-1 
15.7.6 
12.2 
12.2.3 
Fig. 12-5 
14.2.l 

15.7.18 
15.7.4 

15.6.17 
15.6.27 
15.7.5 

9.4.5 
15.7.8 

Page 

12-3 
10-3 
8-1 
13A-3 
14-2 

15-49 
15-53 
10-3 
10-4 
15-72 
12-3 
12-6 
12-7 
14-3 

15-108 
15-68 

15-39 
15-50 
15-70 

9-54 
15-74 

See optional file 
processing. 

13.4.24 13-24 
138.5.22 138-19 
3.3 3-10 
9.2.2.3 9-11 
1.7.5 1-18 

1.7.3 1-17 

13.5.1 13-26 
138.6.l 138-21 

9.3.4.5 9-39 

9.3.4.2 9-36 

11.4.1 11-8 
16.1.4 16-3 
Tale 16-1 16-4a 



UP-8068 Rev. 4 

Term 

File trailer label group 
description 
EOFl and EOVl field 

descriptions 
EOFl and EOVl formats 
EOF2 and EOV2 field 

descriptions 
EOF2 and EOV2 formats 

File type specification (TYPEFLE) 
IRAM 
ISAM 
magnetic tape 
paper tape 
punched card 

Filename-addressable fields, DTFIS 
file table 

FilenameC 
card reader 
description 
ISAM 
magnetic tape files 
non indexed 
paper tape files 

printer 
significance of bits 

Files 
ASAM 
assigning 
DAM 
disk 
diskette 
IRAM 
ISAM 
magnetic tape 

MIRAM 

multivolume 

nonindexed disk 

optional 

paper tape 

printer 
punched card 

SAM 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

Fixed-length records 
E.2.3 E-9 diskette 

ISAM 
Table E-4 E-11 
Fig. E-4 E-10 keyed, nonindexed disk files 

nonindexed disk files 
Table E-5 E-13 
Fig. E-5 E-12 See also record formats. 

Fixed, unblocked records 
13.4.21 13-23 (paper tape) 
11.4.15 11-18 followed by interrecord gaps 
9.2.2.3 9-11 
17.5.1.1 17-28 
3.3 3-10 format 

shifted, work areas 

Table 11-4 11-49 Flagging procedures, error 
description 
filenameC 

3.5.1 3-25 other DTF fields 
B.4.1 B-13 
11.6.1 11-49 Format labels, retrieving specific items 
9.2 9-2 
15.8.1 15-111 Format 0 label, disk 
17.5.9 17-65 contents 
Table 17-2 17-66 description 
7.5.l 7-28 
Table 8-3 B-13 

Format 1 label, disk 
contents 

10.3 10-18 description 
16.l 16-1 
See DAM files. 
See disk files. Format 2 label, disk 
See diskette files. contents 
See IRAM files. description 
See ISAM files. IRAM/MIRAM information area 
See magnetic tape 
files. ISAM file information area 
See MIRAM 
files. library file information area 
See multivolume 
files. nonindexed files 
See nonindexed 
disk files. Format 3 label, disk 
See optional contents 
file processing. description 
See paper tape 
files. 
See printer files. Format 4 label, disk 
See punched card contents 
files. description 
See SAM files. 

Index 9 
Update C 

Reference 

4.3.l 
10.2.1 
Fig. 10-2 
Fig. 14-4 
14.3.1 
Fig. 14-2 

Fig. 17-5 
Fig. 17-6 
Fig. 17-7 
17.3.3 
Fig. 17-9 

B.4 
B.4.1 
B.4.2 

16.4.1.1 

Table D-5 
D.2.5 
Fig. D-6 

Table D-6 
D.3.1 
Fig. D-8 

Table D-7 
D.3.2 
Fig. D-11 
Table D-9 
Fig. D-10 
Table D-8 
Fig. D-12 

Page 

4-4 
10-5 
10-6 
14-12 
14-7 
14-8 

17-10 
17-11 
17-13 
17-10 
17-15 

B-12 
B-13 
B-15 

16-14 

D-11 
D-11 
D-11 

D-14 
D-13 
D-13 

D-21 
D-18 
D-20 
D-24 
D-20 
D-23 
D-21 

Table D-10 D-25 
Fig. D-9 D-19 

Table D-11 D-27 
D.3.3 D-25 
Fig. D-13 D-26 

Table D-2 D-6 
D.2.2 D-4 
Fig. D-3 D-5 



UP-8068 Rev. 4 

Term 

Format 5 label, disk 
contents 
description 

Format 6 label, disk 
contents 
description 

Forms, printer 

Forms overflow 
code, DTFPR macro 
print action (PRTOV macro) 
VFB statement 

Forms advance 

G 

Gangpunch-reproduce 

Gaps, interrecord 

General registers 

Generation number, file 

GET macro 
diskette 
ISAM 
magnetic tape 
nonindexed disk 
overlap mode 
paper tape 
punched card 
use of IOREG keyword, processing 

input disk files sequentially 

H 

Hardware constraints 

HDRl label 
ASCII volume 
contents 
description 

field description, ASCII volume 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

HDR2 label 
Table D-3 D-9 ASCII volume 
D.2.3 D-8 contents 
Fig. D-4 D-8 description 

field description, ASCII 
Table D-4 D-10 volume 
D.2.4 D-9 
Fig. D-5 D-10 Header labels 

file 
See printer forms. 

user 

7.3 7-11 volume 
7.4.4 7-24 
6.4.4.2 6-9 Hole-count errors, DTFCD macro 

7.3 7-10 Hollerith code 
ASCII/EBCDIC/Hollerith 

correspondences 

description 

1.7.5 1-18 Home paper control character codes 

See interrecord Home paper position, VFB statement 

gaps. 

See save area 
specification. 

9.3.4.6 9-39 

5.4.2 5-8 
11.5.5.2 11-44 
9.4.4 9-52 
15.7.12 15-94 
3.3 3-8 Image mode 
17.4.3 17-20 
3.4.2 3-15 Imperative macroinstructions 

description 
Table 15-9 15-95 diskette 

indexed ISAM 

invalid 
ISAM files 
ISAM files without index 

1.5.6 1-11 structure 

magnetic tape 
Fig. E-8 E-19 nonindexed disk 
Table E-2 E-6 
E.2.2.1 E-4 paper tape 
Fig. E-2 E-5 printer 
Table E-8 E-20 punched card 

Index 10 
Update C 

Reference 

Fig. E-9 
Table E-3 
E.2.2.2 
Fig. E-3 

Table E-9 

Page 

E-21 
E-9 
E-7 
E-8 

E-22 

See file header 
labels. 
See user header 
labels. 
See VOLl label. 

3.3 3-5 

C.2 C-1 
Table C-1 C-3 
C.2.1 C-2 

Table 7-2 7-8 

6.4.4.1 6-9 

C.4 C-9 

1.6.2 1-14 
5.4 5-6 
11.2.1 11-2 
Table 11-1 11-3 
17.5.9 17-65 
11.5 11-23 

11.2.2 11-3 
Table 11-2 11-4 
9.4 9-43 
15.7 15-59 
Table 15-8 15-61 
17.4 17-15 
7.4. 7-15 
3.4 3-13 



UP-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Index 11 



UP-8068 Rev; 4 

Term 

IRAM files (collt) 
file· accessing options 
file type 
index area length 
indexed 

input or output record 
processing, work area 

1/0 ··area. identification 

key lengths 
key retrieval 
locating relative disk 

address 
naming location for. index blocks 
number of bytes preceding keys 
optional files 
pointing to current 1/0 area 
processing, nonindexed 
processing, one volume online 

at a time 
processing by key 
record length 
retrieval and lead modules 
sequential 

suppressing file lock 
updating records 
verifying ascending record key 

order during file creation 
verifying output records 

IRAM formats and file conventions 
coarse- or mid-level index sector 

' concepts 
data partition 
data records spanning disk sectors 

on fixed sector disk 
data records with and without keys 
description 
entries in index partition 
estimating disk space 

file organization 
fine-le\lel index block of 

three sectors 
index structure 
search of 4-level index 

ISAM error handling 

ISAM file information area, disk 
format 2 label 

SPERRY UNIVAC OS/3 ·, 
BASIC·DATA MANAGEMENT 

Reference Page\ Term 

ISAM files 
13.4J 13-f8 addressable fields in DTFIS file 
13A.21 13-23. table 
13.4.7 13-20 
See indexed IRAM ASAM files 
files. ASAM record formats 

current record pointer 
13.4.25 13-24 cylinder overflow 
13.4.9 13-20 data .blocks 
13.4.10 13-21 
13.4.13 13-21 defining (DTFIS macro) 
13.4.12 13-21 deletjng records 

description 
13.4.19 13-23 
13.4.6 13-20 error exit 
13.4.14 13-22 file accessing options 
13.4.17 13-22 filenameC 
13.4.11 13-21 functions and operation 
13.l 13-1 imperative macro instructions 

index area in main storage 
13.4.24 13-24 index area space requirements 
13.4.8 13-20 index blocks 
13.4.18 13-23 index stn,icture 
13.4.16 13-22 
See sequential indexed,, processing 
IRA.M files. initializing (OPEN macro) 
13.4.15 13-22 inserting new records 
13.4.22 13-24 1/0 buffers 

·loading and extending 
13.4.20 13-23 loading top index 
13.4.23 13-24 

multivolume 
organization 

Fig. 12-4 12-6 parity check 
12.l.1 12-1 random processing 
12.2.l 12-3 record formats 

record keys 
Fig. 12-2 12-5 record size and format 
Fig:·12~1 12-4 record work a re as 
12.1 12-1 retrieval search argument 
12.2.2 12-3 sample load program 
12.2.4 12-9 save area 
12.2.5 12-12 sequential processing 
12.2 12-3 space requirements 

structuw 
Fig. 12~3 12-5 suppressing file lock 
·12.2.3 12-6 terminating (CLOSE macro) 
Fig. 12-6 12-8 type of retrieval 

8.2.1 8-2 

D.3.2 D-18 
Fig. D.;.;_10 D-20. 
Table D-8 D-23· 

Index 12 

Reference Page 

11.6.2 I 11-49 
Table 11-4 11-49 
10.3 10-'--18 
10.3) 10-22 
11.4.7 11-13 
11:4.12 11-17 
10.2.2 10-8 
11.4.2 11-9 
11.3 11-6 
11.2.3 11-4 
1.~.J 1-10 
10.l 10-1 
11.4.3 11-10 
11.4.l .· 11,._8 
11.6.l 11-49 
11.1 11-1 
11.5 11-23 
11.4.4 11-11 
10.2.4 10-14 
10.2.3 10-12 
u.2.2 11-3 
11.4.5 11-12 

:Jl.2.1 U-2 
11.5.1.1 11-24 
11.5.3 11-31 
11.4.6 11-12 
11.5.2 lL-26 
10.2.5 10-16 
Fig. 10-8 10-17 
10.4 10~22 
10.2 10-3 
11.4.17 11-19 
11.5.4 11-35 
10.2.l 10-5 
11.4.10 11_;_15 
11.4.13 11-17 
11.4.18 11-19 
llA.9 11-14 
11.7.l 11-50 
11.4.14 11-18 
lUi.5 11-40 
jo.2.2.i 10-11 
Fig; 10-:--7 10-13 
11.4.11 11-16 
11.5.1.2 11-25 
11.4.15 11-18 



UP-8068 Rev. 4 

Term 

J 

Job control· functions 

Job .control statements 
assigning tape device (DVC) 
defining your logical file (LFD) 
end-of-data (/*) 
magnetic tape files 
sample programs 
SCR 
specifying tape file label 

information (LBL) 
specifying tape volume 

information (VOL) 
start-of-data (/$) 
use 

K 

Key fields, nonindexed files 

Key search 
assigning to multiple tracks 
ISAM 
nonindexed disk 

Keys 
direct retrieval and updating 

of input blocks 
I RAM data records 
IRAM processing 
ISAM files 
length of block, nonindexed 

disk files 
lengths,. IRAM 
number of bytes preceding, IRAM 
output of sequential DTFNI files 
record, length and location 
record, verifying ascending order 

during file creation 
retrieval, IRAM 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference ·Page Term 

L 

1.7.2 1-16 Label processing routine 

9.3.1 9-31 Label standard level field, ASCII 
9.3.2 9-32 tape labels 
2.3:2 2-3 
9.3 9-31 Labels 
3.7 3-25 disk .files 
16.1.3 16-2 EBCDIC 

9.3.4 9-36 format 
LBL statement 

9.3.3 9-33 
2.3.1 2-3 magnetic tape 
16.Ll 16-1 

processing 
standard 
user 

Lace factor 

LBL job control statement 
checking volume and file 

serial numbers 
description 

effects on OPEN transient 
file creation date 
file expiration date 
file generation and version numbers 
file identifier 

l4.3.3 14-10 
file seq·uence number 

Fig. 14-4 14-'-12 LBRET macro 
magnetic tape 

15.6.26 15-50 
nonindexed disk 

11.4.9 11-14 LCB job control statement 
15.6.12 15-35 

LCB statement specification 
description 
0768 printer 

15.7.14.2 15-101 0770 and 0776 printers 
Fig. 12-:-1 12-4 0773 and 0778 printers 
13.4.8 13-20 
10.1 10-1 Leader, paper tape 

15.6.13 15-36 Letter scan table 
13.4.13 13-21 
13.4.14 13-22 Letter shift character 
15.7.9.5 15-80 
11.4.10 11-15 Letter shifting and translation 

. input files, character mode 
13.4.20 13-23 output files, character mode 
13.4.12 13-21 

Index 13 

Reference Page 

15.6.14 15-37 
D.4 D-28 

E.3.2.2 E-16 

See disk file labels. 
See EBCDIC volume 
organization. 
See format labels. 
See LBL job con-
trol statement 
·See magnetic tape 
labels. 
See LBRET macro. 
See standard labels. 
See user labels. 

15.6.8 15-30 

9.3.4.2 9-36 
9:3.4 9-36 
16.1.1 16-1 
Table 9-3 9-37 
9.3.4.4 9-39 
9.3.4.3 9-38 
9.3.4.6 9-39 
9.3.4.1 9-36 
9.3.4.5 9-39 

9.4.9 9-60 
15.7.3 15-64 

16.1.1 16-1 

6.4.2 6-7 
6.4.2.3 6-8 
6.4.2.2 6-8 
6.4.2.1 6-8 

17.2.2 17-3 

17.5.5 17-50 

17.3.2 17-6 

17.5.3 17-39 
.17.5.5 17-50 



UP-8068 Rev. 4 SPERRY UNIVAC OS/8 
BASIC .E>ATA MANAGEMENT 

lndex.14 



UP-8068 Rev. 4 

Term 

MIRAM files (cont) 

number of bytes preceding keys 
optional files 
pointing W current 1/0 area 

(data buffer) 
processing mode 
processing one volume online 

at a time 
processing type of operations 
record control byte 
record format 
record length 
record processing, work area 
suppressing file lock 
verifying output records 

MIRAM formats and file conventions 
coarse- or :mid-level index block 
concepts 
data partition 
data record formats 
data record slots spanning 

physical block or sector boundaries 
entries in index partition 
estimating disk space 

file organization 

Modes 
data conversion, cards 
paper tape 

punched cards 

Multifile sets, ASCII labels 
multivolume 

single-volume 

Multifile volumes, reel organization 
EBCDIC nonstandard 
EBCDIC standard labeled tape, 

end-of-file condition 
EBCDIC standard labeled tape, 

end-of-volume condition 

Multisector 1/0, diskette 

Multivolume files 
ind ex'ed '1 RAM 

ISAM 
nonindexed disk 
tape SAM 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

Multivolume sets, ASCII label 

138.5.11 138-J6 configuration 

138.5.14 138-17 end~of-file and end-of-volume 
coincidence 

138.5.9 138-15 multifile 

138.5.13 138-16 single-file, single-volume 

:138.5.22 138-19 
·138.5.!5 138-17 
138.5.16 138-'17 
138.5.16 138-17 
138.5.18 138-18 
138.5.23 138-20 
138.5.12 138-.16 
138.5.2.l· 138'-19 N 

Nonindexed disk files 
Fig. 13A-4 13A-7 access methods 
13A.1.1 13A-2 accessing options 
13A.2.I . IJA:..._3 address for routine on end-of-input 
Fig. 13A-1 13A-4 file or .partition 

assigning initial disk space to 
Fig. 13A-2 13A-5 file partition 
13A.2.2 13A-6 block keys, length 
13A.2.5 13A-9 block size 
13A.2.6 13A-12 closing (CLOSE macro) 
13A.2 13A-3 current relative block address, 

accessing (NOTE macro) 
declarative macros 

C.4 C-9 defining (DTFNI macro) 
17.2 17-1 defining type 
17.5.2 17-36 description 
3.3 3-7 direct access, defining (DTFDA 

macro) 
disk head movement to track 

Fig. 8-9 8-12 controlling (CNTRL macro) 
Fig. 8-10 8-13' dynamic extension of file 
Fig. 8;__8 8~11 partition 

end-of-volume procedures, forcing 
(FEOV macro) 

Fig. ·8_:5 8-7 error and. exception handling 
error processing 

Fig. 8-2 8-4 file lock, suppressing 
fixed-length records 

. Fig. 8_:3 8-5 
format 2 labels 

5.2.4 5-3 
imperative .. macros 

13.2 13-9 index register, current data pointer 
13.2.3 13-11 initializing position of ·file or 
10.4 10-22 partition 
14.2 14-2 1/0 buffers 
9.2.10 9-30 IRAM 
9.3.5 9-.-40 

Index 15 

Reference Page 

Fig. 8-10 8-13 
Fig. 8-9 8-12 
Fig. 8-7 8-10 

15.l 15-1 
15.6.1 15-21 

15.6.4 15-25 

15.6.25 15-49 
15.6.13 15-36 
15.6.3 15-22 
15.7.2 15-63 

15J.J7 15-106 
15:5 15-7 
.15.5.3 15-14 
15:6.29 15-51 
14.l 14-1 

15.5.2 15-11 

15.7.15 15-103 

15.6.30 15-53 

15.7.7 15-73 
15.8 15-111 
15.6.6 15-26 
15.6.15 15-38 
14.3.l 14-7 
Fig. 14-2 14-8 
D.3.2 D-18 
.Fig. D-9 D-19 
15.7 15-59 
Table 15-8 15-61 
15.6.11 15-34 

. 15.7.6 15-72 
15 . .6.9. 15-33 
12:2.5 12-12 
13.l 13-1 



UP-8068 Rev. 4 

Term 

Nonindexed disk files (cont) 
key search 
keyword parameter summary 
label processing routine address 

labels 

opening (OPEN macro) 
optional files 
optional key fields 

optional standard user labels 
optional user labels, processing 

(LBRET macro) 
OS/3 DAM 
OS/3 nonindexed file access method 
OS/3 SAM 
output (PUT macro) 
output, short variable blocks 

(TRUNC macro) 
parity ·check of output 
parity errors 
partitibn .. control appendage 

(DPCA ·macro) 
partitioning 
partitions for DTFNI files 
positioning file or partition to 

relative block address 
(POINT macro) 

processing mode, setting (SETF. 
macro) 

random output of records 
(WRITE macro) 

random retrieval from direct 
access files (READ macro) 

READ, ID· rnacro 
READ, KEY macro 
record formats 

record interlace factor 
record size 
records, retrieving (GET macro) 
records, skipping (RELSE macro) 
register for residual space 
relative addressing 
relative disk address 

save area for general registers· 
selected file partition, accessing 

(SETP macro) 
sequential, defining (DTFSD macro) 
sequential . processing in a work area 
subfiles in partitions 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference .Page Term 

system standard labels 

15.6.12 15-35 update processing mode 
Table 15.:._ 7 15-58 user'. trailer label processing 

15.6.26 15-50 variable-length records 

15.6.13 15-36 
See disk waiting for 1/0 completion 

file labels. (WAITF macro) 

15.7.1 15-62 WRITE, AFTER and WRITE, RZERO 

15.6.16 15-38 macro issue 

14.3.3 14-10 WRITE, . IP. macro 

Fig. 14-:-4 14-12 WRITE, KEY macro 

14.2.4 14-5 
Nonindexed file processor system 

15.7.3 15-64 
15.3 15-4 ~onstandard volume organization, 

15.4 15-5 EBCDIC 

15.2 15-3 
15.7.9 15-75 

15.7:10 15-82 . NOTE macro 

15.6.33 15-55 
Nuli character 15.6.5 15-26 

15.5.4 15-16 
14.2.l 14-3 
15.6.17 15-39 

15.7.18 . 15-108 

15.7.8 15-74 

15.7.11 15-84 

•15:7.14 15-97 
15.6.18 15-40 0 
15.6.19 15-40 
14.3 14-6• OBTAIN macro 
15.6.20 15-40 description 
Fig. 15-:-1 15-24 retrieving specific format 
Table 15;._6 15-41 label items 
15.6.8 15-30 
15.6.21 15-4? OPEN macro 
15.7.12 15-94 diskette 
15.7.13 15-96 effects of VOL and LBL statements 
15.6.32 15-54 on OPEN transient 
15.6.22 15-42 ISAM 
15.6.7 15-2~ magnetic tape 
15.6.24 15-46 nonindexed disk 
'15,6.23 15-45 paper tape 

15.7.4 15-68 printer 
15;5.l 15-8 punched card 
15.6.34 15-56 
14.2.2 14-3 Operand field, assembler rules 
15.6.27 15-50 
15.7.5 15-70 Operator communications 

Index 16 

Reference Page 

14.2.3 14-4 
15.6.31 15-54 
15.6.28 15-51 
14.3.3 14-8 
Fig. 14-3 14-9 

15.7.16 15-105 

15.6.2 15-21 
15.6.35 15-56 
15.6.36 15-57 

15.l 15-1 

See EBCDIC 
nonstandard volume 

.. ,organization. 

15.1:17 15-106 

17.3.l 17-4 

16.4.l 16-12 

16.4.1.1 16-14 

5.4) 5-7 

Table 9-3 9-38 
U.5.1.1 11-24 
9.4.1 9-46 
15.7.l 15-62 
17.4.1 17-17 
17.5.9 17-68 
7.4.l 7-16 
3.4.l 3-14 

1.6.3 1-14 

1.7.3 1-17 



UP-8068 Rev-~. 

Term 

Optional file processing 
IRAM 
magnetic tape 
MIRAM 
nonindexed disk 
paper tape 
printer 
punched card 
sequential output, nonindexed disk 

Optional user labels, disk 
nonindexed disk 
processing 
standard 
standard header 

standard trailer 

Optional user labels, tape 

OS/3 DAM 

OS/3 processing, ASCII tape labels 

OS/3 SAM 

OS/4 paper tap~ system, compatibility 
with OS/3 

Output files 
blocked records, sequential disk 
diskette 
extending' existing DTFSD 
label processing, ASCII tape 
paper tape 

punched card SAM 
sequential · DTFN I with keys 

Output records 
diskette SAM files 
parity check, ISAM files 
processing in a work area, IRAM 
random, to disk 
undefined, standard mode paper tape 

file 
verifying, IRAM 
verifying, MIRAM 
See also PUT macro. 

Overflow 
adding new record in existing 

file 

SPERRY UNIVAC 05/3 
BASIC: DATA MANAGEMENT 

Reference Page Term 

area, ISAM files 

13.4.17 13-22 contror character codes 
9.2.8.1 9-28 forms 
138.5:14 138-17 
15.6.16 15-38 
17.5.7 17-62 ·Overlap mode 
7.3 7-10 
3:3 3-7 Oversized buffers 
15.7.9;6 15-81 

14.2.4 14-5 
15.7.3 15-64 
D.4 D-28 
D.4.1 D-28 
Fig. 0--'14 D-28 
D.4.2 D-29 
Fig. D-15 D-29 

E.2.4 E-14 

15.3 15-4 

E.3.2 E-15 

15.2 15-3 

17.6.1 17-73 

15.7.9.4 15-80 
4.2.2 4-4 
15:7.9.3 15-79 p 
E.3.1.1 E-15' 

'See paper Padding 
tape files. 
3.2.2 3-2 Paper advance 
15.7.9.5 15-80 

Paper tape data management 
ASCII processing 

5.2.2 5-2 character and record types 
11.4.17 11-19 comparison of OS/3 with other 
13.4.25 13-24 systems 
15.7.11 15-84 compatibility with IBM System/ 

360 DOS 
Fig. 17-3 17-7' compatibility with OS/ 4 
13.4.23 13~24 compatibility with 9200/9300 
138.5.21 13B-i9 considerations 

defining files (DTFPT macro} 
description 
processing files 
program connector board 

11.5.3.1 11-32 See also paper tape files. 
11.5.3.2 11-34 

Index 17 

Reference .Page 

10.1 10-2 
11.4.12' lF-17 
Table 7,,.....,2 7-8 
See forms 
overflow;· 

3.3. 3-8 

17.5.l.5 17-33 

E.4 E-16 

6.1 6-1 

17.5.10· 17-70 
17.3 17-4 

17.6 i;].::_ 73 

17.6.3 ·17.::_74 
17.6.1 17-73 
17.6.2 17-74 
17.2 17-1 
17.5 17-24 
17.1 17-1 
17.4 17-15 
17.2.1 17-2 



UP-8068 Rev. 4 SPERRY UNIVAC 05/3. Index 18 
BASIC DATA MANAGEMENT· 

Term Reference Page Term Reference Page 

Paper tape files. Parity check 

ASCII processing 17.5.10 17-70 output functions, ISAM 11.4.16 11-19 

block size 17.5.1.3 17-29 verification of output, 

buffers and work areas 17.5.1.4 17-30 nonindexed disk 15.6.33 15-55 

closing (CLOSE macro) 17.4.2 17-18 
Parity errors defining (DTFPT macro) 17.5 17-24 

description 1.3.7 1-9 magnetic tape 9.2.3.4 9-14 

end-of-record stop character, paper tape 17.5.9 17-65 

output 17.5.6 17-60 sequential disk files 15.65 15-26 

error processing 17.5.9 17-65 
Partition control appendage initializing (OPEN macro) 17.4.l 17-17 See .DPCA macro. 

input, end-of-tape routine 17.5.4 17-49 
Partitions input - fixed, unblocked records Fig. 17-7 17-13· See file 

input - shifted, fixed, unblocked partition~;. 

records Fig. 17-9 17-15 
input - shifted, undefined records Fig. 17-8 17-14 Peripheral dev.ices 

input - undefined and fixed, allocation See devJce 

unblocked records Fig. 17-6 17-12 functi~nal characteristics 
allocation. 

interrecord gaps 17.3.4 17-10 Appendix A 

leader and trailer Fig. 17-1 17-3 
letter/figure shifting and PIOCS 1.7.3 1-17 

translation, input 17.5.3 17-39 POINT macro letter/figure shifting and 15.7.18 15-108 

translation, output 17.5.5 17-50 Pointers optional file processing 17.5.7 17-62 
output - undefined and fixed, current record, ISAM 11.4.7 lJ:----13 

unblocked records Fig. 17-5 17-11 current i/O area, IRAM 13.4.11 13-21 

oversized buffers 17.5.1.5 17-33 
processing 17.4 17-15 POINTS macro 15.7.6 15-72 

processing mode specification 17.5.2 17-36 Prime data blocks punching logical record 10.l .10-2 

(PUT macro) 17.4.4 17-22 10.2 10-3 

reading logical record 
Print line, truncation (GET macro) 17.4.3 17-20 7.~i2 7-28 

record format specification 17.5.1.2 17-29 
Print overflow action record formats 17.3.3 17-10 

record size specification 17.5.1.6 17-35 (PRTOV macro)' 7.4.4 7-24 

save area 17.5.8 17-'--63 
type specification 17.5.1.1 17-28' . 

Paper tape leader 17.2.2 17-3 
Fig; 17_;_1 17-3 

Paper tape loop, 0768 printer 6.4.4.4 6-10 

Paper tape records 
fixed, unblocked See fixed, 

unblocked records. 
formats 17.3.3 17-10 
undefined See. undefined 

records. 
See also paper tape files. 

Paper tape subsystem characteristics Table A-6 A-11 

Paper tape trailer 17.2.3 17-3 
Fig. 17-1 17-3 



U P-8068 Rev. 4 SPERRY UNIVAC OS/3 
BASIC DATA 'MANAGEMENT 

Index 19 



UP-8068 Rev.A 

Term 

READ macro 

Record deletion 
direct IRAM tiles 
indexed iRAf:l1 files 
ISAM files 
sequential IRAM files 

Record descriptor word (ROW) 

Record format specification (RECFORM) 
ISAM 
magnetic tape 
nonindexed disk 

paper tape 
printer 
punched card 

Record formats 
card punch records 

diskette 

end-of-data job control statement 
fixed-length 

fixed-length unblocked, 
input and combined card :files 

'110 area contents, nonindexed 
disk files 

ISAM 
magnetic tape 

nonindexed disk files 
paper tape 
printer 

start-of-data job control statement 
variable~length 

Record interlace factor 

Record keys 

Record printer,. current 

Record processing, diskette SAM 
files 

combined 
input 
output 

SPERRY UNIVAG QS/3 
BASIC DATA J\llANAGEMENT 

Reference Page Term 

15.7.14 J5--97 Record retrieval 
adding records, IRAM 
direct access files (READ macro) 

13.1.2.5 13-8 direct IRAM files 
13.2.6 13-14 indexed IRAM files 
11.2.3 11-4 
13.1.1.5! 13-5 

initializing (SETL macro) 
14.3.2 14-8 READ, ID macro 
15.7.9.4 15-80 

READ, KEY macro 

11.4.13 11-17 search argument 
9.2.4.1 9-17 sequential IRAM files 
5.6.20 15-40 sequentially processed disk files 
Table 15-6 15-41 specifying type, ISAM 
17.5.1.2 17-29 terminating (ESETL macro) 
7.3 7-12 with update 
3.3 3-9 See also GET macro. 

Record size, invalid 
2.3.3 2-4 
Fig. 2-3 2-4 Record size specification 
4.3 4-4 (RECSIZE and RCSZ) 
Fig: 4-2 4-5 IRAM 
2.3.2 2-3 ISAM 
See fixed-length magnetic' tape 
records. nonseqaential disk 

paper tape 
Fig. 2~2 2-2 printer 

punched card 
Fig. 15-1 15-24 . 
10.2.1 10~5 Record transfer, ensuring completion 
8.2.5 8-14 (WAITF macro) 
Fig .. 8-11 8~14 

14.3 14-6 Record types, paper tape 
17.3.3 17-10 
6.3 6-5 Recording density, specifying 
Fig. 6+4 6--6·' 
2.3.1 2-3 Records 
See variable•length chaining, ISAM file 
records. 

deleting 
15.6.8 15-30 

direct IRAM ·files 
See keys. 

fixed-length. 
11.4.7 11-13 

IRAM 

logical 
5.2.3 5-2 
5.2.1 5-1 paper tape 
5.2.2 5-2 

retrieving 

Index 20 

Reference Page 

13.2.4 13-12 
15.7:14 15-97 
13.1.2.4 13-7 
13.2.3 13-11 
13.2.5 13-13 
13.4.16 13-22 
11.5.5.1 11-41 
SEE READ, ID 
macro. 
See READ, KEY 
macro. 
11.4.9 11-14 
13.1.1.4 13-3 
15.7.12 15-94 
11.4.15 11-18 
11.5.5.4 11--48 
13.2.5 •. ~13-13 

17.5.9 17-65 

13.4.18 13-23 
11.4.13 11-17 
9.2.4.2 9-18 
15.6.21 15-42 
17.5.1.6 .17-35 
7.3 7-12 
3.3 3'-'--9 

11.5.3.3 11-35 

17.3 17-4 

9.3.3.2 9-34 

10.2.2 10-10 
Fig. lQ,.....,.5 10-10 
See record 
deletion. 
See direct 
IRAM files. 
See fixed-length 
records. 
Fig. 12~1 12-4 
Fig. 12-2 12-5 
See logical 
records. 
See paper 
tape records. 
See record 
retrieval. 



UP-8068 Rev. 4 

Term 

Records (cont) 
sequential disk files, 

output 
sequential IRAM files 

skipping 

updating 

variable-length 

. Reel organization 
EBCDIC nonstandard volumes 

EBCDIC standard volumes 

EBCDIC unlabeled volumes 

Register save area 

Register specification 
ISAM 
magnetic tape 
nonindexed disk 
printer 
punched card 

Registers 
save area 
specifying for residual space 

Relative block address 
accessing current 
positioning a file or 

partition 

Relative disk address 
creating and updating blocks 
IRAM 
nonindexed disk 

random processing 
random retrieval 
returned after READ or 

WRITE macro 

Relative M IRAM files 
creating 
deleting records 
extending 
processing 
reorganizing 
retrieving and updating records 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

RELSE macro 
magnetic tape 

15.7.9.4 15-80 nonindexed disk 
See sequential 
IRAM files. RENAME macro 
See .RELSE 
macro. Residual space, variable records 
See updating 
records. Resource control 
See variable-length 
records. 

Rewinding 
at close 

Fig. 8-4 8-6 at open 
Fig. 8-5 8-7 options 
Fig. 8-1 8-3 
Fig. 8~2 8-4· Rewriting randomly retrieved 
Fig. 8-3· 8-5 blocks to disk 
Fig .• 8;_6 8-8 

See save area. 

11.4.7 11-13 
9.2.3.2 9-13 
15.6.11 15-34 
7.3 7-9 
3.3 . 3-6 

See save areas. 
15.6.32 15-54 

15.7.17 15-106 

15.7.18 15-108 

15.7.11.4 15-90 
13.4.19 13-23 
15.6.7 15~28 

15.6.22 15-42 
15;6.24 15-46 
15.7.14.l 15-99 SAM files, disk 

Table 15-5 15-29 SAM files, diskette 
closing (CLOSE macro) 
defining (DTFCD macro) 

138;2.7 138-4 input record processing 
138.2.10 138-5 opening (OPEN macro) 
138.2.8 138-4 output record processing 
138.2 138-1 retrieve next logical record 
·138.2.11 138-5 (GET macro) 
138.2.9 138-4 writing (PUT macro) 

Index 21 

Reference Page 

9.4.7 9-58 
15.7.13 15-96 

16.2 16-6 

15.6.32 15-54 

See system 
resoi.J rce control. 

9.2.5.4 9-23 
9.2.5.3 9-23 
9.2.5.2 9-22 

15.7.11.5· 15-93 

s 
15.2 15-3 

5.4.4 5-12 
5.3 5-5 
5.2.1 5-1 
5.4.r 5-7 
5.2.2 5-2 

5.4.2. 5-8 
5.4.3 5-10 



UP-8068 Rev. 4 

Term 

SAM files, magnetic tape 
ASCII processing 
block numbers 
checkpoint dumps, bypassing 
cio~ng (CLOSE macraj 
defining (DTFMT macro) 

delivering next logical record 
(PUT macro) 

description 
eliminating tape mark 
end-of-data processing, input 

file 
end-of-volume procedures, forcing 

(FEOV macro) 
error messages 
error processing 
extending 
file processing mode, changing 

(SETF macro) 
general rewind options 
imperative macros 

index register 
initiating processing (OPEN macro) 
input file direction 
1/0 buffers 

job control statements 

label processing 
multivolume 

optional, specifying 
parity errors 
processing in a work area 
reading next record (GET macro) 
record format 

record size 
register save area 
rewinding 

secondary 1/0 buffer 
short output blocks, writing 

(TRUNC macro) 
skipping to next input block 

(RELSE macro) 
tape movement 
tape unit functions, controlling 

(CNTRL macro) 
type of processing 
type of tape labels 
user tape labels, processing 

(LBRET macro) 
variable records, blocking 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

SAM files, printer 
9.2.7 9-27 closing (CLOSE macro) 
9.2.3.5 9-15 control printer forms 
9.2.8.2 9-29 (CNTRL macro) 
9.4.2 9-48 defining (DTFPR macro) 
9.2 9-1 device-independent control 
9.2.1 9-2 character codes 

error and exception handling 
9.4.3 9-50 functional description 
9.1 9-1 ' opening (OPEN macro) 
9.2.6.2 9-24 output a record (PUT macro) 

print overflow action 
9.2.2.5 9-12 (PRTOV macro) 

sample program 
9.4.8 9-59 typical operating sequence 
9.3.7 9-43 
9.2.2.4 9-12 SAM files, ·p·unched card 
9.3.6 9-41 closing (CLOSE macro) 

controlling stacker selection 
9.4.5 9-54 (CNTRL macro) 
9.2.5.2 9-22 defining (DTFCD macro) 
9.4 9-43 description 
Table 9-4 9-44 error and exception handling 
9.2.3.2 9-13 input 
9.4.1 9-46 opening (OPEN macro) 
9.2.5.1 9-22 output 
9.2.2.1 9-10 output a record (PUT macro) 
9.2.2.2 9-10 retrieving next logical record 
See job control (GET macro) 
statements. sample programs 
9.2.6 9-23 
9.2.10 9-30 Sample programs 
9.3.5 9-40 printer 
9.2.8.1 9-28 punched card 
9.2.3.4 9-14 
9.2.3.3 9-14 Save area specification 
9.4.4 9-52 ISAM 
9.2.4 9-17 magnetic tape 
9.2.4.1 9-17 nonindexed disk 
9.2.4.2 9-18 paper tape 
9.2.2.6 9-13 printer 
9.2.5.3 9-23 punched card 
9.2.5.4 9-23 
9.2.3.1 9-13 Scan tables, letter/figure 

9.4.6 9-56 SCR job control statement 

9.47 9-58 Scratch volume 
9.2.5 9-21 

SCRTCH macro 
9.4.10 9-62 
9.2.2.3 9-ll Search 
9.2.6.1 9-23 key, address of argument 

4-level IRAM index 
9.4.9 9-60 
9.2.4.3 9-19 Search-by-key function 

Index 22 

Reference Page 

7.4.5 7-27 

7.4.3 7-21 
7.3 7-4 

Table 7-1 7-6 
7.6 7-28 
7.2 7-1 
7.4.2 7-16 
7.4.2 7-18 

7.4.4 ·1~24 

7.6 7-28 
7.2 7-2 

3.4.5 3-24 

3.4.4 3-19 
3.3 3-3 
1.5.2 1-10 
3.6 3--:25 
3.2.1 3-1 
3.4.1 3-14 
3.2.2 3-2 
3.4.3 3-17 

3.4.2 3-15 
3.7 3-25 

7.6 7-28 
3.6 3'--'-25 

11.4.14 11-18 
9.2.2.6 9-13 
15.6.23 15-45 
17.5.8 17-63 
7.3 7-12 
3.3 3-10 

U.5.5 17-50 

16.1.3 16-2 

9.3.3.3 9-36 

16.3 16-8 

15.6.12 15-35 
Fig. 12_;6 12-8 

10.1 10-1 



UP-8068 Rev. 4 

Term 

Search-on-key function 

Sectors, disk 

Sequence check 

Sequential access method 

Sequential-by-key retrieval sequence 

Sequential disk files 
creating 
extending existing DTFSD 
optional 
output of blocked records 
output of DTFNI with keys 
parity errors 
reading, with and without 

record interlace 
reserving space 
retrieving records (SET macro) 
update processing mode 
updating and extending 
See also disk files. 

Sequential IRAM files 
adding records 
creating 
deleting records 
extending 
non indexed 
processing 
reorganizing 
retrieving and updating records 

Sequential ISAM files 

Sequential load 

Sequential MIRAM files 
adding records 
creating 
deleting records 
extending 
processing 
reorganizing 
retrieving and updating records 

Sequential processing, work area 

Set file load 

SETF macro 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

11.4.9 11-14 SETFL macro 

12.2.2 12-3 SETL macro 

13.4.20 13-23 SETP macro 

See SAM. SETS macro 

13.2.3 13-11 Shared data management modules 
138.2.4 138-3 

Shift characters 

15.7.9.1 15-76 Shift codes 
15.7.9.3 15-79 paper tape record 
15.6.16 15-38 translation for input files 
15.7.9.4 15-80 translation for output files 
15.7.9.5 15-80 
15.6.5 15-26 Shifted, fixed, unblocked records 

Fig. 15-2 15-31 Shifted, undefined records 
16.1.2 16-2 
15.7.12 15-94 Short variable blocks, output 
15.6.31 15-54 magnetic tape 
15.7.9.2 15-78 nonindexed disk 

Skip codes, device 

13.1.1.3 13-3 Skipping records 
13.1.1.1 13-2 
13.1.1.5 13-5 
13.1.1.2 13-3 Software, related OS/3 
13.1 13-1 
13.1.1 13-2 Space requirements 
13.1.1.6 13-5 
13.1.1.4 13-3 

11.5.5 11-40 Special forms 

15.7.11.1 15-86 Stacker selection 

Standard labels, disk 
138.2.3 138-3 header 
138.2.1 138-2 
138.2.5 138-3 optional user 
138.2.2 138-2 
138.2 138-1 
138.2.6 138-3 system, nonindexed files 
138.2.4 138-3 trailer 

See work area 
specifications. Standard labels, tape 

ASCII 
See SETFL 
macro. 

9.4.5 9-54 system 
15.7.8 15-74 

Index 23 

Reference Page 

11.5.2.l 11-27 

11.5.5.1 11-42 

15.7.4 15-68 

15.7.5 15-70 

1.5.7 1-12 

17.3.2 17-6 

Fig. 17-4 17-9 
17.5.3.2 17-46 
17.5.5 17-50 

Fig. 17-9 17-15 

Fig. 17-'-8 17-14 

9.4.6 9-56 
15.7.10 15-82 

Table 7-4 7-22 

See RELSE 
macro. 

1.7 1-15 

See disk space 
requirements, 
estimating. 

6.4.4.3 6-10 

3.4.4 3-19 

D.4.1 D-28 
Fig. D-14 D-28 
14.2.4 14-5 
15.7.3 15-64 
D.4 D-28 
14.2.3 14-4 
D.4.2 D-29 
Fig. D-15 D-29 

See ASCII 
standard 
magnetic 
tape labels. 
See system 
standard 
tape labels. 



U P-8068 Rev. 4 

Term 

Standard modes, data conversion 

Standard volume organization 

Start-of-data (/$) job control 
statement 

Stop character 
description 

specifying end-of-record, output 
files 

Stub card read feature 

Subfiles 
DTFNI partitions 
processing in partition 
support in partition 

Supervisor 

System access technique 

System code field 
description 
file header labels 

System error messages 
data management 

description 
disk space management 

System macro library 

System resource control 
device allocation and file 

assignment 
disk space management and 

the VTOC 
dynamic deallocation of disk 

file (SCRTCH) 
file lock feature 

renaming disk file (RENAME) 
retrieving VTOC information 

(OBTAIN) 
sample device assignment set 
use of job control statements 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

C.4 C-10 System standard tape labels 
description 

See volume file header label group 
organization. file trailer label group 

user header and trailer 
volume label group 

2.3.1 2-3 

17.2.l.2 17-3 
17.3.l 17-6 

17.5.6 17-60 

3.3 3-10 

14.2.2 14-3 
15.7.5 15-70 Tabular data 
15.6.27 15-50 printer files 

sample printout 
1.7.3 1-17 

Tape files 
1.7.3 1-17 magnetic tape 

paper tape 
E.3.2.4 E-16 
E.2.2.l E-4 
E.2.2.2 E-7 Tape labels 

B.3.1 B-2 Tape mark, eliminating 
Table B-1 B-3 
B.3 B-2 Tape punch, wiring program 
B.3.2 B-10 connector 
Table B-2 B-11 

Tape reader, wiring program 
7.2 7-1 connector 

Tape volume 1 label 

16.l 16-1 
Text 

16.4 16-11 output example 
printer files 

16.3 16-8 
16.l.4 16-2 Timer services 
Table 16-116-4a 
16.2 16-6 Tracks 

extending key search 

T 

16.4.l 16-12 new; selecting and initializing 
16.1.2 16-2 
16.1.1 16-1 Trailer, paper tape 

Trailer labels 

Index 24 
Update C 

Reference 

E.1 
E.2.2 
E.2.3 
E.2.4 
E.2.1 

6.2.2 
Fig. 6-2 

See magnetic 
tape files. 
See paper 
tape files. 

See magnetic 
tape labels. 

9.2.6.2 

17.2.1.l 

17.2.1.2 

See VOLl 
label, tape. 

Fig. 6-1 
6.2.l 

1.7.3 

15.6.26 
15.7.11.2 

17.2.3 

See user 
trailer labels. 

Page 

E-1 
E-4 
E-9 
E-14 
E-2 

6-4 
6-4 

9-24 

17-2 

17-2 

6-3 
6-3 

1-17 

15-50 
15-88 

17-3 



UP-8068 RevA. 

)erm 

Transient scheduling 

Translate mode 

·Translation, pa#er tape files 
input fil~s. character mode 
inpur files without shifted 

codes 
output files 
unshifted.output files, either 

mode 

Translation table address 

TRUNC macro 
magneti~. tape 
nonindexe,d disk 

T runc~tibn, print line 

. Type of file, sp~~ifying 

u 
Unblocked records, paper tape 

Undefined records, paper tape 
followed ·by interrecord gaps 

formats 
input,· length relationships to 

BLKSIZE, and content of RECSIZE 
_register 

output, sjandard mode 
record length and BLKSIZE 

relationship 
shifted, user work area 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page T~rm 

1.7.3 1-17 Unique (parity) error 

C.4 C-10 UNISERVO subsystems, characteristics 

Unlabeled volume organization, 
17.5.3 17-39 EBCDIC . 

17.5.3.2 17-46 Unrecoverable error 
17.5.5 17-50 

Unshifted fi!es .· 
17.5.5.l 17-58 

Update functions, forestalling 
3.3 3-6 

. Update processing mode 

9.4.6 9-56 Updating disk files 
15.7.10 15-82 

Updating input blocks 
7.5.2 7-28 by key 

by rel~tive disk address 
See ',tile type 
specif,ication. Updating records 

direct IRAM files 
indexed IRAM files 
ISAM, UPDT macro 
ISAM file, random processing 
sequential IRAM files 
UPDT keyword, DTFIR macro 

UPDT macro 

User header labels 
eliminating tape mark 
nonstandard, tape 
standard, disk 

standard, tape 

User interface: 

User labels, disk 

See fixed, creating 

unblocked records. proces.sing 
receiving- ,or updating 

. See also optional user labels, disk 
Fig. 17-5 17-11 
Fig. 17-6 17-12 User labels, tape 
17,3.3 1 ].7 lQ 

User trailer labels 
nonindexed disk 

Fig. 17-4 17-9 nonstandard, tape 
Fig. 17-,-3 17-8 standard,· disk 

Fig. 17-2 17-6 standard, tape 
Fig. 17-8 17-14 

Index 25 

Reference Page 

17.5.9 17-67 

Table A-5 A-10 

8.2.3 8-8 

17.·5.9 17-68 

17.5.5.l 17-58 

11.4.16 11-19 

15.6.31 15-54 

15.7.9.2 15-78 

15.7·.i4.2 15-101 
15.JJl.4, 15-90 

13.1.2.4 13-7 
13.2.3 13-11 
11.5.4.3 11-40 
1L5.4.2 ' 11-38 

.13.1.1.4 13-3 
· 13.4.22 13-24 

11.5.4.3 11-40 

9.2.6.2 9-24 
8.2.2' 8-'-2 
14.2.4.l 14-3 
D.4.1 D-28 
8.2:1 8-2 
~.2.4 E-14 

1.6 1-12 

J5.7.3.l 15_,:_66 
15.7.3 15-64 
15.7.3.2 15-67 

E.2.4 E-14 

15.6:28 15-51 
8.2.2 8-2 
14.2.4.2 14-6 
D.4.2 D-29 
8.2.l 8-2 
E.2.4 E-14 



UP-8068 Rev .. 4 

~Term 

v 
Validity check errors 

Variable-length records 
ASCII 
blocking in 1/0 area 
diskette 
ISAM 
keyed, nonindexed disk files 
nonindexed disk files 

output of blocked records, 
sequential disk files 

output of short blocks 
specifying register for residual space 
See also record formats. 

Variable sector support 
IRAM files 
MIRAM files 

Version number,· file 

Vertical format buffer 
definitfon 
interchangeability 
VFB statement specification 

See also VFB statement 

VFB job control statement 

VFB statement specification 
description 

example 
forms overflow position 
home paper position 
paper tape loop 
special forms 

VOL job control statement 
description 

effects on OPEN transient 

Volume information group labels, disk 
description 

format 0 

format 4 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

format 5 

3:3 3-4 

format 6 

9.2.7.3 9-28 
9.2.4.3 9-19 VOLl 
4.3.2 4-4 
10.2.1 10-5 
Fig. 14~4 14 -12 VTOC 
14.3.2 14-8 
Fig. 14;.:.;_3 14~9 Vo.lume label group, magnetic tape 

15.7.9.4 15-80 Volume organization 
See TRUNC macro.· disk 
15.6.32 15-54 diskette 

EBCDIC, magnetic tape 

13.5.2 13-27 Volume serial number 
138.6.2 138-21 c~ecking 

inhibiting checking 
9:3.4.6 9-39 SCRTCH macro 

volume label group, tape 

6.1 6-1 Volume table of contents (VTOC) 
6.4.3 6-9 ISAM files 
6.4.4 6-9 SCRTCH macro 
Table 6-1 6-11 disk space management 

retrieving information (OBTAIN) 

16.1.1 16-1 
volume labels, disk 

6.4.4 6-9 
file labels, disk 

Table 6-1 6-11 
6.4.4.5 6-12 Volumes 
6.4.4.2 6-9 definition 
6.4.4.1 6-9 file processing, one volume online 
6.4.4.4 6.;....;.lQ multifile 
6.4.4.3 6-10 scratch 

specification statement (VOL) 

9.3'3 9-33 VOLl label, disk 
16.1.1 16-1 contents 
Table 9-3 9-38 description 

D.1 D-1 VOLl label, tape 
D.2 D-2 ASCII 
D.2'5i D-11 
Fig.·D-6 D-11 contents 
Table D-5 D-11 description 
D.2.2 D-4 
Fig .. D-3 D-5 
Table D-2 D-6 

Index 26 

Reference Page 

bz3 D-8 
Fig. D-4 D-8 
Table D-3 D-9 
D.2.4 D~9 
Fjg. D-5 D-10 
Table D-4 D-10 
D.2.i D-3 
Fig. D~2 D-3 
Table D-1 D-4 
Fig. D-1 D-2 

E.2.1 E-2 

D.2 D.:._2 
. Fig. 4~1 4-2 

See EBCDIC volume 
organization. 

9.3.4.2 9-36 
9.3.3.l 9-34 
16.3 16-9 
E.2.1 E-2 

10.l 10-2 
16.3 16-8 
16.4 16-11 
16.4.1 16-12 
See volume 
information group 
labels. 
See file information 
group labels. 

1.3.1 1-6 
13.4.13 13-21 
See multifile volumes. 
9.3.3.3 9-36 
9.3.3 9-33 

Fig. D-1 D-4 
D.2 D.;....;.2 

. D/2.1 D-3 
Fig. D-2 D-3 

Fig. E-7 E-17 
Table E:~7 E-18 
Table E-1 E-4 
E.2.1· E-2 
Fig. E..:.'...:Jl E-3 



UP-8068 Rev. 4 

Term 

VSN 

VTOC 

w 
WAITF macro 

ISAM 
nonindexed disk 

Work area specifications 
IRAM 
ISAM 
magnetic tape 
nonindexed disk 
paper tape 
printer 
punched card 

SPERRY UNIVAC OS/3 
BASIC DATA MANAGEMENT 

Reference Page Term 

See volume serial Work areas, paper tape 
number. record lengths 

shifted, fixed, unblocked records, 
See volume table input file 
of contents. shifted, undefined records, input file 

specifying 

WRITE, AFTER, EOF macro 

WRITE, AFTER macro 

WRITE, ID macro 

WRITE, KEY macro 
description 
ISAM 
nonindexed disk 

11.5.3.3 11-35 WRITE, NEWKEY macro 
15.7.16 15-105 

WRITE, RZERO macro 
13.4.25 13-24 
11.4.18 11-19 
9.2.3.3 9-14 Write lock 
15.6.34 15-56 
17.5.1.4 17-31 WRITE macro 
7.3 7-13 
3.3 3-11 Wrong length error 

Index 27 

Reference Page 

Fig. 17-4 17-9 

Fig. 17-9 17-15 
Fig. 17-8 17-14 
17.5.1.4 17-32 

15.7.11.3 15-89 

15.6.2 15-21 
15.7.11.1 15-86 

15.6.35 15-56 
15.7.11.4 15-90 

15.7.11.5 15-93 
11.5.4.2 11-38 
15.6.36 15-57 

11.5.2.2 11-28 
11.5.3.1 11-32 

15.6.2 15-21 
15.7.11.2 15-88 

16.1.4 16-3 

15.7.11 15-84 

17.5.9 17-67 





a) 
c: 

~I c: 
0 . 

!I 
:::J (.) J 

I 
I 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 


